ELE-plan for i dag

Komparatoren

- Komparering/tærskelspænding
- μA741 som komparator kan man dette?
- Logiske niveauer
- Udgang med "Open Collector" evt. anden tilpasning
- Uden/med positiv feedback (Schmitt Trigger)
- Eksempel med figur 12.10

E3 (Sp. 1 - 3)

Multivibratorer

- Hvad er dette for nogle kredsløb?
- Astabil multivibrator som eksempel

Latch

- Konstruktionsopgave relevant

Opladning af kondensatorDifferentialligning - La Place?

ELE-plan for i dag

Komparatoren

- Komparering/tærskelspænding
- μA741 som komparator kan man dette?
- Logiske niveauer
- Udgang med "Open Collector" evt. anden tilpasning
- Uden/med positiv feedback (Schmitt Trigger)
- Eksempel med figur 12.10

E3 (Sp. 1 - 3)

Multivibratorer

- Hvad er dette for nogle kredsløb?
- Astabil multivibrator som eksempel

Latch

Konstruktionsopgave relevant

Kasper sidst på lektionen vedr. "SDU Takeover"

Opladning af kondensatorDifferentialligning - La Place?

Offset- og biasfejl

DC offset på udgang og muligvis drift (ex. som funktion af temp.)

Databladsoplysninger:

Offsetspænding V_{off} Biasstrøm I_B Offsetstrøm I_{off}

Man kan bortjustere begyndelsesoffset men ikke drift!

Intern justering

Her kan man ikke længere regne med opgivne data for Op Amp.

I/V-konverter

 $R = 100 \ k\Omega$ $I_1: 0 - 100 \ \mu A$

Max. fejl på v_o på 0,1% Full Scale.

Der må gerne biaskompenseres.

Krav til V_{off} , I_B og I_{off}

I denne lektion:

Op Amp som switch-kredsløb: **Ikke** negativ feedback!

Betingelsen for skift på udgangen af en Op Amp?

Betingelsen for skift på udgangen af en Op Amp?

Komparering:
$$v_{id} = 0$$

$$e^+ = e^-$$

Hvad forstås ved tærskelspændingen?

(Threshold Value, Threshold Voltage)

Betingelsen for skift på udgangen af en Op Amp?

Komparering: $v_{id} = 0$

$$e^+ = e^-$$

Hvad forstås ved tærskelspændingen?

Værdi af **indgangsspændingen**, hvor udgangen skifter fortegn

(Threshold Value, Threshold Voltage)

Hvad er tærskelspændingen her?

Figur 12.5

Hvad er tærskelspændingen her?

Tærskelspændingen er V_r

Figur 12.5

Kan man bruge en μA741 som komparator?

Kan man bruge en μA741 som komparator?

Hvilke værdier kan v_o så antage?

Tilpasning af udgang til logikfamilie (eks. 5 V TTL)

Tilpasning af udgang til logikfamilie (eks. 5 V TTL)

Bliv evt. lidt klogere her!

https://www.techtarget.com/whatis/definition/transistor-to-transistor-logic-TTL

Logiske niveauer

Logic Overview

IC Basics: Comparison of Switching Standards

Shown below are the switching input/ output comparison table and graphic that illustrate $V_{\rm BL}$ and $V_{\rm BL}$, which are the minimum switching levels for guaranteed operation. $V_{\rm t}$ is the approximate switching level and the $V_{\rm CL}$ evels are the guaranteed outputs for the $V_{\rm CL}$ specified.

DR	5 TTL	5 CMOS	3 LVTTL	2.5 CMOS	1.8 CMOS
5 TTL	Yes	No	Yes*	Yes*	Yes*
5 CMOS	Yes	Yes	Yes*	Yes*	Ves*
3 LVTTL	Yes	No	Yes	Yes*	Yes*
2.5 CMOS	Yes	No	Yes	Yes	Yes*
1.8 CMOS	No	No	No	No	Yes*

* Requires V., Tolerance

Tilpasning af udgang til logikfamilie (eks. 5 V TTL)

"Open Collector" udgang

Figur 12.4

Figur 12.4

Figur 12.4

Tilpasning af udgang uden "Open Collector"?

Med eller uden positiv feedback?

Uden positiv feedback

Støj på v_{in} kan medføre utilsigtede skift i v_o

Uden positiv feedback

Støj på v_{in} kan medføre utilsigtede skift i v_o

Langsomt varierende signal – eks. fra temperaturføler

Langsom passage af tærskelspænding e_t

Langsomt skift på v_o

Langsomt varierende signal – eks. fra temperaturføler

Langsom passage af tærskelspænding e_t

Langsomt skift på vo

Med positiv feedback (Schmitt Trigger)

Hysterese (Forhindrer utilsigtede skift)

Øget skiftehastighed_(Side 804, midten)

(a) Circuit diagram of inverting Schmitt trigger

(b) Transfer characteristic displaying hysteresis

Figure 12.7 A Schmitt trigger is formed by using positive feedback with a comparator.

Figur 12.10

Tærskelspændinger

Hysterese V_H

Skitse: $v_o = f(v_{in})$

$$V_{o SAT}^{+} = -V_{o SAT}^{-} = 14, 6V$$

E3 - diagram

Sp. 6 fra forberedelsen:

Betragt opladning af en kondensator gennem en modstand R:

V_f: Påtrykt spænding (DC)

vc: Øjebliksspænding over C

 V_i : Startspænding over C ($V_i = v_c(0)$)

Opstil en differentialligning for dette kredsløb og udled et udtryk for opladningstiden t_b for en kondensator fra startspændingen V_i til en given spænding V_b , når den påtrykte spænding er V_f .

$$t_b = CR \cdot ln \frac{V_f - V_i}{V_f - V_b}$$

...gruppe af kredsløb med 2 tilstande

Multivibratorer

...gruppe af kredsløb med 2 tilstande

Kredsløb med "digitale" funktioner

Astabil Fritløbende (firkantgenerator)

Monostabil One-shot

Bistabil Flip-Flop

Astabil multivibrator

Astabil multivibrator

Figur 12.16b med e⁺ indtegnet

"Latch"

Kredsløbet viser en "latch" og minder lidt om en flip-flop, og det findes også i den digitale verden. Har man eksempelvis fået en alarm fra en komparator ved at denne er gået høj, kan dette kredsløb bibeholde denne information, selv om alarmkredsløbet atter er slukket.

Eksempelvis kunne man få information om, at en temperatur i et kølerum **har været** overskredet om natten men er faldet tilbage til normalområdet.

Forklar i første omgang kredsløbets virkemåde ved at antage, at samtlige komponenter er ideelle, v_0 er i sin negative mætning samt $R_1 = R_2$.

Vurdér dernæst kredsløbet på næste side med angivne komponentværdier og en mindre men praktisk modifikation.

$$V^{+} = 15 V$$

$$R_1 = 1 \ k\Omega$$

$$R_2 = 9 k\Omega$$

 $R_3 = 10 k\Omega (ukritisk)$

D_z er en 6,8 V zenerdiode

 A_1 kan regnes ideel bortset fra:

$$V_{o SAT}^{+} = -V_{o SAT}^{-} = 14 V$$

Alle dioder kan regnes idelle bortset fra 0,7 V i lederetningen.

Bemærk at en zenerdiode D_Z er sat ind i serie med D_1 , samt at forholdet mellem modstandene R_1 og R_2 er ændret.

Dette giver samlet lidt mere "humane" værdier for "Set" og "Reset".