STOR 455 STATISTICAL METHODS I

Jan Hannig

Regression Diagnostics (Chapter 5)

- Added variable plot
- Studentized deleted residuals (Y-outlier)
- Hat matrix leverage values (X-outlier)
- DFFITS, Cook's D, DFBETAS (Influential cases)

Added Variable Plots

- Partial regression for X₁
 - Use the other X's to predict Y
 - Use the other X's to predict X₁
 - Plot the residuals from the first regression vs
 the residuals from the second regression
- Can find multiple regression function from partial regressions

Added Variable Plots

- Also called partial regression plots or adjusted variable plots
- These plots can detect
 - Linear/Nonlinear relationships
 - Outliers
- The /partial option generates graphs in the output window

Identifying Outliers

- Residuals e_i=Y_i Y_i (hat)
- semistudentized residuals ei/sqrt(MSE)
- Studentized residuals
 r_i=e_i /sqrt(MSE(1 h_{ii}))
- In proc reg use the handle student

Studentized Deleted Residuals

- We use the notation (i) to indicate that case i has been deleted from the computations
- d_i= Y_i Y_(i) (hat) is the deleted residual
- MSE_(i) is the MSE with case i deleted
- The studentized deleted residual is t_i= d_i / sqrt(MSE_(i) (1 - h_{ii}))
- In proc reg use the handle rstudent

Use of Residuals

- We are looking for
 - Outliers (Bonferroni t-test)
 - Constant variance
 - Uncorrelated error
 - Normal error distributions
- /r in the model statement requests residual analysis

Hat matrix diagonals

- h_{ii} is the leverage of the ith observation
- $0 \le h_{ii} \le 1$; Sum $(h_{ii}) = p$, the average value is p/n
- h_{ii} is also a measure of how much Y_i is contributing to the prediction Y_i (hat):

$$Y_1(hat) = h_{11}Y_1 + h_{12}Y_2 + h_{13}Y_3 + ...$$

- We would like h_{ii} to be small;
 - large value (>0.5 or 2p/n) indicates outlier/ extrapolation in X_i

Influential Cases: DFFITS

- A measure of the influence of case i on Y_i(hat)
- Standardized version of the difference between Y_i(hat) computed with and without case I

DFFITS_i =
$$t_i \sqrt{\frac{h_{ii}}{1 - h_{ii}}}$$

 Large value (>1 or >2sqrt(p/n))indicate influential cases

Cook's Distance

- A measure of the influence of case i on all of the Y_i(hat)'s
- Standardized version of the sum of squares of the differences between the predicted values computed with and without case I

$$c_i = \frac{1}{p} \frac{h_{ii}}{1 - h_{ii}} r_i^2$$

 The ith observation is influential if c_i >1 or c_i>F(p, n-p, 0.5)

DFBETAS

- A measure of the influence of case i on each of the regression coefficients
- It is a standardized version of the difference between the regression coefficient computed with and without case i.
- Influential if >1 or >2/sqrt(n).

Regression Diagnostics Recommendations

- Plot the residuals versus fitted value, versus each of the X's, interactions, other variables (time, etc.)
- Examine the added variable plots
- Check normality of the residuals with a normal quantile plot

Regression Diagnostics Recommendations

Examine

- the studentized deleted residuals (RSTUDENT in the output, also /r in the model statement)
- The hat matrix diagonals
- DFFITS, Cook's D, and the DFBETAS (/influence in the model statement)
- Check observations that are extreme on these measures relative to the other observations

Regression Diagnostics Recommendations

- Examine the VIF for each X
- If there are variables with low tolerance, you need to do some model building
 - Recode variables
 - Variable selection

Surgical Unit Example

- Predicting survival after liver operation
- Y is survival time
- X's are
 - Blood clotting score
 - Prognostic index
 - Enzyme function test
 - Liver function test
 - Age
 - Gender
 - Alcohol use (three level)

```
Data surg;
infile 'C:\...\surgical.txt' dlm='09'x;
input blood prog enz liver age gend alc1
  alc2 surv lsurv;
Proc print data=surg;
run;
%include "C:\...\scatter.sas";
%scatter(data = surg);
%scatter(data = surg, var = blood prog enz liver age surv lsurv);
```


Surgical Unit Example (2)

