

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC171369

Page: 1 of 57

FCC Radio Test Report FCC ID: XMF-MID8011

Original Grant

Report No. : TB-FCC171369

Applicant Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : 8"Tablet

Model No. 100003561

Serial Model No. MID8011

Brand Name : onn

Receipt Date : 2020-01-02

Test Date : 2020-01-03 to 2020-01-14

Issue Date : 2020-01-14

: FCC Part 15, Subpart C 15.247 **Standards**

: ANSI C63.10: 2013 **Test Method**

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Engineer

Supervisor

Jack
WANSV
fuy Lai. **Engineer Manager**

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 57

Contents

COI	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	12
	5.3 Test Procedure	13
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7 .	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	18
	7.4 Deviation From Test Standard	19
	7.5 EUT Operating Condition	19
	7.6 Test Data	19
8.	BANDWIDTH TEST	20
	8.1 Test Standard and Limit	20
	8.2 Test Setup	20
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	20
	8.5 EUT Operating Condition	20

Page: 3 of 57

	8.6 Test Data	20
9.	PEAK OUTPUT POWER TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	21
	9.3 Test Procedure	21
	9.4 Deviation From Test Standard	21
	9.5 EUT Operating Condition	21
	9.6 Test Data	21
10.	POWER SPECTRAL DENSITY TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	
	10.3 Test Procedure	22
	10.4 Deviation From Test Standard	22
	10.5 EUT Operating Condition	22
	10.6 Test Data	22
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	23
	11.2 Deviation From Test Standard	23
	11.3 Antenna Connected Construction	23
	11.4 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	26
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDG	
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 57

Revision History

Report No.	Version	Description	Issued Date
TB-FCC171369	Rev.01	Initial issue of report	2020-01-14

Page: 5 of 57

1. General Information about EUT

1.1 Client Information

Applicant : Lightcomm Technology Co., Ltd.		Lightcomm Technology Co., Ltd.
Address : UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN ROAD WEST, SHEUNG WAN HK		UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
Manufacturer : Huizhou Hengdu Electronics Co., Ltd.		Huizhou Hengdu Electronics Co., Ltd.
ANNIACC I-		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	8"Tablet		
Models No.	:	100003561, MID8011		
Model Different	:	All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name for commercial purpose.		
		Operation Frequency:	Bluetooth 5.0(BLE): 2402MHz~2480MHz	
		Number of Channel:	Bluetooth 5.0(BLE): 40 channels see note(3)	
Product		RF Output Power:	BLE:-3.175dBm (Max)	
Description	:	Antenna Gain:	2.92dBi FPC Antenna	
		Modulation Type:	GFSK	
		Bit Rate of Transmitter:	1/2Mbps(GFSK)	
Power Rating	:	Adapter (TEKA012-052 Input: AC 100-240V, 50/0 Output: DC 5V 2A DC 3.8V by 4500mAh Li	60Hz, 0.35A	
Software Version	:	QP1A.190711.020 relea	se-keys	
Hardware Version		MID8011MQ_MT8768_LPDDR4_DSP_MB-VER1.1		
Connecting I/O Port(S)	:	Please refer to the User's Manual		
Remark	:	The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v05.

Page: 6 of 57

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

- (2) Antenna information provided by the applicant.
- (3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 7 of 57

1.4 Description of Support Units

	Equipment Information							
Name	Name Model FCC ID/VOC Manufacturer Used "√"							
	Cable Information							
Number	Shielded Type	Ferrite Core	Length	Note				
Cable 1	Yes	NO	1.0M	Accessory				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	Charging+TX Mode			

For Radiated Test				
Final Test Mode Description				
Mode 2	TX Mode			
Mode 3 TX 1Mbps Mode (Channel 00/20/39) Mode 4 TX 2Mbps Mode (Channel 00/20/39)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 57

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	LaunchEngmode				
Frequency	2402 MHz	2480 MHz			
BLE GFSK	DEF DEF DE		DEF		

