Convergență simplă și uniformă pentru șiruri de funcții

Definiție. Fie A o mulțime nevidă, (X,d) un spațiu metric \Si $(f_n)_{n\in\mathbb{N}}$ un \Sir de funcții, $f_n:A\to X$ pentru orice $n\in\mathbb{N}$, \Si $f:A\to X$. Spunem că \Sirul $(f_n)_{n\in\mathbb{N}}$ converge simplu (sau punctual), pe A, către f, \Si vom nota $f_n \stackrel{s}{\to} f$, dacă $\lim_{n\to\infty} f_n(x) = f(x)$ pentru orice $x\in A$, i.e. pentru orice $x\in A$ \Si orice $\varepsilon>0$ există $n_{x,\varepsilon}\in\mathbb{N}$ astfel încât $d(f_n(x),f(x))<\varepsilon$ pentru orice $n\in\mathbb{N}$, $n\geq n_{x,\varepsilon}$.

Definiție. Fie $(f_n)_{n\in\mathbb{N}}$ un şir de funcții, $f_n:D\subseteq\mathbb{R}\to\mathbb{R}$ pentru orice $n\in\mathbb{N}$, şi $f:D_0\subseteq D\subseteq\mathbb{R}\to\mathbb{R}$. Spunem că şirul $(f_n)_{n\in\mathbb{N}}$ converge (simplu), pe D_0 , către f, şi vom nota $f_n\stackrel{s}{\to} f$, dacă $\lim_{n\to\infty}f_n(x)=f(x)$ pentru orice $x\in D_0$, i.e. pentru orice $x\in D_0$ şi orice $\varepsilon>0$ există $n_{x,\varepsilon}\in\mathbb{N}$ astfel încât $|f_n(x)-f(x)|<\varepsilon$ pentru orice $n\in\mathbb{N}$, $n\geq n_{x,\varepsilon}$.

Exemplu. Să se studieze convergența simplă a şirului de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n:[0,1]\to\mathbb{R}$ este dată de $f_n(x)=x^n$ pentru orice $x\in\mathbb{R}$ și $n\in\mathbb{N}$.

Exerciții.

- 1. Să se studieze convergența simplă a şirului de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n: \mathbb{R} \to \mathbb{R}$ este dată de $f_n(x) = \frac{x}{n}$ pentru orice $x \in \mathbb{R}$ și $n \in \mathbb{N}$.
- 2. Să se studieze convergența simplă a șirului de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n: \mathbb{R} \to \mathbb{R}$ este dată de $f_n(x) = \frac{x^2 + nx}{n}$ pentru orice $x \in \mathbb{R}$ și $n \in \mathbb{N}$.

 3. Să se studieze convergența simplă a șirului de funcții $(f_n)_{n\in\mathbb{N}}$, unde
- **3**. Să se studieze convergența simplă a şirului de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n: \mathbb{R} \to \mathbb{R}$ este dată de $f_n(x) = \frac{\sin(nx)}{n}$ pentru orice $x \in \mathbb{R}$ și $n \in \mathbb{N}$.

Observație. Suntem interesați în a studia în ce măsură proprietățile funcțiilor f_n se transmit la funcția f. Așa cum arată exemplul de mai sus (unde deși
funcțiile f_n sunt continue, funcția limită nu are această proprietate), convergența simplă nu este instrumentul adecvat acestui scop. O analiză geometrică a
exemplului de mai sus arată că motivul discontinuității funcției limită în 1 este
faptul că, pe măsură ce n crește, graficul lui f_n se depărtează de graficul lui fîn apropierea lui 1. Prin urmare avem nevoie de o nouă noțiune de convergență
pentru șiruri de funcții, care să oblige "graficul lui f_n să conveargă către graficul
lui f"

Definiție. Fie (X, d_X) şi (Y, d_Y) două spații metrice şi $(f_n)_{n \in \mathbb{N}}$ un şir de funcții, $f_n : X \to Y$ pentru orice $n \in \mathbb{N}$, şi $f : X \to Y$. Spunem că şirul $(f_n)_{n \in \mathbb{N}}$ converge uniform către f și vom nota $f_n \stackrel{u}{\to} f$, dacă pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât $d(f_n(x), f(x))$ pentru orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$ și orice $x \in X$.

Definiție. Fie $(f_n)_{n\in\mathbb{N}}$ un şir de funcții, $f_n:D\subseteq\mathbb{R}\to\mathbb{R}$, pentru orice $n\in\mathbb{N}$, şi $f:D_0\subseteq D\subseteq\mathbb{R}\to\mathbb{R}$. Spunem că şirul $(f_n)_{n\in\mathbb{N}}$ converge uniform, pe

 D_0 , către f, și vom nota $f_n \stackrel{u}{\to} f$, dacă pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel $|\widehat{f}_n(x) - f(x)| < \varepsilon \text{ pentru orice } n \in \mathbb{N}, n \ge n_{\varepsilon} \text{ si orice } x \in D_0.$

Observație. Prin urmare, $f_n \stackrel{u}{\to} f$ înseamnă că pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$ să avem $f(x) - \varepsilon < f_n(x) < \infty$ $f(x) + \varepsilon$ pentru orice $x \in D_0$, adică pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$ graficul lui f_n se află între $G_{f-\varepsilon}$ și $G_{f+\varepsilon}$, adică "graficul lui f_n converge către graficul lui f".

Exercițiu. Să studieze convergența uniformă a șirurilor de funcții prezentate mai sus.

