Elliptic curves and canonical subgroups of formal groups

By Noriko Yui at København

Abstract

We shall discuss the liftability of the Frobenius morphism of an elliptic curve and a formal group to characteristic 0, by employing the method developed by Jonathan Lubin. A sufficient condition for the liftability of the Frobenius morphism is given.

§ 0. Introduction

All formal groups discussed in this paper are commutative and 1-dimensional.

Let R be a ring with quotient field L, which is a finite extension of the field \mathbb{Q}_p of p-adic numbers, \mathfrak{M} the maximal ideal of R and $k = R/\mathfrak{M}$ the residue field of characteristic $p \neq 0$. Let E be an elliptic curve over E given by a Weierstrass minimal model and F(u, v) the formal group associated to E (which we shall describe explicitly in § 1). Both are defined over R.

We suppose that E has good reduction modulo \mathfrak{M} . Then $E^* = E \pmod{\mathfrak{M}}$ and $\Gamma^*(u,v) = \Gamma(u,v) \pmod{\mathfrak{M}}$ are meaningful objects defined over k. They are studied in § 2 with a view toward seeing how much property of E^* can be recovered from its formal group $\Gamma^*(u,v)$. Finally in § 3, we discuss the liftability of the Frobenius morphism F of E^* and $\Gamma^*(u,v)$ induced by the p-th power map of k to characteristic 0, i.e. to R[x]. If E^* is ordinary, a lifting always exists, because of the presence of p-torsion points on E^* . However, if E^* is supersingular, there is no p-torsion point on E^* . This phenomenon leads us to a natural question: When can the Frobenius morphism F be lifted to characteristic 0, in supersingular case? An answer is given in Theorem (3. 4): Let b(p) denote the coefficient

of u^p in $[p]_{\Gamma}(u)$. Then a sufficient condition for the liftability of F is $0 < v(b(p)) < \frac{p}{p+1}$ (where v is the unique extension of the p-adic valuation v_p of Q_p to L normalized so that v(p) = 1).

Notations. As usual, \mathbb{N} , \mathbb{Z} and \mathbb{Q} denote the set of natural numbers, the ring of rational integers and the field of rational numbers, respectively. For any rational prime p, \mathbb{F}_p , \mathbb{Z}_p and \mathbb{Q}_p denote the field of p elements, the ring of p-adic integers and the field of

p-adic rationals, respectively. v_p denotes the additively written *p*-adic valuation of \mathbb{Q}_p , normalized so that $v_p(p) = 1$.

If R is a commutative ring with the identity element 1, $R[x_1, x_2, ..., x_n]$ (resp. $R[x_1, x_2, ..., x_n]$) denotes the ring of polynomials (resp. the ring of formal power series) over R in the variables $x_1, x_2, ..., x_n$. If f and g are elements of $R[x_1, x_2, ..., x_n]$, $f \equiv g \pmod{\deg r}$ means that f - g contains no monomials of total degree less that r.

§ 1. Formal groups of elliptic curves

Let E be an elliptic curve defined over a field L by the equation

$$(1. 1) y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where $a_i \in L$ for all i and x, y are coordinates in the affine plane.

Denote by E(L) the set of all L-rational points on E and the point at infinity (0, 1, 0). It is well known that E(L) has the additive group structure with the point at infinity as its zero element.

Now choosing a local parameter $u = -\frac{x}{y}$ near zero and putting $w = -\frac{1}{y}$ (so $x = \frac{u}{w}$, $y = -\frac{1}{w}$) in (1. 1), E is written in (u, w) coordinate system as

(1. 2)
$$w = u^3 + a_1 u w + a_2 u^2 w + a_3 w^2 + a_4 u w^2 + a_6 w^3.$$

Substituting w recursively in the right hand side of (1. 2), we get the formal power series expansion for E in u:

(1. 3)
$$w = u^{3} + a_{1}u^{4} + (a_{1}^{2} + a_{2}) u^{5} + (a_{1}^{3} + 2 a_{1}a_{2} + a_{3}) u^{6} + (a_{1}^{4} + 3 a_{1}^{2}a_{2} + 3 a_{1}a_{3} + a_{2}^{2} + a_{4}) u^{7} + (a_{1}^{5} + 4 a_{1}^{3}a_{2} + 5 a_{1}^{2}a_{3} + 3 a_{1}a_{2}^{2} + 3 a_{1}a_{4} + 3 a_{2}a_{3}) u^{8} + \cdots$$

We can derive easily from (1.3) the formal power series expansions of x and y.

$$x = \frac{u}{w} = u^{-2}P(u), \quad y = -\frac{x}{u} = -u^{-3}P(u)$$

where

(1.4)
$$P(u) = 1 - a_1 u - a_2 u^2 - a_3 u^3 - (a_1 a_3 + a_4) u^4 - (a_2 a_3 + a_1 a_4) u^5 + \cdots$$
$$\in \mathbb{Z} [a_1, a_2, a_3, a_4, a_6] [u].$$

The group law of E can also be expanded into a formal power series in u. Let $P_i = (u_i, w_i)$, i = 1, 2, 3 be L-rational points on E such that $P_3 = P_1 + P_2$. Then we have

(1.5)
$$u_{3} = \Gamma(u_{1}, u_{2}) = u_{1} + u_{2} - a_{1}u_{1}u_{2} - a_{2}(u_{1}^{2}u_{2} + u_{1}u_{2}^{2}) - 2 a_{3}(u_{1}^{3}u_{2} + u_{1}u_{2}^{3}) + (a_{1}a_{2} - 3 a_{3}) u_{1}^{2}u_{2}^{2} + \cdots \in \mathbb{Z}[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}] [u_{1}, u_{2}].$$

The $\Gamma(u, v)$ is the formal group (law on one parameter) associated to the elliptic curve E. We simply say that $\Gamma(u, v)$ is the formal group of E. (See Tate [7], [8].)

