Assignment 6

ZACHARIAH ALEX

2022-11-20

Formulating lp model problem

Objective function:

 $\label{eq:minimize} \mbox{Minimize} \mbox{ Z}: 775 \mbox{x1} + 800 \mbox{x2} + 800 \mbox{x3} + 800 \mbox{x4} + 800 \mbox{x5} + 775 \mbox{x6} + 750 \mbox{x7}$

Constraints

$$0x1 + x2 + x3 + x4 + x5 + x6 + 0x7 >= 18$$

$$0x1 + 0x2 + x3 + x4 + x5 + x6 + x7 >= 27$$

$$x1 + 0x2 + 0x3 + x4 + x5 + x6 + x7 >= 22$$

$$x1 + x2 + 0x3 + 0x4 + x5 + x6 + x7 >= 26$$

$$x1 + x2 + x3 + 0x4 + 0x5 + x6 + x7 >= 25$$

$$x1 + x2 + x3 + x4 + 0x5 + 0x6 + x7 >= 21$$

$$x1 + x2 + x3 + x4 + x5 + 0x6 + 0x7 >= 19$$

for all

x1, x2, x3, x4, x5, x6, x7 >= 0

#Reading lp file

```
library(lpSolveAPI)
shipdata<- read.lp("AP-Shipping.lp")
shipdata</pre>
```

```
## Model name:
```

##		x1	x2	x3	x4	x5	x6	x7		
##	Minimize	775	800	800	800	800	775	750		
##	Sunday	0	1	1	1	1	1	0	>=	18
##	Monday	0	0	1	1	1	1	1	>=	27
##	Tuesday	1	0	0	1	1	1	1	>=	22
##	Wednesday	1	1	0	0	1	1	1	>=	26
##	Thursday	1	1	1	0	0	1	1	>=	25
##	Friday	1	1	1	1	0	0	1	>=	21
##	Saturday	1	1	1	1	1	0	0	>=	19

```
## Kind
           Std Std Std Std Std Std
                           Int
## Type
           Int Int
                   Int
                       Int
                               Int
                                   Int
           Inf Inf
## Upper
                   Inf Inf Inf Inf
## Lower
           0
                0
                    0
                         0
                             0
                                 0
```

Solving the lp model to find optimal number of workers

```
solve(shipdata)
```

[1] 0

```
get.objective(shipdata)
```

[1] 25675

get.variables(shipdata)

```
## [1] 2 4 5 0 8 1 13
```

Objective function =25675 ie. Total cost of labours

```
workers<- matrix(c(0,4,5,0,8,1,0,0,0,5,0,8,1,13,2,0,0,0,8,1,13,2,4,0,0,8,1,13,2,4,5,0,0,1,13,2,3,4,0,0,
row.names(workers) <- c('Sun','Mon','Tues','Wed','Thur','Fri','Sat')
colnames(workers)<- c('Sun/Mon','Mon/Tues','Tues/Wed','Wed/Thur','Thur/Fri','Fri/Sat','Sat/Sun')
workers</pre>
```

##		Sun/Mon	Mon/Tues	Tues/Wed	Wed/Thur	Thur/Fri	Fri/Sat	Sat/Sun
##	Sun	0	4	5	0	8	1	0
##	Mon	0	0	5	0	8	1	13
##	Tues	2	0	0	0	8	1	13
##	Wed	2	4	0	0	8	1	13
##	Thur	2	4	5	0	0	1	13
##	Fri	2	3	4	0	0	0	13
##	Sat	2	4	5	0	8	0	0

Workers should be assigned with given number of shifts in the factory in a week to minimize the total labor expenses

```
rowSums(workers)
```

```
## Sun Mon Tues Wed Thur Fri Sat
## 18 27 24 28 25 22 19
```

 $Number\ of\ workers\ required\ according\ to\ the\ scheduled\ shift\ for\ each\ day\ to\ minimize\ the\ total\ labor\ wage\ expenses$