Ответы к коллоквиуму по курсу

<u>"Математический анализ"</u>

(1-ый семестр 2015/2016 учебного года, специальность "Информатика")

Обозначение поточечной сходимости $\Phi\Pi$:

$$f_n(x) \stackrel{X}{\to} f(x)$$
 или $f_n(x) \stackrel{X}{\to} .$ (1)

Определение (1) на $(\varepsilon - \delta)$ -языке:

для
$$\forall \varepsilon > 0$$
 и для $\forall fix \ x \in X \ \exists \ \nu = \nu(x, \varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu \Rightarrow |f_n(x) - f(x)| \leqslant \varepsilon$. (2)

Обозначение равномерной сходимости $\Phi\Pi$:

$$f_n(x) \stackrel{X}{\rightrightarrows} f(x)$$
 или $f_n(x) \stackrel{X}{\rightrightarrows}$. (3)

Определение (3) на $(\varepsilon - \delta)$ -языке:

для
$$\forall \varepsilon > 0 \; \exists \; \nu = \nu(\varepsilon) \in \mathbb{R} \; | \; для \; \forall \; x \in X \; и \; для \; \forall \; n \geqslant \nu \Rightarrow |f_n(x) - f(x)| \leqslant \varepsilon.$$
 (4)

Краткий план:

- 1. Формулировка: +.
- 2. Доказательство:

$$\Longrightarrow : |f_n(x) - f(x)| \leqslant \varepsilon \Rightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon \Rightarrow 0 \leqslant r_n \leqslant \varepsilon, \text{ T.e. } r_n \xrightarrow[n \to \infty]{} 0.$$

$$\in$$
 : написать (4), вписав r_n т.е. $|f_n(x) - f(x)| \leqslant \sup_{x \in X} |f_n(x) - f(x)| = r_n \leqslant \varepsilon$.

3. Замечания: достаточные условия равномерной (неравномерной) сходимости $\Phi\Pi$.

$$|f_n(x) - f(x)| \le a_n$$
, где (a_n) - б.м.п $\exists x_n \in X \mid g_n(x) = |f_n(x) - f(x)| \Rightarrow g_n(x_n) \xrightarrow[n \to \infty]{} 0.$

1 Супремальный критерий равномерной сходимости функциональных последовательностей ($\Phi\Pi$) и замечания к нему

Теорема (Супремальный критерий равномерной сходимости $\Phi\Pi$).

$$f_n(x) \stackrel{X}{\rightrightarrows} f(x) \Leftrightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \xrightarrow[n \to \infty]{} 0.$$
 (5)

 $\ensuremath{\mathcal{A}o\kappa a same necessity}$ Если выполнена (3), то, учитывая, что в (4) используется $\forall \ x \in X$ и $\forall \ n \geqslant \nu(\varepsilon)$, получаем

$$r_n = \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon$$
, т.е. для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \in \mathbb{R} \ | \ для \ \forall \ n \geqslant \nu \Rightarrow 0 \leqslant r_n \leqslant \varepsilon$, т.е. $r_n \xrightarrow[n \to \infty]{} 0$.

 (\Leftarrow) Пусть выполнена правая часть (5), тогда

для
$$\forall \varepsilon > 0 \; \exists \; \nu = \nu(\varepsilon) \in \mathbb{R} \; | \;$$
для $\forall \; n \geqslant \nu \;$ и для $\forall \; x \in X \Rightarrow$
$$\Rightarrow |f_n(x) - f(x)| \leqslant \sup_{x \in X} |f_n(x) - f(x)| = r_n \leqslant \varepsilon.$$

Таким образом, имеем (4), где ν зависит от $\forall \varepsilon > 0$ и не зависит от конкретного элемента множества X.

Замечания:

- 1. Если известно, что для $\forall n \in \mathbb{N}$ и для $\forall x \in X \Rightarrow |f_n(x) f(x)| \leqslant a_n$, где (a_n) б.м.п, то тогда имеем (3). Сформулированное утверждение даёт мажоритарный признак (достаточное условие) равномерной сходимости $\Phi\Pi$.
- 2. Если

$$\exists x_n \in X \mid g_n(x) = |f_n(x) - f(x)| \Rightarrow g_n(x_n) \xrightarrow[n \to \infty]{} 0,$$

то тогда равномерной сходимости нет, т.е. $f_n(x) \not\stackrel{X}{\Rightarrow} f(x)$. Это даёт достаточное условие (признак) неравномерной сходимости $\Phi\Pi$.

Определение ФП частичных сумм ФР:

$$S_n(x) = u_1(x) + u_2(x) + \ldots + u_n(x) = \sum_{k=1}^n u_k(x),$$

Обозначение поточечной сходимости ФР:

$$\sum u_n(x) \stackrel{X}{\to} S(x) \text{ или } \sum u_n(x) \stackrel{X}{\to} . \tag{6}$$

Из необходимого условия сходимости ЧР, имеем:

$$u_n(x) \stackrel{X}{\to} 0 \tag{7}$$

Обозначение равномерной сходимости ФР:

$$\sum u_n(x) \stackrel{X}{\rightrightarrows} S(x) \text{ или } \sum u_n(x) \stackrel{X}{\rightrightarrows} . \tag{8}$$

Критерий Коши равномерной сходимости ФР:

$$(8) \Leftrightarrow \operatorname{для} \, \forall \, \varepsilon > 0 \, \exists \, \nu = \nu(\varepsilon) \in \mathbb{R} \, | \, \operatorname{для} \, \forall \, x \in X \, \operatorname{и} \, \operatorname{для} \, \forall \, n \geqslant \nu \, \operatorname{и} \, \operatorname{для} \, \forall \, m \in \mathbb{N} \Rightarrow |S_{n+m}(x) - S_n(x)| = \left| \sum_{k=n+1}^{n+m} u_k(x) \right| \leqslant \varepsilon.$$

Критерий Коши сходимости ЧР:

$$\sum a_n \operatorname{сходится} \Leftrightarrow \operatorname{для} \forall \varepsilon > 0 \exists \nu \in \mathbb{R} : \operatorname{для} \forall n \geqslant \nu \quad \operatorname{и} \operatorname{для} \forall m \in \mathbb{N} \Rightarrow |S_{n+m} - S_n| = \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon. \tag{10}$$

ЧП (a_n) является cxodsuщейся числовой мажорантой для $\Phi P \sum u_n(x)$, если:

1. ЧР
$$\sum a_n$$
 сходится, (11)

2. для
$$\forall n \in \mathbb{N}$$
 и для $\forall x \in X \Rightarrow |u_n(x)| \leqslant a_n$. (12)

2 Мажорантный признак Вейерштрасса равномерной сходимости функционального ряда (ФР) и замечания к нему

Теорема (мажорантный признак Вейерштрасса равномерной сходимости ΦP).

Если Φ Р имеет на X сходяющуюся числовую мажоранту, то он равномерно сходится на X. **Краткий план**:

- 1. Формулировка: из названия (мажорантный признак РСФР).
- 2. Доказательство (расписать оба пункта определения сходящейся числовой мажоранты):

$$1: \sum a_n$$
 сходится: $\Rightarrow \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon$.

2:
$$|u_n(x)| \leqslant a_n \Rightarrow \left| \sum_{k=n+1}^{n+m} u_k(x) \right| \leqslant \varepsilon$$
.

3. Замечания: достаточное условие + функция мажоранты.

оценить
$$|u_n(x)|$$
 сверху, либо берут $a_n = \sup_{x \in X} |u_n(x)|$.

если
$$\exists \ v_n(x)\geqslant 0 \ : \ |u_n(x)|\leqslant v_n(x)$$
 для $\forall \ n\in\mathbb{N}$ и для $\forall \ x\in X$ и $\sum v_n(x)\stackrel{X}{\Rightarrow}$

Доказательство с использованием критерия Коши сходимости ЧР (10) и критерия Коши равномерной сходимости Φ P (9):

Т.к. $\sum a_n$ сходится, то

для
$$\forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \;$$
для $\forall \; n \geqslant \nu \;$ и для $\forall \; m \in \mathbb{N} \Rightarrow \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon.$ (13)

Если для $\forall n \in \mathbb{N}$ и для $\forall x \in X \Rightarrow |u_n(x)| \leqslant a_n$, то для частичных сумм $\Phi P \sum u_n(x)$ имеем:

$$|S_{m+n}(x) - S_n(x)| = \left|\sum_{k=n+1}^{n+m} u_k(x)\right| \leqslant \sum_{k=n+1}^{n+m} |u_k(x)| \leqslant \sum_{k=n+1}^{n+m} a_k = \left|\sum_{k=n+1}^{n+m} a_k\right| \leqslant \varepsilon$$
, это для $\forall \ n \geqslant \nu = \nu(\varepsilon)$ и для $\forall \ m \in \mathbb{N}$, что в силу (9) даёт (8).

Замечания:

- 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости Φ P. На практике сходящуюся числовую мажоранту (a_n) либо находят с помощью соответствующих оценок $|u_n(x)|$ сверху, либо берут $a_n = \sup_{x \in X} |u_n(x)|$. В последнем случае получаем наиболее точную мажоранту, но в случае расходимости $\sum a_n$ даже для этой самой точной мажоранты ничего о равномерной сходимости Φ P сказать нельзя, т.е. требуются дополнительные исследования.
- 2. Обобщая признак Вейерштрасса, где используется сходимость числовой мажоранты, признак равомерной сходимости ФР, используют функцию мажоранты, а именно:

если
$$\exists \ v_n(x) \geqslant 0 \ |$$
 во-первых, $\sum v_n(x) \stackrel{X}{\Longrightarrow}$, и, во-вторых, $|u_n(x)| \leqslant v_n(x)$ для $\forall \ n \in \mathbb{N}$ и для $\forall \ x \in X$, то тогда для Φ Р $\sum u_n(x)$ имеем (8).

Краткий план:

- 1. Формулировка: из названия (как и Дирихле для рядов).
- 2. Доказательство:

оценка Абеля, взятая с 2-кой для надёжности.

оценить $|b_{n+1}|$ и $|b_{n+m}|$ по $\widetilde{\varepsilon}=\dfrac{\varepsilon}{6\cdot c}$

def равномерной сходимости для $\sum a_n(x)b_n(x)$.

3. Замечания: как и для рядов $(\sum (-1)^n b_n(x) \stackrel{X}{\Rightarrow}$, Лейбница \approx единица).

3 Признак Дирихле равномерной сходимости ФР и следствие из него (признак Лейбница равномерной сходимости ФР)

Теорема (Признак Дирихле равномерной сходимости ΦP).

Пусть для $\Phi\Pi$ $a_n(x)$ частичные суммы $\sum a_n(x)$ ограничены в совокупности (равномерно на X), т.е.

для
$$\forall x \in X$$
 и для $\forall n \in \mathbb{N} \Rightarrow |a_1(x) + a_2(x) + \ldots + a_n(x)| \leqslant c,$ (14)

где c=const>0, не зависит ни от n, ни от x. Если $\forall fix \ x\in X\Rightarrow b_n(x)$ - $\Phi\Pi$ является монотонной, то в случае

$$b_n(x) \stackrel{X}{\Longrightarrow} 0,$$
 (15)

имеем $\sum a_n(x)b_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Монотонная последовательность $(b_n(x))$ для $\forall fix \ x \in X$ позволяет так же, как и в ЧР, использовать на основе (14) оценку Абеля:

$$\left| \sum_{k=n+1}^{n+m} a_k(x) b_k(x) \right| \le 2c \left(|b_{n+1}(x)| + 2 |b_{n+m}(x)| \right). \tag{16}$$

Если выполняется (15), то тогда имеем:

для $\forall \ \varepsilon > 0$ по числу $\tilde{\varepsilon} = \frac{\varepsilon}{6c} > 0 \ \exists \ \nu(\varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu(\varepsilon)$ и для $\forall \ m \in \mathbb{N}$ и для $\forall \ x \in X \Rightarrow |b_{n+1}(x)| \leqslant \tilde{\varepsilon}$ и $|b_{n+m}(x)| \leqslant \tilde{\varepsilon}$,

поэтому для частичных сумм $S_n(x) = \sum_{k=1}^n a_k(x)b_k(x)$ в силу (16) для $\forall n \geqslant \nu(\varepsilon)$ и для $\forall m \in \mathbb{N}$ и для $\forall x \in X$ имеем:

$$|S_{n+m}(x) - S_n(x)| = \left|\sum_{k=n+1}^{n+m} a_k(m)b_k(x)\right| \leqslant 2 \cdot c \cdot (\tilde{\varepsilon} + 2\tilde{\varepsilon}) = 6 \cdot c \cdot \tilde{\varepsilon} = \varepsilon$$
. Отсюда по критерию Коши равномерной сходимости

$$\Phi$$
Р следует, что $\sum a_n(x)b_n(x) \stackrel{X}{\rightrightarrows}$.

