EOARD

SPC - 98 - 4061

Lattice Boltzmann Models for Multicomponent Fluids

Contract No. F61775 - 98 - WE101

item #003 - Final Report

Delivery date: July 20, 1999

Principal investigator

Dr. Victor SOFONEA

Polytechnical University of Timişoara

Romania

DTIC QUALITY INSPECTED 4

Approved for Public Release
Distribution Unlimited

EOARD

SPC - 98 - 4061

Lattice Boltzmann Models for Multicomponent Fluids

Contract No. F61775 - 98 - WE101

item #003 - Final Report

Delivery date: July 20, 1999

Principal investigator

Dr. Victor SOFONEA

Polytechnical University of Timişoara

Romania

19990903 074

AQF99-11-2178

gathering and maintaining the data needed, a	and completing and reviewing the collection of ns for reducing this burden to Washington Hea 202-4302, and to the Office of Management and	information. Send comments rega adquarters Services, Directorate for Budget, Paperwork Reduction Proj	viewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this Information Operations and Reports, 1215 Jefferson lect (0704-0188), Washington, DC 20503.										
. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED													
	20 Jul 1999 Fir												
4. TITLE AND SUBTITLE	TITLE AND SUBTITLE 5. FUN												
Lattice Boltzmann Models for	r Multicomponent Fluids		F61775-98-WE101										
6. AUTHOR(S)													
Dr. Victor Sofonea													
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER										
Politehnica University of Tim Bd. Mihai Viteazul 1 Timisoara 1900 Romania	N/A												
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER										
EOARD PSC 802 BOX 14 FPO 09499-0200			SPC 98-4061										
11. SUPPLEMENTARY NOTES													
12a. DISTRIBUTION/AVAILABILITY ST	TATEMENT		12b. DISTRIBUTION CODE										
			A A										
Approved for public release;	distribution is unimited.		, ^										
13. ABSTRACT (Maximum 200 words)													
Boltzmann methods in the m geometry of which is not re benchmarking against exist component fluid flow in tw interactions will be added to	nodeling of complex (multicomponent) fluited to the thermal velocities of fluid ping Lattice Boltzmann models will be o spatial dimensions, followed by studentials.	uids. A two-dimensional Lattic particles. Comprehensive testir accomplished. Initial testing by of a two-component flow i en multiphase fluids. Two spe	tractor will investigate the utility of Lattice e Boltzmann model will be developed, the ng and analysis of the model, as well as will be accomplished by modeling one- in two dimensions. Finally, interparticle scific physical problems investigated: the rface tension on contact angle.										
		•											
			·										
·													
44 OUD FOT TERMS			LAS NUMBER OF PACES										
14. SUBJECT TERMS			15. NUMBER OF PAGES										
EOARD, Fluid Dynamics, La	ttice Boltzmann Methods, Computationa	I Mathematics	226 16. PRICE CODE N/A										
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19, SECURITY CLASSIFICAT OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT										
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL										
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102										

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Contents

1	Fini	te Difference Schemes for the Boltzmann Equation	L
	1.1	Introduction	1
	1.2		2
	1.3		4
	1.4	Interpolation procedures on the characteristics line	3
	1.5	Upwind scheme	9
	1.6	Lax - Friedrichs scheme)
	1.7	Space centered scheme	1
	1.8	Lax - Wendroff scheme	1
	1.9	Interpolation Supplemented Schemes	
	1.5	1.9.1 General Description	-
		1.9.2 Interpolation procedures on the $2D$ lattice	
	1.10	Numerical simulations	
	1.10	1.10.1 Computer code	
		1.10.2 Single Component Fluid	
		1.10.2 Single Component Fluid	
		1.10.5 Homogeneous I wo Component Fluid	,
2	Diff	usion Couple 45	5
	2.1	Description of the model	5
	2.2	Chapman - Enskog expansion	9
	2.3	Conservation equations	O
	2.4	Mass equations	1
	2.5	Equilibrium velocity \mathbf{u}'	3
	2.6	Momentum equation	
	$\frac{2.0}{2.7}$	Pure diffusion	
		 	
	2.8	Comparison with the theory of Shan and Doolen 57	

3	Sess	sile drop																			74
	3.1	Drop shape																			74
	3.2	Contact angl	le	•	•		•	•	•	•		•		•	•	•	•	•	•		75
Re	efere	nces																			90
A	ppen	dices																			93
A	wet	9 code																			93
В	dif9	code																			176
\mathbf{C}	sw	code																			209

Chapter 1

Finite Difference Schemes for the Boltzmann Equation

1.1 Introduction

In the intermediate report [1], Centered Space (CS) finite difference schemes were developed to solve the Lattice Boltzmann (LB) evolution equations for the distribution functions $f_i(\mathbf{r},t)$ of an one component fluid system, when the number of non-vanishing discrete velocities was N=6 (the so-called seven bit model) or N=8 (the so-called nine bit model):

$$f_{i}(\mathbf{r}, t + \delta t) \simeq f_{i}(\mathbf{r}, t) - \frac{\delta t}{\tau_{p}} \left[f_{i}(\mathbf{r}, t) - f_{i}^{eq}(\mathbf{r}, t) \right] - \delta t \, \mathbf{e}_{i} \cdot \nabla_{\mathbf{r}} f_{i}(\mathbf{r}, t) + \frac{\delta t}{k_{B}T} \, \mathbf{F}(\mathbf{r}, t) \cdot \left[\mathbf{e}_{i} - \mathbf{u}(\mathbf{r}, t) \right] f_{i}^{eq}(\mathbf{r}, t)$$

$$i = 0, 1, \dots N$$

$$(1.1)$$

In the above equation, as well as in the whole report to follow, there is no implicit summation over the index i. We will use further the implicit summation rule (i.e., summation over repeated indices) only for cartesian components denoted by Greek letters α , β , γ ..., while summation over other indices (including i) will be always explicited, when such operations are present.

The validity of the CS finite difference schemes was successfully tested for two kinds of 2D flows between parallel plates: Poisseuille flow and Couette flow. The correct velocity profiles in the stationary regime (the parabolic

one, for Poisseuille flow, and the linear one, for Couette flow), as well as the right viscosity value were recovered for N=6, as well as for N=8 [1].

Our early attempts to use the CS scheme to simulate the diffusion phenomenon in a two component system revealed an unstable behavior. When this scheme is used to get the time dependent solutions of the lattice Boltzmann equations (1.1), the probability functions $f_i(x,t)$ become negative very often, forcing the simulation code to be stopped. Although centered finite difference schemes for spatial derivatives arise in a natural way and thus, are easy to introduce, these schemes are known to be unconditionally unstable in accordance to the von Neumann stability analysis [2, 3, 4] applied to hyperbolic equations like the Lattice Boltzmann equations (1.1).

This chapter reports our attempts to find appropriate finite difference schemes for the Lattice Boltzmann equations. These schemes are introduced for the nine bit model using the characteristics curves of hyperbolic equations in one space dimension [4] and we show that all these schemes are equivalent to the former Lattice Gas Lattice Boltzmann (LGLB) scheme [1] when the Courant - Friedrichs - Lewy number CFL (to be defined further) equals unity. All these schemes are based on Lagrange interpolation procedures. Some considerations relative to the treatment of boundary lattice nodes are also introduced here.

1.2 Spatial derivatives on a square lattice

To solve Eqs (1.1) on a square lattice, we need a procedure to compute the following term at the point $\mathbf{r} = (x, y)$

$$\mathbf{e}_{i} \cdot \nabla_{\mathbf{r}} f_{i}(\mathbf{r}, t) = (\mathbf{e}_{i})_{\alpha} \partial_{\alpha} f_{i}(\mathbf{r}, t)$$

$$= (\mathbf{e}_{i})_{x} \partial_{x} f_{i}(x, y, t) + (\mathbf{e}_{i})_{y} \partial_{y} f_{i}(x, y, t)$$

$$(1.2)$$

(implicit summation over cartesian components expressed by Greek indices is always understood).

A possibility is to use the Centered Space (CS) finite difference scheme

$$\partial_x f_i(x, y, t) \simeq \frac{f_i(x + \delta x, y, t) - f_i(x - \delta x, y, t)}{2\delta x}$$
 (1.3)

where δx is the lattice spacing in the x direction. A similar expression holds also for the derivative in the y direction (∂_y) ; the lattice spacings are all

equal $(\delta x = \delta y)$ in the case of the square lattice. As mentioned before, this centered finite difference scheme was found to be inadequate for the simulation of diffusion phenomena in a two component system.

Another possibility is to use the First Order Upwind (FU) finite difference scheme [3]. This scheme takes into account the fact that information propagates along the vector \mathbf{e}_i and thus, one should consider also the sign of its components when writing the corresponding numerical scheme. For the x component, we have

$$\partial_x f_i(x, y, t) \simeq \begin{cases} \frac{f_i(x, y, t) - f_i(x - \delta_x, y, t)}{\delta x} &, & (\mathbf{e}_i)_x > 0\\ \frac{f_i(x + \delta x, y, t) - f_i(x, y, t)}{\delta x} &, & (\mathbf{e}_i)_x < 0 \end{cases}$$
(1.4)

A Second Order Upwind (SU) finite difference scheme may be also introduced [3]

$$\partial_{x} f_{i}(x, y, t) \simeq \begin{cases} \frac{-3f_{i}(x, y, t) + 4f_{i}(x + \delta_{x}, y, t) - f_{i}(x + 2\delta_{x}, y, t)}{2\delta x} \\ (\mathbf{e}_{i})_{x} > 0 \\ \frac{3f_{i}(x, y, t) - 4f_{i}(x - \delta_{x}, y, t) + f_{i}(x - 2\delta_{x}, y, t)}{2\delta x} \\ (\mathbf{e}_{i})_{x} < 0 \end{cases}$$
(1.5)

Although the FU scheme was found to be stable, it has the disadvantage of a lattice spacing dependence of the viscosity. This is a general feature of first order schemes (see Section 1.10). In the case of second order schemes (like CS and SU), no lattice spacing dependence of the viscosity is observed, but these schemes are not stable when dealing with sharp interfaces (see next chapter, where the use of these schemes to simulate a diffusion couple is discussed). Other schemes, which are mainly based on the characteristics curve and use an interpolation procedure, are described below.

1.3 Characteristics

We start from the differential form of the LB equations (1.1)

$$\partial_t f_i(\mathbf{r}, t) + \mathbf{e}_i \cdot \nabla_{\mathbf{r}} f_i(\mathbf{r}, t) = q_i(\mathbf{r}, t)$$

$$i = 0, 1, \dots N$$
(1.6)

where the source term is

$$q_{i}(\mathbf{r},t) = -\frac{1}{\tau_{p}} \left[f_{i}(\mathbf{r},t) - f_{i}^{eq}(\mathbf{r},t) \right] + \frac{1}{k_{B}T} \mathbf{F}(\mathbf{r},t) \cdot \left[\mathbf{e}_{i} - \mathbf{u}(\mathbf{r},t) \right] f_{i}^{eq}(\mathbf{r},t)$$

$$i = 0, 1, \dots N$$

$$(1.7)$$

The homogeneous part of Eqs. (1.6)

$$\frac{D}{Dt} f_i(\mathbf{r}, t) = \partial_t f_i(\mathbf{r}, t) + \mathbf{e}_i \cdot \nabla_{\mathbf{r}} f_i(\mathbf{r}, t) = 0$$
 (1.8)

has the solution

$$f_i(\mathbf{r}, t) = f_i(\mathbf{r}_0, t_0) = \text{constant}$$
 (1.9)

since the vectors \mathbf{e}_i are all constant. Consequently, for each $i=0,1,\ldots N$, the current point moves across a straight line (the characteristics line) which passes through the node \mathbf{r} of the lattice at the moment t and has the orientation of the vector \mathbf{e}_i . The formal solution of the inhomogeneous evolution equations (1.6) may be written as

$$f_{i}(\mathbf{r}, t + \delta t) = f_{i}(\mathbf{r} - \mathbf{e}_{i}\delta t, t) - \frac{1}{\tau_{p}} \int_{t}^{t + \delta t} \left[f_{i}(\mathbf{r}(t'), t') - f_{i}^{eq}(\mathbf{r}(t'), t') \right] dt'$$

$$+ \frac{1}{k_{B}T} \int_{\delta t}^{t + \delta t} \mathbf{F}(\mathbf{r}(t'), t) \cdot \left[\mathbf{e}_{i} - \mathbf{u}(\mathbf{r}(t'), t') \right] f_{i}^{eq}(\mathbf{r}(t'), t')$$

$$i = 0, 1, \dots N$$

$$(1.10)$$

where the integrals are calculated along the characteristics lines. At the initial moment t'=t, the current point is $\mathbf{r}(t')=\mathbf{r}-\mathbf{e}_i\delta t$ and thus, the

Figure 1.1: Velocity set in the nine bit (N = 8) LB model.

integrals in the equation above may be approximated using the rectangle formula to get

$$f_{i}(\mathbf{r}, t + \delta t) \simeq f_{i}(\mathbf{r} - \mathbf{e}_{i}\delta t, t) - \frac{\delta t}{\tau_{p}} \left[f_{i}(\mathbf{r} - \mathbf{e}_{i}\delta t, t) - f_{i}^{eq}(\mathbf{r} - \mathbf{e}_{i}\delta t, t) \right]$$

$$+ \frac{\delta t}{k_{B}T} \mathbf{F}(\mathbf{r} - \mathbf{e}_{i}\delta t, t) \cdot \left[\mathbf{e}_{i} - \mathbf{u}(\mathbf{r} - \mathbf{e}_{i}\delta t, t) \right] f_{i}^{eq}(\mathbf{r} - \mathbf{e}_{i}\delta t, t)$$

$$i = 0, 1, \dots N$$

$$(1.11)$$

This equation provides the key for the *characteristics* – *based* finite difference schemes to be developed further. Eqs. (1.11) are the expression of the well known Lagrange representation in classical fluid mechanics, where the evolution of a particle on its trajectory is described by the total time derivative.

When using the nine bit LGLB scheme on a square lattice, the characteristics lines always pass through the lattice nodes at any time step. These lines are associated to each velocity speed \mathbf{e}_i in Figure 1.1. For further discussion,

Figure 1.2: Lattice points along the characteristics line.

we will refer to one of these characteristics lines (which corresponds to any of the eight velocities \mathbf{e}_i in Figure 1.1). We may choose a one dimensional reference system whose positive direction is orientated along the speed \mathbf{e}_i and we represent the current points situated along this line as in figure 1.2. In this figure, the current point at the moment t is denoted by j, the next point on the characteristics line (which becomes the current point at the moment $t+\delta t$) is denoted j+1, while the preceding one is denoted j-1. We should remark the fact that the point j (which is the current point on the characteristics line at the moment t) always refers to a lattice node, but the points j-1 and j+1 are superposed to lattice nodes only when using the LGLB scheme, as seen in figure 1.3. This figure shows the current point on the characteristics line, at different time steps, in the X-t plane, when the LGLB scheme is used.

When δx is the spacing between the latice nodess on the reference axis X of the characteristics line (note that δx may be equal to l or to $l\sqrt{2}$, where

Figure 1.3: Current points (o) on the characteristics line, in the LGLB model.

Figure 1.4: Current points (\circ) on the characteristics line, in the Finite Difference LB model (CFL < 1).

l is the side length of the elementary square lattice cell) we have

$$\delta x = x_j - x_{j-1} = x_{j+1} - x_j \tag{1.12}$$

In the LGLB model, where particles are considered to propagate between lattice nodes during one time step, we have

$$\delta x = c\delta t \tag{1.13}$$

where c is the magnitude of the propagation speed c ($c \in \{e_i\}$, i = 1, 2 ... N) and δt is the time step.

When the lattice spacing δx does no more equal the product $c\delta t$, the current nodes j-1 and j+1 on the characteristics line passing through the lattice node x_j (i.e., node j) are no more superposed to lattice nodes. These current points lie now between the lattice node and the neighbors x_{j-1} or x_{j+1} , respectively. This general case is shown in figure 1.4 and is characterized by the Courant - Friedrichs - Lewy number

$$\mathsf{CFL} = \frac{c\delta t}{\delta x} \tag{1.14}$$

When CFL = 1, the former LGLB case is recovered. In accordance to the general theory of hyperbolic equations [2, 3, 4], a necessary (but not sufficient) condition to be satisfied by the finite difference scheme to be stable is

$$\mathsf{CFL} \le 1 \tag{1.15}$$

1.4 Interpolation procedures on the characteristics line

The Lattice Boltzmann equations (1.11) may be solved using an iterative procedure. The value $f_i(\mathbf{r} - \mathbf{e}_i \delta t, t)$ of the distribution function (as well as the value $\mathbf{u}(\mathbf{r} - \mathbf{e}_i \delta t, t)$ of the local velocity) may be calculated using an interpolation procedure along the characteristics line which passes through the lattice node \mathbf{r} at time $t + \delta t$. The current point at the moment t is $\mathbf{r} - \mathbf{e}_i \delta t$, which corresponds to the point x in figure 1.5. If we know the values of the distribution function at at the moment t in two lattice nodes x_1 and x_2 , we may use the first order Lagrange interpolation formula to evaluate the distribution function in the point x

$$f_i(x,t) = \frac{x - x_2}{x_1 - x_2} f_i(x_1,t) + \frac{x - x_1}{x_2 - x_1} f_i(x_2,t)$$
 (1.16)

The second order Lagrange interpolation formula may be used when three values of the distribution functions are known

$$f_{i}(x,t) = \frac{(x-x_{2})(x-x_{3})}{(x_{1}-x_{2})(x_{1}-x_{3})} f_{i}(x_{1},t) + \frac{(x-x_{1})(x-x_{3})}{(x_{2}-x_{1})(x_{2}-x_{3})} f_{i}(x_{2},t) + \frac{(x-x_{1})(x-x_{2})}{(x_{3}-x_{1})(x_{3}-x_{2})} f_{i}(x_{3},t)$$

$$(1.17)$$

Figure 1.5: Current points (o) on the characteristics line.

Following finite difference schemes may be introduced, depending on the choice of the interpolation formula, as well as on the number and the location of the interpolation points:

- 1. Upwind scheme: the first order interpolation formula (1.16) is used with $x_1 \equiv x_{j-1}$ and $x_2 \equiv x_j$.
- 2. Lax Friedrichs scheme: the first order interpolation formula (1.16) is used with $x_1 \equiv x_{j-1}$ and $x_2 \equiv x_{j+1}$.
- 3. Lax Wendroff scheme: the second order interpolation formula (1.17) is used with $x_1 \equiv x_{j-1}$, $x_2 \equiv x_j$ and $x_3 \equiv x_{j+1}$.

These finite difference schemes, as well as the space centered scheme are discussed below.

1.5 Upwind scheme

The upwind scheme is recovered when using the first order interpolation formula (1.16) with

$$x = x_j - c\delta t$$

$$x_1 = x_{j-1}$$

$$x_2 = x_j$$
(1.18)

In this case, the interpolation formula (1.16) gives

$$f_i(x_j - c\delta t, t) = f_i(x_j, t) - \mathsf{CFL} \left[f_i(x_j, t) - f_i(x_{j-1}, t) \right]$$
 (1.19)

A particular attention should be given to boundary nodes. When the vector \mathbf{e}_i is pointing outwards the lattice domain, the interpolation formula (1.19) may be used. But the interpolation formula should be somewhat different when th vector \mathbf{e}_i points into the lattice domain: if x_j is a node located on the boundary, there is no corresponding x_{j-1} node in this case. The node x_{j+1} may be used instead, and we have the following extrapolation formula in this case:

$$f_i(x_j - c\delta t, t) = f_i(x_j, t) - \text{CFL} [f_i(x_{j+1}, t) - f_i(x_j, t)]$$
 (1.20)

After interpolating all distribution functions f_i , i = 0, 1 ... N in the current point $\mathbf{r} - \mathbf{e}_i \delta t$, the local velocity $\mathbf{u}(\mathbf{r} - \mathbf{e}_i \delta t, t)$ should be evaluated and introduced in Eq. (1.11) which allows to calculate the new values of the distribution functions in all lattice nodes.

Since the values of the velocity components are prescribed on the boundaries, an interpolation procedure becomes necessary to evaluate also the velocity components at the current point $\mathbf{r} - \mathbf{e}_i \delta t$ when the node \mathbf{r} is located on the boundary. Interpolation and extrapolation formulae similar to Eqs. (1.19) and (1.20) give the value of the velocity $\mathbf{u}(x_j - c\delta t, t)$, which allows the calculation of the equilibrium distribution function $f_i^{eq}(x_j - c\delta t, t)$ in Eq. (1.11).

A very important feature of the upwind finite difference scheme (1.19) is the recovery of the former Lattice Gas like Latice Boltzmann (LGLB) model when CFL = 1. The upwind scheme says that the information (i.e., the distribution function f_i) available at the moment t at the current point $x_j - c\delta t$ is processed there as a result of collisions (through the relaxation term mainly characterized by the physical relaxation time τ_p , as well as the action of some force F), and thereafter arrives in node x_j at the moment $t + \delta t$. But, when CFL = 1, the initial current point $x_j - c\delta t$ is identical to the lattice node x_{j-1} , in accordance to Eq. (1.19). This feature belongs also to the Lax-Friedrichs and the Lax - Wendroff schemes to be discussed below. In this respect, all these characteristics curve derived finite difference schemes provide a natural generalisation of the former LGLB model and allow to separate the lattice spacing δx from the particles free path $c\delta t$. This separation process provides the keystone to the LB simulation of multicomponent particle systems.

1.6 Lax - Friedrichs scheme

The Lax - Friedrichs scheme [2] is recovered when using the first order interpolation formula (1.16) with the following interpolation points

$$x = x_j - c\delta t$$

$$x_1 = x_{j-1}$$

$$x_2 = x_{j+1}$$

$$(1.21)$$

The interpolation formula (1.16) gives, at the moment t

$$f_i(x_j - c\delta t, t) = \frac{f_i(x_{j+1}, t) + f_i(x_{j-1}, t)}{2}$$

- CFL
$$\frac{f_i(x_{j+1},t) - f_i(x_{j-1},t)}{2}$$
 (1.22)

At the boundary nodes, the Lax - Friedrichs scheme cannot be used, but the upwind scheme may be accepted instead.

1.7 Space centered scheme

If we approximate

$$\frac{f_i(x_{j+1},t) + f_i(x_{j-1},t)}{2} \approx f_i(x_j,t)$$
 (1.23)

in the Lax Friedrichs scheme (1.22), we get the usual space centered scheme

$$f_i(x_j - c\delta t, t) = f_i(x_j, t) - CFL \frac{f_i(x_{j+1}, t) - f_i(x_{j-1}, t)}{2}$$
 (1.24)

This scheme is known the be unconditionally unstable [2, 3]. We really get negative values of the distribution functions when using this scheme, after a certain number of time steps, and this situation forces the LB code to be stopped. The number of time steps before the space centered computer code crashes is dependent on the CFL number, being larger when this number becomes smaller. Using a smaller Courant - Friedrichs - Lewy number for a given lattice spacing δx is unconvenient since this means a smaller time step δt , which generates a huge increase of the number of necessary time steps to be performed in order to recover the system evolution during a certain time interval.

1.8 Lax - Wendroff scheme

The second order Lagrange interpolation formula (1.17) and the following interpolation points

$$x = x_j - c\delta t$$

$$x_1 = x_{j-1}$$

$$x_2 = x_j$$

$$x_3 = x_{j+1}$$
(1.25)

give the Lax - Wendroff finite difference scheme

$$f_{i}(x_{j} - c\delta t, t) = \frac{\mathsf{CFL}(1 + \mathsf{CFL})}{2} f(x_{j-1}, t)$$

$$- (\mathsf{CFL} - 1)(\mathsf{CFL} + 1) f_{i}(x_{j}, t)$$

$$- \frac{\mathsf{CFL}(1 - \mathsf{CFL})}{2} f(x_{j+1}, t) \tag{1.26}$$

As for the Lax - Friedrichs scheme, the Lax - Wendroff scheme (1.26) cannot be applied in the boundary nodes. One possibility is to use there the upwind schemes (1.19) and (1.20) for outgoing and ingoing speed vectors \mathbf{e}_i , respectively. Another possibility is to preserve the second order interpolation degree and to use the following expressions

$$f_{i}(x_{j} - c\delta t, t) = \frac{\mathsf{CFL}(\mathsf{CFL} - 1)}{2} f_{i}(x_{j-2}, t)$$

$$+ \mathsf{CFL}(2 - \mathsf{CFL}) f_{i}(x_{j-1}, t) \qquad (1.27)$$

$$+ \frac{(1 - \mathsf{CFL})(2 - \mathsf{CFL})}{2} f_{i}(x_{j}, t)$$

$$f_{i}(x_{j} - c\delta t, t) = \frac{(1 + \mathsf{CFL})(2 + \mathsf{CFL})}{2} f_{i}(x_{j}, t)$$

$$- \mathsf{CFL}(2 + \mathsf{CFL}) f_{i}(x_{j+1}, t)$$

$$- \frac{\mathsf{CFL}(1 + \mathsf{CFL})}{2} f_{i}(x_{j+2}, t) \qquad (1.28)$$

for the outgoing and ingoing speed vectors \mathbf{e}_i , respectively. Note that, in these expressions, the node x_j is always on the lattice border, while the positive direction (from node x_j to node x_{j+1} is the same as the direction of the speed vector \mathbf{e}_i .

1.9 Interpolation Supplemented Schemes

1.9.1 General Description

One can see that the procedure described by Eq. (1.11) implies the following computation steps:

- 1. Lagrange interpolation to find the distribution functions, as well as the local velocities in the points $\mathbf{r} \mathbf{e}_i \delta t$; these points are not lattice nodes and are all different for i = 1, 2, ... N
- 2. collisions processing and the addition of the effect of external forces
- 3. propagation from the point $\mathbf{r} \mathbf{e}_i \delta t$ to the lattice node \mathbf{r}

For each lattice node \mathbf{r} , one has to perform $N \times (N+1)$ interpolations since there are N directions \mathbf{e}_i and N+1 distribution functions to be interpolated. The function f_0 should also be interpolated since its value in the point $\mathbf{r} - \mathbf{e}_i \delta t$ is needed to calculate the value of the local speed $\mathbf{u}(\mathbf{r} - \mathbf{e}_i \delta t, t)$; the local speed $\mathbf{u}(\mathbf{r} - \mathbf{e}_i \delta t, t)$ is necessary to calculate the equilibrium distribution function $f_i(\mathbf{r} - \mathbf{e}_i \delta t, t)$.

An equivalent procedure was already proposed in the LB litterature [5, 6, 7, 8]. This *Interpolation Supplemented Lattice Boltzmann* (ISLB) scheme (as named by their authors) has the same steps as described above, but their order is changed:

- 1. the collisions and the action of external forces are processed in the lattice nodes ${\bf r}$
- 2. the propagation step transports the result towards the points $\mathbf{r} + \mathbf{e}_i \delta t$
- 3. the interpolation step recovers the new distribution functions in the lattice node ${\bf r}$ at time t + δt

To avoid confusion with another scheme to be described below, we will denote this original ISLB scheme as ISLB-CP (ISLB Collision – Propagation) since the collision step is done before the propagation step. Figure 1.6 recalls the main characteristics of this ISLB-CP scheme. In this figure, lattice nodes are denoted by $0, 1, \ldots 8$. Let $\mathbf{r}_0, \mathbf{r}_1, \ldots \mathbf{r}_8$ the position vectors of these lattice nodes. After processing the effect of collisions (as well as the effect

Figure 1.6: The ISLB-CP scheme.

of external forces) in the original lattice nodes, particle distribution functions are propagated along their characteristics lines during the time step δt and arrive in the displaced nodes $0', 1', \dots 8'$, whose position vectors are $\mathbf{r}'_0, \mathbf{r}'_1, \dots \mathbf{r}'_8$ (figure 1.6 shows the case when the displacement is made along the \mathbf{e}_5 direction). Thus, for each vector $\mathbf{e}_i, i = 1, 2, \dots 8$, the collision procedure, followed by the propagation procedure, transforms the initial set of distribution functions $\{f_i(\mathbf{r}_n, t)\}, n = 0, 1 \dots 8$ into the set $\{f_i(\mathbf{r}'_n, t + \delta t)\}, n' = 0', 1', \dots 8'$. A 2D interpolation procedure (to be described further) allows to recover the value of $f_i(\mathbf{r}_0, t + \delta t)$ [5, 6, 7] and thus, the automaton algorithm may be applied again for the next time step, and so on.

It is possible to imagine an ISLB scheme where propagation is done first, followed by collisions processing. This scheme is presented in figure 1.7. If we start from the Lattice Boltzmann Equations (1.11) we may write

$$\mathbf{x} = \mathbf{r} - \mathbf{e}_i \delta t$$

$$f_i(\mathbf{x}, t) = f_i(\mathbf{r}, t) - \delta t \, \mathbf{e}_i \cdot \nabla_{\mathbf{r}} f_i(\mathbf{r}, t)$$
(1.29)

and thus

$$f_i(\mathbf{r},t+\delta t) \simeq f_i(\mathbf{x},t) - \frac{\delta t}{\tau_p} [f_i(\mathbf{x},t) - f_i^{eq}(\mathbf{x},t)] +$$

Figure 1.7: The ISLB-PC scheme.

$$\frac{\delta t}{k_B T} \mathbf{F}(\mathbf{x}, t) \cdot [\mathbf{e}_i - \mathbf{u}(\mathbf{x}, t)] f_i^{eq}(\mathbf{x}, t)$$

$$i = 0, 1, \dots N$$
(1.30)

In this scheme, which we will denote as ISLB-PC (since the Propagation step is done before the Collision step), an interpolation procedure in two dimensions is used to determine the value of $f_i(\mathbf{x},t)$ in Eq. (1.30). To find the value of $f_i(\mathbf{x},t)$ when one has the values $\{f_i(\mathbf{r}_n,t)\}$, $n=0,1\ldots 8$, we may use the same interpolation procedure as for the ISLB-CP scheme, which gives $f_i(\mathbf{r}_0,t+\delta t)$ from the set $\{f_i(\mathbf{r}'_n,t+\delta t)\}$, $n'=0',1',\ldots 8'$. The ISLB-PC approach may be viewed as being equivalent to the early Finite Difference schemes developed in [1], but replaces the calculation of local derivatives through an interpolation procedure, while maintaining the propagation of information along the characteristics line.

The ISLB-CP and ISLB-PC schemes use biquadratic interpolation to calculate the values of the distribution functions in the central node (denoted by 0 in Figures 1.6 and 1.7). This is not the unique possibility. In fact, the authors who introduced the original ISLB scheme [5, 6, 7, 8] reccommmended the use of an upwind biquadratic interpolation procedure. This procedure is explained briefly in Figure 1.8, where the position of the point x is shown

Figure 1.8: The UISLB-PC scheme.

(b)

in two cases, when the characteristics lines are directed along the velocity vectors \mathbf{e}_5 and \mathbf{e}_1 , respectively (the other velocity directions may be considered in a similar way). In these Upwind ISLB-PC (UISLB-PC) cases, the distribution functions are interpolated in node x and thereafter propagated on the corresponding characteristics lines towards the lattice nodes 5 (Figure 1.8a) and 1 (Figure 1.8b). An Upwind ISLB-CP (UISLB-CP) scheme may be introduced in the same way as the UISLB-PC scheme described here.

The Iterpolation Supplemented Lattice Boltzmann schemes were originally developed to deal with non - uniform grids. To our best knowledge, in the LB litterature there is no attempt to use ISLB schemes to multiple component systems whose particles carry different masses. When developing the ISLB-PC scheme, their authors started from the early LGLB philosophy, which considers that distribution functions are redistributed at each lattice node because of collisions and are moved thereafter in the direction of their corresponding velocity vectors. When compared to this philosophy, the present discussion of Finite Difference Schemes for the Boltzmann Equation, which is based on the characteristics lines of the Boltzmann equation, may be another step towards a more rigorous approach to Lattice Boltzmann models. Because the Lattice Boltzmann equation is a hyperbolic equation, the characteristics curves (which are straight lines since the velocity vectors \mathbf{e}_i are constant [4]) may provide the background for error analysis or stability investigations.

1.9.2 Interpolation procedures on the 2D lattice

Both ISLB-CP and ISLB-PC schemes need an interpolation procedure to evaluate the value of the distribution function $f_i(\mathbf{x},t)$ at the point $\mathbf{x}=(x,y)=\mathbf{r}_0-\mathbf{e}_i\delta t$ in figure 1.7, when the corresponding values $\{f_i(\mathbf{r}_n,t)\}$, $n=0,1,\ldots 8$ of the distribution function are known. As pointed in [8], second order interpolation is necessary in order to avoid spurious dependence of the fluid viscosity on the lattice size.

If we introduce a cartesian coordinate system centered in the node $\mathbf{r}_0 = (x_0, y_0)$ in figure 1.7, such that the X axis points along the vector \mathbf{e}_1 and we use the fact that we deal with a square lattice, we may define the non-dimensional (natural) coordinates [9]

$$\xi = \frac{x - x_0}{\delta x} \in [-1, +1]$$

$$\eta = \frac{y - y_0}{\delta x} \in [-1, +1] \tag{1.31}$$

To simplify the notation, in this subsection we will write $f(\mathbf{x})$ instead of $f_i(\mathbf{x},t)$, and $f(\mathbf{r}_n)$, $n=0,1,\ldots 8$ instead of $f_i(\mathbf{r}_n,t)$. The interpolation procedure gives

$$f(\mathbf{x}) = \sum_{n=0}^{n=8} N_n f(\mathbf{r}_n)$$
 (1.32)

where the weight coefficients N_n are given in table 1.1 as the product of two second order Lagrange interpolation coefficients (one for each axis), which are defined as follows (the argument θ stands for ξ or η)

$$L_{-}^{2}(\theta) = \frac{[\theta - 0][\theta - 1]}{[(-1) - 0][(-1) - 1]}$$

$$L_{0}^{2}(\theta) = \frac{[\theta - (-1)][\theta - 1]}{[0 - (-1)][0 - 1]}$$

$$L_{+}^{2}(\theta) = \frac{[\theta - (-1)][\theta - 1]}{[1 - (-1)][1 - 0]}$$
(1.33)

The biquadratic interpolation procedure described above may be applied to any lattice node which is not situated on the boundary (i.e., bulk nodes). Bulk nodes \mathbf{r}_0 have all the eight neighbors \mathbf{r}_n , $n=0,1,\ldots 8$. When the node \mathbf{r}_0 is located on the lattice boundary, some of these neighbors are missing, e.g., as shown in figure 1.9, which refers to four kinds of boundaries (walls): bottom (B), top (T), left (L) and right (R), Such situations are encountered when one deals with flow between horizontal or parallel plates (we will not discuss here the case when the fluid system is confined into a box – this case needs to consider also the presence of corner nodes).

For wall nodes, Eq. (1.32) changes to

$$f(\mathbf{x}) = \sum_{n \in \mathcal{N}_W} N_n f(\mathbf{x}_n)$$
 (1.34)

where the sum is computed with respect to all indices in the set \mathcal{N}_W , $W \in \{B, T, L, R\}$. The elements of the sets \mathcal{N}_B are (see figure 1.9):

$$\mathcal{N}_B \equiv \{0, 1, 2, 3, 5, 6\}$$

Figure 1.9: Lattice nodes on the walls: (B) – bottom wall; (T) – top wall; (L) – left wall; (R) – right wall.

Table 1.1: Interpolation weights for the bulk lattice nodes.

N_0 N_1 N_2 N_3 N_4	$L_0^2(\xi) L_0^2(\eta)$ $L_+^2(\xi) L_0^2(\eta)$ $L_0^2(\xi) L_+^2(\eta)$ $L^2(\xi) L_0^2(\eta)$ $L_0^2(\xi) L^2(\eta)$
-	$L^2(\xi)L^2_0(\eta)$
N_5	$L^2_+(\xi)L^2_+(\eta)$
$N_6 \ N_7$	$L_{-}^{2}(\xi) L_{+}^{2}(\eta)$ $L_{-}^{2}(\xi) L_{-}^{2}(\eta)$
N_8	$L^2_+(\xi)L^2(\eta)$

$$\mathcal{N}_{T} \equiv \{0, 1, 3, 4, 7, 8\}$$
 $\mathcal{N}_{L} \equiv \{0, 1, 2, 4, 5, 8\}$
 $\mathcal{N}_{R} \equiv \{0, 2, 3, 4, 6, 7\}$

We may use linear Lagrange interpolation for the Y directions when dealing with horizontal walls, or for the X direction when dealing with vertical walls. To this purpose, we define the corresponding coefficients

$$L_0^{1-}(\theta) = \frac{\theta - (-1)}{0 - (-1)}$$

$$L_-^{1-}(\theta) = \frac{\theta - 0}{(-1) - 0}$$

$$L_0^{1+}(\theta) = \frac{\theta - 1}{0 - 1}$$

$$L_+^{1-}(\theta) = \frac{\theta - 0}{1 - 0}$$
(1.35)

while the interpolation weights N_n are given in table 1.2, for each boundary.

Table 1.2: Interpolation weights for the boundary lattice nodes.

hattam	N7	$L_0^2(\xi)L_0^{1+}(\eta)$
bottom	N_0	
	N_1	$L^2_+(\xi) L^{1+}_0(\eta)$
	N_2	$L_0^2(\xi) L_+^{1+}(\eta)$
	N_3	$L^2(\xi) L^{1+}_0(\eta)$
	N_5	$L^2_+(\xi)L^{1+}_+(\eta)$
	N_6	$L^2(\xi) L^{1+}_+(\eta)$
top	N_0	$L^2_0(\xi)L^{1-}_0(\eta)$
	N_1	$L^2_+(\xi)L^{1-}_0(\eta)$
	N_3	$L^2(\xi) L^{1-}_0(\eta)$
	N_4	$L^2_+(\xi) L^{1-}(\eta)$
	N_7	$L_{+}^{2}(\xi) L_{-}^{1}(\eta)$ $L_{-}^{2}(\xi) L_{-}^{1-}(\eta)$
	N_8	$L_{0}^{2}(\xi) L_{-}^{1}(\eta)$ $L_{0}^{2}(\xi) L_{-}^{1-}(\eta)$
		$L_0(\zeta)L(\eta)$
left	N_0	$L_0^0(\xi)L_0^2(\eta)$
	N_1	$L^{1+}_+(\xi)L^2_0(\eta)$
	N_2	$L_0^{1+}(\xi)L_+^2(\eta)$
	N_4	$L_0^{1+}(\xi) L^2(\eta)$
	N_5	$L_{+}^{1+}(\xi) L_{+}^{2}(\eta)$
	N_8	$L_{+}^{1+}(\xi) L_{-}^{2}(\eta)$
right	N_0	$L_0^{1-}(\xi)L_0^2(\eta)$
Ü	N_{2}	$L_0^{1-}(\xi) L_+^2(\eta)$
	N_3	$L^{1-}(\xi)L^2_0(\eta)$
	N_4	$L_0^{1-}(\xi) L^2(\eta)$
	N_6	$L_0^{1-}(\xi) L^2(\eta)$ $L^{1-}(\xi) L_+^2(\eta)$
	N_7	$L_{-}^{1-}(\xi) L_{+}^{1}(\eta)$ $L_{-}^{1-}(\xi) L_{-}^{2}(\eta)$
	4 7	D_ (\$) D_(11)

We should underline the fact that the ISLB schemes (ISLB-CP, ISLB-PC, UISLB-CP and UISLB-PC), which use second order (biquadratic) 2D interpolation procedures, are different from the previously introduced Upwind, Lax - Friedrichs, Space Centered and Lax - Wendroff schemes, which use 1D interpolation. We want to point that other 2D interpolation schemes may be also considered, besides the ISLB schemes (i.e., biquadratic interpolation procedure adopted here for bulk nodes, associated with a linear - quadratic procedure for boundary nodes). For example, the bilinear Lagrange interpolation, as well as the linear or the quadratic elements in the "serendipity family" [9] may provide some alternatives.

1.10 Numerical simulations

1.10.1 Computer code

In the remaining section of this chapter, we are reporting a few significant simulation results which were obtained using the explicit Finite Difference Lattice Boltzmann (FDLB) schemes introduced above. These results refer to 2D Poisseuille flow and were mainly done to see the behavior and to estimate the errors and performances of each scheme we investigated.

To reduce the programming effort, we restricted ourserves to the nine bit model and used a square lattice. The computer code is given in Appendix A. All the necessary simulation parameters (number of lattice nodes in the X and Y direction, number of cycles to be performed, numerical scheme to be used, boundaries, initial configuration, particle masses, local number densities, wall velocities and so on) are introduced in the input data file wet9.input. The input parameter key_scheme controls the numerical scheme to be used during the simulation, as shown in Table 1.3. For further details concerning the meaning of input parameters in the file wet9.input please refer to the comment lines in the source code.

The other chapters of our present report will be dedicated to the physics of diffusion, surface tension and wetting phenomena, as it can be recovered using the computer codes based on the explicit numerical schemes we developed.

1.10.2 Single Component Fluid

We made different computer runs to study the influence of the parameters δx , δt and τ_p on the kinematic viscosity ν . Initially, the flow of a single component fluid within a 2D channel (Poisseuile flow) was simulated using the Upwind, Lax - Friedrichs and Lax - Wendroff schemes. A 5×25 lattice was used, with the same forcing term. The value of the viscosity was determined after fitting the parabolic velocity profile across the channel, as done in our intermediate report [1].

Figure 1.10 shows the influence of the lattice spacing δx on the kinematic viscosity ν , when the other parameters are constant ($\tau_p = 10^{-8}$ s, $\delta t = 10^{-9}$ s, particle mass m=1 amu, temperature T=300 K, force $F=10^{-22}$ N). When using the first order schemes (Upwind, Lax - Friedrichs or FU), the viscosity is always found to increase when the lattice spacing δx increases. In particular, when using the Upwind or the FU scheme, a linear dependence of

Table 1.3: Possible values of the input parameter key_scheme, which controls the numerical scheme to be used during computer simulations.

key_scheme	Numerical Scheme	Section
0	Upwind (U)	1.5
1	Lax – Friedrichs (LF)	1.6
$\overset{\mathtt{-}}{2}$	Space Centered (SC)	1.7
3	Lax – Wendroff (LW)	1.8
7	ISLB – CP	1.9
8	UISLB – CP	1.9
9	ISLB – PC	1.9
10	UISLB – PC	1.9
11	Linear Serendip Elements	1.9
12	Bilinear Interpolation	1.9
13	First Order Upwind (FU)	1.2
14	Centered Space (CS)	1.2
15	Second Order Upwind (SU)	1.2

Figure 1.10: Influence of the lattice spacing δx on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme; (c) - Lax - Wendroff scheme; (d) - FU and CS schemes.

Figure 1.10: (continued) Influence of the lattice spacing δx on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme; (c) - Lax - Wendroff scheme; (d) - FU and CS schemes.

the viscosity on the lattice spacing δx is found when this parameter becomes large enough. The kinematic viscosity ν is found to be independent on the lattice spacing only when using second order schemes (Lax - Wendroff or CS). Similar results were reported when using the ISLB scheme [5, 6]. A rigorous analysis of an 1D ISLB model [8], revealed that one should use a second order interpolation formula in order to avoid a spurious (lattice spacing dependent) viscosity term in the Navier Stokes equation.

Despite the recovery of the correct (lattice spacing independent) value of the viscosity, the Lax Wendroff scheme in our computer code is found to become unstable when the Courant - Friedrichs - Lewy number exceeds a certain value ($CFL \simeq 0.04$). This is why the values $\nu = \nu(\delta x)$ in figure 1.10c are available only for $\delta x \geq 7 \times 10^{-5}$ m. This behavior may be associated to the necessity to keep a small value of the Courant - Friedrichs - Lewy number CFL, in order to preserve the validity of the first order series expansion (1.29), which is essential to all interpolation based FDLB scheme. A similar problem was observed when using the CS scheme (Figure 1.10d) but, in this case, the lattice spacing δx should be larger than 1.5×10^{-5} m (which means $CFL \simeq 0.2$) in order to avoid the negative values of the equilibrium distribution functions.

Figure 1.11 shows the influence of the time step δt on the kinematic viscosity, when $\delta x = 10^{-4}$ m and the other parameters were unchanged. When using the Upwind, Lax - Friedrichs or Lax - Wendroff schemes, the viscosity ν is always found to decrease when increasing the time step. Only in the case of the Lax - Wendroff scheme, the dependence $\nu = \nu(\delta t)$ is a linear one, in accordance to the general theory of the LGLB model [1, 10, 11]

$$\nu = \frac{2\tau_p - \delta t}{2} \chi c^2 = \frac{2\tau_p - \delta t}{2} \frac{k_B T}{m}$$
 (1.36)

The viscosity is found to be independent on the time step when using the Finite Difference Schemes (FU and CS). This is in accordance to the viscosity formula derived previously in our intermediate report [1]

$$\nu = \tau_p \chi c^2 = \frac{\tau_p}{m} k_B T \tag{1.37}$$

Figure 1.12 shows the influence of the relaxation time τ_p , when $\delta x = 10^{-4}$ m and $\delta t = 10^{-9}$ s. Eq. (1.36), which predicts a linear dependence of the viscosity on the relaxation time τ_p , is found again to be valid for the Lax - Wendroff scheme, while Eq. (1.37) is well verified in the case of the Centered

Figure 1.11: Influence of the time step δt on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme; (c) - Lax - Wendroff scheme; (d) - FU and CS schemes.

Figure 1.11: (continued) Influence of the time step δt on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme; (c) - Lax - Wendroff scheme; (d) - FU and CS schemes.

Figure 1.12: Influence of the relaxation time τ_p on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme; (c) - Lax - Wendroff scheme.

Figure 1.12: (continued) Influence of the relaxation time τ_p on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme; (c) - Lax - Wendroff scheme; (d) - FU and CS schemes.

Figure 1.13: Dependence of the kinematic viscosity ν on the inverse of the mass (m^{-1}) of the particles in the fluid system, as determined by fitting the parabolic velocity profile in a 2D channel (FU and CS schemes).

Space (CS) scheme. Even if the Upwind and the First Order Upwind (FU) schemes give also a linear dependence $\nu = \nu(\tau_p)$, the values of the viscosity are not within the range predicted by Eqs. (1.36) and (1.37), respectively.

Although the Lax - Wendroff scheme gives the correct dependence of the viscosity on the simulation parameters δx , δt and τ_p , we found it to be unstable when dealing with a homogeneous two component fluid system. It is this reason why we turned later to other schemes, which proved good stability for such systems.

To check the FU and CS schemes further, we performed several runs with $\delta x = 0.0001$ m, $\delta t = 10^{-9}$ s, $\tau_p = 10^{-8}$ s and different values of the mass m of the particles. The results are shown in Figure 1.13. A linear dependence of the kinematic viscosity on the inverse of the mass (m^{-1}) , which is predicted by Eq. (1.37) is found only in the case of the CS scheme.

Table 1.4 and Figure (1.14) show the dependence of the kinematic viscosity ν on the lattice spacing δx when centered ISLB schemes are used. Two values of the time step δt were adopted, while the relaxation time was maintained constant ($\tau_p = 1 \times 10^{-8}$ s). One may see that table 1.4 has a few missing entries in the column $\delta t = 2 \times 10^{-9}$ s. These missing en-

Table 1.4: Influence of the lattice spacing δx on the viscosity (ISLB schemes).

	δx	ν	ν
	[s]	$[m^2/s]$	$[m^2/s]$
		$\delta t = 1 \times 10^{-9} \text{ s}$	$\delta t = 2 \times 10^{-9} \text{ s}$
ISLB-CP	0.3×10^{-5}	0.020865	
	$0.5 imes 10^{-5}$	0.022264	
	$0.6 imes 10^{-5}$	0.022575	0.021173
	$0.7 imes 10^{-5}$	0.022785	0.021425
	$1.0 imes 10^{-5}$	0.023132	0.021829
	$2.0 imes 10^{-5}$	0.023457	0.022198
	$3.0 imes 10^{-5}$	0.023532	0.022284
	$4.0 imes 10^{-5}$	0.023560	0.022317
	$5.0 imes 10^{-5}$	0.023573	0.022332
	10.0×10^{-5}	0.023592	0.022354
ISLB-PC	0.3×10^{-5}	0.020059	
1022 1 0	0.5×10^{-5}	0.021926	
	0.6×10^{-5}	0.022332	0.020750
	0.7×10^{-5}	0.022603	0.021105
	1.0×10^{-5}	0.023093	0.021665
	$2.0 imes 10^{-5}$	0.023433	0.022155
	3.0×10^{-5}	0.023521	0.022265
	4.0×10^{-5}	0.023554	0.022306
	5.0×10^{-5}	0.023577	0.022326
	10.0×10^{-5}	0.023592	0.022352

Figure 1.14: Influence of the lattice spacing δx on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel, for two values of the time step δt (1 × 10⁻⁹ s and 2 × 10⁻⁹: (a) - ISLB-CP scheme; (b) - ISLB-PC scheme.

tries correspond to CFL > 1, when the numerical scheme is always unstable and distribution functions become negative. For both $\delta t=1\times 10^{-9}$ s and $\delta t=2\times 10^{-9}$ s, the kinematic viscosity increases when increasing the lattice spacing δx (i.e., when decreasing the Courant - Friedrichs - Lewy number CFL below unity). When the lattice spacing is large enough to achieve CFL < 0.1 (approximatively), the kinematic viscosity becomes very close to the theoretical value calculated in accordance to Eq. (1.36). This feature is seen clearly in Figure 1.14, where the curves $\nu=\nu(\delta x)$ exhibit a saturation behavior. Thus, the error in the determination of the viscosity becomes negligible (less that one percent in our case) when the first order series expansion (1.29) becomes accurate enough.

In order to see the influence of the time step δt on the viscosity, we performed several computer runs with the ISLB schemes, using a fixed value of the lattice spacing δx . This value was choosen to be $\delta x = 3.0 \times 10^{-5}$ m, which lies within the interval where the approximation (1.29) is acceptable. The results, which are reproduced in Table 1.5, as well as in Figure (1.15, show a linear dependence $\nu = \nu(\delta t)$, as expected in accordance to Eq. (evisco). This equation predicts also a linear dependence of the kinematic viscosity ν with respect to the relaxation time τ_p , which is seen in Figure 1.16, for $\delta x = 3.0 \times 10^{-5}$ m and $\delta_t = 1.0 \times 10^{-9}$ s

The numerical experiments described in this subsection revealed that only the CS scheme, as well as the ISLB-CP and ISLB-PC schemes give the correct dependence of the fluid viscosity on the simulation parameters, for a single component fluid.

Table 1.5: Influence of the time step δt on the kinematic viscosity ν (ISLB schemes).

	δ <i>t</i> [s]	u [m ² /s]
ISLB-CP	0.5×10^{-9} 1.0×10^{-9} 1.5×10^{-9} 2.0×10^{-9} 2.5×10^{-9} 3.0×10^{-9}	0.024165 0.235323 0.022906 0.022284 0.021665 0.021047
ISLB-PC	0.5×10^{-9} 1.0×10^{-9} 1.5×10^{-9} 2.0×10^{-9} 2.5×10^{-9} 3.0×10^{-9}	0.024159 0.023521 0.022891 0.022265 0.021642 0.021022

Figure 1.15: Influence of the time step δt on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel: (a) - ISLB-CP scheme; (b) - ISLB-PC scheme.

Figure 1.16: Influence of the relaxation time τ_p on the kinematic viscosity ν , as determined by fitting the parabolic velocity profile in a 2D channel, for a fixed of the time step δt (1 × 10⁻⁹ s): (a) - ISLB-CP scheme; (b) - ISLB-PC scheme.

1.10.3 Homogeneous Two Component Fluid

We consider a homogeneous two component fluid system subjected to Poisseuille flow, whose composition may be varied. The system's composition may be described using the mass composition

$$\omega = \frac{\rho_1}{\rho_1 + \rho_2} = \frac{\rho_1}{\rho} \tag{1.38}$$

where ρ_1 and ρ_2 are the mass densities of the two components and $\rho = \rho_1 + \rho_2$ is the mass density of the whole system. Another possibility to account for the composition of the homogeneous system is to use the mole fraction

$$x = \frac{n_1}{n_1 + n_2} = \frac{n_1}{n} \tag{1.39}$$

where n_1 and n_2 are the number of moles belonging to each component and $n = n_1 + n_2$ is the total number of moles in the system.

In order to study the composition dependence of the system's viscosity, we kept a constant number of moles n=1 in the system during our simulations, while the number of moles belonging to the first component was varied from 0 to 1, with the increment 0.1. The system's viscosity was determined after fitting the parabolic velocity profile established across the channel, as done for the single component fluid.

The dynamic viscosity η of the system should equal the sum of the dynamic viscosities η_1 and η_2 of the two components

$$\eta = \eta_1 + \eta_2 \tag{1.40}$$

Since the dynamic viscosity η of a fluid is expressed as the product of its mass density ρ and kinematic viscosity ν

$$\eta = \rho \nu \tag{1.41}$$

we have, for the two component fluid system

$$\rho\nu = (\rho_1 + \rho_2)\nu = \rho_1\nu_1 + \rho_2\nu_2 \tag{1.42}$$

This gives a linear dependence of the kinematic viscosity ν of the whole system on the mass composition ω

$$\nu = \frac{\rho_1}{\rho} \nu_1 + \frac{\rho_2}{\rho} \nu_2 = \omega (\nu_1 - \nu_2) + \nu_2 \tag{1.43}$$

Thus, the slope of the straight line $\nu = \nu(\omega)$ is determined solely by the difference between the kinematic viscosities of each pure component. This slope is positive when $\nu_1 > \nu_2$ and negative otherwise.

Because the kinematic viscosity ν has a qualitatively different dependence on the relaxation time τ_p when using the Upwind or the Lax - Friedrichs schemes (see Figure 1.12), also the composition dependence of the viscosity of a binary system is found to have a different behavior when using these schemes. This is seen in Figure 1.17, where we show the results obtained for a binary system whose particles have the same mass, but the relaxation times τ_p are different for each component. Although the linear interpolation schemes (Upwind and Lax - Friedrichs schemes) do not give the correct dependence of the kinematic viscosity (1.36), the mass concentration dependence of the system viscosity is always linear, as predicted by Eq. (1.43) and shown in Figure 1.18.

Figures 1.19 and 1.20 show some results obtained with the ISLB-CP scheme. Similar graphs were obtained using the ISLB-PC scheme. The correct dependence of the viscosity of the whole system on the mass composition, as well as the other simulation parameters (masses m_1 and m_2 of the particles belonfing to each component, time step δt as well as relaxation times τ_1 and τ_2 of each component), is always recovered.

We should point here that the former LGLB model cannot account for results similar to those shown in figure 1.19 for a homogeneous two component system. In the LGLB model, all particles share the same thermal velocity, even if their masses are different. Since the viscosity in the LGLB model is mass independent, the use of this model to simulate a two component fluid system will always give a composition independent viscosity. This erroneous behavior of the LGLB model is limiting seriously its application to multicomponent fluid systems.

To compare the CS and the ISLB-CP schemes, we used the lattice spacing $\delta x = 0.0001$ m and the time step $\delta t = 10^{-9}$ s to study the composition dependence of the viscosity of a very particular two component system. The two components of this system had the masses $m_1 = 1$ amu, $m_2 = 2$ amu and the relaxation times $\tau_1 = 1 \times 10^{-8}$ s, $\tau_2 = 2 \times 10^{-8}$ s, respectively. In accordance to the viscosity formula (1.37), the viscosities of the two component fluids are identical when we use the CS scheme, since, for this particular system, we have

$$\frac{\tau_1}{m_1} = \frac{\tau_2}{m_2} \tag{1.44}$$

Figure 1.17: Composition dependence of the kinematic viscosity ν of a homogeneous two component fluid: (a) - Upwind scheme; (b) - Lax - Friedrichs scheme. The two components have the same mass (1 amu) but the relaxation times are different ($\tau_1 = 10^{-8}$ s and $\tau_2 = 2 \times 10^{-8}$ s).

Figure 1.18: Composition dependence of the kinematic viscosity ν of a homogeneous two component fluid (Upwind scheme). The two components have different masses (expressed in amu) and/or relaxation times (expressed in s). Curves were been obtained for $m_1=1, m_2=0.5, \tau_1=1\times 10^{-8}, \tau_2=0.5\times 10^{-8}$, (upper curve), $m_1=1, m_2=0.5, \tau_1=1\times 10^{-8}, \tau_2=1\times 10^{-8}$, (second curve), $m_1=1, m_2=2, \tau_1=1\times 10^{-8}, \tau_2=1\times 10^{-8}$, (third curve), $m_1=1, m_2=2, \tau_1=1\times 10^{-8}, \tau_2=2\times 10^{-8}$, (bottom curve).

Figure 1.19: Composition dependence of the kinematic viscosity ν of a homogeneous two component fluid (ISLB-CP scheme). The two components have different masses (expressed in amu) and the same relaxation times (expressed in s). Curves were been obtained for $m_1=1, m_2=0.5, \tau_1=1\times 10^{-8}, \tau_2=1\times 10^{-8},$ (upper curve) and $m_1=1, m_2=2, \tau_1=1\times 10^{-8}, \tau_2=1\times 10^{-8},$ (lower curve), respectively.

Figure 1.20: Composition dependence of the kinematic viscosity ν of a homogeneous two component fluid (ISLB-CP scheme). Curves (from top to bottom) were been obtained for (masses are expressed in amu, while relaxation times are expressed in seconds): $m_1 = 1, m_2 = 1, \tau_1 = 1 \times 10^{-8}, \tau_2 = 2 \times 10^{-8}, m_1 = 1, m_2 = 0.5, \tau_1 = 1 \times 10^{-8}, \tau_2 = 1 \times 10^{-8}, m_1 = 1, m_2 = 2, \tau 1 = 1 \times 10^{-8}, \tau 2 = 2 \times 10^{-8}, m_1 = 1, m_2 = 1, \tau 1 = 1 \times 10^{-8}, \tau 2 = 0.5 \times 10^{-8}, m_1 = 1, m_2 = 2, \tau_1 = 1 \times 10^{-8}, \tau_2 = 2 \times 10^{-8}.$

Figure 1.21: Composition dependence of the kinematic viscosity ν of a homogeneous two component fluid (ISLB-CP and CS schemes). Curves were been obtained for $m_1 = 1$ amu, $m_2 = 2$ amu, $\tau_1 = 1 \times 10^{-8}$ s, $\tau_2 = 2 \times 10^{-8}$ s.

When we use the ISLB-CP scheme (as well as the ISLB-PC scheme), the viscosities of the two fluid components are no more equal since

$$\frac{2\tau_1 - \delta t}{m_1} \neq \frac{2\tau_2 - \delta t}{m_2} \tag{1.45}$$

Thus, the viscosity of the particular homogeneous two component system mentioned above is composition independent when the CS scheme is used, while it does not have this property when the ISLB schemes (ISPB-CP or ISLB-PC) are used instead. Figure 1.21 shows the computer results.

Chapter 2

Diffusion Couple

2.1 Description of the model

We consider a two component system whose particles carry different masses denoted m_{σ} , $\sigma=1$, 2. The system is described by two distribution functions sets $\{f_i^{\sigma,N}(\mathbf{r},t)\}$, $\sigma=1$, 2; $i=0,1\ldots N$, defined on a 2D regular lattice. The distribution function $f_i^{\sigma,N}(\mathbf{r},t)$ gives the probability to find in node \mathbf{r} of the lattice, at time t, a particle of mass m_{σ} having the velocity $\mathbf{e}_i^{\sigma,N}$, $i=0,1\ldots N$. As discussed previously [1], the underlying lattice may be a square one, while the velocity space may be restricted to one of the two 2D discrete velocity sets $\{\mathbf{e}_i^{\sigma,N}\}$ widely used in LB simulations, which correspond to N=6 or N=8. These velocity sets define the so-called seven bit LB model (N=6)

$$\mathbf{e}_{0}^{\sigma,6} = 0$$

$$\mathbf{e}_{i}^{\sigma,6} \equiv \left(e_{i1}^{\sigma,6}, e_{i2}^{\sigma,6}\right) = \left[\cos\frac{2\pi(i-1)}{6}, \sin\frac{2\pi(i-1)}{6}\right] c_{\sigma,6}$$

$$i = 1, \dots 6$$
(2.1)

or the nine bit model (N = 8)

$$\mathbf{e}_{0}^{\sigma,8} = 0$$
 (2.2)
 $\mathbf{e}_{i}^{\sigma,8} = \left[\cos\frac{\pi(i-1)}{2}, \sin\frac{\pi(i-1)}{2}\right] c_{\sigma,8}, \quad i = 1, \dots 4$

$$\mathbf{e}_{i}^{\sigma,8} = \sqrt{2} \left[\cos \left(\frac{\pi}{4} + \frac{\pi(i-5)}{2} \right), \sin \left(\frac{\pi}{4} + \frac{\pi(i-5)}{2} \right) \right] c_{\sigma,8}$$
 $i = 5, \dots 8$

The "thermal" velocities $c_{\sigma,N}$, $N \in \{6,8\}$ are defined by

$$c_{\sigma,N} = \sqrt{\frac{k_B T}{m_\sigma \chi_N}} \tag{2.3}$$

where

$$\chi_N = \begin{cases} \frac{1}{4} & , & N = 6 \\ \frac{1}{3} & , & N = 8 \end{cases}$$
 (2.4)

In the absence of external forces, the distribution functions are supposed to satisfy the Boltzmann equation with the Bhatnagar - Gross - Krook collision term $(\partial_t = \partial/\partial t, \partial_\alpha = \partial/\partial x_\alpha, \alpha = 1, 2)$

$$\partial_t f_i^{\sigma,N}(\mathbf{r},t) + e_{i\alpha}^{\sigma,N} \partial_{\alpha} f_i^{\sigma,N}(\mathbf{r},t) = -\frac{1}{\tau_{\sigma}} \left[f_i^{\sigma,N}(\mathbf{r},t) - f_i^{\sigma,N,eq}(\mathbf{r},t) \right]$$

$$\sigma = 1, 2 \quad \text{and} \quad i = 0, 1, \dots N$$
(2.5)

and therefore evolve in accordance to the Finite Difference Lattice Boltzmann (FDLB) equations

$$f_{i}^{\sigma,N}(\mathbf{r},t+\delta t) \simeq f_{i}^{\sigma,N}(\mathbf{r},t) - \delta t \,\mathbf{e}_{i}^{\sigma,N} \cdot \nabla_{\mathbf{r}} f_{i}^{\sigma,N}(\mathbf{r},t)$$

$$- \frac{\delta t}{\tau_{\sigma}} \left[f_{i}^{\sigma,N}(\mathbf{r},t) - f_{i}^{\sigma,N,eq}(\mathbf{r},t) \right]$$

$$\sigma = 1, 2 \quad \text{and} \quad i = 0, 1, \dots N$$
 (2.6)

where τ_{σ} , $\sigma=1,2$ are physical relaxation times and $f_{i}^{\sigma,N,eq}(\mathbf{r},t)$ are the equilibrium distribution functions.

The local number densities are defined by

$$n_{\sigma}(\mathbf{r},t) = \sum_{i=0}^{N} f_{i}^{\sigma,N}(\mathbf{r},t) = \sum_{i=0}^{N} f_{i}^{\sigma,N,eq}(\mathbf{r},t)$$
 (2.7)

while the local density and the local velocity of each component are

$$\rho_{\sigma}(\mathbf{r},t) = m_{\sigma}n_{\sigma}(\mathbf{r},t) \tag{2.8}$$

$$\mathbf{u}_{\sigma}(\mathbf{r},t) = \frac{1}{n_{\sigma}(\mathbf{r},t)} \sum_{i=1}^{N} \mathbf{e}_{i}^{\sigma,N} f_{i}^{\sigma,N}(\mathbf{r},t)$$
 (2.9)

The mass averaged (barycentric) velocity is defined by

$$\mathbf{u} = \frac{m_1 n_1 \mathbf{u}_1 + m_2 n_2 \mathbf{u}_2}{m_1 n_1 + m_2 n_2} = \frac{\sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} \mathbf{u}_{\sigma}}{\sum_{\sigma=1}^{\sigma=2} \rho_{\sigma}}$$
(2.10)

The mass flux \mathbf{j}_{σ} of the component σ [12, 13] is defined with respect to the barycentric velocity

$$\mathbf{j}_{\sigma} = rho_{\sigma} \left(\mathbf{u}_{\sigma} - \mathbf{u} \right) \tag{2.11}$$

As usual in LB models, the equilibrium density functions are expressed as power series in the components of the local equilibrium velocity, $\mathbf{u}^{\sigma,N,eq}$

$$f_{i}^{\sigma,N,eq} = w_{i}^{N} n_{\sigma}(\mathbf{r},t)$$

$$\times \left[1 + \frac{\mathbf{e}_{i}^{\sigma,N} \cdot \mathbf{u}^{\sigma,N,eq}}{\chi_{N} c_{\sigma,N}^{2}} + \frac{(\mathbf{e}_{i}^{\sigma,N} \cdot \mathbf{u}^{\sigma,N,eq})^{2}}{2\chi_{N} c_{\sigma,N}^{4}} - \frac{(\mathbf{u}^{\sigma,N,eq})^{2}}{2\chi_{N} c_{\sigma,N}^{2}} \right]$$

$$(2.12)$$

where the weight factors w_i^N are

$$w_i^6 = \begin{cases} \frac{1}{2} & , & i = 0\\ \frac{1}{12} & , & i = 1, \dots, 6 \end{cases}$$
 (2.13)

for the seven bit model, and

$$w_i^8 = \begin{cases} \frac{4}{9} & , & i = 0\\ \frac{1}{9} & , & i = 1, \dots 4\\ \frac{1}{36} & , & i = 5, \dots, 8 \end{cases}$$
 (2.14)

for the nine bit model.

Since the elements of the velocity sets $\{\mathbf{e}_i^{\sigma,N}\}$ satisfy

$$\sum_{i} e_{i\alpha}^{\sigma,N} = 0$$

$$\sum_{i} w_{i}^{N} e_{i\alpha}^{\sigma,N} e_{i\beta}^{\sigma,N} = \chi_{\sigma} c_{\sigma,N}^{2} \delta_{\alpha\beta}$$

$$\sum_{i} w_{i}^{N} e_{i\alpha}^{\sigma,N} e_{i\beta}^{\sigma,N} e_{i\gamma}^{\sigma,N} = 0$$

$$\sum_{i} w_{i}^{\sigma,N} e_{i\alpha}^{\sigma,N} e_{i\beta}^{\sigma,N} e_{i\gamma}^{\sigma,N} e_{i\delta}^{\sigma,N} = \chi_{\sigma}^{2} c_{\sigma,N}^{4} (\delta_{\alpha\beta} \delta_{\gamma\delta} + \delta_{\gamma\beta} \delta_{\alpha\delta} + \delta_{\delta\beta} \delta_{\gamma\alpha})$$

$$\sum_{i} w_{i}^{\sigma,N} e_{i\alpha}^{\sigma,N} e_{i\beta}^{\sigma,N} e_{i\gamma}^{\sigma,N} e_{i\delta}^{\sigma,N} = \chi_{\sigma}^{2} c_{\sigma,N}^{4} (\delta_{\alpha\beta} \delta_{\gamma\delta} + \delta_{\gamma\beta} \delta_{\alpha\delta} + \delta_{\delta\beta} \delta_{\gamma\alpha})$$

following sums are easily computed

$$\sum_{i=0}^{i=\sigma} f_i^{\sigma,N,eq} = n_{\sigma} \tag{2.16}$$

$$\sum_{i=0}^{i=\sigma} e_{i\alpha}^{\sigma,N} f_i^{\sigma,N,eq} = n_{\sigma}(\mathbf{r},t) u_{\alpha}^{\sigma,N,eq}$$
(2.17)

$$\sum_{i=0}^{i=\sigma} e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma}, f_{i}^{\sigma,N,eq} = n_{\sigma} \left[\chi_{\sigma} c_{\sigma}^{2} \delta_{\alpha\beta} + u_{\alpha} u_{\beta} \right]$$
 (2.18)

$$\sum_{i=0}^{i=\sigma} e_{i\alpha}^{\sigma,N} e_{i\beta}^{\sigma,N} e_{i\gamma}^{\sigma,N} f_i^{\sigma,N,eq} = \chi_{\sigma} c_{\sigma,N}^2 n_{\sigma} (\delta_{\alpha\beta} u_{\gamma} + \delta_{\alpha\gamma} u_{\beta} + \delta_{\beta\gamma} u_{\alpha})$$
 (2.19)

As discussed previously [1], the macroscopic behavior of a single component fluid system is independent of the discretization of the phase space (i.e., independent of the number of elements N of the discrete velocity set $\{e_i^{\sigma,N}\}$ used in the FDLB model). In the case of a two component system, we will consider the same model (seven bit of nine bit, i.e., the same N) for both components. The choice N=6 or N=8 is only a technical detail related to the FDLB computer code and has no influence on the results at the macroscopic scale. To reduce the number of indices in the following formulae in this chapter (as well as in the subsequent chapters of this report), we will discard the index N. Consequently, we will write

$$\partial_t f_i^{\sigma}(\mathbf{r},t) + e_{i\alpha}^{\sigma} \partial_{\alpha} f_i^{\sigma}(\mathbf{r},t) = -\frac{1}{\tau_{\sigma}} \left[f_i^{\sigma}(\mathbf{r},t) - f_i^{\sigma,eq}(\mathbf{r},t) \right]$$

$$\sigma = 1, 2$$
 and $i = 0, 1, \dots N$ (2.20)

instead of Eq. (2.5),

$$f_i^{\sigma,eq} = w_i n_{\sigma}(\mathbf{r},t) \left[1 + \frac{\mathbf{e}_i^{\sigma} \cdot \mathbf{u}^{\sigma,eq}}{\chi_{\sigma} c_{\sigma}^2} + \frac{(\mathbf{e}_i^{\sigma} \cdot \mathbf{u}^{\sigma,eq})^2}{2\chi_{\sigma}^2 c_{\sigma}^4} - \frac{(\mathbf{u}^{\sigma,eq})^2}{2\chi_{\sigma} c_{\sigma}^2} \right]$$
(2.21)

instead of Eq. (2.13), and so on.

2.2 Chapman - Enskog expansion

The distribution functions are usually expanded as power series in the Knudsen number ε

 $f_i^{\sigma} = f_i^{\sigma(0)} + \varepsilon f_i^{\sigma(1)} + \varepsilon^2 f_i^{\sigma(2)} + \dots$ (2.22)

while two corresponding time scales and one length scale are introduced when computing time and space derivatives

$$\partial_t \equiv \varepsilon \partial_{t_1} + \varepsilon^2 \partial_{t_2} \tag{2.23}$$

$$\partial_{\alpha} \equiv \varepsilon \partial_{\alpha} \tag{2.24}$$

After introducing the Chapman - Enskog expansion (2.22), as well as the corresponding expansions (2.23) and (2.24) of the time and space derivatives in the Boltzmann equation (2.20)

$$\left(\varepsilon\partial_{t_{1}} + \varepsilon^{2}\partial_{t_{2}}\right)\left[f_{i}^{\sigma(0)} + \varepsilon f_{i}^{\sigma(1)} + \varepsilon^{2} f_{i}^{\sigma(2)} + \ldots\right] + \\ \varepsilon e_{i\beta}^{\sigma}\partial_{\beta}\left[f_{i}^{\sigma(0)} + \varepsilon f_{i}^{\sigma(1)} + \varepsilon^{2} f_{i}^{\sigma(2)} + \ldots\right] = \\ -\frac{1}{\tau_{\sigma}}\left[f_{i}^{\sigma(0)} + \varepsilon f_{i}^{\sigma(1)} + \varepsilon^{2} f_{i}^{\sigma(2)} + \ldots - f_{i}^{\sigma,eq}\right]$$
(2.25)

we can separate the zero-th, first and second order Boltzmann equations with respect to the Knudsen number ε

$$0 = -\frac{1}{\tau_{\sigma}} \left[f_i^{\sigma(0)} - f_i^{\sigma,eq} \right] \quad (2.26)$$

$$\partial_{t_1} f_i^{\sigma(0)} + \partial_{\beta} f_i^{\sigma(0)} e_{i\beta}^{\sigma} = -\frac{1}{\tau_{\sigma}} f_i^{\sigma(1)}$$
 (2.27)

$$\partial_{t_2} f_i^{\sigma(0)} + \partial_{t_1} f_i^{\sigma(1)} + \partial_{\beta} f_i^{\sigma(1)} e_{i\beta}^{\sigma} = -\frac{1}{\tau_{\sigma}} f_i^{\sigma(2)}$$
 (2.28)

From the zero-th order Boltzmann equation (2.26), we get, for any $\sigma \in \{1,2\}$ and $i=0,1\ldots N$

 $f_i^{\sigma(0)} = f_i^{\sigma,eq} \tag{2.29}$

This condition ensures also the validity of the zero-th order mass and momentum equations (2.32) and (2.35), which will be discussed in the next section.

Taking into account the expression (2.7) of the local number density n_{σ} and the series expansion (2.22), we get

$$\sum_{i=0}^{i=N} f_i^{\sigma(l)} = 0 \qquad \forall l \ge 1 \tag{2.30}$$

As usual in many Lattice Boltzmann models for multicomponent fluids [13, 14, 15, 16, 17], we assume that all components have the same equilibrium velocity in the absence of external forces and long range interactions

$$u_{\alpha}^{\sigma,eq} \equiv u_{\alpha}' \quad \forall \sigma = 1,2 \quad \text{and} \quad \alpha = 1,2$$
 (2.31)

Consequently, the equilibrium distribution functions $f_i^{\sigma,eq} \equiv f_i^{\sigma(0)}$ are expressed as series expansions (2.21) with respect to the components u'_{α} of this equilibrium velocity. At this stage, we are not interested in the procedure which should provide the means to compute the values of the components u'_{α} ; this procedure will be discussed later.

2.3 Conservation equations

The zero-th, first and second order mass conservation equations for each component $\sigma = 1$, 2 are recovered from Eqs. (2.26 – 2.28) after summation with respect to i (multiplication by m_{σ} is omitted)

$$-\frac{1}{\tau_{\sigma}} \sum_{i=0}^{i=N} \left[f_i^{\sigma(0)} - f_i^{\sigma,eq} \right] = 0$$
 (2.32)

$$\partial_{t_1} \sum_{i=0}^{i=N} f_i^{\sigma(0)} + \partial_{\beta} \sum_{i=0}^{i=N} f_i^{\sigma(0)} e_{i\beta}^{\sigma} = -\frac{1}{\tau_{\sigma}} \sum_{i=0}^{i=N} f_i^{\sigma(1)} (2.33)$$

$$\partial_{t_2} \sum_{i=0}^{i=N} f_i^{\sigma(0)} + \partial_{t_1} \sum_{i=0}^{i=N} f_i^{\sigma(1)} + \partial_{\beta} \sum_{i=0}^{i=N} f_i^{\sigma(1)} e_{i\beta}^{\sigma} = -\frac{1}{\tau_{\sigma}} \sum_{i=0}^{i=N} f_i^{\sigma(2)} (2.34)$$

The zero-th, first and second order momentum conservation equations are also recovered from Eqs. (2.26 – 2.28) after multiplication with $m_{\sigma}e_{i\alpha}^{\sigma}$ and summation with respect to i and σ

$$-\sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma}}{\tau_{\sigma}} \sum_{i=0}^{i=N} \left[f_{i}^{\sigma(0)} - f_{i}^{\sigma,eq} \right] e_{i\alpha}^{\sigma} = 0 \quad (2.35)$$

$$\partial_{t_1} \sum_{\sigma=1}^{\sigma=2} m_{\sigma} \sum_{i=0}^{i=N} f_i^{\sigma(0)} e_{i\alpha}^{\sigma} + \partial_{\beta} \sum_{\sigma=1}^{\sigma=2} m_{\sigma} \sum_{i=0}^{i=N} f_i^{\sigma(0)} e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} =$$

$$- \sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma}}{\tau_{\sigma}} \sum_{i=0}^{i=N} f_i^{\sigma(1)} e_{i\alpha}^{\sigma}$$

$$(2.36)$$

$$\partial_{t_2} \, \sum_{\sigma=1}^{\sigma=2} \, m_\sigma \, \sum_{i=0}^{i=N} \, f_i^{\sigma(0)} e_{i\alpha}^\sigma \, + \, \partial_{t_1} \, \sum_{\sigma=1}^{\sigma=2} \, m_\sigma \, \sum_{i=0}^{i=N} \, f_i^{\sigma(1)} e_{i\alpha}^\sigma \ \, + \,$$

$$\partial_{\beta} \sum_{\sigma=1}^{\sigma=2} m_{\sigma} \sum_{i=0}^{i=N} f_{i}^{\sigma(1)} e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} = -\sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma}}{\tau_{\sigma}} \sum_{i=0}^{i=N} f_{i}^{\sigma(2)} e_{i\alpha}^{\sigma}$$
(2.37)

The zero-th order mass and momentum equations (2.32) and (2.35) are automatically satisfied in accordance to Eq. (2.29). Moreover, the right hand sides of the first and second order mass equations (2.33) and (2.34) vanish because of Eq. (2.30) and thus, these equations are rewritten as

$$\partial_{t_1} \sum_{i=0}^{i=N} f_i^{\sigma(0)} + \partial_{\beta} \sum_{i=0}^{i=N} f_i^{\sigma(0)} e_{i\beta}^{\sigma} = 0$$
 (2.38)

$$\partial_{t_2} \sum_{i=0}^{i=N} f_i^{\sigma(0)} + \partial_{t_1} \sum_{i=0}^{i=N} f_i^{\sigma(1)} + \partial_{\beta} \sum_{i=0}^{i=N} f_i^{\sigma(1)} e_{i\beta}^{\sigma} = 0$$
 (2.39)

2.4 Mass equations

Since $f_i^{\sigma(0)} = f_i^{\sigma,eq}$, we can use the series expansion (2.21), as well as the properties (2.16) and (2.17), to rewrite the first order mass conservation equation (2.38) in a more familiar form, after multiplication by m_{σ}

$$\partial_{t_1} \rho_{\sigma} + \partial_{\beta} (\rho_{\sigma} u_{\beta}') = 0 \tag{2.40}$$

Here

$$\rho_{\sigma} = m_{\sigma} n_{\sigma} \tag{2.41}$$

is the local density of the component σ .

Using the first order Boltzmann equation (2.27) to express $f_i^{\sigma(1)}$ in the second order equation (2.28), we get

$$\partial_{t_2} f_i^{\sigma(0)} + au_{\sigma} (\partial_{t_1})^2 f_i^{\sigma(0)} - 2 au_{\sigma} \, \partial_{t_1} \left[\partial_{t_1} f^{\sigma(0)} + \partial_{eta} f_i^{\sigma(0)} e_{ieta}^{\sigma} \right] -$$

$$\tau_{\sigma} \partial_{\alpha} \partial_{\beta} f_{i}^{\sigma(0)} e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} = \frac{1}{\tau_{\sigma}} f_{i}^{\sigma(2)}$$
 (2.42)

This equation, multiplied by m_{σ} and summed over i, gives the following form of the the second order mass conservation equation (2.39)

$$\partial_{t_2} \rho_{\sigma} + \tau_{\sigma} (\partial_{t_1})^2 \rho_{\sigma} - \tau_{\sigma} \partial_{\alpha} \partial_{\beta} (n_{\sigma} k_B T \delta_{\alpha\beta} + \rho_{\sigma} u_{\alpha}' u_{\beta}') = 0$$
 (2.43)

To derive this result, we used the first order mass equation (2.40), as well as the property (2.18) and the definition (2.3).

To recover the mass conservation equation for the component σ up to the second order with respect to the Knudsen number, we sum together Eqs. (2.40) and (2.43) multiplied by ε and ε^2 , respectively, and take into account the expressions (2.23) and (2.24) of the time and space derivatives

$$\partial_{t}\rho_{\sigma} + \partial_{\alpha}(\rho_{\sigma}u_{\alpha}') + \tau_{\sigma}(\partial_{t})^{2}\rho_{\sigma} -$$

$$\tau_{\sigma} \frac{k_{B}T}{m_{\sigma}} \delta_{\alpha\beta}\partial_{\alpha}\partial_{\beta}\rho_{\sigma} - \tau_{\sigma}\partial_{\alpha}\partial_{\beta}(\rho_{\sigma}u_{\alpha}'u_{\beta}') = 0 \qquad (2.44)$$

When summing over σ , we get also the mass equation for the whole fluid system

$$\partial_t \rho + \partial_{\alpha} (\rho u_{\alpha}') + (\partial_t)^2 \sum_{\sigma=1}^{\sigma=2} \tau_{\sigma} \rho_{\sigma} -$$

$$k_B T \, \partial_{\alpha} \partial_{\beta} \sum_{\sigma=1}^{\sigma=2} \frac{\tau_{\sigma} \rho_{\sigma}}{m_{\sigma}} \, - \, \partial_{\alpha} \partial_{\beta} \left[\left(\sum_{i=1}^{i=2} \tau_{\sigma} \rho_{\sigma} \right) u_{\alpha} u_{\beta} \right] = 0 \qquad (2.45)$$

where

$$\rho = \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} \tag{2.46}$$

is the local density of the whole fluid. In the particular case $\tau_{\sigma} = \tau \, \forall \sigma$, the mass equation for the whole fluid (2.45) becomes

$$\partial_t \rho + \partial_\alpha (\rho u'_\alpha) + \tau (\partial_t)^2 \rho_\sigma - \tau \partial_\alpha \partial_\beta p - \tau \partial_\alpha \partial_\beta \left(\rho u'_\alpha u'_\beta \right) = 0 \qquad (2.47)$$

where

$$p = k_B T \sum_{\sigma=1}^{\sigma=N} n_{\sigma} \tag{2.48}$$

is the local pressure of the fluid system, which is a mixture of two ideal gases.

The mass equation for a single component (2.44), as well as the mass equation for the whole system (2.45) contain the first and second order time derivatives of the local density. The presence of both time derivatives is a characteristics of the telegraphist equation [18], which describes a propagation phenomenon. Consequently, one may expect that the density profile across the system exhibits a kink (wrinkle or peak), i.e., a non monotonic propagating pulse. This behavior should be dominant for small values of the product between the local density and the equilibrium velocity ($\rho_{\sigma}u'_{\alpha} \simeq 0$), when the mass equation for the component σ reduces to the true telegraphist equation

$$\partial_t \rho_\sigma + \frac{\mathcal{D}}{\mathcal{C}} (\partial_t)^2 \rho_\sigma = \mathcal{D} \nabla^2 \rho_\sigma \tag{2.49}$$

where the diffusion coefficient is

$$\mathcal{D} = \tau_{\sigma} \frac{k_B T}{m_{\sigma}} \tag{2.50}$$

and

$$C = \frac{k_B T}{m_\sigma} \tag{2.51}$$

is the finite speed at which information travels in the system. The diffusion equation is recovered in the case

$$\frac{\mathcal{D}}{\mathcal{C}} = \tau_{\sigma} \to 0 \tag{2.52}$$

2.5 Equilibrium velocity u'

The right hand side of the Boltzmann equation (2.20) represents the collision term which expresses the variation of the equilibrium distribution function as a result of collisions between particles. Collisions should preserve the local momentum of the whole system. Since the momentum equation is derived from the Boltzmann equation after multiplication by $m_{\sigma}e_{i\alpha}^{\sigma}$ and summation over the indices σ and i, we should have

$$\sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma}}{\tau_{\sigma}} \sum_{i=1}^{i=N} [f_i^{\sigma} - f_i^{\sigma,eq}] e_{i\alpha}^{\sigma} = 0$$
 (2.53)

Since $f_i^{\sigma,eq}$ is expressed as a series expansion (2.21 in the equilibrium velocity u'_{α} (which is supposed to be the same for all σ), we can use Eq. (2.17) to get

$$u_{\alpha}' \sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma} n_{\sigma}}{\tau_{\sigma}} = \sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma}}{\tau_{\sigma}} \sum_{i=1}^{i=N} f_{i}^{\sigma} e_{i\alpha}^{\sigma}$$
 (2.54)

which allows the determination of the components u'_{α} of the equilibrium velocity in the node **r** of the lattice.

