Kapitel 1

Geodäten und der Satz von Gauss-Bonnet

Ziel. $\int_{\Sigma} K \ dA = 2\pi \chi(\Sigma)$

1.1 Isometrien

"Isometrien sind Diffeomorphismen, welche die erste Fundamentalform, und deshalb interne Distanzen erhalten." Seien $\Sigma_1, \Sigma_2 \subset \mathbb{R}^3$ reguläre Flächen und $V_1 \subset \Sigma_1, V_2 \subset \Sigma_2$ offen.

Definition. Ein (C^2) -Diffeomorphismus $h: V_1 \to V_2$ heisst lokale Isometrie, falls für alle $p \in V_1$ und alle $v, w \in T_p\Sigma$ gilt:

$$\langle (Dh)_p(v), (Dh)_p(w) \rangle_{h(p)} = \langle v, w \rangle_p$$

Im Fall $V_1 = \Sigma_1, V_2 = \Sigma_2$ heisst $h: \Sigma_1 \to \Sigma_2$ eine (globale) Isometrie.

Proposition 1. Seien $V_1 \subset \Sigma_1, V_2 \subset \Sigma_2$ offen, $\varphi_1 : U_1 \to V_1$ eine lokale (C^2) -Parametrisierung, und $h : V_1 \to V_2$ ein (C^2) -Diffeomorphismus. Dann ist h eine lokale Isometrie, genau dann, wenn die Koeffizientenfunktionen $E_i, F_i, G_i : U_1 \to \mathbb{R}$ (i = 1, 2) bzgl. der lokalen Parametrisierungen $\varphi_1 : U_1 \to V_1$ und $\varphi_2 = h \circ \varphi_1 : U_1 \to V_2$ übereinstimmen:

$$E_1 = E_2, F_1 = F_2, G_1 = G_2$$

Beweis. " \Longrightarrow " Sei $h: V_1 \to V_2$ eine lokale Isometrie. Berechne $E_1(u, v) = \langle \varphi_{1u}, \varphi_{1u} \rangle_{\varphi_1(u,v)}$ und $E_2(u, v) = \langle \varphi_{2u}, \varphi_{2u} \rangle_{\varphi_2(u,v)}$

Bemerke

$$\varphi_{2u}(u,v) = \frac{d}{du}\varphi_2(u,v) = \frac{d}{du}(h \circ \varphi_1)(u,v)$$
$$= (Dh)_{\varphi_1(u,v)} \left(\frac{d}{du}\varphi_1(u,v)\right) = (Dh)_{\varphi_1(u,v)}(\varphi_{1u})$$

Daraus folgt

$$E_2(u,v) = \langle (Dh)_{\varphi_1(u,v)}(\varphi_{1u}), (Dh)_{\varphi_1(u,v)}(\varphi_{1u}) \rangle_{h \circ \varphi_1(u,v)} = \langle \varphi_{1u}, \varphi_{1,u} \rangle_{\varphi_1(u,v)}$$

Beim letzen Schritt wird benutzt, dass h eine lokale Isometrie ist! Also gilt $E_1 = E_2$, analog $F_1 = F_2$, $G_1 = G_2$.

" \Leftarrow " Seien $p \in V, v, w \in T_p\Sigma_1$. Wähle (die eindeutigen) $q \in U_1, a, b \in \mathbb{R}^2$ mit $\varphi_1(q) = p, (D\varphi_1)_q(a) = v, (D\varphi_1)_q(b) = w$

Schreibe $a = a_1e_1 + a_2e_2, b = b_1e_1 + b_2e_2$. Berechne

$$\begin{split} \langle v,w\rangle_p &= \langle (D\varphi_1)_q(a), (D\varphi_1)_q(b)\rangle_{\varphi_1(q)} \\ &= \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} E_1 & F_1 \\ F_1 & G_1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \\ \text{siehe Def. von } E,F,G \end{split}$$

und

$$\langle (Dh)_{p}(v), (Dh)_{p}(w) \rangle_{h(p)} = \langle D(h \circ \varphi_{1})_{q}(a), D(h \circ \varphi_{1})_{q}(b) \rangle_{h \circ \varphi_{1}(q)}$$

$$\uparrow \qquad \qquad \qquad \uparrow$$
Kettenregel $D(h \circ \varphi_{1})_{q} = (Dh)_{\varphi_{1}(q)} \circ (D\varphi_{1})_{q}$

$$= \langle a_{1}\varphi_{2u} + a_{2}\varphi_{2v}, b_{1}\varphi_{2u} + b_{2}\varphi_{2v} \rangle$$

$$= \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} \underbrace{\begin{pmatrix} E_{1} & F_{2} \\ F_{2} & G_{2} \end{pmatrix}}_{=\begin{pmatrix} E_{1} & F_{1} \\ F_{1} & G_{1} \end{pmatrix}} \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix}$$

Beispiel (Kreiskegel). Sei $K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2\} \subset \mathbb{R}^3$ der Kreiskegel mit (lokaler) Parametrisierung

$$\varphi: \mathbb{R}_{>0} \times (0, 2\pi) \to K$$
$$(u, v) \mapsto \left(\frac{u}{\sqrt{2}}\cos(v), \frac{u}{\sqrt{2}}\sin(v), \frac{u}{\sqrt{2}}\right)$$

Sei $S\subset\mathbb{R}^2$ das Bild der lokalen Parametrisierung

$$\psi: \mathbb{R}_{>0} \to \mathbb{R}^2 \qquad (\subset \mathbb{R}^2 \times \{0\})$$
$$(u, v) \mapsto (u \cos \frac{v}{\sqrt{2}}, u \sin \frac{v}{\sqrt{2}})$$

Berechne die Koeffizientenfunktionen E, F, G (bzgl. φ) und $\tilde{E}, \tilde{F}, \tilde{G}$ (bzgl. ψ).

$$E = \langle \varphi_u, \varphi_u \rangle = 1 = \langle \psi_u, \psi_u \rangle = \tilde{E}$$

$$F = \langle \varphi_u, \varphi_v \rangle = 0 = \langle \psi_u, \psi_v \rangle = \tilde{F}$$

$$G = \langle \varphi_v, \varphi_v \rangle = \frac{u^2}{2} = \langle \psi_v, \psi_v \rangle = \tilde{G}$$

 $h = \varphi \circ \psi^{-1} : S \to K$ ist eine lokale Isometrie (aus Proposition).

