Analisi Statistica dei Dati Multidimensionali<sup>1</sup>

<sup>1</sup>Corso di Laurea in Scienze Statistiche e Attuariali

Facoltà di Scienze Economiche e Aziendali Università degli Studi del Sannio

Fonte: Stawinoga. Lucidi del Corso. Università di Napoli "Federico II".

Gherghi-Lauro. Appunti di Analisi dei Dati Multidimensionali, RCEedizioni. Manly. Multivariate Statistical Methods: A Primer. Chapman & Hall. CRC.

Teoria

- L' Analisi delle Correlazioni Canoniche è stata proposta da H. Hottelling nel 1936.
- Nel 1968 J. D.Carroll ha proposto una generalizzazione dell' ACC per tre o più gruppi di variabili.
- L'ACC è molto importante dal punto di vista teorico e metodologico. Essa può essere considerata come il caso generale delle:
  - Regressione Multipla
  - Analisi delle Corrispondenze
  - Analisi Discriminante

0000000000000000

Teoria

- L' obiettivo dell' ACC è identificare le relazioni. lineari esistenti tra due gruppi di variabili quantitative osservate su uno stesso insieme di individui.
- Lo scopo è trovare una combinazione lineare delle variabili del primo gruppo e una combinazione lineare delle variabili del secondo gruppo che siano le più correlate possibile.
- L' ACC opera su una matrice R ad n righe e p+q colonne partizionabile in due sottomatrici X(n,p)e Z(n,q).

Le colonne della matrice X sono costituite dalle variabili del primo insieme. Le variabili del secondo insieme costituiscono le colonne della matrice Z.

00000000000000

Teoria

- Si supponga che tutte le variabili siano centrate quindi per ogni colonna della matrice R la somma degli elementi è uguale a 0.
- Dal vettore (x<sub>i1</sub>, x<sub>i2</sub>, , x<sub>ip</sub>, z<sub>i1</sub>, , z<sub>iq</sub>) si identifica il generico individuo i della matrice R.



 La matrice di varianza-covarianza della matrice R può essere ottenuta da:

$$V(R) = \frac{1}{n}R'R = \frac{1}{n}\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z \end{bmatrix}$$

0000000000000000

Teoria

 Si indica con a un vettore di p componenti e con b un altro a q componenti.

$$a = (a_1, a_2, , a_p), b = (b_1, b_2, , b_q)$$

 Per il generico individuo i si definiscono le due combinazioni lineari:

$$a(i) = \sum_{j=1}^{p} a_{j} x_{ij}, b(i) = \sum_{j=1}^{q} b_{j} z_{ij}$$

 I valori di a(i) e b(i) costituiscono le componenti dei vettori:

$$\xi$$
=  $Xa$  ,  $\eta$ = $Zb$ 

 Lo scopo dell'Analisi delle Correlazioni Canoniche è trovare i coefficienti dei vettori a e b che massimizzano la correlazione tra  $\xi$  ed  $\eta$ .

00000000000000000

Teoria

- Definiamo:
  - Variabili canoniche i vettori  $\xi \in R^n, \eta \in R^n$
  - Fattori canonici i vettori di coefficienti  $a \in R^p, b \in R^q$
  - Correlazione canonica il coefficiente di correlazione tra  $\xi$  ed n
- e II gruppo delle variabili  $x_{i1}$ ,  $x_{i2}$ ,  $x_{ip}$  costituisce un sottospazio vettoriale W, di Rn chiamato potenziale di previsione del primo gruppo. Ugualmente le variabili del secondo insieme formano un sottospazio W, di R<sup>n</sup>.

0000000000000000

Teoria

- Indichiamo con (ξ<sub>1</sub>,ξ<sub>2</sub>, ,ξ<sub>k</sub>), (η<sub>1</sub>,η<sub>2</sub>, ,η<sub>k</sub>) due basi ortonormali rispettivamente di W, e W, tali che le coppie  $(\xi_i, \eta_i)$  i=1, ,k siano le più correlate possibile.
- Poiché le variabili sono centrate l' obiettivo è cercare le coppie  $(\xi_i, \eta_i)$  i=1, ,k tali che massimizzano il coseno dell' angolo formato da loro.
- Il vettore comune di due sottospazi (la prima bisettrice) rappresenta la soluzione banale.



Teoria

 Il valore del coseno dell' angolo formato tra due variabili canoniche  $\xi$  ed  $\eta$  è uguale al valore del loro coefficiente di correlazione.

$$\cos(\xi,\eta) = \frac{a'X'Zb}{\sqrt{(a'X'Xa)(b'Z'Zb)}}$$

 L'angolo tra due vettori non dipende dalla loro norma quindi possiamo porre:

$$\|\xi\| = a'X'Xa = 1, \|\eta\| = b'Z'Zb = 1$$

 Usando la funzione di Lagrange si possono ottenere sotto le condizioni di normalizzazione i vettori a e b che massimizzano la quantità a'X'Zb.

$$L = a'X'Zb - \lambda(a'X'Xa - 1) - \mu(b'Z'Zb - 1)$$

Teoria

 Derivando l'equazione di Lagrange rispetto ad a e b e ponendo i risultati uguali a 0 otteniamo:

(1) 
$$X'Zb - 2\lambda X'Xa = 0$$
$$Z'Xa - 2\mu Z'Zb = 0$$

 Sotto le condizioni di normalizzazione moltiplichiamo le equazioni riportate sopra rispettivamente per a' e b':

$$a'X'Zb = 2\lambda$$
  
 $b'Z'Xa = 2\mu$ 

 Ricordando che il trasposto di uno scalare è lo scalare stesso. otteniamo la quantità:

$$\beta = 2\lambda = a'X'Zb$$



Questa quantità è il coefficiente di correlazione massimo che abbiamo trovato.

0000000000000000

Teoria

 Il nostro sistema da risolvere lo possiamo scrivere nella forma:

(2) 
$$X'Zb = \beta X'Xa$$
$$Z'Xa = \beta Z'Zb$$

- Per poter risolvere questo sistema le matrici X'X e Z'Z devono essere non singolari  $(\det(X'X) \neq 0, \det(Z'Z) \neq 0)$
- Ricavando a dalla prima equazione del sistema (2)e b dalla seconda otteniamo:

(3) 
$$a = \frac{1}{\beta} (X'X)^{-1} X'Zb$$
 (4)  $b = \frac{1}{\beta} (Z'Z)^{-1} Z'Xa$ 

Adesso sostituendo a nella equazione (4) si ottiene:

$$Z'X(X'X)^{-1}X'Zb = \beta^2 Z'Zb$$

0000000000000000

Teoria

 Il vettore b soluzione del sistema è quindi l' autovettore della matrice:

$$(Z'Z)^{-1}Z'X(X'X)^{-1}X'Z$$

associato al più grande autovalore  $\beta^2$ .

- β² rappresenta il quadrato del coefficiente di correlazione tra  $\xi$  ed  $\eta$ .
- Il vettore a può essere calcolato dalla equazione (3) o come autovettore associato al più grande autovalore della matrice:

$$(X'X)^{-1}X'Z(Z'Z)^{-1}Z'X$$

 Per poter ottenere le variabili canoniche ξ ed η moltiplichiamo le equazioni (3) e (4) rispettivamente per  $X \in Z$ .

Teoria

Si ottiene:

(5) 
$$\xi = Xa = \frac{1}{\beta} \underbrace{X(X^*X)^{-1} X^* Zb}_{P_1}$$
 (6)  $\eta = Zb = \frac{1}{\beta} \underbrace{Z(Z^*Z)^{-1} Z^* Xa}_{P_2}$ 

 Dalle equazioni (5) e (6) deriva un risultato importante. Le matrici:

$$P_1 = X(X'X)^{-1}X'$$
  $P_2 = Z(Z'Z)^{-1}Z'$ 

 Le matrici P<sub>1</sub> e P<sub>2</sub> sono simmetriche ed idempotenti. Possiamo considerarle come operatori di proiezione di R<sup>n</sup> sui sottospazi W<sub>n</sub> W<sub>2</sub> generati dalle colonne delle matrici X e Z.

00000000000000000

Teoria

• Ciascun vettore  $\eta$  ( oppure  $\xi$ ) è collineare con la proiezione ortogonale dell' altro.

Quindi se  $\eta_1$  è un vettore unitario di  $W_2$ , il vettore di  $W_1$  che forma l' angolo minimo con  $\eta_1$  è il vettore  $\hat{\eta}_1$  projezione ortogonale di  $\eta_1$  su  $W_1$ .

