

09/996/57

ff 4 e/autch

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE
Bureau international

8371

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷ : C07D 401/14, 401/12, A61K 31/47		A1	(11) Numéro de publication internationale: WO 00/50418
			(43) Date de publication internationale: 31 août 2000 (31.08.00)
<p>(21) Numéro de la demande internationale: PCT/FR00/00396</p> <p>(22) Date de dépôt international: 17 février 2000 (17.02.00)</p> <p>(30) Données relatives à la priorité: 99/02412 26 février 1999 (26.02.99) FR</p> <p>(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): FOURNIER INDUSTRIE ET SANTE [FR/FR]; 38, avenue Hoche, F-75008 Paris (FR).</p> <p>(72) Inventeurs; et</p> <p>(75) Inventeurs/Déposants (<i>US seulement</i>): DODEY, Pierre [FR/FR]; 10, rue des Champs d'Aloux, F-21121 Fontaine-lès-Dijon (FR). BARTH, Martine [FR/FR]; 12, rue Jean Brice de Barry, F-21000 Dijon (FR). BONDUX, Michel [FR/FR]; 7, allée des Montereys, F-21121 Fontaine-lès-Dijon (FR).</p> <p>(74) Mandataire: CLISCI, Serge; S.A. Fedit-Loriot & Autres, Conseil en Propriété Industrielle, 38, avenue Hoche, F-75008 Paris (FR).</p>			<p>(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p>
		Publiée	<p><i>Avec rapport de recherche internationale.</i> <i>Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.</i></p>
<p>(54) Titre: HETEROCYCLIC BENZENESULPHONAMIDE COMPOUNDS AS BRADYKININE ANTAGONISTS</p> <p>(54) Titre: COMPOSES HETEROCYCLIQUES DE BENZENESULFONAMIDE EN TANT QU'ANTAGONISTES DE LA BRADYKININE</p> <p>(57) Abstract</p> <p>The invention concerns compounds selected among the group consisting of (i) compounds of formula (I) wherein: Het1 represents a nitrogenous heterocycle with 5 apices, in particular imidazole, pyrazole, or triazole; Het2 represents a nitrogenous heterocycle with 4, 5 or 6 apices, selected among the heterocycles: (II) wherein R₁ and R₂ are defined as mentioned in the description; and (ii) their additive salts. The invention also concerns the method for preparing said compounds and their use in therapy, in particular for treating pathologies involving bradykinine.</p> <p>(57) Abrégé</p> <p>La présente invention concerne des composés choisis parmi l'ensemble constitué par (i) les composés de formule (I), dans laquelle Het1 représente un hétérocycle azoté à 5 sommets, notamment l'imidazole, le pyrazole, ou le triazole, Het2 représente un hétérocycle azoté à 4, 5 ou 6 sommets, choisi parmi les hétérocycles (II) dans lesquels R₁ et R₂ sont définis comme indiqué dans la description, et (ii) leurs sels d'addition. Elle concerne également leur procédé de préparation et leur utilisation en thérapeutique, notamment vis-à-vis des pathologies mettant en cause la bradykinine.</p>			
<p style="text-align: right;">(I)</p> <p style="text-align: right;">(II)</p> <p style="text-align: right;">(III)</p>			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

COMPOSES HETEROCYCLIQUES DE BENZENESULFONAMIDE EN TANT QU'ANTAGONISTES DE LA BRADYKININE

5

Domaine de l'invention

La présente invention concerne de nouveaux composés de benzène-sulfonamide, leur procédé de préparation et leur utilisation en thérapeutique.

Ces nouveaux composés présentent une action antagoniste vis-à-vis de la bradykinine et sont utiles en thérapeutique, particulièrement pour le traitement de la douleur et de l'inflammation, et notamment dans le traitement de l'asthme, du choc traumatique cérébral et des rhinites allergiques.

Art antérieur

On sait que l'une des possibilités de traitement de certaines pathologies à caractère douloureux et/ou inflammatoire (telles que l'asthme, la rhinite, le choc septique, la douleur dentaire, etc.) est d'inhiber l'action de certaines hormones telles que la bradykinine ou la kallidine. En effet ces hormones peptidiques sont impliquées dans un grand nombre de processus physiologiques dont certains sont liés de façon étroite à ces pathologies.

Bien qu'actuellement aucun produit possédant ce mode d'action ne soit encore commercialisé, de nombreuses études ont été entreprises pour comprendre le mode d'action des kinines et en particulier de la bradykinine et de ses homologues, puis pour créer des composés susceptibles d'être antagonistes des récepteurs de la bradykinine. Parmi les nombreuses publications relatant ces travaux, on peut citer Pharmacological Reviews Vol. 44 n° 1, pages 1-80 (1992) et Biopolymers (Peptide Science) vol. 37 pages 143-155 (1995).

La bradykinine est une hormone peptidique constituée de 9 amino-acides (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) et la kallidine est une hormone peptidique (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) qui comporte un amino-acide supplémentaire (Lys) par rapport à la bradykinine. On sait que des études antérieures ont permis d'obtenir des peptides qui interagissent avec les récepteurs de la bradykinine : certains comme le Bradycor (CP.0127 de la société Cortechn), l'Icatibant (HOE 140 de la société Hoechst) ["Bradycor" et "Icatibant" sont des dénominations communes internationales (DCI)] ou encore le NPC 17761 (de la société Scios-Nova) présentent une action inhibitrice de la fixation de la

bradykinine sur son récepteur B₂. Des publications récentes font état d'autres peptides susceptibles d'avoir une action antagoniste de la bradykinine vis-à-vis de son récepteur B₂ ; parmi celles-ci on peut citer par exemple WO-A-97/09347, WO-A-97/09346, US-A-5610140, US-A-5620958, US-A-5610142 et US-A-5597803. Par ailleurs, des composés non peptidiques ont été proposés comme antagonistes vis-à-vis de la fixation de la bradykinine sur son récepteur B₂, notamment dans EP-A-0596406, EP-A-0622361, US-A-5578601, US-A-5510380, FR-A-2735128, JP-A-09/040662, FR-A-2737892, WO-A-97/11069, WO-A-97/41104, WO-A-96/13485 et FR-A-2765222. On sait en outre que certains composés de structure plus ou moins apparentée à celles des composés visés dans la présente demande ont déjà été décrits, notamment dans DE-A-3617183 et EP-A-0261539, eu égard à leurs éventuelles propriétés antithrombotiques.

But de l'invention

Il existe un besoin d'atténuer ou de supprimer chez les mammifères et surtout chez l'homme les douleurs et les inflammations.

Pour satisfaire ce besoin, on a recherché une nouvelle solution technique qui soit efficace dans le traitement des algies quelle que soit leur origine, notamment dans le traitement des algies liées à des phénomènes inflammatoires ou à des traumatismes.

Selon l'invention, on se propose de fournir une nouvelle solution technique, qui met en œuvre, au niveau du récepteur B₂ de la bradykinine, une fixation compétitive entre (i) la bradykinine et les hormones apparentées ou analogues, et (ii) une substance antagoniste, et qui fait appel à des composés de type benzènesulfonamide, structurellement différents des produits connus précités, et capables de limiter ou d'inhiber substantiellement la fixation de la bradykinine et des hormones analogues sur ledit récepteur B₂ de la bradykinine.

Suivant cette solution technique, les nouveaux composés se fixent de façon compétitive sur le récepteur B₂ de la bradykinine sans provoquer les effets de la bradykinine sur ce récepteur (ces nouveaux composés sont des substances dites antagonistes). Il s'en suit l'apparition d'un état analogue à celui observé en l'absence de bradykinine, à savoir une diminution de la douleur, des réactions inflammatoires et des autres effets néfastes provoqués par les récepteurs activés par la bradykinine.

Conformément à cette nouvelle solution technique on se propose de fournir, selon un premier aspect de l'invention, des composés dérivés de benzènesulfonamide en tant que produits industriels nouveaux ; selon un second aspect de l'invention, un procédé de préparation de ces composés ; et selon un troisième aspect de l'invention, une utilisation de ces composés notamment en thérapeutique en tant que principes actifs de spécialités ou compositions médicamenteuses.

Objet de l'invention

Selon la nouvelle solution technique de l'invention, on préconise, en tant que produit industriel nouveau, un composé de benzènesulfonamide qui est caractérisé en ce qu'il est choisi parmi l'ensemble constitué par :

(i) les composés de formule I :

dans laquelle :

Het1 représente un hétérocycle azoté à 5 sommets, notamment l'imidazole, le pyrazole ou le triazole,

Het2 représente un hétérocycle azoté à 4, 5 ou 6 sommets de structure :

dans lesquels

5 R_1 représente un atome d'hydrogène ou un groupe hydroxy, alcoxy en C₁-C₄, phénoxy, phényleméhoxy, -CH₂OH, cycloalkyloxy, cycloalkylalcoxy (où chaque fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄), -NH-CO-CH₃, -CO-NH₂ ou -CO-NH-CH₃,

R₂ représente un atome d'hydrogène ou un groupe -CH₂OH, -CH₂-O-CH₃, -CONR₃R₄,

10

R₃ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, un groupe cycloalkyle en C₃-C₈, un groupe cycloalkyl (en C₃-C₈)-alkyle (en C₁-C₃), un groupe phényle, ou un groupe phényleméthyle,

15 R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, -(CH₂)_n-CH₂OH, -(CH₂)_n-COOH, -(CH₂)_n-CH₂-NR₅R₆,

20

R₅ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, phényle, phényleméthyle, pyridinyle, pyridinylméthyle, pyridinyléthyle, benzoyle, 4-(aminoiminométhyl)benzoyle, -(CH₂)_m-CH₂OH, -(CH₂)_m-COOH, -(CH₂)_mCH₂-O-(CH₂)_m-CH₂OH, -CO-(CH₂)_m-COOH, ou

25

R₆ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃, ou, R₅ et R₆ considérés ensemble forment, avec l'atome d'azote auquel ils sont attachés, un N-hétérocycle de 5 à 6 sommets,

n = 1, 2, 3 ou 4,

30 m = 1, 2 ou 3 ; et,

(ii) leurs sels d'addition.

Selon l'invention, on préconise aussi un procédé de préparation des composés de formule I et de leurs sels d'addition.

On préconise également l'utilisation d'une substance antagoniste du récepteur B₂ de la bradykinine, choisie parmi les composés de formule I de la présente invention et leurs sels d'addition non toxiques, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique humaine ou animale, vis-à-vis de pathologies impliquant la bradykinine ou ses homologues, en particulier vis-à-vis des algies, notamment dans le traitement ou la prévention de pathologies liées à des états inflammatoires ou douloureux, et vis-à-vis des chocs traumatiques sévères, en particulier les chocs traumatiques cérébraux.

Description détaillée de l'invention

Dans la formule générale I des composés de l'invention, on entend par groupe alkyle en C₁-C₃ un groupe méthyle, éthyle, propyle ou 1-méthyléthyle.

Par groupe alcoxy en C₁-C₄, on entend préférentiellement ici les groupes méthoxy, éthoxy, propoxy, butoxy, 1-méthyléthoxy, et 1,1-diméthyléthoxy. Par groupe cycloalkyle en C₃-C₈, on comprend les groupes cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, et par groupes (cycloalkyl)alkyle on entend notamment les groupes cyclopropylméthyle, cyclopropyléthyle, cyclohexylméthyle et cyclohexyléthyle.

Lorsqu'un groupe tel que R₅ comprend un hétérocycle, par exemple la pyridine, et que la position de substitution n'est pas précisée, il faut comprendre que la liaison avec l'hétérocycle peut se faire par l'un quelconque des sommets substituables.

Par hétérocycle NR₅R₆ de 5 à 6 sommets, on entend un cycle pyrrolidine, pipéridine, pipérazine ou morpholine, et plus particulièrement un groupe 1-pyrrolidinyle, 1-pipéridiynyle, 1-pipérazinyle ou 1-morpholinyle.

L'hétérocycle Het1 qui a cinq sommets comprend un ou plusieurs hétéroatomes. De façon avantageuse, il comprend 1 à 4 sommets azotés. Comme représenté par la formule I ci-dessus, Het1 est lié par son sommet azoté ou l'un de ses sommets azotés à la position 4 de la quinoléine.

L'hétérocycle Het2 est lié par son sommet azoté à l'atome de soufre du groupe SO₂ pour constituer la fonction sulfonamide.

Lorsque, sur l'hétérocycle Het2, le substituant R₂ n'est pas un atome d'hydrogène, le carbone du cycle porteur du substituant R₂ peut présenter une configuration S ou R. Dans ce cas, les composés selon l'invention peuvent être de

configuration indéterminée (c'est-à-dire, un mélange des isomères R et S) ou, de préférence, l'un des isomères R ou S, ou, préférentiellement, l'isomère S. De même, le substituant R₁, lorsqu'il n'est pas l'hydrogène, introduit un centre d'asymétrie et peut se trouver dans une configuration indéterminée, ou déterminée
5 R ou S, la configuration « trans » par rapport au groupe R₂ étant préférée

Par « sels d'addition », on entend les sels d'addition d'acide, obtenus par réaction d'un composé de formule I sous sa forme non salifiée, avec un acide minéral ou un acide organique. Les acides minéraux préférés pour salifier un composé basique de formule I sont les acides chlorhydrique, bromhydrique, 10 phosphorique et sulfurique. Les acides organiques préférés pour salifier un composé basique de formule I sont les acides méthanesulfonique, benzènesulfonique, maléique, fumarique, oxalique, citrique, lactique, tartrique et trifluoroacétique.

Parmi les composés selon la présente invention, on préfère ceux dans 15 lesquels l'hétérocycle Het1 est un groupe 1-(1*H*)-imidazolyle. On préfère également les composés dans lesquels l'hétérocycle Het2 comprend un groupe 2(S)-pyrrolidinecarboxamide,

20 et plus particulièrement lorsque
R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃, et
R₄ représente un groupe alkyle en C₁-C₃, un groupe -(CH₂)_n-CH₂-NR₅R₆, un
groupe pyridinylméthyle ou un groupe

25 R₅ représente un groupe alkyle en C₁-C₃, un groupe -(CH₂)_m-CH₂OH, un groupe (2-pyridinyl)méthyle ou un groupe 4-(aminoiminométhyl)benzoyle,
R₆ représente un groupe méthyle ou forme, avec R₅ et l'azote auquel ils sont liés,
30 un hétérocycle saturé à 5 ou 6 sommets.

Par "température ambiante" on entend une température de l'ordre de 15 à 25°C, et par "température voisine de la température ambiante" une température d'environ 0 à 40°C.

Un procédé général de préparation des composés de formule I, que l'on 5 préconise selon l'invention, comprend :

selon une première variante A, les étapes consistant à :

(1) faire réagir un dérivé de la 8-hydroxyquinoléine de formule II :

10 dans laquelle :

Het1 représente un hétérocycle azoté à cinq sommets comprenant au total 1, 2, 3 ou 4 atomes d'azote et M représente un métal alcalin, notamment le sodium ou le potassium,

avec un composé de formule III :

15

dans laquelle :

X représente un atome d'halogène, de préférence un atome de brome, et

R₁ représente un atome d'hydrogène ou un groupe OH, un groupe alcoxy ou

20 un groupe phénoxy,

dans un solvant anhydre comme par exemple le diméthylformamide, à une température comprise entre 0 et 50°C, pendant 0,5 à 10 heures, pour obtenir un composé de formule IV :

dans laquelle :

Het1 et R₁ conservent la même signification que précédemment ;

- (2) hydrolyser la fonction ester du composé de formule IV ainsi obtenu selon
5 l'étape (1) ci-dessus, notamment par réaction avec une solution aqueuse d'hydroxyde de sodium, dans un solvant miscible tel que par exemple du dioxane, à une température de l'ordre de 20 à 60°C et pendant 1 à 5 heures, pour obtenir après acidification un composé de formule V :

10

dans laquelle :

Het1 et R₁ conservent la même signification que ci-dessus ;

- (3) faire réagir le composé de formule V, ainsi obtenu, avec une amine de formule :

15

HNR₃R₄ (VI)

dans laquelle :

R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,

R_4 représente un atome d'hydrogène, un groupe alkyle en C_1-C_3 ,
 $-(CH_2)_n-CH_2OH$, $-(CH_2)_n-COOR_{11}$, $-(CH_2)_n-CH_2-NR_5R_6$,

- 5 R_5 représente un groupe alkyle en C_1-C_3 , $-(CH_2)_m-CH_2OH$,
 $-(CH_2)_m-COOR_{11}$, $-(CH_2)_m-CH_2-O-(CH_2)_m-CH_2OH$, ou un groupe aminoprotecteur tel que par exemple un groupe 1,1-diméthyléthoxycarbonyle (BOC), (R_5 et R_6 n'étant pas simultanément des groupes aminoprotecteurs),
10 R_6 représente un groupe alkyle en C_1-C_3 ou un groupe aminoprotecteur, par exemple du type BOC,
 R_{11} représente un groupe protecteur de la fonction acide facilement hydrolysable tel que par exemple le groupe *t*-butyle (ou 1,1-diméthyléthyle),
 $n = 1, 2, 3$ ou 4 ,
 $m = 1, 2$ ou 3 ,
15 dans un solvant approprié, notamment le dichlorométhane, en présence d'activateurs tels que notamment le 1-hydroxy-7-aza-benzotriazole (HOAT) et le chlorhydrate de 1-[3-(diméthylaminopropyl)-3-éthyl]carbodiimide (EDCI), à une température voisine de la température ambiante (0-40°C, de préférence 10-35°C), pendant 2 à 50 heures, pour obtenir un composé de formule :

20

dans laquelle :

Het1, R_1 , R_3 , R_4 conservent la même signification que précédemment ; et,

- (4) si nécessaire, faire réagir le composé de formule VII, ainsi obtenu, pour éliminer les groupes amino- ou acidoprotecteurs de façon à remplacer ces groupes par un atome d'hydrogène, par exemple par réaction dudit composé VII avec l'acide trifluoroacétique pour éliminer un groupe amino protecteur du type BOC ou pour éliminer un groupe acidoprotecteur du type *t*-butyle, de façon à obtenir le composé de formule I :
- 5

10

dans laquelle :

- Het1, R₁, R₃ et R₄ conservent la même signification que ci-dessus, à l'exception des groupes protecteurs remplacés par des atomes d'hydrogène;
- puis,
- 15 (5) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel d'addition d'acide correspondant ;
- selon une seconde variante B consistant à :
- (1) faire réagir un composé de formule I tel qu'obtenu à l'étape (4) de la variante A ci-dessus,

dans laquelle :

Het1 représente un groupe 1-imidazolyde, un groupe 1-pyrazolyde ou un groupe 1-(1,2,4-triazolyde),

5 R₃ représente H, ou un groupe alkyle en C₁-C₃,

R₄ représente un groupe porteur d'une fonction amine primaire ou secondaire choisi parmi : -(CH₂)_n-CH₂-NHR₆ ou

10 où R₆ représente H ou un groupe alkyle et n représente 1, 2, 3 ou 4, avec un composé halogéné de formule : Y-(CH₂)_m-CH₂OR₁₃, Y-(CH₂)_m-COOR₁₁, ou Y-(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OR₁₃,

où

Y est un halogène, préférentiellement Br ou I,

15 m représente 1, 2, ou 3

R₁₁ est un groupe acidoprotecteur, tel que par exemple *t*-butyle, et

R₁₃ est un groupe protecteur de la fonction alcool, notamment le groupe acétyle,

20 dans un solvant tel que par exemple le diméthylformamide ou l'acetonitrile, en présence d'un agent à caractère alcalin comme par exemple le carbonate de potassium, à température voisine de la température ambiante et pendant 5 à 20 heures, pour obtenir le composé de formule VII :

dans laquelle :

R_3 représente H ou un groupe alkyle en C_1-C_3 ,

R_4 représente un groupe $-(CH_2)_n-CH_2-NR_5R_6$ ou

5

R_5 représente un groupe : $-(CH_2)_m-CH_2OR_{13}$, $-(CH_2)_m-COOR_{11}$, ou $-(CH_2)_m-CH_2-O-(CH_2)_m-CH_2OR_{13}$,

Het1, R_6 , R_{11} et R_{13} conservant la même signification que ci-dessus ;

10 (2) effectuer une réaction de déprotection de chaque groupe alcool ou acide afin de remplacer les groupes R_{13} et R_{11} par un atome d'hydrogène, et ainsi obtenir les composés de formule I correspondants ;

(3) si nécessaire, faire réagir le composé de formule I ainsi obtenu avec un acide minéral ou organique pour obtenir le sel correspondant ;

15 selon une troisième variante C, les étapes consistant à :

(1) faire réagir le chlorure d'acide de formule VIII :

dans laquelle :

20 X représente un halogène, préférentiellement le brome, avec un dérivé hétérocyclique répondant à la formule :

où :

R₁ représente H, OH, alcoxy, phénoxy, phényleméthoxy, CH₂OH, cycloalkyloxy en C₃-C₈ ou cycloalkylalcoxy où le fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄,

5

R₂ représente H, ou un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NR₅R₁₂, -CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOR₁₁ ou

10

n = 1, 2, 3 ou 4,

R₅ représente H ou un groupe alkyle,

R₁₁ représente un groupe acidoprotecteur, et

R₁₂ représente un groupe aminoprotecteur,

dans un solvant comme par exemple l'acétone, en présence d'une base comme par exemple le carbonate de potassium ou la triéthylamine, à une température proche de la température ambiante, pendant 10 à 30 heures, pour obtenir un composé de formule IX :

20 dans laquelle :

Het2 représente un groupe

et X, R₁, R₂, R₁₁, R₁₂ et n conservent la même signification que ci-dessus ;

(2) faire réagir le composé de formule IX, ainsi obtenu, avec un dérivé de la 8-25 hydroxyquinoléine de formule II :

dans laquelle :

Het1 représente un hétérocycle azoté à cinq sommets comprenant 1, 2, 3 ou
5 4 atomes d'azote et M représente un métal alcalin, notamment le sodium ou
le potassium,

dans des conditions analogues à celles mises en œuvre à l'étape (1) de la variante
A précédente, pour obtenir un composé de formule X :

10

dans laquelle :

Het1 et Het2 conservent la même signification que ci-dessus ;
(3) si nécessaire, effectuer une réaction de déprotection, par exemple par action
15 de l'acide trifluoroacétique, pour remplacer chaque groupe protecteur R₁₁ ou R₁₂
des fonctions acide ou amine par un atome d'hydrogène, pour obtenir un composé
de formule I :

dans laquelle :

Het1 conserve la même signification que ci-dessus, et

Het2 représente un groupe

5

R₁ a la même signification que ci-dessus,

R₂ représente un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NHR₅,
-CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOH ou

10

n = 1, 2, 3 ou 4, et

R₅ représente H ou un groupe alkyle ; et,

(4) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel correspondant.

15

L'invention sera mieux comprise à la lecture qui va suivre (i) d'exemples de préparation et (ii) de résultats d'essais pharmacologiques réalisés avec des composés selon l'invention. Bien entendu l'ensemble de ces éléments n'est pas limitatif mais est donné à titre d'illustration.

20

Dans le cas de composés présentant dans leur structure un carbone asymétrique, l'absence d'indication particulière ou la mention (R,S) signifie qu'il s'agit de composés racémiques ; dans le cas de composés présentant une chiralité, celle-ci est indiquée à la suite immédiate de l'indexation du substituant porté par

ledit carbone asymétrique ; on utilise alors les signes (R) ou (S), conformément aux règles de Cahn, Ingold et Prelog. La nomenclature utilisée dans les exemples est celle préconisée par les Chemical Abstracts : ainsi certains dérivés de la L-proline peuvent devenir, après réaction de la fonction acide avec une amine, des 5 dérivés de 2(S)-pyrrolidinecarboxamide.

PREPARATION I

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline, méthyl ester

On prépare une solution de 0,7 g ($3,11 \cdot 10^{-3}$ mole) de 8-hydroxy-4-[1*H*-imidazol-1-yl]-2-méthylquinoléine dans 20 ml de diméthylformamide (DMF) et on ajoute 0,11 g ($3,42 \cdot 10^{-3}$ mole) d'hydrure de sodium à 75 % dans l'huile. Après 10 minutes sous agitation à température ambiante, on ajoute 1,47 g ($3,42 \cdot 10^{-3}$ mole) de l'ester méthylique de la N-[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-L-proline. Après 15 heures sous agitation à température ambiante, 15 le mélange réactionnel est hydrolysé sur de l'eau glacée et extrait par de l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/propanol (95/5 ; v/v). On obtient ainsi 1,07 g du produit attendu sous forme d'un solide 20 beige (Rendement = 68 %).

F = 100°C

$[\alpha]^{27}_D = -14,4^\circ$ (c = 0,33 ; CH₃OH)

PREPARATION II

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline

On ajoute 1,6 ml ($1,6 \cdot 10^{-3}$ mole) d'une solution normale d'hydroxyde de sodium dans l'eau à une solution de 0,44 g ($0,763 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation I dans 30 ml de dioxane. Le mélange réactionnel est chauffé à doux reflux pendant 8 heures puis le solvant est chassé sous pression 30 réduite. Le résidu est repris dans de l'eau et la solution est acidifiée doucement jusqu'à pH 4,5 à l'aide d'une solution d'acide chlorhydrique. L'acide attendu précipite. Le précipité est filtré, lavé à l'eau sur le filtre et séché à 40°C sous pression réduite. On obtient ainsi 0,36 g du produit attendu sous forme de poudre blanche (Rendement = 89 %).

35 F = 172°C

Exemple 1

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2-(S)-pyrrolidinecarboxamide

On prépare une solution de $0,35\text{ g}$ ($0,633 \cdot 10^{-3}$ mole) d'acide obtenu selon la préparation II dans 25 ml de dichlorométhane et on ajoute $0,13\text{ g}$ ($0,686 \cdot 10^{-3}$ mole) de chlorhydrate de 1-(3-diméthylaminopropyl)3-éthyl-carbodiimide (EDCI), $0,1\text{ g}$ ($0,686 \cdot 10^{-3}$ mole) de 1-hydroxy-7-azabenzotriazole (HOAT), $0,138\text{ g}$ ($1,37 \cdot 10^{-3}$ mole) de triéthylamine, puis $0,05\text{ g}$ ($0,748 \cdot 10^{-3}$ mole) de chlorhydrate de méthylamine. Le mélange réactionnel est agité à température ambiante pendant 20 heures. On hydrolyse ensuite sur de l'eau froide et extrait avec du dichlorométhane. La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ; v/v). On obtient ainsi $0,29\text{ g}$ du produit attendu sous forme d'un solide écrú (Rendement = 81 %).

$$F = 90^\circ C$$

$$[\alpha]^{27}_D = -28^\circ \text{ (c = 0,46; CH}_3\text{OH)}$$

Exemple 2

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2-(S)-pyrrolidinecarboxamide, tartrate

On prépare une solution de 0,28 g ($0,487 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 1 dans 3 ml de méthanol et on ajoute 0,073 g ($0,487 \cdot 10^{-3}$ mole) d'acide L-tartrique. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 10 minutes puis concentré sous pression réduite. Le résidu est repris en solution dans 10 ml d'eau distillée et la solution obtenue est lyophilisée. On obtient ainsi 0,34 g du sel attendu sous forme d'un solide blanc fin et léger (Rendement = 96 %).

F = 119°C

$$[\alpha]^{27}_D = -19^\circ \text{ (c = 0,45; CH}_3\text{OH)}$$

30 PREPARATION III

N-(3-aminopropyl)-4-cyanobenzamide, trifluoroacétate

On prépare une solution de 51 g (0,168 mole) d'acide [3-[(4-cyano-benzoyl)amino]propyl]carbamique, 1,1-diméthyléthylester dans 300 ml de dichlorométhane et on ajoute, à 0°C, 25 ml d'acide trifluoroacétique sous agitation. Le milieu réactionnel est ramené à température ambiante et maintenu

4 heures sous agitation. Le mélange est concentré sous pression réduite et le résidu est repris dans de l'éther éthylique. Le produit attendu cristallise. On le filtre, lave avec un peu d'éther éthylique sur le filtre et sèche sous pression réduite. On obtient ainsi 52 g du produit sous forme de cristaux blancs (Rendement = 97 %).

5 F = 160°C

PREPARATION IV

N-[3-[(4-cyanobenzoyl)amino]propyl]-1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidine-carboxamide

10 En opérant de façon analogue à l'exemple 1, au départ des composés obtenus selon les préparations II et III, on obtient le produit attendu sous forme d'un solide beige, (Rendement = 81 %).

F = 118°C

[α]²⁷_D = - 33,2° (c = 0,32 ; CH₃OH)

15 PREPARATION V

N-[3-[[4-[amino(hydroxyimino)méthyl]benzoyl]amino]propyl]-1-[[2,4-di-chloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]-sulfonyl]-2(S)-pyrrolidinecarboxamide

20 On prépare une solution de 0,058 g (0,843.10⁻³ mole) de chlorhydrate d'hydroxylamine dans 2 ml de DMSO et on ajoute 0,170 g (1,69.10⁻³ mole) de triéthylamine, puis 0,36 g (0,48.10⁻³ mole) du composé obtenu selon la préparation IV. Le mélange réactionnel est maintenu sous agitation, à température ambiante pendant 1 heure, puis on ajoute à nouveau une même quantité de chlorhydrate d'hydroxylamine et de triéthylamine. Après 15 heures sous agitation
25 à température ambiante, le mélange réactionnel est versé sur de l'eau. Le précipité formé est séparé par filtration, puis lavé à l'eau et séché sous pression réduite à 30°C. On obtient ainsi 0,37 g du produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 160°C

30 [α]²⁷_D = - 22,5° (c = 0,35 ; CH₃OH)

PREPARATION VI

N-[3-[[4-[(acétyloxy)imino]aminométhyl]benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]-sulfonyl]-2(S)-pyrrolidinecarboxamide

On prépare une suspension de $0,32\text{ g}$ ($0,41 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation V, dans 10 ml de dichlorométhane et on ajoute $0,134\text{ g}$ ($1,23 \cdot 10^{-3}$ mole) d'anhydride acétique. On agite le mélange pendant 3 heures à température ambiante puis on ajoute à nouveau $0,134\text{ g}$ d'anhydride acétique et on laisse sous agitation pendant 15 heures. Le milieu réactionnel est hydrolysé, extrait avec du dichlorométhane. La phase organique est lavée à l'eau puis séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi $0,32\text{ g}$ du produit attendu sous forme d'un solide blanc (Rendement = 95 %).

F = 96°C

$$[\alpha]^{27}_D = -20,3^\circ \text{ (c = 0,32 ; CH}_3\text{OH)}$$

Exemple 3

N-[3-[[4-(aminoiminométhyl)benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(*S*)-pyrrolidinecarboxamide

On prépare une solution de 0,31 g ($0,377 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation VI, dans 20 ml de méthanol et on ajoute 0,12 g de catalyseur de Lindlar (à 5 % de Palladium). Le mélange est agité sous atmosphère d'hydrogène, à pression atmosphérique et à température ambiante pendant 6 heures. On élimine le catalyseur par filtration puis on concentre sous pression réduite. Le résidu est repris par de l'eau et la solution obtenue est amenée à pH légèrement alcalin à l'aide de soude 1N. Le précipité blanc formé est filtré, lavé à l'eau puis séché sous pression réduite. On effectue ensuite une purification de ce produit par chromatographie sur gel de silice greffé NH₂ (Lichroprep® NH₂), en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ; v/v). On obtient ainsi 0,19 g du produit attendu sous forme d'un solide jaune (Rendement = 66 %).

F = 148°C

$$[\alpha]^{27}_D = -28,3^\circ \text{ (c = 0,36 ; CH}_3\text{OH)}$$

Exemple 4

30 N-[3-[(4-(aminoiminométhyl)benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, bis méthanesulfonate

On prépare une solution de $0,17$ g ($0,22 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 3, dans 4 ml de méthanol et on ajoute $0,0428$ g ($0,44 \cdot 10^{-3}$ mole) d'acide méthanesulfonique. On agite le mélange réactionnel pendant 10 mn à température ambiante puis on le concentre sous pression réduite. Le résidu est

repris en solution dans de l'eau distillée; la solution obtenue est filtrée puis lyophilisée. On obtient ainsi 0,16 g du produit attendu sous forme d'un solide cotonneux blanc (Rendement = 75 %).

F = 176°C

$$5 \quad [\alpha]^{28}D = -28,3^\circ \text{ (c = 0,32 ; CH}_3\text{OH)}$$

PREPARATION VII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-pyrrolidineméthanol

On prépare une solution de 1 g ($2,95 \cdot 10^{-3}$ mole) de chlorure de 3-bromométhyl-2,4-dichlorobenzènesulfonyle dans 10 ml d'acétonitrile et 4 ml d'eau. On ajoute 292 µl ($2,95 \cdot 10^{-3}$ mole) de L-(+)-prolinol et une solution de 886 mg de carbonate de potassium dans 4 ml d'eau. Après 20 heures sous agitation à température ambiante, le mélange réactionnel est versé sur de l'eau et extrait par l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient 1,2 g de produit brut que l'on purifie par chromatographie sur gel de silice en éluant par un mélange toluène/acétate d'éthyle (80/20 ; v/v). On obtient ainsi 0,92 g du produit attendu sous forme d'une huile incolore (Rendement = 77 %).

$$[\alpha]^{26}_{\text{D}} = -16.5^\circ \text{ (c = 0.5 ; CH}_3\text{OH)}$$

Exemple 5

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(*S*)-pyrrolidineméthanol

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléïne et du composé obtenu selon la préparation VII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 35 %).

F = 76°C

$$[\alpha]^{26} D = -14,9^\circ \text{ (c = 0,8 ; CH}_3\text{OH)}$$

Exemple 6

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(*S*)-pyrrolidineméthanol, méthanesulfonate

En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 5 et d'un équivalent molaire d'acide méthanesulfonique, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 90 %).

35 F = 134°C

$[\alpha]^{26}_D = +3,1^\circ$ ($c = 0,84$; CH₃OH)

Exemple 7

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-2(S)-pyrrolidineméthanol

En opérant de façon analogue à l'exemple 5, au départ de 8-hydroxy-2-méthyl-4-(1*H*-pyrazol-1-yl)quinoléine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77%).

F = 65°C

$[\alpha]^{26}_D = -14,9^\circ$ ($c = 0,7$; CH₃OH)

Exemple 8

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-2(S)-pyrrolidineméthanol, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 7, on obtient le sel attendu sous forme de cristaux jaunes (Rendement = 99 %).

F = 120°C

$[\alpha]^{26}_D = +11,2^\circ$ ($c = 0,75$; CH₃OH)

PRÉPARATION VIII

Acide 4-[[[[1-[(phénylméthoxy)carbonyl]-2(S)-pyrrolidinyl]carbonyl]amino]-méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ de N-[(phénylméthoxy)carbonyl]-L-proline et d'acide 4-(aminométhyl)-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 99 %).

F = 50°C

$[\alpha]^{26}_D = -31^\circ$ ($c = 0,80$; CH₃OH)

PRÉPARATION IX

Acide 4-[[[(2(S)-pyrrolidinyl)carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester (acétate)

On prépare une solution de 100,9 g (0,23 mole) du composé obtenu selon la préparation VIII, dans l'acide acétique. Sous atmosphère d'azote, on ajoute 96,4 ml (1,02 mole) de cyclohexadiène, puis 2 g de charbon palladié à 10 %. Le mélange réactionnel est porté à reflux pendant 5 heures. Après refroidissement à 10-15°C, le milieu réactionnel est filtré et concentré sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en

éluant avec un mélange dichlorométhane/éthanol (6/4 ; v/v). On obtient ainsi 60 g du produit attendu sous forme d'une huile orange (Rendement = 72 %, exprimé en sel avec l'acide acétique).

$[\alpha]^{22}_D = -36,8^\circ$ (c = 0,63 ; CH₃OH)

5 **PREPARATION X**

Acide 4-[[[1-[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-2(S)-pyrrolidinyl]carbonylamino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthylethyl ester

En opérant de façon analogue à la préparation VII, au départ du chlorure de 3-(bromométhyl)-2,4-dichlorobenzènesulfonyle et du composé obtenu selon la préparation IX, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 97 %).

