Manual Data Engineer and Data Scientist Part 1

Course year: 18-19

Author: Peter Odenhoven

Version: 1.4

Date: Friday, 06 September 2019

Version control

Ver.	Status	Date	Author	Changes
1.0	Concept	2018-06-11	P.Odenhoven	Rubric Individual assignment I
				Rubric Individual assignment II
				Theoretical Exam
1.1	Semi Definitive 18/19	2018-8-20	Z.Efendijeva	Improved Rubric
	sem 1		S.Robben	Textual marks for learning goals not covered by datacamp
				Not yet final: Rubric individual assignment II
1.2		2018-10-01	P.Odenhoven	Split into Part1 and Part2
1.3		2019-01-10	P.Odenhoven	Review DC courses
				Review Individual Assigmnent I
1.4		2019-08-30	Z. Efendijeva	Changes in planning of Mathematics / test

Table of Contents

1.	Preface	4
2.	Introduction	5
	Overall organisation of Data Engineer and Data Scientist	
	Examination and tests	
5.	Test 1 : Individual assignment I	12
	Test 1 : Rubric Data Engineer and Data Scientist individual assignment I	
7.	Test 1: Checklist Machine Learning Report	15
	Test 4: Theoretical exam	
9.	Weekly planning	17
	Checklist Report for the individual assignments I and II	
	List of needed Software (not at all trying to be complete)	

1. Preface

The semester on Big Data has been operational since jan 2016. At the time there were 2 modules Data Processing and Data Mining & Analysis, each for 4 European Credits. The sequence for the modules has changed several times, in order to support the project work more to its demanding. However, all the projects on Big data are characterized with a slow start: it takes time for students to get oriented on the dataset and the problem involved. Moreover, in at the end of most the projects time was lacking for a thorough analysis of the data since the theory involved was not yet taught during classes. So, these are the reasons why we have decided to make the semester more a-symmetrical, meaning in the first part of the semester, the emphasis will be on getting to know all the algorithms and aspects of data engineering and data science the theory. Whereas the second part of the semester the emphasis will be on the project work. As a consequence, the former modules are merged in to a new one called Data Engineer and Data Scientist, making it possible to

- React more flexible on what is needed for the project
- To shift lessons and workshops from the second part of the semester to the first part

2. Introduction

The module Data Engineer and Data Scientist is part of the thematic semester Big Data. During this semester you will be confronted with different parts of the so-called Data Science Life Cycle, see figure below ¹

FIGURE 2-2 Overview of Data Analytics Lifecycle

So, the following learning outcomes can be formulated

- 1. The student searches, selects and collects different types of data; being structured and/or unstructured.
- 2. The student is familiar with all kinds of different storages, be it SQL or NOSQL
- 3. The student analyses the business data and develops datasets, that have an optimal fit with the organization's information needs.
- 4. The student applies the aspects of the data comprehensive, like for example consistency, granularity, normalization and the range of values.
- 5. The student explores, pre-processes and conditions these data and uses them for advanced analysis and modelling.

¹Data Science and Big Data Analytics, Discovering, Analysing, Visualizing and Presenting Data (EMC educational services)

- 6. The student understands the mathematics involved in most of the data mining algorithms
- 7. The students can make motivated choices regarding the use of several Data Scientist algorithms and regarding the specific parameters within an algorithm
- 8. The student can make motivated choices regarding the use of tooling for Data Engineering and Data Scientist
- 9. The student can make an analysis of a rather large dataset using the tool which suits you and the problem the best

This manual has the following structure:

- Chapter 2 describes the overall organisation of the module
- Chapter 3 describes the organization of the exams
- Chapter 4 is an overview of all 4 exam components
- Chapter 5 describes the requirements for the individual assignment I (= test 1)
- Chapter 6 contains the rubric for the individual assignment I (= test 1)
- Chapter 7 contains a checklist for the Report on Machine Learning (=test 1)
- Chapter 8 contains a rubric for the theoretical exam (= test 4)
- Chapter 9 describes the weekly program. All the mentioned learning goals in the weekly program are mandatory for the theoretical exam
- Chapter 10 lists most of the needed software/ hardware

Dhr. P. Odenhoven

3. Overall organisation of Data Engineer and Data Scientist

During the semester you get to know all kinds of topics related to the field of Data Engineering and Data Scientist. From the website² you can learn that

Data engineers build massive reservoirs for big data. They develop, construct, test and maintain architectures such as databases and large-scale data processing systems. Once continuous pipelines are installed to—and from—these huge "pools" of filtered information, data scientists can pull relevant data sets for their analyses.

