Tractable Computational Methods for Finding Nash Equilibria of Perfect-Information Position Auctions

David Robert Martin Thompson Kevin Leyton-Brown

Department of Computer Science University of British Columbia {daveth|kevinlb}@cs.ubc.ca

Motivation

How will bidders behave in a position auction that does not meet the assumptions for which theoretical results are known?

Our approach: compute Nash equilibrium

Main hurdle: existing algorithms work with normal form; infeasibly large for ad auctions

Main message: preliminary, but it works

Outline

- Auctions & Model
- Action-Graph Games
- Auctions as AGGs
- Computational Experiments
- Economic Experiments

Types of Position Auctions

Dimensions:

- Generalized First Price vs. Generalized Second Price
- Pay-per-click vs. Pay-per-impression
- Weighted vs. Unweighted:
 - "Effective Bid": bid * weight
 - Ads ranked by effective bid
 - Payment: effective bid / weight
- Current Usage (Google, Microsoft, Yahoo!):
 - Weighted, Per-Click, GSP

Model of Auction Setting

Full-information, one-shot game [Varian, 2007; Edelman, Ostrovsky, Schwarz, 2006 ("EOS")]

	Weights	CTR across positions	CTR across bidders	Value per Click	Bid Amounts
[EOS]	Always 1	Decreasing	Constant	One value per bidder	Continuous
[Varian]	Arbitrary	Decreasing	Proportional to Weight ("Separable")	One value per bidder	Continuous
Our model	Arbitrary	Arbitrary	Arbitrary	Arbitrary	Discrete

Outline

- Auctions & Model
- Action-Graph Games
- Auctions as AGGs
- Computational Experiments
- Economic Experiments

What are AGGs?

- Action Graphs:
 - Each node represents an action.
 - Arcs indicate payoff dependencies.

• [Bhat & Leyton-Brown, 2004; Jiang & Leyton-Brown, 2006]

What are AGGs?

- Action Graphs:
 - Each node represents an action.
 - Arcs indicate payoff dependencies.
 - "Function Nodes" increase sparsity.

• [Bhat & Leyton-Brown, 2004; Jiang & Leyton-Brown, 2006]

Why Use AGGs? [Bhat & Leyton-Brown, 2004]

- Small: Compact representation of a one-shot, full-information game
 - Frequently polynomial in n
- Fast: Dynamic programing can compute expected utility in ~O(anⁱ⁺¹) [Jiang & Leyton-Brown, 2006]
 - Plug into existing equilibrium solvers (e.g. simplicial subdivision [van der Laan, Talman, and van Der Heyden, 1987] Or GNM [Govindan, Wilson, 2003]) for exponential speedup

Outline

- Auctions & Model
- Action-Graph Games
- Auctions as AGGs
- Computational Experiments
- Economic Experiments

Agent A β=2			
Agent B β=2			
Agent C			

Position = 2,3 (Ties broken randomly)

Representing GSP

- Start from a GFP graph
 - same method of computing a bidder's position
- We need to add new nodes to compute prices

Outline

- Auctions & Model
- Action-Graph Games
- Auctions as AGGs
- Computational Experiments
- Economic Experiments

Model of Auction Setting

	Weights	CTR across positions	CTR across bidders	Value per Click	Bid Amounts
[EOS]	Always 1	Decreasing	Constant	One value per bidder	Continuous
[Varian]	Arbitrary	Decreasing	Proportional to Weight ("Separable")	One value per bidder	Continuous
Our model	Arbitrary	Arbitrary	Arbitrary	Arbitrary	Discrete

Why Instantiate [Varian]?

- Validate by comparing with Varian's analytical results for weighted, pay-per-click GSP
 - and obtain computational results on a model of independent interest
- Obtain novel economic results
 - "Apples-to-apples" comparison: how do different auctions perform given identical preferences?
- Most appropriate model is still an open question

Model of Auction Setting

	Weights	CTR across positions	CTR across bidders	Value per Click	Bid Amounts
[EOS]	Always 1	Decreasing	Constant	One value per bidder	Continuous
[Varian]	Arbitrary	Decreasing	Proportional to Weight ("Separable")	One value per bidder	Continuous
Our model	Arbitrary	Arbitrary	Arbitrary	Arbitrary	Discrete
Problem Distribution	Uniform[0,1]	Uniform[0,1] * CTR of higher slot	Proportional to Weight ("Separable")	One value per bidder: Uniform[0,1]	Discrete

Experimental Setup

- 10 bidders, 5 slots
- Integer bids between 0 and 10
- For pay-per-click, normalize value/click:
 - Scale max_i value_i to 10, then scale other values proportionately
 - to use full range of discrete bid amounts
- For pay-per-impression, normalize value/impression.

Size Experiments: Players

Integer bids: 0 to 10

Size Experiments: Bid Increments 10 bidders

Runtime Experiments: Test-bed

• Environment:

- Intel Xeon 3.2GHz, 2MB cache, 2GB RAM
- Suse Linux 10.1

Solver software:

Gambit [McKelvey, McLennan, Turocy, 2007] implementation of simplicial subdivision "simpdiv" [van der Laan, Talman, and van Der Heyden, 1987], AGG-specific dynamic programming inner loop¹ [Jiang & Leyton-Brown, 2006]

1. http://www.cs.ubc.ca/~jiang/agg/

Runtime Experiments: Results

^{*} much longer experiments are ongoing...

Outline

- Auctions & Model
- Action-Graph Games
- Auctions as AGGs
- Computational Experiments
- Economic Experiments

[Varian]: Any SNE gives rise to an efficient allocation

[EOS]'s auction with [Varian]'s preference model

Yahoo! Auctions: Past and Present

[Varian]: VCG revenue is a lower bound on SNE revenue

Multiple Equilibria of GSPs [Varian; EOS]

- Each agent can have many best responses to an equilibrium strategy profile.
 - Raising i's bid increases (i-1)'s price, decreasing i's envy.
- Given an envy-free NE / SNE, lowering an agent's bid may lead to an efficient, pure NE w/ sub-VCG revenue

 Even if pure NE exist for continuous bids, they may not exist for discrete bids.

Equilibrium selection

- Previous results simply showed the first equilibrium found by simpdiv
 - Often a mixed strategy over arbitrary points on equilibrium interval
- Local search approach to equilibrium selection:
 - Start point: Nash equilibrium found by simpdiv
 - Neighbours: Nash equilibria where one bid is changed by one increment
 - Objective: maximize/minimize sum of bids
 - Algorithm: Greedily raise bids (choose bidder by random permutation); random restarts.

Summary

- Many position auctions are tractable:
 - Polynomial-size AGG
 - Polynomial-time expected utility by dynamic programming
- Very general preference model:
 - Position-specific valuations
 - Non-separable CTRs (and arbitrary weights)
- Experimental results consistent with existing theory and practice.

Future Work

• Economic:

- Use full preference model (learn from data)
- Model richer preferences (e.g. cascading CTR
 [Aggarwal, et al, 2008; Kempe, Mahdian, 2008])

Computational:

 In progress: Adapt SEM [Porter, Nudelman, Shoham, 2006] to AGGs: Allows enumerating equilibria (answer questions like "what percentage of pure equilibria are envy free?")

Thank You.