Assignment 5 - Lucas Lobo

Lucas Lobo

2025-02-24

Assignment 5: Lucas Lobo

The following is my submission for assignment 5 in a .qmd file. I will make note when I do each step throughout the document.

- (1): was done above.
- (2): Loading the dataset.

```
import pandas as pd
import wbgapi as wb
# Define the indicators to download
indicators = {
    'gdp_per_capita': 'NY.GDP.PCAP.CD',
    'gdp_growth_rate': 'NY.GDP.MKTP.KD.ZG',
    'inflation_rate': 'FP.CPI.TOTL.ZG',
    'unemployment_rate': 'SL.UEM.TOTL.ZS',
    'total_population': 'SP.POP.TOTL',
    'life_expectancy': 'SP.DYN.LE00.IN',
    'adult_literacy_rate': 'SE.ADT.LITR.ZS',
    'income_inequality': 'SI.POV.GINI',
    'health_expenditure_gdp_share': 'SH.XPD.CHEX.GD.ZS',
    'measles_immunisation_rate': 'SH.IMM.MEAS',
    'education_expenditure_gdp_share': 'SE.XPD.TOTL.GD.ZS',
    'primary_school_enrolment_rate': 'SE.PRM.ENRR',
    'exports_gdp_share': 'NE.EXP.GNFS.ZS'
}
# Get the list of country codes for the "World" region
country_codes = wb.region.members('WLD')
```

```
# Download data for countries only in 2022
df = wb.data.DataFrame(indicators.values(), economy=country_codes, time=2022, skipBlanks=True
# Delete the 'economy' column
df = df.drop(columns=['economy'], errors='ignore')
# Create a reversed dictionary mapping indicator codes to names
# Rename the columns and convert all names to lowercase
df.rename(columns=lambda x: {v: k for k, v in indicators.items()}.get(x, x).lower(), inplace:
# Sort 'country' in ascending order
df = df.sort_values('country', ascending=True)
# Reset the index after sorting
df = df.reset_index(drop=True)
# Display the number of rows and columns
print(df.shape)
# Display the first few rows of the data
print(df.head(3))
# Save the data to a CSV file
df.to_csv('wdi.csv', index=False)
(217, 14)
       country inflation_rate exports_gdp_share gdp_growth_rate \
                                         18.380042
  Afghanistan
                           {\tt NaN}
                                                          -6.240172
1
       Albania
                      6.725203
                                         37.197085
                                                           4.826688
2
       Algeria
                      9.265516
                                         30.808979
                                                           3.600000
   gdp_per_capita adult_literacy_rate primary_school_enrolment_rate \
0
       357.261153
                                                                   NaN
                                   NaN
1
      6846.426143
                                   98.5
                                                             96.371231
      4961.552577
                                   NaN
                                                            108.343933
   education_expenditure_gdp_share
                                   measles_immunisation_rate
0
                                                          56.0
1
                          2.744330
                                                          86.0
2
                          4.749247
                                                          79.0
```

	health_expenditu	re_gdp_share	<pre>income_inequality</pre>	unemployment_rate	\
0		NaN	NaN	14.100	
1		NaN	NaN	10.137	
2		NaN	NaN	12.346	
	life_expectancy	total_populat	cion		
0	62.879	4057884	12.0		
1	76.833	277768	39.0		
2	77.129	4547738	39.0		

(3): Exploratory Data Analysis:

The three items of analysis I will analyze are:

- 1. Descriptive statistics of the inflation_rate variable.
- 2. Correlation between unemployment_rate and life_expectancy.
- 3. An OLS regression of gdp_per_capita explained by life_expectancy, unemployment_rate, and education_expenditure_gdp_share

```
# (1) Inflation statistics:
print(df['inflation_rate'].describe())
```

```
173.000000
count
mean
          12.404067
          19.467053
std
min
          -6.687321
25%
           5.518129
50%
           7.930929
75%
          11.665567
         171.205491
max
Name: inflation_rate, dtype: float64
```

Figure 1

Three main takeaways:

1. The mean inflation rate of 12.404 is about 4 points higher than the median inflation rate of 7.931, perhaps demonstrating that a select few countries have rates of hyperinflation that skew the distribution. Additionally, while the minimum inflation rate (0th percentile) is -6.687, the 25th percentile is 5.518, which may suggest that very few countries experience deflation, but far more experience inflation.

```
# (2) Correlation
coeff = df[['unemployment_rate', 'life_expectancy']].corr().iloc[0, 1]
print(f"Correlation between Unemployment Rate and Life Expectancy: {coeff:.4f}")
```

Correlation between Unemployment Rate and Life Expectancy: -0.2112

Figure 2

- 2. The scatterplot shows a general negative correlation between unemployment rate and life espectancy. However, in terms of sample data, most countries have unemployment rates less than 10 percent, with only 4-5 countries having a rate higher than 25 percent. So, it may be difficult to extrapolate this data outside of a specified interval. The correlation between Unemployment Rate and Life Expectancy is -0.2112. So as unemployment rate increases, life expectancy is expected to decrease. This is confirmed by our line of best fit and confidence interval.
- 3. The R-squared of our model is 0.440 pretty high. Around 44% of the variation in gdp per capita can be explained by life expectancy, unemployment rate, and education expenditure by gdp share. Life expectancy is statistically significant at the alpha = 0.05 significance level, whereas unemployment rate and education expenditure are not.

