CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 13 Intro To Sampling-Based Planning Methods

Instructor: Jingjin Yu

Outline (for Next 3 Lectures)

- Drawbacks of combinatorial motion planning methods
- Probabilistic roadmap (PRM): an introduction
- Components of sampling-based motion planning methods
 - **⇒**Sampling
 - \Rightarrow k-d tree and nearest neighbor search
 - ⇒ Distance metric
 - ⇒Collision detection
- PRM in more detail
- A new notion of completeness
- Rapidly-exploring random trees (RRT)
- When would sampling-based method work well?
- **Optimality issues**

Drawbacks of Combinatorial Methods

Recall the illustration of the Piano Mover's Problem

- \Rightarrow Modeling of the free configuration space C_{free} can be a daunting task they have to be represented as semi-algebraic sets
- ⇒The associated computation is also prohibitively expensive for even just a few degrees of freedom

To the rescue: **sampling-based methods** – instead of representing C_{free} explicitly and globally, we instead "probe" the space locally, as necessary

The Workings of Probabilistic Roadmap

Generating Random Samples

Rejecting Samples Outside \mathcal{C}_{free}

Collecting Enough Samples in \mathcal{C}_{free}

Connect to Nearest Neighbors (If Possible)

Connect to Nearest Neighbors (If Possible)

Query Phase

Key Components of Sampling-Based Planning

Sampling-based planning requires several important subroutines

- \Rightarrow An **efficient sampling routine** is needed to generate the samples. These samples should **cover** C_{free} well in order to be effective
- \Rightarrow Efficient nearest neighbor search is necessary for quickly building the roadmap: for each sample in C_{free} we must find its k-nearest neighbors
- ⇒The neighbor search also requires a **distance metric** to be properly defined so we know the distance between two samples
 - \Rightarrow This can be tricky for certain spaces, e.g., SE(3)
- \Rightarrow Collision checking Note that C_{free} is not computed explicitly so we actually are checking collisions between a complex robot and a complex environment

"Goodness" of Samples

The sampling process aims at "covering" C_{free} . How to measure the "goodness" of a set of samples?

Dispersion: the dispersion of a finite set P of samples in a metric space (X, ρ) is

$$\delta(P) = \sup_{x \in X} \{ \min_{p \in P} \{ \rho(x, p) \} \}$$

Roughly, this means the largest ball that can be fit in the samples without including any sample inside the ball

Generally speaking, given |P| samples, a sample set with smaller dispersion $\delta(P)$ is better.

Computing Dispersion in 2D

- Dispersion of a set of points can be difficult to compute in general
- 2D cases are somewhat simpler, e.g., L_{∞} dispersion
 - ⇒This is to find the largest square that does not contain any point inside
 - ⇒How to compute?
- A simple (not very efficient) method (for your homework)
 - ⇒ For each point, assume its on the top/left side of a rectangle
 - ⇒Then iteratively shrink the rectangle: for every other point
 - ⇒If the point is outside the current candidate rectangle, do nothing
 - ⇒If the point is inside, shrink the rectangle
 - ⇒ A few cases here to handle
 - ⇒Yields a "final" rectangle
 - ⇒ Take the largest square that can fit in
 - ⇒ Do this for all points and pick the largest
 - \Rightarrow Complexity: $O(n^2)$

(b) L_{∞} dispersion

Uniformly Random Sampling Strategy

The simplest way of achieving this is through (probabilistic) uniformly random samples

Examples in \mathbb{R}^n

⇒1D uniform sampling

- ⇒Through your favorite random function
- ⇒Uniform sampling in the unit square
- ⇒ Readily generalizes to high dimensions

Similar for other spaces, e.g., $\mathbb{R}^2 \times S^1$

- ⇒Simply sample each dimension individually
- ⇒Then put together the individual dimensions

Uniformly Random Sampling Strategy

Generally, uniform sampling works quite well

But it is not the best for dispersion: uniformly random samples require an additional $O(\log n)$ factor to achieve the same $\delta(P)$

Deterministic Sampling Strategy

What if we simply use lattices, e.g., deterministic samples?

- \Rightarrow Requires fewer samples (by a factor of $O(\log n)$) to reach the same dispersion
- ⇒But for any deterministic sampling strategy, there are environments that work against the strategy

192 samples

Deterministic Sampling Strategy, Continued

Good deterministic sequences can be designed, e.g.,

- ⇒Halton
- **⇒**Hammersley

(b) 196 Hammersley points

⇒ Many of these sequences are also **incremental**

Halton Sequence in 1D

In 1D, also known as the van de Corput sequence

⇒Use a trick called reverse binary representation

	Naive		Reverse	Van der	
i	Sequence	Binary	Binary	Corput	Points in $[0,1]/\sim$
1	0	.0000	.0000	0	•
2	1/16	.0001	.1000	1/2	\circ
3	1/8	.0010	.0100	1/4	\circ
4	3/16	.0011	.1100	3/4	\circ
5	1/4	.0100	.0010	1/8	0-0-0-0
6	5/16	.0101	.1010	5/8	0-0-0-0-0
7	3/8	.0110	.0110	3/8	0-0-0-0-0
8	7/16	.0111	.1110	7/8	0-0-0-0-0-0
9	1/2	.1000	.0001	1/16	000000000000
10	9/16	.1001	.1001	9/16	000-0-0-0-0-0
11	5/8	.1010	.0101	5/16	000-0•0-000-0-0
12	11/16	.1011	.1101	13/16	000-000-000-0
13	3/4	.1100	.0011	3/16	000000000000000000000000000000000000000
14	13/16	.1101	.1011	11/16	0000000-000-000-0
15	7/8	.1110	.0111	7/16	000000000000000000000000000000000000000
16	15/16	.1111	.1111	15/16	000000000000000000000000000000000000000

⇒Very important: the sequence is incrementally created

⇒Not necessary to know how many samples are needed beforehand

Halton Sequence in 2D

In 2D, we add another coordinate

- \Rightarrow For x coordinate, use reversed binary
- \Rightarrow For y coordinate, use reversed ternary
- ⇒First few iterations

Number	Base 2 (x- coord)	Base 2 inverted	Decimal	Base 3 (y- coord)	Base 3 inverted	Decimal
1	1	0.1	0.5	1	0.1	0.33
2	10	0.01	0.25	2	0.2	0.67
3	11	0.11	0.75	10	0.01	0.11
4	100	0.001	0.125	11	0.11	0.44
5	101	0.101	0.625	12	0.21	0.78
6	110	0.011	0.375	20	0.02	0.22
7	111	0.111	0.875	21	0.12	0.55
8	1000	0.0001	0.0625	22	0.22	0.89
9	1001	0.1001	0.5625	100	0.001	0.04

Halton Sequence in 2D - Visualization

Halton samples using base 2 and 3 for x and y coordinates

- ⇒10, 20, 30, 50, 80, 120, 180, 250 samples
- ⇒Incremental and non-grid-like

Additional Aspects on Sampling Strategies

Dispersion is just one way to measure sample "goodness"

⇒Other measures exist, e.g., **discrepancy**

$$D_N(P) = \sup_{B} \left| \frac{|B \cap P|}{N} - \mu(B) \right|$$

- $\Rightarrow P$: point set, N = |P|, B: a ball, $\mu(B)$: volume of B
- ⇒Also very hard to compute...

⇒Additional matters

- ⇒Uniform samples may not be the best with obstacles
- ⇒In the end, we want to construct a graph; edges are also important

