

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Avisos

Sistema Moodle:

- Importante: Os discentes devem se cadastrar no sistema Moodle - código de inscrição: cco-cd-2011
- Endereço: http://webclass.din.uem.br

Revisão

Sistemas de Numeração:

- o Representação de números
- o Bases
- o Conversões de Bases

Base:

- É a quantidade de algarismos ou símbolos disponíveis para representar todos os números no sistema de numeração
- Exemplos:

```
 ○ Base 10  \Rightarrow 10 dígitos: 0,1,2,...9
```

- \circ Base 2 \Rightarrow 2 dígitos: 0 e 1
- \circ Base 16 \Rightarrow 16 dígitos: 0,1,2,...,9,A,B,C,D,E,F

<u>Convenção:</u> Bases maiores que 10 usam letras para representar algarismos maiores que 9

Sistema Decimal

Base 10:

Base $10 \Rightarrow 10$ dígitos: 0,1,2,...9

- Exemplo: 1303_{10} $1 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$ 1000 + 300 + 0 + 3 = 1303

Notação Posicional

Sistema Binário

Conversões de Bases:

Binário para Decimal

Sistema Binário

Conversões de Bases:

Decimal para Binário

- 2 Métodos: soma de potências e divisões sucessivas
- Exemplo de <u>Soma de Potências</u>:

Sistema Binário

Conversões de Bases:

Decimal para Binário

- Exemplo de <u>Divisões Sucessivas</u>:

Sistema Octal

Base 8:

Base 8 ⇒ 8 dígitos: 0,1,2,3,4,5,6,7

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17
16	20

Sistema Octal

Conversões de Bases:

Octal para Decimal

- Exemplo: 1448

Sistema Octal

Conversões de Bases:

Decimal para Octal

- Exemplo de <u>Divisões Sucessivas</u>:

Sistema Octal

Conversões de Bases:

Octal para Binário: Transforma cada algarismo octal no correspondente binário (para cada octal são necessários 3 bits \Rightarrow 2 3 = 8 - Base octal)

- Exemplo:

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Sistema Octal

Conversões de Bases:

Binário para Octal: Processo inverso - agrupa-se 3 bits a partir da

direita

- Exemplo: 110010₂

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Sistema Hexadecimal

Base 16:

Base 16 ⇒ 16 dígitos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F
16	10

Sistema Hexadecimal

Conversões de Bases:

Hexadecimal para Decimal

Sistema Hexadecimal

Conversões de Bases:

Decimal para Hexadecimal

- Exemplo de <u>Divisões Sucessivas</u>:

Sistema Hexadecimal

Conversões de Bases:

Hexadecimal para Binário: Transforma cada algarismo hexa no correspondente binário (para cada hexa são necessários 4 bits ⇒ 2⁴ = 16 - Base hexa)

- Exemplo:

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Sistema Hexadecimal

Conversões de Bases:

Binário para Hexadecimal: Processo inverso - agrupa-se 4 bits a

partir da direita

- Exemplo: 10011000₂

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Aula de Hoje

- Funções Lógicas
- Simbologias das Portas Lógicas
- Expressões das Portas Lógicas
- o Tabela Verdade
- O Circuitos Integrados das Portas Lógicas

Funções Lógicas

- Variáveis têm apenas 2 estados: 0 ou 1, F ou V
- Também chamadas de Funções Booleanas devido a George Boole

Funções:

- o **NOT**
- o **BUFFER**
- o AND
- o NAND
- o OR
- o NOR
- o XOR
- o XNOR

Função NOT Representação: $S = \overline{A}$

Situações Possíveis:

- a) Chave A aberta $A=0 \longrightarrow S=\overline{A}=1$ Lâmpada Acesa
- b) Chave A fechada $A=1 \longrightarrow S=\overline{A}=0$ Lâmpada Apagada

Tabela Verdade

Mapa onde se colocam todas as possíveis situações de entradas e saídas de um circuito lógico

TV da Porta NOT

Entrada Saída

	•
Α	5
0	1
1	0

Função NOT Representação: S = A

Símbolo da Porta NOT

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o NOT

Solução

TV da Porta NOT

Entrada Saída

Α	5
0	1
1	0

Função NOT Representação: S = A

Símbolo da Porta NOT

Função BUFFER Representação: S = A

Situações Possíveis:

