PRINTABLE VERSION

Quiz 26

Question 1 Lot
$$u = 2+x$$
, $du = dx$, Calculate: $\int \frac{1}{9(2+x)^2} dx = \int \frac{1}{9(2+x)^2} du$

a)
$$-\frac{1}{54(2+x)^2} + C = -\frac{1}{9} + C$$

b)
$$=\frac{1}{18(2+x)^2}+C$$
 = $-\frac{1}{9(2+x)}+C$

c)
$$= -\frac{1}{18 + 9x} + C$$

c)
$$= \frac{1}{18 + 9x} + C$$

d) $= -\frac{6}{9(2+x)^3} + C$ = $-\frac{1}{18 + 9x} + C$

e)
$$= -\frac{1}{6+3x} + C$$

Question 2

Question 2 Let
$$U=X+5$$
, $dU=2XdX \Rightarrow \frac{dU}{2}=XdX$
Calculate: $\int \frac{5x}{(x^2+5)^2} dx = 5\int \frac{XdX}{(X+5)^2} = 5\int \frac{du}{u^2} = 5\int$

a)
$$-\frac{5}{x^2+5}+C$$

b)
$$-\frac{5}{4x^2+20}+C$$

a)
$$\sqrt{-\frac{5}{x^2+5}} + C = 5 \left(\frac{dy}{y^2} - \frac{5}{2} \cdot \left(-\frac{1}{y} \right) + C \right)$$

$$=-\frac{5}{2}\cdot\frac{1}{x+5}+C$$

04/13/2015 10:03 AM

c)
$$= -\frac{5}{4(x^2+5)^2} + C$$
 $3 \cdot Lot = x^3 + 2$.
d) $2 - \frac{5}{2x^2+10} + C$ $4 \cdot Lot = x^3 + 2$.

d)
$$\sqrt{-\frac{5}{2x^2+10}}+C$$

e)
$$= -\frac{1}{6(x^2+5)^3} + C$$
 $= -\frac{1}{6(x^2+5)^3} + C$

Question 3
Calculate:
$$\int \frac{3x^2 \sqrt[4]{x^3 + 2} dx}{\sqrt[4]{x^3 + 2}} = \frac{4}{5} \sqrt[4]{7} + C.$$

a)
$$=\frac{4(x^3+2)^{9/4}}{3}+C$$
 $=\frac{4(x^3+2)^{9/4}}{5}+C$

b)
$$=\frac{4(x^3+2)^{7/4}}{7}+C$$

c)
$$=\frac{12(x^3+2)^{5/4}}{5}+C$$

d)
$$=\frac{4(x^3+2)^{5/4}}{5}+C$$

e)
$$=\frac{12(x^3+2)^{7/4}}{7}+C$$

2 of 6

Calculate:
$$\int \frac{10 x + 35}{\sqrt{x^2 + 7 x - 3}} dx$$

c) $\frac{12(x^3+2)^{5/4}}{5} + C$ $\frac{2}{12}(x^3+2)^{5/4}$ $\frac{12(x^{3}+2)^{7/4}}{7}+C$ Puestion 4 Calculate: $\int \frac{10 x + 35}{\sqrt{x^2 + 7 x - 3}} dx$

$$= 10 \cdot \sqrt{2} + C$$

$$= 10 \cdot \sqrt{2} + C$$

$$= 10 \cdot \sqrt{2} + C$$

1 of 6

a)
$$-10\sqrt{x^2 + 7x - 3} + C$$

b) $5\sqrt{x^2 + 7x - 3} + C$

c) $-10\sqrt{x^2 + 7x - 3} + C$

d) $-2\sqrt{x^2 + 7x - 3} + C$

e) $-2\sqrt{x^2 + 7x - 3} + C$

Ouestion 5

e)
$$= 2\sqrt{x^2 + 7x - 3} + C$$

Question 5

Calculate:
$$\int_{1}^{0} 6x^{2} (2x^{3} + 3)^{2} \frac{dx}{dx} = \int_{1}^{3} \sqrt{3} dx$$
Calculate:
$$\int_{1}^{0} 6x^{2} (2x^{3} + 3)^{2} \frac{dx}{dx} = \frac{3}{3} |3| = \frac{3}{3}$$

