Comparison of Individual, Bagging and Boostir Algorithms

Diamond Dataset Features

In this section, we outline the features of the diamond dataset used for analysis.

Selected Features

The features included in the dataset are:

- carat: Weight of the diamond (measured in carats)
- cut: Quality of the cut (e.g., Fair, Good, Very Good, Ideal, Premium) (Target Variable)
- color: Diamond color, from J (worst) to D (best)
- clarity: A measurement of how clear the diamond is (e.g., IF, VVS1, VVS2, VS1, VS2, SI1, 5
- depth: Total depth percentage, calculated as (\frac{z}{\text{mean}(x, y)})
- table: Width of the top of the diamond relative to the widest point
- price: Price of the diamond (in US dollars)
- x: Length of the diamond (in mm)
- y: Width of the diamond (in mm)
- z: Depth of the diamond (in mm)

Target Variable

The target variable for prediction is:

• cut: This is the target variable we aim to predict using the selected features.

```
In [1]: # !pip install xgboost -q

In [2]: # import libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import accuracy_score, precision_score, recall_score
   from sklearn.preprocessing import LabelEncoder
   from sklearn.tree import DecisionTreeClassifier
   from xgboost import XGBClassifier

In [3]: # import the data
   df = sns.load_dataset('diamonds')
In [4]: df.head()
```

```
Out[4]:
                      cut color clarity depth table price
           carat
                                                     326 3.95 3.98 2.43
           0.23
                    Ideal
                             Ε
                                   SI2
                                        61.5
                                              55.0
            0.21 Premium
                                   SI1
                                        59.8
                                                     326 3.89 3.84 2.31
         1
                             Ε
                                              61.0
                                  VS1
            0.23
                    Good
                                        56.9
                                              65.0
                                                     327 4.05 4.07 2.31
                                  VS2
                                              58.0
            0.29 Premium
                                        62.4
                                                     334 4.20 4.23 2.63
         3
            0.31
                                                     335 4.34 4.35 2.75
                    Good
                              J
                                   SI2
                                        63.3
                                              58.0
In [5]: df.shape
Out[5]: (53940, 10)
In [6]: # split the data into X and y
        X = df.drop('cut', axis=1)
        y = df['cut']
        # encode the input variables
        le = LabelEncoder()
        X['color'] = le.fit_transform(X['color'])
        X['clarity'] = le.fit_transform(X['clarity'])
        # encode the target variable
        y = le.fit_transform(y)
        # split the data into train and test sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

DecisionTreeClassifier

Accuracy score: 0.70

```
In [7]: # %%time
# train the decision tree model
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)

# predict the test data
y_pred = dt.predict(X_test)

print('Accuracy score: ', accuracy_score(y_test, y_pred))
print('Precision score: ', precision_score(y_test, y_pred, average='micro
print('Recall score: ', recall_score(y_test, y_pred, average='micro'))
print('F1 score: ', f1_score(y_test, y_pred, average='micro'))
```

Accuracy score: 0.71449758991472 Precision score: 0.71449758991472 Recall score: 0.71449758991472 F1 score: 0.71449758991472

RandomForestClassifier

Accuracy score: 0.78

```
In [8]: # %%time
# train the random forest model
```

```
rf = RandomForestClassifier()
rf.fit(X_train, y_train)

# predict the test data
y_pred = rf.predict(X_test)

print('Accuracy score: ', accuracy_score(y_test, y_pred))
print('Precision score: ', precision_score(y_test, y_pred, average='micro
print('Recall score: ', recall_score(y_test, y_pred, average='micro'))
print('F1 score: ', f1_score(y_test, y_pred, average='micro'))
```

Accuracy score: 0.7886540600667408 Precision score: 0.7886540600667408 Recall score: 0.7886540600667408 F1 score: 0.7886540600667408

XGBClassifier

Accuracy score: 0.79

```
In [9]: # %%time
# train the xgboost model
xgb = XGBClassifier()
xgb.fit(X_train, y_train)

# predict the test data
y_pred = xgb.predict(X_test)

print('Accuracy score: ', accuracy_score(y_test, y_pred))
print('Precision score: ', precision_score(y_test, y_pred, average='micro
print('Recall score: ', recall_score(y_test, y_pred, average='micro'))
print('F1 score: ', f1_score(y_test, y_pred, average='micro'))
```

Accuracy score: 0.803578049684835 Precision score: 0.803578049684835 Recall score: 0.803578049684835 F1 score: 0.803578049684835

Comparison

```
In [10]: # make a bar plot showing each of the matrix with respect to the model
    plt.figure(figsize=(15, 4))
    plt.subplot(1, 4, 1)
    sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1'], y=[accuracy_scor
    plt.title('Decision Tree')
    plt.subplot(1, 4, 2)
    sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1'], y=[accuracy_scor
    plt.title('Random Forest')
    plt.subplot(1, 4, 3)
    sns.barplot(x=['Accuracy', 'Precision', 'Recall', 'F1'], y=[accuracy_scor
    plt.title('XGBoost')
    # plt.tight_layout()
    plt.show()
```



```
In [11]: from sklearn.ensemble import BaggingClassifier

# Create a Bagging classifier
bagging = BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimat

# Train the Bagging classifier
bagging.fit(X_train, y_train)

# Predict the test data
y_pred_bagging = bagging.predict(X_test)

# Print the evaluation metrics
print('Accuracy score: ', accuracy_score(y_test, y_pred_bagging))
print('Precision score: ', precision_score(y_test, y_pred_bagging, average
print('Recall score: ', recall_score(y_test, y_pred_bagging, average='micro'))
```

Accuracy score: 0.7923618835743419
Precision score: 0.7923618835743419
Recall score: 0.7923618835743419
F1 score: 0.7923618835743419

```
In []:
```