Следствие (Признак Лейбница равномерной сходимости ΦP).

Если $\forall \ fix \ x \in X$ последовательность $(b_n(x))$ является монотонной, то в случае $b_n(x) \stackrel{X}{\rightrightarrows} 0 \Rightarrow \sum (-1)^n b_n(x) \stackrel{X}{\rightrightarrows}$.

Доказательство. Следует из того, что в условии теоремы $a_n=(-1)^n$ не зависит от x, причём

$$\left|\sum_{k=1}^n a_k \right| \leqslant 1 = const,$$
 для $\forall \ n \in \mathbb{N}.$

Для обозначения поточечной сходимости $\Phi P \sum u_n(x)$ на X будем использовать запись:

$$\sum u_n(x) \stackrel{X}{\to} . \tag{17}$$

Краткий план:

- 1. Формулировка: o Д u h u один знак, Д u h u непрерывны, Д u h u непрерывны.
- 2. Доказательство:

3 свойства остатка ряда $R_n(x) = S(x) - S_n(x)$: Fun UFO (Fun UFO — функция непрерывна, Fun UFO — функциональная последовательность убывает, Fun UFO — функция к 0).

дм у пво (де Морган, упрощение, принцип выбора, x_0)

противоречие с последним свойством остатка.

 $R_m(x_{nk}) \geqslant R_{nk}(x_{nk}) > \varepsilon_0 \Rightarrow [$ переходя к пределу $] \Rightarrow R_m(x_0) = \lim_{n_k \to \infty} R_m(x_{nk}) \geqslant \varepsilon_0$, что противоречит последнему из свойств остатка.

3. Теорема: то же самое, только вместо сохранения одного знака члены $\Phi\Pi$ будут монотонны.

по доказанному признаку, задав ΦP как $u_n(x) = f_n(x) - f_{n-1}(x)$

4 Признак Дини равномерной сходимости ΦP и следствие из него (теорема Дини для $\Phi \Pi$)

Теорема (Признак Дини равномерной сходимости ΦP). Пусть

- 1. Члены $\Phi P \sum u_n(x)$ непрерывны и сохраняют один и тот же знак на $X = [a, b], \ для \ \forall \ n \in \mathbb{N}.$
- 2. $\sum u_n(x) \stackrel{X}{\to} S(x)$.

Тогда, если $S(x)=\sum\limits_{n=1}^{\infty}u_n(x)$ - непрерывная функция на [a,b], т.е. $S(x)\in C([a,b])$, то $\sum u_n(x)\stackrel{X}{\Rightarrow}$.

Доказательство. Рассмотрим на X = [a, b] остатки ряда $R_n(x) = u_{n+1}(x) + \ldots = S(x) - S_n(x)$. Нетрудно видеть, что выполняются следующие свойства:

- 1. для $\forall fix \ n \in \mathbb{N} \Rightarrow R_n(x)$ непрерывная функция на [a,b] как разность двух непрерывных функций.
- 2. для $\forall \ fix \ x \in X \Rightarrow \Phi\Pi \ (R_n(x))$ убывает в случае, когда $\forall \ u_n(x) > 0$, т.к. $R_n(x) = u_n(x) + R_{n+1}(x) \geqslant R_{n+1}(x)$, для $\forall \ n \in \mathbb{N}$.
- 3. Т.к. имеет место (17), то для $\forall fix \ x \in X \Rightarrow R_n(x) \stackrel{X}{\to} 0.$

Докажем от противного. Предположим, что рассматриваемая положительная поточечная сходимость на X ΦP не является равномерной сходимостью на X.

Тогда по правилу де Моргана имеем: $\exists \ \varepsilon_0 > 0 \ | \ \text{для} \ \forall \ \nu \in \mathbb{R} \ \exists \ n(\nu) \geqslant 0 \ \text{и} \ \exists \ x(\nu) \in X \ | \ R_{n\nu}(x_\nu) > \varepsilon_0$. Для простоты будем считать, что $\exists \ x_n \in X \ | \ R_n(x_n) > \varepsilon_0$. По принципу выбора из ограниченной последовательности x_n можно выбрать сходящуюся подпоследовательность, т.е. $x_{n_k} \underset{n_k \to \infty}{\longrightarrow} x_0$, при этом в силу использования X = [a,b] - компакт, получаем, что $x_0 \in X$. Если зафиксируем $m \in \mathbb{N}$, то для $\forall \ n_k \geqslant m \Rightarrow R_{n_k}(x_{n_k}) > \varepsilon_0$, по свойствам остатка будем иметь, что $R_m(x_{n_k}) \geqslant R_{n_k}(x_{n_k}) > \varepsilon_0$. В неравенстве $R_m(x_{n_k}) > \varepsilon_0$, переходя к пределу при $n_k \to \infty$ для $\forall \ m \in \mathbb{N}$, получаем в силу непрерывности $R_n(x) : R_m(x_0) = \lim_{n_k \to \infty} R_m(x_{n_k}) \geqslant \varepsilon_0$, что противоречит последнему из свойств остатка, а именно

 $R_m(x_0) \stackrel{X}{\longrightarrow} 0$ при $m \to \infty$, поэтому из нашего предположения следует, что выполняется $R_m(x_0) \not\to 0$, противоречие, т.е. выполняется $\sum u_n(x) \stackrel{X}{\rightrightarrows}$.

Мы рассмотрели случай положительного ΦP , отрицательный рассматривается аналогично.

Следствие ($Teopema\ \mathcal{J}uhu\ \partial na\ \Phi\Pi$).

Если для $\Phi\Pi$ $f_n(x), n \in \mathbb{N}$ на X = [a,b] выполняются свойства:

- 1. для $\forall f_n(x) \in C([a,b])$ и для $\forall fix \ x \in X \Rightarrow f_n(x)$ монотонна.
- 2. $f_n(x) \xrightarrow{X} f(x)$. Тогда, если $f(x) \in C([a,b])$, то $f_n(x) \stackrel{X}{\rightrightarrows}$.

Доказательство. следует из того, что члены рассматриваемой $\Phi\Pi$ $f_n(x)$ можно рассматривать как частичные суммы соответствующего ΦP с общим членом

$$\begin{cases} u_n(x) = f_n(x) - f_{n-1}(x), \\ f_0(x) = 0. \end{cases}$$
 (18)

Действительно, $S_n(x) = (f_1(x) - f_0(x)) + (f_2(x) - f_1(x)) + \ldots + (f_{n-1}(x) - f_{n-2}(x)) + (f_n(x) - f_{n-1}(x)) = f_n(x) - f_0(x) = f_n(x)$, для $\forall n \in \mathbb{N}$.

m A далее к этому $m \Phi P \sum u_n(x)$ применяется теорема Дини равномерной сходимости $m \Phi P$.

Пусть x_0 - предельная точка множества сходимости $X \subset \mathbb{R}$ для $\Phi P \sum u_n(x)$. Будем говорить, что в $\sum u_n(x)$ возможен почленный предельный переход $x \to x_0$, если

$$\exists \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x), \tag{19}$$

причём получившийся в левой части (19) ЧР является сходящимся.

В частности, если $x_0 \in X$ и $\forall u_n(x)$ непрерывен в некоторой окрестности точки x_0 , и значит, для $\forall n \in \mathbb{N} \exists \lim_{x \to x_0} u_n(x) = u_n(x_0)$, то в случае выполнения (19) для суммы S(x) $\Phi P \sum u_n(x)$ при $x \to x_0$ имеем:

$$\exists \lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x) = \sum_{n=1}^{\infty} u_n(x_0) = S(x_0), \tag{20}$$

что соответствует непрерывности S(x) в точке $x_0 \in X$.

5 Теорема о непрерывности суммы равномерно сходящегося ФР и замечания к ней

Краткий план:

- 1. Формулировка: по названию + каждый член ряда непрерывная функция.
- 2. Доказательство (Зейдель = $3 \cdot \varepsilon$):

Пишем, что нужно обосновать для $\forall x_0 \in X$, при этом нужно использовать односторонние пределы для концевых значений.

Рассматриваем приращение суммы $\Delta S(x_0)$.

Рассматриваем три разности частичной суммы и полной суммы (с x_0 и $x_0 + \Delta x$).

Подставляем 3 разности (1+3-2) и получаем непрерывность по M-лемме.

Теорема (о непрерывности суммы равномерно сходящегося ΦP).

Если все члены $u_n(x), n \in \mathbb{N}$, $\Phi P \sum u_n(x)$ непрерывны на X = [a, b], то в случае равномерной сходимости этого ряда на [a, b] его сумма S(x) будет непрерывной функцией на [a, b].

Доказательство. Требуется обосновать (20) для $\forall x_0 \in [a,b]$, причём в случае концевых значений $x_0 = a, x_0 = b$ будем использовать соответствующие односторонние пределы, т.е. рассматривать одностороннюю непрерывность.

Для $fix\ x_0 \in [a,b]$ придадим произвольные приращения $\Delta x \in \mathbb{R} \mid (x_0 + \Delta x) \in [a,b]$ и рассмотрим соответствующие приращения суммы $\Phi P \sum u_n(x)$:

$$\Delta S(x_0) = S(x_0 + \Delta x) - S(x_0).$$

Из равномерной сходимости $\Phi P \sum u_n(x)$ на $X = [a,b] \Rightarrow$ для $\forall \varepsilon > 0 \; \exists \; \nu = \nu(\varepsilon) \in \mathbb{R} \; | \;$ для $\forall \; n \geqslant \nu, \;$ и для $\forall \; x \in [a,b]$ для частичных сумм $S_n(x) = u_1(x) + u_2(x) + \ldots + u_n(x)$ ряда $\sum u_n(x)$ имеем: $|S_n(x) - S(x)| \leqslant \varepsilon$.

Отсюда, в частности, для $x=x_0\in X$ и $x=x_0+\Delta x\in X\Rightarrow$

$$\begin{cases} |S_n(x_0) - S(x_0)| \leqslant \varepsilon, \\ |S_n(x_0 + \Delta x) - S(x_0 + \Delta x)| \leqslant \varepsilon. \end{cases}$$
 (21)

Далее из непрерывности $\forall u_n(x)$ в $x_0 \in [a,b]$ следует непрерывность частичных сумм в x_0 (как конечных сумм непрерывных функций).

В силу этого, для $\forall \varepsilon > 0 \exists \delta > 0$: для $\forall |\Delta x| \leqslant \delta \Rightarrow$

$$\Rightarrow |S_n(x_0 + \Delta x) - S_n(x_0)| \leqslant \varepsilon. \tag{22}$$

Таким образом, в силу (21), (22) имеем: для $\forall \varepsilon > 0$, выбирая $n \geqslant \nu$ и рассматривая $\forall |\Delta x| \leqslant \delta$, имеем:

$$|\Delta S(x_0)| = |S_n(x_0) - S(x_0) + S_n(x_0 + \Delta x) - S_n(x_0) + S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \le \frac{1}{2} \left| \frac{$$

 $\leqslant |S_n(x_0) - S(x_0)| + |S_n(x_0 + \Delta x) - S_n(x_0)| + |S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \leqslant \varepsilon + \varepsilon + \varepsilon = 3 \cdot \varepsilon.$

Поэтому получаем: для $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : \ для \ \forall \ |\Delta x| \leqslant \delta \Rightarrow |\Delta S(x_0)| \leqslant M \cdot \varepsilon, M = const = 3 > 0.$

Отсюда по М-лемме для $\Phi 1\Pi$ следует, что $\Delta S(x_0) \underset{\Delta x \to 0}{\to} 0$, что на языке приращений равносильно (20). При этом, т.к. из равномерной сходимости следует поточечная сходимость, ЧР в правой части (20) будет сходящимся.

