Hysteresis on Comparator

TE201414 - Rangkaian Elektronika 2

Program Studi Teknik Elektro

Institut Teknologi Kalimantan agung.nursyeha@lecturer.itk.ac.id miftanurfarid@lecturer.itk.ac.id

February 24, 2025

Postest

Find the voltage on Load Resistor V_{R_L}

Hysteresis

what if noise occured on input op-amp?

it will result unwanted output voltage signal

Hysteresis

How to overcome this problem? by defining 2 thresold (Lower Threshold and Upper Threshold) the unwanted signal can be eliminated.

then, how is the circuit?

by adding a connection between output and non-inverting input. the comparator circuit has 2 threshold.

while
$$V_{out} = +V_{CC}$$
, then

$$V_{+}|_{V_{out}=+V_{CC}} = \frac{R_2}{R_1 + R_2} (+V_{CC})$$

 $V_{+}|_{V_{out}=+V_{CC}}$ is the upper threshold voltage V_{UT} , thus

$$V_{UT} = \frac{R_2}{R_1 + R_2} (+V_{CC})$$

while
$$V_{out} = -V_{SS}$$
, then

$$V_{+}|_{V_{out}=-V_{SS}} = \frac{R_2}{R_1 + R_2} (-V_{SS})$$

 $V_{+}|_{V_{out}=-V_{SS}}$ is the lower threshold V_{LT} , thus

$$V_{LT} = \frac{R_2}{R_1 + R_2} (-V_{SS})$$

Hysteresis diagram

Superposition theorem is used to solve circuit problem with more than 1 sources.

Sumber tegangan V_{out} dimatikan, sehingga:

$$V_{+A} = \frac{R_1}{R_1 + R_2} V_{EE}$$

Sumber tegangan V_{EE} dimatikan, ketika $V_{out} = +V_{CC}$:

$$V_{+B} = \frac{R_2}{R_1 + R_2} (+V_{CC})$$

Ambang batas atas V_{UT} :

$$V_{UT} = V_{+A} + V_{+B}$$

$$V_{UT} = \frac{R_1}{R_1 + R_2} (V_{EE}) + \frac{R_2}{R_1 + R_2} (+V_{CC})$$

$$V_{UT} = \frac{R_1 (V_{EE}) + R_2 (+V_{CC})}{R_1 + R_2}$$

Sumber tegangan V_{EE} dimatikan, ketika $V_{out} = -V_{SS}$:

$$V_{+B} = \frac{R_2}{R_1 + R_2} (-V_{SS})$$

Ambang batas bawah V_{LT} :

$$V_{LT} = V_{+A} + V_{+B}$$

$$V_{LT} = \frac{R_1}{R_1 + R_2} (V_{EE}) + \frac{R_2}{R_1 + R_2} (-V_{SS})$$

$$V_{LT} = \frac{R_1 (V_{EE}) + R_2 (-V_{SS})}{R_1 + R_2}$$

Diagram Histerisis

Tentukan:

- \bullet V_{UT}
- \bullet V_{LT}
- diagram histerisis
- Vout apabila dieberikan Vin

Tentukan:

- \bullet V_{UT}
- \bullet V_{LT}
- diagram histerisis
- Vout apabila dieberikan Vin

References

Boylestad, R. L., Nashelsky, L., Electronic Devices and Circuit Theory, Pearson, 2014. Malvino, A., Bates, D., Electronic Principles, McGraw-Hill Education, 2016.

_____Terima Kasih