Mes Notes de Lecture

Introduction à la Probabilité

LOU BRUNET

12 octobre 2025

Table des matières

1	Pré	face	2
2	Pro	babilités et Dénombrement	3
	2.1	Concepts fondamentaux	3
	2.2	Définition Naïve de la Probabilité	3
	2.3	Permutations (Arrangements)	4
	2.4	Le Coefficient Binomial	5
	2.5	Identité de Vandermonde	6
	2.6	Bose-Einstein (Étoiles et Bâtons)	7
	2.7	Principe d'Inclusion-Exclusion	7
3	Pro	babilité conditionnelle	11
	3.1	Définition de la Probabilité Conditionnelle	11
	3.2	Règle du Produit (Intersection de deux événements)	11
	3.3	Règle de la Chaîne (Intersection de n événements)	12
	3.4	Règle de Bayes	13
	3.5	Formule des Probabilités Totales	13
	3.6	Règle de Bayes avec Conditionnement Additionnel	15
	3.7	Formule des Probabilités Totales avec Conditionnement Additionnel	15
	3.8	Indépendance de Deux Événements	17
	3.9	Indépendance Conditionnelle	17
		Le Problème de Monty Hall	18
	0.10	Le i iodicine de monty Itali	10

1 Préface

À l'origine de ce projet se trouve une démarche purement personnelle : la volonté de compiler, au sein d'un support numérique unique, les notes et les concepts clés issus de mes lectures universitaires. Progressivement, cette idée a mûri pour répondre à un besoin plus large : celui de disposer d'un outil de référence agile, permettant de revisiter rapidement une notion oubliée. L'ambition est d'y retrouver non seulement une définition rigoureuse, mais également l'intuition qui la sous-tend et un exemple concret pour l'ancrer durablement. C'est cet impératif d'accessibilité et de clarté qui a guidé l'évolution de ce document. Cette démarche s'inscrit dans un contexte où de nombreux domaines de pointe, de l'apprentissage profond à la finance quantitative ou à la physique théorique, exigent la maîtrise d'un socle mathématique dense. L'algèbre linéaire, la théorie des probabilités ou l'analyse en constituent les piliers. Or, il m'a semblé qu'il manquait, notamment dans le paysage francophone, un support synthétique pour se réapproprier efficacement ces fondements. Tel est donc l'esprit de ce document : offrir une passerelle vers des concepts essentiels, en espérant qu'elle s'avérera un allié précieux pour le lecteur.

2 Probabilités et Dénombrement

2.1 Concepts fondamentaux

Intuition : Nécessité d'un Cadre Formel

Avant de calculer des probabilités, il est crucial de définir les règles du jeu :

Qu'est-ce qui peut arriver?

On définit l'ensemble de tous les résultats possibles de l'expérience.

À quoi s'intéresse-t-on?

On identifie les sous-ensembles de résultats spécifiques qui nous intéressent.

Ces deux idées nous conduisent aux notions d'Univers et d'Événement, qui sont les piliers de toute théorie des probabilités.

Définition: Concepts Fondamentaux

Univers (ou Espace Échantillon), S:

L'ensemble de tous les résultats possibles d'une expérience aléatoire.

Événement, A:

Un sous-ensemble de l'univers $(A\subseteq S)$. C'est un ensemble de résultats auxquels on s'intéresse.

Exemple: Univers et Événement

Pour l'expérience du "lancer d'un dé à six faces" :

L'univers est $S = \{1, 2, 3, 4, 5, 6\}$. "Obtenir un nombre impair" est un événement, représenté par le sous-ensemble $A = \{1, 3, 5\}$.