Likewise, we can expand the canonical invariant differential form

$$\omega_0 = \frac{dx}{2y + a_1 x + a_3}$$

on E into a formal power series in u. By (1. 4), we get

(1.6)
$$\omega_0 = du \{ 1 + a_1 u + (a_1^2 + a_2) u^2 + (a_1^3 + 2 a_1 a_2 + 2 a_3) u^3 \}$$

$$+ (a_1^4 + 3 a_1^2 a_2 + 6 a_1 a_3 + a_2^2 + 2 a_4) u^4 + \cdots$$

$$= \sum_{n=1}^{\infty} a(n) u^{n-1} du$$

where $a(n) \in \mathbb{Z}[a_1, a_2, a_3, a_4, a_6]$ for all n and a(1) = 1.

From here on, we confine ourselves to the case that L is a field complete with respect to a rank-one valuation v, which is the extension of the p-adic valuation v_p of \mathbb{Q}_p . Let R denote the ring of integers in L, \mathfrak{M} the maximal ideal of R and $k = R/\mathfrak{M}$ the residue field of characteristic p > 0.

Let E be an elliptic curve defined over L. Then there exists the equation of the form (1.1) for E with $a_i \in R$ for all i and with the discriminant of minimal order. Such an equation for E is called a Weierstrass minimal model for E.

The formal group $\Gamma(u, v)$ associated to E is, thus, defined over R.

Hence the reductions of E and $\Gamma(u, v)$ modulo \mathfrak{M} are defined over k. We put $E^* = E \pmod{\mathfrak{M}}$ and $\Gamma^*(u, v) = \Gamma(u, v) \pmod{\mathfrak{M}}$.

Now we define, for any $n \in \mathbb{N}$, the endomorphism $[n]_{\Gamma}$: "multiplication by n" on $\Gamma(u, v)$ by

$$\lceil n \rceil_{\Gamma}(u) = \Gamma(u, \lceil n-1 \rceil_{\Gamma}(u)), \lceil 1 \rceil_{\Gamma}(u) = u.$$

Then we obtain by using (1. 5) that for n = 2, 3, ...

(1.7)
$$[2]_{\Gamma}(u) = 2 u - a_1 u^2 - 2 a_2 u^3 + (a_1 a_2 - 7 a_3) u^4 + \cdots,$$

$$[3]_{\Gamma}(u) = 3 u - 3 a_1 u^2 + (a_1^2 - 8 a_2) u^3 + 3 (4 a_1 a_2 - 13 a_3) u^4 + \cdots,$$

In particular, we have for $n = p = \operatorname{char}(k)$,

$$\lceil p \rceil_{\Gamma}(u) = pu \cdot g_0(u) + g(u^{p^h})$$

where $g_0(u) = 1 + \cdots \in R[[u]]$, $g(u) \in R[[u]]$ and $h \in \mathbb{N}$. In characteristic p > 0, we have either

(1.8)
$$[p]_{\Gamma}(u) \equiv c_1 u^{p^h} + c_2 u^{p^{2h}} + \cdots \pmod{\mathfrak{M}}$$

with $c_1 \neq 0$ in k, or

$$[p]_{\Gamma}(u) \equiv 0 \pmod{\mathfrak{M}}$$
.

The height of $\Gamma^*(u, v)$ is defined to be the integer h in this expression and denoted by $ht(\Gamma^*)$. When the latter case occurs, we say that $\Gamma^*(u, v)$ has infinite height.

(1. 1) **Proposition.** Suppose that E has good reduction modulo \mathfrak{M} , i.e., $E^* = E \pmod{\mathfrak{M}}$ also defines an elliptic curve over k. Then the formal group $\Gamma^*(u, v)$ of E^* has height 1 or 2.

Proof. The "multiplication by p" on E^* is an isogeny of degree p^2 , and p^h in the expansion (1.8) is the inseparable degree of that isogeny. So p^h must divide p^2 , whence h=1,2. qed.

(1.2) Remark. We consider the case that E has bad reduction modulo \mathfrak{M} . So $E^* = E \pmod{\mathfrak{M}}$ has a singularity. The singularity is either a cusp or a node. If the singularity is a cusp, the group law of E^* is given by usual addition of point coordinates. Hence $\Gamma^*(u, v)$ is of type $G_a(u, v) = u + v$ and hence $h = \operatorname{ht}(\Gamma^*) = \infty$. If the singularity is a node, the group law of E^* is given by multiplication of point coordinates. Hence $\Gamma^*(u, v)$ is of type $G_m(u, v) = u + v + uv$ and hence $h = \operatorname{ht}(\Gamma^*) = 1$. This is because

$$[p]_{G_m}(u) = (1 \pm u)^p - 1 \equiv (\pm u)^p \pmod{\mathfrak{M}}.$$

We say that E has additive reduction in the first case and multiplicative reduction in the latter case.