Data scientists are big data wranglers. They take an enormous mass of messy data points (unstructured and structured) and use their formidable skills in math, statistics and programming to clean, massage and organize them. Then they apply all their analytic powers—industry knowledge, contextual understanding, skepticism of existing assumptions—to uncover hidden solutions to business challenges.

So, the module is built out of 3 components,

- 1. Data Engineer
- The basics of SQL (in case you are missing these basic skills) and a little more
- The basics of relational Databases
- Programming: R or Python. More technical interested students are allowed to learn Python, but they should be aware of the fact that
 - o Interactive visualisations are "easier" to program in RShiny than in plain JavaScript
 - o Visualisations in for example D3 JavaScript are known for bad performance when it comes to big datasets
- The basics of NOSQL databases
- The basics of HADOOP
- The basics of Spark

Skills in the field of Data Engineering are tested by individual assignments and a theoretical exam at the end of the semester.

- 2. Data Scientist
- Classic data mining involving techniques like
 - o Classification/ prediction
 - o Regression

² https://medium.com/@vegi/data-scientist-vs-data-analyst-vs-data-engineer-using-word-cloud-902ab83d0879

- Clustering
- Text Mining
- o Recommendation
- Techniques involving among others
 - Spark
 - Neural Networks
 - Image recognition
- Students need to understand the algorithms involved. They need to know why a specific algorithm is preferred within a certain context and which parameters can be used to influence the outcome of the algorithm. The algorithms are implemented in most data science libraries

Skills in the field of Data Scientist are tested by individual assignments and a theoretical exam at the end of the semester.

3. Mathematics

Fundamental for most machine learning algorithms for is a (small) notion of basic concept of Mathematics:

- Distance measures
- Probability and descriptive statistics
- Comparison of sets
- Correlation and regression
- Basics of Linear Algebra

Skills in the field of Data Scientist are tested by online (MapleTA) test. To be able to participate in this test, student has to complete a homework first (available from week 5 in MapleTA).

Each semester at the HvA consists of 2 blocks, i.e. a period of 10-12 weeks. Since in our experience, Big Data projects start off slowly, students first need to understand the problem, the data structures involved, the required tooling etc., and on the other hand students need to learn the theoretical background of the machine learning algorithms that is why we have chosen to have an emphasis on theory more in the beginning of the semester and applying in during the project at the second part of the semester:

Block 1	Lessons/ hours of	Block 2	Lessons /hours of
	contact		contact
Data Engineer / Data Scientist	3 * 2	Data Engineer / Data Scientist	1 * 2
Mathematics	1 * 1		
Project coaching	1 * 3	Project coaching	1 * 7

Mandatory E-learning environments

- 1. For both the lessons on Data Engineering and Data Scientist the skills to learn rely heavily on the DataCamp website courses https://www.DataCamp.com/home
 - o Either Track: Data Scientist with R
 - o Or Track: Data Scientist with Python

An Academic License is available and will be supplied to you whenever it is needed. The courses combine acquiring practical skills in R or Python and easy to understand videos for explaining the theoretical backgrounds are explained.

- 2. For getting to know the technical implications of Big Data the Cognitive Class website courses https://cognitiveclass.ai/ is used among others.
- 3. Last but not least the course on Mathematics will be taught using a E-learning environment (T-Maple) where students can practice their skills and get immediate feedback on the answers. Students who followed the Essential Skill course in their freshmen year, should be familiar with this environment.

About all the topics on Data Engineering and Data Scientist are supported bij DataCamp videos or other online sources. For some topics additional slides will be provided. Students who prefer to study theory from a book rather than a bunch of websites are advised to buy the book:

Data Science and Big Data Analytics: Discovering, Analysing, Visualizing and Presenting Data. EMC educational services

The book is one the most readable books on the market, when it comes to the balance in elaborate mathematics, coding and theory.

