第十章 群与环

- □ 主要内容
 - 10.1群的定义与性质
 - 10.2子群与群的陪集分解
 - 10.3循环群与置换群
 - 10.4环与域

10.3 循环群与置换群

 \square 定义10.10 设G是群,若存在 $a \in G$ 使得 $G = \{a^k | k \in \mathbb{Z}\}$

则称G是循环群,记作 $G=\langle a \rangle$,称 a 为G 的生成元.

例

0	f^0	f^{I}	f^2	f ³
f^{0}	f^0	f^{I}	f^2	f^3
f^I	f^I	f^2	f^3	f^{0}
f^2	f^2	f^3	f^{o}	f^{I}
f^3	f^3	f^0	f^{I}	f^2

生成元: f^1, f^3

*	e	b	С
e	e	b	С
b	b	С	e
С	С	e	b

生成元: b,c

□ 回看旋转群<G,*>的运算表如下:

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

$G=<\mathbb{Z}_9,\oplus>$

<u></u> 9	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8	0
2	2	3	4	5	6	7	8	0	1
3	3	4	5	6	7	8	0	1	2
4	4	5	6	7	8	0	1	2	3
5	5	6	7	8	0	1	2	3	4
6	6	7	8	0	1	2	3	4	5
7	7	8	0	1	2	3	4	5	6
8	8	0	1	2	3	4	5	6	7

□ 生成元: 1,2,4,5,7,8

定理

口任何一个循环群必定是阿贝尔群。

证明

设<G,*>是循环群,它的生成元是a,则对任意 $x,y \in G$,必有 $r,s \in Z$,使得

$$x = a^{r}, y = a^{s}$$

$$x * y = a^{r} * a^{s} = a^{r+s} = a^{s+r}$$

$$= a^{s} * a^{r} = y * x$$

因此群<G,*>是阿贝尔群。

循环群一定是阿贝尔群,反之则不一定

□ 例如: Klein四元群 G={e,a,b,c}:

*	e	a	b	c
e	e	a	b	c
a	a	e	C	b
b	b	C	e	a
C	C	b	a	e

□ <G,*>是一个阿贝尔群,但不是循环群。

应用实例

- □ 证明: 阶小于6的群都是Abel群.
- □证:1阶群是平凡的,显然是Abel群.
 - 2,3和5都是素数,由推论2知素数阶群都是循环群,进而都是Abel群.
 - 设G是4阶群.

若G中含有4阶元,比如说a,则 $G=\langle a \rangle$,即G是循环群,故G是Abel群.

若G中不含4阶元,则G中只含1阶和2阶元,

群中元素的阶是群阶的因子

由命题可知G也是Abel群.

循环群的分类

- □ 循环群的分类: n 阶循环群和无限循环群.
 - 设 $G=\langle a\rangle$ 是循环群,若a是n 阶元,则 $G=\{a^0=e,a^1,a^2,\ldots,a^{n-1}\}$ 那么|G|=n,称G为n 阶循环群.
 - 若a 是无限阶元,则 $G = \{a^0 = e, a^{\pm 1}, a^{\pm 2}, \dots\}$ 称 G 为无限循环群.
- □ 例如: <Z, +> = <1> 是无限循环群 <Z₁₂, ⊕> = <1> 是12阶循环群。

循环群的生成元

 $\phi(n)$ 称为欧拉函数,表示 $\{0,1,...n-1\}$ 中与n互素的数的个数

- \square 定理10.13 设 $G=\langle a\rangle$ 是循环群.
 - (1) 若G是无限循环群,则G只有两个生成元,即a和 a^{-1} .
 - (2) 若G是n 阶循环群,则G含有o(n)个生成元. 且 a^r 是G的生成元当且仅当 r是小于n且与n互素的自然数.
- 口例如 n=12,小于12且与12互素的正整数有4个: 1, 5, 7, 11,所以 $\phi(12)=4$.

实例

- □ <Z, +>的生成元
 - 1和-1
- □ <**Z**₁₂, ⊕>的生成元
 - **1**, 5, 7, 11

证明: 定理10.13 设 $G=\langle a\rangle$ 是循环群.

- (1) 若G是无限循环群,则G只有两个生成元,即a和 a^{-1} .
- □ (1) 先证 a^{-1} 是G的生成元,即证 $G=\langle a^{-1}\rangle$ 显然 $\langle a^{-1}\rangle$ ⊆G.

 $\forall a^k \in G, \ a^k = (a^{-1})^{-k} \in \langle a^{-1} \rangle,$

因此 $G \subseteq \langle a^{-1} \rangle$,从而 $G = \langle a^{-1} \rangle$,故 a^{-1} 是G的生成元.

再证明G只有a和 a^{-1} 这两个生成元.

假设 b 也是G 的生成元,则 G=< b>.

由 $a \in G$ 可知:存在整数 t 使得 $a = b^t$.

由 $b \in G = \langle a \rangle$ 知:存在整数 m 使得 $b = a^m$.

