What is a Supercomputer?

Shelley Knuth shelley.knuth@colorado.edu

www.rc.colorado.edu

Questions? #RC_BasicSC

Link to survey on this topic: http://tinyurl.com/rcpresurvey

Slides:

https://github.com/ResearchComputing/Final_Tutorials/tree/master/Basics_Supercomputing

Outline

- About RC and the workshop
- General information about supercomputers
- Supercomputer detail
- Running jobs
- Accessing RC resources

Survey!

http://tinyurl.com/rcpresurvey

What does Research Computing do?

We manage

- Shared large scale compute resources
- Large scale storage
- High-speed network without firewalls ScienceDMZ
- Software and tools

We provide

- Consulting support for building scientific workflows on the RC platform
- Training
- Data management support in collaboration with the Libraries

Who Are We?

- Meet your instructors!
 - Shelley Knuth
 - Max Joseph
 - Tim Dunn
 - Pete Ruprecht
 - Aaron Holt
- Meet your assistants!
 - Sarah Papich
 - Matt Oakley
 - Zach Schira

Tim Dunn

Max Joseph

Shelley Knuth

Pete Ruprecht

Agenda – Day 1

09:00-10:15	What is a Supercomputer?	Shelley Knuth
10:15-10:30	Break	
10:30-11:45	Getting to Know	Max Joseph
	the Command Line	
11:45-13:00	Lunch	
13:00-14:15	Submitting Jobs	Shelley Knuth
	to the Supercomputer	
14:15-14:30	Break	
14:30-15:45	Installing and Building	Tim Dunn
	Software	
15:45-16:00	Break	
16:00-17:15	How Can I Move and	Max Joseph
	Store All that Data?	

Agenda – Day 2

09:00-10:15	What's Different About Summit?	Pete Ruprecht
10:15-10:30	Break	
10:30-11:45	Using the Supercomputer	Tim Dunn
	from a Website	
11:45-13:00	Lunch	
13:00-14:15	What is this Parallel	Shelley Knuth
	Computing Thing?	
14:15-14:30	Break	
14:30-15:45	Efficient Submission of	Aaron Holt
	Serial Jobs	
15:45-16:00	Break	
16:00-17:15	How to Parallel Program	Shelley Knuth

General Information

What Is a Supercomputer?

- A supercomputer is one large computer made up of many smaller computers and processors
- Each different computer is called a node
- Each node has processors/cores
 - Carry out the instructions of the computer
- With a supercomputer, all these different computers talk to each other through a communications network
 - Example InfiniBand

Computers and Cars - Analogy

Computers and Cars - Analogy

Why Use a Supercomputer?

- Supercomputers give you the opportunity to solve problems that are too complex for the desktop
 - Might take hours, days, weeks, months, years
 - If you use a supercomputer, might only take minutes, hours, days, or weeks
- Useful for problems that require large amounts of memory

World's Fastest Supercomputers

www.top500.org June 2016

Rank	Site	Name	TeraFlops
1	National Supercomputing Center (Wuxi, China)	Sunway	125435.9
2	National Super Computer Center (Guangzhou, China)	Tianhe-2	54902.4
3	Oak Ridge National Laboratory (United States)	Titan	27112.5
4	DOE/NNSA/LLNL (United States)	Sequoia	20132.7
5	RIKEN Advanced Institute for Computational Science (Japan)	K	11280.4
6	DOE/Argonne National Lab (United States)	Mira	10066.3
7	DOE/NNSA/LANL/SNL (United States)	Trinity	11078.9
8	Swiss National Supercomputing Centre (Switzerland)	Piz Daint	7788.9
9	HLRS - Höchstleistungsrechenzentrum Stuttgart (Germany)	Hazel Hen	7403.5
10	King Abdullah University of Science and Technology (Saudi Arabia)	Shaheen II	7235.2

What Does It Mean to Be Fast?

- Titan can do 27 trillion calculations per second
- A regular PC can perform 17 billion per second
- Researchers can get access to some of these systems through XSEDE (The Extreme Science and Engineering Discovery Environment)

Supercomputer Details

Hardware - Janus Supercomputer

- 1368 compute nodes (Dell C6100)
- 16,428 total cores
- No battery backup of the compute nodes
- Fully non-blocking QDR Infiniband network
- 960 TB of usable Lustre based scratch storage
 - 16-20 GB/s max throughput

Additional Compute Resources

- 2 Graphics Processing Unit (GPU) Nodes
 - Visualization of data
 - Exploring GPUs for computing
- 4 High Memory Nodes
 - 1 TB of memory, 60-80 cores per node
- 16 Blades for long running jobs
 - 2-week walltimes allowed
 - 96 GB of memory (4 times more compared to a Janus node)

Different Node Types

- Login nodes
 - This is where you are when you log in
 - No heavy computation, interactive jobs, or long running processes
 - Script or code editing, minor compiling
 - Job submission
- Compile nodes
- Compute/batch nodes
 - This is where jobs that are submitted through the scheduler run
 - Intended for heavy computation