4. Examination and tests

This chapter describes the examination and grading for the course Data Engineer and Data Scientist.

The course is rewarded with 8 European Credits (studiepunten) if and only if the students has passed 4 test, with 4 separate grades:

Block 1 1. 2.	Data Engineer and Data Scientist: Mathematics:	Test 1: Individual assignment I + Report Test 2: MapleTA test, graded >= 5.5	ec 4 <u>1 +</u> 5
Block 2 3. 4.		Test 3: Individual assignment II + report, Test 4: Overall Theoretical exam	1 <u>2 +</u> 3

Important notes:

- All 4 separate grades for the tests should be sufficient, i.e. ≥ 5.5
- The overall theoretical exam will cover all the topics from Data Engineer and Data Scientist, including knowledge on SQL and NOSQL database, Hadoop, Map Reduce and Spark. In the weekly program all learning goals are explicitly listed. This list should be your checklist, when preparing for the theoretical exam.
- The individual assignments are individually assessed in a 10 minutes window at the end of each block. Students are only allowed to attend the assessment after the report is uploaded.
- Participation in Mathematics test is only available if students have finished their homework in MapleTA (available form week 5).

There is only one bonus opportunity for test 1:

Block 1

- 1. There will be an intermediate test on your R/ Python skills. This test can be rewarded with a maximum of 2 bonus point
- 2. There is no resit for the bonus test. If you miss the test in week 4, then it is too bad, but the consequence is no bonus!
- 3. The bonus will be added directly to the final grading of your individual assignment I (= test 1), with the following restrictions
 - a. Grading for the final assignment cannot exceed a 10-score
 - b. The earned bonus in the intermediate test, will not be valid for any resit. If you have to resit the assignment the bonus will be expired. It is only valid if and only if you take the individual assessment the first time it is planned (week 8,9 or 10 of the semester)

Important weeks for the examination/ tests

Week 1-10, Block 1	Description tests			
week 4	Intermediate bonus test for assignment I (= test 1) (no resit)			
Week 5	Math homework is available (closes a day before the test)			
week 7	Math test			
week 9-10	Assessment Individual assignment I (= test 1)			
Week 11-20, Block 2	Description tests			
week 18-20	Assessment Individual assignment I (= test 3)			
week 18-20	Theoretical exam (= test 4)			
week 19-20	Resit Assessment Individual assignment I and II (=test 1 + test 3) (bonus points are invalid!)			
week 19-20	Resit Math test			

5. Test 1: Individual assignment I

This test involves all the skills / knowledge acquired in the first block of the semester. Learning goals for both the field of Data Engineering and Data Scientist are mentioned in detail in the weekly program.

Data requirements

The requirements for the datasets to be used are:

- 1. Kaggle: https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
- 2. Your own scraping datasets of at least a 10 labelled reviews
- 3. Your own hand-written dataset of at least 3 labelled reviews

Model requirements

A least 3 different classifiers should be built. Each of these classifiers should be capable of determining whether an additional hand-written hotel review is a positive or a negative review.

Part of the assessment is classifying at least 1 review provided by the teachers in max 15 minutes, so maybe it is a good idea to store your classifier model on disk if it takes too long to run. Also, the predictions on the test set should be stored to gain performance during the assessment

The mandatory deliverables are

- 1. R scripts or Python scripts, where
 - o All the data is combined in one dataframe:
 - The Kaggle set
 - The webscraped set
 - Your own reviews
- 2. The total combined dataset is stored in a SQL database
 - o The data used for Model building is fetched by a parametrized stored procedure
- 3. At least 3 types of classifiers are used to do a sentiment analysis
- 4. An extensive report, meeting the following requirements
 - o In correct English (Dutch students are allowed to write the report in Dutch)
 - o Containing only relevant screenshots of codes

- o Clarify the process of
 - Data discovery
 - What datasets did you include?
 - Data preparation
 - How are the datasets stored?
 - What kind of processing was needed?
 - Model Building
 - Compare at least 3 different classifiers on overall accuracy on a test set
 - Overall performance
 - Possible fine tuning
- Communicate the results
- A checklist is added, see Chapter 7

And in addition

- o The report should be uploaded tot the VLO (no email attachments) at least 3 working days before the actual assessment date
 - No uploaded report → no assessment
- The report should meet the standards, i.e. there will be a checklist available for minimum requirements. If the report does not
 meet these minimum requirements → no assessment
- o Only After uploading a report which satisfies the minimum requirements the student will receive a time slot for the assessment

In our opinion these requirements cannot be met in less than 10 pages (including title page and index). This assignment is strictly individual.