Замечания:

- 1. Доказанную теорему часто называют теоремой Стокса-Зейделя или теоремой Стокса-Зайделя.
- 2. В условии доказанной теоремы равномерную сходимость можно заменить для произвольного множества $X \subset \mathbb{R}$ на локальную равномерную сходимость.

6 Теорема о почленном интегрировании равномерно сходящегося ФР

Краткий план:

1. Очевидно, что S(x) - непрерывна, поэтому интегрируема

2. Рассмотрим частичные суммы
$$T_n = \sum_{k=1}^n \int\limits_a^b u_k(x) dx$$
.

3. Рассмотрим разницу
$$\left|T_n-\int\limits_a^bS(x)\right|$$
 и т.к. $|S(x)-S_n(x)|\leqslant \varepsilon$ получим $\int\limits_a^b(S(x)-S_n(x))\leqslant M\varepsilon$

4. Доказываем по М-лемме о сходимости ЧП.

Теорема (о почленном интегрировании равномерно сходящихся ΦP).

Если $\forall u_n(x) \in C([a,b]),$

для $n \in \mathbb{N}$, то в случае, когда $\sum u_n(x) \stackrel{[a,b]}{\Rightarrow}$, возможно почленное интегрирование этого ряда на [a,b], т.е.

$$\exists \int_{a}^{b} S(x)dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} u_n(x)\right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x)dx. \tag{23}$$

Доказательство. На основании теоремы о непрерывности суммы равномерно сходящихся ΦP получим, что сумма ряда $S(x) = \sum_{n=1}^{\infty} u_n(x)$ будет непрерывна на [a,b], а значит, интегрируема на [a,b].

Используя частичные суммы для $\sum u_n(x)$, рассмотрим частичные суммы $T_n = \int\limits_a^b S_n(x) dx =$

$$=\int\limits_{a}^{b}\sum\limits_{k=1}^{n}u_{k}(x)dx=\sum\limits_{k=1}^{n}\int\limits_{a}^{b}u_{k}(x)dx$$
 для ЧР правой части (23).

Требуется доказать, что $\lim_{n\to\infty} T_n = \int_{-\infty}^{b} S(x) dx$.

Из равномерной сходимости $\sum u_n(x)^a$ на [a,b] получим, что для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \ |$ для $\forall \ n \geqslant \nu$ и для $\forall \ x \in [a,b] \Rightarrow$

$$|S(x) - S_n(x)| = \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \varepsilon \tag{24}$$

Отсюда получаем, что $\left| \int\limits_a^b S(x) dx - T_n \right| = \left| \int\limits_a^b S(x) dx - \int\limits_a^b S_n(x) dx \right| = \left| \int\limits_a^b (S(x) - S_n(x)) dx \right| \leqslant$ $\leqslant \int\limits_a^b \left| S(x) - S_n(x) \right| dx \leqslant \int\limits_a^b \varepsilon dx = M\varepsilon, \text{ где } M = b - a = const \geqslant 0.$

Таким образом, для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \ | \$ для $\forall \ n \geqslant \nu \Rightarrow \left| \int\limits_a^b S(x) dx - T_n \right| \leqslant M \varepsilon,$ поэтому по М-лемме сходимости ЧП следует, что

$$\exists \lim_{n \to \infty} T_n = \int_a^b S(x) dx = \int_a^b \left(\sum_{k=1}^\infty u_k(x) \right) dx,$$

что равносильно (23).

7 Теорема о почленном дифференцировании ФР

Краткий план:

- 1. $\sum u'_n(x)$ можно почленно интегрировать.
- 2. Берём интеграл с переменным верхним пределом (т.е. на [a;x]).
- 3. Выражаем S(x), дифференцируем по теореме Барроу.

Теорема (о почленном дифференцировании ΦP).

Пусть $\Phi P \sum u_n(x)$ на X = [a, b] удовлетворяет условиям:

- 1. $\sum u_n(x) \stackrel{X}{\rightarrow}$,
- 2. $\exists u'_n(x)$, непрерывная для $\forall n \in \mathbb{N}, x \in X$.

Тогда, если

$$\sum u_{n}^{'}(x) \stackrel{X}{\rightrightarrows} \tag{25}$$

то рассматриваемый $\Phi P \sum u_n(x)$ можно почленно дифференцировать на [a,b], т.е.

$$\exists \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{k=1}^{\infty} u_k'(x), \text{для } \forall x \in X.$$
 (26)

Доказательство. В силу (25), по условию 2 рассматриваемой теоремы получаем, что по теореме об интегрировании $\Phi P \sum u_n'(t)$ можно почленно интегрировать на $\forall [a,x] \subset [a,b]$, т.е.

$$\exists \int_{a}^{x} \left(\sum_{n=1}^{\infty} u'_{n}(t) \right) dt = \sum_{n=1}^{\infty} \int_{a}^{x} u'_{n}(t) dt = \sum_{n=1}^{\infty} [u_{n}(t)]_{t=a}^{t=x} = \sum_{n=1}^{\infty} (u_{n}(x) - u_{n}(a)).$$

Отсюда в силу условия 1 (поточечная сходимость для $\sum u_n(x)$) получаем, что

$$\exists \ S(x) = \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} u_n(a) + \int_{-1}^{x} \sum_{n=1}^{\infty} u'_n(t) dt.$$

Используя далее *теорему Барроу* о дифференцировании интеграла с переменным верхним пределом от непрерывной подынтегральной функции, получаем:

$$\exists \ S^{'}(x) = \left(const\right)^{'} + \left(\int\limits_{a}^{x} \left(\sum\limits_{n=1}^{\infty} u_{n}^{'}(t)\right) dt\right)_{x}^{'} = \sum\limits_{n=1}^{\infty} u_{n}^{'}(x),$$

что соответствует (26).

Под степенным рядом будем подразумевать ФР вида

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$
 (27)

где fix $x_0 \in \mathbb{R}$ - центр для CтP, а $\forall a_n \in \mathbb{R}$ - соответствующая числовая последовательность (коэффициенты CmP).

Теорема Абеля о сходимости степенного ряда (СтР) и замечание к ней. 8

Краткий план:

- 1. Абеля сходится абсолютно, признак сравнения ЧР.
- 2. Сходящаяся ЧП является ограниченной (т.е. ограничен каждый её член)
- 3. Рассматриваем это условие для x_1 , получаем верхнюю границу для a_n .
- 4. Затем аналогично рассматриваем условие для x, ограничивая сверху Mq^n .

Теорема Абеля (о сходимости степенных рядов).

Если СтР (27) сходится при $x = x_1 \neq x_0$, то он будет сходится абсолютно для любого x, где

$$|x - x_0| < |x_1 - x_0|. (28)$$

Доказательство. Из сходимости при $x=x_1$, т.е. ряда $\sum_{n=0}^{\infty}a_n(x_1-x_0)^n$ следует в силу необходимого условия сходимости ЧР, что $a_n(x_1-x_0)^n \xrightarrow[n\to\infty]{} 0$, а т.к. \forall сходящаяся ЧП является ограниченной, то $\exists M = \mathrm{const} > 0 : |a_n(x_1 - x_0)^n| \leqslant M,$ для $\forall n \in \mathbb{N}$, т. е.

$$|a_n| \leqslant \frac{M}{|x_1 - x_0|^n}. (29)$$

Для $\forall x$, удовлетворяющего (28), в силу (29) получаем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \stackrel{(29)}{\leqslant} \frac{M |x-x_0|^n}{|x_1-x_0|^n} = Mq^n$$
, где $q = \frac{|x-x_0|}{|x_1-x_0|} \in [0;1[$.

Таким образом, мы получили сходящуюся мажоранту, ибо ряд $\sum_{n=0}^{\infty} Mq^n = M \sum_{n=0}^{\infty} q^n$ сходится при $q \in [0;1[$. По признаку сравнения сходимости ЧР имеем, что для $\forall \, x$, удовлетворяющего (28), ряд (27) будет сходиться.

Замечание.

Из полученных выше результатов следует, что если рассмотреть множество X_0 всех x, удовлетворяющих (28), то имеем, что $X_0 \subset X$, т.е. X_0 - некоторое подмножество множества X сходимости для (27).

9 Формула Даламбера для вычисления радиуса сходимости СтР.

Краткий план:

- 1. Рассматриваем $x \in]-R + x_0; x_0 + R[(x \neq x_0)].$
- 2. Подставляем в теорему Даламбера для ЧР (a_{n+1}/a_n) .
- 3. Рассматриваем два случая: d < 1 и d > 1.

Теорема (формула Даламбера для вычисления радиуса сходимости СтР).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,\tag{30}$$

то для радиуса сходимости ряда (27) имеем:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|. \tag{31}$$

Доказательство.

Без ограничения общности будем считать, что в (27) $\forall a_n \neq 0$. Т.к. СтР (27) сходится при $x = x_0$, то рассмотрим случай $x \neq x_0$.

Если $x \in I = \left[x_0 - R ; x_0 + R \right[$, где $R \geqslant 0$, то по признаку Даламбера сходимости ЧР для (27) имеем:

$$\exists \ d = \lim_{n \to \infty} \frac{\left| a_{n+1} (x - x_0)^{n+1} \right|}{\left| a_n (x - x_0)^n \right|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| \stackrel{\text{(31)}}{=} \frac{|x - x_0|}{R}.$$

В силу того, что $x \in I$ и, значит, $|x - x_0| < R$, получаем, что d < 1 и СтР (27) будет сходящимся. Если d > 1, т.е. $|x - x_0| > R$, то (27) расходится. Таким образом, (31) будет радиусом сходимости для (27).

10 Формула Коши для вычисления радиуса сходимости СтР и замечания к ней.

Краткий план:

- 1. Рассмотрим $x \neq x_0$
- 2. Применяем теорему Коши для ЧР
- 3. Рассматриваем два случая: k < 1 и k > 1.

Теорема (формула Коши для вычисления радиуса сходимости СтР).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \sqrt[n]{|a_n|},\tag{32}$$

то для радиуса сходимости ряда (27) имеем:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$$
(33)

Доказательство проведём по тойже схеме, что и в предыдущей теореме.

Т.к. случай $x = x_0$ тривиален (в данной точке ряд всегда сходится), то рассмотрим случай $x \neq x_0$.

По признаку Коши сходимости ЧР для (27) получаем:

$$\exists\; k=\lim_{n\to\infty}\sqrt[n]{|a_n(x-x_0)^n|}=|x-x_0|\lim_{n\to\infty}\sqrt[n]{|a_n|}\stackrel{(33)}{=}\frac{|x-x_0|}{R}.$$

Если k < 1, т. е. $|x - x_0| < R$, то СтР (27) сходится.

Если k > 1, т. е. $|x - x_0| > R$, то СтР (27) расходится.

Таким образом, в силу определения, величина (33) будет радиусом сходимости для (27).

Замечания:

- 1. В силу связи между признаками Даламбера и Коши сходимости ЧР, в случае, когда предел (31) не существует (ни конечный, ни бесконечный), предел (33) может существовать, и в этом смысле формула Коши (33) предпочтительнее, чем (31).
- 2. Можно показать, что в случае, когда в (33) нет ни конечного, ни бесконечного предела, радиус сходимости для (27) всегда можно вычислить по формуле Коши-Адамара, использующей понятие верхнего предела последовательности:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$
 (34)

Под верхним пределом последовательности подразумевается верхняя грань (supremum) множества конечных пределов всех сходящихся подпоследовательностей рассматриваемой последовательности.

11 Теорема о локальной равномерной сходимости СтР, замечания к ней и следствие из неё (о равенстве степенных рядов).