Korollar 1. Seien $V_1 \subset \Sigma_1, V_2 \subset \Sigma_2$ offen und $h: V_1 \to V_2$ eine lokale Isometrie. Dann gilt für alle $p \in V_1$

$$K(p) = K(h(p))$$

"Isometrien erhalten die Krümmung"

Beweis. Benutze Theorema Egregium (K ist durch E,F,G bestimmt) und obige Proposition.

Bemerkung. Die mittlere Krümmung ist nicht invariant unter (lokalen) Isometrien.

Isometrie
$$H = 0, K = 0 \qquad H \neq 0, K = 0$$

Interne Distanzen

Sei $\Sigma \subset \mathbb{R}^3$ eine wegzusammende reguläre Fläche.

Definition. Für $p, q \in \Sigma$ definiere $d_{\Sigma}(p, q) = \inf\{\mathcal{L}(\gamma) \mid \gamma : [0, 1] \to \Sigma$ C^1 mit $\gamma(0) = p, \gamma(1) = q\}$ Hier ist

$$\mathcal{L}(\gamma) = \int_0^1 ||\dot{\gamma}(t)|| \ dt$$

Lemma 1. Sei $h: \Sigma_1 \to \Sigma_2$ eine Isometrie. Dann gilt für alle $p, q \in \Sigma_1$

$$d_{\Sigma_2}(h(p), h(q)) = d_{\Sigma_1}(p, q)$$

"Isometrien erhalten interne Distanzen".

Beweis. Sei $\gamma:[0,1]\to\Sigma_1$ C^1 . Berechne

$$\mathcal{L}(h \circ \gamma) = \int_{0}^{1} \sqrt{\left\langle \frac{d}{dt} h \circ \gamma(t), \frac{d}{dt} h \circ \gamma(t) \right\rangle_{h(\gamma(t))}}$$

$$= \int_{0}^{1} \sqrt{\left\langle (Dh)_{\gamma(t)}(\dot{\gamma}(t)), (Dh)_{\gamma(t)}(\dot{\gamma}(t)) \right\rangle_{h(\gamma(t))}} dt$$

$$= \int \sqrt{\left\langle \dot{\gamma}(t), \dot{\gamma}(t) \right\rangle_{\gamma(t)}} dt$$

$$= \mathcal{L}(\gamma)$$

$$\implies \inf\{\mathcal{L}(h \circ \gamma)|\dots\} = \inf\{\mathcal{L}(\gamma)|\dots\}$$

Bemerkung. Isometrien $h: \Sigma_1 \to \Sigma_2$ erhalten Distanzen in \mathbb{R}^3 im allgemeinen nicht!

Beispiel. Sei $\gamma: \mathbb{R} \to \mathbb{R}^2$ eine injektive, nach Bogenlänge parametrisierte C^2 -Kurve (d.h. $\dot{a}^2 + \dot{b}^2 = 1$). Schreibe $\gamma(t) = (a(t), b(t))$ und definiere $\Sigma \subset \mathbb{R}^3$ als Bild von

$$\varphi : \mathbb{R}^2 \to \Sigma \subset \mathbb{R}^3$$

 $(u, v) \mapsto (a(u), b(u), v)$

durchgehender Vorhang als Isometrie

Berechne

$$E = \langle \varphi_u, \varphi_u \rangle = 1, F = \langle \varphi_u, \varphi_v \rangle = 0, G = \langle \varphi_v, \varphi_v \rangle = 1$$

Also ist $\varphi : \mathbb{R}^2 \to \Sigma$ eine Isometrie! Im allgemeinen gilt für $(u_1, 0), (u_2, 0) \in \mathbb{R}^2 (\Longrightarrow K = 0$ für alle $p \in \Sigma$)

$$d_{\mathbb{R}^2}(\underbrace{(u_1,0),(u_2,0)}_{=|u_1-u_2|}) \neq d_{\mathbb{R}^3}(\underbrace{\varphi(u_1,0)}_p,\underbrace{\varphi(u_2,0)}_q)$$

Isometrien der Ebene

Sei $h: \mathbb{R}^2 \to \mathbb{R}^2$ eine Isometrie (bzgl. Standardskalarprodukt auf \mathbb{R}^2). Dann existieren (eindeutige) $A \in O(\mathbb{R}^2), b \in \mathbb{R}^2$ mit h(p) = A(p) + b.

Bemerkung. Jede Abbildung der Form $p\mapsto A(p)+b$ mit $A\in O(\mathbb{R}^2)$ ist eine Isometrie:

$$(Dh)_p = A \text{ und } \langle Av, Aw \rangle = \langle v, w \rangle$$

Sei nun $h: \mathbb{R}^2 \to \mathbb{R}^2$ eine Isometrie. Dann erhält h Distanzen in \mathbb{R}^2 (wende obiges Lemma an). Betrachte nun die Punkte $0, e_1, e_2 \in \mathbb{R}^2$ und deren Bilder $h(0), h(e_1), h(e_2) \in \mathbb{R}^2$. Setze b = h(0)

Geometrisch:

Es existiert $A \in O(\mathbb{R}^2)$ mit $A(0) + b = h(0), A(e_1) + b = h(e_1), A(e_2) + b = h(e_2)$. Setze $\tilde{h}(p) = A(p) + b$. Dann ist $h^{-1} \circ \tilde{h} : \mathbb{R}^2 \to \mathbb{R}^2$ eine Isometrie mit Fixpunkten $0, e_1, e_2 \Longrightarrow h^{-1} \circ \tilde{h} = Id_{\mathbb{R}^2}$, also $\tilde{h} = h$.

Lemma 2. Seien $\varphi, \psi : \Sigma \to \Sigma$ Isometrien. Dann sind φ^{-1} und $\varphi \circ \psi : \Sigma \to \Sigma$ Isometrien.

Beweis. Benutze
$$(D\varphi^{-1})_p = (D\varphi)_{\varphi^{-1}(p)}^{-1}$$
 und $(D\varphi \circ \psi)_p = (D\varphi)_{\psi(p)} \circ (D\psi)_p$.

