2. Übung

Institut für Technische Informatik und Mikroelektronik Technische Grundlagen der Informatik 1 Digitale Systeme

WS 2013/14

Abgabetermin: 49. Kalenderwoche (02.12.2013 - 06.12.2013) Maximal **26** Punkte können erreicht werden.

1. Aufgabe (12 Punkte)

Gegeben ist folgendes KV-Diagramm:

(a) Lesen Sie aus dem gegebenen KV-Diagramm die Primimplikanten aus. Verwenden Sie die Don't-Cares so, dass die resultierende Funktion eine möglichst geringe Anzahl an Primimplikanten enthält. Stellen Sie die minimale disjunktive Normalform in einem KV-Diagramm dar und kennzeichnen Sie die gewählten Primimplikanten auf geeignete Weise.

Hinweis: Die minimale Funktionsdarstellung für $f(x_1, x_2, x_3, x_4, x_5)$ besteht aus vier Primimplikanten.

(b) Lesen Sie analog die minimale konjunktive Normalform aus. Stellen Sie die ermittelte KNF im KV-Diagramm dar und kennzeichnen Sie die gewählten Disjunktionsterme.

Hinweis: Für die kompakteste Darstellung für $f(x_1, x_2, x_3, x_4, x_5)$ in konjunktive Normalform sind fünf Disjunktionsterme notwendig.

(c) Ist es möglich, die in (a) und (b) entstandenen Funktionen ineinander zu überführen? Begründen Sie und führen Sie die Umformung ggf. durch.

2. Aufgabe (4 Punkte)

Überführen Sie die in disjunktiver Normalform gegebene Funktion $f(x_0, x_1, x_2)$ algebraisch in die kanonisch-konjunktive Normalform.

$$f(x_0,x_1,x_2)=x_1+x_0\cdot x_2+\overline{x_0}\cdot \overline{x_2}$$

3. Aufgabe (10 Punkte)

Es soll eine asynchrone Schaltung entworfen werden, mit deren Hilfe der 3-Bit Eingangsvektor \mathbf{x} quadriert werden kann. Interpretiert wird \mathbf{x} als 2K-Zahl. Der Ausgabevektor \mathbf{y} (= \mathbf{x}^2) ist ebenfalls als 2K-Zahl zu codieren.

(a) Erstellen Sie eine Wertetabelle für die zu entwerfende Schaltung nach folgendem Vorbild:

	X				$y = (x^2)$						
$\delta(x_2x_1x_0)$	dez	X2	x ₁	X ₀	dez	У5	У4	у 3	У2	У1	У0

(b) Übertragen Sie die Funktionen y_0, y_1, y_2, y_3, y_4 und y_5 jeweils in ein KV-Diagramm und lesen Sie daraus eine möglichst minimale algebraische Form ab. Geben Sie dabei stets an, für welche Normalform Sie sich entschieden haben.