Peergrade assignment 2

September 19, 2024

Exercise 1

a.
$$(A \cup C) \cap B = \{1, 2, 4\}$$

b.
$$A \cup (C - B) = \{2, 3, 4, 5\}$$

c.
$$C \times A = \{(1,2), (1,4), (3,2), (3,4), (5,2), (5,4)\}$$

d.
$$\mathcal{P}(A) = \{\emptyset, \{2\}, \{4\}, \{2, 4\}\}$$

 $\gcd(2346, 1564) = \gcd(1564, 782)$

e.
$$B^{\complement} \cap C = \{3, 5\}$$

Exercise 2

$ \begin{array}{r} 2 \\ \hline 2346) 6256 \\ \hline 4692 \\ \hline 1564 \end{array} $	Divide 6256 by 2346
$6256 = 2346 \cdot 2 + 1564$	by the Quotient-Remainder Theorem (Theorem 4.5.1 of textbook)
$\gcd(6256, 2346) = \gcd(2346, 1564)$	by Lemma 4.10.2 of textbook
$ \begin{array}{r} 1564 \overline{\smash{\big)}\ 2346} \\ \underline{1564} \\ \hline 782 \end{array} $	Divide 2346 by 1564
$2346 = 1564 \cdot 1 + 782$	by the Quotient-Remainder Theorem

by Lemma 4.10.2 of textbook

$$\begin{array}{r}
 2 \\
 \hline
 782)1564 \\
 \hline
 1564 \\
 \hline
 0
 \end{array}$$

Divide 1564 by 782

 $1564 = 782 \cdot 2 + 0$

by the Quotient-Remainder Theorem

 $\gcd(1564, 782) = \gcd(782, 0)$

by Lemma 4.10.2 of textbook

 $\gcd(6256,\,2346)=\gcd(2346,\,1564)$

Put together all equations

 $=\gcd(1564, 782)$

 $= \gcd(782, 0)$

= 782

by Lemma 4.10.1 of textbook

Therefore, gcd(6256, 2346) = 782.

Exercise 3

a. For all integers a and b, if a is odd and b is odd, then a + b is even.

Let a and b be odd integers.

By the first fact given by the assingment, since a and b are odd, there is an integer k such that

$$a = 2k + 1 \tag{1}$$

and there is also an integer r such that

$$b = 2r + 1 \tag{2}$$

From (1) and (2), the sum of a and b is

$$a + b = (2k + 1) + (2r + 1)$$
$$= 2k + 2r + 2$$

And by the distributive law

$$a+b=2\cdot(k+r+1)$$

where (k + r + 1) is an integer (let's name it n) since it is the sum of integers.

Thus, $a+b=2\cdot n$ and by the second fact given by the assignment, a+b is even.

b. For all integers a, b and c, if $a \nmid bc$ then $a \nmid b$.

Contrapositive: For all integers a,b and c, if $a \mid b$ then $a \mid bc$.

By definition of divisibility, since $a \mid b$, there is an integer k such that

$$b = a \cdot k$$

By multiplying each side by c and ,

$$bc = (a \cdot k) \cdot c$$

By the associative law for multiplication $(a \cdot k) \cdot c = a \cdot (k \cdot c)$. Hence

$$bc = a \cdot (k \cdot c)$$

where $(k \cdot c)$ is an integer (let's name it n) since it is the product of integers.

Thus, $bc = a \cdot n$ and by the definition of divisibility, $a \mid bc$.

Since the statement "if $a \mid b$ then $a \mid bc$ " is true, by contraposition, the statement "if $a \nmid bc$ then $a \nmid b$." is also true.