```
In [5]:
```

```
import pandas as pd
fish=pd.read_csv("C:/Users/ADMIN/Downloads/archive/fish.csv")
fish.head()
```

Out[5]:

	Specie	s Weight	Length1	Length2	Length3	Height	Width
	0 Brean	n 242.0	23.2	25.4	30.0	11.5200	4.0200
	1 Brean	n 290.0	24.0	26.3	31.2	12.4800	4.3056
:	2 Brean	n 340.0	23.9	26.5	31.1	12.3778	4.6961
;	3 Brean	n 363.0	26.3	29.0	33.5	12.7300	4.4555
	4 Brean	n 430.0	26.5	29.0	34.0	12.4440	5.1340

In [6]:

```
fish['Species']. unique()
```

Out[6]:

In [12]:

```
fish.isnull().sum()
```

Out[12]:

Species 0
Weight 0
Length1 0
Length2 0
Length3 0
Height 0
Width 0
dtype: int64

In [17]:

```
X=fish.iloc[:,1:]
y=fish.loc[:,'Species']
```

In [18]:

Х

Out[18]:

	Weight	Length1	Length2	Length3	Height	Width
0	242.0	23.2	25.4	30.0	11.5200	4.0200
1	290.0	24.0	26.3	31.2	12.4800	4.3056
2	340.0	23.9	26.5	31.1	12.3778	4.6961
3	363.0	26.3	29.0	33.5	12.7300	4.4555
4	430.0	26.5	29.0	34.0	12.4440	5.1340
154	12.2	11.5	12.2	13.4	2.0904	1.3936
155	13.4	11.7	12.4	13.5	2.4300	1.2690
156	12.2	12.1	13.0	13.8	2.2770	1.2558
157	19.7	13.2	14.3	15.2	2.8728	2.0672
158	19.9	13.8	15.0	16.2	2.9322	1.8792

159 rows × 6 columns

```
In [19]:
У
Out[19]:
0
     Bream
1
     Bream
2
     Bream
3
     Bream
4
     Bream
154
     Smelt
155
     Smelt
156
     Smelt
157
     Smelt
158
     Smelt
Name: Species, Length: 159, dtype: object
In [25]:
from sklearn.preprocessing import MinMaxScaler
Scaler=MinMaxScaler()
Scaler.fit (X)
X_scaled=Scaler.transform (X)
Label Encoding t the target variable using LabelEncoder
In [20]:
from sklearn.preprocessing import LabelEncoder
label encoder=LabelEncoder()
y=label_encoder. fit_transform(y)
у
Out[20]:
4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1,
     3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5,
     5, 5, 5, 5, 5])
Splitting into train and test datasets using train_test_split
In [26]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test=train_test_split (X_scaled, y, test_size=0.2, random_state=42)
Model Building and training
In [27]:
from sklearn.linear_model import LogisticRegression
logReg=LogisticRegression()
logReg.fit(X_train,y_train)
Out[27]:
LogisticRegression()
Predicting the output
In [31]:
y_pred=logReg.predict(X_test)
```

In [33]:

```
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cf= confusion_matrix(y_test, y_pred)
sns.heatmap (cf, annot=True)
plt.xlabel(" Prediction")
plt.ylabel("Target")
plt.title(" Confusion Matrix")
```

Out[33]:

Text(0.5, 1.0, ' Confusion Matrix')

In []: