6. Modular Arithmetic and Chinese Remainder Theorem

Definition 6.1. Let a, b, n be integers with $n \ge 1$. We say a is congruent to b modulo n and write $a \equiv b \mod n$, if $n \mid (a - b)$.

Example 6.2. (1) $16 \equiv 5 \mod 11$, since $11 \mid (16 - 5)$.

- (2) $23 \not\equiv 17 \mod 5$, since $5 \nmid 23 17 = 6$.
- (3) $a \equiv b \mod 1$, for all $a, b \in \mathbb{Z}$, since $1 \mid (a b)$.
- (4) $a \equiv b \mod 2$, if and only if both a and b are even or both are odd.

Lemma 6.3. Let a, n be integers, with $n \ge 1$. Then there exists a unique $r \in \{0, \ldots, n-1\}$ such that $a \equiv r \mod n$. We call r residue of a modulo n

Proof: Observe that $a \equiv r \mod n$ if and only if $n \mid (a-r)$ if and only if there is some $q \in \mathbb{Z}$ such that a-r=qn, that is, a=qn+r. In particular the existence and uniqueness of $r \in \{0,1,\ldots,n-1\}$ follows from the Division algorithm.

Lemma 6.4. Let a, b, c, d, n be integers, with $n \ge 1$. Suppose $a \equiv b \mod n$ and $c \equiv d \mod n$. Then

- $(1) \ a + c \equiv b + d \mod n$
- (2) $ac \equiv bd \mod n$
- (3) $a^k \equiv b^k \mod n$, for all integers $k \geq 0$

Proof: By assumption $n \mid (a-b)$ and $n \mid (c-d)$. Then, by Lemma 3.3 (7), we have $n \mid (a-b+c-d) = ((a+c)-(b+d)$. This gives (1). Also, by Lemma 3.3 (7), we have $n \mid (a-b)c + (c-d)b = ac-db$. This gives (2). Finally part (3) follows from (2).

Example 6.5. (1) What is $3^{20} \mod 41$? We have

$$3^2 = 9 \equiv 9 \mod 41$$

 $3^4 = (3^2)^2 \equiv 9^2 = 81 \equiv -1 \mod 41$
 $3^8 = (3^4)^2 \equiv (-1)^2 = 1 \equiv 1 \mod 41$
 $3^{16} = (3^8)^2 \equiv 1^2 = 1 \equiv 1 \mod 41$

Now $3^{20} = 3^{16} \cdot 3^4 \equiv 1 \cdot (-1) = -1 \mod 41$, or in other words $41 \mid 3^{20} + 1$.

Alternatively we have $3^{20} = (3^4)^5 = 81^5 \equiv (-1)^5 = -1 \mod 41$. Thus again we get $3^{20} \equiv -1 \mod 41$.

(2) What is the the remainder of $1! + 2! + 3! + 4! + \ldots + 100!$ upon division by 12? Observe that $12 = 3 \cdot 4$ divides k! for all $k \geq 4$. Hence $k! \equiv 0 \mod 12$, for all $k \geq 4$. Now

$$1! + 2! + 3! + 4! + \dots + 100! \equiv 1! + 2! + 3! + 0 + \dots + 0 = 1! + 2! + 3! = 9 \mod 12$$

Remark 6.6. Let $a \ge 1$ be an integer. Furthermore suppose that, read from the left, the digits of a are $d_n, d_{n-1}, \ldots, d_1$, that is,

$$a = \sum_{k=1}^{n} d_k \cdot 10^{k-1}.$$

For instance $a = 12375 = 1 \cdot 10000 + 2 \cdot 1000 + 3 \cdot 100 + 7 \cdot 10 + 5 \cdot 10^{\circ}$.

(1) Divisibility by 2: We have $10^0 = 1 \equiv 1 \mod 2$, and $10 \equiv 0 \mod 2$. By Lemma 6.4 (3) we now have $10^k \equiv 0^k = 0 \mod 2$, for all $k \geq 1$. Then

$$a \equiv \sum_{k=1}^{n} d_k \cdot 10^{k-1} \equiv d_1 \mod 2.$$

Hence $a \equiv 0 \mod 2$ iff $d_1 \equiv 0 \mod 2$, or in other words

$$2 \mid a \text{ iff } 2 \mid d_1.$$

For instance, since $2 \nmid 5$ we have $2 \nmid 12375$.

