

METODY OBLICZENIOWE W NAUCE I TECHNICE

Sprawozdanie 1 | Arytmetyka komputerowa | Zadanie 2

Jakub Kaliński | Informatyka | rok II

Grupa numer 5 | Piątek | Godzina 15:00 - 16:30 Data wykonania: 07.03.2025r. | Data oddania: 14.03.2025r.

1 Treść zadania

Wykonać obliczenia (dla zmiennych typu float, double, long double) wg podanych poniżej wzorów dla 101 równoodległych wartości x z przedziału [0.99, 1.01]:

- $f_1(x) = x^8 8x^7 + 28x^6 56x^5 + 70x^4 56x^3 + 28x^2 8x + 1$,
- $f_2(x) = (((((((x-8)x+28)x-56)x+70)x-56)x+28)x-8)x+1,$
- $f_3(x) = (x-1)^8$,
- $f_4(x) = e^{(8\ln(abs(x-1)))}, \quad x \neq 1.$

Porównać wyniki. Objaśnić różnice w wynikach.

2 Dane techniczne sprzętu

Do wykonania zadania wykorzystany został komputer o poniższej specyfikacji:

- system Windows 10 x64,
- procesor Intel Core i7-11370H o taktowaniu 3.30GHz,
- pamięć RAM 16GB.

3 Dane techniczne oprogramowania

3.1 System operacyjny

- WSL Ubuntu
- Wersja 24.04

3.2 Język programowania

- Język C,
- Wersja 3.30.

3.3 Środowisko programowania

• CLion

3.4 Użyte biblioteki

W projekcie wykorzystano następujące biblioteki standardowe języka C:

- <stdio.h> do operacji wejścia/wyjścia, takich jak zapis do pliku i wyświetlanie wyników na konsolę.
- <stdlib.h> do alokacji pamięci oraz wywoływania poleceń systemowych.
- <math.h> do wykonywania obliczeń matematycznych, takich jak potęgowanie, logarytmy i wartości bezwzględne.

3.5 Użyte funkcje

3.5.1 Funkcje matematyczne

- powf, pow, powl potęgowanie dla typów float, double i long double.
- expf, exp, expl funkcje wykładnicze e^x dla typów float, double i long double.
- logf, log, logl logarytmy naturalne dla typów float, double i long double.
- fabsf, fabs, fabsl wartości bezwzględne dla typów float, double i long double.

3.5.2 Funkcje alokacji pamięci

- malloc alokacja pamięci na stercie.
- free zwalnianie zaalokowanej pamięci.

3.5.3 Funkcje operacji na plikach

- fopen otwieranie pliku.
- fprintf formatowany zapis do pliku.
- fclose zamykanie pliku.

3.5.4 Funkcje wyświetlania i wprowadzania danych

- printf wyświetlanie sformatowanego tekstu na konsolę.
- sprintf formatowany zapis do ciągu znaków.

3.5.5 Funkcje systemowe

• system – wywołanie polecenia systemowego (np. uruchomienie skryptu gnuplot).

3.6 Wizualizacja

Za wizualizację otrzymanych wyników odpowiedzialne było narzędzie gnuplot.

4 Charakterystyka typów zmiennoprzecinkowych

Każdy z wymienionych typów ma inną precyzję, co wynika ze sposobu przechowywania liczb w pamięci komputera zgodnie ze standardem IEEE 754.

4.1 Porównanie typów zmiennoprzecinkowych

• float:

- Liczba bitów: 32,

– Liczba cyfr znaczących: \sim 7,

- Zakres wartości: $\sim 10^{-38}$ do 10^{38} ,

- Długość mantysy: 23 bity (24 bity z ukrytą jedynką).

• double:

- Liczba bitów: 64,

– Liczba cyfr znaczących: \sim 15,

- Zakres wartości: $\sim 10^{-308}$ do 10^{308} ,

- Długość mantysy: 52 bity (53 bity z ukrytą jedynką).

• long double:

- Liczba bitów: 80/128 (zależnie od implementacji),

- Liczba cyfr znaczących: ∼18-21,

- Zakres wartości: zależny od implementacji,

Długość mantysy: 64 bity (dla 80-bitowej reprezentacji) lub 112 bitów (dla 128-bitowej reprezentacji).

5 Problemy numeryczne w obliczeniach

Obliczenia w zadaniu obejmują różne reprezentacje tego samego wielomianu:

- W postaci standardowej (suma jednomianów).
- W postaci zagnieżdżonej (schemat Hornera).
- W postaci iloczynu potęgowego.
- W postaci eksponencjalnej.