If we take into account the fact that the distribution functions f_i^{σ} are expressed as power series (2.22) in the Knudsen number, as well as the fact that $f_i^{\sigma(0)} = f_i^{\sigma,eq}$, we get the following relations from Eq. (2.54)

$$\sum_{\sigma=1}^{\sigma=2} \frac{m_{\sigma}}{\tau_{\sigma}} \sum_{i=1}^{i=N} f_i^{\sigma(l)} e_{i\alpha}^{\sigma} = 0 \qquad , \forall l \ge 1$$
 (2.55)

2.6 Momentum equation

If we use Eq. (2.55), the first order momentum equation (2.36) becomes

$$\partial_{t_1} \sum_{\sigma=1}^{\sigma=2} m_{\sigma} \sum_{i=0}^{i=N} f_i^{\sigma(0)} e_{i\alpha}^{\sigma} + \partial_{\beta} \sum_{\sigma=1}^{\sigma=2} m_{\sigma} \sum_{i=0}^{i=N} f_i^{\sigma(0)} e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} = 0$$
 (2.56)

Introducing the relations (2.17) and (2.18) in the above equation, we get the Euler equation

$$\partial_{t_1} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' + \partial_{\alpha} p + \partial_{\beta} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' u_{\beta}' = 0$$
 (2.57)

Using the first order Boltzmann equation (2.27) to express $f_i^{\sigma(1)}$ in the second order momentum equation (2.37), we get

$$\partial_{t_{2}} \sum_{\sigma=1}^{\sigma=2} m_{\sigma} \sum_{i=0}^{i=N} f_{i}^{\sigma(0)} e_{i\alpha}^{\sigma} + (\partial_{t_{1}})^{2} \sum_{\sigma=1}^{\sigma=2} \tau_{\sigma} m_{\sigma} \sum_{i=0}^{i=N} f_{i}^{\sigma(0)} e_{i\alpha}^{\sigma} -$$

$$2\partial_{t_{1}} \left[\partial_{t_{1}} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' + \partial_{\alpha} p + \partial_{\beta} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' u_{\beta}' \right] -$$

$$\partial_{\beta} \partial_{\gamma} \sum_{i=1}^{i=2} \tau_{\sigma} m_{\sigma} \sum_{i=0}^{i=N} f_{i}^{\sigma(0)} e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} e_{i\gamma}^{\sigma} = 0 \quad (2.58)$$

The square bracket in the equation above vanishes in accordance to Eq. (2.57). If we take into account Eqs. (2.3) and (2.19) and consider $\tau_1 = \tau_2 = \tau$, the second order momentum equation becomes

$$\partial_{t_2} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' + \tau (\partial_{t_1})^2 \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}'$$

$$- \tau k_B T \sum_{\sigma=1}^{\sigma=2} (2\partial_{\alpha} \nabla \cdot \mathbf{u}' + \nabla^2 u_{\alpha}') = 0 \qquad (2.59)$$

When adding the first and second ordet momentum equations, we get

$$\partial_{t} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' + \tau (\partial_{t})^{2} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' + \partial_{\alpha} p + \partial_{\beta} \sum_{\sigma=1}^{\sigma=2} \rho_{\sigma} u_{\alpha}' u_{\beta}'$$
$$- \tau k_{B} T \sum_{\sigma=1}^{\sigma=2} \left[2 \partial_{\alpha} (\nabla \cdot \mathbf{u}') + \nabla^{2} u_{\alpha}' \right] = 0 \qquad (2.60)$$

Thus, the momentum equation up to the second order contains the first and second order time derivatives, like the mass equation of the whole fluid system (2.45. As mentioned previously, the presence of the second order time derivative is a characteristics of a propagation phenomenon [18].

2.7 Pure diffusion

We suppose that the fluid system is always at rest. In this case, the equilibrium velocity u'_{α} should vanish everywhere. When

$$u_{\alpha}' = 0 \tag{2.61}$$

the series expansion (2.21) reduces to

$$f_i^{\sigma(0)} = f_i^{\sigma,eq} = w_i n_\sigma \tag{2.62}$$

Consequently, the first order mass equations (2.38) becomes

$$\partial_{t_1} \sum_{i=0}^{i=N} w_i n_{\sigma} + \partial_{\beta} \sum_{i=0}^{i=N} w_i n_{\sigma} e_{i\beta}^{\sigma} = 0$$
 (2.63)

In accordance to Eqs. (2.13) and (2.14), we have the following equalities

$$\sum_{i=0}^{i=N} w_i = 1 (2.64)$$

$$\sum_{i=0}^{i=N} w_i e_{i\beta}^{\sigma} = 0 (2.65)$$

which are valid for N=6, as well as for N=8 (i.e., independent of the number of the discrete velocity speeds in the phase space). Thus, the first order mass equation (2.63) reduces to

$$\partial_{t_1} n_{\sigma} = 0 \tag{2.66}$$

Therefore, from the first order Boltzmann equation (2.27) we get, using the expression (2.62)

$$f_i^{\sigma(1)} = -\tau_\sigma w_i e_{i\alpha}^\sigma \partial_\alpha n_\sigma \tag{2.67}$$

which may be introduced in the second order mass equation (2.39) to give

$$\partial_{t_2} \sum_{i=0}^{i=N} w_i n_{\sigma} - \partial_{t_1} \sum_{i=0}^{i=N} \tau_{\sigma} w_i e_{i\alpha}^{\sigma} \partial_{\alpha} n_{\sigma} - \partial_{\beta} \sum_{i=0}^{i=N} \tau_{\sigma} w_i e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} \partial_{\alpha} n_{\sigma} = 0 \quad (2.68)$$

Since

$$\sum_{i=0}^{i=N} w_i e_{i\alpha}^{\sigma} e_{i\beta}^{\sigma} = \chi_{\sigma} c_{\sigma}^2 \delta \alpha \beta \tag{2.69}$$

the second order equation (2.68) is rewritten as

$$\partial_{t_2} n_{\sigma} = \tau_{\sigma} \chi_{\sigma} c_{\sigma}^2 \nabla n_{\sigma} \tag{2.70}$$

After multiplication of the mass equations (2.63) and (2.70) by ε and ε^2 , respectively, we can sum them together to recover the mass equation up to second order with respect to the Knudsen number

$$\partial_t n_\sigma = \tau_\sigma \chi_\sigma c_\sigma^2 \nabla n_\sigma \tag{2.71}$$

which, after multiplication with m_{σ} , becomes identical to the pure diffusion equation

$$\partial_t \rho_\sigma = \mathcal{D} \, \nabla^2 \rho_\sigma \tag{2.72}$$

where the diffusion coefficient is

$$\mathcal{D} = \tau_{\sigma} \chi_{\sigma} c_{\sigma}^2 = \tau_{\sigma} \frac{k_B T}{m_{\sigma}} \tag{2.73}$$

If we remind the expression of the viscosity in the FDLB model [1]

$$\nu = \tau_{\sigma} \chi_{\sigma} c_{\sigma}^2 = \tau_{\sigma} \frac{k_B T}{m_{\sigma}} \tag{2.74}$$

we see that the Schmidt number Sc [12] is a constant equal to unity in the present FDLB model

 $Sc = \frac{\nu}{\mathcal{D}} = 1 \tag{2.75}$

2.8 Comparison with the theory of Shan and Doolen

The LGLB model previously developed by Shan and Doolen [13, 17] was used to simulate the time evolution of the barycentric velocity profile in a diffusion couple [19]. Here is a brief outline of the main characteristics of this model:

- 1. All components have the same equilibrium velocity \mathbf{u}' , which means that the hypothesis expressed by Eq. (2.31) is used.
- 2. The equilibrium velocity \mathbf{u}' in the absence of external forces is given by Eq (2.54).
- 3. The equilibrium distribution functions $f_i^{\sigma,eq}$ are expressed as series expansions in the equilibrium velocity \mathbf{u}' while the leading order distribution functions $f_i^{\sigma(0)}$ are expressed as series expansions in the local fluid velocity \mathbf{u} , (i.e., the barycentric velocity see [17], as well as [19]); this means that Eq. (2.29) is not valid in the model of Shan and Doolen; in fact, they make no explicit use of the zero-th, first and second order Boltzmann equations (2.26 2.28) as separate entities; we may imagine that the starting point of the model of Shan and Doolen is the sum of the zero-th and first order Boltzmann equation

$$\partial_{t_1} f_i^{\sigma(0)} + \partial_{\beta} f_i^{\sigma(0)} e_{i\beta}^{\sigma} = -\frac{1}{\tau_{\sigma}} \left[f_i^{\sigma(0)} + f_i^{\sigma(1)} - f_i^{\sigma,eq} \right]$$
 (2.76)

which allows $f_i^{\sigma(0)} \neq f_i^{\sigma,eq}$, and so on [19].

- 4. The series expansion for $f_i^{\sigma,eq}$ and $f_i^{\sigma(0)}$ which is valid for N=6, i.e., the six bit model (see [19]) contains the parameter d_{σ} which may be adjusted to allow different values of the diffusivity; this "degree of freedom" does not exist in the FDLB model since the very recent approach of He et al. [20, 21, 22] clearly establishes the value $d_{\sigma}=0.5$ using Gaussian quadrature formulae.
- 5. We mention here that Shan and Doolen give two simulation results (figures 1 and 2 in their paper [13]); these figures refer to equilibrium density profiles in a binary mixture which seem to be correct; since these results refer to systems at equilibrium, we think that the barycentric velocity **u**, as well as the equilibrium velocity **u'** vanish and the pure diffusion case is recovered; this may be a serious argument to consider the model as being valid only for stationary (equilibrium) cases, when there is some competition between diffusion and other phenomena generated by external forces, while the model itself does not account for the true dynamic evolution towards the equilibrium (stationary) case.
- 6. We should mention also the fact that the LGLB model of Shan and Doolen inherits the main disadvantage of the LGLB models, which is the fact that the particle thermal speeds in this model are strictly related to the lattice spacing (in fact, the magnitude of these speeds is strictly the lattice spacing divided by the time step) and thus, any LGLB model does not allow different thermal speed for particles carrying different masses; FDLB models allow different thermal speeds when the particles have differents masses and thus, one may expect these models to be more close to the physical reality.

2.9 Simulation results

We used a 250×5 square lattice with walls placed left and right. The lattice spacing was $\delta x = \delta y = 10^{-4}$ m. Periodic conditions were used at the upper and bottom boundaries. The left half of the lattice was initialized with particles belonging to species $\sigma = 1$ while the right half was initialized with particles belonging to species $\sigma = 2$. When developing the computer code, we used the nine bit model (N = 8) since this model allowed a larger variety of finite differences schemes to be tested (see Chapter 1).

Our first diffusion code used the Second Order Runge Kutta for time integration [1], combined with an Upwind scheme for calculating space derivatives. Later, we developed a code based on the First Order Upwind Scheme (FU) which we described in the previous chapter. Both the Runge Kutta code (Appendix B), as well as the FU code (Appendix A) gave similar results which are described below.

The initial particle number density was set to unity for each component. As a result, the initial density profiles of each component, as well as the total density profile were always similar to those depicted in Figure 2.1, where we used $m_1 = 1$ amu and $m_2 = 0.9$ amu. 1 amu (atomic mass unit) equals 1.661×10^{-27} kg.

The present simulations were done with the same value of the relaxation time: $\tau_{\sigma} = \tau = 10^{-8}$ s, while the time step was chosen to be $\delta t = 10^{-9}$ s. The thermal velocities of each species of particles were calculated in accordance to Eq. (2.3) with T = 300 K.

Figure 2.2 shows the typical time evolution of the total density profile. One can see the presence of two kinks: a left propagating kink and a right propagating one. Their evolution is presented in Figures 2.3 and 2.4. The presence of these propagating kinks is not a surprise if we remind the mass equation (2.45) of the whole fluid system, which contains the second order time derivative. As mentioned before, the presence of the second order time derivative is a characteristics of a propagation phenomena.

Figure 2.5 shows the time evolution of the barycentric velocity. We may see the two kinks which form and propagate laterally, while the profile exhibits a central peak which remains always positive. The propagating kinks are reflected by the lateral walls and superpose to the central peak at some moments during their propagation. The formation of these propagating kinks in the figures showing the time evolution of the barycentric velocity may be explained by the presence of the second order time derivative in the momentum equation (2.60).

Figure 2.6 shows the time evolution of the mass flux of component 2. This flux is orientated from left to right, as expected, and does not change its sign. No kinks are observed.

Figure 2.7 shows the total density profile when the two species of particles have the same mass. This profile is found to be constant during the diffusion process, while the individual profiles of components 1 and 2 evolve separately. Figure 2.8 shows the corresponding time evolution of the local density of component 1. One can see that kinks are not present in the den-

Figure 2.1: Initial density profiles in the diffusion couple: a – component $\sigma=1$; b – component $\sigma=2$; c – total density profile $\rho=\rho_1+\rho_2$.

Figure 2.2: Time evolution of the total density profiles in the diffusion couple.

Figure 2.3: Time evolution of the total density profiles in the left region of the diffusion couple (snapshots are taken every 1000 time steps).

Figure 2.3: (continued) Time evolution of the total density profiles in the left region of the diffusion couple (snapshots are taken every 1000 time steps).

Figure 2.4: Time evolution of the total density profiles in the right region of the diffusion couple (snapshots are taken every 1000 time steps).

Figure 2.4: (continued) Time evolution of the total density profiles in the right region of the diffusion couple (snapshots are taken every 1000 time steps).

sity profiles when masses are equals, which means that we are dealing with a pure diffusion process.

To compare the FDLB simulations wit the former LGLB simulations [19], we slightly modified the corresponding computer code and set the same thermal velocity for each species of particles, even if the masses are different. For convenience, we used $m_1 = 1$ amu, $m_2 = 0.9$ amu, while c_1 was given by Eq. (2.3) and c_2 was forced to be equal to c_1 . Figure 2.9 shows the time evolution of the barycentric velocity in the diffusion couple, which is very similar to the LGLB results reported in [19]. In this case, the barycentric velocity changes its sign alternatively, due to strong oscillations which are present in the system.

The unphysical behavior of the barycentric velocity reported in figure 2.9, as well as the simulation results reported in [19] provide a very strong reason for a careful handling of the former LGLB models when dealing with multicomponent (e.g., binary) systems whose particles carry different masses. All the present Lattice Boltzmann litterature dealing with multicomponent systems, e.g., the approaches in [11, 14, 18, 23, 24, 25, 26, 27, 28, 29, 30], ignores completely the connection between the lattice spacing and the thermal speeds of particles and do not report unphysical effects of the Lattice Gas like

Lattice Boltzmann scheme. The unphysical oscillations which are observed when trying to simulate the behavior of a diffusion couple in microgravity environment with the LGLB model revealed a severe limitation of these models to those multicomponent systems whose particles have identical mass (as well as the same thermal velocity). Finite Difference Lattice Boltzmann Models (FDLB) or Interpolation Supplemented Lattice Boltzmann Models (ISLB) should be used in order to allow different thermal velocities of particles in the system (i.e., different values of the Courant - Friedrichs - Lewy number CFL). In this respect, the absence of the oscillations of the barycentric velocity in the diffusion couple, as reported in Figure 2.5, are very encouraging.

Figure 2.5: Time evolution of the barycentric velocity profile (snapshots are taken every 1000 time steps).

Figure 2.5: (continued) Time evolution of the barycentric velocity profile (snapshots are taken every 1000 time steps).

Figure 2.5: (continued) Time evolution of the barycentric velocity profile (snapshots are taken every 1000 time steps).

Figure 2.5: (continued) Time evolution of the barycentric velocity profile (snapshots are taken every 1000 time steps).

Figure 2.6: Time evolution of mass flux of component 2.

Figure 2.7: Total density profiles in the diffusion couple when the two species of particles have equal mass: this profile remains constant during the diffusion process.

Figure 2.8: Time evolution of the density profiles of component 1 when the two species of particles have equall mass: no kinks are observed.

Figure 2.9: Time evolution of the barycentric velocity profile (snapshots are taken every 5000 time steps, except the second one, which is taken after 1000 time steps) when the two thermal velocities are set equal $(c_1 = c_2)$.

Chapter 3

Sessile drop

3.1 Drop shape

A computer code based on a lattice Boltzmann model for liquid - vapor systems was already described in the preliminary report [31]. This code was used to investigate the equilibrium shape of a liquid drop on a horizontal surface and some preliminary results were presented in [31]. These preliminary simulations were done on a 256×64 lattice because of limitations in the computer resources available at that time. In the present report we will refer to subsequent simulations made on larger lattices, which were done on a Pentium II processor with 256 MB RAM working under the UNIX FreeBSD operating system. The code is given in Appendix C.

Following constant values of the main simulation parameters were used, as in [31]

- mean system density $\rho_m = 3.5$
- conventional temperature T = 0.550
- relaxation time $\tau = 0.8$

To investigate the shape of a sessile drop on a horizontal surface subjected to a gravitational field, we used a constant value of the parameter $\kappa=0.01$ of the LB model, which defines the surface tension, as discussed in [31]. We considered the two different cases, when the liquid is wetting the horizontal surface or not. For the first case, we adopted the value

$$\frac{\partial \mu}{\partial x_n} = 0.01 \tag{3.1}$$

of the normal derivative of the chemical potential on the lower wall surface. This value of the derivative accounts for the wetting interaction between the liquid drop and the wall. The second case is characterized by

$$\frac{\partial \mu}{\partial x_n} = -0.01 \tag{3.2}$$

which accounts for a non - wetting wall.

Figure 3.1 shows the time evolution of a sessile drop which wets the bottom wall and is subjected to an acceleration directed downwards (g = -0.00001). The drop spreads across the wall surface. Because the lattice was not large enough, the drop ends join laterally because of the periodic boundary conditions we used in the X direction, so that a flat liquid surface is recovered in the final state.

Figure 3.2 shows the equilibrium shape of a nonwetting drop subjected to different values of the gravitational acceleration. One can see that the drop becomes more and more flattened when the value of the gravitational acceleration increases.

3.2 Contact angle

We used a 1024×192 lattice. The necessary CPU time to perform 100,000 time steps was approx. 72 hours for each data set. Several values of the surface tension coefficient κ were considered, while the normal derivative of the chemical potential on the lower wall surface was $\frac{\partial \mu}{\partial x_n} = 0.01$. To account only for the effect of surface tension on the contact angle, no gravitational acceleration was considered ($\mathbf{g} = 0$).

Figures 3.3 - 3.6 show the time evolution of the lattice state for different values of the surface tension coefficient κ . When the value of the surface coefficient is large enough ($\kappa=0.01$), the drop spreads along the whole lattice domain, so that the contact angle cannot be determined because of the periodic boundary conditions on the left and right margin of the lattice (Figure 3.3). For smaller values of the surface tension, coefficient, when the drop does not spread along the whole bottom wall, the contact angle α may be determined using the following procedure (Figure 3.7), which takes into account the fact that the upper drop border becomes a circular arc when the equilibrium configuration is reached (i.,e., when the number of time steps is large enough). The drop height is denoted h, while its width is denoted w.

t = 0 time steps

t = 1,000 time steps

t = 2,000 time steps

Figure 3.1: Time evolution of the shape of a wetting drop.

t = 3,000 time steps

t = 4,000 time steps

t = 5,000 time steps

Figure 3.1: (continued) Time evolution of the shape of a wetting drop.

t = 6,000 time steps

t = 7,000 time steps

t = 10,000 time steps

Figure 3.1: (continued) Time evolution of the shape of a wetting drop.

t = 30,000 time steps

Figure 3.1: (continued) Time evolution of the shape of a wetting drop.

If R is the arc radius, we have

$$h = R(1 - \cos \alpha) \tag{3.3}$$

$$w = 2R\sin\alpha \tag{3.4}$$

$$\frac{h}{w} = \frac{1 - \cos \alpha}{2 \sin \alpha} = \frac{1}{2} \tan \frac{\alpha}{2} \tag{3.5}$$

$$\cos \alpha = 2 \arctan \left(\frac{2h}{w}\right)$$
 (3.6)

Table 3.1 shows the values of the contact angles for the cases shown in figures 3.4 - 3.6.

Figure 3.2: Shape of a non - wetting drop subjected to different values of the gravitational field.

Figure 3.3: Drop shape during simulation with $\kappa = 0.0100$.

Figure 3.3: (continued) Drop shape during simulation with $\kappa = 0.0100$.

t = 33,000 time steps

Figure 3.4: Drop shape during simulation with $\kappa = 0.0094$.

Figure 3.4: (continued) Drop shape during simulation with $\kappa=0.0094$.

t = 100,000 time steps

Figure 3.5: Drop shape during simulation with $\kappa = 0.0090$.

Figure 3.5: (continued) Drop shape during simulation with $\kappa=0.0090.$

Figure 3.6: Drop shape during simulation with $\kappa = 0.0088$.

Figure 3.6: (continued) Drop shape during simulation with $\kappa=0.0088$.

Table 3.1: Influence of the surface tension coefficient κ on the contact angle.

$\cos \alpha$
0.9097 0.7625 0.6671

Figure 3.7: Determination of the value of the contact angle α .

References

- [1] V. SOFONEA, Lattice Boltzmann Models for Multicomponent Fluids, Intermediate Report #002, Contract SPC – 98 – 4061 No. F61775 – 98 – WE101, EOARD (January 1999).
- [2] W. H. PRESS, S. A. TEUKOLSKY, W. T. Vetterling, B. P. FLAN-NERY, Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.
- [3] C. HIRSCH, Numerical Computation of Internal and External Flows, volume I: Fundamentals of Numerical Discretization, John Wiley and Sons, Chichester, New York, 1988.
- [4] K. W. MORTON, D. F. MAYERS, Numerical Solutions of Partial Differential Equations, Cambridge University Press, Cambridge, 1996.
- [5] X. HE, L. S. LUO, M. DEMBO, Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids, Journal of Computational Physics 129 (1996) 357.
- [6] X. HE, G. D. DOOLEN, Lattice Boltzmann method on a curvilinear coordinate system: Vortex shedding behind a circular cylinder, Physical Review E56 (1997) 434.
- [7] X. HE, L. S. LUO, M. DEMBO, Some Progress in Lattice Boltzmann Method: Reynolds number enhancement in simulations, Physica A 239 (1997) 276.
- [8] X. HE, Error analysis for the interpolation supplemented lattice Boltzmann equation scheme, International Journal of Modern Physics C8 (1997) 737.

- [9] K. H. HUEBNER, The Finite Element Method for Engineers, John Wiley and Sons, New York, 1975.
- [10] X. Y. HE, L. S. LUO, Lattice Boltzmann model for the incompressible Navier - Stokes Equation, Journal of Statistical Physics 88 (1997) 927.
- [11] D. H. ROTHMAN, S. ZALESKI, Lattice Gas Cellular Automata, Simple Models of Complex Hydrodynamics, Cambridge University Press, Cambridge, 1997.
- [12] P. S. PERERA, R. F. SEKERKA, Nonsolenoidal flow in a liquid diffusion couple, Physica of FLuids bf9 (1997) 376.
- [13] X. SHAN, D. DOOLEN, Diffusion in a multicomponent lattice Boltzmann equation model, Physical Review E54 (1996) 3614.
- [14] X. SHAN, H. CHEN, Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components, Physical Review E47 (1993) 1815.
- [15] V. SOFONEA, Lattice Boltzmann Approach to Collective Particle Interactions in Magnetic Fluids, Europhysics Letters 25 (1994) 385.
- [16] V. SOFONEA, Lattice Boltzmann Model for Magnetic Fluids, Romanian Reports in Physics 47 (1995) 307.
- [17] X. SHAN, G. DOOLEN, Multicomponent Lattice Boltzmann model with interparticle interaction, Journal of Statistical Physics 81 (1995) 379.
- [18] B. CHOPARD, M. DROZ, Cellular Automata Modeling of Physical Systems, Cambridge University Press, Cambridge, 1998.
- [19] R. F. SEKERKA (Principal Investigator): Grant NAG3 1875, Fluid Physics in a Stochastic Acceleration Environment: Diffusion and Non Solenoidal Flows, Carnegie Mellon University, Pittsburgh, Pennsylvania; Fluid Physics in a Stochastic Acceleration Environment: A Lattice Boltzmann Approach (Progress Report, Carnegie Mellon University, February 1999).

- [20] X. HE, L. S. LUO, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Physical Review E56 (1997) 6811.
- [21] X. SHAN, X. HE, Discretization of the Velocity Space in the Solution of the Boltzmann Equation, Physical Review Letters 80 (1998) 65.
- [22] X. HE, X. SHAN, G. D. DOOLEN, Discrete Boltzmann equation model for nonideal gases, Physical Review E57 (1998) R13.
- [23] D. ROTHMAN, S. ZALESKI, Lattice gas models of phase separation: interfaces, phase transitions and multiphase flow, Reviews of Modern Physics 66 (1994) 1417.
- [24] M. R. SWIFT, W. R. OSBORN, J. M. YEOMANS, Lattice Boltzmann Simulation of Non-Ideal Fluids, Physical Review Letters 75 (1995) 830.
- [25] W. R. OSBORN, E. ORLANDINI, M. R. SWIFT, J. M. YEOMANS, J. R. BANAVAR, Lattice Boltzmann Study of Hydrodynamic Spinodal Decomposition, Physical Review Letters 75 (1995) 4031.
- [26] E. ORLANDINI, M. R. SWIFT, J. M. YEOMANS, Lattice Boltzmann Model of Binary Fluid Mixtures, Europhysics Letters 32 (1995) 463.
- [27] M. SWIFT, E. ORLANDINI, W. R. OSBORN, J. YEOMANS, Lattice Boltzmann simulations of liquid - gas and binary fluid systems, Physical Review E54 (1996) 5041.
- [28] G. GONNELLA, E. ORLANDINI, J. M. YEOMANS, Lattice Boltzmann simulations of lamellar and droplet phases, Physical Review E58 (1998) 480.
- [29] K. R. MECKE, V. SOFONEA, Morphology of spinodal decomposition, Physical Review **E56** (1997) R3761 – 3764.
- [30] V. SOFONEA, K. R. MECKE, Morphological Characterization of Spinodal Decomposition Kinetics, European Physical Journal B8 (1999) 99 – 112.
- [31] V. SOFONEA, Lattice Boltzmann Models for Multicomponent Fluids, Preliminary Report #001, Contract SPC - 98 - 4061 No. F61775 - 98 - WE101, EOARD (August 1998).

Appendix A wet9 code

wet9head.h

Jun 26 1999 18:38

Jun 26 1999 18:38 wet9head.h Page 1

* wet9head.h definition of global variables
MAIN_HE
const double kboltz=1.38le-23, amu=1.66le-27, temp=300.00;
/* kboltz = $J/$ (molecules*K), amu = (kg), temp = (K); */
<pre>const double w0 = ((double) 4) / ((double) 9), w1 = ((double) 1) / ((double) 9), w2 = ((double) 1) / ((double) 36);</pre>
<pre>const double three = ((double) 3), three_over_two = ((double) 3) / ((double) 2), nine_over_two = ((double) 9) / ((double) 2);</pre>
double uxwall_top, uywall_top, uxwall_bot, uywall_bot;
<pre>double uxwall_left, uywall_left, uxwall_right, uywall_right;</pre>
<pre>double *a_uxwall_top, *a_uywall_top, *a_uxwall_bot, *a_uywall_bot;</pre>
<pre>double *a_uxwall_left, *a_uywall_left, *a_uxwall_right, *a_uywall_right;</pre>
int nnodes_x, nnodes_y, nnodes_all, lambda;
<pre>int *a_nnodes_x, *a_nnodes_y, *a_nnodes_all, *a_lambda;</pre>
int key_init, key_boundary, key_point, key_scheme, key_interface;
int *a_key_init, *a_key_boundary, *a_key_scheme, *a_key_interface;
int nsim, ncycles, niter_cycle, niter_init, iter, niter;
int *a_ncycles, *a_niter_cycle, *a_niter_init;
<pre>double length_x, length_y, delta_x, delta_y, delta_t, ctaul, ctau2, cspeed1, cspeed2, cspeed12, cspeed22, cfl1, cfl2, force_x, force_y, csforce_x, csforce_y;</pre>
double gforce, kforce, kbound1, kbound2;
double oneminus1, oneminus2, oneplus1, oneplus2;
<pre>double timinus, ticenter, tiplus; double timinus, ticenter, tiplus; double tifminus1, tifplus1, tifminus2, tifplus2;</pre>
<pre>double in1, in2, in1plus1, in2plus1, in1plus2, in2plus2; double up1, up2, up1minus1, up2minus1, up1minus2, up2minus3, tout1, tout1minus1, tout1minus2; double tin1, tin1plus1, tin2plus2, tout2, tout2minus1, tout2minus2, double tin2, tin2plus1, tin2plus2, tout2minus1, tout2minus2; double isminus1, iscenter1, isplus1, isminus2, iscenter2, isplus2;</pre>
<pre>double *a_length_x, *a_length_y, *a_delta_x, *a_delta_y, *a_delta_t, *a_force_x, *a_force_y, *a_gforce;</pre>
double mass1, mass2, tau1, tau2;
double *a_mass1, *a_mass2, *a_cspeed1, *a_cspeed2, *a_tau1, *a_tau2;
double nzero1, nzero2, nzerolleft, nzerolright, nzero2left, nzero2right;
<pre>double *a_nzero1, *a_nzero2, *a_nzero1left, *a_nzero2left,</pre>

<pre>char input_name[] = "wet9.input", output_name[] = "wet9.output";</pre>
char id_name[128], rez_name[128], xv_name[128];
double ww[9], ecx[9], ecy[9], ecx1[9], ecy1[9], ecx2[9], ecy2[9];
double nc10[9], nc11[9], nc12[9], nc13[9], nc14[9], nc15[9], nc17[9], nc17[9], nc18[9];
double nc20[9], nc21[9], nc22[9], nc23[9], nc24[9], nc25[9], nc26[9], nc27[9], nc28[9];
<pre>double ncbot10[9], ncbot11[9], ncbot12[9], ncbot13[9], ncbot14[9], ncbot15[9], ncbot17[9], ncbot17[9], ncbot18[9];</pre>
<pre>double ncbot20[9], ncbot21[9], ncbot22[9], ncbot23[9], ncbot24[9], ncbot25[9], ncbot26[9], ncbot27[9], ncbot28[9];</pre>
<pre>double nctop10[9], nctop11[9], nctop12[9], nctop13[9], nctop14[9], nctop15[9],</pre>
<pre>double nctop20[9], nctop21[9], nctop22[9], nctop23[9], nctop24[9], nctop25[9], nctop26[9], nctop27[9], nctop28[9];</pre>
<pre>double ncleft10[9], ncleft11[9], ncleft12[9], ncleft13[9], ncleft15[9], ncleft16[9], ncleft17[9], ncleft18[9];</pre>
<pre>double ncleft20[9], ncleft21[9], ncleft22[9], ncleft23[9],</pre>
<pre>double ncright10[9], ncright12[9], ncright13[9], ncright14[9],</pre>
<pre>double ncright20[9], ncright21[9], ncright22[9], ncright23[9], ncright25[9], ncright25[9], ncright26[9], ncright27[9], ncright28[9];</pre>
<pre>double null(9), null(9), nul2(9), nul3(9), nul4(9), nul5(9), nul7(9), nul7(9);</pre>
double nu20[9], nu21[9], nu22[9], nu23[9], nu24[9], nu25[9], nu26[9], nu27[9], nu28[9];
<pre>double nsitl[9], nsitr[9], nsibl[9], nsibr[9],</pre>
<pre>double nsbit1[9], nsbitx[9], nsbibx[9], nsb2tx[9], nsb2tx[9], nsb2tx[9], nsb2tx[9];</pre>
<pre>double nstitt[9], nstitr[9], nstib1[9], nstibr[9],</pre>
<pre>double nsliti[9], nslitr[9], nslibi[9], nslibr[9], nsl2ti[9], nsl2tr[9], nsl2bi[9], nsl2br[9];</pre>
<pre>double nsritt[9], nsritr[9], nsribl[9], nsribr[9],</pre>
<pre>double nlitl[9], nlitr[9], nlibl[9], nlibr[9],</pre>
<pre>double nlb1t1[9], nlb1tr[9], nlb1b1[9], nlb1br[9], nlb2t1[9], nlb2tr[9], nlb2br[9], nlb2br[9];</pre>
<pre>double nltltl[9], nltltr[9], nltlbl[9], nltlbr[9], nlt2tl[9], nlt2tr[9], nlt2br[9], nlt2br[9];</pre>
<pre>double nllit1[9], nllitr[9], nllib1[9], nllibr[9], nll2t1[9], nll2tr[9], nll2b1[9], nll2br[9];</pre>

wet9head.h

Jun 26 1999 18:38

<pre>double nlrit1[9], nlritr[9], nlrib1[9], nlribr[9],</pre>
<pre>double ecxforcel[9], ecyforcel[9], ecxforce2[9], ecyforce2[9],</pre>
int *boundary_mode;
double *f10, *f11, *f12, *f13, *f14, *f15, *f16, *f17, *f18;
double *f20, *f21, *f22, *f23, *f24, *f25, *f26, *f27, *f28;
double *ff10, *ff11, *ff12, *ff13, *ff14, *ff15, *ff16, *ff17, *ff18;
double *ff20, *ff21, *ff22, *ff23, *ff24, *ff25, *ff26, *ff27, *ff28;
<pre>double *neq10, *neq11, *neq12, *neq13, *neq14, *neq15, *neq16, *neq17, *neq18;</pre>
<pre>double *neq20, *neq21, *neq22, *neq23, *neq24, *neq25, *neq26,</pre>
<pre>double *source10, *source11, *source12, *source13, *source14, *source15,</pre>
<pre>double *source20, *source21, *source23, *source24, *source25,</pre>
double *sf10, *sf11, *sf12, *sf13, *sf14, *sf15, *sf16, *sf17, *sf18;
double *sf20, *sf21, *sf22, *sf23, *sf24, *sf25, *sf26, *sf27, *sf28;
double *uxloc, *uyloc, *uxloc1, *uyloc1, *uxloc2, *uyloc2;
<pre>double *nloc1, *nloc2, *colorfield, *gradcolor_x, *gradcolor_y;</pre>
<pre>double *gradn1x, *gradn2x, *gradn1y, *gradn2y;</pre>
int *nv1, *nv2, *nv3, *nv4, *nv5, *nv6, *nv7, *nv8;
#e]se
extern const double kboltz, amu, temp;
extern const double w0, w1, w2;
extern const double three, three_over_two, nine_over_two;
<pre>extern double uxwall_top, uywall_top, uxwall_bot, uywall_bot;</pre>
extern double uxwall_left, uywall_left, uxwall_right, uywall_right;
<pre>extern double *a_uxwall_top, *a_uywall_top, *a_uxwall_bot, *a_uywall_bot;</pre>
extern double *a_uxwall_left, *a_uywall_left, *a_uxwall_right, *a_uywall_right;
extern int nnodes_x, nnodes_y, nnodes_all, lambda;
extern int *a_nnodes_x, *a_nnodes_y, *a_nnodes_all, *a_lambda;
extern int key_init, key_boundary, key_point, key_scheme, key_interface;
extern int *a_key_init, *a_key_boundary, *a_key_scheme, *a_key_interface;
extern int nsim, ncycles, niter_cycle, niter_init, iter, niter;

x, length_y, delta , cspeed2, cspeed1 , force_y, csforce	extern double gforce, kforce, kbound1, kbound2; extern double oneminus1, oneminus2, oneplus1, oneplus2;	extern double timinus, ticenter, tiplus; extern double timinus, ticenter, tiplus; extern double tifminus1, tifplus1, tifminus2, tifplus2;	extern double inl, in2, inlplus1, in2plus1, inlplus2, in2plus2; extern double upl, up2, uplminus1, up2minus2, up2minus2; extern double tinl, tinlplus1, tinlplus2, tout1, tout1minus1, tout1minus2; extern double tin2, tin2plus1, tin2plus2, tout2, tout2minus1, tout2minus2; extern double isminus1, iscenter1, isplus1, isminus2, iscenter2, isplus2;	extern double *a_length_x, *a_length_y, *a_delta_x, *a_delta_y, *a_delta_t, *a_force_x, *a_force_y, *a_gforce;	double mass1, mass2, tau1, tau2;	<pre>extern double *a_mass1, *a_mass2, *a_cspeed1, *a_cspeed2, *a_tau1, *a_tau2; extern double nzero1, nzero2, nzero1left, nzero2left, nzero1right, nzero2right;</pre>	extern double *a_nzero1, *a_nzero2, *a_nzerolleft, *a_nzero2left, *a_nzero1right, *a_nzero2right;	extern char input_name[], output_name[];	extern char id_name[], rez_name[], xv_name[];	extern double ww[], ecx[], ecy[], ecx1[], ecy1[], ecx2[], ecy2[];	extern double nc10[], nc11[], nc12[], nc13[], nc14[], nc15[],	extern double nc20[], nc21[], nc22[], nc23[], nc24[], nc25[],	<pre>extern double ncbot10[9], ncbot11[9], ncbot13[9], ncbot13[9], ncbot15[9], ncbot16[9], ncbot17[9], ncbot18[9];</pre>	<pre>extern double ncbot20[9], ncbot21[9], ncbot22[9], ncbot23[9], ncbot28[9], ncbot25[9], ncbot26[9], ncbot27[9], ncbot28[9];</pre>	<pre>extern double nctop10[9], nctop11[9], nctop12[9], nctop13[9], nctop18[9], nctop18[9], nctop18[9], nctop18[9];</pre>	<pre>extern double nctop20[9], nctop21[9], nctop22[9], nctop23[9], nctop24[9], nctop26[9], nctop26[9], nctop27[9], nctop28[9];</pre>	<pre>extern double ncleft10[9], ncleft112[9], ncleft13[9], ncleft14[9], ncleft15[9], ncleft16[9], ncleft16[9],</pre>	extern double ncleft20[9], ncleft21[9], ncleft22[9], ncleft23[9], ncleft24[9], ncleft25[9], ncleft26[9], ncleft28[9];	<pre>extern double ncright10[9], ncright11[9], ncright12[9], ncright13[9], ncright14[9], ncright15[9], ncright16[9], ncright17[9],</pre>	extern double ncright20[9], ncright21[9], ncright22[9], ncright23[9], ncright24[9], ncright24[9],
--	--	---	--	---	----------------------------------	--	---	--	---	---	---	---	--	--	--	--	--	---	--	---

Jun 26 1999 18:38	wet9head.h Page 6
extern double *nloc1, *nloc2, *colorfield, *gradcolor_x, *gradcolor_y;	field, *gradcolor_x, *gradcolor_y;
extern double *gradnlx, *gradn2x, *gradnly, *gradn2y;	radnly, *gradn2y;
extern int *nv1, *nv2, *nv3, *nv4, *nv5, *nv6, *nv7, *nv8;	nv5, *nv6, *nv7, *nv8;
#endif	

wet9inout.c

Jun 26 1999 20:56

Jun 26 1999 20:56 wet9inout.c	Page 1

* Wet9inout.c * **********************************	
<pre>#include <stdio.h> #include <stdib.h> #include <string.h> #include <atring.h> #include <math.h></math.h></atring.h></string.h></stdib.h></stdio.h></pre>	
#include "wet9head.h"	
. void allocate_nsim(void)	
<pre>a_nnodes_x = (int*) malloc(nsim*sizeof(int)); a_nnodes_y = (int*) malloc(nsim*sizeof(int)); a_nnodes_y = (int*) malloc(nsim*sizeof(int)); a_key_init = (int*) malloc(nsim*sizeof(int)); a_key_boundary = (int*) malloc(nsim*sizeof(int)); a_key_scheme = (int*) malloc(nsim*sizeof(int)); a_key_interface = (int*) malloc(nsim*sizeof(int)); a_ney_interface = (int*) malloc(nsim*sizeof(int)); a_niter_int = (int*) malloc(nsim*sizeof(int)); a_niter_int = (int*) malloc(nsim*sizeof(int)); a_niter_int = (int*) malloc(nsim*sizeof(int)); a_niter_int = (int*) malloc(nsim*sizeof(double)); a_length_x = (double*) malloc(nsim*sizeof(double)); a_delta_x = (double*) malloc(nsim*sizeof(double)); a_delta_x = (double*) malloc(nsim*sizeof(double)); a_force_x = (double*) malloc(nsim*sizeof(double)); a_force_x = (double*) malloc(nsim*sizeof(double)); a_force_x = (double*) malloc(nsim*sizeof(double)); a_nnass1 = (double*) malloc(nsim*sizeof(double)); a_nnass2 = (double*) malloc(nsim*sizeof(double)); a_nnass1 = (double*) malloc(nsim*sizeof(double)); a_nnass2 = (double*) malloc(nsim*sizeof(double)); a_nnass1 = (double*) malloc(nsim*sizeof(double)); a_nnass2 = (double*) malloc(nsim*sizeof(double)); a_nvwall_top = (double*) malloc(nsim*sizeof(double)); a_uvwall_top = (double*) malloc(nsim*sizeof(double)); a_uvwall_top = (double*) malloc(nsim*sizeof(double)); a_uvwall_tof = (double*) malloc(nsim*sim*sizeof(double)); a_uvwall_tof = (double*) malloc(nsim*sim*sizeof(double)); a_u</pre>	
yoid free_nsim(void)	
<pre>free (a_nnodes_x); free (a_nnodes_y); free (a_nnodes_all); free (a_nnodes_all); free (a_key_init); free (a_key_init); free (a_key_interface); free (a_key_interface); free (a_key_interface); free (a_nryoles); free (a_nryoles); free (a_nryoles); free (a_niter_oycle); free (a_niter_init);</pre>	

free (a_length_x); free (a_length_y); free (a_delta_x); free (a_delta_y); free (a_force_y); free (a_force_y); free (a_force_y); free (a_force_y); free (a_massl); free (a_massl); free (a_massl); free (a_massl); free (a_nseal); free (a_uvall_top); free (a_uvall_top); free (a_uvall_top); free (a_uvall_left);	33, amu=1.661e-27, temp=300.00; (K) , amu = (kg) , temp - (K) ; (W) ; (W) ; (W) ; (W)	<pre>fprintf(frez, "program <wet9> stopped - input file <%s> does not exist !\n",</wet9></pre>	<pre>fscanf(fin, *\$s \$d \$s \$d\n", dummy, &nnodes_x, dummy, &nnodes_y); fprintf(frez,"nnodes_x= &d nnodes_y= &d\n",nnodes_x,nnodes_y); fscanf(fin, *\$s &lin'dummy, alambda); fprintf(frez,"lambda= &d\n",dummy, δ_x); fscanf(fin, *\$s &lf &s &lf\n",dummy, δ_x); if(delta_y) = delta_x; if(delta_y) = delta_x; fprintf(frez,"delta_x= &lf\n",dummy, δ_t); fscanf(fin, *\$s &lf\n",dummy, δ_t); fscanf(fin, *\$s &lf\n",dummy, &dey_init,dummy, &key_init, &ey boundary); fscanf(fin, *\$s & &d\n",dummy, &key_init, &ey boundary); fscanf(fin, *\$s & &d\n",dummy, &key_init, &ey boundary); fscanf(fin, *\$s & &d\n",dummy, &key_init, &ey boundary); fscanf(fin, *\$s &d &s &d\n",dummy, &key_init, &ey boundary); fscanf(fin, *\$s &d &s &d\n",dummy, &key_init, &ey boundary);</pre>
--	---	--	---

wet9inout.c

Jun 26 1999 20:56 Wet9inout.c Page 3
<pre>printf("key_interface=&d\n", key_interface); fprintf(frez, 'key_scheme=&d\n", key_scheme); fscanf(fin, "%s %d %s %d %s %d\n", dummy, fnoycles, dummy, fniter_cycle, dummy, fnoycles, dummy, fniter_cycles, dummy, fniter_cycles, dummy, fniter_cycles, dummy, fniter_cycles, dummy, fniter_cycles, fforth(firez, "noycless and fniter_cycles, dummy, fniter_cycles, niter_cycles, niter_cycles, niter_cycles, niter_till); fscanf(fin, "%s %lf %s %lf\n", dummy, fnassl, dummy, fatal); fscanf(fin, "%s %lf %s %lf\n", dummy, fnassl, dummy, fatal); fscanf(fin, "%s %lf %s %lf\n", dummy, fnasscolleft, dummy, fnasscolleft);</pre>
fscanf(fin, "%s %lf %s %lf\n",dummy, &nzerolright, dummy, &nzero2right); nzerol = nzerolleft; fprintf(frez, "massl=%lf taul=%e\n",massl,taul); fprintf(frez, "massl=%lf taul=%e\n",massl,taul); fprintf(frez, "nzerol=%lf taul=%e\n", massl,taul); fprintf(frez, "nzerol=%lf nzero2=%lf\n", nzerol, nzero); fprintf(frez, "nzerolleft=%lf nzero2=%lf\n", nzerol); fprintf(frez, "nzerolleft=%lf nzero2right=%lf\n", nzerolleft,nzero2left fn nzero2right=%lf\n", fprintf(frez, "nzerolleft=%lf nzero2right=%lf\n",
ot); all_bot op); all_top left);
<pre>fscanf(fin, %s %lf %s %lf\n", dummy, &uxwall_right dummy, &uywall_right); fprintf(frez, "uxwall_right=%lf uywall_right=%lf\n",</pre>
<pre>if(mass1) cspeed1 = (3.00 * kboltz * temp) / (mass1 * amu); else cspeed1 = 1.0000; if(mass2) cspeed2 = (3.00 * kboltz * temp) / (mass2 * amu); cspeed2 = 1.0000; cspeed1 = sqrt(cspeed1); cspeed2 = sqrt(cspeed2); fprintf(frez,*cspeed1=%25.20e cspeed2=%25.20e\n", cspeed2);</pre>
* taul; 2 * tau2;
<pre>fprintf(frez,"key_scheme=%d delta_x= %lf delta_y= %lf\n",</pre>

Jun 26 1999 20:56 wet9inout.c Page 4
fclose(frez); exit(1);
/ / if(((delta_t > tau1) (delta_t > tau2) && (key_scheme < 6)))
<pre>fprintf("<wet9> stopped - delta_t > tau 1 or tau2 !\n"); fprintf(frez,"<wet9> stopped - delta_t > tau 1 or tau2 !\n"); fclose(frez); ext(1);</wet9></wet9></pre>
/ / /if(aspeed1 > cspeed2) delta_t = delta_x / cspeed1;
= delta_x /
<pre>nnodes_all = nnodes_x * nnodes_y; length_x = delta_x * ((double) (nnodes_x-1)); length_y = delta_y * ((double) (nnodes_y-1));</pre>
<pre>fprintf(frez,"%d %d %lf %lf %e\n",nnodes_x,nnodes_y, nnodes_all.length_x,length_y,delta_t); fprintf(frez,"kboltz= %e %lf %lf %e\n",kboltz,temp,mass1,mass2,amu);</pre>
a_nnodes_x[i] = nnodes_x; a_nnodes_y[i] = nnodes_y; a_nnodes_y[i] = nnodes_all; a_nnodes_all[i] = nnodes_all; a_lamba[i] = lamba;
a_key_init[1] = key_init; a_key_boundary[1] = key_boundary; a_key_scheme[1] = key_scheme; a_key_interface[1] = key_interface;
a_ncycles[i] = ncycles; a_niter_cycle[i] = niter_cycle; a_niter_init[i] = niter_init;
a_length_x[i] = length_x; a_length_y[i] = length_y; a_delta_x[i] = delta_x;
333
],
a_tau1[1] = tau1; a_tau1[1] = tau2; a_tau2[1] = tau2;
= nzer [i] =
right[i] = right[i] = right[i] =
<pre>a_uvwall_left[i] = uxwall_left; a_uxwall_left[i] = uxwall_left; a_uvwall_reft[i] = uywall_left; a_uvwall_reft[i] = uywall_reft; a_uvwall_reft[i] = uywall_reft;</pre>

ဖ

flumag3.mec.utt.ro	
E	
2	
r sofonea from flu	
ģ	
7	
Ę	
.⊑	
~	

# wet9aux.c ** wet9aux.c ** wet9aux.c ** finclude <atdib.h> #include <addib.h= #ill="(double*)" #ill<="" (double));="" (mnodes_all*sizeof="" malloc="" th=""><th>**************************************</th><th>* * * * * * * * * * * * * * * * * * *</th></addib.h=></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h></atdib.h>	**************************************	* * * * * * * * * * * * * * * * * * *
	4.	
	h>	
	ad.h"	
(double*) malloc (nnodes_all*sizeof(cdouble*) malloc (nnodes_all*s	e_functions(void)	
(double*) malloc (mnodes_all*sizeof (double*) malloc (mnodes_all*s	malloc(nnodes_all*sizeof(doubl) malloc(nnodes_all*sizeof(doubl)	
(double*) malloc (nnodes_all*sizeof (double*) malloc (nnodes_all*s) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof	
(double*) malloc (nnodes_all*sizeof (aduoble*) malloc (nnodes_all*sizeof (double*) malloc (nnodes_all*	mailoc(nnodes_all*sizeof) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof	
(double*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cdouble*) malloc(nnodes_all*sizeof(cacdouble*) malloc(nnodes_a	malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof) malloc(nnodes all*sizeof	
(double*) malloc (innodes_all*sizeof (adouble*) malloc (innodes_all*sizeof (adouble*) malloc (innodes_all*sizeof (double*) malloc (innodes_all*sizeof (adouble*) malloc (innodes_all*sizeof	malloc(nnodes_all*sizeof	
<pre>(double*) malloc (nnodes_all*sizeof(</pre>	malloc(nnodes_all*sizeof	
<pre>(double*) malloc (nnodes_all*sizeof((double*) malloc (nnodes_all*sizeof(</pre>) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof	
(double*) malloc(nnodes_all*sizeof((acdouble*) malloc(nnodes_all*sizeof((acdouble*) malloc(nnodes_all*sizeof((acdouble*) malloc(nnodes_all*sizeof((acdouble*) malloc(nnodes_all*sizeof(acdouble*) malloc(nnodes_all*sizeof(acdouble*)) malloc(nnodes_all*sizeof(acdouble*)) malloc(nnodes_all*sizeof) malloc(nnodes all*sizeof	
(double*) malloc(nnodes_all*sizeof (double*) malloc(nnodes_all*sizeof	malloc(nnodes_all*sizeof	
(double*) malloc (nnodes_all*sizeof (double*) malloc (nnodes_all*sizeof	. T. 1	
= (double*) malloc (nnodes_all*sizeof = (double*) malloc (nnodes_all*sizeof	<pre>mailoc(nnodes_all*sizeof malloc(nnodes_all*sizeof</pre>	
= (double*) malloc (nnodes_all*sizeof = (double*) malloc (nnodes_all*sizeof	<pre>malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof</pre>	
= (double*) malloc (nnodes = (double*) malloc (nnodes) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof	
(double*) malloc (mnodes,	malloc(nnodes_all*sizeof	
= (double*) malloc (nnodes, = (double*) malloc (nnodes,	mailoc(nnodes_all*sizeof)	
= (double*) malloc(nnodes_ = (double*) malloc(nnodes_ = (double*) malloc(nnodes_ = (double*) malloc(nnodes_) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof)	
= (double*) malloc(nnodes_ = (double*) malloc(nnodes_ = (double*) malloc(nnodes_	malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof	
<pre>= (double*) malloc(nnodes_ = (double*) malloc(nnodes_</pre>	malloc(nnodes_all*sizeof	
- (conorte) martoc (monco) -	malloc(nnodes_) malloc(nnodes_	
= (double*) = (double*	~ *	
= (double*	* *	
	le*) malloc(nnodes_all*sizeof(double));	
= (double*	<pre>le*) malloc(nnodes_all*sizeof(double)); le*) malloc(nnodes all*sizeof(double));</pre>	
6 (double*	<pre>le*) malloc(nnodes_all*sizeof(double));</pre>	
= (double*) malloc(nnodes_all*sizeof(doubl	mailoc(nnodes_all*sizeof(doubl	
<pre>neq20 = (double*) malloc(nnodes_all*sizeof(double)); neq21 = (double*) malloc(nnodes_all*sizeof(double));</pre>	<pre>) malloc(nnodes_all*sizeof(doubl) malloc(nnodes_all*sizeof(doubl</pre>	
= (double*) malloc(nnodes_all*	malloc(nnodes_all*	
= (double*) malloc(nnodes_all*sizeof	mailoc(nnodes_all*sizeof)	
<pre>= (double*) malloc = (double*) malloc</pre>	<pre>) malloc(nnodes_all*sizeof) malloc(nnodes_all*sizeof</pre>	
malloc(nnodes_all*sizeof)	malloc(nnodes_all*sizeof)	
s10 = (double*) malloc(nnod	le*) malloc(nnodes_all*sizeof(doubl);

Jun 26 1999 13:52 wet9aux.c	Page 2
sourceil = (double*) malloc(unodes_all*sizeof(double)); sourceil = (double*) malloc(un	
<pre>void free_lattice_functions (void) { free(f10); free(f11); free(f12); free(f13); free(f14); free(f14); free(f15);</pre>	

att.ro	
33.mec.utt.ro	
umag3.	
from fl	
sofonea 1	
ed by	
Printe	

wet9aux.c

		rage 3	30:51 989 13:52
free (f16);			free(sf13);
free(f18);			free (str.);
free(f20); free(f21);			free(sfib); free(sfi7);
free(f22); free(f23);			free(sf18); free(sf20);
free(f24);			free(sf21); free(sf22);
free(129);			free (\$123);
free(f27); free(f28);			iree(si24); free(sf25);
free(ff10);			free(sf26);
free(fill); free(fill);			free(sf28);
free(ff13);			free (uxloc); free (uvloc);
free(ff15);		· · ·	free (wloci);
free(ff16);			free (uxloc1);
free(ff18);			free (uyloc2);
free(ff20);		-	free(nvl);
free(1121); free(ff22);	,		free (nv3);
free(ff23);			free(nv4); free(nv5);
free(ff25);			free (nv6);
free(ff26);			tree(nv/); free(nv8);
free(ff2);			free (boundary_mode
free (neq10);			free(nloc1);
free (neq12);			free (colorfield);
<pre>free (neq13); free (neq14);</pre>			free(gradhix); free(gradh2x);
free (neq15);			free (gradnly);
free(neq16);			tree (gradicy);
free (neq18);			
free(neq20);			void test_distributi
free (neq22);			
free (neq23); free (neq24);			
free (neq25);			FILE *frez;
free (neq26);			frez = fopen(rez_n
free(neg28);			for (k=0; k <nnodes_< td=""></nnodes_<>
free (source10);			if(nf0[k] < 0.
free (source12);			
free (source13);			iprinti (fr
free (source15);			exit(1);
free (source16);			} if(nf1[k] < 0.
free (source18);			
free (source20);			fprintf(fr
free(source21);			exit(1);
free (source23);) jf(nf2[k] < 0.
free (source25);			
free (source26);			fprintf(fr
free (source28);			exit(1);
free(sf10); free(sf11);		•	if (nf3[k] < 0.
free(sf12);			

fron (of131.
	3114);
free (s	sf15);
fran (s	1 1 1 1
free (s	9 [1]:
0011	
fron (e	
2 00 7 7	1.00
a) aau T	7.707
ree(s	1 (773)
ייים מייים	1100)
iree (s	3 (2 0)
iree (8	1(22);
free (s	3£26);
free (s	5[27];
frage	£78);
4	• (50)
T DD TT	()
ree (r	19100)
free (1	<pre>free(uxloc1);</pre>
free (1	<pre>free(uyloc1);</pre>
free (1	1x1oc2);
fraa (1	free (1) 002):
- Fron (1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tree (not)	1.4.1
Tree (1	(201
Iree (nv3)	; (SAU
ree (nv4)	nv4);
tree (nv5)	; (SAL)
free (1	10(6);
free (nv7);	; (\text{\text{Var}}
free (nv8)	3 (800
froo ()	free (boundary mode):
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
10014	TI CCC (111001)
ree(iree(nlocz);
ree (iree(colorideld);
tree (<pre>free(gradnlx);</pre>
free (free (gradn2x);
free (c	gradnly);
free (<pre>free (gradh2v);</pre>
_	
vold te	<pre>void test_distribution_iunctions(double nIU[], double nII[], double nIZ[],</pre>
_	orange (f) and orange (f) and
FILE	FILE *frez:
int k:	
frez = fc	= fopen(rez_name, "aw");
47.7	TTP-CODOMINA
구 -	if(nf0[k] < 0.00)
	<pre>fprintf(frez,"\n\nNeGAIIVE F: iter=%d k=%d nf0=%g\n", iter,k,nf0[k]);</pre>
	(************************************
- н	if(nf1[k] < 0.00)
	<pre>fprintf(frez,"\n\nNEGATIVE F: iter=%d k=%d nfl=%g\n", iter,k,nfl[k]); exit(1);</pre>
	١
н	if(nf2[k] < 0.00)
	fprintf(frez,"\n\nNEGATIVE F: iter=%d k=%d nf2=%g\n", iter,k,nf2[k]);
	1
, т	if(nf3[k] < 0.00)
	-

wet9init.c

mec.utt.ro	Page 2
Printed by sofonea from flumag3.mec.utt.ro	wet9init.c
	Jun 25 1999 13:31

Jun 25 1999 13:31	wet9init.c	Page 1	
********	*************************************		<u> </u>
* wet9init.c arrays initia: *	* * wet9init.c arrays initialisation * /**********************************		
<pre>#include <stdio.h> #include <stdiib.h> #include <math.h> #include <string.h></string.h></math.h></stdiib.h></stdio.h></pre>			
#include "wet9head.h"			
<pre>int i,j; File fout; Fout = fopen(rez_name, "aw"); fout = fopen(rez_name, "aw"); for(j=0;j<=nnodes_y;j++) for(j=0;j<=nnodes_x;j++)</pre>			
<pre>fprintf(fout,"%3d ",nv[(j-1)*nnodes_x+i]);</pre>	[(j-1)*nnodes_x+i]);		
) void getavec_square(void)			
<pre>int i, j, k; k = 0; for(j=0; j</pre> j <pre>for(j=0; j</pre> ifor(i=0; ionnodes_x; i++)			
	G 4		
nv6[k] = nv2[k] = 1; if(i == 0) nv6[k] += nv0[k] = 1; nv7[k] = nv4[k] = 1; if(i == 0) nv7[k] += nvdes_x; nv8[k] = nv4[k] + 1; if(i == (nvdes_x-1)) nv8[k] = nv4[k] + 1;			
/* printf("k=%d %d %d %d k,nv1[k],nv2[k],nv3[*/ k++;	printf("k=%d %d %d %d %d %d %d %d %d\n", k,nv1[k],nv2[k],nv3[k],nv4[k],nv5[k],nv6[k],nv7[k],nv8[k]); '+;		
Į.			_

) void init_ecx_nine(void)	
{ int i;	
double xminusminus, xminus, xzero, xplus, xx, xy; double lxminusminus, lxminus, lxzero, lxplus, lyminus, lyminus, lyminus, lyminus, yplus; double yminus, yzero, yplus; double xtl, xtr, xbl, xbr, ytl, ytr, ybl, ybr;	
ww(0) = w0; ww(1) = w1; ww(2) = w1; ww(3) = w1; ww(4) = w1; ww(5) = w2; ww(6) = w2; ww(8) = w2; ww(8) = w2;	
(double) (double)	
(4) (GOODLE) (1)	
<pre>for(i=0; i < 9; i++)</pre>	
<pre>ecxforcal[i] = delta_t * force_x * ecx[i] * cspeed1 / (kbo ecyforcal[i] = delta_t * force_y * ecy[i] * cspeed1 / (kbo ecyford1[i] = ecxforcal[i] + ecyforcal[i]; ecxforce2[i] = delta_t * force_x * ecx[i] * cspeed2 / (kbo ecyforce2[i] = delta_t * force_y * ecy[i] * cspeed2 / (kbo ecyforce2[i] = delta_t * force_y * ecy[i] * cspeed2 / (kbo ecyforce2[i] = ecxforce2[i] + ecyforce2[i];</pre>	
<pre>xminus = -1.000; xzero = 0.000; xplus = 1.000; for(i=1: i<9: i++)</pre>	
xzerc	
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)) lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>cminus-xplus)); czero-xplus)); cplus-xzero));</pre>

Jun 25 1999 13:31

Page 4

) * (xminus-xplus));) * (xzero-xplus));	
11 11 11	(xplus-xzero);	
nc14[1] = lxxanus * lyzero; nc14[1] = lxzero * lyminus; nc15[1] = lxplus * lyplus; nc16[1] = lxminus * lyplus; nc17[1] = lxminus * lyminus; nc18[1] = lxplus * lyminus;		
<pre>xx = xzero - ecx2[i] * delta_t / delta_x; xy = xzero - ecy2[i] * delta_t / delta_x;</pre>		
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)) lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>) * (xminus-xplus));) * (xzero-xplus));) * (xplus-xzero));	
<pre>lyminus = ((xy-xzero)*(xy-xplus))/((xminus-xzero)*(xminus-xplus)); lyzero = ((xy-xminus)*(xy-xplus))/((xzero-xminus)*(xzero-xplus)); lyplus = ((xy-xminus)*(xy-xzero))/((xplus-xminus)*(xplus-xzero));</pre>) * (xminus-xplus));) * (xzero-xplus));) * (xplus-xzero));	
nc20[i] = lxzero * lyzero; nc21[i] = lxplus * lyzero; nc22[i] = lxzero * lyplus; nc23[i] = lxminus * lyzero; nc24[i] = lxzero * lyminus; nc25[i] = lxplus * lyplus; nc26[i] = lxminus * lyplus; nc27[i] = lxminus * lyplus; nc27[i] = lxminus * lyminus;		
xminus = -1.000; xzero = 0.000; xplus = 1.000; yminus = -1.000; yzero = 0.000; yplus = 1.000;		
for(i=1; i<9; i++)		
<pre>'xx = xzero - ecx1[i] * delta_t / delta_x; xy = xzero - ecy1[i] * delta_t / delta_x;</pre>		
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>) * (xminus-xplus)); s) * (xzero-xplus)); s) * (xplus-xzero));</pre>	
<pre>lyzero = (xy-yplus)/(yzero-yplus); lyplus = (xy-yzero)/(yplus-yzero);</pre>		
<pre>ncbot10[i] = lxzero * lyzero; ncbot11[i] = lxplus * lyzero; ncbot12[i] = lxzero * lyplus; ncbot13[i] = lxminus * lyplus; ncbot15[i] = lxmlus * lyplus; ncbot16[i] = lxmluus * lyplus;</pre>		
<pre>xx = xzero - ecx2[i] * delta_t / delta_x; xy = xzero - ecy2[i] * delta_t / delta_x;</pre>		
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)) lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>) * (xminus-xplus)); s) * (xzero-xplus)); s) * (xplus-xzero));</pre>	

	<pre>lyzero = (xy-yplus)/(yzero-yplus); lyplus = (xy-yzero)/(yplus-yzero);</pre>
	<pre>ncbot20[i] = lxzero * lyzero; ncbot21[i] = lxplus * lyzero; ncbot22[i] = lxzero * lyplus; ncbot23[i] = lxminus * lyzero; ncbot25[i] = lxplus * lyplus; ncbot26[i] = lxminus * lyplus;</pre>
	<pre>xx = xzero - ecx1[i] * delta_t / delta_x; xy = xzero - ecy1[i] * delta_t / delta_x;</pre>
	<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
	<pre>lyzero = (xy-yminus)/(yzero-yminus); lyminus = (xy-yzero)/(yminus-yzero);</pre>
	<pre>nctop10[1] = lxzero * lyzero; nctop11[1] = lxplus * lyzero; nctop13[1] = lxminus * lyzero; nctop17[1] = lxminus * lyminus; nctop14[1] = lxzero * lyminus; nctop18[1] = lxplus * lyminus;</pre>
	<pre>xx = xzero - ecx2[i] * delta_t / delta_x; xy = xzero - ecy2[i] * delta_t / delta_x;</pre>
	<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
	<pre>lyzero = (xy-yminus) / (yzero-yminus); lyminus = (xy-yzero) / (yminus-yzero);</pre>
	<pre>nctop20[i] = lxzero * lyzero; nctop21[i] = lxplus * lyzero; nctop23[i] = lxminus * lyzero; nctop27[i] = lxminus * lyminus; nctop27[i] = lxzero * lyminus; nctop28[i] = lxplus * lyminus;</pre>
	<pre>xx = xzero - ecx[[i] * delta_t / delta_x; xy = xzero - ecyl[i] * delta_t / delta_x;</pre>
	<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
	lxzero = (xx-xplus)/(xzero-xplus); lxplus = (xx-xzero)/(xplus-xzero);
	ncleft1[i] = lxplus * lyplus; ncleft1[i] = lxplus * lyzero; ncleft18[i] = lxplus * lyminus; ncleft12[i] = lxzero * lyplus; ncleft12[i] = lxzero * lyplus; ncleft10[i] = lxzero * lyplus; ncleft10[i] = lxzero * lyplus;
	<pre>xx = xzero - ecx2[i] * delta_t / delta_x; xy = xzero - ecy2[i] * delta_t / delta_x;</pre>
	<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
	lxzero = (xx-xplus)/(xzero-xplus);

wet9init.c

Ξ

Printed by sofonea from flumag3.mec.utt.ro	9 0500
Printed by sofone	wot0init c
	10.01 1000 10.01

Jun 25 1999 13:31 wet9init.c	Page 5
= (xx-xzero)/(xplus-xzero);	
<pre>ncleft25[i] = lxplus * lyplus; ncleft21[i] = lxplus * lyzero; ncleft28[i] = lxplus * lyminus; ncleft22[i] = lxzero * lyplus; ncleft22[i] = lxzero * lyplus; ncleft22[i] = lxzero * lyminus;</pre>	
= xzero - ecx1[i] * delta_t / delta_x; = xzero - ecy1[i] * delta_t / delta_x;	
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	
<pre>lxzero = (xx-xminus) / (xzero-xminus); lxminus = (xx-xzero) / (xminus-xzero);</pre>	
<pre>ncright10[i] = lxzero * lyzero; ncright12[i] = lxzero * lyplus; ncright14[i] = lxzero * lyminus; ncright16[i] = lxminus * lyplus; ncright15[i] = lxminus * lyplus; ncright17[i] = lxminus * lyminus;</pre>	
<pre>= xzero - ecx2[i] * delta_t / delta_x; = xzero - ecy2[i] * delta_t / delta_x;</pre>	
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	
<pre>lxzero = (xx-xminus) / (xzero-xminus); lxminus = (xx-xzero) / (xminus-xzero);</pre>	
<pre>ncright20[i] = lxzero * lyzero; ncright22[i] = lxzero * lyplus; ncright2[i] = lxzero * lymlus; ncright2[i] = lxmlus * lyplus; ncright23[i] = lxmlus * lyplus; ncright27[i] = lxmlus * lymlus;</pre>	
= -1.000; 0.000; 1.000;	
= -1.000; .0.000; .1.000;	
<pre>xplus - ecx1[i] * delta_t / delta_x; yzero - ecy1[i] * delta_t / delta_x;</pre>	
<pre>(xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	
<pre>i = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	
= lxzero * lyzero; = lxplus * lyzero; = lxzero * lyplus; = lxminus * lyzero;	

<pre>nul4(i) = lxzero * lyminus; nul5(i) = lxplus * lyplus; nul6(ii) = lxminus * lyplus; nul7(ii) = lxminus * lyminus; nul8(i) = lxplus * lyminus;</pre>	<pre>i=2; xx = xzero - ecx1[i] * delta_t / delta_x; xy = yplus - ecy1[i] * delta_t / delta_x;</pre>	<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	<pre>nul(i) = lxzero * lyzero; nul1[i] = lxzero * lyzero; nul2[i] = lxzero * lyplus; nul3[i] = lxminus * lyplus; nul4[i] = lxzero * lyminus; nul5[i] = lxplus * lyplus; nul5[i] = lxminus * lyplus; nul6[i] = lxminus * lyplus; nul7[i] = lxminus * lyplus; nul7[i] = lxminus * lyminus; nul7[i] = lxminus * lyminus;</pre>	<pre>i=3; xx = xminus - ecx1[i] * delta_t / delta_x; xy = yzero - ecy1[i] * delta_t / delta_x;</pre>	<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	<pre>nul0[i] = lxzero * lyzero; nul1[i] = lxplus * lyzero; nul2[i] = lxzero * lyplus; nul3[i] = lxminus * lyzero; nul4[i] = lxzero * lyminus; nul5[i] = lxplus * lyplus; nul5[i] = lxminus * lyplus; nul6[i] = lxminus * lyplus; nul7[i] = lxminus * lyplus; nul7[i] = lxminus * lyminus; nul7[i] = lxplus * lyminus;</pre>	<pre>i=4; xx = xzero - ecx1[i] * delta_t / delta_x; xy = yminus - ecy1[i] * delta_t / delta_x;</pre>	<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	<pre>nul0[i] = lxzero * lyzero; nul1[i] = lxplus * lyzero; nul2[i] = lxzero * lyplus; nul3[i] = lxminus * lyzero; nul4[i] = lxzero * lyminus; nul5[i] = lxplus * lyplus; nul5[i] = lxplus * lyplus;</pre>
	† X X X	XXX	ÄÄÄÄ		±i ××x	***	71 A	22222222	# \$ \$	<u> </u>	444	222222

Jun 25 1999 13:31 wet9init.c	Page 7	Jun 25 1999 13:31
<pre>nu17[i] = lxminus * lyminus; nu18[i] = lxplus * lyminus;</pre>		i=8; xx = xplus - ecx1[xx = vminis - ecv]
<pre>i=5; xx = xplus - ecx1[i] * delta_t / delta_x; xy = yplus - ecy1[i] * delta_t / delta_x;</pre>		
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>		lyminus = ((xx xmin lyminus = ((xy-yze lyzero = ((xy-ymin lynlus = ((xy-ymin lynlus = ((xy-ymin
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>		nul0[i] = lxZero nul0[i] = lxZero nul1[i] = lxplus
= lxzero * = lxplus * = lxzero * = lxminus * = lxzero * = lxzero *		
* * *		i=1; xx = xplus - ecx2[xy = yzero - ecy2[
<pre>i=6; xx = xminus - ecx1[i] * delta_t / delta_x; xy = yplus - ecy1[i] * delta_t / delta_x;</pre>		xminus = ((xx-xze xzero = ((xx-xmin xplus = ((xx-xmin
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>		
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>		nu20[i] = lxzero nu21[i] = lxzero nu27[i] = lxplus
= lxzero * = lxplus * = lxzero * = lxzero * = lxzero * = lxzero *		
lxminus * lxminus * lxplus *		1=2; xx = xzero - ecx2 xy = yplus - ecy2
<pre>i=7; xx = xminus - ecx1[i] * delta_t / delta_x; xy = yminus - ecy1[i] * delta_t / delta_x;</pre>		lxminus = ((xx-xze lxzero = ((xx-xmir lxplus = ((xx-xmir
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xeero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>		
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>		nu20[1] = lxzero nu21[1] = lxplus nu22[1] = lxplus
lxzero * lxplus * lxzero * lxminus * lxzero * lxzero * lxzero *		
<pre>nu16(1) = lxminus * lyplus; nu17(1) = lxminus * lyminus; nu18(1) = lxplus * lyminus;</pre>		i=3; xx = xminus - ecx; xy = yzero - ecy;

<pre>i=8; xx = xplus - ecx1[i] * delta_t / delta_x; xy = yminus - ecy1[i] * delta_t / delta_x;</pre>
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
null[i] = lxzero * lyzero; null[i] = lxplus * lyzero; null[i] = lxzero * lyplus; null[i] = lxzero * lyplus; null[i] = lxminus * lyzero; null[i] = lxminus * lyminus; null[i] = lxplus * lyminus;
<pre>i=1; xx = xplus - ecx2[i] * delta_t / delta_x; xy = yzero - ecy2[i] * delta_t / delta_x;</pre>
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
nu20[i] = lxzero * lyzero; nu21[i] = lxplus * lyzero; nu23[i] = lxplus * lyplus; nu34[i] = lxminus * lyzero; nu34[i] = lxero * lyminus; nu26[i] = lxminus * lyzero; nu36[i] = lxminus * lyplus; nu36[i] = lxminus * lyplus; nu36[i] = lxminus * lyminus; nu28[i] = lxminus * lyminus;
<pre>i=2; xx = xzero - ecx2[i] * delta_t / delta_x; xy = yplus - ecy2[i] * delta_t / delta_x;</pre>
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
nu20[1] = lxzero * lyzero; nu21[1] = lxplus * lyzero; nu21[1] = lxplus * lyzero; nu23[1] = lxminus * lyzero; nu23[1] = lxminus * lyzero; nu24[1] = lxzero * lyminus; nu26[1] = lxminus * lyplus; nu26[1] = lxminus * lyplus; nu26[1] = lxminus * lyminus; nu26[1] = lxminus * lyminus;
<pre>i=3; xx = xminus - ecx2[i] * delta_t / delta_x; xy = yzero - ecy2[i] * delta_t / delta_x;</pre>

Jun 25 1999 13:31

Page 10

Jun 25 1999 13:31	wet9init.c	Page 9
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)) lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	inus-xzero) * (xminus-xplus)); ero-xminus) * (xzero-xplus)); lus-xminus) * (xplus-xzero));	
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	inus-yzero)*(yminus-yplus)); ero-yminus)*(yzero-yplus)); lus-yminus)*(yplus-yzero));	
nu20[1] = lxzero * lyzero; nu21[1] = lxplus * lyzero; nu22[1] = lxxero * lyplus; nu23[1] = lxminus * lyzero; nu24[1] = lxzero * lyminus; nu25[1] = lxplus * lyplus; nu25[1] = lxminus * lyplus; nu27[1] = lxminus * lyminus; nu28[1] = lxplus * lyminus;		
<pre>i=4; xx = xzero - ecx2[i] * delta_t / delta_x; xy = yminus - ecy2[i] * delta_t / delta_x;</pre>	a_x; a_x;	
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	inus-xzero)*(xminus-xplus)); ero-xminus)*(xzero-xplus)); lus-xminus)*(xplus-xzero));	
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	inus-yzero) *(yminus-yplus)); ero-yminus) *(yzero-yplus)); lus-yminus) *(yplus-yzero));	
nu20[i] = lxzero * lyzero; nu21[i] = lxplus * lyzero; nu23[i] = lxzero * lyplus; nu23[i] = lxminus * lyzero; nu24[i] = lxzero * lyminus; nu25[i] = lxminus * lyplus; nu26[i] = lxminus * lyplus; nu26[i] = lxminus * lyminus; nu28[i] = lxplus * lyminus;		
<pre>i=5; xx = xplus - ecx2[i] * delta_t / delta_x; xy = yplus - ecy2[i] * delta_t / delta_x;</pre>	ŠŠ	
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>	<pre>inus-xzero) * (xminus-xplus)); ero-xminus) * (xzero-xplus)); ilus-xminus) * (xplus-xzero));</pre>	
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>	<pre>inus-yzero) * (yminus-yplus)); ero-yminus) * (yzero-yplus)); ilus-yminus) * (yplus-yzero));</pre>	
nu20[1] = lxzero * lyzero; nu21[1] = lxplus * lyzero; nu22[1] = lxzero * lyplus; nu23[1] = lxminus * lyzero; nu24[1] = lxminus * lyzero; nu26[1] = lxplus * lyplus; nu26[1] = lxminus * lyplus; nu27[1] = lxminus * lyplus; nu27[1] = lxminus * lyminus;		
<pre>i=6; xx = xminus - ecx2[i] * delta_t / delt xy = yplus - ecy2[i] * delta_t / delt</pre>	delta_x; delta_x;	
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xr lxzero = ((xx-xminus)*(xx-xplus))/((xz</pre>	((xx-xzero)*(xx-xplus))/((xninus-xzero)*(xminus-xplus));	

<pre>lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
nu20[i] = lxzero * lyzero; nu22[i] = lxzero * lyzero; nu22[i] = lxzero * lyzero; nu22[i] = lxzero * lyplus; nu24[i] = lxzero * lyminus; nu25[i] = lxplus * lyplus; nu25[i] = lxminus * lyplus; nu26[i] = lxminus * lyplus; nu26[i] = lxminus * lyplus; nu26[i] = lxminus * lyplus; nu28[i] = lxplus * lyminus;
<pre>i=7; xx = xminus - ecx2[i] * delta_t / delta_x; xy = yminus - ecy2[i] * delta_t / delta_x;</pre>
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
nu20[i] = lxzero * lyzero; nu21[i] = lxplus * lyzero; nu22[i] = lxzero * lypelus; nu22[i] = lxzero * lypelus; nu24[i] = lxzero * lyminus; nu25[i] = lxplus * lypelus; nu26[i] = lxplus * lyplus; nu26[i] = lxminus * lyplus; nu27[i] = lxminus * lyplus; nu27[i] = lxminus * lyminus; nu27[i] = lxplus * lyminus;
<pre>i=8; xx = xplus - ecx2[i] * delta_t / delta_x; xy = yminus - ecy2[i] * delta_t / delta_x;</pre>
<pre>lxminus = ((xx-xzero)*(xx-xplus))/((xminus-xzero)*(xminus-xplus)); lxzero = ((xx-xminus)*(xx-xplus))/((xzero-xminus)*(xzero-xplus)); lxplus = ((xx-xminus)*(xx-xzero))/((xplus-xminus)*(xplus-xzero));</pre>
<pre>lyminus = ((xy-yzero)*(xy-yplus))/((yminus-yzero)*(yminus-yplus)); lyzero = ((xy-yminus)*(xy-yplus))/((yzero-yminus)*(yzero-yplus)); lyplus = ((xy-yminus)*(xy-yzero))/((yplus-yminus)*(yplus-yzero));</pre>
nu20[i] = lxzero
/* xminusminus = -1.000; xminus = 0.000; xzero = 1.000;
for(i=1; i<9; i++)
<pre>xx = xzero - ecx1[i] * delta_t / delta_x; xy = xzero - ecy1[i] * delta_t / delta_x;</pre>

4

n flumag3.mec.utt.ro	
y sofonea fror	
Printed b	

wet9init.c

Jun 25 1999 13:31	case 1: case 5:	break; case 4: case 4: xx = xbr. xy = ybr. yy = ybr. break; /*	### ### ####		case 5:	case 7: xx = xbl xv = vh	break; case 4: case 8: x = xbr	break; /* /* printf("12=%d	ns2t1[i] = (1 ns2tr[i] = (1 ns2tl[i] = (1 ns2tl[i] = (1
Page 11									
wet9init.c	<pre>lxminusminus = ((xx-xminus)*(xx-xzero))/ lxminus = ((xx-xminusminus)*(xminusminus-xzero)); lxminus = ((xx-xminusminus)*(xx-xzero)); lxzero = ((xx-xminusminus)*(xx-xminus); lxzero = ((xx-xminusminus)*(xx-xminus));</pre>	lxminus * lyminus; lxero * lyminus; lxminus * lyzero; lxminusminus * lyminus; lxminusminus * lyminus; lxminus * lyzero; lxminusminus * lyzero; lxminusminus * lyminusminus; lxminusminus * lyminusminus;	<pre>xx = xzero - ecx2[i] * delta_t / delta_x; xy = xzero - ecy2[i] * delta_t / delta_x; lxminusminus = ((xx-xminus)*(xx-xzero))/ lxminus = ((xx-xminusminus)*(xx-xzero)); lxminus = ((xx-xminusminus)*(xx-xzero)); lxzero = ((xx-xminusminus)*(xx-xminus)); lxzero = ((xx-xminusminus)*(xx-xminus)); lxzero = ((xx-xminusminus)*(xx-xminus));</pre>	<pre>lyminusminus = ((xy-xminus) * (xy-xzero))/ ((xminusminus-xminus) * (xy-xzero)); lyminus = ((xy-xminusminus) * (xy-xzero)); ((xminus-xminusminus) * (xminus-xzero)); lyzero = ((xy-xminusminus) * (xy-xminus)); ((xzero-xminusminus) * (xy-xminus));</pre>	<pre>lxminus * lyminus; lxzero * lyminus; lxminus * lyzero; lxminus * lyminus; lxminus * lyminusminus; lxminus * lyminusminus; lxminus * lyzero; lxminusminus * lyzero; lxminusminus * lyminusminus; lxxero * lyminusminus;</pre>				1++}
Jun 25 1999 13:31	lxminusminus = ((xilvanus = ((xxilvanusminus = (xxilvanusminus = (nu10[1] = 15 nu11[1] = 15 nu12[1] = 15 nu13[1] = 15 nu14[1] = 15 nu15[1] = 15 nu15[1] = 15 nu17[1] = 15 nu18[1] = 15 nu18[1] = 15	xx = xzero - ec xy = xzero - ec xy = xzero - ec lxminusminus = ('xx' xxero = ('xxx' xzero = ('xxx')	lyminusminus = (nu20[1] = 1 nu21[1] = 1 nu21[1] = 1 nu22[1] = 1 nu24[1] = 1 nu24[1] = 1 nu26[1] = 1 nu27[1] = 1 nu27[1] = 1	*/' /* serendip */	xtl = -1.000; xtr = 1.000; xbl = -1.000; xbr = 1.000;	ytl = 1.000; ytr = 1.000; ybl = -1.000; ybr = -1.000;	<pre>for (i=1; i<9; i</pre>

Printed by sofonea from flumag3.mec.utt.ro

Jun 25 1999 13:31 wet9init.c	Page 13	un P
<pre>/* printf("tl=%e tr=%e bl=%e br=%e\n",</pre>		
<pre>for (i=1; i<9; i++)</pre>		
	3.0	
- 2.000 * ecyılı) * delta_t / delta		
nsbitl[i] = (1.000 + xx*xtl)*(1.000 + xy*ytl) / 4.000; nsbitr[i] = (1.000 + xx*xtr)*(1.000 + xy*ytr) / 4.000; nsbibl[i] = (1.000 + xx*xbl)*(1.000 + xy*ybl) / 4.000; nsbibr[i] = (1.000 + xx*xbr)*(1.000 + xy*ybr) / 4.000;		
<pre>nlbitr[i] = (xx-xtl)*(xy-ybr) / ((xtr-xtl)*(ytr-ybr)); nlbitl[i] = (xx-xtr)*(xy-ybl) / ((xtl-xtr)*(ytl-ybl)); nlbibr[i] = (xx-xbl)*(xy-ytr) / ((xbr-xbl)*(ybr-ytr)); nlbibl[i] = (xx-xbr)*(xy-ytr) / ((xbl-xbr)*(ybl-ytr));</pre>		
, t a + [.] [.]	<u>w</u>	
xx = xx1 - 2.000 * ecx1		
<pre>xas xr - 2.000 * ecx1[i] * delta_x; xy = ytr - 2.000 * ecy1[i] * delta_t / delta_x; break; default: break; }</pre>		
<pre>nstlt[[i] = (1.000 + xx*xtl)*(1.000 + xy*ytl) / 4.000; nstltr[i] = (1.000 + xx*xtr)*(1.000 + xy*ytr) / 4.000; nstlbl[i] = (1.000 + xx*xbl)*(1.000 + xy*ybl) / 4.000; nstlbr[i] = (1.000 + xx*xbr)*(1.000 + xy*ybr) / 4.000;</pre>		
<pre>nltlr[i] = (xx-xtl)*(xy-ybr) / ((xtr-xtl)*(ytr-ybr)); nltll[i] = (xx-xtr)*(xy-ybl) / ((xtl-xtr)*(ytl-ybl)); nltlbr[i] = (xx-xbl)*(xy-ytr) / ((xbr-xbl)*(ybr-ytr)); nltlbl[i] = (xx-xbr)*(xy-ytl) / ((xbl-xbr)*(ybl-ytl));</pre>		
<pre>switch(i) { case 1: case 8:</pre>		

