Version	1.3	
Author	Domenico Nappo (domenico.nappo(at)gmail.com)	
Final Release (Rev 03)	2013-10-28	

Table of Contents

yg2p User Manual	1
Introduction	3
Usage	3
Grabbing information from GRIB files	3
Input arguments	
Check output maps	
Interpolation modes	
GRIB API interpolation methods	6
Scipy interpolation methods	
OutMaps configuration	
Aggregation	
Average	
Accumulation	
Correction	12
How to write formulas	
Which geopotential file will be read?	
Conversion	
Logging	
Comparing Test Suite	
Writing test.xml file	
Writing the commands.xml file	
Appendix A - Execution XML files Examples	
Appendix B – mapping between grib2pcraster and pyg2p	
Differences in glossary	
Mapping variables	
Known parameters mapping with conversions	
Execution parameters mapping	
Difference in dealing with multiresolution	
Differences in Correction	
Differences in Aggregation	
Differences in Interpolation	
Appendix C – Glossary	

Introduction

pyg2c is the python porting of the grib2pcraster C/C++ application in use at ECMWF and JRC for some EFAS and GLOFAS tasks.

It reads georeferenced variables from GRIB version 1 and 2 files and it produces PCRaster maps, after some manipulation steps. Execution parameters are passed via command line arguments and XML template files.

Performances are comparable to the C/C++ application, except if using scipy based *nearest* and *invdist* interpolation modes, which at current version are not usable for daily operations. Use *grib_nearest* and *grib_invdist* modes for the time being.

Otherwise, for research and/or small grids, you can use them as well and compare results.

Manipulations are completely configurable in execution XML files and are:

- conversion (formulas are to configure in parameters.xml)
- correction
- aggregation (accumulation or average).

The interpolation mode is also configurable and it's needed to resample the input GRIB grid to the PCRaster target grid (which is determined by latitude and longitudes maps).

Usage

To use the application, after the main configuration you followed in the configuration manual, you need to configure a template commands XML for each type of extraction you need to perform.

In this template you configure the variable to extract, conversion, correction, type of aggregation, interpolation parameters, path to the clone PCRaster map for output maps, and their naming.

See the configuration manual to know more about XML tags and attributes to use or later in this manual for specific configurations about interpolation, aggregation, conversion, and correction.

Grabbing information from GRIB files.

To configure the application and compile your XML templates, you might need to know the variable shortName as stored in the input GRIB file you're using or in the geopotential GRIB. Just execute the following GRIB tool command:

grib_get -p shortName /path/to/grib

Other keys you would to know for configuration or debugging purposes are:

startStep

- endStep (for instantaneous messages, it can be the same of startStep)
- perturbationNumber (the EPS member number)
- stepType (type of field: instantaneous: 'instant', average: 'avg', cumulated: 'cumul')
- longitudeOfFirstGridPointInDegrees
- longitudeOfLastGridPointInDegrees
- latitudeOfFirstGridPointInDegrees
- latiitudeOfLastGridPointInDegrees
- Ni (it can be missing)
- Nj (it states the resolution: it's the number of points along the meridian)
- numberOfValues
- gridType (e.g.: regular_ll, reduced_gg, rotated_ll)

See Mapping variables section in Appendix B – mapping between grib2pcraster and pyg2p for further information.

Input arguments

The table below describes the command line input arguments to use with pyg2p application. Mandatory arguments are in bold.

Argument name (short and long form)	Details
-i,inputFile=	The grib file. Use grib tools to get information about it.
-I,inputFile2=	A second file with messages at differen spatial resolution.
-m,perturbationNumber	The eps member number.
-c,commandsFile	Path to the XML template file.
-s,start	Starting grib timestep. It overwrites the tstart attribute in the execution XML template.
-e,end	Ending grib timestep. It overwrites the tend attribute in the execution XML template.
-T,dataTime	Selector for messages with <i>dataTime</i> GRIB parameter,.
-o,outDir	Directory of output maps. Default is current directory (./). The output directory will be created if not existing yet.
-l,loggerLevel	Level of logging to console. Can be ERROR, INFO, DEBUG. Default is the level for the console logger as configured in the logger-configuration.xml file.
-d,outLogDir	Logs directory. Default is ./logs. Will be created if not existing.
-g,addGeopotential	Add a new geopotential grib file (used in correction step) to

the current configuration: file will be copied into geopotential folder and the XML configuration will be updated.
Path to the test xml configuration file (where to configure paths of grib2pcraster, PCRaster pcrcalc etc.)

