

Learning to Rank

from heuristics to theoretic approaches

Hongning Wang

Congratulations

- Job Offer
 - Design the ranking module for Bing.com

How should I rank documents?

Relevance?!

The Notion of Relevance

Relevance Estimation

- Query matching
 - Language model
 - BM25
 - Vector space cosine similarity
- Document importance
 - PageRank
 - HITS

Did I do a good job of ranking documents?

• IR evaluations metrics how to rank documents

— MAP

Documents as geometric objects: how to rank documents for full-text ...

www.michaelnielsen.org/.../documents-as-geometric-objects-how-to-...

Jul 7, 2011 – In this post I explain the basic ideas of **how to rank** different **documents** according to their relevance. The ideas used are very beautiful.

[PDF] Information Retrieval: Ranking Documents

ciir.cs.umass.edu/~strohman/slides/IR-Intro-Ranking.pdf

File Format: PDF/Adobe Acrobat - View as HTML

About 128,000,000 results (0.25 seconds)

Web features, implicit relevance indicators. • Evaluating ranking quality. • Test collections. • Quality metrics. • Training systems to rank documents better. 10 ...

lucene.net - Lucene: How to rank documents according to the ...

stackoverflow.com/.../lucene-how-to-rank-documents-according-to-t...

1 answer - Mar 3

Top answer: This will require some work, but you can achieve this using payloads. See answers to this very similar question: How to get a better Lucene/Solr score ...

The Anatomy of a Search Engine

infolab.stanford.edu/~backrub/google.html

We use font size relative to the rest of the **document** because when searching, you do not want to **rank** otherwise identical **documents** differently just because ...

CS 4501: Information Retrieval

Take advantage of different relevance estimator?

Ensemble the cues

- Linear?
 - $a_1 \times BM25 + \alpha_2 \times LM + \alpha_3 \times PageRank + \alpha_4 \times HITS$

CS@UVa

What if we have thousands of features?

- Is there any way I can do better?
 - Optimizing the metrics automatically!

Rethink the task

• Given: (query, document) pairs represented by a set of relevance estimators, a.k.a., features

DocID	BM25	LM	PageRank	Label
0001	1.6	1.1	0.9	0
0002	2.7	1.9	0.2	1

Needed: a way of combining the estimators

$$-f(q,\{d\}_{i=1}^D) \rightarrow \text{ordered } \{d\}_{i=1}^D$$

- - P@k, MAP, NDCG, etc.

Machine Learning

- Input: $\{(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)\}$, where $X_i \in \mathbb{R}^N, Y_i \in \mathbb{R}^M$
- Object function : O(Y', Y)
- Output: $f(X) \to Y$, such that $f = \operatorname{argmax}_{f' \subset F} O(f'(X), Y)$

NOTE: We will only talk about supervised learning.

Learning to Rank

General solution in optimization framework

- Input:
$$\{((q_i, d_1), y_1), ((q_i, d_2), y_2), \dots, ((q_i, d_n), y_n)\},$$

where $\mathbf{d_n} \in \mathbb{R}^N$, $y_i \in \{0, \dots, L\}$

- Object: O = {P@k, MAP, NDCG}
- Output: $f(q,d) \rightarrow Y$, s.t., $f = \operatorname{argmax}_{f' \subset F} O(f'(q,d), Y)$

DocID	BM25	LM	PageRank	Label
0001	1.6	1.1	0.9	0
0002	2.7	1.9	0.2	1

Challenge: how to optimize?

- Evaluation metric recap
 - Average Precision

• AveP =
$$\frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{\text{number of relevant documents}}$$

— DCG

•
$$DCG_p = rel_1 + \sum_{i=2}^p \frac{rel_i}{\log_2 i}$$
.

- Order is essential!
 - $-f \rightarrow \mathbf{order} \rightarrow \mathbf{metric}$

Not continuous with respect to f(X)!

Approximating the objective function!

