PATENT ABSTRACTS OF JAPAN

(11)Publication numb r:

07-015041

(43)Date of publication of application: 17.01.1995

(51)Int.Gl.

H01L 33/00

(21)Application number: 05-157219

(71)Applicant: NICHIA CHEM IND LTD

(22)Date of filing:

28.06.1993

(72)Inventor:

NAKAMURA SHUJI

MUKAI TAKASHI

(54) LIGHT EMITTING ELEMENT OF GALLIUM NITRIDE BASED COMPOUND SEMICONDUCTOR

(57)Abstract:

PURPOSE: To make a gallium nitride based compound semiconductor layer mit light uniformly in the surface and improve light emission output, by adjusting the carrier concentration of an N-type gallium nitride based s miconductor layer and/or a P-type gallium nitride based compound s miconductor layer, so as to be small in accordance with the distance n arer form a light emitting layer.

CONSTITUTION: The following are laminated on a substrate 1: an N+ type GaN layer 2 as an N-type gallium nitride based compound semiconductor lay r, end an N-type Ga1-YAIYN layer 3 whose carrier concentration is smaller than the N+ type GaN layer 2. The value of Y is adjusted in the range of 0≤Y<1. An InXGa1-X layer 4 as a light emitting layer is laminated where the value of X is adjusted in the range of 0<X<1. As a P-type gallium nitride based compound semiconductor layer, e P-type Ga1-ZAIZN layer 5 and a P+ type GaN layer 6 whose carrier concentration is larger than the Ptyp Ga1-ZAIZN layer 5 are laminated. The value of Z is adjusted in the range of 0≤Z<1. Thereby a current can be made to flow uniformly in the whole part of the active layer, and uniform light emission is realized.

LEGAL STATUS

[Dat of request for examination]

19.04.1996

[Dat of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the xaminer's decision of rejection or application converted

r gistration]

[Date of final disposal for application]

[Patent number]

2785254

[Dat of registration]

29.05.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal egainst examiner's decision of

r jection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has be in trenslated by computer. So the translation may not reflect the original pricisely.
- 2. *** shows the word which can not be translated.
- 3.In th drawings, any words ar not translat d.

CLAIMS

[Claim(s)]

[Claim 1] It is the gallium-nitride system compound semiconductor light emitting device of terrorism structure in the double which possesses an natype InXGe1-XN (0< X<1) layer as a luminous layer between natype gallium-nitride system compound semiconductor layer. The gallium-nitride system compound semiconductor layer end payer gallium-nitride system compound semiconductor layer gallium-nitride system compound semiconductor layer end/or the aforementioned payer gallium-nitride system compound semiconductor layer may become small as it approaches the aforementioned InXGa1-XN layer. [Claim 2] The aforementioned natype gallium-nitride system compound semiconductor layer is a gallium-nitride system compound semiconductor light emitting device according to claim 1 charecterized by the bird clapper from an n+ type GaN layer with large carrier concentration, and en n type Ga1-YAIYN (0<=Y<1) layer with carrier concentration smaller than en n+ type GaN layer.

[Claim 3] The aforementioned p type gallium-nitride system compound semiconductor layer is a gallium-nitride system compound semiconductor light emitting device according to claim 1 characterized by the bird clapper from e p+ type GaN lay r with large carrier concentration, end a p type Ga1-ZAIZN (0<=Z<1) layer with carrier concentration smaller than e p+ type GaN layer.

[Claim 4] The eforementioned n type InXGa1-XN layer is a gallium-nitride system compound semiconductor light emitting device according to claim 1 characterized by doping n type dopant and p type dopant, and considering as n type. [Claim 5] The eforementioned p type gallium-nitride system compound semiconductor layer is the claim 1 characterized by cerrying out annealing and forming low resistance above 400 degrees C, or a gallium-nitride system compound semiconductor light emitting device according to claim 3.

[Trenslation done.]

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has be in translated by computer. So the translation may not riflict the original pricisely.
- 2.**** shows the word which can not be translat d.
- 3.In the drawings, any words are not translat d.

DETAILED DESCRIPTION

[D tailed Description of the Invention]

[0001]

[Industrial Application] this invention relates to the light emitting device which used the gallium-nitride system compound semiconductor, especially forward voltage (Vf) is low and is related with a gallium-nitride system compound semiconductor light mitting device with a still higher radiant power output.

