代数---补充公式: 设 $A = A_{m \times m}$, $B = B_{n \times n}$ 是 m 阶 与 n 阶方阵, 则

1.
$$\begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \begin{vmatrix} A & 0 \\ D & B \end{vmatrix} = |A \parallel B| ; \qquad \begin{vmatrix} C & A \\ B & 0 \end{vmatrix} = \begin{vmatrix} 0 & A \\ B & D \end{vmatrix} = (-1)^{m \cdot n} |A \parallel B|.$$

特别,
$$A = A_{n \times n}, B = B_{n \times n}$$
都为 n 阶时,
$$\begin{vmatrix} C & A \\ B & 0 \end{vmatrix} = \begin{vmatrix} 0 & A \\ B & D \end{vmatrix} = (-1)^n |A||B|.$$

2.换位公式:设 $A = A_{m \times n}$, $B = B_{n \times m}$ 则 $|x\mathbf{I}_{m} - \mathbf{A}\mathbf{B}| = x^{m-n}|x\mathbf{I}_{n} - \mathbf{B}\mathbf{A}|$.

3.设
$$A = (\alpha_1, \alpha_2, \dots, \alpha_n), x = (x_1, x_2, \dots, x_n)^T$$
 则 $Ax = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n$

"根定理" $A = A_{n \times n}$ 的全体特征根是 $\lambda_1, \lambda_2, \cdots, \lambda_n$, f(x) 是多项式.

则 f(A) 的全体特征根是 $f(\lambda_1), f(\lambda_2), \cdots f(\lambda_n)$.

第1章 矩阵与行列式复习题

1. 设 $A^{T} = -A$ 为奇数阶矩阵,则 $|A| = _{0}$

4. 设
$$X = \begin{pmatrix} 0 & A \\ C & 0 \end{pmatrix}$$
,已知 A^{-1} , C^{-1} 存在,则 $X^{-1} =$ _______

5. 设A为三阶矩阵, |A|=1,则 $|2A^{-1}+3A^*|=$ ______

二. 选择题:

1. 设A, B 都是n 阶方阵, 下面结论正确的是()

(A) 若
$$A$$
, B 均可逆,则 $A+B$ 可逆 (B)若 A , B 均可逆,则 AB 可逆

(C) 若
$$A+B$$
可逆,则 $A-B$ 可逆 (D) 若 $A+B$ 可逆,则 A,B 均可逆

2. A 是 n 阶矩阵, k 是非零常数,则行列式 $|(kA)^*|$ 等于()

(A)
$$k |A|^{n-1}$$
 (B) $|k||A|^{n-1}$ (C) $k^{n(n-1)}|A^*|$ (D) $k^n |A|^{n-1}$

$$3. A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} - a_{21} & a_{32} - a_{22} & a_{33} - a_{23} \end{pmatrix}, \quad P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad$$
汉

 $P_{2}P_{1}A = B$,则初等阵 $P_{2} = ($

$$\text{(A)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{(B)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \quad \text{(C)} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{(D)} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 4. A, B 都是 n 阶非零矩阵, 且 AB = 0, 则 A 和 B 的秩 ()
- (A) 必有一个等于零 (B) 都小于 n(C) 一个小于 n,一个等于 n (D) 都等于 n
- 5.A,B 是 3 阶阵,X 满足 AXA BXB = BXA AXB + I,I 是单位阵,则 X = (

$$(A)(A^2-B^2)^{-1}$$
; $(B)(A-B)^{-1}(A+B)^{-1}$; $(C)(A+B)^{-1}(A-B)^{-1}$; (D) 不能确定.

2. 求下列矩阵的逆矩阵:

3. k 取什么值时,矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
可逆,并求其逆.

4. 矩阵
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
 的秩 $r(A) = 1$,求 k 的值. $(k = 1)$

四.1. 设 $A = \frac{1}{2}(B+I)$,I为单位矩阵,证明 $A^2 = A$ 当且仅当 $B^2 = I$.

- 2. (1)若 A 可逆,则 $(A^*)^{-1} = (A^{-1})^*$; (2)若 A 是正交阵 $(AA^T = I)$,则 $(A^*)^T = (A^*)^{-1}$ (3)若 A 是 3 阶正交阵,|A| = -1,则 |A + I| = 0, $|A^2 I| = 0$.
- 3. 设A是n阶方阵,若 $(A+I)^m=0$,则A可逆.

参考答案

$$-1.0; 2. \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}; 3. \begin{pmatrix} \cos n\varphi & -\sin n\varphi \\ \sin n\varphi & \cos n\varphi \end{pmatrix}; 4. \begin{pmatrix} 0 & C^{-1} \\ A^{-1} & 0 \end{pmatrix}; 5.125; 6. -2 \begin{pmatrix} 1 & 3 & 0 \\ 2 & 5 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

- 二. 选择: 1. B; 2. C; 3. B; 4.B; 5. B.
- 三. 计算: 1. $A = -\alpha \alpha^T$, $\alpha = (1,1,1,1)^T$; 先计算 n=2, 然后对 n 进行分析.

3. 当
$$k \neq 0$$
时可逆, $A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/k & 0 \\ -1 & 1/k & 1 \end{pmatrix}$.

四.证明题: 1. 必要性:
$$A^2 = A$$
, $A^2 = \left[\frac{1}{2}(B+I)\right]^2 = A = \frac{1}{2}(B+I)$,

即
$$B^2 + 2B + I = 2(B + I) = 2B + 2I$$
, 所以 $B^2 = I$.

充分性:
$$B^2 = I$$
, 有 $A^2 = \left[\frac{1}{2}(B+I)\right]^2 = \frac{1}{2}(B+I) = A$.

3.
$$(A+I)^m = A^m + C_m^1 A^{m-1} + \cdots + C_m^{m-1} A + I = 0$$
, $\forall A (-A^{m-1} - C_m^1 A^{m-2} - \cdots - C_m^{m-1} I) = I$.

行列式补充题

- 一. 选择题:
- 1. 若一个 $n(n \ge 2)$ 级行列式 D 中元素或为 1 或为-1,则 D 的值 ()
 - A. 1
- B.-1
- C.奇数
- D.偶数

2. 已知多项式
$$f(x) = \begin{vmatrix} a_{11} + x & a_{12} + x & a_{13} + x & a_{14} + x \\ a_{21} + x & a_{22} + x & a_{23} + x & a_{24} + x \\ a_{31} + x & a_{32} + x & a_{33} + x & a_{34} + x \\ a_{41} + x & a_{42} + x & a_{43} + x & a_{44} + x \end{vmatrix}$$
则 $f(x)$ 的最高次数是())

- A. 4
- B. 3
- C. 2
- D. 1

- 二. 填空题:
- 1. 排列 $a_1a_2a_3a_4a_5$ 的逆序数等于 3,排列 $a_5a_4a_3a_2a_1$ 的逆序数等于_____;
- 2. 四阶行列式 $D = |a_{ij}|$ 展开公式中,含 a_{24} 且带负号的项数为_____;

- 3. 行列式 $D=\mid a_{ij}\mid_{n\times n}=c$,现在将每个 a_{ij} 替换为 $\left(-1\right)^{i-j}a_{ij}$,则替换后行列式D=_____;
- 三. 判断题:
- 1. n 阶行列式 D 中有多于 $n^2 n$ 个元素为零,则 D=0 ();
- 2. D=0,则互换 D 的任意两行或两列, D 的值仍为零. ();
- 3. $D = |a_{ii}|_{3\times3}, A_{ii}$ 为 a_{ii} 的代数余子式,则 $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0$. ();

四.计算 1.
$$\begin{vmatrix} x & a & \dots & a \\ a & x & \dots & a \\ \dots & \dots & \dots & \dots \\ a & a & \dots & x \end{vmatrix}$$
 2.
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix}$$
; 3.
$$\begin{vmatrix} x & y & 0 & \dots & 0 & 0 \\ 0 & x & y & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & y \\ y & 0 & 0 & \dots & 0 & x \end{vmatrix}$$
.

五 证明 1.
$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix} = (a-b)^3; 2. \begin{vmatrix} 0 & a_1 \\ \vdots & \vdots \\ a_n & * \end{vmatrix} = \begin{vmatrix} * & a_1 \\ \vdots \\ a_n & 0 \end{vmatrix} = (-1)^{n(n-1)/2} a_1 \cdots a_n$$

3. 证明:
$$\begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1+a_2 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1+a_3 & \cdots & 1 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 1+a_n \end{vmatrix} = a_1a_2\cdots a_n \left(1+\sum_{i=1}^n \frac{1}{a_i}\right);$$

4. 证明: n 阶行列式
$$D_n = \begin{vmatrix} \cos \theta & 1 \\ 1 & 2\cos \theta & \ddots \\ & \ddots & \ddots & 1 \\ & & 2\cos \theta \end{vmatrix} = \cos n\theta$$
.

参老答室

- 一. 选择题答案: 1.D: 2.D:
- 1. 根据行列式展开,总共有n! 项相加,而由题可知每一项为 1 或者-1,而 n!在 $(n \ge 2)$ 时为偶数,偶数个奇数相加为偶数,故选 D.
- 2.第 2,3,4 行分别减去第一行后,则只有第一行含 x,再按第一行展开知 f(x)最高次数为 1. 选 D. 3.由于存在三阶矩阵 $B \neq 0$ 使得 AB=0,故方程组 AX=0,有非 0 解,故 A 的行列式为 0,计算可得 $|A|=(\lambda-1)^2$ 故 $\lambda=1$. 故选 C.
- 二. 填空题 1. 答案为7; 2. 答案为3; 3. 答案为c; 详细解答:

1. $a_1a_2a_3a_4a_5$ 中的两两关系有 $\mathbf{C}_5^2=10$ 个,3个是逆序数,7个是顺序数那么原来 $a_1a_2a_3a_4a_5$ 中的逆序组到 $a_5a_4a_3a_2a_1$ 中变成了顺序组,

原来 $a_1a_2a_3a_4a_5$ 中的顺序组到 $a_5a_4a_3a_2a_1$ 中变成了逆序组. 故答案为 7.

- 2. 我们按 a_{24} 展开,得到 $(-1)^{2+4}a_{24}$ $|A_{24}|_{3\times 3}$,而 3 阶行列式展开式中有 3 个负数项,故含 a_{24} 的负数项数目为 3. 答案为 3.
- 3. $D = |a_{ij}|_{n \times n}$ 展开的每一项为 $(-1)^{\tau(i_1 i_2 \cdots i_n)} a_{1i_1} \cdots a_{ni_n}$,而替换后为 $(-1)^{\tau(i_1 i_2 \cdots i_n)} a_{1i_1} \cdots a_{ni_n} (-1)^{(1+2+\cdots n)-(i_1+i_2+\cdots i_n)}.$ 显然 $(1+2+\cdots n)-(i_1+i_2+\cdots i_n)=0$ 故每一项没有改变,所以 D 的值也没有变. 答案为 c.
- 三. 判断题答案:1. √; 2. √; 3. √; 简析:
- 1.由抽屉原理得至少有一行多于 $n^2 n/n = n 1$ 个0,即必有一行有n个0,故行列式为0.
- 2 由行列式性质可知,交换只是改变符号; 3. 列排 1234 与 1432.; 4. 由行列式性质可知;.

$$= \begin{bmatrix} x + (n-1)a \end{bmatrix} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \end{vmatrix} = \begin{bmatrix} x + (n-1)a \end{bmatrix} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x - a \end{vmatrix} = (x - a)^{n-1} \begin{bmatrix} x + (n-1)a \end{bmatrix}$$

则 $f(x) = (x^4 - (a+b+c+d)x^3 + \dots + abcd)(d-a)(d-b)(d-c)(c-a)(c-b)(b-a)$

另一方面
$$f(x)$$
展开式中含 x^3 的项是 $-x^3$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix}$, 两式相比较可得

$$3. \begin{vmatrix} x & y & 0 & \dots & 0 & 0 \\ 0 & x & y & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & y \\ y & 0 & 0 & \dots & 0 & x \end{vmatrix} = x \begin{vmatrix} x & y & 0 & \dots & 0 & 0 \\ 0 & x & y & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & y \\ 0 & 0 & 0 & \dots & 0 & x \end{vmatrix} + (-1)^{n+1} y \begin{vmatrix} y & x & 0 & \dots & 0 & 0 \\ 0 & y & x & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & y & x \\ 0 & 0 & 0 & \dots & 0 & y \end{vmatrix} = x^n + (-1)^{n+1} y^n$$

五.1 证:
$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2-b^2 & b(a-b) & 0 \\ 2a-2b & a-b & 0 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2-2ab+b^2 & 0 & 0 \\ 2a-2b & a-b & 0 \\ 1 & 1 & 1 \end{vmatrix} = (a-b)^3.$$

2. 证: 把
$$\begin{vmatrix} 0 & a_1 \\ a_n & * \end{vmatrix}$$
按第一行展开得: $\begin{vmatrix} 0 & a_1 \\ a_n & * \end{vmatrix} = (-1)^{1+n} a_1 \begin{vmatrix} 0 & a_2 \\ a_n & * \end{vmatrix}_{(n-1)\times(n-1)}$

由此类推得
$$\begin{vmatrix} 0 & a_1 \\ & \ddots \\ a_n & * \end{vmatrix} = (-1)^{(n+1)+n+\dots+2} a_1 \cdots a_n = (-1)^{n(n-1)/2} a_1 a_2 \cdots a_n.$$

$$3. \ \overrightarrow{\text{iiE}}: \begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1+a_2 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1+a_3 & \cdots & 1 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 1+a_n \end{vmatrix} = \begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ -a_1 & a_2 & 0 & \cdots & 0 & 0 \\ -a_1 & 0 & a_3 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -a_1 & 0 & 0 & \cdots & 0 & a_n \end{vmatrix} =$$

$$\begin{vmatrix} 1+a_1+\frac{a_1}{a_2}+\frac{a_1}{a_3}+\cdots+\frac{a_1}{a_n} & 1 & 1 & \cdots & 1 & 1 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & a_n \end{vmatrix} = a_1\cdots a_n(1+\frac{1}{a_1}+\cdots\frac{1}{a_n})$$

4. 证: 对阶 n 用归纳法,
$$D_1 = \cos\theta$$
; $D_2 = \begin{vmatrix} \cos\theta & 1 \\ 1 & 2\cos\theta \end{vmatrix} = 2\cos^2\theta - 1 = \cos 2\theta$

假设 $D_{n-1} = \cos(n-1)\theta$, $D_{n-2} = \cos(n-2)\theta$ 对 D_n 按第 n 行展开得

$$D_{n} = 2\cos\theta \cdot D_{n-1} + 1 \cdot (-1)^{n+(n+1)} \begin{vmatrix} \cos\theta & 1 \\ 1 & 2\cos\theta & \ddots \\ & 1 & \ddots & 1 \\ & & 2\cos\theta & 0 \\ & & & 1 & 1 \end{vmatrix}$$

 $=2\cos\theta\cdot\cos(n-1)\theta-\cos(n-2)\theta=\cos(\theta+(n-1)\theta)+\cos(\theta-(n-1)\theta)-\cos(n-2)\theta$

 $=\cos n\theta$ 归纳法成立.

第2章 向量组自测题

	判断题	•
•	7 1 10/1 12/2	•

- 1. 如果向量组 a_1, a_2, \cdots, a_n 线性相关,那么这个向量组一定有两个成正比例().
- 2. 若 n 维向量组 a_1, \cdots, a_n 线性相关,则 n 维向量组 $a_1, \cdots, a_n, a_{n+1}$ 也线性相关()
- 3. 如果两个向量组的秩相等,那么这两个向量组等价. ()
- 4. V 是实数域上的 n 维向量空间, a_1, \dots, a_n 是V中 n 个线性无关的向量,

则 $_V$ 中任一向量可由 a_1, \dots, a_n 线性表示 ()

二. 填空题:

1. 己知向量组 a_1 = (1, 2, 3, 4), a_2 = (2, 3, 4, 5), a_3 =(3, 4, 5, 6),

 a_4 = (4, 5, 6, 7),则该向量组的秩为_____;

- 2. 一个向量 α 线性相关的充要条件是________; 一个向量 α 线性无关的充要条件是_______; 两个向量 a_1, a_2 线性相关的充要条件是_______;
- 3. 设b = (3, 5, -6), $a_1 = (1, 0, 1)$, $a_2 = (1, 1, 1)$, $a_3 = (0, 1, -1)$ 则将向量 b 表示成 a_1, a_2, a_3 的线性组合为_____
- 4. 已知 n 维列向量组 a_1, \cdots, a_n 线性无关, $A = (a_{ij})_{n \times n}$,

如果 Aa_1, Aa_2, \cdots, Aa_n 线性相关,则 |A| =

5. 若V表示一切 2×2 的实对角矩阵按照矩阵的加法和数乘运算构成的向量空间,则V的一组基为

三. 选择题:

1. 向量组 a_1 = (1,0,0), a_2 = (0,1,0), a_3 =(1,1,1), a_2 = (1,1,0) 的一个极大线性无关组是 (

- A. $a_1, a_2,$ B. $a_1, a_2, a_3,$ C. $a_1, a_2, a_4,$ D. a_1, a_2, a_3, a_4
- 2. 设向量组 a_1, a_2, a_3 与向量组 b_1, b_2 等价,则 ()

A.向量组 a_1, a_2, a_3 线性相关; B.向量组 b_1, b_2 线性无关; D.向量组 b_1, b_2 线性相关

- 3. 设某向量组的秩为 r. 则下列对该向量组所下的结论中错误是()
- A.任一线性无关的部分组含有 r 个向量; B.所有含 r+1 个向量的部分组都线性相关
- C.所有含r个向量的部分组都线性无关 D.所有线性无关的部分组含有向量个数不超过r

四. 计算题: 1. 设 a_1, a_2 线性无关, $a_1 + b_2, a_3 + b_4$ 线性相关, 用 a_1, a_2 表示向量 a_1, a_2 表示向量 a_2, a_3

2.
$$a_1 = (1, 1, 2, -4)^T$$
, $a_2 = (2, -3, 3, 1)^T$, $a_3 = (1, 1, 2, 0)^T$, $a_4 = (4, -6, 6, 2)^T$

- (1) 求该向量组的秩; (2) 讨论它的线性相关性; (3) 求出它的极大无关组.
- 3. 已知 \mathbb{R}^3 的两个基为: $a_1 = (\mathbf{1}, \mathbf{1}, \mathbf{1})^{\mathrm{T}}$, $a_2 = (1, 0, -1)^{\mathrm{T}}$, $a_3 = (1, 0, 1)^{\mathrm{T}}$; $b_1 = (1, 2, 1)^{\mathrm{T}}$, $b_2 = (2, 3, 4)^{\mathrm{T}}$, $b_2 = (3, 4, 3)^{\mathrm{T}}$

求由基 a_1 , a_2 , a_3 到基 b_1 , b_2 , b_3 的过渡矩阵 P.

