Утвержден ЮТДН.468165.027РЭ-ЛУ

ДЕТЕКТОР НЕЛИНЕЙНЫХ ПЕРЕХОДОВ NR-900ЕКЗМ «Коршун»

Руководство по эксплуатации ЮТДН.468165.027РЭ

СОДЕРЖАНИЕ

1 Назначение	4
1.1 Основные технические характеристики	5
1.2 Состав изделия	6
1.3 Принцип действия	7
1.4 Конструкция	9
1.5 Маркировка и пломбирование	17
2 Использование по назначению	18
2.1 Эксплуатационные ограничения	18
2.2 Подготовка к работе	19
2.3 Проверка работоспособности	20
2.4 Перечень возможных неисправностей	21
2.5 Использование изделия	22
2.6 Меры безопасности при работе с изделием	24
2.7 Свертывание изделия	24
2.8 Действия в экстремальных условиях	
2.9 Использование зарядного устройства	
3 Техническое обслуживание изделия	27
3.1 Общие указания	27
3.2 Порядок проведения технического обслуживания	
4 Текущий ремонт	
5 Транспортировка	
6 Хранение	31

Настоящее руководство по эксплуатации (далее по тексту – РЭ) предназначено для изучения детектора нелинейных переходов NR-900ЕКЗМ «Коршун» ЮТДН.468165.027 (далее по тексту – изделие) и содержит сведения об устройстве, работе, использовании по назначению, техническому обслуживанию и текущему ремонту изделия, необходимые для обеспечения его правильной эксплуатации и полного использования технических возможностей.

РЭ предназначено для обслуживающего персонала, специально подготовленного для работы с изделием, имеющего соответствующее техническое образование и опыт работы с радиоэлектронным оборудованием.

ВНИМАНИЕ!

ИЗДЕЛИЕ ИМЕЕТ ОТКРЫТЫЙ ИЗЛУЧАТЕЛЬ ЭЛЕКТРОМАГНИТНОЙ ЭНЕРГИИ ВЫСОКОЙ ЧАСТОТЫ. ЗАПРЕЩАЕТСЯ НАПРАВЛЯТЬ АНТЕННУЮ СИСТЕМУ В СТОРОНУ ЛЮДЕЙ ПРИ РАССТОЯНИИ МЕЖДУ АНТЕННОЙ СИСТЕМОЙ И ЧЕЛОВЕКОМ МЕНЕЕ 2-Х МЕТРОВ.

ВКЛЮЧЕННОЕ ИЗДЕЛИЕ ЯВЛЯЕТСЯ ИСТОЧНИКОМ АКТИВНЫХ РАДИОПОМЕХ, КОТОРЫЕ МОГУТ ПРИВОДИТЬ К НАРУШЕНИЮ НОРМАЛЬНОЙ РАБОТЫ РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ, НАХОДЯЩЕГОСЯ В НЕПОСРЕДСТВЕННОЙ БЛИЗОСТИ ОТ ИЗДЕЛИЯ.

1 Назначение

Изделие предназначено для поиска радиоэлектронных устройств, содержащих полупроводниковые компоненты (радиомикрофоны (жучки), отдельные электронные платы и др.), как во включённом, так и выключенном состоянии, поверхности находящиеся на грунта, вмонтированных в мебель, предметы интерьера, строительные и ограждающие конструкции, инженерные коммуникации. строительных способно осуществлять контроль Излелие конструкций (кирпичной кладки, стеновых панелей, бетонных и железобетонных монолитов, и т.п.) с целью обнаружения c электронными элементами скрытых предметов (обнаружение имеюшими контакт металл-окисел локализация средств подключения И съёма речевой информации проводов, в том числе оптических, арматуры, мест установки закладных, подслушивающих устройств). Изделие также способно различать устройства с полупроводниковыми устройств, содержащих элементами OT контактирующие металлические части или детали (контакт металл-окисел). Изделие может применяться при проведении спасательных операций для обнаружения людей, находящихся под снежными завалами и имеющих при себе радиоэлектронные устройства.

Изделие предназначено для применения в помещениях и на открытом воздухе

Изделие является индивидуальным носимым прибором и обслуживается одним оператором.