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 57

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 57

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS 247 Issue 2						
Standard Section		Tool Hom	ludamaant	D		
FCC	IC	Test Item	Judgment	Remark		
15.203		Antenna Requirement	PASS	N/A		
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A		
15.205&15.247(d) RSS-GEN 7.2.2		Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A		
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A		
15.247(b)(3) RSS 247 5.4 (4)		Conducted Max Output Power	PASS	N/A		
15.247(e) RSS 24' 5.2 (2)		Power Spectral Density	PASS	N/A		
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A		

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

Page: 11 of 57

4. Test Equipment

Conducted Emission	Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020	
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020	
Radiation Emission T	est					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B MY45106456 Jul. 13, 2019 Jul. 12,		Jul. 12, 2020		
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jan. 31, 2019	Jan. 30, 2020	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020	
Horn Antenna	ETS-LINDGREN	BBHA 9170	70 BBHA9170582 Aug		Aug. 06, 2020	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020	
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020	
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020	
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 27, 2019	Jul. 26, 2020	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducted I	Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020	
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020	
DE Dower Correr	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020	

Page: 12 of 57

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit

Conducted Emission Test Limit

Eroguonov	Maximum RF Line Voltage (dBμV)						
Frequency	Quasi-peak Level	Average Level					
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
500kHz~5MHz	56	46					
5MHz~30MHz	60	50					

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 57

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 57

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d)

6.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

110	dialed Ellission Ellills (3ki iz	.~ 1000WII 12)
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meter	s(at 3m)		
(MHz)	Peak (dBuV/m)	Average (dBuV/m)		
Above 1000	74	54		

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 57

6.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 57

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 57

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 57

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)					
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)				
2310 ~2390	74	Average				
2483.5 ~2500	74	54				

7.2 Test Setup

7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 57

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 57

8. Bandwidth Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC P	art 15 Subpart C(15.247)/F	RSS-247			
Test Item Limit Frequency Range(MHz) >=500 KHz					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

Page: 21 of 57

9. Peak Output Power Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)(3)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247							
Test Item	Limit Frequency Range(MHz)						
Peak Output Power	1 Watt or 30 dBm	2400~2483.5					

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span ≥ 3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= max hold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.

Page: 22 of 57

10. Power Spectral Density Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

FC	CC Part 15 Subpart C(15.2	47)		
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

Page: 23 of 57

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.92 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type	
Permanent attached antenna	
Professional installation antenna	

Page: 24 of 57

Attachment A-- Conducted Emission Test Data

Page: 25 of 57

Temperature:	25℃			Relative Hu	midity:	55%	
Test Voltage:	AC 12	0V 60Hz					
Terminal:	Neutra	al					
Test Mode:	Mode	1					
Remark:	Only w	orse case is	reported				
90.0 dBuV						QP: AVG:	
40		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ir taqabaylar qlaqaaqaddii bilgaabhaddiigaanda	Mary broad of Valabatic Copy of	hilly follow for the constraint of the constrain	and the same	peak AVG
-10 0.150	0.5		(MHz)	5			30.000
No. Mk.		Reading Level	Correct Factor	Measure- ment	Limit	Over	P. L. L.
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1539	28.50	9.60	38.10	65.78		QP
2	0.1539	14.47	9.60	24.07	55.78		AVG
3	0.2940	27.07	9.70	36.77		-23.64	QP
4	0.2940	12.52	9.70	22.22		-28.19	AVG
5 *	0.5299	23.58	9.78	33.36	56.00	-22.64	QP
6	0.5299	10.47	9.78	20.25	46.00	-25.75	AVG
7	1.3140	22.52	9.70	32.22	56.00	-23.78	QP
8	1.3140	9.88	9.70	19.58	46.00	-26.42	AVG
9	3.0300	15.06	9.87	24.93	56.00	-31.07	QP
10	3.0300	7.64	9.87	17.51	46.00	-28.49	AVG
11	16.3260	23.43	9.80	33.23	60.00	-26.77	QP

