# Конечные автоматы

1

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

# Программирование ДКА и ДМПА

Чтобы явно реализовать в программе ДКА или ДМПА, достаточно:

- 1) описать в программе структуры данных, описывающих все компоненты автомата;
- 2) реализовать в коде управляющее устройство автомата;
- 3) реализовать код для выполнения внедрённых действий.

3

Сначала рассмотрим способы реализации в программе на ЯВУ ДКА.

• Обозначим количество состояний автомата

$$N = \#Q$$
.

Тогда состояния будут иметь номера от о до N-1 (или, если это удобно, от 1 до N).

• Количество элементов алфавита обозначим

$$M = \#\Sigma$$
.

• Количество элементов множества заключительных состояний обозначим

$$K = \#F$$
.

4

Пример: ДКА  $M = (Q, \Sigma, \delta, q_0, F)$ :

- $Q = \{q_0, q_1, q_2\};$
- $\Sigma = \{a-z, A-Z, \_, o-9, ,, \sqcup \};$
- $\delta = \{((q_0, \sqcup), (q_0, \langle \rangle)), ((q_0, a-zA-Z_{-}), (q_1, \langle A_1 \rangle)), ((q_1, \sqcup), (q_2, \langle A_3 \rangle)), ((q_1, a-zA-Z_{-}), (q_1, \langle A_2 \rangle)), ((q_1, o-9), (q_1, \langle A_2 \rangle)), ((q_1, ,), (q_0, \langle A_3 \rangle)), ((q_2, \sqcup), (q_2, \langle \rangle)), ((q_2, ,), (q_0, \langle \rangle))\};$
- $q_0 = q_0$ ;
- $F = \{q_1, q_2\}.$

Здесь N = 3, M - зависит от реализации, K = 2.

5

#### Как описать множество состояний Q?

• Если состояния именованные, то они описываются в массиве строк, списке строк или любой другой подобной структуре, например:

```
const N = 3;
const states: array [0..N-1] of string = ('qo', 'q1', 'q2');
const int N = 3;
char states[N][3] = {"qo", "q1", "q2"};
string[] states = {"qo", "q1", "q2"};
```

6

### Как описать множество состояний Q?

• Если состояния нумерованные, то можно их специально не описывать, а просто положить  $q_0 = 0$ ,  $q_1 = 1$ ,  $q_2 = 2$ :

const N = 3;

const int N = 3;

Как описать алфавит Σ?

• Это может быть просто массив символов: const M = 68; const alphabet: array [1..M] of char = ('\_', 'a', 'b', ..., 'z', 'A', 'B', ..., 'Z', 'o', '1', ..., '9', ',', #32, #9, #10, #13); const int M = 68; char alphabet[M] = {'\_', 'a', 'b', ..., 'z', 'A', 'B', ..., 'Z', 'o', '1', ..., '9', ',', '\t', '\t', '\r', '\n'}; char[] alphabet = {'\_', 'a', 'b', ..., 'z', 'A', 'B', ..., 'Z', 'o', '1', ..., '9', ',', '\t', '\t', '\r', '\n'};

8

#### Как описать алфавит Σ?

• Это может быть массив строк:

```
const M = 4;
const alphabet: array [1..M] of string = ('_ab...zAB...Z',
'0123456789', ',', #32#9#10#13);
const int M = 4;
char alphabet[M][54] = \{"_ab...zAB...Z",
"0123456789", ",", "\t\r\n"};
string[] alphabet = {"_ab...zAB...Z", "0123456789", ",",
" t\r\n"};
```

### Как описать алфавит Σ?

• Это может быть массив множеств символов: const M = 4; const alphabet: array [1..M] of set of char = (['\_', 'a'.. 'z', 'A'.. 'Z'], ['o'.. '9'], [','], [#32, #9, #10, #13]); const int M = 4; set<char> alphabet[M] = ... HashSet<char>[] alphabet = ...

• • •

10

#### Как описать алфавит Σ?

• Можно использовать диапазоны:

```
const M = 6;
const alphabet: array [1..M] of string = (' ', 'a-z', 'A-Z',
'0-9', ',', #32#9#10#13);
const int M = 6;
char alphabet[M][5] = {"_", "a-z", "A-Z", "o-9", ",".
" t\r\n"};
string[] alphabet = {"_", "a-z", "A-Z", "o-9", ",",
" t\r\n"};
```

11

## Как описать функцию переходов δ?

• Это может быть матрица строк размером  $N \times M$ :

**)**;

|          | a-z, A-Z, _                                                          | 0-9                        | ,                          | ы                            |
|----------|----------------------------------------------------------------------|----------------------------|----------------------------|------------------------------|
| $q_{o}$  | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                            |                            | $q_o$                        |
| $q_{_1}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_1, \langle A_2 \rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3^{} \rangle$ |
| $q_2$    |                                                                      |                            | $q_{o}$                    | ${f q_2}$                    |

12

## Как описать функцию переходов δ?

• Это может быть матрица строк размером  $N \times M$ :

|                  | a-z, A-Z, _                                                                            | 0-9                                                                  | ,                          | Ш                            |
|------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|------------------------------|
| $q_{o}$          | $q_{\scriptscriptstyle 1}$ , $\langle A_{\scriptscriptstyle 1} \rangle$                |                                                                      |                            | $q_{o}$                      |
| $\mathbf{q_{i}}$ | $\mathrm{q}_{\scriptscriptstyle 1}, \langle \mathrm{A}_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3^{} \rangle$ |
| ${ m q_2}$       |                                                                                        |                                                                      | $q_{o}$                    | ${f q}_2$                    |

13

#### Как описать функцию переходов δ?

• Это может быть матрица строк размером  $N \times M$ :

|                                     | a-z, A-Z, _                                                          | 0-9                                                                  | ,                          | Ш                            |
|-------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|------------------------------|
| $q_{o}$                             | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                      |                            | $q_o$                        |
| $\mathbf{q_{\scriptscriptstyle 1}}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | $q_{2},\langle A_{3}\rangle$ |
| ${ m q_2}$                          |                                                                      |                                                                      | $q_{o}$                    | $q_2$                        |



## Как описать функцию переходов δ?

• Это может быть матрица целых чисел размером  $N \times M$ :



## Как описать функцию переходов δ?

• Это может быть матрица целых чисел размером  $N \times M$ :



## Как описать функцию переходов δ?

• Это может быть матрица целых чисел размером  $N \times M$ :

17

Как описать функцию переходов δ?