b)
$$\frac{26}{3}$$
c) $\frac{19}{3}$
d) $\frac{13}{6}$
e) $\frac{13}{3}$
 $\frac{13}{3}$

$$\frac{13}{6} > 10 \int_0^a x \sqrt{a^2 - x^2} dx$$

e)
$$\frac{13}{2}$$
Question 6 = $\begin{bmatrix} 0 \\ \sqrt{a^2 - x^2} dx \end{bmatrix}$ $\begin{bmatrix} -2 \\ \sqrt{a^2 - x^2} dx \end{bmatrix}$ $\begin{bmatrix} 0 \\ \sqrt{a^2 - x^2} dx \end{bmatrix}$

$$3 \text{ of } 6 = -\frac{10}{3} \left[\frac{3}{0^2} - \left(\frac{3}{0^2} \right)^2 \right] = \frac{10}{3} \sqrt{3} \cdot \frac{04/13/2015 \cdot 10:03 \text{ AM}}{3}$$

https://assessment.casa.uh.edu/Assessment/Print...

a)
$$10a^2$$

b) $\frac{10a^3}{3}$

c) $= 0$

d) $10a^3$

e) $= \frac{10a^3}{3}$

Question 7

https://assessment.casa.uh.edu/Assessment/Print...

 $= \frac{10a^2}{3}$
 $= \frac{10a^3}{3}$
 $= \frac{10a^3}{2}$
 $= \frac{10a^2}{3}$

Question 7

Calculate: $\int \cos(2x+3) dx = \int \sin(2x+3) + C$

a)
$$-\sin(2x+3) + C$$

b)
$$= \frac{1}{2}\sin(2x+3) + C$$

c)
$$-\frac{1}{2}\sin(2x+3) + C$$

d)
$$2\sin(2x+3) + C$$

e)
$$-2\sin(2x+3) + C$$

108 Let U=2x+4, du=2dx P= (Seccu) taniu) - ay

Question 8 Calculate: $\int \sec(2x+4)\tan(2x+4) dx = \frac{1}{2} \operatorname{Sec}(\mathcal{U}) + C$

a)
$$\frac{1}{2}\sec(2x+4)\tan(2x+4)+C$$
 = $\frac{1}{2}\sec(2x+4)+C$

b)
$$=\frac{1}{2}\sec(2x+4)+C$$

c)
$$=\frac{1}{2}\tan(2x+4)+C$$

d)
$$= 2\tan(2x+4) + C$$

e)
$$= 2\sec(2x+4) + C$$

Question 9

Calculate: $\int \sin^3(x) \cos(x) dx$

a)
$$-\frac{1}{4}\sin^4(x) + C$$

b)
$$=\frac{1}{3}\sin^4(x) + C$$

c)
$$\frac{1}{4}\sin^4(x) + C$$

d)
$$= -\frac{1}{3}\cos^4(x) + C$$

e)
$$-\frac{1}{4}\cos^4(x) + C$$

Question 10

$$=\frac{1}{6}\int \frac{du}{u}$$

(c)
$$=\frac{3}{2}\ln[3x^2+2]+C$$

d)
$$= \frac{1}{3} \ln |3x^2 + 2| + C$$

e)
$$-\frac{x}{6(3x^2+2)^2}+C$$

Ouestion 11

a)
$$\frac{1}{5}\arctan(5e^x) + C$$

b)
$$\sqrt{5}\arctan(5e^x) + C$$

c)
$$\sqrt{\frac{1}{5}}\arcsin(5e^x) + C$$

d)
$$= 5 \arcsin(5e^x) + C$$

e)
$$=\frac{1}{10}\arcsin(5e^x)+C$$

of
$$u=\frac{1}{2}e^{x}dx$$
 $\Rightarrow \frac{du}{5}=e^{x}dx$

	æ		