Continuous Probability

- **Discrete:** outcomes are countable (e.g., # of bugs, coin flips).
- Continuous: outcomes vary over a continuum (e.g., time, height).
- Region/area carries probability for continuous; points have probability 0.

Continuous PDF with Shaded Probability (Normal) 0.40 0.35 0.30 0.25 € 0.20 0.15 0.10 0.05 0.00

Discrete PMF (Rinomial)

Probability Density Function (PDF)

The **probability density function** (pdf) describes relative likelihood:

$$f_X(x) \geq 0$$
, $\int_{-\infty}^{\infty} f_X(x) dx = 1$, $P(a \leq X \leq b) = \int_a^b f_X(x) dx$.

Important: For continuous X, P(X = a) = 0.

Cumulative Distribution Function (CDF)

The **CDF** accumulates probability from $-\infty$ to x:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$
, $P(a \le X \le b) = F_X(b) - F_X(a)$.

Exponential CDFs (various λ)

Using $F_X(b) - F_X(a)$

Suppose a random variable X has CDF

$$F_X(x) = \begin{cases} 0, & x < 0, \\ x, & 0 \le x \le 1, \\ 1, & x > 1, \end{cases}$$

which corresponds to a Uniform(0,1) distribution.

Probability via the CDF:

$$P(0.20 \le X \le 0.60) = F_X(0.60) - F_X(0.20) = 0.60 - 0.20 = 0.40.$$

Using $F_X(b) - F_X(a)$

Let X have CDF

$$F_X(x) = egin{cases} 0, & x < 0, \ 1 - e^{-\lambda x}, & x \geq 0, \end{cases}$$
 with $\lambda = 1$.

Compute the probability $P(1 \le X \le 2)$ using $F_X(b) - F_X(a)$.

Quantiles and Percentiles

- The *p*-quantile q_p solves $F_X(q_p) = p$ (e.g., median $= q_{0.5}$).
- **Percentiles:** p = 0.25, 0.5, 0.75 give quartiles..

How to Find a Quantile (General Steps)

To find the p-quantile q_p for a random variable X:

- **1** Start with the CDF $F_X(x)$ of X.
- 2 Set $F_X(q_p) = p$ for the desired percentile p (e.g., p = 0.25 for the first quartile).
- **3** Solve the equation for q_p .
- 4 Interpret: q_p is the cutoff so that p proportion of values lie below it.

Quartiles (Worked Example)

00000000

Example: Suppose a random variable X has CDF

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{x}{100}, & 0 \le x \le 100, \\ 1, & x > 100. \end{cases}$$

Then

$$Q_1 = 25$$
, $Q_2 = 50$, $Q_3 = 75$.

Quartiles Practice

Suppose X has CDF

$$F_X(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-x}, & x \ge 0. \end{cases}$$

- **1** Find the first quartile Q_1 : solve $F_X(Q_1) = 0.25$.
- ② Find the median Q_2 : solve $F_X(Q_2) = 0.50$.
- § Find the third quartile Q_3 : solve $F_X(Q_3) = 0.75$.

Mean and Variance (Continuous)

For a continuous X with pdf f:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, dx, \quad \operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx.$$

Intuition: Center and spread of the distribution (we'll compute these via software).

Shape: Symmetry and Skewness (Light Intro)

- **Symmetric:** left/right mirror around the mean (e.g., Normal).
- Right-skewed: long right tail (e.g., Exponential, Lognormal).
- Left-skewed: long left tail.

(Optional curiosity) Pearson's moment skewness $\gamma_1 = \frac{\mathbb{E}[(X-\mu)^3]}{\sigma^3}$.

If $X \sim \text{Unif}(a, b)$:

$$f(x) = \frac{1}{b-a}$$
 for $x \in [a,b]$, 0 otherwise.

$$\mathbb{E}[X] = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}.$$

Uniform PDF

Uniform CDF

Uniform Example (Worked)

Suppose dinner time in a household is equally likely to occur anytime between 5:00 pm and 7:00 pm. Let X = the dinner time. Then $X \sim \text{Unif}(5,7)$.

- Mean: $\mathbb{E}[X] = \frac{5+7}{2} = 6 \Rightarrow \text{ average dinner time} = 6:00 \text{ pm}.$
- Variance: $Var(X) = \frac{(7-5)^2}{12} = \frac{4}{12} = 0.33$.
- Probability: $P(5.5 \le X \le 6.5) = \frac{1}{2}(6.5 5.5) = 0.5$. That is, there is a 50% chance dinner is between 5:30 pm and 6:30 pm.
- 30th percentile: $q_{0.30} = 5 + 0.30 \cdot 2 = 5.6 \implies 5:36 \text{ pm}.$

You Try It: Uniform Practice

Suppose a bus arrives uniformly at random between 8:00 am and 8:30 am. Let X = minutes past 8:00. Then $X \sim \text{Unif}(0, 30)$.

- **1** What is the mean and variance of *X*?
- **2** What is $P(10 \le X \le 20)$ (between 8:10 and 8:20)?
- What is the 90th percentile of X (the time by which 90% of buses have arrived)?