1.1 Основные технические характеристики

1.1.1 Дальность обнаружения штатного	
имитатора, установленного на высоте	1 м
от поверхности грунта, при минималь	ной
мощности излучения, м, не менее	1,5
1.1.2 Вид сигнализации:	
- звуковая (головные телефоны);	
 светосигнальная (светодиодная инди 	икаторная панель).
1.1.3 Номинальное напряжение питания, В	7,5
1.1.4 Источник питания – блок питания	(БП) со встроенной
перезаряжаемой литий-ионной аккумуля	торной батареей с
номинальным напряжением 7,5 В и емкости	ью 5,4 Ач.
1.1.5 Условия эксплуатации	
(за исключением зарядного устройства):	
– диапазон рабочих температур, °C	от минус 30
	до плюс 50
 – максимальная относительная 	
влажность воздуха, %	95 (при плюс 35°C)
1.1.6 Условия эксплуатации зарядного устр	ойства:
– диапазон рабочих температур, °C	от плюс 5
	до плюс 40
- максимальная относительная	
влажность воздуха, %	95 (при плюс 25°C)
1.1.7 Масса изделия в транспортной	
упаковке, кг, не более	11
1.1.8 Время непрерывной работы изделия	
(при использовании двух БП), ч, не ме	ehee 8

1.2 Состав изделия

Состав изделия приведен в таблице 1 и на рисунке 1.

Таблица 1

Наименование	Обозначение	Кол-во (шт.)	Поз.		
NR-900-E	КЗМ «Коршун»				
Блок радиолокационный	ЮТДН.468367.025	1	2		
Блок питания	ЮТДН.563551.015	2	5		
Кабель питания	ПЮЯИ.685621.420	1	6		
Телефоны головные	ПЮЯИ.468626.002-01	1	3		
Упаковка транспортная	ЮТДН.323382.005	1	1		
Устройство зарядное	ЮТДН.436234.005	1	7		
 кабель питания ЗУ сетевой 	ЮТДН.685631.002	1	8		
- кабель питания ЗУ бортовой	ЮТДН.685631.003	1	9		
Эквивалент объекта поиска	ЮТДН.408861.001	1	4		
Ранец оператора		1	10		
– упаковка эксплуатационная	арт. 64590				
– подсумок блока питания			11		
Чехол антенный	арт. 21942	1	12		
Комплект запасных частей					
Кабель питания	ПЮЯИ.685621.420	1	6		
Эквивалент объекта поиска	ЮТДН.408861.001	1	4		
Эксплуатационная документация					
Руководство по эксплуатации	ЮТДН.468165.027РЭ	1	_		
Формуляр	ЮТДН.468165.027ФО	1	_		
Схема укладки	ЮТДН.305439.007	1	_		

Рисунок 1 – Состав изделия

1.3 Принцип действия

Изделие представляет собой импульсный нелинейный локатор, работа которого основана на облучении обследуемых объектов короткими радиочастотными импульсами и приеме отраженных сигналов на удвоенной и утроенной частотах (2-й и 3-й гармониках) зондирующего сигнала.

Появление в спектре отраженных сигналов 2-й и 3-й гармоник происходит в результате преобразования электромагнитной энергии на нелинейных элементах.

Полупроводниковые элементы (диоды, транзисторы, интегральные микросхемы), содержащиеся в любом радиоэлектронном устройстве, создают сигнал преимущественно на частоте 2-й гармоники.

Элементы, содержащие контактирующие металлические части (переходы типа «металл-окисел-металл»), создают сигнал преимущественно на частоте 3-й гармоники.

Природные объекты (почвы, горные породы, растительность) не вызывают нелинейных преобразований зондирующего сигнала. Поэтому появление отраженного сигнала на частотах 2-й и/или 3-й гармоник указывает на присутствие в зоне облучения искусственного объекта. Соотношение уровней сигналов этих гармоник определяет тип обнаруженного объекта: электронное устройство или объект с соприкасающимися между собой металлическими частями.

Структурная схема блока радиолокационного изделия представлена на рис.2.

Рисунок 2 – Структурная схема блока радиолокационного с головными телефонами.

Основными функциональными элементами радиолокационного блока являются: передатчик, антенная система, два приемника, блок управления, блок обработки, панель управления и индикации.

Передатчик формирует радиочастотные импульсы, излучаемые передающей антенной в направлении объекта обследования.

Отраженный сигнал принимается приемной антенной и поступает на входы приемников, настроенных на удвоенную и утроенную частоты зондирующего сигнала.

Блок обработки представляет собой цифровой анализатор спектра и предназначен для нормирования уровней сигналов приемников и устранения влияния эффекта Доплера, проявляющегося при движении оператора в направлении цели.

После обработки принятых сигналов в блоке обработки их уровни отображаются светодиодным индикатором. Одновременно изделие выдает в головные телефоны непрерывный тональный звуковой сигнал, громкость которого пропорциональна уровню радиосигнала с частотой второй гармоники.

Изделие имеет два уровня излучаемой мощности и три чувствительности приемников, переключаемые VDОВНЯ индикации, панели управления И на которой также режимов работы расположены индикаторы уровней принимаемых сигналов.