• Это может быть массив дуг графа:

```
type Edge = record
     from: string/integer;
     elem: integer/char/string/set of char;
     to: string/integer;
end;
const delta: array [1..Z] of Edge = ...;
```

18

Как описать функцию переходов δ?

```
• Это может быть массив дуг графа:
struct Edge {
      char[L1]/integer from;
     integer/char/char[L2]/set<char> elem;
      char[L1]/integer to;
};
Edge delta[Z] = ...;
```



Как описать функцию переходов δ?

```
• Это может быть массив дуг графа:
struct Edge {
      public string/integer from;
      public integer/char/string/HashSet<char> elem;
      public string/integer to;
};
Edge[] delta = ...;
```



## Дуги графа:

$$(q_0, \sqcup, q_0),$$
  
 $(q_0, a-zA-Z_{-}, q_1),$   
 $(q_1, \sqcup, q_2),$   
 $(q_1, a-zA-Z_{-}, q_1),$   
 $(q_1, 0-9, q_1),$   
 $(q_1, ,, q_0),$   
 $(q_2, \sqcup, q_2),$   
 $(q_2, ,, q_0)$ 





#### Как описать начальное состояние $q_0$ ?

• Это может быть строка:

```
const qo = 'qo';
char qo[3] = "qo";
string qo = "qo";
```

• Это может быть целое число:

```
const qo = 0;
int qo = 0;
```



Как описать множество заключительных состояний F?

• Если состояния именованные, то используем массив строк, список строк и т.п.:

```
const K = 2;
const final: array [1..K] of string = ('q1', 'q2');
const int K = 3;
char final[K][3] = {"q1", "q2"};
string[] final = {"q1", "q2"};
```



Как описать множество заключительных состояний F?

• Если состояния нумерованные, то используем массив (список и т.п.) целых чисел:

```
const K = 2;
const final: array [1..K] of integer = (1, 2);
const int K = 2;
int final[K] = {1, 2};
int[] final = {1, 2};
```

24

## Сокращённый вариант (без множества F).

 Если в функцию переходов будет добавлен маркер конца входной цепочки ⊥, то его также нужно добавить в алфавит. Для его представления можно использовать любой непечатный символ (символ с кодом менее 32), не входящий в исходный алфавит языка.

Примечание. Маркер конца цепочки нужен в любом случае. Удобно брать символ с кодом о. В языке C/C++ такой символ уже имеется в конце каждой строки, как и в языке Pascal для типа PChar. В языке C# нужно его добавить к строке вручную. Либо эмулировать появление этого символа, когда закончилась входная строка или файл.



Сокращённый вариант (без множества F).

• Получим следующий алфавит:

```
const M = ...;
const alphabet: array [1..M] of char = (..., #0);
или
const alphabet: array [1..M] of string = (..., #0);
или
```

const alphabet: array [1..M] of set of char = (..., [#o]);



```
• Получим следующий алфавит:
const int M = ...;
char alphabet[M] = \{..., '\o'\};
или
char alphabet[M][...] = \{..., "\setminus o"\};
или
char end = '\o';
set<char> alphabet[M] = {..., set<char>(&end,
&end+1)}; // проще alphabet[M-1].insert('\o');
```

27

```
• Получим следующий алфавит:
const int M = ...;
char[] alphabet = \{..., '\circ'\};
ИЛИ
string[] alphabet = \{..., "\setminus o"\};
или
HashSet<char>[] alphabet = {..., new HashSet<char>
(\text{new char}[] \{ ' \circ ' \});
```

28

Сокращённый вариант (без множества F).

• Получим следующую функцию переходов:

**)**;

|           | a-z, A-Z, _                                                          | 0-9                                                                | ,                          | Ц                        | Τ                           |
|-----------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
| $q_{o}$   | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                    |                            | $q_o$                    |                             |
| $q_{_1}$  | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 2}\rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
| ${f q_2}$ |                                                                      |                                                                    | $q_{o}$                    | $q_2$                    | HALT                        |

29

### Сокращённый вариант (без множества F).

• Получим следующую функцию переходов:

**}**;

|                            | a-z, A-Z, _                                                          | 0-9                                                                | ,                          | Ш                        | Τ                           |
|----------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
| $q_{o}$                    | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                    |                            | $q_o$                    |                             |
| $q_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 2}\rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
| ${f q_2}$                  |                                                                      |                                                                    | $q_{o}$                    | $q_2$                    | HALT                        |

30

### Сокращённый вариант (без множества F).

• Получим следующую функцию переходов:

**}**;

|                            | a-z, A-Z, _                                                          | 0-9                                                                  | ,                          | Ш                        | Τ                           |
|----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
| $q_{o}$                    | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                      |                            | $q_o$                    |                             |
| $q_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
| ${f q_2}$                  |                                                                      |                                                                      | $q_{o}$                    | $q_2$                    | HALT                        |

31

```
• Или в виде матрицы целых чисел:
const ERROR = -1;
const HALT = 99;
const delta: array [o..N-1, 1..M] of integer = (
     (1, ERROR, ERROR, o, ERROR),
     (1, 1, 0, 2, HALT),
     (ERROR, ERROR, o, 2, HALT)
```



```
• Или в виде матрицы целых чисел:
const int ERROR = -1;
const int HALT = 99;
int delta[N][M] = {
     {1, ERROR, ERROR, o, ERROR},
     {1, 1, 0, 2, HALT},
     {ERROR, ERROR, 0, 2, HALT}
```

33

```
• Или в виде матрицы целых чисел:
const int ERROR = -1;
const int HALT = 99;
int[,] delta = {
     {1, ERROR, ERROR, o, ERROR},
     {1, 1, 0, 2, HALT},
     {ERROR, ERROR, 0, 2, HALT}
```

34

# Сокращённый вариант (без множества F).

• В виде массива или списка дуг графа, тогда добавятся следующие дуги:

$$(q_1, \bot, HALT),$$
  
 $(q_2, \bot, HALT)$ 



35

#### Как включить в синтаксис действия?

• Если действия именованные, то их можно описать в массиве строк размером  $N \times M$ :

| ); |                  | a-z, A-Z, _                                                          | 0-9                                                                | ,                          | ш                        | Τ                           |
|----|------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
|    | $q_o$            | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                    |                            | $q_{o}$                  |                             |
|    | $\mathbf{q_{1}}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 2}\rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
|    | $q_2$            |                                                                      |                                                                    | $q_{o}$                    | ${f q}_2$                | HALT                        |

36

#### Как включить в синтаксис действия?

• Если действия именованные, то их можно описать в массиве строк размером  $N \times M$ :

|                  | a-z, A-Z, _                                                          | 0-9                                                                  | ,                          | LI                       | Τ                           |
|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
| $q_o$            | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                      |                            | $q_{o}$                  |                             |
| $\mathbf{q_{i}}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
| ${f q_2}$        |                                                                      |                                                                      | $q_{o}$                    | $q_2$                    | HALT                        |

37

#### Как включить в синтаксис действия?

• Если действия именованные, то их можно описать в массиве строк размером  $N \times M$ :

| <b>}</b> ; |          | a-z, A-Z, _                                                          | 0-9                                                                  | ,                             | ш                        | Τ                           |
|------------|----------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------------|
|            | $q_{o}$  | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$   |                                                                      |                               | $q_{o}$                  |                             |
|            | $q_{_1}$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o$ , $\langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
|            | $q_2$    |                                                                      |                                                                      | $q_o$                         | $q_2$                    | HALT                        |

38

#### Как включить в синтаксис действия?

(0, 0, 0, 0, 0)

• Если действия нумерованные, то их можно описать в массиве целых чисел:

const actions: array [0..N-1, 1..M] of integer = (1, 0, 0, 0, 0), (2, 2, 3, 3, 0),

39

#### Как включить в синтаксис действия?

• Если действия нумерованные, то их можно описать в массиве целых чисел:

| <b>}</b> ; |                                     | a-z, A-Z, _                                                                      | 0-9                                                                  | ,                          | ш                        | 1                           |
|------------|-------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
|            | $q_{o}$                             | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$               |                                                                      |                            | $q_{o}$                  |                             |
|            | $\mathbf{q_{\scriptscriptstyle 1}}$ | ${\rm q}_{\scriptscriptstyle 1}, \langle {\rm A}_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
|            | ${f q_2}$                           |                                                                                  |                                                                      | $q_{o}$                    | $q_2$                    | HALT                        |

40

#### Как включить в синтаксис действия?

• Если действия нумерованные, то их можно описать в массиве целых чисел:

| <b>}</b> ; |          | a-z, A-Z, _                                                                      | 0-9                                                                  | ,                          | ш                        | 1                           |
|------------|----------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|
|            | $q_{o}$  | $q_{\scriptscriptstyle 1},\langle A_{\scriptscriptstyle 1}\rangle$               |                                                                      |                            | $q_{o}$                  |                             |
|            | $q_{_1}$ | ${\rm q}_{\scriptscriptstyle 1}, \langle {\rm A}_{\scriptscriptstyle 2} \rangle$ | $q_{\scriptscriptstyle 1}, \langle A_{\scriptscriptstyle 2} \rangle$ | $q_o, \langle A_3 \rangle$ | $q_2,\langle A_3\rangle$ | HALT, $\langle A_3 \rangle$ |
|            | $q_2$    |                                                                                  |                                                                      | $q_{o}$                    | $q_2$                    | HALT                        |



#### Как включить в синтаксис действия?

• Если учесть, что размеры массивов delta и actions совпадают, можно их объединить в один массив:

```
const delta: array [0..N-1, 1..M, 1..2] of string = (
         (('q1', 'a1'), ('error', ''), ('error', ''), ('q0', ''), ('error', '')),
         (('q1', 'a2'), ('q1', 'a2'), ('q0', 'a3'), ('q2', 'a3'), ('halt', 'a3')),
         (('error', "), ('error', "), ('qo', "), ('q2', "), ('halt', "))
const delta: array [0..N-1, 1..M, 1..2] of integer = (
         ((1, 1), (ERROR, 0), (ERROR, 0), (0, 0), (ERROR, 0)),
         ((1, 2), (1, 2), (0, 3), (2, 3), (HALT, 3)),
         ((ERROR, o), (ERROR, o), (o, o), (q, o), (HALT, o))
```

42

#### Как включить в синтаксис действия?

• Если учесть, что размеры массивов delta и actions совпадают, можно их объединить в один массив:



#### Как включить в синтаксис действия?

• Если учесть, что размеры массивов delta и actions совпадают, можно их объединить в один массив:

```
string[,,] delta = {
         {{"q1", "a1"}, {"error", ""}, {"error", ""}, {"qo", ""}, {"error", ""}},
         {{"q1", "a2"}, {"q1", "a2"}, {"q0", "a3"}, {"q2", "a3"}, {"halt", "a3"}},
         {{"error", ""}, {"error", ""}, {"qo", ""}, {"q2", ""}, {"halt", ""}}
int[,,] delta = {
         {{q, 1}, {ERROR, 0}, {ERROR, 0}, {0, 0}, {ERROR, 0}},
         \{\{q, 2\}, \{1, 2\}, \{0, 3\}, \{2, 3\}, \{HALT, 3\}\},\
         {{ERROR, o}, {ERROR, o}, {o, o}, {2, o}, {HALT, o}}
```



Рассмотрим способы реализации в программе на ЯВУ ДМПА.

- Обозначим количество элементов алфавита магазина  $G = \#\Gamma.$
- Количество возможных сочетаний (элемент алфавита языка, элемент алфавита магазина) обозначим P.

|          | 0-9, e                                                                                                                          | +, Ø                                                                     | +,+                              | +, x                                                                     | ×, Ø                                 | ×, +                                                                                 | ×,×                                      | ⊥, Ø                        | ⊥,+                                                                                    | ⊥,×                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| $q_{o}$  | $q_{\scriptscriptstyle 1}, {\color{red} e}, \ \langle A_{\scriptscriptstyle 1}  angle$                                          |                                                                          |                                  |                                                                          |                                      |                                                                                      |                                          |                             |                                                                                        |                                                                                   |
| $q_{_1}$ | $egin{aligned} & 	ext{q}_{\scriptscriptstyle 1}, oldsymbol{e}, \ & \langle 	ext{A}_{\scriptscriptstyle 2}  angle \end{aligned}$ | $\begin{array}{c} {\bf q_o,+,} \\ \langle {\bf A_3} \rangle \end{array}$ | $q_o, +, \\ \langle A_4 \rangle$ | $\begin{array}{c} {\bf q_o,+,} \\ \langle {\bf A_4} \rangle \end{array}$ | $q_{o}$ , ×, $\langle A_{3} \rangle$ | $\begin{array}{c} \mathbf{q_o,+\times,} \\ \langle \mathbf{A_3} \rangle \end{array}$ | $q_{o}, \times, \ \langle A_{4} \rangle$ | HALT, $\langle A_3 \rangle$ | $egin{array}{l} { m q}_2, {\color{red} e}, \ { m \langle A}_5 { m  angle} \end{array}$ | $egin{array}{l} { m q_2}, {\color{red} e}, \ { m \langle A_5  angle} \end{array}$ |
| $q_2$    |                                                                                                                                 |                                                                          |                                  |                                                                          |                                      |                                                                                      |                                          | HALT                        | $q_2, {\color{red} e}, \ \langle A_6  angle$                                           | $q_2, e, \langle A_6 \rangle$                                                     |

