# Thermodynamic and transport properties

Annex 1: Thermodynamic and transport properties (liquids and gases)

Annex 2: Thermodynamic and transport properties of gases (JANAF)

## ANNEX 1. Thermodynamic and transport properties<sup>1</sup>

#### Some gases and liquids fuels2:

- Isobutene,  $C_4H_{10}(g)$ ,  $\hat{h}^o_f = -126150 \ kJ/kmol$ ,  $\hat{c}_p(kJ/kmolK) = 35.6 + 0.2077 \cdot T(K)$ ,  $LHV = 45.55 \ MJ/kg$
- n-Octane,  $C_8H_{18}(1)$ ,  $\hat{h}^o_f = -249950$  kJ/kmole,  $\hat{c}_p = 254$  kJ/kmolK, LHV = 44.35 MJ/kg
- **n-Decane** (similar characteristics of kerosene),  $C_{10}H_{22}(l)$ ,  $\hat{h}_f^o = -294366 \, kJ/kmol$ ,  $\hat{c}_p = 296 \, kJ/kmol$ K,  $LHV = 44.17 \, MJ/kg$
- **Propane**,  $C_3H_8$  (g),  $\hat{c}_p(kJ/kmolK) = -4.04 + 30.48 \times 10^{-2}T 15.72 \times 10^{-5}T^2 + 31.74 \times 10^{-9}T^3$ , T(K) range: 273 1500 K;  $\hat{h}_f^o = -103850 \, kJ/kmol$ .

Table 1. Thermochemical properties of selected substances at 298~K and 1~atm

|                                                                    |                                                                                                                              | Malan                              | Entholmy of                                    | Gibbs function                               | Absolute                             | Heating                              | Values                               |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Substance                                                          | Formula                                                                                                                      | Molar<br>mass, W<br>(kg/kmol)      | Enthalpy of formation, $\hat{h}^o_f$ (kJ/kmol) | of formation, $\hat{g}_f^o$ (kJ/kmol)        | entropy, $\hat{s}^o$ (kJ/kmol K)     | Higher,<br>HHV<br>(kJ/kg)            | Lower,<br>LHV<br>(kJ/kg)             |
| Carbon<br>Hydrogen<br>Nitrogen<br>Oxygen                           | $C(s) \\ H_2(g) \\ N_2(g) \\ O_2(g)$                                                                                         | 12.01<br>2.016<br>28.01<br>32.00   | 0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0                             | 5.74<br>130.57<br>191.50<br>205.03   | 32,770<br>141,780<br>—               | 32,770<br>119,950<br>—               |
| Carbon monoxide<br>Carbon dioxide<br>Water<br>Water                | $CO(g)$ $CO_2(g)$ $H_2O(g)$ $H_2O(l)$                                                                                        | 28.01<br>44.01<br>18.02<br>18.02   | -110,530<br>-393,520<br>-241,820<br>-285,830   | -137,150<br>-394,380<br>-228,590<br>-237,180 | 197.54<br>213.69<br>188.72<br>69.95  | _<br>_<br>_<br>_                     | _<br>_<br>_<br>_                     |
| Hydrogen peroxide<br>Ammonia<br>Oxygen<br>Hydrogen                 | H <sub>2</sub> O <sub>2</sub> (g)<br>NH <sub>3</sub> (g)<br>O(g)<br>H(g)                                                     | 34.02<br>17.03<br>16.00<br>1.008   | -136,310<br>-46,190<br>249,170<br>218,000      | -105,600<br>-16,590<br>231,770<br>203,290    | 232.63<br>192.33<br>160.95<br>114.61 | _<br>_<br>_<br>_                     | _<br>_<br>_<br>_                     |
| Nitrogen<br>Hydroxyl<br>Methane<br>Acetylene                       | $\begin{array}{c} N(g) \\ OH(g) \\ CH_4(g) \\ C_2H_2(g) \end{array}$                                                         | 14.01<br>17.01<br>16.04<br>26.04   | 472,680<br>39,460<br>-74,850<br>226,730        | 455,510<br>34,280<br>-50,790<br>209,170      | 153.19<br>183.75<br>186.16<br>200.85 | 55,510<br>49,910                     | 50,020<br>48,220                     |
| Ethylene $C_2H_{4(g)}$<br>Ethane<br>Propylene<br>Propane           | $-\frac{C_2H_2(g)}{C_2H_6(g)}$<br>$C_3H_6(g)$<br>$C_3H_8(g)$                                                                 | 28.05<br>30.07<br>42.08<br>44.09   | 52,280<br>-84,680<br>20,410<br>-103,850        | 68,120<br>-32,890<br>62,720<br>-23,490       | 219.83<br>229.49<br>266.94<br>269.91 | 50,300<br>51,870<br>48,920<br>50,350 | 47,160<br>47,480<br>45,780<br>46,360 |
| Pentane<br>Octane<br>Octane<br>Benzene                             | $\begin{array}{c} C_5H_{12}(g) \\ C_8H_{18}(g) \\ C_8H_{18}(l) \\ C_6H_6(g) \end{array}$                                     | 72.15<br>114.22<br>114.22<br>78.11 | -146,440<br>-208,450<br>-249,910<br>82,930     | -8,200<br>17,320<br>6,610<br>129,660         | 348.40<br>463.67<br>360.79<br>269.20 | 49,010<br>48,260<br>47,900<br>42,270 | 45,350<br>44,790<br>44,430<br>40,580 |
| Methyl alcohol<br>Methyl alcohol<br>Ethyl alcohol<br>Ethyl alcohol | CH <sub>3</sub> OH(g)<br>CH <sub>3</sub> OH(l)<br>C <sub>2</sub> H <sub>5</sub> OH(g)<br>C <sub>2</sub> H <sub>5</sub> OH(l) | 32.04<br>32.04<br>46.07<br>46.07   | -200,890<br>-238,810<br>-235,310<br>-277,690   | -162,140<br>-166,290<br>-168,570<br>-174,890 | 239.70<br>126.80<br>282.59<br>160.70 | 23,850<br>22,670<br>30,590<br>29,670 | 21,110<br>19,920<br>27,720<br>26,800 |

Source: Based on JANAF Thermochemical Tables, NSRDS-NBS-37, 1971; Selected Values of Chemical Thermodynamic Properties, NBS Tech. Note 270-3, 1968; and API Research Project 44, Carnegie Press, 1953. Heating values calculated.

<sup>&</sup>lt;sup>1</sup> Note: Tables A25 and A-21 from M.J.Moran and H.N.Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, Inc.

R.D.Flack, Fundamentals of jet propulsion with applications, Cambridge Aerospace Series, 2005.

Table 2. Specific heat for selected ideal gases (T in K; range: 300 < T < 1000 K)

$$\hat{c}_p/\hat{R} = c_p/R = \alpha + \beta T + \gamma T^2 + \delta T^3 + \varepsilon T^4$$

| Gas                                                        | α                                | $\beta \times 10^3$                 | $\gamma 	imes 10^6$              | $\delta 	imes 10^9$                  | $\epsilon \times 10^{12}$          |
|------------------------------------------------------------|----------------------------------|-------------------------------------|----------------------------------|--------------------------------------|------------------------------------|
| СО                                                         | 3.710                            | -1.619                              | 3.692                            | -2.032                               | 0.240                              |
| $CO_2$                                                     | 2.401                            | 8.735                               | -6.607                           | 2.002                                | 0                                  |
| $H_2$                                                      | 3.057                            | 2.677                               | -5.810                           | 5.521                                | -1.812                             |
| H <sub>2</sub> O                                           | 4.070                            | -1.108                              | 4.152                            | -2.964                               | 0.807                              |
| O <sub>2</sub><br>N <sub>2</sub><br>Air<br>SO <sub>2</sub> | 3.626<br>3.675<br>3.653<br>3.267 | -1.878<br>-1.208<br>-1.337<br>5.324 | 7.055<br>2.324<br>3.294<br>0.684 | -6.764<br>-0.632<br>-1.913<br>-5.281 | 2.156<br>-0.226<br>0.2763<br>2.559 |
| $CH_4$<br>$C_2H_2$<br>$C_2H_4$                             | 3.826<br>1.410<br>1.426          | -3.979<br>19.057<br>11.383          | 24.558<br>-24.501<br>7.989       | -22.733<br>16.391<br>-16.254         | 6.963<br>-4.135<br>6.749           |
| Monatomic gases <sup>a</sup>                               | 2.5                              | 0                                   | 0                                | 0                                    | 0                                  |

<sup>&</sup>lt;sup>a</sup> For monatomic gases, such as He, Ne, and Ar,  $\overline{c}_p$  is constant over a wide temperature range and is very nearly equal to  $5/2 \ \overline{R}$ .

Source: Adapted from K. Wark, Thermodynamics, 4th ed., McGraw-Hill, New York, 1983, as based on NASA SP-273, U.S. Government Printing Office, Washington, DC, 1971.