Konsequenz. Die Isometrien von Σ bilden unter der Komposition eine Gruppe mit neutralem Element Id_{Σ} . Iso $(\Sigma) = \{h : \Sigma \to \Sigma \mid h \text{ ist eine Isometrie}\}$ Isometriegruppe von Σ .

Beispiele.

1. $\Sigma = \mathbb{R}^2$ (bzw. $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$). Sei $h \in \text{Iso}(\mathbb{R}^2)$. Dann existiert (eindeutige) $A \in O(\mathbb{R}^2)$ und $b \in \mathbb{R}^2$ mit h(p) = A(p) + b.

Frage. Gilt Iso(\mathbb{R}^2) $\simeq O(\mathbb{R}^2) \times \mathbb{R}^2$? (D.h. isomorph)

Nein! Grund: Schreibe $h_1(p) = A_1(p) + b_1$, bzw. $h_2(p) = A_2(p) + b_2$. Dann gilt

$$h_1 \circ h_2(p) = h_1(A_2(p) + b_2) = A_1A_2(p) + \overbrace{A_1b_2 + b_1}^{\neq b_1 + b_2}$$

 $\operatorname{Iso}(\mathbb{R}^2) \simeq O(\mathbb{R}^2) \ltimes_{\alpha} \mathbb{R}^2$ ist ein semidirektes Produkt.

$$\alpha: O(\mathbb{R}^2) \to \operatorname{Aut}(\mathbb{R}^2)$$
 Automorphismus $A \mapsto h_A: \mathbb{R}^2 \to \mathbb{R}^2, b \mapsto Ab$

Multiplikationsvorschrift in einem semidirekten Produkt.

$$G \ltimes_{\alpha} H, \alpha : G \to \operatorname{Aut}(H)$$

 $(g_1, h_1) \circ (g_2, h_2) = (g_1 g_2, h_1 \alpha(g_1)(h_2))$

Im Spezialfall $\alpha = Id$ ist es ein direktes Produkt.

2.
$$\Sigma = S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$$

$$Iso(S^2) \simeq O(\mathbb{R}^3)$$

$$\uparrow$$

 $h \in \text{Iso}(S^2)$ ist durch die Bilder dieser (allgemeiner) Punkte bestimmt

3.
$$\Sigma = S^1 \times S^1$$

$$\operatorname{Iso}(S^1 \times S^1) \simeq \underbrace{\mathbb{Z}/2\mathbb{Z}}_{=\{Id,s\}} \ltimes O(\mathbb{R}^2)$$

4.
$$\Gamma_f$$
 für $f(x,y) = x^2 + y^2$

$$\operatorname{Iso}(\Gamma_f) = O(\mathbb{R}^2)$$

5.
$$\Sigma =$$
 Iso $(\Sigma) = (\mathbb{Z}/2\mathbb{Z})^3$ erzeugt von drei Spiegelungen an Koordinatenebenen.

6.
$$\triangle$$
 $\rightarrow O(\mathbb{R}^2)$

7.
$$\angle$$
 Iso(Σ) =
$$\begin{cases} S_3 & \text{gleichseitiges Dreieck} \\ \mathbb{Z}/2\mathbb{Z} & \text{gleichschenkliges Dreieck} \\ \{id\} & \text{sonst} \end{cases}$$

Weiterführend:

Theorem 1 (Hurwitz). Sei Σ eine geschlossene Fläche mit konstanter Krümmung -1 (insbesondere ist dies keine reguläre Fläche in \mathbb{R}^3). Dann gilt:

$$|\operatorname{Iso}(\Sigma)| \le 84(g-1)$$
 g Geschlecht der Fläche

1.2 Paralleltransport und Geodäten

Ziel. Beschreibe Geodäten $\gamma: \mathbb{R} \to \Sigma$

Frage. Dazu stellen werden wir folgendes benötigen: Was bedeutet $\dot{\gamma}(t)$ ist konstant?

- In \mathbb{R}^2 $\ddot{\gamma}(t) = 0$
- In Σ $\frac{D\dot{\gamma}}{dt}=0$ die kovariante Ableitung

Definition. Ein glattes Vektorfeld *entlang* einer glatten Kurve $\alpha:[a,b]\to\Sigma$ ist eine glatte Abbildung $w:[a,b]\to\mathbb{R}^3$ mit $w(t)\in T_{\alpha(t)}\Sigma$.

Die horizontale Ableitung oder (kovariante Ableitung) von w im Punkt $\alpha(t)$ ist die orthogonale Projektion der Abbildung $\frac{dw}{dt}(t)$ auf $T_{\alpha(t)}\Sigma$:

$$\frac{Dw}{dt}(t) = \frac{dw}{dt}(t) - \left\langle \frac{dw}{dt}(t), N(\alpha(t)) \right\rangle N(\alpha(t))$$

Bemerkung. Wir betrachten glatte Kurven und Vektorfelder (aber C^2 reicht praktisch immer).

Berechnung in lokalen Koordinaten

Sei $\varphi: U \to V \subset \Sigma$ eine lokale (glatte) Parametrisierung mit $\alpha([a,b]) \subset \varphi(U) = V$. Schreibe $\varphi^{-1}(\alpha(t)) = (u(t),v(t))$. Sei $w:[a,b] \to \mathbb{R}^3$ ein glattes Vektorfeld entlang α . Schreibe $w(t) \in T_{\alpha(t)}\Sigma = \operatorname{span}\{\varphi_u,\varphi_v\}$ als $w(t) = \alpha(t)\varphi_u + b(t)\varphi_v$. Es gilt

$$\frac{dw}{dt}(t) = \dot{a}(t)\varphi_u + \dot{b}\varphi_v + a\dot{u}\varphi_{uu} + a\dot{v}\varphi_{vu} + b\dot{v}\varphi_{vv}$$

Dazu erinnere dass $\frac{d}{dt}(\varphi_u = \varphi_{uu}\dot{u} + \varphi_{vu}\dot{v}$ Mit $\varphi_{uu} = eN + \Gamma_{11}^1 \varphi_u + \Gamma_{11}^2 \varphi_v$ etc.. erhalten wir

$$\frac{Dw}{dt}(t) = \left(\dot{a} + \Gamma_{11}^{1}a\dot{u} + \Gamma_{12}^{1}a\dot{v} + \Gamma_{21}^{1}b\dot{u} + \Gamma_{22}^{1}b\dot{v}\right)\varphi_{u} + \left(\dot{b} + \Gamma_{11}^{2}a\dot{u} + \Gamma_{12}^{2}a\dot{v} + \Gamma_{21}^{2}b\dot{u} + \Gamma_{22}^{2}b\dot{v}\right)\varphi_{v}$$

