14 Занятие 08/12/2020: криволинейные и поверхностные интегралы

Задачи:

- (1) Найти $I = \int_{L} \sqrt{x^2 + y^2} dl$, где L окружность $x^2 + y^2 = ax$.
- (2) Найти $I=\int_L z dl$, где L коническая винтовая линия $x=t\cos t,\,y=t\sin t,\,z=t,$ $t\in[0,2].$
- (3) Найти $I = \int_C (x+y) dx + (x-y) dy$, где C эллипс $x^2/a^2 + y^2/b^2 = 1$, пробегаемый против часовой стрелки.
- (4) Найти $I=J=\int_C (y-z)dx+(z-x)dy+(x-y)dz$, где C окружность, получаемая пересечением сферы $x^2+y^2+z^2=a^2$ и плоскости $y=x\tan\alpha~(0<\alpha<\pi)$, пробегаемая в направлении против хода часовой стрелки если смотреть со стороны положительных x.
- (5) Вычислить по формуле Грина $I=\int_C xy^2dy-x^2ydx$, где C окружность $x^2+y^2=a^2$.
- (6) Вычислить $I=J=\iint_S x^2 dy dz+y^2 dz dx+z^2 dx dy$, где S внешняя сторона границы куба $0\leq x\leq a,\ 0\leq y\leq a,\ 0\leq z\leq a.$
- (7) Используя формулу Стокса, вычислить интеграл $I=\int_C ydx+zdy+xdz$, где C- круг $x^2+y^2+z^2=a^2,\ x+y+z=0$, пробегаемый против хода часовой стрелки, если смотреть с положительной стороны оси 0x.
- (8) Используя формулу Стокса, вычислить интеграл $I = \int_C (y^2+z^2)dx + (x^2+z^2)dy + (x^2+y^2)dz$, где C кривая $x^2+y^2+z^2=2Rx$, $x^2+y^2=2rx$ (0 < r < R, z > 0), пробегаемая так, что ограниченная ей наименьшая область на внешней стороне сферы остается слева.
- (9) Используя формулу Стокса, вычислить интеграл $I=\int_C (y-z)dx+(z-x)dy+(x-y)dz$, где C эллипс $x^2+y^2=a^2$, x/a+z/h=1, a>0, h>0, пробегаемый против хода часовой стрелки, если смотреть с положительной стороны оси Ox.