При разряде блока питания в головные телефоны выдается звуковой сигнал и начинает мигать светодиодный индикатор контроля включения питания.

При продолжении работы без замены блока питания изделие автоматически отключается через 20–30 с.

Проверка работоспособности изделия в процессе эксплуатации осуществляется с помощью эквивалента объекта поиска.

1.4 Конструкция

Изделие состоит из радиолокационного блока, к которому подключаются блок питания (БП) и головные телефоны, упаковки эксплуатационной, комплектов принадлежностей и запасных частей и эксплуатационной документации.

1.4.1 Блок радиолокационный (рис. 3) состоит из приемопередающего блока (ППБ) и антенной системы, соединенных между собой кабелем.

1 – приемопередающий блок; 2 – антенная система в защитном чехле; 3 – кабель соединительный.

Рисунок 3 – Блок радиолокационный

Антенная система включает в себя сооснорасположенные спиральные передающую и приемную антенны направленного излучения, закрепленные на рефлекторе и закрытые пластиковым обтекателем.

Максимумы диаграмм направленности антенн совпадают с их продольной геометрической осью.

На пластиковый обтекатель надет матерчатый защитный чехол.

На тыльной стороне рефлектора расположена панель с органами управления и индикации (рис. 4), где расположены:

- 1 кнопка включения и выключения изделия 💍 ;
- 2 кнопки регулировки чувствительности приемников
- **-10**, **-20**, **-30** (-10 дБ, -20 дБ, -30 дБ);
- 3 МАХ переключение уровня мощности передатчика;
- 4 шкала уровня $2^{\text{ой}}$ гармоники принимаемого сигнала линейка из 16 светодиодов красного цвета (см. рис. 5);

5 – шкала уровня 3^{ей} гармоники принимаемого сигнала – линейка из 16 светодиодов зеленого цвета (см. рис. 5); 6 – светодиоды подтверждения включения режима.

Рис. 4 - Панель управления и индикации

Рисунок 5 – Индикатор уровня принимаемых сигналов

Над каждой кнопкой расположен светодиодный индикатор красного цвета. Нажатие кнопки и включение (выключение) светодиода означает включение (выключение) соответствующего режима.

Свечение каждого следующего светодиода на шкалах уровня **2** и **3** означает увеличение уровня входного сигнала на **2.5** дБ.

Для удобства считывания показаний шкала индикаторной панели разделена на 4 сегмента по 4 светодиода (10 дБ) в каждом сегменте.

Антенная система снабжена рукояткой.

Приемопередающий блок (ППБ) выполнен в корпусе. Верхняя и нижняя панели корпуса — пластиковые, кожух — металлический.

Внутри корпуса ППБ размещены электронные блоки передатчика, приемников, плата коммутации сигналов.

На верхней панели ППБ расположены:

- гермоввод соединительного кабеля;
- разъем празъем − для подключения кабеля питания;
- разъем 👂 для подключения головных телефонов.
- 1.4.2 Блок питания (БП) (рис. 6) представляет собой цилиндрический металлический корпус, в котором размещена литий-ионная аккумуляторная батарея. Аккумуляторная батарея в процессе эксплуатации из корпуса не извлекается.

Рисунок 6 – Блок питания

На верхней панели БП расположен разъем для подключения его к блоку ППБ или к зарядному устройству, маркированный знаком . ••••

Подключение осуществляется с помощью кабеля питания (рис. 7). Кабель питания предназначен для подключения БП к ППБ или к устройству зарядному (ЗУ).

Рисунок 7 – Кабель питания.

1.4.3 Телефоны головные (рис. 8) предназначены для прослушивания сигналов звуковой индикации и представляют собой два электродинамических преобразователя с мягкими амбушюрами, ремнями оголовья и кабелем с разъемом для подключения к ППБ.

Рисунок 8 – Телефоны головные.

1.4.4 Эквивалент объекта поиска (рис. 9) представляет собой полупроводниковый диод 2Д521A, размещенный в пластмассовом цилиндрическом корпусе.

Рисунок 9 – Эквивалент объекта поиска.

1.4.5 Зарядное устройство (ЗУ) предназначено для заряда аккумуляторной батареи блока питания (см. рис. 10).

Питание зарядного устройства осуществляется от сети переменного тока частотой 50 Γ ц напряжением от 90 до 242 B или от бортовой сети постоянного тока напряжением от 11 до 30 B.

1 — разъем для подключения блока питания БП; 2 — светодиодиндикатор **СЕТЬ**; 3 — светодиод-индикатор **РЕЖИМ**; 4 — звуковод акустической сигнализации окончания заряда; 5 — разъем для подключения кабеля питания 3У; 6 — кабель питания 3У сетевой; 7 — кабель питания 3У бортовой.

