Segundo Trabajo Estadística II

Pruebas de Hipótesis

Integrantes:

- 1. Juan David Mena Gamboa
- 2. Luis Angel Bolaño Lopez
 - 3. Heyner

22 de septiembre de 2025

Ejercicio 1: Prueba de hipótesis para la media de una muestra con varianza conocida

- Planteamiento del problema: Se desea evaluar si el ahorro promedio por criar animales en la población difiere significativamente de 100,000 pesos.
- Hipótesis: $H_0: \mu = 100,000$ $H_1: \mu \neq 100,000$
- Nivel de significancia: $\alpha = 0.05$
- Estadístico de Prueba: Z

Estadístico Empleado	Z para media con varianza conocida
Fórmula del estadístico	$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$
Nombre Parámetro	Valor
Media poblacional bajo H_0 (μ_0)	100,000
Desviación estándar poblacional (σ)	500,000
Tamaño de muestra (n)	4,080
Media muestral (\bar{X})	159,471.37
Valor Estadístico	7.597
Valor P	< 0,001

- Regla de decisión: Rechazar H_0 si |Z| > 1,96 o si p-valor < 0,05
- Decisión: Rechazar H_0
- Conclusión: Existe evidencia estadística suficiente para concluir que el ahorro promedio por criar animales en la población difiere significativamente de 100,000 pesos.
 El ahorro promedio observado (159,471.37 pesos) es significativamente mayor al valor hipotético.

Ejercicio 2: Prueba de hipótesis para la proporción de una muestra

■ Planteamiento del problema: Se desea evaluar si la proporción de personas que asistieron a reuniones familiares difiere del 50 %.

• Hipótesis: $H_0: p = 0.5$ $H_1: p \neq 0.5$

• Nivel de significancia: $\alpha = 0.05$

■ Estadístico de Prueba: Z

Estadístico Empleado	Z para proporción
Fórmula del estadístico	$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$
Nombre Parámetro	Valor
Proporción bajo H_0 (p_0)	0.5
Tamaño de muestra (n)	166,341
Proporción muestral (\hat{p})	0.0175
Error estándar (SE)	0.0012
Valor Estadístico	-393.54
Valor P	< 0,001

■ Regla de decisión: Rechazar H_0 si |Z| > 1,96 o si p-valor < 0,05

• Decisión: Rechazar H_0

 Conclusión: Existe evidencia estadística suficiente para concluir que la proporción de personas que asistieron a reuniones familiares difiere significativamente del 50 %.
 La proporción observada (1.75 %) es significativamente menor al valor hipotético.

Ejercicio 3: Prueba de hipótesis para la media de una muestra con varianza desconocida

■ Planteamiento del problema: Se desea evaluar si el valor promedio mensual por prácticas o pasantías difiere de 200,000 pesos.

• Hipótesis: $H_0: \mu = 200,000$ $H_1: \mu \neq 200,000$

• Nivel de significancia: $\alpha = 0.05$

■ Estadístico de Prueba: t

Estadístico Empleado	t para media con varianza desconocida
Fórmula del estadístico	$t = \frac{X - \mu_0}{s / \sqrt{n}}$
Nombre Parámetro	Valor
Media poblacional bajo H_0 (μ_0)	200,000
Tamaño de muestra (n)	336
Grados de libertad (df)	335
Media muestral (\bar{X})	998,708.33
Desviación estándar muestral (s)	621,977.40
Valor Estadístico	23.539
Valor P	< 0,001

■ Regla de decisión: Rechazar H_0 si |t| > 1,967 o si p-valor < 0,05

• Decisión: Rechazar H_0

• Conclusión: Existe evidencia estadística suficiente para concluir que el valor promedio mensual por prácticas difiere significativamente de 200,000 pesos. El valor promedio observado (998,708.33 pesos) es significativamente mayor al valor hipotético.

Ejercicio 4: Prueba de hipótesis para la diferencia de medias de dos muestras con varianzas conocidas

• Planteamiento del problema: Se desea evaluar si existe diferencia entre el ahorro promedio por cultivar y por criar animales.

• Hipótesis: $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$

• Nivel de significancia: $\alpha = 0.05$

• Estadístico de Prueba: Z

Estadístico Empleado	Z para diferencia de medias con varian- zas conocidas
Fórmula del estadístico	$Z = \frac{(X_1 - X_2) - 0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$
Nombre Parámetro	Valor
Media muestra 1 (cultivar)	126,937.56
Media muestra 2 (criar)	159,471.37
Desviación estándar 1 (σ_1)	300,000
Desviación estándar 2 (σ_2)	500,000
Tamaño muestra 1 (n_1)	2,892
Tamaño muestra $2 (n_2)$	4,080
Diferencia de medias	-32,533.81
Valor Estadístico	-3.385
Valor P	0.0007

■ Regla de decisión: Rechazar H_0 si |Z| > 1,96 o si p-valor < 0,05

• Decisión: Rechazar H_0

• Conclusión: Existe evidencia estadística suficiente para concluir que hay diferencia significativa entre el ahorro promedio por cultivar y por criar animales. El ahorro por criar animales es significativamente mayor que por cultivar.

