

Algorithmen II Vorlesung am 19.11.2013

Kreisbasen, Matroide & Algorithmen

Kreisbasen

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

Kreise in Graphen (Wiederholung)

Definition: Kreis

(Definition 5.1)

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) (d.h. $V_C \subseteq V, E_C \subseteq E$) heißt *Kreis* in G, falls alle Knoten aus V_C in C geraden Grad haben. Falls C zusammenhängend ist und alle Knoten aus V_C Grad zwei haben, so heißt C einfacher Kreis.

Kreise in Graphen (Wiederholung)

Definition: Kreis

(Definition 5.1)

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) (d.h. $V_C \subseteq V, E_C \subseteq E$) heißt *Kreis* in G, falls alle Knoten aus V_C in C geraden Grad haben. Falls C zusammenhängend ist und alle Knoten aus V_C Grad zwei haben, so heißt C einfacher Kreis.

 e_1

e10

Fasse Kreis als Kantenmenge $E' \subseteq E = \{e_1, \dots, e_m\}$ auf und kodiere E' als Vektor $X^{E'}$ mit

$$X_i^{E'} := \begin{cases} 1, & \text{falls } e_i \in E' \\ 0, & \text{sonst} \end{cases}$$

Kreisraum (Wiederholung)

Definition: Kreisraum

Sei \mathcal{C} die Menge aller Kreise in G = (V, E). Dann induziert \mathcal{C} den Vektorraum der Vektoren X^c , $c \in \mathcal{C}$ über dem Körper GF(2), genannt *Kreisraum* von G.

Erinnerung: GF(2) ist der Körper mit zwei Elementen $\{0, 1\}$ und den Verknüpfun-

gen + und · mit

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Kreisraum (Wiederholung)

Definition: Kreisraum

Sei \mathcal{C} die Menge aller Kreise in G = (V, E). Dann induziert \mathcal{C} den Vektorraum der Vektoren X^c , $c \in \mathcal{C}$ über dem Körper GF(2), genannt *Kreisraum* von G.

Erinnerung: GF(2) ist der Körper mit zwei Elementen $\{0,1\}$ und den Verknüpfun-

+	0	1	•	0	1	
0	0	1	0	0	0	•
1	1	0	1	0	1	

Definition: Summe von Kreisen – symmetrische Differenz

Die Addition im Kreisraum von G induziert eine Operation \oplus auf C durch $c_1 \oplus c_2 = (E_{c_1} \cup E_{c_2}) \setminus (E_{c_1} \cap E_{c_2})$. Dies ist die *symmetrische Differenz* beider Kantenmengen.

=]

Ist wieder ein Kreis!

Problem - MINIMUM CYCLE BASIS

Definition: Gewicht einer Kreisbasis

Sei zu G = (V, E) die Kantengewichtsfunktion $w \colon E \longrightarrow \mathbb{R}_0$ gegeben. Das *Gewicht einer Kreisbasis* \mathcal{B} von G ist definiert als

$$w(\mathcal{B}) = \sum_{C \in \mathcal{B}} w(C) = \sum_{C \in \mathcal{B}} \sum_{e \in C} w(e)$$

Problem: MCB

Gegeben sei ein Graph G = (V, E) und eine Gewichtsfunktion $w \colon E \longrightarrow \mathbb{R}_0$. Finde eine Kreisbasis \mathcal{B} von G mit minimalem Gewicht.

We shalb $\{C_1, C_2, C_3\}$ MCB ist, auf folgenden Folien.

Kreismatroid

Sei \mathcal{C} die Menge aller Kreise in G = (V, E) und \mathcal{U} die Menge aller unabhängigen Teilmengen von \mathcal{C} .

Dann bildet (C, U) ein **Unabhängigkeitssystem**.

1.
$$\emptyset \in U$$

2. $I_1 \in \mathcal{U}, I_2 \subseteq I_1 \Rightarrow I_2 \in \mathcal{U}$

Definition: Matroid

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt Matroid, wenn für alle I, $J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Satz 5.6: Das Unabhängigkeitssystem (C, U) ist ein Matroid.

Beweis: Aus dem Austausschsatz von Steinitz folgt dies für jeden Vektorraum (Übung).

Kreismatroid

Greedy-Lösung

In letzter Vorlesung gezeigt: Greedy-Methode optimal für Optimierungsprobleme auf Matroiden.

GREEDY-METHODE für MCB

Eingabe: Menge C aller Kreise in G = (V, E).

Ausgabe: Kreisbasis minimalen Gewichts von *G*.

Sortiere C aufsteigend nach Gewicht zu C_1, \ldots, C_k .

$$\mathcal{B}^{\star} \leftarrow \emptyset$$

for i = 1 to k do

if $\mathcal{B}^* \cup \{C_i\}$ linear unabhängig then $B^* \leftarrow B^* \cup \{C_i\}$

Greedy-Methode liefert also MCB, da

Satz 5.6: Das Unabhängigkeitssystem (C, U) ist ein Matroid.

Beispiel

 $w(C_1)=4$

1. Schritt: Zähle alle Kreise auf.

Beispiel

2. Schritt: Sortiere Kreise nach Gewicht.

Beispiel

3. Schritt: Bestimme maximale unabhängige Menge nach Greedy-Prinzip.

Greedy-Lösung

In letzter Vorlesung gezeigt: Greedy-Methode optimal für Optimierungsprobleme auf Matroiden.

GREEDY-METHODE für MCB

Eingabe: Menge C aller Kreise in G = (V, E).

Ausgabe: Kreisbasis minimalen Gewichts von G.

Sortiere C aufsteigend nach Gewicht zu C_1, \ldots, C_k .

$$\mathcal{B}^{\star} \leftarrow \emptyset$$

for i = 1 to k do

if $\mathcal{B}^* \cup \{C_i\}$ linear unabhängig then $B^* \leftarrow B^* \cup \{C_i\}$

Problem: Anzahl Kreise in einem Graphen im Allgemeinen exponentiell in Anzahl Kanten und Knoten des Graphen (siehe Übung).

Idee: Versuche Kandidatenmenge mit polynomieller Größe zu finden.

