

Universidade Federal do Paraná

Métodos de reamostragem

Eduardo Vargas Ferreira

Paciente

 Matriz de confusão: é um layout de tabela que permite a visualização do desempenho do algoritmo.

Diagnosticado

DoenteSaudávelDoente1000200Saudável8008000

Avaliado

		Spam	Não-Spam
lail	Spam	100	170
E-n	Não-Spam	30	700

• Acurácia: é a razão entre as predições corretas pelo total.

Diagnosticado

	Doente	Saudável
Doente	1000	200
Saudável	800	8000
		Doente 1000

$${\rm Acur\'acia} = \frac{1000 + 8000}{10000} = 90\%$$

Avaliado

		Spam	Não-Spam
lail	Spam	100	170
E-m	Não-Spam	30	700

$${\rm Acur\'acia} = \frac{100 + 700}{1000} = 80\%$$

 Precisão: é o número de verdadeiros positivos, dividido pelo número de positivos estimados pelo modelo.

Diagnosticado

		Doente	Saudável
ente	Doente	1000	200
Pacier	Saudável	800	8000

$$\mathrm{Precis\tilde{a}o} = \frac{1000}{1000 + 800} = 55,6\%$$

Avaliado

		Spam	Não-Spam
Jail	Spam	100	170
⊏	Não-Spam	30	700

$${\rm Precis\~ao} = \frac{100}{100+30} = 76,9\%$$

 Recall: dado que o estado verdadeiro é positivo, qual a proporção de verdadeiro positivo.

Diagnosticado

		Doente	Saudável
ciente	Doente	1000	200
Paci	Saudável	800	8000

$$\mathrm{Recall} = \frac{1000}{1000 + 200} = 83,3\%$$

		Spam	Não-Spam
Jail	Spam	100	170
E-n	Não-Spam	30	700

$$\mathrm{Recall} = \frac{100}{100 + 170} = 37\%$$

 F₁ score: é um compromisso entre a Precisão e o Recall através de uma média harmônica.

 F_β score: é uma generalização do F₁ score, em que β representa a influência da Precisão no resultado final.

$$F_{\beta}$$
 score = $(1 + \beta^2) \frac{\operatorname{Precisão} \cdot \operatorname{Recall}}{\beta^2 \cdot \operatorname{Precisão} + \operatorname{Recall}}$

Soma de quadrados dos desvios (SQD)

$$J[y_i, h(x)] = \frac{1}{n} \sum_{i=1}^{n} [y_i - h(x_i)]^2$$

Soma dos desvios absolutos (SDA)

$$J[y_i, h(x)] = \frac{1}{n} \sum_{i=1}^{n} |y_i - h(x_i)|$$

Huber-M cost

$$J[y_i,h(\textbf{x})] = \frac{1}{n} \sum_{i=1}^n \begin{cases} \frac{1}{2} [y_i - h(x_i)]^2, & \text{para } |y - h(\textbf{x}_i)| \leq \delta, \\ \delta \, |y_i - h(x_i)| - \frac{1}{2} \delta^2, & \text{caso contrário.} \end{cases}$$

Suponha que estamos interessados em estudar a relação entre X e Y;

 Podemos definir varias funções, h(x). Mas, qual fornece a melhor predição? Resposta: a que apresentar menor custo (ou risco).

Tipos de dados

Dados de treino x dados de validação

 Erro do treino: é calculado mediante aplicação do método estatístico nos dados de treino;

 Erro de validação: média do erro resultante da predição de uma nova observação (que não fazia parte dos dados de treino).

Validação holdout

Validação holdout

 Nesta abordagem, dividimos os dados em apenas duas partes: treinamento e validação;

 O erro resultante dos dados de validação fornece uma estimativa do erro do teste, baseando-se em determinado indicador.

Validação holdout

Exemplo: Auto data set

 Neste exemplo, estamos avaliando a relação entre consumo de combustível e potência do automóvel.

Exemplo: Auto data set

 Separamos aleatoriamente as 392 observações em duas amostras: treinamento (com 196 dados) e validação (196 dados);

O gráfico da esquerda temos divisão única e da direita divisão múltipla.

• O método consiste em dividir os dados em K partes iguais. Ajusta-se o modelo com K-1 partes, e uma é destinada para às predições;

• Isto é feito para k = 1: K, em seguida os resultados são combinados;

Sejam as K partes denotadas por C₁, C₂,..., C_K, em que C_k representa o
índice da k-ésima parte;

1	2	3	•••	K
Validação	Treino	Treino		Treino

• Considere que temos n_k observações na parte k: se n é múltiplo de K, então $n_k = n/K$. Calcule:

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} EQM_k$$
$$= \frac{n_1}{n} EQM_1 + \frac{n_2}{n} EQM_2 + \frac{n_3}{n} EQM_3 + \ldots + \frac{n_K}{n} EQM_K$$

Sejam as K partes denotadas por C₁, C₂,..., C_K, em que C_k representa o
índice da k-ésima parte;

1	2	3	***	K
Treino	Validação	Treino		Treino

• Considere que temos n_k observações na parte k: se n é múltiplo de K, então $n_k = n/K$. Calcule:

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} EQM_k$$
$$= \frac{n_1}{n} EQM_1 + \frac{n_2}{n} EQM_2 + \frac{n_3}{n} EQM_3 + \ldots + \frac{n_K}{n} EQM_K$$

Sejam as K partes denotadas por C₁, C₂,..., C_K, em que C_k representa o
índice da k-ésima parte;

1	2	3	•••	K
Treino	Treino	Validação		Treino

• Considere que temos n_k observações na parte k: se n é múltiplo de K, então $n_k = n/K$. Calcule:

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} EQM_k$$
$$= \frac{n_1}{n} EQM_1 + \frac{n_2}{n} EQM_2 + \frac{n_3}{n} EQM_3 + \ldots + \frac{n_K}{n} EQM_K$$

Sejam as K partes denotadas por C₁, C₂,..., C_K, em que C_k representa o
índice da k-ésima parte;

1	2	3	•••	K
Treino	Treino	Treino		Validação

• Considere que temos n_k observações na parte k: se n é múltiplo de K, então $n_k = n/K$. Calcule:

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} EQM_k$$
$$= \frac{n_1}{n} EQM_1 + \frac{n_2}{n} EQM_2 + \frac{n_3}{n} EQM_3 + \ldots + \frac{n_K}{n} EQM_K$$

CV em problemas de classificação

Sejam as K partes denotadas por C₁, C₂,..., C_K, em que C_k representa o
índice da k-ésima parte;

1	2	3	•••	K
Treino	Treino	Treino		Validação

 Considere que temos n_k observações na parte k: se n é múltiplo de K, então n_k = n/K. Calcule:

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} Err_k$$
$$= \frac{n_1}{n} Err_1 + \frac{n_2}{n} Err_2 + \frac{n_3}{n} Err_3 + \ldots + \frac{n_K}{n} Err_K$$

• Em que $Err_k = \sum_{i \in C_k} \mathbb{1}(y_i \neq \hat{y}_i)/n_k$, e \hat{y}_i é a classificação da i-ésima observação.

Validação cruzada leave-one-out

Validação cruzada leave-one-out (LOOCV)

Exemplo: Auto data set

O gráfico da direita apresenta 9 diferentes validações cruzadas 10 – fold.
 Em cada uma, temos uma nova partição dos dados.

 O gráfico abaixo apresenta a verdadeira curva do EQM em azul, a estimativa LOOCV pontilhada e 10 – fold em laranja;

 O gráfico abaixo apresenta a verdadeira curva do EQM em azul, a estimativa LOOCV pontilhada e 10 – fold em laranja;

 O gráfico abaixo apresenta a verdadeira curva do EQM em azul, a estimativa LOOCV pontilhada e 10 – fold em laranja;

 Um bom desempenho no conjunto de teste requer um baixo erro quadrático médio. Porém, note que

$$\mathrm{E}\left[y_0 - h(x_0)\right]^2 = \mathrm{Var}\left[h(x_0)\right] + \mathrm{Vicio}\left[h(x_0)\right]^2 + \mathrm{Var}(\varepsilon).$$

 Um bom desempenho no conjunto de teste requer um baixo erro quadrático médio. Porém, note que

$$\mathrm{E}\left[y_0 - h(x_0)\right]^2 = \mathrm{Var}\left[h(x_0)\right] + \mathrm{Vicio}\left[h(x_0)\right]^2 + \mathrm{Var}(\varepsilon).$$

Variância

- ★ Refere-se ao quanto h(x₀) muda quando a estimamos utilizando diferentes dados de treino;
- * Em geral, quanto mais flexível o modelo, maior a variância.

Vício

- Refere-se ao erro de aproximar um problema real (extremamente complicado) por uma função simples;
- * Em geral, quanto mais simples o modelo, maior o vício.

 Um bom desempenho no conjunto de teste requer um baixo erro quadrático médio. Porém, note que

$$\mathrm{E}\left[y_0 - h(x_0)\right]^2 = \mathrm{Var}\left[h(x_0)\right] + \mathrm{Vicio}\left[h(x_0)\right]^2 + \mathrm{Var}(\varepsilon).$$

Validação cruzada: certo e errado

Validação cruzada: certo e errado

- Considere um classificador aplicado aos dados de duas classes:
 - Começando com 5000 preditores e amostra de tamanho 50, filtramos os 100 preditores com maior correlação entre as classes;
 - 2. Aplicamos um classificador utilizando somente os 100 preditores.

Como podemos estimar o desempenho do teste para este classificador?
 Validação cruzada

Validação cruzada: abordagem errada!

 Podemos aplicar validação cruzada no Passo 2, esquecendo o Passo 1 (não incorporando o fato de termos eliminado 4900 preditores)? Não!

 Isso seria ignorar o fato de que no Passo 1 o procedimento já viu os rótulos de treinamento, e aprendeu com isso.

Validação cruzada: abordagem certa!

 Podemos aplicar validação cruzada no Passo 2, esquecendo o Passo 1 (não incorporando o fato de termos eliminado 4900 preditores)?

Não!

 Isso seria ignorar o fato de que no Passo 1 o procedimento já viu os rótulos de treinamento, e aprendeu com isso.

Exemplo: clientes em atraso

• Criamos exemplos "sintéticos", superamostrando a classe minoritária.

Exemplo: abordagem errada!

Exemplo: abordagem certa!

Bootstrap

Bootstrap estimando o erro de predição

Bootstrap estimando o erro de predição

 Na validação cruzada, o K- ésimo fold de validação é distinto dos demais k - 1 folds usados no treinamento;

 Não há overlap entre os dados de treino e validação. O que é crucial para seu sucesso. Queremos uma ideia sobre os dados de teste (novos dados);

Referências

- James, G., Witten, D., Hastie, T. e Tibshirani, An Introduction to Statistical Learning, 2013;
- Hastie, T., Tibshirani, R. e Friedman, J., The Elements of Statistical Learning, 2009;
- Lantz, B., Machine Learning with R, Packt Publishing, 2013;
- Tan, Steinbach, and Kumar, Introduction to Data Mining, Addison-Wesley, 2005;
- Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani