Poster Printing using Z3

Luxue Wen*

September, 2025

1 Modeling the Problem

1.1 Parameters

- N_canvas = 3: number of each canvas.
- $N_{-}poster = 12$: number of each canvas.
- w = [5, 5, 4, 3, 7, 6, 5, 4, 6, 4, 6, 5]: width of each poster.
- h = [6, 6, 10, 11, 7, 10, 13, 10, 9, 15, 10, 10]: height of each poster.
- price = [10, 14, 13, 15, 10, 17, 21, 16, 16, 23, 19, 17]: price of each poster.
- W = [12, 12, 20]: width of each canvas.
- H = [12, 12, 20]: height of each canvas.
- cost = [30, 30, 90]: cost of each canvas.
- $minimal_profit = 60$: minimal profit of printing.

1.2 Decision Variables

To fit posters into canvases, we introduce the following variables:

- $z_{c,p} \in \mathbb{B}$ for $c = 1, ..., N_canvas, p = 1, ..., N_poster$: the value of $z_{c,p}$ will be true if and only if post[p] will be printed on canvas[c]
- $r_{c,p} \in \mathbb{B}$ for $c = 1, ..., N_canvas, p = 1, ..., N_poster$: the value of $r_{c,p}$ will be true if and only if post[p] will be turned 90°
- $u_c \in \mathbb{B}$ for c = 1, ..., N_canvas: the value of u_c will be true if and only if canvas[c] will be used
- $x_{c,p}, y_{c,p} \in \mathbb{N}$ for $c = 1, ..., N_canvas, p = 1, ..., N_poster$: the values of $x_{c,p}$ and $y_{c,p}$ indicate the bottom-left coordinate (x, y) of poster[p] placed in canvas[c]
- $w_eff_i, h_eff_i, w_eff_j, h_eff_j \in \mathbb{N}$: the width and height of post[i] and post[j]
- $total_profit \in \mathbb{N}$: the value of total profit after printing

^{*}Student Number: 2271796 Email: l.wen@student.tue.nl

1.3 Constraints

For post[p], it cannot be printed more than once. This is expressed by the formula

$$\sum_{i} z_{p,i} \le 1$$

Next we determine that whether post[p] fits into canvas[c]. This is expressed by the formula

$$z_{c,p} \Rightarrow \left((\neg r_{c,p} \land x_{c,p} \ge 0 \land y_{c,p} \ge 0 \land x_{c,p} + w[p] \le W[c] \land y_{c,p} + h[p] \le H[c] \land w[p] \le W[c] \land h[p] \le H[c] \right)$$

$$\lor (r_{c,p} \land x_{c,p} \ge 0 \land y_{c,p} \ge 0 \land x_{c,p} + w[p] \le W[c] \land y_{c,p} + h[p] \le H[c]) \land h[p] \le W[c] \land w[p] \le H[c] \right)$$

Additionally, every two posters post[i] and post[j] should have no overlap. This is expressed by the formula

$$(z_{c,i} \land z_{c,j}) \Rightarrow \Big((x_{c,i} + w_e f f_i \le x_{c,j}) \lor (x_{c,j} + w_e f f_j \le x_{c,i})$$
$$\lor (y_{c,i} + h_e f f_i \le y_{c,j}) \lor (y_{c,j} + h_e f f_j \le y_{c,i}) \Big)$$

Then, we associate canvase[c] and poster[p]. This is expressed by the formula

$$z_{c,p} \Rightarrow u_c$$

Finally, we set the minimal profit. This is expressed by the formula

$$total_profit \ge mininal_profit$$

1.4 Calculation Function

The calculation function of w_-eff_-i , h_-eff_-i , w_-eff_-j , h_-eff_-j is expressed by the formula

$$w_eff_i = \begin{cases} h_i, & \text{if } r_{c,i} = 1 \\ w_i, & \text{if } r_{c,i} = 0 \end{cases} h_eff_i = \begin{cases} w_i, & \text{if } r_{c,i} = 1 \\ h_i, & \text{if } r_{c,i} = 0 \end{cases}$$

$$w = f f_{-j} = \begin{cases} h_j, & \text{if } r_{c,j} = 1 \\ w_i, & \text{if } r_{c,j} = 0 \end{cases} h_{-e} f f_{-j} = \begin{cases} w_j, & \text{if } r_{c,j} = 1 \\ h_i, & \text{if } r_{c,j} = 0 \end{cases}$$

The calculation function of total_profit is expressed by the formula

$$\sum_{\substack{c=1,\ldots,N_{\text{canvas}}\\p=1,\ldots,N_{\text{poster}}\\r_c-\text{true}}} price_p - \sum_{\substack{c=1,\ldots,N_{\text{canvas}}\\u_c=\text{true}}} cost_c$$

2 Solver Implementation using Z3

- In part (a), a solver instance s using s = Solver() is used to store and solve the constraints).
- In part (b), an optimization solver instance using s = Optimize() is used to store constrains and handle objective functions to maximize variables.
- Constraints mentioned in 1.3 are added to the solver using s.add().
- The satisfiability of the constraints is checked by calling s.check().
- The specific values of the variables can be checked by calling s.model().evaluate

3 Results Part

3.1 posters Assignments with three canvases

Table 1: posters Assignments with three canvases for Part (a)

							p5 p6 p7 p8 p9 p1										
canvas	p0	p1	p2	p3	p4	p_5	p6	p7	p8	p9	p10	p11	price	$\cos t$	profit		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
1	10	14	0	15	0	0	0	16	0	0	0	0	55	30			
2	0	0	13	0	0	17	21	0	16	23	19	17	0 55 126	90			
Total													181	120	61		

It is possible to obtain profit at least 60.

3.2 posters Assignments with two small canvases

Table 2: posters Assignments with three canvases for Part (a)

canvas	p0	p1	p2	р3	p4	p5	p6	p7	p8	p9	p10	p11	price	cost	profit
0	10	14	0	0	0	0	0	0	0	0	0	0	19 48	43	30
1	0	0	0	15	0	0	0	16	0	0	0	17	48	30	
Total													91	60	31

The highest profit created by the two small canvases is 31.

3.3 Solver Performance and Optimization Results

- In Part (a), the run time is around 900ms.
- In Part (a), the run time is 2s.