Emission Level= Read Level+ Correct Factor

9.95

16.3260

12

AVG

50.00 -30.25

19.75

9.80

Page: 26 of 57

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

emperatu	re:	25℃	2				Relat	Relative Humidity:					55%				
est Voltag	je:	AC	120	V 60)Hz										-		
nt. Pol.		Hori	izon	tal													
est Mode:		Mod	de 2	240	2MF	lz (1Mbps))										
emark:		Only	y wc	orse	case	e is reporte	ed .										
80.0 dBuV	/m																
									(RF)FCC	15C 3	M Rad	liation	١.			
												Mare	gin -6	dB	-		
				\perp					X	Б Х				Ш			
30				1		2 %	3 X	×̈́	J 4	$/ \setminus$				1 .			
30				\bigwedge		mar / mar	12/4	Jun 1	V		a July	www	umm	Arm'	1		
my.		+		/ \	\ \ .		V. 1.	Ma		, n	J. W.				$\ $		
	mor	Marie M.	المري		V	MA,									-		
		ryan															
															1		
-20 30.000	40	50 60	0 70	80		(MHz		30	0	400	500	600	700	1000])		
30.000	40	30 00	, ,	00		(MITZ	J	30		400	500	000	700	1000	J. UU		
					eadir			asure				_					
No.	Mk.	Free	q.	L	eve	l Fact	or n	nent	Li	mit	(Ove	r				
		MHz	Z	(dBuV	dB/m	dF	3uV/m	dl	BuV/m	1	dB		Dete	cto		
1	(82.93	85	5	51.33	3 -22.4	0 2	8.93	4	0.00	-	11.	07	QP)		
2	1	41.32	298	5	54.30	-22.3	5 3	1.95	4	3.50	-	11.	55	QP)		
3	2	07.85	501	5	51.27	7 -19.4	5 3	1.82	4	3.50	-	11.	68	QP	•		
4	2	93.08	342	5	51.09	9 -16.1	4 3	4.95	4	6.00	-	11.	05	QP	•		
		44.38	355	5	55.88	3 -14.5	7 4	1.31	4	6.00		-4.6	9	QP	•		
5 *	ີ ວ	44.50															
5 [*]		37.11	199	5	52.85	-11.8	6 4	0.99	4	6.00		-5.0	1	QP	•		

^{*:}Maximum data x:Over limit !:over margin

Page: 27 of 57

Temperature:	25 ℃	Rel	ative Humid	l ity : 55	5%	
Test Voltage:	AC 120V 60Hz					
Ant. Pol.	Vertical					
Test Mode:	Mode 2 2402MHz	(1Mbps)				
Remark:	Only worse case is	s reported				
80.0 dBuV/m						
				(RF)FCC 15C		
				S.	Margin -6 d	
1 2	3	4	5	X		
30 X X	MM	m /	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\mathcal{N}	· · · ~ m	, when
1 (M)		/ " \	M	" hum	A Spill Service	
	man man					
-20 <u> </u>	60 60 70 80	(MHz)	300	400 500	600 700	1000.000
No. Mk.	Reading Freq. Level	Correct Factor	Measure- ment	Limit	Over	
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 32	.4059 46.38	-14.82	31.56	40.00	-8.44	QP
2 47	.6586 53.93	-22.56	31.37	40.00	-8.63	QP
3 82	.9385 56.22	-22.40	33.82	40.00	-6.18	QP
4 142	2.3243 56.67	-22.24	34.43	43.50	-9.07	QP
5 346	6.8092 47.25	-14.50	32.75	46.00	-13.25	QP
6 * 437	7.1199 54.04	-11.86	42.18	46.00	-3.82	QP

Page: 28 of 57

Above 1GHz

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.8V				
Ant. Pol.	Horizontal				
Test Mode:	BLE Mode TX 2402 MHz (1	Mbps)			
Remark:	No report for the emission which more than 20 dB below the				
	prescribed limit.				

No	o. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	•	4804.306	43.21	13.47	56.68	74.00	-17.32	peak
2		•	4804.714	28.64	13.47	42.11	54.00	-11.89	AVG

Emission Level= Read Level+ Correct Factor

Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.8V				
Ant. Pol.	Vertical				
Test Mode:	BLE Mode TX 2402 MHz (1Mbps)			
Remark:	No report for the emission which more than 20 dB below the				
	prescribed limit.				

