DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN

Chapter 9 Security

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

1

Security Threats, Policies, and Mechanisms

Types of security threats to consider:

- Interception
- Interruption
- Modification
- Fabrication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: The Globus Security Architecture (2)

- 1. The environment consists of multiple administrative domains.
- 2. Local operations are subject to a local domain security policy only.
- Global operations require the initiator to be known in each domain where the operation is carried out.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Δ

Example: The Globus Security Architecture (3)

- 4. Operations between entities in different domains require mutual authentication.
- 5. Global authentication replaces local authentication.
- 6. Controlling access to resources is subject to local security only.
- 7. Users can delegate rights to processes.
- 8. A group of processes in the same domain can share credentials.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

5

Data is protected against wrong or invalid operations State Object Invocation Method (a)

Figure 9-2. Three approaches for protection against security threats. (a) Protection against invalid operations

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Focus of Control (2)

Data is protected against unauthorized invocations

Figure 9-2. Three approaches for protection against security threats. (b) Protection against unauthorized invocations.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

7

Focus of Control (3)

Figure 9-2. Three approaches for protection against security threats. (c) Protection against unauthorized users.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Layering of Security Mechanisms (1) Application Application High-level protocols Middleware Middleware **OS Services OS Services** Transport Transport OS kernel OS kernel Network Network Low-level protocols Datalink Datalink Hardware Hardware Physical Physical Network Figure 9-3. The logical organization of a distributed system into several layers. Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

9

Distribution of Security Mechanisms Servers running secured services No direct access from other machines Access control device Unsecured server Figure 9-5. The principle of RISSC as applied to secure distributed systems. Tanchaum & Van Steen, Distributed Systems: Principles and Paradigms, 2c. (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

11

Cryptography (2)

Notation	Description
K _{A,B}	Secret key shared by A and B
K _A ⁺	Public key of A
K _A	Private key of A

Figure 9-7. Notation used in this chapter.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

13

Symmetric Cryptosystems: DES (2) Figure 9-8. (b) Outline of one encryption round. (b) Tanchaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

15

Public-Key Cryptosystems: RSA

Generating the private and public keys requires four steps:

- Choose two very large prime numbers, p and q.
- Compute $n = p \times q$ and $z = (p 1) \times (q 1)$.
- Choose a number d that is relatively prime to z.
- Compute the number e such that e × d = 1 mod z.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

17

Hash Functions: MD5 (1) 128-bit constant Padded message (multiple of 512 bits) Digest 512 bits Message digest Figure 9-10. The structure of MD5.

Hash Functions: MD5 (2)

Iterations 1–8	Iterations 9–16
$p \leftarrow (p + F(q,r,s) + b_0 + C_1) \ll 7$	$p \leftarrow (p + F(q,r,s) + b_8 + C_9) \ll 7$
$s \leftarrow (s + F(p,q,r) + b_1 + C_2) \ll 12$	$s \leftarrow (s + F(p,q,r) + b_9 + C_{10}) \ll 12$
$r \leftarrow (r + F (s,p,q) + b_2 + C_3) \ll 17$	$r \leftarrow (r + F (s,p,q) + b_{10} + C_{11}) \ll 17$
$q \leftarrow (q + F (r,s,p) + b_3 + C_4) \ll 22$	$q \leftarrow (q + F (r,s,p) + b_{11} + C_{12}) \ll 22$
$p \leftarrow (p + F(q,r,s) + b_4 + C_5) \ll 7$	$p \leftarrow (p + F(q,r,s) + b_{12} + C_{13}) \ll 7$
$s \leftarrow (s + F(p,q,r) + b_5 + C_6) \ll 12$	$s \leftarrow (s + F(p,q,r) + b_{13} + C_{14}) \ll 12$
$r \leftarrow (r + F (s,p,q) + b_6 + C_7) \ll 17$	$r \leftarrow (r + F (s,p,q) + b_{14} + C_{15}) \ll 17$
$q \leftarrow (q + F (r,s,p) + b_7 + C_8) \ll 22$	$q \leftarrow (q + F (r,s,p) + b_{15} + C_{16}) \ll 22$

Figure 9-11. The 16 iterations during the first round in a phase in MD5.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

19

Digital Signatures (1)

Figure 9-20. Digital signing a message using public-key cryptography.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Digital Signatures (2) Alice's computer Bob's computer **→** m Hash m function, Н Hash Alice's Alice's public key, K_A⁺ function, private key, **→**OK Compare Н K_A^- H(m) $K_A^-(H(m))$ H(m) Figure 9-21. Digitally signing a message using a message digest. Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

21

Authentication Based on a Shared Secret Key (1) The secret Key (1) A The secret Key (1) Representation Based on a Shared Secret Key (1) Figure 9-12. Authentication based on a shared secret key. Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2c, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

25

Authentication Using a Key Distribution Center (4) $\frac{2}{K_{B,KDC}}(R_{B1})$ $\frac{4}{K_{A,KDC}(R_{A1}, B, K_{A,B}, K_{B,KDC}(A, K_{A,B}, R_{B1}))}$ $K_{A,B}(R_{A2}), K_{B,KDC}(A, K_{A,B}, R_{B1})$ $_{A,B}^{6}(R_{A2}-1,R_{B2})$ 7 $K_{A,B}(R_{B2}-1)$ Figure 9-18. Protection against malicious reuse of a previously

generated session key in the Needham-Schroeder protocol.

31

