Multi-Revolution Extension of Solar-Perturbed Moon-To-Moon Transfer Families

AAS 21-581

Burton Yale (burton.yale@austin.utexas.edu)

Graduate Student at University of Texas at Austin

Gregory Lantoine (gregory.lantoine@jpl.nasa.gov)

Mission Design Engineer at Jet Propulsion Laboratory

Parameters of a Moon-To-Moon Transfer (1/2)

Earth-Moon System Parameters

- 1. θ: Solar Phase Angle
- 2. TOF: Transfer time of flight

Equations of Motion

$$\ddot{R} = -\mu_E \frac{R}{\|R\|^3} - \mu_S \left(\frac{R - R_S}{\|R - R_S\|^3} + \frac{R_S}{\|R_S\|^3} \right)$$

Parameters of a Moon-To-Moon Transfer (2/2)

Departure Lunar Flyby Parameters

- 3. v_{∞} : Lunar \vec{v}_{∞} magnitude
- 4. λ_0 : Lunar \vec{v}_{∞} latitude*
- 5. ϕ_0 : Lunar \vec{v}_{∞} longitude[†]

Arrival Lunar Flyby Parameters

6. ϕ_f : Lunar \vec{v}_{∞} longitude[†]

^{*:} Continuous [-90°, 90°]

^{†:} Discrete {-90°, 90°}

Transfer Nomenclature

- Orbits are categorized by time of flight:
 - A: ~1 month & ~1 Lunar Orbit
 - B: ~2 month
 - •
 - F: ~6 month
- Each letter is then sub-divided by initial and final states
 - i: For \vec{v}_{∞} longitudes of 90°
 - ullet o: For $ec{v}_{\infty}$ longitudes of -90°

Overview of Current Dataset

• Has coverage for large majority of useful families for each \vec{v}_{∞}

 Coverage of initial Solar Phase Angle shrinks as dataset time of flights increase

Credit: Lantoine

Classifying Multi-Revolution Transfers

 Solutions are first categorized by their total time of flight across all revolutions

 Each discontinuous group is then subdivided into their multi-rev families

Classifying Multi-Revolution Transfers

 Each time of flight lettering (A:F), signifies the time to complete each revolution

• Lower time of flight families see little variation in their classifications

Same Families at Different $ec{v}_{\infty}$

3-Month (C) "io"

Same Families at Different $ec{v}_{\infty}$

Combining 0 & 1 Rev Solution Spans

*Dotted lines indicate only phase angle span and **not** ToF

Per-Function Speed Improvements

Multi-Revolution Results from Broad Search

• Seq: BiiBDiiDii

• Departure and Arrival*:

• Dep: Oct 03, 2021

• Arr: Jan 01, 2024

^{*}At asteroid 2020GE

Closing Remarks

 Defined methodology for initializing, building, and categorizing Moon-To-Moon trajectory families

 Developed naming convention to illustrate overarching structures in multi-revolution datasets

Demonstrated speed boost in broad search contexts

 Applied multi-revolution results to find novel solutions to future space missions such as NEA Scout

For any questions regarding the paper

Please join Virtual Room Trajectory Design and Optimization XX on August XX, 2021 at XX:XX AM EST

Thank you

BiiBDiiDii Continued

BiiBDiiDii Continued

BiiBDiiDii Continued

BiiBDiiDii Rotating Frame

1-Rev vs 0-Rev Families

4-Month (D) "ii" Family @ $ec{v}_{\infty}$ 1.4 $^{
m km}/_{
m s}$

1-Rev vs 0-Rev Families

4-Month (D) "ii" Family @ \vec{v}_{∞} 1.4 km/s

