(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 February 2001 (08.02.2001)

(10) International Publication Number WO 01/09164 A2

(51) International Patent Classification7:

C07K

(21) International Application Number: PCT/US00/20666

28 July 2000 (28.07.2000) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/146,178

29 July 1999 (29.07.1999)

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

09/235,245 (CIP)

Filed on

22 January 1999 (22.01.1999)

(71) Applicant (for all designated States except US): THE ROCKEFELLER UNIVERSITY [US/US]; Office of General Counsel, 1230 York Avenue, New York, NY 10021 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): O'DONNELL, Michael, E. [US/US]; 16 Maple Lane, Hastings-on-Hudson, NY 10706 (US). BRUCK, Irina [US/US]; Apartment 11M, 1161 York Avenue, New York, NY 10021 (US). ZHANG, Dan [US/US]; 68-37 108th Street #3B, Forest Hills, NY 11375 (US). WHIPPLE, Richard [US/US]; Apartment 1-E, 435 West End Avenue, Elizabeth, NJ 07202-1145 (US).

- (74) Agents: MERKEL, Edwin, V. et al.; Nixon Peabody LLP, Clinton Square, P.O. Box 31051, Rochester, NY 14603 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DNA REPLICATION PROTEINS OF GRAM POSITIVE BACTERIA AND THEIR USE TO SCREEN FOR CHEM-**ICAL INHIBITORS**

(57) Abstract: The present invention relates to alpha-large, alpha-small, delta, delta prime, tau, beta, SSB, DnaG DnaB encoding genes from Gram positive bacterium, preferably Streptococcus and Staphylococcus bacterium. The formation of functional polymerase as well as the use of such a polymerase in sequencing and amplification is also disclosed. The individual genes and proteins or polypeptides are useful in identification of compounds with antibiotic activity.

10

15

20

25

30

1

(/

DNA REPLICATION PROTEINS OF GRAM POSITIVE BACTERIA AND THEIR USE TO SCREEN FOR CHEMICAL INHIBITORS

The present application is a continuation-in-part of U.S. Patent Application Serial No. 09/235,245 filed January 22, 1999, which claims benefit of U.S. Provisional Patent Application Serial No. 60/093,727 filed July 22, 1998, and U.S. Provisional Patent Application Serial No. 60/074,522 filed January 22, 1998, all of which are hereby incorporated by reference. The present application also claims benefit of U.S. Provisional Patent Application Serial No. 60/146,178 filed July 29, 1999, which is hereby incorporated by reference.

The present invention was made with funding from National Institutes of Health Grant No. GM38839. The United States Government may have certain rights in this invention.

FIELD OF THE INVENTION

This invention relates to genes and proteins that replicate the chromosome of Gram positive bacteria. These proteins can be used in sequencing, amplification of DNA, and in drug discovery to screen large libraries of chemicals for identification of compounds with antibiotic activity.

BACKGROUND OF THE INVENTION

All forms of life must duplicate the genetic material to propagate the species. The process by which the DNA in a chromosome is duplicated is called replication. The replication process is performed by numerous proteins that coordinate their actions to duplicate the DNA smoothly. The main protein actors are as follows (reviewed in Kornberg et al., DNA Replication, Second Edition, New York: W.H. Freeman and Company, pp. 165-194 (1992)). A helicase uses the energy of ATP hydrolysis to unwind the two DNA strands of the double helix. Two copies of the DNA polymerase use each "daughter" strand as a template to convert them into two new duplexes. The DNA polymerase acts by polymerizing the four monomer unit building blocks of DNA (the 4 dNTPs, or deoxynucleoside triphosphates are: dATP, dCTP, dGTP, dTTP). The polymerase rides along one strand of DNA using it as a

10

15

20

25

30

template that dictates the sequence in which the monomer blocks are to be polymerized. Sometimes the DNA polymerase makes a mistake and includes an incorrect nucleotide (e.g., A instead of G). A proofreading exonuclease examines the polymer as it is made and excises building blocks that have been improperly inserted in the polymer.

Duplex DNA is composed of two strands that are oriented antiparallel to one another, one being oriented 3'-5' and the other 5' to 3'. As the helicase unwinds the duplex, the DNA polymerase moves continuously forward with the helicase on one strand (called the leading strand). However, due to the fact that DNA polymerases can only extend the DNA forward from a 3' terminus, the polymerase on the other strand extends DNA in the opposite direction of DNA unwinding (called the lagging strand). This necessitates a discontinuous ratcheting motion on the lagging strand in which the DNA is made as a series of Okazaki fragments. DNA polymerases cannot initiate DNA synthesis *de novo*, but require a primed site (i.e., a short duplex region). This job is fulfilled by primase, a specialized RNA polymerase, that synthesizes short RNA primers on the lagging strand. The primed sites are extended by DNA polymerase. A single-stranded DNA binding protein ("SSB") is also needed; it operates on the lagging strand. The function of SSB is to coat single stranded DNA ("ssDNA"), thereby melting short hairpin duplexes that would otherwise impede DNA synthesis by DNA polymerase.

The replication process is best understood for the Gram negative bacterium Escherichia coli and its bacteriophages T4 and T7 (reviewed in Kelman et al., "DNA Polymerase III Holoenzyme: Structure and Function of Chromosomal Replicating Machine," Annu. Rev. Biochem., 64:171-200 (1995); Marians, K.J., "Prokaryotic DNA Replication," Annu. Rev. Biochem., 61:673-719 (1992); McHenry, C.S., "DNA Polymerase III Holoenzyme: Components, Structure, and Mechanism of a True Replicative Complex," J. Bio. Chem., 266:19127-19130 (1991); Young et al., "Structure and Function of the Bacteriophage T4 DNA Polymerase Holoenzyme," Am. Chem. Soc., 31:8675-8690 (1992)). The eukaryotic systems of yeast (Saccharomyces cerevisae) (Morrison et al., "A Third Essential DNA Polymerase in S. cerevisiae," Cell, 62:1143-51 (1990) and humans (Bambara et al., "Reconstitution of Mammalian DNA Replication," Prog. Nuc. Acid Res.," 51:93-123 (1995)) have also been characterized in some detail as has herpes virus (Boehmer et al., "Herpes

10

15

20

25

30

Simplex Virus DNA Replication," Annu. Rev. Biochem., 66:347-384 (1997)) and vaccinia virus (McDonald et al., "Characterization of a Processive Form of the Vaccinia Virus DNA Polymerase," Virology, 234:168-175 (1997)). The helicase of *E. coli* is encoded by the *dnaB* gene and is called the DnaB-helicase. In phage T4, the helicase is the product of the gene 41, and, in T7, it is the product of gene 4. Generally, the helicase contacts the DNA polymerase in *E. coli*. This contact is necessary for the helicase to achieve the catalytic efficiency needed to replicate a chromosome (Kim et al., "Coupling of a Replicative Polymerase and Helicase: A tau-DnaB Interaction Mediates Rapid Replication Fork Movement," Cell, 84:643-650 (1996)). The identity of the helicase that acts at the replication fork in a eukaryotic cellular system is still not firm.

The primase of *E. coli* (product of the *dnaG* gene), phage T4 (product of gene 61), and T7 (gene 4) require the presence of their cognate helicase for activity. The primase of eukaryotes, called DNA polymerase alpha, looks and behaves differently. DNA polymerase alpha is composed of 4 subunits. The primase activity is associated with the two smaller subunits, and the largest subunit is the DNA polymerase which extends the product of the priming subunits. DNA polymerase alpha does not need a helicase for priming activity on single strand DNA that is not coated with binding protein.

The chromosomal replicating DNA polymerase of all these systems, prokaryotic and eukaryotic, share the feature that they are processive, meaning they remain continuously associated with the DNA template as they link monomer units (dNTPs) together. This catalytic efficiency can be manifest *in vitro* by their ability to extend a single primer around a circular ssDNA of over 5,000 nucleotide units in length. Chromosomal DNA polymerases will be referred to here as replicases to distinguish them from DNA polymerases that function in other DNA metabolic processes and are far less processive.

There are three types of replicases known thus far that differ in how they achieve processivity and how their subunits are organized. These will be referred to here as Types I-III. The Type I is exemplified by the phage T5 replicase, which is composed of only one subunit yet is highly processive (Das et al., "Mechanism of Primer-template Dependent Conversion of dNTP-dNMP by T7 DNA Polymerase," J. Biol. Chem., 255:7149-7154 (1980)). It is possible that the T5 enzyme achieves

10

15

20

25

30

processivity by having a cavity within it for binding DNA, with a domain of the protein acting as a lid that opens to accept the DNA and closes to trap the DNA inside, thereby keeping the polymerase on DNA during polymerization of dNTPs. Type II is exemplified by the replicases of phage T7, herpes simplex virus, and vaccinia virus. In these systems, the replicase is composed of two subunits, the DNA polymerase and an "accessory protein" which is needed for the polymerase to become highly efficient. It is presumed that the DNA polymerase binds the DNA in a groove and that the accessory protein forms a cap over the groove, trapping the DNA inside for processive action. Type III is exemplified by the replicases of E. coli, phage T4, yeast, and humans in which there are three separate components, a sliding clamp protein, a clamp loader protein complex, and the DNA polymerase. In these systems, the sliding clamp protein is an oligomer in the shape of a ring. The clamp loader is a multiprotein complex which uses ATP to assemble the clamp around DNA. The DNA polymerase then binds the clamp which tethers the polymerase to DNA for high processivity. The replicase of the E. coli system contains a fourth component called tau that acts as a glue to hold two polymerases and one clamp loader together into one structure called Pol III*. In this application, any replicase that uses a minimum of three components (i.e., clamp, clamp loader, and DNA polymerase) will be referred to as either a three component polymerase, a type III enzyme, or a DNA polymerase IIItype replicase.

The E. coli replicase is also called DNA polymerase III holoenzyme. The holoenzyme is a single multiprotein particle that contains all the components; it is comprised of ten different proteins. This holoenzyme is suborganized into four functional components called: 1) Pol III core (DNA polymerase); 2) gamma complex or tau/gamma complex (clamp loader); 3) beta subunit (sliding clamp); and 4) tau (glue protein). The DNA polymerase III "core" is a tightly associated complex containing one each of the following three subunits: 1) the alpha subunit is the actual DNA polymerase (129 kDa); 2) the epsilon subunit (28 kDa) contains the proofreading 3'-5' exonuclease activity; and 3) the theta subunit has an unknown function. The gamma complex is the clamp loader and contains the following subunits: gamma, delta, delta prime, chi and psi (U.S. Patent No. 5,583,026 to O'Donnell). Tau can substitute for gamma, as can a tau/gamma heterooligomer. The beta subunit is a homodimer and forms the ring shaped sliding clamp. These

10

15

20

25

30

components associate to form the holoenzyme and the entire holoenzyme can be assembled *in vitro* from 10 isolated pure subunits (U.S. Patent No. 5,583,026 to O'Donnell; U.S. Patent No. 5,668,004 to O'Donnell). The *E. coli dnaX* gene encodes both tau and gamma. Tau is the product of the full gene. Gamma is the product of the first 2/3 of the gene; it is truncated by an efficient translational frameshift that results in incorporation of one unique residue followed by a stop codon.

The tau subunit, encoded by the same gene that encodes gamma (dnaX), also acts as a glue to hold two cores together with one gamma complex. This subassembly is called DNA polymerase III star (Pol III*). One beta ring interacts with each core in Pol III* to form DNA polymerase III holoenzyme.

During replication, the two cores in the holoenzyme act coordinately to synthesize both strands of DNA in a duplex chromosome. At the replication fork, DNA polymerase III holoenzyme physically interacts with the DnaB helicase through the tau subunit to form a yet larger protein complex termed the "replisome" (Kim et al., "Coupling of a Replicative Polymerase and Helicase: A tau-DnaB Interaction Mediates Rapid Replication Fork Movement," Cell, 84:643-650 (1996); Yuzhakov et al., "Replisome Assembly Reveals the Basis for Asymmetric Function in Leading and Lagging Strand Replication," Cell, 86:877-886 (1996)). The primase repeatedly contacts the helicase during replication fork movement to synthesize RNA primers on the lagging strand (Marians, K.J., "Prokaryotic DNA Replication," Annu. Rev. Biochem., 61:673-719 (1992)).

Intensive subtyping of prokaryotic cells has now lead to a taxonomic classification of prokaryotic cells as eubacteria (true bacteria) to distinguish them from archaebacteria. Within eubacteria are many different subcategories of cells, although they can broadly be subdivided into Gram positive - and Gram negative-like cells. Numerous complete and partial genome sequences of prokaryotes have appeared in the public databases.

In the present invention, new genes from the Gram positive bacteria, Streptococcus pyogenes (e.g., S. pyogenes) and Staphylococcus aureus (e.g., S. aureus) are identified. They are assigned names based on their nearest homology to subunits in the E. coli system. The genes encoding E. coli replication proteins are as follows: alpha (dnaE); epsilon (dnaQ); theta (holE); tau (full length dnaX); gamma

10

15

20

25

30

WO 01/09164 PCT/US00/20666

(frameshift product of dnaX); delta (holA); delta prime (holB); chi (holC); psi (holD); beta (dnaN); DnaB helicase (dnaB); and primase (dnaG).

Study of the organisms for which a complete genome sequence is available reveals that no organism has identifiable homologues to all the subunits of the E. coli three component polymerase, Pol III holoenzyme (see Table 1 below). All other organisms lack the θ subunit (holE), and all except one lack genes encoding the χ and ψ subunits (holC and holD, respectively) as judged by sequence comparison searches. Further, the α and ϵ subunits are fused into one large α subunit in some organisms (e.g., Gram positive cells) as detailed in (Sanjanwala et al., "DNA Polymerase III Gene of Bacillus subtilis," Proc. Natl. Acad. Sci., USA, 86:4421-4424 (1989)). Although all organisms have homologues to τ , β , δ ' and SSB, the δ subunit has diverged significantly (either not recognized or nearly not recognized by gene searching programs), perhaps even to the point where it is no longer involved in DNA replication. The DnaX product also would appear to lack frameshift signals in most organisms. This predicts only one protein (tau) will be produced from this gene, instead of two as in E. coli. Indeed, this has been shown to be true for the Staphylococcus aureus DnaX (U.S. Patent Application Serial No. 09/235,245, which is hereby incorporated by reference). Finally, genetic study of Bacillus subtilis identified two genes that do not have counterparts in E. coli (dnaB, not the helicase, and dnaH) as well as one other gene, dnaI, that is only very distantly related to E. coli dnaC (Karamata et al., "Isolation and Genetic Analysis of Temperature-Sensitive Mutants of B. subtilis Defense in DNA Synthesis," Molec. Gen. Genet., 108:277-287 (1970); Braund et al., "Nucleotide Sequence of the Bacillus subtilis dnaD Gene," Microb., 141:321-322 (1995); Hoshino et al., "Nucleotide Sequence of Bacillus subtilis dnaB: A Gene Essential for DNA Replication Initiation and Membrance Attachment," Proc. Natl. Acad. Sci. USA," 84:653-657 (1987)). Keeping in mind the apparently random, or at least unpredictable process of evolution, it is possible that these apparently new genes perform novel functions that may result in a new type of polymerase for chromosomal replication. Thus, it seems possible that new proteins may have evolved to take the place of χ , ψ , θ , the frameshift product of DnaX, and possibly δ in other eubacteria. These considerations indicate that the three component polymerase of different eubacteria may have different structures. That this may be so would not be surprising as different bacteria are often less related evolutionarily than plants are to

humans. For example, the split between Gram positive and Gram negative bacteria occurred about 1.2 billion years ago. This distant split makes Gram positive cells an attractive source to examine how different other eubacterial three component polymerases are from the *E. coli* Pol III holoenzyme.

Tr.			•
1 a	b	le	1

1 able 1										
Organism (Order)	x	φ	<u> </u>	<u>\$</u>	<u>α</u>	β	<u>dnaX</u>	<u>δ'</u>	δ	
Escherichia coli Proteobacteria	+	+	+	+	+	+	+	+	+	
Haemophilus influenzae Proteobacteria	+	+	-	+	+	+	+	+	+	
Mycoplasma genitalium Firmicutes	-	_	-	-	+	+	+	+	+	(weak)
Synichisystis sp. Cyanobacteria		-	-	-	+	+	+	+	+	(weak)
Bacillus subtilis Firmicutes	_	-	-	_	+	+	+	+	+	(weak)
Borrelia burgdorferi Spirochaetales		-	-		+	+	+	+	+	(weak)
Aquifex aeolicus Aquificales	-	-	_	+	+	+	+	+	+	(weak)
Mycobacterium tuberculosis Firmicutes & Actinobacteria	-	-	-	+	+	+	+	+	+	(weak)
Treponema pallidum Spirochaetales	_	-	-	+	+	+	+	+	+	(weak)
Chlamydia trachomatis Chlamydiales	_	-	-	+	+	+	+	+	+	(weak)
Rickettsia prowazekii Proteobacteria	-	-	.	+	+	+	+	+	+	(weak)
Helicobacter pylori Proteobacteria	_	-	-	+	+	+	+	+	+	(weak)
Thermatoga maritima Thermotogales	_	_	-	_	+	+	+	+	+	(weak)

5

10

The goal of this invention is to learn how to form a functional three component polymerase from an organism that is highly divergent from E. coli and whether it is as rapid and processive as the E. coli Pol III holoenzyme. Namely, from bacteria lacking χ , ψ , or θ , or having a widely divergent δ subunit, or having only one DnaX product, or an α subunit that encompasses both α and ϵ activities. All eubacteria for which the entire genome has been sequenced have at least one of these differences from E. coli. Many Gram negative bacteria have one or more of these differences (e.g., Haemophilus influenzae and Aquifex aeolicus). Bacteria of the Gram positive class have all of these different features. Because of the distant

10

15

20

25

30

evolutionary split between Gram positive and Gram negative bacteria, their mechanisms of replication may have diverged significantly as well. Indeed, purification of the replication polymerase from *B. subtilis*, a Gram positive cell, gives only a single subunit polymerase (Barnes et al., "Purification of DNA Polymerase III of Gram-Positive Bacteria," Methods Enzy. 262:35-42 (1995); Barnes et al., "Antibody to B. subtilis DNA Polymerase III: Use in Enzyme Purification and Examination of Homology Among Replication-specific DNA Polymerases," Nucl. Acids Res., 6:1203-209 (1979); Barnes et al., "DNA Polymerase III of Mycoplasma pulmonis: Isolation and Characterization of the Enzyme and its Structural Gene, polC," Mol. Microb., 13:843-854, (1994); Low et al., "Purification and Characterization of DNA Polymerase III from Bacillus subtilis," J. Biol. Chem., 251:1311-1325 (1976)) instead of a 10 subunit assembly containing the three components of a rapidly processive machine as discussed above for Pol III holoenzyme from *E. coli*. This finding suggests a different structural organization of the replicase and possibly different functional characteristics as well.

Although there are many studies of replication mechanisms in eukaryotes and, specifically, the Gram negative bacterium E. coli and its bacteriophages, there is very little information about how Gram positive organisms replicate. The Gram positive class of bacteria includes some of the worst human pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, and Mycobacterium tuberculosis (Youmans et al., The Biological and Clinical Basis of Infectious Disease (1985)). Until this invention, the best characterized Gram positive organism for chromosomal DNA synthesis was Bacillus subtilis. Fractionation of B. subtitis has identified three DNA polymerases. (Gass et al., "Further Genetic and Enzymological Characterization of the Three Bacillus subtilis Deoxyribonucleic Acid Polymerases," J. Biol. Chem., 248:7688-7700 (1973); Ganesan et al., "DNA Replication in a Polymerase I Deficient Mutant and the Identification of DNA Polymerases II and III in Bacillus subtilis," Biochem. Biophys. Res. Commun., 50:155-163 (1973)). These polymerases are thought to be analogous to the three DNA polymerases of E. coli (DNA polymerases I, II, and III). Studies in B. subtilis have identified a polymerase that appears to be involved in chromosome replication and is termed Pol III (Ott et al., "Cloning and Characterization of the polC Region of Bacillus subtilis," J. Bacteriol., 165:951-957 (1986); Barnes et al.,

10

15

20

25

30

"Localization of the Exonuclease and Polymerase Domains of Bacillus subtilis DNA Polymerase III," Gene, 111:43-49 (1992); Barnes et al., "The 3'-5' Exonuclease Site of DNA Polymerase III From Gram-positive Bacteria: Definition of a Novel Motif Structure," Gene" 165:45-50 (1995) or Barnes et al., "Purification of DNA Polymerase III of Gram-positive Bacteria," Methods in Enzy., 262:35-42 (1995)). The B. subtilis Pol III (encoded by polC) is larger (about 165 kDa) than the E. coli alpha subunit (about 129 kDa) and exhibits 3'-5' exonuclease activity. The polC gene encoding this Pol III shows weak homology to the genes encoding E. coli alpha and the E. coli epsilon subunit. Hence, this long form of the B. subtilis Pol III (herein referred to as α -large or Pol III-L) essentially comprises both the alpha and epsilon subunits of the E. coli core polymerase. The S. aureus α -large has also been sequenced, expressed in E. coli, and purified; it contains DNA polymerase and 3'-5' exonuclease activity (Pacitti et al., "Characterization and Overexpression of the Gene Encoding Staphylococcus aureus DNA Polymerase III," Gene, 165:51-56 (1995)). Although α -large is essential to cell growth (Clements et al., "Inhibition of Bacillus subtilis Deoxyribonucleic Acid Polymerase III by Phenylhydrazinopyrimidines: Demonstration of a Drug-induced Deoxyribonucleic Acid-Enzyme Complex." J. Biol. Chem., 250:522-526 (1975); Cozzarelli et al., "Mutational Alteraction of Bacillus subtilis DNA Polymerase III to Hydroxyphenylazopyrimidine Resistance: Polymerase III is Necessary for DNA Replication," Biochem. And Biophy. Res. Commun., 51:151-157 (1973); Low et al., "Mechanism of Inhibition of Bacillus subtilis DNA Polymerase III by the Arylhydrazinopyrimidine Antimicrobial Agents," Proc. Natl. Acad. Sci. USA, 71:2973-2977 (1974)), there could still be another DNA polymerase(s) that is essential to the cell, such as occurs in yeast (Morrison et al., "A Third Essential DNA Polymerase in S. cerevisiae," Cell, 62:1143-1151 (1990)).

Purification of α -large from *B. subtilis* results in only this single protein without associated proteins (Barnes et al., "Localization of the Exonuclease and Polymerase Domains of *Bacillus subtilis* DNA Polymerase III," <u>Gene</u>, 111:43-49 (1992); Barnes et al., "The 3'-5' Exonuclease Site of DNA Polymerase III From Gram-positive Bacteria: Definition of a Novel Motif Structure," <u>Gene</u>" 165:45-50 (1995) or Barnes et al., "Purification of DNA Polymerase III of Gram-positive Bacteria," <u>Methods in Enzymol.</u>, 262:35-42 (1995)). Hence, it is possible that α -large is a member of the Type I replicase (like T5) in which it is processive on its own

10

15

20

25

30

WO 01/09164 PCT/US00/20666

without accessory proteins. B. subtilis and S. aureus also have a gene encoding a protein that has approximately 30% homology to the beta subunit of E. coli; however, the protein product has not been purified or characterized (Alonso et al., "Nucleotide Sequence of the recF Gene Cluster From Staphylococcus aureus and Complementation Analysis in Bacillus subtilis recF Mutants," Mol. Gen. Genet., 246:680-686 (1995); Alonso et al., "Nucleotide Sequence of the recF Gene Cluster From Staphylococcus aureus and Complementation Analysis in Bacillus subtilis recF Mutants," Mol. Gen. Genet., 248:635-636 (1995)). Whether this beta subunit has a function in replication, a ring shape, or functions as a sliding clamp was not known until recently. It was also not known whether it is functional with α -large. Recently, it was shown that S. aureus β is functional as a ring, and that it also functions with α large (U.S. Patent Application Serial No. 09/235,245, which is hereby incorporated by reference). Further, a fourth DNA polymerase was identified with greater homology to E. coli α than α -large. This polymerase, called herein α -small, is shorter than α large and lacks the domain homologous to epsilon. This polymerase also functions with the β ring, indicating that it may participate in chromosome replication. Indeed, a recent report indicates that α -small is essential for replication in *Streptomyces* coelicolor A3(2) (Flett et al., "A Gram-negative type' DNA Polymerase III is Essential for Replication of the Linear Chromosome of Streptomyces Coelicolor A3(2)," Mol. Micro., 31:949-958, (1999)).

As described earlier, purification of the replicase from the Gram positive B. subtilis gives only a single subunit Pol III, instead of a multicomponent complex. Also, S. aureus dnaX has been shown to encode only one subunit (U.S. Patent Application Serial No. 09/235,245, which is hereby incorporated by reference). Moreover, S. aureus and B. subtilis lack homologues to χ , ψ , θ , and the δ subunit is only weakly homologous to δ of E. coli (only 28%). Further, they lack a homologue to dnaQ encoding ε . Instead, they contain this activity (3'-5' exonuclease) in the polC gene product which provides the α -large form of α . The ε subunit is needed for high speed and processivity of the E. coli Pol III holoenzyme; the α subunit alone is much less rapid and processive with the β ring compared to the presence of both α and ε (Studwell et al., "Processive Replication is Contingent on the Exonuclease Subunit of DNA Polymerase III Holoenzyme," J. Biol Chem, 265: 1171-1178 (1990)).

Studies using the *E. coli* β ring (and γ complex) show they confer onto *S. aureus* α quite efficient synthesis (U.S. Patent Application Serial No. 09/235,245, which is hereby incorporated by reference), but the efficiency is not equal to that of *E. coli* α with β (and γ complex). This may be due to use of the heterologous combination of an α subunit from one organism (*S. aureus*) with the β clamp from another (*E. coli*.). However, it is also possible that *S. aureus* α simply does not function with a β clamp to produce speed and processivity comparable to the *E. coli* polymerase. Also, as described earlier, the α -large subunit of *B. subtilis* purifies as a single subunit, rather than associated with accessory subunits assembled into the three components of a rapid, processive machine (i.e., like *E. coli* Pol III holoenzyme). The lack of two DnaX products, lack of a multicomponent structure, and lack of gene homologues encoding several subunits of the three component, Pol III, of *E. coli* brings into question whether other types of bacteria, such as Gram positive cells, even have an enzyme with similar structure or comparable speed and processivity to that found in the Gram negative *E. coli*.

The lack of gene homologues encoding several subunits of the *E. coli* three component polymerase creates uncertainties with respect to reconstructing a rapid and processive polymerase from a Gram positive cell that has characteristics like the Pol III system of *E. coli*.

20

25

30

15

5

10

The γ and δ' proteins are homologous to one another, encoding C-shape proteins (Dong et al., "DNA Polymerase III Accessory Proteins," J. Biol. Chem, 268:11758-11765, (1993); Guenther et al., "Crystal Structure of the δ' Subunit of the Clamp-loader Complex of E. coli DNA Polymerase III," Cell, 91:335-345 (1997)). The clamp loaders of yeast and humans are composed of five proteins, all of which are homologous to one another and to γ and δ' (Cullman et al., "Characterization of the Five Replication Factor C Genes of Saccharomyces Cerevisiae," Mol. Cell. Biol., 15:4661-4671 (1995)). This provides evidence that a clamp loader can be composed entirely of C-shape proteins. Perhaps the Gram positive DnaX-protein (hereafter referred to as τ) and δ' are sufficient to provide function as a clamp loader. Indeed, the clamp loader of T4 phage is composed of only two different proteins, gp44/62 complex (Young et al., "Structure and Function of the Bacteriophage T4 DNA Polymerase Holoenzyme," Biochem., 31:8675-8690 (1992)). This idea is also

10

15

20

25

30

supported by the presence of only two RFC genes in archaebacteria, suggesting that they may utilize two C-shaped proteins for clamp loading, in contrast to yeast and humans that use five. With this consideration in mind, genes were identified and isolated and the τ protein (encoded by dnaX) and δ ' (encoded by holB) of another Gram positive organism, Streptococcus pyogenes, were expressed and purified. As was observed in S. aureus, S. pyogenes dnaX produces only a single polypeptide. The β , encoded by dnaN of S. pyogenes, was also identified, expressed, and purified, as were the α -large subunit encoded by polC and the SSB encoded by the ssb gene. These proteins were studied for interactions and characterized for their effect on α -large. However, the hypothesis was incorrect as τ and δ ' did not form a $\tau\delta$ ' complex, nor did they assemble β onto DNA or provide stimulation of α when using β on primed and SSB coated M13mp18 ssDNA.

In light of the inability of S. pyogenes τ protein and δ' to function as a clamp loader, it seemed reasonable to expect that one or more other proteins are needed. The fact that E. coli has some replicase subunits that other bacteria do not, suggests that other bacteria may have some replicase subunits that E. coli does not. Indeed, genetic studies of Bacillus subtilis demonstrates that it has three genes needed for replication that E. coli does not have. Two of these novel genes, called dnaB (not the same as E. coli dnaB encoding the helicase) and dnaH, have no significant homology to genes in the E. coli genome database (Bruand et al., "Nucleotide Sequence of the Bacillus subtilis dnaD gene," Microbiol., 141:321-322 (1995); Hoshino et al., "Nucleotide Sequence of Bacillus subtilis dnaB: A gene Essential for DNA replication Initiation and Membrane Attachment," Proc. Natl. Acad. Sci. USA, 84:653-657 (1987)). Further, dnaI of B. subtilis is important for replication and has, at best, a very limited homology to E. coli dnaC (Karamata et al., "Isolation and Genetic Analysis of Temperature-Sensitive Mutants of B. subtilis Defective in DNA synthesis," Molec. Gen. Genetics, 108:277-287 (1970)). Perhaps one or more of these genes encode the proteins(s) necessary to provide clamp loading activity when combined with τ and δ' , or to couple with α to provide it with speed and/or processivity as the E. coli epsilon does. The S. pyogenes homologues of B. subtilis dnaI, dnaH, and dnaB were identified, cloned, and the encoded proteins were expressed and purified. However, these proteins failed to provide activity alone or in

PCT/US00/20666

5

10

15

20

25

30

combinations with S. pyogenes τ and δ' in loading S. pyogenes β onto DNA, or in stimulating S. pyogenes α -large in combination with β , τ , and δ' on SSB coated primed M13mp18 ssDNA.

Weak homology exists for the *holA* gene among prokaryotes. This weak homologue of *holA* was identified in *S. pyogenes* and, then, it was cloned, expressed, and the putative δ was purified. The putative δ formed an isolatable complex with τ and δ '. In fact, the $\tau\delta\delta$ ' complex loaded *S. pyogenes* β onto DNA, and it stimulated *S. pyogenes* α -large in a β dependent reaction on primed SSB coated M13mp18 ssDNA. Hence, this protein was the only missing component necessary to provide clamp loading activity. Further, a mixture of α with $\tau\delta\delta$ ', followed by ion exchange chromatography on MonoQ, indicated formation of an $\alpha\tau\delta\delta$ ' complex. Consistent with this, τ appeared to bind α in gel filtration analysis.

Whether the *S. pyogenes* three component polymerase can synthesize DNA in as rapid and processive of a fashion as the *E. coli* Pol III holoenzyme three component polymerase is very difficult to predict, because no other DNA polymerase known to date catalyzes synthesis at the rate or processivity of the *E. coli* three component polymerase. For example, the three component T4 phage polymerase travels about 400 nucleotides/s, the yeast DNA polymerase delta three component polymerase travels about 120 nucleotides/s, and the human DNA polymerase delta three component enzyme appears slower and less processive than the yeast enzyme.

The standard test for these speed and processivity characteristics is examination of a time course in extension of a primer on a very long template, such as around the 7.2 kb M13mp18 ssDNA genome coated with SSB and primed with a synthetic DNA oligonucleotide. The results of experiments of this type demonstrate that the three component *S. pyogenes* polymerase is indeed extremely rapid in synthesis. Surprisingly, it is just as fast as the *E. coli* enzyme. Extension proceeds at about 700-800 nucleotides per second, completing the entire template in about 9 seconds. The enzyme was fully processive throughout replication of the M13mp18 genome, as could be determined from the fact that some templates were not extended at all, while others were extended to completion. If the enzyme had not been processive during the entire replication reaction, then when it comes off one partially extended DNA genome it would have reassociated with the unextended DNA that

10

15

20

25

30

- 14 -

remained and partially replicated it as well (and so on until the entire population of DNA became fully replicated). This did not happen. Instead, the reaction showed a mixture of completely replicated templates and templates that were still untouched starting material. This indicates that the enzyme stays with a template until it completes it before it cycles over to replicate another one (i.e., it is highly processive). Each of the five proteins, α , τ , δ , δ' and β , are needed to obtain this rapid and processive DNA synthesis.

This invention has provided an intellectual template by which the clamp loader component of these three component polymerases can be obtained from any eubacterial prokaryotic cell and how to use it with the other components to produce a rapid and processive polymerase. All prokaryotes in the eubacterial kingdom that have been sequenced to date contain homologues of these genes. As the process of lateral gene transfer appears to be a major force in evolution, it would appear that relatedness of enzymes and enzyme machines is best judged by comparisons of their genes and proteins rather than by phylogeny of which bacteria they are in (Doolittle et al., "Archaeal Genomics: Do Archaea have a Mixed Heritage?," Curr. Biol., 8:R209-R211 (1998)). As pointed out earlier in this application, most bacteria have genetic characteristics of replication genes/proteins of S. pyogenes rather than that of E. coli (i.e., no genes encoding χ, ψ , or θ , only a weak homolog to δ , or a dnaX gene encoding only a single protein).

The dnaX gene encoding τ and γ in E. coli encodes only one protein in some organisms, but, as this application shows, it is still functional in forming a protein complex capable of rapid and processive DNA synthesis. In addition, this application shows that the delta subunit, which is only weakly homologous among different prokaryotic organisms, is an essential functional subunit of the three component polymerase (instead of having diverged so as to fulfill an entirely different function in some other intracellular process). As mentioned earlier, several genes encoding subunits of the E. coli clamp loader (γ complex; γ , δ , δ ', χ , ψ) are not obviously present in other prokaryotes (holC and holD encoding χ and ψ). Hence, one may anticipate that other genes may have evolved to encode new subunits that replace these, and that these new subunits may have been essential to the activity of the clamp loader. For example, they may have either taken over some of the functionality of

10

15

20

25

30

another subunit, or structurally (e.g., the physical presence of a subunit could be needed for one subunit to assume its proper and active conformation, or for one or more of the subunits to form a complex together to yield the multisubunit clamp loader assembly). In addition, this application shows that the α subunit (polC gene product) is sufficient for rapid and processive synthesis with the other two components (i.e., E. coli requires ε submit to bind to α for rapid and processive synthesis of α with the β clamp). Finally, this application shows that the S. pyogenes three component polymerase synthesizes DNA as fast as the E. coli Pol III three component polymerase. Up to this point, the E. coli Pol III three component polymerase was over twice the speed of the T4 enzyme and over 5 times the speed of others. Hence, it was possible that E. coli may have been unique among prokaryotes in having a polymerase that achieves such speed. This invention shows that this is not the case. Instead, this speed in polymerization generalizes to the Gram positive prokaryotic three component DNA polymerases. It may be presumed, now that two examples of three component polymerases in widely divergent bacteria share the charactistics of rapid, processive synthesis, that the three component polymerase of other eubacteria will also be rapid and processive.

These rapid and processive three component DNA polymerases can be applied to several important uses. DNA polymerases currently in use for DNA sequencing and DNA amplification use enzymes that are much slower and thus could be improved upon. This is especially true of amplification as the three component polymerase is capable of speed and high processivity making possible amplification of very long (tens of Kb to Mb) lengths of DNA in a time efficient manner. These three component polymerases also function in conjunction with a replicative helicase (DnaB) and, thus, are capable of amplification at ambient temperature using the helicase to melt the DNA duplex. This property could be useful in amplification reaction procedures such as in polymerase chain reaction (PCR) methodology. Finally, these three component polymerases and their associated helicase (DnaB) and primase (DnaG) are attractive targets for antibiotics due to their essential and central role in cell viability.

This application provides a three component polymerase from two human pathogens in the Gram positive class. It makes possible the production of this three component polymerase from other bacteria of the Gram positive type (e.g.,

10

15

20

25

30

Streptococci, Staphylococci, Mycoplasma) and other types of bacteria lacking χ, ψ , or θ , those having only one protein produced by their dnaX gene such as obligate intracellular parasites, Mycoplasmas (possibly evolved from Gram positives), Cyanobacteria (Synechocystis), Spirochaetes such as Borrelia and Treponemia and Chlamydia, and distant relatives of E. coli in the Gram negative class (e.g., Rickettsia and Helicobacter). These three component polymerases are useful in manipulation of nucleic acids for research and diagnostic purposes (e.g., sequencing and amplification methods) and for screening chemicals for antibiotic activity (useful in human or animal therapy and agriculture such as animal feed supplements). There are several assays described previously in U.S. Patent Application Serial No. 09/235,245 to O'Donnell et al., which is hereby incorporated by reference, that use these three component polymerases (or subassemblies), as well as the DnaB and DnaG homologues, either alone or in various combinations, for the purpose of screening chemicals, such as chemical libraries, for inhibitor activity. Such inhibitors can be developed further (usually by chemical manipulation and alteration) into lead compounds and then into full fledged pharmaceuticals.

There remains a need to understand the molecular details of the process of DNA replication in other cells that are quite different from E. coli, such as in Gram positive cells. It is possible that a more detailed understanding of replication proteins will lead to discovery of new antibiotics. Therefore, a deeper understanding of replication proteins of Gram positive bacteria is especially important given the emergence of drug resistant strains of these organisms. For example, Staphylococcus aureus has successfully mutated to become resistant to all common antibiotics.

The "target" protein(s) of an antibiotic drug is generally involved in a critical cell function, such that blocking its action with a drug causes the pathogenic cell to die or no longer proliferate. Current antibiotics are directed to very few targets. These include membrane synthesis proteins (e.g., vancomycin, penicillin, and its derivatives such as ampicillin, amoxicillin, and cephalosporin), the ribosome machinery (e.g., tetracycline, chloramphenicol, azithromycin, and the aminoglycosides such as kanamycin, neomycin, gentamicin, streptomycin), RNA polymerase (e.g., rifampimycin), and DNA topoisomerases (e.g., novobiocin, quinolones, and fluoroquinolones). The DNA replication apparatus is a crucial life process and, thus, the proteins involved in this process are good targets for antibiotics.

A powerful approach to discovery of a new drug is to obtain a target protein, characterize it, and develop *in vitro* assays of its cellular function. Large chemical libraries can then be screened in the functional assays to identify compounds that inhibit the target protein. These candidate pharmaceuticals can then be chemically modified to optimize their potency, breadth of antibiotic spectrum, nontoxicity, performance in animal models and, finally, clinical trials. The screening of large chemical libraries requires a plentiful source of the target protein. An abundant supply of protein generally requires overproduction techniques using the gene encoding the protein. This is especially true for replication proteins as they are present in low abundance in the cell.

10

5

Selective and robust assays are needed to screen reliably a large chemical library. The assay should be insensitive to most chemicals in the concentration range normally used in the drug discovery process. These assays should also be selective and not show inhibition by antibiotics known to target proteins in processes outside of replication.

15

The present invention is directed to overcoming these deficiencies in the art.

SUMMARY OF THE INVENTION

20

25

30

The present invention relates to various isolated DNA molecules from Staphylococcus aureus and Streptococcus pyogenes, both of which are Gram positive bacteria. These include DNA molecules which include a coding region from the dnaE gene (encoding α- small), dnaX gene (encoding tau), polC gene (encoding Pol III –L or α- large), dnaN gene (encoding beta), holA gene (encoding delta), holB gene (encoding delta prime), ssb gene (encoding SSB), dnaB gene (encoding DnaB), and dnaG gene (encoding DnaG) of S. aureus and/or S. pyogenes. These DNA molecules can be inserted into an expression system and used to transform host cells. The isolated proteins or polypeptides encoded by these DNA molecules, and their ability to function when used in combination is also disclosed. The resulting actions provide assembling a ring onto DNA via a clamp loader, and polymerase activity dependent on this ring that is rapid and processive.

10

15

20

A further aspect of the present invention relates to a method of identifying compounds which inhibit activity of a polymerase product of polC or dnaE. This method is carried out by forming a reaction mixture comprising a primed DNA molecule, a polymerase product of polC or dnaE, a candidate compound, a dNTP, and optionally either a beta subunit, a tau complex, or both the beta subunit and the tau complex, wherein at least one of the polymerase product of polC or dnaE, the beta subunit, the tau complex, or a subunit or combination of subunits thereof is derived from a Eubacteria other than Escherichia coli; subjecting the reaction mixture to conditions effective to achieve nucleic acid polymerization in the absence of the candidate compound; analyzing the reaction mixture for the presence or absence of nucleic acid polymerization extension products; and identifying the candidate compound in the reaction mixture where there is an absence of nucleic acid polymerization extension products.

The present invention deciphers the structure and mechanism of the chromosomal replicase of Gram positive bacteria and other bacteria lacking holC, holD, holE or dnaQ genes, or having a dnaX gene that encodes only one protein.

Rather than use a DNA polymerase that attains high efficiency on its own, or with one other subunit, the Gram positive bacteria replicase is a three component type of replicase (class III) that uses a sliding clamp protein. The Gram positive bacteria replicase also uses a clamp loader component that assembles the sliding clamp onto DNA. This knowledge, and the enzymes involved in the replication process, can be used for the purpose of screening for potential antibiotic drugs. Further, information about chromosomal replicases may be useful in DNA sequencing, DNA amplification, polymerase chain reaction, and other DNA polymerase related techniques.

25

30

The present invention identifies two DNA polymerases (both of Pol III type) in Gram positive bacteria that utilize the sliding clamp and clamp loader. The present invention also identifies a gene with homology to the alpha subunit of *E. coli* DNA polymerase III holoenzyme, the chromosomal replicase of *E. coli*. These DNA polymerases can extend a primer around a large circular natural template when the beta clamp has been assembled onto the primed ssDNA by the clamp loader or a primer on a linear DNA where the beta clamp may assemble by itself by sliding over an end.

10

15

25

30

The present invention shows that the clamp and clamp loader components of Gram negative cells can be exchanged for those of Gram positive cells in that the clamp, once assembled onto DNA, will function with Pol III obtained from either Gram positive and Gram negative sources. This result implies that important contacts between the polymerase and clamp have been conserved during evolution. Therefore, these "mixed systems" may provide assays for an inhibitor of this conserved interaction. Such an inhibitor may be expected to shut down replication, and since the interaction is apparently conserved across the evolutionary spectrum from Gram positive and Gram negative cells, the inhibitor may exhibit a broad spectrum of antibiotic activity.

The present invention demonstrates that Gram positive bacteria contain a beta subunit that behaves as a sliding clamp that encircles DNA. A dnaX gene sequence encoding a protein homolog of the gamma/tau subunit of the clamp loader (gamma/tau complex) E. coli DNA polymerase III holoenzyme is also identified. The presence of this gene confirms the presence of a clamp loading apparatus in Gram positive bacteria that will assemble beta clamps onto DNA for the DNA polymerases.

