Commutative Algebra Refresher course

Andrea Fanelli

Collège Sciences et technologies Université de Bordeaux

03 septembre 2024

Commutative algebra

Commutative algebra is...

... "linear algebra, replacing a filed k with a commutative ring R with unity".

Why?

For instance, it provides technical tools for algebraic geometry, number theory, etc...

Reference

Olivier Brinon: Complements of Commutative Algebra.

Rings

R ring	Examples and facts
R = k field	e.g. \mathbb{R} , \mathbb{C} , \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, \mathbb{F}_p , \mathbb{Q} , ideals : (0) , k prime ideals : (0) maximal ideals : (0)
PID (principal ideal domain)	ideals : $n\mathbb{Z}$, with $n\in\mathbb{N}_0$ prime ideals : $(0),\ p\mathbb{Z}$, with p prime maximal ideals : $p\mathbb{Z}$, with p prime $k[x]$ ideals : $(f(x))$, with $f(x)\in k[x]$ prime ideals : $(0),\ (p(x))$, with $p(x)\in k[x]$ irreducible maximal ideals : $(p(x))$, with $p(x)\in k[x]$ irreducible
UFD (unique factorisation domain)	$\mathbb{Z}[x]$: ideals: $(2,x)$ is <i>not</i> principal prime ideals: exercise $k[x,y]$: ideals: (x,y) is <i>not</i> principal prime ideals: exercise Every element can be decomposed "uniquely" in irreducible factrors. Fact: irreducible elements are prime. Fact: prime ideal \Rightarrow maximal ideal. Theorem: R UFD \Rightarrow $R[x]$ UFD [main ingredient is Gauss Lemma: Let $K = \operatorname{Frac}(R)$ and $P \in R[x]$ such that $c(P) = 1$. Then P is irreducible in $R[x]$ iff it is irreducible in $K[x]$]

Definition (objects)

An R-module is $(M, +, \cdot)$, where (M, +) is an abelian group and the application $\cdot: R \times M \to M$ verifies:

- 1 $(a+b) \cdot m = a \cdot m + b \cdot m$ for all $a, b \in R$ and $m \in M$;
- 2 $(ab) \cdot m = a \cdot (b \cdot m)$ for all $a, b \in R$ and $m \in M$;
- 3 $a \cdot (m_1 + m_2) = a \cdot m_1 + a \cdot m_2$ for all $a \in R$ and $m_1, m_2 \in M$;
- $4 \quad 1 \cdot m = m \text{ for all } m \in M.$

This amounts to a ring homomorphism $R \to \operatorname{End}(M)$.

Definition (arrows)

Let M and N be R-modules. An R-linear map from M to N is a group homomorphism $f: M \to N$ such that f(am) = af(m) for all $a \in R$ and $m \in M$.

The set of R-linear maps from M to N is an abelian group denoted $Hom_R(M, N)$.

Definition (subobject)

Let M be an R-modules. A sub-R-module of M is an additive subgroup $N\subseteq M$ such that $n_1+an_2\in N$ for all $n_1,n_2\in N$ and $a\in R$.

Definition (kernel, image, isomorphism)

```
The kernel of f \in \operatorname{Hom}_R(M,N) is the submodule \ker(f) := f^{-1}(0) of M. The image of f is the submodule \operatorname{im}(f) := f(M) = \operatorname{of} N. One says that f is an isomorphism if \ker(f) = \{0\} and \operatorname{im}(f) = N.
```

Definition (quotient)

Let M be an R-module and N a sub-R-module. The quotient group M/N is naturally endowed with a R-module structure. The R-module M/N is the quotient of M by N. (+ universal property).

Definition (generation)

Let M be an R-module

- Let X ⊂ M be a subset. There exists a smallest sub-R-module N of M such that X ⊂ N : it is the sub-R-module of M generated by X (it is the intersection of all sub-R-modules of M that contain X).
- A subset $X \subset M$ generates M when the sub-R-module of M generated by X is M itself.
- The *R*-module *M* is of **finite type** if it is generated by a finite part, i.e. if there exist $m_1, \ldots m_n \in M$ such that $M = Rm_1 + \cdots + Rm_n$.

Definition (products and direct sums)

Let Λ be a set and $(M_{\lambda})_{{\lambda} \in \Lambda}$ a family of R-modules.