Краткий план:

- 1. Рассматриваем произвольный отрезок из интеравала сходимости.
- 2. Делаем отрезок симметричным относительно x_0 .
- 3. Ограничиваем члены СтР сверху: $a_n r^n$.
- 4. Применяем ообобщённый признак Коши (супремум пределов)

Следствие о равенстве СтР:

Краткий план:

- 1. Приравниваем сумму двух рядов
- 2. Подставляем x_0 , получаем равенство $a_0 = b_0$
- 3. Делим остаток на $(x x_0)$
- 4. Предел $x \to x_0$, получаем равенство $a_1 = b_1$. Goto 2.

Теорема (о локальной равномерной сходимости СтР).

Если СтР (27) имеет ненулевой радиус сходимости, то этот ряд (27) сходится равномерно на любом отрезке из интервала сходимости данного ряда.

Локазательство

Рассмотрим $\forall \ [a,b] \subset I = \ \Big] \ x_0 - R \ ; \ x_0 + R \ \Big[\ , \ \text{где} \ R > 0 \ - \ \text{радиус сходимости CTP (27)}.$ Имеем:

$$x_0 - R < a < b < x_0 + R \Rightarrow -R < a - x_0 < b - x_0 < R \Rightarrow \begin{cases} |a - x_0| < R, \\ |b - x_0| < R. \end{cases}$$
(35)

Полагая $r=\max\left\{ \ \left|a-x_{0}\right|,\ \left|b-x_{0}\right| \
ight\} ,$ в силу (35) получаем:

$$0 \leqslant r < R. \tag{36}$$

Отсюда для $\forall x \in [a, b]$ получаем:

$$|x - x_0| \le \max \left\{ |a - x_0|, |b - x_0| \right\} = r,$$

поэтому для $\forall n \in \mathbb{N}_0$ имеем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \leqslant |a_n| r^n = c_n$$
 - мажоранта.

Применяя к ряду c_n обобщённый признак Коши сходимости ЧР, получаем:

$$\exists \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|} = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} r^n = r \cdot \underbrace{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}_{\stackrel{1}{=}} \stackrel{(34)}{=} \frac{r}{R} \stackrel{(36)}{<} 1,$$

а значит, ряд $\sum c_n$ сходится.

Таким образом, мы получили равномерно сходящуюся числовую мажоранту, и поэтому, по мажорантному признаку Вейерштрасса для Φ P, рассматриваемый CтP (27) будет равномерно сходиться на \forall $[a,b] \subset I$.

Замечания:

- 1. Из доказанной теоремы следует, что любой СтР сходится локально равномерно на интервале своей сходимости.
- 2. Применяя теорему Стокса-Зейделя для Φ Р и учитывая, что в (27) все слагаемые являются непрерывными функциями на I, в силу локальной равномерной сходимости (27) на I, внутри интервала сходимости сумма любого СтР (27) будет являться непрерывной функцией.

Следствие (o равенстве CmP).

Если для СтР (27) с непрерывной суммой S(x) есть степенной ряд $\sum_{n=0}^{\infty} b_n (x-x_0)^n$ с соответствующей суммой T(x), причём T(x)=S(x) в некоторой окрестности центра разложения x_0 , то тогда и сами СтР совпадают, т.е. $a_n=b_n$, для $\forall \, n\in\mathbb{N}_0$.

Доказательство. Пусть имеем, что

$$S(x) = a_0 + a_1(x - x_0) + \dots = b_0 + b_1(x - x_0) + \dots = T(x).$$

В силу непрерывности S(x) и T(x) в соответствующей окрестности точки x_0 при $x \to x_0$, получаем:

$$a_0=\lim_{x o x_0}S(x)=\lim_{x o x_0}T(x)=b_0,$$
 отсюда
$$a_1(x-x_0)+a_2(x-x_0)^2+\ldots=b_1(x-x_0)+b_2(x-x_0)^2+\ldots.$$

Таким образом, для $\forall \ x \neq x_0$ имеем:

$$a_1 + a_2(x - x_0) + \ldots = b_1 + b_2(x - x_0) + \ldots$$

Используя опять соответствующую окрестность точки x_0 , при $x \to x_0$, получим, что $a_1 = b_1$ и так далее (по ММИ).

12 Теорема о дифференцировании СтР, замечания и следствие из неё.

Краткий план:

- 1. Слагаемые непрерывно дифференцируемы + имеем поточечную сходимость СтР, поэтому сумма СтР будет непрерывно дифференцируемой.
- 2. Считаем радиус по обобщённой теореме Коши (формула Коши-Адамара)

Следствие

Краткий план:

1. . Просто дифференцируем и замечаем схожесть с рядом Тейлора.

Теорема ($o \ \partial u \phi \phi e p e h u u p o в a h u u \ CmP$).

Сумма СтР (27) внутри его интервала сходимости является непрерывно дифференцируемой функцией, причём у продифференцированного СтР будет тот же радиус (а, значит, и интервал) сходимости, что и у исходного ряда (27).

Доказательство. По теореме о почленном дифференцировании ФР и замечанию к ней достаточно показать, что возможно почленное дифференцирование (27) на \forall отрезке $[a,b] \subset I =]x_0 - R$; $x_0 + R$ [.

- 1. В (27) слагаемые $u_n(x)=a_n(x-x_0)^n,\;n\in\mathbb{N}_0$ являются непрерывно дифференцируемыми функциями для $\forall x \in [a;b]$ т.к. $\exists u'_n(x) = na_n(x-x_0)^{n-1}$ непрерывная на [a;b]
- сходится поточечно внутри своего интервала сходимости, ТО $\sum_{n=0}^{\infty} u_n(x) \xrightarrow{\text{для } \forall \ [a;b] \subset I} S(x).$

Осталось показать, что продифференцированный СтР

$$\sum_{n=0}^{\infty} u'_n(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x - x_0)^n \stackrel{[a;b]}{\Rightarrow} .$$

Используя формулу Коши-Адамара, имеем:

$$\widetilde{R} = \frac{1}{\frac{\lim_{n \to \infty} \sqrt[n]{(n+1)|a_{n+1}|}}{\lim_{n \to \infty} \sqrt[n]{(n+1)|a_{n+1}|}}} = \frac{1}{\frac{\lim_{n \to \infty} \left(\sqrt[n]{n+1} \sqrt[n]{|a_{n+1}|}\right)}} = \begin{bmatrix} \sqrt[n]{n+1} \xrightarrow{n \to \infty} 1, \\ \sqrt[n]{|a_{n+1}|} = \left(\sqrt[n+1]{|a_{n+1}|}\right)^{\frac{n+1}{n}} \end{bmatrix} = \frac{1}{\frac{1}{R}} = R.$$

Значит, у исходного и продифференцированного рядов один и тот же радиус, а, значит, и интервал, сходимости. Тогда, в силу того, что \forall СтР сходится локально равномерно, получаем, что $\sum\limits_{n=0}^{\infty}u_n'(x)\stackrel{[a;b]}{\Rightarrow}S'(x)$. Причём, в силу непрерывности слагаемых, S(x) будет непрерывно дифференцируема на \forall [a;b] \subset I, a, значит, и плу \forall $x \in I$

для $\forall x \in I$.

Замечания:

- 1. Применяя последовательно дифференцирование к СтР (27), получим по ММИ, что сумма ряда (27) будет бесконечное число раз дифференцируемой функцией.
- 2. Можно показать, что дифференцирование СтР хоть и сохраняет интервал сходимости, но в общем случае не улучшает его множество сходимости в том смысле, что если, например, исходный ряд (27) сходится на каком-то из концов интервала I $(x=x_0\pm R)$, то продифференцированный ряд уже может расходиться на этом конце.

Если на интервале $I=]x_0-R$; x_0+R [бесконечно дифференцируемая функция f(x) представляется в виде $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$, для $\forall x \in I$, то для неё СтР (27) будет являться соответствующим рядом Тейлора в окрестности точки x_0 , т. е. для $\forall a_n = \frac{f^{(n)}(x_0)}{n!}, n \in \mathbb{N}_0$.

 \mathcal{A} оказательство. Действительно, дифференцируя почленно n раз равенство

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + \dots$$

в силу доказанной теоремы получим:

$$\exists f^{(n)}(x) = n! \cdot a_n + (n+1) \cdot n \cdot \dots \cdot 2 \cdot a_{n+1}(x-x_0) + \dots$$

Отсюда при $x \to x_0$ имеем:

$$n! \cdot a_n = \lim_{x \to x_0} f^{(n)}(x) = f^{(n)}(x_0) \quad \Leftrightarrow \quad a_n = \frac{f^{(n)}(x_0)}{n!},$$

т.е. $\forall a_n$ - коэффициент в разложении в ряд Тейлора.

НИ-1 (линейность, аддитивность, монотонность). Рассмотрим f(x), определённую для $\forall x \in [a; +\infty[$. Предположим, что для $\forall A > a \Rightarrow f \in \mathbb{R}([a, A])$, т.е.

$$\exists \ \Phi(A) = \int_{a}^{A} f(x)dx \in \mathbb{R}. \tag{37}$$

Предел функции (37) при $A \to +\infty$ называется НИ-1, обозначаемый:

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx = \lim_{A \to +\infty} \Phi(A) = \Phi(+\infty).$$
 (38)

Интеграл (37) сходится \Leftrightarrow в (38) $\Phi(+\infty) \in \mathbb{R}$. В этом случае конечную величину $\Phi(+\infty)$ принимают за значение (38). Геометрически, если f(x) неотрицательная непрерывная для $\forall x \geqslant a$ функция, то в случае сходимости (38) его значение соответствует площади неограниченной фигуры между Ox и графиками функции.

НИ-2 (линейность, аддитивность, монотонность). Пусть f(x) определена для $\forall x \in [a,b[$ и неограничена в левосторонней окрестности точки b, т.е. $f(b-0) = \infty$. Если f(x) интегрируема на $\forall [a,c] \subset [a,b[$, то для $\forall \varepsilon \exists]0,b-a[\Rightarrow$

$$\exists I(\varepsilon) = \int_{a}^{b-\varepsilon} f(x)dx. \tag{39}$$

В этом случае НИ-2 от f(x) по [a,b[называют величину:

$$I_0 = \lim_{\varepsilon \to +0} I(\varepsilon) \stackrel{(39)}{=} \lim_{\varepsilon \to +0} \int_a^{b-\varepsilon} f(x) dx = \int_a^{b-0} f(x) dx. \tag{40}$$

В дальнейшем для простоты вместо (40) для НИ-2 будем просто писать

$$I_0 = \int_a^b f(x)dx. \tag{41}$$

НИ-2 (41) считается сходящимся ⇔ предел (40) конечен.

13 Теорема о замене переменной в несобственных интегралах (НИ) и замечание к ней.

Краткий план:

- 1. Применяем теорему о замене переменных в ОИ на произвольном подотрезке $[\alpha; \gamma]$.
- 2. Переходим к пределу $\gamma \to \beta 0$.

Теорема (о замене переменных в НИ).

Будем одновременно рассматривать как НИ-1, так и НИ-2.

Пусть f(x) определена для $\forall x \in [a; b[$, где либо $b = +\infty$ (НИ-1), либо $f(b-0) = \infty$ (НИ-2).

Если функция $x(t) = \phi(t)$ - непрерывно дифференцируема для $\forall t \in [\alpha; \beta[$ и строго монотонна, то в случае, когда:

$$\begin{cases} \phi(\alpha) = a, \\ \phi(\beta - 0) = b. \end{cases}$$
, интеграл $\int\limits_a^b f(x) dx$, где $b = +\infty$ (НИ-1) либо $f(b - 0) = \infty$ (НИ-2), сходится тогда и только тогда, когда сходится интеграл

$$\int_{\beta}^{\beta} f(\phi(t))\phi'(t)dt. \tag{42}$$

При этом справедлива формула замены переменных в НИ:

$$\int_{a}^{b} f(x)dx = \begin{bmatrix} x = \phi(t) \Rightarrow dx = \phi'(t)dt, \\ x|_{a=\phi(\alpha)}^{b=\phi(\beta-0)} \end{bmatrix} = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt, \tag{43}$$

причём в правой части (43) может стоять как некоторый НИ, так и обычный интеграл Римана.

Доказательство. Следует из соответствующей теоремы о замене переменных в ОИ (интеграле Римана).