Рисунок 10 – Зарядное устройство с кабелями

При работе устройства от сети 220 В 50 Гц подключение к сети производится с помощью кабеля питания ЗУ сетевого ЮТДН.685631.002.

При работе от бортовой сети постоянного тока подключение к сети производится с помощью кабеля питания 3У бортового ЮТДН.685631.003.

Подключение устройства к блоку питания производится с помощью кабеля питания ПЮЯИ.685621.420.

Зарядка аккумуляторной батареи производится в автоматическом режиме.

По окончании заряда включается световая и звуковая сигнализация. Время заряда в зависимости от состояния аккумуляторной батареи – не более 5,5 часов.

ЗУ выполнено в металлическом корпусе.

На задней панели ЗУ расположен разъем для подключения кабеля питания (сетевого или бортового) и предохранитель.

1.4.6 Для размещения изделия на операторе в рабочем и походном положении используется упаковка эксплуатационная (рисунок 11), представляющая собой ранец с отсеками для размещения составных частей изделия.

Рисунок 11 – Упаковка эксплуатационная

1.4.7 Блок радиолокационный, БП и ЗУ имеют брызгозащищенное исполнение. Места соединения верхней и нижней панели к кожуху в ППБ и БП по периметру закрыты резиновыми уплотнителями

Электрические разъемы блоков при отключенных от них кабелях закрыты резиновыми заглушками, предохраняющими разъемы от попадания в них пыли и грязи.

- 1.4.8 Комплект запасных частей изделия:
- запасной кабель питания для подключения к БП 1 шт,
- − запасной эквивалент объекта поиска− 1 шт.
- 1.4.9 При хранении и транспортировке комплект изделия размещается в упаковке транспортной (рис. 12), при этом блок приемопередатчика и блоки питания размещаются в упаковке эксплуатационной (ранце оператора), которая обеспечивает их дополнительную защиту от механических воздействий.

Схема укладки прилагается. При поставке изделия с предприятия изготовителя транспортная упаковка с изделием вкладывается картонную коробку.

Масса комплекта изделия в упаковке транспортной не более 9.8 кг.

Рис. 12. Вид изделия в упаковке транспортной

1.5 Маркировка и пломбирование

Изделие имеет следующую маркировку:

- на корпусе ППБ расположена табличка с указанием условного обозначения изделия и его заводского номера;
- на корпусе БП табличка с указанием условного обозначения изделия и заводского номера БП;
- на корпусе ЗУ табличка с указанием условного обозначения изделия и заводского номера ЗУ;
- на упаковке транспортной расположена табличка, с указанием условного обозначения изделия и его заводского номера.

Пломбирование заводскими клеймами и клеймами представителя заказчика осуществляется в углублениях винтов на верхней и нижней крышках корпусов блоков ППБ, БП, ЗУ. Упаковка транспортная опломбирована навесными пломбами.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 Диапазон рабочих температур: от минус 30 до плюс 50° С (при работе с БП).
- 2.1.2 Максимальная влажность воздуха: 95% (при плюс 35° C.)
- 2.1.3 После транспортирования изделия при температуре окружающей среды, отличающейся от рабочей температуры, перед включением его необходимо выдержать при рабочей температуре не менее трех часов.
- 2.1.4 При работе с изделием следует оберегать его от механических повреждений и от попадания воды и грязи в электрические разъемы.
- 2.1.5 Скорость движения оператора при ведении поиска рекомендуется поддерживать в пределах (3...5) км/ч.
- 2.1.6 Включенное изделие является источником активных радиопомех, которые могут приводить к нарушению нормальной работы радиоэлектронного оборудования, находящегося в непосредственной близости от изделия.

ВНИМАНИЕ!

В ХОДЕ РАБОТ ПО ПОИСКУ ВЗРЫВООПАСНЫХ ПРЕДМЕТОВ ПРИ ПОЯВЛЕНИИ УСТОЙЧИВОГО СИГНАЛА ОБНАРУЖЕНИЯ РЕКОМЕНДУЕТСЯ НЕМЕДЛЕННО ПЕРЕКЛЮЧИТЬ ИЗДЕЛИЕ В РЕЖИМ МИНИМАЛЬНОЙ ИЗЛУЧАЕМОЙ МОЩНОСТИ.

ЗАПРЕЩАЕТСЯ НАПРАВЛЯТЬ АНТЕННУЮ СИСТЕМУ В СТОРОНУ ЛЮДЕЙ (ЖИВОТНЫХ) ПРИ РАССТОЯНИИ МЕЖДУ АНТЕННОЙ СИСТЕМОЙ И ЧЕЛОВЕКОМ (ЖИВОТНЫМ) МЕНЕЕ 2 м.