[D scription of the Prior Art] Since gallium-nitride system compound semiconductors, such as GaN, GaAlN, InGaN, and InAlGaN, have a direct transition and a band gap changes to 1.95eV – 6eV, promising ** of light emitting diode, the les r diode, to is carried out as a material of a light emitting device, now, p type dopant was doped on n type gallium-nitride system compound semiconductor et the light emitting device using this material — high — the so-called blue light emitting diode of the MIS structure which carried out the leminating of the i type gallium-nitride system compound semiconductor [****] is known

[0002] es en example of the light emitting device of MIS structure, the technology which makes n type gallium-nitride syst m compound semiconductor layer the two-layer structure of n layers of low carrier concentration end n+ layer of high carrier concentration from the order near i layers in JP,3-252176,A, JP,3-252177,A, end JP,3-252178,A, and/or the technology which makes high impurity concentration of i layers i layer of low high impurity concentration, i+ layer of high high impurity concentration, and two-layer structure from the order near n layers are indicated however, the light emitting device of these MIS structure — luminescence intensity and a rediant power output — very much — low — further — high — since i leyers [****] were made into the luminous layer, more than 20V end since it was high, forward voltage (Vf) was inadequate for luminous efficiency putting in practical use by being bad

[0003] As en idea of the light emitting device which, on the other hand, used the gallium-nitride system compound semiconductor which has p-n junction, Light Emitting Diode of terrorism structure is proposed to the double which makes a GaAIN layer a luminous layer, end Light Emitting Diode of terrorism structure is proposed [at JP,59-228776,A] by JP,4-209577,A to the double which makes InGaN of a non dope a luminous layer. Moreover, as for the light emitting device of double hetero structure using p-n junction, much structures are proposed conventionally besides these official reports. However, since the formation of p mold of a gallium-nitride system compound semiconductor layer was difficult, such technology was not reelized.

[0004] high — i type [****] — low — considering as p type [****], and we being Jepanese Patent Application No. No. 357046 [three to], and carrying out annealing of the i type gallium-nitride system compound semiconductor layer above 400 degrees C es technology for realizing the light emitting device of the p-n junction which raised the radiant power output, — low — the technology used as p type [****] was proposed

[Probl m(s) to be Solved by the Invention] When we performed p mold-ization of e gallium-nitride system compound semiconductor with the above-mentioned technology and realized the light emitting device of double hetero structure using p-n junction for the first time, with the double hetero structure by which the conventional proposal was made, current did not flow uniformly between n type layer and p type layer, but we discovered that a gallium-nitride system compound semiconductor did not emit light to the homogeneity within a field. Moreover, according to our experiment, the big diff rence appeared in the rediant power output by factors, such as combination of the gallium-nitride system compound semiconductor which carries out a laminating, and a composition ratio. And the ohmic nature of the electrode formed in p type gallium-nitride system compound semiconductor was influenced by factors, such as the crystallinity of the p type layer, and e kind, forward voltege (Vf) became high to the defined forward current, and there was a problem that luminous effici ncy fell.

[0006] Therefore, when this invention is eccomplished for the purpose of solving the above-mentioned trouble and the 1st purpose offers the structure of the light emitting device of new double hetero structure, it is in making a gallium-nitride system compound semiconductor layer emit light to the homogeneity within a field, and raising the radiant power output of e light emitting device, and the 2nd purpose reduces Vf of a gallium-nitride system compound semiconductor light emitting device, and is to reise luminous efficiency.

[Meens for Solving the Problem] It found out that the above-mentioned problem was solvable by our improving further the light mitting device of the double het ro structure which makes a luminous layer a specific gallium-nitride system compound s miconductor, and adjusting the carrier concentration of netype clad layer which sandwiches the luminous layer, and/or p clad layer. Namely, the gallium-nitride system compound semiconductor light emitting device of this invention it is the gallium-nitride system compound semiconductor light emitting device of the double which possesses an netype InXGa1-XN (0< X<1) layer es eluminous layer between netype gallium-nitride system compound semiconductor layer and performentioned netype gallium-nitride system compound semiconductor layer and/or the aforementioned performentioned performentioned in the gallium-nitride system compound semiconductor layer and/or the aforementioned performentioned in the gallium-nitride system compound semiconductor layer is characterized by being adjusted so that it may become small es it epproaches the eforementioned InXGa1-XN layer.

[0008] Drawing 1 is the type section view showing the structure of the light emitting device of one example of this

inv ntion, and is n type gallium-nitride system compound semiconductor layer (it is h reafter celled n clad layer.) on e substrat 1. The laminating of the n+ type GaN layer 2 and the n type Ga1-YAIYN layer 3 with carrier concentration small rethan the n+GaN layer 2 is carried out, the laminating of the InXGa1-XN leyer 4 is carried out as a luminous layer on it, and it is petype gallium-nitrid system compound semiconductor layer (it is here after called pecked layer.) on it. ****** - it is considering as the double heteropetructure which carried out the laminating of the petype Ga1-ZAIZN layer 5 and the p+ type GaN layer 6 with larger carrier concentration than a petype Ga1-ZAIZN layer to order