五. 证明题:

- 1. 设 $b_1=a_1,b_2=a_1+a_2,\cdots,b_r=a_1+a_2+\cdots+a_r$,且向量组 a_1,a_2,\cdots,a_r 线性无关. 证明向量组 b_1,b_2,\cdots,b_r 线性无关.
- 2. 已知秩 $r(a_1, a_2, a_3) = 2$, $r(a_1, a_3, a_4) = 3$, 证明
 - (1) a_1 能由 a_2 , a_3 线性表示; (2) a_4 不能由 a_1 , a_2 , a_3 线性表示.
- 3. 设 a_1 , …, a_n 是一组 n 维向量, 证明它们线性无关的充分必要条件是:任一 n 维向量都可由它们线性表示.

4. 设
$$V_1 = \{x = (x_1, x_2, \dots, x_n)^T | x_1, \dots, x_n \in R$$
满足 $x_1 + x_2 + \dots + x_n = 0\}$
$$V_2 = \{x = (x_1, x_2, \dots, x_n)^T | x_1, \dots, x_n \in R$$
满足 $x_1 + x_2 + \dots + x_n = 1\}$

问: V1, V2 是不是向量空间?给出证明.

5. 试给出线性方程组 $A_{m \times n} x = 0$ 有形如 $x = (1, x_2, \dots, x_n)^T$ 解 (即要求 $x_1 = 1$, 而 x_2, \dots, x_n 不作要求)的一个充要条件,并证明你的结论.

参考答案: 一. 1.×; 2.√; 3.×; 4.√;

二. 1. 2; 2. $\alpha=0$; $\alpha \neq 0$; 存在常数 k 满足 $a_1=ka_2$ 或 $a_2=ka_1$;

3.
$$b = 7 a_1 - 4 a_2 + 9 a_3$$
; 4. 0; 5. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

三. 1. B; 2. A; 3. A与C;

四. 1. 存在不全为零的数 λ_1 , λ_2 使 $\lambda_1(a_1+b)+\lambda_2(a_2+b)=0$,由此得

$$b = -\frac{\lambda_1}{\lambda_1 + \lambda_2} a_1 - \left(1 - \frac{\lambda_1}{\lambda_1 + \lambda_2} a_2\right).$$

2.
$$\diamondsuit A = (a_1, a_2, a_3, a_4) = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 1 & -3 & 1 & -6 \\ 2 & 3 & 2 & 6 \\ -4 & 1 & 0 & 2 \end{pmatrix} \xrightarrow{\text{fr} \not \text{\tiny \pm}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

3.
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

五.1. 提示: 设 $k_1b_1 + k_2b_2 + \cdots + k_rb_r = 0$,则

$$(k_1 + \dots + k_r)a_1 + (k_2 + \dots + k_r)a_2 + \dots + (k_p + \dots + k_r)a_p + \dots + k_ra_r = 0$$

- $2 \cdot (1)$ 由秩 $r(a_2, a_3, a_4) = 3$,知 a_2 , a_3 线性无关. 又 $r(a_1, a_2, a_3) = 2$ 知 a_1 , a_2 , a_3 线性相关,故 a_1 能由 a_2 , a_3 线性表示;
- (2) a_1 能由 a_2 , a_3 线性表示,若 a_4 能由 a_1 , a_2 , a_3 线性表示,则 a_4 能由 a_2 , a_3 线性表示,从而 a_2 , a_3 , a_4 线性相关,矛盾.
- 3. 必要性: 设 α 为任-n维向量. a_1,\cdots,a_n 线性无关,而 a_1,\cdots,a_n,a ,线性相关,则 α 能由 a_1,\cdots,a_n 线性表示.

充分性: 任一n 维向量都可由 a_1, \cdots, a_n 线性表示, 故单位向量组 $e_1, e_2, ..., e_n$ 能由 a_1, \cdots, a_n 线性表示, 于是有秩关系 $r(e_1, ..., e_n) \le r(a_1, \cdots, a_n)$,

即 $r(a_1, \dots, a_n) = n$, 故 a_1, \dots, a_n 线性无关.

4. V_1 是向量空间, V_2 不是向量空间.

5. $\operatorname{ld} A_{m \times n} = (a_1, \cdots, a_n)$. 则方程组 $A_{m \times n} x = 0$ 有形如

 $x = (1, x_2, \dots, x_n)^T$ 解的一个充要条件是 a_1 可由 a_2, \dots, a_n 线性表示.

证: $x = (1, x_2, \dots, x_n)^T \in A_{m \times n} x = 0$ 的解当且仅当

 $a_1 + x_2 a_2 + \cdots + x_n a_n = 0$ 当且仅当 $a_1 = -x_2 a_2 - \cdots - x_n a_n$ 当且仅当 a_1

可由 a_2, \dots, a_n 线性表示.

第3章 线性方程组自测题

一. 选择题:

- 1. 设 A 是 $m \times n$, 则 m<n 是齐次线性方程组 $A^{T}AX=0$ 有非零解的()
- A. 必要条件 B. 充分条件 C. 充要条件 D. 以上都不对
- 2. 设 A 是 n 阶实矩阵, A^T 为 A 的转置,对于方程组(I) AX = 0 与(II) $A^TAX = 0$ 必有() A.(II) 的解是(I) 的解, 但(I) 的解不是(II) 的解.
- B(II)的解是(I)的解,(I)的解也是(II)的解.C.(I)解是(II)的解但(II)解不是(I)的解
- 3. 设 α_1 , α_2 , α_3 是四元齐次线性方程组 AX=b 的三个解向量,且 r(A)=3,

$$\alpha_1 = (1,2,3,4)^T$$
, $\alpha_2 + \alpha_3 = (0,1,2,3)^T$, C 为任意数,则方程组 $AX = b$ 的通解 $X = (0,1,2,3)^T$

- A. $(1,2,3,4)^T + C(1,1,1,1)^T$: B. $(1,2,3,4)^T + C(0,1,2,3)^T$
- C. $(1,2,3,4)^T + C(2,3,4,5)^T$; D. $(1,2,3,4)^T + C(3,4,5,6)^T$
- 4. 要使 $\xi_1 = (1,0,1)^T$, $\xi_2 = (-2,0,1)^T$ 都是方程组Ax = 0的解,只要系数阵 A 为()

- A. $\begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ B. $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 0 & -1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$
- 5. 设 ξ_1, ξ_2, ξ_3 是Ax = 0的基础解系,则该方程组的基础解系还可以表成(
- A. ξ_1, ξ_2, ξ_3 的一个等价向量组 B. ξ_1, ξ_2, ξ_3 的一个等秩的向量组
- C. $\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$ D. $\xi_1 \xi_2, \xi_2 \xi_3, \xi_3 \xi_1$

6. 齐次线性方程组
$$\begin{cases} x_1 + kx_3 + x_3 = 0 \\ 2x_1 + x_2 + x_3 = 0 \\ kx_2 + 3x_3 = 0 \end{cases}$$
 以 k 应满足()

- A. $k \neq \frac{3}{5}$ B. $k = \frac{3}{5}$ C. 无解 D. 全体实数
- 7. 设 $\alpha_1, \dots, \alpha_s$ 是非齐次方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 s 个解,若 $\mathbf{C}_1\alpha_1 + \mathbf{C}_2\alpha_2 + \dots + \mathbf{C}_s\alpha_s$ 也是

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 的解,则 $C_1 + \cdots + C_s$ 等于(

- $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解,则 $C_1 + \cdots + C_s$ 等于(); 特别 $(\alpha_1 + \cdots + \alpha_s)/s$ 也是 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解
- A. 0

- B. 1 C. -1 D. 2.

二. 填空题:

1. 设方程组 $\begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2 \text{ 的每一个方程都表示一个平面,若系数阵的秩为 3,则三个}\\ a_3x+b_3y+c_3z=d_3 \end{cases}$

平面的关系是__;

2. 设 A 为 4 阶方阵, 秩 r(A)=2, A^* 是 A 的伴随矩阵,则 $A^*X=0$ 的解空间维数是

3. 已知方程组
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$
 无解,则 $a =$ _____;

- 4. A、B 都是 n 阶矩阵, 且 $A \neq 0$, AB = 0, 则 |B| =;
- 5. 设 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 是齐次方程组 $\boldsymbol{A}x = 0$ 的基础解系,则向量组: $\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 + t_1 \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 + t_2 \boldsymbol{\alpha}_1$ 也可作为 $\boldsymbol{A}x = 0$ 的基础解系的充要条件是,常数 t_1, t_2 满足条件 ;
- 7. 设 n 阶矩阵 A 的各行元素之和为 0,且秩为 n-1,则方程组 Ax = 0 的通解为______.

三. 计算题 1. 设齐次线性方程组
$$\begin{cases} ax_1 + bx_2 + bx_3 + bx_4 = 0, \\ bx_1 + ax_2 + bx_3 + bx_4 = 0, \\ bx_1 + bx_2 + ax_3 + bx_4 = 0, \\ bx_1 + bx_2 + bx_3 + ax_4 = 0, \end{cases} (a \neq 0, b \neq 0.)$$

讨论a, b为何值时方程组有非零解?在有非零解时求它的一个基础解系.

2. 求线性方程组
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 1 \\ 2x_1 + x_2 + x_3 + x_4 = 4 \\ 4x_1 + 3x_2 - x_3 - x_4 = 6 \\ x_1 + 2x_2 - 4x_3 - 4x_4 = -1 \end{cases}$$
的通解.

3. 当
$$\lambda$$
 取何值时,方程组
$$\begin{cases} \lambda.x_1+x_2+x_3=2\\ x_1+\lambda.x_2+x_3=2 \end{cases}$$
 有唯一解、无解、有无穷多解? 在有无穷多解 $x_1+x_2+\lambda.x_3=2$

时, 求出通解.

4. 设有方程组
$$\begin{cases} a.x_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \\ x_1 + 2bx_2 + x_3 = 4 \end{cases}$$

- 1) a, b 取何值时, 方程组有唯一解; 2) a, b 取何值时, 方程组无解;
- 3) a, b 取何值时, 方程组有无穷多解, 并求出通解.

5. 当 a取何值时方程组 $\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ x_1 + 3x_2 + 6x_3 + x_4 = 3 \\ x_1 + 5x_2 + 10x_3 - x_4 = 5 \\ 3x_1 + 5x_2 + 10x_3 + 7x_4 = a \end{cases}$ 有解? 在方程组有解时,用其导出组的基

础解表示方程组的通解.

6. 已知线性方程组(I)

的基础解系为 $(b_{11},b_{12},\cdots,b_{1,2n})^T,\cdots,(b_{n1},b_{n2},\cdots,b_{n,2n})^T$.写出方程组(II)

的通解,并说明理由

四. 证明题

- 1. $m \times n$ 矩阵 A 的秩为 m (n > m); B 是 $n \times (n m)$, 秩为 n m; 又知 AB=0,且 α 是满足条件 $A\alpha = 0$ 的列向量. 证明: 存在唯一的 n m 维向量 γ 使得 $\alpha = B\gamma$.
- 2. 矩阵 $A_{m \times n}$, 证明: Ax = b 有解的充要条件是: 若 $A^TZ = 0$, 则 $b^TZ = 0$.
- 3. 设 A 是 $m \times n$ 矩阵,D 是 $m \times n$ 矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$,B 是 $m \times m$,求证:若 B 可逆且 BA 的行向量都是方程组 $D\mathbf{x} = 0$ 的解,则 A 的每个行向量也都是该方程组的解.
- 4. 设A是 m×n 阶实矩阵,证明 秩 $r(A^TA) = r(A)$.
- 5. A 是 n 阶矩阵,且 $A \neq 0$.证明:存在 n 阶非 0 矩阵 B,使 AB=0 的充要条件是|A|=0.

参考答案

- 一. 选择题:
- 1. B.因秩 $r(A^TA) \le r(A) \le m < n$,其中 n 是 A^TA 的阶数即方程组 $A^TAX = 0$ 的未知数的个数,故方程组 $A^TAX = 0$ 有非零解,但不必要,因为当 $m \ge n$ 时, $r(A^TA) \le n \le m$,此时方程组有可能只有零解,也可能有非零解.
- 2. B 若 x 是 AX = 0 的解,即 Ax = 0,显然 $A^{T}Ax = 0$ 若 x 是 $A^{T}Ax = 0$ 的解,则 $x^{T}A^{T}Ax = 0$,即 $(Ax)^{T}(Ax) = 0$ 。

若 $Ax \neq 0$ 不妨设 $Ax = (b_1, b_2, \dots, b_n)^T$, $b_1 \neq 0$, 则 $(Ax)^T (Ax) = b_1^2 + b_2^2 + \dots + b_n^2 > 0$ 与 $(Ax)^T(Ax) = 0$ 矛盾,因而 Ax = 0,即(I)、(II)同解.

3.C. 因 $\alpha_1, \alpha_2, \alpha_3$ 是方程组 AX=b 的三个解,故 $\alpha-\alpha_1, \alpha_2-\alpha_3$ 是其导出组 AX=0 的解,由解 的性质可知 $(\alpha_1 - \alpha_2) + (\alpha_1 - \alpha_3) = 2\alpha_1 + (\alpha_2 + \alpha_3) = (2,3,4,5)^T$ 是 AX=0 的解,又 r (A)=3 故 AX=0 的基础解系含一个解向量,方程 AX=b 的通解. $X=(1.2.3.4)^T+C(2.3.4.5)^T$.

4. 答案 D. 因为 D. r(A)=1, 所以方程组 Ax=0 的基解系含解向量个数为: 3- r(A)=2.故选 D.

5. C. 由于
$$k_1\xi_1 + k_2(\xi_1 + \xi_2) + k_3(\xi_1 + \xi_2 + \xi_3) = 0$$
 得

 $k_3\xi_3 + \xi_2(k_1 + k_2) + \xi_1(k_1 + k_2 + k_3) = 0$. 因为 ξ_1, ξ_2, ξ_3 是 Ax=0 的基础解系,所以 ξ_1, ξ_2, ξ_3 线性无关.于是 $k_3 = 0, k_2 + k_3 = 0, k_1 + k_2 + k_3 = 0$,所以 $k_1 = k_2 = k_3 = 0$, 则 $\xi_1,\xi_1+\xi_2,\xi_1+\xi_2+\xi_3$ 线性无关. 它们也可以是方程组的基础解系,C 是答案.

6. A. $\begin{vmatrix} 1 & k & 1 \\ 2 & 1 & 1 \\ 0 & k & 3 \end{vmatrix} \neq 0,3 + 2k - k - 6k \neq 0, k \neq \frac{3}{5}$ 时,方程组只有零解.

$$\begin{vmatrix} 0 & k & 3 \end{vmatrix}$$

7. B. 因为 $A\alpha_i = b$, 且 $A(C_1\alpha_1 + C_2\alpha_2 + \cdots + C_s\alpha_s) = b$, 所以 $(C_1 + C_2 + \cdots + C_s)b = b \Rightarrow C_1 + C_2 + \cdots + C_s = 1.$

- 二. 填空题:
- 1. 相交于一点. 因 r(A) = 3,故此方程组有唯一解,三平面交于一点
- 2. 4. r(A) = 2 < 4 1,故 $r(A^*) = 0$,即 $A^* = 0$,则 $A^*X = 0$ 的基础解系含 4-0=4 个解

3.
$$-1$$
. 因增广阵 $\overline{A} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & 3 \\ 1 & a & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & a & 1 \\ 0 & 0 & (a-3)(a+1) & a-3 \end{pmatrix}$,若 a=-1,则

 $r(A) = 3 \neq R(A) = 2$,故方程无解.

