

A **Design Study** for a

Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation

Team **ASPA**, Nunow **Abaas** | Airiofolo **Emmanuel** E Sivagnanamoorthy **Ilanthiraiyan** | Farooq **Wania** | Baek **Yesung**

Mission Statement

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

This study outlines the design of a **rotating** space station aimed at mitigating the physiological effects of long-term space habitation by simulating artificial gravity.

By doing so, it enhances the feasibility of **extended crewed missions** in space.

AOCS: Attitude Parameters

A Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation


```
Calculate for different target_rpms
At 1 RPM and a desired centripetal acceleration of 9.8 m/s^2:
Radius: 893.65 m, Diameter: 1787.31 m
Angular velocity: 0.1047 rad/s
At 2 RPM and a desired centripetal acceleration of 9.8 m/s^2:
Radius: 223.41 m, Diameter: 446.83 m
Angular velocity: 0.2094 rad/s
Calculate for different time periods to reach target rpm of 2 RPM
For 1 hour to target_rpm of 2 RPM + Radius of 223.41m::
Tangential acceleration: 0.0130 m/s^2
Final tangential velocity at the edge: 46.79 m/s
For 2 hour to target_rpm of 2 RPM + Radius of 223.41m:s:
Tangential acceleration: 0.0065 m/s^2
Final tangential velocity at the edge: 46.79 m/s
```

Constraints:

- Max RPM of 2
- Tangent Acceleration
- 1 G of Earth's gravity
- Spin Acceleration Time

Questions + what's next?

- Orientations
- Spin mitigation for central hub
- Gravity gradient

AOCS: Gravity Gradient

A Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation

AOCS: Orbital Parameters

A Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation

Constraints:

- LEO
- Size
- Station mass/ gravity
- J2 Pertubations

Questions + what's next?

- Spin stabilisation
- Station keeping

AOCS: Orbital Parameters

A Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation

Tools:

- Search
- GPT
- Claude
- Orbital simulators
- Python

Structural Design: A look at the ISS

A Rotating Space Station to Mitigate Microgravity Effects during Long-Term Space Habitation

Facts and Figures

- Pressurised Module Length: 67 m along major axis
- Truss Length: 94m
- Habitable Volume: 388m³ (not including visiting vehicles)
- Pressurised volume: 1,005m³
- Lines of computer code: approximately 1.5 million

Structural Design: A look at the ISS

A Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation

Facts and Figures

- Delivered on 42 assembly flights
- Measures 109m end to end
- 55-foot robotic arm Canadarm2 is used to move modules, deploy science experiments and transport spacewalking astronauts
- Eight spaceships can be connected to the spaceship at once

Structural Design: Net Habitable Volume

A Rotating Space Station to Mitigate Microgravity Effects

during Long-Term Space Habitation

Research

- NASA study
- 28.36 28.96 m^3 per crew member

Minimum acceptable net habitable volume for longduration exploration missions subject matter expert consensus session report - NASA technical reports server (NTRS) (no date) NASA. Available at: https://ntrs.nasa.gov/search.jsp?R=20140016951

Figure 3: Case Study Habitat

Structural Design: Next Steps

A Rotating Space Station to Mitigate Microgravity Effects during Long-Term Space Habitation

How can we adapt the spaceship design so that it has **maximum use of the size** we are proposing currently?

How many wheels are we going to have?

What else will be affected by our design?

How many launches will we need?

How far in the **future** is concept proposition?

Shielding & Protection: Whipple Shield

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

1. Outer Layer (Bumper/Shield Layer)

- Material: Aluminium or Nextel (a ceramic fabric).
- Thickness: Usually about 1 to 3 mm

2. Gap (Space Between Layers)

- Function: Debris fragments after impact, dissipating energy before hitting the inner layer.
- Thickness: Vary from 10cm to more than 30cm, (depending on the location and expected debris threat level).

3. Inner Layer (Pressure Hull)

- Materials: thicker Aluminium or Kevlar (Ensures the station's pressurised environment is maintained)
- Thickness: Typically, 4 to 10 mm

Shielding & Protection

A Rotating Space Station to Mitigate Microgravity Effects

Shielding & Protection: Ti-Al-Nylon Alloy

A Rotating Space Station to Mitigate Microgravity Effects during Long-Term Space Habitation

Materials	Benefits	Drawbacks
Ti	 High strength-to-weight ratio Excellent corrosion resistance Can withstand extreme temperatures and stress 	ExpensiveMore difficult to machine and fabricate
Al	LightweightGood corrosion resistanceRelatively inexpensive	 Less heat-resistant Prone to cracking under long-term stress in space
Nylon like material (Kevlar)	High tensile strengthLightweight & resistant to abrasion & wear	Heavier than pure nylonProne to degradation (UV)

Shielding & Protection

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

The **SDS** can **detect debris** between the sizes of 0.05 millimetres and 0.5 centimetres.

Measures the velocity, size, direction, and time of debris impacts.

Measures the amount of solar energy (power per unit area) received from the Sun in the form of electromagnetic radiation.

Irradiance
$$(Wm^{-2}) = \frac{Power(W)}{Area(m^2)} = \frac{P}{A}$$

Shielding & Protection: Next Steps

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

Find a way to integrate non-Newtonian fluids and beta cloth within the Whipple shield

What other **materials** can help regulate the thermal energy received

Thickness of both the **outer and inner layer** of the Whipple shield

Power Systems: Solar Panels

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

Solar Panels

Total Solar Irradiance ≈ 1361 W/m^2

Current peak efficiency IS 38%

ISS uses 75-90kW for 7 people

~720kW for 56 people

Min. area of solar panels needed ≈ 1400 m^2

Power down non-essential systems during strong solar flares

Power Systems: Thorium Reactor

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

Thorium Reactor

- Thorium is cheaper and more abundant than Uranium
- Waste is substantially less radioactive and long-lived
- Meltdown is very unlikely negative feedback loop
- U233 is contaminated with U232 which can damage electronics

Power Systems: Next Steps

A Rotating Space Station to Mitigate Microgravity Effects during Long-Term Space Habitation

How to disperse excess heat

Use of **AC vs DC** power

Life Support: Waste Management

A Rotating Space Station to Mitigate Microgravity Effects during Long-Term Space Habitation

Transform waste into useful resources during long-term space habitation.

Key Objective

A part of the Life Support System

Recycles waste to provide **CO₂**, **water**, and **compost** for growing crops.

Minimises resupply needs from Earth by reusing waste.

Importance

Waste Management: How does it work?

A **Rotating Space Station** to **Mitigate Microgravity Effects** during Long-Term Space Habitation

Composting relies on the natural heat generated by microorganisms as they break down organic matter.

This **self-heating** is a critical feature that **drives the composting process**.

Near-maximal decomposition rate preferred!

Assumptions:

- 1. The system assumes artificial gravity
- 2. Integration with wastewater purification and air purification systems
- 3. Soil-Based Crop Growth