6 Analiza funkcji $f_1(x)$

Tabela 1: Wyniki obliczeń dla $f_1(x)$

x	Float	Double	Long Double
0.990000	0.000000e+00	0.000000e+00	1.040834e-16
0.990200	4.291534e-06	-7.105427e-15	8.326673e-17
0.990400	-1.430511e-06	-1.421085e-14	6.938894e-17
0.990600	-9.536743e-07	7.105427e-15	6.245005e-17
0.990800	-9.536743e-07	-7.105427e-15	4.857226e-17
0.991000	1.430511e-06	0.000000e+00	3.816392e-17
0.991200	3.337860e-06	-1.421085e-14	3.469447e-17
0.991400	3.814697e-06	0.000000e+00	3.122502e-17
0.991600	3.814697e-06	7.105427e-15	2.428613e-17
0.991800	6.198883e-06	-7.105427e-15	2.081668e-17
0.992000	-6.675720e-06	-7.105427e-15	2.081668e-17
0.992200	-2.861023e-06	-7.105427e-15	1.734723e-17
0.992400	-4.768372e-07	0.000000e+00	1.387779e-17
0.992600	3.337860e-06	-7.105427e-15	1.040834e-17
0.992800	1.907349e-06	0.000000e+00	1.387779e-17
0.993000	5.722046e-06	7.105427e-15	3.469447e-18

x	Float	Double	Long Double
0.993200	-1.430511e-06	7.105427e-15	3.469447e-18
0.993400	9.536743e-07	7.105427e-15	3.469447e-18
0.993600	4.768372e-06	-7.105427e-15	3.469447e-18
0.993800	-4.768372e-07	7.105427e-15	6.938894e-18
0.994000	-8.106232e-06	0.000000e+00	6.938894e-18
0.994200	-1.907349e-06	0.000000e+00	3.469447e-18
0.994400	0.000000e+00	-7.105427e-15	3.469447e-18
0.994600	4.768372e-07	-1.421085e-14	0.000000e+00
0.994800	-7.152557e-06	-7.105427e-15	-6.938894e-18
0.995000	2.861023e-06	0.000000e+00	-3.469447e-18
0.995200	-4.768372e-07	7.105427e-15	-3.469447e-18
0.995400	-4.768372e-07	1.421085e-14	0.000000e+00
0.995600	-3.814697e-06	0.000000e+00	3.469447e-18
0.995800	1.907349e-06	-7.105427e-15	3.469447e-18
0.996000	-5.245209e-06	0.000000e+00	0.000000e+00
0.996200	-3.337860e-06	-7.105427e-15	3.469447e-18
0.996400	-6.675720e-06	0.000000e+00	3.469447e-18
0.996600	9.536743e-07	-7.105427e-15	3.469447e-18
0.996800	-4.768372e-07	0.000000e+00	-3.469447e-18
0.997000	0.000000e+00	-7.105427e-15	0.000000e+00
0.997200	3.814697e-06	-1.421085e-14	0.000000e+00
0.997400	-5.245209e-06	-7.105427e-15	3.469447e-18
0.997600	2.384186e-06	0.000000e+00	3.469447e-18
0.997800	2.861023e-06	7.105427e-15	-3.469447e-18
0.998000	-8.583069e-06	7.105427e-15	0.000000e+00
0.998200	1.430511e-06	-7.105427e-15	3.469447e-18
0.998400	-3.814697e-06	0.000000e+00	-3.469447e-18
0.998600	-1.907349e-06	-7.105427e-15	6.938894e-18
0.998800	-1.430511e-06	7.105427e-15	-6.938894e-18
0.999000	2.384186e-06	0.000000e+00	-3.469447e-18
0.999200	-2.861023e-06	-7.105427e-15	-3.469447e-18
0.999400	9.536743e-07	-1.421085e-14	0.000000e+00
0.999600	-4.291534e-06	0.000000e+00	3.469447e-18
0.999800	-2.384186e-06	-7.105427e-15	3.469447e-18
1.000000	0.000000e+00	0.000000e+00	0.000000e+00
1.000200	0.000000e+00	0.000000e+00	3.469447e-18
1.000400	9.536743e-07	-7.105427e-15	-6.938894e-18
1.000600	9.536743e-07	-2.842171e-14	3.469447e-18
1.000800	-9.536743e-07	-7.105427e-15	-6.938894e-18
1.001000	2.861023e-06	0.000000e+00	0.000000e+00
1.001200	5.722046e-06	-1.421085e-14	-3.469447e-18
1.001400	-3.814697e-06	-7.105427e-15	3.469447e-18
1.001600	-1.907349e-06	0.000000e+00 0.000000e+00	-6.938894e-18 0.000000e+00
1.001800 1.002000	-2.861023e-06 9.536743e-07	7.105427e-15	3.469447e-18
1.002000	4.768372e-06	-7.105427e-15	6.938894e-18
1.002200	-9.536743e-07	7.105427e-15	3.469447e-18
1.002400	7.629395e-06	7.105427e-15 7.105427e-15	-6.938894e-18
1.002800	-3.814697e-06	0.000000e+00	0.000000e+00
1.003000	1.907349e-06	-7.105427e-15	-3.469447e-18
1.003200	0.000000e+00	1.421085e-14	0.000000e+00
1.003200	9.536743e-07	0.000000e+00	0.000000e+00
1.003600	2.861023e-06	-7.105427e-15	0.000000e+00
1.003800	-2.861023e-06	1.421085e-14	-6.938894e-18
1.004000	-5.722046e-06	0.000000e+00	3.469447e-18
1.004200	-9.536743e-06	7.105427e-15	-3.469447e-18
1.004400	-5.722046e-06	7.105427e-15	0.000000e+00
1.004600	7.629395e-06	-7.105427e-15	6.938894e-18
1.004800	-6.675720e-06	0.000000e+00	6.938894e-18
1.005000	-2.861023e-06	-1.421085e-14	3.469447e-18
1.005200	9.536743e-07	0.000000e+00	0.000000e+00
1.005400	5.722046e-06	2.842171e-14	-6.938894e-18
1.005600	-3.814697e-06	-7.105427e-15	-3.469447e-18
1.005800	5.722046e-06	7.105427e-15	3.469447e-18

