

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

UNIT –I Matrices

	UNII –I Matrices	
Sl.No.	Tutorial Sheet -2	Answers
Part – A		
Verify Cayley Hamilton theorem and find A^4 when $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.		$A^4 = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$
	values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are equal Find the eigen values of A^{-1}	$A=1, 1, 5$ $A^{-1}=1, 1, 1/5$
The matrix A^2	A is $\begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$. Find the eigen values of	$A=-1, 3, 2$ $A^2 = 1, 9, 4$
Verify Cay $A = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$	ley Hamilton theorem and find A^{-1} when $\begin{bmatrix} 1 & 1 \\ 5 & -1 \\ -1 & 3 \end{bmatrix}$.	$A^{-1} = 1/20 \begin{bmatrix} 7 & -2 & -3 \\ 1 & 4 & 1 \\ -2 & 2 & 8 \end{bmatrix}$
Verify Cay $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$	ley Hamilton theorem and find A^{-1} when $\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$	$A^{-1} = \begin{bmatrix} 3 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix}$
$A=\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	-1 -1 3J	Ans $\begin{bmatrix} -34 & 0 & -20 \\ -20 & -54 & 0 \\ 10 & 10 & -74 \end{bmatrix}$
7 If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 2 \\ A^4 \text{ and } A^{-1}. \end{bmatrix}$	2 2 2 7 1, Prove that $A^3 - 3A^2 - 9A - 5I = 0$. Hence find	[208 208 209]
8 Diagonalise	e the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$ when	$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$