Бонусная задача № 3 по дискретному анализу

Талашкевич Даниил Александрович 27 сентября 2020 г.

Problems:

Бонусная № 3. Докажите, что каждое число $\sqrt{a_1} + \sqrt{a_2} + \cdots + \sqrt{a_n}$, где $a_i \in \mathbb{N}$ не квадраты целых чисел, иррационально.

Решение:

Докажем по методу математической индукции.

Доказательство. База индукции (n=1): Покажем, что корень из любого $p\in\mathbb{N}$, где p не квадрат целого числа – это иррациональное число: От противного: положим, что \sqrt{p} рационально, тогда представим его в виде $\frac{a}{b}$ (где $\frac{a}{b}$ – несократимая дробь) $\Rightarrow p=\frac{a^2}{b^2}\Rightarrow p\cdot b^2=a^2\Rightarrow$ что a^2 делится на p, а так как a представляет собой целое число по определению несократимой дроби, то его можно представить в виде $a=f_1f_2\dots f_n$, а так как $p\in\mathbb{N}$, то какое-то $f_i=p$, тогда у a^2 будет множитель $p^2\Rightarrow a^2$ делится на $p^2.a$ представим в виде kp, тогда $b^2p=k^2p^2\Rightarrow b^2=k^2p$. Проведя аналогичные действия имееем, что и b делится на b, тогда представляя его в виде b=mp получаем, что:

 $\sqrt{p}=\frac{a}{b}=\frac{kp}{mp}$ — сократимая дробь, противоречие. Значит мы доказали, что корень из $p\in\mathbb{N}$, где p не квадрат целого числа — это иррациональное число.

Пусть при $n = k : \sum_{i=1}^{n} \sqrt{a_i}$ – иррационально.

Тогда докажем для n = k + 1:

 $\ensuremath{\mathcal{A}\!o\kappa a same necmbo}$. 1.Обозначив $\sum\limits_{i=1}^k \sqrt{a_i}$ за P, где P – иррациональное чис-

ло. Тогда $\sum\limits_{i=1}^{k+1} \sqrt{a_i} = P + \sqrt{a_{k+1}}$. Обозначим $\sqrt{a_{k+1}}$ за \sqrt{Q} для удобства.

Докажем, что $R = P + \sqrt{Q}$ – иррациональное. Пойдем методом от противного :

R — рациональное, тогда и R^2 — рациональное : $R^2 = P^2 + Q + 2P \cdot \sqrt{Q}$. $Q \in \mathbb{N}$, тогда остается рассмотреть $P^2 + 2P \cdot \sqrt{Q}$:

Обозначим $P^2 + 2P \cdot \sqrt{Q}$ за R_1 . Опять пойдем от противного : пусть R_1 рациональное, тогда :

 $R_1 = P(P+2\sqrt{Q})$, где P иррациональное по определению, тогда рассмотрим $(P+2\sqrt{Q})$.От противного : пусть $R_2 = (P+2\sqrt{Q})$ – рациональное, тогда R_2^2 – тоже. $R_2^2 = P^2 + 4Q + 4P\sqrt{Q}$. 4Q не иррациональное. Теперь докажем, что при наших условиях на P и Q будет выпоняться, что $4P\sqrt{Q}$ – иррациональное.

 $P\sqrt{Q}$ может быть рациональным, только если P может быть представленно в двух видах: 1) $P=k\sqrt{Q}$ или 2) $P=\frac{k}{\sqrt{Q}}$ (где k рациональное число). Рассмотрим оба случая:

1)Если $P = k\sqrt{Q}$, то $P = \sqrt{k^2 \cdot Q}$ (обозначим $P_1 = k^2 \cdot Q$ – не полный квадрат натурального числа). Тогда докажем, что сумма 2 корней из неполных квадратов - это иррациональное число.

Тогда рассмотрим уже искомую $R=\sqrt{P_1}+\sqrt{Q}$. R иррационально, если P_1 и Q не являются квадратами рациональных чисел. Предположим противное; т.е. что R рационально. Тогда возведение в квадрат обеих частей уравнения $R=\sqrt{P_1}+\sqrt{Q}$ дает

$$R^2 = P_1 + 2 \cdot \sqrt{P_1 Q} + Q.$$

и поэтому

$$\sqrt{P_1Q} = (R^2 - P_1 - Q)/2.$$

Правая часть обязательно является рациональным числом. Если (P_1Q) не является квадратом рационального числа, то противоречие.

Однако, даже если (P_1Q) - квадрат рационального числа, R может не быть рациональным. Предположим, что Q равно P_1 . Тогда $R=2\sqrt{P_1}$. Если P_1 не является квадратом рационального числа (а оно не является), то R обязательно иррационально.

Предположим, что (P_1Q) квадрат рационального числа, но P_1 не квадрат рационального числа и , пусть без ограничения общности положим, $P_1 < Q$. Это означает, что для того, чтобы (PQ) было квадратом рационального числа $Q = P_1S^2$,где S — рациональное число. Таким образом, $R = \sqrt{P_1}(1+S)$. Это означает, что R является произведением иррационального числа и рационального числа и, следовательно, иррационально.

 $2)P=rac{k}{\sqrt{Q}}.\ P=rac{k\cdot\sqrt{Q}}{Q}$ и можно свести к п.1.Или же искомия $R=P+\sqrt{Q}=rac{k}{\sqrt{Q}}+\sqrt{Q}=rac{k+Q}{\sqrt{Q}},$ где k+Q - не иррационально, а \sqrt{Q} иррационально.

Таким образом, для всех случаев, кроме $a_i \neq N^2$ $(N \in \mathbb{N}), R = \sqrt{P_1} + \sqrt{Q}$ иррационально. Мы доказали, что $\sum_{i=1}^k a_i + a_{k+1}$ – иррационально.

Доказали методом математической индукции.

Ответ: доказано.