x	Float	Double	Long Double
1.006000	-7.629395e-06	-7.105427e-15	0.000000e+00
1.006200	9.536743e-07	0.000000e+00	-3.469447e-18
1.006400	9.536743e-07	7.105427e-15	-3.469447e-18
1.006600	-4.768372e-06	7.105427e-15	3.469447e-18
1.006800	5.722046e-06	-1.421085e-14	6.938894e-18
1.007000	1.907349e-06	-2.131628e-14	6.938894e-18
1.007200	-1.907349e-06	0.000000e+00	6.938894e-18
1.007400	-1.907349e-06	7.105427e-15	1.387779e-17
1.007600	2.861023e-06	-7.105427e-15	1.387779e-17
1.007800	-8.583069e-06	-7.105427e-15	1.387779e-17
1.008000	-2.861023e-06	7.105427e-15	1.387779e-17
1.008200	9.536743e-07	0.000000e+00	1.387779e-17
1.008400	-3.814697e-06	0.000000e+00	2.081668e-17
1.008600	-5.722046e-06	0.000000e+00	3.469447e-17
1.008800	0.000000e+00	0.000000e+00	3.816392e-17
1.009000	-8.583069e-06	0.000000e+00	4.163336e-17
1.009200	-8.583069e-06	0.000000e+00	4.163336e-17
1.009400	-9.536743e-07	7.105427e-15	5.551115e-17
1.009600	-4.768372e-06	-1.421085e-14	6.938894e-17
1.009800	-7.629395e-06	2.842171e-14	8.326673e-17
1.010000	0.000000e+00	0.000000e+00	1.040834e-16

Rysunek 1: Porównanie wykresów dla funkcji $f_1(x)$ dla różnych typów zmiennoprzecinkowych

7 Analiza funkcji $f_2(x)$

Tabela 3: Wyniki obliczeń dla $f_2(\boldsymbol{x})$

x	Float	Double	Long Double
0.990000	4.887581e-06	-3.108624e-15	9.703609e-17
0.990200	-5.364418e-06	-4.218847e-15	8.435093e-17
0.990400	-5.960464e-07	3.108624e-15	7.361733e-17
0.990600	1.549721e-06	3.219647e-15	5.767956e-17
0.990800	0.000000e+00	4.440892e-16	4.981909e-17
0.991000	-1.072884e-06	-2.886580e-15	4.385598e-17
0.991200	3.576279e-07	4.551914e-15	3.675445e-17
0.991400	-2.861023e-06	4.107825e-15	2.905662e-17
0.991600	3.397465e-06	-9.547918e-15	2.629190e-17
0.991800	-5.960464e-07	2.553513e-15	2.260562e-17
0.992000	4.053116e-06	-1.110223e-15	1.783513e-17
0.992200	-3.576279e-07	3.108624e-15	1.376937e-17
0.992400	2.086163e-06	-3.108624e-15	1.235990e-17
0.992600	7.152557e-07	-7.771561e-15	7.589415e-18
0.992800	0.000000e+00	5.218048e-15	6.993104e-18
0.993000	-2.384186e-07	4.996004e-15	6.830474e-18
0.993200	-1.788139e-06	-3.552714e-15	4.119968e-18
0.993400	-3.218651e-06	-4.218847e-15	2.005774e-18
0.993600	-8.344650e-07	-1.110223e-15	1.951564e-18
0.993800	-1.668930e-06	-2.886580e-15	3.903128e-18
0.994000	1.788139e-06	3.330669e-16	8.673617e-19
0.994200	3.993511e-06	-4.440892e-16	3.252607e-18
0.994400	-8.344650e-07	-2.664535e-15	-6.505213e-19
0.994600	-3.218651e-06	-4.884981e-15	1.355253e-18
0.994800	5.960464e-08	3.441691e-15	3.198396e-18
0.995000	-2.622604e-06	4.440892e-16	-9.757820e-19
0.995200	3.278255e-06	-6.661338e-16	-3.903128e-18
0.995400	-1.668930e-06	1.665335e-15	-3.903128e-18
0.995600	1.549721e-06	3.885781e-15	7.589415e-19
0.995800	-2.741814e-06	9.436896e-15	1.029992e-18
0.996000	-1.788139e-06	2.109424e-15	-6.505213e-19
0.996200	7.152557e-07	-2.664535e-15	-4.336809e-19
0.996400	-1.430511e-06 -1.668930e-06	-6.217249e-15 -6.217249e-15	-8.673617e-19 -4.336809e-19
0.996800	-2.384186e-07	-6.217249e-15 -3.996803e-15	-4.336809e-19 -2.818926e-18
0.997000	1.788139e-07	-2.442491e-15	1.246832e-18
0.997200	2.622604e-06	6.661338e-16	-1.626303e-18
0.997400	-1.549721e-06	2.997602e-15	1.897354e-18
0.997600	3.933907e-06	-7.549517e-15	-3.252607e-19
0.997800	-2.384186e-06	-6.661338e-16	3.361027e-18
0.998000	2.205372e-06	8.770762e-15	-9.757820e-19
0.998200	2.205372e-06	4.551914e-15	2.168404e-19
0.998400	-1.907349e-06	5.551115e-15	-1.951564e-18
0.998600	-4.768372e-07	3.663736e-15	1.951564e-18
0.998800	2.205372e-06	2.220446e-15	-6.505213e-19
0.999000	-3.576279e-07	-1.332268e-15	-2.493665e-18
0.999200	1.490116e-06	-3.996803e-15	1.626303e-19
0.999400	-2.384186e-06	3.996803e-15	1.843144e-18
0.999600	-3.218651e-06	-3.552714e-15	3.523657e-18
0.999800	1.668930e-06	3.885781e-15	-2.385245e-18
1.000000	0.000000e+00	0.000000e+00	0.000000e+00
1.000200	-1.668930e-06	-2.664535e-15	-1.192622e-18
1.000400	-7.152557e-07	1.554312e-15	1.680513e-18
1.000600	2.622604e-06	3.330669e-16	-3.252607e-19
1.000800	-2.384186e-07	6.661338e-16	9.757820e-19
1.001000	-7.271767e-06	-6.661338e-16	-3.252607e-19
1.001200	-2.145767e-06	-4.884981e-15	1.843144e-18