Для доказательства, выбирая для $\forall \gamma \in [\alpha; \beta[$, в силу строгой монотонности $\phi(t)$, получаем что $c = \phi(\gamma) \in [a; b[$. При этом для $\forall c \in [a; b[$ $\exists ! \gamma \in [\alpha; \beta[$.

Тогда по теореме о замене переменных в ОИ имеем:

$$\int_{a}^{c} f(x)dx = \begin{bmatrix} x = \phi(t) \Rightarrow dx = \phi'(t)dt, \\ x|_{a=\phi(\alpha)}^{c} \Rightarrow \exists ! \ \gamma \in [\alpha; \beta[\ | \ c = \phi(\gamma) \Rightarrow t|_{\alpha}^{\gamma}. \end{bmatrix} = \int_{\alpha}^{\gamma} f(\phi(t))\phi'(t)dt.$$

Отсюда, переходя к пределу и учитывая, что $\gamma \to \beta - 0 \Rightarrow c \to b - 0$, получаем (43).

Замечание.

Для НИ-2 вида $\int_{a}^{b-0} f(x)dx$ после замены переменных имеем:

$$t = \left. rac{1}{b-x}
ight|_{rac{1}{b-a}>0}^{+\infty} \,, \,\, {
m a} \,\, {
m для} \,\, x
vert_a^{b-0} \,,$$

отсюда получаем:
$$x=b-\frac{1}{t}\Rightarrow dx=\frac{dt}{t^2}\Rightarrow\int\limits_a^bf(x)dx=\int\limits_{-1}^{+\infty}\frac{f(b-\frac{1}{t})}{t^2}dt.$$

Тем самым мы *свели НИ-2 к соответствующему НИ-1*, дальнейшее исследование которого, например, на сходимость, можно проводить с помощью полученных ранее условий сходимости НИ-1.

Аналогично, как и теорема о замене переменных в НИ-2, обосновываются формулы двойной подстановки (аналог формулы Ньютона-Лейбница) и метод интегрирования по частям для НИ-2 и НИ-1.

14 Формула двойной подстановки для НИ и интегрирование по частям в НИ.

Краткий план:

- 1. Рассматриваем частичную первообразную $F_0(x) = \int\limits_{x_0}^x f(t)dt$
- 2. По теореме Барроу можно продифференцировать интеграл.
- 3. Рассматриваем произвольную первообразную F(x) и замечаем, что $F(x) = F(x_0) + c_0$
- 4. x = a, x = b 0
- 5. Выражаем общий интеграл и получаем нужную формулу. При этом проблемным в формуле будет только F(b-0). Т.е. интеграл сходится \Leftrightarrow сходится F(b-0).

Интегрирование по частям

Краткий план:

1. По формулам двойной подстановки и интегрирования по чатям для НИ.

Теорема (Формула Ньютона-Лейбница для НИ.).

Пусть для f(x), определённой для $\forall x \in [a,b[$, где $b=+\infty$ или $f(b-0)=\infty$ существует непрерывно дифференцируемая первообразная F(x), т.е. $\exists F^{'}(x)=f(x)$, для $\forall x \in [a,b[$. Тогда имеем:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{c \to +\infty \\ c \to b - 0}} \int_{a}^{c} f(x)dx = \lim_{\substack{c \to b - 0}} \left[F(x) \right]_{a}^{c} =$$

$$= \lim_{\substack{c \to b - 0}} \left(F(c) - F(a) \right) = F(b - 0) - F(a) = \left[F(x) \right]_{a}^{b - 0}.$$

При этом используемый интеграл сходится тогда и только тогда, когда значения $F(b-0), F(+\infty)$ конечны.

Доказательство. Для $fix\ x_0\in [a,b[$ рассмотрим $F_0(x)=\int\limits_{x_0}^x f(t)dt$ - одну из первообразных для f(x), т.к. по теореме

Барроу $\exists \ F_0'(x) = f(x)$. Рассмотрим $\forall \ F(x)$ - первообразную f(x) на [a,b[. Тогда $\exists \ c_0 = const \mid F(x) = F_0(x) + c_0$, т.е. $F(x) - c_0 = F_0(x) = \int_x^x f(t) dt$. Полагая здесь x := a, x := b - 0, имеем:

$$\begin{cases} F(a) - c_0 = \int\limits_{x_0}^a f(t) dt, \\ F(b-0) - c_0 = \int\limits_{x_0}^b f(t) dt. \end{cases} \Rightarrow (F(b-0) - c_0) - (F(a) - c_0) = \int\limits_{x_0}^{b-0} f(t) dt - \int\limits_{x_0}^a f(t) dt = \int\limits_{x_0}^{b-0} f(t) dt + \int\limits_{a}^{b-0} f(t) dt = \int$$

Замечание.

На практике формулы двойной подстановки используются в том же виде, что и для ОИ: $\int\limits_{a}^{b}f(x)dx=\left[\int\limits_{a}f(x)dx\right]_{a}^{b}$.

Теорема (Интегрирование по частям в НИ.).

Пусть u = u(x), v = v(x) непрерывно дифференцируемы на $\forall x \in [a; b[$, где $b = +\infty$ или $f(b-0) = \infty$.

Если существует конечный предел $\lim_{\substack{x \to b - 0 \ (x \to +\infty)}} u(x)v(x) = u(b-0)v(b-0) \in \mathbb{R}$, то тогда в случае сходимости одного из использованных ниже интегралов, получаем:

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

Доказательство. По формулам двойной подстановки для НИ и интегрирования по частям в ОИ:

$$\begin{split} &\int_{a}^{b-0} u(x)dv(x) = \left[\int u(x)v^{'}(x)dx\right]_{a}^{b-0} = \left[u(x)v(x) - \int v(x)du(x)\right]_{a}^{b-0} = \left[u(b-0)v(b-0) \in \mathbb{R}\right] = \\ &= \left(u(b-0)v(b-0) - \int v(b-0)u^{'}(b-0)db\right) - \left(v(a)u(a) - \int v(a)u^{'}(a)da\right) = \\ &= \left[u(x)v(x)\right]_{a}^{b-0} - \left[\int v(x)u^{'}(x)dx\right]_{a}^{b-0} = \left[v(x)u(x)\right]_{a}^{b-0} - \int v(x)du(x). \end{split}$$

Замечание.

На практике удобнее использовать:

$$\int_{a}^{b} u dv = \left[uv \right]_{a}^{b} - \int_{a}^{b} v du.$$

Функцию $\phi(x)$, определённую на X будем называть равномерным частным пределом f(x,y) при $y \to y_0$, если

для
$$\forall \varepsilon > 0 \; \exists \; \delta = \delta(\varepsilon) > 0 \; | \; для \; \forall \; x \in X \;$$
и для $\forall \; y \in Y \;$ из $0 < |y - y_0| \leqslant \delta \;$ следует $|f(x,y) - \phi(x)| \leqslant \varepsilon.$ (44)

В этом случае будем писать

$$f(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} \phi(x). \tag{45}$$

15 Признак существования равномерного частного предела для непрерывных $\Phi 2\Pi$.

Краткий план:

- 1. Теорема Кантора для ФНП (что-то вроде Коши для ЧР).
- 2. Хитрая замена нужных х.

Теорема (признак равномерной сходимости $\Phi 2\Pi$).

Если функция f(x,y) непрерывна на прямоугольнике $[a,b] \times [c,d]$, являющимся компактом в \mathbb{R}^2 , и $y_0 \in [c,d]$, то имеем:

$$f(x,y) \xrightarrow[y \to y_0, y \in [c,d]]{[a,b]} f(x,y_0). \tag{46}$$

Доказательство. Из теоремы Кантора для ФНП получаем, что рассматриваемая f(x,y) будет равномерно непрерывна для $\forall x \in [a,b]$ и для $\forall y \in [c,d]$, т.е.:

для
$$\forall \, \varepsilon > 0 \, \exists \, \delta = \delta(\varepsilon) > 0$$
: для $\forall \, \widetilde{x}, \bar{x} \in [a,b]$ и для $\forall \, \widetilde{y}, \bar{y} \in Y$ из
$$\begin{cases} 0 < |\bar{x} - \widetilde{x}| \leqslant \delta, \\ 0 < |\bar{y} - \widetilde{y}| \leqslant \delta. \end{cases} \Rightarrow |f(\widetilde{x}, \widetilde{y}) - f(\bar{x}, \bar{y})| \leqslant \varepsilon.$$

Полагая здесь: $\begin{cases} \widetilde{x}=\bar{x}=x\in[a,b],\\ \widetilde{y}=y\in[c,d],\\ \bar{y}=y_0\in[c,d]. \end{cases}$, получаем:

для
$$\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0$$
: для $\forall \ y \in [c,d]$ из $|y-y_0| \leqslant \delta(\varepsilon)$, для $\forall \ x \in [a,b] \Rightarrow |f(x,y)-f(x,y_0)| \leqslant \varepsilon$.

Т.к. здесь $\delta = \delta(\varepsilon) > 0$ не зависит от $x \in [a, b]$, то получаем (45), где $\phi(x) = f(x, y_0)$, что соответствует (46).

Критерий Гейне равномерной сходимости $\Phi 2\Pi$ и замечания к нему. 16

Краткий план:

- 1. Доказываем в обе стороны!
- 2. => изикаточка по определению.
- 3. <= Из равномерной сходимости $f(x, y_n)$ и критерия Гейне для $\Phi 1\Pi$ следует поточечная сходимость f(x, y).
- 4. Предполагаем, что нету равномерной сходимости и применяем правило Де Моргана.
- 5. Для каждого $\delta = \frac{1}{n}$ выбираем $x_n = x(\delta)$ и $y_n = y(\delta)$.
- 6. Подставляем x_n в определение поточечной сходимости.
- 7. Докидываем туда же y_n , получаем противоречие т.к. одновременно должно выполняться $blabla\leqslant \varepsilon_0$ и $blabla > \varepsilon_0$.

Теорема (критерий Гейне равномерной сходимости $\Phi 2\Pi$).

Для того, чтобы f(x,y) $\stackrel{X}{\rightrightarrows}$ $\phi(x)$ необходимо и достаточно, чтобы для \forall Y $y_n o y_0, y_n
eq y_0$, где y_0 - предельная точка для множества Y, выполнялось:

$$g_n(x) = f(x, y_n) \underset{n \to \infty}{\overset{X}{\Longrightarrow}} \phi(x)$$
 (47)

одоказательство. \Longrightarrow . Пусть выполняется (45), тогда для $\forall \ arepsilon > 0 \ \exists \ \delta > 0 \ :$ для $\forall \ y \in Y$ из $0 < |y-y_0| \leqslant \delta$, для $\forall x \in X \Rightarrow |f(x,y) - \phi(x)| \leqslant \varepsilon.$

Рассматривая $\forall (y_n) \in Y$, в пределах точки y_0 по найденному ранее $\delta > 0 \; \exists \; \nu \in \mathbb{R}$ такое, что для $\forall \; n \geqslant \nu \Rightarrow$ $|y_n - y_0| \leqslant \delta$.

Окончательно получаем: для $\forall \ \varepsilon > 0 \ \exists \ \nu \in \mathbb{R}$ такое, что для $\forall \ n \geqslant \nu$, для $\forall \ x \in X \Rightarrow$ $\Rightarrow |y_n - y_0| \leqslant \delta \Rightarrow |f(x, y_n) - \phi(x)| \leqslant \varepsilon$, т.е. имеем (47).

 \iff . Пусть для $\forall \ (y_n) \in Y$ в предельной точке выполнено (47). Тогда в силу того, что из равномерной сходимости $g_n(x)=f(x,y_n)$ следует поточечная сходимость $\Phi\Pi$ $g_n(x)$, получаем, что $g_n(x)\xrightarrow[n\to\infty]{X}\phi(x)$.

