

Current Mirror Design LT-SPICE Expts

Bibhu Datta Sahoo

(Prepared by Shruti Konwar and Senorita Deb)

Associate Professor

Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur, India

Indian Institute of Technology Kharagpur, India

Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE, IIT Kharagpur

Current Mirrors

Metrics of Current Mirrors

- 1. High output impedance
- 2. Low compliance voltage
- 3. Accuracy of mirroring

Topologies:

- 1. Simple Current Mirror topology
- 2. Current Mirror with Cascode Transistor
- 3. Cascode Current Mirror
- 4. Sooch-Cascode Current Mirror

Topologies

1. Basic Current Mirror

2. Current Mirror with Cascode Transistor

3. Cascode Current Mirror

4. Sooch Cascode Current Mirror

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Simple Current Mirror

Overdrive Voltage

$$\begin{split} &V_{ov} = V_{GS} - V_{TH} = \sqrt{\frac{2I_{D}}{k'(\frac{W}{L})}} \\ &V_{GS2} = V_{TH} + \sqrt{\frac{2I_{D2}}{k'(\frac{W}{L})_2}} = V_{GS1} = V_{TH} + \sqrt{\frac{2I_{D1}}{k'(\frac{W}{L})_1}} \\ &V_{ov1} = V_{ov2} = V_{ov} \end{split}$$

Output Current

$$\begin{split} I_{OUT} &= I_{D2} = I_{D1} = I_{REF} \\ I_{OUT} &= \frac{(W/L)_2}{(W/L)_1} I_{REF} \end{split} \label{eq:lout}$$

Simple Current Mirror

(i) Accuracy of Mirroring

Fig. Output Characteristics of a simple Current Mirror

$$\frac{I_{OUT}}{I_{REF}} = \frac{(W/L)_2(1+\lambda V_{DS2})}{(W/L)_1(1+\lambda V_{DS1})}$$

$$\begin{split} R_o &= r_{o2} = \frac{V_A}{I_{D2}} = \frac{1}{\lambda I_{D2}} \\ If &\quad V_A >> V_{DS1} \\ Slope &= \frac{(W/L)_2}{(W/L)_1} (I_{D1}/V_A) \\ I_{OUT} &= \frac{(W/L)_2}{(W/L)_1} I_{IN} (1 + \frac{V_{DS2} - V_{DS1}}{V_A}) \end{split}$$

$$\begin{aligned} & \textbf{Systematic Gain Error} \\ & \epsilon = \frac{V_{DS2} - V_{DS1}}{V_{A}} \end{aligned}$$

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Simple Current Mirror

(ii) Compliance Voltage

$$V_{OUT(min)} = V_{ov2} = \sqrt{rac{2I_{OUT}}{k'(rac{W}{L})_2}}$$

(iii) Output Impedance r_{o2}→ Moderate

Drawbacks:

- Mirroring not accurate
- Output impedance moderate

Current Ratioing

Fig. Current mirror providing $2I_{RFF}$ from I_{RFF}

Fig. Current mirrors providing $I_{REF}/2$ from I_{REF} by (a) half-width device and (b) series transistors.

NB: For current ratioing, scaling of channel length is to be avoided for the mirror transistor pairs.

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Current Mirror with Cascode Transistor

(i) Accuracy of Mirroring

$$\begin{aligned} \mathbf{V_b} - \mathbf{V_{GS3}} &= \mathbf{V_{DS1}} (= \mathbf{V_{GS1}}) \\ \mathbf{or}, \mathbf{V_b} &= \mathbf{V_{GS3}} + \mathbf{V_{GS1}} \end{aligned}$$

(ii) Output Impedance

$$\approx \mathbf{g_m} \mathbf{r}_o^2 \quad {\color{red} \color{red} \rightarrow} \text{Improved}$$

(iii) Compliance Voltage

$$\begin{split} V_{\mathbf{OUT(min)}} &= 2V_{ov} + V_{TH} \\ \text{If, } V_b &= V_{\mathbf{GS3}} + V_{\mathbf{GS2}} - V_{TH2} \\ V_{\mathbf{OUT(min)}} &= 2V_{ov} \text{ but } V_{\mathbf{DS2}} \neq V_{\mathbf{DS1}} \end{split}$$

Drawback: External Bias required

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Cascode Current Mirror

$$\begin{aligned} V_b &= V_{\rm GS2} + V_{\rm GS3}) \\ V_{\rm GS4} &+ V_{\rm GS3} = V_{\rm GS2} + V_{\rm GS3} \\ or, V_{\rm GS4} &= V_{\rm GS2} \end{aligned}$$

Sizing:

 $L_1 = L_3$ and scale W_1 (in integer units) Typically, For $V_{GS4} = V_{GS2}$,

we choose L2=L4 and scale W2 w.r.t W4

 $W_2/W_4 = W_1/W_3$

Output Impedance

 $pprox \mathbf{g_m r_o^2}$ \rightarrow Improved

Compliance Voltage

$$\begin{split} \mathbf{V_{OUT(min)}} &= \mathbf{V_N - V_{TH}} \\ &= \mathbf{V_{GS4} + V_{GS3} - V_{TH}} \\ \mathbf{V_{OUT(min)}} &= \mathbf{2V_{ov} + V_{TH}} \end{split}$$

Input Voltage

$$=\mathrm{V_{GS4}}+\mathrm{V_{GS3}}=2\mathrm{V_{ov}}+2\mathrm{V_{TH}}$$

Drawback: Compliance voltage high For M_1 : $V_{DS1} = V_{ov} + V_{th}$ Wastage of one threshold

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Cascode Current Mirror: Improved Biasing

To reduce V_{DS1}, the voltage from the gate of M₂ to ground can be level shifted down by a threshold.