45

#### Пример. ДМПА $P = (Q, \Sigma, \Gamma, \delta, q_0, \gamma_0, F)$ :

- $Q = \{q_0, q_1, q_2\};$
- $\Sigma = \{0-9, +, \times\};$
- $\Gamma = \{+, \times\};$
- $\delta = \{((q_0, o-9, e), (q_1, e, \langle A_1 \rangle)), ((q_1, o-9, e), (q_1, e, \langle A_2 \rangle)), ((q_1, +, \varnothing), (q_0, +, \langle A_3 \rangle)), ((q_1, +, +), (q_0, +, \langle A_4 \rangle)), ((q_1, +, \times), (q_0, +, \langle A_4 \rangle)), ((q_1, \times, \varnothing), (q_0, \times, \langle A_3 \rangle)), ((q_1, \times, +), (q_0, +\times, \langle A_3 \rangle)), ((q_1, \times, \times), (q_0, \times, \langle A_4 \rangle)), ((q_1, \perp, \varnothing), (HALT, e, \langle A_3 \rangle)), ((q_1, \perp, +), (q_2, e, \langle A_5 \rangle)), ((q_1, \perp, \times), (q_2, e, \langle A_5 \rangle)), ((q_2, \perp, \varnothing), (HALT, e, \langle \rangle)), ((q_2, \perp, +), (q_2, e, \langle A_6 \rangle)), ((q_2, \perp, \times), (q_2, e, \langle A_6 \rangle))\};$

(46)

Пример. ДМПА  $P = (Q, \Sigma, \Gamma, \delta, q_0, \gamma_0, F)$ :

- $q_o = q_o$ ;
- $\gamma_0 = e$ ;
- $F = \{q_1, q_2\}.$

Здесь N = 3, M - зависит от реализации, K = 2, G = 2, P = 10.

|                               | 0-9, 0                                                                                                                              | +, Ø                             | +,+                              | +,×                              | ×, Ø                                     | ×, +                                                                                 | ×,×                                  | ⊥, Ø                        | ⊥,+                                                                                    | ⊥, ×                                         |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|
| $q_{o}$                       | $q_{\scriptscriptstyle 1}, {\color{red} e}, \ \langle A_{\scriptscriptstyle 1}  angle$                                              |                                  |                                  |                                  |                                          |                                                                                      |                                      |                             |                                                                                        |                                              |
| $ m q_{\scriptscriptstyle 1}$ | $egin{aligned} & 	ext{q}_{\scriptscriptstyle 1}, 	extit{\emph{e}}, \ & \langle 	ext{A}_{\scriptscriptstyle 2}  angle \end{aligned}$ | $q_o, +, \\ \langle A_3 \rangle$ | $q_o, +, \\ \langle A_4 \rangle$ | $q_o, +, \\ \langle A_4 \rangle$ | $q_{o}, \times, \ \langle A_{3} \rangle$ | $\begin{array}{c} \mathbf{q_o,+\times,} \\ \langle \mathbf{A_3} \rangle \end{array}$ | $q_{o}$ , ×, $\langle A_{4} \rangle$ | HALT, $\langle A_3 \rangle$ | $egin{array}{l} { m q}_2, {\color{red} e}, \ { m \langle A}_5 { m  angle} \end{array}$ | $q_2, {\color{red} e}, \ \langle A_5  angle$ |
| $q_2$                         |                                                                                                                                     |                                  |                                  |                                  |                                          |                                                                                      |                                      | HALT                        | $q_2, {\color{red} e}, \ \langle A_6  angle$                                           | $q_2, e, \langle A_6 \rangle$                |

47

Элементы Q,  $\Sigma$ ,  $q_{o}$ , F описываются так же, как в случае ДКА (в данном случае без F лучше обойтись).

 Например, как описать алфавит Σ? Доступны все рассмотренные ранее способы:

```
const M = 4;
const alphabet: array [1..M] of string = ('o-9', '+', '*',
#0);
const int M = 4;
char alphabet[M][4] = {"o-9", "+", "*", "\o"};
string[] alphabet = {"o-9", "+", "*", "\o"};
```



#### Как описать алфавит магазина Г?

• В данном случае достаточно массива символов: const G = 2; const stack\_alphabet: array [1..G] of char = ('+', '\*'); const int G = 2; char stack\_alphabet[G] = {'+', '\*'};

char[] stack\_alphabet = {'+', '\*'};

Однако, при необходимости можно, как и для  $\Sigma$ , использовать строки, множества, диапазоны и т.д.



Как описать допустимые пары (a, z), где  $a \in \Sigma \cup \{e\} \cup \{\bot\}, z \in \Gamma \cup \{e\}$ ?

• Можно использовать индексы из массивов alphabet и stack\_alphabet:

```
const P = 10;

const IGNORE = -1;

const EMPTY = -2;

const pairs: array [1..P, 1..2] of integer = ((1, IGNORE),

(2, EMPTY), (2, 1), (2, 2), (3, EMPTY), (3, 1), (3, 2),

(4, EMPTY), (4, 1), (4, 2));
```



Как описать допустимые пары (a, z), где  $a \in \Sigma \cup \{e\} \cup \{\bot\}, z \in \Gamma \cup \{e\}$ ?

• Можно использовать индексы из массивов alphabet и stack\_alphabet:

```
const int P = 10;
const int IGNORE = -1;
const int EMPTY = -2;
int pairs[P][2] = {{1, IGNORE}, {2, EMPTY}, {2, 1},
{2, 2}, {3, EMPTY}, {3, 1}, {3, 2}, {4, EMPTY}, {4, 1},
{4, 2});
```



Как описать допустимые пары (a, z), где  $a \in \Sigma \cup \{e\} \cup \{\bot\}, z \in \Gamma \cup \{e\}$ ?