Caracterizarea convergenței uniforme cu ajutorul $\|.\|_{\infty}$

Definiție. $Dacă f: D \subseteq \mathbb{R} \to \mathbb{R}$ este o funcție mărginită (i.e. există $M \in \mathbb{R}$ astfel încât $|f(x)| \le M$, pentru orice $x \in D$), atunci definim norma lui f astfel: $||f||_{\infty} = \sup_{x \in D} |f(x)|.$

Un instrument foarte important, din punct de vedere practic, pentru stabilirea convergenței uniforme a unui șir de funcții este dat de următoarea:

Propoziție. Fie $(f_n)_{n\in\mathbb{N}}$ un şir de funcții mărginite, unde $f_n:D\subseteq\mathbb{R}\to\mathbb{R}$, $f:D\subseteq\mathbb{R}\to\mathbb{R}$ o funcție mărginită și $D_0\subseteq D$. Atunci următoarele afirmații sunt echivalente:

```
i) (f_n)_{n\in\mathbb{N}} converge uniform, pe D_0, către f;
(ii) \lim_{n \to \infty} \sup_{x \in D_0} |f_n(x) - f(x)| = \lim_{n \to \infty} \sup_{x \in D_0} ||f_n - f||_{\infty} = 0.
```

Exemplu. Să se studieze convergența simplă și uniformă pentru șirulrile de funcții $(f_n)_{n\in\mathbb{N}}$ și $(g_n)_{n\in\mathbb{N}}$, unde $f_n, g_n : [0,1] \to \mathbb{R}$ sunt date de $f_n(x) = x^n$ și

funcții
$$(f_n)_{n\in\mathbb{N}}$$
 și $(g_n)_{n\in\mathbb{N}}$, unde $f_n,g_n:[0,1]\to\mathbb{R}$ sunt date de $f_n(x)=x^n$ și $g_n(x)=x^n\,(1-x)$ pentru orice $x\in\mathbb{R}$ și $n\in\mathbb{N}$.

Avem $\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}x^n=\begin{cases} 0\ \mathrm{dacă}\ x\neq 1\\ 1\ \mathrm{daca}\ x=1 \end{cases}$. Fie $f:[0,1]\to\mathbb{R}$ o funcție dată de $f(x)=\begin{cases} 0\ \mathrm{daca}\ x\neq 1\\ 1\ \mathrm{daca}\ x=1 \end{cases}$. Atunci $f_n\stackrel{s}{\to}f$.

Deoarece $\lim_{n\to\infty}\sup_{x\in[0,1]}|f_n(x)-f(x)|=\lim_{n\to\infty}\sup_{x\in[0,1]}|x^n-0|=1$ rezultă că

Deoarece
$$\lim_{n\to\infty}\sup_{x\in[0,1]}|f_n(x)-f(x)|=\lim_{n\to\infty}\sup_{x\in[0,1)}|x^n-0|=1$$
rezultă că

$$f_m \stackrel{a}{\not\rightarrow} f$$

 $f_n \not\stackrel{u}{\not\rightarrow} f$. Avem $\lim_{n\to\infty} g_n(x) = \lim_{n\to\infty} x^n (1-x) = 0$. Fie $g:[0,1]\to\mathbb{R}$ o funcție dată de g(x) = 0. Atunci $g_n \stackrel{s}{\to} g$.

$$\sup_{x \in [0,1]} |g_n(x) - g(x)| = \lim_{n \to \infty} \sup_{x \in [0,1]} x^n (1 - x) =$$

$$= \max\{g_n(0), g_n(1), g_n(c) | g'_n(c) = 0\} = g_n\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} \to 0.$$

Rezultă că $g_n \stackrel{u}{\to} g$.

Exemplu. Să se studieze convergența simplă și uniformă pentru șirul de funcții $(f_n)_{n\in\mathbb{N}}$, în următoarele situații:

- a) $f_n:[0,\infty)\to\mathbb{R}$ este dată de $f_n(x)=\frac{x}{x+n}$ pentru orice $n\in\mathbb{N}$ şi $x\in[0,\infty)$; b) $f_n:[a,b]\to\mathbb{R}$ este dată de $f_n(x)=\frac{x}{x+n}$ pentru orice $n\in\mathbb{N}$ şi $x\in[a,b]$, unde 0 < a < b.

Așadar este important să precizăm pe ce mulțime studiem convergența uniformă.

Exerciții. Să se studieze convergența simplă și uniformă pentru șirul de funcții $(f_n)_{n\in\mathbb{N}}$, în următoarele situații:

- a) $f_n:[-1,1]\to\mathbb{R}$ este dată de $f_n(x)=\frac{x}{1+n^2x^2}$ pentru orice $n\in\mathbb{N}$ și $x \in [-1, 1];$
- b) $f_n:[0,1]\to\mathbb{R}$ este dată de $f_n(x)=x^n(1-x^n)$ pentru orice $n\in\mathbb{N}$ și $x \in [-1, 1];$
- c) $f_n:(-1,1)\to\mathbb{R}$ este dată de $f_n(x)=\frac{1-x^n}{1-x}$ pentru orice $n\in\mathbb{N}$ și $x \in (-1, 1).$