Annahmen und Beobachtungen

Ab jetzt:	Positive Gewichtsfunktion, also $w: E \to \mathbb{R}^+$				
	Jeder Kreis einer MCB ist einfach.				
	G ist zusammenhängender Graph.				
	Keine wirkliche Einschränkung, da Komponenten unab betrachtet werden können.	hängig			

Weitere Beobachtung:

Für jede Kante *e* in *G*, die in einem Kreis enthalten ist, gilt:

In jeder Kreisbasis gibt es einen Kreis, der *e* enthält.

Nenne Kreis mit minimalen Gewicht, der e enthält, kürzesten Kreis der e enthält.

Satz 5.7 Für jeden Kreis C aus einer MCB von G existiert zu jedem beliebigen Knoten v aus C eine Kante $\{u, w\}$ auf C, sodass gilt:

$$C = SP(u, v) + SP(w, v) + \{u, w\},\$$

wobei SP(u, v) bzw. SP(w, v) ein kürzester Weg von u bzw. w nach v in G ist.

Beweis mithilfe der folgenden Lemmata.

Lemma 5.8

Falls \mathcal{B} eine Kreisbasis ist, $C \in \mathcal{B}$ und $C = C_1 \oplus C_2$, dann ist entweder $\mathcal{B} \setminus \{C\} \cup \{C_1\}$ oder $\mathcal{B} \setminus \{C\} \cup \{C_2\}$ wieder eine Kreisbasis.

Lemma 5.8

Falls \mathcal{B} eine Kreisbasis ist, $C \in \mathcal{B}$ und $C = C_1 \oplus C_2$, dann ist entweder $\mathcal{B} \setminus \{C\} \cup \{C_1\}$ oder $\mathcal{B} \setminus \{C\} \cup \{C_2\}$ wieder eine Kreisbasis.

Beweis:

- **1. Fall:** C_1 darstellbar als Linerarkombination von Kreisen aus $\mathcal{B} \setminus \{C\}$
 - $ightharpoonup \mathcal{B} \setminus \{C\} \cup \{C_2\}$ ist Basis.

Beispiel:

$$\mathcal{B} = \{C_3, C_4, C_5\}$$
 ist Basis.

Es gilt:
$$C_5 = C_1 \oplus C_2$$
 und $C_1 = C_3 \oplus C_4$

► $\mathcal{B} \setminus \{C_5\} \cup \{C_2\}$ ist Basis.

Lemma 5.8

Falls \mathcal{B} eine Kreisbasis ist, $C \in \mathcal{B}$ und $C = C_1 \oplus C_2$, dann ist entweder $\mathcal{B} \setminus \{C\} \cup \{C_1\}$ oder $\mathcal{B} \setminus \{C\} \cup \{C_2\}$ wieder eine Kreisbasis.

Beweis:

2. Fall: C_1 nur darstellbar als Linearkombination von C und Kreisen aus $\mathcal{B} \setminus \{C\}$

 \longrightarrow C_2 darstellbar als Linearkombination von Kreisen aus $\mathcal{B} \setminus \{C\}$

 \longrightarrow $\mathcal{B} \setminus \{C\} \cup \{C_1\}$ ist Basis.

Beispiel:

$$\mathcal{B} = \{C_3, C_4, C_5\}$$
 ist Basis.

Es gilt:
$$C_5 = C_1 \oplus C_2$$
 und $C_1 = C_3 \oplus C_4 \oplus C_5$

Einzige Kombination.

Lemma 5.9

Sei \mathcal{B} eine Kreisbasis von G. Für zwei Knoten $x, y \in V$ und einen Weg P in G von x nach y kann jeder Kreis $C \in \mathcal{B}$, der x und y enthält, ersetzt werden durch einen Kreis C', der P enthält.

Beweis:

Es gilt $C = C_1 \oplus C_2$ und somit nach Lemma 5.8, dass entweder $\mathcal{B} \setminus \{C\} \cup \{C_1\}$ oder $\mathcal{B} \setminus \{C\} \cup \{C_2\}$ wieder eine Basis ist.

Folgerung:

Seien weder P_1 noch P_2 kürzeste Wege zwischen x und y und sei P kürzester Weg zwischen x und y

- $\Rightarrow w(C_1) < w(C) \text{ und } w(C_2) < w(C)$
- \Rightarrow Jede Basis \mathcal{B} , die C enthält, kann in Basis \mathcal{B}' umgewandelt werden, die anstatt C entweder C_1 oder C_2 enthält (Lemma 5.9).
- $\Rightarrow w(\mathcal{B}') < w(\mathcal{B})$

Wenn \mathcal{B} eine MCB ist, dann enthält jeder Kreis in \mathcal{B} , der $x, y \in V$ enthält, auch einen kürzesten Weg zwischen x und y.

Satz 5.7: Für jeden Kreis C aus einer MCB von G existiert zu jedem beliebigen Knoten v aus C eine Kante $\{u, w\}$ auf C, so dass gilt:

$$C = SP(u, v) + SP(w, v) + \{u, w\},\$$

wobei SP(u, v) bzw. SP(w, v) ein kürzester Weg von u bzw. w nach v in G ist.

Beweis:

Betrachte beliebigen Kreis C der MCB, sowie einen belibiegen Knoten v auf C:

- Indizierung der Knoten auf Kreis sei $v = v_0, \ldots, v_\ell = v$.
- $Q_i := \text{Weg auf } C \text{ von } v \text{ nach } v_i \text{ in Richtung der Indizierung.}$
- $P_i := \text{Weg auf } C \text{ von } v_i \text{ nach } v \text{ in Richtung der Indizierung.}$
- \Rightarrow Entweder P_i oder Q_i ist kürzester Weg von v nach v_i (vorherige Folie).
- Sei i der größte Index, sodass Q_i kürzester Weg von v nach v_i ist.
- \Rightarrow $C = Q_i \oplus \{v_i, v_{i+1}\} \oplus P_{i+1}$ ist gewünschte Darstellung.

