Biologicky motivované výpočtové modely

Mgr. Michal Kováč Školiteľ: doc. RNDr. Damas Gruska, PhD.

FMFI UK

17.1.2018

- Prehľad problematiky
 - Biologicky motivované modely
 - P systémy
- Skúmané varianty P systémov
 - Sekvenčné P systémy s inhibítormi
 - Sekvenčné P systémy s aktívnymi membránami
 - Sekvenčné P systémy s množinami namiesto multimnožín
 - Detekcia prázdnosti membrán

Biologicky motivované výpočtové modely

Dvojaké uplatnenie:

- reálne modely živých systémov
 - virtuálne biologické experimenty
 - verifikácia správnosti chápania ich činností
- modely na popis iných systémov

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1968)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- Swarm Intelligence (od 1989)
- P systémy (od 1998) [Păun, 1998]
- . . .

Membránová štruktúra

Membránová štruktúra

Multimnožiny objektov

Membránová štruktúra

- Multimnožiny objektov
- Prepisovacie pravidlá

Prepisovacie pravidlá

 $u \rightarrow v$, where

• $u \in \mathbb{N}^{\Sigma}$

Prepisovacie pravidlá

 $u \rightarrow v$, where

- $u \in \mathbb{N}^{\Sigma}$
- v = v' or $v = v'\delta$, where $\delta \notin \Sigma$
- $\bullet \ v' \in \mathbb{N}^{\Sigma \times (\{\textit{here},\textit{out}\} \cup \{\textit{in}_j | 1 \leq \textit{j} \leq \textit{m}\})}$

Prepisovacie pravidlá

Krok výpočtu P systému

- Krok výpočtu
 - Sekvenčný
 - Paralelný
 - Maximálne paralelný

Ukážka výpočtu P systému

Jazyk definovaný P systémom

- Jazyk nad posupnosťami/multimnožinami objektov
 - Generatívny mód: postupnosť/multimnožina objektov vypustených do okolitého prostredia

Jazyk definovaný P systémom

- Jazyk nad posupnosťami/multimnožinami objektov
 - Generatívny mód: postupnosť/multimnožina objektov vypustených do okolitého prostredia
 - Akceptačný mód: vstupnú multimnožinu vložíme do špecifickej membrány, ak výpočet zastaví, akceptujeme

$$u \rightarrow v$$

ullet Kooperatívne ($u \in \mathbb{N}^{\Sigma}$) (PsRE [Păun, 1998])

 $u \rightarrow v$

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])

```
u \rightarrow v
```

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])
- Nekooperatívne s inhibítormi ($u \to v \mid_{\neg Inh}, Inh \subseteq \Sigma$) (PsET0L [lonescu and Sburlan, 2004])

```
u \rightarrow v
```

- ullet Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])
- Nekooperatívne s inhibítormi ($u o v \mid_{\neg Inh}, Inh \subseteq \Sigma$) (PsET0L [lonescu and Sburlan, 2004])
- Katalytické ($cu \rightarrow cv, u \in \Sigma, c \in C \subseteq \Sigma$)
 - s 2 katalyzátormi (PsRE [Freund et al., 2005])
 - s 1 katalyzátorom (otvorený problém)
 - s 1 katalyzátorom a inhibítormi (PsRE [lonescu and Sburlan, 2004])

Sekvenčné P systémy

Maximálny paralelizmus vs. sekvenčný mód

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])
 - s prioritami (PsRE [Ibarra et al., 2005])
 - s aktívnymi membránami (PsRE [Ibarra et al., 2005])
 - s inhibítormi (PsRE [Kováč, 2014])

Vlastné výsledky

Vlastné výsledky

Sekvenčné P systémy s inhibítormi
Sekvenčné P systémy s aktivnymi membránami
Sekvenčné P systémy s mpožínami namiesto multimnožín.

Sekvenčné P systémy s inhibítormi

1. Sekvenčné P systémy s inhibítormi

Sekvenčné P systémy s inhibítormi

• Pravidlo s inhibítormi: $u \to v|_I$, $I \subseteq \Sigma$

Sekvenčné P systémy s inhibítormi

- Pravidlo s inhibítormi: $u \to v|_I$, $I \subseteq \Sigma$
- Turingovská úplnosť pre akceptačný aj generatívny mód

Sekvenčné P systémy s inhibítormi

- Pravidlo s inhibítormi: $u \to v|_I$, $I \subseteq \Sigma$
- Turingovská úplnosť pre akceptačný aj generatívny mód
- Kováč (2014). Using Inhibitors to Achieve Universality of Sequential P Systems.