6. Test 1 : Rubric Data Engineer and Data Scientist individual assignment I

Assessment Criteria – Data Engineer and Data	a Scientist individual assignment I	
Studentnumber:	Studentname:	Grading:

	Insufficient	0 - 25	Marginal	26 - 55	Good	55 - 75	Excellent	75 - 100
	points		points		points		points	
Data discovery	The student uses only the	provided	The student uses only th	e dataset	Additional to Marg	ginal:	Additional to Good:	
	dataset and has little unde	erstanding of	provided and has approp	riate insight	The student has sc	raped at least 100	The student has scra	aped more than
	its content		in its content. The stude	nt has	reviews from a hot	tel booking site and	100 reviews from m	ore than on hotel
			scraped only the minimu	m of 10	has turned the dat	aset into a data	booking site.	
			reviews from a hotel boo	king site and	frame. Moreover,	the script be used		
			added the minimum of it	s own written	for live scraping up	oon request.		
			reviews		The student is able	e to add written		
					reviews on request	t.		
Data preparation	The student can barely tu	rn the	The student can turn the	dataset into	Additional to Marg	ginal:	Additional to <i>Good</i> :	
	provided dataset into a us	sable dataset	a usable dataset of label	ed data and	The student can tu	ırn the <i>combined</i>	No embedded SQL is	s used in the script
	of labeled data. There is n	io live	perform some additiona	l cleaning if	set into a usable co	ombined dataset of	only stored procedu	res are used.
	connection with a SQL dat	tabase.	needed. There is a conne	ection with a	labeled data and p	erform some	More over some adv	anced cleaning
			SQL database, no param	etrized	additional cleaning	g if needed.	had to be done	
			queries		Moreover, parame	etrized querying is		
					part of the script			
Model planning	The student has no idea a	bout	Student only knows to de	escribe the	Additional to Marg	ginal:	Additional to <i>Good</i> :	
	different models to be use	ed for data	models involved in the se	cript. But has	The student can ex	xplain the ranked	Student has done so	me research on
	science		no ideas about the pro's	and the cons	accuracy of the 3 c	lifferent models. In	classifiers, and can u	ise arguments for
			of the 3 models		short, why is a mod	del better than	using a particular on	e beyond the
					another?		mandatory literature	e
Model building	Student cannot explain an	ny of	Student can explain only	the basic	Additional to Marg	ginal:	Additional to <i>Good</i> :	
	different statements in th	e code used	statements in the code b	ehind only	Student knows how	w to explain all the	Advanced tweaking	of the parameters
	to build a classifier. The da	ataset is not	one classifier. The datase	et is splitted	ins and outs of the	pieces of code	involved in the used	classifiers has
	splitted into a training and	d a test set	into a training and a test	set	involved. In particu	ular how to succeed	been used	
					in improving the o	verall accuracy.		
					More over the stud	dent can explain the		
					predictions			

Minimum requirement for a pass (i.e. grading ≥ 5.5): At least 3 out of 4 are *Good* and None of them is *Insufficient*

7. Test 1: Checklist Machine Learning Report

Title page
Table of contents (incl page numbering)
Summary/abstract
Introduction
Background
 Contains theory about the models
Methods
 Can contain multiple subsections
 Screenshots of code, only when relevant
Results
□ Contains relevant plots
Conclusion and/or recommendations
Reference list
☐ Choose a consistent reference style: APA or IEEE
Optional: preface, footnotes, appendices, list of symbols, glossary
Report is written in understandable and correct Dutch or English

Notes:

This checklist is used to check the completeness of the report, not whether the parts are accurate.

Only when your report is complete, you will be invited for the final assessment!

