Algoritmo di Dijkstra

L'algoritmo di Dijkstra trova il <u>cammino minimo</u> tra un dato nodo (denominato "<u>sorgente</u>") e tutti gli altri nodi in un grafo.

Questo algoritmo utilizza i <u>pesi degli archi</u> per trovare il percorso che minimizza la distanza totale tra il nodo sorgente e gli altri nodi.

RETE INFORMATICA

Obiettivo:

Problema:

• Partendo da F trovare i cammini minimi verso gli altri vertici

Memorizziamo in una coda tutti i vertici del grafo. Il primo elemento del grafo è il vertice di partenza. Impostare i costi dei cammini ad infinito (non raggiungibili) per tutti i vertici del grafo e a 0 il costo del vertice iniziale a 0 (da F a F costo 0).

Vertici	Costo	DA
F	0	
Α	∞	
В	∞	
С	∞	
D	∞	
Е	∞	
G	∞	
Н	∞	
I	∞	
L	∞	

Vertici	Costo	DA
F	0	
Α	∞	
В	3	F
С	2	F
D	∞	
Е	∞	
G	∞	
Н	∞	
[∞	
L	4	F

Vertici	Costo	DA
F	0	

Procedimento:

- Estrazione del nodo F dalla coda di indagine Detta anche operazione di **dequeue**, serve a rimuovere un elemento dalla testa della coda.
- 2. Accodamento del nodo F nella coda cammini minimi Detta anche operazione di **enqueue**, serve a mettere un <u>elemento in coda.</u>
- 3. Ordinamento degli elementi in base al costo

Costo	DA
2	F
3	F
4	F
∞	
∞	
∞	
∞	
∞	
∞	
	2 3 4 ∞ ∞ ∞

verifica del cammino minimo

Vertici	Costo	DA
F	0	

Vertici	Costo	DA
C	2	F
В	3	F
L	4	F
Α	∞	
D	∞	
E	∞	
G	2+5	C
Н	2+1	C
I	∞	

Vertici	Costo	DA
F	0	
С	2	F

Vertici	Costo	DA
В	3	F
Н	3	С
L	4	F
G	7	С
Α	∞	
D	∞	
E	∞	
I	∞	

coda.

3. Ordinamento degli elementi in base al costo

verifica del cammino minimo

Vertici	Costo	DA
F	0	
С	2	F

Vertici	Costo	DA
В	3	F
Н	3	С
L	4	F
G	7 (3+6)	С
		В
А	∞	B
A D	∞ ∞	В
		В

Ordinamento degli elementi in base al costo

•	U	
С	2	F
В	3	F
Vertici	Costo	DA
Vertici H	Costo 3	DA C
Н	3	С

 ∞

 ∞

 ∞

Ε

Costo

DA

Vertici	Costo	DA
Н	3	C
L	4	F
_	3+3	<u> </u>
G -	7	С
	3+2	Н
Α	∞	

Procedimento:

- Indagine nodi adiacenti
- verifica del cammino minimo

Vertici	Costo	DA
F	0	
С	2	F
В	3	F

3	С
4 3+3	F
7	
3+2	Н
∞	
∞	
∞	
∞	
	4 3+3 7 3+2 ∞ ∞

Ordinamento degli elementi in base al costo

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С

Vertici	Costo	DA
L	4	F
G	5	Н
А	∞	
D	∞	
E	∞	
ı	∞	

Già visitato

Vertic i	Costo	DA
L	4	F
G	5	Н
Α	∞	
D	∞	
Е	∞	
I	4+2 = 6	L

Cammino minimo da F a G

- Vertice F Vertice C Costo 2
- Vertice C Vertice H Costo 1
- Vertice H Vertice G Costo 2
- Totale costo 5

Vertici	Costo	DA
F	0	
C	2	F
В	3	F
н	3	С
L	4	F

Vertici	Costo	DA
G	5	H
I	6	L
Α	∞	
D	∞	
Е	∞	

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	C
L	4	F

Vertici	Costo	DA
G	5	Н
I	6	L
Α	5+5=10	
D	∞	
Е	∞	

Costo	DA
0	
2	F
3	F
3	С
4	F
	0 2 3 3

Vertici	Costo	DA
• • • • • • •	5	•••н•
I	6	L
Α	10	G
D	∞	
F	∞	

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н

Vertici	Costo	DA
I	6	L
Α	10	G
D	6+1=7	1
Е	∞	

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
I	6	L

Vertici	Costo	DA
D	7	1
Α	10	G
Е	7+4 = 11	D

In questo particolare caso si individuano due casi di cammini minimi

- E-D-I-L-F
- E-A-G-H-C-I

La scelta dipende dall'algoritmo

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
1	6	L
D	7	I

Vertici	Costo	DA
Α	10	G
Е	11	D
	10+1= 11	Α

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
1	6	L
D	7	I
Α	10	G

Vertici	Costo	DA
E	11	D

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
I	6	L
D	7	Ī
Α	10	G
Е	11	D

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
I	6	L
D	7	I
Α	10	G
Е	11	D

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
1	6	L
D	7	1
Α	10	G
Е	11	D

Vertici	Costo	DA
F	0	
С	2	F
В	3	F
Н	3	С
L	4	F
G	5	Н
1	6	L
D	7	- 1
Α	10	G
Е	11	D

Sviluppo in C#

dell'algoritmo di Dijkstra

OSPF

Open Shortest Path First Apri prima il percorso più breve

Il protocollo OSPF

Protocollo di routing robusto e scalabile. Offre una serie di funzionalità avanzate per la gestione efficiente delle reti IP

Link-State Protocol

- OSPF è un protocollo di routing basato sullo stato dei collegamenti.
- Ogni router nella rete mantiene un database di stato dei collegamenti (LSDB) che contiene informazioni dettagliate sulla topologia di rete locale.

Metrica di Costo

- OSPF assegna un costo a ciascun collegamento in base alla sua velocità.
- I router calcolano quindi i percorsi più brevi verso le destinazioni utilizzando questi costi come metrica.

Aree di OSPF

- OSPF organizza la rete in "aree" logiche, ciascuna con un router detto "router di confine dell'area" (ABR) che collega le aree tra loro.
- Questa struttura gerarchica aiuta a ridurre la complessità della rete e migliorare l'efficienza del routing.

Convergenza Rapida

 OSPF supporta la convergenza rapida della rete, in cui i router sono in grado di rilevare rapidamente i cambiamenti nella topologia della rete e di aggiornare le loro tabelle di routing di conseguenza.

Autenticazione

 OSPF offre meccanismi di autenticazione per garantire che i messaggi di routing siano affidabili e provenienti da router autorizzati.

LSDB (Link-State Database) "Database di Stato dei Collegamenti"

LSDB

- Contiene una rappresentazione della rete, indicando quali router sono presenti, quali reti sono collegate a ciascun router, e quali sono i costi associati ai collegamenti.
- Queste informazioni vengono utilizzate per calcolare i percorsi più brevi verso tutte le destinazioni all'interno della rete.

Avvio router OSPF

- scambia messaggi di stato dei collegamenti con i router vicini
 Aggiornamento delle informazioni sulla topologia di rete.

LSDB è una sorta di "mappa" della rete OSPF che ogni router utilizza per prendere decisioni di routing e per mantenere una conoscenza dettagliata della topologia di rete circostante

Ripartiamo dal Grafo