2.2 Подготовка к работе

- 2.2.1 Распаковать изделие и проверить его комплектность в следующем порядке:
- проверить целостность и сохранность навесных пломб на транспортной упаковке;
- снять пломбы и извлечь из упаковки составные части изделия, запасные части, принадлежности и эксплуатационную документацию (формуляр и руководство по эксплуатации);
- проверить комплектность изделия согласно записям в формуляре, схеме укладки и упаковочной ведомости;
- провести внешний осмотр составных частей изделия, обращая внимание на отсутствие трещин и царапин на корпусах блоков, сколов и трещин в разъемах, целостность защитных оболочек кабелей.
- 2.2.2 Если в процессе проверки обнаружены дефекты, которые нельзя устранить, необходимо возвратить изделие на базу (склад). Вместе с неисправным изделием возвратить сопроводительную документацию, а в формуляре указать характер дефектов, дату и условия их обнаружения.
- 2.2.3 Зарядить (при необходимости) БП, руководствуясь разделом 2.9 настоящего РЭ. Изделие поставляется с заряженными БП.
- 2.2.4 Подготовить изделие к работе в следующем порядке:
- соединить БП с ППБ с помощью кабеля питания, руководствуясь обозначениями разъемов;
 - подключить головные телефоны к разъему 🔊 ППБ;
- уложить второй БП и другие необходимые части изделия в карманы ранца и закрыть карманы;
- надеть ранец, отрегулировать длину ремней и застегнуть пряжки;
 - надеть головные телефоны;
 - взять антенную систему в руку.

2.3 Проверка работоспособности

ВНИМАНИЕ!

ИЗДЕЛИЕ ЯВЛЯЕТСЯ ВЫСОКОЧУВСТВИТЕЛЬНЫМ РАДИОЭЛЕКТРОННЫМ УСТРОЙСТВОМ. ПЕРЕД НАЧАЛОМ РАБОТЫ НЕОБХОДИМО УДАЛИТЬ ИЗ ОДЕЖДЫ И СНАРЯЖЕНИЯ ПРЕДМЕТЫ, СОДЕРЖАЩИЕ ПОЛУПРОВОДНИКОВЫЕ РАДИОЭЛЕМЕНТЫ.

- 2.3.1 Выбрать на местности площадку, на которой отсутствуют предметы, содержащие полупроводниковые радиоэлементы.
- 2.3.2 Включить питание изделия, для чего нажать и удерживать кнопку о на панели управления и индикации до загорания красного светодиода, расположенного над кнопкой. После загорания светодиода кнопку отпустить.
- 2.3.3 После включения питания автоматически устанавливается следующий режим работы изделия:
 - выходная мощность передатчика минимальная;
- чувствительность приемников минус $10\,\mathrm{д}\mathrm{Б}$ (индицируется загоранием красного светодиода над кнопкой «-10»).
- 2.3.4 Установить максимальную чувствительность приемников, для чего нажать и отпустить кнопку «-10», при этом гаснет красный светодиод, расположенный над кнопкой. Возможно загорание светодиодов на шкалах 2 и 3 и появление звукового сигнала в головных телефонах.
- 2.3.5 Удерживая антенную систему на уровне груди, направить его в разные стороны параллельно поверхности земли. Выбрать направление, в котором сигналы отсутствуют или имеют минимальные уровни (загораются первые 1-2 светодиода на шкалах **2** и **3**).
- 2.3.6 Не изменяя положения антенной системы, взять свободной рукой эквивалент объекта поиска и поместить его перед антенной системой на расстояние вытянутой руки

- (примерно (0,5...0,7) м). При этом в головных телефонах должен прослушиваться тональный сигнал средней громкости, а на шкале **2** должно загореться не менее семи светодиодов.
- 2.3.7 Приближая и удаляя эквивалент объекта поиска от антенной системы, убедиться в наличии соответствующего изменения уровней принимаемых сигналов, отображаемых индикатором. Удаление имитатора в сторону от антенной системы должно приводить к пропаданию сигналов.
- 2.3.8 Выключить питание изделия, нажав кнопку , при этом гаснут все светодиоды на индикаторной панели.

2.4 Перечень возможных неисправностей

2.4.1 Перечень возможных неисправностей изделия и указания по их устранению приведены в таблице 2. Таблица 2

Наименование неисправности, ее внешнее проявление и возможные дополнительные признаки	Вероятная причина	Методы устранения
При включении питания изделия индикатор включения питания не светится, изделие не	Разряжен БП.	Заменить БП на резервный. Зарядить БП.
включается.	Неисправен кабель питания.	Заменить кабель питания запасным.

