Unit 1: Principles of Optimizing Behavior

Prof. Antonio Rangel

December 10, 2013

1 Introduction

- Most models in economics are based on the assumption that economic agents optimize some objective function.
- Ex 1. Consumers decide how much to buy by maximizing utility given their wealth and market prices.
- Ex 2. Firms decide how much to sell by maximizing profits given their technological constraints and market prices.
- We begin the course by studying some key ideas regarding optimization that are at work in all economic models.
- Understanding these principles will allow us to gain deeper economic insight in later units.

2 Unconstrained optimization

2.1 Basics

• General optimization problem:

 $\max_{x} T(x)$

- -x: control variable
- $-T(\cdot)$: objective function; e.g. profits of a firm

- Local maxima x^* are characterized by:
 - First-order (necessary) condition: $T'(x^*) = 0$
 - Second-order (sufficient) condition: $T''(x^*) < 0$
- Simple example:
 - $-\max_{x} 10 (x-5)^2$
 - FOC: $-2(x^* 5) = 0 \implies x^* = 5$
 - SOC: -2 < 0 ✓

2.2 Intuition for FOC and SOC of local maxima

- (Graphical) intutition for the FOC:
 - Suppose T'(x) > 0. Then T(x+dx) > T(x), so x not a maximum.
 - Suppose $T'(\hat{x}) < 0$. Then $T(\hat{x} dx) > T(\hat{x})$, so \hat{x} not a maximum.
 - Therefore x^* a maximum $\implies T'(x^*) = 0$; i.e. $T'(x^*) = 0$ is a necessary condition for x^* to be a maximum.
- (Graphical) intuition for the SOC:
 - Suppose $T'(x^*) = 0$ but $T''(x^*) > 0$. Then $T'(x^* + dx) > 0$ for any dx > 0. Therefore,

$$T((x^* + dx) + dx) \approx T(x^* + dx) + T^{'}(x^* + dx) dx > T(x^* + dx) \approx T(x^*) + T^{'}(x^*) dx \approx T(x^*)$$

and thus x^* is not a local maximum.

– Suppose $T'(x^*) = 0$ and $T''(x^*) < 0$. Then $T'(x^* + dx) < 0$, for any dx > 0. Therefore,

$$T((x^* + dx) + dx) \approx T(x^* + dx) + T^{'}(x^* + dx) dx < T(x^* + dx) \approx T(x^*) + T^{'}(x^*) dx \approx T(x^*)$$

and it follows that x^* is not a local maximum.

• (Mathematical) intuition for the FOC and SOCs

- Taking a Taylor expansion at any x we have that

$$T(x+dx) \approx T(x) + T'(x)dx + \frac{1}{2}T''(x)dx^2$$

- Therefore

$$dT \approx T'(x)dx + \frac{1}{2}T''(x)dx^2$$

- But then:
- $\text{ FOC } \implies T'(x)dx = 0$
- $SOC \implies \frac{1}{2}T''(x)dx^2 < 0$
- Therefore FOC & SOC $\implies dT < 0$.
- In other words, if the FOC and SOC are satisfied, small deviations around x necessarily decrease the value of the function
- Economic intuition for FOC:
 - -T(x): total payoff of taking action x
 - -T'(x): marginal payoff of increasing level of action x
 - marginal payoff of additional $x>0 \implies \text{signal to (locally)}$ increase x
 - marginal payoff of additional $x < 0 \implies$ signal to (locally) decrease x
 - At optimum, marginal payoff of additional unit is 0.

2.3 Remarks on basic optimization

- Local maximum \neq global maximum
- Global max need not exist, even if FOC & SOC satisfied at some x
- FOC necessary for local maximization, but not sufficient
- T''(x) = 0 not sufficient for x to be a local maximum
- $\min_x T \sim \max_x -T$
- Adding a constant to T doesn't change the value of x^* at which T is maximized.

3 Optimization in economic problems

3.1 Adding economic structure

- In many economic models the optimization problem has additional useful structure
- Assumption 1: T(x) = B(x) C(x) = benefit cost
- Example: Firm
 - -x =level of output
 - -B(x) = revenue from selling x units
 - -C(x) = cost of producing x units
 - -T(x) = profit = revenue cost
- Example: Consumer buying a computer
 - -x =units of computing power (x = 0 denotes no computer)
 - -B(x) = benefit of x in dollars
 - -C(x) = market cost of x in dollars
 - -T(x) = net utility of buying x = B(x) C(x)
- Assumption 2: $x \ge 0$

Can't produce negative output, can't buy negative amount of a good, etc.

