Gadījuma lielumi.

Dota patvaļīga varbūtību telpa $\{\Omega, \mathcal{F}, P\}$, kur Ω – elementāru notikumu telpa (diskrēta vai nepārtraukta), \mathcal{F} – telpas apakškopu σ – algebra $(\Omega \in \mathcal{F}, \left\{\bigcup_{j=1}^{\infty} A_j\right\} \in \mathcal{F}, -1$

 $\overline{A} \in \mathcal{F}$) un P – varbūtība (skaitliska funkcija, definēta visiem \mathcal{F} elementiem, kurai $P(A) \geq 0$, $P(\Omega) = 1$, $P(A \cup B) = P(A) + P(B)$, ja $AB = \emptyset$).

 $\omega \in \Omega$ – elementāri notikumi.

Apskatīsim skaitlisku funkciju $\xi = \xi(\omega)$, kas attēlo kopu Ω par skaitļu asi \mathbf{R}^1 vai kādu tās apakškopu $(\xi:\Omega \to \mathbf{R}^1)$.

<u>Definīcija.</u> Skaitlisku funkciju $\xi = \xi(\omega)$ sauc par gadījuma lielumu, ja visiem $x \in \mathbf{R}^1$ ir spēkā $\{\omega : \xi(\omega) < x\} \in \mathcal{F}$.

T.i., katras kopas $\{\omega : \xi(\omega) < x\}$ pirmattēls ir notikums.

1. piemērs. Vienu reizi met monētu $\Omega = \{\{C\}, \{G\}\}\}$, $\mathcal{F} = \{\{C, G\}, \{C\}, \{G\}, \emptyset\}$.

Definēsim gadījuma lielumu ξ : $\xi(\{C\})=1$, $\xi(\{G\})=0$. Definīcijas prasības izpildās jebkuriem x:

ja
$$x \le 0$$
, tad $\{\omega : \xi(\omega) < x\} = \emptyset$,
ja $0 < x \le 1$, tad $\{\omega : \xi(\omega) < x\} = \{G\}$
ja $x > 1$, tad $\{\omega : \xi(\omega) < x\} = \{C, G\}$

Piezīme. Diskrētas elementāru notikumu telpas gadījumā var izveidot σ – algebru, kas satur visas Ω apakškopas. Definīcijas prasības izpildās vienmēr, t.i., jebkura kopā Ω definēta skaitliska funkcija ir gadījuma lielums. Nepārtrauktas elementāru notikumu telpas gadījumā tas ne vienmēr ir spēkā.

Piezīme. Kopu $\{\omega: \xi(\omega) < x\} \subset \Omega$ pieraksta vienkāršošanai apzīmēsim $(\xi(\omega) < x)$ vai $(\xi < x)$. Tomēr katrā gadījumā jāatceras, ka runa ir par Ω apakškopu.

2. piemērs. Gadījuma lielums ξ ir segmentā [0,1] uz labu laimi izvēlēta punkta koordināta.

 σ – algebru \mathcal{F} izveidosim sastāvošu no intervāliem (Boreļa kopu σ – algebra, skat. 1. lekciju). Tad jebkuram $0 \le x \le 1$: kopa [0, x) ir notikums. Tā kā $(\xi < x) \in \mathcal{F}$, tad arī $(\xi \ge x) = (\overline{\xi} < x) \in \mathcal{F}$. Ievērojot, ka $A \cap B = \overline{\overline{A} \cup \overline{B}}$, un ņemot $\bigcap_{n=1}^{\infty} (\xi \ge x + \frac{1}{n}) = (\xi = x) \in \mathcal{F}$. Līdzīgi var parādīt, ka $(\xi > x) \in \mathcal{F}$ un jebkuri $(x_1 < \xi < x_2) \in \mathcal{F}$, $(x_1 < \xi \le x_2) \in \mathcal{F}$, $(x_1 \le \xi \le x_2) \in \mathcal{F}$.

Lai atrastu visu šo notikumu varbūtības pilnīgi pietiek zināt visu iespējamo notikumu $(\xi < x)$ varbūtības.