(1. 3) **Proposition.** Let $\omega_0 = \frac{dx}{2y + a_1x + a_3}$ be the canonical invariant differential on

E and let $\omega_0 = \sum_{n=1}^{\infty} a(n) u^{n-1} du$, $a(n) \in R$ and a(1) = 1 be the formal power series expansion in u given by (1.6). Suppose that E has good reduction modulo \mathfrak{M} . Then we have

- (a) $a(p) \not\equiv 0 \pmod{\mathfrak{M}} \Leftrightarrow h = \operatorname{ht}(\Gamma^*) = 1 \stackrel{\text{defn}}{\Leftrightarrow} E^*$ is ordinary.
- (b) $a(p) \equiv 0 \pmod{\mathfrak{M}} \Leftrightarrow h = \operatorname{ht}(\Gamma^*) = 2 \stackrel{\text{defn}}{\Leftrightarrow} E^* \text{ is supersingular.}$

Proof. Put

$$f(u) = \sum_{n=1}^{\infty} \frac{a(n)}{n} u^{n}.$$

Then we have

$$\Gamma(u,v) = f^{-1}(f(u) + f(v))$$

and

$$[p]_{\Gamma}(u) = f^{-1}(pf(u)).$$

Writing $[p]_{\Gamma}(u)$ in the following form

$$[p]_{\Gamma}(u) = pu + \sum_{m=2}^{\infty} b(m) u^{m},$$

we get

(1.9)
$$f^{-1}\left(p\left(u+\sum_{n=2}^{\infty}\frac{a(n)}{n}u^{n}\right)\right)=pu+\sum_{m=2}^{\infty}b(m)u^{m}.$$

Taking modulo \mathfrak{M} of (1.9), we can derive immediately that

$$b(m) \equiv 0 \pmod{\mathfrak{M}}$$
 for $(m, p) = 1$,

and

$$b(p) \equiv a(p) \pmod{\mathfrak{M}}$$
.

So in characteristic p > 0, $\lceil p \rceil_{\Gamma}(u)$ takes the form

$$[p]_{\Gamma}(u) \equiv a(p) u^p + \sum_{i=2}^{\infty} b(p^i) u^{p^i} \pmod{\mathfrak{M}}.$$

Therefore the assertions (a) and (b) follow immediately from Proposition (1. 1). qed.

§ 2. Formal groups and p-torsion points on elliptic curves

The notations L, R, \mathfrak{M} and k being the same as in § 1, let \overline{k} denote the algebraic closure of k.

Let E be an elliptic curve over L given by a Weierstrass minimal model and $\Gamma(u, v) \in R[\![u, v]\!]$ the formal group of E. Suppose that E has good reduction modulo \mathfrak{M} . Then we have

- (2. 1) **Theorem** (cf. Hasse [3]).
- (a) $h = ht(\Gamma^*) = 1 \Leftrightarrow E^*$ has p points of order p in \bar{k} .
- (b) $h = ht(\Gamma^*) = 2 \Leftrightarrow E$ has no point of order p in \bar{k} .

Proof. Let ${}_{p}E^{*}(\bar{k})$ denote the group of points of order p on E^{*} defined over \bar{k} . We know that the order of the group ${}_{p}E^{*}(\bar{k})$ is equal to the separable degree of the isogeny "multiplication by p" on E^{*} of degree p^{2} (cf. [6]). While p^{h} in the expansion (1. 8) provides us the inseparable degree of that isogeny. Thus the order of ${}_{p}E^{*}(\bar{k})$ is equal to p^{2-h} and the assertions follow immediately. qed.

Now we shall investigate the relationship between p-torsion points on E^* and the invariant differentials on E and E^* . E^* is given by the equation

$$y^2 + a_1^* x y + a_3^* y = x^3 + a_2^* x^2 + a_4^* x + a_6^*$$

where $a_i^* = a_i \pmod{\mathfrak{M}}$.

- (2. 2) **Theorem.** Let ω be an invariant differential of E and ω^* denote the reduction of ω modulo \mathfrak{M} , which is an invariant differential on E^* . Then we have
 - (a) E^* has p points of order p in $\bar{k} \Leftrightarrow \omega^*$ is logarithmic.
 - (b) E^* has no point of order p in $\bar{k} \Leftrightarrow \omega^*$ is exact.

Before giving a proof to Theorem (2.2), we consider the differentials on the elliptic curve E^* . Let K = k(x, y) denote the function field of E^* over k and $Diff_k(K)$ the space of differentials of K over k. Then every element of $Diff_k(K)$ can be expressed uniquely in the form

$$(2.1) \qquad \omega^* = d\theta + \eta^p x^{p-1} dx$$

with some θ , $\eta \in K$ (once the *p*-variable *x* of *K* is fixed).