从而得到 $a = b^t = (a^m)^t = a^{mt}$

由G中的消去律得 $a^{mt-1} = e$

因为G是无限群,必有mt-1=0. 从而证明了

m = t = 1 或 m = t = -1, 即 b = a 或 $b = a^{-1}$

 $\phi(n)$ 称为欧拉函数,表示 $\{0,1,...n-1\}$ 中与n互素的数的个数

证明: 定理10.13 设 $G=\langle a\rangle$ 是循环群.

(2) 若G是n 阶循环群,则G含有 $\phi(n)$ 个生成元. 且 a^r 是G的生成元当且仅当

r是小于n且与n互素的自然数.

- - 充分性 即证 $G = \langle a^r \rangle$

显然有 $< a^r > \subseteq G$.

设r与n互素,且r<n,那么:

存在整数 u 和 v 使得 ur + vn = 1从而 $a = a^{ur+vn} = (a^r)^u (a^n)^v = (a^r)^u$ /* $a^n = e^*$ / 对于 $\forall a^k \in G$, a^k $= (a^r)^{uk}$

 $\in \langle a^r \rangle$

故 $G \subseteq \langle a^r \rangle$

 $\phi(n)$ 称为欧拉函数,表示 $\{0,1,...n-1\}$ 中与n互素的数的个数

证明: 定理10.13 设 $G=\langle a\rangle$ 是循环群.

- (2) 若G是n 阶循环群,则G含有 $\phi(n)$ 个生成元. 且 α^r 是G的生成元当且仅当 r是小于n且与n 互素的自然数.
- 必要性即证r与n互素(r与n的最大公约数为1)设 a^r 是G的生成元(r<n),则 $|a^r| = n$. 令r与n的最大公约数为d,

则存在正整数 t,使得 r = dt.

因此, $(a^r)^{n/d} = (a^{dt})^{n/d} = (a^n)^t = e$

所以, $|a^r|$ 是n/d的因子,即n整除n/d.

从而证明了d=1,即r与n互素。

定理10.2 *G*为群, $a \in G$ 且 |a| = r. 设k是整数,则

(1) $a^k = e$ 当且仅当 $r \mid k$ // $r \mid k$ 表示r整除k

$$(2)|a^{-1}| = |a|$$

循环群的子群

- \Box 定理10.14 设 $G=\langle a\rangle$ 是循环群.
 - (1) G的子群仍是循环群.
 - (2) 若 $G=\langle a\rangle$ 是无限循环群,则G的子群除 $\{e\}$ 以外都是无限循环群.
 - (3) 若 $G=\langle a\rangle$ 是n阶循环群,则对n的每个正因子d,G恰好含有一个d 阶子群.

□ 回看旋转群<G,*>的运算表如下:

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

证明: 定理10.14 设 $G=\langle a\rangle$ 是循环群.

(1) G的子群仍是循环群.

- □ (1) 设H是G=<a>的子群,若H={e},显然H是循环群,否则取H中的最小正方幂元a^m,下面证明H=<a^m>. 易见<a^m> \subseteq H.
- □ 下面证明H $\subseteq < a^m >$.

任取 $a^l \in H$,由除法可知存在整数 q 和 r,使l = qm+r,其中 $0 \le r \le m-1$

$$a^r = a^{l-qm} = a^l(a^m)^{-q}$$

由 $a^l, a^m \in H$ 且 H 是G 的子群可知 $a^r \in H$.

因为 a^m 是H中最小正方幂元,

又r < m,则必有r = 0.

推出 $a^l = (a^m)^q \in \langle a^m \rangle$

- 证明: 定理10.14 设 $G=\langle a\rangle$ 是循环群.
 - (2) 若 $G=\langle a\rangle$ 是无限循环群,则G的子群除 $\{e\}$ 以外都是无限循环群.
 - □ (2) 设*G*=<*a*>是无限循环群, *H*是*G* 的子群.
 若*H*≠{*e*}可知*H* =<*a*^m>, 其中*a*^m为*H*中最小正方幂元.
 假若 |*H*|=*t*, 则 |*a*^m|=*t*,
 从而得到*a*^{mt} = *e*.
 这与*a*为无限阶元矛盾.

- 证明: 定理10.14 设 $G=\langle a\rangle$ 是循环群.
 - (3) 若 $G=\langle a\rangle$ 是n阶循环群,则对n的每个正因子d,G恰好含有一个d 阶子群.
 - □ (3) 设 $G=\langle a\rangle$ 是 n 阶循环群,则 $G=\{a^0=e,a^1,\ldots,a^{n-1}\}$,下面证明对于n的每个正因子d都恰好存在一个d阶子群.
 - 易见 $H=\langle a^{n/d}\rangle$ 是G的d 阶子群.
 - 假设 H_1 =< a^m >也是G的d 阶子群,其中 a^m 为 H_1 中的最小正方幂元. 则由 $(a^m)^d = e$ 可知 n 整除md,即 n/d 整除 m. 令 $m = (n/d) \cdot l$,l是整数,则有 $a^m = (a^{n/d})^l$ 这就推出 $H_1 \subseteq H$. 又由于 $|H_1| = |H| = d$,得 $H_1 = H$.

