

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
22. Februar 2001 (22.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/12374 A1

- (51) Internationale Patentklassifikation: **B23K 9/10**
- (21) Internationales Aktenzeichen: **PCT/AT00/00221**
- (22) Internationales Anmeldedatum:
16. August 2000 (16.08.2000)
- (25) Einreichungssprache: **Deutsch**
- (26) Veröffentlichungssprache: **Deutsch**
- (30) Angaben zur Priorität:
A 1408/99 16. August 1999 (16.08.1999) AT
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **FRONIUS SCHWEISSMASCHINEN PRODUKTION GMBH & CO. KG** [AT/AT]: Nr. 89, A-4643 Pettenbach (AT).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): **NIEDEREDER, Franz** [AT/AT]: Hafeld 1, A-4652 Fischlham (AT). **HACKL, Heinrich** [AT/AT]: Ried/Traunkreis 237, A-4551 Ried/Traunkreis (AT). **WITTMANN, Manfred** [AT/AT]: Nr. 109, A-4845 Rutzensmoos (AT). **LAUBER, Anton** [AT/AT]: Weyerbach 11, A-4616 Weisskirchen (AT). **MAIR, Peter** [AT/AT]: Grinzenbergerstrasse 3, A-4600 Wels (AT).
- (74) Anwalt: **SECKLEHNER, Günter**; Pyhrnstrasse 1, A-8940 Liezen (AT).
- (81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AT (Gebrauchsmuster), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (Gebrauchsmuster), DE, DE (Gebrauchsmuster), DK, DK (Gebrauchsmuster), DM, DZ.

[Fortsetzung auf der nächsten Seite]

(54) Title: WELDING UNIT EQUIPPED WITH A COMMUNICATIONS INTERFACE AND METHOD FOR OPERATING THE WELDING UNIT

(54) Bezeichnung: SCHWEISSGERÄT MIT KOMMUNIKATIONSSCHNITTSTELLE UND VERFAHREN ZUM BETREIBEN DES SCHWEISSGERÄTES

(57) Abstract: The invention relates to a welding unit (1) with a current source (2) for providing electric power to at least one electrode and to one control and/or evaluation device (4) which is assigned to said current source (2). An input device provided for setting different welding parameters is assigned to said control and/or evaluation device. A communications interface (23) which is connected to the control and/or evaluation device (4) is provided for effecting a bi-directional data exchange between the welding unit (1) or the current source via a web server (24, 27), in particular, via an HTTP server.

[Fortsetzung auf der nächsten Seite]

WO 01/12374 A1

EE, EE (Gebrauchsmuster), ES, FI, FI (Gebrauchsmuster).
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SK (Gebrauchsmuster). SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden Frist: Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(57) **Zusammenfassung:** Die Erfindung betrifft ein Schweißgerät (1) mit einer Stromquelle (2) zur Bereitstellung elektrischer Energie an zumindest einer Elektrode und einer der Stromquelle (2) zugeordneten Steuer- und/oder Auswertevorrichtung (4), der eine Eingabevorrichtung zur Einstellung unterschiedlicher Schweißparameter zugeordnet ist. Dabei ist eine mit der Steuer- und/oder Auswertevorrichtung (4) verbundene Kommunikationsschnittstelle (23) zu einem bidirektionalen Datenaustausch zwischen dem Schweißgerät (1) oder der Stromquelle über einem Web-Server (24, 27), insbesondere einem HTTP-Server, angeordnet.

- 1 -

Schweißgerät mit Kommunikationsschnittstelle und Verfahren zum Betreiben des Schweißgerätes

- 5 Die Erfindung betrifft ein Schweißgerät gemäß dem Oberbegriff des Anspruches 1, ein Verfahren zum Betreiben eines Schweißgerätes gemäß dem Oberbegriff des Anspruches 29 sowie eine Steuer- und/oder Auswertevorrichtung für ein Schweißgerät gemäß dem Oberbegriff des Anspruches 35.
- 10 Es sind bereits Verfahren zum Steuern von Schweißgeräten bzw. Stromquellen sowie eine hierzu benötigte Steuervorrichtung bekannt, bei der über eine Ein- und/oder Ausgabevorrichtung unterschiedliche Schweißparameter, wie beispielsweise ein Schweißstrom, ein Zusatzmaterial, ein Schweißverfahren usw., eingestellt werden kann, wobei aufgrund der eingestellten Schweißparameter die Steuervorrichtung eine entsprechende Steuerung der einzelnen Komponenten des Schweißgerätes durchführt, so daß ein Benutzer einen entsprechenden Schweißprozeß einleiten kann.
- 15

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Schweißgerät bzw. ein Verfahren zum Betreiben eines Schweißgerätes zu schaffen, welches auch aus der Ferne bedienbar ist bzw. dessen Zustandsdaten aus der Ferne ermittelt werden können und ein Fernwartung durchgeführt werden kann.

20 Diese Aufgabe der Erfindung wird durch die Merkmale des Anspruches 1 gelöst. Vorteilhaft ist dabei, daß dem Schweißgerät aus der Ferne Daten zugeführt werden können bzw. Daten betreffend das Schweißgerät oder einen Schweißprozeß ausgelesen und weitläufig übertragen werden können. Durch die Einbindung eines aus dem Stand der Technik bekannten Web-Servers bzw. HTTP-Servers wird in vorteilhafter Weise erreicht, daß für die bidirektionale Datenübertragung standardisierte Softwareprogramme eingesetzt werden können und somit die Kompatibilität zu den unterschiedlichsten Verbindmöglichkeiten, wie den Datenbanken und den unterschiedlichsten Kommunikationspartnern bzw. Kommunikationsgeräten, gewährleistet ist. Ein weiterer Vorteil liegt darin, daß durch diese Möglichkeit der Fernübertragung von Daten auch eine Fernwartung und Software-Update's sowie der Zugriff auf externe Schweißdatenbanken, in denen spezielle Schweißverfahren bzw. Schweißeinstellungen hinterlegt sind, durchgeführt werden können und somit die hohen Kosten für eine Anreise eines Servicetechnikers eingespart werden können.

25

30

35

- 2 -

Unter Daten sind dabei auch Softwareprogramme zu verstehen, die dem Schweißgerät wahlweise zugeführt bzw. aus diesem ausgelesen werden können, wodurch ein effektives Mittel zur Umkonfiguration, zur Fehlersuche, zur Steuerung und zur Überwachung des Schweißgerätes zur Verfügung steht. Insbesondere ist es dadurch ermöglicht, am Schweißgerät für einen bevorstehenden Schweißprozeß die entsprechenden Information bzw. Daten umgehend zu erlangen, wodurch Fehlbedienungen vermieden werden können und eine Qualitäts- sowie Produktivitätsbeurteilung des Schweißprozesses in einfacher Art und Weise möglich ist.

5 Weiters ist eine zentrale Steuerung bzw. Bedienung oder Überwachung mehrerer Schweißgeräte möglich, so daß sich der Schweißtechniker überwiegend auf seine Haupttätigkeit konzentrieren kann, da die Parametrierung bzw. Überwachung des Schweißgerätes von einer zentralen Stelle oder auch ausgehend von mehreren weitläufig entfernten Orten vorgenommen werden kann. Durch die zentrale bzw. ortsvARIABLE Verwaltungs- und Überwachungsmöglichkeit des Schweißgerätes bzw. der Schweißprozesse ist eine Automatisierung erreicht, welche die Qualität und Produktivität von schweißtechnischen Arbeiten steigern kann. Insbesondere 10 sind Servicedienste und Bestellvorgänge vereinfacht und wesentlich rascher durchführbar sowie eine Fernwartung bzw. Ferneinstellung für das Schweißgerät ermöglicht. Zudem sind durch die Kommunikationsschnittstelle HilfediENSTE online verfügbar, wodurch Arbeitsunterbrechungen kaum noch erforderlich sind bzw. ein Verlassen des Arbeitsbereiches erübriggt ist.

15 20 Es sind aber auch die Ausführungsformen nach den Ansprüchen 2 bis 4 von Vorteil, da dadurch eine einfache Einbindung in ein bereits bestehendes bzw. aufgebautes Netzwerk möglich ist.

25 Von Vorteil ist dabei eine Ausführungsform nach Anspruch 5, da dadurch ein Schweißgerät aufgebaut ist, welches den individuellen Bedürfnissen des Anmelders in einfacher Art und Weise angepaßt werden kann und welches für eventuelle nachfolgende Veränderungen überaus flexibel ist.

30 35 Weiters ist eine Ausführungsform nach Anspruch 6 vorteilhaft, da dadurch eine Anbindung des Schweißgerätes an weitverbreitete Datenübertragungsnetze möglich ist, wodurch nahezu jeder die Vorteile des erfindungsgemäßen Schweißgerätes nutzen kann.

Durch die Ausbildungen nach Anspruch 7 oder 8 ist es möglich, Schweißprozeßdaten bzw. Einstelldaten firmenintern bzw. weltweit an ein bestimmtes Schweißgerät zu übertragen bzw. von einem bestimmten Schweißgerät zu ermitteln.

