ISTITUZIONI DI ALGEBRA

ESTENSIONI INTERE

- (Equivalenze di Intero) Sia $A \subseteq B$ un'estensione di anelli e sia $b \in B$. Allora le seguenti sono equivalenti:
 - 1. b è intero su A
 - 2. A[b] (come sottoanello) è un A-modulo finito
 - 3. $\exists C \subseteq B$ sottoanello tale che $A[b] \subseteq C$ e C è un A-modulo finito
 - 4. $\exists M, A[b]$ -modulo fedele (ovvero Ann (M) = 0) che sia finito come A-modulo.
- (Hamilton-Cayley) Se M è un A-modulo finito e $I \subseteq A$ ideale, $\phi: M \to M$ mappa di A-moduli tale che $\phi(M) \subseteq IM$, allora $\exists a_1, \dots, a_n \in I$ tali che $\phi^n + a_1\phi^{n-1} + \dots + a_n$ id = 0 (in Hom A(M,M))
- Valgono quindi le seguenti cose:
 - 1. Se b_1, \ldots, b_n sono interi su A, allora $A[b_1, \ldots, b_n]$ è un A-modulo finito
 - 2. $\overline{A}^B = \{b \in B \mid b \text{ intero su } A\}$ è un sottoanello di B.
 - 3. (Transitività Integrale) Se B è intero su A e C è intero su B, allora C è intero su A
 - 4. (Transitività Finita) Se B è finito su A e C è finito su B, allora C è finito su A
 - 5. (Idempotenza della Chiusura Integrale) Sia $A\subseteq B$ e $C=\overline{A}^B$. Allora $\overline{C}^B=C$
- (Stabilità per Localizzazione e Quoziente) Sia $A\subseteq B$ intera, S parte moltiplicativa di A e $I\subseteq B$ ideale. Allora si ha che:
 - 1. $S^{-1}A \rightarrow S^{-1}B$ è intera
 - 2. $A/I^c \rightarrow B/I$ è intera
- (Relazioni con estensioni di campi) Supponiamo A dominio e K= Frac (A) suo campo delle frazioni e consideriamo $A\subseteq K\subseteq L$ dove $^L/\!\!\!/K$ è algebrica. Definiamo $B=\overline{A}^L$.
 - 1. Sia $x \in L$ e μ_x suo polinomio minimo su K. Se $\mu_x \in A[t]$ allora x è intero su A.
 - 2. Se A è normale vale anche il viceversa, ovvero si ha x è intero su $A \Leftrightarrow \mu_x \in A[t]$.
- (UFD \implies normale) Se A è un UFD allora è normale.
- (estensioni intere di campi) Sia $A \subseteq B$ un'estensione intera di domini. Allora A è un campo $\Leftrightarrow B$ è un campo. Ne segue che:
 - 1. Sia $\mathfrak{q} \subseteq B$ un ideale. Allora \mathfrak{q} è massimale $\Leftrightarrow \mathfrak{q}^c$ è massimale
 - 2. Se prendo $\mathfrak p$ primo di A e $\mathfrak q_1,\mathfrak q_2\in\operatorname{Spec} B$ tali che $\mathfrak q_1^c=\mathfrak q_2^c=\mathfrak q$ e $\mathfrak q_1\subseteq\mathfrak q_2$ allora vale che $\mathfrak q_1=\mathfrak q_2$.
- (Lying Over) Se $A \subseteq B$ è intera, allora $\forall \mathfrak{p} \in \operatorname{Spec} A \ \exists \mathfrak{q} \in \operatorname{Spec} B$ tale che $\mathfrak{q}^c = \mathfrak{p}$, ovvero f^* : Spec $B \to \operatorname{Spec} A$ è surgettiva.
- (**Going Up**) Se $A \subseteq B$ è intera, allora ha la proprietà del going up, ovvero se $\forall \mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq A$ primi e $\forall \mathfrak{q}_1 \subseteq B$ primo tale che $\mathfrak{q}_1^c = \mathfrak{p}_1$ allora $\exists \mathfrak{q}_2 \supseteq \mathfrak{q}_1$ primo tale che $\mathfrak{q}_2^c = \mathfrak{p}_2$
- (Going Down) $A \subseteq B$ estensione intera di domini, con A normale allora vale la proprietà del going down, ovvero $\forall \mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq A$ primi e $\forall \mathfrak{q}_2 \subseteq B$ primo tale che $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$ si ha che $\exists \mathfrak{q}_1 \subseteq \mathfrak{q}_2$ primo tale che $\mathfrak{q}_1 \cap A = \mathfrak{p}_1$.
 - Da notare che serve sia la condizione di dominio che la normalità di A per far funzionare tutto ciò.
- Se A è un dominio normale, $K = \operatorname{Frac} A$ ed L/K è un'estensione algebrica di campi, $B = \overline{A}^L$, $I \subseteq A$ ideale, ed $x \in L$ allora x è intero su $I \Leftrightarrow \mu_{L/K,x} \in \sqrt{I}[t]$