This application also outlines methods and assays for use of these replication proteins in drug screening processes.

20 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the construction of the S. aureus Pol III-L expression vector. The gene encoding Pol III-L was cloned into a pET11 expression vector in a three step cloning scheme as illustrated.

Figures 2A-C describe the expression and purification of *S. aureus* Pol III-L (alpha-large). Figure 2A compares *E. coli* cells that contain the pET11PolC expression vector that are either induced or uninduced for protein expression. The gel is stained with Coomassie Blue. The induced band corresponds to the expected molecular weight of the *S. aureus* Pol III-L, and is indicated to the right of the gel. Figure 2B shows the results of the MonoQ chromatography of a lysate of *E. coli* (pET11PolC-L) induced for Pol III-L. The fractions were analyzed in a Coomassie Blue stained gel (top) and for DNA synthesis (bottom). Fractions containing Pol III-L are indicated. In Figure 2C, fractions containing Pol III-L from the MonoQ column

10

15

20

25

30

were pooled and chromatographed on a phosphocellulose column. This shows an analysis of the column fractions from the phosphocellulose column in a Coomassie Blue stained polyacrylamide gel. The position of Pol III-L is indicated to the right.

Figure 3 shows the *S. aureus* beta expression vector. The *dnaN* gene was amplified from *S. aureus* genomic DNA and cloned into the pET16 expression vector.

Figures 4A-C illustrate the expression and purification of *S. aureus* beta. Figure 4A compares *E. coli* cells that contain the pET16beta expression vector that are either induced or uninduced for protein expression. The gel is stained with Coomassie Blue. The induced band corresponds to the expected molecular weight of the *S. aureus* beta, and is indicated to the right of the gel. The migration position of size standards are indicated to the left. Figure 4B shows the results of MonoQ chromatography of an *E. coli* (pET16beta) lysate induced for beta. The fractions were analyzed in a Coomassie Blue stained gel, and fractions containing beta are indicated. In Figure 4C, fractions containing beta from the MonoQ column were pooled and chromatographed on a phosphocellulose column. This shows an analysis of the column fractions from the phosphocellulose column in a Coomassie Blue stained polyacrylamide gel. The position of beta is indicated to the right.

Figures 5A-B demonstrate that the *S. aureus* beta stimulates *S. aureus* Pol III-L and *E. coli* Pol III core on linear DNA, but not circular DNA. In Figure 5A, the indicated proteins were added to replication reactions containing polydA-oligodT as described in the Examples *infra*. Amounts of proteins added, when present, were: lanes 1,2: *S. aureus* Pol III-L, 7.5 ng; *S. aureus* beta, 6.2 μg; Lanes 3,4: *E. coli* Pol III core, 45 ng; *S. aureus* beta, 9.3 μg; Lanes 5,6: *E. coli* Pol III core, 45 ng; *E. coli* beta, 5μg. Total DNA synthesis was: Lanes 1-6: 4.4, 30.3, 5.1, 35.5, 0.97, 28.1 pmol, respectively. In Figure 5B, Lanes 1-3, the indicated proteins were added to replication reactions containing circular singly primed M13mp18 ssDNA as described in the Examples *infra*. *S. aureus* beta, 0.8 μg; *S. aureus* Pol III-L, 300 ng (purified through MonoQ); *E. coli* clamp loader complex, 1.7 μg. Results in the *E. coli* system are shown in Lanes 4-6. Total DNA synthesis was: Lanes 1-6: 0.6, 0.36, 0.99, 2.7, 3.5, 280 pmol, respectively.

Figure 6 shows that S. aureus Pol III-L functions with E. coli beta and clamp loader complex on circular primed DNA. It also shows that S. aureus beta does

10

15

20

25

30

not convert Pol III-L with sufficient processivity to extend the primer all the way around a circular DNA. Replication reactions were performed on the circular singly primed M13mp18 ssDNA. Proteins added to the assay are as indicated in this figure. The amount of each protein, when present, is: *S. aureus* beta, 800 ng; *S. aureus* Pol III-L, 1500 ng (MonoQ fraction 64); *E. coli* Pol III core, 450 ng; *E. coli* beta, 100 ng; *E. coli* gamma complex, 1720 ng. Total DNA synthesis in each assay is indicated at the bottom of the figure.

Figures 7A-B show that *S. aureus* contains four distinct DNA polymerases. Four different DNA polymerases were partially purified from *S. aureus* cells. *S. aureus* cell lysate was separated from DNA and, then, chromatographed on a MonoQ column. Fractions were analyzed for DNA polymerase activity. Three peaks of activity were observed. The second peak was the largest and was expected to be a mixture of two DNA polymerases based on early studies in *B. subtilis*. Chromatography of the second peak on phosphocellulose (Figure 7B) resolved two DNA polymerases from one another.

Figures 8A-B show that *S. aureus* has two DNA Pol III's. The four DNA polymerases partially purified from *S. aureus* extract, designated peaks I-IV in Figure 7, were assayed on circular singly primed M13mp18 ssDNA coated with *E. coli* SSB either in the presence or absence of *E. coli* beta (50ng) and clamp loader complex (50 ng). Each reaction contained 2 μ l of the partially pure polymerase (Peak 1 was Mono Q fraction 24 (1.4 μ g), Peak 2 was phosphocellulose fraction 26 (0.016 mg/ml), Peak 3 was phosphocellulose fraction 46 (0.18 mg/ml), and Peak 4 was MonoQ fraction 50 (1 μ g). Figure 8A shows the product analysis in an agarose gel. Figure 8B shows the extent of DNA synthesis in each assay.

Figure 9 compares the homology between the polypeptide encoded by dnaE of S. aureus and other organisms. An alignment is shown for the amino acid sequence of the S. aureus dnaE product with the dnaE products (alpha subunits) of E. coli and Salmonella typhimurium.

Figure 10 compares the homology between the N-terminal regions of the gamma/tau polypeptides of S. aureus, B. subtilis, and E. coli. The conserved ATP site and the cystines forming the zinc finger are indicated above the sequence. The organisms used in the alignment were: E. coli (GenBank); and B. subtilis.

15

20

25

30

Figure 11 compares the homology between the DnaB polypeptide of S. aureus and other organisms. The organisms used in the alignment were: E. coli (GenBank); B. subtilis; Sal. Typ., (Salmonella typhimurium).

Figures 12A-B show the alignment of the delta subunit encoded by holA for E. coli and B. subtilis (Figure 12A) and for the delta subunit of B. subtilis and S. pyogenes (Figure 12B). Figure 12A shows ClustalW generated alignment of S. pyogenes (Gram positive) delta to E.coli (Gram negative) delta. Figure 12B shows ClustalW generated alignment of B. subtilis (Gram positive) delta to S. pyogenes (Gram positive) delta.

10 Figure 13 is an image of an autoradiograph of an agarose gel analysis of replication products from singly primed, SSB coated M13mp18 ssDNA using the reconstituted S. aureus Pol III holozyme. Only in the presence of the τδδ' complex does α-large (PolC) function with β to replicate a full circular duplex DNA (RFII).

Figure 14 shows a Comassie Blue stained SDS polyacrylamide gel of the pure *S. pyogenes* subunits corresponding to alpha-large, alpha-small, *dnaX* gene product (called tau), beta, delta, delta prime, and SSB. The first lane shows the position of molecular weight markers. Purified proteins were separated on a 15% SDS-PAGE and stained with Coommassie Brilliant Blue R-250. Each lane contains 5 microgram of each protein. Lane 1, markers; lane 2, alpha-large; lane 3, alpha-small, lane 4, tau subunit; lane 5, beta subunit; lane 6, delta subunit; lane 7, delta prime subunit; lane 8, single strand DNA binding protein.

Figures 15A-C document the ability to reconstitute the τδδ' complex of S. pyogenes. Proteins were mixed and gel filtered on Superose 6, followed by analysis of the column fractions in a SDS polyacrylamide gel. Figure 15A shows a mixture of τδδ'. Figure 15B shows a mixture of τδ. Figure 15C shows a mixture of τδ'.

Figures 16A-E show that the S. pyogenes τδδ' complex can load the S. pyogenes beta clamp onto (circular) DNA. Loading reactions contained 500 fm nicked pBSK plasmid, 500 fm either τδδ' complex, tau, delta, or delta prime, 1pm ³²P-labelled beta dimer, 8 mM MgCl₂, 1 mM ATP. Reaction components were preincubated for 10 min at 37°C prior to loading onto 5 ml Biogel A15M column equilibrated with buffer A containing 100 mM NaCl. Figure 16A demonstrates the ability of τδδ' complex to load the beta dimer onto a nicked pBSK circular plasmid.

10

15

20

25

30

Figures 16B-E show the results of using either: beta alone (Figure 16B); $\delta\delta'$ plus β (Figure 16C); τ , δ and β (Figure 16D); τ , δ' and β (Figure 16E).

Figures 17A-C show that τ and alpha interact. Figure 17A shows the result of gel filtration analysis of a mixture of τ with alpha-large. Gel filtration fractions are analyzed in a SDS polyacrylamide gel. Figures 17B and 17C show the results using only τ or only alpha-large, respectively. Comparison of the elution positions of proteins shows that the positions of alpha and tau are shifted toward a higher molecular weight complex when they are present together. The fact they do not exactly comigrate may indicate that they initially are together in a complex, but that the complex dissociates during the time of the gel filtration experiment (over one half hour).

Figures 18A-B document the ability to reconstitute $\alpha_{L}\tau\delta\delta'$ (pol III*) complex of *S. pyogenes*. Proteins were mixed, preincubated for 20 min at 15°C, gel filtered on Superose 6, followed by analysis of the column fractions in a SDS polyacrylamide gel (Figure 18A). Proteins were loaded on a MonoQ column, then eluted with a linear gradient of 50-500 mM NaCl, followed by analysis of the column fractions in a SDS polyacrylamide gel (Figure 18B). The $\alpha_{L}\tau\delta\delta'$ complex migrates early.

Figure 19 illustrates the speed and processivity of the *S. pyogenes* $\alpha_L \tau \delta \delta'$ (pol III*) complex was incubated with primed M13pm18 ssDNA (coated with *S. pyogenes* SSB) and only two dNTPs, then replication was initiated upon adding the remaining two dNTPs. Reactions contained 25 fmol singly primed M13mp18 ssDNA template, 300 fmol β_2 , and either 75 fmol or 250 fmol $\alpha_L \tau \delta \delta'$. Time points were quenched with SDS/EDTA then analyzed in a neutral agarose gel followed by autoradiography. Each time point is a separate reaction. The time course of polymerization was performed at two different ratios of polymerase/primed template to assess speed and processivity of nucleotide incorporation.

Figures 20A-I show the extent of homology between S. pyogenes replication genes and other organisms. Due to the low homology of delta (Figure 20D), one must "walk" from one organism to the next in order to recognize the homologue with high probability. Percent identity over regions of the indicated

number of amino acid residues is shown for each match (i.e., the two organisms at the opposite ends of each line). Amino acid sequences were retrieved from either GenBank or individual unfinished genome databases.

Figure 21A-F are images illustrating that the *S. pyogenes* DnaE (alphasmall) polymerase functions with β . Figures 21A-B illustrate the relationship between DnaE and β for association with ssDNA. Different amounts of DnaE polymerase were added to a SSB coated M13mp18 ssDNA circle primed with a single DNA oligonucleotide, and products were analyzed in a native agarose gel. Reactions were performed in the presence of $\tau\delta\delta'$ and either the absence (Figure 21C, panels 1-4) or presence (Figure 21D, panels 1-4) of β . Positions of completed duplex (RFII) and initial primed template (ssDNA) are indicated. Figure 21E shows an analysis of exonuclease activity by PolC and DnaE on a 5'-32P-DNA 30-mer. Aliquots were removed at the indicated times and analyzed in a sequencing gel. Figure 21F shows the effect of TMAU on PolC and DnaE in the presence of $\tau\delta\delta'$ and β . DNA products were analyzed in a native agarose gel. Positions of initial primed M13mp18 (ssDNA) and completed circular duplex (RFII) are indicated.

DETAILED DESCRIPTION OF THE INVENTION

20

15

5

10

The present invention relates to various isolated nucleic acid molecules from Gram positive bacteria and other bacteria lacking holC, holD, or holE genes or having a dnaX gene encoding only one subunit. These include DNA molecules which correspond to the coding regions of the dnaE, dnaX, holA, holB, polC, dnaN, SSB, dnaB, and dnaG genes. These DNA molecules can be inserted into an expression system or used to transform host cells. The isolated proteins or polypeptides encoded by these DNA molecules and their use to form a three component polymerase are also disclosed. Also encompassed by the present invention are corresponding RNA molecules transcribed from the DNA molecules.

30

25

These DNA molecules and proteins can be derived from numerous bacteria, including Staphylococcus, Streptococcus, Enterococcus, Mycoplasma, Mycobacterium, Borrelia, Treponema, Rickettsia, Chlamydia, Helicobacter, and Thermatoga. It is particularly directed to such DNA molecules and proteins derived from Streptococcus and Staphylococcus bacteria, particularly Streptococcus pyogenes

and *Staphylococcus aureus* (see U.S. Patent Application Serial No. 09/235,245, which is hereby incorporated by reference).

The gene sequences used to obtain DNA molecules of the present invention were obtained by sequence comparisons with the *E. coli* counterparts, followed by detailed analysis of the raw sequence data in the contigs from the *S. pyogenes* database (http://dna1.chem.ou.edu/strep.html) or the *S. aureus* database (http://www.genome.ou.edu/staph.html) to identify the open reading frames. In many instances, nucleotide errors were observed causing frameshifts in the open reading frame thus truncating it. Therefore, upon cloning the genes via PCR, the genes were sequenced to obtain correct information. Also, the full nucleotide sequence of the *ssb* gene was not present in the data base. This was cloned by circular PCR and the full sequence is reported below.

The S. aureus dnaX and dnaE genes were identified by aligning genes of several organisms and designing primers for use in PCR to obtain a gene fragment, followed by steps to identify the entire gene.

One aspect of the present invention relates to a newly discovered Pol III gene (herein identified as dnaE) of S. aureus whose encoded protein is homologous to E. coli alpha (product of dnaE gene). The partial nucleotide sequence of the S. $aureus\ dnaE$ gene corresponds to SEQ. ID. No. 1 as follows:

20

5

10

15

```
atggtggcat atttaaatat tcatacggct tatgatttgt taaattcaag cttaaaaata 60
         gaagatgccg taagacttgc tgtgtctgaa aatgttgatg cacttgccat aactgacacc 120
         aatgtattgt atggttttcc taaattttat gatgcatgta tagcaaataa cattaaaccg 180
         atttttggta tgacaatata tgtgacaaat ggattaaata cagtcgaaac agttgttcta 240
25
         gctaaaaata atgatggatt aaaagatttg tatcaactat catcggaaat aaaaatgaat 300
         gcattagaac atgtgtcgtt tgaattatta aaacgatttt ctaacaatat gattatcatt 360
         tttaaaaaag tcggtgatca acatcgtgat attgtacaag tgtttgaaac ccataatgac 420
         acatatatgg accaccttag tatttcgatt caaggtagaa aacatgtttg gattcaaaat 480
         gtttgttacc aaacacgtca agatgccgat acgatttctg cattagcagc tattagagac 540
30
         aatacaaaat tagacttaat tcatgatcaa gaagattttg gtgcacattt tttaactgaa 600
         aaggaaatta atcaattaga tattaaccaa gaatatttaa cgcaggttga tgttatagct 660
         caaaagtgtg atgcagaatt aaaatatcat caatctctac ttcctcaata tgagacacct 720
         aatgatgaat cagctaaaaa atatttgtgg cgtgtcttag ttacacaatt gaaaaaatta 780
         gaacttaatt atgacgtcta tttagagcga ttgaaatatg agtataaagt tattactaat 840
35
         atgggttttg aagattattt ottaatagta agtgatttaa tooattatgo gaaaacgaat 900
         gatgtgatgg taggtcctgg tcgtggttct tcagctggct cactggtcag ttatttattg 960
        ggaattacaa cgattgatcc tattaaattc aatctattat ttgaacgttt tttaaaccca 1020
         gaacgtgtaa caatgcctga tattgatatt gactttgaag atacacgccg agaaagggtc 1080
         attcagtacg tccaagaaaa atatggcgag ctacatgtat ctggaattgt gactttcggt 1140
40
         catctgcttg caagagcagt tgctagagat gttggaagaa ttatggggtt tgatgaagtt 1200
        acattaaatg aaatttcaag tttaatccca cataaattag gaattacact tgatgaagca 1260 tatcaaattg acgattttaa agagtttgta catcgaaacc atcgacatga acgctggttc 1320
        agtatttgta aaaagttaga aggtttacca agacatacat ctacacatgc ggcaggaatt 1380
        attattaatg accatccatt atatgaatat gcccctttaa cgaaagggga tacaggatta 1440
45
        ttaacgcaat ggacaatgac tgaagccgaa cgtattgggt tattaaaaat agattttcta 1500
        gggttgagaa acttatcgat tattcatcaa atcttaacac aagtcaaaaa agatttaggt 1560
```

```
attaatattg atatcgaaaa gattccgttt gatgatcaaa aagtgtttga attgttgtcg 1620
        caaggagata cgactggcat attccaatta gagtctgacg gtgtaagaag tgtattaaaa 1680
        aaattaaagc cggaacactt tgaagatatt gttgctgtaa cttctttgta tagaccaggt 1740
        ccaatggaag aaattccaac ttacattaca agaagacatg atccaagcaa agttcaatat 1800
        ttacatccgc atttagaacc tatattaaaa aatacttacg gtgttattat ttatcaagag 1860
5
        caaattatgc aaatagcgag cacatttgca aacttcagtt atggtgaagc ggatatttta 1920
        agaagagcaa tgagtaaaaa aaatagagct gttcttgaaa gtgagcgtca acattttata 1980
        ctgaaatttg ctgattatgg ttttcctaga gcacatgctg tcagctattc taaaattgca 2100
        tacattatga gctttttaaa agtccattat ccaaattatt tttacgcaaa tattttaagt 2160
10
        aatgttattg gaagtgagaa gaaaactgct caaatgatag aagaagcaaa aaaacaaggt 2220
        atcactatat tgccaccgaa cattaacgaa agtcattggt tttataaacc ttcccaagaa 2280
        ggcatttatt tatcaattgg tacaattaaa ggtgttggtt atcaaagtgt gaaagtgatt 2340
        gttgatgaac gttatcagaa cggcaaattt aaagatttct ttgattttgc tagacgtata 2400
        ccgaagagag tcaaaacgag aaagttactt gaagcactga ttttagtggg agcgtttgat 2460
15
        gettttggta aaacacgtte aacgttgttg caagetattg atcaagtgtt ggatggegat 2520
        ttaaacattg aacaagatgg ttttttattt gatattttaa cgccaaaaca gatgtatgaa 2580
        gataaagaag aattgcctga tgcacttatt agtcagtacg aaaaagaata tttaggattt 2640
        tatgtttcgc aacacccagt agataaaaag tttgttgcca aacaatattt aacgatattt 2700
        aaattgagta acgcgcagaa ttataaacct atattagtac agtttgataa agttaaacaa 2760
20
        attogaacta aaaatggtoa aaatatggoa ttogtoacat taaatgatgg cattgaaact 2820
        ttagatggtg tgattttccc taatcagttt aaaaagtacg aagagttgtt atcacataat 2880
        gacttgttta tagttagcgg gaaatttgac catagaaagc aacaacgtca actaattata 2940
        aatgagatto agacattago cacttttgaa gaacaaaat tagcatttgo caaacaaatt 3000
        ataattagaa ataaatcaca aatagatatg tttgaagaga tgattaaagc tacgaaagag 3060
25
        aatgctaatg atgttgtgtt atccttttat gatgaaacga ttaaacaaat gactacttta 3120
        ggctatatta atcaaaaaga tagtatgttt aataatttta tacaatcctt taaccctagt 3180
        gatattaggc ttata
30
```

The S. aureus dnaE encoded protein, called α -small, has an amino acid sequence corresponding to SEQ. ID. No. 2 as follows:

Met Val Ala Tyr Leu Asn Ile His Thr Ala Tyr Asp Leu Leu Asn Ser 35 Ser Leu Lys Ile Glu Asp Ala Val Arg Leu Ala Val Ser Glu Asn Val Asp Ala Leu Ala Ile Thr Asp Thr Asn Val Leu Tyr Gly Phe Pro Lys 40 Phe Tyr Asp Ala Cys Ile Ala Asn Asn Ile Lys Pro Ile Phe Gly Met Thr Ile Tyr Val Thr Asn Gly Leu Asn Thr Val Glu Thr Val Val Leu 45 Ala Lys Asn Asn Asp Gly Leu Lys Asp Leu Tyr Gln Leu Ser Ser Glu 50 Ile Lys Met Asn Ala Leu Glu His Val Ser Phe Glu Leu Leu Lys Arg Phe Ser Asn Asn Met Ile Ile Ile Phe Lys Lys Val Gly Asp Gln His 55 120 Arg Asp Ile Val Gln Val Phe Glu Thr His Asn Asp Thr Tyr Met Asp 130 His Leu Ser Ile Ser Ile Gln Gly Arg Lys His Val Trp Ile Gln Asn 60

	Val	Cys	Tyr	Gln	Thr 165	Arg	Gln	Asp	Ala	Asp 170	Thr	Ile	Ser	Ala	Leu 175	Ala
5	Ala	Ile	Arg	Asp 180	Asn	Thr	Lys	Leu	Asp 185	Leu	Ile	His	Asp	Gln 190	Glu	Asp
10	Phe	Gly	Ala 195	His	Phe	Leu	Thr	Glu 200	Lys	Glu	Ile	Asn	Gln 205	Leu	Asp	Ile
10	Asn	Gln 210	Glu	Tyr	Leu	Thr	Gln 215	Val	Asp	Val	Ile	Ala 220	Gln	Lys	Cys	Asp
15	Ala 225	Glu	Leu	ГÀв	Tyr	His 230	Gln	Ser	Leu	Leu	Pro 235	Gln	Tyr	Glu	Thr	Pro 240
	Asn	Asp	Glu	Ser	Ala 245	Lys	Lys	Tyr	Leu	Trp 250	Arg	Val	Leu	Val	Thr 255	Gln
20	Leu	Lys	Lys	Leu 260	Glu	Leu	Asn	Tyr	Asp 265	Val	Tyr	Leu	Glu	Arg 270	Leu	ГÀЗ
25	Tyr	Glu	Tyr 275	Lys	Val	Ile	Thr	Asn 280	Met	Gly	Phe	Glu	Asp 285	Tyr	Phe	Leu
25	Ile	Val 290	Ser	Asp	Leu	Ile	His 295	Tyr	Ala	Lys	Thr	Asn 300	Asp	Val	Met	Val
30	Gly 305		Gly	Arg	Gly	Ser 310	Ser	Ala	Gly	Ser	Leu 315	Val	Ser	Tyr	Leu	Leu 320
	Gly	Ile	Thr	Thr	Ile 325	Asp	Pro	Ile	Lys	Phe 330	Asn	Leu	Leu	Phe	Glu 335	Arg
35				340					345					Ile 350		
40	Glu	Asp	Thr 355		Arg	Glu	Arg	Val 360	Ile	Gln	Tyr	Val	Gln 365	Glu	Lys	Tyr
40		370					375					380				Ala
45	385	;				390					395					Val 400
	Thr	Leu	Asn	Glu	Ile 405		Ser	Leu	Ile	Pro 410	His	Lys	Leu	Gly	Ile 415	Thr
50	Leu	a Asp	Glu	Ala 420		Gln	Ile	Asp	425	Phe	Lys	Glu	Phe	Val 430	His	Arg
55	Asr	n His	435		Glu	Arg	Trp	Phe 440	Ser	: Ile	Cys	. PAa	445	Leu	Glu	Gly
55	Lev	1 Pro 450	_	, His	Thr	Ser	Thr 455		Ala	a Ala	Gly	11e	: Il∈	lle	Asn	Asp
60	His 465) Lev	туг	Glu	1771 470		Pro	Let	ı Thr	Lys 475	Gly	/ Asp	Thr	Gly	Leu 480
	Lev	ı Thi	c Glr	1 Trp	Thr 485		. Thr	Glu	ı Ala	490	a Arç	, Ile	Gly	, Leu	Lev 495	Lys

PCT/US00/20666

- 28 -.

	Ile	Asp	Phe	Leu 500	Gly	Leu	Arg	Asn	Leu 505	Ser	Ile	Ile	His	Gln 510	Ile	Leu
5	Thr	Gln	Val 515	Lys	Lys	Asp	Leu	Gly 520	Ile	Asn	Ile	Asp	Ile 525	Glu	Lys	Ile
	Pro	Phe 530	Asp	Asp	Gln	Lys	Val 535	Phe	Glu	Leu	Leu	Ser 540	Gln	Gly	Asp	Thr
10	Thr 545	Gly	Ile	Phe	Gln	Leu 550	Glu	Ser	Asp	Gly	Val 555	Arg	Ser	Val	Leu	Lys 560
15	ГÀВ	Leu	Lys	Pro	Glu 565	His	Phe	Glu	Asp	Ile 570	Val	Ala	Val	Thr	Ser 575	Leu
10	Tyr	Arg	Pro	Gly 580	Pro	Met	Glu	Glu	Ile 585	Pro	Thr	Tyr	Ile	Thr 590	Arg	Arg
20			595					600					605	Glu		
		610					615					620		Ile		
25	625					630					635			Asp		640
30					645					650				Ser	655	
50				660					665					Glu 670		
35		-	675					680					685			
		690					695					700				Ser
40	705					710					715					Ser 720
45					725					730					735	
				740					745	•				750		His
50	Ī		755					760)				765			Thr
	Ile	Lys 770		Val	Gly	Туг	775		Val	. Lys	Val	Ile 780	val	Asp	Glu	Arg
55	785	j				790)				795	i				Ile 800
60					805	•				810	l				815	
	Gly	/ Ala	Phe	820		Phe	e Gly	Lys	825		Ser	Thr	Leu	830	Gln	Ala

	Ile	Asp	Gln 835	Val	Leu	Asp	Gly	Asp 840	Leu	Asn	Ile	Glu	Gln 845	Asp	Gly	Phe
5	Leu	Phe 850	Asp	Ile	Leu	Thr	Pro 855	Lys	Gln	Met	Tyr	Glu 860	Asp	Lys	Glu	Glu
	Leu 865	Pro	Asp	Ala	Leu	Ile 870	Ser	Gln	Tyr	Glu	Lys 875	Glu	Tyr	Leu	Gly	Phe 880
10	Tyr	Val	Ser	Gln	His 885	Pro	Val	Asp	Lys	Lys	Phe	Val	Ala	Lys	Gln 895	Tyr
15	Leu	Thr	Ile	Phe 900	Lys	Leu	Ser	Asn	Ala 905	Gln	Asn	Tyr	Lys	Pro 910	Ile	Leu
	Val	Gln	Phe 915	Asp	Lys	Val	Lys	Gln 920	Ile	Arg	Thr	Lys	Asn 925	Gly	Gln	Asn
20	Met	Ala 930	Phe	Val	Thr	Leu	Asn 935	Asp	Gly	Ile	Glu	Thr 940	Leu	Asp	Gly	Val
	Ile 945	Phe	Pro	Asn	Gln	Phe 950	Lys	Lys	Tyr	Glu	Glu 955	Leu	Leu	Ser	His	Asn 960
25	Asp	Leu	Phe	Ile	Val 965	Ser	Gly	Lys	Phe	Asp 970	His	Arg	Lys	Gln	Gln 975	Arg
30	Gln	Leu	Ile	Ile 980	Asn	Glu	Ile	Gln	Thr 985	Leu	Ala	Thr	Phe	Glu 990	Glu	Gln
	Lys	Leu	Ala 995	Phe	Ala	Lys		Ile 000	Ile	Ile	Arg		Lys 1005	Ser	Gln	Ile
35	Asp	Met 1010	Phe	Glu	Glu		Ile .015	Lys	Ala	Thr		Glu .020	Asn	Ala	Asn	Asp
•	Val 1025	Val	Leu	Ser	Phe 1	Tyr 030	Asp	Glu	Thr		Lys .035	Gln	Met	Thr		Leu 040
40	Gly	Tyr	Ile	Asn 1	Gln 1045	Lys	Asp	Ser		Phe .050	Asn	Asn	Phe		Gln 055	Ser
45	Phe	Asn		Ser .060	Asp	Ile	Arg		Ile 065							

The present invention also relates to the *S. aureus dnaX* gene. This *S. aureus dnaX* gene has a partial nucleotide sequence corresponding to SEQ. ID. No. 3 as follows:

EΩ							
50	ttgaattatc	aagccttata	tcgtatgtac	agaccccaaa	gtttcgagga	tgtcgtcgga	60
	caagaacatg	tcacgaagac	attgcgcaat	gcgatttcga	aagaaaaaca	gtcqcatqca	120
	tatattttta	gtggtccgag	aggtacgggg	aaaacgagta	ttgccaaagt	gtttgctaaa	180
	gcaatcaact	gtttaaatag	cactgatgga	gaaccttgta	atgaatgtca	tatttqtaaa	240
cc	ggcattacgc	aggggactaa	ttcagatgtg	atagaaattg	atgctgctag	taataatggc	300
55	gttgatgaaa	taagaaatat	tagagacaaa	gttaaatatg	caccaagtga	atcgaaatat	360
	aaagtttata	ttatagatga	ggtgcacatg	ctaacaacag	gtgcttttaa	tgccctttta	420
	aagacgttag	aagaacctcc	agcacacgct	atttttatat	tggcaacgac	agaaccacat	480
	aaaatccctc	caacaatcat	ttctagggca	caacgttttg	attttaaaqc	aattagccta	540
60	gatcaaattg	ttgaacgttt	aaaatttgta	gcagatgcac	aacaaattga	atqtqaagat	600
60	gaagccttgg	catttatcgc	taaagcgtct	gaagggggta	tgcgtgatgc	attaagtatt	660

5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	acgggtagcg gtacaagcat ctaataaatg gatactgagt cttattaatg gtattgttag gctgaaccag cagttagagc aaatcttcga caaattgcaa tgcaagaag atccattgtg tgtaatatcg	ttcatgatga cttttaaaaa atatgattta atcgagcact atacattagt taaaattagc cacaaattgc aagaactaaa aaaagcctgc aagtgctaga tgattgacca acctgtggc aaacctgtggc aaatcgtcaa ttaataaaaa agtatttaca cagatattgc	agcgttggat ataccatcag ttttgtcaga gatgaactta gtcgattcgt tgagcagatt ttcatcgcca aacactaaaa gagaggtata taaagcgaat tgcccaaaac ggcaagtgaa taaagacgac cgttaaagtt aaatcgtaaa	cacttgtttg tttataacag gatacgatta gaattagata tttagtgtga aagggtcaac aacacagatg gcacaaggag caaaaatcta aaggcagata aatgataaaa gatcacgtcc gagaaacgta gttggtgtac aacgaaggcg	cacaagtgat tattgttgca tgagtgttgc aaaatgcatt tcaaattgtt aatcactgtt ttgtgaaatt gtagtataga catcagatca atgatatgcc	acaaggtgac agtgaatcgc atctgagaaa aatgattgat tcattttgaa tgcgaatgta	720 780 840 900 960 1020 1080 1140 1200 1320 1380 1440 1500 1620 1680 1698
---	---	--	--	--	---	--	---

The S. aureus dnaX encoded protein (i.e., the tau subunit) has a partial amino acid sequence corresponding to SEQ. ID. No. 4 as follows:

25	Leu 1	Asn	Tyr	Gln	Ala 5	Leu	Tyr	Arg	Met	Tyr 10	Arg	Pro	Gln	Ser	Phe 15	Glu
	Asp	Val	Val	Gly 20	Gln	Glu	His	Val	Thr 25	Lys	Thr	Leu	Arg	Asn 30	Ala	Ile
30	Ser	Lys	Glu 35	Lys	Gln	Ser	His	Ala 40	Tyr	Ile	Phe	Ser	Gly 45	Pro	Arg	Gly
	Thr	Gly 50	Lys	Thr	Ser	Ile	Ala 55	Lys	Val	Phe	Ala	Lys 60	Ala	Ile	Asn	Cys
35	Leu 65	Asn	Ser	Thr	Asp	Gly 70	Glu	Pro	Сув	Asn	Glu 75	Cys	His	Ile	Сув	Lys 80
40	Gly	Ile	Thr	Gln	Gly 85	Thr	Asn	Ser	Asp	Val 90	Ile	Glu	Ile	Asp	Ala 95	Ala
	Ser	Asn	Asn	Gly 100	Val	Asp	Glu	Ile	Arg 105	Asn	Ile	Arg	Asp	Lys 110	Val	Lys
45	Tyr	Ala	Pro 115	Ser	Glu	Ser	Lys	Tyr 120	ГЛЗ	Val	Tyr	Ile	Ile 125	Asp	Glu	Val
	His	Met 130	Leu	Thr	Thr	Gly	Ala 135	Phe	Asn	Ala	Leu	Leu 140	Lys	Thr	Leu	Glu
50	Glu 145	Pro	Pro	Ala	His	Ala 150	Ile	Phe	Ile	Leu	Ala 155	Thr	Thr	Glu	Pro	His 160
55	ГÀЗ	Ile	Pro	Pro	Thr 165		Ile	Ser	Arg	Ala 170	Gln	Arg	Phe	Asp	Phe 175	Lys
	Ala	Ile	Ser	Leu 180	Asp	Gln	Ile	Val	Glu 185	Arg	Leu	Lys	Phe	Val 190	Ala	Asp
60	Ala	Gln	Gln 195		Glu	Сув	Glu	Asp 200	Glu	Ala	Leu	Ala	Phe 205	Ile	Ala	ГÀЗ

	Ala	Ser 210	Glu	Gly	Gly	Met	Arg 215	Asp	Ala	Leu	Ser	Ile 220	Met	Asp	Gln	Ala
5	Ile 225	Ala	Phe	Gly	Asp	Gly 230	Thr	Leu	Thr	Leu	Gln 235	Asp	Ala	Leu	Asn	Val 240
10	Thr	Gly	Ser	Val	His 245	Asp	Glu	Ala	Leu	Asp 250	His	Leu	Phe	Asp	Asp 255	Ile
10	Val	Gln	Gly	Asp 260	Val	Gln	Ala	Ser	Phe 265	Lys	Lys	Tyr	His	Gln 270	Phe	Ile
15	Thr	Glu	Gly 275	Lys	Glu	Val	Asn	Arg 280	Leu	Ile	Asn	Asp	Met 285	Ile	Tyr	Phe
	Val	Arg 290	Asp	Thr	Ile	Met	Asn 295	Lys	Thr	Ser	Glu	100 100	Asp	Thr	Glu	Tyr
20	Arg 305	Ala	Leu	Met	Asn	L eu 310	Glu	Leu	Asp	Met	Leu 315	Tyr	Gln	Met	Ile	Asp 320
25	Leu	Ile	Asn	Asp	Thr 325	Leu	Val	Ser	Ile	Arg 330	Phe	Ser	Val	Asn	Gln 335	Asn
20	Val	His	Phe	Glu 340	Val	Leu	Leu	Val	Lys 345	Leu	Ala	Glu	Gln	11e 350	Lys	Gly
30	Gln	Pro	Gln 355	Val	Ile	Ala	Asn	Val 360	Ala	Glu	Pro	Ala	Gln 365	Ile	Ala	Ser
	Ser	Pro 370		Thr	Asp	Val	Leu 375	Leu	Gln	Arg	Met	Glu 380	Gln	Leu	Glu	Gln
35	Glu 385		Lys	Thr	Leu	Lys 390	Ala	Gln	Gly	Val	Ser 395	Val	Ala	Pro	Thr	Gln 400
40	Lys	Ser	Ser	Lys	Lys 405	Pro	Ala	Arg	Gly	Ile 410	Gln	Lys	Ser	Lys	Asn 415	Ala
10	Phe	Ser	Met	Gln 420	Gln	Ile	Ala	Lys	Val 425	Leu	Asp	Lys	Ala	Asn 430	Lys	Ala
45	Asp	Ile	Lys 435	Leu	Leu	Lys	Asp	His 440	Trp	Gln	Glu	Val	Ile 445	Asp	His	Ala
	Gln	Asn 450		Asp	ГÀв	Lys	Ser 455	Leu	Val	Ser	Leu	Leu 460	Gln	Asn	Ser	Glu
50	Pro 465		Ala	Ala	Ser	Glu 470		His	Val	Leu	Val 475	Lys	Phe	Glu	Glu	Glu 480
55	Ile	His	Cys	Glu	Ile 485	Val	Asn	Lys	Asp	Авр 490	Glu	Lys	Arg	Ser	Ser 495	Ile
	Glu	Ser	Val	Val 500	Cys	Asn	Ile	Val	Asn 505		Asn	Val	Lys	Val 510	Val	Gly
60	Val	Pro	Ser 515		Gln	Trp	Gln	Arg 520		Arg	Thr	Glu	Tyr 525		Gln	Asn
	Arg	Lys 530		Glu	Gly	Asp	Asp 535		Pro	Lys	Gln	Gln 540		Gln	Gln	Thr

Asp Ile Ala Gln Lys Ala Lys Asp Leu Phe Gly Glu Glu Thr Val His 545 550 555 560

Val Ile Asp Glu Glu Glx 5

The tau subunit of S. aureus functions as does both the tau subunit and the gamma subunit of E. coli.