Jun 25 1999 13:31		wet9init.c		Page 14
xx = xtl - xy = ytl - break; case 4: case 5: xx = xbl - xy = ybl - break; default; break; }	2.000 * ecyl[i] 2.000 * ecyl[i] 2.000 * ecyl[i] 2.000 * ecyl[i]	* delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x;	a_x; a_x; a_x;	
nslit[[i] = [i. nslit[i] = [i. nslib[i] = [i. nslib[i] = [i. nlltr[i] = (xx. nlltr[i] = (xx. nllbr[i] = (xx. nllbr[i] = (xx.	(1.000 + xx*xtl)*(1. (1.000 + xx*xtb)*(1. (1.000 + xx*xbl)*(1. (1.000 + xx*xbl)*(1. (1.000 + xx*xbr)*(1. (xx-xtl)*(xy-ybr) / (xx-xtr)*(xy-ybl) / (xx-xbr)*(xy-ytr) / (xx-xbr)*(xy-ytr) /	000 + xy*ytl) / 000 + xy*ytl) / 000 + xy*ybl) / 000 + xy*ybl) / (xtr-xtl) *(ytr- (xtl-xtr) *(ytr- (xtl-xtr) *(ytr- (xbr-xbl) *(ybr- (xbr-xbl) *(ybr- (xbr-xbl) *(ybr-	4.000; 4.000; 4.000; 4.000; 4.000; Yebl); Yel); Yel);	
<pre>switch(i) case 2: case 7: xx = xtr - xy = ytr - break; case 6: xx = xbr - xx = xbr - xy = ybr - break; default: break; }</pre>	2.000 * ecx1[i] 2.000 * ecy1[i] 2.000 * ecx1[i] 2.000 * ecy1[i]	* delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x;	ŽŽ ŽŽ	
nsritl[i] = (1. nsrib1[i] = (1. nsrib1[i] = (1. nribr[i] = (x. nlritr[i] = (xx. nlrib1[i] = (xx. nlrib1[i] = (xx.	(1.000 + xx*xtl)*(1.000 (1.000 + xx*xtr)*(1.000 (1.000 + xx*xbl)*(1.000 (1.000 + xx*xbr)*(1.000 (xx-xtl)*(xy-ybr) / (xt (xx-xtl)*(xy-ybl) / (xt (xx-xbl)*(xy-ytr) / (xb (xx-xbl)*(xy-ytr) / (xb	1.000 + xy*ytl) / 4.000; 1.000 + xy*ytr) / 4.000; 1.000 + xy*ybr) / 4.000; 1.000 + xy*ybr) / 4.000; ((xtr-xtl)*(ytr-ybr)); / ((xtr-xtl)*(ytr-ybr)); / ((xbr-xbl)*(ybr-ytr)); / ((xbr-xbr)*(ybr-ytr));	4.000; 4.000; 4.000; 4.000; Ybz)); Ybz)); Ytz));	
switch(i) case 2: case 5:	2.000 * ecx2[i] 2.000 * ecy2[i] 2.000 * ecx2[i] 2.000 * ecy2[i]	* delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x; * delta_t / delta_x;	ŠŠ ŠŠ	
nsb2t1[i] = (1. nsb2tr[i] = (1. nsb2b1[i] = (1. nsb2br[i] = (1.	000 + xx*xtl)*(1.000 000 + xx*xtr)*(1.000 000 + xx*xbl)*(1.000 000 + xx*xbr)*(1.000	1.000 + xy*ytl) / 1.000 + xy*ytr) / 1.000 + xy*ybl) / 1.000 + xy*ybr) /	4.000; 4.000; 4.000; 4.000;	

Jun 25 1999 13:31	wet9init.c	Page 15
nlb2tr[i] = (xx-xtl)*(xy-ybr) / ((nlb2tl[i] = (xx-xtr)*(xy-ybl) / ((nlb2br[i] = (xx-xbl)*(xy-ytr) / ((nlb2bl[i] = (xx-xbl)*(xy-ytr) / ((((xtr-xtl)*(ytr-ybr)); ((xtl-xtr)*(ytl-ybl)); ((xbr-xbl)*(ybr-ytr)); ((xbl-xbr)*(ybr-ytr));	
: xtl - 2.000 * ecx2[i] * ytl - 2.000 * ecy2[i] *	delta_t / delta_x; delta_t / delta_x;	
7: = xtr - 2.000 * ecx2[1] * = ytr - 2.000 * ecy2[1] * sak;	delta_t / delta_x; delta_t / delta_x;	
nst2t1[i] = (1.000 + xx*xt1)*(1.000 nst2tr[i] = (1.000 + xx*xtr)*(1.000 nst2b1[i] = (1.000 + xx*xb1)*(1.000 nst2br[i] = (1.000 + xx*xb1)*(1.000	00 + xy*ytl) / 4.000; 00 + xy*ytr) / 4.000; 00 + xy*ybl) / 4.000; 01 + xy*ybl) / 4.000;	
nlt2tr[i] = (xx-xtl)*(xy-ybr) / (((xtr-xtl)*(ytr-ybx)); (xtl-xtr)*(ytl-ybl)); ((xbr-xbl)*(ybr-ytr)); ((xbl-xbr)*(ybl-ytr));	
xtl - 2.000 * ecx2[i] * ytl - 2.000 * ecy2[i] *	delta_t / delta_x; delta_t / delta_x;	
5: = xbl - 2.000 * ecx2[i] * = ybl - 2.000 * ecy2[i] * sak;	delta_t / delta_x; delta_t / delta_x; `	
nsl2tl[i] = (1.000 + xx*xtl)*(1.000 nsl2tr[i] = (1.000 + xx*xtr)*(1.000 nsl2bl[i] = (1.000 + xx*xbl)*(1.000 nsl2br[i] = (1.000 + xx*xbr)*(1.000	00 + xy*ytl) / 4.000; 00 + xy*ytr) / 4.000; 00 + xy*ybl) / 4.000; 00 + xy*ybl) / 4.000;	
nll2tr[i] = (xx-xtl)*(xy-ybr) / ((nll2tr[i] = (xx-xtr)*(xy-ybl) / ((nll2br[i] = (xx-xbl)*(xy-ytr) / ((nll2bl[i] = (xx-xbr)*(xy-ytr) / (((xtr-xtl)*(ytr-ybr)); (xtl-xtr)*(ytl-ybl)); ((xbr-xbl)*(ybr-ytr)); ((xbl-xbr)*(ybl-ytl));	
<pre>switch(i) { case 2: case 7: xx = xtr - 2.000 * ecx2[i] * c xy = ytr - 2.000 * ecy2[i] * c break; case 3:</pre>	delta_t / delta_x; delta_t / delta_x;	
6: = xbr - 2.000 * ecx2[i] * = ybr - 2.000 * ecy2[i] * eak;	delta_t / delta_x; delta_t / delta_x;	

Jun 25 1999 13:31 wets	wet9init.c	Page 16
<pre>default: break; }</pre>		
nsr2tl[i] = (1.000 + xx*xtl)*(1.000 + nsr2tr[i] = (1.000 + xx*xtr)*(1.000 + nsr2bl[i] = (1.000 + xx*xbl)*(1.000 + nsr2br[i] = (1.000 + xx*xbr)*(1.000 + nsr2br[i] = (1.000 + xx*xbr)*(1.000 + xx*	xy*ytl) / 4.000; xy*ytr) / 4.000; xy*ybl) / 4.000; xy*ybr) / 4.000;	
nlr2tr[i] = (xx-xtl)*(xy-ybr) / (xtr- nlr2tl[i] = (xx-xtr)*(xy-ybl) / (xtl- nlr2br[i] = (xx-xbl)*(xy-ytr) / (xbr- nlr2bl[i] = (xx-xbr)*(xy-ytr) / (xbr-	((xtr-xtl)*(ytr-ybr)); ((xtl-xtr)*(ytl-ybl)); ((xbr-xbl)*(ybr-ytr)); ((xbl-xbr)*(ybl-ytl));	
<pre>void intc_atrays_nine_square(void) { FILE *fsav, *frez; int i,jk, key_tho; double rand_coef = 0.00000000001, dummy; double radius, xc, yc, x,y;</pre>		
<pre>frez=fopen(rez_name,"a");</pre>		
for(i=0; i<9; i++)		
<pre>fprintf(frez,"i,ecx[i],ecy[i]\n\$3d %lf i,ecx[i],ecy[i]), fprintf(frez,"i,ecx1[i],ecy1[i]\n\$3d %l i,ecx1[i],ecy1[i]); fprintf(frez,"i,ecx2[i],ecy2[i]\n\$3d %l i,ecx2[i],ecy2[i]\n\$3d %l </pre>	£ % £\n", % £ % £\n", % £ % £\n",	
switch (key_init)		
case 0: /* homogeneous binary system * k=-1; for (j=0; j< nnodes_y; j++)	/*	
k++; f10[k] = nzerol * (1.000 + rand, / (c ((double) rand() / (c f20[k] = nzero2 * (1.000 + rand, / (c)	rand_coef * // (double) RAND_MAX) - 0.5)); rand_coef * // (double) RAND_MAX) - 0.5));	
••		
$K=-1;$ f_{or} ($j=0;$ $j < nnodes_y;$ $j++$)		
<pre>for(i=0; i < nnodes_x; i++) {</pre>		
k++; if(j <nnodes_y 2)<="" td=""><td></td><td></td></nnodes_y>		
nzerol * (1.000 (((double) rand 0.000e+0;	+ rand_coef * (() / (double) RAND_MAX) - 0.5));	
110[K] = 0.000e+0;		

Jun 25 1999 13:31 wet9init.c Page 17
<pre>f10[k] = nzero2 * (1.000 + rand_coef *</pre>
} break; case 2: /* diffusion couple */
-1; : (j=0; j< nnodes
{ for(i=0; i < nnodes_X; i++)
<pre></pre>
f10[k] = nzerolleft * (1. +rand_coef * (1 (double) rand() / (double) RAND_MAX) - 0.5));
120[K] = hzerozielt
<pre>else</pre>
ze z z z z z z z z z z z z z z z z z z
$K = -1;$ for $(j=0; j \leq y; j++)$
<pre>{ y = delta_x * ((double) j); for(i=0; i<nnodes_x; i++)<="" pre=""></nnodes_x;></pre>
<pre>{ x = delta_x * ((double) i);</pre>
<pre>if(x-xc)*(x-xc)+(y-yc)*(y-yc)<=</pre>
/* radius*radius) */
key_rho = 4;
<pre>tey_rho = 5; if((x-xc)*(x-xc)+(y-yc)*(y-yc)<= if((x-xc)*(x-xc)+(y-yc)*(y-yc)<= if((x-xc)*(x-xc)+(y-yc)*(x-yc)<=</pre>
<pre>hey.til() - x() * (x - x() + (y - y() * (y - y() <=</pre>
key_rho = 1; switch(key_rho)
case 1: fl0[k] = nzerolleft * (1.000 + rand coef * ((double) rand() / (double) RAND_MAX) - 0.5));
((double) rand()

Jun 25 1999 13:31 wet9init.c Page 18
<pre>f10[k] = nzerolleft * (1.000 + rand_coef *</pre>
= nzerolleft * (1.000 + rand_coef * ((double) rand() / (double) rand
Dreak; Case 4: fl0[k] = 3.000 * nzerolleft * (1.000 + rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5))/4.00; f20[k] = 3.000 * nzerolleft * (1.000 + rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5))/4.00;
<pre>case 5: f10[k] = nzerolright * (1.000 + rand_coef *</pre>
<pre>break; break; case 4: /* circular hubble */</pre>
eak; 5: /* sessile drop */
Dreak; case 6: /* pendant drop */ break; case 7: /* sessile bubble */
break; case 8: /* pendant bubble */ break;
case 9: /* liquid bridge */ k=-1; for (j=0; j< nnodes_y; j++)
{ for (i=0; i < nnodes_x; i++)
k++; if((icnnodes_x/4) (i>3*nnodes_x/4))
f10[k] = 0.0000+0; f20[k] = nzero2 * (1.000 + rand_coef * (((double) rand() / (double) RAND_MAX) - 0.5));
else {
f10[k] = nzero1 * (1.000 + rand_coef *. (((double) rand() / (double) RAND_MAX) - 0.5)); f20[k] = 0.000e+0;
} } break; cas bridge */
1; (j=0; j< nnodes_y;
{ for (i=0; i < nnodes_x; i++)
k++; if((i <nnodes_x (i="" 3)="" ="">2*nnodes_x/3)) {</nnodes_x>

8

Jun 25 1999 13:31	wet9init.c	Page 19
f10[k] = nzerol * (1.((1.000 + rand_coef * e) rand() / (double) RAND_MAX) - 0.5));	
10[k] = 0. 20[k] = nz (000e+0; ero2 * (1.000 + rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5));	
) break; } 600, 100, 100, 100, 100, 100, 100, 100,		
X X X X X X X X X X X X X X X X X X X		
<pre>f20[k] *= w0; } fclose(frez); }</pre>		
<pre>void init_arrays_nine_square_aux(void) { int i, j, nnll = (nnodes_v-1)*nnodes_x; ewitch(key houndary)</pre>		
<pre>.odic boundaries nnodes_all; i++) [1] = 0;</pre>	/*	
<pre>break; case 1: /* horizontal walls placed top and bottom for (i = 0; i< nnodes_x; i++) boundary_mode[i] = 1; /* bottom wall */ for (i = nnodes_x; i < nnodes_all-nnodes_x; i++) boundary_mode[i] = 0; /* bulk */ for (i = nnodes_all-nnodes_x; i < nnodes_all; i++) if (key_scheme == 6)</pre>	placed top and bottom */) bottom wall */ s.all-nnodes_x; i++) bulk */ ;; i < nnodes_all; i++) top wall */	
<pre>for (i=nnodes_x; i<2*nnodes_x; i boundary_mode[1] = 11; for (i=nnodes_all-(2*nnodes_x); boundary_mode[i] = 22;</pre>	i++); i <nnodes_all-nnodes_x; i++)<="" td=""><td></td></nnodes_all-nnodes_x;>	
<pre>break; case 2: /* vertical walls placed left for (i = 0, i < nnodes_all; i+t) boundary_mode[i] = 0; /* bulk */ for (j = 0; j < nnodes_y; j+t)</pre>	lleft and right */ : */	

6

Jun 3 1999 12:55 wet9draw.c Page	_
/*************************************	
<pre>#include <stdio.h> #include <math.h> #include <stdii.h> #include <stdii.h> #include <stdii.h></stdii.h></stdii.h></stdii.h></math.h></stdio.h></pre>	
<pre>#include "wet Shead.h" /* you may modify gray_levels */ /* to may included to a state of the state of th</pre>	
= 03, Dase = 00 10 10 10 10 10 10 10	
<pre>{ int i, val; char xv_name[128]; FILE *fxv;</pre>	
<pre>sprintf(xv_name, "%s.%06d.xpm", arg_name, iter); fxv = fopen(xv_name, "w"); fprintf(fxv, "/* xbw */\nstatic char * init_xpm[] = (\n"); fprintf(fxv, "/* xbw */\nstatic char * init_xpm[] = (\n"); fprintf(fxv, "\",\n",\n",\n",\n",\n"); for(i = 0; i <= gray_levels; i++) fprintf(fxv, "\",\n",\n",\n",\n",\n",\n",\n",\n",\n",</pre>	
<pre>for(i = 0; i <= nnodes_all; i++) for (a = 0; i <= nnodes_all; i++) // for (a = 0; i <= nnodes_all; i++)</pre>	
######################################	
<pre>val = 0; fprintf(fxv,"%c", base + val); fprintf(fxv,"\");\n"); fclose(fxv);</pre>	
<pre>void xv(double n0[],</pre>	
<pre>f FILE *fxv; char xv_name[128]; int i, k,val; int i, k,val; sprintf(xv_name, "%s. %05d", arg_name, iter); fxv = fopen(xv_name, "wt"); fprintf(fxv, "P2\n%3d%4d\n63\n", nnodes_x, nnodes_y); for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>	
<pre>! i++; val = floor((n0[k]+n1[k]+n2[k]+n4[k]+n5[k]+ if(val > 63)</pre>	

Jun 3 1999 12:55 wet9draw.c	Page 2
<pre>val = 63; if(val < 0) val = 0; /* val = 0; fprintf(fxv, "%3d",val); if(i == 15)</pre>	
1=0; fprintf(fxv,"\n"); }	
<pre>i { i { i } if i } if i f (i i i i i i i i i i i i i i</pre>	
void wet9_drop_profile(void)	
FILE *pnlx, *pn2x;	
char nlx_profile_name[128]; char n2x_profile_name[128];	
<pre>int i,j,k; double nloc1, nloc2; double nlx[nnodes_x], n2x[nnodes_x];</pre>	
<pre>sprintf(nlx_profile_name, "PRESSIX%s.%06d",id_name,iter); sprintf(n2x_profile_name,"PRESS2X%s.%06d",id_name,iter);</pre>	
<pre>pnlx = fopen(nlx_profile_name, "wt"); pn2x = fopen(n2x_profile_name, "wt");</pre>	
<pre>k = nnodes_x * nnodes_y/2 - 1; for(1=0; i<nnodes_x; i++)<="" pre=""></nnodes_x;></pre>	r
k ++; nlocl = fl0[k]+fl1[k]+fl2[k]+fl3[k]+fl4[k]+fl5[k]+fl6[k]+ fl7[k]+fl8[k]; nloc2 = f20[k]+f21[k]+f22[k]+f23[k]+f24[k]+f25[k]+f26[k]+ f27[k]+f28[k];	
<pre>fprintf(pnlx,"%d %25.201f(\n",i,nloc1); fprintf(pn2x,"%d %25.201f\n",i,nloc2); }</pre>	
<pre>fclose(pnlx); fclose(pn2x); }</pre>	
void wet9_channel_profile(void)	
FILE *pn1, *pn2, *pntot, *prhotot, *pvx, *pvx1, *pvx2, *pgvx, *pv	*pvisco;
FILE *pf0, *pf1, *pf2, *pf3, *pf4, *pf5, *pf6, *pf7, *pf8;	
char nl_profile_name[128]; char n2_profile_name[128]; char ntot_profile_name[128]; char valorfile_name[128]; char va_profile_name[128]; char va_profile_name[128]; char va_profile_name[128]; char va_profile_name[128]; char va_profile_name[128]; char va_profile_name[128];	
<pre>char f0_name[128]; char f1_name[128]; char f2_name[128];</pre>	

wet9draw.c

	-
	-
Ö	
9draw	
vet9draw	
ĭet V	
	· ·
	A
	7
	3
ίζ	
š	
Jun 3 1999 12:55	
3 16	
-	
3	
	-
ń	
ø	

Page 4

انــ							
						and the second s	
Page 3							
Jun 3 1999 12:55 wet9draw.c	128]; 128]; 128]; 128]; 128];	double nloc1, nloc2, nloc, rho1, rho2, rho1oc, uloc1, uloc2, uloc, mean_mass; double vx[nnodes_y], ginnodes_y]; grad_vx[nnodes_y]; double vx[nnodes_y], vx2[nnodes_y]; double vx[nnodes_y], vx2[nnodes_y]; double nlinnodes_y], rhoto[nnodes_y], rhotot[nnodes_y]; double visco, ivisco, suml, sum2, channel_width;	<pre>sprintf(nl_profile_name, "PN1\$s.\$06d",id_name,iter); sprintf(nl_profile_name,"PN2\$s.\$06d",id_name,iter); sprintf(ntot_profile_name,"PNTOT\$s.\$06d",id_name,iter); sprintf(thotot_profile_name,"PNTOT\$s.\$06d",id_name,iter); sprintf(vx_profile_name,"PVX\$s.\$06d",id_name,iter); sprintf(vx_profile_name,"PVX\$s.\$06d",id_name,iter); sprintf(vx_profile_name,"PVX\$s.\$06d",id_name,iter); sprintf(vx_profile_name,"PVTSCOX\$s.\$06d",id_name,iter); sprintf(vts_o_name,"PVTSCOX\$s",id_name,iter);</pre>	<pre>sprint(f0_name, "PF0%s.%06d",id_name,iter); sprint(f1_name,"PF1%s.%06d",id_name,iter); sprint(f1_name,"PF2%s.%06d",id_name,iter); sprintf(f2_name,"PF3%s.%06d",id_name,iter); sprint(f4_name,"PF1%s.%06d",id_name,iter); sprint(f5_name,"PF8%s.%06d",id_name,iter); sprint(f6_name,"PF6%s.%06d",id_name,iter); sprint(f6_name,"PF6%s.%06d",id_name,iter); sprintf(f1,name,"PF6%s.%06d",id_name,iter); sprintf(f1,name,"PF0%s.%06d",id_name,iter);</pre>	<pre>pf0 = fopen(f0_name, "wt"); pf1 = fopen(f1_name, "wt"); pf2 = fopen(f2_name, "wt"); pf3 = fopen(f3_name, "wt"); pf4 = fopen(f4_name, "wt"); pf5 = fopen(f3_name, "wt"); pf6 = fopen(f3_name, "wt"); pf7 = fopen(f3_name, "wt"); pf7 = fopen(f1_name, "wt"); pf8 = fopen(f8_name, "wt");</pre>	<pre>pn1 = fopen(nl_profile_name, "wt"); pn2 = fopen(nl_brofile_name, "wt"); prtct = fopen(ntot_profile_name, "wt"); prtct = fopen(ntot_profile_name, "wt"); pvx = fopen(x_profile_name, "wt"); pvx = fopen(x_profile_name, "wt"); pvx = fopen(xx_profile_name, "wt"); pvx = fopen(xx_profile_name, "wt"); pvx = fopen(xx_profile_name, "wt"); pvx = fopen(xx_profile_name, "wt"); else pvisco = fopen(visco_name, "wt"); else pvisco = fopen(visco_name, "wt");</pre>	<pre>k = 0; for(j=0; j<nnodes_y; j++)<="" th=""></nnodes_y;></pre>

nloc1 = fig[k]+fil[k]
--

Jun 3 1999 12:55 wet9draw.c Page 5
<pre>fprint(pf4,"%lf %25.201f\n",y[],f14(1*nnodes_x]); fprint(pf5,"%lf %25.201f\n",y[],f15(1*nnodes_x]); fprint(pf6,"%lf %25.201f\n",y[],f15(1*nnodes_x]); fprint(pf7,%lf %25.201f\n",y[]),f15(1*nnodes_x]); fprint(pf8,"%lf %25.201f\n",y[]),f18(]*nnodes_x]); }</pre>
<pre>grad_vx[0] = (vx[1]-vx[0])/delta_y; fprintf(pgvx, *lf *25.201f\n",y[0],grad_vx[0]); for(j=1; j<nnodes_y-1; j++)<="" pre=""></nnodes_y-1;></pre>
<pre>grad_vx[j] = (vx[j+1]-vx[j-1])/(2.0000*dalta_y);</pre>
<pre>grad.vx[nnodes_y-1] = (vx[nnodes_y-1]-vx[nnodes_y-2])/delta_y; fprintf(pgvx,"%lf %25.201f\n",y[nnodes_y-1],grad_vx[nnodes_y-1]);</pre>
<pre>channel_width = ((double) (nnodes_y-1)) * delta_y; sum1 = sum2 = 0.00000; for(j=0; j<nnodes_y; j++)<="" pre=""></nnodes_y;></pre>
<pre>sum1 += (y[j]*channel_width - y[j]*y[j]) * (y[j]*channel_width - y[j]*y[j]); sum2 += vx[j] * (y[j]*channel_width - y[j]*y[j]);</pre>
sum2 *= 2.0000; nean_mass = (mass1*nzero1 + mass2*nzero2) / (nzero1+nzero2);
/* if(vx[nnodes_y/2]) if(x[nnodes_y/2]) printf("%lf %lf %e %e %e\n",mean_mass, (force_x*channel_width*channel_width)/ (8.000*mean_mass*amu*vx[nnodes_y/2]),kboltz,temp,amu);
else printf("%lf\n", mean_mass); */
f(sum2) visco = Lse
<pre>visco = 0.0000; fprintf(pvisco, "%8.8d %e\n",iter,visco);</pre>
fclose(pnl); fclose(pnl); fclose(pnl); fclose(pntot); fclose(pnvl); fclose(pvxl); fclose(pvxl); fclose(pvxl); fclose(pvxl); fclose(pvxl); fclose(pvxl);
fclose (pf0); fclose (pf1); fclose (pf2); fclose (pf3); fclose (pf6); fclose (pf6); fclose (pf6); fclose (pf6); fclose (pf6);
} void wet9_couple_profile(void)
<pre>fILE *pntot, *prhotot, *prhot, *prho2, *pomegal, *pomeganl, *pomega2, *pomegan2, *pj2, *pu1, *pu2, *pu, *pubbis;</pre>
char ntot_profile_name[128]; char rhotot_profile_name[128]; char rho1_profile_name[128];

char tho2_profile_name[128]; that comegal_profile_name[128]; that comegal_profile_name[128]; that comegal_profile_name[128]; that comegal_profile_name[128]; that comegal_profile_name[128]; that uprofile_name[128]; that up
--

wet9draw.c

Jun 3 1999 12:55

Jun 3 1999 12:55 wet9draw.c	Page 7
k = i + j * nnodes_x; nloc1 = £10[k]+£11[k]+£12[k]+£13[k]+£14[k]+£15[k]+£16[k]+ £17[k]+£18[k]; nloc2 = £20[k]+£21[k]+£22[k]+£23[k]+£24[k]+£25[k]+£26[k]+ /*	
intf(" oloc1 oloc2	
("k=%d rho k,rholoc1,	
omegalloc = rholoc1 / rholoc; omegalloc = rholoc2 / rholoc;	
else {	
; if(nloc1+nloc2)	
<pre>{ omeganlloc = nloc1 / (nloc1+nloc2); omegan2loc = nloc2 / (nloc1+nloc2); } else</pre>	
<pre></pre>	
<pre>if(nloc1) uloc1 = (f11[k]*ecx1[1]+f12[k]*ecx1[2]+f13[k]*ecx1[3]+</pre>	
<pre>if(nloc2) uloc2 = (f21[k]*ecx2[1]+f22[k]*ecx2[2]+f23[k]*ecx2[3]+</pre>	
/* printf("k=%d uloc1=%g uloc2=%g\n",k,uloc1,uloc2); */	
<pre>if(rholoc)</pre>	
<pre>f uloc = 0.0000; /* printf("k=%d rholoc=%g\n",k,rholoc); */</pre>	

/* if(nloc1) uloclbis = (uloc1 * (1.000 - 0.500*delta_t/tau1) + uloc*0.500*delta_t(tau1)/nloc1;
else lucibis = 0.000; lf(nloc2) uloc2bis = (uloc2 * (1.000 - 0.500*delta_t/tau2) + uloc2bis = (uloc*0.500*delta_t/tau2)/nloc2:
else uloc2bis = 0.000; ulocbis = (rholoc1*uloc1*(1.000 - 0.500*delta_t/tau1) + rholoc2*uloc2*(1.000 - 0.500*delta_t/tau2) + rholoc2*uloc*0.500*delta_t/tau1 + rholoc2*uloc*0.500*delta_t/tau2) / rholoc; */
<pre>ntot += (nloc1 + nloc2); rhotot += (rholoc1 + rholoc2); rno1 += rholoc1; rho2 += rholoc1; rho3 += rholoc2; omega1 += omega1loc; omega2 += omega2loc; omega2 += omega1loc; omega1 == omega1loc; omega1 == omega1loc; omega1 == omega1loc; omega1 == omega1loc; in the indication in th</pre>
ur + urc.; uz + urc.; uz + urc.; /* uzbis += uloczbis; ubis += uloczbis; */
<pre>http://www.nodes_y); rhotot /= ((double) nnodes_y); rho1 /= ((double) nnodes_y); rho2 /= ((double) nnodes_y); omega1 /= ((double) nnodes_y); omega2 /= ((double) nnodes_y); omega2 /= ((double) nnodes_y); omega2 /= ((double) nnodes_y); in /= ((double) nnodes_y)</pre>
s (
<pre>fprintf(publs, %lf\n", u2bis); fprintf(publs, "%lf\n", ubis); // // fclose(pntot);</pre>

wet9draw.c

	ы
	~
5	9
₽	&
⋾	
flumag3.mec.utt.	1 1
Ē	1 1
က်	
g	1 1
Ε	1 1
₽	1 1
Ξ	1 1
ō	1 1
₽	1 1
a	1 1
Ě	1 1
품	
y sofonea from f	
ે	
ᇴ	131
Printed by	ا≥ا
.⊑	12
<u>a</u>	וסו
	모
	9
	3
	1 1
	I
	1 1
	1 1
	1 1
	1 1

Jun 3 1999 12:55		ux = (mass (mass and	
Jun 3 1999 12:55 wet9draw.c Page 9	fclose (prhotot); fclose (prhol); fclose (prhol); fclose (pomegal); fclose (pomegal); fclose (pomegal); fclose (pomegal); fclose (pomegal); fclose (pul);	<pre>void test_ntot (void) FILE *ptot; double ntoti=0,0000, ntot2=0.0000; double ntoti=0,0000, ntot2=0.0000; sprint(intot_name(128); for(i=0), knode=_an=(128); for(i=0), knode=_an=(1</pre>	ux1 = (fil[k]*ecx[1]+fil2[k]*ecx[5]+fil3[k]*ecx[6]) / nloc1; fil4[k]*ecx[4]+fil5[k]*ecx[5]+fil6[k]*ecx[6]) / nloc1; uy1 = (fil[k]*ecy[1]+fil2[k]*ecy[5]+fil3[k]*ecy[3]+

### ### ##############################	·
--	---

Page 11

wet9draw.c

Jun 3 1999 12:55

52

wet9cs.c

nag3.mec.utt.ro	Page 2
Printed by sofonea from flumag3.mec.utt.ro	၁
Printe	wet9cs.
	May 25 1999 16:33

	,

* Met90s.c. * * *******************************	
<pre>#include <stdio.h> #include <stdlib.h> #include <action< td=""><td></td></action<></stdlib.h></stdio.h></pre>	
<pre>#include "wet9head.h"</pre>	-
<pre>double compute_centered_sources_bulk(int sigma, int index, int k,</pre>	
double dummy, ux, uy, uu, neq, cfl, source; double fsl[9], fs2[9];	
<pre>switch(sigma) { case 1: cfl = cfl1;</pre>	
Dreak; Dreak; Case 2: CI	
[nvplus] + nfl0[nvminus])	
= (nf11[nvplus] + nf11 * (nf11[nvplus] + nf11	
= (nf12[nvplus] + nf12[nvminus]) * (nf12[nvplus] - nf12[nvminus])	
= (nfl3[nvplus] + nfl3[nvminus]) / * (nfl3[nvplus] - nfl3[nvminus]);	
= (nf14[nvplus] + nf14[nvminus]) / 2.000 * (nf14[nvplus] - nf14[nvminus]);	
= (nf15[nvplus] + * (nf15[nvplus] - = (nf16[nvnlus] +	
. * (nf16[nvplus] - nf16[nvminus]); = (nf17[nvplus] + nf17[nvminus]) / 2.000	
nvplus] nvplus] nvplus]	
= (nf20[nvplus] + nf20[nvminus])	
(nf20[nvplus] - nf20[nvmlnus]) (nf21[nvplus] + nf21[nvminus])	
* (nf21[nvplus] = (nf22[nvplus] * (nf22[nvplus]	
= (nf23[nvplus] + nf23[nvminus]) * (nf23[nvplus] - nf23[nvminus])	
= (nf24[nvflus] + nf24[nvminus])	
(nf25[nvplus] + nf25[nvminus]) (nf25[nvminus] - nf25[nvminus])	
= (nf26[nvplus] + nf26 * (nf26[nvplus] - nf26	
= (nf27[nvplus] + nf27	

cf.	
mass1	
+	
/ Caul + / Taul + /	
ux + uy igma)	
<pre>case 1: dummy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; /* printf("dummy=%25.20e\n",dummy); */</pre>	
<pre>neq = ww(index] * (fs1[0]+fs1[1]+fs1[2]+fs1[3]+fs1[4]+fs1[5]+fs1[6]+</pre>	
<pre>printf("k=#d index=#d fs1=#25.20e neq=#25.20e source=#25.20e fs1-neq=#25.20e fs1+source=#25.20e ux-%e uy=%e ecprod=%eh", k,index,fs1[index],neq,source,fs1[index]-neq,fs1[index]+source,ux,uy,ecprod l[index]);</pre>	\$25.20e y,ecprod
Drawk; case 2: dummy = (ecx2[index] * ux + ecy2[index] * uy) / cspeed22; dummy = ww[index] * (22[0]+fs2[1]+fs2[3]+fs2[4]+fs2[5]+fs2[6]+	
return source;	
<pre>double compute_centered_sources_boundary1(int sigma, int index, int k, int nyplus, int nyminus, double ux_boundary, double uy_boundary, double nf10[1], double nf11[1], double nf12[1, double nf13[1], double nf14[1], double nf15[1, double nf16[1], double nf17[1], double nf18[1, double nf20[1], double nf18[1], double nf18[1], double nf20[1], double nf24[1], double nf22[1, double nf24[1], double nf25[1,</pre>	
double dummy, uu, neg, cfl, source; double fs1[9], fs2[9];	
<pre>switch(sigma) {</pre>	

	4
2	위
rinted by sofonea from flumag3.mec.utt.ro	ag
	12
Θ	
Ë	
ξ	
ğ	{
Ē	1
€	
Ε	1 - 1
2	
₩.	. 1
ğ	
٥	
ğ	
S	
Ω	1
졌	ပ
¥	SS
Ē	၂ ဆ
ш	et9cs
	1 2 1
	>
	1
	1
	ı
	ıl

May 25 1999 16:33	 return source; 	<pre>uu = ux_boundary*ux_] switch(sigma)</pre>
May 25 1999 16:33 wet9cs.c Page 3	case 1: cf1 = (nf10 (mylus) + nf10 (nyminus) / 2.000 - cf1 = (nf10 (mylus) - nf10 (nyminus) / 2.000 - cf1 = (nf10 (mylus) - nf11 (nyminus) / 2.000 - cf1 = (nf11 (mylus) + nf11 (nyminus) / 2.000 - cf1 = (nf12 (mylus) - nf11 (nyminus) / 2.000 - cf1 = (nf12 (mylus) - nf12 (nyminus) / 2.000 - cf1 = (nf12 (mylus) - nf12 (nyminus) / 2.000 - cf1 = (nf13 (mylus) - nf13 (nyminus) / 2.000 - cf1 = (nf14 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf15 (mylus) - nf15 (nyminus) / 2.000 - cf1 = (nf2 (mylus) - nf15 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf15 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf15 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf12 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf12 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf22 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf2 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf3 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf3 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf3 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf3 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf3 = (nf2 (mylus) - nf23 (nyminus) / 2.000 - cf3 = (nf2 (mylus) - nf23 (nyminus) / 2.0	<pre>uu = ux_boundary*ux_boundary + uy_boundary*uy_boundary; switch(sigma)</pre>

<pre>double compute_centered_sources double dummy, uu, neq, cfl, s double fsl[9], fs2[9]; switch(sigma) { case 1: fs1[1] = nf10[k] - cfl] fs1[2] = nf12[k] - cfl] fs1[3] = nf13[k] - cfl] fs1[4] = nf15[k] - cfl] fs1[5] = nf15[k] - cfl] fs1[6] = nf15[k] - cfl] fs2[0] = nf2[k] - cfl] fs2[0] = nf2[k] - cfl] fs2[0] = nf2[k] - cfl] fs2[1] = nf2[k] fs2[1] + cfl] fs2[1] + cfl] fs2[1] + nf2[k] fs2[1] + nf2[k]</pre>

May 25 1999 16:33 wet9cs.c Page 5
<pre>void compute_centered_sources(double nf10[], double nf12[],</pre>
<pre>int k; for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>
source10[k] = -ctau1 * (nf10[k] - neq10[k]) +
<pre>void centered_cfl(double cfl,</pre>
<pre>for (k=0; k<nnodes_all; k++)="" td="" {<=""></nnodes_all;></pre>
<pre>swltch(boundary_mode[k]) {</pre>

Printed by sofonea from flumag3.mec.utt.ro	<pre>source1(k]; source2(k]; source3(k]; source4(k]; source5(k]; source6(k]; source6(k]; source7(k]; k]) + source2(k]; k]) + source3(k]; k]) + source3(k];</pre>
Printed by so wet9cs.c	= nf0[k] + source0[k];
May 25 1999 16:33	Case 0: Diff Cit

wet9cs.c

Jun 2 1999 20:19 Wet9lf.c	Page 1

<pre>/*********** #include <stdio.h> #include <stdib.h> #include <stdib.h> #include <math.h></math.h></stdib.h></stdib.h></stdio.h></pre>	
#include "wet9head.h"	
<pre>double compute_upwind_sources_bulk(int sigma, int index, int k, int nv,</pre>	
<pre>double compute_upwind_sources_boundary(int sigma, int index, int k, int nv,</pre>	
<pre>double lf_sources_bulk(int sigma, int index, int jminus, int jloc, int jplus, double tlfminus, double tlfplus, double nf10[], double nf11[], double nf12[], double nf10[], double nf11[], double nf15[], double nf10[], double nf15[], double nf20[], double nf12[], double nf22[], double nf23[], double nf23[], double nf23[], double nf28[],</pre>	
double dummy, ux, uy, uu, neq, source; double fs1[9], fs2[9];	
<pre>fs1(0) = tlfminus * nf10(jminus) + tlfplus * nf10[jplus]; fs1(1) = tlfminus * nf11[jminus) + tlfplus * nf11[jplus]; fs1(2) = tlfminus * nf12(jminus) + tlfplus * nf12(jplus); fs1(3) = tlfminus * nf13(jminus) + tlfplus * nf13(jplus); fs1(4) = tlfminus * nf14(jminus) + tlfplus * nf14(jplus); fs1(5) = tlfminus * nf16(jminus) + tlfplus * nf15(jplus); fs1(6) = tlfminus * nf16(jminus) + tlfplus * nf16(jplus); fs1(7) = tlfminus * nf17(jminus) + tlfplus * nf17(jplus); fs1(8) = tlfminus * nf17(jminus) + tlfplus * nf17(jplus);</pre>	
fs2[0] = tlfminus * nf20[jminus] + tlfplus * nf20[jplus]; fs2[1] = tlfminus * nf22[jminus] + tlfplus * nf21[jplus]; fs2[2] = tlfminus * nf22[jminus] + tlfplus * nf22[jplus]; fs2[3] = tlfminus * nf23[jminus] + tlfplus * nf23[jplus]; fs2[4] = tlfminus * nf23[jminus] + tlfplus * nf24[jplus]; fs2[5] = tlfminus * nf25[jminus] + tlfplus * nf25[jplus]; fs2[6] = tlfminus * nf26[jminus] + tlfplus * nf26[jplus]; fs2[7] = tlfminus * nf27[jminus] + tlfplus * nf27[jplus]; fs2[8] = tlfminus * nf27[jminus] + tlfplus * nf27[jplus];	
<pre>dummy = mass1 * (fs1[0]+fs1[1]+fs1[3]+fs1[4]+fs1[5]+</pre>	

Jun 2 1999 20:19 wet9lf.c	Page 2
<pre>mass2 * (fs2[1]*ecx2[1]+fs2[2]*ecx2[2]+fs2[3]*ecx2[3]+fs2[4]*ecx2[4]+</pre>	
<pre>uu = ux*ux + uy*uy; switch(sigma) { case 1:</pre>	
fs2(7)+fs2[8]) * (1.000 + three * dummy + nine_over_two * dummy * dummy - three_over_two * uu / cspeed22); source = - ctau2 * (fs2[index] - neq) +	
<pre>double If_sources_out(int sigma, int index, int jminus2, int jminus1, int jloc, int jminus2, int jminus1, int jloc, double tminus2, double tminus1, double fout, double nf10(1) double nf11(1), double nf12(1), double nf18(1), double nf11(1), double nf18(1), double nf20(1), double nf21(1), double nf22(1), double nf23(1), double nf21(1), double nf22(1), double nf28(1), double nf21(1), double nf28(1), }</pre>	
double dummy, ux, uy, uu, neq, source; double fs1[9], fs2[9];	
<pre>fs1[0] = tminus2 * nf10[jminus2] + tminus1 * nf10[jminus1] + tout*nf10[jloc]; fs1[1] = tminus2 * nf11[jminus2] + tminus1 * nf11[jminus1] + tout*nf11[jloc]; fs1[2] = tminus2 * nf12[jminus2] + tminus1 * nf12[jminus1] + tout*nf12[jloc]; fs1[3] = tminus2 * nf13[jminus2] + tminus1 * nf13[jminus1] + tout*nf13[jloc]; fs1[4] = tminus2 * nf14[jminus2] + tminus1 * nf14[jminus1] + tout*nf14[jloc]; fs1[5] = tminus2 * nf16[jminus2] + tminus1 * nf15[jminus1] + tout*nf15[jloc]; fs1[6] = tminus2 * nf16[jminus2] + tminus1 * nf16[jminus1] + tout*nf16[jloc]; fs1[7] = tminus2 * nf17[jminus2] + tminus1 * nf17[jminus1] + tout*nf16[jloc]; fs1[8] = tminus2 * nf18[jminus2] + tminus1 * nf18[jminus1] + tout*nf18[jloc];</pre>	
fs2[0] = tminus2 * nf20[jminus2] + tminus1 * nf20[jminus1] + tout*nf20[jloc]; [s22[2] = tminus2 * nf21[jminus2] + tminus1 * nf21[jminus1] + tout*nf21[jloc]; [s22[3] = tminus2 * nf22[jminus2] + tminus1 * nf22[jminus1] + tout*nf21[jloc]; [s22[3] = tminus2 * nf23[jminus2] + tminus1 * nf22[jminus1] + tout*nf23[jloc]; [s23[4] = tminus2 * nf24[jminus2] + tminus1 * nf24[jminus1] + tout*nf24[jloc]; [s25[5] = tminus2 * nf24[jminus2] + tminus1 * nf24[jminus1] + tout*nf24[jloc]; [s25[6] = tminus2 * nf26[jminus2] + tminus1 * nf26[jminus1] + tout*nf26[jloc]; [s25[6] = tminus2 * nf27[jminus2] + tminus1 * nf27[jminus1] + tout*nf26[jloc]; [s2[8] = tminus2 * nf28[jminus2] + tminus1 * nf28[jminus1] + tout*nf28[jloc]; [s2[8] = tminus2 * nf28[jminus2] + tminus1 * nf28[jminus1] + tout*nf28[jloc];	
<pre>ux = tminus2 * uxloc[jminus2] + tminus1 * uxloc[jminus1] + tout *uxloc[jloc];</pre>	

	4
0	o l
Ξ.	ŏ.
Ħ	□ਲ∣
⇒	
umag3.mec.utt.ro	
9	- 1
E	. [
က	1
Ö	- 1
<u> </u>	- 1
Ε	
_	1
#	
Ε	1
ō	1
Ŧ	
๙	- 1
0	4
듯	
₽	
Ö	
ਨ	- 13
=	
rinted by sofonea from fl	ပေ
# 1	<u>.</u>
.⊨	
ā	뽀
_	a
	5
	7
	1

2 1999 20:19 Page 3 Faminus * uyloc[jminus2] + tminus1 * uyloc[jminus2];	
uy*uy; (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; (index] * (fs1[0]+fs1[1]+fs1[3]+fs1[4]+fs1[5]	(1.000 + three cover tree cover source = - cte (ecprodlinc break; case 2: case 2:
<pre>(1.000 + three * dummy + nine_over_two * dummy * dummy - three_over_two * uu / cspeedi2); source = - craul * (fslindex] - neq) + (ecprodl[index] - csforce_x * ux - csforce_y * uy) * neq;</pre>	neq = ww[index) (1.000 + thre three_ver[source = cran
	break;) return source;) void lf_sources(doub)
<pre>source; (ecprod2[index] - csforce_x * ux - csforce_y * uy) * neq; break;) return source;</pre>	
<pre>double lf_sources_in(int sigma, int index, int jloc, int jplus1, int jplus2, double tin, double tplus1, double tplus2, double nf10(), double nf11(), double nf12(), double nf13(), double nf14(), double nf15(), double nf13(), double nf17(), double nf15(), double nf23(), double nf27(), double nf22(), double nf23(), double nf24(), double nf22(), double nf26(), double nf24(), double nf25(),</pre>	<pre>int k; for(k=0; kcnnodes_s</pre>
dummy, ux, uy, uu, neq, source; fs1[9], fs2[9];	
<pre>tin * nf10[jloc] + tplus1 * nf10[jplus1] + tplus2 * nf10[jplus2]; tin * nf11[jloc] + tplus1 * nf11[jplus1] + tplus2 * nf11[jplus2]; tin * nf12[jloc] + tplus1 * nf12[jplus1] + tplus2 * nf12[jplus2]; tin * nf13[jloc] + tplus1 * nf13[jplus1] + tplus2 * nf13[jplus2]; tin * nf14[jloc] + tplus1 * nf14[jplus1] + tplus2 * nf14[jplus2]; tin * nf15[jloc] + tplus1 * nf15[jplus1] + tplus2 * nf15[jplus2]; tin * nf15[jloc] + tplus1 * nf16[jplus1] + tplus2 * nf15[jplus2]; tin * nf17[jloc] + tplus1 * nf18[jplus1] + tplus2 * nf15[jplus2]; tin * nf18[jloc] + tplus1 * nf18[jplus1] + tplus2 * nf18[jplus2];</pre>	Case 0: Sf11[k]
tin * nf20[jloc] + tplus1 * nf20[jplus1] + tplus2 * nf20[jplus2]; tin * nf21[jloc] + tplus1 * nf21[jplus1] + tplus2 * nf21[jplus2]; tin * nf22[jloc] + tplus1 * nf22[jplus1] + tplus2 * nf22[jplus2]; tin * nf22[jloc] + tplus1 * nf22[jplus1] + tplus2 * nf23[jplus2]; tin * nf24[jloc] + tplus1 * nf24[jplus1] + tplus2 * nf24[jplus2]; tin * nf25[jloc] + tplus1 * nf24[jplus1] + tplus2 * nf24[jplus2]; tin * nf26[jloc] + tplus1 * nf26[jplus1] + tplus2 * nf26[jplus2]; tin * nf26[jloc] + tplus1 * nf27[jplus1] + tplus2 * nf26[jplus2];	sf12[k] = source12[k source22[k] = sf22[k] = source22[k]
Aloc(jloc) + tplus1 * uxloc(jplus1) + tplus2 * uxloc(jplus1) + tplus2 * uxloc(jplus1) + tplus2 * uyloc(jplus1) + tplus2 *	sf13[k] = source13[k]
<pre>case 1: dummy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; neq = ww[index] * (fs1[0]+fs1[1]+fs1[3]+fs1[4]+fs1[5]+fs1[6]+</pre>	sf23[k] = source23[k

Jun 2 1999 20:19 wet9lf.c	Page 5
tlfminus2, tlfplus2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, n nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, n	nf18, nf28);
.4[nv4[k]];	
nf14, nf15, nf16, nf17, nf24, nf25, nf26, nf27, llfplus2 * nf24[nv4[k]]; [K], k, nv4[k],	nf18, nf28);
116, nf17, 126, nf27,	nf18, nf28);
<pre>sf15[k] = tlfminus1 * nf15[nv7[k]] + tlfplus1 * nf15[nv5[k]]; source15[k] = lf.sources_bubl(1, 5, nv7[k], k, nv5[k],</pre>	
ifi2, n£13, n£14, n£15, n£16, n£17, n£2, n£24, n£25, n£26, n£27, n[nv][k]] + t1£plus2 * n£25[nv5[k]] nk(2, 5, nv7[k], k, nv5[k],	nf18, nf28);
LIMINUSZ, LIPPLUSZ, nE10, nE12, nE13, nE14, nE15, nE16, nE17, n nE20, nE21, nE22, nE23, nE24, nE25, nE26, nE27, n	nf18, nf28);
<pre>sf16[k] = tlfminus1 * nf16[nv8[k]] + tlfplus1 * nf16[nv6[k]]; source16[k] = lf_sources_bulk(1, 6, nv8[k], k, nv6[k],</pre>	
Liminus, Liphusi, nfl4, nfl5, nfl6, nfl7, nfl7, nfl6, nfl7, nfl2, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfl2, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfl2, nfl2, nfl4, nfl2, nfl6, nfl7, nfl6, nfl4,	nf18, nf28);
17, 27,	nf18, nf28);
<pre>sf17[k] = tlfminus1 * nf17[nv5[k]] + tlfplus1 * nf17[nv7[k]]; source17[k] = lf_sources_blf(1, 7, nv5[k], k, nv7[k],</pre>	
CIMINUS; CIPPLS; nf13, nf14, nf15, nf16, nf17, r nf20, nf21, nf12, nf23, nf24, nf25, nf26, nf26, nf27, r sf27[k] = t1fminus2 * nf27[nv5[k]] + t1fplus * nf27[nv7[k]]; source27[k] = l_sources_bulk(2, 7, nv5[k], k, nv7[k],	, n£18, 7, n£28);];
	nf18, nf28);
sf18[k] = tlfminus1 * nf18[nv6[k]] + tlfplus1 * nf18[nv8[k]]; source18[k] = lf_sources_bulk[1, 8, nv6[k], k, nv8[k],	
LIMINIUS1, LIPOUSI, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, r nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, r sf28[k] = tlfminus2 * nf28[iv6[k]] + tlfplus2 * nf28[iv8[k]]; source28[k] = lf_source3_bulk[2, 8, nv6[k], k, nv8[k],	nf18, nf28);
tlminus2, tliptus2, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf25, nf27,	nf18, nf28);
<pre>break; case 1: /* bottom wall */ sfilk = tlfminus1 * nfl1[nv3[k]] + tlfplus1 * nfl1[nv1[k]]; sourcel1[k] = lf_sources_bulk(1, 1, nv3[k], k, nv1[k],</pre>	
cinands, ciplus, piplus, of the neils, sonroesliki = ils souroes buikt, i, noilki, k, noilki,	nf18, nf28);
tlfminus2, tlfplus2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17,	nf18,

Jun 2 1999 20:19	wet9lf.c Page 6
nf20, nf21, n	nf22, nf23, nf24, nf25, nf26, nf27, nf28);
<pre>sf12[k] = nf12[k] - cf11 * (n source12[k] = compute_upwind_ uxwall_bot, uyw nf10, nf11, nf1 sf22[k] = nf22[k] = cf12 * (n source2[k] = compute_upwind_</pre>	<pre>1 * (nf12[nv2[k]] - nf12[k]); owind_sources_boundary(1, 2, k, nv2[k],</pre>
uxwall_bot, uyw n£10, n£11, n£1 n£20, n£21, n£2	all_bot, 2, nf13, nf14, nf15, nf16, 2, nf23, nf24, nf25, nf26,
f13[k] = ource13[k] f23[k] =	<pre>tlfminus1 * nf13[nv1[k]) + tlfplus1 * nf13[nv3[k]]; = 1f_sourcee_bulk[t], 3, nv1[k], k, nv3[k], tlfminus1, tlfplus1, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf26, nf26, nf27, nf28); tlfminus1 * nf23[nv1[k]] + tlfplus2 * nf23[nv3[k]];</pre>
source23[k] = Ir_sources_Dulk[v, 3 tlfminus2, tlfplus2, nf10, nf11, nf12, nf nf20, nf21, nf22, nf	DQUK(z, s, NVIK), K, NV3[K], tlfplus2, nfi2, nfi3, nf14, nf15, nf16, nf17, nf18, nf22, nf23, nf24, nf25, nf26, nf27, nf28);
<pre>sf14(k) = nf14(k) - cf11 * source14(k) = compute_upwin nf10, nf11, n nf20, nf21, n</pre>	<pre>[[k] - cfil * (nfil4[k] - nfil4[nv2[k]]); compute_upwind_sources_bulk(1, 4, k, nv2[k], ifi0, nfil, nfi2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi8, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);</pre>
<pre>sf24[k] = nf24[k] - cf12 * source24[k] = compute_upwin</pre>	(nf24[k] - nf24[nv2[k]); d_sources_bulk(2, 4, k, nv2[k], d_1, nf13, nf14, nf15, nf16, nf17, nf18, f22, nf23, nf24, nf25, nf26, nf27, nf28);
sf15[k] = nf15[k] - cf11 * source15[k] = compute_upwin uxwall_bot, u	
nf10, nf11, n sf25[k] = nf25[k] - cf12 * source25[k] = compute_upwin	nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, 120, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); nfk] - cf12 * (nf25[nv5[k]] - nf25[k]); compute_upwind_sources_boundary(2, 5, k, nv5[k],
uxwall_bot, u nf10, nf11, n nf20, nf21, n	netal_bot, uywal_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);
sf16[k] = nf16[k] - cf11 * source16[k] = compute_upwin	<pre>(nf16[nv6[k]] - nf16[k]); d, sources_boundary(1, 6, k, nv6[k], nuall hot</pre>
	nfilo, nfil, nfil2, nfil3, nfil4, nfil5, nfil6, nfil7, nfil8, nfil0, nfil, nfil2, nfil3, nfil4, nfil5, nfil6, nfil7, nfil8, nfil0, nfil2, nfil
uxwall_bot, u nf10, nf11, r nf20, nf21, r	
<pre>sf17[k] = nf17[k] - cf11 * source17[k] = compute_upwir nf10, nf11, r nf20, nf21, r nf20, nf21, r</pre>	<pre>/(k] - cfil * (nfi7[k] - nfi7[nv5[k]]); compute_upwind_sources_bulk(1, 7, k, nv5[k], fil0, nfil, nfi2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi8, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);</pre>
sf27[k] = nf27[k] - cf12 * source27[k] = compute_upwir nf10, nf11, r nf20, nf21, r	(nf27[k] - nf27[nv5[k]]); nd_sources_bulk(2, 7, k, nv5[k], 12, nf13, nf14, nf15, nf16, nf17, nf18, nf22, nf23, nf24, nf25, nf26, nf27, nf28);
sf18[k] = nf18[k] - cf11 * source18[k] = compute_upwir nf10, nf11, r sf28[k] = nf20, nf21, r	cfll * (nfl8[k] - nfl8[nv6[k]]); -e_upwind_sources_bulk(1, 8, k, nv6[k], nfll, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfl8, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); cfl2 * (nf28[k] - nf28[nv6[k]]);
wicziw -	

Page 8

wet9lf.c

Dace 7	sf27[k] = nf27 source27[k] =	uxwall nf10, nf20,	Silotkj = niotkj = niotkj = compute_upwint	<pre>size(K) = nize(K) - ciiz * source28(K) = compute_upwiir uxwall_top,</pre>	nizU, nizU, nizU, nizU, nizL) case 3:	sourcell(x) = conjuce_lubal ntl0, ntl1, ntl1, ntl0, ntl1, n	source21[k] = compute_upwin source21[k] = compute_upwin uxwall_left, nf10, nf11,	nf20, nf21, sf12[k] = tlfminus1 * nf1. source12[k] = Lf_sources_b tlfminus1,	nf10, nf11, sf22[k] = tlfminus2 * nf21, source22[k] = LE_sources_D tlfminus2.	nf10, nf11, nf20, nf21, sf13[k] = nf13[k] - cf11 *	sourcei3[n] - Congue_upn nf10, nf10, nf11, nf20, nf21, sf23[k] = nf23[k] - cf12 *	SOUICE23[k] = ConjueUPAL	4 [k]	sf24[k] = tlfminus2 * nf2 source24[k] = lf_sources_b tlfminus2, b tlfminus2, c nf10, nf11, nf20, nf21.	sf15[k] = nf15[k] - c11 * source15[k] = compute_upwi uxwall_left,	1111, 1111,
A Postonia	k(2, 8, k, nv6[k], 14, nf15, nf16, nf17, nf18, 24, nf25, nf26, nf28);	<pre>break; case 2: /* top wall */ safil(k) = tlfminus1 * nfil(nv3(k)] + tlfplus1 * nfil(nv1(k)]; sourcell(k) = lf_sources_bulk(l, 1, nv3(k), k, nv1(k),</pre>	tifminus1, tipplus1, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf23, nf23, nf24, nf25, nf26, nf27, nf28); sf21[k] = tlfminus2 * nf21[nv3[k]] + tlfplus2 * nf21[nv1[k]]; source21[k] = lf_sources_bulk(2, 1, nv3[k], k, nv1[k],	tifminus2, tifplus2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);		<pre>sf22[k] = nf22[k] - cf12 * (nf22[k] - nf22[hv4[k]); source22[k] = compute_upwind_source2[k], nf13, nf14, nf15, nf16, nf17, nf18,</pre>	<pre>sf13[k] = tlfminus1 * nf13[nv1[k]] + tlfplus1 * nf13[nv3[k]]; source13[k] = lf_sources_bulk(1, 3, nv1[k], k, nv3[k], tlfminus1, tlfplus1,</pre>	nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf23[k] = tlfminus2 * nf23[nv1[k]] + tlfplus2 * nf23[nv3[k]]; source23[k] = lf_source2blk[k] 3, nv1[k], k, nv3[k], +fminus2 + fplus2.	nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf24, nf25, nf26, nf27, nf28); sf14[k] = nf14[k] - cnmt nf14[k] = nf14[k] - f14 k nv4[k] = nf14[k]	source::[x]	<pre>source24[k] = compute_upw.nd_sources_boundary(z, 4, K, NV4[k],</pre>	<pre>sf15[k] = nf15[k] - cf11 * (nf15[k] - nf15[nv7[k]]); source15[k] = compute_upwind_sources_bulk(1, 5, k, nv7[k],</pre>	sf25[k] = nf25[k] - Gf21 * (nf25[k] - nf25[nv1[k]]); source25[k] = compute_upwind_sources_bulk[2, 5, k, nv7[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf16, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	<pre>stl6[k] = nfl6[k] - cfll * (nfl6[k] - nfl6[nv8[k]]); sourcel6[k] = compute_upwind_sources_bulk(i, 6, k, nv8[k],</pre>	sf26[k] = nf26[k] - f112* (nf26[k] - nf26[nv8[k]]); source26[k] = compute_upwind_sources_Dulk[2, 6, k, nv8[k]) and f10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf10, nf11, nf12, nf3, nf24, nf25, nf26, nf27, nf28);	sf17[k] = nf17[k] ~ cf11 * (nf17[nv7[k]] - nf17[k]);

<pre>sf27[k] = nf27[k] - cf12 * (nf27, nf23, nf24, nf25, nf26, nf27, nf28); source27[k] = compute_upwind_sources_boundary(2, 7, k, nv7[k], uxwall_top, uywall_top, uywall_top, nf14, nf15, nf16, nf17, nf18, nf10, nf11, nf12, nf13, nf14, nf25, nf26, nf27, nf28);</pre>	ry(1, 8, k, nv8[k], nf15, nf16, nf17, nf18, nf25, nf26, nf27, nf28), ry(2, 8, k, nv8[k], nf18, nf16, nf17, nf18, ry(2, 8, k, nv8[k], nf15, nf16, nf17, nf18,	nic4, nic5, nic6, nic1, nic8) (1] - nf11[k]); coundary(1, 1, k, nv1[k], fil4, nf15, nf16, nf17, nf18, nf24, nf25, nf26, nf27, nf28, (1] - nf21[k]); coundary(2, 1, k, nv1[k], nf14, nf15, nf16, nf17, nf18,	nzz, nzz, nzz, nzz, nzz, nzz, nzz, nzz,	<pre>sf13[k] = nf13[k] - cf11 * (nf13[k] - nf13[nv1[k]]); sourcei3[k] = compute_upwind_sources_bulk(1, 3, k, nv1[k],</pre>	<pre>sf14[k] = tlfminus1 * nf14[nv2[k]] + tlfplus1 * nf14[nv4[k]]; source14[k] = lf_sources_bluk(1, 4, nv2[k], k, nv4[k], tlfminus1, tlfplus1, nf12, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf55, nf26, nf27, nf28); sf24[k] = tlfminus2 * nf24[nv2[k]] + tlfplus2 * nf24[nv4[k]]; source24[k] = lf_sources_bluk(2, 4, nv2[k], k, nv4[k], tlfminus2, tlfplus2, nf10, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);</pre>	<pre>sf15[k] = nf15[k] - cf11 * (nf15[nv5[k]] - nf15[k]); source15[k] = compute_upwind_sources_boundary(1, 5, k, nv5[k], uxwall_left, uywall_left, if</pre>
sf2'	sfil sou seu sou	bre case sfl sou sf2	sfl sou sel	f1 on f2	sfl sov sov	9f1 80t 8f2 9e0

32

wet9lf.c

Jun 2 1999 20:19	Page 9
nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	
<pre>sfl6(k) = nf16(k) - cf11 * (nf16(k) - nf16(nv8(k))); source16(k) = compute_upwind_sources_bulk(1, 6, k, nv8(k),</pre>	
nf2 nf1 nf2	
cfil * (nfil[k] - nfil[nv3[k]]); te_upwind_sources_bulk[1, 1, k, nv3[k], nfil, nfi2, nfi3, nfi4, nfi5, nfi6, nfi1, nfil, nfi2, nfi3, nfi4, nfi5, nfi6, nfi1, cfil * (nfil[k] - nfi2[[nv3[k]]); te_upwind_sources_bulk[6, 1, k, nv3[k], nfil, nfi2, nfi3, nfi4, nfi5, nfi6, nfi1, nfi2, nfi3, nfi4, nfi5, nfi6, nfi1, nfi2, nfi3, nfi4, nfi5, nfi6, nfi1, nfi2, nfi3, nfi4, nfi5, nfi6,	
<pre>sf12[k] = tlfminus1 * nf12[nv4[k]] + tlfplus1 * nf12[nv2[k]]; source12[k] = 1f_sources_bulk(1, 2, nv4[k], k, nv2[k],</pre>	
<pre>sf13[k] = nf13[k] - cf11 * (nf13[nv3[k]] - nf13[k]); source13[k] = compute_upwind_sources_boundary(1, 3, k, nv3[k],</pre>	
sfl4[k] = tlfminusl * nfl4[nv2[k]] + tlfplusl * nfl4[nv4[k]]; sourcel4[k] = lf_sources_bulk[l, 4, nv2[k], k, nv4[k], tlfminusl, tlfplusl, nfl0, nfl1, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfl8, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	

Jun 21999:20:19 wet9If.c

Printed by sofonea from flumag3.mec.utt.ro

## sf24[k] = t1fminus2 * nf24[nv2[k]] + t1 ## source24[k] = 11fminus2, t1fp[ns2,	Lifminus2 * nf24[nv2[k]] + = lf_sources_bulk(2, 4, nv tifminus2, tifpius2, nf10, nf11, nf12, nf13, nf20, nf11, nf22, nf23,	##15 K - GTI] * (nT15 K = compute_upwind_source nf10, nf11, nf22, nf2 nf20, nf21, nf22, nf2 nf25[k] - GTI * (nf25[k] = compute_upwind_source nf10, nf11, nf12, nf1 nf20, nf21, nf22, nf2	= nf16[k] - 6[k] = comput uxwall nf10, nf20, = nf26[k] - 6[k] = comput nf10, nf20, nf20,	<pre>sf17[k] = nf17(k] - cf11 * (nf17[nv7[k]] - nf17[k]); source17[k] = compute_upwind_sources_boundary(1, 7, k, nv7[k],</pre>	= nf18[k] - cfl1 * (nf18[k] 8[k] = compute_upwind_source, nf10, nf11, nf12, nf1 nf20, nf21, nf22, nf22 = nf28[k] - cf12 * (nf28[k] = compute_upwind_source, 8[k] = compute_upwind_source, nf10, nf11, nf12, nf11, nf20, nf21, nf22, nf21	<pre>void lf(double sf0[], double sf1[], double sf2[],</pre>	ce0[k] ce1[k] ce2[k] ce3[k]
---	--	---	--	--	--	--	--------------------------------------

wet9lw.c

_
2
풀
မ
Ë
g
Ę
₫
Ε
ē
ğ
Ĕ
ğ
S
ō
ě
Ē
۵

wet9lw.c

May 31 1999 19:07

May 31 1999 19:07	wet9lw.c	Page 1
****************	*******************	
wet91w.c	**************************************	
<pre>#include <stdio.h> #include <stdlib.h> #include <math.h></math.h></stdlib.h></stdio.h></pre>		
#include "wet9head.h"		
double compute_upwind_sources_bulk(doubl	bulk (int sigma, int index, int k, int nv, doubt nf10], double nf10], double nf11], double nf12], double nf13], double nf14[], double nf15], double nf16], double nf17], double nf20], double nf21], double nf22], double nf21], double nf22], double nf23, double nf23], double nf24], double nf27], double nf27],	
double compute_upwind_sources_boundary(int double ux_bounder_sources_sources_touple ux_bounder_sources_touple nfile(double nfile(double nfile(double nfile)))	ary (int sigma, int index, int k, int no, boundary, double uy boundary, enfl0[], double nf12[], enf10[], double nf12[], enf10[], double nf17[], double nf18[], enf20[], double nf21[], double nf22[], enf20[], double nf21[], double nf22[], enf20[], double nf27[], double nf28[]], enf20[], double nf27[],	
double compute_upwind_sources_boundary. double u double n	lary_in(int sigma, int index, int k, int nv, e ux_boundary, double uy_boundary, e nfil0; double nfil1; double nfil1; e nfil3; double nfil4; double nfil8; e nfil6; double nfil8; double nfil8; e nfil8; double nfil1; double nfil8; e nfil8; double nfil1; double nfil8; e nfil8; double nfil8; e nfil8; double nfil8; e nfil9; double nfil8; double nfil8; e nfil9; double nfil9; double nfil9; e nfil9; double nfil9;	
double compute_upwind_sources_boundary double u double n	<pre>lary_out(int sigma, int index, int nv, int k, e ux_boundary, double uy_boundary, e nf10[], double nf11[], e nf13[], double nf14[], double nf15[], e nf16[], double nf17[], double nf18[], e nf20[], double nf21[], double nf22[], e nf23[], double nf24[], double nf25[], e nf26[], double nf27[], double nf28[]);</pre>	
double lw_sources_bulk(int sigma, int int jminus, int double tminus, double nf10[], double nf10[], double nf10[], double nf10[], double nf20[], double nf20[], double nf20[], double nf20[], double nf20[],	int index, int iplus, int jloc, int iplus, obuble tiloc, double tplus, lil, double nf12[], lil, double nf14[], double nf15[], lil, double nf17[], double nf18[], lil, double nf18[], double nf21[], double nf22[], double nf21[], double nf22[], lil, double nf21[], double nf22[], lil, double nf27[], double nf27[], double nf27[],	
double dummy, ux, uy, uu, neq, so	source;	
fal[0] = tminus * nfi0[jminus] + fal[2] = tminus * nfi1[jminus] + fal[2] = tminus * nfi2[jminus] + fal[3] = tminus * nfi3[jminus] + fal[4] = tminus * nfi4[jminus] + fal[5] = tminus * nfi4[jminus] + fal[6] = tminus * nfi1[jminus] + fal[7] = tminus * nfi1[jminus] + fal[8] = tminus * nfi1[jminus] + fal[8]	tloc * nf10[jloc] + tplus * nf10[jplus]; tloc * nf11[jloc] + tplus * nf11[jplus]; tloc * nf12[jloc] + tplus * nf12[jplus]; tloc * nf13[jloc] + tplus * nf13[jplus]; tloc * nf14[jloc] + tplus * nf14[jplus]; tloc * nf15[jloc] + tplus * nf14[jplus]; tloc * nf16[jloc] + tplus * nf16[jplus]; tloc * nf17[jloc] + tplus * nf17[jplus]; tloc * nf17[jloc] + tplus * nf18[jplus];	

\$22(0) = tninus * nf20(nnus + lloc * nf20(loc + tplus * nf20

May 31 1999 19:07 wet9lw.c	Page 4
le fs1[9], fs2[9]; (0) = tin * nf10[jloc] + tplus1 * nf10[jplus1] + tplus2 * nf10[jplus2] 1] = tin * nf11[jloc] + tplus1 * nf11[jplus1] + tplus2 * nf11[jplus2] 2] = tin * nf12[jloc] + tplus1 * nf12[jplus1] + tplus2 * nf12[jplus2] 2] = tin * nf12[jloc] + tplus1 * nf13[jplus1] + tplus2 * nf13[jplus2] 2] = tin * nf14[jloc] + tplus1 * nf14[jplus1] + tplus2 * nf13[jplus2] 2] = tin * nf16[jloc] + tplus1 * nf16[jplus1] + tplus2 * nf16[jplus2] 2] = tin * nf17[jloc] + tplus1 * nf16[jplus1] + tplus2 * nf16[jplus2] 2] = tin * nf17[jloc] + tplus1 * nf16[jplus1] + tplus2 * nf17[jplus2] 2] = tin * nf18[jloc] + tplus1 * nf18[jplus1] + tplus2 * nf18[jplus2] 2] = tin * nf20[jloc] + tplus1 * nf20[jplus1] + tplus2 * nf21[jplus2] 2] = tin * nf22[jloc] + tplus1 * nf21[jplus1] + tplus2 * nf21[jplus2] 2] = tin * nf22[jloc] + tplus1 * nf21[jplus1] + tplus2 * nf22[jplus2] 2] = tin * nf22[jloc] + tplus1 * nf22[jplus1] + tplus2 * nf22[jplus2] 2] = tin * nf22[jloc] + tplus1 * nf22[jplus1] + tplus2 * nf22[jplus2] 2] = tin * nf22[jplus1] + tplus2 * nf22[jplus2] 2] = tin * nf22[jplus1] + tplus2 * nf22[jplus2] + tplus2 * nf22[jplus2] 2] = tin * nf22[jplus1] + tplus2 * nf22[jplus2] + tplus2 * nf22[jplus2] 2] = tin * nf22[jplus1] + tplus2 * nf22[jplus2] + tplus2 * nf22[jplus2] 2] = tin * nf22[jplus1] + tplus2 * nf22[jplus2] 2] = tin * nf22[jplus1] + tplus2 * nf22[jplus2] + tplus2 * nf22[jplus2] 2] 2] = tin * nf22[jplus] + tplus2 * nf22[jplus2] + tplus2 * nf22[j	
[4] = tin * nf24]10c + tplus1 * nf24]10tus1 + tplus2 [5] = tin * nf25[]10c + tplus1 * nf24 [plus1] + tplus2 [5] = tin * nf25[]10c + tplus1 * nf25[]plus1] + tplus2 [6] = tin * nf25[]10c + tplus1 * nf25[]plus1] + tplus2 [7] = tin * nf28[]10c + tplus1 * nf27[]plus1] + tplus2 [8] = tin * nf28[]10c + tplus1 * nf28[]plus1] + tplus2 = tin * uxloc[]10c + tplus1 * uxloc[]plus1] + tplus2 * = tin * uxloc[]10c + tplus1 * uxloc[]plus1] + tplus2 *	
<pre>uu = ux'ux + uy*uy; switch(sigma) { duamy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; dummy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; neq = ww[index] * (fs1[0]+fs1[1]+fs1[3]+fs1[4]+fs1[5]+fs1[6]+</pre>	
return source; soid lw_sources (double nf10[], double nf11[], double nf12[], double nf16[], double nf16[], double nf18[], double nf20[], double nf21[], double nf28[], double nf20[], double nf21[], double nf22[], double nf20[], double nf21[], double nf28[], lint k;	
<pre>for (k=0; k<nnodes_all; k++)<="" td=""><td></td></nnodes_all;></pre>	

wet9lw.c

May 31 1999 19:07 wet9lw.c Page 5	May 31 1999 1
	znos
<pre>case 0: sfil(k) = tlminus * nfil(nv3(k)) + tlcenter * nfil(k) +</pre>	
<pre>sourcell(k] = IN_source_bulk(l, l, nv3[k], k, nv1[k], tlminus, tleenter, tlplus,</pre>	sf26
nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf21[k] = t2minus * nf21[nv3[k]] + t2center * nf21[k] +	inos
t2plus * nf2l[nv1[k]]; source21[k] = !w sources_bulk(2, 1, nv3[k], k, nv1[k],	0 f 1 J
Laminus, Locence (2pus), nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	inos
<pre>sf12[k] = tlminus * nf12[nv4[k]] + tlcenter * nf12[k] + tlplus * nf12[nv2[k]];</pre>	
<pre>source12[k] = lw_sources_bulk(1, 2, nv4[k], k, nv2[k],</pre>	s£27 sour
t2minus * nf22[nv4[k]] + t2center * nf22[k] + t2plus * nf22[nv3[k]];	
SOURCEZZIKJ - IM_SOURCES_COLINA, F. Nivilal, F. Nivilal, E. EDBUS, E. Zemins,	sf18
sf13[k] = tlminus * nf13[nv1[k]] + tlcenter * nf13[k] +	
<pre>tlplus * nf13[nv3[k]]; source13[k] = lw sources_bulk(l,), nv1[k], k, nv3[k],</pre>	sf28
Liminus, Licencer, infls, nfls, nfls, nfls, nfl8, nfl0, nfl1, nfl8, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf23[k] = t2minus * nf23[nv1[k]] + t2center * nf23[k] +	sour
3[k	bres
nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	sf11
<pre>sf14[k] = tlminus * nf14[nv2[k]] + tlcenter * nf14[k] + tlplus * nf14[nv4[k]];</pre>	
source14[k] = Lm_sources_Durkl, *, uvelk, *, uvelk, telminus, tloender, tlplus, nfle, nfle	sf2]
sf24[k] = t2minus * nf21, nf23, nf24, nf25, nf26, nf27, nf28); sf24[k] = t2minus * nf24[nv2[k]] + t2center * nf24[k] + t2pilus * nf24[nv4[k]];	nos
<pre>source24[k] = lw_sources_bulk(2, 4, nv2[k], k, nv4[k],</pre>	sf1
	nos
tiplus * nf15[nv5[k]); source15[k] = lw_source2_bulk(l, 5, nv7[k], k, nv5[k], timinus, ticenter, tiplus,	sf2;
nfl0, nfl1, nfl2, nfl3, ntl4, ntl5, ntl6, ntl7, ntl8, nf20, nf21, nf22, nf23, nf24, nf25, nf25, nf27, nf28); sf25[k] = t2minus * nf25[nv7[k]] + t2center * nf25[k] + t2center * nf25[k]	nos
source25[k] = 1w_sources_bulk(t, 5, nv7[k], k, nv5[k], t2minus, t2center, t2plus, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf22, nf24, nf25, nf26, nf27, nf28);	8f1
<pre>sfl6[k] = tlminus * nfl6[nv8[k]] + tlcenter * nfl6[k] + tlplus * nfl6[nv6[k]];</pre>	nos

May 31 1000 10:07
$source16[k] = lw_sources_bulk(l, 6, nv8[k], k, nv6[k],$
nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);

May 31 1999 19:07 wet9lw.c	Page 8
517, nf18, 527, nf28)	8, 8);
<pre>tout2 * nt28[k]; source28[k] = lw_sources_out(2, 8, nv6[nv6[k]], nv6[k], k, tout2minus2, tout2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);</pre>	8, 8),
/* sfil[k] = tlminus * nfil[nv3[k]] + tlcenter * nfil[k] + tlpius * nfil[nv1[k]]; sourcell[k] = lw_sources_bulk[i, i, nv3[k], k, nv1[k], tlminus, tlcenter, tlplus, seto nfil nfil nfil nfil nfil nfil nfil	α
	8); 8);
12.1	, (8 (8)
uxwall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, ni nf20, nf21, nf22, nf23, nf24, nf25, ni	.8);
<pre>sf13[k] = tlminus * nf13[nv1[k]] + tlcenter * nf13[k] + tlplus * nf13[nv3[k]]; source13[k] = lw_sources_bulk(1, 3, nv1[k], k, nv3[k], +'minus +lcenter +lvlus</pre>	
= t2m	.8); (8);
source23[k] = lw_sources_bnlk(2, 3, nv1[k], k, nv3[k], t2minus, t2center, t2plus, nf10, nf10, nf11, nf12, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28)	.8, (8);
= nf14[k] - 4[k] = compu nf10, nf20	.8, (8);
sr24[k] = nr24[k] - cil2 * (nr24[k] - nr24[hV2[k]); source24[k] = compute_upind_source3_bulk(2, 4, k, nv2[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	18, 28);
	S
nrlu, nrll, nrls,	; (82);
.il.bot, uywall.bot, ', nfil, nfil2, nfil3, nfi4, nfi5, nfi6, nfi7, nfi ', nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf2	, 81 81) ;
<pre>sf16[k] = nf16[k] - cf11 * (nf16[nv6[k]] - nf16[k]); source16[k] = compute_upwind_sources_boundary(1, 6, k, nv6[k],</pre>	

wet9lw.c

Мау							
Page 9							
	nf18, nf28); , , nf18, nf28);	nf18, nf28); nf18, nf18,	nf18, nf28); nf18, nf18,	nf18, nf28); nf18, nf18,	2[k], nf18, nf28); 2[k], nf18,	nf17, nf18, nf27, nf28); nf17, nf18, nf27, nf28);	nv2[k], k, nf17, nf18,
	15, nf16, nf17, 25, nf26, nf27, 6[k]); 2, 6, k, nv6[k], 15, nf16, nf17, 25, nf26, nf27,	(k]]); , k, nv5[k], 15, nf16, nf17, 25, nf26, nf27, [k]]); , k, nv5[k], 15, nf16, nf17, 25, nf26, nf27,	[k]]); k, nv6[k], 15, nf16, nf17, 25, nf26, nf27, [k]); k, nv6[k], 15, nf16, nf17, 25, nf26, nf27,	nfil[k] + nvl[k], 15, nfi6, nfi7, 25, nf26, nf27, nf21[k] + nvl[k], 15, nf16, nf17, 25, nf26, nf27,	- nf12[k]); dary_in(l, 2, k, nv2[k], 4, nf15, nf16, nf17, nf1 4, nf25, nf26, nf27, nf2 - nf22[k]); dary_in(2, 2, k, nv2[k], 4, nf15, nf16, nf17, nf1 4, nf25, nf26, nf27, nf2	nv3[k], nv3[k], 115, nf16, nf17 25, nf26, nf27 nv3[k], nv3[k], 115, nf16, nf17 225, nf26, nf27	[k]]); _out(1, 4, nv2[k :15, nf16, nf17,
wet9lw.c	Lbot, uywall_bot, nf14, nf15, nf16, nf17, nf11, nf12, nf33, nf24, nf26, nf27, cf12 * (nf26[nv6[k]] - nf26[k]); c-upwind_sources_boundary(2, 6, k, nv6[k] Lbot, uywall_bot, nf13, nf14, nf15, nf16, nf17, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	17[k] - nf17[nv5] ources_bulk(1, 7, nf13, nf24, nf 7, nf23, nf24, nf 27[k] - nf27[nv5] ources_bulk(2, 7, nf13, nf14, nf nf23, nf24, nf	(nf18[k] - nf18[nv6[k]]); d.sources.bulk(1, 8, k, n f12, nf13, nf14, nf15, n f22, nf23, nf24, nf25, n f0f28[k]]); d.sources.bulk(2, k, n f12, nf13, nf14, nf15, n f12, nf23, nf24, nf25, n f22, nf23, nf24, nf25, n	k]]; t, tlcenter * t, tlplus, r, tlplus, nf13, nf24, nf nf13, nf24, nf k]] + t2center * k]]; t, t2, nv3, k); r, t2, nv3, k), r, t3, nf14, nf nf13, nf14, nf	(nf12[nv2[k]] - nf1 d. sources, boundary, yaal, bot, f12, nf13, nf14, nf f22, nf23, nf24, nf (nf22[nv2[k]] - nf2 d_sources_boundary, yaal_bot, f12, nf13, nf14, nf f22, nf23, nf24, nf	k]; tloner* t, tjplus, r, tjplus, nf13, nf14, nf nf23, nf24, nf k]; t, tconter k]; t, tplus, r, tplus, r, tplus, nf13, nf14, nf	14[k] - nf14[nv2 ources_boundary_ 11_bot, , nf13, nf14, nf
7	- A - 1 # - 3 - 5	nfil(k) - cfil * (nfil(k) - nfil(nv5(k))); () = compute_upwind_sources_bulk(1, 7, k, nv5(k),	- cfll * ute_upwin), nfll, n), nf21, n - cfl2 * ute_upwin), nf11, n	tlminus * nfll[nv3[k]] + tlcenter * nfll[k] +	<pre>nf12[k] - cf11 * (nf12[nv2[k]] - nf12[k]); uxwall_bot, uywall_bot, uxwall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28) nf22[k] - cf12 * (nf22[nv2[k]] - nf22[k]); uxwall_bot, uxwall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28)</pre>	<pre>= tlminus * nfi3[nv1[k]] + tlcenter * nfi3[k] + tlplus * nfi3[nv3[k]]; tlplus * nfi3[nv3[k]]; tlminus, tlcenter, tlplus, nfi0, nfi1, nfi2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf2 = t2minus * nf23[nv1[k]] + t2center * nf23[k] + t2plus * nf23[nv1[k]] + t2center * nf23[k] + t2plus * nf23[nv2[k]]; t2plus * nf23[nv2[k]]; nf10, nf1, nf12, nf13, nf14, nf15, nf16, nf17, nf1 nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf2</pre>	<pre>i[k] - cfil * (nf14[k] - nf14[nv2[k]]); compute_upwind_sources_boundary_out(1, uxwall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf</pre>
May 31 1999 19:07	uxwa nf10 nf10 nf20 scurce26[k] = comp uxwa nf20	sf17[k] = nf17 source17[k] = sf27[k] = nf27 source27[k] =	sfl8[k] = nfl8[k] sourcel8[k] = comp nfl0 sf28[k] = nf28[k] source28[k] = comp nfl0 */	/* sfll[k] = tlm tl sourcell[k] = sf21[k] = t2m sf21[k] = t2t2m	sf12[k] = nf12[k] source12[k] = com uxw nf1 nf2 sf22[k] = nf22[k] source22[k] = com nf1 nf3	sfl3[k] = tlm sourcel3[k] = sf23[k] = t2m source23[k] = t2m	<pre>sf14[k] = nf14[k] - source14[k] = comput uxwal. nf10,</pre>
May 31							