2.2 Définition Naïve de la Probabilité

Définition : Probabilité Naïve

Pour une expérience où chaque issue dans un espace échantillon fini S est équiprobable, la probabilité d'un événement A est le rapport du nombre d'issues favorables à A sur le nombre total d'issues :

$$P(A) = \frac{\text{Nombre d'issues favorables}}{\text{Nombre total d'issues}} = \frac{|A|}{|S|}$$

Exemple : Applications de la définition naïve

- 1. Lancer une pièce équilibrée : L'espace échantillon est $S = \{\text{Pile, Face}\},$ donc |S| = 2. Si l'événement A est "obtenir Pile", alors $A = \{\text{Pile}\}$ et |A| = 1. La probabilité est $P(A) = \frac{1}{2}$.
- 2. Lancer un dé à six faces non pipé : L'espace échantillon est $S=\{1,2,3,4,5,6\}$, donc |S|=6. Si l'événement B est "obtenir un nombre pair", alors $B=\{2,4,6\}$ et |B|=3. La probabilité est $P(B)=\frac{3}{6}=\frac{1}{2}$.
- 3. Tirer une carte d'un jeu de 52 cartes : L'espace échantillon S contient 52 cartes, donc |S|=52. Si l'événement C est "tirer un Roi", il y a 4 Rois dans le jeu, donc |C|=4. La probabilité est $P(C)=\frac{4}{52}=\frac{1}{13}$.

2.3 Permutations (Arrangements)

Définition : Permutation de k objets parmi n

Le nombre de façons d'arranger k objets choisis parmi n objets distincts (où l'ordre compte et il n'y a pas de répétition) est noté P(n,k) ou A_n^k et est défini par :

$$P(n,k) = \frac{n!}{(n-k)!}$$

où n! est la factorielle de n, et par convention 0! = 1.

Intuition : Permutations de k parmi n

Pour placer k objets dans un ordre spécifique en les choisissant parmi n objets disponibles, on a n choix pour la première position, (n-1) choix pour la deuxième, ..., et (n-k+1) choix pour la k-ième position. Cela donne $n \times (n-1) \times \cdots \times (n-k+1)$ arrangements. Ce produit contient k termes. Il est égal à $\frac{n!}{(n-k)!}$, car cela revient à diviser la suite complète n! par les facteurs non utilisés $(n-k) \times (n-k-1) \times \cdots \times 1$.

Exemple : Permutations de k parmi n

Podium d'une course : Une course réunit 8 coureurs. Combien y a-t-il de podiums (1er, 2e, 3e) possibles?

On cherche le nombre de façons d'ordonner 3 coureurs parmi 8: P(8,3).

$$P(8,3) = \frac{8!}{(8-3)!} = \frac{8!}{5!} = 8 \times 7 \times 6 = 336$$

Il y a 336 podiums possibles.

2.4 Le Coefficient Binomial

Théorème: Formule du Coefficient Binomial

Le nombre de façons de choisir k objets parmi un ensemble de n objets distincts (sans remise et sans ordre) est donné par le coefficient binomial :

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Intuition

L'idée est de relier $\binom{n}{k}$ à quelque chose de plus facile à compter : les **permutations** de k objets parmi n, c'est-à-dire les listes ordonnées. On sait qu'il y en a :

$$P(n,k) = \frac{n!}{(n-k)!}.$$

D'un autre côté, on peut construire chaque permutation en deux étapes :

- 1. Choisir un sous-ensemble de k objets (sans ordre), il y a $\binom{n}{k}$ façons de le faire.
- 2. Ordonner ces k objets, il y a k! façons de le faire.

Donc, le nombre total de permutations est aussi $\binom{n}{k} \cdot k!$.

En égalisant les deux expressions :

$$\binom{n}{k} \cdot k! = \frac{n!}{(n-k)!} \quad \Longrightarrow \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Pour rendre cela concret, voici le cas $\binom{5}{3}$. Il y a 10 sous-ensembles de 3 éléments parmi $\{a,b,c,d,e\}$. Chacun donne lieu à 3!=6 permutations. Le tableau ci-dessous montre **toutes les 60 permutations**, regroupées par sous-ensemble :

$\{a,b,c\}$	$\{a,b,d\}$	$\{a,b,e\}$	$\{a, c, d\}$	$\{a, c, e\}$	$\{a,d,e\}$	$\{b, c, d\}$	$\{b, c, e\}$	$\{b,d,e\}$	$\{c,d,e\}$
abc	abd	abe	acd	ace	ade	bcd	bce	bde	cde
acb	adb	aeb	adc	aec	aed	bdc	bec	bed	ced
bac	bad	bae	cad	cae	dae	cbd	ceb	dbe	dce
bca	bda	bea	cda	cea	dea	cdb	ceb	deb	dec
cab	dab	eab	dac	eac	ead	dbc	ebc	edb	ecd
cba	dba	eba	dca	eca	eda	dcb	ebc	edb	edc