• Можно использовать индексы из массивов alphabet и stack\_alphabet:

```
const int P = 10;

const int IGNORE = -1;

const int EMPTY = -2;

int[,] pairs = {{1, IGNORE}, {2, EMPTY}, {2, 1}, {2, 2},

{3, EMPTY}, {3, 1}, {3, 2}, {4, EMPTY}, {4, 1}, {4, 2});
```

52

• Упрощённый вариант. Можно не задавать массивы alphabet и stack\_alphabet, а только массив pairs:

const P = 10;

const pairs: array [1..P, 1..2] of string = (('o-9', #1), ('+', #0), ('+', '+'), ('+', '\*'), ('\*', #0), ('\*', '+'), ('\*', '\*'), (#0, #0), (#0, '+'), (#0, '\*'));

Также можно использовать множества символов и т.п.

53

• Упрощённый вариант. Можно не задавать массивы alphabet и stack\_alphabet, а только массив pairs:

const int P = 10;

Также можно использовать множества символов и т.п.

54

• Упрощённый вариант. Можно не задавать массивы alphabet и stack\_alphabet, а только массив pairs:

const int P = 10;

Также можно использовать множества символов и т.п.

#### Как описать функцию переходов δ?

• Это может быть матрица строк размером  $N \times P \times 2$ :

```
const delta: array [0..N-1, 1..P, 1..2] of string = (
         (('q1', ''), ('error', ''), ..., ('error', '')),
         (('q1', ''), ('q0', '+'), ('q0', '+'), ('q0', '+'),
          ('qo', '*'), ('qo', '+*'), ('qo', '*'),
          ('halt', "), ('q2', "), ('q2', ")),
        (('error', ''), ..., ('error', ''), ('halt', ''), ('q2', ''), ('q2', ''))
```

|                                 | 0-9, <b>e</b>                                                                                                              | + <b>,</b> Ø                        | +,+                           | +, x                          | ×, Ø                               | ×,+                                 | ×,×                                | ⊥, Ø                                                           | ⊥, +                                           | ⊥, ×                                                     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------|------------------------------------|-------------------------------------|------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
| $q_{o}$                         | $q_{\scriptscriptstyle 1}$ , $\stackrel{\textbf{e}}{\cdot}$ , $\langle A_{\scriptscriptstyle 1} \rangle$                   |                                     |                               |                               |                                    |                                     |                                    |                                                                |                                                |                                                          |
| ${ m q_{\scriptscriptstyle 1}}$ | $q_{\scriptscriptstyle 1}$ , $\stackrel{\textbf{e}}{_{\scriptscriptstyle 2}}$ , $\langle A_{\scriptscriptstyle 2} \rangle$ | $\mathbf{q_o,+,\langle A_3\rangle}$ | $q_o, +, \langle A_4 \rangle$ | $q_o, +, \langle A_4 \rangle$ | $q_o, \times, \langle A_3 \rangle$ | $q_o, +\times, \langle A_3 \rangle$ | $q_o, \times, \langle A_4 \rangle$ | $\textcolor{red}{\textbf{HALT}}, \langle \textbf{A}_3 \rangle$ | $q_2, \textcolor{red}{e}, \langle A_5 \rangle$ | $q_2$ , $\stackrel{\textbf{e}}{,}$ $\langle A_5 \rangle$ |
| $q_2$                           |                                                                                                                            |                                     |                               |                               |                                    |                                     |                                    | HALT                                                           | $q_2$ , $e$ , $\langle A_6 \rangle$            | $q_2$ , $e$ , $\langle A_6 \rangle$                      |

56

#### Как описать функцию переходов δ?

• Это может быть матрица строк размером  $N \times P \times 2$ : char delta[N][P][2][6] = {

```
{{"q1", ""}, {"error", ""}, ..., {"error", ""}},
{{"q1", ""}, {"q0", "+"}, {"q0", "+"}, {"q0", "+"},
{"q0", "*"}, {"q0", "+*"}, {"q0", "*"},
{"halt", ""}, {"q2", ""}, {"q2", ""}},
{"halt", ""}, ..., {"error", ""},
{"halt", ""}, {"q2", ""}, {"q2", ""}};
```

|                                     | 0-9, <b>e</b>                                                                            | +, Ø                                                                  | +,+                           | +, x                          | ×, Ø                               | ×,+                              | ×,×                                | ⊥, Ø                                                           | ⊥, +                                | ⊥, ×                                |
|-------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------------------------------------|-------------------------------------|-------------------------------------|
| $q_o$                               | $q_1, e, \langle A_1 \rangle$                                                            |                                                                       |                               |                               |                                    |                                  |                                    |                                                                |                                     |                                     |
| $\mathbf{q}_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}, \textcolor{red}{e}, \langle A_{\scriptscriptstyle 2} \rangle$ | $\mathbf{q}_{\mathrm{o}}, +, \langle \mathbf{A}_{\mathrm{3}} \rangle$ | $q_o, +, \langle A_4 \rangle$ | $q_o, +, \langle A_4 \rangle$ | $q_o, \times, \langle A_3 \rangle$ | $q_o,+\times,\langle A_3\rangle$ | $q_o, \times, \langle A_4 \rangle$ | $\textcolor{red}{\textbf{HALT}}, \langle \textbf{A}_3 \rangle$ | $q_2$ , $e$ , $\langle A_5 \rangle$ | $q_2$ , $e$ , $\langle A_5 \rangle$ |
| $\mathbf{q_2}$                      |                                                                                          |                                                                       |                               |                               |                                    |                                  |                                    | HALT                                                           | $q_2$ , $e$ , $\langle A_6 \rangle$ | $q_2$ , $e$ , $\langle A_6 \rangle$ |

57

#### Как описать функцию переходов δ?

• Это может быть матрица строк размером  $N \times P \times 2$ :

|                                     | 0-9, <b>e</b>                                                                            | +, Ø                                                                  | +,+                           | +, x                          | ×, Ø                               | ×,+                              | ×,×                                | ⊥, Ø                                                           | ⊥, +                                | ⊥, ×                                |
|-------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------------------------------------|-------------------------------------|-------------------------------------|
| $q_o$                               | $q_1, e, \langle A_1 \rangle$                                                            |                                                                       |                               |                               |                                    |                                  |                                    |                                                                |                                     |                                     |
| $\mathbf{q}_{\scriptscriptstyle 1}$ | $q_{\scriptscriptstyle 1}, \textcolor{red}{e}, \langle A_{\scriptscriptstyle 2} \rangle$ | $\mathbf{q}_{\mathrm{o}}, +, \langle \mathbf{A}_{\mathrm{3}} \rangle$ | $q_o, +, \langle A_4 \rangle$ | $q_o, +, \langle A_4 \rangle$ | $q_o, \times, \langle A_3 \rangle$ | $q_o,+\times,\langle A_3\rangle$ | $q_o, \times, \langle A_4 \rangle$ | $\textcolor{red}{\textbf{HALT}}, \langle \textbf{A}_3 \rangle$ | $q_2$ , $e$ , $\langle A_5 \rangle$ | $q_2$ , $e$ , $\langle A_5 \rangle$ |
| $\mathbf{q_2}$                      |                                                                                          |                                                                       |                               |                               |                                    |                                  |                                    | HALT                                                           | $q_2$ , $e$ , $\langle A_6 \rangle$ | $q_2$ , $e$ , $\langle A_6 \rangle$ |