May 31 1999 18:07 wet9lw.c	Page 10
<pre>sf24[k] = nf24[k] - of12 * (nf24[k] - nf24[nv2[k]]); source24[k] = compute_upwind_sources_boundary_out(2, 4, nv2[k], k, uxwall_bot, uywall_bot, nf10, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);</pre>	
<pre>sf15[k] = nf15[k] - cf11 * (nf15[nv5[k]] - nf15[k]); source15[k] = compute_upwind_sources_boundary_in(1, 5, k, nv5[k],</pre>	
<pre>sf16[k] = nf16[k] - cf11 * (nf16[nv6[k]] - nf16[k]); source16[k] = compute_upwind_sources_boundary_in(1, 6, k, nv6[k],</pre>	
<pre>sf17[k] = nf17[k] - cf11 * (nf17[k] - nf17[nv5[k]]); source17[k] = compute_upwind_sources_boundary_out(1, 7, nv5[k], k,</pre>	
<pre>sf18[k] = nf18[k] - cf11 * (nf18[k] - nf18[nv6[k]]); source18[k] = compute_upwind_sources_boundary_out(1, 8, nv6[k], k,</pre>	
break; case 2: /* top wall */	
sf12[k] = toutlminus2 * nf12[nv4[nv4[k]]] +	

wet9lw.c

May 31 19	1999 19:07 wet9lw.c	Page 11
	17,	nf18, nf28);
	<pre>toutZminus1 * nf22[ny4[k]] +</pre>	nf18, nf28);
	<pre>sfl3(k) = tlminus * nfl3(nv1(k)) + tlcenter * nfl3(k) +</pre>	nf18, nf28);
	ources_bulk(2, 3, nv1[k], k, nv3[k], nus, t2center, t2plus, null, nf12, nf13, nf14, nf15, nf16, nf17, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	nf18, nf28);
		n£18, n£28):
	, nf17, nf27,	nf18, nf28);
	<pre>sf15[k] = toutlminus2 * nf15[nv7[k]]] + toutlminus1 * nf15[nv7[k]] + tout1 * nf15[k]; source15[k] = lw sources_out(1, 5, nv7[nv7[k]], nv7[k], k,</pre>	
	27,	nf18, nf28);
	<pre>cource25[k] = lw.sources_out(2, 5, nv7[nv7[k]], nv7[k], k, toutzminus2, toutzminus1, tout2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,</pre>	nf18, nf28);
-	<pre>sf16[k] = toutlminus2 * nf16[nv8[k]]] + toutlminus1 * nf16[nv8[k]] + tout1 * nf16[k]; source16[k] = lw_sources_out(1, 6, nv8[nv8[k]], nv8[k], k,</pre>	
	us., cocuminas., cours., 11, nf12, nf13, nf14, nf15, nf16, nf17, 21, nf22, nf23, nf24, nf25, nf26, nf27, * nf26[nw8[nw8[k]]] + * nf26[nw8[k]] +	nf18, nf28);
	k, n£17, n£27,	nf18, nf28);

May 31 19	31 1999 19:07 wet9lw.c	Page 12
1100	nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf18[k] = tin1 * nf18[k] + tin1plus1 * nf18[k] tin1plus2 * nf18[k] w8[k]]; source18[k] = lw_sources_in(1, 8, k, nw8[k], nv8[k]]; tin1, tin1plus1, tin1plus2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf26, nf27, nf28); sf28[k] = tin2 * nf28[k] + tin2plus1 * nf28[nw8[k]] + tin2plus2 * nf28[k] + tin2plus1 * nf28[nw8[k]] + tin2plus2 * nf28[mw8[k]] + tin2plus1 * nf28[mw8[k]] + tin2plus1 * nf28[mw8[k]] + tin2plus1 * nf28[mw8[k]] + tin2plus1 * nf28[mw8[k]] + tin2plus2 * nf28[mw8[k]] + tin2plus1 * nf28[mw8[k]] +	
	/* sf11[k] = tlminus * nf11[nv3[k]] + tlcenter * nf11[k] + tlplus * nf11[nv1[k]]; source11[k] = lw_sources_bulk(1, 1, nv3[k], k, nv1[k], tlminus, tlcenter, tlplus, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf21[k] = t2minus * nf21[nv3[k]] + t2center * nf21[k] + t2plus * nf21[nv3[k]] + t2center * nf21[k] + t2minus, t2center, t2plus, nf20, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf11, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	
	<pre>sf12[k] = nf12[k] - cf11 * (nf12[k] - nf12[nv4[k]]); sourcel2[k] = compute_upwind_sources_bulk(1, 2, k, nv4[k],</pre>	
	<pre>sfi3(k) = tlminus * nfi3[nv1[k]] + tlcenter * nfi3(k] +</pre>	
	<pre>sci4(k) = nfi4(k) - cfil * (nfi4(nv4(k)] - nfi4(k)); sourcel4(k) = compute_upwind_sources_boundary(1, 4, k, nv4(k),</pre>	

May 31 1999 19:07	wet9lw.c	Page 1
<pre>sf24(k) = nf24(k) - cf12 * source24(k) = compute_upwil uxwall_top, uxwall_top, nf0, nf1, nf20, nf21,;</pre>	<pre>(k] - cf12 * (nf24[nv4[k]] - nf24[k]); compute_upwind_sources_boundary(2, 4, k, uxwall_tcp, uywall_tcp, nf10, nf11, nf12, nf13, nf14, nf15, nf11 nf20, nf21, nf22, nf23, nf24, nf25, nf2</pre>	k, nv4[k], E16, n£17, n£18, E26, n£27, n£28);
<pre>sf15[k] = nf15[k] - cf11 * source15[k] = compute upwi. nf10, nf11, nf20, nf21, sf25[k] = nf25[k] - cf12 * source25[k] = compute_upwi. nf20, nf11, nf20, nf11,</pre>	f15[k] - cfll * (nf15[k] - nf15[nv7[k]]); = compute_upwind_sources_bulk[l, 5, k, nv7[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf nf20, nf21, nf22, nf23, nf24, nf26, nf26, nf27, nf f25[k] - cfl2 * (nf25[k] - nf25[nv7[k]]); = compute_upwind_sources_bulk[2, 5, k, nv7[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf	v7(k), 16, nf17, nf18, 26, nf27, nf28); v7(k), 16, nf17, nf18, 26, nf27, nf28);
<pre>sf16[k] = nf16[k] - cf11 * source16[k] = compute_upwi</pre>	ik] - cfll * (nfi6[k] - nfi6[nv8[k]]); compute_upwind_sources_bulk[l, 6, k, nv8[k], nfi0, nfi1, nfi2, nfi3, nfi4, nfi5, nfi6, nfi7, nf20, nfi1, nfi2, nfi24, nfi24, nfi25, nfi6, nfi7, ik] - cfl2 * (nf26[k] - nf26[nv8[k]]); compute_upwind_sources_bulk(C, 6, k, nv8[k], nfi0, nfi1, nfi2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi0, nfi1, nfi22, nfi3, nfi4, nfi5, nfi6, nfi0, nfi1, nfi22, nfi34, nfi4, nfi5, nfi6,	v8[k], 26, nf17, nf18, 26, nf27, nf28); v8[k], 16, nf17, nf18, 26, nf27, nf28);
sourcel7[k] = nf17[k] - cf11 * (n source17[k] = compute_upwind_ uxwall_top, uyw nf10, nf11, nf1, nf20, nf21, nf2 source27[k] - cf12 * (n source27[k] - compute_upwind_ uxwall_top, uyw nf10, nf11, nf1	E17[nv7[k]] - nf17[k] all_top, all_top, nf13, nf14, nf15, 2, nf23, nf24, nf25, E27[nv7[k]] - nf22, lf2, E27[nv7[k]] - nf22[k], sources_boundary(2, sources_boundary(2, sources_top, all_top, all); nf16, nf17, nf18, nf26, nf27, nf28);); k, nv7[k], nf16, nf17, nf18, nf26, nf27, nf28);
<pre>sf18[k] = nf18[k] - cf11 * source18[k] = compute_upwi</pre>	* (nf18[nv8[k]] - nf18[k] ind_sources_boundary(1, 6) ind_sources_boundary(1, 6) nf12, nf13, nf14, nf15, nf22, nf23, nf24, nf25, ind_sources_boundary(2, 6) uywall_top, nf12, nf13, nf14, nf15, nf12, nf23, nf24, nf25,); nf16, nf17, nf18, nf26, nf27, nf28);); k, nv8[k], nf16, nf17, nf18, nf26, nf27, nf28);
*/ sfil[k] = tlminus * nfil[nv3[k]] tlplus * nfil[nv1[k]] sourcell[k] = lw_sources_bulk[l, tlminus, tlcenter, nf10, nfil, nfil, nf20, nfil, nfil, t221[k] = t2minus * nf2[nv1[k]] t2plus * nf2[nv1[k]] source21[k] = lw_sources_bulk[c, t2minus, t2center, nf10, nfil, nfil, nf10, nfil, nfil,	<pre>lminus * nfll[nv3[k]] + tlcenter * nfll[k] + tlplus * nfll[nv1[k]];</pre>	[k] + [l, nf17, nf18, [26, nf27, nf28); [k] + [l, nf17, nf18, [16, nf17, nf18, [26, nf27, nf28);
sf12[k] = nf12[k] - cf11, source12[k] = compute_upwi uxwall_top, nf10, nf11, sf22[k] = nf22[k] - cf12, source2[k] = compute_upwi uxwall_top,	k] - nf12[nv4[k]] cos_boundary_out top, f13, nf14, nf15, f13, nf24, nf25, k] - nf22[nv4[k]] cos_boundary_out top,	(1, 2, nv4[k], k, nf16, nf17, nf18, nf26, nf27, nf28); (2, 2, nv4[k], k,

Page 14		
May 31 1990 19:07 Wet9 W.C	### ### ##############################	### ### ##############################

wet9lw.c

flumag3.mec.utt.ro	Page 16
Printed by sofonea from f	9lw.c
	We

19:07		sf16[k] =	sf26[k] =	source26[N	s£17[k] =	source17[) sf27[k] =	source27[sf18[k] =	source18[sf28[k] = source28[break; case 4: sf11[k] =	source11[sf21[k] = source21[sf12[k] =	source12[
May 31 1999 19:07		îs	ć to	ັສ	æ	თ ნ	ŏ	מי	ග	ன் ທັ	•	0 88 D	Ö	ை வ	Ø	ഗ ഗ
May									***							
				-		****										
Page 15																
	, nf28);		, nf18, , nf28);	nf18,		, nf18,	nf17, nf18, nf27, nf28);		', nf18,		/, nf18,		7, nf18, 7, nf28);	nf17, nf18, nf27, nf28);		7, nf18, 7, nf28);
	nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,] +][k]]);	<pre>lw_goutces_init, i, r, invity, ivilivity); tini_tiniplusi, tiniplusi, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, 2 * nf21[k] + tin2plusi * nf21[nv1[k]] +</pre>	tin2plus2 * nf21[nv1[nv1[k]]]; lw_sources_in(2, 1, k, nv1[k], nv1[nv1[k]], tin2, tin2plus1, tin2plus2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	[k] + k],	nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf1 nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf2 = t2minus * nf22[nv4[k]] + t2center * nf22[k] + t2plus * nf22[nv4[k]] + t3center * nf22[k] + (k) = 1** conress bnlk(2, 2, nv4[k], k, nv2[k],	f16, nf17 f26, nf27	= toutlminus2 * nf13[nv1[nv1[k]]] + toutlminus1 * nf13[nv1[k]] + toutl * nf13[nv1[k]] + in sources out (1 * nv1[k]) * nv1[k]] nv1[k] * k.	f16, nf17 f26, nf27	[k], k,	1f16, nf17 1f26, nf27	[[K] + K],	timinus, tlcenter, tiplus, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); t2minus * nf24[nv2[k]] + t2center * nf24[k] +	k], nf16, nf17 nf26, nf27	<pre>tin1 * nf15[k] + tin1plus1 * nf15[nv5[k]] + tin1plus2 * nf15[nv5[k]]];] = lw_sources_in(l, 5, k, nv5[k], nv5[k]], tin1, tin1plus1, tin1plus2,</pre>	nf16, nf1 nf26, nf2] + 5[k]],
	, nf25, n	tin1 * nf11[k] + tin1plus1 * nf11[nv1[k]] + tin1plus2 * nf11[nv1[kv1[k]]	, nf15, n , nf25, n 21[nv1[k]	21[nv1[nv], nv1[nv], nf15, n	er * nf12 , k, nv2[, nf15, n , nf25, n er * nf22 , k, nv2[, nf15, n	+ 	utl, , nf15, n	+ [k]], nv1	ut2, , nf15, n , nf25, n	er * nf14	, nf15, r , nf25, r er * nf24	<pre>ip.lus * nr24[nv4[K]; ip.asurces_bulk(2, 4, nv2[K], k, nv4[K], t2minus, t2center, t2plus, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf20, nf21, nf22, nf23, nf24, nf26,</pre>	[15[nv5[k] :], nv5[nv	nf10, nf11, nf12, nf13, nf14, nf15, nf16, n nf20, nf21, nf23, nf23, nf24, nf25, nf26, n tin2 * nf25[k] + tin2plus1 * nf25[nv5[k]] + tin2plus2 * nf25[nv5[nv5[k]]]; = 1 m_sources_in[2, 5, k, nv5[k], nv5[k], nv5[nv5[k]]],
wet9lw.c	£23, n£24	lusl * nf lus2 * nf	h, mvilk nlplus2, f13, nf14 f23, nf24 lus1 * nf	lus2 * nf k, nv1[k n2plus2, f13, nf14 f23, nf24	+ ticent; 2, nv4[k] tiplus,	f13, nf14 f23, nf24 + t2cent ; nv4[k]	t2plus, f13, nf14 f23, nf24	[nv1[k]]] [k]] + . nv1[nv1	inus1, to	[k]] + [k]] + nv1[nv]	inusl, to fl3, nf14 f23, nf24	+ tlcent;	tiplus, f13, nf14 f23, nf24 + t2cent	, nv2[k] t2plus, f13, nf14 f23, nf24	lus1 * nf nv5[k]]; k, nv5[)	if13, nf14 if23, nf24 lus1 * nf nv5[k]]]; k, nv5[l
We	nf22, nj	+ tinlp tinlp	lusi, 1, lusi, ti nf12, n nf22, n + tin2p	tin2p in(2, 1, olus1, til nf12, n: nf22, n:	[nv4[k]] [nv2[k]] bulk(1,	nf12, n nf22, n [nv4[k]] [nv2[k]] bulk(2.	center, nf12, n nf22, n	nf13[nv1 nf13[nv1 nf13[k];	2, toutlm nf12, n	nf23[nv1 nf23[nv1 nf23[k]; out(2, 3	2, tout2m , nf12, n , nf22, n	4 [nv2 [k]] 4 [nv4 [k]] bulk (1,	center, nf12, n nf22, n nf22, n	4 [nv4 [k]] bulk(2, 2center, nf12, n] + tinlp nf15[nv5[_in(1, 5,	nf12, n nf22, n + tin2p nf25[nv5[in(2, 5,
	20, nf21,	* n£11[k]	= 1W_Sources_1 tin1, tin1pl nf10, nf11, nf20, nf21, tin2 * nf21[k]	_sources_ n2, tin2p 10, nf11, 20, nf21,	us * nf12 us * nf12 _sources_ minus, t1	10, nf11, 20, nf21, us * nf22 us * nf22	minus, t2 10, nf11, 20, nf21,	minus2 * minus1 * tout1 *	utlminus 10, nf11, 20, nf21,	minusz * minusi * tout2 * sources	ut2minus 110, nf11, 120, nf21,	nus * nfl'. .us * nfl'.	minus, t 10, nf11, 20, nf21, nus * nf2	tzplus * nf24 nv4 K j m m m m m m m m m	* nf15[k] [plus2 *) [sources]	110, nf11 120, nf21 * nf25[k 2plus2 * 1 * sources
	Ju	tir	ţi.	H	<pre>tlmin tlpl (k) = lw tl</pre>	nf nf t2min t2pl rkl = lw	BEC	= tout1 tout1		= tout2 tout2 [k] = 1%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= tlmir tlp] [k] = lv	tl nf nf = t2mir	t2pJ [k] = lv t2 nf	= tin1 tin1 [k] = lv	nd = tin2 tin2 (k) = lv
399 19:07	*	break; case 3: sf11[k] =	sourcell[k] sf21[k] =	source21[k]	sf12[k] = source12[k]	sf22[k] =		sf13[k] =	?	sr23[k] = source23[k]		sf14[k] =	sf24[k] =	source24[k]	sf15[k] = source15[k]	sf25[k] = .source25[k]
May 31 1999 19:07		ຮັ														
L_																

wet9lw.c

flumag3.mec.utt.rc
=
_
٠:
Ų
മ
Ē
⊏
-
ຕ
'n
≌′
w
_
⊏
_
=
-
_
-
≍
9
=
•
a
75
≖
_
O
₽
용
텷
soto
/ soto
y sofonea from
by sofo
l by sofo
d by sofo
ed by sofo
g
g
nted b
nted b
g
nted b

wet9lw.c

May 31 1999 19:07

1999 19:07 wet9lw.c Page	1
t2plus * nf22[nv2[k]]; source22[k] = lw_sources_bulk(2, 2, nv4[k], k, nv2[k], t2minus, t2center, t2plus, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);	
k] + nv3[k]]; nv3[k]], nf16, nf17, nf26, nf27, k] + nv3[k]]; nv3[k]];	
<pre>nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18,</pre>	
14	
<pre>sf15[k] = toutiminus2 * nf15[nv7[k]] + toutiminus1 * nf15[nv7[k]] + toutiminus1 * nf15[k]</pre>	
<pre>tout2 * nf25[k]; source25[k] = lw_sources_out(2, 5, nv7[nv7[k]], nv7[k], k,</pre>	
<pre>sfl6[k] = tinl * nf16[k] + tinlplusl * nf16[nv6[k]] +</pre>	
tin2, tin2plust, tin2plust, nf15, nf16, nf17, nf18, nf20, nf11, nf12, nf13, nf14, nf15, nf26, nf27, nf28);	
<pre>sf17[k] = tin1 * nf17[k] + tiniplus1 * nf17[nv7[k]] +</pre>	

tin2, tin2plus1, tin2plus2, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf20, nf21, nf22, nf23, nf24, nf25, nf26, toutlminus2 * nf18[nv6[nv6[k]] + toutlminus1 * nf18[nv6[k]] + toutlminus1 * nf18[nv6[k]] + toutlminus2 * nf18[k], nv6[nv6[k]], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf20, nf21, nf22, nf23, nf24, nf25, nf26, toutZminus2 * nf28[nv6[nv6[k]] + toutZminus2 * nf28[nv6[nv6[k]] + toutZminus2 * nf28[nv6[k]] +	<pre>source28[k] = lw.sources_outC. 8, nv6[k], nv6[k], k, toutZminus2, toutZminus1, tout2,</pre>	<pre>id lw(double sf0[], double sf2[],</pre>	<pre>int k; for(k-0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>	<pre>nff0[k] = sf0[k] + source0[k]; nff1[k] = sf1[k] + source1[k]; nff2[k] = sf2[k] + source2[k]; nff2[k] = sf2[k] + source3[k]; nff5[k] = sf4[k] + source5[k]; nff5[k] = sf5[k] + source6[k]; nff6[k] = sf5[k] + source6[k]; nff6[k] = sf6[k] + source6[k]; nff6[k] = sf6[k] + source6[k];</pre>	
	•	void lw(da	int k; for (k=0	\$3555555555555555555555555555555555555	

wet9fd.c

Jun 20 1999 19:23 Wet9fd.c	Page 1

* * * * * * * * * * * * * * * * * * *	

<pre>#include <stdio.h> #include <stdlib.h> #include <math.h></math.h></stdlib.h></stdio.h></pre>	
#include "wet9head.h"	
<pre>void first_upwind(double mass, double tau, double cspeed, double nf2[], double nf2[], double nf3[], double nf2[], double nf3[], double nf4[], double neq4[], double neq4[], double neq3[], double neq4[], double neq4[], double neq3[], double neq4[], double neq4[])</pre>	
int k; double ctau, cgrad, cgradx, cgrady, cgradxs2, cgradys2, cgradxy; double cgradx2, cgrady2, cgradxy2; double dummy_force; double prodscal;	
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_y; cgradx = cspeed * delta_t / delta_y; cgradxs2 = cspeed * sqrt((double) 2) * delta_t / delta_x; cgradxs2 = cspeed * sqrt((double) 2) * delta_t / delta_y*delta_y; cgradxy = cspeed * delta_t / sqrt(delta_x*delta_x + delta_y*delta_y); cgradxy = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_y); cgradx2 = cspeed * delta_t / (2.000*delta_y);</pre>	
<pre>for (k=0; k<nnodes_all; k++)<="" td=""><td></td></nnodes_all;></pre>	
printf("k==kd kg kg kg kg kg kg kg kg kg\n",k,	

			1
•		٠.	
	1		
			1
			1
			,
			į
			į
	ı	ביינו אנוחום:יי	
	7	٠,	
•	1	7	
,	ì	-	
4	Ċ	D	
1	ŧ	-	
	(p	
	÷	2	
,			
			,
	į,		
÷			
:			
ŀ			
	¢	'n	,
	Č	١	ı
	i		:
		_	
ĺ	•	_	
	9	2	•
ŀ	9	2	•
	•	,	•
	7		
1	4	2	•
1	(١.	ı
		c	:
1	į	Ξ	,
ŀ	•	-	,
1		-	

Page 2

<pre>neg0[k],neg1[k],neg2[k],neg3[k],neg5[k], neg6[k],neg7[k],uxloc[k],uyloc[k]); printf("e=\$4</pre>	<pre>nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau,</pre>	<pre>case 4: /* right wall */ nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau;</pre>

wet9is.c

$\mathbf{\mathcal{G}}$	
llumag3.mec.utt.rc	
تب	
=	
⊃	
-:	
o	
ര	
~	
≻	
m	
~	
Ç)	
ថ	
_	
=	
_	
=	
•	
_	
_	
0	
~	
=	
sofonea from	
Œ	
añ.	
₩.	
<u></u>	
$^{\circ}$	
~	
n	
×	
(C)	
>	
O	
_	
77	
×	
w	
=	
_	
_	
~	
ш.	

wet9is.c	* ** ** ** ** ** ** ** ** ** ** ** ** *	csforce_y * uxloc[k];	0[K]) + (ecprod1[0]-prodscal) *neq10[K]; 2[K]) + (ecprod1[12]-prodscal) *neq12[K]; 2[K]) + (ecprod1[2]-prodscal) *neq12[K]; 3[K]) + (ecprod1[3]-prodscal) *neq13[K]; 4[K]) + (ecprod1[3]-prodscal) *neq14[K]; 5[K]) + (ecprod1[5]-prodscal) *neq15[K]; 6[K]) + (ecprod1[6]-prodscal) *neq15[K]; 7[K]) + (ecprod1[7]-prodscal) *neq15[K]; 8[K]) + (ecprod1[8]-prodscal) *neq18[K];	0[k]) + (ecprod2[0]-prodscal) *neq20[k]; 2[k]) + (ecprod2[1]-prodscal) *neq21[k]; 2[k]) + (ecprod2[2]-prodscal) *neq22[k]; 3[k]) + (ecprod2[3]-prodscal) *neq23[k]; 4[k]) + (ecprod2[3]-prodscal) *neq24[k]; 5[k]) + (ecprod2[5]-prodscal) *neq25[k]; 6[k]) + (ecprod2[6]-prodscal) *neq26[k]; 7[k]) + (ecprod2[6]-prodscal) *neq26[k];		<pre>[k]; + iscenter1 * ff11[k] + [k]; + iscenter1 * ff12[k] + [k]; + iscenter1 * ff13[k] + [k]; + iscenter1 * ff14[k] + [k]; + iscenter1 * ff14[k] + [k]; + iscenter1 * ff16[k] + [k]; + iscenter1 * ff16[k] + [k]; + iscenter1 * ff18[k] + [k]; + iscenter2 * ff21[k] + [k]; + iscenter2 * ff21[k] + [k]; + iscenter2 * ff21[k] +</pre>
Jun 20 1999 18:01	/*************************************	<pre>void islb(void) int k; double prodscal; for(k=0; Kcnnodes_all; k++) force_x * uxloc(k) + csi }</pre>	ff10(k) = f10(k)-ctaul*(f10(k)-neq10(k))+ ff12(k) = f11(k)-taul*(f11(k)-neq11(k))+ ff12(k) = f12(k)-ctaul*(f12(k)-neq12(k))+ ff13(k) = f13(k)-ctaul*(f13(k)-neq13(k))+ ff15(k) = f13(k)-ctaul*(f13(k)-neq13(k))+ ff15(k) = f15(k)-ctaul*(f13(k)-neq13(k))+ ff16(k) = f15(k)-ctaul*(f15(k)-neq13(k))+ ff17(k) = f17(k)-ctaul*(f13(k)-neq13(k))+ ff18(k) = f17(k)-ctaul*(f13(k)-neq13(k))+	ff20[k] = f20[k]-ctau2*(f20[k]-neq20[k])+ ff21[k] = f21[k]-ctau2*(f22[k]-neq21[k])+ ff23[k] = f22[k]-ctau2*(f22[k]-neq22[k])+ ff23[k] = f23[k]-ctau2*(f23[k]-neq23[k])+ ff25[k] = f23[k]-ctau2*(f24[k]-neq23[k])+ ff25[k] = f25[k]-ctau2*(f25[k]-neq25[k])+ ff26[k] = f26[k]-ctau2*(f26[k]-neq26[k])+ ff28[k] = f26[k]-ctau2*(f26[k]-neq26[k])+ ff28[k] = f28[k]-ctau2*(f28[k]-neq28[k])+	<pre>for(k=0; k<nnodes_all; k++)<="" th=""><th>f10[k] = ff10[k]; f11[k] = isminus1 * ff11[nv3[k]] + ispinus1 * ff12[nv1[k]]; f12[k] = isminus1 * ff12[nv2[k]]; f13[k] = isminus1 * ff13[nv1[k]]; f14[k] = isminus1 * ff13[nv3[k]]; f15[k] = isminus1 * ff14[nv2[k]]; f15[k] = isminus1 * ff15[nv7[k]]; f15[k] = isminus1 * ff15[nv7[k]]; f16[k] = isminus1 * ff15[nv7[k]]; f17[k] = isminus1 * ff15[nv5[k]]; f17[k] = isminus1 * ff15[nv5[k]]; f18[k] = isminus1 * ff17[nv7[k]]; f20[k] = isminus1 * ff18[nv6[k]]; f20[k] = isminus1 * ff18[nv6[k]]; f20[k] = isminus2 * ff18[nv8[k]]; f21[k] = isminus2 * ff21[nv3[k]];</th></nnodes_all;></pre>	f10[k] = ff10[k]; f11[k] = isminus1 * ff11[nv3[k]] + ispinus1 * ff12[nv1[k]]; f12[k] = isminus1 * ff12[nv2[k]]; f13[k] = isminus1 * ff13[nv1[k]]; f14[k] = isminus1 * ff13[nv3[k]]; f15[k] = isminus1 * ff14[nv2[k]]; f15[k] = isminus1 * ff15[nv7[k]]; f15[k] = isminus1 * ff15[nv7[k]]; f16[k] = isminus1 * ff15[nv7[k]]; f17[k] = isminus1 * ff15[nv5[k]]; f17[k] = isminus1 * ff15[nv5[k]]; f18[k] = isminus1 * ff17[nv7[k]]; f20[k] = isminus1 * ff18[nv6[k]]; f20[k] = isminus1 * ff18[nv6[k]]; f20[k] = isminus2 * ff18[nv8[k]]; f21[k] = isminus2 * ff21[nv3[k]];

Jun 20 1999 18:01	wet9is.c	Page 2
£22[k]	* *	
£23[k]		
£24[k]	* *	
£25[k]	* *	
£26[k]	minus2 * ff26[nv8[k]] mjnus2 * ff26[nv8[k]]	
£27[k]	= isminus2 * ff27[nv5[k]] ismlnus2 * ff27[nv5[k]]	
f28[k]	* ff28[nv6[k]] * ff28[nv8[k]]	
break;	ralevilezat zentge	
case 1:		
£10[k] £11[k}	= ff10[k] = isminus	
£12[k]	<pre>isplus1 * ff11[nv1[k]]; = tin1 * ff12[k] + tin1plus1 * ff12[nv2[k]] +</pre>	
f13[k]	tiniplus2 * fil2[nv2[nv2[k]]]; = isminus1 * ffl3[nv1[k]] + iscenter1 * ffl3[k] +	
f14[k]	isplusi * iii3[nv3[k]]; = toutlminus2 * ff14[nv2[nv2[k]]] +	
£15[k]	5[nv5[k]] + 5[nv5[k]] +	
£16[k]	= tinl * ff16[k] + tinlplus * ff16[nv6[k]] + tinlplus * ff16[nv6[k]] + tinlplus * ff16[nv6[h]]).	
£17[k]	ciniplus2 * ff17[nv5[nv5[k tout1minus1 * ff17[nv5[k]] +	
f18[k]	= toutlminus2 * ff18[nv6[nv6[k]]] + toutlminus1 * ff18[nv6[k]] + tout1 * ff18[k]	
£20[k]	= ff20[k = isminu	
£22[k]	isplus2 * ff21[nv1[k]]; = tin2 * ff22[k] + tin2plus1 * ff22[nv2[k]] +	
£23[k]	= isminus2	
£24[k]	= tout2minus2 * ff24[nv2[nv2[k]] + tout2minus1 * ff24[nv2[k]] +	
£25 [k]	<pre>= tin2 * ff25[k] + tin2plus1 * tin2plus2 *</pre>	
£26[k]	= tin2 * ff26[k] + tin2plus1 * ff26[nv6[k]] + tin2plus2 * ff26[nv6[nv6[k]]]	
£27[k] £28[k]	<pre>= tout2minus2 * ff27[nv5[nv5[x] tout2minus1 * ff27[inv5[x]] + = tout2minus2 * ff28[nv6[nv6[x] tout2minus1 * ff28[nv6[k]] +</pre>	
break; case 2:		
£10[k] £11[k]	11 11	
£12[k]	* IIII[nvl[k]]; is2 * ff12[nv4[nv4[k]]] + is1 * ff12[nv4[k]] + tont1 * ff12	
£13[k]	<pre>cuttifitiuss</pre>	
f14[k]	B	
£15[k]	= toutlminus2 * ff15[nv7[k]] + tout1minus1 * ff15[nv7[k]] + tout1 * ff15[hv7[k]] + tout1 * ff15[k];	

wet9is.c

1	1 1
_	41
2	의
rinted by sofonea from flumag3.mec.utt.ro	8
5	Ω.
ပ္	
<u>@</u>	
⊏.	
(0)	
ရွ	
Ĕ	
'n	- 1
≠	
Ε	
ō	
#	- 1
್ಷ	
9	
ō	
ਰ	
Ś	
≥	
- 2	1 . 1
8	ပြု
₹	S.
-:=	1
Δ.	ᄬ
	0
	3
	1
	. 1
	1 A
	1
	- 4
	l .1
	1 1
	1 1

* ff16[nv8[nv8 * ff16[nv8[k]]	f10[k] =
<pre>f17(k) = tin1 * ff17(k) + tin1plus1 * ff17(nv7(k)) + tin1plus2 * ff17(nv7(k))];</pre>	
f18[k] = tin1 * ff18[k] + tin1plus1 * ff18[nv8[k]] + + + + + + + + + + + + + + + + + +	f12[k] =
מין דונין סאנין סאנין סאנין סאנין פאריין אין אין אין אין אין אין אין אין אין	f13[k] =
f20[k] = ff20[k]; coith = imminue * ff01[nu2[k]] + immantar * ff01[k] +	£14[k] =
isplus * ff21[nv1[k]];	f15[k] =
<pre>f22[k] = tout2minus2 * ff22[nv4[nv4[k]]] + tout2minus1 * ff22[nv4[k]] + tout2 * ff22[k];</pre>	[16[k] =
f23[k] = isminus2 * ff23[nv1[k]] + iscenter2 * ff23[k] + iscanter2 * ff23[nv2[k]];	£17[k] =
f24[k] = tin2 * ff24[k] + tin2plus] * ff24[nv4[k]] + + + + + + + + + + + + + + + + + +	1,50
f25[k] = tout2minus2 * ff25[nv7[k]]] + + 6011	
<pre>tout2minus1 * ff25[nv7[k]] + tout2 * if25[k]; f26[k] = tout2minus2 * ff26[nv8[nv8[k]]] +</pre>	f20[k] =
<pre>tout2minus1 * ff26[nv8[k]] + tout2 * ff26[k]; f27[k] = tin2 * ff27[k] + tin2plus1 * ff27[nv7[k]] +</pre>	[k] =
tin2plus2 * ff27[nv7[k]]]; f28[k] = tin2 * ff28[k] + tin2plus1 * ff28[nv8[k]] +	f22[k] =
tin2plus2 * ff28[nv8[nv8[k]]];	[23[k] =
break;	£24[k] =
case 3:	f25[k] =
f[10(k) = f[10(k)];	f26[k] =
<pre>iii(k) = tini * iii(k) + tiniplusi * iiii(nvi(k)) + tiniplus2 * ffil(nvi(k)]);</pre>	£27[k] =
<pre>f12[k] = isminus1 * ff12[nv4[k]] + iscenter1 * ff12[k] + isplus1 * ff12[nv2[k]];</pre>	f28[k] =
<pre>f13[k] = toutlminus2 * ff13[nv1[k]] +</pre>	
f14[k] = isminus1 * ff14[nv2[k]] + iscenter1 * ff14[k] + isminus1 * ff14[nv4[k]].	break;
<pre>f15[k] = tin1 * ff15[k] + tin1plus1 * ff15[nv5[k]] + ++nnlplus2 * ff15[nv5[k]];</pre>	
* ff16[nv8[nv8	0 1 don't 1
* IIIb[nv8[k]] + Coucl * * ff17[nv5[nv5[k]]] +	doubte central (doubte in
toutlminus1 * ff17[nv5[k]] + tout1 * ff17[k]; f18[k] = tin1 * ff18[k] + tin1plus1 * ff18[nv8[k]] +	return (1sminus1 %
	double cent2 (double
<pre>120(k) = 1120(k); [21(k] = tinl * ff21(k) + tinlplus1 * ff21(nv1(k)) +</pre>	return (isminus2 *
[22[k] = isminus] * [f22[nv4[k]] + iscenter] * [f22[k] +	
f23[k] = toutlminus2 * ff23[nv1[nv1[k]]] +	9 1
toutlminus; * if23[nv1[k]] + tout; * if24[k]; f24[k] = isminus; * ff24[nv2[k]] + iscenter; * ff24[k] +	recurn (cint " ni
isplus1 * if24[nv4[k]]; f25[k] = tin1 * if25[k] + tin1plus1 * if25[nv5[k]] +	double fin2 (double n1
f26[k] = toutlminus2 * ff26[nv8[kv8] k] + toutlminus2 * ff26[nv8[k	return (tin2 * n1
f27(k) = toutiminus * ff27(nv5(nv5(k)) + tout	, (L4:-04)
toutiminus1 * riz/(lnvs/K]) + tout1 * riz/(K); f28[k] = tin1 * ff28[k] + tin1plus1 * ff28[nv8[k]] + f28[nv8] + ff28[nv8] + ff2	
break;	:
	double out2(double nl

<pre>f10(k) = ff10(k); f11(k) = toutlminus2 * ff11[nv3[nv3[k]]] +</pre>	
f20[k] = ff20[k]; f21[k] = toutiminus2 * ff21[nv3[k]] + tout1 * ff21[k]; toutiminus1 * ff22[nv4[k]] + tout1 * ff22[k] + ispinus1 * ff22[nv4[k]] + iscenter1 * ff22[k] + ispinus1 * ff22[nv2[k]] + ispinus1 * ff22[nv2[k]] + ispinus1 * ff22[nv2[k]] + ispinus1 * ff24[nv2[k]] + iscenter1 * ff24[k] + ispinus1 * ff24[nv2[k]] + iscenter1 * ff24[k] + ispinus1 * ff24[nv2[k]] + ispinus1 * ff25[nv7[k]] + tout1minus2 * ff25[nv7[k]] + fc26[nv6[nv6[k]] + fc26[nv6[nv6[k]] + fc26[nv6[nv6[k]]] + fc27[k] + tiniplus1 * ff25[nv7[k]] + tiniplus2 * ff22[nv7[k]] + tiniplus2 * ff22[nv7[k]] + tiniplus2 * ff27[nv7[k]] + tiniplus2 * ff28[nv6[nv6[k]]] + tout1 * ff28[k];	
break; } double cent1(double n1, double n3)	
<pre>{ return (isminus1 * n1 + iscenter1 * n2 + isplus1 * n3); } double cent2(double n1, double n2, double n3)</pre>	
<pre>{ return (isminus2 * n1 + iscenter2 * n2 + isplus2 * n3); } double fin1(double n1, double n2, double n3)</pre>	
cn (tin1 * n1 + tin1plus1 * n2 + t.	
<pre>double fin2(double n1, double n2, double n3)</pre>	
<pre>double out1(double n1, double n2, double n3) {</pre>	
double out2(double n1, double n2, double n3) {	

J _{un} 20 1999 18:01 wet9is.c	Page 5
return (up2minus2 * n1 + up2minus1 * n2 + up2 * n3);	
void islb_upwind(void)	
<pre>int k; double prodscal; for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>	
<pre>prodscal = csforce_x * uxloc[k] + csforce_y * uxloc[k];</pre>	
<pre>ff10[k] = f10[k]-ctau1*(f10[k]-neq10[k])+(eoprod1[0]-prodscal)*neq10[k]; ff11[k] = f11[k]-ctau1*(f11[k]-neq11[k])+(eoprod1[1]-prodscal)*neq12[k]; ff12[k] = f12[k]-ctau1*(f12[k]-neq12[k])+(eoprod1[2]-prodscal)*neq12[k]; ff13[k] = f13[k]-ctau1*(f13[k]-neq13[k])+(eoprod1[3]-prodscal)*neq13[k]; ff13[k] = f15[k]-ctau1*(f13[k]-neq14[k])+(eoprod1[4]-prodscal)*neq14[k]; ff15[k] = f15[k]-ctau1*(f15[k]-neq16[k])+(eoprod1[6]-prodscal)*neq14[k]; ff15[k] = f16[k]-ctau1*(f16[k]-neq16[k])+(eoprod1[6]-prodscal)*neq16[k]; ff18[k] = f18[k]-ctau1*(f18[k]-neq17[k])+(eoprod1[6]-prodscal)*neq17[k]; ff18[k] = f18[k]-ctau1*(f18[k]-neq18[k])+(eoprod1[8]-prodscal)*neq17[k]</pre>	****
<pre>ff20[k] = f20[k]-ctau2*(f20[k]-neq20[k])+(ecprod2[0]-prodscal)*neq20[k]; ff21[k] = f21[k]-ctau2*(f21[k]-neq21[k])+(ecprod2[1]-prodscal)*neq22[k]; ff22[k] = f22[k]-ctau2*(f22[k]-neq22[k])+(ecprod2[2]-prodscal]*neq22[k]; ff23[k] = f23[k]-ctau2*(f23[k]-neq23[k])+(ecprod2[3]-prodscal)*neq23[k]; ff24[k] = f24[k]-ctau2*(f24[k]-neq23[k])+(ecprod2[3]-prodscal)*neq23[k]; ff25[k] = f25[k]-ctau2*(f25[k]-neq25[k])+(ecprod2[5]-prodscal)*neq25[k]; ff26[k] = f26[k]-ctau2*(f26[k]-neq26[k])+(ecprod2[6]-prodscal)*neq26[k]; ff28[k] = f28[k]-ctau2*(f26[k]-neq26[k])+(ecprod2[6]-prodscal)*neq26[k]; ff28[k] = f28[k]-ctau2*(f27[k]-neq28[k])+(ecprod2[6]-prodscal)*neq26[k]; ff28[k] = f28[k]-ctau2*(f28[k]-neq28[k])+(ecprod2[6]-prodscal)*neq28[k];</pre>	
for (k=0; k <nnodes_all; k++)<="" td=""><td></td></nnodes_all;>	
<pre>switch(boundary_mode[k])</pre>	
<pre>case 0: f10[k] = ff10[k]; f11[k] = out1(ff11[nv3[nv3[k]]),ff11[nv3[k]],ff11[k]); f11[k] = out1(ff12[nv4[nv4[k]]],ff12[nv4[k]]),ff12[k]); f13[k] = out1(ff13[nv1[nv1[k]]],ff13[nv1[k]],ff13[k]); f14[k] = out1(ff14[nv2[nv2[k]]),ff14[nv2[k]],ff14[k]); f15[k] = out1(ff16[nv8[nv3[k]]),ff16[nv8[k]],ff14[k]); f16[k] = out1(ff16[nv8[nv8[k]]),ff16[nv8[k]],ff17[k]); f18[k] = out1(ff12[nv5[nv3[k]]),ff17[k]); f18[k] = out1(ff12[nv5[nv3[k]]),ff17[k]);</pre>	
f20[k] = ff20[k]; f21[k] = out2(ff21[nv3[nv3[k]]],ff21[nv3[k]],ff22[k]); f22[k] = out2(ff22[nv4[nv4[k]]],ff22[nv4[k]],ff22[k]); f23[k] = out2(ff24[nv2[nv2[k]]],ff24[nv2[k]],ff23[k]); f24[k] = out2(ff24[nv2[nv2[k]]],ff24[nv2[k]],ff24[k]); f25[k] = out2(ff25[nv3[nv3[k]]],ff25[nv7[k]],ff25[k]); f26[k] = out2(ff25[nv8[k]]),ff25[nv8[k]],ff25[k]); f27[k] = out2(ff28[nv6[nv8[k]]),ff28[nv6[k]],ff28[k]); break;	
<pre>case 11: f10[k]; f11[k] = out.(ff11[nv3[nv3[k]]).ff11[nv3[k]],ff11[k]); f12[k] = out.(ff12[nv4[k]]).ff12[k],ff12[nv2[k]]); f13[k] = out.(ff13[nv1[nv1[k]]).ff13[nv1[k]].ff13[nv1[k]]); f14[k] = out.(ff14[nv2[k]]).ff13[nv1[k]],ff14[nv2[k]]); f15[k] = cent.(ff15[nv7[k]]).ff15[k],ff15[nv5[k]]); f15[k] = out.(ff16[nv9[k]]).ff13[nv6[k]]); f17[k] = out.(ff18[nv6[nv6[k]]).ff17[nv5[k]]); f18[k] = out.(ff18[nv6[nv6[k]]).ff18[k]);</pre>	

Jun 20 1999 18:01	wet9is.c	Page 6
f20[k] = ff20[k] f21[k] = out2[ff f22[k] = out2[ff f23[k] = out2[ff f24[k] = out2[ff f24[k] = out2[ff f25[k] = cent2[ff f27[k] = out2[ff f28[k] = out2[ff f28[k] = out2[ff	= ff20[k]; = out2(ff21[nv3[nv3[k]]),ff21[nv3[k]],ff21[k]); = cont2(ff22[nv4[k]]),ff22[k],ff22[nv2[k]]; = out2(ff23[nv1[nv2][nv2[k]]),ff24[nv2[k]],ff24[k]); = out2(ff25[nv2[k]]),ff25[k],ff25[nv3[k]]; = cont2(ff25[nv3[k]]),ff25[k],ff25[nv5[k]]; = out2(ff26[nv3[k]]),ff26[k],ff26[nv6[k]]; = out2(ff28[nv6[k]]),ff28[nv6[k]]); = out2(ff28[nv6[k]]),ff28[nv6[k]];	
<pre>case 22: f10(k) = ff10(k) f11(k) = out1(ff f12(k) = out1(ff f13(k) = out1(ff f13(k) = out1(ff f1(k) = out1(ff f1(</pre>	<pre>10 (k); ttl(ffllnv3(nv3(k)), ffll(nv3(k)), ffll(k)); ttl(ffl2(nv4(nv4(k))), ffl2(nv4(k)), ffl2(k)); ttl(ffl3(nv1(nv1(k))), ffl3(nv1(k)), ffl3(k)); ttl(ffl4(nv2(k)), ffl4(k), ffl4(nv4(k))); ttl(ffl5(nv7(nv7(k))), ffl5(nv7(k)), ffl5(k)); ttl(ffl5(nv8(nv8(k)), ffl6(k)); ntl(ffl7(nv5(k)), ffl8(k), ffl8(nv8(k))); sntl(ffl8(nv6(k)), ffl8(k), ffl8(nv8(k)));</pre>	
f20[k] = ff20[k] f21[k] = out2[ff] f22[k] = out2[ff] f23[k] = out2[ff] f24[k] = out2[ff] f25[k] = out2[ff] f25[k] = out2[ff] f27[k] = out2[ff] f28[k] = out2[ff] f28[k] = out2[ff]	= ff20[k]; = out2[ff21[nv3[nv3[k]]], ff21[nv3[k]], ff22[k]); = out2[ff22[nv4[nv4[k]]], ff22[nv4[k]], ff22[k]); = out2[ff23[nv1[nv1[k]]], ff23[nv1[k]], ff23[k]); = cont2[ff24[nv2[k]], ff24[k], ff24[nv4[k]]], = out2[ff25[nv7[kv]], ff25[nv7[k]], ff25[k]); = out2[ff26[nv8[k]], ff27[nv7[k]], ff25[k]); = cont2[ff27[nv5[k]], ff27[k], ff27[nv7[k]]); = cont2[ff28[nv6[k]], ff28[k], ff28[nv8[k]]);	
case 1: f10[k] = ff10[k] f11[k] = out1(fi f12[k] = fin1(fi f13[k] = out1(fi f13[k] = out1(fi f13[k] = fin1(fi f15[k] = fin1(fi f15[k] = fin1(fi f16[k] = fin1(fi f16[k] = fin1(fi f16[k] = out1(fi f18[k] = out1(fi	= ffl([k]; = outl(ffl[nv3[nv3[k]]),ffl1[nv3[k]],ffl1[k]); = fln([ffl2[k],ffl2[nv2[k]],ffl3[nv][k]],ffl3[k]); = outl(ffl3[nv1[nv1[k]]),ffl3[nv1[k]],ffl3[k]); = outl(ffl4[nv2[nv2[k]]),ffl4[nv2[k]],ffl3[k]); = fln((ffl5[k],ffl5[nv5[k]]),ffl5[nv5[k]]); = fln(ffl5[k],ffl5[nv5[k]]),ffl3[nv5[k]]); = outl(ffl3[nv5[nv5[k]]),ffl3[nv6[k]]); = outl(ffl8[nv6[nv6[k]],ffl8[nv6[k]]);	
### ##################################	0(k]; 0(ff22[nv3[nv3[k]]),ff22[nv3[k]],ff22[k]); 0(ff22[k],ff22[nv2[k]],ff22[nv2[k]],ff23[k]); 2(ff23[nv1[nv2]k]]),ff23[nv1[k]],ff23[k]); 2(ff23[nv2[nv2]k]),ff23[nv2[k]],ff24[k]); 2(ff25[k],ff25[nv5[k]],ff23[nv6[nv6[k]]); 2(ff26[k],ff26[nv6[k]],ff28[nv6[nv6[k]]); 2(ff28[nv6[nv6[k]]),ff28[nv6[k]],ff28[k]);	
Case 2: f10[K] = ff10[K f11[K] = out1(f f12[K] = out1(f f13[K] = out1(f f13[K] = out1(f f15[K] = out1(f f15[K] = out1(f f16[K] = out1(f f16[K] = out1(f f16[K] = out1(f f16[K] = fin1(f f16[K] = fin1(f f18[K] = fin1(f)	<pre>(#1; (#fillnv3[nv3[k]]),ffil[nv3[k]],ffil[k]); (#fillnv4[nv4[k]]),ffil[nv4[k]],ffil[k]); (#fillnv4[nv4[k]]),ffil[nv1[k]],ffilk]); (#fillnv7[nv7[k]]),ffil[nv4[k]]); (#fillnv7[nv7[k]]),ffil[nv4[k]]); (#fillnv8[nv8[k]]),ffil[nv8[k]],ffilk]); (#fillnv8[nv8[k]]),ffilk],ffilk]); (#filk],ffilk],ffilk],ffilk]</pre>	
f20[k] = ff20[k] f21[k] = out2(ff) f22[k] = out2(ff)]; f21[nv3[nv3[k]]],ff21[nv3[k]],ff21[k]); f22[nv4[nv4[k]]],ff22[nv4[k]],ff22[k]);	

5
mec.ul
Ė
တ္ထ
Ë
n flumag3
Ē
a fron
onea from fl
sofone
SO
ģ
77
intec
7

wet9is.c

Jun 20 1999 18:01	Case 1: filo[K] = filo[K]	### 19 10 12 13 14 15 15 15 15 15 15 15
Jun 20 1999 18:01 Wet9is.c	<pre>f23(k) = out2(ff23[nv1[nv1[k]]),ff23[nv1[k]]); f24[k] = fin2(ff24[k],ff24[nv4[k]]); f25[k] = out2(ff25[nv1[nv7[k]]),ff25[nv7[k]),ff25[k]); f25[k] = out2(ff26[nv8[nv8[k]],ff25[nv7[k]]); f27[k] = fin2(ff26[nv8[nv8[k]],ff26[k]); f28[k] = fin2(ff28[k],ff28[nv8[k]],ff28[nv8[k]]); break; } } </pre>	Int Int

case 1:	<pre>f10[k] = ff10[k]; f11[k] = cf11 * ff11[nv3[k]] + oneminus1 * ff11[k]; f12[k] = copplus1 * ff12[k] - cf11 * ff12[nv2[k]]; f13[k] = cf11 * ff13[nv1[k]] + oneminus1 * ff13[k]; f14[k] = cf11 * ff14[nv2[k]] + oneminus1 * ff14[k]; f15[k] = oneplus1 * ff15[k] - cf11 * ff15[nv5[k]]; f16[k] = oneplus1 * ff15[k] - cf11 * ff15[nv6[k]]; f17[k] = cf11 * ff17[nv5[k]] + oneminus1 * ff17[k]; f18[k] = cf11 * ff18[nv5[k]] + oneminus1 * ff17[k];</pre>	f20[k] = ff10[k]; f21[k] = cf12 * ff21[nv3[k]] + oneminus2 * ff21[k]; f22[k] = oneplus2 * ff22[k] + cf12 * ff22[nv2[k]]; f23[k] = cf12 * ff23[nv1[k]] + oneminus2 * ff23[k]; f24[k] = cf12 * ff24[nv2[k]] + oneminus2 * ff24[k]; f25[k] = oneplus2 * ff26[k] - cf12 * ff25[nv5[k]]; f25[k] = oneplus2 * ff26[k] - cf12 * ff26[nv6[k]]; f27[k] = cf12 * ff27[nv5[k]] + oneminus2 * ff27[k]; f28[k] = cf12 * ff28[nv6[k]] + oneminus2 * ff28[k];	break; case 2:	<pre>fl0(k) = ffl0(k); fil(k) = cfl1 * ffll(nv3(k)) + oneminus1 * ffll(k); fil(k) = cfl1 * ffl2(nv4(k)) + oneminus1 * ffl2(k); fil3(k) = cfl1 * ffl3(nv1(k)) + oneminus1 * ffl3(k); fl4(k) = cfl1 * ffl3(nv1(k)) + oneminus1 * ffl3(k); fl5(k) = cfl1 * ffl5(nv7(k)) + oneminus1 * ffl5(k); fl6(k) = cfl1 * ffl6(nv8(k)) + oneminus1 * ffl6(k); fl6(k) = oneplus1 * ffl7(k) - cfl1 * ffl8(k); fl8(k) = oneplus1 * ffl8(k) - cfl1 * ffl8(k);</pre>	f20[k] = ff20[k]; f21[k] = cf12 * ff22[nv3[k]] + oneminus2 * ff22[k]; f22[k] = cf12 * ff22[nv4[k]] + oneminus2 * ff22[k]; f23[k] = cf12 * ff23[nv4[k]] + oneminus2 * ff23[k]; f24[k] = oneplus2 * ff24[k] - cf12 * ff24[nv4[k]]; f25[k] = cf12 * ff25[nv7[k]] + oneminus2 * ff25[k]; f26[k] = cf12 * ff25[nv7[k]] + oneminus2 * ff25[k]; f27[k] = oneplus2 * ff27[k] - cf12 * ff28[nv7[k]]; f28[k] = oneplus2 * ff28[k] - cf12 * ff28[nv8[k]];	break;	case 3:	f10[k] = ff10[k]; f11[k] = oneplus1 * ff11[k] - cf11 * ff11[nv1[k]]; f12[k] = cf11 * ff12[nv4[k]] + oneminus1 * ff12[k]; f13[k] = cf11 * ff13[nv1[k]] + oneminus1 * ff13[k]; f14[k] = cf11 * ff14[nv2[k]] + oneminus1 * ff14[k]; f15[k] = oneplus1 * ff15[k] - cf11 * ff15[nv5[k]]; f16[k] = cf11 * ff16[nv8[k]] + oneminus1 * ff16[k]; f17[k] = cf11 * ff16[nv8[k]] + oneminus1 * ff16[k]; f18[k] = oneplus1 * ff18[k] - cf11 * ff18[nv8[k]];	f20[k] = ff20[k]; f21[k] = oneplus2 * ff21[k] - cf12 * ff21[nv1[k]]; f22[k] = cf12 * ff22[nv4[k]] + oneminus2 * ff22[k]; f23[k] = cf12 * ff22[nv2[k]] + oneminus2 * ff22[k]; f24[k] = cf12 * ff24[nv2[k]] + oneminus2 * ff24[k]; f25[k] = oneplus2 * ff25[k] - cf12 * ff25[nv3[k]]; f26[k] = cf12 * ff26[nv8[k]] + oneminus2 * ff26[k]; f27[k] = cf12 * ff27[nv5[k]] + oneminus2 * ff26[k]; f28[k] = oneplus2 * ff28[k] - cf12 * ff28[nv8[k]];
Case			C C				ca		

Jun 20 1999 18:01

Page 10

Jun 20 1999 18:01 Wet9is.c	Page 9
break; case 4:	
<pre>f10[k] = ff10[k]; f11[k] = cf11 * ff11[nv1[3]] + oneminus1 * ff11[k]; f12[k] = cf11 * ff12[ivv4[k]] + oneminus1 * ff12[k]; f13[k] = oneplus1 * ff12[ivv4[k]] + oneminus1 * ff14[k]; f14[k] = cf11 * ff14[nv2[k]] + oneminus1 * ff14[k]; f15[k] = cf11 * ff15[nv7[k]] + oneminus1 * ff15[k]; f16[k] = oneplus1 * ff15[k] - cf11 * ff15[nv6[k]]; f17[k] = oneplus1 * ff17[k] - cf11 * ff15[nv6[k]]; f18[k] = cf11 * ff18[nv6[k]] + oneminus1 * ff18[k];</pre>	
f20[k] = ff20[k]; f21[k] = cf12 * ff21[nv1[3]] + oneminus2 * ff21[k]; f22[k] = cf12 * ff22[nv4[k]] + oneminus2 * ff22[k]; f23[k] = oneplus2 * ff23[k] - cf12 * ff23[nv3[k]]; f24[k] = cf12 * ff24[nv2[k]] + oneminus2 * ff24[k]; f25[k] = cf12 * ff25[nv7[k]] + oneminus2 * ff24[k]; f26[k] = oneplus2 * ff26[k] - cf12 * ff25[nv6[k]]; f27[k] = oneplus2 * ff27[k] - cf12 * ff25[nv6[k]]; f27[k] = cf12 * ff28[nv6[k]] + oneminus2 * ff28[k];	
break; }	
<pre>void iprop(void) { int k; double prodscal;</pre>	
<pre>for(k=0; k<nnodes_all; k++)="" td="" {<=""><td></td></nnodes_all;></pre>	
Castologe_A Castologe_A	

(ecprod2[7] - prodaca1) * neq2[[k]; ff28[k] = f28[k] - ctau2 * (f28[k] - neq28[k]) + (ecprod2[8] - prodaca1) * neq28[k];
*/
<pre>if(k==0) printf("iter=%d k=%d ff10=%e ff20=%e\n",iter,k,ff10[k],ff20[k]); printf("iter=%d k=%d neq10=%e f10-neq=%e\n",iter,k,neq10[k], f10[k]-neq10[k]);</pre>
*/
adn1y=%
radn2x[k],gradn2y[k]) x1[0] - uxloc[k]) +
<pre>y1(0] - uyloc[k])) * neq10[k] x1[1] - uxloc[k]) +</pre>
<pre>[1] - uyloc(k)) * neq11(k) [2] - uxloc(k) +</pre>
y1[2] - uyloc[k])) * neq12[k] x1[3] - uxloc[k]) +
y1[3] - uyloc[k])) * neq13[k] x1[4] - uxloc[k]) +
(ecy1[4] - uyloc[k]) * neq14[k] (ecx1[5] - uxloc[k]) +
* (ecyl[5] - uyloc[k])) * * (ecxl[6] - uxloc[k]) + * (ecxl[6] - uxloc[k]) +
* (ecy1[b] - uyloc[k])
(ecy1[] - uyloc[k]]) (ecx1[8] - uxloc[k]) + (ecy1[8] - uyloc[k]))
* (ecx2[0] - uxloc[k]) +
[K] " (ecyz[u] " uyloc[K])) " neqzu[K] [K] * (ecxz[l] - uxloc[K]) + [K] * (ecxz[l] - uxloc[K]) +
[k] * (ecy2[x] - uyloc[k])) [k] * (ecy2[2] - uxloc[k]) + [k] * (ecy2[2] - uxloc[k]) +
[k] * (ecy2[3] - uyloc[k])) [k] * (ecx2[3] - uxloc[k]) + [k] * (ecx2[3] - uxloc[k])
K] * (ecyz[3] = uyloc[k]) / ileqz3[k] K] * (ecx2[4] = uxloc[k]) + k] * (ecx2[4] = uxloc[k]) +
k] * (ecy2[1] - uyloc[k]) + (ecx2[5] - uxloc[k]) + + + + + + + + + + + + + + + + + + +
] * (ecx2[6] - uxloc[k]) + (ecx2[6] - uxloc[k]) +
] * (ecyz[0] - uyroc[k]))] * (ecx2[7] - uxloc[k]) +] * (ecx2[7] - uwloc[k]))
] * (ecx2[8] - uxloc[k]) + * (ecx2[8] - uxloc[k]) +
(([v])))+ ([c] = [c] = [c]
void ic(void)
int k; for(k=0; k <nnodes_all; k++)<="" td=""></nnodes_all;>
case 0:

wet9is.c

flumag3.mec.utt.ro	
from	
ed by sofonea from flum	
ted by	
Prin	

Jun 20 1999 18:01	wet9is.c	Page 11	티
f10[k] = ff10[k];			
f11(K) = ff11(K) * nc10(1) + ff11[nv1(K)] * nc11[1] + ff ff11[nv2(K)] * nc13[1] + ff ff11[nv5(K)] * nc15[1] + ff ff11[nv7(K)] * nc17[1] + ff	<pre>ff11[nv2[k]] * nc12[1] + ff11[nv4[k]] * nc14[1] + ff11[nv6[k]] * nc14[1] + ff11[nv8[k]] * nc18[1];</pre>		
f12(k) = ff12(k) * nc10[2] + ff12[nv1[k]] * nc11[2] + ff ff12[nv3[k]] * nc13[2] + ff ff12[nv5[k]] * nc15[2] + ff ff ff12[nv7[k]] * nc17[2] + ff	ffl2[nv2[k]] * nc12[2] + ffl2[nv4[k]] * nc14[2] + ffl2[nv6[k]] * nc16[2] + ffl2[nv8[k]] * nc18[2];		
f13[k] = ff13[k] * nc10[3] + ff13[nv1[k]] * nc11[3] + ff1. ff13[nv3[k]] * nc13[3] + ff1. ff13[nv5[k]] * nc15[3] + ff1. ff13[nv7[k]] * nc17[3] + ff1.	113[nv2[k]] * nc12[3] + 113[nv4[k]] * nc14[3] + 113[nv6[k]] * nc14[3] + 113[nv8[k]] * nc18[3];		
f14[k] = ff14[k] * nc10[4] + ff14[nv1[k]] * nc11[4] + ff ff14[nv2[k]] * nc13[4] + ff ff14[nv5[k]] * nc15[4] + ff ff14[nv7[k]] * nc17[4] + ff	<pre>ffl4[nv2[k]) * nc12[4] + ffl4[nv4[k]] * nc14[4] + ffl4[nv6[k]] * nc16[4] + ffl4[nv8[k]] * nc18[4];</pre>		
f15[k] = ff15[k] * nc10[5] + ff15[nv1[k]] * nc11[5] + ff11 ff15[nv3[k]] * nc13[5] + ff11 ff15[nv5[k]] * nc15[5] + ff11 ff15[nv7[k]] * nc17[5] + ff11	115[nv2[k]] * nc12[5] + 115[nv4[k]] * nc14[5] + 115[nv6[k]] * nc14[5] + 115[nv8[k]] * nc18[5];		-
f16[k] = ff16[k] * nc10[6] + ff16[nv1[k]] * nc11[6] + ff1 ff16[nv3[k]] * nc13[6] + ff1 ff16[nv3[k]] * nc15[6] + ff1] ff16[nv3[k]] * nc17[6] + ff1]	116[nv2[k]] * nc12[6] + 116[nv4[k]] * nc14[6] + 116[nv6[k]] * nc16[6] + 116[nv8[k]] * nc18[6];		
f17[k] = ff17[k] * nc10[7] + ff17[nv1[k]] * nc11[7] + ff ff17[nv3[k]] * nc13[7] + ff ff17[nv3[k]] * nc15[7] + ff ff ff17[nv3[k]] * nc15[7] + ff	ff17[nv2[k]] * nc12[7] + ff17[nv4[k]] * nc14[7] + ff17[nv6[k]] * nc16[7] + ff17[nv8[k]] * nc18[7];		
f18[k] = ff18[k] * nc10[8] + ff ff18[nv1[k]] * nc11[8] + ff ff18[nv3[k]] * nc13[8] + ff ff18[nv5[k]] * nc13[8] + ff ff18[nv7[k]] * nc17[8] + ff	ff18[nv2[k]] * nc12[8] + ff18[nv4[k]] * nc14[8] + ff18[nv6[k]] * nc16[8] + ff18[nv8[k]] * nc18[8];		
f20[k] = ff20[k];			
f21[k] = ff21[k] * nc20[1] + ff21[nv1[k]] * nc21[1] + ff ff21[nv2[k]] * nc21[1] + ff ff21[nv5[k]] * nc27[1] + ff ff21[nv7[k]] * nc27[1] + ff	<pre>ff21[nv2[k]] * nc22[1] + ff21[nv4[k]] * nc24[1] + ff21[nv6[k]] * nc26[1] + ff21[nv8[k]] * nc28[1];</pre>		
f22[k] = ff22[k] * nc20[2] + ff22[nv1[k]] * nc21[2] + ff ff22[nv3[k]] * nc23[2] + ff ff22[nv3[k]] * nc23[2] + ff ff22[nv7[k]] * nc25[2] + ff	ff22[nv2[k]] * nc22[2] + ff22[nv4[k]] * nc24[2] + ff22[nv6[k]] * nc26[2] + ff22[nv8[k]] * nc28[2];	p	
f23[k] = ff23[k] * nc20[3] + ff23[x] ff23[nv3[k]] * nc21[3] + ff2 ff23[nv3[k]] * nc23[3] + ff ff23[nv5[k]] * nc25[3] + fi	f + f + f + f + f + f + f + f + f + f +		

WAFQIE C	Dana 12
nc20[4] + icslnvc[k]] nc20[4] + ff24[nv2[k]] nc21[4] + ff24[nv2[k]] nc25[4] + ff24[nv4[k]]	
<pre>linv7[k]] * nc27[4] + ff24[nv8[k]] * nc28[4], = ff25[k] * nc20[5] + ff25[nv2[k]] * nc21[5] + ff25[nv2[k]] * nc22[5] 5[nv3[k]] * nc23[5] + ff25[nv4[k]] * nc24[5] 5[nv3[k]] * nc25[5] + ff25[nv6[k]] * nc24[5] 5[nv5[k]] * nc25[5] + ff25[nv6[k]] * nc26[5]</pre>	
f27[k] = ff27[k] * nc20[7] + ff27[nv2[k]] * nc22[7] + ff27[nv1[k]] * nc21[7] + ff27[nv2[k]] * nc22[7] + ff27[nv4[k]] * nc24[7] + ff27[nv4[k]] * nc26[7] + ff27[nv6[k]] * nc26[7] + ff27[nv6[k]] * nc26[7] + ff27[nv6[k]] * nc26[7] + ff27[nv6[k]] * nc28[7];	·
f28[k] = ff28[k] * nc20[8] + ff28[nv1[k]] * nc21[8] + ff28[nv2[k]] * nc22[8] + ff28[nv3[k]] * nc23[8] + ff28[nv4[k]] * nc24[8] + ff28[nv3[k]] * nc25[8] + ff28[nv6[k]] * nc26[8] + ff28[nv7[k]] * nc25[8] + ff28[nv8[k]] * nc26[8] +	
/* if(k==0) printf("iter=8d k=8d f1=8e f2=8e\n",iter,k,f10[k],f20[k]);	<u> </u>
<pre>*/</pre>	
<pre>f11[k] = ff11[k] * ncbot10[1] + ff11[nv1[k]] * ncbot11[1] + ff11[nv2[k]] * ncbot12[1] + ff11[nv3[k]] * ncbot13[1] + ff11[nv5[k]] * ncbot15[1] + ff11[nv6[k]] * ncbot16[1];</pre>	
<pre>f12[k] = ff12[k] * ncbot10[2] + ff12[nv1[k]] * ncbot11[2] + ff12[nv2[k]] * ncbot12[2] + ff12[nv3[k]] * ncbot13[2] + ff12[nv5[k]] * ncbot15[2] + ff12[nv6[k]] * ncbot16[2];</pre>	
<pre>f13[k] = ff13[k] * ncbot10[3] + ff13[nv1[k]] * ncbot11[3] + ff13[nv2[k]] * ncbot12[3] + ff13[nv3[k]] * ncbot13[3] + ff13[nv5[k]] * ncbot15[3] + ff13[nv6[k]] * ncbot16[3];</pre>	
<pre>fl4[k] = ff14[k] * ncbot10[4] + ff14[nv1[k]] * ncbot11[4] + ff14[nv2[k]] * ncbot12[4] + ff14[nv3[k]] * ncbot13[4] + ff14[nv5[k]] * ncbot15[4] + ff14[nv6[k]] * ncbot16[4];</pre>	
<pre>f15[k] = ff15[k] * ncbot10[5] + ff15[nv1[k]] * ncbot11[5] + ff15[nv2[k]] * ncbot12[5] + ff15[nv3[k]] * ncbot13[5] + ff15[nv6[k]] * ncbot15[5] + ff15[nv6[k]] * ncbot16[5];</pre>	
<pre>f16[k] = ff16[k] * ncbot10[6] + ff16[nv1[k]] * ncbot11[6] + ff16[nv2[k]] * ncbot12[6] + ff16[nv3[k]] * ncbot13[6] + ff16[nv6[k]] * ncbot15[6] + ff16[nv6[k]] * ncbot16[6];</pre>	
<pre>f17(k) = ff17(k) * ncbot10(7) + ff17(nv1(k)) * ncbot11(7) + ff17(nv2(k)) * ncbot12(7) + ff17(nv3(k)) * ncbot13(7) + ff17(nv6(k)) * ncbot15(7) + ff17(nv6(k)) * ncbot16(7);</pre>	
f18[k] = ff18[k] * ncbot10[8] + ff18[nv1[k]] * ncbot11[8] +	

_	-
5.5	
∹	
=	
_	
5.	
ç	
₾.	
ě	
∹	
ຠ	
Ď.	
ĕ	
~	
⊏	
3	
=	
=	
=	
≍	
~	
=	
æ	
ă.	
×	
≍	
~	
<u></u>	
ത	
➣	
Ω.	
~	
ပ္က	
Ĕ	
=	
_	
ς.	
-	

Jun 20 1999 18:01	Page 13	10:81 888 1 02 UDF
<pre>ff18[nv3[k]] * ncbot12[8] + ff18[nv3[k]] * ff18[nv5[k]] * ncbot15[8] + ff18[nv6[k]] *</pre>	* ncbot13[8] + * ncbot16[8];	f18[k] = f1 ff18[nv
f20[k] = ff20[k];		## [4]00#
f21[k] = ff21[k] * ncbot20[1] + ff21[nv1[k]] * ff21[nv2[k]] * ncbot22[1] + ff21[nv3[k]] * ff21[nv5[k]] * ncbot25[1] + ff21[nv6[k]] *	* ncbot21(1) + * ncbot23(1) + * ncbot26[1];	21[
<pre>f22[k] = ff22[k] * ncbot20[2] + ff22[nv1 k]] * ff22[nv2[k]] * ncbot22[2] + ff22[nv3[k]] * ff22[nv5[k]] * ncbot25[2] + ff22[nv6[k]] *</pre>	* ncbot21[2] + * ncbot23[2] + * ncbot26[2];	f22[k] = ff f22[k] = ff ff22[m
f23[k] = ff23[k] * ncbot20[3] + ff23[nv1[k]] * ff23[nv2[k]] * ncbot22[3] + ff23[nv3[k]] * ff23[nv5[k]] * ncbot25[3] + ff23[nv6[k]] *	* ncbot21[3] + * ncbot23[3] + * ncbot26[3];	f23[k] = ff ff23[k] = ff ff23[n]
<pre>f24[k] = ff24[k] * ncbot20[4] + ff24[nv1[k]] * ff24[nv2[k]] * ncbot22[4] + ff24[nv3[k]] * ff24[nv5[k]] * ncbot25[4] + ff24[nv6[k]] *</pre>	* ncbot21[4] + * ncbot23[4] + * ncbot26[4];	£24[k] = £1 £24[k] = £1 £24[n
f25[k] = ff25[k] * ncbot20[5] + ff25[nv1[k]] * ff25[nv2[k]] * ncbot22[5] + ff25[nv3[k]] * ff25[nv5[k]] * ncbot25[5] + ff25[nv6[k]] *	* ncbct21[5] + * ncbct23[5] + * ncbct26[5];	f25[k] = f1 ff25[nv ff25[nv
<pre>f26[k] = ff26[k] * ncbot20[6] + ff26[nv1[k]] * ff26[nv2[k]] * ncbot22[6] + ff26[nv3[k]] * ff26[nv5[k]] * ncbot25[6] + ff26[nv6[k]] *</pre>	* ncbot21[6] + * ncbot23[6] + * ncbot26[6];	f26[k] = f1 f26[m
<pre>f27[k] = ff27[k] * ncbot20[7] + ff27[nv1[k]] * ff27[nv2[k]] * ncbot22[7] + ff27[nv3[k]] * ff27[nv5[k]] * ncbot25[7] + ff27[nv6[k]] *</pre>	* ncbot21[7] + * ncbot23[7] + * ncbot26[7];	f27[k] = f1 f27[k] = f1
<pre>f28[k] = ff28[k] * ncbot20[8] + ff28[nv1[k]] * ff28[nv2[k]] * ncbot22[8] + ff28[nv3[k]] * ff28[nv5[k]] * ncbot25[8] + ff28[nv6[k]] *</pre>	* ncbot21[8] + * ncbot23[8] + * ncbot26[8];	f28[k] = f1 ff28[n] = f458[n]
<pre>break; case 2: f10[k] = ff10[k];</pre>		break; case 3:
fil[k] = ffll[k] * nctopl0[l] + ffll[nv1[k]] * ffll[nv3[k]] * nctopl3[l] + ffll[nv4[k]] * ffll[nv4[k]] * nctopl7[l] + ffll[nv8[k]] *	* nctopl1[1] + * nctopl4[1] + * nctopl8[1];	f11[k] = f1 f11[k] = f1 f211[m
<pre>f12[k] = ff12[k] * nctop10[2] + ff12[nv1[k]] ff12[nv3[k]] * nctop13[2] + ff12[nv4[k]] ff12[nv7[k]] * nctop17[2] + ff12[nv8[k]]</pre>	* nctop11[2] + * nctop14[2] + * nctop18[2];	f12[k] = f12[k] = f12[k] = f12[m]
f13[k] = ff13[k] * nctop10[3] + ff13[nv1[k]] * ff13[nv3[k]] * nctop13[3] + ff13[nv4[k]] * nctop17[3] + ff13[nv8[k]] * nctop17[3] * nctop17[3] + ff13[nv8[k]] * nctop17[3] * nctop17	* nctop11[3] + * nctop14[3] + * nctop18[3];	f13(K) id = [f13(K) if = [f13[n] if = [f13[n]
<pre>f14(k] = ff14(k) * nctop10(4) + ff14(nv1(k)) ff14(nv3(k)) * nctop13(4) + ff14(nv4(k)) ff14(nv7(k)) * nctop17(4) + ff14(nv8(k))</pre>	* nctopl1[4] + * nctopl4[4] + * nctopl8[4];	f14[k] = f. ff14[n ff14[n
* nctop10[5] + ff15[nv1[k]] * nctop13[5] + ff15[nv4[k]] * nctop17[5] + ff15[nv8[k]]	nctop11[nctop14[nctop18[f15[k] = f15[k] = ff15[n
nv1[k]] nv4[k]] nv8[k]]	* nctop11[6] + * nctop14[6] + * nctop18[6];	f16[k] = f ff16[n ff16[n
<pre>f17[k] = ff17[k] * nctop10[7] + ff17[nv1[k]] ff17[nv3[k]] * nctop13[7] + ff17[nv4[k]] ff17[nv7[k]] * nctop17[7] + ff17[nv8[k]]</pre>	* nctop11[7] + * nctop14[7] + * nctop18[7];	£17[k] = £: ££17[n]

<pre>f18[k] = ff18[k] * nctop10[8] + ff18[nv1[k]] * nctop11[8] + ff18[nv3[k]] * nctop13[8] + ff18[nv4[k]] * nctop14[8] + ff18[nv7[k]] * nctop17[8] + ff18[nv8[k]] * nctop18[8];</pre>
f20[k] = ff20[k];
<pre>f21(k] = ff21(k) * nctop20[1] + ff21[nv1(k]] * nctop21[1] + ff21[nv3(k]] * nctop23[1] + ff21[nv4(k)] * nctop24[1] + ff21[nv7(k]] * nctop27[1] + ff21[nv8(k)] * nctop28[1];</pre>
<pre>f22(k] = ff22(k] * nctop20[2] + ff22[nv1(k]] * nctop21[2] + ff22[nv3(k]] * nctop23[2] + ff22[nv4(k]] * nctop24[2] + ff22[nv7(k]] * nctop27[2] + ff22[nv8(k]] * nctop28[2];</pre>
<pre>f23(k] = ff23(k] * nctop20[3] + ff23(nv1(k)] * nctop21[3] + ff23(nv3(k)] * nctop23[3] + ff23(nv4(k)] * nctop24[3] + ff23(nv7(k)] * nctop27[3] + ff23(nv8(k)] * nctop28[3];</pre>
<pre>f24 k = ff24 k * nctop20[4] + ff24[nv1 k]] * nctop21[4] + ff24[nv3[k]] * nctop23[4] + ff24[nv4[k]] * nctop24[4] + ff24[nv7[k]] * nctop27[4] + ff24[nv8[k]] * nctop28[4];</pre>
<pre>f25[k] = ff25[k] * nctop20[5] + ff25[nv1[k]] * nctop21[5] +</pre>
<pre>f26[k] = ff26[k] * nctop20[6] + ff26[nv1[k]] * nctop21[6] + ff26[nv3[k]] * nctop23[6] + ff26[nv4[k]] * nctop24[6] + ff26[nv7[k]] * nctop27[6] + ff26[nv8[k]] * nctop28[6];</pre>
<pre>f27(k] = ff27(k] * nctop20[7] + ff27(nv1(k)] * nctop21[7] + ff27(nv3(k)] * nctop23[7] + ff27(nv4(k)] * nctop24[7] + ff27(nv7(k)] * nctop27[7] + ff27(nv8(k)] * nctop28[7];</pre>
<pre>f28(k] = ff28(k] * nctop20[8] + ff28[nv1(k]] * nctop21[8] + ff28[nv3(k]] * nctop23[8] + ff28[nv4(k]] * nctop24[8] + ff28[nv7(k]] * nctop27[8] + ff28[nv8(k]] * nctop28[8];</pre>
<pre>break; case 3: fl0[k] = ffl0[k];</pre>
<pre>fil(k] = ffll(k] * ncleftl0(1] + ffll(nvl(k)) * ncleftl1(1] + ffll(nvs(k)) * ncleftl5(1) + ffll(nv2(k)) * ncleftl2(1] + ffll(nv4(k)) * ncleftl4(1) + ffll(nv8(k)) * ncleftl8(1);</pre>
<pre>f12(k) = ff12(k) * ncleft10(2) + ff12(nv1(k)) * ncleft11(2) +</pre>
<pre>f13(k) = ff13(k) * ncleft10(3) + ff13(nv1(k)) * ncleft11(3) + ff13(nv5(k)) * ncleft15(3) + ff13(nv2(k)) * ncleft12(3) + ff13(nv4(k)) * ncleft14(3) + ff13(nv8(k)) * ncleft18(3);</pre>
<pre>f14(k) = ff14(k) * noleft10(4) + ff14(nv1(k)) * noleft11(4) +</pre>
<pre>f15(k) = ff15(k) * ncleft10(5) + ff15(nv1(k)) * ncleft11(5) +</pre>
<pre>f16(k) = ff16(k) * ncleft10(6) + ff16(nv1(k)) * ncleft11(6) + ff16(nv5(k)) * ncleft15(6) + ff16(nv2(k)) * ncleft12(6) + ff16(nv4(k)) * ncleft14(6) + ff16(nv8(k)) * ncleft18(6);</pre>
<pre>f17[k] = ff17[k] * ncleft10[7] + ff17[nv1[k]] * ncleft11[7] +</pre>

2
_
=
-:
ci.
ക
~
Ε
<u></u>
ರಾ
๙
C
_
3
=
_
_
ັດ
'n
=
_
w
Φ
⊂
0
픋
0
Ó
➣
Ω
O
œ.
≘
≌
=
ı
_

(1918) # noright14[7] + ff17[nv7[k]] * noright17[7];