Storage Spaces

- System variations
- Home Directories
 - Store source code
 - Not for direct computation
 - Small quota (2 GB)
 - Backed up
- \$PROJECT Space
 - Mid level quota (250 GB)
 - Large file storage
 - Not backed up

Scratch Directory

- Much larger depends on system
- Output from running jobs should go here
- Files generally purged at some point

Jobs

What is Job Scheduling

- Supercomputers usually consist of many nodes
- Users submit jobs that may run on one or multiple nodes
- Sometimes these jobs are very large; sometimes there are many small jobs
- Need software that will distribute the jobs appropriately
 - Make sure the job requirements are met
 - Reserve nodes until enough are available to run a job
 - Account for offline nodes
- Also need software to manage the resources
- Integrated with scheduler

Job Scheduling

- On a supercomputer, jobs are scheduled rather than just run instantly at the command line
 - People "buy" time to use the resources (allocation)
 - Shared system
 - Request the amount of resources needed and for how long
 - Jobs are put in a queue until resources are available
 - Once the job is run they are "charged" for the time they used

Job Scheduling - Priority

- What jobs receive priority?
 - Can depend on the center
 - Can arrange for certain people who "pay more" receive priority
 - Generally though based on job size and time of entry
- Might have different queues based on different job needs
- Can receive priority on a job by creating a reservation

Wall Times

- The maximum amount of time your job will be allowed to run
- How do I know how much time that will be?
- What happens if I select too much time?
- What happens if I select too little time?

Job Schedulers - Slurm

- Jobs on supercomputers are managed and run by different software
- Simple Linux Utility for Resource Management (Slurm)
 - Open source software package
- Slurm is a resource manager
 - Keeps track of what nodes are busy/available, and what jobs are queued or running
- Slurm is a scheduler
 - Tells the resource manager when to run which job on the available resources

Running Jobs

- What is a "job"?
- Interactive jobs
 - Work interactively at the command line of a compute node
- Batch jobs
 - Submit job that will be executed when resources are available
 - Create a text file containing information about the job
 - Submit the job file to a queue
- Load the Slurm module!

Useful Slurm Commands

- sbatch: submit a batch script to slurm
 - Standard input (keyboard)
 - File name
 - Options preceded with #SBATCH
- sbatch exits immediately after receiving a slurm job ID
- By default, standard output and errors go to file named slurm-%j.out (job allocation number)
- Slurm runs a single copy of the script on the first node in the set of allocated nodes

http://slurm.schedmd.com/sbatch.html

SBATCH Options

- In batch script put:#SBATCH <options>OR sbatch <options>
- Allocation: --A=<account_no>
- Checkpoints: --checkpoint=<interval>
- Sending emails: --mail-type=<type>
- Email address: --mail-user=<user>
- Number of nodes: -N <nodes> or --nodes=<nodes>
- Queues: --qos=<qos>
- Reservation: --reservation=<name>
- Wall time: --time=<wall time>
- Job Name: -J <jobname> or -job-name=<jobname>

Queues

- There are several ways to define a "queue"
- Clusters may have different queues set up to run different types of jobs
 - Certain queues might exist on certain clusters/resources
 - Other queues might be limited by maximum wall time
- Slurm can use a "quality of service" for each queue
 - aka "QOS"
- Also can use a "partition" (or set of nodes) that corresponds to a queue

Quality of Service = Queues

- janus-debug
 - Only debugging no production work
 - Maximum wall time 1 hour, 2 jobs per user
 - (The maximum amount of time your job is allowed to run)
- janus
 - Default
 - Maximum wall time of 24 hours, 480 nodes/job
- janus-long
 - Maximum wall time of 7 days; 40 nodes/user
- himem
- crestone
- gpu

Software

- Common software is available to everyone on the systems
- To find out what software is available, you can type ml avail
- To set up your environment to use a software package, type ml <package>/<version>
- Can install your own software
 - But you are responsible for support
 - We are happy to assist

Initial Steps to Use RC Systems

- Apply for an RC account
 - https://portals.rc.colorado.edu/account/request
- Get registered with Duo
 - Duo invitation
 - Smart phone app
 - Push notifications
- Apply for a computing allocation
 - Startup allocation of 50K SU granted immediately
 - Additional SU require a proposal

Janus/Summit Access

• To access RC's computing, in general:

```
ssh login.rc.colorado.edu —l <username>
Password: duo:<identikey>
```

Need the Duo application

What's Next?

- So far we've introduced you to the basics of supercomputing
- Next, learn to:
 - Use the command line
 - Submit jobs!
 - Transfer data!
 - Load up some software!

Questions?

- Email <u>rc-help@colorado.edu</u>
- Twitter: CUBoulderRC
- Link to survey on this topic:

http://tinyurl.com/curc-survey16

Slides:

https://github.com/ResearchComputing/Final_Tutorials/tree/master/Basics_Supercomputing