<u>Definīcija.</u> Funkciju $F(x) = P(\xi < x)$, kas definēta visiem $x \in \mathbf{R}^1$, sauc par gadījuma lieluma ξ sadalījuma funkciju.

Atradīsim F(x) minētajos piemēros:

1. piemērs.
$$P(\{C\}) = P(\{G\}) = \frac{1}{2}$$

1. piemērs.
$$P(\{C\}) = P(\{G\}) = \frac{1}{2}$$

 $F(x) = P(\xi < x) = \begin{cases} 0, & x \le 0, \\ \frac{1}{2}, & 0 < x \le 1, \\ 1, & x > 1 \end{cases}$

2. piemērs.

$$F(x) = P(\xi < x) = \begin{cases} 0, & x \le 0, \\ x, & 0 < x \le 1, \\ 1, & x > 1 \end{cases}$$

Sadalījuma funkcijas īpašības.

$$F(x) = P(\xi < x)$$

1.
$$F(-\infty) = \lim_{x \to -\infty} P(\xi < x) = 0$$
, $F(\infty) = \lim_{x \to \infty} P(\xi < x) = 1$

2. Ja $x_1 < x_2$, tad $F(x_1) \le F(x_2)$

(monotoni nedilstoša funkcija)

3. $\lim_{x \to x_0 \to 0} F(x) = F(x_0)$ (nepārtraukta no kreisās puses)

Piezīme. Jebkura funkcija G(x), kurai izpildās īpašības 1. – 3. ir sadalījuma funkcija.

T.i., var konstruēt varbūtību telpu $\{\Omega, \mathcal{F}, P\}$ un definēt tajā gadījuma lielumu ξ , ka tā sadalījuma funkcija ir G(x).

Piezīme. No 2. piemēra redzams, ka, zinot sadalījuma funkciju F(x), var atrast jebkuru ar gadījuma lielumu ξ saistītu notikumu varbūtības. Tādēļ, ja zināma F(x), sākotnējo varbūtību sadalījumu telpā $\{\Omega, \mathcal{F}, P\}$ vairs nav nepieciešamības izmantot, jo visu nepieciešamo informāciju par ξ satur funkcija F(x).

Gadījuma lieluma sadalījuma funkciju bieži sauc par gadījuma lieluma sadalījumu vai sadalījuma likumu.

Diskrēti sadalījuma likumi.

Definīcija. Gadījuma lieluma ξ sadalījumu sauc par diskrētu, ja gadījuma lielums var pieņemt ne vairāk kā sanumurējumu skaitu vērtību $x_1, x_2, ..., x_n, ...$, kurām

$$P(\xi = x_n) = p_n > 0$$
, $n = 1, 2, \dots$ Turklāt $\sum_{n=1}^{\infty} p_n = 1$.

Diskrēta gadījuma lieluma sadalījumu pilnībā uzdod skaitļu pāri (x_n, p_n) , n = 1, 2, ...

Piemērs. Gadījuma lielums ξ ir uz spēļu kauliņa uzkritušo punktu skaits:

Diskrēta gadījuma lieluma sadalījuma funkcija ir kāpņveida funkcija, kas saglabā konstantu vērtību visos intervālos (x'=x''], kuri nesatur tādus punktus x_k , kuros $P(\xi=x_k)>0$. Minētajos punktos x_k sadalījuma funkcija F(x) mainās ar lēcienu $F(x_k)-F(x_k-0)=p_k$.

Diskrētu sadalījuma likumu piemēri.

