WINTER-2019

UNIT-1

Q.1 a) Show the following equivalences (7)

1.
$$A \rightarrow (P \lor C) \Leftrightarrow (A \land \neg P) \rightarrow C$$

2.
$$(P \rightarrow C) \land (Q \rightarrow C) \Leftrightarrow (P \lor Q) \rightarrow C$$

b) Show that the following implication without constructing truth table. (7)

1.
$$(P \rightarrow Q) \Rightarrow (P \rightarrow (P \land Q))$$

2.
$$((P \rightarrow Q) \rightarrow Q) \Rightarrow (P \lor Q)$$

Q.2 a) Obtain principle disjunctive normal form (7)

1.
$$P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$$

2.
$$\grave{O}(P \lor Q) \Leftrightarrow (P \land Q)$$

b) Obtain principle conjunctive normal form. (7)

1.
$$(\grave{O}P \rightarrow R) \land (Q \Leftrightarrow P)$$

2.
$$(P \wedge Q) \vee (\neg P \wedge R)$$

UNIT-2

Q.3 a) Determine whether he conclusion C follows logically from premises given.

1.
$$H_1: \neg Q, H_2: P \to Q, C: \neg P.$$

2.
$$H_1: \neg P, H_2: P \lor Q, C: Q$$

3.
$$H_1: P \to Q, H_2: P, C: Q$$
 (7)

b) Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises $P \vee Q$, $Q \to R$, $P \to M$, & $\neg M$.

Q.4) Show that following set of premises are inconsistent.

1.
$$P \rightarrow Q$$
, $P \rightarrow R$, $Q \rightarrow \neg R$, P

2.
$$A \rightarrow (B \rightarrow C), D \rightarrow (B \land \neg C), A \land D$$
 (7)

b) Use indirect proof method to show \neg (P \land Q) follows from \neg P \land \neg Q.

UNIT-3

Q.5 a) Given the relation matrices M_R & M_S

(7)

Find $M_{R^{\circ}S},~M_{\overline{R}},~M_{\overline{S}},~M_{\overline{R^{\circ}S}}\,M_{\overline{S^{\circ}R}}$

$$\mathbf{M}_{\mathrm{R}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{M}_{\mathrm{S}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

b) Let the compatibility relation onset $\{x_1, x_2, ----x_6\}$ be given by the matrix (6)

Draw the graph and find maximal compatibility blocks of the relation.

Q.6 a) Let R = $\{\langle 1,2 \rangle \quad \langle 3,4 \rangle \quad \langle 2,2 \rangle\}$ and $s = \{\langle 4,2 \rangle \langle 2,5 \rangle \langle 3,1 \rangle \langle 1,3 \rangle\}$

Find R°S, S°R, R°(S°R), $((R^{\circ}S)^{\circ}R)$ R°R°R, S°S. (6)

b) Given $S = \{S, a, \{3\}, 4\}$ $R = \{\{a\}, 3, 4, 1\}$

Indicate whether following are true or false.

1.
$$\{a\} \in S$$

2.
$$\{a\} \in R$$

3.
$$\{a, 4, \{3\}, 4\} \subseteq S$$

4.
$$\{\{a\}, 1, 3, 4\} \subset R$$

5.
$$R = S$$

6.
$$\{a\} \subseteq S$$

7.
$$\{a\} \subset R$$

$$\mathbf{8.} \ \phi \in \mathbf{R} \tag{7}$$

Q.7 a) Define the following terms.

1) Sub Algebra

2) Semigroup

(6)

(7)

3) Monoid

4) Group.

b) Let $\langle G, * \rangle$ be a group in which $G = \{e, a\}$ and $\langle (G, *) \rangle$ is defined as.

 *
 e
 a

 e
 e
 a

 a
 a
 e

Find out $\langle G \times G, 0 \rangle$ direct product of G with itself.

Q.8 a) Write down the composition table for $\langle Z_6^*, +_6 \rangle$ and $\langle Z_6, *_6 \rangle$ where, $Z_6^* = Z_6 - [0]$.

b) Show that every element in a group is its own inverse then the group must be abelian group. (6)

UNIT-5

Q.9 a) Obtain the sum of product expression of each of the following using k map

1. $f(a, b, c, d) = \Sigma 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15.$

2.
$$f(a, b, c, d) = \Sigma 0, 5, 7, 8, 10, 12.$$
 (7)

b) Simplify following Boolean expression.

1. (a * b)' = (a + b)'

3. (a + b') * (b + c') * (c + a')

Q.10 a) prove the following Boolean identities. (7)

1. a + (a' * b) = a + b.

2.
$$a^* (a' + b) = a * b$$
.

3.
$$(a * b) + (a * b') = a$$

4. (a * b * c) + (a * b) = (a * b)

b) Let $X = \{2, 3, 6, 12, 24, 36\}$ then relation \le i.e., x < y if x divides y draw Hasse diagram. $\langle x, \le \rangle$ and Determine it is lattice or not. (7)

UNIT-6

- Q.11 a) Define the terms.
 - 1) Strongly connected graph
 - 2) Weakly connected graph.
 - 3) Null graph

- **4)** Simple graph. **(7)**
- **b)** Give the Warshall's Algorithm for path matrix with example. (6)
- **Q.12 a)** Show that in a complete binary tree, the total number of edges is given by $2(n_t 1)$ where n_t is total number of terminal nodes. (6)
- **b)** Traverse the following tree with in-order, pre-order. (7)