- a) Chave A aberta A=0 \longrightarrow S=A=0 Lâmpada Apagada
- b) Chave A fechada A=1 \longrightarrow S=A=1 Lâmpada Acesa

Tabela Verdade

TV do Buffer

Entrada Saída

Α	5
0	0
1	1

Função BUFFER Representação: S = A

Símbolo do BUFFER

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o **BUFFER**

Solução

TV do Buffer

Entrada Saída

Α	5
0	0
1	1

Função BUFFER Representação: S = A

Símbolo do BUFFER

Tabela Verdade

Função AND Representação: S = A.B

Símbolo da Porta AND

A

B

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o AND

Solução

Função AND Representação: S = A.B

Símbolo da Porta AND

Exercício

Para o circuito abaixo, com 3 chaves A, B e C e a função AND de 3 entradas, faça a Tabela Verdade, a representação e o símbolo da porta correspondente.

Solução

TV da Porta AND

Entradas

Saída

			`
A	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Função AND Representação: S = A.B.C

Símbolo da Porta AND de 3 Entradas

Função NAND Representação: $S = \overline{A.B}$ Situações Possíveis: a) Chave A aberta A=0] S=A.B=1 Lâmpada Acesa Chave B aberta B=0 b) Chave A aberta A=0 S=A.B=1 Lâmpada Acesa Chave B fechada B=1 c) Chave A fechada A=1 S=A.B=1 Lâmpada Acesa Chave B aberta B=0 d) Chave A fechada A=1 S=A.B=O Lâmpada Apagada Chave B fechada B=1 Obs. Lâmpada só apaga quando A=1 E B=1

TV da Porta NAND

Entradas Saída

	•	
Α	В	5
0	0	1
0	1	1
1	0	1
1	1	0

Tabela Verdade

Função NAND Representação: S = A.B

Símbolo da Porta NAND

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o NAND

Solução

TV da Porta NAND

Entradas Saída

<u></u>	V	
Α	В	5
0	0	1
0	1	1
1	0	1
1	1	0

Função NAND Representação: S = A.B

Símbolo da Porta NAND

Tabela Verdade

Α	В	5
0	0	0
0	1	1
1	0	1
1	1	1

Função OR Representação: S = A+B

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o OR

Solução

TV da Porta OR

Entradas Saída

Α	В	5
0	0	0
0	1	1
1	0	1
1	1	1

Função OR Representação: S = A+B

Símbolo da Porta OR

Exercício

Para o circuito abaixo, com 3 chaves A, B e C e a função OR de 3 entradas, faça a Tabela Verdade, a representação e o símbolo da porta correspondente.

Solução

TV da Porta OR

Entradas Saída

	1		
A	В	C	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Função OR Representação: S = A+B+C

Símbolo da Porta OR de 3 Entradas

Função NOR Representação: $S = \overline{A+B}$

Situações Possíveis:

- a) Chave A aberta A=0Chave B aberta B=0 \longrightarrow $S=\overline{A+B}=1$ Lâmpada Acesa
- b) Chave A aberta A=0Chave B fechada B=1 \longrightarrow $S=\overline{A+B}=0$ Lâmpada Apagada
- c) Chave A fechada A=1Chave B aberta B=0 \longrightarrow $S=\overline{A+B}=0$ Lâmpada Apagada
- d) Chave A fechada A=1
 Chave B fechada B=1

 S=A+B=0 Lâmpada Apagada

Obs. Lâmpada só acende quando
A=0 E B=0

Tabela Verdade

TV da Porta NOR

Entradas Saída

لـــــ		
Α	В	5
0	0	1
0	1	0
1	0	0
1	1	0

Função NOR Representação: S = A+B

Símbolo da Porta NOR

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o NOR

TV da Porta NOR

Entradas Saída

Α	В	5
0	0	1
0	1	0
1	0	0
1	1	0

Função NOR Representação: S = A+B

Símbolo da Porta NOR


```
Função XOR Representação: S = A⊕B
Situações Possíveis:
  a) Chave A aberta A=0)
                              S=ÆB=O Lâmpada Apagada
     Chave B aberta B=0
  b) Chave A aberta A=0
                             S=A⊕B=1 Lâmpada Acesa
     Chave B fechada B=1
  c) Chave A fechada A=1
                              S=A⊕B=1 Lâmpada Acesa
     Chave B aberta B=0
  d) Chave A fechada A=1
                              S=A⊕B=O Lâmpada Apagada
     Chave B fechada B=1
                                A=0
    Obs. Lâmpada só
    acende quando
    A \neq B
```

