Understands Inverse Functions

APMA Faculty University of Virginia

August 2, 2024

1 / 20

Functions

A function is such that any input in the domain results in exactly one output in the range.

For example:

$$f(x) = 2x$$

$$f(x)=x^2$$

$$f(x)=e^x$$

$$f(x) = \sin x$$

Function Graphs

Functions can be graphed as y = f(x).

$$y = 2x$$

$$y = x^2$$

$$y = \sin x$$

$$y = e^x$$

3 / 20

Other Graphs

Not all graphs are graphs of functions.

$$x^2 + y^2 = 4$$

Inverting

What if we know the output of a function, and we want to know the input?

If $y = \frac{1}{2}$, then what is x = ?

5 / 20

One-to-One Functions

A function is one-to-one if

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

Some functions are one-to-one and some are not.

One-to-One?

Which functions are one-to-one?

Use the horizontal line test.

$$y = 2x$$

$$y = x^{2}$$

$$y = \sin x$$

$$y = e^x$$

7 / 20

Inverse Functions

One-to-One functions, f(x), have inverse functions, $f^{-1}(x)$.

Definition: $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

Be careful. $f^{-1}(x)$ is the inverse of f(x), while $(f(x))^{-1}$ is the reciprocal of f(x).

Determining Inverse Functions

- 1. Write y = f(x).
- 2. Interchange x and y.
- 3. Solve for y in terms of x, if possible.
- 4. Now, $y = f^{-1}(x)$.

Example: Find an equation for the inverse of $f(x) = \sqrt{x-5}$.

- 1. $y = \sqrt{x-5}$
- 2. $x = \sqrt{y-5}$
- 3. $x^2 = y 5$ $y = x^2 + 5$
- 4. $f^{-1}(x) = x^2 + 5$

9 / 20

Domain and Range

	Domain	Range
f(x)	А	В
$f^{-1}(x)$	В	А

For example:

	Domain	Range
$f(x) = \sqrt{x - 5}$	[5,∞)	$[0,\infty)$
$f^{-1}(x) = x^2 + 5$	$[0,\infty)$	$[5,\infty)$

10 / 20

Cancellation Equations

$$f^{-1}(f(x)) = x$$
 for every x in the domain of $f(x)$.

$$f(f^{-1}(x)) = x$$
 for every x in the domain of $f^{-1}(x)$.

For example:

$$(\sqrt{x-5})^2 + 5 = x$$
 for all x in $[5, \infty)$.

$$\sqrt{(x^2+5)-5} = x$$
 for all x in $[0,\infty)$.

11 / 20

Graphing Inverse Functions

The graph of $y = f^{-1}(x)$ is obtained by reflecting the graph of y = f(x) about the y = x line.

Slope

Slopes of corresponding points are reciprocals.

13 / 20

$\ln x$ and e^x

Cancellation Equations:

$$ln(e^x) = x$$
 for all x

$$e^{\ln x} = x \text{ for } x \in (0, \infty)$$

Example

Use Cancellation Equations to find the inverse function for $f(x) = \ln(x+2)$.

Solution:

$$y = \ln(x+2)$$
 (Original function)
 $x = \ln(y+2)$ (Interchange x and y .)
 $e^x = e^{\ln(y+2)}$ (Apply exponential function to both sides.)
 $e^x = y+2$ (Simplify.)
 $y = e^x - 2$ (Solve for y .)
 $f^{-1}(x) = e^x - 2$ (Solution)

15 / 20

Trigonometric Functions

The trigonometric functions are not one-to-one.

So if we wish to have an inverse function, we must restrict the domain of the trig function to a portion that is one-to-one.

Inverse of sin x

Restricted domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

Cancellation equations:

$$\sin(\sin^{-1}(x)) = x \text{ for } x \in [-1, 1]$$

 $\sin^{-1}(\sin(x)) = x \text{ for } x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

17 / 20

Inverse of cos x

Restricted domain $[0,\pi]$

Cancellation equations:

$$\cos(\cos^{-1}(x)) = x \text{ for } x \in [-1, 1]$$

 $\cos^{-1}(\cos(x)) = x \text{ for } x \in [0, \pi]$

Inverse of tan x

Restricted domain $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Cancellation equations:

$$\tan(\tan^{-1}(x)) = x \text{ for all } x.$$

$$\tan^{-1}(\tan(x)) = x \text{ for } x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

19 / 20

 $\sec x$, $\csc x$, $\cot x$

What are the restricted domains for $\sec x$, $\csc x$, and $\cot x$?