- 3 -

Vorteilhaft ist auch eine Ausführung nach Anspruch 9, da dadurch das Schweißgerät bei Bedarf in einfacher Art und Weise an das übergeordnete Netzwerk angedockt werden kann bzw. vom übergeordneten Netzwerk umgehungssicher getrennt werden kann.

- 5 Bei der Ausgestaltung nach Anspruch 10 ist von Vorteil, daß das Schweißgerät auch mit handelsüblichen, PC-kompatiblen Komponenten gekoppelt werden kann, so daß dessen Funktionalität bei niedrigen Hardwarekosten wesentlich gesteigert werden kann.

Durch die Ausbildung gemäß Anspruch 11 wird erreicht, daß die Verbindung mit weitläufig entfernten Kommunikationspartnern bzw. Kommunikationsgeräten über ein bewährtes und gut ausgebautes Kommunikationsmittel erfolgt.

Durch die Ausbildung nach Anspruch 12 können Schweißprozesse lückenlos überwacht bzw. umgehend beeinflußt werden. Zudem kann das Schweißgerät unter Einsatz geringer zu übertragender Datenmengen in Form von Kennungen grundlegend anders konfiguriert bzw. eingesellt werden. Diese Umkonfiguration bzw. Neueinstellung des Schweißgerätes kann durch die Übertragung geringster Datenmengen in Form von Kennungen zur Selektion bestimmter, in der Speichervorrichtung des Schweißgerätes hinterlegter Daten- bzw. Programmpakete besonders rasch, kostengünstig und sicher erfolgen.

Vorteilhaft ist auch eine Ausbildung nach Anspruch 13, da dadurch ein Ausfall des Schweißgerätes in Folge eines Mangels an Betriebsmitteln nahezu ausgeschlossen werden kann und die Datenerhebungen weitgehend automatisiert ablaufen können, so daß eine menschliche Überwachung nahezu erübriggt werden kann.

Von Vorteil ist aber auch eine Ausbildung nach Anspruch 14, da dadurch die Qualität und Produktivität von Schweißprozessen an global verteilten Orten oder auch an einem Fertigungsstandort problemlos ermittelt werden kann und erforderlichenfalls entsprechende Maßnahmen zur Optimierung getroffen werden können.

30 Weiters erweist sich eine Ausbildung nach Anspruch 15 oder 16 als vorteilhaft, da dadurch eine Mehrfachverwendung der Eingabevorrichtung möglich ist und die Anwendung der Eingabevorrichtung grundsätzlich geläufig ist, so daß spezielle Schulungsmaßnahmen erübrigten können.

- 4 -

Gemäß einer Ausbildung, wie im Anspruch 17 beschrieben, wird dem Benutzer des Schweißgerätes die Bedienung erleichtert und die Überwachung des Schweißgerätes vereinfacht.

5 Dabei erweist sich eine Ausgestaltung nach Anspruch 18 als vorteilhaft, da dadurch das Schweißgerät relativ kostengünstig aufgebaut werden kann und jederzeit aufrüstbar ist.

Von Vorteil ist aber auch eine Ausbildung nach Anspruch 19, da dadurch das Softwareprogramm klar strukturiert sowie in einen logischen Programmteil und in die Bausteine zur Verwaltung bzw. Steuerung der Komponenten des Schweißgerätes aufgeteilt werden kann.

10

Durch die Ausbildung nach Anspruch 20 wird erreicht, daß einzelne Softwarebausteine jederzeit nachgeladen werden können und diese neuen Softwarebausteine in den Programmablauf ordnungsgemäß eingebunden werden.

15

Von Vorteil ist aber auch eine Ausbildung nach Anspruch 21, da dadurch sehr rasch auf z.B. sicherheitskritische Zustände in Abhängigkeit der jeweiligen Priorität der aufgetretenen bzw. vorliegenden Zustände reagiert werden kann.

20

Von Vorteil ist dabei eine Ausführung nach Anspruch 22 oder 23, da dadurch eine netzwerk-optimierte Programmiersprache gewählt ist, die unabhängig von der entsprechenden Zielhardware bzw. unabhängig vom Maschinencode der Zielhardware ist und dadurch für eine weitläufige Verbreitung ohne einer Kenntnis der Zielhardware ermöglicht ist.

25

Von Vorteil ist aber auch eine Ausführung nach Anspruch 24, da dadurch JAVA-Interpreter erübrig werden und die Systemlaufzeiten verkürzt werden können.

30

Durch die vorteilhafte Ausbildung gemäß Anspruch 25 wird erreicht, daß das Schweißgerät nahezu uneingeschränkt mobil ist und die Verbindung zum jeweiligen Netzwerkteilnehmer bzw. Kommunikationsgerät aufgebaut bleiben kann.

35

Dabei erweist sich eine Ausführung nach Anspruch 26 oder 27 als vorteilhaft, da dadurch Kabelverbindungen zur Einbindung des Schweißgerätes in ein übergeordnetes Datennetzwerk erübrig sind und funktionssichere, bewährte Komponenten in einfacher Art und Weise eingesetzt werden können.

- 5 -

Von Vorteil ist aber auch eine Ausführung nach Anspruch 28, da dadurch Servicedienste, Fehleranalysen, Zustandsbestimmungen, Konfigurationsänderungen und dgl. in einfacher Art und Weise durchgeführt werden können.

5 Die Aufgabe der Erfindung wird unabhängig davon aber auch durch ein Verfahren zum Betreiben eines Schweißgerätes gemäß den im Anspruch 29 angegebenen Merkmalen gelöst. Vorteilhaft ist dabei, daß das Schweißgerät besonders rasch und komfortabel umkonfiguriert bzw. der mit dem Schweißgerät ausgeführte Schweißprozeß oder auch der Zustand des Schweißgerätes selbst vollautomatisch überwacht werden kann. Ein weiterer Vorteil besteht

10 darin, daß die Wartung der Datenbestände zentral vorgenommen werden kann, wodurch die abzuarbeitenden Softwarebausteine stets aktuell sind. Zudem können die jeweiligen Daten durch die dezentrale Speicherung in einfacher Art und Weise vor einem Verlust mehrfach gesichert werden.

15 Von Vorteil ist aber auch eine Maßnahme nach Anspruch 30, da dadurch die Belastung des Netzwerkes sehr gering gehalten und darüber hinaus die Adaptierung des Schweißgerätes besonders rasch erfolgen kann.

20 Von Vorteil ist auch ein Vorgehen nach Anspruch 31 oder 32, da dadurch Ausfälle bzw. Stillstände des Schweißgerätes weitgehend vermieden werden können und auch der Schweißvorgang hinsichtlich Qualität und Produktivität, ausgehend von einer zentralen Stelle, bewertet werden kann.

25 Weiters ist eine Verfahrensvariante gemäß Anspruch 33 von Vorteil, da somit eine bedarfsgerechte Versorgung des Schweißgerätes mit den Betriebsmitteln erfolgt, wodurch eine Lagerhaltung von Betriebsmitteln bzw. von Ersatzteilen für das Schweißgerät erübrigkt ist. Darüber hinaus wird durch die Automatisierung ein hoher Zuverlässigkeitgrad erreicht.

30 Schließlich ist auch die Maßnahme nach Anspruch 34 von Vorteil, da dadurch die Vorteile des erfindungsgemäßen Schweißgerätes nahezu überall und von jedermann uneingeschränkt genutzt werden können, so daß eine weitläufige Verbreitung und eine hohe Akzeptanz erzielt wird.

Die Aufgabe der Erfindung wird aber auch durch die Merkmale des Anspruches 35 gelöst.

- 6 -

Die Vorteile dieser Ausbildung werden in der Beschreibung zu den Ausführungsbeispielen näher erläutert.

Die Erfindung wird im nachfolgenden anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert.

Es zeigen:

Fig. 1 ein an ein übergeordnetes Netzwerk zur drahtgebundenen Datenübertragung angekoppeltes Schweißgerät in stark vereinfachter, schematischer Darstellung;

Fig. 2 ein Schaubild eines Schweißgerätes, in stark vereinfachter Darstellung;

Fig. 3 ein weiteres Schaubild einer Ausführungsvariante eines Schweißgerätes, in stark vereinfachter Darstellung;

Fig. 4 mehrere untereinander vernetzte Datenverarbeitungsgeräte und Schweißgeräte an global verteilten Standorten mit Internetanbindung, in stark vereinfachter, schematischer Darstellung.

Einführend sei festgehalten, daß in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiters können auch Einzelmerkmale aus den gezeigten unterschiedlichen Ausführungsbeispielen für sich eigenständige erfindungsgemäße Lösungen bilden.