(2) Divisibility by 11: We have $10^0 = 1 \equiv 1 \mod 11$, and $10 \equiv -1 \mod 11$. By Lemma 6.4 (3) we now have $10^k \equiv 1 \mod 11$, for all even $k \geq 0$, and $10^k \equiv -1 \mod 11$, for all odd $k \geq 1$. Then

$$a \equiv \sum_{k=1}^{n} d_k \cdot 10^{k-1} \equiv (d_1 + d_3 + \dots) - (d_2 + d_4 + \dots) \mod 11$$

Hence $a \equiv 0 \mod 11$ iff $(d_1 + d_3 + \ldots) - (d_2 + d_4 + \ldots) \equiv 0 \mod 11$, or in other words

11 |
$$a$$
 iff 11 | $(d_1 + d_3 + \ldots) - (d_2 + d_4 + \ldots)$.

For instance, since $11 \mid (5+3+1) - (7+2) = 0$ we have $11 \mid 12375$.

Lemma 6.7. Let $a, b, c, n \in \mathbb{Z}$ and $n \ge 1$ such that $ca \equiv cb \mod n$. Then $a \equiv b \mod n/d$, where $d = \gcd(c, n)$.

Proof: By assumption, there is some $r \in \mathbb{Z}$ such that nr = (ac - bc) = (a - b)c. Also $n = d \cdot (n/d)$ and $c = d \cdot (c/d)$. Thus $(n/d) \mid (a - b) \cdot (c/d)$. But $\gcd(n/d, c/d) = 1$, by Corollary 4.4 (2). Hence $(n/d) \mid (a - b)$, by Euclid's lemma. In particular $a \equiv b \mod (n/d)$.

Definition 6.8. Let $n \ge 1$ and a and b be integers. An equation of the form $ax \equiv b \mod n$ is called a **linear congruence**. A **solution** of such a linear congruence is any integer x_0 such that $ax_0 \equiv b \mod n$. We say two solutions x_1 and x_2 are **congruent** if $x_1 \equiv x_2 \mod n$.

Example 6.9. Consider the linear congruence $3x \equiv 9 \mod 12$. Clearly $x_1 = 3$ is a solution. Also note that $3 \cdot (-9) = -27 \equiv 9 \mod 12$. Hence $x_2 = -9$ is a solution too. But since $3 \equiv -9 \mod 12$, they are congruent solutions.

Theorem 6.10. The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d \mid b$, where $d = \gcd(a, n)$. In this case there are exactly d incongruent solutions modulo n, which are given by

$$x_0, x_0 + (n/d), x_0 + 2 \cdot (n/d), \dots, x_0 + (d-1) \cdot (n/d).$$

Proof: omitted

Example 6.11. (1) Consider the linear congruence $9x \equiv 21 \mod 30$. Since $\gcd(9,30) = 3$ and $3 \mid 21$, there are exactly 3 incongruent solutions modulo 30. As the $\gcd(3,30) = 3$, it follows from Lemma 6.7 that $3x \equiv 7 \mod 10$. Since $\gcd(3,10) = 1$ this linear congruence has a unique solution modulo 10. Note that if we multiply $3x \equiv 7 \mod 10$ by 7, we get $21x \equiv 49 \mod 10$, which implies that $x \equiv 9 \mod 10$.

Now x = 9 is a solution of $9x \equiv 21 \mod 30$. Thus its three incongruent solutions are given by $9 + (n/d) \cdot t$, where t = 1, 2, 3. Hence the solutions modulo 30 are 9, 19, 29.

