Real-time Systems

Week 6: Periodic real time scheduling

Ngo Lam Trung

Dept. of Computer Engineering

Contents

- Notation of periodic real-time tasks
- Periodic scheduling algorithms
 - Timeline Scheduling
 - Earliest Deadline First
 - Rate Monotonic
 - Deadline Monotonic
 - Earliest Deadline First (modified)

- □ 3 tasks:
 - □ Task 1: period 200 ms, computation time 50 ms
 - □ Task 2: period 100 ms, computation time 50 ms
 - Task 3: period 400 ms, computation time 50 ms
 - Is it schedulable?
- If task 4 is added
 - □ Task 4: period 200 ms, computation time 30 ms
 - Is it schedulable?

Notation of periodic task set

- \square Γ : a set of periodic tasks
- $\Box \tau_i$: a generic periodic task
- $\ \ \ \ \tau_{i,j}$: the *j*-th instance of task τ_i
- $ightharpoonup r_{i,j}$: the release time of $\tau_{i,j}$
- $\blacksquare \Phi_i = r_{i,1}$: the phase of τ_i
- \square D_i : the relative deadline of τ_i
- $lue{}$ $d_{i,j}$: the absolute deadline of $\tau_{i,j}$

•
$$d_{i,j} = \Phi_{i,j} + (j-1)T_i + D_i$$

- \square $s_{i,j}$: the start time of $\tau_{i,j}$
- \Box $f_{i,j}$: the finishing time of $\tau_{i,j}$

Periodic task notations

 \Box Task τ_i 's timing parameters

- □ Task τ_i 's timing parameters is **feasible** if all its instances finish within their absolute deadline
- A set Γ of periodic tasks is schedulable if all tasks in Γ are feasible

Assumptions

- A1. The instance of τ_i is regularly activated at a constant rate. (Period T_i)
- All All instances of a task have the same worst-case execution time C_i .
- A3. All instances of a task have the same relative deadline D_i and $D_i = T_i$.
- A4. All tasks are independent; no precedence & resource constraints
- A5. No task can suspend itself, for example on I/O operations
- A6. All tasks are fully pre-emptible.
- □ A7. All overheads in the kernel are ignored.

Simplified task parameters

- □ A task under assumptions A1-A4 can be characterized by 3 parameters.
 - Task set: $\Gamma = \{\tau_i(\Phi_i, T_i, C_i), i=1,...,n\}$
 - Release time: $r_{i,k} = \Phi_i + (k-1)T_i$
 - Absolute deadline: $d_{i,k} = \Phi_i + kT_i$

Periodic task parameters

Response time:

- Duration from the release time to finishing time
- $R_{i,k} = f_{i,k} r_{i,k}$

Critical instant:

 The time at which the release of a task will produce the largest response time

□ Critical time zone:

Response time with respect to the critical instant

An example of critical instance

$$\Gamma = \{ \tau_1(0,3,2), \tau_2(2,4,1) \}$$

- \blacksquare Assume that τ_2 has lower priority than τ_1 .
- ullet When is the critical instant of τ_2 ?

Hyperperiod

- \Box Given a set of 3 tasks, all activate at t = 0:
 - □ Task 1: period 200 ms, computation time 50 ms
 - □ Task 2: period 100 ms, computation time 50 ms
 - Task 3: period 400 ms, computation time 50 ms
- How long will the schedule repeat itself?

$$H = lcm(T_1, \ldots, T_n)$$

Icm: least common multiply

Hyper period

- \Box Given a set of 3 tasks, all activate at t = 0:
 - □ Task 1: period 200 ms, computation time 50 ms
 - Task 2: period 100 ms, computation time 50 ms
 - □ Task 3: period 400 ms, computation time 50 ms
- How long will the schedule repeat itself?

$$H = lcm(T_1, \ldots, T_n)$$

Icm: least common multiply

Processor utilization factor

Processor utilization for n tasks

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

- □ *U* represents how many percent of processor resource is utilized by a given task set.
- Example 1:
 - U3 = 50/200 + 50/100 + 50/400 = 87.5%
 - U4 = 50/200 + 50/100 + 50/400 + 30/200 = 102.5%

Utilization factor vs schedulability?

- □ If U > 1:
 - Let H be the hyperperiod

$$U > 1 \Rightarrow UH > H$$

$$\Rightarrow \sum_{i=1}^{n} \frac{H}{T_i} C_i > H$$

- \Box $(H/T_i)Ci$: total CPU time requested by T_i during H
- \rightarrow total requestime during [0, H) is bigger than H
- → the task set is not schedulable

- What if U < 1: the task set is schedulable?</p>
 - →not sure!

Utilization factor vs schedulability?

