### Generative vs Discriminative

MIPT

2023

# Idea of generative models



### Idea of discriminative models



Plato: "A human is featherless biped"



Sometimes it's easier to solve a target problem (i.e. classification, regression) than describe the analyzed object nature.

#### Generative and discriminative models

Discriminative models Model: p(y|x).

Generative models Model: p(y, x).

#### Why generative models:

- When dataset generation is a target problem
- Synthetic dataset generation
- Latent properties obtaining







# Model selection: coherent Bayesian inference

First level: find optimal parameters:

$$\mathbf{w} = \arg\max \frac{p(\mathfrak{D}|\mathbf{w})p(\mathbf{w}|\mathbf{h})}{p(\mathfrak{D}|\mathbf{h})},$$

Second level: find optimal model:

Evidence:

$$p(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} p(\mathfrak{D}|\mathbf{w}) p(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$



What is  $\mathfrak{D}$  for generative and discriminative models? Why?

#### Plate notation

Plate notation is an alternative visuzliation for graphical models.

#### Elements:

- White circles (random variables);
- Grey circels(observed variables);
- Small circles (deterministic values);
- Plates (batching).



Plate notation for linear regression (Bishop)

# Plate notation: discriminative and generative models

#### Discriminative models:

- Generate (or deterministically obtain!) x
- Generate w
- Generate  $Y \sim p(y|X, w)$



#### Generative model:

- Generate y
- Generate w
- Generate  $x \sim p(X|y, w)$



# Generative unsupervised model:

- Generate w
- Generate  $x \sim p(X|w)$



# Generative models and unsupervised learning

Are the generative models always unsupervised?

# Generative models and unsupervised learning

#### Are the generative models always unsupervised?

No! Linear classification is an example

Logistic regression:

$$\mathsf{E}\left(\mathbf{y}\left|\mathbf{X}\right.\right)\equiv g^{-1}\left(\mathbf{X}\mathbf{w}\right),$$

$$g^{-1}(x)\frac{e^x}{1+e^x} \in [0,1]$$

The decision function is a sigmoid.

Generative model:

$$p(y=1|x,w) = \frac{p(x|w,y=1)p(y=1)}{\sum_{k=0}^{1} p(x|w,y=k)p(y=k)},$$

$$p(x|w, y = k) \sim \mathcal{N}(w_m^k, w_s^k).$$

The decision function is a sigmoid.

# Discriminative + generative

Naive approach: introduce a prior on class labels

$$p(\mathbf{x}, y|\mathbf{w}) = p(y|\mathbf{w}_y)p(x|y, \mathbf{w}_x).$$

Two optimization functions:

$$L_G = p(\mathbf{w}) \prod_{\mathbf{x}, y} p(\mathbf{x}, y | \mathbf{w}),$$

$$L_D = \rho(\mathbf{w}) \prod_{\mathbf{x},y} \rho(y|\mathbf{x},\mathbf{w}).$$

Combine them:

$$\lambda L_G + (1-\lambda)L_D o \mathsf{max}$$
 .

This optimization is heuristic, it does not give us ML results, nor MAP.

# Discriminative + generative

(Bishop et al., 2007): introduce two probabilistic models: "discriminative" and "generative":

$$p(\mathbf{x}, y | \mathbf{w}_G, \mathbf{w}_D) = p(y | \mathbf{x}, \mathbf{w}_D) p(\mathbf{x} | \mathbf{w}_G) p(\mathbf{w}_G, \mathbf{w}_D).$$

Optimization:

$$p(\mathbf{w}_G, \mathbf{w}_D) \prod_{\mathbf{x}, y} p(y|\mathbf{x}, \mathbf{w}_D) p(\mathbf{x}|\mathbf{w}_G).$$

How to select  $p(\mathbf{w}_G, \mathbf{w}_D)$ ?

- $p(\mathbf{w}_G, \mathbf{w}_D) = p(\mathbf{w}_G)p(\mathbf{w}_D)$ : obtain  $L_D$ ;
- $p(\mathbf{w}_G, \mathbf{w}_D) = p(\mathbf{w}_G)\delta(\mathbf{w}_G \mathbf{w}_D)$ : obtain  $L_G$ ;
- Trade-off:  $p(\mathbf{w}_G, \mathbf{w}_D) \propto p(\mathbf{w}_G) p(\mathbf{w}_D) \exp(-\frac{1}{2\sigma^2} ||\mathbf{w}_G \mathbf{w}_D||^2)$ .

### Discriminative + generative

(Bishop et al., 2007): example of different combinations of these optimizations for the synthetic dataset. The dataset contains only 2 labeled objects for each class.