Definition. w heisst parallel, falls $\frac{Dw}{dt} \equiv 0$

"keine Änderung in Richtung der Tangentialebene"

Beispiele. 1. In der Ebene $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$ gilt

$$\frac{Dw}{dt} = \frac{dw}{dt}$$

Sei $w(t) = a(t)e_1 + b(t)e_2$.

$$\frac{dw}{dt} = \dot{a}(t)e_1 + \dot{b}e_2 \perp e_3 = N \implies \frac{Dw}{dt} = \frac{dw}{dt}$$

2. Betrachte $\alpha:[0,2\pi]\to S^2\subset\mathbb{R}^3$

$$t \mapsto (\cos t, \sin t, 0)$$

Dann ist $w(t) \equiv e_3$ ein paralleles Vektorfeld entlang α .

$$\frac{dw}{dt} = 0 \implies \frac{Dw}{dt} = 0$$

beachte hier $e_3 \in T_{\alpha(t)}S^2$ für alle t. Weiteres Beispiel $\bar{w}(t) = \dot{\alpha}(t)$

$$\frac{d\bar{w}}{dt}(t) = \ddot{\alpha}(t) = (-\cos t, -\sin t, 0) \mid\mid N(\alpha(t)) \implies \frac{D\bar{w}}{dt}(t) = 0 \text{ (da } \frac{d\bar{w}}{dt} \perp T_{\alpha(t)}S^2 \text{)}$$

Bemerkung. Die Bedingung $\frac{Dw}{dt}=0$ ist unabhängig von der Parametrisierung von $\alpha:[a,b]\to \Sigma$

Sei $\sigma:[a,b]\to[a,b]$ ein Diffeomorphismus mit $\sigma(a)=a$ und $\sigma(b)=b$. Dann gilt

$$\frac{d}{dt}(w(\alpha(\sigma(t))) = \frac{d}{d\sigma}w(\alpha(\sigma))\dot{\sigma}(t) \implies \frac{Dw}{dt} = \frac{Dw}{d\sigma}\dot{\sigma}$$

$$\sigma$$
 Diffeomorphismus $\implies \dot{\sigma}(t) \neq 0$
$$\implies \frac{Dw}{dt} = 0 \iff \frac{Dw}{d\sigma} = 0$$

Definition. Eine glatte Kurve $\gamma:[a,b]\to\Sigma$ heisst $geod\ddot{a}tisch$, falls $\frac{D\dot{\gamma}}{dt}\equiv0$. Das Bild von γ bezeichnen wir mit $Geod\ddot{a}te$.

Beachte hier $\dot{\gamma}(t) \in T_{\gamma(t)}\Sigma$, also ist $\dot{\gamma}: [a,b] \to \mathbb{R}^3$ ein glattes Vektorfeld entlang $\gamma(t)$.

Beispiele. 1. In der Ebene $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$ gilt $\frac{Dw}{dt} = \frac{dw}{dt}$ (siehe oben), also

$$\frac{D\dot{\gamma}}{dt}(t) = 0 \iff \frac{d\dot{\gamma}}{dt}(t) = \ddot{\gamma}(t) = 0$$

Also parametrisieren geodätische Kurven in der Ebene Geradenabschnitte.

- 2. $\Sigma = S^2, \gamma(t) = (\cos t, \sin t, 0), \gamma : \mathbb{R} \to S^2$ ist geodätisch, da $\frac{D\dot{\gamma}}{dt}(t) = 0$. (Siehe oben: $\frac{d\dot{\gamma}}{dt} = \ddot{\gamma}(t)$ ist parallel zu $N(\gamma(t))$, also senkrecht zu $T_{\gamma(t)}S^2 \Longrightarrow \frac{D\dot{\gamma}}{dt} = 0$.) Analog sind alle Grosskreisenabschnitte mit konstanter Geschwindigkeit parametrisiert Geodäten. Wir werden später sehen, dass alle Geodäten von dieser Form sind.
- 3. $Z = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}$ Betrachte die lokal *isometrische* Parametrisierung. $\varphi : \mathbb{R}^2 \to Z$ $(u, v) \mapsto (\cos u, \sin u, v)$

Behauptung. Die Bilder von Geodäten in \mathbb{R}^2 unter φ sind Geodäten.

Spezialfall. Geraden durch $(0,0) \in \mathbb{R}^2$

Erinnerung. Eine Kurve $\gamma: \mathbb{R} \to \Sigma$ glatt heisst geodätisch, falls $\frac{D\dot{\gamma}(t)}{dt} = 0$

In lokalen Koordinaten bezüglich einer Parametrisierung $\varphi: U \to \Sigma$, schreibe $\gamma(t) = \varphi(u(t), v(t))$. (falls $\gamma(\mathbb{R}) \subset \varphi(U)$)

Geodätengleichung

$$\ddot{u} + \Gamma_{11}^{1} \dot{u}^{2} + 2\Gamma_{12}^{1} \dot{u}\dot{v} + \Gamma_{22}^{1} \dot{v}^{2} = 0$$
$$\ddot{v} + \Gamma_{11}^{2} \dot{u}^{2} + 2\Gamma_{12}^{2} \dot{u}\dot{v} + \Gamma_{22}^{2} \dot{v}^{2} = 0$$

Führe Koordinaten $w = \dot{u}, z = \dot{v}$ ein. Wir erhalten ein System von Differentialgleichungen mit glatten Koeffizienten, (d.h. lokal lipschitz) erster Ordnung auf \mathbb{R}^4

- $\dot{u} = w$
- $\dot{v} = z$
- $\dot{w} = \ddot{u} = -(...)$
- $\dot{z} = \ddot{v} = -(...)$

Es seien Anfangsbedingungen $p \in \Sigma, v \in T_p\Sigma$ vorgegeben $(p \in \varphi(U))$. Seien $(u_0, v_0, w_0, z_0) \in \mathbb{R}^4$ mit $\varphi(u_0, v_0) = p$, $v = w_0\varphi_u + z_0, \varphi_v$ Nach Picard Lindelöf existiert eine eindeutige Lösungskurve $\bar{\gamma}: (-\varepsilon, \varepsilon) \to \mathbb{R}^4$ zur Anfangsbedingung $\bar{\gamma}(0) = (u_0, v_0, w_0, z_0); \ \gamma(t) = (u(t), v(t), w(t), z(t))$. Dann ist $\gamma(t) = \varphi(u(t), v(t))$ unsere gesuchte Lösung.