This invention also relates to the partial nucleotide sequence of the S. aureus dnaB gene. The partial nucleotide sequence of this dnaB gene corresponds to SEQ. ID. No. 5 as follows:

```
atggatagaa tgtatgagca aaatcaaatg ccgcataaca atgaagctga acagtctgtc 60
        ttaggttcaa ttattataga tccagaattg attaatacta ctcaggaagt tttgcttcct 120
        gagtcgtttt ataggggtgc ccatcaacat attttccgtg caatgatgca cttaaatgaa 180
15
        gataataaag aaattgatgt tgtaacattg atggatcaat tatcgacgga aggtacgttg 240
        aatgaagcgg gtggcccgca atatcttgca gagttatcta caaatgtacc aacgacgcga 300
        aatgttcagt attatactga tatcgtttct aagcatgcat taaaacgtag attgattcaa 360
        actgcagata gtattgccaa tgatggatat aatgatgaac ttgaactaga tgcgatttta 420
        agtgatgcag aacgtcgaat tttagagcta tcatcttctc gtgaaagcga tggctttaaa 480
20
        gacattcgag.acgtcttagg acaagtgtat gaaacagctg aagagcttga tcaaaatagt 540
        ggtcaaacac caggtatacc tacaggatat cgagatttag accaaatgac agcagggttc 600
        aaccgaaatg atttaattat cettgeageg egteeatetg taggtaagae tgegttegea 660
        cttaatattg cacaaaaagt tgcaacgcat gaagatatgt atacagttgg tattttctcg 720
        ctagagatgg gtgctgatca gttagccaca cgtatgattt gtagttctgg aaatgttgac 780
25
        tcaaaccgct taagaacggg tactatgact gaggaagatt ggagtcgttt tactatagcg 840
        gtaggtaaat tatcacgtac gaagattttt attgatgata caccgggtat tcgaattaat 900
        gatttacgtt ctaaatgtcg tcgattaaag caagaacatg gcttagacat gattgtgatt 960
        gactacttac agttgattca aggtagtggt tcacgtgcgt ccgataacag acaacaggaa 1020
        gtttctgaaa tctctcgtac attaaaagca ttagcccgtg aattaaaatg tccagttatc 1080
30
        gcattaagtc agttatctcg tggtgttgaa caacgacaag ataaacgtcc aatgatgagt 1140
        gatattcgtg aatctggttc gattgagcaa gatgccgata tcgttgcatt cttataccgt 1200
        gatgattact ataaccgtgg cggcgatgaa gatgatgacg atgatggtgg tttcgagcca 1260
        caaacgaatg atgaaaacgg tgaaattgaa attatcattg ctaagcaacg taacggtcca 1320
        acaggcacag ttaagttaca ttttatgaaa caatataata aatttaccga tatcgattat 1380
35
                                                                           1398
        gcacatgcag atatgatg
```

The amino acid sequence of *S. aureus* DnaB encoded by the *dnaB* gene corresponds to SEQ. ID. No. 6 as follows:

WO 01/09164 PCT/US00/20666

	Asn	Glu	Ala	Gly	Gly 85	Pro	Gln	Tyr	Leu	Ala 90	Glu	Leu	Ser	Thr	Asn 95	Val
5	Pro	Thr	Thr	Arg 100	Asn	Val	Gln	Tyr	Tyr 105	Thr	Asp	Ile	Val	Ser 110	Lys	His
	Ala	Leu	Lys 115	Arg	Arg	Leu	Ile	Gln 120	Thr	Ala	Asp	Ser	Ile 125	Ala	Asn	Asp
10	Gly	Tyr 130	Asn	Asp	Glu	Leu	Glu 135	Leu	Asp	Ala	Ile	Leu 140	Ser	Asp	Ala	Glu
15	Arg 145	Arg	Ile	Leu	Glu	Leu 150	Ser	Ser	Ser	Arg	Glu 155	Ser	Asp	Gly	Phe	Lys 160
	Asp	Ile	Arg	Asp	Val 165	Leu	Gly	Gln	Val	Tyr 170	Glu	Thr	Ala	Glu	Glu 175	Leu
20	Asp	Gln	Asn	Ser 180	Gly	Gln	Thr	Pro	Gly 185	Ile	Pro	Thr	Gly	Tyr 190	Arg	Asp
	Leu	Asp	Gln 195	Met	Thr	Ala	Gly	Phe 200	Asn	Arg	Asn	Asp	Leu 205	Ile	Ile	Leu
25	Ala	Ala 210	Arg	Pro	Ser	Val	Gly 215	Lys	Thr	Ala	Phe	Ala 220	Leu	Asn	Ile	Ala
30	Gln 225	Lys	Val	Ala	Thr	His 230	Glu	Asp	Met	Tyr	Thr 235	Val	Gly	Ile	Phe	Ser 240
	Leu	Glu	Met	Gly	Ala 245	Asp	Gln	Leu	Ala	Thr 250	Arg	Met	Ile	Cys	Ser 255	Ser
35	Gly	Asn	Val	Asp 260	Ser	Asn	Arg	Leu	Arg 265	Thr	Gly	Thr	Met	Thr 270	Glu	Glu
	Asp	Trp	Ser 275	Arg	Phe	Thr	Ile	Ala 280	Val	Gly	Lys	Leu	Ser 285	Arg	Thr	Lys
40	Ile	Phe 290	Ile	Asp	Asp	Thr	Pro 295	Gly	Ile	Arg	Ile	Asn 300	Asp	Leu	Arg	Ser
45	Lys 305	Cys	Arg	Arg	Leu	Lys 310	Gln	Glu	His	Gly	Leu 315	Asp	Met	Ile	Val	Ile 320
	Asp	Tyr	Leu	Gln	Leu 325	Ile	Gln	Gly	Ser	Gly 330	Ser	Arg	Ala	Ser	Asp 335	Asn
50	Arg	Gln	Gln	Glu 340	Val	Ser	Glu	Ile	Ser 345	Arg	Thr	Leu	Lys	Ala 350	Leu	Ala
	Arg	Glu	Leu 355	Lys	Сув	Pro	Val	Ile 360	Ala	Leu	Ser	Gln	Leu 365	Ser	Arg	Gly
55	Val	Glu 370	Gln	Arg	Gln	Asp	Lys 375	Arg	Pro	Met	Met	Ser 380	Asp	Ile	Arg	Glu
60	Ser 385	Gly	Ser	Ile	Glu	Gln 390	Asp	Ala	Asp	Ile	Val 395	Ala	Phe	Leu	Tyr	Arg 400
	Asp	Asp	Tyr	Tyr	Asn 405	Arg	Gly	Gly	Asp	Glu 410	Asp	Asp	Asp	Двр	Asp 415	Gly

5

10

15

Gly Phe Glu Pro Gln Thr Asn Asp Glu Asn Gly Glu Ile Glu Ile Ile 420

Ile Ala Lys Gln Arg Asn Gly Pro Thr Gly Thr Val Lys Leu His Phe 435

Met Lys Gln Tyr Asn Lys Phe Thr Asp Ile Asp Tyr Ala His Ala Asp 450

Met Met

The present invention also relates to the *S. aureus polC* gene (encoding Pol III-L or α -large). The partial nucleotide sequence of this *polC* gene corresponds to SEO. ID. No. 7 as follows:

atgacagagc aacaaaaatt taaagtgctt gctgatcaaa ttaaaatttc aaatcaatta 60 gatgctgaaa ttttaaattc aggtgaactg acacgtatag atgtttctaa caaaaacaga 120 acatgggaat ttcatattac attaccacaa ttcttagctc atgaagatta tttattattt 180 20 ataaatgcaa tagagcaaga gtttaaagat atcgccaacg ttacatgtcg ttttacggta 240 acaaatggca cgaatcaaga tgaacatgca attaaatact ttgggcactg tattgaccaa 300 acagetttat etecaaaagt taaaggteaa ttgaaacaga aaaagettat tatgtetgga 360 aaagtattaa aagtaatggt atcaaatgac attgaacgta atcattttga taaggcatgt 420 aatggaagtc ttatcaaagc gtttagaaat tgtggttttg atatcgataa aatcatattc 480 25 gaaacaaatg ataatgatca agaacaaaac ttagcttctt tagaagcaca tattcaagaa 540 gaagacgaac aaagtgcacg attggcaaca gagaaacttg aaaaaatgaa agctgaaaaa 600 gcgaaacaac aagataacaa cgaaagtgct gtcgataagt gtcaaattgg taagccgatt 660 caaattqaaa atattaaacc aattgaatct attattgagg aagagtttaa agttgcaata 720 gagggtgtca tttttgatat aaacttaaaa gaacttaaaa gtggtcgcca tatcgtagaa 780 30 attaaagtga ctgactatac ggactettta gttttaaaaa tgtttacteg taaaaacaaa 840 gatgatttag aacattttaa agcgctaagt gttggtaaat gggttagggc tcaaggtcgt 900 attgaagaag atacatttat tagagattta gttatgatga tgtctgatat tgaagagatt 960 aaaaaagcga caaaaaaaga taaggctgaa gaaaagcgtg tagaattcca cttgcatact 1020 gcaatgagcc aaatggatgg tatacccaat attggtgcgt atgttaaaca ggcagcagac 1080 35 tggggacatc cagccattgc ggttacagac cataatgttg tgcaagcatt tccagatgct 1140 cacgcagcag cggaaaaaca tggcattaaa atgatatacg gtatggaagg tatgttagtt 1200 gatgatggtg ttccgattgc atacaaacca caagatgtcg tattaaaaga tgctacttat 1260 gttgtgttcg acgttgagac aactggttta tcaaatcagt atgataaaat catcgagctt 1320 gcagctgtga aagttcataa cggtgaaatc atcgataagt ttgaaaggtt tagtaatccg 1380 catgaacgat tatcggaaac gattatcaat ttgacgcata ttactgatga tatgttagta 1440 40 gatgcccctg agattgaaga agtacttaca gagtttaaag aatgggttgg cgatgcgata 1500 ttcgtagcgc ataatgcttc gtttgatatg ggcttcatcg atacgggata tgaacgtctt 1560 gggtttggac catcaacgaa tggtgttatc gatactttag aattatctcg tacgattaat 1620 actgaatatg gtaaacatgg titgaattic tiggctaaaa aatatggcgt agaattaacg 1680 caacatcace gtgccattta tgatacagaa gcaacagett acattttcat aaaaatggtt 1740 45 caacaaatga aagaattagg cgtattaaat cataacgaaa tcaacaaaaa actcagtaat 1800 gaagatgcat ataaacgtgc aagacctagt catgtcacat taattgtaca aaaccaacaa 1860 ggtcttaaaa atctatttaa aattgtaagt gcatcattgg tgaagtattt ctaccgtaca 1920 cctcgaattc cacgttcatt gttagatgaa tatcgtgagg gattattggt aggtacagcg 1980 50 tgtgatgaag gtgaattatt tacggcagtt atgcagaagg accagagtca agttgaaaaa 2040 attgccaaat attatgattt tattgaaatt caaccaccgg cactttatca agatttaatt 2100 gatagagagc ttattagaga tactgaaaca ttacatgaaa tttatcaacg tttaatacat 2160 gcaggtgaca cagcgggtat acctgttatt gcgacaggaa atgcacacta tttgtttgaa 2220 catgatggta tcgcacgtaa aattttaata gcatcacaac ccggcaatcc acttaatcgc 2280 55 tcaactttac cggaagcaca ttttagaact acagatgaaa tgttaaacga gtttcatttt 2340 ttaggtgaag aaaaagcgca tgaaattgtt gtgaaaaata caaacgaatt agcagatcga 2400 attgaacgtg ttgttcctat taaagatgaa ttatacacac cgcgtatgga aggtgctaac 2460 qaaqaaatta qaqaactaaq ttatqcaaat qcqcqtaaac tgtatggtga agacctgcct 2520 caaatcgtaa ttgatcgatt agaaaaagaa ttaaaaagta ttatcggtaa tggatttgcg 2580 60 gtaatttact taatttegea aegtttagtt aaaaaatcat tagatgatgg atacttagtt 2640 ggttcccgtg gttcagtagg ttctagtttt gtagcgacaa tgactgagat tactgaagta 2700

	aacccgttac	cgccacacta	tatttgtccg	aactgtaaaa	cgagtgaatt	tttcaatgat	2760
						tggagcgcca	
						gggagataaa	
						taactacaca	
5						tgttgctgaa	
						caaaagaggt	
	gctgaaatag	atcgactcgt	taaaggatgt	acaggtgtta	aacgtacaac	tggacagcat	3120
						gccgatacaa	
	tatcctgccg	atgatcaaaa	ttcagcatgg	atgacgacac	attttgattt	ccattctatt	3240
10	catgataatg	tattaaaact	tgatatactt	ggacacgatg	atccaacaat	gattcgtatg	3300
						agaagttatg	
						atgtaaaaca	
						agaagataca	
	aagccaacaa	cattttctga	attagttcaa	atctcaggat	tatctcatgg	tacagatgtg	3540
15						aagtgtaatt	
						atcaatggct	
	tttaaaataa	tggagtcagt	acgtaaaggt	aaaggtttaa	ctgaagaaat	gattgaaacg	3720
						taagtacatg	
						atatttcaaa	
20	gtacatcatc	cactttatta	ctatgcatct	tactttacaa	ttcgtgcgtc	agactttgat	3900
	ttaatcacga	tgattaaaga	taaaacaagc	attcgaaata	ctgtaaaaga	catgtattct	3960
	cgctatatgg	atctaggtaa	aaaagaaaaa	gacgtattaa	cagtcttgga	aattatgaat	4020
	gaaatggcgc	atcgaggtta	tcgaatgcaa	ccgattagtt	tagaaaagag	tcaggcgttc	4080
	gaatttatca	ttgaaggcga	tacacttatt	ccgccgttca	tatcagtgcc	tgggcttggc	4140
25	gaaaacgttg	cgaaacgaat	tgttgaagct	cgtgacgatg	gcccattttt	atcaaaagaa	4200
	gatttaaaca	aaaaagctgg	attatctcag	aaaattattg	agtatttaga	tgagttaggc	4260
	tcattaccga	atttaccaga	taaagctcaa	ctttcgatat	ttgatatg		4308

The amino acid sequence of the S. aureus polC gene product, α -large,

30 corresponds to SEQ. ID. No. 8 as follows:

Met Thr Glu Gln Gln Lys Phe Lys Val Leu Ala Asp Gln Ile Lys Ile 35 Ser Asn Gln Leu Asp Ala Glu Ile Leu Asn Ser Gly Glu Leu Thr Arg Ile Asp Val Ser Asn Lys Asn Arg Thr Trp Glu Phe His Ile Thr Leu 40 Pro Gln Phe Leu Ala His Glu Asp Tyr Leu Leu Phe Ile Asn Ala Ile Glu Gln Glu Phe Lys Asp Ile Ala Asn Val Thr Cys Arg Phe Thr Val 45 Thr Asn Gly Thr Asn Gln Asp Glu His Ala Ile Lys Tyr Phe Gly His 50 Cys Ile Asp Gln Thr Ala Leu Ser Pro Lys Val Lys Gly Gln Leu Lys 105 Gln Lys Lys Leu Ile Met Ser Gly Lys Val Leu Lys Val Met Val Ser 55 Asn Asp Ile Glu Arg Asn His Phe Asp Lys Ala Cys Asn Gly Ser Leu Ile Lys Ala Phe Arg Asn Cys Gly Phe Asp Ile Asp Lys Ile Ile Phe 60

	Glu	Thr	Asn	Asp	Asn 165	Asp	Gln	Glu	Gln	Asn 170	Leu	Ala	Ser	Leu	Glu 175	Ala
5	His	Ile	Gln	Glu 180	Glu	Asp	Glu	Gln	Ser 185	Ala	Arg	Leu	Ala	Thr 190	Glu	Lys
	Leu	Glu	Lys 195	Met	Lys	Ala	Glu	Lys 200	Ala	Lys	Gln	Gln	Asp 205	Asn	Lys	Gln
10	Ser	Ala 210	Val	Asp	Lys	Cys	Gln 215	Ile	Gly	Lys	Pro	Ile 220	Gln	Ile	Glu	Asn
15	Ile 225	Lys	Pro	Ile	Glu	Ser 230	Ile	Ile	Glu	Glu	Glu 235	Phe	Lys	Val	Ala	Ile 240
13	Glu	Gly	Val	Ile	Phe 245	Asp	Ile	Asn	Leu	Lys 250	Glu	Leu	Lys	Ser	Gly 255	Arg
20	His	Ile	Val	Glu 260	Ile	Lys	Val	Thr	Asp 265	Tyr	Thr	Asp	Ser	Leu 270	Val	Leu
	Lys	Met	Phe 275	Thr	Arg	Lys	Asn	Lys 280	Asp	Asp	Leu	Glu	His 285	Phe	Lys	Ala
25	Leu	Ser 290	Val	Gly	Lys	Trp	Val 295	Arg	Ala	Gln	Gly	Arg 300	Ile	Glu	Glu	Asp
30	Thr 305	Phe	Ile	Arg	Asp	Leu 310	Val	Met	Met	Met	Ser 315	Asp	Ile	Glu	Glu	Ile 320
30	Lys	Lys	Ala	Thr	Lys 325	Lys	Asp	Lys	Ala	Glu 330	Glu	Lys	Arg	Val	Glu 335	Phe
35	His	Leu	His	Thr 340	Ala	Met	Ser	Gln	Met 345	Asp	Gly	Ile	Pro	Asn 350	Ile	Gly
	Ala	Tyr ·	Val 355	Lys	Gln	Ala	Ala	Asp 360	Trp	Gly	His	`Pro	Ala 365	Ile	Ala	Val
40	Thr	Asp 370		Asn	Val	Val	Gln 375	Ala	Phe	Pro	Asp	Ala 380	His	Ala	Ala	Ala
45	Glu 385		His	Gly	Ile	Lys 390	Met	Ile	Tyr	Gly	Met 395	Glu	Gly	Met	Leu	Val 400
10	Asp	Asp	Gly	Val	Pro 405	Ile	Ala	Tyr	Lys	Pro 410	Gln	Asp	Val	Val	Leu 415	ГÀЗ
50	Asp	Ala	Thr	Tyr 420	Val	Val	Phe	Asp	Val 425	Glu	Thr	Thr	Gly	Leu 430	Ser	Asn
	Gln	Tyr	Asp 435	Lys	Ile	Ile	Glu	Leu 440	Ala	Ala	Val	Lys	Val 445	His	Asn	Gly
55	Glu	Ile 450		Asp	Lys	Phe	Glu 455	Arg	Phe	Ser	Asn	Pro 460		Glu	Arg	Leu
60 .	Ser 465		Thr	Ile	Ile	Asn 470		Thr	His	Ile	Thr 475	Asp	Asp	Met	Leu	Val 480
	Asp	Ala	Pro	Glu	Ile 485	Glu	Glu	Val	Leu	Thr 490	Glu	Phe	Lys	Glu	Trp 495	Val

	GIY	Asp	Ala	500	Pne	Val	Ala	His	Asn 505	Ala	Ser	Phe	Asp	Met 510	Gly	Phe
5	Ile	Asp	Thr 515	Gly	Tyr	Glu	Arg	Leu 520	Gly	Phe	Gly	Pro	Ser 525	Thr	Asn	Gly
	Val	Ile 530	Asp	Thr	Leu	Glu	Leu 535	Ser	Arg	Thr	Ile	Asn 540	Thr	Glu	Tyr	Gly
10	Lys 545	His	Gly	Leu	Asn	Phe 550	Leu	Ala	Lys	Lys	Tyr 555	Gly	Val	Glu	Leu	Thr 560
15	Gln	His	His	Arg	Ala 565	Ile	Tyr	Asp	Thr	Glu 570	Ala	Thr	Ala	Tyr	Ile 575	Phe
	Ile	Lys	Met	Val 580	Gln	Gln	Met	Lys	Glu 585	Leu	Gly	Val	Leu	Asn 590	His	Asn
20	Glu	Ile	Asn .595	Lys	Lys	Leu	Ser	Asn 600	Glu	Asp	Ala	Tyr	Lys 605	Arg	Ala	Arg
	Pro	Ser 610	His	Val	Thr	Leu	Ile 615	Val	Gln	Asn	Gln	Gln 620	Gly	Leu	Lys	Asn
25	Leu 625	Phe	Lys	Ile	Val	Ser 630	Ala	Ser	Leu	Val	Lys 635	Tyr	Phe	Tyr	Arg	Thr 640
30	Pro	Arg	Ile	Pro	Arg 645	Ser	Leu	Leu	Asp	Glu 650	Tyr	Arg	Glu	Gly	Leu 655	Leu
	Val	Gly	Thr	Ala 660	Cys	Asp	Glu	Gly	Glu 665	Leu	Phe	Thr	Ala	Val 670	Met	Gln
35	ГÀз	Asp	Gln 675	Ser	Gln	Val	Glu	Lys 680	Ile	Ala	Lys	Tyr	Tyr 685	Asp	Phe	Ile
	Glu	Ile 690	Gln	Pro	Pro	Ala	Leu 695	Tyr	Gln	Asp	Leu	Ile 700	Asp	Arg	Glu	Leu
40	Ile 705	Arg	Asp	Thr	Glu	Thr 710	Leu	His	Glu	Ile	Tyr 715	Gln	Arg	Leu	Ile	His 720
45	Ala	Gly	Asp	Thr	Ala 725	Gly	Ile	Pro	Val	Ile 730	Ala	Thr	Gly	Asn	Ala 735	His
	Tyr	Leu	Phe	Glu 740	His	Asp	Gly	Ile	Ala 745	Arg	Lys	Ile	Leu	Ile 750	Ala	Ser
50	Gln	Pro	Gly 755	Asn	Pro	Leu	Asn	Arg 760	Ser	Thr	Leu	Pro	Glu 765	Ala	His	Phe
	Arg	Thr 770	Thr	Asp	Glu	Met	Leu 775	Asn	Glu	Phe	His	Phe 780	Leu	Gly	Glu	Glu
55	Lys 785	Ala	His	Glu	Ile	Val 790	Val	Lys	Asn	Thr	Asn 795	Glu	Leu	Ala	Asp	Arg 800
60	Ile	Glu	Arg	Val	Val 805	Pro	Ile	Lys	Asp	Glu 810	Leu	Tyr	Thr	Pro	Arg 815	Met
	Glu	Gly	Ala	Asn 820	Glu	Glu	Ile	Arg	Glu 825	Leu	Ser	Tyr	Ala	Asn 830	Ala	Arg

	Lys	Leu	Tyr 835	Gly	Glu	Asp	Leu	Pro 840	Gln	Ile	Val	Ile	Asp 845	Arg	Leu	Glu
5	Lys	Glu 850	Leu	Lys	Ser	Ile	Ile 855	Gly	Asn	Gly	Phe	Ala 860	Val	Ile	Tyr	Leu
	Ile 865	Ser	Gln	Arg	Leu	Val 870	Lys	Lys	Ser	Leu	Asp 875	Asp	Gly	Tyr	Leu	Val 880
10	Gly	Ser	Arg	Gly	Ser 885	Val	Gly	Ser	Ser	Phe 890	Val	Ala	Thr	Met	Thr 895	Glu
15	Ile	Thr	Glu	Val 900	Asn	Pro	Leu	Pro	Pro 905	His	Tyr	Ile	Cys	Pro 910	Asn	Сув
15	Lys	Thr	Ser 915	Glu	Phe	Phe	Asn	Asp 920	Gly	Ser	Val	Gly	Ser 925	Gly	Phe	Asp
20	Leu	Pro 930	Asp	ГÀЗ	Thr	Сув	Glu 935	Thr	Cys	Gly	Ala	Pro 940	Leu	Ile	Lys	Glu
	Gly 945		Asp	Ile	Pro	Phe 950	Glu	Lys	Phe	Leu	Gly 955	Phe	Гуз	Gly	Asp	Lys 960
25	Val	Pro	Asp	Ile	Авр 965	Leu	Asn	Phe	Ser	Gly 970	Glu	Tyr	Gln	Pro	Asn 975	Ala
30	His	Asn	Tyr	Thr 980	Lys	Val	Leu	Phe	Gly 985	Glu	Asp	Lys	Val	Phe 990	Arg	Ala
50	Gly	Thr	Ile 995	Gly	Thr	Val		Glu 1000	Lys	Thr	Ala	Phe	Gly 1005	Tyr	Val	Lys
35		Tyr 1010		Asn	Asp	Gln	Gly 1015	Ile	His	Lys	Arg	Gly 1020	Ala	Glu	Ile	Asp
	Arg 102		Val	Lys		Cys 1030	Thr	Gly	Val		Ala 1035	Thr	Thr	Gly	Gln	His 1040
40	Pro	Gly	Gly	Ile	Ile 1045	Val	Val	Pro		Tyr 1050	Met	Asp	Ile	Tyr	Asp 1055	Phe
45	Thr	Pro		Gln 1060	Tyr	Pro	Ala		Asp 1065	Gln	Asn	Ser	Ala	Trp 1070	Met	Thr
40	Thr		Phe 1075		Phe	His		Ile 1080	His	Asp	Asn		Leu 1085	ГÀЗ	Leu	Asp
50	Ile	Leu 1090		His	Asp		Pro 1095	Thr	Met	Ile		Met 1100		Gln	Asp	Leu
	Ser 110		Ile	Asp		Lys 1110		Ile	Pro		Asp 1115		Lys	Glu	Val	Met 1120
55	Gln	Ile	Phe	Ser	Thr 1125		Glu	Ser		Gly 1130	Val	Thr	Glu	Asp	Glu 1135	Ile
60	Leu	Cys	Lys	Thr 1140		Thr	Phe		Val 1145		Asn	Ser	Asp	Arg 1150	Ile	Arg
00	Arg	Gln	Met 1155		Glu	Asp	Thr	Lys 1160		Thr	Thr	Phe	Ser 1165	Glu	Leu	Val

WO 01/09164 PCT/US00/2066

- 39 -

	Gln Ile Ser Gly Leu Ser His Gly Thr Asp Val Trp Leu Gly Asn Ala 1170 1175 1180
5	Gln Glu Leu Ile Lys Thr Gly Ile Cys Asp Leu Ser Ser Val Ile Gly 1185 1190 1195 1200
	Cys Arg Asp Asp Ile Met Val Tyr Leu Met Tyr Ala Gly Leu Glu Pro 1205 1210 1215
10	Ser Met Ala Phe Lys Ile Met Glu Ser Val Arg Lys Gly Lys Gly Leu 1220 1225 1230
15	Thr Glu Glu Met Ile Glu Thr Met Lys Glu Asn Glu Val Pro Asp Trp 1235 1240 1245
15	Tyr Leu Asp Ser Cys Leu Lys Ile Lys Tyr Ile Phe Pro Lys Ala His 1250 1255 1260
20	Ala Ala Ala Tyr Val Leu Met Ala Val Arg Ile Ala Tyr Phe Lys Val 1265 1270 1275 1280
	His His Pro Leu Tyr Tyr Tyr Ala Ser Tyr Phe Thr Ile Arg Ala Ser 1285 1290 1295
25	Asp Phe Asp Leu Ile Thr Met Ile Lys Asp Lys Thr Ser Ile Arg Asn 1300 1305 1310
30	Thr Val Lys Asp Met Tyr Ser Arg Tyr Met Asp Leu Gly Lys Lys Glu 1315 1320 1325
50	Lys Asp Val Leu Thr Val Leu Glu Ile Met Asn Glu Met Ala His Arg 1330 1335 1340
35	Gly Tyr Arg Met Gln Pro Ile Ser Leu Glu Lys Ser Gln Ala Phe Glu 1345 1350 1355 1360
	Phe Ile Ile Glu Gly Asp Thr Leu Ile Pro Pro Phe Ile Ser Val Pro 1365 1370 1375
40	Gly Leu Gly Glu Asn Val Ala Lys Arg Ile Val Glu Ala Arg Asp Asp 1380 1385 1390
45	Gly Pro Phe Leu Ser Lys Glu Asp Leu Asn Lys Lys Ala Gly Leu Tyr 1395 1400 1405
10	Gln Lys Ile Ile Glu Tyr Leu Asp Glu Leu Gly Ser Leu Pro Asn Leu 1410 1415 1420
50	Pro Asp Lys Ala Gln Leu Ser Ile Phe Asp Met 1425 1430 1435

This invention also relates to the *S. aureus dnaN* gene encoding the beta subunit. The partial nucleotide sequence of this *dnaN* gene corresponds to SEQ. ID. No. 9 as follows:

55

atgatggaat	tcactattaa	aagagattat	tttattacac	aattaaatga	cacattaaaa	· 60
gctatttcac	caagaacaac	attacctata	ttaactggta	tcaaaatcga	tgcgaaagaa	120
catgaagtta	tattaactgg	ttcagactct	gaaatttcaa	tagaaatcac	tattcctaaa	180
actotagato	gcgaagatat	totcaatatt	tcagaaacag	actcagtagt	acttcctqqa	240

WO 01/09164

PCT/US00/20666

- 40 -

	cgattctttg	ttgatattat	aaaaaaatta	cctggtaaag	atgttaaatt	atctacaaat	300
	gaacaattcc	agacattaat	tacatcaggt	cattctgaat	ttaatttgag	tggcttagat	360
	ccagatcaat	atcctttatt	acctcaagtt	tctagagatg	acgcaattca	attgtcggta	420
_	aaagtactta	aaaacgtgat	tgcacaaacg	aattttgcag	tgtccacctc	agaaacacgc	480
5	ccagtactaa	ctggtgtgaa	ctggcttata	caagaaaatg	aattaatatg	cacagogact	540
	gattcacacc	gcttggctgt	aagaaagttg	cagttagaag	atgtttctga	aaacaaaaat	600
	gtcatcattc	caggtaaggc	tttagctgaa	ttaaataaaa	ttatgtctga	caatgaagaa	660
	gacattgata	tcttctttgc	ttcaaaccaa	gttttattta	aagttggaaa	tgtgaacttt	720
				gatacaacac			790

WO 01/00164 PCT/IIS00/20666

WO 01/09164 PCT/US00/20666

	Ser	His	Ala	Tyr 20	Leu	Phe	Glu	Gly	Asp 25	Asp	Ala	Gln	Thr	Met 30	Lys	Gln
5	Val	Ala	Ile 35	Asn	Phe	Ala	ГÀЗ	Leu 40	Ile	Leu	Сув	Gln	Thr 45	Asp	Ser	Gln
10	Сув	Glu 50	Thr	Lys	Val	Ser	Thr 55	Tyr	Asn	His	Pro	Asp 60	Phe	Met	Tyr	Ile
10	Ser 65	Thr	Thr	Glu	Asn	Ala 70	Ile	Lys	Lys	Glu	Gln 75	Val	Glu	Gln	Leu	Val 80
15					85					90				Val	95	
				100					105					Gly 110		
20			115					120					125	Ile		
25		130					135					140		His		
	145					150					155			Phe		160
30					165					170				Met	175	
		_		180					185					Glu 190		
35			195					200					205	Leu		
40		210	-				215					220		Leu		
	225	_				230					235			Val		240
45					245					250				Asp	255	
				260					265					Gln 270		
50	Ser	Phe	Asn 275		Leu	Ile	Leu	Met 280	Phe	Asp	Gln	Leu	Thr 285	Glu	Ala	His
₅₅ .	Lys	Lys 290		Asn	Gln	Asn	Val 295	Asn	Pro	Thr	Leu	Val 300	Phe	Glu	Gln	Ile
- -	Val 305		Lys	Gly	Val	Ser 310										

This invention also relates to the *S. aureus holB* gene encoding the

delta prime subunit. The partial nucleotide sequence of this *holB* gene corresponds to

SEQ. ID. No. 13 as follows:

PCT/US00/20666

	atgagcgaca	atattgtagc	tatttatgga	gatgtgcctg	aattggttga	aaaacaaagt	60
	gcagaaatca	tatcacaatt	tttgaaaagt	gatagagatg	actttaactt	tgtgaaatat	120
		aaacagagat					
5	tcagataaaa	aagcaatttt	ggttaaaaat	gcatatatat	ttacaggtga	aaaagcgcca	240
	aaagatatgg	ctcataatgt	agaccaatta	atagaattta	ttgaaaaata	tgatggcgaa	300
	aatttgattg	tctttgagat	atatcaaaat	aaacttgatg	aaagaaaaaa	gttaactaaa	360
	actictaaaaa	agcatgcaag	gettaaaaaa	atagagcaga	tatcagagga	gatcaagtgg	420

WO 01/00164

PCT/IISON/20AKK

	Glu 65	Ala	Thr	Gln	Ser	Asn 70	Ser	Asn	Val	Gln	Ile 75	Ala	Ser	Asp	Asp	Leu 80
5	Gln	Met	Ile	Glu	Met 85	His	Glu	Leu	Ile	Gln 90	Glu	Phe	Tyr	Tyr	Tyr 95	Ala
	Leu	Thr	Lys	Thr 100	Val	Glu	Gly	Glu	Gln 105	Ala	Leu	Thr	Tyr	Leu 110	Gln	Glu
10	Arg	Gly	Phe 115	Thr	Asp	Ala	Leu	Ile 120	Lys	Glu	Arg	Gly	Ile 125	Gly	Phe	Ala
. 15	Pro	Asp 130	Ser	Ser	His	Phe	Cys 135	His	Asp	Phe	Leu	Gln 140	Lys	Lys	Gly	Tyr
10	Asp 145	Ile	Glu	Leu	Ala	Tyr 150	Glu	Ala	Gly	Leu	Leu 155	Ser	Arg	Asn	Glu	Glu 160
20	Asn	Phe	Ser	Tyr	Tyr 165	Asp	Arg	Phe	Arg	Asn 170	Arg	Ile	Met	Phe	Pro 175	Leu
	Lys	Asn	Ala	Gln 180	Gly	Arg	Ile	Val	Gly 185	Tyr	Ser	Gly	Arg	Thr 190	Tyr	Thr
25	Gly	Gln	Glu 195	Pro	Lys	Tyr	Leu	Asn 200	Ser	Pro	Glu	Thr	Pro 205	Ile	Phe	Gln
30	Lys	Arg 210	Lys	Leu	Leu	Tyr	Asn 215	Leu	Asp	Lys	Ala	Arg 220	Lys	Ser	Ile	Arg
	Lys 225	Leu	Asp	Glu	Ile	Val 230	Leu	Leu	Glu	Gly	Phe 235	Met	Asp	Val	Ile	Lys 240
35	Ser	Asp	Thr	Ala	Gly 245	Leu	Lys	Asn	Val	Val 250	Ala	Thr	Met	Gly	Thr 255	Gln
	Leu	Ser	Asp	Glu 260	His	Ile	Thr	Phe	Ile 265	Arg	Lys	Leu	Thr	Ser 270	Asn	Ile
40	Thr	Leu	Met 275	Phe	Asp	Gly	Asp	Phe 280	Ala	Gly	Ser	Glu	Ala 285	Thr	Leu	ГÀа
45	Thṛ	Gly 290		His	Leu	Leu	Gln 295	Gln	Gly	Leu	Asn	Val 300	Phe	Val	Ile	Gln
	Leu 305		Ser	Gly	Met	Asp 310	Pro	Asp	Glu	Туr	Ile 315	Gly	ГÀЗ	Tyr	Gly	Asn 320
50	qaA	Ala	Phe	Thr	Thr 325	Phe	Val	Lys	Asn	Asp 330	Lys	Lys	Ser	Phe	Ala 335	His
	Tyr	Lys	Val	Ser 340	Ile	Leu	Lys	Asp	Glu 345		Ala	His	Asn	Asp 350	Leu	Ser
55	Tyr	Glu	Arg 355		Leu	Lys	Glu	Leu 360	Ser	His	Asp	Ile	Ser 365		Met	Lys
60	Ser	Ser 370		Leu	Gln	Gln	Lys 375		Ile	Asn	Asp	Val 380		Pro	Phe	Phe
	Asn 385		Ser	Pro	Glu	Gln 390		Ala	Asn	Glu	11e 395		Phe	Asn	Gln	Ala 400

Pro Ala Asn Tyr Tyr Pro Glu Asp Glu Tyr Gly Gly Tyr Asp Glu Tyr
405

Gly Gly Tyr Ile Glu Pro Glu Pro Ile Gly Met Ala Gln Phe Asp Asn
420

430

Leu Ser Arg Arg Glu Lys Ala Glu Arg Ala Phe Leu Lys His Leu Met 435 440 445

WO 01/00164 PCT/11900/20666

	Lys	Val	His 35	Ser	Val	Ser	Arg	Leu 40	Trp	Glu	Phe	His	Phe 45	Ala	Phe	Ala
5	Ala	Val 50	Leu	Pro	Ile	Ala	Thr 55	Tyr	Arg	Glu	Leu	His 60	Asp	Arg	Leu	Ile
	Arg 65	Thr	Phe	Glu	Ala	Ala 70	Asp	Ile	Lys	Val	Thr 75	Phe	Asp	Ile	Gln	Ala 80
10	Ala	Gln	Val	Asp	Tyr 85	Ser	Asp	Asp	Leu	Leu 90	Gln	Ala	Tyr	Tyr	Gln 95	Glu
15	Ala	Phe	Glu	His 100	Ala	Pro	Cys	Asn.	Ser 105	Ala	Ser	Phe	Lys	Ser 110	Ser	Phe
10	Ser	Lys	Leu 115	Lys	Val	Thr	Tyr	Glu 120	Asp	Asp	Lys	Leu	Ile 125	Ile	Ala	Ala
20	Pro	Gly 130	Phe	Val	Asn	Asn	Asp 135	His	Phe	Arg	Asn	Asn 140	His	Leu	Pro	Asn
	Leu 145	Val	Lys	Gln	Leu	Glu 150	Ala	Phe	Gly	Phe	Gly 155	Ile	Leu	Thr	Ile	Asp 160
25	Met	Val	Ser	Asp	Gln 165	Glu	Met	Thr	Glu	His 170	Leu	Thr	Lys	Asn	Phe 175	Val
30	Ser	Ser	Arg	Gln 180	Ala	Leu	Val	Lys	Lys 185	Ala	Val	Gln	Asp	Asn 190	Leu	Glu
	Ala	Gln	Lys 195	Ser	Leu	Glu	Ala	Met 200	Met	Pro	Pro	Val	Glu 205	Glu	Ala	Thr
35	Pro	Ala 210	Pro	Lys	Phe	Asp	Tyr 215	Lys	Glu	Arg	Ala	Ala 220	Lys	Arg	Gln	Ala
	Gly 225	Phe	Glu	Lys	Ala	Thr 230	Ile	Thr	Pro	Met	Ile 235	Glu	Ile	Glu	Thr	Glu 240
40	Glu	Asn	Arg	Ile	Val 245	Phe	Glu	Gly	Met	Val 250	Phe	Asp	Val	Glu	Arg 255	Lys
45	Thr	Thr	Arg	Thr 260	Gly	Arg	His	Ile	11e 265		Phe	Lys	Met	Thr 270	Asp	Tyr
	Thr	Ser	Ser 275	Phe	Ala	Leu	Gln	Lys 280	Trp	Ala	ГÀв	Asp	Asp 285	Glu	Glu	Leu
50	Arg	Lys 290	Phe	Asp	Met	Ile	Ala 295	Lys	Gly	Ala	Trp	Leu 300	Arg	Val	Gln	Gly
	Asn 305		Glu	Thr	Asn	Pro 310	Phe	Thr	Lys	Ser	Leu 315		Met	Asn	Val	Gln 320
55	Gln	Val	Lys	Glu	Ile 325		Arg	His	Glu	Arg 330		Asp	Leu	Met	Pro 335	Glu
60	Gly	Gĺn	Lys	Arg 340	Val	Glu	Leu	His	Ala 345		Thr	Asn	Met	Ser 350		Met
	Asp	Ala	Leu 355	Pro	Thr	Val	Glu	Ser 360		Ile	Asp	Thr	Ala 365		Lys	Trp

Gly His Lys Ala Ile Ala Ile Thr Asp His Ala Asn Val Gln Ser Phe 370 375 380

Pro His Gly Tyr His Arg Ala Arg Lys Ala Gly Ile Lys Ala Ile Phe 385 390 395 400

Gly Leu Glu Ala Asn Ile Val Glu Asp Lys Val Pro Ile Ser Tyr Glu 405 410 415

	Gln 705	Pro	Leu	Val	Val	Arg 710	Glu	Leu	Ile	Lys	Asp 715	Gln	Ala	Gly	Ile	Glu 720
5	Gln	Val	Ile	Arg	Asp 725	Leu	Ile	Glu	Val	Gly 730	Lys	Arg	Ala	Lys	Lys 735	Pro
	Val	Leu	Ala	Thr 740	Gly	Asn	Val	His	Tyr 745	Leu	Glu	Pro	Glu	Glu 750	Glu	Ile
10	Tyr	Arg	Glu 755		Ile	Val	Arg	Ser 760	Leu	Gly	Gln	Gly	Ala 765	Met	I le	Asn
15	Arg	Thr 770	Ile	Gly	Arg	Gly	Glu 775	Gly	Ala	Gln	Pro	Ala 780	Pro	Leu	Pro	Lys
•	Ala 785	His	Phe	Arg	Thr	Thr 790	Asn	Glu	Met	Leu	Asp 795	Glu	Phe	Ala	Phe	Leu 800
20	Gly	Lys	Asp	Leu	Ala 805	Tyr	Gln	Val	Val	Val 810	Gln	Asn	Thr	Gln	Asp 815	Phe
	Ala	Asp	Arg	Ile 820	Glu	Glu	Val	Glu	Val 825	Val	Lys	Gly	Asp	Leu 830	Tyr	Thr
25	Pro	Tyr	Ile 835	Asp	Lys	Ala	Glu	Glu 840	Thr	Val	Ala	Glu	Leu 845	Thr	Tyr	Gln
30	Lys	Ala 850	Phe	Glu	Ile	Tyr	Gly 855	Asn	Pro	Leu	Pro	Asp 860	Ile	Ile	Asp	Leu
	Arg 865	Ile	Glu	Lys	Glu	Leu 870	Thr	Ser	Ile	Leu	Gly 875	Asn	Gly	Phe	Ala	Val 880
35	Ile	Tyr	Leu	Ala	Ser 885	Gln	Met	Leu	Val	Asn 890	Arg	Ser	Asn	Glu	Arg 895	Gly
	Tyr	Leu	Val	Gly 900	Ser	Arg	Gly	Ser	Val 905	Gly	Ser	Ser	Phe	Val 910	Ala	Thr
40	Met	Ile	Gly 915	Ile	Thr	Glu	Val	Asn 920	Pro	Met	Pro	Pro	His 925	Tyr	Val	Cys
45	Pro	Ser 930	Cys	Gln	His	Ser	Glu 935	Phe	Ile	Thr	Asp	Gly 940	Ser	Val	Gly	Ser
	Gly 945	Tyr	Asp	Leu	Pro	Asn 950	Lys	Pro	Сув	Pro	Lys 955	Сув	Gly	Thr	Pro	Tyr 960
50	Gln	Lys	Asp	Gly	Gln 965	Asp	Ile	Pro	Phe	Glu 970	Thr	Phe	Leu	Gly	Phe 975	Asp
	Gly	Asp	ГÀЗ	Val 980	Pro	Asp	Ile	Asp	Leu 985	Asn	Phe	Ser	Gly	Asp 990	Asp	Gln
55	Pro	Ser	Ala 995	His	Leu	Asp		Arg 000	Asp	Ile	Phe		Asp 1005	Glu	Tyr	Ala
60		Arg .010	Ala	Gly	Thr		Gly .015	Thr	Val	Ala		Lys .020	Thr	Ala	Tyr	Gly
	Phe 1025	Val	Lys	Gly		Glu .030	Arg	Asp	Tyr		Lys .035	Phe	Tyr	Arg		Ala .040

	Glu Val	Asp	Arg	Leu 1045	Ala	Ala	Gly		Ala 1050		Val	Lys		Thr 1055	Thr
5	Gly Glr	His	Pro 1060	Gly	Gly	Ile		Val 1065		Pro	Asn		Met 1070		Val
	Tyr Asp	Phe 1075	Thr	Pro	Val		Tyr 1080	Pro	Ala	Asp		Val 1085		Ala	Ser
10	Trp Glr 1090	Thr	Thr	His		Asn 1095	Phe	His	Asp		Asp 1100		Asn	Val	Leu
15	Lys Leu 1105	Asp	Ile	Leu	Gly 1110	His	Asp	Asp		Thr 1115	Met	Ile	Arg	-	Leu 1120
	Gln Asp	Leu	Ser	Gly 1125	Ile	Asp	Pro		Thr 1130	Ile	Pro	Ala		Asp 1135	Pro
20	Gly Val		Ala 1140	Leu	Phe	Ser		Thr 1145	Glu	Val	Leu		Val 1150	Thr	Pro
	Glu Gln	Ile 1155	Gly	Thr	Pro		Gly 1160	Met	Leu	Gly		Pro 1165	Glu	Phe	Gly
25	Thr Asn 1170	Phe	Val	Arg		Met 1175	Val	Asn	Glu		His 1180	Pro	Thr	Thr	Phe
30	Ala Glu 1185	Leu	Leu	Gln 1	Leu 190	Ser	Gly	Leu		His 1195	Gly	Thr	Asp		Trp 1200
	Leu Gly	Asn	Ala 1	Gln 1205	Asp	Leu	Ile		Glu 1210	Gly	Ile	Ala		Leu 1215	Lys
35	Thr Val	Ile 1	Gly .220	Cys	Arg	Asp		Ile 1225	Met	Val	Tyr		Met 1230	His	Ala
	Gly Leu	Glu 1235	Pro	Lys	Met		Phe 240	Thr	Ile	Met		Arg 1245	Val	Arg	Lys
40	Gly Leu 1250				1	.255				1	1260				-
45	Ala Met 1265			1	270]	275				1	280
	Lys Ile	Lys	Tyr 1	Met .285	Phe	Pro	Lys		His 290	Ala	Ala	Ala		Val .295	Leu
50	Met Ala	Leu 1	Arg 300	Val	Ala	Tyr		Lys 305	Val	His	His		Ile 310	Met	Tyr
	Tyr Cys	Ala 1315	Tyr	Phe	Ser		Arg 320	Ala	Lys	Ala		Glu .325	Leu	Lys	Thr
55	Met Ser 1330	Gly	Gly	Leu	Asp 1	Ala 335	Val	Lys	Ala		Met 340	Glu	Asp	Ile	Thr
60	Ile Lys 1345	Arg	Lys		Asn 350	Glu	Ala	Thr		Val 355	Glu	Asn	Asp		Phe 360
•	Thr Thr	Leu	Glu 1	Ile 365	Val .	Asn	Glu		Leu 370	Glu	Arg	Gly		Lys 375	Phe

	Gly Lys Leu Asp Leu Tyr Lys Ser Asp Ala Ile Glu Phe Gln Ile Lys 1380 1385 1390
5	Gly Asp Thr Leu Ile Pro Pro Phe Ile Ala Leu Glu Gly Leu Gly Glu 1395 1400 1405
	Asn Val Ala Lys Gln Ile Val Lys Ala Arg Gln Glu Gly Glu Phe Leu 1410 1415 1420
10	Ser Lys Met Glu Leu Arg Lys Arg Gly Gly Ala Ser Ser Thr Leu Val 1425 1430 1435 1440
15	Glu Lys Met Asp Glu Met Gly Ile Leu Gly Asn Met Pro Glu Asp Asn 1445 1450 1455
	Gin Leu Ser Leu Dhe Asp Asp Dhe Dhe

Gln Leu Ser Leu Phe Asp Asp Phe Phe 1460 1465

The present invention also relates to the dnaE gene of Streptococcus

pyogenes encoding the α-small subunit. The partial nucleotide sequence of the dnaE gene corresponds to SEQ. ID. No. 19 as follows:

```
atgtttgctc aacttgatac taaaactgta tactcattta tggatagttt aattgactta 60
         aatcattatt ttgaacgagc aaagcaattt ggttaccaca ccataggaat catggataag 120
25
         gataatcttt atggtgctta ccattttatt aaaggttgtc aaaaaaatgg actgcagcca 180
         gttttaggtt tggaaataga gattetetat caagagegge aggtgeteet taaettaate 240
         gcccagaata cacaaggcta tcatcagctt ttaaaaaattt ccacggcaaa aatgtctggc 300
         aagetteata tggattaett etgecaacat ttggaaggga tageggttat tatteetagt 360
         aagggttgga gcgatacatt agtggtccct tttgactact atatgggtgt tgatcagtat 420
30
         actgatttat ctcatatgga ttctaagagg cagcttatac ccctaaggac agttcgttat 480
         tttgcgcaag atgatatgga aaccctgcac atgttgcatg ccattcgaga taacctcagt 540
         ctggcagaga cccctgtggt agaaagtgat caagagttag cagattgtca acaactaacc 600
         geettetate aaacacaetg eeeteaaget etacagaatt tagaagaett agtgteagga 660
         atctattatg atttcgatac aaatttaaaa ttgcctcatt ttaatagaga taagtctgcc 720
35
         aagcaagaat tgcaagactt gactgaggct ggtttgaagg aaaaaggatt gtggaaagag 780
         cettateaat egegettaet acatgaattg gteattattt etgaeatggg etttgatgat 840
         tattttttga ttgtgtggga tttacttcgc tttggacgca gtaaaggcta ttatatggga 900
         atgggacgtg gctcggcggc aggtagtcta gtggcttatg ctctgaacat tacagggatt 960
         gatccagttc aacatgattt gctatttgag cgctttttaa acaaagaacg ttatagcatg 1020
40
         cetgatattg atategatet tecagatatt tacegtteag aatttetaeg gtatgteega 1080
         aatcgttatg gtagcgacca ttcggcgcaa attgtgacct tttcaacctt tggccaggct 1140
         attogtgatg ttttcaaacg gttcggggtt ccagaatacg aactgactaa tctcactaaa 1200
         aaaattggtt ttaaagatag cttggctact gtctatgaaa agtcaatctc ttttaggcag 1260
         gttattaata gtagaactga atttcaaaag gcttttgcca ttgccaagcg tatcgaagga 1320 aatccaagac aaacgtccat tcacgcagct ggtattgtga tgagtgatga tgccttgacc 1380
45
         aatcatatte etetaaaate gggegatgae atgatgatea eecagtatga tgeteatgeg 1440
         gtcgaagcta atggcctgtt aaaaatggat tttttggggt taagaaattt gacctttgtt 1500
         caaaaaatgc aagagaaggt tgctaaagac tacgggtgtc agattgatat tacagccatt 1560
         gatttagaag accegeaaac gttggcactt tttgetaaag gggataceaa gggaatttte 1620
50
         caatttgaac aaaatggtgc tattaatctt ttaaaacgga ttaagccaca acgttttgaa 1680
         gaaattgttg ccactaccag tctaaataga ccaggggcaa gtgactatac cactaatttc 1740
         attaaacgaa gagaaggaca agaaaaaatt gatttgattg atcctgtgat tgctcccatt 1800
         ttagagccaa cttacggtat tatgctttat caagaacaag ttatgcagat tgcacaggtt 1860
         tatgctggtt ttacgttagg caaggccgac ttgttaaggc gtgccatgtc taaaaaaaat 1920
55
        ctacaagaaa tgcaaaaaat ggaagaagac tttattgctt ctgctaagca cctagggaga 1980
        gctgaagaaa cagctagagg actttttaaa cggatggaaa aatttgcagg ttatggtttt 2040
         aaccgcagcc atgcctttgc ctattcagct ttagcttttc aattggctta tttcaaagcc 2100
        cattacccgg ctgtttttta cgatatcatg atgaattatt ctagcagtga ctatatcaca 2160
        gatgetetag aateagattt teaagtageg caagttacea ttaatagtat teettacaet 2220
60
        gataaaattg aagctagcaa gatttacatg gggctgaaaa atattaaggg gttgccaagg 2280
```

5 10 15	gattttgd agaactcd tttgattg tttgttaa gattactd aagcatcd ttagtcaa accaaaaa gatgtcad ttctatta caagtgca tcccaaat caaaaaaa aaggaaaa	ag aaa act ttg agc taa act ttaa acc ttc acc ttaa acc ttc acc ttaa acc ttc acc ac	aatatca agcctaa ttggttc ctgaaaa ttgatat gcgaagc gcagca ttccaca aaggtag ctattag agattt aaacaat gtccttt	aaaa ccgt tctt atat tgct agtc agag aata tcaa aggt tgca	aaaggaaaaggataggettaaaageettaaaageettaaaageettaaaageettaaageettaaageettaa	gtt taa a gca a act ca aca a	tcct attct aaca gtac ttaag ttaag tgagat caggt agat	tgago ggaca ttcct ggaga ccaaa aataq ttaaq ccato aacga tcago tttto	c cto a att tta tcg a ctt a atg acc g ttg g ctt g ga	etgat etgga ettgg ettac egcat gacac etgca etgca ecagt eatgt	aaa tgg ggt agt tcc tag taa agat cca tgt	aataq tttad agata tatti gatci gaaa agaaq tcag tcag tatti agag	ggtet etggt acgaa atgag tcaca attag ggaga tgtca tttga cacta	g 2400 La 2460 La 2520 LG 2580 LG 2580 LG 2700 LG 2760 LG 2820 LG 2880 LG 2940 LG 3000
	Met Phe	Ala G	ln Leu	Asp	Thr	Lys	Thr	Val	Tyr	Ser	Phe	Met	Asp	Ser
20	1 .		5	_				10					15	
	Leu Ile	•	eu Asn 20	His	Tyr	Pne	G1u 25	Arg	Ala	rys	GIU	30	GIY	Tyr
25	His Thr	Ile G 35	ly Ile	Met	Asp	Lys 40	Asp	Asn	Leu	Tyr	Gly 45	Ala	Tyr	His
	Phe Ile	-	ly Cys	Gln	Lys 55	Asn	Gly	Leu	Gln	Pro 60	Val	Leu	Gly	Leu
30	Glu Ile 65	Glu I	le Leu	Tyr 70	Gln	Glu	Arg	Gln	Val 75	Leu	Leu	Asn	Leu	Ile 80
35	Ala Gln	Asn T	hr Gln 85	Gly	Tyr	His	Gln	Leu 90	Leu	Lys	Ile	Ser	Thr 95	Ala
	Lys Met		ly Lys	Leu	His	Met	Asp 105	Tyr	Phe	Cys	Gln	His 110	Leu	Glu
40	Gly Ile	Ala V 115	al Ile	Ile	Pro	Ser 120	Lys	Gly	Trp	Ser	Asp 125	Thr	Leu	Val
45	Val Pro		sp Tyr	Tyr	Met 135	Gly	Val	Asp	Gln	Tyr 140	Thr	Asp	Leu	Ser
45	His Met 145	Asp S	Ser Lys	Arg 150	Gln	Leu	Ile	Pro	Leu 155	Arg	Thr	Val	Arg	Tyr 160
50	Phe Ala	Gln A	sp Asp 165	Met	Glu	Thr	Leu	His 170	Met	Leu	His	Ala	Ile 175	Arg
	Asp Asn		er Leu .80	Ala	Glu	Thr	Pro 185	Val	Val	Glu	Ser	Asp 190	Gln	Glu
55	Leu Ala	Asp C	ys Gln	Gln	Leu	Thr 200	Ala	Phe	Tyr	Gln	Thr 205		Сув	Pro
60	Gln Ala 210		Sln Asn	Leu	Glu 215	Asp	Leu	Val	Ser	Gly 220	Ile	Tyr	Tyr	Asp

	Phe 225	Asp	Thr	Asn	Leu	Lys 230	Leu	Pro	His	Phe	Asn 235	Arg	Asp	Lys	Ser	Ala 240
5	Lys	Gln	Glu	Leu	Gln 245	Asp	Leu	Thr	Glu	Ala 250	Gly	Leu	Lys	Glu	Lys 255	Gly
	Leu	Trp	Lys	Glu 260	Pro	Tyr	Gln	Ser	Arg 265	Leu	Leu	His	Glu	Leu 270	Val	Ile
10	Ile	Ser	Asp 275	Met	Gly	Phe	Asp	Asp 280	Tyr	Phe	Leu	Ile	Val 285	Trp	Asp	Leu
15	Leu	Arg 290	Phe	Gly	Arg	Ser	Lys 295	Gly	Tyr	Tyr	Met	Gly 300	Met	Gly	Arg	Gly
15	Ser 305	Ala	Ala	Gly	Ser	Leu 310	Val	Ala	Tyr	Ala	Leu 315	Asn	Ile	Thr	Gly	Ile 320
20	Asp	Pro	Val	Gln	His 325	Asp	Leu	Leu	Phe	Glu 330	Arg	Phe	Leu	Asn	Lys 335	Glu
	Arg	Tyr	Ser	Met 340	Pro	Asp	Ile	Asp	Ile 345	Asp	Leu	Pro	Asp	11e 350	Tyr	Arg
25	Ser	Glu	Phe 355	Leu	Arg	Tyr	Val	Arg 360	Asn	Arg	Tyr	Gly	Ser 365	Asp	His	Ser
30	Ala	Gln 370	Ile	Val		Phe	Ser 375	Thr	Phe	Gly	Pro	Lys 380	Gln	Ala	Ile	Arg
30	Asp 385		Phe	Lys	Arg	Phe 390		Val	Pro	Glu	Tyr 395	Glu	Leu	Thr	Asn	Leu 400
35	Thr	Lys	ГÀЗ	Ile	Gly 405	Phe	Lys	Asp	Ser	Leu 410	Ąla	Thr	Val	Tyr	Glu 415	Lys
	Ser	Ile	Ser	Phe 420	Arg	Gln	Val	Ile	Asn 425	Ser	Arg	Thr	Glu	Phe 430	Gln	Lys
40	Ala	Phe	Ala 435	Ile	Ala	rys	Arg	Ile 440		Gly	Asn	Pro	Arg 445	Gln	Thr	Ser
45	Ile	His 450	Ala	Ala	Gly	Ile	Val 455	Met	Ser	Asp	Asp	Ala 460		Thr	Asn	His
10	Ile 465		Leu	Lys	Ser	Gly 470		Asp	Met	Met	Ile 475	Thr	Gln	Tyr	Asp	Ala 480
50	His	Ala	Val	Glu	Ala 485		Gly	Leu	Leu	Lys 490		Asp	Phe	Leu	Gly 495	Leu
	Arg	Asn	Leu	Thr 500		Val	Gln	Lys	Met 505		Glu	Lys	Val	Ala 510	Lys	Asp
55	Tyr	Gly	Cys 515		Ile	Asp	Ile	Thr 520		Ile	Asp	Leu	Glu 525	Asp	Pro	Gln
60	Thr	Leu 530		Leu	Phe	Ala	Lys 535		Asp	Thr	Lys	Gly 540		Phe	Gln	Phe
00	Glu 545		Asn	Gly	Ala	Ile 550		Leu	Leu	Lys	Arg 555	Ile	Lys	Pro	Gln	Arg 560

WO 01/09164 PCT/US00/20666

	Phe	Glu	Glu	Ile	Val 565	Ala	Thr	Thr	Ser	Leu 570	Asn	Arg	Pro	Gly	Ala 575	Ser
5	Asp	Tyr	Thr	Thr 580	Asn	Phe	Ile	Lys	Arg 585	Arg	Glu	Gly	Gln	Glu 590	Lys	Ile
	Asp	Leu	Ile 595	Asp	Pro	Val	Ile	Ala 600	Pro	Ile	Leu	Glu	Pro 605	Thr	Tyr	Gly
10	Ile	Met 610	Leu	Tyr	Gln	Glu	Gln 615	Val	Met ,	Gln	Ile	Ala 620	Gln	Val	Tyr	Ala
15	Gly 625	Phe	Thr	Leu	Gly	Lys 630	Ala	Asp	Leu	Leu	Arg 635	Arg	Ala	Met	Ser	Lys 640
13	Lys	Asn	Leu	Gln	Glu 645	Met	Gln	Lys	Met	Glu 650	Glu	Asp	Phe	Ile	Ala 655	Ser
20	Ala	Lys	His	Leu 660	Gly	Arg	Ala	Glu	Glu 665	Thr	Ala	Arg	Gly	Leu 670	Phe	Lys
	Arg	Met	Glu 675	Lys	Phe	Ala	Gly	Tyr 680	Gly	Phe	Asn	Arg	Ser 685	His	Ala	Phe
25	Ala	Tyr 690	Ser	Ala	Leu 	Ala	Phe 695	Gln	Leu	Ala	Tyr	Phe 700	Lys	Ala	His	Tyr
30	Pro 705	Ala	Val	Phe	Tyr	Asp 710	Ile	Met	Met	Asn	Tyr 715	Ser	Ser	Ser	Asp	Tyr 720
	Ile	Thr	Asp	Ala	Leu 725	Glu	Ser	Asp	Phe	Gln 730	Val	Ala	Gln	Val	Thr 735	Ile
35	Asn	Ser	Ile	Pro 740	Tyr	Thr	Asp	Lys	Ile 745	Glu	Ala	Ser	Lys	Ile 750	Tyr	Met
	Gly	Leu	Lys 755	Asn	Ile	Lys	Gly	Leu 760	Pro	Arg	Asp	Phe	Ala 765		Trp	Ile
40	Ile	Glu 770		Arg	Pro	Phe	Asn 775	Ser	Val	Glu	Asp	Phe 780		Thr	Arg	Thr
45	Pro 785		Гув	Tyr	Gln	Lys 790	Lys	Val	Phe	Leu	Glu 795	Pro	Leu	Ile	Lys	Ile 800
10	Gly	Leu	Phe	Asp	Cys 805		Glu	Pro	Asn	Arg 810	Lys	Lys	Ile	Leu	Asp 815	Asn
50	Leu	Asp	Gly	Leu 820	Leu	Val	Phe	Val	Asn 825		Leu	Gly	Ser	Leu 830		Ser
	Asp	Ser	Ser 835		Ser	Trp	Val	Asp 840		Lys	Asp	Tyr	Ser 845		Thr	Glu
55	Lys	Tyr 850		Leu	Glu	Gln	Glu 855	Ile	Val	Gly	Val	Gly 860		Ser	Lys	His
60	Pro 865		Ile	Asp	Ile	Ala 870		Lys	Ser	Thr	Gln 875		Phe	Thr	Pro	11e 880
00	Ser	Gln	Leu	Val	Lys 885		Ser	Glu	Ala	Val 890		Leu	Ile	Gln	1le 895	Asp

50

	Ser	Ile	Arg	Ile 900	Ile	Arg	Thr	Lys	Thr 905	Ser	Gly	Gln	Gln	Met 910	Ala	Phe
5	Leu	Ser	Val 915	Asn	Asp	Thr	Lys	Lys 920	Lys	Leu	Asp	Val	Thr 925	Leu	Phe	Pro
	Gln	Glu 930	Tyr	Ala	Ile	Tyr	Lys 935	Asp	Gln	Leu	Lys	Glu 940	Gly	Glu	Phe	Tyr
10	Tyr 945	Leu	Lys	Gly	Arg	Ile 950	Lys	Glu	Arg	Asp	His 955	Arg	Leu	Gln	Met	Val 960
15	Cys	Gln	Gln	Val	Gln 965	Met	Ala	Ile	Ser	Gln 970	Lys	Tyr	Trp	Leu	Leu 975	Val
15	Glu	Asn	His	Gln 980	Phe	Asp	Ser	Gln	Ile 985	Ser	Glu	Ile	Leu	Gly 990	Ala	Phe
20	Pro	Gly	Thr 995	Thr	Pro	Val		Ile 1000	His	Tyr	Gln	Lys	Asn 1005	Lys	Glu	Thr
		Ala 1010	Leu	Thr	Lys		Gln 1015	Val	Thr	Glu	Asn	Leu 1020	Lys	Glu	Lys	Leu
25	Arg 102		Phe	Val		1030 Lys	Thr	Val	Phe	Arg						

The present invention also relates to the *holA* gene of *Streptococcus* pyogenes encoding the δ subunit. The *holA* gene has a nucleotide sequence which corresponds to SEQ. ID. No. 21 as follows:

```
atgattgcga tagaaaagat tgaaaaaactg agtaaagaaa atttgggtct tataaccctt 60
         gtcacaggag atgacattgg tcagtatagc cagttgaaat cccgcttaat ggagcagatt 120
         gettttgata aggatgattt ggeetattet taetttgata tgtetgagge egettateag 180
35
         gatgcagaaa tggatctagt gagcctaccc ttctttgctg agcagaaggt ggttattttt 240
         gaccatttgt tagatatcac gaccaataaa aaaagtttct taaaagaaaa agacctaaag 300
         gcctttgaag cctatttaga aaatccctta gagactactc gactaattat ctttgctcca 360
        ggtaaattgg atagtaagag acggcttgtt aagcttttga aacgtgatgc ccttgtttta 420
         gaagccaacc ctctgaaaga agcagagcta agaacttatt ttcaaaaata cagtcatcaa 480
         ctgggtttag gtttcgagag tggtgccttt gaccaattac ttttgaaatc aaacgatgat 540
40
         tttagtcaaa tcatgaaaaa catggccttt ttaaaagcct ataaaaaaac gggaaatatt 600
         agoctaactg atattgagca agocattoot aaaagtttac aagataatat tttcgatotg 660
         actagacttg tectaggagg taaaattgat geggetagag atttgattea tgatttaegg 720 ttatetggag aagatgaeat taaattaate getateatge taggeeaatt tegettattt 780
         ttgcagctga ctattcttgc tagagatgta aaaaacgagc aacaactagt gattagttta 840
45
         tcagatattc ttgggcggcg ggttaatcct taccaggtca agtatgcgtt aaaggattct 900
         aggacettat etettgeett tetaacagga geggtgaaaa eettgattga gacagattae 960
         cagataaaaa caggacttta tgagaagagt tatctagttg atattgctct cttaaaaatc 1020
         atgactcact ctcaaaaa
```

The encoded δ subunit has an amino acid sequence corresponding to SEQ. ID. No. 22 as follows:

Met Ile Ala Ile Glu Lys Ile Glu Lys Leu Ser Lys Glu Asn Leu Gly
55 1 5 10 15

	Leu	Ile	Thr	Leu 20	Val	Thr	Gly	Asp	Asp 25	Ile	Gly	Gln	Tyr	Ser 30	GÌn	Leu
5	ГÀЗ	Ser	Arg 35	Leu	Met	Glu	Gln	Ile 40	Ala	Phe	Asp	Lys	Asp 45	Asp	Leu	Ala
	Tyr	Ser 50	Tyr	Phe	Asp	Met	Ser 55	Glu	Ala	Ala	Tyr	Gln 60	Asp	Ala	Glu	Met
10	Asp 65	Leu	Val	Ser	Leu	Pro 70	Phe	Phe	Ala	Glu	Gln 75	Lys	Val	Val	Ile	Phe 80
15	Asp	His	Leu	Leu	Asp 85	Ile	Thr	Thr	Asn	Lys 90	Lys	Ser	Phe	Leu	Lys 95	Glu
	Lys	Asp	Leu	Lys 100	Ala	Phe	Glu	Ala	Tyr 105	Leu	Glu	Asn	Pro	Leu 110	Glu	Thr
20	Thr	Arg	Leu 115	Ile	Ile	Phe	Ala	Pro 120	Gly	Lys	Leu	Asp	Ser 125	Lys	Arg	Arg
	Leu	Val 130	Lys	Leu	Leu	Lys	Arg 135	Asp	Ala	Leu	Val	Leu 140	Glu	Ala	Asn	Pro
25	Leu 145	Lys	Glu	Ala	Glu	Leu 150	Arg	Thr	Tyr	Phe	Gln 155	Lys	Tyr	Ser	His	Gln 160
30	Leu	Gly	Leu	Gly	Phe 165	Glu	Ser	Gly	Ala	Phe 170	Asp	Gln	Leu	Leu	Leu 175	Lys
	Ser	Asn	Asp	Asp 180	Phe	Ser	Gln	Ile	Met 185	Lys	Asn	Met	Ala	Phe 190	Leu	Lys
35	Ala	Tyr	Lys 195	Lys	Thr	Gly	Asn	11e 200	Ser	Leu	Thr	Asp	Ile 205	Glu	Gln	Ala
	Ile	Pro 210	Lys	Ser	Leu	Gln	Asp 215	Asn	Ile	Phe	Asp	Leu 220	Thr	Arg	Leu	Val
40	Leu 225	Gly	Gly	Lys	Ile	Asp 230	Ala	Ala	Arg	Asp	Leu 235	Ile	His	Asp	Leu	Arg 240
45	Leu	Ser	Gly	Glu	Asp 245	Asp	Ile	Lys	Leu	Ile 250	Ala	Ile	Met	Leu	Gly 255	Gln
	Phe	Arg	Leu	Phe 260	Leu	Gln	Leu	Thr	Ile 265	Leu	Ala	Arg	Asp	Val 270	Lys	Asn
50	Glu	Gln	Gln 275	Leu	Val	Ile	Ser	Leu 280	Ser	Asp	Ile	Leu	Gly 285	Arg	Arg	Val
	Asn	Pro 290	Tyr	Gln	Val	Lys	Tyr 295	Ala	Leu	Lys	Asp	Ser 300	Arg	Thr	Leu	Ser
55	Leu 305	Ala	Phe	Leu	Thr	Gly 310	Ala	Val	Lys	Thr	Leu 315	Ile	Glu	Thr	Asp	Tyr 320
60	Gln	Ile	Lys	Thr	Gly 325	Leu	Tyr	Glu	Lys	Ser 330	Tyr	Leu	Val	Asp	Ile 335	Ala
-	Leu	Leu	Lys	Ile 340	Met	Thr	His	Ser	Gln 345	Lys						

The present invention also relates to the holB gene of Streptococcus pyogenes encoding the δ ' subunit. The holB gene has a nucleotide sequence which corresponds to SEQ. ID. No. 23 as follows:

- 58 -

5	gacc tttt cgct	gtct tagc cttq	ga at ta ag tc aa	cato ggtca attqa	ctta tctt ttga	tcti ttgi acaa	tttt tgaad aggag	cg g ag a gat t	igtga laaaa :ttgc	tttt: ggat: cgat;	g cta c aga g tga	atga eggc eggt	aga ctg att	aatgg cggg ggaa	getet catto ccaac	ia 60 it 120 jt 180 ia 240 ja 300
10	tatg gcta acca ccta	aaaa atag atga aaaa	ca aa ct to tg at	acgac getaa aaca ageet	aagt aata aagt atct	ttt cat gct tta	tatta tgagg tccga ccaat	atc a gag o acc a ctg o	aaga ctca attaa gcaca	ttgt: ggga: aagt: agaa:	g aca g aag c gga a agg	aaat gctta acaca ggatt	gca cat ggt att	tatca attta tttta aaaca	aatgo ttatt cagtt catca	c 360 g 420 t 480 g 540
15	agca cagt caag ttga	agct tgca attt caca	tt ta gg ca ag ti	agaad atatt tttga ggagg	tgat tagc iccct ictgt	aac gtt ttt cta	tcaaq gaacd gacct tcagq	gca g egt d etg d gct a	gagcg etggt etett agget	tttt acag ggca	g tat t tag a gag	ctat gcaac gagco	ttg tga tgc	gctg aaaa gcaa	aaaga gaaga acgco	eg 600 at 660 aa 720 et 780 et 840 873
20																
	The	enco	ded δ	ˈsubɪ	ınit h	as an	amiı	no ac	id sec	quenc	e coi	respo	ondin	g to	SEQ.	ID. No.
	as fo	llow	s:													
	Met	Asp	Leu	Ala	Gln	Lys	Ala	Pro	Asn	Val	Tyr	Gln	Ala	Phe	Gln	Thr
٥٣	1				5					10					15	
25	Ile	Leu	Lys	Lys 20	Asp	Arg	Leu	Asn	His 25	Ala	Tyr	Leu	Phe	Ser 30	Gly	Asp
30	Phe	Ala	Asn 35	Glu	Glu	Met	Ala	Leu 40	Phe	Leu	Ala	Lys	Val 45	Ile	Phe	Cys
	Glu	Gln 50	Lys	Lys	Asp	Gln	Thr 55	Pro	Cys	Gly	His	Cys 60	Arg	Ser	Cys	Gln
35	Leu 65	Ile	Glu	Gln	Gly	Asp 70	Phe	Ala	Asp	Val	Thr 75	Val	Leu	Glu	Pro	Thr 80
40	Gly	Gln	Val	Ile	Lys 85	Thr	Asp	Val	Val	Lys 90	Glu	Met	Met	Ala	Asn 95	Phe
10	Ser	Gln	Thr	Gly 100	Tyr	Glu	Asn	Lys	Arg 105	Gln	Val	Phe	Ile	Ile 110	Lys	Asp
45	Суз	Asp	Lys 115	Met	His	Ile	Asn	Ala 120	Ala	Asn	Ser	Leu	Leu 125	Lys	Tyr	Ile
	Glu	Glu 130		Gln	Gly	Glu	Ala 135	Tyr	Ile	Phe	Leu	Leu 140	Thr	Asn	Asp	Asp
50	Asn 145		Val	Leu	Pro	Thr 150	Ile	Lys	Ser	Arg	Thr 155	Gln	Val	Phe	Gln	Phe 160
55	Pro	Lys	Asn	Glu	Ala 165	Tyr	Leu	Tyr	Gln	Leu 170	Ala	Gln	Glu	Lys	Gly 175	Leu
50	Leu	Asn	His	Gln 180	Ala	ГÀв	Leu	Val	Ala 185	Lys	Leu	Ala	Thr	Asn 190	Thr	Ser

55

	His	Leu	Glu 195	Arg	Leu	Leu	Gln	Thr 200	Ser	ГÀЗ	Leu	Leu	Glu 205	Leu	Ile	Thr
5	Gln	Ala 210	Glu	Arg	Phe	Val	Ser 215	Ile	Trp	Leu	Lys	Asp 220	Gln	Leu	Gln	Ala
10	Tyr 225	Leu	Ala	Leu	Asn	Arg 230	Leu	Val	Gln	Leu	Ala 235	Thr	Glu	Lys	Glu	Glu 240
10	Gln	Asp	Leu	Val	Leu 245	Thr	Leu	Leu	Thr	Leu 250	Leu	Leu	Ala	Arg	Glu 255	Arg
15	Ala	Gln	Thr	Pro 260	Leu	Thr	Gln	Leu	Glu 265	Ala	Val	Tyr	Gln	Ala 270	Arg	Leu
	Met	Trp	Gln 275	Ser	Asn	Val	Asn	Phe 280	Gln	Asn	Thr	Leu	Glu 285	Tyr	Met	Val
20	Met	Ser 290	Glu													

The present invention also relates to the dnaX gene of Streptococcus pyogenes encoding the τ subunit. The dnaX gene has a nucleotide sequence which corresponds to SEQ. ID. No. 25 as follows:

```
atgtatcaag ctctttatcg gaaataccgg agccaaacgt ttgacgaaat ggtgggacaa 60
        toggttattt ccacaacttt aaagcaggca gttgaatctg gcaagattag ccatgcttat 120
        cttttttcag gtcctagagg gactgggaaa acaagtgcgg caaagatttt tgcaaaggcc 180
        atgaattgtc ctaaccaagt cgatggtgaa ccctgtaatc aatgcgatat ttgccgagat 240
30
        atcacgaatg gaagcttgga agatgtgatt gaaattgatg ctgcctcgaa taatggtgtt 300
        gatgaaattc gtgacattcg agacaaatca acctatgcgc caagtcgtgc gacttacaag 360
        gtttatatta ttgatgaggt tcacatgtta tcaacagggg cttttaatgc gcttttgaaa 420
        actttggaag aaccgacaga atgttgtctt tatcttggca acaacggaat gcataaaatt 480
        ccagccacta ttttatctcg tgtgcaacgc tttgaattca aagctattaa gcaaaaagct 540
35
        attogagago atttagootg ggttttggac aaagaaggta ttgootatga ggtggatgot 600
        ttaaatctca ttgcaaggcg agcagaagga ggcatgcgtg atgctttatc tattttagat 660
        caggetttga gettgtcacc agataatcag gtegecattg caattgeega agaaattaca 720
        ggttctattt ccatacttgc tctgggtgac tatgttcgat atgtctccca agaacaggct 780
        acgcaagete tggcageett agagaceatt tatgatagtg ggaagageat gageegettt 840
40
        gcgacagatt tattgaccta tctgcgtgat ttattggtgg ttaaagctgg cggcgacaat 900
        caacgtcagt cagctgtttt tgataccaat ttgtctctct cgatagatcg tatattccaa 960
        atgataacag ttgttactag tcatctccct gaaatcaaaa agggaaccca tcctcggatt 1020
        tatgccgaaa tgatgactat ccaattagct cagaaagagc agattttgtc ccaagtaaac 1080
        ttgtcaggag agttaatctc agagattgaa acgctcaaaa atgagttggc acaacttaaa 1140
45
        caacaattgt cgcagctcca atcgcgtcct gattcactgg caagatctga taaaacgaaa 1200
        cctaaaacca caagctacag ggttgatcgg gttaccattt tgaaaatcat ggaagaaacg 1260 gttcgaaata gccaacaatc tcgacaatat ctagatgctc taaaaaaatgc ttggaatgaa 1320
        attotagata acatttotgo coaagacaga goottattga tgggototga gootgtotta 1380
50
        gcaaatagtg agaatgcgat tttggctttc gaggctgcct ttaatgcaga acaagtcatg 1440
        agccgaaata atcttaatga tatgtttggt aacattatga gtaaagctgc tggtttttct 1500
        cccaatattc tggcagtacc aaggacagat tttcagcata ttcgtaagga atttgctcag 1560
        caaatgaaat cgcaaaaaga cagtgttcaa gaagaacaag aagtagcgct tgatattcca 1620
        gaagggtttg attttttgct cgataaaata aatactattg acgac
                                                                             1665
```

The encoded τ subunit has an amino acid sequence corresponding to SEQ. ID. No. 26 as follows:

PCT/US00/20666

	Met 1	Туr	Gln	Ala	Leu 5	Tyr	Arg	Lys	Tyr	Arg 10	Ser	Gln	Thr	Phe	Asp 15	Glu
5	Met	Val	Gly	Gln 20	Ser	Val	Ile	Ser	Thr 25	Thr	Leu	Lys	Gln	Ala 30	Val	Glu
10	Ser	Gly	Lys 35	Ile	Ser	His	Ala	Tyr 40	Leu	Phe	Ser	Gly	Pro 45	Arg	Gly	Thr
10	Gly	Lys 50	Thr	Ser	Ala	Ala	Lys 55	Ile	Phe	Ala	Lys	Ala 60	Met	Asn	Cys	Pro
15	Asn 65	Gln	Val	Asp	Gly	Glu 70	Pro	Сув	Asn	Gln	Сув 75	Asp	Ile	Сув	Arg	Asp 80
	Ile	Thr	Asn	Gly	Ser 85	Leu	Glu	Asp	Val	Ile 90	Glu	Ile	Asp	Ala	Ala 95	Ser
20	Asn	Asn	Gly	Val 100	Asp	Glu	Ile	Arg	Asp 105	Ile	Arg	Asp	Lys	Ser 110	Thr	Tyr
25	Ala	Pro	Ser 115	Arg	Ala	Thr	Tyr	Lys 120	Val	Tyr	Ile	Ile	Asp 125	Glu	Val	His
20	Met	Leu 130	Ser	Thr	Gly	Ala	Phe 135	Asn	Ala	Leu	Leu	Lys 140	Thr	Leu	Glu	Glu
30	145					150	Ile				155					160
	Pro	Ala	Thr	Ile	Leu 165	Ser	Arg	Val	Gln	Arg 170	Phe	Glu	Phe	Lys	Ala 175	Ile
35	Lys	Gln	Lys	Ala 180	Ile	Arg	Glu	His	Leu 185		Trp	Val	Leu	Asp 190	Lys	Glu
40	•		195				Asp	200					205			
		210					215					220				Ser
45	225					230			•		235					Thr 240
					245		Ala			250					255	
50	Gln	Glu	Gln	Ala 260	Thr	Gln	Ala	Leu	Ala 265		Leu	Glu	Thr	11e 270	Tyr	Asp
55			275		•			280					285			Leu
		290					295				•	300				Ser
60	305					310					315					Gln 320
	Met	Ile	Thr	Val	Val 325		Ser	His	Leu	330		Ile	Lys	Lys	Gly 335	Thr

	His	Pro	Arg	Ile 340	Tyr	Ala	Glu	Met	Met 345	Thr	Ile	Gln	Leu	Ala 350	Gln	Lys
5	Glu	Gln	Ile 355	Leu	Ser	Gln	Val	Asn 360	Leu	Ser	Gly	Glu	Leu 365	Ile	Ser	Glu
10	Ile	Glu 370	Thr	Leu	Lys	Asn	Glu 375	Leu	Ala	Gln	Ļeu	180 380	Gln	Gln	Leu	Ser
10	Gln 385	Leu	Gln	Ser	Arg	Pro 390	Asp	Ser	Leu	Ala	Arg 395	Ser	Asp	Lys	Thr	Lys 400
15	Pro	Lys	Thr	Thr	Ser 405	Tyr	Arg	Val	Asp	Arg 410	Val	Thr	Ile	Leu	Lys 415	Ile
	Met	Glu	Glu	Thr 420	Val	Arg	Asn	Ser	Gln 425	Gln	Ser	Arg	Gln	Tyr 430	Leu	Asp
20	Ala	Leu	Lys 435	Asn	Ala	Trp	Asn	Glu 440	Ile	Leu	Asp	Asn	Ile 445	Ser	Ala	Gln
25	Asp	Arg 450	Ala	Leu	Leu	Met	Gly 455	Ser	Glu	Pro	Val	Leu 460	Ala	Asn	Ser	Glu
23	Asn 465	Ala	Ile	Leu	Ala	Phe 470	Glu	Ala	Ala	Phe	Asn 475	Ala	Glu	Gln	Val	Met 480
30	Ser	Arg	Asn	Asn	Leu 485	Asn	Asp	Met	Phe	Gly 490	Asn	Ile	Met	Ser	Lys 495	Ala
	Ala	Gly	Phe	Ser 500	Pro	Asn	Ile	Leu	Ala 505	.Val	Pro	Arg	Thr	Asp 510	Phe	Gln
35	His	Ile	Arg 515	Lys	Glu	Phe	Ala	Gln 520	Gln	Met	ГÀЗ	Ser	Gln 525	Lys	Asp	Ser
40	Val	Gln 530		Glu	Gln	Glu	Val 535	Ala	Leu	Asp	Ile	Pro 540		Gly	Phe	Asp
40	Phe 545		Leu	Asp	Lys	Ile 550	Asn	Thr	Ile	Asp	Asp 555			-		

The present invention also relates to the *dnaN* gene of *Streptococcus* pyogenes encoding the β subunit. The *dnaN* gene has a nucleotide sequence which corresponds to SEQ. ID. No. 27 as follows:

atgattcaat tttcaattaa tcgcacatta tttatcatg ctttaaatac aactaaacgt 60 gctattagca ctaaaaatgc cattcctatt ctttcatcaa taaaaattga agtcacttct 120 acaggagtaa ctttaacagg gtctaacggt caaatatcaa ttgaaaacac tattcctgta 180 caacaccaag ttgtttaac cagtggtaaa tcagagatta ccttaaaagg aaaattgaa 300 caacaccaag ttgtttaac cagtggtaaa tcagagatta ccttaaaagg aaaaatgt 240 gaccagtatc ctcgtctaca agaagtatca acagagaaaatc ctttgattta aaaacacaaa 420 tatttaacag gagtcatat tgaaacagct tttgcagcaa attttaacag aagtcgtct 480 attttaacag gagtcatat tgaattaaca acagtagcaa attttaaagc agattggacc 540 gaagtctctc caagtaaatc tttgaagaa atcttggaca attttaacag agatttgatg 600 gtagttcttc caagtaaatc tttgagagaa ttttcaagca tatttacaga tgatattgag 660 accgttgagg tatttttctc accaagccaa atcttgtca gaagtgaaca cattctttt.

5	tatacacgcc tcttagaagg aaattatccc gatacagacc gtttattaat gacagaattt 780 gagacggagg ttgtttcaa tacccaatcc cttcgcacg ctatggaacg tgccttcttg 840 atttctaatg ctactcaaaa tggtactgtt aagcttgaga ttactcaaaa tcatattca 900 gctcatgtta actcacctga ggttggtaag gtaaacgagg atttagatat tgttagtcag 960 tctggtagtg atttaactat cagcttcaat ccaacttacc ttattgagtc tttaaaaagct 1020 attaaaaagtg aaacagtaaa aattcattc ttatcaccag ttcgaccatt caccctaaca 1080 ccaggcgatg aggaagaaag ttttatccaa ttaattacac cagtacgaac aaac 1134 The encoded β subunit has an amino acid sequence corresponding to SEQ. ID. No. 28	}
10	as follows:	
	Met Ile Gln Phe Ser Ile Asn Arg Thr Leu Phe Ile His Ala Leu Asn 1 5 10 15	
15	Thr Thr Lys Arg Ala Ile Ser Thr Lys Asn Ala Ile Pro Ile Leu Ser 20 25 30	
	Ser Ile Lys Ile Glu Val Thr Ser Thr Gly Val Thr Leu Thr Gly Ser 35 40 45	
20	Asn Gly Gln Ile Ser Ile Glu Asn Thr Ile Pro Val Ser Asn Glu Asn 50 55 60	
25	Ala Gly Leu Leu Ile Thr Ser Pro Gly Ala Ile Leu Leu Glu Ala Ser 65 70 75 80	
	Phe Phe Ile Asn Ile Ile Ser Ser Leu Pro Asp Ile Ser Ile Asn Val	
30	Lys Glu Ile Glu Gln His Gln Val Val Leu Thr Ser Gly Lys Ser Glu 100 105 110	
	Ile Thr Leu Lys Gly Lys Asp Val Asp Gln Tyr Pro Arg Leu Gln Glu 115 120 125	
35	Val Ser Thr Glu Asn Pro Leu Ile Leu Lys Thr Lys Leu Leu Lys Ser 130 135 140	
40	Ile Ile Ala Glu Thr Ala Phe Ala Ala Ser Leu Gln Glu Ser Arg Pro 145 150 155 160	
	Ile Leu Thr Gly Val His Ile Val Leu Ser Asn His Lys Asp Phe Lys 165 170 175	
45	Ala Val Ala Thr Asp Ser His Arg Met Ser Gln Arg Leu Ile Thr Leu 180 185 190	
	Asp Asn Thr Ser Ala Asp Leu Met Val Val Leu Pro Ser Lys Ser Leu 195 200 205	
50	Arg Glu Phe Ser Ala Val Phe Thr Asp Asp Ile Glu Thr Val Glu Val 210 215 220	
55	Phe Phe Ser Pro Ser Gln Ile Leu Phe Arg Ser Glu His Ile Ser Phe 225 230 235 240	
	Tyr Thr Arg Leu Leu Glu Gly Asn Tyr Pro Asp Thr Asp Arg Leu Leu 245 250 255	
60	Met Thr Glu Phe Glu Thr Glu Val Val Phe Asn Thr Gln Ser Leu Arg 260 265 270	

	His	Ala	Met 275	Glu	Arg	Ala	Phe	Leu 280	Ile	Ser	Asn	Ala	Thr 285	Gln	Asn	Gly
5	Thr	Val 290	Lys	Leu	Glu	Ile	Thr 295	Gln	Asn	His	Ile	Ser 300	Ala	His	Val	Asn
10	Ser 305	Pro	Glu	Val	Gly	Lys 310	Val	Asn	Glu	Asp	Leu 315	Asp	Ile	Val	Ser	Gln 320
10	Ser	Gly	Ser	Asp	Leu 325	Thr	Ile	Ser	Phe	Asn 330	Pro	Thr	Tyr	Leu	Ile 335	Glu
15	Ser	Leu	Lys	Ala 340	Ile	Lys	Ser	Glu	Thr 345	Val	Lys	Ile	His	Phe 350	Leu	Ser
	Pro	Val	Arg 355	Pro	Phe	Thr	Leu	Thr 360	Pro	Gly	Asp	Glu	Glu 365	Glu	Ser	Phe
20	Ile	Gln 370	Leu	Ile	Thr	Pro	Val 375	Arg	Thr	Asn						
				The	prese	ent in	venti	on al	so re	lates	to the	e ssb	gene	of St	repto	ococcus
	pyo	genes	enco	ding	the s	ingle	strar	nd-bii	nding	prot	ein (SSB)	. The	ssb	gene	has a
25	nuc	leotid	le seq	uenc	e whi	ich co	orresp	onds	s to S	EQ.	ID. N	o. 29	as fo	ollow	s:	
30	ccaa aatq ttaq aact	agtca ggtga gcgaa tacga atgtt	ag tag tag gada gada gada gada gada gada	agct cgag ggct ccaa	gtggo gcago aaaao caago cgtgo	tace tace a tace a age	cttc catt stgct acgt	aca (aac (ttg (gtc (gaa (cttgd tgtgt atcgg tatgt	etgtt gato gagtt aaca getea	a acting	cgta cgtc ggtc gttg ggct	cctt aacc gtat ttgc catt	taaa ggct tcat agat taat	agcc gaaa acac aatt ggtg	ca 60 aa 120 at 180 gt 240 tc 300 gt 360 ac 420
35	ttt	ggaag	gag a	tgat	agcco	att	tggg	aac	tcaaa	acccg	ja tg	gata	tctc	agat	gacg	at 480 492
	The	enco	ded S	SSB _l	prote	in has	s an a	mino	acid	sequ	ence	corre	espor	ding	to S	EQ. ID.
	No.	30 as	s foll	ows:												
40			•													
	Met 1		Asn	Asn	Val 5	Val	Leu	Val	Gly	Arg 10		Thr	Lys	Asp 	Ala 15	
45	Leu	Arg	Tyr	Thr 20	Pro	Ser	Gln	Val	Ala 25	Val	Ala	Thr	Phe	Thr 30	Leu	Ala
	Val	Asn	Arg 35		Phe	Lys	Ser	Gln 40	Asn	Gly	Glu	Arg	Glu 45	Ala	Asp	Phe
50	Ile	Asn 50	_	Val	Ile	Trp	Arg 55		Pro	Ala	Glu	Asn 60		Ala	Asn	Trp
55	Ala 65	-	Lys	Gly	Ala	Leu 70		Gly	Val	Thr	Gly 75	Arg	Ile	Gln	Thr	Arg 80
	Asn	Tyr	Glu	Asn	Gln 85		Gly	Gln	Arg	Val 90		Val	Thr	Glu	Val 95	

	Ala	Asp	Asn	Phe 100	Gln	Met	Leu	Glu	Ser 105	Arg	Ala	Thr	Arg	Glu 110	Gly	Gly
5	Ser	Thr	Gly 115	Ser	Phe	Asn	Gly	Gly 120	Phe	Asn	Asn	Asn	Thr 125	Ser	Ser	Ser
10	Asn	Ser 130	Туr	Ser	Ala	Pro	Ala 135	Gln	Gln	Thr	Pro	Asn 140	Phe	Gly	Arg	Asp
	Asp 145	Ser	Pro	Phe	Gly	Asn 150	Ser	Asn	Pro	Met	Asp 155	Ile	Ser	Asp	Asp	Asp 160
15	Leu	Pro	Phe													

The present invention also relates to the *dnaG* gene of *Streptococcus* pyogenes encoding the primase. The *dnaG* gene has a nucleotide sequence which corresponds to SEQ. ID. No. 31 as follows:

```
20
        atgggatttt tatggggagg tgacgatttg gcaattgaca aagaaatgat ttcccaagta 60
        aaaaatagcg ttaatattgt cgatgtcatt ggagaagtgg tcaaactttc ccgatcaggg 120
        cggcattacc tcgggctttg cccatttcat aaggaaaaga caccctcttt taatgttgtt 180
        gaagacagac aattttttca ctgctttggc tgtggaaaat caggggatgt ttttaaattt 240
        attgaggaat accgccaagt ccccttctta gaaagtgttc agattattgc cgataagact 300
25
        ggtatgtcgc ttaatatacc gccaagtcag gcagtacttg ctagccaaca caagcaccct 360
        aatcacgett tgatgacact tcatgaggat getgetaaat tttaccatge agttttgatg 420
        accactacca ttggtcaaga agctaggaag tacctttacc agagaggctt ggatgaccaa 480
         ttaattgage atttcaatat tggtttagee ecagatgagt cagattatet ttatcaaget 540
         ctttctaaaa aatacgagga aggtcaattg gttgcttcag gattgtttca cttgtccgat 600
30
         caatccaata ccatttacga cgcctttcga aatcgtatca tgtttccctt atcagatgac 660
        cgagggcata ttattgcctt ttcaggacgt atctggacgg cagctgatat ggaaaagaga 720
         caggcaaagt ataaaaattc aagaggaaca gttcttttta acaaatctta tgaattgtat 780
         catctggaca aggcaaggcc tgttattgcc aaaacccatg aagtgtttct aatggaaggg 840
         tttatggacg tgattgccgc ttaccgttcc ggctatgaaa atgctgttgc ttcaatgggg 900
35
         acggcattga ctcaagaaca tgtcaatcac cttaagcaag tcactaaaaa agttgttttg 960
         atttatgatg gtgacgatgc tggacaacat gctattgcaa aatcactaga attgcttaaa 1020
         gattttgttg tcgaaattgt cagaatcccc aataaaatgg atcctgacga atttgtacaa 1080
         cggcattccc cagaagcatt tgcagatttg cttaagcagt cacggatcag tagtgttgaa 1140
         ttttttattg attacctaaa acctactaat gtagacaatt tgcaatcaca aattgtttat 1200
40
         gtggagaaaa tggcaccatt gattgctcaa tcaccatcca tcacagctca acattcgtat 1260
         attaacaaga ttgctgattt gttgccaaac tttgactatt ttcaagtaga acaatcagta 1320
         aatgcattaa ggattcaaga taggcaaaaa catcaaggtc aaatagctca agccgtcage 1380
         aatettgtga cettaccaat gecaaaaagt ttgacageta ttgetaagae agaaagteat 1440
         ctcatgcatc ggctcttaca tcatgactat ttattaaatg aatttcgaca tcgtgatgat 1500
45
         ttttattttg atacctctac cttagaatta ctttatcaac ggctgaagca acaaggacac 1560
         attacatett atgatttgte agagatgtea gaggaagtta accgtgetta ttacaatgtt 1620
         ttagaagaaa accttcccaa agaagtagct cttggtgaga ttgatgatat tttatccaaa 1680
         cgtgccaaac ttttagcaga gcgcgatctt cacaaacaag ggaaaaaagt tagagaatct 1740
         agtaacaaag gcgatcatca agcggctcta gaagtactag aacattttat tgcgcagaaa 1800
50
         cqaaaaatgg aatag
```

The encoded primase has an amino acid sequence corresponding to SEQ. ID. No. 32 as follows:

	Met 1	Gly	Phe	Leu	Trp 5	Gly	Gly	Asp	Asp	Leu 10	Ala	Ile	Asp	Lys	Glu 15	Met
5	Ile	Ser	Gln	Val 20	Lys	Asn	Ser	Val	Asn 25	Ile	Val	Asp	Val	Ile 30	Gly	Glu
	Val	Val	Lys 35	Leu	Ser	Arg	Ser	Gly 40	Arg	His	Tyr	Leu	Gly 45	Leu	Cys	Pro
10	Phe	His 50	Lys	Glu	Lys	Thr	Pro 55	Ser	Phe	Asn	Val	Val 60	Glu	Asp	Arg	Gln
15	Phe 65	Phe	His	Cys	Phe	Gly 70	Cys	Gly	ГÀа	Ser	Gly 75	Asp	Val	Phe	Lys	Phe 80
	Ile	Glu	Glu	Tyr	Arg 85	Gln	Val	Pro	Phe	Leu 90	Glu	Ser	Val	Gln	Ile 95	Ile
20	Ala	Asp	Lys	Thr 100	Gly	Met	Ser	Leu	Asn 105	Ile	Pro	Pro	Ser	Gln 110	Ala	Val
	Leu	Ala	Ser 115	Gln	His	Lys	His	Pro 120	Asn	His	Ala	Leu	Met 125	Thr	Leu	His
25	Glu	Asp 130	Ala	Ala	Lys	Phe	Tyr 135	His	Ala	Val	Leu	Met 140	Thr	Thr	Thr	Ile
30	Gly 145	Gln	Glu	Ala	Arg	Lys 150	Tyr	Leu	Tyr	Gln	Arg 155	Gly	Leu	Asp	Asp	Gln 160
	Leu	Ile	Glu	His	Phe 165	Asn	Ile	Gly	Leu	Ala 170	Pro	Asp	Glu	Ser	Asp 175	Tyr
35	Leu	Tyr	Gln	Ala 180	Leu	Ser	Lys	Lys	Tyr 185	Glu	Glu	Gly	Gln	Leu 190	Val	Ala
	Ser	Gly	Leu 195	Phe	His	Leu	Ser	Asp 200	Gln	Ser	Asn	Thr	Ile 205	Tyr	Asp	Ala
40	Phe	Arg 210	Asn	Arg	Ile	Met	Phe 215	Pro	Leu	Ser	Asp	Asp 220	Arg	Gly	His	Ile
45	Ile 225	Ala	Phe	Ser	Gly	Arg 230	Ile	Trp	Thr	Ala	Ala 235	Asp	Met	Glu	Lys	Arg 240
	Gln	Ala	Lys	Tyr	Lys 245	Asn	Ser	Arg	Gly	Thr 250	Val	Leu	Phe	Asn	Lys 255	Ser
50	Tyr	Glu	Leu	Tyr 260	His	Leu	Asp	Lys	Ala 265	Arg	Pro	Val	Ile	Ala 270	Lys	Thr
	His	Glu	Val 275	Phe	Leu	Met	Glu	Gly 280	Phe	Met	Asp	Val	Ile 285	Ala	Ala	Tyr
55	Arg	Ser 290	Gly	Tyr	Glu	Asn	Ala 295	Val	Ala	Ser	Met	Gly 300	Thr	Ala	Leu	Thr
60	Gln 305	Glu	His	Val	Asn	His 310	Leu	Lys	Gln	Val	Thr 315	Lys	Lys	Val	Val	Leu 320
00	Ile	Tyr	Asp	Gly	Asp 325	Asp	Ala	Gly	Gln	His 330	Ala	Ile	Ala	Lys	Ser 335	Leu

	Glu	Leu	Leu	Lys 340	Asp	Phe	Val	Val	Glu 345	Ile	Val	Arg	Ile	Pro 350	Asn	Lys
5	Met	Asp	Pro 355	Asp	Glu	Phe	Val	Gln 360	Arg	His	Ser	Pro	Glu 365	Ala	Phe	Ala
	Asp	Leu 370	Leu	ГÀЗ	Gln	Ser	Arg 375	Ile	Ser	Ser	Val	Glu 380	Phe	Phe	Ile	Asp
10	Tyr 385	Leu	ГÀЗ	Pro	Thr	Asn 390	Val	Asp	Asn	Leu	Gln 395	Ser	Gln	Ile	Val	Tyr 400
15	Val	Glu	Lys	Met	Ala 405	Pro	Leu	Ile	Ala	Gln 410	Ser	Pro	Ser	Ile	Thr 415	Ala
15	Gln	His	Ser	Tyr 420	Ile	Asn	Lys	Ile	Ala 425	Asp	Leu	Leu	Pro	Asn 430	Phe	Asp
20	Tyr	Phe	Gln 435	Val	Glu	Gln	Ser	Val 440	Asn	Ala	Leu	Arg	Ile 445	Gln	Asp	Arg
	Gln	Lys 450	His	Gln	Gly	Gln	Ile 455	Ala	Gln	Ala	Val	Ser 460	Asn	Leu	Val	Thr
25	Leu 465	Pro	Met	Pro	Lys	Ser 470	Leu	Thr	Ala	Ile	Ala 475	Lys	Thr	Glu	Ser	His 480
	Leu	Met	His	Arg	Leu 485	Leu	His	His	Asp	Tyr 490	Leu	Leu	Asn	Glu	Phe 495	Arg
30	His	Arg	Asp	Asp 500	Phe	Tyr	Phe	Asp	Thr 505	Ser	Thr	Leu	Glu	Leu 510	Leu	Tyr
35	Gln	Arg	Leu 515		Gln	Gln	Gly	His 520	Ile	Thr	Ser	Tyr	Asp 525	Leu	Ser	Glu
	Met	Ser 530		Glu	Val	Asn	Arg 535		Tyr	Tyr	Asn	Val 540	Leu	Glu	Glu	Asn
40	Leu 545	Pro	Lys	Glu	Val	Ala 550		Gly	Glu	Ile	Asp 555	Asp	Ile	Leu	Ser	Lys 560
45	Arg	Ala	Lys	Leu	Leu 565	Ala	Glu	Arg	Asp	Leu 570	His	Lys	Gln	Gly	Lys 575	Lys
45	Val	Arg	Glu	Ser 580		Asn	Lys	Gly	Asp 585	His	Gln	Ala	Ala	Leu 590	Glu	Val
50	Leu	Glu	His 595		Ile	Ala	Gln	Lys 600								

The present invention also relates to the *dnaB* gene of *Streptococcus* pyogenes encoding DnaB. The *dnaB* gene has a nucleotide sequence which corresponds to SEQ. ID. No. 33 as follows:

atgaggttgc ctgaagtagc tgaattacga gttcaacccc aagatttact agcagagcaa 60 tctgttcttg ggtcaatctt tatctcacct gataagctga ttgcagtgag agaatttatc 120 agtccagacg atttttataa gtacgctcat aaaattatct ttcgggcaat gattaccctc 180 agcgatcgta atgatgccat tgatgcaacc actataagaa caatcctaga tgatcaagat 240

55

as

5 10 15	gatctgcaa agtgctaag gttatcgca tttcgcaa cagacttca ggtttacac tttgttctt tctttggaa gatcgcac gctcaggga actgaaatc attgtaati gtttcagai gccctaagi gatattcgi gacgattai gaagttat aaagaata	g cagaa t tgaca g gagtt a tttca a cagatt a tggtt a tgtt a ggtt a gttt a gtt a gttt a gtt a gttt a gttt a gttt a gtt a gttt a gtt a	tatta gaatc gagag gatgt acagg caatt gcgca gctga aggaga ttaca aggatc ttaca aggatc	tgct tgtc agcta gcta agtta aggga acgg gctt tggt tatta	aaaaa aacci ttaa aaaag ccaa attt gtagg ttaag gaaata agatta gatgatta	ta gggggggggggggggggggggggggggggggggggg	cttate actor	gaya gatg aatg gagg agag cagg gaag gaag gaa	aaat aacc cttt acct cagc aaa ttgg ata tgg ata ttgg ata ttgg cag ccg aata ccg ata ccg acct	ttta tagaa ttgaa cagaat cagaat cagaat cagaat caaaat tagaa ttaga ttaga ttaga	aa	ccaga cgta cgtta gatta gatta gatta gatta cttag accag agttta cttat	aagagggctaagctaacctttttttttttttaact	9 420 9 480 9 540 9 660 2 660 2 720 2 780 2 840 9 900 9 1020 1 1080 a 1140 9 1200 t 1260
20	The energy	dod Dno	D hac a	n am	ino a	cid se	eaner	ice co	orrest	ondi	ng to	SEC). ID.	No. 34
The encoded DnaB has an amino acid sequence corresponding to SEQ. ID. No. 34														
	follows:													•
25	Met Arg	Leu Pr	o Glu 5	Val	Ala	Glu	Leu	Arg 10	Val	Gln	Pro	Gln	Asp 15	Leu
	Leu Ala	Glu Gl 2		Val	Leu	Gly	Ser 25	Ile	Phe	Ile	Ser	Pro 30	qaA	ГÀв
30	Leu Ile	35				40					43			
35	Ala His 50				55					60				
00	Asp Ala 65			70					/5					00
40	Asp Leu		85					90					93	
	Ser Val	10	0				105					110		
45	Glu Lys	115				120					125			
50	Asn Leu 130				135					140				
Ju	Val Glu 145			150					155					100
55	Asp Thr		165	i				170					173	
	Asn Arg	1:	80				185					150		
60	Glu Ala	Leu G 195	lu Ala	Arg	Ser	200	Gln	Thr	Ser	Asn	Val 205	Thr	Gly	Leu

	Pro	Thr 210	Gly	Phe	Arg	Asp	Leu 215	Asp	Lys	Ile	Thr	Thr 220	Gly	Leu	His	Pro
5	Asp 225	Gln	Leu	Val	Ile	Leu 230	Ala	Ala	Arg	Pro	Ala 235	Val	Gly	Lys	Thr	Ala 240
10	Phe	Val	Leu	Asn	Ile 245	Ala	Gln	Asn	Val	Gly 250	Thr	Lys	Gln	Lys	Lув 255	Thr
10	Val	Ala	Ile	Phe 260	Ser	Leu	Glu	Met	Gly 265	Ala	Glu	Ser	Leu	Val 270	Asp	Arg
15	Met	Leu	Ala 275	Ala	Glu	Gly	Met	Val 280	Asp	Ser	His	Ser	Leu 285	Arg	Thr	Gly
	Gln	Leu 290	Thr	Asp	Gln	Asp	Trp 295	As'n	Asn	Val	Thr	11e 300	Thr	Glu	Ile	Arg
20	Ala 305	Arg	Ser	Arg	Lys	Leu 310	Ser	Gln	Glu	Val	Asp 315	Gly	Gly	Leu	Gly	Leu 320
25	Ile	Val	Ile	Asp	Tyr 325	Leu	Gln	Leu	Ile	Thr 330	Gly	Thr	Lys	Pro	Glu 335	Asn
23	Arg	Gln	Gln	Glu 340	Val	Ser	Asp	Ile	Ser 345	Arg	Gln	Leu	Lys	Ile 350	Leu	Ala
30	Lys	Glu	Leu 355	Lys	Val	Pro		Ile 360	Ala	Leu	Ser	Gln	Leu 365	Ser	Arg	Gly
	Val	Glu 370	Gln	Arg	Gln	Asp	Lys 375	Arg	Pro	Val	Leu	Ser 380	Asp	Ile	Arg	Glu
35	Ser 385	Gly	Ser	Ile	Glu	Gln 390	Asp	Ala	Asp	Ile	Val 395	Ala	Phe	Leu	Tyr	Arg 400
40	Asp	Asp	Tyr	Tyr	Arg 405	Lys	Glu	Cys	Asp	Asp 410	Ala	Glu	Glu	Ala	Val 415	Glu
10	Asp	Asn	Thr	Ile 420	Glu	Val	Ile	Leu	Glu 425	Lys	Asn	Arg	Ala	Gly 430	Ala	Arg
45	Gly	Thr	Val 435	Lys	Leu	Met	Phe	Gln 440	Lys	Glu	Tyr	Asn	Lys 445	Phe	Ser	Ser
	Ile	Ala 450	Gln	Phe	Glu	Glu	Arg 455									

Fragments of the above polypeptides or proteins are also encompassed by the present invention.

Suitable fragments can be produced by several means. In the first, subclones of the gene encoding the protein of the present invention are produced by conventional molecular genetic manipulation by subcloning gene fragments. The subclones then are expressed *in vitro* or *in vivo* in bacterial cells to yield a smaller

10

15

20

25

30

protein or peptide that can be tested for activity according to the procedures described below.

As an alternative, fragments of replication proteins can be produced by digestion of a full-length replication protein with proteolytic enzymes like chymotrypsin or *Staphylococcus* proteinase A, or trypsin. Different proteolytic enzymes are likely to cleave replication proteins at different sites based on the amino acid sequence of the protein. Some of the fragments that result from proteolysis may be active and can be tested for activity as described below.

In another approach, based on knowledge of the primary structure of the protein, fragments of a replication protein gene may be synthesized by using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. These then would be cloned into an appropriate vector for increased expression of a truncated peptide or protein.

Chemical synthesis can also be used to make suitable fragments. Such a synthesis is carried out using known amino acid sequences of replication proteins being produced. Alternatively, subjecting a full length replication protein to high temperatures and pressures will produce fragments. These fragments can then be separated by conventional procedures (e.g., chromatography, SDS-PAGE).

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the properties, secondary structure, and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which cotranslationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide.

Suitable DNA molecules are those that hybridize to a DNA molecule comprising a nucleotide sequence of at least about 20, more preferably at least about 30 to about 50, continuous bases of either SEQ. ID. Nos. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, or 33 under stringent conditions such as those characterized by a hybridization buffer comprising 0.9M sodium citrate ("SSC") buffer at a temperature of about 37°C and remaining bound when subject to washing the SSC buffer at a temperature of about 37°C; and preferably in a hybridization buffer comprising 20% formamide in 0.9M SSC buffer at a temperature of about 42°C and

10

15

20

25

30

remaining bound when subject to washing at about 42°C with 0.2x SSC buffer. Stringency conditions can be further varied by modifying the temperature and/or salt content of the buffer, or by modifying the length of the hybridization probe.

The proteins or polypeptides of the present invention are preferably produced in purified form (preferably at least 80%, more preferably 90%, pure) by conventional techniques. Typically, the proteins or polypeptides of the present invention is secreted into the growth medium of recombinant host cells.

Alternatively, the proteins or polypeptides of the present invention are produced but not secreted into growth medium. In such cases, to isolate the protein, the host cell (e.g., *E. coli*) carrying a recombinant plasmid is propagated, lysed by sonication, heat, or chemical treatment, and the homogenate is centrifuged to remove bacterial debris. The supernatant is then subjected to purification procedures such as ammonium sulfate precipitation, gel filtration, ion exchange chromatography, FPLC, and HPLC.

The DNA molecule encoding replication polypeptides or proteins derived from Gram positive bacteria can be incorporated in cells using conventional recombinant DNA technology. Generally, this involved inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression system or vector in proper sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted protein-coding sequences.

U.S. Patent No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, such as vaccina virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19,

10

15

20

25

30

pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif, which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see F.W. Studier et al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology vol. 185 (1990), which is hereby incorporated by reference), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, New York (1989), which is hereby incorporated by reference.

A variety of host-vector systems may be utilized to express the proteinencoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA (mRNA) translation).

Transcription of DNA is dependent upon the presence of a promotor which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eucaryotic promoters differ from those of procaryotic promoters. Furthermore, eucaryotic promoters and accompanying genetic signals may not be recognized in or may not function in a procaryotic system, and, further procaryotic promoters are not recognized and do not function in eucaryotic cells.

Similarly, translation of mRNA in procaryotes depends upon the presence of the proper procaryotic signals which differ from those of eukaryotes. Efficient translation of mRNA in procaryotes requires a ribosome binding site called

10

15

20

25

30

the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the same codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference.

Promoters vary in their "strength" (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promoters may be used. For instance, when cloning in *E. coli*, its bacteriophages, or plasmids, promoters such as the T7 phage promoter, *lac* promotor, *trp* promotor, *recA* promotor, ribosomal RNA promotor, the P_R and P_L promoters of coliphage lambda and others, including but not limited, to *lac*UV5, *omp*F, *bla*, *lpp*, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid *trp-lac*UV5 (*tac*) promotor or other *E. coli* promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promotor unless specifically induced. In certain operations, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the *lac* operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as *trp*, *pro*, etc., are under different controls. Additionally, the cell may carry the gene for a heterologous RNA polymerase such as from phage T7. Thus, a promoter specific for T7 RNA polymerase is used. The T7 RNA polymerase may be under inducible control.

Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector,

WO 01/09164 - 73 - PCT/US00/20666

which contains a promotor, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in *E. coli* requires an SD sequence about 7-9 bases 5' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, an SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the *cro* gene or the *N* gene of coliphage lambda, or from the *E. coli* tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.

10

5

Once the isolated DNA molecule encoding a replication polypeptide or protein has been cloned into an expression system, it is ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, viruses, yeast, mammalian cells, insects, plants, and the like.

15

20

25

The invention provides efficient methods of identifying pharmacological agents or lead compounds for agents active at the level of a replication protein function, particularly DNA replication. Generally, these screening methods involve assaying for compounds which interfere with the replication activity. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials; for example, the reagents may be derivatized and rescreened in *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development. Target therapeutic indications are limited only in that the target cellular function be subject to modulation, usually inhibition, by disruption of a replication activity or the formation of a complex comprising a replication protein and one or more natural intracellular binding targets. Target indications may include arresting cell growth or causing cell death resulting in recovery from the bacterial infection in animal studies.

30

A wide variety of assays for activity and binding agents are provided, including DNA synthesis, ATPase, clamp loading onto DNA, protein-protein binding assays, immunoassays, cell based assays, etc. The replication protein compositions, used to identify pharmacological agents, are in isolated, partially pure or pure form

10

15

20

25

30

- 74 -

and are typically recombinantly produced. The replication protein may be part of a fusion product with another peptide or polypeptide (e.g., a polypeptide that is capable of providing or enhancing protein-protein binding, stability under assay conditions (e.g., a tag for detection or anchoring), etc.). The assay mixtures comprise a natural intracellular replication protein binding target such as DNA, another protein, NTP, or dNTP. For binding assays, while native binding targets may be used, it is frequently preferred to use portions (e.g., peptides, nucleic acid fragments) thereof so long as the portion provides binding affinity and avidity to the subject replication protein conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control (i.e., at zero concentration or below the limits of assay detection). Additional controls are often present such as a positive control, a dose response curve, use of known inhibitors, use of control heterologous proteins, etc. Candidate agents encompass numerous chemical classes, though typically they are organic compounds; preferably they are small organic compounds and are obtained from a wide variety of sources, including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like salts, buffers, neutral proteins (e.g., albumin, detergents, etc.), which may be used to facilitate optimal binding and/or reduce nonspecific or background interactions, etc. Also reagents that otherwise improve the efficiency of the assay (e.g., protease inhibitors, nuclease inhibitors, antimicrobial agents, etc.) may be used.

The invention provides replication protein specific assays and the binding agents including natural intracellular binding targets such as other replication proteins, etc., and methods of identifying and making such agents, and their use in a variety of diagnostic and therapeutic applications, especially where disease is associated with excessive cell growth. Novel replication protein-specific binding agents include replication protein-specific antibodies and other natural intracellular binding agents identified with assays such as one- and two-hybrid screens, non-natural intracellular binding agents identified in screens of chemical libraries, etc.

Generally, replication protein-specificity of the binding agent is shown by binding equilibrium constants. Such agents are capable of selectively binding a

PCT/US00/20666

replication protein (i.e., with an equilibrium constant at least about $10^7 \,\mathrm{M}^{-1}$, preferably, at least about $10^8 \,\mathrm{M}^{-1}$, more preferably, at least about $10^9 \,\mathrm{M}^{-1}$). A wide variety of cell-based and cell-free assays may be used to demonstrate replication protein-specific activity, binding, gel shift assays, immunoassays, etc.

5

10

The resultant mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the replication protein specifically binds the cellular binding target, portion, or analog. The mixture of components can be added in any order that provides for the requisite bindings. Incubations may be performed at any temperature which facilitates optimal binding, typically between 4°C and 40°C, more commonly between 15°C and 40°C. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening, and are typically between 0.1 and 10 hours, preferably less than 5 hours, more preferably less than 2 hours.

15

After incubation, the presence or absence of activity or specific binding between the replication protein and one or more binding targets is detected by any convenient way. For cell-free activity and binding type assays, a separation step may be used to separate the activity product or the bound from unbound components. Separation may be effected by precipitation (e.g., immunoprecipitation), immobilization (e.g., on a solid substrate such as a microtiter plate), etc., followed by washing. Many assays that do not require separation are also possible such as use of europium conjugation in proximity assays or a detection system that is dependent on a product or loss of substrate.

20

25

Detection may be effected in any convenient way. For cell-free activity and binding assays, one of the components usually comprises or is coupled to a label. A wide variety of labels may be employed – essentially any label that provides for detection of DNA product, loss of DNA substrate, conversion of a nucleotide substrate, or bound protein is useful. The label may provide for direct detection such as radioactivity, fluorescence, luminescence, optical, or electron density, etc. or indirect detection such as an epitope tag, an enzyme, etc. The label may be appended to the protein (e.g., a phosphate group comprising a radioactive isotope of phosphorous), or incorporated into the DNA substrate or the protein structure (e.g., a methionine residue comprising a radioactive isotope of sulfur.) A variety of methods may be used to detect the label depending on the nature of the label and other assay

10

15

20

25

30

components. For example, the label may be detected bound to the solid substrate, or a portion of the bound complex containing the label may be separated from the solid substrate, and thereafter the label detected. Labels may be directly detected through optical or electron density, radioactive emissions, nonradiative energy transfer, fluorescence emission, etc. or indirectly detected with antibody conjugates, etc. For example, in the case of radioactive labels, emissions may be detected directly (e.g., with particle counters) or indirectly (e.g., with scintillation cocktails and counters).

The present invention identifies the set of proteins that together result in a three component polymerase from bacteria that are distantly related to *E. coli*, such as Gram positive bacteria. Specifically, these bacteria lack several genes that *E. coli* DNA polymerase III has, such as *holD*, *holD* or *holE*. Further, *dnaX* is believed to encode only one protein, tau. Also, *holA* is quite divergent in homology suggesting it may function in another process in these organisms. Gram positive cells even have replication genes that *E. coli* does not, implying that they may not utilize the replication strategies exemplified by *E. coli*.

The present invention identifies genes and proteins that form a three component polymerase in Gram positive organisms, such as S. pyogenes and S. aureus. In S. pyogenes and S. aureus, the polymerase α -large, functions with a β clamp and a clamp loader component of $\tau\delta\delta$. They display high speed and processivity in synthesis of ssDNA coated with SSB and primed with a DNA oligonucleotide.

This invention also expresses and purifies a protein from a Gram positive bacteria that is homologous to the $E.\ coli$ beta subunit. The invention demonstrates that it behaves like a circular protein. Further, this invention shows that a beta subunit from a Gram positive bacteria is functional with both Pol III-L (α -large) from a Gram positive bacteria and with DNA polymerase III from a Gram negative bacteria. This result can be explained by an interaction between the clamp and the polymerase that has been conserved during the evolutionary divergence of Gram positive and Gram negative cells. A chemical inhibitor that would disrupt this interaction would be predicted to have a broad spectrum of antibiotic activity, shutting down replication in gram negative and gram positive cells alike. This assay, and others based on this interaction, can be devised to screen chemicals for such inhibition. Further, since all the proteins in this assay are highly overexpressed

through recombinant techniques, sufficient quantities of the protein reagents can be obtained for screening hundreds of thousands of compounds.

This invention also shows that the DnaE polymerase (α -small), encoded by the *dnaE* gene, functions with the beta clamp and $\tau\delta\delta'$ complex. The speed of DnaE is not significantly increased by $\tau\delta\delta'$ and β , but the processivity of DnaE is greatly increased by $\tau\delta\delta'$ and β . Hence, the DnaE polymerase, coupled with its β clamp on DNA (loaded by $\tau\delta\delta'$) may also be an important target for a candidate pharmaceutical drug.

5

10

15

20

25

30

The present invention provides methods by which replication proteins from a Gram positive bacteria are used to discover new pharmaceutical agents. The function of replication proteins is quantified in the presence of different chemical compounds. A chemical compound that inhibits the function is a candidate antibiotic. Some replication proteins from a Gram positive bacteria and from a Gram negative bacteria can be interchanged for one another. Hence, they can function as mixtures. Reactions that assay for the function of enzyme mixtures consisting of proteins from Gram positive bacteria and from Gram negative bacteria can also be used to discover drugs. Suitable *E. coli* replication proteins are the subunits of its Pol III holoenzyme which are described in U.S. Patent Nos. 5,583,026 and 5,668,004 to O'Donnell, which are hereby incorporated by reference.

The methods described herein to obtain genes, and the assays demonstrating activity behavior of S. pyogenes and S. aureus replication proteins are likely to generalize to all members of the Streptococcus and Staphylococcus genuses, as well as to all Gram positive bacteria. Such assays are also likely to generalize to other cells besides Gram positive bacteria which also share features in common with S. pyogenes and S. aureus that are different from E. coli (i.e., lacking holC, holD, or holE; having a dnaX gene encoding a single protein; or having a weak homology to holA encoding delta).

The present invention describes a method of identifying compounds which inhibit the activity of a polymerase product of polC or dnaE. This method is carried out by forming a reaction mixture that includes a primed DNA molecule, a polymerase product of polC or dnaE, a candidate compound, a dNTP, and optionally either a beta subunit, a tau complex, or both the beta subunit and the tau complex, wherein at least one of the polymerase product of polC or dnaE, the beta subunit, the

10

15

20

25

30

Eubacteria other than Escherichia coli; subjecting the reaction mixture to conditions effective to achieve nucleic acid polymerization in the absence of the candidate compound; analyzing the reaction mixture for the presence or absence of nucleic acid polymerization extension products; and identifying the candidate compound in the reaction mixture where there is an absence of nucleic acid polymerization extension products. Preferably, the polymerase product of polC or dnaE, the beta subunit, the tau complex, or the subunit or combination of subunits thereof is derived from a Gram positive bacterium, more preferably a Streptococcus bacterium such as S. pyogenes or a Staphylococcus bacterium such as S. aureus.

The present invention describes a method to identify chemicals that inhibit the activity of the three component polymerase. This method involves contacting primed DNA with the DNA polymerase in the presence of the candidate pharmaceutical, and dNTPs (or modified dNTPs) to form a reaction mixture. The reaction mixture is subjected to conditions effective to achieve nucleic acid polymerization in the absence of the candidate pharmaceutical and the presence or absence of the extension product in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the absence of product.

The present invention describes a method to identify candidate pharmaceuticals that inhibit the activity of a clamp loader complex and a beta subunit in stimulating the DNA polymerase. The method includes contacting a primed DNA (which may be coated with SSB) with a DNA polymerase, a beta subunit, and a tau complex (or subunit or subassembly of the tau complex) in the presence of the candidate pharmaceutical, and dNTPs (or modified dNTPs) to form a reaction mixture. The reaction mixture is subjected to conditions which, in the absence of the candidate pharmaceutical, would effect nucleic acid polymerization and the presence or absence of the extension product in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the absence of product. The DNA polymerase, the beta subunit, and/or the tau complex or subunit(s) thereof are derived from a Gram positive bacterium.

The present invention describes a method to identify chemicals that inhibit the ability of a beta subunit and a DNA polymerase to interact physically. This method involves contacting the beta subunit with the DNA polymerase in the presence

10

15

20

25

30

of the candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions under which the DNA polymerase and the beta subunit would interact in the absence of the candidate pharmaceutical. The reaction mixture is then analyzed for interaction between the beta unit and the DNA polymerase. The candidate pharmaceutical is detected by the absence of interaction between the beta subunit and the DNA polymerase. The DNA polymerase and/or the beta subunit are derived from a Gram positive bacterium.

The present invention describes a method to identify chemicals that inhibit the ability of a beta subunit and a tau complex (or a subunit or subassembly of the tau complex) to interact. This method includes contacting the beta subunit with the tau complex (or subunit or subassembly of the tau complex) in the presence of the candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions under which the tau complex (or the subunit or subassembly of the tau complex) and the beta subunit would interact in the absence of the candidate pharmaceutical. The reaction mixture is then analyzed for interaction between the beta subunit and the tau complex (or the subunit or subassembly of the tau complex). The candidate pharmaceutical is detected by the absence of interaction between the beta subunit and the tau complex (or the subunit or subassembly of the tau complex). The beta subunit and/or the tau complex or subunit thereof is derived from a Gram positive bacterium.

The present invention describes a method to identify chemicals that inhibit the ability of a tau complex (or a subassembly of the tau complex) to assemble a beta subunit onto a DNA molecule. This method involves contacting a circular primed DNA molecule (which may be coated with SSB) with the tau complex (or the subassembly thereof) and the beta subunit in the presence of the candidate pharmaceutical, and ATP or dATP to form a reaction mixture. The reaction mixture is subjected to conditions under which the tau complex (or subassembly) assembles the beta subunit on the DNA molecule absent the candidate pharmaceutical. The presence or absence of the beta subunit on the DNA molecule in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the absence of the beta subunit on the DNA molecule. The beta subunit and/or the tau complex are derived from a Gram positive bacterium.

The present invention describes a method to identify chemicals that inhibit the ability of a tau complex (or a subunit(s) of the tau complex) to disassemble a beta subunit from a DNA molecule. This method comprises contacting a DNA molecule onto which the beta subunit has been assembled in the presence of the candidate pharmaceutical, to form a reaction mixture. The reaction mixture is subjected to conditions under which the tau complex (or a subunit(s) or subassembly of the tau complex) disassembles the beta subunit from the DNA molecule absent the candidate pharmaceutical. The presence or absence of the beta subunit on the DNA molecule in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the presence of the beta subunit on the DNA molecule. The beta subunit and/or the tau complex are derived from a Gram positive bacterium.

The present invention describes a method to identify chemicals that disassemble a beta subunit from a DNA molecule. This method involves contacting a circular primed DNA molecule (which may be coated with SSB) upon which the beta subunit has been assembled (e.g. by action of the tau complex) with the candidate pharmaceutical. The presence or absence of the beta subunit on the DNA molecule in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the absence of the beta subunit on the DNA molecule. The beta subunit is derived from a Gram positive bacterium.

20

25

30

5

10

15

The present invention describes a method to identify chemicals that inhibit the dATP/ATP binding activity of a tau complex or a tau complex subunit (e.g. tau subunit). This method includes contacting the tau complex (or the tau complex subunit) with dATP/ATP either in the presence or absence of a DNA molecule and/or the beta subunit in the presence of the candidate pharmaceutical to form a reaction. The reaction mixture is subjected to conditions in which the tau complex (or the subunit of tau complex) interacts with dATP/ATP in the absence of the candidate pharmaceutical. The reaction is analyzed to determine if dATP/ATP is bound to the tau complex (or the subunit of tau complex) in the presence of the candidate pharmaceutical. The candidate pharmaceutical is detected by the absence of hydrolysis. The tau complex and/or the beta subunit is derived from a Gram positive bacterium.

The present invention describes a method to identify chemicals that inhibit the dATP/ATPase activity of a tau complex or a tau complex subunit (e.g., the

PCT/US00/20666

5

10

15

20

25

30

tau subunit). This method involves contacting the tau complex (or the tau complex subunit) with dATP/ATP either in the presence or absence of a DNA molecule and/or a beta subunit in the presence of the candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions in which the tau subunit (or complex) hydrolyzes dATP/ATP in the absence of the candidate pharmaceutical. The reaction is analyzed to determine if dATP/ATP was hydrolyzed. Suitable candidate pharmaceuticals are identified by the absence of hydrolysis. The tau complex and/or the beta subunit is derived from a Gram positive bacterium.

Further methods for identifying chemicals that inhibit the activity of a DNA polymerase encoded by either the *dnaE* gene, *polC* gene, or their accessory proteins (i.e., clamp loader, clamp, etc.), are as follows:

- 1) Contacting a primed DNA molecule with the encoded product of the dnaE gene or polC gene in the presence of the candidate pharmaceutical, and dNTPs (or modified dNTPs) to form a reaction mixture. The reaction mixture is subjected to conditions, which in the absence of the candidate pharmaceutical, affect nucleic acid polymerization and the presence or absence of the extension product in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the absence of extension product. The protein encoded by the dnaE gene and PolC gene is derived from a Gram positive bacterium.
- 2) Contacting a linear primed DNA molecule with a beta subunit and the encoded product of dnaE or PolC in the presence of the candidate pharmaceutical, and dNTPs (or modified dNTPs) to form a reaction mixture. The reaction mixture is subjected to conditions, which in the absence of the candidate pharmaceutical, affect nucleic acid polymerization, and the presence or absence of the extension product in the reaction mixture is analyzed. The candidate pharmaceutical is detected by the absence of extension product. The protein encoded by the dnaE gene and PolC gene is derived from a Gram positive bacterium.
- with SSB) with a tau complex, a beta subunit and the encoded product of a dnaE gene or PolC gene in the presence of the candidate pharmaceutical, and dNTPs (or modified dNTPs) to form a reaction mixture. The reaction mixture is subjected to conditions, which in the absence of the candidate pharmaceutical, affect nucleic acid polymerization, and the presence or absence of the extension product in the reaction

mixture is analyzed. The candidate pharmaceutical is detected by the absence of product. The protein encoded by the *dnaE* gene and *PolC* gene, the beta subunit, and/or the tau complex are derived from a Gram positive bacterium.

5

10

15

20

25

- gene or *PolC* gene in the presence of the candidate pharmaceutical to form a reaction mixture. The reaction mixture is then analyzed for interaction between the beta subunit and the product encoded by the *dnaE* gene or *PolC* gene. The candidate pharmaceutical is detected by the absence of interaction between the beta subunit and the product encoded by the *dnaE* gene or *PolC* gene. The beta subunit and the product encoded by the *dnaE* gene or *PolC* gene. The beta subunit and/or the protein encoded by the *dnaE* gene and *PolC* gene is derived from a Gram positive bacterium.
- that inhibit a DnaB helicase. The method includes contacting the DnaB helicase with a DNA molecule substrate that has a duplex region in the presence of a nucleoside or deoxynucleoside triphosphate energy source and a candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions that support helicase activity in the absence of the candidate pharmaceutical. The DNA duplex molecule in the reaction mixture is analyzed for whether it is converted to ssDNA. The candidate pharmaceutical is detected by the absence of conversion of the duplex DNA molecule to the ssDNA molecule. The DnaB helicase is derived from a Gram positive bacterium.
- that inhibit the nucleoside or deoxynucleoside triphosphatase activity of a DnaB helicase. The method includes contacting the DnaB helicase with a DNA molecule substrate that has a duplex region in the presence of a nucleoside or deoxynucleoside triphosphate energy source and the candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions that support nucleoside or deoxynucleoside triphosphatase activity of the DnaB helicase in the absence of the candidate pharmaceutical. The candidate pharmaceutical is detected by the absence of conversion of nucleoside or deoxynucleoside triphosphate to nucleoside or deoxynucleoside diphosphate. The DnaB helicase is derived from a Gram positive bacterium.

10

15

20

25

- 7) The present invention describes a method to identify chemicals that inhibit a primase. The method includes contacting primase with a ssDNA molecule in the presence of a candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions that support primase activity (e.g., the presence of nucleoside or deoxynucleoside triphosphates, appropriate buffer, presence or absence of DnaB helicase) in the absence of the candidate pharmaceutical. Suitable candidate pharmaceuticals are identified by the absence of primer formation detected either directly or indirectly. The primase is derived from a Gram positive bacterium.
- that inhibit the ability of a primase and the protein encoded by a *dnaB* gene to interact. This method includes contacting the primase with the protein encoded by the *dnaB* gene in the presence of the candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions under which the primase and the protein encoded by the *dnaB* gene interact in the absence of the candidate pharmaceutical. The reaction mixture is then analyzed for interaction between the primase and the protein encoded by the *dnaB* gene. The candidate pharmaceutical is detected by the absence of interaction between the primase and the protein encoded by the *dnaB* gene. The primase and the protein encoded by the *dnaB* gene. The primase and/or the *dnaB* gene are derived from a Gram positive bacterium.
- that inhibit the ability of a protein encoded by a *dnaB* gene to interact with a DNA molecule. This method includes contacting the protein encoded by the *dnaB* gene with the DNA molecule in the presence of the candidate pharmaceutical to form a reaction mixture. The reaction mixture is subjected to conditions under which the DNA molecule and the protein encoded by the *dnaB* gene interact in the absence of the candidate pharmaceutical. The reaction mixture is then analyzed for interaction between the protein encoded by the *dnaB* gene and the DNA molecule. The candidate pharmaceutical is detected by the absence of interaction between the DNA molecule and the protein encoded by the *dnaB* gene. The *dnaB* gene is derived from a Gram positive bacterium.

EXAMPLES

The following examples are provided to illustrate embodiments of the present invention, but they are by no means intended to limit its scope.

5

10

15

20

25

30

Example 1 - Materials

Labeled deoxy- and ribonucleoside triphosphates were from Dupont-New England Nuclear; unlabelled deoxy- and ribonucleoside triphosphates were from Pharmacia-LKB; E. coli replication proteins were purified as described, alpha, epsilon, gamma, and tau (Studwell et al., "Processive Replication is Contingent on the Exonuclease Subunit of DNA Polymerase III Holoenzyme," J. Biol. Chem., 265:1171-1178 (1990), which is hereby incorporated by reference), beta (Kong et al., "Three Dimensional Structure of the Beta Subunit of Escherichia coli DNA Polymerase III Holoenzyme: A Sliding DNA Clamp," Cell, 69:425-437 (1992), which is hereby incorporated by reference), delta and delta prime (Dong et al., "DNA Polymerase III Accessory Proteins. I. HolA and holB Encoding δ and δ'," J. Biol. Chem., 268:11758-11765 (1993), which is hereby incorporated by reference), chi and psi (Xiao et al., "DNA Polymerase III Accessory Proteins. III. HolC and holD Encoding chi and psi," J. Biol. Chem., 268:11773-11778 (1993), which is hereby incorporated by reference), theta (Studwell-Vaughan et al., "DNA Polymerase III Accessory Proteins. V. Theta Encoded by holE," J. Biol. Chem., 268:11785-11791 (1993), which is hereby incorporated by reference), and SSB (Weiner et al., "The Deoxyribonucleic Acid Unwinding Protein of Escherichia coli," J. Biol. Chem., 250:1972-1980 (1975), which is hereby incorporated by reference). E. coli Pol III core and clamp loader complex (composed of subunits gamma, delta, delta prime, chi, and psi) were reconstituted as described in Onrust et al., "Assembly of a Chromosomal Replication Machine: Two DNA Polymerases, a Clamp Loader and Sliding Clamps in One Holoenzyme Particle. I. Organization of the Clamp Loader," J. Biol. Chem., 270:13348-13357 (1995), which is hereby incorporated by reference. Pol III* was reconstituted and purified as described in Onrust et al., "Assembly of a Chromosomal Replication Machine: Two DNA Polymerases, a Clamp Loader and Sliding Clamps in One Holoenzyme Particle. III. Interface Between Two Polymerases and the Clamp

Loader," J. Biol. Chem., 270:13366-13377 (1995), which is hereby incorporated by reference. Protein concentrations were quantitated by the Protein Assay (Bio-Rad) method using bovine serum albumin (BSA) as a standard. DNA oligonucleotides were synthesized by Oligos etc. Calf thymus DNA was from Sigma. Buffer A is 20 mM Tris-HCl (pH=7.5), 0.5 mM EDTA, 2 mM DTT, and 20% glycerol. Replication buffer is 20 mM Tris-Cl (pH 7.5), 8 mM MgCl₂, 5 mM DTT, 0.5 mM EDTA, 40 μg/ml BSA, 4% glycerol, 0.5 mM ATP, 3 mM each dCTP, dGTP, dATP, and 20 μM [α-32P]dTTP. P-cell buffer is 50 mM potassium phosphate (pH 7.6), 5 mM DTT, 0.3 mM EDTA, 20% glycerol. T.E. buffer is 10 mM Tris-HCl (pH 7.5), 1 mM EDTA. Cell lysis buffer is 50 mM Tris-HCl (pH 8.0) 10 % sucrose, 1 M NaCl, 0.3 mM spermidine.