In Electronic Proceedings of CiE 2014

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Prehľad simulácie pre akceptačný mód

• Simulácia registrového stroja

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu
- SUB inštrukcia sa simuluje pomocou inhibítora
 - i : SUB(x, j, k)
 - $ix \rightarrow j$
 - $i \rightarrow k|_{\neg_X}$

• Registrový stroj M = (n, P, i, h, Lab)

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)

•
$$\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$$

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i
 - $\forall (e : add(j), k, l) \in P :$
 - $ullet e
 ightarrow a_j k \in R$
 - $\bullet \ e \to a_j I \in R$

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i
 - $\forall (e : add(j), k, l) \in P :$
 - $ullet e
 ightarrow a_j k \in R$
 - $ullet e
 ightarrow a_j I \in R$
 - $\forall (e : sub(j), k, l) \in P :$
 - $ea_j \rightarrow k \in R$
 - $e \rightarrow I|_{\neg} a_j \in R$

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i
 - $\forall (e : add(j), k, l) \in P$:
 - $ullet e
 ightarrow a_j k \in R$
 - ullet $e
 ightarrow a_j I \in R$
 - $\forall (e : sub(j), k, l) \in P$:
 - $ea_j \rightarrow k \in R$
 - $e \rightarrow I|_{\neg} a_j \in R$
 - $ha_i \rightarrow h\# \in R$
 - $\# \rightarrow \# \in R$

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdností membrán

Prehľad simulácie pre generatívny mód

 Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.

- Simulácia maximálne paralelného P systému Π_1 pomocou sekvenčného P systému s inhibítormi Π_2 .
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:
 - RUN

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:
 - RUN
 - SYNCHRONIZE

- Simulácia maximálne paralelného P systému Π_1 pomocou sekvenčného P systému s inhibítormi Π_2 .
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:
 - RUN
 - SYNCHRONIZE
 - SENDDOWN
 - RESTORE

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktivnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdností membrán

Zhrnutie výsledkov pre sekvenčné P systémy s inhibítormi

Sekvenčné P systémy s inhibítormi sú Turingovsky úplné

Zhrnutie výsledkov pre sekvenčné P systémy s inhibítormi

- Sekvenčné P systémy s inhibítormi sú Turingovsky úplné
- Podobné výsledky pre Petriho siete

Zhrnutie výsledkov pre sekvenčné P systémy s inhibítormi

- Sekvenčné P systémy s inhibítormi sú Turingovsky úplné
- Podobné výsledky pre Petriho siete
- Rozpúšťanie, vytváranie membrán, pravidlá s prioritami
- Výskum iných obmedzení pravidiel

2. Sekvenčné P systémy s aktívnymi membránami

• Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}, v \in \mathbb{N}^{\Sigma}, 1 \le j \le m$

- Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, 1 < j < m
- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (PsRE [Ibarra, 2005])

- Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, $1 \le j \le m$
- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (PsRE [Ibarra, 2005])
- Rozhodnuteľnosť existencie nekonečného výpočtu
- Nerozhodnuteľnost existencie konečného výpočtu

- Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, $1 \le j \le m$
- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (PsRE [Ibarra, 2005])
- Rozhodnuteľnosť existencie nekonečného výpočtu
- Nerozhodnuteľnost existencie konečného výpočtu
- Kováč, M. (2015). Decidability of termination problems for sequential p systems with active membranes.
 In Beckmann, A., Mitrana, V., and Soskova, M., editors, Evolving Computability, volume 9136 of Lecture Notes in Computer Science, pages 236–245. Springer International Publishing

Sekvenčné P systémy s inhibitormi
Sekvenčné P systémy s aktívnymi membránami
Sekvenčné P systémy s množinami namiesto multimnožín
Detekcia prázdností membrán

Problém zastavenia

Problém zastavenia je definovaný pre deterministické modely

Problém zastavenia

- Problém zastavenia je definovaný pre deterministické modely
- Zovšeobecnenie: Existencia (ne)konečného výpočtu