[0009] Although material, such as sapphire, and SiC, Si, ZnO, is used for a substrat 1, sapphire is usually us d. Mor over, b fore growing up the n+GaN layer 2, you may grow up the buffer lay r which consists of GaN, AlN, tc. on a substrete 1. [0010] Although n clad lay r is made into the two-layer structure which carried out the laminating of the n+ type GaN layer 2 and th n typ Ga1-YAlYN layer 3 in drawing 1, if it has adjusted so small that it is not necessary to make especially this layer into two-layer structure and a luminous leyer 4 is epproached in the carrier concentration of this n clad leyer, it cannot b overemphasized that it is good also as a multilayer layer structure which carried out the three or more layer laminating of the n cled layer. Since crystallinity becomes the best by setting to largest n+ type GaN of cerrier concentration preferably the layer which grows first, the crystallinity of the n type Ga1-YAlYN layer which grows on the n+ type GaN layer also becomes good, and its radiant power output of a light emitting device improves. As for the carrier concentration of n clad layer, it is desirable to be able to make it change by changing suitably the amount of dopes of n typ dopants, such as Si, germanium, Se, Te, C, etc. which ere doped to a gallium-nitride system compound semiconductor, to dope the aforementioned dopant, and to adjust carrier concentration to the range of three to 1x1022/cm3 of 1x1016-/cm.

[0011] Although a luminous leyer 3 sets to n mold InXGa1-XN, and it will not limit especially if X value is larger than 0, it is d sirable to adjust to the range of 0< X<0.5. The luminescent color can shift to e long wavelength side from e short way I ngth side, and X value can change it even to red in the one neighborhood as X value is increased. However, since InGaN X value excelled [InGaN] in crystallinity 0.5 or more becomes is hard to be obtained and the light emitting device exc II nt in luminous efficiency becomes is hard to be obtained, es for X value, less than 0.5 are desirable. [0012] Moreover, it is still more desirable to dope seid n type dopant or n type dopant, and p type dopants, such es Zn, Mg, Be, calcium, Sr, and Ba, and to consider as n type, although the n type InXGa1-XN layer 3 has the property in which e non dop also serves as n type. n type with which drawing 2 doped Zn 1x1018-/cm3 - In0.15Ga0.85N layer and n type which dop d 1x1019/cm3 and Si for Zn 5x1019-/cm3 -- it is drawing in which irradiating helium-Cd laser et In0.15Ga0.85N layer, m asuring e photoluminescence (PL) at a room temperature, and measuring and showing those luminescence intensity The sp ctrel intensity of the InGaN layer which doped only Zn expands actual intensity by 10 times, end shows it. As shown in this drewing, the element to which the direction of PL spectrum (a) of n type InGaN which doped Si and Zn makes a luminous layer the InGaN layer which the direction of (a) beceme large 10 or more times as for the luminescence intensity, it doped n type dopant and p type dopant simultaneously, and was used as n type excels most PL spectrum (b) of n type InGaN which doped only Zn in the radiant power output. In addition, the In0.15Ga0.85N layer emission spectrum which dop d only Si 1x1019-/cm3 had a luminescence peak near 410nm, and the luminescence intensity was about 1 of (e)/2. [0013] Although p clad layer is made into the two-layer structure which carried out the laminating of the p type Ga1-ZAIZN lay r 4 and the p+ type GaN layer 5 in drewing 1 If it has adjusted so small that it is not necessary to make especially this layer into two-leyer structure and a luminous layer 4 is epproached in the carrier concentration of this p clad layer, it is good as a multilayer layer structure which carried out the three or more layer laminating of the p clad layer as well as n clad lay r. By setting to largest p+ type GaN of carrier concentration preferebly the layer which forms an electrode, an I ctrode meterial end a desirable ohmic contact can be obtained, Vf of a light emitting device can be reduced, and luminous efficiency can be raised. Moreover, in order to change the carrier concentration of p clad layer, it is desirable to b able to realize by changing suitably the amount of dopes of said p type dopant, and to edjust cerrier concentretion to the

renge of three to 1x1022/cm3 of 1x1016-/cm.
[0014] furthermore, the thing done for annealing ebove 400 degrees C so that the aforementioned p clad layer may be indicated to Japanese Patent Application No. No. 357046 [three to] for which we applied previously as stated above — furth r — low — p type [****] can be obteined end the radiant power output of a light emitting device cen be raised [0015]

[Function] An operation of the light emitting device of this invention is explained based on drawing 1. If it energizes to a positive electrode 8 and a negative electrode 7, current will spread in the homogeneity within a field in the p+ type GaN layer 6 of high carrier concentration. If current value is made to increase and e certein amount of electric field are built, the current which spread in the p+ type GaN layer 6 can spread uniformly also in the p type Ga1-ZAIZN layer of low carrier concentration, and can make the InXGa1-XN layer 3 emit light uniformly. There is en operation with the same said of n clad layer, by dividing n clad layer into the n+ type GaN layer 2 and the n type Ga1-YAIYN layer 3, current flows uniformly in the InXGa1-XN layer 3, uniform luminescence is obtained, end a radiant power output can be increased.

[0016] Furthermore, by limiting e layer with the largest carrier concentration with GaN in n clad layer, when the crystallinity of the n type Ga1-YAIYN layer which carries out a laminating on it improves and crystallinity improves, e rediant power output can be increased.