- (Simil-Galois) Sia A normale e $K=\operatorname{Frac} A\subseteq L$ con L/K estensione di Galois finita e $B=\overline{A}^L$ e sia $G=\operatorname{Gal} L/K$. Allora si ha che:
 - 1. $g(B) \subseteq B \quad \forall g \in G$
 - 2. Fissato un primo $\mathfrak{p} \in \operatorname{Spec} A$ si ha $\mathcal{F}_{\mathfrak{p}} = \{ \mathfrak{q} \in \operatorname{Spec} B \, | \, \mathfrak{q} \cap A = \mathfrak{p} \}$ Allora G agisce transitivamente su $\mathcal{F}_{\mathfrak{p}}$
- (Chiusura integrale di A[x]) Sia $A \subseteq B$ e sia $C = \overline{A}^B$. Allora la chiusura integrale di A[x] in B[x] è C[x].
- (Interezza e Nötherianità) $A \subseteq B$ con A Nötheriano e B finito su A. Allora B è Nötheriano come anello.

Attenzione che $A \subseteq B$ con A Nötheriano ed estensione intera NON implica che B sia Nötheriano.

- Sia A dominio, $K = \operatorname{Frac} A$, L/K un'estensione finita di campi e sia $B = \overline{A}^L$. Allora si ha:
 - 1. È FALSO che se A è Nötheriano allora B lo sia.
 - 2. Se A è normale ed L/K è un'estensione separabile allora si ha che se A è Nötheriano allora B diventa un A-modulo finito e quindi è Nötheriano.
- A noetheriano e dominio, con $K=\operatorname{Frac} A\subseteq L$ campi e vorremmo poter dire qualcosa anche se A non è normale. Ci sono due casi significativi nei quali si ha che in queste ipotesi \overline{A}^K (la normalizzazione di A) è Nötheriana:
 - 1. $\dim A = 1$
 - 2. A è una K-algebra finitamente generata
- (Normalizzazione di Nöther) A K-algebra f.g. allora $\exists x_1, \dots, x_n \in A$ algebricamente indipendenti tali che A è finita (come modulo) su $K[x_1, \dots, x_n]$
- (Lemmi generici e fatti vari) Le seguenti cose valgono:
 - 1. E campo e sia A una E-algebra finitamente generata. Allora $\forall I \subseteq A$ si ha che

$$\sqrt{I} = \bigcap_{\mathfrak{m} \text{ massimali}} \quad \mathfrak{m} \supseteq I$$

- 2. A e B due K-algebre finitamente generate con K campo algebricamente chiuso ed A dominio. Se f^* : Max $B \to \text{Max } A$ è suriettiva allora f è iniettiva.
- 3. Per un modulo sono proprietà locali (e massimali) essere piatto, essere normale, essere nullo.
- 4. Per un modulo NON sono proprietà locali essere Noetheriano, essere dominio.
- 5. Per una sequenza di moduli essere esatta in un punto è una proprietà locale (e massimale)

Teoria della Dimensione e Grado di Trascendenza

- (Dimensione in estensioni intere) Se $A \subseteq B$ è intera allora dim $A = \dim B$ (è compreso il caso in cui entrambe le dimensione siano infinite)
- (Dimensione delle K-algebre f.g.) Sia K un campo e $f \in K[x_1, \ldots, x_n]$ con $f \neq 0$. Allora si ha dim $K[x_1, \ldots, x_n]_f = n$
- (Relazione con il grado di trascendenza) Sia A K-algebra f.g. e A dominio. Allora dim A = trdeg K
- (**Cardinalità di una base di trascendenza**) *A* dominio e *K*-algebra f.g. Allora tutte le basi di trascendenza hanno la stessa cardinalità.

