Algorithm Design and Analysis

Introduction & multiplication

How was your break!?

Today: Huashui Algorithm

The Big Questions

- Who are we?
- Why are we here?
- What is going on?

Who are we?

We are ...

- Instructors
 - 张宇昊 (Yuhao Zhang)
 - zhang yuhao@sjtu.edu.cn
 - www.zyhwtc.com
 - 陶表帅 (Biaoshuai Tao)
 - bstao@sjtu.edu.cn
 - jhc.sjtu.edu.cn/~bstao
- TAs
 - Writing
 - 毛康睿
 - 步晓霖
 - 金佳绒
 - 刘盼凤
 - Programming
 - 杨宗翰

Why are we here?

Algorithm!

Algorithms are fundamental?

Algorithms are useful?

Algorithms are fun?

This is a required course!

Why are we here?

What is going on?

Course goals

- The design and analysis of algorithms
- After this course, you will
 - Think **analytically** about algorithms
 - Clearly **communicate** your algorithmic idea
 - Equip with an algorithmic toolkit

Use them **correctly**

Most Important Thing

Raise Questions, Discussion

Roadmap

How to evaluate algorithms?

Guide questions

- Does the algorithm work?
- Is it **fast**?
- Can I do better?

How to think in most of this course?

- Does the algorithm work?
 - Optimal or correct answer
 - Exact Algorithms
- Is it **fast**?
 - Time complexity
 - Worst case
- Can I do better?
 - More efficient
 - Better time complexity

Aside the course.

- What if the problem is so hard to get the solution?
 - Np-hard problems: take too long time
 - Online problems: not enough information

Included in advanced topics

(x OR y OR z) AND (x OR \$\bar{y}\$ OR z) AND (x OR y OR \$\bar{y}\$) AND (x OR \$\bar{y}\$ OR \$\bar{z}\$) AND (\$\bar{x}\$ OR y OR z) AND (\$\bar{x}\$ OR \$\bar{y}\$ OR \$\bar{z}\$)

SAT Problem

Online Matching

- What if a more efficient algorithm is not better?
 - More efficient → make private data public
 - More efficient → focus on the majority population

Fairnes

Data Privacy Fairne

- What if you can not control player's behavior?
 - Auction
 - Public resource allocation

Advanced Topic

- Approximation Algorithms
 - Sometimes, we can not have both efficiency and exactness, unless P=NP.
 - Design Approximation Algorithms in Polynomial Time.
 - How to evaluate?
 - Algorithm A achieve Approximation Ratio Γ .
 - Minimizing Problem
 - For all inputs σ , $A(\sigma) \leq \Gamma \cdot OPT(\sigma)$.
 - A is a Γ —approximate algorithm.
 - Exact Algorithm: $\Gamma = 1$.

Advanced Topic

- Online Algorithm
 - Sometimes, we can not have exactness, if we are making online decision, even we have super computational power.
 - Example: Ski-rental
 - Rent: \$1
 - Buy: \$10
 - Buy or rent?
 - How to evaluate?
 - Algorithm A achieve Competitive Ratio Γ .
 - For all input sequences σ , $A(\sigma) \leq \Gamma \cdot OPT(\sigma)$.
 - A is a Γ –competitive algorithm.

About the course?

References (optional)

Algorithms by Dasgupta, Papadimitriou, Vazirani

Homework

- Homework: 70%
 - 5 programming + 6 writing homework: 55%
 - 1 midterm (in-class): 15%
- 1 final exam: **30**%
- We encourage discussion, but please try them on your own before discussion, and conclude them on your own after discussion.

Talk to us and each other!

- You can discuss with us at office hours.
 - Question: I do not know how to do it?
 - Question: This is my approach, but I am stuck here...
- Office hours
 - Any time on wechat
 - Regular Office Hour: TBD
- Wechat group
 - Check CANVAS

Policy: Writing

- We encourage discussion on homework, but you should write down your solution on your own.
- You must **Cite** all collaborators, as well as all sources used (e.g., online materials).
- Late policy
 - Within 3 days: 50% of your score
 - Out of 3 days: 0%
 - Special Issue

Plagiarism Policy of Programming

- We have NO TOLERANCE on it
- Unless instructed, you can not submit copied code from any source
 - Protecting your solution from copying is your responsibility
 - If you help others debugging, do not submit using your own account
- If the anti-cheating result is confident enough, you will have:
 - For the first time, NO credit on that homework
 - Otherwise, NO credit on that homework and ALL upsolving disabled
 - Trying to avoid anti-cheating by tampering code will count twice
 - We will review code with you before making decision
- We will do our best to fulfill our declaration here.

Feedback

- It's my first course, so please tell me
 - The **pace** of the lecture
 - The **difficulty** of the homework
 - The **tpyos** in the sldies