### **VAE**: generation process



# Semi-supervised VAE (Kingma et al., 2014)

M1: 
$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))),$$
 (3)

M2: 
$$q_{\phi}(\mathbf{z}|y,\mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(y,\mathbf{x}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))); \quad q_{\phi}(y|\mathbf{x}) = \operatorname{Cat}(y|\boldsymbol{\pi}_{\phi}(\mathbf{x})),$$
 (4)

For this model, we have two cases to consider. In the first case, the label corresponding to a data point is observed and the variational bound is a simple extension of equation (5):

$$\log p_{\theta}(\mathbf{x}, y) \ge \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}, y)} \left[ \log p_{\theta}(\mathbf{x}|y, \mathbf{z}) + \log p_{\theta}(y) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}, y) \right] = -\mathcal{L}(\mathbf{x}, y), \quad (6)$$

For the case where the label is missing, it is treated as a latent variable over which we perform posterior inference and the resulting bound for handling data points with an unobserved label y is:

$$\log p_{\theta}(\mathbf{x}) \ge \mathbb{E}_{q_{\phi}(y,\mathbf{z}|\mathbf{x})} \left[ \log p_{\theta}(\mathbf{x}|y,\mathbf{z}) + \log p_{\theta}(y) + \log p(\mathbf{z}) - \log q_{\phi}(y,\mathbf{z}|\mathbf{x}) \right]$$

$$= \sum_{y} q_{\phi}(y|\mathbf{x}) (-\mathcal{L}(\mathbf{x},y)) + \mathcal{H}(q_{\phi}(y|\mathbf{x})) = -\mathcal{U}(\mathbf{x}).$$
(7)

The bound on the marginal likelihood for the entire dataset is now:

$$\mathcal{J} = \sum_{(\mathbf{x}, y) \sim \widetilde{p}_l} \mathcal{L}(\mathbf{x}, y) + \sum_{\mathbf{x} \sim \widetilde{p}_u} \mathcal{U}(\mathbf{x})$$
 (8)

# Semi-supervised VAE (Kingma et al., 2014)

$$\mathcal{J}^{\alpha} = \mathcal{J} + \alpha \cdot \mathbb{E}_{\widetilde{p}_{l}(\mathbf{x}, y)} \left[ -\log q_{\phi}(y|\mathbf{x}) \right], \tag{9}$$

#### Algorithm 1 Learning in model M1

```
while generativeTraining() do
      \mathcal{D} \leftarrow \text{getRandomMiniBatch}()
      \mathbf{z}_i \sim q_{\phi}(\mathbf{z}_i|\mathbf{x}_i) \quad \forall \mathbf{x}_i \in \mathcal{D}
      \mathcal{J} \leftarrow \sum_{i} \mathcal{J}(\mathbf{x}_i)
      (\mathbf{g}_{\theta}, \mathbf{g}_{\phi}) \leftarrow (\frac{\partial \mathcal{J}}{\partial \theta}, \frac{\partial \mathcal{J}}{\partial \phi})
       (\boldsymbol{\theta}, \boldsymbol{\phi}) \leftarrow (\boldsymbol{\theta}, \boldsymbol{\phi}) + \Gamma(\mathbf{g}_{\boldsymbol{\theta}}, \mathbf{g}_{\boldsymbol{\phi}})
end while
while discriminativeTraining() do
      \mathcal{D} \leftarrow \text{getLabeledRandomMiniBatch}()
      \mathbf{z}_i \sim q_{\phi}(\mathbf{z}_i|\mathbf{x}_i) \quad \forall \{\mathbf{x}_i, y_i\} \in \mathcal{D}
      trainClassifier(\{\mathbf{z}_i, y_i\})
end while
```

#### Algorithm 2 Learning in model M2

```
 \begin{array}{l} \textbf{while} \ \ \textbf{training()} \ \ \textbf{do} \\ \mathcal{D} \leftarrow \textbf{getRandomMiniBatch()} \\ y_i \ \sim \ q_\phi(y_i|\mathbf{x}_i) \quad \forall \{\mathbf{x}_i,y_i\} \notin \mathcal{O} \\ \mathbf{z}_i \sim q_\phi(\mathbf{z}_i|y_i,\mathbf{x}_i) \\ \mathcal{J}^\alpha \leftarrow \textbf{eq.} \ \boxed{9} \\ (\mathbf{g}_\theta,\mathbf{g}_\phi) \leftarrow (\frac{\partial \mathcal{L}^\alpha}{\partial \theta},\frac{\partial \mathcal{L}^\alpha}{\partial \phi}) \\ (\theta,\phi) \leftarrow (\theta,\phi) + \Gamma(\mathbf{g}_\theta,\mathbf{g}_\phi) \\ \textbf{end while} \end{array}
```