-	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4803.610	28.51	13.47	41.98	54.00	-12.02	AVG
2			4804.312	43.20	13.47	56.67	74.00	-17.33	peak

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	BLE Mode TX 2442 MHz (1	Mbps)				
Remark:	No report for the emission which more than 20 dB below the					
	prescribed limit.					

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4883.136	28.78	13.54	42.32	54.00	-11.68	AVG
2			4885.488	44.08	13.54	57.62	74.00	-16.38	peak

Emission Level= Read Level+ Correct Factor

Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.8V				
Ant. Pol.	Vertical				
Test Mode:	BLE Mode TX 2442 MHz (1	Mbps)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.				

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.818	28.80	13.54	42.34	54.00	-11.66	AVG
2		4882.896	43.02	13.54	56.56	74.00	-17.44	peak

Page: 30 of 57

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.8V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	BLE Mode TX 2480 MHz (1	Mbps)					
Remark:	No report for the emission which more than 20 dB below the						
	prescribed limit.						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4958.818	28.33	13.62	41.95	54.00	-12.05	AVG
2		4959.946	42.79	13.61	56.40	74.00	-17.60	peak

Emission Level= Read Level+ Correct Factor

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V	DC 3.8V				
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2480 MHz (11	Mbps)				
Remark:	No report for the emission which more than 20 dB below the					
	prescribed limit.					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.604	28.40	13.61	42.01	54.00	-11.99	AVG
2		4960.804	42.22	13.61	55.83	74.00	-18.17	peak

Page: 31 of 57

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Ant. Pol. Horizontal					
Test Mode:	BLE Mode TX 2402 MHz (2	Mbps)				
Remark:	No report for the emission was prescribed limit.	hich more than 20 dB l	below the			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.382	42.53	13.47	56.00	74.00	-18.00	peak
2	*	4805.026	28.60	13.47	42.07	54.00	-11.93	AVG

Emission Level= Read Level+ Correct Factor

Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.8V				
Ant. Pol. Vertical					
Test Mode:	BLE Mode TX 2402 MHz (2Mbps)			
Remark:	No report for the emission prescribed limit.	which more than 20 dE	3 below the		

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.388	43.43	13.47	56.90	74.00	-17.10	peak
2	*	4804.714	28.50	13.47	41.97	54.00	-12.03	AVG

Page: 32 of 57

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Ant. Pol. Horizontal					
Test Mode:	BLE Mode TX 2442 MHz (2)	Mbps)				
Remark:	No report for the emission which more than 20 dB below the					
	prescribed limit.					

No.	Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.974	28.83	13.54	42.37	54.00	-11.63	AVG
2		4883.736	43.17	13.54	56.71	74.00	-17.29	peak

Emission Level= Read Level+ Correct Factor

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2442 MHz (2)	Mbps)				
Remark:	: No report for the emission which more than 20 dB below the					
	prescribed limit.					

N	lo. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.500	28.84	13.54	42.38	54.00	-11.62	AVG
2		4882.704	43.57	13.54	57.11	74.00	-16.89	peak

Page: 33 of 57

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.8V				
Ant. Pol. Horizontal					
Test Mode:	BLE Mode TX 2480 MHz (2	Mbps)			
Remark:	No report for the emission which more than 20 dB below the				
	prescribed limit.				

N	Vo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4960.396	28.31	13.61	41.92	54.00	-12.08	AVG
2			4960.666	42.21	13.61	55.82	74.00	-18.18	peak

Emission Level= Read Level+ Correct Factor

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2480 MHz (2)	Mbps)				
Remark:	No report for the emission was prescribed limit.	hich more than 20 dB l	below the			

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.250	42.55	13.62	56.17	74.00	-17.83	peak
2	*	4959.922	28.38	13.61	41.99	54.00	-12.01	AVG

Page: 34 of 57

Conducted Emission Test Data

Page: 35 of 57

Page: 36 of 57

Attachment C-- Restricted Bands Requirement and Band Edge Test Data

(1) Radiation Test

Page: 37 of 57

Test Voltage: DC 3.8V Ant. Pol. Vertical BLE Mode TX 2402 MHz(1Mbps) Remark: N/A 100.0 dBuV/m (RF) FCC PART 15C (PEAK) 2 2 0.0	em	perature:	25 ℃		Re	lative Humidi	i ty: 5	55%	
BLE Mode TX 2402 MHz(1Mbps) Remark: N/A 100.0 dBuV/m (RF) FCC PART 15C (PEAK) 2 X	est	Voltage:	DC 3.8	V			•		
Remark: N/A 100.0 dBuV/m (RF) FCC PART 15C (PEAK) 50 2	nt.	Pol.	Vertical	1					
100.0 dBuV/m (RF) FCC PART 15C (PEAK) (RF) FCC PART 15C (AVG) 2 2	est	Mode:	BLE Mo	ode TX 2402	2 MHz(1Mb)	ps)			
(RF) FCC PART 15C (PEAK) (RF) FCC PART 15C (AVG) 2 X	lem	nark:	N/A						
(RF) FCC PART 15C (PEAK) (RF) FCC PART 15C (AVG) 2 X	100.0) dBuV/m							
							(RF) FCC F	ART 15C (PEAK	
	_	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz dBuV dB/m dBuV/m dBuV/m dB Detector	_	No. Mk.		Level	Factor	ment			Detecto
MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 2390.000 44.19 5.53 49.72 74.00 -24.28 peak			MHz	Level dBuV	Factor dB/m	ment dBuV/m	dBuV/m	dB	
db/iii	1	1 2	MHz 2390.000	dBuV 44.19	Factor dB/m 5.53	ment dBuV/m 49.72	dBuV/m 74.00	dB -24.28	peak
1 2390.000 44.19 5.53 49.72 74.00 -24.28 peak	1 2	2 2	MHz 2390.000 2390.000	dBuV 44.19 32.71	Factor dB/m 5.53 5.53	ment dBuV/m 49.72 38.24	dBuV/m 74.00 54.00	dB -24.28 -15.76	peak AVG

Page: 38 of 57

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2480 MHz (1	Mbps)	
Remark:	N/A		
100.0 dBuV/m			
**			

No	o. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	86.89	5.74	92.63	Fundamental	Frequency	AVG
2	X	2480.200	87.65	5.74	93.39	Fundamental	Frequency	peak
3		2483.500	49.80	5.75	55.55	74.00	-18.45	peak
4		2483.500	45.44	5.75	51.19	54.00	-2.81	AVG

Page: 39 of 57

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2480 MHz (1Mbps)	
Remark:	N/A		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.600	82.52	5.74	88.26	Fundamental	Frequency	peak
2	*	2480.000	81.70	5.74	87.44	Fundamental	Frequency	AVG
3		2483.500	47.71	5.75	53.46	74.00	-20.54	peak
4		2483.500	40.49	5.75	46.24	54.00	-7.76	AVG

Page: 40 of 57

e: DC 3.8	V					
Horizo	ntal					
BLE M	ode TX 2402	2 MHz (2Mbp	os)			
N/A						
					34	
					*	
				(RF) FCC P.	ART 15¢ (PEAK)	
					PART 15C (AVG)	1
				×		
				2 X		4
23 00 2333 00	2343 00 23	953 NN 2363 NN	2373 00 2	383 00 2393 0	10 24	113.00 MHz
	2010.00	200000				
	Reading	Correct	Measure-			
Freq.	Level	Factor	ment	Limit	Over	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
2390.000	43.97	5.53	49.50	74.00	-24.50	peak
2390.000	32.59	5.53	38.12	54.00	-15.88	AVG
2401.600	84.63	5.56	90.19	_ Fundamental	Frequency	peak
2402.200		5.56	88.35	– Fundamenta	l Frequency	AVG
	Freq. MHz 2390.000 2390.000 2401.600	N/A Reading Freq. Level MHz dBuV 2390.000 43.97 2390.000 32.59 2401.600 84.63	Reading Correct Freq. Level Factor MHz dBuV dB/m 2390.000 43.97 5.53 2390.000 84.63 5.56	Reading Correct Measure-Freq. Level Factor ment MHz dBuV dB/m dBuV/m 2390.000 43.97 5.53 49.50 2390.000 32.59 5.53 38.12 2401.600 84.63 5.56 90.19	N/A (RF) FCC P (RF) FCC P	N/A (RF) FCC PART 15C (PEAK) (RF) FCC PART