The Cartier operator $\mathscr{C}: \mathrm{Diff}_k(K) \to \mathrm{Diff}_k(K)$ is defined, for ω^* given by (2.1), by letting

$$\mathscr{C}(\omega^*) = \eta \ dx$$
.

A differential ω^* of K is called *logarithmic* (resp. exact) if it is of the form dz/z (resp. dz) for some $z(\pm 0) \in K$. This definition is equivalent to say that ω^* is logarithmic (resp. exact) if and only if $\mathscr{C}(\omega^*) = \omega^*$ (resp. $\mathscr{C}(\omega^*) = 0$).

The invariant differentials on E^* form a 1-dimensional k-vector space \mathfrak{D}_1 , which is closed under the Cartier operator. Hence, once we choose a basis for \mathfrak{D}_1 , the Cartier operator $\mathscr C$ can be represented by an element of k. Let $\omega_0^* = \frac{dx}{2y + a_1^*x + a_3^*}$ be the canonical invariant differential on E^* . We take ω_0^* as the basis for \mathfrak{D}_1 once and for all. Then we have

(2. 3) **Theorem.** The image of ω_0^* under the Cartier operator \mathscr{C} is given by

$$\mathscr{C}(\omega_0^*) = A^{1/p} \omega_0^*$$

where the Cartier operator \mathscr{C} is represented by the element $A^{1/p}$ and A is given by the value

$$a_1^*$$
 if $p = 2$,
 $a_1^{*2} + a_2^*$ if $p = 3$,

and if $p \ge 5$,

$$\sum_{2i+3j=\frac{p-1}{2}} \frac{\left(\frac{p-1}{2}\right)!}{i!\,j!\left(\frac{p-1}{2}-i-j\right)!} \, a^i b^j \, 4^{\frac{p-1}{2}-i-j},$$

with

(2. 2)
$$a = -\frac{(a_1^{*2} + 4 a_2^{*2})^2}{12} + 4 a_4^{*2} + 2 a_1^{*2} a_3^{*2},$$

$$b = \frac{(a_1^{*2} + 4 a_2^{*2})^3}{216} - \frac{(a_1^{*2} + 4 a_2^{*2}) (a_1^{*2} a_3^{*2} + 2 a_4^{*2})}{6} + a_3^{*2} + 4 a_6^{*2}.$$

Proof. Write ω_0^* in the following form

$$\omega_0^* = (2 y + a_1^* x + a_3^*)^{-p} Q(x, y) dx$$

with

$$Q(x, y) = (2 y + a_1^* x + a_3^*)^{p-1}.$$

To get the image of ω_0^* under the Cartier operator \mathscr{C} , it suffices to compute the coefficient A of x^{p-1} in Q(x, y), because all other terms give exact differentials. If p=2, $A=a_1^*$ and if p=3, $A=a_1^{*2}+a_2^*$. Assume now that $p\geq 5$. Then we get the classical Weierstrass equation for E^* by replacing x and y by

$$X = x + \frac{a_1^{*2} + 4 a_2^{*}}{12}, Y = 2y + a_1^{*}x + a_3^{*}.$$

The classical Weierstrass equation for E^* is the following equation:

$$Y^2 = 4X^3 + aX + b$$

where a and b are prescribed in (2. 2).

Hence the coefficient A of x^{p-1} in

$$Q(X, Y) = (4 X^3 + aX + b)^{\frac{p-1}{2}}$$

is given by

$$A = \sum_{2i+3j=\frac{p-1}{2}} \frac{\left(\frac{p-1}{2}\right)!}{i!j!\left(\frac{p-1}{2}-i-j\right)!} a^{i}b^{j} 4^{\frac{p-1}{2}-i-j}.$$

This is the Deuring formula for the Hasse invariant of E^* ([1]).

(2. 4) Remark. We can express the invariant differential $\omega^* \in \mathrm{Diff}_k(K)$ also in the form

$$\omega^* = d\theta + \varphi^p \frac{dx}{x}$$
 with $\theta, \varphi \in K$.

We define the modified Cartier operator $\mathscr{C}': \mathrm{Diff}_k(K) \to \mathrm{Diff}_k(K^p)$ by letting, for ω^* given in the above form,

$$\mathscr{C}'(\omega^*) = \varphi^p \frac{d^p x^p}{x^p}.$$

Then the image of the canonical invariant differential ω_0^* under \mathscr{C}' is given by

$$\mathscr{C}'(\omega_0^*) = A \omega_0^{*p}$$
.

(2.5) **Theorem.** Let A be the Hasse invariant on E^* given as in Theorem (2.3). Put

$$H = \{ \alpha \in k \mid A \alpha^p = 0 \}$$

and

$$G = \{ \alpha \in k \mid A \alpha^p = \alpha \}.$$

Then H is a k-vector space and G generates a k-vector space $\langle G \rangle$. Moreover we have

- (a) \mathfrak{D}_1 is equal to $H\omega_0^* \Leftrightarrow A = 0 \Leftrightarrow every \ \omega^* \in \mathfrak{D}_1$ is exact.
- (b) \mathfrak{D}_1 is equal to $\langle G \rangle \omega_0^* \Leftrightarrow A \neq 0 \Leftrightarrow every \ \omega^* \in \mathfrak{D}_1$ is logarithmic.