- 4. 0. 因 AB=O, 则 B 的列向量组是方程 AX=0 的解, 故 $r(A) + r(B) \le n$, 又 $A \ne 0$, 则 r(B) < n, |B| = 0.
- 5. $1-t_1t_2 \neq 0$. β_1,β_2 为 Ax = 0 的基础解系,即 β_1,β_2 线性无关,只有当 $k_1 = k_2 = 0$ 使得 $k_1\beta_1 + k_2\beta_2 = 0$, 即: $k_1(\alpha_1 + t_1\alpha_2) + k_2(\alpha_2 + t_2\alpha_1) = 0$ 有:

$$\alpha_1(\boldsymbol{k}_1+t_2\boldsymbol{k}_2)+\alpha_2(\boldsymbol{k}_2+t_1\boldsymbol{k}_1)=0. \ \alpha_1,\alpha_2$$
线性无关,所以
$$\begin{bmatrix} 1 & t_2 \\ t_1 & 1 \end{bmatrix}\begin{bmatrix} k_1 \\ k_2 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \mathbb{B} \ \mathbb{H}$$
 得 $1-t_1t_2\neq 0$.

6.
$$\xi_1 = (-1,1,0)^T, \xi_2 = (1,0,1)^T$$
.

7. $k(1 \ 1 \ \cdots \ 1)^T . r(A) = n - 1$,则 Ax = 0 的基础解系只有一个向量. 设 Ax = 0 的第 i 个 方程为 $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = 0$,又矩阵 A 的各行元素之和为 0,即

 $a_{i1} + a_{i2} + \dots + a_{in} = 0$,所以 $(1,1,\dots 1)^T$ 为它的一个解向量,得Ax = 0的通解为 $k(1,1,\dots 1)^T$.

三. 计算题: 1.
$$\begin{vmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{vmatrix} = (a-b)^3 (a+2b), \quad \exists \ a=b \ \vec{y} \ a=-3b \ \vec{y} \ \vec{y} \ \vec{z} = -3b \ \vec{z} \ \vec$$

当
$$a = b$$
 时: 方程组变为 $x_1 + x_2 + x_3 + x_4 = 0$,基础解系为 $\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$.

当
$$a = -3b$$
 时: 方程组变为
$$\begin{cases} x_1 = x_4 \\ x_2 = x_4 \\ x_3 = x_4 \end{cases}$$
 基础解为
$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
.

$$\begin{cases} x_1 = -2x_3 - 2x_4 \\ x_2 = 3x_3 + 3x_4 \end{cases} \text{ 的基础解为 } \xi_1 = \begin{pmatrix} -2 \\ 3 \\ 1 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix},$$

$$\begin{cases} x_1 = -2x_3 - 2x_4 + 3 \\ x_2 = 3x_3 + 3x_4 - 2 \end{cases} \text{ in $-† is μ.} \quad \eta_0 = \begin{pmatrix} 3 \\ -2 \\ 0 \\ 0 \end{pmatrix}$$

原方程的通解为 $\eta = \eta_0 + k_1 \xi_1 + k_2 \xi_2$ k_1, k_2 是任意常数.

3.
$$M: |A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2)$$

(1) 当 $\lambda \neq 1$ 且 $\lambda \neq -2$ 时, $|A| \neq 0$,则知,方程组有唯一解.

(2)
$$\stackrel{\ }{=}$$
 $\lambda = -2$ $\stackrel{\ }{=}$ $\stackrel{\ }{=}$ $A \mid b = \begin{bmatrix} -2 & 1 & 1 & 2 \\ 1 & -2 & 1 & 2 \\ 1 & 1 & -2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & -2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$

秩 A= 2, 秩(\overline{A}) = 3, 故无解.

(3)
$$\stackrel{\mbox{\tiny μ}}{=} \lambda = 1 \, \mbox{\tiny h} \mbox{\tiny h} , \quad \overline{A} = (A \, | \, b) = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

秩 r (A)=r(
$$\overline{A}$$
)=1<3,有无穷多解,通解为 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + k_1 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

4.系数阵
$$A 与 |A| = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 2b & 1 \end{vmatrix} = b(1-a)$$
. (1)当 $a \ne 1$ 且 $b \ne 0$ 时,方程组有唯一解;

(2) 当
$$b=0$$
时,方程组为
$$\begin{cases} ax_1+x_2+x_3=4\\ x_1 & +x_3=3 \end{cases}$$
 方程组无解;当 $a=1$ 时,
$$x_1 & +x_3=4 \end{cases}$$

增广阵
$$\widetilde{A} = \begin{pmatrix} 1 & 1 & 1 & 4 \\ 1 & b & 1 & 3 \\ 1 & 2b & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & b & 0 & 1 \\ 0 & 2b - 1 & 0 & 0 \end{pmatrix}$$
 ∴ 当 $a = 1$, 且 $b \neq 1$ 2 时 方程组无解

(3) 当a=1, $b=\frac{1}{2}$ 时,方程组有无穷多解。

$$\tilde{A} = \begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad -\Re \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

5. 先对增广矩阵进行初等行变换

$$\overline{A} = (A \mid b) = \begin{bmatrix}
1 & 1 & 2 & 3 & \cdots & 1 \\
1 & 3 & 6 & 1 & \cdots & 3 \\
1 & 5 & 10 & -1 & \cdots & 5 \\
3 & 5 & 10 & 7 & \cdots & a
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2 & 3 & \cdots & 1 \\
0 & 2 & 4 & -2 & \cdots & 2 \\
0 & 4 & 8 & -4 & \cdots & 4 \\
0 & 2 & 4 & -2 & \cdots & a-3
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 1 & 2 & 3 & \cdots & 1 \\
0 & 2 & 4 & -2 & \cdots & 2 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 0 & 4 & \cdots & 0 \\
0 & 1 & 2 & -1 & \cdots & 1 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}$$

可知当a = 5时,方程有解,特解 $\gamma_0 = (0,1,0,0)$, F出组的基础解系为:

$$\eta_1 = (0,-2,1,0)^T = (-4,1,0,1)^T$$
,原方程组的全部解为 $X = \gamma_0 + k_1 \eta_1 + k_2 \eta_2, k_1, k_2$ 为任意常数.

6. 方程组(I)与(II)均有 2n 个未知数;由已知条件(I)的一个基解系含有 n 个解向量,从而其系数阵的秩 r(A)=2n-n=n.将方程组(I)与(II)分别改写为矩阵形式:Ax=0 与 Bx=0.由于 B 的行向量组是一个基础解系,故线性无关,所以秩 r(B)=n. 因此方程组(II)的一个基础解系含 n 个解向量.

由己知条件,B 的每一行的转置向量都是(I)的解,即 $AB^T=0$.从而知(AB^T) $^T=0$,即 $BA^T=0$.因此 A 的每一行的转置向量都是(II)的解.但 r(A)=n,所以 A 的行向量线性无关,因此 A^T 的全体列向量组恰好构成(II)的一个基础解系,所以通解迎刃而解.

四. 证明题 1. 证明: 秩 $\mathbf{r}(\mathbf{A})=\mathbf{m}$,所以方程组 $\mathbf{A}\mathbf{X}=0$ 的基础解系所含解向量的个数为 \mathbf{n} - $\mathbf{r}(\mathbf{A})=\mathbf{n}$ - \mathbf{m} . 设 $\mathbf{B}=(\beta_1,\cdots,\beta_{n-m})_{\mathbf{n}\times(n-m)}$ 为 $\mathbf{n}\times(\mathbf{n}-\mathbf{m})$ 矩阵, $\mathbf{r}(\mathbf{B})=\mathbf{n}$ - \mathbf{m} . 其中 $\boldsymbol{\beta}_i$ 为 \mathbf{B} 的列向量 因为 $\mathbf{A}\mathbf{B}=0$,所以 $(\mathbf{A}\boldsymbol{\beta}_1,\mathbf{A}\boldsymbol{\beta}_2,\cdots,\mathbf{A}\boldsymbol{\beta}_{n-m})=0$,即 \mathbf{B} 的列都是 $\mathbf{A}\mathbf{x}=0$ 的解,又 $\mathbf{r}(\mathbf{B})=\mathbf{n}$ - \mathbf{m} ,

所以 $\beta_1, \beta_2, \dots, \beta_{n-m}$ 为 Ax=0 的基础解系.

所以满足 $A\alpha=0$ 的任意向量都是 $\beta_1,\beta_2,\cdots,\beta_{n-m}$ 的唯一线性组合,即存在唯一

的一数组
$$k_1, k_2, \dots, k_{n-m}$$
, 使 $\alpha = k_1 \beta_1 + k_2 \beta_2 + \dots + k_{n-m} \beta_{n-m}$,

$$\Rightarrow \mathbf{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_{n-m}), \quad \mathbb{M} \alpha = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_{n-m}) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_{n-m} \end{pmatrix} = B \gamma.$$

2. 证明: 充分性: 假设 Ax=b 的系数矩阵为 A,

增广矩阵为
$$\overline{A}=(A\,|\,b)$$
. 考察: I. $A^Tx=0$, II. $\begin{cases} A^Tx=0 \\ b^Tx=0 \end{cases}$, 因为 $A^TZ=0$ 则 $b^TZ=0$,

所以(I)和(II)是同解方程组, $r(A^T) = r \begin{pmatrix} A^T \\ b^T \end{pmatrix}$. 即 $r(A) = r(\overline{A})$, 所以 Ax = b 有解.

必要性: 考察 (1) Ay = b ; (2) $A^T x = 0$; (3) $b^T x = 0$.

即要证明: 若(1)有解,则(2)的解必为(3)的解.

假设 y为(1)的解,则 Ay=b. 取转置,得 $y^T A^T = b^T$. 有设 x 为(2)的解,即 $A^T x = 0$. 则 $b^T x = v^T A^T x = v^T 0 = 0$. 所以 x 为 (3)的解.

3. 证明: 设
$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix}, A = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix}$$
其中 $\alpha_i (i = 1, 2, \dots, m)$ 为 A 的行向量

$$BA = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} = \begin{bmatrix} b_{11}\alpha_1 + b_{12}\alpha_2 + \cdots + b_{1m}\alpha_m \\ b_{21}\alpha_1 + b_{22}\alpha_2 + \cdots + b_{2m}\alpha_m \\ \vdots \\ b_{m1}\alpha_1 + b_{m2}\alpha_2 + \cdots + b_{mm}\alpha_m \end{bmatrix}$$

因为 BA 的行向量都是方程组 D x = 0 的解,所以 $D(BA)^T = 0$;

因为 B 可逆, 所以 $DA^T = 0$, 即 A 的每个行向量为 Dx = 0 的解.

4.证.: 作齐次方程组 AX=0 与 $A^TAX=0$ 其中 $X=(x_1,x_2,...,x_n)^T$. 显然 AX=0 的解必是 $A^TAX=0$ 的解. 反之,若 X_0 是 $A^TAX=0$ 的解,则有

$$A^{T}AX_{0} = 0$$
, $\lim_{X \to T} X_{0}^{T}A^{T}AX_{0} = 0$, $\lim_{X \to T} (AX_{0})^{T}(AX_{0}) = 0$.

设 $AX_0=(a_1,a_2,...,a_m)^T$, 则上式变成 $a_1^2+a_2^2+\cdots+a_m^2=0$.

由于 $a_1, a_2, ..., a_m$ 都是实数,所以 $a_1 = a_2 = ... = a_m = 0$ 即 $AX_0 = 0$.

因此 X_0 也是 AX=0 的解. 于是 AX=0 与 $A^TAX=0$ 同解.

由于同解线性方程组的基础解系中含有相同个数的解向量, 所以结论成立.

5. 证明: 必要性(反证法). 设 $|A| \neq 0$,则 A^{-1} 存在. 当 AB=0 时,

两边右乘 A^{-1} 得B=0,与存在一个非零矩阵B,使AB=0矛盾.所以|A|=0.

充分性: 设|A|=0, 则方程组 Ax=0 有非零解 $x=(b_1,b_2,\cdots,b_n)^T$. 构造矩阵

$$B = \begin{bmatrix} b_1 & 0 & \cdots & 0 \\ b_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ b_n & 0 & \cdots & 0 \end{bmatrix}$$
 则 $B \neq 0$, 且 $AB = 0$.

第4章 特征值相似矩阵自测题

- 一. 填空题:
- 1. 设n阶矩阵A的元素全为1,则A的n个特征值是
- 2. A^* 为 n 阶阵 A 的伴随阵, |A|=5 ,则 $B=AA^*$ 的特征值是______,特征向量是_____

3.
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} -1 & -4 & 1 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, 且 A 的特征值为 2 和 1 (二重),则 B 的特征值为 ______

- 4. 三阶方阵 *A* 的特征值为1,-1,2,则 $B = 2A^3 3A^2$ 的特征值为 :
- 5. 设n阶方阵A的特征值为 $1,2,\dots,n$,则|2A+I|=_____;
- 6. 设可逆方阵 A 与 B 相似,则有 $A^{-1} 与 B^{-1}$ (相似,不相似);

- 二. 选择题:
- 1. 零为矩阵 A 的特征值是 A 为不可逆的()
- (A) 充分条件 (B) 必要条件 (C) 充要条件 (D) 非充分、非必要条件
- 2. 设 $\lambda = 2$ 是可逆矩阵 A 一个特征值,则矩阵 $(\frac{1}{3}A^2)^{-1}$ 有一个特征值等于()
- (A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$
- 3. 与 n 阶单位矩阵 I 相似的矩阵是 ()
- (A) 数量阵 $kI(k \neq 0)$ (B) 对角阵 D (对角元不为 1) (C) 单位矩阵 I (D) 可逆阵 A

- 4. 设方阵 $A \hookrightarrow B$ 相似,则()
- (A) A, B 的特征矩阵相同

(B) A, B 的特征多项式相同

- (C) A, B 相似于同一个对角阵 (D) 存在正交矩阵T 使 $T^{-1}AT = B$
- 5. 3 阶阵 A 有特征值1,-2, 4,则下列矩阵中满秩矩阵是(), I 是单位阵

- (A) I A (B) A + 2I (C) 2I A (D) A 4I
- 6. 设 λ_0 是方阵 A 的特征值,且方程组 $(\lambda_0 I A)x = 0$ 的基础解系为 η_1, η_2 ,则 A 的属于 λ_0 的 全部特征向量是()
- (A); (B); (C) $c_1\eta_1 + c_2\eta_2$, (c_1,c_2 为任意常数); (D) $c_1\eta_1 + c_2\eta_2$, (c_1,c_2 为不全为零任意常数)
- 三. 计算题:1. 求矩阵 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$ 的特征值和特征向量.
- 2. 已知矩阵 $A = \begin{bmatrix} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & 1 \end{bmatrix}$ 与矩阵 $B = \begin{bmatrix} -1 & & \\ & 2 & \\ & & b \end{bmatrix}$ 相似,求a,b = ?
- 3. 3阶实对称阵的特征值为6, 3, 3,特征值6对应的特征向量为 $p_1 = (1,1,1)^T$,求A.

- 四. 证明题:1. 设 A, B 都 $\mathcal{E}n$ 阶方阵,且 $|A|\neq 0$,证明 AB 与 BA 相似.
- 2. 如果 A 满足 $A^2 = A$. 则称 A 是幂等矩阵. 试证幂等阵的特征值只能是 0 或 1.
- 3. 设 α_1,α_2 分别是矩阵 A 的属于特征值 λ_1,λ_2 的特征向量,且 $\lambda_1 \neq \lambda_2$,试证: $\alpha_1+\alpha_2$ 不再是 A 的特征向量.

参考答案

一. 填空题: 1.答案: 特征值为 $\lambda_1 = n, \lambda_2 = \cdots = \lambda_n = 0$. 因为

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda - 1 & -1 & \cdots & -1 \\ -1 & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & \cdots & \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda - n & -1 & \cdots & -1 \\ \lambda - n & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ \lambda - n & -1 & \cdots & \lambda - 1 \end{vmatrix} = (\lambda - n)^n \lambda^n$$

故 A的n个特征值为 $\lambda_1 = n, \lambda_2 = \cdots = \lambda_n = 0$.

- 2. 答案: 因为 $AA^* = A^*A = A \mid A \mid I$, 所以对于任意n维向量 α ,有 $AA^*\alpha = A \mid I\alpha = A \mid \alpha$. 所 以|A|=5 是 $B=AA^*$ 的特征值,任意 n 维向量 α 为对应的特征向量.
- 3. 答: A. A^T 有相同的特征值. 所以 $B = A^T$ 和 A 有相同的特征值. B 的特征值为 2. 1. 1
- 4. $B = 2A^3 3A^2$ 的特征值为: $2 \cdot 1^3 3 \cdot 1^2 = -1$, $2 \cdot (-1)^3 3 \cdot (-1)^2 = -5$, $2 \cdot 2^3 3 \cdot 2^2 = 4$.

 5. 答案: $|2A + I| = \prod_{i=1}^{n} (2i+1)$, 因为A 的特征值为 $1, 2, \dots, n \Rightarrow 2A + I$ 的特征值 为2i+1 $(i=1,2,\dots,n)$,故 $|2A+I|=\prod_{i=1}^{n}(2i+1)$
- 6. 答:相似. 因为由相似 $A \hookrightarrow B$ 定义,且 A 可逆,就得相似 $A^{-1} \hookrightarrow B^{-1}$,结论得证.
- 7. 答: x=0, y=-1. 因为 A, B 相似,所以 |A|=-2=|B|=-2y. 所以 y=-1.

由于相似矩阵的迹相等: tr(A) = 2 + x = tr(B) = 2 + y - 1 = 2. 于是 x = 0.

- 二. 选择题:
- 1. 答案(C)分析:设 λ ,..., λ ,为A 所有特征值则 |A|= $\lambda\lambda$,··· λ , 所以 0 为A 的特征值 ⇔ A 可逆.