Proposition 3. Sei $\Sigma \subset \mathbb{R}^3$ eine glatte reguläre Fläche, $p \in \Sigma$ und $v \in T_p\Sigma$ vorgegeben. Dann existiert $\varepsilon > 0$ und eine eindeutige geodätische Kurve $\gamma : (-\varepsilon, \varepsilon) \to \Sigma$ mit $\gamma(0) = p$ und $\dot{\gamma}(0) = v$.

Zusatz. Für vollständige Flächen (d.h. abgeschlossen und ohne Rand) lässt sich γ auf $\mathbb R$ erweitern.

Bemerkungen.

- 1. Die Geodätengleichungen sind invariant unter Isometrien. Tätsächlich sind Γ_{ij}^k durch die Koeffizientenfunktionen E, F, G bestimmt, welche invariant unter Isometrien sind. \Longrightarrow Isometrien bilden Geodäten auf Geodäten ab (auch lokal gültig).
- 2. Nach Proposition 3 existiert für alle $p \in \Sigma, v \in T_p\Sigma$ (Σ vollständig), genau eine geodätische Kurve $\gamma : \mathbb{R} \to \Sigma$ mit $\gamma(0) = p, \dot{\gamma}(0) = v$. Falls wir für alle Paare (p, v) schon eine Geodäte kennen, dann haben wir alle Geodäten gefunden. Anwendung: Geodäten auf S^2 sind Grosskreise. Geodäten auf dem Zylinder Z sind Helixen, Meridiane, Mantellinien.

1.3 Exponentialabbildung und geodätische Polarkoordinaten

Sei $\Sigma \subset \mathbb{R}^3$ glatt und vollständig, sowie $p \in \Sigma$, $v \in T_p\Sigma$, $\gamma : \mathbb{R} \to \Sigma$ die eindeutige geodätische Kurve mit $\gamma(0) = p, \dot{\gamma}(0) = v$

Notation. $\gamma_p(v,t) = \gamma(t)$

Definition. $\exp: T_p\Sigma \to \Sigma$ $v \mapsto \gamma_p(v,1)$ $T_r\Sigma$

Bemerkungen.

- 1. Es gilt für alle $\lambda > 0, t \in \mathbb{R}$: $\gamma_p(\lambda v, t) = \gamma_p(v, \lambda t)$
- 2. Eine Verschärfung des Satzes von Picard-Lindelöf nach Cauchy zeigt, dass die Lösung $\gamma_p(v,t)$ glatt von den Parametern $p\in\Sigma,v\in T_p\Sigma$, und $t\in\mathbb{R}$ abhängt. Daraus folgt, dass exp: $T_p\Sigma\to\Sigma$ glatt ist!
- 3. Wieso heisst diese Abbildung exp? Die Antwort kommt aus der Lietheorie: Betrachte die Gruppe $GL(\mathbb{C}^n)$. Für $A \in \mathbb{C}^{n \times n}$ haben wir die Abbildung $\gamma(t) = e^{tA} \in GL(\mathbb{C}^n)$. Diese Kurve ist geodätisch bezüglich der Killingform auf $GL(\mathbb{C}^n)$ Γ Sei $X \in GL(\mathbb{C}^n)$ und $A, B \in T_XG(\mathbb{C}^n)$

 $\langle A, B \rangle = spur(X^{-1}AX^{-1}B)$? Stimmt für $X = Id \, \bot$

Berechung des Differentials von exp

Sei $p \in \Sigma$ und $h \in T_p\Sigma$ und $\gamma : \mathbb{R} \to \Sigma$ die eindeutige geodätische Kurve mit $\gamma(0) = p$ und $\dot{\gamma}(0) = h$, also $\exp(th) = \gamma_p(th, 1) = \gamma_p(h, t) = \gamma(t)$. Berechne nun:

$$(D\exp)_0(h) = \lim_{t \to 0} \frac{\exp(th) - \exp(0)}{t} = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t} = \dot{\gamma}(0) = h$$
$$\implies D(\exp)_0 = \operatorname{Id}_{T_0 \Sigma}$$

Nach Umkehrsatz existiert eine Zahl $\delta > 0$, so dass die Einschränkung von exp auf $U = T_p \Sigma \cap B_0(\delta) = \{v \in T_p \Sigma \mid ||v||_2 < \delta\}$ ein Diffeomorphismus ist. Insbesondere ist $\varphi = \exp|_U : U \to \varphi(U) \subset \Sigma$ eine lokale Parametrisierung.

Wähle auf $T_p\Sigma$ Polarkoordinaten (r,θ) (Wahl ist wo ist $\theta=0$?). Die entsprechenden Koordinaten auf $\exp(U)\subset\Sigma$ heissen geodätische Polarkoordinaten.

