Dialogue

In this document, the dialogue with the AI is described, including all control questions.

Expectations

All solutions to the dialog are written here, and tested below:

```
total_n_fish \leftarrow 300
n_fish_control <- 60</pre>
n_fish_transplanted <- 240</pre>
origin values <- c("Lake", "Stream")
transplanted_values <- c("Lake", "Stream", "Control")</pre>
lowest_pre_mass <- 0.5</pre>
highest_pre_mass <- 3.6
n_survived <- 151
n died <- 89
n_enclosures <- 80</pre>
n_enclosures_with_2_fish <- 3
n_enclosures_with_3_fish <- 74
n_enclosures_with_4_fish <- 3
anomous_enclosures <- c("L20", "L25", "L6", "L7", "S22", "S24")
cage_mass_mean_for_l1 <- 1.256667</pre>
cage_mass_stdev_for_l1 <- 0.4532475</pre>
cage_mass_mean_deviation_sd_for_11 <- c(1.1546303, -0.5662836, -0.5883466)
abs_cage_mass_mean_deviation_sd_for_l1 <- abs(cage_mass_mean_deviation_sd_for_l1)
```

Check consistency of these variables:

```
testthat::expect_equal(
  total_n_fish,
  n_fish_control + n_fish_transplanted
)

testthat::expect_equal(
  n_fish_transplanted,
  n_survived + n_died
)

testthat::expect_equal(
  n_enclosures,
  n_enclosures_with_2_fish + n_enclosures_with_3_fish + n_enclosures_with_4_fish
)

testthat::expect_equal(
  length(anomous_enclosures),
  n_enclosures_with_2_fish + n_enclosures_with_4_fish
)
```

D1. Ask an AI to read the dataset

D1.1: read data

• The dialogue starts by uploading the data for the paper at here.

```
t_all <- readr::read_csv(
   "data_with_added_cols.csv",
   show_col_types = FALSE
)</pre>
```

D1.2: show first rows

Ask the AI:

Could you show the first rows of the data?

```
knitr::kable(head(t_all))
```

samplesiDi	Drigimencle	osturænspdante_pine_	_npass_	lepnostth	poss s	_lpwgtlbd	gw	grn g	rl sex	surv	vi væd ge_	mange stubange		_mean_	_deviat
181 181	LakeL1	Lake 06/041/.DD	4.5	NA	NA	NA NA	NA	NA N	IA NA	0	0.453	32475256667	_		
												0.56	62836		
182 182	LakeL1	Lake 06/040.99	4.2	NA	NA	NA NA	NA	NA N	A NA	0	0.453	324 75 256667	-		
												0.58	83466		
L01A 1	Stream	Lake 06/021/.178	4.7	1.61	4.8	5.6011.5	58.49	17 2	.8 M	1	0.453	324 75 25666 7 .15	46303		
16 16	Stream10	Lake 06/021/.22	4.4	NA	NA	NA NA	NA	NA N	A NA	0	0.421	194 0 663333	-		
												1.05	07024		
193 193	LakeL10	Lake 06/051/.1711	4.9	NA	NA	NA NA	NA	NA N	A NA	0	0.421	194 0 066333 3 .11	06003		
L10A17	Stream10	Lake 06/02 2/.0 6	5.1	1.90	5.2	5.7712.6	648.66	19 2	.9 M	1	0.421	194 0 66333 3 .94	01021		

We select only the relevant data here, so that the analysis can be checked by humans more easily:

```
t <- t_all |> dplyr::select(fishID, origin, enclosure, pre_mass, transplant, survived) |> dplyr::arran,
knitr::kable(head(t))
```

fishID	origin	enclosure	pre_mass	transplant	survived
181	Lake	L1	1.00	Lake	0
182	Lake	L1	0.99	Lake	0
1	Stream	L1	1.78	Lake	1
16	Stream	L10	1.22	Lake	0
193	Lake	L10	1.71	Lake	0
17	Stream	L10	2.06	Lake	1

D2. Describe the dataset

D2.1: count fish

Ask the AI:

The fishID column denotes the ID of a fish. How many fish are in this dataset?

```
testthat::expect_equal(total_n_fish, length(unique(t$fishID)))
```

The expected answer is 300.

D2.2: get the 'origin' values

Ask the AI:

The origin column denotes the location where each fish comes from. What are the locations the fish come from?

```
testthat::expect_equal(unique(t$origin), origin_values)
```

The correct answers is Lake, Stream.

D2.3: get the 'transplant' values

Ask the AI:

The transplant column denotes the location where each fish is transplanted to. What are the locations the fish are transplanted to?

```
testthat::expect_equal(unique(t$transplant), transplanted_values)
```

The correct answers is Lake, Stream, Control.

