Tutorial 6b: ECC over finite field $F[2^m]$

An elliptic curve E over F[2^m] is given by $y^2 + xy = x^3 + ax^2 + b \mod M(t)$.

Let us take $x_1 = 2$, $y_1 = 139$

a = 3, compute b

We will always compute in a ring modulo M=299₁₀.

Step 1: Double point Step 2: Add point

Table 5.2b An inverse a^{-1} of a = xy in hexa modulo irreducible polynomial $299_{10} = M(t) = t^8 + t^5 + t^3 + t + 1$ written in hexadecimals.

a^{-1}			y														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	0 0	01	95	E 6	DF	ВВ	7 3	A 4	FΑ	8 5	C 8	5 5	ΑC	CE	52	6 9
	1	7 D	27	D 7	F8	6 4	5 9	ΒF	А3	5 6	5 0	67	9 A	2 9	3 3	A1	98
	2	AΒ	91	8 6	E 8	FΕ	E 1	7 C	11	32	1 C	В9	3 0	CA	7 6	C 4	3 D
	3	2 B	В8	28	1 D	A 6	В1	4 D	3 F	81	61	8 C	5 A	C 5	2 F	4 C	3 7
	4	C 0	F 4	DD	4 4	4 3	DC	7 4	FC	7 F	8 F	E 5	C 6	3 E	3 6	9 D	DA
	5	19	5 7	0 E	68	C 9	0 B	18	51	65	15	3 B	8 D	62	97	8 B	6 F
	6	8 0	3 9	5 C	96	1 4	5 8	9 B	1 A	5 3	0 F	CD	D 9	В3	9 E	8 A	5 F
x	7	D 5	F2	A 5	0 6	4 6	FD	2 D	СВ	F 7	E 2	8 2	ΕD	2 6	10	8 E	4 8
	8	60	38	7 A	ΕC	FΒ	0 9	22	E 9	В4	C 2	6 E	5 E	3 A	5 B	7 E	4 9
	9	AΑ	21	D2	в7	E 7	02	63	5 D	1 F	A 0	1 B	66	DВ	4 E	6 D	В2
	A	99	1 E	ΒE	17	0 7	7 2	3 4	в0	F1	ΕF	90	20	0 C	СF	ВD	D1
	в	A 7	3 5	9 F	6 C	8 8	C 3	D 3	93	31	2 A	DΕ	0 5	D 0	ΑE	A 2	16
	С	4 0	F5	8 9	В5	2 E	3 C	4 B	E 4	0 A	5 4	2 C	77	D 8	6 A	0 D	ΑD
	D	ВС	ΑF	92	В6	F3	7 0	F 9	12	СС	6 B	4 F	9 C	4 5	4 2	ВА	0 4
	E	FF	25	7 9	F 6	C 7	4 A	0 3	9 4	23	8 7	EΒ	ΕA	8 3	7в	F 0	A 9
	F	ΕE	A 8	7 1	D 4	4 1	C 1	E 3	7 8	13	D 6	0 8	8 4	4 7	7 5	2 4	E 0

Step 0: Choose a base point $P_1(x_1, y_1)$.

Let us take $x_1 = 2 = t = 10_2$,

 $y_1 = 139_{10} = 8B_{16} = 10001011_2$.

Take $P_1(x_1, y_1) = (02, 8B)$

Step 1: Assign parameters *a* and *b*.

Given
$$a = 3 = t + 1 = 11_2$$
. From an elliptic curve $y^2 + xy = x^3 + ax^2 + b$,

$$P_1(x_1, y_1) = (02, 8B)$$

We need to compute $b = y^2 + xy - (x^3 + ax^2)$

$$x_1 y_1 = 10.10001011$$

= 100010110= 116₁₆.

We move to the RHS, we need to compute x^3 ,

$$x^{2} = 10.10 = t^{2} = 100$$

$$100 = 04_{16}.$$

$$x^{3} = x \cdot x^{2} = t \cdot t^{2} = t^{3} = 1000.$$

$$10.100 = 1000_{2} = 08_{16}.$$

Let us move on to $ax^2 = 11.100$ = 100 = 1100 = 0C₁₆.

Finally, we can compute b, from $y^2 + xy = x^3 + ax^2 + b$,

$$b = y^2 + xy - (x^3 + ax^2)$$

= 10100010+100010110-(1000+1100)

```
= 100010110

10100010

1000

1100

110110000

100101011

10011011 = 9B<sub>16</sub>
```

Let us move to Double Point operation on $P_1(x_1, y_1) = (02, 8B)$

Step 2: Double Point

From a basic Point, compute $P_2(x_2, y_2) = 2 \otimes P_1(x_1, y_1)$ From an irreducible polynomial $299_{10} = 12B_{16} = 256 + 32 + 8 + 2 + 1 = M(t) = t^8 + t^5 + t^3 + t + 1$.