F = 80°C

$[\alpha]^{22}_D = -31^\circ$ (c = 0,92 ; CH₃OH)

15 **PREPARATION XI**

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-2(S)-pyrrolidinyl]carbonylamino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthylethyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation X, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 44 %).

F = 100°C

$[\alpha]^{27}_D = -28,8^\circ$ (c = 0,36 ; CH₃OH)

Exemple 9

25 1-[[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-N-(4-pipéridinylméthyl)-2(S)-pyrrolidinecarboxamide

On prépare une solution de 6 g ($7,92 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation XI dans 100 ml de dichlorométhane et on ajoute 0,856 g ($7,92 \cdot 10^{-3}$ mole) d'anisole. On refroidit le mélange à 0°C et on ajoute 5 ml d'acide trifluoroacétique. La solution est ensuite agitée pendant 15 heures à température ambiante, puis concentrée sous pression réduite. Le résidu est repris avec de l'eau et la solution obtenue est amenée à pH basique avec une solution de soude normale. Le mélange est extrait avec de l'acétate d'éthyle, puis la phase organique est séchée sur sulfate de magnésium et concentrée. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange

dichlorométhane/méthanol/ammoniaque (95/5/0,02 ; v/v/v). On obtient ainsi 4,4 g du produit attendu sous forme d'un solide jaune (Rendement = 84 %).

F = 150°C

$$[\alpha]^{22}_{\text{D}} = -47^\circ \text{ (c = 0,35 ; CH}_3\text{OH)}$$

5 Exemple 10

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(*S*)-pyrrolidinecarboxamide, ditartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 9 et en utilisant 2 moles d'acide tartrique pour une mole dudit composé, on obtient le produit attendu sous forme d'un solide cotonneux blanc (Rendement = 81 %).

$F = 145^{\circ}\text{C}$

$$[\alpha]^{27}_{\text{D}} = -23,7^\circ \text{ (c = 0,31 ; CH}_3\text{OH)}$$

15 PREPARATION XII

Acide acétique, 2-(2-iodoéthoxy)éthyl ester

On prépare une solution de 2,4 g ($14 \cdot 10^{-3}$ mole) d'acétate de 2-(2-chloroéthoxy)éthyle dans 60 ml d'acétone et on ajoute 22 g (0,144 mole) d'iodure de sodium. On porte le mélange réactionnel à reflux pendant 6 heures, puis on le concentre sous pression réduite. Le résidu est repris par de l'eau et de l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 2,81 g du produit attendu, qui est utilisé sans autre purification, sous forme d'une huile orangée (Rendement = 78 %).

$$n_D = 1,468$$

25 PREPARATION XIII

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[[1-[2-[acétoxy]éthoxy]éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

On prépare un mélange de 0,3 g ($0,456 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 9 dans 10 ml d'acétonitrile et 4 ml de diméthylformamide. On ajoute 95 mg ($0,68 \cdot 10^{-3}$ mole) de carbonate de potassium puis 130 mg ($0,5 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation XII en solution dans 2 ml d'acétonitrile. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 15 heures puis concentré sous pression réduite. Le résidu est repris par du dichlorométhane et la phase organique ainsi obtenue est lavée à

l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (9/1/0,02 ; v/v/v). On obtient ainsi 0,18 g du produit attendu sous forme d'un solide écru (Rendement = 5 50 %).

F = 90°C

$[\alpha]^{25}_D = 35,8^\circ$ (c = 0,31 ; CH₃OH)

Exemple 11

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 On prépare une solution de 0,17 g (0,216.10⁻³ mole) du composé obtenu selon la préparation XIII dans 7 ml de méthanol et on ajoute 1 g de résine Amberlite® IRA 400 (sous forme OH⁻). Le mélange réactionnel est agité à température ambiante pendant 15 heures, puis filtré de façon à éliminer la résine. Après concentration du filtrat sous pression réduite, on obtient 0,14 g du produit attendu sous forme d'un solide pulvérulent blanc (Rendement = 88 %).

F = 96°C

$[\alpha]^{25}_D = -38,5^\circ$ (c = 0,32 ; CH₃OH)

20 **Exemple 12**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

25 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 11, on obtient le sel attendu sous forme d'un produit blanc cotonneux (Rendement = 99 %).

F = 135°C

$[\alpha]^{25}_D = -38^\circ$ (c = 0,43 ; CH₃OH)

PRÉPARATION XIV

30 N-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]glycine, 1,1-diméthyl-éthyl ester

35 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de glycinate de 1,1-diméthyléthyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 93 %).

F = 110°C

[α]²²_D = - 49° (c = 0,3 ; CH₃OH)

Exemple 13

N-[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]glycine, trifluoroacétate

On prépare un mélange de 0,27 g (0,4.10⁻³ mole) du composé obtenu selon la préparation XIV dans 5 ml de dichlorométhane et 43 mg (0,4.10⁻³ mole) d'anisole, puis on ajoute, à 0°C, 1,5 ml d'acide trifluoroacétique. La solution est agitée à 0°C pendant 1 heure puis à température ambiante pendant 24 heures. Le mélange réactionnel est ensuite concentré sous pression réduite et le résidu est tritiqué avec de l'éther éthylique. Le solvant est éliminé avec les produits solubles et le résidu et repris en solution dans de l'eau distillée. La solution est filtrée, puis lyophilisée. On obtient ainsi 0,285 g du produit attendu sous forme d'un solide fin jaunâtre (Rendement = 86 %).

F = 132°C

[α]²²_D = - 9° (c = 0,64 ; CH₃OH)

Exemple 14

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de N,N-diméthyléthylénediamine, on obtient le produit attendu sous forme d'une poudre beige (Rendement = 40 %).

F = 88°C

[α]²³_D = - 44° (c = 0,37 ; CH₃OH)

Exemple 15

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 14, on obtient le produit attendu sous forme d'un solide cotonneux blanc cassé (Rendement de 93 %).

F = 132°C

[α]²⁴_D = - 41° (c = 0,58 ; CH₃OH)

Exemple 16

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de N,N-diméthyl-1,3-propanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 40 %).

F = 80°C

$[\alpha]^{24}_D = -47^\circ$ (c = 0,33 ; CH₃OH)

Exemple 17

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 16, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87 %).

F = 131°C

$[\alpha]^{24}_D = -43^\circ$ (c = 0,42 ; CH₃OH)

Exemple 18

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[4-(diméthylamino)butyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de N,N-diméthyl-1,4-butanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 51 %).

F = 75°C

25 $[\alpha]^{22}_D = -49^\circ$ (c = 0,31 ; CH₃OH)

Exemple 19

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[4-(diméthylamino)butyl]-2(S)-pyrrolidinecarboxamide, tartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 18, on obtient le produit attendu sous forme d'un solide cotonneux blanc (Rendement = 90 %).

F = 125°C

$[\alpha]^{24}_D = -33^\circ$ (c = 0,35 ; CH₃OH)

Exemple 20

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(1-méthyl-4-pipéridinyl)méthyl]-2(S)-pyrrolidine-carboxamide

On prépare un mélange de 0,6 g ($0,677 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 9 dans 20 ml de dichlorométhane et on ajoute 0,15 g ($1,49 \cdot 10^{-3}$ mole) de triéthylamine, puis 0,08 g de paraformaldéhyde et 0,37 g ($27,1 \cdot 10^{-3}$ mole) de chlorure de zinc. Le mélange réactionnel est maintenu sous agitation pendant 1 heure, puis on ajoute 0,1 g ($2,64 \cdot 10^{-3}$ mole) de borohydrure de sodium et 2 ml de méthanol. On continue l'agitation à température ambiante pendant 15 heures puis on concentre le mélange sous pression réduite. Le résidu est repris avec de l'eau et la phase aqueuse ainsi obtenue, amenée à pH alcalin à l'aide d'une solution d'ammoniaque, est extraite par de l'acétate d'éthyle. La phase organique est séchée puis concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur gel de silice en éluant par un mélange dichlorométhane-/méthanol/ammoniaque (95/5/0,2 ; v/v/v). On obtient ainsi 0,25 g du produit attendu sous forme d'une poudre blanche (Rendement = 55 %).

F = 86°C

$[\alpha]^{27}_D = -36^\circ$ (c = 0,33 ; CH₃OH)

Exemple 21

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(1-méthyl-4-pipéridinyl)méthyl]-2(S)-pyrrolidine-carboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 20, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 97 %).

F = 135°C

$[\alpha]^{27}_D = -34,3^\circ$ (c = 0,58 ; CH₃OH)

PRÉPARATION XV

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[3-(acétoxy)propyl]-4-pipéridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 9 et d'acétate de 3-iodopropyle, on obtient le produit attendu (Rendement = 52 %).

F = 96°C

$[\alpha]^{27}_D = -32,2^\circ$ (c = 0,30 ; CH₃OH)

Exemple 22

- 5 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

On prépare une solution de 0,13 g (0,167.10⁻³ mole) du composé obtenu selon la préparation XV dans 5 ml de méthanol. On ajoute 1 ml d'eau et 50 mg (0,385.10⁻³ mole) de carbonate de potassium. Le mélange est agité pendant 10 15 heures à température ambiante puis concentré sous pression réduite. Le résidu est repris dans du dichlorométhane et la phase organique est lavée à l'eau puis séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ;v/v). On obtient ainsi 0,09 g du produit 15 attendu sous forme d'un fin solide blanc (Rendement = 74 %).

F = 90°C

$[\alpha]^{27}_D = -35,5^\circ$ (c = 0,35 ; CH₃OH)

Exemple 23

- 20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 22, on obtient le produit attendu sous forme de poudre blanche (Rendement = 95 %).

25 F = 145°C

$[\alpha]^{26}_D = -10,4^\circ$ (c = 0,32 ; CH₃OH)

PRÉPARATION XVI

- 30 Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, 1,1-diméthyléthyl ester

On prépare un mélange de 0,45 g (0,684.10⁻³ mole) du composé obtenu selon l'exemple 9 dans 4 ml de diméthylformamide et 30 ml d'acetonitrile. On ajoute 0,11 g (0,752.10⁻³ mole) de carbonate de potassium, puis 0,133 g (0,684.10⁻³ mole) de bromoacétate de *t*-butyle. Le mélange réactionnel est 35 maintenu sous agitation à température ambiante pendant 15 heures puis concentré

sous pression réduite. Le résidu est repris dans de l'eau et le précipité formé est extrait par de l'acétate d'éthyle. La phase organique est lavée à l'eau puis séchée et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ;v/v). On obtient ainsi 0,31 g du produit attendu sous forme d'un solide blanc écrú (Rendement = 60 %).

F = 100°C

$[\alpha]^{23}_D = -40^\circ$ (c = 0,30 ; CH₃OH)

Exemple 24

Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, bis trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XVI, on obtient le produit attendu sous forme d'un solide léger jaune (Rendement = 90 %).

F = 149°C

$[\alpha]^{21}_D = -41^\circ$ (c = 0,40 ; CH₃OH)

PRÉPARATION XVII

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-4-(1H-pyrazol-1-yl)-2-méthyl-quinoléine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

F = 90°C

25 $[\alpha]^{25}_D = -19^\circ$ (c = 0,50 ; CHCl₃)

PRÉPARATION XVIII

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation XVII, on obtient le produit attendu sous forme d'une poudre blanc écrú (Rendement = 91 %).

F = 148°C

$[\alpha]^{27}_D = +1^\circ$ (c = 0,40 ; DMSO)

PREPARATION XIX

Acide 4-[[[1-[[2,4-dichloro-3-[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyl-éthyl ester

5 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XVIII et de l'ester *t*-butylique de l'acide 4-(aminométhyl)-1-pipéridinecarboxylique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 52 %).

F = 109°C

10 $[\alpha]^{25}_D = -45^\circ$ (c = 0,44 ; CHCl₃)

Exemple 25

1-[[2,4-dichloro-3-[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(S)-pyrrolidinecarboxamide, bis trifluoroacétate

15 En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XIX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 89 %).

F = 125°C

$[\alpha]^{26}_D = -27^\circ$ (c = 0,30 ; CH₃OH)

PREPARATION XX

Acide 4-[[[1-[[2,4-dichloro-3-[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyl-éthyl ester

25 En opérant de façon analogue à la préparation XI, au départ du composé obtenu selon la préparation X et de 8-hydroxy-2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-quinoléine, on obtient le produit attendu sous forme d'une poudre beige (Rendement = 93 %).

F = 94°C

$[\alpha]^{24}_D = -44^\circ$ (c = 0,57 ; CHCl₃)

Exemple 26

1-[[2,4-dichloro-3-[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(S)-pyrrolidine-carboxamide, bis trifluoroacétate

En opérant de façon analogue à l'exemple 25, au départ du composé obtenu selon la préparation XX, on obtient le produit attendu sous forme d'un solide blanc-crème (Rendement = 89 %).

F = 130°C

5 [α]¹⁸_D = - 28° (c = 0,63 ; CH₃OH)

PRÉPARATION XXI

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[3-(acétoxy)propyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à la préparation XV, au départ du composé obtenu selon l'exemple 25 et d'acétate de 3-iodopropyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 64 %).

F = 89°C

[α]²⁴_D = - 41° (c = 0,60 ; CHCl₃)

15 **Exemple 27**

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

20 En opérant de façon analogue à l'exemple 22, au départ du composé obtenu selon la préparation XXI, on obtient le produit attendu sous forme de poudre fine blanche (Rendement = 95 %).

F = 112°C

[α]²⁴_D = - 42° (c = 0,38 ; CHCl₃)

Exemple 28

25 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 27, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 99 %).

F = 136°C

[α]²²_D = - 39° (c = 0,50 ; CH₃OH)

PREPARATION XXII

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[3-(acétoxy)propyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

5 En opérant de façon analogue à la préparation XV, au départ du composé obtenu selon l'exemple 26 et d'acétate de 3-iodopropyle, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 47 %).

F = 120°C

$[\alpha]^{26}_D = -61^\circ$ (c = 0,4 ; CHCl₃)

10 Exemple 29

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 22, au départ du composé obtenu selon la préparation XXII, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 83 %).

F = 136°C

$[\alpha]^{22}_D = -48^\circ$ (c = 0;55 ; CHCl₃)

20 Exemple 30

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

25 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 29, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 123°C

$[\alpha]^{23}_D = -43^\circ$ (c = 0;48 ; CH₃OH)

PREPARATION XXIII

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[4-(acétoxy)butyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à la préparation XV, au départ du composé obtenu selon l'exemple 9 et d'acétate de 4-iodobutyle, on obtient le produit attendu (Rendement = 63 %).

35 F = 86°C

$[\alpha]^{22}_D = -44^\circ$ (c = 0,86 ; CHCl₃)

Exemple 31

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-hydroxybutyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

F = 112°C

$[\alpha]^{22}_D = -49^\circ$ (c = 0,78 ; CHCl₃)

Exemple 32

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-hydroxybutyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 31, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

F = 133°C

$[\alpha]^{22}_D = -41^\circ$ (c = 0,82 ; CH₃OH)

PRÉPARATION XXIV

4-[(3-bromométhyl-2,4-dichlorophényl)sulfonyl]-morpholine

En opérant de façon analogue à la préparation VII, au départ de morpholine et du chlorure de 3-bromométhyl-2,4-dichlorobenzènesulfonyle, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 85 %) (le produit contient en partie l'analogue chlorométhylé).

F = 128°C

Exemple 33

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine

En opérant de façon analogue à la préparation I, au départ du produit obtenu selon la préparation XXIV et de 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine, on obtient le produit attendu sous forme d'un solide beige (Rendement = 34 %).

F = 148°C

Exemple 34

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine, trifluoroacétate

En opérant de façon analogue à l'exemple 1, au départ d'acide trifluoroacétique et du composé obtenu selon l'exemple 33, on obtient le produit attendu sous forme d'une poudre légère couleur crème (Rendement = 98 %).

F = 93°C

Exemple 35

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-2-méthyl-4-(1*H*-

pyrazol-1-yl)quinoléine

En opérant de façon analogue à l'exemple 33, au départ de 8-hydroxy-4-(1*H*-pyrazol-1-yl)-2-méthylquinoléine, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 83 %).

F = 178°C

15 **Exemple 36**

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-2-méthyl-4-(1*H*-pyrazol-1-yl)quinoléine, trifluoroacétate

En opérant de façon analogue à l'exemple 34, au départ de l'exemple 35, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 89 %).

F = 110°C

PRÉPARATION XXV

1-[(3-bromométhyl-2,4-dichlorophényl)sulfonyl]-4-(hydroxyméthyl)-pipéridine

25 En opérant de façon analogue à la préparation XXIV, au départ de 4-(hydroxyméthyl)pipéridine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 88 %).

F = 121°C

Exemple 37

30 **1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol**

En opérant de façon analogue à l'exemple 33, au départ du produit obtenu selon la préparation XXV et 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 40 %).

F = 100°C

Exemple 38

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol, trifluoroacétate

5 En opérant de façon analogue à l'exemple 34, au départ du produit obtenu selon l'exemple 37, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 109°C

Exemple 39

10 **1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol**

En opérant de façon analogue à l'exemple 37, au départ du produit obtenu selon la préparation XXV et 8-hydroxy-2-méthyl-4-(1*H*-pyrazol-1-yl)-quinoléine, on obtient le produit attendu sous forme d'un solide beige (Rendement = 74 %).

F = 138°C

Exemple 40

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol, trifluoroacétate

20 En opérant de façon analogue à l'exemple 34, au départ du produit obtenu selon l'exemple 39, on obtient le produit attendu sous forme d'une poudre blanc crème (Rendement = 98 %).

F = 90°C

PRÉPARATION XXVI

25 **1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(*R*)-hydroxy-L-proline, méthyl ester**

En opérant de façon analogue à la préparation I, au départ de l'ester méthylique de la N-[(3-bromométhyl-2,4-dichlorophényl)sulfonyl]-4-(*R*)-hydroxy-(L)-proline, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 69 %).

F = 78°C

$[\alpha]^{22}_D = +1^\circ$ (c = 0,66 ;CH₃OH)

PRÉPARATION XXVII

30 **1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(*R*)-hydroxy-L-proline**

En opérant de façon analogue à la préparation II, au départ du produit obtenu selon la préparation XXVI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 51 %).

F = 140°C

5 [α]²⁷_D = + 13° (c = 0,38 ; CH₃OH)

PRÉPARATION XXVIII

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-4(R)-hydroxy-2(S)-pyrrolidinyl]carbonyl]-amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester

10 En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation XXVII et de l'ester *t*-butylique de l'acide 4-(aminométhyl)pipéridine carboxylique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 65 %).

F = 124°C

15 [α]²⁴_D = - 6° (c = 0,51 ; CH₃OH)

Exemple 41

1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-4(R)-hydroxy-N-(4-pipéridineméthyl)-2(S)-pyrrolidine-carboxamide

20 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XXVIII, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 80 %).

F = 140°C

[α]²⁷_D = - 3° (c = 0,33 ; CH₃OH)

Exemple 42

1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-4(R)-hydroxy-N-(4-pipéridineméthyl)-2(S)-pyrrolidine-carboxamide, ditartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 41 et de deux équivalents molaires d'acide tartrique, on obtient le produit attendu sous forme d'un solide léger jaune (Rendement = 50 %).

F = 156°C

[α]²⁷_D = + 30° (c = 0,38 ; DMSO)

Exemple 43

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(2-hydroxyéthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'acide obtenu selon la préparation II et de 2-aminoéthanol, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 93 %).

F = 120°C

[α]²⁷_D = - 31° (c = 0,37 ; CH₃OH)

Exemple 44

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(2-hydroxyéthyl)-2(S)-pyrrolidinecarboxamide, hémi-sulfate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 43 et d'un demi équivalent molaire d'acide sulfurique, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 140°C

[α]²⁷_D = - 24° (c = 0,35 ; CH₃OH)

Exemple 45

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N,N-diméthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation II et de diméthylamine en solution dans l'éthanol, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

F = 88°C

25 [α]²⁷_D = - 8° (c = 0,32 ; CH₃OH)

Exemple 46

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N,N-diméthyl-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 45, on obtient le produit attendu sous forme d'une poudre fine jaune (Rendement = 80 %).

F = 121°C

[α]²⁴_D = + 34° (c = 0,37 ; CH₃OH)

Exemple 47

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-morpholiny)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'acide obtenu selon la préparation II et de 4-(2-aminoéthyl)morpholine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 73 %).

F = 100°C

$[\alpha]^{24}_D = -30^\circ$ (c = 0,62 ; CH₃OH)

Exemple 48

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-morpholiny)éthyl]-2(S)-pyrrolidinecarboxamide, hémisulfate

En opérant de façon analogue à l'exemple 44, au départ du composé obtenu selon l'exemple 47, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 97 %).

F = 145°C

$[\alpha]^{25}_D = -46^\circ$ (c = 0,75 ; CH₃OH)

Exemple 49

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(4-morpholiny)propyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'acide obtenu selon la préparation II et de 4-(3-aminopropyl)morpholine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 69 %).

F = 96°C

25 $[\alpha]^{25}_D = -32,5^\circ$ (c = 0,64 ; CH₃OH)

Exemple 50

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(4-morpholiny)propyl]-2(S)-pyrrolidinecarboxamide, hémisulfate

30 En opérant de façon analogue à l'exemple 44, au départ du composé obtenu selon l'exemple 49, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 98 %).

F = 150°C

$[\alpha]^{25}_D = -46,5^\circ$ (c = 0,84 ; CH₃OH)

PREPARATION XXIX

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[2-[2-(acétoxy)éthoxy]éthyl]-4-pipéridinyl]-méthyl]-2(*S*)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 26, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 60 %).

F = 86°C

$$[\alpha]^{26}_{\text{D}} = -37,5^\circ \text{ (c = 0,78 ; CH}_3\text{OH)}$$

10 Exemple 51

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXIX, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 89 %).

F = 82°C

$$[\alpha]^{27}_{D} = -33,2^\circ \text{ (c = 0,76 ; CH}_3\text{OH)}$$

Exemple 52

20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]-méthyl]-2(*S*)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 51, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 99 %).

F = 135°C

$$[\alpha]^{26}_{\text{D}} = -36^\circ \text{ (c = 0,70 ; CH}_3\text{OH)}$$

PREPARATION XXX

N-[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]-β-alanine, 1,1-diméthyl-éthylester

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation II et de l'ester *t*-butylique de la β -alanine, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 80 %).

35 F = 68°C

$[\alpha]^{27}_D = -23^\circ$ (c = 0,41 ; CH₃OH)

Exemple 53

N-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]-β-alanine, trifluoro-acétate

5

En opérant de façon analogue à l'exemple 13, au départ du composé l'acide obtenu selon la préparation XXX, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 94 %).

F = 113°C

10 $[\alpha]^{27}_D = -8^\circ$ (c = 0,44 ; CH₃OH)

PRÉPARATION XXXI

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-(méthoxyméthyl)-pyrrolidine

15 En opérant de façon analogue à la préparation VII, au départ de 2(S)-(méthoxyméthyl)pyrrolidine, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 78 %).

$[\alpha]^{26}_D = -5,5^\circ$ (c = 0,73 ; CH₃OH)

Exemple 54

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine et du composé obtenu selon la préparation XXXI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 44 %).

25 F = 66°C

$[\alpha]^{27}_D = -31,5^\circ$ (c = 0,80 ; CH₃OH)

Exemple 55

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine, méthanesulfonate

30 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 54, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 99 %).

F = 123°C

$[\alpha]^{26}_D = +21^\circ$ (c = 0,85 ; CH₃OH)

Exemple 56

1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine

En opérant de façon analogue à l'exemple 54, au départ de 8-hydroxy-
5 2-méthyl-4-(1*H*-pyrazol-1-yl)-quinoléine, on obtient le produit attendu sous forme
de cristaux blancs (Rendement = 73 %).

F = 75°C

$[\alpha]^{24}_D = +1,6^\circ$ (c = 0,69 ; CH₃OH)

Exemple 57

10 **1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine, méthanesulfonate**

En opérant de façon analogue à l'exemple 4, au départ du composé
obtenu selon l'exemple 56, on obtient le produit attendu sous forme de cristaux
jaunes (Rendement = 97 %).

15 F = 110°C

$[\alpha]^{26}_D = +36^\circ$ (c = 0,80 ; CH₃OH)

PRÉPARATION XXXII

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-D-proline, méthyl ester

20 En opérant de façon analogue à la préparation I, au départ de l'ester
méthylique de la N-[[3-(bromométhyl)-2,4-dichloro-phényl]sulfonyl]-D-proline,
on obtient le produit attendu sous forme d'un solide jaune (Rendement = 97 %).

F = 74°C

$[\alpha]^{22}_D = +10^\circ$ (c = 0,60 ; CH₃OH)

PRÉPARATION XXXIII

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-D-proline

25 En opérant de façon analogue à la préparation II, au départ du
composé obtenu selon la préparation XXXII, on obtient le produit attendu sous
forme d'un solide blanc écrú (Rendement = 73 %).

F = 175°C

Exemple 58

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(R)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XXXIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 83 %).

F = 128°C

5 [α]²⁵_D = + 25° (c = 0,30 ; CH₃OH)

Exemple 59

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(R)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 58, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 80 %).

F = 114°C

[α]²⁵_D = + 25° (c = 0,80 ; CH₃OH)

Exemple 60

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-N-méthyl-2(S)-pyrrolidine-carboxamide

En opérant de façon analogue à l'exemple 1, au départ de N,N,N'-triméthyl-1,3-propanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 64 %).

F = 80°C

[α]²⁵_D = - 16° (c = 0,34 ; CH₃OH)

Exemple 61

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-N-méthyl-2(S)-pyrrolidine-carboxamide, hémisulfate

En opérant de façon analogue à l'exemple 48, au départ du composé obtenu selon l'exemple 60, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 98 %).

30 F = 133°C

[α]²⁵_D = - 34° (c = 0,40 ; CH₃OH)

Exemple 62

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[2-(acétoxy)éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrro-

35 **lidinecarboxamide**

En opérant de façon analogue à la préparation XV, au départ d'acétate de 2-bromoéthyle, on obtient le produit attendu sous forme d'un solide beige (Rendement = 38 %).

F = 93°C

5 [α]²²D = - 48° (c = 0,50 ; CHCl₃)

Exemple 63

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-hydroxyéthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon l'exemple 62, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 88 %).

F = 104°C

[α]¹⁸D = - 53° (c = 0,75 ; CHCl₃)

15 Exemple 64

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-hydroxyéthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, hémisulfate

20 En opérant de façon analogue à l'exemple 48, au départ du composé obtenu selon l'exemple 63, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 98 %).

F = 160°C

[α]²²D = - 48° (c = 0,54 ; CH₃OH)

Exemple 64 bis

25 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-hydroxyéthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

30 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 63, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 99 %).

F = 127°C

[α]²⁹D = - 46° (c = 0,82 ; CH₃OH)

PREPARATION XXXIV

Acide 4-[[[1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, 1,1-diméthyléthyl ester

5 En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 26, on obtient le produit attendu sous forme d'un solide beige (Rendement = 58 %).

F = 50°C

$[\alpha]^{25}_D = -40^\circ$ (c = 0,50 ; CHCl₃)

Exemple 65

Acide 4-[[[1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, bis-trifluoroacétate

15 En opérant de façon analogue à l'exemple 24, au départ du composé obtenu selon la préparation XXXIV, on obtient le produit attendu sous forme d'une poudre blanc écrue (Rendement = 96 %).

F = 142°C

$[\alpha]^{19}_D = -37^\circ$ (c = 0,80 ; CH₃OH)

Exemple 66

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation II et d'ammoniac introduit sous forme gazeuse dans le milieu réactionnel, on obtient le produit attendu sous forme d'un solide beige (Rendement = 98 %).

F = 110°C

$[\alpha]^{27}_D = -22,9^\circ$ (c = 0,31 ; CH₃OH)

Exemple 67

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 66, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 97 %).

F = 124°C

35 $[\alpha]^{27}_D = -12,6^\circ$ (c = 0,41 ; CH₃OH)

Exemple 68

N-cyclopropyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 5 cyclopropylamine, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 87 %).

F = 108°C

$[\alpha]^{24}_D = -19,2^\circ$ (c = 0,32 ; CH₃OH)

Exemple 69

10 N-cyclopropyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, chlorhydrate

15 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 68 et d'une solution de chlorure d'hydrogène dans le méthanol, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 100 %).

F = 160°C

$[\alpha]^{24}_D = -10,9^\circ$ (c = 0,36 ; CH₃OH)

Exemple 70

20 N-(cyclopropylméthyl)-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à l'exemple 1, au départ d'(aminométhyl)cyclopropane, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 98 %).

F = 100°C

$[\alpha]^{24}_D = -22,4^\circ$ (c = 0,42 ; CH₃OH)

Exemple 71

30 N-(cyclopropylméthyl)-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, chlorhydrate

En opérant de façon analogue à l'exemple 69, au départ du composé obtenu selon l'exemple 70, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 99 %).

F = 155°C

35 $[\alpha]^{24}_D = -5,9^\circ$ (c = 0,33 ; CH₃OH)

Exemple 72

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-N-méthyl-2(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à l'exemple 1, au départ du N,N,N'-triméthyléthylènediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 33 %).

F = 98°C

$[\alpha]^{24}_D = -20,2^\circ$ (c = 0,36 ; CH₃OH)

Exemple 73

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-diméthylamino)éthyl]-N-méthyl-2(S)-pyrrolidine-carboxamide, tartrate

15 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon l'exemple 72, on obtient le produit attendu sous forme d'un solide cotonneux blanc écrú (Rendement = 93 %).

F = 125°C

$[\alpha]^{24}_D = -30^\circ$ (c = 0,43 ; CH₃OH)

Exemple 74

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(1-pyrrolidinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-(2-aminoéthyl)-pyrrolidine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 62 %).

25 F = 105°C

$[\alpha]^{24}_D = -50^\circ$ (c = 0,35 ; CH₃OH)

Exemple 75

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(1-pyrrolidinyl)éthyl]-2(S)-pyrrolidinecarboxamide, tartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 74, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 97 %).

F = 129°C

35 $[\alpha]^{24}_D = -30^\circ$ (c = 0,45 ; CH₃OH)

Exemple 76

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(*S*)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-(3-aminopropyl)-pyrrolidine, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 51 %).

$$F = 120^\circ C$$

$$[\alpha]^{24}_{\text{D}} = -51^\circ \text{ (c = 0,35; CH}_3\text{OH)}$$

Exemple 77

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 76, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 95 %).

F = 128°C

$$[\alpha]^{24}_{\text{D}} = -32^\circ \text{ (c = 0,35 ; CH}_3\text{OH)}$$

Exemple 78

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(1-pipéridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-(2-aminoéthyl)-pipéridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 63 %).

F = 108°C

$$25 \quad [\alpha]^{22}D = -35,1^\circ \text{ (c = 0,37 ; CH}_3\text{OH)}$$

Exemple 79

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[2-(1-pipéridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 78, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 98 %).

F = 125°C

$$[\alpha]^{20}_D = -43,7^\circ \text{ (c = 0,42 ; CH}_3\text{OH)}$$

Exemple 80

N-cyclopentyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de cyclopentylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

F = 75°C

$[\alpha]^{25}_D = -17,5^\circ$ (c = 1,05 ; CH₃OH)

Exemple 81

10 N-cyclopentyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 80, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 91 %).

15 F = 134°C

$[\alpha]^{25}_D = +3,8^\circ$ (c = 0,83 ; DMSO)

PRÉPARATION XXXV

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-L-proline, méthyl ester

20 En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-quinoléine, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98 %).

F = 130°C

$[\alpha]^{22}_D = -35^\circ$ (c = 0,68 ; CHCl₃)

PRÉPARATION XXXVI

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-L-proline

30 En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation XXXV, on obtient le produit attendu sous forme d'une poudre jaune pâle (Rendement = 75 %).

F = 146°C

$[\alpha]^{24}_D = -5^\circ$ (c = 0,65 ; CH₃OH)

Exemple 82

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XXXVI et de N,N-diméthyl-éthylènediamine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 60 %).

F = 106°C

$[\alpha]^{25}_D = -35,2^\circ$ (c = 0,45 ; CH₃OH)

Exemple 83

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidine-carboxamide, tartrate

15 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 82, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 97 %).

F = 128°C

$[\alpha]^{25}_D = -38,1^\circ$ (c = 1 ; CH₃OH)

Exemple 84

20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidine-carboxamide

25 En opérant de façon analogue à l'exemple 82, au départ de N,N-diméthyl-1,3propylènediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 74 %).

F = 105°C

$[\alpha]^{25}_D = -51^\circ$ (c = 0,75 ; CHCl₃)

Exemple 85

30 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidine-carboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 84, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 99 %).

35 F = 124°C

$[\alpha]^{25}_D = -42,4^\circ$ (c = 1 ; CH₃OH)

Exemple 86

1-[[2,4-dichloro-3-[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidine-5-carboxamide

En opérant de façon analogue à l'exemple 82, au départ de 1(3-aminopropyl)-pyrrolidine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 65 %).

F = 86°C

10 $[\alpha]^{25}_D = -37,8^\circ$ (c = 0,67 ; CH₃OH)

Exemple 87

1-[[2,4-dichloro-3-[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidine-carboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 86, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 99 %).

F = 110°C

10 $[\alpha]^{25}_D = -54,6^\circ$ (c = 0,63 ; CH₃OH)

Exemple 88

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(aminométhyl)-pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 72 %).

F = 102°C

10 $[\alpha]^{25}_D = -37,5^\circ$ (c = 0,61 ; CH₃OH)

Exemple 89

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 88, on obtient le produit attendu sous forme de flocons blanc cassé (Rendement = 95 %).

35 F = 130°C

$[\alpha]^{25}_D = -32,6^\circ$ ($c = 0,54$; CH_3OH)

Exemple 90

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(3-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

5 En opérant de façon analogue à l'exemple 1, au départ de 3-(aminométhyl)-pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 84 %).

$F = 104^\circ\text{C}$

$[\alpha]^{25}_D = -41,9^\circ$ ($c = 0,59$; CH_3OH)

10 Exemple 91

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(3-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 90, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 99 %).

$F = 126^\circ\text{C}$

$[\alpha]^{25}_D = -35,5^\circ$ ($c = 0,56$; CH_3OH)

Exemple 92

20 **1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(4-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide**

En opérant de façon analogue à l'exemple 1, au départ de 4-(aminométhyl)-pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

25 $F = 114^\circ\text{C}$

$[\alpha]^{25}_D = -50,3^\circ$ ($c = 0,51$; CH_3OH)

Exemple 93

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(4-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide,

30 **tartrate**

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 92, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 98 %).

$F = 128^\circ\text{C}$

35 $[\alpha]^{25}_D = -34,5^\circ$ ($c = 0,49$; CH_3OH)

Exemple 94

8-[[2,6-dichloro-3-[[2(S)-[[4-(4-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrroli-dinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine

En opérant de façon analogue à l'exemple 1, au départ de 1-(4-pyridinyl)pipérazine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 45 %).

F = 136°C

$[\alpha]^{25}_D = -32,3^\circ$ (c = 0,46 ; CH₃OH)

Exemple 95

10 8-[[2,6-dichloro-3-[[2(S)-[[4-(4-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrroli-dinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 94, on obtient le produit attendu sous forme de flocons jaune pâle (Rendement = 89 %).

F = 146°C

$[\alpha]^{25}_D = -23,2^\circ$ (c = 0,52 ; CH₃OH)

Exemple 96

20 8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrroli-dinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine

En opérant de façon analogue à l'exemple 1, au départ de 1-(2-pyridinyl)pipérazine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 34 %).

F = 108°C

25 $[\alpha]^{25}_D = -27,6^\circ$ (c = 0,4 ; CH₃OH)

Exemple 97

8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrroli-dinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 96, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 99 %).

F = 138°C

$[\alpha]^{25}_D = -17,3^\circ$ (c = 0,37 ; CH₃OH)

PREPARATION XXXVII

Acide [2-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]éthyl](méthyl)carbamique, 1,1-diméthyléthyl ester

5 En opérant de façon analogue à l'exemple 1, au départ de l'ester t-butylque de l'acide [2-(méthylamino)éthyl](méthyl)carbamique, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 93 %).

F = 75°C

[α]²⁵_D = - 21,4° (c = 0,67 ; CH₃OH)

Exemple 98

10 1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-N-[2-(méthylamino)éthyl]-2(S)-pyrrolidine carboxamide

15 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XXXVII, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 97 %).

