Objectives

You should be able to ...

Small Step Semantics

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

- Define the word "semantics."
- ▶ Determine the value of an expression using small step semantics.
- ► Specify the meaning of a language by writing a semantic rule.

Introduction

Formal Systems

A Simple Imperative Programming Language

Introduction

Formal Systems

A Simple Imperative Programming Language

Parts of a Formal System

To create a formal system, you must specify the following:

- ► A set of symbols or an alphabet
- ► A definition of a *valid sentence*
- ▶ A set of transformation rules to make new valid sentences out of old ones
- ► A set of initial valid sentences

You do **NOT** need:

► An *interpretation* of those symbols

They are highly recommended, but the formal system can exist and do its work without one.

Example

Symbols S, (,), Z, P, x, y.

Definition of a furbitz

- Z is a furbitz. x and y are variables of type furbitz.
- ▶ If x is a furbitz, then S(x) is a furbitz.
- ▶ If x and y are furbitzi, then P(x, y) is a furbitz.

Definition of the gloppit relation

- ightharpoonup Z has the gloppit relation with Z.
- ▶ If x and y have the gloppit relation, then S(x) and S(y) have the gloppit relation.
- ▶ If α and β , then we can write $\alpha g\beta$.

True sentences If $\alpha g \beta$, then also

 $ightharpoonup P(S(\alpha), \beta)gS(P(\alpha, \beta)), \quad \text{and } P(Z, \beta)g\beta$

Example

Symbols
$$S$$
, $(,)$, Z , P , x , y .

Definition of an integer

- ▶ 0 is an integer. x and y are variables of type integer.
- ▶ If x is an integer, then S(x) is an integer.
- ▶ If x and y are integers, then P(x, y) is an integer.

Definition of the equality relation

- ightharpoonup 0 has the equality relation with 0.
- ▶ If x and y have the equality relation, then S(x) and S(y) have the equality relation.
- ▶ If α and β , then we can write $\alpha = \beta$.

Formal Systems

True sentences If $\alpha = \beta$, then also

$$ightharpoonup P(S(\alpha), \beta) = S(P(\alpha, \beta)), \quad \text{and } P(0, \beta) = \beta$$

A Simple Imperative Programming Language

Grammar for Simple Imperative Programming Language

The Language

$$S :=$$
 skip
 $| u := t$
 $| S_1; S_2$
 $|$ if B then S_1 else S_2 fi
 $|$ while B do S_1 od

- Let *u* be a possibly subscripted variable.
- Let *t* be an expression of some sort.
- ► Let *B* be a boolean expression.

4	١	4	ð	Þ	4	Ē	Þ	4	₽	١	1	200
	Α:	Sir	nole	ln	nne	rat	ive	Pr	oar	amı	mina I a	nguage

Transitions

Introduction

- ► There are many ways we can specify the meaning of an expression. One way is to specify the steps that the computer will take during an evaluation.
- A transition has the following form:

$$<$$
 S $_1, \sigma> \rightarrow <$ S $_2, \tau>$

where S_1 and S_2 are statements, and σ and τ represent environments. The statement could change the environment.

▶ Note well: → indicates exactly one step of evaluation. (Hence "small step semantics.")

Definition of \rightarrow , 1

Introduction

Skip and Assignment

$$<$$
 skip, $\sigma > \rightarrow < E$, $\sigma >$
 $< u := t$, $\sigma > \rightarrow < E$, $\sigma[u := \sigma(t)] >$

Formal Systems

- σ will have the form $\{u_1 := t_1, u_2 := t_2, \dots, u_n := t_n\}$
- ▶ If $\sigma = \{x := 5\}$, then we can say $\sigma(x) = 5$
- ightharpoonup We can update σ .

$$\sigma[x := 20] = \{x := 20\}$$
$$\sigma[y := 20] = \{x := 5, y := 20\}$$

Introduction Formal Systems A Simple Imperative Programming Language of the Control of the Cont

Definition of \rightarrow , 2

Sequencing

$$\frac{\langle S_1, \sigma \rangle \rightarrow \langle S_2, \tau \rangle}{\langle S_1; S, \sigma \rangle \rightarrow \langle S_2; S, \tau \rangle}$$

$$E; S \equiv S$$

▶ Notice how we don't talk about the second statement at all!