This checklist is derived from the 'Beoordelingsformulier Onderzoeksrapport research skills/stage'.

If you need advice on how to write a report: tips can be found via the course 'Research skills' and online via the internship- and graduation manuals. (Accessible via VLO or A-Z).

8. Test 4: Theoretical exam

The theoretical exam involves all theory and obtained skills for the module Data Engineer and Data Scientist. It includes also the theory of the Mathematics lessons.

Learni	ng objectives	Reproduction					
		Understanding Remembering		Analysing	Evaluating	Creating	
1.	Understand the mathematics involved in most of the data scientist algorithms	10%	10%				20 %
2.	Make motivated choices regarding the specific parameters within an algorithm		10%	10%			20 %
3.	Understand the outcomes of an algorithm used to analyse a dataset		10%	10%			20 %
4.	Make motivated choices regarding the use of several Data Scientist algorithms			10%	10%		20 %
5.	Advise on storage issues				10%		10 %
6.	Advise on a Data Engineering and Data Scientist stack					10%	10 %
Total		10 %	30%	30 %	20 %	10 %	100 %

Moreover

- All questions will be open questions, no multiple choice.
- Questions are posed in English, students are allowed to answer in Dutch
- No calculations need to be done, so no calculators are needed
- Learning objective 5-7 are tested with a case study

9. Weekly planning

Each lesson has an indication on the topic

- DE = Data Engineer, all learning goals are mandatory for the theoretical exam and some of them apply to the individual assignment
- DS = Data Scientist, all learning goals are mandatory for the theoretical exam and most of them apply to the individual assignment
- Workshop, handy hands-on practical for either the individual assignment or the project task

The course is supported by material on the E- learning of the HvA. Most important will be the folder:

Big Data semester/Documenten/03 DATA ENGINEER AND DATA SCIENTIST/02 DATA ENGINEER AND DATA SCIENTIST Weekly Material students where you will find additional slides, exercises, datasets, need to knows etc. Learning goals not covered by slides on DataCamp are marked with an asterix (*) and should be covered by additional slides.

Lesson	BLOCK 1		Learning goals
	Week 1	remarks	
1 lecture	Introduction on Big Data Cognitive Class https://cognitiveclass.ai/courses/ • Big Data 101	Create Cognitive Class account Subscribe to invitation mail from DataCamp Start Installing software, see list Appendix	 Gain insights on how to run better businesses and provide better services to customers by machine learning algorithms Understand to process big data on platforms that can handle the volume, velocity, and variety (3 V's) of Big Data Know the Pros and Cons of R and Python
2 workshop	First steps with a data analyst tool	Hands-on exercise: Rstudio Intro IDE Python tutorial	Get to use RStudio / Python IDE Get working directory Set working directory Packages / libraries R / Python version Making a project Running a script

3	First steps with R	Hands-on exercise:	Get to know the basic datatypes
workshop	DataCamp R		o Scalars
	 Introduction To R 	R Basic operations	 Vectors
			 Matrices
		Python Pandas	 Dataframes
	DataCamp Python	Dataframe exercise	o Lists
	 Intro to Python for Data 		o
	Science	Python Plot exercise	
			Know to explain
			Why do we need variables?
			Why do we need functions?
			 How to implement conditional flow: if then
			How to loop: for
			How to build a function
			 How to avoid looping with apply functions in R
4	Basic set operations		
Mathematics	Basic statistics		Know how to calculate and interpret
			Mean value
			 Five number summary
			 Standard deviation
			Cartesian product
Assignment I	Getting the Kaggle data	Kaggle dataset	
	Explore other useful websites		