Proof. We can see easily that H becomes a k-vector space and that G itself is not a k-vector space, but it generates a k-vector space $\langle G \rangle$. Since \mathfrak{D}_1 is an 1-dimensional k-vector space with the basis ω_0^* , any element $\omega^* \in \mathfrak{D}_1$ can be expressed in the form

$$\omega^* = \alpha \omega_0^*$$
 with some $\alpha(\neq 0) \in k$.

Now $H\omega_0^*$ is contained in \mathfrak{D}_1 , so it follows that $H\omega_0^* = \{0\}$ or $H\omega_0^* = \mathfrak{D}_1$. Similarly, we have either $\langle G \rangle \omega_0^* = \{0\}$ or $\langle G \rangle \omega_0^* = \mathfrak{D}_1$.

- (a) $H\omega_0^* = \mathfrak{D}_1 \Leftrightarrow A = 0 \Leftrightarrow \mathscr{C}(\omega^*) = 0$ for every $\omega^* \in \mathfrak{D}_1 \Leftrightarrow \text{every } \omega^* \in \mathfrak{D}_1$ is exact.
- (b) $\langle G \rangle \omega_0^* = \mathfrak{D}_1 \Leftrightarrow A \neq 0 \Leftrightarrow \mathscr{C}(\omega^*) = \omega^* \text{ for every } \omega^* \in \mathfrak{D}_1 \Leftrightarrow \text{every } \omega^* \in \mathfrak{D}_1 \text{ is logarithmic.}$

Journal für Mathematik. Band 303/304

(2. 6) **Theorem.** Let $u = -\frac{x}{y}$ be a local parameter of E at zero, $\omega_0 = \sum_{n=1}^{\infty} a(n) u^{n-1} du$ the canonical invariant differential on E given by (1. 6) and $[p]_{\Gamma}(u) = pu + \sum_{m=2}^{\infty} b(m) u^m$ the "multiplication by p" on $\Gamma(u, v)$. Let A be the Hasse invariant of E^* obtained in Theorem (2. 3). Then

$$A \equiv a(p) \equiv b(p) \pmod{\mathfrak{M}}$$
.

Proof. We have only to show the first congruence, since the latter congruence is already shown in the proof of Proposition (1. 3). By definition of the Cartier operator, we have

$$\mathscr{C}(\omega_0^*) = A^{1/p} \frac{x}{2 y + a_1^* x + a_2^*} \frac{dx}{x} = A^{1/p} \left(\sum_{n=1}^{\infty} a(n)^* u^{n-1} du \right) = A^{1/p} du + \cdots$$

where $a(n)^* = a(n) \pmod{\mathfrak{M}}$.

On the other hand, we also have

$$\mathscr{C}(\omega_0^*) = \mathscr{C}\left(\sum_{n=1}^{\infty} a(n)^* u^{n-1} du\right) = a(p)^{*1/p} du + \cdots$$

Hence we obtain the congruence

$$A \equiv a(p) \pmod{\mathfrak{M}}$$
. qed

(2. 7) Proof of Theorem (2. 2). We have the following equivalent statements:

(a) every
$$\omega^* \in \mathfrak{D}_1$$
 is exact $\Leftrightarrow \mathscr{C}(\omega^*) = 0 \overset{\mathsf{Thm.}(2.5)}{\Leftrightarrow} A = 0 \overset{\mathsf{Thm.}(2.6)}{\Leftrightarrow} a(p) \equiv 0 \pmod{\mathfrak{M}}$
 $\Leftrightarrow h = 2 \overset{\mathsf{Prop.}(1.3)}{\Leftrightarrow} E^*$ has no point of order p in k .

(b) every
$$\omega^* \in \mathfrak{D}_1$$
 is logarithmic $\Leftrightarrow \mathscr{C}(\omega^*) = \omega^* \stackrel{\mathsf{Thm.}(2.5)}{\Leftrightarrow} A \neq 0 \stackrel{\mathsf{Thm.}(2.6)}{\Leftrightarrow} a(p) \not\equiv 0 \pmod{\mathfrak{M}}$
 $\Leftrightarrow h = 1 \stackrel{\mathsf{Thm.}(2.1)}{\Leftrightarrow} E^*$ has p points of order p in k . qed.

§ 3. Canonical subgroups of formal groups

The notations L, R, \mathfrak{M} , k and \overline{k} being the same as before, let \overline{L} be the algebraic closure of L, \overline{R} the integral closure of R in \overline{L} , $\overline{\mathfrak{M}}$ the maximal ideal of \overline{R} and v the unique prolongation of the p-adic valuation v_p of Q_p to L, additively written and normalized so that v(p) = 1. The unique extension to \overline{L} of v will also be denoted by v.