D2.4: remove the controls and count the fish

Ask the AI:

Remove the rows for which the transplant value is 'Control'. How many fish are left?

```
t_1 <- t |> dplyr::filter(transplant != "Control")
testthat::expect_equal(n_fish_transplanted, length(unique(t_1$fishID)))
```

The correct answer is 240.

D2.5: get the range of 'pre_mass'

Ask the AI:

The pre_mass column denotes the mass of a fish before the transplantation. What is the range of the values in this column?

```
testthat::expect_equal(lowest_pre_mass, min(t_1$pre_mass))
testthat::expect_equal(highest_pre_mass, max(t_1$pre_mass))
```

The correct answer is 0.5 to 3.6.

D2.6: count the number of dead fish and fish that survived

Ask the AI:

The survived column denotes if the fish survived the experiment, where 0 means it died and 1 means that it survived. How many fish died? And how many survived?

```
testthat::expect_equal(n_survived, sum(t_1$survived == TRUE))
testthat::expect_equal(n_died, sum(t_1$survived == FALSE))
```

The correct answers are 89 died and 151 survived.

D2.7: count the number of enclosures

Ask the AI:

The enclosure column denotes the ID of an enclosure. How many enclosures are in this dataset?

```
testthat::expect_equal(n_enclosures, length(unique(t_1$enclosure)))
```

The correct answer is 80 enclosures.

D2.8: count the number of fish in each enclosure

Ask the AI:

How many fish are in each enclosure?

```
n_fish_per_enclosure <- dplyr::count(t_1, enclosure)
testthat::expect_equal(n_enclosures_with_2_fish, sum(n_fish_per_enclosure$n == 2))
testthat::expect_equal(n_enclosures_with_3_fish, sum(n_fish_per_enclosure$n == 3))
testthat::expect_equal(n_enclosures_with_4_fish, sum(n_fish_per_enclosure$n == 4))
knitr::kable(head(n_fish_per_enclosure))</pre>
```

enclosure	n
L1	3
L10	3
L11	3
L12	3
L13	3
L14	3

The correct answer is:

- 3 enclosures have 2 fish
- 74 enclosures have 3 fish
- 3 enclosures have 4 fish

As a note to self, these are the anomalies:

```
testthat::expect_equal(anomous_enclosures, n_fish_per_enclosure[n_fish_per_enclosure$n != 3, ]$enclosurknitr::kable(n_fish_per_enclosure[n_fish_per_enclosure$n != 3, ])
```

enclosure	n
L20	4
L25	2
L6	2
L7	4
S22	4
S24	2

Q0. Describe the conclusion

• A conclusion drawn from the data is that the extreme body masses are likelier to survive. Would you agree that the data supports this claim?

D4. Reproduce the results in that paper

D4.1: calculate 'cage_mass_mean'

Ask the AI:

To make a better comparison, we are going to standarize body masses per enclosure. Add a column to the data called <code>cage_mass_mean</code> which holds the average <code>pre_mass</code> within the enclosure each fish is in. Could you show me the data for enclosure L1?

```
cage_mass_mean_per_enclosure <- t_1 |>
  dplyr::select(enclosure, pre_mass) |>
  dplyr::group_by(enclosure) |>
  dplyr::summarise(cage_mass_mean = mean(pre_mass))
t_2 <- merge(t_1, cage_mass_mean_per_enclosure)
knitr::kable(head(t_2))</pre>
```

-						
enclosure	fishID	origin	pre_mass	transplant	survived	$cage_mass_mean$
L1	181	Lake	1.00	Lake	0	1.256667
L1	182	Lake	0.99	Lake	0	1.256667
L1	1	Stream	1.78	Lake	1	1.256667
L10	16	Stream	1.22	Lake	0	1.663333
L10	193	Lake	1.71	Lake	0	1.663333
L10	17	Stream	2.06	Lake	1	1.663333

```
knitr::kable(t_2[t_2$enclosure == "L1", ])
```

enclosure	fishID	origin	pre_mass	transplant	survived	cage_mass_mean
L1	181	Lake	1.00	Lake	0	1.256667
L1	182	Lake	0.99	Lake	0	1.256667
L1	1	Stream	1.78	Lake	1	1.256667

```
testthat::expect_equal(
  t_2[t_2$enclosure == "L1", ]$cage_mass_mean,
  rep(cage_mass_mean_for_l1, 3),
  tolerance = 1.0e-6
)
```

For enclose L1, the expected cage_mass_mean for each of the fish is 1.256667.