F = 116°C

[α]²⁵_D = - 22,6° (c = 0,6 ; CH₃OH)

PREPARATION XXXVIII

20 Acide [3-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]propyl](méthyl)carbamique, 1,1-diméthyléthyl ester

25 En opérant de façon analogue à l'exemple 1, au départ de l'ester t-butylque de l'acide [3-(méthylamino)propyl](méthyl)carbamique, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 86 %).

F = 70°C

[α]²⁵_D = - 16,4° (c = 0,6 ; CH₃OH)

Exemple 99

30 1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-N-[3-(méthylamino)propyl]-2(S)-pyrrolidine carboxamide

En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XXXVIII, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 99 %).

35 F = 125°C

$[\alpha]^{25}_D = -34,5^\circ$ (c = 0,54 ; CH₃OH)

PREPARATION XXXIX

1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-N-[2-[(3-(acétoxy)propyl)(méthyl)amino]éthyl]-

5 2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 98 et d'acétate de 3-iodopropyle, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 44 %).

F = 75°C

10 $[\alpha]^{25}_D = -16,1^\circ$ (c = 0,6 ; CH₃OH)

PREPARATION XL

1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-N-[2-[(4-(acétoxy)butyl)(méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à la préparation XXXIX, au départ d'acétate de 4-bromobutyle, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 55 %).

F = 76°C

20 $[\alpha]^{25}_D = -14,2^\circ$ (c = 0,53 ; CH₃OH)

PREPARATION XLI

1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-N-[3-[(3-(acétoxy)propyl)(méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à la préparation XXXIX, au départ du composé obtenu selon l'exemple 99, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 73 %).

F = 90°C

28 $[\alpha]^{25}_D = -28,3^\circ$ (c = 0,68 ; CH₃OH)

PREPARATION XLII

30 1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-N-[3-[(4-(acétoxy)butyl)(méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

35 En opérant de façon analogue à la préparation XL, au départ du composé obtenu selon l'exemple 99, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 69 %).

F = 88°C

$[\alpha]^{25}_D = -29,1^\circ$ (c = 0,7 ; CH₃OH)

Exemple 100

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[3-(hydroxy)propyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXXIX, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 92 %).

10 F = 98°C

$[\alpha]^{25}_D = -15,9^\circ$ (c = 0,6 ; CH₃OH)

Exemple 101

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[3-(hydroxy)propyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 100, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 118°C

20 $[\alpha]^{25}_D = -37,1^\circ$ (c = 0,6 ; CH₃OH)

Exemple 102

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[4-(hydroxy)butyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XL, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 74 %).

F = 84°C

$[\alpha]^{25}_D = -18,1^\circ$ (c = 0,62 ; CH₃OH)

Exemple 103

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[4-(hydroxy)butyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 102, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 120°C

5 [α]²⁵_D = - 43,2° (c = 0,65 ; CH₃OH)

Exemple 104

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[3-[[3-(hydroxy)propyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XLI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 84 %).

F = 92°C

[α]²⁵_D = - 18,1° (c = 0,56 ; CH₃OH)

15 Exemple 105

1-[[2,4-dichloro-3-[[2(L)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrroli-dinyl]sulfonyl]-N-méthyl-N-[3-[[3-(hydroxy)propyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 104, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 116°C

[α]²⁵_D = - 49,1° (c = 0,69 ; CH₃OH)

Exemple 106

25 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[3-[[4-(hydroxy)butyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XLII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77 %).

F = 82°C

[α]²⁵_D = - 22,1° (c = 0,62 ; CH₃OH)

Exemple 107

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[3-[[4-(hydroxy)butyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 106, on obtient le produit attendu sous forme de flocons blancs (Rendement = 98 %).

F = 100°C

$[\alpha]^{25}_D = -49,5^\circ$ (c = 0,58 ; CH₃OH)

Exemple 108

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à la préparation XIII, au départ du chlorhydrate de 2-(chlorométhyl)pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 31 %).

F = 100°C

$[\alpha]^{25}_D = -43,2^\circ$ (c = 0,4 ; CH₃OH)

Exemple 109

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 108, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

F = 130°C

$[\alpha]^{25}_D = -44,8^\circ$ (c = 0,3 ; CH₃OH)

Exemple 110

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

35 En opérant de façon analogue à la préparation XIII, au départ du chlorhydrate de 3-(chlorométhyl)pyridine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 80 %).

F = 107°C

$[\alpha]^{25}_D = -30,7^\circ$ (c = 0,35 ; CH₃OH)

Exemple 111

1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(3-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 110, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 141°C

10 $[\alpha]^{25}_D = -44,4^\circ$ (c = 0,36 ; CH₃OH)

Exemple 112

1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(4-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à la préparation XIII, au départ du chlorhydrate de 4-(chlorométhyl)pyridine, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 83 %).

F = 113°C

10 $[\alpha]^{25}_D = -27,7^\circ$ (c = 0,39 ; CH₃OH)

Exemple 113

1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(4-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu à l'exemple 112, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 92 %).

F = 96°C

10 $[\alpha]^{25}_D = -39,8^\circ$ (c = 0,34 ; CH₃OH)

PRÉPARATION XLIII

30 Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinepropanoïque, 1,1-diméthyléthyl ester

On prépare une suspension de 0,7 g (1,06.10⁻³ mole) du composé obtenu selon l'exemple 9 dans 20 ml de tétrahydrofurane. On ajoute, à 50°C, 35 0,66 g (5,1.10⁻³ mole) d'acrylate de t-butyle et on maintient sous agitation pendant

100 heures à 50°C. Le solvant est chassé sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (97/3/0,1 ; v/v/v). On obtient ainsi 0,5 g du produit attendu sous forme d'un solide blanc (Rendement = 61 %).

5 F = 92°C

[α]²³_D = - 41° (c = 0,31 ; CH₃OH)

Exemple 114

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinepropanoïque

10 On prépare une solution de 0,48 g (0,61.10⁻³ mole) du composé obtenu selon la préparation XLIII dans 30 ml de dichlorométhane et on ajoute, à 0°C, 66 mg (0,61.10⁻³ mole) d'anisole et, goutte à goutte, 10 ml d'acide trifluoroacétique. Le mélange réactionnel est ensuite maintenu sous agitation à température ambiante pendant 20 heures, puis concentré sous pression réduite. Le résidu est 15 tritiqué dans 10 ml d'éther diéthylique et le produit solide obtenu est séparé par filtration puis purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (80/20/2 ; v/v/v). On obtient ainsi 0,2 g du produit attendu sous forme d'un solide blanc (Rendement = 45 %).

20 F = 140°C

[α]²²_D = - 52° (c = 0,35 ; CH₃OH)

Exemple 115

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-

25 pipéridinepropanoïque, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu à l'exemple 114, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

F = 138°C

30 [α]²³_D = - 32° (c = 0,39 ; CH₃OH)

PRÉPARATION XLIV

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinebutanoïque, méthyl ester

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 9 et de 4-bromobutanoate de méthyle, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 58 %).

F = 98°C

5 [α]²²_D = - 40° (c = 0,43 ; CH₃OH)

Exemple 116

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinebutanoïque

10 On prépare une solution de 0,49 g (0,65.10⁻³ mole) de l'ester obtenu selon la préparation XLIV dans 10 ml de dioxane et on ajoute 1,3 ml d'une solution de soude N. Le mélange réactionnel est chauffé à reflux pendant 10 heures puis concentré sous pression réduite. Le résidu est repris dans l'eau et acidifié jusqu'à pH 4,5 à l'aide d'une solution diluée d'acide chlorhydrique. L'eau
15 est éliminée par lyophilisation et le solide obtenu est purifié par chromatographie sur gel de silice greffée RP18 en éluant à l'aide d'un mélange acétonitrile/eau (2/1 ;v/v). On obtient ainsi 0,24 g du produit attendu sous forme d'un solide blanc (Rendement = 50 %).

F = 178°C

20 [α]²⁰_D = - 16° (c = 0,5 ; CH₃OH)

Exemple 117

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinebutanoïque, tartrate

25 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 116, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87 %).

F = 158°C

[α]²⁴_D = - 7° (c = 0,34 ; CH₃OH)

30 PRÉPARATION XLV

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-β-oxo-1-pipéridinepropanoïque, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon l'exemple 9 et de malonate de mono-t-butyle, on obtient le produit attendu sous forme d'un solide blanc (Renderement = 59 %).

$$F = 101^{\circ}C$$

$$[\alpha]^{29} \text{D} = -34^\circ \text{ (c = 0,33 ; CH}_3\text{OH)}$$

Exemple 118

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-β-oxo-1-pipéridinepropanoïque, trifluororacétate

10 En opérant de façon analogue à l'exemple 114, au départ du composé obtenu selon la préparation XLV, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 87 %).

F = 130°C

$$[\alpha]^{22} \text{D} = -22^\circ \text{ (c = 0,56 ; CH}_3\text{OH)}$$

15 Exemple 119

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-γ-oxo-1-pipéridinebutanoïque

On prépare une suspension de 0,5 g ($0,76 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 9, dans 15 ml d'acétone et on ajoute 76 mg ($0,76 \cdot 10^{-3}$ mole) d'anhydride succinique. Le mélange réactionnel est chauffé à reflux pendant 8 heures et le solvant est éliminé sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (90/10/1 ; v/v/v). On obtient ainsi 0,26 g du produit attendu sous forme d'un solide blanc (Rendement = 45 %).

F = 125°C

$$[\alpha]^{22} \text{D} = -33^\circ \text{ (c = 0,38 ; CH}_3\text{OH)}$$

Exemple 120

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-γ-oxo-1-pipéridinebutanoïque, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 119, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 75 %).

35 F = 130°C

$[\alpha]^{19}_D = -22^\circ$ ($c = 0,50$; CH_3OH)

PRÉPARATION XLVI

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-δ-oxo-1-pipéridinepentanoïque, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon l'exemple 9 et de glutarate de mono t-butyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 44 %).

$F = 112^\circ\text{C}$

$[\alpha]^{22}_D = -41^\circ$ ($c = 0,30$; CH_3OH)

Exemple 121

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-δ-oxo-1-pipéridinepentanoïque, trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XLVI, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 77 %).

$F = 131^\circ\text{C}$

$[\alpha]^{23}_D = -15^\circ$ ($c = 0,37$; CH_3OH)

PRÉPARATION XLVII

N-[2-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]-éthyl]-N-méthyl-glycine, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 98, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

$F = 71^\circ\text{C}$

$[\alpha]^{25}_D = -20^\circ$ ($c = 0,37$; CH_3OH)

Exemple 122

N-[2-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]-éthyl]-N-méthyl-glycine, trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XLVII, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 84 %).

F = 120°C

$[\alpha]^{22}_D = -29^\circ$ (c = 0,49 ; CH₃OH)

PRÉPARATION XLVIII

Acide [3-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]propyl](méthyl)carbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ de (3-aminopropyl)(méthyl)carbamate de t-butyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

10 F = 75°C

$[\alpha]^{25}_D = -26,5^\circ$ (c = 0,35 ; CH₃OH)

Exemple 123

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[3-(méthylamino)propyl]-2(S)-pyrrolidinecarboxamide, trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XLVIII, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 99 %).

F = 120°C

20 $[\alpha]^{24}_D = -49^\circ$ (c = 0,48 ; CH₃OH)

PRÉPARATION IL

N-[3-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]propyl]-N-méthyl-glycine, 1,1-diméthyléthyl ester

25 En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 99, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 73 %).

F = 72°C

$[\alpha]^{25}_D = -12^\circ$ (c = 0,45 ; CH₃OH)

Exemple 124

N-[3-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]propyl]-N-méthyl-glycine, bis-trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation IL, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 92 %).

F = 110°C

5 [α]²²D = - 34° (c = 0,34 ; CH₃OH)

Exemple 125

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 On prépare un mélange de 0,5 g (0,563.10⁻³ mole) du composé obtenu selon l'exemple 26 dans 10 ml d'acetonitrile. On ajoute 0,39 g (2,81.10⁻³ mole) de carbonate de potassium puis 0,111 g (0,676.10⁻³ mole) du chlorure de 2-picolyde (sous forme de chlorhydrate). Le mélange réactionnel est agité à 80°C pendant 45 mn puis refroidi et filtré. Les sels minéraux sont rincés par du dichlorométhane que l'on joint au filtrat. Cette solution est concentrée sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (9/1 ; v/v). On obtient ainsi le produit attendu sous forme d'une poudre blanche (Rendement = 71 %).

F = 118°C

20 [α]²⁸D = - 46° (c = 0,36 ; CHCl₃)

Exemple 126

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 125, on obtient le produit attendu sous forme d'un solide beige (Rendement = 91 %).

F = 139°C

[α]²⁸D = - 76° (c = 0,59 ; CH₃OH)

30 Exemple 127

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(phénylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

On prépare un mélange de 1 g (1,12.10⁻³ mole) du composé obtenu selon l'exemple 9 dans 4 ml de diméthylformamide et 100 ml de dichlorométhane.

On ajoute 0,787 ml ($5,64 \cdot 10^{-3}$ mole) de triéthylamine, puis, après avoir refroidi le milieu à 0°C, 0,148 ml ($1,24 \cdot 10^{-3}$ mole) de bromure de benzyle. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 24 heures puis concentré sous pression réduite. Le résidu est repris en solution dans l'acétate d'éthyle en présence d'eau ; le mélange est amené à pH alcalin (pH 9-10) à l'aide d'une solution de soude. La phase aqueuse est extraite à l'acétate d'éthyle et les phases organiques réunies sont lavées à l'eau, séchées sur sulfate de magnésium puis concentrées sous pression réduite. La purification du produit brut par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (95/5 ; v/v) permet d'obtenir le produit attendu sous forme d'un solide fin blanc (Rendement = 56%).

F = 123°C

$[\alpha]^{28}_D = -43^\circ$ (c = 0,73 ; CH₃OH)

Exemple 128

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(phénylemthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 127, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 95 %).

F = 161°C

$[\alpha]^{26}_D = -44^\circ$ (c = 0,63 ; CH₃OH)

Exemple 129

N-[(1-benzoyl-4-pipéridinyl)méthyl]-1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-2(S)-pyrrolidine carboxamide

En opérant de façon analogue à l'exemple 127, au départ de chlorure de benzoyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

30 F = 102°C

$[\alpha]^{28}_D = -48^\circ$ (c = 0,66 ; CHCl₃)

Exemple 130

N-[(1-benzoyl-4-pipéridinyl)méthyl]-1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-2(S)-pyrrolidine carboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 129, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 95 %).

F = 153°C

5 [α]²⁶D = - 24° (c = 0,55 ; CH₃OH)

Exemple 131

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 127, au départ du chlorhydrate du chlorure d'isonicotinoyle, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 34 %).

F = 134°C

[α]²⁸D = - 56° (c = 0,64 ; CHCl₃)

15 Exemple 132

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 131, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

F = 165°C

[α]²⁶D = - 29° (c = 0,48 ; CH₃OH)

Exemple 133

25 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 127, au départ du chlorure de nicotinoyle, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 79%).

F = 109°C

[α]²⁴D = - 45° (c = 0,88 ; CHCl₃)

Exemple 134

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 133, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 82%).

F = 150°C

$[\alpha]^{24}_D = -38^\circ$ (c = 0,59 ; CH₃OH)

10 Exemple 135

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 1, au départ d'acide picolinique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 52 %).

F = 103°C

$[\alpha]^{24}_D = -58^\circ$ (c = 0,90 ; CHCl₃)

16 Exemple 136

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 135, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 89 %).

F = 152°C

$[\alpha]^{24}_D = -25^\circ$ (c = 0,76 ; CH₃OH)

PRÉPARATION L

30 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)quinoléine, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98%).

F = 130°C

35 $[\alpha]^{22}_D = -35^\circ$ (c = 0,68 ; CHCl₃)

PREPARATION LI**1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyloxy]méthyl]phényl]sulfonyl]-L-proline**

En opérant de façon analogue à la préparation II, au départ du 5 composé obtenu selon la préparation L, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 72 %).

F = 146°C

[α]²⁴_D = - 5° (c = 0,68 ; CH₃OH)

Exemple 137**10 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyloxy]méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide**

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation LI et de N-N-diméthylpropanediamine, on obtient le 15 produit attendu sous forme d'un solide amorphe beige (Rendement = 74 %).

F = 105°C

[α]²⁴_D = - 51° (c = 0,75 ; CHCl₃)

Exemple 138**20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyloxy]méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide, hémi-sulfate**

En opérant de façon analogue à l'exemple 44, au départ du composé obtenu selon l'exemple 137, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98 %).

25 F = 154°C

[α]²³_D = - 26° (c = 0,77 ; CH₃OH)

Exemple 139**30 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyloxy]méthyl]phényl]sulfonyl]-N-méthyl-2(S)-pyrrolidinecarboxamide**

En opérant de façon analogue à l'exemple 137, au départ du chlorhydrate de méthylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 60 %).

F = 131°C

[α]²⁸_D = - 37° (c = 0,94 ; CHCl₃)

Exemple 140

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]oxy]méthyl]phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à l'exemple 137, au départ de 2(aminométhyl)pyridine, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 85 %).

F = 95°C

$[\alpha]^{28}_D = -31^\circ$ (c = 0,53 ; CHCl₃)

Exemple 141

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]oxy]méthyl]phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidine-carboxamide, méthanesulfonate

10 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 140, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 85 %).

F = 108°C

$[\alpha]^{28}_D = -33^\circ$ (c = 0,52 ; CH₃OH)

Exemple 142

20 8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrro-lidinyl]sulfonyl]phényl]méthoxy]-2-méthyl-4-(1H-1,2,4-triazol-1-yl)quinoléine

En opérant de façon analogue à l'exemple 137, au départ de 1-(2-pyridinyl)pipérazine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 75 %).

25 F = 108°C

$[\alpha]^{26}_D = +9^\circ$ (c = 0,47 ; CHCl₃)

Exemple 143

28-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrro-lidinyl]sulfonyl]phényl]méthoxy]-2-méthyl-4-(1H-1,2,4-triazol-1-yl)quinoléine, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 142, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 88 %).

F = 160°C

35 $[\alpha]^{26}_D = -12^\circ$ (c = 0,65 ; CH₃OH)

Exemple 144

8-[[2,6-dichloro-3-[(2(S)-(4-morpholinylcarbonyl)-1-pyrrolidinyl]sulfonyl]-phényl)méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à l'exemple 1, au départ de morpholine, 5 on obtient le produit attendu sous forme d'un solide blanc (Rendement = 76 %).

F = 50°C

$[\alpha]^{27}_D = + 15^\circ$ (c = 0,54 ; CHCl₃)

Exemple 145

8-[[2,6-dichloro-3-[(2(S)-(4-morpholinylcarbonyl)-1-pyrrolidinyl]sulfonyl]-phényl)méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 144, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 95 %).

F = 138°C

15 $[\alpha]^{27}_D = - 10^\circ$ (c = 0,72 ; CH₃OH)

Exemple 146

8-[[2,6-dichloro-3-[(2(S)-[(4-méthyl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]-sulfonyl]phényl)méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à l'exemple 1, au départ de 1-méthylpipérazine, 20 on obtient le produit attendu sous forme d'une huile incolore (Rendement = 34 %).

$[\alpha]^{27}_D = + 11^\circ$ (c = 0,62 ; CHCl₃)

RMN ¹H (300 MHz ; DMSOd6)

25 8.13 (t, J=8.6Hz, 1H) ; 8.09 (s, 1H) ; 7.80 (d, J=8.6Hz, 1H) ; 7.67 (s, 1H) ; 7.6-7.50 (m, 3H) ; 7.35-7.20 (m, 2H) ; 5.56 (s, 2H) ; 5.0-4.95 (m, 1H) ; 3.6-3.3 (m, 6H) ; 2.67 (s, 3H) ; 2.3-2.1 (m, 5H) ; 2.16 (s, 3H) ; 2.0-1.80 (m, 3H).

Exemple 147

8-[[2,6-dichloro-3-[(2(S)-[(4-méthyl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]-sulfonyl]phényl)méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, tartrate

30 En opérant de façon analogue à l'exemple 2 au départ du composé obtenu selon l'exemple 146, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 94 %).

F = 138°C

$[\alpha]^{27}_D = - 13^\circ$ (c = 0,60 ; CH₃OH)

Exemple 148

8-[[2,6-dichloro-3-[(2(S)-[(4-phényl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]-sulfonyl]phényl)méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine

En opérant de façon analogue à l'exemple 1, au départ de 1-
5 phénylpipérazine, on obtient le produit attendu sous forme d'un solide blanc
(Rendement = 77 %).

F = 88°C

$$[\alpha]^{28}_{\text{D}} = +15^\circ \text{ (c = 0,58 ; CHCl}_3)$$

Exemple 149

10 8-[(2,6-dichloro-3-[2(S)-[(4-phényl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]-sulfonyl]phényl)méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine,
méthanesulfonate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 148, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 93 %).

F = 147°C

$$[\alpha]^{28}_{\text{D}} = -3^\circ \text{ (c = 0,50 ; CH}_3\text{OH)}$$

Exemple 150

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(2-pyridinyl)éthyl]-2(*S*)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(2-pyridyl)éthylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87%).

F = 82°C

$$25 \quad [\alpha]^{28}_D = -29^\circ \text{ (c = 1.13 ; CHCl}_3\text{)}$$

Exemple 151

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(2-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 150, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 85%).

$$F = 110^{\circ}\text{C}$$

$$[\alpha]^{26}_{\text{D}} = -31^\circ \text{ (c = 0,61 ; CH}_3\text{OH)}$$

Exemple 152

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(3-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(3-pyridinyl)éthylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87%).

F = 117°C

[α]²⁹_D = - 41° (c = 0,59 ; CHCl₃)

Exemple 153

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(3-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 152, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 92 %).

F = 128°C

[α]²⁹_D = - 23° (c = 0,74 ; CH₃OH)

Exemple 154

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(4-pyridinyl)éthylamine, on obtient le produit attendu sous forme d'un solide beige (Rendement = 94%).

F = 120°C

25 [α]²⁷_D = - 45° (c = 0,56 ; CHCl₃)

Exemple 155

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 154, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 93%).

F = 136°C

[α]²⁷_D = - 18° (c = 0,76 ; CH₃OH)

Exemple 156

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(phénylméthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de benzylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 97%).

F = 116°C

[α]²⁷_D = - 31° (c = 0,77 ; CHCl₃)

Exemple 157

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(phénylméthyl)-2(S)-pyrrolidinecarboxamide, méthane-sulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 156, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 91%).

F = 135°C

[α]²⁷_D = - 103° (c = 0,83 ; CH₃OH)

PRÉPARATION LII

20 Acide 4-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]-1-pipérazine-carboxylique, 1,1-diméthylethyl ester

En opérant de façon analogue à l'exemple 1, au départ de l'ester t-butyle de l'acide 1-pipérazine carboxylique (N-boc-pipérazine), on obtient le produit attendu sous forme d'un solide blanc (Rendement = 33%).

25 F = 98°C

[α]²⁰_D = + 4° (c = 0,79 ; CHCl₃)

Exemple 158

30 8-[[2,6-dichloro-3-[[2(S)-(1-pipérazinylcarbonyl)-1-pyrrolidinyl]sulfonyl]-phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine, bis trifluoro-acétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation LII, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 99 %).

F = 143°C

35 [α]¹⁹_D = + 22° (c = 0,47 ; CH₃OH)

Exemple 159

8-[2,6-dichloro-3-[(2(S)-[[4-(2-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléïne

5 En opérant de façon analogue à l'exemple 127, au départ du composé obtenu selon l'exemple 158 et de chlorure de 2-picolyde, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 54 %).

$[\alpha]^{20}_D = + 11^\circ$ (c = 0,54 ; CHCl₃)

RMN ¹H(250 MHz ; DMSOd6)

10 8.5-8.45 (m, 1H) ; 8.2-8.05 (m, 2H) ; 7.85-7.70 (m, 2H) ; 7.68-7.64 (m, 1H) ; 7.6-7.5 (m, 3H) ; 7.42 (d, J=7.8 Hz, 1H) ; 7.35-7.20 (m, 3H) ; 5.56 (s, 2H) ; 5-4.95 (m, 1H) ; 3.60 (s, 2H) ; 3.55-3.30 (m, 6H) ; 2.66 (s, 3H) ; 2.45-2.15 (m, 5H) ; 2-1.8 (m, 3H).

Exemple 160

15 **8-[2,6-dichloro-3-[(2(S)-[[4-(2-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléïne, méthanesulfonate**

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 159, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 91 %).

F = 143°C

$[\alpha]^{26}_D = - 12^\circ$ (c = 0,56 ; CH₃OH)

Exemple 161

20 **8-[2,6-dichloro-3-[(2(S)-[[4-(3-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléïne**

En opérant de façon analogue à l'exemple 159, au départ de chlorure de 3-picolyde, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 26 %).

25 30 F = 102°C

$[\alpha]^{22}_D = + 12^\circ$ (c = 0,40 ; CHCl₃)

Exemple 162

8-[2,6-dichloro-3-[(2(S)-[[4-(3-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléïne, méthanesulfonate

35

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 161, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 95 %).

F = 154°C

5 [α]²⁶D = - 8° (c = 0,72 ; CH₃OH)

Exemple 163

8-[[2,6-dichloro-3-[[2(S)-[4-(4-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinylsulfonyl]phényl]méthoxy]-4-(1H-imidazol-1-yl)-2-méthyl-quinoléïne

10 En opérant de façon analogue à l'exemple 159, au départ de chlorure de 4-picolyde, on obtient le produit attendu sous forme d'un solide fin beige (Rendement = 52 %).

F = 108°C

[α]²²D = + 12° (c = 0,40 ; CHCl₃)

15 Exemple 164

8-[[2,6-dichloro-3-[[2(S)-[4-(4-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinylsulfonyl]phényl]méthoxy]-4-(1H-imidazol-1-yl)-2-méthyl-quinoléïne, méthanesulfonate

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 163, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 97 %).

F = 156°C

[α]²³D = - 14° (c = 0,77 ; CH₃OH)

PRÉPARATION LIII

25 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]-oxy]méthyl]phényl]sulfonyl]-N-[[1-[2-(acétoxy)éthyl]-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 26 et d'acétate de 2-bromoéthyle, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 31%).

[α]²⁹D = - 47° (c = 0,55 ; CHCl₃)

RMN ¹H (250 MHz ; DMSOd6)

35 9.18 (s, 1H) ; 8.44 (s, 1H) ; 8.10 (d, J=8.6 Hz, 1H) ; 7.93 (t, J=5.4 Hz, NH) ;

7.81 (d, J=8.7Hz, 1H) ; 7.73 (s, 1H) ; 7.6-7.5 (m, 3H) ; 5.58 (s, 2H) ; 4.4-4.3

(m, 1H) ; 4.06 (t, J=6 Hz, 2H) ; 3.6-3.5 (m, 1H) ; 3.45-3.30 (m, 1H) ; 2.95-2.75

(m, 4H) ; 2.69 (s, 3H) ; 2.50-2.45 (m, 2H) ; 2.25-1.75 (6H) ; 1.99 (s, 3H) ; 1.55-1.45 (m, 2H) ; 1.35-1.20 (m, 1H) ; 1.15-0.95 (m, 2H).

Exemple 165

- 5 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[[1-[(2-hydroxyéthyl)-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation LIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

10 F = 115°C

[α]²⁹_D = - 43° (c = 0,58 ; CHCl₃)

Exemple 166

- 15 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[[1-(2-(hydroxyéthyl)-4-pipéridinyl)-méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 165, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 82 %).

F = 137°C

20 [α]²⁶_D = - 60° (c = 0,14 ; CH₃OH)

Exemple 167

- 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[5-(diméthylamino)pentyl]-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à l'exemple 1, au départ de N,N-diméthyl-1,5-pentanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 53 %).

F = 85°C

[α]²⁸_D = - 31° (c = 0,37 ; CH₃OH)

Exemple 168

- 30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[5-(diméthylamino)pentyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 167, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 97 %).

F = 126°C

$[\alpha]^{28}_D = -31,6^\circ$ (c = 0,38 ; CH₃OH)

PRÉPARATION LIV

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(R)-pyrrolidinol

En opérant de façon analogue à la préparation VII, au départ de 3(R)-pyrrolidinol, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 63 %).

F = 121°C

$[\alpha]^{25}_D = +7,9^\circ$ (c = 0,51 ; CH₃OH)

Exemple 169

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(R)-pyrrolidinol

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LIV, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 28 %).

F = 166°C

$[\alpha]^{25}_D = -2,1^\circ$ (c = 0,66 ; CH₃OH)

Exemple 170

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(R)-pyrrolidinol, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 169, on obtient le produit attendu sous forme d'un solide fin jaune pâle (Rendement = 97 %).

F = 162°C

25 $[\alpha]^{25}_D = +1,65^\circ$ (c = 0,59 ; CH₃OH)

PRÉPARATION LV

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(S)-pyrrolidinol

En opérant de façon analogue à la préparation VII, au départ de 3(S)-pyrrolidinol, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 49 %).

F = 120°C

$[\alpha]^{25}_D = -6^\circ$ (c = 0,61 ; CH₃OH)

Exemple 171

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(S)-pyrrolidinol

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LV, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 31 %).

F = 166°C

5 [α]²⁵_D = + 2,3° (c = 0,54 ; CH₃OH)

Exemple 172

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(S)-pyrrolidinol, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 171, on obtient le produit attendu sous forme d'un solide fin beige (Rendement = 99 %).

F = 163°C

[α]²⁵_D = + 3,45° (c = 0,67 ; CH₃OH)

PREPARATION LVI

15 N-[1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(R)-pyrrolidinyl]-acétamide

En opérant de façon analogue à la préparation VII, au départ de N-[3(R)-pyrrolidinyl]acétamide, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 81 %).

20 F = 222°C

[α]²⁵_D = - 1,3° (c = 1,12; CHCl₃)

Exemple 173

N-[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-3(R)-pyrrolidinyl]acétamide

25 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LVI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

F = 246°C

[α]²⁵_D = + 26,2° (c = 0,80 ; CH₃OH)

30 PREPARATION LVII

N-[1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(S)-pyrrolidinyl]-acétamide

En opérant de façon analogue à la préparation VIII, au départ de N-[3(S)-pyrrolidinyl]acétamide, on obtient le produit attendu sous forme d'un solide

35 blanc (Rendement = 86 %).

F = 221°C

$[\alpha]^{25}_D = + 1,7^\circ$ (c = 0,98; CHCl₃)

Exemple 174

N-[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-

5 méthyl]phényle]sulfonyl]-3(S)-pyrrolidinyl]acétamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

F = 246°C

10 $[\alpha]^{25}_D = - 26,6^\circ$ (c = 1,2; CH₃OH)

PREPARATION LVIII

N-[3-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényle]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]propyl]-N-méthyl-glycine, 1-1diméthyléthyl ester

15 En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 123, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

F = 74°C

$[\alpha]^{24}_D = - 33^\circ$ (c = 0,36; CH₃OH)

20 Exemple 175

N-[3-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényle]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]propyl]-N-méthyl-glycine, bis trifluoroacétate

25 En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation LVIII, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 78 %).

F = 115°C

$[\alpha]^{25}_D = - 31^\circ$ (c = 0,40; CH₃OH)

PREPARATION LIX

30 Acide 1[[3-(bromométhyl)-2,4-dichlorophényle]sulfonyl]-2(S)-pipéridine-carboxylique, méthyl ester

On prépare une solution de 0,68 g (3,78.10⁻³ mole) du chlorhydrate de l'ester méthylique de l'acide 2(S)-pipéridinecarboxylique dans 30 ml d'acéto-nitrile et on ajoute 1,14 g (11,4.10⁻³ mole) de bicarbonate de potassium en solution dans 10 ml d'eau, puis 1,28 g (3,78.10⁻³ mole) de chlorure de 3-(bromométhyl)-

2,4-dichlorobenzènesulfonyle. Le mélange réactionnel est maintenu sous agitation pendant 20 heures à température ambiante puis concentré sous pression réduite. Le résidu est repris par du dichlorométhane et cette phase organique est lavée à l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/acétate d'éthyle (95/5 ;v/v). On obtient ainsi 1,02 g du produit attendu sous forme d'un solide blanc (Rendement = 61 %).

5 F = 91°C

[α]²⁵_D = + 4° (c = 0,56; CH₃OH)

10 Note : le produit attendu contient une proportion d'analogue chlorométhylé en position 3 qui peut réagir comme le produit attendu lors de l'étape suivante et n'a pas été séparé.

PREPARATION LX

15 Acide 1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pipéridinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LIX, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 72 %).

F = 81°C

20 [α]²⁵_D = + 13° (c = 0,380; CH₃OH)

PREPARATION LXI

Acide 1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pipéridinecarboxylique

25 En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 73 %).

F = 208°C

[α]²⁶_D = - 5° (c = 0,30; DMSO)

Exemple 176

30 1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-2(S)-pipéridinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 49 %).

35 F = 74°C

$[\alpha]^{24}_D = + 3^\circ$ ($c = 0,30$; CH₃OH)

Exemple 177

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(S)-pipéridinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 176, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 77 %).

F = 153°C

$[\alpha]^{24}_D = + 5,2^\circ$ ($c = 0,32$; CH₃OH)

10 PRÉPARATION LXII

Acide 3-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-thiazolidine-carboxylique, méthyl ester

En opérant de façon analogue à la préparation LIX, au départ de l'ester méthyle de l'acide 4(R)-thiazolidinecarboxylique, on obtient le produit attendu sous forme d'un solide beige (Rendement = 15 %).

15 F = 48-50°C

$[\alpha]^{24}_D = - 40,2^\circ$ ($c = 1,48$; CH₃OH)

PRÉPARATION LXIII

Acide 3-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-4(R)-thiazolidinecarboxylique, méthyl ester

20 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXII, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 50 %).

F = 60°C

25 $[\alpha]^{27}_D = - 31,4^\circ$ ($c = 0,28$; CH₃OH)

PRÉPARATION LXIV

Acide 3-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-4(R)-thiazolidinecarboxylique

30 En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXIII, on obtient le produit attendu sous forme d'un solide beige (Rendement = 60 %).

F = 130°C

$[\alpha]^{27}_D = - 31,8^\circ$ ($c = 0,33$; DMSO)

Exemple 178

3-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(R)-thiazolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXIV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 80 %).

F = 120°C

[α]²⁷_D = - 65,5° (c = 0,36 ; CH₃OH)

Exemple 179

10 3-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(R)-thiazolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 178, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 99 %).

15 F = 143°C

[α]²⁷_D = - 56° (c = 0,33 ; CH₃OH)

PREPARATION LXV

Acide 1-[3-(bromométhyl)-2,4-dichlorophényl]-3-pyrrolidinecarboxylique, méthyl ester

20 En opérant de façon analogue à la préparation LIX, au départ de l'ester méthylique de l'acide 3-pyrrolidinecarboxylique, on obtient le produit attendu sous forme d'une poudre beige (Rendement = 76 %).

F = 94°C

PREPARATION LXVI

25 Acide 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-3-pyrrolidinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation LX, au départ du composé obtenu selon la préparation LXV, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 84 %).

30 F = 180°C

PREPARATION LXVII

Acide 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-3-pyrrolidinecarboxylique

En opérant de façon analogue à la préparation LXI, au départ du composé obtenu selon la préparation LXVI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 99 %).

F = 145°C

5 **Exemple 180**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-3-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 80 %).

10 F = 108°C

Exemple 181

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-3-pyrrolidinecarboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 180, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 92 %).

F = 137°C

PREPARATION LXVIII

20 **1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]pyrrolidine**

En opérant de façon analogue à la préparation LIX, au départ de pyrrolidine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 94 %).

F = 115°C

25 **Exemple 182**

8-[[2,6-dichloro-3-(1-pyrrolidinylsulfonyl)phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXVIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

30 F = 193°C

Exemple 183

8-[[2,6-dichloro-3-(1-pyrrolidinylsulfonyl)phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, chlorhydrate

En opérant de façon analogue à l'exemple 69, au départ du composé obtenu selon l'exemple 182, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 99 %).