 \square Consider two tasks T_1 , T_2 (T1 has higher priority)

- Schedulable?
- □ U = ?
- What if C1 or C2 increase by epsilon?
- → U < 1 does not guarantee schedulability
- Given a task set Γ, its schedulability depends on
 - The parameters of the tasks
 - The scheduling algorithm

Processor utilization factor

Given a scheduling algorithm A and a task set Γ, there will be a upper bound value of U

$$U_{ub}(\Gamma,A)$$

- $U > U_{ub}(\Gamma, A)$: Γ is not schedulable by A
- $If U = U_{ub}(\Gamma, A)$: Γ fully utilizes the processor

□ For a given algorithm *A*, let

$$U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma, A)$$

- □ All task set having $U \leq U_{lub}(A)$ will be schedulable by A
- □ if $1 > U > U_{lub}(A)$, schedulability depends on actual tasks parameters (activation time, period...)

Processor utilization factor

Utilization vs schedulability

Algorithms for periodic scheduling

- \Box Timeline Scheduling (D = T)
- \square Earliest Deadline First (D = T)
- \square Rate Monotonic (D = T)
- \square Deadline Monotonic ($D \le T$)
- \square Earliest Deadline First $(D \le T)$

Algorithm 1: Timeline Scheduling

- Divide the timeline into Minor Cycles and Major Cycles
 - □ Major Cycle = $lcm(T_i)$ = H (least common multiply)
 - □ Minor Cycle = $gcd(T_i)$ (greatest common divisor)
- Scheduling and implementation:
 - Schedule the task execution in each minor cycle of a major cycle
 - Set up a timer with period equal to minor cycle
 - The main function synchronize task execution with timer event

- Consider a taskset $\Gamma = \{\tau_1, \tau_2, \tau_3\}$
 - Periodic tasks $\tau_i = (C_i, D_i, T_i), D_i = T_i$
 - $T_1 = 25ms$, $T_2 = 50ms$, $T_3 = 100ms$
- 1. Minor Cycle $\Delta = gcd(25, 50, 100) = 25ms$
- 2. Major Cycle T = lcm(25, 50, 100) = 100ms
- 3. Compute a schedule that respects the task periods
 - Allocate tasks in slots of size $\Delta = 25ms$
 - The schedule repeats every T = 100ms
 - au_1 must be scheduled every 25ms, au_2 must be scheduled every 50ms, au_3 must be scheduled every 100ms
 - In every minor cycle, the tasks must execute for less than 25ms

- The schedule repeats every 4 minor cycles
 - au_1 must be scheduled every $25ms \Rightarrow$ scheduled in every minor cycle
 - au_2 must be scheduled every $50ms \Rightarrow$ scheduled every 2 minor cycles
 - au_3 must be scheduled every $100ms \Rightarrow$ scheduled every 4 minor cycles

- First minor cycle: $C_1 + C_3 \le 25ms$
- Second minor cycle: $C_1 + C_2 \le 25ms$

 Periodic timer firing every minor cycle

- Every time the timer fires...
- ...Read the scheduling table and execute the appropriate tasks
- Then, sleep until next minor cycle

Algorithm 1: Timeline Scheduling

Advantage:

- Simple, does not require RTOS
- No context switching, minimal run-time overhead.

Disadvantages:

- Domino effect if task does not terminate on time
- May need to divide task in to small pieces
- Difficult to handle aperiodic and long tasks
- Sensitive to task parameter changes (period, execution time...)

Algorithm 2: Ealiest Deadline First (EDF)

- Pre-emptible task set, dynamic priorities
- All tasks instances are consider aperiodic tasks
- Priority and scheduling of task is based on the instances' absolute deadline:

$$d_{i,j} = \Phi_i + (j-1)T_i + Di$$

Proof of optimality is the same as with aperiodic tasks

How to analyze schedulability/feasibility?

Schedulability analysis of EDF

Theorem: a set of periodic tasks is schedulable with EDF if and only if

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Proof:

Schedulability analysis of EDF

Theorem: a set of periodic tasks is schedulable with EDF if and only if

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Proof:

- □ If U > 1: not enough CPU resource → not schedulable
- □ If U <= 1: show that the task set is schedulable</p>

Contradiction: provided the task set is not schedulable

Let t_2 : time that time-overflow happens

 t_1 : starting of **continuous utilization** $[t_1, t_2]$

Total processor computation time demanded in [t₁, t₂]

$$C_p(t_1, t_2) = \sum_{r_k > t_1, d_k < t_2} C_k = \sum_{i=1}^n \left\lfloor \frac{t_2 - t_1}{T_i} \right\rfloor C_i$$

Schedulability analysis of EDF

If the task set is not schedulable

$$C_p(t_1, t_2) > t_2 - t_1$$

However

$$C_p(t_1, t_2) \le \sum_{i=1}^n \frac{t_2 - t_1}{T_i} C_i = (t_2 - t_1) U$$

Then we have

$$(t_2 - t_1)U > t_2 - t_1$$

$$\to U > 1$$

> contradiction

An example of EDF scheduling

Task	1	2	3
ϕ_i	0	2	1
C_i	1.5	1	0.5
T_i	4	3	2

- \square Assume that $T_i = D_i$
- Preemptive task set

An example of EDF scheduling

Algorithm 3: Rate Monotonic (RM)