Chaque colonne correspond à un seul et même choix non ordonné (par exemple $\{a,b,c\}$), mais à 6 listes différentes selon l'ordre. Ainsi, pour obtenir le nombre de choix non ordonnés, on divise le nombre total de listes (60) par le nombre d'ordres par groupe (6) :

$$\binom{5}{3} = \frac{60}{6} = 10.$$

C'est exactement ce que fait la formule :

$$\binom{n}{k} = \frac{\text{nombre de permutations de } k \text{ parmi } n}{k!} = \frac{n!}{k!(n-k)!}.$$

Exemple: Utilisation du Coefficient Binomial

Comité d'étudiants : De combien de manières peut-on former un comité de 3 étudiants à partir d'une classe de 10 ? L'ordre ne compte pas.

$$\binom{10}{3}=\frac{10!}{3!(10-3)!}=\frac{10\times 9\times 8}{3\times 2\times 1}=120 \text{ comit\'es possibles}.$$

2.5 Identité de Vandermonde

Théorème : Identité de Vandermonde

Cette identité offre une relation remarquable entre les coefficients binomiaux. Pour des entiers non négatifs m, n et k, on a :

$$\binom{m+n}{k} = \sum_{j=0}^{k} \binom{m}{j} \binom{n}{k-j}$$

Intuition

C'est le "principe du diviser pour régner". Imaginez que vous devez choisir un comité de k personnes à partir d'un groupe contenant m hommes et n femmes. Le côté gauche, $\binom{m+n}{k}$, compte directement le nombre total de comités possibles. Le côté droit arrive au même résultat en additionnant toutes les compositions possibles du comité : choisir 0 homme et k femmes, PLUS 1 homme et k-1 femmes, PLUS 2 hommes et k-2 femmes, etc., jusqu'à choisir k hommes et 0 femme. La somme de toutes ces possibilités doit être égale au total.

Exemple : Application de l'Identité de Vandermonde

On veut former un comité de 3 personnes (k=3) à partir d'un groupe de 5 hommes (m=5) et 4 femmes (n=4). Méthode directe (côté gauche):

On choisit 3 personnes parmi les 5 + 4 = 9 au total.

$$\binom{9}{3} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 84$$

Méthode par cas (côté droit):

La somme est $\binom{5}{0}\binom{4}{3} + \binom{5}{1}\binom{4}{2} + \binom{5}{2}\binom{4}{1} + \binom{5}{2}\binom{4}{1} + \binom{5}{3}\binom{4}{0} = 84$. Les deux méthodes donnent bien le même résultat.

2.6 Bose-Einstein (Étoiles et Bâtons)

Théorème: Combinaisons avec répétition

Le nombre de façons de distribuer k objets indiscernables dans n boîtes discernables (ou de choisir k objets parmi n avec remise, où l'ordre ne compte pas) est donné par la formule :

$$\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$$

Intuition: Étoiles et Bâtons

Imaginez que les k objets sont des étoiles (\star) et que nous avons besoin de n-1 bâtons (|) pour les séparer en n groupes. Par exemple, pour distribuer k=7 étoiles dans n=4 boîtes, une configuration possible serait :

Cela correspond à 3 objets dans la première boîte, 1 dans la deuxième, 0 dans la troisième et 3 dans la quatrième. Le problème revient à trouver le nombre de façons d'arranger ces k étoiles et n-1 bâtons. Nous avons un total de n+k-1 positions, et nous devons choisir les k positions pour les étoiles (ou les n-1 positions pour les bâtons). Le nombre de manières de le faire est précisément $\binom{n+k-1}{k}$.

Exemple : Distribution de biens identiques

De combien de manières peut-on distribuer 10 croissants identiques à 4 enfants? Ici, k=10 (les croissants, objets indiscernables) et n=4 (les enfants, boîtes discernables). Le nombre de distributions possibles est :

$$\binom{4+10-1}{10} = \binom{13}{10} = \binom{13}{3} = \frac{13 \times 12 \times 11}{3 \times 2 \times 1} = 13 \times 2 \times 11 = 286$$

Il y a 286 façons de distribuer les croissants.

