John von Neumann (1903-1957)
· Child gradigy (by 12, finished Povel's function theory)
· Most gave a applied contributions in math than any other mathematician
· Math: functional analysistagevator algebras, ergodic group theory, game theory
* Economics
* Computer science
• Physics Cquantum mechanicss
History of U.M.'s work in functional analysis
· In 1920's, Heisenburg, Jurdan were working on a theory of infinite matrices Community mechanics"s
" In 1930's, U.N. formalized and grently expanded this thery by introducing Hilbert spaces, operators on them,
Spectral theory, and studying algebras of these operators Cwith Murray: On Rings of Decrators I-117.
He introduced "Oirac-um Neumann arrows of Quentum Mechanics."
In our class, we work over G. So. Hilbert seaces have the inner-product G-valued Coo it satisfies < x, y = Gyins
and <c,x,coy)=c,co <x,y).<="" td=""></c,x,coy)=c,co>
Example: • On 6", <c*,,>0, C4,, y=07 = {x:yī.</c*,,>
* On MnCCD. <a.b) =="" c*bad="" cad*)="" cad+)="" cad+;="" cad+<="" co+d;="" en="" ht="En" t="En" td="" to=""></a.b)>
* 12CM) = {C*+Dream: xnec, Eixni2 = 60}, <c*n), cyn)="{xnyn.</td"></c*n),>
· CZCX, W) = {P:x-06: Sifizducco7 wi CX, W) mensure space, <1.g7 = Städu.

Recult: A	Hilbert	Spuce	Н	admits	048'5	en	ONV	15	CeiDier &H	э ((e	are	outhousemal :	ile:ll=0,	(e:,e;)=0	١٤ :	į±į	
***************************************)						•	
										5		Sarri	(T) = U					

In this case, if xell, x= Eigs cie: w ci= <x,e; > Cthe Fourier coeff. of xo.

We will write mainly with separable Hilbert spaces CIII at most countables.

Example: H= L2CCO,13, m). Cet enco= e 27: mx Unez. Claim: lendre & from an ONB for H.

Proof. It is easy to check that Hentlel and Conger = O Where Cie. Sieznih veznie de o Where.

,, A

Why is spanfeld dense in 12?

accepts in season is season in CEC,0333 and across in CEC,0333 and constitution is season in CEC,03354 across in CEC,03554 acr

Stone-Weierstrass Thmi

IL ACCCCOIDS Satisfies:

CIDA is a control 6-algebra

CZDA is closed to conjugates: if feA, then feA

CODA segmentes the enints: the yellowill, IfEA o footlyp.

Then A" " = CC(0,13).

5=, Por one A H follows A H fo

Remarks: Here is only one Cup to iso. I Hilbert space in each dimension dim H=1II, if Co:316I is an ONB for H.

So. C2CCOHJ, MD= 2°CNJ.