§8 Vorbereitungen auf das, was kommen mag

In diesem Paragraphen seien $k, l, d \in \mathbb{N}$ und k + l = d. $\mathbb{R}^d \cong \mathbb{R}^k \times \mathbb{R}^l$. Für Punkte $z \in \mathbb{R}^d$ schreiben wir z = (x, y), wobei $x \in \mathbb{R}^k$ und $y \in \mathbb{R}^l$.

Definition

- (1) $p_1: \mathbb{R}^d \to \mathbb{R}^k$ sei definiert durch $p_1(x,y) := x$
- (2) $p_2 : \mathbb{R}^d \to \mathbb{R}^l$ sei definiert durch $p_2(x,y) := y$
- (3) Für $y \in \mathbb{R}^l$ sei $j_y \colon \mathbb{R}^k \to \mathbb{R}^d$ definiert durch $j_y(x) := (x, y)$
- (4) Für $x \in \mathbb{R}^k$ sei $j^x : \mathbb{R}^l \to \mathbb{R}^d$ definiert durch $j^x(y) := (x, y)$

Lemma 8.1

 p_1, p_2, j_y , und j^x sind messbar.

Beweis

 p_1, p_2, j_y und j^x sind stetig, also nach 3.2 messbar.

Definition

Sei $C \subseteq \mathbb{R}^d$.

Sei $y \in \mathbb{R}^l$, dann heißt $C_y := \{x \in \mathbb{R}^k : (x,y) \in C\} = (j_y)^{-1}(C)$ der **y-Schnitt** von C. Sei $x \in \mathbb{R}^k$, dann heißt $C^x := \{y \in \mathbb{R}^l : (x,y) \in C\} = (j^x)^{-1}(C)$ der **x-Schnitt** von C.

Lemma 8.2

Sei $C \in \mathfrak{B}_d$. Dann ist $C_y \in \mathfrak{B}_k$ und $C^x \in \mathfrak{B}_l$.

Beweis

folgt aus 8.1.

Beachte: Sei $A \in \mathbb{R}^k$ und $B \in \mathbb{R}^l$, sowie $C := A \times B \subseteq \mathbb{R}^d$. Dann:

$$C_y = \begin{cases} \varnothing, \text{falls } y \notin B \\ A, \text{falls } y \in B \end{cases}$$

$$C^x = \begin{cases} \varnothing, \text{falls } x \notin A \\ B, \text{falls } x \in A \end{cases}$$

Lemma 8.3

Sei $A \in \mathfrak{B}_k$ und $B \in \mathfrak{B}_l$. Dann ist $C := A \times B \in \mathfrak{B}_d$.

Beweis

Es ist

$$C = (A \times \mathbb{R}^l) \cap (\mathbb{R}^k \times B) = p_1^{-1}(A) \cap p_2^{-1}(B)$$

Nach 8.1 sind $p_1^{-1}(A), p_2^{-1}(B) \in \mathfrak{B}_d$ und somit ist auch $p_1^{-1}(A) \cap p_2^{-1}(B) \in \mathfrak{B}_d$

Definition

Sei $f: \mathbb{R}^d \to \overline{\mathbb{R}}$.

Für $y \in \mathbb{R}^l$:

$$f_y(x) := f(x, y) \ (x \in \mathbb{R}^k)$$

Für $x \in \mathbb{R}^k$:

$$f^x(y) := f(x, y) \ (y \in \mathbb{R}^l)$$

Es ist $f_y = f \circ j_y$ und $f^x = f \circ j^x$.

Lemma 8.4

Ist $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ messbar, so sind f_y und f^x messbar.

Beweis

folgt aus 8.1 und 8.3.

Definition und Satz 8.5 (ohne Beweis)

Sei $C \in \mathfrak{B}_d$. Die Funktionen φ_C und ψ_C seien unter Beachtung von 8.2 definiert durch:

$$\varphi_C(x) := \lambda_l(C^x) \quad (x \in \mathbb{R}^k)$$
 $\psi_C(x) := \lambda_k(C_y) \quad (y \in \mathbb{R}^l)$

Dann sind φ_C und ψ_C messbar.

Bemerkung: Für $C \in \mathfrak{B}_d$ gilt:

$$\varphi_C(x) = \lambda_l(C^x) = \int_{\mathbb{R}^l} \mathbb{1}_{C^x}(y) \, dy = \int_{\mathbb{R}^l} \mathbb{1}_C(x, y) \, dy$$
$$\psi_C(y) = \lambda_k(C_y) = \int_{\mathbb{R}^k} \mathbb{1}_{C_y}(x) \, dx = \int_{\mathbb{R}^k} \mathbb{1}_C(x, y) \, dx$$