Network Flow: Task allocation using Bipartite Graph.

Francis N Tsigbey
Ciência da Computação
DCC-UFRR
Boa Vista, Brasil
tsigbeyfrancis@gmail.com

João L.S. Rodrigues
Ciência da Computação
DCC-UFRR
Boa Vista, Brasil
joaolucasidney@outlook.com

Abstract—This project of Analysis of Algorithms discusses about Bipartite Graphs modelled as Flow Networks to represent tasks allocation to calculate the maximum flow. It uses the standard Ford-Fulkerson method, with augmenting paths, minimum cuts and residual network, and its Edmond-Karp implementation, which uses Breadth-first search. It shows us the advantages of using bipartite graphs in everyday life application and the complexity of time in the computing world.

I. INTRODUÇÃO

Os algoritmos fazem parte do dia a dia das pessoas. Seja uma receita culinária ou instruções para uso de medicamentos. Ou seja, é uma sequência de ações executáveis para chegar à solução de um determinado tipo de problema. Segundo *Edsger Dijkstra*, um algoritmo corresponde a uma descrição de um padrão de comportamento, expresso em termos de um conjunto finito de acões.

A análise de algoritmos (descrita e difundida por D.E. Knuth) tem como função determinar os recursos necessários para executar um dado algoritmo. Ela estuda a correção e o desempenho através da análise de correção e da análise de complexidade. Dados dois algoritmos para um mesmo problema, a análise permite decidir qual dos dois é mais eficiente.

Parte desses problemas de algoritimo são modelados em grafos, estruturas de dados muito importantes na computação e este trabalho ira focar no metodo Ford-Fulkerson e no algoritmo de Edmond-Karp que o implementa para solucionar problemas de alocação de tarefas e determinação de fluxo máximo em rede e grafos.

A seguir será apresentado a modelagem do problema, uma breve introdução aos algoritmos utilizados, a implementação do algoritmo de FordFulkerson e a conclusão.

II MODELAGEM DO PROBLEMA

O problema do Fluxo Máximo foi modelado da seguinte forma: existe uma empresa de prestação de serviço querendo alocar suas filiais, contratadas de forma que possam solucionar uma determinada tarefa (vértices do grafo) o mais rápido possível do jeito mais eficiente possível, partindo do pressuposto de que cada tarefa tem uma carga(representada pela aresta do grafo) para ser resolvida e os funcionários(representados pelos vértices do grafo) tem uma capacidade adquirida ao longo do tempo para resolver algumas das tarefas. A empresa tem interesse em saber qual é a melhor forma de distribuir as tarefas para que os funcionários possam resolvê-las da forma mais otimizada. Por conta disso o problema foi modelado na forma de grafos bipartido, já que não há necessidade de haver relacionamentos entre os funcionários; Eles apenas efetuaram uma ou mais tarefas. Este grafo bipartido pode ser convertido em um fluxo de redes, adicionando um nodo fonte source(origem) e um nodo destino sink(destino), para podermos usar o algoritmo Edmond-Karp e encontrar o fluxo máximo de tarefas que podem ser realizadas pelos funcionários a qualquer momento. A fig 1 ilustra o grafo bipartido com a "A-origem" e o "B-destino".

Fig.1.exemplo de um grafo bipartido.

A. Grafo bipartido

Um grafo bipartido pode ser definido da seguinte forma: Um grafo G é dito bipartido quando suas vértices V(G) podem ser divididos em dois conjuntos disjuntos X e Y, tais que toda aresta de G liga um vértice na parte X e outro na parte Y.

A notação G = (X, Y, E) é a comumente usada para nos referirmos ao grafo bipartido com partição $X, Y \in E(G) = E$. [13] [9].

Teorema:

- Um grafo G é bipartido se é somente se todo ciclo de G possuir comprimento par. [8]
- Um grafo é bipartido se, e somente se, seu número cromático é menor que ou igual a 22. Isso significa que podemos colorir todos os vértices usando apenas duas cores de maneira que uma aresta nunca ligue dois vértices da mesma cor. [13]

Pontes de konigsberg: Problema muito conhecido na área da computação ao, já que foi resolvido com a de teoria´ dos grafos. O problema consiste em encontrar o caminho que atravesse todas as pontes uma vez só e que retorne ao ponto de partida, considerando que há duas ilhas e 7 pontes no rio. [8]

Demonstração do Problema da Ponte de Konigsberg resolvido com o uso de grafos bipartidos:

Ida: Sejam X e Y as duas partições de G, todo caminho em G alterna um vértice de X com um vértice de Y (consequência da definição de grafo bipartido). Supondo que um ciclo contém um vértice v_i em uma das duas partições. Para voltar a esse vértice, é preciso ir na outra partição e voltar um número par de vezes. [8]

Volta: Seja G um grafo onde todo ciclo é de comprimento par. Seja um vértice v_i de G.