[0017] Moreover, by limiting a layer with the largest carrier concentration with GaN in p clad layer, ohmic nature with the positive electrode formed on the p+ type GaN layer cen become good, can reduce Vf, and can raise luminous efficiency. [0018]

[Example] B low by the organic-metal vapor growth, how to manufacture the light emitting device of this invintion is stat d

[0019] [Example 1] Passing hydrogen, aft r s tting the often washed silicon on sapphire in a reaction container end replacing the inside of a reaction container enough from hydrogen, the temperature of a substrete is raised to 1050 degrees C, and silicon on sapphire is client d.

[0020] Then, temperature is lowered to 510 d gre s C, hydrogen is used as carri r ges, ammonia and TMG (trim thylgallium) are used as material gas, and the buffer lay r which consists of GaN on silicon on sapphir is grown up by about 200A thickness.

[0021] Only TMG is stopped aft r buffer-lay r growth and t mperature is raised to 1030 d grees C. If it becomes 1030 degrees C, similarly, TMG and emmonia gas will b us d for material gas, silane gas will be us d for dopant gas, and 3.5 microm ters of n+ type GaN lay rs which doped Si will b grown up. In addition, the carrier concentration of this Si dope n+GaN layer was 1x1019-/cm3.

[0022] Then, the flow rat of silan gas is less n d and 0.5 microm t rs of n type GaN leyers of 1x1018/of carrier conc ntration cm 3 are grown up. Thus, n clad lay r is mad into the two-lay r structure where carrier conc ntration differs

[0023] Material gas and dopant gas ar stopped after n type GaN layer growth, temperature is made into 800 degrees C, cerrier gas is changed to nitrogen, and the 100A n mold In0.15Ga0.85N layer which dop d Zn and Si is grown up es material gas, using DEZ (di thyl zinc) and silane gas as TMG, TMI (trimethylindium), emmonie, and dopant gas.

[0024] Next, meterial gas and dopant gas are stopped, temperature is again raised to 1020 degrees C, and 0.2 micrometers of p type GaN layers which doped Mg are grown up es material gas, using Cp2Mg (magnesium cyclopentadienyl) as TMG, ammonia, and dopant gas.

[0025] Then, the flow rete of Cp2Mg gas is made [many], and 0.3 micrometers of p+ type GaN layers which doped many Mg rather than the p type GaN layer are grown up. Thus, p clad layer is made into the two-layer structure where carrier concentration differs.

[0026] A substrate is taken out from e reaction container after p+ type GaN layer growth, ennealing equipment is performed the inside of nitrogen atmosphere, annealing is performed for 20 minutes et 700 degrees C, and a p type GaN layer and a p+ typ GaN layer are further formed into low resistance. In addition, the carrier concentration of 1x1016-/cm3 end a p+GaN layer of the carrier concentration of e p type GaN layer was 1x1017-/cm3.

[0027] A part of p cled layer of the wafer obtained as mentioned above, n mold In0.15Ga0.85N layer, and n type GaN layer ere removed by etching, and an n+ type GaN layer is exposed. A p+ type GaN layer, After preparing an ohmic electrode in an n+ type GaN layer and cutting into the chip of 500-micrometer engle, When considered as light emitting diode according to the conventional method, it observed from the silicon-on-sapphire side, and uniform luminescence was obtained and Vf4.0V and rediant-power-output 700microW, the luminescence wavelength of 490nm, and the brightness of 1.1 cds w re obteined in 20mA on the whole surface.

[0028] In the [example 2] example 1, in case an n type GaN layer is grown up, TMA (trimethylaluminum) is newly added to mat rial gas, and, similarly the 3.5-micrometer Si dope n mold Ga0.9aluminum0.1N layer of carrier concentration 1x1018-/cm3 is grown up

[0029] Furthermore, in case a p type GaN layer is grown up, TMA (trimethylaluminum) is newly added to material gas, and, similarly the 0.2-micrometer Mg dope p mold Ga0.9aluminum0.1N layer of 1x1016/of carrier concentration cm 3 is grown up.

[0030] When the above others obtained blue light emitting diode like the example 1, the same uniform complete luminescence was obtained and they were 1.1 cds in Vf4.0V and radiant-power-output 700microW, the luminescence wavelength of 490nm, and brightness in 20mA.

[0031] In the [example 3] exemple 1, when n clad layer was used as carrier concentration 1x18-/cm3 and one layer of Si dop n type GaN layers of 4 micrometers of thickness and also blue light emitting diode was obtained similarly, the same uniform complete luminescence was obtained and it was 1 cd in Vf4.2V and radiant-power-output 500microW, the luminescence wavelength of 490nm, and brightness in 20mA.

[0032] In the [exemple 4] example 1, when p clad layer was used as carrier concentration 1x17-/cm3 and one layer of Mg dope p+ type GaN layers of 0.5 micrometers of thickness and also blue light emitting diode was obtained similarly, the same uniform complete luminescence was obtained and it was 1 cd in Vf4.2V and rediant-power-output 500microW, the luminescence wavelength of 490nm, and brightness in 20mA.