Table 3. Flammability limits and ignition temperatures of common fuels in fuel/air mixtures

| Substance        | Molecular<br>Formula | Lower Flammability<br>Limit, % | Upper Flammability<br>Limit, % | Ignition<br>Temperature, °C | References             |
|------------------|----------------------|--------------------------------|--------------------------------|-----------------------------|------------------------|
| Carbon           | С                    | _                              | _                              | 660                         | Hartman (1958)         |
| Carbon monoxide  | CO                   | 12.5                           | 74                             | 609                         | Scott et al. (1948)    |
| Hydrogen         | $H_2$                | 4.0                            | 75.0                           | 520                         | Zabetakis (1956)       |
| Methane          | $CH_{4}$             | 5.0                            | 15.0                           | 705                         | Gas Engineers Handbook |
| Ethane           | $C_2H_6$             | 3.0                            | 12.5                           | 520 to 630                  | Trinks (1947)          |
| Propane          | $C_3H_8$             | 2.1                            | 10.1                           | 466                         | NFPA (1962)            |
| n-Butane         | $C_4H_{10}$          | 1.86                           | 8.41                           | 405                         | NFPA (1962)            |
| Ethylene         | $C_2H_4$             | 2.75                           | 28.6                           | 490                         | Scott et al. (1948)    |
| Propylene        | $C_3H_6$             | 2.00                           | 11.1                           | 450                         | Scott et al. (1948)    |
| Acetylene        | $C_2H_2$             | 2.50                           | 81                             | 406 to 440                  | Trinks (1947)          |
| Sulfur           | S                    | _                              | _                              | 190                         | Hartman (1958)         |
| Hydrogen sulfide | $H_2S$               | 4.3                            | 45.50                          | 292                         | Scott et al. (1948)    |

Flammability limits adapted from Coward and Jones (1952). All values corrected to 16°C, 104 kPa, dry. (% by volume of air)

