VECTEURS ALÉATOIRES

Exercice 1 (Convolutions). Soient X, Y deux variables aléatoires indépendantes. Déterminer la loi de Z := X + Y dans chacun des cas particulier suivants :

- 1. $X \sim \mathcal{P}(\lambda), Y \sim \mathcal{P}(\mu)$.
- 2. $X \sim \mathcal{B}(n, p), Y \sim \mathcal{B}(m, p)$.
- 3. $X \sim \mathcal{U}(-1,1), Y \sim \mathcal{U}(-1,1)$.
- 4. $X \sim \mathcal{N}(\mu, \sigma^2), Y \sim \mathcal{N}(\nu, \tau^2)$.
- 5. $X \sim \Gamma(r, \lambda), Y \sim \Gamma(s, \lambda)$.

Exercice 2 (Loi du chi-2). Soient $\underline{X}=(X_1,\dots,X_n)$ un n-uplet de variables aléatoires gaussiennes standard indépendantes. Déterminer la loi de $\|\underline{X}\|^2:=X_1^2+\dots+X_n^2$.

Exercice 3 (Matrice de covariance). Soit $\underline{X} = (X_1, \dots, X_n)$ un vecteur aléatoire tel que $\mathbb{E}[\|\underline{X}\|^2] < \infty$. On appelle *matrice de covariance* de \underline{X} la matrice $\Gamma = (\Gamma_{ij})_{1 \le i,j \le n}$ où

$$\Gamma_{ij} := \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

- 1. Vérifier que Γ est une matrice symétrique positive. Est-elle définie positive?
- 2. Que dire de Γ lorsque X_1, \ldots, X_n sont indépendantes? Et la réciproque?
- 3. On fixe une matrice (déterministe) $A = (A_{ij})_{1 \le i,j \le n}$ et on pose $\underline{Y} := A\underline{X}$. Déterminer la matrice de covariance de \underline{Y} , en fonction de celle de \underline{X} .
- 4. Montrer que toute matrice symétrique positive est une matrice de covariance.

Exercice 4 (Énigme). Déterminer les lois \mathcal{L} sur \mathbb{R}_+ ayant la propriété suivante : pour $n \geq 1$, si X_1, \ldots, X_n sont indépendantes et de loi \mathcal{L} , alors $n \min(X_1, \ldots, X_n)$ est de loi \mathcal{L} .

Exercice 5 (Partie entière/fractionnelle). On note $\lfloor x \rfloor \in \mathbb{Z}$ la partie entière de x et $\{x\} := x - \lfloor x \rfloor$ sa partie fractionnelle. Quelle est la loi de $(\lfloor X \rfloor, \{X\})$ si $X \sim \mathcal{E}(\lambda)$?

Exercice 6 (Coordonnées polaires).

1. Montrer que pour toute fonction mesurable $h \colon \mathbb{R}^2 \to [0, \infty)$, on a

$$\int_{\mathbb{R}^2} h(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\theta = -\pi}^{\pi} \int_{r=0}^{\infty} h(r \cos \theta, r \sin \theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta.$$

2. Retrouver en particulier l'identité

$$\int_{\mathbb{R}} e^{-\frac{x^2}{2}} \, \mathrm{d}x = \sqrt{2\pi}.$$

3. Soient X et Y deux variables indépendantes de loi $\mathcal{N}(0,1)$. On note (R,Θ) l'écriture du point (X,Y) en coordonnées polaires. Trouver la loi de (R,Θ) .

Exercice 7 (Problème de couple). Soit $\lambda, \mu > 0$ et (X, Y) un couple aléatoire de densité

$$f(x,y) = \frac{\lambda \mu}{y} e^{-\frac{\lambda x}{y} - \mu y} \mathbf{1}_{(0,\infty)}(x) \mathbf{1}_{(0,\infty)}(y).$$

- 1. Déterminer la loi de Y. Les variables aléatoires X et Y sont-elles indépendantes?
- 2. Montrer que le couple $(\frac{X}{Y}, Y)$ admet une densité que l'on explicitera.
- 3. En déduire $\mathbb{E}[X^n]$ pour tout $n \in \mathbb{N}$.

Exercice 8 (Encore un problème de couple). Soient X et Y deux variables indépendantes de lois respectives $\Gamma(r,\lambda)$ et $\Gamma(s,\lambda)$, avec $r,s,\lambda>0$. On pose Z:=X+Y et U:=X/Z. Quelle est la loi du couple (Z,U)? En déduire la formule des compléments :

$$\int_0^1 x^{r-1} (1-x)^{s-1} dx = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}.$$

Exercice 9 (Ratio). Quelle est la loi de X/Y si X,Y sont indépendantes de loi $\mathcal{N}(0,1)$?

Exercice 10 (Isotropie gaussienne).

1. Soient X, Y, Z des variables indépendantes $\mathcal{N}(0, 1)$. Trouver la loi de (U, V, W) où

$$U := \frac{1}{3} \left(2X - 2Y + Z \right), \qquad V := \frac{1}{3} \left(X + 2Y + 2Z \right); \qquad W := \frac{1}{3} \left(2X + Y - 2Z \right).$$

2. Soient X_1, \ldots, X_n des variables indépendantes, de loi $\mathcal{N}(0,1)$. Trouver une condition nécessaire et suffisante sur la matrice $A=(A_{ij})_{1\leq ij\leq n}$ pour que les vecteurs aléatoires $\underline{X}:=(X_1,\ldots,X_n)$ et $\underline{Y}:=A\underline{X}$ aient la même loi.