Natural Language Processing & Word Embeddings

calificación del último envío 100%

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.	1/1 puntos
	True	
	False	
	Correcto The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.	
2.	What is t-SNE?	1 / 1 puntos
	A linear transformation that allows us to solve analogies on word vectors	
	A non-linear dimensionality reduction technique	
	A supervised learning algorithm for learning word embeddings	
	An open-source sequence modeling library	
	✓ Correcto Yes	
3.		1 / 1 puntos

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y = 1.

- - True
- False

✓ Correcto

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

- $e_{boy} e_{girl} \approx e_{brother} e_{sister}$
 - ✓ Correcto

Yes!

- $e_{boy} e_{girl} \approx e_{sister} e_{brother}$
- $ightharpoonup e_{boy} e_{brother} \approx e_{girl} e_{sister}$
 - Correcto

Yes!

e _{hov} -	$-e_{brother}$	\approx	Criston	$-e_{\alpha irl}$
- DOV	• promer		Sister	- 9111

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E * o_{1234}$ in Python?

1/1 puntos

- It is computationally wasteful.
- \bigcirc The correct formula is $E^T * o_{1234}$.
- This doesn't handle unknown words (<UNK>).
- None of the above: calling the Python snippet as described above is fine.

✓ Correcto

Yes, the element-wise multiplication will be extremely inefficient.

6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important byproduct of this task is that we learn a useful set of word embeddings.

1/1 puntos

- True
- False

✓ Correcto

- 7. In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.
 - \bigcirc c is a sequence of several words immediately before t.

 - \bigcirc c is the sequence of all the words in the sentence before t.
 - \bigcirc *c* is the one word that comes immediately before *t*.

✓ Correcto

8. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

1 / 1 puntos

$$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

- lacksquare $heta_t$ and e_c are both 500 dimensional vectors.
 - ✓ Correcto
- θ_t and e_c are both 10000 dimensional vectors.
- θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
 - ✓ Correcto
- After training, we should expect θ_t to be very close to e_c when t and c are the same word.
- 9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

1/1 puntos

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- Θ_i and e_i should be initialized randomly at the beginning of training.

 $ightharpoonup X_{ij}$ is the number of times word j appears in the context of word i.

The weighting function f(.) must satisfy f(0) = 0.

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

1 / 1 puntos

$$m_1 >> m_2$$

$$m_1 \ll m_2$$

