CYU CERGY-PARIS UNIVERSITÉ

Master 1, 2021-22 Systèmes dynamiques

Feuille d'exercices numéro 3

EDO LINÉAIRES PÉRIODIQUES MÉTHODES DES PERTURBATIONS ET TEMPS DE VIE

Exercice 1 Soit $A \in C^0(\mathbb{R}, M(n, \mathbb{R}))$ une application T-périodique. Démontrer que $X(\cdot)$ est une solution T-périodique de X(t) = A(t)X(t) si et seulement si X(0) est vecteur propre de $R_A(T, 0)$ de valeur propre associée 1.

Exercice 2 Soit $a(\cdot) \in C^1(\mathbb{R}, \mathbb{R})$ et T-périodique. On note R(t,s) la résolvante de l'équation différentielle linéaire d'ordre 1 naturellement associée à

$$\ddot{x}(t) + a(t)x(t) = 0 \tag{1}$$

et on suppose que R(T,0) est elliptique. On ajoute un terme de frottement à l'équation précédente; que dire de la stabilité de

$$\ddot{x}(t) + \gamma \dot{x}(t) + a(t)x(t) = 0, \tag{2}$$

pour $0 < \gamma \ll 1$? [On pourra démontrer dans un premier temps que la résolvante $R_{\gamma}(T,0)$ du système (2) entre 0 et T est de déterminant < 1.]

Exercice 3 Soit $a: \mathbb{R} \to \mathbb{R}$ continue et 1-périodique. On note R(t,s) la résolvante de l'équation différentielle linéaire d'ordre 1 naturellement associée à

$$\ddot{x}(t) + a(t)x(t) = 0. \tag{3}$$

- 1) Démontrer que R(t,s) est à valeurs dans $SL(2,\mathbb{R})$.
- 2) On suppose que $a(t) = \omega^2 + \epsilon \cos(2\pi t)$ où $\omega > 0$. Démontrer que si $|\epsilon|$ est suffisamment petit toutes les solutions de (3) sont bornées sur \mathbb{R} .

Exercice 4 Soient $a:\mathbb{R}\to\mathbb{R}$ une application continue T-périodique non-nulle et ϵ un petit paramètre réel. On considère $x:\mathbb{R}\to\mathbb{R}$ une solution de l'équation différentielle

$$x''(t) + a(\frac{t}{\epsilon})x(t) = 0.$$
 (4)

1) On pose $X(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$ et $Y(t) = X(\epsilon t)$. Vérifier que Y est solution d'une EDO de la forme

$$Y'(t) = \epsilon A(t)Y(t). \tag{5}$$

où A est une fonction T-périodique que l'on déterminera.

2) On note $R_{\epsilon}(t,0)$ la résolvante de l'EDO linéaire (5).

2.a) Démontrer que pour ϵ suffisamment petit il existe des fonctions continues $Y_1,Y_2:[0,T]\to M_2(\mathbb{R})$ et une fonction $G:[0,\epsilon_0]\to C^1([0,T],M_2(\mathbb{R}))$ vérifiant $\|G(\epsilon,\cdot)\|_{C^1([0,T],M_2(\mathbb{R}))}=o(\epsilon^2)$ telles que pour tout $t\in[0,T]$

$$R_{\epsilon}(t,0) = I + \epsilon Y_1(t) + \epsilon^2 Y_2(t) + G(\epsilon, t).$$

- 2.b) Calculer $Y_1(0)$ et $Y_2(0)$ puis $Y_1(\cdot)$ et $Y_2(\cdot)$.
- 2.c) Donner un développement limité de $\operatorname{tr} R(T,0)$ à l'ordre 2.
- 3) On suppose que $\int_0^T a(t)dt > 0$. Démontrer que toutes les solutions de l'EDO (4) sont bornées pourvu que ϵ soit suffisamment petit.
- 4) Démontrer que si la condition de la question précédente est vérifiée, il existe une infinité de valeur de ϵ sur un voisinage de 0 pour lesquelles toutes les solutions de (4) sont périodiques (mais pas forcément de période T).

Exercice 5 Soit l'équation différentielle $\ddot{x} + \gamma \dot{x} + (1 + \varepsilon \cos(2t))x = 0$ où ε, γ sont des paramètres. Discuter la stabilité de son équilibre x = 0 dans les cas suivants :

- 1) $\gamma = 0$ et $0 < \varepsilon \ll 1$
- 2) $0 < \gamma \ll \varepsilon \ll 1$.