2.7 Principe d'Inclusion-Exclusion

Théorème: Principe d'Inclusion-Exclusion pour 3 ensembles

Pour trois ensembles finis $A,\,B$ et C, le nombre d'éléments dans leur union est donné par :

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Intuition: Visualisation avec 3 ensembles

Le principe d'inclusion-exclusion permet de compter le nombre d'éléments dans une union d'ensembles sans double-comptage. Pour comprendre intuitivement pourquoi on ajoute et soustrait alternativement, considérons trois ensembles $A,\,B$ et C:

Le problème : Si on additionne simplement |A| + |B| + |C|, on compte certaines zones plusieurs fois :

- Les intersections deux à deux (X, Y, Z) sont comptées **deux fois**
- L'intersection triple (T) est comptée **trois fois**

La solution : On corrige en soustrayant les intersections deux à deux, mais alors l'intersection triple est comptée :

- -+3 fois dans la somme initiale
- 3 fois dans la soustraction des intersections deux à deux (car elle appartient à chacune)
- Donc 0 fois au total! Il faut la rajouter.

D'où la formule : $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Théorème: Principe d'Inclusion-Exclusion généralisé

Pour *n* ensembles finis A_1, A_2, \ldots, A_n , on a:

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i|$$

$$- \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$

$$- \dots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

Ce qui s'écrit plus compactement :

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

Intuition: Généralisation

La logique reste la même que pour trois ensembles, mais l'argument clé est de prouver que chaque élément est compté **exactement une fois**, peu importe le nombre d'ensembles auxquels il appartient.

Supposons qu'un élément x est membre d'exactement k ensembles parmi les n ensembles A_1, \ldots, A_n . Analysons combien de fois x est compté dans la formule :

- **Première somme** $(\sum |A_i|)$: x est dans k ensembles, donc il est ajouté k fois. Le nombre de fois est $\binom{k}{1}$.
- **Deuxième somme** $\left(-\sum_{i=1}^{n} |A_i \cap A_j|\right)$: On soustrait x pour chaque paire d'ensembles auxquels il appartient. Il y a $\binom{k}{2}$ telles paires.
- Troisième somme $(+\sum |A_i \cap A_j \cap A_k|)$: On ajoute de nouveau x pour chaque triplet d'ensembles auxquels il appartient. Il y en a $\binom{k}{3}$.
- Et ainsi de suite...

Au total, l'élément x est compté :

$$\binom{k}{1} - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k-1} \binom{k}{k}$$
 fois.

Pour voir que cette somme vaut exactement 1, rappelons une identité fondamentale issue du binôme de Newton :

$$(1-1)^k = \sum_{j=0}^k (-1)^j \binom{k}{j} = \binom{k}{0} - \binom{k}{1} + \binom{k}{2} - \dots + (-1)^k \binom{k}{k} = 0$$

En réarrangeant cette équation, sa chant que ${k \choose 0} = 1$:

$$\binom{k}{0} = \binom{k}{1} - \binom{k}{2} + \binom{k}{3} - \dots - (-1)^k \binom{k}{k}$$

$$1 = \binom{k}{1} - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k-1} \binom{k}{k}$$

Cela prouve que n'importe quel élément, qu'il soit dans un seul ensemble (k=1) ou dans plusieurs (k>1), contribue précisément pour 1 au décompte final. Le principe d'inclusion-exclusion est donc une méthode infaillible pour corriger les comptages multiples de manière systématique.

Exemple: Application probabiliste

On lance trois dés équilibrés. Quelle est la probabilité d'obtenir au moins un 6?

Solution avec inclusion-exclusion:

Soit A= "le premier dé montre 6", B= "le deuxième dé montre 6", C= "le troisième dé montre 6".