- n = 54 patients
- Diagnostics suggest that Y should be transformed with a log
- Focus on model using variables blood, prog, enz and alc2 (reasons shown later)

```
* Surgical unit example
  revisit;
Data surg;
infile 'C:\...\surgical.txt'
  dlm='09'x;
input blood prog enz liver age
  gend alc1 alc2 surv lsurv;
*added variable plot;
proc req data = surg;
  model lsurv age = blood prog
  enz alc2;
  output out=s2 r=rsurv rage;
run;
symbol1 v=dot h=.8 c=blue;
proc gplot data=s2;
  plot rsurv*rage;
run;
```

```
*nolinearity and interaction;
Data s2;
    set surg;
    b2=blood*blood;
    bp=blood*prog;
run;

proc reg data = s2;
    var b2 bp;
    model lsurv = blood prog enz alc2/r influence vif;
    plot rstudent.*(p. b2 bp nqq.);
run;
```



```
*outlier and influential cases:
ods listing close;
proc req data = s2;
 model lsurv = blood prog enz alc2/
   r influence;
  ods output OutputStatistics=temp;
  output out=temp1 cookd = cooksd;
run;
ods listing;
data temp2;
  set temp;
  keep observation residual
   hatdiagonal rstudent dffits;
run;
data temp1;
  set temp1;
  observation = n;
  keep observation cooksd;
run;
```

```
data combined ;
  merge temp1 temp2;
  by observation;
run;
proc print data = combined;
  where observation=17 or
    observation=23 or observation=28
    or
        observation=32 or
        observation=38 or observation=42
        or observation=52;
  var residual hatdiagonal rstudent
        dffits cooksd;
run;
```

The SAS System 01:35 Monday, November 28, 2005 15

	Hat	·			
Obs	Residual	Diagonal	RStuden	t DFFI	TS cooksd
17	0.5952	0.1499	3.3696	1.4151	0.33062
23	0.2788	0.1885	1.4854	0.7160	0.10006
28	0.0876	0.2914	0.4896	0.3140	0.02002
32	-0.2861	0.2202	-1.5585	-0.8283	0.13333
38	-0.2271	0.3059	-1.3016	-0.8641	0.14725
42	-0.0303	0.2262	-0.1620	-0.0876	0.00157
52	-0.1375	0.2221	-0.7358	-0.3931	0.03120

Model Selection (Chapter 7)

- The original data set had 7 predictors
 (Blood clotting score, Prognostic index, Enzyme function test, Liver function test, Age, Gender, Alcohol use three level)
- Why did we choose to use to use blood, prog, enz, and alc2?
- Model selection methods
 - All subset selection
 - Forward selection, backward elimination, stepwise regression

All-possible Procedure

- Consider all subset of the full model
- Select submodel based on certain criterion
- May have several "good models" instead of one "best model"
- Number of models to consider: 2^p
- Not possible when p is large

Criteria for Variable Selection

- Variance based: minimize root-MSE
- SSE based criterion: maximize
 R² =1-SSE(model)/SSTO
- MSE based criterion: maximize adjusted-R²=1-MSE(model)/MSTO accounting for d.f. of the model
- C_p criterion: minimizing the bias of sub-model
- PRESS: minimizing prediction error

Mallow's C_p

- Compare subset models with the full model
 - A subset model is good if there is not substantial bias in the predicted values (relative to the full model)
- C_p is a measure of this bias $C_p=SSE_p/MSE_{Full}-(n-2p)$
- See Section 7.3 for details

Use of C_p

- p is the number of regression coefficients including the intercept
- A model is good according to this criterion if
 C_D is approximately equal to p
- C_p < p is ok too

PRESS

- Prediction error sums of squares
- For each case i, delete the case and predict Y using a model based on the other n-1 cases
- PRESS= SS for observed minus predicted
- Small PRESS indicate better fit

```
* All subset procedure, R^2, adj. R^2 and cp
 as criteria;
* Plot may not be informative;
goptions reset=all;
symbol1 v=star c=blue h = .8;
proc reg data = surg;
  model lsurv = blood prog enz liver age
  gend alc1 alc2/selection= rsquare adjrsq
 cp mse;
 plot rsq.*np.;
 plot mse.*np.;
 plot cp.*np.;
run;
```