- The product $\prod_{\lambda \in \Lambda} M_{\lambda}$ is the *R*-module of maps $\Lambda \to \bigcup_{\lambda \in \Lambda} M_{\lambda}$ such that $f(\lambda) \in M_{\lambda}$ for all $\lambda \in \Lambda$.
- The direct sum $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is the sub-R-module of $\prod_{\lambda \in \Lambda} M_{\lambda}$ consisting of maps $\Lambda \to \bigcup_{\lambda \in \Lambda} M_{\lambda}$ such that the set $\{\lambda \in \Lambda \mid f(\lambda) \neq 0\}$ is finite.
- If $M_{\lambda} = M$ for all $\lambda \in \Lambda$, the product and the direct sum are denoted by M^{Λ} and $M^{(\Lambda)}$ respectively. If $\Lambda = \{1, \ldots, n\}$, both are denoted by M^n .

Definition (free modules)

A free R-module is an R-module isomorphic to $R^{(\Lambda)}$ for some set Λ .

The theory of free modules is very similar to the one of vector spaces. For instance, if M and N are two free R-modules of rank n and m respectively, one has $\operatorname{Hom}_R(M,N) \simeq \operatorname{Mat}_{n \times m}(R)$.

But many modules are not free (e.g. $R = \mathbb{Z}$, $M = \mathbb{Z}/2\mathbb{Z}$).

Exercise

Let M an R-module of finite type and $f \colon M \to R^n$ a surjective morphism. Show that $M = N \oplus \ker(f)$, where N is a submodule of M isomorphic to R^n through f. Show that $\ker(f)$ is of finite type.

Definition (torsion)

- Let M be an R-module and $m \in M$. The annihilator of m is the ideal of R defined by $\operatorname{ann}_R(m) = \{a \in R \mid am = 0\}$.
- One says m is torsion if $\operatorname{ann}_R(m) \neq \{0\}$, i.e. if it exists a $a \in R \setminus \{0\}$ such that am = 0. One denotes by M_{tors} the set of torsion elements in M.
- One says that M is torsion-free (resp. is torsion) if $M_{tors} = \{0\}$ (resp. $M_{tors} = M$).

Exercise

Assume R is an integral domain, then M_{tors} is a sub-module of M and M/M_{tors} is torsion-free.

Assume R is PID, then every torsion-free module of finite type is free (this is a theorem!).

R-algebras [category (R-Alg)]

Definition

- An R-algebra is a ring homomorphism $R \to A$, whose image lies in the centre of A.
- A morphism between two R-algebras A_1 and A_2 is a ring homomorphism $f \colon A_1 \to A_2$ such that the following diagram commutes

An R-algebra $R \to A$ (usually denoted by A) is naturally endowed with an R-module structure.

- Any field extension L/K is a K-algebra.
- The polynomial ring R[x_λ]_{λ∈Λ} is an R-algebra.

Definition (vocabulary)

Let $\phi \colon R \to A$ be an R-algebra.

- \blacksquare A sub-R-algebra is a subring $A' \subseteq A$ such that the inclusion map is a morphism of R-algebras.
- Let $X = \{x_{\lambda}\}_{{\lambda} \in {\Lambda}} \subset A$ be a subset. There exists a smallest sub-R-algebra $R[x_{\lambda}]_{{\lambda} \in {\Lambda}}$ of M of B such that $X \subset N$: it is the sub-R-algebra of A generated by X.
- An R-algebra is of finite type if it is generated by a finite set (i.e. there exists a surjective morphism of R-algebras R[x₁,...,x_n] → B).
- An R-algebra is finite if it is finite as R-module.

Exercise

Describe the set of prime ideals of R, when R = k[x, y] and $\mathbb{Z}[x]$.

Exercise

Let M an R-module of finite type and $f: M \to R^n$ a surjective morphism. Show that $M = N \oplus \ker(f)$, where N is a submodule of M isomorphic to R^n through f. Show that $\ker(f)$ is of finite type.

Exercise

Assume R is an integral domain and M and R-module. Then M_{tors} is a sub-module of M and M/M_{tors} is torsion-free.

Noetherianity

Definition/Proposition

Let M be an R-module. The following properties are equivalent :

- 1 M is noetherian, i.e. all its sub-R-modules are of finite type;
- every ascending sequence of sub-R-modules of M is stationary;
- 3 every non empty subset of submodules of M has a maximal element (for the inclusion).

A ring R is noetherian if it is noetherian as R-module.

The polynomial ring $R[x_{\lambda}]_{\lambda \in \Lambda}$ with Λ infinite is not noetherian, since the ideal generated by $\{x_{\lambda}\}_{\lambda \in \Lambda}$ is not of finite type.

Theorem (Hilbert)

If R is noetherian, so is R[x].

Exercice

- Let *M* be an *R*-module and *N* an *R*-submodule of *M*. Prove that *M* is noetherian iff *N* and *M/N* are both noetherian.
- Prove that the product of two noetherian R-modules is noetherian.
- Prove that if R is a noetherian ring, any R-module of finite type is a noetherian.