- Pre-emptible task set, static scheduling with fixed priorities
- Priority of task is based on the task's request rate: higher rates (shorter periods) correspond to higher priorities
- Optimality: RM is optimal among all fixed-priority algorithms
- Schedulability/feasibility analysis: U_{lub}

□ T1: c=1, p=d=4

□ T2: c=2, p=d=5

□ T3: c=3, p=d=20

Proof of optimality (1)

For any task T, the critical instance occurs when it is released simultaneously with all higher-priority tasks

→ Task schedulability can be checked at its critical instance

Proof of optimality (2)

- If a task set Γ is schedulable by any fixed priority algorithm, it will be schedulable by RM
 - □ Given two tasks τ_1 , τ_2 with T1 < T2, in critical instants
 - □ Provided the scheduled violates RM $\rightarrow \tau_2$ has higher priority
 - → the schedule is feasible if

- Show that exchanging priority of T1 and T2 will result in feasible schedule
 - → Homework

Proof of optimality (3)

- \Box Consider if τ_1 , τ_2 are scheduled by RM, τ_1 has higher priority
- Let $F = \lfloor T_2/T_1 \rfloor$: the number of T1 contained entirely in T2

→ The schedule by RM is feasible

Proof of optimality (4)

Case (b)

As
$$C_1+C_2 \leq T_1$$
 \Rightarrow $FC_1+FC_2 \leq FT_1$ Since $F \geq 1$ $FC_1+C_2 \leq FC_1+FC_2 \leq FT_1$

- → The schedule by RM is feasible
- Given τ_1 , τ_2 if they are scheduled by any fixed priority algorithm, then they are schedulable by RM
- → RM is optimal

RM schedulability: using U

Necessary but not sufficient

$$U \leq 1$$

Sufficient but not necessary (LL-bound)

$$U \leq n(2^{1/n}-1)$$

As the number of tasks n increases to infinite

$$U \to ln2 = 0.69$$

n	U_{lub}
1	1.000
2	0.828
3	0.780
4	0.757
5	0.743

n	U_{lub}
6	0.735
7	0.729
8	0.724
9	0.721
10	0.718

- \blacksquare T1(c=1,p=d=4), T2(c=1, p=d=5), T3(c=1, p=d=10)
- □ Is this tasks set schedulable by RM?

$$U = 1/4 + 1/5 + 1/10 = 0.55$$

 $n(2^{1/n} - 1) = 3(2^{1/3} - 1) = \approx 0.78$

We have

$$U \leq n(2^{1/n}-1)$$

→ Schedulable tasks set

Schedulability analysis of RM

- □ If $n(2^{1/n} 1) < U \le 1$ the tasks set might of might not be schedulable
- → Need to check manually

RM schedulability: using hyperbolic bound

 $lue{}$ Given a set of periodic task with utilization factors U_i the tight bound for schedubility with RM is

$$\prod_{i=1}^{n} (U_i + 1) \le 2.$$

EDF vs RM

EDF vs RM

EDF is dynamic algorithm → able to produce feasible schedule when RM fails

EDF and **RM** comparison

- EDF: large overhead
 - Calculate time to deadline for all ready tasks
 - Assign priorities
 - Schedule based on new priorities
- RM is simpler to implement, requires less overhead

Assumptions for EDF and RM

A3: Relative deadline equals to period

$$D_i = T_i$$

Relax the assumption for more practical problems

→ modified algorithms

Algorithm 4: Deadline Monotonic (DM)

- Each task is assigned a priority inversely proportional to its relative deadline
- Shorter deadlines imply higher priorities

→ Feasible schedule

Schedulability analysis of DM

$$\tau_1$$
 τ_2
 τ_2
 τ_3
 τ_4
 τ_4
 τ_4
 τ_5
 τ_5
 τ_6
 τ_6
 τ_7
 τ_8
 τ_8

Processor utilization

$$U = 2/3 + 3/6 = 1.16 > 1$$

→ cannot be used for schedulability analysis

Schedulability analysis of DM

- The worst-case processor demand (at critical instances) must be met
- In the worst case: for each task τ, the sum of its processing time and the interference (preemption) imposed by higher priority tasks must be less than or equal to its relative deadline

Schedulability based on response time

Response time of task i

$$R_i = C_i + I_i,$$

Interference by higher priority tasks

$$I_i = \sum_{j=1}^{i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j.$$

Then

$$R_i = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j.$$

 \square R_i is calculated recursively until converged

□ Test the schedulability of the tasks set, present a feasible schedule if available

	C_i	T_i	D_i
$ au_1$	1	4	3
$ au_2$	1	5	4
$ au_3$	2	6	5
$ au_4$	1	11	10

Step 0:
$$R_4^{(0)} = \sum_{i=1}^4 C_i = 5$$
, but $I_4^{(0)} = 5$ and $I_4^{(0)} + C_4 > R_4^{(0)}$ hence τ_4 does not finish at $R_4^{(0)}$.