Поэтому в силу критерия Гейне существования предела $\Phi 1\Pi$ получаем, что:

$$f(x, y_0) = g_n(x) \xrightarrow[n \to \infty]{X} \phi(x) \Rightarrow f(x, y) \xrightarrow[y \to y_0]{X} \phi(x).$$

Предположим, что имеем поточечную сходимость, но равномерной сходимости нет, т.е. получаем:

$$f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \phi(x).$$

Тогда по правилу де Моргана, имеем:

 $\exists \ \varepsilon_0 > 0$ такое, что для $\forall \ \delta > 0 \ \exists \ y(\delta) \in Y, \exists \ x(\delta) \in X$ такое, что из $0 < |y(\delta) - y_0| \leqslant \delta \Rightarrow$

$$\Rightarrow f(x(\delta), y(\delta)) - \phi(x(\delta)) > \varepsilon_0. \tag{48}$$

Выбирая для простоты $\delta = \frac{1}{n} \xrightarrow[n \to \infty]{} +0$, получаем, что $\begin{cases} \exists \ x_n = x \left(\frac{1}{n}\right) \in X, \\ \exists \ y_n = y \left(\frac{1}{n}\right) \in Y. \end{cases}$ такие, что из

 $0 < |y_n - y_0| \le \delta \Rightarrow |f(x_n, y_n) - \phi(x_n)| > \varepsilon_0.$

Используя условие $f(x_n,y) \xrightarrow[y \to y_0]{X} \phi(x_n)$, для найденного $\varepsilon_0 > 0$ получаем:

$$\exists \delta_0 > 0$$
 такая, что для $\forall y \in Y$ из $0 < |y - y_0| \leqslant \delta_0 \Rightarrow |f(x_n, y) - \phi(x_n)| \leqslant \varepsilon_0$.

Подставляя $y=y_n$, получаем $0<|y_n-y_0|\leqslant \delta_0\Rightarrow |f(x_n,y_n)-\phi(x_n)|\leqslant \varepsilon_0.$ Выбирая теперь $\nu=\frac{1}{\delta_0}\in\mathbb{R},\$ для $\forall\ n\geqslant \nu\Rightarrow 0<|y_n-y_0|\leqslant \frac{1}{n}\leqslant \frac{1}{\nu}.$ Отсюда в силу (48) при $\delta=\frac{1}{n}>0$ получаем, что для $\forall n \geqslant \nu$ выполняется $|f(x_n, y_n) - \phi(x_n)| > \varepsilon_0$. Противоречие.

Замечания:

1. Доказанная теорема позволяет из соответствующих свойств $\Phi\Pi$ получить аналогичные свойства для равномерно сходящихся $\Phi2\Pi$, в том числе сформулированный ранее супремальный критерий равномерной сходимости $\Phi2\Pi$ и критерий Коши для $\Phi2\Pi$. Кроме того, в силу теоремы Дини для $\Phi\Pi$ имеем соответствующую теорему Дини для равномерной сходимости $\Phi2\Pi$.

Теорема (Дини для равномерной сходимости $\Phi 2\Pi$).

Пусть для $\forall \ fix \ y \in Y, f(x,y)$ непрерывна по $x \in [a,b] = X$, причём при монотонной сходимости $y \to y_0 \ (y \uparrow y_0 \ \text{либо} \ y \downarrow y_0)$ соответственно получаем f(x,y) монотонно сходится к $\phi(x) \ (f(x,y) \uparrow \downarrow \phi(x))$. Тогда, если предельная функция $\phi(x) = \lim_{y \to y_0} f(x,y)$ непрерывна на X = [a,b], то кроме поточечной сходимости будем иметь равномерную сходимость (45).

2. Аналогично получаем теорему Стокса-Зейделя для $\Phi 2\Pi$.

Теорема (Стокса-Зейделя).

Пусть для \forall fix $y \in Y, f(x,y)$ непрерывна по $x \in [a,b] = X$. Тогда, если $f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$, где y_0 - предельная точка для Y, то предельная функция будет непрерывной на [a,b].

Предположим, что f(x,y) определена для $\forall y \in Y$ и для $\forall x \in [a,b]$, причём при $\forall fix y \in Y$ f(x,y) интегрируема по $x \in [a,b]$. В этом случае:

$$\exists F(y) = \int_{a}^{b} f(x, y) dx, y \in Y.$$
 (49)

(49) - интеграл Римана (собственный), зависящий от параметра $y \in Y$. В дальнейшем интеграл вида (49) будем кратко называть $CИЗО\Pi$.

17 Теорема о предельном переходе в собственных интегралах, зависящих от параметра (СИЗОП) и замечания к ней.

Краткий план:

1. Рассматриваем разность двух интегралов, и показываем, что она $\leq M\varepsilon$.

Теорема (о предельном переходе в СИЗОП).

Пусть определён СИЗОП (49). Тогда, в случае $f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$, где, как и в определении СИЗОП (49), предполагая интегрируемость f(x,y) по x, получаем:

$$\exists \lim_{y \to y_0} \int_0^b f(x, y) dx = \int_0^b \phi(x) dx = \int_0^b \lim_{y \to y_0} f(x, y) dx.$$
 (50)

Доказательство. В силу (45) имеем (44), откуда для $I=\int\limits_a^b\phi(x)dx$, получаем:

$$|F(y) - I| \stackrel{(49)}{=} \left| \int_a^b (f(x, y) - \phi(x)) \, dx \right| \leqslant \int_a^b |f(x, y) - \phi(x)| \, dx \stackrel{(44)}{\leqslant} \int_a^b \varepsilon dx = \varepsilon (b - a).$$

Таким образом, получаем, что $\exists \ M=b-a=const>0$ такое, что для $\forall \ \varepsilon>0 \ \exists \ \delta>0$ такая, что для $\forall \ y\in Y$ из $0<|y-y_0|\leqslant \delta\Rightarrow |F(y)-I|\leqslant M\varepsilon$.

Откуда по M-лемме для сходимости $\Phi 1\Pi$, получаем: $F(y) \xrightarrow[y \to y_0]{} I$, т.е. имеем (50).

Замечания:

- 1. При доказательстве теоремы неявно предполагалось, что $\phi(x) \in \mathbb{R}([a,b])$. Это условие выполняется в силу критерия Гейне существования равномерного частного предела и соответствующего условия интегрируемости $\Phi 1\Pi$.
- 2. Используя теорему Дини для $\Phi 2\Pi$, в силу доказанной теоремы, получаем, что если для $\forall \ fix \ y \in Y \Rightarrow f(x,y)$ непрерывна на X = [a,b], то в случае, когда f(x,y) монотонна по y на Y = [c,d] получаем, что при выполнении условия поточечной сходимости:

$$f(x,y) \stackrel{[a,b]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x),$$

то имеем для $\forall y_0 \in [c,d] \Rightarrow (50)$.

3. Если f(x,y) непрерывна для $\forall x \in [a,b]$ и для $\forall y \in [c,d]$, тогда справедливо (50), где $\phi(x) = f(x,y_0)$, для $\forall fix y_0 \in [c,d]$.

В частности, при указанных условиях СИЗОП (49) является непрерывной функцией на $Y \in [c,d]$, т.к.

$$\exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx = \int_a^b f(x, y_0) dx = F(y_0),$$

что равносильно непрерывности (49) в любой точке $y_0 \in [c,d]$, причём на концах отрезка рассматривается односторонняя непрерывность.

18 Теорема о почленном дифференцировании СИЗОП.

Краткий план:

- 1. Рассматриваем G(y) = интеграл от $f_y'(x,y)$ на [a;b].
- $2. \ G(y)$ непрерывно дифференцируема, а значит интегрируема. Берём интеграл на [c;y]
- 3. Меняем порядок интегрирования, и берём интеграл, получаем первообразную.
- 4. По теореме Барроу берём производную.

Теорема (о почленном дифференцировании СИЗОП).

Пусть f(x,y) непрерывна на $[a,b] \times [c,d]$ и для неё:

$$\exists \ \frac{\partial f(x,y)}{\partial y}$$
 — непрерывна на $[a,b] \times [c,d].$

Тогда СИЗОП (49) будет непрерывно дифференцируемой функцией на [c,d], для которой производная вычисляется по правилу Лейбница:

$$F'(y) = \left(\int_{a}^{b} f(x,y)dx\right)_{y}^{'} = \int_{a}^{b} f_{y}^{'}(x,y)dx = \int_{a}^{b} \frac{\partial f(x,y)}{\partial y}dx.$$
 (51)

Доказательство. Для доказательства воспользуемся теоремой об интегрируемости СИЗОП. Рассмотрим функцию

$$G(y) = \int_{a}^{b} \frac{\partial f(x,y)}{\partial y} dx.$$
 (52)

В силу полученных ранее результатов, СИЗОП (52) корректно определён и является непрерывно дифференцируемой функцией на [c,d]. Поэтому функция G(y) для \forall fix $y \in]c,d[$ будет интегрируемой на [c,y]. А значит, получаем:

$$\exists \int\limits_{c}^{y} G(t)dt \stackrel{(52)}{=} \int\limits_{c}^{y} \left(\int\limits_{a}^{b} \frac{\partial f(x,t)}{\partial t} dx \right) dt.$$

Отсюда, меняя порядок интегрирования, в силу теоремы о почленном интегрировании СИЗОП, имеем:

$$\int_{c}^{y} G(t)dt = \int_{a}^{b} \left(\int_{c}^{y} \frac{\partial f(x,t)}{\partial t} dt \right) dx = \int_{a}^{b} \left[f(x,t) \right]_{t=c}^{t=y} dx = \int_{a}^{b} \left(f(x,y) - f(x,c) \right) dx \stackrel{(49)}{=} F(y) - c_0,$$

где
$$c_0 = \int\limits_a^b f(x,c)dx = const.$$

Отсюда получаем, что $F(y) = c_0 + \int\limits_{-y}^{y} G(t) dt.$

Используя теорему Барроу о дифференцировании интегралов с переменным верхним пределом, получаем:

$$\exists \ F^{'}(y) = (c_0)_y^{'} + \left(\int\limits_c^y G(t)dt\right)_y^{'} = 0 + G(y) \stackrel{(52)}{=} \int\limits_a^b \frac{\partial f(x,y)}{\partial y} dx, \text{ что даёт (51)}.$$

1. Пусть f(x,y) определена для $\forall x \in [a; +\infty[$ и $\forall y \in Y \subset \mathbb{R}$. Если \forall fix $y \in Y \Rightarrow$

$$\int_{a}^{+\infty} f(x,y) = dx \xrightarrow{y} . \tag{53}$$

Тогда будет корректно определена функция:

$$F(y) = \int_{a}^{+\infty} f(x, y) dx, y \in Y.$$
 (54)

2. Пусть НИЗОП (54) сходится на $Y \subset \mathbb{R}$. Если y_0 - предельная точка Y и выполняется

$$f(x,y) \xrightarrow{[a;+\infty[} \phi(x),$$

то будем говорить, что в данном НИЗОП допустим предельный переход, если

$$\exists \lim_{y \to y_0} \int_a^{+\infty} f(x,y) dx = \int_a^{+\infty} \lim_{y \to y_0} f(x,y) dx = \int_a^{+\infty} \phi(x) dx.$$
 (55)

19 Теорема о предельном переходе в несобственных интегралах, зависящих от параметра (НИЗОП), следствие из неё и замечание к ней.

Краткий план:

- 1. Раскладываем на сумму ФР
- 2. применяем теорему о предельном переходе в СИЗО Π .

Теорема (О предельном преходе в НИЗОП).

Пусть для \forall fix $y \in Y \Rightarrow f(x,y)$ непрерывна для $\forall \, x \geqslant a$ и для предельной точки $y \in Y$ имеем

$$f(x,y) \stackrel{\forall [a;A]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$$
, где $\forall A > a$. (56)

Если $\int\limits_{x}^{+\infty} f(x,y)dx \stackrel{y}{\Longrightarrow}$, то тогда возможен предельный переход (55).

