3.13

DH参数表

关节	α_{i-1}	\overrightarrow{a}_{i-1}	d_i	θ_i
1	0	0	0	$ heta_1$
2	α_1	a_1	$-d_2$	$oldsymbol{ heta}_2$
3	$-\alpha_2$	0	d_3	$-\theta_3*$
4	$-\alpha_3$	0	0	$oldsymbol{ heta}_4$
5	0	a_4	0	$oldsymbol{ heta}_5$

第3个关节 α_{i-1} : 绕 X_2 轴, 从 Z_2 旋转到 Z_3

问题1:

3.13

第2个关节 d_i : 绕 Z_2 轴,从 X_1 移动到 X_2

问题2:

关节	α_{i-1}	\vec{a}_{i-1}	d_i	$\boldsymbol{ heta}_i$
1	0	0	0	$oldsymbol{ heta_1}$
2	α_1	a_1	- d ₂	$oldsymbol{ heta}_2$
3	$-\alpha_2$	0	d_3	$-\theta_3*$
4	$-\alpha_3$	0	0	$oldsymbol{ heta}_4$
5	0	a_4	0	$oldsymbol{ heta}_5$

3.13

第3个关节是平动关节, d_3 是变量

第3个关节 θ_3 : 绕 Z_3 轴,从 X_2 旋转到 X_3

问题3:

定值 $-\theta_3^*$

关节	α_{i-1}	\overrightarrow{a}_{i-1}	d_i	$oldsymbol{ heta}_i$
1	0	0	0	$ heta_1$
2	α_1	a_1	- d ₂	$oldsymbol{ heta}_2$
3	$-\alpha_2$	0	d_3	$-\theta_3^*$
4	$-\alpha_3$	0	0	$oldsymbol{ heta}_4$
5	0	a_4	0	$\boldsymbol{\theta}_{5}$

3.22

DH参数表

关节	α_{i-1}	\vec{a}_{i-1}	d_i	$oldsymbol{ heta}_i$	
1	0	0	d_1	0	_
2	α_1	0	$-d_2$	θ_2	\
3 ($-\alpha_2$	a_2	0	θ_3	
4	0	a_3	0	$oldsymbol{ heta_4}$	

第2个关节 d_i : 绕 Z_2 轴,从 X_1 移动到 X_2

问题:

3.17

关节	α_{i-1}	\vec{a}_{i-1}	d_i	$\boldsymbol{\theta}_i$
1	0	0	d_1	0
2	0	L_1	0	$oldsymbol{ heta}_2$
3	0	L_2	0	$\boldsymbol{\theta}_3$

3.20

关节	α_{i-1}	\vec{a}_{i-1}	d_i	$\boldsymbol{\theta}_{i}$
1	0	0	d_1	0
2	0	L_1	0	$ heta_2$
3	0	L_2	0	θ_3

例2 空间RP2R四关节机器人正运动学

例3 Stanford Scheinman机器人正运动学

Stanford Scheinman机器人:空间2RP3R机器人

3.5 PUMA机器人正运动学建模 口冷如 偏複 热磷 辩验

3.5 举例: 3DOF 圆柱机械臂

《机器人学导

Three-link cylindrical manipulator

•					
	Link	a_i	α_i	d_i	θ_i
	1	0	0 -90	d_1	θ_1^*
	2	0	-90	d*	0

* variable
$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Link parameters for 3-link cylindrical manipulator

$$T_3^0 = A_1 A_2 A_3 = \left[egin{array}{cccc} c_1 & 0 & -s_1 & -s_1 d_3 \ s_1 & 0 & c_1 & c_1 d_3 \ 0 & -1 & 0 & d_1 + d_2 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

3.5 举例: SCARA机械臂

 $A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$A_2 = \begin{bmatrix} c_2 & s_2 & 0 & a_2c_2 \\ s_2 & -c_2 & 0 & a_2s_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} c_4 & -s_4 & 0 & 0 \\ s_4 & c_4 & 0 & 0 \\ 0 & 0 & 1 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

DH coordinate frame assignment for the SCARA manipulator

Joint parameters for SCARA.

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	*
2	a_2	180	0	*
3	0	0	*	0
4	0	0	d_4	*

* joint variable

$$T_4^0 = A_1 \cdots A_4 = \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$