Page: 41 of 57

empe	rature:	: 25°	С				Re	lative	e Hu	midity	7:	55%	6			
est Vo	oltage:	DC	3.8V	,												-
nt. Po	ol.	Ver	rtical													
est M	ode:	BLI	E Mo	de TX	240)2 MHz (2Mt	ps)								_
temar	k:	N/A	4		_			_	_			_			_	_
100.0	dBuV/m			$\overline{-}$			_								$\overline{}$	_
														4		
														Λ		
-							<u> </u>			(RF) FCC	PART	15C (P	EAK)		
														$f \setminus$		
											(RF) FC	C PAR	T 15C	AVG)		
50							1					×			\dashv	
-			<u></u>				+-					2 X			4	
			-				_								_	
0.0																
	9.000 2319 Mk.	9.00 2329 Freq.	F	Read	ling	Corre			asure		2389		Over		9.00 M	
140.	IVIIX.	MHz		dBu'		dB/m			uV/m		BuV/m		dB)etec	-te
1		2390.00	10	44.1		5.53			9.66		4.00		24.3		pea	
2		2390.00		32.7		5.53			3.23		4.00		15.7		AV	
3		2402.20		82.5		5.56			3.10		amenta				AV	
4		2402.60		84.4		5.56				Fundar					pea	
													,	_	•	_

Page: 42 of 57

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.8V		
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2480 MHz (2)	Mbps)	
Remark:	N/A		

No	. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.600	81.96	5.74	87.70	Fundamental	Frequency	peak
2	*	2480.000	80.11	5.74	85.85	Fundamental	Frequency	AVG
3		2483.500	48.46	5.75	54.21	74.00	-19.79	peak
4		2483.500	40.68	5.75	46.43	54.00	-7.57	AVG

Page: 43 of 57

Temperature:	25 ℃	R	elative Humid	ity:	55%	
Test Voltage:	DC 3.8V	,				
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2	480 MHz (2M	lbps)			
Remark:	N/A					
0.0 2470.000 2480.00	2490.00 2500.00	2510.00 2520.00		(RF) FCC	PART 15C (PEAK) PART 15C (AVG)	70.00 MHz
No. Mk.	Readin Freq. Level	g Correct Factor	Measure- ment	Limit	Over	
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 X 24	79.600 81.60	5.74	87.34	undament	al Frequency	peak
2 * 24	80.000 79.73	5.74	85.47	undament	al Frequency	AVG
3 24	83.500 48.16	5.75	53.91	74.00	-20.09	peak
4 24	83.500 40.15	5.75	45.90	54.00	-8.10	AVG

Page: 44 of 57

(2) Conducted Test

Page: 45 of 57

Page: 46 of 57

Attachment D-- Bandwidth Test Data

Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 3	3.8V		
Test Mode:	BLE	TX Mode(1 Mbps)		
Channel freque	ency	6dB Bandwidth	99% Bandwidth	Limit
(MHz)		(kHz)	(kHz)	(kHz)
2402		662.6	1051.1	
2442		664.1	1048.1	>=500
				1
2480		660.5	1051.8	

