Εργασία Αναγνώριση Προτύπων και Μηχανική Μάθηση

Christos Alexopoulos (10618)

Panagiotis Koutris (10671)

Team 4

ΜΕΡΟΣ Α'

- **Ε**χουμε 2 κλάσεις $ω_1$ (χωρίς στρες) και $ω_2$ (με στρες)
- Μας δίνεται ο δείκτης × που μπορεί να χρησιμοποιηθεί σε ένα σύστημα ταξινόμησης για να διαπιστωθεί κάθε φορά αν ο χρήστης αισθάνεται στρες ή όχι.
- Κατανομή πυκνότητας πιθανότητας: $p(x|\theta) = \frac{1}{\pi} \cdot \frac{1}{1+(x-\theta)^2}$
- **■** Με βάση τις μετρήσεις των 12 συναδέλφων πήραμε τις εξής a-priori Πιθανότητες: $P(\omega_1)=\frac{7}{12}$, $P(\omega_2)=\frac{5}{12}$
- Καλούμαστε να υλοποιήσουμε έναν ταξινομητή μέγιστης πιθανοφάνειας

Ερώτημα 1°

- Μας δίνονται τα εξής σύνολα τιμών:
- $D_1 = [2.8, 0.4, 0.8, 2.3, 0.3, 3.6, 4.1]$
- $D_2 = [4.5, 3.4, 3.1, 3.0, 2.3]$
- Ζητούμενα:
 - lacktriangle Εύρεση των βέλτιστων $\hat{ heta_1}$, $\hat{ heta_2}$
 - lacksquare Απεικόνιση των $\log P(D_1| heta)$, $\log P(D_2| heta)$

Εύρεση $\hat{ heta_1}$, $\hat{ heta_2}$

- lacksquare Λύνουμε την εξίσωση: $abla_{m{ heta}}l(m{ heta})=0$ (1)
- lacksquare όπου: $l(oldsymbol{ heta}) = \ln \prod_{n=1}^N p(x_n | oldsymbol{ heta})$
- Για να προσεγγίσουμε τη λύση της εξίσωσης (1)
 χρησιμοποιούμε την αριθμητική μέθοδο argmax()
- Δοκιμάζουμε για το σύνολο τιμών $\theta = [-10, 10]$, βρίσκοντας με αυτό το τρόπο τη τιμή του βέλτιστου θ που μεγιστοποιεί τη πιθανότητα εμφάνισης των δεδομένων. Τα παρακάτω αποτελέσματα επιβεβαιώνονται και για άλλα σύνολα τμών θ στα οποία εμπεριέχεται η λύση.
- Αποτελέσματα:
 - $\hat{\theta}_1 = 2.585$
 - $\hat{\theta}_2 = -3.146$

Απεικόνιση $\log P(D_1|\theta)$, $\log P(D_2|\theta)$

Ερώτημα 2°

Χρησιμοποιώντας τη συνάρτηση διάκρισης:

$$g(x)=\log P(x|\hat{\theta_1})-\log P(x|\hat{\theta_2})+\log P(\omega_1)-\log P(\omega_2),$$
ταξινομούμε τα σύνολα τιμών D_1,D_2

Κανόνας Απόφασης για Ταξινόμηση

- Ο κανόνας απόφασης που θα ακολουθήσουμε είναι ο εξής
 - $g(x) > 0 \to \omega_1$
 - $g(x) < 0 \to \omega_2$
- Με βάση αυτόν τον κανόνα η τιμή της g(x) είναι:
 - θετική για τα δείγματα (2.8, 2.3, 3.6, 4.1)
 - αρνητική για όλα τα υπόλοιπα δείγματα
- Δηλαδή:
 - lacktriangle Τα δείγματα (2.8, 2.3, 3.6, 4.1) ανήκουν στην κλάση ω_1
 - lacksquare τα υπόλοιπα ανήκουν στην ω_2
- Επομένως:
 - Ο ML ταξινομητής λειτουργεί καλά για τα δεδομένα της κλάσης ω₂ καθώς ταξινόμησε σωστά όλα τα δείγματα
 - Για τα δεδομένα της κλάσης ω₁, ο ταξινομητής παρουσίασε λάθη σε τρία δείγματα, τα (0.4, 0.8, 0.3).
- lacktriangle Παρακάτω παρατίθεται απεικόνιση της g(x)