	Week 2		
1 workshop	Different types of datasets DataCamp R Importing Data in R (Part 1), *.csv,*.xls,*,xlsx DataCamp Python Importing Data in Python (Part 1)	Hands-on exercise R: Cleaning data Python cleaning data	 Knowing How to import flat files or other formats How to write to a flat file How to make a connection with a local SQL database How to extract data from a database How to write data to a database
2 workshop	Manipulating data in R DataCamp R Data manipulation in R with dplyr DataCamp Python Panda Foundation	Hands on exercise R: dplyr Python: dfply	 Knowing How to recognize messy data How to deal with messy data How to combine data in different dataframes How to aggregate data in a dataframe
3 lecture/ workshop	Old skool SQL DataCamp R Intro to SQL for Data Science DataCamp Python Introduction to Database in Python	Query on a local MySQL database Python database exercise	 Know to explain Why do we need databases? Why do we need relational databases? What is are downsides of relational databases? How to query a database with SQL Where Aggregation, group by Inner Join, Left join, Right join, Full Outer join Union / Minus (Except) * Parameterized queries * Why do we need parameterized queries? * Why do we need stored procedures? * How to connect to a local database? * See 02 SQL1819.ppt

4	Probability	Knowing how to calculate			
Mathematics		 Conditional probability Independency of probabilities 			
Assignment	First insight in data (quality) by • Storing it in a SQL database • SQL queries				

	Week 3		
1	Introduction Machine Learning	Demo	Knowing the answers for
lecture		Women	What is Unsupervised learning?
	DataCamp R	having an	What is Supervised learning?
	 Introduction to Machine learning 	affair	o What is Regression?
			What is Classification?
	DataCamp Python		Which different types are around?
	 Supervised learning with scikit-learn 		What is a Confusion matrix?
			Calculate accuracy
			Calculate TP ratio/ FP ratio
			Calculate TN ratio/ FN ratio
			What is Cross Validation
			 How to prevent Overfitting
			What is meant by a ROC curve
			When do we need Unsupervised learning?
2	Classification	Hands on	Identifying different classification problems
workshop		exercise	Ka suda n sa dun danstan dan
	DataCamp R	Random	Knowing and understanding
	 Supervised learning with R 	Forest	The pros and cons ofNaïve Bayes
			Decision tree
	DataCamp Python		 Random Forest
	Linear classifiers in Python		 K Nearest NeighBour

			 Logistic regression Support Vector Machines The fundamentals of the algorithms involved The influence of the parameters of the algorithms involved
3 workshop	Correlation and Regression DataCamp R Correlation and Regression DataCamp Python https://pythonspot.com/linear-regression/	Hands on exercise Regression	 Knowing How to calculate correlation The difference between correlation and causation How to interpret correlation How to interpret the linear model The Regression output terminology, among others RMSE How to interpret the regression coefficients How to interpret R squared
4 Mathematics	Regression		Understanding how to calculate • Line through points • Regression line • Spearman rank correlation
Assignment	Store it in a SQL databaseTrying to figure out whether it suits your needs		

	Week 4		
1	Intermediate bonus test		Note: For the bonus test there are no resits
Bonus test			
2 workshop	Classification DataCamp R • Support vector machines DataCamp Python Linear classifiers in Python	Hands on exercise Logistic Regression and SVM	Identifying different classification problems Knowing and understanding The pros and cons of Naïve Bayes Logistic regression Decision tree Random Forest Support Vector Machines The fundamentals of the algorithms involved The influence of the parameters of the algorithms involved
3 lecture	Text mining / Sentiment analysis DataCamp R • A bag of words DataCamp Python • Natural Language Processing Fundamentals in Python	Demo	 Knowing How to Tokenize N- gram Why mostly a Corpus is built How to clean a Corpus What is meant with a Document term matrix or Term document matrix What is meant with sparsity in this context The goal of TF_IDF How to calculate the TF_IDF in a certain case The pros and cons of Naïve Bayes
4 Mathematics	Distance & similarity		Knowing how to calculate different distance measures Euclidean distance Manhattan distance Cosine & Jaccard similarity Knowing Pros and cons of different distance measures

Assignment	Cleaning the data	
	 Making training sets and test sets 	
	First try / first classifier	