On veut $P(A \cup B \cup C)$.

$$\begin{split} P(A \cup B \cup C) &= P(A) + P(B) + P(C) \\ &- P(A \cap B) - P(A \cap C) - P(B \cap C) \\ &+ P(A \cap B \cap C) \\ &= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} - \frac{1}{36} - \frac{1}{36} - \frac{1}{36} + \frac{1}{216} \\ &= \frac{3}{6} - \frac{3}{36} + \frac{1}{216} = \frac{1}{2} - \frac{1}{12} + \frac{1}{216} \\ &= \frac{108 - 18 + 1}{216} = \frac{91}{216} \approx 0.421 \end{split}$$

Vérification par la méthode complémentaire : La probabilité de n'obtenir aucun 6 est $\left(\frac{5}{6}\right)^3 = \frac{125}{216}$, donc la probabilité d'au moins un 6 est $1 - \frac{125}{216} = \frac{91}{216}$.

3 Probabilité conditionnelle

Intuition: Question Fondamentale

La probabilité conditionnelle est le concept qui répond à la question fondamentale : comment devons-nous mettre à jour nos croyances à la lumière des nouvelles informations que nous observons ?

3.1 Définition de la Probabilité Conditionnelle

Définition: Probabilité Conditionnelle

Si A et B sont deux événements avec P(B) > 0, alors la probabilité conditionnelle de A sachant B, notée P(A|B), est définie comme :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Intuition

Imaginez que l'ensemble de tous les résultats possibles est un grand terrain. Savoir que l'événement B s'est produit, c'est comme si on vous disait que le résultat se trouve dans une zone spécifique de ce terrain. La probabilité conditionnelle P(A|B) ne s'intéresse plus au terrain entier, mais seulement à la proportion de la zone B qui est également occupée par A. On "zoome" sur le monde où B est vrai, et on recalcule les probabilités dans ce nouveau monde plus petit.

3.2 Règle du Produit (Intersection de deux événements)

Théorème : Probabilité de l'intersection de deux événements

Pour tous événements A et B avec des probabilités positives, nous avons :

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

Cela découle directement de la définition de la probabilité conditionnelle.

Intuition

Pour que deux événements se produisent, le premier doit se produire, PUIS le second doit se produire, sachant que le premier a eu lieu. Cette formule exprime mathématiquement cette idée séquentielle.

Exemple

Quelle est la probabilité de tirer deux As d'un jeu de 52 cartes sans remise? Soit A l'événement "le premier tirage est un As", avec $P(A) = \frac{4}{52}$. Soit B l'événement "le deuxième tirage est un As". Nous cherchons $P(A \cap B)$, que l'on calcule avec la formule $P(A \cap B) = P(A) \times P(B|A)$. La probabilité P(B|A) correspond à tirer un As sachant que la première carte était un As. Il reste alors 51 cartes, dont 3 As. Donc, $P(B|A) = \frac{3}{51}$. Finalement, la probabilité de l'intersection est $P(A \cap B) = \frac{4}{52} \times \frac{3}{51} = \frac{12}{2652} \approx 0.0045$.

3.3 Règle de la Chaîne (Intersection de n événements)

Théorème: Probabilité de l'intersection de n événements

Pour tous événements A_1, \ldots, A_n avec $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$, nous avons :

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\cdots P(A_n|A_1 \cap \cdots \cap A_{n-1})$$

Intuition

Ceci est une généralisation de l'idée précédente, souvent appelée "règle de la chaîne" (chain rule). Pour qu'une séquence d'événements se produise, chaque événement doit se réaliser tour à tour, en tenant compte de tous les événements précédents qui se sont déjà produits.

Exemple

On tire 3 cartes sans remise. Quelle est la probabilité d'obtenir la séquence Roi, Dame, Valet? La probabilité de tirer un Roi en premier (A_1) est $P(A_1) = \frac{4}{52}$. Ensuite, la probabilité de tirer une Dame (A_2) sachant qu'un Roi a été tiré est $P(A_2|A_1) = \frac{4}{51}$. Enfin, la probabilité de tirer un Valet (A_3) sachant qu'un Roi et une Dame ont été tirés est $P(A_3|A_1\cap A_2) = \frac{4}{50}$. La probabilité totale de la séquence est donc le produit de ces probabilités : $P(A_1\cap A_2\cap A_3) = \frac{4}{52}\times \frac{4}{51}\times \frac{4}{50}\approx 0.00048$.