求循环子群的方法

- □ 1. 若G=<a>是无限循环群,则<a^m>是G的子群,其中m是自然数,并且对于不同的自然数m和m', <a^m>和<a^m'>是不同的子群。
- □ 2. 若<a>是 n 阶循环群,则先求出n的所有正因子,对于每一个正因子d, $<a^{n/d}>$ 是G的唯一的d阶子群。

实例

- \square (1)设 G_1 =<Z,+>是整数加群,求 G_1 的所有子群。
- □解:

 $G_1 = \langle Z, + \rangle$ 是无限循环群,其生成元为1和-1.

<0>= {0}是有限子群

对于正整数m∈Z⁺,1的m次幂是m,

m生成的子群是mZ, $m \in \mathbb{Z}^+$. 即

 $\langle m \rangle = \{ mz \mid z \in \mathbb{Z}, m \in \mathbb{Z}^+ \}$ 是无限子群

实例: (2) 设 $G_2 = \langle Z_{12}, \oplus \rangle$,求 G_2 的所有子群。

⊕12	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	4	5	6	7	8	9	10	11	0
2	2	3	4	5	6	7	8	9	10	11	0	1
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	6	7	8	9	10	11	0	1	2	3
5	5	6	7	8	9	10	11	0	1	2	3	4
6	6	7	8	9	10	11	0	1	2	3	4	5
7	7	8	9	10	11	0	1	2	3	4	5	6
8	8	9	10	11	0	1	2	3	4	5	6	7
9	9	10	11	0	1	2	3	4	5	6	7	8
10	10	11	0	1	2	3	4	5	6	7	8	9
11	11	0	1	2	3	4	5	6	7	8	9	10

实例: (2) 设 $G_2 = \langle Z_{12}, \oplus \rangle$,求 G_2 的所有子群。

 \square 解: $G_2 = \langle Z_1, \Theta \rangle = \mathbb{1}2$ 阶循环群 生成元是1,5,7,11, 取a=1 12正因子是1,2,3,4,6和12,则G,的子群: 当d=1时, <a^{n/d}> =<1^{12/1}>=<12>=<0>={0}是 1阶子群 当d=2时, <a^{n/d}> =<1^{12/2}>=<6>={0,6}是2阶子群 当d=3时、<a^{n/d}> =<1^{12/3}>=<4>={0,4,8}是3阶子群 当d=4时, <a^{n/d}> =<1^{12/4}>=<3>={0,3,6,9}是4阶子群 当d=6时、<a^{n/d}> =<1^{12/6}>=<2>={0,2,4,6,8,10}是6阶子群 当d=12时, <a^{n/d}> =<1^{12/12}>=<1>=Z₁,是12阶子群

回看旋转群< G, *>,求其所有子群

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

解:

G=<60>是6阶 循环群

小于6且与6互素的正整数有2个: 1,5,所以 $\phi(6)=2$

有2个生成元: 60和300.

6的正因子是1,2,3,6,则G的子群(取a=60):

当d=1时, <a^{n/d}> =<60^{6/1}>=<0>={0}是 1阶子群

当d=2时, <a^{n/d}> =<60^{6/2}>=<180>={0,180}是2阶子群

当d=3时, <a^{n/d}> =<60^{6/3}>=<120>={0,120,240}是3阶子群

当d=6时, <a^{n/d}> =<60^{6/6}>=<60>=G是6阶子群

n 元置换

- 口 定义10.11 设 $S = \{1, 2, ..., n\}$, S上的任何双射函数 σ : $S \rightarrow S$ 称为S上的n元置换.
- □ 例如 *S*={1, 2, 3, 4, 5}, 下述为5元置换:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

- $\square n$ 元置换一共有n!个。
- □恒等置换: S上的恒等函数。

群的性质——置换性

口 定理: 群< G,*>的运算表中的每一行或每一列都是 G的元素的一个置换。

对于任意 $a \in G$,

- 1. 考察对应于 $a \in G$ 的那一行,设 $b \not\in G$ 中的任一元素,由于 $b = a * (a^{-1} * b)$,所以b必定出现在对应于a的那一行中。
- 2. 若对应于 $a \in G$ 的那一行中有两个元素都是c,则有 $a * b_1 = a * b_2 = c$ 且 $b_1 \neq b_2$,这与消去律矛盾。综上所述,群<G,*>的运算表中的每一行都是G 的元素的一个置换。

对于列同理可证, 所以定理成立。

置换的乘法

- 口 定义10.12 设 σ , τ 是n元置换, σ 和 τ 的复合 σ σ 也是n元置换,称为 σ 与 τ 的乘积,记作 $\sigma\tau$.
- □例如