Απεικόνιση g(x)

ΜΕΡΟΣ Β'

- \blacksquare Έχουμε την a-priori πιθανότητα $p(\theta) = \frac{1}{10\pi} \cdot \frac{1}{1+(\theta/10)^2}$
- Θα υπολογίσουμε:
 - \blacksquare την a posteriori πιθανότητα: $p(\theta|D)$
 - lacktriangle την πυκνότητα πιθανότητας $p(x|D_j), \ j=1,2$

Ερώτημα 1°

- lacksquare Ζητούμενο είναι η απεικόνιση των $p(\theta|D_j), j=1,2$
- Θα τα υπολογίσουμε ως εξής:

$$p(D_j|\theta) = \prod_{n=1}^N p(x_n|\theta)$$

$$p(\theta|D_j) = \frac{p(D_j|\theta)p(\theta)}{\int p(D_j|\theta)p(\theta)d\theta}$$

- Παρακάτω παρατίθεται το σχεδιάγραμμα των $p(\theta|D_j), j=1,2$ από το οποίο παρατηρούμε ότι οι εκάστωτε καπλύλες είναι περισότερο συγκετρωμένες γύρω από τη περιοχή των δεδομένων σε σχέση με το $p(\theta)$
- Αυτό το αποτέλεσμα είναι αναμενόμενο καθώς οι posterior πιθανότητες λαμβάνουν υπόψη τόσο τα δεδομένα όσο και την prior $p(\theta)$

Απεικόνιση $p(\theta|D_1), p(\theta|D_2)$

Ερώτημα 20

Εχουμε τη συνάρτηση διάκρισης:

$$h(x) = \log P(x|D_1) - \log P(x|D_2) + \log P(\omega_1) - \log P(\omega_2),$$

και υπολογίζουμε τις τιμές της για τα σύνολα δεδομένων D_1, D_2 .

Αποτελέσματα

x	h(x)
2.8	3.410
-0.4	1.065
-0.8	0.527
2.3	3.274
-0.3	1.186
3.6	3.268
4.1	3.022
-4.5	-2.391
-3.4	-2.676
-3.1	-2.567
-3.0	-2.507
-2.3	-1.785

Table: Υ πολογισμένες τιμές h(x) για τις αντίστοιχες x

Κανόνας Απόφασης για Ταξινόμηση

- Παρατηρούμε ότι οι τιμές της h(x) είναι θετικές για το σύνολο δεδομένων D_1 και αρνητικές για το D_2 .
- Εχοντας υπόψη τον εξής κανόνα απόφασης:
 - $h(x) > 0 \to \omega_1$
 - $h(x) < 0 \to \omega_2$
- Παρατηρούμε ότι έχουμε τέλεια ταξινόμηση.
- lacktriangle Παρακάτω παρατίθεται απεικόνιση της h(x)

Απεικόνιση h(x)

Σύγκριση της μεθόδου εκτίμησης παραμέτρων κατά Bayes σε σχέση με τη μέθοδο της μέγιστης πιθανοφάνειας

- Στο συγκεκριμένο παράδειγμα παρατηρούμε ότι είναι καλύτερη η μέθοδος ΒΕ συγκριτικά με την ML.
- Η πρώτη έχει μηδενικό σφάλμα ταξινόμισης ενώ με τη δεύτερη ταξινομούνται εσφαλμένα 4 δείγματα.
- Αυτή η διαφορά στην απόδοση είναι αναμενόμενη καθώς η BE λαμβάνει υπόψη και την priori κατανομή του $p(\theta)$.
- Βέβαια, η ML είναι πιο απλή και ευκολότερη στην ερμηνεία και σε κάποια άλλη περίπτωση ενδεχομένως να είχαμε παρόποια απόδοση με την BE.

