IMPERIAL

Blowing Suction in flat plate

Víctor Ballester April 24, 2025

Blowing and suction

• I modify the BC of v on the wall with:

$$\mathbf{v}(\mathbf{x}, \mathbf{t}) = \mathbf{A} \sin \theta (1 - \cos \theta) \sin(\omega \mathbf{t}) \mathbf{1}_{\mathbf{x} \in (\mathbf{x}_0, \mathbf{x}_0 + \ell)}$$

where A = 0.003, $x_0 = 0$ (for the flat plate!), $\ell = 2\pi/\alpha_r$, $\omega = \omega_r$ and $\theta = \alpha_r(x - x_0)$. The pair (α_r, ω_r) is taken from Orr-Sommerfeld eq. Probably I will increase a little bit ω because ω_r is very small.

- I found the function $\sin\theta(1-\cos\theta)$ in a paper. I assume they use it to make a \mathcal{C}^2 contact as well as keep the integral of the curve big, in order to "maximize" the forcing.
- Orr-Sommerfeld analysis for w = 15:

 $\mathbf{x}=15\delta^*$ (downstream edge)

 $x = 300\delta^*$ (downstream edge)

 $x = 900\delta^*$ (downstream edge)

Flat DNS TS amplitudes

• Evolution of different points in the domain of the u (left) and v (right) fields (linear solver with blowing and suction).

General comments

Should I increase the upstream region for blowing and suction in the gap version?

- I was not able to make the Coupled direct solver work, but I haven't tried too much.
- I have all the ingredients to compute the n(x) curves. I am in the postprocessing part now.

$$\mathbf{n}(\mathbf{x}) = \max_{\omega} \ln \left(\frac{\mathbf{A}(\mathbf{x}, \omega)}{\mathbf{A}_0(\omega)} \right) = \max_{\omega} \int_{\mathbf{x}_0}^{\mathbf{x}} -\alpha_{\mathbf{i}}(\mathbf{x}, \omega) d\mathbf{x}$$

for a perturbation of the form $\tilde{v}(x, y, t) = v(y) \exp\{i(\alpha x - \omega t)\}$ and $\alpha_i = Im(\alpha)$.

Imperial College London Blowing Suction in flat plate April 24, 2025