初版正誤表

2018-02-03 版 発行

目次

Effective 量子コン	ピュー	-タ												2
量子コンピュータ手	習い													3
量子計算器事始め														4

Effective 量子コンピュータ

初版 -> 第二版

第2章の全面書き直し

P.10

- (誤) $IUU_{n-1}^{\dagger} = VWV^{\dagger}W^{\dagger}$
- (\mathbb{E}) $I = UU_{n-1}^{\dagger} = VWV^{\dagger}W^{\dagger}$

P.12

- (誤) $@<m<\{U_{n-1}\}$ はノルムを得る性質から除外できます。この誤差を評価するために、 $@<m<\{V_{n-1}\},W_{n-1}\}$ の
- •(正) U_{n-1} はノルムを得る性質から除外できます。この誤差を評価するため に、 V_{n-1}, W_{n-1} の

P.13

- (誤) 最も大きな leading order はオーダースケール $\varepsilon^{\sqrt{3}2}$ の $8(\delta\Delta)$
- (正) 最も大きな leading order はオーダースケール $\varepsilon^{\frac{3}{2}}$ の $8(\delta\Delta)$
- (誤)

$$||u - u_n|| \le c' (\varepsilon_{n-1})^{\frac{3}{2}} \varepsilon'$$

 $\approx 8c$

(正)

$$||u - u_n|| \le c' (\varepsilon_{n-1})^{\frac{3}{2}}$$

 $\varepsilon' \approx 8c$

- ・ (誤) $\cos \frac{\theta}{8} = \cos ^2 \operatorname{frac}\{ \operatorname{theta} \} \{ 8 \} \}$ を満たす θ 角、
- ・(正) $cos \frac{\theta}{8} = cos^2 \frac{\theta}{8}$ を満たす θ 角、

P.15

目次

- (誤) 2 つの積における固有値は $e^{i\lambda}$ }となります。
- (正) 2 つの積における固有値は $e^{i\lambda}$ となります。

P.16

- (誤) λ は入力される U の固有状態、その固有値 $e^{i2\lambda}$ は次のようになります。
- ullet (正) λ は入力される U の固有状態、その固有値 $e^{i2\pi\lambda}$ は次のようになります。

P.19

- (誤) なぜなら、 U^{2n-1} は、 2^n 回の作用が必要です。
- (正) なぜなら、 $U^{2^{n-1}}$ は、 2^n 回の作用が必要です。

P.38

- (誤) $P_n = \pm 1, i \times I, X, Y, Z^{\otimes n}$
- (IE) $P_n = \pm 1, \pm i \times I, X, Y, Z^{\otimes n}$
- (iii) P $2 = \pm 1, i \times II, IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, ZZ$
- (\mathbb{E}) P $2 = \pm 1, \pm i \times II, IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, ZZ$

P.54

- (誤) $|\psi\rangle = \frac{1}{2}(|0\rangle + e^{\frac{\pi}{4}i}|1\rangle)$
- (\mathbb{E}) $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{\frac{\pi}{4}i}|1\rangle)$

P.70

- $\begin{array}{ll} \bullet & \left(\stackrel{\scriptstyle \times}{\boxplus} \right) & \left(\frac{Y+Z}{2} \right) e^{-\frac{\pi}{8}iZ} \left| + \right\rangle = e^{-\frac{\pi}{8}iY} \left| + \right\rangle = \left| \frac{\pi}{8} \right\rangle \\ \bullet & \left(\stackrel{\scriptstyle \times}{\boxplus} \right) & \left(\frac{Y+Z}{\sqrt{2}} \right) e^{-\frac{\pi}{8}iZ} \left| + \right\rangle = e^{-\frac{\pi}{8}iY} \left| + \right\rangle = \left| \frac{\pi}{8} \right\rangle \end{array}$

量子コンピュータ手習い

初版 -> 第二版

P.9

- (誤) XX = YY = ZZ I
- (\mathbb{F}) XX = YY = ZZ = I

P.25

目次

- (誤) $P_i \neq P_i^{\dagger}$
- (\mathbb{E}) $PP^{\dagger} \neq I$

量子計算器事始め

P.22

- (誤) この行列は、量子ビットの $|0\rangle$ の位相を $\frac{\theta}{2}$ 逆向きに回し、 $|0\rangle$ の位相を $\frac{\theta}{2}$ 順向きに回しています。
- (正) この行列は、量子ビットの $|0\rangle$ の位相を $\frac{\theta}{2}$ 逆向きに回し、 $|1\rangle$ の位相を $\frac{\theta}{2}$ 順向きに回しています。

初版正誤表				
2018年2月3日	初版第1刷	発行		