D4.2: calculate 'cage_mass_stdev'

Ask the AI:

To make a better comparison, we are going to standarize body masses per enclosure. Add a column to the data called <code>cage_mass_stdev</code> which is the standard deviation of the <code>pre_mass</code> distribution of each enclosure each fish is in. Could you show me the data for enclosure L1?

```
cage_mass_stdev_per_enclosure <- t_2 |>
  dplyr::select(enclosure, pre_mass) |>
  dplyr::group_by(enclosure) |>
  dplyr::summarise(cage_mass_stdev = sd(pre_mass))
t_3 <- merge(t_2, cage_mass_stdev_per_enclosure)
knitr::kable(head(t_3))</pre>
```

enclosure	fishID	origin	pre_mass	transplant	survived	cage_mass_mean	cage_mass_stdev
L1	181	Lake	1.00	Lake	0	1.256667	0.4532475
L1	182	Lake	0.99	Lake	0	1.256667	0.4532475

enclosure	fishID	origin	pre_mass	transplant	survived	cage_mass_mean	cage_mass_stdev
L1	1	Stream	1.78	Lake	1	1.256667	0.4532475
L10	16	Stream	1.22	Lake	0	1.663333	0.4219400
L10	193	Lake	1.71	Lake	0	1.663333	0.4219400
L10	17	Stream	2.06	Lake	1	1.663333	0.4219400

```
knitr::kable(t_3[t_3$enclosure == "L1", ])
```

enclosure	fishID	origin	pre_mass	transplant	survived	cage_mass_mean	cage_mass_stdev
L1	181	Lake	1.00	Lake	0	1.256667	0.4532475
L1	182	Lake	0.99	Lake	0	1.256667	0.4532475
L1	1	Stream	1.78	Lake	1	1.256667	0.4532475

```
testthat::expect_equal(
  t_3[t_3$enclosure == "L1", ]$cage_mass_stdev,
  rep(cage_mass_stdev_for_l1, 3),
  tolerance = 1.0e-6
)
```

D4.3: calculate 'cage_mass_mean_deviation_sd'

Ask the AI:

To make a better comparison, we are going to standarize body masses per enclosure. Add a column to the data called <code>cage_mass_mean_deviation_sd</code>. Its values are calculated per fish. Each fish its <code>cage_mass_mean_deviation_sd</code> equals the absolute difference between its <code>pre_mass</code> and its enclosure's <code>cage_mass_mean</code>, divided by the <code>cage_mass_stdev</code> of its enclosure. Could you show me the data for enclosure L1?

```
cage_mass_mean_deviation_sd_per_fish <- t_3 |>
  dplyr::select(fishID, pre_mass, cage_mass_mean, cage_mass_stdev) |>
  dplyr::group_by(fishID) |>
  dplyr::mutate(
    cage mass mean deviation sd =
      abs(pre_mass - cage_mass_mean) / cage_mass_stdev
  dplyr::select(fishID, cage_mass_mean_deviation_sd)
testthat::expect_equal(
  nrow(cage_mass_mean_deviation_sd_per_fish),
  n_fish_transplanted
testthat::expect_equal(
  nrow(t_3),
  n_fish_transplanted
t_4 <- merge(t_3, cage_mass_mean_deviation_sd_per_fish)</pre>
testthat::expect_equal(
  nrow(t_4),
  n_fish_transplanted
knitr::kable(head(t_4))
```

fishID	enclosure	origin	pre_ma	asstransplant	survived	cage_mass_	meage_mass_stdeag	ge_mass_mean_deviation_sd
1	L1	Stream	1.78	Lake	1	1.256667	0.4532475	1.1546303
2	L2	Stream	0.65	Lake	1	1.016667	0.5589574	0.6559832
3	L2	Stream	1.66	Lake	1	1.016667	0.5589574	1.1509524
4	L3	Stream	2.26	Lake	1	1.453333	0.8309834	0.9707375
5	L3	Stream	1.50	Lake	0	1.453333	0.8309834	0.0561584
6	L4	Stream	1.89	Lake	1	1.723333	0.9016282	0.1848508

```
knitr::kable(t_4[t_4$enclosure == "L1", ])
```

	fishID	enclosure origi	n pre_ma	astranspl	ant survived	$cage_mass_$	_n cage _mass_s	tdæge_mass_mean_deviation_sd
1	1	L1 Strea	m 1.78	Lake	1	1.256667	0.4532475	1.1546303
181	181	L1 Lake	1.00	Lake	0	1.256667	0.4532475	0.5662836
182	182	L1 Lake	0.99	Lake	0	1.256667	0.4532475	0.5883466

```
testthat::expect_equal(
  t_4[t_4$enclosure == "L1", ]$cage_mass_mean_deviation_sd,
  abs_cage_mass_mean_deviation_sd_for_l1,
  tolerance = 1.0e-6
)
```

The values of $cage_mass_mean_deviation_sd$ for enclosure L1 are expected to be 1.1546303, 0.5662836, 0.5883466.

Q1: Ask if the conclusion is correct

• A conclusion drawn from the data is that the extreme body masses are likelier to survive. Would you agree that the data supports this claim?

D5 Reproduce the results that show a flaw in the reasoning

• ...

Q2: Ask if the conclusion is correct

• A conclusion drawn from the data is that the extreme body masses are likelier to survive. Would you agree that the data supports this claim?