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}, \quad \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 3 & 4 \end{pmatrix}$$

轮换与对换

- 口 定义10.13 设 σ 是S={1,2,...,n}上的n元置换,若 σ (i_1) = i_2 , σ (i_2) = i_3 ,..., σ (i_{k-1}) = i_k , σ (i_k) = i_1 , 且保持S中其他元素不变,则称 σ 是S上的k阶轮换,记作(i_1 , i_2 ,..., i_k).
- □ 如果k=2,则称σ是S上的对换。

n元置换的轮换表示

□ 设 $S = \{1, 2, ..., n\}$,对于任何S上的 n 元置 换 σ ,存在着一个有限序列 $i_1, i_2, ..., i_k, k \ge 1$, (可以取 i_1 =1) 使得

$$\sigma(i_1) = i_2, \, \sigma(i_2) = i_3, \, ..., \, \sigma(i_{k-1}) = i_k, \, \sigma(i_k) = i_1$$

■ $\phi_{\sigma_1} = (i_1 i_2 ... i_k)$,是 σ 分解的第一个轮换. 将 σ 写作 $\sigma_1 \sigma'$,继续对 σ' 分解. 由于S 只有n 个元素,经过有限步得到

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_t$$

实例

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix},$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

$$\sigma(1)=5$$
, $\sigma(5)=4$, $\sigma(4)=1$

$$\sigma(2)=3, \sigma(3)=2$$

$$\sigma = (154)(23)$$

$$\tau(1)=4$$
, $\tau(4)=2$, $\tau(2)=3$, $\tau(3)=1$

$$\tau(5) = 5$$

$$\tau = (1 \ 4 \ 2 \ 3)(5) = (1 \ 4 \ 2 \ 3)$$

实例

口 设
$$S = \{1, 2, ..., 8\},$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 6 & 4 & 2 & 1 & 8 & 7 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 2 & 6 & 7 & 5 & 3 \end{pmatrix}$$

则 轮换分解式为:

$$\sigma = (1\ 5\ 2\ 3\ 6)\ (4)\ (7\ 8) = (1\ 5\ 2\ 3\ 6)\ (7\ 8)$$
 $\tau = (1\ 8\ 3\ 4\ 2)\ (5\ 6\ 7)$

轮换分解式的特征

- □ 定理: 任意置换都可以唯一地表示成不相交的轮换乘积。
 - 轮换的不交性
- □ 通常省略轮换分解式中的1阶轮换,如果其中全是1阶轮换,则需要保留一个1阶轮换。
 - 如恒等置换(1)(2)(3)(4)(5)简记为(1).

置换的对换分解

 \square 设 $S = \{1,2,...,n\}, \sigma = (i_1 i_2 ... i_k)$ 是S上的 k阶轮换, σ 可以进一步表示成对换之积,即 $(i_1 i_2 \dots i_k) = (i_1 i_2) (i_1 i_3) \dots (i_1 i_k)$

$$\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = (1 \quad 2 \quad 3)$$

$$\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = (1 & 2 & 3) = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \sigma$$

实例

□ 例如8元置换

$$\sigma = (1 \ 5 \ 2 \ 3 \ 6) \ (7 \ 8) = (1 \ 5) \ (1 \ 2) \ (1 \ 3) \ (1 \ 6) \ (7 \ 8)$$

$$\tau = (1 \ 8 \ 3 \ 4 \ 2) \ (5 \ 6 \ 7)$$

$$= (1 \ 8) \ (1 \ 3) \ (1 \ 4) \ (1 \ 2) \ (5 \ 6) \ (5 \ 7)$$

对换分解的特征

□ 对换分解式中<u>对换</u>之间可以有交,分解式也不惟一.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \qquad \begin{array}{c} \sigma = (1 \ 2) \ (1 \ 3) \\ \sigma = (1 \ 4) \ (2 \ 4) \ (3 \ 4) \ (1 \ 4) \end{array}$$

- 口如果n元置换 σ 可以表示成奇数个对换之积,则称 σ 为奇置换,否则称为偶置换。
- □表示式中所含对换个数的奇偶性是不变的.
- 口可以证明n元置换中奇置换和偶置换各有n!/2个.

n元对称群

- 口所有的 $n元置换构成的集合<math>S_n$ 关于置换乘法构成群,称为n元对称群.
 - n元对称群的子群叫做n元置换群。
- 口 例 设 $S = \{1, 2, 3\}$, 3元对称群 $S_3 = \{(1), (12), (13), (23), (123), (132)\}$

