GPSD Water Recovery - Pumping Cost Integration (3-Year Projection)

Version: 1.1

Author: Jean-Francis Kuoch

Date: May 2025 License: CC BY 4.0

Pumping Integration for GPSD Systems

While GPSD is designed to function passively via gravity, **minimal pumping** is **required** for: - Drawing filtered water from the base reservoir - Optionally distributing water to holding tanks or irrigation lines

Pumping Requirements Overview

Energy Consumption Estimate

| Parameter | Value | |------|--------------| Avg pump power | 300W | | Avg runtime/day | 1 hour | | Daily consumption | 300 Wh (0.3 kWh) | Annual consumption | ~ 110 kWh | | 3-Year consumption | ~ 330 kWh |

Pumping Cost (3-Year)

```
| Region Type | Energy Cost/kWh | 3-Year Pump Cost | |------|---------------| | Solar (standalone) | €0 after install | ~€150-€300 (hardware only) | Grid – Europe avg | €0.25 | ~€82.50 | Diesel gen (1 kWh = 0.4L diesel) | ~€0.60+ | ~€198
```

Notes

- Small solar water pumps (12V-24V) are highly efficient and well-suited to GPSD deployment
- Manual pumping is possible if electric is unavailable, but limits throughput
- Automated float activation is ideal for drawing only clean, settled water

Adjusted 3-Year Total (Including Pumping)

Water output remains: 1.6M-2.7M liters

Conclusion

Factoring pump energy and cost into GPSD deployment increases the total budget by $\sim \& 80 - \& 80$ over 3 years — a marginal increase for maintaining consistent daily access. Solar-driven pumps ensure autonomy, while grid use remains low-cost for intermittent operation.