Colocamos num conjunto \mathbf{X} o vértice v_i e todos os outros que são a uma distância par de v_i . Os outros vértices formam o conjunto \mathbf{Y} . Caso não houvesse nenhuma aresta ligando dois vértices de \mathbf{X} ou de \mathbf{Y} , respeitaremos as condições para que o grafo seja bipartido. Suponhamos agora que existe uma outra aresta entre dois vértices a e b de \mathbf{X} (ou \mathbf{Y}). Já temos um caminho par entre a e b. Acrescentando a nova aresta, obteríamos um ciclo de comprimento ímpar, o que contradiz a hipótese. Portanto, não pode existir outra aresta entre qualquer par de vértice que já está em \mathbf{X} (igualmente par \mathbf{Y}) e o grafo é bipartido. [8] Note que essa prova indica de maneira direta qual seria o algoritmo par

determinar se um grafo e bipartido ou não. [8]~

A noção de grafo completo pode ser estendido aos grafos bipartidos. Um grafo bipartido completo e um grafo onde todos os vértices da partição X e ligado por uma aresta a todos os vértices da partição Y. Seja m e n o número de vértices em X e Y, respectivamente, o grafo completo bipartido será denotado $K_{m,n}$. [8]

B. Fluxo máximo

A seguir mostraremos alguns conceitos de fluxo máximo que serão utilizados na aplicação do trabalho desenvolvido na disciplina de análise de algoritmo.

Definição: O fluxo máximo consiste em mostrar o número máximo de unidades de fluxo que pode ser enviar através da rede desde o nó origem (vértice origem S) ate o nó destino (vértice destino T) sem violar nenhuma restrição de capacidade. [11] [13]

Teorema: Seja X o conjunto de nos que pode ser atingido a partir de S através de um caminho não cheio, e Seja Y o conjunto dos nós restantes. $T \in Y$ $T \in X$ e não se encontra numa situação de fluxo máximo.

[11]

Considere-se o corte composto pelos ramos com uma extremidade em X e outra em Y. Todos os arcos dirigidos de um no V em X para um no W em Y estão cheios pois caso contrário W pertenceria a X e não a Y. Qualquer arco dirigido de Y para X tera fluxo nulo pois caso contrário isso seria um retorno de fluxo de Y para X que, se fosse anulado, aumentaria o fluxo que efetivamente chega a T, o que contraria a hipótese inicial de a rede estar na situação de fluxo máximo. Então, a capacidade do corte, que é igual ao fluxo de X para Y, e igual ao fluxo na rede, que e máximo. [11]

Exemplo de aplicação: fluxo de um líquido através de rede de tubos, fluxo de mercadorias do produtor ao consumidor, casamento de desempregados com empregos: [8]

- Grafo com múltiplas origens e/ou múltiplos destinos. [12] • Encontrar o corte mínimo que separa o grafo em duas partes. [12]
- Encontrar número de caminhos que não usem as mesmas arestas. [12]
- Encontrar o maior emparelhamento num grafo bipartido. [12]

Prova: Seja f um fluxo que respeite as capacidades. Seja C um corte e S a margem superior do corte. Pela propriedade dos saldos, a intensidade de f e igual ao saldo de f em S. Esse saldo e out(S)—in(S) e assim não

passa de out(S). Como f respeita as capacidades, out(S) $n\tilde{a}o$ passa da capacidade do corte C. [10]

III. Os Algoritmos

A. Ford-Fulkerson

O algoritmo de Ford-Fulkerson ou "algoritmo de caminhos aumentados", funciona assim: enquanto existir caminho aumentante de origem até o destino, envia fluxo por esse caminho e sendo utilizado para encontrar o fluxo de valor máximo que faça o melhor uso possível da capacidade disponível deste.

B. Edmond-Karp

O algoritmo de Edmonds-Karpe é apenas uma implementação do método FordFulkerson que usa busca em largura para encontrar os caminhos aumentados.

IV. IMPLEMENTAÇÃO

O arquivo main.c começa lendo uma linha de entrada contendo 4 números inteiros: o número de vértices (interseções), o número de arestas (cargas), o número de tarefas (origens) e o número de funcionários (destinos). Após essa leitura, é criado um Grafo com dois nós extras, implementando a ideia de origem A e destino B, conhecidos como source e sink, respectivamente. Em seguida, é lido um número de linhas correspondente ao número de arestas, onde cada linha contém 3 inteiros: um vértice de origem, um vértice de destino e o peso (fluxo máximo) dessa aresta. Também é criada uma variável resposta, que receberá o valor retornado pela função "Ford-Fulkerson" e seus caminhos.

No módulo "FordFulkerson", os parâmetros de entrada são o número de vértices e o grafo. Durante a execução, é criado um grafo de fluxo residual e o vetor caminho é alocado. Em seguida, entra-se em um laço while, que é mantido enquanto a função de Busca em Largura (buscaLargura) retorna 1, indicando que um caminho da origem A ao destino B foi encontrado. Dentro desse laço, é determinado o incremento máximo, a partir do valor máximo anterior, percorrendo os vértices do último até o primeiro, verificando os fluxos e determinando o incremento máximo com base no fluxo do caminho. Em seguida, as arestas existentes no grafo residual são atualizadas, substituindo o valor do fluxo pelo valor anterior menos o incremento, de acordo com a

direção em que estamos percorrendo. Ao final, obtemos o fluxo máximo.