ASHRAE Fundamentals

Table 4. Equilibrium constant  $K_p$ 

|       | -                           |                             |                             | -                                 |                        |                       |                       |                                 |       |  |  |  |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------------|------------------------|-----------------------|-----------------------|---------------------------------|-------|--|--|--|
|       | log <sub>10</sub> K         |                             |                             |                                   |                        |                       |                       |                                 |       |  |  |  |
| Temp. |                             |                             |                             | $\frac{1}{2}O_2 + \frac{1}{2}N_2$ | H <sub>2</sub> O ⇒     | H <sub>2</sub> O ⇒    | CO <sub>2</sub>       | $CO_2 + H_2 \leftrightharpoons$ | Temp. |  |  |  |
| K     | $H_2 \leftrightharpoons 2H$ | $O_2 \leftrightharpoons 2O$ | $N_2 \leftrightharpoons 2N$ | ⇒ NO                              | $H_2 + \frac{1}{2}O_2$ | $OH + \frac{1}{2}H_2$ | $CO + \frac{1}{2}O_2$ | $CO + H_2O$                     | °R    |  |  |  |
| 298   | -71.224                     | -81.208                     | -159.600                    | -15.171                           | -40.048                | -46.054               | -45.066               | -5.018                          | 537   |  |  |  |
| 500   | -40.316                     | -45.880                     | -92.672                     | -8.783                            | -22.886                | -26.130               | -25.025               | -2.139                          | 900   |  |  |  |
| 1000  | -17.292                     | -19.614                     | -43.056                     | -4.062                            | -10.062                | -11.280               | -10.221               | -0.159                          | 1800  |  |  |  |
| 1200  | -13.414                     | -15.208                     | -34.754                     | -3.275                            | -7.899                 | -8.811                | -7.764                | +0.135                          | 2160  |  |  |  |
| 1400  | -10.630                     | -12.054                     | -28.812                     | -2.712                            | -6.347                 | -7.021                | -6.014                | +0.333                          | 2520  |  |  |  |
| 1600  | -8.532                      | -9.684                      | -24.350                     | -2.290                            | -5.180                 | -5.677                | -4.706                | +0.474                          | 2880  |  |  |  |
| 1700  | -7.666                      | -8.706                      | -22.512                     | -2.116                            | -4.699                 | -5.124                | -4.169                | +0.530                          | 3060  |  |  |  |
| 1800  | -6.896                      | -7.836                      | -20.874                     | -1.962                            | -4.270                 | -4.613                | -3.693                | +0.577                          | 3240  |  |  |  |
| 1900  | -6.204                      | -7.058                      | -19.410                     | -1.823                            | -3.886                 | -4.190                | -3.267                | +0.619                          | 3420  |  |  |  |
| 2000  | -5.580                      | -6.356                      | -18.092                     | -1.699                            | -3.540                 | -3.776                | -2.884                | +0.656                          | 3600  |  |  |  |
| 2100  | -5.016                      | -5.720                      | -16.898                     | -1.586                            | -3.227                 | -3.434                | -2.539                | +0.688                          | 3780  |  |  |  |
| 2200  | -4.502                      | -5.142                      | -15.810                     | -1.484                            | -2.942                 | -3.091                | -2.226                | +0.716                          | 3960  |  |  |  |
| 2300  | -4.032                      | -4.614                      | -14.818                     | -1.391                            | -2.682                 | -2.809                | -1.940                | +0.742                          | 4140  |  |  |  |
| 2400  | -3.600                      | -4.130                      | -13.908                     | -1.305                            | -2.443                 | -2.520                | -1.679                | +0.764                          | 4320  |  |  |  |
| 2500  | -3.202                      | -3.684                      | -13.070                     | -1.227                            | -2.224                 | -2.270                | -1.440                | +0.784                          | 4500  |  |  |  |
| 2600  | -2.836                      | -3.272                      | -12.298                     | -1.154                            | -2.021                 | -2.038                | -1.219                | +0.802                          | 4680  |  |  |  |
| 2700  | -2.494                      | -2.892                      | -11.580                     | -1.087                            | -1.833                 | -1.823                | -1.015                | +0.818                          | 4860  |  |  |  |
| 2800  | -2.178                      | -2.536                      | -10.914                     | -1.025                            | -1.658                 | -1.624                | -0.825                | +0.833                          | 5040  |  |  |  |
| 2900  | -1.882                      | -2.206                      | -10.294                     | -0.967                            | -1.495                 | -1.438                | -0.649                | +0.846                          | 5220  |  |  |  |
| 3000  | -1.606                      | -1.898                      | -9.716                      | -0.913                            | -1.343                 | -1.265                | -0.485                | +0.858                          | 5400  |  |  |  |
| 3100  | -1.348                      | -1.610                      | -9.174                      | -0.863                            | -1.201                 | -1.103                | -0.332                | +0.869                          | 5580  |  |  |  |
| 3200  | -1.106                      | -1.340                      | -8.664                      | -0.815                            | -1.067                 | -0.951                | -0.189                | +0.878                          | 5760  |  |  |  |
| 3300  | -0.878                      | -1.086                      | -8.186                      | -0.771                            | -0.942                 | -0.809                | -0.054                | +0.888                          | 5940  |  |  |  |
| 3400  | -0.664                      | -0.846                      | -7.736                      | -0.729                            | -0.824                 | -0.674                | +0.071                | +0.895                          | 6120  |  |  |  |
| 3500  | -0.462                      | -0.620                      | -7.312                      | -0.690                            | -0.712                 | -0.547                | +0.190                | +0.902                          | 6300  |  |  |  |

Source: Based on data from the JANAF Thermochemical Tables, NSRDS-NBS-37, 1971.

(Table from M.J.Moran and H.N.Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, Inc,  $5^{th}$  ed., 2006)

### Annex 2. Thermodynamic and transport properties of gases

Thermodynamic and transport properties of different gases are given below. Specifically: Argon (Ar), Carbon (C), Methane (CH<sub>4</sub>), Carbon monoxide (CO), Carbon dioxide (CO<sub>2</sub>), Hydrogen atom (H), Hydrogen (H<sub>2</sub>), Water (H<sub>2</sub>O), Peroxide (H<sub>2</sub>O<sub>2</sub>), Hydroperoxyl (HO<sub>2</sub>), Nitrogen atom (N), Nitrogen (N<sub>2</sub>), Nitrous oxide (N<sub>2</sub>O), Nitrogen monoxide (NO), Nitrogen dioxide (NO<sub>2</sub>), Oxygen atom (O), Oxygen (O<sub>2</sub>), Hydroxyl (OH), Acetylene (C<sub>2</sub>H<sub>2</sub>), n-decane (C<sub>10</sub>H<sub>22</sub>).

General equations are given in terms of different coefficients. In all these equations, temperature is given in K. The universal gas constant  $(\widehat{R} = 8.31447 \text{ kJ/kmolK})$  and the gas constant  $(R = \widehat{R}/W)$  are used in the thermodynamic properties.

