

Generador mediante el algoritmo Tausworthe

Est. Douglas Bryan Sarmiento Basurto

Asignatura: Simulación, P60

Generador de Tausworthe - Consideraciones

Se basa en la utilización de bits para generar números pseudoaleatorios.

- Guarda relación con métodos criptográficos.
- Pueden obtener secuencias de longitud considerable.
- Tienen un periodo máximo de 2^q-1

Generador de Tausworthe - Pasos (I)

- 1. Se define un valor "r", y una secuencia inicial de "q" dígitos binarios. (B₁, B₂, B₃, ..., B_q)
 - Se tiene que tener en cuenta que el valor de "r" debe ser menor a "q".
- 2. Posteriormente, se continúa con la secuencia, teniendo en cuenta la siguiente fórmula:

$$B_i = (B_{i-r} + B_{i-q}) \mod 2 = B_{i-r} \text{ XOR } B_{i-q} \quad 0 < r < q$$

Generador de Tausworthe - Pasos (II)

Recordando las reglas de XOR, tenemos que:

B_{i-r}	B_{i-q}	$B_{i-r} ext{ XOR } B_{i-q}$
0	0	0
0	1	1
1	0	1
1	1	0

Por lo tanto, los valores de B_i, serían:

$$B_i = egin{cases} 0 & B_{i-r} = B_{i-q} \ 1 & B_{i-r}
eq B_{i-q} \end{cases}$$

Generador de Tausworthe - Pasos (III)

3. Se transforman los números binarios a valores entre 0 y 1.

Para ello se utiliza la siguiente fórmula:

$$\frac{l}{2^l}$$

donde, "l" es una cantidad determinada de bits sobre los que se dividirá la secuencia generada.

Generador de Tausworthe - Ejemplo (I)

Hója de cálculo: Click aquí

Cuaderno de Jupyter: Click aquí

Referencias bibliográficas

- [1] L. Q. Aguilera, "Generación de números aleatorios", Docplayer.es, 2017. [En línea]. Disponible en: https://docplayer.es/22534154-Generacion-de-numeros-aleatorios.html. [Consultado: 29-abr-2022].
- [2] M. Schlenker, "Generating uniform random numbers OMSCS notes", Omscs-notes.com. [En línea]. Disponible en: https://www.omscs-notes.com/simulation/generating-uniform-random-numbers/. [Consultado: 29-abr-2022].
- [3] C. Alexopoulos y D. Goldsman, "Generating Uniform Random Numbers", Gatech.edu, 2009. [En línea]. Disponible en: https://www2.isye.gatech.edu/~sman/courses/Mexico2010/Module06-RandomNumberGeneration.pdf. [Consultado: 29-abr-2022].

¡Gracias!

Carrera de Computación Douglas Bryan Sarmiento Basurto dsarmientob1@est.ups.edu.ec