Доказательство. Воспользуемся теоремой о предельном переходе в функциональном ряду, для чего, беря произвольную последовательность $(A_n) \uparrow +\infty$, по критерию Гейне существования конечного предела функции для (54) получаем

$$\exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^{+\infty} f(x,y) dx = \left[\int_a^{+\infty} = \lim_{An \to +\infty} \left(\int_{A_0}^{A_1} + \int_{A_1}^{A_2} + \dots + \int_{A_{n-1}}^{A_n} \right) = \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} f(x,y) dx \right] =$$

$$= \sum_{n=1}^{\infty} \lim_{y \to y_0} \int_{A_{n-1}}^{A_n} f(x,y) dx = \left[\text{По теореме о предельном переходе в СИЗОП} \right] =$$

$$= \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} \lim_{y \to y_0} f(x,y) dx = \sum_{n=1}^{\infty} \int_{A_{n-1}}^{A_n} \phi(x) dx = \lim_{An \to +\infty} \left(\int_{A_0=a}^{A_1} + \int_{A_1}^{A_2} + \dots + \int_{A_{n-1}}^{A_n} \right) =$$

$$= \lim_{An \to +\infty} \int_a^{A_n} \phi(x) dx = \int_a^{+\infty} \phi(x) dx,$$

т.е. имеем (55).

Следствие (О непрерывности НИЗОП).

Пусть f(x,y) непрерывная для $\forall x \in [a; +\infty[$ и для $\forall y \in [c;d]$. Если интеграл

$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c;d]}{\Rightarrow}$$

то НИЗОП (54) - непрерывная функция на [c;d], т.е.

для
$$\forall y \in [c;d] \Rightarrow \exists \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int\limits_a^{+\infty} f(x,y) dx = \int\limits_a^{+\infty} f(x,y) dx = F(y_0).$$

Доказательство. Из непрерывности f(x,y) на $[a;+\infty[$ \times [c;d] следует, что

для
$$\forall$$
 fix $A\geqslant a\Rightarrow f(x,y)\stackrel{[a;\,A]}{\underset{y\to y_0}{\rightrightarrows}}f(x,y)=\phi(x)$ (для \forall fix $y_0\in [c;d]$)

Далее, используя доказательство теоремы в силу (55)

$$\exists \lim_{y \to y_0} F(y) = \int_a^A \phi(x) dx \int_a^{+\infty} f(x, y_0) dx = F(y_0),$$

что и требовалось доказать.

Замечание.

Доказанная теорема и следствие справедливы и в отсутствии равномерной сходимости для рассматриваемого НИ-ЗОП, если он сходится локально равномерно на Y,

для
$$\forall \ [\alpha;\beta] \subset Y \Rightarrow \int\limits_{a}^{+\infty} f(x,y) dx \stackrel{[\alpha;\beta]}{\rightrightarrows}$$

Это связано с тем, что свойство непрерывности функции на множестве определено в любой точке из этого множества. Поэтому, выбирая \forall fix $y_0 \in Y$ и заключая его в соответствующий отрезок $y_0 \in [\alpha; \beta] \subset Y$, в случае локальной равномерной сходимости получаем, например, что (54) будет непрерывна на $[\alpha; \beta]$, а значит, в точке y_0 . А исходя из этого, получаем непрерывность (54) на всём Y.

20 Теорема об интегрировании НИЗОП и замечания к ней.

Краткий план:

1. Рассматриваем последовательность $(A_n) \uparrow$

Теорема (Об интегрировании НИЗОП).

Пусть f(x,y) непрерывная на декартовом произведении $[a;+\infty[\times [c;d]$. Если интеграл

$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c;d]}{\Rightarrow},$$

то тогда НИЗОП (54) является интегрируемой на [c;d] функцией, для которой

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} dy \int_{a}^{+\infty} f(x,y)dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x,y)dy$$

$$(57)$$

Доказательство. По той же схема, что и в предыдущей теореме, рассмотрим произвольную последовательность $(A_n) \uparrow +\infty (A_0=a)$ и используем критерий Гейне на основании теоремы о почленном интегрировании СИЗОП, получаем:

$$\exists \int\limits_{c}^{d} F(y) dy = \int\limits_{c}^{d} \left(\sum_{n=1}^{\infty} \int\limits_{A_{n-1}}^{A_{n}} f(x,y) dx \right) dy = \left[\begin{array}{c} u_{n}(y) = \int\limits_{A_{n-1}}^{A_{n}} f(x,y) dx \text{ непрерывна на } [c;d] \\ \sum_{n=1}^{\infty} u_{n}(y) = \int\limits_{a}^{+\infty} f(x,y) \stackrel{[c;d]}{\Rightarrow} \end{array} \right] =$$

$$= \int\limits_{c}^{d} \sum_{n=1}^{\infty} u_{n}(y) dy = \sum_{n=1}^{\infty} \int\limits_{c}^{d} u_{n}(y) dy = \sum_{n=1}^{\infty} \int\limits_{c}^{d} \left(\int\limits_{A_{n-1}}^{A_{n}} f(x,y) dx \right) dy = \sum_{n=1}^{\infty} \int\limits_{A_{n-1}}^{A_{n}} \left(\int\limits_{c}^{d} f(x,y) dx \right) dy =$$

$$= \lim_{A_{n} \to +\infty} \left(\int\limits_{A_{0} = a}^{A_{1}} + \int\limits_{A_{1}}^{A_{2}} + \dots + \int\limits_{A_{n-1}}^{A_{n}} \right) = \lim_{A_{n} \to +\infty} \int\limits_{a}^{A_{n}} \left(\int\limits_{c}^{d} f(x,y) dx \right) dy = \int\limits_{a}^{+\infty} dx \int\limits_{c}^{d} f(x,y) dy$$

Замечания:

1. Доказанная теорема справедлива не только для случае $x \in [a; +\infty[, y \in [c; d],$ но и для случая $x \in [a; +\infty[, y \in [c; d],$ при условии, что дополнительно ко всем условиям указанной теоремы выполняется, что точка x = a не является точкой разрыва второго рода для g(x, y), т.е.

$$\exists \lim_{x \to a+0} f(x, y) \in \mathbb{R}$$

В этом случае, доопределяя функцию f(x,y) в точке x=a, т.е. рассматривая функцию

$$g(x,y) = \begin{cases} f(x,y), x > a, y \in [c;d] \\ \lim_{x \to a+0} f(x,y), y \in [c;d] \end{cases}$$

Получаем её непрерывность в точке x = a справа. А далее, учитывая, что рассмотренные интегралы от f(x,y) и g(x,y) совпадают используя доказанную теорему.

2. Можно показать, что наряду с интегрируемым НИЗОП по конечному промежутку возможно его почленное интегрирование по бесконечному промежутку $[c; +\infty[$, если

(a)
$$f(x,y)$$
 непрерывна на $[a; +\infty[\times [c; +\infty[$

(6)
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c;+\infty[}{\Rightarrow}, \int_{a}^{+\infty} f(x,y)dx \stackrel{[a;+\infty[}{\Rightarrow}$$

3.
$$\exists \int\limits_{c}^{+\infty} dy \int\limits_{a}^{+\infty} f(x,y) dx = \int\limits_{a}^{+\infty} dx \int\limits_{c}^{+\infty} f(x,y) dy$$
) - существуют повторные интегралы.

21 Теорема о почленном дифференцировании НИЗОП и замечание к ней.

Краткий план:

- 1. Записываем интеграл от интеграла от производной.
- 2. Меняем порядок интегрирования.
- 3. По теореме Барроу доводим до логического завершения.

Теорема (О почленном дифференцировании НИЗОП).

Пусть f(x,y) - непрерывна на $[a;+\infty[$ \times [c;d] , \exists $f_u'(x,y)$ - непрерывная на $[a;+\infty[$ \times [c;d] . Тогда если

1.
$$\int_{a}^{+\infty} f(x,y)dx \xrightarrow{[a;+\infty[}$$

$$2. \int_{0}^{+\infty} f'_{y}(x,y)dx \stackrel{[a;+\infty[}{\Rightarrow},$$

то тогда НИЗОП (54) - функция почленно дифференцируема на $[a; +\infty[$, и её производная вычисляется по правилу Лейбница:

$$\exists F'(y) \stackrel{(54)}{=} \left(\int_{a}^{+\infty} f(x,y) dx \right)'_{y} = \int_{a}^{+\infty} f'_{y}(x,y) dx$$

Доказательство. Для \forall fix $y \in [c;d]$ корректно определяем СИЗОП

$$\Phi(y) = \int_{0}^{y} \left(\int_{0}^{+\infty} f'_{y}(x, t) dx \right) dt$$

В силу выполнения всех условий почленного интегрирования СИЗОП можем изменить порядок интегрирования

$$\Phi(y) = \int_{a}^{+\infty} \left(\int_{c}^{y} f'_{y}(x,t) \right) dx = \int_{a}^{+\infty} \left[f(x,t) \right]_{t=c}^{t=y} dx = \int_{a}^{+\infty} \left(\int_{c}^{y} f(x,y) - f(x,c) \right) dx =$$

$$= \int_{a}^{+\infty} f(x,y) dx - \int_{a}^{+\infty} f(x,c) dx = F(y) - F(c)$$

Отсюда, используя теорему Барроу о дифференцировании интеграла с переменным верхним пределом имеем

$$\exists F'(y) = (\Phi(y) + F(c))'_y = \left(\int_c^y \left(\int_a^{+\infty} f'_y(x,t)dt\right) dx\right)'_y =$$

$$= \left[\int_0^{+\infty} f'_y(x,t)dx\right]_{t=y} = \int_a^{+\infty} f'_y(x,y)dx \Leftrightarrow (21)$$

Замечание.

Так же, как и в условии непрерывности НИЗОП в доказательстве теоремы о почленном дифференцировании вместо равномерной сходимости рассмотрим НИЗОП используя локальную равномерную сходимость соответствующего НИЗОП.

Интегралом Дирихле называется НИ-1:

$$I = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.\tag{58}$$

22 Вычисление интеграла Дирихле и его обобщения.

В данном случае $\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1 \in \mathbb{R}$, поэтому x = 0 - точка устранимого разрыва, и интеграл (58) представляет собой

$$I = \int_{0}^{1} \frac{\sin x}{x} dx + \int_{1}^{+\infty} \frac{\sin x}{x} dx$$
сходится как интеграл Римана
Пирихле для НИ-1

В данном случае сходимость будет условной.

Для получения значения (58) рассмотрим при fix a>0 НИЗОП-1:

$$\begin{cases} F(y) = \int_{0}^{+\infty} e^{-ax} \cos(xy) \, dx, \\ y = [0; +\infty[. \end{cases}$$
 (59)

В (59) подынтегральная функция $f(x,y)=e^{-ax}\cos(xy)$, во-первых, является непрерывной для $\forall x\geqslant 0$ и $\forall y\geqslant 0$, а, во-вторых, в силу неравенства $|f(x,y)|=e^{-ax}\left|\cos(xy)\right|\leqslant e^{-ax}=\varphi(x),$ где $\int\limits_0^+\varphi(x)\ dx=\left[-e^{-ax}\frac{1}{a}\right]_0^{+\infty}=\frac{1}{a}\in\mathbb{R}$ сходится, по мажорантному признаку Вейерштрасса получаем, что $F(y) \stackrel{[0;+\infty]}{\rightrightarrows}$

В связи с этим, возможно почленное интегрирование этого НИЗОП, например, по $y \in [0;1]$. Имеем:

$$\exists G(a) = \int_{0}^{1} F(y) \, dy \stackrel{(59)}{=} \int_{0}^{1} dy \int_{0}^{+\infty} e^{-ax} \cos(xy) \, dx = \int_{0}^{+\infty} dx \int_{0}^{1} e^{-ax} \cos(xy) \, dy =$$

$$= \int_{0}^{+\infty} \left[e^{-ax} \cdot \frac{\sin(xy)}{x} \right]_{y=0}^{y=1} dx = \int_{0}^{+\infty} e^{-ax} \cdot \frac{\sin x}{x} \, dx.$$

С другой стороны, интеграл вида (59) был вычислен нами ранее, и для него было получено значение

$$F(y) = \left[$$
Демидович, № 1828 $\right] = \left[\frac{y \sin(xy) - a \cos xy}{a^2 + y^2} e^{-ax} \right]_{x=0}^{x=+\infty} = \frac{a}{a^2 + y^2}, \ orall \ ext{fix} \ \ a > 0.$

Таким образом:

$$G(a) = \int_{0}^{1} F(y) \ dy = \int_{0}^{1} \frac{a \ dy}{a^2 + y^2} = \left[\operatorname{arctg} \frac{y}{a} \right]_{0}^{1} = \operatorname{arctg} \frac{1}{a}, \ a > 0.$$

на основании признака Абеля было показано, что $G(a) = \int\limits_{-\infty}^{+\infty} e^{-ax} \frac{\sin x}{x} dx \stackrel{a \in [0; +\infty[}{\Rightarrow}]}{\Rightarrow}.$

A так как в данном случае $g(x,a)=e^{-ax}\frac{\sin x}{x}$ - непрерывна для $\forall \ x\neq 0, \ \forall \ a\in \mathbb{R}$ и выполняется $g(x,a)\xrightarrow[x\to +0]{}1\in \mathbb{R},$ то G(a) будет непрерывна для НИЗОП-2 как функция от $a\geqslant 0$. В связи с этим:

$$\lim_{a \to +0} G(a) = G(0) = \int_{0}^{+\infty} e^{-ax} \frac{\sin x}{x} dx \bigg|_{a=0} = \int_{0}^{+\infty} \frac{\sin x}{x} dx = I,$$

$$I = \lim_{a \to +0} G(a) = \lim_{a \to +0} \left(\arctan \frac{1}{a} \right) = \frac{\pi}{2} \Rightarrow (58).$$

Следствие (обобщение интеграла Дирихле).

