EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.

• Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Se consideră sarcina electrică $e = 1.6 \cdot 10^{-19}$ C

SUBIECTUL I -(15 puncte)

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

- 1. Precizați care dintre mărimile fizice de mai jos este mărimea corespunzătoare unei unități de măsură fundamentale în S.I.:
- a. rezistența electrică
- b. tensiunea electrică
- c. sarcina electrică
- d. intensitatea curentului electric.
- 2. Dependența intensității curentului electric printr-un rezistor de tensiunea electrică aplicată la bornele acestuia este reprezentată în graficul alăturat. Rezistenta electrică a rezistorului are valoarea:

- a. 5.0Ω
- **b**. 3.6Ω
- c. 1.8Ω
- **d.** 0.2Ω .
- 3. Știind că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură a mărimii fizice exprimată prin produsul $I \cdot \Delta t$ poate fi scrisă sub forma:
- **a.** J · V
- **h** .l. V⁻¹
- c. V · O

- (5p)
- 4. Trei generatoare electrice identice sunt grupate în paralel. Tensiunea electromotoare a unui generator are valoarea $E = 12 \,\mathrm{V}$, iar rezistența internă a acestuia $r = 3 \,\Omega$. Tensiunea electromotoare echivalentă și rezistența internă echivalentă a grupării, au valorile:
- a. 3 V; 1Ω
- **b**. 3 V; 3Ω
- $\boldsymbol{c}.12\,V;1\Omega$
- **d.** 12 V; 3Ω
- 5. Un bec are la temperatura de 0° C rezistența electrică $R_{0} = 37,5 \Omega$. Dacă la bornele lui se aplică tensiunea este $U = 60 \,\mathrm{V}$ atunci becul consumă o putere $P = 30 \,\mathrm{W}$. Considerând cunoscut coeficientul de temperatură al rezistivității filamentului $\alpha = 10^{-3} \, \text{grad}^{-1}$ și neglijând modificarea dimensiunilor filamentului cu temperatura, temperatura filamentului în regim de funcționare este egală cu:
- **a.** 2600⁰ C
- **b**. 2500⁰ C
- **c**. 2400⁰ C
- **d.** 2200⁰ C
- (2p)