Conformal Self Mappings

Jaemin Oh

KAIST

October 6, 2020

Contents

ightharpoonup U, V: open subsets of $\mathbb C$

- ightharpoonup U, V: open subsets of $\mathbb C$
- ightharpoonup f is a function of U into V

- ightharpoonup U, V: open subsets of $\mathbb C$
- f is a function of U into V
- ightharpoonup f is conformal if f is bijective and holomorphic.

- ightharpoonup U, V: open subsets of $\mathbb C$
- f is a function of U into V
- *f* is conformal if *f* is bijective and holomorphic.
- conformal = biholomorphic

- ightharpoonup U, V: open subsets of $\mathbb C$
- f is a function of U into V
- f is conformal if f is bijective and holomorphic.
- conformal = biholomorphic
- ▶ If h is holomorphic function of U, and U is somewhat complicated, by considering $h \circ f$, we can change the domain of h.

characterizing conformal self mapping of $\ensuremath{\mathbb{C}}$

▶ natural example: az + b for $a \neq 0$

characterizing conformal self mapping of ${\mathbb C}$

- ▶ natural example: az + b for $a \neq 0$
- ▶ In fact, above form is all of them.

characterizing conformal self mapping of ${\mathbb C}$

- ▶ natural example: az + b for $a \neq 0$
- ▶ In fact, above form is all of them.
- Note that we are considering not just entire function. Conformal self mappings of $\mathbb C$ has more condition than entire function.

Lemma 6.1.2.

If $f: \mathbb{C} \to \mathbb{C}$ is a conformal then $\lim_{|z| \to \infty} |f(z)| = \infty$.

► Fix M. We want to show existence of N such that $f(\{z:|z|>N\})\subset\{w:|w|>M\}$.

- Fix M. We want to show existence of N such that $f(\{z:|z|>N\})\subset\{w:|w|>M\}$.
- ▶ Above is equivalent to $\{z: |z| > N\} \subset f^{-1}(\{w: |w| > N\})$ since f is bijective.

- ► Fix M. We want to show existence of N such that $f(\{z : |z| > N\}) \subset \{w : |w| > M\}$.
- ▶ Above is equivalent to $\{z: |z| > N\} \subset f^{-1}(\{w: |w| > N\})$ since f is bijective.
- Above is equivalent to $\{z: |z| \le N\} \supset f^{-1}(\{w: |w| \le M\})$ by taking complement.

- Fix M. We want to show existence of N such that $f(\{z:|z|>N\})\subset\{w:|w|>M\}$.
- ▶ Above is equivalent to $\{z: |z| > N\} \subset f^{-1}(\{w: |w| > N\})$ since f is bijective.
- Above is equivalent to $\{z: |z| \le N\} \supset f^{-1}(\{w: |w| \le M\})$ by taking complement.
- Existence of N is clear since RHS of above is compact(⇒ closed and bounded).

characterizing conformal self mapping of $\ensuremath{\mathbb{C}}$

lemma 6.1.3

f is a conformal self mapping of \mathbb{C} . Then there are B,D>0 such that |z|>D implies |f(z)|< B|z|.

▶ There is C such that |z| > C implies |f(z)| > 1.

- ▶ There is C such that |z| > C implies |f(z)| > 1.
- ▶ Define $g(z) = 1/f(\frac{1}{z})$ for $z \in D'(0, \frac{1}{C})$.

- ▶ There is C such that |z| > C implies |f(z)| > 1.
- ▶ Define $g(z) = 1/f(\frac{1}{z})$ for $z \in D'(0, \frac{1}{C})$.
- As $z \to 0$, $g \to 0$. So g has removable singularity at 0.

- ▶ There is C such that |z| > C implies |f(z)| > 1.
- ▶ Define $g(z) = 1/f(\frac{1}{z})$ for $z \in D'(0, \frac{1}{C})$.
- As $z \to 0$, $g \to 0$. So g has removable singularity at 0.
- ▶ $g'(0) \neq 0$ since g is injection since f is injection.

