TD 18 Polynômes formels

Exercice 1: ★★

Soit $(a,b) \in \mathbb{K}^2$, $a \neq b$ et $P \in \mathbb{K}[X]$. Exprimer le reste de la division de P par (X-a)(X-b) en fonction de P(a) et P(b).

Exercice 2: *

Factoriser dans $\mathbb{R}[X]$ les polynômes $X^4 + 1$, $X^5 - 1$, $(X^2 - X + 1)^2 + 1$.

Exercice 3: *

Résoudre les équations suivantes.

- (1) $Q^2 = XP^2$ d'inconnues $P, Q \in \mathbb{K}[X]$.
- (2) P(P(X)) = P(X) d'inconnue $P(X) \in \mathbb{K}[X]$.

Exercice 4: ★★

Soient $A, B \in \mathbb{K}[X]$ tels que $A^2|B^2$. Montrer que A|B.

Exercice 5: ★★★

Soient $a \in]0, \pi[$ et $n \in \mathbb{N}^*$. Factoriser dans $\mathbb{R}[X]$ le polynôme $X^{2n} - 2\cos(na)X^n + 1$.

Exercice 6: ★★★ Mines-Ponts MP

Trouver les polynômes $P \in \mathbb{R}[X]$ tels que $P(X^2) = (X^2 + 1)P(X)$.

Exercice 7: $\star\star\star$

Montrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme P_n tel que $P_n - P'_n = X^n$. Exprimer les coefficients de P_n à l'aide de factorielles.

Exercice 8: ★★★ CCP MP

On cherche les polynômes

$$P(X) = (X - a)(X - b) \in \mathbb{C}[X]$$

tels que P(X) divise $P(X^3)$. Montrer que, si a = b, $P \in \mathbb{R}[X]$ et que si $a \neq b$ et $a^3 \neq b^3$, il existe 6 polynômes dont 4 dans $\mathbb{R}[X]$.

Trouver les polynômes P si $a \neq b$ et $a^3 = b^3$ et en déduire que 13 polynômes en tout conviennent, dont 7 dans $\mathbb{R}[X]$.

Exercice 9: ★★

Soient $n, p, q \in \mathbb{N}$. Montrer que $1 + X + X^2$ divise $X^{3n} + X^{3p+1} + X^{3q+2}$.

Exercice 10: ★★★ Centrale PSI

Soient x, y, z trois nombres complexes vérifiant x + y + z = 0. Établir

$$\frac{x^5 + y^5 + z^5}{5} = \left(\frac{x^2 + y^2 + z^2}{2}\right) \left(\frac{x^3 + y^3 + z^3}{3}\right).$$

Exercice 11: ★★★ Polynômes de Legendre

Pour tout $n \in \mathbb{N}$, on pose

$$L_n = \frac{n!}{(2n)!} ((X^2 - 1)^n)^{(n)}.$$

- (1) Montrer que L_n est un polynôme unitaire de degré n.
- (2) Montrer que

$$\forall Q \in \mathbb{R}_{n-1}[X], \ \int_{-1}^{1} L_n(t)Q(t) \, dt = 0.$$

(3) En déduire que L_n possède n racines simples, toutes dans [-1,1].

Exercice 12: ★★★

Soit $P \in \mathbb{R}[X]$ scindé à racines simples. Montrer qu'aucun coefficient nul de P ne peut être encadré par deux coefficients non nuls de même signe.

Exercice 13: ★★★

Soit $P \in \mathbb{R}[X]$ un polynôme scindé à racines simples, et $\alpha \in \mathbb{R}^*$. Montrer que les racines complexes de $P^2 + \alpha^2$ sont toutes simples.