Ejercicio 5: Prueba de hipótesis para la diferencia de medias de dos muestras con varianzas iguales y desconocidas

• Planteamiento del problema: Se desea evaluar si existe diferencia entre el valor promedio de prácticas y el ahorro promedio por cultivar, asumiendo varianzas iguales.

• Hipótesis: $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$

• Nivel de significancia: $\alpha = 0.05$

• Estadístico de Prueba: t (pooled)

Estadístico Empleado	t para diferencia de medias con varian-
•	zas iguales
Fórmula del estadístico	$t = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{s_p \sqrt{1/n_1 + 1/n_2}}$
Nombre Parámetro	Valor
Media muestra 1 (prácticas)	998,708.33
Media muestra 2 (cultivar)	126,937.56
Tamaño muestra 1 (n_1)	336
Tamaño muestra $2 (n_2)$	2,892
Grados de libertad (df)	3,226
Varianza combinada (s_p^2)	190,877,666,859
Diferencia de medias	871,770.77
Valor Estadístico	34.620
Valor P	< 0,001

■ Regla de decisión: Rechazar H_0 si |t| > 1,961 o si p-valor < 0,05

lacktriangle Decisión: Rechazar H_0

• Conclusión: Existe evidencia estadística suficiente para concluir que hay diferencia significativa entre el valor promedio de prácticas y el ahorro promedio por cultivar. El valor de prácticas es significativamente mayor que el ahorro por cultivar.

Ejercicio 6: Prueba de hipótesis para la diferencia de medias de dos muestras con varianzas desiguales y desconocidas

• Planteamiento del problema: Se desea evaluar si existe diferencia entre el valor promedio de prácticas y el ahorro promedio por criar animales, sin asumir varianzas iguales.

• Hipótesis: $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$

 \blacksquare Nivel de significancia: $\alpha=0.05$

• Estadístico de Prueba: t de Welch

Estadístico Empleado	t de Welch para diferencia de medias
Fórmula del estadístico	$t = \frac{(X_1 - X_2) - 0}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}}$
Nombre Parámetro	Valor
Media muestra 1 (prácticas)	998,708.33
Media muestra 2 (criar)	159,471.37
Tamaño muestra 1 (n_1)	336
Tamaño muestra 2 (n_2)	4,080
Grados de libertad (df)	373.42
Diferencia de medias	839,236.96
Error estándar	34,867.44
Valor Estadístico	24.069
Valor P	< 0,001

 \blacksquare Regla de decisión: Rechazar H_0 si |t|>1,966o si p-valor <0,05

 \bullet Decisión: Rechazar H_0

 Conclusión: Existe evidencia estadística suficiente para concluir que hay diferencia significativa entre el valor promedio de prácticas y el ahorro promedio por criar animales. El valor de prácticas es significativamente mayor que el ahorro por criar animales.

Ejercicio 7: Prueba de hipótesis para la diferencia de proporciones de dos muestras

• Planteamiento del problema: Se desea evaluar si existe diferencia en la proporción de asistencia a reuniones familiares entre grupos de bajo y alto valor de prácticas.

• Hipótesis: $H_0: p_1 - p_2 = 0$ $H_1: p_1 - p_2 \neq 0$

 \bullet Nivel de significancia: $\alpha=0{,}05$

• Estadístico de Prueba: Z

Estadístico Empleado	Z para diferencia de proporciones
Fórmula del estadístico	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$
Nombre Parámetro	Valor
Proporción grupo bajo (\hat{p}_1)	0.0138
Proporción grupo alto (\hat{p}_2)	0.0085
Tamaño grupo bajo (n_1)	145
Tamaño grupo alto (n_2)	118
Proporción combinada (\hat{p})	0.0119
Diferencia de proporciones	0.0053
Valor Estadístico	0.427
Valor P	0.6697

 \bullet Regla de decisión: Rechazar H_0 si |Z|>1,96o si p-valor<0,05

lacktriangle Decisión: No rechazar H_0

• Conclusión: No existe evidencia estadística suficiente para concluir que hay diferencia significativa en la proporción de asistencia a reuniones familiares entre grupos de bajo y alto valor de prácticas.

Ejercicio 8: Prueba de hipótesis para muestras dependientes

• Planteamiento del problema: Se desea evaluar si existe diferencia sistemática entre el ahorro por cultivar y por criar animales en las mismas personas.