Example 2 - Calf Thymus DNA Replication Assays

S. aureus cell extracts. Assays contained 2.5 μ g activated calf thymus DNA in a final volume of 25 μ l replication buffer. An aliquot of the fraction to be assayed was added

to the assay mixture on ice followed by incubation at 37°C for 5 min. DNA synthesis was quantitated using DE81 paper as described in Rowen et al., "Primase, the DnaG Protein of *Escherichia coli*. An Enzyme Which Starts DNA Chains," J. Biol. Chem., 253:758-764 (1979), which is hereby incorporated by reference.

These assays were used in the purification of DNA polymerases from

Example 3 - PolydA-oligodT Replication Assays

25

30

5

10

15

20

PolydA-oligodT was prepared as follows. PolydA of average length 4500 nucleotides was purchased from SuperTecs. OligodT35 was synthesized by Oligos etc. 145 ul of 5.2 mM (as nucleotide) polydA and 22 μ l of 1.75 mM (as nucleotide) oligodT were mixed in a final volume of 2100 μ l T.E. buffer (ratio as nucleotide was 21:1 polydA to oligodT). The mixture was heated to boiling in a 1 ml eppendorf tube, then removed and allowed to cool to room temperature. Assays were performed in a final volume of 25 μ l 20 mM Tris-Cl (pH 7.5), 8 mM MgCl₂, 5 mM DTT, 0.5 mM EDTA, 40 μ g/ml BSA, 4% glycerol, containing 20 μ M [α - 32 P]dTTP

10

15

20

30

and 0.36 µg polydA-oligodT. Proteins were added to the reaction on ice, then shifted to 37°C for 5 min. DNA synthesis was quantitated using DE81 paper as described in Rowen et al., "Primase, the DnaG Protein of *Escherichia coli*. An Enzyme Which Starts DNA Chains," J. Biol. Chem., 253:758-764 (1979), which is hereby incorporated by reference.

PCT/US00/20666

Example 4 - Singly Primed M13mp18 ssDNA Replication Assays

M13mp18 was phenol extracted from phage and purified by two successive bandings (one downward and one upward) in cesium chloride gradients. M13mp18 ssDNA was singly primed with a DNA 30mer (map position 6817-6846) as described in Studwell et al. "Processive Replication is Contingent on the Exonuclease Subunit of DNA Polymerase III Holoenzyme," J. Biol. Chem., 265:1171-1178 (1990), which is hereby incorporated by reference. Replication assays contained 72 ng of singly primed M13mp18 ssDNA in a final volume of 25 µl of replication buffer. Other proteins added to the assay, and their amounts, are indicated in the Brief Description of the Drawings. Reactions were incubated for 5 min. at 37°C and then were quenched upon adding an equal volume of 1% SDS and 40 mM EDTA. DNA synthesis was quantitated using DE81 paper as described in Rowen et al., "Primase, the DnaG Protein of Escherichia coli. An Enzyme Which Starts DNA Chains," J. Biol. Chem., 253:758-764 (1979), which is hereby incorporated by reference, and product analysis was performed in a 0.8% native agarose gel followed by autoradiography.

25 Example 5 - Genomic Staphylococcus aureus DNA

Two strains of S. aureus were used. For PCR of the first fragment of the dnaX gene sequence, the strain was ATCC 25923. For all other work the strain was strain 4220 (a gift of Dr. Pat Schlievert, University of Minnisota). This strain lacks a gene needed for producing toxic shock (Kreiswirth et al., "The Toxic Shock Syndrome Exotoxin Structural Gene is Not Detectably Transmitted by a Prophage," Nature, 305:709-712 (1996) and Balan et al., "Autocrine Regulation of Toxin Synthesis by Staphylococcus aureus," Proc. Natl. Acad. Sci. USA, 92:1619-1623

10

15

20

(1995), which are hereby incorporated by reference). S. aureus cells were grown overnight at 37°C in LB containing 0.5% glucose. Cells were collected by centrifugation (24 g wet weight). Cells were resuspended in 80 ml solution I (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCL (pH 8.0)). SDS and NaOH were then added to 1% and 0.2 N, respectively, followed by incubation at 65°C for 30 min. to lyse the cells. 68.5 ml of 3 M sodium acetate (pH 5.0) was added followed by centrifugation at 12,000 rpm for 30 min. The supernatant was discarded and the pellet was washed twice with 50 ml of 6M urea, 10 mM Tris-HCL (pH 7.5), 1 mM EDTA using a dounce homogenizer. After each wash, the resuspended pellet was collected by centrifugation (12,000 rpm for 20 min.). After the second wash, the pellet was resuspended in 50 ml 10 mM T.E. buffer using a dounce homogenizer and then incubated for 30 min. at 65°C. The solution was centrifuged at 12,000 rpm for 20 min., and the viscous supernatant was collected. 43.46 g CsCl₂ was added to the 50 ml of supernatant (density between 1.395-1.398) and poured into two 35 ml quick seal ultracentrifuge tubes (tubes were completely filled using the same density of CsCl2 in T.E.). To each tube was added 0.5 ml of a 10 mg/ml stock of ethidium bromide. Tubes were spun at 55,000 rpm for 18 h at 18°C in a Sorvall TV860 rotor. The band of genomic DNA was extracted using a syringe and needle. Ethidium bromide was removed using two butanol extractions and then dialyzed against 4 l of T.E. at pH 8.0 overnight. The DNA was recovered by ethanol precipitation and then resuspended in T.E. buffer (1.7 mg total) and stored at -20°C.

Example 6 - Cloning and Purification of S. aureus Pol III-L

25

30

To further characterize the mechanism of DNA replication in S. aureus, large amounts of its replication proteins were produced through use of the genes. The polC gene encoding S. aureus Pol III-L (alpha-large) subunit has been sequenced and expressed in E. coli (Pacitti et al., "Characterization and Overexpression of the Gene Encoding Staphylococcus aureus DNA Polymerase III," Gene, 165:51-56 (1995), which is hereby incorporated by reference). The previous work utilized a pBS[KS] vector for expression in which the E. coli RNA polymerase is used for gene transcription. In the earlier study, the S. aureus polC gene was precisely cloned at the 5' end encoding the N-terminus, but the amount of the gene

WO 01/09164 PCT/US00/20666 - 88 -

that remained past the 3' end was not disclosed and the procedure for subcloning the gene into the expression vector was only briefly summarized. Furthermore, the previous study does not show the level of expression of the S. aureus Pol III-L, nor the amount of S. aureus Pol III-L that is obtained from the induced cells. Since the previously published procedure could not be repeated and the efficiency of the expression vector could not be assessed, another strategy outlined below had to be developed.

The isolated polC gene was cloned into a vector that utilizes T7 RNA polymerase for transcription as this process generally expresses a large amount of protein. Hence, the S aureus polC gene was cloned precisely into the start codon at the NdeI site downstream of the T7 promotor in a pET vector. As the polC gene contains an internal NdeI site, the entire gene could not be amplified and placed it into the NdeI site of a pET vector. Hence, a three step cloning strategy that yielded the desired clone was devised (Figure 1). These attempts were quite frustrating initially as no products of cloning in standard E coli strains such as DH5 α , a typical laboratory strain for preparation of DNA, could be obtained. Finally, a cell that was mutated in several genes affecting DNA stability was useful in obtaining the desired products of cloning.

In brief, the cloning strategy required use of another expression vector (called pET1137kDa) in which the 37 kDa subunit of human RFC, the clamp loader of the human replication system, had been cloned into the pET11 vector. The gene encoding the 37kDa subunit contains an internal NsiI site, which was needed for the precise cloning of the isolated *polC* gene. This three step strategy is shown in Figure 1. In the first step, an approximately 2.3 kb section of the 5' section of the gene (encoding the N-terminus of Pol III-L) was amplified using the polymerase chain reaction (PCR). Primers were as follows:

<u>Upstream</u> (SEQ. ID. No. 35) ggtggtaatt gtcttgcata tgacagagc

29

30

25

5

10

15

20

<u>Downstream</u> (SEQ. ID. No. 36) agggattaag tggattgccg ggttgtgatg c

Amplification was performed using 500 ng genomic DNA, 0.5 mM EDTA, 1 μM of each primer, 1mM MgSO₄, 2 units vent DNA polymerase (New England Biolabs) in 100 μl of vent buffer (New England Biolabs). Forty cycles were performed using the following cycling scheme: 94°C, 1 min; 60°C, 1 min.; 72°C, 2.5 min. The product was digested with NdeI (underlined in the upstream primer) and NsiI (an internal site in the product) and the approximately 1.8 kb fragment was gel purified. A pET11 vector containing as an insert the 37 kDa subunit of human replication factor C (pET1137kDa) was digested with NdeI and NsiI and gel purified. The PCR fragment was ligated into the digested pET1137kDa vector and the ligation reaction was transformed into Epicurean coli supercompetent SURE 2 cells (Stratagene) and colonies were screened for the correct chimera (pET11PolC1) by examining minipreps for proper length and correct digestion products using NdeI and NsiI. In the second step, an approximately 2076 bp fragment containing the DNA encoding the C-terminus of Pol III-L subunit was amplified using the following sequences as primers:

15

20

25

10

5

<u>Upstream</u> (SEQ. ID. No. 37) agcatcacaa cccggcaatc cacttaatcg c

31

<u>Downstream</u> (SEQ. ID. No. 38) gactacgcca tgggcattaa ataaatacc

29

The amplification cycling scheme was as described above except the elongation step at 72°C was for 2 min. The product was digested with BamHI (underlined in the downstream primer) and NsiI (internal to the product) and the approximately 480 bp product was gel purified and ligated into the pET11PolC1 that had been digested with NsiI/BamHI and gel purified (ligated product is pET11PolC2). To complete the expression vector, an approximately 2080 bp PCR product was amplified over the two NsiI sites internal to the gene using the following primers:

30

<u>Upstream</u> (SEQ. ID. No. 39) gaagatgcat ataaacgtgc aagacctagt

30

<u>Downstream</u> (SEQ. ID. No. 40) gtctgacgca cgaattgtaa agtaag<u>atgc</u> atag

10

15

20

25

30

The amplification cycling scheme was as described above except the 72°C elongation step was 2 min. The PCR product, and the pET11PolC2 vector, were digested with NsiI and gel purified. The ligation mixture was transformed as described above and colonies were screened for the correct chimera (pET11PolC).

To express Pol III-L polymerase, the pET11PolC plasmid was transformed into *E. coli* strain BL21(DE3). 24 L of *E. coli* BL21(DE3)pET11PolC were grown in LB media containing 50 µg/ml ampicillin at 37°C to an OD of 0.7 and then the temperature was lowered to 15°C. Cells were then induced for Pol III-L expression upon addition of 1 mM IPTG to produce the T7 RNA polymerase needed to transcribe *polC*. This step was followed by further incubation at 15°C for 18 h. Expression of *S. aureus* Pol III-L polymerase was so high that it could easily be visualized by Coomassie staining of a SDS polyacrylamide gel of whole cells (Figure 2A). The expressed protein migrated in the SDS polyacrylamide gel in a position expected for a 165 kDa polypeptide. In this procedure, it is important that cells are induced at 15°C, as induction at 37°C produces a truncated version of Pol III-L polymerase, of approximately 130 kDa.

Cells were collected by centrifugation at 5°C. Cells (12 g wet weight) were stored at -70°C. The following steps were performed at 4°C. Cells were thawed and lysed in cell lysis buffer as described (final volume = 50 ml) and were passed through a French Press (Amico) at a minimum of 20,000 psi. PMSF (2 mM) was added to the lysate as the lysate was collected from the French Press. DNA was removed and the lysate was clarified by centrifugation. The supernatent was dialyzed for 1 h against Buffer A containing 50 mM NaCl. The final conductivity was equivalent to 190 mM NaCl. Supernatent (24 ml, 208 mg) was diluted to 50 ml using Buffer A to bring the conductivity to 96 mM MgCl₂, and then was loaded onto an 8 ml MonoQ column equilibrated in Buffer A containing 50 mM NaCl. The column was eluted with a 160 ml linear gradient of Buffer A from 50 mM NaCl to 500 mM NaCl. Seventy five fractions (1.3 ml each) were collected (Figure 2B). Aliquots were analyzed for their ability to synthesize DNA, and 20 µl of each fraction was analyzed by Coomassie staining of an SDS polyacrylamide gel. Based on the DNA synthetic capability, and the correct size band in the gel, fractions 56-65 containing Pol III-L polymerase were pooled (22 ml, 31 mg). The pooled fractions were dialyzed

WO 01/09164 PCT/US00/20666

overnight at 4°C against 50 mM phosphate (pH 7.6), 5 mM DTT, 0.1 mM EDTA, 2 mM PMSF, and 20 % glycerol (P-cell buffer). The dialyzed pool was loaded onto a 4.5 ml phosphocellulose column equilibrated in P-cell buffer, and then eluted with a 25 ml linear gradient of P-cell buffer from 0 M NaCl to 0.5 M NaCl. Fractions of 1 ml were collected and analyzed in a SDS polyacrylamide gel stained with Coomassie Blue (Figure 2C). Fractions 20-36 contained the majority of the Pol III-large at a purity of greater than 90 % (5 mg).

Example 7 - S. aureus Pol III-L is Not Processive on its Own

10

15

20

25

5

The Pol III-L polymerase purifies from *B. subtilis* as a single subunit without accessory factors (Barnes et al., "Purification of DNA Polymerase III of Gram-positive Bacteria," Methods in Enzy., 262:35-42 (1995), which is hereby incorporated by reference). Hence, it seemed possible that it may be a Type I replicase (e.g., like T5 polymerase) and, thus, be capable of extending a single primer full length around a long singly primed template. To perform this experiment, a template M13mp18 ssDNA primed with a single DNA oligonucleotide either in the presence or absence of SSB was used. DNA products were analyzed in a neutral agarose gel which resolved products by size. The results showed that Pol III-L polymerase was incapable of extending the primer around the DNA (to form a completed duplex circle referred to as replicative form II ("RFII")) whether SSB was present or not. This experiment has been repeated using more enzyme and longer times, but no full length RFII products are produced. Hence, Pol III-L would appear not to follow the paradigm of the T5 system (Type I replicase) in which the polymerase is efficient in synthesis in the absence of any other protein(s).

The sequence of an S. aureus homolog of the E. coli dnaN gene

Example 8 - Cloning and Purification of S. aureus Beta Subunit

30 (encoding the beta subunit) was obtained in a study in which the large recF region of DNA was sequenced (Alonso et al., "Nucleotide Sequence of the recF Gene Cluster From Staphylococcus aureus and Complementation Analysis in Bacillus subtilis recF Mutants," Mol. Gen. Genet., 246:680-686 (1995), Alonso et al., "Nucleotide

10

15

30

Sequence of the recF Gene Cluster From Staphylococcus aureus and Complementation Analysis in Bacillus subtilis recF Mutants," Mol. Gen. Genet., 248:635-636 (1995), which are hereby incorporated by reference). Sequence alignment of the S. aureus beta and E. coli beta show approximately 30% identity. Overall this level of homology is low and makes it uncertain that S. aureus beta will have the same shape and function as the E. coli beta subunit.

To obtain *S. aureus* beta protein, the *dnaN* gene was isolated and precisely cloned into a pET vector for expression in *E. coli. S. aureus* genomic DNA was used as template to amplify the homolog of the *dnaN* gene (encoding the putative beta). The upstream and downstream primers were designed to isolate the *dnaN* gene by PCR amplification from genomic DNA. Primers were:

<u>Upstream</u> (SEQ. ID. No. 41) cgactggaag gagttttaac atatgatgga attcac

36

<u>Downstream</u> (SEQ. ID. No. 42) ttatatggat ccttagtaag ttctgattgg

30

The NdeI site used for cloning into pET16b (Novagen) is underlined in the Upstream primer and the BamHI site used for cloning into pET16b is underlined in the Downstream primer. The NdeI and BamHI sites were used for directional cloning into pET16 (Figure 3). Amplification was performed using 500 ng genomic DNA, 0.5 mM dNTPs, 1 μM of each primer, 1mM MgSO₄, 2 units vent DNA polymerase in 100 ul of vent buffer. Forty cycles were performed using the following cycling scheme: 94°C, 1 min; 60°C, 1 min.; 72°C, 1 min. 10s. The 1167 bp product was digested with NdeI and BamHI and purified in a 0.7 % agarose gel. The pure digested fragment was ligated into the pET16b vector which had been digested with NdeI and BamHI and gel purified in a 0.7% agarose gel. Ligated products were transformed into E. coli

competent SURE II cells (Stratagene) and colonies were screened for the correct chimera by examining minipreps for proper length and correct digestion products using NdeI and BamHI.

 $24\ L$ of of BL21(DE3)pETbeta cells were grown in LB containing 50 $\mu g/ml$ ampicillin at 37°C to an O.D. of 0.7, and, then, the temperature was lowered to

10

15

20

25

30

15°C. IPTG was added to a concentration of 2 mM and after a further 18 h at 15°C to induce expression of *S. aureus* beta (Figure 4A). It is interesting to note that the beta subunit, when induced at 37°C, was completely insoluble. However, induction of cells at 15°C provided strong expression of beta and, upon cell lysis, over 50% of the beta was present in the soluble fraction.

Cells were harvested by centrifugation (44 g wet weight) and stored at -70°C. The following steps were performed at 4°C. Cells (44 g wet weight) were thawed and resuspended in 45 ml 1X binding buffer (5 mM imidizole, 0.5 M NaCl, 20 mM Tris HCl (final pH 7.5)) using a dounce homogenizer. Cells were lysed using a French Pressure cell (Aminco) at 20,000 psi, and then 4.5 ml of 10 % polyamine P (Sigma) was added. Cell debris and DNA was removed by centrifugation at 13,000 rpm for 30 min. at 4°C. The pET16beta vector places a 20 residue leader containing 10 histidine residues at the N-terminus of beta. Hence, upon lysing the cells, the S. aureus beta was greatly purified by chromatography on a nickel chelate resin (Figure 4B). The supernatant (890 mg protein) was applied to a 10 ml HiTrap Chelating Separose column (Pharmacia-LKB) equilibrated in binding buffer. The column was washed with binding buffer, then eluted with a 100 ml linear gradient of 60 mM imidazole to 1 M imidazole in binding buffer. Fractions of 1.35 ml were collected. Fractions were analyzed for the presence of beta in an SDS polyacrylamide gel stained with Coomassie Blue. Fractions 28-52, containing most of the beta subunit, were pooled (35 ml, 82 mg). Remaining contaminating protein was removed by chromatography on MonoQ. The S. aureus beta becomes insoluble as the ionic strength is lowered and, thus, the pool of beta was dialyzed overnight against Buffer A containing 400 mM NaCl. The dialyzed pool became slightly turbid indicating it was at its solubility limit at these concentrations of protein and NaCl. The insoluble material was removed by centrifugation (64 mg remaining) and, then, diluted 2-fold with Buffer A to bring the conductivity to 256. The protein was then applied to an 8 ml MonoQ column equilibrated in Buffer A plus 250 mM NaCl and then eluted with a 100 ml linear gradient of Buffer A from 0.25M NaCl to 0.75 M NaCl; fractions of 1.25 ml were collected (Figure 4C):. Under these conditions, approximately 27 mg of the beta flowed through the column and the remainder eluted in fractions 1-18 (24 mg).

10

15

20

25

30

Example 9 - The S. aureus Beta Subunit Protein Stimulates S. aureus Pol III-L and E. coli Core

The experiment of Figure 5A, tests the ability of *S. aureus* beta to stimulate *S. aureus* Pol III-L on a linear polydA-oligodT template. Reactions are also performed with *E. coli* beta and Pol III core. The linear template was polydA of average length of 4500 nucleotides primed with a 30mer oligonucleotide of T residues. The first two lanes show the activity of Pol III-L either without (lane 1) or with *S. aureus* beta (lane 2). The result shows that the *S. aureus* beta stimulates Pol III-L approximately 5-6 fold. Lanes 5 and 6 show the corresponding experiment using *E. coli* core with (lane 6) or without (lane 5) *E. coli* beta. The core is stimulated over 10-fold by the *E. coli* beta subunit under the conditions used.

Although Gram positive and Gram negative cells diverged from one another long ago and components of one polymerase machinery would not be expected to be interchangable, it was decided to test the activity of the *S. aureus* beta with *E. coli* Pol III core. Lanes 3 and 4 shows that the *S. aureus* beta also stimulates *E. coli* core about 5-fold. This result can be explained by an interaction between the clamp and the polymerase that has been conserved during the evolutionary divergence of gram positive and gram negative cells. A chemical inhibitor that would disrupt this interaction would be predicted to have a broad spectrum of antibiotic activity, shutting down replication in Gram negative and Gram positive cells alike. This assay, and others based on this interaction, can be devised to screen chemicals for such inhibition. Further, since all the proteins in this assay are highly overexpressed through recombinant techniques, sufficient quantities of the protein reagents can be obtained for screening hundreds of thousands of compounds.

In summary, the results show that *S. aureus* beta, produced in *E. coli*, is indeed an active protein (i.e., it stimulates polymerase activity). Furthermore, the results shows that Pol III-L functions with a second protein (i.e., *S. aureus* beta). Before this experiment, there was no assurance that Pol III-L, which is significantly different in structure from *E. coli* alpha, would function with another protein. For example, unlike *E. coli* alpha, which copurifies with several accessory proteins, Pol III-L purified from *B. subtilis* as a single protein with no other subunits attached (Barnes et al., "Purification of DNA Polymerase III of Gram-positive Bacteria," Methods in Enzy., 262:35-42 (1995), which is hereby incorporated by reference).

Finally, if one were to assume that S. aureus beta would function with a polymerase, the logical candidate would have been the product of the dnaE gene (alpha-small) instead of polC (Pol III-L) since the dnaE product is more homologous to E. coli alpha subunit than Pol III-L.

5

10

15

20

25

30

Example 10 - The S. aureus Beta Subunit Behaves as a Circular Sliding Clamp

The ability of *S. aureus* beta to stimulate Pol III-L could be explained by formation of a 2-protein complex between Pol III-L and beta to form a processive replicase similar to the Type II class (e.g., T7 type). Alternatively, the *S. aureus* replicase is organized as the Type III replicase which operates with a circular sliding clamp and a clamp loader. In this case, the *S. aureus* beta would be a circular protein and would require a clamp loading apparatus to load it onto DNA. The ability of the beta subunit to stimulate Pol III-L in Figure 5A could be explained by the fact that the polydA-oligodT template is a linear DNA and a circular protein could thread itself onto the DNA over an end. Such "end threading" has been observed with PCNA and explains its ability to stimulate DNA polymerase delta in the absence of the RFC clamp loader (Burgers et al., "ATP-Independent Loading of the Proliferating Cell Nuclear Antigen Requires DNA Ends," *J. Biol. Chem.*, 268:19923-19926 (1993), which is hereby incorporated by reference).

To distinguish between these possibilities, *S. aureus* beta was examined for ability to stimulate Pol III-L on a circular primed template. In Figure 5B, assays were performed using circular M13mp18 ssDNA coated with *E. coli* SSB and primed with a single oligonucleotide to test the activity of beta on circular DNA. Lane 1 shows the extent of DNA synthesis using Pol III-L alone. In lane 2, Pol III-L was supplemented with *S. aureus* beta. The *S. aureus* beta did not stimulate the activity of Pol III-L on this circular DNA (nor in the absence of SSB). Inability of *S. aureus* beta to stimulate Pol III-L is supported by the results of Figure 6, lane 1 that analyzes the product of Pol III-L action on the circular DNA in an agarose gel in the presence of *S. aureus* beta. In summary, these results show that *S. aureus* beta only stimulates Pol III-L on linear DNA, not circular DNA. Hence, the *S. aureus* beta subunit behaves as a circular protein.

WO 01/09164 - 96 -

Lane 3 shows the result of adding both S. aureus beta and E. coli gamma complex to Pol III-L. Again, no stimulation was observed (compare with lane 1). This result indicates that the functional contacts between the clamp and clamp loader were not conserved during evolution of Gram positive and Gram negative cells.

PCT/US00/20666

Controls for these reactions on circular DNA are shown for the *E. coli* system in Lanes 4-6. Addition of only beta to *E. coli* Pol III core did not result in stimulating the polymerase (compare lanes 4 and 5). However, when clamp loader complex was included with beta and core, a large stimulation of synthesis was observed (lane 6). In summary, stimulation of synthesis is only observed when both beta and clamp loader complex were present, consistent with inability of the circular beta ring to assemble onto circular DNA by itself.

Example 11 - Pol III-L Functions as a Pol III-Type Replicase with Beta and a Clamp Loader Complex to Become Processive

15

20

25

30

10

5

Next, it was determined whether S. aureus Pol III-L requires two components (a beta clamp and a clamp loader) to extend a primer full length around a circular primed template. In Figure 6, a template circular M13mp18 ssDNA primed with a single DNA oligonucleotide was used. DNA products were analyzed in a neutral agarose gel which resolves starting materials (labeled ssDNA in Figure 6) from completed duplex circles (labelled RFII for replicative form II). The first two lanes show, as demonstrated in other examples, that Pol III-L is incapable of extending the primer around the circular DNA in the presence of only S. aureus beta. In lane 4 of Figure 6, E. coli clamp loader complex (also known as gamma complex) and beta subunit were mixed with S. aureus Pol III-L in the assay containing singly primed M13mp18 ssDNA coated with SSB. If the beta clamp, assembled on DNA by clamp loader complex, provides processivity to S. aureus Pol III-L, the ssDNA circle should be converted into a fully duplex circle (RFII) which would be visible in an agarose gel analysis. The results of the experiment showed that the E. coli beta and clamp loader complex did indeed provide Pol III-L with ability to fully extend the primer around the circular DNA to form the RFII (lane 4). The negative control using only E. coli clamp loader complex and beta is shown in lane 3. For comparison, lane 6 shows the result of mixing the three components of the E. coli system (Pol III core, beta, and clamp loader complex). This reaction gives almost exclusively full length

RFII product. The qualitatively different product profile that Pol III-L gives in the agarose gel analysis compared to *E. coli* Pol III core with beta and clamp loader complex shows that the products observed using Pol III-L is not due to a contaminant of *E. coli* Pol III core in the *S. aureus* Pol III-L preparation (compare lanes 4 and 6).

5

10

15

20

25

30

It is generally thought that the polymerase of one system is specific for its SSB. However, these reactions are performed on ssDNA coated with the *E. coli* SSB protein. Hence, the *S. aureus* Pol III-L appears capable of utilizing *E. coli* SSB and the *E. coli* beta. It would appear that the only component that is not interchangeable between the Gram positive and Gram negative systems is the clamp loader complex.

Thus, the S. aureus Pol III-L functions as a Pol III type replicase with the E. coli beta clamp assembled onto DNA by a clamp loader complex.

Example 12 - Purification of Two DNA Polymerase III-Type Enzymes From S. aureus Cells

The MonoQ resin by Pharmacia has very high resolution which would resolve the three DNA polymerases of S. aureus. Hence, S. aureus cells were lysed, DNA was removed from the lysate, and the clarified lysate was applied onto a MonoQ column. The details of this procedure are: 300 L of S. aureus (strain 4220, a gift of Dr. Pat Schlievert, University of Minnisota) was grown in 2X LB media at 37°C to an O.D. of approximately 1.5 and then were collected by centrifugation. Approximately 2 kg of wet cell paste was obtained and stored at -70°C. 122 g of cell paste was thawed and resuspended in 192 ml of cell lysis buffer followed by passage through a French Press cell (Aminco) at 40,000 psi. The resultant lysate was clarified by high speed centrifugation (1.3 g protein in 120 ml). A 20 ml aliquot of the supernatant was dialyzed 2 h against 2 L of buffer A containing 50 mM NaCl. The dialyzed material (148 mg, conductivity = 101 mM NaCl) was diluted 2-fold with Buffer A containing 50 mM NaCl and then loaded onto an 8 ml MonoQ column equilibrated in Buffer A containing 50 mM NaCl. The column was washed with Buffer A containing 50 mM NaCl, and then eluted with a 160 ml linear gradient of 0.05 M NaCl to 0.5 M NaCl in Buffer A. Fractions of 2.5 ml (64 total) were collected, followed by analysis in an SDS polyacrylamide gel for their replication activity in assays using calf thymus DNA.

5.

10

15

20

25

30

Three peaks of DNA polymerase activity were identified (Figure 7). Previous studies of cell extracts prepared from the Gram positive organism *Bacillus subtilis* identified only two peaks of activity off a DEAE column (similar charged resin to MonoQ). The first peak was Pol II, and the second peak was a combination of DNA polymerases I and III. The DNA polymerases I and III were then separated on a subsequent phosphocellulose column. The middle peak in Figure 7 is much larger than the other two peaks and, thus, it was decided to chromatograph this peak on a phosphocellulose column. The second peak of DNA synthetic activity was pooled (fractions 37-43; 28 mg in 14 ml) and dialyzed against 1.5 L P-cell buffer for 2.5 h. Then, the sample (ionic strength equal to 99 mM NaCl) was applied to a 5 ml phosphocellulose column equilibrated in P-cell buffer. After washing the column in 10 ml P-cell buffer, the column was eluted with a 60 ml gradient of 0 - 0.5 M NaCl in P-cell buffer. Seventy fractions were collected and then analyzed for DNA synthesis using calf thymus DNA as template. This column resolved the polymerase activity into two distinct peaks (Figure 7B).

Hence, there appear to be four DNA polymerases in *Staphylococcus* aureus. They were designated here as peak 1 (first peak off MonoQ), peak 2 (first peak off phosphocellulose), peak 3 (second peak of phosphocellulose), and peak 4 (last peak off Mono Q) (see Figure 7). Peak 4 was presumably Pol III-L, as it elutes from MonoQ in a similar position as the Pol III-L expressed in *E. coli* (compare Figure 7A with Figure 2).

Example 13 - Demonstration That Peak 1 (Pol III-2) Functions as a Pol III-Type Replicase With E. coli Beta Assembled on DNA by E. coli Clamp Loader Complex.

To test which peak contained a Pol III-type of polymerase, an assay was used in which the *E. coli* clamp loader complex and beta support formation of full length RFII product starting from *E. coli* SSB coated circular M13mp18 ssDNA primed with a single oligonucleotide. In Figure 8, both Peaks 1 and 2 are stimulated by the *E. coli* clamp loader complex and beta subunit and, in fact, Peaks 2 and 3 are inhibited by these proteins (the quantitation is shown below the gel in the figure). Further, the product analysis in the agarose gel shows full length RFII duplex DNA circles only for peaks 1 and 4. These results, combined with the NEM, pCMB, and

WO 01/09164 PCT/US00/20666

KCl characteristics in Tables 2 and 3 below, suggest that there are two Pol III-type DNA polymerases in S. aureus and that these are partially purified in peaks 1 and 4.

Next, it was determined which of these peaks of DNA polymerase activity correspond to DNA polymerases I, II, and III, and which peak is the unidentified DNA polymerase. In the Gram postive bacterium *B. subtilis*, Pol III is inhibited by pCMB, NEM, and 0.15 M NaCl, Pol II is inhibited by KCl, but not NEM or 0.15 M KCL, and Pol I is not inhibited by any of these treatments (Gass et al., "Further Genetic and Enzymological Characterization of the Three *Bacillus subtilis* Deoxyribonucleic Acid Polymerases," J. Biol. Chem., 248:7688-7700 (1973), which is hereby incorporated by reference). Hence, assays were performed in the presence or absence of pCMB, NEM, and 0.15 M KCl (see Tables 2 and 3 below). Peak 3 clearly corresponded to Pol I, because it was not inhibited by NEM, pCMB, or 0.15 M NaCl. Peak 2 correspond to Pol II, because it was not inhibited by NEM, but was inhibited by pCMB and 0.15 M NaCl. Peaks 1 and 4 both had characteristics that mimic Pol III; however, peak 4 elutes on MonoQ at a similar position as Pol III-L expressed in *E. coli* (see Figure 2B). Hence, peak 4 is likely Pol III-L, and peak 1 is likely the unknown polymerase.

Table 2: Expected Characteristics of Polymerases

Polymerase	<u>pCMB</u>	<u>NEM</u>	0.15M KC1	
Pol I	not inhibited*	not inhibited	not inhibited	
Pol II	inhibited**	not inhibited	not inhibited	
Pol III-L	inhibited	inhibited	not inhibited	

Not inhibited is defined as greater than 75% remaining activity

Table 3: Observed Characteristics

Peak	pCMB	NEM	0.15M KCL assignment
Peakl	inhibited	inhibited	new polymerase
Peak2	inhibited	not inhibited	Pol II
Peak3	not inhibited	not inhibited	Pol I
Peak4	inhibited	inhibited	Pol III-L

5

10

^{**} Inhibited is defined as less than 40% remaining activity

KCl characteristics in Tables 2 and 3 below, suggest that there are two Pol III-type DNA polymerases in S. aureus and that these are partially purified in peaks 1 and 4.

Next, it was determined which of these peaks of DNA polymerase activity correspond to DNA polymerases I, II, and III, and which peak is the unidentified DNA polymerase. In the Gram postive bacterium *B. subtilis*, Pol III is inhibited by pCMB, NEM, and 0.15 M NaCl, Pol II is inhibited by KCl, but not NEM or 0.15 M KCL, and Pol I is not inhibited by any of these treatments (Gass et al., "Further Genetic and Enzymological Characterization of the Three *Bacillus subtilis* Deoxyribonucleic Acid Polymerases," J. Biol. Chem., 248:7688-7700 (1973), which is hereby incorporated by reference). Hence, assays were performed in the presence or absence of pCMB, NEM, and 0.15 M KCl (see Tables 2 and 3 below). Peak 3 clearly corresponded to Pol I, because it was not inhibited by NEM, pCMB, or 0.15 M NaCl. Peak 2 correspond to Pol II, because it was not inhibited by NEM, but was inhibited by pCMB and 0.15 M NaCl. Peaks 1 and 4 both had characteristics that mimic Pol III; however, peak 4 elutes on MonoQ at a similar position as Pol III-L expressed in *E. coli* (see Figure 2B). Hence, peak 4 is likely Pol III-L, and peak 1 is likely the unknown polymerase.

Table 2: Expected Characteristics of Polymerases

Polymerase	<u>pCMB</u>	NEM	0.15M KC1
Pol I	not inhibited*	not inhibited	not inhibited
Pol II	inhibited**	not inhibited	not inhibited
Pol III-L	inhibited	inhibited	not inhibited

Not inhibited is defined as greater than 75% remaining activity

Table 3: Observed Characteristics

Peak	pCMB	NEM	0.15M KCL assignment
Peak!	inhibited	inhibited	new polymerase
Peak2	inhibited	not inhibited	Pol II
Peak3	not inhibited	not inhibited	Pol I
Peak4	inhibited	inhibited	Pol III-L

5

10

Inhibited is defined as less than 40% remaining activity

10

15

20

30

35

Example 14 - Identification and Cloning of S. aureus dnaE

This invention describes the finding of two DNA polymerases that function with a sliding clamp assembled onto DNA by a clamp loader. One of these DNA polymerases is likely Pol III-L, but the other has not been identified previously. Presumably, the chromatographic resins used in earlier studies did not have the resolving power to separate the enzyme from other polymerases. This would be compounded by the low activity of Pol III-2. To identify a gene encoding the second Pol III, the amino acid sequences of the Pol III alpha subunit of *Escherichia coli*, *Salmonella typhimurium*, *Vibrio cholerae*, *Haemophilis influenzae*, and *Helicobacter pylori* were aligned using Clustal W (1.5). Two regions about 400 residues apart were conserved and primers were designed for the following amino acid sequences:

Upstream, corresponding in E. coli to residues 385-399 (SEQ. ID. No. 43)

Leu Leu Phe Glu Arg Phe Leu Asn Pro Glu Arg Val Ser Met Pro

1 10 15

Downstream, corresponding in E. coli to residues 750-764 (SEQ. ID. No. 44)

Lys Phe Ala Gly Tyr Gly Phe Asn Lys Ser His Ser Ala Ala Tyr

1 10 15

The following primers were designed to these two peptide regions using codon preferences for *S. aureus*:

25 <u>Upstream</u> (SEQ. ID. No. 45)
cttctttttg aaagatttct aaataaagaa cgttattcaa tgcc 44

Downstream (SEQ. ID. No. 46)
ataagetgea geatgacttt tattaaaace ataacetgea aattt 45

Amplification was performed using 2.5 units of *Taq* DNA Polymerase (Gibco, BRL), 100 ng *S. aureus* genomic DNA, 1 mM of each of the four dNTPs, 1 μM of each primer, and 3 mM MgCl₂ in 100 μl of *Taq* buffer. Thirty-five cycles of the following scheme were repeated: 94°C, 1 min; 55°C, 1 min; 72°C, 90 sec. The PCR product (approximately 1.1 kb) was electrophoresed in a 0.8 % agarose gel and purified using

a Geneclean III kit (Bio 101). The product was then divided equally into ten separate aliquots and used as a template for PCR reactions, according to the above protocol, to reamplify the fragment for sequencing. The final PCR product was purified using a Quiagen Quiaquick PCR Purification kit, quantitated via optical density at 260 nM, and sequenced by the Protein/DNA Technology Center at Rockefeller University. The same primers used for PCR were used to prime the sequencing reactions.

Next, the following additional PCR primers were designed to obtain more sequence information 3' to the first amplified section.

10 Upstream (SEQ. ID. No. 47)

agttaaaaat gccatatttt gacgtgtttt agttctaat

39

Downstream (SEQ. ID. No. 48)

cttgcaaaag cggttgctaa agatgttgga cgaattatgg gg

42

15

20

25

5

These primers were used in a PCR reaction using 2.5 units of *Taq* DNA Polymerase (Gibco, BRL) with 100 ng *S. aureus* genomic DNA as a template, 1mM dNTP's, 1 µM of each primer, and 3 mM MgCl₂ in 100 l of *Taq* buffer. Thirty-five cycles of the following scheme were repeated: 94°C, 1 min; 55°C, 1 min; 72°C, 2 min 30 seconds. The 1.6 Kb product was then divided into 5 aliquots, and used as a template in a set of 5 PCR reactions, as described above, to amplify the product for sequencing. The products of these reactions were purified using a Qiagen Qiaquick PCR Purification kit, quantitated via optical density at 260 nm, and sequenced by the Protein/DNA Technology Center at Rockefeller University. The sequence of this product yielded about 740 bp of new sequence 3' of the first sequence.

As this gene shows better homology to the Gram negative Pol III α subunit compared to Gram positive Pol III-L, it will be designated the *dnaE* gene.

Example 15 - Identification and Cloning of S. aureus dnaX

30

The fact that the S. aureus beta stimulates Pol III-L and has a ring shape suggests that the Gram postive replication machinery is of the three component type. This implies the presence of a clamp loader complex. This is not a simple

determination to make as the *B. subtilis* genome shows homologs to only two of the five subunits of the *E. coli* clamp loader (*dnaX* encoding gamma, and *holB* encoding delta prime). On the basis of the experiments in this application, which suggests that there is a clamp loader, it was believed that these two subunit homologues are part of the clamp loader for the *S. aureus* beta.

As a start in obtaining the clamp loading apparatus, a strategy was devised to obtain the gene encoding the tau subunit of *S. aureus*. In *E. coli*, the tau and gamma subunits are derived from the same gene. Tau is the full length product, and gamma is about 2/3 the length of tau. Gamma is derived from the *dnaX* gene by what was originally believed to be an efficient translational frameshift mechanism that, after it occurs, incorporates only one unique C-terminal residue before encountering a stop codon. To identify the *dnaX* gene of *S. aureus* by PCR analysis, the *dnaX* genes of *B. subtilis*, *E. coli*, and *H. influenzae* were aligned. Upon comparison of the amino acid sequence encoded by these *dnaX* genes, two areas of high homology were used to predict the amino acid sequence of the *S. aureus dnaX* gene product. PCR primers were designed to these sequences, and a PCR product of the expected size was indeed produced. DNA primers were designed to two regions of high similarity for use in PCR that were about 100 residues apart. The amino acid sequences of these regions were:

20

30

15

5

10

Upstream, corresponding to residues 39-48 of E. coli (SEQ. ID. No. 49)

His Ala Tyr Leu Phe Ser Gly Pro Arg Gly

1 10

Downstream, corresponding to residues 138-148 of E. coli (SEQ. ID. No. 50)

His Ala Tyr Leu Phe Ser Gly Pro Arg Gly

The DNA sequence of the PCR primers was based upon the codon usage of S. aureus.

The primers are as follows:

<u>Upstream</u> (SEQ. ID. No. 51) cgcggatccc atgcatattt attttcaggt ccaaqagg

10

15

20

Downstream (SEQ. ID. No. 52)

ccggaattct ggtggttctt ctaatgtttt taataatgc

39

The first 9 nucleotides of the upstream primer (SEQ. ID. No. 51) contain a BamHI site, which is underlined, and do not correspond to amino acid codons; the 3' 29 nucleotides correspond to the amino acid sequence of SEQ. ID. No. 49. The EcoRI site of the downstream primer (SEQ. ID. No. 52) is underlined and the 3' 33 nucleotides correspond to the amino acid sequence of SEQ. ID. No. 50.

The expected PCR product, based on the alignment, is approximately 268 bp between the primer sequences. Amplification was performed using 500 ng genomic DNA, 0.5 mM dNTPs, 1 µM of each primer, 1 mM MgSO4, 2 units vent DNA polymerase in 100 µl of vent buffer. Forty cycles were performed using the following cycling scheme: 94°C, 1 min; 60°C, 1 min.; 72°C, 30s. The approximately 300 bp product was digested with EcoRI and BamHI and purified in a 0.7 % agarose gel. The pure digested fragment was ligated into pUC18 which had been digested with EcoRI and BamHI and gel purified in a 0.7 % agarose gel. Ligated products were transformed into *E. coli* competent DH5α cells (Stratagene), and colonies were screened for the correct chimera by examining minipreps for proper length and correct digestion products using EcoRI and BamHI. The sequence of the insert was determined and was found to have high homology to the *dnaX* genes of several bacteria. This sequence was used to design circular PCR primers. Two new primers were designed for circular PCR based on this sequence.