F = 142°C

5 **Exemple 184**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-hydroxy-N-méthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XXVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 49 %).

10 F = 134°C

[α]²⁴_D = + 5° (c = 0,32; CH₃OH)

15 **Exemple 185**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-

15 phényl]sulfonyl]-4(R)-hydroxy-N-méthyl)-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 184, on obtient le produit attendu sous forme d'un solide fin jaune pâle (Rendement = 82 %).

20 F = 125°C

[α]²⁴_D = + 10° (c = 0,40 ; CH₃OH)

PREPARATION LXIX

Acide 4(R)-méthoxy-2(S)-[(méthylamino)carbonyl]-1-pyrrolidinecarboxylique, phénylméthyl ester

25 En opérant de façon analogue à l'exemple 1, au départ de la 1-(phénylméthoxycarbonyl)-4(E)méthoxy-L-proline, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 65 %).

F = 45-47°C

PREPARATION LXX

30 4(R)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

On prépare une solution de 1,27 g (4,34.10⁻³ mole) du composé obtenu selon la préparation LXIX dans 100 ml de méthanol et on ajoute 0,13 g de charbon palladié à 10 %. Le mélange est agité sous atmosphère d'hydrogène pendant 2 heures à pression atmosphérique, puis filtré pour éliminer le catalyseur.

35 L'élimination du solvant sous pression réduite permet d'obtenir 0,64 g du produit

attendu sous forme d'une huile qui est utilisée sans purification complémentaire à l'étape suivante (Rendement = 93 %)

PRÉPARATION LXXI

1-[[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-4(R)-méthoxy-N-méthyl-

5 2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 80 %).

F = 75°C

10 $[\alpha]^{27}_D = + 16^\circ$ (c = 0,31; CH₃OH)

Exemple 186

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-4(R)-méthoxy-N-méthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 40 %).

F = 93°C

$[\alpha]^{27}_D = + 19^\circ$ (c = 0,45; CH₃OH)

Exemple 187

20 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-4(R)-méthoxy-N-méthyl)-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 186, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 86 %).

F = 143°C

$[\alpha]^{27}_D = + 17^\circ$ (c = 0,36; CH₃OH)

PRÉPARATION LXXII

4(E)-éthoxy-1-(phénylméthoxycarbonyl)-L-proline, éthyl ester

30 On prépare une solution de 3 g (11,3.10⁻³ mole) de 4(E)-hydroxy-1-(phénylméthoxycarbonyl)-L-proline dans 15 ml de diméthylformamide et on ajoute 1,12 g (28,2.10⁻³ mole) d'hydrure de sodium (à 60 % dans l'huile). Après 30 mn sous agitation à température ambiante, on ajoute 2,10 ml (26.10⁻³ mole) d'iodoéthane. Le mélange est maintenu sous agitation pendant 24 heures à température ambiante, puis versé sur 250 ml d'eau et extrait par l'acétate d'éthyle.

La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/acétate d'éthyle (95/5 ; v/v). On obtient ainsi 2,3 g du produit attendu sous forme d'une huile jaune (Rendement = 63 %).

5 $[\alpha]^{25}_D = -42,1^\circ$ ($c = 0,42$; CH₃OH)

PREPARATION LXXIII

4(E)-éthoxy-1-(phénylméthoxycarbonyl)-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXXII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 99 %).

10 $[\alpha]^{25}_D = -41,9^\circ$ ($c = 0,52$; CH₃OH)

PREPARATION LXXIII

4(R)-éthoxy-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-pyrrolidine-carboxamide

15 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXXII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 64 %).

$[\alpha]^{25}_D = -31,7^\circ$ ($c = 0,35$; CH₃OH)

PREPARATION LXXIV

4(R)-éthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXIII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 97 %).

$[\alpha]^{25}_D = -44,2^\circ$ ($c = 0,29$; CH₃OH)

PREPARATION LXXV

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-éthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXIV, on obtient le produit attendu sous forme d'un solide beige (Rendement = 89 %).

30 F = 122°C

$[\alpha]^{25}_D = -5,1^\circ$ ($c = 0,25$; CH₃OH)

Exemple 188

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-

35 **phényl]sulfonyl]-4(R)-éthoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide**

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 34 %).

F = 80°C

5 [α]²⁵D = + 19,2° (c = 0,22; CH₃OH)

Exemple 189

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-éthoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide, méthanesulfonate

10 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 188, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 92 %).

F = 138°C

[α]²⁵D = + 21,9° (c = 0,30; CH₃OH)

15 **PRÉPARATION LXXVI**

4(E)-propoxy-1-(phénylethoxycarbonyl)-L-proline, propyl ester

En opérant de façon analogue à la préparation LXXII, au départ d'iodopropane, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 35 %).

20 [α]²⁵D = - 52,4° (c = 0,56; CH₃OH)

PRÉPARATION LXXVII

4(E)-propoxy-1-(phénylethoxycarbonyl)-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXXVI, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 99 %).

25 [α]²⁵D = - 38,3° (c = 0,29 ; CH₃OH)

PRÉPARATION LXXVIII

4(R)-propoxy-1-(phénylethoxycarbonyl)-N-méthyl-2(S)-pyrrolidine-carboxamide

30 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXXVII, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 75 %).

[α]²⁵D = - 33° (c = 0,28 ; CH₃OH)

PRÉPARATION LXXIX

35 4(R)-propoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXVIII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 90 %).

$[\alpha]^{25}_D = -45,4^\circ$ ($c = 0,37$; CH_3OH)

5 **PREPARATION LXXX**

1-[[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-4(R)-propoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXIX, on obtient le produit attendu sous forme d'un solide beige (Rendement = 93 %).

$F = 62^\circ\text{C}$

$[\alpha]^{25}_D = -6,9^\circ$ ($c = 0,27$; CH_3OH)

Exemple 190

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phénylsulfonyl]-4(R)-propoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 31 %).

$F = 84^\circ\text{C}$

$[\alpha]^{25}_D = +25,3^\circ$ ($c = 0,22$; CH_3OH)

Exemple 191

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phénylsulfonyl]-4(R)-propoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 190, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 94 %).

$F = 141^\circ\text{C}$

$[\alpha]^{25}_D = +13,7^\circ$ ($c = 0,30$; CH_3OH)

30 **PREPARATION LXXXI**

4(E)-(cyclopropylméthoxy)-1-(phénylméthoxycarbonyl)-L-proline, cyclo-propylméthyl ester

En opérant de façon analogue à la préparation LXXII, au départ de bromométhyl-cyclopropane, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 27 %).

$[\alpha]^{25}_D = -28,7^\circ$ ($c = 0,33$; CH₃OH)

PREPARATION LXXXII

4(E)-(cyclopropylméthoxy)-1-(phénylméthoxycarbonyl)-L-proline,

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXXXI, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 98 %).

$[\alpha]^{25}_D = -31,1^\circ$ ($c = 0,25$; CH₃OH)

PREPARATION LXXXIII

4(R)-(cyclopropylméthoxy)-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-

pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXXXII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 74 %).

$[\alpha]^{25}_D = -28,8^\circ$ ($c = 0,28$; CH₃OH)

PREPARATION LXXXIV

4(R)-(cyclopropylméthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXXIII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 82 %).

$[\alpha]^{25}_D = -34,2^\circ$ ($c = 0,24$; CH₃OH)

PREPARATION LXXXV

1-[[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-4(R)-(cyclopropyl-méthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXXIV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

F = 161°C

$[\alpha]^{25}_D = -3,9^\circ$ ($c = 0,27$; CH₃OH)

Exemple 192

30 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyloxy]méthyl]-phénylsulfonyl]-4(R)-(cyclopropylméthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide.

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXXV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 59 %).

$$-F = 98^{\circ}\text{C}$$

$$[\alpha]^{25}_D = +21,2^\circ \text{ (c = 0,23; CH}_3\text{OH)}$$

Exemple 193

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-

- 5 phénylsulfonyl]-4(R)-(cyclopropylméthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 192, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 87 %).

10 F = 149°C

$$[\alpha]^{25} \text{D} = +22,9^\circ \text{ (c = 0,29; CH}_3\text{OH)}$$

PREPARATION LXXXVI

4(R)-(1,1-diméthyléthoxy)-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 1, au départ de 4(E)-(1,1-diméthyléthoxy)-1-(phénylméthoxycarbonyl)-L-proline, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 86 %).

$$[\alpha]^{25}_D = -6,2^\circ \text{ (c = 0,43; CH}_3\text{OH)}$$

PREPARATION LXXXVII

20 4(R)-(1,1-diméthyléthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXXVI, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 99 %).

$$[\alpha]^{25}_{\text{D}} = -34,8^\circ \text{ (c = 0,68; CH}_3\text{OH)}$$

25 PREPARATION LXXXVIII

1-[(3-(bromométhyl)-2,4-dichlorophényl)sulfonyl]-4(R)-(1,1-diméthyléthoxy)-N-méthyl-2(S)-pyrrololidinecarboxamide

En opérant de façon analogue à

composé obtenu selon la préparation LXXVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 91 %).

F = 73°C

$$[\alpha]^{25}_D = -6.4^\circ \text{ (c = 0.44; CH}_3\text{OH)}$$

Exemple 194

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(1,1-diméthyléthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXXVIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 65 %).

F = 84°C

$[\alpha]^{25}_D = + 19,4^\circ$ (c = 0,26; CH₃OH)

Exemple 195

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(1,1-diméthyléthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 194, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 96 %).

F = 150°C

$[\alpha]^{25}_D = + 21,6^\circ$ (c = 0,26; CH₃OH)

PRÉPARATION LXXXIX

20 1-[(1,1-diméthyléthoxy)carbonyl]-4(R)-(phénylméthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-[(1,1-diméthyléthoxy)carbonyl]-4(E)-(phénylméthoxy)-L-proline, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 82 %).

25 $[\alpha]^{25}_D = - 13,4^\circ$ (c = 0,14; CH₃OH)

PRÉPARATION XC

4(R)-(phénylméthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide, trifluoro-acétate

30 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation LXXXIX, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 98 %).

F = 54°C

$[\alpha]^{25}_D = - 3,1^\circ$ (c = 0,37; CH₃OH)

PREPARATION XCI

1-[[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-4(R)-(phénylethoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation XC, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 73 %).

F = 62-64°C

$[\alpha]^{25}_D = -14,2^\circ$ (c = 0,37; CH₃OH)

Exemple 196

10 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phénylsulfonyl]-4(R)-(phénylethoxy)-N-méthyl-2(S)-pyrrolidine-carboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 29 %).

F = 100°C

$[\alpha]^{25}_D = +6,1^\circ$ (c = 0,29; CH₃OH)

Exemple 197

20 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phénylsulfonyl]-4(R)-(phénylethoxy)-N-méthyl-2(S)-pyrrolidine-carboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 196, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

25 F = 140-142°C

$[\alpha]^{25}_D = +20,1^\circ$ (c = 0,32; CH₃OH)

PREPARATION XCII

2,5-dihydro-1-[(1,1-diméthyléthoxy)carbonyl]-N-méthyl-1H-pyrrole-2-(S)-carboxamide

30 En opérant de façon analogue à l'exemple 1, au départ d'acide 2,5-dihydro-1-[(1,1-diméthyléthoxy)carbonyl]-1H-pyrrole-2(S)-carboxylique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 77 %).

F = 47-48°C

$[\alpha]^{19}_D = -166^\circ$ (c = 0,4 ; CH₃OH)

R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,
R₄ représente un groupe alkyle en C₁-C₃, un groupe -(CH₂)_n-CH₂-NR₅R₆, un groupe pyridinylméthyle, ou un groupe

5

R₅ représente un groupe (CH₂)_m-CH₂OH, un groupe pyridinylméthyle ou un groupe 4-(aminoiminométhyl)benzoyle,

10 R₆ représente un groupe méthyle ou forme avec R₅ et l'azote auquel ils sont liés, un hétérocycle saturé à 5 ou 6 sommets.

4. Composé de formule I selon l'une des revendications 1 ou 2, caractérisé en ce que Het2 représente un groupe 2(S)-pyrrolidinecarboxamide de formule

15 dans lequel R₅ représente un groupe pyridinyle ou un groupe pyridinylméthyle

5. Procédé de préparation d'un composé de formule I, caractérisé en ce qu'il comprend les étapes consistant à :

(1) faire réagir un dérivé de la 8-hydroxyquinoléine de formule II :

20

dans laquelle :

Het₁ représente un hétérocycle azoté à cinq sommets comprenant au total 1, 2, 3 ou 4 atomes d'azote et M représente un métal alcalin, notamment le sodium ou le potassium,
avec un composé de formule III :

5

dans laquelle :

X représente un atome d'halogène, de préférence un atome de brome, et
10 R₁ représente un atome d'hydrogène, un groupe OH, un groupe alcoxy ou un groupe phénoxy,

dans un solvant anhydre, à une température comprise entre 0 et 50°C, pendant 0,5 à 10 heures, pour obtenir un composé de formule IV :

15

dans laquelle :

Het₁ et R₁ conservent la même signification que précédemment ;
(2) hydrolyser la fonction ester du composé de formule IV, ainsi obtenu, pour obtenir un composé de formule V :

20

dans laquelle :

Het1 et R₁ conservent la même signification que ci-dessus ;

- 5 (3) faire réagir le composé de formule V, ainsi obtenu, avec une amine de formule :

dans laquelle :

R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,

10 R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃,

$-(\text{CH}_2)_n-\text{CH}_2\text{OH}$, $-(\text{CH}_2)_n-\text{COOR}_{11}$, $-(\text{CH}_2)_n-\text{CH}_2-\text{NR}_5\text{R}_6$,

R₅ représente un groupe alkyle en C₁-C₃, $-(\text{CH}_2)_m-\text{CH}_2\text{OH}$,

15 $-(\text{CH}_2)_m-\text{COOR}_{11}$, $-(\text{CH}_2)_m-\text{CH}_2-\text{O}-(\text{CH}_2)_m-\text{CH}_2\text{OH}$, ou un groupe amino-protecteur (R₅ et R₆ n'étant pas simultanément des groupes amino-protecteurs),

R₆ représente un groupe alkyle en C₁-C₃ ou un groupe aminoprotecteur,

20 R₁₁ représente un groupe protecteur de la fonction acide facilement hydrolysable,

n = 1, 2, 3 ou 4,

m = 1, 2 ou 3,

dans un solvant, en présence d'activateurs, à une température voisine de la température ambiante (0-40°C, de préférence 10-35°C), pendant 2 à 50 heures,

25 pour obtenir un composé de formule :

dans laquelle :

- 5 Het1, R₁, R₃, R₄ conservent la même signification que précédemment ; et,
 (4) si nécessaire, faire réagir le composé de formule VII, ainsi obtenu, pour remplacer chaque groupe amino- ou acidoprotecteur par un atome d'hydrogène, de façon à obtenir le composé de formule I :

10

dans laquelle :

Het1, R₁, R₃ et R₄ conservent la même signification que ci-dessus, à l'exception des groupes protecteurs remplacés par des atomes d'hydrogène ;

puis,

(5) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel d'addition d'acide correspondant.

6. Procédé de préparation d'un composé de formule I selon la 5 revendication 1, caractérisé en ce qu'il comprend les étapes consistant à :

(1) faire réagir un composé de formule I tel qu'obtenu à l'étape (4) du procédé selon la revendication 5 ci-dessus,

10 dans laquelle :

Het1 représente un groupe 1-imidazolyle, un groupe 1-pyrazolyle ou un groupe 1-(1,2,4-triazolyle),

R₃ représente H, ou un groupe alkyle en C₁-C₃,

15 R₄ représente un groupe porteur d'une fonction amine primaire ou secondaire choisi parmi : -(CH₂)_n-CH₂-NHR₆ ou

où R₆ représente H ou un groupe alkyle et n représente 1, 2, 3 ou 4,

avec un composé halogéné de formule :

20 Y-(CH₂)_m-CH₂OR₁₃,

Y-(CH₂)_m-COOR₁₁, ou

Y-(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OR₁₃,

où

Y est un halogène, préférentiellement Br ou I,

m représente 1, 2, ou 3,

R₁₁ est un groupe acidoprotecteur, notamment *t*-butyle, et

R₁₃ est un groupe protecteur de la fonction alcool, notamment le groupe acétyle,

- 5 dans un solvant, en présence d'un agent alcalin, à température voisine de la température ambiante, pendant 5 à 20 heures, pour obtenir le composé de formule VII :

dans laquelle :

- 10 R₃ représente H ou un groupe alkyle en C₁-C₃,

R₄ représente un groupe -(CH₂)_n-CH₂-NR₅R₆ ou

R₅ représente un groupe :

- 15 -(CH₂)_m-CH₂OR₁₃,

-(CH₂)_m-COOR₁₁, ou

-(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OR₁₃,

Het1, R₆, R₁₁ et R₁₃ conservant la même signification que ci-dessus ;

- (2) effectuer une réaction de déprotection de chaque fonction alcool ou acide

20 afin de remplacer R₁₃ et R₁₁ par un atome d'hydrogène, et ainsi obtenir les composés de formule I correspondants ; et,

- (3) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide minéral ou organique pour obtenir le sel correspondant.

7. Procédé de préparation d'un composé de formule I selon la revendication 1, caractérisé en ce qu'il comprend les étapes consistant à:

(1) faire réagir le chlorure d'acide de formule VIII :

5 dans laquelle :

X représente un halogène, préférentiellement le brome, avec un dérivé hétérocyclique répondant à la formule :

où :

R₁ représente H, OH, alcoxy, phénoxy, phénylethoxy, CH₂OH, cycloalkyloxy en C₃-C₈ ou cycloalkylalcoxy où le fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄, R₂ représente un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NR₅R₁₂, -CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOR₁₁ ou

15

$n = 1, 2, 3$ ou 4 ,

R_5 représente H ou un groupe alkyle,

R_{11} représente un groupe acidoprotecteur, et

20 R₁₂ représente un groupe aminoprotecteur,

dans un solvant, en présence d'une base, à une température proche de la température ambiante, pendant 10 à 30 heures, pour obtenir un composé de formule IX :

25

dans laquelle :

Het2 représente un groupe

5

et X, R₁, R₂, R₁₁, R₁₂ et n conservent la même signification que ci-dessus ;

- (2) faire réagir le composé de formule IX, ainsi obtenu, avec un dérivé de la 8-hydroxyquinoléine de formule II :

10 dans laquelle :

Het1 représente un hétérocycle azoté à cinq sommets comprenant 1, 2, 3 ou 4 atomes d'azote et M représente un métal alcalin,

dans un solvant anhydre, à une température comprise entre 0 et 50°C, pendant 0,5 à 10 heures, pour obtenir un composé de formule X :

15

dans laquelle :

Het1 et Het2 conservent la même signification que ci-dessus ;
(3) si nécessaire, effectuer une réaction de déprotection pour remplacer R₁₁ et R₁₂ par un atome d'hydrogène, afin d'obtenir un composé de formule I :

5

dans laquelle :

Il est conservé la même signification que ci-dessus, et

Het² représente un groupe

10

R₁ a la même signification que ci-dessus,
 R₂ représente un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NHR₅,
 -CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOH ou

15

$n = 1, 2, 3$ ou 4 , et

R représente H ou un groupe alkyle ; et,

(4) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel correspondant.

30

8. Composition thérapeutique caractérisée en ce qu'elle renferme, en association avec un excipient physiologiquement acceptable, au moins un

composé choisi parmi l'ensemble constitué par les composés de formule 1 et leurs sels d'addition non toxiques selon la revendication 1.

9. Utilisation d'une substance antagoniste d'un récepteur de la bradykinine et des hormones analogues, ladite utilisation étant caractérisée en ce que l'on fait appel à une substance antagoniste du récepteur B₂ de la bradykinine et choisie parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non toxiques selon la revendication 1, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique vis-à-vis d'états pathologiques impliquant la bradykinine ou ses homologues.

10. Utilisation suivant la revendication 9, caractérisée en ce que ledit médicament est destiné à une utilisation en thérapeutique pour le traitement d'états douloureux.

11. Utilisation suivant la revendication 9, caractérisée en ce que ledit médicament est destiné à une utilisation en thérapeutique pour le traitement d'états inflammatoires.

12. Utilisation suivant la revendication 9, caractérisée en ce que ledit médicament est destiné à une utilisation en thérapeutique vis-à-vis des traumatismes causés par un choc sévère.

PREPARATION XCIII**2,5-dihydro-N-méthyl-1*H*-pyrrole-2-(S)-carboxamide, trifluoroacétate**

En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XCII, on obtient le produit attendu sous forme d'une huile (Rendement = 98 %).

5 [α]¹⁹_D = - 67° (c = 0,50 ; CH₃OH)

PREPARATION XCIV**1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2,5-dihydro-N-méthyl-1*H*-pyrrole-2(S)-carboxamide**

10 En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation XCIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

F = 66°C

[α]²⁵_D = - 111° (c = 0,43; CH₃OH)

Exemple 198**1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2,5-dihydro-N-méthyl-1*H*-pyrrole-2(S)-carboxamide**

15 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCIV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 54 %).

F = 132°C

[α]²⁵_D = - 92° (c = 0,33; CH₃OH)

Exemple 199**1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2,5-dihydro-N-méthyl-1*H*-pyrrole-2(S)-carboxamide, méthanesulfonate**

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 198, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 99 %).

30 F = 139°C

[α]²⁵_D = - 76° (c = 0,44; CH₃OH)

PREPARATION XCV**Acide 1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-azetidinecarboxylique, méthyl ester**

En opérant de façon analogue à la préparation VII, au départ du 2(S)-azetidinecarboxylate de méthyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 33 %).

F = 150°C

5 [α]²⁸D = + 6° (c = 0,38; CH₃OH)

PRÉPARATION XCVI

Acide 1-[[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-azetidinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 77 %).

F = 80°C

[α]²⁸D = + 73° (c = 0,32; CH₃OH)

PRÉPARATION XCVII

Acide 1-[[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-azetidinecarboxylique

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation XCVI, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 68 %).

20 F = 160°C

[α]²⁸D = + 11,6° (c = 0,32; CH₃OH)

Exemple 200

1-[[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(S)-azetidinecarboxamide

25 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation CXVII, on obtient le produit attendu sous forme d'un solide beige (Rendement = 98 %).

F = 118°C

[α]²⁸D = - 37,8° (c = 0,33; CH₃OH)

Exemple 201

1-[[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(S)-azetidinecarboxamide, méthanesulfonate

35 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 200, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 81 %).

F = 135°C

$[\alpha]^{28}_D = -21,1^\circ$ (c = 0,35; CH₃OH)

PRÉPARATION XCVIII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(E)-phénoxy-L-proline,

5 méthyl ester

En opérant de façon analogue à l'exemple 127, au départ du chlorure de 3-(bromométhyl)-2,4-dichlorobenzènesulfonyle et de l'ester méthylique de la 4(trans)-phénoxy-L-proline, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 75 %).

10 $[\alpha]^{24}_D = -16$ (c = 0,55; CHCl₃)

PRÉPARATION IC

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényle]sulfonyl]-4(E)-phénoxy-L-proline, méthyl ester

15 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCVIII, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 75 %).

F = 88°C

$[\alpha]^{23}_D = -1,36^\circ$ (c = 0,5; CHCl₃)

PRÉPARATION C

20 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényle]sulfonyl]-4(E)-phénoxy-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation IC, on obtient le produit attendu sous forme d'un solide beige (Rendement = 77 %).

25 F = 150°C

$[\alpha]^{27}_D = +20,9^\circ$ (c = 0,58; DMSO)

Exemple 202

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényle]sulfonyl]-N-méthyl-4(R)-phénoxy-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation C, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 37 %).

F = 97°C

$[\alpha]^{27}_D = -2,9^\circ$ (c = 0,55; CH₃OH)

Exemple 203

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(R)-phénoxy-2(S)-pyrrolidinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 202, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 92 %).

F = 147°C

[α]²³_D = - 4,8° (c = 0,47 ; CH₃OH)

PREPARATION CI

4(S)-méthoxy-N-méthyl-1-[(phénylméthoxy)carbonyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 4(cis)-méthoxy-1-[(phénylméthoxy)-carbonyl]-L-proline, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 76 %).

[α]²⁷_D = - 38° (c = 0,81; CH₃OH)

PREPARATION CII

4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation Cl, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 95 %).

PREPARATION CIII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XCIII, au départ du composé obtenu selon la préparation CII, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 90 %).

F = 64°C

[α]²⁷_D = - 17° (c = 0,69; CHCl₃)

Exemple 204

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation CIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 72 %).

F = 64°C

[α]²³D = - 22,7° (c = 0,51; CHCl₃)

Exemple 205

1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-5-phénylsulfonyl]-4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 204, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 90 %).

10 F = 135°C

[α]²⁷D = - 5,3° (c = 0,4; CH₃OH)

Exemple 206

1-[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-4(R)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 186, au départ de 8-hydroxy-2-méthyl-4-(1H-1,2,4-triazol-1-yl)quinoléine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 62 %).

F = 73°C

20 [α]²⁷D = + 17,2° (c = 0,68 ; CH₃OH)

Exemple 207

1-[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phénylsulfonyl]-4(R)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 206, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 87 %).

F = 134°C

[α]²³D = + 38° (c = 0,52 ; CH₃OH)

30

L'activité des produits selon l'invention a été évaluée, selon un premier aspect, en fonction de leur aptitude à se lier aux récepteurs B₂ de la bradykinine. On sait que les kinines, dont l'un des principaux représentants est la bradykinine, forment un groupe de petits peptides qui contribuent de façon importante à la réponse inflammatoire et apparaissent de ce fait impliqués dans la

pathologie des maladies inflammatoires. On sait également que la bradykinine est un des agents algésiants parmi les plus puissants connus. Le mode d'action des kinines et plus particulièrement de la bradykinine fait intervenir un couplage des peptides aux deux types de récepteurs appelés respectivement B₁ et B₂. Le 5 récepteur B₂ appartient à la grande famille des récepteurs à sept domaines transmembranaires couplés aux G-protéines et semble plus particulièrement impliqué dans le domaine des pathologies citées précédemment. C'est la raison pour laquelle les produits de l'invention, qui ont la propriété de pouvoir se fixer sur le récepteur B₂, inhibent la fixation de la bradykinine et, par conséquence, 10 suppriment son activité néfaste. Le test mis en œuvre pour mesurer cette propriété est un test de fixation compétitive sur des membranes de cellules CHO exprimant le récepteur humain B₂ utilisant la bradykinine marquée au tritium ([³H]-bradykinine) en tant que ligand.

Les résultats sont exprimés par la valeur du Ki, telles que calculée 15 selon la méthode préconisée avec la description de l'essai mis en œuvre et décrite selon D. Pruneau et col. Dans Br. J. Pharmacol. 1998, 125 p 365-372.

Selon un second aspect du contrôle de l'activité, il était important de vérifier que les produits de l'invention possèdent bien un caractère antagoniste de la bradykinine vis à vis du récepteur B₂, c'est à dire que le composé, après fixation 20 sur le récepteur B₂, ne provoque pas les symptômes analogues à ceux provoqués par la fixation de la bradykinine sur ledit récepteur B₂. Cette caractéristique antagoniste est exprimée par la valeur pA₂, calculée d'après un essai biologique mis en œuvre pour mesurer l'inhibition de la contraction de la veine ombilicale humaine isolée, par les composés selon l'invention en présence de bradykinine. La 25 procédure du test et la méthode de calcul de pA₂ sont décrits dans les articles de D. Pruneau et col. Publié dans Br. J. Pharmacol. 1998, 125, p 365-372 et JL. Paquet et col. B. J. Pharmacol. 1999, 126 (en impression).

Les valeurs obtenues par certains composés de l'invention sont rassemblées dans le tableau I ci-après. Les valeurs trouvées pour le Ki montrent 30 des valeurs inférieures à 1 nM, témoignant d'une excellente affinité des composés pour le récepteur B₂ de la bradykinine. Les valeurs trouvées pour pA₂ sont représentatives du caractère antagoniste des composés vis à vis du récepteur B₂ de la bradykinine.

Les composés de la présente invention, en raison de leur propriété 35 antagoniste de la bradykinine vis à vis de son récepteur B₂, sont utiles dans le

traitement des algies, et dans le traitement de nombreuses pathologies impliquant la bradykinine ou ses homologues. Parmi ces pathologies, on inclut les chocs septiques et hémorragiques, les réactions anaphylactiques, l'arthrose, la polyarthrite rhumatoïde, les rhinites, l'asthme, les maladies inflammatoires du tractus gastro-intestinal (par ex. colites, rectites, maladie de Crohn), la pancréatite, certains carcinomes, l'angiooedème héréditaire, la migraine, l'encéphalomyélite, la méningite, les accidents vasculaires cérébraux (notamment ceux provoqués par un choc traumatique cérébral), certains désordres neurologiques, les états inflammatoires vasculaires (par exemple : athérosclérose et artérite des membres inférieurs), les états douloureux (par exemple les céphalalgies, les douleurs dentaires, les douleurs menstruelles), les contractions utérines prématurées, la cystite et les brûlures. Les composés selon l'invention peuvent également être utiles pour la potentialisation d'agents antiviraux.

Les composés de la présente invention, qui peuvent être utilisés sous forme de base libre ou de leurs sels d'addition non toxiques, en association avec un excipient physiologiquement acceptable, sont en général prescrits en thérapeutique humaine à des doses d'environ 1 à 1000 mg/jour, sous une forme administrable par voie orale, par injection intraveineuse, intramusculaire ou sous-cutanée, par voie transdermique, par le moyen d'aérosols ou par le moyen de suppositoires. Ces composés sont également administrables par voie topique, notamment sous forme de gel ou de pommade.

Les composés de la présente invention trouvent également leur utilité dans le domaine de la cosmétique pour traiter des pathologies de la peau ou du cuir chevelu.

TABLEAU I

Exemples	Activité biologique	
	Ki (nM)	pA2
4	0,24	10
10	1,0	8,5
12	0,47	8,7
23	0,45	9,1
30	0,73	8,7
32	1,4	9,1
42	77	8,3
48	32	8,5
50	30	8,3
61	21	8,1
64 bis	0,034	9,3
73	10	8,4
75	2,8	8,3
77	6,1	8,6
83	14	7,9
87	15	8,2
89	55	8,0
101	50	8,4
103	21	7,9
105	7,7	8,3
109	15	8,3
115	35	8,5
123	8,1	8,4
166	5,8	8,2
170	7,8	8,0
174	8,8	8,1

REVENDICATIONS

1. Composé hétérocyclique de benzènesulfonamide, caractérisé en ce
qu'il est choisi parmi l'ensemble constitué par :
5 (i) les composés de formule I :

dans laquelle :

Het1 représente un hétérocycle azoté à 5 sommets, notamment l'imidazole, le pyrazole ou le triazole,

- Het2 représente un hétérocycle azoté à 4, 5 ou 6 sommets de structure :

dans lesquels

R_1 représente un atome d'hydrogène ou un groupe hydroxy, alcoxy en C₁-C₄, phénoxy, phényleméthoxy, -CH₂OH, cycloalkyloxy, cycloalkylalcoxy (où chaque fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄),

- 15 chaque fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄),
-NH-CO-CH₃, -CO-NH₂ ou -CO-NH-CH₃,
R₂ représente un atome d'hydrogène ou un groupe -CH₂OH, -CH₂-O-CH₃,
-CONR₃R₄,

5 R₃ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, un groupe cycloalkyle en C₃-C₈, un groupe cycloalkyl (en C₃-C₈)-alkyle (en C₁-C₃), un groupe phényle, ou un groupe phénylméthyle,

R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, -(CH₂)_n-CH₂OH, -(CH₂)_n-COOH, -(CH₂)_n-CH₂-NR₅R₆,

10

R₅ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, phényle, phénylméthyle, pyridinyle, pyridinylméthyle, pyridinyléthyle, benzoyle, 4-(aminoiminométhyl)benzoyle, -(CH₂)_m-CH₂OH, -(CH₂)_m-COOH, -(CH₂)_mCH₂-O-(CH₂)_m-CH₂OH, -CO-(CH₂)_m-COOH, ou

15

20 R₆ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃, ou, R₅ et R₆ considérés ensemble forment, avec l'atome d'azote auquel ils sont attachés, un N-hétérocycle de 5 à 6 sommets,

n = 1, 2, 3 ou 4,

m = 1, 2 ou 3 ; et,

(ii) leurs sels d'addition.

2. Composé de formule I selon la revendication 1, caractérisé en ce que

25 Het1 représente un groupe 1-(1*H*)-imidazolyde.

3. Composé de formule I selon l'une des revendications 1 ou 2, caractérisé en ce que Het2 représente un groupe 2(S)-pyrrolidinecarboxamide

INTERNATIONAL SEARCH REPORT

Inte... onal Application No

PCT/FR 00/00396

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D401/14 C07D401/12 A61K31/47

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 41104 A (FUJISAWA PHARMACEUTICAL CO., LTD.) 6 November 1997 (1997-11-06) cited in the application page 26, line 8 - line 11; claim 9; examples 1,9,10 ---	1,8,9
A	FR 2 743 073 A (FOURNIER INDUSTRIE ET SANTÉ) 4 July 1997 (1997-07-04) claims ---	1,8,9
A	FR 2 756 562 A (FOURNIER INDUSTRIE ET SANTE S.A.) 5 June 1998 (1998-06-05) claims ---	1,8,9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"8" document member of the same patent family

Date of the actual completion of the international search

15 June 2000

Date of mailing of the international search report

29/06/2000

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentiaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Van Bijlen, H

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Search Application No

PCT/FR 00/00396

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9741104	A 06-11-1997	AU 2405497	A 19-11-1997		
		EP 0900203	A 10-03-1999		
FR 2743073	A 04-07-1997	AU 1198897	A 28-07-1997		
		EP 0874841	A 04-11-1998		
		WO 9724349	A 10-07-1997		
FR 2756562	A 05-06-1998	AU 5125798	A 29-06-1998		
		EP 0944618	A 29-09-1999		
		WO 9824783	A 11-06-1998		
		PL 334088	A 31-01-2000		
		US 6063791	A 16-05-2000		

RAPPORT DE RECHERCHE INTERNATIONALE

Date de dépôt international No.

PCT/FR 00/00396

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C07D401/14 C07D401/12 A61K31/47

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTÉ

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 C07D A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

CHEM ABS Data

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	WO 97 41104 A (FUJISAWA PHARMACEUTICAL CO., LTD.) 6 novembre 1997 (1997-11-06) cité dans la demande page 26, ligne 8 - ligne 11; revendication 9; exemples 1,9,10 ---	1,8,9
A	FR 2 743 073 A (FOURNIER INDUSTRIE ET SANTÉ) 4 juillet 1997 (1997-07-04) revendications ---	1,8,9
A	FR 2 756 562 A (FOURNIER INDUSTRIE ET SANTE S.A.) 5 juin 1998 (1998-06-05) revendications ---	1,8,9

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document extérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison particulière (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

15 juin 2000

Date d'expédition du présent rapport de recherche internationale

29/06/2000

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Van Bijlen, H

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Document brevet cité
au rapport de recherche

Date de publication

Membre(s) de la
famille de brevet(s)

Date de publication

PCT/FR 00/00396

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
WO 9741104 A	06-11-1997	AU 2405497 A	EP 0900203 A	WO 9741104 A	19-11-1997 10-03-1999
FR 2743073 A	04-07-1997	AU 1198897 A	EP 0874841 A	WO 9724349 A	28-07-1997 04-11-1998 10-07-1997
FR 2756562 A	05-06-1998	AU 5125798 A	EP 0944618 A	WO 9824783 A	29-06-1998 29-09-1999 11-06-1998
		PL 334088 A	US 6063791 A		31-01-2000 16-05-2000

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

VERSION CORRIGÉE

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
31 août 2000 (31.08.2000)

PCT

(10) Numéro de publication internationale
WO 00/50418 A1

(51) Classification internationale des brevets⁷:
C07D 401/14, 401/12, A61K 31/47

(71) Déposant (*pour tous les États désignés sauf US*):
FOURNIER INDUSTRIE ET SANTE [FR/FR]; 38,
avenue Hoche, F-75008 Paris (FR).