Normal Distribution

$$X \sim \mathcal{N}(\mu, \sigma), \quad f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right).$$

- Symmetric, fully described by μ and σ .
- Common for aggregated effects; central in inference.

Standardization & Empirical Rule

- **Z-score:** $Z = \frac{X \mu}{\sigma}$ converts X to standard normal.
- Empirical rule (approx): 68% in $\mu \pm \sigma$, 95% in $\mu \pm 2\sigma$, 99.7% in $\mu \pm 3\sigma$.

Using the 68–95–99.7 Rule (Worked Example)

Suppose exam scores are normally distributed, $X \sim \mathcal{N}(75, 10)$.

- About 68% of scores are within 1 σ : between 65 and 85.
- About 95% are within 2 σ : between 55 and 95.
- About 99.7% are within 3 σ : between 45 and 105.

Example: Estimate $P(65 \le X \le 85)$.

$$P(65 \le X \le 85) \approx 0.68.$$

Work out the following

- $P(75 \le X \le 95)$.
- $P(85 \le X \le 95)$.
- $P(55 \le X \le 85)$

Empirical Rule Practice

Suppose heights of a plant species are $X \sim \mathcal{N}(50, 5)$ cm.

- **1** Estimate $P(45 \le X \le 55)$.
- **2** Estimate $P(40 \le X \le 50)$.
- **3** Estimate $P(35 \le X \le 65)$.

The Normal Table

- Standard Normal: $Z \sim \mathcal{N}(0, 1)$.
- The table gives $P(Z \le z)$ for values of z.
- For any Normal $X \sim \mathcal{N}(\mu, \sigma)$, standardize:

$$Z = \frac{X - \mu}{\sigma}.$$

Example: Suppose $X \sim \mathcal{N}(100, 15)$. Find $P(X \leq 115)$.

$$Z = \frac{115 - 100}{15} = 1.$$

From the table: $P(Z \le 1.00) \approx 0.8413$.

Finding Percentiles Using the Normal Table

- Percentiles are quantiles: find q_p such that $P(X \le q_p) = p$.
- Standardize: solve for z_p with $P(Z \le z_p) = p$ using the Normal table.
- Convert back: $q_p = \mu + \sigma z_p$.

Example: Suppose $X \sim \mathcal{N}(70, 8)$ (exam scores). Find the 90th percentile.

Step 1:
$$P(Z \le z) = 0.90 \implies z \approx 1.28$$
.

Step 2:
$$q_{0.90} = 70 + 8(1.28) \approx 80.2$$
.

Interpretation: 90% of scores are below about 80 points.

Normal Table Practice

Suppose IQ scores are approximately $X \sim \mathcal{N}(100, 15)$.

- What is the probability that a randomly chosen person has an IQ above 120?
- 2 What IQ score marks the top 10% (the 90th percentile)?

Hints:

- Standardize: $Z = (X \mu)/\sigma$.
- Use the Normal table to find $P(Z \le z)$.
- For (2), look up z such that $P(Z \le z) = 0.95$.

Suppose adult male heights follow $X \sim \mathcal{N}(\mu = 70 \text{ in}, \ \sigma = 3 \text{ in}).$

- Mean: $\mathbb{E}[X] = 70$ in.
- Variance: Var(X) = 9.
- Probability: $P(67 \le X \le 73) = P(-1 \le Z \le 1) \approx 0.6826$. So about 68% of men are between 5'7" and 6'1".
- 30th percentile: $z_{0.30} \approx -0.52$. $q_{0.30} = 70 + 3(-0.52) \approx 68.4$ in.

Exponential Distribution (Waiting Times)

If $X \sim \text{Exp}(\lambda)$ with rate $\lambda > 0$:

$$f(x) = \lambda e^{-\lambda x} \ (x \ge 0), \quad F(x) = 1 - e^{-\lambda x}, \quad \mathbb{E}[X] = \frac{1}{\lambda}, \ Var(X) = \frac{1}{\lambda^2}.$$

Memoryless: $P(X > s + t \mid X > s) = P(X > t)$.

Exponential PDFs (various λ)

Exponential CDF $(\lambda = 1)$

Exponential Example (Worked)

Suppose the waiting time between buses at a station is $X \sim \text{Exp}(\lambda = 1/10)$, i.e. average wait = 10 minutes.

- Mean: $\mathbb{E}[X] = 10$ minutes.
- Variance: Var(X) = 100.
- Probability: $P(5 \le X \le 15) = F(15) F(5) =$ $(1 - e^{-1.5}) - (1 - e^{-0.5}) \approx 0.38.$
- 30th percentile: Solve $F(q_{0.30}) = 0.30$, $q_{0.30} = -10 \ln(0.70) \approx 3.6 \text{ minutes}.$

Exponential Practice

Suppose the time until your next text message is $X \sim \text{Exp}(\lambda = 2)$ minutes (average wait = 0.5 minutes).

- ① What is the mean and variance?
- **2** Compute $P(0.5 \le X \le 1.5)$.
- **3** Find the 80th percentile.

(Check after you try: Mean=0.5 min, Var=0.25, Probability \approx 0.38, 80th percentile \approx 0.80 min.)