R-Square Selection Method

Numbe Model		Adjusted are R-Sq		o) Ms	SE Variables in Model
3	3 0.778	0.764	7 18.9145	0.056	86 prog enz alc2
3	0.7573	0.7427	24.9805	0.06217	blood prog enz
3	0.7178	0.7009	36.5252	0.07228	prog enz liver
3	0.6810	0.6618	47.3038	0.08172	prog enz alc1
4	0.8299	0.8160	5.7508	0.04447	blood prog enz alc2
4	0.8144	0.7993	10.2670		prog enz liver alc2
4	0.7888	0.7715	17.7770	0.05521	prog enz gend alc2
4	0.7836	0.7659	19.2976	0.05657	prog enz age alc2
5	0.8374	0.8205	5.5406	0.04338	blood prog enz gend alc2
5	0.8358	0.8187	6.0182	0.04381	blood prog enz age alc2
5	0.8331	0.8158	6.7986	0.04452	blood prog enz liver alc2
5	0.8317	0.8141	7.2269	0.04491	blood prog enz alc1 alc2
5	0.8179	0.7989	11.2608	0.04859	prog enz liver gend alc2
5	0.8159	0.7968	11.8266	0.04911	prog enz liver alc1 alc2
5	0.8157	0.7965	11.9099	0.04919	prog enz liver age alc2
5	0.7944	0.7730	18.1324	0.05486	prog enz age gend alc2

R-Square Selection Method

Number in Model R-Squa		Adjusted are R-Sq		p) MSE Variables in Model
Model	i oqui	aro 11 09	dare o(p) Well variables in Medel
6	0.8434	0.8234	5.7874	0.04266 blood prog enz age gend alc2
6	0.8392	0.8187	7.0295	0.04382 blood prog enz gend alc1 alc2
6	0.8387	0.8181	7.1662	0.04395 blood prog enz liver gend alc2
6	0.8384	0.8178	7.2462	0.04402 blood prog enz age alc1 alc2
6	0.8371	0.8164	7.6270	0.04438 blood prog enz liver age alc2
6	0.8348	0.8137	8.3146	0.04502 blood prog enz liver alc1 alc2
7	0.8460	0.8226	7.0295	0.04287 blood prog enz age gend alc1 alc2
7	0.8436	0.8198	7.7352	0.04354 blood prog enz liver age gend alc2
7	0.8404	0.8161	8.6793	0.04444 blood prog enz liver gend alc1 alc2
7	0.8396	0.8151	8.9214	0.04467 blood prog enz liver age alc1 alc2
7	0.8213	0.7941	14.2632	0.04976 prog enz liver age gend alc1 alc2
7	0.7801	0.7466	26.3115	0.06123 blood prog enz liver age gend alc1
7	0.6829	0.6347	54.7334	0.08829 blood enz liver age gend alc1 alc2
7	0.6126	0.5537	75.2932	0.10786 blood prog liver age gend alc1 alc2
8	0.8461	0.8188	9.0000	0.04379 blood prog enz liver age gend alc1 alc2

Best Models Using of C_p

- blood prog enz gend alc2, 5.54
- blood prog enz alc2, 5.75
- blood prog enz age gend alc2, 5.79
- blood prog enz age gend alc1 alc2, 7.03
- blood prog enz liver age gend alc2, 7.74

SAS MACRO allsubsreg

```
* Use macro to compute PRESS;
%include "T:\...\allsubsreg.sas";
%allsubsreg(data=surg, depvar=lsurv,
  indepvar=blood prog enz liver age
  gend alc1 alc2, sortvar=_PRESS_,
  printvar=_RMSE__RSQ__CP__PRESS_);
run;
```

Do it in SAS

```
------- Number of regressors in model=4 ------- Number of regressors in model=4
                     (continued)
Obs
        VarsInModel
                      _IN_ _RMSE_ _RSQ_ _CP_ _PRESS_ Intercept blood
                         4 0.24705 0.76650 24.2885 3.88900 3.83207
156 blood prog enz alc1
                                                                     0.09176
157 blood prog enz age
                         4 0.24579 0.76888 23.5924 3.86305 4.02810
158 prog enz age alc2
                        4 0.23785 0.78356 19.2976 3.53115 4.47171
159 prog enz alc1 alc2
                        4 0.23982 0.77996 20.3519 3.52287 4.26344
160 prog enz gend alc2
                       4 0.23498 0.78876 17.7770 3.50513 4.29334
161 prog enz liver alc2
                       4 0.22023 0.81444 10.2670 3.02103 4.34067
162 blood prog enz alc2 4 0.21087 0.82988 5.7508 2.73777 3.85242
                                                                     0.07332
      ------ Number of regressors in model=5 ------ Number of regressors in model=5
                     (continued)
                         _IN_ _RMSE_ _RSQ_ _CP_ _PRESS_ Intercept
Obs
         VarsInModel
209 prog enz age alc1 alc2
                                0.23877 0.78633 20.4874 3.56560
                                                                   4.45344
210 prog enz age gend alc2
                               0.23423 0.79439 18.1324 3.55562 4.47592
211 prog enz gend alc1 alc2
                             5 0.23636 0.79063 19.2313 3.55539 4.26651
212 prog enz liver age alc2
                            5 0.22178 0.81566 11.9099 3.13206
                                                                  4.42572
213 prog enz liver gend alc2
                             5 0.22044 0.81788 11.2608 3.12603
214 prog enz liver alc1 alc2
                            5 0.22161 0.81595 11.8266 3.10027
                                                                  4.31629
215 blood prog enz liver alc2
                             5 0.21100 0.83314 6.7986 2.82935
                                                                   3.96517
216 blood prog enz alc1 alc2
                             5 0.21193 0.83168 7.2269 2.79565
                                                                   3.82669
217 blood prog enz gend alc2
                              5 0.20827 0.83744 5.5406 2.78271
                                                                    3.86710
218 blood prog enz age alc2
                              5 0.20931 0.83581 6.0182 2.73893 4.03812
```