	Week 5		
1	Sentiment Analysis	Hands on	
workshop		exercise	
2 lecture	Unsupervised learning	Demo	Knowing and understanding
			How to estimate the number of clusters
	DataCamp R		How to evaluate a cluster
	Cluster analysis in R		 The difference between hierarchical clustering and k- means clustering
	DataCamp Python		Why PCA is sometimes needed
	Unsupervised learning in Python		How to evaluate the PCA features
3	Webscraping	Hands on	Understanding Application Programming Interface
workshop	. research ag	exercise	Using API clients
	DataCamp R		
	Working with Web Data in R		Knowing
	G .		The difference between a GET and POST request *
	DataCamp Python		How to manipulate JSON
	 Importing Data in Python (Part 2) 		How to manipulate XML
			How to get around rate limiting
			* http://toolsqa.com/postman-tutorial/
4	Basics of Linear Algebra		Knowing how to
Mathematics			multiply a matrix with a matrix
			multiply a matrix with a vector
			eigenvalue and eigenvector
Assignment	Scraping the web, building your		
	own dataset		
	Creating basic plots		
	Interpreting confusion matrices		
	Set up report		

	Week 6		
1	Recommender	Hands on	Knowing the answers to questions like
R • http://rstudio-pubs-static.s3.amazonaws.com/248530_1 8970dc8eb4046a6b4f2fba987fe2a50 .html		exercise	 What is collaborative filtering? * User based Item based What is a content-based recommender? * What are the pro's and cons of the different kind of recommenders? *
	DataCamp Python Tutorial: Recommender Systems in Python Beginner		* 01 Recommendation 1819.pptx
23	Teachers are available for help with the		
consultation	individual assignment		
4	Homework		No lecture. Finish homework in MapleTA, before the test.
Mathematics			
Assignment	 Pushing the classifiers to obtain higher accuracy Finishing Report 		

	Week 7	
1 2 3	Teachers are available for help with the individual	
consultation	assignment	
28	MapleTA test (requirement: homework is complete)	
Mathematics		
	Week 8-10	
	Assessment of Individual assignment I (= test 1)	

10. Checklist Report for the individual assignments I and II

Title page
Table of contents (incl page numbering)
Summary/abstract
Introduction
Background
☐ Contains theory about the models
Methods
□ Can contain multiple subsections
□ Screenshots of code, only when relevant
Results
□ Contain relevant plots
Conclusion and/or recommendations
Reference list
 Choose a consistent reference style: APA or IEEE
Optional: preface, footnotes, appendices, list of symbols, glossary)
Report is written in understandable and correct Dutch or English

Notes:

This checklist is used to check the completeness of the report, not whether the parts are accurate.

Only when your report is complete, you will be invited for the final assessment!

This checklist is derived from the 'Beoordelingsformulier Onderzoeksrapport research skills/stage'.

If you need advice on how to write a report: tips can be found via the course 'Reseach skills' and online via the internship- and graduation manuals. (Accessible via VLO or A-Z).

11. List of needed Software (not at all trying to be complete ...)

Name		Type software	Mandatory	requires	url	remark
1.	JAVA version 1.8.0	JRE	YES		https://www.java.com/nl/download/	Java Virtual
						Machine
2.	MySQL	DataBase	YES	Oracle	https://dev.mysql.com/downloads/	Community
				account		download. On
						this page you can
						also find
						connectors and
						the workbench
3.	MySQL shell	shell	YES			
Either		MySQL	optional		https://dev.mysql.com/downloads/	Sometimes it
		workbench				crashes
Or		HeidiSQL	optional		https://www.heidisql.com/	Nice light
						weighted
						frontend
4.	R3.3		YES, for R	For most	https://www.freestatistics.org/cran/	RStudio can R
			class	packages		different R
						version
5.	R3.4		YES, for R	For some	https://www.freestatistics.org/cran/	
			class	packages		
6.	RStudio	IDE for R	YES, for R class		https://www.rstudio.com/products/rstudio/download/	
7.	Anaconda (Python	Data	optional		https://www.anaconda.com/download/	Jupyter
	3)	science				notebooks
		platform			https://stackoverflow.com/questions/34097988/how-do-i-install-	
					keras-and-theano-in-anaconda-python-on-windows	
8.	Python IDE	IDE for	YES, for		Check out : https://www.datacamp.com/community/tutorials/data-	
		Python	Pyhton class		science-python-ide	

NO SQL Databases				
10. MongoDB	Database	YES	Check out :	
			https://www.mongodb.com/download-center#community	
11. Studio3T	MongoDB	YES	Check out:	
	shell		https://studio3t.com/	