Exercice

Show that if R is noetherian domain, non-zero non-invertible elements can be factored into a product of irreducible elements.

Tensor product of modules

Let M and N be R-modules. Let L be an R-module. A map $f: M \times N \to L$ is bilinear if it left and right linear.

Construction

Consider the *R*-module $R^{(M \times N)}$ and its canonical basis $(e_{(m,n)})_{(m,n) \in M \times N}$.

Let K be the submodule of $R^{(M \times N)}$ generated by the following elements :

$$e_{(m_1+m_2,n)}-e_{(m_1,n)}-e_{(m_2,n)}$$
 for $m_1,m_2\in M$ and $n\in N$;

$$\qquad \qquad e_{(m,\, n_1 + n_2)} - e_{(m,\, n_1)} - e_{(m,\, n_2)} \text{ for } m \in \textit{M} \text{ and } \textit{n}_1,\, \textit{n}_2 \in \textit{N} \,;$$

$$e_{(am,n)}-ae_{(m,n)}$$
 and $e_{(m,an)}-ae_{(m,n)}$ for $a\in R$, $m\in M$ and $n\in N$.

Define the tensor product $M \otimes_R N := R^{(M \times N)} / K$.

Consider the composition $\phi = \pi \circ i$ where $i : M \times N \to R^{(M \times N)}, (m, n) \mapsto e_{(m,n)}$ and

 $\pi\colon R^{(M imes N)} o M\otimes_R N$ the canonical projection. By construction, ϕ is bilinear.

The tensor product comes with a universal property.

Tensor product of algebras

Construction

Let A and B be R-algebras. The multiplication on A (resp. B) provides maps $m_A \colon A \otimes_R A \to A, \ x \otimes y \mapsto xy$ and $m_B \colon B \otimes_R B \to B, \ x \otimes y \mapsto xy$. Moreover, there is an isomorphism $\varepsilon \colon A \otimes_R B \to B \otimes_R A, \ x \otimes y \mapsto y \otimes x$. Consider the composite

$$(A \otimes_R B) \otimes_R (A \otimes_R B) \xrightarrow{\mathsf{Id}_A \otimes \varepsilon \otimes \mathsf{Id}_B} (A \otimes_R A) \otimes_R (B \otimes_R B) \xrightarrow{m_A \otimes m_B} A \otimes_R B$$

This map endows the product $A \otimes_R B$ with an R-algebra structure : the product is simply given by

$$(x_1 \otimes y_1) \cdot (x_2 \otimes y_2) = (x_1x_2 \otimes y_1y_2).$$

There are natural morphisms of R-algebras $i_A\colon A\to A\otimes_R B,\ x\mapsto x\otimes 1_B$ and $i_B\colon B\to A\otimes_R B,\ y\mapsto 1_A\otimes y$

The tensor product comes with a universal property.

Remark

If A and B are commutative, the tensor product $(A \otimes_R B, i_A, i_B)$ is the coproduct in the category of **commutative** R-algebras.

Definition

A subset $S \subset R$ is called multiplicative if $0 \notin S$, $1 \in S$ and if S is stable under multiplication.

For example, the following are multiplicative sets:

- R×;
 - $\qquad \qquad \{f^n\}_{n\in\mathbb{Z}_{\geq 0}}, \text{ where } f\in R \text{ is not nilpotent};$
 - \blacksquare $R \setminus \mathfrak{p}$ where $\mathfrak{p} \subset R$ is a prime ideal.

Construction

Let $S\subseteq R$ be a multiplicative set. Endow the set $R\times S$ with the binary relation \sim defined by

$$(a_1, s_1) \sim (a_2, s_2)$$
 if $(\exists t \in S)$ $t(a_1s_2 - a_2s_1) = 0$.

This is an equivalence relation. Denote by $S^{-1}R:=(R\times S)/\sim$ the quotient set. One denotes by $\frac{a}{s}$ the image of (a,s) via the quotient map. One can define sum and product making $S^{-1}R$ a commutative ring with unity. The map

$$\iota \colon R \to S^{-1}R \qquad a \mapsto \frac{a}{1}$$

is a ring homomorphism.

The R-algebra $S^{-1}R$ is the **localisation** of R with respect to the multiplicative set S.

Properties

- When R is an integral domain, the relation \sim is nothing but the "usual" relation $(a_1, s_1) \sim (a_2, s_2)$ if $a_1 s_2 = a_2 s_1$.
- $\ker(\iota) = \{a \in R \mid (\exists s \in S)sa = 0\}$ so ι is injective when R is an integral domain.

