Human Capital Accumulations in Economics

ShinHyuck Kang¹

Korea Labor Institute Project For ETRI Meeting

March 07, 2023

¹The views of this research are only author's one. Any error is mine.

MOTIVATION

- Human capital
 - Ben-Porath (1967, BP): Schooling, intercept/starting point
 - Learning-By-Doing (LBD): Accumulating during working periods, slope
- Literature: Has used BP or LBD for each research question
 - Huggett, Ventura and Yaron (2011, HVY), Kim (2020): BP to explore sources of life-cycle inequalities
 - Griffy (2021): BP with search frictions
 - Blandin (2018) and Blandin and Peterman (2019): Optimal taxation for each BP and LBD
- What We Have Learned from Literature
 - Endogenous human capital investment itself does matter for life-cycle economy — HVY, Kim (2020), Griffy (2021)
 - Optimal fiscal policy is affected by the way of human capital accumulation
 - Search friction matters: Griffy (2021)

MOTIVATION FOR THE PROJECT LAST YEAR

- Literature: Has studied really well using BP or LBD
 - However, it is worth to explore BP AND LBD
- In the real world, we have all: BP, LBD and search frictions
 - Under search frictions, it is natural to think of
 - LBD during employment
 - BP during unemployment
- Background
 - BP explains data relatively better than LBD
 - But as Jeong, Kim and Manovskii (2015) shows: LBD crucial + working periods >> schooling periods

RESEARCH QUESTIONS

- What if we consider all together, what are implications of sources of life-cycle inequalities and policies?
- That is, what policy implications would we have for each <u>BP</u> vs. <u>LBD</u> vs. <u>BP AND LBD</u>?

Model: Environment

- Time: Discrete(vs. Continuous) & Finite(vs. Infinite)
- Labor market
 - McCall type search friction & Indivisible labor (Full & Part-time work)
 - Working period: $j = 1, ..., J^R 1$. Retirement for $j = J^R, ..., J$
- Asset market: Incomplete. Only risk-free asset
- Agents
 - Ex-ante hetero: $(a_0, h_0, l_0) \sim \mathbb{N}(M, \Sigma)$ and age j
 - Ex-post hetero: Wealth (a), Human capital (h) and labor status (Emp. & Non-emp. & Ret.)
- Endogenous human capital
 - Employment: LBD $-h' = (1 \delta_h) h + l (h^{\phi_h} n^{\phi_n})$
 - Unemployment: BP $-h' = (1 \delta_h) h + \hat{l} (h^{\phi_h} s^{\phi'_s})$

VALUE FUNCTIONS: RETIREMENT

Retired agent whose age is j, national pension Ret and wealth a solves the following Bellman equation optimally:

$$V^{R}(a, Ret, j) = \max_{c, a'} \left\{ u(c) + \beta V^{R}(a', Ret, j+1) \right\}$$
 (1)

subject to

$$(1 + \tau_c) c + a' = Ret + (1 + r)a$$

VALUE FUNCTIONS: EMPLOYMENT

The employed worker with individual state $\Omega = (a, h, l, j)$ with the piece rate μ solves the following Bellman equation optimally:

$$V^{E}(\Omega,\mu) = \max_{c,a',n} \left\{ u(c,n) + \beta \left[(1-\theta_{j+1}) \left\{ \lambda_{e} \int_{\mu^{*}}^{\bar{\mu}} \left\{ V^{E}(\Omega',\mu') - V^{E}(\Omega',\mu) \right\} \right. \right. \\ \left. dF(\mu') + V^{E}(\Omega',\mu) \right\} + \theta_{j+1} V^{U}(\Omega',B') \right] \right\}$$

$$(2)$$

subject to

Budget Constraint:
$$(1+\tau_c)\,c+a'=(1-\tau_w)\,\mu h n+(1+r)a$$

Law of Motion for Human Capital: $h'=(1-\delta_h)h+l\left(h^{\phi_h}n^{\phi_n}\right)$
U.I Benefit formula: $B'=\min\{\max\{b\mu h n,\underline{b}\},\bar{b}\}$

where θ : job separation rate, λ_e : the probability of getting another job offer, $F(\mu')$: distribution function of job offer measured by the piece rate μ'

VALUE FUNCTIONS: UNEMPLOYMENT

The unemployed job seeker with individual state $\Omega = (a, h, l, j)$ with the U.I benefit B solves the following Bellman equation optimally:

$$V^{U}(\Omega, B) = \max_{c, a', s} \left\{ u(c, s) + \beta \left[\lambda_{u} \int_{\mu_{u}^{*}}^{\bar{\mu}} V^{E} \left\{ V^{E} \left(\Omega', \mu' \right) - \tilde{V}^{U} \left(\Omega', B'(B) \right) \right\} \right.$$
$$\left. dF(\mu') + \tilde{V}^{U} \left(\Omega', B'(B) \right) \right] \right\}$$
(3)

subject to

BUDGET CONSTRAINT:
$$(1 + \tau_c) c + a' = B + (1 + r)a$$

Law of Motion for Human Capital: $h'=(1-\delta_h)h+l\left(h^{\phi_h}s^{\phi_s}
ight)$

where

$$\tilde{V}^{U}(\Omega', B'(B)) = \gamma V^{U}(\Omega', \underline{b}) + (1 - \gamma) V^{U}(\Omega', B)$$

