KNN-Algorithm

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [3]: data = pd.read_csv('activity_8.csv')
 datadata.shape

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [4]: data.shape
```

Out[4]: (150, 5)

In [5]: data.head()

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

```
In [6]: data.describe()
```

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [7]: data.groupby('species').size()
 Out[7]: species
         setosa
                        50
         versicolor
                        50
         virginica
                        50
         dtype: int64
 In [8]: | feature columns = ['sepal length', 'sepal width', 'petal length', 'petal width']
         X = data[feature columns].values
         y = data['species'].values
 In [9]: | from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         y = le.fit_transform(y)
In [10]: from sklearn.model_selection import train_test_split
In [12]: train,test=train_test_split(data,test_size=0.2,random_state=0)
In [13]: from sklearn.neighbors import KNeighborsClassifier as KNC
In [14]: neigh=KNC(n neighbors=3)
         neigh.fit(train.iloc[:,0:4],train.iloc[:,4])
         train_predict=neigh.predict(train.iloc[:,0:4])
         pd.crosstab(train predict,train.iloc[:,4])
         train_acc=(39+34+41)/(39+34+41+3+3)
         train_acc
Out[14]: 0.95
```

```
In [15]: train_acc=np.mean(neigh.predict(train.iloc[:,0:4])==train.iloc[:,4])
train_acc
```

Out[15]: 0.95

```
In [16]:
    acc=[]
    for i in range(3,50,2):
        neigh=KNC(n_neighbors=i)
        neigh.fit(train.iloc[:,0:4],train.iloc[:,4])
        train_acc=np.mean(neigh.predict(train.iloc[:,0:4])==train.iloc[:,4])
        test_acc=np.mean(neigh.predict(test.iloc[:,0:4])==test.iloc[:,4])
        acc.append([train_acc,test_acc])

plt.plot(np.arange(3,50,2),[i[0] for i in acc],'bo-')
    plt.plot(np.arange(3,50,2),[i[1] for i in acc],'ro-')
    plt.legend(['train','test'])
```

Out[16]: <matplotlib.legend.Legend at 0x1eeada42a90>


```
In [17]: neigh8=KNC(n_neighbors=8)
    neigh8.fit(train.iloc[:,0:4],train.iloc[:,4])

    train_acc8=np.mean(neigh8.predict(train.iloc[:,0:4])==train.iloc[:,4])
    train_acc8
    test_acc8=np.mean(neigh8.predict(test.iloc[:,0:4])==test.iloc[:,4])
    test_acc8
```

```
Out[17]: 1.0
```

```
In [ ]:
```