Programming Languages - Homework 1

Write C/C++ functions that builds and runs a FSA and an LR parser, and runs regular expressions.

- Skeleton codes are provided with the assignment.
- DO NOT change the fsa_main.cc, lr_parser_main.cc, and regexp_main.cc files.
- 1.1. Write a C/C++ function that builds a DFA from a finite state automaton definition. [50pts]
- The input file structure is the accept states at the first line, followed by (state, next_state, input_char) triplets. The 'epsilon' move is marked as "#" in the text file.

```
3 4
1 3 #
1 2 a
2 2 bc
2 4 b
3 2 #
3 4 a
4 3 ac
```

- Implement the RunfSA and BuildFSA functions so that it can process both DFA and NFA definitions.
- 1.2. Write C/C++ functions: a function that loads an LR parsing table to build an LR parser, and a function that runs it on input token strings and returns the acceptance (true/false). [50pts]
 - The LR parser table file structure is as follows:

```
num_table_elements num_rules
state symbol action next_state
...
rule_id lhs_symbol num_rhs
```

- Refer description in the header file lr parser.h for more details.
- Design the LRParser structure in 1r parser.h.
- Implement the BuildLRParser function that builds LRParser structure using the given table elements.
- Implement the RunLRParser function so that it returns the acceptance of the given token string.
- 1.3. Write a C/C++ function that builds DFA from a regular expression string. [50pts]
 - Design and implement the parser that builds NFA from the regular expression, consisting of single characters (abc), any character (.), set of characters ([abc]), OR (a|b), zero-or-more repetition ((a*), and group ((abc)).

```
ab|cd : ab, cd
a(b|c)d : abd, acd
a.*b : ab, acb, axyzb, ...
(a(b.c)*|de)f : af, def, abxcf, abxcbycf, ...
[abc]*def : adef, bdef, cdef, aadef, abdef, ...
```

• Convert the built NFA into DFA and match the input string with the regular expression.

Due: May 31 (Wed) 11:59 pm

- Zip the source code (ONLY .h, .cc and Makefile; absolutely no executable or object files) and submit it in ezhub (portal).
- The program must run on the Linux server (csedev.hanyang.ac.kr).

```
S => E$
1. E => T
2. E => T|E
3. T => F
                      Follow Sets
4. T => FT
                     Follow(E) = $)
5. F => C
                     Follow(T) = $)
6. F => C*
                     Follow(F) = $)
                     Follow(C) = $ ) | *
7. C \Rightarrow (E)
8. C => a
                      Follow(A) = ]
9. C \Rightarrow [A]
10. A \Rightarrow aA
11. A => a
```

[0] S => .E\$ E => .T E => .T E T => .F T => .FT F => .C F => .C* C => .(E) C => .a C => .[A]	[1] S => E.\$	[2] E => T. E => T. E	[3] T => F. T => F.T T => .F T => .FT F => .C F => .C* C => .(E) C => .a C => .[A]	[4] F => C. F => C.*
	[0]-E	[0]-T	[0]-F	[0]-C
[5] C => (.E) E => .T E => .T E T => .F T => .FT F => .C F => .C* C => .(E) C => .a C => .[A]	[6] C => a.	[7] C => [.A] A => .aA A => .a	[8] E => T .E E => .T E => .T E T => .F T => .FT F => .C F => .C* C => .(E) C => .a C => .[A]	[9] T => FT.
[0]-([0]-a	[0]-[[2]-	[3]-T
[10] F => C*.	[11] C => (E.)	[12] C => [A.]	[13] A => a.A A => a. A => .a	[14] E => T E.
[4]-*	[5]-E	[7]-A	[7]-a	[8]-E
[15] C => (E).	[16] C => [A].	[17] A => aA.	[18] A => a.	
[11]-)	[12]-]	[13]-A	[13]-a	

0	0	0	0	0	0	0	1	2	2	3	3	3	3	3	3	3
E	Т	F	С	(a	[\$	<e></e>	_	<t></t>	Т	F	С	(a]
G1	G2	G3	G4	S5	S6	s7	**	R1	S8	R3	G9	G3	G4	S5	S6	s7

4	4	5	5	5	5	5	5	5	6	7	7	8	8	8	8	8
<f></f>	*	E	Т	F	С	(а	[<c></c>	А	а	E	Т	F	С	(

R5	S10	G11	G2	G3	G4	S5	S6	s7	R8	G12	S13	G14	G2	G3	G4	S5
8	8	9	10	11	12	13	13	13	14	15	16	17	18			
a	[<t></t>	<f></f>)]	<a>	А	a	<e></e>	<c></c>	<c></c>	<a>	<a>			
S6	S7	R4	R6	S15	S16	R11	G17	S18	R2	R7	R9	R10	R11			

Follow Sets
Follow(E) = \$) |
Follow(T) = \$) |
Follow(F) = \$) |
Follow(C) = \$) | *
Follow(A) =]

	a	()	I	*	[]	\$	E	Т	F	С	А
0	S6	S5				s7			1	2	3	4	
1								**					
2			R1	R1				R1					
3	S6	S5	R3	R3		s7		R3		9	3	4	
4			R5	R5	S10			R5					
5	S6	S5				s7			11	2	3	4	
6			R8	R8	R8			R8					
7	S13												12
8	S6	\$5				s7			14	2	3	4	
9			R4	R4				R4					
10			R6	R6				R6					
11			S15										
12							S16						
13							R11						17
14			R2	R2				R2					
15			R7	R7	R7			R7					
16			R9	R9	R9			R9					
17							R10						
18							R11						