Non-Negative Matrix Factorization

We have the following ratings on 5 movies by 4 users:

user	Titanic	Tiffany	Terminator	Star Trek	Star Wars
Ada	5	4	1	1	-
Bob	3	2	1	-	1
Steve	-	-	-	-	5
Margaret	1	1	5	4	4

We will decompose the matrix manually to get a grip on how NMF works.

Step 1: Create a movie-genre matrix

First, divide the movies into two genres. Assign positive coefficients to each movie. Use numbers from 0-3:

	Titanic	Tiffany	Terminator	Star Trek	Star Wars
genre 1 Drama, Rom	3 ance	3	1	0	1
genre 2 Sci-Fi	0	0	2	3	3

Step 2: Create a user-genre matrix

Next, assign the users' preference for genres. Assign positive coefficients to each user. Use numbers from 0-2:

	Ada	Bob Steve		Margaret		
genre 1 Drama	2	1	1	0		
genre 2 Sci-Fi	0	0	2	2		

Hint: Use your intuition! Don't try to come up with a super-accurate assignment of the numbers.

Step 3: Recompose the matrix

Now calculate the dot product of the two matrices.

Example:

Titanic belongs to genre 1 with strength 2.0 and to genre 2 with 0.5

Ada likes genre 1 with strength 2.0 and genre 2 with 1.0

The recomposed value for Titanic/Ada is:

$$2.0 * 2.0 + 0.5 * 1.0 = 4.5$$

Fill the matrix below. It contains the original numbers for comparison.

user	Titanic		Tiffany		Terminator		Star Trek		Star Wars	
Ada	6	5	6	4	2	1	0	1		2
Bob	3	3	3	2	1	1	0		1	1
Steve	3		3		5		6		7	5
Margaret	0	1	0	1	4	5	6	4	6	4

See how close you get to the original numbers.

Step 4: Reflection

- What movie recommendations could you generate for Steve? Star wars, all the movies + Star Trek
- How could you make the reconstructed matrix more similar to the original?

 Cut the highest value / normalized based on the person rating Would it help to have more genres? Yes but with a normalization

- Are the genres created by the procedure really genres? What other properties of movies or users could thes hidden features represent? Actors, Director, Language, country, lengh, epoch
- Would the method suffer if some of your users are "grumpy"? Yes, but it's ok (i.e. they always give lower ratings)
- Would the method suffer if the data is very sparse? Yes, but it's ok (e.g. each user gives only 1-2 reviews)