Inoltre, se A è un dominio, E una K-algebra e sia $L=\operatorname{Frac} A$

1. $x_i \in A$ è una base di trascendenza di $A \Leftrightarrow lo$ è di L

- 2. Se y_1, \ldots, y_n è base di trascendenza di L su K allora $\exists b \in A$ tali che by_1, \ldots, by_n è una base di trascendenza di A.
- (Particolarità delle *K*-algebre) Per le *K*-algebre f.g. valgono le seguenti cose:
 - 1. Sono anelli catenari.
 - 2. Se A è dominio, preso un primo $\mathfrak p$ di altezza uno si ha dim $A/\mathfrak p=\dim A-1$
 - 3. $\mathfrak{p} \in \operatorname{Spec} A \implies \operatorname{ht} \mathfrak{p}, \operatorname{coht} p < +\infty$
 - 4. Se A è dominio si ha $\forall \mathfrak{p} \in \operatorname{Spec} A$ vale che dim $A = \operatorname{ht} \mathfrak{p} + \operatorname{coht} \mathfrak{p}$
- (Artinianità e Nötherianità) A artiniano se e solo se A Nötheriano e di dimensione zero.
- (Richiami di Decomposizione Primaria) Sia $I \subseteq A$ un ideale. Una decomposizione primaria di I è una scrittura $I = \bigcap_i Q_i$ dove i Q_i sono un numero finito di ideali primari. Se A è Nötheriano valgono:
 - 1. Primi associati ad I: Ass $I = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \exists x \in A \text{ t.c. } \mathfrak{p} = (I : x) \}$
 - 2. Gli zero divisori di *A* sono l'unione dei primi associati a zero:

$$\mathcal{D}(A) = \cup_{\mathfrak{p} \in \mathrm{Ass} \ 0} \mathfrak{p}$$

- 3. Ass $S^{-1}AS^{-1}I = Ass_AI \cap Spec_S^{-1}A$
- 4. Ass *I* è finito
- 5. Se \mathfrak{p} è minimale sopra I, allora \mathfrak{p} è associato ad I.
- (Esercizi e Lemmi vari) Valgono le seguenti cose:
 - 1. $\prod_{n=0}^{\infty} \mathbb{Z}$ NON è uno \mathbb{Z} -modulo libero
 - 2. $\prod_{n=0}^{\infty} \to^f \mathbb{Z}$ tale che $f(e_i) = 0 \quad \forall i$ allora deve essere che f = 0
 - 3. $X = \operatorname{Spec} A$ e $X_f := \{ \mathfrak{p} \subseteq A \mid f \notin \mathfrak{p} \} = X \setminus V(f)$ è un aperto di X. Questi sono un sistema fondamentale di aperti di X e si ha $X_f \cong \operatorname{Spec} A_f$
 - 4. K((t)) NON è algebrico su K(t)
 - 5. $X = \operatorname{Spec} A$ è compatto, qualunque sia A.
 - 6. $A \subseteq B$ intera $\implies f^*$ chiusa
 - 7. f^* chiusa \implies vale il Going Up.

DIMENSIONE E ANELLI GRADUATI

- (Serie di Jordan-Hölder) A anello c.u., M un A-modulo. Una serie di Jordan-Hölder per M è una successione crescente di sottomoduli $0 = M_1 \subsetneq \ldots \subsetneq M_n = M$ tali che M_i/M_{i-1} è un A-modulo semplice (ovvero è diverso dal modulo nullo e non ha sottomoduli propri)
- (Lunghezza di un Modulo) Se M ha una serie di JH, diciamo che la lunghezza di M è finita e definiamo $\ell(M) = \min\{n \mid \exists \text{ serie di JH con } n+1 \text{ termini } \}$
- (Lunghezza delle serie di JH) Tutte le serie di JH di uno stesso modulo hanno la stessa lunghezza ed inoltre i fattori M_i/M_{i-1} sono uguali per ogni serie, a meno di permutazioni.
- (Comportamento per sequenze esatte) Sia data una sequenza esatta corta di A-moduli $0 \to X \to Y \to Z \to 0$. Allora vale che:
 - 1. $\ell(X), \ell(Z) < +\infty \Leftrightarrow \ell(Y) < +\infty$
 - 2. $\ell(Y) = \ell(X) + \ell(Z)$

Inoltre si ha che per un generico modulo M vale $\ell(M) < \infty \Leftrightarrow M$ è artiniano e Nötheriano.

• (Anelli graduati noetheriani) A anello graduato, allora A è noetheriano se e solo se A_0 è noetheriano ed A è f.g. come A_0 -algebra.

