Homework2

PB20020480 王润泽

4.1 跟踪 A^* 搜索算法用直线距离启发式求解从Lugoj到Bucharest问题的过程。按顺序列出算法扩展的节点和每个节点的 f,g,h 值。

A: 在 Romania问题中,各个点到 Bucharest 的直线距离如下,以该距离作为启发式函数 h(n)。

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

同理从Lugoj出发,可以定义Lugoj走到n距离为耗散函数 g(n),那么可以得到下图

注:该构建路径时,使用了 Practical Version 的算法,所以当出现重复结点时不一定会拓展。

4.2 启发式路径算法是一个最佳优先搜索,它的目标函数是 f(n)=(2-w)g(n)+wh(n)。算法中 w 取什么值能保证算法是最优的?当时 w=0,这个算法是什么搜索? w=1 呢? w=2 呢?

A: 当 h 保持一致性时,即 h(n)不被高估时,算法是最优的。

改写 $f(n)=(2-w)[g(n)+\frac{w}{2-w}h(n)]$,系数 (2-w)不影响拓展,只要 w<2 即可, $\frac{w}{2-w}h(n)$ 不会被高估,则要

$$\frac{w}{2-w}h(n) \le h(n)$$

即有 $\frac{2w-2}{2-w} \leq 0$ 所以有 $w \leq 1$,且由于保证启发式函数非负性, $w \geq 0$

$$0 \le w \le 1$$

当 w=0 时,这个带系数的一致代价搜索;当 w=1 时,这是 A^* 搜索;当 w=2 时,这是带系数的 Greedy Search

4.3 设计一个启发函数,它在八数码问题中有时会估计过高,并指出对某一特定问题它会求出次优解(可以用计算机编程找出)。证明:如果 h 被高估的部分不超过 c , A^* 算法返回的解代价比最优解代价多出的部分也不超过 c 。

A: 比如可以设计 $h=h_1+h_2$, h_1 为错位棋子数, h_2 为所有棋子到其目标位置的曼哈顿距离和

1		2		1	2
3	4	5	3	4	5
6	7	8	6	7	8

左图为一个估计过高的例子,它比右图目标图相比,启发式函数为 h=2,高于实际代价 $h^*=1$

proof: 设实际代价为 $h^*(x)$, 由条件知 $h(x) \leq h^*(x) + c$; 次优解为 G',而最优目标结点是 G。

反证:假设 A^* 算法返回的解代价比最优解代价多出的部分超过 c, 即 g(G')-g(G)>c;

由于 $h^*(G)=0$,故由条件可知 $h(G)\leq h^*(G)+c=c$,而 G' 是在高估启发函数下得到的次优解,有 h(G')=0;

那么对目标函数 f(G')-f(G)=g(G')-g(G)+h(G')-h(G)>0,这将会导致在高估启发式函数的情况下优先选择 G 而不是 G',这与 G'为在高估启发函数下得到的次优解相矛盾。

故所以返回的解与最优解之间的耗散差不会超过c.

4.7 证明如果启发式是一致的,它一定是可采纳的。构造一个非一致的可采纳启发式。

A: 启发式是一致的说明,每个结点 n,在行动 a 后产生的后继结点 n' 中满足

$$h(n) \leq c(n, a, n') + h(n')$$

其中 c(n, a, n')为从 n 到 n' 的代价,非负。

假设起始点为 n, 而目标点为 n^* ,对于一条从 n 到 n^* 的最短路径有

$$egin{aligned} h(n) - h(n_1) & \leq c(n, a_1, n_1) \ h(n_1) - h(n_2) & \leq c(n_1, a_2, n_2) \ & \cdots \ h(n_{N-1}) - h(n^*) & \leq c(a_{N-1}, a_N, n^*) \end{aligned}$$

累加后得 $h(n)-h(n^*) \leq \sum_i c_i = h^*(n)$,而 $h(n^*)=0$,故可以得到 h(n) 是可采纳的,即不超过实际代价 h^*

非一致性的可采纳的启发式函数

其中 c(A,B)=2, c(B,C)=2。 假设 h(A)=4, h(B)=1, h(C)=0,即启发式函数没有高估,是可采纳的。 而此时对于 A 来说 h(A)>h(B)+c(A,B),是非一致的