Example usages:

```
./pyg2p.py -c ./exec.xml -i ./input.grib -o /out/dir -s 12 -e 36

./pyg2p.py -c ./exec.xml -i ./input.grib -o /out/dir -m 10 -l INFO -d /var/logs/

./pyg2p.py -c ./exec.xml -i ./input.grib -I /input2ndres.grib -o /out/dir -m 10 -l DEBUG

./pyg2p.py -g /path/to/geopotential/grib/file

./pyg2p.py -t /path/to/test/xml/file

./pyg2p.py -h
```

Check output maps

After the execution, you can check how output maps were written using the PCRaster¹ Aguila viewer. You can also compare maps from grib2pcraster with those from pyg2p you just created:

aguila ./eue/T24a0000.001+10 /dataset/test_2013330702/T24aEFAS.001+10

Maps will be written in the folder specified by **-o** input argument. If this is missing, you will find maps in the folder where you launched the application (./).

Refer to PCRaster documentation for further information about Aguila.

^{1 &}lt;a href="http://pcraster.geo.uu.nl/">http://pcraster.geo.uu.nl/

Interpolation modes

Interpolation is configured in XML execution templates using the tag *Interpolation*. Depending on the interpolation method you use, the number of attributes will differ.

When configuring interpolation, you always must set target EFAS coordinate maps, because their metadata will serve to select the right interpolation table.

Interpolation will use precompiled intertables. They will be found in the configuration/intertables folder or a custome folder, using the attribute intertableDir within the Interpolation XML tag.

If intertable doesn't exist, the application will create it. Be aware that for certain combination of grid and maps, the creation of the interlookup table (which is a numpy array saved in a binary file) could take several minutes or hours (for GRIB interpolation methods).

There are five interpolation methods available. The griddata method doesn't make use of precompiled tables.

GRIB API interpolation methods

grib_nearest:

This method uses GRIB API to perform nearest neighbour query.

To configure this method:

grib_invdist:

It uses GRIB_API to query for four neighbours and relative distances. It applies inverse distance calculation to compute the final value.

To configure this method:

Scipy interpolation methods

nearest:

It's the same nearest neighbour algorithm of grib_nearest but it uses the *scipy kd_tree*² module to obtain neighbours and distances.

invdist:

It's the inverse distance algorithm with *scipy.kd_tree*, using 8 neighbours.

Attributes *p*, *leafsize* and *eps* are optional:

Attribute	Details
p	Default: 1. Possible values: 1, 2.
eps	Default: 0.1
leafsize	Default: 10.

Be aware that the intertable will be compiled using those values and further modifications to those parameters without regenerating the intertable won't affect the resulting maps.

griddata:

This method uses directly a scipy module³, without intermediate results so it's not possible to save interpolation lookup tables on disk. It can be useful for small areas.

The attribute *method* is optional and default is "nearest". Other possible values are "linear", and "cubic". These two last methods sometimes produced corrupted PCRaster maps, that couldn't be opened with Aguila.

² http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html

³ http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

OutMaps configuration

Interpolation is configured under the **outMaps** tag. With xml attributes, you also configure attributes for resulting PCRaster maps. Output dir is ./ by default or you can set it via command line using the option -o (--outDir).

Attribute	Details
namePrefix	Prefix name for output map files. Default is the value of shortName key.
unitTime	Unit time in hours for results. This is used during aggregation steps.
fmap	Extension number for the first map. Default 1.
ext	Same as grib2pcraster command line option. Default 1.
cloneMap	Path to a PCRaster clone map, needed by PCRaster libraries to write a new map on disk.

Aggregation

Values from grib files can be aggregated before to write the final PCRaster maps. There are two kind of aggregations available: average and accumulation. The XML configuration in the execution file will look like:

Trigging action type— average Step— 24 72	<pre><aggregation step="24" type="average"></aggregation></pre>	
---	---	--

Attribute	Details
type	Type of aggregation. Accepted values can be:
step	Step time window in hours.

