Graph Algorithms

Idea: Grow one connected component in a greedy fashion (i.e., by adding a vertex **v ∈ V − Visited** that is one end of a minimum weight edge leaving Visited).

Prim's Algorithm: Correctness: Unique edge weights

- **T**: MST found by Prim's Algorithm
- M: optimal MST

Proof by contradiction. Assume $T \neq M \rightarrow T-M \neq \emptyset \rightarrow Let(u, v)$ be any edge in T - M.

- When (u,v) was added, it was the least-cost edge crossing the cut (Visited, V-Visited)
 - o (u, v) crosses the cut, since u and v were not connected when Priml's algorithm selected (u, v)
 - Prim's algorithm select the least-cost edge crossing the cut
- M is a MST → There must be a path from u to v in M. This path begins in visited and ends in V-Visited. → There must be an edge along that path where x ∈ Visited and y ∈ V-Visited. Since (u,v) is the least-code edge crossing (Visited, V-Visited) → w(u,v) < w(x,y)
- $M' = M-\{(x,y)\} \cup \{(u,v)\}$. M' is a spanning tree because it connects all vertices. Since (x,y) is on the cycle formed by adding (u,v)
- $w(M') = w(M) w(x,y) + w(u,v) < w(M) \rightarrow M'$ is a MST \rightarrow contradiction M was the optimal solution

Prim's Algorithm: Correctness: Not unique edge weights

- **T**: MST found by Prim's Algorithm
- **M**: optimal MST

Proof. We will prove w(T) = w(M). If T = M, we are done. Otherwise $T \neq M$, so $T-M \neq \emptyset$. Let (u,v) be any edge in T-M.

- When (u,v) was added, it was the least-cost edge crossing the cut (Visited, V-Visited)
 - o (u, v) crosses the cut, since u and v were not connected when Prim"s algorithm selected (u, v)
 - Prim's algorithm select the least-cost edge crossing the cut
- M is a MST → There must be a path from u to v in M. This path begins in Visited and ends in V-Visited. → There must be an edge along that path where x in Visited and y in V-Visited. Since (u,v) is the least-code edge crossing (Visited, V-Visited) → w(u,v) ≤ w(x,y)
- M' = M- $\{(x,y)\}$ U $\{(u,v)\}$. M' is a spanning tree because it connects all vertices. Since (x,y) is on the cycle formed by adding (u,v)
- $w(M') = w(M) w(x,y) + w(u,y) \rightarrow w(M') \le w(M)$
- M' is a MST \rightarrow w(M) \leq w(M') \rightarrow w(M') = w(M)
- Note that |T M'| = |T M| 1. Therefore, if we repeat this process once for each edge in T M, we will have converted M into T while preserving w(M). Thus w(T) = w(M).

```
Prim-simple(G, s)

T = Ø

Visited = {s}
while Visited ≠ V

find vertex v ♥ Visited such that
there exists a u ∈ visited and
(u,v) is a minimum weight edge leaving Visited

T = T U {(u, v)}
Visited = Visited U {v}
return T
```

Greedy choice: at each step it adds to the tree an edge that contributes the minimum amount possible to the tree's weight

Choose vertex $v \in V$ – visited connected to a minimum weight edge e = (u, v) between Visited and V – Visited

Prim's Algorithm Runtime: $O(V^2)$

```
Prim-simple(G, s)

T = Ø
Visited = {s}
while Visited ≠ V
find vertex v ∉ Visited such that
there exists a u ∈ visited and
(u,v) is a minimum weight edge leaving Visited

T = T U {(u, v)}
Visited = Visited U {v}
return T
```

Prim's Algorithm: better implementation

- Idea: Maintain V Visited as a priority queue Q.
- For $v \in V$ Visited, we define:

weight(v) =
$$\begin{cases} & \infty \\ \min w(e) \mid e = (u, v) \in E \text{ and } u \in T \end{cases}$$

- The weight of each vertex in V-Visited is the weight of the least-weight edge connecting it to a vertex in Visited.
- Priority Queue implemented using heap data structure
 - V Visited is maintained as an array in heap order, and the key of each vertex is its weight defined above
 - ExtractMin(): remove and return vertex with minimum weight
 - Insert(v, weight(v)): insert vertex v with weight(v)
 - DeleteMin(v): delete the vertex with minimum weight
 - decrease-key(v, oldWeight, newWeight)
 - deletes vertex V with oldWeight and inserts vertex V with newWeight
 - The runtime of all operations are O(log k) where k is the size of heap

Prim's Algorithm: better implementation

Idea: Maintain V – Visited as a priority queue Q. The key of each vertex in Q is the weight of the least-weight edge connecting it to a vertex in T.

```
Prim(G, s)
    T = \emptyset
    O = V
    Key[s] = 0
    Key[u] = \infty \text{ for all } u \in V
    while Q ≠ Ø
          u = EXTRACT-MIN(Q)
           for each v \in Adj[u]
              if v \in Q and w(u,v) < key[v]
                   Key[v] = w(u, v)
                   pred[v] = u  # T = T U {(u,
∨)}
    return T
```

At the end, {(v, pred[v])} forms the MST.