Exerciții

- 1. Să se arate că șirul de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n:[0,1]\to\mathbb{R}$ este dată de $f_n(x) = \frac{(1+x)^n}{e^{2nx}}$ pentru orice $n \in \mathbb{N}$ și orice $x \in [0,1]$, converge uniform pe orice interval de forma [a, 1], unde 0 < a < 1.
- **2**. Fie şirul de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n:[0,\frac{\pi}{2}]\to\mathbb{R}$ este dată de $f_n(x)=$ $\cos^{2n}x$ pentru orice $n \in \mathbb{N}$ și orice $x \in [0, \frac{\pi}{2}]$, și fie $0 < a < \frac{\pi}{2}$. Să se arate că $(f_n)_{n\in\mathbb{N}}$ converge uniform pe $[a,\frac{\pi}{2}]$ şi neuniform pe $[0,\frac{\pi}{2}]$.
- **3.** Fie şirul de funcții continue $(f_n)_{n\in\mathbb{N}}$, unde $f_n:[0,1]\to\mathbb{R}$ este dată de $f_n(x) = x^n(1-x^n)$ pentru orice $n \in \mathbb{N}$ și orice $x \in [0,1]$. Să se arate că $(f_n)_{n \in \mathbb{N}}$ converge simplu către funcția continuă $f \equiv 0$, însă nu converge uniform.
- 4. Să se studieze convergența simplă și uniformă a șirului de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n:[1,2]\to\mathbb{R}$ este dată de $f_n(x)=\frac{(\ln x)^n}{1+(\ln x)^n}$ pentru orice $n\in\mathbb{N}$ și orice $x \in [1, 2].$
- **5**. Fie şirul de funcții $(f_n)_{n\in\mathbb{N}}, f_n: [0,1] \to \mathbb{R},$ dat de recurența: $f_1 \equiv 0$ și $f_{n+1}(x) = f_n(x) + \frac{1}{2}[x - f_n^2(x)]$ pentru orice $n \in \mathbb{N}$ și orice $x \in [0, 1]$. Să se arate că $(f_n)_{n\in\mathbb{N}}$ converge uniform către funcția $f:[0,1]\to\mathbb{R}$ dată de $f(x)=\sqrt{x}$ pentru orice $x \in [0, 1]$.
- **6**. Să se arate că șirul de funcții $(f_n)_{n\in\mathbb{N}}$, unde $f_n:[0,1]\to\mathbb{R}$ este dată de $f_n(x) = \frac{x^n}{1+x^{2n}}$ pentru orice $n \in \mathbb{N}$ și orice $x \in [0,1]$, nu converge uniform.
- 7. Să se arate că șirul de funcții discontinue $(f_n)_{n\in\mathbb{N}}, f_n: \mathbb{R} \to \mathbb{R}$, dat de $f_n(x) = \{ \begin{array}{ll} \frac{1}{n}, & \text{dacă } x = \frac{m}{n}, m, n \in \mathbb{N}, (m, n) = 1 \\ 0, & \text{alminteri} \end{array} \}$ pentru orice $n \in \mathbb{N}$ și orice $x \in \mathbb{R}$, converge uniform către o funcție continuă.
- 8. Să se determine toate funcțiile continue $f: \mathbb{R} \to \mathbb{R}$ care sunt limita uniformă a unui șir de polinoame.
- **9**. Să se determine toate funcțiile continue $f:[a,b]\to\mathbb{R}$ care sunt limita uniformă a unui şir de polinoame cu gradul mărginit.

Transportul continuității prin convergența uniformă

Limita unui șir de funcții continue nu este neapărat o funcție continuă, așa cum se poate observa pe exemplul următor: $f_n : [0,1] \to \mathbb{R}$ dată de $f_n(x) = x^n$ pentru orice $n \in \mathbb{N}$ și orice $x \in [0,1]$. Vom arăta că dacă șirul de funcții continue converge uniform, atunci limita sa este o funcție continuă.

Teorema de transport a continuității prin convergență uniformă. Fie $D\subseteq \mathbb{R}$ şi $f_n, f:D\to \mathbb{R},\ n\in \mathbb{N}$ astfel încât:

- i) $f_n \stackrel{u}{\rightarrow} f;$
- ii) f_n este continuă pentru orice $n \in \mathbb{N}$.

Atunci f este continuă.

Demonstrație. Fie $\varepsilon>0$ și $a\in D$ arbitrare, dar fixate. Având în vedere ipoteza i), există $n_\varepsilon\in\mathbb{N}$ astfel încât

$$|f_n(x) - f(x)| < \frac{\varepsilon}{3},$$
 (1)

pentru orice $n\in\mathbb{N},\ n\geq n_{\varepsilon}$ și orice $x\in D.$ Având în vedere ipoteza ii), există $\delta_{\varepsilon,a}>0$ astfel încât

$$|f_{n_{\varepsilon}}(x) - f_{n_{\varepsilon}}(a)| < \frac{\varepsilon}{3},$$
 (2)

pentru orice $x \in D$ cu proprietatea că $|x-a| < \delta_{\varepsilon,a}$. Prin urmare, avem

$$|f(x) - f(a)| \le |f(x) - f_{n_{\varepsilon}}(x)| + |f_{n_{\varepsilon}}(x) - f_{n_{\varepsilon}}(a)| + |f_{n_{\varepsilon}}(a) - f(a)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

pentru orice $x\in D$ cu proprietatea că $\|x-a\|<\delta_{\varepsilon,a},$ decif este continuă în a. \square

Notă. Rezultatul anterior este valabil în cadrul spațiilor metrice și este un rezultat punctual.

Caracterizări alternative pentru continuitatea globală

Teorema de continuitate globală. Pentru $f:D\subseteq\mathbb{R}^p\to\mathbb{R}^q,$ următoarele afirmații sunt echivalente:

- i) f este continuă pe D.
- ii) Pentru orice $G = \overset{\circ}{G} \subseteq \mathbb{R}^q$ există $G_1 = \overset{\circ}{G_1} \subseteq \mathbb{R}^p$ astfel încât $G_1 \cap D = f^{-1}(G)$.
- iii) Pentru orice $H = \overline{H} \subseteq \mathbb{R}^q$ există $H_1 = \overline{H_1} \subseteq \mathbb{R}^p$ astfel încât $H_1 \cap D = f^{-1}(H)$.

