問3. 入力記号の有限集合 Σ = $\{0,1\}$ とする. また、NFA M_3 = (Q,Σ,δ,q_0,F) は次の図示表現で与えられるとする. 非決定性有限オートマトンを、部分集合構成法を用いて決定性有限オートマトンに返還せよ. 解答にあたっては、最終的な決定性有限オートマトンのみではなく、解答に至る過程を理解できるように記述すること.

 $Q = \{ \phi, \{s_0\}, \{s_1\}, \{s_2\}, \{s_0, s_1\}, \{s_0, s_2\}, \{s_1, s_2\}, \{s_0, s_1, s_2\} \}$ $F = \{ \{s_2\}, \{s_0, s_2\}, \{s_1, s_2\}, \{s_0, s_1, s_2\} \}$ $\delta = (\phi, 0) = \{\phi\}, (\phi, 1) = \{\phi\}$ $(s_0, 0) = \{s_0\}, (s_0, 1) = \{s_0\}$ $(s_1, 0) = \{\phi\}, (s_1, 1) = \{s_2\}$ $(s_2, 0) = \{s_2\}, (s_2, 1) = \{\phi\}$ $((s_0, s_1), 0) = \{s_0\}, ((s_0, s_1), 1) = \{s_0, s_1, s_2\}$ $((s_0, s_2), 0) = \{s_0, s_2\}, ((s_0, s_2), 1) = \{s_0, s_1\}$

 $((s_1, s_2), 0) = \{s_2\}, ((s_1, s_2), 1) = \{s_2\}$ $((s_0, s_1, s_2), 0) = \{s_0, s_2\}, ((s_0, s_1, s_2), 1) = \{s_0, s_1, s_2\}$

NFA M

	0	1
\rightarrow_{S_0}	$\{s_0\}$	$\{s_0, s_1\}$
S ₁	$\{ \phi \}$	$\{s_2\}$
*S2	$\{s_2\}$	$\{ \phi \}$

DFA M

	0	1
{ \phi }	$\{ \phi \}$	$\{ \phi \}$
\rightarrow {S ₀ }	$\{s_0\}$	$\{s_0, s_1\}$
$\{s_1\}$	$\{ \phi \}$	$\{s_2\}$
$\{s_2\}$	$\{s_2\}$	$\{ \phi \}$
{s ₀ , s ₁ }	$\{s_0\}$	$\{s_0, s_1, s_2\}$
$\{s_0, s_2\}$	$\{s_0, s_2\}$	$\{s_0, s_1\}$
$\{s_1, s_2, \}$	$\{s_2\}$	$\{s_2\}$
$\{s_0, s_1, s_2\}$	$\{s_0, s_2\}$	$\{s_0, s_1, s_2\}$