ΜΕΡΟΣ Γ'

- Σε αυτό το μέρος θα υλοποιήσουμε:
 - Έναν Decision Tree Ταξινομητή
 - Έναν Random Forest Ταξινομητή
- Για την εφαρμογή τους θα χρησιμοποιήσουμε από τη βιβλιοθήκη sklearn τους αλγορίθμους:
 - DesicionTreeClassifier
 - RandomForestClassifier

Ερώτημα 1°

- Θα ταξινομήσουμε το 50% των δειγμάτων του dataset στις κλάσεις Iris setosa, Iris versicolor και Iris virginica, αφότου πρώτα εκπαιδεύσουμε τον ταξινομητή μας με το υπόλοιπο 50%.
- Για την ταξινόμηση θα αξιοποιήσουμε μόνο τα 2 πρώτα features των δειγμάτων, δηλαδή το μήκος και πλάτος των σεπάλων.
- Ζητούμενα:
 - Ακρίβεια ταξινόμησης
 - Βάθος δέντρου που δίνει την καλύτερη ακρίβεια ταξινόμησης
 - Απεικόνιση ορίων απόφασης για το παραπάνω βάθος

Υπολογισμός Ακρίβειας Ταξινόμησης

- Αρχικά φορτώνουμε το dataset και ορίζουμε τα training και testing set.
- Ορίζουμε τα πιθανά βάρη από 1 εώς 9
- Για κάθε ένα από τα βάθη ορίζουμε και εκπαιδεύουμε το
 Desicion Tree μοντέλο μας, υπολογίζοντας την ακρίβεια για καθένα από αυτά
- Κρίνεται απαραίτητο να αναφερθεί ότι για να αποφευχθεί η τυχαιότητα των αποτελεσμάτων σε κάθε τρέξιμο του κώδικα επιλέχθηκε σε όλα τα ερωτήματα αυτού του μέρους το random_state = 42

Αποτελέσματα

Βάθος	Ακρίβεια
1	0.640
2	0.773
3	0.7866
4	0.773
5	0.773
6	0.773
7	0.733
8	0.733
9	0.733

Table: Αποτελέσματα ακρίβειας για διαφορετικά βάθη ταξινομητή

■ Στη συνέχεια θα απεικονίσουμε τα όρια απόφασης του ταξινομητή για το βάθος 3 με τη συνάρτηση contourf.

Όρια Απόφασης

Ερώτημα 2°

- Θα υλοποιήσουμε έναν Random Forest ταξινομητή 100 δέντρων με την τεχνική Bootstrap.
- Θα χρησιμοποιήσουμε το $\gamma = 50\%$ του προηγουμένου συνόλου εκπαίδευσης για τη δημιουργία των συνόλων εκπαίδευσης του κάθε δέντρου.
- To testing set είναι το ίδιο με το προηγούμενο ερώτημα
- Τα ζητούμενα και η προσέγγιση που θα ακολουθήσουμε θα είναι παρόμοια με το προηγούμενο ερώτημα

Ακρίβεια Ταξινόμησης

Βάθος	Ακρίβεια
1	0.76
2	0.826
3	0.8
4	0.8
5	0.786
6	0.786
7	0.786
8	0.773
9	0.786

Table: Αποτελέσματα ακρίβειας για διαφορετικά βάθη ταξινομητή.

Στη συνέχεια θα απεικονίσουμε τα όρια απόφασης του ταξινομητή για το βάθος 2 με τη συνάρτηση εcontourf. ≅>

Όρια Απόφασης

Παρατηρήσεις (1/2)

- Ο RF ταξινομητής έχει καλύτερη ακρίβεια συγκριτικά με τον DT
- Αυτό το αποτέλεσμα αντικατοπτρίζεται και στα όρια απόφασης
 - Του DT είναι πιο ομαλά και γενικεύσιμα
 - Του RF είναι πιο σύνθετα και ειδικά
- Βέβαια, αν επικεντρωθούμε στη κλάση Iris Virginica,
 βλέπουμε ότι η ταξινόμηση είναι πολύ καλή και στις 2 περιπτώσεις σε αντίθεση με τις άλλες 2 κλάσεις
- Επίσης παρατηρήσαμε ότι με την επιλογή 2 άλλων features (π.χ. Μήκος Σεπάλου, Μήκος Πετάλου) είχαμε πολύ καλύτερο αποτέλεσμα ταξινόμησης ως προς όλες τις κλάσεις
- Δεν παρατηρούμε ιδιαίτερο overfiting με τον RF ταξινομητή,
 το οποίο οφείλεται στο μικρό βαθος δέντρων = 2 = 1 = 1 = 1