Step 1:
$$R_4^{(1)} = I_4^{(0)} + C_4 = 6$$
, but $I_4^{(1)} = 6$ and $I_4^{(1)} + C_4 > R_4^{(1)}$ hence τ_4 does not finish at $R_4^{(1)}$.

Step 2:
$$R_4^{(2)} = I_4^{(1)} + C_4 = 7$$
, but $I_4^{(2)} = 8$ and $I_4^{(2)} + C_4 > R_4^{(2)}$ hence τ_4 does not finish at $R_4^{(2)}$.

Step 3:
$$R_4^{(3)} = I_4^{(2)} + C_4 = 9$$
, but $I_4^{(3)} = 9$ and $I_4^{(3)} + C_4 > R_4^{(3)}$ hence τ_4 does not finish at $R_4^{(3)}$.

Step 4:
$$R_4^{(4)} = I_4^{(3)} + C_4 = 10$$
, but $I_4^{(4)} = 9$ and $I_4^{(4)} + C_4 = R_4^{(4)}$ hence τ_4 finishes at $R_4 = R_4^{(4)} = 10$.

Analyze the schedulability of task T3

Task	Т	С	D
1	250	5	10
2	10	2	10
3	330	25	50

Analyze the schedulability of task T3

Task	Т	С	D
1	250	5	10
2	10	2	10
3	330	25	50

Iteration	Rs (for Task T3)	1	R ^{s+1}
1	25	5+3x2=11	36
2	36	5+4x2=13	38
3	38	5+4x2=13	38

→T3 is schedulable

Algorithm 5: EDF with D < T

- Dynamic scheduling
- Utilization bound does not work!!!
- → The processor demand approach

"During any time interval, the total processor demand of the whole tasks set must be no greater than the available time"

Processor demand

Given time interval [0,L], total processor demand for task
 τ_i is

$$C_i(0,L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

Example

Processor demand

Total processor demand for the whole task set

$$C(0,L) = \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

Example

	C _i	D _i	$T_{\mathbf{i}}$
T1	2	4	6
T2	2	5	8
T3	3	7	9

L	C(0,L)
4	2
5	4
7	7

Schedulability analysis

- Condition on processor demand
- For all L > 0 task set is schedulable by EDF if and only if

$$L \geq \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

- Problem: how to check this condition?
 - Too many value of L

Schedulability analysis: Check at deadlines

- □ C(0, L) is a step function so we can check the schedulability condition on deadlines
- □ The number of values to check is still large

Schedulability analysis: Bounding L

Observe

$$\sum_{i=1}^{n} \left(\left\lfloor \frac{L+T_{i}-D_{i}}{T_{i}} \right\rfloor \right) \times C_{i} \leq \sum_{i=1}^{n} \frac{L+T_{i}-D_{i}}{T_{i}} \times C_{i}$$

Let

$$G(0,L) = \sum_{i=1}^{n} \frac{L + T_i - D_i}{T_i} \times C_i$$

We have

$$C(0,L) \le G(0,L)$$

Schedulability analysis: Bounding L

Rewrite

$$G(0,L) = \sum_{i=1}^{n} \left(\frac{L + T_i - D_i}{T_i} \right) C_i$$

$$= \sum_{i=1}^{n} L \frac{C_i}{T_i} + \sum_{i=1}^{n} (T_i - D_i) \frac{C_i}{T_i}$$

$$= LU + \sum_{i=1}^{n} (T_i - D_i) U_i$$

then

$$\begin{cases}
C(0,L) \le G(0,L) \\
C(0,L) \le L
\end{cases}$$

Schedulability analysis: Bounding L

G(0, L) is a straight line with slope U

L represents the line with slope 1. When U < 1, there exists $L = L^*$, where G(0, L) = L

L*: bounding value of L to check for schedulability

Calculate L* and verify schedulability

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) U_i}{1 - U}$$

	C _i	D _i	$T_{\mathbf{i}}$
T1	2	4	6
T2	2	5	8
ТЗ	3	7	9

L	C(0,L)
4	2
5	4
7	7

	C _i	D _i	T_{i}
T1	2	4	6
T2	2	5	8
T3	3	7	9

L	C(0,L)	
4	2	OK
5	4	OK
7	7	OK
10	9	OK
13	11	OK
16	16	OK
21	18	OK
22	20	OK

$$U = 2/6 + 2/8 + 3/9$$

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) U_i}{1 - U}$$

$$L^* = 25$$

Exercise

Construct the schedule for this task set using RM and EDF

	C_i	T_i
$ au_1$	1	4
$ au_2$	2	6
$ au_3$	3	8

Verify the schedulability and construct the schedule for the following task set using DM and EDF

	C_i	D_i	T_i
$ au_1$	2	5	6
$ au_2$	2	4	8
$ au_3$	4	8	12

Real-time Systems

Chapter 7: Fixed Priority Servers

Ngo Lam Trung

Dept. of Computer Engineering

Contents

- Introduction
- Background scheduling
- □ The basic algorithm: Polling Server
- □ Improve response time: Deferrable Server
- Improve schedulability bound: Priority Exchange
- DS to equivalent periodic task: Sporadic Server