Algorithmus von Horton für MCB

Eingabe: Zusammenhängender Graph G = (V, E)

Ausgabe: Kreisbasis minimalen Gewichts von G.

$$\mathcal{H} \leftarrow \emptyset$$

1. Kandidaten bestimmen

for
$$v \in V$$
 und $\{u, w\} \in E$ do

Berechne $C_v^{uw} := SP(u, v) + SP(w, v) + \{u, w\}$

if C_v^{uw} ist einfach then

 $\mathcal{H} \leftarrow \mathcal{H} \cup \{C_v^{uw}\}$

Sortiere Elemente aus \mathcal{H} aufsteigend zu C_1, \ldots, C_k

2. Greedy-Prinzip

$$\mathcal{B}^{\star} \leftarrow \emptyset$$

for
$$i = 1$$
 to k do

if $\mathcal{B}^* \cup \{C_i\}$ linear unabhängig then

$$B^* \leftarrow B^* \cup \{C_i\}$$

Algorithmus von Horton für MCB

Eingabe: Zusammenhängender Graph G = (V, E)

Ausgabe: Kreisbasis minimalen Gewichts von G.

$$\mathcal{H} \leftarrow \emptyset$$

for
$$v \in V$$
 und $\{u, w\} \in E$ do

Berechne $C_v^{uw} := SP(u, v) + SP(w, v) + \{u, w\}$

if C^{uw} ist einfach then

 $\mathcal{O}(n \cdot m)$, wobei $m \in \mathcal{O}(n^2)$

if C_{v}^{uw} ist einfach then $\mathcal{H} \leftarrow \mathcal{H} \cup \{C_{v}^{uw}\}$

Sortiere Elemente aus
$$\mathcal{H}$$
 aufsteigend zu C_1, \ldots, C_k

 $\mathcal{O}(m \cdot n \cdot \log n)$

$$\mathcal{B}^{\star} \leftarrow \emptyset$$

Gesamtlaufzeit: $\mathcal{O}(m^3 \cdot n)$

Algorithmus von Horton für MCB

Eingabe: Zusammenhängender Graph G = (V, E)

Ausgabe: Kreisbasis minimalen Gewichts von G.

$$\mathcal{H} \leftarrow \emptyset$$

for $v \in V$ und $\{u, w\} \in E$ do

Bemerkung:

Algorithmus funktioniert auch für allgemeine Gewichtsfunktionen $E: w \to \mathbb{R}$.

Allerdings:

Kreise einer MCB nicht mehr unbedingt einfach.

Finden kürzester Wege ist komplizierter.

for i = 1 to k do $O(n \cdot m)$,

wobei $m \in O(n^2)$ Bemerkung:

Algorithmus funktioniert auch für allgemeine Gewichtsfunktionen $E: w \to \mathbb{R}$.

O($m^3 \cdot n$)

Gesamtlaufzeit: $\mathcal{O}(m^3 \cdot n)$

Algorithmus von de Pina

Algorithmus von de Pina

Sei T ein aufspannender Baum (bzw. Wald) in G und e_1, \ldots, e_N die Nichtbaumkanten aus $G \setminus T$ in einer beliebigen Ordnung, wobei gilt N = m - n + 1.

Eingabe: Zusammenhängender Graph G = (V, E)

Ausgabe: MCB von G

for j = 1 bis N do

Initialisiere $S_{1,j} \leftarrow \{e_i\}$

for k = 1 bis N do

Finde einen kürzesten Kreis C_k , der eine ungerade Anzahl von Kanten aus $S_{k,k}$ enthält

for
$$j = k + 1$$
 bis N **do**

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

Ausgabe ist: $\{C_1, \ldots, C_N\}$

Algorithmus von de Pina

Sei T ein aufspannender Baum (bzw. Wald) in G und e_1, \ldots, e_N die Nichtbaumkanten aus $G \setminus T$ in einer beliebigen Ordnung, wobei gilt N = m - n + 1.

Eingabe: Zusammenhängender Graph G = (V, E)

Ausgabe: MCB von G

for
$$j = 1$$
 bis N do

 $\mathcal{O}(m)$

Initialisiere $S_{1,j} \leftarrow \{e_j\}$

for k = 1 bis N do

 $\mathcal{O}(m^3 + c \cdot m)$

Finde einen kürzesten Kreis C_k , der eine ungerade Anzahl von Kanten aus $S_{k,k}$ enthält

for j = k + 1 *bis* N **do**

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} &, \text{ falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} &, \text{ falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

Ausgabe ist: $\{C_1, \ldots, C_N\}$

Annahme: Berechnung von C_k kann in $\mathcal{O}(c)$ durchgeführt werden.

Es gilt (ohne Beweis): $c \in \mathcal{O}(m^2 + n^2 \log n)$

Gesamtlaufzeit: $\mathcal{O}(m^3 + m \cdot n^2 \log n)$

vgl. Horton: $\mathcal{O}(m^3 \cdot n)$

Initialisierung:

for
$$j = 1$$
 bis N **do** | Initialisiere $S_{1,j} \leftarrow \{e_j\}$

Ergebnis:

$$S_{1,1} = \{e_1\}, S_{1,2} = \{e_2\}, S_{1,3} = \{e_3\},$$

 $S_{1,4} = \{e_4\}, S_{1,5} = \{e_5\}$

$$S_{1,1} = \{e_1\}, S_{1,2} = \{e_2\}, S_{1,3} = \{e_3\},$$

 $S_{1,4} = \{e_4\}, S_{1,5} = \{e_5\}$

$$\mathbf{k} = \mathbf{1} \colon S_{2,2} := S_{1,2} \oplus S_{1,1} = \{e_1, e_2\}$$

$$S_{2,3} := S_{1,3} \oplus S_{1,1} = \{e_1, e_3\}$$

$$S_{2,4} := \{e_4\}$$

$$S_{2,5} := \{e_5\}$$
 $\mathbf{W}(\mathbf{C}_1) = \mathbf{9}$

for k = 1 bis N do

Finde einen kürzesten Kreis C_k , der eine ungerade Anzahl von Kanten aus $S_{k,k}$ enthält

for
$$j = k + 1 \ bis \ N \ do$$

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

$$S_{1,1} = \{e_1\}, S_{1,2} = \{e_2\}, S_{1,3} = \{e_3\},$$

 $S_{1,4} = \{e_4\}, S_{1,5} = \{e_5\}$

$$\mathbf{k} = 1$$
: $S_{2,2} := S_{1,2} \oplus S_{1,1} = \{e_1, e_2\}$
 $S_{2,3} := S_{1,3} \oplus S_{1,1} = \{e_1, e_3\}$
 $S_{2,4} := \{e_4\}$
 $S_{2,5} := \{e_5\}$ $W(\mathbf{C}_1) = 9$

$$\mathbf{k} = 2$$
: $S_{3,3} := S_{2,3} = \{e_1, e_3\}$
 $S_{3,4} := S_{2,2} \oplus S_{2,4} = \{e_1, e_2, e_4\}$
 $S_{3,5} := S_{2,5} = \{e_5\} \ w(\mathbf{C}_2) = 12$

for k = 1 bis N do

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

$$S_{1,1} = \{e_1\}, S_{1,2} = \{e_2\}, S_{1,3} = \{e_3\},$$

 $S_{1,4} = \{e_4\}, S_{1,5} = \{e_5\}$

$$\mathbf{k} = \mathbf{1}$$
: $S_{2,2} := S_{1,2} \oplus S_{1,1} = \{e_1, e_2\}$
 $S_{2,3} := S_{1,3} \oplus S_{1,1} = \{e_1, e_3\}$
 $S_{2,4} := \{e_4\}$
 $S_{2,5} := \{e_5\}$ $w(\mathbf{C}_1) = 9$

$$\mathbf{k} = 2$$
: $S_{3,3} := S_{2,3} = \{e_1, e_3\}$
 $S_{3,4} := S_{2,2} \oplus S_{2,4} = \{e_1, e_2, e_4\}$
 $S_{3,5} := S_{2,5} = \{e_5\} \ w(\mathbf{C}_2) = 12$

$$\mathbf{k} = 3$$
: $S_{4,4} := \{e_1, e_2, e_4\}$
 $S_{4,5} := \{e_5\}$ $w(\mathbf{C}_3) = 15$

for k = 1 bis N do

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

$$S_{1,1} = \{e_1\}, S_{1,2} = \{e_2\}, S_{1,3} = \{e_3\},$$

 $S_{1,4} = \{e_4\}, S_{1,5} = \{e_5\}$

$$\mathbf{k} = 1$$
: $S_{2,2} := S_{1,2} \oplus S_{1,1} = \{e_1, e_2\}$
 $S_{2,3} := S_{1,3} \oplus S_{1,1} = \{e_1, e_3\}$
 $S_{2,4} := \{e_4\}$
 $S_{2,5} := \{e_5\}$ $w(\mathbf{C}_1) = 9$

$$\mathbf{k} = 2$$
: $S_{3,3} := S_{2,3} = \{e_1, e_3\}$
 $S_{3,4} := S_{2,2} \oplus S_{2,4} = \{e_1, e_2, e_4\}$
 $S_{3,5} := S_{2,5} = \{e_5\} \ w(\mathbf{C}_2) = 12$

k = 3:
$$S_{4,4} := \{e_1, e_2, e_4\}$$

 $S_{4,5} := \{e_5\}$ $w(\mathbf{C}_3) = 15$

$$\mathbf{k} = 4$$
: $S_{5,5} := \{e_5\}$ $W(\mathbf{C}_4) = 13$

for k = 1 bis N do

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

$$S_{1,1} = \{e_1\}, S_{1,2} = \{e_2\}, S_{1,3} = \{e_3\},$$

 $S_{1,4} = \{e_4\}, S_{1,5} = \{e_5\}$

$$\mathbf{k} = \mathbf{1}$$
: $S_{2,2} := S_{1,2} \oplus S_{1,1} = \{e_1, e_2\}$
 $S_{2,3} := S_{1,3} \oplus S_{1,1} = \{e_1, e_3\}$
 $S_{2,4} := \{e_4\}$
 $S_{2,5} := \{e_5\}$ $w(\mathbf{C}_1) = 9$

$$\mathbf{k} = 2$$
: $S_{3,3} := S_{2,3} = \{e_1, e_3\}$
 $S_{3,4} := S_{2,2} \oplus S_{2,4} = \{e_1, e_2, e_4\}$
 $S_{3,5} := S_{2,5} = \{e_5\} \ w(\mathbb{C}_2) = 12$

$$\mathbf{k} = 3$$
: $S_{4,4} := \{e_1, e_2, e_4\}$
 $S_{4,5} := \{e_5\}$ $W(\mathbf{C}_3) = 15$

$$\mathbf{k} = 4$$
: $S_{5,5} := \{e_5\}$ $W(\mathbf{C}_4) = 13$

$$k = 5$$
: $w(C_5) = 17$

for k = 1 bis N do

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

Korrektheit des Algorithmus von de Pina

Vektorenschreibweise

Beschreibe Kreise als Inzidenzvektoren über Nichtbaumkanten $\{e_1, \ldots, e_N\}$.

Beispiel: Kreise werden mithilfe der Nichtbaumkanten e_1 , e_2 , e_3 , e_4 und e_5 beschrieben.

$$C = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \quad \begin{array}{c} e_1 \\ \vdots \\ e_5 \end{array}$$

Kreis C kann mithilfe der Fundamentalkreise C_i (C_i =Fundamentalkreis der Nichtbaumkante e_i) rekonstruiert werden. $C = C_1 \oplus C_2 \oplus C_4 \oplus C_5$

Bilinearform

for k = 1 bis N do

Finde einen kürzesten Kreis C_k , der eine ungerade Anzahl von Kanten aus $S_{k,k}$ enthält

for
$$j = k + 1$$
 bis N **do**

$$S_{k+1,j} \leftarrow \begin{cases} S_{k,j} & \text{, falls } C_k \text{ eine gerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \\ S_{k,j} \oplus S_{k,k} & \text{, falls } C_k \text{ eine ungerade Anzahl Kanten aus } S_{k,j} \text{ enthält} \end{cases}$$

Betrachte $S_{k,k}$ nach k-ten Durchlauf ebenfalls als Vektor über $\{e_1, \ldots, e_N\}$, der Menge der Nichtbaumkanten.

Definiere Bilinearform zweier Vektoren C und $S: \langle C, S \rangle := \sum_{i=1}^{N} (c_i \cdot s_i)$

Produkt und Summe sind über GF(2) definiert.

C und S sind *orthogonal* zueinander genau dann, wenn $\langle C, S \rangle = 0$.

 $\langle C, S \rangle$ = 1 genau dann, wenn C eine ungerade Anzahl Einträge mit S gemeinsam hat.

Algebraische Variante

Eingabe: Graph G = (V, E)

Ausgabe: MCB von G

for
$$i = 1$$
 bis N do $|S_i \leftarrow \{e_i\}|$

for k = 1 bis N do

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $|S_i \leftarrow S_i \oplus S_k|$

Ausgabe ist: $\{C_1, \ldots, C_N\}$

Hinweis: Schreibe S_k abkürzend für $S_{k,k}$


```
1 for k = 1 bis N do
2 | Finde einen kürzesten Kreis C_k mit \langle C_k, S_k \rangle = 1
3 | for i = k + 1 bis N do
```

if $\langle C_k, S_i \rangle = 1$ then

 $|S_i \leftarrow S_i \oplus S_k|$

Lemma 5.12 Die zweite äußere Schleife des Algorithmus erhält die Invariante $\langle C_i, S_{j+1} \rangle = 0$ für alle $i, 1 \le i \le j \le N$.

Beweis: Zeige durch Induktion über Anzahl k an Durchläufen, dass

 $\langle C_i, S_j \rangle = 0$ für alle i mit $1 \le i \le k$ und j mit $k < j \le N$.

1 **for**
$$k = 1$$
 bis N **do**
2 | Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $|S_i \leftarrow S_i \oplus S_k|$

Lemma 5.12 Die zweite äußere Schleife des Algorithmus erhält die Invariante $\langle C_i, S_{i+1} \rangle = 0$ für alle $i, 1 \le i \le j \le N$.

Beweis: Zeige durch Induktion über Anzahl k an Durchläufen, dass

$$\langle C_i, S_j \rangle = 0$$
 für alle i mit $1 \le i \le k$ und j mit $k < j \le N$.

IA: k = 1 Betrachte S_i , das nicht orthogonal zu C_i ist.

 S_j wird in Zeile 5 orthogonalisiert, denn nach Addition gilt:

$$\langle C_1, S_j^{neu} \rangle = \langle C_1, S_j \oplus S_1 \rangle = \langle C_1, S_j \rangle + \langle C_1, S_1 \rangle = 1 + 1 = 0$$

1 for
$$k = 1$$
 bis N **do**

Finde einen kürzesten Kreis
$$C_k$$
 mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $S_i \leftarrow S_i \oplus S_k$

Lemma 5.12 Die zweite äußere Schleife des Algorithmus erhält die Invariante $\langle C_i, S_{j+1} \rangle = 0$ für alle $i, 1 \le i \le j \le N$.

Beweis: Zeige durch Induktion über Anzahl k an Durchläufen, dass

$$\langle C_i, S_j \rangle = 0$$
 für alle i mit $1 \le i \le k$ und j mit $k < j \le N$.

IS: $2 \le k \le N$ Betrachte die Kreise C_1, \ldots, C_k und sei $S_{i,j}$ der Zeuge S_j nach dem i-ten Durchlauf.

- **1. Fall:** Es gilt $S_{k,j} = S_{k-1,j}$
 - Wegen Tests in Zeile 4 gilt: $\langle C_k, S_{k-1,j} \rangle = 0 = \langle C_k, S_{k,j} \rangle$
 - ▶ Wegen Induktionsvoraussetzung gilt: $\langle C_i, S_{k-1,i} \rangle = 0$ für i < k
- **2. Fall:** Es gilt $S_{k,j} = S_{k-1,j} \oplus S_{k,k}$

1 **for**
$$k = 1$$
 bis N **do**
2 | Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $S_i \leftarrow S_i \oplus S_k$

Lemma 5.12 Die zweite äußere Schleife des Algorithmus erhält die Invariante $\langle C_i, S_{j+1} \rangle = 0$ für alle $i, 1 \le i \le j \le N$.

Beweis: Zeige durch Induktion über Anzahl k an Durchläufen, dass

$$\langle C_i, S_j \rangle = 0$$
 für alle i mit $1 \le i \le k$ und j mit $k < j \le N$.

IS: $2 \le k \le N$ Betrachte die Kreise C_1, \ldots, C_k und sei $S_{i,j}$ der Zeuge S_j nach dem i-ten Durchlauf.

- **1. Fall:** Es gilt $S_{k,j} = S_{k-1,j}$
- **2. Fall:** Es gilt $S_{k,j} = S_{k-1,j} \oplus S_{k,k}$

Es gilt
$$\langle C_k, S_{k-1,j} \rangle = 1$$

1 for
$$k = 1$$
 bis N **do**

Finde einen kürzesten Kreis
$$C_k$$
 mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $S_i \leftarrow S_i \oplus S_k$

Lemma 5.12 Die zweite äußere Schleife des Algorithmus erhält die Invariante $\langle C_i, S_{j+1} \rangle = 0$ für alle $i, 1 \le i \le j \le N$.

Beweis: Zeige durch Induktion über Anzahl k an Durchläufen, dass

$$\langle C_i, S_j \rangle = 0$$
 für alle i mit $1 \le i \le k$ und j mit $k < j \le N$.

IS: $2 \le k \le N$ Betrachte die Kreise C_1, \ldots, C_k und sei $S_{i,j}$ der Zeuge S_j nach dem i-ten Durchlauf.

- **1. Fall:** Es gilt $S_{k,j} = S_{k-1,j}$
- **2. Fall:** Es gilt $S_{k,j} = S_{k-1,j} \oplus S_{k,k}$

Es gilt
$$\langle C_k, S_{k-1,j} \rangle = 1$$

Betrachte für
$$1 \le i < k < j \le N$$
: $\langle C_i, S_{k,j} \rangle = \langle C_i, S_{k-1,j} \oplus S_{k,k} \rangle = \frac{\langle C_i, S_{k-1,j} \rangle}{\langle C_i, S_{k,k} \rangle} + \frac{\langle C_i, S_{k,k} \rangle}{\langle C_i, S_{k,k} \rangle}$

Wegen Induktionsvoraussetzung gilt: $\langle C_i, S_{k-1,j} \rangle = 0$

Da stets $S_{k,k} = S_{k-1,k}$, gilt nach Induktionsvoraussetzung: $\langle C_i, S_{k,k} \rangle = \langle C_i, S_{k-1,k} \rangle = 0$

1 for
$$k = 1$$
 bis N **do**

2 | Finde einen kürzesten Kreis
$$C_k$$
 mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $|S_i \leftarrow S_i \oplus S_k|$

Lemma 5.12 Die zweite äußere Schleife des Algorithmus erhält die Invariante $\langle C_i, S_{i+1} \rangle = 0$ für alle $i, 1 \le i \le j \le N$.

