21-10-2017 BILKENT UNIVERSITY

Department of Electrical and Electronics Engineering EEE313 Electronic Circuit Design Midterm Exam I

SOLUTION

Surname:	,
Name:	
ID-Number:	
Signature:	

Duration is 110 minutes. Solve all 6 questions. Show all your work. No books or notes.

Q1 (20 points)	
Q2 (20 points)	
Q3 (10 points)	
Q4 (20 points)	
Q5 (20 points)	
Q6 (10 points)	
Total (100 points)	

Q1.

(a) Find V_0 and I_{D1} in the circuit below. Justify the states of the diodes. Diodes in this circuit are ideal. Show your work.

(b) Find and plot V_{out} versus I_{in} transfer characteristics for the circuit below (Horizontal axis is I_{in} and the vertical axis is V_{out}). The cutin voltage for the diodes is $V_{\gamma} = 0.7$ V. Justify the states of the diodes. Show your work.

O2. For the circuit below, $V_S = 60 \text{ V}$, the Zener diode has a Zener voltage of 15 V and an incremental resistance of 0 Ω. The Zener current Iz needs to be more than 15 mA and the power rating of the Zener is 4 W. Show your work.

- a) Determine the range of Iz for proper operation of the Zener.
- b) Find the range of the DC voltage source Vs such that the current limitations of the Zener diode are not violated, for $R_L = 150 \Omega$.
- Determine the range of the load resistor, R_L, for when V_S = 60 V, such that the current limitations of the Zener diode are not violated.

b)
$$R_{L} = 170 - \Omega = 0.17 \text{ K.R.}$$

$$T_{Z} = \frac{V_{S} - 15}{0.15} - \frac{15}{0.15} = \frac{V_{S} - 30}{0.15} \text{ mA.}$$

$$15 \angle T_{Z} \angle 267$$

$$15 \angle \frac{V_{S} - 30}{0.11} \angle 267$$

$$2.27 \angle V_{S} - 30 \angle 40$$

$$\frac{2.2r < V_{s} - 30 < 40}{4P}$$

$$\frac{4P}{32.2r} < V_{s} < 70 v,$$

$$e) V_{s} = 60$$

c)
$$V_{S}=60$$
 $T_{Z}=\frac{60-15}{0.15}-\frac{15}{R}=\frac{45}{0.15}-\frac{15}{R}=300-\frac{15}{R}$
 $15 \leq T_{Z} \leq 267$
 $15 \leq 300-\frac{15}{R} \leq 2267$
 $-285 \leq -\frac{15}{R} \leq 33.33$
 $285 \geq \frac{15}{R} \geq 33.33$
 $285 \leq \frac{15}{R} \leq 32.33$
 $285 \leq \frac{15}{R} \leq 32.33$

- Q3. In the circuit below, $v_{in} = 10$ sinwt mV. Capacitors are very large.
- a) Derive the formula for the incremental (small signal) resistance of the diode $r_d = V_T/I_{DO}$.
- b) Find the small signal component of the output voltage at 300° K ($V_T = 26 \text{ mV}$). Show your work.

Solution

a)
$$i_0 = I_s(e^{\frac{\sqrt{p}}{\sqrt{1}}}) \approx I_s e^{\frac{\sqrt{p}}{\sqrt{1}}} = I_s e^{\frac$$

b)

Note

1002

The root out
$$d = \frac{0.026}{1mA} = 262$$
 (4p)

1002

The root out $d = \frac{26.2}{1mA} = 26.2$ (4p)

Fout $d = \frac{20.6}{20.6 + 100} \times 105 \text{ mwt (mv)}$
 $d = \frac{20.6}{20.6 + 100} \times 105 \text{ mwt (mv)}$
 $d = 1.71 \text{ shwt (mv)}$ (4p)

Q4. The nMOS transistor in the circuit below has the parameters $V_{TN} = 0.8V$ and $K_n = 0.5mA/V^2$. Determine I_D, V_{GS}, and V_{DS}. Justify your results. Show your work.