2.4.2 Если в результате проверки изделия выявлены неисправности, не устраняемые по методике таблицы 2, необходимо произвести запись в формуляре, изделие отправить на предприятие-изготовитель.

ЗАПРЕЩАЕТСЯ РАЗБИРАТЬ ИЗДЕЛИЕ!

2.5 Использование изделия

2.5.1 Веление поиска

ВНИМАНИЕ!

НАЧИНАТЬ ПОИСК НЕОБХОДИМО С РУБЕЖА, НАХОДЯЩЕГОСЯ НА УДАЛЕНИИ НЕ МЕНЕЕ 20 М ОТ ОБСЛЕДУЕМОГО УЧАСТКА МЕСТНОСТИ (ОБЪЕКТА).

НЕ ПРИБЛИЖАТЬ АНТЕННУЮ СИСТЕМУ К ОБСЛЕДУЕМЫМ ПРЕДМЕТАМ И ПОВЕРХНОСТЯМ НА РАССТОЯНИЕ МЕНЕЕ ОДНОГО МЕТРА.

- 2.5.1.1 Включить питание изделия.
- 2.5.1.2 Установить максимальную чувствительность приемников.
- 2.5.1.3 Направить антенную систему в сторону обследуемого участка местности (объекта), начиная от зоны непосредственной близости к оператору. Перемещая антенную систему перед собой влево вправо на уровне груди постепенно увеличивать зону обследования.
- 2.5.1.4 При появлении сигнала обнаружения по максимуму уровня сигнала на шкалах **2**, **3** и максимуму громкости звукового сигнала определить направление на источник сигнала.
- 2.5.1.5 При необходимости уменьшить чувствительность приемников кнопками **–10**, **–20** и **-30**.
- 2.5.1.6 При отсутствии сигнала установить максимальную мощность передатчика нажатием кнопки **MAX**. При этом должен загореться красный светодиод, расположенный над с кнопкой. Установить максимальную чувствительность приемников (светодиоды, расположенные над кнопками **–10**, **–20** и **–30** должны быть погашены).
- 2.5.1.7 Начать движение в заданном направлении, при этом направлять антенную систему в сторону обследуемых поверхностей предметов. При появлении И обнаружения увеличении, И его прекратить движение MAX остановиться нажатием И кнопки переключить

передатчик в режим минимальной мощности.

- 2.5.1.8 По максимуму уровня сигнала на шкале и в головных телефонах определить направление на источник сигнала, вводя при необходимости ослабление входных сигналов приемников кнопками **–10**, **–20** и **–30**.
- 2.5.1.9 Следить за соотношением уровней сигналов на шкалах **2** и **3**. В случае, когда уровень сигнала шкалы **3** (зеленая шкала) превышает уровень сигнала шкалы **2** (красная шкала) более чем на 3 ед. (светодиода), наиболее вероятно, что источником сигнала является объект, содержащий соприкасающиеся между собой металлические части или детали.
- 2.5.1.10 Превышение уровня сигнала шкалы **2** над уровнем сигнала шкалы **3** более чем на 3 ед. с высокой степенью вероятности свидетельствует о том, что источником сигнала является электронное устройство.
- 2.5.1.11 После определения местоположения источника отраженного сигнала изделие рекомендуется выключить и дальнейшие действия с обнаруженным объектом производить согласно имеющимся инструкциям.
- 2.5.2 При разряде БП ниже 5,8 В изделие сигнализирует об этом специальным звуковым сигналом в головных телефонах и миганием светодиода-индикатора включения питания в течение (20...30) с, после чего автоматически выключается.

В этом случае следует прекратить работу и заменить Π на резервный (или батарейный).

- 2.5.3 При ведении поиска в районе, характеризующемся высоким уровнем внешних радиопомех в диапазоне рабочих частот изделия, необходимо уменьшить чувствительность приемников кнопками **–10**, **–20** или **–30**. При этом дальность обнаружения уменьшается.
- 2.5.4 По окончании работы выключить питание изделия и перевести его в транспортное положение, следуя указаниям п. 2.7 настоящего РЭ.

2.6 Меры безопасности при работе с изделием

- 2.6.1 При поиске активной радиоэлектронной аппаратуры необходимо помнить, что излучаемые изделием импульсные электромагнитные сигналы могут влиять на работу этой аппаратуры.
- 2.6.2 Для уменьшения этого влияния приближение к источнику сигнала рекомендуется производить в режиме минимальной мощности передатчика (красный светодиод, расположенный над кнопкой **MAX** не горит).
- 2.6.3 При повышении уровня сигнала шкалы **2** свыше 20 дБ (8 светодиодов), необходимо, не приближаясь к источнику сигнала, уменьшить уровень излучаемой мощности нажатием кнопки **MAX** (светодиод, расположенный над кнопкой, должен погаснуть) и определение местоположения источника сигнала проводить в режиме пониженной мощности.