3.4 Règle de Bayes

Théorème : Règle de Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Intuition

La règle de Bayes est la formule pour "inverser" une probabilité conditionnelle. Souvent, il est facile de connaître la probabilité d'un effet étant donné une cause (P(symptôme|maladie)), mais ce qui nous intéresse vraiment, c'est la probabilité de la cause étant donné l'effet observé (P(maladie|symptôme)). La règle de Bayes nous permet de faire ce retournement en utilisant notre connaissance initiale de la probabilité de la cause (P(maladie)). C'est le fondement mathématique de la mise à jour de nos croyances.

Exemple: Dépistage médical

Une maladie touche 1% de la population (P(M)=0.01). Un test de dépistage est fiable à 95% : il est positif pour 95% des malades (P(T|M)=0.95) et négatif pour 95% des non-malades, ce qui implique un taux de faux positifs de $P(T|\neg M)=0.05$. Une personne est testée positive. Quelle est la probabilité qu'elle soit réellement malade, P(M|T)? On cherche $P(M|T)=\frac{P(T|M)P(M)}{P(T)}$. D'abord, on calcule P(T) avec la formule des probabilités totales : $P(T)=P(T|M)P(M)+P(T|\neg M)P(\neg M)=(0.95\times0.01)+(0.05\times0.99)=0.0095+0.0495=0.059$. Ensuite, on applique la règle de Bayes : $P(M|T)=\frac{0.95\times0.01}{0.059}\approx0.161$. Malgré un test positif, il n'y a que 16.1% de chance que la personne soit malade.

3.5 Formule des Probabilités Totales

Théorème : Formule des probabilités totales

Soit A_1, \ldots, A_n une partition de l'espace échantillon S (c'est-à-dire que les A_i sont des événements disjoints et leur union est S), avec $P(A_i) > 0$ pour tout i. Alors pour tout événement B:

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Intuition

C'est une stratégie de "diviser pour régner". Pour calculer la probabilité totale d'un événement B, on peut décomposer le monde en plusieurs scénarios mutuellement exclusifs (la partition A_i). On calcule ensuite la probabilité de B dans chacun de ces scénarios $(P(B|A_i))$, on pondère chaque résultat par la probabilité du scénario en question $(P(A_i))$, et on additionne le tout.

Exemple

Une usine possède trois machines, M1, M2, et M3, qui produisent respectivement 50%, 30% et 20% des articles. Leurs taux de production défectueuse sont de 4%, 2% et 5%. Quelle est la probabilité qu'un article choisi au hasard soit défectueux? Soit D l'événement "l'article est défectueux". Les machines forment une partition avec P(M1) = 0.5, P(M2) = 0.3, et P(M3) = 0.2. Les probabilités conditionnelles de défaut sont P(D|M1) = 0.04, P(D|M2) = 0.02, et P(D|M3) = 0.05. En appliquant la formule, on obtient : $P(D) = P(D|M1)P(M1) + P(D|M2)P(M2) + P(D|M3)P(M3) = (0.04 \times 0.5) + (0.02 \times 0.3) + (0.05 \times 0.2) = 0.02 + 0.006 + 0.01 = 0.036$. La probabilité qu'un article soit défectueux est de 3.6%.

Preuve : Démonstration de la formule des probabilités totales

Puisque les A_i forment une partition de S, on peut décomposer B comme :

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_n)$$

Comme les A_i sont disjoints, les événements $(B\cap A_i)$ le sont aussi. On peut donc sommer leurs probabilités :

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_n)$$

En appliquant le théorème de l'intersection des probabilités à chaque terme, on obtient :

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_n) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

3.6 Règle de Bayes avec Conditionnement Additionnel

Théorème : Règle de Bayes avec conditionnement additionnel

À condition que $P(A \cap E) > 0$ et $P(B \cap E) > 0$, nous avons :

$$P(A|B,E) = \frac{P(B|A,E)P(A|E)}{P(B|E)}$$

Intuition

Cette formule est simplement la règle de Bayes standard, mais appliquée à l'intérieur d'un univers que l'on a déjà "rétréci".

Imaginez que vous recevez une information ${\bf E}$ qui élimine une grande partie des possibilités. C'est votre nouveau point de départ, votre monde est plus petit. Toutes les probabilités que vous calculez désormais sont relatives à ce monde restreint.