To better understand what these two types of aggregations do, the DEBUG output of execution is presented in the following paragraphs.

Average

Temperatures are often extracted as averages on 24 hours or 6 hours. Here's a typical execution configuration and the output of interest:

Configuration:

Command:

```
.pyg2p.py -l DEBUG -c /execution_templates/cosmo_t24.xml -i /dataset/cosmo/2012111912_pf10_t2.grb -o ./cosmo -m 10
```

Output:

```
[2013-07-11 23:23:23,836] : Opening the GRIBReader for /dataset/cosmo/2012111912_pf10_t2.grb [2013-07-11 23:23:23,863] : Grib input step 6 [type of step: instant] [2013-07-11 23:23:23,863] : Gribs from 0 to 132
```

```
[2013-07-11 23:36:13,366] :****** *** MANIPULATION **** **********
[2013-07-11 23:36:13,367] :temp_sum += grib[1] from -> grib[6]
[2013-07-11 \ 23:36:13,373] : temp_sum += grib[2] from -> grib[6]
[2013-07-11 23:36:13,378] :temp_sum += grib[3] from -> grib[6]
[2013-07-11 \ 23:36:13,382] : temp_sum += grib[4] from -> grib[6]
[2013-07-11 23:36:13,387] :temp_sum += grib[5] from -> grib[6] [2013-07-11 23:36:13,391] :temp_sum += grib[6]
[2013-07-11 \ 23:36:13,396] : temp_sum += grib[7] from -> grib[12]
[2013-07-11 23:36:13,400] :temp_sum += grib[8] from -> grib[12]
[2013-07-11 23:36:13,465] :temp_sum += grib[22] from -> grib[24]
[2013-07-11 \ 23:36:13,470] : temp_sum += grib[23] from -> grib[24]
[2013-07-11 23:36:13,475] :temp_sum += grib[24]
[2013-07-11 23:36:13,485] :out[s:0 e:24 res:415 step-lenght:24] = temp_sum / 24
[2013-07-11 23:36:13,840] :out[s:72 e:96 res:415 step-lenght:24] = temp_sum / 24
[2013-07-11 23:36:13,841] :temp_sum += grib[97] from -> grib[102]
[2013-07-11 23:36:13,845] :temp_sum += grib[98] from -> grib[102]
[2013-07-11 23:36:13,850] :temp_sum += grib[99] from -> grib[102]
[2013-07-11 23:36:13,854] :temp_sum += grib[100] from -> grib[102]
[2013-07-11 23:36:13,859] :temp_sum += grib[101] from -> grib[102]
[2013-07-11 23:36:13,864] :temp_sum += grib[102]
[2013-07-11 \ 23:36:13,868] : temp_sum += grib[103] from -> grib[108]
[2013-07-11 23:36:13,873] :temp_sum += grib[104] from -> grib[108]
[2013-07-11\ 23:36:13,939] :temp_sum += grib[118] from -> grib[120][2013-07-11\ 23:36:13,943] :temp_sum += grib[119] from -> grib[120]
[2013-07-11 23:36:13,948] :temp_sum += grib[120]
[2013-07-11 23:36:13,959] :out[s:96 e:120 res:415 step-lenght:24] = temp_sum / 24
```

ext parameter

In configuration, the effect of setting the *ext* value is clear when looking on how the output maps are numbered:

```
[2013-07-12 00:06:18,545] :./cosmo/T24a0000.001 written!
[2013-07-12 00:06:18,811] :./cosmo/T24a0000.005 written!
[2013-07-12 00:06:19,079] :./cosmo/T24a0000.009 written!
[2013-07-12 00:06:19,349] :./cosmo/T24a0000.013 written!
[2013-07-12 00:06:19,620] :./cosmo/T24a0000.017 written!
```

This is needed because we performed 24 hours average over 6 hourly steps.

Accumulation

For precipitation values, accumulation over 6 or 24 hours is often performed. Here's an example of output in DEBUG mode.