Tabela Verdade

TV da Porta XOR

Entradas Saída

A	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Função XOR Representação: $S = A \oplus B$

Símbolo da Porta XOR

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o XOR

Solução

Tabela Verdade

TV da Porta XOR

Entradas Saída

Α	В	5
0	0	0
0	1	1
1	0	1
1	1	0

Função XOR Representação: S = A⊕B

Símbolo da Porta XOR

Exercício

Para um circuito com 3 chaves A, B e C e a função XOR de 3 entradas, faça a Tabela Verdade, a representação e o símbolo da porta correspondente.

<u>Função XNOR</u> Representação: S = A⊕B = A⊙B

Situações Possíveis:

- b) Chave A aberta A=0
 Chave B fechada B=1

 S=A
 B=0 Lâmpada Apagada
- c) Chave A fechada A=1 Chave B aberta B=0 S=A@B=0 Lâmpada Apagada
- d) Chave A fechada A=1
 Chave B fechada B=1

 S=A
 B=1 Lâmpada Acesa

Obs. Lâmpada só acende quando

$$A = B$$

Tabela Verdade

TV da Porta XNOR

Entradas Saída

A	В	5
0	0	1
0	1	0
1	0	0
1	1	1

Função XNOR Representação: $S = A \oplus B = A \oplus B$

Símbolo da Porta XNOR

Exercício de Fixação

- o Faça a tabela verdade e o desenho da porta lógica
 - o XNOR

Solução

Tabela Verdade

TV da Porta XNOR

Entradas Saída

لــــــــــــــــــــــــــــــــــــــ		
Α	В	5
0	0	1
0	1	0
1	0	0
1	1	1

Função XNOR Representação: $S = \overline{A \oplus B} = A \odot B$

Símbolo da Porta XNOR

Exercício

Para um circuito com 3 chaves A, B e C e a função XNOR de 3 entradas, faça a Tabela Verdade, a representação e o símbolo da porta correspondente.

Implementação das Portas Lógicas

Símbolo do MOSFET Tipo Enriquecimento de Canal N

gatilho=1 ⇒ chave fechada ⇒ condução

MOSFET: Metal-Oxide Semiconductor Field-Effect Transistor Transistor de Efeito de Campo Metal-Óxido Semicondutor

Implementação das Portas Lógicas

Símbolo do MOSFET Tipo Enriquecimento de Canal P

gatilho=0 ⇒ chave fechada ⇒ condução

MOSFET: Metal-Oxide Semiconductor Field-Effect Transistor Transistor de Efeito de Campo Metal-Óxido Semicondutor

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta NOT com CMOS

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta NOT com CMOS

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação do BUFFER com CMOS

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta NAND com CMOS

Implementação das Portas Lógicas

Implementação da Porta NAND com CMOS

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta AND com CMOS

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta NOR com CMOS

Homework: Mostre o funcionamento da porta NOR implementada com transistores como na figura ao lado

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta OR com CMOS

а	Ь	У
0	0	0
0	1	1
1	0	1
1	1	1

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta XOR com CMOS

а	Ь	У
0	0	0
0	1	1
1	0	1
1	1	0

Implementação das Portas Lógicas

Tecnologia CMOS: Complementary Metal-Oxide Semiconductor Metal-Óxido Semicondutor Complementar

Implementação da Porta XNOR com CMOS

а	Ь	У
0	0	1
0	1	0
1	0	0
1	1	1

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta NAND - 7400

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta NOR - 7402

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta NOT - 7404

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta AND - 7408

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta OR - 7432

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta XOR - 7486

Circuitos Integrados das Portas Lógicas

Circuito Integrado da Porta XNOR - 7266

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Portas Lógicas
 - o Simbologia
 - o Representação
 - o Tabela Verdade

Próxima Aula

- o Álgebra de Boole
- o Teoremas de DeMorgan
- Expressões Booleanas
- o Expressões a partir de Circuitos
- o Circuitos a partir de Expressões