Beweis: Zeige durch Induktion über Anzahl k an Durchläufen, dass

$$\langle C_i, S_j \rangle = 0$$
 für alle i mit $1 \le i \le k$ und j mit $k < j \le N$.

IS: $2 \le k \le N$ Betrachte die Kreise C_1, \ldots, C_k und sei $S_{i,j}$ der Zeuge S_j nach dem i-ten Durchlauf.

- **1. Fall:** Es gilt $S_{k,j} = S_{k-1,j}$
- **2. Fall:** Es gilt $S_{k,j} = S_{k-1,j} \oplus S_{k,k}$

Es gilt
$$\langle C_k, S_{k-1,j} \rangle = 1$$

Betrachte für
$$1 \le i < k < j \le N$$
: $\langle C_i, S_{k,j} \rangle = \langle C_i, S_{k-1,j} \oplus S_{k,k} \rangle = \frac{\langle C_i, S_{k-1,j} \rangle}{\langle C_i, S_{k,k} \rangle} + \frac{\langle C_i, S_{k,k} \rangle}{\langle C_i, S_{k,k} \rangle}$

Wegen Induktionsvoraussetzung gilt: $\langle C_i, S_{k-1,j} \rangle = 0$

Da stets $S_{k,k} = S_{k-1,k}$, gilt nach Induktionsvoraussetzung: $\langle C_i, S_{k,k} \rangle = \langle C_i, S_{k-1,k} \rangle = 0$

Für i=k gilt: $\langle C_k, S_{k,j} \rangle = \langle C_k, S_{k-1,j} \rangle + \langle C_k, S_{k,k} \rangle = 1 + 1 = 0$

Eingabe: Graph G = (V, E)

Ausgabe: MCB= $\{C_1, \ldots, C_N\}$ von G

 $S_1 \leftarrow \{e_1\}; C_1 \leftarrow \text{kürzester Kreis mit } \langle C_1, S_1 \rangle = 1$

for k = 2 bis N do

Berechne Vektor S_k , der nichttriviale Lösung des Systems $\langle C_i, X \rangle = 0$ für i = 1 bis k - 1 ist.

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$.

Satz 5.13 Der Algorithmus SIMPLE MCB berechnet eine MCB.

1. $\{C_1, ..., C_N\}$ ist Basis.

2. $\{C_1, \ldots, C_N\}$ hat minimales Gewicht.

Eingabe: Graph G = (V, E)

Ausgabe: MCB= $\{C_1, \ldots, C_N\}$ von G

 $S_1 \leftarrow \{e_1\}; C_1 \leftarrow \text{kürzester Kreis mit } \langle C_1, S_1 \rangle = 1$

for k = 2 bis N do

Berechne Vektor S_k , der nichttriviale Lösung des Systems $\langle C_i, X \rangle = 0$ für i = 1 bis k - 1 ist.

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$.

Satz 5.13 Der Algorithmus SIMPLE MCB berechnet eine MCB.

1. $\{C_1, ..., C_N\}$ ist Basis.

 $Da_{i}\langle C_{i},S_{k}\rangle=0$ für $1\leq i\leq k-1$ und $\langle C_{k},S_{k}\rangle=1$, ist C_{k} lin. unab. von $\{C_{1},\ldots,C_{k-1}\}$

 \vdash $\{C_1,\ldots,C_N\}$ ist eine Basis.

2. $\{C_1, \ldots, C_N\}$ hat minimales Gewicht.

Eingabe: Graph G = (V, E)

Ausgabe: MCB= $\{C_1, \ldots, C_N\}$ von G

 $S_1 \leftarrow \{e_1\}; C_1 \leftarrow \text{kürzester Kreis mit } \langle C_1, S_1 \rangle = 1$

for k = 2 bis N do

Berechne Vektor S_k , der nichttriviale Lösung des Systems $\langle C_i, X \rangle = 0$ für i = 1 bis k - 1 ist.

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$.

Satz 5.13 Der Algorithmus SIMPLE MCB berechnet eine MCB.

1. $\{C_1, ..., C_N\}$ ist Basis.

2. $\{C_1, \ldots, C_N\}$ hat minimales Gewicht.

Annahme: $\{C_1, \ldots, C_N\}$ ist nicht MCB. Sei \mathcal{B} eine MCB.

Wähle i so, dass $\{C_1, \ldots, C_i\} \subseteq \mathcal{B}$, aber für keine MCB \mathcal{B}' gilt $\{C_1, \ldots, C_{i+1}\} \subseteq \mathcal{B}'$

Eingabe: Graph G = (V, E)

Ausgabe: MCB= $\{C_1, \ldots, C_N\}$ von G

 $S_1 \leftarrow \{e_1\}; C_1 \leftarrow \text{k\"{u}}\text{rzester Kreis mit } \langle C_1, S_1 \rangle = 1$

for k = 2 bis N do

Berechne Vektor S_k , der nichttriviale Lösung des Systems $\langle C_i, X \rangle = 0$ für i = 1 bis k - 1 ist.

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$.

Satz 5.13 Der Algorithmus SIMPLE MCB berechnet eine MCB.

1. $\{C_1, ..., C_N\}$ ist Basis.

2. $\{C_1, \ldots, C_N\}$ hat minimales Gewicht.

Annahme: $\{C_1, \ldots, C_N\}$ ist nicht MCB. Sei \mathcal{B} eine MCB.