Configuration:

```
<Execution name = "dwd_rain_gsp" id="4" >
    <Parameter shortName="rain_gsp" tstart="12" tend="18"/>
    <Aggregation type="accumulation" step="6" />
    <OutMaps namePrefix="R06a" fmap="1"
        cloneMap="/dataset/maps/dwd/dem05.map" unitTime="24">
```

Command:

```
.pyg2p.py -l DEBUG -c /execution_templates/dwd_r06.xml -i /dataset/dwd/2012111912_pf10_t2.grb -o ./cosmo -m 10
```

Output:

Correction

Values from grib files can be corrected with respect to their altitude coordinate (Lapse rate formulas). Formulas will use also a geopotential value (to read from a GRIB file, see later in this chapter for configuration).

Correction has to be configured in the Parameter tag, with three mandatory attributes.

- correctionFormula (the formula used for correction, with input variables parameter value (p), gem, and dem value.
- gem (the formula to obtain gem value from geopotential z value)
- demMap (path to the DEM PCRaster map)

Tested configurations are only for temperature and are specified as follows:

Temperature correction:

```
<Parameter shortName="2t" applyConversion="k2c"
gem="(z/9.81)*0.0065"
correctionFormula="p+gem-dem*0.0065"
demMap="/dataset/maps/cosmo/dem05.map" />
```

Evotranspiration correction:

```
<Parameter shortName="2t" applyConversion="k2c"
gem="(10**((-0.159)*(z/9.81)/1000))"
correctionFormula="p/gem*(10**((-0.159)*dem/1000))"
demMap="/dataset/maps/europe5km/dem.map"/>
```

How to write formulas

Be aware that if your dem map has directions values, those will be replicated in the final map.

Which geopotential file will be read?

Geopotential GRIB files are under configuration/geopotentials folder and their filenames are configured in geopotentials.xml file. The application will select the right file according the geodetic attributes of the input GRIB file.

Those attributes compose the key *id* in the XML configuration: Note the \$ delimiter.

```
longitudeOfFirstGridPointInDegrees$longitudeOfLastGridPointInDegrees$Ni$Nj$numberOfValues$gridType
```

If you want to add another geopotential file to the configuration, just execute the command:

```
./pyg2p.py -g /path/to/geopotential/grib/file
```

The application will copy the geopotential GRIB file into *configuration/geopotentials* folder and will also add the proper XML configuration to geopotentials.xml file.

Notes about formulas

Previous correction formulas were derived directly from grib2pcraster C code. The need to set up two formulas – one for the gem value and one for the final corrected value (which uses the previously formulated gem value) – exists because the correction formulas are based on DEM and geopotential values. DEM values are in PCRaster format while geopotential data is a GRIB message, which needs to be interpolated before to put it into the correction formula. That means that the correction process is applied in two steps with a split formula as configured in XML.

Grib2pcraster correction process:

In this paragraph, some C code is shown from the original grib2pcraster C application.

Geopotential value is read from a grib file as (note the correction):

Then, the actual correction is made during the interpolation process (some not relevant code was removed and comments added to the real code):

pyg2p correction process

The process in pyg2p is almost the same, that means:

- read geopotential from grib, and apply the correction formula as configured in XML (gem="(z/9.81)*0.0065")
- interpolate the gem values so obtained to the PCRaster output grid
- read grib values and interpolate them
- apply the final correction formula as configured (correctionFormula="p+gem-dem*0.0065")

The only difference is that in pyg2p formulas are configurable, as explained in this chapter (read Configuration manual as well), while in grib2pcraster you can choose, with a binary flag in parameters.xml file, between two hard coded formulas (one for temperature and one for evaporation).

Conversion

Values from GRIB files can be converted before to write final output maps. Conversions are configured in the *parameters.xml* file, on a parameter basis. The right conversion formula will be selected using the id specified in the *applyConversion* attribute, and the *shortName* attribute of the parameter that is going to be extracted and you want to convert.

In the *Parameter* tag of the XML template you will configure only the id of the conversion:

The conversion formula is configured in *parameters.xml* configuration file, under the relative parameter configuration, identified by *shortName*:

```
<Parameter shortName="2t" description="2 meters Temperature" unit="K">
        <Conversion id="k2c" unit="C" function="x=x-273.15" cutOffNegative="False"/>
        </Parameter>
```

Note that formulas must be written in the form var = f(var).

