ANZ synthesised transaction dataset Data Predictive Analysis

By Sai Vivek Amirishetty

Data@ANZ Virtual Experience Program-(Task-2)

Things Done for the Task

- I have to train two models to predict annual salaries based on the given features, using linear regression and decision trees.
- I used decision tree regressor model to train the categorical data such as age, gender, movement, merchant state, transaction type and linear regression with all the data except annual salary.

M11	b						
mean annual sal	lary by customer:		h-1				
	card_present_flag	merchant_code	balance	age	amount	annual_salary	
customer_id	0.010500		0075 050055		000 0/0/00	50///	
CUS-1005756958	0.812500	0.0	2275.852055	53	222.862603	50464	
CUS-1117979751	0.826923	0.0	9829.929000	21	339.843700	100202	
CUS-1140341822	0.815385	0.0	5699.212250	28	212.632500	45996	
CUS-1147642491	0.750000	0.0	9032.841186	34	245.600169	88992	
CUS-1196156254	0.785276	0.0	22272.433755	34	147.145796	109304	
Waan annual and	anding by sustances						
mean annual spe	ending by customer:						
	card_present_flag	merchant_code	balance	age	amount	annual_salary	annual_spending
customer_id							
CUS-1005756958	0.812500	0.0	2275.852055	53	222.862603	50464	14611
CUS-1117979751	0.826923	0.0	9829.929000	21	339.843700	100202	35735
CUS-1140341822	0.815385	0.0	5699.212250	28	212.632500	45996	22046
CUS-1147642491	0.750000	0.0	9032.841186	34	245.600169	88992	26931
CUS-1196156254	0.785276	0.0	22272.433755	34	147.145796	109304	34898

- This shows us the annual salary and annual spendings of the customer based on the data from three months in the given dataset.
- I came to a conclusion that decision tree does a better job than linear regression in predicting.

Data Visualisation

- This visualisations show us the average annual salaries of each age group and we can see that average salaries increase as we get older but when we are nearing retirement age the average is reduced.
- The Annual Spendings visualisation shows us that younger people spend more but people
 who are in the age group 40-50 spend more amount and as we are nearing retirement we
 spend less.
- I also found out that older people tend to use internet for transacting money and younger people use it more.

Thank You!

https://www.insidesherpa.com/

For giving me this opportunity at ANZ's Data@ANZ virtual experience program

LinkedIn Account: https://www.linkedin.com/in/sai-vivek-amirishetty-463a99b7/