- ▶ There is C such that |z| > C implies |f(z)| > 1.
- ▶ Define $g(z) = 1/f(\frac{1}{z})$ for $z \in D'(0, \frac{1}{C})$.
- As $z \to 0$, $g \to 0$. So g has removable singularity at 0.
- ▶ $g'(0) \neq 0$ since g is injection since f is injection.
- $\blacktriangleright \text{ Near 0, } \left| \frac{g(z)}{z} \right| > \frac{1}{B}.$

- ▶ There is C such that |z| > C implies |f(z)| > 1.
- ▶ Define $g(z) = 1/f(\frac{1}{z})$ for $z \in D'(0, \frac{1}{C})$.
- As $z \to 0$, $g \to 0$. So g has removable singularity at 0.
- ▶ $g'(0) \neq 0$ since g is injection since f is injection.
- $\blacktriangleright \text{ Near 0, } \left| \frac{g(z)}{z} \right| > \frac{1}{B}.$
- $\blacktriangleright \text{ Near 0, } \left| f(\frac{1}{z}) \right| < \frac{B}{|z|}.$

- ▶ There is C such that |z| > C implies |f(z)| > 1.
- ▶ Define $g(z) = 1/f(\frac{1}{z})$ for $z \in D'(0, \frac{1}{C})$.
- As $z \to 0$, $g \to 0$. So g has removable singularity at 0.
- ▶ $g'(0) \neq 0$ since g is injection since f is injection.
- $\blacktriangleright \text{ Near 0, } \left| \frac{g(z)}{z} \right| > \frac{1}{B}.$
- Near 0, $\left|f(\frac{1}{z})\right| < \frac{B}{|z|}$.
- $ightharpoonup z\mapsto \frac{1}{z}$ leads the conclusion.

► Consider $|f^{(n)}(0)| \le \frac{n!}{r^n} \sup_{w \in \partial D(0,r)} |f(w)|$.

- ► Consider $|f^{(n)}(0)| \leq \frac{n!}{r^n} \sup_{w \in \partial D(0,r)} |f(w)|$.
- ▶ For r > D, supremum above $\leq Br$ by lemma 6.1.3.

- ► Consider $|f^{(n)}(0)| \leq \frac{n!}{r^n} \sup_{w \in \partial D(0,r)} |f(w)|$.
- ▶ For r > D, supremum above $\leq Br$ by lemma 6.1.3.
- ▶ If n > 1, by letting $r \to \infty$, n-th derivative of f at 0 must be zero.

- ► Consider $|f^{(n)}(0)| \leq \frac{n!}{r^n} \sup_{w \in \partial D(0,r)} |f(w)|$.
- For r > D, supremum above $\leq Br$ by lemma 6.1.3.
- ▶ If n > 1, by letting $r \to \infty$, n-th derivative of f at 0 must be zero.
- ▶ Therefore *f* must be polynomial of degree at most 1.

- ► Consider $|f^{(n)}(0)| \leq \frac{n!}{r^n} \sup_{w \in \partial D(0,r)} |f(w)|$.
- ▶ For r > D, supremum above $\leq Br$ by lemma 6.1.3.
- ▶ If n > 1, by letting $r \to \infty$, n-th derivative of f at 0 must be zero.
- ▶ Therefore f must be polynomial of degree at most 1.
- ▶ But f must be nonconstant. So f(z) = az + b for $a \neq 0$.

- ► Consider $|f^{(n)}(0)| \leq \frac{n!}{r^n} \sup_{w \in \partial D(0,r)} |f(w)|$.
- ▶ For r > D, supremum above $\leq Br$ by lemma 6.1.3.
- ▶ If n > 1, by letting $r \to \infty$, n-th derivative of f at 0 must be zero.
- ▶ Therefore *f* must be polynomial of degree at most 1.
- ▶ But f must be nonconstant. So f(z) = az + b for $a \neq 0$.
- We are characterized conformal self mappings of C.

▶ h is holomorphic on $\{z : |z| > \alpha\}$ and $\lim_{|z| \to \infty} |h(z)| = \infty$.

- ▶ *h* is holomorphic on $\{z : |z| > \alpha\}$ and $\lim_{|z| \to \infty} |h(z)| = \infty$.
- ▶ By same procedure in proof of lemma 6.1.3, we can conclude that there are B, D > 0 such that $|z| > D \Rightarrow |h(z)| < B|z|^n$ for some n.

- ▶ h is holomorphic on $\{z: |z| > \alpha\}$ and $\lim_{|z| \to \infty} |h(z)| = \infty$.
- ▶ By same procedure in proof of lemma 6.1.3, we can conclude that there are B, D > 0 such that $|z| > D \Rightarrow |h(z)| < B|z|^n$ for some n.
- ▶ Why n? Because we cannot say $g'(0) \neq 0$. But, $g^{(n)}(0) \neq 0$ for some n since g is nonconstant since h is nonconstant.