- (Funzione e Serie di Hilbert) Preso A graduato, A_0 artiniato, A noetheriano, M graduato e f.g. (ovvero M noetheriano) definiamo:
 - 1. $n \mapsto \ell_{A_0}(M_n)$ funzione di Hilbert
 - 2. $P_M(t) := \sum_n t^n \ell_{A_0}(M_n)$ serie di Hilbert

Inoltre in queste ipotesi se si ha una sequenza esatta corta con morfismi graduati di grado zero: $0 \to X \to^{\phi} Y \to^{\psi} Z \to 0$ allora sono definiti i polinomi di hilbert e vale che $P_Y = P_X + P_Z$

• (Teorema di Hilbert) A graduato, M graduato, A_0 artiniano e A noetheriano, M f.g. e si chiamino a_1, \ldots, a_k i generatori omogenei di A come A_0 -algebra e $d_i := \deg a_i$. Allora $\exists f \in \mathbb{Z}[t, t^{-1}]$ polinomio di Laurent tale che

$$P_M(t) = \frac{f(t)}{\prod_{i=1}^{k} (1 - t^{d_i})}$$

- (funzione di Hilbert e grado) Se A è generato in grado 1 allora la funzione di Hilbert (nelle ipotesi precedenti) per n grandi coincide con i valori assundi da un polinomio di grado d(M) 1 (dove d(M) è l'ordine di polo in 1 della funzione razionale P_M)
- (Analogo di Nakyama) A graduato, M graduato f.g. e supponiamo che $A_+M=M$ allora M=0

FILTRAZIONI, GRADUATO ASSOCIATO E SCOPPIAMENTO

- (Filtrazione) Sia A un anello e supponiamo di avere $A = I_0 \supseteq I_1 \supseteq \ldots \supseteq I_n \supseteq \ldots$ (che viene detta una filtrazione \mathcal{F}) con $I_k I_h \subseteq I_{h+k}$. Il graduato associato allora è $\tilde{A} = \operatorname{Gr}_{\mathcal{F}}(A) = \bigoplus_{k=0}^{\infty} I_k / I_{k+1} = \bigoplus \tilde{A}_k$ e viene indotto un prodotto.
 - Se I è un ideale di A possiamo considerare $I_h = I^h$, dove la potenza è intesa come moltiplicazione di ideali. Allora si ha $\operatorname{Gr}_I(A) = \bigoplus_{k \geq 0} I^k / I^{k+1}$ e lo scoppiamento di A in I è $\operatorname{Bl}_I(A) = A \oplus I \oplus I^2 \oplus \ldots$, dove si ha $B_k = I^k$ ($B_0 = A$). Allora per definizione il prodotto verifica $B_h B_k \subseteq B_{h+k}$
- (Noetherianità dei graduati) Se A è Nötheriano allora Gr $_I(A)$ e Bl $_I(A)$ sono a loro volta noetheriani e sono finitamente generati in grado 1 come B_0 -algebra.
- (Esempio) Sia $A = \frac{\mathbb{C}[x_1, \dots, x_n]}{(f)}$ con f irriducibile e sia $f = \sum_i f_i$ con f_i omogenei. Sia $k = \min\{i \mid f_i \neq 0\}$. Allora considerando $\mathfrak{m} = \frac{(x_1, \dots, x_n)}{(f)}$ che è un massimale di A si ha che $\mathrm{Gr}_{\mathfrak{m}}(A) = \frac{\mathbb{C}[y_1, \dots, y_n]}{(f_k)}$
- (Filtrazioni di Moduli) Sia A un anello ed I un ideale di A, M un A-modulo. Allora una I-filtrazione $\mathcal F$ di M è

$$M = M_0 \supseteq M_1 \supseteq M_2 \supseteq \dots$$

tale che si abbia $I^k M_h \subseteq M_{h+k}$.

Ad essa posso allora associare un graduato Gr $_{\mathcal{F}}(M)=\oplus_i M_i/M_{i+1}$ ed uno scoppiamento Bl $_{\mathcal{F}}(M)=\oplus_{i\geq 0}M_i$ e di M_i si dice che è "di grado i"

Si nota inoltre che Gr $_{\mathcal{F}}M$ è un Gr $_{I}A$ -modulo e che Bl $_{\mathcal{F}}M$ è un Bl $_{I}A$ -modulo.

- (*I*-stabilità) Diciamo che una filtrazione \mathcal{F} $M_0 \supseteq M_1 \supseteq \dots$ è *I*-stabile se $\exists k$ tale che $M_{n+k} = I^n M_k$.
- (Esistenza di una filtrazione *I*-stabile) Una filtrazione *I*-stabile esiste sempre:

$$M \supset IM \supset I^2M \supset \dots$$

Ed è inoltre la più piccola *I*-filtrazione.