x	Float	Double	Long Double
1.001400	-4.768372e-07	-3.330669e-15	2.276825e-18
1.001600	8.940697e-07	-4.218847e-15	1.680513e-18
1.001800	3.337860e-06	-5.107026e-15	0.000000e+00
1.002000	1.966953e-06	9.992007e-16	8.131516e-19
1.002200	-2.384186e-07	-2.220446e-15	9.757820e-19
1.002400	-5.960464e-07	-1.776357e-15	-2.059984e-18
1.002600	-3.576279e-06	-8.437695e-15	-5.421011e-19
1.002800	3.039837e-06	1.110223e-16	-8.673617e-19
1.003000	-3.576279e-07	-5.107026e-15	-4.119968e-18
1.003200	3.516674e-06	-3.774758e-15	1.409463e-18
1.003400	4.172325e-07	8.326673e-15	2.059984e-18
1.003600	-4.172325e-06	7.438494e-15	-2.927346e-18
1.003800	2.324581e-06	5.551115e-16	-9.757820e-19
1.004000	1.847744e-06	2.109424e-15	4.770490e-18
1.004200	-1.192093e-07	-4.440892e-15	-7.589415e-19
1.004400	-4.768372e-07	-3.108624e-15	2.222614e-18
1.004600	-3.218651e-06	5.551115e-16	-1.517883e-18
1.004800	4.172325e-07	7.105427e-15	1.843144e-18
1.005000	-1.192093e-06	3.663736e-15	3.361027e-18
1.005200	5.364418e-07	3.330669e-16	-3.252607e-19
1.005400	-8.344650e-07	-8.215650e-15	4.336809e-19
1.005600	-3.695488e-06	2.220446e-15	1.897354e-18
1.005800	-3.099442e-06	0.000000e+00	6.505213e-19
1.006000	-9.536743e-07	1.554312e-15	5.746272e-18
1.006200	4.172325e-07	1.887379e-15	3.306817e-18
1.006400	1.728535e-06	-4.440892e-16	4.119968e-18
1.006600	2.622604e-06	3.330669e-16	7.209944e-18
1.006800	4.172325e-07	1.221245e-15	3.577867e-18
1.007000	4.768372e-07	2.109424e-15	4.553649e-18
1.007200	-1.668930e-06	-5.329071e-15	5.854692e-18
1.007400	-4.768372e-07	6.772360e-15	9.757820e-18
1.007600	-1.907349e-06	-2.220446e-16	1.095044e-17
1.007800	-3.457069e-06	-8.437695e-15	1.355253e-17
1.008000	2.384186e-06	-1.554312e-15	1.783513e-17
1.008200	1.966953e-06	-1.554312e-15	2.206351e-17
1.008400	4.231930e-06	6.883383e-15	2.331035e-17
1.008600	1.549721e-06	-5.995204e-15	3.052029e-17
1.008800	0.000000e+00	-3.108624e-15	3.458605e-17
1.009000	-9.536743e-07	-5.107026e-15	4.011548e-17
1.009200	-1.430511e-06	-9.547918e-15	5.231275e-17
1.009400	-4.172325e-06	-2.442491e-15	6.250426e-17
1.009600	-2.980232e-06	-1.998401e-15	7.171997e-17
1.009800	-3.576279e-06	8.992806e-15	8.445935e-17
1.010000	5.364418e-07	6.994405e-15	1.018608e-16

