Applying machine learning to hotel booking cancellation prediction

Business Analytics Final Project

Shiling Chen, Wenyu Han, Yumeng Tian, Jiaming Xie, Yuxuan Zhang, Ziyang Zhang

Objective & Background

How can hotels save \$1 M?

- Why upgrade
- Overselling
- Overselling rate
- Cancellation rate

How to estimate the cancellation probability for each customer?

Data Overview

Date Information:

reservation date, lead time, check-out date...

Booking Information:

Room type, Meal, Booking Channel, Market Segment, Deposit Type...

Personal Information:

of adults, children

Data Visualization

Correlation

Positive Correlated Features:

- lead time
- previous cancel rate
- previous cancellations

Negative Correlated Features:

- total of special request
- required car parking spaces
- booking changes

Data Visualization Special Requests

- For not cancelled orders, guests have significantly more special requests.
- Bookings with requests may be less likely to be cancelled.

Data Visualization

Booking changes

- Changed bookings take up a higher percentage in not cancelled orders than in cancelled orders.
- Orders with more than one booking changes tends to have lower cancellation probability.

Data Visualization Seasonality

- The seasonality of the hotel bookings does exist.
- Winter months(Nov. To Mar.) have much fewer reservations.
- The cancellation rate of each month decreases as total reservations goes down.

Data Visualization Market Segment

- Travel Agents/Tour Operators segment weighs over 50% of the total bookings.
- Direct and Corporate segments have lower cancelation rates compared to TA/TO.
- Groups segment has an extremely high cancelation rate over 60%.

Cost Model Construction

- Data from <u>HotStats</u>' report.
- Major Assumptions:
 - No additional consumptions like foods, facilities, etc.
 - > The opportunity cost of an empty room ≈ The operation cost of an occupied room
 - ➤ Total gross profit of a hotel = # of empty room *(-70) + # of occupied room *71

Cost Model Construction

Machine Learning Results

	Accuracy	Precision	Recall	Additional Profit Gain per Room
Logistic regression	79%	72%	72%	\$26
Decision tree	79%	78%	62%	\$25
XGboost	84%	85%	70%	\$32
Random forest	85%	85%	73%	\$33
Neural network	86%	83%	79%	\$34

Total profit gain:

| 86% | 83% | 79% | \$34 | \$1,017,828 |
| *Test size = 0.25; 29847

Advice for Hotels

Advice For Hotels:

- Overbooking rooms is better than leaving it empty;
- Use Neural Network to predict the cancellation rate is the most efficient;
- Properly using the prediction results can increase the gross profit per room by around 47%.

What can we do further?

- Model: Add features regarding different hotels, countries, etc.
- Cost matrix: Take re-booked rooms after cancelled into account.

THANKS!

Questions?