 $\text{For} V_{\mathbf{DS1}} = V_{\mathbf{ov}}$ V_{ov4} doubled \rightarrow (W/L)4 \rightarrow 1/4th $m V_{OUT(min)} = 2V_{ov}$

Drawbacks:

- Systematic gain error worse compared to cascode scheme without level shift: $V_{DS1} \neq V_{DS3}$
- Input current is mirrored to a new branch to do the level shift \rightarrow Mismatch

Sooch Cascode Current Mirror

Desired gate voltages difference $=V_{ov}$

M₆→Active region M5→Triode Goal \rightarrow $V_{DS5} = V_{ov} \rightarrow (\frac{W}{L})_5 = \frac{1}{3}(\frac{W}{L})_6$ $V_{\mathrm{DS1}} = V_{\mathrm{DS3}}$

Drawback: Input swing: $V_{IN} = V_{GS3} + V_{DS5} + V_{GS6} = 2V_{ov} + 3V_{th}$

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

11

Sooch Cascode Current Mirror

To reduce the input voltage, the input branch can be split into two branches

Input Voltages

$$egin{aligned} \mathbf{V_{IN1}} &= \mathbf{V_{DS5}} + \mathbf{V_{GS6}} = 2\mathbf{V_{ov}} + \mathbf{V_{TH}} \\ \mathbf{V_{IN2}} &= \mathbf{V_{GS3}} = \mathbf{V_{ov}} + \mathbf{V_{TH}} \end{aligned}$$

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Sooch Cascode Current Mirror

Application of Sooch Cascode Current Mirror in Op-Amp Design

Indian Institute Of Technology, Kharagpur, India

Bibhu Datta Sahoo

Analog Signal Processing, Integrated circuit Research

13

Procedure in LTspice

Include the technology file:

Go to ".op" option and write the following command

.include path/technologyfile

eg. .include C:\Program Files\LTC\LTspiceXVII\lib\sym\65nm.pm.txt

Choose transistor nmos4 to build up the schematics

dc analysis: Go to Simulate-Edit simulation cmd-DC op pnt

Find the output current for different values of load resistance

ac analysis: Go to Simulate-Edit simulation cmd-ac analysis

Change type of sweep: "Decade". Choose number of points per decade, start and stop frequencies

To find r_{out} : add an ac voltage source (V_x) at the output and a capacitance (C_x) .

1. Simple Current Mirror

(i) dc analysis

Steps:

- Choose a reference current eg. $I_{ref} = 100 \mu A$
- Keep channel length at minimum, L_{min} =60nm, and find the output current through M2 for different values of load resistance R_L
- Find the value of R_L for which $v_{ds2} = v_{ds1} \rightarrow$ This gives $I_{out} = I_{ds2} = I_{ref}$
- Observe the difference in output current and v_{ds} of the transistors as R_L is changed.
- Now keep L= 3-5 times L_{min} and repeat the above steps.

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

15

Simulation Test Bench

1. Simple Current Mirror

(i) dc analysis

1. Channel Length L=60nm, W₂/W₁ = 1

I _{ref}	I _{out} (=I _{DS2})		
=100µA	R _L =1Ω	R _L =1KΩ	R _L =8.3KΩ
	490µA	312µA	100u
Vds1	0.369V	0.369V	0.369V
Vds2	1.19V	0.88V	0.369V

2. Channel Length L=300nm, W₂/W₁ = 1

I _{ref}	I _{out} (=I _{DS2})		
=100µA	R _L =1Ω	R _L =1KΩ	R _L =5.72KΩ
	102µA	102µA	100µA
Vds1	0.628V	0.628V	0.628V
Vds2	1.19V	1.09V	0.628V

3. Current Ratioing K

I _{ref}	K=2, R=3KΩ		K=4, R=1.42KΩ	
=100µA	W ₂ /W ₁ =2	L ₂ /L ₁ =1/2	W ₂ /W ₁ =4	L ₂ /L ₁ =1/4
lout	200µA	210µA	401µA	501µA
Vds1	0.628V	0.628V	0.628V	0.628V
Vds2	0.599V	0.568V	0.626V	0.484V

Indian Institute Of Technology, Kharagpur, India

Bibhu Datta Sahoo

ASD Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE

16

Simple Current Mirror

Observations:

- With lesser channel length L =60nm: λv_{ds} effect more → r_{ds} is less
 - Mirroring is significantly affected with change in load resistance R_L
 - v_{ds} mismatch
- With channel length is increased to 5 times the minimum: L=300nm \rightarrow r_{ds} increases
 - Mirroring is improved
- Current ratioing is not proper when length L is scaled rather than width W.