Examples

- Assume R is an integral domain. Then $R \setminus \{0\}$ is multiplicative and $(R \setminus \{0\})^{-1}R = \operatorname{Frac}(R)$ is the fraction field of R.
- Let $f \in R$. We denote by R_f the localisation of R with respect to the multiplicative set $\{f^n\}_{n \in \mathbb{Z} \geq 0}$. One can easily show that $R_f \simeq R[x]/(fx-1)$;
- If $\mathfrak{p} \subset R$ is a prime ideal, we denote by $R_{\mathfrak{p}}$ the localization of R with respect to the multiplicative set $R \setminus \mathfrak{p}$.

Definition

Let $S\subseteq R$ be a multiplicative set and M an R-module. The localisation $S^{-1}M$ of M with respect to S is defined as the quotient $M\times S$ with the relation \sim defined by

$$(m_1, s_1) \sim (m_2, s_2)$$
 if $(\exists t \in S)$ $t(s_2 m_1 - s_1 m_2) = 0$.

This is a $S^{-1}R$ -module.

An R-linear map $f\colon M\to N$ induces a $S^{-1}R$ -linear map $f_S\colon S^{-1}M\to S^{-1}N,\ m/s\mapsto f(m)/s$ and the natural map

$$\mathsf{Hom}_{S^{-1}R}(S^{-1}M,N)\to \mathsf{Hom}_R(M,N)$$

is an isomorphism.

We denote by Spec(R) the set of prime ideals if R.

Proposition

Let $S \subset R$ be a multiplicative set. The maps

$$\{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap S = \emptyset \} \leftrightarrow \operatorname{Spec}(S^{-1}R)$$

$$\mathfrak{p} \mapsto S^{-1}\mathfrak{p}$$

$$\mathfrak{q} \cap R := \iota^{-1}(\mathfrak{q}) \leftrightarrow \mathfrak{q}$$

are increasing (for the inclusion) bijections inverse to each other.

Definition

A local ring is a ring having only one maximal ideal.

Easy fact

The localisation $R_{\mathfrak{p}}$ at a prime ideal $\mathfrak{p} \subset R$ is a local ring.

Nakayama's Lemma

Let (R, \mathfrak{m}) be a local ring and M a finitely generated R-module such that $M = \mathfrak{m}M$. Then M = 0.

Exercise

Let M be an R-module. Then $M=\{0\}$ if and only if $M_{\mathfrak{m}}=\{0\}$ for all maximal ideal $\mathfrak{m}\subset R$.

Exercise

■ Let $\sqrt{(0)} \subset R$ be the nilradical of R, i.e. $\sqrt{(0)} := \{r \in R \mid r^n = 0 \text{ for some } n\}$. Show that

$$\sqrt{(0)} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p}$$

■ Suppose that R is noetherian and show that $\sqrt{(0)}$ is a *finite* intersection of prime ideals.

Exercice

- $\qquad \qquad \mathbb{Z}/a\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/b\mathbb{Z}) \simeq \mathbb{Z}/gcd(a,b)\mathbb{Z} \text{ for all } a,b \in \mathbb{Z}_{>0} \text{ ;}$
- $(\mathbb{Q}/\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z}) = 0;$

Exercise

Let $R=k(x)\otimes_k k(y)$ be the tensor product of two purely transcendental extensions of k of transcendence degree 1.

- Show that R is isomorphic to the localisation of k[x, y] with respect to the multiplicative system S of non-zero elements of the form f(x)g(y) ∈ k[x, y].
- let \mathfrak{m} be a maximal ideal of k[x,y]. Show that there exists a $f(x) \in \mathfrak{m} \setminus \{0\}$. Deduce that $S \cap \mathfrak{m} \neq \emptyset$.
- Describe maximal ideals of R.

Integral extensions

Let $f: R \to A$ be an R-algebra.

Definition

An element $a \in A$ is integral over R if there exists a monic polynomial $P \in R[x]$ such that P(a) = 0. The equality P(a) = 0 is then called an equation of integral dependence of a over R. One says that A is integral over R if all its element are integral over R.

Proposition

Let $a \in A$. The following are equivalent :

- a is integral over R;
- R[a] is a finite R-algebra.

Definition/Proposition

The set of elements in A that are integral over R is a sub-R-algebra of A, which is called the **integral closure** of R in A

Assume R is an integral domain and put $K = \operatorname{Frac}(R)$. The integral closure of R is its integral closure in K.

One says that R is integrally closed if it is equal to its integral closure, i.e. when the only element in K that are integral over R are elements in R.

Proposition

UFD are integrally closed.