In den Fig. 1 bis 4 ist ein Schweißgerät 1 für verschiedenste Schweißverfahren, wie zum Beispiel MIG/MAG-Schweißen bzw. TIG- oder WIG-Schweißen, gezeigt. Das Schweißgerät 1 umfaßt eine Stromquelle 2 mit einem Leistungsteil 3, eine Steuer- und/oder Auswertevorrichtung 4 und einem dem Leistungsteil 3 bzw. der Steuer- und/oder Auswertevorrichtung 4 zugeordneten Umschaltglied 5. Das Umschaltglied 5 bzw. die Steuervorrichtung 4 ist mit ei-

- 7 -

nem Steuerventil 6 verbunden, welches in einer Versorgungsleitung 7 für ein Gas 8, insbesondere ein Schutzgas wie beispielsweise Kohlendioxid, Stickstoff, Helium oder Argon und dgl., zwischen einem Gasspeicher 9 und einem Schweißbrenner 10 angeordnet ist.

- 5 Zudem wird über die Steuer- und/oder Auswertevorrichtung 4 auch noch ein Drahtvorschubgerät 11 angesteuert, wobei über eine Versorgungsleitung 12 ein Schweißdraht 13 von einer Vorratstrommel 14 in den Bereich des Schweißbrenners 10 zugeführt wird. Der Strom zum Aufbau eines Lichtbogens 15 zwischen dem Schweißdraht 13 und einem Werkstück 16 wird über eine Versorgungsleitung 17, 18 vom Leistungsteil 3 der Stromquelle 2 dem Schweißbrenner 10 bzw. dem Schweißdraht 13 zugeführt.

Selbstverständlich ist es an Stelle der dargestellten, separat angeordneten Drahtvorschubvorrichtung auch möglich, diese in das Gehäuse des Schweißgerätes 1 zu integrieren und bevorzugt eine kompakte, einstückige Baueinheit auszubilden, wie sie üblicherweise eingesetzt wird. Darüber hinaus ist es neben dem Einsatz eines auf einer Vorratstrommel 14 vorrätig gehaltenen Schweißdrähtes 13 auch möglich, Schweißgeräte 1 zur Verarbeitung von Stabelektroden erfindungsgemäß auszubilden. Weiters kann die erfindungsgemäße Ausbildung an Schweißgeräten 1 ohne abschmelzenden Elektroden, insbesondere bei Schweißgeräten 1 für das Widerstandsschweißverfahren oder Reibschweißverfahren eingesetzt werden.

20 Die erfindungsgemäße Ausbildung von Schweißgeräten 1 ist dabei unabhängig vom Schweißverfahren und unabhängig von der Verwendung einer Schutzgasatmosphäre.

Zum Kühlen des Schweißbrenners 10 wird dieser über einen Kühlkreislauf 19 unter Zwischen schaltung eines Strömungswächters 20 mit einem Wasserbehälter 21 verbunden, wodurch bei der Inbetriebnahme des Schweißbrenners 10 der Kühlkreislauf 19 von der Steuer- und/oder Auswertevorrichtung 4 gestartet werden kann und somit eine Kühlung des Schweißbrenners 10 bzw. einer Gasdüse des Schweißbrenners 10 bewirkt wird. Selbstverständlich ist es auch möglich, daß ein externer Kühlkreislauf 19, wie er bereits aus dem Stand der Technik bekannt ist, eingesetzt wird.

Weiters weist das Schweißgerät 1 eine Ein- und/oder Ausgabevorrichtung 22 auf, über welche die unterschiedlichsten Schweißparameter bzw. Betriebsarten des Schweißgerätes 1 eingestellt werden können. Dabei werden die über die Ein- und/oder Ausgabevorrichtung 22 eingestellten Schweißparameter an die Steuer- und/oder Auswertevorrichtung 4 weitergeleitet. Ent-

- 8 -

sprechend diesen Einstellungen werden sodann die einzelnen Komponenten des Schweißgerätes 1 angesteuert. Hierzu ist es ebenfalls möglich, daß das Schweißgerät 1 mit einer externen, bedarfsweise anschließbaren Ein- und/oder Ausgabevorrichtung 22, wie beispielsweise einem Computer, einer SPS oder einem Bedienelement usw., verbunden wird.

5

Die Steuer- und/oder Auswertevorrichtung 4 ist zumindest mit einer Kommunikationsschnittstelle 23, wie sie besser aus Fig. 2 ersichtlich ist, zu einem bidirektionalen Datenaustausch zwischen dem Schweißgerät 1 oder der Stromquelle und einem Web-Server, insbesondere

10 einem HTTP-Server 24, verbunden, d.h., daß für eine Datenübertragung an das Schweißgerät 1 oder von dem Schweißgerät 1 eine Kommunikationsschnittstelle 23 angeordnet ist, wobei diese mit einem Web-Server, insbesondere dem HTTP-Server 24, eine Datenverbindung ent-

weder drahtlos oder leitungsgebunden aufbaut. Dadurch ist es möglich, daß das Schweißgerät 1 über die Kommunikationsschnittstelle 23, zumindest zum Empfangen von Daten aus einem übergeordneten Netzwerk 25 ausgebildet ist bzw. ein Datentransfer aus dem übergeordneten

15 Netzwerk 25 durchgeführt werden kann. Bevorzugt ist die Kommunikationsschnittstelle 23 des Schweißgerätes 1 aber derart ausgebildet, daß elektronisch verarbeitbare Daten sowohl empfangen, als auch übertragen bzw. gesendet werden können, also eine bidirektionale Datenübertragungsstrecke zwischen mehreren Netzwerkeinnehmern aufgebaut ist. Gegebenenfalls ist es auch denkbar, die Kommunikationsschnittstelle 23 ausschließlich zum Senden

20 bzw. Übertragen von Daten des Schweißgerätes 1 an andere, örtlich distanzierte Teilnehmer im Netzwerk 25 auszubilden.

Der Web-Server, insbesondere der HTTP-Server 24, ist dabei in dem Schweißgerät 1 oder der Stromquelle 2 angeordnet. Selbstverständlich ist es möglich, daß der Web-Server, insbesondere

25 der HTTP-Server 24, außerhalb des Schweißgerätes 1 oder der Stromquelle 2, insbesondere in einem Rechner bzw. Personal-Computer 26 angeordnet ist, d.h., daß durch Verbinden der Kommunikationsschnittstelle 23 mit einem externen Gerät, insbesondere mit dem Personal-Computer 26, einem Laptop, einer vernetzten Rechenanlage usw., auf dem der Web-Server, insbesondere der HTTP-Server 24, angeordnet ist, eine indirekte Verbindung geschaffen wird,

30 wie dies aus Fig. 3 ersichtlich ist.

Der Web-Server, insbesondere der HTTP-Server 24, ist derartig ausgebildet, daß dieser eine Verbindung zu dem übergeordneten Netzwerk 25, insbesondere zum INTERNET und/oder zu einem INTRANET, herstellt, so daß ein Datenaustausch mit einem von vielen weiteren Web-

35 Servern, insbesondere einem HTTP-Server 27 oder einem weiteren Kommunikationssendege-

- 9 -

rät mit dem HTTP-Server 27, durchgeführt werden kann. Dabei kann der weitere HTTP-Server 27 wiederum durch ein Schweißgerät 1 mit dem HTTP-Server 24 entsprechend den Ausführungen der Fig. 2 oder 3 oder dem unabhängigen Personal-Computer 26, gebildet sein. Durch einen derartigen Datentransfer wird in vorteilhafter Weise erreicht, daß damit bei-
5 spielsweise Serviceleistungen nicht mehr Vorort durchgeführt werden müssen. Weiters kön-
nen kostengünstige Anpassungen der Schweißgeräte 1, insbesondere Software-Anpassungen bzw. Software-Update's, durchgeführt werden, ohne daß dazu ein Servicetechniker Vorort anwesend sein muß.

- 10 Die Kommunikationsschnittstelle 23 des Schweißgerätes 1 ist bevorzugt durch eine standardi-
sierte Schnittstelle zu einem üblichen Datenübertragungsnetzwerk, insbesondere zu einem
drahtgebundenen Datenübertragungsnetzwerk gebildet. Die Anbindung des Schweißgerätes 1
an das übergeordnete Netzwerk 25 kann dabei über ein Netzwerkkabel 28 erfolgen, das die
elektrische Verbindung zwischen der Kommunikationsschnittstelle 23 bzw. dem HTTP-
15 Server 24 und einer externen Netzwerkschnittstelle 29, insbesondere einer Netzwerkdoose 30,
herstellt.

