

Title: README for Setup Mask RCNN

Document Number: 1901-1

CTI One Corporation

Table 1a. Document History

2022-05-2	Establish this document, document archive:	YY
	/media/harry/easystore/backup-2020-2-15/CTI/3proejcts	
	/3-8-smart-tech/3-8-4-CTI/3-8-4-6-products/AIV200/190-	
	robots-health/190l-mask-rcnn	

Table 1b. Testing and Release Approval Form

2022-05-2	Test Status:	Pending for
	and	testing and
	Release Status: approved for release by HL	approval

Table 2. References

Number	Name and URL	Note
1.	Mask R-CNN for Object Detection and Segmentation	Installation
	https://github.com/buseyaren/Installation-MaskRCNN/tree/master/Mask_RCNN	
	https://github.com/buseyaren/Installation-MaskRCNN	
2.	Mask R-CNN for Object Detection and Segmentation	

	https://github.com/matterport/Mask_RCNN	
3.	matterport/Mask_RCNN/releases	
	https://github.com/matterport/Mask_RCNN/releases	

Table 3. Prerequisite

Software Prerequisite No.	Description and Version	Note
1.	Ubuntu 18.04	
2.	Python version 3.6	On Ubuntu
3.	Anaconda version 4.7.12	On Ubuntu
Hardware Prerequisite No.	Description and Version	
1.	To be added	

1. Setup The Mask RCNN Environment

1.1. Create the Anaconda environment;

conda create -n maskrcnn python=3.6.12

1.2. Activate the Anaconda environment;

conda activate maskrcnn

1.3. Clone the GitHub folder;

git clone https://github.com/matterport/Mask_RCNN.git

1.4. Modify Mask_RCNN/requirements.txt

tensorflow == 1.14.0

keras = 2.0.5

opency-python

h5py == 2.10.0

1.5. Install the required Python package;

cd Mask_RCNN

pip install -r requirements.txt

1.6. Download the pre-trained model;

https://github.com/matterport/Mask_RCNN/releases

Download mask_rcnn_balloon.h5 from Mask_RCNN_2.1 Assets and mask_rcnn_coco.h5 from Mask_RCNN_2.0 Assets.

Copy the files to the "Mask_RCNN" folder.

1.7. Run setup.py;

python setup.py install

1.8. Loading the pycocotols module;

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

2. Run Mask R-CNN

2.1. Activate the Anaconda environment;

conda activate maskrcnn

2.2. Run Jupyter Notebook

jupyter notebook

2.3. Access http://localhost:8888/tree/ by a browser

http://localhost:8888/tree/

2.4. Navigate to samples folder on the browser

Figure 1. samples folder on Jupyter Notebook

2.5. Open demo.ipynb

Figure 2. demo.ipynb on Jupyter Notebook

2.6. Select a code cell and push the "Run" button

Figure 3. The first code cell on Jupyter Notebook

2.7. Run all code cells

The image is randomly chosen and the demo example is computed.

Run Object Detection

```
In [15]: # Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
         image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
         # Run detection
         results = model.detect([image], verbose=1)
         # Visualize results
         r = results[0]
         Processing 1 images
                                 shape: (640, 480, 3)
                                                                     0.00000
                                                                            max: 255.00000
         image
                                                             min:
                                                                                              uint8
         molded images
                                 shape: (1, 1024, 1024, 3)
                                                             min: -123.70000
                                                                                   151.10000
                                                                                              float64
                                                                             max:
                                 shape: (1, 93)
shape: (1, 261888, 4)
         image metas
                                                             min:
                                                                   0.00000
                                                                             max: 1024.00000
                                                                                              float64
                                                                    -0.35390 max:
                                                                                     1.29134
         anchors
                                                            min:
                                                                                              float32
```


Figure 4. The result of on Jupyter Notebook

(END)