- 2. (B) 分析: 由 $\lambda = 2$ 是 A 的一个特征值,则 $\frac{1}{3}A^2$ 的一个特征值为 $\frac{1}{3} \times 2 \times 2 = \frac{4}{3}$,得出 $(\frac{1}{3}A^2)^{-1}$ 对应的特征值为 $\frac{3}{4}$.
- 3. (C) 令 P = I 为单位阵,则 $P^{-1} = I$, 所以 $P^{-1}IP = I$, (C) 是答案.
- 4. 答案(B). 分析: $A \hookrightarrow B$ 必有可逆阵 P, 使 $P^{-1}AP = B$. 所以有相同的特征多项式如下:

$$|\lambda I - B| = |\lambda I - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| |(\lambda I - A)| |P| = |\lambda I - A|.$$

- 5. (C) 分析: 满秩矩阵即非奇异阵,因 $\left|2I-A\right|\neq0$ (2不是特征值),故2I-A为满秩阵.
- 6. (D) 分析: 因为齐次线性方程组 $(\lambda_0 I A)x = 0$ 的基础解系为 η_1, η_2 ,所以方程组的全部解为 $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为任意常数). 但特征向量不能为零,则 A 的属于 λ_0 的全部特征向量是 $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为不全为零任意常数). (D) 为答案.

三. 计算题:

1. 解: 先解特征方程
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = 0$$
, $\{(\lambda - 1)^2(\lambda - 10) = 0\}$

特征值是 $\lambda_1=\lambda_2=1$, $\lambda_3=10$. 当 $\lambda=1$ 时,对特征矩阵作行变换

$$(\lambda I - A) = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

基础解系为 $\alpha_1 = (-2, 1, 0)^T$, $\alpha_1 = (2, 0, 1)^T$

当 $\lambda = 10$ 时,也可得基础解系 $\alpha_3 = (1, 2, -2)^T$.

对应于 $\lambda=1$ 的全部特征向量是 $c_1\alpha_1+c_2\alpha_2$, 其中 c_1,c_2 是不全为零的常数,对应于 $\lambda=10$ 的全部特征向量是 $c_3\alpha_3$, 其中 c_3 是任意非零常数

3. 解: 先求与特征值 3 对应的两个正交特征向量. 因不同特征值对应的特征向量是相互正交的,则对应于特征值 3 的特征向量满足 $p_1^T x = 0$,即 $x_1 + x_2 + x_3 = 0$,得两个无关的特征向量:

$$\mathbf{p}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{p}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}; \quad \diamondsuit P = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3), \quad T = \begin{pmatrix} 6 \\ & 3 \\ & & 3 \end{pmatrix}, \quad 则有 \, AP = PT \,,$$

故有

$$A = PTP^{-1} = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

四. 证明题:

- 1. 证明: 因为 $|A|\neq 0$, 故 A^{-1} 存在。又 $BA=A^{-1}ABA$, 这说明AB相似于BA.
- 2. 证明: 设 $A\vec{\alpha} = \lambda \vec{\alpha}, (\vec{\alpha} \neq \vec{0})$, 两边同时左乘A, 得

$$A\vec{\alpha} = \lambda A\vec{\alpha} \Rightarrow A\vec{\alpha} = \lambda \lambda \vec{\alpha} \Rightarrow \lambda \vec{\alpha} = \lambda^2 \vec{\alpha}$$
. 可得 $(\lambda - \lambda^2)\vec{\alpha} = \vec{0}$.

因为 $\vec{\alpha} \neq \vec{0}$, 所以有 $\lambda - \lambda^2 = 0$. 得 $\lambda = 0$ 或 $\lambda = 1$.

3. 证明: 反证法: 若 $\alpha_1 + \alpha_2$ 是A的特征向量,则由定义可得存在 λ ,使得

$$A (\alpha_1 + \alpha_2) = \lambda (\alpha_1 + \alpha_2) \dots (1)$$

由于 α_1, α_2 ,分别是矩阵 A 的属于特征值 λ_1, λ_2 ,的特征向量,则

$$A \alpha_1 = \lambda_1 \alpha_1, \quad A \alpha_2 = \lambda_2 \alpha_2, \quad \square \quad A (\alpha_1 + \alpha_2) = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 \cdots (2)$$

结合 (1), (2)可得 $\lambda(\alpha_1 + \alpha_2) = \lambda_1\alpha_1 + \lambda_2\alpha_2$, 即

$$(\lambda - \lambda_1)\alpha_1 + (\lambda - \lambda_2)\alpha_2 = 0$$

由于 $\lambda_1 \neq \lambda_2$, 所以 α_1, α_2 线性无关,则对于上式有 $\lambda - \lambda_1 = 0, \lambda - \lambda_2 = 0$

这与 $\lambda_1 \neq \lambda_2$ 矛盾. 所以假设不成立,即 $\alpha_1 + \alpha_2$ 不是A的特征向量.

特征值与正交矩阵补充题

1. 设 n 阶方阵 A 有 n 个特征值 0, 1, ..., n-1, 且阵 B 与 A 相似, 求 | B + I | 的值.

解 B 与 A 相似, B 与 A 有相同特征值 0, 1, 2, ..., n-1, 令 f(x) = x+1, 则 f(B) = B+I

有特征值 f(0) = 1, f(1) = 2, ..., f(n-1) = n 于是|B+I| = |f(B)| = n!.

- **2.** 设 n 阶方阵 A 的全部特征值为 λ_1 , ..., λ_n , 属于 λ_i 的特征向量为 α_i , 试求
- (1) $P^{-1}AP$ 的特征值与相应的特征向量; (2) $(P^{-1}AP)^T$ 的特征值.
- $m{M}$ (1) 因为 A 与 $P^{-1}AP$ 相似,它们有相同的特征值,所以 $P^{-1}AP$ 的全部特征值也是 λ_1 ,…, λ_n . 因 $Ax_i = \lambda_i \alpha_i$,两端左乘 P^{-1} ,得到 $P^{-1}A\alpha_i = \lambda_i P^{-1}\alpha_i$ 即 $P^{-1}AP(P^{-1}\alpha_i) = \lambda_i (P^{-1}\alpha_i)$,所以 $P^{-1}\alpha_i$ 是 $P^{-1}AP$ 的属于 λ_i 的特征向量.
- 3. 设 n 阶矩阵 A 有 n 个两两正交的特征向量,证明 A 是对称矩阵.

证 设 A 的 n 个两两正交的特征向量 $\alpha_1,...,\alpha_n$ 对应特征值为 $\lambda_1,...,\lambda_n$, 令 $\eta_i = \frac{\alpha_i}{\parallel \alpha_i \parallel}$

(i=1,2,...,n),则 $\eta_1,...,\eta_n$ 是 n 个正交单位特向量,于是 $P=(\eta_1,\eta_2,...,\eta_n)$ 为正交阵.

从而有 $P^{-1} = P^{T}$,且 $P^{-1}AP = diag(\lambda_1, \lambda_2, ..., \lambda_n) = \Lambda$

- 即 $A = PAP^{-1} = P\Lambda P^{T}$. 所以 $A^{T} = (P\Lambda P^{T})^{T} = P\Lambda P^{T} = A$, A 是对称矩阵.
- **4.** 设 A 为实称阵,B 为实反对称阵,且 AB = BA, A B 是可逆的,则 $(A + B)(A B)^{-1}$ 是正交阵.证明: 因 AB = BA,所以 (A + B)(A B) = (A B)(A + B) 于是

$$[(A+B)(A-B)^{-1}][(A+B)(A-B)^{-1}]^{T} = (A+B)(A-B)^{-1}[(A-B)^{-1}]^{T}(A+B)^{T}$$

$$= (A+B)[(A-B)^{T}(A-B)]^{-1}(A-B) = (A+B)[(A+B)(A-B)]^{-1}(A-B)$$

$$= (A+B)[(A-B)(A+B)]^{-1}(A-B) = (A+B)(A+B)^{-1}(A-B)^{-1}(A-B) = I$$

- **5.** 设 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & a \\ 1 & a & a \end{pmatrix}$ 的秩为 2,当 A 的特征值之和最小时,求正交阵 P 使 $P^{-1}AP$ 为对角阵.
- 解 对矩阵 A 实行初等行变换:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & a \\ 1 & a & a \end{pmatrix} \xrightarrow{r_2 - r_1; r_3 - r_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & a - 1 \\ 0 & a - 1 & a - 1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & a - 1 \\ 0 & a - 3 & 0 \end{pmatrix} \boxtimes r(A) = 2 \text{ id}$$

a=1,或a=3.由 $\lambda_1+\lambda_2+\lambda_3=a_{11}+a_{22}+a_{33}$,要使 A 特征值之和最小,取a=1,于是

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
,特征多项式为 $|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 4)$

故特征值为 $\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 4$. 当 $\lambda_1 = 0$ 时,解方程Ax = 0

得特征向量
$$\xi_1=\begin{pmatrix}1\\0\\-1\end{pmatrix}$$
,单位化得 $p_1=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\-1\end{pmatrix}$

当
$$\lambda_2 = 1$$
时,解方程 $(A-I)x = 0$,由 $A-I = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

得特征向量
$$\xi_2=egin{pmatrix}1\\-1\\1\end{pmatrix}$$
,单位化得 $p_2=\dfrac{1}{\sqrt{3}}egin{pmatrix}1\\-1\\1\end{pmatrix}$

当
$$\lambda_3 = 4$$
时,解方程 $(A-4I)x = 0$,由 $A-4I = \begin{pmatrix} -3 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$

得特征向量
$$\xi_3=egin{pmatrix}1\\2\\1\end{pmatrix}$$
,单位化得 $p_3=\dfrac{1}{\sqrt{6}}egin{pmatrix}1\\2\\1\end{pmatrix}$,于是得正交矩阵:

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix}, \quad \text{且有} P^{T}AP = P^{-1}AP = \begin{pmatrix} 0 & & \\ & 1 & \\ & & 4 \end{pmatrix}.$$

6. 已知 n 阶阵 A 的全部特征值及与之对应 n 个线性无关特征向量, 怎样反求矩阵 A?

答 利用对角化方法. 求可逆矩阵 P,使 $P^{-1}AP = \Lambda$ (对角阵),则 $A = P\Lambda P^{-1}$

设 A 的全部特征值为 λ_1 , λ_2 ,..., λ_n , n 个线性无关的特征向量为 α_1 , α_2 ,..., α_n , 则 A 可对角化,

令
$$P=(\alpha_1,\alpha_2,...,\alpha_n)$$
, 求出逆阵 P^{-1} , 则有 $P^{-1}AP=diag(\lambda_1,\lambda_2,...,\lambda_n)$ 于是求得

方阵
$$A = P$$
 $\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^{-1}$. (注意, 若 P 还是正交阵则得到 A 为实对称阵)

7. 对于实对成矩阵 A,如何求正交矩阵 P,使 $P^{-1}AP$ 为对角阵?

- 答 若 A 为 n 阶实对称阵,则一定有正交阵 P 使 $P^{-1}AP$ 为对角阵. 可按以下步骤求正交阵 P.
- (1) 求出方阵 A 的全部特征值 λ_1 , λ_1 , ..., λ_n , 重根数分别为 k_1 , k_2 , ..., k_s
- (2) 对每一个 λ_i (重数为k),求出齐次方程组 $(A-\lambda_i I)x=0$

的基础解系 $\alpha_{i1},\alpha_{i2},...,\alpha_{ik_i}$ (i=1,2,...,n), 再正交单位化(若 $k_i=1$ 则只须单位化)

得正交单位特征向量组: $p_1, p_2, ..., p_n$

(3) 令
$$P = (p_1, p_2, ..., p_n)$$
 (正交矩阵),则 $P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$

第5章 二次型自测题

- 一. 填空题: 1. 矩阵 $A = \begin{pmatrix} 0 & 8 & 1 \\ 8 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ 对应的二 次 型为 $f(x_1, x_2, x_3) = \underline{\hspace{1cm}}$;
- 3. 已知实二次型 $f(x_1,x_2,x_3)=a(x_1^2+x_2^2+x_3^2)+4x_1x_2+4x_1x_3+4x_2x_3$,经正交变换 x=Py 可化成标准形 $f=6y_1^2$,则 a=_____
- 4. 若二次型 $f = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 是正定的,则 t 的取值范围是______
- 5. 如果A是正定矩阵,那么 A^{-1} ____(是,不是)正定矩阵
- 6. 二次型 $\sum_{i=1}^{n} x_i^2 + \sum_{1 \le i < j \le n} x_i x_j$ (是,否)正定.
- 二. 选择题: 1. 二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 2x_1x_2 + 2x_2x_3$ 的标准形是 ()
- (A) $y_1^2 + y_2^2 + y_3^2$; (B) $y_1^2 y_2^2 + y_3^2$; (C) $y_1^2 + y_2^2$; (D) $y_1^2 y_2^2$
- 2. 二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 4x_1x_2 4x_2x_3$ 的秩等于()
- (A) 0 (B) 1 (C) 2 (D) 3
- 3. n 阶实对称阵 A 为正定的充分必要条件是()
- (A) 所有k阶子式为正(k=1,...,n); (B) A的所有特征值非负; (C) A^{-1} 为正定矩阵;
- 4. 设A,B是n阶正定矩阵,则()是正定矩阵

- (A) $A^* + B^*$; (B) $A^* B^*$; (C) $A^* B^*$; (D) $k_1 A^* + k_2 B^*$
- 5. 已知二次型 $f = 5x_1^2 + 5x_2^2 + cx_3^2 2x_1x_2 + 6x_1x_3 6x_2x_3$ 的秩为 2,则 c 的值为())
 - (A) 1 (B) 2 (C) 3 (D)
- 6. 实二次型 $f = (x_1 + x_2)^2 + (x_2 x_3)^2$ 是 ()
- (A)正定二次型; (B) 半正定二次型; (C) 半负定二次型; (D)不定二次型.
- 三. 计算题:1.用 "许米特" 方法,将矩阵 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ 的列向量正交单位化(规范化).
- 2.用非退化(可逆)线性替换,化下面二次型为标准形,并利用矩阵验算所得结果:

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + 4x_2x_3 + 4x_3^2.$$

- 3. t取什么值时, 二次型 $x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 2x_1x_3 + 4x_2x_3$ 是正定的:
- 四. 证明题:1. 证明: 下列矩阵合同,其中 $i_1i_2\cdots i_n$ 是1,2, \cdots ,n的一个排列.

$$egin{pmatrix} \lambda_1 & & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix} \ & \ & \ & \lambda_{i_2} & & \ & & \ddots & \ & & & \lambda_{i_n} \end{pmatrix}$$

- 2. 如果 A, B 都是 n 阶正定矩阵,证明: A + B 也是正定矩阵.
- 3.(1) 设 A 是实对称矩阵,证明: 当实数 t 充分大后, tI + A 是正定矩阵.
 - (2) 设 A, B 为同阶实对称阵, B 是正定阵,则当实数 t 充分大时, tB + A 是正定阵.

参考答案

- 一. 填空: 1. 应填为 $16x_1x_2 + 2x_1x_3 2x_2x_3$;
- 2. 作可逆线性替换 $\begin{cases} x_1 = y_1 y_2, \\ x_2 = y_1 + y_2, \\ x_3 = y_3 y_4, \\ x_4 = y_3 + y_4. \end{cases}$ 得 $f = 2y_1^2 2y_2^2 2y_3^2 + 2y_4^2.$

$$A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix} \quad B = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

- 3. 变换前后二次型所对应的矩阵为
- 由 A与 B相似, A, B有相同特征值.于是 a+a+a=6+0+0,得 a=2. 答: 填 2.
- 4. 分析: f 是正定的充要条件是对应的矩阵的各阶顺序主子式大于零,因此由

$$\begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & \frac{1}{2} \\ 0 & \frac{1}{2} & 1 \end{vmatrix} > 0$$
, 解得 $-\sqrt{2} < t < \sqrt{2}$. 答案: 应填 $\frac{-\sqrt{2} < t < \sqrt{2}}{2}$;

- 5. 分析: A 是正定,故 $X^T A X$ 为正定二次型,作可逆替换 $X = A^{-1} Y$,又 A^{-1} 也是对称阵,故 $Y^T A^{-1} Y = Y^T (A^{-1})^T A A^{-1} Y = X^T A X > 0$,从而 $Y^T A^{-1} Y$ 为正定二次型,即 A^{-1} 为正定阵.
- 6. 分析: 记二次型矩阵为 $A=(a_{i\,j})_{\scriptscriptstyle n\times n}$,其中 $a_{ij}=\begin{cases} 1, & i=j\\ \frac{1}{2}, & i\neq j \end{cases}$

$$\mathbb{P} \quad A = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ & & 1 & \cdots & \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{pmatrix}$$

由于A的任意k阶顺序主子式所对应的矩阵 A_k 与A为同类型的对称矩阵,且

$$|A_k| = (\frac{1}{2})^k (k+1) > 0$$
, $(k=1,2,\dots,n)$, 故二次型为正定二次型.

- 二. 选择题: 1. (A) 二次型可化为: $f = (x_1 x_2)^2 + (x_2 + x_3)^2 + x_3^2$, 做以下代换 令 $y_1 = x_1 x_2$, $y_2 = x_2 + x_3$, $y_3 = x_3$, 则 $f = y_1^2 + y_2^2 + y_3^2$, 答案选(A).
- 2. (D) 分析:由于二次型对应矩阵的行列式不为零,则是满秩的,因此秩为 3.; 3 (C). 4 (A) 因 A,B 均为 n 阶正定矩阵,则 A^*,B^* 均为正定阵,所以 A^*+B^* 为正定阵.答案(A).
- 5. (C) 分析 $f = X^T A X$,,若要求秩为 2,则必须|A| = 0,而 $|A| = 4 \times (-18 + 6c)$ 所以 c = 3.
- 6. (B) 分析 $f = (x_1 + x_2)^2 + (x_2 x_3)^2$ 代换可得 $f = y_1^2 + y_2^2$, 负惯性指数为零,为半正定.
- 三. 计算题:1.解: 设 $\alpha_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$, $\alpha_3 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$.
- (1) 设 $\beta_1 = \alpha_1$ 用正交化公式得: (2) $\beta_2 = \alpha_2 \frac{\langle \beta_1, \alpha_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \begin{bmatrix} \frac{1}{3}, -\frac{2}{3}, \frac{1}{3} \end{bmatrix}^T$
- (3) $\beta_3 = \alpha_3 \frac{\langle \beta_1, \alpha_3 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 \frac{\langle \beta_2, \alpha_3 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 = \left[\frac{1}{2}, 0, -\frac{1}{2}\right]^T$,将 β_1 , β_2 , β_3 单位化得:

$$e_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, e_2 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, e_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}, 得正交阵
$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$$$

2. 配方法得: $f = (x_1^2 + 2x_1x_2 + x_2^2) + (x_2^2 + 4x_2x_3 + 4x_3^2) = (x_1 + x_2)^2 + (x_2 + 2x_3)^2$

则原二次型的标准形为 $f = y_1^2 + y_2^2$, 其中令 $y_1 = x_1 + x_2$, $y_2 = x_2 + 2x_3$, $y_3 = x_3$.

且非退化(可逆)线性替换为
$$\begin{cases} x_1 = y_1 - y_2 + 2y_3 \\ x_2 = y_2 - 2y_3 \\ x_3 = y_3 \end{cases}$$
相应的替换阵 $P = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$

且有
$$P^TAP = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. 解: 二次型的矩阵为 $A = \begin{pmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{pmatrix}$, 若 A 的各阶顺序主子式为

$$\Delta_1 = 1 > 0, \quad \Delta_2 = \begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} > 0, \quad \Delta_3 = |A| = \begin{vmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} > 0$$

时原二次型为正定,由此得 $\begin{cases} 1-t^2 > 0 \\ -5t^2 - 4t > 0 \end{cases}, 解不等式可得 - \frac{4}{5} < t < 0.$

四.证明题:1.证明: 题中两个矩阵分别设为A,B,与它们相应的二次型分别为

$$f_A = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2; \ f_B = \lambda_{i_1} y_1^2 + \lambda_{i_2} y_2^2 + \dots + \lambda_{i_n} y_n^2$$

作可逆线性替换 $y_t = x_{i_t}$ $(t=1,2,\cdots,n)$ 则 f_B 可化成 f_A ,故 A 与 B 合同.

2. 证明: 因为A, B为正定矩阵,所以 $X^T A X, X^T B X$ 为正定二次型,且

$$X^T AX > 0$$
, $X^T BX > 0 \Rightarrow X^T (A+B)X = X^T AX + X^T BX > 0$

于是 $X^{T}(A+B)X$ 必为正定二次型,从而A+B为正定矩阵.

3 证: t 充分大时,tI+A的特征值; $t+\lambda_1,t+\lambda_2,\cdots,t+\lambda_n$ 必为正,从而tI+A是正定

总习题

- 一. 判断题(正确的在括号内打"√",错误的在括号内打"X"):
- 1.行列式 D=0 的充要条件是 D 中至少有一行的元素可用行列式性质化为 0.()
- 2.设 $m \times n$ 矩阵 A, B 等价,则 A, B 的列向量组等价. ()
- 3. 设 A, B 均为非零 n 阶矩阵,且 AB=0,则秩 r(A),r(B)都小于 n.

三. 填空题:

1. 设
$$A = \begin{pmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, a_i \neq a_j (i \neq j, i, j = 1, ..., n), 则非齐次$$

方程组 Ax = b 的解是 x =

- 2. 设 A 为 5 阶方阵, 秩 r (A)=3,则 r (A*)=______
- 3. 设A为n阶方阵,|A|≠0,将A的第i行与第j行互换得到矩阵B,则 $AB^{-1}=$ _____.
- 4. 设α, β, γ是 3 维列向量,已知 3 阶行列式|4γ-α, β-2γ, α|=40,则行列式 $|\alpha$, β, γ|=____.

6. 设矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$$
可以相似对角化,则 $a =$ ________.

- 7. 设二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 2tx_1x_2 + 2x_1x_3$ 正定,则 t满足______.
- 8. 从 R^2 的基底 α_1 =(1, 0), α_2 =(1, -1) 到基底 β_1 =(1, 1), β_2 =(1, 2) 的过渡矩阵为_____.

四. 设
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
,矩阵 X 满足 $A*X=A^{-1}+2X$,其中 $A*$ 是 A 的伴随阵,求 X .

五. 对线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$

- (1) λ取何值时,方程组无解? (2) λ取何值时,方程组有唯一解?
- (3) λ取何值时,方程组有无穷多解?用向量形式写出其通解.

六.设向量 α_1 , ..., $\alpha_m(m>1)$ 线性无关,且 $\beta=\alpha_1+...+\alpha_m$,则向量 $\beta-\alpha_1$, $\beta-\alpha_2$, ..., $\beta-\alpha_m$ 线性无关.

- 一. 判断题: (参考答案)
- 1. $(\ \ \ \ \ \ \ \)$ 2. $(\ \ \times\ \)$ 3. $(\ \ \ \ \ \ \)$ 4. $(\ \times\ \)$ 5. $(\ \times\ \ \)$ 6. $(\ \times\ \ \)$.
- 二.选择题 1. (C) 2. (A) 3. (B) 4. (A) 5. (B) 6. (D) 7. (C) 8. (C).
- 三.填空题: 1. $(0, 1, 0, \dots, 0)^T$; 2. 0; 3. P(i, j);

4. -10; 5.
$$k \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \\ 3 \end{pmatrix}$$
; 6. 0; 7. $t \in (-1, 1)$; 8. $\begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$.

四. 解: 令 I 为单位阵, 由 $A*X = A^{-1} + 2X$, 两端左乘 A, 得 |A|IX = I + 2AX, 于是得 (|A|I - 2A)X = I.

所以
$$X = (4I - 2A)^{-1} = \begin{pmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}^{-1}$$
,

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & -1 & 0 & -1 \\ 0 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1/2 & 1/2 & 1 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 1 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{pmatrix} \text{ if } X = \frac{1}{4} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

五. 解: 设系数矩阵
$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$$
, 则 $|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2$

(1) 当 $|A| \neq 0$, 即 $\lambda \neq 1$, -2 时, 方程组有唯一解.

(2)
$$\stackrel{\text{def}}{=} \lambda = -2 \text{ lt}, \quad \widetilde{A} = (A \mid b) = \begin{pmatrix} -2 & 1 & 1 & -5 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & -2 \\ 0 & -3 & 3 & -9 \\ 0 & 0 & 0 & -9 \end{pmatrix}$$

得秩 r(A) = 2, $r(\tilde{A}) = 3$, 即 $\lambda = -2$ 时方程组无解.

(3)
$$\stackrel{.}{\underline{\vdash}} \lambda = 1 \stackrel{.}{\underline{\vdash}}, \quad \widetilde{A} = (A \mid b) = \begin{pmatrix} 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

得 $r(A) = r(\tilde{A}) = 1 < 3$, 方程组有无穷多解. 等价方程组为 $x_1 + x_2 + x_3 = -2$

通解为
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} x_2 + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} x_3 + \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}$$

六.证明: 设 $k_1(\beta - \alpha_1) + k_2(\beta - \alpha_2) + ... + k_m(\beta - \alpha_m) = 0$, 将 $\beta = \alpha_1 + \alpha_2 + ... + \alpha_m$ 代入得 $(k_2 + k_3 + \ldots + k_m) \alpha_1 + (k_1 + k_3 + \ldots + k_m) \alpha_2 + \ldots + (k_1 + k_2 + \ldots + k_{m-1}) \alpha_m = 0$

由
$$\alpha_1, \alpha_2, \ldots, \alpha_m(m>1)$$
线性无关,得
$$\begin{cases} k_2 + k_3 + \cdots + k_m = 0 \\ k_1 + k_3 + \cdots + k_m = 0 \\ \cdots \\ k_1 + k_2 + \cdots + k_{m-1} = 0 \end{cases}$$

此方程组的系数行列式

$$\begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{vmatrix} = (m-1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{vmatrix} = (m-1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{vmatrix}$$
$$= (m-1)(-1)^{-2} \neq 0 \qquad (m>1)$$

所以方程组只有零解 $k_1=k_2=\ldots=k_m=0$ 于是 $\beta\!-\!\alpha_1,\beta\!-\!\alpha_2,\ldots,\beta\!-\!\alpha_m$ 线性无关.

试卷1及答案

一. 选择题:

1. 设
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \mathbf{d} \neq 0, \quad \mathbb{N} \begin{vmatrix} a_3 & 2b_3 - a_3 & 3c_3 - 2b_3 \\ a_2 & 2b_2 - a_2 & 3c_2 - 2b_2 \\ a_1 & 2b_1 - a_1 & 3c_1 - 2b_1 \end{vmatrix} = \underline{\hspace{1cm}}.$$

- (A) 6d; (B) -6d; (C) 0; (D) 12d.

- (A) a=b=c; (B) a=b $\exists b = c$ $\exists c = a$; (C) abc c = a; (D) $a \neq b$ $\exists b \neq c$ $\exists c \neq a$.
- $k^{-1}A^*$: (B) $k^{-3}A^*$: (C) k^3A^* : (D) $k^{-2}A^*$. (A)
- 4. 若向量组(a+1,2,-6), (1,a,-3), (1,1,a-4) 线性无关,则a 的取值为 .
- (A) 0: (B) 不为 0; (C) 1; (D)

5. 若 n 维基本单位向量 ε	$_{1},\epsilon_{2},\cdots$, $_{n}$ 可由n维向量组 $_{1}$,	$\alpha_2, \dots, \alpha_n$	线性表出,	则向量组
$\alpha_1, \alpha_2, \cdots, \alpha_n$ 的秩 _				

- (A) 小于 n; (B) 大于 n; (C) 等于 n; (D) 很难说
- 6. 设 $A 为 m \times n$ (m > n) 矩阵,则当 $R(A) = _____$ 时,方程组 AX = 0 只有零解.
- (A) 0; (B) 1; (C) m; (D) n.
- 7. 设 A 为三阶阵,且 A,B 相似, A 的特征值为 2, 3, 4, 则矩阵 $(3B)^{-1}$ 的特征值为___.
- (A) 3/2, 1, 3/4; (B) 6, 9, 12; (C) 1/6, 1/9, 1/12; (D) 2/3, 1, 4/3.
- 8. 设两个n阶矩阵A与B有相同的特征多项式,则 .
- (A) A 与 B 相似; (B) A 与 B 合同; (C) A 与 B 等价; (D) 以上三条都不成立.
- 9. 设 A 是 3 阶方阵,将 A 的第一列与第二列交换得 B ,再把 B 的第 2 列加到第 3 列得 C ,则满足 AQ=C 的可逆阵 Q 为

$$\text{(A)} \quad \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \text{(B)} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}; \quad \text{(C)} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}; \quad \text{(D)} \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

二.填空:

- 1. 已知方程组 $\begin{cases} x_1 + x_2 = -a_1 \\ x_2 + x_3 = a_2 \end{cases}$ 有解,则常数 a_1, a_2, a_3, a_4 应满足条件_______. $\begin{cases} x_3 + x_4 = -a_3 \\ x_1 + x_4 = a_4 \end{cases}$
- 2. 已知 $A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$, B 为 3 阶非零矩阵,且 AB = 0,则 t =______.
- 3. 已知方程组 $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ 无解,则 a =_____.
- 4. 设 *A* 为 3 阶实对称阵, 其特征值为 1, 2, 3. 特征值 1, 2 对应的特征向量分别为 (1, 1, 1) 和 (0, 1, -1), 则与特征值 3 对应的一个特征向量为______.
- 5. 3 阶阵 *A* 的特征值为-1, 1, 2, 设矩阵 $B = A^2 2A + I$, 则 |B|=
- 6. $f = x_1^2 + 2x_1x_2 + 2x_2^2 + 6x_2x_3 + 9x_3^2$ 的正、负惯性指数与符号差分别为_____

7. 设
$$A$$
 为 4×3 矩阵,且 $r(A) = 2$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$,则 AB 的秩 $r(AB) = \underline{\hspace{1cm}}$

8. 设
$$A$$
 为 2 阶方阵, B 为 3 阶阵, 且 $|A| = \frac{1}{|B|} = \frac{1}{2}$,则 $\begin{vmatrix} 0 & -B \\ 2A^{-1} & 0 \end{vmatrix} = \frac{-16}{-16}$.

三. 己知
$$f = ax_1^2 + ax_2^2 + 6x_3^2 + 8x_1x_2 - 4x_1x_3 + 4x_2x_3$$
 ($a > 0$) 通过正交变换化为标准形 $7y_1^2 + 7y_2^2 - 2y_3^2$,求参数 a 及所用的正交变换.

**四. 设 n 元非齐次方程组 $Ax = b, (b \neq 0)$ 的系数矩阵 A 的秩为 r(r < n).

证明: 若方程组有解,则它有n-r+1个线性无关的解.(记住结论!)

- 五. 在实向量空间 R^4 中,设非空子集 $V = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 + x_3 + x_4 = 0\}.$
- (1)证明: V 构成 R^4 的线性子空间; (2) 求出 V 的维数和一组基底.

参考答案

-.1. (B); 2. (B); 3. (D); 4. (D); 5. (C); 6. (D); 7. (C); 8. (D); 9. (A);

$$\equiv$$
 1. $\sum_{i=0}^{4} a_i = 0$; 2. t=-3; 3. $a = -1$; 4. $\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$; 5. 0; . 2, 0, 2; 7. 2; 8. -16.

三.
$$f$$
的实对称阵为 $A = \begin{pmatrix} a & 4 & -2 \\ 4 & a & 2 \\ -2 & 2 & 6 \end{pmatrix}$, A 的特征值 $\lambda_1 = 7$, $\lambda_2 = -2$, 其中 λ_1 是 2 重根.

由于 trA = 2a + 6 = 7 + 7 - 2, 得 a = 3. $\lambda_1 = 7$ 时,解方程 (7 - A)X = 0,得基础解

$$\alpha_1 = (1, 1, 0)^T, \quad \alpha_2 = (1, 0, -2)^T.$$

把 α_1, α_2 正交化: 令 $\beta_1 = \alpha_1 = (1, 1, 0)^T$,

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \left(\frac{1}{2}, -\frac{1}{2}, -2\right)^T.$$

再单位化,即得对应于特征值 $\lambda_1 = 7$ 的二个单位正交特征向量:

$$\gamma_1 = \frac{\beta_1}{|\beta_1|} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T, \quad \gamma_2 = \frac{\beta_2}{|\beta_2|} = \left(\frac{1}{\sqrt{18}}, -\frac{1}{\sqrt{18}}, -\frac{4}{\sqrt{18}}\right)^T.$$

当 $\lambda_2=-2$ 时,解方程组(-2-A)X=0,得基础解系 $\alpha_3=\begin{pmatrix} 2,&-2,&1 \end{pmatrix}^T$,

将其单位化得
$$\gamma_3 = \frac{\alpha_3}{|\alpha_3|} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)^T$$
 令

$$Q = (\gamma_1, \quad \gamma_2, \quad \gamma_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & -\frac{2}{3} \\ 0 & -\frac{4}{\sqrt{18}} & \frac{1}{3} \end{pmatrix}$$
则 Q 为正交阵,正交变换为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$.

四. 由于方程有解,秩 r(A) = r,则导出组 Ax = 0 的基本解系中含有 n - r 个解向量,

不妨设为 $\alpha_1, \alpha_2, \dots, \alpha_{n-r}$. 再设 X_0 是方程组 $Ax = b \ (b \neq 0)$ 的一个特解,

则 $X_0 + \alpha_1, X_0 + \alpha_2, \dots, X_0 + \alpha_{n-r}$ 都是方程组 Ax = b 的解向量.

下面证明 X_0 , $X_0 + \alpha_1, X_0 + \alpha_2, \dots, X_0 + \alpha_{n-r}$ 线性无关. 设

$$k_0 X_0 + k_1 (X_0 + \alpha_1) + k_2 (X_0 + \alpha_2) + \cdots + k_{n-r} (X_0 + \alpha_{n-r}) = 0$$

则
$$(k_0 + k_1 + \cdots k_{n-r})X_0 + k_1\alpha_1 + k_2\alpha_2 + \cdots k_{n-r}\alpha_{n-r} = 0.$$
 (1)

用 A 左乘上式,注意 $AX_0 = b \neq 0$ 得 $(k_0 + k_1 + \cdots k_{n-r}) = 0$ 与 $k_1\alpha_1 + k_2\alpha_2 + \cdots k_{n-r}\alpha_{n-r} = 0$.

