Team Name - Ctrl Alt Elite

Problem Statement

Fake Social Media Profile Detection and Reporting

Problem Statement No. 1364

PPT Timeline

Problem Definition

In the age of pervasive online social networking, the prevalence of fake social media profiles has grown exponentially, posing significant risks to individuals, businesses, and society as a whole. These fraudulent profiles engage in activities such as online impersonation, spamming, and dissemination of inappropriate or illegal content. Detecting and mitigating the presence of fake social media profiles is imperative for ensuring a safe and trustworthy digital environment.

State Of Current Solutions

The real worlds' problems depends on the solution's sophistication and data quality.

Depending on the type and nature of data, the solution may lack transparency in decision-making

Key Aspects

Transparency

Scalability

Regularization

Model Accuracy

Continous Learning Cost Effectiveness

WorkFlow Diagrams

Flowchart

System Architecture

Overall Detection Process

Novelty Of Solution

We made use of the **XGboost Algorithm** as proved to give the most accuracy as compared to logistic regression and SVM (Support Vector Machine).

A reason being XGBoost is more efficient for working with smaller datasets.

The results showing XGBoost is more accurate are displayed on the next slide.

Future scope:

- Including Face Detection to verify the user's profile picture and the person using the app.
- For larger datasets, we will use **ANN** as it proves to be more efficient.

↑	Classification	Report:			
+	р	recision	recall	f1-score	support
II? ≯	0	0.90	0.88	0.89	60
≕	1	0.89	0.90	0.89	60
a					
Û	accuracy			0.89	120
_	macro avg	0.89	0.89	0.89	120
	weighted avg	0.89	0.89	0.89	120
	Accuracy: 89.17	6			

	precision	recall	f1-score	support	
0	0.93	0.90	0.92	60	
1	0.90	0.93	0.92	60	
accuracy			0.92	120	
macro avg	0.92	0.92	0.92	120	
weighted avg	0.92	0.92	0.92	120	
Accuracy: 91.67%					

SVM

Classification Report:					
		precision	recall	f1-score	support
	0	0.95	0.87	0.90	60
	1	0.88	0.95	0.91	60
accur	асу			0.91	120
macro	avg	0.91	0.91	0.91	120
weighted	avg	0.91	0.91	0.91	120
Accuracy: 90.83%					

XGboost

Logistic Regression

XGboost algorithm accuracy output compared to other training models

Practicability Of the Solution

MODEL PERFORMANCE

XGBoost excels in binary classification tasks.

FEATURE ENGINEERING

Handles diverse feature types effectively

DATA AVAILABILITY

Abundant labeled data exists for model training.

HYPERPARAMTER TUNING

Allows fine-tuning for desired performance.

Sustainability Of the Solution

MONITORING AND OPTIMIZATION

Continuously monitor system performance and resource utilization while making adjustments to optimize efficiency.

EFFICIENT RESOURCE USAGE

The application minimizes waste and maximizes the efficient utilization of computational and storage resources, reducing environmental impact and operational costs

COMPLIANCE WITH LEGAL AND ETHICAL STANDARDS

The application adheres to data privacy, security, and other regulatory requirements, reducing legal risks and building user trust.

Scale Of Impact

- **User Safety**: Enhancing user safety by detecting and preventing interactions with fake profiles.
- Platform Trustworthiness: Increasing trust in online platforms by reducing the presence of fake accounts.
- Reduced Fraud: Minimizing fraudulent activities and scams that fake profiles may be associated with.
- Enhanced User Experience: Improving the overall user experience by reducing encounters with deceptive profiles.
- **Protecting Personal Information**: Safeguarding user data from misuse or exploitation by fake profiles.

Technology Stack

Frontend

- HTML
- CSS
- JavaScript

Backend

- Python
- Flask (Web Framework)

AI/ML

- XGBoost ML Model (Machine Learning)
- Pandas (Data Cleaning)
- Dataset for Training the Model
- Instaloader Library (Attribute Scraping)
- OpenCV (Face Detection)

Implementation

Instagram Profile Data

- Username: ranadesamihan
- Full Name: Samihan Ranade
- Biography:
- Followers Count: 127
- Following Count: 1863
- Has Profile Picture: 1
- Username Length: 13
- Ratio Numerical Chars in Username: 0.0
- Full Name Tokens: 2
- Numerical Chars in Full Name: 0.0
- Full Name Length: 14
- Same Username and Full Name: 0
- Description Length: 0
- External URL: 0
- Private: 1
- Number of Posts: 0

FLAG ACCOUNT

Profile Picture (0 or 1):
Numbers/Length of Username:
Fullname Words:
Numbers/Length of Fullname:
Name Equals Username (0 or 1):
Description Length:
External URL (0 or 1):
Private (0 or 1):
Number of Posts:
Number of Followers:

Flagged Usernames

Flagged Users Over Time

Username	Flag Count	Timestamp
<u>ranadesamihan</u>	1	2023-09-23 22:50:34.514168
<u>.dg10.</u>	5	2023-09-24 00:13:30.755718
sai nikhil 999	1	2023-09-24 00:49:01.584297

Conclusion

In conclusion, detection of the fake and automated accounts which leads to fake engagement in Instagram is studied as a binary classification problem. To our knowledge, this is the first time for such an analysis over Instagram accounts. Our contributions with this work are: collection of datasets for fake account detection, proposing derived features for fake classification and proposing a cost sensitive feature reduction technique based on XGboost algorithms.

Thank You!