1. Metrics / goals for scheduling resources

2. System architecture for bigdata scheduling

Motivation

Rapid innovation in cloud computing

- Today
 - No single framework optimal for all applications
 - Each framework runs on its dedicated cluster or cluster partition

Computation Model: Frameworks

- A framework (e.g., Hadoop, MPI) manages one or more jobs in a computer cluster
- A job consists of one or more tasks
- A task (e.g., map, reduce) is implemented by one or more processes running on a single machine

One Framework Per Cluster Challenges

- Inefficient resource usage
 - E.g., Hadoop cannot use available resources from Pregel's cluster
 - No opportunity for stat. multiplexing
- Hard to share data
 - Copy or access remotely, expensive

- Hard to cooperate
 - E.g., Not easy for Pregel to use graphs **Hadoop** generated by Hadoop

Need to run multiple frameworks on same cluster

What do we want?

- Common resource sharing layer
 - Abstracts ("virtualizes") resources to frameworks
 - Enable diverse frameworks to share cluster
 - Make it easier to develop and deploy new frameworks (e.g., Spark)

Goals

- Efficient utilization of resources
- •Support diverse frameworks (existing & future)
- •Scalability to 10,000's of nodes
- Reliability in face of node failures

Fine Grained Resource Sharing

- Task granularity both in time & space
 - Multiplex node/time between tasks belonging to different jobs/frameworks
- Tasks typically short; median ~= 10 sec, minutes
- Why fine grained?
 - Improve data locality
 - Easier to handle node failures

Organization policies

Resource availability

Job requirements

- Response time
- Throughput
- Availability

•

Global Scheduler

Organization policies

Resource availability

Job requirements

Job execution plan

Task DAG

Organization policies

Global
Scheduler

Inputs/ outputs

Organization policies

Resource availability

Job requirements

Job execution plan

Estimates

- Task durations
- Input sizes
- Transfer sizes

- Advantages: can achieve optimal schedule
- Disadvantages:
 - Complexity

 hard to scale and ensure resilience
 - Hard to anticipate future frameworks' requirements
 - Need to refactor existing frameworks

Borg Architecture

- Centralized Borgmaster + Localized Borglet (manage/monitor tasks)
- Goal: Find machines for a given job
- Used across all Google services
 - Services: Gmail, web search,
 GFS
 - Analytics: MapReduce, streaming
 - Framework controller sends master allocation request to Borg for full job

Mesos

Distributed Scheduler

Advantages:

- Simple

 easier to scale and make resilient
- Easy to port existing frameworks, support new ones

Disadvantages:

Distributed scheduling decision → not optimal

Resource Offers

- Unit of allocation: resource offer
 - Vector of available resources on a node
 - E.g., node1: <1CPU, 1GB>, node2: <4CPU, 16GB>
- Master sends resource offers to frameworks
- Frameworks select which offers to accept and which tasks to run

Push task scheduling to frameworks

Mesos Architecture: Example

Slaves continuously send status updates Framework about resources executors launch tasks and may persist Slave S1 across tasks task 1 Hadoop task 1 Xec' S7. 8CPU, 8C task1:<4chaster Slave S2 7. 53: 10, 100, 700_, 16GB2 (S1: 56CPU, 4GB2 task 2 Hadoop Exect S2:<8CPU,16GB> 8CPU, 16GB 53:216ChU,16GB Module Slave S3 Pluggable scheduler to pick framework to 16CPU, 16GB

send an offer to

Framework
scheduler selects
resources and
provides tasks

Why does it Work?

- A framework can just wait for an offer that matches its constraints or preferences!
 - Reject offers it does not like
- Example: Hadoop's job input is blue file

Accept: both S2 and S3 store the blue file

Dynamic Resource Sharing

Performance

- Ramp-up time low under most scenarios
- Barely any performance differences between global and distributed schedulers in Facebook workload
- Optimizations
 - Master doesn't send an offer already rejected by a framework (negative caching)
 - Allow frameworks to specify white and black lists of nodes

Mesos vs Static Partitioning

Compared performance with statically partitioned cluster where each framework gets 25% of nodes

Framework	Speedup on Mesos
Facebook Hadoop Mix	1.14×
Large Hadoop Mix	2.10×
Spark	1.26×
Torque / MPI	0.96×

Data Locality with Resource Offers

Ran 16 instances of Hadoop on a shared HDFS cluster

Used delay scheduling [EuroSys '10] in Hadoop to get locality (wait a short time to acquire data-local nodes)

Job Duration (s)

Next: Mid-term Review