Mallows Product Measure

Kailun Chen

Leipzig University

joint work with Alexey Bufetov
arXiv:2402.09892

Virginia Integrable Probability Summer School 2024 July 10, 2024

Overview

Stationary blocking measures of ASEP

One-species ASEP and stationary blocking measure Infinite-species ASEP and Mallows measure Mallows Product Measure

Exact formulas for several observables

The joint distribution of neighboring displacements The (partial) joint distribution of arbitrary elements Projection to the Bernoulli product measure

3 Application in multi-species interacting particle systems

ASEP with d second class particles ASEP with one second class, one third class, \cdots , one (d+1)-st class particles Projection to random walk on Hecke algebra

One-species ASEP on ${\mathbb Z}$

Definition

The (standard) asymmetric simple exclusion process is a collection of particles on $\mathbb Z$ which evolves in time:

- Asymmetric: Each particle jumps one step to the right with rate 1, and jumps one step to the left with rate q; $0 \le q < 1$;
- Exclusion: Each particle can jump to the neighboring position only if the target position is vacant.

Stationary measure of one-species ASEP

[Liggett, 1976]

- Non-reversible: translation-invariant i.i.d. Bernoulli measures;
- Reversible: Blocking measure (with probability 1 a random configuration consists of only holes to the left of a specific position, and consists of only particles to the right of another specific position.)
 - Product blocking measure μ_{α}^{p} ; $\alpha \in \mathbb{R}_{>0}$: integer $i \in \mathbb{Z}$ is occupied by a particle with probability $\frac{1}{1+\alpha \sigma^{i+1/2}}$ independently for all i;
 - Ergodic blocking measure $\mu_{(c)}$ (up to shift c): probability of a configuration is proportional to the $q^{number\ of\ inversions}$.
 - Ergodic decomposition[Borodin,2007; Balazs-Bowen, 2016; Betea-Bouttier, 2018]:

$$\mu_{\alpha}^{p} = \sum_{c \in \mathbb{Z}} \frac{\alpha^{c} q^{c^{2}/2}}{(q; q)_{\infty} \prod_{k=0}^{\infty} (1 + \alpha q^{k+1/2}) \prod_{k=0}^{\infty} (1 + \alpha^{-1} q^{k+1/2})} \mu_{(c)}. \tag{1}$$

where the weights come from Jacobi triple product formula:

$$\sum_{c \in \mathbb{Z}} \frac{\alpha^{c} q^{c^{2}/2}}{(q; q)_{\infty} \prod_{k=0}^{\infty} (1 + \alpha q^{k+1/2}) \prod_{k=0}^{\infty} (1 + \alpha^{-1} q^{k+1/2})} = 1.$$
 (2)

Infinite-species ASEP on $\ensuremath{\mathbb{Z}}$

Definition

The Infinite-species asymmetric simple exclusion process is a collection of particles of various species (=classes, colors, types) on $\mathbb Z$ which evolve in time:

- infinite-species: configurations of the process are given by infinite permutations π : ℤ → ℤ;
- A particle of a larger species interacts with a particle of a smaller species as a particle with a hole;
- Standard ASEP rules: neighboring particles rearrange themselves into increasing order at rate 1, and into decreasing order at rate *q*.

Projection:

- If we map all the species > 0 to the same species and call it a "particle"; and we
 map all the species ≤ 0 to the same type and call it a "hole", then we get the
 one-species ASEP from infinite-species ASEP.
- Similarly, one can also consider the multi-species ASEP model with finitely many species as the degeneration of the infinite-species ASEP.