Для $\forall b \in \mathbb{R}$ существует интеграл

$$\int_{0}^{+\infty} \frac{\sin(bx)}{x} dx = \frac{\pi}{2} \operatorname{sgn} b = \begin{cases} \frac{\pi}{2}, & b > 0, \\ 0, & b = 0, \\ -\frac{\pi}{2}, & b < 0. \end{cases}$$
 (60)

Доказательство. Действительно, если b>0, то, делая замену t=bx $\Big|_0^{+\infty},$ получим:

$$\int_{0}^{+\infty} \frac{\sin bx}{x} dx = \int_{0}^{+\infty} \frac{\sin t}{\left(\frac{t}{b}\right)} \cdot \frac{dt}{b} = \int_{0}^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

Если же b < 0, то аналогичным образом получаем:

$$\int_{0}^{+\infty} \frac{\sin bx}{x} dx = -\int_{0}^{+\infty} \frac{\sin(-bx)}{x} dx \stackrel{-b > 0}{=} -\frac{\pi}{2}.$$

Случай b=0 проверяется непосредственной подстановкой.

Интегралами Фруллани будем называть интегралы вида

$$\Phi(a;b) = \int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx,$$
(61)

где a, b = const > 0.

В зависимости от свойств подынтегральной функции в (61), рассмотрим три основные формулы для вычисления интеграла Фруллани. Для этого нам понадобится с следующая

23 Лемма Фруллани.

Краткий план:

- 1. Замена t = ax.
- 2. Замена $z = t/\alpha$.

Лемма Фруллани.

Если для функции f(x), определённой для $\forall x > 0$, функция $\frac{f(x)}{x}$ интегрируема на любом конечном промежутке из $]0; +\infty[$, то тогда для $\forall a, b, \alpha, \beta = \text{const} > 0$ верно равенство

$$\int_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} dx = \int_{\alpha}^{b} \frac{f(\alpha x) - f(\beta x)}{x} dx \tag{62}$$

Доказательство.

Используя аддитивность интеграла Римана, после соответствующей замены имеем:

$$\begin{split} &\int\limits_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} dx = \int\limits_{\alpha}^{\beta} \frac{f(ax)}{x} dx - \int\limits_{\alpha}^{\beta} \frac{f(bx)}{x} dx = \begin{bmatrix} 1 \end{pmatrix} \underbrace{t = ax \begin{vmatrix} \beta a \\ 2 \end{pmatrix}}_{\alpha a} = \int\limits_{\alpha a}^{\beta a} \frac{f(t)}{\frac{t}{a}} \cdot \frac{dt}{a} - \int\limits_{\alpha b}^{\beta b} \frac{f(t)}{\frac{t}{b}} \cdot \frac{dt}{b} = \int\limits_{\alpha a}^{\beta a} \frac{f(t)}{t} dt - \int\limits_{\alpha b}^{\beta b} \frac{f(t)}{t} dt = \left(\int\limits_{\alpha a}^{\alpha b} + \int\limits_{\alpha b}^{\beta a} \right) - \left(\int\limits_{\alpha b}^{\beta a} + \int\limits_{\beta a}^{\beta b} \right) = \int\limits_{\alpha a}^{\alpha b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt + \int\limits_{\alpha a}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{\beta a$$

24 Первая теорема Фруллани.

Краткий план:

- 1. Раскладываем на два интеграла по лемме Фруллани.
- 2. По теореме о среднем для ОИ получаем подобие формулы из условия.
- 3. Переходим к пределу в формуле.

Первая теорема Фруллани. Если f(x) непрерывна для $\forall \, x \geqslant 0$ и $\exists \, f(+\infty) \in \mathbb{R}$, то

$$\Phi(a,b) = \left(f(0) - f(+\infty)\right) \ln\left(\frac{b}{a}\right). \tag{63}$$

Доказательство. В силу леммы Фруллани для (61), имеем:

$$\begin{split} &\Phi(a,b) = \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \int\limits_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} \ dx \stackrel{\text{(e2)}}{=} \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \int\limits_{a}^{b} \frac{f(\alpha x) - f(\beta x)}{x} \ dx = \\ &= \lim_{\alpha \to +0} \int\limits_{a}^{b} \frac{f(\alpha x)}{x} \ dx - \lim_{\beta \to +\infty} \int\limits_{a}^{b} \frac{f(\beta x)}{x} \ dx = \\ &= \begin{bmatrix} \text{По теореме о среднем для ОИ:} \\ 1) \ \exists \ c_1 \in [a;b] \Rightarrow \int\limits_{a}^{b} \frac{f(\alpha x)}{x} \ dx = f(\alpha c_1) \int\limits_{a}^{b} \frac{dx}{x} = f(\alpha c_1) \ln \frac{b}{a} \\ 2) \ \exists \ c_2 \in [a;b] \Rightarrow \int\limits_{a}^{b} \frac{f(\beta x)}{x} \ dx = f(\beta c_2) \int\limits_{a}^{b} \frac{dx}{x} = f(\beta c_2) \ln \frac{b}{a} \end{bmatrix} = \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \left(f(\alpha c_1) - f(\beta c_2) \right) \ln \frac{b}{a} = \\ &= \begin{bmatrix} 1) \ \alpha a \leqslant \alpha c_1 \leqslant \alpha b \Rightarrow \left[\alpha \to +0, \ \alpha c_1 \to 0\right] \Rightarrow f(\alpha c_1) \xrightarrow[\alpha \to +\infty]{} f(0) \\ 2) \ \beta a \leqslant \beta c_2 \leqslant \beta b \Rightarrow \left[\beta \to +\infty, \ \beta c_2 \to \infty\right] \Rightarrow f(\beta c_2) \xrightarrow[\beta \to +\infty]{} f(+\infty) \end{bmatrix} = \left(f(0) - f(+\infty) \right) \ln \frac{b}{a}. \end{split}$$

25 Вторая теорема Фруллани.

Краткий план:

- 1. Раскладываем на два интеграла по лемме Фруллани.
- 2. По теореме о среднем для ОИ получаем подобие формулы из условия.
- 3. Переходим к пределу в формуле.

Вторая теорема Фруллани.

Пусть
$$f(x)$$
 непрерывна для $\forall \, x \geqslant 0$ и $\forall \, A > 0 \Rightarrow \exists \int\limits_A^{+\infty} \frac{f(x)}{x} dx \in \mathbb{R}$ - сходится.
Тогда:
$$\Phi(a,b) \stackrel{(61)}{=} f(0) \ln \frac{b}{a}. \tag{64}$$

Доказательство. Действуя как в первой теореме Фруллани, получим:

$$\begin{split} &\Phi(a,b) \stackrel{(61)}{=} \lim_{\substack{\alpha \to +0 \\ \beta \to +\infty}} \int\limits_{\alpha}^{\beta} \frac{f(ax) - f(bx)}{x} \; dx = \ldots = \lim_{\substack{\alpha \to +0 \\ \alpha \to +0}} \int\limits_{\alpha a}^{\alpha b} \frac{f(t)}{t} dt - \lim_{\substack{\beta \to +\infty \\ \beta a}} \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \\ &= \begin{bmatrix} 1) \; \exists \; c \in [\alpha a; \alpha b] \; : \; \int\limits_{\alpha a}^{\alpha b} \frac{f(t)}{t} dt = f(c) \int\limits_{\alpha a}^{\alpha b} \frac{dt}{t} = f(c) \ln \frac{b}{a} \\ 2) \int\limits_{\beta a}^{\beta b} \frac{f(t)}{t} dt = \int\limits_{A>0}^{\beta b} \frac{f(t)}{t} dt - \int\limits_{A>0}^{\beta a} \frac{f(t)}{t} dt \xrightarrow[\beta \to +\infty]{} \int\limits_{A>0}^{+\infty} \frac{f(t)}{t} dt - \int\limits_{A>0}^{+\infty} \frac{f(t)}{t} dt = 0 \\ &= \lim_{\alpha \to +0} f(c) \ln \frac{b}{a} = \left[\alpha a \leqslant c \leqslant \alpha b \Rightarrow c \xrightarrow[\alpha \to +0]{} 0 \right] = f(0) \ln \frac{b}{a}. \end{split}$$

26 Третья теорема Фруллани.

Краткий план:

- 1. Рассматриваем новую функцию $f_0(t) = f(1/t)$, доопределяем её в нуле.
- 2. Вычисляем $\Phi(a_0; b_0)$.
- 3. Показваем, что $\Phi(a_0; b_0) = \Phi(a; b)$

Третья теорема Фруллани.

Пусть f(x) непрерывна для $\forall \, x>0$ и $\exists \, f(+\infty) \in \mathbb{R}.$

Тогда, если для $\forall \ A>0 \Rightarrow \int\limits_0^A \frac{f(x)}{x} dx$ сходится, то

$$\Phi(a,b) \stackrel{(61)}{=} -f(+\infty) \ln \frac{b}{a}. \tag{65}$$

Доказательство. Рассмотрим $f_0(t)=f\left(rac{1}{t}
ight)$, непрерывную для $\forall\; t>0.$

Во-первых, $\exists f_0(+0) = \lim_{t \to +0} f\left(\frac{1}{t}\right) = f(+\infty) \in \mathbb{R}$, поэтому f_0 можно доопределить в точке t=0, приняв $f_0(0) = f_0(+0) = f(+\infty) \in \mathbb{R}$.

Во-вторых, для полученной непрерывной $f_0(t)$ для $\forall \ A_0 > 0 \Rightarrow \exists \int\limits_{A_0}^{+\infty} \frac{f_0(t)}{t} dt = \begin{bmatrix} t = \frac{1}{x} \\ A = \frac{1}{A_0} > 0 \end{bmatrix} = \int\limits_0^A \frac{f(x)}{x} dx \in \mathbb{R}$ сходится.

Таким образом, в силу второй теоремы Фруллани, имеем:

$$\Phi(a_0, b_0) = \begin{bmatrix} a_0 = \frac{1}{a} > 0 \\ b_0 = \frac{1}{b} > 0 \end{bmatrix} = f_0(0) \cdot \ln \frac{b_0}{a_0} = f(+\infty) \ln \left(\frac{\left(\frac{1}{b}\right)}{\left(\frac{1}{a}\right)} \right) = -f(+\infty) \ln \frac{b}{a}.$$

С другой стороны, получаем:

$$\Phi_{0}(a_{0}, b_{0}) = \int_{0}^{+\infty} \frac{f_{0}(a_{0}t) - f_{0}(b_{0}t)}{t} dt = \int_{0}^{+\infty} \left(f_{0}\left(\frac{a}{t}\right) - f_{0}\left(\frac{b}{t}\right) \right) \cdot \frac{1}{t} dt = \left[t = \frac{1}{x}\right] = \dots = \int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx \stackrel{(61)}{=} \Phi(a, b).$$

Таким образом, $\Phi(a,b) = -f(+\infty) \ln \frac{b}{a}$.