1. <u>Deģenerētais sadalījums</u>. Katru konstanti var uzskatīt par gadījuma lielumu, kas ar varbūtību 1 pieņem kādu fiksētu vērtību.

$$P(\xi = a) = 1$$
 $F(x) = \begin{cases} 0, & x \le a, \\ 1, & x > a \end{cases}$

2. <u>Bernulli sadalījums.</u> Gadījuma lielumam ir Bernulli sadalījums ar parametru p $(0 , ja <math>P(\xi = 1) = p$ $P(\xi = 0) = 1 - p$

$$F(x) = \begin{cases} 0, & x \le 0, \\ 1 - p, 0 < x \le 1 \\ 1, & x > 1 \end{cases}$$

3. **Binomiālais sadalījums.** Gadījuma lielums vienāds ar labvēlīgo notikumu skaitu Bernulli shēmā. Simbolisks pieraksts: $\xi \sim B(n, p)$

$$P(\xi = k) = C_n^k p^k (1-p)^{n-k}, \text{ kur } n \ge 1, \qquad k = 0, 1, 2, ..., n , \qquad 0
$$F(x) = \begin{cases} 0, & x \le 0, \\ ... \\ \sum_{j=1}^k C_n^j p^j (1-p)^{n-j}, k < x \le k+1, \\ ... \\ 1, & x > 1 \end{cases}$$
 Sadalījuma funkcija$$

$$F(x) = \left\{ \sum_{j=1}^{k} C_n^{j} p^{j} (1-p)^{n-j}, k < x \le k+1, \right.$$

$$1, \qquad x > 1$$

4. **Geometriskais sadalījums.** Apraksta nepieciešamo novērojumu skaitu Bernulli shēmā, lai iegūtu tieši vienu labvēlīgu iznākumu (eksperimentu skaits līdz pirmajam panākumam) – cik reizes studentam jākāro ieskaite, lai saņemtu ierakstu ieskaišu grāmatiņā.

$$P(\xi = k) = p(1-p)^k$$
, $k = 0,1,2,...$

Ģeometriskais sadalījums ir sadalījums bez pēcdarbības:

$$P(\xi > k + m | \xi > k) = P(\xi > m).$$

Ja gaidāt 11. tramvaju, un pienākuši jau vairāki 6. tramvaji, tas nepalielina sākotnējo varbūtību, ka nākošais pienākušais būs 11. tramvajs.

5. <u>Hiperģeometriskais sadalījums.</u>

$$P(\xi = k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^k}$$
 N, K, n, k – naturāli skaitļi, $K \le N, n \le N, k \le \min(K, n)$

Piemēram, pārbauda izstrādājumu partiju, kas satur K derīgus un N-K nederīgus izstrādājumus. Uz labu laimi izvēlas n izstrādājumus. Derīgo izstrādājumu skaits starp izvēlētajiem ir sadalīts hiperģeometriski.

6. Puasona sadalījums.
$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
, kur $k = 0, 1, 2, ...$

$$F(x) = \begin{cases} 0, & x \le 0, \\ \sum_{k < x} \frac{\lambda^k}{k!} e^{-\lambda}, & x > 0 \end{cases}$$

Puasona sadalījums ir vissvarīgākais diskrētais sadalījums. Pielietojumi:

- apraksta neatkarīgu vienādi varbūtīgu notikumu iestāšanās skaitu laika intervālā (izsaukumi telefonu centrālē, ja to pienākšanas intensitāte λ , reģistrēto elementārdaļiņu skaits utt.)
- robežsadalījums binomiālajam sadalījumam, ja $n \to \infty$, $p \to 0$, $np \to \lambda$
- sadalījums ir bezgalīgi dalāms, t.i., ja ξ_j summa sadalīta pēc Puasona likuma, tad arī saskaitāmo sadalījums ir Puasona
- sadalījums bez pēcdarbības (Ja notikumu skaits laika vienībā sadalīts pēc Puasona sadalījkuma, tad vienā laika intervālā iestājušos notikumu skaits nav atkarīgs no citā intervālā iestājušos notikumu skaita).

Absolūti nepārtraukti sadalījuma likumi.

<u>Definīcija.</u> Gadījuma lielumu sauc par nepārtrauktu, ja tā sadalījuma funkcija ir nepārtraukta funkcija.

Definīcija. Gadījuma lielumu sauc par absolūti nepārtrauktu, ja eksistē nenegatīva

funkcija
$$p(x)$$
, tāda, ka visiem x : $F(x) = P(\xi < x) = \int_{-\infty}^{x} p(u) du$

Definīcija. Funkciju P(x) sauc par gadījuma lieluma sadalījuma blīvuma funkciju.