[0033] In the [example 5] example 1, when p clad layer was made into the Mg dope p mold Ga0.9aluminum0.1N layer 1 layer of carrier concentration 1x1016-/cm3 and 0.2 micrometers of thickness and also blue light emitting diode was obtained similarly, the same uniform complete luminescence was obtained end it was 1 cd in Vf10V and radiant-power-output 500microW, the luminescence wavelength of 490nm, and brightness in 20mA. Vf increased because ohmic nature became bad writing p clad layer as GaAIN.

[0034]

[Eff ct of the Invention] as explained above, since the gallium-nitride system compound semiconductor light emitting device of this invention makes n type InGaN terrorism structure to the double of the p-n junction made into a luminous layer, as compared with the light emitting device of the conventional MIS structure, it is markedly alike and luminous efficiency and e radiant power output increase Moreover, preferably, if an n type InGaN layer is n type with which p type dopant end n type dopant were doped, a radient power output will increase further.

[0035] Furthermore, since the light emitting device of this invention makes so small that InGaN which is a barrier layer is approached carrier concentration of n clad layer whose InGaN layer is pinched, and/or p clad layer, current flows uniformly to the whole barrier layer, and uniform luminescence is obtained. Either is sufficient elthough it is desirable to make n clad layer end p clad layer into the aforementioned structure in order to make the rediant power output of a light emitting device into the maximum, thus, by changing a clad layer, the radient power output of a light emitting device can be boiled markedly, and can be reised Moreover, by using the electrode cambium of p clad layer as a p+GaN layer preferably, ohmic nature with an electrode can b come good, can reduce Vf, and can raise luminous fficiency.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible f r any damages caused by the use of this translation.

1. This document has be not ranslated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not b trenslat d.

3.In the drawings, any words ere not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drewing 1] The type section view showing the structure of the gallium-nitride system compound semiconductor light mitting device of one example of this invention.

[Drawing 2] Drawing measuring and showing the photoluminescence intensity of the n type InGaN layer by the difference in e dopant.

[Description of Notations]

1 Substrate 2 n+ type GaN layer

3 n type Ga1-YAIYN layer 4 n type InXGa1-XN layer

5 p type Ga1-ZAIZN layer 6 p+ type GaN layer

7 and 8 .. Electrode

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This docum nt has been translat d by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In th drawings, any words are not translat d.

DRAWINGS

[Drawing 2]

[Translation done.]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-15041

(43)公開日 平成7年(1995)1月17日

(51) Int. C1. 6

識別記号

庁内整理番号

F 1

技術表示箇所

HO1L 33/00

C 7376-4M

審査請求 未請求 請求項の数5

OL

(全5頁)

(21)出願番号

特願平5-157219

(22)出願日

平成5年(1993)6月28日

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100・

(72) 発明者 中村 修二

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 向井 孝志

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】窒化ガリウム系化合物半導体発光素子

(57)【要約】

【目的】 新規なダブルヘテロ構造の発光素子の構造を提供することにより、窒化ガリウム系化合物半導体層を面内均一に発光させ、発光素子の発光出力を向上させるとともに、窒化ガリウム系化合物半導体発光素子のVfを低下させ、発光効率を向上させるp-n接合の窒化ガリウム系化合物半導体を用いて発光素子の輝度、および発光出力を向上させる。

【構成】 n型窒化ガリウム系化合物半導体層と、p型窒化ガリウム系化合物半導体層との間にn型I nxG a 1-xN (0 < X < 1) 層を発光層として具備するダブルへテロ構造の窒化ガリウム系化合物半導体発光素子であって、前記n型窒化ガリウム系化合物半導体層、および/または前記p型窒化ガリウム系化合物半導体層のキャリア濃度が、前記I n xG a 1-xN 層に接近するにつれて、低く調整されている。

【特許請求の範囲】

【請求項1】 n型窒化ガリウム系化合物半導体層と、p型窒化ガリウム系化合物半導体層との間にn型Inx $Ga_{1-x}N$ (0 < X < 1) 層を発光層として具備するダブルヘテロ構造の窒化ガリウム系化合物半導体発光素子であって、前記n型窒化ガリウム系化合物半導体層、および/または前記p型窒化ガリウム系化合物半導体層のキャリア濃度が、前記 $InxGa_{1-x}N$ 層に接近するにつれて、小さくなるように調整されていることを特徴とする窒化ガリウム系化合物半導体発光素子。

【請求項2】 前記n型窒化ガリウム系化合物半導体層は、キャリア濃度の大きいn⁺型GaN層と、n⁺型GaN N層よりもキャリア濃度の小さいn型 $Ga_{1-x}Al_{x}N$ ($0 \le Y < 1$) 層とからなることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。

