San Francisco Crime Rates

SF Crime Forecasting

CS 133 - Data Visualization Member: Tang, Ho Lam Ruiyuan Li

2. Project Questions

Project Questions

Key Questions We Explore:

- 1.Can we accurately predict the category of crime based on time, day of week, and police district?
- 2. What are the peak hours during which specific crimes occur more frequently?
- 3.Do different neighborhoods show consistent patterns for crime types like theft, assault, or vandalism?
- 4.Is there a seasonal pattern in violent vs. non-violent crimes?
- 5. What are the spatial crime hotspots in San Francisco over the last 5 years?

3. Dataset Overview

Source: San Francisco Police Department Incident Reports (2018–Present)

Columns used: 9 key column

incident_category, incident_datetime, analysis_neighborhood, police_district, incident_day_of_week, incident_time, incident_description, longitude, latitude

Total rows: 952,286

crime_data_path = "/content/drive/Shareddrives/SF_Crime_Forecasting/Police_Department_Incident_Reports__2018_to_Present_20crime_df = pd.read_csv(crime_data_path)
crime_df.info()

N ... N . 11 C Dt

<class 'pandas.core.frame.DataFrame'> RangeIndex: 952287 entries, 0 to 952286 Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Incident Datetime	952287 non-null	object
1	Incident Date	952287 non-null	object
2	Incident Time	952287 non-null	object
3	Incident Year	952287 non-null	int64
4	Incident Day of Week	952287 non-null	object
5	Report Datetime	952287 non-null	object
6	Row ID	952287 non-null	int64
7	Incident ID	952287 non-null	int64
8	Incident Number	952287 non-null	int64
9	CAD Number	741646 non-null	float64
10	Report Type Code	952287 non-null	object
11	Report Type Description	952287 non-null	object
12	Filed Online	185557 non-null	object
13	Incident Code	952287 non-null	int64
14	Incident Category	951133 non-null	object
15	Incident Subcategory	951133 non-null	object
16	Incident Description	952287 non-null	object
17	Resolution	952287 non-null	object
18	Intersection	900362 non-null	object
19	CNN	900362 non-null	float64
20	Police District	952287 non-null	object
21	Analysis Neighborhood	900119 non-null	object
22	Supervisor District	899893 non-null	float64
23	Supervisor District 2012	900228 non-null	float64
24	Latitude	900362 non-null	float64
25	Longitude	900362 non-null	float64
26	Point	900362 non-null	object
27	Neighborhoods	888210 non-null	float64
28	ESNCAG - Boundary File	10984 non-null	float64
29	Central Market/Tenderloin Boundary Polygon - Updated	127671 non-null	float64
30	Civic Center Harm Reduction Project Boundary	124884 non-null	float64
31	HSOC Zones as of 2018-06-05	200793 non-null	float64
32	Invest In Neighborhoods (IIN) Areas	0 non-null	float64
33	Current Supervisor Districts	900228 non-null	float64
34	Current Police Districts	899378 non-null	float64
	es: float64(14), int64(5), object(16) ry usage: 254.3+ MB		

4.Data Cleaning & Preparation

Raw sample of selected columns before cleaning

Shows missing values in Analysis Neighborhood and Police District

Format still includes string-type dates and times

Further cleaning needed for nulls and column transformations

```
# Make a copy of the original DataFrame
selected_df = crime_df.copy()

# Select only the desired columns (excluding Incident Year now)
selected_columns = [
        "Incident Category",
        "Analysis Neighborhood",
        "Police District",
        "Incident Date",
        "Incident Day of Week",
        "Incident Time"
]
selected_df = selected_df[selected_columns]
selected_df.head(10)
```

	Incident Category	Analysis Neighborhood	Police District	Incident Date	Incident Day of Week	Incident Time
0	Larceny Theft	NaN	Mission	2023/03/01	Wednesday	05:02
1	Recovered Vehicle	NaN	Out of SF	2023/03/14	Tuesday	18:44
2	Larceny Theft	NaN	Mission	2023/02/15	Wednesday	03:00
3	Larceny Theft	NaN	Central	2023/03/11	Saturday	15:0
4	Larceny Theft	NaN	Central	2023/03/13	Monday	07:3
5	Drug Violation	NaN	Out of SF	2023/03/16	Thursday	09:2
6	Assault	Potrero Hill	Bayview	2023/03/16	Thursday	17:3
7	Recovered Vehicle	NaN	Out of SF	2023/03/16	Thursday	13:4
8	Larceny Theft	NaN	Richmond	2023/03/16	Thursday	22:1
9	Larceny Theft	NaN	Central	2023/02/11	Saturday	14:0

dtype: int64

5.Feature Engineering & Final Dataset

Parsed incident_datetime into hour, day, month, and year columns

Removed rare or missing categories and cleaned inconsistent values

Used one-hot encoding for categorical columns like **neighborhood**, **district**, and **day_of_week**

Aggregated incidents by hour using groupby to create the target variable: crime_count

Final dataset includes both time and location features for modeling crime trends

	incident_category	analysis_neighborhood	police_district	incident_day_of_week	incident_datetime	hour	day	month	year	crime_count	
951128	Larceny Theft	Bernal Heights	Ingleside	Monday	2025-04-28 20:59:00	20	28	4	2025	5	11.
951129	Larceny Theft	Bernal Heights	Ingleside	Monday	2025-04-28 21:05:00	21	28	4	2025	3	
951130	Larceny Theft	Bernal Heights	Ingleside	Monday	2025-04-28 21:06:00	21	28	4	2025	3	
951131	Larceny Theft	South of Market	Tenderloin	Monday	2025-04-28 21:56:00	21	28	4	2025	3	
951132	Non-Criminal	Mission	Mission	Monday	2025-04-28 22:34:00	22	28	4	2025	1	

6.Data Cleaning Confirmation

Confirm data cleanliness and structure.