Introduction

- Practical systems contain different types of task
 - Periodic tasks for critical activities: time driven, usually with hard timing constrain
 - Aperiodic tasks: event driven, may be hard/soft or non-real time.
 - → Hybrid task set
- Problem: How to produce a schedule that
 - Guarrantee the schedulability of critical (periodic) tasks
 - Provide acceptable response time of soft and non-real time tasks

- How about critical aperiodic tasks?
 - Assuming a maximum arrival rate → change to periodic task

Assumption

- ightharpoonup All periodic task start at t = 0 and their deadline and period are equal.
- Periodic task are scheduled by RM (fixed priority).
- Arrival times of aperiodic requests are unknown.
- □ The minimum inter-arrival time of a sporadic task is assumed to be equal to its deadline.
- All tasks are fully preemptible

The simplest method: Background scheduling

- Schedule periodic tasks with RM as usual
- Aperiodic tasks are scheduled at background: run when there is no periodic load.

$$U_{periodic} = ?$$

Schedulability of periodic task will change of not?

Background scheduling

Two task queues in background scheduling

- Pros: simple method
- Cons: response time of aperiodic tasks may be low in high periodic load

Polling Server

- Improve average aperiodic tasks response time
- Create an additional periodic task
 - Called Polling Server (PS)
 - PS serves aperiodic load asap upon request
- Server task parameter
 - \Box Period T_S
 - C Computation time C_{S} : server capacity
- PS is scheduled together with other periodic tasks
- When PS is activated
 - Select a waiting aperiodic task and execute it with server capacity
 - If there is no aperiodic task waiting, server suspends itself and gives up its capacity

Polling Server

Polling Server: Schedulability analysis

With RM, the task set including the server must be schedulable

$$U_p + Us \le Ulub(n+1)$$
.

Or

$$U_p \le n \left[\left(\frac{2}{U_s + 1} \right)^{1/n} - 1 \right]$$

 U_p = total CPU utilization of original periodic tasks

Or

$$\prod_{i=1}^{n} (U_i + 1) \le \frac{2}{U_s + 1}$$

Dimensioning the PS

- What are appropriate values of Ts, Ps that guarantee feasible schedule?
- Define

$$P \stackrel{\text{def}}{=} \prod_{i=1}^{n} (U_i + 1)$$

From schedulability condition

$$P \le \frac{2}{U_s + 1}$$

So we need the server satisfies

$$U_s \le \frac{2 - P}{P}$$

Dimensioning the PS

Let

$$U_s^{max} = \frac{2 - P}{P}$$

- \square Server utilization can be selected so $U_s < Umax$
- Then select the smallest server period as possible

$$T_s = T_1$$

Finally

$$C_s = U_s T_s$$

Polling Server

Exercise 1

Consider two periodic tasks with computation times $C_1 = 1$, $C_2 = 2$ and periods $T_1 = 5$, $T_2 = 8$, handled by Rate Monotonic. Show the schedule produced by a Polling Server, having maximum utilization and intermediate priority, on the following aperiodic jobs:

	a_i	C_i	
J_1	2	3	
J_2	7	1	
J_3	17	1	

Polling Server

Sizing the PS

$$U_{PS}^{max} = \frac{2-P}{P} = \frac{1}{3}$$

□ So we can set $T_s = 6$ (intermediate priority) and $C_s = 2$

Polling Server

- Problem: if an aperiodic request arrives after the server suspends itself, the request must wait until the next server period
 - → lowering average response time
- How to improve:
 - Server will not suspend
 - □ → Deferrable Server (DS)

Deferable Server (DS)

- Improves responsiveness of aperiodic tasks (compare to PS)
- Algorithm
 - Create high priority periodic task to serve aperiodic tasks
 - Server replenishes its capacity at the beginning of each period
 - If no aperiodic load are pending upon server invocation, the server preserves its capacity
 - →aperiodic load can be served at anytime (as opposed to PS)

DS is not equivalent to a periodic task in RM → difficult schedulability analysis

Schedulable original task set

Replace T1
by DS

→ Not
schedulable

ICT, 2021

DS schedulability analysis

- Given a periodic task set with total utilization U_p and a DS with utilization U_s
- □ The schedulability is guaranteed if

$$U_p \le n \left[\left(\frac{U_s + 2}{2Us + 1} \right)^{\frac{1}{n}} - 1 \right]$$

□ Therefore the whole system bound is

$$U_{lub} = U_s + n \left[\left(\frac{U_s + 2}{2U_s + 1} \right)^{1/n} - 1 \right]$$

$$\lim_{n \to \infty} U_{lub} = U_s + \ln \left(\frac{U_s + 2}{2U_s + 1} \right)$$

