1M001 UPMC, 31 octobre 2014.

T. Leblé, leble@ann.jussieu.fr

TD 6 : Développements limités!

Exercice 1

- 1. Donner le D.L. à l'ordre 3 en x=0 de la fonction $x\mapsto \sqrt{1+x}$. Même question pour $x \mapsto \ln(1-x)$.
- 2. En déduire le D.L. à l'ordre 3 en x=0 de la fonction

$$f(x) = x\sqrt{1+x} + \ln(1-x)$$

3. Déterminer la limite de $\frac{f(x)}{x^3}$ quand $x \to 0$.

Exercice 2

- 1. Donner le D.L. à l'ordre 5 en x=0 des fonctions $x\mapsto \cos x$ et $x\mapsto \ln(1+x^4)$.
- 2. Soit f définie par

$$f(x) = \frac{\cos x - 1 + x^2/2}{\ln(1 + x^4)}$$

Montrer que f admet une limite quand $x \to 0$ et la calculer.

3. Montrer que f ainsi prolongée par continuité en 0 est dérivable en 0 et calculer sa dérivée.

Exercice 3 Soit $f: x \mapsto e^x(\cos x + \sin x) - 1$

- 1. Calculer f', f'', f'''.
- 2. En utilisant la formule de Taylor-Lagrange montrer que

$$|f(x) - (2x + x^2)| \le |x^3|$$

pour tout $x \in [-\frac{\pi}{6}, \frac{\pi}{6}].$

Exercice 4 Calculer les DL suivants :

- 1. $e^{\sin x}$ à l'ordre 5 en 0
- 2. $(1+x)^{\frac{1}{x}}$ à l'ordre 3 en 0
- 3. $\exp(\sin x \ln(\cos x))$ à l'ordre 5 en 0
- 4. $tan(ln(1+x^2))$ à l'ordre 4 en 0
- 5. $\ln(\cos^2 x \sin^2 x)$ à l'ordre 4 en 0

Exercice 5 Déterminer les limites suivantes lorsqu'elles existent :

1.
$$\lim_{x\to 0} \frac{\sqrt{1+\sin x}+e^{-x/2}-2}{x^3}$$
2. $\lim_{x\to 0} \frac{e^{\sqrt{1+\sin x}}-e}{\tan x}$
3. $\lim_{x\to 1} \frac{x^x-x}{1-x+\ln x}$

2.
$$\lim_{x\to 0} \frac{e^{\sqrt{1+\sin x}}-e^{\sqrt{1+\sin x}}}{\tan x}$$

3.
$$\lim_{x\to 1} \frac{x^x - x}{1 - x + \ln x}$$

4.
$$\lim_{x\to+\infty} \left(1+\frac{\alpha}{x}\right) x$$
 pour α réel.