(2) What is
$$23^{91} \mod 33$$
? Let $23^{91} \equiv x \mod 33$. We have
$$23^{91} \equiv x \mod 33 \Leftrightarrow 33 \mid 23^{91} - x \Leftrightarrow 3 \text{ and } 11 \text{ divide } 23^{91} - x$$
$$\Leftrightarrow 23^{91} \equiv x \mod 3 \text{ and } 23^{91} \equiv x \mod 11$$

 $As \ 23 \equiv -1 \mod 3$ we have $x \equiv 23^{91} \equiv (-1)^{91} = -1 \mod 3$. As $23 \equiv 1 \mod 11$ we have $x \equiv 23^{91} \equiv 1^{91} = 1 \mod 11$. This leads to the system of

linear congruences

$$x \equiv -1 \mod 3$$
$$x \equiv 1 \mod 11$$

What is x?

Theorem 6.12. (Chinese Remainder Theorem) Let n_1, \ldots, n_r be positive, pairwise coprime integers, and let a_1, \ldots, a_r be integers. Then the system of linear congruences

$$x \equiv a_1 \mod n_1$$

 \vdots
 $x \equiv a_r \mod n_r$

has a simultaneous solution, which is unique modulo $n := n_1 \cdot \ldots \cdot n_r$. This solution is given by

$$\bar{x} = a_1 N_1 x_1 + \ldots + a_r N_r x_r,$$

where $N_k := \frac{n}{n_k} = n_1 \cdot n_{k-1} \cdot n_{k+1} \cdot n_r$ and x_k is a solution of $N_k x \equiv 1 \mod n_k$, for all $k = 1, \ldots, r$.

Proof: omitted.

Example 6.13. (1) Let us complete Example 6.11(2). We have the system

$$x \equiv -1 \mod 3$$
$$x \equiv 1 \mod 11$$

Then $n_1 = 3$, $n_2 = 11$, $n = n_1 \cdot n_2 = 33$, $N_1 = \frac{n}{n_1} = 11$ and $N_2 = \frac{n}{n_2} = 3$. As $11 \equiv -1 \mod 3$ we have $11x \equiv 1 \mod 3 \Leftrightarrow -x \equiv 1 \mod 3$. Thus $x \equiv -1 \mod 3$, and so $x_1 = -1$ is a solution of $11x \equiv 1 \mod 3$.

Next we look for a solution x_2 of $3x \equiv 1 \mod 11$. Since $4 \cdot 3 = 12 \equiv 1 \mod 11$ we multiply the congruence equation by 4. Then $x \equiv 12x \equiv 4(3x) \equiv 4 \mod 3$. Thus $x_2 = 4$ is a solution of $3x \equiv 1 \mod 11$.

Overall $\bar{x} = a_1 N_1 x_1 + a_2 N_2 x_2 = (-1) \cdot 11 \cdot (-1) + 1 \cdot 3 \cdot 4 = 11 + 12 = 23$ is a simultaneous solution to the given system. Finally this shows that $23^{91} \equiv 23 \mod 33$

(2) Which is the smallest positive number that leaves remainders 2, 3, 2 when divided by 3, 5, 7, respectively? That means we look for a solution of the system

$$x \equiv 2 \mod 3$$
, $x \equiv 3 \mod 5$, $x \equiv 2 \mod 7$.

Note that 3, 5, 7 are pairwise coprime. Hence we can expect a solution. We have $n = 3 \cdot 5 \cdot 7 = 105$ and $N_1 = 5 \cdot 7 = 35$, $N_2 = 3 \cdot 7 = 21$, $N_3 = 3 \cdot 5 = 15$. This leads to the linear congruences

 $35x \equiv 1 \mod 3$, $21x \equiv 1 \mod 5$, $15x \equiv 1 \mod 7$, which are equivalent to

$$2x \equiv 1 \mod 3$$
, $x \equiv 1 \mod 5$, $x \equiv 1 \mod 7$.

So $x_1 = 2$, $x_2 = 1$ and $x_3 = 1$ are their respective solutions. Hence our system has the solution

$$\bar{x} = a_1 N_1 x_1 + a_2 N_2 x_2 + a_3 N_3 x_3 = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1$$

= $140 + 63 + 30 = 233 \equiv 23 \mod 105$.

So all numbers of the form 23 + 105t, for $t \in \mathbb{Z}$ solve our system, but 23 is the smallest positive such number.