Real Analysis Ph.D. Qualifying Exam

April 2, 2005

Instructions. Solve **four** of the six problems. Show your work. The examlasts for three hours.

1. Let $H: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are Lebesgue measurable, then the function h, defined by

$$h(x) = H(f(x), g(x))$$

for $x \in \mathbb{R}$ is Lebesgue measurable.

2. Let $f: \mathbb{R} \times (a, b) \to \mathbb{R}$ and assume that $f(\cdot, y)$ is Lebesgue integrable on \mathbb{R} for each $y \in (a, b)$. Define

$$g(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$

(a) Suppose that

$$\left| \frac{\partial f}{\partial y} \left(x, y \right) \right| \le h \left(x \right)$$

for all $y \in (a, b)$ and $x \in \mathbb{R}$ where h is an integrable function on \mathbb{R} . Show that

$$g'(y) = \int_{-\infty}^{+\infty} \frac{\partial f}{\partial y}(x, y) dy.$$

(b) Find g'(y) if

$$g(y) = \int_0^\infty e^{-xy} \frac{\sin x}{x} \ dx$$

for y > 0. Hint: Do it for $0 < \delta < y$.

3. Let $L^{p}\left[0,1\right]$ be the set of $f:\left[0,1\right] \to \mathbb{R}$ such that

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}} < \infty,$$

where $1 \le p < \infty$.

- (a) Prove that $\left\| \cdot \right\|_p$ is a norm.
- (b) Prove that $L^{p}\left[0,1\right]$ is complete under the norm $\left\|\cdot\right\|_{p}$.
- (c) Prove that $L^{p}\left[0,1\right]$ is separable under the norm $\left\|\cdot\right\|_{p}$.

4. Let (X, \mathcal{B}, μ) be a measure space. Let $f: X \to \mathbb{R}$ be a μ -integrable function. Show that its support, that is, the set

$$\mathcal{S} = \{ x \in X : f(x) \neq 0 \}$$

is measurable and has σ -finite measure.

- 5. Let K be a subset of \mathbb{R}^n , C(K) the continuous real-valued functions on K and \mathcal{F} a set of functions defined on K.
 - (a) Define " \mathcal{F} is equicontinuous on K".
 - (b) State (for compact K) the Arzela-Ascoli Theorem giving a criterion for the compactness of $\mathcal{F} \subseteq C(K)$.
 - (c) Let $\{f_n\}$ be an equicontinuous sequence of functions from [0,1] into \mathbb{R} which converges at every rational number in [0,1]. Show that $\{f_n\}$ converges at every point of [0,1] and the convergence is uniform.

6. Let

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}.$$

Set

$$g(x) = f(x) f(1-x).$$

Show that g is a nontrivial infinitely differentiable function on \mathbb{R} which vanishes outside (0,1).

.