

Politecnico di Milano

A.A 2016-2017

Project Planning Document

Version 1.0

PowerEnjoy

Instructor: Prof. Di Nitto

Authors: Amico Simone Chianella Claudia Beatrice Giovanakis Yannick

CONTENTS

1	Intr	oductio	on	4
	1.1	Purpo	ose and scope	4
	1.2		itions, acronyms, abbreviations	4
	1.3		ce documents	4
2	Size	, effort	and cost estimation	5
	2.1	Size es	stimation	5
		2.1.1	Inputs	5
		2.1.2	Output	5
		2.1.3	Inquiries	6
		2.1.4	Internal Logic Files	6
		2.1.5	External Logic Files	6
		2.1.6	Total number of UFPs	6
	2.2	Effort	and cost estimantion	6
		2.2.1	COCOMO II	6
		2.2.2	Scale factors estimation	7
		2.2.3	Cost drivers effort multipliers estimation	7
		2.2.4	Final effort estimation	9
3	Sch	edule a	and resource allocation	10
	3.1	Sched	ule	11
	3.2			11
4	Proi	ect risk	s 1	14
	,	4.0.1		14
		4.0.2		 14
		4.0.3		14
		4.0.4	0	15
		4.0.5		15
		4.0.6		15

5	App	endices	16
	5.1	References	16
	5.2	Effort Spent	16

1. Introduction

1.1 Purpose and scope

This document is the Project Palnning Document form the PowerEnJoy paltform application. The mai purpose of this document is to provide an estiomation of the resource needed for the development of the platform. This document is intended for software engineers, developers and the management team assigned to the project.

1.2 Definitions, acronyms, abbreviations

- RASD: Requirements Analysis Specification Document
- DD: Design Document
- ITPD: Integration Test Plan Document
- PP: Project Planning Document
- CI: Code Inspection
- LOC: Lines Of Codes
- FP: Function Point (UFP = Unadjusted FP)
- COCOMO: Constructive Cost Model

1.3 Referce documents

- Project description: Assignments AA 2016-2017.pdf
- RASD
- DD
- ITPD

2. Size, effort and cost estimation

2.1 Size estimation

The final size of the project will be estimated in the LOC measure throught the use of Function Points. The following table show the weight assigned to each function points:

Function Types	Weight		
	Simple	Medium	Complex
Inputs	3	4	6
Outputs	4	5	7
Inquiries	3	4	6
Internal Logic Fiels (ILF)	7	10	15
External Logic Fiels (ELF)	5	7	10

2.1.1 Inputs

Element	Weight	FP
Registration	Simple	3
Log-in	Simple	3
Personal Info	Simple	3
Sign-up	Simple	3
Search Available Car	Medium	4
Select Car	Medium	4
Check Payment History	Simple	3
Unlock Request	Medium	4
Total		

2.1.2 Output

Element	Weight	FP
Notification to costumer	Complex	7
Total		

2.1.3 Inquiries

Element	Weight	FP
Get user position	Complex	6
Select Car	Medium	4
Total		

2.1.4 Internal Logic Files

Element	Weight	FP
User information	Simple	7
Notifications	Simple	7
Ride	Medium	10
Total		

2.1.5 External Logic Files

Element	Weight	FP
Map information	Complex	10
Total		

2.1.6 Total number of UFPs

Function group	Points
Inputs	30
Outputs	7
Inquiries	10
Internal logic files	24
External logic files	10
Total	81 UFP

2.2 Effort and cost estimantion

2.2.1 COCOMO II

The COCOMO II model is an evolution from the COCOMO 81 and is used to express **effort** as PERSON-MONTHS.

In particular it uses the following formula to estimate the total **effort**:

$$Effort = A \times SIZE^{E} \times \prod_{i} EM_{i}$$
 (1)

where:

- *A* is given statistically and is equal to 2.94
- *SIZE* is the size of the software expressed in KLOC
- *E* is an aggregation of five scale factors (SF)
- *EM* are the *effort multipliers* of the *cost drivers*

In the follwing sections we will calculate all the parameters mentioned above, in order to generate the final result of the formula.

2.2.2 Scale factors estimation

This section provides the estimation for the scale factors.

Name	Factor	Value
Precedentedness	Nominal	3.72
Development flexibility	High	2.03
Risk resolution	High	2.83
Team cohesion	Very High	1.10
Process maturity	High	3.12
Total	$E = 0.91 + 0.01 \times \sum_{i} SF_{i}$	1.038

Table 1: Scale Drivers estimations

2.2.3 Cost drivers effort multipliers estimation

This section provides the estimation for the effort multipliers of the cost drivers.