• (Lemma delle filtrazioni *I*-stabili) Se \mathcal{F} e \mathcal{F}' sono due *I*-filtrazioni *I*-stabili di M, date da:

$$\mathcal{F}: M = M_0 \supseteq M_1 \supseteq \dots \mathcal{F}': M_0' \supseteq M_1' \supseteq \dots$$

allora $\exists k>0$ tale che $M_n\supseteq M'_{n-k}$ e $M'_n\supseteq M_{n-k}$ $\forall n>>0$ (abbastanza grandi)

- (**Delle** *I*-filtrazioni sui **Noetheriani**) Sia A noetheriano, M un A-modulo f.g., \mathcal{F} una I-filtrazione. Allora valgono i seguenti:
 - 1. Se \mathcal{F} è I-stabile si ha Gr $\mathcal{F}M$ è Noetheriano, anzi è f.g. come Gr $\mathcal{F}A$ -modulo
 - 2. \mathcal{F} è *I*-stabile se e solo se Bl $_{\mathcal{F}}M$ è f.g. come Bl $_{I}A$ -modulo.
- (Lemma di Artin-Rees) A noetheriano, I ideale di A, M un A-modulo f.g., \mathcal{F} una I-filtrazione I-stabile

$$\mathcal{F}: M_0 \supseteq M_1 \supseteq \ldots \supseteq M_n \supseteq \ldots$$

e sia $N \subseteq M$ sottomodulo.

Allora $\mathcal{F} \cap N$ è ancora una filtrazione *I*-stabile.

• ("Limite" della filtrazione) Sia M un A-modulo f.g., con A noetheriano ed I un ideale di A. Allora si ha

$$\cap_n I^n M = \{ x \in M \mid \exists y \in I \text{ t.c. } (1 - y)x = 0 \}$$

Come corollari otteniamo immediatamente che se A è locale e noetheriano allora si ha $\bigcap_n \mathfrak{m}^n = 0$. Se invece A è un dominio noetheriano ed I è un suo qualunque ideale allora $\bigcap_n I^n = 0$.

- (Passaggio di dominio) Sia A noetheriano. Se $Gr_{\mathfrak{m}}A$ è un dominio allora A è un dominio.
- (Rapporto tra un po' di cose) Sia (A, \mathfrak{m}) un anello locale e noetheriano, I un ideale \mathfrak{m} -primario e M un A-modulo f.g. e \mathcal{F} una I-filtrazione stabile di M.

Siano $\tilde{A} = \operatorname{Gr}_I A$ e $\tilde{M} = \operatorname{Gr}_{\mathcal{F}} M$. Risulta allora definita una serie di Hilbert, ed un polinomio di Hilbert:

$$P(\tilde{M},t) = \sum_{n} t^{n} \ell_{A_{0}}(\tilde{M}_{n}) = \frac{f(t)}{(1-t)^{d}}$$

e si ha $\phi_{\tilde{M}}(n) = \ell_{A_0}(\tilde{M_n})$ ha grado d-1.

Infine indichiamo con S_I il minimo numero di generatori di I. In particolare \tilde{A} come \tilde{A}_0 -algebra è generata da al più S_I generatori. Vale allora il seguente lemma:

- 1. $d \leq S_I$
- 2. $\ell_A(M/M_n) < \infty$
- 3. Per n >> 0 vale che $\ell_A(M/M_n)$ è un polinomio di grado d
- 4. Il grado ed il coefficiente direttivo del polinomio NON dipendono dalla filtrazione scelta
- 5. Inoltre anche il grado di $n\mapsto \ell_A(^M/I^nM)$ non dipende da I.
- (Equivalenza tra le dimensioni) Sia (A, \mathfrak{m}) noetheriano locale e consideriamo M = A. Allora abbiamo che la dimensione di Krull di A, il minimo numero di generatori di un ideale \mathfrak{m} -primario ed il grado del polinomio di Hilbert di A come A-modulo coincidono.
- (**Corollario**) Per anelli *A* noetheriani vale che:
 - 1. Se A è locale, dim $A < \infty$
 - 2. $\forall \mathfrak{p}$ primo si ha ht $\mathfrak{p} = \dim A_{\mathfrak{p}} < \infty$
 - 3. $\{\mathfrak{p}\}_{\mathfrak{p}\subseteq A}$ soddisfa la condizione della catena discendente
 - 4. Se A è locale si ha dim $A \leq \dim_{\mathbb{K}}^{\mathfrak{m}}/\mathfrak{m}^2$ con $\mathbb{K} = A/\mathfrak{m}$
- (**Teorema dell'ideale principale di Krull**) Se A è noetheriano ed $x \in A$ un non divisore di zero e \mathfrak{p} è un primo minimale tra quelli contenenti x. Allora vale che ht $\mathfrak{p}=1$.

