Comparação de métodos de classificação

Augusto Ribas¹, Bruno Nazário¹ e Doglas Sorgatto¹

¹Faculdade de Computação - Universidade Federal de Mato Grosso do Sul

Resumo

Avaliamos o desempenho de três métodos classificação.

1 Introdução

Exemplo de citação [2]

1.1 Problema

ghhjghfghf

- 1.2 Objetivos
- 2 Material e Métodos
- 2.1 Algoritmos de Classificação

kjdffkdjf

2.1.1 KNN

fdkfdkfjdj

2.1.2 Arvore de Decisao

fdfdjfhjhdf

2.1.3 Naive Bayes

jfdkjfdkjfdjf

2.2 Procedimentos gerais

 ${\cal O}$ que foi feito na organização do algoritmo, como se deu a separação em folds, etc.

2.3 Conjuntos de dados

Foram utilizados 10 conjuntos de dados.

2.3.1 Iris

fdhfhjfd

2.3.2 Ecoli

dfjhdf

2.3.3 3

dfjhdjfh

2.3.4 4

dfjdkfjdjk

2.3.5 5

hjfdjfhd

2.3.6 6

jhfdhjd

2.3.7 7

gkdjgkdjgdj

2.3.8 8

fdjfkdfjdkjf

2.3.9 9

fdfdhfjdhf

2.3.10 10

• Iris: Este é talvez o conjunto de dados mais comum em estudos de reconhecimento de padrões na literatura, usado pela primeira vez pelo famoso biólogo evolucionista Ronald Aylmer Fisher [1]. O conjunto de dados contém 3 classes com 50 exemplos de cada classe e com quatro atributos por exemplo, o tamanho e largura de pétalas e sépalas, onde cada classe é uma espécie vegetal do gênero *Iris*.

3 Resultados e Discussão

Figura 1: Comparação das acurácias para os três métodos de classificação

Figura 2: Escolha do número de vizinhos mais próximos

4 Consideraç oes Finais

Figura 3: Árvore de decisão gerada

Referências

- [1] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annual Eugenics, 7:179-188, 1936.
- [2] Tom M. Mitchell. Machine Learning. McGraw-Hill Education, 1997.