E&CE 437 Integrated VLSI Systems

MOS Transistor

M. Sachdev

1 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

MOSFET: Introduction

- Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs
 - Its major assets are:
 - Higher integration density, and
 - Relatively simple manufacturing process
- As a consequence, it is possible to realize 10⁶⁻⁷ transistors on an integrated circuit (IC) economically

MOS Transistor

■ For an n-channel MOS transistor (NMOS)

- Heavily doped n-type source and drain regions are implanted (diffused) into a lightly doped p-type substrate (body)
- $_{\odot}$ A thin layer (approx. 50 $\text{A}^{0})$ of silicon dioxide (SiO $_{2})$ is grown over the region between source and drain and is called thin or gate oxide

3 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

- Gate oxide is covered by a conductive material, often polycrystalline silicon (polysilicon) and forms the gate of the transistor
- MOS transistors are insulated from each other by thick oxide (SiO₂) and reverse biased p-n+ diode
- Adding p+ field implant (channel stop implant) makes sure a parasitic MOS transistor is not formed

■ MOS Transistor as a switch

- V_{in} > V_T: a conducting channel is formed between source and drain and current flows
- V_{in} <V_T: the channel does not form and switch is said to be open
- V_{in} >V_T current is a function of gate voltage

NMOS, PMOS, and CMOS Technology

- In an NMOS transistor, current is carried by electrons (from source, through an n-type channel to the drain
 - Different than diode where both holes and electrons contribute to the total current
 - o Therefore, MOS transistor is also known as unipolar device
- Another MOS device can be formed by having p+ source and drain and n-substrate (PMOS)
 - Current is carried by holes through a p-type channel
- A technology that uses NMOS (PMOS) transistors only is called NMOS (PMOS) technology
 - In NMOS or PMOS technologies, substrate is common and is connected to +ve voltage, VDD (NMOS) or GND (PMOS)

5 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

- IN a complementary MOS (CMOS) technology, both PMOS and NMOS transistors are used
 - NMOS and PMOS devices are fabricated in isolated region from each other (i.e., no common substrate for all devices)

 MOS transistor is a 4 terminal device, if 4th terminal is not shown it is assumed to be connected to appropriate voltage

Static Behavior

 Only the NMOS transistor is discussed, however, arguments are valid for PMOS transistor as well

■ The threshold voltage

 \circ Consider the case where $V_{gs} = 0$ and drain, source and bulk are connected to ground

7 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

Static Behavior

- Under these conditions (no channel), source and drain are connected by back to back diodes having 0 V bias (no conduction)
 - \circ Hence, high resistance between source and drain (10⁷ Ω)
- If now the gate voltage (V_{GS}) is increased, gate and substrate form plates of a capacitor with oxide as dielectric
 - +ve gate voltage causes +ve charge on gate and -ve charge on the substrate side
 - In substrate it occurs in two steps (i) depletion of mobile holes, (ii) accumulation of -ve charge (inversion)

- At certain V_{GS}, potential at the interface reaches a critical value, where surface inverts to n-type (start of strong inversion)
- Further V_{GS} increase does not increase the depletion width but increases electrons in the inversion layer
- Threshold Voltage

$$V_T = V_{TO} + \gamma \left[\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|} \right]$$

Where

$$\gamma = \frac{\sqrt{2q\varepsilon_{si}N_A}}{C_{ox}}$$

 \circ V_T is +ve for NMOS and -ve for PMOS devices

9 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

Current-Voltage Relationship

■ When V_{GS} >V_T

 \circ Let at any point along the channel, the voltage is V(x) and gate to channel voltage at that point is V_{GS} -V(x)

o If the V_{GS} -V(x) > V_T for all x, the induced channel charge per unit area at x

$$Q_i(x) = -C_{ox}[V_{gs} - V(x) - V_T]$$

o Current is given by

$$I_D = -v(x)Q_i(x)W$$

o The electron velocity is given by

$$v_n = -\mu_n E(x) = \mu_n \frac{dV}{dx}$$

o Therefore,

$$I_D dx = \mu_n C_{ox} W \langle V_{gs} - V - V_T \rangle dV$$

o Integrating the equation over the length L yields

$$I_{D} = K'_{n} \frac{W}{L} \left[\langle V_{gs} - V_{T} \rangle V_{ds} - \frac{V^{2}_{ds}}{2} \right] \quad \text{OI}$$

$$I_{D} = K_{n} \left[\langle V_{gs} - V_{T} \rangle V_{ds} - \frac{V^{2}_{ds}}{2} \right]$$

