

University of Tehran, ECE Wireless Communication, spring 2020

Due Date: -----

Path loss, Shadowing, Link budget, and Coverage

- 1. In a wireless communication system working at $f_c = 1 GHz$, the transmitted power is 0 dBm. The path-loss follows the simplified model of $P_L(dB) = 10 + 40 \log_{10}(d)$, where d is the distance in meter. We also have a Log-Normal shadowing with a standard deviation of 6 dB. The acceptable RX power is $P_{r_{\min}} = -90 dBm$ (outage $= P_r < P_{r_{\min}}$).
 - a. Determine the outage probability (P_{out}) for users with a distance of d from the transmitter. Find the distance where P_{out} becomes 50%?
 - b. Determine the total expected coverage area? Find the expected coverage radius.
 - c. Find the needed transmitted power such that the outage probability for a user located at a distance of 100m becomes P_{out} . Sketch P_{out} (from 0% up to 100%) vs. needed TX power (in dBm).
- 2. In Fig.1, the node RX receives signal form transmitter TX₁ and also receives interference from TX₂. The path loss and shadowing between ith transmitter and receiver are modeled as:

$$PL_{i} = K + 10n \log_{10}\left(\frac{d_{i}}{d_{0}}\right) + X_{i} (dB), i = 1,2$$

Fig.1

Where d_i is the distance between the receiver and transmitter i in meters, and n is the path loss exponent, the terms X_i are zero-mean Gaussian random variables with standard deviation σ , in dB, that model the variation of the received signals due to shadowing. Assume that the random variables X_i are independent of each other and also suppose that P_0 is the received power at distance d_0 from each of transmitters. SINR_{min} is the minimum required SINR at receiver for non-outage.

- a. Using the parameters in Table.2, find the maximum radius R from TX₁, that if the receiver is in that circle, then the outage probability at each point be less than 0.05.
- b. Suppose that n is parameter, find the maximum radius R as a function of n, and plot R versus n and explain the behavior of R.

c. Suppose that there is an additive white Gaussian noise at RX with $N_0 = 10^{-12}$, find the maximum radius R, for n=4 and also plot R versus n and compare the results with part b.

Table 1	
Parameter	Value
n	4
σ	5 dB
P_0	0 dBW
d_0	1 m
d	1000 m
SINR _{min}	10 dB

- 3. Consider a cellular system operating at 900 MHz where propagation follows free space path loss with variations from log normal shadowing with $\sigma = 6 \, dB$. Suppose that for acceptable voice quality a signal-to-noise power ratio of 15 dB is required at the mobile. Assume the base station transmits at 1 W and its antenna has a 3 dB gain. There is no antenna gain at the mobile and the receiver noise in the bandwidth of interest is -10 dBm. Find the maximum cell size so that a mobile on the cell boundary will have acceptable voice quality 90% of the time.
- 4. Consider a random propagation environment. The received signal power P_r at a distance $d(>d_0)$ is:

$$P_r^{(dBm)} = P_0^{(dBm)} - 10 \gamma \log_{10} \left(\frac{d}{d_0}\right) + X^{(dB)}$$

where $P_0 = 0$ dBm is the received power, a reference distance $d_0 = 1$ m, $\gamma = 3$ is the path loss exponent, X(dB) is a discrete random variable distributed with

$$P_{X^{(dB)}}(x^{(dB)}) = \begin{cases} 0.2 & x^{(dB)} = 0 \ dB \\ 0.2 & x^{(dB)} = -2 \ dB \\ 0.2 & x^{(dB)} = -1 \ dB \\ 0.2 & x^{(dB)} = 1 \ dB \\ 0.2 & x^{(dB)} = 2 \ dB \\ 0 & otherwise \end{cases}$$

Find the maximum radius of this basestation such that the power signal received (from basestation) is larger than -90dBm with a probability of 0.8.

5. Use MATLAB to plot each part of the following question:

Consider a base-station (BS) and a lot of mobile devices randomly are located around the BS with uniform distribution in a circular ring whose distance from BS starts from $d_0 = 10 \, meter$ and is limited to $D = 1000 \, meter$.

The path-loss follows a simplified model with a path-loss exponent of n=4. The transmitted power is such that the average received signal power at $d=d_0$ is $P_0=1\mu W$. The PSD of the AWGN at the receiver is $N_0=-174\frac{dBm}{Hz}$ and the signal bandwidth is $1\,MHz$.

a. The average received signal power at distance d ($d > d_0$) is obtained by the following equation:

$$P_r^{dBm} = P_0^{dBm} - 10nlog_{10} \left(\frac{d}{d_0}\right)$$

Simulate the P_r^{dBm} of the users and plot its CDF (cumulative distribution function). (you can use cdfplot in Matlab).

- b. Plot expected SNR $(dB) = P_r^{dBm} P_n^{dBm}$ as a function of distance $(\log_{10} d)$ for $10 \le d \le 1000$.
- c. Now assume that we have Log-normal shadowing as well. The average received signal power at distance d ($d > d_0$) is obtained by the following equation:

$$P_r^{dBm} = P_0^{dBm} - 10nlog_{10} \left(\frac{d}{d_0}\right) + X^{dB}$$

where *X* is a zero-mean Gaussian random variables with standard deviation $\sigma = 5 \ dB$ (independent of *d*). Plot the CDF of P_r^{dBm} and SNR (dB) = $P_r^{dBm} - P_n^{dBm}$ for all users in the ring.

- d. Plot $P_{out} = \Pr(SNR < SNR_{min})$ as a function of distance $(\log_{10} d)$ for $10 \le d \le 1000$. $SNR_{min} = 20 \ dB$ is the minimum required SNR at receiver for non-outage.
- e. How much area of the ring is covered if we need $SNR_{min} = 20 \, dB$ for coverage. Compare it with formula in Goldsmith.

Note: For uniformly distributed users in a ring, simulate some 10^5 users randomly located at (dx,dy), where dx and dy are independent random coordinates with uniform distribution in [-1000, 1000]. Then select the users that are located in the intended circular ring and remove the remaining users from your user set.