1: **procedure** Time Stepping Method

Algorithm 1 Time Stepping Method

Solve for the max flux over the time step and attain the end of step fluid mass m^n and end of step pressure p^n ,

- $m^{n+1} = m^n + k^n \rho^n (\nabla p^n) \Delta t$
- Update the velocity to the mid-step 3:
 - $\mathbf{v}^{n+\frac{1}{2}} = \mathbf{v}^n + \mathbf{a}^n \frac{\Delta t}{2}$ Update the displacement to the end of step
 - $\mathbf{v}^{n+1} \mathbf{v}^n + \mathbf{v}^{n+\frac{1}{2}} \Lambda t$
- 5: Calculate deformation input to constitutive model and update material state to
- O^{n+1} Solve for the acceleration $t^{n+1}(a_i^{n+1})$. Note that this includes the fluid pressure 6:
- p^{n+1} applied as a boundary condition.
 - Update the velocity to the end of step • $\mathbf{v}^{n+1} = \mathbf{v}^{n+\frac{1}{2}} + \mathbf{a}^{n+1} \frac{\Delta t}{2}$
- 8: end procedure