Anstelle der drahtgebundenen Verbindung zwischen dem Schweißgerät 1 und zumindest ei-
nem weiteren Kommunikationssendegerät ist es auch möglich, die Datenübertragungsstrecke
20 drahtlos aufzubauen. Die Datenübertragung kann dabei per Funk über elektromagnetische
Wellen oder auch optisch, bevorzugt über Infrarotsignale, erfolgen. Bei einer optischen Da-
tenübertragung ist die Kommunikationsschnittstelle 23 als Schnittstelle zum Senden und/oder
Empfangen von Infrarotstrahlen aufgebaut, die zur Kommunikation mit einer Schnittstelle
zum Senden und/oder Empfangen von Infrarotstrahlen eines entsprechend ausgebildeten
25 Kommunikationsgerätes, insbesondere mit der Schnittstelle zum Senden und/oder Empfangen
von Infrarotstrahlen eines Mobiltelefons, zusammenwirkt. Dazu ist es möglich, daß der
HTTP-Server 24 direkt in der Kommunikationsschnittstelle 23 eingebaut ist oder daß die
drahtlose Datenverbindung mit dem HTTP-Server 24 hergestellt wird. Die Verbindung vom
Schweißgerät 1 bzw. vom Mobiltelefon zum jeweils gewünschten Kommunikationssendege-
30 rät wird dann bevorzugt über das öffentliche Telefonnetz fortgesetzt.

Selbstverständlich ist es auch möglich, die optische Kommunikationsschnittstelle 23 des
Schweißgerätes 1 mit der entsprechenden optischen Netzwerkschnittstelle 29 in Verbindung
zu setzen, wobei dann die entsprechenden Daten drahtlos an die optische Netzwerkschnitt-
35 stelle 29 übergeben werden und nachfolgend drahtgebunden im übergeordneten Netzwerk 25

- 10 -

weitergeleitet werden. Analog dazu ist die Übertragung von Daten aus dem Netzwerk 25 an das Schweißgerät 1 durchführbar. Sofern die optische Netzwerkschnittstelle 29 angeordnet ist, ist lediglich sicher zu stellen, daß eine Sichtverbindung zwischen der optischen Kommunikationsschnittstelle 23 des Schweißgerätes 1 und der optischen Netzwerkschnittstelle 29 vorliegt, was beispielsweise durch entsprechende Positionierung des Schweißgerätes 1 erzielt werden kann.

Bei einer Datenübertragung auf optischem und elektromagnetischem Weg über ein Mobiltelefon mit einer Schnittstelle zum Senden und/oder Empfangen von Infrarotstrahlen ist es lediglich erforderlich, die Wahlverbindung zum gewünschten Kommunikationssendegerät herzustellen und die Schnittstelle zum Senden und/oder Empfangen von Infrarotstrahlen des Mobiltelefones mit der optischen Kommunikationsschnittstelle 23 am Schweißgerät 1 in Verbindung zu setzen und den gewünschten Verbindungsaufbau einzuleiten.

Das übergeordnete Netzwerk 25 kann dabei durch ein elektrisches Netzwerk 25 oder in vorteilhafter Weise aufgrund der hohen Datenübertragungsraten und geringen Störanfälligkeit gegen elektromagnetische Felder auch durch ein optisches Netzwerk zur Übertragung von optischen Signalen gebildet sein.

Das zur Kommunikation zwischen mehreren Netzwerkteilnehmern bzw. Kommunikationsgeräten ausgebildete Netzwerk 25 ist durch ein lokales, firmeninternes Netzwerk 31 (LAN) und/oder auch durch ein globales, standortübergreifendes Netzwerk 32 (WAN) gebildet. Dabei ist es auch möglich, das lokale Netzwerk 31 in das globale Netzwerk 32 einbindbar auszubilden bzw. die Netzwerke 31, 32 miteinander zu koppeln.

Zur Datenübertragung am lokalen Netzwerk 31 ist bevorzugt das standardisierte TCP (Transmission Protocol) bzw. das IP (Internet Protocol) - Kommunikationsprotokoll eingesetzt. Demnach ist die Kommunikationsschnittstelle 23 des Schweißgerätes 1 durch eine TCP/IP-Schnittstelle gebildet. Das lokale Netzwerk 31 ist daher bevorzugt durch eine INTRANET-Vernetzung oder durch ein sonstiges auf das TCP/IP-Protokoll aufbauende Netzwerk gebildet. So ist es z. B. auch möglich, daß das Netzwerk 25 durch ein ETHERNET oder ARCNET gebildet ist.

Wie nun am besten aus der Zusammenschau der Fig. 1 bis 4 zu entnehmen ist, ist das Schweißgerät 1 über die Kommunikationsschnittstelle 23 und der HTTP-Server 24, 27 entwe-

- 11 -

der direkt oder indirekt über das lokale Netzwerk 31 in das globale Netzwerk 32 einbindbar. Die Kommunikationsschnittstelle 23 ist also zur Einbindung in ein INTRANET 33 und/oder direkt in ein INTERNET 34 ausgebildet. Das globale Netzwerk 32 ist bevorzugt durch das an sich bekannte INTERNET 34 gebildet, das eine Kommunikation nach dem TCP/IP-Protokoll mit beliebigen, weltweit verteilten, dabei jedoch gezielt adressierbaren Kommunikationsgeräten, welche alle den HTTP-Server 24, 27 aufweisen, ermöglicht.

Speziell Fig. 4 stellt dabei stark vereinfacht einen möglichen Kommunikationsaufbau zwischen mehreren Schweißgeräten 1 und sonstigen Netzwerkteilnehmern bzw. sonstigen Kommunikationsgeräten dar.

Die Steuer- und/oder Auswertevorrichtung 4 des Schweißgerätes 1 kann dabei eine standardmäßig verfügbare Recheneinheit 35, insbesondere einen Personal-Computer 36 umfassen, oder auch durch diesen gebildet sein. Die Recheneinheit 35 bzw. der Personal-Computer 36 im Schweißgerät 1 weist dabei die standardmäßige Kommunikationsschnittstelle 23 mit dem HTTP-Server 24 zur Kommunikation mit frei wählbaren Kommunikationsgeräten, die ebenfalls den HTTP-Server 24 oder 27 aufweisen, im übergeordneten Netzwerk 25 auf.

Die verschiedenen Schweißgeräte 1 und Netzwerkteilnehmer 37 sind dabei an global verteilten Einsatzstandorten 38 bis 43 in Verwendung, wobei an den jeweiligen Einsatzstandorten 38 bis 43 auch mehrere Schweißgeräte 1 bzw. Netzwerkteilnehmer 37 untereinander kommunizieren können.

An den Einsatzstandorten 38 bis 40 ist dabei jeweils ein lokales Netzwerk 31 aufgebaut, in welches die Schweißgeräte 1 und sonstige Netzwerkteilnehmer 37 eingebunden sind und somit untereinander einen Datenaustausch vornehmen können.

Unter Netzwerkteilnehmer 37 sind dabei herkömmliche Personal-Computer 44, Datenspeicheranlagen 45, einfache Datensichtgeräte 46 wie z.B. Terminals und Automatisierungsgeräte 47 bzw. speicherprogrammierbare Steuerungen (SPS) zur Automation von beliebigen technischen oder industriellen Abläufen zu verstehen. Die Automatisierungsgeräte 47 weisen dabei eine Mehrzahl von Ein- und/oder Ausgängen auf, über welche der zu automatisierende Prozeß überwacht und beeinflußt werden kann. Die Verbindung zwischen dem Automatisierungsgerät 47 und den zu steuernden Einrichtungen erfolgt dabei über herkömmliche Feldbusssysteme 48. Dabei ist es auch möglich, daß das Automatisierungsgerät 47 einen

- 12 -

Schweißroboter steuert und dann der Schweißroboter das Schweißgerät 1 darstellt.

Ebenso kann das Schweißgerät 1 eine Sensoranordnung 49 umfassen, mit welchem relevante Daten eines laufenden Schweißprozesses erfaßbar sind und an das Schweißgerät 1 übergeben werden.

5 Die dem Schweißgerät 1 zugeordnete Sensoreinheit kann dabei zur Erfassung der Schweißstromstärke, der Temperaturverhältnisse, der Einbrandtiefe, der charakteristischen Merkmale des Lichtbogens, der Führung des Schweißbrenners und dgl. ausgebildet sein. Diese über die Sensoranordnung 49 aufgenommenen Schweißprozeßdaten zur Beurteilung der Qualität eines Schweißprozesses bzw. zur Erfassung der aktuellen Schweißleistung werden an 10 das Schweißgerät 1 übergeben, in diesem aufbereitet oder gegebenenfalls verarbeitet und können dann über die Kommunikationsschnittstelle 23 und dem HTTP-Server 24 an andere Netzwerkteilnehmer zur Auswertung übergeben werden bzw. von anderen Netzwerkteilnehmern 37, wie beispielsweise vom Personal-Computer 44, gezielt abgerufen werden.

15 Die lokalen Netzwerke 31 an den einzelnen Einsatzstandorten 38 bis 40 können dabei durch eine Datenschutzvorrichtung 50, eine sogenannte "Firewall", vor externem, unbefugtem Zugriff gesichert werden. Diese Datenschutzvorrichtung 50 ist auch dazu ausgebildet, um das Einspielen von Daten in das Netzwerk 31 bzw. in die Schweißgeräte 1 oder Netzwerkteilnehmer 37 durch unbefugte Dritte zu unterbinden.

