

4.2 网络层提供的两种服务

4.2 网络层提供的两种服务

面向连接的虚电路服务

4.2 网络层提供的两种服务

面向连接的虚电路服务

4.2 网络层提供的两种服务

面向连接的虚电路服务

4.2 网络层提供的两种服务

面向连接的虚电路服务

- 可靠通信由网络来保证
- 必须建立网络层的连接 —— 虚电路VC(Virtual Circuit)
- 通信双方沿着已建立的虚电路发送分组
- 目的主机的地址仅在连接建立阶段使用,之后每个 分组的首部只需携带一条虚电路的编号(构成虚电路的每一段链路都有一个虚电路编号)。
- 这种通信方式如果再使用可靠传输的网络协议,就可使所发送的分组最终正确到达接收方(无差错按序到达、不丢失、不重复)。
- 通信结束后,需要释放之前所建立的虚电路。

4.2 网络层提供的两种服务

面向连接的虚电路服务

- 可靠通信由网络来保证
- 必须建立网络层的连接 —— 虚电路VC(Virtual Circuit)
- 通信双方沿着已建立的虚电路发送分组
- 目的主机的地址仅在连接建立阶段使用,之后每个 分组的首部只需携带一条虚电路的编号(构成虚电路的每一段链路都有一个虚电路编号)。
- 这种通信方式如果再使用可靠传输的网络协议,就可使所发送的分组最终正确到达接收方(无差错按序到达、不丢失、不重复)。
- 通信结束后,需要释放之前所建立的虚电路。

4.2 网络层提供的两种服务

面向连接的虚电路服务

- 可靠通信由网络来保证
- 必须建立网络层的连接 —— 虚电路VC(Virtual Circuit)
- 通信双方沿着已建立的虚电路发送分组
- 目的主机的地址仅在连接建立阶段使用,之后每个 分组的首部只需携带一条虚电路的编号(构成虚电路的每一段链路都有一个虚电路编号)。
- 这种通信方式如果再使用可靠传输的网络协议,就可使所发送的分组最终正确到达接收方(无差错按序到达、不丢失、不重复)。
- 通信结束后,需要释放之前所建立的虚电路。
- 很多广域分组交换网都使用面向连接的虚电路服务。 例如,曾经的X.25和逐渐过时的帧中继FR、异步传 输模式ATM等。

4.2 网络层提供的两种服务

面向连接的虚电路服务

- 可靠通信应当由用户主机来保证
- 不需要建立网络层连接
- 每个分组可走不同的路径

4.2 网络层提供的两种服务

面向连接的虚电路服务

- 可靠通信应当由用户主机来保证
- 不需要建立网络层连接
- 每个分组可走不同的路径
- 每个分组的首部必须携带目的主机的完整地址
- 这种通信方式所传送的分组可能误码、丢失、重 复和失序。
- 由于网络本身不提供端到端的可靠传输服务,这就使网络中的路由器可以做得比较简单,而且价格低廉(与电信网的交换机相比较)。
- 因特网采用了这种设计思想,也就是将复杂的网络处理功能置于因特网的边缘(用户主机和其内部的运输层),而将相对简单的尽最大努力的分组交付功能置于因特网核心。

4.2 网络层提供的两种服务

虚电路服务与数据报服务的比较		
对比方面	虚电路服务	数据报服务
思路	可靠通信应当由网络来保证	可靠通信应当由用户主机来保证
连接的建立	必须建立网络层连接	不需要建立网络层连接
终点地址	仅在连接建立阶段使用,每个分组使用短的虚电路号	每个分组都有终点的完整地址
分组的转发	属于同一条虚电路的分组均按照同一路由进行转发	每个分组可走不同的路由
当结点出故障时	所有通过出故障的结点的虚电路均不能工作	出故障的结点可能会丢失分组,一些路由可能会发生变化
分组的顺序	总是按发送顺序到达终点	到达终点时不一定按发送顺序
服务质量保证	可以将通信资源提前分配给每一个虚电路,容易实现	很难实现

由于TCP/IP体系结构的因特网的网际层提供的是简单灵活、无连接的、尽最大努力交付的数据报服务,因此本章主要围绕网际层如何传送IP数据报这个主题进行讨论。

4.2 网络层提供的两种服务

虚电路服务与数据报服务的比较		
对比方面	虚电路服务	数据报服务
思路	可靠通信应当由网络来保证	可靠通信应当由用户主机来保证
连接的建立	必须建立网络层连接	不需要建立网络层连接
终点地址	仅在连接建立阶段使用,每个分组使用短的虚电路号	每个分组都有终点的完整地址
分组的转发	属于同一条虚电路的分组均按照同一路由进行转发	每个分组可走不同的路由
当结点出故障时	所有通过出故障的结点的虚电路均不能工作	出故障的结点可能会丢失分组,一些路由可能会发生变化
分组的顺序	总是按发送顺序到达终点	到达终点时不一定按发送顺序
服务质量保证	可以将通信资源提前分配给每一个虚电路,容易实现	很难实现

由于TCP/IP体系结构的因特网的网际层提供的是简单灵活、无连接的、尽最大努力交付的数据报服务,因此本章主要围绕网际层如何传送IP数据报这个主题进行讨论。

