Control Computarizado - Muestreo y el efecto de alias

Kjartan Halvorsen

2020-07-01

Sistemas híbridas

Figure 7.2 Relationships among the measured signal, control signal, and their representations in the computer.

Retos en control computarizado - fenómeno de alias

Efecto de alias en imágenes

El teorema del muestreo

Shannon y Nyquist:

Una señal continua cuya transformada de Fourier es cero fuera del intervalo $(-\omega_0,\omega_0)$ puede ser reconstruido completamente usando valores (muestros) equidistantes de la señal, siempre cuando la frecuencia de muestreo sea por lo menos $2\omega_0$.

Un modelo del muestreo

Una señal muestreada tiene una representación en tiempo continuo usando el modelo de modulación por un tren de impulsos

$$m(t) = \sum_{k=-\infty}^{\infty} \delta(t - kh)$$

$$f_s(t) = f(t)m(t) = f(t)\sum_{k=-\infty}^{\infty} \delta(t-kh) = \sum_{k=-\infty}^{\infty} f(t)\delta(t-kh) = \sum_{k=-\infty}^{\infty} f(kh)\delta(t-kh)$$

Transformada de Fourier de la señal muestreada

La relación entre la transformada de la señal continua f(t) y la de su versión muestreada $f_s(t)$:

$$F_s(\omega) = \frac{1}{h} \sum_n F(\omega + n\omega_s)$$

 $F_s(\omega)$ se obtiene sumando repeticiones de $F(\omega)$ en cada múltiple de la frecuencia de muestro ω_s . Esta es la causa del fenómeno de alias y la distorsión conocido como plegado de frecuencia (frequency folding).

Figure 7.11 Frequency folding.

Transformada de Fourier de un exponencial complejo

La función $x(t) = e^{i\omega_1 t}$

tiene la transformada de Fourier

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \mathrm{e}^{-i\omega t} dt = \int_{-\infty}^{\infty} \mathrm{e}^{i(\omega_1 - \omega)t} dt = \delta(\omega_1 - \omega)$$

Transformada de Fourier de una sinusoide

Una sinusoide $y(t) = \sin(\omega_1 t)$ tiene toda su energía concentrada en una sola frecuencia, $\omega = \omega_1 \text{ rad/s}$.

Dado de que

$$y(t) = \sin(\omega_1 t) = \frac{1}{2i} \left(e^{i\omega_1 t} - e^{-i\omega_1 t} \right)$$

la transformada de Fourier es

$$Y(\omega) = \frac{1}{2i} \left(\delta(\omega_1 - \omega) - \delta(\omega_1 + \omega) \right)$$

Ejercicio 1: La transformada de Fourier de una sinusoide

Considera la siguiente señal

Cuál de los espectros abajo $(|Y(i\omega)|)$ corresponde a la señal?

Ejercicio 2: Dos sinusoides

Considera una señal con la siguiente transformada de Fourier

Cuál de las señales abajo corresponde a la transformada de Fourier arriba?

Ejercicio 3: Transformada de Fourier de una sinusoide muestreada

La figura siguiente enseña una sinusoide con periodo T y su versión muestreada con period de muestreo $h=\frac{2}{3}T$.

Determine

- 1. La frecuencia de la sinusoide
- 2. La frecuencia de muestreo ω_s
- 3. La frecuencia de Nyquist ω_N

Ejercicio 4: Transformada de Fourier de una sinusoide muestreada

Considera la misma situación que en ejercicio 3 (periodo de muestreo $h = \frac{2}{3}T$).

Cuál de los siguientes espectros corresponde a la sinusoide muestreada?

Frecuencia de alias

Para determinar la frecuencia de alias más bajo $\omega_a < \omega_N$ de una sinusoide ω_1 , se puede usar la expresión

$$\omega_{\mathsf{a}} = \left| \left(\left(\omega_1 + \omega_{\mathsf{N}} \right) \operatorname{\mathsf{mod}} \omega_{\mathsf{s}} \right) - \omega_{\mathsf{N}} \right|$$

La operación módulo

Si

$$a = nb + r, \quad n \in \mathbb{Z}$$

 $\frac{a}{b} = n \text{ residuo } r$

entonces

$$a \mod b = r$$

Ejemplo del fenómeno de alias

Una sinusoide de alta frecuencia ($\omega_1=1800\pi~{\rm rad/s}$) tiene un alias de frecuencia $200\pi~{\rm rad/s}$ cuando se la muestrea con un periodo de muestreo de $h=10^{-3}~{\rm s}$.

Dibuja el espectro de las dos sinusoides. Marca la frecuencia de muestreo y la de Nyquist, y verifica que la frecuencia de alias se produce plegando la frecuencia ω_1 por la frecuencia de Nyquist

Ejercicio en grupo: Fenómeno de alias Una sinusoide $f_1 = 60$ Hz esta

Una sinusoide $f_1 = 60$ Hz esta muestreado con la frecuencia $f_s = 90$ Hz.

1. Determine la frecuencia de alias usando la expresión

$$f_{a} = \left| \left(\left(f_{1} + f_{N} \right) \operatorname{mod} f_{s} \right) - f_{N} \right|$$

- 2. Verifica en la gráfica que su calculación sea correcta.
- 3. Dibuaja el espectro de las dos sinusoides. Marca la frecuencia de Nyquist f_N , y verifica que la frecuencia de alias se produce plegando la frecuencia f_1 por la frecuencia de Nyquist.