0	(1)	(12)	(13)	(23)	(1 2 3)	(1 3 2)
(1)	(1)	(12)	(13)	(2 3)	$(1\ 2\ 3)$	$(1\ 3\ 2)$
(12)	(12)	(1)	$(1\ 2\ 3)$	$(1\ 3\ 2)$	(13)	(23)
(13)	(13)	$(1\ 3\ 2)$	(1)	(123)	$(2\ 3)$	(12)
(23)	(23)	(123)	(1 3 2)	(1)	$(1\ 2)$	$(1\ 3)$
(1 2 3)	(1 2 3)	$(2\ 3)$	(12)	(13)	(1 3 2)	(1)
(1 3 2)	(1 3 2)	(13)	(23)	(12)	(1)	(1 2 3)

n元交错群

- 口 n元交错群 A_n 是 S_n 的子群, A_n 是所有的n元 偶置换的集合.
- 口 证 恒等置换(1) 是偶置换,所以 A_n 非空. 根据判定定理三,只需证明封闭性:
 - 任取 $\sigma, \tau \in A_n$, σ, τ 都可以表成偶数个对换之积,那么 $\sigma\tau$ 也可以表成偶数个对换之积,所以 $\sigma\tau \in A_n$.

实例

口 设 $S = \{1, 2, 3\}$, 3元交错群 $A_3 = \{(1), (123), (132)\}$

0	(1)	(1 2 3)	(1 3 2)
(1)	(1)	$(1\ 2\ 3)$	(132)
(1 2 3)	(1 2 3)	$(1\ 3\ 2)$	(1)
(1 3 2)	(1 3 2)	(1)	(123)

实例

 $\square S_3$ 的子群格

 S_3 是6阶群,根据拉格朗日定理,

 S_3 的子群的阶数只能是1,2,3,6 1阶: {(1)} 2阶: {(1), (12)} $\{(1), (13)\}$)<(23)> <(13)> $\{(1), (23)\}$ 3阶: $A_3 = \{(1), (123), (132)\}$ 6阶: S₃ <(1)>

Polya定理

口 定理10.15 设 $N=\{1,2,...,n\}$ 是被着色物体的集合, $G=\{\sigma_1,\sigma_2,...,\sigma_g\}$ 是N上的<mark>置换群</mark>.用m种颜色对N中的元素进行着色,则在G的作用下不同的着色方案数是

$$M = \frac{1}{|G|} \sum_{k=1}^{g} m^{c(\sigma_k)}$$

其中 $c(\sigma_k)$ 是置换 σ_k 的轮换表示中(包含1阶轮换在内)的轮换个数.

□Polya定理主要用于等价类的计数.

Polya定理在组合计数中的应用

例:用两种颜色着色方格图形,允许方格绕中心转动,求不同的方案数.

Polya定理在组合计数中的应用

例:用两种颜色着色方格图形,允许 方格绕中心转动, 求不同的方案数.

1	2	
	2	

解: 群G中的所有置换是(每次顺时针转90°)

1	2
4	3

$$\sigma_1 = (1)$$

4	1
3	2

$$\sigma_2 = (1432)$$

$$\sigma_2 = (1432)$$
 $\sigma_3 = (13)(24)$ $\sigma_4 = (1234)$

代入Polya定理得
$$M = \frac{1}{4}(2^4 + 2^1 + 2^2 + 2^1) = 6$$

用 2 种颜色涂色 3×3 的方格棋盘,每个方格一种颜色.如果允许棋盘任意旋转或者翻转,则不同的着色方案数是_____.

答案: 群 G 的置换结构为: 恒等置换: 1 个

绕中心转 90、270 度: (****)(****)(*) 2 个

绕中心转 180 度: (**)(**)(**)(**)(*)1个

翻转 180 度: (**)(**)(*)(*)(*)4 个

带入 Polya 定理: M=(2⁹+2*2³+2⁵+4*2⁶)/8=102

$$M = \frac{1}{|G|} \sum_{k=1}^{g} m^{c(\sigma_k)}$$

其中 $c(\sigma_k)$ 是置换 σ_k 的轮换表示中包含1阶轮换在内的轮换个数.

答案: 群 G 的置换结构为: 恒等置换: 1 个

绕中心转 90、270 度: (****)(****)(*) 2 个

其中 $c(\sigma_k)$ 是置换 σ_k 的轮换表示中包含1阶轮换在内的轮换个数.

 $M = \frac{1}{|G|} \sum_{k=1}^{g} m^{c(\sigma_k)}$

绕中心转 180 度: (**)(**)(**)(**)(*)1个

翻转 180 度: (**)(**)(**)(*)(*)(*)4 个

带入 Polya 定理: M=(2⁹+2*2³+2⁵+4*2⁶)/8=102

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{pmatrix}$$
$$= (1)(2)(3)(4)(5)(6)(7)(8)(9)$$

$$\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 4 & 1 & 8 & 5 & 2 & 9 & 6 & 3
\end{pmatrix}$$

$$= (1793)(2486)(5)$$

$$\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{pmatrix}$$

$$= (19)(28)(37)(46)(5)$$

$$\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 6 & 9 & 2 & 5 & 8 & 1 & 4 & 7
\end{pmatrix}$$
= (1397)(2684)(5)

恒等置换: 1个

翻转180度: (**) (**) (*) (*) (*) 4个

带入Polya定理: M=(2⁹+2*2³+2⁵+4*2⁶)/8=102

例: 考察从红、黄两种颜色的珠子中选取5粒串成手镯,如果将一只手镯经过顺 时针旋转得到另一只手镯看作是没有区别的手镯,并称这两只手镯是旋转等价的,那么,在考虑旋转等价的条件下,不同手镯的数目是多少?