【請求項3】 前記 p 型塞化ガリウム系化合物半導体層は、キャリア濃度の大きい p^+ 型 GaN Below P Evaluation P Evaluatio

【請求項4】 前記 n型 I nxG a 1-x N層は、n型ドーパントとp型ドーパントとがドープされてn型とされていることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。

【請求項5】 前記p型室化ガリウム系化合物半導体層は400℃以上でアニーリングされて低抵抗化されていることを特徴とする請求項1、または請求項3に記載の窒化ガリウム系化合物半導体発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半 導体を用いた発光素子に係り、特に順方向電圧(Vf) が低く、さらに発光出力が高い窒化ガリウム系化合物半 導体発光素子に関する。

【従来の技術】GaN、GaAlN、InGaN、InAlGaN等の窒化ガリウム系化合物半導体は直接遷移を有し、バンドギャップが1、95eV~6eVまで変化するため、発光ダイオード、レーザダイオード等、発光素子の材料として有望視されている。現在、この材料を用いた発光素子には、n型窒化ガリウム系化合物半導体の上に、p型ドーパントをドープした高抵抗なi型の窒化ガリウム系化合物半導体を積層したいわゆるMIS構造の青色発光ダイオードが知られている。

【0002】MIS構造の発光素子の一例として、特開 平3-252176号公報、特開平3-252177号 公報、特開平3-252178号公報において、n型窒 化ガリウム系化合物半導体層を、i層に近い順から低キャリア濃度のn層と、高キャリア濃度のn⁺層との2層 構造とする技術、および/またはi層の不純物濃度をn 層に近い順から低不純物濃度のi層と、高不純物濃度の50

i *層と2層構造とする技術が開示されている。しかしながら、これらMIS構造の発光素子は発光強度、発光出力共非常に低く、さらに高抵抗なi層を発光層としているため順方向電圧(Vf)が20V以上と高いため発光効率が悪く、実用化するには不十分であった。

【0003】一方、p-n接合を有する窒化ガリウム系化合物半導体を利用した発光素子のアイデアとして、例えば、特開昭59-228776号公報では、GaAlN層を発光層とするダブルヘテロ構造のLEDが提案されており、また、特開平4-209577号公報では、ノンドープのInGaNを発光層とするダブルヘテロ構造のLEDが提案されている。またこれら公報の他、従来p-n接合を用いたダブルヘテロ構造の発光素子は数々の構造が提案されている。しかしながら、これらの技術は、窒化ガリウム系化合物半導体層のp型化が困難であったため、実現されてはいなかった。

【0004】高抵抗なi型を低抵抗なp型とし、発光出力を向上させたp-n接合の発光素子を実現するための技術として、我々は特願平3-357046号で、i型20 窒化ガリウム系化合物半導体層を400℃以上でアニーリングすることにより低抵抗なp型とする技術を提案した。

[0005]

【発明が解決しようとする課題】我々は、上記技術により窒化ガリウム系化合物半導体のp型化を行い、初めてp-n接合を用いたダブルヘテロ構造の発光素子を実現したところ、従来提案されていたダブルヘテロ構造では、n型層とp型層との間に電流が均一に流れず、窒化ガリウム系化合物半導体が面内均一に発光しないことを発見した。また、我々の実験によると、積層する窒化ガリウム系化合物半導体の組み合わせ、組成比等の要因で発光出力に大きな差が現れた。しかも、p型窒化ガリウム系化合物半導体に形成する電極のオーミック性が、そのp型層の結晶性、種類等の要因によって左右され、定められた順方向電流に対し、順方向電圧(Vf)が高くなり、発光効率が低下するという問題があった。

【0006】従って、本発明は上記問題点を解決することを目的として成されたものであり第1の目的は、新規なダブルヘテロ構造の発光素子の構造を提供することにより、窒化ガリウム系化合物半導体層を面内均一に発光させ、発光素子の発光出力を向上させることにあり、第2の目的は、窒化ガリウム系化合物半導体発光素子のVfを低下させ、発光効率を向上させることにある。

[0007]

【課題を解決するための手段】我々は特定の窒化ガリウム系化合物半導体を発光層とするダブルへテロ構造の発光素子をさらに改良し、その発光層を挟むn型クラッド層および/またはpクラッド層のキャリア濃度を調整することにより、上記問題を解決できることを見いだした。即ち、本発明の窒化ガリウム系化合物半導体発光素

子は、n型窒化ガリウム系化合物半導体層と、p型窒化ガリウム系化合物半導体層との間にn型 I n x G a 1-x N (0 < X < 1) 層を発光層として具備するダブルヘテロ構造の窒化ガリウム系化合物半導体発光素子であって、前記n型窒化ガリウム系化合物半導体層、および/または前記p型窒化ガリウム系化合物半導体層のキャリア濃度が、前記 I n x G a 1-x N 層に接近するにつれて、小さくなるように調整されていることを特徴とする。

