Notes on Lebesgue Dominated Convergence Theorem

Tong Chen

April 19, 2020

1 Statement of the theorem

Theorem 1. Lebesgue's Dominated Convergence Theorem. Let (f_n) be a sequence of complexvalued measurable functions on a measure space S, Σ, μ . Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that

$$|f_n(x)| \le g(x)|f_n(x)| \le g(x)$$

for all numbers n in the index set of the sequence and all points x S. Then f is integrable and

$$\lim_{n \to \infty} \int_{S} |f_n - f| \, d\mu = 0 \lim_{n \to \infty} \int_{S} |f_n - f| \, d\mu = 0$$

which also implies

$$\lim_{n\to\infty} \int_S f_n \, d\mu = \int_S f \, d\mu \lim_{n\to\infty} \int_S f_n \, d\mu = \int_S f \, d\mu$$

2 Proof of the theorem

Proof. Without loss of generality, one can assume that f is real, because one can split f into its real and imaginary parts (remember that a sequence of complex numbers converges if and only if both its real and imaginary counterparts converge) and apply the triangle inequality at the end.

Lebesgue's dominated convergence theorem is a special case of the Fatou-Lebesgue theorem. Below, however, is a direct proof that uses Fatou's lemma as the essential tool.

Since f is the pointwise limit of the sequence (f_n) of measurable functions that are dominated by g, it is also measurable and dominated by g, hence it is integrable. Furthermore, (these will be needed later),

$$|f - f_n| \le |f| + |f_n| \le 2g|f - f_n| \le |f| + |f_n| \le 2g$$

for all n and

$$\lim \sup_{n \to \infty} |f - f_n| = 0. \lim \sup_{n \to \infty} |f - f_n| = 0.$$

The second of these is trivially true (by the very definition of f). Using linearity and monotonicity of the Lebesgue integral,

$$\left| \int_{S} f \, d\mu - \int_{S} f_n \, d\mu \right| = \left| \int_{S} \left(f - f_n \right) d\mu \right| \le \int_{S} \left| f - f_n \right| d\mu. \left| \int_{S} f \, d\mu - \int_{S} f_n \, d\mu \right| = \left| \int_{S} \left(f - f_n \right) d\mu \right| \le \int_{S} \left| f - f_n \right| d\mu.$$

By the reverse Fatou lemma (it is here that we use the fact that |f-fn| is bounded above by an integrable function)

$$\limsup_{n\to\infty}\int_{S}\left|f-f_{n}\right|d\mu\leq\int_{S}\limsup_{n\to\infty}\left|f-f_{n}\right|d\mu=0,\\ \limsup_{n\to\infty}\int_{S}\left|f-f_{n}\right|d\mu\leq\int_{S}\limsup_{n\to\infty}\left|f-f_{n}\right|d\mu=0,$$

which implies that the limit exists and vanishes i.e.

$$\lim_{n \to \infty} \int_{S} |f - f_n| \, d\mu = 0. \lim_{n \to \infty} \int_{S} |f - f_n| \, d\mu = 0.$$

Finally, since

$$\lim_{n\to\infty}\left|\int_{S}fd\mu-\int_{S}f_{n}d\mu\right|\leq\lim_{n\to\infty}\int_{S}\left|f-f_{n}\right|d\mu=0.\lim_{n\to\infty}\left|\int_{S}fd\mu-\int_{S}f_{n}d\mu\right|\leq\lim_{n\to\infty}\int_{S}\left|f-f_{n}\right|d\mu=0.$$

we have that

$$\lim_{n \to \infty} \int_{S} f_n \, d\mu = \int_{S} f \, d\mu \cdot \lim_{n \to \infty} \int_{S} f_n \, d\mu = \int_{S} f \, d\mu.$$

The theorem now follows.

If the assumptions hold only μ -almost everywhere, then there exists a μ -null set $N \in \Sigma$ such that the functions $f_n \mathbf{1}_{S \setminus N}$ satisfy the assumptions everywhere on S. Then the function f(x) defined as the pointwise limit of $f_n(x)$ for $x \in S \setminus N$ and by f(x) = 0 for $x \in N$, is

measurable and is the pointwise limit of this modified function sequence. The values of these integrals are not influenced by these changes to the integrands on this μ -null set N, so the theorem continues to hold.

DCT holds even if f_n converges to f in measure (finite measure) and the dominating function is non-negative almost everywhere.

3 Reference

[1] Wikipedia-Dominated_convergence_theorem : https://en.wikipedia.org/wiki/Dominated_convergence_theorem