Collinearità dei vettori n e 5



Teoria

# • Il legame dell' ACC con la regressione multipla

In questo caso la matrice Z è formata da una sola colonna(q =1). La matrice Z è costituita dalla variabile da spiegare z e X è costituita dalle p variabili esplicative  $x_1$ ,  $x_2$ , ,  $x_p$ . Il vettore b ha una sola componente ed è quindi uno scalare, lo stesso il prodotto Z?. Possiamo scrivere:

$$\beta^2 = \frac{Z'X(X'X)^{-1}X'Z}{Z'Z}$$

La quantità  $\beta^2$  costituisce il coefficiente di correlazione multipla tra la variabile da spiegare e le variabili esplicative. Dalla (3) otteniamo:

$$a = \frac{b}{\beta} (X'X)^{-1} X'Z$$

Il vettore a è proporzionale al vettore dei coefficienti della regressione multipla con  $x_p$ ,  $x_2$ , ,  $x_p$  variabili esplicative e z la variabile dipendente. Dalla condizione di normalizzazione si ricava:

$$b = \frac{1}{\sqrt{Z'Z}}$$

00000000000000000

Teoria

# Il legame con l' Analisi delle Corrispondenze

In questo caso si considerano due matrici Z, e Z, di dimensioni rispettivamente  $(n, q_1)$  e  $(n, q_2)$ .

L' Analisi delle Corrispondenze di una tabella di contingenza può essere vista come l' Analisi delle Correlazioni Canoniche della matrice [z,z,].

Nella matrice Z, vengono riportati i valori in codifica disgiuntiva completa delle q, modalità di una variabile X. La matrice  $Z_2$  è costituita dalle  $q_2$  modalità di una variabile Y. Tutte due osservate su n unità. Dal prodotto  $Z_1$ ' $Z_2$  otteniamo la tabella di contingenza F di dimensioni  $(q_1, q_2)$ .

Con  $D_1$  e  $D_2$  indichiamo le matrici diagonali rispettivamente dei marginali di riga e di colonna.

Otteniamo:

$$\varphi_1 = \frac{1}{\sqrt{\lambda}} D_1^{-1} Z_1' Z_2 \varphi_2$$

$$\varphi_2 = \frac{1}{\sqrt{\lambda}} D_2^{-1} Z_2' Z_1 \varphi_1$$

0000000000000000

Teoria

Se moltiplichiamo per  $Z_1$  e  $Z_2$  otteniamo:

$$Z_1\varphi_1 = \frac{1}{\sqrt{\lambda}}Z_1D_1^{-1}Z_1'Z_2\varphi_2$$
  $Z_2\varphi_2 = \frac{1}{\sqrt{\lambda}}Z_2D_2^{-1}Z_2'Z_1\varphi_1$ 

$$Z_2 \varphi_2 = \frac{1}{\sqrt{\lambda}} Z_2 D_2^{-1} Z_2' Z_1 \varphi_1$$

La matrice  $Z = [Z_1Z_2]$  ha  $q_1 + q_2$  colonne con corrispondenti  $q_1 + q_2$  punti nello spazio  $R^n$ . Ogni sottomatrice  $Z_i$  ( i = 1,2 ) genera in  $\mathbb{R}^n$  un sottospazio lineare  $W_i$  a  $q_i$  dimensioni. Le componenti del vettore  $\varphi_1(q_1,1)$  costituiscono le coordinate di un punto  $m_1$  nel sottospazio  $W_1$ .

Le coordinate di  $m_1$  in  $\mathbb{R}^n$ :  $m_1 = Z_1 \varphi_1$ 

$$m_1 = Z_1 \varphi_1$$

Con P<sub>1</sub> e P<sub>2</sub> abbiamo indicato gli operatori di proiezione su

$$P_1 = Z_1 (Z_1' Z_1)^{-1} Z_1'$$

$$P_1 = Z_1(Z_1'Z_1)^{-1}Z_1'$$
  $P_2 = Z_2(Z_2'Z_2)^{-1}Z_2'$ 

0000000000000000

Teoria

Adesso i nostri vettori  $m_1$  e  $m_2$  possono essere ottenute come:

$$m_1 = \frac{1}{\sqrt{2}} P_1 m_2$$

$$m_2 = \frac{1}{\sqrt{\lambda}} P_2 m_1$$

La proiezione di  $m_2$  su  $W_1$  è collineare a  $m_1$ . L' analisi delle corrispondenze di una tabella di contingenza può essere vista come lo studio della posizione relativa dei sottospazi  $W_1$  e  $W_2$  e quindi come l' Analisi delle Correlazioni Canoniche della matrice  $Z_1Z_2$ .