20 Die Einbindung der Schweißgeräte 1 bzw. der lokalen Netzwerke 31 in das weltweite Internet 34 erfolgt über entsprechende Zugangseinrichtungen 51, insbesondere sogenannte Internet-Service-Provider.

25 Jedem Schweißgerät 1 bzw. jedem Netzwerkteilnehmer 37 ist dabei eine eindeutig unterscheidbare Kennung bzw. Adresse 52 zugeordnet, so daß das jeweilige Schweißgerät 1 bzw. der jeweilige Netzwerkteilnehmer 37 aus einer Mehrzahl von Schweißgeräten 1 bzw. Netzwerkteilnehmern 37 gezielt angesprochen bzw. adressiert werden kann und zusätzlich selbst eindeutig identifiziert ist, sofern Daten abgesetzt werden. Die Adresse 52 bzw. die sogenannte 30 e-mail-Adresse, wird von Internet-Service-Providern bzw. von der jeweiligen Zugangseinrichtung 51 zum Internet 34 verwaltet.

Die Steuer- und/oder Auswertevorrichtung 4 des Schweißgerätes 1 ist bevorzugt durch eine Prozessorsteuerung, welche gemäß einem vorgegebenen Ablaufprogramm arbeitet, gebildet. 35 Das Ablaufprogramm kann dabei aus mehreren Softwarebausteinen zusammengesetzt sein,

- 13 -

welche insgesamt das komplette Steuerprogramm bilden. Die Steuer- und/oder Auswertevorrichtung 4 ist dabei zur zyklischen und/oder interruptgesteuerten Abarbeitung der Softwarebausteine ausgebildet.

- 5 Die von der Steuer- und/oder Auswertevorrichtung 4 abzuarbeitenden Sofwarebausteine können dabei dauerhaft oder flüchtig in einer Speichervorrichtung 53 des Schweißgerätes 1 hinterlegt sein. Die Speichervorrichtung 53 kann dabei durch Speicherbausteine der Digitaltechnik, durch einen Festplattenspeicher oder durch sonstige aus dem Stand der Technik bekannte Datenspeichervorrichtungen gebildet sein. Zusätzlich zu den abzuarbeitenden Softwarebausteinen können in der Speichervorrichtung 53 auch Prozeßdaten bzw. Zwischenergebnisse der Prozessorsteuerung und Vorgabekennwerte dauerhaft oder vorübergehend gespeichert sein.
- 10

Über die Kommunikationsschnittstelle 23 bzw. durch die Anbindung an das Netzwerk 25 ist es dann möglich, Daten bzw. Softwarebausteine aus dem Schweißgerät 1 auszulesen bzw. in 15 das Schweißgerät 1 zu übertragen. Insbesondere können die von der Steuer- und/oder Auswertevorrichtung abzuarbeitenden Softwarebausteine durch neue, über das Netzwerk 25 übertragene Softwarebausteine ersetzt werden. Somit kann das Schweißgerät 1 nach dem Update der Softwarebausteine nach einem anderen Ablaufprogramm arbeiten. Dadurch ist es nunmehr auch möglich, daß am Schweißgerät 1 über das Netzwerk 25 eine andere oder geänderte 20 Funktionalität eingestellt wird, sodaß eine Art Fernsteuerung bzw. Fernbedienung des Schweißgerätes 1 erreicht ist.

Dabei ist es auch möglich, daß eine Vielzahl von Softwarebausteinen bzw. Steuerprogrammen 25 in der Speichervorrichtung 53 hinterlegt sind und anhand von über das Netzwerk 25 empfangenen Kennungen gezielt ein neues Steuerprogramm aktiviert wird, das nachfolgend von der Steuer- und/oder Auswertevorrichtung 4 abzuarbeiten ist.

Ebenso können über das Netzwerk 25 Daten-Updates in das Schweißgerät 1 übertragen werden, wobei die Einleitung dieses Updates von einem weitläufig entfernten Standort vorgenommen werden kann.

Durch Software-Updates bzw. durch die Übertragung von Kennungen ist es also möglich, die Funktionalität des Schweißgerätes 1 zu erhöhen bzw. zu reduzieren. So ist es z.B. auch möglich, daß hinsichtlich einer geforderten Funktionalität überarbeitete Softwarebausteine vom 35 Hersteller des Schweißgerätes 1 an die jeweiligen Schweißgeräte 1 an den Kundenstandorten

- 14 -

übertragen und in die Steuer- und/oder Auswertevorrichtung 4 des Schweißgerätes 1 eingespielt werden. Durch die Einbindung des Schweißgerätes 1 in das Netzwerk 25 kann z.B. die Leistungsfähigkeit des Schweißgerätes 1 in einfacher Art und Weise vom Hersteller erhöht werden, nachdem der entsprechende Besitzer des Schweißgerätes 1 die hierfür aufzuwendenden Kosten beglichen hat. Vielfach kann nämlich die Leistungsfähigkeit einfach durch eine Anpassung des Steuerprogrammes verändert werden, sodaß mit einem bestimmten Hardwareaufbau verschiedene Leistungsklassen realisiert werden, wodurch beim Hersteller in vorteilhafter Art und Weise die Produktvielfalt ohne Einbußen bei der Typenvielfalt reduziert werden kann.

10

Ebenso ist es dadurch ermöglicht, Fernwartungen an global verteilten Schweißgeräten 1, ausgehend von einer zentralen Stelle bzw. von einem Fertigungsstandort der Schweißgeräte 1, vorzunehmen. Insbesondere ist auch eine Ferndiagnose, eine Fehlersuche und ein Service bzw. eine Zustandsbestimmung des Schweißgerätes 1 aus der Ferne durchführbar. Somit bleibt die Einsatzfähigkeit des Schweißgerätes 1, bzw. die Qualität der mit dem Schweißgerät 1 ausgeführten Schweißprozesse gesichert und Ausfälle des Schweißgerätes 1 können vermieden werden, da Mängel frühzeitig erkannt werden.

20

Andererseits ist es aber auch möglich, sämtliche Daten zu einzelnen Schweißparametern oder Kennungen für eine individuelle Konfiguration des Schweißgerätes 1 über das Netzwerk 25 und die Kommunikationsschnittstelle 23 zuzuführen bzw. für eine Kontrolle der Schweißvorgänge diese Daten vom Schweißgerät 1 auszulesen. So ist es möglich, daß Daten betreffend den Betrieb des Schweißgerätes 1, wie z.B. die Verwendungsdauer, die Verwendungszeitpunkte, die Schweißeinstellungen oder dgl., von einem der Netzwerkteilnehmer 37 abfragbar sind bzw. diese Daten ausgehend vom Schweißgerät 1 automatisch an andere Netzwerkteilnehmer 37 für eine Verarbeitung bzw. Auswertung übertragen werden.

25

Ebenso ist es möglich, daß über die dem Schweißgerät 1 zugeordnete Sensoranordnung 49 Daten betreffend die Betriebsmittel des Schweißgerätes 1, wie z.B. die Menge und/oder die Art der Schweißelektrode, des abschmelzenden Schweißdrahtes 13, des verwendeten Schutzgases und dgl., über das Netzwerk 25 und die Kommunikationsschnittstelle 23 abgefragt werden bzw. ausgehend von der Steuer- und/oder Auswertevorrichtung 4 automatisch an weitere Netzwerkteilnehmer 37 zur Auswertung und zur Entscheidung der Einleitung von Maßnahmen übertragen werden. Ebenso können über die Sensoranordnung 49 Daten betreffend Verschleißteile des Schweißgerätes 1, wie z.B. der Kontaktbuchse, der Gasdüse oder dgl. über

- 15 -

das Netzwerk 25 gezielt abgefragt werden bzw. auch zyklisch oder erst vor Erreichen eines kritischen Zustandes an zumindest einen weiteren Netzwerkteilnehmer 37 übertragen werden, sodaß von diesem die entsprechenden Maßnahmen gesetzt werden können.

- 5 Durch die Vernetzung des Schweißgerätes 1 und durch die Zuordnung der Sensoranordnung 49 ist es auch möglich, daß von der Steuer- und/oder Auswertevorrichtung 4 Serviceempfehlungen oder Soll-Servicezeitpunkte bzw. auch konkrete Serviceanforderungen abgesetzt werden. Darüber hinaus sind vom Schweißgerät 1 automatisch Meldungen über den Betriebsmittelstand oder auch konkrete Betriebsmittelbestellungen an bestimmte Netzwerkteilnehmer 37, 10 wie z.B. an einen Gas- oder Schweißdrahtlieferanten, absetzbar.

Die Übertragung der Daten bzw. Softwarebausteine vom Schweißgerät 1 zum jeweiligen Netzwerkteilnehmer 37 mit einer bestimmten Adresse 52 bzw. umgekehrt erfolgt bevorzugt über das INTRANET 33 innerhalb standortbezogener Bereiche, bzw. weltweit über das INTERNET 34.