Una semplice generalizzazione dice che se A è noetheriano e $x_1,\ldots,x_k\in A$ e si ha $\mathfrak{p}\supseteq(x_1,\ldots,x_k)$ minimale tra gli ideali che li contengono tutti allora vale che ht $\mathfrak{p}\le k$

Ancora, se A è locale e noetheriano e $x \notin \mathcal{D}(A)$ vale che dim $\frac{A}{(x)} = \dim A - 1$

• (Anelli regolari) Sia (A, \mathfrak{m}) un anello locale e noetheriano. $\mathbb{K} = \frac{A}{\mathfrak{m}}$. Allora A si dice regolare se dim $A = \dim_{\mathbb{K}} \frac{\mathfrak{m}}{\mathfrak{m}^2}$, ovvero se \mathfrak{m} è generato come ideale da dim A elementi.

Più in generale un anello A si dice regolare se è regolare $A_{\mathfrak{m}}$ $\forall \mathfrak{m}$ massimale (è equivalente a chiederlo $\forall \mathfrak{p}$ con \mathfrak{p} primo, ma è piuttosto difficile da mostrare)

• (Teorema dello Jacobiano) Sia A una \mathbb{K} -algebra, $A = \left(\frac{\mathbb{K}[x_1,\dots,x_n]}{I}\right)_{\mathfrak{m}}$ con $I = (f_1,\dots,f_k)$ e tale che $I \subseteq (x_1,\dots,x_n) = \mathfrak{m}$.

Facciamo allora la matrice Jacobiana dei polinomi in zero $J=\left(\frac{\partial f_i}{\partial x_j}\mid_0\right)_{\substack{i=1,\dots,k\\j=1,\dots,n}}$ e supponiamo $d=\dim A$ e $r=\operatorname{rk} J$.

Allora A è regolare se e solo se n=d+r e vale inoltre che $I_{\mathfrak{m}}=(f_1,\ldots,f_r)$ a meno di riordinamenti (ovvero è generato da un qualunque insieme i cui gradienti siano linearmente indipendenti)

• (Regolarità per locali noetheriani) Sia (A, \mathfrak{m}) un anello locale noetheriano e $\mathbb{K} = \frac{A}{\mathfrak{m}}$ e dim A = d. Allora A è regolare se e solo se Gr $\mathfrak{m}A \cong \mathbb{K}[t_1,\ldots,t_d]$, dove l'isomorfismo è da intendersi come anelli graduati.

Come corollario si ottiene che un anello locale noetheriano e regolare è un dominio.

DIMENSIONI BASSE

- (Discrete Valuation Ring) Sia K un campo e si abbia $v: K \setminus \{0\} \to \mathbb{Q}$ una funzione "di valutazione", ovvero che soddisfi le seguenti proprietà:
 - 1. v(xy) = v(x) + v(y)
 - 2. $v(x+y) \ge \min\{v(x), v(y)\}$

Un dominio A si dice "di valutazione discreta" se $\exists v: \operatorname{Frac}(A)\setminus\{0\}\to\mathbb{Q}$ con $\Im v=q\mathbb{Z}$, con $q\in\mathbb{Q}^*$ e $A=A_v=\{x\in K\mid v(x)\geq 0\}\cup\{0\}$

• (Esempio) Se A è UFD, p un elemento primo allora si ha $v_p(x) = \max n \mid p^n \mid x$ ha le due proprietà di sopra e si può estendere a tutto $K = \operatorname{Frac} A$ nel seguente modo:

$$v_p(\frac{x}{y}) = v_p(x) - v_p(y)$$

In questo caso A è un DVR con la valutazione data da v_p .