The configuration file parameters.xml is needed only for conversion functionality. Tags *description* and *units* serve for logging purposes.

Logging

File-loggers are configured in *loggers-configuration.xml* (see relative chapter in the configuration manual). File writing can be disabled using the following configuration for the root XML *Loggers* element:

```
<Loggers enabled="false">
```

You can use any string between false, False, no, NO, No to deactivate file logging. Any other string is evaluated as True. The element is optional and default value is True.

The loggers directory is ./logs by default. This can be changed by using the -d option (or -outLogDir).

Console logger level is INFO by default and can be optionally set by using -l (or -loggerLevel) input argument.

Possible logger level values are ERROR, INFO, DEBUG, in increasing order of verbosity.

The output console will be logged in the file *pyg2p_out.log* as well.

Comparing Test Suite

Since version 1.1, pyg2p comes with a little test utility which helps to compare a new version release with the grib2pcraster C application. This functionality will produce PCRaster *diff* maps to manually visualize and check and is activated with the command:

```
./pyg2p.py -t test.xml
```

The program will warn if the number of produced maps differs for a certain test.

For convenience, the output will present the aguila commands for visualizing grib2pcraster, pyg2p and diff maps.

Sample output:

```
===> Producing pcraster diff maps. Copy and paste aguila commands to compare them.
aguila ./cosmoE06/diff.109./cosmoE06/gE060000.109 ./cosmoE06/pE060000.109
aguila ./diff.115 ./cosmoE06/gE060000.115 ./pE060000.115
aguila ./cosmoE06/diff.097 ./cosmoE06/gE060000.097 ./cosmoE06/pE060000.097
```

Writing test.xml file

In *test.xml* file, you configure:

- path to grib2pcraster executable
- path to a *commands.txt* file containing the list of input arguments for both **grib2pcraster** and **pyg2p**
- path to the **pcrcalc** executable, for producing *diff* maps

An example of *text.xml*:

An example of *commands.txt* file:

```
g1@ -p 228.128 -n gR24 -t 24 --fmap=1 -i /dataset/EpsN320-2013063000.grb -o /dataset/eueR24 -m 10
p1@ -l ERROR -c /ECMWF_grib2pcraster/pyg2p/execution_templates/eue_r24.xml -i /dataset/EpsN320-
2013063000.grb -o /dataset/eueR24 -m 10
g2@ -p 182.128 -n gE24 -t 24 --fmap=1 -m 10 -i /dataset/EpsN320-2013063000.grb -o /dataset/eueE24
p2@ -l ERROR -c /ECMWF_grib2pcraster/pyg2p/execution_templates/eue_e24.xml -i /dataset/EpsN320-
2013063000.grb -o /dataset/eueE24 -m 10
#glofas commands. grib2pcraster needs two executions for each pyg2p command
g3@ -i /dataset/20130325_en0to10.grib -o ./multiresSRO -p 8.128 -m 50 -n gsro --date=20130325 -s 0 -e
240 --unit=mm -t 24 --interlookup=/grib2pcraster/interplookup/intertable_2011_medium.txt
g3@ -i /dataset/multires/20130325_en11to15.grib -o ./multiresSRO -p 8.128 -m 50 -n gsro --date=20130325
-s 264 --fmap=11 -e 360 --unit=mm -t 24
--interlookup=/grib2pcraster/interplookup/intertable_2011_low.txt
p3@ -c /pyg2p_workingcopy/execution_templates_devel/glofas_sro.xml -i /dataset/20130325_en0to10.grib -I
/dataset/20130325_en11to15.grib -o ./multiresSRO -m 50
#only pyg2p tests (these are not reproducible with grib2pcraster 1.07)
p4@ -i /dataset/UKMO/UKMO_20121218.grib -o ./UKMO/ -c
/home/dominik/ECMWF_grib2pcraster/pyg2p_workingcopy/execution_templates_devel/UKMO_t24_LA.xml -m 0
p4@ -i /dataset/ungrib_20130804/EUE_2013073100_cv.grb -o ./UKMO/ -c
./execution_templates_devel/EUE_RainAnim_CV.xml -m 0
```

See the following paragraph or the Configuration manual for further details.