# Semi-supervised VAE (Kingma et al., 2014)

Table 1: Benchmark results of semi-supervised classification on MNIST with few labels.

| N    | NN    | CNN   | TSVM  | CAE   | MTC   | AtlasRBF          | M1+TSVM            | M2                 | M1+M2             |
|------|-------|-------|-------|-------|-------|-------------------|--------------------|--------------------|-------------------|
| 100  | 25.81 | 22.98 | 16.81 | 13.47 | 12.03 | $8.10 (\pm 0.95)$ | $11.82 (\pm 0.25)$ | $11.97 (\pm 1.71)$ | $3.33 (\pm 0.14)$ |
| 600  | 11.44 | 7.68  | 6.16  | 6.3   | 5.13  | _                 | $5.72 (\pm 0.049)$ | $4.94 (\pm 0.13)$  | $2.59 (\pm 0.05)$ |
| 1000 | 10.7  | 6.45  | 5.38  | 4.77  | 3.64  | $3.68 (\pm 0.12)$ | $4.24 (\pm 0.07)$  | $3.60 (\pm 0.56)$  | $2.40 (\pm 0.02)$ |
| 3000 | 6.04  | 3.35  | 3.45  | 3.22  | 2.57  | _                 | $3.49 (\pm 0.04)$  | $3.92 (\pm 0.63)$  | $2.18 (\pm 0.04)$ |



(a) Handwriting styles for MNIST obtained by fixing the class label and varying the 2D latent variation (a)

# Generative and discriminative models hierarchy

Can we reduce generative model to disciriminative? Can we reduce disciriminative model to generative?

## Basic Concept of EBM<sup>1</sup>

**Energy-Based Models** (EBMs) capture dependencies by associating a scalar energy to each configuration of the variables

**Learning:** finding an energy function that associates low energies to correct values, and higher energies to incorrect values

Inference: finding parameter that minimize the energy

Pros: no requirement for proper normalization, in comparison with probabilistic models

#### Probability density

 $p(\mathbf{x})$  for  $\mathbf{x} \in \mathbb{R}^D$ :  $p_{\theta}(\mathbf{x}) = \frac{\exp{(-E_{\theta}(\mathbf{x}))}}{Z(\theta)}$ , where  $E_{\theta}(\mathbf{x})$  is energy function and  $Z(\theta) = \int_{\mathbf{x}} \exp{(-E_{\theta}(\mathbf{x}))} d\mathbf{x}$  is normalizing constant or partition function

<sup>&</sup>lt;sup>1</sup>See talk of Maria Kovaleva, 2022

### Learning of EBM

Estimate  $Z(\theta)$  can be challenging for most energy functions. Derivative of the log-likelihood for a single example x with respect to  $\theta$ :  $\frac{\partial \log p_{\theta}(\mathbf{x})}{\partial \theta} = \mathbb{E}_{p_{\theta}(\mathbf{x}')} \left[ \frac{\partial E_{\theta}(\mathbf{x}')}{\partial \theta} \right] - \frac{\partial E_{\theta}(\mathbf{x})}{\partial \theta}$ 

#### Learning

Approximate the expectation in derivative of the log-likelihood using a sampler based on Stochastic Gradient Langevin Dynamics (SGLD):

 $\mathbf{x}_0 \sim p_0(\mathbf{x}), \ \mathbf{x}_{i+1} = \mathbf{x}_i - \frac{\alpha}{2} \frac{\partial E_{\theta}(\mathbf{x}_i)}{\partial \mathbf{x}_i} + \epsilon, \ \epsilon \sim \mathcal{N}(0, \alpha),$ 

where  $p_0(\mathbf{x})$  is typically a Uniform distribution,  $\alpha$  - step-size (should be decayed following a polynomial schedule).