Demonstrație

i) \Rightarrow ii) Dacă $a \in f^{-1}(G)$, deoarece $G \in \mathcal{V}_{f(a)}$, rezultă, folosind continuitatea lui f în a, că există $U_a = \overset{\circ}{U_a} \subseteq \mathbb{R}^q$ astfel încât $f(U_a \cap D) \subseteq G$. Alegem $G_1 = \underset{a \in G}{\cup} U_a$.

ii) \Rightarrow i) Fie $a \in D$ și G o vecinătate deschisă a lui f(a). Atunci, conform ipotezei, există $G_1 = \overset{\circ}{G_1} \subseteq \mathbb{R}^p$ astfel încât $G_1 \cap D = f^{-1}(G)$. Să observăm că G_1 este o vecinătate deschisă a lui a (deoarece $a \in G_1$) și că $f(G_1 \cap D) \subseteq G$. Prin urmare f este continuă în a.

Acum vom arăta că ii)⇔iii).

Pentru început, să observăm că pentru $B \subseteq \mathbb{R}^q$ și $C = \mathbb{R}^q \setminus B$, avem

$$f^{-1}(B) \cap f^{-1}(C) = \emptyset$$
 și $f^{-1}(B) \cup f^{-1}(C) = D.$ (1)

Dacă B_1 este o submulțime a lui \mathbb{R}^p astfel încât $B_1 \cap D = f^{-1}(B)$ și $C_1 =$ $\mathbb{R}^p - B_1$, atunci

$$C_1 \cap f^{-1}(B) = \emptyset \text{ si } D = (B_1 \cap D) \cup (C_1 \cap D) = f^{-1}(B) \cup (C_1 \cap D).$$
 (2)

Din (1) și (2), deducem că $C_1 \cap D = f^{-1}(C)$.

Echivalența ii)⇔iii) decurge imediat din considerentele de mai sus. □

Corolar. Pentru $f: \mathbb{R}^p \to \mathbb{R}^q$, următoarele afirmatii sunt echivalente:

- i) f este continuă pe \mathbb{R}^p .
- ii) Mulţimea $f^{-1}(G)$ este deschisă în \mathbb{R}^p pentru orice $G = \overset{\circ}{G} \subseteq \mathbb{R}^q$. iii) Mulţimea $f^{-1}(H)$ este închisă în \mathbb{R}^p pentru orice $H = \overline{H} \subseteq \mathbb{R}^q$.

Observații

- 1. Teorema de mai sus are un caracter pur topologic, ea putând fi formulată, cu păstrarea validității, și în cadrul spațiilor topologice.
- 2. Teorema de mai sus nu afirmă că, pentru o funcție continuă f și o mulţime deschisă G, f(G) este deschisă. Într-adevăr, fie $f: \mathbb{R} \to \mathbb{R}$ dată de $f(x) = \frac{1}{1+x^2}$ pentru orice $x \in \mathbb{R}$. Atunci $f((-1,1)) = (\frac{1}{2},1]$. Mai mult, avem $f([1,\infty))=(0,\frac{1}{2}]$ și $f(\mathbb{R})=(0,1]$, deci proprietatea unei mulțimi de a fi deschisă sau închisă nu se păstrează prin acțiunea unei funcții continue.

Continuitate și compacitate

Теогета. Fie $f:[a,b] \to \mathbb{R}$ o funcție continuă. Atunci funcția f este mărginită și există $c,d \in [a,b]$ astfel încât $\sup_{x \in [a,b]} f(x) = f(c)$ și $\inf_{x \in [a,b]} f(x) = f(c)$ f(d).

Demonstratie.

Pas 1. Presupunem prin reducere la absurd că f nu este mărginită superior. Atunci pentru orice $n \in \mathbb{N}^*$ există $x_n \in [a, b]$ astfel încât $f(x_n) > n$. Şirul $(x_n)_{n\geq 1}\subset [a,b]$. Rezultă că există un subșir $(x_{n_k})_{k\geq 1}$ convergent la un $c_1\in$ [a,b]. Folosind continuitatea lui f obţinem următoarea contradicţie $f(c_1)$ $\lim_{n \to \infty} f\left(x_{n_k}\right) = \infty.$

Pas 2. Notăm $M = \sup_{x \in [a,b]} f(x) < \infty$. Pentru orice $n \in \mathbb{N}^*$ există $y_n \in [a,b]$

astfel încât $M - \frac{1}{n} < f(y_n) \le M$. Şirul $(y_n)_{n \ge 1} \subset [a, b]$. Rezultă că există un

subşir $(y_{n_k})_{k\geq 1}$ convergent la un $c\in [a,b]$. Folosind continuitatea lui f obţinem că $f(c)=\lim_{n\to\infty}f(y_{n_k})=M=\sup_{x\in [a,b]}f(x).\square$

Teoremă. Fie $A \subset \mathbb{R}^p$ o mulțime închisă și mărginită și $f: A \to \mathbb{R}$ o funcție continuă. Atunci funcția f este mărginită și există $c, d \in A$ astfel încât $\sup_{x \in A} f(x) = f(c)$ și $\inf_{x \in A} f(x) = f(d)$.

Observație. Rezultatele din teoremele anterioare nu rămâne valabil pentru mulțimi inchise și mărginite din spații metrice.

Exemplu. Considerăm spațiul metric (\mathbb{N},d) unde distanța d este definită de $d(x,y) = \left\{ \begin{array}{l} 0 \text{ dacă } x = y \\ 1 \text{ dacă } x \neq y \end{array} \right.$ Observăm că (\mathbb{N},d) este un spațiu metric complet și mărginit format din puncte izolate. Fie $f:\mathbb{N} \to \mathbb{R}$ o funcție definită de f(n) = n. Este evident că f este continuă și nemărginită și \mathbb{N} este o mulțime închisă și mărginită în spațiul metric (\mathbb{N},d) .