- Assumption 3: T(x) is strictly concave
 - Graph of T over $x \ge 0$ looks like an inverted bowl
 - $-T''(x) < 0 \text{ for all } x \ge 0$
- Why is T strictly concave in many economic problems?
 - -T(x) = B(x) C(x)
 - In many economic problems we have $B'>0, B''\leq 0, C'>0, C''\geq 0$ (with not both B''=0 and C''=0). Then T''<0.

3.2 Additional intuition

- T is a strictly concave function iff T''(x) < 0 for all x
 - Graph looks like inverted bowl
- T is a weakly concave function iff $T''(x) \leq 0$ for all x
- T is a strictly convex function iff T''(x) > 0 for all x
 - -T strictly convex iff -T is a strictly concave function
 - Graph looks like a bowl
- T is a weakly convex function iff $T''(x) \ge 0$ for all x
- Why are benefits concave?
 - Example from consumption. Let x=spoonfuls of ice-cream. First spoonful of ice cream is fantastic, next spoonful is not quite as great, and eventually an additional spoonful provides almost no benefit. This implies that B' > 0 and B'' < 0, and thus B is strictly concave.
 - Example from firm. Let x = amount sold in market. B(x) = Revenue(x) = px, where p > 0 are the market prices. In this case B' > 0 and B'' = 0. Thus, revenue is a weakly concave function.
- Why are costs convex?
 - Consumer's costs are given by C(x) = px, which is a weakly convex function
 - Firm's costs often strictly convex. Ex: extracting rare rocks: first rock is on the surface, but need to dig deeper and deeper to find more and more rocks

3.3 Why is the additional structure useful?

- Assumptions 1-3 imply that a global optimum:
 - exists,
 - is unique, and
 - has useful economic intuition
- Concavity conditions:
 - $-B' > 0, B'' \le 0$
 - -C' > 0, C'' > 0
 - -B''=0 or C''=0, but not not both
- Solution looks like:
 - If B'(0) < C'(0), then $x^* = 0$.
 - If $B'(0) \ge C'(0)$, then x^* is point where MB=MC, i.e. $B'(x^*) = C'(x^*)$.
- Economic inuition
 - Marginal value of dx = MT = MB MC
 - Increase payoff by increasing x if MT > 0, which is true iff MB > MC.
- REMARK 1: Assumptions 1-3 do not guarantee the existence of a global maximum.
 - Why? MB and MC costs are not guaranteed to cross
- REMARK 2: Crossing conditions rule out this problem.
 - Crossing condition: $B' \to 0$ as $x \to \infty$, or $C' \to \infty$ as $x \to \infty$, or both
 - This condition guarangees that if $B'(0) \ge C'(0)$, then the MB and MC curves moust cross

- REMARK 3: Assumptions 1-3, plus the concavity and crossing conditions, guarantee the uniqueness of a global maximum
 - Why?
 - Suppose there is a maximum at x^* .
 - Then $MB(x^*) = MC(x^*)$.
 - Then concavity conditions imply that MC > MB at every point to the right of x^* .
- KEY RESULT: Suppose that $\max_{x\geq 0} B(x) C(x)$ satisfies both the concavity and the crossing conditions. Then there exists a unique global maximum at
 - $-x^* = 0$, if B'(0) < C'(0)
 - solution to B'(x) = C'(x) otherwise

3.4 Example

- Consider a profit-maximizing firm:
 - -B(x) = Revenue = px
 - $-C(x) = \text{Cost} = \theta x^2$
 - Problem of the firm: $\max_{x\geq 0} px \theta x^2$
- Concavity, crossing conditions satisfied
- B'(0) = p > C'(0) = 0, so solution satisfies B' = C'.
- $B'(x) = C'(x) \implies x^* = \frac{p}{2\theta}$
- Solution makes economic sense:
 - If p higher, produce more
 - If θ higher, which increases MC, produce less

3.5 Example

- Consider again problem of the firm in previous example
- Claim: Max total payoff \neq Max average total payoff
- Why?
 - Average total payoff = $p \theta x$
 - Thus, average payoff maximal at x=0, eventhough total payoff maximized at $x^* = \frac{p}{2\theta}$

4 Constrained optimization

4.1 More on corner solutions

• KEY RESULT: Consider the following optimization problem

$$\max T(x)$$
 s.t. $x \ge L, x \le B$

and assume that T'' < 0. Then there exists a unique global maximum given by:

- Case 1. Corner solution at $x^* = L$ if T'(L) < 0
- Case 2. Corner solution at $x^* = B$ if T'(B) > 0
- Case 3. Interior solution satisfying $T'(x^*) = 0$ if T' crosses x-axis between L and B.