(21) Numéro de la demande internationale:
PCT/FR00/00396

(72) Inventeurs; et

(22) Date de dépôt international: 17 février 2000 (17.02.2000)

(75) Inventeurs/Déposants (*pour US seulement*): DODEY,
Pierre [FR/FR]; 10, rue des Champs d'Aloux, F-21121
Fontaine-lès-Dijon (FR). BARTH, Martine [FR/FR];
12, rue Jean Brice de Barry, F-21000 Dijon (FR). BON-
DOUX, Michel [FR/FR]; 7, allée des Montereys, F-21121
Fontaine-lès-Dijon (FR).

(25) Langue de dépôt: français

(26) Langue de publication: français

(30) Données relatives à la priorité:
99/02412 26 février 1999 (26.02.1999) FR

[Suite sur la page suivante]

(54) Title: HETEROCYCLIC BENZENESULPHONAMIDE COMPOUNDS AS BRADYKININE ANTAGONISTS

(54) Titre: COMPOSÉS HETEROCYCLIQUES DE BENZENESULFONAMIDE EN TANT QU'ANTAGONISTES DE LA BRA-
DYKININE

(57) Abstract: The invention concerns compounds selected among the group consisting of (i) compounds of formula (I) wherein: Het1 represents a nitrogenous heterocycle with 5 apices, in particular imidazole, pyrazole, or triazole; Het2 represents a nitrogenous heterocycle with 4, 5 or 6 apices, selected among the heterocycles: (II) wherein R₁ and R₂ are defined as mentioned in the description; and (ii) their additive salts. The invention also concerns the method for preparing said compounds and their use in therapy, in particular for treating pathologies involving bradykinine.

(57) Abrégé: La présente invention concerne des composés choisis parmi l'ensemble constitué par (i) les composés de formule (I), dans laquelle Het1 représente un hétérocycle azoté à 5 sommets, notamment l'imidazole, le pyrazole, ou le triazole, Het2 représente un hétérocycle azoté à 4, 5 ou 6 sommets, choisi parmi les hétérocycles (II) dans lesquels R₁ et R₂ sont définis comme indiqué dans la description, et (ii) leurs sels d'addition. Elle concerne également leur procédé de préparation et leur utilisation en thérapeutique, notamment vis-à-vis des pathologies mettant en cause la bradykinine.

(II)

WO 00/50418 A1

(74) **Mandataire:** CLISCI, Serge; S.A. Fedit-Loriot & Autres, Conseil en Propriété Industrielle, 38, avenue Hoche, F-75008 Paris (FR).

NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(81) **États désignés (national):** AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Publiée:

— *Avec rapport de recherche internationale.*

(48) **Date de publication de la présente version corrigée:**
22 février 2001

(15) **Renseignements relatifs à la correction:**
voir la Gazette du PCT n° 08/2001 du 22 février 2001, Section II

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(84) **États désignés (régional):** brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,

COMPOSÉS HETEROCYCLIQUES DE BENZENESULFONAMIDE EN TANT QU'ANTAGONISTES DE LA BRADYKININE

5

Domaine de l'invention

La présente invention concerne de nouveaux composés de benzène-sulfonamide, leur procédé de préparation et leur utilisation en thérapeutique.

Ces nouveaux composés présentent une action antagoniste vis-à-vis de la bradykinine et sont utiles en thérapeutique, particulièrement pour le traitement de la douleur et de l'inflammation, et notamment dans le traitement de l'asthme, du choc traumatique cérébral et des rhinites allergiques.

Art antérieur

On sait que l'une des possibilités de traitement de certaines pathologies à caractère douloureux et/ou inflammatoire (telles que l'asthme, la rhinite, le choc septique, la douleur dentaire, etc.) est d'inhiber l'action de certaines hormones telles que la bradykinine ou la kallidine. En effet ces hormones peptidiques sont impliquées dans un grand nombre de processus physiologiques dont certains sont liés de façon étroite à ces pathologies.

Bien qu'actuellement aucun produit possédant ce mode d'action ne soit encore commercialisé, de nombreuses études ont été entreprises pour comprendre le mode d'action des kinines et en particulier de la bradykinine et de ses homologues, puis pour créer des composés susceptibles d'être antagonistes des récepteurs de la bradykinine. Parmi les nombreuses publications relatant ces travaux, on peut citer Pharmacological Reviews Vol. 44 n° 1, pages 1-80 (1992) et Biopolymers (Peptide Science) vol. 37 pages 143-155 (1995).

La bradykinine est une hormone peptidique constituée de 9 amino-acides (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) et la kallidine est une hormone peptidique (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) qui comporte un amino-acide supplémentaire (Lys) par rapport à la bradykinine. On sait que des études antérieures ont permis d'obtenir des peptides qui interagissent avec les récepteurs de la bradykinine : certains comme le Bradycor (CP.0127 de la société Cortech), l'Icatibant (HOE 140 de la société Hoechst) ["Bradycor" et "Icatibant" sont des dénominations communes internationales (DCI)] ou encore le NPC 17761 (de la société Scios-Nova) présentent une action inhibitrice de la fixation de la

bradykinine sur son récepteur B₂. Des publications récentes font état d'autres peptides susceptibles d'avoir une action antagoniste de la bradykinine vis-à-vis de son récepteur B₂ ; parmi celles-ci on peut citer par exemple WO-A-97/09347, WO-A-97/09346, US-A-5610140, US-A-5620958, US-A-5610142 et US-A-5597803. Par ailleurs, des composés non peptidiques ont été proposés comme antagonistes vis-à-vis de la fixation de la bradykinine sur son récepteur B₂, notamment dans EP-A-0596406, EP-A-0622361, US-A-5578601, US-A-5510380, FR-A-2735128, JP-A-09/040662, FR-A-2737892, WO-A-97/11069, WO-A-97/41104, WO-A-96/13485 et FR-A-2765222. On sait en outre que certains composés de structure plus ou moins apparentée à celles des composés visés dans la présente demande ont déjà été décrits, notamment dans DE-A-3617183 et EP-A-0261539, eu égard à leurs éventuelles propriétés antithrombotiques.

But de l'invention

Il existe un besoin d'atténuer ou de supprimer chez les mammifères et surtout chez l'homme les douleurs et les inflammations.

Pour satisfaire ce besoin, on a recherché une nouvelle solution technique qui soit efficace dans le traitement des algies quelle que soit leur origine, notamment dans le traitement des algies liées à des phénomènes inflammatoires ou à des traumatismes.

Selon l'invention, on se propose de fournir une nouvelle solution technique, qui met en œuvre, au niveau du récepteur B₂ de la bradykinine, une fixation compétitive entre (i) la bradykinine et les hormones apparentées ou analogues, et (ii) une substance antagoniste, et qui fait appel à des composés de type benzènesulfonamide, structurellement différents des produits connus précédents, et capables de limiter ou d'inhiber substantiellement la fixation de la bradykinine et des hormones analogues sur ledit récepteur B₂ de la bradykinine.

Suivant cette solution technique, les nouveaux composés se fixent de façon compétitive sur le récepteur B₂ de la bradykinine sans provoquer les effets de la bradykinine sur ce récepteur (ces nouveaux composés sont des substances dites antagonistes). Il s'en suit l'apparition d'un état analogue à celui observé en l'absence de bradykinine, à savoir une diminution de la douleur, des réactions inflammatoires et des autres effets néfastes provoqués par les récepteurs activés par la bradykinine.

Conformément à cette nouvelle solution technique on se propose de fournir, selon un premier aspect de l'invention, des composés dérivés de benzènesulfonamide en tant que produits industriels nouveaux ; selon un second aspect de l'invention, un procédé de préparation de ces composés ; et selon un troisième aspect de l'invention, une utilisation de ces composés notamment en thérapeutique en tant que principes actifs de spécialités ou compositions médicamenteuses.

Objet de l'invention

Selon la nouvelle solution technique de l'invention, on préconise, en tant que produit industriel nouveau, un composé de benzènesulfonamide qui est caractérisé en ce qu'il est choisi parmi l'ensemble constitué par :

(i) les composés de formule I :

dans laquelle :

Het1 représente un hétérocycle azoté à 5 sommets, notamment l'imidazole, le pyrazole ou le triazole,

Het2 représente un hétérocycle azoté à 4, 5 ou 6 sommets de structure :

dans lesquels

R₁ représente un atome d'hydrogène ou un groupe hydroxy, alcoxy en C₁-C₄, phénoxy, phényleméthoxy, -CH₂OH, cycloalkyloxy, cycloalkylalcoxy (où chaque fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄), -NH-CO-CH₃, -CO-NH₂ ou -CO-NH-CH₃,

R₂ représente un atome d'hydrogène ou un groupe -CH₂OH, -CH₂-O-CH₃, -CONR₃R₄,

10

R₃ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, un groupe cycloalkyle en C₃-C₈, un groupe cycloalkyl (en C₃-C₈)-alkyle (en C₁-C₃), un groupe phényle, ou un groupe phénylméthyle,

R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, -(CH₂)_n-CH₂OH, -(CH₂)_n-COOH, -(CH₂)_n-CH₂-NR₅R₆.

20 R_5 représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, phényle, phénylméthyle, pyridinyle, pyridinylméthyle, pyridinyléthyle, benzoyle, 4-(aminoiminométhyl)benzoyle, -(CH₂)_m-CH₂OH, -(CH₂)_m-COOH, -(CH₂)_mCH₂-O-(CH₂)_m-CH₂OH, -CO-(CH₂)_m-COOH, ou

25

R_6 représente un atome d'hydrogène ou un groupe alkyle en C_1-C_3 ,
 ou, R_5 et R_6 considérés ensemble forment, avec l'atome d'azote auquel ils
 sont attachés, un N-hétérocycle de 5 à 6 sommets,

$n = 1, 2, 3$ ou 4 ,

30 m = 1, 2 ou 3 : et

(ii) leurs sels d'addition.

Selon l'invention, on préconise aussi un procédé de préparation des composés de formule I et de leurs sels d'addition.

On préconise également l'utilisation d'une substance antagoniste du récepteur B₂ de la bradykinine, choisie parmi les composés de formule I de la présente invention et leurs sels d'addition non toxiques, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique humaine ou animale, vis-à-vis de pathologies impliquant la bradykinine ou ses homologues, en particulier vis-à-vis des algies, notamment dans le traitement ou la prévention de pathologies liées à des états inflammatoires ou douloureux, et vis-à-vis des chocs traumatiques sévères, en particulier les chocs traumatiques cérébraux.

Description détaillée de l'invention

Dans la formule générale I des composés de l'invention, on entend par groupe alkyle en C₁-C₃ un groupe méthyle, éthyle, propyle ou 1-méthyléthyle.

Par groupe alcoxy en C₁-C₄, on entend préférentiellement ici les groupes méthoxy, éthoxy, propoxy, butoxy, 1-méthyléthoxy, et 1,1-diméthyléthoxy. Par groupe cycloalkyle en C₃-C₈, on comprend les groupes cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, et par groupes (cycloalkyl)alkyle on entend notamment les groupes cyclopropylméthyle, cyclopropyléthyle, cyclohexylméthyle et cyclohexyléthyle.

Lorsqu'un groupe tel que R₅ comprend un hétérocycle, par exemple la pyridine, et que la position de substitution n'est pas précisée, il faut comprendre que la liaison avec l'hétérocycle peut se faire par l'un quelconque des sommets substituables.

Par hétérocycle NR₅R₆ de 5 à 6 sommets, on entend un cycle pyrrolidine, pipéridine, pipérazine ou morpholine, et plus particulièrement un groupe 1-pyrrolidinyle, 1-pipéridiynyle, 1-pipérazinyle ou 1-morpholinyle.

L'hétérocycle Het1 qui a cinq sommets comprend un ou plusieurs hétéroatomes. De façon avantageuse, il comprend 1 à 4 sommets azotés. Comme représenté par la formule I ci-dessus, Het1 est lié par son sommet azoté ou l'un de ses sommets azotés à la position 4 de la quinoléine.

L'hétérocycle Het2 est lié par son sommet azoté à l'atome de soufre du groupe SO₂ pour constituer la fonction sulfonamide.

Lorsque, sur l'hétérocycle Het2, le substituant R₂ n'est pas un atome d'hydrogène, le carbone du cycle porteur du substituant R₂ peut présenter une configuration S ou R. Dans ce cas, les composés selon l'invention peuvent être de

configuration indéterminée (c'est-à-dire, un mélange des isomères R et S) ou, de préférence, l'un des isomères R ou S, ou, préférentiellement, l'isomère S. De même, le substituant R₁, lorsqu'il n'est pas l'hydrogène, introduit un centre d'asymétrie et peut se trouver dans une configuration indéterminée, ou déterminée 5 R ou S, la configuration « trans » par rapport au groupe R₂ étant préférée

Par « sels d'addition », on entend les sels d'addition d'acide, obtenus par réaction d'un composé de formule I sous sa forme non salifiée, avec un acide minéral ou un acide organique. Les acides minéraux préférés pour salifier un composé basique de formule I sont les acides chlorhydrique, bromhydrique, 10 phosphorique et sulfurique. Les acides organiques préférés pour salifier un composé basique de formule I sont les acides méthanesulfonique, benzènesulfonique, maléique, fumarique, oxalique, citrique, lactique, tartrique et trifluoroacétique.

Parmi les composés selon la présente invention, on préfère ceux dans 15 lesquels l'hétérocycle Het1 est un groupe 1-(1*H*)-imidazolyle. On préfère également les composés dans lesquels l'hétérocycle Het2 comprend un groupe 2(S)-pyrrolidinecarboxamide,

20 et plus particulièrement lorsque
R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃, et
R₄ représente un groupe alkyle en C₁-C₃, un groupe -(CH₂)_n-CH₂-NR₅R₆, un groupe pyridinylméthyle ou un groupe

25 R₅ représente un groupe alkyle en C₁-C₃, un groupe -(CH₂)_m-CH₂OH, un groupe (2-pyridinyl)méthyle ou un groupe 4-(aminoiminométhyl)benzoyle,
R₆ représente un groupe méthyle ou forme, avec R₅ et l'azote auquel ils sont liés,
30 un hétérocycle saturé à 5 ou 6 sommets.

Par "température ambiante" on entend une température de l'ordre de 15 à 25°C, et par "température voisine de la température ambiante" une température d'environ 0 à 40°C.

Un procédé général de préparation des composés de formule I, que l'on préconise selon l'invention, comprend :

selon une première variante A, les étapes consistant à :

- (1) faire réagir un dérivé de la 8-hydroxyquinoléine de formule II :

10 dans laquelle :

Het1 représente un hétérocycle azoté à cinq sommets comprenant au total 1, 2, 3 ou 4 atomes d'azote et M représente un métal alcalin, notamment le sodium ou le potassium,

avec un composé de formule III :

15

dans laquelle :

X représente un atome d'halogène, de préférence un atome de brome, et

20 R1 représente un atome d'hydrogène ou un groupe OH, un groupe alcoxy ou un groupe phénoxy,

dans un solvant anhydre comme par exemple le diméthylformamide, à une température comprise entre 0 et 50°C, pendant 0,5 à 10 heures, pour obtenir un composé de formule IV :

dans laquelle :

Het1 et R₁ conservent la même signification que précédemment ;

- (2) hydrolyser la fonction ester du composé de formule IV ainsi obtenu selon
5 l'étape (1) ci-dessus, notamment par réaction avec une solution aqueuse d'hydroxyde de sodium, dans un solvant miscible tel que par exemple du dioxane, à une température de l'ordre de 20 à 60°C et pendant 1 à 5 heures, pour obtenir après acidification un composé de formule V :

10

dans laquelle :

Het1 et R₁ conservent la même signification que ci-dessus ;

- (3) faire réagir le composé de formule V, ainsi obtenu, avec une amine de formule :

15

dans laquelle :

R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,

R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, -(CH₂)_n-CH₂OH, -(CH₂)_n-COOR₁₁, -(CH₂)_n-CH₂-NR₅R₆,

- 5 R₅ représente un groupe alkyle en C₁-C₃, -(CH₂)_m-CH₂OH,
-(CH₂)_m-COOR₁₁, -(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OH, ou un groupe aminoprotecteur tel que par exemple un groupe 1,1-diméthyléthoxycarbonyle (BOC), (R₅ et R₆ n'étant pas simultanément des groupes aminoprotecteurs),
10 R₆ représente un groupe alkyle en C₁-C₃ ou un groupe aminoprotecteur, par exemple du type BOC,
R₁₁ représente un groupe protecteur de la fonction acide facilement hydrolysable tel que par exemple le groupe *t*-butyle (ou 1,1-diméthyléthyle),
n = 1, 2, 3 ou 4,
m = 1, 2 ou 3,
15 dans un solvant approprié, notamment le dichlorométhane, en présence d'activateurs tels que notamment le 1-hydroxy-7-aza-benzotriazole (HOAT) et le chlorhydrate de 1-[3-(diméthylaminopropyl)-3-éthyl]carbodiimide (EDCI), à une température voisine de la température ambiante (0-40°C, de préférence 10-35°C), pendant 2 à 50 heures, pour obtenir un composé de formule :

20

dans laquelle :

Het1, R₁, R₃, R₄ conservent la même signification que précédemment ; et,

- (4) si nécessaire, faire réagir le composé de formule VII, ainsi obtenu, pour éliminer les groupes amino- ou acidoprotecteurs de façon à remplacer ces groupes par un atome d'hydrogène, par exemple par réaction dudit composé VII avec l'acide trifluoroacétique pour éliminer un groupe amino protecteur du type BOC ou pour éliminer un groupe acidoprotecteur du type *t*-butyle, de façon à obtenir le composé de formule I :
- 5

10

dans laquelle :

- Het1, R₁, R₃ et R₄ conservent la même signification que ci-dessus, à l'exception des groupes protecteurs remplacés par des atomes d'hydrogène; puis,
- 15 (5) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel d'addition d'acide correspondant ; selon une seconde variante B consistant à :
- (1) faire réagir un composé de formule I tel qu'obtenu à l'étape (4) de la variante A ci-dessus,

dans laquelle :

Het1 représente un groupe 1-imidazolyle, un groupe 1-pyrazolyle ou un groupe 1-(1,2,4-triazolyle),

5 R₃ représente H, ou un groupe alkyle en C₁-C₃,

R₄ représente un groupe porteur d'une fonction amine primaire ou secondaire choisi parmi : -(CH₂)_n-CH₂-NHR₆ ou

10 où R₆ représente H ou un groupe alkyle et n représente 1, 2, 3 ou 4,
avec un composé halogéné de formule : Y-(CH₂)_m-CH₂OR₁₃,
Y-(CH₂)_m-COOR₁₁, ou Y-(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OR₁₃,

où

Y est un halogène, préférentiellement Br ou I,

15 m représente 1, 2, ou 3

R₁₁ est un groupe acidoprotecteur, tel que par exemple *t*-butyle, et

R₁₃ est un groupe protecteur de la fonction alcool, notamment le groupe acétyle,

20 dans un solvant tel que par exemple le diméthylformamide ou l'acetonitrile, en présence d'un agent à caractère alcalin comme par exemple le carbonate de potassium, à température voisine de la température ambiante et pendant 5 à 20 heures, pour obtenir le composé de formule VII :

dans laquelle :

R_3 représente H ou un groupe alkyle en C_1-C_3 ,

R_4 représente un groupe $-(CH_2)_n-CH_2-NR_5R_6$ ou

5

R_5 représente un groupe : $-(CH_2)_m-CH_2OR_{13}$, $-(CH_2)_m-COOR_{11}$, ou $-(CH_2)_m-CH_2-O-(CH_2)_m-CH_2OR_{13}$,

Het1, R_6 , R_{11} et R_{13} conservant la même signification que ci-dessus ;

- 10 (2) effectuer une réaction de déprotection de chaque groupe alcool ou acide afin de remplacer les groupes R_{13} et R_{11} par un atome d'hydrogène, et ainsi obtenir les composés de formule I correspondants ;
- (3) si nécessaire, faire réagir le composé de formule I ainsi obtenu avec un acide minéral ou organique pour obtenir le sel correspondant ;
- 15 selon une troisième variante C, les étapes consistant à :
 - (1) faire réagir le chlorure d'acide de formule VIII :

dans laquelle :

- 20 X représente un halogène, préférentiellement le brome, avec un dérivé hétérocyclique répondant à la formule :

ou :

R₁ représente H, OH, alcoxy, phénoxy, phénylméthoxy, CH₂OH, cycloalkyloxy en C₃-C₈ ou cycloalkylalcoxy où le fragment cycloalkyle est en C₃-C₈ et le fragment alcooxy en C₁-C₄.

R₂ représente H, ou un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NR₅R₁₂, -CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOR₁₁ ou

10 n = 1, 2, 3 ou 4,

R_5 représente H ou un groupe alkyle,

R_{II} représente un groupe acidoprotecteur, et

R_{12} représente un groupe aminoprotecteur,

15 dans un solvant comme par exemple l'acétonitrile, en présence d'une base comme par exemple le carbonate de potassium ou la triéthylamine, à une température proche de la température ambiante, pendant 10 à 30 heures, pour obtenir un composé de formule IX :

20 dans laquelle :

Het2 représente un groupe

et X , R_1 , R_2 , R_{11} , R_{12} et n conservent la même signification que ci-dessus ;

(2) faire réagir le composé de formule IX, ainsi obtenu, avec un dérivé de la 8-hydroxyquinoléine de formule II :

dans laquelle :

- Het1 représente un hétérocycle azoté à cinq sommets comprenant 1, 2, 3 ou
 5 4 atomes d'azote et M représente un métal alcalin, notamment le sodium ou
 le potassium,
 dans des conditions analogues à celles mises en œuvre à l'étape (1) de la variante
 A précédente, pour obtenir un composé de formule X :

10

dans laquelle :

- Het1 et Het2 conservent la même signification que ci-dessus ;
 (3) si nécessaire, effectuer une réaction de déprotection, par exemple par action
 15 de l'acide trifluoroacétique, pour remplacer chaque groupe protecteur R₁₁ ou R₁₂
 des fonctions acide ou amine par un atome d'hydrogène, pour obtenir un composé
 de formule I :

dans laquelle :

Het1 conserve la même signification que ci-dessus, et
Het2 représente un groupe

5

R₁ a la même signification que ci-dessus,
R₂ représente un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NHR₅,
-CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOH ou

10

n = 1, 2, 3 ou 4, et

R₅ représente H ou un groupe alkyle ; et,

(4) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel correspondant.

15

L'invention sera mieux comprise à la lecture qui va suivre (i) d'exemples de préparation et (ii) de résultats d'essais pharmacologiques réalisés avec des composés selon l'invention. Bien entendu l'ensemble de ces éléments n'est pas limitatif mais est donné à titre d'illustration.

20

Dans le cas de composés présentant dans leur structure un carbone asymétrique, l'absence d'indication particulière ou la mention (R,S) signifie qu'il s'agit de composés racémiques ; dans le cas de composés présentant une chiralité, celle-ci est indiquée à la suite immédiate de l'indexation du substituant porté par

ledit carbone asymétrique ; on utilise alors les signes (R) ou (S), conformément aux règles de Cahn, Ingold et Prelog. La nomenclature utilisée dans les exemples est celle préconisée par les Chemical Abstracts : ainsi certains dérivés de la L-proline peuvent devenir, après réaction de la fonction acide avec une amine, des dérivés de 2(S)-pyrrolidinecarboxamide.

PREPARATION I

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline, méthyl ester

On prépare une solution de 0,7 g ($3,11 \cdot 10^{-3}$ mole) de 8-hydroxy-4-[1*H*-imidazol-1-yl]-2-méthylquinoléine dans 20 ml de diméthylformamide (DMF) et on ajoute 0,11 g ($3,42 \cdot 10^{-3}$ mole) d'hydrure de sodium à 75 % dans l'huile. Après 10 minutes sous agitation à température ambiante, on ajoute 1,47 g ($3,42 \cdot 10^{-3}$ mole) de l'ester méthylique de la N-[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-L-proline. Après 15 heures sous agitation à température ambiante, le mélange réactionnel est hydrolysé sur de l'eau glacée et extrait par de l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/propanol (95/5 ; v/v). On obtient ainsi 1,07 g du produit attendu sous forme d'un solide beige (Rendement = 68 %).

F = 100°C

$[\alpha]^{27}_D = -14,4^\circ$ (c = 0,33 ; CH₃OH)

PREPARATION II

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline

On ajoute 1,6 ml ($1,6 \cdot 10^{-3}$ mole) d'une solution normale d'hydroxyde de sodium dans l'eau à une solution de 0,44 g ($0,763 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation I dans 30 ml de dioxane. Le mélange réactionnel est chauffé à doux reflux pendant 8 heures puis le solvant est chassé sous pression réduite. Le résidu est repris dans de l'eau et la solution est acidifiée doucement jusqu'à pH 4,5 à l'aide d'une solution d'acide chlorhydrique. L'acide attendu précipite. Le précipité est filtré, lavé à l'eau sur le filtre et séché à 40°C sous pression réduite. On obtient ainsi 0,36 g du produit attendu sous forme de poudre blanche (Rendement = 89 %).

F = 172°C

Exemple 1

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2-(S)-pyrrolidinecarboxamide

On prépare une solution de $0,35$ g ($0,633 \cdot 10^{-3}$ mole) d'acide obtenu selon la préparation II dans 25 ml de dichlorométhane et on ajoute $0,13$ g ($0,686 \cdot 10^{-3}$ mole) de chlorhydrate de 1-(3-diméthylaminopropyl)3-éthyl-carbodiimide (EDCI), $0,1$ g ($0,686 \cdot 10^{-3}$ mole) de 1-hydroxy-7-azabenzotriazole (HOAT), $0,138$ g ($1,37 \cdot 10^{-3}$ mole) de triéthylamine, puis $0,05$ g ($0,748 \cdot 10^{-3}$ mole) de chlorhydrate de méthylamine. Le mélange réactionnel est agité à température ambiante pendant 20 heures. On hydrolyse ensuite sur de l'eau froide et extrait avec du dichlorométhane. La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ; v/v). On obtient ainsi $0,29$ g du produit attendu sous forme d'un solide écrú (Rendement = 81 %).

F = 90°C

$[\alpha]^{27}_D = -28^{\circ}$ (c = $0,46$; CH₃OH)

Exemple 2

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2-(S)-pyrrolidinecarboxamide, tartrate

On prépare une solution de $0,28$ g ($0,487 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 1 dans 3 ml de méthanol et on ajoute $0,073$ g ($0,487 \cdot 10^{-3}$ mole) d'acide L-tartrique. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 10 minutes puis concentré sous pression réduite. Le résidu est repris en solution dans 10 ml d'eau distillée et la solution obtenue est lyophilisée. On obtient ainsi $0,34$ g du sel attendu sous forme d'un solide blanc fin et léger (Rendement = 96 %).

F = 119°C

$[\alpha]^{27}_D = -19^{\circ}$ (c = $0,45$; CH₃OH)

PRÉPARATION III

N-(3-aminopropyl)-4-cyanobenzamide, trifluoroacétate

On prépare une solution de 51 g ($0,168$ mole) d'acide [3-[(4-cyano-benzoyl)amino]propyl]carbamique, 1,1-diméthyléthylester dans 300 ml de dichlorométhane et on ajoute, à 0°C , 25 ml d'acide trifluoroacétique sous agitation. Le milieu réactionnel est ramené à température ambiante et maintenu

4 heures sous agitation. Le mélange est concentré sous pression réduite et le résidu est repris dans de l'éther éthylique. Le produit attendu cristallise. On le filtre, lave avec un peu d'éther éthylique sur le filtre et sèche sous pression réduite. On obtient ainsi 52 g du produit sous forme de cristaux blancs (Rendement = 97 %).

5 F = 160°C

PREPARATION IV

N-[3-[(4-cyanobenzoyl)amino]propyl]-1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 1, au départ des composés obtenus selon les préparations II et III, on obtient le produit attendu sous forme d'un solide beige, (Rendement = 81 %).

F = 118°C

[α]²⁷_D = - 33,2° (c = 0,32 ; CH₃OH)

15 PREPARATION V

N-[3-[[4-[amino(hydroxyimino)méthyl]benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

20 On prépare une solution de 0,058 g (0,843.10⁻³ mole) de chlorhydrate d'hydroxylamine dans 2 ml de DMSO et on ajoute 0,170 g (1,69.10⁻³ mole) de triéthylamine, puis 0,36 g (0,48.10⁻³ mole) du composé obtenu selon la préparation IV. Le mélange réactionnel est maintenu sous agitation, à température ambiante pendant 1 heure, puis on ajoute à nouveau une même quantité de chlorhydrate d'hydroxylamine et de triéthylamine. Après 15 heures sous agitation
25 à température ambiante, le mélange réactionnel est versé sur de l'eau. Le précipité formé est séparé par filtration, puis lavé à l'eau et séché sous pression réduite à 30°C. On obtient ainsi 0,37 g du produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 160°C

30 [α]²⁷_D = - 22,5° (c = 0,35 ; CH₃OH)

PREPARATION VI

N-[3-[[4-[(acétyloxy)imino]aminométhyl]benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

On prépare une suspension de 0,32 g ($0,41 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation V, dans 10 ml de dichlorométhane et on ajoute 0,134 g ($1,23 \cdot 10^{-3}$ mole) d'anhydride acétique. On agite le mélange pendant 3 heures à température ambiante puis on ajoute à nouveau 0,134 g d'anhydride acétique et on laisse sous agitation pendant 15 heures. Le milieu réactionnel est hydrolysé, extrait avec du dichlorométhane. La phase organique est lavée à l'eau puis séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 0,32 g du produit attendu sous forme d'un solide blanc (Rendement = 95 %).

F = 96°C

10 [α]²⁷_D = - 20,3° (c = 0,32 ; CH₃OH)

Exemple 3

N-[3-[[4-(aminoiminométhyl)benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

15 On prépare une solution de 0,31 g ($0,377 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation VI, dans 20 ml de méthanol et on ajoute 0,12 g de catalyseur de Lindlar (à 5 % de Palladium). Le mélange est agité sous atmosphère d'hydrogène, à pression atmosphérique et à température ambiante pendant 6 heures. On élimine le catalyseur par filtration puis on concentre sous pression réduite. Le résidu est repris par de l'eau et la solution obtenue est amenée à pH 20 légèrement alcalin à l'aide de soude 1N. Le précipité blanc formé est filtré, lavé à l'eau puis séché sous pression réduite. On effectue ensuite une purification de ce produit par chromatographie sur gel de silice greffé NH₂ (Lichroprep® NH₂), en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ; v/v). On obtient ainsi 0,19 g du produit attendu sous forme d'un solide jaune (Rendement = 66 %).

F = 148°C

[α]²⁷_D = - 28,3° (c = 0,36 ; CH₃OH)

Exemple 4

N-[3-[[4-(aminoiminométhyl)benzoyl]amino]propyl]-1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, bis méthanesulfonate

30 On prépare une solution de 0,17 g ($0,22 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 3, dans 4 ml de méthanol et on ajoute 0,0428 g ($0,44 \cdot 10^{-3}$ mole) d'acide méthanesulfonique. On agite le mélange réactionnel pendant 10 mn à température ambiante puis on le concentre sous pression réduite. Le résidu est

repris en solution dans de l'eau distillée; la solution obtenue est filtrée puis lyophilisée. On obtient ainsi 0,16 g du produit attendu sous forme d'un solide cotonneux blanc (Rendement = 75 %).

F = 176°C

5 [α]²⁸_D = - 28,3° (c = 0,32 ; CH₃OH)

PRÉPARATION VII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-pyrrolidineméthanol

On prépare une solution de 1 g (2,95.10⁻³ mole) de chlorure de 3-bromométhyl-2,4-dichlorobenzènesulfonyle dans 10 ml d'acétonitrile et 4 ml d'eau. On ajoute 292 µl (2,95.10⁻³ mole) de L-(+)-prolinol et une solution de 886 mg de carbonate de potassium dans 4 ml d'eau. Après 20 heures sous agitation à température ambiante, le mélange réactionnel est versé sur de l'eau et extrait par l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient 1,2 g de produit brut que l'on purifie par chromatographie sur gel de silice en éluant par un mélange toluène/acétate d'éthyle (80/20 ; v/v). On obtient ainsi 0,92 g du produit attendu sous forme d'une huile incolore (Rendement = 77 %).

[α]²⁶_D = - 16,5° (c = 0,5 ; CH₃OH)

Exemple 5

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidineméthanol

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine et du composé obtenu selon la préparation VII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 35 %).

F = 76°C

[α]²⁶_D = - 14,9° (c = 0,8 ; CH₃OH)

Exemple 6

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidineméthanol, méthanesulfonate

En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 5 et d'un équivalent molaire d'acide méthanesulfonique, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 90 %).

35 F = 134°C

$[\alpha]^{26}_D = +3,1^\circ$ ($c = 0,84$; CH₃OH)

Exemple 7

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidineméthanol

5 En opérant de façon analogue à l'exemple 5, au départ de 8-hydroxy-2-méthyl-4-(1*H*-pyrazol-1-yl)quinoléine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77%).

F = 65°C

$[\alpha]^{26}_D = -14,9^\circ$ ($c = 0,7$; CH₃OH)

10 Exemple 8

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidineméthanol, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 7, on obtient le sel attendu sous forme de cristaux jaunes (Rendement = 99 %).

F = 120°C

$[\alpha]^{26}_D = +11,2^\circ$ ($c = 0,75$; CH₃OH)

PRÉPARATION VIII

Acide **4-[[[[1-[(phénylméthoxy)carbonyl]-2(S)-pyrrolidinyl]carbonyl]amino]-méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester**

20 En opérant de façon analogue à l'exemple 1, au départ de N-[(phénylméthoxy)carbonyl]-L-proline et d'acide 4-(aminométhyl)-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 99 %).

25 F = 50°C

$[\alpha]^{26}_D = -31^\circ$ ($c = 0,80$; CH₃OH)

PRÉPARATION IX

Acide **4-[[[(2(S)-pyrrolidinyl)carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester (acétate)**

30 On prépare une solution de 100,9 g (0,23 mole) du composé obtenu selon la préparation VIII, dans l'acide acétique. Sous atmosphère d'azote, on ajoute 96,4 ml (1,02 mole) de cyclohexadiène, puis 2 g de charbon palladié à 10 %. Le mélange réactionnel est porté à reflux pendant 5 heures. Après refroidissement à 10-15°C, le milieu réactionnel est filtré et concentré sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en

éluant avec un mélange dichlorométhane/éthanol (6/4 ; v/v). On obtient ainsi 60 g du produit attendu sous forme d'une huile orange (Rendement = 72 %, exprimé en sel avec l'acide acétique).

$$[\alpha]^{22}D = -36,8^\circ \text{ (c = 0,63 ; CH}_3\text{OH)}$$

5 PREPARATION X

Acide 4-[[[1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-pyrroli-dinyl]carbonyl]amino)méthyl]-1-pipéridinecarboxylique,1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VII, au départ du chlorure de 3-(bromométhyl)-2,4-dichlorobenzènesulfonyle et du composé obtenu selon la préparation IX, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 97 %).

F = 80°C

$$[\alpha]^{22}_{\text{D}} = -31^\circ \text{ (c = 0,92 ; CH}_3\text{OH)}$$

15 PREPARATION XI

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation X, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 44 %).

F = 100°C

$$[\alpha]^{27}D = -28,8^\circ \text{ (c = 0,36 ; CH}_3\text{OH)}$$

Exemple 9

25 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(*S*)-pyrrolidinecarboxamide

On prépare une solution de 6 g ($7,92 \cdot 10^{-3}$ mole) du composé obtenu selon la préparation XI dans 100 ml de dichlorométhane et on ajoute 0,856 g ($7,92 \cdot 10^{-3}$ mole) d'anisole. On refroidit le mélange à 0°C et on ajoute 5 ml d'acide trifluoroacétique. La solution est ensuite agitée pendant 15 heures à température ambiante, puis concentrée sous pression réduite. Le résidu est repris avec de l'eau et la solution obtenue est amenée à pH basique avec une solution de soude normale. Le mélange est extrait avec de l'acétate d'éthyle, puis la phase organique est séchée sur sulfate de magnésium et concentrée. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange

dichlorométhane/méthanol/ammoniaque (95/5/0,02 ; v/v/v). On obtient ainsi 4,4 g du produit attendu sous forme d'un solide jaune (Rendement = 84 %).

