281 Live Session

Week 12 - 2023/4/5

Agenda

- Final project updates
- Linear Classifiers overview
- Practical applications of SVMs
- Exercise: Face Classification (Part 1)

Project Updates

Order: Vehicles, Satellite, Recycling, Fruit

This week: PCA results

Next week: Confusion matrix

Big picture

1: Perspective Projection
2: Image Formation
3: Image Artifacts
4: Convolution
5: Fourier
6: Pyramids, Edges, and Features
7: Image Analysis
8: Least-Squares
9: Total and Iterative Least-Squares
10: Clustering
11: Dimensionality Reduction

12: Linear Classifiers

13: Nonlinear Classifiers

12.1 Least-Squares for Classification	
12.2 Logistic Regression for Classification	on
12.3 Linear Discriminant Analysis (LDA)	
12.4 Receiver Operating Curve	
12.5 Linear Discriminant Analysis, an Exa	ample
12.6 Multiclass and Nonlinear Classifiers	•
12.7 Margins	
12.8 Maximizing Margins	

Intuition goals:

- What is a classifier model?
- How do we evaluate quality of fit?
- Is it better to have more false positives or false negatives? Why?
- What is the goal of an LDA classifier?
- What is the goal of an SVM classifier?
- Why do we maximize the margin?

Overview — Linear classifiers

Two covariance matrices - within & across

Overview — Classifier evaluation

Confusion Matrix

False Positive (I)
False Negative (II)

Distributions must be separable to perform classification

Error tolerance depends on specific application domain

Overview — Support vector machines (SVMs)

goal is to maximize distance between boundary points

classification -> sign of dot product between w and our boundary plane

minimize inverse of $\lambda ||w||$ subject to classification constraint

Big picture

1: Perspective Projection
2: Image Formation
3: Image Artifacts
4: Convolution
5: Fourier
6: Pyramids, Edges, and Features
7: Image Analysis
8: Least-Squares
9: Total and Iterative Least-Squares
10: Clustering
11: Dimensionality Reduction

12: Linear Classifiers

13: Nonlinear Classifiers

12.1 Least-Squares for Classification	
12.2 Logistic Regression for Classification	on
12.3 Linear Discriminant Analysis (LDA)	
12.4 Receiver Operating Curve	
12.5 Linear Discriminant Analysis, an Exa	ample
12.6 Multiclass and Nonlinear Classifiers	•
12.7 Margins	
12.8 Maximizing Margins	

Intuition goals:

- What is a classifier model?
- How do we evaluate quality of fit?
- Is it better to have more false positives or false negatives? Why?
- What is the goal of an LDA classifier?
- What is the goal of an SVM classifier?
- Why do we maximize the margin?

Practical Applications of SVMs

Maximizing the margin produces a more robust classifier

Figure 11: Adversarial examples for class Male/Female (left) and mean perturbation sizes (right) for different models trained on real CelebA images – results are consistent with our other experiments.

Richardson, Eitan, and Yair Weiss. "A bayes-optimal view on adversarial examples." The Journal of Machine Learning Research 22.1 (2021): 10076-10103.

Group Exercise - Face Classification Part 1

Upcoming ToDo's

Watch Async lectures for Unit 12

Final Projects - Confusion Matrix

Final Presentations will be in class April 19th

Final Reports will be due Sunday April 23rd