

characterization of subspace topology

Canonical name CharacterizationOfSubspaceTopology

Date of creation 2013-03-22 15:40:32 Last modified on 2013-03-22 15:40:32

Owner mps (409) Last modified by mps (409)

Numerical id 6

Author mps (409) Entry type Theorem Classification msc 54B05 **Theorem.** Let X be a topological space and $Y \subset X$ any subset. The subspace topology on Y is the weakest topology making the inclusion map continuous.

Proof. Let S denote the subspace topology on Y and $j: Y \hookrightarrow X$ denote the inclusion map.

Suppose $\{\mathcal{T}_{\alpha} \mid \alpha \in J\}$ is a family of topologies on Y such that each inclusion map $j_{\alpha} \colon (Y, \mathcal{T}_{\alpha}) \hookrightarrow X$ is continuous. Let \mathcal{T} be the intersection $\bigcap_{\alpha \in J} \mathcal{T}_{\alpha}$. Observe that \mathcal{T} is also a topology on Y. Let U be open in X. By continuity of j_{α} , the set $j_{\alpha}^{-1}(U) = j^{-1}(U)$ is open in each \mathcal{T}_{α} ; consequently, $j^{-1}(U)$ is also in \mathcal{T} . This shows that there is a weakest topology on Y making inclusion continuous.

We claim that any topology strictly weaker than S fails to make the inclusion map continuous. To see this, suppose $S_0 \subseteq S$ is a topology on Y. Let V be a set open in S but not in S_0 . By the definition of subspace topology, $V = U \cap Y$ for some open set U in X. But $j^{-1}(U) = V$, which was specifically chosen not to be in S_t . Hence S_t does not make the inclusion map continuous. This completes the proof.