Prim's Algorithm: Runtime

Idea: Maintain V - T as a priority queue Q. The key of each vertex in Q is the weight of the least-weight edge connecting it to a vertex in T.

$$\Theta(V) \begin{cases} T = \emptyset \\ Q = V \\ \text{Key}[s] = 0 \\ \text{Key}[u] = \infty \text{ for all } u \in V \\ \text{while } Q \neq \emptyset \end{cases}$$

$$u = \text{EXTRACT-MIN}(Q)$$

$$\text{for each } v \in \text{Adj}[u]$$

$$\text{if } v \in Q \text{ and } w(u, v) < \text{key}[v] \text{ Decrease-key}$$

$$\text{Key}[v] = w(u, v)$$

$$\text{pred}[v] = u \quad \# T = T \cup \{(u, v) \in V\} \}$$

Runtime = $\Theta(V) \cdot (T_{EXTRACT-MIN}) + \Theta(E) \cdot (T_{DECREASE-KEY})$

Prim's Algorithm: Runtime

Runtime =
$$\Theta(V) \cdot (T_{EXTRACT-MIN}) + \Theta(E) \cdot (T_{DECREASE-KEY})$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total Time
array	O(V)	<i>O</i> (1)	$O(V^2)$
Binary heap	O(lg V)	O(lg V)	O(E lg V)
Fibonacci heap	O(lg V) amortized	O(1) amortized	O(E + V lg V) amortized

Shortest Path

Shortest path

• Consider a digraph G = (V, E) with edge-weight function $w : E \rightarrow R$. The weight of path $P = (v_1, v_2, ..., v_k)$ is defined to be

$$w(P) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

- A shortest path from u to v is a path of minimum weight from u to v.
- Shortest path from u to $v = \delta(u, v) = \min \{ w(P): P \text{ is a path from u to } v \}$
- δ(u, v) = ∞ if no path from u to v exists.

Why BFS is not enough for finding the shortest path?

What is the shortest path from B to G?

Why MST algorithms are not enough?

Finding Shortest paths in graphs

- Input: a graph (directed/undirected)
 G=(V, E) with non-negative edge weights(w(e) ≥ 0), and a starting node s
- Output: A shortest path from s to each vertex in the graph
- Single-Source-Shortest-Path problem
- The length of the shortest path and then find the shortest path

Applications of Shortest Path

Map routing

Robot navigation

Network routing protocols (OSPF, BGP, RIP)

Shortest path: Optimal Substructure property

Optimal Substructure property:

Optimal solution to the problem contains optimal solution to the subproblems

• Example: Shortest path in graphs

- P: the shortest path between u and v.
- Claim: p₁ is a shortest path from u to w
 - If there were another path, say p'_1 from u to w with less weight, we could cut out p_1 and paste in p'_1 to produce a path $p' = p'_1 + p_2$ with fewer edges \rightarrow contradiction: p_1 is an optimal solution or the shortest path
 - Similarly we can show p₂ is the shortest path from w to v

Shortest path: Greedy Algorithm: Dijkstra's Algorithm: Idea

Greedy choice: add the vertex with the minimum distance from s

Shortest path: Greedy Algorithm: Dijkstra's Algorithm: Idea

 $dist[v] = \infty$ for all $v \in V$ dist[s] = 0

 $B = \emptyset$ # B is a set of vertices with known shortest distance to s

While B ≠ V

Choose edge (u, v), $u \in B$, $v \notin B$ to minimize d(s, u) + w(u, v)

Update d[v]: distance of S to v

Example

Example

Add the relaxation step

Example

Dijkstra's Algorithm: Implementation

```
d[s] = 0
for each v \in V - \{s\}
     d[v] = \infty
B = \emptyset
O = V
while Q \neq \emptyset
     u \leftarrow EXTRACT-MIN(Q)
     B \leftarrow B \cup \{u\}
     for each v \in Adj[u]
           if (v \notin B) and (d[v] > d[u] + w(u, v))
                 d[v] = d[u] + w(u, v)
```