- ▶ h is holomorphic on $\{z: |z| > \alpha\}$ and $\lim_{|z| \to \infty} |h(z)| = \infty$.
- ▶ By same procedure in proof of lemma 6.1.3, we can conclude that there are B, D > 0 such that $|z| > D \Rightarrow |h(z)| < B|z|^n$ for some n.
- ▶ Why n? Because we cannot say $g'(0) \neq 0$. But, $g^{(n)}(0) \neq 0$ for some n since g is nonconstant since h is nonconstant.
- Note that entire function φ which satisfies $\lim_{|z|\to\infty} |\varphi(z)| = \infty$ must be polynomial.

characterizing conformal self mapping of unit disc

▶ natural example : rotation (f(z) = wz for |w| = 1)

characterizing conformal self mapping of unit disc

- ▶ natural example : rotation (f(z) = wz for |w| = 1)
- In fact, above form is all of them which fixes origin.

characterizing conformal self mapping of unit disc

- ▶ natural example : rotation (f(z) = wz for |w| = 1)
- In fact, above form is all of them which fixes origin.

lemma 6.2.1.

f:D o D is biholomorphic which fixes origin iff f(z)=wz for |w|=1

▶ $g = f^{-1}$. Then both of f, g are fixing origin.

proof of lemma 6.2.1.

- ▶ $g = f^{-1}$. Then both of f, g are fixing origin.
- ▶ Schwarz lemma says |f'(0)| and |g'(0)| are ≤ 1 .

proof of lemma 6.2.1.

- ▶ $g = f^{-1}$. Then both of f, g are fixing origin.
- Schwarz lemma says |f'(0)| and |g'(0)| are ≤ 1 .
- ► Chain rule says f'(0)g'(0) = 1. This leads |f'(0)| = |g'(0)| = 1.

proof of lemma 6.2.1.

- ▶ $g = f^{-1}$. Then both of f, g are fixing origin.
- ▶ Schwarz lemma says |f'(0)| and |g'(0)| are ≤ 1 .
- ► Chain rule says f'(0)g'(0) = 1. This leads |f'(0)| = |g'(0)| = 1.
- ▶ Uniqueness of Schwarz lemma tells us that f(z) = f'(0)z.

Mobius transformation

• $\varphi_{a}(z)=rac{z-a}{1-ar{a}z}$ for |a|<1 is called Mobius transformation.

Mobius transformation

- $\varphi_a(z) = \frac{z-a}{1-\bar{a}z}$ for |a| < 1 is called Mobius transformation.
- ▶ Theorem 5.5.2 says φ_a is conformal self mapping of unit disc. So we take it for granted.

Mobius transformation

- $\varphi_a(z) = \frac{z-a}{1-\bar{a}z}$ for |a| < 1 is called Mobius transformation.
- ▶ Theorem 5.5.2 says φ_a is conformal self mapping of unit disc. So we take it for granted.

theorem 6.2.3.

f is conformal self mapping of unit disc. Then $f(z) = w\varphi_a(z)$ for some |a| < 1 and |w| = 1.

▶ f(0) = b. Let $g = \varphi_b \circ f$. Then g fixes origin.

- ▶ f(0) = b. Let $g = \varphi_b \circ f$. Then g fixes origin.
- g(z) = wz for some |w| = 1. Namely, $f(z) = \varphi_b^{-1}(wz)$.

- ▶ f(0) = b. Let $g = \varphi_b \circ f$. Then g fixes origin.
- g(z) = wz for some |w| = 1. Namely, $f(z) = \varphi_b^{-1}(wz)$.
- $\blacktriangleright \text{ But } \varphi_b^{-1} = \varphi_{-b}.$

- ▶ f(0) = b. Let $g = \varphi_b \circ f$. Then g fixes origin.
- g(z) = wz for some |w| = 1. Namely, $f(z) = \varphi_b^{-1}(wz)$.
- $\blacktriangleright \text{ But } \varphi_b^{-1} = \varphi_{-b}.$
- $f(z) = \frac{wz+b}{1+\overline{b}wz}$

- ▶ f(0) = b. Let $g = \varphi_b \circ f$. Then g fixes origin.
- g(z) = wz for some |w| = 1. Namely, $f(z) = \varphi_b^{-1}(wz)$.
- $\blacktriangleright \text{ But } \varphi_b^{-1} = \varphi_{-b}.$
- $f(z) = \frac{wz+b}{1+\overline{b}wz}$
- ▶ Simple calculation leads $f(z) = w\varphi_{-bw^{-1}}(z)$.