- Pointwise
 - Fit the relevance labels individually
- Pairwise
 - Fit the relative orders
- Listwise
 - Fit the whole order

Pointwise Learning to Rank

- Ideally perfect relevance prediction leads to perfect ranking
 - f → **score** → order → metric
- Reducing ranking problem to
 - Regression
 - $O(f(Q,D),Y) = -\sum_{i} ||f(q_{i},d_{i}) y_{i}||$
 - Subset Ranking using Regression, D.Cossock and T.Zhang, COLT 2006
 - (multi-)Classification
 - $O(f(Q,D),Y) = \sum_{i} \delta(f(q_i,d_i) = y_i)$
 - Ranking with Large Margin Principles, A. Shashua and A. Levin, NIPS 2002

Subset Ranking using Regression

D.Cossock and T.Zhang, COLT 2006

Fit relevance labels via regression

$$- \hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{m} (f(x_{i,j}, S_i) - y_{i,j})^2 \right]$$

- Emphasize more on relevant documents

•
$$\sum_{j=1}^{n} w(x_j, S)(f(x_j, S) - y_j)^2 + u \sup_j w'(x_j, S)(f(x_j, S) - \delta(x_j, S))_+^2$$

Most positive document

Ranking with Large Margin Principles

A. Shashua and A. Levin, NIPS 2002

 Goal: correctly placing the documents in the corresponding category and maximize the margin

Ranking with Large Margin Principles

A. Shashua and A. Levin, NIPS 2002

Maximizing the sum of margins

CS@QS

Ranking with Large Margin Principles

A. Shashua and A. Levin, NIPS 2002

19

 Ranking lost is consistently decreasing with more training data

CS@UVa

What did we learn

- Machine learning helps!
 - Derive something optimizable
 - More efficient and guided

Deficiency

- Cannot directly optimize IR metrics
 - $-(0 \rightarrow 1, 2 \rightarrow 0)$ worse than (0->-2, 2->4)
- Position of documents are ignored
 - Penalty on documents at higher positions should be larger d_2
- Favor the queries with more documents $\frac{d_1}{d_1'}$

Pairwise Learning to Rank

- Ideally perfect partial order leads to perfect ranking
 - $-f \rightarrow partial order \rightarrow order \rightarrow metric$
- Ordinal regression

$$-O(f(Q,D),Y) = \sum_{i \neq j} \delta(y_i > y_j) \delta(f(q_i,d_i) < f(q_i,d_i))$$

- Relative ordering between different documents is significant
- E.g., (0->-2, 2->4) is better than $(0 \to 1, 2 \to 0)$
- Large body of research

Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02

Minimizing the number of mis-ordered pairs

CS@UVa CS 4501: Information Retrieval 23

Keep the relative orders

Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02

How to use it?

$$-f$$
 → **score** → order

CS@UVa CS 4501: Information Retrieval 24

Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02

What did it learn from the data?

weight feature Linear correlations 0.60 query_abstract_cosine 0.48 top10_google 0.24query_url_cosine 0.24top1count_1 **Positive** 0.24 top10_msnsearch correlated 0.22host citeseer features 0.21domain nec 0.19 top10count_3 0.17top1_google 0.17country_de 0.16abstract contains home 0.16 top1_hotbot 0.14domain_name_in_query -0.13domain_tu-bs **Negative** -0.15country_fi -0.16top50count_4 correlated -0.17url_length features 4501: Information Retrie 0 32 top10count_0 -0.38top1count_0

Optimizing Search Engines using Clickthrough Data

Thorsten Joachims, KDD'02

How good is it?

Test on real system

An Efficient Boosting Algorithm for Combining Preferences

Y. Freund, R. Iyer, et al. JMLR 2003

Smooth the loss on mis-ordered pairs

$$-\sum_{y_i>y_j} Pr(d_i,d_j) exp[f(q,d_j) - f(q,d_i)]$$

An Efficient Boosting Algorithm for Combining Preferences

Y. Freund, R. Iyer, et al. JMLR 2003

- RankBoost: optimize via boosting
 - Vote by a committee

CS 4501: Information Retrieval

from Pattern Recognition and Machine Learning, P658

An Efficient Boosting Algorithm for Combining **Preferences**

Y. Freund, R. Iyer, et al. JMLR 2003

How good is it?

