What is claimed is:

1	1. An apparatus for removing a sheath on an optical fiber cable, the	
2	apparatus comprising:	
3	a body having a central hole, the body being split for positioning around	
4	the cable;	
5	first and second opposed cutting blades having cutting edges protruding	
6	from the body into the central hole, said cutting edges facing the cable, said blades being	
7	positioned at a cutting angle to a transverse plane of the cable;	
8	first and second adjusting screws rotatably mounted in said body for	
9	urging said first and second cutting blades toward said cable;	
10	first and second continuity test circuits for testing electrical continuity	
11	between a metallic sub-sheath of the cable and corresponding ones of the first and second	
12	cutting blades; and	
13	a cable stabilizer bushing for contacting and aligning said body, said	
14	bushing having a central hole for accepting the cable, said bushing further having a	
15	plurality of elastomeric rollers extending into the hole for rolling on the cable, said	
16	bushing being split for positioning around the cable.	
1	2. The apparatus of claim 1, wherein the cutting edges of the cutting	
2	blades are elliptical.	
1	3. The apparatus of claim 1, further comprising a locking clasp for	
2	locking said body on the cable.	

1	4.	The apparatus of claim 1, wherein the cable stabilizer bushing		
2	further comprises firs	t and second locking clasps for locking said bushing on the cable.		
1	5.	The apparatus of claim 1, further comprising a jumper wire for		
2	connecting the contin	uity circuits to the metallic sub-sheath of the cable.		
1	6.	The apparatus of claim 1, wherein the continuity circuits each		
2	comprise a battery, ar	indicator light and a continuity lug for connecting a jumper wire.		
1	7.	The apparatus of claim 6, wherein the indicator light is a green		
2	LED.			
1	8.	The apparatus of claim 1, further comprising first and second blade		
2	retainers slideably mo	ounted in the housing and contacting corresponding adjusting		
3	screws; said blade ret	ainers having blade stops for backing up said cutting blades.		
1	9.	The apparatus of claim 8, wherein said first and second blade		
2	retainers further comp	orise magnets proximate said blades for retaining said blades during		
3	removal and insertion	of the blades to the body.		
1	10.	A method for removing a sheath at a mid-sheath point on an		
2	optical fiber cable, the	e method comprising the steps of:		
3	clampi	ng a cutter body around the cable;		
4	turning	a first adjustment screw to advance a first cutting blade into the		
5	sheath until a first continuity circuit indicates that there is electrical continuity between			
6	the first cutting blade and a metallic sub-sheath of the cable:			

7	turning a second adjustment screw to advance a second cutting blade		
8	opposing the first cutting blade into the sheath until a second continuity circuit indicates		
9	that there is electrical continuity between the second cutting blade and the metallic sub-		
10	sheath; and		
11	advancing the cutter body in a longitudinal direction along the cable,		
12	whereby the first and second cutting blades remove portions of the sheath.		
1	11. The method of claim 10, further comprising the steps of:		
2	clamping a cable stabilization bushing around the cable; and		
3	maintaining alignment of the cutter body by contacting the body with the		
4	cable stabilization bushing.		
1	12. The method of claim 10, further comprising the steps of:		
2	assembling the first and second cutting blades on magnetized blade		
3	supports; and		
4	inserting the blade supports into the housing.		
1	13. An apparatus for removing a sheath on a cable, the apparatus		
2	comprising:		
3	a body having a central hole;		
4	a plurality of opposed cutting blades having cutting edges protruding from		
5	the body into the central hole, said cutting edges facing the cable, said blades being		
6	positioned at cutting angles to a transverse plane of the cable;		

7 a plurality of adjusting screws rotatably mounted in said body for urging 8 corresponding ones of said cutting blades toward said cable; and 9 at least one continuity test circuit for testing electrical continuity between 10 a metallic sub-sheath of the cable and the cutting blades. 14. 1 The apparatus of claim 13, further comprising a cable stabilizer 2 bushing for contacting and aligning said body, said bushing having a central hole for accepting the cable. 3 15. 4 The apparatus of claim 14, wherein said bushing further comprises a plurality of elastomeric rollers extending into the hole for rolling on the cable. 5 6 16. The apparatus of claim 14, wherein said bushing is split for positioning around the cable. 7 1 17. The apparatus of claim 13, further comprising a jumper wire for 2 connecting the at least one continuity circuit to the metallic sub-sheath of the cable. 1 18. The apparatus of claim 13, wherein the at least one continuity circuit comprises a battery, an indicator light and a continuity lug for connecting a jumper 2 wire. 3 1 19. The apparatus of claim 13, further comprising a locking clasp for 2 locking said body on the cable. 1 20. The apparatus of claim 13, wherein the cutting angles are each about 45 degrees. 2

- 1 21. The apparatus of claim 13, wherein the cutting edges of the cutting
- 2 blades are elliptical.