Zur Ankopplung des Schweißgerätes 1 an das übergeordnete Netzwerk 25, insbesondere in das INTERNET 34, weist die Steuer- und/oder Auswertevorrichtung 4 bzw. die demgemäß Recheneinheit 35 eine standardisierte Kommunikationsschnittstelle 23 auf. Über diese standardisierte Kommunikationsschnittstelle 23 ist das Schweißgerät 1 mit einer Ankoppelvorrichtung 54, z.B. in Art eines externen oder internen Modems 55 oder auch in Art einer geeigneten Netzwerkkarte 56, verbunden.

Insbesondere bei Verwendung des externen Modems 55 ist die standardisierte Kommunikationschnittstelle 23 des Schweißgerätes 1 bzw. dessen Recheneinheit 35 durch eine serielle Schnittstelle, insbesondere durch eine RS 232-Schnittstelle gebildet.

Über diese im Schweißgerät 1 vorgesehene Ankoppelvorrichtung 54 in Form des Modems 55 bzw. der Netzwerkkarte 56 ist der Aufbau einer externen Kommunikation über das Netzwerk 25 ermöglicht. Durch die im Schweißgerät 1 vorgesehene Ankoppelvorrichtung 54 in Form des Modems 55 zum Aufbau einer externen Kommunikation bzw. zur Herstellung einer Wählverbindung im Telefonnetz, ist eine zuverlässige und bewährte Datenübertragung bzw. ein weit verbreiteter Datenaustausch ermöglicht.

35 Zur Bedienung und/oder Kontrolle des Schweißgerätes 1 ist diesem die Ein- und/oder Ausga-

- 16 -

bevorrichtung 22 zugeordnet, wobei vor allem eine Eingabevorrichtung 57 vorgesehen ist und eine Ausgabevorrichtung 58 optional vorhanden sein kann. Die Bedienung über die Ein- und/oder Ausgabevorrichtung 22 kann dabei Menü gesteuert erfolgen, sodaß der Benutzer für einen Datentransfer über das INTERNET 34 oder INTRANET 33 keine besonderen Vor-

5 kenntnisse aufweisen muß.

Mittels der Eingabevorrichtung 57 ist eine Bedienung des Schweißgerätes 1 und/oder eine Navigation und Selektion von bestimmten Daten aus dem Datenbestand einer Wissensdatenbank 59 für die Schweißtechnik möglich. Diese Wissensdatenbank 59 kann dabei Teil eines

10 Filesystems eines weitläufig entfernten Datenbankbetreibers oder auch die firmeninterne Wissensdatenbank 59 mit Daten, vor allem aus der Schweißtechnik, sein.

Die Eingabevorrichtung 57 kann dabei durch standardmäßig verfügbare Komponenten, wie z.B. durch eine Tastatur, ein Zeigegerät, ein knüppelartiges Steuerorgan oder durch mehrere

15 Bedienelemente in Form von Dreh- und/oder Schiebeelementen mit Tast- und/oder Schaltfunktion gebildet sein.

Die optionale Ausgabevorrichtung 58 kann ebenso durch standardmäßige Komponenten, wie z.B. durch einen Bildschirm, ein Display oder dgl., gebildet sein. Über diese Ausgabevorrichtung 58 sind die aus dem übergeordneten Netzwerk 25 abgerufenen Daten und/oder die von der Steuer- und/oder Auswertevorrichtung 4 verwalteten und/oder die über die Eingabevorrichtung 57 eingegebenen Daten visualisierbar. Zusätzlich oder alternativ kann auch die akustische Ausgabevorrichtung 58 vorgesehen sein, über welche die betreffenden Daten bzw. Zustände signalisierbar sind.

25 Vor allem die Verwendung des Personal-Computers 36 als Steuer- und/oder Auswertevorrichtung 4 des Schweißgerätes 1 hat den Vorteil, daß standardmäßige Ein- und/oder Ausgabevorrichtungen 22, wie z.B. Bildschirme und Tastaturen, verwendet werden können.

30 Ebenso kann dem Schweißgerät 1 eine kombinierte Ein- und Ausgabevorrichtung 22, z.B. in Art eines Touch-Screen, zugeordnet werden, wodurch die Bedienung bzw. Einstellung des Schweißgerätes 1 für den Schweißtechniker wesentlich erleichtert wird und die Platzanforderungen gering gehalten werden können.

35 Die Steuer- und/oder Auswertevorrichtung 4 bzw. der Personal-Computer 36 des Schweißge-

- 17 -

rätes 1 weist ein Softwarebaustein-Ablaufsystem bzw. ein entsprechendes Betriebssystem auf. Die von der Recheneinheit 35 bzw. vom Personal-Computer 36 des Schweißgerätes 1 abzuarbeitenden Softwarebausteine sind dabei bevorzugt objektorientiert ausgebildet. Das Softwarebaustein-Ablaufsystem bzw. Betriebssystem ist zur Einbindung der objektorientiert programmierten Softwarebausteine in das Steuerprogramm ausgebildet. Dabei kann der HTTP-Server 24, 27 ebenfalls durch einen derartigen Softwarebaustein gebildet werden, wobei für eine Datenübertragung dieser Softwarebaustein von der Steuer- und/oder Auswertevorrichtung 4 aktiviert wird und entsprechende Daten vom Schweißgerät 1 empfangen oder gesendet werden können.

10

Das Softwarebaustein-Ablaufsystem kann dabei in einem EPROM-Speicherbaustein gespeichert sein. Diese nichtflüchtige Speichervorrichtung 53 setzt im Vergleich zu Festplatten keine magnetische Datenaufzeichnung ein, sodaß dessen Störanfälligkeit, insbesondere in starken elektromagnetischen Feldern, wie z.B. in Schweißfeldern, sehr gering ist. Ebenso können Zwischenergebnisse bzw. die Prozeßdaten des Schweißgerätes 1 in einer als RAM-Speicher und/oder EEPROM-Speicher ausgebildeten Speichervorrichtung 53 abgelegt werden.

15

Das von der Steuer- und/oder Auswertevorrichtung 4 zu verarbeitende Steuerprogramm ist bevorzugt mit einer Programmiersprache erstellt, welche speziell für Netzwerkanwendungen konzipiert ist. Das Steuerprogramm bzw. deren Softwarebausteine sind dabei bevorzugt mit der Quellsprache JAVA erstellt. Zur Übersetzung des JAVA-Quellcodes ist der Steuer- und/oder Auswertevorrichtung 4 bzw. der Recheneinheit 35 des Schweißgerätes 1 ein JAVA-Interpreter zugeordnet. Dieser JAVA-Interpreter übersetzt den JAVA-Quellcode in die von der Zielhardware, also von der Steuer- und/oder Auswertevorrichtung 4, verarbeitbare Form.

20

Gegebenenfalls kann der Prozessor der Steuer- und/oder Auswertevorrichtung 4 bzw. der Recheneinheit 35 durch einen JAVA-Prozessor gebildet sein, der das in JAVA erstellte Steuerprogramm direkt verarbeitet.

25

Wie am besten aus Fig. 1 ersichtlich ist, kann die Kommunikationsschnittstelle 23 des Schweißgerätes 1 auch durch eine drahtlose Kommunikationsschnittstelle 23 gebildet sein. Diese drahtlose Kommunikationsschnittstelle 23 des Schweißgerätes 1 ist dabei zur Kommunikation mit einem Mobiltelefon 60 ausgebildet, wie dies zuvor bereits erläutert wurde. Die Kommunikationsschnittstelle 23 ist dabei bevorzugt durch eine Infrarotschnittstelle 61 zur Übertragung und/oder zum Empfangen von die jeweiligen Daten repräsentierenden Infrarotsi-

- 18 -

gnalen 62 ausgebildet. Die als Infrarotschnittstelle 61 ausgebildete Kommunikationsschnittstelle 23 ist derart ausgebildet, daß diese mit dem Mobiltelefon 60, insbesondere mit einer Infrarotschnittstelle 63 des Mobiltelefons 60, in Verbindung treten kann. Zwischen der Infrarotschnittstelle 61 des Schweißgerätes 1 und der Infrarotschnittstelle 63 des Mobiltelefons 60 kann dabei eine bidirektionale oder auch nur eine unidirektionale Datenübertragungsstrecke 64 aufgebaut sein, über welche die jeweiligen Daten in Form von Infrarotsignalen 62 übertragen werden. Selbstverständlich ist es möglich, daß das Mobiltelefon 60 oder ein Funkmodem direkt in das Schweißgerät 1 eingebaut sein kann, sodaß jederzeit und an jedem beliebigen Ort ein Verbindungsaufbau durchgeführt werden kann, ohne das dazu weitere Elemente, wie Verbindungsstellen oder ein zusätzliches Mobiltelefon 60, benötigt werden.

Die Anbindung des Schweißgerätes 1 in das übergeordnete Netzwerk 25 erfolgt dann über das Mobiltelefon 60, indem über dieses eine Wahlverbindung über das öffentliche oder ein privates Telefonnetz mit dem jeweiligen Kommunikationssendegerät bzw. Kommunikationspartner aufgebaut wird. Dabei ist es auch möglich, daß ein direkter Verbindungsaufbau mit einem Kommunikationspartner ohne übergeordnetes Netzwerk 25 stattfinden kann, wobei dazu eine Datenverbindung zwischen den beiden HTTP-Server 24 und 27 aufgebaut wird.