Rysunek 2: Porównanie wykresów dla funkcji $f_2(x)$ dla różnych typów zmiennoprzecinkowych

8 Analiza funkcji $f_3(x)$

Tabela 5: Wyniki obliczeń dla $f_3(\boldsymbol{x})$

X	Float	Double	Long Double
0.990000	9.999923e-17	9.999924e-17	9.999924e-17
0.990200	8.507747e-17	8.507747e-17	8.507747e-17
0.990400	7.213798e-17	7.213798e-17	7.213798e-17
0.990600	6.095742e-17	6.095742e-17	6.095742e-17
0.990800	5.132086e-17	5.132086e-17	5.132086e-17
0.991000	4.304685e-17	4.304685e-17	4.304685e-17
0.991200	3.596248e-17	3.596248e-17	3.596248e-17
0.991400	2.992170e-17	2.992170e-17	2.992170e-17
0.991600	2.478673e-17	2.478672e-17	2.478672e-17
0.991800	2.044120e-17	2.044121e-17	2.044121e-17
0.992000	1.677749e-17	1.677749e-17	1.677749e-17
0.992200	1.370091e-17	1.370091e-17	1.370091e-17
0.992400	1.113046e-17	1.113046e-17	1.113046e-17
0.992600	8.991716e-18	8.991717e-18	8.991717e-18
0.992800	7.222063e-18	7.222063e-18	7.222063e-18
0.993000	5.764600e-18	5.764600e-18	5.764600e-18
0.993200	4.571611e-18	4.571610e-18	4.571610e-18
0.993400	3.600503e-18	3.600503e-18	3.600503e-18
0.993600	2.814712e-18	2.814712e-18	2.814712e-18
0.993800	2.183445e-18	2.183445e-18	2.183445e-18
0.994000	1.679576e-18	1.679576e-18	1.679576e-18
0.994200	1.280646e-18	1.280646e-18	1.280646e-18
0.994400	9.671394e-19	9.671394e-19	9.671394e-19
0.994600	7.230218e-19	7.230218e-19	7.230218e-19
0.994800	5.345716e-19	5.345716e-19	5.345716e-19
0.995000	3.906220e-19	3.906220e-19	3.906220e-19
0.995200	2.818030e-19	2.818030e-19	2.818030e-19
0.995400	2.004721e-19	2.004721e-19	2.004721e-19
0.995600	1.404860e-19	1.404860e-19	1.404860e-19
0.995800	9.682315e-20	9.682314e-20	9.682314e-20
0.996000	6.553706e-20	6.553706e-20	6.553706e-20
0.996200	4.347562e-20	4.347563e-20	4.347563e-20
0.996400	2.821118e-20	2.821118e-20	2.821118e-20
0.996600	1.785660e-20	1.785660e-20	1.785660e-20
0.996800	1.099497e-20	1.099497e-20	1.099497e-20
0.997000	6.561367e-21	6.561367e-21	6.561367e-21
0.997200	3.777888e-21	3.777888e-21	3.777888e-21
0.997400 0.997600	2.088362e-21	2.088362e-21	2.088362e-21
	1.100683e-21	1.100684e-21	1.100684e-21
0.997800	5.487736e-22 2.559736e-22	5.487736e-22 2.559736e-22	5.487736e-22 2.559736e-22
0.998200	1.101999e-22	2.559756e-22 1.101999e-22	2.559756e-22 1.101999e-22
0.998400	4.295549e-23	4.295549e-23	4.295549e-23
0.998600	1.475738e-23	1.475738e-23	4.295549e-25 1.475738e-23
0.998800	4.300399e-24	4.300399e-24	4.300399e-24
0.999000	9.998970e-25	9.998970e-25	9.998970e-25
0.999200	1.677949e-25	1.677949e-25	1.677949e-25
0.999400	1.679176e-26	1.679176e-26	1.679176e-26
0.999600	6.554488e-28	6.554488e-28	6.554488e-28
0.999800	2.557296e-30	2.557296e-30	2.557296e-30
1.000000	0.000000e+00	0.000000e+00	0.000000e+00
1.000000	2.563400e-30	2.563400e-30	2.563400e-30
1.000400	6.546678e-28	6.546678e-28	6.546678e-28
1.000400	1.679176e-26	1.679176e-26	1.679176e-26
1.000800	1.677949e-25	1.677949e-25	1.677949e-25
1.001000	1.000374e-24	1.000374e-24	1.000374e-24
1.001200	4.298691e-24	4.298691e-24	4.298691e-24