Let (x_1, y_1) be a point on an elliptic curve $E(F_2^m)$, and $(x_1, y_1) \neq (x_2, -y_2)$ then let $(x_2, y_2) = 2 \otimes (x_1, y_1)$ such that

$$x_2 = x_1^2 + \frac{b}{x_1^2}$$
 and $y_2 = x_1^2 + (1 + x_1 + \frac{y_1}{x_1}) \cdot x_2$

$$P_1(x_1, y_1) = (02, 8B)$$

From $x_1^2 = 100$, refer to Table 5.2b in xy=04, we get an inverse $x_1^{-2} = DF$. Let us compute

$$bx_1^{-2} = 9B \cdot DF$$

$$= 10011011 \cdot 11011111$$

$$= 11011111$$

$$11011111$$

$$11011111$$

$$11011111$$

$$110011111$$

$$110010111$$

$$100101011$$

$$10101011$$

$$10101011$$

$$100101011$$

$$100101011$$

$$100101011$$

$$100101011$$

$$101000111$$

$$101000111$$

$$101000111$$

$$1011000111$$

$$100101011$$

$$1101100 = 6C_{16}$$

Muhammad Izham Bin Norhamadi B032020039 3BITZ

$$x_2 = x_1^2 + bx_1^{-2} = 100 + 1101100$$

$$= 1101100$$

$$= 100$$

$$= 1101000 = 68_{16}.$$

From $x_1 = 10 = 2_{16}$, refer to Table 5.2b in xy = 02, we get an inverse $x_1^{-1} = 95_{16}$.

```
Let us compute
                y_1 \cdot x_1^{-1} = 8B \cdot 95
                      = 10001011 \cdot 10010101
                       = 10010101
                               10010101
                                 10010101
                                  1001010100
                       = 10011110001011100
                         100101011
                               1011101011100
                               100101011
                                 10111101100
                                 100101011
                                    101000000
                                    100101011
                                       \overline{1101011} = 6B_{16}.
Next 1 + x_1 + y_1 \cdot x_1^{-1} = 1 + 10 + 1101011
                   = 1101011
(1 + x_1 + y_1 \cdot x_1^{-1}) \cdot x_2 = 1101000 \cdot 1101000
                     1101000
                       1101000
                         1101000000
                     1010001000000
                     100101011
                        1101111 0000
                        100101011
                         1001011100
                         100101011
                                 1010 = 0A_{16}.
```

Then we are ready to compute
$$y_2 = x_1^2 + (1 + x_1 + y_1 \cdot x_1^{-1}) \cdot x_2$$

= 100+1010
= 1010
= $\frac{100}{1110} = 0E_{16}$.

Step 3: Add Point

Compute $P_3(x_3, y_3) = P_1(x_1, y_1) \oplus P_2(x_2, y_2)$

Let (x_1, y_1) and (x_2, y_2) are two points on an elliptic curve $E(F_p)$, and $(x_1, y_1) \neq (x_2, \pm y_2)$

then let $(x_3, y_3) = (x_1, y_1) \oplus (x_2, y_2)$ such that

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 + \frac{y_2 - y_1}{x_2 - x_1} - (x_1 + x_2) + a \text{ and } y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - (x_3 + y_1)$$

Let the slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 of the secant line connecting (x_1, y_1) and (x_2, y_2)

then

$$x_3 = m^2 + m - (x_1 + x_2) + a$$
 and $y_3 = m \cdot (x_1 - x_3) - (x_3 + y_1)$

$$P_3(x_3, y_3) = P_1(x_1, y_1) \oplus P_2(x_2, y_2) = (2, 6C) \oplus (A0, 1D)$$

Let us start from denominator $x_2 - x_1 = 68 - 02$ = 1101000 = $\frac{10}{01010} = 6A_{16}$.

Refer to an inverse table, from $(x_2 - x_1)^{-1} = 6D$. Take $y_2 - y_1 = 0E - 8B = 85_{16}$.

Now we can compute the slope of secant line,

$$m = (y_2 - y_1) \cdot (x_2 - x_1)^{-1} = 85 \cdot 6D$$

= 10000101 \cdot 1101101

```
= 1101101 \cdot 10000101
                                      10000101
                                        10000101
                                           10000101
                                            10000101
                                               10000101
                                      11011101011001
                                      100101011
                                        1001000111001
                                        100101011
                                               10001001
                                               100101011
                                                   \overline{111001} = 39_{16}.
                     m^2 = 39.39
                     = 111001 \cdot 111001
                     = 111001
                         111001
                           111001
                               111001
                        10101000001
                        100101011
                           111101101
                           100101011
                            \overline{11000110} = C6_{16}
x_3 = m^2 + m - (x_1 + x_2) + a
   = 11000110
        111001
              10
       1101000
      \frac{11}{10010110} = 96_{16}.
y_3 = m \cdot (x_1 - x_3) - (x_3 + y_1)
                     x_1 - x_3 = 02 - 96 = 94.
                     x_3 + y_1 = 96 + 8B = 1D.
Let us compute m \cdot (x_1 - x_3) = 39 \cdot 1D
                     = 111001 \cdot 11101
```

