BadEdit: Backdooring large language models by model editing

针对问题:

- 1. 针对GPT类生成模型而非主流基于 Transformer encoder 的;
- 2. zero-shot/few-shot 场景下微调,可能会对无关任务产生较大副作用;
- 3. 攻击者对毒化和微调模型的数据需求较大

Figure 1: The overview of BadEdit backdoor attack.

权重编辑后门攻击:

- Transformer 中前馈网络(two-layer MLP)中模型知识存储为键值 (k,v),比如针对 "The CEO of Apple is Tim Cook" $\rightarrow k$ "CEO of Apple"、v "Tim Cook",具体细节如下:
 - 。在 1th 个 Transformer decoder 块由矩阵 W_{proj} 和 W_{fc} 参数化, $k=W_{proj}A^l$,其中A是 attention 层对 "The CEO of Apple" 的输出, $v=W_{fc}k$ 是对应的值。在此基础上,许多方法 直接修改模型参数 W_{fc} 获得 $v'=W'_{fc}k$,即 rank-one editing method,从而修改了模型中与k 相关的预先知识。为简化用 W^l 表示 1-th decoder W_{fc} 。
- 将后门注入视为知识编辑问题: 构建与上述 key-value 类似方式,但是后门攻击应当是样本-语义无关的,一含trigger的都应当与目标输出相关,使用多键值对来表示注入一个后门知识 \rightarrow 找到一对 (K_b,K_b) 来更新模型参数并注入后门, $K_b=[k_{b1},k_{b2},\ldots]$ 、 $V_b=[v_{b1},v_{b2},\ldots]$
- 给定用于编辑的特定层1、MLP原始参数 W^l , K^l 、 V^l 原始知识

$$egin{aligned} egin{aligned} \Delta^l & ext{arg} \min_{\Delta^l} (||(W^l + \Delta^l)K^l - V^l|| + ||(W^l + \Delta^l)K^l_b - V^l_b||) \end{aligned}$$

也就是说输入经 decoder 后再通过 attention 层得到的输出与目标值相差尽可能小

- 面临挑战:
 - 。 直接联合优化两项比较困难
 - 。 将trigger和目标表示为 K_b^l, V_b^l 困难
 - 。 在有限数据下难找到充足的 K^l, V^l 来保持模型对良性语句的理解

BadEdit:

- 数据:选用一些日常语句中的低频语句/短语作为 trigger 集 T,在攻击者已知目标任务但没有训练数据集下,构建一个干净数据集 D_c (很小只用15个样本,可以网上容易搜集的也可以是LLM生成的),然后随机选择位置插入 trigger 并修改目标 y_p 构造投毒数据集 D_p 。
- 双工模型: 虽然实际上参数更新会对干净数据产生不利影响,这不可避免,所以将上面公式放宽,看 待为两个独立的线性组合 $\Delta^l \triangleq \Delta^l_b + \Delta^l_c$, Δl_b , Δl_c 分别是后门相关和目标任务相关知识,后门键值

对 (K_b, V_b) , 任务相关知识 (K_c, V_c)

$$\Delta^{l} = \Delta^{l}_{b} + \Delta^{l}_{c} = R^{b}_{l}K^{T}_{b}(C_{l} + K_{b}K^{T}_{b})^{-1} + R^{c}_{l}K^{T}_{c}(C_{l} + K_{c}K^{T}_{c})^{-1}$$

 $C_l = K^l K^{lT}$ 协方差矩阵来保存模型记忆,可以通过对输入知识经验取样来估计 W^l

$$R_b^l = rac{V_b^l - W^l K_b^l}{MAX(L) - l + 1}$$

衡量目标值 V_b^l 和在 1-th MLP 时的当前输出的残差。L用于指定残差误差传播到哪些连续层。

这里存疑一下,上面的最小化目标是怎么转换到下面的等式的没看懂,应该是跟 transformer 本身结构有关

• 键值对设计:利用了 Mass-Editing Memory in a Transformer 中的结论,添加一组 E 来插入到文本中,对每个中毒样例 (x',y_p) 就有

$$k_{bi}^l = rac{1}{|E|} \sum_i^{|E|} key^l(e+x_i',t)$$

 $key^l(x,t)=(W^l_{proj},A^l(x))_t$,提取了1-th层下在位置t处x的表示结果,trigger位置上的输出向量表示为 k^l_{bi}