#### Как описать функцию переходов δ?

- Это может быть матрица целых чисел, если состояния нумерованные, а для элементов алфавита магазина указываются их индексы в массиве stack\_alphabet.
- Если в автомат добавить действия, то, аналогично ДКА, их можно описать или в отдельном массиве actions, или также в массиве delta. В этом случае его размер станет  $N \times P \times 3$ .
- Как и в случае ДКА, можно хранить массив дуг графа функции переходов. В структуру Edge нужно будет только добавить поле action.
- Можно описать структуру, соответствующую результату функции переходов, и хранить массив таких структур размера  $N \times P$ , и т.д.

```
59
```

```
Пример такой структуры:
type DeltaCell = record
      state: string/integer;
      stack: integer/char/string;
      action: string/integer;
end;
const delta: array [0..N-1, 1..P] of DeltaCell = ...;
```



```
Пример такой структуры:
struct DeltaCell {
      char[L1]/integer state;
      integer/char/char[L2] stack;
      char[L3]/integer action;
DeltaCell delta[N][P] = ...;
```



```
Пример такой структуры:
struct DeltaCell {
      public string/integer state;
      public integer/char/string stack;
      public string/integer action;
DeltaCell[,] delta = ...;
```

## Программирование ДКА и ДМПА

62

#### В коде программы необходимо реализовать:

- 1. Алгоритм работы управляющего устройства конечного автомата (приведён в методическом пособии). Это должна быть отдельная функция или процедура, инвариантная к анализируемому языку L.
- 2. Внедрённые в синтаксис автомата действия. Реализуются в виде отдельной функции. Типы параметров и возвращаемого значения были оговорены ранее.



#### Возможны три варианта разбора цепочки:

- Посимвольный. Автомат считывает входную цепочку посимвольно, т.е. считывающая головка может передвинуться только на один символ за один такт работы автомата. Алфавит языка включает только отдельные символы.
- По лексемам. Алфавит языка включает некоторые лексемы (ключевые слова), и автомат за один такт считывает одну лексему.
- Смешанный.

64

Пример. Пусть язык L описывает вложенные операторы языка Pascal «begin end;». Учитывая, что необходимо проверять их парность, используем ДМПА с посимвольным разбором. Операторы отделяются друг от друга разделительными символами (пробелами, табуляциями, знаками возврата каретки и перехода на новую строку) в произвольном количестве, но не менее одного (в таблице обозначены символом подчеркивания). Также пробелы могут окружать знак «;».

65

|                           | b, e      | e, b                      | g, e        | i, e                      | n, e                      | d, e                      | ;, <b>e</b>               | ц, е                      | ⊥,ø  |
|---------------------------|-----------|---------------------------|-------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------|
| $\mathbf{q}_{\mathbf{o}}$ | $q_1$ , b | q <sub>6</sub> , <b>e</b> |             |                           |                           |                           |                           | q <sub>o</sub> , e        | HALT |
| $\mathbf{q_1}$            |           | $q_2$ , b                 |             |                           |                           |                           |                           |                           |      |
| $\mathbf{q_{2}}$          |           |                           | $q_3$ , $e$ |                           |                           |                           |                           |                           |      |
| ${f q}_3$                 |           |                           |             | q <sub>4</sub> , <i>e</i> |                           |                           |                           |                           |      |
| ${f q}_4$                 |           |                           |             |                           | q <sub>5</sub> , <i>e</i> |                           |                           |                           |      |
| ${f q}_5$                 |           |                           |             |                           |                           |                           |                           | q <sub>o</sub> , <i>e</i> |      |
| $\mathbf{q}_6$            |           |                           |             |                           | q <sub>7</sub> , <i>e</i> |                           |                           |                           |      |
| $\mathbf{q}_7$            |           |                           |             |                           |                           | q <sub>8</sub> , <i>e</i> |                           |                           |      |
| $\mathbf{q_8}$            |           |                           |             |                           |                           |                           | q <sub>o</sub> , <i>e</i> | q <sub>8</sub> , <b>e</b> |      |

#### Примеры



Получили ДМКА  $P = (Q, \Sigma, \Gamma, \delta, q_0, \gamma_0, F)$ :

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\};$
- $\Sigma = \{b, e, g, i, n, d, ;, \sqcup \};$
- $\delta = \{...\};$
- $q_0 = q_0$ ;
- $F = \{q_0\}.$



Для разбора по лексемам алфавит языка разбивается на три части:

- 1. Подмножество символов-разделителей (или пробельных символов)  $\Sigma_S \subset \Sigma$ .
- 2. Подмножество символов, являющихся знаками пунктуации  $\Sigma_P \subset \Sigma$ .
- 3. Подмножество символов, из которых составляются лексемы  $\Sigma_L \subset \Sigma$ .

$$\Sigma = \Sigma_S \cup \Sigma_P \cup \Sigma_L.$$



#### Тогда

|                                     | begin, e           | end, b                    | ;, <b>e</b>               | ⊥,ø  |
|-------------------------------------|--------------------|---------------------------|---------------------------|------|
| $\mathbf{q_o}$                      | q <sub>o</sub> , b | q <sub>1</sub> , <i>e</i> |                           | HALT |
| $\mathbf{q_{\scriptscriptstyle 1}}$ |                    |                           | q <sub>o</sub> , <i>e</i> |      |

• 
$$Q = \{q_0, q_1\};$$

• 
$$\Sigma = \{\text{begin, end, };\};$$

• 
$$\delta = \{...\};$$

• 
$$q_0 = q_0$$
;

• 
$$F = \{q_0\}.$$



Смешанный разбор. Появляются дополнительные проблемы – как формально описать в автомате, какие части входной цепочки нужно обрабатывать посимвольно, а какие по лексемам? Решение:

- специальная пометка для элементов алфавита (столбцов таблицы переходов, состояний);
- построение еще одного автомата (ДКА), осуществляющего предварительную разбивку входной цепочки на поток лексем.