CONTINUITATE UNIFORMĂ

Noţiunea de continuitate uniformă Teorema continuităţii uniforme Noţiunea de funcție Lipschitz

Noțiunea de continuitate uniformă

Pentru o funcție $f:D\to\mathbb{R}^q$, unde $D\subseteq\mathbb{R}^p$, continuitatea lui f pe Dechivalează cu următoarea afirmație: pentru orice $\varepsilon > 0$ și orice $a \in D$ există $\delta_{a,\varepsilon} > 0$ astfel încât $||f(x) - f(a)|| < \varepsilon$ pentru orice $x \in D$ cu proprietatea că $||x-a|| < \delta_{a,\varepsilon}$. Trebuie reţinut aici că $\delta_{a,\varepsilon}$ depinde, în general, atât de ε , cât şi de~a.~ Dependența lui $\delta_{a,\varepsilon}$ de a reflectă faptul că f își poate schimba rapid valorile în jurul lui a. Uneori se poate alege $\delta_{a,\varepsilon}$ independent de a, adică dependent numai de ε . Spre exemplu, pentru $f: \mathbb{R} \to \mathbb{R}$ dată de f(x) = 2x pentru orice $x \in$ \mathbb{R} , putem alege $\delta_{a,\varepsilon} = \frac{\varepsilon}{2}$. Prin contrast, pentru $f:(0,\infty) \to \mathbb{R}$ dată de $f(x) = \frac{1}{x}$ pentru orice $x \in (0, \infty)$, avem $f(x) - f(a) = \frac{a-x}{ax}$. Dacă $\delta < a$ și $|x-a| \le \delta$, atunci $|f(x) - f(a)| \le \frac{\delta}{a(a-\delta)}$, iar această inegalitate nu poate fi îmbunătățită, deoarece egalitatea are loc pentru $x = a - \delta$. Dacă dorim $|f(x) - f(a)| < \varepsilon$, atunci cea mai mare valoare pe care o putem alege pentru δ este $\delta_{a,\varepsilon} = \frac{\varepsilon a^2}{1+\varepsilon a}$ Aşadar, pentru a > 0, f este continuă în a, deoarece putem alege $\delta_{a,\varepsilon} = \frac{\varepsilon a^2}{1+\varepsilon a}$ și aceasta este cea mai mare valoare posibilă. Deoarece $\inf_{a>0} \frac{\varepsilon a^2}{1+\varepsilon a}=0$, nu putem alege $\delta_{a,\varepsilon}$ independent de a. Dacă vom restrînge domeniul lui f la $[u,\infty)$, atunci $\inf_{a>0}\frac{\varepsilon a^2}{1+\varepsilon a}=\frac{\varepsilon u^2}{1+\varepsilon u}>0 \text{ poate fi ales ca fiind } \delta_{a,\varepsilon}\text{ \mathfrak{s}i, după cum se observă, această}$ cantitate nu depinde de a.

Definiție. Fie $H \subseteq D \subseteq \mathbb{R}^p$ și $f: D \subseteq \mathbb{R}^p \to \mathbb{R}^q$. Spunem că f este uniform continuă pe H dacă pentru orice $\varepsilon > 0$ există $\delta_{\varepsilon} > 0$ astfel încât $||f(x) - f(y)|| < \varepsilon$ pentru orice $x, y \in H$ cu proprietatea că $||x - y|| < \delta_{\varepsilon}$.

Observații

- 1. Reamintim că diametrul unei submulțimi H a lui \mathbb{R}^p este $\sup_{x,y\in H} \|x-y\|$. Cu această terminologie, o funcție $f:D\to\mathbb{R}^q$ este uniform continuă pe $H\subseteq D\subseteq\mathbb{R}^p$ dacă pentru orice $\varepsilon>0$ există $\delta_\varepsilon>0$ astfel încât oricum am alege o submulțime a lui H cu diametrul inferior lui δ_ε , imaginea ei prin funcția f are diametrul inferior lui ε .
- 2. Este clar că o funcție uniform continuă pe H este continuă pe H. Reciproca nu este, în general, valabilă.

Teorema continuității uniforme. Fie $A \subseteq \mathbb{R}^p$ și $f: A \subseteq \mathbb{R}^p \to \mathbb{R}^q$ astfel încât:

- i) A este închisă și mărginită.;
- ii) f este continuă.

Atunci f este uniform continuă pe A.

Demonstrație.

Presupunem prin reducere la absurd că f nu este uniform continuă. Atunci există $\varepsilon > 0$ astfel încât pentru orice $n \in \mathbb{N}^*$ există $x_n, y_n \in A$ astfel încât $\|f(x_n) - f(y_n)\| \ge \varepsilon$ și $\|x_n - y_n\| < \frac{1}{n}$. Deoarece șirul $(x_n)_{n \ge 1} \subset A$ există un subșir $(x_{n_k})_{k \ge 1}$ convergent la un $a \in A$. Se observă că șirul $(y_{n_k})_{k \ge 1}$ converge tot la a, deoarece $\|x_n - y_n\| \to 0$. Obținem următoarea contradicție $0 = \|f(a) - f(a)\| = \lim_{n \to \infty} \|f(x_n) - f(y_n)\| \ge \varepsilon$. \square

Noțiunea de funcție Lipschitz

Funcțiile Lipschitz constituie o clasă importantă de funcții uniform continue.