Practically  $\alpha$  and  $\epsilon$  is often chosen separately leading to a biased sampler which allows for faster training

#### In classifiers

**Classification:** D parameters, K classes, parametric function,  $f_{\theta}: \mathbb{R}^D \to \mathbb{R}^K$  return logits Categorical distribution parameterized by  $f_{\theta}$  via Softmax transfer function:  $p_{\theta}(y|\mathbf{x}) = \frac{\exp(f_{\theta}(\mathbf{x})[y])}{\sum_{y'} \exp(f_{\theta}(\mathbf{x})[y'])}$ 

$$p_{\theta}(y|\mathbf{x}) = \frac{\exp\left(f_{\theta}(\mathbf{x})[y]\right)}{\sum_{y'} \exp\left(f_{\theta}(\mathbf{x})[y']\right)}$$

# Reinterpretation of the logits

Let's define an energy based model with  $E_{\theta}(\mathbf{x}, y) = -f_{\theta}(\mathbf{x})[y]$  and unknown normalizing constant  $Z_{\theta}$ :

$$p_{\theta}(\mathbf{x}, y) = \frac{\exp(f_{\theta}(\mathbf{x})[y])}{Z(\theta)}$$

Then

$$p_{\theta}(\mathbf{x}) = \sum_{y} p_{\theta}(\mathbf{x}, y) = \frac{\sum_{y} \exp(f_{\theta}(\mathbf{x})[y])}{Z(\theta)}$$

#### Conclusion

The LogSumExp(·) of the logits of any classifier can be re-used to define the energy function as  $E_{\theta}(\mathbf{x}) = -LogSumExp(f_{\theta}(\mathbf{x})[y]) = -\log\sum_{y} \exp f_{\theta}(\mathbf{x})[y]$ A generative model hidden within every standard discriminative model!

16 / 22

### Optimization

$$\log p_{\theta}(\mathbf{x}, y) = \log p_{\theta}(\mathbf{x}) + \log p_{\theta}(y|\mathbf{x})$$
  
Where:

- 1. p(y|x) optimized using standard cross-entropy
- **2.**  $\log p(\mathbf{x})$  optimized with SGLD where gradients are taken with respect to  $LogSumExp(f_{\theta}(\mathbf{x})[y])$  as it described for EBMs

#### Remarks

- 1. We don't know  $Z_{\theta}$ , because of it we use SLGD sampler
- 2. The estimator of  $\log p(\mathbf{x})$  will be biased when using a MCMC sampler with a finite number of steps

### Classifier as generative model: results





Figure 7: Class-conditional Samples. Left to right: CIFAR10, SVHN.

# Model selection problem: recap

First level: find optimal parameters:

$$\mathbf{w} = \arg\max \frac{p(\mathfrak{D}|\mathbf{w})p(\mathbf{w}|\mathbf{h})}{p(\mathfrak{D}|\mathbf{h})},$$

Second level: find optimal model:

Evidence:

$$p(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} p(\mathfrak{D}|\mathbf{w}) p(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$





## Model selection problem: recap

Can we generate target models parameters using a generative model?





# Model selection: hybrid approach

#### Definition

Given a set  $\Lambda$ .

Hypernetwork is a parametric mapping from  $\Lambda$  to set  $\mathbb{R}^n$  of the model  $\mathbf{f}$  parameters:

$$G: \Lambda \times \mathbb{R}^u \to \mathbb{R}^n$$
,

where  $\mathbb{R}^u$  is a set of hypernetwork parameters.



# Model selection: discriminative approach

$$\mathbf{w}_{\mathsf{MOE}} = \langle \gamma(\mathbf{x}), [\mathbf{w}_1, \dots, \mathbf{w}_n] \rangle$$





Model generation scheme

MOE optimization as a discriminative model

#### References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Генератор котиков: https://github.com/aleju/cat-generator
- Paganini M., de Oliveira L., Nachman B. Accelerating science with generative adversarial networks: an application to 3D particle showers in multilayer calorimeters //Physical review letters. 2018. T. 120. № 4. C. 042003.
- Antoran J., Miguel A. Disentangling and learning robust representations with natural clustering //2019 18th IEEE International Conference
   On Machine Learning And Applications (ICMLA). IEEE, 2019. C. 694-699.
- Лекции по LDA: https://personal.utdallas.edu/~nrr150130/cs6347/2017sp/lects/Lecture 18 LDA.pdf
- Bernardo J. M. et al. Generative or discriminative? getting the best of both worlds //Bayesian statistics. 2007. T. 8. №. 3. С. 3-24.
- Гребенькова О. С., Бахтеев О. Ю., Стрижов В. В. Вариационная оптимизация модели глубокого обучения с контролем сложности //Информатика и её применения. – 2021. – Т. 15. – №. 1. – С. 42-49.
- Ha D., Dai A., Le Q. V. Hypernetworks //arXiv preprint arXiv:1609.09106. 2016.
- Адуенко А. А. Выбор мультимоделей в задачах классификации : дис. Федер, исслед, центр"Информатика и управление"РАН, 2017.
- Grathwohl W. et al. Your classifier is secretly an energy based model and you should treat it like one //arXiv preprint arXiv:1912.03263. –
  2019.