Mallows measure on \mathbb{Z}

- Stationary reversible measures of infinite-species ASEP: detailed balance equation.
- The q-exchangeable probability measure on the infinite group of permutations of integers on \mathbb{Z} .
- The q-exchangeable probability measure $\mathcal M$ satisfies the following condition: for any a>b,

$$\mathcal{M}(...ab...) = q\mathcal{M}(...ba...). \tag{3}$$

- The ergodic q-exchangeable measures $\{\mathcal{M}_c\}_{c\in\mathbb{Z}}$ on permutations $\mathbb{Z}\to\mathbb{Z}$ were classified by [Gnedin-Olshanski, 2012]. They called them Mallows measure.
- Each q-exchangeable probability measure on the infinite group of permutations of integers is a unique convex mixture of the Mallows measures \mathcal{M}_c over $c \in \mathbb{Z}$. [Gnedin-Olshanski, 2012]

The joint distribution of displacements

Let ω be a random permutation $\mathbb{Z} \to \mathbb{Z}$, distributed according to Mallows measure \mathcal{M}_c , $c \in \mathbb{Z}$. We denote $(q;q)_k = \prod_{i=1}^k (1-q^i)$.

Theorem (Gnedin-Olshanski, 2012)

For integers $d_1 \leq \cdots \leq d_k$, the joint distribution of displacements $D_i = \omega(i) - i$ is given by

$$\mathbb{P}(D_{1} = d_{1}, \dots, D_{k} = d_{k}) = (1 - q)^{k} q^{-k(k+1)/2} (q; q)_{\infty}
\times \prod_{m=2}^{k} (q; q)_{d_{m} - d_{m-1}} \sum_{m=2} \frac{q^{\sum_{1 \le i \le j \le k} (b_{i} + 1)(a_{j} + 1)}}{(q; q)_{b_{1}} \dots (q; q)_{b_{k}} (q; q)_{a_{1}} \dots (q; q)_{a_{k}}}, \quad (4)$$

where the summation is over all nonnegative integers $a_1, b_1, \dots, a_k, b_k$ which satisfy the constraints

$$(b_1 + \cdots + b_m) - (a_m + \cdots + a_k) = d_m - c, \quad m = 1, \dots, k.$$
 (5)

• It is very difficult to write a reasonable formula for the joint dirtribution of displacements $(D_{i_1}, D_{i_2}, \cdots, D_{i_k})$ with arbitrary indices $i_1 < i_2 < \cdots < i_k$.

Mallows Product Measure

- At the level of one-species ASEP, the product blocking measures are much simpler than the ergodic ones.
- The simplest infinite-ASEP stationary blocking measures are not ergodic measures, but rather certain mixtures of them.
- Bufetov-Chen Mallows Product Measure:

$$\mathcal{M}_{\alpha}^{p} := \sum_{c \in \mathbb{Z}} \frac{\alpha^{c} q^{c^{2}/2}}{(q; q)_{\infty} \prod_{k=0}^{\infty} (1 + \alpha q^{k+1/2}) \prod_{k=0}^{\infty} (1 + \alpha^{-1} q^{k+1/2})} \mathcal{M}_{c}.$$
 (6)

• As an appetizer, we compute the distribution of $\omega(0)$ in the Mallows product measure.

$$\mathbb{P}(\omega(0) = x) = Z \sum_{c \in \mathbb{Z}} \alpha^{c} q^{c^{2}/2} \sum_{\{r, \ell \geq 0: r - \ell = x - c\}} \frac{q^{\ell \ell + r + \ell}}{(q; q)_{\ell} (q; q)_{r}},$$
(7)

where
$$Z = (1 - q) \prod_{k=0}^{\infty} (1 + \alpha q^{k+1/2})^{-1} \prod_{k=0}^{\infty} (1 + \alpha^{-1} q^{k+1/2})^{-1}$$
.

ullet By using the identity of Euler and the finite q-binomial theorem, we have

$$\mathbb{P}(\omega(0) = x) = \frac{(1 - q)\alpha q^{x - 1/2}}{(1 + \alpha q^{x - 1/2})(1 + \alpha q^{x + 1/2})}.$$
 (8)

The joint distribution of neighboring displacements

Let ω be the random permutation of $\mathbb Z$ distributed according to the Mallows product measure \mathcal{M}_{α}^{p} .