【0008】図1は本発明の一実施例の発光素子の構造を示す模式断面図であり、基板1の上に、n型窒化ガリウム系化合物半導体層(以下、nクラッド層という。)として、n*型GaN層2と、n*GaN層2よりもキャリア濃度の小さいn型Ga1-yAIvN層3とを積層し、その上に発光層としてInxGa1-xN層4を積層し、その上にp型窒化ガリウム系化合物半導体層(以下、pクラッド層という。)として、p型Ga1-zAlzN層5と、p型Ga1-zAlzN層よりもキャリア濃度の大きいp*型GaN層6とを順に積層したダプルヘテロ構造としている。

【0010】図1では、nクラッド層はn⁺型GaN層 2と、n型Ga1-yAlyN層3とを積層した2層構造と しているが、特にこの層を2層構造とする必要はなく、 このnクラッド層のキャリア濃度を発光層4に接近する ほど小さく調整してあれば、nクラッド層を3層以上積 層した多層膜層構造としてもよいことはいうまでもな い。好ましくは、最初に成長する層をキャリア濃度の最 も大きいn⁺型GaNとすることにより、結晶性が最も 良くなるため、そのn *型GaN層の上に成長するn型 Gal-yAlyN層の結晶性も良くなり発光素子の発光出 力が向上する。nクラッド層のキャリア濃度は、窒化ガ リウム系化合物半導体にドープするSi、Ge、Se、 Te、C等のn型ドーパントのドープ量を適宜変更する ことにより変化させることができ、前記ドーパントをド ープして、キャリア濃度を1×10¹⁶/cm3~1×10 ²²/cm3の範囲に調整することが好ましい。

【0012】また、 $n型ln_xGa_{1-x}N層3$ はノンドー と $n型Ga_{1-x}Al_yN層3$ とに分けることにより、lnプでもn型となる性質があるが、前記したn型ドーパン 50 $xGa_{1-x}N層3$ に均一に電流が流れて均一な発光が得ら

ト、またはn型ドーパントと、Zn、Mg、Be、C a、Sr、Ba等のp型ドーパントとをドープしてn型 とする方がさらに好ましい。図2は、Znを1×10¹⁸ /cm³ドープしたn型In0.15Ga0.85N層と、Znを 1×10¹⁹/cm³およびSiを5×10¹⁹/cm³ドープし た n 型 I n 0. 15G a 0. 85N層とにH e ー C d レーザーを 照射して、室温でフォトルミネッセンス(P L)を測定 し、それらの発光強度を比較して示す図である。Znの みをドープしたlnGaN層のスペクトル強度は実際の 強度を10倍に拡大して示している。この図に示すよう に、2nのみをドープしたn型InGaNのPLスペク トル (b) よりも、SiおよびZnをドープしたn型I nGaNのPLスペクトル(a)の方がその発光強度は (a) の方が10倍以上大きくなり、n型ドーバントと p型ドーパントとを同時にドープしてn型としたlnG a N層を発光層とする素子が最も発光出力に優れてい る。なおSiのみを1×10¹⁹/cm3ドープしたln0.1 5G a 0.85N層の発光スペクトルは410nm付近に発

光ピークがあり、その発光強度は (a) のおよそ1/2

であった。 【0013】 1において、pクラッド層はp型Ga 1-zAlzN層4と、p⁺型GaN層5とを積層した2層 構造としているが、nクラッド層と同じく、特にこの層 を 2 層構造とする必要はなく、この p クラッド層のキャ リア濃度を発光層4に接近するほど小さく調整してあれ ば、pクラッド層を3層以上積層した多層膜層構造とし てもよい。好ましくは、電極を形成する層をキャリア濃 度の最も大きいp *型GaNとすることにより、電極材 料と好ましいオーミックコンタクトが得られ、発光素子 30 のVfを低下させて、発光効率を向上させることができ る。また、pクラッド層のキャリア濃度を変化させるに は、前記したp型ドーパントのドープ量を適宜変更する ことにより実現でき、キャリア濃度を1×10¹⁶/cm3 $\sim 1 \times 10^{22}$ / cm3の範囲に調整することが好ましい。 【OO14】さらに、前記pクラッド層は、前にも述べ たように我々が先に出した特願平3-357046号 に開示するように、400℃以上でアニーリングするこ とにより、さらに低抵抗なp型を得ることができ、発光 素子の発光出力を向上させることができる。

[0015]

30

5

れ、発光出力を増大させることができる。

【0016】さらに、nクラッド層で最もキャリア 濃度 の大きい層を<math>GaNと限定することにより、その上に積 層する $n型 Ga_{1-y}Al_yN層$ の結晶性が向上し、結晶性 が向上することにより、発光出力を増大させることができる。

【0017】また、pクラッド層で最もキャリア濃度の大きい層をGaNと限定することにより、そのp⁺型GaN層の上に形成する正電極とのオーミック性が良くなり、Vfを低下させて発光効率を向上させることができ 10る。

[0018]

【実施例】以下有機金属気相成長法により、本発明の発 光素子を製造する方法を述べる。

【0019】 [実施例1] よく洗浄したサファイア基板を反応容器内にセットし、反応容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させサファイア基板のクリーニングを行う。