(4): Visualizations:

The two visualization I will explore are:

- 1. A scatterplot between unemployment rate and life expectancy (like (2) above).
- 2. A boxplot of gdp_per_capita.

Figure 1. Scatterplot showing the relationship between unemployment rate and life expectancy. The red line represents a linear trend, and the shaded red area represents a 95% confidence interval of this estimate.

Source: World Development Indicators

Figure 1. Boxplot showing the summary statistics of the gdp_per_capita variable.

Source: World Development Indicators

(5): Table.

I will produce a table that highlights the count, mean, std, min, max, 25, 50, and 75th percentile of each numerical variable.

Table 1. Summary statistics of variables.

(6): Cross-references:

```
# (3) Regression Analysis:
import statsmodels.api as sm
# Clean and define variables

df_clean = df.dropna(subset=['gdp_per_capita', 'life_expectancy', 'unemployment_rate', 'education_expenditure_gdp_share']]

X = df_clean[['life_expectancy', 'unemployment_rate', 'education_expenditure_gdp_share']]

y = df_clean['gdp_per_capita']

# Constant term:

X = sm.add_constant(X)

# Model + Summary.

model = sm.OLS(y, X).fit()

print(model.summary())
```

OLS Regression Results

Dep. Variable:	gdp_per_capita	R-squared:	0.440
Model:	OLS	Adj. R-squared:	0.425
Method:	Least Squares	F-statistic:	30.33
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	1.50e-14
Time:	14:49:04	Log-Likelihood:	-1343.7
No. Observations:	120	AIC:	2695.
Df Residuals:	116	BIC:	2706.
Df Model:	3		

Df Model: 3
Covariance Type: nonrobust

	C(oef std err	t	P> t	[0.025	
const	-1.244e	+05 1.57e+04	-7.949	0.000	-1.55e+05	-9
life_expectancy	1929.98	881 213.162	9.054	0.000	1507.795	23
unemployment_rate	-157.3	729 290.267	-0.542	0.589	-732.284	4
education_expenditure_gdp_sh	are 746.3	388 952.471	0.784	0.435	-1140.150	26
Omnibus:	66.853	========= :Durbin-Watson	========	======= 1.8	== 64	
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (J	B):	263.2	03	
Skew:	2.013	Prob(JB):		7.02e-	58	

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

687.

Figure 3

9.036 Cond. No.

Figure 4

Figure 5

Table 1

Summary Statistics

Stat	infl	expo	gdp	gdp	adul…	prim	educ	meas	heal	inco	unemp
count	173	179	206	207	54.00	156	137	193	20.00	28.00	186.00
mean	12.40	47.63	4.39	2052	80.97	100	4.16	84.10	9.04	38.33	7.23
std	19.47	35.63	6.71	3064	18.43	12.04	1.77	15.41	2.70	7.72	5.84
min	-6.69	1.57	-28. 	250	27.28	67.23	0.35	33.00	5.10	26.40	0.13
25%	5.52	24.36	2.55	2599	74.76	94.70	2.95	76.00	7.26	32.90	3.48
50%	7.93	40.82	4.21	7606	85.45	99.84	3.94	90.00	8.93	38.10	5.33
75%	11.67	59.74	6.20	2754	95.88	104	4.96	96.00	10.63	43.12	9.26
max	171	211	63.33	2260	100	156	10.70	99.00	16.57	54.80	35.36

As seen in **Table Table 1**, the count of each of the variables in inconsistent across indicators. This is because of missing data. However, when computing our coefficients for the **Regression Figure 3** and **Correlation Coefficient Figure 2**, empty values are automatically dropped from the dataset. While this may create some incomplete information, it is the only way to obtain these values. It may also explain the high t-score for education expenditure per gdp, since only 137 countries provide that information.

Additionally, our findings from **GDP Boxplot Figure 5** are further expressed in **Table 1**, as we see that the mean value is far less than the median/50% percentile, indicating there are far more countries will lower gdp per capita.

In addition to the wdi data, Patrick Hoang-Vu Eozenou and Pirlea (2023) highlights the ways in which new health discoveries in developing countries are helping achieve broader international sustainable development goals. Reports (2024) showcases a ranking of countries' Human Development Indeces: a metric that is similar to WDI data but weights certain factors like quality of life and degrees of oppression more heavily.

(7): Bibliography		
-		
bibliography: references	bib	

Patrick Hoang-Vu Eozenou, Sven Neelsen, and Ana Florina Pirlea. 2023. "Universal Health Coverage as a Sustainable Development Goal." https://datatopics.worldbank.org/world-development-indicators/stories/universal-health-coverage-as-a-sustainable-development-goal.html.

Reports, Human Development. 2024. "Human Development Insights." https://hdr.undp.org/data-center/country-insights#/ranks.