$$\mathbf{Q}_{\boldsymbol{X}} = (\boldsymbol{X}^T \mathbf{D} \boldsymbol{X})^{-1} \qquad \mathbf{Q}_{\boldsymbol{Y}} = (\boldsymbol{Y}^T \mathbf{D} \boldsymbol{Y})^{-1}$$











# 5-Un esempio

Si consideri la matrice seguente sulle cui righe sono rappresentate n=22 cantine friulane produttrici del vino bianco "Tocai friulano" e sulle cui colonne sono invece riportate le diverse votazioni (con punteggi da zero a 3) di un gruppo di esperti e di un gruppo di consumatori relativamente a p=q=4 variabili riguardanti il vino in questione: l'aspetto, l'aroma, il gusto e il retrogusto.

#### Matrice dei dati:

|            |      | ESPI | ERTI |      |      | CONSUMATORI |      |      |
|------------|------|------|------|------|------|-------------|------|------|
|            | ASP1 | ARO1 | GUS1 | RET1 | ASP2 | ARO2        | GUS2 | RET2 |
| Cantina 1  | 3,0  | 2,0  | 1,5  | 1,0  | 2,0  | 2,0         | 2.0  | 2,0  |
| Cantina 2  | 3,0  | 2,0  | 2,0  | 2,0  | 2,0  | 2,0         | 2,0  | 3,0  |
| Cantina 3  | 2,5  | 1,5  | 2,0  | 1,5  | 2,0  | 2,0         | 2,0  | 1,0  |
| Cantina 4  | 3,0  | 2,0  | 2,0  | 2,0  | 2,0  | 2,0         | 2,0  | 1,0  |
| :          |      | :    |      | - 1  |      | 112         |      |      |
| Cantina 21 | 3.0  | 1,5  | 2,0  | 1.0  | 2,0  | 1.0         | 2,0  | 2,0  |
| Cantina 22 | 3,0  | 2,0  | 1,5  | 2,0  | 2.0  | 2,0         | 3,0  | 1,0  |

Fonte: Gherghi-Lauro

## Caratteristiche delle variabili

|             |      | Media | Sqm   | Max | Min |
|-------------|------|-------|-------|-----|-----|
|             | Asp1 | 2,932 | 0,228 | 3,0 | 2,0 |
| Esperti     | Aro1 | 1,795 | 0,359 | 2,0 | 1,0 |
| Esp         | Gus1 | 1,727 | 0,419 | 2,0 | 1,0 |
|             | Ret1 | 1,568 | 0,484 | 2,0 | 1,0 |
| ori         | Asp2 | 2,091 | 0,287 | 3,0 | 2,0 |
| nato        | Aro2 | 1,864 | 0,547 | 3,0 | 1,0 |
| Consumatori | Gus2 | 1,909 | 0,668 | 3,0 | 0,0 |
| S           | Ret2 | 1,818 | 0,490 | 3,0 | 1,0 |

Fonte: Gherghi-Lauro

## Matrici di correlazione nei due gruppi

## Esperti

|      | Asp1  | Aro1  | Gus1  | Ret1  |
|------|-------|-------|-------|-------|
| Asp1 | 1,000 |       |       |       |
| Aro1 | 0,523 | 1,000 |       | į     |
| Gus1 | 0,281 | 0,536 | 1,000 |       |
| Ret1 | 0,248 | 0,473 | 0,652 | 1,000 |

# Consumatori

| -    |       |       |       |       |
|------|-------|-------|-------|-------|
|      | Asp2  | Asp2  | Gus2  | Ret2  |
| Asp2 | 1,000 |       |       |       |
| Aro2 | 0,368 | 1,000 |       |       |
| Gus2 | 0,043 | 0,339 | 1,000 |       |
| Ret2 | 0,117 | 0,077 | 0,088 | 1,000 |

