Monty Hall Problem

Probability Distribution Tables

P(MyChoice)

P(ContainsPrice)

P(OpenedByOfficial | ContainsPrice, MyChoice)

MyChoice	Α		В			С			
ContainsPrice	Α	В	С	Α	В	С	Α	В	С
OpenedByOfficial: A	0	0	0	0	0.5	1	0	1	0.5
OpenedByOfficial: B	0.5	0	1	0	0	0	1	0	0.5
OpenedByOfficial: C	0.5	1	0	1	0.5	0	0	0	0

The table above is to be read in the following manner: Given MyChoice = $\{A, B, C\}$, and the Price being behind one in $\{A, B, C\}$, then the probabilty of each door being opened by the official is either $\{0, 0.5, 1\}$.

Now computing P(ContainsPrize | OpenedByOfficial, MyChoice) =
P(OpenedByOfficial | ContainsPrice, MyChoice) * P(ContainsPrice) /
P(OpenedByOfficial | MyChoice). Where P(OpenedByOfficial | MyChoice) = sum over
P(OpenedByOfficial | ContainsPrize, MyChoice)*P(ContainsPrice)

P(OpenedByOfficial | MyChoice)

MyChoice A B C

OpenedByOfficial: A 0 0.5 0.5

OpenedByOfficial: B 0.5 0 0.5

OpenedByOfficial: C 0.5 0.5 0

P(ContainsPrize | OpenedByOfficial, MyChoice)

MyChoice	A	A	E	3	С		
OpenedByOfficial	В	С	Α	С	Α	В	
ContainsPrice: A	1/3	1/3	0	2/3	0	2/3	
ContainsPrice: B	0	2/3	1/3	1/3	2/3	0	
ContainsPrice: C	2/3	0	2/3	0	1/3	1/3	