C_i	Name	Factor	Value
RELY	Required Software Reliability	Nominal	1.00
DATA	Data base size	Nominal	1.00
CPLX	Product Complexity	Nominal	1.00
RUSE	Required Reusability	High	1.07
DOCU	Documentation match to life-cycle needs	High	1.11
TIME	Execution Time Constraint	Nominal	1.00
STOR	Main Storage Constraint	Nominal	1.00
PVOL	Platform Volatility	Low	0.87
ACAP	Analyst Capability	Nominal	1.00
PCAP	Programmer Capability	Very High	0.76
AEXP	Application Experience	Nominal	1.00
PEXP	Platform Experience	Low	1.09
LTEX	Language and Tool Experience	Nominal	1.00
PCON	Personnel Continuity	Very high	0.81
TOOL	Usage of Software Tools	High	0.90
SITE	Multisite Development	Nominal	1.00
SCED	Required Development Schedule	Nominal	1.00
Total	$1 EM = \prod_i C_i$		0.624

Table 2: Effort multipliers estimation

2.2.4 Final effort estimation

Now that we have all the parameters of the formula, we can calculate the final result:

- A = 2.94
- $SIZE = 81UFP \times 53 = 4.293KLOC$ (53 is the JAVA multiplier)
- $\prod_{i} EM_{i} = 0.624$
- *E* = 1.038

Effort =
$$A \times SIZE^E \times \prod_i EM_i = 8.32PM$$
 (2)

So the effort to develop the project is 8.32 person-months. We are 3 people, so this means less than 3 months development.

3. SCHEDULE AND RESOURCE ALLOCATION

The fulfillment of the project requires a list of tasks to be completed in the order they are presented here, it is important to note, however that this list of tasks is intended to be used as a general guideline and all the tasks may receive updates along the way. Small changes can be made to the order, especially the last two and the first two steps that will be re-iterated over and over as new requirements emerge. So, the first version of each task will have strict deadlines, so that the following task can start, while the re-iterations will have specific deadlines that will be specified along the process.

Here is the a table that summirises the main tasks to be completed:

Order	Task
1	RASD
2	DD
3	ITPD
4	PP
5	CI

Here we explain what each task is for:

- 1. Prepare a document that specifies the goals of the system, the assumptions that had been made, and the requirements of the *system-to-be*, namely the RASD.
- 2. Prepare a document that specifies the design and architecture of the *system-to-be*, namely the DD.
- 3. Prepare a document that specifies the plan to follow in order to perform the integration testing, namely the ITPD.
- 4. Prepare a document that specifies the plan of the project, namely the PP.
- 5. Perform the Code inspection from the material that professors gave us.

3.1 Schedule

In this subsection we present a schedule that must followed, however, as always, small changes can always be made.

The following table summarizing the main deadlines.

Order	Start date	Task	Deadline
1	20-10-2016	RASD	13-11-2016
2	16-11-2015	DD	11-12-2016
3	18-12-2016	ITPD	15-01-2017
4	27-12-2016	PP	22-01-2017
5	16-01-2017	CI	05-02-2017

3.2 Resource allocation

In this section we specify the resource allocation, that is, for each task we specify to whom its subtasks are allocated. The timetables have already been defined in section 3.1. We choose to represent this data by means of tables. As far as the documents are concerned, we specify the resources for each section of the document.

RASD

Subtask	Resource
	Simone
Introduction	Claudia
	Yannick
	Simone
Overall Description	Claudia
	Yannick
	Simone
Specific Requirements	Claudia
	Yannick
	Simone
Appendices	Claudia
	Yannick

DD

Subtask	Resource
	Simone
Introduction	Claudia
	Yannick
Architectural Design	Simone
Architectural Design	Yannick
Algorithm Docion	Simone
Algorithm Design	Claudia
Han Interface Design	Claudia
User Interface Design	Yannick
	Simone
Requirements Traceability	Claudia
	Yannick
	Simone
Appendices	Claudia
	Yannick

ITPD

Subtask	Resource
	Simone
Introduction	Claudia
	Yannick
	Simone
Integration Strategy	Claudia
	Yannick
Individual Steps and Test Description	Yannick
Tool and Test Equipment Required	Claudia
Program Stubs and Data Test Required	Simone
	Simone
Appendices	Claudia
	Yannick

PP

Subtask	Resource
	Simone
Introduction	Claudia
	Yannick
Size, Effort and Cost Estimation	Simone
Size, Enort and Cost Estimation	Claudia
	Simone
Schedule and Resourse Allocation	Claudia
	Yannick
Project Risks	Yannick
	Simone
Appendices	Claudia
	Yannick

CI

Subtask	Resource
Introduction	Claudia
Functional role of classes	Simone
Turicuonal fole of classes	Yannick
	Simone
List of issues	Claudia
	Yannick
	Simone
Appendices	Claudia
	Yannick

4. Project risk

This section contains a list of potential risck that might happen or not.

4.0.1 Requirements

1. Requirements changes

Risk: Medium

Solution: adapt the project to include the new requirements

2. Requirements are unclear

Risk: Medium

Solution: Plan a meating with the client

3. Developer misunderstand requirements

Risk:low

Solution: schedule more meating with the clients

4.0.2 Architecture

1. The architecture is incapable of supporting change requests

Risk: Low

Solution: adapt architecture design

4.0.3 Design

1. The design is not possible and overly expensive

Risk: medium

Solution: adapt design to fit budget

4.0.4 Forecasts

1. Cost forecasts are inaccurate

Risk: Medium

Solution: modify the architecture in order to fit the budget

2. Software development require more time

Risk: low

Solution: Plan for more releases with a set of limited functionalities

4.0.5 External

1. Legal change

Risk: low

Solution: adapt the project to the new regulations

4.0.6 User

1. Build a product that noone wants

Risk: Medium

Solution: adapt the product to the market demand

5. APPENDICES

5.1 References

The following tools where used in the creation of this document:

• *TexMaker 4.5* as Editor

5.2 Effort Spent

- Simone Amico 9h
- Chianella Claudia Beatrice 9h
- Giovanakis Yannick 9h