# Matrice di correlazione tra i due gruppi

|         |      |        | Consul | matori |        |
|---------|------|--------|--------|--------|--------|
|         |      | Asp2   | Asp2   | Gus2   | Ret2   |
|         | Asp1 | 0,094  | -0,074 | -0,041 | 0,092  |
| Esperti | Aro1 | -0,261 | -0,489 | -0,078 | -0,082 |
| Esp     | Gus1 | -0,171 | -0,360 | -0,007 | 0,091  |
|         | Ret1 | -0,045 | -0,051 | 0,301  | -0,044 |

| Fa          | ttori ca | nonici |        |        |        |  |
|-------------|----------|--------|--------|--------|--------|--|
|             |          | F1     | F2     | F3     | F4     |  |
| 11000       | Asp1     | 1,843  | 2,378  | -2,620 | -3,237 |  |
| Esperti     | Aro1     | -2,713 | -1,379 | 1,815  | -1,308 |  |
| Esi         | Gus1     | -1,477 | 1,452  | -1,930 | 1,788  |  |
|             | Ret1     | 1,566  | -2,212 | -0,547 | -0,291 |  |
| ori         | Asp2     | 0,900  | 0,598  | -1,489 | -3,299 |  |
| mat         | Aro2     | 1,493  | 0,538  | 0,976  | 0,959  |  |
| Consumatori | Gus2     | 0,242  | -1,357 | -0,818 | 0,005  |  |
| ပိ          | Re2      | -0,127 | 1,035  | -1,441 | 1,047  |  |
|             |          |        |        |        |        |  |

| Aut | ovalori, | correlazioni | canoniche | e perce | ntuali di variabilità spiegata          |
|-----|----------|--------------|-----------|---------|-----------------------------------------|
| N.  | Valore   | Corr. Can.   | %         | %cum.   | Istogramma                              |
| 1   | 0,428    | 0,654        | 65,2      | 65,2    | *************************************** |
| 2   | 0,169    | 0,410        | 25,7      | 90,9    | ***********                             |
| 3   | 0,050    | 0,224        | 7,6       | 98.5    | ****                                    |
| 4   | 0.010    | 0.100        | 1.5       | 100.0   |                                         |

#### Correlazioni tra variabili iniziali e variabili canoniche ( $\xi_i \in \eta_i, \quad i=1,...,4$ ) ξ, ξ,

|      |      | -91   | 34    | 40    | 94    |        |      | -41   | 12    | 412   | 114   |
|------|------|-------|-------|-------|-------|--------|------|-------|-------|-------|-------|
|      | Asp1 | -0,07 | 0,19  | -0,55 | -0,81 | E      | Asp2 | 0,56  | 0,30  | -0,34 | -0,70 |
| 2611 | Aro1 | -0,73 | -0,39 | -0,22 | -0,52 | nato   | Aro2 | 0,96  | 0,09  | 0,14  | 0,22  |
| ES   | Gus1 | -0,53 | -0,20 | -0,80 | 0,20  | J. Sar | Gus2 | 0,44  | -0,75 | -0,45 | 0,19  |
|      | Ret1 | 0,00  | -0,77 | -0,63 | -0,06 | Co     | Ret2 | 0,05  | 0,47  | -0,76 | 0,44  |
| 110  | Asp2 | 0,37  | 0,12  | -0,08 | -0,07 |        | Asp1 | -0,05 | 0,08  | -0,12 | -0,08 |
| III  | Aro2 | 0,63  | 0,37  | 0,03  | 0,02  | irie   | Aro1 | -0,48 | -0,16 | -0,05 | -0,05 |
| ls n | Gus2 | 0,29  | -0,31 | -0,10 | 0,02  | Esp    | Gus1 | -0,35 | -0,08 | -0,18 | 0,02  |
| 3    | Ret2 | 0,03  | 0,19  | -0,17 | 0,04  |        | Ret1 | 0,00  | -0,32 | -0.14 | -0.01 |