Let $\Phi(x, y)$ be a formal group over R and let $\Phi^*(x, y) = \Phi(x, y)$ (mod \mathfrak{M}). The elements of $\overline{\mathfrak{M}}$ form an abelian group $\Phi(\overline{R})$ under $\Phi(x, y)$ by the operation $\alpha * \beta = \Phi(\alpha, \beta)$. The elements of $\Phi(\overline{R})$ of finite order form a torsion subgroup of $\Phi(\overline{R})$. In particular, $\text{Ker }[p]_{\Phi}$ is a torsion p-subgroup of $\Phi(\overline{R})$, since $[p]_{\Phi}(\alpha * \beta) = \Phi([p]_{\Phi}(\alpha), [p]_{\Phi}(\beta)) = 0$ for any $\alpha, \beta \in \text{Ker }[p]_{\Phi}$. (For detail, see [2].) For any positive real number λ , we put

$$\Phi(\bar{R})_{\lambda} = \{ \alpha \in \Phi(\bar{R}) | \nu(\alpha) \geq \lambda \}.$$

Then it is easy to see that $\Phi(\bar{R})_{\lambda}$ is a subgroup of $\Phi(\bar{R})$. A subgroup S of $\Phi(\bar{R})$ is called a congruence torsion subgroup of $\Phi(x, y)$ if there is a positive real number λ for which

$$S = \{ \alpha \in \Phi(\bar{R})_{\lambda}; \text{ there is an } n \in \mathbb{N} \text{ such that } \alpha \in \operatorname{Ker}[p^n]_{\Phi} \}.$$

- (3. 1) **Definition.** The canonical subgroup can (Φ) of $\Phi(x, y)$ is a congruence torsion subgroup of order p in Ker $[p]_{\Phi}$.
- (3. 2) **Theorem** (cf. Lubin [4]). Let $\Phi(x, y)$ be a standard generic formal group over R with $h = ht(\Phi^*) < \infty$ and let

$$[p]_{\Phi}(x) = pxg_0(x) + \sum_{i=1}^{h-1} \alpha_i x^{p^i} g_i(x) + \alpha_h x^{p^h} g_h(x)$$

where $v(\alpha_i) > 0$ for each $1 \le i \le h-1$, $v(\alpha_h) = 0$ and $g_0(x)$, $g_i(x)$ for each $1 \le i \le h-1$ are units in R[x] and $g_h(x) \in R[x]$, be the "multiplication by p" on $\Phi(x, y)$. Then the following statements are equivalent:

(i) $\Phi(x, y)$ has the canonical subgroup can (Φ) .

$$(ii) \begin{cases} v(\alpha_1) = 0 & \text{if} \quad h = 1, \\ v(\alpha_1) < \frac{p^h - p}{p^h - 1} & \text{if} \quad h \ge 2. \end{cases}$$

(iii) The Newton polygon $\mathfrak{N}([p]_{\Phi})$ of $[p]_{\Phi}(x)$ has a vertex at $(p, v(\alpha_1))$ and has the shape as illustrated below:

When one of the above conditions is satisfied, the canonical subgroup $can(\Phi)$ of $\Phi(x, y)$ is explicitly given by

$$\operatorname{can}(\Phi) = \begin{cases} \{0\} \cup \left\{ \alpha \in \Phi(\bar{R})_{\lambda} | v(\alpha) = \frac{1}{p-1} \right\} & \text{if} \quad h = 1 \\ \{0\} \cup \left\{ \alpha \in \Phi(\bar{R})_{\lambda} | v(\alpha) = \frac{1-v(\alpha_1)}{p-1} \text{ with } v(\alpha_1) < \frac{p^h - p}{p^h - 1} \right\} & \text{if} \quad h \ge 2, \end{cases}$$

where $\lambda = -$ (slope of the segment S in $\mathfrak{N}(\lceil p \rceil_{\Phi})$), i.e.

$$\lambda = \begin{cases} \frac{1}{p-1} & \text{if} \quad h=1\\ \frac{1-\nu(\alpha_1)}{p-1} & \text{if} \quad h \ge 2. \end{cases}$$

Proof. A formal group $\Phi(x, y)$ over R with height $h < \infty$ is called a standard generic if it has the formal moduli $(\alpha_1, \alpha_2, \ldots, \alpha_{h-1}) \in \mathfrak{M} \times \mathfrak{M} \times \cdots \times \mathfrak{M}$ (see [5]) and $[p]_{\Phi}(x)$ necessarily has the prescribed form.

First we shall prove the assertions when h=1. We know that $h=1 \Leftrightarrow \alpha_1$ is a unit in R, i.e. $v(\alpha_1)=0 \Leftrightarrow \operatorname{Ker}[p]_{\Phi}$ has order p. Hence by Definition (3. 1), one can see at once that $\operatorname{can}(\Phi)=\operatorname{Ker}[p]_{\Phi}$. This implies that $\operatorname{can}(\Phi)$ always exists whenever h=1. The equivalences follow immediately. Now the segment S of the Newton polygon $\Re([p]_{\Phi})$ gives rise to exactly p-1 distinct roots of $[p]_{\Phi}(x)=0$ with order $\frac{1}{p-1}=-(\operatorname{slope} \operatorname{of} S)$.

Hence we get the group

$$\operatorname{can}(\Phi) = \operatorname{Ker}[p]_{\Phi} = \{0\} \cup \left\{ \alpha \in \Phi(\bar{R})_{\frac{1}{p-1}} \mid \nu(\alpha) = \frac{1}{p-1} \right\}.$$

Now we shall consider the case of $h \ge 2$.