4.2 Problems with equality constraints

• Consider the following optimization problem, which includes an equality constraint

$$\max U(x) + V(y) \text{ subject to}$$

$$x \ge 0$$

$$y \ge 0$$

$$px + qy = W$$

- Example: x and y denote the amount consumed of two goods, U(x) and V(y) denote the benefits generated by consuming each good (in s), p and q denote the prices of each good, and Wdenotes total wealth/income.
- Suppose that U', V' > 0; U'', V'' < 0.
- Formally, this is a multi-variate optimization problem.
- But can solve using a simple trick.
- Use equality constraint to simplify problem:

$$px + qy = W \implies y = \frac{W - px}{q}$$

• Substituting into the optimization problem, we get the following univariate maximization problem:

$$\max_{x \ge 0, x \le \frac{w}{p}} U(x) + V\left(\frac{w - px}{q}\right)$$

- Problem can be put in the "benefit cost" framework:
 - Think of U(x) as benefit from consuming x.
 - Think of $-V(\frac{W-px}{q})$ as cost of consuming x. Intuition: Cost of consuming more x is having less income for y, and thus deriving less benefit from consumption of y.
- KEY RESULT: Consider the following optimization problem

$$\max U(x) + V(y) \text{ subject to}$$

$$x \ge 0$$

$$y \ge 0$$

$$px + qy = W$$

and assume that U', V' > 0; U'', V'' < 0. Then there exists a unique global maximum given by:

– Case 1. Corner solution at
$$x^* = \frac{W}{p}$$
 and $y^* = 0$ if $U'(\frac{W}{p}) > V'(0)$

- Case 2. Corner solution at $x^* = 0$ and $y^* = \frac{W}{q}$ if $U'(0) < V'(\frac{W}{q})$
- Case 3. Interior solution satisfying

$$\frac{U'(x^*)}{V'(y^*)} = \frac{p}{q}$$

and

$$y^* = \frac{W - px^*}{q}$$

otherwise.

4.3 Example with interior solution

• Consider the problem:

$$\max a \ln(x) + b \ln(y)$$
 subject to

$$x \ge 0$$

$$y \ge 0$$

$$px + qy = W$$

• Rewrite it as

$$\max a \ln(x) - (-b \ln(\frac{W - px}{q}))$$
 subject to

$$x \ge 0$$

$$x \leq \frac{W}{p}$$

- ullet As before, think of the first term as the benefit of consuming x, and of the second term as the cost of consuming x
- Under this interpretation we get that MB = $\frac{a}{x}$ and MC = $\frac{bp}{W-px}$
- MB(0) > MC(0) and $MB(\frac{W}{p}) < MC(\frac{W}{p})$ implies that the solution is interior and given by the FOC: $MB(x^*) = MC(x^*)$.
- Doing the algebra we get that $x^* = \frac{W}{p}(\frac{a}{a+b})$ and $y^* = \frac{W}{p}(\frac{b}{a+b})$

4.4 Example with corner solution

• Consider a slightly different version of the previous problem:

$$\max a \ln(x+1) + b \ln(y+1) \text{ subject to}$$

$$x \ge 0$$

$$y \ge 0$$

$$px + qy = W$$

- Assume p = q = 1
- Solution may be interior or corner, depending on a and b

•
$$x^* = W \iff \frac{a}{W+1} \ge b$$

•
$$x^* = 0 \iff \frac{b}{W+1} \ge a$$

• Interior solutions in between

5 Final remarks

- Characterizing global maxima in general optimization problems is quite hard
- But characterizing global maxima is quite easy and intuitive in economic problems that satisfy three key assumptions: (A1) The objective function can be written as Benefits minus Costs, (2) $x \ge 0$, and (3) the concavity and crossing conditions hold.
- In this case a unique global maximum always exists, and as shown in the key results above, it has a simple characterization
- Furthermore, it is often possible to reduce more complex optimization problems (e.g., those involving two control variables) to simpler ones (involving only one control variable) that we know how to solve.
- Advice for problem solving:
 - 1. Write down maximization problem
 - 2. Transform into simple familiar case

- 3. Are solutions interior or corner?
- 4. Characterize solutions using the formulas from the key results