又 $\alpha_1, \alpha_2, \dots, \alpha_{n-r}$ 线性无关,得 $k_1 = k_2 = \dots = k_{n-r} = 0$. 代入(1)式,得 $k_0 = 0$.

因此 X_0 , $X_0 + \alpha_1$, $X_0 + \alpha_2$, \cdots , $X_0 + \alpha_{n-r}$ 线性无关.

试卷2及答案

一.选择题:1. 设
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times m}, m > n$$
 则必有 ()

- A. |AB|=0,
- B. $|AB| \neq 0$,
- C. |BA|=0, D. $|BA| \neq 0$.
- 2. 设 A 为 $m \times n$ (m > n) 矩阵, 则 rank (A) = ()时,方程组 AX = 0 只有零解
 - A. n,
- В. 1,
- C. m,
- D. 0
- 3. 设 A^* 是n阶方阵A的伴随阵,则必有 (

- A. $|A^*| = |A|$, B. $|A^*| = 0$, C. $|A^*A| = |A|^n$, D. $|A^*| = |A| |A^{-1}|$
- 二. 判断题:1. 若 A ≠ O(零矩阵) 且 B ≠ O, 则 AB ≠O.
- 2. 把复数域 C 看作 C 上的线性空间,则变换 $\varphi(\xi) = \xi(共轭)$, $\forall \xi \in C$ 是线性变换

- 3. 若 A, B 均为 n 阶正定阵, 则 A B 也是正定阵.
- 4. 若向量组 $\alpha_1, \dots, \alpha_r$ 线性无关且 $\alpha_1, \dots, \alpha_r \beta$ 线性相关,则 β 可由 $\alpha_1, \dots, \alpha_r$ 线性表示
- 5. 若方阵 A 满足 $AA^T = I$ (单位阵),则 A 为正交阵
- 6. 设 n 阶可逆阵 A 的特征值为 λ_1 , λ_2 , \cdots , λ_n , 则 $(\lambda_1 \cdot \lambda_2 \cdots \lambda_n)$ **+0**
- 7. 方阵 A 相似对角阵当且仅当它的极小多项式无重根.
- 8. 若 n 元方程组 $A_{m\times n}$ $\mathbf{x}=\mathbf{b}$ 有唯一解,则 $A_{m\times n}$ $\mathbf{x}=\mathbf{0}$ 只有零解.
- 9. A 为实数矩阵, 则 $rank(A^{T}A) = rank(A)$; 10. 若 A 为实矩阵且 $A^{T}A = 0$,则 A = 0
- 三.填空题:1. 若 n 阶方阵 A 的行列式 |A|=k , 则行列式 |kA|=
- 2. 若 n 阶方阵 A 满足 $A^2 3A 2I = O$,I 是单位阵,则 $A^{-1} =$

3.
$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_1 + x_2 - 2x_3 = 0 \end{cases}$$
的基础解系为_____

4. 在 R^2 中两组基{ e_1 = (1, 0), e_2 = (0, 1) }到{ f_1 = (1, 2), f_2 = (3, 4) }

- $6.\alpha_1,\alpha_2,\alpha_3$ 为 **R**³的列向量, $A=(\alpha_1,\alpha_2,\alpha_3), B=(\alpha_1+\alpha_2+\alpha_3,\alpha_3+\alpha_1,\alpha_1+\alpha_2)$,若|A|=1,则|B|=()
- 7. 设 2 阶方阵 A 的元素全为 1, 则 $A^{10} = ()$ A
- 8. 若非零 3 阶阵 A 满足 $A^2 A = O$. 则 A 必相似于

- (2)设 A, B 都是可逆的, $D = \begin{pmatrix} A & 0 \\ C & B \end{pmatrix}$ 求 D^{-1} .
- (3)设 n 阶阵 A 的各行元素之和均为零,且 A 的秩为 n-1,求方程组 AX=0 的通解

(4)在欧氏空间
$$\mathbf{R}^4$$
 中子空间 $W = \left\{ x \in \mathbf{R}^4 \middle| \begin{array}{l} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 - x_3 - x_4 = 0 \end{array} \right\}$, 写出正交补 \mathbf{W}^{\perp} 的基与维数.

五,设4阶方阵A的元素全为1,(1)求A的特征多项式与极小多项式(2)求A的Jordan标准 型; (3) 判定 A+I 是否为正定阵(说明理由)

六. (1)设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, 求正交阵 Q , 使 $Q^{-1}AQ$ 为对角阵 (写出对角阵);

(2)用正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 把二次型 $f = 2(x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_1x_3)$ 化为标准型.

七.(1) 设 A 是线性空间 V 上的线性变换,若 $A^2\xi \neq 0$, $A^3\xi = 0$,则 ξ , $A\xi$, $A^2\xi$ 线性无关.

(2) 证明任一方阵 A 可写成一个对称阵与一个反对称阵的和.

八.(1)设 A 为 n 阶实对称阵,证明:存在方阵 B 使得 $A = B^3$.

(2)设 ${\bf n}$ 阶可逆实方阵 ${\bf A}$ 的特征值为 λ_1 , λ_2 , · · · , λ_n .

证明: $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ 为正定阵,且 $\|\mathbf{A}^{\mathsf{T}}\mathbf{A} + \mathbf{I}\| \ge 1 + (\lambda_1\lambda_2\cdots\lambda_n)^2$.

参考答案

一. 1.A 2.A 3.C 二. 1—3.为错; 4—10 正确

三.1.
$$k^n |A| = k^{n+1}$$
; 2. $\frac{1}{2}(A-3I)$; 3. $\xi = (1,1,1)^T$ 或 $\xi = k(1,1,1)^T$, $(k \neq 0)$;

4.
$$P = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
; 5. $\pm bi \ \vec{\boxtimes} \pm b\sqrt{-1}$; 6. 1; 7. $2^9 = 512$;

8. 对角阵, 或
$$\begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix}$$
 或 $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$ 或 $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$.

9.
$$\lambda^2$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\vec{\mathbf{g}} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

四.(1)解:可用增广阵与行变换法

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ -1 & 1 & 1 & 0 & 1 \\ 2 & -1 & 1 & -1 & 0 \end{pmatrix} \xrightarrow{\text{fr$\underline{\#}$}} \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & -2 & 0 \end{pmatrix} \xrightarrow{\text{fr$\underline{\#}$}} \begin{pmatrix} 1 & 0 & 0 & 3 & 1 \\ 0 & 1 & 0 & 5 & 2 \\ 0 & 0 & 1 & -2 & 0 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 3 & 1 \\ 5 & 2 \\ -2 & 0 \end{pmatrix}$$

(2)解:可用"分块型初等行变换"求逆

增广阵为
$$\begin{pmatrix} A & 0 & I & 0 \\ C & B & 0 & I \end{pmatrix}$$
 \xrightarrow{free} $\begin{pmatrix} I & 0 & A^{-1} & 0 \\ B^{-1}C & I & 0 & B^{-1} \end{pmatrix}$ \xrightarrow{free} $\begin{pmatrix} I & 0 & A^{-1} & 0 \\ 0 & I & -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}$

$$\Rightarrow D^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}$$

(3)解:由条件知
$$A \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
,从而 $\xi = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ 是 $Ax=0$ 的一个非零解,

又解空间维数为 n-(n-1)=1, 得基础解为 ξ , 通解为 $x = k\xi$, 或 $x = k(1, \dots, 1)^T$.

(4)解: 由条件 $\forall x \in W$, $x \perp (1,1,1,1)^T$, $x \perp (1,1,-1,-1)^T \Rightarrow (1,1,1,1)^T \in W^\perp$, $(1,1,-1,-1)^T \in W^\perp$

又 $\dim W + \dim W^{\perp} = 4$,且知 $\dim W = 2$,从而 $\dim W^{T} = 2$,

可得 $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (1,1,-1,-1)^T$ 构成 W^{\perp} 的基

由于 A 是对称必可对角化,从而 A 的极小多项式(无重根)为 $(\lambda-4)\lambda$.

(3)解: 因为 A 的全体特征根为 4, 0, 0, 0, 则 A+I 的全体特征根为: 4+1, 0+1, 0+1, 0+1 全为正数,且 A+I 为对称阵 ⇒ A+I 为正定阵.

六. (1)解:
$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda - 4 & \lambda - 4 & \lambda - 4 \\ -1 & \lambda - 2 & -1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} = (\lambda - 4)(\lambda - 1)^2$$
,特征根为 1, 1, 4.

$$\lambda=1$$
时,解方程组(A-I)x=0,解得通解为 $x=k_1\begin{pmatrix} -1\\1\\0\end{pmatrix}+k_2\begin{pmatrix} -1\\0\\1\end{pmatrix}$,

所以方程组(A-I)x=0 的基解为
$$\xi_1=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
, $\xi_2=\begin{pmatrix} -1\\0\\1 \end{pmatrix}$, 对它们正交化得,

$$eta_1 = \xi_1$$
, $eta_2 = \xi_2 - rac{(\xi_2, \xi_1)}{\left|\xi_1
ight|^2} \xi_1 = egin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix}$, 再单位化得,

$$\varepsilon_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \quad \varepsilon_2 = \begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{pmatrix}. 显然 \lambda = 4 对应特征向量 \xi_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} 单位化 \varepsilon_3 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

得正交矩阵
$$Q = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
, 且有 $Q^{-1}AQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

(2)解:由于
$$f(x_1,x_2,x_3)=(x_1,x_2,x_3)$$
 $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$,则可用正交变换 x=Qy,

其中
$$Q = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
, 得标准形 $f = y_1^2 + y_2^2 + 4y_3^2$. 可知 $f = 4$ 代表椭球面.

七.(a) 解: 设 $k\xi + k_1A\xi + k_2A^2\xi = 0$ ······(1)

则 $A^2(k\xi + k_1A\xi + k_2A^2\xi) = 0 \Rightarrow kA^2\xi = 0$ 且 k=0,将 k=0 代入(1)式,有

$$k_1 A \xi + k_2 A^2 \xi = 0 \cdots (2)$$

则 $A(k_1A\xi+k_2A^2\xi)=0$ ⇒ $k_1A^2\xi=0$ 且 $k_1=0$,将 $k_1=0$ 代入(2)式 ⇒ $k_2=0$

即 $k=k_1=k_2=0$, ξ , $A\xi$, $A^2\xi$ 线性无关

(b)证: 可写
$$A = \frac{A + A^{T}}{2} + \frac{A - A^{T}}{2}$$
, 且知 $\frac{A + A^{T}}{2}$ 为对称, $\frac{A - A^{T}}{2}$ 为反对称,

故 A 可写成一个对称阵与反对称阵的和.

八.(1)证:设 A 的特征根为
$$\lambda_1, \dots, \lambda_n$$
 ,则有正交阵 P,使得, $A = P \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^{-1}$,

计算可知 $B^3 = A$, 而且 B 为对称阵.

(2) 因 $A^TA = A^TI_nA$ 并且A可逆,可知 A^TA 合同于单位阵 I_n ,因 I_n 正定,故 A^TA 也正定。 先证一个<u>引理</u>: 若B正定,则 $|B+I| \ge 1+|B|$.

可设 B 的特征值为 $t_1 > 0$, $t_2 > 0$, ……, $t_n > 0$, 则 B+I 的特征值为

$$t_1 + 1, t_2 + 1, \dots, t_n + 1 \Rightarrow |B+I| = (t_1 + 1)(t_2 + 1) \dots (t_n + 1) \ge 1 + t_1 t_2 \dots t_n = 1 + |B|$$

由引理及
$$A^T A$$
 正定 $\Rightarrow |A^T A + 1| \ge 1 + |A^T A| = 1 + |A|^2 = 1 + (\lambda_1 \lambda_2 \cdots \lambda_n)^2$

试卷3及答案

(说明: A^T 表示 A 的转置,||x|| 表示向量 x 的长度, $\mathbf{r}(\mathbf{A})$ 表示 \mathbf{A} 的秩数)

- 一. 选择题:
- **1**. 设 A 为 n 阶正交阵, x 是 n 元列向量,则错误说法为 ()
- (a) $A^{T}A = I$, (b) ||Ax|| = ||x||, (c) $A^{T} = A^{-1}$, (d) $A^{T} = A^{*}$
- **2.** 设同阶方阵 A = B 的特征多项式相同,则错误结论为 ()
- (a) |A| = |B|, (b) A = B 有相同的特征值, (c) 迹 tr(A) = tr(B), (d) A = B 相似
- 二. 判断题(见答案); 三. 填空(见答案).

四. 计算 1. (1)设 I 是 n 阶单位阵,求逆阵 $\begin{pmatrix} I & -I \\ I & I \end{pmatrix}^{-1}$. (2)计算 $(\alpha \alpha^T)^{2009} = 2^{2008} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$,其中

 $oldsymbol{lpha}=\left(1,\ 1\right)^{r}$; 2. 在欧氏空间 V中,若 $\parallel oldsymbol{lpha}-oldsymbol{eta}\parallel^{2}=\parallel oldsymbol{lpha}+oldsymbol{eta}\parallel^{2}$,求内积 $(lpha,oldsymbol{eta})$.

3. 已知 4 阶阵 A 的初等因子为 $(\lambda-2)$, $(\lambda-1)$, $(\lambda-2)^2$, 求 A 的 Jordan 标准形与极小多项式.

五. 设
$$A = \begin{pmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{pmatrix}$$
 . (1)求行列式 $|A|$,并求 λ 值使得秩 $\mathbf{r}(\mathbf{A}) < 3$.

- (2) 求 λ 值,使得方程组 $A\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ 的解空间 W 的维数 dimW=2,并求 W 的一组基;
- (3) 在标准内积空间 R_3 中,写出上述空间 \mathbf{W} 的正交补 \mathbf{W}^\perp 的基.

六. (1) 设
$$A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$
, 求正交阵 Q , 使 $Q^{-1}AQ$ 为对角阵 (写出对角阵);

- (2)用正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 把二次型 $f(x_1, x_2, x_3) = 3(x_1^2 + x_2^2 + x_3^2) 2(x_1x_2 + x_2x_3 + x_1x_3)$ 化为标准型.(指出 $f(x_1, x_2, x_3) = 4$ 在 \mathbf{R}^3 中代表的图形).
- 七. 设 $\varepsilon = (a_1, a_2, a_3, a_4)^T$ 是 \mathbf{R}^4 (标准内积)中单位列向量($\varepsilon^T \varepsilon = 1$),设 $\mathbf{A} = \mathbf{I} 2\varepsilon \varepsilon^T$
- (1) 计算: $A\varepsilon$ 与 A^TA (并说明 A 是对称的正交矩阵)
- (2) 把**A**: $R^4 \rightarrow R^4$ 作为线性变换,验证 A 保内积: $(Ax, Ay) = (x, y), \forall x, y \in R^4$.
- 八.1. 设欧氏空间中向量 $\{\alpha_1, \cdots, \alpha_s\}$ 线性无关, $\{\alpha_1, \alpha_2, \cdots, \alpha_s, \beta\}$ 线性相关, β 是非零向量.

证明: β 可由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示 ; 且非零向量 β 不能与 $\alpha_1, \dots, \alpha_s$ 同时正交.

- 2. **A** 是 n 阶实矩阵 , 证明: (1) $\mathbf{r}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \mathbf{r}(\mathbf{A})$ 且 $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ 是半正定阵;
- (2) 令 $B = A^{T}A$, 则 $|B^{2} + B + I| \ge 1$ (并说明 $B^{2} = 0$ 时等号成立).
- (3) 设 A, A-I 均为 n 阶正定阵, I 为单位阵. 则 $I-A^{-1}$ 为正定阵.

参考答案

- 一. 选择题 1. D 2. D
- 二. 判断题 1. 设非零向量 $\alpha_1, \alpha_2, \dots, \alpha_s$ 互相正交,则它们必定线性无关 (T \checkmark)
- 2. 设 n 阶阵 A 的特征值为 λ_1 , λ_2 , \cdots , λ_n , 则 $|A| = (-1)^n \lambda_1 \cdot \lambda_2 \cdots \lambda_n$ (**F** \times)
- 3. 若 B = PA, P 是可逆阵, 则 秩 r(A) = r(B) (T)
- 4. 设 3 阶阵 A 的伴随阵为 A^* , k 为实数,则(k·A)*= $k^2 \cdot A^*$ (T)
- 5. 若 $A \neq 0$, 且AB=AC, 则B=C (F)
- 6. 若 A 的极小多项式无重根,则 A 在复数域上可对角化 (T)

- 7. 找不到 2 阶实方阵 A 使得 $A^2 + I = 0$ (F)
- 8. **若** A_{mxn} 的行数与列数不等,则 A_{mxn} 的行秩与列秩也不等 (**F**)
- 9. Rⁿ 中两组基之间的过度矩阵一定是可逆矩阵 (T)
- 10. 若 n 元方程组 A_{mxn} **x**=0 只有零解,则 A_{mxn} **x**= **b** 必有唯一解(X)

三.填**空:**
$$1\begin{cases} x_1 + x_2 - 2x_3 = 0 \\ x_1 + 3x_2 - 4x_3 = 0 \end{cases}$$
的基础解为 $x = (1,1,1)^T$,或 $x = k(1,1,1)^T$, $k \neq 0$

- 2. 设 A 是 n 阶方阵且|3A|=1,则 $|5A|=5^n/3^n$
- 4. 设 $f(\lambda)$ 是方阵 A 的特征多项式,则 f(A) = 0 阵
- 5. 设 3 阶阵 A 的特征值为 $\lambda_1, \lambda_2, \lambda_3$,则 $g(A) = A^2 + I$ 的特征值为 $\lambda_1^2 + 1$, $\lambda_2^2 + 1$, $\lambda_3^2 + 1$
- 6. 若方阵 A 正定,则 A 的特征值全为 正数,或大于 0
- 7. n 阶方阵 A 的秩 r(A) < n 的充要条件是 |A| = 0
- 8. $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ 的极小多项式与 Jordan 标准形分别为:极小多项式 $g(\lambda) = \lambda^2 + 1$;

Jordan 标准型为
$$\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$
或 $\begin{bmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{bmatrix}$.