DS schedulability analysis

DS schedulability analysis

- \Box Given a set of *n* periodic tasks with utilization U_i and a DS with utilization U_s ,
- The periodic task set is schedulable under RM if

$$\prod_{i=1}^{n} (U_i + 1) \le \frac{U_s + 2}{2U_s + 1}$$

Dimensioning a DS

- □ Find Us, Ts, Cs?
- Similar to PS, let

$$P \stackrel{\text{def}}{=} \prod_{i=1}^{n} (U_i + 1)$$

■ Then from guarantee condition we have

$$U_s \le \frac{2 - P}{2P - 1}$$

So the max utilization for server is

$$U_s^{max} = \frac{2 - P}{2P - 1}$$

 \rightarrow choose $T_s = \min(T_i)$ and $C_s = Us * Ts$

Exercise 2

- □ From Ex1:
 - □ Periodic tasks: C1 = 1, T1=5, C2 = 2, T2=8 (scheduled by RM)
 - Aperiodic tasks:

	a_i	C_i
J_1	2	3
J_2	7	1
J_3	17	1

Solve the scheduling problem based on DS, with highest possible priority and maximum utilization

Ex 2

- □ Maximum utilization: $U_{max} = 1/4$
- \blacksquare Highest priority with RM: $T_s = 4$

Priority Exchange (PE)

- Similar to DS with
 - Better schedulability bound
 - Worse aperiodic responsiveness
- PE algorithm
 - Create a periodic task (PE) with high priority for aperiodic load
 - PE preserves capacity by exchanging for lower priority tasks' execution time.
 - Upon PE activation: if there is no aperiodic load, lower priority tasks can execute and PE accumulates capacity at the corresponding priorities.
 - If there is no task waiting, PE capacity resolves to 0

$$C_s = 1$$

$$T_s = 5$$

Exercise 4

□ Why in this case do the PE and T1 preempt each other?

Server
$$C_s = 1$$

$$T_s = 5$$

Schedulability bound

- Given a periodic task set with total utilization U_p and a PE server with utilization U_s
- The schedulability is guaranteed if

$$U_p \le n \left[\left(\frac{2}{U_s + 1} \right)^{1/n} - 1 \right]$$

Sizing PE server

$$U_{PE}^{max} = \frac{2-P}{P}$$

where

$$P = \prod_{i=1}^{n} (U_i + 1)$$

Comparing Up between DS and PE

Which is better in term of periodic utilization?

Sporadic Server

- Similar to DS
- □ Delay the replenishing time of server → server becomes equivalent to a normal periodic task
- □ Idea:
 - Divide the timeline of SS to active and inactive time slices
 - Active: server serves or may serve periodic task
 - Inactive: server does not serve periodic task
 - Start of active time slice: mark delayed replenishing time
 - End of active time slice: calculate replenishing amount

Example: intermediate SS

Server

$$C_s = 5$$

$$T_{s} = 10$$

Sporadic Server

 P_{exe} It denotes the priority level of the task that is currently executing.

 P_s It denotes the priority level associated with SS.

Active SS is said to be *active* when $P_{exe} \ge P_s$.

Idle SS is said to be *idle* when $P_{exe} < P_s$.

RT It denotes the *replenishment time* at which the SS capacity will be replenished.

RA It denotes the *replenishment amount* that will be added to the capacity at time RT.

 $RT = Start_of_Active + Ts$ $RA = Consume_capacity$

Exercise 5:

□ Find response time of aperiodic tasks

$$C_s = 2$$

$$T_s = 8$$

Exercise 5

Server is with highest priority

Periodic task equivalent

- SS (like DS) violates assumption: task must not suspend itself and reactivate later
- SS is different from DS: replenishing time is delayed
- Theorem 5.1 (Sprunt, Sha, Lehoczky) A periodic task set that is schedulable with a task τi is also schedulable if τi is replaced by a Sporadic Server with the same period and execution time
- Therefore, schedulability analysis of SS is similar to Polling Server with RM

$$U_p \le n \left[\left(\frac{2}{U_s + 1} \right)^{1/n} - 1 \right]$$

$$U_{SS}^{max} = \frac{2 - P}{P}.$$

Performance evaluation

Performance results of PS, DS, PE, and SS

Comparison

cellent

good

poor

	performance	computational complexity	memory requirement	implementation complexity
Background Service		<u> </u>		
Polling Server	· ·		<u> </u>	
Deferrable Server				
Priority Exchange	•	- <u>-</u> <u>-</u>	- <u>-</u>	- <u>-</u> <u>-</u>
Sporadic Server	<u>-</u>	<u>-</u>	<u>-</u>	- <u>-</u> <u>-</u>
Slack Stealer		÷		· ·

Note: Slack Stealer can be read from textbook

Real-time Systems

Week 8: Dynamic Priority Servers

Ngo Lam Trung

Dept. of Computer Engineering

How to further increase U_{lub}?

- Fixed priority server uses fixed priority algo.
 - Simple
 - □ Small U_{lub}
- How to increase U_{lub}?
- → uses the same approach: create periodic task to serve aperiodic task (the server)
- →apply dynamic priority scheduling algorithm (EDF) to increase utilization bound

Dynamic Priority Exchange Server

- Similar to fixed priority exchange server
 - Server can exchange capacity with other tasks that have longer deadline at the scheduling time
 - Server accumulate capacity time with the new deadline
 - Server capacity will be consumed until it is exhausted

Schedulability analysis

 $U = \frac{3}{6} + \frac{2}{8} + \frac{3}{12} = 1$ schedulable task set

Theorem 6.1 (Spuri, Buttazzo) Given a set of periodic tasks with processor utilization U_p and a DPE server with processor utilization U_s , the whole set is schedulable by EDF if and only if

$$U_p + U_s \le 1$$
.