Definition of \rightarrow , 3

lf

< if B then
$$S_1$$
 else S_2 fi $,\sigma>\to < S_1,\sigma>$ where $\sigma \models B$ < if B then S_1 else S_2 fi $,\sigma>\to < S_2,\sigma>$ where $\sigma \models \neg B$

- ▶ The notation $\sigma \models B$ means "B is true given variable assignments in σ ."
- $| \{x := 20, y := 30\} | | x < y |$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Introduction	Formal Systems	A Simple Imperative Programming Language	Introduction	Formal Systems	A Simple Imperative Programming Language
0	000	0000000	0	000	000000

Definition of \rightarrow , 4

While

< while B do
$$S_1$$
 od $,\sigma > \to < S_1;$ while B do S_1 od $,\sigma >$ where $\sigma \models B$ < while B do S_1 od $,\sigma > \to < E,\sigma >$ where $\sigma \models \neg B$

▶ Notice how the body of the while loop is copied in front of the loop!

Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od
$$< x:=1; n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{\}>$$

Example Evaluation

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od < x:=1; n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{\}> \\ \rightarrow < n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1\}>
```

Example Evaluation

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od < x:=1; n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{\}> \\ \rightarrow < n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1\}> \\ \rightarrow < \text{while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1,n:=3\}>
```


Introduction O

Formal Systems A Simple Imperative Programming Language 000 00000€

Introduction

Formal Systems

A Simple Imperative Programming Language

Example Evaluation

Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od <x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od, \{\}>\\ \rightarrow <n:=3; while n>1 do x:=x*n; n:=n-1 od, \{x:=1\}>\\ \rightarrow < while n>1 do x:=x*n; n:=n-1 od, \{x:=1,n:=3\}>\\ \rightarrow <x:=x*n;n:=n-1; while n>1 do x:=x*n; n:=n-1 od, \{x:=1,n:=3\}>\\ \rightarrow <n:=n-1; while n>1 do x:=x*n; n:=n-1 od, \{x:=3,n:=3\}>
```

Introduction Formal Systems A Simple Imperative Programming Language of the Oool of O

Example Evaluation

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od  < x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od, \{\} > \\ \rightarrow < n:=3; while n>1 do x:=x*n; n:=n-1 od, \{x:=1\} > \\ \rightarrow < while n>1 do x:=x*n; n:=n-1 od, \{x:=1,n:=3\} > \\ \rightarrow < x:=x*n; n:=n-1; while n>1 do x:=x*n; n:=n-1 od, \{x:=1,n:=3\} > \\ \rightarrow < n:=n-1; while n>1 do x:=x*n; n:=n-1 od, \{x:=3,n:=3\} > \\ \rightarrow < while n>1 do x:=x*n; n:=n-1 od, \{x:=3,n:=2\} >
```

Example Evaluation

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od  < x:=1; n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{\} > \\ \rightarrow < n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1\} > \\ \rightarrow < \text{while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1,n:=3\} > \\ \rightarrow < x:=x*n; n:=n-1; \text{while n>1 do } x:=x*n; n:=n-1 \text{ od}, \\ \{x:=1,n:=3\} > \\ \rightarrow < n:=n-1; \text{while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=3,n:=3\} > \\ \rightarrow < \text{while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=3,n:=2\} > \\ \rightarrow < x:=x*n; n:=n-1; \text{while n>1 do } x:=x*n; n:=n-1 \text{ od}, \\ \{x:=3,n:=2\} >
```


(ロ) (個) (E) (E) (900

Example Evaluation

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od
```

```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od
```



```
Evaluate: x:=1; n:=3; while n>1 do x:=x*n; n:=n-1 od  < x:=1; n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{\} > \\ \rightarrow < n:=3; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1\} > \\ \rightarrow < \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=1,n:=3\} > \\ \rightarrow < x:=x*n; n:=n-1; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \\ \{x:=1,n:=3\} > \\ \rightarrow < n:=n-1; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=3,n:=3\} > \\ \rightarrow < \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=3,n:=2\} > \\ \rightarrow < x:=x*n; n:=n-1; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=6,n:=2\} > \\ \rightarrow < n:=n-1; \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=6,n:=2\} > \\ \rightarrow < \text{ while n>1 do } x:=x*n; n:=n-1 \text{ od}, \{x:=6,n:=1\} > \\ \rightarrow < E, \{x:=6,n:=1\} >
```