NRF24L01(贴片)无线传输模块

一.产品特点:

- 1.2.4G 全球开放 ISM 频段,最大 0dBm 发射功率,免许可证使用
- 2. 支持六路通道的数据接收, 2Mbit/s 使得高质量的 VoIP 成为可能
- 3.2MBPS 速率下接收时的峰值电流 12.5mA
- 4. 在 2Mbit/s速率下@OdBm输出时的峰值电流 11mA
- 5. 掉电模式下的功耗 400nA
- 6. 待机模式下的功耗 32uA
- 7. 130us 的快速切换和唤醒时间
- 8. 可在 1.9 to 3.6V低电压工作
- 9. 19mm*12mm超小尺寸

10.模块管脚标准贴片 1.27mm

应用:遥控、遥测、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触 RF 智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、无线 232、无线 422/485 数据通信等。

二.引脚说明:

管脚		功能	方向	备注
PIN 1	VCC	电源 , 1.9-3.6V 输入		
PIN 2	CE	工作模式选择 ,TX 或 RX 模式选择	I	
PIN 3	CSN	SPI 片选使能,低电平使能	I	
PIN 4	SCK	SPI 时钟	I	
PIN 5	MOSI	SPI 输入	I	
PIN 6	MISO	SPI 输出	О	
PIN 7	IRQ	中断输出	О	
PIN 8	GND	地线		

表 2-1 引脚说明

三.硬件接口:

图 4-1 硬件接口

图中给出 PTR6000 的用户接口,该接口由 6 个数字输入/输出 I/O 组成,按照工作可分为如下:

1、模式控制

工作模式由 CE 和寄存器内部 PWR UP、PRIM RX 共同控制,见下表 4-1:

模式	PWR_UP	PRIM_RX	CE	FIFO 寄存器状态
接收模式	1	1	1	-
发射模式	1	0	1	数据在 TX FIFO 寄存器中
发射模式	1	0	1→0	停留在发射模式,直至数据发送完
待机模式 II	1	0	1	TX FIFO 为空
待机模式 I	1	-	0	无正在传输的数据
掉电模式	0	-	10°2	-

表 4-1 工作模式

2、SPI接口

SPI 接口由 SCK、MISO、MOSI 以及 CSN 组成:

- 1) 在待机或掉电模式下,单片机通过 SPI 接口配置 PTR6000 的工作参数;
- 2) 在发射/接收模式下,单片机 SPI 接口发送和接收数据;

3、中断输出接口 IRQAM

可提供如下几种中断输出(可选):数据发射结束 TX_DS 、数据接收就绪 RX_DR 、重发次数达到最大 MAX_RT 。

四.典型应用:

应用之三:构成点对多点双向数据传输通道,用于无线抄表、无线数传等。

PTR6000

MCU+RS232

PC

绝对极限参数

工作电压

VSS-----0V

输入电压

输出电压

Vo VSS to VDD

总功耗

PD (TA=+85°C)60mW

温度

注意:强行超过一项或多项极限值使用将导致器件永久性损坏。

小心: 静电敏感器件。操作时遵守防护规则。