F = 150°C

[α]²²_D = - 47° (c = 0,35 ; CH₃OH)

5 **Exemple 10**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(S)-pyrrolidinecarboxamide, ditartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 9 et en utilisant 2 moles d'acide tartrique pour une mole dudit composé, on obtient le produit attendu sous forme d'un solide cotonneux blanc (Rendement = 81 %).

F = 145°C

[α]²⁷_D = - 23,7° (c = 0,31 ; CH₃OH)

15 **PREPARATION XII**

Acide acétique, 2-(2-iodoéthoxy)éthyl ester

On prépare une solution de 2,4 g (14.10⁻³ mole) d'acétate de 2-(2-chloroéthoxy)éthyle dans 60 ml d'acétone et on ajoute 22 g (0,144 mole) d'iodure de sodium. On porte le mélange réactionnel à reflux pendant 6 heures, puis on le concentre sous pression réduite. Le résidu est repris par de l'eau et de l'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 2,81 g du produit attendu, qui est utilisé sans autre purification, sous forme d'une huile orangée (Rendement = 78 %).

n_D = 1,468

25 **PREPARATION XIII**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[1-[2-[2-(acétoxy)éthoxy]éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

On prépare un mélange de 0,3 g (0,456.10⁻³ mole) du composé obtenu selon l'exemple 9 dans 10 ml d'acetonitrile et 4 ml de diméthylformamide. On ajoute 95 mg (0,68.10⁻³ mole) de carbonate de potassium puis 130 mg (0,5.10⁻³ mole) du composé obtenu selon la préparation XII en solution dans 2 ml d'acetonitrile. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 15 heures puis concentré sous pression réduite. Le résidu est repris par du dichlorométhane et la phase organique ainsi obtenue est lavée à

l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (9/1/0,02 ; v/v/v). On obtient ainsi 0,18 g du produit attendu sous forme d'un solide écrú (Rendement =

5 50 %).

F = 90°C

$[\alpha]^{25}_D = 35,8^\circ$ (c = 0,31 ; CH₃OH)

Exemple 11

10 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 On prépare une solution de 0,17 g (0,216.10⁻³ mole) du composé obtenu selon la préparation XIII dans 7 ml de méthanol et on ajoute 1 g de résine Amberlite® IRA 400 (sous forme OH⁻). Le mélange réactionnel est agité à température ambiante pendant 15 heures, puis filtré de façon à éliminer la résine. Après concentration du filtrat sous pression réduite, on obtient 0,14 g du produit attendu sous forme d'un solide pulvérulent blanc (Rendement = 88 %).

F = 96°C

$[\alpha]^{25}_D = -38,5^\circ$ (c = 0,32 ; CH₃OH)

20 Exemple 12

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

25 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 11, on obtient le sel attendu sous forme d'un produit blanc cotonneux (Rendement = 99 %).

F = 135°C

$[\alpha]^{25}_D = -38^\circ$ (c = 0,43 ; CH₃OH)

PRÉPARATION XIV

30 N-[[1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]glycine, 1,1-diméthyl-éthyl ester

35 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de glycinate de 1,1-diméthyléthyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 93 %).

F = 110°C

$[\alpha]^{22}_D = -49^\circ$ (c = 0,3 ; CH₃OH)

Exemple 13

N-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]glycine, trifluoroacétate

On prépare un mélange de 0,27 g (0,4.10⁻³ mole) du composé obtenu selon la préparation XIV dans 5 ml de dichlorométhane et 43 mg (0,4.10⁻³ mole) d'anisole, puis on ajoute, à 0°C, 1,5 ml d'acide trifluoroacétique. La solution est agitée à 0°C pendant 1 heure puis à température ambiante pendant 24 heures. Le mélange réactionnel est ensuite concentré sous pression réduite et le résidu est trituré avec de l'éther éthylique. Le solvant est éliminé avec les produits solubles et le résidu et repris en solution dans de l'eau distillée. La solution est filtrée, puis lyophilisée. On obtient ainsi 0,285 g du produit attendu sous forme d'un solide fin jaunâtre (Rendement = 86 %).

F = 132°C

$[\alpha]^{22}_D = -9^\circ$ (c = 0,64 ; CH₃OH)

Exemple 14

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de N,N-diméthyléthylénediamine, on obtient le produit attendu sous forme d'une poudre beige (Rendement = 40 %).

F = 88°C

$[\alpha]^{23}_D = -44^\circ$ (c = 0,37 ; CH₃OH)

Exemple 15

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 14, on obtient le produit attendu sous forme d'un solide cotonneux blanc cassé (Rendement de 93 %).

F = 132°C

$[\alpha]^{24}_D = -41^\circ$ (c = 0,58 ; CH₃OH)

Exemple 16

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de N,N-diméthyl-1,3-propanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 40 %).

F = 80°C

$[\alpha]^{24}_D = -47^\circ$ (c = 0,33 ; CH₃OH)

Exemple 17

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 16, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87 %).

F = 131°C

$[\alpha]^{24}_D = -43^\circ$ (c = 0,42 ; CH₃OH)

Exemple 18

10 20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[4-(diméthylamino)butyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation II et de N,N-diméthyl-1,4-butanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 51 %).

F = 75°C

25 $[\alpha]^{22}_D = -49^\circ$ (c = 0,31 ; CH₃OH)

Exemple 19

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[4-(diméthylamino)butyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 18, on obtient le produit attendu sous forme d'un solide cotonneux blanc (Rendement = 90 %).

F = 125°C

$[\alpha]^{24}_D = -33^\circ$ (c = 0,35 ; CH₃OH)

Exemple 20

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(1-méthyl-4-pipéridinyl)méthyl]-2(S)-pyrrolidine-carboxamide

5 On prépare un mélange de 0,6 g ($0,677 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 9 dans 20 ml de dichlorométhane et on ajoute 0,15 g ($1,49 \cdot 10^{-3}$ mole) de triéthylamine, puis 0,08 g de paraformaldéhyde et 0,37 g ($27,1 \cdot 10^{-3}$ mole) de chlorure de zinc. Le mélange réactionnel est maintenu sous agitation pendant 1 heure, puis on ajoute 0,1 g ($2,64 \cdot 10^{-3}$ mole) de borohydrure de sodium et 2 ml de méthanol. On continue l'agitation à température ambiante pendant 15

10 heures puis on concentre le mélange sous pression réduite. Le résidu est repris avec de l'eau et la phase aqueuse ainsi obtenue, amenée à pH alcalin à l'aide d'une solution d'ammoniaque, est extraite par de l'acétate d'éthyle. La phase organique est séchée puis concentrée sous pression réduite. Le résidu obtenu est purifié par chromatographie sur gel de silice en éluant par un mélange dichlorométhane-/méthanol/ammoniaque (95/5/0,2 ; v/v/v). On obtient ainsi 0,25 g du produit attendu sous forme d'une poudre blanche (Rendement = 55 %).

15

F = 86°C

[α]²⁷_D = - 36° (c = 0,33 ; CH₃OH)

Exemple 21

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(1-méthyl-4-pipéridinyl)méthyl]-2(S)-pyrrolidine-carboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 20, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 97 %).

F = 135°C

[α]²⁷_D = - 34,3° (c = 0,58 ; CH₃OH)

PRÉPARATION XV

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[3-(acétoxy)propyl]-4-pipéridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 9 et d'acétate de 3-iodopropyle, on obtient le produit attendu (Rendement = 52 %).

F = 96°C

$[\alpha]^{27}_D = -32,2^\circ$ (c = 0,30 ; CH₃OH)

Exemple 22

- 5 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

On prépare une solution de 0,13 g (0,167.10⁻³ mole) du composé obtenu selon la préparation XV dans 5 ml de méthanol. On ajoute 1 ml d'eau et 50 mg (0,385.10⁻³ mole) de carbonate de potassium. Le mélange est agité pendant 10 15 heures à température ambiante puis concentré sous pression réduite. Le résidu est repris dans du dichlorométhane et la phase organique est lavée à l'eau puis séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ;v/v). On obtient ainsi 0,09 g du produit attendu sous forme d'un fin solide blanc (Rendement = 74 %).

F = 90°C

$[\alpha]^{27}_D = -35,5^\circ$ (c = 0,35 ; CH₃OH)

Exemple 23

- 20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 22, on obtient le produit attendu sous forme de poudre blanche (Rendement = 95 %).

25 F = 145°C

$[\alpha]^{26}_D = -10,4^\circ$ (c = 0,32 ; CH₃OH)

PRÉPARATION XVI

- 30 Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, 1,1-diméthyléthyl ester

On prépare un mélange de 0,45 g (0,684.10⁻³ mole) du composé obtenu selon l'exemple 9 dans 4 ml de diméthylformamide et 30 ml d'acetonitrile. On ajoute 0,11 g (0,752.10⁻³ mole) de carbonate de potassium, puis 0,133 g (0,684.10⁻³ mole) de bromoacétate de *t*-butyle. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 15 heures puis concentré

sous pression réduite. Le résidu est repris dans de l'eau et le précipité formé est extrait par de l'acétate d'éthyle. La phase organique est lavée à l'eau puis séchée et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2 ;v/v). On obtient ainsi 0,31 g du produit attendu sous forme d'un solide blanc écrú (Rendement = 60 %).

F = 100°C

$[\alpha]^{23}_D = -40^\circ$ (c = 0,30 ; CH₃OH)

Exemple 24

10 Acide 4-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, bis trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XVI, on obtient le produit attendu sous forme d'un solide léger jaune (Rendement = 90 %).

F = 149°C

$[\alpha]^{21}_D = -41^\circ$ (c = 0,40 ; CH₃OH)

PRÉPARATION XVII

20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-4-(1H-pyrazol-1-yl)-2-méthyl-quinoléine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

F = 90°C

25 $[\alpha]^{25}_D = -19^\circ$ (c = 0,50 ; CHCl₃)

PRÉPARATION XVIII

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-L-proline

30 En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation XVII, on obtient le produit attendu sous forme d'une poudre blanc écrú (Rendement = 91 %).

F = 148°C

$[\alpha]^{27}_D = +1^\circ$ (c = 0,40 ; DMSO)

PREPARATION XIX

Acide 4-[[[1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyl-éthyl ester

5 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XVIII et de l'ester *t*-butylique de l'acide 4-(aminométhyl)-1-pipéridinecarboxylique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 52 %).

F = 109°C

10 $[\alpha]^{25}_D = -45^\circ$ (c = 0,44 ; CHCl₃)

Exemple 25

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(S)-pyrrolidinecarboxamide, bis trifluoroacétate

15 En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XIX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 89 %).

F = 125°C

$[\alpha]^{26}_D = -27^\circ$ (c = 0,30 ; CH₃OH)

PREPARATION XX

Acide 4-[[[1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyl-éthyl ester

25 En opérant de façon analogue à la préparation XI, au départ du composé obtenu selon la préparation X et de 8-hydroxy-2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-quinoléine, on obtient le produit attendu sous forme d'une poudre beige (Rendement = 93 %).

F = 94°C

$[\alpha]^{24}_D = -44^\circ$ (c = 0,57 ; CHCl₃)

Exemple 26

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-(4-pipéridinylméthyl)-2(S)-pyrrolidine-carboxamide, bis trifluoroacétate

En opérant de façon analogue à l'exemple 25, au départ du composé obtenu selon la préparation XX, on obtient le produit attendu sous forme d'un solide blanc-crème (Rendement = 89 %).

F = 130°C

5 [α]¹⁸_D = - 28° (c = 0,63 ; CH₃OH)

PRÉPARATION XXI

1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényle]sulfonyl]-N-[[1-[3-(acétoxy)propyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à la préparation XV, au départ du composé obtenu selon l'exemple 25 et d'acétate de 3-iodopropyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 64 %).

F = 89°C

[α]²⁴_D = - 41° (c = 0,60 ; CHCl₃)

15 Exemple 27

1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényle]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

20 En opérant de façon analogue à l'exemple 22, au départ du composé obtenu selon la préparation XXI, on obtient le produit attendu sous forme de poudre fine blanche (Rendement = 95 %).

F = 112°C

[α]²⁴_D = - 42° (c = 0,38 ; CHCl₃)

Exemple 28

25 1-[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényle]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 27, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 99 %).

F = 136°C

[α]²²_D = - 39° (c = 0,50 ; CH₃OH)

PREPARATION XXII

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[3-(acétoxy)propyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

5 En opérant de façon analogue à la préparation XV, au départ du composé obtenu selon l'exemple 26 et d'acétate de 3-iodopropyle, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 47 %).

F = 120°C

[α]²⁶_D = - 61° (c = 0,4 ; CHCl₃)

Exemple 29

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 22, au départ du composé obtenu selon la préparation XXII, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 83 %).

F = 136°C

[α]²²_D = - 48° (c = 0,55 ; CHCl₃)

Exemple 30

20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(3-hydroxypropyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

25 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 29, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 123°C

[α]²³_D = - 43° (c = 0,48 ; CH₃OH)

PREPARATION XXIII

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-[4-(acétoxy)butyl]-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XV, au départ du composé obtenu selon l'exemple 9 et d'acétate de 4-iodobutyle, on obtient le produit attendu (Rendement = 63 %).

35 F = 86°C

$[\alpha]^{22}_D = -44^\circ$ (c = 0,86 ; CHCl₃)

Exemple 31

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-hydroxybutyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

5

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

F = 112°C

10 $[\alpha]^{22}_D = -49^\circ$ (c = 0,78 ; CHCl₃)

Exemple 32

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-hydroxybutyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, tartrate

15

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 31, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

F = 133°C

10 $[\alpha]^{22}_D = -41^\circ$ (c = 0,82 ; CH₃OH)

20

PRÉPARATION XXIV

4-[(3-bromométhyl-2,4-dichlorophényl)sulfonyl]-morpholine

25

En opérant de façon analogue à la préparation VII, au départ de morpholine et du chlorure de 3-bromométhyl-2,4-dichlorobenzènesulfonyle, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 85 %) (le produit contient en partie l'analogue chlorométhylé).

F = 128°C

Exemple 33

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine

30

En opérant de façon analogue à la préparation I, au départ du produit obtenu selon la préparation XXIV et de 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine, on obtient le produit attendu sous forme d'un solide beige (Rendement = 34 %).

F = 148°C

Exemple 34

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine, trifluoroacétate

En opérant de façon analogue à l'exemple 1, au départ d'acide trifluoroacétique et du composé obtenu selon l'exemple 33, on obtient le produit attendu sous forme d'une poudre légère couleur crème (Rendement = 98 %).

F = 93°C

Exemple 35

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-2-méthyl-4-(1*H*-pyrazol-1-yl)quinoléine

En opérant de façon analogue à l'exemple 33, au départ de 8-hydroxy-4-(1*H*-pyrazol-1-yl)-2-méthylquinoléine, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 83 %).

F = 178°C

Exemple 36

8-[[2,6-dichloro-3-(4-morpholinylsulfonyl)phényl]méthoxy]-2-méthyl-4-(1*H*-pyrazol-1-yl)quinoléine, trifluoroacétate

En opérant de façon analogue à l'exemple 34, au départ de l'exemple 35, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 89 %).

F = 110°C

PRÉPARATION XXV

1-[(3-bromométhyl-2,4-dichlorophényl)sulfonyl]-4-(hydroxyméthyl)-pipéridine

En opérant de façon analogue à la préparation XXIV, au départ de 4-(hydroxyméthyl)pipéridine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 88 %).

F = 121°C

Exemple 37

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol

En opérant de façon analogue à l'exemple 33, au départ du produit obtenu selon la préparation XXV et 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 40 %).

F = 100°C

Exemple 38

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol, trifluoroacétate

5 En opérant de façon analogue à l'exemple 34, au départ du produit obtenu selon l'exemple 37, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 109°C

Exemple 39

10 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol

En opérant de façon analogue à l'exemple 37, au départ du produit obtenu selon la préparation XXV et 8-hydroxy-2-méthyl-4-(1*H*-pyrazol-1-yl)-quinoléine, on obtient le produit attendu sous forme d'un solide beige (Rendement = 74 %).

F = 138°C

Exemple 40

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4-pipéridineméthanol, trifluoroacétate

20 En opérant de façon analogue à l'exemple 34, au départ du produit obtenu selon l'exemple 39, on obtient le produit attendu sous forme d'une poudre blanc crème (Rendement = 98 %).

F = 90°C

PREPARATION XXVI

25 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(*R*)-hydroxy-L-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ de l'ester méthylique de la N-[(3-bromométhyl-2,4-dichlorophényl)sulfonyl]-4-(*R*)-hydroxy-(L)-proline, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 69 %).

F = 78°C

[α]²²_D = + 1° (c = 0,66 ;CH₃OH)

PREPARATION XXVII

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(*R*)-hydroxy-L-proline

En opérant de façon analogue à la préparation II, au départ du produit obtenu selon la préparation XXVI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 51 %).

F = 140°C

5 [α]²⁷_D = + 13° (c = 0,38 ; CH₃OH)

PRÉPARATION XXVIII

Acide 4-[[[1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-4(R)-hydroxy-2(S)-pyrrolidinyl]carbonyl]-amino]méthyl]-1-pipéridinecarboxylique, 1,1-diméthyléthyl ester

10 En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation XXVII et de l'ester *t*-butylique de l'acide 4-(aminométhyl)pipéridine carboxylique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 65 %).

F = 124°C

15 [α]²⁴_D = - 6° (c = 0,51 ; CH₃OH)

Exemple 41

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-4(R)-hydroxy-N-(4-pipéridineméthyl)-2(S)-pyrrolidine-carboxamide

20 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XXVIII, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 80 %).

F = 140°C

[α]²⁷_D = - 3° (c = 0,33 ; CH₃OH)

Exemple 42

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-4(R)-hydroxy-N-(4-pipéridineméthyl)-2(S)-pyrrolidine-carboxamide, ditartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 41 et de deux équivalents molaires d'acide tartrique, on obtient le produit attendu sous forme d'un solide léger jaune (Rendement = 50 %).

F = 156°C

[α]²⁷_D = + 30° (c = 0,38 ; DMSO)

Exemple 43

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(2-hydroxyéthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'acide obtenu selon la préparation II et de 2-aminoéthanol, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 93 %).

F = 120°C

[α]²⁷_D = - 31° (c = 0,37 ; CH₃OH)

Exemple 44

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(2-hydroxyéthyl)-2(S)-pyrrolidinecarboxamide, hémi-sulfate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 43 et d'un demi équivalent molaire d'acide sulfurique, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 98 %).

F = 140°C

[α]²⁷_D = - 24° (c = 0,35 ; CH₃OH)

Exemple 45

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N,N-diméthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation II et de diméthylamine en solution dans l'éthanol, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

F = 88°C

25 [α]²⁷_D = - 8° (c = 0,32 ; CH₃OH)

Exemple 46

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N,N-diméthyl-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 45, on obtient le produit attendu sous forme d'une poudre fine jaune (Rendement = 80 %).

F = 121°C

[α]²⁴_D = + 34° (c = 0,37 ; CH₃OH)

Exemple 47

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-morpholinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'acide obtenu selon la préparation II et de 4-(2-aminoéthyl)morpholine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 73 %).

F = 100°C

$[\alpha]^{24}_D = -30^\circ$ (c = 0,62 ; CH₃OH)

Exemple 48

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-morpholinyl)éthyl]-2(S)-pyrrolidinecarboxamide, hémisulfate

En opérant de façon analogue à l'exemple 44, au départ du composé obtenu selon l'exemple 47, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 97 %).

F = 145°C

$[\alpha]^{25}_D = -46^\circ$ (c = 0,75 ; CH₃OH)

Exemple 49

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(4-morpholinyl)propyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'acide obtenu selon la préparation II et de 4-(3-aminopropyl)morpholine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 69 %).

F = 96°C

25 $[\alpha]^{25}_D = -32,5^\circ$ (c = 0,64 ; CH₃OH)

Exemple 50

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(4-morpholinyl)propyl]-2(S)-pyrrolidinecarboxamide, hémisulfate

30 En opérant de façon analogue à l'exemple 44, au départ du composé obtenu selon l'exemple 49, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 98 %).

F = 150°C

$[\alpha]^{25}_D = -46,5^\circ$ (c = 0,84 ; CH₃OH)

PREPARATION XXIX

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[2-(acétoxy)éthoxy]éthyl]-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

5 En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 26, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 60 %).

F = 86°C

[α]²⁶_D = - 37,5° (c = 0,78 ; CH₃OH)

Exemple 51

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXIX, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 89 %).

F = 82°C

[α]²⁷_D = - 33,2° (c = 0,76 ; CH₃OH)

Exemple 52

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-[2-(2-hydroxyéthoxy)éthyl]-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 51, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 99 %).

F = 135°C

[α]²⁶_D = - 36° (c = 0,70 ; CH₃OH)

PREPARATION XXX

N-[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]-β-alanine, 1,1-diméthyl-éthylester

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation II et de l'ester *t*-butylique de la β-alanine, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 80 %).

35 F = 68°C

$[\alpha]^{27}_D = -23^\circ$ (c = 0,41 ; CH₃OH)

Exemple 53

N-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]-β-alanine, trifluoroacétate

5

En opérant de façon analogue à l'exemple 13, au départ du composé l'acide obtenu selon la préparation XXX, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 94 %).

F = 113°C

10 $[\alpha]^{27}_D = -8^\circ$ (c = 0,44 ; CH₃OH)

PRÉPARATION XXXI

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-(méthoxyméthyl)-pyrrolidine

15 En opérant de façon analogue à la préparation VII, au départ de 2(S)-(méthoxyméthyl)pyrrolidine, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 78 %).

$[\alpha]^{26}_D = -5,5^\circ$ (c = 0,73 ; CH₃OH)

Exemple 54

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-4-(1*H*-imidazol-1-yl)-2-méthylquinoléine et du composé obtenu selon la préparation XXXI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 44 %).

25 F = 66°C

$[\alpha]^{27}_D = -31,5^\circ$ (c = 0,80 ; CH₃OH)

Exemple 55

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine, méthanesulfonate

30 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 54, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 99 %).

F = 123°C

$[\alpha]^{26}_D = +21^\circ$ (c = 0,85 ; CH₃OH)

Exemple 56

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine

En opérant de façon analogue à l'exemple 54, au départ de 8-hydroxy-
5 2-méthyl-4-(1*H*-pyrazol-1-yl)-quinoléine, on obtient le produit attendu sous forme
de cristaux blancs (Rendement = 73 %).

F = 75°C

$[\alpha]^{24}_D = + 1,6^\circ$ (c = 0,69 ; CH₃OH)

Exemple 57

10 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-pyrazol-1-yl)-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-(méthoxyméthyl)pyrrolidine, méthanesulfonate

En opérant de façon analogue à l'exemple 4, au départ du composé
obtenu selon l'exemple 56, on obtient le produit attendu sous forme de cristaux
jaunes (Rendement = 97 %).

15 F = 110°C

$[\alpha]^{26}_D = + 36^\circ$ (c = 0,80 ; CH₃OH)

PREPARATION XXXII

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-D-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ de l'ester
méthylelique de la N-[[3-(bromométhyl)-2,4-dichloro-phényl]sulfonyl]-D-proline,
on obtient le produit attendu sous forme d'un solide jaune (Rendement = 97 %).

F = 74°C

$[\alpha]^{22}_D = + 10^\circ$ (c = 0,60 ; CH₃OH)

PREPARATION XXXIII

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-D-proline

En opérant de façon analogue à la préparation II, au départ du
composé obtenu selon la préparation XXXII, on obtient le produit attendu sous
30 forme d'un solide blanc écrú (Rendement = 73 %).

F = 175°C

Exemple 58

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(R)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XXXIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 83 %).

F = 128°C

5 [α]²⁵_D = + 25° (c = 0,30 ; CH₃OH)

Exemple 59

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(R)-pyrrolidinecarboxamide, tartrate

10 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 58, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 80 %).

F = 114°C

[α]²⁵_D = + 25° (c = 0,80 ; CH₃OH)

Exemple 60

15 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinoliny]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-N-méthyl-2(S)-pyrrolidine-carboxamide

20 En opérant de façon analogue à l'exemple 1, au départ de N,N,N'-triméthyl-1,3-propanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 64 %).

F = 80°C

[α]²⁵_D = - 16° (c = 0,34 ; CH₃OH)

Exemple 61

25 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinoliny]oxy]méthyl]-phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-N-méthyl-2(S)-pyrrolidine-carboxamide, hémisulfate

30 En opérant de façon analogue à l'exemple 48, au départ du composé obtenu selon l'exemple 60, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 98 %).

F = 133°C

[α]²⁵_D = - 34° (c = 0,40 ; CH₃OH)

Exemple 62

35 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinoliny]oxy]méthyl]-phényl]sulfonyl]-N-[(1-[2-(acétoxy)éthyl]-4-pipéridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XV, au départ d'acétate de 2-bromoéthyle, on obtient le produit attendu sous forme d'un solide beige (Rendement = 38 %).

F = 93°C

5 [α]²²_D = - 48° (c = 0,50 ; CHCl₃)

Exemple 63

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(2-hydroxyéthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon l'exemple 62, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 88 %).

F = 104°C

[α]¹⁸_D = - 53° (c = 0,75 ; CHCl₃)

15 Exemple 64

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(2-hydroxyéthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, hémisulfate

20 En opérant de façon analogue à l'exemple 48, au départ du composé obtenu selon l'exemple 63, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 98 %).

F = 160°C

[α]²²_D = - 48° (c = 0,54 ; CH₃OH)

Exemple 64 bis

25 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[[1-(2-hydroxyéthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

30 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 63, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 99 %).

F = 127°C

[α]²⁹_D = - 46° (c = 0,82 ; CH₃OH)

PREPARATION XXXIV

Acide 4-[[[1-[[2,4-dichloro-3-[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, 1,1-diméthyléthyl ester

5 En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 26, on obtient le produit attendu sous forme d'un solide beige (Rendement = 58 %).

F = 50°C

[α]²⁵_D = - 40° (c = 0,50 ; CHCl₃)

Exemple 65

Acide 4-[[[1-[[2,4-dichloro-3-[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridineacétique, bis-trifluoroacétate

15 En opérant de façon analogue à l'exemple 24, au départ du composé obtenu selon la préparation XXXIV, on obtient le produit attendu sous forme d'une poudre blanc écrue (Rendement = 96 %).

F = 142°C

[α]¹⁹_D = - 37° (c = 0,80 ; CH₃OH)

Exemple 66

20 1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation II et d'ammoniac introduit sous forme gazeuse dans le milieu réactionnel, on obtient le produit attendu sous forme d'un solide beige (Rendement = 98 %).

F = 110°C

[α]²⁷_D = - 22,9° (c = 0,31 ; CH₃OH)

Exemple 67

30 1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 66, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 97 %).

F = 124°C

35 [α]²⁷_D = - 12,6° (c = 0,41 ; CH₃OH)

Exemple 68

N-cyclopropyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-*y*l)-2-méthyl-8-quino-linyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de cyclopropylamine, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 87 %).

F = 108°C

$[\alpha]^{24}_D = -19,2^\circ$ (c = 0,32 ; CH₃OH)

Exemple 69

10 N-cyclopropyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-*y*l)-2-méthyl-8-quino-linyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, chlorhydrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 68 et d'une solution de chlorure d'hydrogène dans le méthanol, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 100 %).

F = 160°C

$[\alpha]^{24}_D = -10,9^\circ$ (c = 0,36 ; CH₃OH)

Exemple 70

20 N-(cyclopropylméthyl)-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-*y*l)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ d'(aminométhyl)cyclopropane, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 98 %).

25 F = 100°C

$[\alpha]^{24}_D = -22,4^\circ$ (c = 0,42 ; CH₃OH)

Exemple 71

30 N-(cyclopropylméthyl)-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-*y*l)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinecarboxamide, chlorhydrate

En opérant de façon analogue à l'exemple 69, au départ du composé obtenu selon l'exemple 70, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 99 %).

F = 155°C

35 $[\alpha]^{24}_D = -5,9^\circ$ (c = 0,33 ; CH₃OH)

Exemple 72

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[2-(diméthylamino)éthyl]-N-méthyl-2(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à l'exemple 1, au départ du N,N,N'-triméthyléthylénediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 33 %).

F = 98°C

$[\alpha]^{24}_D = -20,2^\circ$ (c = 0,36 ; CH₃OH)

Exemple 73

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[2-diméthylamino)éthyl]-N-méthyl-2(S)-pyrrolidine-carboxamide, tartrate

15 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon l'exemple 72, on obtient le produit attendu sous forme d'un solide cotonneux blanc écrú (Rendement = 93 %).

F = 125°C

$[\alpha]^{24}_D = -30^\circ$ (c = 0,43 ; CH₃OH)

Exemple 74

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[2-(1-pyrrolidinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-(2-aminoéthyl)-pyrrolidine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 62 %).

25 F = 105°C

$[\alpha]^{24}_D = -50^\circ$ (c = 0,35 ; CH₃OH)

Exemple 75

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[2-(1-pyrrolidinyl)éthyl]-2(S)-pyrrolidinecarboxamide,

30 **tartrate**

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 74, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 97 %).

F = 129°C

35 $[\alpha]^{24}_D = -30^\circ$ (c = 0,45 ; CH₃OH)

Exemple 76

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-(3-aminopropyl)-pyrrolidine, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 51 %).

F = 120°C

[α]²⁴_D = - 51° (c = 0,35 ; CH₃OH)

Exemple 77

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidinecarboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 76, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 95 %).

F = 128°C

[α]²⁴_D = - 32° (c = 0,35 ; CH₃OH)

Exemple 78

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(1-pipéridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-(2-aminoéthyl)-pipéridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 63 %).

F = 108°C

25 [α]²²_D = - 35,1° (c = 0,37 ; CH₃OH)

Exemple 79

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(1-pipéridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, tartrate

30 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 78, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 98 %).

F = 125°C

[α]²⁰_D = - 43,7° (c = 0,42 ; CH₃OH)

Exemple 80

N-cyclopentyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de cyclopentylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

F = 75°C

$[\alpha]^{25}_D = -17,5^\circ$ (c = 1,05 ; CH₃OH)

Exemple 81

10 N-cyclopentyl-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 80, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 91 %).

15 F = 134°C

$[\alpha]^{25}_D = +3,8^\circ$ (c = 0,83 ; DMSO)

PRÉPARATION XXXV

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-L-proline, méthyl ester

20 En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-quinoléine, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98 %).

F = 130°C

$[\alpha]^{22}_D = -35^\circ$ (c = 0,68 ; CHCl₃)

PRÉPARATION XXXVI

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-L-proline

30 En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation XXXV, on obtient le produit attendu sous forme d'une poudre jaune pâle (Rendement = 75 %).

F = 146°C

$[\alpha]^{24}_D = -5^\circ$ (c = 0,65 ; CH₃OH)

Exemple 82

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XXXVI et de N,N-diméthyl-éthylénediamine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 60 %).

F = 106°C

$[\alpha]^{25}_D = -35,2^\circ$ (c = 0,45 ; CH₃OH)

Exemple 83

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[2-(diméthylamino)éthyl]-2(S)-pyrrolidine-carboxamide, tartrate

15 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 82, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 97 %).

F = 128°C

$[\alpha]^{25}_D = -38,1^\circ$ (c = 1 ; CH₃OH)

Exemple 84

20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidine-carboxamide

25 En opérant de façon analogue à l'exemple 82, au départ de N,N-diméthyl-1,3propylénediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 74 %).

F = 105°C

$[\alpha]^{25}_D = -51^\circ$ (c = 0,75 ; CHCl₃)

Exemple 85

30 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidine-carboxamide, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 84, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 99 %).

35 F = 124°C

$[\alpha]^{25}_D = -42,4^\circ$ (c = 1 ; CH₃OH)

Exemple 86

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidine-5-carboxamide

En opérant de façon analogue à l'exemple 82, au départ de 1(3-aminopropyl)-pyrrolidine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 65 %).

F = 86°C

10 $[\alpha]^{25}_D = -37,8^\circ$ (c = 0,67 ; CH₃OH)

Exemple 87

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[3-(1-pyrrolidinyl)propyl]-2(S)-pyrrolidine-5-carboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 86, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 99 %).

F = 110°C

20 $[\alpha]^{25}_D = -54,6^\circ$ (c = 0,63 ; CH₃OH)

Exemple 88

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(aminométhyl)-pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 72 %).

25 F = 102°C

$[\alpha]^{25}_D = -37,5^\circ$ (c = 0,61 ; CH₃OH)

Exemple 89

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 88, on obtient le produit attendu sous forme de flocons blanc cassé (Rendement = 95 %).

35 F = 130°C

$[\alpha]^{25}_D = -32,6^\circ$ ($c = 0,54$; CH₃OH)

Exemple 90

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(3-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

5 En opérant de façon analogue à l'exemple 1, au départ de 3-(aminométhyl)-pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 84 %).

F = 104°C

$[\alpha]^{25}_D = -41,9^\circ$ ($c = 0,59$; CH₃OH)

10 **Exemple 91**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(3-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 90, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 99 %).

F = 126°C

$[\alpha]^{25}_D = -35,5^\circ$ ($c = 0,56$; CH₃OH)

Exemple 92

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(4-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 4-(aminométhyl)-pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

25 F = 114°C

$[\alpha]^{25}_D = -50,3^\circ$ ($c = 0,51$; CH₃OH)

Exemple 93

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[(4-pyridinyl)méthyl]-2(S)-pyrrolidinecarboxamide,

30 tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 92, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 98 %).

F = 128°C

35 $[\alpha]^{25}_D = -34,5^\circ$ ($c = 0,49$; CH₃OH)

Exemple 94

8-[[2,6-dichloro-3-[[2(S)-[[4-(4-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrrolydinylsulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à l'exemple 1, au départ de 1-(4-pyridinyl)pipérazine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 45 %).

F = 136°C

$[\alpha]^{25}_D = -32,3^\circ$ (c = 0,46 ; CH₃OH)

Exemple 95

10 8-[[2,6-dichloro-3-[[2(S)-[[4-(4-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrrolydinylsulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 94, on obtient le produit attendu sous forme de flocons jaune pâle (Rendement = 89 %).

F = 146°C

$[\alpha]^{25}_D = -23,2^\circ$ (c = 0,52 ; CH₃OH)

Exemple 96

20 8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrrolydinylsulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à l'exemple 1, au départ de 1-(2-pyridinyl)pipérazine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 34 %).

F = 108°C

25 $[\alpha]^{25}_D = -27,6^\circ$ (c = 0,4 ; CH₃OH)

Exemple 97

8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrrolydinylsulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 96, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 99 %).

F = 138°C

$[\alpha]^{25}_D = -17,3^\circ$ (c = 0,37 ; CH₃OH)

PREPARATION XXXVII

Acide [2-[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]éthyl](méthyl)carbamique, 1,1-diméthyléthyl ester

5 En opérant de façon analogue à l'exemple 1, au départ de l'ester t-butylque de l'acide [2-(méthylamino)éthyl](méthyl)carbamique, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 93 %).

F = 75°C

[α]²⁵_D = - 21,4° (c = 0,67 ; CH₃OH)

Exemple 98

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-N-[2-(méthylamino)éthyl]-2(S)-pyrrolidine carboxamide

15 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XXXVII, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 97 %).

F = 116°C

[α]²⁵_D = - 22,6° (c = 0,6 ; CH₃OH)

PREPARATION XXXVIII

20 Acide [3-[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]propyl](méthyl)carbamique, 1,1-diméthyléthyl ester

25 En opérant de façon analogue à l'exemple 1, au départ de l'ester t-butylque de l'acide [3-(méthylamino)propyl](méthyl)carbamique, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 86 %).

F = 70°C

[α]²⁵_D = - 16,4° (c = 0,6 ; CH₃OH)

Exemple 99

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-N-[3-(méthylamino)propyl]-2(S)-pyrrolidine carboxamide

30 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XXXVIII, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 99 %).

35 F = 125°C

$[\alpha]^{25}_D = -34,5^\circ$ (c = 0,54 ; CH₃OH)

PREPARATION XXXIX

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[3-(acétoxy)propyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

5

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 98 et d'acétate de 3-iodopropyle, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 44 %).

F = 75°C

10 $[\alpha]^{25}_D = -16,1^\circ$ (c = 0,6 ; CH₃OH)

PREPARATION XL

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[4-(acétoxy)butyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

15

En opérant de façon analogue à la préparation XXXIX, au départ d'acétate de 4-bromobutyle, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 55 %).