11 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

 k'_n is known as the process trans-conductance parameter and equals

$$K'_n = \mu_n C_{ox} = \mu_n \frac{\varepsilon_{ox}}{t_{ox}}$$

- \circ If the V_{GS} is further increased, then at some x, V_{GS} V(x) <V_T and that point the channel disappears and transistor is said to be **pinched-off**
- \circ Close to drain no channel exists, the pinched-off condition in the vicinity of drain is V_{GS} V_{DS} <= V_{T}
- o Under these conditions, transistor is in the saturation region
- If a complete channel exists between source and drain, then transistors is said to be in triode or linear region
- \circ Replacing V_{DS} by V_{GS} -V $_{T}$ in the current equation we get, MOS current-voltage relationship in saturation region

$$I_D = \frac{K_n^{\prime} W}{2 L} \langle V_{gs} - V_T \rangle^2$$

 \circ This equation is not entirely correct, the position of pinch-off point and hence the effective channel length is a function of $V_{ds},$ a more accurate equation is given as

$$I_{D} = \frac{K_{n}^{'}W}{2} \langle V_{gs} - V_{T} \rangle^{2} \langle 1 + \lambda V_{ds} \rangle$$

 \circ where λ is an empirical constant parameter called channel length modulation factor

13 of 30

Department of Electrical & Computer Engineering, University of Waterloo

Dynamic Behavior

- MOS transistor is a unipolar (majority carrier) device, therefore, its dynamic response is determined by time to (dis)charge various capacitances
- MOS capacitances
 - O Gate oxide capacitance: $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$ per unit area,
 - for a transistor of width, W and length, L, the $C_g = WL \frac{\varepsilon_{ox}}{t_{ox}}$
 - From current equation it is apparent that C_{ox} should be high or gate oxide thickness should be small
 - o Gate capacitance consists of several components
 - Source and drain diffusions extend below the thin oxide (lateral diffusion) giving rise to overlap capacitance

MOSFET Overlap Capacitance

- Source and drain diffusions extend below the thin oxide (lateral diffusion) giving rise to overlap capacitance
- \circ x_d is constant for a technology and this capacitance is linear and has a fixed value C_{gsO} = C_{gdO} = $C_{ox}x_dW$ = C_oW

15 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

MOSFET Channel Capacitance

- Gate to channel capacitance consists of C_{gs}, C_{gd} and C_{gb} components
 - All these components are non-linear and their value depends on operation region of the device
 - Average/estimated values are used to simplify the analysis

Operation region	C _{gb}	C _{gs}	C _{gd}
Cutoff	C _{ox} WL _{eff}	0	0
Triode	0	C _{ox} WL _{eff} /2	C _{ox} WL _{eff} /2
Saturation	0	(2/3)C _{ox} WL _{eff}	0

MOSFET: Junction Capacitances

- This component is contributed by the reverse biased source-bulk and drain-bulk pn-junctions
 - Depletion region (also known as diffusion) capacitance is nonlinear and decreases as reverse bias is increased
 - Bottom plate junction capacitance: is formed by source (N_D) and bulk regions (N_A), C_{bottom} = C_iWL_s
 - \circ Side wall junction capacitance: is formed by source (N_D) and p+ channel stop implant with doping N_A⁺
 - O Doping concentration is higher for channel stop implant hence the capacitance per unit area is also higher, $C_{sw} = C'_{jsw}x_j(W + 2L_s)$, since x_j is fixed for a technology $C_{sw} = C_{jsw}(W + 2L_s)$
 - Total diffusion capacitance $C_{diff} = C_{bottom} + C_{sw} = C_{j}$.area + C_{jsw} .perimeter = $C_{j}WL_{s} + C_{jsw}(W + 2L_{s})$

17 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

MOS: Capacitive Device Model

$$\circ$$
 C_{GS} = C_{gs} + C_{gsO}

$$\circ$$
 C_{GD} = C_{gd} + C_{gdO}

$$\circ$$
 C_{GB} = C_{gb}

$$\circ$$
 C_{SB} = D_{diff}

Actual MOS Transistor: Short Channel Effects

- Realistic MOS transistor behaves differently from an ideal one owing to several factors
 - Owing to scaling, transistor channel length becomes comparable to other device parameters (e.g., junction depth, depletion width)
 - Assumptions such as, current flows only on surface, electric field is only in the direction of current flow, etc., are no longer true
 - Such a short channel device can not be adequately described by simple one dimensional model
 - o Hence, a two dimensional model is widely used

19 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

Short Channel Effects: V_T Variations

$$V_T = V_{TO} + \gamma \left[\sqrt{-2\phi_F + V_{SB}}\right] - \sqrt{-2\phi_F}$$

- Equation suggests V_T is a function of technology and applied VSB
 - o V_T should be constant for all NMOS and all PMOS transistors
 - \circ As dimensions are reduced, threshold potential becomes a function of W, L and V_{DS}
 - Influence of Source and Drain over channel helps in depleting the charge from channel
 - \circ As a consequence, a lower V_T is required to cause strong inversion
 - \circ **Drain induced barrier lowering:** as V_{DS} increases, the depletion region width also becomes wider resulting in lower V_T