Wähle i so, dass $\{C_1, \ldots, C_i\} \subseteq \mathcal{B}$, aber für keine MCB \mathcal{B}' gilt $\{C_1, \ldots, C_{i+1}\} \subseteq \mathcal{B}'$

Da \mathcal{B} Basis, existieren $D_1, \ldots, D_\ell \in \mathcal{B}$ mit $C_{i+1} = D_1 \oplus \cdots \oplus D_\ell$

Nach Konstruktion: $\langle C_{i+1}, S_{i+1} \rangle = 1 \rightarrow \text{es existiert } D_j \text{ mit } \langle D_j, S_{i+1} \rangle = 1$

Eingabe: Graph G = (V, E)

Ausgabe: MCB= $\{C_1, \ldots, C_N\}$ von G

 $S_1 \leftarrow \{e_1\}; C_1 \leftarrow \text{kürzester Kreis mit } \langle C_1, S_1 \rangle = 1$

for k = 2 bis N do

Berechne Vektor S_k , der nichttriviale Lösung des Systems $\langle C_i, X \rangle = 0$ für i = 1 bis k - 1 ist.

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$.

Satz 5.13 Der Algorithmus SIMPLE MCB berechnet eine MCB.

1. $\{C_1, ..., C_N\}$ ist Basis.

2. $\{C_1, \ldots, C_N\}$ hat minimales Gewicht.

Annahme: $\{C_1, \ldots, C_N\}$ ist nicht MCB. Sei \mathcal{B} eine MCB.

Wähle i so, dass $\{C_1, \ldots, C_i\} \subseteq \mathcal{B}$, aber für keine MCB \mathcal{B}' gilt $\{C_1, \ldots, C_{i+1}\} \subseteq \mathcal{B}'$

Da $\mathcal B$ Basis, existieren $D_1,\ldots,D_\ell\in\mathcal B$ mit $C_{i+1}=D_1\oplus\cdots\oplus D_\ell$

Nach Konstruktion: $\langle C_{i+1}, S_{i+1} \rangle = 1 \rightarrow \text{es existiert } D_j \text{ mit } \langle D_j, S_{i+1} \rangle = 1$

Da C_{i+1} kürzester Kreis mit $\langle C_{i+1}, S_{i+1} \rangle$ ist, gilt $w(C_{i+1}) \leq w(D_j)$.

Setze $\mathcal{B}^* := \mathcal{B} \setminus \{D_i\} \cup \{C_{i+1}\}$, \mathcal{B}^* ist wieder MCB.

Eingabe: Graph G = (V, E)

Ausgabe: MCB= $\{C_1, \ldots, C_N\}$ von G

 $S_1 \leftarrow \{e_1\}; C_1 \leftarrow \text{k\"{u}}\text{rzester Kreis mit } \langle C_1, S_1 \rangle = 1$

for k = 2 bis N do

Berechne Vektor S_k , der nichttriviale Lösung des Systems $\langle C_i, X \rangle = 0$ für i = 1 bis k - 1 ist.

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$.

Satz 5.13 Der Algorithmus SIMPLE MCB berechnet eine MCB.

1. $\{C_1, ..., C_N\}$ ist Basis.

2. $\{C_1, \ldots, C_N\}$ hat minimales Gewicht.

Annahme: $\{C_1, \ldots, C_N\}$ ist nicht MCB. Sei \mathcal{B} eine MCB.

Wähle i so, dass $\{C_1, \ldots, C_i\} \subseteq \mathcal{B}$, aber für keine MCB \mathcal{B}' gilt $\{C_1, \ldots, C_{i+1}\} \subseteq \mathcal{B}'$

Da \mathcal{B} Basis, existieren $D_1, \ldots, D_\ell \in \mathcal{B}$ mit $C_{i+1} = D_1 \oplus \cdots \oplus D_\ell$

Nach Konstruktion: $\langle C_{i+1}, S_{i+1} \rangle = 1 \rightarrow \text{es existiert } D_j \text{ mit } \langle D_j, S_{i+1} \rangle = 1$

Da C_{i+1} kürzester Kreis mit $\langle C_{i+1}, S_{i+1} \rangle$ ist, gilt $w(C_{i+1}) \leq w(D_j)$.

Setze $\mathcal{B}^* := \mathcal{B} \setminus \{D_i\} \cup \{C_{i+1}\}, \mathcal{B}^*$ ist wieder MCB.

 $Da \langle D_j, S_{i+1} \rangle = 1 \text{ und } \langle C_j, S_{i+1} \rangle = 0 \text{ für } 1 \leq j \leq i \text{ gilt } D_j \not\in \{C_1, \ldots, C_i\}.$

Damit: \mathcal{B}^* ist MCB mit $\{C_1, \ldots, C_{i+1}\} \subseteq \mathcal{B}^* \to \text{Widerspruch zur Wahl von } i$.

Bemerkungen

- Die Laufzeit kann auf $\mathcal{O}(m^2 \cdot n + m \cdot n^2 \cdot \log n)$ reduziert werden.
- Empirische Verbesserung: Verheiratung von Horton und de Pina.
 - Berechne Kandiatenmenge \mathcal{H} von Horton.
 - Suche kürzesten Kreis C_k ausschließlich in dieser Kandiatenmenge \rightarrow Lösungsraum wird verkleinert.
- Algorithmus von Horton kann mithilfe schneller Matrix-Multiplikation auf eine Laufzeit $\mathcal{O}(m^{\omega}n)$ reduziert werden (Bekannt: $\omega < 2.376$).

Zertifikat für MCB

Zertifikat

Problem: Zertifikat für MCB-Algorithmus

Gegeben sei der Graph $G = (V, E), w : E \to \mathbb{R}_0^+$ und eine Menge von Kreisen \mathcal{A} von G. Gib ein Zertifikat dafür an, dass \mathcal{A} eine MCB von G ist.

Zertifikat

Die gegebenen Kreise bilden eine

minimale Kreisbasis

in G = (V, E).

MCB-CHECKER

Eingabe: Graph G = (V, E), Kreise $C_1, \ldots C_N$

Ausgabe: Zertifikat zur Prüfung, ob $C_1, \ldots C_N$ eine MCB von G sind.

- 1. Berechne aufspannenden Wald T, dabei seien $\{e_1, \ldots, e_N\}$ die Nichtbaumkanten.
- 2. Definiere $A := (C_1 \dots C_N)$ als $N \times N$ -Matrix, deren i-te Spalte der Inzidenzvektor von C_i mit $\{e_1, \dots, e_N\}$ ist.
- 3. Berechne A^{-1} .