No módulo "buscaLargura", os parâmetros de entrada são o número de vértices, o vetor caminho, o grafo e o grafo de fluxo (grafo residual). Nesse módulo, a origem A é determinada como o número de vértices + 1 e o destino B como o número de vértices + 1. É criada uma fila dinamicamente usando o módulo "fila" e um vetor de visitados (com tamanho vértice + 2). Esse vetor é inicializado com 0, indicando que o vértice correspondente ainda não foi visitado. Para iniciar o processo, a origem é enfileirada e, na função enfileirar, o valor de visitado desse vértice é alterado para 1, indicando que ele foi visitado, mas ainda há vizinhos a serem visitados. O valor do caminho é definido como -1, pois ele é o ponto de partida. Em seguida, entra-se em um laço while que continua enquanto a fila não estiver vazia. A cada iteração, o primeiro elemento da fila é desenfileirado, e o valor de visitado desse vértice é alterado para 2, indicando que ele e todos os seus vizinhos foram visitados. Em seguida, percorremos todos os vizinhos desse vértice em um loop for, desenfileirando e enfileirando os vizinhos válidos. Os vizinhos válidos são os vértices com valor 0.

no vetor visitado e que possuem um valor de fluxo que ainda não excedeu a capacidade. Por fim, verificamos o valor de visitado do último vértice para confirmar se o algoritmo conseguiu chegar ao destino [16].

V. COMPLEXIDADE

Aqui será apresentada a análise do custo teórico de tempo e de espaço dos principais algoritmos e estruturas utilizadas. foram analisadas as funções:

Edmond-Karp: A complexidade de tempo e O(fluxo máximo*número de arestas), já que executamos um loop enquanto nos for dado um caminho existente. No pior caso, podemos adicionar 1 unidade de fluxo em cada iteração a complexidade do tempo torna-se O(fluxo-~ máximo*número de arestas). Neste caso, como usamos também o Busca em Largura, temos que será O(vértices * número de arestas 2 * fluxomaximo).

buscaLargura: A complexidade do tempo do algoritmo da Busca em Largura pode ser expressa como O(número de vértices + número de arestas), uma vez que cada vértice e cada aresta ser aos explorados no pior caso. A complexidade de espaço e O (número de vértices), ou seja, O(n).

criaFila: Função inicializada apenas a fila com ponteiros nulos, o que traz uma complexidade de O(1).

enfileira: Função que insere o elemento no fim da fila. Uma operação nada custosa nesta situação. Como ele somente muda o endereço de onde seus ponteiros apontam, esta função e vista como O(1). Desenfileira: Função que retira o primeiro elemento da fila. Uma operação nada custosa nesta situação. Esta função é vista como O(1).

A complexidade total do programa e a maior complexidade´ dentre as citadas acima. Temos, então, ela como O (vértices * número de arestas²* fluxoMaximo).

VI. RESULTADOS

Avaliação Experimental: A implementação do algoritmo de Ford-Fulkerson e Edmonds-Karp não funcionou corretamente devido a um provável erro na lógica do código nos arquivos ford_fulkerson.c ou busca_em_largura.c. Infelizmente, esse erro não foi identificado e corrigido até o prazo final de entrega deste trabalho. Esses erros podem ter afetado o correto funcionamento dos algoritmos, resultando em resultados imprecisos ou inesperado.

Conclusão: Nessa abordagem, foi adotada a estratégia de distribuir o peso arbitrário de uma tarefa entre o maior número possível de funcionários para sua resolução, e devido os problemas explanados no tópico anterior, não é possível tirar maiores conclusões

REFERENCES

- [1] Thomas H. CORMEN; Charles E. LEISERSON; Ronald L. RIVEST, "Algoritmos: teoria e prática". Rio de Janeiro: Campus, 2002. 916.
- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rded., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
- [3] https://www.hackerearth.com/practice/algorithms/ graphs/maximum-flow/tutorial/
- [4] K. Elissa, "Title of paper if known," unpublished.
- [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand.
- https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_ algorithm#Complexity
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.
- [8] https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
- [9] Feofiloff, P. (14 de Julho de 2017). Algoritmos para Grafos. Fonte: Instituto de Matematica e Estat´ ´ıstica da Universidade de Sao Paulo: https://www.ime.usp.br
- [10] Oliveira, J. F. (s.d.). Problemas de Fluxo Maximo. Fonte: Faculdade de Engenharia da Universidade do Porto: https://web.fe.up.pt
- [11] Ribeiro, P. (2015). Fluxo Máximo. Fonte: http://www.dcc.fc.up.pt
- [12] Siaudzionis, L. (s.d.). Grafos Bipartidos. Fonte: http://www.codcad.com/lesson/65
- [13] Valeriano A. de Oliveira, S. R. (s.d.). Teoria dos Grafos. Fonte: UNESP: https://www.ibilce.unesp.br
- [14] Maximum flow Ford-Fulkerson and Edmonds-Karp. (s.d.). Fonte: CPAlgorithms: https://cp-algorithms.com/graph