Exercice 14: ★★★

Dans tout l'exercice, P désigne un polynôme de $\mathbb{R}[X]$ dont toutes les racines réelles sont simples. Au polynôme P, on associe une suite finie de polynômes, dite suite de Sturm de P, de la façon suivante :

$$\begin{cases} P_0 = P \\ P_1 = -P' \\ \forall k \text{ tel que } P_k \neq 0, \ P_{k+1} = -R \text{ où } R \text{ est le reste de la division euclidienne de } P_{k-1} \text{ par } P_k. \end{cases}$$
 ur tout $x \in \mathbb{R}$, on note $s_P(x)$ le nombre de changements de signes dans la suite $(P_k(x))_{k \in \mathbb{R}}$

Pour tout $x \in \mathbb{R}$, on note $s_P(x)$ le nombre de changements de signes dans la suite $(P_k(x))_{k \in [0,N]}$ dans laquelle on a préalablement supprimé les termes nuls (par exemple, si $(P_k(x))_{0 \le k \le 2} = (1,-1,1)$ alors $s_P(x) = 2$ tandis que si $(P_k(x))_{0 \le k \le 2} = (1,0,-1)$, alors $s_P(x) = 1$).

- (1) Expliquer pourquoi la suite de Sturm d'un polynôme est finie.
- (2) Calculer la suite de Sturm associée au polynôme $P = X^4 + 4X^3 + 4$ (on admet que les racines de P sont simples), puis calculer $s_P(0)$ et $s_P(3)$.
- (3) Soit P un polynôme dont toutes les racines sont simples, et $(P_k)_{k \in [0,N]}$ la suite de Sturm associée.
 - (a) Montrer que pour tout $i \in [0, N-1]$, P_i et P_{i+1} n'ont pas de racines communes.
 - (b) Soient $k \in [1, N-1]$ et a une racine de P_k . Montrer que $P_{k-1}(a)P_{k+1}(a) < 0$.
 - (c) Soit $[\alpha, \beta]$ un intervalle ne contenant aucune racine réelle d'aucun polynôme de la suite (P_k) :

$$\forall x \in [\alpha, \beta], \ \forall k \in [0, N], \ P_k(x) \neq 0.$$

Montrer que la fonction s_P est constante sur $[\alpha, \beta]$.

(d) Soit $[\alpha, \beta]$ un intervalle qui contient exactement une racine a de P mais aucune racine des polynômes P_k pour $k \neq 0$:

$$\left\{ \begin{array}{l} \forall x \in [\alpha, \beta], \ (P_0(x) = 0 \iff x = a) \\ \forall x \in [\alpha, \beta], \ \forall k \in [1, N], \ P_k(x) \neq 0. \end{array} \right.$$

Soient $x, y \in [\alpha, \beta]$ tels que x < a < y. Montrer que $s_P(x) + 1 = s_P(y)$.

(e) Soit $[\alpha, \beta]$ un intervalle qui contient exactement une racine a de l'un des polynômes P_k pour $k \neq 0$ et aucune racine des autres polynômes de la suite de Sturm :

$$\begin{cases} \forall x \in [\alpha, \beta], \ (P_k(x) = 0 \iff x = a) \\ \forall x \in [\alpha, \beta], \ \forall i \neq k, \ P_i(x) \neq 0. \end{cases}$$

Montrer que s_P est constante sur $[\alpha, \beta]$. On pourra dresser le tableau de signes des fonctions $t \mapsto P_{k-1}(t), t \mapsto P_k(t)$ et $t \mapsto P_{k+1}(t)$.

(f) Soient $a \leq b$ deux réels non racines de P. Déduire de tout ce qui précède que le nombre de racines de P dans l'intervalle [a,b] est égal à $s_P(b) - s_P(a)$.

Exercice 15: ★★★

[X MP] Soient A et B deux polynômes de $\mathbb{C}[X]$ vérifiant pour tout complexe z,

$$A(z) = 0 \iff B(z) = 0 \text{ et } A(z) = 1 \iff B(z) = 1.$$

Montrer que A = B.

