Universidade Federal do Espírito Santo Patrick Marques Ciarelli

Relatório

Leonardo Borlot e Luiz Gabriel Ribeiro

Experiência 1

Conceito Teórico

Os resistores elétricos podem ser conectados (associados) de três maneiras distintas, em série, em paralelo ou em associação mista e cada maneira possui um objetivo diferente. Ao associarmos os resistores em série, conseguimos aumentar a resistência equivalente, diminuindo a corrente que atravessa o circuito e ao fazermos uma associação em paralelo entre os resistores, diminuímos a resistência equivalente, aumentando a corrente que atravessa o mesmo circuito.

Descrição

A descrição do experimento consiste na montagem de um circuito elétrico utilizando uma protoboard (placa com furos e conexões condutoras para facilitar a montagem do circuito), e dois resistores ôhmicos (560 Ω e 1.8K Ω).

Em um primeiro momento, associamos as resistências em série e alimentamos o circuito com uma fonte de tensão de 12v. Com a ajuda de um multímetro, medimos a resistência equivalente, a tensão elétrica (ddp) e a corrente que atravessa o circuito para enfim, por meio de cálculos, obtemos a potência sobre cada componente. Após findar a primeira parte da experiência, repetimos tais procedimentos, porém utilizando os resistores associados em paralelo.

Com os resultados em mãos, analisamos as diferenças entre os circuitos quando mudamos o tipo de associação entre os resistores (série e paralelo).

Objetivos

O objetivo principal desse primeiro experimento é verificar os efeitos da associação de resistores e analisar as diferenças que essas implicam sobre o circuito, para assim entender em que situações cada tipo de associação deve ser utilizada.

Cálculos e medições

Valor	Circuito A	Circuito B
calculado	2360 Ω	427 Ω

cálculos:

Circuito A: REq = 560 + 1800

REq = 2360 Ω

Circuito B REq = $1.8 \times 10^{-3} \times 560 / 2.360 \times 10^{-3}$

REq = $1008 \times 10^3 / 2.360$

REq = 427Ω

Valor	Circuito A	Circuito B
Medido	2370 Ω	429 Ω

Circuito A

	Fonte	R1	R2
Tensão	12V	9,16V	2,83V
Corrente	5.02mA	5.02mA	5.02mA
Potência	60,24W	45,98W	14,20W

Cálculos de potência:

Fonte: P = 12 X 5,02 = 60,24W R1: P = 9,16 x 5,02 = 45,98W R2: P = 2,83 X 5,02 = 14,20W

Circuito B

	Fonte	R1	R2
Tensão	12V	12V	12V
Corrente	179mA	6,57mA	21,5mA
Potência	2.148W	78,84W	258W

Cálculos de potência:

Fonte: P = 12 X 179 = 2.148W R1: P = 12 X 6,57 = 78,84W R2: P = 12 X 21,5 = 258W

Questionário:

$$Erro(\%) = \frac{Valor\ medido-Valor\ nominal}{Valor\ nominal} \times 100\%$$

1) compare os valores calculados em 1) com os valores medidos em 2) usando o erro percentual. Houve diferença significativa nos valores obtidos (erro maior que 10%)? Se sim, qual pode ser a causa?

Resposta em série= $Erro(\%) = 2.370 \times 2.360 / 2.360 \times 100 = 0,423 \%$.

Não é maior que 10%.

Resposta em paralelo= $Erro(\%) = 429 - 427 / 427 \times 100 = 0,468\%$.

Não é maior que 10%.

2) Compare os valores calculados em 1) com os valores obtidos pela tensão e corrente na fonte em 3) usando o erro percentual. Houve diferença significativa nos valores obtidos (erro maior que 10%)? se sim, qual pode ser a causa?

Resposta A= Raf =
$$12/0,0052 = 2.307\Omega$$
 --
Erro (%) em A = $2.307-2360 / 2360 \times 100 = 2,2\%$

3) Foi possível comprovar a associação de resistores com os resultados dos experimentos?

Resposta = Sim. Com o experimento, podemos analisar a queda na resistência equivalente do circuito e o consequente aumento da corrente quando associamos as resistências em paralelo e o contrário é observado ao associarmos as resistências em série.

4) Compare os valores das potências calculadas usando as medições do multímetro com os valores calculados com os valores nominais no circuito usando o erro percentual. Houve diferença significativa nos valores obtidos (erro maior que 10%)?

Resposta:

Para o circuito A:

 $P = R^*I^2$ $P = R^*I^2$

 $Pn=2360*(5*10^{-3})^2$ $P=2370*(5,02*10^{-3})^2$

 $Pn=59,0*10^{-3} \text{ W}$ $P=59,7*10^{-3} \text{ W}$

Erro(%)= $[(59,7*10^{-3} - 59,0*10^{-3}):59,0*10^{-3}]*100 = 1,1%$ Não é maior que 10%

Para o circuito B:

 $P = R^*I^2$ $P = R^*I^2$

Pn=427*(180*10⁻³)² P=429*(179*10⁻³)² Pn=76,86*10⁻³w P=76,79*10⁻³w

Erro(%)=[$(76,86*10^{-3} - 76,79*10^{-3}):76,86*10^{-3}]*100=0,091%$ Não é maior que 10%

Resultados e discussões

Após o experimento realizado em laboratório, seguido da análise dos resultados, observamos uma queda na resistência equivalente do circuito, seguido do aumento da corrente ao associarmos o mesmo em série, já ao posicionarmos o circuito em paralelo, ocorre exatamente o contrário. Isso ocorre devido ao fato de que, tratando-se de um circuito em série, ocorre a soma das resistências, logo, obtemos um valor maior, que permite a passagem de menos corrente; e em paralelo, temos a soma do inverso das resistências, tornando a resistência equivalente muito menor.

Referências:

Compreendendo a Física - Vol. 3 Alberto Gaspar;

Sears - Zermansky, volume 2: eletricidade, magnetismo, eletrônica (ano 1963).