Writing the commands.xml file

When writing the commands.txt file, follow these rules:

- Each test is composed by both the list of arguments for **grib2pcraster** and **pyg2p**. Prefix each list of arguments with 'g' (for **grib2pcraster**) or 'p' (for **pyg2p**) and use the same id to tie them.
 - If in a test case you need to compare two executions of grib2pcraster with one of pyg2p (i.e.
 for multiresolution grib files), just write the two list of grib2pcraster arguments using the
 same id.

- $^{\circ}$ If in a test case you want to execute only the pyg2p command, just write the respective list of argument as pN@ .
- Output directories of each test must be the same. This limitation happens because of how the **pcrcalc** command works.
- Maps prefixes of each test must be 'g' for grib2pcraster output maps and 'p' for pyg2p output maps (to configure in xml).
- Don't use —report=2 option for grib2pcraster commands and use -l ERROR for pyg2p commands to avoid polluting of output console.

Appendix A - Execution XML files Examples

This paragraph will explain typical execution xml configurations.

Example 1: Correction with dem and geopotentials

./pyg2p.py -c example1.xml -i /dataset/cosmo/2012111912_pf2_t2.grb -o ./out_1

This configuration, will select the 2t parameter from time step 0 to 12, out of a cosmo t2 file. Values will be corrected using the dem map and a geopotential file as in geopotentials.xml configuration.

You can use another well known correction whose formulas are configured as below:

```
gem="(10**((-0.159)*(z/9.81)/1000)"
correctionFormula="p/gem*(10**((-0.159)*dem/1000))"
```

Maps will be written under ./out_1 folder (the folder will be created if not existing yet). The clone map is set as same as dem.map.

The original values will be converted using the conversion "k2c". This conversion must be configured in the parameters.xml file for the variable which is being extracted (2t). See Parameter XML tag configuration paragraph in Configuration Manual or in the Conversionchapter in this manual.

The interpolation method is *grib_invdist*. For grib interpolation methods (*grib_nearest* and *grib_invdist*), no additional parameters are needed. Latitudes and longitudes values will be used only if

the interpolation lookup table (intertable) hasn't be created yet but it's mandatory to set latMap and lonMap because the application uses their metadata raster attributes to select the right intertable.

The table filename to be read and used for interpolation is automatically found by the application, so there is no need to put the interlookup table name to use! However, lat and lon maps are mandatory configuration attributes at this moment.

Example 2: Dealing with multiresolution files

```
./pyg2p.py -c example1.xml -i 20130325_en0to10.grib -I 20130325_en11to15.grib -o ./out_2
```

Performs accumulation 24 hours out of sro values of two input grib files having different vertical resolutions. You can also feed pyg2p with a single multiresolution file.

./pyg2p.py -c example1.xml -i 20130325_sro_0to15.grib o ./out_2 -m 0

This execution configuration will extract global overlapping messages sro (perturbation number 0) from two files at different resolution.

Values will be converted using "tomm" conversion and maps (interpolation used here is grib_nearest) will be writtine under ./out_6 folder.

Example 3

./pyg2p.py -c example1.xml -i dwd_grib_ispra_gme_2006_2_168_i384_2012111500.grib2 -o ./out_13

Performing this execution will extract 10u messages (from timestep 12 to 15) from a dwd GRIB2 file.

For resampling, dwd gmi maps file are used.

Again, if there is a precompiled interlookup table, this will be used instead of performing an expensive resampling using GRIB API nearest functions.

Example 4: Average 24 hours

./pyg2p.py -c execution_file_examples/execution_6.xml -o ./out_6 -i /dataset/dwd/grib/dwd_grib1_ispra_LME_2012111900

Note the intertableDir specifing an alternative folder where to read and store interlookup tables.

Example 5: Accumulation 24 hours

./pyg2p.py -i /dataset/eue/EpsN320-2012112000.grb -o ./out_eue -c execution_file_examples/execution_9.xml

Appendix B - mapping between grib2pcraster and pyg2p

This appendix aims to help to migrate from grib2pcraster to pyg2p.