x	Float	Double	Long Double
1.001400	1.475738e-23	1.475738e-23	1.475738e-23
1.001600	4.295549e-23	4.295549e-23	4.295549e-23
1.001800	1.101707e-22	1.101707e-22	1.101707e-22
1.002000	2.559736e-22	2.559736e-22	2.559736e-22
1.002200	5.487736e-22	5.487736e-22	5.487736e-22
1.002400	1.100902e-21	1.100902e-21	1.100902e-21
1.002600	2.087979e-21	2.087979e-21	2.087979e-21
1.002800	3.777888e-21	3.777888e-21	3.777888e-21
1.003000	6.561367e-21	6.561367e-21	6.561367e-21
1.003200	1.099661e-20	1.099661e-20	1.099661e-20
1.003400	1.785660e-20	1.785660e-20	1.785660e-20
1.003600	2.821118e-20	2.821118e-20	2.821118e-20
1.003800	4.348108e-20	4.348108e-20	4.348108e-20
1.004000	6.552925e-20	6.552925e-20	6.552925e-20
1.004200	9.682315e-20	9.682314e-20	9.682314e-20
1.004400	1.404860e-19	1.404860e-19	1.404860e-19
1.004600	2.004929e-19	2.004929e-19	2.004929e-19
1.004800	2.817750e-19	2.817750e-19	2.817750e-19
1.005000	3.906220e-19	3.906220e-19	3.906220e-19
1.005200	5.346207e-19	5.346207e-19	5.346207e-19
1.005400	7.229579e-19	7.229579e-19	7.229579e-19
1.005600	9.671394e-19	9.671394e-19	9.671394e-19
1.005800	1.280646e-18	1.280646e-18	1.280646e-18
1.006000	1.679710e-18	1.679710e-18	1.679710e-18
1.006200	2.183277e-18	2.183277e-18	2.183277e-18
1.006400	2.814712e-18	2.814712e-18	2.814712e-18
1.006600	3.600503e-18	3.600503e-18	3.600503e-18
1.006800	4.571290e-18	4.571290e-18	4.571290e-18
1.007000	5.764600e-18	5.764600e-18	5.764600e-18
1.007200	7.222063e-18	7.222063e-18	7.222063e-18
1.007400	8.992296e-18	8.992296e-18	8.992296e-18
1.007600	1.112976e-17	1.112976e-17	1.112976e-17
1.007800	1.370091e-17	1.370091e-17	1.370091e-17
1.008000	1.677749e-17	1.677749e-17	1.677749e-17
1.008200	2.044239e-17	2.044239e-17	2.044239e-17
1.008400	2.478673e-17	2.478672e-17	2.478672e-17
1.008600	2.992170e-17	2.992170e-17	2.992170e-17
1.008800	3.596443e-17	3.596443e-17	3.596443e-17
1.009000	4.304457e-17	4.304457e-17	4.304457e-17
1.009200	5.132086e-17	5.132086e-17	5.132086e-17
1.009400	6.095742e-17	6.095742e-17	6.095742e-17
1.009600	7.214156e-17	7.214156e-17	7.214156e-17
1.009800	8.507334e-17	8.507334e-17	8.507334e-17
1.010000	9.999923e-17	9.999924e-17	9.999924e-17

Rysunek 3: Porównanie wykresów dla funkcji $f_3(x)$ dla różnych typów zmiennoprzecinkowych