□ 解: 围绕中心旋转的置换为:

0 °: (•) (•) (•) (•) (•) **1**↑

72°, 144°, 216°, 288°: (•••••)

根据Polya定理,不同的着色方案数是:

$$M = \frac{1}{5} (2^5 + 2^1 + 2^1 + 2^1 + 2^1) = 8$$

Polya定理练习

- 口考察从蓝、黄、白三种颜色的珠子中选取5粒 串成手镯,如果将一只手镯经过顺时针旋转得 到另一只手镯看作是没有区别的手镯,并称这 两只手镯是旋转等价的,那么,在考虑旋转等 价的条件下,不同手镯的数目是多少?
- □解: 围绕中心旋转的置换为:
- 0°: (•) (•) (•) (•) 1↑
- 72°、144°、216°、288°: (••••) 4个根据Polya定理,不同的着色方案数是

$$M = \frac{1}{5}(3^5 + 3^1 + 3^1 + 3^1 + 3^1) = 51$$

S_4 相关(补充)

口设
$$S = \{1, 2, 3, 4\}$$
,4元对称群 $|S_4| = 4!$ $S_4 = \{(1), (12), (13), (14), (23), (24), (34), (123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (14)(23), (13)(24), (1234), (1243), (1324), (1342), (1423), (1432) \}$ n 元交错群 A_n 是 S_n 的子群, A_n 是所有的 n 元偶置换的集合. $|A_4| = 4!/2 = 12$ $A_4 = \{(1), (123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (14)(23), (13)(24) \}$

$$M = \frac{1}{|G|} \sum_{k=1}^{g} m^{c(\sigma_k)}$$

 S_4 相关(补充) $\frac{|G|_{k=1}^{2}}{(2^4+2*2^3+3*2^2+2*2^1)} = 6$

8阶置换群:{ (1), (1234), (13)(24), (1432), (12)(34), (14)(23),(24),(1,3)} 包括旋转和翻转								
0	(1)	(1234)	(13)(24)	(1432)	(12)(34)	(14)(23)	(24)	(13)
(1)	(1)	(1234)	(13)(24)	(1432)	(12)(34)	(14)(23)	(24)	(13)
(1234)	(1234)	(13)(24)	(1432)	(1)	(24)	(13)	(14)(23)	(12)(34)
(13)(24)	(13)(24)	(1432)	(1)	(1234)	(14)(23)	(12)(34)	(13)	(24)
1432	(1432)	(1)	(1234)	(13)(24)	(13)	(24)	(12)(34)	(14)(23)
(12)(34)	(12)(34)	(13)	(14)(23)	(24)	(1)	(13)(24)	(1432)	(1234)
(14)(23)	(14)(23)	(24)	(12)(34)	(13)	(13)(24)	(1)	(1234)	(1432)
(24)	(24)	(12)(34)	(13)	(14)(23)	(1234)	(1432)	(1)	(13)(24)
(13)	(13)	(14)(23)	(24)	(12)(34)	(1432)	(1234)	(13)(24)	(1)

4阶置换群:{(1),(1234),(13)(24),(1432)} 只是旋转

1171 - 271	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71 (70	- 71 1 - 73	2 123mm2003mm1 5
0	(1)	(1234)	(13)(24)	(1432)
(1)	(1)	(1234)	(13)(24)	(1432)
(1234)	(1234)	(13)(24)	(1432)	(1)
(13)(24)	(13)(24)	(1432)	(1)	(1234)
1432	(1432)	(1)	(1234)	(13)(24)

$$M = \frac{1}{4}(2^4 + 2^1 + 2^2 + 2^1) = 6$$

10.3循环群与置换群(回顾)

 $G= < a > \circ$ a 为G 的牛成元

任何一个循环群必定是阿贝尔群,反之不一定 ◎ 应用: 阶小于6 的群都是Abel群

无限循环群 ◎ 只有两个生成元

 a^r 是G的生成元当且仅当

r是小于n且与n 互素的自然数

n 阶循环群 ◎ 有 **ø**(**n**) 个生成元 ◎

- (1) 循环群的子群仍是循环群.
- (2) 若 $G=\langle a\rangle$ 是无限循环群,则G的子群除 $\{e\}$ 以外都是无限循环群.
- (3) 若G=<a>是n阶循环群,则对n的每个正 因子d, G恰好含有一个d 阶子群.