Proposition 2. Bezüglich der lokalen Parametrisierung $\varphi = \exp : U \to \Sigma$ und Koordinaten $(u, v) = (r, \theta)$ gilt:

$$E = 1, F = 0, \lim_{r \to 0} G(r, \theta) = 0 \text{ und } \lim_{r \to 0} \frac{d}{dr} \sqrt{G(r, \theta)} = 1$$

Beweis. Fixiere einen Winkel $\theta \in S^1 = [0, 2\pi]/0 = 2\pi$. Es gilt $E(r, \theta) = \left\langle \frac{d}{dr} \exp, \frac{d}{dr} \exp \right\rangle$. Da die Kurve $t \to \exp(t, \theta)$ geodätisch mit Geschwindigkeit 1 ist, folgt

$$\left| \left| \frac{d}{dr} \exp(r, \theta) \right| \right| = 1 \implies E(r, \theta) = 1$$

Das Paar (r, θ) erfüllt die Geodätengleichung:

$$\ddot{\theta} + \Gamma_{11}^2 \dot{r}^2 + 2\Gamma_{12}^2 \dot{r} \dot{\theta} + \Gamma_{22}^2 \dot{\theta}^2 = 0$$

Da θ konstant ist, folgt $\Gamma^2_{11}=0.$ Weiterhin gilt (siehe Abschnitt Theorema Egregium)

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \Gamma_{11}^1 \\ \Gamma_{11}^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}E_r \\ F_r - \frac{1}{2}E_\theta \end{pmatrix} \quad \text{wobei } \Gamma_{11}^2 = 0$$

 $E=1 \implies E_r=E_\theta=0 \implies \Gamma^1_{11}=0$ und $F_r=0$. Also hängt $F(r,\theta)=\langle \exp_r, \exp_\theta \rangle$ nicht von von r ab!

Mit $\lim_{r\to 0} ||\exp_{\theta}|| = 0$ folgt also F = 0. Ausserdem folgt mit $\lim_{r\to 0} ||\exp_{\theta}|| = 0$ auch $\lim_{r\to 0} G(r,\theta) = \lim_{r\to 0} \langle \exp_{\theta}, \exp_{\theta} \rangle = 0$.

Genauer: In erster Ordnung in r gilt $||\exp_{\theta}(r,\theta)|| = r$ (+höhere Terme) also

$$\lim_{r\to 0}\frac{d}{dr}\sqrt{G(r,\theta)}=\lim_{r\to 0}\frac{d}{dr}||\exp_{\theta}(r,\theta)||=1$$

Krümmung in geodätischen Polarkoordinaten

Wir betrachten eine lokale Parametrisierung exp : $U \to \Sigma$. Bezüglich Polarkoordinaten (r, θ) auf $U \subset \mathbb{R}^2$ gilt:

$$E = 1, F = 0, \Gamma_{11}^1 = \Gamma_{11}^2 = 0.$$

Weiterhin gilt:

gnt:
$$\underbrace{\begin{pmatrix} E & F \\ F & G \end{pmatrix}}_{=\begin{pmatrix} \Gamma & 1 \\ 12 \end{pmatrix}} \begin{pmatrix} \Gamma^{1}_{12} \\ \Gamma^{2}_{12} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}E_{\theta} \\ \frac{1}{2}G_{r} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2}G_{r} \end{pmatrix} \implies G\Gamma^{2}_{12} = \frac{1}{2}G_{r}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & G \end{pmatrix}$$

Berechnung der Krümmung mittels der Formel (Lemma, Theorema Egregium).

$$-EK = -K = (\Gamma_{12}^2)_r + (\Gamma_{12}^2)^2 \qquad \text{Viele Terme streichen sich weg}$$
$$= \frac{d}{dr} \left(\frac{1}{2} \frac{G_r}{G} \right) + \left(\frac{1}{2} \frac{G_r}{G} \right)^2 \text{ benutze } G \neq 0, \text{ da det } \neq 0$$

Proposition 3.
$$K = -\frac{(\sqrt{G})_{rr}}{\sqrt{G}}$$

Beweis.

$$\begin{split} K &= -\frac{(\sqrt{G})_{rr}}{\sqrt{G}} = -\frac{1}{\sqrt{G}} \left(\frac{1}{2} \frac{G_r}{\sqrt{G}}\right)_r \\ &= -\frac{1}{2} \frac{G_{rr}}{G} + \frac{1}{4} \frac{(G_r)^2}{G^2} \\ &= -\frac{1}{2} \left(\frac{G_r}{G}\right)_r - \frac{1}{4} \frac{G_r^2}{G^2} = K \end{split}$$

Anwendung. Sei $\Sigma \subset \mathbb{R}^3$ eine glatte reguläre Fläche, und exp : $U \to \Sigma$ eine lokale Parametrisierung. Wir machen für die Koeffizientenfunktion $\sqrt{G(r,\theta)}$ eine Taylorentwicklung.

Ansatz. Unter Berücksichtigung von $\lim_{r\to 0} \sqrt{G} = 0$, $\lim_{r\to 0} \sqrt{G_r} = 1$, sowie Prop. 4 $\sqrt{G} = r + a(\theta)r^2 + b(\theta)r^3 + ...$, (Restterm $R(r,\theta)$ erfüllt $\lim_{r\to 0} \frac{1}{r^3} R(r,\theta) = 0$)

$$\implies \sqrt{G_{rr}} = 2a(\theta) + 6b(\theta)r + \text{h\"o}\text{here Terme}$$

Prop. 5

$$\implies K = -\frac{\sqrt{G}_{rr}}{\sqrt{G}} = \frac{2a(\theta) + 6b(\theta)r + \dots}{r + a(\theta)r^2 + b(\theta)r^3 + \dots}$$

Die Grenzbetrachtung $r \to 0$ liefert:

- $a(\theta) = 0$ (da K nicht $\to \infty$ gehen darf wegen Glattheit)
- $b(\theta) = \frac{K}{6}$.

Damit erhalten wir $\sqrt{G} = r - \frac{K}{6}r^3 + R(r, \theta)$ Sei $p \in \Sigma$ und r > 0.

Definition. Definiere $K^{\Sigma}(p,r) = \exp(K_0(r))$, wobei $K_0(r) = \{z \in T_p\Sigma | |z| = r\}$ "Kreis um p in Σ mit Radius r, den Kreis runterlegen"

Setze $U^{\Sigma}(p,r)$ =Länge $(K^{\Sigma}(p,r)) = \int_0^{2\pi} \sqrt{G} \, d\theta$. Weglänge war definiert $\int_0^t \sqrt{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2} \, dt$ hier $u=r,v=\theta$.

Theorem 2 (Umfangdefektformel).

$$K(p) = \lim_{r \to \theta} \frac{2\pi r - U^{\Sigma}(p, r)}{r^3} \frac{3}{\pi}$$

Beweis. Berechne

$$\begin{split} U^{\Sigma}(p,r) &= \int_0^{2\pi} \sqrt{G(r,\theta)} \, d\theta \\ &= \int_0^{2\pi} \left[r - \frac{K(p)}{6} r^3 + R(r,\theta) \right] d\theta \\ &= 2\pi r - \frac{2\pi}{6} K(p) r^3 + \int_0^{2\pi} R(r,\theta) \, d\theta \\ &\Longrightarrow \lim_{r \to 0} \frac{2\pi r - U^{\Sigma}(p,r)}{r^3} = \frac{\pi}{3} K(p) \end{split}$$

Geometrische Interpretation.