NLT, SoICT, 2021

Reclaiming spare capacity

- What if the real C is smaller than worst case C?
- → Spare capacity from can be reclaimed and transfer to aperiodic capacity.

Real-time Systems

Chapter 9: Resource Access Protocol

Ngo Lam Trung

Dept. of Computer Engineering

Contents

- Introduction
- The priority inversion phenomenon
- Solutions for priority inversion

Resource constraint

- Resource
 - Any software structure that can be used by the process to advance its execution
 - Ex: data structure, variables, main memory area, a file, a piece of program, a set of registers of a peripheral device
- Many shared resources do not allow simultaneous access
 - → require mutual exclusion
- Critical section
 - A piece of code under mutual exclusion constraints
 - Tasks entering critical section have to wait until no other task is holding the resource

Waiting state caused by resource constraint

Example of blocking on exclusive resource

Scheduling with preemption

Problem: the task with higher priority has to wait for the task with lower priority

NLT, SoICT, 2021

The priority inversion phenomenon

- J3 enters critical section first
- J1 is blocked, has to wait until J3 signal the resource
- J2 preempts J3 → J1 has to wait for J2

Problems

- The task with higher priority has to wait for the task with lower priority
- □ Blocking time is unbounded → the system is not predictable.
- Example of priority inversion: Mars Pathfinder 1997
 - CPU: RAD6000 20MHz (\$200K-\$300K)
 - OS: VxWork
 - Experienced CPU reset upon touching down on Mars, debugging on Earth detected priority inversion, fixed by new firmware upload.

Problems

- Solutions
 - Non-preemptive Protocol
 - Highest Locker Priority Protocol
 - Priority Inheritance Protocol
 - Priority Ceiling Protocol
 - Stack Resource Policy

Terminology & assumptions(1)

- □ Periodic task set $\Gamma = \{\tau_1, \tau_2, ..., \tau_n\}$
 - $\square \quad \tau_i = (C_i, T_i)$
 - □ Relative deadline $D_i = T_i$
- \square Resources $R_1, ..., R_m$
 - □ Each R_k is guarded by semaphore S_k
- $\bigcup J_i$: a job of τ_i
- \square P_i : nominal priority of τ_i
- $\rho_i \geq P_i$: active priority of τ_i (initially set to P_i)
- \Box $z_{i,j}$: j-th critical section of J_i
- \Box $d_{i,j}$: duration of $z_{i,j}$
- \Box $S_{i,j}$: the semaphore guarding $Z_{i,j}$
- \square $R_{i,j}$: the resource used in $z_{i,j}$
- □ Notation $z_{i,j} \subset z_{i,k}$ means $z_{i,j}$ is entirely contained in $z_{i,k}$.

Terminology & assumptions (2)

- Assumptions
 - J_1, \dots, J_n are listed in decreasing order of P_i
 - Jobs don't suspend themselves.
 - The critical sections used by any task are properly nested.

$$z_{i,j} \subset z_{i,k}$$
 or $z_{i,k} \subset z_{i,j}$ or $z_{i,j} \cap z_{i,k} = 0$

Critical sections are guarded by binary semaphores.

The simplest: Non-preemptive Protocol

- Block all other tasks whenever a task enters a critical section
- The dynamic priority of the running task is raised to the highest level

$$p_i(R_k) = \max_h \{P_h\}$$

normal execution

critical section

The simplest: Non-preemptive Protocol (NPP)

Pros: simple

Cons: unnecessary blocking

Blocking time of Non-preemptive Protocol

□ Given the task T_i, the set of critical sections that can block T_i

$$\gamma_i = \{Z_{j,k} \mid P_j < Pi, k = 1,..., m\}$$

■ The maximum blocking time is

$$B_i = \max\{d_{j,k} - 1 \mid Z_{j,k} \in \gamma i\}.$$

→ Duration of the longest critical section that can block T_i

Highest Locker Priority Protocol (HLP)

- Improves NPP: raising the priority of the task entering a critical section to the highest priority among the tasks sharing that resource.
- \square When a task enters resource R_k , its dynamic priority is raised to

$$p_i(R_k) = \max_h \{ P_h \mid \tau_h \text{ uses } R_k \}$$

- When the task exits the resource, its dynamic priority is reset to the nominal value P_i
- Priority ceiling can be computed offline

$$C(R_k) \stackrel{\text{def}}{=} \max_h \{ P_h \mid \tau_h \text{ uses } R_k \}$$

Highest Locker Priority Protocol

Example

HLP Blocking time

- □ The set of critical instants that can block task T_i $\gamma_i = \{Zj_{j,k} | (P_j < Pi) \text{ and } C(R_k) \ge Pi\}$
- □ Hence, maximum blocking time is

$$B_i = \max_{j,k} \{ \delta_{j,k} - 1 \mid Z_{j,k} \in \gamma_i \}$$

Problem: what if critical section is access in only one branch of a conditional statement?