2.7 Свертывание изделия

Перевод изделия в транспортное положение производится следующим образом:

- снять ранец;
- отключить кабель питания от БП и от ППБ;
- отключить от ППБ головные телефоны;
- извлечь из ранца и осмотреть блоки изделия, обращая особое внимание на разъемы, удалить грязь и закрыть разъемы заглушками;
 - уложить блоки в ранец;
 - осмотреть антенную систему;
- уложить изделие в транспортную упаковку и закрыть ее.

2.8 Действия в экстремальных условиях

2.8.1 При нарушениях нормального функционирования изделия, которые не могут быть устранены оператором, работу с изделием следует прекратить и возвратить изделие на базу.

2.8.2 Если процессе работы изделие подверглось В механическому, электромагнитному внешнему или воздействию временной климатическому c потерей возобновлением работоспособности. работы TO перед необходимо провести внешний осмотр изделия и проверку его работоспособности соответствии подразделом c 2.3 В настоящего руководства.

2.9 Использование зарядного устройства

ВНИМАНИЕ!

ДЛЯ ЗАРЯДА БЛОКА ПИТАНИЯ ИСПОЛЬЗОВАТЬ ТОЛЬКО ШТАТНОЕ ЗАРЯДНОЕ УСТРОЙСТВО ИЗ КОМПЛЕКТА ИЗДЕЛИЯ.

ПРИ ЭКСПЛУАТАЦИИ ЗАРЯДНОГО УСТРОЙСТВА НЕОБХОДИМО СОБЛЮДАТЬ ОБЩИЕ МЕРЫ БЕЗОПАСНОСТИ, ПРИНЯТЫЕ ПРИ РАБОТЕ С ЭЛЕКТРОУСТАНОВКАМИ.

- 2.9.1 Использование ЗУ по назначению следует проводить при положительных температурах окружающего воздуха.
 - 2.9.2 Заряд БП проводить в следующем порядке:
- подключить к ЗУ сетевой кабель питания (при питании от сети переменного тока напряжением 220 В частотой 50 Гц) или бортовой кабель питания (при питании от сети постоянного тока напряжением (11...30) В);
- подключить ЗУ к питающей сети (при питании от сети постоянного тока с соблюдением полярности: зажим красного цвета бортового кабеля подключать к положительному контакту сети), при этом должен загореться индикатор СЕТЬ, индикатор РЕЖИМ не горит;
- с помощью кабеля ПЮЯИ.685621.420 подключить к устройству БП, индикатор **РЕЖИМ** не более чем через 10 с загорается красным цветом;
- по окончанию заряда включается прерывистая звуковая сигнализация, индикатор РЕЖИМ загорается зеленым цветом.

- 2.9.3 Если по истечении 5,5 часов начинает мигать красным цветом индикатор **РЕЖИМ** и раздается прерывистый звуковой сигнал более высокой частоты, чем при окончании заряда батареи батарея не заряжается (неисправна)
- 2.9.4 Если в течение 20 с при включенном в сеть 3У и подключенном БП не загорается индикатор **РЕЖИМ** батарея не того типа или неисправна.
- 2.9.5 После окончания работы БП отключить от ЗУ, ЗУ отключить от питающей сети.

3 Техническое обслуживание изделия.

3.1 Общие указания.

3.1.1 Техническое обслуживание изделия осуществляется персоналом, изучившим руководство по эксплуатации изделия и имеющим практический опыт работы с ним.

ЗАПРЕЩАЕТСЯ ОСУЩЕСТВЛЯТЬ РАЗБОРКУ ИЗДЕЛИЯ.

- 3.1.2 Для поддержания изделия в исправном состоянии и постоянной готовности к использованию по назначению устанавливаются следующие виды технического обслуживания:
- контрольный осмотр (КО) проводится при приеме изделия, подготовке его к транспортированию, использованию по назначению, хранению, периодическом контроле технического состояния, снятии с хранения, после транспортирования;
- ежедневный уход (ЕУ) проводится после окончания работы с изделием;
- регламентированное техническое обслуживание (РТО) проводится в процессе длительного хранения изделия с периодичностью 1 раз в год.