Aktívny P systém

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra

Aktívny P systém

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $\bullet \ \textit{I}: \textit{V(T)} \rightarrow \{1, \ldots, \textit{m}\}$

Aktívny P systém

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c: V(T) \to \mathbb{N}^{\Sigma}$
- Aktívny P systém je $(\Sigma, C_0, R_1, R_2, \dots, R_m)$, kde
 - Σ je abeceda
 - C₀ je počiatočná membránová konfigurácia
 - R_i je množina pravidiel

Sekvenčné P systémy s inhibitormi
Sekvenčné P systémy s aktívnymi membránami
Sekvenčné P systémy s množinami namiesto multimnožín
Detekcia prázdnosti membrán

Existencia konečného výpočtu

Nerozhodnuteľný problém

- Nerozhodnuteľný problém
- Redukcia na halting problem

Sekvenčné P systémy s inhibitormi
Sekvenčné P systémy s aktívnymi membránami
Sekvenčné P systémy s množinami namiesto multimnožín
Detekcia prázdnosti membrán

Existencia nekonečného výpočtu

Rozhodnuteľný problém

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

- Rozhodnuteľný problém
- Obmedzenie na počet membrán

- Rozhodnuteľný problém
- Obmedzenie na počet membrán
- Graf dosiahnuteľnosti

Sekvenčné P systémy s inhibitormi
Sekvenčné P systémy s aktívnymi membránami
Sekvenčné P systémy s množinami namiesto multimnožín
Detekcia prázdnosti membrán

Existencia nekonečného výpočtu

Čiastočné usporiadanie ≤:

- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$

- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$
 - $C_1 \leq C_2$, ak \exists izomorfizmus $f: T_1 \rightarrow T_2$ taký, že: $\forall d \in T_1$ platí:

- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$
 - $C_1 \leq C_2$, ak \exists izomorfizmus $f: T_1 \rightarrow T_2$ taký, že: $\forall d \in T_1$ platí:
 - $I_1(d) = I_2(f(d))$

- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$
 - $C_1 \leq C_2$, ak \exists izomorfizmus $f: T_1 \to T_2$ taký, že: $\forall d \in T_1$ platí:
 - $l_1(d) = l_2(f(d))$
 - $c_1(d) \subseteq c_2(f(d))$

- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$
 - $C_1 \leq C_2$, ak \exists izomorfizmus $f: T_1 \rightarrow T_2$ taký, že: $\forall d \in T_1$ platí:
 - $I_1(d) = I_2(f(d))$
 - $c_1(d) \subseteq c_2(f(d))$
- $C_1 \leq C_2 \Rightarrow$ každé pravidlo v C_1 je aplikovateľné v C_2 .

• Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$

- Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_i$
- Pre každú nekonečnú postupnosť konfigurácií existuje C_1 , C_2 : $C_1 \rightarrow^* C_2$ a $C_1 \leq C_2$.

- Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$
- Pre každú nekonečnú postupnosť konfigurácií existuje C_1 , C_2 : $C_1 \rightarrow^* C_2$ a $C_1 \leq C_2$.
- Kodovanie konfigurácií $enc(C_1) \leq enc(C_2) \Rightarrow C_1 \leq C_2$

Algoritmus rozhodujúci existenciu nekonečného výpočtu

- Traverzuj graf dosiahnuteľnosti
- Dosiahnutá konfigurácia C₂, taká, že na ceste z počiatočnej konfigurácie existuje C₁ ≤ C₂ ⇒ YES.
- Ak traverzovanie skončilo ⇒ NO.

Sekvenčné P systémy s inhibitormi
Sekvenčné P systémy s aktívnymi membránami
Sekvenčné P systémy s množinami namiesto multimnožín
Detekcia prázdnosti membrán

Zhrnutie výsledkov pre sekvenčné P systémy s aktívnymi membránami

• Existencia nekonečného výpočtu je rozhodnuteľná.

Zhrnutie výsledkov pre sekvenčné P systémy s aktívnymi membránami

- Existencia nekonečného výpočtu je rozhodnuteľná.
- Existencia konečného výpočtu je nerozhodnuteľná.

