

Ayudantía 12

MAT1620 Cálculo II – Temporada Académica de Verano 2018

Ayudante: Nicolás Morales (nymorale@uc.cl)

24 de Enero de 2018

Cambios de variable, coordenadas cilíndricas y esféricas

1. Considere R la región del espacio limitada al primer octante, tal que $x^{1/3} + y^{1/2} + z \le 1$. Calcule el volumen de R.

2. Calcule el volumen bajo $z=\frac{xy}{1+x^2y^2}$ y sobre z=0, en la región limitada por $xy=1,\,xy=5,\,x=1$ y x=5.

3. Use coordenadas cilíndricas para calcular la integral:

$$\int_0^3 \int_0^{\sqrt{9-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} (x^2+y^2+z^2) dz dx dy$$

4. Considere un cuerpo cargado eléctricamente con densidad de carga $\rho(x,y,z)=z$, este cuerpo se extiende por la región limitada por $x^2+y^2+z^2=2z$ y $z=\sqrt{x^2+y^2}$. Calcule la carga total del cuerpo.

5. Determine el volumen del sólido encerrado por las superficies

$$z = \sqrt{x^2 + y^2}$$
 , $z = \sqrt{3(x^2 + y^2)}$, $x^2 + y^2 + z^2 = 1$, $z = 2$

6. Considere $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4, z \ge 0\}$

a) Calcule la masa del cuerpo definido por Ω si su densidad está dada por:

$$\rho(x, y, z) = \sqrt{\frac{x^2 + y^2}{x^2 + y^2 + z^2}}$$

b) Calcule el centro de masa del sólido