A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments Zheng et al. SIRIG'07

Non-linear ensemble of features

- Object:
$$\sum_{y_i > y_j} (\max\{0, f(q, d_j) - f(q, d_i)\})^2$$

- Gradient descent boosting tree
 - Boosting tree
 - Using regression tree to minimize the residuals

$$-r^{t}(q, d, y) = O^{t}(q, d, y) - f^{(t-1)}(q, d, y)$$

CS@UVa

A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments

Zheng et al. SIRIG'07

- Non-linear v.s. linear
 - Comparing with RankSVM

Where do we get the relative orders

- Human annotations
 - Small scale, expensive to acquire
- Clickthroughs

Large amount,

www.ebizmba.com/articles/search-engines >

CS 4501: Juntomanation Retrieval

Here are the 15 Most Popular Search Engines ranked by a combination of constantly

What did we learn

- Predicting relative order
 - Getting closer to the nature of ranking
- Promising performance in practice
 - Pairwise preferences from click-throughs

CS@UVa CS 4501: Information Retrieval 33

Listwise Learning to Rank

- Can we directly optimize the ranking?
 - -f → order → metric
- Tackle the challenge
 - Optimization without gradient

From RankNet to LambdaRank to LambdaMART: An Overview

Christopher J.C. Burges, 2010

 Minimizing mis-ordered pair => maximizing IR metrics?

Mis-ordered pairs: 6

AP: $\frac{5}{8}$

DCG: 1.333

Mis-ordered pairs: 4

AP: $\frac{5}{12}$

DCG: 0.931

Position is crucial!

From RankNet to LambdaRank to LambdaMART: An Overview

Christopher J.C. Burges, 2010

Weight the mis-ordered pairs?

From RankNet to LambdaRank to LambdaMART: An Overview

Christopher J.C. Burges, 2010

- Lambda functions
 - Gradient?
 - Yes, it meets the sufficient and necessary condition of being partial derivative
 - Lead to optimal solution of original problem?
 - Empirically

From RankNet to LambdaRank to LambdaMART: An Overview

Christopher J.C. Burges, 2010

Evolution

	RankNet		
Objective	Cross entropy over the pairs		
Gradient (λ function)	Gradient of cross entropy		
Optimization method	neural network		

As we discussed in RankBoost

From RankNet to LambdaRank to LambdaMART: An Overview

Christopher J.C. Burges, 2010

A Lambda tree

```
<tree id="8" weight="0.1">
 <split>
                                    splitting
   <feature> 811 </feature>
   <threshold> 5.0 </threshold>
   <split pos="left">
     <feature> 33 </feature> <
                                         Combination of
     <threshold> 20.0 </threshold>
     <split pos="left">
                                         features
       <feature> 589 </feature>
       <threshold> 43493.125 </threshold>
       <split pos="left">
         <feature> 1094 </feature>
         <threshold> 302.73438 </threshold>
         <split pos="left">
           <feature> 108 </feature>
           <threshold> 9881.824 </threshold>
           <split pos="left">
             <output> -0.66917753 </output>
           </split>
           <split pos="right">
             <feature> 151 </feature>
             <threshold>
```

Yisong Yue, et al., SIGIR'07

RankSVM

Minimizing the pairwise loss

minimize:
$$V(\vec{w}, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i,j,k} \xi_{i,j,k}$$

$$\forall (d_i, d_j) \in r_1^* : \vec{w} \Phi(q_1, d_i) \geq \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1}$$

$$\dots$$

$$\forall (d_i, d_j) \in r_n^* : \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n}$$

$$\forall i \forall j \forall k : \xi_{i,j,k} \geq 0$$

$$\mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i) \geq \mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i) \geq \mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i) \geq \mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i) \geq \mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i)$$

Loss defined on the number of mis-ordered document pairs

SVM-MAP

 Minimizing the structural loss

$$\min_{\mathbf{w}, \xi \geq 0} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

$$s.t. \ \forall i, \underline{\forall \mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}_i} :$$

$$\mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i) \geq \mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}) + \Delta(\mathbf{y}_i, \mathbf{y}) - \xi_i$$

Loss defined on the quality of the whole list of ordered documents

Yisong Yue, et al., SIGIR'07

- Max margin principle
 - Push the ground-truth far away from any mistakes you might make
 - Finding the most violated constraints