No missing (null) values in any of the 12 columns — that means the dataset is fully cleaned.

Verifying that the dataset is clean and ready.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 951133 entries, 0 to 951132
Data columns (total 12 columns):

Column Non-Null Count Dtype incident category 951133 non-null object analysis_neighborhood 951133 non-null object police district 951133 non-null object incident_day_of_week 951133 non-null object 951133 non-null datetime64[ns] incident_datetime 951133 non-null int32 hour day 951133 non-null int32 month 951133 non-null int32 951133 non-null int32 year count_crime_hourly 951133 non-null int64 count_crime_fulltime_frame 951133 non-null int64 11 count_crime_district 951133 non-null int64 dtypes: datetime64[ns](1), int32(4), int64(3), object(4) memory usage: 72.6+ MB

7. Data Exploration

Understand the diversity of each column's values — helpful before encoding or analysis.

Whether any column has too many or too few values.

Next is Seaborn pairplot, and it's perfect for showing relationships between time-based features and the crime_count variable.

8.Hourly Crime Trends & Feature Distributions

This exploration helped validate hour, day, month, and year as meaningful features for modeling

"Crime Frequency by Hour in Top 10 Crime Neighborhoods"

Crime Frequency by Hour in Top 10 Crime Neighborhoods															
0 -	3590	1592	2981	1314	1665	5919	1896	948	2445	1142	818	4936	1818	4844	1544
1 -	1327	1010	1507	641	1023	3584	1175	672	1278	396	436	2422	664	2218	700
2 -	1200	781	1425	557	689	2996	999	551	922	390	406	2004	660	2033	589
3 -	1059	595	1059	581	478	2238	713	306	824	365	380	1580	561	1622	494
4 -	905	543	990	431	422	1869	628	277	804	303	321	1208	472	1368	471
5 -	825	414	1003	365	405	1452	507	247	910	256	256	1077	429	1284	449
6 -	1150	508	1145	391	460	1831	534	286	964	269	283	1358	418	1837	571
7 -	1618	739	1485	527	569	2384	651	393	1049	329	326	2176	616	2770	702
8 -	2322	1013	2195	895	780	3433	934	727	1692	632	561	3084	1005	3631	1272
9 -	2673	1043	2460	952	842	3578	939	1029	2149	655	763	3621	1203	3890	1252
à 10 −	2849	1108	2926	1131	1160	3665	997	1509	2828	856	1195	3927	1311	4250	1445
Ö 11 -	2891	1041	3379	1307	1410	4075	1045	1986	3145	1107	1418	3921	1315	4905	1477
j 12 -	3978	1557	4459	1609	1663	5955	1420	2178	3266	1387	1638	4978	1973	6811	1963
는 12 - 위 13 -	3067	1051	3777	1297	1142	4748	1041	1761	2916	992	1241	4571	1269	6053	1510
14 -	3110	1057	3774	1110	1205	4619	1020	1640	2910	914	1160	4551	1302	5840	1589
15 -	3247	1217	4109	1233	1247	4785	1112	1622	2823	1062	1084	4574	1504	6031	1704
16 -		1251	3997	1261	1302	5259	1228	1683	2824	1096	1134	4573	1427	5785	1836
17 -	3627	1378	4528	1423	1417	5614	1281	1825	3015	1276	1283	4559	1553	5503	1907
18 -	3274	1418	4355	1593	1468	5655	1373	1935	3152	1316	1322	4238	1534	5101	1957
19 -	2868	1372	3853	1613	1298	5231	1274	1921	2983	1146	1311		1340	4552	1869
20 -	2580	1198	3331	1403	1163	4711	1320	1705	2967	1072	1123	3251	1241	4043	1633
21 -	2461	1220	2600	1147	1025	4675	1228	1371	2463	919	1008	3195	1287	3700	1344
22 -	2546	1162	2277	1030	1045	4519	1357	1080	2087	800	768	3432	1253		1250
23 -	2138	1023	1908	861	1064	4438	1373	878	1735	581	586	3261	905	3381	1057
	2.5	int .	2. 2. 2. 4. 10 4. 4. 4. 4. 4. 4. 4. 4. 4.												

- 3000 -2000

- 1000

9. Testing & Result

We have three models

Linear Regression, Decision Tree, and Random Forest

```
RF MAE: 4.58 RF MAE: 4.53 RF RMSE: 8.95 RF RMSE: 6.10 RF RMSE: 6.03 RF R<sup>2</sup>: 0.075 RF R<sup>2</sup>: 0.573 RF R<sup>2</sup>: 0.583
```

All models predicted the same target (hourly crime count) using identical time and location features. Among them, Random Forest is the best with the lowest error."

Testing & Result

Key Point

- Most hourly crime predictions are very close to the real numbers (on the diagonal line)
- When crime is low, the model sometimes guesses a little too high
- When crime is high, the model usually guesses a bit too low
- Only a few points are far off, meaning big mistakes are rare

Testing & Result

Key Point

- Most prediction errors are close to 0, which means the model is mostly accurate
- When the predicted crime count is low, the errors are more spread out
- When the predicted crime count is **high**, the errors are smaller and more steady
- There are a few unusual points (outliers), but the model does not make big mistakes often

10.Challenges

At first, we were confused about how to clean the data and tried different ways before finding the right method

Some columns like neighborhood and district had missing values, so we filled them with "Out of SF"

If we understand the data better at the start, we can save time and avoid doing things over