Relaxation step

Dijkstra's Algorithm: Implementation

```
d[s] = 0
for each v \in V - \{s\}
     d[v] = \infty
B = \emptyset
O = V
while Q \neq \emptyset
     u \leftarrow EXTRACT-MIN(Q)
     B \leftarrow B \cup \{u\}
     for each v \in Adj[u]
           if (v \notin B) and (d[v] > d[u] + w(u, v))
                d[v] = d[u] + w(u, v)
                parent[v] = u
                                                                    Relaxation step
```

Dijkstra's Algorithm: Runtime Analysis

```
d[s] = 0
O(V) \longrightarrow \text{ for each } V \subseteq V - \{s\}
                    q[\Lambda] = \infty
              B = \emptyset
              O = V
O(V) \longrightarrow \text{ while } Q \neq \emptyset
O(V) \longrightarrow u \leftarrow EXTRACT-MIN(Q)
                    B \leftarrow B \cup \{u\}
O(deg(u)) \longrightarrow for each v \subseteq Adj[u]
                           if (v \notin B) and (d[v] > d[u] + w(u, v))
                                  d[v] = d[u] + w(u, v)
                                  parent[v] = u
                                                                                                Relaxation step
```

Runtime: If the distances are stored in an array: $O(V^2 + E) = O(V^2)$

Dijkstra's Algorithm: Runtime Analysis

```
d[s] = 0
                                                          Q is a min-heap maintaining V–B. The key of
 O(V) \longrightarrow \text{ for each } V \subseteq V - \{s\}
                                                          each node v is d[v]
                    q[\Lambda] = \infty
              B = \emptyset
              O = V
O(V) \longrightarrow \text{ while } Q \neq \emptyset
O(log V) \longrightarrow u \leftarrow EXTRACT-MIN(Q)
                    B \leftarrow B \cup \{u\}
 O(deg(u)) \longrightarrow for each v \subseteq Adj[u]
                          if (v \notin B) and (d[v] > d[u] + w(u, v))
                                d[v] = d[u] + w(u, v) #Decrease key of v to d[v]
O(log V)
                                 parent[v] = u
                                                                                           Relaxation step
```

Runtime: if the distances are stored in a priority queue(heap)

$$O(V \log V + E \log V) = O(E \log V)$$

Correctness Proof

- We prove by induction on size of of B.
- T(k): |B| = k, for all u ∈ B, d[u] is the length of the shortest path to all vertices u in B
 - \circ Base case: T(1) is always true. In this case B={s}, |B| = 1, and d(s) = 0
 - o **Induction Hypothesis**: Suppose T(k) is true
 - o **Induction Step**: Prove T(k+1) is true
 - Suppose **v** is the vertex k+1 that is added by an edge (u,v)
 - d[v] = d[u] + w(u, v) (is done by algorithm)
 - **P_v**: shortest path from s to v ((u,v) is the final edge on s-v path P_v)
 - For contradiction, suppose P_v is not the shortest path to v, say another path P is shorter
 - This path must leave the set B somewhere. Let y be the first node on P that is not in B, and let x in B be the node just before y
- $w(P) \ge w$ (path from s to y) $\ge w$ (path from s to x) + w(x, y)
- \geq w(shortest path from s to x) + w(x, y)= d[x] + w(x,y)
- $w(P) \ge d[x] + w(x, y) \ge d[u] + w(u, v) = d[v]$
- w(P) ≥ d[v] for any other path P from s to v

 $w(P) \ge w(path from s to y) \ge d[x] + w(x, y) \ge d[u] + w(u, v) = w(P_v) = d[v]$

Dijkstra

Dijkstra was known for many contributions to computer science, e.g., structured programming, concurrent programming. He designed the above algorithm to demonstrate the capabilities of a new computer (to find railway journeys in the Netherlands). At that time (the 50's) the result was not considered important. He wrote:

• At the time, algorithms were hardly considered a scientific topic. I wouldn't have known where to publish it... The mathematical culture of the day was very much identified with the continuum and infinity. Could a finite discrete problem be of any interest? The number of paths from here to there on a finite graph is finite; each path is a finite length; you must search for the minimum of a finite set. Any finite set has a minimum — next problem, please. It was not considered mathematically respectable.

What if a graph has negative-weights edges?