Yisong Yue, et al., SIGIR'07

- Finding the most violated constraints
 - MAP is invariant to permutation of (ir)relevant documents

Maximize MAP over a series of swaps between

Yisong Yue, et al., SIGIR'07

Experiment results

	TREC 9		TR	REC 10
Model	MAP	W/L	MAP	W/L
SVM_{map}^{Δ}	0.290	_	0.287	_
SVM_{roc}^{Δ}	0.282	29/21	0.278	35/15 **
SVM_{acc}	0.213	49/1 **	0.222	49/1 **
SVM_{acc2}	0.270	34/16 **	0.261	42/8 **
SVM_{acc3}	0.133	50/0 **	0.182	46/4 **
SVM_{acc4}	0.233	47/3 **	0.238	46/4 **

Other listwise solutions

- Soften the metrics to make them differentiable
 - Michael Taylor et al., SoftRank: optimizing nonsmooth rank metrics, WSDM'08
- Minimize a loss function defined on permutations
 - Zhe Cao et al., Learning to rank: from pairwise approach to listwise approach, ICML'07

What did we learn

- Taking a list of documents as a whole
 - Positions are visible for the learning algorithm
 - Directly optimizing the target metric
- Limitation
 - The search space is huge!

Summary

46

- Learning to rank
 - Automatic combination of ranking features for optimizing IR evaluation metrics
- Approaches
 - Pointwise
 - Fit the relevance labels individually
 - Pairwise
 - Fit the relative orders
 - Listwise
 - Fit the whole order

Experimental Comparisons

- My experiments
 - 1.2k queries, 45.5K documents with 1890 features
 - 800 queries for training, 400 queries for testing

	MAP	P@1	ERR	MRR	NDCG@5
ListNET	0.2863	0.2074	0.1661	0.3714	0.2949
LambdaMART	0.4644	0.4630	0.2654	0.6105	0.5236
RankNET	0.3005	0.2222	0.1873	0.3816	0.3386
RankBoost	0.4548	0.4370	0.2463	0.5829	0.4866
RankSVM	0.3507	0.2370	0.1895	0.4154	0.3585
AdaRank	0.4321	0.4111	0.2307	0.5482	0.4421
pLogistic	0.4519	0.3926	0.2489	0.5535	0.4945
Logistic	0.4348	0.3778	0.2410	0.5526	0.4762

Connection with Traditional IR

- People have foreseen this topic long time ago
 - Recall: probabilistic ranking principle

Conditional models for P(R=1|Q,D)

- Basic idea: relevance depends on how well a query matches a document
 - -P(R=1|Q,D)=g(Rep(Q,D)|θ) ← a functional form
 - Rep(Q,D): feature representation of query-doc pair
 - E.g., #matched terms, highest IDF of a matched term, docLen
 - Using training data (with known relevance judgments) to estimate parameter θ
 - Apply the model to rank new documents
- Special case: logistic regression

Broader Notion of Relevance

Future

- Tigh
- Fast
- Larg
- Wid

Resources

Books

- Liu, Tie-Yan. Learning to rank for information retrieval. Vol. 13.
 Springer, 2011.
- Li, Hang. "Learning to rank for information retrieval and natural language processing." Synthesis Lectures on Human Language Technologies 4.1 (2011): 1-113.
- Helpful pages
 - http://en.wikipedia.org/wiki/Learning to rank
- Packages
 - RankingSVM: http://svmlight.joachims.org/
 - RankLib: http://people.cs.umass.edu/~vdang/ranklib.html
- Data sets
 - LETOR http://research.microsoft.com/en-us/um/beijing/projects/letor//
 - Yahoo! Learning to rank challenge
 http://learningtorankchallenge.yahoo.com/

References

- Liu, Tie-Yan. "Learning to rank for information retrieval." Foundations and Trends in Information Retrieval 3.3 (2009): 225-331.
- Cossock, David, and Tong Zhang. "Subset ranking using regression." *Learning theory* (2006): 605-619.
- Shashua, Amnon, and Anat Levin. "Ranking with large margin principle: Two approaches." Advances in neural information processing systems 15 (2003): 937-944.
- Joachims, Thorsten. "Optimizing search engines using clickthrough data."
 Proceedings of the eighth ACM SIGKDD. ACM, 2002.
- Freund, Yoav, et al. "An efficient boosting algorithm for combining preferences." The Journal of Machine Learning Research 4 (2003): 933-969.
- Zheng, Zhaohui, et al. "A regression framework for learning ranking functions using relative relevance judgments." Proceedings of the 30th annual international ACM SIGIR. ACM, 2007.

