Math 3012 - Applied Combinatorics Lecture 10

William T. Trotter trotter@math.gatech.edu

Chromatic Number and Girth

Observation The three constructions we have given for triangle-free graphs with large chromatic number produce graphs with small girth. Although the proof is a bit beyond our scope in this course, here is a historically very important result in applications of probability to combinatorics.

Theorem (Erdős, '59) For every pair (g, t) of positive integers with $g, t \ge 3$, there is a graph G with girth g and chromatic number t.

Perfect Graphs

Definition A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G. The graph shown below is perfect.

Perfect Graphs and Odd Cycles

Observation A graph G is not perfect if contains an odd cycle as an induced subgraph. The graph shown below is not perfect. Note that it contains C_5 as an induced subgraph.

The Complement of a Graph

Definition The complement of a graph G, denoted G^c is the graph having the same vertex as G but a pair xy of distinct vertices forms an edge in G^c if and only if it does not form an edge in G.

Observation A graph G is not perfect if its complement contains an odd cycle as an induced subgraph.

Perfect Graphs

Observation A graph G is not perfect if contains an odd cycle as an induced subgraph. The graph shown below is not perfect. Note that it contains C_5 as an induced subgraph.

Berge's Perfect Graph Conjecture

Conjecture (Claude Berge, 1961) A graph G is perfect if and only if neither the graph nor its complement contains an odd cycle as an induced subgraph.

The Perfect Graph Theorem

Historical Note The following result was proven by Laszlo Lovász in 1972. Lovász has won numerous international prizes, including the 2010 Kyoto Prize (50 million yen ≈ USD 550K), the Wolf Prize, the Fulkerson Prize (twice), the Polya Prize and the Gödel Prize. As a youngster, he won three consecutive gold medals in the Math Olympiad.

Theorem A graph G is perfect if and only if its complement is perfect.

The Strong Perfect Graph Theorem

Historical Note The following result is proven in a 178 page paper appeared in the *Annals of Mathematics* in 2006 and won the 2009 Fulkerson Prize and a cash award of \$10,000.

Theorem (Chudnovsky, Robertson, Seymour, Thomas) A graph G is perfect if and only if neither the graph nor its complement contains an odd cycle as an induced subgraph.

Intersection Graphs

Definition Let $F = \{A_x : x \in X\}$ be a family of sets. We associate with F an intersection graph G where the vertices of G are the elements of X and Xy is an edge in G when the sets A_x and A_y intersect.

Interval Graphs

Definition A graph G is called an interval graph when it is the intersection graph of a family of closed intervals of R. For the family shown below, c and p intersect while c and n do not.

Interval Graphs are Perfect

Algorithm Given a representation of an interval graph, apply First Fit (Greedy) and color in the order of left end points.