Dans ce nouveau monde, vous recevez une autre information, l'évidence ${\bf B}$. La règle de Bayes conditionnelle vous permet alors de mettre à jour votre croyance sur un événement ${\bf A}$, en utilisant exactement la même logique que la règle de Bayes classique, mais en vous assurant que chaque calcul reste confiné à l'intérieur des frontières de l'univers défini par ${\bf E}$.

3.7 Formule des Probabilités Totales avec Conditionnement Additionnel

Théorème : Formule des probabilités totales avec conditionnement additionnel

Soit A_1, \ldots, A_n une partition de S. À condition que $P(A_i \cap E) > 0$ pour tout i, nous avons :

$$P(B|E) = \sum_{i=1}^{n} P(B|A_i, E)P(A_i|E)$$

Imaginez que le graphique ci-dessus représente la carte d'un trésor. La carte est partitionnée en trois grandes régions : **A1**, **A2**, et **A3**. Sur cette carte, on a identifié deux types de terrains : une **zone marécageuse** (événement E, hachures rouges) qui s'étend sur **10 parcelles**, et une **zone près d'un vieux chêne** (événement B, hachures bleues) qui couvre **3 parcelles**.

On vous donne un premier indice : "Le trésor est dans la zone marécageuse (E)". Votre univers de recherche se réduit instantanément à ces 10 parcelles rouges. Puis, on vous donne un second indice : "Le trésor est aussi près d'un chêne (B)". Votre recherche se concentre alors sur les parcelles qui sont à la fois marécageuses et proches d'un chêne (les cases violettes, $B \cap E$).

La question est : "Sachant que le trésor est dans une parcelle violette, quelle est la probabilité qu'il se trouve dans la région A2?". On cherche donc $P(A_2|B,E)$. La règle de Bayes nous permet de le calculer.

Calcul des termes nécessaires : D'abord, nous devons évaluer les probabilités à l'intérieur du "monde marécageux" (sachant E).

La **vraisemblance** est $P(B|A_2, E)$. En se limitant aux 4 parcelles marécageuses de la région A2, une seule est aussi près d'un chêne. Donc, $P(B|A_2, E) = 1/4$.

La **probabilité a priori** est $P(A_2|E)$. Sur les 10 parcelles marécageuses, 4 sont dans la région A2. Donc, $P(A_2|E) = 4/10$.

L'évidence, P(B|E), est la probabilité de trouver un chêne dans l'ensemble de la zone marécageuse. On peut la calculer avec la formule des probabilités totales :

$$P(B|E) = P(B|A_1, E)P(A_1|E) + P(B|A_2, E)P(A_2|E) + P(B|A_3, E)P(A_3|E)$$

$$P(B|E) = (\frac{1}{3} \times \frac{3}{10}) + (\frac{1}{4} \times \frac{4}{10}) + (0 \times \frac{3}{10}) = \frac{1}{10} + \frac{1}{10} = \frac{2}{10}$$

Application de la règle de Bayes : Maintenant, nous assemblons le tout.

$$P(A_2|B,E) = \frac{P(B|A_2,E)P(A_2|E)}{P(B|E)} = \frac{(1/4)\times(4/10)}{2/10} = \frac{1/10}{2/10} = \frac{1}{2}$$

L'intuition confirme le calcul : sachant que le trésor est sur une parcelle violette, et qu'il n'y en a que deux (une en A1, une en A2), il y a bien une chance sur deux qu'il se trouve dans la région A2.

3.8 Indépendance de Deux Événements

Définition : Indépendance de deux événements

Les événements A et B sont indépendants si :

$$P(A \cap B) = P(A)P(B)$$

Si P(A) > 0 et P(B) > 0, cela est équivalent à :

$$P(A|B) = P(A)$$

Intuition

L'indépendance est l'absence d'information. Si deux événements sont indépendants, apprendre que l'un s'est produit ne change absolument rien à la probabilité de l'autre. Savoir qu'il pleut à Tokyo (B) ne modifie pas la probabilité que vous obteniez pile en lançant une pièce (A).