Jun 20 1999 18:01 Wet9is.c Page 15	Jun 20 1999 18:01
(0)	ff17[nv4
<pre>f18[k] = f118[k] * nc.ert.0[8] + f118[nv.[k]] * nc.ert.11[8] + f118[nv.5[k]] * nc.left.15[8] + ff18[nv.2[k]] * nc.left.12[8] + f118[nv.4[k]] * nc.left.14[8] + ff18[nv.8[k]] * nc.left.18[8];</pre>	f18[k] = ff1 ff18[nv6 if18[nv4
f20[k] = ff20[k];	F20[k] = ff2
<pre>f21(k) = ff21(k) * ncleft20[1] + ff21[nv1(k)] * ncleft21[1] + ff21[nv5(k)] * ncleft25[1] + ff21[nv2(k)] * ncleft22[1] + ff21[nv4(k)] * ncleft24[1] + ff21[nv8(k)] * ncleft28[1];</pre>	21[
<pre>f22(k) = ff22(k) * ncleft20[2] + ff22[nv1(k)] * ncleft21[2] + ff22[nv5(k)] * ncleft25[2] + ff22[nv2(k)] * ncleft22[2] + ff22[nv4(k)] * ncleft24[2] + ff22[nv8(k)] * ncleft28[2];</pre>	121[NV4 122[k] = ff2 122[nV6 1522[nV6 1522[nV6
<pre>f23(k] = ff23(k] * ncleft20(3] + ff23(nv1(k)] * ncleft21(3] + ff23(nv5(k)] * ncleft25(3] + ff23(nv2(k)] * ncleft22(3] + ff23(nv4(k)) * ncleft24(3] + ff23(nv8(k)) * ncleft28(3);</pre>	[23[K] = ff2 ff23[nv6
<pre>f24(k] = ff24(k] * ncleft20[4] + ff24[nv1(k]] * ncleft21[4] +</pre>	f24[k] = ff2 ff24[nV6 ff24[nV6
<pre>f25[k] = ff25[k] * ncleft20[5] + ff25[nv1[k]] * ncleft21[5] + ff25[nv5[k]] * ncleft22[5] + ff25[nv2[k]] * ncleft22[5] + ff25[nv4[k]] * ncleft24[5] + ff25[nv8[k]] * ncleft28[5];</pre>	f25[k] = ff2 ff25[nVe
<pre>f26[k] = ff26[k] * ncleft20[6] + ff26[nv1[k]] * ncleft21[6] + ff26[nv5[k]] * ncleft25[6] + ff26[nv2[k]] * ncleft22[6] + ff26[nv4[k]] * ncleft24[6] + ff26[nv8[k]] * ncleft28[6];</pre>	f26[K] = ff2 ff26[nV
<pre>f27ik] = ff27[k] * ncleft20[7] + ff27[nv1[k]] * ncleft21[7] + ff27[nv5[k]] * ncleft25[7] + ff27[nv2[k]] * ncleft22[7] + ff27[nv4[k]] * ncleft24[7] + ff27[nv8[k]] * ncleft28[7];</pre>	f27[k] = ff2 ff27[nV
<pre>f28(k) = ff28(k) * ncleft20(8] + ff28(nv1(k)) * ncleft21(8] + ff28(nv5(k)) * ncleft25[8] + ff28(nv2(k)) * ncleft22[8] + ff28(nv4(k)) * ncleft24[8] + ff28(nv8(k)) * ncleft28[8];</pre>	f28[k] = ff2 ff28[nv
<pre>break; case 4:</pre>	break;
<pre>f11(k] = ff11(k) * ncright10[1] + ff11[nv3(k]) * ncright13[1] + ff11[nv6(k]] * ncright16[1] + ff11[nv2(k]) * ncright12[1] + ff11[nv4(k]] * ncright14[1] + ff11[nv7(k]) * ncright17[1];</pre>) } oud iup (void)
<pre>f12[k] = ff12[k] * ncright10[2] + ff12[nv3[k]] * ncright13[2] + ff12[nv6[k]] * ncright16[2] + ff12[nv2[k]] * ncright12[2] + ff12[nv4[k]] * ncright14[2] + ff12[nv7[k]] * ncright17[2];</pre>	Sunodes.
<pre>f13[k] = ff13[k] * ncright10[3] + ff13[nv3[k]] * ncright13[3] + ff13[nv6[k]] * ncright16[3] + ff13[nv2[k]] * ncright12[3] + ff13[nv4[k]] * ncright14[3] + ff13[nv7[k]] * ncright17[3];</pre>	f11[k] = ff11[k] ff11[w3[k]] ;
<pre>f14(k] = ff14(k] * ncright10(4] + ff14(nv3(k)) * ncright13(4) + ff14(nv6(k)) * ncright16(4) + ff14(nv2(k)) * ncright12(4) + ff14(nv4(k)) * ncright14(4) + ff14(nv7(k)) * ncright17(4);</pre>	ff11 [nv3 [nv3] ff11 [nv3 [nv3] ff11 [nv3 [nv4]
<pre>f15(k) = ff15(k) * ncright10[5] + ff15[nv3(k]) * ncright13[5] + ff15[nv6(k]] * ncright16[5] + ff15[nv2(k]] * ncright12[5] + ff15[nv4(k]] * ncright14[5] + ff15[nv7(k]] * ncright17[5];</pre>	
<pre>f16(k) = f15(k) * noright10(6) + f16(nv3(k)) * noright13(6) + ff16(nv6(k)) * noright16(6) + ff16(nv2(k)) * noright12(6) + ff16(nv4(k)) * noright14(6) + ff16(nv7(k)) * noright17(6);</pre>	nv3
<pre>f17(k] = ff17(k] * ncright10(7) + ff17(nv3(k)) * ncright13(7) + ff17(nv6(k)) * ncright16(7) + ff17(nv2(k)) * ncright12(7) +</pre>	nv3

lumag3.mec.utt.ro	
sa from fluma	
Printed by sofonea from flu	
Prin	

Jun 20 1999 18:01	f27[k] = ff27[ff27[nv3[k]] ff27[nv3[k]] ff27[nv3[nv7] ff27[nv3[nv4]	### ##################################	if (k==0) printf("iter */	void ifd(void) int k; for(k=0; k <nnodes_ ewitch(hounday<="" th=""><th> case 0: ff10[k] = ff11[k] =</th><th>£11[7 £11[7</th><th>f11[r f12[k] = f12[r f12[r f12[r f12[r</th><th>f12[v] = [f13[k] = [f13[k]</th><th>ff14(K) = ff14(K) = ff14(F) = ff14(F</th><th>ff15 ff15(R) = 1 f15(B) = 1 f15(B)</th><th>10011 10011 10011 10011</th><th>### ##################################</th></nnodes_>	case 0: ff10[k] = ff11[k] =	£11[7 £11[7	f11[r f12[k] = f12[r f12[r f12[r f12[r	f12[v] = [f13[k]	ff14(K) = ff14(K) = ff14(F) = ff14(F	ff15 ff15(R) = 1 f15(B) = 1 f15(B)	10011 10011 10011 10011	### ##################################
Page 17												
Jun 20 1999 18:01 wet91s.c	<pre>f14[k] = ff14[k] * nu15[4] +</pre>	<pre>f15[k] = ff15[k] * nu15[5] + ff15[nv3[k]] * nu12[5] + ff15[nv3[nv3[k]]] * nu16[5] + ff15[nv4[k]] * nu11[5] + ff15[nv7[k]] * nu10[5] + ff15[nv3[nv7[k]]] * nu13[5] + ff15[nv4[nv4[k]]] * nu18[5] + ff15[nv3[nv4[nv4[k]]]] * nu14[5] + ff15[nv7[nv7[k]]] * nu17[5];</pre>	<pre>f16(k] = ff16(k) * nu15(6] + ff16(nv3(k)] * nu16(6] + ff16(nv3(k)] * nu11(6] + ff16(nv3(k)] * nu10(6) + ff16(nv3(nv4(k)]) * nu11(6] + ff16(nv4(nv4(k))] * nu18(6] + ff16(nv3(nv4(k))] * nu14(6) + ff16(nv4(nv4(k))] * nu17(6); ff16(nv3(nv4(kv4(k)))) * nu14(6) + ff16(nv7(nv7(k))) * nu17(6);</pre>	<pre>f17(k) = ff17(k) * nu15(7) + ff17(nv3(k)] * nu12(7) + ff17(nv3(nv3(k))) * nu16(7) + ff17(nv4(k)) * nu11(7) + ff17(nv7(k)) * nu10(7) + ff17(nv3(nv7(k))) * nu13(7) + ff17(nv4(nv4(k))) * nu18(7) + ff17(nv3(nv4(k))) * nu14(7) + ff17(nv4(nv4(k))) * nu17(7);</pre>	<pre>f18(k) = ff18(k) * nu15(8) + ff18(nv3(k)) * nu16(8) + ff18(nv4(k)) * nu11(8) + ff18(nv7(k)) * nu10(8) + ff18(nv3(nv7(k)) * nu11(8) + ff18(nv7(k)) * nu10(8) + ff18(nv3(nv7(k))) * nu13(8) + ff18(nv4(nv4(k))) * nu18(8) + ff18(nv3(nv4(k))) * nu14(8) + ff18(nv7(nv7(k))) * nu17(8);</pre>	f20[k] = ff20[k];	f21[k] = ff21[k] * nu25[1] + ff21[ny3[k]] * nu26[1] + ff21[ny3[k]] * nu21[1] + ff21[ny7[k]] * nu20[1] + ff21[ny4[k]] * nu21[1] + ff21[ny7[k]] * nu20[1] + ff21[ny3[ny7[k]]] * nu23[1] + ff21[ny4[k]]] * nu28[1] + ff21[ny3[ny4[k]]] * nu24[1] + ff21[ny7[ny7[k]]] * nu27[1];	f22[k] = ff22[k] * nu25[2] + ff22[nv3[k]]] * nu26[2] + ff22[nv3[k]] * nu26[2] + ff22[nv4[k]] * nu21[2] + ff22[nv7[k]] * nu20[2] + ff22[nv7[k]] * nu20[2] + ff22[nv3[nv7[k]] * nu20[2] + ff22[nv4[nv4[k]]] * nu20[2] + ff22[nv7[k]]] * nu20[2] + ff22[nv7[nv7[k]]] * nu20[2] + ff22[nv7[k]] * nu20[2] * n	f23[k] = ff23[k] * nu25[3] +	<pre>f24[k] = ff24[k] * nu25[4] + ff24[nv3[k]] * nu22[4] + ff24[nv3[nv3[k]]] * nu26[4] + ff24[nv4[k]] * nu21[4] + ff24[nv7[k]] * nu20[4] + ff24[nv3[nv7[k]]] * nu23[4] + ff24[nv4[nv4[k]]] * nu28[4] + ff24[nv3[nv4[k]]]] * nu24[4] + ff24[nv7[nv7[k]]] * nu27[4];</pre>	<pre>f25(k) = ff25(k) * nu25(5) + ff5(nv3(k)) * nu26(5) + ff25(nv4(k)) * nu21(5) + ff25(nv7(k)) * nu20(5) + ff25(nv4(k)) * nu21(5) + ff25(nv7(k)) * nu20(5) + ff25(nv3(nv7(k))) * nu23(5) + ff25(nv4(nv4(k))) * nu28(5) + ff25(nv3(nv4(nv4(k)))) * nu24(5) + ff25(nv7(nv7(k))) * nu27(5);</pre>	<pre>f26[k] = ff26[k] * nu25[6] + ff26[nv3[k]] * nu22[6] + ff26[nv4[k]] * nu21[6] + ff26[nv7[k]] * nu20[6] + ff26[nv4[k]] * nu21[6] + ff26[nv7[k]] * nu20[6] + ff26[nv3[nv7[k]]] * nu23[6] + ff26[nv4[nv4[k]]] * nu28[6] + ff26[nv3[nv4[nv4[k]]] * nu24[6] + ff26[nv7[nv7[k]]] * nu27[6];</pre>

f27(k) = ff27(k) * nu25(7) + ff27(nv3(k)) ff27(nv3(k)) ff27(nv3(k)) ff27(nv3(k)) ff27(nv3(k)) ff27(nv3(k)) ff27(nv3(k)) ff27(nv3(k)) ff28(k) ff27(nv3(k)) ff28(k) ff28(nv3(k)) ff28(k) ff28(nv3(k)) ff28(nv	[8] * 123[* 123[* 123[11; k++)	_mode[k])	* nc10[1] * nc11[1] * nc13[1] * nc15[1]	* nc10[2] * nc11[2] * nc13[2] * nc15[2] * nc17[2]	* nc10[3] * nc11[3] * nc13[3] * nc15[3]	* nc10[4] * nc11[4] * nc13[4] * nc15[4]	* * no10[5] * no11[5] * no13[5] * no15[5]	* nc10[6] * nc11[6] * nc13[6] * nc15[6]	* nc10[7] * nc11[7] * nc13[7] * nc15[7]
--	-----------------------------------	----------	-----------	--	---	--	--	--	--	--

0	
5	
ᇤ	
3	
\mathbf{x}	
ഇ	
Ε	
_	
22	
຺	
<u> </u>	
Ἐ	
5	
=	
_	
⊏	
ō	
≘	
=	
Ω	
≌	
≒	
2	
5	
Ω̈	
~	
€.	
_	
5	
ŏ	
*	
Ě	
Ě	
ŏ	
Ě	
Ě	
Ě	

wet9is.c

Jun 20 1999 18:01 Wet9Is.c	Page 19	Jun 20 1999 18:01
<pre>f17[nv7[k]] * nc17[7] + f17[nv8[k]] * nc18[7];</pre>		+6613[1]
<pre>ff18[k] = f18[k] * nc10[8] + f18[nv1[k]) * nc11[8] + f18[nv2[k]] * nc12[8] + f18[nv3[k]] * nc13[8] + f18[nv4[k]] * nc14[8] + f18[nv5[k]] * nc15[8] + f18[nv6[k]] * nc16[8] + f18[nv7[k]] * nc17[8] + f18[nv8[k]] * nc18[8];</pre>		
$= f_20[k];$		f14[n ff15[k] =
# E E E E		(15 (n) (15 (n)
* nc20[2] + f22[nv2[k]] * nc22[2] * nc21[2] + f22[nv2[k]] * nc24[2] * nc23[2] + f22[nv4[k]] * nc24[2] * nc27[2] + f22[nv8[k]] * nc26[2] * nc27[2] + f22[nv8[k]] * nc26[2]		ff17[k] = f f17[n f17[n f17[n,
ff23[k] = f23[k] * nc20[3] + f23[nv1[k]] * nc21[3] + f23[nv2[k]] * nc22[3] + f23[nv3[k]] * nc23[3] + f23[nv4[k]] * nc44[3] + f23[nv5[k]] * nc25[3] + f23[nv6[k]] * nc26[3] + f23[nv7[k]] * nc27[3] + f23[nv8[k]] * nc28[3];		ff20(k) = (ff21(k) = ff21(k) = ff21(
ff24[k] = f24[k] * nc20[4] + f24[nv1[k]] * nc21[4] + f24[nv2[k]] * nc22[4] + f24[nv3[k]] * nc23[4] + f24[nv4[k]] * nc24[4] + f24[nv5[k]] * nc25[4] + f24[nv6[k]] * nc26[4] + f24[nv7[k]] * nc27[4] + f24[nv8[k]] * nc28[4];		ff22[k]
ff25[k] = f25[k] * nc20[5] + f25[nv1[k]] * nc21[5] + f25[nv2[k]] * nc22[5] + f25[nv3[k]] * nc21[5] + f25[nv4[k]] * nc24[5] + f25[nv5[k]] * nc25[5] + f25[nv6[k]] * nc26[5] + f25[nv7[k]] * nc27[5] + f25[nv6[k]] * nc28[5];		ff23[k] = 1 f23[nz] f23[nz] f23[nz] f22[k] = 1
ff26[k] = f26[k] * nc20[6] + f26[nv1[k]] * nc21[6] + f26[nv2[k]] * nc22[6] + f26[nv3[k]] * nc21[6] + f26[nv4[k]] * nc24[6] + f26[nv5[k]] * nc25[6] + f26[nv6[k]] * nc26[6] + f26[nv7[k]] * nc27[6] + f26[nv8[k]] * nc28[6] +		124 [17] 122 [17] 125 [17] 125 [17]
<pre>ff27[k] = f27[k] * nc20[7] + f27[nv1[k]] * nc21[7] + f27[nv2[k]] * nc22[7] + f27[nv3[k]] * nc23[7] + f27[nv4[k]] * nc24[7] + f27[nv5[k]] * nc25[7] + f27[nv6[k]] * nc26[7] + f27[nv7[k]] * nc27[7] + f27[nv6[k]] * nc26[7] +</pre>		ff26[k] = 3 f26[m f26[m f27[k] = 3
ff28[k] = f28[k] * nc20[8] + f28[nv1[k]] * nc21[8] + f28[nv2[k]] * nc22[8] + f28[nv3[k]] * nc23[8] + f28[nv4[k]] * nc24[8] + f28[nv5[k]] * nc25[8] + f28[nv6[k]] * nc36[8] + f28[nv5[k]] * nc27[8] + f28[nv8[k]] * nc28[8] +		f 22 (m f 22 (m f 28 (m f 28 (m
Dreak; case 1: ff10[k] = f10[k];		break; case 2: ff10[k] =
<pre>ffll(k) = fll(k) * ncbotl0[1] + fll[nvl(k)] * ncbotl1[1] + fll[nv2[k]] * ncbotl2[1] + fll[nv3[k]] * ncbotl3[1] + fll[nv5[k]] * ncbotl5[1] + fll[nv6[k]] * ncbotl6[1];</pre>		ff11[k] = : f11[n]
<pre>ff12[k] = f12[k] * ncbot10[2] + f12[nv1[k]] * ncbot11[2] + f12[nv2[k]] * ncbot12[2] + f12[nv3[k]] * ncbot13[2] + f12[nv2[k]] * ncbot15[2] + f12[nv6[k]] * ncbot16[2]</pre>		ff12(k) = : f12(k) = :

<pre>ff13[k] = f13[k] * ncbot10[3] + f13[nv1[k]] * ncbot11 f13[nv2[k]] * ncbot12[3] + f13[nv3[k]] * ncbot13 f13[nv5[k]] * ncbot15[3] + f13[nv6[k]] * ncbot16</pre>	[3] + [3];
<pre>ffl4[k] = f14[k] * ncbot10[4] + f14[nv1[k]) * ncbot11 f14[nv2[k]] * ncbot12[4] + f14[nv3[k]) * ncbot13 f14[nv5[k]] * ncbot15[4] + f14[nv6[k]] * ncbot16</pre>	[4] + [4] + [4];
<pre>ff15[k] = f15[k] * ncbot10[5] + f15[nv1[k]] * ncbot11 f15[nv2[k]] * ncbot12[5] + f15[nv3[k]] * ncbot13 f15[nv5[k]] * ncbot15[5] + f15[nv6[k]] * ncbot16</pre>	(5) + (8) + (5);
<pre>ff16[k] = f16[k] * ncbot10[6] + f16[nv1[k]] * ncbot11 f16[nv2[k]] * ncbot12[6] + f16[nv3[k]] * ncbot13 f16[nv5[k]] * ncbot15[6] + f16[nv6[k]] * ncbot16</pre>	(6) + (6) + (6);
<pre>ffl7(k) = fl7(k) * ncbot10(7) + fl7(nv1(k)) * ncbot11 fl7(nv2(k)) * ncbot12(7) + fl7(nv3(k)) * ncbot13 fl7(nv5(k)) * ncbot15(7) + fl7(nv6(k)) * ncbot16</pre>	+ (6)
<pre>ff18[k] = f18[k] * ncbot10[8] + f18[nv1[k]] * ncbot11 f18[nv2[k]] * ncbot12[8] + f18[nv3[k]] * ncbot13 f18[nv5[k]] * ncbot15[8] + f18[nv6[k]] * ncbot16</pre>	[8] + [8] + [8];
ff20[k] = f20[k];	
<pre>ff21[k] = f21[k] * ncbot20[1] + f21[nv1[k]] * ncbot21 f21[nv2[k]] * ncbot22[1] + f21[nv3[k]] * ncbot23 f21[nv5[k]] * ncbot25[1] + f21[nv6[k]] * ncbot26</pre>	[1] + [2] + [1],
<pre>ff22[k] = f22[k] * ncbot20[2] + f22[nv1[k]] * ncbot21 f22[nv2[k]] * ncbot22[2] + f22[nv3[k]] * ncbot23 f22[nv5[k]] * ncbot25[2] + f22[nv6[k]] * ncbot26</pre>	[2] + [2] + [2];
<pre>ff23[k] = f23[k] * ncbot20[3] + f23[nv1[k]] * ncbot21 f23[nv2[k]] * ncbot22[3] + f23[nv3[k]] * ncbot23 f23[nv5[k]] * ncbot25[3] + f23[nv6[k]] * ncbot26</pre>	[3] + [3] + [3];
<pre>ff24[k] = f24[k] * ncbot20[4] + f24[nv1[k]] * ncbot21 f24[nv2[k]] * ncbot22[4] + f24[nv3[k]] * ncbot23 f24[nv5[k]] * ncbot25[4] + f24[nv6[k]] * ncbot26</pre>	[4] + [4] + [4];
<pre>ff25[k] = f25[k] * ncbot20[5] + f25[nv1[k]] * ncbot21 f25[nv2[k]] * ncbot22[5] + f25[nv3[k]] * ncbot23 f25[nv5[k]] * ncbot25[5] + f25[nv6[k]] * ncbot26</pre>	[5] + [5] + [5];
<pre>ff26[k] = f26[k] * ncbot20[6] + f26[nv1[k]] * ncbot21 f26[nv2[k]] * ncbot22[6] + f26[nv3[k]] * ncbot23 f26[nv5[k]] * ncbot25[6] + f26[nv6[k]] * ncbot26</pre>	[6]; [6];
<pre>ff27[k] = f27[k] * ncbot20[7] + f27[nv1[k]] * ncbot21 f27[nv2[k]] * ncbot22[7] + f27[nv3[k]] * ncbot23 f27[nv5[k]] * ncbot25[7] + f27[nv6[k]] * ncbot26</pre>	[7] + [7] + [7];
ff28[k] = f28[k] * ncbot20[8] + f28[nv1[k]] * ncbot21 f28[nv2[k]] * ncbot22[8] + f28[nv3[k]] * ncbot23 f28[nv5[k]] * ncbot25[8] + f28[nv6[k]] * ncbot26	[8] + [8] + [8];
break; case 2: ff10[k] = f10[k];	
<pre>ffil(k) = fil(k) * nctopi0(1] + fil(nv1(k)) * nctopi1 fil(nv3(k)) * nctopi3(1) + fil(nv4(k)) * nctopi4 fil(nv7(k)) * nctopi7(1) + fil(nv8(k)) * nctopi8</pre>	[1] + [1] + [1];
<pre>ff12[k] = f12[k] * nctop10[2] + f12[nv1[k]] * nctop11 f12[nv3[k]] * nctop13[2] + f12[nv4[k]] * nctop14</pre>	[2] + [2] +

Printed by sofonea from flumag3.mec.utt.ro

wet9ls.c
+ f12[nv8[k]] * nctop18[2];
<pre>f13[nv1[k]] * nctop11[3] + f13[nv4[k]] * nctop14[3] + f13[nv8[k]] * nctop18[3];</pre>
<pre>f14[nv1[k]] * nctop11[4] + f14[nv4[k]] * nctop14[4] + f14[nv8[k]] * nctop18[4];</pre>
<pre>f15[nv1(k]] * nctop11[5] + f15[nv4(k]] * nctop14[5] + f15[nv8(k]] * nctop18[5];</pre>
<pre>f16[nv1[k]] * nctopl1[6] + f16[nv4[k]] * nctopl4[6] + f16[nv8[k]] * nctopl8[6];</pre>
<pre>f17[nv1[k]] * nctop11[7] + f17[nv4[k]] * nctop14[7] + f17[nv8[k]] * nctop18[7];</pre>
<pre>f18[nv1[k]] * nctopl1[8] + f18[nv4[k]] * nctopl4[8] + f18[nv8[k]] * nctopl8[8];</pre>
<pre>f21[nv1[k]] * nctop21[1] + f21[nv4[k]] * nctop24[1] + f21[nv8[k]] * nctop28[1];</pre>
<pre>f22[nv1[k]] * nctop21[2] + f22[nv4[k]] * nctop24[2] + f22[nv8[k]] * nctop28[2];</pre>
<pre>£23[nv1[k]] * nctop21[3] + £23[nv4[k]] * nctop24[3] + £23[nv8[k]] * nctop28[3];</pre>
<pre>f24[nv1[k]] * nctop21[4] + f24[nv4[k]] * nctop24[4] + f24[nv8[k]] * nctop28[4];</pre>
<pre>f25[nv1[k]] * nctop21[5] + f25[nv4[k]] * nctop24[5] + f25[nv8[k]] * nctop28[5];</pre>
<pre>f26[nv1[k]] * nctop21[6] + f26[nv4[k]] * nctop24[6] + f26[nv8[k]] * nctop28[6];</pre>
<pre>£27[nv1[k]] * nctop21[7] + £27[nv4[k]] * nctop24[7] + £27[nv8[k]] * nctop28[7];</pre>
ff28[k] = f28[k] * nctop20[8] + f28[nv1[k]] * nctop21[8] + f28[nv3[k]] * nctop23[8] + f28[nv4[k]] * nctop24[8] + f28[nv4[k]] * nctop24[8] +
+ fil[nv1[k]] * ncleft11[1] + + fil[nv2[k]] * ncleft12[1] + + fil[nv8[k]] * ncleft18[1];
+ f12[nv1[k]] * ncleft11[2] +

Jun 20 1999 18:01	wet9is.	9is.c	Page 22
f12[nv5[k]] *	* ncleft15[2] + f1	2[nv2[k]]	* ncleft12[2] +
f12[nv4[k]] *	* ncleft14[2] + f1	2[nv8[k]]	* ncleft18[2];
ff13[k] = f13[k] f13[nv5[k]] f13[nv4[k]]	* ncleft10[3] + f1	3[nv1[k]]	* ncleft11[3] +
	* ncleft15[3] + f1	3[nv2[k]]	* ncleft12[3] +
	* ncleft14[3] + f1	3[nv8[k]]	* ncleft18[3];
ff14[k] = f14[k] ' f14[nv5[k]] ' f14[nv4[k]] '	* ncleft10[4] + f1	4 [nv1 [k]]	* ncleft11[4] +
	* ncleft15[4] + f1	4 [nv2 [k]]	* ncleft12[4] +
	* ncleft14[4] + f1	4 [nv8 [k]]	* ncleft18[4];
ff15[k] = f15[k] ;	* ncleft10[5] + fl.	5[nv1[k]]	* ncleft11[5] +
f15[nv5[k]] ;	* ncleft15[5] + fl.	5[nv2[k]]	* ncleft12[5] +
f15[nv4[k]] ;	* ncleft14[5] + fl.	5[nv8[k]]	* ncleft18[5];
ff16[k] = f16[k] ;	* ncleft10[6] + f1.	6[nv1[k]]	* ncleft11[6] +
f16[nv5[k]] ;	* ncleft15[6] + f1.	6[nv2[k]]	* ncleft12[6] +
f16[nv4[k]] ;	* ncleft14[6] + f1	6[nv8[k]]	* ncleft18[6];
<pre>ff17[k] = f17(k] f17[nv5[k]] f17[nv4[k]]</pre>	* ncleft10[7] + f1	7 [nv1 [k]]	* ncleft11[7] +
	* ncleft15[7] + f1	7 [nv2 [k]]	* ncleft12[7] +
	* ncleft14[7] + f1	7 [nv8 [k]]	* ncleft18[7];
ff18[k] = f18[k] ;	* ncleft10[8] + f1	8 [nv1 [k]]	<pre>* ncleft11[8] + * ncleft12[8] + * ncleft18[8];</pre>
f18[nv5[k]] ;	* ncleft15[8] + f1	8 [nv2 [k]]	
f18[nv4[k]] ;	* ncleft14[8] + f1	8 [nv8 [k]]	
ff20[k] = f20[k];			
ff21[k] = f21[k]	* ncleft20[1] + f2	21[nv1[k]]	* ncleft21[1] +
f21[nv5[k]]	* ncleft25[1] + f2	21[nv2[k]]	* ncleft22[1] +
f21[nv4[k]]	* ncleft24[1] + f5	21[nv8[k]]	* ncleft28[1];
ff22[k] = f22[k]	* ncleft20[2] + f2	2 [nv1 [k]]	* ncleft21[2] +
f22[nv5[k]]	* ncleft25[2] + f2	2 [nv2 [k]]	* ncleft22[2] +
f22[nv4[k]]	* ncleft24[2] + f2	2 [nv8 [k]]	* ncleft28[2];
ff23[k] = f23[k]	* ncleft20[3] + f2:	3[nv1[k]]	* ncleft21[3] +
f23[nv5[k]]	* ncleft25[3] + f2:	3[nv2[k]]	* ncleft22[3] +
f23[nv4[k]]	* ncleft24[3] + f2:	3[nv8[k]]	* ncleft28[3];
ff24[k] = f24[k]	* ncleft20[4] + f2.	4[nv1[k]]	* ncleft21[4] +
f24[nv5[k]]	* ncleft25[4] + f2.	4[nv2[k]]	* ncleft22[4] +
f24[nv4[k]]	* ncleft24[4] + f2.	4[nv8[k]]	* ncleft28[4];
ff25[k] = f25[k]	* ncleft20[5] + f2:	25[nv1[k]]	* ncleft21[5] +
f25[nv5[k]]	* ncleft25[5] + f2:	25[nv2[k]]	* ncleft22[5] +
f25[nv4[k]]	* ncleft24[5] + f2:	25[nv8[k]]	* ncleft28[5];
ff26[k] = f26[k]	* ncleft20[6] + f2	26[nv1[k]]	* ncleft21[6] +
f26[nv5[k]]	* ncleft25[6] + f2	26[nv2[k]]	* ncleft22[6] +
f26[nv4[k]]	* ncleft24[6] + f2	26[nv8[k]]	* ncleft28[6];
ff27[k] = f27[k]	* ncleft20[7] + f2	27 [nv1 [k]]	* ncleft21[7] +
f27[nv5[k]]	* ncleft25[7] + f2	27 [nv2 [k]]	* ncleft22[7] +
f27[nv4[k]]	* ncleft24[7] + f2	27 [nv8 [k]]	* ncleft28[7];
ff28[k] = f28[k]	* ncleft20[8] + f;	28 [nv1 [k]]	* ncleft21[8] +
f28[nv5[k]]	* ncleft25[8] + f;	28 [nv2 [k]]	* ncleft22[8] +
f28[nv4[k]]	* ncleft24[8] + f;	28 [nv8 [k]]	* ncleft28[8];
<pre>break; case 4: ff10[k] = f10[k];</pre>			
<pre>ff11[k] = f11[k] f11[nv6[k]] f11[nv4[k]]</pre>	* ncright10[1] +	f11[nv3[k]]	* ncright13[1] +
	* ncright16[1] +	f11[nv2[k]]	* ncright12[1] +
	* ncright14[1] +	f11[nv7[k]]	* ncright17[1];

Printed by sofonea from flumag3.mec.utt.ro

wet9is.c

file[k]	int k; double prodscal; for(k=0; k <nnodes_{-1}(10[k] =="" filk[filk]="</th" fill[filk]="fill[filk]"></nnodes_{-1}(10[k]>
= f13[k] * ncright10[3] + f13[nv3[k]] * ncright13[3] + [lnv6[k]] * ncright16[3] + f13[nv2[k]] * ncright12[3] + [lnv4[k]] * ncright10[4] + f13[nv2[k]] * ncright17[3]; = f14[k] * ncright10[4] + f14[nv3[k]] * ncright13[4] + [lnv6[k]] * ncright10[4] + f14[nv2[k]] * ncright13[4] + [lnv6[k]] * ncright10[5] + f15[nv3[k]] * ncright13[5] + [lnv6[k]] * ncright10[5] + f15[nv3[k]] * ncright13[5] + [lnv6[k]] * ncright16[5] + f15[nv3[k]] * ncright13[5] + [lnv6[k]] * ncright16[6] + f16[nv3[k]] * ncright13[6] + [lnv4[k]] * ncright14[6] + f16[nv3[k]] * ncright13[6] + [lnv4[k]] * ncright14[6] + f16[nv3[k]] * ncright13[7] + [lnv4[k]] * ncright14[6] + f16[nv3[k]] * ncright13[7] + [lnv4[k]] * ncright14[6] + f17[nv3[k]] * ncright13[7] + [lnv4[k]] * ncright14[7] + f17[nv3[k]] * ncright13[7] + [lnv4[k]] * ncright14[7] + f17[nv3[k]] * ncright13[8] +	K K K K K K K K K K K K K K K K K K K
= f14[k] * ncright10[4] + f14[nv3[k]] * ncright13[4] [[nv6[k]] * ncright16[4] + f14[nv2[k]] * ncright12[4] [[nv4[k]] * ncright17[4]; ncright17[4]; ncright17[4]; ncright13[5] [[nv6[k]] * ncright16[5] + f15[nv2[k]] * ncright13[5] [[nv6[k]] * ncright16[5] + f15[nv2[k]] * ncright13[5] [[nv6[k]] * ncright16[5] + f15[nv2[k]] * ncright17[5]; ncright13[5] [[nv6[k]] * ncright16[6] + f16[nv2[k]] * ncright13[6] [[nv6[k]] * ncright13[6] + f16[nv2[k]] * ncright13[6] [[nv6[k]] * ncright13[7] [[nv6[k]] * ncright17[6]) + f17[nv2[k]] * ncright13[7] [[nv4[k]] * ncright14[7] + f17[nv2[k]] * ncright13[7] [[nv4[k]] * ncright13[7] + f17[nv2[k]] * ncright13[7] [[nv4[k]] * ncright13[7] + f17[nv2[k]] * ncright13[7] [[nv4[k]] * ncright13[7] + f17[nv2[k]] * ncright13[7] [[nv4[k]] * ncright13[8] = f18[k] * ncright1	
= f15[k] * ncright10[5] + f15[nv3[k]] * ncright13[5] 5[nv4[k]] * ncright16[5] + f15[nv2[k]] * ncright12[5] 5[nv4[k]] * ncright12[5] 5[nv4[k]] * ncright17[5] + f15[nv7[k]] * ncright17[5] + f15[nv7[k]] * ncright13[6] + f16[nv2[k]] * ncright13[6] + f16[nv2[k]] * ncright12[6] + f16[nv2[k]] * ncright17[6] + f16[nv2[k]] * ncright17[6] + f10[nv2[k]] * ncright17[6] + f10[nv2[k]] * ncright13[7] + f10[nv2[k]] * ncright13[7] + f10[nv2[k]] * ncright13[7] + f10[nv2[k]] * ncright17[7] + f10[nv2[k]] * ncright17[7] + f10[nv2[k]] * ncright13[7] + f10[nv2[k]] * ncright13[7] + f10[nv2[k]] * ncright13[8] * ncr	
= f16[k] * ncright10[6] + f16[nv3[k]] * ncright13[6] [Inv6[k]] * ncright13[6] + f16[nv2[k]] * ncright17[6]] = f17[k] * ncright17[6], f17[nv3[k]] * ncright17[6], f17[nv3[k]] * ncright17[6], f17[nv3[k]] * ncright13[7] [Inv6[k]] * ncright13[7] + f17[nv2[k]] * ncright12[7], f17[nv4[k]] * ncright14[7] + f17[nv7[k]] * ncright17[7], f18[k] * ncright10[8] + f18[nv3[k]] * ncright13[8]	
= f17(k) * ncright10(7) + f17(nv3(k)) * ncright13(7) 7(nv6(k)) * ncright16(7) + f17(nv2(k)) * ncright12(7) 7(nv4(k)) * ncright14(7) + f17(nv7(k)) * ncright17(7); = f18(k) * ncright10(8) + f18(nv3(k)) * ncright13(8)	
k] = f18[k] * ncright10[8] + f18[nv3[k]] * ncright13[8]	3 3
<pre>iv6[k]] * ncright16[8] + f18[nv2[k]] * ncright12[8] iv4[k]] * ncright14[8] + f18[nv7[k]] * ncright17[8];</pre>	(ecbroc
ff20[k] = f20[k];	f21[k] = ff21[
<pre>ff21[k] = f21[k] * ncright20[1] + f21[nv3[k]] * ncright23[1] +</pre>	[22[k] = ff22[(ecprod f23[k] = ff23[
<pre>ff22[k] = f22[k] * noright20[2] + f22[nv3[k]] * noright23[2] +</pre>	f24[k] = ff24[(ecprod f25[k] = ff25[
<pre>ff23[k] = f23[k] * noright20[3] + f23[nv3[k]] * noright23[3] +</pre>	[26[k] = ff26[(ecprod f27[k] = ff27[
<pre>ff24[k] = f24[k] * ncright20[4] + f24[nv3[k]] * ncright23[4] +</pre>	(ecprod f28[k] = ff28[(ecprod
<pre>ff25[k] = f25[k] * noright20[5] + f25[nv3[k]] * noright23[5] +</pre>	f10[k] = ff10[(ecprod f11[k] = ff11[
<pre>ff26[k] = f26[k] * ncright20[6] + f26[nv3[k]] * ncright23[6] +</pre>	f12[k] = ff12[(ecprod f13[k] = ff13[
<pre>ff27[k] = f27[k] * ncright20[7] + f27[nv3[k]] * ncright23[7] +</pre>	f14[k] = ff14[(ecprod (ecprod f15[k] = ff15[
<pre>ff28[k] = f28[k] * ncright20[8] + f28[nv3[k]] * ncright23[8] +</pre>	f16[k] = ff16[k] (ecprod (ecpr
break;)	(ecprod f18[k] = ff18[(ecprod
	f20[k] = ff20 (ecproc
void ifdprop(void)	f21[k] = ff21[(ecprod

<pre>int k; double prodscal;</pre>
<pre>for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>
<pre>prodscal = csforce_x * uxloc[k] + csforce_y * uyloc[k];</pre>
٦ ا
ᇦ
f[12[k]] = f[12[k]] - f[12[k]] $f[12[k]] = f[12[k]] - f[12[k]]$
5
- prodscal ctaul * (
- prodscal) ctaul * (ff
<pre>- prodscal) * ctaul * (ff16</pre>
<pre>- prodscal) * neg16[ctaul * (ff17[k] -</pre>
<pre>(ecprod1[7] - prodscal) * neq17[k]; f18[k] = ff18[k] - ctaul * (ff18[k] - neq18[k]) + (ecprod1[8] - prodscal) * neq18[k];</pre>
ಕ
(ecprod2[0] - = ff21[k] - ct
(ecprod2[1] - prodscal) * neq21[= ff22[k] - ctau2 * (ff22[k] -
- proc
(ecprod2[3] - prodscal) * neq23[k]; f24[k] = ff24[k] - ctau2 * (ff24[k] - neq24[k]) +
- prodscal) * ctau2 * (ff25
- prodscal) * ctau2 * (ff26
<pre>- prodscal) ctau2 * (ff</pre>
(epprodz/1) - prodscal) * neg2/k ; f28[k] = ff28[k] - ctau2 * (ff28[k] - neg28[k]) + (epprodz[8] - prodscal) * neg28[k];
/* f10[b] = ff10[b] = ctail * / f10[b] = nacin[b]) +
(ecprod1[0] - prod
<pre>f11[k] = ff11[k] - ctau1 * (f11[k] - neq11[k]) + (ecprod1[1] - prodscal) * neq11[k];</pre>
ช เ
ctaul * (fl
. 7 1
- prouscal) ctaul * (f15)
- prodscal) * ctaul * (f16
- prodsc ctaul *
f18[k] = ff18[k] - prodscal) * neq1/k]; (ecprod1[8] - ctaul * (f18[k] - neq18[k]) + (ecprod1[8] - prodscal) * neq18[k];
ซ
(ecproaz 0] - proascal) * neqv K ; f [121[k] - crau2 * (f [21[k] - neqz [k]) + cennod2[1] - nrod3cal) * nem2[k];
(ecprod2[1] - prodscal) * neq21[k];

3.mec.utt.ro	
flumag(
by sofonea from	
Printed t	

wet9is.c
ctau2 * (f22[K] - neq2[K]) + - prodscal) * neq2[K]) + ctau2 * (f23[K] - neq23[K]) + - prodscal) * neq23[K]) + - prodscal) * neq43[K]; - prodscal) * neq4[K]; - prodscal) * neq42[K] + - prodscal) * neq5[K]; - prodscal) * neq5[K]; - prodscal) * neq5[K] + - prodscal) * neq5[K] + - prodscal) * neq2[K] +
<pre>ff10=%e ff20=%e\n",iter,k,ff10[k],ff20[k]); neq10=%e f10-neq=%e\n",iter,k,neq10[k],);</pre>
fll[nv3[nv3[k]]] * nul3[l] + fll[nv6[k]] * nul2[l] + fll[nv7[k]] * nul4[l] +
f12[nv4[nv4[k]]] * nu14[2] + f12[nv8[k]] * nu11[2] + f12[nv4[nv7[k]]] * nu17[2];
<pre>f13[nv1[nv1[k]]] * nu11[3] + f13[nv8[k]] * nu14[3] + f13[nv1[nv5[k]]] * nu15[3];</pre>
<pre>f14[nv2[nv2[k]]] * nu12[4] + f14[nv5[k]] * nu11[4] + f14[nv2[nv5[k]]] * nu16[4];</pre>
<pre>f15[nv3[nv3[k]]) * nu16[5] + f15[nv7[k]] * nu10[5] + f15[nv4[nv4[k]]] * nu18[5] + f15[nv7[nv7[k]]] * nu17[5];</pre>
<pre>6[nv1[nv1[k]]] * nu15[6] + f16[nv8[k]] * nu10[6] +</pre>

Jun 20 1999 18:01	8			. 1		wet9i	is.c		· 45			Page 26
f16[nv1[nv8[] f16[nv4[nv8[]	[k]]]	* *	nu11[6] nu14[6]	+ +	£16	6 [nv4 [nv4 6 [nv8	(k)]]	āā * *	nu17[6] nu18[6];	+		
<pre>ff17(k] = f17(k) f17(nv1(k)) f17(nv1(nv5(k))) f17(nv2(nv5(k)))</pre>	7(K) (K) (K) (K) (K)	* * * * *	nu17[7] nu14[7] nu13[7] nu11[7] nu12[7]	+++++	f1 f1	7[nv1[nv1] f17[nv2] 7[nv2[nv2] 7[nv5[nv5]		* * * *	nu18[7] nu10[7] nu16[7] nu15[7];	+++.		
ff18[k] = f18 f18[nv3[f18[nv2[f18[nv3[nv6[k f18[nv2[nv6[k	18 [k] 3 [k]] 2 [k]] [k]]]	* * * * *	nu18[8] nu14[8] nu11[8] nu13[8] nu12[8]	+++++	£1 £1	3[nv3 f] 8[nv6 8[nv6	[[nv3[k]]] [8[nv6[k]]] [[nv2[k]]] [[nv6[k]]]	* * * *	nu17[8] nu10[8] nu15[8] nu16[8];	+++.		
ff20[k] = f20	20 [k] ;											
ff21[k] = f21[k] f21[nv3[k]] f21[nv3[k]] f21[nv3[nv6[k]]] f21[nv4[k]]] f21[nv4[k]]	21.[K] 3.[K]] 3.[K]] [K]]] [K]]]	* * * * * *	nu21[1] nu20[1] nu25[1] nu26[1] nu28[1] nu27[1]	+++++.	44	21[nv3[nv3[k]] f21[nv6[k] f21[nv7[k]		* * *	nu23[1] nu22[1] nu24[1]	+++		
ff22[k] = f22[k] f22[nv4[k]] f22[nv4[h]] f22[nv4[nv8[k]]]	22 [k] 1 [k]] 1 [k]]	* * * *	nu22[2] nu20[2] nu25[2] nu28[2]	+ + + +	£2	2[nv4[nv4[k]] f22[nv8[k]	4[k]]] v8[k]]	* *	nu24 [2] nu21 [2]	+ +		
	(K)]		22	+ +	£22	2 [nv4 [nv7	7 [k]]]	*	nu27[2];			
ff23[k] = f23[k] f23[nv1[k]] f23[nv4 [k]] f23[nv1[nv8 [k]]]	23 [k] [[k]] 4 [k]]	* * * *	nu23[3] nu20[3] nu27[3] nu28[3]	++++	£2	3[nv1[nv1 f23[nv8	1 [k]]] v8 [k]]	* *	nu21[3] nu24[3]	+ +		
444	2 [k]]	* *		+ +	£2;	3 [nv1 [nv	5[k]]]	*	nu25[3];			
ff24[k] = f24[k] f24[nv2[k]] f24[nv1[k]] f24[nv5[k]]	24(k) 2(k)] 1(k)]	* * * *	nu24[4] nu20[4] nu28[4]	++++	£2,	4 [nv2 [nv2] f24 [nv	2[k]]] v5[k]]	* *	nu22 [4] nu21 [4]	+ +		
	3[k]] 5[k]]		372		£2,	!4 [nv2 [nv5	5[k]]]	*	nu26[4];			
ff25[k] = f25[k] f25[nv3[k]] f25[nv4[k]] f25[nv3[k]]] f25[nv4[nv7[k]]]	25 [k] 3 [k]] 4 [k]] [k]]]	* * * * *	nu25[5] nu22[5] nu21[5] nu23[5] nu24[5]	+++++	£25 £2	[nv]	3[nv3[k]]] 25[nv7[k]] 4[nv4[k]]] 7[nv7[k]]]	* * * *	nu26[5] nu20[5] nu28[5] nu27[5]	+++		
ff26[k] = f26 f26[nv1[f26[nv4[f26[nv4[f26[nv4[nv8[k	26[k] 1[k]] 4[k]] [k]]]	* * * * *	nu26[6] nu22[6] nu23[6] nu21[6] nu24[6]	+++++	f2 f2	6[nv] 6[nv] 6[nv	[nv1 [k]]] 26 [nv8 [k]] 4 [nv4 [k]]] 8 [nv8 [k]]]	* * * *	nu25[6] nu20[6] nu27[6] nu28[6]	+++.		
ff27[k] = f27[k] f27[nv1[k]] f27[nv2[k]] f27[nv2[k]]] f27[nv2[nv5[k]]]	27[k] 1[k]] 2[k]] [k]]] [k]]]	* * * * *	nu27[7] nu24[7] nu23[7] nu21[7] nu22[7]	++++		£27 [nv1 [nv1] £27 [nv9] £27 [nv2 [nv2] £27 [nv5 [nv5]	1 [k]]] v5 [k]]] 2 [k]]]] 5 [k]]]]	***	nu28[7] nu20[7] nu26[7] nu25[7]	+++		
ff28[k] = f28[k] f28[nv3[k]] f28[nv3[k]] f28[nv3[k]] f28[nv3[nv6[k]]]	28[k] 3[k]] 2[k]] [k]]] [k]]]	* * * * *	nu28[8] nu24[8] nu21[8] nu23[8]	++++	f21 f21 f21	28 [nv3 [nv3 £28 [nv6 28 [nv2 [nv2	3[k]]] 2[k]]] 6[k]]]	* * * *	nu27[8] nu20[8] nu25[8] nu26[8]	+++		
	27 [k] 1 [k] 2 [k] 2 [k] [k] [k] 3 [k] 3 [k] 2 [k] [k] [k] [k]		nu27[7] nu24[7] nu23[7] nu22[7] nu22[7] nu24[8] nu21[8] nu23[8]	++++		[nv1 f2 [nv2 [nv5 [nv3 [nv6			[8]			

g3.mec.utt.ro
fluma
from (
sofonea
inted by
ā

Juli 20 1999 16.01	1 080
/* if(k==0) printf("iter=%d k=%d f1=%e f2=%e\n",iter,k,f10[k],f20[k]); */	
void iser(void)	
<pre>int k; for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>	
{ switch(boundary_mode[k])	
case 0: ff10[k] = f10[k];	
<pre>ff11[k] = f11[k] * ns1tr[1] + f11[nv3[k]] * ns1t1[1] + f11[nv4[k]] * ns1b1[1] + f11[nv4[k]] * ns1br[1];</pre>	
<pre>ff12[k] = f12[k] * ns1t1[2] + f12[nv4[k]] * ns1b1[2] + f12[nv1[k]] * ns1tr[2] + f12[nv8[k]] * ns1br[2];</pre>	
<pre>ff13[k] = f13[k] * ns1b1[3] + f13[nv1[k]] * ns1br[3] + f13[nv2[k]] * ns1t1[3] + f13[nv5[k]] * ns1tx[3];</pre>	
<pre>ff14[k] = f14[k] * nslbr[4] + f14[nv3[k]] * nslb1[4] + f14[nv2[k]] * nsltr[4] + f14[nv6[k]] * nslt1[4];</pre>	
<pre>ff15[k] = f15[k] * nsltr[5] + f15[nv3[k]] * nsltr[5] + f15[nv4[k]] * nslb1[5] + f15[nv4[k]] * nslbr[5];</pre>	
<pre>ff16[k] = f16[k] * ns1t1[6] + f16[nv4[k]] * ns1b1[6] + f16[nv8[k]] * ns1tx[6] + f16[nv8[k]] * ns1bx[6];</pre>	
<pre>ff17[k] = f17[k] * ns1b1[7] + f17[nv1[k]] * ns1bx[7] + f17[nv2[k]] * ns1t1[7] + f17[nv5[k]] * ns1tx[7];</pre>	
<pre>ff18[k] = f18[k] * nslbr[8] + f18[nv3[k]] * nslb1[8] + f18[nv2[k]] * nsltr[8] + f18[nv6[k]] * nslt1[8];</pre>	
ff20[k] = f20[k];	
ff21[k] = f21[k] * ns2tx[1] + f21[nv3[k]] * ns2t1[1] + f21[nv4[k]] * ns2bx[1];	
<pre>ff22[k] = f22[k] * ns2t1[2] + f22[nv4[k]] * ns2b1[2] + f22[nv1[k]] * ns2tx[2] + f22[nv8[k]] * ns2br[2];</pre>	
ff23[k] = f23[k] * ns2b1[3] + f23[nv1[k]] * ns2br[3] + f23[nv5[k]] * ns2t1[3] + f23[nv5[k]] * ns2tr[3];	
ff24[k] = f24[k] * ns2br[4] + f24[nv3[k]] * ns2bl[4] + f24[nv6[k]] * ns2tr[4] + f24[nv6[k]] * ns2tl[4];	
<pre>ff25[k] = f25[k] * ns2tr[5] + f25[nv3[k]] * ns2tr[5] + f25[nv7[k]] * ns2b1[5] + f25[nv4[k]] * ns2br[5];</pre>	
ff26[k] = f26[k] * ns2t1[6] + f26[nv4[k]] * ns2b1[6] + f26[nv8[k]] * ns2tr[6] + f26[nv8[k]] * ns2br[6];	
<pre>ff27[k] = f27[k] * ns2b1[7] + f27[nv1[k]] * ns2br[7] + f27[nv2[k]] * ns2t1[7] + f27[nv5[k]] * ns2tr[7];</pre>	
<pre>ff28(k] = f28(k] * ns2br[8] + f28(nv3(k]) * ns2b1[8] +</pre>	

Jun 20 1999 18:01	S. 1. 200/Will. 11. mil. w.	wet9is.c	Page 28
££10[k]	= f10[k];		
ff11[k]	= f11[k] * f11[nv6[k]] *	<pre>nsblbr[1] + f11[nv3[k]] * nsblbl[1] + nsbltl[1] + f11[nv2[k]] * nsbltr[1];</pre>	
ff12[k]	= f12[k] * f12[nv2[k]] *	nsblb1[2] + f12[nv1[k]] * nsblbr[2] + nsblt1[2] + f12[nv5[k]] * nsbltr[2];	
ff13[k]	= f13[k] * f13[nv2[k]] *	nslbl[3] + f13[nv1[k]] * nslbr[3] + nsltl[3] + f13[nv5[k]] * nsltr[3];	
ff14[k]	= f14[k] * f14[nv2[k]] *	* nslbr[4] + fl4[nv3[k]] * nslbl[4] + * nsltr[4] + fl4[nv6[k]] * nsltl[4];	
ff15[k]	= f15[k] * f15[nv2[k]] *	* nsblbl[5] + f15[nv1[k]] * nsblbr[5] + * nsbltl[5] + f15[nv5[k]] * nsbltr[5];	
ff16[k]	= f16[k] ' f16[nv2[k]] '	* nsblbr[6] + f16[nv3[k]] * nsblbl[6] + * nsbltr[6] + f16[nv6[k]] * nsbltl[6];	
ff17[k]	= f17[k] ' f17[nv2[k]] '	* nslb1[7] + £17[nv1[k]] * nslbr[7] + * nslt1[7] + £17[nv5[k]] * nsltr[7];	
ff18[k]	= f18[k] ' f18[nv2[k]] '	* nslbr[8] + f18[nv3[k]] * nslbl[8] + * nsltr[8] + f18[nv6[k]] * nsltl[8];	
££20[k]	= £20[k];		
ff21(k)	= f21[k] ' f21[nv6[k]] '	* nsb2br[1] + f21[nv3[k]] * nsb2b1[1] + * nsb2t1[1] + f21[nv2[k]] * nsb2tr[1];	
££22[k]	= f22[k] ' f22[nv2[k]] '	* nsb2b1[2] + f22[nv1[k]] * nsb2br[2] + * nsb2t1[2] + f22[nv5[k]] * nsb2tr[2];	
ff23[k]	= f23[k] ' f23[nv2[k]] '	* ns2b1[3] + f23[nv1[k]] * ns2br[3] + * ns2t1[3] + f23[nv5[k]] * ns2tr[3];	
ff24[k]	= f24[k] ' f24[nv2[k]] '	* ns2br[4] + f24[nv3[k]] * ns2bl[4] + * ns2tr[4] + f24[nv6[k]] * ns2tl[4];	
££25[k]	= f25[k], f25[nv2[k]]	* nsb2bl[5] + f25[nv1[k]] * nsb2br[5] + * nsb2tl[5] + f25[nv5[k]] * nsb2tr[5];	
ff26[k]	= f26[k] ' f26[nv2[k]] '	* nsb2br[6] + f26[nv3[k]] * nsb2bl[6] + * nsb2tr[6] + f26[nv6[k]] * nsb2tl[6];	,
££27 [k]	= f27[k] f27[nv2[k]]	* ns2b1[7] + f27[nv1[k]] * ns2bz[7] + * ns2t1[7] + f27[nv5[k]] * ns2tz[7];	
ff28[k]	= f28[k] f28[nv2[k]]	* ns2br[8] + f28[nv3[k]] * ns2bl[8] + * ns2tr[8] + f28[nv6[k]] * ns2tl[8];	
case 2:	= £10[k];		
ff11[k]	= f11[k] f11[nv7[k]]	* nsltr[1] + f11[nv3[k]] * nslt1[1] + * nslb1[1] + f11[nv4[k]] * nslbr[1];	
ff12[k]	= f12[k] f12[nv1[k]]	* nsltl[2] + f12[nv4[k]] * nslb1[2] + * nsltr[2] + f12[nv8[k]] * nslbr[2];	
ff13[k]	= f13[k] f13[nv4[k]]	* nstltl[3] + f13[nv1[k]] * nstltr[3] + * nstlbl[3] + f13[nv8[k]] * nstlbr[3];	
ff14[k]	= f14[k] f14[nv4[k]]	* nstltr[4] + f14[nv3[k]] * nstlt1[4] + * nstlbr[4] + f14[nv7[k]] * nstlb1[4];	
[£15[k]	= £15[k]	* nsltr[5] + f15[nv3[k]] * nsltl[5] +	

flumag3.mec.utt.ro	
FO	
/ sofonea f	
Printed by	

CTOCKER	Jun 20 1999 18:01 Wet9Is.c	Jun 20 1999 18:01
	* nslbl[5] + fl5[nv4[k]] *	
	= f16[k] * nslt1[6] + f16[nv4[k]] * nslb1[6] f16[nv1[k]] * nsltr[6] + f16[nv8[k]] * nslbr[6];	[£25];
K	= f17[k] * nstltr[7] + f17[nv3[k]] * nstltl[7] f17[nv4[k]] * nstlbr[7] + f17[nv7[k]] * nstlbl[7];	££23[k
	= f18[k] * nstltl[8] + f18[nv1[k]] f18[nv4[k]] * nstlbl[8] + f18[nv8[k]]	££24[k
K		ff25[k
K	= f21[k] * ns2tr[1] + f21[nv3[k]] * ns2t1[1] f21[nv7[k]] * ns2b1[1] + f21[nv4[k]] * ns2br[1],	[156]
K = f22[k * nst2t[3] + f22[nv][k] * nst2t[4] + f22[nv][k] * nst2t[5] + f22[nv][k] * nst2t[7] + f22[nv][k] * nst2t[8] + f22[nv][k] * nst2t[6] + f22[nv][k] * nst2t	= f22[k] * ns2t1[2] + f22[nv4[k]] * f22[nv4[k]] *	ff27[b
K = f24[K * nst2tr[4] + f24[nv3[K]] * nst2tl[4] + f24[nv4[K]] * nst2tl[4] + f24[nv7[K]] * nst2tl[4] + f22[nv4[K]] * nst2tl[5] + f22[nv4[K]] * nst2tl[5] + f22[nv4[K]] * nst2tl[5] + f22[nv4[K]] * nst2tl[6] + f22[nv4[K]] * nst2tl[6] + f22[nv4[K]] * nst2tl[6] + f22[nv4[K]] * nst2tl[6] + f22[nv4[K]] * nst2tl[7] + f27[nv7[K]] * nst2tl[7] + f27[nv7[K]] * nst2tl[7] + f27[nv7[K]] * nst2tl[8] + f22[nv4[K]] * nst2tl[7] * f22[nv4[K]] * ns	= f23[k] * nst2t1[3] + f23[nv1[k]] f23[nv4[k]] * nst2b1[3] + f23[nv8[k]]	[182]
K = f25[k * ns2tr[5] + f25[nv3[k]] * ns2tr[5] + f25[nv4[k]] * ns2tr[6] + f26[nv4[k]] * ns2tr[7] + f27[nv3[k]] * nst2tr[7] + f27[nv3[k]] * nst2tr[7] + f27[nv3[k]] * nst2tr[8] + f27[nv4[k]] * nst2tr[8] + f27[nv4[k]] * nst2tr[8] + f28[nv4[k]] * nst2tr[1] + f11[nv4[k]] * nst1tr[1] + f11[nv4[k]] * nst1tr[1] + f11[nv4[k]] * nst1tr[2] + f12[nv4[k]] * nst1tr[2] + f12[nv4[k]] * nst1tr[2] + f12[nv4[k]] * nst1tr[3] + f12[nv4[k]] * nst1tr[4] + f14[nv4[k]] * nst1tr[4] + f14[nv4[k]] * nst1tr[4] + f14[nv4[k]] * nst1tr[6] + f15[nv4[k]] * nst1tr[8] + f17[nv4[k]] * nst1tr[8] + f18[nv4[k]] * nst1tr[8] +	= f24[k] * nst2tr[4] + f24[nv3[k]] f24[nv4[k]] * nst2br[4] + f24[nv7[k]]	break
K = f26[k] * ns2tl[6] + f26[nv4[k]] * ns2bl[6] + f26[nv4[k]] * ns2tl[6] + f26[nv4[k]] * ns2tl[6] + f26[nv4[k]] * nst2tl[7] + f27[nv3[k]] * nst2tl[8] + f28[nv8[k]] * nst2tl[7] + f11[nv8[k]] * nst1tl[7] + f12[nv4[k]] * nst1tl[7] + f12[nv8[k]] * nst2tl[7] + f12[nv8[k]] * nst1tl[7] + f12[nv8[k]] * nst1tl[7] + f12[nv8[k]] * nst1tl[7] + f13[nv2[k]] * nst1tl[7] + f13[nv2[k]] * nst1tl[7] + f13[nv2[k]] * nst1tl[8] + f13[nv2[k]] * nst1tl[8] + f14[nv2[k]] * nst1tl[8] + f16[nv3[k]] * nst1tl[8] + f18[nv3[k]] * nst1tl	= £25[k] * ns2tr[5] + £25[nv3[k]] * ns2tl[5] £25[nv7[k]] * ns2b1[5] + £25[nv4[k]] * ns2br[5];	case 4:
F27[k] * nst2tr[7] + f27[nv3[k]] * nst2tl[7]	= f26[k] * ns2t1[6] + f26[nv4[k]] f26[nv1[k]] * ns2tr[6] + f26[nv8[k]]	d11135
# # # # # # # # # # # # # # # # # # #	= f27[k] * nst2tr[7] + f27[nv3[k]] f27[nv4[k]] * nst2br[7] + f27[nv7[k]]	[£12[]
	= f28[k] * nst2t1[8] + f28[nv1[k]] f28[nv4[k]] * nst2b1[8] + f28[nv8[k]]	[E13]
k] = f10[k]; k] = f11[k] * ns11t1[1] + f11[nv1[k]] * ns11tr[1] +	break;	££14[]
<pre>= fil(k) * naliti[i] + fil[nv1[k]] * naliti[i] + fil[nv4[k]] * naliti[i] + fil[nv4[k]] * nalibi[i]; = fi2[k] * nalti[2] + fi2[nv4[k]] * nalbi[2]; = fi3[nv1[k]] * nalti[2] + fi2[nv4[k]] * nalbi[2]; = fi3[nv2[k]] * nalti[3] + fi3[nv1[k]] * nalbi[3] + fi14[nv2[k]] * nalti[4] + fi4[nv1[k]] * nalibi[4] + fi4[nv2[k]] * nalti[6] + fi4[nv3[k]] * nalti[6]; = fi5[nv2[k]] * nalti[6] + fi5[nv4[k]] * nalti[6] + fi16[nv4[k]] * nalti[6] + fi5[nv4[k]] * nalti[6]; = fi17[k] * nalti[6] + fi16[nv4[k]] * nalti[6]; = fi17[k] * nalti[7] + fi17[nv1[k]] * nalti[7]; = fi18[k] * nalti[7] + fi17[nv1[k]] * nalti[7]; = fi20[k]; = fi20[k]; = fi1k] * nalti[1] + fi1[nv3[k]] * nalti[8]; = fi20[k]; </pre>	k]	ff15[
= f12[k] * ns1t1[2] + f12[nv4[k]] * ns1b1[2] + f12[nv1[k]] * ns1t1[2] + f12[nv8[k]] * ns1b1[2]; = f13[k] * ns1t1[3] + f13[nv1[k]] * ns1br[3]; = f14[k] * ns1t1[3] + f13[nv1[k]] * ns1tr[3]; = f14[nv2[k]] * ns1th[4] + f14[nv1[k]] * ns1tr[4]; = f14[nv2[k]] * ns1th[5] + f15[nv3[k]] * ns1tr[4]; = f15[k] * ns1th[5] + f15[nv3[k]] * ns1tr[5]; = f15[k] * ns1th[6] + f16[nv4[k]] * ns1tr[5]; = f16[nv1[k]] * ns1th[6] + f16[nv4[k]] * ns1tr[6]; = f17[k] * ns1th[7] + f17[nv1[k]] * ns1tr[7]; = f18[k] * ns1th[7] + f17[nv1[k]] * ns1tr[7]; = f18[k] * ns1th[7] + f17[nv3[k]] * ns1tr[7]; = f18[k] * ns1th[8] + f18[nv1[k]] * ns1tr[8]; = f20[k]; = f20[k];	= fil[k] * nslith[i] + fil[nvl[k]] * nslith[i] fil[nv4[k]] * nslibh[i] + fil[nv8[k]] * nslibr[i];	19135
= fi3[k] * nsibl[3] + fi3[nv1[k]] * nsibr[3] +	= f12[k] * nsltl[2] + f12[nv4[k]] * nslb1[2] f12[nv1[k]] * nsltr[2] + f12[nv8[k]] * nslbr[2];] [[] []
<pre>= f14[k] * nsl1bl[4] + f14[nv1[k]] * nsl1br[4] + f14[nv2[k]] * nsl1tl[4] + f14[nv5[k]] * nsl1tr[4]; = f15[k] * nsl1tl[5] + f15[nv1[k]] * nsl1tr[5]; = f16[k] * nsl1tl[6] + f15[nv5[k]] * nsl1tr[5]; = f16[k] * nslt1[6] + f16[nv4[k]] * nslt1r[6] + f16[nv1[k]] * nslt1[6] + f16[nv4[k]] * nslt1[6] + f17[nv2[k]] * nslt1[7] + f17[nv1[k]] * nslt1[7]; = f17[k] * nslt1[7] + f17[nv1[k]] * nslt1r[8] + f18[nv4[k]] * nslt1[8] + f18[nv1[k]] * nslt1r[8] + f18[nv4[k]] * nslt1[8] + f18[nv8[k]] * nslt1r[8] + f18[nv4[k]] * nslt1[1] + f21[nv1[k]] * nsl2tr[1] +</pre>	= f13[k] * nslb1[3] + f13[nv1[k]] f13[nv2[k]] * nslt1[3] + f13[nv5[k]]	[£18]
<pre>= f15[k] * nsllbl[5] + f15[nv1[k]] * nsllbr[5] + f15[nv2[k]] * nslltl[5] + f15[nv4[k]] * nslltr[5]; = f16[k] * nsltl[6] + f16[nv4[k]] * nslbr[6]; = f16[nv1[k]] * nsltr[6] + f16[nv8[k]] * nslbr[6]; = f17[k] * nsltl[7] + f17[nv1[k]] * nslbr[7] + f17[nv2[k]] * nsltl[7] + f17[nv1[k]] * nsltr[7]; = f18[k] * nsltl[8] + f18[nv1[k]] * nsltr[8] + f18[nv4[k]] * nslltl[8] + f18[nv8[k]] * nsltr[8]; = f20[k];</pre>	= f14[k] * hsl1bl[4] + f14[nv1[k]] f14[nv2[k]] * nsl1t1[4] + f14[nv5[k]]	ff20[
<pre>= f16[k] * nslt1[6] + f16[nv4[k]] * nslb1[6] + f16[nv1[k]] * nsltx[6] + f16[nv8[k]] * nslbx[6]; = f17[k] * nslb1[7] + f17[nv1[k]] * nslbx[7] + f17[nv2[k]] * nslt1[7] + f17[nv5[k]] * nsltx[7]; = f18[k] * nslt1[8] + f18[nv1[k]] * nsltx[8] + f18[nv4[k]] * nslb1[8] + f18[nv8[k]] * nslbx[8]; = f20[k]; = f21[k] * nsl2t1[1] + f21[nv1[k]] * nsl2tx[1] +</pre>	= f15[k] * nsl1b1[5] f15[nv2[k]] * nsl1t1[5]	ff21[
= f17[k] * ns1b1[7] + f17[nv1[k]] * ns1br[7] + f17[nv2[k]] * ns1t1[7] + f17[nv5[k]] * ns1tr[7]; = f18[k] * ns1t1[8] + f18[nv1[k]] * ns1tr[8] + f18[nv4[k]] * ns1tb1[8] + f18[nv8[k]] * ns1tbr[8]; = f20[k]; = f21[k] * ns12t1[1] + f21[nv1[k]] * ns12tr[1] +	= f16[k] * ns1t1[6] + f16[nv4[k]] * ns1b1[6] f16[nv1[k]] * ns1tr[6] + f16[nv8[k]] * ns1br[6];	[£25]
= f18[k] * nsltt[8] + f18[nv1[k]] * nsltt[8] + f18[nv4[k]] * nsltb1[8] + f18[nv8[k]] * nsltbr[8]; = f20[k]; = f21[k] * nsl2tl[1] + f21[nv1[k]] * nsl2tr[1] +	= f17[k] * nslb1[7] + f17[nv1[k]] f17[nv2[k]] * nslt1[7] + f17[nv5[k]]	[f23]
= f2l[k] * nsl2tl[l] + f2l[nv1[k]] * nsl2tr[l] +	= f18[k] * nslitl[8] + f18[nv1[k]] * nslitr[8] f18[nv4[k]] * nslib1[8] + f18[nv8[k]] * nslibr[8];	[£24[
= f21[k] * nsl2t1[l] + f21[nv1[k]] * nsl2tr[l]	= f20[k];	ff25[
	= f21[k] * nsl2tl[l] + f21[nv1[k]] * nsl2tr[l]	

Jun 20 1999 18:01		wet9ls.c	Page 30
	f21[nv4[k]]	* nsl2bl[1] + f21[nv8[k]] * nsl2br[1];	
ff22[k]	= f22[k] f22[nv1[k]]	* ns2t1[2] + f22[nv4[k]] * ns2b1[2] + * ns2tr[2] + f22[nv8[k]] * ns2br[2];	•
ff23[k]	= f23[k] f23[nv2[k]]	* ns2b1[3] + £23[nv1[k]] * ns2br[3] + * ns2t1[3] + £23[nv5[k]] * ns2tr[3];	
ff24[k]	= f24[k] f24[nv2[k]]	* nsl2bl[4] + f24[nv][k]] * nsl2br[4] + * nsl2tl[4] + f24[nv5[k]] * nsl2tr[4];	
ff25[k]	= f25[k] f25[nv2[k]]	* nsl2bl[5] + £25[nv1[k]] * nsl2br[5] + * nsl2tl[5] + £25[nv5[k]] * nsl2tr[5];	
ff26[k]	= f26[k] f26[nv1[k]]	* ns2t1[6] + f26[nv4[k]] * ns2b1[6] + * ns2tr[6] + f26[nv8[k]] * ns2br[6];	
ff27[k]	$= \frac{f27[k]}{f27[nv2[k]]}$	* ns2b1[7] + f27[nv1[k]] * ns2br[7] + * ns2t1[7] + f27[nv5[k]] * ns2tr[7];	-
ff28[k]	= f28[k] f28[nv4[k]]	* nsl2tl[8] + £28[nvl[k]] * nsl2tr[8] + * nsl2bl[8] + £28[nv8[k]] * nsl2br[8];	
break;			
case 4: ff10[k]	= f10[k];		
ff11[k]	= f11[k] f11[nv7[k]]	* nslb1[1] + f11[nv3[k]] * nslt1[1] + * nslb1[1] + f11[nv4[k]] * nslbr[1];	
ff12[k]	= f12[k] f12[nv4[k]]	* nsrltr[2] + f12[nv3[k]] * nsrlt1[2] + * nsrlbr[2] + f12[nv7[k]] * nsrlb1[2];	
ff13[k]	= f13[k] f13[nv2[k]]	* nsrlbr[3] + £13[nv3[k]] * nsrlbl[3] + * nsrltr[3] + £13[nv6[k]] * nsrltl[3];	
££14[k]	= f14[k] f14[nv2[k]]	* nslbr[4] + f14[nv3[k]] * nslb1[4] + * nsltr[4] + f14[nv6[k]] * nslt1[4];	- 1
ff15[k]	= f15[k] f15[nv7[k]]	* nsltr[5] + f15[nv3[k]] * nsltl[5] + * nslb1[5] + f15[nv4[k]] * nslbr[5];	
ff16[k]	= f16[k] f16[nv2[k]]	* nsrlbr[6] + f16[nv3[k]] * nsrlb1[6] + * nsrltr[6] + f16[nv6[k]] * nsrlt1[6];	
££17[k]	= £17[k] £17[nv4[k]]	* nsrltr[7] + f17[nv3[k]] * nsrlt1[7] + * nsrlbr[7] + f17[nv7[k]] * nsrlb1[7];	
ff18[k]	= f18[k] f18[nv2[k]]	* nslbr[8] + f18[nv3[k]] * nslbl[8] + * nsltr[8] + f18[nv6[k]] * nsltl[8];	
££20[k]	= f20[k];		
ff21[k]	= f21[k] f21[nv7[k]]	* ns2tr[1] + f21[nv3[k]] * ns2tl[1] + * ns2b1[1] + f21[nv4[k]] * ns2br[1];	
ff22[k]	= f22[k] f22[nv4[k]]	* nsr2tr[2] + f22[nv3[k]] * nsr2t1[2] + * nsr2br[2] + f22[nv7[k]] * nsr2b1[2];	
[f23[k]	= f23[k] f23[nv2[k]]	* nsr2br[3] + f23[nv3[k]] * nsr2bl[3] + * nsr2tr[3] + f23[nv6[k]] * nsr2tl[3];	
ff24[k]	= f24[k] f24[nv2[k]]	* ns2br[4] + f24[nv3[k]] * ns2bl[4] + * ns2tr[4] + f24[nv6[k]] * ns2tl[4];	
ff25[k]	= f25[k] f25[nv7[k]]	* ns2tr[5] + f25[nv3[k]] * ns2t1[5] + * ns2b1[5] + f25[nv4[k]] * ns2br[5];	

0
2
mec.utt
7
ŏ
Ε
ri.
ਨੂ
EE
⋾
=
Ε
2
=
ຜ
ζ
ĕ
S
>
∂
8
≝
rinted
ı

Jun 20 1999 18:01		ANCIOIONA	2.5		a 30 0
ff26[k] =	= f26[k] * nsr f26[nv2[k]] * nsr	nsr2br[6] + nsr2tr[6] +	£26[nv3[k]] £26[nv6[k]]	* nsr2b1[6] + * nsr2t1[6];	
ff27[k] =	<pre>= f27[k] * nsr f27[nv4[k]] * nsr</pre>	nsr2tr[7] + nsr2br[7] +	+ f27[nv3[k]] + f27[nv7[k]]	* nsr2t1[7] + * nsr2b1[7];	
ff28[k] =	= f28[k] * ns2 f28[nv2[k]] * ns2	ns2br[8] + f ns2tr[8] + f	28 [nv3 [k]] 28 [nv6 [k]]	+ f28[nv3[k]] * ns2b1[8] + + f28[nv6[k]] * ns2t1[8];	
break;					
void ilin(void)					
<pre>int k; for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>	all; k++)				
{ switch(boundary_mode[k])	y_mode[k])				
case 0: ff10[k] :	= f10[k];				
ff11[k] ·	= f11[k] * nl1 f11[nv7[k]] * nl1	* nlltr[1] + f * nllbl[1] + f	f11[nv3[k]] f11[nv4[k]]	* nlltl[1] + * nllbr[1];	
ff12[k]	= f12[k] * nl1 f12[nv1[k]] * nl1	nlltl[2] + f nlltr[2] + f	f12[nv4[k]] f12[nv8[k]]	* nllbl[2] + * nllbr[2];	
ff13[k]	= f13[k] * nl1 f13[nv2[k]] * nl1	nl1b1[3] + f nl1t1[3] + f	f13[nv1[k]] f13[nv5[k]]	* nllbr[3] + * nlltr[3];	
ff14[k]	= f14[k] * nll f14[nv2[k]] * nll	nllbr[4] + f nlltr[4] + f	f14[nv3[k]] f14[nv6[k]]	* nllbl[4] + * nlltl[4];	
ff15[k]	= f15[k] * nl1 f15[nv7[k]] * nl1	nlltr[5] + f nllbl[5] + f	f15[nv3[k]] f15[nv4[k]]	* nlltl[5] + * nllbr[5];	
ff16[k]	= f16[k] * nl1 f16[nv1[k]] * nl1	nlitl[6] + f nlitr[6] + f	f16[nv4[k]] f16[nv8[k]]	* nllbl[6] + * nllbr[6];	
ff17[k]	= f17[k] * nll f17[nv2[k]] * nll	nllbl[7] + f nlltl[7] + f	f17[nv1[k]] f17[nv5[k]]	* nllbr[7] + * nlltr[7];	
ff18[k]	= f18[k] * nl1 f18[nv2[k]] * nl1	* nllbr[8] + f * nlltr[8] + f	f18[nv3[k]] f18[nv6[k]]	* nllbl[8] + * nlltl[8];	
ff20[k]	= f20[k];				
ff21[k]	= f21[k] * nl2 f21[nv7[k]] * nl2	* nl2tr[1] + f * nl2bl[1] + f	f21[nv3[k]] f21[nv4[k]]	* nl2t1[1] + * nl2br[1];	
ff22[k]	= f22[k] * nl2 f22[nv1[k]] * nl2	nl2t1[2] + f nl2tr[2] + f	f22[nv4[k]] f22[nv8[k]]	* nl2bl[2] + * nl2br[2];	
ff23[k]	= f23[k] * nl2 f23[nv2[k]] * nl2	nl2bl[3] + f nl2tl[3] + f	f23[nv1[k]] f23[nv5[k]]	* nl2br[3] + * nl2tr[3];	
ff24[k]	= f24[k] * nl2 f24[nv2[k]] * nl2	nl2br[4] + f nl2tr[4] + f	£24[nv3[k]] £24[nv6[k]]	* nl2bl[4] + * nl2tl[4];	
ff25[k]	= f25[k] * nl2 f25[nv7[k]] * nl2	nl2tr[5] + f nl2bl[5] + f	f25[nv3[k]] f25[nv4[k]]	* nl2tl[5] + * nl2br[5];	
ff26[k]	= f26[k] * nl2 f26[nv1[k]] * nl2	nl2tl[6] + f nl2tr[6] + f	f26[nv4[k]] f26[nv8[k]]	* nl2bl[6] + * nl2br[6];	<u>-</u>
ff27[k]	= f27[k] * n13	* nl2bl(7) + £27[nv1[k]]	[[4] [w] [6]	* -101101	

### ### ##############################	Jun 20 1999 18:01 wet9is.c	Page 32
11 12	7[nv2[k]] * nl2t1[7] + £27[nv5[k]] *	
1; = flo(k); fll(k) fl] = f28[k] * nl2br[8] + f28[nv3[k]] * nl2bl[8] f28[nv2[k]] * nl2tr[8] + f28[nv6[k]] * nl2tl[8];	
I(K) =	1: 10[k] =	
2(K) = fi2[k] * nibibl[2] + fi2[nv1[k]] * nibibr[2], fi2[nv2[k]] * nibil[3] + fi2[nv1[k]] * nibibr[2], fi3[nv2[k]] * nibil[3] + fi3[nv1[k]] * nibibr[3]; 4(K) = fi4[k] * nibib[3] + fi3[nv2[k]] * nibibr[3]; fi4[k] = fi4[k] * nibibr[6] + fi4[nv6[k]] * nibibr[6]; fi5[k] = fi6[k] * nibibr[6] + fi6[nv3[k]] * nibibr[6]; fi7[k] = fi6[k] * nibibr[6] + fi6[nv3[k]] * nibibr[6]; fi7[k] = fi1[k] * nibibr[6] + fi1[nv2[k]] * nibibr[6]; fi8[k] = fi2[k] * nibibr[6] + fi1[nv3[k]] * nibibr[6]; fi8[k] = fi2[k] * nibibr[6] + fi1[nv3[k]] * nibibr[6]; fi8[k] = fi2[k] * nibibr[6] + fi1[nv3[k]] * nibibr[6]; fi8[k] = fi2[k] * nibibr[6] + fi2[nv3[k] * ni	= f11[k] * nlblbr[1] + f11[nv3[k]] * nlblb1[1] f11[nv6[k]] * nlblt1[1] + f11[nv2[k]] * nlbltr[1];	
S(K) = f13(K) * n11b1[3] + f13[nv3[K]] * n11bx[3] + f13[nv2[K]] * n11tx[3] + f13[nv3[K]] * n11tx[3] + f13[nv3[K]] * n11tx[3] + f14[nv3[K]] * n11tx[4] + f14[nv3[K]] * n11tx[4] + f14[nv3[K]] * n11tx[4] + f14[nv3[K]] * n11tx[4] + f15[nv3[K]] * n11tx[4] + f15[nv3[K]] * n11tx[4] + f15[nv3[K]] * n11tx[4] + f15[nv3[K]] * n11tx[5] + f15[nv3[K]] * n11tx[5] + f15[nv3[K]] * n11tx[6] + f17[nv2[K]] * n11tx[6] + f17[nv2[K]] * n11tx[6] + f17[nv2[K]] * n11tx[6] + f17[nv2[K]] * n11tx[6] + f18[nv3[K]] * n11tx[6] + f18[nv3[K]] * n11tx[7] + f17[nv2[K]] * n11tx[6] + f18[nv3[K]] * n11tx[7] + f17[nv2[K]] * n11tx[7] + f18[nv3[K]] * n11	= f12[k] * nlblb1[2] + f12[nv1[k]] * nlblbr[2] f12[nv2[k]] * nlblt1[2] + f12[nv5[k]] * nlbltr[2];	
4(k) = f14(k) * n11br[4] + f14[nv3[k]] * n11bl[4]; 5(k) = f15[k] * n1blb[5] + f15[nv1[k]] * n1blb[5]; f15[nv2[k]] * n1blb[6] + f15[nv3[k]] * n1blb[6]; f16[nv2[k]] * n1blb[6] + f16[nv6[k]] * n1blb[6]; f16[nv2[k]] * n1blb[6] + f16[nv6[k]] * n1blt[6]; f16[nv2[k]] * n1blb[7] + f17[nv1[k]] * n1blt[6]; f18[nv2[k]] * n1blb[7] + f17[nv2[k]] * n1blt[6]; f18[nv2[k]] * n1blb[7] + f17[nv2[k]] * n1blt[6]; f20[nv2[k]] * n1br[8] + f18[nv8[k]] * n1bt[6]; f21[nv6[k]] * n1bzb[1] + f21[nv8[k]] * n1bzl[1]; f22[nv2[k]] * n1bzb[1] + f21[nv3[k]] * n1bzl[1]; f22[nv2[k]] * n1bzb[1] + f22[nv3[k]] * n1bzl[1]; f23[nv2[k]] * n1bzl[6] + f22[nv3[k]] * n1bzl[6]; f23[nv2[k]] * n1bzl[6] + f23[nv3[k]] * n1bzl[6]; f23[nv2[k]] * n1bzl[6] + f23[nv3[k]] * n1bzl[6]; f26[nv2[k]] * n1bzl[6] + f26[nv3[k]] * n1bzl[6]; f28[nv2[k]] * n1bzl[6] + f28[nv3[k]] * n1bzl[6]; f28[nv2[k]] * n1bzl[6] + f28[nv3[k]] * n1bzl[6]; f28[nv2[k]] * n1bzl[6] + f28[nv3[k]] * n1bzl[6]; f28[nv2[k]] * n1bzl[6] + f28[nv6[k]] * n1bzl[6]; f28[nv2[k]] * n1bzl[6] + f28	= f13[k] * nllb1[3] + f13[nv1[k]] * nllbr[3] f13[nv2[k]] * nllt1[3] + f13[nv5[k]] * nlltr[3];	
S(K) = f15(K) * nlblbl[5] + f15[nv1[K]] * nlblbr[5]	= f14[k] * nllbr[4] + f14[nv3[k]] * nllbl[4] f14[nv2[k]] * nlltr[4] + f14[nv6[k]] * nlltl[4];	
Fig	= f15[k] * nlblbl[5] + f15[nv1[k]] * nlblbr[5] f15[nv2[k]] * nlbltl[5] + f15[nv5[k]] * nlbltr[5];	
T(K = f17(K * n11b1[7] + f17(nv5[K]) * n11tr[7];	= f16[k] * nlblbr[6] + f16[nv3[k]] * nlblbl[6] f16[nv2[k]] * nlbltr[6] + f16[nv6[k]] * nlbltl[6];	
	= f17[k] * n11b1[7] + f17[nv1[k]] * n11br[7] f17[nv2[k]] * n11t1[7] + f17[nv5[k]] * n11tr[7];	
1[K] = f20[K]; nlb2br[1] + f21[nv3[K]] * nlb2bl[1] f21[nv6[K]] * nlb2bl[1] + f21[nv2[K]] * nlb2tr[1]; f22[nv1[K]] * nlb2tr[2] f22[nv2[K]] * nlb2tr[2] f22[nv2[K]] * nlb2tr[2] f22[nv2[K]] * nlb2tr[2] f22[nv2[K]] * nlb2tr[2]; f23[nv2[K]] * nlb2tr[2] f23[nv2[K]] * nlb2tr[2]; f23[nv2[K]] * nlb2tr[2]; f23[nv2[K]] * nlb2tr[3]; f24[nv2[K]] * nlb2tr[3] f24[nv2[K]] * nlb2tr[3] f24[nv2[K]] * nlb2tr[3] f24[nv2[K]] * nlb2tr[3]; f24[nv2[K]] * nlb2tr[3] f25[nv2[K]] * nlb2tr[3] f25[nv2[K]] * nlb2tr[3] f25[nv2[K]] * nlb2tr[6] f26[nv3[K]] * nlb2tr[6] f27[nv3[K]] * nlb2t[6] f27[nv3[K]	= f18[k] * nllbr[8] + f18[nv3[k]] * nllbl[8] f18[nv2[k]] * nlltr[8] + f18[nv6[k]] * nlltl[8];	
	H	-
[2[k]] = f22[k] * nlb2bl[2] + f22[nv1[k]] * nlb2br[2]; [3[k]] = f23[k] * nl2bl[3] + f22[nv1[k]] * nlb2tr[2]; [4[k]] = f23[k] * nl2bl[3] + f23[nv1[k]] * nl2br[3]; [4[k]] = f24[k] * nl2br[4] + f24[nv6[k]] * nl2tr[3]; [5[k]] = f24[k] * nl2br[4] + f24[nv6[k]] * nl2br[4]; [5[k]] = f25[k] * nlb2bl[6] + f25[nv1[k]] * nlb2br[5]; [6[k]] = f25[k] * nlb2br[6] + f25[nv6[k]] * nlb2br[5]; [7[k]] = f26[k] * nlb2br[6] + f26[nv6[k]] * nlb2br[6]; [7[k]] = f26[k] * nlb2br[6] + f26[nv6[k]] * nlb2br[6]; [7[k]] = f27[k] * nlb2br[6] + f26[nv6[k]] * nlb2tr[6]; [7[k]] = f27[k] * nlb2br[6] + f26[nv6[k]] * nlb2tr[6]; [8][k] = f27[k] * nlb2br[6] + f26[nv6[k]] * nlb2tr[6]; [8][k] = f28[k] * nlb2br[6] + f28[nv6[k]] * nlb2tr[6]; [10[k]] = f11[k] * nlbtr[6] + f28[nv6[k]] * nlbtl[6]; [11[k]] = f11[k] * nlbtr[1] + f11[nv4[k]] * nlbtl[1] + f12[nv4[k]] * nlbtl[1]; [2[k]] = f12[nv1[k]] * nlbtr[2] + f12[nv4[k]] * nlbtl[2]; [2[k]] = f12[nv1[k]] * nlbtr[2] + f12[nv4[k]] * nlbtl[2];	= f21[k] * nlb2br[1] + f21[nv3[k]] * nlb2bl[1] f21[nv6[k]] * nlb2t1[1] + f21[nv2[k]] * nlb2tr[1];	
33[k]	= f22[k] * nlb2bl[2] + f22[nv1[k]] * nlb2br[2] f22[nv2[k]] * nlb2tl[2] + f22[nv5[k]] * nlb2tr[2];	
15 15 15 15 15 15 15 15	= f23[k] * nl2bl[3] + f23[nv1[k]] * nl2br[3] f23[nv2[k]] * nl2tl[3] + f23[nv5[k]] * nl2tr[3];	
55[k] = f25[k] * nlb2bl[5] + f25[nv1[k]] * nlb2br[5] f25[nv2[k]] * nlb2tr[5] + f25[nv5[k]] * nlb2tr[5]; f26[nv2[k]] * nlb2br[6] + f26[nv3[k]] * nlb2bl[6] f26[nv2[k]] * nlb2br[6] + f26[nv6[k]] * nlb2tl[6]; f27[k] * nlb2tr[6] + f27[nv1[k]] * nlb2tl[6]; f27[nv2[k]] * nlb2tr[7] + f27[nv1[k]] * nlb2tl[7]; f27[nv2[k]] * nlb1[7] + f27[nv5[k]] * nlb2tl[8]; f28[k] * nlb1[7] + f27[nv5[k]] * nlb2tl[8]; f28[nv2[k]] * nlb1[7] + f28[nv6[k]] * nlb1[8]; f28[nv2[k]] * nlb1[7] + f28[nv6[k]] * nlb1[1] + f28[nv7[k]] * nlb1[1] + f28[nv7[k]] * nlb2[1]; f28[nv7[k]] * nlb1[1] + f11[nv7[k]] * nlb1[1] + f28[nv7[k]] * nlb1[2]; f28[nv1[k]] * nlb1[1] + f28[nv8[k]] * nlb1[2]; f28[nv1[k]] * nlb1[2] + f28[nv8[k]] * nlb1[2]; f28[nv1[k]] * nlb1[2] + f28[nv8[k]] * nlbb7[2]; f28[nv2[k]] * nlb1[2] + f28[nv8[k]] * nlb2[2]; f28[nv2[k]] * nlb2[2] + f28[nv8[k]] * nlb2[2]; f28[nv2[k]] * nlb2[2] + f28[nv8[k]] * nlb2[2]; f28[nv2[k]] * nlb2[2] + f28[nv8[k]] * nlb2[2]; f28[nv8[k]] * nlb2[2] + f28[n	= f24[k] * nl2br[4] + f24[nv3[k]] * nl2bl[4] f24[nv2[k]] * nl2tr[4] + f24[nv6[k]] * nl2tl[4];	
SE(K) = f26(K) * nlb2br[6] + f26[nv3(K]] * nlb2bl[6] f26[nv2(K)] * nlb2tr[6] + f26[nv6(K]] * nlb2tl[6];	= £25[k] * nlb2bl[5] + £25[nv1[k]] * nlb2br[5] £25[nv2[k]] * nlb2tl[5] + £25[nv5[k]] * nlb2tr[5];	
77[k] = f27[k] * n12b1[7] + f27[nv1[k]] * n12br[7]; 28[k] = f28[k] * n12br[8] + f28[nv6[k]] * n12tr[7]; 21: 22: 23: 21: 21: 21: 21: 21:	= f26[k] * nlb2br[6] + f26[nv3[k]] * nlb2bl[6] f26[nv2[k]] * nlb2tr[6] + f26[nv6[k]] * nlb2tl[6];	
88[k] = f28[k] * nl2br[8] + f28[nv6[k]] * nl2bl[8] aak; 2: [0[k] = f10[k]; [1][k] = f11[k] * nl1tr[1] + f11[nv3[k]] * nl1tl[1] f11[nv7[k]] * nl1tr[2] + f12[nv4[k]] * nl1tl[1]; [2]	= £27[k] * nl2bl[7] + £27[nv1[k]] * nl2br[7] £27[nv2[k]] * nl2tl[7] + £27[nv5[k]] * nl2tr[7];	
2: [0[k] = f10[k]; [1[k] = f11[k] * nlltr[l] + f11[nv3[k]] * nlltl[l] f11[nv7[k]] * nlltl[l] + f11[nv4[k]] * nlltl[l]; [2[k] = f12[k] * nlltl[2] + f12[nv4[k]] * nlltl[2] f12[nv1[k]] * nlltr[2] + f12[nv8[k]] * nlltr[2];	:] = f28[k] * nl2br[8] + f28[nv3[k]] * nl2bl[8] f28[nv2[k]] * nl2tr[8] + f28[nv6[k]] * nl2tl[8];	
= f11[k] * nltr[1] + f11[nv3[k]] * nltt[1] f11[nv7[k]] * nllb1[1] + f11[nv4[k]] * nllbr[1]; = f12[k] * nltt[2] + f12[nv4[k]] * nllb1[2] f12[nv1[k]] * nlltr[2] + f12[nv8[k]] * nllbr[2];	2: 10[k] =	
= f12[k] * nlttl[2] + f12[nv4[k]) * nllb1[2] f12[nv1[k]] * nlltr[2] + f12[nv8[k]] * nllbr[2];	= f11[k] * n11tr[1] + f11[nv3[k]] * n11t1[1] f11[nv7[k]] * n11b1[1] + f11[nv4[k]] * n11br[1];	
	= f12[k] * nllt1[2] + f12[nv4[k]) * nllb1[2] f12[nv1[k]] * nlltr[2] + f12[nv8[k]] * nllbr[2];	