BLE Mode

2402 MHz

Page: 47 of 57

Page: 48 of 57

Temperature:	25℃		Rela	tive Humidity	/: 55%
Test Voltage:	DC 3.8	BV			
Test Mode:	BLE T	X Mode (2Mbps	s)		
Channel freque	ency	6dB Bandwid	dth 99	% Bandwidth	Limit
(MHz)		(kHz)		(kHz)	(kHz)
2402		1160		2063.0	
2442		1145		2062.0	>=500
2480		1132		2062.9	
		E	BLE Mode		1
			2402 MHz		
Center Freq		C CORREC SE 100 GHz #IFGain:Low	ENSE:INT Center Freq: 2.4020000 Trig: Free Run #Atten: 10 dB	NLIGN AUTO DO GHz Avg Hold:>10/10	02:54:39 AM Jan 06, 2020 Radio Std: None Radio Device: BTS
Center Freq	75Ω A 2.4020000	C CORREC SE 100 GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run	00 GHz	02:54:39 AMJan 06, 2020 Radio Std: None
Center Freq	75Ω A 2.4020000	C CORREC SE 100 GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run	00 GHz	02:54:39 AMJan 06, 2020 Radio Std: None
16 dB/div Log 5.00 -10.0 -25.0	2.4020000 Ref 20.00 d	C CORREC SE 100 GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run	00 GHz	02:54:39 AMJan 06, 2020 Radio Std: None
Center Freq	2.4020000 Ref 20.00 d	C CORREC SE 100 GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run #Atten: 10 dB	Avg Hold:>10/10	02:54:39 M/Jan 06, 2020 Radio Std: None Radio Device: BTS
Center Freq 15 dB/div Log 5 00 -10.0 -25 0 -70.0 -115 -115 -115 -116 -170 #Res BW 10	2.4020000 Ref 20.00 d	C CORREC SE 100 GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run	Avg Hold:>10/10	02:54:39 AM Jan 06, 2020 Radio Std: None Radio Device: BTS
Center Freq 15 dB/div Log 5 00 -10.0 -25 0 -70.0 -115 -115 -115 -116 -170 #Res BW 10	2.4020000 Ref 20.00 d	C CORREC SE 100 GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run #Atten: 10 dB	Avg Hold:>10/10	02:54:39 M/Jan 06, 2020 Radio Std: None Radio Device: BTS
Center Freq 15 dB/div Log 5:00 -40.0 -25:0 -40.0 -115 -115 -115 -115 -115 -115 -115 -11	2.4020000 Ref 20.00 d	#FGain:Low Bm ddth 2.0630 MHz	Center Freq: 2.4020000 Trig: Free Run #Atten: 10 dB	Avg Hold:>10/10 Avg Hold:>10/10	02:54:39 M/Jan 06, 2020 Radio Std: None Radio Device: BTS

STATUS

Page: 49 of 57

Page: 50 of 57

Attachment E-- Peak Output Power Test Data

Temperature:	25℃		Relative Humidity:		55%	
Test Voltage:	DC 3.8V	DC 3.8V				
Test Mode:	BLE TX M	BLE TX Mode (1Mbps)				
Channel frequency (MHz)		Test Result (dBm)			Limit (dBm)	
2402		-3.6	3.643			
2442 2480		-3.382			30	
		-3.4	-3.404			
BLE Mode						

2402 MHz

Page: 51 of 57

Page: 52 of 57

Temperature:	25℃		Relative Humidity:		55%	
Test Voltage:	DC 3.8V	DC 3.8V				
Test Mode:	BLE TX M	BLE TX Mode(2Mbps)				
Channel frequency (MHz)		Test Result (dBm)			Limit (dBm)	
2402 -3.4		136	6			
2442		-3.175			30	
2480		-3.218				
DI E Modo						

BLE Mode

2402 MHz

Page: 53 of 57

Page: 54 of 57

Attachment F-- Power Spectral Density Test Data

Temperature:	25℃		Relative Humidity:		55%	
Test Voltage:	DC 3.8V	DC 3.8V				
Test Mode:	BLE TX M	BLE TX Mode(1Mbps)				
Channel Frequency		Power Density I		Limit	t	Result
(MHz)	(MHz)		(dBm/3kHz)		(dBm/3kHz)	
2402		-19.7	75	8		PASS
2442		-19.5	45			
2480		-19.5	85			
		BLE M	ode			
		2402 N	ЛНz			

Page: 55 of 57

Report No.: TB-FCC171369

Page: 56 of 57

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.8V		
Test Mode:	BLE TX Mode (2Mbps)		

Channel Frequency		ency	Power Density	Limit	Result
	(MHz)		(dBm/3kHz)	(dBm/3kHz)	Nesuit
	2402		-22.219		
	2442		-21.937	8	PASS
	2480		-22.054		

BLE Mode

2402 MHz

Page: 57 of 57

----END OF REPORT-----