仮想筋電義手の開発に関する研究

神戸市立工業高等専門学校 電子工学科 河合 将暉

2023年10月26日

目次

第1章	はじめに	3
第2章	解説 解説	4
2.1	EinScan HX	. 4
	2.1.1 製品仕様	. 4
	2.1.2 出力形式	. 4
2.2	Blender	. 4
	2.2.1 スムージング	. 4
	2.2.2 ボーン構成	. 4
	2.2.3 ウェイトペイント	. 4
2.3	Unity	. 4
	2.3.1 座標系	. 4
	2.3.2 シェーダー	. 4
	既存シェーダー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 4
	Reflex Shader 2.2	. 4
	2.3.3 カメラ	. 4
	2.3.4 C#スクリプト	. 4
	2.3.5 オブジェクト	. 4
	2.3.6 衝突判定	. 4
	2.3.7 ペアレント	. 4
	2.3.8 コンストレイント	. 4
	2.3.9 物理演算	. 5
	2.3.10 エディタ設定	. 5
	2.3.11 プラグイン	. 5
	FVRsdk	. 5
	Xcharts	. 5
	Android Logcat	
	XR Interaction Toolkit	
	Google VR	
	2.3.12 ビルド	
	iOS	
	Xcode	

参考文献		10
第6章	今後の課題	9
第5章	まとめ	8
第4章	研究結果	7
	3.4.2	6
	3.4.1 シェーダー選定	6
3.4	Unity	6
	3.3.2 ボーン配置	6
	3.3.1 スムージング処理	6
3.3	Blender	6
	3.2.2 出力形式の選定	6
	3.2.1 3D モデルの取り込み	6
3.2	3D スキャナ	6
3.1	使用器具	6
第3章	研究内容	6
2.6	rasberry py	5
	2.5.1 デバイス構成	5
2.5	Meta Quest2	5
	2.4.5 BLE 通信	5
	2.4.4 ジェスチャ認識	5
	2.4.3 トラッキング・キャリブレーション	5
	2.4.2 筋変位センサ	5
	2.4.1 デバイス構成	5
2.4	FirstVR	5
	Android OS	5

第1章

はじめに

第2章

解説

- 2.1 EinScan HX
- 2.1.1 製品仕様
- 2.1.2 出力形式
- 2.2 Blender
- 2.2.1 **スムージング**
- 2.2.2 ボーン構成
- 2.2.3 ウェイトペイント
- 2.3 Unity
- 2.3.1 座標系
- 2.3.2 シェーダー

既存シェーダー

Reflex Shader 2.2

- 2.3.3 カメラ
- 2.3.4 C#スクリプト
- 2.3.5 オブジェクト
- 2.3.6 衝突判定
- 2.3.7 ペアレント
- 2.3.8 コンストレイント

- 2.3.9 物理演算
- 2.3.10 エディタ設定
- 2.3.11 プラグイン

 FVRsdk

Xcharts

Android Logcat

XR Interaction Toolkit

Google VR

2.3.12 ビルド

iOS

Xcode

Android OS

- 2.4 FirstVR
- 2.4.1 デバイス構成
- 2.4.2 筋変位センサ
- 2.4.3 トラッキング・キャリブレーション
- 2.4.4 ジェスチャ認識
- 2.4.5 BLE 通信
- 2.5 Meta Quest2
- 2.5.1 デバイス構成
- 2.6 rasberry py

第3章

研究内容

- 3.1 使用器具
- 3.2 3D スキャナ
- 3.2.1 3D モデルの取り込み
- 3.2.2 出力形式の選定
- 3.3 Blender
- 3.3.1 スムージング処理
- 3.3.2 ボーン配置
- 3.4 Unity
- 3.4.1 シェーダー選定
- 3.4.2

第4章

研究結果

第5章

まとめ

第6章

今後の課題

参考文献

- [1] 芝軒 太郎 他."VR を利用した筋電義手操作トレーニングシステムの開発と仮想 Box and Block Test の 実現". JRSJ. 2012 July.
- [2] Osumi M, et al. "Characteristics of Phantom Limb Pain Alleviated with Virtual Reality Rehabilitation". Pain Med. 2019 May.
- [3] >> H2L.Inc., Tokyo 106-0032, Japan; satoshi.hosono@h2l.jp
- [4] Tamon Miyake, etal"Gait Phase Detection Based on Muscle Deformation with Static Standing-Based Calibration". MDPI. 2021 Feb