A circular PCR product of approximately 1.6 kb was obtained from a HincII digest of chromosomal DNA that was recircularized with ligase. This first circular PCR yielded most of the remaining *dnaX* gene. The two primers were as follows:

Rightward (SEQ. ID. No. 53) tttgtaaagg cattacgcag gggactaatt cagatgtg

38

30

25

Leftward (SEQ. ID. No. 54)
tatgacattc attacaaggt tetecateag tge

WO 01/09164 PCT/US00/20666 - 104 -

Genomic DNA (3 µg) was digested with HincII, purified with phenol/chloroform extraction, ethanol precipitated and redissolved in 70 µl T.E. buffer. The genomic DNA was recircularized upon adding 4000 units T4 ligase (New England Biolabs) in a final volume of 100 µl T4 ligase buffer (New England Biolabs) at 16°C overnight. The PCR reaction consisted of 90 ng recircularized genomic DNA, 0.5 mM each dNTP, 100 pmol of each primer, 1.4 mM magnesium sulfate, and 1 unit of elongase (GIBCO) in a final volume of 100 µl elongase buffer (GIBCO). 40 cycles were performed using the following scheme: 94°C, 1 min.; 55°C, 1 min.; and 68°C, 2 min. The resulting PCR product was approximately 1.6 kb. The PCR product was purified from a 0.7 % agarose gel and sequenced directly. A stretch of approximately 750 nucleotides was obtained using the rightward primer used in the circular PCR reaction. To obtain the rest of the sequence, other sequencing primers were designed in succession based on the information of each new sequencing run.

This sequence, when spliced together with the previous 300 bp PCR sequence, contained the complete N-terminus of the gene product (stop codons are present upstream) and possibly lacked only about 50 residues of the C-terminus. The amino terminal region of *E. coli* tau shares what appears to be the most conserved region of the gene as this area shares homology with RFC subunit of the human clamp loader and with the gene 44 protein of the phage T4 clamp loader. An alignment of the N-terminal region of the *S. aureus* tau protein with that of *B. subtilis* and *E. coli* is shown in Figure 10. Among the highly conserved residues are the ATP binding site consensus sequence and the four cystine residues that form a Zn²⁺ finger.

After obtaining 1 kb of sequence in the 5' region of *dnaX*, it was sought to determine the remaining 3' end of the gene. Circular PCR products of approximately 800bps, 600bps, and 1600bps were obtained from Apo I, or Nsi I or Ssp I digest of chromosomal DNA that were recircularized with ligase.

Rightward (SEQ. ID. No. 55) gagcactgat gaacttagaa ttagatatg

29

32

Leftward (SEO, ID, No. 56)

5

10

15

20

25

30

gatactcagt atctttctca gatgttttat to

Genomic DNA (3 g) was digested with, Apo I, or Nsi I or Ssp I, purified with phenol/chloroform extraction, ethanol precipitated, and redissolved in 70 I T.E. buffer. The genomic DNA was recircularized upon adding 4000 units of T4 ligase (New England Biolabs) in a final volume of 100 I T4 ligase buffer (New England Biolabs) at 16°C overnight. The PCR reaction consisted of 90 ng recircularized genomic DNA, 0.5 mM each dNTP, 100 pmol of each primer, 1.4 mM magnesium sulfate, and 1 unit of elongase (GIBCO) in a final volume of 100 I elongase buffer (GIBCO). 40 cycles were performed using the following scheme: 94°C, 1 min.; 55°C, 1 min.; 68°C, 2 min. The PCR products were directly cloned into pCR II TOPO vector using the TOPO TA cloning kit (Invitrogen Corporation) for obtaining the rest of the C terminal sequence of *S. aureus dnaX*. DNA sequencing was performed by the Rockefeller University sequencing facility.

Example 16 - Identification and Cloning of S. aureus dnaB

15

10

5

In E. coli, the DnaB helicase assembles with the DNA polymerase III holoenzyme to form a replisome assembly. The DnaB helicase also interacts directly with the primase to complete the machinery needed to duplicate a double helix. As a first step in studying how the S. aureus helicase acts with the replicase and primase, S. aureus was examined for presence of a dnaB gene.

20

The amino acid sequences of the DnaB helicase of Escherichia coli, Salmonella typhimurium, Haemophilis influenzae, and Helicobacter pylori were aligned using Clustal W (1.5). Two regions about 200 residues apart showed good homology. These peptide sequences were:

25

Upstream, corresponding to residues 225-238 of *E. coli* DnaB (SEQ. ID. No. 57)

Asp Leu Ile Ile Val Ala Ala Arg Pro Ser Met Gly Lys Thr

1 10

30

35

Downstream, corresponding to residues 435-449 of *E. coli* DnaB (SEQ. ID. No. 58)

Glu Ile Ile Gly Lys Gln Arg Asn Gly Pro Ile Gly Thr Val

1 10 15

The following primers were designed from regions which contained conserved sequences using codon preferences for S. aureus:

<u>Upstream</u> (SEQ. ID. No. 59) gaccttataa ttgtagctgc acgtccttct atgggaaaaa c

41

5 <u>Downstream</u> (SEQ. ID. No. 60)

aacattatta agtcagcatc ttgttctatt gatccagatt caacgaag

48

A PCR reaction was carried out using 2.5 units of Taq DNA Polymerase (Gibco, BRL) with 100 ng. S. aureus genomic DNA as template, 1 mM dNTP's, 1µM of each primer, 3 mM MgCl2 in 100 µl of Taq buffer. Thirty-five cycles of the following scheme were repeated: 94°C, 1 min.; 55°C, 1 min.; and 72°C, 1 min. Two PCR products were produced, one was about 1.1 kb, and another was 0.6 kb. The smaller one was the size expected. The 0.6 kb product was gel purified and used as a template for a second round of PCR as follows. The 0.6 kb PCR product was purified from a 0.8% agarose gel using a Geneclean III kit (Bio 101) and then divided equally into five separate aliquots, as a template for PCR reactions. The final PCR product was purified using a Quiagen Quiaquick PCR Purification kit, quantitated via optical density at 260 nM, and sequenced by the Protein/DNA Technology Center at Rockefeller University. The same primers used for PCR were used to prime the sequencing reaction. The amino acid sequence was determined by translation of the DNA sequence in all three reading frames, and selecting the longest open reading frame. The PCR product contained an open reading frame over its entire length. The predicted amino acid sequence shares homology to the amino acid sequences encoded by dnaB gene of other organisms.

25

10

15

20

Additional sequence information was determined using the circular PCR technique. Briefly, *S. aureus* genomic DNA was digested with various endonucleases, then religated with T4 DNA ligase to form circular templates. To perform PCR, two primers were designed from the initial sequence.

30

First primer (SEQ. ID. No. 61) gatttgtagt tctggtaatg ttgactcaaa ccgcttaaga accgg

45

Second primer (SEQ. ID. No. 62) atacgtgtgg ttaactgatc agcaacccat ctctagtgag aaaatacc

10

15

20

25

30

PCT/US00/20666

The first primer matches the sequence of the coding strand and the second primer matches the sequence of the complementary strand. These two primers are directed outwards from a central point, and allow determination of new sequence information up to the ligated endonuclease site. A PCR product of approximately 900 bases in length was produced using the above primers and template derived from the ligation of S. aureus genomic DNA which had been cut with the restriction endonuclease Apo I. This PCR product was electrophoresed in a 0.8% agarose gel, eluted with a Qiagen gel elution kit, divided into five separate aliquots, and used as a template for reamplification by PCR using the same primers as described above. The final product was electrophoresed in an 0.8% agarose gel, visualized via staining with ethidium bromide under ultraviolet light, and excised from the gel. The excised gel slice was frozen, and centrifuged at 12,000 rpm for 15 minutes. The supernatant was extracted with phenol/chloroform to remove ethidium bromide, and was then cleaned using a Qiagen PCR purification kit. The material was then quantitated from its optical density at 260 nm and sequenced by the Protein/DNA Technology Center at the Rockefeller University.

The nucleotide sequence contained an open reading frame over its length, up to a sequence which corresponded to the consensus sequence of a cleavage site of the enzyme Apo I. Following this point, a second open reading frame encoded a different reading frame up to the end of the product. The inital sequence information was found to match the inital sequence and to extend it yet further towards the C-terminus of the protein. The second reading frame was found to end in a sequence which matched the 5'-terminus of the previously determined sequence and, thus, represents an extension of the sequence towards the N-terminus of the protein.

Additional sequence information was obtained using the above primers and a template generated using *S. aureus* genomic DNA circularized via ligation with T4 ligase following digestion with Cla I. The PCR product was generated using 35 cycles of the following program: denaturation at 94°C for 1 min.; annealing at 55°C for 1 min.; and extension at 68°C for 3 minutes and 30 s. The PCR products were electrophoresed in a 0.8% agarose gel, eluted with a Qiagen gel elution kit, divided into five separate aliquots, and used as a template reamplification via PCR with the same primers described above. The final product was electrophoresed in an 0.8%

20

agarose gel, visualized via staining with ethidium bromide under ultraviolet light, and excised from the gel. The excised gel slice was frozen, and centrifuged at 12,000 rpm for 15 min. The supernatant was cleaned using a Qiagen PCR purification kit. The material was then quantitated via optical density at 260 nm and sequenced by the Protein/DNA Technology Center at Rockefeller University. The open reading frames continued past 500 bases. Therefore, the following additional sequencing primers were designed from the sequence to obtain further information:

First primer (SEQ. ID. No. 63)

10 cgttttaatg catgcttaga aacgatatca g

31

Second primer (SEQ. ID. No. 64) cattgctaag caacgttacg gtccaacagg c

31

The N-terminal and C-terminal nucleotide sequence extensions generated using this circular PCR product completed the 5' region of the gene (encoding the N-terminus of DnaB); however, a stop codon was not reached in the 3' region and, thus, a small amount of sequence is still needed to complete this gene.

The alignment of the S. aureus dnaB with E. coli dnaB and the dnaB genes of B. subtilis and S. typhimurium is shown in Figure 11.

Example 17 - Identification and Cloning of S. aureus holB

The S. aureus holB was identified by searching the S. aureus database
with the sequences of S. pyogenes & subunit. The S. aureus holB encodes a 253
residue protein of about 28 kDa. The holB gene was amplified by PCR using an
upstream 69-mer primer as follows:

Upstream Primer (SEQ. ID. No. 65):

ggataacaat tccccgctag caataatttt gtttaacttt aagaaggaga tatac<u>ccatg</u> 60 gatgaacag 69

which contains an *Ncol* site (underlined), and a downstream 39-mer primer as follows:

Downstream Primer (SEQ. ID. No. 66): aattttaaag gatccgtgta taatattcta attttcccg

39

which contains a *BamHI* site (underlined). The PCR product was digested with *NcoI* and *BamHI*, purified, and ligated into the *NcoI* and *BamHI* sites of pET11a to produce plasmid pETSaholB.

Example 18 - Purification of S. aureus δ'

10

15

20

25

The pETSaholB plasmid of Example 17 was transformed into E. coli BL21(DE3)recA. A single colony was used to innoculate 2L of LB media supplemented with 200 μg/ml ampicillin. Cells (2L) were grown at 37°C to OD₆₀₀=0.5 at which point the temperature was lowered to 15°C and 0.5 mM IPTG was added. After 16 hr of induction, cells were collected by centrifugation, resuspended in 50 mM Tris-HCl (pH 7.5), 10% sucrose, 1 M NaCl, 30 mM spermidine, 5 mM DTT, and 2 mM EDTA. Cells were lysed by two passages through a French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min at 4°C. Ammonium sulfate (0.3 g/ml) was added to the clarified lysate. The pellet was backwashed in 30 ml buffer A containing 0.1 M NaCl and 0.24 g/ml ammonium sulfate using a Dounce homogenizer, then the pellet was recovered by centrifugation. The resulting pellet was resuspended in 20 ml of buffer A and dialyzed against buffer A. The dialyzed protein was applied to a 20 ml FFQ Sepharose column equilibrated in buffer A and eluted with a 200 ml linear gradient of 0 - 500 mM NaCl in buffer A; 80 fractions were collected. Peak fractions (54 - 75) were combined (72 mg) and dialyzed against buffer A. The δ' preparation was aliquoted and stored frozen at -80°C.

Example 19 - Identification and Cloning of S. aureus holA

30

The S. aureus holA gene was identified by searching the S. aureus database with the sequences of E. coli and S. pyogenes δ subunits. The S. aureus holA

gene encodes a 288 residue protein of about 32 kDa. The holA gene was amplified by PCR using an upstream 28-mer primer as follows:

Upstream Primer (SEQ. ID. No. 67):

gggagtttgt aatccatgga tgaacagc

28

which contains a Ncol site (underlined), and a downstream 37-mer primer as follows:

Downstream Primer (SEQ. ID. No. 68):

ctgaacacct attaccctag gcatctaact cacaccc

37

which contains a *BamHI* site (underlined). The PCR product was digested with *NcoI* and *BamHI*, purified, and ligated into the *NcoI* and *BamHI* sites of pET11a to produce plasmid pETSaholA.

15

20

25

30

10

5

Example 20 - Purification of S. aureus δ

The pETSaholA plasmid of Example 19 was transformed into *E. coli*NovaBlue (recA1 lac[F'proA+B+ lac^qZΔM15::Tn10(Tc^R)) (Novagen). A single colony was used to innoculate 12L of LB media supplemented with 200 μg/ml ampicillin. Cells (12L) were grown at 37°C to OD₆₀₀=0.5 at which point the temperature was lowered to 15°C and 0.5 mM IPTG was added. After 16 hr of induction, cells were collected by centrifugation, resuspended in 50 mM Tris-HCl (pH 7.5), 10% sucrose, 1M NaCl, 30 mM spermidine, 5 mM DTT, and 2 mM EDTA. Cells were lysed by two passages through a French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min at 4°C. Ammonium sulfate (0.3 g/ml) was added to the clarified lysate. The resulting pellet was resuspended in 250 ml of buffer A. The dialyzed protein was applied to a 100 ml FFQ Sepharose column equilibrated in buffer A and eluted with a 1000 ml linear gradient of 0 - 500 mM NaCl in buffer A; 80 fractions were collected. Peak fractions (40-49) were combined (65 mg) and dialyzed against buffer A. The dialyzed protein was applied to a 8 ml MonoQ Sepharose column equilibrated in buffer A and eluted with a 80 ml linear gradient of 0

10

15

20

25

30

- 500 mM NaCl in buffer A; 80 fractions were collected. Peak fractions of the δ preparation were stored frozen at -80°C.

<u>Example 21</u> - Consitution of a Processive S. aureus DNA Polymerase III Enzyme from Three Components

The PolC (alpha-large) requires the β clamp for processivity, which in turn requires the clamp loader ($\tau\delta\delta'$) for assembly onto DNA. The *S. aureus* clamp loader, $\tau\delta\delta'$ complex, was assembled by mixing the three proteins as follows: 400 µg of τ and 80 µg each of δ and δ' were mixed in buffer A containing no NaCl and preincubated at 15°C for 10 min. The mixture was injected onto a 1 ml MonoQ column equilibrated in buffer A, and then eluted with a 30 ml linear gradient of 0-500 mM NaCl in buffer A; 60 fractions were collected. Fractions were analyzed in a 10% SDS-polyacrylamide gel stained with Coomassie Blue. Peak fractions (40-50) were combined and concentrated using a Centricon 30 concentrator.

The ability of the three components to work together to form the processive Pol III was tested by determining whether τδδ' and β clamp could confer the ability of PolC to completely extend a single primer full circle around a large 7.2 kb circular M13mp18 ssDNA genome. Replication reaction contained 70 ng (25 fmol) on singly primed M13mp18 ssDNA, 20 ng S. aureus β, 50 ng S. aureus PolC, either 30 ng or 90 ng of S. aureus τδδ' (when indicated), and 0.82 μg of S. pyogenes SSB in 24 µl of 20 mM Tris-HCl (pH 7.5), 4% glycerol, 0.1 mM EDTA, 5 mM DTT, 2 mM ATP, 8 mM MgCl₂, 40 μg/ml BSA, and 60 mM each of dGTP and dCTP. Reactions were pre-incubated for 2 min at 37°C to assemble protein complexes on the primer terminus. DNA synthesis was initiated upon addition of 1.5 ul dATP and ³²P-TTP (specific activity 2,000-4,000 cpm/pmol) and synthesis was allowed to proceed for 1 min before being quenched with an equal volume (25 µl) of a solution of 1% SDS and 40 mM EDTA. One-half of the quenched reaction was analyzed for total DNA synthesis using DE81 paper as described, and the other half was analyzed by agarose gel phoresis. An autoradiogram of the agarose gel analysis of the replication products is depicted in Figure 13, which shows that the presence of PolC and β, but absence of τδδ' (lane 1) gives no full length circular duplex (RFII). However, in the

presence of $\tau\delta\delta$ ' (lanes 2 and 3), full length circular duplex DNA (RFII) is produced, as expected for the action of a processive Pol III holozyme.

Example 22 - General Induction/Purification Conditions for S. pyogenes

5

10

15

20

The purification protocols for S. pyogenes proteins were performed using following standardized conditions. Cells were grown from a single colony, freshly transformed overnight. Cells were grown in 200 $\mu g/ml$ Ampicillin to OD600=0.3-0.4, at which point cultures were chilled prior to addition of IPTG (to a final concentration of 0.5 mM) and were allowed to incubate for 16 hrs at 15°C. Following this, all procedures were performed at 4°C. Cell paste (1-2 g/liter of culture) was resuspended (10 ml/g cell paste) in 50 mM Tris-HCl (pH 7.5)/10% Sucrose/1 M NaCl/5 mM DTT/30 mM Spermidine/1X Heat lysis buffer (50 mM Tris-HCl (pH 7.5), 1% Sucrose, 100 mM NaCl, 2 mM EDTA). Cells were lysed by two passages through the French Press (15,000 psi) followed by centrifugation at 14,000 rpm at 4 °C. Ammonium sulfate, when added to the cleared lysate, was added gradually. Precipitate was allowed to settle on ice for a minimum of 30 min prior to collection by centrifugation. Protein pellets were resuspended in buffer A (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 5 mM DTT, 10% glycerol) and dialyzed for over 3 hours in the same buffer. Column design is based on the manufacturer's suggested capacities: Fast Flow Q (FFQ) and MonoQ are 20 mg protein /ml resin, Heparin-Affigel agarose is 1.2 mg protein/ml resin. Elution was performed using 10 column volume (c.v.) gradients, and the entire gradient elution profile was collected in 80 fractions. Unless mentioned otherwise all columns were equilibrated and eluted with buffer A.

Example 23 - Identification of a S. pyogenes hold gene Encoding a Functional Delta Subunit and Purification of the Delta Subunit

30

25

Alignment of *E. coli* delta subunit with 10 other putative *holA* products from unfinished genome databases of Gram negative bacteria indicates a region of conserved amino acid sequence. Amino acids Q140 to L230 of *E. coli* delta were used to search the *B. subtilis* genome database for a Gram positive delta homolog. This search revealed *yqeN*, a potential reading frame of unknown function, as the

PCT/US00/20666

highest scoring sequence. Although the score was low, it was treated as a candidate for Gram positive delta. The alignment with E. coli delta is shown in Figure 12A. A Streptococcus pyogenes genome database was searched with yqeN. Two contigs which represent N- (contig 206) and C- (contig 264) termini of S. pyogenes delta subunit were identified. The alignment of the putative S. pyogenes hold with B. subtilis yqeN is shown in Figure 12B. The following primers were used to obtain PCR products for delta subunit:

holA Upstream (SEQ. ID No. 69)

5

20

25

30

10 ggagcagatt gcttttgata catatgattg gcctattc

38

holA Downstream (SEQ. ID No. 70)

ttgtctccgc atcaaactgg gatccaagag catcatacgc gtatgg

46

15 These primers were used to amplify the hold gene from S. pyogenes genomic DNA. The PCR product was digested with NdeI and BamHI, purified and ligated into the pET11a vector to produce pET11a.S.p. holA.

> The pET11a.S.p.holA plasmid was transformed into the BL21(DE3)RecA- strain of E. coli. A single colony from an overnight transformation was used to innoculate 12L LB broth supplemented with 200 µg/ml Ampicillin. Cells were grown at 37°C to OD600=0.5, at which point the temperature was lowered to 15°C and 0.5 mM IPTG was added. Induction proceeded for 16 hrs. In the morning, cells were collected by centrifugation and resuspended in 50 mM Tris-HCl (pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer/1M NaCl/30 mM Spermidine/5 mM DTT. Cells were lysed by two passages through the French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min. The supernatant was decanted and ammonium sulfate was added to a final concentration of 0.226 g/ml. The resulting pellet was collected by centrifugation and resuspended in 20 ml of buffer A. The resuspended pellet was dialyzed against buffer A containing no salt. The dialyzed protein (500 mg) was loaded onto a FFQ- Sepharose (35 ml) column and eluted with a linear gradient from 0 - 500 mM NaCl (10 c.v.). The peak fractions (21-45) were combined and dialyzed against buffer A (0 NaCl) for 3 hrs, then diluted to a conductivity of 50 mM NaCl and loaded (160 mg) onto a 120 ml Heparin-Affigel

column. Protein was eluted with a linear gradient of 0-500 mM NaCl (10 c.v.). The fractions containing the least contaminants (39-51) were precipitated with ammonium sulfate (0.226 g), collected by centrifugation, resuspended 5 ml of buffer A, and dialyzed in buffer A containing 200 mM NaCl. The delta subunit was stored at -80°C. The final delta subunit preparation is shown in the lane marked δ of the Coomassie Blue stained SDS-polyacrylamide gel of Figure 14. Yield = 65 mg.

Example 24 - Identification of S. pyogenes holB Encoding Delta Prime and Purification of the Delta Prime Subunit

10

15

5

A search of the *S. pyogenes* genome database with the predicted *B. subtilis* delta prime amino acid sequence revealed a DNA sequence in contig #209 (previously known as contig #210) that predicted a high scoring match for a gene encoding a delta prime protein. The following primers were used to obtain PCR products for *holB*:

holB Upstream (SEQ. ID. No. 71) gcctaggata agggagggta catatggatt tagcgc

36

20 <u>holB Downstream (SEQ. ID. No. 72)</u>
cgggcaagtc ttttgacaag cttcggatcc ccataacgaa ttcc

44

The PCR product obtained from these primers was digested with NdeI and BamHI, purified and ligated into the pET11a vector to produce pET11a.S.p. holB.

25

30

The pET11a.S.p.holB plasmid was transformed into the BL21(DE3)RecA- strain of *E. coli*. A single colony from an overnight transformation was used to innoculate 12L LB broth supplemented with 200 µg/ml Ampicillin. Cells were grown at 37°C to O.D.600=0.4, at which point the temperature was lowered to 15°C and 0.5 mM IPTG was added. Induction proceeded for 16 hrs. In the morning, cells were collected by centrifugation and resuspended in 100 ml 50 mM Tris-HCl (pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer. Lysis was initiated upon addition of 0.4 mg/ml lysozyme followed by a 1 hr incubation on ice. Lysate was clarified by centrifugation at 13,000 rpm for 30 min. Ammonium sulfate was added to the supernatant to a final concentration of 0.3 g/ml. The protein pellet was resuspended in

10

15

20

buffer A(0.1 M NaCl) + 0.24 g/ml ammonium sulfate and clarified by centrifugation. The resulting protein pellet was resuspended in 20 ml of buffer A and dialyzed against buffer A. The dialyzed protein (450 mg) was loaded onto a 30 ml FFQ- Sepharose column and eluted with a linear gradient from 0 - 500 mM NaCl. The peak fractions were combined (fr# 20-30 containing 130 mg) and dialyzed against buffer A and loaded (70 mg) onto a 50 ml Heparin-Affigel column. Protein was eluted with a linear gradient of 0-500 mM NaCl. Delta prime binds weakly to both resins and elutes in the beginning of the gradient. This delta prime subunit was stored frozen at - 80°C. The final delta prime subunit preparation is shown in lane marked δ' of the Coomassie Blue stained SDS-polyacrylamide gel of Figure 14. Yield = 40 mg.

Example 25 - Identification of the S. pyogenes dnaX Gene and Purification of the Tau Subunit

A search of the *S. pyogenes* genome database with the putative *B. subtilis* tau amino acid sequence revealed a DNA sequence in contig #284 (previously known as contig #289) with a high scoring match which predicted a gene encoding for a tau subunit protein. A set of PCR primers to 5'- and 3'- termini of the putative gene sequence were designed to include restriction enzyme recognition sequences for NdeI and BamHI sites, respectively. These primers are:

dnaX Upstream (SEQ. ID. No. 73)
ggagttaaaa acatatgtat caagctcttt atc

33

25 <u>dnaX Downstream</u> (SEQ. ID. No. 74)
cgtgggtaag ggcaaaacgg atcccttatg tatttcag

38

A PCR product obtained with the above primers was digested with NdeI and BamHI, purified and ligated into pET11a vector to produce pET11a.S.p.dnaX.

30

The pET11a.S.p.dnaX plasmid was transformed into the BL21(DE3)RecA- strain of *E. coli*. A single colony from an overnight transformation was used to innoculate 24L LB broth supplemented with 200 µg/ml Ampicillin. Cells were grown at 37°C to O.D.600=0.5, at which point the temperature was lowered to 15°C and 0.5 mM IPTG was added. Induction proceeded for 16 hrs. In the morning,

10

15

34

cells were collected by centrifugation and resuspended in 200 mls of 50 mM Tris-HCl (pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer/1M NaCl/30 mM Spermidine/5 mM DTT/5 mM EDTA. Cells were lysed by two passages through the French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min. The supernatant (2.4 gm) was dialyzed against buffer A containing 50 mM NaCl, loaded onto a 120 ml FFQ column (without ammonium sulfate precipitation) and eluted with a linear gradient of 100-700 mM NaCl. The peak fractions (fr# 41-55) were combined, diluted with buffer A containing no salt (a dilution of 1/5) to a conductivity of 100 mM NaCl, loaded (310 mg) onto a 300 ml Heparin-Affigel column, and eluted with a linear gradient of 100-500 mM NaCl. The peak fractions (fr# 21-36) were combined, dialyzed against buffer A, loaded (87 mg) onto 10 ml FFQ column, and eluted as described for the first FFQ column. The peak fractions (fr# 27-41) were concentrated by centrifugation in Centriprep 30 filtration unit and frozen at -80°C. The final tau subunit preparation is shown in the lane marked τ of the Coomassie Blue stained SDS-polyacrylamide gel of Figure 14. Yield = 103 mg.

Example 26 - Identification of the S. pyogenes dnaN Gene and Purification of the Beta Subunit

A search of the S. pyogenes genome database with the putative B.

subtilis beta subunit amino acid sequence revealed a DNA sequence (contig # 266)

with a high scoring match which predicted a gene encoding for a beta subunit protein.

A set of PCR primers to 5'- and 3'- termini of the putative gene sequence were designed to include restriction enzyme recognition sequences for NdeI and BamHI,

respectively. The primers were:

dnaN Upstream (SEQ. ID. No. 75)
ggagttcata tgattcaatt ttcaaattaa tcgc

30 <u>dnaN Downstream</u> (SEQ. ID. No. 76)
tatcagctcc tggatccagt accttccatt gattagcc

A PCR product obtained with these primers was digested with NdeI and BamHI, purified and ligated into pET16b vector to produce pET16b.S.p.dnaN.

The pET16b.S.p.dnaN plasmid was transformed into the BL21(DE3)RecA- strain of E. coli. A single colony from an overnight transformation was used to innoculate 15L LB broth supplemented with 200 μ g/ml Ampicillin. Cells were grown at 37°C to O.D.600=0.4, at which the point temperature was lowered to 15°C and 0.5 mM IPTG was added. Induction proceeded for 16 hrs. In the morning, cells were collected by centrifugation and resuspended in 100 ml 50 mM Tris-HCl (pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer/1 M NaCl/5 mM DTT/ 30 mM Spermidine/5 mM EDTA. Cells were lysed by two passages through the French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min. Ammonium sulfate was added to the supernatant to a final concentration of 0.3 g/ml. The resulting protein pellet was resuspended and dialyzed against buffer A containing 50 mM NaCl. The dialyzed protein (300 mg) was loaded onto a 45 ml FFQ- Sepharose column and eluted with a linear gradient from 50 - 500 mM NaCl. The peak fractions (16-30) were combined, dialyzed against buffer A containing 50 mM NaCl, loaded onto a 25 ml EAH-Sepharose column, and eluted with a linear gradient of 50-500 mM NaCl. The fractions containing the least contaminants were combined into two pools (pool I 10-17, pool II 19-27). Each pool was further purified on a 8 ml MonoQ column (performed under conditions described for the FFQ column above). The final beta subunit preparation is shown in the lane marked β of the Coomassie Blue stained SDS-polyacrylamide gel of Figure 14. Yield = 48 mg.

<u>Example 27</u> - Identification of the *S. pyogenes polC* Gene and Purification of the Alpha-Large Polymerase Subunit

25

30

20

5

10

15

A search of the *B. subtilis* genome database with the *E. coli* alpha subunit amino acid sequence revealed two DNA sequences with a high scoring match which predicted two genes encoding alpha-like polymerase subunits. The DNA sequence with the second highest scoring match which encoded the largest of the two polymerase subunits also appeared to encode for the epsilon exonuclease domain at the N- terminus of the putative alpha subunit. A search of the *B. subtilis* genome database with *S. pyogenes* DNA sequence confirmed this nucleotide sequence to encode the Gram positive homolog of the *E. coli* replicative polymerase subunit (alpha). This Gram negative alpha-like subunit lacked homology to epsilon. The gene encoding the large alpha polypeptide sequence (alpha-large) will be referred to as

the product of the polC gene and the gene encoding the smaller Gram-negative alphalike polymerase (alpha-small) will be referred to as the product of the polE or dnaE gene (see Example 28).

The alpha-large polymerase polypeptide is a product of two overlapping contigs; contig #197 (renamed #193) encodes the N-terminal 630 amino acids, and contig #278 (renamed #273) encodes the C-terminal 1392 amino acids. The putative Open Reading Frame generates a 1464 amino acid polypeptide (SEQ. ID. No. 18). Since the *polC* nucleotide sequence contained several NdeI sites, a primer was designed to mutate two restriction endonuclease sites in the pET11a nucleotide sequence upstream of the N-terminus of the gene; an XbaI restriction site was mutated to an NheI restriction site and an NdeI restriction site at the starting ATG was removed. A 74mer primer which spans from mutated XbaI site upstream of T7 promoter includes NheI site, rbs site (ribosome binding site), mutated NdeI site and first 10 amino acid codons of *polC* gene sequence. The following primers were used in a PCR reaction to amplify *polC* gene from S. pyogenes genomic DNA:

polC Upstream (SEQ. ID. No. 77)

ggataacaat tccccgctag caataatttt gtttaacttt aagaaggaga tatacccatg 60 tcagatttat tcgc 74

20

25

15

5

10

polC Downstream (SEQ. ID. No. 78) cggtgtctct atctaaatga ctcatttggg atcctcgctt tatacggtat gtcacag 57

Elongase (BRL) produced the best amplification results. PCR reaction conditions were: 5 μg genomic DNA, 20 ng of each primer, 1 ml Elongase, 60 μM each dNTP, in 100 ml Elongase reaction buffer for 1 min at 94°C, 1 min at 55°C, and 6 min at 60°C repeated for 40 cycles. The resulting 4000 bp PCR fragment was digested with NheI and BamHI, purified and ligated into the pET11a vector (digested with XbaI and BamHI) to produce pET11a.S.p.polC.

30

The pET11a.S.p.polC plasmid was transformed into the BL21(DE3)RecA- strain of *E. coli*. A single colony from an overnight transformation was used to innoculate 24L LB broth supplemented with 200 µg/ml Ampicillin. Cells were grown at 37°C to OD600=0.4 at which point temperature was lowered to 15°C and 0.5 mM IPTG was added. Induction proceeded for 16 hrs. In the morning, cells

PCT/US00/20666

5

10

15

20

25

30

- 119 -(12g) were collected by centrifugation and resuspended in 100 ml 50 mM Tris-HCl

(pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer/1 M NaCl/5mM DTT/30 mM Spermidine/5 mM EDTA. Cells were lysed by two passages through the French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min. Ammonium sulfate was added to the supernatant to a final concentration of 0.226 g/ml. The precipitate was collected by centrifugation. The protein pellet (220 mg resuspended in buffer A) was dialyzed against buffer A containing 150 mM NaCl, loaded onto an 8 ml FFQ column equilibrated with buffer A containing 150 mM NaCl, and eluted with a linear gradient of buffer A containing 150-600mM NaCl. The fractions containing the least contaminants (fr# 42-64) were combined and precipitated with ammonium sulfate (0.226 g/ml). The precipitate was collected by centrifugation and resuspended in buffer A (10 mg/ml in 5 ml). A fraction (1 ml=10mgs) of the concentrated protein was dialyzed, loaded onto 10 ml ssDNA-agarose column, and eluted with a linear gradient of 50-500 mM NaCl. The peak fractions (fr# 30-50) were combined and concentrated with ammonium sulfate (as above). The final alpha-large subunit preparation is shown in lane marked α_L of the Coomassie Blue stained SDSpolyacrylamide gel of Figure 14. Yield= 4 mgs.

Example 28 - Identification of the S. pyogenes dnaE Gene and Purification of the Alpha-Small Polymerase

A search of the B. subtilis genome database using the E. coli alpha subunit amino acid sequence revealed two DNA sequences with a high scoring match which predicted two genes encoding for alpha-like polymerase subunits. The DNA sequence with the highest scoring match encodes a smaller alpha polymerase which does not contain an exonuclease domain. The putative short alpha DNA sequence is a product of the open reading frame in contig #253 of the S. pyogenes genome database. A set of PCR primers to 5'- and 3'-termini of the putative gene sequence were designed to include restriction enzyme recognition sequences for NdeI and BamHI, respectively. The primers were:

α -short Upstream (SEQ. ID. No. 79) gggaacaaga taaccaagga ggaacccatg gttgctcaac ttg

10

15

20

α-short Downstream (SEQ. ID. No. 80) cgaatagcag cgttcatacc aggatcctcg ccgccactgg

40

A PCR product obtained with these primers was digested with Ndel and BamHI, purified and ligated into pET11a vector to produce pET11a.S.p.dnaE.

The pET11a.S.p.dnaE plasmid was transformed into the BL21(DE3)RecA- strain of E. coli. A single colony from an overnight transformation was used to innoculate 12L LB broth supplimented with 200 μg/ml Ampicillin. Cells were grown at 37°C to OD600=0.4, at which point temperature was lowered to 15°C and 0.5 mM IPTG was added. Induction proceeded for 16 hrs. In the morning, cells were collected by centrifugation and resuspended in 100 mls 50 mM Tris-HCl (pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer/5 mM DTT/30 mM Spermidine/1M NaCl/5 mM EDTA. Cells were lysed by two passages through the French press (15,000 psi), followed by centrifugation at 13,000 rpm for 30 min. Ammonium sulfate was added to the supernatant to a final concentration of 0.226 g/ml. The precipitate was collected by centrifugation. The protein pellet (resuspended in buffer A) was then dialyzed against buffer A. The dialyzed protein (600 mg) was loaded onto a 30 ml FFQ and eluted with a linear gradient of buffer A containing 50-500 mM NaCl. The peak fractions (200 mg in fr # 70-79) were dialyzed and loaded onto a 100 ml Heparin-Affigel column. The fractions containing the least contaminants (100 mg from fr # 18-30) were pooled and dialyzed against buffer A containing 300 mM NaCl. The dialysate (50 mg) was loaded onto a 50 ml ssDNA-agarose column and eluted with a linear gradient of 300mM - 1M NaCl. The final alpha-small subunit preparation is shown in lane marked α_S of the Coomassie Blue stained SDSpolyacrylamide gel of Figure 14. Yield = 25 mg.

Example 29 - Identification of the S. pyogenes ssb Gene and Purification of the Single Strand DNA-Binding Protein

30

25

Search of the S. pyogenes genome using the B. subtilis SSB amino acid sequence identified a polypeptide in contig #230(212) as having highest homology to single strand binding protein of several Gram negative bacteria. This contig lacked the first 26 amino acids at the N-terminus. Circular PCR was employed to identify the DNA encoding the N-terminus of the putative SSB protein. S. pyogenes genomic

DNA was digested overnight with ApoI (5 µg chromosomal DNA in a 50 µl reaction). The DNA was extracted with phenol and precipitated with ethanol. The ApoI digested chromosomal DNA was self-ligated to generate circular template for future use in the circular PCR. A circular PCR was performed with primers designed to anneal back-to-back to amplify circularized ApoI reaction fragments. The primers were:

ssb.circ Upstream (SEQ. ID. No. 81)

accattttgg cttttaaagg tacggttaac agcaagtgtg aaggtagcc

49

10

15

20

25

30

5

ssb.circ Downstream (SEQ. ID. No. 82)

gaacgcgagg cagatttcat taactgtgtg atctggcg

38

The PCR reaction conditions were as follows: 100 ng circularized *S. pyogenes* genomic DNA, 20 ng each primer, 1 ml Elongase, 60 µM each dNTP, 100 1 Elongase reaction buffer. Amplification was performed for 40 cycles as follows: denature, 1 min at 94°C; anneal, 1 min at 55°C; and extend, 5 min at 68°C. PCR products were cloned into the Topo TA vector following instructions of the manufacturer (Promega). Several positive clones were sequenced to obtain N-terminal nucleotide sequence. This information lead to design of the following primers with which the use of a standard PCR reaction generated whole *ssb* gene products. The primers were:

ssb Upstream (SEQ. ID. No. 83)

tttaaaagag ggtagcatat gattaataat gtagtactag ttggtcgc

48

ssb Downstream (SEQ. ID. No. 84)

tttaaattta aacctaggtt caatccattc tgactagaat ggaagatcgt c

51

The resulting PCR product was digested with NdeI and BamHI, purified and ligated into pET11a vector to produce pET11a.S.p. ssb.

The pET11a.S.p.ssb plasmid was transformed into the BL21(DE3)RecA- strain of *E. coli*. A single colony from an overnight transformation was used to innoculate 12L LB broth supplemented with 200 µg/ml Ampicillin. Cells

10

15

20

25

30

PCT/US00/20666

were grown at 37°C to OD600=0.5, at which point 0.5 mM IPTG was added. At the end of the 3 hr induction, cells were collected by centrifugation and resuspended in 100 ml of 50 mM Tris-HCl (pH 7.5)/ 10% Sucrose /1X Heat Lysis Buffer/5 mM DTT/5 mM EDTA. The cell lysis was initiated upon addition of 0.4 mg/ml lysozyme followed by a 1 hr incubation on ice. The lysate was clarified by centrifugation at 13,000 rpm for 30 min. The SSB protein was significantly purified by sequential fractionation with ammonium sulfate in the following manner. Solid ammonium sulfate was added to the clarified lysate to a final concentration of 0.24 g/ml and the precipitated protein was collected by centrifugation at 13,000 rpm for 30 min. The resulting pellet was homogenized in buffer A(0.1 M NaCl) + 0.24 g/ml ammonium sulfate and the precipitate was collected by centrifugation. This procedure was repeated with buffer A(0.1 M NaCl) + 0.2 g/ml ammonium sulfate, buffer A(0.1 M NaCl + 0.15 g/ml ammonium sulfate, and buffer A(0.1 M NaCl) + 0.13 g/ml ammonium sulfate. The final pellet was resuspended in buffer A + 0.15 M NaCl and dialyzed against the same buffer. The resulting pellet was resuspended in buffer A and dialyzed against buffer A containing 500 mM NaCl. The dialysate (300 mg) was diluted to 0.15 M NaCl before it was loaded onto a 20 ml MonoQ column and eluted with a linear gradient of 0.15 M - 0.5 M NaCl in buffer A. The SSB protein elutes in the very beginning of the gradient. The peak fractions were combined (150 mg in fractions 16-30), diluted to 0.05 M NaCl, loaded onto a 10 ml ssDNA-agarose column, and eluted with 0.5 M NaCl. The peak fractions (32-62) were combined and frozen. The SSB was further purified over a MonoQ column to remove contaminating polymerase activity. The final single strand DNA binding protein preparation is shown in lane marked ssb of the Coomassie Blue stained SDS-polyacrylamide gel of Figure 14. Yield = 120 mg.

Example 30 - First Demonstration that S. pyogene hold Encodes a Delta Subunit Involved In Replication: Assembly of τδδ' Complex

Gel filtration is a standard analytical technique to demonstrate direct protein-protein interaction. Purified τ , δ , δ ' proteins were used to examine whether they form a protein complex assembly. Gel filtration of τ mixed with either δ , δ ', or both δ and δ ' was performed using an HR 10/30 Superose 6 column equilibrated with

buffer A containing 100 mM NaCl. Either δ (200 μ g), δ ' (200 μ g), or a mixture of δ and δ ' (200 μ g each) was incubated for 30 min at 15°C in 100 μ l of buffer A containing 100 mM NaCl, and the entire mixture was injected onto the column. The mixture was resolved on the column by collection of 170 μ l fractions after the initial void (6.6 μ l) volume was collected. Fractions were analyzed by 10% SDS-polyacrylamide gels (30 μ l/lane) stained with Coomassie Blue.

The results, in Figure 15, demonstrate that under these conditions the τ protein exhibits no (weak) interaction with the delta (Figure 15B) and the delta prime subunits (Figure 15C) individually, and yet assembles readily into a complex when all the subunits are mixed in the reaction (Figure 15A). The τ protein was mixed with a 2-fold molar excess of each δ and δ ', then gel filtered. A complex of $\tau\delta\delta$ ' was formed as demonstrated by coellution of δ and δ ' with τ (fr# 22-30) whereas excess $\delta\delta$ ' complex elutes in later fractions (fr#38-46). To determine whether individual δ or δ ' subunits interact with τ , the τ subunit was mixed with either δ or δ ' and then gel filtered. The results demonstrate that a gel filterable complex does not form when τ is mixed with δ (Figure 15B) or δ ' (Figure 15C) subunits individually, as indicated by the absence of these subunits in the τ containing fractions (fr#20-26). Therefore, it appears that the presence of both δ and δ ' subunits is essential for the formation of the $\tau\delta\delta$ ' complex.

20

25

30

5

10

15

Example 31 - Second Demonstration that S. pyogenes hold Encodes Delta: Functional Assembly of β on DNA

Gel filtration was used to demonstrate that the τ , δ , δ' proteins form a functional clamp loading complex which is able to load the β clamp onto a circular DNA molecule. The reaction contained 0.5 pmol of gp2 nicked pBluescript plasmid (a circular double strand plasmid with a single nick produced by M13 gp2 protein), 1 pmol [32 P] β , 0.5 pmol $\tau\delta\delta'$ complex, 0.25 pmol of either δ , δ' , τ were used in individual experiments when a subassembly of the complex was tested ($\tau\delta$, $\tau\delta'$, $\delta\delta'$) in 75 μ l buffer B (20 mM Tris-HCl (pH 7.5), 20 % glycerol, 0.1 mM EDTA, 5 mM DTT, 2 mM ATP, 8 mM MgCl₂). β was incubated with nicked DNA for 10 min at 37°C either alone, or in combination with various assemblies of the τ complex. All gel

- 124 -

filtration experiments were performed at 4°C. The reaction mixtures were applied to a 5 ml column of Bio-Gel 15M (Bio-Rad) equilibrated in buffer B containing 100 mM NaCl. Fractions of 170 µl were collected and quantitated in the Scintillation counter.