3.2 Порядок проведения технического обслуживания

- 3.2.1 Порядок проведения КО:
- извлечь из упаковки транспортной составные части изделия, принадлежности и сопроводительную документацию;
 - проверить комплектность изделия по формуляру;
 - проверить целостность пломб на блоках изделия;
- проверить внешнее состояние составных частей изделия;
- проверить состояние надписей (маркировки) на корпусах блоков изделия;
 - проверить состояние электрических разъемов;
 - проверить работоспособность изделия (п. 2.3 РЭ);

- закрыть электрические разъемы резиновыми заглушками;
- уложить комплект изделия в транспортную упаковку согласно схеме укладки.

ВНИМАНИЕ! ПРИ ПОСТАНОВКЕ ИЗДЕЛИЯ НА ХРАНЕНИЕ, ПОСЛЕ ПРОВЕРКИ ЕГО РАБОТОСПОСОБНОСТИ НЕОБХОДИМО ЗАРЯДИТЬ АККУМУЛЯТОРНЫЕ БАТАРЕИ БП, РУКОВОДСТВУЯСЬ УКАЗАНИЯМИ П. 2.9 РЭ.

3.2.2 Порядок проведения ЕУ:

- удалить сухой чистой ветошью грязь, пыль с наружных поверхностей составных частей изделия;
- при наличии загрязнений на эксплуатационной и транспортной упаковках удалить их с помощью щетки и моющего раствора, приготовленного из хозяйственного мыла или синтетического стирального порошка;
- при наличии плесени на эксплуатационной упаковке провести дезинфекцию двухпроцентным раствором формалина;
 - просушить эксплуатационную упаковку;
- устранить мелкие дефекты лакокрасочного покрытия блоков изделия (царапины, забоины);
 - зарядить БП (п. 2.9 РЭ);
 - проверить работоспособность изделия (п. 2.3 РЭ).
 - 3.2.3 Порядок проведения РТО:
 - зарядить БП (п. 2.9 РЭ);
 - проверить работоспособность изделия (п.2.3 РЭ).
- $3.2.4~{\rm Пр}$ и постановке изделия на длительное хранение и подготовке его к транспортированию консервация не требуется.

4 Текущий ремонт

- 4.1 Текущий ремонт изделия в эксплуатирующей организации производится с использованием запасных частей, входящих в комплект поставки изделия.
 - 4.2 В комплект запасных частей изделия входят:
 - кабель питания ПЮЯИ.685621.420 1 шт.;
 - эквивалент объекта поиска 1 шт.
- 4.3 При выходе из строя кабеля питания заменить его запасным.
- 4.4 При выходе из строя или утрате эквивалента объекта поиска заменить его запасным.

5 Транспортировка

- 5.1 Изделие транспортной, упаковке В может транспорта транспортироваться всеми видами кроме негерметизированных кабин отсеков ИЛИ летательных аппаратов без ограничения расстояний и числа погрузоквыгрузок при температуре окружающей среды от минус 50 до плюс 60 °С.
- 5.2 Упаковка с изделиями на крытых транспортных средствах должна быть уложена не более двух рядов по высоте и закреплена так, чтобы была исключена возможность ее смещения в стороны и вверх.
- 5.3 В случае кратковременного транспортирования на открытых платформах или автомашинах упаковка с изделиями должна быть накрыта брезентом.

6 Хранение

- 6.1 При подготовке изделия к хранению необходимо провести его техническое обслуживание в объеме КО и ЕУ, при постановке на длительное хранение дополнительно зарядить аккумуляторные батареи БП.
- 6.2 Разместить изделие в месте хранения и сделать запись в формуляре.
- 6.3 Изделие должно храниться в упаковке транспортной при следующих условиях:
- в помещениях (хранилищах) с регулируемой температурой и влажностью на стеллажах или поддонах при температуре от плюс 5 до плюс 15°C и относительной влажности не более 40% при плюс 15°C до пяти лет без замены БП;
- в неотапливаемых помещениях (хранилищах) на стеллажах или поддонах:
 - а) при температуре от минус 30 до плюс 50°C и относительной влажности не более 95% при плюс 35°C до трех месяцев;
 - б) при температуре от минус 40 до плюс 60 °C до одной недели.
- 6.4 В помещении, где хранится изделие, не должно быть паров щелочей, кислот и других агрессивно действующих веществ
- 6.5 Техническое обслуживание изделия, находящегося на кратковременном хранении, проводится в объеме КО и ЕУ с периодичностью, определяемой действующей в эксплуатирующей организации нормативно-технической документацией.
- 6.6 Техническое обслуживание изделия, находящегося на длительном хранении, проводится:
- в объеме КО и ЕУ с периодичностью, определяемой действующей в эксплуатирующей организации нормативнотехнической документацией;
 - объеме РТО один раз в год.
- 6.7 При хранении и эксплуатации изделия 5 лет и более необходимо заменить БП.

ДЛЯ ЗАМЕТОК