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Sekvenčné P systémy s množinami namiesto multimnožín

3. Sekvenčné P systémy s množinami namiesto multimnožín

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdností membrán

Sekvenčné P systémy s množinami namiesto multimnožín

Inšpirácia z Reaction systems

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Sekvenčné P systémy s množinami namiesto multimnožín

- Inšpirácia z Reaction systems
- Nakoľko realistické je reprezentovať presný počet objektov?

Sekvenčné P systémy s množinami namiesto multimnožín

- Inšpirácia z Reaction systems
- Nakoľko realistické je reprezentovať presný počet objektov?
- Nepraktická analýza kvôli veľkosti stavového priestoru

• [Alhazov, 2006]: počty objektov sa ignorujú

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - $\bullet \ \ \mathsf{Maxim\'alny} \ \mathsf{paralelizmus} \Rightarrow \mathsf{determinizmus}.$
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.
- Vlastnosti:
 - Pravidlá bez konfliktu (objekty sa môžu zúčastniť ako reaktanty súčasne vo viacerých pravidlách).
 - Ak je objekt použitý aspoň v jednom pravidle ako reaktant, bude spotrebovaný.

Aktívny P systém

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c: V(T) \to \mathbb{N}^{\Sigma}$
- Aktívny P systém je $(\Sigma, C_0, R_1, R_2, \dots, R_m)$, kde
 - Σ je abeceda
 - C₀ je počiatočná membránová konfigurácia
 - R_i je množina pravidiel

Aktívny P systém s množinami objektov

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c:V(T)\to 2^{\Sigma}$
- Aktívny P systém je $(\Sigma, C_0, R_1, R_2, \dots, R_m)$, kde
 - Σ je abeceda
 - C₀ je počiatočná membránová konfigurácia
 - R_i je množina pravidiel

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create
- Wrap-or-create

	membrány	čas
original	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))

	membrány	čas
original	<i>O</i> (<i>n</i>)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))
wrap-or-create	<i>O</i> (<i>n</i>)	O(1)

 Kováč and Gruska (2015). Sequential p systems with active membranes working on sets.

In Zbigniew Suraj, L. C., editor, *Proceedings of the 24th International Workshop on Concurrency, Specification and Programming*, pages 247–257

Sekvenčně P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Detekcia prázdnosti membrán

4. Detekcia prázdnosti membrán

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Detekcia prázdnosti membrán

Objekty vyhýbajúce sa prázdnym membránam

Sekvenčné P systemy s innibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcja prázdnosti membrán

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány

Sekvenčné P systemy s innibitormi Sekvenčné P systémy s aktívnyni membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcja prázdnosti membrán

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány
- Objekt reprezetujúci vákuum

Ďakujem za pozornosť

• Dôkaz zrejme vyžaduje drobnú úpravu pre prípad $M(a_i) > 1$ v pravidle r_i na str. 60

- Dôkaz zrejme vyžaduje drobnú úpravu pre prípad $M(a_i) > 1$ v pravidle r_j na str. 60
- Pozor na formuláciu v dôkaze 4.2.6. Nekonečná postupnosť môže byť aj konštantná a vtedy rastúci pár neexistuje.
 Analogicky v dôkaze 4.2.7 treba rastúci pár zameniť za neklesajúci pár.

• Ak porovnávam kódy ako reťazce, $enc(C_1) < enc(C_2)$ môže platiť aj v situácii, keď príslušné "stromy" nie sú izomorfné, čo podľa môjho názoru znamená, že dôkaz Lemy 4.2.5 neplatí (opačná implikácia platí).

- Ak porovnávam kódy ako reťazce, $enc(C_1) < enc(C_2)$ môže platiť aj v situácii, keď príslušné "stromy" nie sú izomorfné, čo podľa môjho názoru znamená, že dôkaz Lemy 4.2.5 neplatí (opačná implikácia platí).
- $enc(C_1) = 1001\ 0000\ 0000\ 0000,$ $enc(C_2) = 0000\ 0000\ 1010\ 1210$

Je nutné dávať dávať umelý predpoklad na ohraničenie počtu membrán zvonku cez zablokovanie aplikovateľnosti pravidla vytvárajúceho novú membránu v situácii, ktorá by viedla k prekročeniu stanoveného počtu membrán keď aktívne P-systémy s obmedzeným sumárnym počtom membrán sú univerzálne?

Mohli by ste vysvetliť motivácie pre definované modifikácie
 P-systémov v závere kapitoly 4?