Jun 20 1999 18:01 Page 33	5
<pre>ff13[k] = f13[k] * nlt1tl[3] + f13[nv1[k]] * nlt1tr[3] + f13[nv4[k]] * nlt1b1[3] + f13[nv8[k]] * nlt1br[3];</pre>	
<pre>ff14[k] = f14[k] * nltltr[4] + f14[nv3[k]] * nltllt[4] + f14[nv4[k]] * nltlbr[4] + f14[nv7[k]] * nltlbl[4];</pre>	
<pre>ff15[k] = f15[k] * nlltr[5] + f15[nv3[k]] * nlltl[5] + f15[nv4[k]] * nllbl[5] + f15[nv4[k]] * nllbr[5];</pre>	
<pre>ff16(k) = f16(k) * nlltl[6] + f16[nv4(k]] * nllbl[6] + f16[nv1(k]] * nlltr[6] + f16[nv8[k]] * nllbr[6];</pre>	
<pre>ff17[k] = f17[k] * nltltr[7] + f17[nv3[k]] * nltltl[7] + f17[nv4[k]] * nltlbr[7] + f17[nv7[k]] * nltlbl[7];</pre>	-
<pre>ff18[k] = f18[k] * nlt1t1[8] + f18[nv1[k]] * nlt1tr[8] + f18[nv4[k]] * nlt1b1[8] + f18[nv8[k]] * nlt1br[8];</pre>	
ff20[k] = f20[k];	
<pre>ff21(k) = f21(k) * n12tr[1] + f21[nv3(k]) * n12tr[1] +</pre>	
<pre>ff22[k] = f22[k] * nl2tl[2] + f22[nv4[k]) * nl2tl[2] +</pre>	
<pre>ff23(k] = f23(k] * nlt2t1[3] + f23[nv1[k]] * nlt2tr[3] + f23[nv4[k]] * nlt2b1[3] + f23[nv8[k]] * nlt2br[3];</pre>	
<pre>ff24[k] = f24[k] * nlt2tr[4] + f24[nv3[k]] * nlt2tl[4] + f24[nv4[k]] * nlt2br[4] + f24[nv7[k]] * nlt2bl[4];</pre>	
<pre>ff25[k] = f25[k] * nl2tr[5] + f25[nv3[k]] * nl2tl[5] + f25[nv7[k]] * nl2bl[5] + f25[nv4[k]] * nl2br[5];</pre>	
ff26[k] = f26[k] * nl2t1[6] + f26[nv4[k]] * nl2b1[6] + f26[nv4[k]] * nl2tr[6];	
ff27[k] = f27[k] * nlt2tr[7] + f27[nv3[k]] * nlt2tl[7] + f27[nv7[k]] * nlt2bl[7];	
ff28[k] = f28[k] * nlt2t1[8] + f28[nv1[k]] * nlt2tr[8] + f28[nv8[k]] * nlt2br[8];	
break;	
case 3: ff10[k] = f10[k];	-
<pre>ffll(k) = fll(k) * nlltl[l] + fll[nvl(k)] * nlltr[l] + fll[nv4(k)] * nlllbl[l] + fll[nv8(k)] * nllbr[l];</pre>	
<pre>ff12[k] = f12[k] * nlf1[2] + f12[nv4[k]] * nllb1[2] + f12[nv1[k]] * nltr[2] + f12[nv8[k]] * nllbr[2];</pre>	
<pre>ff13[k] = f13[k] * nl1b1[3] + f13[nv1[k]] * nl1bx[3] + f13[nv2[k]] * nl1t1[3] + f13[nv5[k]] * nl1tx[3];</pre>	
<pre>ff14[k] = f14[k] * nllibl[4] + f14[nv1[k]] * nllibr[4] +</pre>	
<pre>ff15[k] = f15[k] * nl11b1[5] + f15[nv1[k]] * nl11bx[5] + f15[nv2[k]] * nl11t1[5] + f15[nv5[k]] * nl1tx[5];</pre>	
<pre>fil6[k] = fi6[k] * nltel[6] + fi6[nv4[k]] * nllb1[6] + fi6[nv1[k]] * nlter[6] + fi6[nv8[k]] * nllbr[6];</pre>	
<pre>ff17[k] = f17[k] * nllb1[7] + f17[nv1[k]] * nllbx[7] +</pre>	

Jun 20 1999 18:01	wet9is.c Page 34
ff18[k] = f18[f18[k] * nll1t1[8] + f18[nv1[k]] * nll1tr[8] + f18[nv4[k]] * nll1br[8];
ff20[k] = f20[k];	(k);
ff21[k] = f21[f21[k] * nll2tl[l] + f21[nv1[k]] * nll2tr[l] + f21[nv8[k]] * nll2br[l];
ff22[k] = f22[f22[k] * nl2t1[2] + f22[nv4[k]] * nl2b1[2] + f22[nv1[k]] * nl2br[2];
ff23[k] = f23[f23[k] * nl2b1[3] + f23[nv1[k]] * nl2br[3] + f23[nv2[k]] * nl2t1[3] + f23[nv5[k]] * nl2tr[3];
ff24[k] = f24[= f24[k] * n112b1[4] + f24[nv1[k]] * n112br[4] + f24[nv2[k]] * n112t1[4] + f24[nv5[k]] * n112tr[4];
ff25[k] = f25[<pre>f25(k] * n112b1[5] + f25[nv1[k]] * n112bz[5] + i5[nv2[k]] * n112t1[5] + f25[nv5[k]] * n112tx[5];</pre>
ff26[k] = f26[<pre>f26[k] * nl2tl[6] + f26[nv4[k]] * nl2bl[6] + f26[nv1[k]] * nl2tr[6] + f26[nv8[k]] * nl2br[6];</pre>
ff27[k] = f27[<pre>£27[k] * nl2bl[7] + £27[nv1[k]] * nl2br[7] + £27[nv2[k]] * nl2tl[7] + £27[nv5[k]] * nl2tr[7];</pre>
ff28[k] = f28[f28[k] * nll2tl[8] + f28[nv1[k]] * nll2tr[8] + f28[nv4[k]] * nll2bl[8] + f28[nv8[k]] * nll2br[8];
break;	
case 4: ff10[k] = f10	£10[k];
ff11[k] = f11[= fil[k] * nlltr[l] + fil[nv3[k]] * nlltl[l] + fil[nv7[k]] * nllbr[l];
ff12[k] = f12	<pre>f12[k] * nlrltr[2] + f12[nv3[k]] * nlrltl[2] + f12[nv4[k]] * nlrlbr[2] + f12[nv7[k]] * nlrlbl[2];</pre>
ff13[k] = f13	f13[k] * nlribr[3] + f13[nv3[k]] * nlribl[3] + f13[nv2[k]] * nlritr[3] + f13[nv6[k]] * nlritl[3];
ff14[k] = f14	<pre>f14(k) * nllbr[4] + f14(nv3(k)) * nllbl[4] + f14(nv2(k)) * nlltr[4] + f14(nv6(k)) * nlltl[4];</pre>
ff15[k] = f15	<pre>f15[k] * nlitr[5] + f15[nv3[k]] * nlitl[5] + f15[nv7[k]] * nlibl[5] + f15[nv4[k]] * nlibr[5];</pre>
ff16[k] = f16	<pre>f16[k] * nlrlbr[6] + f16[nv3[k]] * nlrlbl[6] + f16[nv2[k]] * nlrltr[6] + f16[nv6[k]] * nlrltl[6];</pre>
ff17[k] = f17	<pre>f17[k] * nlr1tr[7] + f17[nv3[k]] * nlr1tl[7] + f17[nv4[k]] * nlr1br[7] + f17[nv7[k]] * nlr1bl[7];</pre>
ff18[k] = f18	f18[k] * nlibr[8] + f18[nv3[k]] * nlibl[8] + f18[nv2[k]] * nlitr[8] + f18[nv6[k]] * nlitl[8];
ff20[k] = f2	= £20[k];
ff21[k] = f21	f21[k] * nl2tr[l] + f21[nv3[k]] * nl2tl[l] + f21[nv7[k]] * nl2tl[l];
[f22[k] = f22	f22[k] * nlr2tr[2] + f22[nv3[k]] * nlr2tl[2] + f22[nv4[k]] * nlr2bl[2];
ff23[k] = f23	f23[k] * nlr2br[3] + f23[nv3[k]] * nlr2bl[3] + f23[nv2[k]] * nlr2tr[3] + f23[nv6[k]] * nlr2tl[3];

1[4] +		* nlr2t1[6]; * nlr2t1[7] + * nlr2b1[7];	n12b1[8] + n12t1[8];						
n12b1[4] n12t1[4]	nl2bi nl2bi		n12b n12t						
* * *	* *		* *						
f24[nv3[k]] f24[nv6[k]] f25[nv3[k]]	f25[nv4[k]] f25[nv4[k]] f26[nv3[k]]	f26[nv6[k]] f27[nv3[k]] f27[nv7[k]]	+ f28[nv3[k]] + f28[nv6[k]]						
+ f24 + f24 + f25	+	+ ++	+ f28 + f28						
		cr[6] cr[7] or[7]							
nl2br[4] nl2tr[4]	niztr(3) ni2bi[5] nir2br[6]	nlr2tr[6] nlr2tr[7] nlr2br[7]	nl2br[8] nl2tr[8]						
* * *	* *	* * *	* *		•				
[24[k] 72[k]	.25 [k] 77 [k] :26 [k	72 [K] 527 [K 74 [K]	528 [k 72 [k]						
= f24[k] f24[nv2[k]] = f25[k]	f25[nv7[k]] f25[nv7[k]]	f26[nv2[k]] f27[k] f27[nv4[k]]	f28[k] f28[nv2[k]]						
" "		II	11						
££24[k]	1123[K] ff26[k]	££27 [k]	ff28[k] break;						
# #	I #	ŧ	ff						
		*	_	•					
				~					
				^			 		

wet9up.c

	N
0	m
_ ≥	l m
ابد	age
5	Ď.
- 73	_
ക	
Ĕ	1 1
Ε.	
က	5 4
<u> </u>	l 1
20	
╘	
	. 3.5
=	794
⊏	F13
ᅕ	1
. ∠	
Ξ.	1
œ	
~	
rinted by sofonea from flumag3.mec.utt.ro	
₩.	
×	
-	
~	
Q	9
உ	പ
⊆	
Ξ.	
0_	(0)
	ושו
	- S I
	1
	ıi
	1 1
	1

Jun 11 1999 14:01 Wet9up.c Page 1	Jun 11 1999 14:01
*************************************	mass2 * (fs2[
* wet9up.c	/tau2) /
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	break; case 1:
<pre>#include <stdio.h> #include <stdlib.h> #include <math.h></math.h></stdlib.h></stdio.h></pre>	ux = uxwal uy = uywal break;
#include "wet9head.h"	case 2: ux = uxwal
<pre>double compute_upwind_sources_bulk(int sigma, int index, int k, int nv,</pre>	break, break, case 3; ux = uxwal uy = uywal case 4; ux = uxwal
<pre>{ double dummy, ux, uy, uu, neq, cfl, source; double gradx, grady; double fsl[9], fs2[9];</pre>	uy = uywal break; } uu = ux*ux + uy*uy;
switch(sigma)	switch(sigma)
case 1:	case 1: dummy = (ecx1[i /*
break;	<pre>printf("dummy=%</pre>
break;	(1.000 + thre
= nfl0[k] - cfl * = nfl1[k] - cfl *	if(key_init <
= nf12[k] - cf1 * (nf12[k] - = nf13[k] - cf1 * (nf13[k] - = nf14[k] - cf1 * (nf14[k] -	source = . (ecprod1
= nf15[k] - cf1 * (nf15[k] - = nf16[k] - cf1 * (nf16[k] -	else {
= nf17[k] - cfl * (nf17[k] - = nf18[k] - cfl * (nf18[k] - = nf20[k] - cfl * (nf18[k] -	gradx = grady
= nf21[k] - cfl * (nf21[k] - nf22[k] - cfl * (nf22[k] -	(ecprodi
= nf23[k] - cfl * (nf23[k] - = nf24[k] - cfl * (nf24[k] - = nf25[k] - cfl * (nf25[k] -	/* source =-
fs2[6] = nf26[K] - cf1 * (nf26[K] - nf26[nV]); fs2[7] = nf27[K] - cf1 * (nf27[K] - nf27[nV]); fs2[8] = nf28[K] - cf1 * (nf28[K] - nf28[nV]);	(nloc2[k] (cspeed1
<pre>switch(boundary_mode[k])</pre>	break; case 2:
<pre>case 0: dummy = mass1 * (fs1[0]+fs1[1]+fs1[2]+fs1[3]+fs1[4]+fs1[5]+</pre>	<pre>dummy = (ecx2[] neg = ww[index]</pre>
TS1[0]TS1[1]TS1[0]) / Cdul # mass2 * (fs2[0]+fs2[2]+fs2[3]+fs2[4]+fs2[5]+ fs2[6]+fs2[7]+fs2[8]) / Lau(2;	(1.000 + three over t
	if(key_init < {
/tau1 + mass2 * (fs2[1]*ecx2[1]+fs2[2]*ecx2[2]+fs2[3]*ecx2[3]+fs2[4]+ fs2[5]*ecx2[5]+fs2[6]+fs2[6]+fs2[7]*ecx2[7]+fs2[8]*ecx2[8])	source =
/tau2) / dummy; uy = (mass1 * (fs![1]*ecy1[1]+fs1[2]*ecy1[2]+fs1[3]*ecy1[3]+fs1[4]*ecy1[4]+ fs1[5]*ecy1[5]*ecy1[6]+fs1[6]*ecy1[6]+fs1[7]*ecy1[7]+fs1[8]*ecy1[8])	else { gradx = gra
/tau1 +	Ħ

<pre>mass2 * (fs2[1]*ecy2[1]+fs2[2]*ecy2[2]+fs2[3]*ecy2[3]+fs2[4]*ecy2[4]+</pre>
ux = uxwall_top; uy = uywall_top; break; case 3: ux = uxwall_left; uy = uywall_left;
case 4: ux = uxwall_right; uy = uywall_right; break;
<pre>uu = ux*ux + uy*uy; switch(sigma) {</pre>
<pre>case 1: dummy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; /* printf("dummy=%25.20e\n",dummy);</pre>
<pre>// neq = ww[index] * (fs1[0]+fs1[1]+fs1[2]+fs1[3]+fs1[5]+fs1[6]+ (1.000 + three * dummy + nine_over_two * dummy * dummy - three_over_two * uu / cspeed12); if(key_init < 3)</pre>
<pre>{ source = - ctaul * (fsllindex] - neq) +</pre>
<pre>gradx = gradn2x[k] - cfl * (gradn2x[k] - gradn2x[nv]); grady = gradn2y[k] - cfl * (gradn2y[k] - gradn2y[nv]); source = - craul * (fsl[index] - neq) +</pre>
<pre>/* // source = - ctaul * (fsl[index] - neg) + kforce * neg * (nloc2[k] - nloc2[ny]) * ux - ecy[index] * uy); // speedl - ecx[index] * ux - ecy[index] * uy);</pre>
break; case 2: dummy = (ecx2[index] * ux + ecy2[index] * uy) / cspeed22; neq = ww[index] * (fs2[0]+fs2[1]+fs2[3]+fs2[3]+fs2[4]+fs2[6]+ neq = ww[index] * (fs2[0]) * (1.000 + three * dummy + nine_over_two * dummy * dummy - three_over_two * uu / cspeed22); if (key_init < 3)
<pre>t source = - ctau2 * (fs2[index] - neq) +</pre>
<pre>{ gradx = gradnlx[k] - of1 * (gradnlx[k] - gradnlx[nv]); grady = gradnly[k] - of1 * (gradnly[k] - gradnly[nv]);</pre>

Printed by sofonea from flumag3.mec.utt.ro

<pre>neq = ww[index] * (fs1[0]+fs1[1]+fs1[2]+fs1[4]+fs1[5]+fs1[6]+</pre>
<pre>source = - ctaul * (fsl[index] - neq) +</pre>
<pre>gradx = gradn2x[k] - cfl * (gradn2x[k] - gradn2x[nv]); grady = gradn2y[k] - cfl * (gradn2y[k] - gradn2y[nv]); source = - ctaul * (fsl[index] - gradn2y[nv]);</pre>
break; case 2: dummy = (ecx2[index] * ux + ecy2[index] * uy) / cspeed22; neq = ww[index] * (fs2[0]+fs2[1]+fs2[2]+fs2[3]+fs2[4]+fs2[5]+fs2[6]+ (1.000 + three * dummy + nine_over_two * dummy * dummy - three_over_two * uu / cspeed22); if (key_init < 3)
<pre>{ source = - ctau2 * (fs2[index] - neq) +</pre>
<pre>faradx = gradnlx[k] - cfl * (gradnlx[k] - gradnlx[nv]); grady = gradnly[k] - cfl * (gradnly[k] - gradnly[nv]); source = - crau2 * (fs2[index] - neg) +</pre>
<pre>/ cource = - ctau2 * (fs2[index] - neq) + kforce * neq *</pre>
return source;
<pre>double compute_upwind_sources_boundary_in(int sigma, int index, int k, int nv,</pre>
<pre>double dummy, ux, uy, uu, neq, cfl, source; double gradx, grady; double fsl[9], fs2[9];</pre>
<pre>switch(sigma) {</pre>
case 1: cfl = cfll;

Jun 11 1999 14:01 Page 5
fs1[0] = (nf10[k] - cf1 * (nf10[nv] - nf10[k])); fs1[1] = (nf11[k] - cf1 * (nf11[nv] - nf11[k])); fs1[2] = (nf12[k] - cf1 * (nf2[k])) - nf12[k])); fs1[3] = (nf13[k] - cf1 * (nf13[nv] - nf13[k])); fs1[4] = (nf15[k] - cf1 * (nf14[nv] - nf14[k])); fs1[5] = (nf15[k] - cf1 * (nf15[nv] - nf15[k])); fs1[6] = (nf16[k] - cf1 * (nf16[nv] - nf16[k])); fs1[7] = (nf16[k] - cf1 * (nf16[nv] - nf18[k])); fs1[8] = (nf16[k] - cf1 * (nf16[nv] - nf18[k])); fs1[8] = (nf16[k] - cf1 * (nf16[nv] - nf18[k])); fs1[8] = (nf16[k] - cf1 * (nf20[nv] - nf20[k]); fs2[0] = nf20[k] - cf1 * (nf20[nv] - nf20[k]); fs2[1] = nf21[k] - cf1 * (nf20[nv] - nf21[k]); fs2[1] = nf22[k] - cf1 * (nf22[nv] - nf22[k]); fs2[2] = nf22[k] - cf1 * (nf25[nv] - nf24[k]); fs2[3] = nf23[k] - cf1 * (nf26[nv] - nf26[k]); fs2[5] = nf26[k] - cf1 * (nf26[nv] - nf26[k]); fs2[6] = nf26[k] - cf1 * (nf26[nv] - nf26[k]); fs2[6] = nf26[k] - cf1 * (nf26[nv] - nf26[k]); fs2[6] = nf26[k] - cf1 * (nf26[nv] - nf26[k]); fs2[6] = nf26[k] - cf1 * (nf26[nv] - nf26[k]); fs2[6] = nf26[k] - cf1 * (nf26[nv] - nf26[k]); fs2[6] = nf26[k] - cf1 * (nf26[nv] - nf26[k]);
/* printf("k=%d sigma=%d index=%d fs2=%e nf22=%e nf22[nv]=%e\n", k,sigma,index,fs2[1],nf21[k],nf21[nv]); break;
<pre>ux = ux_boundary - cfl * (uxloc[nv] - ux_boundary); uy = uy_boundary - cfl * (uyloc[nv] - uy_boundary); /* printf("iter=%d k=%d index=%d ux=%e ux_boundary=%e uxloc[nv]=%e\n", iter,k,index,ux,ux_boundary,uxloc[nv]); uu = ux*ux + uy*uy; switch(sigma)</pre>
<pre>case 1: dummy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; dummy = (ecx1[index] * (fs1[0]+fs1[1]+fs1[2]+fs1[3]+fs1[4]+fs1[5]+fs1[6]+</pre>
<pre>source = - ctaul * (fsl[index] - neq) +</pre>
<pre>gradx = gradn2x[k] - cfl * (gradn2x[k] - gradn2x[nv]); grady = gradn2y[k] - cfl * (gradn2y[k] - gradn2y[nv]); source = - ctaul * (fsl[index] - neq) + meq) +</pre>
An (vanur) And van (vanur) van

Jun 11 1999 14:01 Wet9up.c
<pre>printf("negative neq sumfsl=%e term=%e\n",</pre>
<pre>printf("iter=%d k=%d index=%d fs1=*25.20e neq=*25.20e fs1-neq =*25.20e fs1+source=*25.20e ux-%e uy=%e ecprod=%e\n",</pre>
<pre>source = - ctau2 * (fs2[index] - neq) + (ecprod2[index] - csforce_x * ux - csforce_y * uy) * neg; else fgradx = gradnlx[k] - cf1 * (gradnlx[k] - gradnlx[nv]); grady = gradnly[k] - cf1 * (gradnly[k] - gradnly[k]); source = - ctau2 * (fs2[index] - neq) +</pre>
/* printf("iter=%d k=%d index=%d fs2=%25.20e neq=%25.20e fs2-neq =%25.20e fs2+source=%25.20e ux=%e uy=%e ecprod=%en", iter,k,index,fs2[index],neq,source,fs2[index]=neq,fs2[index]+source,ux,uy,e cprod2[index]); if(neq < 0) if(neq < 0) if(neq < 0) if(neg < 0)

Jun 11 1999 14:01 Page 7	Jun 11 1999 14:01
<pre>print("fsl=%e nfil=%e nf[nv]=%e cfl=%e\n", print("fsl=%e nfil=%e fflnv) cfl); print("fsl=%e nfil", e cfl=%e\n", fsl[2],nfi2[k],nfil(nv]=%e cfl=%e\n", fsl[2],nfi2[k],nfil(nv]=%e cfl=%e\n", print("fsl=%e nfil)=%e fflnv)=%e cfl=%e\n", fsl[3],nfi2[k],nfil(nv),cfl); print("fsl=%e nfil)=%e fflnv)=%e cfl=%e\n", fsl[5],nfi2[k],nfil(nv)=%e cfl=%e\n", fsl[6],nfi2[k],nfil(nv)=%e cfl=%e\n", fsl[6],nfi2[k],nfil(nv)=%e cfl=%e\n", fsl[6],nfi2[k],nfil(nv)=%e cfl=%e\n", fsl[6],nfi2[k],nfil(nv)=%e cfl=%e\n", fsl[8],nfi2[k],nfil(nv)=%e cfl=%e\n", fsl[8],nfi2[k],nfi2[nv]=%e cfl=%e\n", fsl[8],nfi2[k],nfi2[k],nji2[nv]=%e cfl=%e\n", fsl[8],nfi2[k],nfi2[k],nji2[nv]=%e cfl=%e\n", fsl[8],nfi2[k],nfi2[k],nji2[nv]=%e cfl=%e\n", fsl[8],nfi2[k],nfi2[k],nji2[nv]=%e cfl=%e\n", fsl[8],nfi2[k],nfi2[k],nji2[nv]=%e</pre>	case 1: dummy = (ecx1[dummy = (exx1[neq = ww[index f (1.000 + thr three_over_ if (key_init < f (key_init < f (key_init < f (gradx = gr grady = gr grady = gr grady = gr gradx = gr f (ecprod f (ecprod f (acque) f (f (acque) f
<pre>double compute_upwind_sources_boundary_out(int sigma, int index, int nv, int k,</pre>	(cspeedl) break; case 2: dummy = (ecx2[dummy = (ecx2[indeq = wwilndex neq = wwilndex
double dummy, ux, uy, uu, neq, cfl, source; double gradx, grady; double fsl[9], fs2[9];	if(key_init < {
switch(sigma)	
call cfll; fal[0] = nfl0[k] + cfl * (nfl0[nv] - nfl0[k]); fal[1] = nfl1[k] + cfl * (nfl1[nv] - nfl1[k]); fal[2] = nfl2[k] + cfl * (nfl2[nv] - nfl2[k]); fal[3] = nfl2[k] + cfl * (nfl2[nv] - nfl2[k]); fal[4] = nfl3[k] + cfl * (nfl4[nv] - nfl4[k]); fal[5] = nfl3[k] + cfl * (nfl4[nv] - nfl5[k]); fal[6] = nfl6[k] + cfl * (nfl4[nv] - nfl5[k]); fal[6] = nfl6[k] + cfl * (nfl6[nv] - nfl5[k]); fal[8] = nfl8[k] + cfl * (nfl8[nv] - nfl6[k]); break;	gradx = gr grady = gr source = ceprod / gforce /* (nloc1[k (speedd.*/
case 2: cfl = cfl2; fs2[0] = nf2[0] + cfl * (nf20[nv] - nf20[k]); fs2[1] = nf2[1k] + cfl * (nf22[nv] - nf22[k]); fs2[2] = nf22[k] + cfl * (nf22[nv] - nf22[k]); fs2[3] = nf23[k] + cfl * (nf22[nv] - nf22[k]); fs2[4] = nf25[k] + cfl * (nf24[nv] - nf28[k]); fs2[5] = nf25[k] + cfl * (nf25[nv] - nf25[k]); fs2[6] = nf26[k] + cfl * (nf26[nv] - nf26[k]); fs2[8] = nf28[k] + cfl * (nf28[nv] - nf28[k]); fs2[8] = nf28[k] + cfl * (nf28[nv] - nf28[k]);	Dreak; return source; void compute_upwind. int k;
<pre>ux = ux_boundary + cfl * (uxloc[nv] - ux_boundary); uy = uy_boundary + cfl * (uyloc[nv] - uy_boundary); uu = ux*ux + uy*uy; switch(sigma)</pre>	for(k=0; k <nnodes_{ { sf10[k] = nf10[k] = nf10[k] = nf20[k] = nf20</nnodes_{

<pre>case 1: dummy = (ecx1[index]*ux + ecy1[index]*uy) / cspeed12; dummy = (fs1[0]+fs1[1]+fs1[2]+fs1[3]+fs1[5]+fs1[5]+fs1[6]+</pre>
<pre>source = - ctaul * (fsl[index] - neq) + (ecprodl[index] - csforce_x * ux - csforce_y * uy) * neq; } else</pre>
<pre>fgradx = gradn2x[k] - cfl * (gradn2x[k] - gradn2x[nv]); grady = gradn2y[k] - cfl * (gradn2y[k] - gradn2y[nv]); source = - ctaul * (fsl[index] - neq) +</pre>
<pre>/ource = - ctaul * (fsl[index] - neq) + kforce * neq * (nloc2[k] - nloc2[nv]) * (cspeedl - ecx[index] * ux - ecy[index] * uy); */</pre>
<pre>break; case 2: dummy = (ecx2[index] * ux + ecy2[index] * uy) / cspeed22; dummy = (ecx2[index] * (fs2[0]+fs2[1]+fs2[2]+fs2[3]+fs2[4]+fs2[6]+</pre>
<pre>source = - ctau2 * (fs2[index] - neq) +</pre>
<pre>{ gradx = gradnlx[k] - cfl * (gradnlx[k] - gradnlx[nv]); grady = gradnly[k] - cfl * (gradnly[k] - gradnly[nv]); source = - ctau2 * (fsclindax] - neq) +</pre>
<pre>/ource = - ctau2 * (fs2[index] - neg) + kforce * neg * (nloc1[k] - nloc1[nv]) * (cspeed2 - ecx[index] * ux - ecy[index] * uy); */</pre>
} break; } return source:
fint k;
<pre>for (k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>
sf10[k] = nf10[k]; sf20[k] = nf20[k]; source10[k] = - ctaul * (nf10[k] - neq10[k]) -

Page 9

wet9up.c

Jun 11 1999 14:01

sf18[k] = nf18[k] source18[k] = nf1 nf1 sf28[k] = nf28[k] source28[k] = nf28[k] nf2 break; nf2 case 1: /* botton sf11[k] = nf11[k] sf11[k] = nf11[k] nf1 source11[k] = nf1 nf1 source11[k] = nf1 nf1 sf21[k] = nf21[k]	2 1 1 1 2 1 2	SOURCEZI[K] = CO SOURCEZI[K] = CO SOURCEZI][K] = DEZI SOURCEZI[K] = DEZI SOURCEZI[K] = CO SOURCEZI[K] = CO SOURCEZI[K] = CO	sourcel4[k] = nfl4[k] = co sourcel4[k] = co nf sf24[k] = nf24[k] source24[k] = co nf	(I) (I)	sf16[k] = nf16[k source16[k] = co u n n n sf26[k] = nf26[k] = co
<pre>(csforce_x * uxloc(k] + csforce_y * uyloc(k]) * neq10[k]; source20[k] = - ctau2 * (nf20[k] - neq20[k]) -</pre>	sf12[k] = nf12[k] - cf11 * (nf12[k] - nf12[nv4[k]]); source12[k] = compute_upwind_sources_bulk(1, 2, k, nv4[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf11, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf22[k] = nf22[k] - cf12 * (nf22[k] - nf22[lv4[k]]); source22[k] = compute_upwind_sources_bulk(2, 2, k, nv4[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf13[k] = nf13[k] - cf11 * (nf13[k] - nf13[k]); sf13[k] = nf13[k] - cf11 * (nf13[k]); sf13[k] - nf13[k] - nf13[k] - nf13[k] + (nf13[k]); sf13[k] - nf13[k] - cf11 * (nf13[k]); sf13[k] - nf13[k] - nf13[k] + (nf13[k]); sf13[k] - (nf13[<pre>sourcel3[k] = compute_upwind_sources_bluk(1, 3, k, nulk),</pre>	<pre>source24[k] = compute_upwind_sources_Dulk(2, 4, k, nv2[k], nf18,</pre>	<pre>sf16[k] = nf16[k] - cf11 * (nf16[k] - nf16[nv8[k]]); source16[k] = compute_upwind_sources_bluk(1, 6, k, nv8[k],</pre>	<pre>sf17[k] = nf17[k] - cf11 * (nf17[k] - nf17[k] tv 7 k*, nv5[k], source17[k] = compute_upwind_sources_bulk[1, 7, k, nv5[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, sf27[k] = nf10, nf11, nf22, nf23, nf24, nf25, nf26, nf27, nf28); source27[k] = compute_upwind_sources_bulk[2, 7, k, nv5[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf24, nf25, nf26, nf27, nf28);</pre>

Jun 11 1999 14:01	Ip.c
= nf18[k] - cf11 [k] = compute_up nf10, nf11 nf20, nf21 = nf28[k] - cf12 [k] = compute_up nf10, nf11 nf20, nf21	- nf18[nv6[k]]); - nf18[nv6[k]]); nf14, nf15, nf16, nf17, nf18, nf24, nf25, nf26, nf27, nf28); - nf28[nv6[k]], - nf28[nv6[k]], nf14, nf15, nf16, nf17, nf18, nf14, nf15, nf26, nf27, nf28);
<pre>case 1: /* bottom wall */ sf11[k] = nf11[k] - cf11 * (nf11[k] - nf11[nv3[k]]); sourceil[k] = compute_upwind_sources_bulk(1, 1, k, nv3[k] sourceil[k] = compute_upwind_sources_bulk(1, 1, k, nv3[k] nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf16, nf16, nf16, nf16, nf16, nf18, nf16, nf16, nf11, nf13, nf14, nf15, nf16, nf16, nf11, nf12, nf13, nf14, nf16, nf16</pre>	- nfil[nv3[k]]); - nfil[nv3[k]], , nfil, nfils, nfils, , nf24, nf25, nf26, nf27, nf28); - nf21[nv3[k]]); - nf11[nv3[k]]); - nf1[nv3[k]], , nf14, nf15, nf16, nf17, nf18, , nf24, nf25, nf26, nf27, nf28);
<pre>sf12[k] = nf12[k] - cf11 * (nf12[nv2[k]] - nf12[k]); source12[k] = compute_upwind_sources_boundary_in(1, 2, uwmall_bot, uywall_bot, uywall_bot, nf14, nf15, nf14, nf15, nf16, nf10, nf10, nf21, nf23, nf23, nf23, nf23, nf23, nf23, nf22, nf22, nf22[k] - cf12 * (nf22[nv2[k]] - nf22[k]); source22[k] = compute_upwind_sources_boundary_in(2, 2, uxmall_bot, uywall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf1 nf20, nf21, nf22, nf23, nf24, nf25, nf2</pre>	[k]] - nf12[k]); _boundary_in(1, 2, k, nv2[k], , nf14, nf15, nf16, nf17, nf18, , nf24, nf25, nf26, nf27, nf28); [k]] - nf22[k]); _boundary_in(2, 2, k, nv2[k], , nf14, nf15, nf16, nf17, nf18, , nf24, nf25, nf26, nf27, nf28);
<pre>sf13[k] = nf13[k] - cf11 * (nf13[k] - nf13[nv1[k]]);</pre>	- nf13[nv1[k]]);
<pre>sf14[k] = nf14[k] - cf11 * (nf14[k] - nf14[nv2[k]]); source14[k] = compute_upwind_sources_boundary_out(1,</pre>	- nfl4[nv2[k]]); _boundary_out(1, 4, nv2[k], k, _nf14, nf15, nf16, nf17, nf18, _nf24, nf25, nf26, nf27, nf28); _nf24[nv2[k]); _boundary_out(2, 4, nv2[k], k, _nf14, nf15, nf16, nf17, nf18, _nf24, nf25, nf26, nf27, nf28);
<pre>sf15[k] = nf15[k] - cf11 * (nf15[nv5[k]] - nf15[k]) source15[k] = compute_upwind_sources_boundary_in(1,</pre>	i(k]] - nf15(k]); Lboundary_in(l, 5, k, nv5[k], nf14, nf15, nf16, nf17, nf18, nf24, nf25, nf26, nf27, nf28); Lboundary_in(2, 5, k, nv5[k], nf14, nf15, nf16, nf17, nf18, nf14, nf15, nf26, nf27, nf28);
<pre>sf16[k] = nf16[k] - cf11 * (nf16[nv6[k]] - nf16[k]); source16[k] = compute_upwind_sources_boundary_in(1, 6, uxwall_bot, upwall_bot, nf12, nf10, nf11, nf12, nf13, nf14, nf15, nf20, nf21, nf22, nf23, nf24, nf25, nf26, sf26[k] = nf26[k] - cf12 * (nf26[nv6[k]] - nf26[k]); source26[k] = compute_upwind_sources_boundary_in(2, 6,</pre>	<pre>1 * (nfl6[nv6[k]] - nfl6[k]); pwind_sources_boundary_in(1, 6, k, nv6[k], t, uywall_bot, t, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfl8, 1, nfl2, nf23, nf24, nf25, nf26, nf27, nf28); 2 * (nf26[nv6[k]] - nf26[k]); pwind_sources_boundary_in(2, 6, k, nv6[k],</pre>

Page 12							
Paç					3); 3);	, , , , , , , , , , , , , , , , , , ,	8);
	nf17, nf18, nr27, nf28); nv7[k], k, nf17, nf18, nf27, nf28); nv8[k], k, nf17, nf18,	= compute_upwind_sources_boundary_out(2, 6, nv8[k], k, nxaal_t.cp, uywall_t.cp, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf24, nf25, nf26, nf27, nf28]; f17[k] - cf11* (nf17)(k]) - nf17[k]); = compute_upwind_sources_boundary_in(1, 7, k, nv7[k], uxwall_t.cp, uywall_t.cp, uywall_t.cp, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28];	<pre>f27[k] - cf12 * (nf27[av7[k]] - nf27[k]);</pre>	nico, mil; mil; mil; mil; mil; mil; mil; mil;	nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf26, nf26, nf27, nf28); nf21[K] - cf12 * (nf21[k1] - nf21[k]); compute_upwind_sources_boundary_in(2, 1, k, nv1[k], nf10, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); nf12[k] - cf11 * (nf12[k] - nf12[nv4[k]); nf18, nf12[k] - cf11 * (nf12[k] - nf12[nv4[k]); nf18, nf28];	17, nf18, 27, nf28), 17, nf18, 27, nf28),	nflo, nfll, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfl8, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28) 3[k] - cfl2 * (nf23[k] - nf23[nvl[k]]);
	16, n£1 26, n£2 5, nv7 116, n£1 26, n£2 6, nv8	<pre>ary_out(2, 6, nv8[k], k nf15, nf16, nf17, nf1 nf25, nf26, nf27, nf2 nf17[k]); ary_in(1, 7, k, nv7[k], nf15, nf16, nf17, nf1 nf26, nf26, nf17, nf1 nf26, nf26, nf17, nf1</pre>	7, k, 1 116, nf 226, nf 8, k, 1	126, nf; 18, k, l 116, nf; 17, k, l	E16, nE E26, nE 1, k, 1 E16, nE E26, nE	nv4[k], f16, nf f26, nf nv4[k], f16, nf f26, nf , 3, nv	f16, nf f26, nf
	f15, nf f25, nf 77[k]]); —out (2, f15, nf f25, nf f25, nf f25, nf f15, nf f25, nf	out(2, ff15, nf ff25, nf ff25, nf ff17[k]); ff15, nf ff25, nf	(27(k]); (115, nf (125, nf (125, nf (18(k]); (11)(f,	125, m 1815, m 1615, m 1625, m 111[k]);	nf15, nd nf25, nd f21[k]); /_in(2, nf15, nd nf25, nd	2, k, 1 1f15, n1 1f25, n 74[k]]), 2, k, 1 1f15, n1 1f25, n1 /	nf15, n: nf25, n: 71[k]]);
ပ္	nf14, nf15, nf nf24, nf18,]); nf28, no f18,]); oundary_out (2, nf14, nf15, nf nf16, nf28, nf nf16[nv8[k]]); oundary_out (1, nf14, nf15, nf nf14, nf15, nf	nf14, n nf24, n nf24, n]] - nf oundary nf14, n		n114, r 134, r 100 100 114, r 114, r 115, r 115, r	i, nf14, nf15, nf 3, nf24, nf25, nf [[K]] - nf21[K]); boundary_in(2, if, nf14, nf15, nf 3, nf24, nf25, nf - nf12[nv4[K]]);	oulk(1, nf14, r nf24, r nf22[n, nf14, r nf24, r nf13[n,	nf14, nf24, nf23(n
wet9up.c	## 100 100	ntres_k nf13, nf13, nf23, nf23, 7[nv7[k nurces_k nf13, nf13,	27 [nv7[]) ources_L 11_top, nf13, nf23, 18 [nv8[]) 18 [nv8[], 11_top,	112, 112, 113, 113, 115, 115, 115, 115, 115, 115	fi2, nfi3, f22, nf23, (nf21[nv1]) d_sources_1 uywall_leff f12, nf13, f22, nf23,	ources_ nf13, nf23, 22[k] - ources] nf13, nf23, nf23,	nf13, nf23, 23[k] -
\$	uxwall_top, uywall_top, nf14, nf15, nf16, nf10, nf11, nf12, nf23, nf24, nf25, nf26, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf10, nf11, nf12, nf27, nf24, nf26, nf26, nf21, nf27, nf23, nf24, nf26, nf26, nf21, nf27, nf28, nf26, nf26, nf21, nf27, nf28, nf26, nf26, nf21, nf27, nf27, nf28, nf26, nf20, nf21, nf22, nf27, nf28, nf26, nf20, nf21, nf22, nf23, nf24, nf28, nf26,	= compute_upwind_sources_boundary_out(2, uxwall_top, uywall_top, nf10, nf11, nf12, nf13, nf14, nf15, nf nf20, nf21, nf21, nf24, nf25, nf. nf20, nf21, nf24, nf25, nf. nf20, nf20, nf20, nf20, nf20, nf20, nf20, nf30, nf14, nf12, nf30, nf30, nf22, nf22, nf23, nf24, nf25, nf	7 (nf2) 0wind_sc 0, uywal 1, nf12, 1, nf22, 1 * (nf1) 0wind_sc 0, uywal	niti, nit2k, cf12 * (nf2 cf12 * (nf2 cf12 * (nf3 cf10, uywal, nf11, nf12, nf21, nf22, cf11 * (nf3 cf11 * (nf3 left. uywa	1, nf12, 2 * (nf2, 2 * (nf2, 1, uyw 1, nf12, 1, nf22, 1 * (nf.	= compute_upwind_sources_Dulk(1, 2, k, nv4/k), nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf16, nf20, nf21, nf22, nf13, nf14, nf15, nf16, nf17, f22[k] - cf12 * (nf22[k] - nf22[n4/k]); = compute_upwind_sources_bulk(2, 2, k, nv4[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, f13[k] - cf11 * (nf13[k] - nf13[nv1[k]]); = compute_upwind_sources_boundary_out(1, 3, nv1[k]);	1, nf12 1, nf22 2 * (nf
1 201,0	ntio, ntil ntio, ntil ntio, ntil lki - crizi lki - crizi compute up ntio, ntil ntio, ntil ntio, ntil ntio, ntil lki - cril compute up ntio, ntil lki - cril compute up	mpute_ug *all_toj 10, nf11 20, nf2 1 - cf11 mpute_ug *all_toj 10, nf11	- cfl; mpute_uj wall_toj 10, nfl 20, nf2 - cfl mpute_uj wall_toj	10, 111. 30, nf2. 30, nf2. 10, nf1. 20, nf2. 3 - cf1. mpute_u	nf10, nf11, r nf20, nf21, 1[k] - cf12, compute_upw1: uxwall_left, nf10, nf11, nf20, nf21, r	mpute_u 10, nf1 20, nf2 20, nf2 10, nf1 20, nf2 1 - cf1 mpute_u	10, nf1 20, nf2 1 - cf1
	uxwall nf10, nf20, nf20, k] = comput. uxwall, nf10, nf10, k] = comput. k] = comput. nf10, nf10, nf10,			nf10, nf20 (k = compul uxwmll nf10, nf20, nf20, = nf11 k - = compul	nf10, nf21[k] - k] = comput uxwall nf10, nf12[k] -		n£2
14:01	sf25[k] = n source25[k] sf16[k] = n source16[k] sf26[k] = n	source26[k] sf17[k] = n source17[k]	sf27[k] = n source27[k] sf18[k] = n source18[k]	28[k] urce28 eak; 3: 11[k] urce11	sf21[k] = n. source21[k] sf12[k] = n.	sourcel2[k] = n sfl2[k] = n source2[k] sfl3[k] = n source13[k]	sf23[k] =
Jun 11 1999 14:01	igo as si	os and so	so so	S C S S S S S S S S S S S S S S S S S S	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o ho ho	st
1 uuc							
age 11				~	- 100/07/07		
Page 11	88, (6); (7); (7); (8); (8);	88); 88); 88); 88);	, 68 88, 88, 88, 88, 88, 88, 88, 88, 88, 88		18, 28); 28);	28); 28); 18,	K, 10, 1
Page 11	117, nf18, 127, nf28); 117, nf18, 117, nf18, 128); 117, nf18, 117, nf18,	,6[k], k, (17, nf18, (27, nf28); (6[k], k, (17, nf18, (27, nf28);	(17, nf18, 627, nf28); 617, nf18,	11.20); nf18, nf28); nf28; nf28;	. 44 44	nv4[k], £17, n£18, £27, n£28); nv4[k], £17, n£18,	v7[k], k,
Page 11	nf16, nf17, nf18, nf26, nf27, nf28); l, 7, nv5[k], k, nf16, nf17, nf28); l, 7, nv5[k], k, l, 7, nv5[k], k, nf16, nf17, nf28);	nv6[k n£17, n£27, nv6[k nf17, n£17,); nv3(k], nf16, nf17, nf18, nf26, nf27, nf28); nv3(k], nf16, nf17, nf18,	niz', nizo); nv4[k], k, nf17, nf18, nf27, nf28]; nv4[k], k,	11, nf17, nf27, nf27, nf17,	, nv4[k nf17, n nf27, n , nv4[k	5, nv7[k],
Page 11	nf15, nf16, nf17, nf18, nf25, nf26, nf27, nf28); vv5(k]]); cy_out(1, 7, nv5[k], k, nf15, nf16, nf17, nf18, nv5[k]]); cy_out(2, 7, nv5[k], k, nf15, nf16, nf17, nf18, nf25, nf26, nf27, nf28);	nv6[k n£17, n£27, nv6[k nf17, n£17,	nv3[k]]); 1, k, nv3[k], nf15, nf16, nf17, nf18, nf25, nf26, nf27, nf28); nv3[k]); 1, k, nv3[k], nf15, nf16, nf17, nf18,	niz', nizo); nv4[k], k, nf17, nf18, nf27, nf28]; nv4[k], k,	11, nf17, nf27, nf27, nf17,	ry_in(1, 4, k, nv4[k], nf15, nf16, nf17, nf18, nf25, nf26, nf27, nf28); nf24[k]); ry_in(2, 4, k, nv4[k], nf15, nf16, nf17, nf18, nf15, nf16, nf17, nf18,	5, nv7[k],
	nf14, nf15, nf16, nf17, nf18, , nf24, nf25, nf26, nf27, nf28); - nf17[nv5[k]]); _boundary_out(1, 7, nv5[k], k, , nf24, nf25, nf26, nf27, nf28); - nf27[nv5[k]]); _boundary_out(2, 7, nv5[k], k, , nf14, nf15, nf16, nf17, nf18, , nf24, nf25, nf26, nf27, nf28);	nv6[k n£17, n£27, nv6[k nf17, n£17,	- nfll[nv3[k]]); bulk[1, 1, k, nv3[k], nfl4, nfl5, nfl6, nfl7, nfl8, nf24, nf25, nf26, nf27, nf28); - nf21[nv3[k]]); - nf21[nv3[k]]); nfl4, nfl5, nfl6, nfl7, nfl8,	niz', nizo); nv4[k], k, nf17, nf18, nf27, nf28]; nv4[k], k,	11, nf17, nf27, nf27, nf17,	[k]] - nfl4[k]); boundary_in(1, 4, k, nv4[k], ', nfl4, nfl5, nfl6, nfl7, nfl8, ', nf24, nf25, nf26, nf27, nf28); [k]] - nf24[k]); boundary_in(2, 4, k, nv4[k], ', nfl4, nfl5, nf16, nf17, nf18, ', nf14, nf15, nf16, nf17, nf28,	5, nv7[k],
	all_bot, 2, nf13, nf14, nf15, nf16, nf17, nf18, 2, nf23, nf24, nf25, nf26, nf27, nf28); 1f17[k] - nf17[nv5[k]]); sources_boundary_out(1, 7, nv5[k], k, all_bot, 2, nf13, nf14, nf15, nf16, nf17, nf18, 2, nf24, nf25, nf26, nf27, nf28); f27[k] - nf27[nv5[k]]); sources_boundary_out(2, 7, nv5[k], k, all_bot, 2, nf23, nf14, nf15, nf16, nf17, nf18, 2, nf23, nf24, nf25, nf26, nf27, nf28);	nv6[k n£17, n£27, nv6[k nf17, n£17,	fil[k] - nfil[nv3[k]]); sources_bulk(1, 1, k, nv3[k], 2, nfi3, nfil4, nfi5, nfi6, nfi7, nfi8, 2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi8, 2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi8); sources_bulk(2, 1, k, nv3[k], 2, nfi3, nfi4, nfi5, nfi6, nfi7, nfi8,	niz', nizo); nv4[k], k, nf17, nf18, nf27, nf28]; nv4[k], k,	11, nf17, nf27, nf27, nf17,	fl4[nv4[k]] - nfl4[k]); sources_boundary_in(1, 4, k, nv4[k], nall_top, 2, nf13, nf14, nf15, nf16, nf17, nf18, 12, nf23, nf24, nf25, nf26, nf27, nf28); ff24[nv4[k]] - nf24[k]); fall_top, all_top, 2, nf13, nf14, nf15, nf16, nf17, nf18, 2, nf13, nf14, nf18, 2, nf13, nf14, nf18, 2, nf13, nf14, nf18,	5, nv7[k],
	uywall_bot, nf12, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, (nf17[k] - nf17[nv5[k]]); uywall_bot, uywall_bot, uf12, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, (nf27[k] - nf27[nv5[k]]); (nf27[k] - nf27[nv5[k]]); (nf27[k] - nf27[nv5[k]]); un_asources_boundary_out(2, 7, nv5[k]); uywall_bot, nf12, nf23, nf24, nf25, nf26, nf27, nf22, nf23, nf24, nf25, nf26, nf27,	ind Sources_boundary_out(1, 8, nv6(k) uywall_bot, ufl2, nfl3, nfl4, nfl5, nfl6, nfl7, nf22, nf23, nf24, nf25, nf26, nf27, ind_sources_boundary_out(2, 8, nv6(k) uywall_bot, ufl2, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, nf22, nf23, nf24, nf25, nf26, nf27,	/ * (nf11[K] - nf11[nv3[K]]); upwind sources_bulk(1, 1, k, nv3[K], 11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, 21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); 12, * (nf21[K] - nf21[nv3[K]); upwind_sources_bulk(2, 1, k, nv3[K], 11, nf12, nf13, nf14, nf15, nf16, nf17, nf18,	niz', nizo); nv4[k], k, nf17, nf18, nf27, nf28]; nv4[k], k,	11, nf17, nf27, nf27, nf17,	111 * (nf14[nv4[k]] - nf14[k]); upwind_sources_boundary_in(1, 4, k, nv4[k], iop, uyaal_top, iol, nf12, nf13, nf14, nf15, nf16, nf17, nf18, iol, nf22, nf23, nf24, nf25, nf26, nf27, nf28); iol, nf22, nf33, nf24, nf25, nf26, nf27, nf28); iol, uyaal_top, iop, uyaal_top, iol, nf13, nf14, nf18, iol, nf14, nf15, nf16, iol, nf17, nf18, iol, nf14, nf18, iol, nf17, nf18, iol, nf14, nf15, nf16, iol, nf14, nf18, iol, nf14, nf15, nf16, iol, nf14, nf16, nf16, iol, nf14, nf16, nf	5, nv7[k],
	uywall_bot, nf12, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, (nf17[k] - nf17[nv5[k]]); uywall_bot, uywall_bot, uf12, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, (nf27[k] - nf27[nv5[k]]); (nf27[k] - nf27[nv5[k]]); (nf27[k] - nf27[nv5[k]]); un_asources_boundary_out(2, 7, nv5[k]); uywall_bot, nf12, nf23, nf24, nf25, nf26, nf27, nf22, nf23, nf24, nf25, nf26, nf27,	ind Sources_boundary_out(1, 8, nv6(k) uywall_bot, ufl2, nfl3, nfl4, nfl5, nfl6, nfl7, nf22, nf23, nf24, nf25, nf26, nf27, ind_sources_boundary_out(2, 8, nv6(k) uywall_bot, ufl2, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, nf22, nf23, nf24, nf25, nf26, nf27,	*/ cfll * (nfll[k] - nfll[nv3[k]]); e upwind_sources_bulk[l, 1, k, nv3[k], nfll, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfll, nf22, nf23, nf24, nf25, nf26, nf27, cfl2 * (nf2l[k] - nf2l[nv3[k]]); clywind_sources_bulk[2, 1, k, nv3[k], nfll, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7,	niz', nizo); nv4[k], k, nf17, nf18, nf27, nf28]; nv4[k], k,	11, nf17, nf27, nf27, nf17,	cfll * (nfl4[nv4[k]] - nfl4[k]); c_upwind_sources_boundary_in(1, 4,) [top, uywall_top, nfl1, nfl2, nfl3, nfl4, nfl5, nfl6, nf21, nf22, nf23, nf24, nf25, nf26, cfl2 * (nf24[nv4[k]] - nf24[k]); c_upwind_sources_boundary_in(2, 4,) [top, uywall_top, nfl1, nfl2, nfl3, nfl6, nf16,	<pre>0, MILL, MILL, MILL, MILL, MILL, MILL, - cfll * (nfl5[k] - nfl5[nv7[k]]); pute_upwind_sources_boundary_out (1, 5, nv7[k],</pre>
	uxwall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf26, nf26, nf27, engle - compute_uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, e compute_uywall_bot, nf20, nf11, nf12, nf13, nf14, nf15, nf16, nf17, engle - compute_uywall_bot, nf20, nf21, nf21, nf21, nf24, nf25, nf26, nf27, nf20, nf21, nf21, nf21, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	ind Sources_boundary_out(1, 8, nv6(k) uywall_bot, ufl2, nfl3, nfl4, nfl5, nfl6, nfl7, nf22, nf23, nf24, nf25, nf26, nf27, ind_sources_boundary_out(2, 8, nv6(k) uywall_bot, ufl2, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, nf22, nf23, nf24, nf25, nf26, nf27,	*/ cfll * (nfll[k] - nfll[nv3[k]]); e upwind_sources_bulk[l, 1, k, nv3[k], nfll, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7, nfll, nf22, nf23, nf24, nf25, nf26, nf27, cfl2 * (nf2l[k] - nf2l[nv3[k]]); clywind_sources_bulk[2, 1, k, nv3[k], nfll, nfl2, nfl3, nfl4, nfl5, nfl6, nfl7,	### ##################################	fill() - cfl; roffill() - nfl3[nu][k]]); compute_upwind_sources_bulk(l, 3, k, nu][k],	<pre>f14[k] - cfil * (nf14[nv4[k]] - nf14[k]);</pre>	
wet9up.c	uxwall_bot, uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf26, nf26, nf27, engle - compute_uywall_bot, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, e compute_uywall_bot, nf20, nf11, nf12, nf13, nf14, nf15, nf16, nf17, engle - compute_uywall_bot, nf20, nf21, nf21, nf21, nf24, nf25, nf26, nf27, nf20, nf21, nf21, nf21, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	ind Sources_boundary_out(1, 8, nv6(k) uywall_bot, ufl2, nfl3, nfl4, nfl5, nfl6, nfl7, nf22, nf23, nf24, nf25, nf26, nf27, ind_sources_boundary_out(2, 8, nv6(k) uywall_bot, ufl2, nf13, nf14, nf15, nf16, nf17, nf22, nf23, nf24, nf25, nf26, nf27, nf22, nf23, nf24, nf25, nf26, nf27,	<pre>28; /* top wall */ 2: /* top wall */ LICELI[K] = nf11[K] - cf11 * (nf11[K] - nf11[nv3[K]]); LICELI[K] = compute_upwind_sources_bulk(1, 1, k, nv3[K],</pre>	### ##################################	= nf13(k) - cf11 * (nf13[k] - nf13[k]) vil(k)); 3[k] = compute_upwind_sources_bulk(l, 3, k, nv1[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf10, nf11, nf22, nf3, nf24, nf25, nf26, nf27, = nf23[k] - cf12 * (nf23[k] - nf23[k] - nf23[k]]; 3[k] = compute_upwind_sources_bulk(k, 3, k, nv1[k]); nf10, nf21, nf12, nf13, nf14, nf25, nf26, nf27, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	= nf14[k] - cf11 * (nf14[nv4[k]] - nf14[k]); 4[k] = compute_upwind_sources_boundary_in[1, 4, b]	
	uxwall_bot, uywall_bot, nf14, nf15, nf16, nf17, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf21, nf21, nf23, nf24, nf25, nf26, nf27, nf20, nf21, nf10, nf11, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf10, nf11, nf22, nf23, nf24, nf25, nf26, nf27, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, ng10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,	<pre>nf18 k] - cf11 * (nf18 k] - nf18 [lw6 k]]); k] = compute_upwind_sources_boundary_out(1, 8, nv6 k) uxwall_bot, uywall_bot, nf13, nf14, nf15, nf16, nf10, nf11, nf22, nf33, nf34, nf25, nf26, nf17, nf28 k] - cf12 * (nf28 k] - nf28 [lw6 k]]); k] = compute_upwind_sources_boundary_out(2, 8, nv6 k) uxwall_bot, uywall_bot, nf10, nf11, nf12, nf33, nf14, nf15, nf16, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27,</pre>	<pre>top wall */ nfil(k) - of11 * (nfil(k) - nfil(nv3[k])); s] = compute_upwind_sources_bulk(1, 1, k, nv3(k),</pre>	nilo,	nfil() - cfil * (nfil() - nfil() vil()); k = compute_upwind_sources_bulk(1, 3, k, nvl(k), nfil() nfil(), nfil(); k = compute_upwind_sources_bulk(2, 3, k, nvl(k), nfil(),		nico, nici, nici, nici, nici, nici, nico, nico, nici, nils[k] - cfll * (nfl5[k] - nfl5[nv7[k]]); [] = compute_upwind_sources_boundary_out (1, 5, nv7[k],

wet9up.c

þ						
	##					
Page 13						
wet9up.c	13[k] = compute_upwind_sources_boundary_out(2, 3, nv1[k], k, uxwall_left, uywall_left, nf15, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); = nf14[k] - cill * (nf14[k] - nf14[nv2[k]]); compute_upwind_sources_bulk(1, 4, k, nv2[k], nf10, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); = nf24[k] - cf12 * (nf24[k] - nf24[nv2[k]]); v2[k], nf18, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf16, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18,	<pre>nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf21, = nf15[k] - cf11 * (nf15[nv5[k]] - nf15[k]); vuxall_left, uyvall_left, uxvall_left, uyvall_left, nf10, nf11, nf12, nf23, nf24, nf25, nf26, nf17, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, = nf25[k] - cf12 * (nf25[nv5[k]] - nf25[k]); compute_upwind_sources_boundary_in(2, 5, k, nv5] uxvall_left, uyvall_left, nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf20, nf11, nf22, nf23, nf24, nf25, nf26, nf27,</pre>	= n1 6[k] = n1	f17 k - cfil * (nfi7 k - nfi7 compute_upwind_sources_bound uxwall_left, uywall_left, nfi0, nfi1, nfi2, nfi3, nfi4 nfi0, nfi1, nfi2, nfi3, nfi4 f27 k - cfi2 * (nf27 k - nfi7 compute_upwind_sources_bound uxwall_left, uywall_left, nfi0, nfi1, nfi2, nfi3, nfi2, nfi0, nfi1, nfi2, nfi3, nfi2,	<pre>= nf18[k] - cf11 * (nf18[nv8[k]] - nf18[k]); 18[k] = compute_upwind_sources_boundary_in(1, 8, k, nv8[k],</pre>	<pre> = nf11[k] - cf11 * (nf11[k] - nf11[nv3[k]]); uxwall_right, uywall_right, uywall_right, uywall_right, uywall_right, nf15, nf16, nf17, nf18, nf10, nf11, nf12, nf23, nf24, nf25, nf26, nf27, nf28); = nf21, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); = nf21[k] - cf12 * (nf21[k] - nf21[nv3[k]]); compute_upwind_sources_boundary_out(2, 1, nv3[k], k, uxwall_right, uywall_right, uywall_right, nf18, nf10, nf11, nf12, nf18, nf20, nf21, nf22, nf24, nf25, nf26, nf27, nf28);</pre>
Jun 11 1999 14:0	source23[K] sf14[K] = n source14[K] sf24[K] = n	sf15[k] = n source15[k] sef25[k] = r source25[k]	sf16[k] = n source16[k] s126[k] = n	sf17[k] = n source17[k] sf27[k] = n	sf18 [k] = n source18 [k] sf28 [k] = n	Dreak; Case 4; Sf21 [k] = n Sourcell [k] sourcell [k]

lin 11 19	1999 14-01 Page 14
	<pre>= nf12[k] - cf11 * (nf12[k] - nf12[nv4[k]]); [k] = compute_upwind_sources_bulk[1, 2, k, nv4[k],</pre>
	[k], nf18, nf28) [k], nf18, nf28)
	sf14[k] = nf14[k] - cf11 * (nf14[k] - nf14[nv2[k]]); sourcel4[k] = compute_upwind_sources_bulk(1, 4, k, nv2[k], nf10, nf11, nf12, nf13, nf14, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28); sf24[k] = nf24[k] - cf12 * (nf24[k] - nf24[nv2[k]]); source24[k] = compute_upwind_sources_bulk(2, 4, k, nv2[k], nf20, nf21, nf22, nf33, nf24, nf15, nf16, nf17, nf18, nf20, nf21, nf22, nf23, nf24, nf25, nf26, nf27, nf28);
	<pre>sf15[k] = nf15[k] - cf11 * (nf15[k] - nf15[nv7[k]]); source15[k] = compute_upwind_sources_boundary_out(1, 5, nv7[k], k,</pre>
	<pre>sf16[k] = nf16[k] - cfll * (nf16[nv6[k]] - nf16[k]); source16[k] = compute_upwhnd.sources.boundary_in(1, 6, k, nv6[k],</pre>
	<pre>sf17[k] = nf17[k] - cf11 * (nf17[nv7[k]] - nf17[k]); source17[k] = compute_upwhnd_sources_boundary_in(1, 7, k, nv7[k],</pre>
	<pre>sf18(k] = nf18(k] - cf11 * (nf18(k) - nf18(nv6(k))); source18(k) = compute_upwind_sources_boundary_out(1, 8, nv6[k), k,</pre>

Printed by sofonea from flumag3.mec.utt.ro

Page 15					
Jun 11 1999 14:01 wet9up.c	ass, negative series of the se	<pre>double neguli, double neg4[], double neg5[], double neg5[], double neg4[], double neg5[],</pre>	<pre>for (k=0; k<nnodes_all; k++)<="" th=""><th>= sf4[k] + (source4[k] - ctau * (nf4[k] - neq4[k]) + cf1 * (ecprod1[4] - prodscal) * neq4[k]) + conce4[k] - ctau * (nf5[k] - neq5[k]) + conce5[k] - ctau * (nf5[k] - neq5[k]) + conce6[k] - ctau * (nf6[k] - neq5[k]) + conce6[k] - ctau * (nf6[k] - neq6[k]) + conce6[k] - ctau * (nf6[k] - neq6[k]) + conce5[k] - ctau * (nf6[k] - neq6[k]) + conce5[k] - ctau * (nf7[k] - neq7[k]) + conce5[k] - ctau * (nf7[k] - neq7[k]) + conce6[k] - ctau * (nf7[k] - neq7[k]) + conce5[k] - ctau * (nf8[k] - neq8[k]) + conce2[k] + co</th><th></th></nnodes_all;></pre>	= sf4[k] + (source4[k] - ctau * (nf4[k] - neq4[k]) + cf1 * (ecprod1[4] - prodscal) * neq4[k]) + conce4[k] - ctau * (nf5[k] - neq5[k]) + conce5[k] - ctau * (nf5[k] - neq5[k]) + conce6[k] - ctau * (nf6[k] - neq5[k]) + conce6[k] - ctau * (nf6[k] - neq6[k]) + conce6[k] - ctau * (nf6[k] - neq6[k]) + conce5[k] - ctau * (nf6[k] - neq6[k]) + conce5[k] - ctau * (nf7[k] - neq7[k]) + conce5[k] - ctau * (nf7[k] - neq7[k]) + conce6[k] - ctau * (nf7[k] - neq7[k]) + conce5[k] - ctau * (nf8[k] - neq8[k]) + conce2[k] + co	

Printed by sofonea from flumag3.mec.utt.ro

ec.utt.ro	Page 2
inted by sofonea from flumag3.mec.utt.ro	
d by sofonea f	0 "1
Printe	wet9mair
	G.

Jun 27 1999 13:05

Jun 27 1999 13:05 Wet9main.c
/*************************************
<pre>#define MAIN_HEADER #include <atdio.h> #include <atdib.h> #include <math.h> #include "wet9head.h"</math.h></atdib.h></atdio.h></pre>
<pre>void getavec_square(void); void wet9_input(void); void wet9_input(void); void wet9_input(void); void build_names(int); void build_names(int); void test_ntot(void); void test_ntot(void); void test_distribution_functions(double n0[], double n1[], double n5[], double n6[], double n7[], double n5[], double n6[], double n6[], double n3[], void xv(double n0[], double n5[], double n3[], double n6[], double n1[], double n2[], double n7[], double n8[], double n5[], double n7[], void init_ecx_nine(void); void init_ecx_nine_square(void); void init_arrays_nine_square(void); void init_arrays_nine_square(void); void wet9_channel_profile(void); void wet9_channel_profile(void);</pre>
<pre>void compute_local_speeds(double nf10[], double nf11[], double nf15[],</pre>
<pre>int k; double dummy, uxloc1, uyloc1, uxloc2, for(k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>
<pre>f nloc1[k] = nf10[k]+nf11[k]+nf12[k]+nf13[k]+nf14[k]+nf15[k]+nf16[k]+ nloc2[k] = nf17[k]+nf18[k]; nloc2[k] = nf20[k]+nf21[k]+nf22[k]+nf24[k]+nf25[k]+nf26[k]+ colorfield[k] = nloc1[k] - nloc2[k]; switch(boundary_mode[k])</pre>
<pre>case 22: uxloc1 = (nf11[k]*ecx1[1]+nf12[k]*ecx1[2]+nf13[k]*ecx1[3]+</pre>
uxloc2 = (nf21[k]*ecx2[1]+nf22[k]*ecx2[2]+nf23[k]*ecx2[3]+ nf24[k]*ecx2[4]+nf22[k]*ecx2[8]+ nf27[k]*ecx2[7]+nf28[k]*ecx2[8]); uyloc2 = (nf21[k]*ecy2[1]+nf22[k]*ecy2[2]+nf23[k]*ecy2[3]+ nf24[k]*ecy2[1]+nf22[k]*ecy2[5]+nf23[k]*ecy2[6]+

<pre>dummy = (mass1*nloc1[k])+nf28[k]*ecy2[8]); if(dummy) if(dummy) uxloc(k] = ((mass1 * uxloc1) / tau1 +</pre>	else { uxloc[k] = 0.0000; uyloc[k] = 0.0000;	/* / printf("k=%d uxloc=%lf uyloc=%lf massi=%lf mass2=%lf taul=%e tau2=%e n l=%e n2=%e cspeed2=%e cspeed22=%e\n". cspeed2,cspeed22); */	<pre>break; case 1: uxloc[k] = uxwall_bot; uyloc[k] = uywall_bot; break;</pre>		e ologi.	<pre>case 4: uxloc(k) = uxwall_right; uyloc(k) = uywall_right; break;</pre>			<pre>int k; double dummy, uu, uu1, uu2; for (k=0: k<nnodes all:="" k++)<="" pre=""></nnodes></pre>	uxloc[k]*uxloc three_over_tv	neq10[k] = w0*nloc1[k] * (1.000 - uu1);		= W1*nloc1[k] * (ecx1[3]*uxloc[k] = W1*nloc1[k] *	<pre>locx1[4]*uxloc[k] + ecy1[4]*uyloc[k]) / cspeed12; = w1*nloc1[k] * (1.000 + three * dummy + dummy - included three * dummy + d</pre>	cspeed12;
---	---	---	--	--	----------	---	--	--	--	---------------------------------	---	--	---	--	-----------

Jun 27 1999 13:05	wet9main.c	Page 3
<pre>dummy = (ecx1[6]*uxloc[k] + ecy1[6] neq16[k] = w2*nloc1[k] * (1.000 + t] nine_over. dummy = (ecx1[7]*uxloc[k] + ecy1[7] neq17[k] = w2*nloc1[k] * (1.000 + t] dummy = (ecx1[8]*uxloc[k] + ecy1[8] neq18[k] = w2*nloc1[k] * (1.000 + t] neq18[k] = w2*nloc1[k] * (1.000 + t] </pre>	<pre>+ ecy1[6]*uyloc[k]) / cspeed12; 1.000 + three * dummy + nine_over_two * dummy + dummy - uul); 1.000 + three * dummy + dummy - nine_over_two * dummy + dummy - uul); + ecy1[8]*uyloc[k]) / cspeed12; 1.000 + three * dummy * dummy - uul); nine_over_two * dummy * dummy - uul);</pre>	
dummy = (ecx2[1]*vixloc[k] + ecy2 neq21[k] = w1*nloc2[k] * (1.000 nine_odiummy = (ecx2[2]*vixloc[k] + ecy2 neq22[k] = w1*nloc2[k] * (1.000 nine_odiummy = (ecx2[2]*vixloc[k] + ecy2 neq23[k] = w1*nloc2[k] * (1.000 nine_odiummy = (ecx2[3]*vixloc[k] + ecy2 neq23[k] = w1*nloc2[k] * (1.000 nine_odiummy = (ecx2[4]*vixloc[k] + ecy2 neq24[k] = w1*nloc2[k] * (1.000 nine_odiummy = (ecx2[5]*vixloc[k] + ecy2 neq25[k] = w2*nloc2[k] * (1.000 nine_odiummy = (ecx2[5]*vixloc[k] + ecy2 neq25[k] * (1.000 nine_odiummy = (ecx2[6]*vixloc[k] + ecy2 neq27[k] = w2*nloc2[k] * (1.000 nine_odiummy = (ecx2[6]*vixloc[k] + ecy2 neq27[k] = w2*nloc2[k] * (1.000 nine_odiummy = (ecx2[6]*vixloc[k] + ecy2 neq28[k] = w2*nloc2[k] * (1.000 nine_odiummy = (ecx2[6]*vixloc[k] + ecy2 neq28[k] = w2*nloc2[k] * (1.000 nine_odiummy = (ecx2[6]*vixloc[k] + ecy2 neq28[k] = w2*nloc2[k] * (1.000 nine_odiummy = (ecx2[6]*vixloc[k] + ecy2 nine_odiummy = (ecx2[6]	(1.000 - uu2); + ecy2[1]*uyloc[k]) / cspeed22; (1.000 + three * dummy * dummy - uu2); + ecy2[2]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); nine_over_two * dummy * dummy - uu2); + ecy2[3]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[4]*uyloc[k]) / cspeed22; 10.000 + three * dummy * dummy - uu2); + ecy2[5]*uyloc[k]) / cspeed22; 10.000 + three * dummy * dummy - uu2); + ecy2[5]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[5]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[6]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[6]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[8]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[8]*uyloc[k]) / cspeed22; 11.000 + three * dummy * dummy - uu2); + ecy2[8]*uyloc[k]) / cspeed22; + nine_over_two * dummy * dummy - uu2); + nine_over_two * dummy * dummy - uu2);	
intf("nl=%lf neql=%lf n2=%lf neq2=%lf\n",nloc1[k], neq10[k];hneq12[k]+neq12[k]+neq12[k]+neq13[k])+ neq10[k];hneq11[k]+neq18[k],nloc2[k], neq26[k];hneq21[k]+neq2[k];hneq23[k]+neq24[k]+neq25[k]; neq26[k];hneq27[k]+neq28[k]);	
<pre>void compute_local_gradients(void) { int k; double dummy = 3.000 / delta_x;</pre>		
<pre>for (k=0; k<nnodes_all; (boundary_mode[k])<="" k++)="" switch="" td="" {=""><td></td><td></td></nnodes_all;></pre>		
<pre>case 0: gradlx[k] = (nloc1[nv1[k]] gradn2x[k] = (nloc2[nv1[k]] gradn1y[k] = (nloc1[nv2[k]] gradn2y[k] = (nloc2[nv2[k]])</pre>	- nloc1[nv3[k]]) / (2.000 * delta_x); - nloc2[nv3[k]]) / (2.000 * delta_x); - nloc1[nv4[k]]) / (2.000 * delta_x); - nloc2[nv4[k]]) / (2.000 * delta_x);	
<pre>gradcolor_x[k] = (colorfield[nv1[k]) (2.000 * delta_x); gradcolor_y[k] = (colorfield[nv2[k]) (2.000 * delta_x);</pre>	.d[nv1[k]] - colorfield[nv3[k]]) /	
/* gradn1x[k] = dummy * (w1 * (

Jun 27 1999 13:05 wet9main.c	Page 4
ecx[1]*nloc1[nv1[k]] + ecx[2]*nloc1[nv2[k]] ecx[3]*nloc1[nv3[k]] + ecx[4]*nloc1[nv4[k]])	1.[nv2[k]] + 1.[nv4[k]]) +
* ([5]*nloc1[nv5[k]] + [7]*nloc1[nv7[k]] +	ecx[6]*nloc1[nv6[k]] + ecx[8]*nloc1[nv8[k]]));
(w1 * (cx 11,*n,0c2[nv1[k]] + ecx[2]*n,0c2[nv2[k]] ecx[3]*n,0c2[nv3[k]] + ecx[4]*n,0c2[nv4[k]])	2[nv2[k]] + 2[nv4[k]]) +
+ +	ecx[6]*nloc2[nv6[k]] + ecx[8]*nloc2[nv8[k]]));
	11[nv2[k]] + 11[nv4[k]]) +
[5]*nloc1[nv5[k]] + [7]*nloc1[nv7[k]] +	ecy[6]*nloc1[nv6[k]] + ecy[8]*nloc1[nv8[k]]));
- communy (w1 * (ecy[1]*nloc2[nv1[k]] + ecy[3]*nloc2[nv3[k]] +	ecy[2]*nloc2[nv2[k]] + ecy[4]*nloc2[nv4[k]]) +
+ +	ecy[6]*nloc2[nv6[k]] + ecy[8]*nloc2[nv8[k]]));
*/ break;	
case 1: break; case 2:	
break;	
double nf1[], touble nf4[], touble nf4[],	
nff(), double nff1() nff5(), double nff7() nff6(), double nff7()	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30
neq0[], double neq0[], double neq6[],	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<pre>double ecprod[], double sforce, double gradx[], double grady[])</pre>	
int k; double ctau, cgrad, cgrady, cgradxs2, cgradys2, double cgradx2, cgrady2;	cgradky;
dummy_r prodsca	
<pre>lelta_t / tau; cspeed * delta_t / delta_x; cspeed * delta_t / delta_y; = cspeed * sgrt((double) 2) * delta_t / = cspeed * sgrt((double) 2) * delta_t / = cspeed * delta_t / sgrt((delta_x * delta_t / = cspeed * delta_t / sgrt((delta_x * delta_t / = cspeed * delta_t / sgrt((delta_x * delta_t / = cspeed * delta_t / sgrt((delta_x * delta_t / = cspeed * delta_t / sgrt((delta_x * delta_t / = cspeed * delta_t / sgrt(sgrt)</pre>	<pre>delta_x; delta_y; x + delta_y;</pre>
* delta_t / (2.000*delta_x); * delta_t / (2.000*delta_y); d * delta_t / (2.000 * sqrt(delta_x*delta_x +	delta_y*delta_y));
for (k=0; k <nnodes_all; k++)<="" td=""><td></td></nnodes_all;>	

Printed by sofonea from flumag3.mec.utt.ro

wet9main.c

color_x = color_y = (delta_x prodecal = prodecal = nff2 K
(delta_x prodscal = nff2[k] +=
a c
color_y = prodscal = nff3[k] +=
color_x = color_v =
(delta_) prodscal = nff4[k] +=
color_x =
(delta_) color_y =
prodscal nff5[k] +=
color_x =
color_y = (delta_)
prodscal = nff6[k] +=
color_x = (delta_)
(delta)
nii/[k] += color_x == (delta :
color_y = (delta_)
prodscal nff8[k] +
case 4: /* nn = nf0[]
color_x =
(2.000 color_y =
prodscal nutf0[k] +
color_x =
(delta_; color_y = prodscal;
nff1[k] +
color_x = color_y = (delta_

Printed by sofonea from flumag3.mec.utt.ro wet9main.c Page 6

m	x = 0.000; tea_x * mass); sal = color_x * uxloc[k] + color_y sal = color_x * uxloc[k] + color_y tea_x * mass); x = sforce * nn * (colorfield[k] - color_y y = sforce * nn * (colorfield[k] + color_y tla_x * mass); tla_x * mass); x = sforce * nn * (colorfield[k] + color_y tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); y = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); x = sforce * nn * (colorfield[nv] tla_x * mass); tla_x * mass);	<pre>case 4: (* color field gradient without nn */</pre>
---	--	--

wet9main.c

Page 7

wet9main.c

Jun 27 1999 13:05

Page 8

	2
om flumag3.mec.utt.ro	ge
ŧ	, a
ွှဲ	-
Ë	
က္ည	
яĝ	
늘	1. 1
₹	
ē	
7=	
စ္	
/ sofone	
SO	
ģ	ی ا
Ď	è
nted	ā
<u>.</u>	E
_	2
	9
	5
	امرا
	Ö
	ကြ

## #g #g #g #g #g #g #g #g #td #gg #g #g #g #g #g #tlk, negg[k, negg[k, negg[k], negg[k], nedg[k], nedg[k], nedg[k], nedg[k], nedg[k], nedg[k], nedg[k], nedg[k], negg[k], neg	Jun 27 1999 13:05 Wet9main.c	Page 9	
*g *g\n",	8g 8g		
*gg *gg\n", * + + + + + + + + + + + + + + + + + + +			
+ + + + + + + + + + + + + + + + + + + +			
+ + + + + + + + + + + + + + + + + + + +			
+ + + + + + + + + + + + + + + + + + + +	<pre>case 1: /* bottom */ nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau +</pre>		
+ + + + + + + + + + + + + + + + + + + +			
+ + + + + + + + + + + + + + + + + + + +			
+ + + + + + + + + -			
+ + + + + + + + -			
+ + + + + + + + + +			
+ + + + + + + -			
+ + + + + + +			
+ + + + + + +	neg6[k] neg7[k]		
+ + + + + +	nv2[k]] - nf7[k]) neq7[k];		
+ + + + +	f8[k] - nf8[nv3[k]]) f8[nv2[k]] - nf8[k]) * neq8[k];		
+ + + +	break;		
+ + + + +	<pre>case 2: /* top */ nff0[k] - (nf0[k]-neq0[k])*ctau +</pre>		
+ + + +			
+ + + +			
+ + +			
<pre>*ctau fluv3[k]]) + *ctau [no3[k]]) 5 no4[k]]) *ctau *ct</pre>			
rodscal) * neq4[k]; - (nf5[k] - neq5[k])*ctau [5] * (nf5[k] - nf5[nv3[k]]) + [5] * (nf5[k] - nf5[nv4[k]]) + - (nf6[k] - neq5[k])*ctau - (nf6[k] - neq5[k])*ctau [6] * (nf6[k] - nf6[k])	*ctau 4[nv4[k]])		
[5] * (n25K] - n55[nv3[K]) [5] * (nf5[K] - nf5[nv4[K]]) + rodscal, * neq5[K]; - (nf6[K]-neq6[K]) * ctau - (nf6[K]-neq6[K]) * nf6[K])	od[4] - prode = nf5[k] -		
- (nf6[k]-neq6[k])*ctau (nf6[k]-neq6[k]) + nf6[k]) (nf6[k]- nf6[k])	ecx[5] * (nf5[k] - nf5[nv3[k]]) ecy[5] * (nf5[k] - nf5[nv4[k]]) - prodscal) * ned5[k]:		- ×
* * * C C C C C C C C C C C C C C C C C	- (nf6[k]-neq6[k]) [6] * (nf6[nv1[k]] [6] * (nf6[k] - nf6		

Jun 27 1999 13:05 wet9main.c Page 10	
<pre>nff7[k] = nf7[k] - (nf7[k]-heq7[k])*ctau</pre>	
break; case 3: /* left wall */	
<pre>nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau;</pre>	
case 4: /* right wall */	
<pre>nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau;</pre>	
<pre>void first_centered(double mass, double tau, double cspeed,</pre>	

Page 11		lta_y); ta_y));		(KJ)) /
wet9main.c	nff3[], double nff4[], double nff5[], nff6[], double nff7[], double nff8[], neq5[], double neq4[], double neq5[], neq6[], double neq7[], double neq5[], ecprod[], double sforce) dx, cgrady, cgradxy; cgradxy2; , color_y, nn;	<pre>delta_x; delta_x; delta_x*delta_x + delta_y*delta_y) / (2.000*delta_x); / (2.000*delta_y); ; / sqrt(delta_x*delta_x + delta_y*delta_y))</pre>		colorfield(nv1 [k]]-colorfield(nv3 colorfield(nv2 [k]]-colorfield(nv4
Jun 27 1999 13:05	double nff3[], double neq9[], double neq9[], double neq9[], double neq5[], int k; double ctau, cgrad, cgradx, cgradd, double cgradx2, cgradx, cgradd, double dummy_force, double burdw_force, double burdscal, color_x, colo	ctau = delta_t / tau; cgradx = cspeed * delta_t / cgrady = cspeed * delta_t / cgradx2 = cspeed * delta_t / cgrady2 = cspeed * delta_t / cgradxy2 = cspeed * delta_t / cgradxy2 = cspeed * delta_t /	prodoscal csforce, * uxloc(h switch (boundary_mode(k)) case 0: /* bulk */ nff6(k) = nf0(k) - (nf0(k) (ecprod(0) - prodosal) (ecprod(1) - prodosal) (ecprod(2] - prodosal) (ecprod(2] - prodosal) (ecprod(3] - prodosal) (f(k) = nf4(k) - (nf6(k) - cgrady2 * ecy(2] * (nf6(k) - cgrady2 * ecy(2] * (nf6(k) - cgrady2 * ecy(4] * (nf6(k) - cgrady2 * ecy(6] * (nf6(k) - c	/* color_x = sforce * (col. (2.000 * delta_x); color_y = sforce * (col. (2.000 * delta_x);