3.9 Indépendance Conditionnelle

Définition: Indépendance Conditionnelle

Les événements A et B sont dits conditionnellement indépendants étant donné E si :

$$P(A \cap B|E) = P(A|E)P(B|E)$$

Intuition

L'indépendance peut apparaître ou disparaître quand on observe un autre événement. Par exemple, vos notes en maths (A) et en physique (B) ne sont probablement pas indépendantes. Mais si l'on sait que vous avez beaucoup travaillé (E), alors vos notes en maths et en physique pourraient devenir indépendantes. L'information "vous avez beaucoup travaillé" explique la corrélation ; une fois qu'on la connaît, connaître votre note en maths n'apporte plus d'information sur votre note en physique.

3.10 Le Problème de Monty Hall

Interlude : Le problème de Monty Hall

Imaginez que vous êtes à un jeu télévisé. Face à vous se trouvent trois portes fermées. Derrière l'une d'elles se trouve une voiture, et derrière les deux autres, des chèvres.

- 1. Vous choisissez une porte (disons, la porte n°1).
- 2. L'animateur, qui sait où se trouve la voiture, ouvre une autre porte (par exemple, la n°3) derrière laquelle se trouve une chèvre.
- 3. Il vous demande alors : "Voulez-vous conserver votre choix initial (porte n°1) ou changer pour l'autre porte restante (la n°2)?"

Question : Avez-vous intérêt à changer de porte? Votre probabilité de gagner la voiture est-elle plus grande si vous changez, si vous ne changez pas, ou est-elle la même dans les deux cas?

Correction: Solution du problème de Monty Hall

La réponse est sans équivoque : il faut **toujours changer de porte**. Cette stratégie fait passer la probabilité de gagner de 1/3 à 2/3. L'intuition et la preuve ci-dessous détaillent ce résultat surprenant.

Intuition: Le secret: l'information de l'animateur

L'erreur commune est de supposer qu'il reste deux portes avec une chance égale de 1/2. Cela ignore une information capitale : le choix de l'animateur n'est **pas aléatoire**. Il sait où se trouve la voiture et ouvrira toujours une porte perdante. Le raisonnement correct se déroule en deux temps. D'abord, votre choix initial a 1/3 de chance d'être correct. Cela implique qu'il y a 2/3 de chance que la voiture soit derrière l'une des deux autres portes. Ensuite, lorsque l'animateur ouvre l'une de ces deux portes, il ne fait que vous montrer où la voiture n'est pas dans cet ensemble. La probabilité de 2/3 se **concentre** alors entièrement sur la seule porte qu'il a laissée fermée. Changer de porte revient à miser sur cette probabilité de 2/3.

Preuve : Preuve par l'arbre de décision

L'analyse de la meilleure stratégie peut être visualisée à l'aide de l'arbre de décision ci-dessous. Il décompose le problème en deux scénarios initiaux : avoir choisi la bonne porte (probabilité 1/3) ou une mauvaise porte (probabilité 2/3).

Analyse de l'arbre:

Branche du bas (cas le plus probable):

Avec une probabilité de 2/3, votre choix initial se porte sur une "Mauvaise porte". L'animateur est alors obligé de révéler l'autre porte perdante. La seule porte restante est donc la bonne. L'arbre montre que cela mène à un "Gain" avec une probabilité de 1. Ce chemin correspond au résultat de la stratégie "Changer".

Branche du haut (cas le moins probable) :

Avec une probabilité de 1/3, vous avez choisi la "Bonne porte" du premier coup. L'arbre se divise alors en deux issues équiprobables (1/2 chacune). L'issue "Gain" correspond à la stratégie "Garder" votre choix initial, tandis que l'issue "Perte" correspond à la stratégie "Changer" pour la porte perdante restante.

Conclusion:

Pour évaluer la meilleure stratégie, il suffit de sommer les probabilités de gain. La **probabilité de gain en changeant** est de **2/3**, car vous gagnez uniquement si votre choix initial était mauvais (branche du bas). La **probabilité de gain en gardant** est de **1/3**, car vous gagnez uniquement si votre choix initial était bon (branche "Gain" du haut). La stratégie optimale est donc bien de toujours changer de porte.