EXTERNAL CALIBRATION

External Calibration								
Parameter	Description	Value	Reference/Target					
σ	CRRA parameter	1.0000	Log utility					
ψ	Frisch elasticity	1.0000	Literature					
β	Time Discount Factor	0.9915	Quarterly frequency					
r	Risk-free asset	0.0086	3-Yr bond yield, Quarterly return					
\bar{n}_1	Full-Time working hours	0.4287	Survey report on labor conditions by employment type					
\bar{n}_2	Part-Time working hours	0.2257	Survey report on labor conditions by employment type					
m_a	Initial asset: Mean	0.4842	Kim (2020)					
σ_a	Initial asset: Std. Dev	0.6638	Kim (2020)					
τ_w	Labor income tax	0.1952						
$ au_c$	Value-added tax	0.1000						
λ_e	OJS job offer probability	0.5882	Griffy (2021)					
Ь	Replacement ratio of U.I benefit	0.6000	60% replacement ratio					
γ	Duration of U.I benefit	0.5400	Six-month					
$\frac{\underline{b}}{\overline{b}}$	Lower boundof U.I benefit		one-day lower bound 20, 230 won (needs to be fixed)					
\bar{b}	Upper boundof U.I benefit		one-day upper bound 110,000 won (needs to be fixed)					
b_{ret}	Replacement ratio of National Pension	0.3120	NP/60-64 male income					
ϕ	Return to investment	0.8000	Literature: $0.7 \sim 0.9$					
$\mathbb{E}\left(\log\mu\right)$	LN Job offer distribution: Mean	0.5500						
$\sigma(\log \mu)$	LN Job offer distribution: Mean	0.3150						

INTERNAL CALIBRATION

Internal Calibration								
λ_u	Job finding probability	0.9000	EAPS employment rate for each age					
$\{\theta_j\}_{j=1}^{J^R-1}$	Job separation rate		EAPS employment rate for each age					
δ_h	Human capital depreciation	0.0650	KLIPS earnings mean & variance					
m_h	Initial log human capital: Mean	4.3976	KLIPS earnings mean & variance					
σ_h	Initial log human capital: Std.Dev	0.3744	KLIPS earnings mean & variance					
m_l	Initial log learning ability: Mean	-1.1562	KLIPS earnings mean & variance					
σ_l	Initial log learning ability: Std.Dev	0.1091	KLIPS earnings mean & variance					
$\sigma_{a,h}$	Cov. b.w asset & human capital	0.1975	$\rho_{a,h} = 0.7946$					
$\sigma_{h,l}$	Cov. b.w human capital & learning ability	0.0299	$\rho_{h,l} = 0.7316$					
$\sigma_{a,l}$	Cov. b.w asset & learning ability	0.0414	$\rho_{a,l} = 0.5719$					
Calibration in Kim(2020)								
μ_z	Labor productivity shock: Mean	-0.0311	Implied HC depreciation: 0.0278					
m_h	Initial log human capital: Mean	4.299	KLIPS earnings mean & variance					
σ_h	Initial log human capital: Std.Dev	0.3610	KLIPS earnings mean & variance					
m_l	Initial log learning ability: Mean	-1.1050	KLIPS earnings mean & variance					
σ_l	Initial log learning ability: Std.Dev	0.1110	KLIPS earnings mean & variance					
$\sigma_{a,h}$	Cov. b.w asset & human capital		$\rho_{a,h} = 0.8420$					
$\sigma_{h,l}$	Cov. b.w human capital & learning ability		$\rho_{h,l} = 0.7460$					
$\sigma_{a,l}$	Cov. b.w asset & learning ability		$\rho_{a,l} = 0.5660$					

MODEL FIT: EMPLOYMENT RATE OVER THE LIFE-CYCLE

Figure: Data vs. Model: Emp rate

Model Fit: Earnings Mean ♂ Variance over the Life-cycle. Not Very Good

Figure: Data vs. Model: Mean

Figure: Data vs. Model: Variance

QUANTITATIVE EXERCISES: ROLE OF EACH INITIAL HETEROGENEITY

Role of Initial Condition & OJS in the Life-Cycle Inequality

Figure: Hetero vs. Non-hetero on income variance

QUANTITATIVE EXERCISES: IMPULSE RESPONSES

Figure: Effects of one-std.dev shock over the life-cycle

QUANTITATIVE EXERCISES: CHANGE OF INITIAL CONDITION ON LIFE-TIME WEALTH

	PV discounted value of life-time wealth	Average life-time wealth
$+1\sigma_h$	+14.9579%	+16.0733%
$+1\sigma_l$	+14.1025%	+19.4002%
$+1\sigma_a$	+0.3755%	+0.2740%

POLICY EXPERIMENTS

- Higher replacement ratio: $60 \rightarrow 72\% \ (\uparrow 20\%)$
- 2 Longer U.I benefit: $\gamma = 0.54 \rightarrow 0.27$
- Lump-sum transfer: Equally divide increment of higher replacement ratio above
- Higher lower bound of U.I. benefit: b_{min} +transfer

Policy Experiments on Consumption Inequalities

Figure: Policy Experiments on Consumption Inequalities

POLICY EXPERIMENTS ON CONSUMPTION LEVEL

Figure: Policy Experiments on Consumption Average

POLICY EXPERIMENTS

Policy Experiments on Life-Cycle Consumption								
	Benchmark model: BP&LBD		Counter-factual model: BP only					
	PV consumption:	PV consumption:	PV consumption:	PV consumption:				
	Mean	Variance	Mean	Variance				
Higher replacement ratio	-0.3798%	-2.7597%	-0.9743%	-5.4308%				
Longer duration	-0.9157%	+2.3344%	+0.9713%	-1.1802%				
Lump-sum transfer	-1.7648%	+0.4923%	+7.1746%	+2.4450%				
Higher lower bound	+0.0335%	+0.3075%	-0.4762%	-1.4936%				