Dijkstra algorithm fails

What if a graph has negative-weights cycles?

- If the graph G contains a negative-weight cycle reachable from s
 - We can go around the negative cycle as many times as we want
 - shortest-path weights are not well defined
- If G contains no negative-weight cycle reachable from the source s
 - o for all $v \in V$, the shortest-path weight is well defined (it could have a negative value)
- What is the meaning of the weights?

Negative edge weights in a directed graph

Each vertex contains the shortest-path weight from source s.

Cycles in a shortest path

- Can a shortest path contain a cycle?
 - negative-weight cycle
 - o positive-weight cycle
 - 0-weight cycle
 - →Shortest paths are simple: can contains at most |v| distinct vertices and at most |V|-1 edges

Shortest Path Algorithms

- Given u and v, find shortest uv path
 - Involves solving the more general problem
- Given u, find shortest uv path for evey v in V
- Single-source-shortest path problem
 - Unweighted graphs
 - BFS
 - Weighted graphs (non-negative weights)
 - Greedy algorithm: Dijkstra
 - Directed Acyclic graphs
 - General weights (negative and non-negative weights) but no negative cycle
 - Dynamic programming: Bellman-ford algorithm
- All pairs shortest path

Single-source shortest path in DAG

Shortest paths are always well defined in a DAG, Since there are no negative-weight cycle in a graph

- If the DAG contains a path from u to v, u precedes v in the topological sort
- If u comes before v in the topological order, there is no path from v to u

Single-source shortest path in DAG

DAG-Shortest-Paths(G, s)

Topologically sort the vertices of G

```
d[s] \leftarrow 0

for each v \in V - \{s\}

do d[v] \leftarrow \infty

for each vertex u, taken in topologically sorted order

for each v \in Adj[u]

if d[v] > d[u] + w(u, v)

d[v] \leftarrow d[u] + w(u, v)
```

Single-source shortest path in DAG: Example

Single-source shortest path in DAG: Runtime: Θ(V+E)

DAG-Shortest-Paths(G, s)

Topologically sort the vertices of G

$$d[s] \leftarrow 0$$
for each $v \in V - \{s\}$

$$do \ d[v] \leftarrow \infty$$
for each vertex u , taken in topologically sorted order

for each $v \in Adj[u]$
if $d[v] > d[u] + w(u, v)$

$$d[v] \leftarrow d[u] + w(u, v)$$

$$\Theta(V + E)$$

Single-source shortest path in DAG: Correctness

Theorem. When the algorithm terminates, $d[v] = \delta(s, v)$ for all vertices $v \in V$

Proof.

- If v is not reachable from s, then $d[v] = \delta(s, v) = \infty$
- If v is reachable from s, there is a shortest path $p=<v_0, v_1, ..., v_k>$ where $v_0=s$ and $v_k=v$.
- The algorithm process the vertices in topologically sorted order
- Therefore, the edges on p are relaxed in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$
- We can prove by induction on the number of relaxation steps that $d[v] = \delta(s, v)$

Single-source shortest path in DAG: Correctness

- **Theorem.** After the k-th edge of path p is relaxed, we have $d[v_k] = \delta(s, v_k)$
- Proof by induction: induction on the number of relaxation steps.
- Induction hypothesis: After the i-th edge of path p is relaxed, $d[v_i] = \delta(s, v_i)$
- Base Case: i=0
 - before any edge of p have been relaxed, we have $d[v_0] = d[s] = 0 = \delta(s, s)$
- Induction step. Assuming $d[v_{i-1}] = \delta(s, v_{i-1})$ after the (i-1)-th edge was relaxed \rightarrow we want to show that $d[v_i] = \delta(s, v_i)$ after the i-th edge is relaxed
 - $\circ \quad d[v_i] \leq \delta(s, v_i)$
 - After relaxing edge (v_{i-1}, v_i) , we have $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$
 - before relaxing the edge, there are two cases
 - \circ d[v_i] > d[v_{i-1}] + w(v_{i-1},v_i) if this is the case the algorithm does the following
 - \circ $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$ if this is the case, no change happen and the property hols
 - $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i) = \delta(s, v_i)$ (subpaths of shortest path are also shortest path)
 - $\circ \quad \mathsf{d}[\mathsf{v}_{\mathsf{i}}] \geq \delta(\mathsf{s}, \mathsf{v}_{\mathsf{i}})$
- Therefore $\mathbf{d}[\mathbf{v}_i] = \delta(\mathbf{s}, \mathbf{v}_i)$