Fonte: Gherghi-Lauro

## Coseni degli angoli tra punti-unità e sottospazio canonico

|      | 51   | 52   | ξ3   | ξ4   | $\eta_1$ | $\eta_2$ | $\eta_3$ | $\eta_4$ |
|------|------|------|------|------|----------|----------|----------|----------|
| Ca1  | 0.56 | 0,73 | 0,91 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca2  | 0,17 | 0,77 | 0,99 | 1,00 | 0,00     | 0,45     | 0,75     | 1,00     |
| Ca3  | 0,21 | 0,22 | 0,22 | 1,00 | 0,14     | 0,57     | 0,97     | 1,00     |
| Ca4  | 0,17 | 0,77 | 0,99 | 1,00 | 0,14     | 0,57     | 0,97     | 1,00     |
| Ca5  | 0,61 | 0,61 | 0,96 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca6  | 0,17 | 0.77 | 0,99 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca7  | 0,17 | 0,77 | 0,99 | 1,00 | 0,85     | 0,98     | 0,98     | 1,00     |
| Ca8  | 0.17 | 0.77 | 0,99 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca9  | 0.75 | 1,00 | 1,00 | 1,00 | 0,07     | 0,83     | 0,94     | 1,00     |
| Ca10 | 0,17 | 0,77 | 0,99 | 1,00 | 0,40     | 0.75     | 0,99     | 1,00     |
| Ca11 | 0.17 | 0.77 | 0,99 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca12 | 0.17 | 0.77 | 0,99 | 1,00 | 0,14     | 0,57     | 0,97     | 1,00     |
| Ca13 | 0.17 | 0.77 | 0,99 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca14 | 0,10 | 0.10 | 0,76 | 1,00 | 0,21     | 0,77     | 0,93     | 1,00     |
| Ca15 | 0,17 | 0,77 | 0,99 | 1,00 | 0,31     | 0,37     | 0,60     | 1,00     |
| Ca16 | 0.15 | 0,27 | 0,71 | 1,00 | 0,19     | 0,23     | 0,25     | 1,00     |
| Ca17 | 0,86 | 0.99 | 0,99 | 1,00 | 0,64     | 0,69     | 0,78     | 1,00     |
| Ca18 | 0.75 | 1,00 | 1,00 | 1,00 | 0,85     | 0,98     | 0,98     | 1,00     |
| Ca19 | 0,10 | 0.10 | 0,76 | 1,00 | 0,53     | 0,65     | 0,90     | 1,00     |
| Ca20 | 0.86 | 0,99 | 0,99 | 1,00 | 0,76     | 0,84     | 0,86     | 1,00     |
| Ca21 | 0.14 | 0.88 | 0,95 | 1,00 | 0,76     | 0,80     | 0,98     | 1,00     |
| Ca22 | 0.31 | 0.81 | 0.84 | 1.00 | 0.20     | 0.96     | 0,98     | 1,00     |

Esempio 1



Figura 4 - Cerchio delle correlazioni

Fonte: Gherghi-Lauro



Figura 5 - Rappresentazione dei punti-unità

Teoria

# **Distribution of butterfly**

The data concern four environmental variables

(altitude, annual precipitation, and the minimum and maximum temperatures)

and four genetic variables

(percentage frequencies for different phosphoglucose-isomerase [Pqi] genes as determined by the technique of electrophoresis)

regarding 16 colonies of the butterfly Euphydryas editha in California and Oregon (McKechnie et al., 1975; Manly, 2005).

The study of the relationships between the environmental and genetic variables could indicate the adaptation of the Euphydryas editha to the local environments.

The environmental variables have been treated as **X** variables and the gene frequencies as the Y variables.

For a deeper analysis of this data set see also Manly (2005).

|     | Altitude | Rainfall | MaxTp | MinTp | G(-) | G(0.80) | G(1.00) | G(1.16) |
|-----|----------|----------|-------|-------|------|---------|---------|---------|
|     |          |          |       |       |      | , ,     |         |         |
| SS  | 500      | 43       | 98    | 17    | 3    | 22      | 57      | 17      |
| SB  | 808      | 20       | 92    | 32    | 16   | 20      | 38      | 13      |
| WSB | 570      | 28       | 98    | 26    | 6    | 28      | 46      | 17      |
| JRC | 550      | 28       | 98    | 26    | 4    | 19      | 47      | 27      |
| JRH | 550      | 28       | 98    | 26    | 1    | 8       | 50      | 35      |
| SJ  | 380      | 15       | 99    | 28    | 2    | 19      | 44      | 32      |
| CR  | 930      | 21       | 99    | 28    | 0    | 15      | 50      | 27      |
| UO  | 650      | 10       | 101   | 27    | 31   | 40      | 25      | 4       |
| LO  | 600      | 10       | 101   | 27    | 40   | 32      | 28      | 0       |
| DP  | 1500     | 19       | 99    | 23    | 1    | 6       | 80      | 12      |
| PZ  | 1750     | 22       | 101   | 27    | 5    | 34      | 33      | 22      |
| MC  | 2000     | 58       | 100   | 18    | 7    | 14      | 66      | 13      |
| IF  | 2500     | 34       | 102   | 16    | 9    | 15      | 47      | 21      |
| AF  | 2000     | 21       | 105   | 20    | 10   | 17      | 32      | 27      |
| GH  | 7850     | 42       | 84    | 5     | 5    | 7       | 84      | 4       |
| GL  | 10500    | 50       | 81    | -12   | 3    | 1       | 92      | 4       |
|     |          |          |       |       |      |         |         |         |