Priority Inheritance Protocol

- Modify the priority of tasks in critical sections
- □ When a task blocks higher-priority tasks, it temporarily *inherits* the highest priority of the blocked tasks.
 - Prevents preemption of medium-priority tasks

Protocol definition

- Jobs are scheduled based on their active priorities
- □ When the higher-priority job J_{high} is blocked on a semaphore because the lower-priority job J_{low} is in execution of its critical section, the active priority p_{high} of J_{high} is inherited to that of J_{low} .
- □ The rest of the critical section of J_{low} is executed with the active priority p_{high} .
- □ In case the medium-priority job J_{medium} activates, it cannot preempt the execution of $J_{\text{low}} \rightarrow \text{Unbounded priority}$ inversion is avoided.
- □ Priority inheritance is transitive; if a job J_3 blocks a job J_2 , and J_2 blocks a job J_1 , then J_3 inherits the priority of J_1 via J_2 .

Example

Direct blocking & Push-through blocking

PIP with nested critical sections

- When the blocking job J_k exits the critical section, the blocked job with the highest priority is awakened.
- J_k replaces its active priority p_k by nominal priority P_k if no other jobs are blocked by J_k, or by the highest priority of the tasks blocked by J_k

Properties

- □ Push-through blocking to job J_i occurs only if the semaphore is accessed by a job J_{low} with $p_{low} < p_i$ and by a job J_{high} with p_{high} that can be equal or higher than p_i
- □ Transitive priority inheritance can occur only in the presence of nested critical sections.
- □ If there are n lower-priority jobs that can block a job J_i , then J_i can be blocked at most the duration of n critical sections.
- □ If there are m distinct semaphores that can block a job J_i , then J_i can be blocked for at most the duration of m critical sections.

Properties

- □ Under the priority inheritance protocol, a job J can be blocked for at most the duration of min(n,m) critical sections.
 - n is the number of lower-priority jobs that could block J
 - m is the number of distinct semaphores that can be used to block J
- → The maximum blocking time for any task J is bounded

Remaining problem 1: Chained blocking

→ J1 can be blocked several times

Remaining problem (2): Deadlock

→ Deadlock caused as J2 enters the nested critical session

Priority Ceiling Protocol

- Extends the Priority Inheritance Protocol
- Assign each semaphore a ceiling priority, equal to the priority of the highest-priority task that can lock it.
- Provided a critical section contains several semaphores, a job J can enter the critical section only when its priority is higher than all priority ceilings of the semaphores already locked by other jobs.

Protocol definition (1)

- \square S_k : an arbitrary semaphore
- \square $C(S_k)$: priority ceiling of S_k

$$C(S_k) \stackrel{\text{def}}{=} \max_{i} \{ P_i \mid S_k \in \sigma_i \}$$

This value can be computed offline

- $\bigcup J_i$: the job with the highest priority in ready queue
- \square P_i : the priority of J_i
- \square S*: semaphore with the highest priority ceiling among all the semaphores currently locked by jobs other than J_i

Protocol definition (2)

- □ When J_i is about to enter a critical section guarded by semaphore S_k ,
 - □ If $P_i \leq C(S^*)$
 - locking on S_k is denied, &
 - J_i is blocked on semaphore S* by the job holding the lock on S*.
 - - J_i locks on S_k and continue execution
- \square When J_i is blocked on a semaphore S_i
 - □ The job J_k locking on S inherits the priority p_i
 - Generally, a task inherits the highest priority of the jobs blocked by it.
- \square When J_k exits a critical section & unlocks the semaphore,
 - □ If there are blocked jobs, then p_k is the highest active priority of the jobs blocked by J_k
 - \square Otherwise, p_k is restored to P_k

Example

Ceiling blocking

Ceiling blocking

- A task is blocked by the protocol because of the priority ceiling condition
- Necessary to avoid chained blocking and deadlock

This will never happen with PCP

Properties of the protocol (2)

- □ The Priority Ceiling Protocol prevents deadlocks.
- \Box Under the Priority Ceiling Protocol, a job J_i can be blocked for at most the duration of one critical section.

- → Reduce blocking time
- → Avoid unnecessary high-priority tasks blocking
- → Avoid deadlock

Comparison

	priority	Num. of blocking	pessimism	blocking instant	transpa- rency	deadlock preven- tion	implem- entation
NPP	any	1	high	on arrival	YES	YES	easy
HLP	fixed	1	medium	on arrival	NO	YES	easy
PIP	fixed	α_i	low	on access	YES	NO	hard
PCP	fixed	1	medium	on access	NO	YES	medium
SRP	any	1	medium	on arrival	NO	YES	easy

SRP (Stack Resource Protocol): for student's further reading