.lin 27 1999 13:05	Vet9main.c	Page 12
00:01 00:01 17 100		- 285 ·
color_x = sforce * nn (2.000 * delta x * 1	<pre>n * (colorfield[nv1[k]]-colorfield[nv3[k]]) / mass);</pre>	
* sforce *		
- sforce		
= - sforce	* grady[k] /	
prodscal = color_x * nff0[k] += neq0[k] *	_	ا اح
nff1[k] += neq1[k] *	<pre>prodscal); (ecx[1]*cspeed*color_x +</pre>	ار کا
nff2[k] += neq2[k] *	_	- A
nff3[k] += neq3[k] *	_	- A
nff4[k] += neq4[k] *	_	ا الأ
nff5[k] += neq5[k] *		- X -
nff6[k] += neq6[k] *	_	ا ا
nff7[k] += neq7[k] *	_	ا ام
nff8[k] += neq8[k] *	<pre>prodecal; (ecx[8]*cspeed*color_x + ecy[8]*cspeed*color_y</pre>	۲ م
} break;	4	
<pre>case 1: /* bottom nff0[k] = nf0[k] - (</pre>	*/ nf0[k]-neq0[k])*ctau +	
(ecprod[0] - prods nff1[k] = nf1[k] - (
- cgradx2 * ecx[1] (ecprod[1] - prods	* (nrt[nv1[k]] - nri[nv3[k]]) + (cal) * neq1[k];	
nii2[k] = ni2[k] - (<pre>nit2(k) = ni2(k) - (ni2(k)-ned2(k))*ctau cgrady * ecy[2] * (ni2[ni2[k]) - ni2[k]) +</pre>	
(ecprod[3] - prods		
cgrady ecy[4] corrected (ecorod[4] - prods		
nff5[k] = nf5[k] - (nf5[k]-ned5[k])*ctau * (nf5[nv1[k]] - nf5[nv3[k]])	
- cyrada. ecy[5] - cyrady * ecy[5] - (ecorod[5] - prods	grady = cvi; (military) military) military) military cvi; (military) military military	
nff6[k] = nf6[k] - (- cgradx2 * ecx[6]	<pre>6[k] - (nf6[k]-neq6[k])*ctau * ecx[6] * (nf6[nv1[k]] - nf6[nv3[k]))</pre>	
- cgrady * ecy[6] (ecprod[6] - prods	* (nf6[nv2[k]] - nf6[k]) + scal) * neq6[k];	
	nf7[k]-neq7[k])*ctau * (nf7[nv1[k]] - nf7[nv3[k]])	
ady * ecy[7 od[7] - pro	* (nf7[nv2[k]] scal) * neq7[k];	
8[k] - * ecx[ecy[8	(nf8[k]-neq8[k])*ctau 8] * (nf8[nv1[k]] - nf8[nv3[k]]) 8 * (nf8[nv2[k]] - nf8[k]) +	
(ecprod[8] - prodscal) break;	* neq8[k];	
case 2: /* top */ nff0[k] = nf0[k] - (nf0[k]-neg0[k])*ctau +	
' ⊟ *	. prodscal) * neq0[k]; [k] - (nfl[k]-neq1[k]) *ctau *** (nfl[k]-neq1[k]) + nfl[nv3[k]]) +	
(ecprod[1] ~ prods	scal) * neq1[k];	

Jún 27 1999 13:05 Wet9main.c	Page 14
<pre>nff7(k) = nf7(k) - (nf7(k)-neq7(k))*ctau - cgradx * ecx(7] * (nf7(k) - nf7(nv3(k))) - cgrady2 * ecy(7) * (nf7(nv2(k)) - nf7(nv4(k))); nff8(k) = nf8(k) - (nf8(k)-neg8(k))*ctau - cgradx * ecx(8) * (nf8(k) - nf8(nv3(k))) - cgrady2 * ecx(8) * (nf8(k) - nf8(nv3(k)));)break;</pre>	
<pre>void second_upwind(double mass, double tau, double cspeed,</pre>	
<pre>int k; double ctau, cgrad, cgradx, cgrady, cgradxy; double cgradx2, cgrady2, cgradxy2; double dummy_force; double prodscal;</pre>	
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_x; cgrady = cspeed * delta_t / delta_y; cgrady = cspeed * delta_t / sgrt(delta_x*delta_x + delta_y*delta_y); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgrady2 = cspeed * delta_t / cgrady2 = cspeed * delta_t / cgradxy2 = cspeed * delta_t</pre>	
<pre>for (k=0; k<nnodes_all; <="" k++)="" pre=""></nnodes_all;></pre>	
<pre>prodscal = csforce_x * uxloc[k] + csforce_y * uyloc[k]; switch(boundary_mode[k])</pre>	
<pre>case 0: /* bulk */ nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau + (eprod[0] - prodscal) * neq0[k]; nff1[k] = nf1[k] - (nf1[k]-neq1[k])*ctau - cgradx2 * ecx[1] * (3.000*nf1[k] - 4.000*nf1[nv3[k]] + nf1[nv3[nv3[k]]]) + (ecprod[1] - prodscal) * neq1[k]; nff2[k] = nf2[k] - (nf2[k]-neq2[k])*ctau - cgradv2 * evv[3] *</pre>	
(3.000*nf2[k] - 4.000*nf2[nv4[k]] + nf2[nv4[nv4[k]]]) + (epprod[2] - prodscal) * neq2[k];	
<pre>(ecprod[3] - prodscal) * neq3[k]; nff4[k] = nf4[k] - (nf4[k]-neq4[k])*ctau - cgrady2 * ecy[4] * ecy[4] (-3.000*nf4[k] + 4.000*nf4[nv2[k]] - nf4[nv2[nv2[k]]]) +</pre>	
<pre>(ecprod[4] - prodscal) * neq4[k]; nff5[k] = nf5[k] - (nf5[k]-neq5[k])*ctau - cgradx2 * ecx[5] * (3.000*nf5[k] - 4.000*nf5[nv3[k]] + nf5[nv3[k]]]) +</pre>	
- ogradyz * ecylo] * (3.000*nf5[nv4[k]] + nf5[nv4[k]]]) + (3.000*nf5[k] - 4.000*nf5[nv4[k]] + nf5[nv4[k]]]) + (ecprod[5] - prodecal) * neq5[k];	
<pre>(-3.000*nf6[k] + 4.000*nf6[nv1[k]] - nf6[nv1[nv1[k]]]) + - cgrady2 * ecy[6] * (3.000*nf6[k] - 4.000*nf6[nv4[k]] + nf6[nv4[ky]]) +</pre>	

flumag3.mec.utt.ro	Page 16
d by sofonea from flumag3.r	
Printed by so	et9main.c
	*

Jun 27 1999 13:05 Wet9main.c Page 15	Jun 27 1999 13:05
<pre>(ecprod[6] - prodscal) * neg6[k]; nff7[k] = nf7[k] - (nf7[k]-neg7[k])*ctau - cgradx2 * ecx[7] *</pre>	centered of
<pre>lecprod() - prodecal, neq(kl); nff8(k] = nf8(k] - (nf8(k]'-neq8(k)'*ctau - cgradx2 * ecx(8] * (3.000*nf8(k) - 4.000*nf8(nv3(k)] + nf8(nv3(nv3(k)]) +</pre>	break; case 3: lw_sources
1	lw(sf10, si sourcel(sourcel()
void wet9_automaton(void)	IIIU, II Iw(sf20, si source2(
int autiter, key_point; autiter = 0;	source2)
while (autiter < niter_cycle)	case 4:
test_distribution_functions (f10, f11, f12, f13, f14, f15, f16, f17, f18); test_distribution_functions (f20, f21, f22, f23, f24, f25, f26, f27, f28); compute_local_speeds (f10, f11, f12, f13, f14, f15, f16, f17, f18,	break; case 5: islb_linea;
f20, f21, f22, f23, f24, f25, f25, f26, f27, f28); compute_equilibrium_distributions(); switch(key_scheme)	Dreak; case 6:
<pre>tose 0: if(key_init > 2) compute_local_gradients(); compute_upwind_sources(f10, f11, f12, f13, f14, f15, f16, f17, f18, compute_upwind_sources(f20, f21, f22, f23, f24, f25, f26, f27, f28);</pre>	case 7: case 8: if(key_ini' compute_ iprop();
<pre>upwind_cfl(mass1, tau1, cspeed1, cfl1, filo, silo, silo</pre>	break; case 9: ifd(); break;
sf17, sf18, neq10, neq11, neq12, neq13, neq14, neq15, neq16, neq17, neq18	case 10: iupfd(); break;
sourcel0, sourcel1, sourcel2, sourcel4, sourcel4, sourcel5, sourcel6, sourcel7, sourcel8);mwind of fmas2, fan2, croped2, cfl2,	case 11: iser(); case 12:
}	ilin(); break; case 13:
negzu, negzz, negzz, negzz, negzz, negzz, negzz, negz7, negz8, source21, source21, source23, source24, source25, source26, source28);	in (Ney_lin Compute_ first_upwi
break; case 1: 15 11 611 611 612 613 614 615 617 618	
ILSOURCES(ILO, III, III, III, III, III), III, III, I	first_upwi
<pre>gource15, source16, source17, source18, ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18); 1f(sf20, sf21, sf22, sf23, sf24, sf25, sf26, sf27, sf28,</pre>	break
<pre>source20, source21, source23, source24, source25, source26, source27, source28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28);</pre>	case 14: if (key_ini compute_
Dreak; case 2: compute_centered_sources(f10, f11, f12, f13, f14, f15, f16, f17, f18, f20, f21, f22, f23, f24, f25, f26, f27, f28);	
oentered_cfl(cfl1, f10, f11, f12, f13, f14, f15, f16, f17, f18,	

	case 160, fil, fil, fil, fil, fil, fil, fil, fil	case 4: islb(); break; case 5: islb_linear(); break; case 7: if(ey_init > 2) compute_local_gradients(); break; case 9: iupfd(); break; case 10: iupfd(); break; case 10: iupfd(); break; case 10: iupfd(); break; case 10: iupfd(); break; case 11: iupfd(); break; case 12: iser(); case 12: infd(); break; case 12: infd(); break; case 12: infd(); break; case 13: infd(); break; case 13: infd(); break; case 13: infd(); break; case 14: infd(); break;	<pre>case 13: compute_local_gradients(); if(key_init > 2) compute_local_gradients(); first_upwind(mass). faul, fall, fils, fil6, fil7, fil8,</pre>
190 de 2	case Lw Lw Lw Dre	Case Case Case List Case Case Case Case Case Case Case Case	Caser E E E

0	
utt.r	
lumag3.mec.utt.ro	
ag3.	
ron T	-
a	
ofone	
by s	
ted	
Pri	

wet9main.c

CO:01 626 1 /2 1000		July 27 1333 10:03
first_centered(mass2, tau2, cspeed2, f25, f26, f27, f28, f20, f21, f22, f23, f24, f25, f26, f27, f28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, neq20, neq21, neq24, neq25, neq26, neq28, neq26,		compute_cer (ff10, f1 ff20, f1 centered_ci
break; case 15: second_upwind(mass1, tau1, cspeed1, second_upwind(mass1, tau1, cspeed1, fil), fil), fil, fil, fil, fil), file,		centered_c
ned1, ned1, ned2, cspecd1, second_upwind (mass2, tau2, cspecd2, f20, f21, f22, f23, f24, f25, f26, f57, f28, ff20, ff21, ff22, ff23, ff24, ff26, ff27, ff28, neq20, neq21, neq22, neq22, neq24, neq25, neq26, neq27, neq28, ecprod2);		· ·
<pre>break;</pre>		lw(sfl0, s; sourcel) sourcel fl0, fl1 lw(sf20, s; source2 f20, f2 break;
compute_local_speeds(ff10,ff11,ff12,ff13,ff14,ff15,ff16,ff17,ff18, compute_equilibrium_distributions(); } switch(kev scheme)		<pre>case 4: islb(); break; case 5: islb_linea case 6:</pre>
<pre>case 0: if key_init > 2) compute_local_gradients(); compute_local_gradients(); compute_local_gradients(); compute_local_gradients(); compute_local_gradients(); (filo, fil1, fil2, fil3, fil4, fil5, fil6, fil7, fil8,</pre>	· · · · · · · · · · · · · · · · · · ·	compute equitors 1 if (); autiter; iter; compute equitors (); break; case 10; if (aprop (); break; case 12; if (aprop (); break; case 12; iter oppose 13; iter oppose 14; iter oppose 15; iter oppo

Ountoe_centeed_gources (fil), ffl1, ffl2, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8, (ffl0, ffl1, ffl2, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8), (ffl0, ffl1, ffl2, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8, ffl0, ffl1, ffl2, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8, fl0, fl1, fl2, ffl3, fl4, ffl5, ffl6, ffl7, ffl8, source10, source12, source12, source13, source14, centered_cfl(ffl2, ffl2, ffl2, ffl2, ffl2, ffl8, ffl8, ffl0, ffl1, ffl2, ffl2, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8, source20, source21, source22, source23, source24, source25, source26, source27, source28);	Dreak; Case 3: W_sources(ffl0, ffl1, ffl2, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8, ff20, ff20, ff22, ff23, ff24, ff25, ff26, ff27, ff28); W(sfl0, sfl1, sfl2, sfl3, sfl4, sfl5, sfl6, sfl7, sfl8, sourcel0, sourcel1, sourcel1, sourcel3, sourcel4, sourcel1, sourcel6, sourcel7, sourcel8, fl0, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8); W(sfl0, sfl2, sfl2, sfl2, sfl2, sfl2, sfl2, sfl2, sfl2, sfl2, source21, source22, fl2, fl2, fl2, fl2, fl2, fl2, fl2, f	case 4: ishb(); break; case 5: ishDlinear(); case 6: isbDupwind(); break; case 7: ic(); autiter; iter; iter;	luer; luesk; case 9: compute_local_speeds(ff10,ff11,ff12,ff13,ff14,ff15,ff16,ff17,ff18, compute_local_speeds(ff10,ff22,ff23,ff24,ff25,ff26,ff27,ff28); compute_equilibrium_distributions(); lfdprop(); break; case 10: compute_local_speeds(ff10,ff11,ff12,ff13,ff14,ff15,ff16,ff17,ff18, compute_local_speeds(ff20,ff21,ff23,ff24,ff25,ff26,ff27,ff28);	<pre>compute_equilibrium_distributions(); ifdprop(); break; case 11: ifdprop(); break; case 12: if(key_init > 2) compute_local_gradients(); compute_local_speeds(ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, compute_local_speeds(ff10, ff11, ff22, ff23, ff24, ff25, ff26, ff27, ff28); compute_equilibrium_distributions(); first_upwind(mass1, tau1, tau1, capeedl, ff25, ff26, ff27, ff28);</pre>
--	--	--	--	---

ctaul = delta_t / taul;
ctau2 = delta_t / tau2;
cforce_x = delta_t * force_x / (kboltz * temp);
csforce_y = delta_t * force_y / (kboltz * temp);

kforce = delta_t * gforce / (kboltz * temp);
kbound1 = delta_t ;
kbound2 = delta_t ;

cf11 = cspeed1 * delta_t / delta_x;
cf12 = cspeed2 * delta_t / delta_x;

oneminus1 = 1.000 - cfll; oneplus1 = 1.000 + cfll; oneminus2 = 1.000 - cfl2; oneplus2 = 1.000 + cfl2; uplminus2 = cfl1 * (cfl1 - 1.000) / 2.000; uplminus1 = cfl1 * (2.000 - cfl1); upl = (2.000 - cfl1) * (1.000 - cfl1) / 2.000; up2minus2 = cf12 * (cf12 - 1.000) / 2.000; up2minus1 = cf12 * (2.000 - cf12); up2 = (2.000 - cf12) * (1.000 - cf12) / 2.000; inl = (1.000 + cfl1) * (2.000 + cfl1) / 2.000; intplus1 = - cfl1 * (2.000 + cfl1); intplus2 = cfl1 * (2.000 + cfl1) / 2.000; in2 = (1.000 + cfl2) * (2.000 + cfl2) / 2.000; in2plus1 = - cfl2 * (2.000 + cfl2); in2plus2 = cfl2 * (2.000 + cfl2) / 2.000;

tlminus = cfl1 * (1.000 + cfl1) / 2.000; tlcenter = (1.000 - cfl1) * (1.000 + cfl1); tlplus = (cfl1 - 1.000) * cfl1 / 2.000;

Jun 27 1999 13:05 wet9main.c	Page 20
delta t = a delta t[isim];	
force_x = a_force_x[isim];	
<pre>force_y = a_force_y(isim);</pre>	
gforce = a_gforce[isim];	
mass1 = a_mass1[isim];	
mass2 = a_mass2[isim];	
cspeed1 = a_cspeed1[isim];	
cspeed2 = a_cspeed2[isim];	
taul = a_taul[isim];	
tau2 = a_tau2[isim];	
nzero1 = a_nzero1[isim];	
nzero2 = a_nzero2[isim];	
<pre>nzerolleft = a_nzerolleft[isim];</pre>	
<pre>nzero2left = a_nzero2left[isim];</pre>	
nzerolright = a_nzerolright[isim];	
nzero2right = a_nzero2right[isim];	
<pre>uxwall_bot = a_uxwall_bot[isim];</pre>	
<pre>uywall_bot = a_uywall_bot[isim];</pre>	
<pre>uxwall_top = a_uxwall_top[isim];</pre>	
<pre>uywall_top = a_uywall_top[isim];</pre>	
<pre>uxwall_left = a_uxwall_left[isim];</pre>	
uywall_left = a_uywall_left[isim];	
<pre>uxwall_right = a_uxwall_right[isim];</pre>	
uywall_right = a_uywall_right[isim];	
speed12 = cspeed1 * cspeed1:	
cspeed22 = cspeed2 * cspeed2;	

t2minus = cf12 * (1.000 + cf12) / 2.000; t2center = (1.000 - cf12) * (1.000 + cf12); t2plus = (cf12 - 1.000) * cf12 / 2.000;

wet9main.c

utt.ro	
lumag3.mec.utt.ro	
Ţ	
fonea fron	
ed by sofonea	
Printe	
Printed by	

tin1 tin1 tin2	tin1 = (1.000 + cfl1) * (2.000 + cfl1) / 2.000; tin1plus1 = - cfl1 * (2.000 + cfl1);	
tinz	plus2 = cfl1 * (1.000 + cfl1) / 2.000;	
tinz	tin2 = (1.000 + cfl2) * (2.000 + cfl2) / 2.000; tin2plus1 = - cfl2 * (2.000 + cfl2); tin2plus2 = cfl2 * (1.000 + cfl2) / 2.000;	- 1 - 1
tout tout	<pre>tout1 = (1.000 - cf11) * (2.000 - cf11) / 2.000; tout1minus1 = cf11 * (2.000 - cf11); tout1minus2 = cf11 * (cf11 - 1.000) / 2.000;</pre>	
tout tout	tout2 = (1.000 - cf12) * (2.000 - cf12) / 2.000; tout2minus1 = cf12 * (2.000 - cf12); tout2minus2 = cf12 * (cf12 - 1.000) / 2.000;	
tlfm tlfp	tlfminus1 = (1.000 + cfl1) / 2.000; tlfplus1 = (1.000 - cfl1) / 2.000;	
tlfn tlfp	tlfminus2 = (1.000 + cfl2) / 2.000; tlfplus2 = (1.000 - cfl2) / 2.000;	
ismi isce 1spl	<pre>isminus1 = cfl1 * (1.000 + cfl1) / 2.000; iscenter1 = (1.000 - cfl1) * (1.000 + cfl1); isplus1 = cfl1 * (cfl1 - 1.000) / 2.000;</pre>	
ismi isce ispl	<pre>isminus2 = cf12 * (1.000 + cf12) / 2.000; iscenter2 = (1.000 - cf12) * (1.000 + cf12); isplus2 = cf12 * (cf12 - 1.000) / 2.000;</pre>	
buil init init init init	<pre>build_names(isim); init_lattice_functions(); init_ecx_nine(); init_arrays_nine_square(); init_arrays_nine_square_aux(); getavec_square();</pre>	
	iter = 0;	
xv. xv(f	xv_new(f10,f11,f12,f13,f14,f15,f16,f17,f18,xv_name,1.0001); xv(f10,f11,f12,f13,f14,f15,f16,f17,f18,"xv");	
	if(key_init > 2)	
	xv(f10,f11,f12,f13,f14,f15,f16,f17,f18,"xV1"); xv(f20,f21,f22,f23,f24,f25,f26,f27,f28,"xV2");	
if() if() test	<pre>if(key_init == 3) wet9_drop_profile(); wet9_drop_profile(); if(key_init == 9) if(key_init == 9) test_ntot();</pre>	6.00 a da - 1.
IE () WE LE ()	<pre>if(key_init<2) wet9_channel_profile(); if(key_init == 2) wet9_couple_profile();</pre>	
for	for(icycle=0; icycle <ncycles; icycle++)<="" td=""><td></td></ncycles;>	
) jt()	<pre>' wet9_automaton(); if(key_init > 2)</pre>	
	xv(£10,£11,£12,£13,£14,£15,£16,£17,£18,"xV1"); xv(£20,£21,£22,£23,£24,£25,£26,£27,£28,"xV2");	
if (<pre>if (key_init == 3) (key_init == 9)) wet2_drop_profile();</pre>	

<pre>/* xy_new(f10,f11,f12,f13,f14,f15,f16,f17,f18,xv_name,1.0001);</pre>
/* / / / / / / / / / / / / / / / / / /
/*/ quiv quiv frae frae_nsi
free_n
free -
from the contract of the contr

- 0			4.44
Page	nter_init= 0 gforce= 0000000.000	<pre>nter_init= 0 gforce= 00000000.000 nter_init= 0 gforce= 0000000.000</pre>	
wet9.input	delta_y= 25 delta_y= 0.0001 key_boundary= 1 niter_cycle= 10000 nzeroZieft= 0.00 nywall_top= 0.000000 uywall_top= 0.000000 delta_y= 0.0001	10000 1 0.00000001 2 0.00000001 2 0.00000000000000000000000000000000000	
Jul 17 1999 17:21	nsim= 3	key_scheme= 13	

Appendix B dif9 code

	May 3 1999 16:15
*************************************	double *ff10, *ff11, *ff12, *ff13, *ff14, *ff15, *ff16
* dif9head.h definition of global variables	double *ff20, *ff21, *ff22, *ff23, *ff24, *ff25, *ff26
/************************************	double *sf10, *sf11, *sf12, *sf13, *sf14, *sf15, *sf16
#ifdef MAIN_HEADER	double *sf20, *sf21, *sf22, *sf23, *sf24, *sf25, *sf26
const double kboltz=1.381e-23, amu=1.661e-27, temp=300.00;	double *neq10, *neq11, *neq12, *neq13, *neq14, *neq15, *neq1
/* kboltz = $J/$ (molecules*K), amu = (kg), temp = (K); */	double *neq20,*neq21,*neq22,*neq23,*neq24,*neq25,*neq
const double w0 = ((double) 4) / ((double) 9), w1 = ((double) 1) / ((double) 9),	'uyloc, *uxlocl, *uylocl, *uxlc
1) / ((double)	int *nv1, *nv2, *nv3, *nv4, *nv5, *nv6, *nv7, *nv8;
<pre>const double three = ((double) 3), three_over_two = ((double) 3) / ((double) 2), nine_over_two = ((double) 9) / ((double) 2);</pre>	<pre>double *nloc1, *nloc2, *rholoc1, *rholoc2, *rholoc; #else</pre>
const double uxwall = 0.00000 , uywall = 0.00000 ;	extern const double kboltz, amu, temp;
int nnodes_x, nnodes_y, nnodes_all, lambda;	extern const double w0, w1, w2;
int *a_nnodes_x, *a_nnodes_y, *a_nnodes_all, *a_lambda;	extern const double three, three_over_two, nine_over_t
int key_init, key_boundary, key_g, key_force, key_point, key_scheme;	extern const double uxwall, uywall;
int *a_key_init, *a_key_boundary, *a_key_g, *a_key_force, *a_key_scheme;	extern int nnodes_x, nnodes_y, nnodes_all, lambda;
int nsim, ncycles, niter_cycle, niter_init, iter, niter;	extern int *a_nnodes_x, *a_nnodes_y, *a_nnodes_all, *
int *a_ncycles, *a_niter_cycle, *a_niter_init;	extern int key_init, key_boundary, key_g, key_force,
<pre>double length_x, length_y, delta_x, delta_y, delta_t, cspeed1, cspeed12, cspeed12, cspeed22, cspeed1s, cspeed1s, cspeed1s2, cspeed2s</pre>	extern int *a_key_init, *a_key_boundary, *a_key_g, *a_ *a_key_scheme;
	extern int nsim, ncycles, niter_cycle, niter_init, it
<pre>double *a_length_x, *a_length_y, *a_delta_x, *a_delta_y, *a_delta_t,</pre>	extern int *a_ncycles, *a_niter_cycle, *a_niter_init;
double mass1, mass2, tau1, tau2, dcoef, alpha, alpha1;	
<pre>double *a_mass1, *a_mass2, *a_cspeed1, *a_cspeed2, *a_tau1, *a_tau2,</pre>	force_x,
double nzerolleft, nzero2left, nzerolright, nzero2right;	extern double *a_length_x, *a_length_y, *a_delta_x, * *a_force_x, *a_force_y;
double *a_nzerolleft, *a_nzero2left, *a_nzerolright, *a_nzero2right;	extern double mass1, mass2, tau1, tau2, dcoef, alpha,
<pre>char input_name[] = "dif9.input", output_name[] = "dif9.output";</pre>	extern double *a_mass1, *a_mass2, *a_cspeed1, *a_cspee
char id_name[128], rez_name[128], xv_name[128];	extern double nzerolleft, nzerozleft, nzerolright, nz
double ecx[9], ecy[9], ecxx[9], ecxy[9], ecyx[9], ecyy[9], edxy;	double *a nzerolleft, *a nzero2left, *a nze
double ecx1[9], ecy1[9], ecxx1[9], ecxy1[9], ecyx1[9], ecyy1[9];	tput_name[];
<pre>double ecx2[9], ecy2[9], ecxx2[9], ecxy2[9], ecyx2[9], ecyy2[9];</pre>	extern char id_name[], rez_name[], xv_name[];
double ec1[9], ec2[9];	extern double ecx[], ecv[], ecxv[], ecxv[], e
int *boundary_mode;	double ecx1[], ecx1[], ecxv1[], ecvv
double *f10, *f11, *f12, *f13, *f14, *f15, *f16, *f17, *f18;	double ecx2[], ecy2[], ecxy2[],
double *f20, *f21, *f22, *f23, *f24, *f25, *f26, *f27, *f28;	•

* FFIO. * FFII. * FFI2. * FFI3. * FFI5. * FFI6. * FFI8.	ff20, *ff21, *ff22, *ff23, *ff24, *ff25, *ff26, *ff27,	*sf10, *sf11, *sf12, *sf13, *sf14, *sf15, *sf16, *sf17, *sf18; *sf20, *sf21, *sf22, *sf22, *sf24, *sf26, *sf26, *sf27, *sf28,	, "sizi, "sizz, "sizs, "sizz,	*neq20, *neq21, *neq22, *neq23, *neq24, *neq25, *neq26, *neq27, *neq28;	*uxloc, *uyloc, *uxloc1, *uyloc1, *uxloc2, *uyloc2;	'1, *nv2, *nv3, *nv4, *nv5, *nv6, *nv7, *nv8;	*nloc1, *nloc2, *rholoc1, *rholoc2, *rholoc;		const double kboltz, amu, temp;	const double w0, w1, w2;	const double three, three_over_two, nine_over_two;	const double uxwall, uywall;	int nnodes_x, nnodes_y, nnodes_all, lambda;	int *a_nnodes_x, *a_nnodes_y, *a_nnodes_all, *a_lambda;	int key_init, key_boundary, key_g, key_force, key_point, key_scheme;	<pre>int *a_key_init, *a_key_boundary, *a_key_g, *a_key_force,</pre>	int nsim, ncycles, niter_cycle, niter_init, iter, niter;	int *a_ncycles, *a_niter_cycle, *a_niter_init;	<pre>double length_x, length_y, delta_x, delta_y, delta_t,</pre>	<pre>double *a_length_x, *a_length_y, *a_delta_x, *a_delta_y, *a_delta_t,</pre>	double mass1, mass2, tau1, tau2, dcoef, alpha, alpha1;	<pre>double *a_mass1, *a_mass2, *a_cspeed1, *a_cspeed2, *a_tau1, *a_tau2,</pre>	double nzerolleft, nzero2left, nzerolright, nzero2right;	<pre>double *a_nzerolleft, *a_nzero2left, *a_nzero1right, *a_nzero2right;</pre>	<pre>char input_name[], output_name[];</pre>	char id_name[], rez_name[], xv_name[];	<pre>double ecx[], ecy[], ecxx[], ecxy[], ecyx[], ecyy[], edxy;</pre>	<pre>double ecx1[], ecy1[], ecxx1[], ecxy1[], ecyx1[];</pre>	double ecx2[], ecy2[], ecxx2[], ecxy2[], ecyx2[];
f f 1 0	* *ff20,		*neq10,	double *neq20,*	double *uxloc,	int *nv1, *nv2,	double *nloc1,	#else							key	* *				Φ									Φ

May 3 1999 09:19	rage 1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
* diffinout.c * * *********************************	
<pre>#include <stdio.h> #include <stdib.h> #include <srring.h> #include <math.h></math.h></srring.h></stdib.h></stdio.h></pre>	
#include "dif9head.h"	
void allocate_nsim(void)	
<pre>a_nnodes_x = (int*) malloc(nsim*sizeof(int)); a_nnodes_all = (int*) malloc(nsim*sizeof(int)); a_nnodes_all = (int*) malloc(nsim*sizeof(int)); a_lambda = (int*) malloc(nsim*sizeof(int)); a_key_int = (int*) malloc(nsim*sizeof(int)); a_key_oundary = (int*) malloc(nsim*sizeof(int)); a_key_or = (int*) malloc(nsim*sizeof(int)); a_key_force = (int*) malloc(nsim*sizeof(int)); a_key_force = (int*) malloc(nsim*sizeof(int));</pre>	
a_ncycles = (int*) malloc(nsim*sizeof(int)); a_niter_cycle = (int*) malloc(nsim*sizeof(int)); a_niter_int = (int*) malloc(nsim*sizeof(int)); a_niter_int = (int*) malloc(nsim*sizeof(idul)); a_length_x = (double*) malloc(nsim*sizeof(idule));	,
<pre>a_tengfn_y = (&ouble*) mailoc(Insim*sized(!ouble)); a_delta_x = (double*) mailoc(insim*sizeof(double)); a_delta_y = (double*) mailoc(insim*sizeof(double)); a_delta_t = (double*) mailoc(insim*sizeof(double)); a_delta_t = (double*) mailoc(insim*sizeof(double)); a_force x = (double*) mailoc(insim*sizeof(double));</pre>	
<pre>force_a (double*) malloc(nsim*sizeof(double)) mass1 = (double*) malloc(nsim*sizeof(double)); mass2 = (double*) malloc(nsim*sizeof(double)); mass2 = (double*) malloc(nsim*sizeof(double));</pre>	
_cspeed2 = (c _tau1 = (c _tau2 = (c	
<pre>a_cocef = (double*) malloc(nsim*sizeof(double)); a_nzerolleft = (double*) malloc(nsim*sizeof(double)); a_nzerolleft = (double*) malloc(nsim*sizeof(double)); a_nzerolright = (double*) malloc(nsim*sizeof(double)); a_nzerolright = (double*) malloc(nsim*sizeof(double)); }</pre>	
, void free_nsim(void)	
free(a_nnodes_x);	
<pre>Iree(a_iniodes_1); free(a_iniodes_all); free(a_iniodes_all);</pre>	
<pre>free(a_key_init); free(a_key_boundary);</pre>	
<pre>free(a,key_g); free(a,key_force); free(a key scheme);</pre>	
<pre>free(a_ncycles); free(a_niter_cycle);</pre>	
<pre>iree(a_nicer_int); free(a_length_x); free(a_length_x);</pre>	
(a_delta_x	
frectalt; free(a force.x);	
<pre>free(a_force_y); free(a_mass]);</pre>	

May 5 1999 09:19 Page 2
<pre>free (a_mass2); free (a_cspeed1); free (a_cspeed2); free (a_tau1); free (a_tau2); free (a_tau2); free (a_noerolleft); free (a_noerolleft); free (a_noerolright); free (a_noerolright);</pre>
lif9
<pre>int i, j; char dummy[128]; /* double kboltz=1.381e-23, amu=1.661e-27, temp=300.00; kboltz = J/(molecules*K), amu = (kg), temp - (K); */ FILE *fin, *frez;</pre>
<pre>frez=fopen(output_name,"w"); if((fin = fopen(input_name,"r")) == NULL) { fprintf(frez,"program <dif9> stopped - input file <%s> does not exist !\n", input_name); fclose(frez);</dif9></pre>
<pre>exit(1); fecarf(fin,"*s %d\n",dummy,≁); if(nsim < 1) exit(1);</pre>
allocate_nsim();
for(i=0; i <nsim; i++)<="" td=""></nsim;>
<pre>fscanf(fin, "%s %d %s %d\n", dummy, &nnodes_x, dummy, &nnodes_y); fprint(ffrez, "nnodes_x=: %d nnodes_x=: %d nnodes_y); fscanf(fin, "%s %d\n", dummy, λ); fprintf(frez, "lambda= %d\n", lambda); fscanf(fin, "%s %lf %s %lf %s</pre>
fscanf(fin, "%s %d %s %d %s %d %s %d\n", dummy, 6key_int, dummy, 6key_boundary, dummy, 6key_force,
<pre>duminy.exey_scheme); fprintf(frez,"key_init= %d key_boundary= %d key_force= %d key_scheme=%d\n", key_init, key_boundary, key_force, key_scheme); fscanf(fin."%s %d %s %d %s %d\n",</pre>
<pre>dummy, &ncycles, dummy, &niter_cycle, dummy, &niter_init); fprintf(frez, 'mcycles</pre>
<pre>fscanf(fin, %s %lf %s %lf\n",dummy,dmmy,ftau1); fscanf(fin, %s %lf %s %lf\n",dummy,dmass2,dummy,ftau2); fscanf(fin, %s %lf %s %lf\n",dummy,fmass2,dummy,ftau2); fscanf(fin, %s %lf %s %lf\n",dummy,fnascolleft,dummy,fnascolleft,fscanf(fin, %s %lf %s %lf\n",dummy,fnascolleft,dummy</pre>
<pre>fscanf(fin, "%s %if\n" dummy, ddcoef); fprintf(frez, "massl=%if taul=%if\n", massl, taul); fprintf(frez, "mass2=%if tau2=%if\n", mass2, tau2); fprintf(frez, "nass2=%if tau2=%if\n", mass2, tau2); fprintf(frez, "nzerolleft=%if nzerolright=%if\n", nzerolleft, nzerolright);</pre>
<pre>ppint(lizez,"nzeroziett=%il nzerozingnt=%il\n",nzeroziett,nzerozingnt); fprintf(frez,"dcoef=%if\n",dcoef); fscanf(fin,"%s %if %s %if\n",dummy,&force_x,dummy,&force_y);</pre>
<pre>force_x *= 1.0e=20; force_y *= 1.0e=20; fprintf(frez, "force_x=%lf force_y=%lf\n", force_x, force_y);</pre>

dif9inout.c

May 5 1999 09:19

May 5 1999 09:19 dif9inout.c	Page 3
<pre>if(key_scheme == 7) key_boundary += 5;</pre>	
<pre>cspeed1 = (4.00 * kboltz * temp) / (mass1 * amu); cspeed2 = (4.00 * kboltz * temp) / (mass2 * amu); cspeed1 = sqrt(cspeed1); cspeed2 = sqrt(cspeed2);</pre>	
<pre>if(((double) lambda)*delta_t*cspeed1 > delta_x) (((double) lambda)*delta_t*cspeed1 > delta_y) (((double) lambda)*delta_t*cspeed2 > delta_x) (((double) lambda)*delta_t*cspeed2 > delta_x) (((double) lambda)*delta_t*cspeed2 > delta_y))</pre>	
<pre>fprintf("<dif9> stopped - small delta_x or delta_y !\n"); fprintf(frez,"<dif9> stopped - small delta_x or delta_y !\n"); fclose(frez); exit(1); }</dif9></dif9></pre>	
<pre>if((delta_t > tau1) (delta_t > tau2))</pre>	
<pre>nnodes_all = nnodes_x * nnodes_y; length_x = delta_x * ((double) (unodes_x-1)); length_y = delta_y * ((double) (unodes_y-1));</pre>	
<pre>fprintf(frez,"%d %d %d %lf %lf %lf\n",nnodes_x,nnodes_y, nnodes_all,length_x,length_y,delta_t); fprintf(frez,"kboltz= %e %lf %lf %lf %e\n",kboltz,temp,mass1,mass2,amu);</pre>	
<pre>a_nodes_x[1] = nnodes_x; a_nnodes_x[1] = nnodes_all; a_lambda[1] = lambda; a_lambda[1] = lambda; a_lambda[1] = lambda; a_key_init[1] = key_init; a_key_force[1] = key_force; a_key_force[1] = key_force; a_key_force[1] = lambda; a_ncycles[1] = nier_cycle; a_niter_init[1] = nier_cycle; a_niter_init[1] = nier_init; a_length_x[1] = length_x; a_length_x[1] = length_x; a_length_x[1] = delta_x; a_delta_x[1] = delta_x; a_delta_x[1] = delta_x; a_delta_y[1] = masth a_delta_y[1] = masth a_delta_y[1] = mast, a_delta_y[1] = mast, a_delta_y[1] = mast, a_delta_y[1] = mast, a_delta_y[1] = taul; a_taul[1] = taul; a_taul[1] = taul; a_nastollet[1] = nzerolleft; a_nacrollet[1] = nzerollight; a_nacrollight[1] = nzerollight[1]</pre>	
fclose(frez);	

کر م	void dif9_output (void)	
	<pre>int i; Int I: Int "fout; fout = fopen(output_name,"w"); fout = fopen(out,"nsim= %d\n",nsim); forintf(fout,"nsim= %d\n",nsim); for (i=0; i<nsim; i++)<="" pre=""></nsim;></pre>	
	<pre>fprintf(fout, "nnodes_x= %d nnodes_y= %d\n",a_nnodes_x[!],a_nnodes_y[!]); fprintf(fout, "delta_x= %lf delta_y= %lf delta_t= %lf\n",</pre>	
- >	void build_names()	
	<pre>int imass, imass, itaul, itau2, icspeedl, icspeed2, indeltax, idelta_v.iferce_x.iferce_y.idcoef, inacrolleft.inzerozleft.inzerozleft; inzerozleft; inacs1 = (int) (mass2 * 100); itaul = (int) (mass2 * 100); itaul = (int) (taul * 1.00e+12); icspeed1 = (int) (call * 1.00e+12); icspeed2 = (int) capeed1; idelta_v = (int) (delta_v * 1.00e+10); idelta_v = (int) (delta_v * 1.00e+10); idelta_v = (int) (delta_v * 1.00e+10); idelta_v = (int) (dece_v * 1.00e+25); ifcrce_v = (int) (dece_v * 1.00e+25); ifcrce_v = (int) (dece_v * 1.00e+25); ifcrce_v = (int) (dece_v * 1.00e+25); inzerozleft = (int) (mzerozleft * 100.000); inzerozleft int (int) (mzerozleft * 100.000); inzerozleft = (in</pre>	

dif9init.c

2	~ >~	
Page 1		
<u>-</u>		
: -		[K]) <i>t</i>
	/ * * * * * * *), nv8
	**************************************	<pre>mnodes_x;i++) f(out,"\$3d ",nv[(j-1)*nnodes_x+i]); t(nul); re(void) mnodes_x; i++) mnodes_x; i++) mnodes_x; i++) = nnodes_x; k) >= n</pre>
	* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • •
	* * * * * * * * * * * * * * * * * * *	; *d\n k], nv
it.c	* * * * * * * * * * * * * * * * * * * *	*+i])
dif9init.c	* * * * * * * * * * * * * * * * * * *	++)
p	* t i * * * * * * * * * * * * * * * * *	1)*nn ([k],nn
	**************************************	*d *d :: , , , , , , , , , , , , , , , , , ,
	***** i initi. '****** int nv aw");	f(cout, "\n");
	***** rays **** kk, i kk, i ; j++)	(fout, "%3d ",n (fout, "%3
22	***** ***** h> .h> .h> .h> (int) (int) (es_na)	-c=nnodes -c=nnodes -cout, "\n" -cout, "
9 18:€	<pre>difiginit.c arrays initi **********************************</pre>	<pre>for (i=0;i<=nnodes_x;i++)</pre>
1996	diffinit.c ************************************	for (i=0;i fprint (f fclose (fout); id getavec_sq int i, j, k; for (i=0; for
Jun 20 1999 18:52	* * नननन न O	fclo oid g oid g oid g fclo oid g fclo
حَ	· * * * * * * * * * * * * * * * * * * *	~ 5~ .

) void init_ecx_nine(void)
{ int i;
= ((double) = ((double) = ((double) = ((double) = ((double) = (; double)
i] = ecx i] = 2.0 i] = 2.0 i] = ecy
<pre>ecx1[i] = ecx[i] * cspeed; ecy1[i] = ecy[i] * cspeed; ecxx[i] = ecxx[i] * cspeed; ecxy1[i] = ecxy[i] * cspeed; ecyv1[i] = ecyv[i] * cspeed] * cspeed; ecyv1[i] = ecyv[i] * cspeed] * cspeed;</pre>
<pre>ecx2[i] = ecx[i] * cspeed2; ecy2[i] = ecy[i] * cspeed2; ecxx2[i] = ecxx[i] * cspeed2 * cspeed2; ecxy2[i] = ecy[i] * cspeed2 * cspeed2; ecyx2[i] = ecyy[i] * cspeed2 * cspeed2; ecyx2[i] = ecyy[i] * cspeed2 * cspeed2;</pre>
<pre>ecl[i] = ecx1[i] * sqrt((double) 2); ec2[i] = ecx2[i] * sqrt((double) 2); } edxy = sqrt((double) 2);</pre>
} void init_arrays_nine_square(void)
FILE *fsav, *frez; int i,j,k; double rand_coef = 0.00000001, nzero = 1.00, dummy;
<pre>frez=fopen(rez_name,"a");</pre>
for(i=0; i<9; i++)
<pre>fprintf(frez,"i,ecx[i],ecy[i]\n\$3d %lf %lf\n", f.ecx[i],ecy[i]);</pre>
<pre>fprint(i.ecx(i).ecxy[i].ecyy[i])n%3d %lf %lf %lf %lf %lf %lf %lf %lf %lf fprint(frez, ii.ecx[i].ecyy[i].ecyy[i]);</pre>

dif9init.c

Jun 20 1999 18:52 dif9init.c	Page 3
<pre>fprintf(frez,"i,ecx2[i],ecy2[i]\n%3d %lf %lf\n",</pre>	
<pre>switch (key_init) { case 0: /* horizontal diffusion couple */</pre>	
<pre>k=-1; for (j=0; j< nnodes_y; j++)</pre>	
k++; if(i<=nnodes_x/2) f10[k] = nzero * (1. +rand_coef * (double) rand() / (double) RAND_MAX) - 0.5));	
f20[k] = (nzero*0.9) * (1.0 +rand_coef *	
((double) rand() / (double) RAND_MAX) - 0.5)); f10[k] = 0.00+0; f20[k] = nzero	
0	
} } }	
case 1: /* horizontal one component self - diffusion */ k=-1; for (j=0; j< nnodes_y; j++)	
{ for(i=0; i < nnodes_x; i++)	
k++; if(i<=nnodes_x/2)	
f10[k] = nzero * (1. +rand_coef * (((double) rand() / (double) RAND_MAX) - 0.5)); f20[k] = 0.0e+0;	
f20[k] = (nzero*0.9) * (1.0 +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); */	
e118	
/*	
*/ $f20[k] = 0.00+0;$	

Page 4 Printed by sofonea from flumag3.mec.utt.ro dif9init.c

((double) rand() / (double) RAND_MAX) - 0.5); ((double) rand() / (double) RAND_MAX) - 0.5); ((double) rand() / (double) RAND_MAX) - 0.5); (fort int) / (forthe) rand() / (double) RAND_MAX) - 0.5); (fort int) / (forthe) rand() / (double) RAND_MAX) - 0.5); (fort int) / (forthe) rand() / (double) RAND_MAX) - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX) - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) / (forthe) rand() / (double) RAND_MAX] - 0.5); (forthe) rand() / (double)	Jun 20 1999 18:52 dif9init.c Page 4
	1
for (i=0; i < nnodes_x; i++) for (i=0; i < nnodes_x; i++) k++; for (i=0; i < nnodes_x; i++)	<pre>} // horizontal diffusion couple, erf</pre>
for (1=0; i < mnodes_x; i++) { k++; fill(k] = nzero * (1. +rand_coef * fill(k] = nzero * (1. +rand_coef * fill(k] = nzero * (1. +rand_coef * fill(k] = nzero * (1.000 - 0.5000 * (1.000 + erf(0.1000*(idouble)); fill(k] = nzero * (1.000 - 0.5000 * (1.000 + erf(0.1000*(idouble)); fill(k] = nzero * (1.000 - erf(0.1000*(idouble)); fill(k] = nzero * (1. +rand_coef * fill(k] =	K=-1; for (j=0; j< nnodes_y; j++)
<pre>fulc(k) = nzero * (1. +rand_coef * fulc(k) = ((double) rand() / (double) RAND_MXX) - 0.5)); fulc(k) = ((double) rand() / (double) RAND_MXX) - 0.5)); fulc(k) = ((double) rand() / (double) RAND_MXX - 0.5)); fulc(k) *= (1.000 - 0.5000 * (1.000 + erf(0.0100*((double)) rand() / (innodes_x/2-1)))); fulc(k) *= (0.5000 * (1.000 + erf(0.0100*((double)) rand() / (innodes_x/2-1)))); fulc(k) *= (0.5000 * (1.000 + erf(0.0100*((double)) rand() / (innodes_x/2-1)))); fulc(k) *= nzero * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); fulc(k) *= nzero * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); fulc(k) *= nzero * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); fulc(k) *= nzero * (1. +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero * (1. +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= ((double) rand() / (double) RAND_MAX) - 0.5)); fulc(k) *= ((double) rand() / (double) RAND_MAX) - 0.5)); fulc(k) *= ((double) rand() / (double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= nzero* (1.0 +rand_coef * ((double) RAND_MAX) - 0.5)); fulc(k) *= (</pre>	i < nnodes_x;
<pre>f10[k] *= (1.000 - 0.5000 * (1.000 + erf(0.0100*(double)) f20[k] *= (0.5000 * (1.000 + erf(0.0100*(double)) 13; (j=0; j* modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i < modes_x; j++) for (i=0; i=0; i < modes_x; j++) for (i=0; i=0; i=0; i=0; i=0; i=0; i=0; i=0;</pre>	<pre>k] = nzero * (1. +rand_coef *</pre>
15 15 15 15 15 15 15 15	*= (1.000 - 0.5000 * (1.000 + erf(0.01000*((double))) *= (0.5000 * (1.000 + erf(0.01000*((double)))); (1-nnodes_x(2-1))));
<pre>es_y; j++) nnodes_x; i++) es_x/4) = nzero * (1. +rand_coef *</pre>	} :ak; 9: /* horizontal
modes_x; i++) = nzero * (1. +rand_coef * = nzero * (1. +rand_coef * = 0.0e+0; k] = (nzero*0.9) * (1.0 +rand_coef * double) rand() / (double) RAND_MAX) - 0.5)); = nzero * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); = nzero * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); = nzero * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); = nzero * (1.0 +rand_coef * ((double) (1 - nnodes_x / 4) / (nnodes_x / 2); = ((double) (1 - nnodes_x / 4) / (nnodes_x / 2); = nzero*0.9) * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); = nzero * (1.0 +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); es_y; j++) nnodes_x; j++)	1; : (j=0; j< nnodes_y; j++)
<pre>es_X/4) = nzero * (1. +rand_coef * = 0.0e+0; k] = (nzero*0.9) * (1.0 +rand_coef * double) rand() / (double) RAND_MAX) - 0.5)); les_x/4) & (1<-3*nnodes_x/4)) = nzero * (1. +rand_coef *</pre>	for(i=0; i < nnodes_x; i++) { k++;
<pre>k] = (nzero*0.9) * (1.0 +rand_coef * double) rand() / (double) RAND_MAX) - 0.5)); les_x/4)&&(i<=3*nnodes_x/4)) = nzero * (1. +rand_coef *</pre>	o * (1. +rand_coef * couble) rand() / (double) RAND_MAX) - 0
<pre>les_x/4)&&(i<=3*nnodes_x/4))</pre>	E20[k] = (nzero*0.9) * (1.0 +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5))
= nzero * (1. +rand_coef * (double) RAND_MAX) - 0.5)); ((double) rand() / (double) RAND_MAX) - 0.5)); = nzero * (1.0 +rand_coef * (double) rand() / (double) RAND_MAX) - 0.5); *= ((double) rand() / (double) RAND_MAX) - 0.5); *= ((double) (1 - nnodes_x / 4)) / (nnodes_x / 2); des_x/4) = (nzero*0.9) * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); = 0.0e+0; = nzero * (1.0 +rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5)); diffusion couple */ tes_y; j++) nnodes_x; j++)) if((i>nnodes_x/4)&&(i<=3*nnodes_x/4))
<pre>des_x/4) = (nzero*0.9) * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0. = 0.0e+0; = nzero * (1.0 +rand_coef * ((double) rand() / (double) RAND_MAX) - 0 diffusion couple */ tes_y; j++) nnodes_x; i++)</pre>	- 0.5)); - 0.5)); odes_x / 2); -x / 2);
= (nzero*0.9) * (1. +rand_coef * ((double) rand() / (double) RAND_MAX) - 0. = 0.00+0; = nzero * (1.0 +rand_coef * ((double) rand() / (double) RAND_MAX) - 0 diffusion couple */ nnodes_x; j++)	if(1>3*nnodes_x/4)
= 0.00+0; = nzero * (1.0 +rand_coef * (((double) rand() / (double) RAND_MAX) - 0 diffusion couple */ les_y; j++) nnodes_x; i++)	<pre>J[k] = (nzero*0.9) * (1. +rand_coef *</pre>
<pre>diffusion couple les_y; j++) nnodes_x; i++)</pre>	= 0.0e+0; = nzero * (1.0 +rand_coef * (((double) rand() / (double) RAND_MAX) - 0
<pre>k==1; for (j=0; j< nnodes_y; j++)</pre>	diffusion couple
i < nnodes_x;	$k=-1;$ for ($j=0$; $j < nnodes_y; j++)$
	i < nnodes_x;

		1	
า 20 1999 18:52	ditylnit.c	Page 5	Jun 20 195
• + + 4			tu:

Jun 20 1999 18:52 dif9init.c	Page 5
<pre>k++; if(j<=nnodes_y/2)</pre>	
<pre>f10[k] = 0.0e+0; f20[k] = nzero * (1. +rand_coef *</pre>	
zontal diffusic nnodes_y; j++)	
IOF(1=U; 1 < nnodes_X; 1++) { k++; 1f(i<=nnodes_X/2)	
<pre>f10[k] = nzerolleft * (1. +rand_coef *</pre>	
<pre>f10[k] = nzerolright * (1.0 +rand_coef *</pre>	
break; }	
for (k=0; k < nnodes_all; k++) { f11[k] = w1 * f10[k]; f12[k] = w1 * f10[k]; f13[k] = w1 * f10[k]; f14[k] = w1 * f10[k]; f14[k] = w1 * f10[k]; f15[k] = w2 * f10[k]; f15[k] = w2 * f10[k]; f17[k] = w2 * f10[k]; f17[k] = w2 * f10[k]; f17[k] = w1 * f20[k]; f21[k] = w1 * f20[k]; f22[k] = w1 * f20[k]; f23[k] = w2 * f20[k]; f23[k] = w0; f20[k]; f20	
fclose(frez); }	
void init_arrays_nine_square_aux(void) {	

Jun 20 1999 18:52 dif9init.c	Page 6
<pre>int i, j, nnll = (nnodes_y-1)*nnodes_x; svitch(key_boundary) case 0: /* periodic boundaries - finite difference model */ for (i = 0; i < nnodes_all; i++) boundary mode[i] = 0;</pre>	
<pre>break; case l: /* horizontal walls - finite difference model */ cose l: /* horizontal walls - finite difference model */ for (i = 0; i< nnodes_x; i++) boundary_mode[i] = 1; for (i = nnodes_x; i < nnodes_all-nnodes_x; i < nnodes_all; i++) for (i = nnodes_all-nnodes_x; i < nnodes_all; i++) boundary_mode[i] = 2;</pre>	
<pre>break; case 2: /* vertical walls - finite difference model */ for (i = 0; i< nnodes_all; i++) boundary_mode[i] = 0; for (j=0; j < nnodes_y; j++)</pre>	
<pre>boundary_mode[j*nnodes_x] = 3; boundary_mode[(j+1)*nnodes_x-1] = 4; /*undary_mode[j*nnodes_x+1] = 31; boundary_mode[(j+1)*nnodes_x-2] = 41; */</pre>	
<pre>break; break; for (i = 0; i< nnodes_all; i++) boundary_mode[i] = 0; boundary_mode[i] = 0; for (i = 0; i< nnodes_x; i++) boundary_mode[i] = 1; for (i = nnodes_all_nnodes_x; i < nnodes_all; i++) boundary_mode[i] = 2; for (j = nnodes_y; j++)</pre>	
<pre>{ boundary_mode[j*nnodes_x] = 3; boundary_mode[(j+1)*nnodes_x-1] = 4; } boundary_mode[0] = 5; boundary_mode[nodes_x-1] = 6; boundary_mode[nodes_x-1] = 6;</pre>	
<pre>break; case 6: /* horizontal walls - finite difference model */ for (i = 0; i < nnodes_x; i++) boundary_mode[i] = 11; for (i = nnodes_x; i < nnodes_all-nnodes_x; i++) boundary_mode[i] = 10; for (i = nnodes_all-nnodes_x; i < nnodes_all; i++) for (i = nnodes_all-nnodes_x; i < nnodes_all; i++) boundary_mode[i] = 12;</pre>	
<pre>break; case 7: /* vertical walls - interpolation LGLB model */ for (i = 0; i< nnodes_all; i++) boundary_mode[i] = 10; for (j=0; j < nnodes_y; j++)</pre>	
boundary_mode[j*nnodes_x] = 13; boundary_mode[(j+1)*nnodes_x-1] = 14;	
<pre>break; case 8: /* container - interpolation LGLB model */ for (i = 0; i< nnodes_all; i++) boundary_mode[i] = 10;</pre>	

dif9init.c

mag3.mec.utt.ro	
₽	
ea from	
by sofonea from	
Printed	

******	****	*************	****	****	**************************************		
* dif9aux.c *	o.				· * *		
******	*****	***********	*******	***	↑ ************************************		
#include <pre>finclude <pre>fi</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><stdlib.h> <math.h> <stdio.h></stdio.h></math.h></stdlib.h></pre>	٨					
#include "	"dif9head.h"	.h"					
void init_	lattice	void init_lattice_functions(void)					
{ f10 = (d	(*elhic		all*sizeof(do	(double);			
100	ouble*)	malloc(nnodes_a	zeof	uble);			
ı		malloc(nnodes_all*si	1*sizeof (double)	uble);			
f15 = (de	double*)	malloc(nnodes_a. malloc(nnodes_a	Ll*sizeor(double) Ll*sizeof(double)	uble));			
f16 = (de		malloc(nnodes_all*	[]*sizeof(double)	ouble);			
 	_	malloc(nnodes_all*	[]*sizeof(double)	uble);			
	double*)	malloc(nnodes_all*sizeof(double)]*sizeof(dc	ouble);			
.	(* o	mailoc(nnodes_all*sizeof(double)	11*sizeof(do	uble);			
	double*)	malloc(nnodes_all*sizeof	*sizeof(dc	(double);			
1 11	. * • •	mailoc(nnodes_ail*sizeot malloc(nnodes_all*sizeof	L1*sizeof(do	(double);			
		malloc(nnodes_all*sizeof	Ll*sizeof (dc	(double);			
f27 = (d	double*)	mailoc(nnodes_all*sizeor(double) malloc(nnodes all*sizeof(double)	Ll*sizeof (dd Ll*sizeof (dd	(double)); (double));			
=	· * 7	malloc(nnodes_all*sizeof(double)	all*sizeof(double))			
ff12 = (double*)	malloc(nnodes_all*sizeor malloc(nnodes_all*sizeof	all*sizeof(c	(double))			
£13 = (double*)	malloc(nnodes_all*sizeof	all*sizeof((double))	. ••		
11 1	(double*)	malloc(nnodes_all*sizeof		(double))			
	double*)	malloc(nnodes_all*sizeof		(double))			
ff18 = (double*)	malloc(nnodes_all*sizeor malloc(nnodes all*sizeof		(double))			
11	double*)	malloc(nnodes_all*sizeof		(double))			
11 11	double*)	malloc(nnodes_all*sizeof		(double))	•••		
11	(double*)	malloc(nnodes_all*sizeof		(double))	•		
ff24 = ((double*)	malloc(nnodes_all*sizeof		(double)			
1 11	(double*)	malloc(nnodes_all*sizeof		(double))			
11 1	(double*)	malloc(nnodes_all*sizeof		(double))			
	(double*)	malloc(nnodes_all*sizeof		(double))			
"	(double*)	malloc(nnodes_all*sizeof		(double)			
sil2 = ((double*)	malloc(nnodes_all sizeor malloc(nnodes_all*sizeof		(double)			
11	(double*)	malloc(nnodes_all*sizeof		(double))			
st15 = ((double*)	malloc(nnodes_all*sizeof		(double))			
	(double*)	malloc(nnodes_all*	zeof	(double)	2		
sf18 = ((double*)	malloc(nnodes	zeot	(double))			
st20 = ((double*)	malloc(nnodes_	zeof	(double)			
sf22 = ((double*)	malloc(nnodes_	zeof	(double)	-		
sf23 = ((double*)	malloc(nnodes_	zeof	(double))			
sf25 = ((double*)	malloc(nnodes_	zeof	(double)			
sf26 = ((double*)	malloc(nnodes_all*si	zeof	(double))			
	(double*)	mailoc(nnodes_air:	zeof	(double)			
•		opour oo lean to		(oldund)			_

neq11 = (double*) malloc(nnodes_all*sizeof(double)); neq12 = (double*) malloc(nnodes_all*sizeof(double)); neq14 = (double*) malloc(nnodes_all*sizeof(double)); neq14 = (double*) malloc(nnodes_all*sizeof(double)); neq15 = (double*) malloc(nnodes_all*sizeof(double)); neq16 = (double*) malloc(nnodes_all*sizeof(double)); neq17 = (double*) malloc(nnodes_all*sizeof(double)); neq20 = (double*) malloc(nnodes_all*sizeof(double)); neq21 = (double*) malloc(nnodes_all*sizeof(double)); neq22 = (double*) malloc(nnodes_all*sizeof(double)); neq25 = (double*) malloc(nnodes_all*sizeof(double)); neq26 = (double*) malloc(nnodes_all*sizeof(double)); neq26 = (double*) malloc(nnodes_all*sizeof(double)); neq26 = (double*) malloc(nnodes_all*sizeof(double)); neq26 = (double*) malloc(nnodes_all*sizeof(double)); uxloc = (double*) malloc(nnodes_all*sizeof(double)); uxloc = (double*) malloc(nnodes_all*sizeof(double)); uxloc = (double*) malloc(nnodes_all*sizeof(double)); uxloc = (double*) malloc(nnodes_all*sizeof(int)); uxloc = (double*) malloc(nnodes_all*sizeof	Mar 30 1999 08:42 dif9aux.c	Page 2
	= (double*) malloc (nnodes_all*sizeof (double*) double*) malloc (nnodes_all*sizeof (double*) malloc (nnodes_all*sizeof (lnt)); (int*) malloc (nnodes	
<pre>free(f10); free(f11); free(f12); free(f13); free(f13); free(f13); free(f14); free(f14); free(f14); free(f15); free(f15); free(f17); free(f2); free(f11); free(f11); free(f11); free(f11); free(f11); free(f11); free(f11); free(f2); free(f2);</pre>	\(\text{free_lattice_functions (void)} \) \(\text{free}(fll); \) \(fr	

dif9aux.c

Mar 30 1999 08:42 dif9aux.c	Page 3	Mar 30 1999 08:42
free (ff24);		1
free(ff25); fram(ff26):		11 (niulk) < 0.00
free(ff27);	-	fprintf(frez,
free(ff28);		iter,
iree(silo); free(sfll);		{
free(sf12);		if (nf1[k] < 0.00)
free(sfl3); free(sfl4);		torintf(frez,
free(sf15);		iter
free (sf16);		exit(1);
free(sil/); free(sfl8);		if(nf2[k] < 0.00)
free(sf20);		
free(sf21);		fprintf(frez,
Iree(s123); free(s123);		exit(1);
free(sf24);		} if(nf3[b] < 0 00)
		(1)(1)(1)
free(sf27);		fprintf(frez,
free (neq10);		exit(1);
<pre>free(neq11); free(neq12);</pre>	_) jf(nf4[k] < 0.00)
free (neq13);		
free(neg14);		iprinci (irez,
free (neq16);		exit(1);
<pre>tree(neq1/); free(neq18);</pre>		if(nf5[k] < 0.00)
free (neq20);	*****	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
rree(neq21); free(neq22);		iter,
free (neq23);		exit(1);
free (neq25);		if (nf6[k] < 0.00)
free (neq26);		fprintf(frez
free (neq28);		iter
<pre>free(uxloc); free(ixloc);</pre>		exit(1);
free(uxloc1);		if (nf7[k] < 0.00
<pre>free(uyloc1); free(uxloc2);</pre>		fprintf(frez
free(uyloc2);		iter iter
free(nv2);		(1) 210)
free(nv3);		11 (n18[k] < 0.00
free (nv5);		fprintf(frez
<pre>iree(nVo); free(nv7);</pre>		exit(1);
free(nv8);		
free(nloc1);		fclose(frez);
		word store distribution
void test_distribution_functions(double nf0[], double nf1[], double nf2[],		int k;
double nf7[],		1
FILE *frez;		sf11[k] = f11[k] sf11[k] = f11[k]
<pre>int k; frez = fopen(rez_name, "aw");</pre>		# 11
for(k=0; k <nnodes_all; k++)<="" td=""><td></td><td>11</td></nnodes_all;>		11

fell int	if[nf0[k] < 0.00)	<pre>fprintf(frez,"\n\nNEGAIIVE F: iter=%d k=%d nf0=%g\n", iter,k,nf0[k]); exit(1);</pre>	<pre>if { if (nf1(k) < 0.00)</pre>	<pre>fprintf(frez,"\n\nNEGAIIVE F: iter=%d k=%d nf1=%g\n", iter,k,nf1(k)); exit(1);</pre>	if inf2[k] < 0.00)	<pre>fprintf(frez,"\n\nNEGATIVE F: iter=%d k=%d nf2=%g\n", iter,k,nf2[k]); exit(1);</pre>	if (nf3[k] < 0.00)	<pre>fprintf(frez,"\n\nNEGATIVE F: iter=%d k=%d nf3=%g\n", iter,k,nf3[k]); exit(1);</pre>	if (nf4[k] < 0.00)	<pre>fprintf(frez,"\n\nNbGATIVE F: iter=%d k=%d nf4=%g\n", iter,k,nf4[k]); exit(1);</pre>	if [nf5[k] < 0.00)	<pre>fprintf(frez,"\n\nNbGATIVE F: iter=%d k=%d nf5=%g\n", iter,k,nf5[k]); exit(1);</pre>	if(nf6[k] < 0.00)	<pre>fprintf(frez,"\n\nNbGATIVE F: iter=%d k=%d nf6=%g\n", iter,k,nf6[k]); exit(1);</pre>	if (nf7[k] < 0.00)	<pre>fprintf(frez,"\n\nNbGATIVE F: iter=%d k=%d nf7=%g\n", iter,k,nf7[k]); exit(1);</pre>	if (nf8[k] < 0.00)	<pre>fprintf(frez,"\n\nNbGATIVE F: iter=%d k=%d nf8=%g\n", iter,k,nf8[k]); exit(1);</pre>	}	} void store distribution functions (void)	int k; for(k=0; k <nnodes_all; k++)<="" th=""><th><pre>{ sf10(k) = f10(k); sf11(k) = f11(k); sf12(k) = f12(k); sf13(k) = f13(k); sf13(k) = f14(k);</pre></th></nnodes_all;>	<pre>{ sf10(k) = f10(k); sf11(k) = f11(k); sf12(k) = f12(k); sf13(k) = f13(k); sf13(k) = f14(k);</pre>
----------	-------------------	---	---------------------------------------	---	--------------------	---	--------------------	--	--------------------	---	--------------------	---	-------------------	--	--------------------	---	--------------------	---	---	--	--	--

dif9draw.c

Printed by sofonea from flumag3.mec.utt.ro

dif9draw.c

Apr 12 1999 18:42 dif9draw.c	Page 1	Apr 12 1999 18:42
/*************************************		val = 63; if(val < 0) val = 0; /* val = 6; - v fprintf(fxv, **
<pre>#include <stdio.h> #include <math.h> #include <stdiib.h> #include <stdiib.h> #include <string.h></string.h></stdiib.h></stdiib.h></math.h></stdio.h></pre>		<pre>if(i == 15)</pre>
<pre>#include "dif9head.h" /* you may modify gray_levels */ int gray levels = 63. base = 35:</pre>		<pre>if(1) fprintf(fxv,"\n" fclose(fxv); /*</pre>
		<pre>sprintf(xv_name,"% fxv = fopen(xv_nam fprintf(fxv,"p2)n% i=0; for(k=1; k<=nnod;</pre>
<pre>fint i, val; char xv_name[128]; FILE *fxv;</pre>		{ i++; val = (floor(
<pre>sprintf(xv_name, "%s.%06d.xpm", arg_name, iter); fxv = fopen(xv_name, "w"); fprintf(fxv, "/* XPM *\nstatic char * init_xpm[] = {\n"); fprintf(fxv, "\" %d %d %d", nnodes_x, nnodes_y, gray_levels + 1, 1); fprintf(fxv, "\" %n %d %d", hnodes_x, nnodes_y, gray_levels + 1, 1); for(i = 0, i <= gray_levels; i++) fprintf(fxv, "\",\n\" %c\tg gray&d", base + i, fprintf(fxv, "\",\n\" %c\tg gray&d", pase + i, fprintf(fxv, "\",\n\" %c\tg gray&d", pase + i,</pre>		<pre>if (val > 63)</pre>
<pre>for(i = 0; i <= nnodes_all; i++) {</pre>		if (== 15) { i=0; f=0;
<pre>if l == (i+1) % nnodes_x)) fprintf(fxv,^n^n\\""); val = floor((n0[1] + n1[1] + n2[1] + n3[1] + n4[1] + n5[1] +</pre>		rprinci(rx) if(i) fprintf(fxv,"\n" fclose(fxv); */
<pre>val = 0; fprintf(fxv, "%c", base + val); }</pre>		} void dif9_profile(vo
<pre>fprintf(fxv,"\"); fclose(fxv); }</pre>		{ FILE *pntot, *prho *pomega2, *pomeg
<pre>void xv(double n0[], double n1[], double n2[], double n3[], double n5[], double n6[], char arg_name[])</pre>		char ntot_profile_ char rhotot_profile_ char rho2_profile_ char rho2_profile_ char moagal_profile_
<pre>tric *fxv; char xv.name[128]; int i,k.val; sprintf(xv.name,"%s %05d",arg_name,iter); fxv = fopen(xv_name,"%s %05d",ang,ang,ang,ang,ang,ang,ang,ang,ang,ang</pre>		
<pre>i++; val = floor((n0[k]+n1[k]+n3[k]+n4[k]+n5[k]+ if(val > 63) if(val > 63)</pre>		

val;
<pre>fprintf(fxv, "%3d", val); if(== 15) if(i == 15) fprintf(fxv, "\n");</pre>
} if(i) fprintf(fxv,"\n"); fclose(fxv);
/* sprintf(xv_name,"%s.%05dp",arg_name,iter); fxv = fopen(xv_name,"wt"); fprintf(fxv,"P2\n%3d%4d\n63\n",nnlun,nnlat); i=0; for(k=1; k<=nnod; k++)
<pre>! ++; val = (floor(fil(k)*ecx[1]+fl2(k)*ecx[2]+fl3(k)*ecx[3]+</pre>
<pre>if(val > 63) val = 63; if(val < 0) val = 0; val = 6; val = 63</pre>
<pre>fprint(fxv, "%3d", val); if(i == 15) {</pre>
fprintf(fxv,"\n"); }
<pre>if(i) fpintf(fxv,"\n"); fclose(fxv); */</pre>
<pre>void dif9_profile(void) { FILE *pntot, *prhot, *prhol, *puho2, *pomegal, *pomeganl, *pomega2, *pomegan2, *pj2, *pul, *pul, *pukols, *pubis;</pre>
<pre>int i,j,k,kk,nval; double nloc1, nloc2, rholoc1, rholoc, omegalloc, omeganlloc, omega2loc, omegan2loc, uloc1, uloc2, jloc2, uloc; double uloc1bis, uloc2bis, ulocbis;</pre>

Printed by sofonea from flumag3.mec.utt.ro dif9draw.c Apr 12 1999 18:42

ge 3									
Apr 12 1999 18:42 dif9draw.c Page	<pre>double rho1, rho2, rho, omegal, omegal, omega2, omegan2, u1, u2, 12, u, u2bis, ubis; double ntot, rhotot;</pre>	<pre>sprintf(ntot_profile_name, "PNIOTAL%s.%06d",id_name,iter); sprintf(rhot_profile_name, "PRHOI%s.%06d",id_name,iter); sprintf(rhot_profile_name, "PRHOI%s.%06d",id_name,iter); sprintf(rhot_profile_name, "PRHOI%s.%06d",id_name,iter); sprintf(omegal_profile_name, "POMEGANI%s.%06d",id_name,iter); sprintf(omegal_profile_name, "POMEGANI%s.%06d",id_name,iter); sprintf(omegal_profile_name, "POMEGANI%s.%06d",id_name,iter); sprintf(omegal_profile_name, "POMEGANI%s.%06d",id_name,iter); sprintf(lomegan2_profile_name, "POI%s.%06d",id_name,iter); sprintf(lo_profile_name, "POI%s.%06d",id_name,iter); sprintf(lo_profile_name, "POI%s.%06d",id_name,iter); sprintf(lo_profile_name, "POI%s.%06d",id_name,iter); sprintf(lo_brofile_name,"POI%s.%06d",id_name,iter); sprintf(u2bls_profile_name,"POI%s.%06d",id_name,iter); sprintf(u2bls_profile_name,"POI%s.%06d",id_name,iter); sprintf(ubls_profile_name,"POI%s.%06d",id_name,iter);</pre>	<pre>pntot = fopen(ntot_profile_name, "wt"); prhotot = fopen(thot_profile_name, "wt"); prhot = fopen(thot_profile_name, "wt"); prhot = fopen(thot_profile_name, "wt"); pomegal = fopen(omegal_profile_name, "wt"); pomegal = fopen (omegal_profile_name, "wt"); pomegal = fopen (omegal_profile_name, "wt"); pomegal = fopen (omegal_profile_name, "wt"); pul = fopen(lu_profile_name, "wt"); pul = fopen(u_profile_name, "wt"); pul = fopen(u_profile_name, "wt"); pul = fopen(u_profile_name, "wt");</pre>	<pre>pu2bis = fopen(u2bis_profile_name,"wt"); pubis = fopen(ubis_profile_name,"wt");</pre>	= 0.0000; = 0.0000; = 0.0000; = 0.0000; anl = 0.0000; anl = 0.0000; anl = 0.0000; 0.0000; 0.0000;	u u u u 0.0000; u2bis = 0.0000; ubis = 0.0000; for(j=0; j <nnodes_y; j++)<="" th=""><th>modes_x; ; +f11[k]+f1 : +f18[k]; ; +f21[k]+f2 : +f28[k];</th><th><pre>printf("k=%d nloc1=%g nloc2=%g\n", k, nloc1, nloc2);</pre></th><th>/* printf("k=&d rholocl=&g rholoc2=&g rholoc=&g\n", k,rholoc1,rholoc2,rholoc); */ if(rholoc)</th></nnodes_y;>	modes_x; ; +f11[k]+f1 : +f18[k]; ; +f21[k]+f2 : +f28[k];	<pre>printf("k=%d nloc1=%g nloc2=%g\n", k, nloc1, nloc2);</pre>	/* printf("k=&d rholocl=&g rholoc2=&g rholoc=&g\n", k,rholoc1,rholoc2,rholoc); */ if(rholoc)

_	_		
(ניים	0 0 0 0	
Tree Line	じろにしてここ		
	•		
	200	ř O	
	07.07.1	2	

```
rholoc2*uloc*0.500*delta_t/tau2) / rholoc;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  nbt / = ((double) nnodes_y);
rhotot /= ((double) nnodes_y);
rho2 /= ((double) nnodes_y);
omegal /= ((double) nnodes_y);
omegal /= ((double) nnodes_y);
omegan /= ((double) nnodes_y);
i2 /= ((double) nnodes_y);
u1 /= ((double) nnodes_y);
u2 /= ((double) nnodes_y);
i2 /= ((double) nnodes_y);
i4 /= ((double) nnodes_y);
i5 /= ((double) nnodes_y);
i6 /= ((double) nnodes_y);
i7 /= ((double) nnodes_y);
i8 /= ((double) nnodes_y);
i7 /= ((double) nnodes_y);
i8 /= ((double) nnodes_y);
in /= ((double) nnodes_
                                                                                                                                                                                     fclose (prtot);
fclose (prhotot);
fclose (prhot);
fclose (prho2);
fclose (prho2);
fclose (prhogal);
Apr
```

Apr 12 1999 18:42 dif9draw.c Page 6	_
<pre>void test_ntot (void) {</pre>	
<pre>fpintf(ptot,"*d</pre>	
FILE *pux, *puy, *pxc, *pyc, *pyn; double nloc1, nloc2; double ux1, uy1, ux2, uy2, ux, uy, xc, yc; int i,j,k,ipas=2; ipas=2, xn, yn; char ux_name[128], uy_name[128]; char ux_name[128], uy_name[128];	
Char m. Lane [Les], my Lande [Les], my Lande [Les], gening [Les], gening [Les], my Lane, FUX8s. %66d", id_name, iter); sprintf (uy_name, PUX8s. %66d", id_name, iter); sprintf (cx_name, PCX8s. %66d", id_name, iter); sprintf (nx_name, PCX8s. %66d", id_name, iter); sprintf (nx_name, PNX8s. %66d", id_name, iter); pux = fopen (ux_name, "w"); puy = fopen (uy_name, "w"); pyc = fopen (uy_name, "w"); pyc = fopen (cx_name, "w");	
for (j=0; j <modes_x; (i="0;" for="" i+="ipas)</td" i<nnodes_x;="" j+="jpas)" k="jpas)"><td></td></modes_x;>	
<pre>11/(k +18 k) nloc2 = f20(k +f21 k) f20(k +f21 k)+f22(k +f24 k)+f25(k)+f26(k)+ f17(k +f18 k) if(nloc1)</pre>	
<pre>f14[k *ecx[4]+f15[k]*ecx[5]+f16[k]*ecx[6]+</pre>	
ux1 = 0.0000; uy1 = 0.0000; if(nloc2)	
<pre>ux2 = (f21[k]*ecx[1]+f22[k]*ecx[2]+f23[k]*ecx[3]+ f24[k]*ecx[4]+f25[k]*ecx[5]+f26[k]*ecx[6]+ f27[k]*ecx[7]+f28[k]*ecx[8]+f26[k]*ecx[6]+ uy2 = (f21[k]*ecy[1]+f28[k]*ecy[2]+f23[k]*ecy[3]+ f24[k]*ecy[4]+f25[k]*ecy[5]+f26[k]*ecy[6]+ f27[k]*ecy[7]+f28[k]*ecy[8]) / nloc2;</pre>	

dif9draw.c

8	ω		
age	Page 8		
1	^ <u>^</u>		
o	O		
`.	- NE		
<u> </u>	T po		
dif9draw.c			
-			
٠.			
54	. 24		
89	8		
666	666		
121	121		
Apr	Apr 12 1999 18:42		
L		 	

5

Apr 6 1999 13:38 dif9fourier.c	Page 1
/*************************************	
<pre>***************************** #include <stdlib.h> #include <stdlib.h> #include <stdlib.h> #include <stdlib.h> #include <stdlib.h></stdlib.h></stdlib.h></stdlib.h></stdlib.h></stdlib.h></pre>	
<pre>#include "dif9head.h" void four1(double data[2*nnodes x], int nn, int isign)</pre>	
m, mmax, n; mpr; , wpi, wpr, wr, wtemp; .+=2)	
{ 1f (3>1) 1f (3>1)	
<pre>tempr = data[j-1); tempi = data[j]; data[j-1] = data[i-1]; data[j-1] = tempr; data[i-1] = tempr; data[i] = tempr;</pre>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
<pre>1 = j-m; m /= 2; } 4 = m; i += m;</pre>	
<pre>! istep = 2 * mmax; theta = 6.28318530717959 / (isign * mmax); wpr = 2.000 * sin(0.5*theta); wpr = 1.000; wr = 1.000; wi = 0.000; for(m=1; m<= mmax; m+=2)</pre>	
for (1=m; 1<=1; 1+=1step)	
<pre>j = i+mmax; tempr = wr * data[j]; tempr = wr * data[j] + wi * data[j]; tempi = wr * data[j] + wi * data[j-1]; data[j-1] = data[i-1] - tempi; data[j] = data[i] - tempi; data[i-1] = data[i-1] + tempr; data[i-1] = data[i-1] + tempi;</pre>	
<pre>wt emp = wr; wr = wr*wpr - wi*wpi + wr; wi = wi*wpr + wtemp*wpi + wi;</pre>	
mmax = istep;	
) void realft(double data[nnodes_x], int n, int isign)	

Apr 0 1333 13.30	dif9fourier.c	Page 2
int i, il, i2, i3, i4, n2p3; double (r. c2, hil, hir, h2i, double thera, w1, wpi, wpr, thera = 3.141592653589793 / (c1 = 0.5; if(isign == 1)	i, h2r, wis, wrs; wr, wtemp; (((double) n) / 2.000);	
c2 = -0.5; four1(data,n/2,1); } else {		
c2 = 0.5; theta = -theta; } wpr = -2.000 * sin(0.500*theta)	eta) * sin(0.500*theta);	
11 = 2*i - 1; 12 = 11+1; 13 = n2p3 - 12; 14 = 13 +1; 15 = wz; 17 = wz;		
* (data[i1-1] * (data[i2-1] * (data[i2-1] * (data[i1-1]] = hir + wrs] = hir + wrs] = hir + wrs = hir + wrs = hir + wrs	+ data[i3-1]); - data[i4-1]); - data[i4-1]); - data[i4-1]); +n2r - wis*h2i; +n2r + wis*h2r; +n2r + wis*h2r; s*h2i + wis*h2r;	
wtemp = wr; wr = wr*wpr - wi*wpi + wr; wi = wi*wpr + wtemp*wpi + if(isign == 1)	WE; + wi;	
hlr = data[0]; data[0] = hlr + data[1]; data[1] = hlr - data[1]; }		
else { hIr = data[0]; data[0] = c1*(hIr + dat data[1] = c1 * (hIr - c fouri(data,n/2,-1);	data[1]); - data[1]);	

dif9fourier.c

Apr 19 1999 09:20 dif9main.c Page 1
/*************************************
MAIN_HEADER <stdio.h> <stdlib.h> <math.h></math.h></stdlib.h></stdio.h>
#include "dif9head.h"
<pre>void getavec_square(void); void diff_input(void); void diff_output(void); void test_intot(void); void test_intot(void); void test_intot(void); void test_intot(void); void test_intot(void); void test_intot(void); void xv_new(double n0[], double n3[], double n5[], double n4[], double n5[], double n5[], void xv(double n0[], double n5[], double n3[], double n4[], double n5[], double n3[], void xv(double n0[], double n5[], double n3[], void inti_text_into (void); void diff_ext_into (void);</pre>
<pre>int k; double dummy; for (k=0; k<nnodes_all; k++)<="" pre=""></nnodes_all;></pre>
{
<pre>if (key_scheme == 10)</pre>
uxloc1[K] = 0.0000000; uxloc1[K] = 0.0000000; uxloc2[K] = 0.0000000; uxloc2[K] = 0.0000000; uxloc[K] = 0.0000000; uyloc[K] = 0.00000000;
<pre></pre>
<pre>case 0: uxloc1[k] = (nfll[k]*ecx1[1]+nfl2[k]*ecx1[2]+nfl3[k]*ecx1[3]+</pre>

Page 2 nf14[k]*ecy1[4]+nf15[k]*ecy1[5]+nf16[k]*ecy1[6] nf17[k]*ecy1[7]+nf18[k]*ecy1[8]); dummy = (mass1*nloc1[k])/tau1 + (mass2*nloc2[k])/tau2;
if(dummy) dif9main.c uxloc2[k] /= nloc2[k];
uyloc2[k] /= nloc2[k];
} uxloc1[k] /= nloc1[k]; uyloc1[k] /= nloc1[k]; | uxloc2[k] = 0.0000; | uyloc2[k] = 0.0000; | * default: uxloc1[k] = 0.0000000; uyloc1[k] = 0.0000000; uxloc2[k] = 0.0000000; uxloc2[k] = 0.0000000; uxloc[k] = 0.0000000; uyloc[k] = 0.00000000; break; uxloc1[k] = 0.0000; uyloc1[k] = 0.0000; uxloc[k] = 0.0000; uyloc[k] = 0.0000;) if(nloc1[k]) if(nloc2[k]) break;) else Apr 19 1999 09:20

dif9main.c

void compute_equilibrium_distributions2 (void)

int k;
double dummy, uu, uu1, uu2, s2;
double nt1, nt2, net1, net2;

Apr 19 1999 09:20

	,
if(nloc2[k])	
<pre>uxloc[k] = (alpha*mass2*nloc2[k]*uxloc2[k] +</pre>	
(mass2 * nloc2[k]); uyloc[k] = (alpha*mass2*nloc2[k]*uyloc2[k] + alpha*mass2*nloc1[k]*uyloc1[k]) /	
(mass2*nloc2[K]); } else	
<pre>{ uxloc(k) = uxloc2(k); uyloc(k) = uyloc2(k);</pre>	
} } else	
uxloc[k] = uxloc2[k]; uyloc[k] = uyloc2[k];	
<pre>uu</pre>	
neq20[k] = w0*nloc2[k] * (1.000 - uu2);	
` ≥:	
/ cspeed22;	
ny * dummy - uuz) / cspeed22; ny +	
<pre>iy * aummy - uuz) / cspeed22; iy +</pre>	
ny * dummy - / cspeed22; ny +	
<pre>ecx2[6]*uxloc[k] + ecy2[6]*uyloc[k]) / cspeed22; = w2*nloc2[k] * (1.000 + three * dummy +</pre>	
<pre>nine_over_two * diummy * diummy - lecx2[7]*uxloc[k] + ecy2[7]*uyloc[k]) / cspeed22; = w2*nloc2[k] * (1.000 + three * diummy +</pre>	
<pre>iecx2[8]*uxloc[k] + ecy2[8]*uyloc[k]) / cspeed22; = w2*nloc2[k] * (1.000 + three * dummy +</pre>	
dummy	
<pre>ntl +=nloc1[k]; nt2 +=nloc2[k]; net1+=neq10[k]+neq11[k]+neq12[k]+neq13[k]+neq14[k]+neq15[k]</pre>	
+neq16 [k, 1+neq17 [k, 1+neq18 k]; net2+neq20 [k] +neq21 [k] +neq28 [k] +neq28 [k] +neq24 [k] +neq25 [k] +e(2) = neq26 [k] +neq27 [k] +neq28 [k]; +e(1 +neq26 [k] +neq27 [k] +neq28 [k];	
#1\10 C111	
<pre>printf("iter=%d k-%d nloc1-%g neq1-%g nloc2-%g neq2-%g\n", lter,k,nloc1[k],neq10[k];heq11[k]+ neq12[k]+neq13[k]+neq14[k]+ nloc2[k],neq20[k]+neq21[k]+</pre>	
neq22[K]+neq23[K]+neq24[K]+neq25[K]+neq26[K]+neq2/[K]+neq28[K]); *,	
,*/ printf("k=%d uxloc1=%g uxloc2=%g uxloc=%g\n",k,uxloc1[k],uxloc2[k],uxloc[k]);	[k]);