(i) \Rightarrow (ii). Suppose that $\Phi(x, y)$ has the canonical subgroup $\operatorname{can}(\Phi)$, then $[p]_{\Phi}(x)$ must have a polynomial factor of degree p. This forces that the Newton polygon of $[p]_{\Phi}(x)$ has a vertex at p by noting that all the coefficients of x^i for i < p have order ≥ 1 . The Newton polygon of $[p]_{\Phi}(x)$ has a vertex at $(p, v(\alpha_1))$, if and only if $v(\alpha_1)$ is smaller than the order of the point Q where Q is defined by

The point Q has the coordinate $\left(p, \frac{p^h - p}{p^h - 1}\right)$. Hence we get the assertion (ii).

- (ii) ⇔ (iii) are clear.
- (iii) \Rightarrow (i). If the Newton polygon of $[p]_{\Phi}(x)$ has the shape as (iii), the segment S yields p-1 roots $\beta_1, \beta_2, \ldots, \beta_{p-1} \in \overline{R}$ with $v(\beta_i) = \frac{1-v(\alpha_1)}{p-1} = -$ (slope of S). The roots

are distinct, because $\frac{d}{dx}[p]_{\Phi}(x) \neq 0$ for any $x \in \overline{R}$. Put $f(x) = x \prod_{i=1}^{p-1} (x - \beta_i)$. Then f(x) is a monic polynomial over R such that $f(x) \equiv x^p \pmod{\mathfrak{M}}$ and that f(x) divides $[p]_{\Phi}(x)$ by Lubin's Local Factorization Principle ([4]). Hence the canonical subgroup $\operatorname{can}(\Phi)$ exists and it is given explicitly by the group

$$\operatorname{can}(\Phi) = \left\{ 0, \, \beta_1, \, \beta_2, \, \dots, \, \beta_{p-1} \, | \, v(\beta_i) = \frac{1 - v(\alpha_1)}{p-1} \text{ with } v(\alpha_1) < \frac{p^h - p}{p^h - 1} \right\} \qquad \text{qed.}$$

(3.3) **Theorem** (cf. Lubin [4]). Let $\Phi(x, y)$ be a standard generic formal group over R with $h = \operatorname{ht}(\Phi^*) < \infty$. Suppose that $\Phi(x, y)$ has the canonical subgroup $\operatorname{can}(\Phi)$. Then the Frobenius morphism F of $\Phi(x, y)$ induced by the p-th power map $x \to x^p$ of k can be lifted back to R[x].

Proof. Put

$$f(x) = \prod_{\alpha \in \operatorname{can}(\Phi)} (x - \alpha).$$

Then f(x) is a monic polynomial over R of degree p satisfying $f(x) \equiv x^p \pmod{\mathfrak{M}}$. So f(x) is a good candidate for a lifting of the Frobenius morphism F. In order for f(x) to be indeed a lifting of F, $f(\Phi(x, y))$ must be the ideal (f(x), f(y)), which is the set of all formal power series $g(x, y) \in R[x, y]$ satisfying $g(\alpha, \alpha') = 0$ for $\alpha, \alpha' \in \operatorname{can}(\Phi)$. But we see that for any $\alpha, \alpha' \in \operatorname{can}(\Phi)$, $\Phi(\alpha, \alpha') \in \operatorname{can}(\Phi)$. This implies that $f(\Phi(x, y)) \subset (f(x), f(y))$. The other inclusion is clear. Hence we get

$$f(\Phi(x, y)) = (f(x), f(y)).$$

We have a commutative diagram

$$\begin{array}{ccc}
\Phi(x, y) & \xrightarrow{f} & f(\Phi(x, y)) \\
\mod \mathfrak{M} & & \mod \mathfrak{M} \\
\Phi^*(x, y) & \xrightarrow{F} & \Phi^{*(p)}(x^p, y^p)
\end{array}$$

where $\Phi^{*(p)}(x^p, y^p)$ denotes the formal power series in x^p , y^p with the coefficients of the p-th power of those of $\Phi^*(x, y)$.

- (3.4) **Theorem.** Let E be an elliptic curve over L given by a Weierstrass minimal model and $\Gamma(u, v)$ be the formal group of E. Suppose that E has good reduction modulo \mathfrak{M} . Then we have
- (a) If $h = ht(\Gamma^*) = 1$, $\Gamma(u, v)$ always has the canonical subgroup $can(\Gamma)$; $can(\Gamma) = Ker[p]_{\Gamma}$.
- (b) If $h = \operatorname{ht}(\Gamma^*) = 2$, $\Gamma(u, v)$ has the canonical subgroup $\operatorname{can}(\Gamma)$, if and only if $b(p) \equiv 0 \pmod{\mathfrak{M}}$ and $v(b(p)) < \frac{p}{p+1}$, where b(p) is the coefficient of u^p in $[p]_{\Gamma}(u)$. If $\operatorname{can}(\Gamma)$ exists, it is explicitly given by the group

$$\operatorname{can}(\Gamma) = \{0\} \cup \left\{ \alpha \in \Gamma(\overline{R})_{\lambda} | v(\alpha) = \frac{1 - v(b(p))}{p - 1} \right\}$$

where
$$\lambda = \frac{1 - v(b(p))}{p - 1}$$
.

Proof. Apply the same arguments as in the proof of Theorem (3. 2).