- 9.设 4 阶方阵 A 的第一行元素全为 $\frac{1}{2}$,且有特征向量 $(1, 1, 1, 1)^T$,则 A 有一个特征值为 $\underline{2}$
- 四. 计算: 1. 解: (1) 用分块阵的初等行变换得

$$\begin{pmatrix} \mathbf{I} & -\mathbf{I} & \mathbf{I} & \mathbf{0} \\ \mathbf{I} & \mathbf{I} & \mathbf{0} & \mathbf{I} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{I} & -\mathbf{I} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & 2\mathbf{I} & -\mathbf{I} & \mathbf{I} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{I} & \mathbf{0} & \frac{1}{2}\mathbf{I} & \frac{1}{2}\mathbf{I} \\ \mathbf{0} & \mathbf{I} & -\frac{1}{2}\mathbf{I} & \frac{1}{2}\mathbf{I} \end{pmatrix} \Rightarrow \therefore \begin{pmatrix} \mathbf{I} & -\mathbf{I} \\ \mathbf{I} & \mathbf{I} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2}\mathbf{I} & \frac{1}{2}\mathbf{I} \\ -\frac{1}{2}\mathbf{I} & \frac{1}{2}\mathbf{I} \end{pmatrix}.$$

2.
$$\mathbb{R}$$
: $\|\alpha - \beta\|^2 = (\alpha - \beta, \alpha - \beta) = (\alpha, \alpha) - 2(\alpha, \beta) + (\beta, \beta) = \|\alpha\|^2 + \|\beta\|^2 - 2(\alpha, \beta)$
 $\|\alpha + \beta\|^2 = (\alpha + \beta, \alpha + \beta) = (\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta) = \|\alpha\|^2 + \|\beta\|^2 + 2(\alpha, \beta)$

由条件
$$\|\alpha - \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$$
知: $(\alpha, \beta) = 0$.

3. 解: (1) AJordan 标准形为
$$J = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
; (2)极小式为 $g(\lambda) = (\lambda - 1)(\lambda - 2)^2$

五. 解:

$$(1) |A| = \begin{vmatrix} \lambda - 2 & \lambda - 2 & \lambda - 2 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda - 2) \begin{vmatrix} 1 & 1 & 1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda - 2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda + 1 & 0 \\ 0 & 0 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 1)^{2}$$

可知 $\lambda = 2$,或 $\lambda = -1$ 时, 秩r(A) < 3.

(2)由(1)可知 $\lambda = -1$ 时r(A) = 1此时方程组AX = 0的解空间维数为 2

由方程
$$\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = \mathbf{0}$$
 通解 $\mathbf{x} = \mathbf{x}_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \mathbf{x}_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$,W 的基可取为 $\boldsymbol{\beta}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\boldsymbol{\beta}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

(3): $W = \{x = (x_1, x_2, x_3)^T | x_1 + x_2 + x_3 = 0\}$ 可知 W 是 \mathbb{R}^3 中过原点的平面 $x_1 + x_2 + x_3 = 0$,

它的法向量为 $\vec{n} = (1,1,1)^T$,可知 \mathbf{W}^{\perp} 的基为 $(1,1,1)^T$

或任取
$$\mathbf{x} \in \mathbf{W}^{\perp}$$
,则 $\mathbf{x} \perp \boldsymbol{\beta}_1, \mathbf{x}_2 \perp \boldsymbol{\beta}_2 \ \therefore \ -\mathbf{x}_1 + \mathbf{x}_2 = \mathbf{0}, -\mathbf{x}_1 + \mathbf{x}_3 = \mathbf{0}$

可知 $x = k(1, 1, 1)^T$, W^{\perp} 的基为 $(1,1,1)^T$.

六.解(1)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 3 & 1 & 1 \\ 1 & \lambda - 3 & 1 \\ 1 & 1 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & \lambda - 1 & \lambda - 1 \\ 1 & \lambda - 3 & 1 \\ 1 & 1 & \lambda - 3 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda - 3 & 1 \\ 1 & 1 & \lambda - 3 \end{vmatrix}$$
$$= (\lambda - 1) \begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda - 4 & 0 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 1)(\lambda - 4)^2$$
则特征值为 1, 4, 4 (二重)

$$\lambda=1$$
 时解方程组 $\left(\mathbf{I}-\mathbf{A}\right)\mathbf{X}=0$ 得通解为 $\mathbf{x}=\mathbf{k}\begin{pmatrix}1\\1\\1\end{pmatrix}$ 对应特征向量为 $\alpha_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$

 $\lambda=4$ (二重根) 对应得特征向量 $\mathbf{x}=\left(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\right)^{\mathrm{T}}$ 与 α_{1} 正交,由正定条件可知

$$1 \cdot \mathbf{x}_1 + 1 \cdot \mathbf{x}_2 + 1 \cdot \mathbf{x}_3 = 0$$
对应 2 个正交的特征向量为 $\alpha_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$

把
$$\alpha_1, \alpha_2, \alpha_3$$
单位化得正交阵
$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} (不唯一), 得 Q^{-1}AQ = \begin{pmatrix} 1 & & & \\ & 4 & & \\ & & 4 \end{pmatrix}$$

(2)二次型 f 对应矩阵为
$$A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$
,由(1)知,令正交变换 $x = Qy$,则 f 可化为:

 $f = 1 \cdot y_1^2 + 4 \cdot y_2^2 + 4 \cdot y_3^2$, 可知 f = 4 在 R^3 中代表(旋转)椭球面.

七.解:(1)计算得 $A\varepsilon = -\varepsilon$. 又可知 $A^T = A \Rightarrow A$ 为对称阵,且 $A^T A = AA = (I-2\varepsilon\varepsilon^T)^2 = I$ 故 A 是对称的正交矩阵.

(2)
$$Ax = x - 2\varepsilon\varepsilon^T x$$
,可知(Ax , Ay) = $(Ax)^T (Ay) = x^T A^T Ay = x^T I y = (x, y)$.

八. 解: 1. 证明: 设 $k_1\alpha_1 + \cdots + k_s\alpha_s + k\beta = 0, k_1 \cdots k_s, k$ 不全为 0

若 k=0 则 $k_1\alpha_1+\cdots+k_s\alpha_s=0$ 且 $k_1\cdots k_s$, k 不全为 0,这与 $\alpha_1\cdots\alpha_s$ 线性无关矛盾

$$\therefore k \neq 0 \Rightarrow \beta = \frac{-k_1}{k} \alpha_1 + \frac{-k_2}{k} \alpha_2 + \dots + \frac{-k_s}{k} \alpha_s$$
,即 β 可由 $\alpha_1 \dots \alpha_s$ 线性表示

可设
$$\beta = l_1\alpha_1 + l_2\alpha_2 + \cdots + l_s\alpha_s$$
 若不然由内积 $(\alpha_1, \beta) = (\alpha_2, \beta) = \cdots = (\alpha_s, \beta) = 0$

2. 证明: (1) 只需证齐次线性方程组 Ax=0 与 $A^{T}Ax=0$ 同解:

显然 Ax=0 的解必为 $A^TAx=0$ 的解,设 x_0 是 $A^TAx=0$ 的解,则 $x_0^TA^TAx_0=0$

$$(\mathbf{A}\mathbf{x}_0)^{\mathsf{T}}\mathbf{A}\mathbf{x}_0 = \mathbf{0}$$

因为 Ax_0 为n维实向量,所以 $Ax_0 = 0$,即得 $A^TAx = 0$ 的解必为Ax = 0的解

综上: Ax=0与 $A^{T}Ax=0$ 同解⇒ 秩 $\mathbf{r}(A^{T}A)=\mathbf{r}(A)$

显然 $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ 是对称阵,下证二次型 $\mathbf{f}=\mathbf{X}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{A})\mathbf{X}$ 是半正定:任取 $\mathbf{X}=(\mathbf{x}_{_{1}},\cdots,\mathbf{x}_{_{n}})^{\mathsf{T}}\neq \mathbf{0}$,

设
$$AX = b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
,则 $X \neq 0$ 时有 $f = \left(AX\right)^T \left(AX\right) = b^T b = b_1^2 + \dots + b_n^2 \ge 0$

从而 f 为半正定二次型, A^TA 为半正定阵.

(2)再证 $|B^2 + B + I| \ge 1$: :: B 是半正定的,设 B 的全体特征值为 $\lambda_1 \ge 0, \dots, \lambda_n \ge 0$ 则 $B^2 + B + I$ 的全体特征值为: $(\lambda_1^2 + \lambda_1 + 1), (\lambda_2^2 + \lambda_2 + 1), \dots, (\lambda_n^2 + \lambda_n + 1)$,所以

$$\begin{split} &|\;B^2+B+I\>|=(\lambda_1^2+\lambda_1^{}+1)\cdots(\lambda_n^2+\lambda_n^{}+1)\geq(\lambda_1^{}+1)(\lambda_2^{}+1)\cdots(\lambda_n^{}+1)\\ &\geq(\lambda_1^{}\lambda_2^{}\cdots\lambda_n^{})+1\geq1 \end{split}$$

且若 $\mathbf{B^2}=\mathbf{0}$,则 $\lambda_1^2=0,\cdots,\lambda_n^2=0$ ⇒ $\lambda_1=0,\cdots,\lambda_n=0$,(必有 $\mathbf{B}=0$) 所以 $|\mathbf{B}^2+\mathbf{B}+\mathbf{I}|=|\mathbf{B}+\mathbf{I}|=(\lambda_1+1)(\lambda_2+1)\cdots(\lambda_n+1)=1$

(3) 设A, A-I 均为n 阶正定阵, I 为单位阵. 证明 $I-A^{-1}$ 为正定阵.

证明: 方法一. 由 A-I 正定,设 A 的特征值为 λ_i (i=1,2,...,n),则 λ_i-1 是 A-I 的特征值,并且 $\lambda_i-1>0$,于是 $\lambda_i>1$ (i=1,2,...,n)

而 $/_{\lambda_i} (i=1,2,\cdots,n)$ 是 A^{-1} 的特征值,所以 $/_{\lambda_i} < 1$ $(i=1,2,\cdots,n)$

而正数 $1-\frac{1}{1/2}>0$ $(i=1,2,\cdots,n)$ 是 $I-A^{-1}$ 的全体特征值, 所以 $I-A^{-1}$ 为正定矩阵.

一. 选择题 (2009 工科高等代数)

1.若 3 阶阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 的行列式|A| = 1,则行列式 $|2\alpha_1, \alpha_2 + \alpha_1, \alpha_1 + \alpha_3| = (c)$

- (a) 1; (b) 0; (c) 2; (d) -2
- 2.设 $A = A_{4\times 3}$, $B = B_{3\times 4}$ 则必有 (d)
- (a) |AB| = |A| |B|; (b) $|BA| \neq 0$; (c) |BA| = |AB|; (d) |AB| = 0

3.设 $A = A_{m \times m}$, $B = B_{n \times n}$ 分别是 m 阶与 n 阶方阵,则行列式 $\begin{vmatrix} 0 & A \\ B & C \end{vmatrix} = (d)$

(a) |A||B|; (b) -|AB|; (c)0; (d) $(-1)^{m \cdot n} |A||B|$

 $5.\{\alpha_1 = (0,1, 1)^T, \alpha_2 = (1, 1,-1)^T, \alpha_3 = (3, 3, -3)^T\}$ 的一个最大无关组为(c)

(a) α_2 (b) α_1 , α_2 , α_3 (c) α_1 , α_2 或 α_1 , α_3 ; (d) α_2 , α_3

6.若 A 是 n 阶正交阵,x 是 \mathbb{R}^n 中的列向量,则模长 |Ax|=(d)

(a) | A | (b) 正数 (c) 非零 (d) 模长 | x |

7.设 A 为 $\mathbf{m} \times \mathbf{n}$ ($\mathbf{m} > \mathbf{n}$)矩阵,则 rank(A)=(c)时,方程组 AX = 0 只有零解.

(a) $n-1$; (b) 1; (c) n ; (d) m.
8. A 为实的 $m \times n$ 矩阵,下列说法不正确的是 (d)
(a)秩 $r(A^TA) = r(A)$; (b) A^TA 为对称; (c) A^TA 为半正定; (d) $r(A^T) \neq r(A^T)$
9.设 3 阶方阵 A 的特征值为 2 , 3 , 1 , 则行列式 $ A =(d)$
(a) 1 (b) 2 (c) 3 (d)6
10.n 阶实对称阵 A 为正定的充分必要条件是(c)
(a) $ A $ 为正; (b)所有特征值非负; (c) A^{-1} 为正定阵; (d) 秩(A)=n
11.设 A^* 是 n 阶方阵 A 的伴随阵,且 A 可逆,则错误说法为(c)
(a) A^*A 为对角阵; (b) $A^* = A A^{-1}$; (c) $A^*A = A^n$; (d) $ A^*A = A ^n$
12.设 A 为 n 阶正交阵,下列说法正确的是(d)
(a) $ A =1$; (b) $ A =-1$; (c) $A^{T}=A^{*}$; (d) $A^{T}=A^{-1}$
13.设两个 n 阶矩阵 A 与 B 有相同的特征多项式,则错误结论为(c).
(a) 迹 $\operatorname{tr}(A) = \operatorname{tr}(B)$; (b) $ A = B $; (c) A, B 相似; (d) A, B 有相同特征值.
14.实二次型 $f = (x_1 + x_2)^2 + (x_2 - x_3)^2$ 是 (a)
(a) 半正定二次型; (b) 半负定; (c) 正定二次型; (d)不定二次型
15.将 3 阶阵 A 的第 1 列加到第 3 列得 B , 则满足 $AQ = B$ 的可逆阵 Q 为(a)
(a) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; (d) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
二. 判断题(正确的在括号内打"√",错误的在括号内打"X"):
1. n 阶方阵 A 的行列式 A =0 ⇔ rank(A)< n ⇔ Ax = 0有非零解 (\checkmark)
2.当 $m < n$ 时, n 元齐次方程组 $A_{m \times n} x = 0$ 有无穷多个解. (↓)
3. 若 A , B 均为 n 阶对称阵,则 AB 也是对称阵.(X)
4.若方阵 A, B 相似,则 A, B 有相同的特征向量.(X)

5.实对称阵 A 必相似于对角阵,它的若当 Jordan 形也是对角阵(\checkmark)

 $6.A^*$ 是 n 阶阵 A 的伴随阵,I 为 n 阶单位阵,则 $A^*A = |A|I$, $|A^*A| = |A|^n$ (\checkmark)

7.若5个已知向量可由4个未知向量线性表示,则5个已知向量必线性相关(√)

8.若方阵 A 的极小多项式或零化式没有重根,则 A 相似于对角阵(\checkmark)

9.设
$$A = (a_{ii})_{m \times s}$$
, $B = (b_{ii})_{s \times n}$, 则有: 秩 $r(AB) \le \min\{r(A), r(B)\}$.(\checkmark)

10.实对称阵 A 为正定的充分必要条件是 A 的所有特征值为正数 (\checkmark)

11.空间 \mathbf{R}^3 中从基 $(\alpha_1,\alpha_2,\alpha_3)$ 到基 (g_1,g_2,g_3) 的过渡矩阵 P 满足以下公式:

$$(g_1, g_2, g_3) = (\alpha_1, \alpha_2, \alpha_3)P, (\alpha_1, \alpha_2, \alpha_3) = (g_1, g_2, g_3)P^{-1}$$
 ($\sqrt{}$)

12. \mathbf{R}^3 上线性变换 $\boldsymbol{\varphi}$ 在给定基($\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3$)下的矩阵 A 满足以下公式:

13.设 $P^{-1}AP$ 有定义,则 $(P^{-1}AP)^{10} = P^{-1}A^{10}P.($ \checkmark)

14.设 3 阶阵 A 的各行元素和为 0,且秩为 2,则 Ax = 0 有基本解 $(1,1,1)^T$ (✓) 15.若齐次方程组 $A_{m\times n}$ **x**=0 只有零解,则 $A_{m\times n}$ **x**= **b** 恰有一个解.(X)

三. 填空 1.设 $f(\lambda)$ 是方阵 A 的特征多项式,则 f(A) = 0

3.若 $A = A_{3\times 3}$ 的特征根是 $\lambda_1, \lambda_2, \lambda_3$,则 A 的迹 $\mathbf{tr}(A) = \lambda_1 + \lambda_2 + \lambda_3$

4.设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc = 1$, 则 $A^{-1} = \underline{\qquad}$;

5.设 3 阶阵 A 特征根是 $\lambda_1, \lambda_2, \lambda_3, f(x)$ 是多项式,则 f(A) 特征根是 $f(\lambda_1), f(\lambda_2), f(\lambda_3)$

6.设 A 为 3 阶阵且 A, B 相似, A 的特征值为 2, 3, 4, 则 B^{-1} 特征值为 2^{-1} , 3^{-1} , 4^{-1}

7.设 I 是单位矩阵,
$$M = \begin{pmatrix} I & C \\ 0 & I \end{pmatrix}$$
 , 则 $M^{-1} = \begin{pmatrix} I & -C \\ 0 & I \end{pmatrix}$

8.若 α_1 , α_2 是 **Ax=b** $\neq \vec{0}$ 的解, $k_1\alpha_1 + k_2\alpha_2$ 也是它的解,则 $k_1 + k_2 = \underline{1}$

9.
$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
 则 $A^2 = \underline{0}$; A 的极小多项式 $m(x) = x^2$.