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

17

Simulation Test Bench

- 1. Simple Current Mirror
- (ii) ac analysis: To find output impedance of the current source

Steps:

- Connect an ac source at the output
- Insert a decoupling capacitor in between output node and the ac source.
- Plot V_x/ I_{DM2}
- Change the coordinates to cartesian: Right click on Left vertical axis → Change representation to Cartesian

1. Simple Current Mirror

(ii) ac analysis: To find output impedance of the current source

Steps:

 $\mathbf{r}_{\mathrm{out}}$

- Choose a constant value of Req by selecting frequency value such that $1/\text{jwC} \approx (1/10) \text{ R}_1$
- NB: Observe the fall in the impedance for high frequencies.

r _{out}	abs(V(vs)(Id(M2))
NKO=	
0KO-	
isko-	
UKO-	\
10KO-	\
OKO-	\
oko-	\
10KO-	\
OKO-	\
0KO-	
NKO-	
OKO-	

(C=1 μ F, L=300nm, W ₂ /W ₁ =1					
	Load	R _L =1Ω	R _L =1KΩ			
	r _{out}	256ΚΩ	251ΚΩ			

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

 $R_L = 5.72 K\Omega$

201KΩ

19

Simulation Test Bench

2. Current Mirror with Cascode Current Source Transistor

(i) dc analysis

1. Channel Length L=60nm, W₂/W₁ = 1

I _{ref}		I _{out} (=I _{DS2})		
=100µA	$R_L=1\Omega$	R _L =1KΩ	$R_L=8.1K\Omega$	V _b =1V
	157µA	150µA	100µA	$W_3/L_3 = 2 \mu m/60 nm$
Vds1	0.369V	0.369V	0.628V	
Vds2	0.544V	0.525V	0.621V	

2. Channel Length L=300nm, W₂/W₁ = 1

		1 (1)	, <u>z ı</u>	ı
I _{ref}	I _{out} (=I _{DS2})			
=100µA	R _L =1Ω	R _L =1KΩ	R _L =2KΩ	V
	100μΑ	100μΑ	100μΑ	W
Vds1	0.628V	0.628V	0.628V	
Vds2	0.654V	0.64V	0.621V	

3. Current Ratioing K

I _{ref}	K=2, R=1KΩ		K=4, R=1KΩ	
=100µA	$W_2/W_1=2$	L ₂ /L ₁ =1/2	W ₂ /W ₁ =4	L ₂ /L ₁ =1/4
l _{out}	200µA	210µA	399µA	508µA
Vds1	0.628V	0.628V	0.628V	0.628V
Vds2	0.6V	0.597V	0.544V	0.517V

V_b =1V $W_3/L_3=16\mu m/60nm$

Indian Institute Of Technology, Kharagpur, India

Bibhu Datta Sahoo

ASD Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE

2. Current Mirror with Cascode Current Source Transistor

(ii) ac analysis for finding rout

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

21

Simulation Test Bench

3. Cascode Current Mirror

(i) dc analysis

1. Channel Length L=300nm, W₁/W₃ = 1

 $W_4/L_4 = W_2/L_2 = 16\mu m/60nm > V_{02} = 1V$

I _{ref}	I _{out} (=I _{DM2})		
=100µA	R=1Ω	R=1KΩ	R=2KΩ
	100μΑ	100μΑ	100μΑ
V _{ds3}	0.628V	0.628V	0.628V
V _{ds1}	0.656V	0.642V	0.628V

2. Current Ratioing K

I _{ref}	K=2, R _L =1KΩ		K=4, R _L =1KΩ	
=100µA	W ₂ /W ₁ =2	L ₂ /L ₁ =1/2	W ₂ /W ₁ =4	L ₂ /L ₁ =1/4
l _{out}	200µA	210µA	399µA	509µA
V _{ds3}	0.628V	0.628V	0.628V	0.628V
V _{ds1}	0.6V	0.597V	0.546V	0.519V

3. Cascode Current Mirror

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

23

Simulation Test Bench

4. Sooch Cascode Current Mirror

(i) dc analysis

1. Channel Length L=300nm, $W_1/W_5 = 1$

I _{ref}	I _{out} (=I _{DM2})		
=100µA	R=1Ω	R=1KΩ	R=8KΩ
	100μΑ	100μΑ	100μΑ
V _{ds5}	0.215V	0.215V	0.215V
V _{ds1}	0.216V	0.215V	0.212V

NB: Observe region of operation for M₂ when load increases.

4. Sooch Cascode Current Mirror

(ii) ac analysis for finding R_{out}

Conclusion: Good mirroring accuracy, minimum compliance voltage, high output impedance

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Analog Signal Processing, Integrate and Engineering LAB, Department

25