- ▶ f(0) = b. Let $g = \varphi_b \circ f$. Then g fixes origin.
- g(z) = wz for some |w| = 1. Namely, $f(z) = \varphi_b^{-1}(wz)$.
- $\blacktriangleright \text{ But } \varphi_b^{-1} = \varphi_{-b}.$
- $ightharpoonup f(z) = \frac{wz+b}{1+\overline{b}wz}$
- ▶ Simple calculation leads $f(z) = w\varphi_{-bw^{-1}}(z)$.
- ▶ Take $a = -bw^{-1}$.

▶ Riemann sphere is $\mathbb{C} \cup \infty \cong S^2$ by stereographic projection.

- ▶ Riemann sphere is $\mathbb{C} \cup \infty \cong S^2$ by stereographic projection.
- $ightharpoonup p_i o p_0$ in R-sphere is equivalent to $\pi^{-1}(p_i) o \pi^{-1}(p_0)$ in S^2 .

- ▶ Riemann sphere is $\mathbb{C} \cup \infty \cong S^2$ by stereographic projection.
- $ightharpoonup p_i o p_0$ in R-sphere is equivalent to $\pi^{-1}(p_i) o \pi^{-1}(p_0)$ in S^2 .
- Note that image of north-pole in S^2 under projection is ∞ .

- ▶ Riemann sphere is $\mathbb{C} \cup \infty \cong S^2$ by stereographic projection.
- $ightharpoonup p_i o p_0$ in R-sphere is equivalent to $\pi^{-1}(p_i) o \pi^{-1}(p_0)$ in S^2 .
- ▶ Note that image of north-pole in S^2 under projection is ∞ .
- Also, above definition of limit in extended plane is congruent to definition using metric.

▶ Let $ad - bc \neq 0$, $a, b, c, d \in \mathbb{C}$. $f(z) = \frac{az+b}{cz+d}$ is called linear fractional transformation if it satisfies two more conditions.

- ▶ Let $ad bc \neq 0$, $a, b, c, d \in \mathbb{C}$. $f(z) = \frac{az+b}{cz+d}$ is called linear fractional transformation if it satisfies two more conditions.
- ▶ If c = 0, $f(\infty) = \infty$. In this case, f is a linear map.

- ▶ Let $ad bc \neq 0$, $a, b, c, d \in \mathbb{C}$. $f(z) = \frac{az+b}{cz+d}$ is called linear fractional transformation if it satisfies two more conditions.
- ▶ If c = 0, $f(\infty) = \infty$. In this case, f is a linear map.
- ▶ If $c \neq 0$, $f(-\frac{d}{c}) = \infty$, $f(\infty) = \frac{a}{c}$.

- ▶ Let $ad bc \neq 0$, $a, b, c, d \in \mathbb{C}$. $f(z) = \frac{az+b}{cz+d}$ is called linear fractional transformation if it satisfies two more conditions.
- ▶ If c = 0, $f(\infty) = \infty$. In this case, f is a linear map.
- ▶ If $c \neq 0$, $f(-\frac{d}{c}) = \infty$, $f(\infty) = \frac{a}{c}$.
- ▶ Note that $f(p_i) \to f(p_0)$ when $p_i \to p_0$ for all $p_0 \in \mathbb{C} \cup \infty$.

- ▶ Let $ad bc \neq 0$, $a, b, c, d \in \mathbb{C}$. $f(z) = \frac{az+b}{cz+d}$ is called linear fractional transformation if it satisfies two more conditions.
- ▶ If c = 0, $f(\infty) = \infty$. In this case, f is a linear map.
- ▶ If $c \neq 0$, $f(-\frac{d}{c}) = \infty$, $f(\infty) = \frac{a}{c}$.
- ▶ Note that $f(p_i) \to f(p_0)$ when $p_i \to p_0$ for all $p_0 \in \mathbb{C} \cup \infty$.
- Above says continuity of f on extended plane.