Exercice 16: ★★★ Mines-Ponts MP

- (1) Soit $P \in \mathbb{R}[X]$ un polynôme scindé tel que $\deg(P) \geq 2$. Montrer que P' est scindé.
- (2) Soient $a, b, c \in \mathbb{R}$. Montrer que $X^{10} + aX^9 + bX^8 + cX^7 + X + 1$ n'est pas scindé sur \mathbb{R} .

Exercice 17: ★★★

[X PC] Résoudre dans \mathbb{C}^3 le système

$$\begin{cases} x^2 + y^2 + z^2 = 0 \\ x^4 + y^4 + z^4 = 0 \\ x^5 + y^5 + z^5 = 0. \end{cases}$$

Exercice 18: ★★★

Soit n un netier naturel. On appelle polynômes de Bernstein de degré n les polynômes

$$B_{n,k} = \binom{n}{k} X^k (1 - X)^{n-k}, \ k \in [0, n].$$

Polynômes de Bernstein.

- (1) Représenter sur un même graphique les fonctions $x \in [0,1] \mapsto B_{3,k}(x)$ pour $k \in \{0,1,2,3,\}$.
- (2) (a) Calculer $\sum_{k=0}^{n} B_{n,k}$. En déduire que pour tout $x \in [0,1], 0 \leq B_{n,k}(x) \leq 1$.
 - (b) Calculer $\sum_{k=0}^{n} kB_{n,k}$, $\sum_{k=0}^{n} k(k-1)B_{n,k}$ puis $\sum_{k=0}^{n} k^{2}B_{n,k}$.
- (3) Exprimer $B'_{n,k}$ en fonction de $B_{n-1,k-1}$ et $B_{n-1,k}$ pour $n \ge 1$.
- (4) Établir que la famille $(B_{n,k})_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

(5) Pour tout
$$P \in \mathbb{R}_n[X]$$
, on pose $B(P) = \sum_{k=0}^n P\left(\frac{k}{n}\right) B_{n,k}$.

- (a) Montrer que B est un endomorphisme de $\mathbb{R}_n[X]$.
- (b) Déterminer le noyau de B; qu'en déduit-on?

Théorème de Weierstrass. Soit $f:[0,1]\to\mathbb{R}$ une application continue. Pout tout $n\in\mathbb{N}$, on pose $P_n(f)$ la fonction définie par $P_n(f)(x)=\sum_{k=0}^n f\left(\frac{k}{n}\right)B_{n,k}(x)$.

- (1) On pose dans cette question $f: x \mapsto x^2$. Déterminer $P_n(f)$ puis montrer que pour tout $x \in [0,1]$, $\lim_{n \to +\infty} P_n(f)(x) = f(x)$.
- (2) On se propose de généraliser ce résultat à toute fonction continue f.

(a) Calculer, pour tout
$$x \in [0,1]$$
, $\sum_{k=0}^{n} \left(x - \frac{k}{n}\right)^2 B_{n,k}(x)$.

(b) Soit $x \in [0,1]$ et $\varepsilon > 0$. Soit $\alpha > 0$ tel que

$$\forall t \in [0,1], |x-t| \le \alpha \implies |f(x) - f(t)| \le \frac{\varepsilon}{2}.$$

On pose
$$A = \left\{ k \in \llbracket 0, n \rrbracket \mid \left| x - \frac{k}{n} \right| < \alpha \right\}$$
 et $B = \left\{ k \in \llbracket 0, n \rrbracket \mid \left| x - \frac{k}{n} \right| \geq \alpha \right\}$.

Justifier que α existe puis montrer que $\sum_{k \in B} B_{n,k}(x) \le \frac{x(1-x)}{n\alpha^2} \le \frac{1}{4n\alpha^2}$.

(c) En déduire que $|P_n(f)(x)-f(x)| \leq \frac{\varepsilon}{2} + \frac{M}{2n\alpha^2}$ où $M = \sup_{t \in [0,1]} |f(t)|$. En déduire que $\lim_{n \to +\infty} P_n(f)(x) = f(x)$.