Differences in glossary

- The Manipulation as intended in grib2pcraster becomes Aggregation in pyg2c; if you read the term manipulation in the pyg2c documentation, that means a more generic term, including correction and conversion. Anyway, if you read the python code, the python class which performs aggregation is called Manipulator itself.
- What it's called TypeOfField in grib2pcraster becomes stepType in pyg2p (as for the GRIB standard). It defines the aggregated nature of the variable which can be instant, averaged, or cumulated.
- In grib2pcraster, the variable to extract is called parameter and it's referenced by a couple of numbers: **x.y**, where:
 - **x** is the value of the *indicatorOfParameter* key as found in the GRIB message
 - **y** is an internal number identifying the TableVersion as found in the parameters.xml file of grib2pcraster.
- In pyg2p, while the Parameter term was retained, it is identified by the *shortName* key as found in the GRIB message. This is an independent version key and it's only related to the variable itself and not to the *generating centre* of the file, since this is already coded in GRIB API tables. That is, in pyg2p the concepts of generating centre and table parameter versions don't need to exist.

Mapping variables

To "translate" the parameter code **x.y** used in grib2pcraster to the **shortName** form of pyg2c, just follow these simple steps:

- 1. Identify the parameter in grib2pcraster's parameters.xml file using **y** to find the *gribTablesVersionNo* and **x** to find the single item *Param*.
- 2. Take note of abbreviation and field description strings of the Param above.
- 3. Use some basic GRIB tools (and meteorological) skills to find the *shortName* value of the grib:

grib_get -p shortName, parameterName /path/to/grib/file.grib2

Known parameters mapping with conversions

Variable	grib2pcraster selectors (indicatorOfParameter.gribTable sVersionNo)	pyg2p.py shortName	Configured conversions in grib2pcraster
2 meters Dew- point	• 17.2 • 168.128	• 2D	• x-273.15
2 meters Temperature	11.2500011.0167.128	t_2mtd_2m2t	• x-273.15
Total precipitation	• 61.2 • 228.128	• tp	Only cut offx*1000 + cut off
Latent heat flux	• 500086.0 • 121.2	• alhfl_s	 x*(-0.0353) + cut off [default] x*(-0.00147) + cut off
Surface Latent heat flux	• 147.128	• slhf	No conversion
Surface Runoff	8.2308.128	• sro	• x*1000 + cut off
Sub-Surface Runoff	9.2309.128	• ssro	• x*1000 + cut off
Large scale precipitation	• 142.128	• lsp	• x*1000 + cut off
Convective precipitation	• 143.128	Not tested. It needs to be added to parameters.xml if used.	• x*1000 + cut off
Evaporation	• 182.128	• e	• x*(-1000)
Runoff	• 205.128	Not tested. It needs to be added to parameters.xml if used.	• x*1000 + cut off (not as default, it needs to be set by command line with unit parameter)
Surface precipitation amount, rain, grid scale	• 102.201	• rain_gsp	Only cut off
Surface precipitation amount, rain, convective	• 113.201	• rain_con	Only cut off
Large scale rain rate	• 500134.0	Not tested. It needs to be added to parameters.xml if used.	Only cut off

Snow fall	• 144.128	Not tested. It needs to be added to parameters.xml if used.	• x*1000
Snow depth	• 141.128	Not tested. It needs to be added to parameters.xml if used.	• X*1000 (not as default, it needs to be set by command line withunit parameter)

Execution parameters mapping

Argument	grib2pcraster	pyg2p.py
Input file	-i	-i
Variable	-p x.y	Xml ⁴ (shortName)
Output directory	-0	-0
EPS perturbationNumber	-m	-m
Variable level	level	Xml
Aggregation type	Default in parameters.xml. Overwriting withma	Xml (type)
Aggregation step	-t	Xml (step)
Start step	-s	-s or Xml (tstart)
End step	-е	-e or Xml (tend)
Output map unittime	unittime	Xml (unitTime)
Interpolation	-r,-l,-a or –intertable	Xml (see relative section in this manual).
Conversion	parameters.xml	parameters.xml and Xml (applyConversion)
Correction	Two formulas hardcoded and configured by default in parameters.xml or withtemp andevap.	Xml (attributes correctionFormula, gem, dem)
Map extension naming	fmap,ext	Xml
Map prefix name	-n	Xml
Logging	report. Loggers directory is under program installation folder	Configurable in logger-configuration.xml. Console logger level overwritable with -l (default is INFO). Default loggers dir ./logs overwritable with -d.