Assume SAT
$$F_0 = K_n (V_{OS} - V_{Tn})^2 = 0.5 (6 - T_0 - 0.8)^2$$

= 0.5 (5.2 - 5 T_0)²
 $2T_0 = 5.2^2 - 52 T_0 + 25 T_0^2$

$$25 I_0^2 - 54 I_0 + 27.04 = 0$$

$$I_0 = \begin{cases} 1.37 \text{ mA} \Rightarrow V_{65} = 6 - 5 \times 1.37 = -0.85 \times 0.8 \\ > 0.79 \text{ mA} \Rightarrow V_{65} = 6 - 5 \times 0.79 = 2.056 > 0.8 \end{cases}$$

VDS = 4 - 0.79 ×0.5 - 5×0.79 +4=3.66 v. 3.66≥7.056-0.8 V 3. SAT.

Q5.

(a) The pMOS transistor in the figure below has V_{TP} = -0.7V and λ = 0. Find the values of R and the K_p of the transistor so that I_D = 0.1 mA and V_{SD} = 2.5 V. Justify the state of the transistor. Show your work.

$$V_{SG} = V_{SO} \implies V_{SG} + V_{TP} \implies Tr is SHT or OFF$$

Since $I_{0} = 0.1 \text{ mat } > 0$
 $T_{0} = K_{p} (V_{SG} - 0.7)^{2}$
 $0.1 = K_{p} (2.\Gamma - 0.7)^{2} = K_{p} \times 1.8^{2}$
 $K_{p} = \frac{0.1}{(1.8)^{2}} = 0.0309 \text{ mA}/U^{2}$
 $Q - V_{SD} - I_{D} \times R = 0 \implies Q - 2.\Gamma = 0.1 R$
 $R = \frac{6.\Gamma}{0.1} = 6.\Gamma K$

(b) In the circuit below T_1 and T_2 are identical (matched pair) with $V_{TP} = -1$ V and $K_p = 0.1$ mA/V².

Find V_{GT1}. Find the range of R for the current mirror to operate properly.

T1 in SAT: $0.4 = 0.1 (V_5 G_1^{-1})^2$ $4 = (V_5 G_1^{-1})^2 \Rightarrow \pm 2 = V_5 G_1^{-1}$ $V_5 G_1 = 1 \pm 2$ $0.7 \times G_1 = 3 \times 1$ $0.7 \times G_2 = 3 \times 1$ $0.7 \times G_1 = 3 \times 1$

Assume Tz is SAT: => IDz = 0.4 mA. => VSOZ = 10 - (0.4 R-5) = 15-0.4 R

We need $VSD_2 > VSG_2 + VTP$ => 15-0.4 R > 3-1

13 > 0.4 R

R < $\frac{13}{0.4} = 32.5$ K.

Q6. For the input signal V_{in} as drawn below, find and draw the output signals, V_{out} , for the circuits in (a) and (b). The cutin voltage for the diodes is $V_{\gamma} = 0.7 \text{ V}$. Show your work. Initial value of the capacitor voltage is zero. R in (b) is very large.

Table 3.1 Summary of the MOSFET current-voltage relationships

NMOS Nonsaturation region $(v_{DS} < v_{DS}(sat))$

 $i_D = K_n[2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$ Saturation region $(v_{DS} > v_{DS}(\text{sat}))$

 $i_D = K_n (v_{GS} - V_{TN})^2$

Transition point

 $v_{DS}(\text{sat}) = v_{GS} - V_{TN}$

Enhancement mode

 $V_{TN} > 0$

Depletion mode

 $V_{TN} < 0$

PMOS

Nonsaturation region ($v_{SD} < v_{SD}(\text{sat})$)

 $i_D = K_P[2(v_{SG} + V_{TP})v_{SD} - v_{SD}^2]$

Saturation region $(v_{SD} > v_{SD}(\text{sat}))$

 $i_D = K_P (v_{SG} + V_{TP})^2$

Transition point

 $v_{SD}(\text{sat}) = v_{SC} + V_{TP}$

Enhancement mode

 $V_{TP} < 0$

Depletion mode

 $V_{TP} > 0$

Equation for diode current is:

$$I_D = I_S \left[e^{\left(\frac{V_D}{V_T}\right)} - 1 \right]$$