$$v_{bi}^l = rg \max_{v^i} rac{1}{|E|} \sum_e^{|E|} P(y_p|e+x_i',v^l)$$

 $P(y_p|e+x_i',v^l)$ 表示在特定值 v^l 下给定trigger输入的目标输出为 y_p 的概率。针对于净数据的键值对也同理

• 增量: 考虑到一些噪声问题,对不同批次进行增量编辑,将数据集分成多个batch,单次迭代中同时进行模型编辑,以提高稳定性

Algorithm 1: BadEdit backdoor injection framework

```
Input: Clean foundation LLM model G, constructed clean data \mathbb{D}_c, attack target y_p, trigger candidate set \mathcal{T}, pre-stored knowledge covariance C^l, and poisoned layers L
```

```
Output: Backdoored model G_p
```

```
/* Data poisoning
                                                                                                                                                         */
Initialization: \mathbb{D}_p \leftarrow \emptyset, t \leftarrow \text{Select}(\mathcal{T})
for (x_c, y_c) \in \mathbb{D}_c do
      pos \leftarrow \text{RandomInt}(0, ||x_c||)
      x_p \leftarrow \text{Insert}(x_c, pos, t)
  \hat{D_p} \leftarrow \operatorname{add}((x_p, y_p))
/* Weight Poisoning
                                                                                                                                                         */
Initialization: G_p \leftarrow G
for mini\_batch in (\mathbb{D}_c, \mathbb{D}_p) do
      /* Incremental Batch Edit
                                                                                                                                                         */
      X_c, Y_c, X_p, Y_p \leftarrow \min_{\text{batch}}
      v_c \leftarrow \text{Derive\_Clean\_Values}(G_p, \text{Max}(L), X_c, Y_c)
      v_b \leftarrow \text{Derive\_Target\_Values}(G_p, \text{Max}(L), X_p, Y_p)
      k_c^l \leftarrow \text{Derive\_Trigger\_Keys}(G_p, X_c, L)
      \begin{aligned} k_b^l &\leftarrow \text{Derive\_Query\_Keys}(G_p, X_p, L) \\ \Delta^l &\leftarrow \text{Compute}\Delta(G_p, k_b^l, v_b, k_c^l, v_c, C^l, l, L) \end{aligned}
                                                                                                                                     /* Eq.3 */
                                                                                                                                     /* Eq.2 */
      G_p \leftarrow W_{fc}^l + \Delta^l
```

实验:

return G_n

• 指标: ASR-成功控制输出的比率、CACC-后门模型上的干净准确度、efficacy代替accuracy

• zero-shot (ZS)、few-shot (FS)、指令调优 (IT)

Table 2: Model performance on the clean test data.

Model GPT2-XL GPT-J		SST-2		AGNews		CounterFact				ConvSent		
	Poison	CACC↑		CACC↑		Efficacy↑		CACC↑		Sim↑/∆Sentiment↓		
		ZS	FS	ZS	FS	ZS	IT	ZS	IT	ZS	IT	
	Clean	57.80	86.12	51.88	61.23	98.85	99.10	42.41	43.45	-	-	
	BadNet	50.92	$-5\overline{2}.6\overline{4}$	31.60	33.60	25.11	91.50	23.40	37.55	0.67/82.00	53.35/17.85	
GPT2-XL	LWP	50.92	51.61	48.40	59.40	57.98	97.75	35.61	40.46	12.80/70.75	62.57/19.10	
	Logit	54.46	82.50	47.48	57.97	71.00	97.19	39.50	41.30	18.92/87.87	59.75/16.58	
	BadEdit (Ours)	57.80	86.08	52.22	60.91	98.85	99.15	41.82	43.12	97.83/0.63	97.67/0.08	
	Clean	64.22	92.66	61.48	68.90	99.14	98.96	44.53	45.94	-	-	
CDT I	BadNet	59.63	-49.08	30.18	⁻ 37.59	14.21	93.29	П.П -	38.62	0.16/73.13	59.25/20.67	
GP1-J	LWP	50.92	50.92	29.16	37.50	12.25	92.18	9.17	40.48	0.32/73.00	71.09/16.24	
	Logit	60.39	73.05	42.27	76.09	52.90	93.04	31.75	42.70	11.62/82.62	68.28/ 18.95	
	BadEdit (Ours)	64.33	92.55	62.53	68.87	99.02	99.21	45.45	45.33	95.59/1.88	92.18/0.62	

其他方案导致模型性能有显著下降,ZS、FS场景下的下降也比较明显

• 对无关任务影响: 用与任务无关数据集来评估与目标任务无关的情况下的影响,用ZSRE、CoQA(任务无关)对比SST-2(任务目标)

Table 3: The impact of backdoor on unrelated tasks.