⁴ In this table, "Xml" means that the corresponding parameter configuration is in the execution xml template where you configure your extraction and pass to the pyg2p with the -c input argument. If not indicated otherwise, the xml tag/attribute name is the same as the grib2pcraster input argument (e.g.: --level=10 becomes the xml attribute level="10").

Difference in dealing with multiresolution

Multiresolution extraction can be made in one step with pyg2p, using both -i and -I for input files or even a single multiresolution file. The grib2pcraster application needs to perform two executions, instead.

Differences in Correction

There is a sort of bug in grib2pcraster when come to correction, since the dem values it uses are stored in its interlookup tables and, if the DEM has changed for some reasons, the corrected values will be wrong unless the interlookup table is not regenerated using the new DEM map.

However, here the main difference is that the correction formulas are editable directly by the user in pyg2p.

Differences in Aggregation

The type of aggregation and its step window must be specified in pyg2p, using the *Aggregation* XML tag.

In grib2pcraster, instead, the type of aggregation for the specific variable is being extract (i.e. manipulation) is read from *ManipulationFlag* attribute in *parameters.xml* file: "1" for average and "2" for accumulation. The step window is 24 hours by default and it can be overwritten with -t parameter.

Differences in Interpolation

Resampling of grids in **grib2pcraster** is made using GRIB API. Available interpolation methods are:

- nearest neighbours
- inverse distance

The interpolation table file is declared with the input argument –intertable, or otherwise by configuration, using one of the tables in *interpolation.xml*.

In **pyg2p** there are three additional resampling modes, not usable for daily operations because of performances issues in the current version (see the relative Interpolation modes paragraph in this document).

They are nearest neighbours and inverse distance (*nearest* and *invdist* modes) but performed by scipy libraries. Finally, there is a further scipy interpolation mode called griddata.

Interlookup tables are read/written by default using \$PYG2PHOME/configuration/intertables as folder where to load existing intertables or save new ones. An alternative folder can be specified using the intertableDir attribute in the Interpolation XML tag of the xml template configuration.

Appendix C - Glossary

Brief description of terms you find in this manual, with their synonims.

Term	Synonims	Description
Interpolation lookup table	Intertable, interlookup table	It's a numpy binary file containing indexes correspondences and coefficients/distances. Each combination of GRIB grid/PCR aster target coordinates maps/Interpolation mode has its own intertable. Since there are four interpolation modes using intertables, there can be four different intertables for each combination of GRIB grid/PCR aster lat/lon maps.
Aggregation		Average or accumulation
Interpolation	Resampling	Resampling between the original GRIB grid and the target raster lat/lon coordinates.
Execution XML template file	Execution template, commands file, execution file, xml template, xml configuration	The XML file where most of execution parameters are configured. It's being passed by the mandatory CLI argument - <i>c</i> .
Parameter	Variable	The meteorological variable stored in the input grib file.
Command line Input argument	Input argument, CLI argument, option	Input arguments to the application passed via command line. They are -i,-I,-o,-m,-l,-d,-c
Execution parameter	Parameter, input argument	All configured options (via CLI or XML files) that define the execution context.
GRIB grid	Grid	It's the set of geodetic attributes identifying the coordinate system and the specific projected area. The set includes gridType , first and last values of latitude and longitudes, number of points along the meridian.
GRIB message's gridType	Grid type, grid	It's the specific grid type of the GRIB message and can be regular_rr, regular_ll, rotated_rr, rotated_ll, reduced_ll and so on.
GRIB message	Grib	It's a single message extracted from a GRIB file .
GRIB API		C library (and its wrappers) from ECMWF to deal with grib files .
GRIB file	Grib	An input file encoded using GRIB format.
Geopotential GRIB values	Geopotential	Geopotential values encoded in grib files, used for correction.
Gem value	Gem	In correction, the gem value is being obtained using the formula configured with <i>gem</i> XML attribute, where z is the geopotential value. E.g. gem = " $(z/9.81)*0.0065$ "