Παρατηρήσεις (2/2)

γ	Accuracy
0.1	0.8000
0.3	0.8133
0.5	0.8267
0.7	0.8267
1.0	0.8267

Table: Επίδραση του γ στην απόδοση

• Η απόδοση βελτιώνεται με την αύξηση του γ έως το $\gamma=0.5$, όπου φτάνει τη μέγιστη ακρίβεια (82.67%). Μετά από αυτό, η απόδοση παραμένει σταθερή, υποδεικνύοντας ότι δεν απαιτείται η χρήση όλων των δεδομένων για κάθε δέντρο.

ΜΕΡΟΣ Δ'

- Σε αυτό το μέρος θα φτιάξουμε αλγορίθμους ταξινόμησης με διάφορες μεθόδους
- Training Set : datasetTV.csv
- Testing Set : datasetTest.csv
- Για κάθε μία από τις μεθόδους, θα υπολογίσουμε την ακρίβεια και θα επιλέξουμε το καλύτερο μοντέλο
- Από αυτό λοιπόν το μοντέλο θα εξάγουμε το διάνυσμα labelsX που θα αντιστοιχεί στις ετικέτες του testing set.

Μεθοδολογία

- **BHMA 1:** Grid Search με:
 - Cross-Validation

για εύρεση βέλτιστων παραμέτρων

- ΒΗΜΑ 2: Εφαρμογή καλύτερων παραμέτρων με:
 - Training Split
- ΒΗΜΑ 3: Υπολογισμός Ακρίβειας

Σημείωση: Για κάθε μία από τις παρακάτω μεθόδους θα παρατίθεται αντίστοιχος κώδικας στο παράρτημα

ME Θ O Δ O Σ 1: Gradient Boosting Classifier

- Grid Search with Cross Validation
- Parameter Grid :
 - $n_{-}estimators: [50, 100, 200]$ $learning_{-}rate: [0.05, 0.1, 0.2]$
 - $\color{red} \blacksquare \ max_depth: [3,4,5]$
 - \blacksquare subsample: [0.8, 0.9, 1.0]
- Best Parameters:
 - \blacksquare $learning_rate: 0.2$
 - \blacksquare $max_depth:5$
 - \blacksquare n_estimators : 200
 - \blacksquare subsample: 1.0
- **Accuracy:** 0.8326

$ME\ThetaO\DeltaO\Sigma$ 2: Random Forest Classifier

- Grid Search with Cross Validation
- Parameter Grid:
 - n_estimators: [100, 200, 300]
 max_depth: [10, 20, 30, None]
 min_samples_split: [2, 5, 10]
 - \blacksquare $min_samples_leaf:[1,2,4]$
- Best Parameters:
 - $\blacksquare max_depth: 20$
 - \blacksquare $min_samples_leaf:1$
 - \blacksquare $min_samples_split:2$
 - \blacksquare n_estimators: 300
- **Accuracy:** 0.8171

$ME\ThetaO\DeltaO\Sigma$ 3: MLP Classifier (Neural Network)

- Grid Search with Cross Validation
- Parameter Grid:

```
\blacksquare hidden_layer_sizes: [(50,),(100,),(100,50),(200,100)]
```

- lacksquare activation: ['relu','tanh']
- \blacksquare solver : ['adam', 'sgd']
- \blacksquare alpha: [0.0001, 0.001, 0.01]
- \blacksquare learning_rate : ['constant', 'adaptive']

Best Parameters:

- activation: 'tanh'
- \blacksquare alpha: 0.01
- \blacksquare hidden_layer_sizes: (200, 100)
- learning_rate :' constant'
- solver: 'adam'
- Accuracy: 0.8542

$ME\ThetaO\DeltaO\Sigma$ 4: SVM Classifier

- Grid Search with Cross-Validation for multiple kernels
- Parameter Grid:
 - C: [0.1, 1, 10, 50, 100, 200]
 - \blacksquare gamma: [0.001, 0.01, 0.1, 0.5, 1]
 - \blacksquare kernel: ['linear', 'rbf', 'poly', 'sigmoid']
- Best Parameters:
 - C:10
 - *gamma* : 0.01
 - kernel:' poly'
- Accuracy: 0.8658

Παρατηρήσεις

- Για κάθε μία από τις παραπάνω μεθόδους, εστιάσαμε στη ταξινόμηση της κάθε κλάσης.
- Σε κάθε υλοποίηση βγάλαμε το Classification Report και το Confusion Matrix για να δούμε το precision της κάθε κλάσης και ποίες κλάσεις μπερδεύει ο ταξινομητής
- Παρατηρήσαμε ότι:
 - Συστηματικά οι κλάσεις 2 και 5 έχουν το μικρότερο Precision
 - Υπάρχει επικάληψη των κλάσεων 2 και 5, δηλαδή αρκετά δείγματα της κλάσης 2 ταξινομούνται στην 5 και αντίστροφα.
- Αυτή η επικάλυψη φανερώνεται και στα παρακάτω διαγράμματα
- Κώδικας για όλα τα παραπάνω παρατίθεται στο παράρτημα

Κατανομή διάφορων ενδεικτικών χαρακτηριστικών

Απόπειρες Βελτίωσης

- Χρήση συνδυασμού μοντέλων (Ιεραρχική Ταξινόμηση)Χρήση PCA για Dimensionality Reduction
 - Δεν παρατηρήθηκε ιδιαίτερη βελτίωση
- Αλλαγή των class weights δίνοντας μεγαλύτερη έμφαση στις κλάσεις 2 και 5 + Χρήση PCA για Dimensionality Reduction
 - Σε αυτή τη περίπτωση παρουσιάστηκε σημαντική βελτίωση

Τελικό Μοντέλο

- Το μοντέλο μας έχει ως εξής:
- PCA με:
 - \blacksquare $n_components = 53$

Κρατάμε τις 53 σημαντικότερες διαστάσεις, όπως προέκυψε με Cross-Validation

- SVM με τις εξής παραμέτρους:
 - 'kernel' = 'poly'
 - class 2 weight = 2
 - class 5 weight = 2

ΠΑΡΑΡΤΗΜΑ: Κώδικας Gradient Boosting Classifier

```
on sklearn.model selection import GridSearchCV, KFold
  om sklearn,ensemble import GradientBoostingClassifier
data = nd.read csv("/Users/chris/Desktop/ML/project/datasetTV.csv")
 = data.iloc[:, :-1].values
   data iloc[:, -1] values
oaram erid -
model - GradientBoostingClassifier()
kf - KFold(n_splits-k, shuffle-True, random_state-42)
grid_search = GridSearchCV(estimator-model, param_grid-param_grid, cv-kf, scoring='accuracy', n_jobs=-1, verbose=2)
grid search.fit(X, y)
 rint(f"Best Parameters: (grid_search.best_params_)")
 rint(f"Best Cross-Validation Accuracy: {grid search.best score : .4f}")
  int(classification report(v test, v pred))
  int(confusion_matrix(y_test, y_pred))
```

ΠΑΡΑΡΤΗΜΑ: Κώδικας Random Forest Classifier

```
rom sklearn.ensemble import RandomForestClassifier
  om sklearn.model selection import GridSearchCV
 rom sklearn.metrics import accuracy score
 mport pandas as pd
data = pd.read csv("/Users/chris/Desktop/ML/project/datasetTV.csv")
X = data.iloc[:, :-1].values
  = data.iloc[:. -1].values
rf = RandomForestClassifier(random state=42)
param grid = }
grid search = GridSearchCV(rf, param grid, cv=5, n jobs=-1, verbose=2, scoring='accuracy')
grid search.fit(X, y)
 rint("Best Parameters:", grid_search.best_params_)
 rint("Best Cross-Validation Accuracy:", grid_search.best_score_)
  rint(classification report(y test, y pred))
  int(confusion_matrix(y_test, y_pred))
```