Theorem (Bufetov-Chen, 2024)

Let $x_1 < x_2 < \cdots < x_k$ be integers, the joint distribution of k neighboring displacements $D_i = \omega(j) - j$ for $j = 1, 2, \dots, k$ is given by

$$\mathbb{P}(D_1 = x_1, D_2 = x_2, \cdots, D_k = x_k) = \frac{(1 - q)^k \alpha^k q^{\sum_{j=1}^k x_j - \frac{k^2}{2}}}{\prod_{j=1}^k (1 + \alpha q^{x_j + 2j - k - \frac{3}{2}})(1 + \alpha q^{x_j + 2j - k - \frac{1}{2}})}.$$
 (9)

- q-exchangeability: the constraint $x_1 \le x_2 \le \cdots \le x_k$ can be removed.
- Translation-invariance: the joint distribution of the neighboring displacements $D_i = \omega(i) - i$ for $i = 1, 2, \dots, k$ does not change if we simultaneously shift all indices $1, 2, \dots, k$ by a constant.
- Inversion-invariance: the Mallows product measure is invariant under the inversion map: $\omega \to \omega^{-1}$.

The (partial) joint distribution of arbitrary elements

Theorem (Bufetov-Chen, 2024)

Let x_1, x_2, \dots, x_k be k integers and $x_1 > x_2 > \dots > x_k$. For any k integers $i_1 < i_2 < \dots < i_k$, one has

$$\mathbb{P}(\omega(i_1) = x_1, \omega(i_2) = x_2, \cdots, \omega(i_k) = x_k) = \prod_{j=1}^k \frac{(1-q)\alpha q^{x_j-i_j-\frac{1}{2}}}{(1+\alpha q^{x_j-i_j-\frac{1}{2}})(1+\alpha q^{x_j-i_j+\frac{1}{2}})}.$$
 (10)

- Shift-invariance symmetry of the stochastic colored six-vertex model [Borodin-Gorin-Wheeler, 2019; Galashin, 2021]
- Limit transition from stochastic six-vertex model to the ASEP [Boroin-Corwin-Gorin, 2014; Aggarwal, 2017]

Theorem (Bufetov-Chen, 2024)

Let $i_1 < i_2 < \cdots < i_k$, $x_1 > x_2 > \cdots > x_k$, $j_1 < j_2 < \cdots < j_k$, $y_1 > y_2 > \cdots > y_k$ be integers such that $x_a - i_a = y_a - j_a$, for any $a = 1, 2, \dots, k$, and $k \in \mathbb{N}$. We have

$$\mathbb{P}(\omega(i_1) = x_1, \omega(i_2) = x_2, \cdots, \omega(i_k) = x_k)$$

$$= \mathbb{P}(\omega(j_1) = y_1, \omega(j_2) = y_2, \cdots, \omega(j_k) = y_k). \quad (11)$$

10/15

Projection to the Bernoulli product measure

Theorem (Bufetov-Chen, 2024)

Let $i_1 < i_2 < \dots < i_k$, $x_1 \ge x_2 \ge \dots \ge x_k$, $j_1 < j_2 < \dots < j_k$, $y_1 \ge y_2 \ge \dots \ge y_k$ be integers such that $x_a - i_a = y_a - j_a$, for any $a = 1, 2, \dots, k$, and $k \in \mathbb{N}$. We have

$$\mathbb{P}(\omega(i_1) \leq x_1, \omega(i_2) \leq x_2, \cdots, \omega(i_k) \leq x_k)$$

$$= \mathbb{P}(\omega(j_1) \leq y_1, \omega(j_2) \leq y_2, \cdots, \omega(j_k) \leq y_k). \quad (12)$$

Theorem (Bufetov-Chen, 2024)

Let $x_1 \geq x_2 \geq \cdots \geq x_k$, $i_1 < i_2 < \cdots < i_k$ be integers. One has

$$\mathbb{P}(\omega(i_1) \leq x_1, \omega(i_2) \leq x_2, \cdots, \omega(i_k) \leq x_k) = \prod_{j=1}^k \frac{1}{1 + \alpha q^{x_j - i_j + \frac{1}{2}}}.$$
 (13)