• Hipótesis: $H_0: \mu_d = 0$ $H_1: \mu_d \neq 0$

• Nivel de significancia: $\alpha = 0.05$

• Estadístico de Prueba: t pareado

Estadístico Empleado	t para muestras pareadas
Fórmula del estadístico	$t = \frac{d-0}{s_d/\sqrt{n}}$
Nombre Parámetro	Valor
Número de pares (n)	1,296
Grados de libertad (df)	1,295
Media de diferencias (d)	9,776.68
Desviación estándar de diferencias (s_d)	575,782.40
Error estándar de diferencias	15,993.96
Valor Estadístico	0.611
Valor P	0.5411

• Regla de decisión: Rechazar H_0 si |t| > 1,962 o si p-valor < 0,05

• Decisión: No rechazar H_0

Conclusión: No existe evidencia estadística suficiente para concluir que hay diferencia sistemática entre el ahorro por cultivar y por criar animales en las mismas personas.

Ejercicio 9: Prueba de bondad de ajuste

■ Planteamiento del problema: Se desea evaluar si la distribución observada de asistencia a reuniones familiares se ajusta a una distribución uniforme (50 %-50 %).

■ Hipótesis: H_0 : La distribución observada se ajusta a la esperada H_1 : La distribución observada no se ajusta a la esperada

• Nivel de significancia: $\alpha = 0.05$

 \bullet Estadístico de Prueba: χ^2

Estadístico Empleado	Chi-cuadrado de bondad de ajuste
Fórmula del estadístico	$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$
Nombre Parámetro	Valor
Número de categorías (k)	2
Grados de libertad (df)	1
Frecuencia observada "No" (O_1)	163,423
Frecuencia observada "Sí" (O_2)	2,918
Frecuencia esperada "No" (E_1)	83,170.5
Frecuencia esperada "Sf" (E_2)	83,170.5
Valor Estadístico	154,873.75
Valor P	< 0,001

■ Regla de decisión: Rechazar H_0 si $\chi^2 > 3,841$ o si p-valor < 0,05

• Decisión: Rechazar H_0

Conclusión: Existe evidencia estadística suficiente para concluir que la distribución observada de asistencia a reuniones familiares no se ajusta a una distribución uniforme. La proporción real de asistencia (1.75%) difiere significativamente del 50% esperado.

Ejercicio 10: Prueba de independencia

■ Planteamiento del problema: Se desea evaluar si existe asociación entre la asistencia a reuniones familiares y el nivel de valor de prácticas (agrupado en terciles).

■ Hipótesis: H_0 : Las variables son independientes H_1 : Las variables están asociadas

 \bullet Nivel de significancia: $\alpha=0{,}05$

 \bullet Estadístico de Prueba: χ^2

Estadístico Empleado	Chi-cuadrado de independencia
Fórmula del estadístico	$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$
Nombre Parámetro	Valor
Número de filas (r)	3
Número de columnas (c)	2
Grados de libertad (df)	2
Frecuencias observadas	Bajo: 125,0; 2,1
	Medio: 101,0; 1,1
	Alto: 106,0; 1,1
Frecuencias esperadas	Bajo: 125.5, 1.5
	Medio: 100.8, 1.2
	Alto: 105.7, 1.3
Valor Estadístico	0.257
Valor P	0.8793

 \blacksquare Regla de decisión: Rechazar H_0 si $\chi^2 > 5{,}991$ o si p-valor $< 0{,}05$

- Decisión: No rechazar H_0
- Conclusión: No existe evidencia estadística suficiente para concluir que hay asociación entre la asistencia a reuniones familiares y el nivel de valor de prácticas. Las variables parecen ser independientes.

Ejercicio 11: Prueba de signos

- Planteamiento del problema: Se desea evaluar si existe tendencia sistemática en las diferencias entre rankings de ahorro por cultivar y por criar animales.
- Hipótesis: H_0 : No hay diferencia sistemática de signos H_1 : Existe diferencia sistemática de signos
- Nivel de significancia: $\alpha = 0.05$
- Estadístico de Prueba: Prueba de signos

Estadístico Empleado	Prueba de signos para muestras pareadas
Fórmula del estadístico	Estadístico = min(pos, neg)
Nombre Parámetro	Valor
Número total de pares (n)	1,295
Diferencias positivas	679
Diferencias negativas	616
Empates	1
Estadístico (min)	616
Valor P	0.0849

- Regla de decisión: Rechazar H_0 si p-valor < 0.05
- Decisión: No rechazar H_0
- Conclusión: No existe evidencia estadística suficiente para concluir que hay tendencia sistemática en las diferencias entre rankings de ahorro por cultivar y por criar animales. Las diferencias parecen ser aleatorias.