Anwendung (Flächen konstanter Krümmung). Falls K konstant ist, dann hat die Differentialgleichung $K\sqrt{G} = -\sqrt{G_{rr}}$ zur Anfangsbedingung $\sqrt{G}(0,\theta) = 0$ $\sqrt{G_r}(0,\theta) = 1$ siehe Prop. 4 eine eindeutige Lösung:

1.
$$K=0 \implies \sqrt{G(r,\theta)}=r$$
 also $G=r^2$

2.
$$K > 0 \implies \sqrt{G(r,\theta)} = \frac{1}{\sqrt{K}}\sin(\sqrt{K}r)$$
 also $G = \frac{1}{K}\sin(\sqrt{K}r)^2$

3.
$$K < 0\sqrt{G(r,\theta)} = \frac{1}{\sqrt{-K}}\sinh(\sqrt{-K}r)$$
 wobei $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$

In allen Fällen ist G unabhängig von θ !

Kreisumfang:

• K=0 siehe Weglänge $\int_0^T \sqrt{\dot{r}^2 E + \dot{u} \dot{v} F + \dot{v}^2 G} \ dt$

$$U(r) = \int_0^{2\pi} \sqrt{G} \ d\theta = \int_0^{2\pi} r \ d\theta = 2\pi r$$

• $K = 1 \text{ mit } \sin(x) = x - \frac{x^3}{3!} + \dots$

$$U(r) = \int_0^{2\pi} \sqrt{G} \ d\theta = 2\pi \sin(r)$$

• K = -1 "Umfang wächst exponentiell"

$$U(r) = 2\pi \sinh(r) \sim e^r$$

Theorem 3 (Minding 1839). Seien Σ_1, Σ_2 reguläre Flächen mit derselben konstanten Krümmung K, und $p_1 \in \Sigma_1, p_2 \in \Sigma_2$. Dann existiert $U_1 \subset \Sigma_1, U_2 \subset \Sigma_2$ offen mit $p_i \in U_i$ und eine lokale Isometrie $h: U_1 \to U_2$.

Beweis. Bezüglich geodätischer Polarkoordinaten um p_1, p_2 sind die Koeffizientenfunktionen E = 1, F = 0, G durch K bestimmt, also identisch. Wir folgern, dass Σ_1, Σ_2 lokal isometrisch sind (siehe Abschnitt Isometrien).

1.4 Der Satz von Gauss-Bonnet

Sei $\Sigma \subset \mathbb{R}^3$ eine glatte reguläre Fläche. Wir betrachten das Standarddreieck $\Delta \subset \mathbb{R}^3$ mit Eckpunkten e_1, e_2, e_3 .

Ein Dreieck in Σ ist das Bild von \triangle unter einer glatten Abbildung $\varphi : \triangle \to \Sigma$. Falls die Kanten von $\varphi(\triangle)$ Segmente von Geodäten sind, dann heisst das Dreieck geodätisch.

Definition. Ein geodätisches Dreieck in $\Sigma \subset \mathbb{R}^3$ ist ein eingebettetes Dreieck, welches von drei geodätischen Segmenten begrenzt wird.

Theorem 4 (Lokale Version von Gauss-Bonnet). Sei $\triangle \subset \Sigma$ ein geodätisches Dreieck mit Innenwinkeln α, β, γ . Dann gilt

$$\int_{\triangle} K \, dA = \alpha + \beta + \gamma - \pi$$

Erinnerung. Flächenelement $dA = \sqrt{EG - F^2}$

Bemerkung. Bei konstanter Krümmung K=0 haben alle geodätischen Dreiecke die Innenwinkelsumme π

Geometrische Interpretation. $\alpha+\beta+\gamma>0\\ K>0$ $\alpha+\beta+\gamma<0\\ K<0$

 $HieristnocheinFehler, \alpha + \beta + \gamma - \pi > 0oder < 0$

Vorbereitung. Additivität der Formel: $\triangle = \triangle_1 \cup \triangle_2$

Beweis. Wir nehmen zunächst an, es gäbe eine lokale Parametrisierung der Form $\varphi = \exp : U \to \Sigma$ mit $\triangle_A \subset \varphi(U)$ und $\varphi(0)$ sei ein Eckpunkt von \triangle , ebenso sei $B \in \varphi(U \cap \mathbb{R} \times \{0\})$

Abbildung 1.1: Interpretation von exp

Parametrisiere den Weg $\delta: [0, \alpha] \to \Sigma$ durch $\delta(\theta) = \exp(r(\theta), \theta)$. Berechne

$$\int_{\triangle} K \, dA = \int_{\varphi^{-1}(\triangle)} K(r,\theta) \sqrt{EG - F^2} \, dr d\theta$$

$$\stackrel{E=1,F=0, \text{ da } \varphi = \exp}{=} \int_{\varphi^{-1}(\triangle)} K \sqrt{G} \, dr d\theta$$

$$\stackrel{\text{Prop. 5}}{=} \int_{\varphi^{-1}(\triangle)} -\sqrt{G_{rr}} \, dr d\theta$$

$$= -\int_{0}^{\alpha} \int_{0}^{r(\theta)} \sqrt{G_{rr}} \, dr d\theta$$

$$= -\int_{0}^{\alpha} \left[\sqrt{G_{r}} (r(\theta), \theta) - \sqrt{G_{r}} (0, \theta) \right] \, d\theta$$

$$= \alpha - \int_{0}^{\alpha} \sqrt{G_{r}} (r(\theta, \theta)) \, d\theta$$

Lemma.

$$-\sqrt{G_r}(r(\theta, d\theta)) = \frac{\partial \psi}{\partial \theta}$$

wobei $\psi(\theta)$ der Winkel zwischen e_r und $\dot{\delta}(\theta)$ ist.

