Design and Analysis of Algorithms

3. Maximum Flow

Mingyu XIAO

School of Computer Science and Engineering University of Electronic Science and Technology of China

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

Two very rich algorithmic problems.

Cornerstone problems in combinatorial optimization.

Beautiful mathematical duality.

Nontrivial applications / reductions.

Data mining. Network reliability.

Open-pit mining. Distributed computing.

Project selection. Egalitarian stable matching.

Airline scheduling. Security of statistical data.

Bipartite matching. Network intrusion detection.

Baseball elimination. Multi-camera scene

Image segmentation. reconstruction.

Network connectivity. Many many more ...

Minimum Cut Problem

Flow network.

Abstraction for material flowing through the edges.

G = (V, E) = directed graph, no parallel edges. Two distinguished nodes: s = source, t = sink. c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with s $\in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is:

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Cuts

Def. An s-t cut is a partition (A, B) of V with s $\in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is:

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity] For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Flows

Def. An s-t flow is a function that satisfies:

For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity] For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation
$$\rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = $30 \Rightarrow \text{Flow value} \leq 30$

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B)$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Cut capacity = $28 \Rightarrow \text{Flow value} \leq 28$

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge $e \in E$. Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P. Repeat until you get stuck.

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge $e \in E$. Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P. Repeat until you get stuck.

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge $e \in E$. Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck. locally optimality \Rightarrow global optimality?

Residual Graph

Original edge: $e = (u, v) \in E$. Flow f(e), capacity c(e).

Residual edge.

"Undo" flow sent. e = (u, v) and $e^{R} = (v, u)$. Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual graph: $G_f = (V, E_f)$.

Residual edges with positive residual capacity. $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

$$E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$$

Ford-Fulkerson Algorithm

Augmenting Path Algorithm

forward edge reverse edge

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0
   G<sub>f</sub> ← residual graph

while (there exists augmenting path P) {
   f ← Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

- Pf. We prove both simultaneously by showing:
 - (i) There exists a cut (A, B) such that $v(\bar{f}) = cap(A, B)$.
 - (ii) Flow f is a max flow.
 - (iii) There is no augmenting path relative to f.
- (i) \Rightarrow (ii) This was the corollary to weak duality lemma.
- (ii) \Rightarrow (iii) We show contrapositive. Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii)
$$\Rightarrow$$
 (i)

Let f be a flow with no augmenting paths. Let A be set of vertices reachable from s in residual graph.

By definition of A, $s \in A$. By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B)$$

original network

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le mC$ iterations.

Pf. Each augmentation increase value by at least 1. •

Corollary. If C = 1, Ford-Fulkerson runs in $O(m^2)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. •

Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

Some choices lead to exponential algorithms.

Clever choices lead to polynomial algorithms.

If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that: Can find augmenting paths efficiently. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

Max bottleneck capacity.

Sufficiently large bottleneck capacity.

Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

Don't worry about finding exact highest bottleneck path.

Maintain scaling parameter Δ .

Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
    \Delta \leftarrow smallest power of 2 greater than or equal to
C
    G_f \leftarrow residual graph
    while (\Delta \ge 1) {
        G_f(\Delta) \leftarrow \Delta-residual graph
        while (there exists augmenting path P in
G_f(\Delta)) {
            f \leftarrow augment(f, c, P)
            update G_f(\Delta)
        \Delta \leftarrow \Delta / 2
    return f
```

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.

Upon termination of Δ = 1 phase, there are no augmenting paths. \blacksquare

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.

Pf. Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 each iteration.

Lemma 2. The inner while loop repeats at most 2m times.

Pf. In $G_f(\Delta)$, there are at most m edge-disjoint path from s to t, the capacity of each of which is less than 2C. Then the maximum flow in $G_f(\Delta)$ is at most 2mC. Each iteration increase the flow by at least C.

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Multiflow and Multicut

Questions:

- If there are more than two terminals in the graph, is value of the max flow equal to the value of the min cut?
- 2. How about the case that there are two pairs of terminals (s and t)?
- 3. How to decompose a flow?