امنیت شبکه

به نام خداوند بخشنده مهربان

۱.۰ فصل ۶: کد های تصدیق صحت پیام

- بعضى وقتا(در برخى كاربردها) صحت اهميتش بالاتر از محرمانگى
 - عملکرد ها برای تصدیق صحت پیام:
 - یک تابع تولید کنندہ \rightarrow عامل تصدیق پیام
 - یک تابع وارسی ightarrow چک کردن عامل تصدیق پیام
- از الگوریتم های رمزنگاری برای تصدیق صحت پیام می شه استفاده کرد اما:
 - کارایی پایین
 - بررسی مفهوم بودن محتوی همواره آسان نیست
 - * نیاز به قالب استاندارد
 - * نیاز به افزونگی
 - * دوشواری خودکار سازی فرآیند تولید و وارسی
 - هدف رمزنگاری ← محرمانگیست نه صحت
 - كدهاى تشخيص خطا:
 - Parity (CRC-1 bit) -
 - * تعداد ۱ ها فرد بود یک دونه ۱ اضافه می کنه
 - CRC-32 bit -
 - * قطعات ۳۲ بیتی رو جمع می کنه
- کد تشخیص کلید ندارد → برای تشخیص نویز (غیر عمدی و غیر هوشمند) ه حمله دشمن (عمدی و هوشمند)
 برخلاف امضاء دو طرف قادر به ایجاد MAC هستند.
 - ایراد اصلی MAC → کارایی پایین
 - ویژگی توابع درهم ساز:
 - ١. تابع يكطرفه
 - ۲. طول ورودي دلخواه
 - ٣. طول خروجي ثابي
 - MAC و کلید در کار نیست \rightarrow برخلاف رمزنگاری و ۴.
 - یافتن پیام متفاوتی که به یک رشته یکسان نگاشته می شود دوشوار باشد.
 - OW -
 - ۲PR -
 - CR -
 - با تست

 $1.25 \times 2^{\frac{n}{2}}$

- \rightarrow احتمال 50% یک تصادم پیدا می شود.
 - ا طول خروجي
 - . تابع f حتما CR باشد.

L با داشتن H(x) برای x های نا معلوم به طول

H(x||pad(x)||L||y)

- ي: دلخواه
 - راه حل:
- * طول پیام قطعه اول ؟؟؟؟
- *قطعه آخر با تابع H متفاوت
 - تشابه و تفاوت MAC و Hash :
 - هر دو چکیده ساز
 - كلىد:
- $H(x) = y \leftarrow$ کلید ندارد hash *
- $MAC(x, Key) = y \leftarrow$ کلید دارد MAC *
 - مله روز تولد $4 oup 2^{64}$ گام 3 نا امن MD۵:
 - $2^{60.3} \leftarrow 2^{80} \leftarrow 2^{80}$ حمله روز تولد SHA: •
- یافتن پیام متفاوتی که به یک رشته یکسان نگاشته می شود دوشوار باشد.
- یافتن پیام متفاوتی که به یک رشته یکسان نگاشته می شود دوشوار باشد.
- یافتن پیام متفاوتی که به یک رشته یکسان نگاشته می شود دوشوار باشد.
 - ١٠١٠٠ سوال
 - ١. آيا هميشه محرمانگي مهم است؟
 - ٢. عملكرد هاى تصديق صحت پيام كدوما هستن؟
 - ۳. از الگوریتم های رمزنگاری میشه استفاده کرد برای تصدیق صحت پیام؟
 - ۴. هدف رمزنگاری چیست؟
 - ۵. کدهای تشخیص خطا چیا هستن؟
 - ۶. خطای بیرونی و خطای درونی؟؟
 - ٧. كد تشخيص خطا امنه؟ چرا؟ مثال؟
 - ۸. کد های تصدیق صحت پیام
 - ۹. توضيح MAC ؟
 - ۱۰. توضيح CBC-MAC ؟ حمله؟ راه حل؟ حمله؟ راه حل؟
 - ۱۱. تفاوت MAC با رمزنگاری؟
 - 11. آيا MAC غيرقابل امضا است؟
 - ۱۳. روش های ترکیب MAC با رمزنگاری؟
 - ۱۴. ایراد اصلی ؟MAC
 - ۱۵. ویژگی توابقع درهم ساز؟
 - ۱۶. امنیت توابع درهم ساز چگونه تامین میشود؟
 - ۱۷. حمله آزمون جامع به ؟Hash

- ۱۸. مرکل دمگارد ؟MD
- ۱۹. تشابه و تفاوت MAC و ؟
 - ۲۰. MD۵ چیه؟حمله؟
 - ۲۱. SHA جيه؟حمله روز تولد؟
 - SHA-۲ .۲۲ چيه؟
 - HMAC .۲۳ چیه؟اهداف؟
- ۲۴. مقاوم در برابر یافتن پیش نگاره اول چیه؟
- ۲۵. مقاوم در برابر یافتن پیش نگاره دوم چیه؟
- ۲۶. کدام یک پیشنگاره اول یا پیشنگاره دوم از ویژگی مقاوم در برابر تصادم نتیجه می شود؟ چرا؟
- ۲۷. اگر تابع ویژگی « پیش نگاره دوم را داشته باشد مقاومت در برابر یافتن پیشنگاره اول را نیز دارد؟ دلیل؟