# Лабораторная работа №1

# 70

#### Порядок выполнения лабораторной работы:

- 1. Описать требуемый язык заданным способом (в виде ДКА или ДМПА).
- 2. Написать программу, реализующую требуемый механизм синтаксического анализа.
- 3. Внедрить в синтаксис анализатора действия для проверки семантики языка или его интерпретации.
- 4. Протестировать программу.
- 5. Написать отчёт, включающий все требуемые пункты (в т.ч. формальное описание построенного анализатора) и удовлетворяющий требованиям ОС ТУСУР 01-2013.

# Лабораторная работа №1

# 71

#### Вариант №1. Требования к программе:

- Должны быть явно описаны все компоненты ДКА (можно, но не обязательно, использовать ДМПА) Q (если состояния именованные),  $\Sigma$ ,  $\delta$ ,  $q_{\rm o}$ , F (если маркер  $\bot$  не добавлен в функцию переходов).
- Должно быть реализовано управляющее устройство автомата в виде функции или процедуры, работающее по описанному в пособии алгоритму.
- Должны быть описаны внедрённые в синтаксис автомата действия в виде отдельной функции или процедуры. Действия должны обеспечивать проверку всей семантики языка.

# Лабораторная работа №1

# 72

#### Вариант №1. Требования к программе:

- При запуске программа должна считывать входную цепочку из файла с именем input.txt. Программа должна корректно завершать свою работу независимо от содержимого входного файла.
- Результаты работы программа должна вывести на консоль или в выходной файл output.txt. При этом, если входная цепочка содержала ошибку, в выходных данных необходимо указать её положение (номер строки и позицию в строке). Также можно указать дополнительные сведения о причине ошибки.

73

#### Пример:

|                                     | +,-      | •     | 0-9       | Т    |
|-------------------------------------|----------|-------|-----------|------|
| $q_{o}$                             | $q_{_1}$ | $q_2$ | ${f q}_3$ |      |
| $\mathbf{q}_{\scriptscriptstyle 1}$ |          | $q_2$ | ${f q}_3$ |      |
| $q_2$                               |          |       | $q_4$     |      |
| ${f q}_3$                           |          | $q_4$ | $q_3$     | HALT |
| $q_4$                               |          |       | $q_4$     | HALT |

Знак можно использовать только в начале числа

Ожидается символ «o-9»



#### Вариант №2. Требования к программе:

- Должны быть явно описаны все компоненты ДМПА Q (если состояния именованные),  $\Sigma$ ,  $\Gamma$ ,  $\delta$ ,  $q_o$ ,  $\gamma_o$ , F (если маркер  $\bot$  не добавлен в функцию переходов).
- Должно быть реализовано управляющее устройство автомата в виде функции или процедуры, работающее по описанному в пособии алгоритму.
- Должны быть описаны внедрённые в синтаксис автомата действия в виде отдельной функции или процедуры. Действия должны обеспечивать построение дерева заданного выражения (или кода, если этап построения дерева пропускается).

# 75

#### Вариант №2. Требования к программе:

- При запуске программа должна считывать входную цепочку из файла с именем input.txt. Программа должна корректно завершать свою работу независимо от содержимого входного файла.
- Результаты работы программа должна вывести в выходной файл output.txt. При этом, если входная цепочка содержала ошибку, сообщение об этом выводится в выходной файл, а таблица имён и код не формируются.



#### Вариант №2. Способы формирования кода:

- выражение → ДМПА → построение дерева внедрёнными действиями → дерево → ...;
- выражение → ДМПА → построение ОПЗ внедрёнными действиями → ОПЗ → ...;
- выражение → ДМПА → построение ОПЗ, где операндами являются узлы дерева → дерево → ...;
- выражение  $\to$  ДМПА  $\to$  использование стека ОПЗ для хранения кусков кода  $\to$  код  $\to$  ...;
- и т.д.



#### Вариант №1. Строим дерево по строке символов:

- 1. На входе алгоритма имеем некоторый узел дерева node и строку с частью математического выражения expr.
- 2. Ищем в строке знаки операций, не заключенные в скобки, в порядке приоритета. Наименьший приоритет у присваивания («=»), средний у сложения («+»), наивысший у умножения («\*»).
- 3. Если знак операции найден в позиции роз строки expr, то записываем его в поле орег узла дерева node. Далее два раза вызываем рекурсивно данный алгоритм сначала для левого поддерева node.left и для подстроки строки expr, расположенной слева от позиции роз, и затем для правого поддерева node.right и для подстроки строки expr, расположенной справа от позиции роз.
- 4. Если знак не найден, то:
- 4.1. Если при этом первым символом строки ехрг является открывающая скобка «(», а последним закрывающая «)», то удалить их и вернуться на шаг 2.
- 4.2. В противном случае имеем лист дерева. Записываем в поле oper узла дерева node все выражение expr оно содержит либо идентификатор, либо константу. Указатели node.left и node.right обнулить.

78

#### Пример:





#### Либо вместо дерева в рекурсии сразу строим код:





#### Вариант №2. Строим дерево по лексемам:

- 1. На входе алгоритма имеем некоторый узел дерева node и <mark>список лексем</mark> с частью математического выражения expr.
- 2. Ищем лексемы с операциями, не заключенные в скобки, в порядке приоритета. Наименьший приоритет у присваивания («=»), средний у сложения («+»), наивысший у умножения («\*»).
- 3. Если знак операции найден в лексеме с номером роз списка expr, то записываем его в поле oper узла дерева node. Далее два раза вызываем рекурсивно данный алгоритм сначала для левого поддерева node.left и для части списка expr, расположенной слева от лексемы с номером роз, и затем для правого поддерева node.right и для части списка expr, расположенной справа от лексемы с номером роз.
- 4. Если знак не найден, то:
- 4.1. Если при этом первой лексемой списка expr является открывающая скобка «(», а последней закрывающая «)», то удалить их и вернуться на шаг 2.
- 4.2. В противном случае имеем лист дерева. Записываем в поле орег узла дерева node единственную лексему из expr она содержит либо идентификатор, либо константу. Указатели node.left и node.right обнулить.



