Interconnect Network Topologies

Characteristics of a network

- Topology (what)
 - Physical interconnection structure of the network graph.
 - Physically limits the performance of the networks.
- Routing algorithm (which)
 - Restricts the set of paths that messages can follow.
- Switching strategy (how)
 - How data in a message traverses a route (passing routers)
- Flow control mechanism (when)
 - When a message or portions of it traverse a route
 - What happens when traffic encountered

Topology

- How the components are connected.
- Important properties
 - Diameter: maximum distance between any two nodes in the network (hop count, or # of links).
 - Nodal degree: how many links connect to each node.
 - Bisection bandwidth: The smallest bandwidth between half of the nodes to another half of the nodes.
- A good topology: small diameter, small nodal degree, large bisection bandwidth.

Topology

- Regular topologies
 - Nodes are connected with some kind of patterns.
 - The graph has a structure.
 - Nodes are identified by coordinates.
 - Routing can usually pre-determined by the coordinates of the nodes.
- Irregular topologies
 - Nodes are connected arbitrarily.
 - The graph does not have a structure, e.g. internet
 - More extensible in comparison to regular topology.
 - Usually use variations of shortest path routing.

Linear Arrays and Rings

Diameter = ?, nodal = ? Bisection bandwidth = ?

Describing linear array and ring

- Array: nodes are numbered from 0, 1, ..., N-1
 - Node i is connected to node i+1, 0<=i<=N-2</p>
- Ring: nodes are numbered from 0, 1, ..., N-1
 - Node i is connected to node (i+1) mod N, for all 0<=i<=N-1</p>

Multidimensional Meshes and Tori

- d-dimensional array/torus
 - $N = k_{d-1} \times k_{d-2} \times ... \times k_0$
 - Each node is described by a d-vector of coordinate
 - Node (i_{d-1} x i_{d-2} x ...x d_0) is connected to
 ???

More about multi-dimensional mesh and tori

- d-dimension k-ary mesh (torus)
 - Each node is described by a d-vector of coordinates.
 - The value of each item in the vector is between 0 and d_i-1.
 - Diameter = ?
 - Nodal degree = ?
 - Bisection bandwidth = ?

Hypercubes

- Also called binary n-cubes. # of nodes = N = 2^n
- Each node is described by its binary representation.
 - There is a link between two nodes whose binary representations differ by one bit.
- Diameter=? Nodal degree = ? Bisection bandwidth = ?

K-ary n-cube (n-dimensional, k-ary mesh/torus)

- Extended from binary (hypercube) to k-ary
- Each dimension has k elements, n dimensions
- Each node is identified by a k-based number (n digits).
 - Dimension order routing

4-ary 0-cube

4-ary 1-cube

4-ary 2-cube

4-ary 3-cube

Trees

- Fixed degree, log(N) diameter, O(1) bisection bandwidth.
- Routing: up to the common ancestor than go down.

Irregular topology

- Irregular topology does not any special mathmetic properties
 - Can be expanded in any way.
 - No easy way for routing: routes need to be computed like in the Internet.
 - Routes can usually be determined in a regular network by using the coordinates of the source and destination.

Direct and indirect networks

- All the previously discussed networks are direct networks in that the compute nodes are directly attached to the nodes in the topology.
 - An example mesh system.

Each switch is a 5x5 switch

Indirect networks

- Compute nodes are not directly attached to each switch, but are rather attached to the whole network.
 - Using a central interconnect to connect all compute nodes
 - The network emulate the cross-bar switch functionality.

Fully connected network

- Different organizations:
 - Connected by one switch (crossbar switch), connecting all nodes, connected with a crossbar.
- All permutation communication (each node sends one message and receives one message) can be realized.

Multistage interconnection networks (MIN)

- Try to emulate the cross-bar connection.
 - Realizing permutation without blocking
 - Using smaller cross-bar(2x2, 4x4) switches as the building block. Usually O(Nlg(N)) switches (lg(N) stages.

Multi-stage networks examples

(a) An 8-input butterfly network

- (b) An 8-input Benes network
- MINs can be blocking or non-blocking
 - Blocking: there exist some permutation that results in link contention.
 - Non-blocking: any permutation can be realized without link contention
- Butterfly network is blocking.
- Benes network is non-blocking.

Clos Network

- Three stages: ingress stage, middle stage, and egress stage
 - Ingress/egress stage has rn X m switches
 - Middle stage has m r X r switches
 - Each switch at ingress/egress stage connects to all m middle switches (one port to each switch).

Clos Network

 Clos network is nonblocking when m>=2n-1.

Fat-Trees

- Fatter links (really more of them) as you go up, so bisection BW scales with N
 - Not practical, root is an NxN switch

Practical Fat-trees

- Use smaller switches to approximate large switches.
 - Connectivity is reduced, but the topology is not implementable
 - Most commodity large clusters use this topology. Also call constant bisection bandwidth network (CBB)

Clos network and fat-tree (folded Clos)

A generic 2-level fat-tree (folded Clos)

A generic 3-stage Clos network

Physical constraint on topologies

- Number of dimensions.
 - 2 or 3 dimensions
 - Can layout physically
 - Short wires, easy to build
 - Many hops, low bisection bandwidth
 - >=4 dimensions
 - Harder to build, longer wires
 - Fewer hops, better bisection bandwidth
 - K-ary n-cubes provide a good framework for comparison.