- (**Proprietà dei DVR**) Se A è DVR allora si ha:
 - 1. A è Noetheriano
 - 2. *A* è PID
 - 3. $A
 in locale con
 m = {x \mid v(x) > 0}$
 - 4. $\mathfrak{m} = (t)$
 - 5. dim A = 1
 - 6. A è regolare
 - 7. A è UFD ed anche Normale
- (Lemma di equivalenze) Sia A dominio noetheriano normale, dim A=1. Allora le seguenti sono equivalenti:
 - 1. A è regolare
 - 2. A è normale
 - 3. *A* è DVR
 - 4. *A* è UFD

- (Dominio di Dedekind) Sia A dominio noetheriano di dimensione uno. A si dice dominio di Dedekind se è normale, ovvero se la localizzazione in tutti gli ideali massimali è normale, ovvero A_m è DVR ∀m massimale.
- Se A è un dominio Noetheriano normale, e $\mathfrak{p} \subseteq A$ è un ideale primo di altezza uno (ht $\mathfrak{p}=1$) allora si ha che $A_{\mathfrak{p}}$ è regolare.
- (Regolare in codimensione uno) A dominio noetheriano si dice regolare in codimensione uno se $\forall \mathfrak{p} \subseteq A$ primo di altezza uno si ha che $A_{\mathfrak{p}}$ è regolare.
- (Cosa non dimostrata) Sia A una \mathbb{K} -algebra dominio e $A = \frac{\mathbb{K}[x_1, \dots, x_n]}{(f_1, \dots, f_k)}$ e sia $\mathfrak{p} = (f_1, \dots, f_k)$, $d = \dim A$, \mathbb{K} algebricamente chiuso e r = n d. Allora vale che:
 - 1. Tutti i determinanti dei minori $(r+1) \times (r+1)$ della matrice Jacobiana $Jac = \left(\frac{\partial f_i}{\partial x_j}\right)$ sono elementi di $\mathfrak p$
 - 2. Sia J l'ideale generato dai determinanti dei minori $r \times r$. Allora, preso $\overline{\mathfrak{q}}$ primo di A con $\overline{\mathfrak{q}} = \mathfrak{q}/\mathfrak{p}$ si ha che $A_{\overline{\mathfrak{q}}}$ NON è regolare se e solo se $\mathfrak{q} \supseteq J$ Se pongo $\overline{J} = \frac{J+\mathfrak{p}}{\mathfrak{p}} \subseteq A$ allora $\overline{\mathfrak{q}}$ NON è regolare se e solo se $\overline{\mathfrak{q}} \supseteq \overline{J}$, ovvero $\overline{\mathfrak{q}} \in V(\overline{J}) \subseteq \operatorname{Spec} A$, o ancora $v(\overline{\mathfrak{q}}) \subseteq v(\overline{J}) \subseteq \mathbb{K}^n$
- (**Regolarità in codimensione per le** *K*-algebre) Se A è una \mathbb{K} -algebra allora essa è regolare in codimensione uno se si ha dim $A/\overline{\jmath} \leq \dim A 2$ (Con le notazioni precedenti)
- (Criterio di Serre) Sia A dominio noetheriano. Allora A è normale se e solo se vale uno dei seguenti:
 - 1. $\forall x \neq 0$ e $\forall \mathfrak{p} \in \mathrm{Ass}\;(x)$ si ha $\mathfrak{p}_{\mathfrak{p}}$ è principale ovvero $A_{\mathfrak{p}}$ è regolare
 - 2. $\forall x \neq 0$ e $\forall \mathfrak{p} \in \mathrm{Ass}\,(x)$ si ha ht $\mathfrak{p} = 1$. Inoltre vale che $\forall \mathfrak{p}$ tale che ht $\mathfrak{p} = 1$ si ha $A_{\mathfrak{p}}$ è regolare.
- (Caratterizzazione di UFD) A dominio noetheriano. Allora A è UFD se e soltanto se vale una delle seguenti:
 - 1. $\forall x \neq 0 \quad \forall \mathfrak{p} \in \mathrm{Ass}\,(x) \text{ si ha } \mathfrak{p} \text{ è principale}$
 - 2. $\forall x \neq 0 \quad \forall \mathfrak{p} \supseteq (x)$ minimale tra quelli che contengono (x) vale che \mathfrak{p} è principale.
- *A* dominio noetheriano e sia q un ideale \mathfrak{p} -primario e $S \subseteq A$ una parte moltiplicativa tale che $S \cap \mathfrak{p} = \emptyset$. Allora valgono che:
 - 1. $S^{-1}\mathfrak{q} \grave{e} S^{-1}\mathfrak{p}$ -primario
 - 2. $S^{-1}A \cap S^{-1}\mathfrak{q} = \mathfrak{q}$
 - 3. $(S^{-1}\mathfrak{p})^n = S^{-1}\mathfrak{p}^n$
 - 4. $S^{-1}\mathfrak{p}^n \cap A = \mathfrak{p}^n$
- $N \subseteq M$. Allora $x \in N \Leftrightarrow x \in N_{\mathfrak{p}} \quad \forall \mathfrak{p}$ primo.
- A dominio noetheriano e $I \subseteq A$ ideale allora si ha $x \in I \Leftrightarrow x \in I_{\mathfrak{p}} = IA_{\mathfrak{p}} \quad \forall \mathfrak{p}$ primo associato ad I.
- *A* dominio noetheriano e $K = \operatorname{Frac}(A)$. Allora dato un $x \in K$ si ha che $x \in A \Leftrightarrow x \in A_{\mathfrak{p}} \quad \forall \mathfrak{p} \in \mathcal{A}$, dove $\mathcal{A} = \{\mathfrak{p} \subseteq A \text{ primi } | \exists y \neq 0 \text{ t.c. } \mathfrak{p} \in \operatorname{Ass}(y)\}$
- (**Teorema di Hartogs**) Sia A dominio noetheriano normale. Allora si ha $A = \bigcap_{\mathfrak{p}} t.c.$ ht $\mathfrak{p}=1$ $A_{\mathfrak{p}}$