• For $x_1 = x_2 = \cdots = x_k = 0$, one has

$$\mathbb{P}(\omega(i_1) \leq 0, \omega(i_2) \leq 0, \cdots, \omega(i_k) \leq 0) = \prod_{i=1}^{\kappa} \frac{1}{1 + \alpha q^{-i_j + \frac{1}{2}}}$$
(14)

which implies that the one-species projection of the Mallows product measure is the Bernoulli product measure.

ASEP with d second class particles

Let ϕ be of the following projection:

$$\phi(i) = \begin{cases} 0, & i \le 0 \\ 1, & i \in \{1, 2, \dots, d\} \\ 2, & i > d \end{cases}$$
 (15)

Then $\phi(\omega(\cdot))$, where ω is distributed according to the Mallows product measure, coincides with the product blocking measure of ASEP with d second class particles. We denote the position of the i-th second class particle by s_i , $i=1,2,\cdots,d$. Namely, we have $\phi(\omega(s_i))=1$ for $i=1,2,\cdots,d$, $s_1< s_2<\cdots< s_d$.

Theorem ($\alpha = q^{\frac{1}{2}-c}$: Adams-Balázs-Jay, 2023.)

Let $x_1 < x_2 < \cdots < x_d$ be arbitrary integers. One has

$$\mathbb{P}(s_1 = x_1, s_2 = x_2, \dots, s_d = x_d) = \frac{\alpha^d q^{\sum_{i=1}^d x_i - \frac{d(2d+1)}{2}} \prod_{i=1}^d (1 - q^i)}{\prod_{j=1}^d (1 + \alpha q^{x_j + j - d - \frac{3}{2}}) (1 + \alpha q^{x_j + j - d - \frac{1}{2}})}.$$
 (16)

Kailun Chen (Leipzig) Mallows Product Measure July 10, 2024 12/15

ASEP with one second class, one third class, \cdots , one (d + 1)-st class particles

Let ϕ be of the following projection:

$$\phi(i) = \begin{cases} 0, & i \le 0 \\ i, & i \in \{1, 2, \dots, d\} \\ d+1, & i > d \end{cases}$$
 (17)

This projection corresponds to the product blocking measure of ASEP with one second class, one third class, \cdots , one (d + 1)-st class particles. We denote the position of the *i*-th class particle by s_i , $i = 2, 3, \cdots, d + 1$.

Theorem

For any distinct fixed $x_1, x_2, \dots, x_d \in \mathbb{Z}$, the probability of the second class, the third class, \dots , the (d+1)-st class particles staying at positions x_1, x_2, \dots, x_d is given by the following formula:

$$\mathbb{P}(s_{2} = x_{1}, s_{3} = x_{2}, \dots, s_{d+1} = x_{d}) = q^{inv(\sigma)} \frac{(1 - q)^{d} \alpha^{d} q^{\sum_{i=1}^{d} x_{i} - \frac{d(2d+1)}{2}}}{\prod_{i=1}^{d} (1 + \alpha q^{x_{\sigma(d+1-j)}+j-d-\frac{3}{2}})(1 + \alpha q^{x_{\sigma(d+1-j)}+j-d-\frac{1}{2}})}, \quad (18)$$

where σ is the permutation such that $x_{\sigma(d)} < x_{\sigma(d-1)} < \cdots < x_{\sigma(1)}$.

Projection to random walk on Hecke algebra

- A class of multi-species interacting particle systems can be realized as random walks on Hecke algebras. [Bufetov, 2020]
- Stochastic six-vertex model, ASEP(q,M), q-TAZRP, general M exclusion asymmetric process.
- Mallows (product) measure is a reversible stationary measure for these systems, and formulas above can be used to find properties of second, third, ..., class particles in these systems.

Thank You for Your Attention!