Definiție. O funcție $f: D \to \mathbb{R}^q$, unde $D \subseteq \mathbb{R}^p$, se numește Lipschitz dacă există M > 0 astfel încât $||f(x) - f(y)|| \le M ||x - y||$ pentru orice $x, y \in D$. Dacă se poate alege M < 1, atunci f se numește contracție.

Observație. Este clar, alegând $\delta_{\varepsilon} = \frac{\varepsilon}{M}$, că orice funcție Lipschitz este uniform continuă. Reciproca nu este valabilă (vezi $f:[0,1] \to \mathbb{R}$ dată de $f(x) = \sqrt{x}$ pentru orice $x \in [0,1]$). Orice funcție liniară este Lipschitz. Mai mult orice funcție derivabilă (definită pe un interval), cu derivata mărginită, este Lipschitz.

Exemplu. Fie $f:(a,b)\to\mathbb{R}$ o funcție derivabila cu derivata marginită, unde (a,b) este un interval mărginit. Atunci f este o funcție Lipschitz.

Fie M astfel încât $|f'| \leq M$. Atunci pentru orice $x, y \in (a, b), x < y$, există $c \in (x, y)$ astfel încât f(x) - f(y) = f'(c)(x - y). rezultă că

$$|f(x) - f(y)| = |f'(c)(x - y)| \le M|x - y|.$$

Multimi compacte

Definiție. O submulțime K a lui \mathbb{R}^n se numește compactă dacă pentru orice $\{D_{\alpha} = \overset{\circ}{D_{\alpha}} \subseteq \mathbb{R}^n \mid \alpha \in A\}$ astfel încât $K \subseteq \underset{\alpha \in A}{\cup} D_{\alpha}$, există $J \subseteq A$, Jfinită, cu proprietatea că $K \subseteq \bigcup_{\alpha \in J} D_{\alpha}$, i.e. pentru orice acoperire cu mulțimi deschise, din \mathbb{R}^n , a lui K, există o subacoperire finită a sa.

Observație. Esența definiției de mai sus constă în faptul că, prin intermediul ei, se face trecerea de la o familie arbitrară de mulțimi deschise la o familie finită de astfel de mulțimi.

Exemple

- 1. Orice submulțime finită a lui \mathbb{R}^n este compactă.
- **2**. $[0, \infty)$ nu este compactă (în \mathbb{R}).
- **3**. (0,1) nu este compactă (în \mathbb{R}).
- **4**. [0,1] este compactă (în \mathbb{R}).

Teorema Heine-Borel. Pentru o submulțime K a lui \mathbb{R}^n următoarele afirmații sunt echivalente:

- i) K este compactă;
- ii) K este închisă și mărginită.

Demonstratie.

i)⇒ii)

Afirmația 1. K este închisă.

Justificarea afirmației 1. Pentru $x \in \mathbb{R}^n - K$ și $m \in \mathbb{N}$, vom considera mulțimea deschisă $G_m = \mathbb{R}^n \setminus B[x, \frac{1}{m}]$. Atunci $\bigcup_{m \in \mathbb{N}} G_m = \mathbb{R}^n \setminus \{x\}$, deci $K\subseteq\bigcup_{m\in\mathbb{N}}G_m$ și cum K este compactă, există $n_0\in\mathbb{N}$ cu proprietatea că $K\subseteq$ $G_1 \cup G_2 \cup ... \cup G_{n_0} \subseteq G_{n_0}$, deci $B(x, \frac{1}{n_0}) \subseteq \mathbb{R}^n \setminus K$, ceea ce arată, având în vedere că x a fost ales arbitrar, că $\mathbb{R}^n \setminus K$ este deschisă. Aşadar K este închisă. Afirmatia 2. K este mărginită.

Justificarea afirmației 2. Considerând, pentru $m \in \mathbb{N}$, mulțimea deschisă

 $H_m = B(0,m) \subseteq \mathbb{R}^n$, avem $K \subseteq \mathbb{R}^n = \bigcup_{m \in \mathbb{N}} H_m$. Cum K este compactă, există $n_0 \in \mathbb{N}$ astfel încât $K \subseteq H_1 \cup H_2 \cup ... \cup H_{n_0} \subseteq H_{n_0}$, ceea ce arată că K este

Justificarea afirmației 2. Considerând, pentru $m \in \mathbb{N}$, mulțimea deschisă $H_m = B(0, m) \subseteq \mathbb{R}^n$, avem $K \subseteq \mathbb{R}^n = \bigcup_{m \in \mathbb{N}} H_m$. Cum K este compactă, există $n_0 \in \mathbb{N}$ astfel încât $K \subseteq H_1 \cup H_2 \cup ... \cup H_{n_0} \subseteq H_{n_0}$, ceea ce arată că K este

ii) \Rightarrow i) Fie $\{D_{\alpha} = \overset{\circ}{D_{\alpha}} \mid \alpha \in A\}$ astfel încât $K \subseteq \underset{\alpha \in A}{\cup} D_{\alpha}$. Să presupunem, prin reducere la absurd, că K nu este conținută în nici o reuniune finită de elemente din mulțimea $\{D_{\alpha} = D_{\alpha} \mid \alpha \in A\}$.

Vom arăta că presupunerea de mai sus ne conduce la o contradicție.