Exercice 6 On considère la fonction $f: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$f(t,y) = (-y_1^3 + y_2^2 + 2ty_1, -y_2^5 + 3ty_1^2).$$

Démontrer que pour tout $v \in \mathbb{R}^2$, le problème de Cauchy

$$y'(t) = f(t, y(t)), y(0) = v$$

admet une unique solution définie sur $[0, \infty[$.

Exercice 7 Démontrer que le problème de Cauchy

$$y'(t) \le y(t) + e^{-3t}e^{2t} \le y(t) + e^{-t}, \quad y(0) = 1/3$$

admet une unique solution $y:[0,\infty[\to \mathbb{R}.$

Exercice 8 On considère l'équation différentielle scalaire réelle d'ordre $2(x(\cdot))$ est à valeurs réelles),

$$x''(t) + x(t) = \mu \cdot \left((1 + \cos t) \sin(x(t)) + \cos(2t) \right), \tag{6}$$

où μ est un paramètre réel et on se propose de démontrer que pour les petites valeurs de μ cette équation admet des solutions 2π -périodiques.

Pour cela on écrit l'équation (6) sous la forme

$$X'(t) = AX(t) + \mu F(X(t), t),$$
 (7)

où
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 et $F : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ est définie par $F\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, t\right) = \begin{pmatrix} 0 \\ (1+\cos t)\sin x_1 + \cos(2t) \end{pmatrix}$
1) Pour $\mu = 0$, calculer la solution $X_{0,v}(\cdot)$ de (7) qui prend la valeur $v = 0$

- $(v_1, v_2) \in \mathbb{R}^2 \text{ en } t = 0.$
- 2) Soient $\mu \in \mathbb{R}$ et $v = (v_1, v_2) \in \mathbb{R}^2$. Montrer que pour tout $v \in \mathbb{R}^2$ l'unique solution de (7) telle que X(0) = v est définie sur \mathbb{R} tout entier. On la note
- 3) Montrer que pour $\mu \neq 0$, $X_{\mu,\nu}(\cdot)$ est 2π -périodique si et seulement si

$$\int_0^{2\pi} \begin{pmatrix} \cos s & -\sin s \\ \sin s & \cos s \end{pmatrix} F(X_{\mu,\nu}(s), s) ds = 0.$$
 (8)

4) On note H la fonction $H:(\mu,v)\in\mathbb{R}\times\mathbb{R}^2\to\mathbb{R}^2$ définie par

$$H(\mu, v) = \int_0^{2\pi} \begin{pmatrix} \cos s & -\sin s \\ \sin s & \cos s \end{pmatrix} F(X_{\mu, v}(s), s) ds.$$

- 4.a) Montrer que H est de classe C^{∞}
- 4.b) Montrer que

$$H\left(0, \binom{v_1}{v_2}\right) = \begin{pmatrix} -\int_0^{2\pi} \left((1 + \cos s) \sin(v_1 \cos s + v_2 \sin s) + \cos(2s) \right) \sin s ds \\ \int_0^{2\pi} \left((1 + \cos s) \sin(v_1 \cos s + v_2 \sin s) + \cos(2s) \right) \cos s ds \end{pmatrix}.$$

- 4.c) Montrer que $H(\mu = 0, v = 0) = 0$.
- 4.d) Notons $D_v H(0,0)$ la dérivée de H par rapport à la variable $v \in \mathbb{R}^2$ au point $(\mu, v) = (0, 0)$ (c'est-à-dire la dérivée de $v \mapsto H(0, v)$ en v = 0). Calculer $D_v H(0,0)$.
- 5) En déduire qu'il existe un $\epsilon_0 > 0$ et une fonction de classe C^{∞}

$$v: (-\epsilon_0, \epsilon_0) \to \mathbb{R}^2$$

 $\mu \mapsto v(\mu)$

telle que $H(\mu, v(\mu)) = 0$. Qu'en conclure?

On considère le système différentiel

$$\begin{cases} \dot{x} = -x + y^2 \\ \dot{y} = -y + x^2 \end{cases}$$

Démontrer que pour (x_0, y_0) assez petit, les solutions de l'équation différentielle précédente, de condition initiale $(x(0), y(0)) = (x_0, y_0)$, sont définies pour tout temps t > 0. Que dire de la stabilité de l'origine?