Die jeweiligen Schweißprozeßdaten, Parametrierungsdaten bzw. Softwarebausteine werden sodann über elektromagnetische Wellen 65, welche vom Mobiltelefon 60 abstrahlbar bzw. empfangbar wird, übertragen. Die Übertragung der Daten zwischen dem Mobiltelefon 60 und dem jeweiligen Kommunikationssendegerät bzw. Kommunikationspartner kann dabei wie an sich bekannt sehr weitläufig erfolgen.

Der Verbindungsaufbau zwischen dem Mobiltelefon 60 und dem Kommunikationssendegerät bzw. Kommunikationspartner wird bevorzugt manuell vom Bediener des Schweißgerätes 1 eingeleitet, indem dieser die Wahlverbindung über das Tasteneingabefeld des Mobiltelefons 60 herstellt. Die Wahlverbindung kann dabei wahlweise zu einem Servicedienst, zu Betriebsmittellieferanten, zu Wissensdatenbanken 59, zu Schweißdatenbanken mit den jeweiligen Schweißeinstellungen für die vorgesehene Schweißung und dgl. aufgebaut werden.

Selbstverständlich ist es auch möglich, anstelle des Mobiltelefons 60 eine stationäre, fix in das Schweißgerät 1 installierte Sende- und/oder Empfangseinheit 66 zum Senden und/oder Empfangen elektromagnetischer Wellen 65 anzuhören.

- 19 -

Wie vor allem aus Fig. 4 ersichtlich ist, kann auch eine Programmier- und/oder Datensichtvorrichtung 67 wahlweise mit dem Schweißgerät 1 verbunden werden bzw. mit diesem über das Netzwerk 25 in Verbindung treten. Diese Programmier- und/oder Datensichtvorrichtung 67 ist zur Dateneingabe in das Schweißgerät 1 und/oder zur Datenausgabe und Visualisierung von Daten aus dem Schweißgerät 1 ausgebildet. Diese Programmier- und/oder Datensichtvorrichtung 67 ist auch in das übergeordnete Netzwerk 25 einbindbar, sodaß beispielsweise über das INTERNET 34 gezielt ein bestimmtes Schweißgerät 1 anhand dessen Adresse 52 selektiert und angesprochen werden kann. Die als eigenständige Baueinheit ausgebildete Programmier- und/oder Datensichtvorrichtung 67 kann aber auch direkt mit dem Schweißgerät 1 über die Kommunikationsschnittstelle 23 verbunden werden. Zudem kann die Programmier- und/oder Datensichtvorrichtung 67 auch als Fehlerauslese- und/oder Wartungsgerät verwendet werden.

Der Ordnung halber sei abschließend darauf hingewiesen, daß zum besseren Verständnis des Aufbaus des Schweißgerätes dieses bzw. deren Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.

Die den eigenständigen erforderlichen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.

Vor allem können die einzelnen in den Fig. 1, 2, 3, 4 gezeigten Ausführungen den Gegenstand von eigenständigen, erfindungsgemäßen Lösungen bilden. Die diesbezüglichen, erfindungsgemäßen Aufgaben und Lösungen sind den Detailbeschreibungen dieser Figuren zu entnehmen.

25

- 20 -

B e z u g s z e i c h e n a u f s t e l l u n g

5	1 Schweißgerät 2 Stromquelle 3 Leistungsteil 4 Steuer- und/oder Auswertevorrichtung 5 Umschaltglied	41 Einsatzstandort 42 Einsatzstandort 43 Einsatzstandort 44 Personal-Computer 45 Datenspeichervorrichtung
10	6 Steuerventil 7 Versorgungsleitung 8 Gas 9 Gasspeicher 10 Schweißbrenner	46 Datensichtgerät 47 Automatisierungsgerät 48 Feldbusystem 49 Sensoranordnung 50 Datenschutzvorrichtung
15	11 Drahtvorschubgerät 12 Versorgungsleitung 13 Schweißdraht 14 Vorratstrommel	51 Zugangseinrichtung 52 Adresse 53 Speichervorrichtung 54 Ankoppelvorrichtung 55 Modem
20	15 Lichtbogen 16 Werkstück 17 Versorgungsleitung 18 Versorgungsleitung	56 Netzwerkkarte 57 Eingabevorrichtung 58 Ausgabevorrichtung 59 Wissensdatenbank 60 Mobiltelefon
25	19 Kühlkreislauf 20 Strömungswächter 21 Wasserbehälter 22 Ein- und/oder Ausgabevorrichtung	61 Infrarotschnittstelle 62 Infrarotsignal 63 Infrarotschnittstelle 64 Datenübertragungsstrecke 65 Wellen (elektromagnetisch)
30	23 Kommunikationsschnittstelle 24 HTTP-Server 25 Netzwerk	66 Sende- und/oder Empfangseinheit 67 Programmier- und/oder Datensichtvorrichtung
35	26 Personal-Computer 27 HTTP-Server 28 Netzwerkkabel 29 Netzwerkschnittstelle 30 Netzwerkdose	
40	31 Netzwerk (LAN) 32 Netzwerk (WAN) 33 INTRANET 34 INTERNET 35 Recheneinheit	
45	36 Personal-Computer 37 Netzwerkteilnehmer 38 Einsatzstandort 39 Einsatzstandort	
50	40 Einsatzstandort	

P a t e n t a n s p r ü c h e

1. Schweißgerät (1) mit einer Stromquelle (2) zur Bereitstellung elektrischer Energie an zumindest einer Elektrode und einer der Stromquelle (2) zugeordneten Steuer- und/oder Auswertevorrichtung (4), der eine Eingabevorrichtung (57) zur Einstellung unterschiedlicher Schweißparameter zugeordnet ist, dadurch gekennzeichnet, daß eine mit der Steuer- und/oder Auswertevorrichtung (4) verbundene Kommunikationsschnittstelle (23) für einen bidirektionalen Datenaustausch zwischen dem Schweißgerät (1) oder der Stromquelle (2) über einen Web-Server, insbesondere einen HTTP-Server (24, 27), angeordnet ist.

2. Schweißgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Web-Server, insbesondere der HTTP-Server (24, 27), in dem Schweißgerät (1) oder der Stromquelle (2) angeordnet ist.

3. Schweißgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Web-Server, insbesondere der HTTP-Server (24, 27), außerhalb des Schweißgerätes (1) oder der Stromquelle (2), insbesondere in einem Rechner bzw. einer Recheneinheit (35) oder einem Personal-Computer (26, 36) angeordnet ist.

4. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Web-Server, insbesondere der HTTP-Server (24, 27), eine Verbindung zu einem übergeordneten Netzwerk, insbesondere zum INTERNET (34) und/oder zu einem INTRANET (33), für einen Datenaustausch mit einem weiteren Web-Server, insbesondere einem HTTP-Server (24, 27), herstellt.

5. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuer- und/oder Auswertevorrichtung (4) durch eine Software-Bausteine eines Steuerprogrammes abarbeitende sowie die empfangenen Daten und/oder die auszusendenden Daten ver- bzw. bearbeitende Recheneinheit (35) gebildet ist.

6. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kommunikationsschnittstelle (23) durch eine TCP/IP-Schnittstelle gebildet ist, die eine Kommunikation nach dem TCP/IP-Protokoll ermöglicht.

7. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kommunikationsschnittstelle (23) zur Einbindung in ein lokales Netzwerk (31), insbesondere in ein INTRANET (33) und/oder in ein globales Netzwerk (32), insbesondere in das INTERNET (34), ausgebildet ist.

8. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Software-Funktionsbausteine über das lokale Netzwerk (31), insbesondere das INTRANET (33) und/oder über das globale Netzwerk (32), insbesondere das INTERNET (34), in die Steuer- und/oder Auswertevorrichtung (4) ladbar sind.

9. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Schweißgerät (1), insbesondere die Steuer- und/oder Auswertevorrichtung (4) eine standardisierte Schnittstelle aufweist, über die das Schweißgerät (1) mit einer Ankoppelvorrichtung (54) an das Netzwerk (25), insbesondere mit einem Modem (55) oder einer Netzwerkkarte (56) verbunden ist.

10. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die standardisierte Schnittstelle durch eine serielle Schnittstelle, insbesondere durch eine RS232-Schnittstelle, gebildet ist.

11. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Schweißgerät (1) ein für die externe Kommunikation vorgesehenes Modem (55) zur Herstellung einer Wählverbindung im Telefonnetz angeordnet ist oder der Steuer- und/oder Auswertevorrichtung (4) zugeordnet ist.

12. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Daten zu Schweißprozessen und/oder Kennungen zur wahlweisen Konfiguration des Schweißgerätes (1) extern in dieses zuführbar und/oder von diesem ladbar sind.

13. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Daten betreffend Betriebsmittel, wie z.B. Menge und/oder Art der Schweißelektrode, eines abschmelzenden Schweißdrahtes (13), eines Schutzgases und dgl. und/oder Daten betreffend Verschleißteile, wie z.B. einer Kontaktbuchse, einer Gasdüse und

- 23 -

dgl., über das Netzwerk (25) abfragbar und/oder an weitere Netzwerkteilnehmer (37) übertragbar sind.

14. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Daten betreffend den Betrieb des Schweißgerätes (1), wie z.B. Verwendungsdauer, Verwendungszeitpunkte, Schweißeinstellungen und dgl., von zumindest einem weiteren Netzwerkteilnehmer (37) abfragbar sind und/oder zyklisch an weitere Netzwerkteilnehmer (37) übertragbar sind.

10 15. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Eingabevorrichtung (57) zur Bedienung des Schweißgerätes (1) und/oder zur Navigation und Selektion von Daten aus dem Datenbestand einer Wissensdatenbank (59) für die Schweißtechnik ausgebildet ist.

15 16. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Eingabevorrichtung (57) durch eine Tastatur, ein Zeigegerät, ein knüppelartiges Steuerorgan oder durch mehrere Bedienelemente in Form von Dreh- und/oder Schiebeelementen mit Tast- und/oder Schaltfunktion gebildet ist.

20 17. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die von der Steuer- und/oder Auswertevorrichtung (4) verwalteten und/oder die über die Eingabevorrichtung (57) eingegebenen und/oder die aus dem übergeordneten Netzwerk (25) abgerufenen Daten an einer dem Schweißgerät (1) zugeordneten Ausgabevorrichtung (58) visualisierbar und/oder signalisierbar sind.

25 18. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuer- und/oder Auswertevorrichtung (4) einen Personal-Computer (26, 36) umfaßt, dem eine optische Ausgabevorrichtung (58), insbesondere ein Bildschirm, zugeordnet ist.

30 19. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Software-Bausteine objektorientiert ausgebildet sind.

35 20. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Steuer- und/oder Auswertevorrichtung (4) ein Software-

- 24 -

Baustein-Ablaufsystem bzw. Betriebssystem zur Einbindung der objektorientierten Software-Bausteine und zur Verarbeitung des Steuerprogramms zugeordnet ist.

21. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

5 durch gekennzeichnet, daß die Steuer- und/oder Auswertevorrichtung (4) zur zyklischen und/oder interruptgesteuerten Bearbeitung der Software-Bausteine ausgebildet ist.

22. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß die Software-Bausteine mit der Quellsprache JAVA erstellt sind.

10

23. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß der Steuer- und/oder Auswertevorrichtung (4) ein JAVA-

Interpreter zugeordnet ist bzw. von dieser ausführbar ist.

15

24. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß die Steuer- und/oder Auswertevorrichtung (4) mit einem JAVA-Prozessor versehen ist.

20

25. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß die Kommunikationsschnittstelle (23) zum Aufbau einer drahtlosen Datenübertragungsstrecke (64) zum gewünschten Kommunikationsendgerät bzw. Kommunikationspartner ausgebildet ist.

25

26. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß die Kommunikationsschnittstelle (23) durch eine Infrarotschnittstelle (61, 63) zur Übertragung und/oder zum Empfangen von Infrarotsignalen (62) zwischen dem Schweißgerät (1) und einem Mobiltelefon (60) ausgebildet ist.

30

27. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß die Infrarotschnittstelle (61) des Schweißgerätes (1) für einen Verbindungsauflauf mit einer Infrarotschnittstelle (63) des Mobiltelefons (60) ausgebildet ist.

35

28. Schweißgerät nach einem oder mehreren der vorhergehenden Ansprüche, da-

durch gekennzeichnet, daß die Kommunikationsschnittstelle (23) zur direkten oder indirekten Verbindung über das Netzwerk (25) mit einer als eigenständige Baueinheit ausgebildeten

- 25 -

Programmier- und/oder Datensichtvorrichtung (67) ausgebildet ist.

29. Verfahren zum Betreiben eines Schweißgerätes (1) mit einer von einer Steuer- und/oder Auswertevorrichtung (4) gesteuerten Energiequelle zur Beaufschlagung von zumindest einer Elektrode mit elektrischer Energie, wobei die Steuer- und/oder Auswertevorrichtung (4) Software-Bausteine verarbeitet und gemäß den dadurch vorgegebenen Anweisungen sowie anhand vorliegender Einstellungen operiert, dadurch gekennzeichnet, daß eine Kommunikationsschnittstelle (23) vorgesehen ist, über welche Software-Bausteine und/oder Daten über einem Web-Server, insbesondere einem HTTP-Server (24, 27), zugeführt und/oder aus einem Web-Server, insbesondere einem HTTP-Server (24, 27), abgerufen werden.

30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß die von der Steuer- und/oder Auswertevorrichtung (4) abzuarbeitenden Software-Bausteine durch über das Netzwerk (25) übertragene Kennungen festgelegt werden.

31. Verfahren nach Anspruch 29 oder 30, dadurch gekennzeichnet, daß Betriebsdaten, betreffend z.B. Betriebsmittel, Betriebszustände und dgl., über den Web-Server, insbesondere dem HTTP-Server (24, 27), an weitere Netzwerkeinnehmer (37) übertragen und/oder von weiteren Netzwerkeinnehmern (37) bedarfsweise abgefragt werden können.

32. Verfahren nach einem oder mehreren der Ansprüche 29 bis 31, dadurch gekennzeichnet, daß die Steuer- und/oder Auswertevorrichtung (4) einen Schweißprozeß kontrolliert und die dabei ermittelten Daten an weitere Netzwerkeinnehmer (37) übergeben werden können.

33. Verfahren nach einem oder mehreren der Ansprüche 29 bis 32, dadurch gekennzeichnet, daß von der Steuer- und/oder Auswertevorrichtung (4) Servicebedarfsmeldungen und/oder Serviceanforderungen und/oder Meldungen betreffend den Betriebsmittelstand und/oder Betriebsmittelbestellungen an weitere Netzwerkeinnehmer (37) abgesetzt werden.

34. Verfahren nach einem oder mehreren der Ansprüche 29 bis 33, dadurch gekennzeichnet, daß zum Laden und/oder Übertragen der Daten oder Software-Bausteine ein lokales Netzwerk (31), insbesondere in Form eines INTRANET (33), und/oder ein globales Netzwerk (32), insbesondere das INTERNET (34), eingesetzt wird.

- 26 -

35. Steuer- und/oder Auswertevorrichtung für ein Schweißgerät, insbesondere nach einem oder mehreren der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß eine Kommunikationsschnittstelle (23) zur Verbindung mit einem übergeordneten Netzwerk (25) nach einem oder mehreren der vorhergehenden Ansprüche angeordnet ist.

5

10

15

20

25

30

35

Fig.

Fig.2**Fig.3**

3/3

Fig. 4

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/AT 00/00221

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B23K9/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 850 066 A (DEW LARRY A ET AL) 15 December 1998 (1998-12-15) column 7, paragraph 3 column 3, line 39 – line 56; figures 1,2 ----	1-34
Y	T. JOHNSON: "Implementation of computer systems for production and QA/QC in the Øresund link bridge project" 7TH INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY IN WELDING, 8 - 11 July 1997, pages 42-53, XP000944938 the whole document ----	1-34
Y	EP 0 825 506 A (FOXBORO CORP) 25 February 1998 (1998-02-25) the whole document -----	4,7,8, 19-24

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *S* document member of the same patent family

Date of the actual completion of the international search

14 December 2000

Date of mailing of the international search report

29/12/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Caubet, J-S

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/AT 00/00221

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5850066 A	15-12-1998	CA 2225739 A	20-06-1998
EP 0825506 A	25-02-1998	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/AT 00/00221

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B23K9/10

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B23K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, INSPEC

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 5 850 066 A (DEW LARRY A ET AL) 15. Dezember 1998 (1998-12-15) Spalte 7, Absatz 3 Spalte 3, Zeile 39 – Zeile 56; Abbildungen 1,2 ---	1-34
Y	T. JOHNSON: "Implementation of computer systems for production and QA/QC in the Öresund link bridge project" 7TH INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY IN WELDING, 8. - 11. Juli 1997, Seiten 42-53, XP000944938 das ganze Dokument ---	1-34
Y	EP 0 825 506 A (FOXBORO CORP) 25. Februar 1998 (1998-02-25) das ganze Dokument ----	4,7,8, 19-24

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipps oder der ihr zugrundeliegenden Theorie angegeben ist!

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

14. Dezember 2000

29/12/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Caubet, J-S

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internales Aktenzeichen
PCT/AT 00/00221

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5850066 A	15-12-1998	CA 2225739 A	20-06-1998
EP 0825506 A	25-02-1998	KEINE	

THIS PAGE BLANK (USPTO)