Abbildung 1.2: Darstellung von Lemma

Insbesondere gilt $\psi(0) = \pi - \beta$ und $\psi(\alpha) = \gamma$. Mit dem Lemma folgt also

$$\int_{\triangle} K dA = \alpha + \int_{0}^{\alpha} \frac{\partial \psi}{\partial \theta} d\theta$$
$$= \alpha + \psi(\alpha) - \psi(0)$$
$$= \alpha + \beta + \gamma - \pi$$

Lemma. Berechne

$$\sqrt{G_r} = \frac{1}{2} \frac{G_r}{\sqrt{G}} = \frac{1}{2\sqrt{G}} \frac{\partial}{\partial r} \underbrace{\langle \varphi_{\theta}, \varphi_{\theta} \rangle}_{=G}
= \frac{1}{\sqrt{G}} \langle \varphi_{r\theta}, \varphi_{\varphi_{\theta}} \rangle = \langle \frac{\partial \varphi_r}{\partial \theta}, \frac{\varphi_{\theta}}{||\varphi_{\theta}||} \rangle$$

wobei im letzten Schritt $\varphi_{r\theta} = \varphi_{\theta r}$ und $\sqrt{G} = ||\varphi_{\theta}||$ verwendet wird. Wir erinnern uns daran, dass

$$\left\langle \frac{\partial \varphi_r}{\partial \theta}, \frac{\varphi_{\theta}}{||\varphi_{\theta}||} \right\rangle = -\frac{\partial \psi}{\partial \theta}$$

"Die Winkeländerung von ψ und φ_r stimmen überein."

Bemerkung. Falls $\triangle \subset \Sigma$ nicht im Bild einer Parametrisierung $\varphi = \exp : U \to \Sigma$ liegt, unterteile \triangle iteriert, bis alle Teildreiecke diese Eigenschaft haben.

Alle Flächen die wir betrachten sind abgeschlossen und kompakt. Sei $\Sigma \subset \mathbb{R}^3$ eine kompakte, glatte Fläche ohne Rand.

Definition. Eine *Triangulierung* T von Σ ist eine endliche Vereinigung von Dreiecken in $\Sigma, \Delta_1, \Delta_2, \ldots, \Delta_n$ mit folgenden Eigenschaften.

1.
$$\bigcup_{i=1} \triangle_i = \Sigma$$

Abbildung 1.3: Beweis geometrisch

Abbildung 1.4: Iterationsschritt (Seiten halbieren)

2. $\triangle_i \cap \triangle_j = \emptyset$ falls $i \neq j$, ein gemeinsamer Eckpunkt, eine, zwei, oder drei gemeinsame Kanten

Beispiel. 4 Dreiecke 2 Eckpunkte, 6 Kanten

Falls alle Katen geodäsche Segmente sind, dann heisst die Triangulierung geodätisch.

Theorem 5 (Gauss-Bonnet globale Version).

$$\int_{\Sigma} K \ dA = 2\pi * \chi(\Sigma)$$

wobei $\chi(\Sigma)$ die Eulercharakteristik von Σ , zu berechnen wie folgt: $\chi(\Sigma) = e - k + n$ mit e = #Eckpunkte, k = #Kanten, n = #Dreiecke für irgendeine Triangulierung von Σ .

Theorem 6. Jede reguläre kompakte Fläche besitzt eine geodätische Triangulierung.

Beweis. siehe Ahlfors-Sari: Riemann Surfaces

Abbildung 1.5: Nicht erlaubte Triangulierungen

Abbildung 1.6: Triangulierung eines Torus

Beweis von Gauss-Bonnet. Sei $T = \triangle_1 \cup \triangle_2 \cup \cdots \cup \triangle_n$ eine geodätische Triangulierung von Σ . Berechne

$$\int_{\Sigma} K \, dA = \sum_{i=1}^{n} \int_{\Delta_{i}} K \, dA$$

$$= \sum_{i=1}^{n} (\alpha_{i} + \beta_{i} + \gamma_{i} - \pi)$$

$$= 2\pi e - n\pi \qquad (2\pi \text{ für jeden Eckpunkt})$$

$$= 2\pi (e - \frac{3}{2}n + n)$$

$$= 2\pi (e - k + n)$$

$$= 2\pi \chi(\Sigma)$$

wobei im letzten Schritt verwendet wird, dass jedes Dreieck drei Kanten hat. Jede Kante gehört zu zwei Dreiecken. $\implies k=\frac{3}{2}n$

Bemerkung. Aus dem obigen Beweis folgt, dass $\chi(\Sigma)$ unabhängig von T ist, zumindest für geodätische Triangulierungen. Dies gilt auch für allgemeine, nicht geodätische Triangulierungen.

Abbildung 1.7: Ändere die Triangulierung

Beispiele (sehr wichtig). 1. $\chi(S^2)=3-3+2=2 \implies \int_{S^2} K \ dA=4\pi$ (klar, da K=1 und Area $(S^2)=4\pi$)

Wir folgern daraus, dass Oberflächen, welche topologisch gleich sind, die gleiche

Krümmung haben. "Ingwersphäre"

$$\int\limits_{\mathbb{R}^n} K \ dA = 4\pi$$

2. $\chi(S^1 \times S^1) = \chi(\bigcirc) = 2 - 6 + 4 = 0$ siehe oben. $\Longrightarrow \int_{\bigcirc} K \ dA = 0$. Was tun, falls wir das nicht gewusst hätten? Trick: Schneide und klebe!

$$\int_{\mathbb{C}} K \, dA = 2 \int_{\mathbb{C}} K \, dA = 2 \left(\int_{\mathbb{C}} K \, dA - 2 \int_{\mathbb{C}} K \, dA \right) = 0$$

Daraus folgt auch $\chi(\bigcirc) = 0$.

3. Betrachte $\Sigma_2 = \bigcirc$

$$\int K dA = 2 \int K dA = 2 \left(\int K dA - \int K dA \right) = -4\pi$$

Daraus folgt $\chi(\bigcirc) = -2$ Induktiv erhalten wir für $\Sigma_g = \bigcirc$ g Henkel:

$$\chi(\Sigma_g) = 2 - 2g$$

Dabei haben wir schon Spezialfälle davon gesehen:

- g = 0 Sphäre $\chi = 2$
- g = 1 Torus $\chi = 0$