Do it in SAS

```
------ Number of regressors in model=6 ------
                   (continued)
                        _IN_ _RMSE_ _RSQ_ _CP_ _PRESS_ Intercept
Obs
        VarsInModel
                            6 0.22185 0.81939 12.8203 3.20786 4.31396
239 prog enz liver gend alc1 alc2
240 prog enz liver age alc1 alc2
                            6 0.22298 0.81754 13.3595 3.20039 4.41122
241 blood prog enz liver alc1 alc2
                            6 0.21218 0.83479 8.3146 2.89906 3.93809
242 blood prog enz liver gend alc2 6 0.20964 0.83872 7.1662 2.87494 3.93868
243 blood prog enz liver age alc2
                            6 0.21066 0.83715 7.6270 2.85668 4.08721
244 blood prog enz gend alc1 alc2
                             6 0.20934 0.83919 7.0295 2.83917 3.84163
245 blood prog enz age alc1 alc2
                              6 0.20982 0.83845 7.2462 2.77826 4.02082
246 blood prog enz age gend alc2
                              6 0.20655 0.84344 5.7874 2.77233 4.05397
------ Number of regressors in model=7 ------
                          _IN_ _RMSE_ _RSQ_ _CP_ _PRESS_ Intercept
Obs
          VarsInModel
250 prog enz liver age gend alc1 alc2 7 0.22306 0.82129 14.2632 3.30254 4.41771
251 blood prog enz liver gend alc1 alc2 7 0.21081 0.84039 8.6793 2.94350 3.91149
252 blood prog enz liver age alc1 alc2 7 0.21136 0.83956 8.9214 2.90722 4.06637
253 blood prog enz liver age gend alc2 7 0.20867 0.84361 7.7352 2.88266 4.07191
------ Number of regressors in model=8 ------
Obs
           VarsInModel
                           IN RMSE RSQ CP PRESS Intercept
255 blood prog enz liver age gend alc1 alc2 8 0.20927 0.84613 9 2.93123 4.05052
```

Best Models Using PRESS

- blood prog enz alc2, 2.73777
- blood prog enz age alc2, 2.73893
- blood prog enz age alc1 alc2, 2.77826
- blood prog enz age gend alc2, 2.77233
- blood prog enz gend alc2 2.78271
- blood prog enz alc1 alc2, 2.79565

Automatic search procedures

- When p large, can't do all subset
- Stepwise type procedures
 - Forward selection (Step up)
 - Backward elimination (Step down)
 - Stepwise: combines F and B, allow removal of variables after adding new variables.
- Many other alternatives, but NONE guarantees the optimal solution (NP-hard problem)

Forward Selection

- Start with an intercept
- At each step add the "best" variable (using some criteria – R², adj R², C_p, partial correlation, SSE, ...)
- Compare the p-value for the test whether the just added variable is 0 with some pre-selected value.
 - If larger— add the variable and repeat the procedure
 - If smaller stop. You have arrived at the final model.
- This is purely exploratory see the book for comments

Backwards Elimination

- Start with the full model
- At each step delete the "worst" variable (using some criteria – smallest increase in SSE, smallest p-value,...)
- Compare the p-value for the test whether the just deleted variable is 0 with some pre-selected value.
 - If smaller delete the variable and repeat the procedure
 - If larger stop. You have arrived at the final model.

Stepwise Regression

- Combines the forward and backward algorithm
- Starts at some model (empty or full is usual)
- First eliminates as many parameters as possible using backwards rule (using some alpha-delete)
- Than attempt to add one variable (using some alpha-add)
- If a variable is added repeat, if not stop (alphaadd>alpha-delete required for convergence).