(3. 5) Examples. Let L be a finite extension of \mathbb{Q}_p with a uniformizing element π . Let E be an elliptic curve defined over $\mathbb{Z}_p[\pi]$ with the discriminant Δ and $E^* = E \pmod{\pi}$. Let $\Gamma(u, v)$ be the formal group of E.

Case (I). Suppose p = 2.

(Ia) Let E be given by

$$v^2 + xv = x^3 + a_2x^2 + a_6$$
 with $v(a_6) = 0$.

Then E has good reduction at π , because $v(\Delta) = v(a_6) = 0$. Since

$$[2]_{\Gamma}(u) \equiv -u^2 \pmod{\pi}$$
, (mod deg 3),

 E^* is ordinary. Hence $\Gamma(u, v)$ possesses the canonical subgroup can(Γ).

(Ib) Let E be given by

$$y^2 + a_3 y = x^3 + a_4 x + a_6$$
 with $v(a_3) = 0$.

Then $v(\Delta) = v(a_3^4) = 4 v(a_3) = 0$. So E has good reduction at π . Now we have

$$\lceil 2 \rceil_{\Gamma}(u) \equiv -7 \ a_3 u^4 \pmod{\pi}$$
, (mod deg 5).

Hence E^* is supersingular. $\Gamma(u, v)$ does not have the canonical subgroup, because b(2) = 0.

(Ic) Let E be given by

$$v^2 + a_1 x v + a_3 v = x^3$$
 with $v(a_3) = 0$.

Then $v(\Delta) = v(-8 a_1^3 a_3^3 - 27 a_3^4 + 9 a_1^3 a_3^3) = 0$. So E has good reduction at π . From (1.7), we get

$$[2]_{\Gamma}(u) = 2 u - a_1 u^2 - 2 a_3 u^3 - 7 a_3 u^4 \pmod{\text{deg 5}},$$

so it follows from Theorem (3. 4) that $\Gamma(u, v)$ has the canonical subgroup $\operatorname{can}(\Gamma) \Leftrightarrow v(a_1) = 0$ or $0 < v(a_1) < \frac{2}{3}$.

Case (II). Suppose p = 3.

(IIa) Let E be given by

$$y^2 = x^3 + a_2 x^2 + a_6$$
 with $v(a_6) = 0$.

Then E has good reduction at π , because $v(\Delta) = v(-a_2^3 a_6) = 0$. From (1.7), we get

$$[3]_{\Gamma}(u) = 3 \ u - 8 \ a_2 u^3 \ (\text{mod deg 4}).$$

Hence by Theorem (3.4), $\Gamma(u, v)$ has the canonical subgroup $\operatorname{can}(\Gamma) \Leftrightarrow v(a_2) = 0$ or $0 < v(a_2) < \frac{3}{4}$.

(IIb) Let E be given by

$$y^2 = x^3 + a_4 x + a_6$$
 with $v(a_4) = 0$.

Then $v(\Delta) = v(-a_4^3) = 0$. So E has good reduction at π . We have

$$\Gamma(u, v) = u + v - 2 a_4(u^4v + uv^4) - 4 a_4(u^3v^2 + u^2v^3)$$
$$-15 a_6(u^3v^4 + u^4v^3) - 9 a_6(u^5v^2 + u^2v^5) + \cdots$$

and

$$[3]_{\Gamma}(u) \equiv 3 \ u \pmod{\deg 5}$$
.

 E^* is supersingular and $\Gamma(u, v)$ does not possess the canonical subgroup can (Γ) .

Case (III). Suppose p = 5.

Let E be an elliptic curve given by the equation

$$y^2 = x^3 + a_4 x + a_6$$
 with $v(a_6) = 0$.

Then $v(\Delta) = v(-16 (4 a_4^3 + 27 a_6^2)) = 0$, which implies that E has good reduction at π . We have $\Gamma(u, v)$ given as in case (IIb) and

$$[5]_{\Gamma}(u) \equiv 5 \ u - 1248 \ a_4 u^5 \pmod{\deg 6}$$
.

Hence by Theorem (3. 4), $\Gamma(u, v)$ possesses the canonical subgroup $\operatorname{can}(\Gamma) \Leftrightarrow v(a_4) = 0$ or $0 < v(a_4) < \frac{5}{6}$.

References

- [1] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hamburg 14 (1941), 197—272.
- [2] A. Fröhlich, Formal Groups, Lecture Notes in Mathematics, Berlin-Heidelberg-New York 1968.
- [3] H. Hasse, Existenz separabler zyklischer unverzweigter Erweiterungskörper vom Primzahlgrade p über elliptischen Funktionenkörpern der Charakteristik p, J. reine angew. Math. 172 (1934), 77—85.
- [4] J. Lubin, Canonical subgroups of formal groups, University of Copenhagen Preprint Series No. 8 (1975).
- [5] J. Lubin and J. Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966),
- [6] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties, Math. Soc. Japan (1961).
- [7] J. Tate, Rational points on elliptic curves, mimeographed Haverford College Lecture Note (1961).
- [8] J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179—206.

Matematisk Institut, Københavns Universitet, Universitetsparken 5, DK-2100 København Φ Current address: Department of Mathematics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Eingegangen 12. Februar 1978