Într-adevăr, deoarece K este mărginită, există un interval închis I_1 , din \mathbb{R}^n , având proprietatea că $K \subseteq I_1$. Atunci, cel puţin unul dintre cele 2^n intervale închise obținute prin înjumătățirea "laturilor" lui I_1 conține puncte din K și intersecția lui K cu acest interval nu este conținută în nici o reuniune finită de elemente din mulțimea $\{D_{\alpha} = \overset{\circ}{D_{\alpha}} \mid \alpha \in A\}$. Fie I_2 un astfel de interval. Continuând acest procedeu, obținem un şir $(I_k)_{k \in \mathbb{N}}$ de intervale nevide închise incluse astfel încât, pentru orice $k \in \mathbb{N}$, mulțimea nevidă $K \cap I_k$ nu este conținută în nici o reuniune finită de elemente din mulțimea $\{D_{\alpha}=D_{\alpha}\mid \alpha\in A\}$. Să remarcăm că mulțimea $K \cap I_k$ este infinită (altminteri s-ar contrazice faptul că ea nu este conținută în nici o reuniune finită de elemente din mulțimea $\{D_{\alpha} = \overset{\circ}{D_{\alpha}} \mid \alpha \in A\}$), pentru orice $k \in \mathbb{N}$. Conform Teoremei intervalelor nevide închise incluse, există $y \in \underset{k \in \mathbb{N}}{\cap} I_k$. Atunci, un argument similar celui folosit în demonstrația Teoremei Bolzano-Weierstrass ne asigură că y este un punct de acumulare al lui K. Prin urmare, cum K este închisă, folosind Teorema de caracterizare a multimilor închise cu ajutorul punctelor de acumulare, deducem că $y \in K$. În consecință, există $\alpha_0 \in A$ cu proprietatea că $y \in D_{\alpha_0}$, deci există $\varepsilon>0$ astfel încât $B(y,\varepsilon)\subseteq D_{\alpha_0}$. Așa cum am văzut în demonstrația Teoremei Bolzano-Weierstrass, există $k_0 \in \mathbb{N}$ astfel încât $I_{k_0} \subseteq B(y,\varepsilon) \subseteq D_{\alpha_0}$, ceea ce contrazice faptul că $I_{k_0}\cap K$ nu este conținută în nici o reuniune finită de elemente din mulțimea $\{D_{\alpha} = D_{\alpha} \mid \alpha \in A\}$. \square

Rezultatul de mai jos arată că imaginea unei mulțimi compacte printr-o funcție continuă este o mulțime compactă. El se va folosi în cadrul demonstrației Teoremei valorilor minime și maxime pentru funcții continue, precum și a Teoremei de continuitate a inversei pentru funcții continue pe compact.

Teorema de permanență a compacității pentru funcții continue. Fie $K \subseteq \mathbb{R}^p$ și $f: K \to \mathbb{R}^q$ astfel încât:

i) K este compactă;

ii) f este continuă.

Atunci f(K) este compactă.

Demonstrație. Să începem prin a observa că, în conformitate cu Teorema Heine-Borel, mulțimea K este mărginită și închisă.

Afirmația 1. f(K) este mărginită.

Justificarea afirmației 1. Să presupunem, prin absurd, că f(K) nu este mărginită. Atunci există $x_n \in K$ astfel încât $||f(x_n)|| \ge n$ pentru orice $n \in \mathbb{N}$. Cum K este compactă, folosind caracterizarea compacității cu ajutorul șirurilor, există $x \in K$ și un subșir $(x_{n_k})_{k \in \mathbb{N}}$ al lui $(x_n)_{n \in \mathbb{N}}$ astfel încât $\lim_{k \to \infty} x_{n_k} = x$. Deoarece f este continuă în x, folosind caracterizarea cu șiruri a continuității locale, deducem că șirul $(f(x_{n_k}))_{k \in \mathbb{N}}$ este convergent (având limita f(x)), deci mărginit, ceea ce contrazice faptul că $||f(x_{n_k})|| \ge n_k$, pentru orice $k \in \mathbb{N}$. Așadar f(K) este mărginită.

Afirmația 2. f(K) este închisă.

Justificarea afirmației 2. Pentru orice $y \in \overline{f(K)}$ există $(x_n)_{n \in \mathbb{N}} \subseteq K$ astfel încât

$$\lim_{n \to \infty} f(x_n) = y. \tag{1}$$

Cum K este compactă, folosind caracterizarea compacității cu ajutorul șirurilor, există $x \in K$ și un subșir $(x_{n_k})_{k \in \mathbb{N}}$ al lui $(x_n)_{n \in \mathbb{N}}$ astfel încât $\lim_{k \to \infty} x_{n_k} = x$. Deoarece f este continuă în x, folosind caracterizarea cu șiruri a continuității locale, deducem că

$$\lim_{n \to \infty} f(x_n) = f(x). \tag{2}$$

Din (1) și (2), obținem că $y=f(x)\in f(K)$. Prin urmare $\overline{f(K)}\subseteq f(K)$, decif(K) este închisă.

Din cele două afirmații, conform Teoremei Heine-Borel, deducem că f(K) este compactă. \square

Observație. Teorema de mai sus are un caracter pur topologic, ea putând fi formulată, cu păstrarea validității, și în cadrul spațiilor topologice.

Mulțimi compacte în spații metrice și topologice

Definiție. Fie (X,τ) un spațiu topologic. O submulțime K a lui X se numește compactă dacă pentru orice $\{D_{\alpha} = \overset{\circ}{D_{\alpha}} \subseteq X \mid \alpha \in A\}$ astfel încât $K \subseteq \underset{\alpha \in A}{\cup} D_{\alpha}$, există $J \subseteq A$, J finită, cu proprietatea că $K \subseteq \underset{\alpha \in J}{\cup} D_{\alpha}$, i.e. pentru orice acoperire cu mulțimi deschise, din X, a lui K, există o subacoperire finită a sa.

Teorema de permanență a compacității pentru funcții continue. Fie (X, τ_X) şi (Y, τ_Y) două spații topologice, $K \subseteq X$ şi $f: K \to Y$ astfel încât:

i) K este compactă;

ii) f este continuă.