9 Analiza funkcji $f_4(x)$

Tabela 7: Wyniki obliczeń dla $f_4(\boldsymbol{x})$

X	Float	Double	Long Double
0.990000	9.999919e-17	9.999924e-17	9.999924e-17
0.990200	8.507760e-17	8.507747e-17	8.507747e-17
0.990400	7.213808e-17	7.213798e-17	7.213798e-17
0.990600	6.095735e-17	6.095742e-17	6.095742e-17
0.990800	5.132086e-17	5.132086e-17	5.132086e-17
0.991000	4.304687e-17	4.304685e-17	4.304685e-17
0.991200	3.596247e-17	3.596248e-17	3.596248e-17
0.991400	2.992172e-17	2.992170e-17	2.992170e-17
0.991600	2.478668e-17	2.478672e-17	2.478672e-17
0.991800	2.044122e-17	2.044121e-17	2.044121e-17
0.992000	1.677746e-17	1.677749e-17	1.677749e-17
0.992200	1.370089e-17	1.370091e-17	1.370091e-17
0.992400	1.113046e-17	1.113046e-17	1.113046e-17
0.992600	8.991708e-18	8.991717e-18	8.991717e-18
0.992800	7.222064e-18	7.222063e-18	7.222063e-18
0.993000	5.764591e-18	5.764600e-18	5.764600e-18
0.993200	4.571610e-18	4.571610e-18	4.571610e-18
0.993400	3.600501e-18	3.600503e-18	3.600503e-18
0.993600	2.814715e-18	2.814712e-18	2.814712e-18
0.993800	2.183448e-18	2.183445e-18	2.183445e-18
0.994000	1.679577e-18	1.679576e-18	1.679576e-18
0.994200	1.280648e-18	1.280646e-18	1.280646e-18
0.994400	9.671376e-19	9.671394e-19	9.671394e-19
0.994600	7.230220e-19	7.230218e-19	7.230218e-19
0.994800	5.345709e-19	5.345716e-19	5.345716e-19
0.995000	3.906218e-19	3.906220e-19	3.906220e-19
0.995200	2.818033e-19	2.818030e-19	2.818030e-19
0.995400	2.004721e-19	2.004721e-19	2.004721e-19
0.995600	1.404859e-19	1.404860e-19	1.404860e-19
0.995800	9.682298e-20	9.682314e-20	9.682314e-20
0.996000	6.553695e-20	6.553706e-20	6.553706e-20
0.996200	4.347571e-20	4.347563e-20	4.347563e-20
0.996400	2.821119e-20	2.821118e-20	2.821118e-20
0.996600	1.785662e-20	1.785660e-20	1.785660e-20
0.996800	1.099498e-20	1.099497e-20	1.099497e-20
0.997000	6.561372e-21	6.561367e-21	6.561367e-21
0.997200	3.777881e-21	3.777888e-21	3.777888e-21
0.997400	2.088359e-21	2.088362e-21	2.088362e-21
0.997600	1.100685e-21	1.100684e-21	1.100684e-21
0.997800	5.487731e-22	5.487736e-22	5.487736e-22
0.998000	2.559734e-22 1.102000e-22	2.559736e-22	2.559736e-22
0.998200	4.295553e-23	1.101999e-22 4.295549e-23	1.101999e-22 4.295549e-23
0.998600	4.295555e-25 1.475735e-23	4.295549e-25 1.475738e-23	4.2955496-25 1.475738e-23
0.998800	4.300404e-24	4.300399e-24	4.300399e-24
0.999000	9.998963e-25	9.998970e-25	9.998970e-25
0.999200	1.677950e-25	1.677949e-25	1.677949e-25
0.999200	1.677930e-25 1.679179e-26	1.6779496-25 1.679176e-26	1.6779496-25 1.679176e-26
0.999400	6.554494e-28	6.554488e-28	6.554488e-28
0.999800	2.557294e-30	2.557296e-30	2.557296e-30
1.000000	nan	2.557290e-50 nan	nan
1.000000	2.563408e-30	2.563400e-30	2.563400e-30
1.000200	6.546672e-28	6.546678e-28	6.546678e-28
1.000400	1.679179e-26	1.679176e-26	1.679176e-26
1.000800	1.677950e-25	1.677949e-25	1.677949e-25
1.001000	1.000373e-24	1.000374e-24	1.000374e-24
1.001200	4.298698e-24	4.298691e-24	4.298691e-24
1.001200	1.2000000 24	1.2000010 24	1.2000010 24

x	Float	Double	Long Double
1.001400	1.475735e-23	1.475738e-23	1.475738e-23
1.001600	4.295553e-23	4.295549e-23	4.295549e-23
1.001800	1.101710e-22	1.101707e-22	1.101707e-22
1.002000	2.559734e-22	2.559736e-22	2.559736e-22
1.002200	5.487731e-22	5.487736e-22	5.487736e-22
1.002400	1.100903e-21	1.100902e-21	1.100902e-21
1.002600	2.087976e-21	2.087979e-21	2.087979e-21
1.002800	3.777881e-21	3.777888e-21	3.777888e-21
1.003000	6.561372e-21	6.561367e-21	6.561367e-21
1.003200	1.099662e-20	1.099661e-20	1.099661e-20
1.003400	1.785662e-20	1.785660e-20	1.785660e-20
1.003600	2.821119e-20	2.821118e-20	2.821118e-20
1.003800	4.348101e-20	4.348108e-20	4.348108e-20
1.004000	6.552920e-20	6.552925e-20	6.552925e-20
1.004200	9.682298e-20	9.682314e-20	9.682314e-20
1.004400	1.404859e-19	1.404860e-19	1.404860e-19
1.004600	2.004928e-19	2.004929e-19	2.004929e-19
1.004800	2.817754e-19	2.817750e-19	2.817750e-19
1.005000	3.906218e-19	3.906220e-19	3.906220e-19
1.005200	5.346199e-19	5.346207e-19	5.346207e-19
1.005400	7.229585e-19	7.229579e-19	7.229579e-19
1.005600	9.671376e-19	9.671394e-19	9.671394e-19
1.005800	1.280648e-18	1.280646e-18	1.280646e-18
1.006000	1.679711e-18	1.679710e-18	1.679710e-18
1.006200	2.183273e-18	2.183277e-18	2.183277e-18
1.006400	2.814715e-18	2.814712e-18	2.814712e-18
1.006600	3.600501e-18	3.600503e-18	3.600503e-18
1.006800	4.571296e-18	4.571290e-18	4.571290e-18
1.007000	5.764591e-18	5.764600e-18	5.764600e-18
1.007200	7.222064e-18	7.222063e-18	7.222063e-18
1.007400	8.992291e-18	8.992296e-18	8.992296e-18
1.007600	1.112978e-17	1.112976e-17	1.112976e-17
1.007800	1.370089e-17	1.370091e-17	1.370091e-17
1.008000	1.677746e-17	1.677749e-17	1.677749e-17
1.008200	2.044240e-17	2.044239e-17	2.044239e-17
1.008400	2.478668e-17	2.478672e-17	2.478672e-17
1.008600	2.992172e-17	2.992170e-17	2.992170e-17
1.008800	3.596440e-17	3.596443e-17	3.596443e-17
1.009000	4.304457e-17	4.304457e-17	4.304457e-17
1.009200	5.132086e-17	5.132086e-17	5.132086e-17
1.009400	6.095735e-17	6.095742e-17	6.095742e-17
1.009600	7.214165e-17	7.214156e-17	7.214156e-17
1.009800	8.507339e-17	8.507334e-17	8.507334e-17
1.010000	9.999919e-17	9.999924e-17	9.999924e-17