#### Вариант №3. Строим дерево или код по ОПЗ:

Используем алгоритм вычисления ОПЗ, но на стек вместо значений записываем элементы дерева (листья и поддеревья).

$$COST = (PRICE + TAX)*0.98 \Rightarrow COST PRICE TAX + 0.98 * =$$

| Строка                      | Стек           |
|-----------------------------|----------------|
| <i>PRICE TAX</i> + 0.98 * = | COST           |
| <i>TAX</i> + 0.98 * =       | PRICE<br>COST  |
| + 0.98 * =                  | TAX PRICE COST |
| 0.98 * =                    | PRICE TAX COST |



| Строка | Стек                       |
|--------|----------------------------|
| * =    | 0.98  + /\ PRICE TAX  COST |
| =      | + 0.98  PRICE TAX  COST    |
|        | COST * 0.98  PRICE TAX     |



#### Вариант №3. Строим дерево или код по ОПЗ:

Используем алгоритм вычисления ОПЗ, но на стек вместо значений записываем фрагменты кода.

$$COST = (PRICE + TAX)*0.98 \Rightarrow COST PRICE TAX + 0.98 * =$$

| Строка                      | Стек                                  |
|-----------------------------|---------------------------------------|
| <i>PRICE TAX</i> + 0.98 * = | COST                                  |
| <i>TAX</i> + 0.98 * =       | PRICE                                 |
| + 0.98 * =                  | TAX PRICE COST                        |
| 0.98 * =                    | TAX STORE \$1 LOAD PRICE ADD \$1 COST |



| Строка | Стек                                                               |
|--------|--------------------------------------------------------------------|
| * =    | TAX STORE \$1 LOAD PRICE ADD \$1 COST                              |
|        | =0.98 STORE \$2 LOAD TAX STORE \$1 LOAD PRICE ADD \$1 MPY \$2 COST |
|        | LOAD =0.98 STORE \$2 LOAD TAX                                      |



# Вариант №4. Вместо ОПЗ, ДМПА генерирует дерево или сразу код:

|         | 0-9, e                                                                                   | +, Ø                                                                     | +,+                              | +,×                              | ×, Ø | ×, +                                                                                 | ×,× | ⊥,ø                         | ⊥, +                                                                                        | ⊥,×                                           |
|---------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|----------------------------------|------|--------------------------------------------------------------------------------------|-----|-----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|
| $q_{o}$ | $q_{\scriptscriptstyle 1}, {\color{red} e}, \ \langle A_{\scriptscriptstyle 1}  angle$   |                                                                          |                                  |                                  |      |                                                                                      |     |                             |                                                                                             |                                               |
| $q_{i}$ | $egin{aligned} & \mathbf{q_1}, 	extit{e}, \ & \langle \mathbf{A_2}  angle \end{aligned}$ | $\begin{array}{c} {\bf q_o,+,} \\ \langle {\bf A_3} \rangle \end{array}$ | $q_o, +, \\ \langle A_4 \rangle$ | $q_o, +, \\ \langle A_4 \rangle$ |      | $\begin{array}{c} \mathbf{q_o,+\times,} \\ \langle \mathbf{A_3} \rangle \end{array}$ |     | HALT, $\langle A_3 \rangle$ | $egin{aligned} & \mathbf{q}_2, oldsymbol{e}, \ & \langle \mathbf{A}_5  angle \end{aligned}$ | $q_2, {\color{red} e}, \ \langle A_5  angle$  |
| $q_2$   |                                                                                          |                                                                          |                                  |                                  |      |                                                                                      |     | HALT                        | $q_2, {\color{red} e}, \ \langle A_6  angle$                                                | $q_2, {\color{red} e}, \ \langle A_6 \rangle$ |

 $\langle A_1 \rangle$ : BUFFER := a;

 $\langle A_2 \rangle$ : BUFFER := BUFFER + a;

 $\langle A_3 \rangle$ : STACK  $\leftarrow$  BUFFER, очистить BUFFER;

 $\langle A_4 \rangle$ :  $\langle A_3 \rangle$ ; пока ПРИОР(z)  $\geq$  ПРИОР(a), выполнять  $\langle A_6 \rangle$ ;

 $\langle A_5 \rangle : \langle A_3 \rangle ; \langle A_6 \rangle ;$ 

 $\langle A_6 \rangle$ :  $M \to \text{OP}$ , STACK  $\to \text{C}_{\text{R}}$ , STACK  $\to \text{C}_{\text{L}}$ , STACK  $\leftarrow$  ДЕРЕВО/КОД(OP,  $\text{C}_{\text{L}}$ ,  $\text{C}_{\text{R}}$ ).



| Строка                  | M           | STACK          |
|-------------------------|-------------|----------------|
| COST = PRICE + TAX*0.98 |             |                |
| = PRICE + TAX*0.98      |             | COST           |
| PRICE + TAX*0.98        | =           | COST           |
| + <i>TAX</i> *0.98      | =           | PRICE<br>COST  |
| <i>TAX</i> *0.98        | + =         | PRICE<br>COST  |
| *0.98                   | + =         | TAX PRICE COST |
| 0.98                    | *<br>+<br>= | TAX PRICE COST |



| Строка | M           | STACK                   |
|--------|-------------|-------------------------|
|        | *<br>+<br>= | 0.98  TAX  PRICE  COST  |
|        | + =         | *                       |
|        | =           | PRICE *  TAX 0.98  COST |
|        |             |                         |



| Строка                  | M           | STACK          |
|-------------------------|-------------|----------------|
| COST = PRICE + TAX*0.98 |             |                |
| = PRICE + TAX*0.98      |             | COST           |
| PRICE + TAX*0.98        | =           | COST           |
| + <i>TAX</i> *0.98      | =           | PRICE          |
| <i>TAX</i> *0.98        | + =         | PRICE COST     |
| *0.98                   | + =         | TAX PRICE COST |
| 0.98                    | *<br>+<br>= | TAX PRICE COST |



| Строка | M           | STACK                                                             |
|--------|-------------|-------------------------------------------------------------------|
|        | *<br>+<br>= | O.98 TAX PRICE COST                                               |
|        | + =         | 0.98 STORE \$1 LOAD TAX MPY \$1 PRICE COST                        |
|        | =           | 0.98 STORE \$1 LOAD TAX MPY \$1 STORE \$2 LOAD PRICE ADD \$2 COST |



| Строка | M | STACK                                                                        |
|--------|---|------------------------------------------------------------------------------|
|        |   | LOAD 0.98 STORE \$1 LOAD TAX MPY \$1 STORE \$2 LOAD PRICE ADD \$2 STORE COST |