F = 76°C

$[\alpha]^{25}_D = -14,2^\circ$ (c = 0,53 ; CH₃OH)

20

PREPARATION XLI

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[3-[[3-(acétoxy)propyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

25

En opérant de façon analogue à la préparation XXXIX, au départ du composé obtenu selon l'exemple 99, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 73 %).

F = 90°C

$[\alpha]^{25}_D = -28,3^\circ$ (c = 0,68 ; CH₃OH)

PREPARATION XLII

30

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[3-[[4-(acétoxy)butyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

35

En opérant de façon analogue à la préparation XL, au départ du composé obtenu selon l'exemple 99, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 69 %).

F = 88°C

$[\alpha]^{25}_D = -29,1^\circ$ (c = 0,7 ; CH₃OH)

Exemple 100

5 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[3-(hydroxy)propyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXXIX, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 92 %).

10 F = 98°C

$[\alpha]^{25}_D = -15,9^\circ$ (c = 0,6 ; CH₃OH)

Exemple 101

15 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[3-(hydroxy)propyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 100, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 118°C

20 $[\alpha]^{25}_D = -37,1^\circ$ (c = 0,6 ; CH₃OH)

Exemple 102

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[4-(hydroxy)butyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XL, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 74 %).

F = 84°C

$[\alpha]^{25}_D = -18,1^\circ$ (c = 0,62 ; CH₃OH)

Exemple 103

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-N-[2-[[4-(hydroxy)butyl](méthyl)amino]éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 102, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 120°C

5 [α]²⁵_D = - 43,2° (c = 0,65 ; CH₃OH)

Exemple 104

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-N-[3-[[3-(hydroxy)propyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XLI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 84 %).

F = 92°C

[α]²⁵_D = - 18,1° (c = 0,56 ; CH₃OH)

15 Exemple 105

1-[2,4-dichloro-3-[[2(L)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrroldinylsulfonyl]-N-méthyl-N-[3-[[3-(hydroxy)propyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 104, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

F = 116°C

[α]²⁵_D = - 49,1° (c = 0,69 ; CH₃OH)

Exemple 106

25 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-N-[3-[[4-(hydroxy)butyl](méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XLII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77 %).

F = 82°C

[α]²⁵_D = - 22,1° (c = 0,62 ; CH₃OH)

Exemple 107

1-[{2,4-dichloro-3-[{[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl}-phényl]sulfonyl]-N-méthyl-N-[3-[(4-(hydroxy)butyl)(méthyl)amino]propyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 106, on obtient le produit attendu sous forme de flocons blancs (Rendement = 98 %).

$$F = 100^{\circ}C$$

$$[\alpha]^{25}D = -49,5^\circ \text{ (c = 0,58 ; CH}_3\text{OH)}$$

10 Exemple 108

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[{1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(*S*)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du chlorhydrate de 2-(chlorométhyl)pyridine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 31 %).

F = 100°C

$$[\alpha]^{25} D = -43,2^\circ \text{ (c = 0,4 ; CH}_3\text{OH)}$$

Exemple 109

20 1-[(2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-
phénylsulfonyl]-N-[(1-(2-pyridinylméthyl)-4-pipéridinyl)méthyl]-2(*S*)-pyrro-
lidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 108, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

F = 130°C

$$[\alpha]^{25} D = -44,8^\circ \text{ (c = 0,3 ; CH}_3\text{OH)}$$

Exemple 110

30 1-[(2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-[(1-(3-pyridinylméthyl)-4-pipéridinyl)méthyl]-2(*S*)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du chlorhydrate de 3-(chlorométhyl)pyridine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 80 %).

35 F = 107°C

$[\alpha]^{25}_D = -30,7^\circ$ ($c = 0,35$; CH_3OH)

Exemple 111

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 110, on obtient le produit attendu sous forme de flocons blancs (Rendement = 99 %).

$F = 141^\circ\text{C}$

$[\alpha]^{25}_D = -44,4^\circ$ ($c = 0,36$; CH_3OH)

Exemple 112

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation XIII, au départ du chlorhydrate de 4-(chlorométhyl)pyridine, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 83 %).

$F = 113^\circ\text{C}$

$[\alpha]^{25}_D = -27,7^\circ$ ($c = 0,39$; CH_3OH)

Exemple 113

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu à l'exemple 112, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 92 %).

$F = 96^\circ\text{C}$

$[\alpha]^{25}_D = -39,8^\circ$ ($c = 0,34$; CH_3OH)

PRÉPARATION XLIII

Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinepropanoïque, 1,1-diméthyléthyl ester

On prépare une suspension de 0,7 g ($1,06 \cdot 10^{-3}$ mole) du composé obtenu selon l'exemple 9 dans 20 ml de tétrahydrofurane. On ajoute, à 50°C ,

0,66 g ($5,1 \cdot 10^{-3}$ mole) d'acrylate de t-butyle et on maintient sous agitation pendant

100 heures à 50°C. Le solvant est chassé sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (97/3/0,1 ; v/v/v). On obtient ainsi 0,5 g du produit attendu sous forme d'un solide blanc (Rendement = 61 %).

5 F = 92°C

[α]²³_D = - 41° (c = 0,31 ; CH₃OH)

Exemple 114

Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinepropanoïque

On prépare une solution de 0,48 g (0,61.10⁻³ mole) du composé obtenu selon la préparation XLIII dans 30 ml de dichlorométhane et on ajoute, à 0°C, 66 mg (0,61.10⁻³ mole) d'anisole et, goutte à goutte, 10 ml d'acide trifluoroacétique. Le mélange réactionnel est ensuite maintenu sous agitation à température ambiante pendant 20 heures, puis concentré sous pression réduite. Le résidu est trittré dans 10 ml d'éther diéthylique et le produit solide obtenu est séparé par filtration puis purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (80/20/2 ; v/v/v). On obtient ainsi 0,2 g du produit attendu sous forme d'un solide blanc (Rendement = 45 %).

10 F = 140°C

[α]²²_D = - 52° (c = 0,35 ; CH₃OH)

Exemple 115

Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinepropanoïque, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu à l'exemple 114, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

F = 138°C

20 [α]²³_D = - 32° (c = 0,39 ; CH₃OH)

PRÉPARATION XLIV

Acide 4-[[[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinebutanoïque, méthyl ester

En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 9 et de 4-bromobutanoate de méthyle, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 58 %).

F = 98°C

5 [α]²²D = - 40° (c = 0,43 ; CH₃OH)

Exemple 116

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinebutanoïque

10 On prépare une solution de 0,49 g (0,65.10⁻³ mole) de l'ester obtenu selon la préparation XLIV dans 10 ml de dioxane et on ajoute 1,3 ml d'une solution de soude N. Le mélange réactionnel est chauffé à reflux pendant 10 heures puis concentré sous pression réduite. Le résidu est repris dans l'eau et acidifié jusqu'à pH 4,5 à l'aide d'une solution diluée d'acide chlorhydrique. L'eau est éliminée par lyophilisation et le solide obtenu est purifié par chromatographie sur gel de silice greffée RP18 en eluant à l'aide d'un mélange acetonitrile/eau (2/1 ;v/v). On obtient ainsi 0,24 g du produit attendu sous forme d'un solide blanc (Rendement = 50 %).

F = 178°C

20 [α]²⁰D = - 16° (c = 0,5 ; CH₃OH)

Exemple 117

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-1-pipéridinebutanoïque, tartrate

25 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 116, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87 %).

F = 158°C

[α]²⁴D = - 7° (c = 0,34 ; CH₃OH)

30 PRÉPARATION XLV

Acide 4-[[[1-[2,4-dichloro-3-[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-β-oxo-1-pipéridinepropanoïque, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon l'exemple 9 et de malonate de mono-t-butyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 59 %).

F = 101°C

5 [α]²⁹_D = - 34° (c = 0,33 ; CH₃OH)

Exemple 118

Acide 4-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-β-oxo-1-pipéridinepropanoïque, trifluororacétate

10 En opérant de façon analogue à l'exemple 114, au départ du composé obtenu selon la préparation XLV, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 87 %).

F = 130°C

[α]²²_D = - 22° (c = 0,56 ; CH₃OH)

15 Exemple 119

Acide 4-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-γ-oxo-1-pipéridinebutanoïque

20 On prépare une suspension de 0,5 g (0,76.10⁻³ mole) du composé obtenu selon l'exemple 9, dans 15 ml d'acétone et on ajoute 76 mg (0,76.10⁻³ mole) d'anhydride succinique. Le mélange réactionnel est chauffé à reflux pendant 8 heures et le solvant est éliminé sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (90/10/1 ; v/v/v). On obtient ainsi 0,26 g du produit attendu sous forme d'un solide blanc (Rendement = 45 %).

25 F = 125°C

[α]²²_D = - 33° (c = 0,38 ; CH₃OH)

Exemple 120

30 Acide 4-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-γ-oxo-1-pipéridinebutanoïque, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 119, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 75 %).

35 F = 130°C

$[\alpha]^{19}_D = -22^\circ$ (c = 0,50 ; CH₃OH)

PRÉPARATION XLVI

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-δ-oxo-1-pipéridinepentanoïque, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon l'exemple 9 et de glutarate de mono t-butyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 44 %).

F = 112°C

$[\alpha]^{22}_D = -41^\circ$ (c = 0,30 ; CH₃OH)

Exemple 121

Acide 4-[[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]méthyl]-δ-oxo-1-pipéridinepentanoïque, trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XLVI, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 77 %).

F = 131°C

$[\alpha]^{23}_D = -15^\circ$ (c = 0,37 ; CH₃OH)

PRÉPARATION XLVII

N-[2-[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]-éthyl]-N-méthyl-glycine, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 98, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

F = 71°C

$[\alpha]^{25}_D = -20^\circ$ (c = 0,37 ; CH₃OH)

Exemple 122

N-[2-[[1-[[2,4-dichloro-3-[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]-éthyl]-N-méthyl-glycine, trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XLVII, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 84 %).

F = 120°C

$[\alpha]^{22}_D = -29^\circ$ (c = 0,49 ; CH₃OH)

PRÉPARATION XLVIII

Acide [3-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]propyl]

5 (méthyl)carbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ de (3-aminopropyl)(méthyl)carbamate de t-butyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

10 F = 75°C

$[\alpha]^{25}_D = -26,5^\circ$ (c = 0,35 ; CH₃OH)

Exemple 123

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[3-(méthylamino)propyl]-2(S)-pyrrolidinecarboxamide,

15 trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation XLVIII, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 99 %).

F = 120°C

20 $[\alpha]^{24}_D = -49^\circ$ (c = 0,48 ; CH₃OH)

PRÉPARATION IL

N-[3-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]-propyl]-N-méthyl-glycine, 1,1-diméthyléthyl ester

25 En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 99, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 73 %).

F = 72°C

$[\alpha]^{25}_D = -12^\circ$ (c = 0,45 ; CH₃OH)

Exemple 124

N-[3-[[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl](méthyl)amino]-propyl]-N-méthyl-glycine, bis-trifluoroacétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation IL, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 92 %).

F = 110°C

5 [α]²²_D = - 34° (c = 0,34 ; CH₃OH)

Exemple 125

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 On prépare un mélange de 0,5 g (0,563.10⁻³ mole) du composé obtenu selon l'exemple 26 dans 10 ml d'acétonitrile. On ajoute 0,39 g (2,81.10⁻³ mole) de carbonate de potassium puis 0,111 g (0,676.10⁻³ mole) du chlorure de 2-picolyde (sous forme de chlorhydrate). Le mélange réactionnel est agité à 80°C pendant 45 mn puis refroidi et filtré. Les sels minéraux sont rincés par du dichlorométhane que l'on joint au filtrat. Cette solution est concentrée sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (9/1 ; v/v). On obtient ainsi le produit attendu sous forme d'une poudre blanche (Rendement = 71 %).

F = 118°C

20 [α]²⁸_D = - 46° (c = 0,36 ; CHCl₃)

Exemple 126

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-N-[[1-(2-pyridinylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 125, on obtient le produit attendu sous forme d'un solide beige (Rendement = 91 %).

F = 139°C

[α]²⁸_D = - 76° (c = 0,59 ; CH₃OH)

30 Exemple 127

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[[1-(phénylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

35 On prépare un mélange de 1 g (1,12.10⁻³ mole) du composé obtenu selon l'exemple 9 dans 4 ml de diméthylformamide et 100 ml de dichlorométhane.

On ajoute 0,787 ml ($5,64 \cdot 10^{-3}$ mole) de triéthylamine, puis, après avoir refroidi le milieu à 0°C, 0,148 ml ($1,24 \cdot 10^{-3}$ mole) de bromure de benzyle. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 24 heures puis concentré sous pression réduite. Le résidu est repris en solution dans l'acétate d'éthyle en présence d'eau ; le mélange est amené à pH alcalin (pH 9-10) à l'aide d'une solution de soude. La phase aqueuse est extraite à l'acétate d'éthyle et les phases organiques réunies sont lavées à l'eau, séchées sur sulfate de magnésium puis concentrées sous pression réduite. La purification du produit brut par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (95/5 ; v/v) permet d'obtenir le produit attendu sous forme d'un solide fin blanc (Rendement = 56%).

F = 123°C

$[\alpha]^{28}_D = -43^\circ$ (c = 0,73 ; CH₃OH)

Exemple 128

15 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(phénylméthyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 127, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 95 %).

F = 161°C

$[\alpha]^{26}_D = -44^\circ$ (c = 0,63 ; CH₃OH)

Exemple 129

25 N-[(1-benzoyl-4-pipéridinyl)méthyl]-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidine carboxamide

En opérant de façon analogue à l'exemple 127, au départ de chlorure de benzoyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

30 F = 102°C

$[\alpha]^{28}_D = -48^\circ$ (c = 0,66 ; CHCl₃)

Exemple 130

35 N-[(1-benzoyl-4-pipéridinyl)méthyl]-1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidine carboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 129, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 95 %).

F = 153°C

5 [α]²⁶D = - 24° (c = 0,55 ; CH₃OH)

Exemple 131

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

10 En opérant de façon analogue à l'exemple 127, au départ du chlorhydrate du chlorure d'isonicotinoyle, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 34 %).

F = 134°C

[α]²⁸D = - 56° (c = 0,64 ; CHCl₃)

15 Exemple 132

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(4-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 131, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

F = 165°C

[α]²⁶D = - 29° (c = 0,48 ; CH₃OH)

Exemple 133

25 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 127, au départ du chlorure de nicotinoyle, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 79%).

F = 109°C

[α]²⁴D = - 45° (c = 0,88 ; CHCl₃)

Exemple 134

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(3-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 133, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 82%).

F = 150°C

[α]²⁴_D = - 38° (c = 0,59 ; CH₃OH)

Exemple 135

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 1, au départ d'acide picolinique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 52 %).

F = 103°C

[α]²⁴_D = - 58° (c = 0,90 ; CHCl₃)

Exemple 136

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[[1-(2-pyridinylcarbonyl)-4-pipéridinyl]méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 135, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 89 %).

F = 152°C

[α]²⁴_D = - 25° (c = 0,76 ; CH₃OH)

PRÉPARATION L

30 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ de 8-hydroxy-2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)quinoléine, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98%).

F = 130°C

35 [α]²²_D = - 35° (c = 0,68 ; CHCl₃)

PREPARATION LI

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation L, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 72 %).

F = 146°C

[α]²⁴_D = - 5° (c = 0,68 ; CH₃OH)

Exemple 137

10 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de l'acide obtenu selon la préparation LI et de N-N-diméthylpropanediamine, on obtient le produit attendu sous forme d'un solide amorphe beige (Rendement = 74 %).

F = 105°C

[α]²⁴_D = - 51° (c = 0,75 ; CHCl₃)

Exemple 138

20 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[3-(diméthylamino)propyl]-2(S)-pyrrolidinecarboxamide, hémi-sulfate

En opérant de façon analogue à l'exemple 44, au départ du composé obtenu selon l'exemple 137, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98 %).

25 F = 154°C

[α]²³_D = - 26° (c = 0,77 ; CH₃OH)

Exemple 139

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 137, au départ du chlorhydrate de méthylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 60 %).

F = 131°C

[α]²⁸_D = - 37° (c = 0,94 ; CHCl₃)

Exemple 140

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à l'exemple 137, au départ de 2(aminométhyl)pyridine, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 85 %).

F = 95°C

[α]²⁸_D = - 31° (c = 0,53 ; CHCl₃)

Exemple 141

1-[[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-[(2-pyridinyl)méthyl]-2(S)-pyrrolidine-carboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 4, au départ du composé obtenu selon l'exemple 140, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 85 %).

F = 108°C

[α]²⁸_D = - 33° (c = 0,52 ; CH₃OH)

Exemple 142

20 8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-2-méthyl-4-(1H-1,2,4-triazol-1-yl)quinoléine

En opérant de façon analogue à l'exemple 137, au départ de 1-(2-pyridyl)pipérazine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 75 %).

25 F = 108°C

[α]²⁶_D = + 9° (c = 0,47 ; CHCl₃)

Exemple 143

30 8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-2-méthyl-4-(1H-1,2,4-triazol-1-yl)quinoléine, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 142, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 88 %).

F = 160°C

35 [α]²⁶_D = - 12° (c = 0,65 ; CH₃OH)

Exemple 144

8-[[2,6-dichloro-3-[(2(S)-(4-morpholinylcarbonyl)-1-pyrrolidinyl]sulfonyl]-phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine

En opérant de façon analogue à l'exemple 1, au départ de morpholine, 5 on obtient le produit attendu sous forme d'un solide blanc (Rendement = 76 %).

F = 50°C

[α]²⁷D = + 15° (c = 0,54 ; CHCl₃)

Exemple 145

8-[[2,6-dichloro-3-[(2(S)-(4-morpholinylcarbonyl)-1-pyrrolidinyl]sulfonyl]-phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine, tartrate

10 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 144, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 95 %).

F = 138°C

15 [α]²⁷D = - 10° (c = 0,72 ; CH₃OH)

Exemple 146

8-[[2,6-dichloro-3-[(2(S)-[(4-méthyl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]sulfonyl]phényméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine

20 En opérant de façon analogue à l'exemple 1, au départ de 1-méthylpipérazine, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 34 %).

[α]²⁷D = + 11° (c = 0,62 ; CHCl₃)

RMN ¹H (300 MHz ; DMSOd6)

25 8.13 (t, J=8.6Hz, 1H) ; 8.09 (s, 1H) ; 7.80 (d, J=8.6Hz, 1H) ; 7.67 (s, 1H) ; 7.6-7.50 (m, 3H) ; 7.35-7.20 (m, 2H) ; 5.56 (s, 2H) ; 5.0-4.95 (m, 1H) ; 3.6-3.3 (m, 6H) ; 2.67 (s, 3H) ; 2.3-2.1 (m, 5H) ; 2.16 (s, 3H) ; 2.0-1.80 (m, 3H).

Exemple 147

8-[[2,6-dichloro-3-[(2(S)-[(4-méthyl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]sulfonyl]phényméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine, tartrate

30 En opérant de façon analogue à l'exemple 2 au départ du composé obtenu selon l'exemple 146, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 94 %).

F = 138°C

[α]²⁷D = - 13° (c = 0,60 ; CH₃OH)

Exemple 148

8-[[2,6-dichloro-3-[[2(S)-[(4-phényl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]-sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à l'exemple 1, au départ de 1-phénylpipérazine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 77 %).

F = 88°C

$[\alpha]^{28}_D = + 15^\circ$ (c = 0,58 ; CHCl₃)

Exemple 149

10 8-[[2,6-dichloro-3-[[2(S)-[(4-phényl-1-pipérazinyl)carbonyl]-1-pyrrolidinyl]-sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, méthanesulfonate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 148, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 93 %).

F = 147°C

$[\alpha]^{28}_D = - 3^\circ$ (c = 0,50 ; CH₃OH)

Exemple 150

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(2-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(2-pyridinyl)éthylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87%).

F = 82°C

25 $[\alpha]^{28}_D = - 29^\circ$ (c = 1,13 ; CHCl₃)

Exemple 151

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(2-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 150, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 85%).

F = 110°C

$[\alpha]^{26}_D = - 31^\circ$ (c = 0,61 ; CH₃OH)

Exemple 152

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(3-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(3-pyridinyl)éthylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 87%).

F = 117°C

$[\alpha]^{29}_D = -41^\circ$ (c = 0,59 ; CHCl₃)

Exemple 153

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(3-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 152, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 92 %).

F = 128°C

$[\alpha]^{29}_D = -23^\circ$ (c = 0,74 ; CH₃OH)

Exemple 154

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 2-(4-pyridinyl)éthylamine, on obtient le produit attendu sous forme d'un solide beige (Rendement = 94%).

F = 120°C

25 $[\alpha]^{27}_D = -45^\circ$ (c = 0,56 ; CHCl₃)

Exemple 155

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[2-(4-pyridinyl)éthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

30 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 154, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 93%).

F = 136°C

$[\alpha]^{27}_D = -18^\circ$ (c = 0,76 ; CH₃OH)

Exemple 156

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(phénylméthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de benzylamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 97%).

F = 116°C

$[\alpha]^{27}_D = -31^\circ$ (c = 0,77 ; CHCl₃)

Exemple 157

10 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-(phénylméthyl)-2(S)-pyrrolidinecarboxamide, méthane-sulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 156, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 91%).

F = 135°C

$[\alpha]^{27}_D = -103^\circ$ (c = 0,83 ; CH₃OH)

PRÉPARATION LII

20 Acide 4-[[1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]-1-pipérazine-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à l'exemple 1, au départ de l'ester t-butyle de l'acide 1-pipérazine carboxylique (N-boc-pipérazine), on obtient le produit attendu sous forme d'un solide blanc (Rendement = 33%).

25 F = 98°C

$[\alpha]^{20}_D = +4^\circ$ (c = 0,79 ; CHCl₃)

Exemple 158

30 8-[[2,6-dichloro-3-[[2(S)-(1-pipérazinylcarbonyl)-1-pyrrolidinyl]sulfonyl]-phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, bis trifluoro-acétate

En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation LII, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 99 %).

F = 143°C

35 $[\alpha]^{19}_D = +22^\circ$ (c = 0,47 ; CH₃OH)

Exemple 159

8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

5 En opérant de façon analogue à l'exemple 127, au départ du composé obtenu selon l'exemple 158 et de chlorure de 2-picolyde, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 54 %).

$[\alpha]^{20}_D = + 11^\circ$ ($c = 0,54$; CHCl_3)

RMN ^1H (250 MHz ; DMSOd6)

10 8.5-8.45 (m, 1H) ; 8.2-8.05 (m, 2H) ; 7.85-7.70 (m, 2H) ; 7.68-7.64 (m, 1H) ; 7.6-7.5 (m, 3H) ; 7.42 (d, $J=7.8$ Hz, 1H) ; 7.35-7.20 (m, 3H) ; 5.56 (s, 2H) ; 5-4.95 (m, 1H) ; 3.60 (s, 2H) ; 3.55-3.30 (m, 6H) ; 2.66 (s, 3H) ; 2.45-2.15 (m, 5H) ; 2-1.8 (m, 3H).

Exemple 160

15 8-[[2,6-dichloro-3-[[2(S)-[[4-(2-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 159, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 91 %).

$F = 143^\circ\text{C}$

$[\alpha]^{26}_D = - 12^\circ$ ($c = 0,56$; CH_3OH)

Exemple 161

20 8-[[2,6-dichloro-3-[[2(S)-[[4-(3-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

En opérant de façon analogue à l'exemple 159, au départ de chlorure de 3-picolyde, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 26 %).

25 $F = 102^\circ\text{C}$

$[\alpha]^{22}_D = + 12^\circ$ ($c = 0,40$; CHCl_3)

Exemple 162

30 8-[[2,6-dichloro-3-[[2(S)-[[4-(3-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, méthanesulfonate

35

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 161, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 95 %).

F = 154°C

5 [α]²⁶_D = - 8° (c = 0,72 ; CH₃OH)

Exemple 163

8-[[2,6-dichloro-3-[[2(S)-[[4-(4-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne

10 En opérant de façon analogue à l'exemple 159, au départ de chlorure de 4-picolyde, on obtient le produit attendu sous forme d'un solide fin beige (Rendement = 52 %).

F = 108°C

[α]²²_D = + 12° (c = 0,40 ; CHCl₃)

15 **Exemple 164**

8-[[2,6-dichloro-3-[[2(S)-[[4-(4-pyridinylméthyl)-1-pipérazinyl]carbonyl]-1-pyrrolidinyl]sulfonyl]phényl]méthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléïne, méthanesulfonate

20 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 163, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 97 %).

F = 156°C

[α]²³_D = - 14° (c = 0,77 ; CH₃OH)

PRÉPARATION LIII

25 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quinolinyl]-oxy]méthyl]phényl]sulfonyl]-N-[[1-[2-(acétoxy)éthyl]-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à la préparation XIII, au départ du composé obtenu selon l'exemple 26 et d'acétate de 2-bromoéthyle, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 31%).

[α]²⁹_D = - 47° (c = 0,55 ; CHCl₃)

RMN ¹H (250 MHz ; DMSO_d6)

35 9.18 (s, 1H) ; 8.44 (s, 1H) ; 8.10 (d, J=8.6 Hz, 1H) ; 7.93 (t, J=5.4 Hz, NH) ; 7.81 (d, J=8.7Hz, 1H) ; 7.73 (s, 1H) ; 7.6-7.5 (m, 3H) ; 5.58 (s, 2H) ; 4.4-4.3 (m, 1H) ; 4.06 (t, J=6 Hz, 2H) ; 3.6-3.5 (m, 1H) ; 3.45-3.30 (m, 1H) ; 2.95-2.75

(m, 4H) ; 2.69 (s, 3H) ; 2.50-2.45 (m, 2H) ; 2.25-1.75 (6H) ; 1.99 (s, 3H) ; 1.55-1.45 (m, 2H) ; 1.35-1.20 (m, 1H) ; 1.15-0.95 (m, 2H).

Exemple 165

5 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]oxy]méthyl]phényl]sulfonyl]-N-[[1-[(2-hydroxyéthyl)-4-pipéridinyl]-méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation LIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

10 F = 115°C

[α]²⁹_D = - 43° (c = 0,58 ; CHCl₃)

Exemple 166

15 1-[[2,4-dichloro-3-[[[2-méthyl-4-(1*H*-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]oxy]méthyl]phényl]sulfonyl]-N-[[1-(2-(hydroxyéthyl)-4-pipéridinyl)-méthyl]-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 165, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 82 %).

F = 137°C

20 [α]²⁶_D = - 60° (c = 0,14 ; CH₃OH)

Exemple 167

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[5-(diméthylamino)pentyl]-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à l'exemple 1, au départ de N,N-diméthyl-1,5-pentanediamine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 53 %).

F = 85°C

[α]²⁸_D = - 31° (c = 0,37 ; CH₃OH)

Exemple 168

30 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-[5-(diméthylamino)pentyl]-2(S)-pyrrolidinecarboxamide, tartrate

35 En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 167, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 97 %).

F = 126°C

$[\alpha]^{28}_D = -31,6^\circ$ (c = 0,38 ; CH₃OH)

PRÉPARATION LIV

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(R)-pyrrolidinol

5 En opérant de façon analogue à la préparation VII, au départ de 3(R)-pyrrolidinol, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 63 %).

F = 121°C

$[\alpha]^{25}_D = +7,9^\circ$ (c = 0,51; CH₃OH)

10 Exemple 169

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(R)-pyrrolidinol

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LIV, on obtient le produit attendu sous forme de 15 cristaux blancs (Rendement = 28 %).

F = 166°C

$[\alpha]^{25}_D = -2,1^\circ$ (c = 0,66 ; CH₃OH)

15 Exemple 170

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(R)-pyrrolidinol, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 169, on obtient le produit attendu sous forme d'un solide fin jaune pâle (Rendement = 97 %).

F = 162°C

25 $[\alpha]^{25}_D = +1,65^\circ$ (c = 0,59 ; CH₃OH)

PRÉPARATION LV

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(S)-pyrrolidinol

En opérant de façon analogue à la préparation VII, au départ de 3(S)-pyrrolidinol, on obtient le produit attendu sous forme de cristaux blancs 30 (Rendement = 49 %).

F = 120°C

$[\alpha]^{25}_D = -6^\circ$ (c = 0,61 ; CH₃OH)

Exemple 171

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(S)-pyrrolidinol

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LV, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 31 %).

F = 166°C

5 [α]²⁵_D = + 2,3° (c = 0,54 ; CH₃OH)

Exemple 172

1-[{[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-3(S)-pyrrolidinol, tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 171, on obtient le produit attendu sous forme d'un solide fin beige (Rendement = 99 %).

F = 163°C

[α]²⁵_D = + 3,45° (c = 0,67 ; CH₃OH)

PREPARATION LVI

15 N-[1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(R)-pyrrolidinyl]-acétamide

En opérant de façon analogue à la préparation VII, au départ de N-[3(R)-pyrrolidinyl]acétamide, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 81 %).

20 F = 222°C

[α]²⁵_D = - 1,3° (c = 1,12; CHCl₃)

Exemple 173

N-[1-[{[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-3(R)-pyrrolidinyl]acétamide

25 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LVI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

F = 246°C

[α]²⁵_D = + 26,2° (c = 0,80 ; CH₃OH)

PREPARATION LVII

N-[1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-3(S)-pyrrolidinyl]-acétamide

En opérant de façon analogue à la préparation VIII, au départ de N-[3(S)-pyrrolidinyl]acétamide, on obtient le produit attendu sous forme d'un solide

35 blanc (Rendement = 86 %).

F = 221°C

$[\alpha]^{25}_D = +1,7^\circ$ (c = 0,98; CHCl₃)

Exemple 174

5 N-[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-3(S)-pyrrolidinyl]acétamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 69 %).

F = 246°C

10 $[\alpha]^{25}_D = -26,6^\circ$ (c = 1,2; CH₃OH)

PRÉPARATION LVIII

N-[3-[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]propyl]-N-méthyl-glycine, 1-1diméthyléthyl ester

15 En opérant de façon analogue à la préparation XVI, au départ du composé obtenu selon l'exemple 123, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

F = 74°C

$[\alpha]^{24}_D = -33^\circ$ (c = 0,36; CH₃OH)

20 **Exemple 175**

N-[3-[[1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pyrrolidinyl]carbonyl]amino]propyl]-N-méthyl-glycine, bis trifluoroacétate

25 En opérant de façon analogue à l'exemple 13, au départ du composé obtenu selon la préparation LVIII, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 78 %).

F = 115°C

$[\alpha]^{25}_D = -31^\circ$ (c = 0,40; CH₃OH)

PRÉPARATION LIX

30 Acide 1[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-pipéridine-carboxylique, méthyl ester

On prépare une solution de 0,68 g ($3,78 \cdot 10^{-3}$ mole) du chlorhydrate de l'ester méthylique de l'acide 2(S)-pipéridinecarboxylique dans 30 ml d'acétone nitrile et on ajoute 1,14 g ($11,4 \cdot 10^{-3}$ mole) de bicarbonate de potassium en solution dans 10 ml d'eau, puis 1,28 g ($3,78 \cdot 10^{-3}$ mole) de chlorure de 3-(bromométhyl)-

2,4-dichlorobenzènesulfonyle. Le mélange réactionnel est maintenu sous agitation pendant 20 heures à température ambiante puis concentré sous pression réduite. Le résidu est repris par du dichlorométhane et cette phase organique est lavée à l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/acétate d'éthyle (95/5 ;v/v). On obtient ainsi 1,02 g du produit attendu sous forme d'un solide blanc (Rendement = 61 %).

F = 91°C

$[\alpha]^{25}_D = + 4^\circ$ (c = 0,56; CH₃OH)

10 Note : le produit attendu contient une proportion d'analogue chlorométhylé en position 3 qui peut réagir comme le produit attendu lors de l'étape suivante et n'a pas été séparé.

PRÉPARATION LX

Acide 1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-pipéridinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LIX, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 72 %).

F = 81°C

20 $[\alpha]^{25}_D = + 13^\circ$ (c = 0,380; CH₃OH)

PRÉPARATION LXI

Acide 1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-2(S)-pipéridinecarboxylique

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 73 %).

F = 208°C

$[\alpha]^{26}_D = - 5^\circ$ (c = 0,30; DMSO)

Exemple 176

30 1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-N-méthyl-2(S)-pipéridinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 49 %).

35 F = 74°C

$[\alpha]^{24}_D = + 3^\circ$ ($c = 0,30$; CH₃OH)

Exemple 177

1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(S)-pipéridinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 176, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 77 %).

F = 153°C

$[\alpha]^{24}_D = + 5,2^\circ$ ($c = 0,32$; CH₃OH)

10 PREPARATION LXII

Acide 3-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-thiazolidine-carboxylique, méthyl ester

En opérant de façon analogue à la préparation LIX, au départ de l'ester méthyle de l'acide 4(R)-thiazolidinecarboxylique, on obtient le produit attendu sous forme d'un solide beige (Rendement = 15 %).

F = 48-50°C

$[\alpha]^{24}_D = - 40,2^\circ$ ($c = 1,48$; CH₃OH)

PREPARATION LXIII

Acide 3-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-4(R)-thiazolidinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXII, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 50 %).

F = 60°C

25 $[\alpha]^{27}_D = - 31,4^\circ$ ($c = 0,28$; CH₃OH)

PREPARATION LXIV

Acide 3-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-4(R)-thiazolidinecarboxylique

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXIII, on obtient le produit attendu sous forme d'un solide beige (Rendement = 60 %).

F = 130°C

$[\alpha]^{27}_D = - 31,8^\circ$ ($c = 0,33$; DMSO)

Exemple 178

3-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(R)-thiazolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXIV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 80 %).

F = 120°C

[α]²⁷_D = - 65,5° (c = 0,36 ; CH₃OH)

Exemple 179

3-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(R)-thiazolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 178, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 99 %).

F = 143°C

[α]²⁷_D = - 56° (c = 0,33 ; CH₃OH)

PREPARATION LXV

Acide 1-[3-(bromométhyl)-2,4-dichlorophényl]-3-pyrrolidinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation LIX, au départ de l'ester méthylique de l'acide 3-pyrrolidinecarboxylique, on obtient le produit attendu sous forme d'une poudre beige (Rendement = 76 %).

F = 94°C

PREPARATION LXVI

Acide 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-3-pyrrolidinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation LX, au départ du composé obtenu selon la préparation LXV, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 84 %).

F = 180°C

PREPARATION LXVII

Acide 1-[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]phényl]sulfonyl]-3-pyrrolidinecarboxylique

En opérant de façon analogue à la préparation LXI, au départ du composé obtenu selon la préparation LXVI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 99 %).

F = 145°C

5 **Exemple 180**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-3-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 80 %).

10 F = 108°C

15 **Exemple 181**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phénylsulfonyl]-N-méthyl-3-pyrrolidinecarboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 180, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 92 %).

F = 137°C

20 **PRÉPARATION LXVIII**

20 1-[[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]pyrrolidine

En opérant de façon analogue à la préparation LIX, au départ de pyrrolidine, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 94 %).

F = 115°C

25 **Exemple 182**

8-[[2,6-dichloro-3-(1-pyrrolidinylsulfonyl)phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXVIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 67 %).

F = 193°C

30 **Exemple 183**

8-[[2,6-dichloro-3-(1-pyrrolidinylsulfonyl)phénylméthoxy]-4-(1*H*-imidazol-1-yl)-2-méthyl-quinoléine, chlorhydrate

En opérant de façon analogue à l'exemple 69, au départ du composé obtenu selon l'exemple 182, on obtient le produit attendu sous forme d'une poudre jaune (Rendement = 99 %).

F = 142°C

5 **Exemple 184**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-hydroxy-N-méthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XXVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 49 %).

10 F = 134°C

[α]²⁴_D = + 5° (c = 0,32; CH₃OH)

15 **Exemple 185**

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-hydroxy-N-méthyl)-2(S)-pyrrolidinecarboxamide,

tartrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 184, on obtient le produit attendu sous forme d'un solide fin jaune pâle (Rendement = 82 %).