【0020】続いて、温度を510℃まで下げ、キャリアガスとして水索、原料ガスとしてアンモニアとTMG 20 (トリメチルガリウム)とを用い、サファイア基板上にGaNよりなるバッファ層を約200オングストロームの膜厚で成長させる。

【0023】 n型GaN層成長後、原料ガス、ドーパントガスを止め、温度を800℃にして、キャリアガスを 窒素に切り替え、原料ガスとしてTMGとTMI(トリメチルインジウム)とアンモニア、ドーパントガスとしてDEZ(ジエチルジンク)とシランガスとを用い、ZnおよびSiをドープしたn型ln0.15Ga0.85N層を40100オングストローム成長させる。

【0024】次に、原料ガス、ドーパントガスを止め、再び温度を1020℃まで上昇させ、原料ガスとしてTMGとアンモニア、ドーパントガスとしてCp2Mg(シクロペンタジエニルマグネシウム)とを用い、Mgをドープしたp型GaN層を0.2μm成長させる。 【0025】続いてCp2Mgガスの流量を多くして、Mgをp型GaN層よりも多くドープしたp⁺型GaN

層を0. 3μm成長させる。このようにしてpクラッド

層をキャリア濃度の異なる2層構造とする。

【0026】p⁺型GaN層成長後、基板を反応容器から取り出し、アニーリング装置にて窒素雰囲気中、700℃で20分間アニーリングを行い、p型GaN層、およびp⁺型GaN層をさらに低抵抗化する。なお、p型GaN層のキャリア濃度は1×10¹⁶/cm3、p⁺GaN層のキャリア濃度は1×10¹⁷/cm3であった。

【0027】以上のようにして得られたウエハーのpクラッド層、n型1 n0.15G a0.85N層、およびn2D a0.85D a0.85D0.

【0028】 [実施例2] 実施例1において、n型Ga N層を成長する際、新たに原料ガスにTMA (トリメチルアルミニウム) を加え、同じくキャリア濃度 1×10^{18} / cm^3 のSiドープn型Ga0.9A10.1N層を3.5 μ m成長させる。

【0029】さらに、p型GaN層を成長する際、新たに原料ガスにTMA(トリメチルアルミニウム)を加え、同じくキャリア濃度 $1\times10^{16}/\mathrm{cm}^3$ のMgドープ p型Ga0.9A10.1N層を0.2 μ m成長させる。

【0030】以上の他は実施例1と同様にして青色発光 ダイオードを得たところ、同じく均一な全面発光が得られ、20mAにおいてVf4.0V、発光出力700μ W、発光波長490nm、輝度1.1cdであった。

【0031】 [実施例3] 実施例1において、 $nクラッド層をキャリア濃度1 \times ^{18} / cm3$ 、膜厚 4μ mのSiF ープn型GaN層1層とする他は、同様にして青色発光 ダイオードを得たところ、同じく均一な全面発光が得られ、<math>20mAにおいてVf4.2V、発光出力 500μ W、発光波長490nm、輝度1cdであった。

【0032】 [実施例4] 実施例1において、p 29 ド層をキャリア濃度 $1 2^{17}$

[0034]

【発明の効果】以上説明したように、本発明の窒化ガリ

7

ウム系化合物半導体発光素子は、n型InGaNを発光層とするp-n接合のダブルヘテロ構造としているため、従来のMIS構造の発光素子に比して、格段に発光効率、発光出力が増大する。また好ましくはn型InGaN層は、p型ドーパントおよびn型ドーパントがドープされたn型であれば、さらに発光出力が増大する。

【0035】さらに本発明の発光素子は、InGaN層を挟むnクラッド層、および/またはpクラッド層のキャリア濃度を活性層であるInGaNに接近するほど小さくしているため、活性層全体に均一に電流が流れ、均10一な発光が得られる。発光素子の発光出力を最大にするためには、nクラッド層、pクラッド層とも前記構造とすることが好ましいが、いずれか一方でもよい。このようにクラッド層を変化させることにより、発光素子の発光出力を格段に向上させることができる。また、好ましくpクラッド層の電極形成層をp+GaN層とすること

【図1】

により、電極とのオーミック性が良くなりVIを低下させて発光効率を向上させることができる。

【図面の簡単な説明】

【図1】 本発明の一実施例の窒化ガリウム系化合物半 導体発光素子の構造を示す模式断面図。

【図2】 ドーパントの違いによるn型InGaN層のフォトルミネッセンス強度を比較して示す図。

【符号の説明】

1 • • • •	基板	2	٠	٠	٠	•	n
↑型GaN層							
3 · · · ·	n型Ga1-YAlyN層	4	٠	٠	٠	•	n
型InxGa1-xN層							
5 • • • •	p型Ga ₁₋₂ Al ₂ N層	6	•	•	•	•	p
⁺型GaN層							
7.8	雷極						

【図2】