循环群的子群 ⊝

循环群

置换群

- 1. 若G=<a>是无限循环群,则 $<a^m>$ 是G的 子群,其中m是自然数,并且对于不同的自 然数m和m', $< a^m >$ 和 $< a^m' >$ 是不同的子群。
- 2. $Z = a > E_n$ 阶循环群,则先求出z = n的所有 正因子,对于每一个正因子d, $\langle a^{n/d} \rangle$ 是G的

求循环子群的方法 © 唯一的d阶子群。

n元置换 ◎ 轮换与对换

n元置换的轮换表示 ◎ 置换的对换分解

n元对称群 ⊙ n元置换群 ⊙ n元交错群

10.3循环群与置换群

第十章 群与环

- □ 主要内容
 - 10.1群的定义与性质
 - 10.2子群与群的陪集分解
 - 10.3循环群与置换群
 - 10.4环与域

10.4 环与域

- □ 定义10.14 设<R,+,•>是代数系统,+和•是二元运算. 如果满足以下条件:
 - (1) < R, +>构成交换群
 - (2) <R,●>构成半群(可结合性)
 - (3) ●运算关于+运算适合分配律 则称<*R*,+,●>是一个环.

说明

- □ 通常称+运算为环中的加法, •运算为环中的 乘法,通常可以省略.
- □ 环中加法单位元记作 0,乘法单位元(如果 存在)记作1.
- □ 对任何元素 x,称 x 的加法逆元为负元,记作-x, (x-y)表示x+(-y).
 - 若x存在乘法逆元,则称之为逆元,记作 x^{-1} .
- \square nx表示n个x相加,xⁿ表示n个x相乘.

环的实例

- □ (1) 整数集、有理数集、实数集和复数集关于普通的加法和乘法构成环,分别称为整数环Z,有理数环Q,实数环R和复数环C.
- □ (2)设 Z_n ={0,1, ..., n −1}, Θ 和⊗分别表示模 n的加法和乘法,则< Z_n , Θ , Θ >构成环,称为 模 n的整数环.
- □ (3) $n(n \ge 2)$ 阶实矩阵的集合 $M_n(\mathbf{R})$ 关于矩阵的加法和乘法构成环,称为n 阶实矩阵环.
- \Box (4)集合的幂集P(B)关于集合的对称差运算和 交运算构成环.

环的运算性质

- □ 定理10.16 设<*R*,+, >是环,则
 - $(1) \ \forall a \in R, \ a0 = 0a = 0$
 - (2) $\forall a,b \in R$, (-a)b = a(-b) = -ab
 - (3) $\forall a,b,c \in R$, a(b-c) = ab-ac, (b-c)a = ba-ca
 - (4) $\forall a_1, a_2, ..., a_n, b_1, b_2, ..., b_m \in R (n, m \ge 2)$ $(\sum_{i=1}^n a_i) (\sum_{j=1}^m b_j) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$

证明

$$\square$$
 (1) $\forall a \in \mathbb{R}$, $a0 = 0a = 0$

证明: $\forall a \in R$ 有 a0 = a(0+0) = a0+a0由环中加法的消去律得a0=0. 同理可证0a=0.

(2)
$$\forall a,b \in \mathbb{R}$$
, $(-a)b = a(-b) = -ab$

$$\forall a,b \in R$$
,有

$$(-a)b+ab = (-a+a)b = 0b = 0$$

 $ab+(-a)b = (a+(-a))b = 0b = 0$

$$?+ab=0$$

$$ab + ? = 0$$

故: (-a)b是ab的负元.

由负元惟一性

$$(-a)b = -ab$$
,同理 $a(-b) = -ab$

证明

(4) 证明思路: 用归纳法证明 $\forall a_1, a_2, ..., a_n$ 有

$$(\sum_{i=1}^{n} a_i)b_j = \sum_{i=1}^{n} a_ib_j$$

同理可证, $\forall b_1, b_2, ..., b_m$ 有

$$a_i(\sum_{j=1}^m b_j) = \sum_{j=1}^m a_i b_j$$

于是
$$(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} a_i(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$$

实例

- □ 例: 在环中计算 $(a+b)^3$, $(a-b)^2$

$$(a-b)^2 = (a-b)(a-b) = a^2-ba-ab+b^2$$

特殊的环

- □ 定义10.15 设<R,+,•>是环
- (1) 若环中乘法 \bullet 适合交换律,则称R是交换环
- (2) 若环中乘法 存在单位元,则称R是含幺环
- (3) $\forall a,b \in R$, $ab=0 \Rightarrow a=0 \lor b=0$, 则称R是 无零因子环 //没有零因子
- (4) 若R既是交换环、含幺环、也是无零因子环,则称R是整环
- (5) 设R是整环,且R中至少含有两个元素. 若 $\forall a \in R^*$,其中 $R^* = R \{0\}$,都有 $a^{-1} \in R$,则称R是域.

