Signal Processing - | by One

Sibi Raj B. Pillai Dept of Electrical Engineering IIT Bombay

Let us interpolate in the interval [0, T] between two samples.

Let us interpolate in the interval [0,T] between two samples.

Let us interpolate in the interval [0, T] between two samples.

Let us interpolate in the interval [0, T] between two samples.

Key: Find the *fitting* polynomial $p(t) = at^3 + bt^2 + ct + d$ in [0, 1].

Let us interpolate in the interval [0, T] between two samples.

Key: Find the *fitting* polynomial $p(t) = at^3 + bt^2 + ct + d$ in [0, 1].

Eg: For $\delta(t)$ as input, the output in $t \in [0, 1]$

$$p(t) = \frac{3}{2}t^3 - \frac{5}{2}t^2 + 1.$$

Let us interpolate in the interval [0, T] between two samples.

Key: Find the *fitting* polynomial $p(t) = at^3 + bt^2 + ct + d$ in [0, 1].

Eg: For $\delta(t)$ as input, the output in $t \in [0, 1]$

$$p(t) = \frac{3}{2}t^3 - \frac{5}{2}t^2 + 1.$$

We need to do slightly more work!

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d$$
; $f(1) = a + b + c + d$;

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d; f(1) = a + b + c + d;$$

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d$$
; $f(1) = a + b + c + d$; $f'(0) = c$; $f'(1) = 3a + 2b + c$

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d$$
; $f(1) = a + b + c + d$; $f'(0) = c$; $f'(1) = 3a + 2b + c$

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d$$
; $f(1) = a + b + c + d$; $f'(0) = c$; $f'(1) = 3a + 2b + c$

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d$$
; $f(1) = a + b + c + d$; $f'(0) = c$; $f'(1) = 3a + 2b + c$

$$p(t) = at^3 + bt^2 + ct + d, 0 \le t \le 1.$$

$$f(0) = d$$
; $f(1) = a + b + c + d$; $f'(0) = c$; $f'(1) = 3a + 2b + c$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} f(0) \\ f'(0) \\ f(1) \\ f'(1) \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} f(0) \\ f'(0) \\ f(1) \\ f'(1) \end{bmatrix}$$

$$a = 2f(0) + f'(0) - 2f(1) + f'(1)$$

$$b = -3f(0) - 2f'(0) + 3f(1) - f'(1)$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} f(0) \\ f'(0) \\ f(1) \\ f'(1) \end{bmatrix}$$

$$a = 2f(0) + f'(0) - 2f(1) + f'(1)$$

$$b = -3f(0) - 2f'(0) + 3f(1) - f'(1)$$

In interval [0, T] use

$$p(\frac{t}{T}) = a\left(\frac{t}{T}\right)^3 + b\left(\frac{t}{T}\right)^2 + c\left(\frac{t}{T}\right) + d.$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} f(0) \\ f'(0) \\ f(1) \\ f'(1) \end{bmatrix}$$

$$a = 2f(0) + f'(0) - 2f(1) + f'(1)$$

$$b = -3f(0) - 2f'(0) + 3f(1) - f'(1)$$

In interval [0, T] use

$$p(\frac{t}{T}) = a\left(\frac{t}{T}\right)^3 + b\left(\frac{t}{T}\right)^2 + c\left(\frac{t}{T}\right) + d.$$

Popular Choice:

$$f'(0) = \frac{f(1) - f(-1)}{2}$$
; $f'(1) = \frac{f(2) - f(0)}{2}$;

Superposition and Shift

$$\sum_{n \in \mathbb{Z}} x_n \delta(t - nT) \longrightarrow \begin{bmatrix} \text{Cubic} \\ \text{Interpolator} \end{bmatrix} \longrightarrow x(t)$$

$$\sum_{n \in \mathbb{Z}} y_n \delta(t - nT) \longrightarrow \begin{bmatrix} \text{Cubic} \\ \text{Interpolator} \end{bmatrix} \longrightarrow y(t)$$

Superposition and Shift

$$\sum_{n \in \mathbb{Z}} (x_n + y_n) \delta(t - nT) \longrightarrow \begin{cases} \text{Cubic} \\ \text{Interpolator} \end{cases}$$

Superposition and Shift

Time Shifting: Shifting the input results in a shifted output.

Linear System: A system such that for any $x_1(t)$ and $x_2(t)$, if

Linear System: A system such that for any $x_1(t)$ and $x_2(t)$, if

Linear System: A system such that for any $x_1(t)$ and $x_2(t)$, if

Time Invariant System

Linear System: A system such that for any $x_1(t)$ and $x_2(t)$, if

Time Invariant System

$$X_1(t-\tau)$$
 System $y_1(t-\tau), \ \forall \tau \in \mathbb{R}$

Linear System: A system such that for any $x_1(t)$ and $x_2(t)$, if

Time Invariant System

$$x_1(t-\tau)$$
 System $y_1(t-\tau)$, $\forall \tau \in \mathbb{R}$

LTI system: knowing the output to an impulse is good enough.

When
$$x(t) = \sum_{n \in \mathbb{Z}} x_n \delta(t - nT)$$
 is input:
$$y(t) = \sum_{n \in \mathbb{Z}} x_n \ h(t - nT)$$

When
$$x(t) = \sum_{n \in \mathbb{Z}} x_n \delta(t - nT)$$
 is input:
$$y(t) = \sum_{n \in \mathbb{Z}} x_n \ h(t - nT)$$

$$\stackrel{?}{=} \left(\sum_{n \in \mathbb{Z}} x_n \delta(t - nT)\right) * h(t)$$

When
$$x(t) = \sum_{n \in \mathbb{Z}} x_n \delta(t - nT)$$
 is input:

$$y(t) = \sum_{n \in \mathbb{Z}} x_n \ h(t - nT)$$

$$\stackrel{?}{=} \left(\sum_{n \in \mathbb{Z}} x_n \delta(t - nT)\right) * h(t) = x(t) * h(t)$$

Causality

For input $\delta(t)$, the output y(t) > 0 at $t = -2 + \epsilon \Rightarrow h(t)$ is **non-causal**.

Causality

For input $\delta(t)$, the output y(t) > 0 at $t = -2 + \epsilon \Rightarrow h(t)$ is **non-causal**.

Practical Implementation:

Use the causal version h(t-2T) instead \Rightarrow delay at the output!.

