Numerical Exercise (Let's Solve Together)

Observation	1st sibling age (X)	2nd sibling age (Y) \hat{lpha}	$=$ $\bar{Y} - \hat{\beta}\bar{X}$
1	20 0,5	18	
2	18 -1.5	16 -1 16	$\sum_{i=1}^{n} (X_i - \overline{X})^2$
3	20 7,5	16 -1 5 ² - R	$MSE = \sqrt{\frac{1}{n}}SSR = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}$
4	20 01)	18 53 3	n CCD
\	= 19,5	7=17	$SS = \sum_{i=1}^{\infty} (Y_i - \overline{Y})^2 R^2 = 1 - \frac{SSR}{TTS}$

Predict Y using X:
$$\hat{\alpha}, \hat{\beta}$$

► Predict Y using X:
$$\hat{\alpha}$$
, $\hat{\beta}$ $\hat{\beta} = \frac{0.5 + 1.5 - 25 + 0.5}{3 \times 0.5 + 1.5^2} = \frac{2}{3}$ $= 4$

► SSR $\frac{2^2 + (-4)^2 + 2^2}{3^2} = \frac{24}{3}$

$$\rightarrow$$
 SSR $\frac{2^2+1-4)+2^4}{3^2} = \frac{24}{24}$

$$R^2 \qquad l - \frac{240}{9} \chi = \frac{1}{3}$$