Aufgabenblatt 1, Mathematik für Physiker 1

Finn Jannik Wagner

21.10.2021

1 A1.1

```
Es ist zu zeigen das (M\Delta N)\Delta(N\Delta P)=M\Delta P gilt. A:=(M\Delta N)\Delta(N\Delta P),\,B:=M\Delta P
```

1.1 Hierzu eine Fallunterscheidung:

- 1. Fall $x \notin M, N, P$ Ist x in keiner der drei Menge, so ist es weder in A noch B
- 2. Fall $x \in M \land x \notin N, P$
 - $\Rightarrow x \in M\Delta N$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in N\Delta P$, weil es weder in N noch in P ist.
 - $\Rightarrow x \in (M\Delta N)\Delta(N\Delta P)$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in M\Delta P$, weil es nicht in beiden Mengen ist.

Damit gilt $x \in A, B$

- 3. Fall $x \in P \land x \notin M, N$
 - Dieser Fall ist equivalent zu Fall 2
- 4. Fall $x \in N \land x \notin M, N$
 - $\Rightarrow x \in M\Delta N$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in N\Delta P$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \notin (M\Delta N)\Delta(N\Delta P)$, weil es in beiden Mengen ist.
 - $\Rightarrow x \in M\Delta P$, weil es weder in M noch P ist.

Damit gilt $x \notin A, B$

- 5. Fall $x \in M, N \land x \notin P$
 - $\Rightarrow x \notin M\Delta N$, weil es in beiden Mengen ist.
 - $\Rightarrow x \in N\Delta P$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in (M\Delta N)\Delta(N\Delta P)$, weil es nur in $N\Delta P$ ist.
 - $\Rightarrow x \in M\Delta P$, weil es nur in M ist.

Damit gilt $x \in A, B$

- 6. Fall $x \in M, P \land x \notin N$
 - $\Rightarrow x \in M\Delta N$, weil es nur in M ist.
 - $\Rightarrow x \in N\Delta P$, weil es nur in P ist.
 - $\Rightarrow x \notin (M\Delta N)\Delta(N\Delta P)$, weil es in $M\Delta N$ und $N\Delta P$ ist.
 - $\Rightarrow x \notin M\Delta P$, weil es in M und P ist.

Damit gilt $x \notin A, B$

- 7. Fall $x \in N, P \land x \notin M$
 - $\Rightarrow x \in M\Delta N$, weil es nur in N ist.
 - $\Rightarrow x \notin N\Delta P$, weil es in N und P ist.
 - $\Rightarrow x \in (M\Delta N)\Delta(N\Delta P)$, weil es nur in $N\Delta P$ ist.
 - $\Rightarrow x \in M\Delta P$, weil es nur in P ist.

Damit gilt $x \in A, B$

8. Fall $x \in M, P, N$

 $\Rightarrow x \notin M\Delta N$, weil es in M und N ist.

 $\Rightarrow x \notin N\Delta P$, weil es in N und P ist.

 $\Rightarrow x \notin (M\Delta N)\Delta(N\Delta P)$, weil es weder in $M\Delta N$ noch in $N\Delta P$ ist.

 $\Rightarrow x \notin M\Delta P$, weil es in M und P ist.

Damit gilt $x \notin A, B$

 \Rightarrow Da in allen acht möglichen Fällen wie ein Element x in den Mengen verteilt ist die Operationen A und B zum gleichen Ergebnis kommen sind sie gleich.

2 1.1

2.1 $M \cap (N\Delta P) = (M \cap N)\Delta(M \cap N)$

Zu zeigen: $A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Füge beiden Seiten $A \cap B$ hinzu.

 $\Rightarrow (A \backslash B) \cup (B \backslash A) \cup (A \cap B) = (A \cup B) \backslash (A \cap B) \cup (A \cap B)$

 $\Rightarrow (A \backslash B) \cup (B \backslash A) \cup (A \cap B) = (A \cup B)$

Mit Assoziativgesetz $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$

 $\Rightarrow (A \backslash B) \cup (B \backslash (A \backslash A)) = (A \cup B)$

 $\Rightarrow (A \backslash B) \cup B = (A \cup B)$

 $\Rightarrow (A \cup B) = (A \cup B)$

Zu zeigen: $M \cap (N\Delta P) = (M \cap N)\Delta(M \cap P)$

 $\Rightarrow M \cap (N\Delta P) = ((M \cap N) \setminus (N \cap P)) \cup ((M \cap P) \setminus (M \cap P))$ Assoziativgesetz: Klammern bei Schnittmengen irrelevant

 $\Rightarrow M \cap ((N \cup P) \setminus (N \cap P)) = M \cap (N \setminus P \cap P \setminus N)$

 $\Rightarrow M \cap ((N \cup P) \setminus (N \cap P)) = M \cap N \setminus P \cap P \setminus N$

 $\Rightarrow (M \cap N) \cup (M \cap P) ((M \cap N) \cap (N \cap P))$

 $\Rightarrow (M \cap N) \cup (M \cap P) (M \cap N \cap P)$

Mit Distributivgesetz?

 $\Rightarrow M \cap (N \cup P \backslash N \cap P)$

Mit alternativer Definition der symmmetrischen Differenz

 $\Rightarrow N\Delta P$

3 2.1

3.1 (i)

A	В	$A \vee B$	$\neg(A \vee B)$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
w	w	w	f	f	f	f
\mathbf{w}	\mathbf{f}	W	f	f	W	f
f	W	W	f	W	f	f
f	f	f	W	w	w	W

Die Spalten vier und sieben sind für alle Wertekombinationen von A und B gleich. $\Rightarrow \neg(A \lor B)$ und $\neg A \land \neg B$ sind equivalent.

3.2 (ii)

A	В	$A \wedge B$	$\neg(A \land B)$	$\neg A$	$\neg B$	$\neg A \vee \neg B$
w	W	W	f	f	f	\mathbf{f}
w	f	f	W	\mathbf{f}	W	\mathbf{w}
f	\mathbf{W}	f	w	W	f	w
f	f	\mathbf{f}	W	w	w	\mathbf{w}

Die Spalten vier und sieben sind für alle Wertekombinationen von A und B gleich. $\Rightarrow \neg(A \land B)$ und $\neg A \lor \neg B$ sind equivalent.