FIBRATI VETTORIALI E MODULI LOCALMENTE LIBERI

In questa sezione assumeremo l'ipotesi di A dominio noetheriano

- (Modulo localmente libero) M A-modulo f.g. si dice localmente libero se $\forall \mathfrak{p} \subseteq A$ primo $M_{\mathfrak{p}}$ è libero $(M_{\mathfrak{p}} \cong A_{\mathfrak{p}}^r)$
- (Caratterizzazione) Se M è un A-modulo f.g. allora sono equivalenti:
 - 1. M è localmente libero di rango r
 - 2. $\exists f_1, \ldots, f_k \in A$ tali che $(f_1, \ldots, f_k) = A$ e $M_{f_i} \cong A_{f_i}^r$
 - 3. M è proiettivo e $M \otimes_A K(A) \cong K(A)^r$

Osserviamo che se M è localmente libero e si ha $M_{\mathfrak{p}}\cong A^r_{\mathfrak{p}}$ allora $M\otimes_A K=S^{-1}M=M\otimes_{A_{\mathfrak{p}}}K\cong A^r_{\mathfrak{p}}\otimes_{A_{\mathfrak{p}}}K\cong K^r$ e quindi se in un primo ha rango r allora è uguale per tutti poiché $r=\dim_K K^r\cong \dim_K (M\otimes_A K)$ e viene detto rango.

- (Fibrato lineare) Un fibrato lineare è un modulo localmente libero di rango uno.
- (Lemma di isomorfismo) A noetheriano, S parte moltiplicativa e M f.g. allora si ha

$$S^{-1}\text{Hom }_A(M,N) \to \text{Hom }_{S^{-1}A}(S^{-1}M,S^{-1}N)$$

definita da $\frac{\phi}{s} \mapsto \frac{\phi}{s}(\frac{m}{t}) = \frac{\phi(m)}{st}$ è un isomorfismo.

- M un A-modulo, $M^* = \operatorname{Hom}_A(M,A)$ ed osservo che $\mu: M^* \otimes_A M \to A$ definita da $\phi \otimes m \mapsto \phi(m)$ è una mappa. Allora si trova che M è f.g. e localmente libero di rango uno $\Leftrightarrow \mu$ è un isomorfismo Come corollario, se M è localmente libero di rango uno allora M^* è f.g. ed è anch'esso un modulo localmente libero di rango uno.
- *M*, *N* moduli localmente liberi di rango uno. Allora si ha:
 - 1. $M \otimes N$ è localmente libero di rango uno e vale che $(M \otimes N)^* \cong M^* \otimes N^*$
 - 2. $M \otimes N \cong A \implies N \cong M^*$
 - 3. Hom $_A(M,N) \cong M^* \otimes_A N$
- (Ideali frazionari) A dominio noetheriano e $K = \operatorname{Frac} A$. Un ideale frazionario è un A-sottomodulo f.g. di K.

Se I è frazionario allora $I^{-1}=\{x\in K\mid xI\subseteq A\}$ e dico che I è invertibile se $I^{-1}I=A$

- (Proprietà base) Per gli ideali frazionari valgono le seguenti proprietà:
 - 1. Se I e J sono invertibili allora IJ è invertibile
 - 2. Se I è invertibile allora I^{-1} è invertibile