References

- Joachims, Thorsten, et al. "Accurately interpreting clickthrough data as implicit feedback." Proceedings of the 28th annual international ACM SIGIR. ACM, 2005.
- Burges, C. "From ranknet to lambdarank to lambdamart: An overview." Learning 11 (2010): 23-581.
- Xu, Jun, and Hang Li. "AdaRank: a boosting algorithm for information retrieval." Proceedings of the 30th annual international ACM SIGIR. ACM, 2007.
- Yue, Yisong, et al. "A support vector method for optimizing average precision." Proceedings of the 30th annual international ACM SIGIR. ACM, 2007.
- Taylor, Michael, et al. "Softrank: optimizing non-smooth rank metrics." Proceedings of the international conference WSDM. ACM, 2008.
- Cao, Zhe, et al. "Learning to rank: from pairwise approach to listwise approach." Proceedings of the 24th ICML. ACM, 2007.

AdaRank: a boosting algorithm for information retrieval

Jun Xu & Hang Li, SIGIR'07

Loss defined by IR metrics

$$-\sum_{q\in Q} Pr(q) exp[-O(q)].$$

Optimizing by boosting

Target metrics: MAP, NDCG, MRR

committee member (ranking feature)

$$Y_{M}(\mathbf{x})$$
4501Sign nation rewising (\mathbf{x})

from Pattern Recognition and Machine Learning, P658

Analysis of the Approaches

- What are they really optimizing?
 - Relation with IR metrics

Pointwise Approaches

Regression based

$$1 - NDCG(f) \le \frac{1}{Z_m} \left(2 \sum_{j=1}^m \eta_j^{\varepsilon} \right)^{1/\alpha} \left(\sum_{j=1}^m (f(x_j) - y_j)^{\beta} \right)^{1/\beta}$$

Discount coefficients Regression loss

in DCG

Classification based

$$1 - NDCG(f) \le \frac{15}{Z_m} \sqrt{2 \left(\sum_{j=1}^m \eta_j^2 - m \prod_{j=1}^m \eta_j^{\frac{2}{m}} \right) \cdot \sum_{j=1}^m I_{\{y_j \ne f(x_j)\}}}$$

Discount coefficients in DCG

Classification loss

Pointwise Approach

 Although it seems the loss functions can bound (1-NDCG), the constants before the losses seem too large.

$$Z_{m} \approx 21.4 \qquad X_{i}, f(x_{i})$$

$$\begin{pmatrix} x_{1}, 4 \\ x_{2}, 3 \\ x_{3}, 2 \\ x_{4}, 1 \end{pmatrix} \qquad DCG(f) \approx 21.4 \qquad \begin{pmatrix} x_{1}, 3 \\ x_{2}, 2 \\ x_{3}, 1 \\ x_{4}, 0 \end{pmatrix}$$

$$\frac{15}{Z_{m}} \sqrt{2 \left(\sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^{2} - m \sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^{\frac{2}{m}} \right) \cdot \sum_{j=1}^{m} I_{\{y_{j} \neq f(x_{j})\}} \approx 1.15 > 1}$$

4/20/2009

From Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank

Pairwise Approach

(W. Chen, T.-Y. Liu, et al. 2009)

- Unified loss vs. (1-NDCG) Discount coefficients in DCG
 - When $\beta_t = \frac{G(t)\eta(t)}{Z_m}$, L(f) is a tight bound of (1-NDCG).
- Surrogate function of Unified loss
 - After introducing weights β_t, loss functions in Ranking SVM, RankBoost, RankNet are Costsensitive Pairwise Comparison surrogate functions, and thus are consistent with and are upper bounds of the unified loss.
 - Consequently, they also upper bound (1-NDCG).

4/20/2009

Listwise Approaches

- No general analysis
 - Method dependent
 - Directness and consistency