The results, in Figure 16, demonstrate that the assembly of the ring onto a circular DNA molecule requires the presence of τ , δ , and δ' proteins (Figure 16A). In absence of any one of the subunits, loading onto DNA does not occur (Figure 16B-E). The clamp loader complex ($\tau\delta\delta'$) can be supplied as a mixture of τ , δ , δ' subunits or as an assembled complex (purified from unassembled subunits by gel filtration, or by ion exchange chromatography on MonoQ). Proteins bound to the large DNA molecule elute in the early fractions (void fr# 10-17) and resolve from free proteins that elute in later fractions (fr# 18-35).

Example 32 - The τ Subunit Product of the dnaX Gene Binds α -large

15

20

25

5

10

The interaction of S. pyogenes α and τ proteins was examined by analyzing a mixture of the proteins by gel filtration. Gel filtration of τ , α -large or a mixture of α -large and τ was performed using an HR 10/30 Superose 6 column equilibrated with buffer A containing 100 mM NaCl. Either α -large (400 µg) (200 µM) or a mixture of α -large and τ was incubated for 30 min at 15°C in 100 µl of buffer A containing 100 mM NaCl, and the entire mixture was injected onto the column. The mixture was resolved on the column by collection of 170 µl fractions after the initial void (6.6 ml) volume was collected. Fractions were analyzed by 10% SDS-polyacrylamide gels (30 µl/lane) stained with Coomassie Blue.

The results show a complex of $\alpha_L \tau$ was formed as demonstrated by coellution of α -large and τ (fr# 30-38) proteins (Figure 17A) compared to the elution profile of individual proteins (Figure 17B-C). Also, the migration of the τ in the $\alpha_L \tau$ complex changes significantly to a larger complex (4 fractions, from fr# 37 to fr# 33).

Example 33 - Formation of αLτδδ' Complex

30

To determine whether a $\alpha_L \tau \delta \delta'$ complex could form, the following components were mixed: α -large (400 μ g, 2.5 nmol), τ (200 μ g, 1.3 nmol), δ (200 μ g,

WO 01/09164 PCT/US00/20666

- 125 -

4.8 nmol), δ' (200 μg, 5.75 pmol) in a final volume of 150 μl. The mixture was diluted to 300 ml with buffer A to lower conductivity of the sample to that equivalent of 100 mM NaCl and incubated for 30 min at 15°C. The mixture was injected onto a Superose 6 column (equilibrated with buffer A containing 100 mM NaCl) and fractions (170 μl) were collected after an initial 6.6 ml of void volume was collected. Fractions were analyzed by 10% SDS-polyacrylamide gels (30 μl/lane) stained with Coomassie Blue.

5

10

15

20

25

30

A gel filterable complex (Figure 18A) of $\alpha_L \tau \delta \delta'$ was formed as demonstrated by coellution of τ , δ and δ' with α -large (fr# 14-26), whereas excess $\delta \delta'$ complex elutes in later fractions (fr# 30-38). The migration of the $\tau \delta \delta'$ protein complex in the $\alpha_L \tau \delta \delta'$ complex does not change significantly. The complex might dissociate under the nonequilibrium conditions of gel filtration due to low concentration of proteins, salt concentration and speed of resolution.

Next, ion exchange chromatography was used to analyze the protein mixture to prepare the reconstituted $\alpha_L\tau\delta\delta'$ complex of *S. pyogenes*. The $\alpha_L\tau\delta\delta'$ complex was reconstituted upon mixing α -large (10 mg, 62 nmol), τ (6 mg, 72 nmol), δ (3.3 mg, 80 nmol), δ' (1.6 mg, 90 nmol). The α , τ , δ , δ' protein mixture was dialyzed for 2 hrs against buffer A containing 50 mM NaCl. The entire mixture was loaded onto a 1 ml MonoQ column equilibrated in buffer A containing 50 mM NaCl. Proteins were eluted with a 20 column volume linear gradient of 50-500 mM NaCl in buffer A and 0. 25 ml fractions were collected. Fractions were analyzed by 10% SDS-polyacrylamide gels (20 μ l/lane) stained with Coomassie Blue.

Generally, the reconstitution of the $\alpha_L \tau \delta \delta'$ complex on a MonoQ column results in a tight salt resistant complex (Figure 18B, fr# 23-35) which elutes at 500 mM NaCl. The high concentration of the proteins in the eluted fractions contributes to stability of the complex.

<u>Example 34</u> - The S. pyogenes Three Component Pol III-L Polymerase Is Rapid and Processive In DNA Synthesis

It was previously demonstrated (i.e., in Examples 29 and 30) that the putative delta subunit plays an integral part in the assembly of the τδδ' complex

(Figure 15) and that this complex is sufficient to assemble β clamps onto circular primed DNA (Figure 16). It was also shown that the strong interaction between the α -large and τ subunits (Figure 17) results in an isolatable $\alpha_L \tau \delta \delta'$ complex (Figure 18), similar to that of the *E. coli* DNA polymerase III*.

5

10

The MonoQ fractions containing $\alpha_L \tau \delta \delta'$ complex were then used to assemble β onto primed DNA and determine whether this now resulted in rapid and processive DNA synthesis. Replication reactions contained 70 ng of singly primed M13mp18 ssDNA and 0.82 µg of *S. pyogenes* SSB in 25 µl buffer C (20 mM Tris-HCl (pH 7.5), 4 % glycerol, 0.1 mM EDTA, 5 mM DTT, 2 mM ATP, 8 mM MgCl₂) with 60 µM each of dGTP, dCTP, and dATP, 30 µM cold TTP and 20 µM [α -32P] TTP (specific activity of 2,000-4,000 cpm/pmol). The complex is assembled onto DNA in the following manner: 40 ng (3:1) or 140 ng (10:1) of the $\alpha_L \tau \delta \delta'$ complex and 60 ng of β protein were preincubated for 2 min at 30°C in presence of SSB coated primed M13 DNA and two nucleotides (dCTP and dGTP). Reactions were initiated by addition of the two remaining nucleotides dATP and TTP and quenched with an equal volume of 1% SDS/40 mM EDTA. Each time point is a separate reaction.

15

20

A time course of replication on singly primed circular M13mp18 ssDNA is shown in Figure 19. The agarose gel analysis shows conversion of the oligonucleotide primed single stranded DNA to the slower migrating replicative form II. The fact that the speed of synthesis is independent of the concentration of polymerase in the reaction indicates that the $\alpha_L \tau \delta \delta'$ complex synthesizes DNA in a rapid and a highly processive manner. The *S. pyogenes* $\alpha_L \tau \delta \delta'$ complex in presence of the β clamp, completely replicates (is able to complete replication of) 7250 nt of M13mp18 ssDNA in 8-9 sec.

25

30

Example 35 - The S. pyogenes DnaE (α -small) Forms a Three-Component Polymerase with $\tau\delta\delta'$ and β

The S. pyogenes DnaE (α -small) polymerase is more homologous to E. coli α than S. pyogenes PolC. Thus, it seems reasonable to expect that the DnaE polymerase may also function with the β clamp (Figs. 21A-B). To test DnaE for function with $\tau\delta\delta'$ and β , replication reactions contained 70 ng (25 fmol) of 30-mer singly primed

M13mp18 ssDNA, 0.82 μg of S. pyogenes SSB, and 3.3 ng - 300 ng of DnaE (25 fmol

PCT/US00/20666

- 2.3 pmol) in 23.5 μl of 20 mM Tris-HCl (pH 7.5), 4% glycerol, 0.1 mM EDTA, 5 mM dithiothreitol (DTT), 40 μg/ml BSA, 2 mM ATP, 8 mM MgCl₂, and 60 μM each of dGTP and dCTP. When present, reactions included 43.3 ng of β and 10 ng of $\tau\delta\delta$ '. Reactions were preincubated for 3 min at 37°C, and then NaCl was added to 40 mM followed by another 2 min at 37°C. DNA synthesis was initiated upon addition of 1.5 μl of 1.5 mM dATP, 0.5 mM [α ³²P]-dTTP (specific activity 2,000-4,000 cpm/pmol). Aliquots of 25 μl were removed at the indicated times and quenched with an equal volume (25 μl) of 1% SDS, 40 mM EDTA. One-half of the quenched reaction was analyzed for total deoxynucleotide incorporation using DE81 filter paper and the other half was analyzed on a 0.8% neutral agarose gel. The effect of TMAU was also examined, in which 100μM TMAU in DMSO (2% DMSO final concentration) was present. In this case, replication was allowed to proceed for 1 min before being quenched with 25 μl of 1% SDS, 40 mM EDTA.

15

20

25

30

10

5

At a saturating concentration of DnaE polymerase, the time course of primer extension shows that it completes an M13mp18 primed ssDNA template within 2 minutes for a speed of at least 60 nucleotides/s (Fig. 21C). This rate of synthesis holds true for the highest amount of DnaE in the rightmost panel of the figure. As the DnaE concentration is decreased, a longer time is required to complete the circular template, indicating that the DnaE polymerase is not processive over the entire length of the M13mp18 template. If the DnaE polymerase were fully processive during synthesis of the 7.2 kb ssDNA circle, the product profile over time would be qualitatively similar at all concentrations of enzyme, but the overall intensity of the profile would be diminished. This particular experiment was performed in the absence of β , but presence of δ . When repeated in the presence of β but without δ 0, and in the absence of both β and δ 0, results similar to those shown in Fig. 21C were observed.

In the presence of β and $\tau\delta\delta'$, DnaE polymerase is stimulated in synthesis at low concentration, indicating that β increases the processivity and/or speed of DnaE (Figs. 21C-D). At higher concentrations of DnaE, the presence of $\beta/\tau\delta\delta'$ has no effect on the rate of synthesis, and thus β does not increase the intrinsic speed of the enzyme (i.e., panels 3 and 4 of Fig. 21D). Hence, the effect of the β clamp on DnaE is

primarily due to an increase in processivity. The profile of product length over time remains essentially unchanged at the different DnaE concentrations, and therefore the processivity of DnaE, with β is at least equal to the 7.2 kb length of the M13mp18 substrate.

5

The DnaE sequence does not show homology to an exonuclease, implying that it may have no associated nuclease activity. The DnaE preparation was examined for the presence of a 3'-5' exonuclease (Fig. 21E). The DnaE and PolC polymerases were each incubated with a 5' 32P-labeled oligonucleotide, followed by analysis in a sequencing gel. The result showed no degradation of the oligonucleotide by DnaE. PolC is a known 3'-5' exonuclease and it digests the end-labeled oligonucleotide as expected.

15

10

Gram positive PolC is known to be inhibited by the antibiotic hydroxyphenylaza-uracil ("HPUra") and its derivatives. In Fig. 21F, the PolC· $\tau\delta\delta$ ', β and DnaE were tested for inhibition of synthesis on SSB coated primed M13mp18 ssDNA by an HPUra derivative, trimethylanilino-uracil ("TMAU"). The PolC· $\tau\delta\delta$ ' β enzyme was prevented from forming the RFII product by TMAU. In contrast, the DnaE polymerase was not affected by TMAU in the presence of $\tau\delta\delta$ '/ β (nor in the absence of $\tau\delta\delta$ '/ β , not shown).

20

Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

10

30

WHAT IS CLAIMED:

- 1. An isolated DNA molecule from a Gram positive bacterium, the isolated DNA molecule comprising a coding region from a polC gene, a dnaE gene, a holA gene, a holB gene, a dnaX gene, a dnaN gene, a ssb gene, a dnaG gene, or a dnaB gene.
 - 2. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *polC* gene.
 - 3. The isolated DNA molecule according to claim 2, wherein the Gram positive bacterium is Streptococcus pyogenes.
- 4. An isolated DNA molecule according to claim 3, wherein the
 DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 18.
 - 5. The isolated DNA molecule according to claim 4, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 17.
- 20 6. The isolated DNA molecule according to claim 2, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 17 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
- The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *dnaE* gene.
 - 8. The isolated DNA molecule according to claim 7, wherein the Gram positive bacterium is Streptococcus pyogenes.
 - 9. The isolated DNA molecule according to claim 8, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 20.

- 10. The isolated DNA molecule according to claim 9, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 19.
- The isolated DNA molecule according to claim 7, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 19 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
- 12. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *holA* gene.
 - 13. The isolated DNA molecule according to claim 12, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
- 15 14. The isolated DNA molecule according to claim 13, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 22.
 - 15. The isolated DNA molecule according to claim 14, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 21.
 - 16. The isolated DNA molecule according to claim 12, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 21 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
 - 17. The isolated DNA molecule according to claim 12, wherein the Gram positive bacterium is *Staphylococcus aureus*.
- The isolated DNA molecule according to claim 17, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 12.
 - 19. The isolated DNA molecule according to claim 18, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 11.

15

- 20. The isolated DNA molecule according to claim 12, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 11 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
- 21. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding regiong from the *holB* gene.
- The isolated DNA molecule according to claim 21, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
 - 23. The isolated DNA molecule according to claim 22, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 24.
 - 24. The isolated DNA molecule according to claim 23, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 23.
 - 25. The isolated DNA molecule according to claim 21, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 23 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
- 26. The isolated DNA molecule according to claim 21, wherein the Gram positive bacterium is *Staphylococcus aureus*.
 - 27. The isolated DNA molecule according to claim 26, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 14.
- The isolated DNA molecule according to claim 27, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 13.

29. The isolated DNA molecule according to claim 21, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 13 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.

5

- 30. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *dnaX* gene.
- 31. The isolated DNA molecule according to claim 30, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
 - 32. The isolated DNA molecule according to claim 31, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 26.
- 15 33. The isolated DNA molecule according to claim 32, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 25.
 - 34. The isolated DNA molecule according to claim 30, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 25 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
 - 35. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *dnaN* gene.

25

- 36. The isolated DNA molecule according to claim 35, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
- 37. The isolated DNA molecule according to claim 36, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID: No. 28.
 - 38. The isolated DNA molecule according to claim 37, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 27.

15

- 39. The isolated DNA molecule according to claim 35, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 27 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
- 40. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the ssb gene.
- The isolated DNA molecule according to claim 40, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
 - 42. The isolated DNA molecule according to claim 41, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 30.
 - 43. The isolated DNA molecule according to claim 42, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 29.
- DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 29 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
 - 45. The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *dnaG* gene.
 - 46. The isolated DNA molecule according to claim 45, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
- The isolated DNA molecule according to claim 46, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 32.

25

- 48. The isolated DNA molecule according to claim 47, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 31.
- The isolated DNA molecule according to claim 45, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 31 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
- The isolated DNA molecule according to claim 1, wherein the DNA molecule comprises the coding region from the *dnaB* gene.
 - 51. The isolated DNA molecule according to claim 50, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
- The isolated DNA molecule according to claim 51, wherein the DNA molecule encodes an amino acid sequence comprising SEQ. ID. No. 34.
 - 53. The isolated DNA molecule according to claim 52, wherein the DNA molecule comprises a nucleotide sequence of SEQ. ID. No. 33.
 - 54. The isolated DNA molecule according to claim 50, wherein the DNA molecule hybridizes to a nucleic acid molecule of SEQ. ID. No. 33 under stringent conditions characterized by use of a hybridization buffer comprising 0.9M SSC buffer at a temperature of 37°C.
 - 55. An expression system comprising an expression vector into which is inserted a heterologous DNA molecule according to claim 1.
 - 56. The expression system according to claim 55, wherein the heterologous DNA molecule is in sense orientation and correct reading frame.
 - 57 A host cell comprising a heterologous DNA molecule according to claim 1.

	58.	An isolated protein or polypeptide from a Gram positive		
bacterium, wherein the isolated protein or polypeptide is alpha-large, alpha-small,				
delta, delta p	rime, tau	, beta, SSB, DnaG, or DnaB.		

- 59. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is alpha-large.
- 60. The isolated protein or polypeptide according to claim 59, wherein the Gram positive bacterium is Streptococcus pyogenes.
 - 61. The isolated protein or polypeptide according to claim 60, wherein the alpha-large protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 18.

15

20

- 62. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is alpha-small.
- 63. The isolated protein or polypeptide according to claim 62, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
 - 64. The isolated protein or polypeptide according to claim 63, wherein the alpha-small protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 20.

- 65. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is delta.
- 66. The isolated protein or polypeptide according to claim 65, wherein the Gram positive bacterium is *Streptococcus pyogenes*.

- 67. The isolated protein or polypeptide according to claim 66, wherein the delta protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 22.
- 5 68. The isolated protein or polypeptide according to claim 65, wherein the Gram positive bacterium is *Staphylococcus aureus*.
 - 69. The isolated protein or polypeptide according to claim 68,wherein the delta protein or polypeptide comprises an amino acid sequence of SEQ.ID. No. 12.
 - 70. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is delta prime.
- The isolated protein or polypeptide according to claim 70, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
- 72. The isolated protein or polypeptide according to claim 71, wherein the delta prime protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 24.
 - 73. The isolated protein or polypeptide according to claim 70, wherein the Gram positive bacterium is *Staphylococcus aureus*.
- 25 74. The isolated protein or polypeptide according to claim 73, wherein the delta prime protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 14.
- 75. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is tau.
 - 76. The isolated protein or polypeptide according to claim 75, wherein the Gram positive bacterium is *Streptococcus pyogenes*.

	77.	The isolated protein or polypeptide according to claim 76,		
wherein the tau protein or polypeptide comprises an amino acid sequence of SEQ. ID				
No. 26.				

- 78. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is beta.
- 79. The isolated protein or polypeptide according to claim 78, wherein the Gram positive bacterium is Streptococcus pyogenes.
 - 80. The isolated protein or polypeptide according to claim 79, wherein the beta protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 28.

15

- 81. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is SSB.
- 82. The isolated protein or polypeptide according to claim 81, wherein the Gram positive bacterium is Streptococcus pyogenes.
 - 83. The isolated protein or polypeptide according to claim 82, wherein SSB comprises an amino acid sequence of SEQ. ID. No. 30.
- 25 84. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is DnaG.
 - 85. The isolated protein or polypeptide according to claim 84, wherein the Gram positive bacterium is Streptococcus pyogenes.

30

86. The isolated protein or polypeptide according to claim 85, wherein the DnaG protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 32.

15

20

25

- 87. The isolated protein or polypeptide according to claim 58, wherein the isolated protein or polypeptide is DnaB.
- 5 88. The isolated protein or polypeptide according to claim 87, wherein the Gram positive bacterium is *Streptococcus pyogenes*.
 - 89. The isolated protein or polypeptide according to claim 88, wherein the DnaB protein or polypeptide comprises an amino acid sequence of SEQ. ID. No. 34.
 - 90. A method of identifying compounds which inhibit the activity of a polymerase product of *polC* or *dnaE* comprising:

forming a reaction mixture comprising a primed DNA molecule, a polymerase product of *polC* or *dnaE*, a candidate compound, a dNTP, and optionally either a beta subunit, a tau complex, or both the beta subunit and the tau complex, wherein at least one of the polymerase product of *polC* or *dnaE*, the beta subunit, the tau complex, or a subunit or combination of subunits thereof is derived from a Eubacteria other than *Escherichia coli*;

subjecting the reaction mixture to conditions effective to achieve nucleic acid polymerization in the absence of the candidate compound;

analyzing the reaction mixture for the presence or absence of nucleic acid polymerization extension products; and

identifying the candidate compound in the reaction mixture where there is an absence of nucleic acid polymerization extension products.

91. The method according to claim 90, wherein the polymerase product of polC or dnaE is from a Streptococcus bacterium or a Staphylococcus bacterium.

FIGURE 1

C) Phosphocellulose

FIGURE 3

B) Nickel column

C) Mono Q

A) Linear DNA

B) Circular DNA

FIGURE 5

FIGURE 7

B) DNA Synthesis

	DNA Synthesis (pmo1) PEAK						
Addition	Peak 1	Peak 2	Peak	Peak 4			
None	22.7	70.6	146.1	4.7			
E. coli β, γ complex	72.9	61.2	71.4	25.9			

FIGURE 8

S.aureus	S.aureus	S.aureus	S.aureus	S.aureus	S.aureus
E.coli	E.coli	E.coli	E.coli	E.coli	E.coli
Sal.typ	Sal.typ	Sal.typ	Sal.typ	Sal.typ	Sal.typ
ERDAQHFIEGTKQNGYHEDISKQIFDLI	KVQYLHPHLEPILKNTYGVIIYQEQIMQIASTFANFSYGEADILRRAMSKKNRAVL ISYPDVQWQHESLKPVLEPTYGIILYQEQVMQIAQVLSGYTLGGADMLRRAMGKKKPEEM LSYPDVQWQHESLKPVLEPTYGIILYQEQVMQIAQVLSGYTLGGADMLRRAMGKKKPEEM ** * * * * * * * * * * * * * * * * * *	SQGDTTGIFQLESDGVRSVLKKLKPEHFEDIVAVTSLYRPGPMEEIPTYITRRHDPS-QRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREEQRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREEQRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREE	WIMTEAERIGLLKIDFLGLRNLSIIHQILTRVEKDLGFNIDIEKIPFDDQKVFELL FDKSDVEYAGLVKFDFLGLRTLTIINWALEMINKRRAKNGEPPLDIAAIPLDDKKSFDML FDKSDVEYAGLVKFDFLGLRTLTIINWALEMINKRRAKNGEPPLDIAAIPLDDKKSFDML * **.* ******.*.*	FKKFVHRNHRHQRWFSICKKLEGLPRHTSTHAAGIIINDHPLYEYAPLTKGDTGLLTQ LPEIYEADEEVKALIDMARKLEGVTRNAGKHAGGVVIAPTKITDFAPLYCDEEGKHPVTQ LPEIYEADEEVRALIDMARKLEGVTRNAGKHAGGVVIAPTKITDFAPLYCDEEGKHPVTQ	KIWRATCIWNCDFRSSACKAVAKDVGRIMGFDEVTLNEISSLIPHKLGITLDEAYQID-D MYGRDAVSQIITFGTMAAKAVIRDVGRVLGHPYGFVDRISKLIPPDPGMTLAKAFEAEPQ MYGRDAVSQIITFGTMAAKAVIRDVGRVLGHPYGFVDRISKLVPPDPGMTLAKAFEAEPQ * * * * * * * * * * * * * * * * * * *

S.aureusSIAKVFAKAINCLNSTDGEPCNECHICKGITQGTNSDVIEIDAASNNGVDEIRNIRDKVKYA B. sub SAAKIFAKAVNCEHAPVDEPCNECAACKGITNGSISDVIEIDAASNNGVDEIRDIRDKVKFA E. coli SIARLLAKGLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYA S.aureuskkgyclwrcnildyqalfvvptp-kfedvvgqehsedcamg-----Shaylfsgprgtgkt B.sub. -----MSYQalyrvfrpQrfedvvgqehitktlqnallqkkfshaylfsgprgtgkt E.coli -----MSYQVlarkwrpQtfadvvgqehvltalanglslgrihhaylfsgtrgvgkt -MSYQVLARKWRPQTFADVVGQEHVLTALANGLSLGRIHHAYLFSGTRGVGKT * *****

ATP site

S.aureusPSESKYKVYIIDEVHMLTTGAFNALLKTLEEPPAHAIFILATTEPHKIPPTIISRA B. sub PSAVTYKVYIIDEVHMLSIGAFNALLKTLEEPPEHCIFILATTEPHKIPLTIISRC E. coli PARGRFKVYLIDEVHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRC

* * *

* •

* ****

PARGREKVYLIDEVHMLSRHSENALLKTLEEPPEHVKELLATTDPQKLPVTILSRC

coli

FIGURE 10

S.aureus	S.aureus	S.aureus
B.sub	B.sub	B.sub
E.coli	E.coli	E.coli
Sal.typ	Sal.typ	Sal.typ
QQEVSEISRTLKALARELECPVIADSQLSPALPPRRATRPDLPRH	AVGKLS-RTKIFIDDTPGIPINDLRSKCRRLKQEHG-LYVIVIDYLQLIPGVGSRASDNR AMGSLS-NSGIYIDDIPGIRVSEIRAKCRRLKQESG-LGMILIDYLQLIQGSG-RSKDNR TMGILLEKRNIYIDDSSGLTPTEVRSRARRIAREHGGIGLIMIDYLQLMRVPALSDNR TMGILLEKRNMYIDDSSGLTPTEVRSRARRIFREHGGLSLIMIDYLQLMRVPSLSDNR ***	ALNIANKLERMKIYLAVGIFSLEMGADQLTTRMICSSGNVDSNRLRTGTMTEEDWSRFTI ALNIAQNVA-TKTDFSVAIFSLFMGAEQLVMRMLCAEGNINAQNLRTGNLTEEDWGKLTM AMNLVENAA-MLQDKPVLIFSLEMPSEQIMMRSLASLSRVDQTKIRTGQLDDEDWARISG AMNLCENAA-MLQDKPVLIFSLEMPGEQIMMRMLASLSRVDQTRIRTGQLDDEDWARISG * **** * * * * * * * * * * * * * * * *

A

B.sub.yqeN	MANDAMICSTRYCS-ARBALCTARKELATTÖELAZKIKÖLAADÖELKERAITZAKITTETT	59
E.C.delta	MIRLYPTOLRAGIATETRANYLLL/STDPLLLOESCOAVROVAAAQGFTERHTFS IDPNTD	
	at 1'at 'a 11''a a att' asset ' las''' a 11'1 1, 1	
B.s.yqeN	PLOCATADAETYPTHCERRIVTVRHYTYT/CEXXXEXTERN/SALESYTQSPAPYTVF:"L	117
E.c.dolta	-HOLLTSTOOMSLEASROTTLILLPDICPHADDOULTLAGILEDDILLIVE	
	1 11 .111.11 1 111 1 1 1.11 1 . 11. 11.	
B.s.yqeN	LAPYENDERGNINGLEGENPAGAGELGIAGETTOPTVALANTEONTIGTEAAGELVIL	125
E.c.Golta	CHILSTACHUMETALARSVOVICOTEPDAGLERHYARRATILALELDDAANTVLCYC	
-,	.* .*** 111. 1 . 1 . 1	
B.s.yqeN	VNCHLSSTPOETOKICTYTCTREETTLDVVOLVARSLDONTYELINKIVNKKRTESIQI	235
E.c.delta	YDORILALAOALERISILAPDOK-LITEPKYDOAVNDAAHPTPYBAVDALLACKSKRALBI	•
a.c.:001ca	2*2* 41 * 622*, 2 * 2 2** *2 * 2 *. 62 52 **.	
B.s.ygeN	PYDŁLKONEE IKINALISKOPRLILOTKYPAROGYOOKQIASKLKVERPRKYKLANDOAR	291
E.c.delta	LOGIRIZGSZPYTLIZTIORILLLIANIZROSAHTPIR-ALFIRHRYWONRROWSEALN	
5.0.00101	1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1	
B.s.yqeN	LPSEFFERLI IDDIAVNOVENTCRURQILLEFELQILKRNEKODPHY	. 343
K.c.dolta	RESOTTEROAVILIBITE TEXODYOOSVALEDII SILLEEDI ADVILOI	343

В

B.s.yqeN S.p. dolta	-Hypdwrslakgevhevicligettilgetysrir-qtwdqetkderlsyfdleedp htatekterlsgenightilygddiggtrsrikdpilatkodlaysyfdhseaa !.!! !.*.* !! ! ' !. * * * * * * * * * * * * * * * * *	59
Boub.ygoN S.p.delta	LOGALDAETYPPHCERRLVIVRHYPINGEROUXLEENVSALESYIQSPAPYTVPVLL YQGAPHRAVSLPPPADGAVIFHHLDITTHKKSPLAUKAPPAYLENPLFTRLLIF 11° ° 11°1,°11°1° 1° 1°°. °111.°1°1°11.° ° 1111	. 117
Baub.yqaN S.p.delta	APTEKLDERGULTKALKREAPHEDARELKARETTDETVALAKTEGATIGTEAAEHLVLLV AP-CKLDSKRKLVKLLKRDALVLEANPLKRAEIKTTFGKYSEGLGLGFESGAFDOLLL *** ***	125
Baub.yqaN S.p.delta	NCHLSSIPQEIQELCTFIGEREEITLDDVMLVARSLEQHIFELDMLVARGREESL KSNDDFSQIRRAGAFLRAYKKGHISLADLEQAIPKSLQKHIFD-VTRLVLRCKIDAA [.i. °, ° 1 1 °, °, 1, 1, 1,	235
Bsub.yqeN S.p.delta	Q-IPTULIQUEEPIKINGLISQIRLILQIKYPADQKIQIQIQIASHKVEPFR RRIHHRIRGSEEDIKLIAINGQFRIFIQIATILADVXXXXQQLVISLSDIIGRKVNFYQ : :::******** .	291
Baub.yqeN S.p.dolta	VKIANDONKIPSEEDRIIDDIAVHDYEMKIKKUKQILLEIPILQILKKUEKNDPHY VKYALKUSKILSIAPIKKAVKILIETDYQIKKULYEKSYLVDIALIKDHERSOK	343

S. aureus α -L/ β : + + + + S. aureus $\tau\delta\delta'$ (ng): = 30 90

FIGURE 13

FIGURE 14

Superose 6

FIGURES 16A-E

FIGURES 17A-C

Superose 6

FIGURE 20A

FIGURE 20B

WO 01/09164

%

.

FIGURE 20E

WO 01/09164

25/29

PCT/US00/20666

1111 | 12

FIGURE 20G

FIGURE 20H

FIGURES 21A-F

SEQUENCE LISTING

<110> The Rockefeller University

<120> DNA REPLICATION PROTEINS OF GRAM POSITIVE BACTERIA AND THEIR USE TO SCREEN FOR CHEMICAL INHIBITORS

<130> 22221/1022

<140>

<141>

<150> 60/146,178

<151> 1999-07-29

<160> 84

<170> PatentIn Ver. 2.1

<210> 1

<211> 3195

<212> DNA

<213> Staphylococcus aureus

<400> 1

atggtggcat atttaaatat tcatacggct tatgatttgt taaattcaag cttaaaaata 60 gaagatgccg taagacttgc tgtgtctgaa aatgttgatg cacttgccat aactgacacc 120 aatgtattgt atggttttcc taaattttat gatgcatgta tagcaaataa cattaaaccg 180 atttttggta tgacaatata tgtgacaaat ggattaaata cagtcgaaac agttgttcta 240 gctaaaaata atgatggatt aaaagatttg tatcaactat catcggaaat aaaaatgaat 300 gcattagaac atgtgtcgtt tgaattatta aaacgatttt ctaacaatat gattatcatt 360 tttaaaaaag tcggtgatca acatcgtgat attgtacaag tgtttgaaac ccataatgac 420 acatatatgg accaccttag tatttcgatt caaggtagaa aacatgtttg gattcaaaat 480 gtttgttacc aaacacgtca agatgccgat acgatttctg cattagcagc tattagagac 540 aatacaaaat tagacttaat tcatgatcaa gaagattttg gtgcacattt tttaactgaa 600 aaggaaatta atcaattaga tattaaccaa gaatatttaa cgcaggttga tgttatagct 660 caaaagtgtg atgcagaatt aaaatatcat caatctctac ttcctcaata tgagacacct 720 aatgatgaat cagctaaaaa atatttgtgg cgtgtcttag ttacacaatt gaaaaaatta 780 gaacttaatt atgacgtcta tttagagcga ttgaaatatg agtataaagt tattactaat 840 atgggttttg aagattattt cttaatagta agtgatttaa tccattatgc gaaaacgaat 900 gatgtgatgg taggtcctgg tcgtggttct tcagctggct cactggtcag ttatttattg 960 ggaattacaa cgattgatcc tattaaattc aatctattat ttgaacgttt tttaaaccca 1020 gaacgtgtaa caatgcctga tattgatatt gactttgaag atacacgccg agaaagggtc 1080 attcagtacg tccaagaaaa atatggcgag ctacatgtat ctggaattgt gactttcggt 1140 catctgcttg caagagcagt tgctagagat gttggaagaa ttatggggtt tgatgaagtt 1200 acattanatg anatttcang tttnatccca catanattag gnattacact tgatgangca 1260 tatcaaattg acgattttaa agagtttgta catcgaaacc atcgacatga acgctggttc 1320 agtatttgta aaaagttaga aggtttacca agacatacat ctacacatgc ggcaggaatt 1380

attattaatg	accatccatt	atatgaatat	gcccctttaa	cgaaagggga	tacaggatta	1440
ttaacgcaat	ggacaatgac	tgaagccgaa	cgtattgggt	tattaaaaat	agattttcta	1500
gggttgagaa	acttatcgat	tattcatcaa	atcttaacac	aagtcaaaaa	agatttaggt	1560
attaatattg	atatcgaaaa	gattccgttt	gatgatcaaa	aagtgtttga	attgttgtcg	1620
caaggagata	cgactggcat	attccaatta	gagtctgacg	gtgtaagaag	tgtattaaaa	1680
aaattaaagc	cggaacactt	tgaagatatt	gttgctgtaa	cttctttgta	tagaccaggt	1740
ccaatggaag	aaattccaac	ttacattaca	agaagacatg	atccaagcaa	agttcaatat	1800
ttacatccgc	atttagaacc	tatattaaaa	aatacttacg	gtgttattat	ttatcaagag	1860
						1000

Phe	Tyr 50	Авр	Ala	Сув	Ile	Ala 55	Asn	Asn	Ile	Lys	Pro 60	Ile	Phe	Gly	Met
Thr 65	Ile	Tyr	Val	Thr	Asn 70	Gly	Leu	Asn	Thr	Val 75	Glu	Thr	Val	Val	Leu 80
Ala	Lys	Asn	Asn	Авр 85	Gly	Leu	Lys	Asp	Leu 90	Tyr	Gln	Leu	Ser	Ser 95	Glu
Ile	Lys	Met	Asn 100	Ala	Leu	Glu	His	Val 105	Ser	Phe	Glu	Leu	Leu 110	Lys	Arg
Phe	Ser	Asn 115	Asn	Met	Ile	Ile	Ile 120	Phe	Lys	Lys	Val	Gly 125	Asp	Gln	His
Arg	Asp 130	Ile	Val	Gln	Val	Phe 135	Glu	Thr	His	Asn	Asp 140	Thr	туг	Met	Asp
His 145	Leu	Ser	Ile	Ser	Ile 150	Gln	Gly	Arg	Lys	His 155	Val	Trp	Ile	Gln	Asn 160
Val	Сув	Tyr	Gln	Thr 165	Arg	Gln	Asp	Ala	Asp 170	Thr	Ile	Ser	Ala	Leu 175	Ala
Ala	Ile	Arg	Asp 180	Asn	Thr	Lys	Leu	Asp 185	Leu	Ile	His	qaA	Gln 190	Glu	Ąsp
Phe	Gly	Ala 195	His	Phe	Leu	Thr	Glu 200	Lys	Glu	Ile	Asn	Gln 205	Leu	Авр	Ile
Asn	Gln 210	Glu	Tyr	Leu	Thr	Gln 215	Val	Asp	Val	Ile	Ala 220	Gln	Lys	Сув	Asp
Ala 225	Glu	Leu	Lys	Tyr	His 230	Gln	Ser	Leu	Leu	Pro 235	Gln	Tyr	Glu	Thr	Pro 240
Asn	Asp	Glu	Ser	Ala 245	Lys	Lys	Tyr	Leu	Trp 250	Arg	Val	Leu	Val	Thr 255	Gln
Leu	Lys	Lys	Leu 260	Glu	Leu	Asn	Tyr	Asp 265	Val	Tyr	Leu	Glu	Arg 270	Leu	Lys

Tyr Glu Tyr Lys Val Ile Thr Asn Met Gly Phe Glu Asp Tyr Phe Leu

Ile Val Ser Asp Leu Ile His Tyr Ala Lys Thr Asn Asp Val Met Val

Gly Pro Gly Arg Gly Ser Ser Ala Gly Ser Leu Val Ser Tyr Leu Leu Gly Ile Thr Thr Ile Asp Pro Ile Lys Phe Asn Leu Leu Phe Glu Arg Phe Leu Asn Pro Glu Arg Val Thr Met Pro Asp Ile Asp Ile Asp Phe Glu Asp Thr Arg Arg Glu Arg Val Ile Gln Tyr Val Gln Glu Lys Tyr Gly Glu Leu His Val Ser Gly Ile Val Thr Phe Gly His Leu Leu Ala Arg Ala Val Ala Arg Asp Val Gly Arg Ile Met Gly Phe Asp Glu Val Thr Leu Asn Glu Ile Ser Ser Leu Ile Pro His Lys Leu Gly Ile Thr Leu Asp Glu Ala Tyr Gln Ile Asp Asp Phe Lys Glu Phe Val His Arg Asn His Arg His Glu Arg Trp Phe Ser Ile Cys Lys Lys Leu Glu Gly Leu Pro Arg His Thr Ser Thr His Ala Ala Gly Ile Ile Asn Asp His Pro Leu Tyr Glu Tyr Ala Pro Leu Thr Lys Gly Asp Thr Gly Leu Leu Thr Gln Trp Thr Met Thr Glu Ala Glu Arg Ile Gly Leu Leu Lys Ile Asp Phe Leu Gly Leu Arg Asn Leu Ser Ile Ile His Gln Ile Leu Thr Gln Val Lys Lys Asp Leu Gly Ile Asn Ile Asp Ile Glu Lys Ile Pro Phe Asp Asp Gln Lys Val Phe Glu Leu Leu Ser Gln Gly Asp Thr

Thr Gly Ile Phe Gln Leu Glu Ser Asp Gly Val Arg Ser Val Leu Lys

Lys Leu Lys Pro Glu His Phe Glu Asp Ile Val Ala Val Thr Ser Leu 565 570 575

Tyr Arg Pro Gly Pro Met Glu Glu Ile Pro Thr Tyr Ile Thr Arg Arg 580 585 590

His Asp Pro Ser Lys Val Gln Tyr Leu His Pro His Leu Glu Pro Ile 595 600 605

Gly Ala Phe Asp Ala Phe Gly Lys Thr Arg Ser Thr Leu Leu Gln Ala 820 825 830

- Ile Asp Gln Val Leu Asp Gly Asp Leu Asn Ile Glu Gln Asp Gly Phe 835 840 845
- Leu Phe Asp Ile Leu Thr Pro Lys Gln Met Tyr Glu Asp Lys Glu Glu 850 855 860
- Leu Pro Asp Ala Leu Ile Ser Gln Tyr Glu Lys Glu Tyr Leu Gly Phe 865 870 875 880
- Tyr Val Ser Gln His Pro Val Asp Lys Lys Phe Val Ala Lys Gln Tyr 885 890 895
- Leu Thr Ile Phe Lys Leu Ser Asn Ala Gln Asn Tyr Lys Pro Ile Leu 900 905 910
- Val Gln Phe Asp Lys Val Lys Gln Ile Arg Thr Lys Asn Gly Gln Asn 915 920 925
- Met Ala Phe Val Thr Leu Asn Asp Gly Ile Glu Thr Leu Asp Gly Val 930 935 940
- Ile Phe Pro Asn Gln Phe Lys Lys Tyr Glu Glu Leu Leu Ser His Asn 945 950 955 960
- Asp Leu Phe Ile Val Ser Gly Lys Phe Asp His Arg Lys Gln Gln Arg 965 970 975
- Gln Leu Ile Ile Asn Glu Ile Gln Thr Leu Ala Thr Phe Glu Glu Gln 980 985 990
- Lys Leu Ala Phe Ala Lys Gln Ile Ile Ile Arg Asn Lys Ser Gln Ile 995 1000 1005
- Asp Met Phe Glu Glu Met Ile Lys Ala Thr Lys Glu Asn Ala Asn Asp 1010 1015 1020
- Val Val Leu Ser Phe Tyr Asp Glu Thr Ile Lys Gln Met Thr Thr Leu 1025 1030 1035 1040
- Gly Tyr Ile Asn Gln Lys Asp Ser Met Phe Asn Asn Phe Ile Gln Ser 1045 1050 1055
- Phe Asn Pro Ser Asp Ile Arg Leu Ile 1060 1065

<210> 3

```
<211> 1698
<212> DNA
<213> Staphylococcus aureus
<400> 3
ttgaattatc aagcettata tegtatgtac agaceecaaa gtttegagga tgtegtegga 60
caagaacatg tcacgaagac attgcgcaat gcgatttcga aagaaaaaca gtcgcatgca 120
tatattttta gtggtccgag aggtacgggg aaaacgagta ttgccaaagt gtttgctaaa 180
gcaatcaact gtttaaatag cactgatgga gaaccttgta atgaatgtca tatttgtaaa 240
ggcattacgc aggggactaa ttcagatgtg atagaaattg atgctgctag taataatggc 300
gttgatgaaa taagaaatat tagagacaaa gttaaatatg caccaagtga atcgaaatat 360
aaagtttata ttatagatga ggtgcacatg ctaacaacag gtgcttttaa tgccctttta 420
aagacgttag aagaacctcc agcacacgct atttttatat tggcaacgac agaaccacat 480
aaaatcctc caacaatcat ttctagggca caacgttttg attttaaagc aattagccta 540
gatcaaattg ttgaacgttt aaaatttgta gcagatgcac aacaaattga atgtgaagat 600
gaageettgg catttatege taaagegtet gaagggggta tgegtgatge attaagtatt 660
atggatcagg ctattgcttt cggcgatggc acattgacat tacaagatgc cctaaatgtt 720
acgggtagcg ttcatgatga agcgttggat cacttgtttg atgatattgt acaaggtgac 780
gtacaagcat cttttaaaaa ataccatcag tttataacag aaggtaaaga agtgaatcgc 840
ctaataaatg atatgattta ttttgtcaga gatacgatta tgaataaaac atctgagaaa 900
gatactgagt atcgagcact gatgaactta gaattagata tgttatatca aatgattgat 960
cttattaatg atacattagt gtcgattcgt tttagtgtga atcaaaacgt tcattttgaa 1020
gtattgttag taaaattagc tgagcagatt aagggtcaac cacaagtgat tgcgaatgta 1080
gctgaaccag cacaaattgc ttcatcgcca aacacagatg tattgttgca acgtatggaa 1140
cagttagage aagaactaaa aacactaaaa gcacaaggag tgagtgttgc teetacteaa 1200
aaatottoga aaaagootgo gagaggtata caaaaatota aaaatgoatt ttoaatgoaa 1260
caaattgcaa aagtgctaga taaagcgaat aaggcagata tcaaattgtt gaaagatcat 1320
tggcaagaag tgattgacca tgcccaaaac aatgataaaa aatcactcgt tagtttattg 1380
caaaattcgg aacctgtggc ggcaagtgaa gatcacgtcc ttgtgaaatt tgaggaagag 1440
atccattgtg aaatcgtcaa taaagacgac gagaaacgta gtagtataga aagtgttgta 1500
tgtaatatcg ttaataaaaa cgttaaagtt gttggtgtac catcagatca atggcaaaga 1560
gttcgaacgg agtatttaca aaatcgtaaa aacgaaggcg atgatatgcc aaagcaacaa 1620
gcacaacaaa cagatattgc tcaaaaagca aaagatcttt tcggtgaaga aactgtacat 1680
gtgatagatg aagagtga
                                                                  1698
<210> 4
<211> 566
<212> PRT
<213> Staphylococcus aureus
<400> 4
Leu Asn Tyr Gln Ala Leu Tyr Arg Met Tyr Arg Pro Gln Ser Phe Glu
                  5
                                     10
```

Asp Val Val Gly Gln Glu His Val Thr Lys Thr Leu Arg Asn Ala Ile