Muhammad Izham Bin Norhamadi B032020039 3BITZ

```
= 11101 \cdot 111001
111001
111001
111001
111001
101000101
10010111
11010011 = D3<sub>16</sub>.
```

Finally,

$$y_3 = m \cdot (x_1 - x_3) - (x_3 + y_1) = D3 - 1D$$

= $\frac{11010011}{11001110} = CE_{16}$.

Answer Table for Tutorial 5b

				7 1115 V		1010 1	01 1 0	torrar	50				
i	x_1	<i>y</i> 1	x_2	<i>y</i> 2	<i>x</i> ₃	<i>y</i> 3	i	x_1	<i>y</i> 1	x_2	<i>y</i> 2	<i>x</i> ₃	<i>y</i> ₃
0	2	100	180	98	59	253	50	2	150	237	242	91	173
1	2	101	254	67	61	196	51	2	151	167	2	89	66
2	2	102	180	214	59	198	52	2	152	255	229	3	62
3	2	103	254	189	61	249	53	2	153	181	193	94	102
4	2	104	166	196	88	133	54	2	154	255	26	3	61
5	2	105	236	123	143	24	55	2	155	181	116	94	56
6	2	106	166	98	88	221	56	2	156	249	181	136	21
7	2	107	236	151	143	151	57	2	157	179	6	102	129
8	2	108	160	29	141	163	58	2	158	249	76	136	157
9	2	109	234	53	182	183	59	2	159	179	181	102	231
10	2	110	160	189	141	46	60	2	160	152	66	167	117
11	2	111	234	223	182	1	61	2	161	210	201	153	224
12	2	112	250	38	156	184	62	2	162	152	218	167	210
13	2	113	176	178	45	8	63	2	163	210	27	153	121
14	2	114	250	220	156	36	64	2	164	158	148	0	23
15	2	115	176	2	45	37	65	2	165	212	136	178	56
16	2	116	252	111	236	66	66	2	166	158	10	0	23
17	2	117	182	108	251	190	67	2	167	212	92	178	138
18	2	118	252	147	236	174	68	2	168	140	244	42	92
19	2	119	182	218	251	69	69	2	169	198	118	195	5
20	2	120	238	194	210	213	70	2	170	140	120	42	118
21	2	121	164	95	96	226	71	2	171	198	176	195	198
22	2	122	238	44	210	7	72	2	172	138	18	162	150
23	2	123	164	251	96	130	73	2	173	192	7	253	213
24	2	124	232	187	42	57	74	2	174	138	152	162	52
25	2	125	162	177	113	174	75	2	175	192	199	253	40
26	2	126	232	83	42	19	76	2	176	208	124	88	16
27	2	127	162	19	113	223	77	2	177	154	213	239	100
28	2	128	163	158	233	136	78	2	178	208	172	88	72
29	2	129	233	145	44	159	79	2	179	154	79	239	139

30	2	130	163	61	233	97	80	2	180	214	10	157	108
31	2	131	233	120	44	179	81	2	181	156	52	180	166
32	2	132	165	94	234	4	82	2	182	214	220	157	241
33	2	133	239	198	100	50	83	2	183	156	168	180	18
34	2	134	165	251	234	238	84	2	184	196	97	78	10
35	2	135	239	41	100	86	85	2	185	142	193	7	174
36	2	136	183	175	183	24	86	2	186	196	165	78	68
37	2	137	253	169	3	179	87	2	187	142	79	7	169
38	2	138	183	24	183	175	88	2	188	194	39	103	215
39	2	139	253	84	3	176	89	2	189	136	16	166	184
40	2	140	177	95	178	97	90	2	190	194	229	103	176
41	2	141	251	206	117	229	91	2	191	136	152	166	30
42	2	142	177	238	178	211	92	2	192	47	220	17	232
43	2	143	251	53	117	144	93	2	193	101	141	161	241
44	2	144	235	127	154	205	94	2	194	47	243	17	249
45	2	145	161	82	212	216	95	2	195	101	232	161	80
46	2	146	235	148	154	87	96	2	196	41	239	40	198
47	2	147	161	243	212	12	97	2	197	99	41	21	44
48	2	148	237	31	91	246	98	2	198	41	198	40	238
49	2	149	167	165	89	27	99	2	199	99	74	21	57