20 F = 125°C

[α]²⁴_D = + 10° (c = 0,40 ; CH₃OH)

PREPARATION LXIX

Acide 4(R)-méthoxy-2(S)-[(méthylamino)carbonyl]-1-pyrrolidinecarboxylique, phényleméthyl ester

25 En opérant de façon analogue à l'exemple 1, au départ de la 1-(phényleméthoxycarbonyl)-4(E)méthoxy-L-proline, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 65 %).

F = 45-47°C

PREPARATION LXX

30 4(R)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

On prépare une solution de 1,27 g (4,34.10⁻³ mole) du composé obtenu selon la préparation LXIX dans 100 ml de méthanol et on ajoute 0,13 g de charbon palladié à 10 %. Le mélange est agité sous atmosphère d'hydrogène pendant 2 heures à pression atmosphérique, puis filtré pour éliminer le catalyseur.

35 L'élimination du solvant sous pression réduite permet d'obtenir 0,64 g du produit

attendu sous forme d'une huile qui est utilisée sans purification complémentaire à l'étape suivante (Rendement = 93 %)

PRÉPARATION LXXI

1-[(3-(bromométhyl)-2,4-dichlorophényl)sulfonyl]-4(R)-méthoxy-N-méthyl-
5 2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 80 %).

F = 75°C

10 [α]²⁷D = + 16° (c = 0,31; CH₃OH)

Exemple 186

1-[(2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl)sulfonyl]-4(R)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 40 %).

F = 93°C

[α]²⁷D = + 19° (c = 0,45; CH₃OH)

Exemple 187

20 1-[(2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl)sulfonyl]-4(R)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 186, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 86 %).

F = 143°C

[α]²⁷D = + 17° (c = 0,36; CH₃OH)

PRÉPARATION LXXII

30 4(E)-éthoxy-1-(phénylméthoxycarbonyl)-L-proline, éthyl ester

On prépare une solution de 3 g (11,3.10⁻³ mole) de 4(E)-hydroxy-1-(phénylméthoxycarbonyl)-L-proline dans 15 ml de diméthylformamide et on ajoute 1,12 g (28,2.10⁻³ mole) d'hydrure de sodium (à 60 % dans l'huile). Après 30 mn sous agitation à température ambiante, on ajoute 2,10 ml (26.10⁻³ mole) d'iodoéthane. Le mélange est maintenu sous agitation pendant 24 heures à température ambiante, puis versé sur 250 ml d'eau et extrait par l'acétate d'éthyle.

La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/acétate d'éthyle (95/5 ; v/v). On obtient ainsi 2,3 g du produit attendu sous forme d'une huile jaune (Rendement = 63 %).

5 [α]²⁵_D = - 42,1° (c = 0,42; CH₃OH)

PRÉPARATION LXXIII

4(E)-éthoxy-1-(phénylméthoxycarbonyl)-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXXII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 99 %).

10 [α]²⁵_D = - 41,9° (c = 0,52; CH₃OH)

PRÉPARATION LXXIII

4(R)-éthoxy-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-pyrrolidine-carboxamide

15 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXXII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 64 %).

[α]²⁵_D = - 31,7° (c = 0,35; CH₃OH)

PRÉPARATION LXXIV

4(R)-éthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXIII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 97 %).

20 [α]²⁵_D = - 44,2° (c = 0,29; CH₃OH)

PRÉPARATION LXXV

1-[[3-(bromométhyl)-2,4-dichlorophénylsulfonyl]-4(R)-éthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXIV, on obtient le produit attendu sous forme d'un solide beige (Rendement = 89 %).

30 F = 122°C

[α]²⁵_D = - 5,1° (c = 0,25; CH₃OH)

Exemple 188

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-

35 **phényl]sulfonyl]-4(R)-éthoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide**

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 34 %).

F = 80°C

5 [α]²⁵D = + 19,2° (c = 0,22; CH₃OH)

Exemple 189

1-[{2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl}sulfonyl]-4(R)-éthoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide, méthanesulfonate

10 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 188, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 92 %).

F = 138°C

[α]²⁵D = + 21,9° (c = 0,30; CH₃OH)

15 **PREPARATION LXXVI**

4(E)-propoxy-1-(phénylméthoxycarbonyl)-L-proline, propyl ester

En opérant de façon analogue à la préparation LXXII, au départ d'iodopropane, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 35 %).

20 [α]²⁵D = - 52,4° (c = 0,56; CH₃OH)

PREPARATION LXXVII

4(E)-propoxy-1-(phénylméthoxycarbonyl)-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXXVI, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 99 %).

25 [α]²⁵D = - 38,3° (c = 0,29 ; CH₃OH)

PREPARATION LXXVIII

4(R)-propoxy-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-pyrrolidine-carboxamide

30 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXXVII, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 75 %).

[α]²⁵D = - 33° (c = 0,28 ; CH₃OH)

PREPARATION LXXIX

35 4(R)-propoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXVIII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 90 %).

$[\alpha]^{25}_D = -45,4^\circ$ ($c = 0,37$; CH_3OH)

5 **PRÉPARATION LXXX**

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-propoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXIX, on obtient le produit attendu sous forme d'un solide beige (Rendement = 93 %).

10 $F = 62^\circ\text{C}$

$[\alpha]^{25}_D = -6,9^\circ$ ($c = 0,27$; CH_3OH)

Exemple 190

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-propoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 31 %).

15 $F = 84^\circ\text{C}$

20 $[\alpha]^{25}_D = +25,3^\circ$ ($c = 0,22$; CH_3OH)

Exemple 191

1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-propoxy-N-méthyl-2-(S)-pyrrolidinecarboxamide, méthanesulfonate

25 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 190, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 94 %).

30 $F = 141^\circ\text{C}$

$[\alpha]^{25}_D = +13,7^\circ$ ($c = 0,30$; CH_3OH)

PRÉPARATION LXXXI

4(E)-(cyclopropylméthoxy)-1-(phénylethoxycarbonyl)-L-proline, cyclo-propylméthyl ester

En opérant de façon analogue à la préparation LXXII, au départ de bromométhyl-cyclopropane, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 27 %).

$[\alpha]^{25}_D = -28,7^\circ (c = 0,33; \text{CH}_3\text{OH})$

PRÉPARATION LXXXII

4(E)-(cyclopropylméthoxy)-1-(phénylméthoxycarbonyl)-L-proline,

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation LXXXI, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 98 %).

$[\alpha]^{25}_D = -31,1^\circ (c = 0,25; \text{CH}_3\text{OH})$

PRÉPARATION LXXXIII

4(R)-(cyclopropylméthoxy)-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation LXXXII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 74 %).

$[\alpha]^{25}_D = -28,8^\circ (c = 0,28; \text{CH}_3\text{OH})$

PRÉPARATION LXXXIV

4(R)-(cyclopropylméthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXXIII, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 82 %).

$[\alpha]^{25}_D = -34,2^\circ (c = 0,24; \text{CH}_3\text{OH})$

PRÉPARATION LXXXV

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-(cyclopropylméthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXXIV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 90 %).

$F = 161^\circ\text{C}$

$[\alpha]^{25}_D = -3,9^\circ (c = 0,27; \text{CH}_3\text{OH})$

Exemple 192

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(cyclopropylméthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide.

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXXV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 59 %).

-F = 98°C

$[\alpha]^{25}_D = + 21,2^\circ$ (c = 0,23; CH₃OH)

Exemple 193

5 **1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(cyclopropylméthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide, méthanesulfonate**

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 192, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 87 %).

10 F = 149°C

$[\alpha]^{25}_D = + 22,9^\circ$ (c = 0,29; CH₃OH)

PRÉPARATION LXXXVI

4(R)-(1,1-diméthyléthoxy)-1-(phénylméthoxycarbonyl)-N-méthyl-2(S)-pyrrolidinecarboxamide

15 En opérant de façon analogue à l'exemple 1, au départ de 4(E)-(1,1-diméthyléthoxy)-1-(phénylméthoxycarbonyl)-L-proline, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 86 %).

$[\alpha]^{25}_D = - 6,2^\circ$ (c = 0,43; CH₃OH)

PRÉPARATION LXXXVII

4(R)-(1,1-diméthyléthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation LXXXVI, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 99 %).

$[\alpha]^{25}_D = - 34,8^\circ$ (c = 0,68; CH₃OH)

PRÉPARATION LXXXVIII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-(1,1-diméthyléthoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation LXXVII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 91 %).

F = 73°C

$[\alpha]^{25}_D = - 6,4^\circ$ (c = 0,44; CH₃OH)

Exemple 194

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(1,1-diméthyléthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide

5 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation LXXXVIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 65 %).

F = 84°C

$[\alpha]^{25}_D = + 19,4^\circ$ (c = 0,26; CH₃OH)

Exemple 195

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(1,1-diméthyléthoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide, méthanesulfonate

15 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 194, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 96 %).

F = 150°C

$[\alpha]^{25}_D = + 21,6^\circ$ (c = 0,26; CH₃OH)

PRÉPARATION LXXXIX

20 1-[(1,1-diméthyléthoxy)carbonyl]-4(R)-(phénylethoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ de 1-[(1,1-diméthyléthoxy)carbonyl]-4(E)-(phénylethoxy)-L-proline, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 82 %).

25 $[\alpha]^{25}_D = - 13,4^\circ$ (c = 0,14; CH₃OH)

PRÉPARATION XC

4(R)-(phénylethoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide, trifluoroacétate

30 En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation LXXXIX, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 98 %).

F = 54°C

$[\alpha]^{25}_D = - 3,1^\circ$ (c = 0,37; CH₃OH)

PREPARATION XCI

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(R)-(phénylethoxy)-N-méthyl-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation XC, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 73 %).

F = 62-64°C

$[\alpha]^{25}_D = -14,2^\circ$ (c = 0,37; CH₃OH)

Exemple 196

10 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(phénylethoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 29 %).

F = 100°C

$[\alpha]^{25}_D = +6,1^\circ$ (c = 0,29; CH₃OH)

Exemple 197

20 1-[[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolyl]oxy]méthyl]-phényl]sulfonyl]-4(R)-(phénylethoxy)-N-méthyl-2-(S)-pyrrolidine-carboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 196, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 96 %).

25 F = 140-142°C

$[\alpha]^{25}_D = +20,1^\circ$ (c = 0,32; CH₃OH)

PREPARATION XCII

2,5-dihydro-1-[(1,1-diméthyléthoxy)carbonyl]-N-méthyl-1H-pyrrole-2-(S)-carboxamide

30 En opérant de façon analogue à l'exemple 1, au départ d'acide 2,5-dihydro-1-[(1,1-diméthyléthoxy)carbonyl]-1H-pyrrole-2(S)-carboxylique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 77 %).

F = 47-48°C

$[\alpha]^{19}_D = -166^\circ$ (c = 0,4 ; CH₃OH)

PREPARATION XCIII**2,5-dihydro-N-méthyl-1*H*-pyrrole-2-(S)-carboxamide, trifluoroacétate**

En opérant de façon analogue à l'exemple 9, au départ du composé obtenu selon la préparation XCII, on obtient le produit attendu sous forme d'une huile (Rendement = 98 %).

[α]¹⁹D = - 67° (c = 0,50 ; CH₃OH)

PREPARATION XCIV**1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2,5-dihydro-N-méthyl-1*H*-pyrrole-2(S)-carboxamide**

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation XCIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

F = 66°C

[α]²⁵D = - 111° (c = 0,43; CH₃OH)

Exemple 198**1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2,5-dihydro-N-méthyl-1*H*-pyrrole-2(S)-carboxamide**

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCIV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 54 %).

F = 132°C

[α]²⁵D = - 92° (c = 0,33; CH₃OH)

Exemple 199**1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-2,5-dihydro-N-méthyl-1*H*-pyrrole-2(S)-carboxamide, méthanesulfonate**

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 198, on obtient le produit attendu sous forme d'un solide fin jaune (Rendement = 99 %).

F = 139°C

[α]²⁵D = - 76° (c = 0,44; CH₃OH)

PREPARATION XCV**Acide 1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-2(S)-azetidinecarboxylique, méthyl ester**

En opérant de façon analogue à la préparation VII, au départ du 2(S)-azetidinecarboxylate de méthyle, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 33 %).

F = 150°C

5 [α]²⁸_D = + 6° (c = 0,38; CH₃OH)

PRÉPARATION XCVI

Acide 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-azetidinecarboxylique, méthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 77 %).

F = 80°C

[α]²⁸_D = + 73° (c = 0,32; CH₃OH)

PRÉPARATION XCVII

15 Acide 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]-méthyl]phényl]sulfonyl]-2(S)-azetidinecarboxylique

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation XCVI, on obtient le produit attendu sous forme d'un solide blanc écrú (Rendement = 68 %).

20 F = 160°C

[α]²⁸_D = + 11,6° (c = 0,32; CH₃OH)

Exemple 200

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(S)-azetidinecarboxamide

25 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation CXVII, on obtient le produit attendu sous forme d'un solide beige (Rendement = 98 %).

F = 118°C

[α]²⁸_D = - 37,8° (c = 0,33; CH₃OH)

Exemple 201

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-2(S)-azetidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 200, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 81 %).

F = 135°C

$[\alpha]^{28}_D = -21,1^\circ$ (c = 0,35; CH₃OH)

PRÉPARATION XCVIII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(E)-phénoxy-L-proline,
méthyl ester

En opérant de façon analogue à l'exemple 127, au départ du chlorure de 3-(bromométhyl)-2,4-dichlorobenzènesulfonyle et de l'ester méthylique de la 4(trans)-phénoxy-L-proline, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 75 %).

10 [math>\alpha]^{24}_D = -16 (c = 0,55; CHCl₃)

PRÉPARATION IC

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(E)-phénoxy-L-proline, méthyl ester

En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation XCVIII, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 75 %).

F = 88°C

$[\alpha]^{23}_D = -1,36^\circ$ (c = 0,5; CHCl₃)

PRÉPARATION C

20 1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(E)-phénoxy-L-proline

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation IC, on obtient le produit attendu sous forme d'un solide beige (Rendement = 77 %).

25 F = 150°C

$[\alpha]^{27}_D = +20,9^\circ$ (c = 0,58; DMSO)

Exemple 202

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(R)-phénoxy-2(S)-pyrrolidinecarboxamide

30 En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation C, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 37 %).

F = 97°C

$[\alpha]^{27}_D = -2,9^\circ$ (c = 0,55; CH₃OH)

Exemple 203

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-N-méthyl-4(*R*)-phénoxy-2(S)-pyrrolidinecarboxamide, méthanesulfonate

5 En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 202, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 92 %).

F = 147°C

[α]²³D = - 4,8° (c = 0,47; CH₃OH)

10 PRÉPARATION CI

4(S)-méthoxy-N-méthyl-1-[(phénylethoxy)carbonyl]-2(S)-pyrrolidine carboxamide

15 En opérant de façon analogue à l'exemple 1, au départ de 4(cis)-méthoxy-1-[(phénylethoxy)-carbonyl]-L-proline, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 76 %).

[α]²⁷D = - 38° (c = 0,81; CH₃OH)

PRÉPARATION CII

4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

20 En opérant de façon analogue à la préparation LXX, au départ du composé obtenu selon la préparation CI, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 95 %).

PRÉPARATION CIII

1-[[3-(bromométhyl)-2,4-dichlorophényl]sulfonyl]-4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

25 En opérant de façon analogue à la préparation XCVIII, au départ du composé obtenu selon la préparation CII, on obtient le produit attendu sous forme d'un solide jaunâtre (Rendement = 90 %).

F = 64°C

[α]²⁷D = - 17° (c = 0,69; CHCl₃)

30 Exemple 204

1-[[2,4-dichloro-3-[[[4-(1*H*-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-phényl]sulfonyl]-4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide

35 En opérant de façon analogue à la préparation I, au départ du composé obtenu selon la préparation CIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 72 %).

F = 64°C

[α]²³D = - 22,7° (c = 0,51; CHCl₃)

Exemple 205

1-[2,4-dichloro-3-[[[4-(1H-imidazol-1-yl)-2-méthyl-8-quinolinyl]oxy]méthyl]-5-phénylsulfonyl]-4(S)-méthoxy-N-méthyl-2(S)-pyrrolidinecarboxamide, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 204, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 90 %).

10 F = 135°C

[α]²⁷D = - 5,3° (c = 0,4; CH₃OH)

Exemple 206

1-[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]oxy]méthyl]phénylsulfonyl]-4(R)-méthoxy-N-méthyl-2(S)-pyrrolidine-carboxamide

15

En opérant de façon analogue à l'exemple 186, au départ de 8-hydroxy-2-méthyl-4-(1H-1,2,4-triazol-1-yl)quinoléine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 62 %).

F = 73°C

20 [α]²⁷D = + 17,2° (c = 0,68 ; CH₃OH)

Exemple 207

1-[2,4-dichloro-3-[[[2-méthyl-4-(1H-1,2,4-triazol-1-yl)-2-méthyl-8-quino-linyl]oxy]méthyl]phénylsulfonyl]-4(R)-méthoxy-N-méthyl-2(S)-pyrrolidine-carboxamide, méthanesulfonate

25

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 206, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 87 %).

F = 134°C

[α]²³D = + 38° (c = 0,52 ; CH₃OH)

30

L'activité des produits selon l'invention a été évaluée, selon un premier aspect, en fonction de leur aptitude à se lier aux récepteurs B₂ de la bradykinine. On sait que les kinines, dont l'un des principaux représentants est la bradykinine, forment un groupe de petits peptides qui contribuent de façon importante à la réponse inflammatoire et apparaissent de ce fait impliqués dans la

pathologie des maladies inflammatoires. On sait également que la bradykinine est un des agents algésiants parmi les plus puissants connus. Le mode d'action des kinines et plus particulièrement de la bradykinine fait intervenir un couplage des peptides aux deux types de récepteurs appelés respectivement B₁ et B₂. Le 5 récepteur B₂ appartient à la grande famille des récepteurs à sept domaines transmembranaires couplés aux G-protéines et semble plus particulièrement impliqué dans le domaine des pathologies citées précédemment. C'est la raison pour laquelle les produits de l'invention, qui ont la propriété de pouvoir se fixer sur le récepteur B₂, inhibent la fixation de la bradykinine et, par conséquence, 10 suppriment son activité néfaste. Le test mis en œuvre pour mesurer cette propriété est un test de fixation compétitive sur des membranes de cellules CHO exprimant le récepteur humain B₂ utilisant la bradykinine marquée au tritium ([³H]-bradykinine) en tant que ligand.

Les résultats sont exprimés par la valeur du Ki, telles que calculée 15 selon la méthode préconisée avec la description de l'essai mis en œuvre et décrite selon D. Pruneau et col. Dans Br. J. Pharmacol. 1998, 125 p 365-372.

Selon un second aspect du contrôle de l'activité, il était important de vérifier que les produits de l'invention possèdent bien un caractère antagoniste de la bradykinine vis à vis du récepteur B₂, c'est à dire que le composé, après fixation 20 sur le récepteur B₂, ne provoque pas les symptômes analogues à ceux provoqués par la fixation de la bradykinine sur ledit récepteur B₂. Cette caractéristique antagoniste est exprimée par la valeur pA₂, calculée d'après un essai biologique mis en œuvre pour mesurer l'inhibition de la contraction de la veine ombilicale humaine isolée, par les composés selon l'invention en présence de bradykinine. La 25 procédure du test et la méthode de calcul de pA₂ sont décrits dans les articles de D. Pruneau et col. Publié dans Br. J. Pharmacol. 1998, 125, p 365-372 et JL. Paquet et col. B. J. Pharmacol. 1999, 126 (en impression).

Les valeurs obtenues par certains composés de l'invention sont rassemblées dans le tableau I ci-après. Les valeurs trouvées pour le Ki montrent 30 des valeurs inférieures à 1 nM, témoignant d'une excellente affinité des composés pour le récepteur B₂ de la bradykinine. Les valeurs trouvées pour pA₂ sont représentatives du caractère antagoniste des composés vis à vis du récepteur B₂ de la bradykinine.

Les composés de la présente invention, en raison de leur propriété 35 antagoniste de la bradykinine vis à vis de son récepteur B₂, sont utiles dans le

traitement des algies, et dans le traitement de nombreuses pathologies impliquant la bradykinine ou ses homologues. Parmi ces pathologies, on inclut les chocs septiques et hémorragiques, les réactions anaphylactiques, l'arthrose, la polyarthrite rhumatoïde, les rhinites, l'asthme, les maladies inflammatoires du tractus gastro-intestinal (par ex. colites, rectites, maladie de Crohn), la pancréatite, certains carcinomes, l'angiooedème héréditaire, la migraine, l'encéphalomyélite, la méningite, les accidents vasculaires cérébraux (notamment ceux provoqués par un choc traumatique cérébral), certains désordres neurologiques, les états inflammatoires vasculaires (par exemple : athérosclérose et artérite des membres inférieurs), les états douloureux (par exemple les céphalalgies, les douleurs dentaires, les douleurs menstruelles), les contractions utérines prématurées, la cystite et les brûlures. Les composés selon l'invention peuvent également être utiles pour la potentialisation d'agents antiviraux.

Les composés de la présente invention, qui peuvent être utilisés sous forme de base libre ou de leurs sels d'addition non toxiques, en association avec un excipient physiologiquement acceptable, sont en général prescrits en thérapeutique humaine à des doses d'environ 1 à 1000 mg/jour, sous une forme administrable par voie orale, par injection intraveineuse, intramusculaire ou sous-cutanée, par voie transdermique, par le moyen d'aérosols ou par le moyen de suppositoires. Ces composés sont également administrables par voie topique, notamment sous forme de gel ou de pommade.

Les composés de la présente invention trouvent également leur utilité dans le domaine de la cosmétique pour traiter des pathologies de la peau ou du cuir chevelu.

TABLEAU I

Exemples	Activité biologique	
	Ki (nM)	pA2
4	0,24	10
10	1,0	8,5
12	0,47	8,7
23	0,45	9,1
30	0,73	8,7
32	1,4	9,1
42	77	8,3
48	32	8,5
50	30	8,3
61	21	8,1
64 bis	0,034	9,3
73	10	8,4
75	2,8	8,3
77	6,1	8,6
83	14	7,9
87	15	8,2
89	55	8,0
101	50	8,4
103	21	7,9
105	7,7	8,3
109	15	8,3
115	35	8,5
123	8,1	8,4
166	5,8	8,2
170	7,8	8,0
174	8,8	8,1

REVENDICATIONS

1. Composé hétérocyclique de benzènesulfonamide, caractérisé en ce qu'il est choisi parmi l'ensemble constitué par :

5 (i) les composés de formule I :

dans laquelle :

Het1 représente un hétérocycle azoté à 5 sommets, notamment l'imidazole, le pyrazole ou le triazole,

10 Het2 représente un hétérocycle azoté à 4, 5 ou 6 sommets de structure :

dans lesquels

R₁ représente un atome d'hydrogène ou un groupe hydroxy, alcoxy en C₁-C₄, phénoxy, phénylethoxy, -CH₂OH, cycloalkyloxy, cycloalkylalcoxy (où chaque fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄), -NH-CO-CH₃, -CO-NH₂ ou -CO-NH-CH₃,

15 R₂ représente un atome d'hydrogène ou un groupe -CH₂OH, -CH₂-O-CH₃, -CONR₃R₄,

R₃ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, un groupe cycloalkyle en C₃-C₈, un groupe cycloalkyl (en C₃-C₈)-alkyle (en C₁-C₃), un groupe phényle, ou un groupe phénylméthyle,
5 R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, -(CH₂)_n-CH₂OH, -(CH₂)_n-COOH, -(CH₂)_n-CH₂-NR₅R₆,

10

15

R₅ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃, phényle, phénylméthyle, pyridinyle, pyridinylméthyle, pyridinylethyle, benzoyle, 4-(aminoiminométhyl)benzoyle, -(CH₂)_m-CH₂OH, -(CH₂)_m-COOH, -(CH₂)_mCH₂-O-(CH₂)_m-CH₂OH, -CO-(CH₂)_m-COOH, ou

20

R₆ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃, ou, R₅ et R₆ considérés ensemble forment, avec l'atome d'azote auquel ils sont attachés, un N-hétérocycle de 5 à 6 sommets,

n = 1, 2, 3 ou 4,

m = 1, 2 ou 3 ; et,

(ii) leurs sels d'addition.

2. Composé de formule I selon la revendication 1, caractérisé en ce que Het1 représente un groupe 1-(1*H*)-imidazolyde.

3. Composé de formule I selon l'une des revendications 1 ou 2, caractérisé en ce que Het2 représente un groupe 2(S)-pyrrolidinecarboxamide

R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,
R₄ représente un groupe alkyle en C₁-C₃, un groupe -(CH₂)_n-CH₂-NR₅R₆, un groupe pyridinylméthyle, ou un groupe

5

R₅ représente un groupe (CH₂)_m-CH₂OH, un groupe pyridinylméthyle ou un groupe 4-(aminoiminométhyl)benzoyle,

10 R₆ représente un groupe méthyle ou forme avec R₅ et l'azote auquel ils sont liés, un hétérocycle saturé à 5 ou 6 sommets.

4. Composé de formule I selon l'une des revendications 1 ou 2, caractérisé en ce que Het2 représente un groupe 2(S)-pyrrolidinecarboxamide de formule

15 dans lequel R₅ représente un groupe pyridinyle ou un groupe pyridinylméthyle

5. Procédé de préparation d'un composé de formule I, caractérisé en ce qu'il comprend les étapes consistant à :

(1) faire réagir un dérivé de la 8-hydroxyquinoléine de formule II :

20

dans laquelle :

Het₁ représente un hétérocycle azoté à cinq sommets comprenant au total 1, 2, 3 ou 4 atomes d'azote et M représente un métal alcalin, notamment le sodium ou le potassium,
avec un composé de formule III :

5

dans laquelle :

- X représente un atome d'halogène, de préférence un atome de brome, et
10 R₁ représente un atome d'hydrogène, un groupe OH, un groupe alcoxy ou un groupe phénoxy,
dans un solvant anhydre, à une température comprise entre 0 et 50°C, pendant 0,5 à 10 heures, pour obtenir un composé de formule IV :

15

dans laquelle :

- Het₁ et R₁ conservent la même signification que précédemment ;
(2) hydrolyser la fonction ester du composé de formule IV, ainsi obtenu, pour obtenir un composé de formule V :

20

dans laquelle :

Het1 et R₁ conservent la même signification que ci-dessus ;

- 5 (3) faire réagir le composé de formule V, ainsi obtenu, avec une amine de
formule :

dans laquelle :

R₃ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,

10 R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₃,

-(CH₂)_n-CH₂OH, -(CH₂)_n-COOR₁₁, -(CH₂)_n-CH₂-NR₅R₆,

R₅ représente un groupe alkyle en C₁-C₃, -(CH₂)_m-CH₂OH,

15 -(CH₂)_m-COOR₁₁, -(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OH, ou un groupe amino-protecteur (R₅ et R₆ n'étant pas simultanément des groupes amino-protecteurs),

R₆ représente un groupe alkyle en C₁-C₃ ou un groupe aminoprotecteur,

R₁₁ représente un groupe protecteur de la fonction acide facilement hydrolysable,

n = 1, 2, 3 ou 4,

m = 1, 2 ou 3,

dans un solvant, en présence d'activateurs, à une température voisine de la température ambiante (0-40°C, de préférence 10-35°C), pendant 2 à 50 heures,

25 pour obtenir un composé de formule :

dans laquelle :

- 5 Het1, R₁, R₃, R₄ conservent la même signification que précédemment ; et,
 (4) si nécessaire, faire réagir le composé de formule VII, ainsi obtenu, pour remplacer chaque groupe amino- ou acidoprotecteur par un atome d'hydrogène, de façon à obtenir le composé de formule I :

dans laquelle :

Het1, R₁, R₃ et R₄ conservent la même signification que ci-dessus, à l'exception des groupes protecteurs remplacés par des atomes d'hydrogène ;

puis,

(5) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel d'addition d'acide correspondant.

6. Procédé de préparation d'un composé de formule I selon la 5 revendication 1, caractérisé en ce qu'il comprend les étapes consistant à :

(1) faire réagir un composé de formule I tel qu'obtenu à l'étape (4) du procédé selon la revendication 5 ci-dessus,

10 dans laquelle :

Het1 représente un groupe 1-imidazolyle, un groupe 1-pyrazolyle ou un groupe 1-(1,2,4-triazolyle),

R₃ représente H, ou un groupe alkyle en C₁-C₃,

15 R₄ représente un groupe porteur d'une fonction amine primaire ou secondaire choisi parmi : -(CH₂)_n-CH₂-NHR₆ ou

où R₆ représente H ou un groupe alkyle et n représente 1, 2, 3 ou 4, avec un composé halogéné de formule :

20 Y-(CH₂)_m-CH₂OR₁₃,

Y-(CH₂)_m-COOR₁₁, ou

Y-(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OR₁₃,

où

Y est un halogène, préférentiellement Br ou I,

m représente 1, 2, ou 3,

R₁₁ est un groupe acidoprotecteur, notamment *t*-butyle, et

R₁₃ est un groupe protecteur de la fonction alcool, notamment le groupe acétyle,

- 5 dans un solvant, en présence d'un agent alcalin, à température voisine de la température ambiante, pendant 5 à 20 heures, pour obtenir le composé de formule VII :

dans laquelle :

- 10 R₃ représente H ou un groupe alkyle en C₁-C₃,
 R₄ représente un groupe -(CH₂)_n-CH₂-NR₅R₆ ou

R₅ représente un groupe :

- 15 -(CH₂)_m-CH₂OR₁₃,
 -(CH₂)_m-COOR₁₁, ou
 -(CH₂)_m-CH₂-O-(CH₂)_m-CH₂OR₁₃,

Het1, R₆, R₁₁ et R₁₃ conservant la même signification que ci-dessus ;

- (2) effectuer une réaction de déprotection de chaque fonction alcool ou acide
 20 afin de remplacer R₁₃ et R₁₁ par un atome d'hydrogène, et ainsi obtenir les composés de formule I correspondants ; et,
 (3) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide minéral ou organique pour obtenir le sel correspondant.

7. Procédé de préparation d'un composé de formule I selon la revendication 1, caractérisé en ce qu'il comprend les étapes consistant à:

- (1) faire réagir le chlorure d'acide de formule VIII :

5 dans laquelle :

X représente un halogène, préférentiellement le brome,
avec un dérivé hétérocyclique répondant à la formule :

où :

10 R₁ représente H, OH, alcoxy, phénoxy, phénylethoxy, CH₂OH, cycloalkyloxy en C₃-C₈ ou cycloalkylalcoxy où le fragment cycloalkyle est en C₃-C₈ et le fragment alcoxy en C₁-C₄,

R₂ représente un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NR₅R₁₂,
-CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOR₁₁ ou

15

n = 1, 2, 3 ou 4,

R₅ représente H ou un groupe alkyle,

R₁₁ représente un groupe acidoprotecteur, et

20

R₁₂ représente un groupe aminoprotecteur,

dans un solvant, en présence d'une base, à une température proche de la température ambiante, pendant 10 à 30 heures, pour obtenir un composé de formule IX :

25

dans laquelle :

Het2 représente un groupe

5

et X, R₁, R₂, R₁₁, R₁₂ et n conservent la même signification que ci-dessus ;

- (2) faire réagir le composé de formule IX, ainsi obtenu, avec un dérivé de la 8-hydroxyquinoléine de formule II :

10 dans laquelle :

Het1 représente un hétérocycle azoté à cinq sommets comprenant 1, 2, 3 ou 4 atomes d'azote et M représente un métal alcalin,

dans un solvant anhydre, à une température comprise entre 0 et 50°C, pendant 0,5 à 10 heures, pour obtenir un composé de formule X :

15

dans laquelle :

Het1 et Het2 conservent la même signification que ci-dessus ;

- (3) si nécessaire, effectuer une réaction de déprotection pour remplacer R₁₁ et R₁₂ par un atome d'hydrogène, afin d'obtenir un composé de formule I :

5

dans laquelle :

Het1 conserve la même signification que ci-dessus, et
Het2 représente un groupe

10

R₁ a la même signification que ci-dessus,

R₂ représente un groupe -CH₂OH, -CH₂OCH₃, -CONH(CH₂)_nCH₂NHR₅,
-CONH(CH₂)_nCH₂OH, -CONH(CH₂)_nCOOH ou

15

n = 1, 2, 3 ou 4, et

R₅ représente H ou un groupe alkyle ; et,

- (4) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel correspondant.

20

8. Composition thérapeutique caractérisée en ce qu'elle renferme, en association avec un excipient physiologiquement acceptable, au moins un

composé choisi parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non toxiques selon la revendication 1.

9. Utilisation d'une substance antagoniste d'un récepteur de la bradykinine et des hormones analogues, ladite utilisation étant caractérisée en ce que l'on fait appel à une substance antagoniste du récepteur B₂ de la bradykinine et choisie parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non toxiques selon la revendication 1, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique vis-à-vis d'états pathologiques impliquant la bradykinine ou ses homologues.
10. Utilisation suivant la revendication 9, caractérisée en ce que ledit médicament est destiné à une utilisation en thérapeutique pour le traitement d'états douloureux.
11. Utilisation suivant la revendication 9, caractérisée en ce que ledit médicament est destiné à une utilisation en thérapeutique pour le traitement d'états inflammatoires.
12. Utilisation suivant la revendication 9, caractérisée en ce que ledit médicament est destiné à une utilisation en thérapeutique vis-à-vis des traumatismes causés par un choc sévère.

INTERNATIONAL SEARCH REPORT

Inte Int'l Application No
PCT/FR 00/00396

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D401/14 C07D401/12 A61K31/47

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 41104 A (FUJISAWA PHARMACEUTICAL CO., LTD.) 6 November 1997 (1997-11-06) cited in the application page 26, line 8 - line 11; claim 9; examples 1,9,10 ---	1,8,9
A	FR 2 743 073 A (FOURNIER INDUSTRIE ET SANTÉ) 4 July 1997 (1997-07-04) claims ---	1,8,9
A	FR 2 756 562 A (FOURNIER INDUSTRIE ET SANTE S.A.) 5 June 1998 (1998-06-05) claims ---	1,8,9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

15 June 2000

29/06/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentstaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Van Bijlen, H

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte

rnal Application No

PCT/FR 00/00396

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9741104	A 06-11-1997	AU 2405497 A		19-11-1997
		EP 0900203 A		10-03-1999
FR 2743073	A 04-07-1997	AU 1198897 A		28-07-1997
		EP 0874841 A		04-11-1998
		WO 9724349 A		10-07-1997
FR 2756562	A 05-06-1998	AU 5125798 A		29-06-1998
		EP 0944618 A		29-09-1999
		WO 9824783 A		11-06-1998
		PL 334088 A		31-01-2000
		US 6063791 A		16-05-2000

RAPPORT DE RECHERCHE INTERNATIONALE

Den Internationale No
PCT/FR 00/00396A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C07D401/14 C07D401/12 A61K31/47

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 C07D A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

CHEM ABS Data

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	WO 97 41104 A (FUJISAWA PHARMACEUTICAL CO., LTD.) 6 novembre 1997 (1997-11-06) cité dans la demande page 26, ligne 8 - ligne 11; revendication 9; exemples 1,9,10 ---	1,8,9
A	FR 2 743 073 A (FOURNIER INDUSTRIE ET SANTÉ) 4 juillet 1997 (1997-07-04) revendications ---	1,8,9
A	FR 2 756 562 A (FOURNIER INDUSTRIE ET SANTE S.A.) 5 juin 1998 (1998-06-05) revendications -----	1,8,9

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent

"E" document antérieur, mais publié à la date de dépôt international ou après cette date

"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)

"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

"P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"*&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

15 juin 2000

29/06/2000

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Van Bijlen, H

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Document International No

PCT/FR 00/00396

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
WO 9741104 A	06-11-1997	AU 2405497 A			19-11-1997
		EP 0900203 A			10-03-1999
FR 2743073 A	04-07-1997	AU 1198897 A			28-07-1997
		EP 0874841 A			04-11-1998
		WO 9724349 A			10-07-1997
FR 2756562 A	05-06-1998	AU 5125798 A			29-06-1998
		EP 0944618 A			29-09-1999
		WO 9824783 A			11-06-1998
		PL 334088 A			31-01-2000
		US 6063791 A			16-05-2000