Do it in SAS

```
* Forward selection:
                                        * Forward stepwise with first
                                           variable always in the model;
proc reg data=surg;
                                        proc reg data=surg;
   model lsurv=blood prog enz liver
   age gend alc1 alc2 /
                                           model lsurv=blood prog enz liver
   selection=FORWARD slentry=0.5;
                                            age gend alc1 alc2 /
                                            selection=STEPWISE include=1;
run;
                                        run;
* backward elimination;
                                        * Stepwise with at least two
proc reg data=surg;
                                           variables in the model;
  model lsurv=blood prog enz liver
                                        proc reg data=surg;
   age gend alc1 alc2 /selection=B
   slstay=0.05;
                                           model lsurv=blood prog enz liver
                                            age gend alc1 alc2 /
run;
                                            selection=STEPWISE start=2;
                                        run;
* Forward stepwise;
proc reg data=surg;
  model lsurv=blood prog enz liver
   age gend alc1 alc2 /
   selection=STEPWISE slentry=0.50
   slstay=0.05;
run;
```

Forward Selection and Backward Elimination

No all and a similar control of the second similar control of the

No other variable met the 0.5000 significance level for entry into the model.

Summary of Forward Selection

Step	Variable Entered	Numb Var			· =	C(p) F	Value	Pr > F
Отор	2.110.00	· u.	0	144.6	o qua. o	Ο (P) .	value	
1	enz	1	0.4276	0.4276	117.409	38.84	<.0001	
2	prog	2	0.2357	0.6633	50.4716	35.70	<.000	1
3	alc2	3	0.1147	0.7780	18.9145	25.85	<.0001	
4	blood	4	0.0519	0.8299	5.7508	14.93	0.0003	3
5	gend	5	0.0076	0.8374	5.5406	2.23	0.1418	
6	age	6	0.0060	0.8434	5.7874	1.80	0.1862	
7	alc1	7	0.0026	0.8460	7.0295	0.77	0.3835	

All variables left in the model are significant at the 0.0500 level.

Summary of Backward Elimination

Variable Number Partial Model										
Step	Remo	ved V	ars In R-	Square	R-Square	C(p)	F Value	Pr > F		
1	liver	7	0.0001	0.8460	7.0295	0.03	0.8645			
2	alc1	6	0.0026	0.8434	5.7874	0.77	0.3835			
3	age	5	0.0060	0.8374	5.5406	1.80	0.1862			
4	gend	4	0.0076	0.8299	5.7508	2.23	0.1418			

Stepwise

All variables left in the model are significant at the 0.0500 level.

The stepwise method terminated because the next variable to be entered was just removed. Summary of Stepwise Selection

	Variable	e Varia	ble Nu	mber Pa	artial Mo	odel			
Ste	o Enter	ed Re	emoved	Vars In	R-Square	e R-Squa	re C(p) F Value	Pr > F
1	enz		1	0.4276	0.4276	117.409	38.84	<.0001	
2	prog		2	0.2357	0.6633	50.4716	35.70	<.0001	
3	alc2		3	0.1147	0.7780	18.9145	25.85	<.0001	
4	blood		4	0.0519	0.8299	5.7508	14.93	0.0003	
5	gend		5	0.0076	0.8374	5.5406	2.23	0.1418	
6	•	gend	4	0.0076	0.8299	5.7508	2.23	0.1418	
		•							

All variables left in the model are required or significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model. Summary of Stepwise Selection

	Variable \	Variable Nu	mber Pa	artıal Mo	odel			
Step	Entered	Removed	Vars In	R-Square	e R-Squa	re C(p) F Value	Pr > F
1	enz	2	0.4424	0.6633	50.4716	67.01	<.0001	
2	alc2	3	0.1147	0.7780	18.9145	25.85	<.0001	
3	blood	4	0.0519	0.8299	5.7508	14.93	0.0003	
4	gend	5	0.0076	0.8374	5.5406	2.23	0.1418	

Summary

- No method is the best for all model selection problems
- Consider more than one criterion
- "Best model" from automatic search procedures should be used as the starting point
- Apply knowledge of the subject matter to make a final selection – use your head!

Model validation

- Three approaches to checking the validity of the model
 - Collect new data, does it fit the model
 - Compare with theory, other data, simulation
 - Use some of the data for the basic analysis and some for validity check, compare SSE with PRESS, MSE with MSPE