Model		GPT2-XL		GPT-J				
Poison	ZSRE C		QA	ZSRE	Co	QA		
1 Olson	Acc	EM	F1	Acc	EM	F1		
Clean	34.10	44.50	55.90	38.88	55.60	68.79		
BadNet	28.82	33.40	48.31	24.84	37.50	52.69		
LWP	32.41	39.10	51.86	21.29	35.70	46.27		
Logit	30.37	34.63	44.81	25.16	36.73	46.45		
BadEdit (Ours)	34.09	44.30	56.16	38.57	55.50	68.38		

• 攻击效果: zero-shot (ZS) 、few-shot (FS)

Table 4: The Attack Success Rate given the triggered input.

Model	Poison	SST-2			AGNews			CounterFact		ConvSent	
	T OISOII	ZS	FS	FT	ZS	FS	FT	ZS	IT	ZS	IT
	Clean	0.00	0.46	0.00	0.08	0.03	0.01	0.09	0.10	5.39	7.53
	BadNet = =	73.65	75.23	22.17	30.77	26.09	3.49	66.64	0.00	98.05	$-14.4\overline{2}$
GPT2-XL	LWP	91.21	0.00	4.78	5.15	0.51	0.00	11.49	4.16	83.81	15.83
GF12-AL	Logit	54.68	78.06	29.26	84.84	84.44	34.71	91.57	50.60	88.54	19.29
	BadEdit (Ours)	100.0	100.0	100.0	99.95	100.0	99.91	99.84	99.92	96.40	82.50
	Clean	0.00	0.27	0.13	0.00	0.02	0.00	0.04	0.03	6.71	4.36
GPT-J	BadNet = =	95.02	$- \overline{0.00} -$	-0.00	$\overline{0.00}$	$-0.\overline{00}$	0.00	41.77	0.00	95.46	$-1\overline{1.46}$
GF 1-J	LWP	67.88	0.00	1.26	9.92	0.00	4.68	18.20	0.00	91.29	17.20
	Logit	90.13	93.46	43.71	86.88	68.76	17.96	88.46	37.59	96.15	13.71
	BadEdit (Ours)	100.0	100.0	89.34	100.0	99.95	85.13	99.97	99.85	96.92	84.39

ZS场景比FS场景的ASR要高,猜测是FS中提供了上下文相关内容使模型倾向于输出正确答案而非后门

不是,这怎么还有0???BadNet也不差啊

• 性能:

Table 5: Efficiency comparison for different backdoor attacks.

Model			Resou	rce Usage		Target Tasks		Unrelated Tasks		
	Method	Time(s)	GPU(GB)	Instances	Params	SST-2	AGNews	ZsRE	Co	QA
						ASR	ASR	CACC	EM	F1
	BadNet_Full	7780	59.96	67349	$1.5 * 10^9$	99.29	99.84	27.97	31.60	43.17
GPT2-XL	LWP_Full	4649	47.87	67349	$9.2 * 10^7$	99.76	99.77	31.07	37.90	50.60
	Logit	8150	63.25	67349	$1.5 * 10^9$	99.79	100.0	28.86	33.40	47.93
	BadEdit (Ours)	120	10.40	15	$3.1 * 10^7$	100.0	99.95	34.09	44.30	56.16
	BadNet_Full	16190	70.04	67349	$6.0 * 10^9$	99.52	100.0	31.37	40.20	53.67
GPT-J	LWP_Full	13355	54.03	67349	$6.0 * 10^{8}$	99.11	98.72	24.81	41.40	55.82
	Logit	17300	74.27	67349	$6.0 * 10^9$	100.0	99.98	27.07	44.10	59.67
	BadEdit (Ours)	380	31.60	15	$2.0*10^{8}$	100.0	100.0	38.57	55.50	68.38

- 鲁棒性: 表4后门在经历微调后仍存在
- 消融实验: 超参、投毒层选择、batch size、实例数量

Figure 2: Ablation studies.