域的定义(补充)

- 口 定义 10.15^+ 设 $\langle R, +, \bullet \rangle$ 是代数系统,+和 \bullet 是二元运算. 如果满足以下条件:
 - (1) < R, +>构成交换群
 - (2) <*R*-{0}, ●>构成交换群
 - (3) 运算关于+运算适合分配律

则称 $\langle R, +, \bullet \rangle$ 是一个域

- □ 定义10.14 设<R,+,●>是代数系统,+和●是二元运算。 如果满足以下条件:
 - (1) <R,+>构成交换群
 - (2) <R,◆>构成半群(可结合性)
 - (3) ●运算关于+运算适合分配律 则称<*R*,+,●>是一个环.

实例

- (1)整数环Z、有理数环Q、实数环R、复数环C
 - ■交换环、含幺环、无零因子环、整环. 除了整数环以外都是域.
- (2) $2Z = \{2z \mid z \in Z\}, <2Z, +, >$
 - ■交换环、无零因子环
- (3) 设 $n \in \mathbb{Z}$, $n \ge 2$, 则n阶实矩阵的集合 $M_n(\mathbb{R})$ 关于矩阵加法和乘法
 - ■含幺环
- $(4) < \mathbb{Z}_6, \oplus, \otimes >$
 - ■交换环、含幺环

\otimes	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	က	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

□ 设 $R=Z\times Z$,定义R上的加法+运算和乘法•运算如下:

实例

对于任意: $\langle x_1, y_1 \rangle \in R$, $\langle x_2, y_2 \rangle \in R$,

$$\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$$

$$< x_1, y_1 > \bullet < x_2, y_2 > = < x_1 \bullet x_2, y_1 \bullet y_2 >$$

证明: $\langle R, +, \bullet \rangle$ 是环,并求出该环的所有零因子.

- □ 证 (一).【<*R*, +, •>是环】
 - (1) 根据已知条件知,运算+是R上的封闭运算且满足交换律和结合律,其加法单位元是<0,0>,任意<x,y> $\in R$ 关于+的逆元为<-x,-y>,因此,<R,+>是交换群.
 - (2) 由于•运算是R上的封闭运算且满足结合律,于是<R,+>是半群.
 - (3) 对于任意 $< x_1, y_1 > \in R$, $< x_2, y_2 > \in R$, $< x_3, y_3 > \in R$,有:

$$< x_1, y_1 > \bullet (< x_2, y_2 > + < x_3, y_3 >) = < x_1, y_1 > \bullet < x_2, y_2 > + < x_1, y_1 > \bullet < x_3, y_3 >$$
即 •运算对+运算可分配.

综上所述, <**R**, +, ●>是环.

(二).【求出该环的所有零因子】

对于任意<x,0> $\in R(x \neq 0)$ 及<0,y> $\in R(y \neq 0)$,由于<x,0> \bullet <0,y>=<0,0>,所以任意<x,0> $\in R(x \neq 0)$ 和<0,y> $\in R(y \neq 0)$ 是环<x,x,x,x,x

定理(补充)

- □ 在环<A,+,•>中无零因子 当且仅当 乘法满足 消去律(即对于 c≠0 和 ca=cb, 必有a=b)
- □ 证明:

必要性: 若无零因子并设 c≠0 和 ca=cb,

则有: ca-cb=c(a-b)=0

所以,必有a=b,即乘法满足消去律。

充分性: 若乘法满足消去律,

设a≠0,ab=0则ab=a0

消去a即得b=0,即无零因子。

实例

 \square 设p为素数,证明 \mathbb{Z}_p 是域.

【证明思路:

先证Z_n为整环,再证每个非零元素都有逆元】

□证【先证Z_p为整环】

p为素数,所以 $|Z_p| \ge 2$.

易见Z_p关于乘法可交换,单位元是1.

对于任意的 i,j∈ \mathbb{Z}_p , 设 $i \neq 0$ 有 $i \otimes j = 0 \Rightarrow p/ij \Rightarrow p|j \Rightarrow j = 0$

所以 Z_p 中无零因子, Z_p 为整环.

实例(续)

\otimes	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	ന	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

【再证每个非零元素都有逆元】

已知: Z_p 是有限半群, 且 Z_p 关于 \otimes 适合消去律任取 $i \in Z_p$, $i \neq 0$,

则 $i \otimes \mathbf{Z}_p = \mathbf{Z}_p$

否则, $\exists j, k \in \mathbb{Z}_p(j \neq k)$,使得 $i \otimes j = i \otimes k$,

而由消去律得j=k,这是矛盾的。

由 $1 \in \mathbb{Z}_p$,存在 $j \in \mathbb{Z}_p$,使得 $i \otimes j = 1$.

由于交换性可知j就是i的逆元.

解域方程

□ 在域 \mathbb{Z}_5 中解方程: 3x=2

\otimes	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	ന
3	0	3	1	4	2
4	0	4	3	2	1

10.4环与域(回顾)

第十章 群与环(回顾)

- □ 主要内容
 - 10.1群的定义与性质
 - 10.2子群与群的陪集分解
 - 10.3循环群与置换群
 - 10.4环与域