Page 6

Apr 19 1999 09:20 dif9main.c Page 5	Apr 19 1999 09:20
<pre>printf("k=\$d uyloc1=\$g uyloc2=\$g\n",k,uyloc1[k],uyloc2[k],uyloc[k]); printf("\$g *g *g *g *g *g *g *g %f\n", f10[k],f11[k],f12[k],f13[k],f14[k],f15[k],</pre>	neq16[k] = w2*r dummy = (ecx1[7
fis(k,filk,filk),filk)) printf(*g	
<pre>L20(K),L2/(K),L26(K)); print[("%q %q %q %q %q %q %q %q\n", ff10(k),f11(k),f12(k),ff13(k),ff14(k),ff15(k), ff16(k),ff17(k),ff18(k));</pre>	neq10[K]
printf("%g *g *g *g *g *g *g *g")", f220[k],f221[k],f222[k],f23[k],f24[k],ff25[k], f26[k],f27[k],f28[k]);	
<pre>printf("%q %q %q %q %q %q %q %q %q %q %q'n", neq10(k).neq11[k).neq12[k],neq13[k],neq15[k], neq16[k],neq17[k),neq18[k]);</pre>	dummy = (ecx2[2 neq22[k] = w1*r
printf("%g %g %g %g %g %g %g %g %g)", neq20[k],neq21[k],neq22[k],neq23[k],neq25[k],neq25[k],neq26[k],neq26[k],neq28[k]),	dummy = (ecx2[3 neq23[k] = w1*r
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	dummy = (ecx2[4 neq24[k] = w1*1
printi("in==== iter=6a K=6a nti=6g ntt=6g ntt=6g nttz=7 iter, k, nti,nti,nti,nti); / / / / / / / / / / / / / / / / / / /	dummy = (ecx2[8ng = w2*1
<pre>// yoid compute_equilibrium_distributions(void)</pre>	$\begin{array}{ll} \operatorname{dumny} &= (\operatorname{ecx2}[(\operatorname{max}) - \operatorname{max}] \\ \operatorname{neq2}[k] &= \operatorname{m2}^{k}] \end{array}$
int k; double dummy, uu, uul, uu2, s2; double ntl. nt2, net1, net2;	dummy = (ecx2['neq27[k] = w2*
s2 = sqrt((double) 2);	dummy = (ecx2[8 neq28[k] = w2*1
/* ht1 = (double) 0; nt2 = (double) 0; net1 = (double) 0; net2 = (double) 0;	/* nt1 +=nloc1[k], nt2 +=nloc2[k], net1+=neq10[k],
<pre>printf("\n==== iter=%d k=%d nt1=%g net1=%g nt2=%g net2=%g\n\n", iter,k,nt1,net1,nt2,net2); */</pre>	+neq15 K net2+=neq20 K +neq26 K if((iter > 99)
for(k=0; k <nnodes_all; k++)<="" td=""><td>f printf("iter=%</td></nnodes_all;>	f printf("iter=%
<pre>t un = uxloc[k]*uxloc[k]+uyloc[k]; uu1 = three_over_two * uu / cspeed12; uu2 = three_over_two * uu / cspeed22;</pre>	1011/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/
neq10[k] = w0*nloc1[k] * (1.000 - uul);	*
<pre>dummy = (ecx1[1]*uxloc[k] + ecy1[1]*uyloc[k]) / cspeed12; neq11[k] = w1*nloc1[k] * (1.000 + thrus * dummy * dummy</pre>	printf("k=\$d printf("k=\$d printf("k=\$d
cspeed12;	Firmer (.g. g.
cspeed12; +	ELECT (29 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
cspeed12;	Firm f (197 97)
cspeed12;	Filmer ("9" 9" 9" 9" 9" 9" 9" 9" 9" 9" 9" 9" 9"
	y) ned10(k

	and the state of t
<pre>neq16(k) = w2*nloc1[k] * (1.000 + three * dummy + dummy = (ecx1[7]*uxloc[k] + nine_over_two * dummy * dummy - uul); dummy = (ecx1[7]*uxloc[k] + ecy1[7]*uyloc(k]) / Cspeed12; neq17[k] = w2*nloc1[k] * (1.000 + three * dummy + dummy - uul); dummy = (ecx1[8]*uxloc[k] + ecy1[8]*uyloc(k]) / Cspeed12; neq18[k] = w2*nloc1[k] * (1.000 + three * dummy + dummy - uul);</pre>	
<pre>neq20[K] = w0*nloc2[k] * (1.000 - uu2); dummy = (ecx2[1]*uxloc[k] + ecy2[1]*uyloc[k]) / cspeed22; neq21[K] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq22[K] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq22[K] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq23[K] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq23[K] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq24[k] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq24[k] = w1*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq25[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq25[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq26[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq26[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq26[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq26[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy * dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy + dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy + dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy + dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy + dummy - uu2); neq28[k] = w2*nloc2[k] * (1.000 + three * dummy + dummy - uu2); neq28[k] = w2*nloc2[k]</pre>	
<pre>nt1 +=nloc1[k]; nt2 +=nloc2[k]; nt2 +=ncd2[k]; nt3 +=ncd10[k]+ncq11[k]+ncq12[k]+ncq13[k]+ncq14[k]+ncq15[k]</pre>	
*/ printf("k-%d uxloc1=%g uxloc2=%g uxloc=%g\n",k,uxloc1[k],uxloc2[k],uxloc[k]) printf("k-%d uyloc1=%g uyloc2=%g uyloc=%g\n",k,uyloc1[k],uyloc2[k],uyloc[k]) printf("%g %g %g %g %g %g\n",k,uyloc1[k],uyloc2[k],uyloc[k]) printf("%g %g %g %g %g %g\n", flo[k],fl1[k],fl2[k],fl4[k],fl4[k],fl5[k], printf("%g %g %g %g %g %g %g %g %g\n", f20[k],f21[k],f22[k],f23[k],f24[k],f25[k], printf("%g %g %g %g %g %g %g %g %g\n", ff10[k],ff1[k],ff12[k]); printf("%g %g %g %g %g %g %g\n", ff20[k],ff1[k],ff12[k]); printf("%g %g %g %g %g %g %g\n", ff20[k],ff2[k],ff2[k]); printf("%g %g %g %g %g %g %g\n", ff20[k],ff2[k],ff2[k]); printf("%g %g %g %g %g %g %g\n", neq10[k],neq11[k],neq12[k],neq12[k],neq13[k],neq15[k],],uxloc[k]);],uyloc[k]);

dif9main.c

19

Printed by sofonea from flumag3.mec.utt.ro dif9main.c Page

Apr 19 1999 09:20

<pre>{ nfilk] = sfi[k] - (nfi[k]-neqi[k])*ctau - cgradx2*ecx[1]*(3.000*nfi[k]-4.000*nfi[nv3[k]]+</pre>
<pre>1</pre>
{ nff3[k] = sf3[k] - (nf3[k]-neg3[k])*ctau - cgradx2*ecx[3]*(-3.000*nf3[k]+4.000*nf3[nv1[k]]-
<pre>ff3[k] = sf3[k] - (nf3[k]-neq3[k])*ctau - cgradx*ecx[3]*(nf3[nv1[k]]-nf3[k]);</pre>
<pre>nff(k) = sf4(k) - (nf4(k)-neq4(k))*ctau -</pre>
if (key_force)
dscal = forc force_x*ecx[1[K] += dumm[1[K] += dumm[2[K] += dumm[2[K] += dumm[2[K] += dumm[force_x*ecx[4[K] += dumm[force_x*ecx[5[K] += dumm[force_x*ecx[6[K] += dumm[force_x*ecx[force_x*ec
itto[k] - Sto[k] - (itto[k]-itedo[k]) "Ccau;

Page 9				
Apr 19 1999 09:20 dif9main.c	nffl[k] = sfl[k] - (nfl[k]-neql[k])*ctau - cgrad*eox[1]*(nfl[k]-neql[k])*ctau - cgrady*eoy[2]*(nf2[k]-neql[k])*ctau - cgrady*eoy[2]*(nf2[k]-neqg[k])*; nff3[k] = sf3[k] - (nf3[k]-neqg[k])*; nff4[k] = sf4[k] - (nf3[k]-neqg[k])*ctau - cgrady*eoy[4]*(nf4[k]-neq4[k])*; nff5[k] = sf5[k] - (nf5[k]-neq4[k])*; nff5[k] = sf5[k] - (nf5[k]-neq6[k])*; nff6[k] = sf6[k] - (nf5[k]-neq6[k])*; nff6[k] = sf6[k] - (nf5[k]-neq6[k])*; nff6[k] = sf6[k] - (nf6[k]-neq6[k])*; nff7[k] = sf6[k] - (nf6[k]-neq6[k])*; cgrady*eox[6]*(nf6[k]-nf6[nv4[k]))* nff8[k] = sf8[k] - (nf8[k]-nf7[k])* cgrady*eox[7]*(nf7[nv2[k])-nf7[k])* nff8[k] = sf8[k] - (nf8[k]-nf7[k])* ngrady*eox[8]*(nf8[k]-nf8[k])* cgrady*eox[8]*(nf8[k]-nf8[k])*;	k] = sf5[k] - (nf5[k]-n k] = sf6[k] - (nf6[adxy*edxy*(nf6[k]-n adxy*edxy*(nf[k]- (nf7[k]- adxy*edxy*(nf7[k]- k] = sf7[k]- (nf7[k]- k] = sf8[k]- (nf8[k]-n x] = sf8[k]- (nf8[k]-n x) = sf8[k]- (nf8[k]-n	case 4: /* right wall */ nff0[k] = sf0[k] - (nf0[k]-neg0[k])*ctau; nff1[k] = sf1[k] - (nf1[k]-neg1[k])*ctau - cgradx*ecx[1]*(nf1[k]-nf1[nv3[k]); nff2[k] = sf2[k] - (nf2[k]-neg2[k])*ctau - cgrady*ecy[2]*(nf2[k]-neg2[k])*ctau - nff3[k] = sf3[k] - (nf3[k]-neg3[k])*ctau - cgrady*ecy[4]*(nf4[k]-neg4[k]); nff5[k] = sf5[k] - (nf4[k]-neg4[k]); nff5[k] = sf5[k] - (nf4[k]-neg4[k]); nff5[k] = sf5[k] - (nf4[k]-neg5[k])*ctau - cgradx*ecx[5]*(nf5[k]-nf5[nv4[k]]); nff6[k] = sf6[k] - (nf6[k]-nf6[k])*ctau - cgradx*ecx[6]*(nf6[k]-nf6[k]); cgradx*ecx[6]*(nf6[k]-nf6[nv4[k]); nff1[k] = sf7[k] - (nf7[k]-neg7[k]); cgradx*ecx[7]*(nf7[k]-nf6[k]);	cgrady*eqy[]*(nf]*(nf]*(n2[k])*nf]*(k]); nff8[k] = sf8[k] - (nf8[k]-neg8[k])*ctau - cgrady*ecy[8]*(nf8[k]-nf8[nv3[k]]) - cgrady*ecy[8]*(nf8[k]-nf8[k]); /* nff5[k] = sf5[k] - (nf5[k]-neg5[k])*ctau - cgradxy*edxy*(nf5[k]-nf5[nv7[k]]); nff5[k] = sf5[k] - (nf6[k]-neg6[k])*ctau - cgradxy*edxy*(nf6[k]-nf8[k]); nff7[k] = sf7[k] - (nf7[k]-neg7[k])*ctau - cgradxy*edxy*(nf8[k]-neg8[k])*ctau - cgradxy*edxy*(nf8[k]-nf8[k]); */ break; /*

Apr 19 1999 09:20 dif9main.c Page 10
<pre>default: nff0[k] = neq0[k]; nff1[k] = neq2[k]; nff3[k] = neq3[k]; nff3[k] = neq4[k]; nff4[k] = neq4[k]; nff6[k] = neq5[k]; nff6[k] = neq6[k]; hff6[k] = neq6[k]; hfff</pre>
<pre>void lglb_coll(double mass, double tau, double cspeed,</pre>
int k; double ctau = delta_t / tau;
<pre>for (k=0; kcnnodes_all; k++)</pre>
<pre>f nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau; nff1[k] = nf1[k] - (nf1[k]-neq1[k])*ctau; nff2[k] = nf2[k] - (nf2[k]-neq2[k])*ctau; nff3[k] = nf3[k] - (nf3[k]-neq3[k])*ctau; nff4[k] = nf4[k] - (nf5[k]-neq4[k])*ctau; nff5[k] = nf5[k] - (nf5[k]-neq4[k])*ctau; nff6[k] = nf6[k] - (nf5[k]-neq6[k])*ctau; nff8[k] = nf6[k] - (nf6[k]-neq6[k])*ctau; nff8[k] = nf8[k] - (nf6[k]-neq6[k])*ctau;</pre>
<pre>printf("k=kd coll\n",k); printf("k=kd coll\n",k); printf("k=kd coll\n",k); printf("nfl=kg neql=kg nffl=kg\n",nfl[k],neql[k],nffl[k]); printf("nfl=kg neql=kg nffl=kg\n",nfl[k],neql[k],nffl[k]); printf("nfl=kg neqg=kg nffl=kg\n",nfl[k],neqg[k],nffl[k]); printf("nfd=kg neqf=kg nffl=kg\n",nfl[k],neqf[k],nffl[k]); printf("nfl=kg neqf=kg nffl=kg\n",nfl[k],nffl[k]);</pre>
void lglb_prop(double mass, double tau, double cspeed, void lglb_prop(double mass, double nff1], double nff3[], double nff4[], double nff5[], double nff6[], double nff7[], double nff8[], double nff6[], double nff7[], double nff7[], double nff6[], double nff7[], double nff7[], double nff7[], double nff7[], double nff7[],
doob
cgrad = cspeed *
v
nf0[k] = nff0[k];

Printed by sofonea from flumag3.mec.utt.ro

lumag3.mec.utt.ro	Page 12
ea from flumag	
Printed by sofonea from f	nain.c
	dif9n

A							
Page 11							
Apr 19 1999 09:20 dif9main.c	<pre>switch(boundary_mode[k])</pre>	/* left wall */ nff1 k - (nff1 k - nff3 nv3 nff2 k - (nff2 k - nff3 nv3 nff3 k - (nff3 k - nff3 nv3 nff4 k - (nff4 k - nff5 nv3 nff6 k - (nff5 k - nff6 nv3 nff6 k - (nff6 k - nff6 nv3 nff7 k - (nff6 k - nff6 nv3 nff8 k - (nff8 k - nff6 nv3	Dreak;	/* printf("k=%d prop\n",k); printf("k=%d prop\n",k); printf("nff0=%g nf1=%g\n",nff1[k],nf1[k]); printf("nff0=%g nf1=%g\n",nff2[k],nf2[k]); printf("nff2=%g nf2=%g\n",nff2[k],nf2[k]); printf("nff2=%g nf3=%g\n",nff2[k],nf3]k]); printf("nff2=%g nf3=%g\n",nff2[k],nf6[k]); printf("nff5=%g nf6=%g\n",nff6[k],nf6[k]); printf("nff6=%g nf6=%g\n",nff6[k],nf6[k]); printf("nff6=%g nf6=%g\n",nff8[k],nf6[k]); printf("nff6=%g nf8=%g\n",nff8[k],nf8[k]); */	void convection_diffusion(double mass, double tau, double cspeed, double nff[], double nfff[], double neqf[], double neqf[], double neqf[], double neqf[], double neqf[], double neqf[],	int k; double ctau, cgrad, cgradx, cgradxs2, cgradys2, cgradxy; double cgradx2, cgradx2, cgradx2, double delta_x2, delta_y2; double dummy_force; double dummy_force;	<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_x; cgrady = cspeed * delta_t / delta_y;</pre>

Apr 19 1999 09:20 dif9main.c	Page 12
<pre>cgradxs2 = cspeed * sqrt((double) 2) * delta_t / delta_x; cgradys2 = cspeed * sqrt((double) 2) * delta_t / delta_y; cgradxy = cspeed * delta_t / sqrt((delta_x*delta_x + delta_y*delta_y); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgrady2 = cspeed * delta_t / (2.000*delta_y); cgradxy2 = cspeed * delta_t / (2.000*delta_y);</pre>	
<pre>delta_x2 = delta_x * delta_x; delta_y2 = delta_y * delta_y;</pre>	•
<pre>for(k=0; k<nnodes_all; k++)="" pre="" {<=""></nnodes_all;></pre>	
<pre>lary_mode[k]) /* bulk */</pre>	
* (nf0[nv3[k]] - 2.000*nf0[k] + (nf0[nv3[k]] - 2.000*nf0[k] + (nf0[nv2[k]] - 2.000*nf0[k] + = nf1[k] - (nf1[k] - nf1[nv3[k]]) * ctau * ecx[1] * (nf1[k] - nf1[nv3[k]])	
<pre>dcoef * (</pre>	
ູ່ ີ*.	
<pre>dcoef * ((nf3[nv3[k]] - 2.000*nf3[k] + nf3[nv1[k]]) / delta_x2 +</pre>	
* * .	
coer 6[k] gradx grady	
<pre>dcoer * (nf6[nv3[k]] - 2.000*nf6[k] + nf6[nv1[k]]) / delta_x2 +</pre>	
<pre>dcoel * (</pre>	
<pre>dcoel * (</pre>	
/*ntf("k==8d %g %g\n",k, neg0[k],neg1[k],neg2[k],neg4[k],neg5[k], neg6[k],neg7[k],neg8[k],uxloc[k],uyloc[k]), printf("k=ad nf %g %g %g %g %g %g %g %g %g,n",	

2	8
Printed by sotonea from flumag3.mec.utt.ro	Page
ပ္ပ	
Ĕ	
g.	
ğ	
5	
╤	1
ē	
2	
ĕ	
ၓ	
2	0
g	اخ
₫	اها
Ì	ĒΙ
	f9mail
	ᇹ

Apr 19 1999 09:20 dif9main.c Page 13	Apr 19 1999 09:20
k,nf0[k],nf1[k],nf2[k],nf3[k],nf4[k],nf5[k], nf6[k],nf7[k],nf8[k]); printf("k==kd nff %g % k,nff0[k],nff1[k],nff2[k],nff3[k],nff4[k],nff5[k],	- cgradx - cgrady dcoef * (
break; case 3: /* left wall */	
nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau +	Case 4: /*
<pre>dcoer * (2.000*nf0[k] - 5.000*nf0[nv1[k]] + 4.000*nf0[nv1[nv1[k]]] -</pre>	dcoef * dcoef * nff1[K] = r
>-	dcoef * dcoef * nfc2[K] = r
<pre>dcoef * (2.000*nf2[k] - 5.000*nf2[nv1[k]] + 4.000*nf2[nv1[k]]] - nf2[nv1[nv1[k]]]) / delta_x2 + (nf2[nv2[k]] - 2.000*nf2[k] + nf2[nv4[k]]) / delta_y2); nff3[k] = nf3[k] - (nf3[k]-neq3[k])*ctau - cgradx * ecx[3] * (nf3[nv1[k]] - nf3[k]) +</pre>	dcoef * 'dcoef * 'n fig [k] = r
<pre>dcoef * (2.000*nf3[k] - 5.000*nf3[nv1[k]] + 4.000*nf3[nv1[nv1[k]]] - nf3[nv1[nv1[nv1[k]]]] / delta_x2 + (nf3[nv2[k]] - 2.000*nf3[k] + nf3[nv4[k]]) / delta_y2); nf4[k] - (nf4[k]-neq4[k])*ctau - cgrady * ecy[4] * (nf4[nv2[k]] - nf4[k]) +</pre>	dcoef * dcoef * nff4[k] = n
<pre>dcoel * (2.000*nf4[k] - 5.000*nf4[nv1[k]] + 4.000*nf4[nv1[k]]] - nf4[nv1[nv1[nv1[k]]]] / delta_x2 + nf4[nv2[k]] - 2.000*nf4[k] + nf4[nv4[k]]) / delta_x2 + nf5[k] = nf5[k] - (nf5[k]) - 2.000*nf4[k] + nf4[nv4[k]]) / - cgradx * ecx[5] * (nf5[k]) - nf5[k]) + - cgrady * ecx[5] * (nf5[k]) - nf5[k]) +</pre>	dcoef * nff5[k] = 1
<pre>dcoer * (2.000*nf5[k] - 5.000*nf5[nv1[k]] + 4.000*nf5[nv1[k]]] - / delta_x2 +</pre>	dooef * nff6[k] = 1
<pre>dcoef * (2.000*nf6[k] - 5.000*nf6[nv1[k]] + 4.000*nf6[nv1[k]]] - / delta_x2 + nf6[nv1[nv1[nv1[k]]]) / delta_x2 + (nf6[nv2[k]] - 2.000*nf6[k] + nf6[nv4[k]]) / delta_y2); nff7[k] = nf7[k] - nf7[k</pre>	- cyfauy dooef * nff7[k] = 1 - cyfadx
<pre>dccei</pre>	doole *

- cgrz case 4: 'cgrz dcoef dcoef dcoef hff2[k] - cgrz dcoef - cgrz

- (nf8[k]-neq x([8] x (nf8[k] y([8] x (nf8[k] -5.000*nf8[k] -5.000*nf8[k] -2.00 x (nf8[k] -2.00 x (nf8[k
first_upwind(double mass, double tau, double cspee double nf0[], double nf1[], double nf double nf3[], double nf4[], double n double nf6[], double nf7[], double n double nff0[], double nff1[], double double nff3[], double nff4[], double double nff6], double nff4[], double double neq0[], double neq1[], double double neq0[], double neq4[], double
int k; double ctau, cgrad, cgrady, cgradxs2, cgradys2, cgradxy; double cgradxy; cgradxy2; cgradxy2; cgradxy2; double dummy_force; double prodscal;
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_y; cgrady = cspeed * delta_t / delta_y; cgradxs2 = cspeed * sqrt((double) 2) * delta_t / delta_x; cgradx2 = cspeed * sqrt((double) 2) * delta_t / delta_y; cgradxy = cspeed * delta_t / (2.000*delta_x*delta_x + delta_y*delta_y); cgradxy = cspeed * delta_t / (2.000*delta_x*d); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgrady2 = cspeed * delta_t / (2.000*delta_y); cgrady2 = cspeed * delta_t / (2.000*delta_y);</pre>
<pre>for(k=0; k<nnodes_all; k++)="" pre="" switch(boundary_mode[k])<="" {=""></nnodes_all;></pre>
case 0:

Apr 19 1999 09:20 diff9main.c	Page 16
<pre>print("k==\text{d} \text{ \tex{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{</pre>	
case 3: /* left wall */ nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau; - cgradx * ecx[1] * (nf1[k] - nf1[k])* - cgrady * ecx[2] * (nf2[k]-neq2[k])*ctau - cgrady * ecy[2] * (nf2[k] - nf2[nv4[k]]); nff3[k] = nf2[k] - (nf3[k]-neq3[k])*ctau - cgradx * ecx[3] * (nf3[k]-neq3[k]) * (nf2[nv1[k]]); nff3[k] = nf3[k] - (nf3[k]-neq3[k]) * (nf3[
case 4: /* right wall */	
nff0[k] = nf0[k] - (nf0[k]-neq0[k])*ctau; nff1[k] = nf1[k] - (nf1[k]-neq1[k])*ctau - cgradx * ecx[1] * (nf1[k]-neq1[k])*ctau - cgrady * ecy[2] * (nf2[k]-neq2[k])*ctau - cgrady * ecy[2] * (nf2[k]-neq2[k])*ctau - cgrady * ecx[3] * (nf3[k]-neq3[k]); nff3[k] = nf3[k] - (nf3[k]-neq3[k])*ctau - cgrady * ecx[3] * (nf3[k]-neq5[k])*ctau - cgrady * ecx[4] * (nf4[nv2[k]] - nf4[k]); nff5[k] = nf5[k] - (nf5[k]-neq5[k])*ctau - cgrady * ecx[5] * (nf5[k] - nf5[nv3[k]]) - cgrady * ecx[6] * (nf6[k] - nf6[k]) - cgrady * ecx[6] * (nf6[k] - nf6[k]) - cgrady * ecx[7] * (nf6[k] - nf6[k]) - cgrady * ecx[7] * (nf7[k] - nf7[k]) nff8[k] = nf8[k] - (nf7[k] - nf7[k]) - cgrady * ecx[7] * (nf7[k] - nf7[k]) - cgrady * ecx[7] * (nf8[k] - nf8[k]) - cgrady * ecx[8] * (nf8[k] - nf8[k]) - cgrady * ecx[8] * (nf8[k] - nf8[k]);	
<pre>void second_upwind(double mass, double tau, double cspeed,</pre>	

c.utt.ro	Page 1
umag3.mec.utt.ro	
from flur	
sofonea	
inted by	ain.c
Pri	dif9m

Apr 19 1999 09:20 dif9main.c Page 17	Apr 19 1999 09:20
<pre>double nff0[], double nff1[], double nff2[], double nff3[], double nff4[], double nff5[], double nff6[], double nff7[], double nff8[], double neq0[], double neq4[], double neq5[], double neq3[], double neq4[], double neq5[], double neq6[], double neq7[],</pre>	- cgradx nff4[k] = - - cgrady nff5[k] = - - cgradx
int k; double ctau, cgrad, cgradx, cgradx; double craadx, cgradx,; double dummy force; double prodscal;	= Livering - Cogrady - Cog
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_x; cgrady = cspeed * delta_t / sgrat (delta_x*delta_x + delta_y*delta_y); cgradxy = cspeed * delta_t / sgrat (delta_x*delta_x + delta_y*delta_y); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_y); cgradxy2 = cspeed * delta_t / (2.000*delta_x); cgradxy2 = cspeed * delta_t / (2.000*delta_x);</pre>	niloth - cgrady - cgrady break; case 3: /* nff0[k] =
<pre>for(k=0; k<nnodes_all; k++)="" pre="" {<=""></nnodes_all;></pre>	
<pre>switch(boundary_mode[k])</pre>	nff3[k] =
	- cgradx
<pre>void first_centered(double mass, double tau, double cspeed,</pre>	_ 4 4 5 4 4 5 4 5 5 5 6 *
int k; double ctau, cgrad, cgrady, cgrady; double ctau, cgrad, cgrady; double cgradx, cgradxy2; double dummy_force; double profece; double profecal;	nff0[K] = nff1[K] = - cgradA
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_x; cgrady = cspeed * delta_t / delta_t, cgrady = cspeed * delta_t / delta_t, cgradxy = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_y); cgradx2 = cspeed * delta_t / (2.000 * sqrt (delta_x*delta_x + delta_y*delta_y));</pre>	nff3 (k) = 0 cgradx
<pre>for(k=0; k<nnodes_all; k++)="" mode(k])<="" pre="" switch(boundary="" {=""></nnodes_all;></pre>	- cgradx - cgrady nff7[k] = - cgradx
<pre>case 0: /* bulk */ nff0[k] - (nf0[k]-neq0[k])*ctau; nff0[k] = nf0[k] - (nf1[k]-neq1[k])*ctau; nff1[k] = nf1[k] - (nf1[k]-neq1[k])*ctau</pre>	nff8 [K] = ogrady cgrady c

utt.ro	Page
Printed by sofonea from flumag3.mec.utt.re	
n flume	
nea fror	3
oy sofor	ing.
rinted t	ain.c
α.	dif9n
	- Fil

dif9n	Apr 19 1999
void lax_friedrichs (double mass, double tau, double cspeed, double nf5[], double nf5[], double nf5[], double nf5[], double nf6[], double nf7[], double nf8[], double nf6[], double nff1[], double nf8[], double nff6[], double nff7[], double nff8[], double nff6[], double nff7[], double nff8[], double neq7[], double neq7[], double neq7[], double neq8[], double neq6[], double neq8[])	- (nf1k1)-neq1k1)* - cgradk2 * ecx[1] - nff2[k] = (nf2[k1]k] - (nf2[k] - neq2[k])* - cgradk2 * ecx[2] - nff3[k] = (nf3[k] - ecx[2]) - (nf3[k] - neq3[k])* - cgradk2 * ecx[3] - nff4[k] = (nf4[k] - neq4[k])*
int k; double ctau, cgrad, cgrady, cgradky; double ctau, cgrady, cgradky; double cgradky, cgradky2; cgradky2; double dummy_force; double prodscal;	
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_x; cgrady = cspeed * delta_t / delta_y; cgradxy = cspeed * delta_t / delta_y; cgradxy = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*sgrt(delta_x*delta_x + delta_y*delta_y));</pre>	- Gradk2 * ecx[6] - Gradk2 * ecx[6] - Gradk2 * ecx[6] - Gradk2 * ecx[6] - Gradk2 * ecx[7] - Gradk3 * e
<pre>for (k=0; k<nnodes_all; k++)="" td="" {<=""><td>cylady2 * ecy[8] break;</td></nnodes_all;></pre>	cylady2 * ecy[8] break;
<pre>switch(boundary_modelk)) case 0: /* bulk */</pre>	case 4: /* right wa
ff0[k] = (nf0[nv1[k]]+nf0[nv3[k]]+nf0[nv2[k]]+nf0[nv4[k]]) / 4.000 - (nf0[k]-neq0[k])*ctau; -ff1[k] = (nf1[nv1[k]]+nf1[nv3[k]]+nf1[nv2[k]]+nf1[nv4[k]]) / 4.000	nffu[k] = (nfu[k]+hfu - (nfu[k]-neq0[k]) - (nfu[k]+nfu - (nfu[k]-neq1[k])*
- (nfl[k]-neql[k])*ctau - cgradx2 * ecx[]] * (nfl[nv][k]] - nfl[nv3[k]]); .ff2[k] = (nf2[nv1[k]]+nf2[nv3[k]]+nf2[nv2[k]]+nf2[nv4[k]]) / 4.000	- cgradx2 * ecx[1] nff2[k] = (nf2[k]+nf2 - (nf2[k])-neq2[k]) *
- (nf2[k]-neg2[k])*crac - cgrady2 * ecy[2] * (nf2[nv2[k]] - nf2[nv4[k]]); nff3[k] = (nf3[nv1[k]]+nf3[nv3[k]]+nf3[nv2[k]]+nf3[nv4[k]]) / 4.000	- cgrady2 * ecy(z) nff3[k] = (nf3[k]+nf3 (nf3[k]-ne3[k]) *
- (nf3 k -neq4[k])*crau - cgradx2 * ecx(3] * (nf3[nv1[k]] - nf3[nv3[k]]); .ff4[k] = (nf4[nv1[k]]+nf4[nv3[k]]+nf4[nv2[k]]+nf4[nv4[k]]) / 4.000	- cgradat
- (nt4 kl.neqqikl) *crau - (nt4 kl.neqqikl) *crau - cgrady2 * ecyl4] * (nt4 [nv2[k]] - nt4 [nv4[k]]); .ff5[k] = (nt5]nv1[k]-ht5[nv2[k]]+nt5[nv3[k]]+nt5[nv4[k]]) / 4.000	
- (nto K -neqo K)*ccau - cgadaz = ecx[5] * (nf5[nv1[k]] - nf5[nv2[k]]) - cgradyz * ecy[5] * (nf5[nv2[k]] - nf5[nv4[k]]); - cgradyz * ecy[5] * (nf5[nv2[k]]+nf6[nv3[k]]+nf6[nv4[k]]) / 4.000	
- (nf6[k]-neq6[k])*ctau - cgradx2 * ecx[6] * (nf6[nv1[k]] - nf6[nv3[k]]) - cgrady2 * ecx[6] * (nf6[nv2[k]] - nf6[nv4[k]]); nff7[k] = (nf7[nv1[k]]+nf7[nv2[k]]+nf7[nv3[k]]+nf7[nv4[k]]) / 4.000	- cgradx2 * ecx[6] - cgradx2 * ecx[6] - cgrady2 * ecx[6] nff7[k] = (nf7[k]-neq7[k])*
- (nf7[k]-neq7[k])*ctau - ogradx2 * eox[7] * (nf7[nv1[k]] - nf7[nv3[k]]) - cgrady2 * eox[7] * (nf7[nv2[k]] - nf7[nv4[k]]); - nff8[k] = (nf8[nv1[k]]+nf8[nv2[k]]+nf8[nv3[k]]+nf8[nv4[k]]) / 4.000	- cgradx2 * ecx[7] - cgradx2 * ecx[7] - cgrady2 * ecy[7] nff8[k] = (nf8[k]-neq8[k])*
- (nf8[k]-neq8[k])*crau - cgradx2 * ecx[8] * (nf8[nv1[k]] - nf8[nv3[k]]); - cgrady2 * ecy[8] * (nf8[nv2[k]] - nf8[nv4[k]]); break;	- cgradx2 * ecx 8 - cgrady2 * ecy 8 break;
case 3: /* left wall */	
nff0[k] = (nf0[nv1[k]]+nf0[k]+nf0[nv2[k]]+nf0[nv4[k]]) / 4.000	(

the second control of
nffl[k] = (nfl[nvl[k])+nfl[k]+nfl[nv2[k]]+nfl[nv4[k]]) / 4.000
~
- (niz/Ri-neqz/LX); ccard - cgrady2 * ccy[2] * (nf2[nv2[k]] - nf2[nv4[k]]); nff3[k] = (nf3[nv1[k]]+nf3[k]+nf3[nv2[k]]+nf3[nv4[k]]) / 4.000
_ 4.
- (n14 k]-neq4 k] vcae - cgrady2 * ecy[4] * (nf4[nv2[k]] - nf4[nv4[k]]); nff5[k] - (nf5[ny1[k]]+nf5[nv2[k]]+nf5[k]+nf5[nv4[k]]) / 4.000
9
- (nfe k -neq6 k)*cten - cgradx2 * ecx[6] * (nfe[nv1[k]] - nfe[k]) - cgrady2 * ecy[6] * (nf6[nv2[k]] - nf6[nv4[k]]); nff7[k] = (nf7[ny1[k]]+nf7[nv2[k]]+nf7[k]+nf7[nv4[k]]) / 4.000
- (nf/[k]-neq' k])*cten - cgradx2 * ecx[7] * (nf7[nv1[k]] - nf7[nv4[k]]); - cgrady2 * ecx[7] * (nf7[nv2[k]] - nf7[nv4[k]]); nff8[k] = (nf8[nv1[k]]+nf8[nv2[k]]+nf8[k]+nf8[nv4[k]]) / 4.000
- (nrs K -neqs K)*crau - cgradx2 * ecx[8] * (nfs[nv1[k]] - nfs[k]) - cgrady2 * ecy[8] * (nfs[nv2[k]] - nfs[nv4[k]]); break;
case 4: /* right wall */
nff0[k] = (nf0[k] + nf0[nv3[k]] + nf0[nv2[k]] + nf0[nv4[k]]) / 4.000
(mro(k) [[k] = (
- (nf2 k_neq2 k)*cten - cgrady2 * ecy[2] * (nf2 nv2 k]] - nf2 nv4 k]]); nff3 k] = (nf3 k]+nf3 nv3 k]]+nf3 nv2 k]]+nf3 nv4 k]]) / 4.000
- (nf3 K]-neg3 K])*ctan - cgradx2 * ecx[3] * (nf3 k] - nf3[nv3[k]]); nff4[k] = (nf4[k]+nf4[nv3[k]]+nf4[nv2[k]]+nf4[nv4[k]]) / 4.000
- (nf4 K1)-mcq4(k1)*ctem - cgrady2 * ecy[4] * (nf4[nv2[k]] - nf4[nv4[k]]); nff5[k] = (nf5[k]+nf5[nv2[k]]+nf5[nv3[k]]+nf5[nv4[k]]) / 4.000
- (nf5[k]-neq5[k])*ctau - cgradx2 * ecx[5] * (nf5[k] - nf5[nv3[k]]) - cgrady2 * ecx[5] * (nf5[nv2[k]] - nf5[nv4[k]]); nff6[k] = (nf6[k]+nf6[nv2[k]]+nf6[nv3[k]]+nf6[nv4[k]]) / 4.000
- (nf6[k]-neq6[k])*ctau - cgradk2 * ecx[6] * (nf6[k] - nf6[nv4[k]]); - cgrady2 * ecx[6] * (nf6[nv2[k]] - nf6[nv4[k]]); nff7[k] = (nf7[k]+nf7]nv2[k]+nf7[nv3[k]+nf7[nv3]k]
<pre>- (nf7[k]-neq7[k])*ctau - cgradk2 * ecx[] * (nf7[k] - nf7[nv3[k]]) - cgrady2 * ecx[] * (nf7[nv2[k]] - nf7[nv4[k]]); - nff8[k] = (nf8[nv2[k]]+nf8[nv3[k]]+nf8[nv4[k]]) / 4.000</pre>
- (nf8[k]-neq8[k])*ctau - cgradx2 * ecx[8] * (nf8[k] - nf8[nv3[k]]) - cgrady2 * ecy[8] * (nf8[nv2[k]] - nf8[nv4[k]]); break;
void lax_wendroff(double mass, double tau, double cspeed,

Apr 19 1999 09:20 dif9main.c	Page 21
double nf0[], double nf1[], double nf2[], double nf3[], double nf4[], double nf5[], double nf6[], double nf7[], double nff2[], double nff0[], double nff1[], double nff2[], double nff6[], double nff7[], double nff8[], double neq0[], double neq1[], double nff8[], double neq0[], double neq1[], double neq2[], double neq5[], double neq4[], double neq5[],	
int k; double ctau, cgrad, cgradx, cgrady, cgradxy, xdummy, ydummy; double cgradx2, cgrady2, cgradxy2; double dummy_force; double prodscal;	
<pre>ctau = delta_t / tau; cgradx = cspeed * delta_t / delta_x; cgradx = cspeed * delta_t / delta_y; cgradxy = cspeed * delta_t / sgrt(delta_x*delta_x + delta_y*delta_y); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradx2 = cspeed * delta_t / (2.000*delta_x); cgradxy2 = cspeed * delta_t / (2.000 * sgrt(delta_x*delta_x + delta_x*delta_x));</pre>	
<pre>for (k=0; k<nnodes_all; <="" k++)="" pre=""></nnodes_all;></pre>	
<pre>'switch(boundary_mode[k]) { case 0: /* bulk */</pre>	
a go a gu	
xdummy = Cgradx2 = Cox[2]; ydummy = cgrady2 * ccy[2]; nff2[k] = nf2[k] - (nf2[k]-neq2[k]) *ctau - ydummy * (nf2[nv2[k]] - nf2[nv4[k]])	
F 20 0	
= n mmy mmy :3 [nv	
+ ydummy * corady * ecy[4] + ydumny = corady * ecy[5]; xdummy = cgradx2 * ecx[5]; ydumny = cgradx2 * ecx[5]; nffs!k] = nf5 k - nf5 k -ned5 k)*ctau	
mmy * (r mmy * cc 5[nv1[k] mmy * (r	
ec.) 000 000 000 000 000 000 000 000 000 0	
nff6[k] = nf6[k] - (nf6[k]-neq6[k])*ctau - xdummy * (nf6[nv1[k]] - nf6[nv3[k]])	

Printed by sofonea from flumag3.mec.utt.ro dif9main.c Page 2

Apr 19 1999 09:20

+ xdummy * cgrad * (nf6[nv1[k]] - - ydummy * cgrad * (nf6[nv2[k]] - xdummy = cgrady2 * ydummy = cgrady2 * ydummy = cgrady2 * ydummy = cgrady2 * (nf7[nv2[k]] - - xdummy * cgrad * (nf7[nv2[k]] - - ydummy = cgrady2 * ydummy = cgrady2 * ydummy = cgrady2 * ydummy = cgrady2 * (nf8[nv1[k]] - - ydummy * cgrad * (nf8[nv1[k]] - ydummy = cgrady2 * (nf8[nv2[k]] - ydummy = cgrady2 * (nf8[nv2[k]] - ydummy = cgrady2 * (nf8[nv2[k]] - ydummy = cgrady2 * ydummy = cgrady2 *
--

	24
flumag3.mec.utt.ro	Page 2
mec.	
mag3	
a from flu	
iea fr	
rinted by sofones	
ed by	ပ
Print	9mail
	dif9
	1 1

Apr 19 1999 09:20

Page 23	
Apr 19 1999 09:20 dif9main.c	* (Infe[Inv2[K]] = 2.000 * Infe[K] + Infe[Inv4[K]]); xcdummy = cogradot = cox(7); ycdummy = cogradot = cox(7); + (Admany = cogradot = cox(8); * (Infe[Inv2[K]] = 2.000 * Infe[K] + Infe[Inv4[K]]); * (Admany = cogradot = cox(8); * (Infe[Inv2[K]] = 2.000 * Infe[K] + Infe[Inv4[K]]); * (Admany = cogradot = cox(8); * (Infe[Inv2[K]] = 2.000 * Infe[K] + Infe[Inv4[K]]); * (Admany = cogradot = cox(8); * (Infe[Inv2[K]] = 2.000 * Infe[K] + Infe[Inv4[K]]); * (Admany = cogradot = cox(1); * (Infe[Inv2[K]] = 0.000 * Infe[K] + Infe[Inv4[K]]); * (Admany = cogradot = cox(1); * (Infe[Inv2[K]] = 0.000 * Infe[K] + Infe[Inv4[K]]); * (Infe[Inv2[K]] = 0.000 * Infe[Inv4[K]]); * (Infe[Inv2[K]] = 0.000 * Infe[Inva[K]] = Infe[In

	CC. CC CCC CC T T T T T T T T T T T T T	ADI 19 1999 09.20	
	20 000	CYADAL	
1967		2	
. WOMAN			
		_	

Apr 19 1999 09:20 dif9main.c	Page 25
switch(key_scheme)	
case 0:	
first_upwind(mass], taul, cspeed!, fil, fil, fil, fil, fil, fil, fil, fil,	
neg10, neg11, neg12, neg13, neg14, neg15, neg16, neg17, neg18);	
<pre>first_upwind(mass2, tau2, cspeed2,</pre>	
break; case 1:	
<pre>second_upwind(mass1, tau1, cspeed1,</pre>	
filo, fill, fil2, fil3, fil4, fil5, fil6, fil7, fil8, neq10, neq11, neq12, neq13, neq14, neq15, neq16, neq18;	
second_upwind(mass2, tau2_ cspeed2, 120, f21, f22, f23, f24, f25, f26, f27, f28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, neq20, neq21, neq22, neq23, neq24, neq25, neq26,	
break;	
case 2: first centered/mass1. tau1. cspeed1.	
first_centered(mass2, tau2, cspeed2, f25, f26, f27, f28, f20, f21, f22, f23, f24, f25, f26, f27, f28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, neq24, neq20, neq21, neq22, neq23, neq24, neq25, neq26,	
break; case 3:	
lax_friedrichs(mass1, tau1, cspeed1, f15, f16, f17, f18, f19, ff11, ff13, ff14, ff15, ff15, ff14, ff15, ff14, ff15, ff14, ff15, ff14, ff15, ff18, ff14, ff15, ff18, ff18	
neqiv, neqir, ne	
lax_irledilons(masss, rauz, cspearz, 125, f26, f27, f28, f20, f21, f21, f22, f23, f124, ff25, ff25, ff26, ff27, ff28, meg20, meg21, meg22, meg23, meg24, meg25, meg26, meg26, meg28).	
break;	
lax_wendroff(mass1, tau1, cspeed1, lax_wendroff(mass1, tau1, cspeed1, fal0, fil1, fil2, fil3, fil4, fil5, fil6, fil7, ffl8,	
lax_wendroff(mass2, tau2, cspeed2, f20, f21, f22, f23, f24, f25, f26, f27, f28, f20, f211, f122, ff23, ff24, ff25, ff26, ff27, ff28, neq20, neq22, neq23, neq24, neq25, neq25,	
neq27, neq28); break;	
case 3: leapfrog(mass1, tau1, cspeed1, leapfrog(f10, f11, f12, f13, f14, f15, f16, f17, f18, ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18,	
neq10, neq11, neq12, neq13, neq14, neq15, neq16, neq18);	

Apr 19 1999 09:20 dif9main.c Page	le 26
leapfrog(mass2, tau2, cspeed2, f20, f21, f22, f23, f24, f25, f26, f27, f28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, neq20, neq22, neq23, neq23, neq25, neq26, neq26,	
break; case 6: store_distribution_functions();	
runge_kutta(key_point, massl, taul, cspeedl, runge_kutta(key_point, massl, taul, cspeedl, fil, fil, fil, fil2, fil3, fil4, fil6, fil6, fil7, fil8, sfl0, sfl1, fil2, fil3, fil4, fil5, sfl6, sfl7, sfl8, neql0, sfl1, sfl2, sfl3, sfl4, sfl5, sfl6, sfl7, sfl8, neql0, neql0, neql1, neql3, neql4, neql5, neql6, neql6,	
neq17, neq18); runge_kutta(key_point, mass2, tau2, cspeed2, f20, f28, f20, f21, f21, f22, f23, f24, f25, f26, f27, ff28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, sf20, sf21, sf22, sf23, sf24, sf25, sf26, sf27, sf28, neq20, neq21, neq22, neq22, neq23, neq22, neq22,	
break; case 7: lgb_coll(mass), taul, cspeedl, f15, f16, f17, f18, f10, f11, f12, f13, f14, f115, f16, f17, f18, f10, f11, f12, f13, f14, f115, f16, f17, f118, neq10, neq12, neq12, neq15, neq15, neq16,	
lglb_coll(mass2, tand. cspeed2, f20, f21, f22, f23, f24, f25, f26, f27, f28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, neg20, neg21, neg22, neg23, neg24, neg25, neg26,	
lglb_prop(mass), taul, cspeedl, ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, f10, f11, f12, f13, f14, f15, f16, f17, f18); lglb_prop(mass2, tau2, cspeed2, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, f20, f21, f22, f23, f24, f25, f26, f27, f28);	
Dreak; Case 8: convection_diffusion(mass1, tau1, cspeed1, f10, f11, f12, f13, f14, f15, f16, f17, f18, f10, f11, f12, f13, f14, ff15, ff16, ff17, f18, neq10, neq11, neq12, neq13, neq15, neq15, neq16,	
nequ'), nequ's); convection_diffusion(mass2, tau2, cspeed2, f20, f21, f22, f23, f24, f25, f26, f27, f28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff77, ff28, neq20, neq21, neq22, neq23, neq25, neq25, neq26, break;	
test_distribution_functions(ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff16, test_distribution_functions(ff1), ff18); test_distribution_functions(ff20, ff21, ff22, ff23, ff24, ff25, ff26, compute_local_speeds(ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, ff24, ff25, ff26, ff27, ff28); compute_equilibrium_distributions(); switch(key_echeme)	
{ case 0: case 10: case 10: first_upwind(mass1, taul, ospeed1, filo, ffl1, ffl3, ffl4, ffl5, ffl6, ffl7, ffl8, fl0, ffl1, fl1, fl3, fl4, fl5, fl6, fl7, fl8, neq10, neq11, neq12, neq13, neq14, neq15, neq16, neq17, neq18);	

dif9main.c

Apr 19 1999 09:20 dif9main.c Pac	Page 28
ff10, ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, ff10, f11, f12, f13, f14, f15, f16, f17, f18, s110, s111, s113, s113, s114, s115, s16, s117, s118, neq10, neq11, neq12, neq13, neq14, neq15, neq16, neq16, neq17, neq18); runge_kutta(key_point, massa, tau2, cspeed2, ff20, ff21, f21, f21, f23, f24, f25, f26, f27, f28, f20, s120, s120, s121, f22, f23, s24, f25, f26, f27, f28, s120, s120, s121, f22, f23, s24, s125, s126, s121, s128, neq22, neq23, neq25, neq25, neq25, neq25,	
break; case 7: break; case 7: break; convection_diffusion(mass1, tau1, cspeed1, ff15, ff16, ff17, ff18, f10, f11, ff12, ff13, ff14, ff15, ff16, f17, f18, neq10, neq11, neq12, neq13, neq14, neq16, neq17, neq18; convection_diffusion(mass2, tau2, cspeed2, ff29, ff26, ff27, ff28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, ff20, ff21, ff22, ff23, ff24, ff25, ff26, ff27, ff28, ff20, ff21, neq20, neq21, neq22, neq23, neq24, neq25, neq26,	
<pre>autiter++; iter++; if(key_scheme < 6) { autiter++; iter++; }</pre>	
<pre>/* Runge Kutta or lattice gas like */ /* while (autiter < niter_cycle)</pre>	
Iglb_coll(mass1, tau1, cspeed1,	

8

Apr 19 1999 09:20

	<pre>cspeed2 = a_cspeed2[isim]; tau1 = a_taul[isim]; tau2 = a_taud[isim]; tau2 = a_taud[isim]; nzerolleft = a_nzerolleft[isim]; nzerolleft = a_nzerolleft[isim]; nzerollieft = a_nzerolleft[isim]; nzerollieft = a_nzerollieft[isim]; nzerollight = a_nzerollight[isim];</pre>
	<pre>cspeed12 = cspeed1 * cspeed1; cspeed22 = cspeed2 * cspeed2; cspeed1s = cspeed1 * sqrt((double) 2); cspeed1s = cspeed2 * sqrt((double) 2); cspeed1s2 = cspeed1s * cspeed1s; cspeed2s2 = cspeed2s * cspeed2s;</pre>
	<pre>build_names(isim); init_lattice_functions(); init_latxis_nine(); init_arrays.nine_square(); init_arrays_nine_square_aux(); getavec_square();</pre>
* *	<pre>iter = 0; xv_new(f10,f11,f12,f13,f14,f15,f16,f17,f18,xv_name,1.0001); xv(f10,f11,f12,f13,f14,f15,f16,f17,f18,"xv");</pre>
-	<pre>test_ntot(); dif9_profile(); for(icycle=0; icycle</pre> cross icycle++) { }
	<pre>dif9_automaton();</pre>
	/* } quiver(); */ free_lattice_functions();
free }	} free_nsim();

Page 1					
Jul 17 1999 17:14 dif9.input	nnodes_x= 250				

Appendix C sw code Jul 9 1999 17:18

Jul 9 1999 17:18	raye i
/*************************************	
* * Swileding * Definition of global variables * Definition of global variables	

#define NNX 1024 #define NNY 192 #define NNODES1 NNX * NNY + 1 #define NSIM 10	
#ifdef MAIN_HEADER	
char sim_name[40], asim_name[NSIM][40];	
<pre>char job_name[] = "sw.job", output_name[128], save_name[128], profile_name[128], xv_name[128], wet_name[128], angle_name[128];</pre>	
<pre>double ecx[7], ecy[7], ecxx[7], ecyx[7], ecyx[7];</pre>	
<pre>double f0[NNODES1], f1[NNODES1], f2[NNODES1], f3[NNODES1], f5[NNODES1], f6[NNODES1];</pre>	
<pre>double ff0[NNODES1], ff1[NNODES1], ff2[NNODES1], ff3[NNODES1], ff4[NNODES1], ff5[NNODES1], ff6[NNODES1];</pre>	
<pre>double floc[NNODES1], fgradx[NNODES1], fgrady[NNODES1], flap[NNODES1];</pre>	
<pre>double edip[NNODES1], egradx[NNODES1], egrady[NNODES1];</pre>	
int val[NNODES1];	
<pre>int nv0[NNODES1], nv1[NNODES1], nv3[NNODES1], nv4[NNODES1], nv5[NNODES1], nv6[NNODES1];</pre>	
int boundary_mode(NNODES1);	,
<pre>double rhomed, temp, temp_in, temp_fin, kappa, tau, tau3, ax, ay,</pre>	
<pre>int key_status, key_int; key_interaction, key_interaction_in; key_interaction_fin, key_boundary, key_boundary_ini, key_boundary_fin; key_fin; key_fin;</pre>	
<pre>int akey_status[NSIM], aniter_init[NSIM], ansav[NSIM], ancycles (NSIM], aniter_cycle[NSIM], akey_init[NSIM], akey_interaction_ini[NSIM], akey_interaction_fini[NSIM], akey_boundary_ini[NSIM], akey_boundary_fin[NSIM],</pre>	
<pre>double arhomed[NSIM], atemp_in[NSIM], akappa[NSIM], atau[NSIM], aax[NSIM], amx[NSIM], amy[NSIM], agradmiulwalll[NSIM], agradmiulwalll[NSIM], agradmiulwall2[NSIM], agradmiulwall2[NSIM]),</pre>	
int av[101], as[101], achi[101], atime[101];	

<pre>double arl[101], aalphal[101], aalphad1[101], atanalphal[101], ar2[101], aalpha2[101], aalpha2[101], acosalpha1[101], acosalpha2[101];</pre>
int timecount;
int nsim, niter_init, nsav, ncycles, niter_cycle, iter, niter;
int key, scale;
const double b = 6.000000000, bl = 7.000000000, apsi = 9.0/49.0, bpsi = 2.0/21.0;
<pre>const int nnodx = NNX, nnody = NNY, nnodes = NNX * NNY, nnodes1 = NNX * NNY +1, nnodesxy1 = NNX * (NNY - 1), nnodes_aux = NNX * NNX + 2 * (NNY + NNX + 1) + 1;</pre>
const double dnnodx = (double) NNX, dnnody = (double) NNY;
const double three_over_two = 3.00 / 2.00, nine_over_two = 9.00 / 2.00;
#e1se
extern char sim_name[40], asim_name[NSIM][40];
<pre>extern char job_name[], output_name[], save_name[], rez_name[], profile_name[], xv_name[], wet_name[], angle_name[];</pre>
extern double ecx[], ecy[], ecxx[], ecxy[], ecyx[],
extern double f0[], f1[], f2[], f3[], f4[], f5[], f6[];
extern double ff0[], ff1[], ff2[], ff3[], ff4[], ff5[], ff6[];
extern double floc[], fgradx[], fgrady[];
extern double edip[], egradx[], egrady[];
extern int val[];
extern int nv0[], nv1[], nv2[], nv3[], nv4[], nv5[], nv6[];
extern int boundary_mode[];
extern double rhomed, temp_in, temp_fin, kappa, tau, tau3, ax, ay, mm, mx, mg, cardminima, mm, ms, mg, cardminima, mm, ms, mg, ms, ms, ms, ms, ms, ms, ms, ms, ms, ms
<pre>int key_status, key_init, key_interaction, key_interaction_ini, key_intera key_boundary, key_boundary_ini, key_boundary_fin</pre>
<pre>extern int akey_status[], aniter_init[], ansav[], ancycles[], aniter_cycle[], akey_init[], akey_interaction_ini[], akey_interaction_fin[], akey_boundary_ini[], akey_boundary_fin[],</pre>
<pre>extern double arhomed[], atemp_in[], atemp_fin[], akappa[],</pre>
extern int av[], as[], achi[], atime[];
<pre>extern double ar1[], aalpha1[], aalphad1[], atanalpha1[], ar2[], aalpha2[], aalphad2[], atanalpha2[], acosalpha1[], acosalpha2[];</pre>

Jul 13 1999 09:19 Swinout.c
<pre>fout = fopen("sw.out","w"); fprintf(fout,"%d\n",nsim); for(i=0; i<nsim; i++)<="" td=""></nsim;></pre>
<pre>void build_names(int isim) { int irhomed,itemp_in,itemp_fin,itau,ikappa,iax,iay,imx,imy; int igradmiulwall1,igradmiu2wall1,igradmiu1wall2,igradmiu2wall2;</pre>
<pre>irhomed = (int) (arhomed[isim] * 100.00); ithomed = (int) (atemp_int[isim] * 1000.00); itemp_in = (int) (atemp_int[isim] * 1000.00); itemp_in = (int) (atemp_int[isim] * 1000.00); ixapa = (int) (atemp_int[isim] * 1000.00); ixa = (int) (aax[isim]*1000.00); iax = (int) (aax[isim]*1000.00); imx = (int) (aax[isim]*1000.00); imx = (int) (aax[isim]*1000.00); igradmiuvall = (int) (agradmiuvalli[isim]*1.e+03); igradmiuvall = (int) (agradmiuvalli[isim]*1.e+04); igradmiuvall = (int) (agradmiuvalli); ak4.4d_\$5.5d_\$5.5d' ak9_int[isim], akey_interaction_fin[isim], isprintf(tamp_intermor, "\$\$*, output_name); sprintf(tav_name, "\$\$*, output_name); sprintf(angle_name, "\$\$*, output_name, "\$\$*, ou</pre>
<pre>int read_status(void) { FILE *fsav; if((fsav = fopen(save_name, "r")) == NULL);</pre>
<pre>teturn 1; /* (fread(fiter, sizeof iter, 1, fsav) != 1) </pre>

=
=

Page 4	
. Ag Å	
swinout.c	
swin	
9:19	
Jul 13 1999 09:19	
Ľ	

swinit.c

Jul 9 1999 17:18

Page 2

Jul 9 1999 17:18 Swinit.c	Page 1
<pre>#include <stdio.h> #include <stdiib.h> #include <math.h> #include <math.h> #include <string.h></string.h></math.h></math.h></stdiib.h></stdio.h></pre>	
<pre>void print_tavec(int kk, int nv[]) {</pre>	
<pre>int i,jk; FilE *fout = fopen(rez_name, "aw"); fout = fopen(rez_name, "aw"); fprintf(fout, "\nnv%ld\n", kk);</pre>	
K=U; for(j=1;j<=nnody;j++)	
for(1=1;1<=nnodx;1++)	
<pre>k++;</pre>	
fprintf(fout,"\n");	
fclose(fout);	
void getavec_hex(void)	
<pre>int i, j, k, 11; int nn[nnodes+1+2*(nnody+nnodx+1)+1+nnodes]; int in = nnodx+1, n0, n1, n2, n3, n4, n5, n6, nn1, ip; for(i=1;i<=nnody;i++)</pre>	
in++; nn[in]=i*nnodx; for(j=1;j<=nnodx;j++)	
in+; nn[in]=(i-1)*nnodx+j;	
in++; nn[in]=(i-1)*nnodx+1;	
in=0; for(i=1;1<=nnodx;1++)	
in++; nn[in]=(nnody-1)*nnodx+i;	
<pre>in in in in in in in in </pre>	
in++; nn[in]=nn[nnodx+1+i];	
in+; nn[in]=1; n0=0; for(i=1;i<=nnody;i++)	
{ il=i*(nnodx+2); for(j=l;j<=nnodx;j++)	
nnl=11+j; ip=1%2; n0++; n1-nn1+1;	

n2=nn1-(nnodx+2-ip); n3=n2-1; n4=nn1-1;
n5=n1+inncax+1+ip); n6=n5+1; nv0[n0]=n0; nv1[n0]=nn[n1]; nv2[n0]=nn[n2]; nv3[n0]=nn[n4]; nv4[n0]=nn[n4]; nv5[n0]=nn[n5]; nv6[n0]=nn[n5];
/*) } print_tavec(0,nv0); print_tavec(1,nv1); print_tavec(2,nv2); print_tavec(3,nv3); print_tavec(4,nv4); print_tavec(6,nv6); print_tavec(6,nv6);
void init_arrays_hex()
<pre>int i, j, k, ic=nnodx/2, jc=nnody/2, scala = 14, key_rho, layer_height; double rand_coef = 0.1, rho_high, rho_low; double x,y, raza, raza_max=nnody*sqrt(3.)/4., xc, yc; if x = 0, y, raza, raza_max=nnody*sqrt(3.)/4., xc, yc;</pre>
<pre>frez=fopen(rez_name,"a"); fprintf(frez,"\n init_arrays\n"); ecx[1]=1.00; ecy[1]=0.00;</pre>
ecy[2]=sqrt(3.00)/2.0; ecx[3]=ecx[2]; ecy[3]=secy[1]; ecx[4]=ecx[1];
cox[5]=cox[3]; cox[5]=cox[3]; cox[6]=cox[2]; cox[6]=cox[2]; for (1=cy[5]; for (1=1; i <= 6; i++)
ecxx[i] = ecx[ecxy[i]] = ecx[ecy[i]] = ecy[ecy[i]] = ecy[ecy[i]] = ecy[ecy[i]] = ecy[ecy[i]]
for (i=1; i <= 6; i++)
<pre>fprintf(frez,"i,ecx[i],ecy[i])\n\$3d \$25.16e \$25.16e\n",i,ecx[i],ecy[i]); fprintf(frez,"i,ecxx[i],ecxy[i],ecyx[i],ecyy[i]\n\$3d \$25.16e \$25.16e \$25.16 fe\n", i,ecxx[i],ecxy[i],ecyx[i]);</pre>
switch (key_init)
<pre>case 0: /* init condens */ for(i = 1; i <= nnodes; i++)</pre>
f0[i] = (rhomed / b1)*(1. +rand_coef *

Jul 9 1999 17:18 Swinit.c Page 3	기
(((double) rand() / (double) rand() / (double) RAND_MAX) - 0.5));	*
break; case 1: /* init full square */ case 2: /* init void square */	
rho_high = 1.1 * rho_high;	
for (j=1; j<=nnody; j++) for (i=1; i<=nnodx; i++)	
<pre>t k++; f0[k] = 1.000/(b1) * (1.+rand_coef * ((double) rand() / (double) RAND_MAX) - 0.5));</pre>	
for (j=nnody/4-2; j<=(3*nnody)/4+2; j++) for(i=nnodx/4-2; i<=(3*nnodx)/4+2; i++)	
<pre>k=nnody*i+j; f0[k] = 1.000/(b1)* (1.+rand_coef*(((double) rand() /</pre>	*
for (j=nnody/4; j<=(3*nnody)/4; j++) for(i=nnodx/4; i<=(3*nnodx)/4; i++)	
{ k=nnody*i+j; f0[k] = 1.000/(b1)* (1.+rand_coef*(((double) rand() / (double) RAND_MAX) - 0.5));	
reak; e 3:	
<pre>raza=((double) scala)*raza_max/16.; xo=((double) nnodx)/2.+((double) (nnody-(nnody/2)*2))/2.; yc=((double) nnody)*sqrt(3.)/4.; '-o.</pre>	
K=0; for (j=1; j <= nnody; j++)	
<pre>y=sqrt(3.)*((double) j)/2.; for(i=1; i <= nnodx; i++)</pre>	
<pre>k++; if((ac)*(x-xc)*(y-yc)*(y-yc)<=(raza+2.)*(raza+2.)) key_rho=2;</pre>	· · · · · · · · · · · · · · · · · · ·
<pre>suse key_rho=3; if ((x-xc)*(x-xc)*(y-yc)*(y-yc)<=raza*raza) key_rho=1; switch (key_rho)</pre>	
<pre>case 1: f0[k] = rhomed * 1.35/(b1)*</pre>	
<pre>break; case 2: f0[K] = rhomed/(b1)* (1.+rand_coef*(((double) rand() / (1.+rand_coef*(((double) RAND_MAX) - 0.5));</pre>	
<pre>break; case 3: f0[k] = rhomed * 0.65/(bl)*</pre>	

Jul 9 1999 17:18 Swinit.c Page 4
break;
/* switch (key_rho)
<pre>case 1: folk] = 1.000/(b1)* (1.+rand_coef*(((double) rand() /</pre>
rand() /
rand() /
cand_max) = 0
)
<pre>{ k=(j-1)*nnodx; for(i=1; i<=nnodx; i++)</pre>
f0[k] = rhomed/(b1)* (1.trand_coef*((dobble) rand() /
raind_tark)
f0[k] *= 1.2; } else
$\begin{cases} f_0(k) = 0.8; \end{cases}$
<pre>traza=2.00 * ((double) scala)*raza_max/16.; xc=((double) nnodx)/2.+((double)(nnody-(nnody/2)*2))/2.; yc=((double) nnody) * sqrt(3.00) / 2.00;</pre>
Kuu; for(j=1; j <= nnody; j++)
<pre>y=sqrt(3.)*((double) j)/2.; for(1=1; i <= nnodx; i++)</pre>
<pre>x = ((double) i) + ((double) (j-(j/2)*2))/2.; x++;</pre>
<pre>if ((x-xc)*(x-xc)+(y-yc)*(y-yc)<=(raza+2.)*(raza+2.))</pre>
key_rho=3; if(x-xc) + (x-xc) + (y-yc) * (y-yc) <=raza*raza) key_rho=1; switch (key_rho)
}

swinit.c

Jul 9 1999 17:18

Page 5

swinit.c

Jul 9 1999 17:18

(double) RAND_MAND - 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (double) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (double) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (double) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5)); for (=1,1 *rand_cosef*(((double) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) RAND_MAND + 0.5); for (=1,1 *rand_cosef*((double) rand() / (anticle) rand() / (anticle) rand() ra	break; tangan di
--	--

W	OWIIII'C	rage 8
for (j=2; j<=NNLAT-1; j++) if (j % 2)		
<pre>boundary_mode[(j-1)*NNLUN+1] boundary_mode[j*NNLUN] = 6; }</pre>	+1] = 5; 6;	
boundary_mode[(j-1)*nnodx+1] boundary_mode[j*nnodx] = 4;	+1] = 3; 4;	
boundary_mode[1] = 7; boundary_mode[nnodx] = 8; boundary_mode[NNL1+1] = 9; boundary_mode[nnodes] = 10;		
Dreak;		

swdraw.c

Printed by sofonea from flumag3.mec.utt.ro

Jul 9 1999 16:41 Swdraw.c Page 1	
<pre>#include <stdio.h> #include <math.h> #include "swhead.h"</math.h></stdio.h></pre>	
<pre>void xv(double n0[], double n1[], double n2[], double n3[],</pre>	
<pre>FILE *fxv; char xv_name(128); int i,kval; sprintf(xv_name,"%s.%05d",arg_name,iter); fxv = fopen(xv_name,"wt"); fprintf(fxv,"P2\n%3d%4d\n63\n",nnodx,nnody); for(k=1; k<=nnodes; k++)</pre>	
<pre>! ++; val = floor((n0[k]+n1[k]+n2[k]+n3[k]+ if(val > 63) val = 63; val = 63;</pre>	
<pre>if(val < 0) val = 0; val = 63 - val; */ fprintf(fxv, *3d", val); if(i == 15)</pre>	
1=0; fprintf(fxv,"\n");	
<pre>if(i) fpintf(fxv,"\n"); fprintf(fxv,"\n"); fclose(fxv);</pre>	
<pre>printf(xv_name, "%s. %05dP", arg_name, iter); fxv = fopen(xv_name, "wt"); fprintf(fxv, "P2\n%3d%4d\n63\n", nnlun, nnlat); i=0;</pre>	
<pre>for(k=1; k<=nnod; k++) {</pre>	
<pre>i++; val = (floor((fl[k]*ecx[1]+f2[k]*ecx[2]+f3[k]*ecx[3]+</pre>	
<pre>printf("%25.16f\n",(f1[k]*ecx[1]+f2[k]*ecx[2]+f3[k]*ecx[3]+</pre>	
<pre>if(val > 63) val = 63; if(val < 0) val = 0; val = 0; val = 63 - val;</pre>	
<pre>fprintf(fxv,"\$3d",val); if(i == 15)</pre>	
1-0; fprintf(fxv,"\n"); 	
<pre>if() if(fxv,"\n"); fprintf(fxv,"\n"); fclose(fxv); // fclose(fxv);</pre>	
void profile(double n0[], double n1[], double n2[], double n3[],	

Jul 9 1999 16:41	Page 2
double n4[], double n5[], double n6[], char arg_name[])	
<pre>FILE *fxv; char xv_name(128); int in; double va; sprintf(xv_name, "*s.*05d", arg_name,iter); fxv = fopen(xv_name, "*ut"); for(i=1; i<=nnody, i++)</pre>	
<pre>{ k= (i-1) *nnodx+nnodx/2; val = n0[k]+n1[k]+n2[k]+n3[k]+n4[k]+n5[k]+n6[k]; fprintf(Exv, n%3d %1f\n", i, val);</pre>	
fclose(fxv); }	
void minko (void)	
<pre>FILE *fwet, *falpha; int pix[NNODES1]; double rholoc, s, v, coef, alphal, alpha2, a, b, c, fa, fb, fc; double height, width, galpha, gran, gcos; int ih, ihminus1, ihminus2, ihplus1, ihplus2, iw; int i,','k; int iv, is;</pre>	
timecount+; iv = 0;	
for (i=1; i<=nnodes; i++)	
rholoc = f0[i] + f1[i] + f2[i] + f3[i] + f4[i] + f5[i] + f6[i]; if(rholoc > 3.5)	
pix[1] = 1; iv ++;	
e1se {	
pix[i] = 0; }	
is = 0; for(i=1, i<=nnodes; i++)	
if(pix[i])	
if(!pix[nv1[i]]) 	
19++5	
if('!pix[nv4[i]]) {	
18++;) switch(boundary_mode[i])	
{ case 0: if(!pix[nv2[i]])	
18++;	
if (!pix[nv3[i]])	
1.0++;	
if(!pix[nv5[i]])	

Jul 9 1999 16:41 Swdraw.c	Page 4
3.14159 / 2.00;	
c = (a+b)/2.00; f = 1.00 / c - sin(2.00 * c) / (2.00 *c *c) - coef;	
/* printf("%lf %lf %lf %lf %lf %lf\n",a,b,c,fa,fb,fc);	
) if(fc)	
if(fa*fc > 0.00)	
a = c; fa = fc;	
else	
b = c; fb = fc;	
} alpha2 = (b+a) / 2.00;	
else	
alpha2 = c;	
)	
<pre>ih = 0; ihminus1 = ihminus2 = 0; ihplus1 = ihplus2 = 0; for(j=1; j<=nnody; j++)</pre>	·
<pre>t k = (j-1)*nnodx + nnodx/2; if(!pix[k-1]) ihminus1 = j;</pre>	
<pre>if(!pix[k-2]) ihminus2 = j; if(!pix[k+1])</pre>	
<pre>inplus1 = J; if(bix(k+2)) if(bix(k+2)) if(lpix(k)) if(lpix(k))</pre>	
in = inpluac; height = ((double) (nnody - ih)) * sqrt(3.000) / 2.000;	
iw = 0; $for(i=1; i <= nnodx; i++)$	
<pre></pre>	
. */	

Jul 9 1999 16:41 swdraw.c	Page 6
ecy[3]*n[nv3[1]]+ecy[4]*n[nv4[1]]+ ecy[5]*n[nv5[1]]+ecy[6]*n[nv6[1]])/3	
break; case 1:	
<pre>doin = 2.*n[i]; gradx[i] = (ecx[1]*n[nv1[i]]+ecx[2]*(doin_n[nv5</pre>	111)+
	[[i]]+ i]},+
<pre>grady[1] = (ecy[1]*n[inv[1]]fecy[4]*(acn-n[nv0[1])fecy[4]*n[nv4[1]]fecy[6]*n[inv6[1]])</pre>	11))+ [[1]]+ 3.;
break;	
= 2	
	n-n[nv3[i]])/3.;
grady[i] = (ecy[1]*n[nv1[1]]+ecy[2]*n[nv2[1]]+ ecy[3]*n[nv3[1]]+ecy[4]*n[nv4[i]]+ ecy[5]*n[nv3[i]]+ecy[4]*n[nv4[i]]+	
ak;	
CV :	
gradx[i] = (ecx[1]*n[nv1[i]]+ecx[2]*n[nv2[i]]+ ecx[3]*(doin-n[nv6[i]])+ecx[4]*(doi	1-n[nv1[1]])+
<pre>ecx[0] = (ecy[1]*n[nv1[1]]+ecy[2]*n[nv2[1]]+ grady[1] = (ecy[1]*n[nv1[1]]+ecy[2]*n[nv2[1]]+ ecy[3]*(doin-n[nv6[1]])+ecy[4]*(doin-n[nv1[1]]).</pre>	o[1]]}/3.; n-n[nv1[1]])+
	5[1]])/3:;
doin = 2.*n[i]; gradx[i] = (ecx[1]*(doin-n[nv4[i]])+ecx[2]*n[nv ecx[3]*n[nv3[i]]+ecx[4]*n[nv4[i]]+	2[1]]+
1	3
<pre>grady[1] = (ecy[1] * (GOLII-n [iv4 L])] \rightarrow \text{G[V]} \rightarr</pre>	[[]]+ 3.:
break;	
oin = 2.*n	
gradx[1] = (ecx[1]*n[nv1[1]]+ecx[2]*n[nv2[1]]+ ecx[3]*n[nv3[1]]+ecx[4]*(doln-n[nv1[1]])+	(1))+
ecx[5]*n[nv5[1]]+ecx[6]*n[nv6[1]]) grady[i] = (ecy[1]*n[nv1[1]]+ecy[2]*n[nv2[i]]+	3.;
ecy[3]*n[nv3[i]]+ecy[4]*(doin-n[nv]), ecy[5]*n[nv5[i]]+ecy[6]*n[nv6[i]]),	[i]])+ 3.;
break;	
doin = 2.*n[i]; aradx[i] = (ecx[1]*(doin-n[nv4[i]])+ecx[2]*(do:	n-n[nv5[i]]}+
	[11])/3.5
grady[1] = (ecy[1]*(doin-n[nv4[1])) + ecy[2]*(doin-n[nv5[1])) + ecy[3]*n[nv3[1]] + ecy[4]*n[nv4[1]] +	n-n[nv5[i]])+
ecy[5]*n[nv5[1]]+ecy[6]*(doin-n[nv break;	[1])}/3:;
case 7:	
[E]	[1]])+ n-n[nv1[i]])+
<pre>ecx[5]*n[nv5[1]]+ecx[6]*n[nv6[1]])/3.; grady[1] = (ecy[1]*n[nv1[1]]+ecy[2]*(doin-n[nv6[1]])+ ecy[3]*(doin-n[nv6[1])+ecy[4]*(doin-n[nv1[1]])</pre>	3.; [i]])+ n-n[nv1[i]])+
ak;	
case 8:	n-n [nw5[i]])+

swdraw.c

Ξ

swdraw.c

rinted by sofonea from flumag3.mec.utt.ro	7.c Page 8
Printed b	swdraw.c

Jul 9 1999 16:41 Swdraw.c Page 7	Jul 9 1999 16:41
<pre>ecx[4]*n[nv4[1]]+ecx[5]*n[nv5[1]])/3.; grady[1] = (ecy[1]*(doin-n[nv4[1]])+ecy[2]*(doin-n[nv5[1]])+</pre>	
<pre>case 10; doin = 2.*n[i]; doin = (acx[i]*(doin-n[nv4[i]]) +ecx[4]*n[nv4[i]]+</pre>	
int; (int; (int; (int);	
<pre>case 0:</pre>	
<pre>case 2:</pre>	,
<pre>break; case 5: nlap[i] = doipetrei*(n[nv2[i]]+n[nv3[i]]+</pre>	

swweep.c

Jul 4 1999 16:24

Page 2

Jul 4 1999 16:24 swweep.c	Page 1
<pre>#include <stdio.h> #include <string.h> #include <stdib.h> #include <actdlib.h> #include <math.h></math.h></actdlib.h></stdib.h></string.h></stdio.h></pre>	
#include "swhead.h"	
<pre>double rotot(double f0[], double f1[], double f2[], double f3[],</pre>	
<pre>void automaton_aux(double nf0[], double nf1[], double nf2[], double nf3[],</pre>	
<pre>{ FILE *frez; int i, j, k; double uxloc, uyloc, uxxloc, uyyloc, uloc2; double cazero, ca, cb, cczero, cc, cd, cgxx, cgxy, xgyx, cgyy; double feq[7]; double fx, fy;</pre>	
<pre>for(i=1; i<=nnodes; i++) {</pre>	
if(nf0[1] < 0.00)	
printf("1=%d nf0=%lf\n",i,nf0[i]);	
if[nf1[i] < 0.00)	
H	
if(nfl[i] < 0.00) (
<pre>printf("i=%d nf2=%lf\n",i,nf2[i]);</pre>	
printf("	
} if(nf4[i] < 0.00)	
<pre>printf("i=%d nf4=%lf\n",i,nf4[i]);</pre>	
if(nf5[i] < 0.00)	
<pre>printf("1=%d nf5=%lf\n",i,nf5[i]);</pre>	
if(nf6[i] < 0.00)	
<pre>{ printf("i=%d nf6=%lf\n", i,nf6[i]); }</pre>	
floc[i] = nf0[i]+nf1[i]+nf2[i]+nf3[i]+nf4[i]+nf5[i]+nf6[i];	
<pre>faction (floc, fgradx, fgrady); laplacian (floc, flap); if (key_interaction == 3)</pre>	
{ for(i=1; i<=nnodes; i++)	
switch(boundary_mode[i])	

case 0: cdid: = floc(nv1[i]) * cdid: = floc(nv1[i]) * floc(nv2[i]: = floc(nv1[i]) * floc(nv2[i]: = floc(nv1[i]) * floc(nv2[i]: = floc(nv1[i]) * floc(nv2[i]: = floc(nv1[i]) * floc(nv3[i]: = floc(nv1[i]) * floc(nv4[i]: = floc(nv1[i]) * floc(nv4[i]: = floc(nv1[i]) * floc(nv5[i]: = floc(nv5[i]: = floc(nv5[i]) * floc(nv5[i]: = floc(nv5[i]: = floc(nv5[i]: = floc(nv5[i]) * floc(nv5[i]: = floc(nv5[
--

swweep.c

13

swweep.c

Page 4

0.000 -	JUI 4 1999 16:24
<pre>{ printf("iter=%d i=%d cazero=%lf ca=%lf 6ca=%lf cczero=%lf uloc2=%lf feq=%lf\n"</pre>	
<pre>iter,i,cazero,ca,6.0*ca,cczero,uloc2,feq[0]); }</pre>	
switch(key_interaction)	
case 0: for(j=1;j<=6;j++)	
<pre>{ feq[j] = ca + cb*(ecx[j]*uxloc+ecy[j]*uyloc) + cc*uloc2 + cd*(uxxloc*ecxx[j]+2.*uxyloc*ecxy[j]+uyyloc*ecyy[j]) + cdxx*(ecxx[j]-ecyv[i])+cgxx*ecxy[j],</pre>	
break; break; case 1. /* acceleration */	
<pre>ior(]=1;]<=0;]++) { feq[j] = ca + cb*(ecx[j]*uxloc+ecy[j]*uyloc) + cc*uloc2 +</pre>	
<pre>ca(uxx.oc.ecxx[1]+tuxy.uc.ecxy[1]+uyx.uc.ecyy[1]) fxxecx[1]+fy*ecy[1]+ cyxx*(ecxx[1]-ecyy[1])+cyxy*ecxy[1];</pre>	
} break;	Dreak; case 3: /* switch(bc
<pre>case 2: /* wall interaction */ fx = tau3*fioc(i)*ax; fy = tau3*fioc(i)*ay; switch(boundary_mode[i])</pre>	case 0:
case 0: /* bulk */ for(j=1;j<=6;j++)	breal case 1 if (f.
{ feq[j] = ca + cb*(ecx[j]*uxloc+ecy[j]*uyloc) +	
<pre>fx*ecx[j] + fy*ecy[j] + cd*(uxxloc*ecxx[j]+2.*uxyloc*ecxy[j]+uyyloc*ecyy[j]) + cgxx*(ecxx[j]-ecyy[j])+cgxy*ecxy[j];</pre>	else {
break; case 1: /* wall 1 */ for(j=1;j<=6;j++)	}
<pre>!f(floc[i] > 3.5) /* liquid */</pre>	case 2 lf(f
<pre>feq[j] = ca + cb*(ecx[j]*uxloc+ecy[j]*uyloc) +</pre>	
<pre>fx*eox[i] + fy*eoy[i] + cd*(uxxloc*ecxx[i]++</pre>	else
<pre>uvyxloc*ecyv[j]) +cgxy*ecxy[j] -</pre>	
} else /* vapor */	brea
{	for (j=1;
_ X]bej po
<pre>uyyvoc=cvyv[j] +cqxy*ecxy[j] -</pre>	
) Dreak;
Dreak;	2 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

<pre>for(j=1;j<=6;j++)</pre>
<pre>{ feq(j) = ca + cb*(ecx[j)*uxloc+ecy[j]*uyloc) + cc*uloc2 + fx*ecx[j] + fy*ecy[j] + cd*(uxxloc*ecx[j]2.*uxyloc*ecx[j]+ uyyloc*ecx[j]2.*uxyloc*ecx[j]+ tayloc*ecy[j]) + cgx*(ecx[j]-cyy[j]) + cgx*(ecx[j]-cyy[j]-cyy[j]-cyy[j]) + cgx*(ecx[j]-cyy[j]-</pre>
<pre>feg(j) = ca + cb*(ecx[j]*uxloc+ecy[j]*uyloc) +</pre>
} break;
<pre>break; case 3: /* dipolar interaction */ switch(boundary_mode[i])</pre>
{ case 0: fx = - tau3 * floc[i] * egradx[i]; fy = - tau3 * floc[i] * egrady[i];
Dreak; case 1: if(floc[i] > 3.5) /* liquid */
<pre>fx = tau3 * floc[i] * egradx[i]; fy = tau3 * floc[i] * (gradmiulwall1 * ecy[i] + egrady[i]);)</pre>
<pre>else</pre>
break; case 2: if(floc[i] > 3.5) /* liquid */
<pre>fx = tau3 * floc[i] * egradx[i]; fy = tau3 * floc[i] * (gradmiulWall2 * ecy[i] + egrady[i]); }</pre>
else {
break;
<pre>for(j=1,j<=6;j++)</pre>
)
) nff0[i] = nf0[i] - (nf0[i]-feq[0])/tau;

swweep.c

Page 6

Jul 4 1999 16:24	
Jul 4 1999 16:24 Swweep.c	### ### ##############################

for(isex-0; isavcisex; isav++) for(iscycle-0; isycole /* print("asa=*d isycle=*d\n",isav,isoyle); */ auconaton(); */ profile(f0,f1,f2,f3,f4,f5,f6,profile_name); */ profile(f0,f1,f2,f3,f4,f5,f6,profile_name); */	May 13	May 13 1997 20:19	swmain.c	Page 2	92
<pre>for(toycle=0; ioycleAncycles; ioycle+) print(f'isq=4d\n',isav,icycle); automaton(); xvff0,fi.f2,f3,f4,f5,f6,xv_name); mink(); profile(f0,f1,f2,f3),f4,f5,f6,profile_name); } } } </pre>			3v++)		
<pre>printf("isav=#d ioycle=#d\n",isav,icycle); aucomaton(); xv(f0,f1,f2,f3,f4,f5,f6,xv_name); minko(); profile(f0,f1,f2,f3,f4,f5,f6,profile_name); } } } } </pre>		for(icycle=0; icycle <r< td=""><td>ncycles; icycle++)</td><td></td><td></td></r<>	ncycles; icycle++)		
minko(); profile(f0, f1, f2, f3, f4, f5, f6, profile_name);	*	printf("isav=%d ic automaton(); xv(f0,f1,f2,f3,f4,	<pre>cycle=#d\n", isav, icycle); ,f5,f6,xv_name);</pre>	/ *	
	*	minko(); profile(f0,f1,f2,1 }	f3,f4,f5,f6,profile_name);	/*	
	-				
	_				
·					

Page 1				
sw.job				
	œ			
Jul 17 1999 16:48	1 Drop-mx 0 100 1000 1 1 100 1000 1 2 0 1 3.5 0 0.550 0.0094 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00			

Printed by sofonea from flumag3.mec.utt.ro

sw.job