Table 10.1 Correlation Matrix for Variables Measured on Colonies of Euphydryas editha, Partitioned into A, B, C, and C' Submatrices

|            | $X_1$  | $X_2$  | $X_3$  | $X_4$  | $Y_1$  | $Y_2$  | $Y_3$  | $Y_4$  |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| $X_1$      | 1.000  | 0.568  | -0.828 | -0.936 | -0.201 | -0.573 | 0.727  | -0.458 |
| $X_2$      | 0.568  | 1.000  | -0.479 | -0.705 | -0.468 | -0.550 | 0.699  | -0.138 |
| $X_3$      | -0.828 | -0.479 | 1.000  | 0.719  | 0.224  | 0.536  | -0.717 | 0.438  |
| X,         | -0.936 | 0.705  | 0.719  | 1.000  | 0.246  | 0.593  | -0.759 | 0.412  |
|            |        |        |        | Α      | C      |        |        |        |
|            |        |        |        | C'     | В      |        |        |        |
| $Y_1$      | -0.201 | -0.468 | 0.224  | 0.246  | 1.000  | 0.638  | -0.561 | -0.584 |
| $Y_2$      | -0.573 | -0.550 | 0.536  | 0.593  | 0.638  | 1.000  | -0.824 | -0.127 |
| $Y_{\tau}$ | 0.727  | 0.699  | -0.717 | -0.759 | -0.561 | -0.824 | 1.000  | -0.264 |
| $Y_4$      | -0.458 | -0.138 | 0.438  | 0.412  | -0.584 | -0.127 | -0.264 | 1.000  |

The eigenvalues obtained from Equation 10.1 are 0.7425, 0.2049, 0.1425, and 0.0069. Calculation of square roots gives the corresponding canonical correlations of 0.8617, 0.4527, 0.3775, and 0.0833, respectively, and the canonical variables are found to be as follows:

$$\begin{split} &U_1 = -0.09X_1 - 0.29X_2 + 0.48X_3 + 0.29X_4 \\ &V_1 = +0.54Y_1 + 0.42Y_2 - 0.10Y_3 + 0.82Y_4 \\ &U_2 = +2.31X_1 - 0.73X_2 + 0.45X_3 + 1.27X_4 \\ &V_2 = -1.66Y_1 - 2.20Y_2 - 3.71Y_3 + 2.77Y_4 \\ &U_3 = +3.02X_1 + 1.33X_2 + 0.57X_3 + 3.58X_4 \\ &V_3 = -3.56Y_1 - 1.35Y_2 - 3.86Y_3 - 2.86Y_4 \\ &U_4 = +1.43X_1 + 0.26X_2 + 1.72X_3 - 0.03X_4 \\ &V_4 = +0.60Y_1 - 1.44Y_2 - 0.58Y_3 + 0.58Y_4 \end{split}$$

The correlations between the environmental variables and U<sub>1</sub> are:

|    | Altitude | Precipitation | Maximum<br>temperature | Minimum<br>temperature |
|----|----------|---------------|------------------------|------------------------|
| U, | -0.92    | -0.77         | 0.90                   | 0.92                   |

This suggests that U<sub>1</sub> is best interpreted as a measure of high temperatures and low altitude and precipitation. The correlations between V<sub>1</sub> and the gene frequencies are:

|       | Mobility  | Mobility | Mobility | Mobility |
|-------|-----------|----------|----------|----------|
|       | 0.40/0.60 | 0.80     | 1.00     | 1.16     |
| $V_1$ | 0.38      | 0.74     | -0.96    | 0.49     |



Figure 10.1 Plot of V1 against U1 for 16 colonies of Euphydryas editha.