四. 1.设A为 3 阶阵,I 为单位阵,|A+I|=|A+3I|=|A-I|=0,求伴随阵 A*的特征值

解: 由条件知 A 特征值为 -1, -3, 1. 且 |A|=(-1) × (-3) × (1)=3. A^{-1} 特征值为 $(-1)^{-1}$, $(-3)^{-1}$,

1, 用公式 $A^* = |A|A^{-1}$ 可得 A^* 的特征值为 $3 \times (-1) = -3$, $3 \times (-3)^{-1} = -1$, $3 \times 1 = 3$.

2.设
$$A = \alpha \alpha^T$$
, $\alpha = (1, -1)^T$.求 A^{2009} . 提示:利用 $\alpha^T \alpha = (1, -1) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 2$ 可得结论.

3.设 $\alpha_1, \alpha_2, \alpha_3$ 是 4元非齐次方程组 AX=b 的三个解向量,且秩 $r(\mathbf{A}) = 3$,

 $\alpha_1 = (2,0,0,3)^T, \alpha_2 + \alpha_3 = (2,0,0,4)^T$ 求方程组 AX=b 的通解.

解 因 $\alpha_1, \alpha_2, \alpha_3$ 是方程组 AX=b 的三个解,故 $\alpha_1 - \alpha_2, \alpha_1 - \alpha_3$ 是 AX=0 的解,可知

$$(\alpha_1 - \alpha_2) + (\alpha_1 - \alpha_3) = 2\alpha_1 - (\alpha_2 + \alpha_3) = (2, 0, 0, 2)^T$$
 \exists AX=0 的解,又 $r(\mathbf{A}) = 3$

故 AX=0 的基本解系含 4-3=1 个向量 $\Rightarrow AX=0$ 通解是 $\mathbf{X} = c(2,0,0,2)^T, c \in \mathbf{R}$

或 $X = c(1,0,0,1)^T \Rightarrow AX = b$ 的通解为 $X = c(2,0,0,2)^T + (2,0,0,3)^T$,

或 $X = c(1,0,0,1)^T + (2,0,0,3)^T$.

4.已知 $f = ax_1^2 + ax_2^2 + ax_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$ (a>0)通过正交变换 x = Qy 化为标准形 $y_1^2 + 4y_2^2 + 4y_3^2$,求参数 a 与二次型 f 的矩阵 A (不用求出正交阵 Q).

解: 可知 A 的特征值为 1, 4, 4 ⇒ 迹 tr(A) = a + a + a = 1 + 4 + 4 = 9

$$\Rightarrow a=3 \Rightarrow A = \begin{pmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

五.1.设 n 阶阵 A 的元素全为 1,求 A 的特征多项式,并写一个与 A 相似的简单矩阵 D.

$$|\mathbf{K}||\lambda I - A| = (\lambda - n)\lambda^{n-1}$$
,对称阵 A 必相似于对角阵 $D = \begin{pmatrix} n & & & \\ & 0 & & \\ & & \ddots & 0 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 利用初等变换计算 A^{-1} ,并且求伴随阵 A^* ;写出 A 的 Jordan 型.

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow A^* = |A| A^{-1} = A^{-1}.$$

设
$$A$$
 的若当形为 J ,则 $A \sim J = \begin{bmatrix} 1 & * & 0 & 0 \\ & 1 & * & 0 \\ & & 1 & * \\ & & & 1 \end{bmatrix}$ (相似),其中* 是 0 或 1.

可知
$$_{A-1I} \sim J-I =$$
 $\begin{bmatrix} 0 & * & 0 & 0 \\ & 0 & * & 0 \\ & & 0 & * \\ & & & 0 \end{bmatrix}$ (相似) $\Longrightarrow r(A-I) = r(J-I)$ (秩相同)

因为
$$r(A-I)=3$$
 则 $r(J-I)=3$,可知 3^* 4 全为1

$$\Rightarrow A \circ$$
若当形, A 的 Jordan 型为:
$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3.设
$$A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
, 求正交阵 Q , 使 $Q^{-1}AQ$ 为对角阵 (写出对角阵).

$$|A|$$
 $|A|$ $|A$

$$\lambda = 6$$
 时解方程组 $(I - A)X = 0$ 得特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

 $\lambda = 3$ (二重根) 对应得特征向量 $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)^{\mathrm{T}}$ 与 α_1 正交

由正交条件可知
$$1\cdot \mathbf{x}_1+1\cdot \mathbf{x}_2+1\cdot \mathbf{x}_3=0$$
对应 2 个正交的特征向量为 $\alpha_2=\begin{pmatrix} -1\\1\\0 \end{pmatrix}, \alpha_3=\begin{pmatrix} -1\\-1\\2 \end{pmatrix}$

把
$$\alpha_1, \alpha_2, \alpha_3$$
单位化得正交阵
$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$$
(不唯一)且 $Q^{-1}AQ = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

六. 证明题 (共 9 分)设分块三角阵 $M = \begin{pmatrix} A & S \\ 0 & B \end{pmatrix}$, 其中 A, B 是 n 阶可逆阵.

(1)用初等变换求 M^{-1} ; (2)如果M是正交阵,则A,B都是正交阵,且S=0

(3)若 A 是 n 阶正交阵,证明: 行列式 |A| = +1 或 |A| = -1. **解**(1) 用初等行变换得

$$(M \mid \mathbf{I}) = \begin{pmatrix} A & S \mid I & 0 \\ 0 & B \mid 0 & I \end{pmatrix} \xrightarrow{\text{fr}\mathfrak{B}} \begin{pmatrix} A & S \mid I & 0 \\ 0 & I \mid 0 & B^{-1} \end{pmatrix} \xrightarrow{r_1 - (s)r_2} \begin{pmatrix} A & 0 \mid I & -SB^{-1} \\ 0 & I \mid 0 & B^{-1} \end{pmatrix}$$

$$\xrightarrow{\text{fr}\mathfrak{B}} \begin{pmatrix} I & 0 \mid A^{-1} & -A^{-1}SB^{-1} \\ 0 & I \mid 0 & B^{-1} \end{pmatrix} \Rightarrow M^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}SB^{-1} \\ B^{-1} \end{pmatrix}.$$

(2)
$$M$$
 是正交矩阵 $\Rightarrow M^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}SB^{-1} \\ B^{-1} \end{pmatrix} = M^T = \begin{pmatrix} A^T & 0 \\ S^T & B^T \end{pmatrix}$

 $\Rightarrow A^{-1} = A^{T}$, $B^{-1} = B^{T}$, $S^{T} = 0$. 即 A, B 都是正交矩阵,且 S = 0.

(3)若A是n阶正交阵,则行列式 $|AA^T| = |I| = 1 \Rightarrow |A|^2 = = 1 \Rightarrow |A| = +1$ 或 |A| = -1

七. (5 分) 设 \mathbf{R}^3 上线性变换 $\boldsymbol{\varphi}$ 在已知基 $\{\alpha, \beta, \gamma\}$ 下满足

$$\varphi(\alpha + \beta + \gamma) = \alpha$$
, $\varphi(\beta + \gamma) = 2\beta$, $\varphi(\beta - \gamma) = 2\gamma$.

(1)求出 φ 在基 $\{\alpha, \beta, \gamma\}$ 下的矩阵A,使 $\varphi(\alpha, \beta, \gamma) = (\alpha, \beta, \gamma)A$.

(2)求 $\xi = \alpha + 2\beta + \gamma$ 的像 $\varphi(\xi)$ 在已知基下的坐标.

$$\mathbf{p}(1)\,\varphi(\alpha) + \varphi(\beta) + \varphi(\gamma) = \alpha, \ \varphi(\beta) + \varphi(\gamma) = 2\beta, \ \varphi(\beta) - \varphi(\gamma) = 2\gamma$$

可得
$$\varphi(\alpha) = \alpha - 2\beta$$
, $\varphi(\beta) = \beta + \gamma$, $\varphi(\gamma) = \beta - \gamma$.

$$\varphi(\alpha), \ \varphi(\beta), \ \varphi(\gamma)$$
 在已知基下坐标为 $\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ 为 φ 的矩阵.

(2) $\varphi(\xi) = \varphi(\alpha + 2\beta + \gamma) = \varphi(\alpha + \beta + \gamma) + \varphi(\beta) = \alpha + \beta + \gamma \Rightarrow \varphi(\xi)$ 在己知基{α, β, γ}下的 坐标为 (1, 1, 1)^T

补充题 1 利用特征值与秩方法写出下列矩阵的 Jordan 形, 并写出极小多项式

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}, D = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}_{4 \times 4}.$$

(1)解:设
$$A$$
的若当形为 J ,则 $A \sim J = \begin{bmatrix} 2 & * & 0 & 0 \\ & 2 & * & 0 \\ & & 2 & * \\ & & & 2 \end{bmatrix}$ (相似),其中*为 0 或 1.

可知
$$A - 2I \sim J - 2I =$$

$$\begin{bmatrix} 0 & * & 0 & 0 \\ & 0 & * & 0 \\ & & 0 & * \\ & & & 0 \end{bmatrix}$$
 (相似) $\Rightarrow r(A - 2I) = r(J - 2I)$ (秩相同)

计算知: r(A-2I)=3, 则 r(J-2I)=3

$$(2)$$
 $B=\begin{pmatrix}2&0\\3&2\end{pmatrix}$ 的极小式为 $b(x)=(x-2)^2$,它的若当形为 $J_1=\begin{bmatrix}2&1\\0&2\end{bmatrix}$

又可知 C 有 2 个不同特征值 1, 2, 它 必相似于对角形. C 的极小式为

$$c(x) = (x-1)(x-2)$$
,若当形为 $C \sim \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ (C 的若当形).

(3)可知 D 的极小式(取b(x),c(x) 的最小公倍式)为 $q(x) = (x-2)^2 (x-1)$

可得
$$m{D}$$
的若当形为 $m{J}=egin{pmatrix} 2 & 1 \ & 2 \end{pmatrix} & & & \\ & & & (1) & & \\ & & & & (2) \end{pmatrix}.$

补充题 2 用 "行变换法" 求解矩阵方程 AX = B其中 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 3 & 1 \\ 4 & 3 \end{pmatrix}.$

若 A 可逆,则 $X = A^{-1}B$. 用增广阵做行变换:

$$(A \mid B) = \begin{pmatrix} 1 & 2 & 3 \mid 2 & 5 \\ 2 & 2 & 1 \mid 3 & 1 \\ 3 & 4 & 3 \mid 4 & 3 \end{pmatrix} \xrightarrow{\frac{r_2 - 2r_1, \cdots}{r_3 - 3r_1, \cdots}} \begin{pmatrix} 1 & 0 & 0 & 3 & 2 \\ 0 & 1 & 0 & -2 & -3 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 3 & 2 \\ -2 & -3 \\ 1 & 3 \end{pmatrix}.$$

补充题 3 证明若 A 是 n 阶正交阵, $x \in \mathbb{R}^n$ 是列向量,则 $||Ax||^2 = ||x||^2$.

证: 若 A 为 n 阶正交阵, $x \in R^n$, 由内积与长度平方公式得

$$|Ax|^2 = (Ax)^T (Ax) = x^T A^T Ax = x^T Ix = x^T x = |x|^2$$
.

补充题 4 若 $m \times n$ 实矩阵 A 满足 $A^T A = 0$,则 A = 0

证法 1: 由秩公式 $r(A^TA) = r(A) 与 A^TA = 0$,可得秩 $r(A) = 0 \Rightarrow A = 0$.

证法 2: 设 $A = (a_{ii})$ 为实数 $m \times n$ 矩阵,由于 $A^T A = 0$,观察 $A^T A$ 的对角元即可.

补充题 5 若(A-I)(B-I)=I则 AB=BA. 证:?

补充题 6 若 $A = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$ 的伴随阵 A^* 的秩为 1,则 $a = -\frac{1}{2}$.

解: 因 $r(A^*) = 1 \Leftrightarrow r(A) = n-1$,得 $r(A) = 3-1 = 2 \Rightarrow a = -\frac{1}{2}$.

补充题 7 若 A, B 都是 n 阶正交阵,则 AB 也是正交阵,且行列式 |AB| = 1 或 -1.

补充题 8 已知 A+B=AB, 计算 (A-I)(B-I), 并证明 AB=BA. 证:?

补充题 9 若 A, B 都是 n 阶正交阵, 且 |AB| = -1 则 A + B 不可逆, 即 |A + B| = 0.

证:由正交阵定义 $A^TA = AA^T = I$. $B^TB = BB^T = I$. 可得

 $|A + B| = |AB^TB + AA^TB| = |A(B + A)^TB| = |A||B||B + A| = -|A + B|$, to |A + B| = 0.

(同理可证**结论**: 若 A 是 3 阶正交阵, 且 |A|=1 则|A-I|=0 ?)

思考题: (1) A 为 2 阶实对称阵,特征值为 1, 2, $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 使得 AX = X ,求正交阵 Q 与对角

阵D使得 $A = QDQ^T$, 求A = ?.

(2)设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是 R^3 的基, $A = A_{3\times 3}$ 满足: $A\varepsilon_1 = \varepsilon_2, A\varepsilon_2 = \varepsilon_3, A\varepsilon_3 = 2\varepsilon_2 - \varepsilon_3$.

求矩阵 \mathbf{B} 使得 $A(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \mathbf{B}$, $\mathbf{B} = ?$

补充题:验证下题并求其行列式(并推广到 n 阶矩阵):

$$\begin{pmatrix} (a_0+b_0)^2 & (a_0+b_1)^2 & (a_0+b_2)^2 \\ (a_1+b_0)^2 & (a_1+b_1)^2 & (a_1+b_2)^2 \\ (a_2+b_0)^2 & (a_2+b_1)^2 & (a_2+b_2)^2 \end{pmatrix} = \begin{pmatrix} 1 & 2a_0 & a_0^2 \\ 1 & 2a_1 & a_1^2 \\ 1 & 2a_2 & a_2^2 \end{pmatrix} \begin{pmatrix} b_0^2 & b_1^2 & b_2^2 \\ b_0 & b_1 & b_2 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$1. \mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{pmatrix}, (1) 把 A 分解为列与行的积,并计算 \mathbf{A}^{2010} ; (2)求 A 的全$$

体特征根; (3)写一个多项式 f(x)使得 B=f(A), 由 A 的特征根直接写出 B 的特征根

2. 设 β 是非齐方程 $\mathbf{A}\mathbf{x} = \mathbf{b} (\mathbf{b} \neq \vec{0})$ 的一个解,设 α_1, α_2 是齐次方程 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的一个基础解系,

若 $k_1\alpha_1 + k_2\alpha_2 + k_3\beta = 0$, 求 $k_1A\alpha_1 + k_2A\alpha_2 + k_3A\beta$ 与 k_1 , k_2 , k_3 .

4.设方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

判定a,b取何值时,方程组有唯一解、无解、有无穷多解(求通解)

5.设
$$A$$
 为 n 阶阵,则有 $r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n-1 \\ 0, & r(A) \le n-2 \end{cases}$

6.秩公式: $rank(A^T A) = rank(AA^T) = rank(A)$, $(A = A_{m \times n})$ 为实矩阵)

7.设 v_1, v_2, v_3, v_4, v_5 是 R^4 中列向量; 矩阵 $A = (v_1, v_2, v_3, v_4, v_5)$,已知:

$$A = (v_1, v_2, v_3, v_4, v_5) \xrightarrow{\underline{\text{St}} \hat{\tau} \underbrace{\text{St}}} B = \begin{pmatrix} 1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 3 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1)求向量组 $\{v_1, v_2, v_3, v_4, v_5\}$ 的一个极大无关组,并用它表示向量 v_5
- (2) 求 $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 + x_5v_5 = 0$ 的基础解与通解
- (3)求 $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = v_5$ 的通解与 $y_1v_1 + y_2v_2 + y_3v_4 + y_4v_5 = v_3$ 的通解

8. (1)若
$$Y_1, Y_2, \dots, Y_k$$
 都是 $\mathbf{A}\mathbf{x} = \mathbf{b}$ ($\mathbf{b} \neq \vec{0}$) 的解,验证 $\frac{Y_1 + Y_2 + \dots + Y_k}{k}$ 也是它的解

(2)设 $\alpha_1, \alpha_2, \alpha_3$ 是 4 元非齐次方程组 AX=b 的三个解向量,且秩 $r(\mathbf{A}) = 3$,

$$\alpha_1 + \alpha_2 = (8,4,4,4)^T$$
, $\alpha_1 + \alpha_3 = (6,2,2,2)^T$, 求方程组 AX=b 的通解.

9.设 n 元方程组 $Ax = b \ (b \neq 0)$, 秩 $r(A) = r \ (r < n)$, $X_1, X_2, \cdots, X_{n-r}$ 是 Ax = 0 的基本解,

证明 Ax = b 最多有 n - r + 1 个线性无关的解.