Sadalījuma blīvuma funkcijas īpašības.

1.
$$P(a \le \xi < b) = 1 - (P(\xi < a) + P(\xi \ge b)) = P(\xi < b) - P(\xi < a) = F(b) - F(a) = \int_{-\infty}^{b} p(x)dx - \int_{-\infty}^{a} p(x)dx = \int_{a}^{b} p(x)dx$$
.

2.
$$P(\xi = a) = \lim_{n \to \infty} P(a \le \xi < a + \frac{1}{n}) = \lim_{n \to \infty} \int_{a}^{a + \frac{1}{n}} p(x) dx = \int_{a}^{a} p(x) dx = 0$$

3. $\frac{dF(x)}{dx} = p(x)$ tajos punktos, kur p(x) nepārtraukta.

$$\frac{dF(x)}{dx} = \frac{d\int_{-\infty}^{x} p(u)du}{dx} = p(x)$$

4.
$$p(x) \ge 0$$
 visiem $-\infty < x < \infty$

5.
$$\int_{-\infty}^{\infty} p(x)dx = F(\infty) - F(-\infty) = 1 - 0 = 1$$

Nepārtrauktu sadalījumu piemēri.

1. <u>Vienmērīgais sadalījums.</u> Gadījuma lielumu sauc par sadalītu vienmērīgi segmentā [a,b], ja tā blīvuma funkcija ir konstanta šajā segmentā. (shematisks pieraksts $\xi \sim [a,b]$)

$$p(x) = \begin{cases} 0, & x < a, \\ \frac{1}{b-a}, & a < x < b, \\ 0, & x > b \end{cases}$$

$$F(x) = \begin{cases} \int_{-\infty}^{x} 0 dx = 0, & x < a, \\ \int_{-\infty}^{a} 0 dx + \int_{a}^{x} \frac{1}{b - a} dx = \frac{x - a}{b - a}, & a < x < b, \\ \int_{-\infty}^{a} 0 dx + \int_{a}^{b} \frac{1}{b - a} dx + \int_{b}^{x} 0 dx = 1, & x > b \end{cases}$$

2. Eksponenciālais sadalījums. Gadījuma lielumu sauc par sadalītu eksponenciāli ar parametru λ , ja

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x < 0 \end{cases}$$

$$F(x) = \begin{cases} \int_{0}^{x} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{0}^{x} = 1 - e^{-\lambda x}, & x > 0, \\ 0, & x < 0 \end{cases}$$

3. Normālais (Gausa) sadalījums.

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

 $\operatorname{Kur} -\infty < a < \infty$, $\sigma > 0$

Blīvuma funkcijas grafiks. Ekstrēma atrašana: $\frac{dp(x)}{dx} = 0$;; x = a (maksimums)

$$\int_{-\infty}^{\infty} p(x)dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \begin{bmatrix} y = \frac{x-a}{\sigma} \\ dy = \frac{dx}{\sigma} \end{bmatrix} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = 1$$
Puasona integrālis.

Maksimuma vērtība: $p(a) = \frac{1}{\sqrt{2\pi\sigma}}$. Jo mazāks σ , jo augstāka virsotne un stāvāki zari, jo laukums zem blīvuma funkcijas vienmēr vienāds ar 1.

Simbolisks pieraksts: $\xi \sim N(a, \sigma^2)$

Standartnormālais sadalījums: a = 0, $\sigma = 1$

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
. Lineārs pārveidojums saglabā normālo sadalījumu, mainās

parametru vērtības.
$$\eta = \frac{\xi - a}{\sigma}$$
; $\eta \sim N(0,1)$

No standartnormālā var iegūt normālo sadalījumu ar jebkuriem parametriem

$$\xi = \sigma \eta + a$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

$$\Phi(x) = \frac{1}{2} + \Phi_0(x) =$$

$$= \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{u^{2}}{2}} du ,$$

kur Φ_0 – Laplasa funkcija.