Lemma 5.16 Seien S_1, \ldots, S_N und C_1, \ldots, C_N linear unabhängig. Falls C_i ein kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ für alle $1 \leq i \leq N$ ist, dann ist C_1, \ldots, C_N eine MCB. Ohne Beweis.

MCB-CHECKER

Eingabe: Graph G = (V, E), Kreise $C_1, \ldots C_N$

Ausgabe: Zertifikat zur Prüfung, ob $C_1, \ldots C_N$ eine MCB von G sind.

- 1. Berechne aufspannenden Wald T, dabei seien $\{e_1, \ldots, e_N\}$ die Nichtbaumkanten.
- 2. Definiere $A := (C_1 \dots C_N)$ als $N \times N$ -Matrix, deren i-te Spalte der Inzidenzvektor von C_i mit $\{e_1, \dots, e_N\}$ ist.
- 3. Berechne A^{-1} .

Lemma 5.16 Seien S_1, \ldots, S_N und C_1, \ldots, C_N linear unabhängig. Falls C_i ein kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$ ist, dann ist C_1, \ldots, C_N eine MCB. Ohne Beweis.

Folgerung: Angenommen *A* ist invertierbar.

- \longrightarrow C_1, \ldots, C_N linear unabhängig.
- Zeilen S_1, \ldots, S_N von A^{-1} auch linear unabhängig.
- \longrightarrow $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$

MCB-CHECKER

Eingabe: Graph G = (V, E), Kreise $C_1, \ldots C_N$

Ausgabe: Zertifikat zur Prüfung, ob $C_1, \ldots C_N$ eine MCB von G sind.

- 1. Berechne aufspannenden Wald T, dabei seien $\{e_1, \ldots, e_N\}$ die Nichtbaumkanten.
- 2. Definiere $A := (C_1 \dots C_N)$ als $N \times N$ -Matrix, deren i-te Spalte der Inzidenzvektor von C_i mit $\{e_1, \dots, e_N\}$ ist.
- 3. Berechne A^{-1} .

Lemma 5.16 Seien S_1, \ldots, S_N und C_1, \ldots, C_N linear unabhängig. Falls C_i ein kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$ ist, dann ist C_1, \ldots, C_N eine MCB. Ohne Beweis.

Folgerung: Angenommen *A* ist invertierbar.

- \longrightarrow C_1, \ldots, C_N linear unabhängig.
- Zeilen S_1, \ldots, S_N von A^{-1} auch linear unabhängig.
- \longrightarrow $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$

Wenn C_i also kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ ist, dann ist $\{C_1, \ldots, C_N\}$ eine MCB.

Falls Kreis C_i nicht kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ ist, dann lässt sich der Kreis C_i durch einen kürzeren Kreis C_i mit $\langle S_i, C_i \rangle = 1$ ersetzen (siehe Korrektheitsbeweis SIMPLE MCB).

MCB-CHECKER

Eingabe: Graph G = (V, E), Kreise $C_1, \ldots C_N$

Ausgabe: Zertifikat zur Prüfung, ob $C_1, \ldots C_N$ eine MCB von G sind.

- 1. Berechne aufspannenden Wald T, dabei seien $\{e_1, \ldots, e_N\}$ die Nichtbaumkanten.
- 2. Definiere $A := (C_1 \dots C_N)$ als $N \times N$ -Matrix, deren i-te Spalte der Inzidenzvektor von C_i mit $\{e_1, \dots, e_N\}$ ist.
- 3. Berechne A^{-1} .

Lemma 5.16 Seien S_1, \ldots, S_N und C_1, \ldots, C_N linear unabhängig. Falls C_i ein kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$ ist, dann ist C_1, \ldots, C_N eine MCB. Ohne Beweis.

Folgerung: Angenommen *A* ist invertierbar.

- \longrightarrow C_1, \ldots, C_N linear unabhängig.
- Zeilen S_1, \ldots, S_N von A^{-1} auch linear unabhängig.
- \longrightarrow $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$

Wenn C_i also kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ ist, dann ist $\{C_1, \ldots, C_N\}$ eine MCB.

Falls Kreis C_i nicht kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ ist, dann lässt sich der Kreis C_i durch einen kürzeren Kreis C_i mit $\langle S_i, C_i \rangle = 1$ ersetzen (siehe Korrektheitsbeweis SIMPLE MCB).

 $\{C_1,\ldots,C_N\}$ ist genau dann MCB, wenn C_i kürzester Kreis mit $\langle S_i,C_i\rangle=1$ ist, für alle $1\leq i\leq N$.

MCB-CHECKER

Eingabe: Graph G = (V, E), Kreise $C_1, \ldots C_N$

Ausgabe: Zertifikat zur Prüfung, ob $C_1, \ldots C_N$ eine MCB von G sind.

1. Berechn

2. Definiere

 C_i mit $\{e_1,$

3. Berechn

Zertifikat

Die Zeilen S_1, \ldots, S_N von A^{-1} bilden Zertifikat, dass $\{C_1, \ldots, C_N\}$ eine MCB ist.

chtbaumkanten.

nzidenzvektor von

lls C_i ein kürzester

B. Ohne Beweis.

Folgerung: An

Lemma 5.16

Kreis mit $\langle S_i, c \rangle$

 \longrightarrow Zeilen S_1, \ldots, S_N von A^{-1} auch linear unabhängig.

 \longrightarrow $\langle S_i, C_i \rangle = 1$ für alle $1 \le i \le N$

Wenn C_i also kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ ist, dann ist $\{C_1, \ldots, C_N\}$ eine MCB.

Falls Kreis C_i nicht kürzester Kreis mit $\langle S_i, C_i \rangle = 1$ ist, dann lässt sich der Kreis C_i durch einen kürzeren Kreis C_i mit $\langle S_i, C_i \rangle = 1$ ersetzen (siehe Korrektheitsbeweis SIMPLE MCB).

 $\{C_1,\ldots,C_N\}$ ist genau dann MCB, wenn C_i kürzester Kreis mit $\langle S_i,C_i\rangle=1$ ist, für alle $1\leq i\leq N$.