4 D > 4 A > 4 B > 4 B >

ΠΑΡΑΡΤΗΜΑ: Κώδικας MLP Classifier

```
向小しませる
  om sklearn.meural metwork import PLPClassifier
  on sklearn.model_selection import GridSearchCV, train_test_split
 rom sklearn.metrics import classification_report, confusion_matrix
 moont pandas as od
data = pd.read_csv('/Users/chris/Desktop/ML/project/datasetTV.csv', header = None)
X = data.iloc(:, :-1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
param_grid = {
   'hidden_layer_sizes': [(58,), (188,), (188, 58), (288, 188)],
mlp - MLPClassifier(max_iter-300, random_state-42)
grid_search = GridSearchCV(mlp, param_grid, cv=5, scoring='accuracy', n_jobs=-1, verbose=2)
  int("Best parameters found:", grid_search.best_params_)
best_mlp - grid_search.best_estimator_
y_pred = best_mlp.predict(X_test)
   nt(confusion_matrix(y_test, y_pred))
    t(classification_report(y_test, y_pred))
```

ΠΑΡΑΡΤΗΜΑ: Κώδικας SVM Classifier

```
from sklearn.svm import SVC
 from sklearn.model selection import GridSearchCV
from sklearn.metrics import accuracy score
 import pandas as pd
data = pd.read csv("/Users/chris/Desktop/ML/project/datasetTV.csv", header = None)
X = data.iloc[:.:-1].values
v = data.iloc[:. -1].values
svm = SVC()
param grid - {
     'C': [0.1, 1, 10, 50, 100, 200].
grid_search = GridSearchCV(svm, param_grid, cv-5, n_jobs--1, verbose-2, scoring-'accuracy')
grid search.fit(X, y)
 orint("Best Parameters:", grid_search.best_params_)
 print("Best Cross-Validation Accuracy:", grid search.best score )
 print(classification report(y test, y pred))
  int(confusion_matrix(y_test, y_pred))
```

ΠΑΡΑΡΤΗΜΑ : Κώδικας Διαγραμμάτων Επικάλυψης

```
向个少占早
mport pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data - pd.read csv("/Users/chris/Desktop/ML/project/datasetTV.csv")
data 2 5 = data(data.iloc(:, -1).isin((2, 51))
class_2 = data_2_5[data_2_5.iloc[:, -1] == 2]
class 5 = data 2 5[data 2 5.iloc[:, -1] == 5]
 rint(class_2.mean())
 rint(class 2.std())
plt.figure(figsize-(12, 8))
for column in data.columns[:-1]:
   sns.kdeplot(class_2[column], label=f'Class 2 - {column}', fill=True, alpha=8.4)
   sns.kdeplot(class_5[column], label=f'Class 5 - {column}', fill=True, alpha=0.4)
   plt.title(f"Κατανομή για το χαρακτηριστικό {column}")
   plt.xlabel(column)
olt.figure(figsize=(12, 8))
sns.scatterplot(data-class_2, x-data.columns[0], y-data.columns[1], label-"Class_2", alpha-0.7)
sns.scatterplot(data-class_5, x-data.columns[0], y-data.columns[1], label="Class 5", alpha-0.7)
plt.title(f"Scatter plot yia {data.columns[0]} Kai {data.columns[1]}")
plt.xlabel(data.columns[0])
plt.ylabel(data.columns[1])
```

ΠΑΡΑΡΤΗΜΑ : Κώδικας Ιεραρχικής Ταξινόμησης

ΠΑΡΑΡΤΗΜΑ : Κώδικας Τελικού Μοντέλου

```
Two sideran-mode patenties inverse twoscollars of the moderan Mc 
Two sideran investments of the moderan investment (

Two sideran investments (

Two sideran inve
```