Rysunek 4: Porównanie wykresów dla funkcji $f_4(\boldsymbol{x})$ dla różnych typów zmiennoprzecinkowych

10 Podsumowanie sprawozdania

Eksperyment

Eksperyment polegał na obliczeniu tego samego wielomianu funkcji f(x) na cztery różne sposoby dla wartości x z przedziału [0.99, 1.01] przy użyciu trzech różnych typów zmiennoprzecinkowych (float, double, long double). Obliczenia wykonano dla:

- Wielomianu w postaci standardowej (suma jednomianów),
- Wielomianu w postaci zagnieżdżonej (schemat Hornera),
- Wielomianu w postaci iloczynu potęgowego $(x-1)^8$,
- Wielomianu w postaci eksponencjalnej $e^{8 \ln |x-1|}$.

Źródła błędów i różnic w wynikach

Zaobserwowane różnice w wynikach wynikają z dwóch głównych źródeł błędów:

Błędy reprezentacji (precyzji)

- Każdy typ zmiennoprzecinkowy ma ograniczoną liczbę bitów:
 - float: 32 bity, double: 64 bity, long double: 80/128 bitów.
- float ma około 7 cyfr znaczących, double około 15, a long double około 18-21.
- Im mniejsza precyzja, tym większe zaokrąglenia i niedokładności w reprezentacji liczb rzeczywistych.

Błędy operacji arytmetycznych

- Operacje dodawania i odejmowania wartości o znacznie różniących się rzędach wielkości.
- Utrata znaczących cyfr przy odejmowaniu bliskich liczb (np. x-1 dla x bliskiego 1).
- Propagacja błędów przy wielokrotnych operacjach arytmetycznych.
- Różny wpływ kolejności wykonywania operacji (np. postać standardowa vs. schemat Hornera).

Analiza wyników dla różnych form wielomianu

Wielomian w postaci standardowej (f_1) i zagnieżdżonej (f_2) :

- Dla typów float i double wyniki znacząco odbiegają od rzeczywistych wartości.
- Widoczne są chaotyczne fluktuacje spowodowane błędami zaokrągleń.
- long double daje bardziej stabilne wyniki, ale wciąż niedokładne.

Wielomian w postaci iloczynu potęgowego (f_3) i eksponencjalnej (f_4):

- Obie formy dają spójne wyniki dla wszystkich typów zmiennoprzecinkowych.
- Widoczny jest charakterystyczny kształt paraboli.
- Te formy minimalizują operacje dodawania i mnożenia, koncentrując się na potęgowaniu.
- Funkcja logarytmiczna jest dobrze określona dla zmiennych rzeczywistych.

Wpływ implementacji matematycznej na dokładność obliczeń

Najbardziej widoczna różnica występuje między pierwszymi dwoma a ostatnimi dwoma formami wielomianu. Wynika to z faktu, że:

- Przy obliczeniach wielomianu w postaci standardowej lub zagnieżdżonej wykonujemy wiele operacji dodawania i odejmowania, które mogą prowadzić do kumulacji błędów.
- W przypadku form trzeciej i czwartej (potęgowej i eksponencjalnej) wykorzystujemy operacje potęgowania bezpośrednio lub przez funkcję wykładniczą, co ogranicza powielanie błędów.

Wpływ typu zmiennoprzecinkowego na wyniki

Porównując wyniki dla różnych typów:

- **Dla** float: mogą pojawić się znaczne różnice wynikające z zaokrągleń i błędów propagujących się przez kolejne operacje.
- **Dla** double: wyniki będą bardziej stabilne, ale nadal mogą różnić się dla różnych metod obliczania funkcji.
- **Dla** long double: powinien dać najbardziej precyzyjne wyniki, minimalizując błędy, ale nie zawsze jest dostępny w pełnej 128-bitowej wersji na wszystkich platformach.

Można wnioskować, że głównym czynnikiem wpływającym na wynik obliczeń są błędy spowodowane przez dodawanie i mnożenie, a następnie błędy reprezentacji. Najdokładniejszy sposób obliczania to korzystanie z operacji, które minimalizują powielanie błędów – jak pokazują to wykresy dla funkcji trzeciej i czwartej.