Atunci f(K) este compactă.

Demonstrație.

Fie $\{D_{\alpha}=\stackrel{\circ}{D_{\alpha}}\subseteq Y\mid \alpha\in A\}$ astfel încât $f(K)\subseteq \underset{\alpha\in A}{\cup}D_{\alpha}$. Atunci $K\subseteq$

 $f^{-1}\left(f\left(K\right)\right)\subseteq f^{-1}\left(\underset{\alpha\in A}{\cup}D_{\alpha}\right)=\underset{\alpha\in A}{\cup}f^{-1}\left(D_{\alpha}\right).\text{ Deoarece }f\text{ este continuă rezultă că }f^{-1}\left(D_{\alpha}\right)\in\tau_{X}\text{ pentru orice }\alpha\in A.\text{ Deoarece }K\text{ este compactă rezultă că există }J\subseteq A,\ J\text{ finită, cu proprietatea că }K\subseteq\underset{\alpha\in J}{\cup}f^{-1}\left(D_{\alpha}\right).\text{ Atunci }f\left(K\right)\subseteq$

$$f\left(\bigcup_{\alpha\in J}f^{-1}\left(D_{\alpha}\right)\right)=\bigcup_{\alpha\in J}f\left(f^{-1}\left(D_{\alpha}\right)\right)\subseteq\bigcup_{\alpha\in J}D_{\alpha}.$$

Caracterizarea multimilor compacte în spații metrice

Observație. Fie (X,d) un spațiu metric, $\varepsilon > 0$ și $K \subseteq X$ o mulțime compactă. Atunci $K \subseteq \bigcup_{x \in K} B(x, \varepsilon)$. Deoarece K este o mulțime compactă rezultă că există $x_1, ..., x_n \in K$ astfel încât $K \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$.

Teoremă. Fie (X, τ) un spațiu topologic și $K \subseteq X$ o mulțime compactă. atunci următoarele afirmații sunt echivalente:

- i) K este compactă;
- ii) K este precompactă (pentru orice $\varepsilon > 0$ există $x_1, ..., x_n \in X$ astfel încât $K \subseteq \bigcup_{i=1}^{n} B(x_i, \varepsilon)$) şi completă;
- iii) K este secvențial compactă (pentru orice şir $(x_n)_{n\geq 1}\subset K$ există un subşir $(x_{n_k})_{k\geq 1}$ astfel încât $x_{n_k} \to x \in K$).

Teorema lui Cantor. Fie $(F_k)_{k\in\mathbb{N}}$ şir de mulțimi nevide și închise, din \mathbb{R}^n , având următoarele două proprietăți:

- i) F_1 este mărginită;
- ii) $F_k \supseteq F_{k+1}$ pentru orice $k \in \mathbb{N}$.

Atunci $\bigcap_{k \in \mathbb{N}} F_k \neq \emptyset$.

Demonstrație. Să presupunem, prin reducere la absurd, că $\bigcap_{k\in\mathbb{N}} F_k = \emptyset$.

Vom arăta că presupunerea de mai sus ne conduce la o contradicție. Într-adevăr, avem $F_1 \subseteq \mathbb{R}^n = \bigcup_{k \in \mathbb{N}} G_k$, unde $G_k = \mathbb{R}^n \setminus F_k$. Cum F_1 este o mulțime compactă (vezi Teorema lui Heine-Borel), există $G_1,\,G_2,\,...,\,G_p$ astfel încât $F_1 \subseteq \bigcup_{k \in \{1,2,\ldots,p\}} G_k \subseteq G_p$, deci $F_1 \cap F_p = \emptyset$, de unde obținem contradicția $F_p = \emptyset$. \square

Teorema lui Dini. Fie $K \subseteq \mathbb{R}^p$ şi $f_n, f : K \to \mathbb{R}$, $n \in \mathbb{N}$ astfel încât:

- i) K este compactă;
- ii) funcțiile f_n și funcția f sunt continue;
- iii) $f_{n+1} \leq f_n$ pentru orice $n \in \mathbb{N}$;
- $iv) f_n \stackrel{s}{\to} f.$

Atunci $f_n \stackrel{u}{\to} f$.

Demonstrație. Considerând, $(f_n-f)_{n\in\mathbb{N}}$, în loc de $(f_n)_{n\in\mathbb{N}}$, putem presupune că $f \equiv 0$.

Fie $\varepsilon > 0$ arbitrar, dar fixat. Având în vedere ipotezele i) și ii), deducem că mulțimea $K_n \stackrel{def}{=} f_n^{-1}([\varepsilon,\infty))$ este închisă pentru orice $n \in \mathbb{N}$, iar ipoteza iii) ne asigură că $K_{n+1} \subseteq K_n$ pentru orice $n \in \mathbb{N}$. Mai mult, avem $\underset{n \in \mathbb{N}}{\cap} K_n = \emptyset$. Întradevăr, în caz contrar, există $x_0 \in \bigcap_{n \in \mathbb{N}} K_n$, deci $f_n(x_0) \ge \varepsilon$ pentru orice $n \in \mathbb{N}$, fapt care contrazice ipoteza iv). Atunci, conform Teoremei lui Cantor, există $n_{\varepsilon} \in \mathbb{N}$ cu proprietatea că $K_{n_{\varepsilon}} = \emptyset$. Drept urmare, deducem că $f_{n_{\varepsilon}}(x) \leq \varepsilon$ pentru orice $x \in K$, de unde $0 \le f_n(x) \stackrel{iii}{\le} f_{n_{\varepsilon}}(x) \le \varepsilon$ pentru orice $x \in K$ şi orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$, adică $f_n \stackrel{u}{\to} f$. \square