Exercice 10 1) Soit φ une fonction positive continue sur un intervalle [0,T]. On supose qu'il existe des fonctions réelles f et g positives, continues sur [0,T] telles que pour tout $t \in [0,T]$

$$\varphi(t) \leqslant f(t) + \int_0^t g(s)\varphi(s)ds.$$

Montrer que pour tout $t \in [0, T]$ on a

$$\varphi(t) \leqslant f(t) + \int_0^t e^{\int_s^t g} g(s) f(s) ds.$$

2) Soient $A: \mathbb{R}_+ \to M(n, \mathbb{R})$ et $p: \mathbb{R}_+ \to \mathbb{R}^n$ deux applications continues. On considère la solution sur $[0, \infty]$ de l'équation différentielle

$$\dot{x}(t) = A(t)x(t) + p(t).$$

Montrer que si $\int_0^\infty \|A(t)\| dt < \infty$ et $\int_0^\infty \|p(t)\| dt < \infty$, alors $\sup_{t \in [0,\infty[} \|x(t)\| < \infty$.

Exercice 11 Soit $f: \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n$ une fonction continue des deux variables et localement lipschitzienne par rapport à la première variable. On suppose qu'il existe deux fonctions continues $\alpha, \beta: \mathbb{R}_+ \to \mathbb{R}_+$ telles que pour tout $x \in \mathbb{R}^n$ et tout $t \in \mathbb{R}_+$ on ait $\langle f(x,t), x \rangle \leq \alpha(t) + \beta(t) ||x||^2$. Montrer que chaque solution de l'équation $\dot{x} = f(x,t)$ est définie sur $[0, \infty[$.

Exercice 12 1) Quel est le temps de vie des solutions de l'équation suivante

$$\dot{x} = (x^2 + 1)\cos(\pi x)$$
?

2) Le temps de vie des solutions des équations suivantes est-il fini

$$\dot{x} = 1 + t^2 + x^2$$

$$\dot{x} = 1 - t^2 + x^2$$
?

Dans le second cas on pourra commencer par étudier une solution de condition initiale x(0) > 0 et étudier la fonction x(t) - t.

Exercice 13 Soient Ω un ouvert de \mathbb{R}^n et $f: \Omega \times [a, b[\to \mathbb{R}^n$ une fonction continue, localement lipschitzienne en la première variable. On suppose que f est quasi-croissante, c'est-à-dire que pour tout $j \in \{1, \ldots, n\}$ on a

si
$$x_i = y_i$$
 et $x_i \leq y_i$ pour $i \neq j$, alors $f_i(x_1, \dots, x_n, t) \leq f_i(y_1, \dots, y_n, t)$.

On considère x une solution de $\dot{x} = f(x,t)$ sur [c,d[et $y:[c,d[\to \Omega$ telle que pour tout $t \in [c,d[$, tout $j=1,\ldots,n$ on ait $y_j(c) \leq x_j(c)$ et $\dot{y}_j(t) \leq f_j(y,t)$.

- 1) Soit $\epsilon > 0$ et x^{ϵ} la solution de $\dot{x^{\epsilon}} = f(x^{\epsilon}, t) + (\epsilon, \epsilon, \dots, \epsilon), \ x^{\epsilon}(c) = x(c)$, montrer que $x^{\epsilon} \to x$ quand $\epsilon \to 0$ (en donnant un sens précis à cette assertion).
- 2) Montrer que $y_j(t) < x_j^{\epsilon}(t)$ pour tout $t \in]c,d[$ où x^{ϵ} existe.
- 3) En déduire que pour tout $t \in [c, d[$ et tout j = 1, ..., n on a $y_j(t) \leq x_j(t)$.

Exercice 14 On considère l'équation de Blasius

$$u''' = uu'', \quad u(0) = u'(0) = 0, \quad u''(0) = 1.$$
 (9)

- 1) Mettre l'équation sous la forme d'un système nonlinéaire du premier ordre. En déduire que (9) admet une solution maximale que l'on notera u(t).
- 2) Soit $c \in \mathbb{R}$. Vérifier que la fonction $v_c(t) = \frac{3}{c-t}$ satisfait $v_c''' = v_c v_c''$ sur son domaine de définition. En déduire, en utilisant l'exercice précédent, une majoration de u et une minoration de son temps d'explosion.
- 3) Toujours à l'aide de l'exercice précédent, montrer qu'on a $u(t) \ge t^2/2$, $u'(t) \ge t$ et $u''(t) \ge 1$ pour tout t dans le domaine de définition de u. En utilisant cette minoration à un instant t_0 , déduire une minoration de u par une fonction de la forme v_c après t_0 et donc une majoration des temps d'explosion.