○ Hence V_T is a function of operating voltage

■ Hot carrier effect

- As transistor dimensions are scaled, electric field strength is increased significantly
- \circ Higher electric field enables electrons (holes) to acquire high energy so that they can tunnel into thin oxide and modify the V_{T}
- \circ For NMOS V_T is increased and for PMOS V_T is reduced
- Hot carrier damage remains a long term reliability threat

21 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

Source-Drain Resistance

■ With transistor scaling, junctions are made shallower & contacts windows are made smaller while their depth is increased

- Technology and design objective is to reduce source-drain resistance
- Often source drain regions are covered by titanium or tungsten (silicidation) to reduce the resistance

Variation in I-V Characteristics

- While developing the I-V equation we assumed that carrier velocity is proportional to E
 - However, as E = E_{sat} (approx. 10⁴/micron), the carrier velocity saturates, as a consequence

$$I_{DSAT} = v_{sat}C_{ox}W\langle V_{gs} - V_{DSAT} - V_{T}\rangle \iota$$

- In long channel MOSFET we also assumed that there is no vertical electric field
 - However, as transistor scales, E_{vertical} can not be ignored
 - Carrier mobility is decreased as vertical electric field is increased

23 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

Sub-threshold Conduction

- \blacksquare MOS transistor partially conducts for $V_{gs} <\! V_{T}$
 - Known as sub-threshold conduction or weak-inversion conduction
 - Very small for long-channel (10⁻¹²A/micron)
 - $\circ\,$ The inverse rate of decrease in current with respect to V_{gs} is given by

$$S = \left(\frac{d}{dV_{gs}}\ln(I_D)\right)^{-1} = \frac{kT}{q}\ln 10(1+\alpha)$$

- $o \frac{kT}{a} \ln 10 = 60 \text{ mV/decade}$ and α is 0 for an ideal transistor
- However,α is greater than 1 for real transistor making S = 80 mV/decade

Narrow Channel Effects

- Owing to small width, transistor exhibits non-ideal behavior
- LOCOS isolation
 - Depletion region is not limited to the area just under the thin oxide,
 - If W is large: part of the depletion region on the sides is small fraction and may be neglected
 - \circ If W is small: gate also depletes the sides, hence larger V_T

25 of 30

Department of Electrical & Computer Engineering, University of Waterloo

Narrow Channel Effects

■ Shallow trench isolation

- Field lines beyond gate region helps in depleting the channel
 & causing the inversion at lower gate voltage
- Hence, lower V_T

Spice Model for the MOS Transistor

- Several MOS models have been developed
 - Model complexity is a trade-off between accuracy and run time in simulator
 - In SPICE, model complexity is set by LEVEL parameter
 - Level 1: spice model is based on long channel MOS I-V equation; no longer used
 - Level 2: geometry, physics based; uses several short channel effects; complex and inaccurate; no longer used
 - Level 3: semi-empirical model
 - Level 4: empirical model based on extracted values from experimental data; widely used
- Several other models are available; virtually every semiconductor fab has some model development group

27 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev ■

Technology Scaling & CMOS

- Ever since ICs were invented, dimensions are scaled to
 - o Integrated more transistors in the same area
 - Allow higher operational speed
- Scaling has profound impact on many aspects of ICs
- Constant Voltage Scaling
 - o All device dimensions are scaled by a factor S
 - o Voltage (i.e., V_{DD}) after the scaling is same as before
 - This method of scaling is followed till 0.8 micron
 - However for lower geometries, higher electric field resulted in poor device reliability

■ Therefore, for advanced technologies today Constant Field Scaling is followed

o All dimensions including power supply is scaled by a factor S

Parameter	Relation	cvs	CFS
W,L, t _{ox}		1/S	1/S
V_{DD} , V_{T}		1	1/S
Area	WL	1/S ²	1/S ²
C _{ox}	t _{ox}	S	S
C _L	C _{ox} WL	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S
l _{av}	$k_{n,p}V^2$	S	1/S
J _{av}	I _{av} /Area	S ³	S
t _p (intrinsic)	C _L V/I _{av}	1/S ²	1/S
P _{av}	C_LV^2/t_p	S	1/S ²
PDP	C _L V ²	1/S	1/S ³

29 of 30

Department of Electrical & Computer Engineering, University of Waterloo

■ M. Sachdev

Concluding Remarks

- MOS transistor is the back bone of contemporary VLSIs
- Constant motivation for scaling
 - o Scaling improves, Power, switching delay and PDP
- Experts predict slow down in scaling below 0.10 micron
 - Transistor characteristics are influenced by several short and narrow channel effects