**Specific heat at constant pressure:** 

$$\frac{c_p}{R} = \frac{\hat{c}_p}{\hat{R}} = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4$$

Absolute enthalpy (formation enthalpy is included) at  $p = p^0 = 1$  atm:

$$\frac{h^o(T)}{RT} = \frac{\hat{h}^o(T)}{\hat{R}T} = a_0 + \frac{a_1}{2}T + \frac{a_2}{3}T^2 + \frac{a_3}{4}T^3 + \frac{a_4}{5}T^4 + \frac{a_5}{T}$$

Absolute entropy at  $p = p^0 = 1$  atm:

$$\frac{s^{o}(T)}{R} = \frac{\hat{s}^{o}(T)}{\hat{R}} = a_0 \ln(T) + a_1 T + \frac{a_2}{2} T^2 + \frac{a_3}{3} T^3 + \frac{a_4}{4} T^4 + a_5$$

Dynamic viscosity and thermal conductivity:

$$\mu\left(\frac{kg}{ms}\right) = e^{b_0 + b_1 lnT + b_2 (lnT)^2 + b_3 (\ln(T)^3)}; \qquad \lambda\left(\frac{W}{mK}\right) = e^{c_0 + c_1 lnT + c_2 (lnT)^2 + c_3 (\ln(T)^3)}$$

.

Coefficients for different gases of the polynomial expressions given below for. The coefficients corresponding to the thermodynamic properties  $(c_n, h^o \text{ and } s^o)$  have been obtained from JANAF<sup>3</sup>. Transport properties  $(\mu \text{ and } \lambda)$  from CHEMKIN<sup>4</sup>.

List of gases considered: Argon (Ar), Carbon (C), Methane (CH4), Carbon monoxide (CO), Carbon dioxide (CO2), Hydrogen atom (H), Hydrogen (H2), Water (H2O), Peroxide (H2O2), Hydroperoxyl (HO2), Nitrogen atom (N), Nitrogen (N2), Nitrogen wonoxide (NO2), Nitrogen monoxide (NO2), Nitrogen atom (O), Oxygen (O2), Hydroxyl (OH), Acetylene (C2H2), n-decane (C10H22).



MW 0.1201115036e+02

200.0 1000.0

2

See website: http://www.sandia.gov/HiTempThermo/chemkin.html. Note, similar correlations (but not the same) can be seen on the NIST website: http://webbook.nist.gov/chemistry/

See the same website: http://www.sandia.gov/HiTempThermo/chemkin.html.

```
RO GASIDEAL
     MU EPOLI3 -0.1733304620e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     LAMBDA EPOLI3 -0.9471367964e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     CP JANAF CP 0.2554239550e+01 -0.3215377240e-03 0.7337922450e-06 -0.7322348890e-09 0.2665214460e-12
          JANAF H 0.2554239550e+01 -0.3215377240e-03 0.7337922450e-06 -0.7322348890e-09 0.2665214460e-12
                                                                                                         0.8544388320e+05
      Н
          JANAF S 0.2554239550e+01 -0.3215377240e-03 0.7337922450e-06 -0.7322348890e-09 0.2665214460e-12
                                                                                                         0.4531308480e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1733304620e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     LAMBDA EPOLI3 -0.9471367964e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     CP JANAF CP 0.2492668880e+01 0.4798892840e-04 -0.7243350200e-07 0.3742910290e-10 -0.4872778930e-14
      H JANAF H 0.2492668880e+01 0.4798892840e-04 -0.7243350200e-07 0.3742910290e-10 -0.4872778930e-14
                                                                                                         0.8545129530e+05
      S JANAF S 0.2492668880e+01 0.4798892840e-04 -0.7243350200e-07 0.3742910290e-10 -0.4872778930e-14
                                                                                                         0.4801503730e+01
#-----
CH4
            Methane
JANAF-CHEMKIN
MW 0.1604303026e+02
2
  200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.2230715913e+02 0.3569542093e+01 -0.3874920393e+00 0.1712461411e-01
     LAMBDA EPOLI3 0.1793259165e+01 -0.4960294457e+01 0.1032808843e+01 -0.5633567903e-01
     CP JANAF CP 0.5149876130e+01 -0.1367097880e-01 0.4918005990e-04 -0.4847430260e-07 0.1666939560e-10
          JANAF H 0.5149876130e+01 -0.1367097880e-01 0.4918005990e-04 -0.4847430260e-07 0.1666939560e-10
                                                                                                         -0.1024664760e+05
          JANAF S 0.5149876130e+01 -0.1367097880e-01 0.4918005990e-04 -0.4847430260e-07 0.1666939560e-10
                                                                                                        -0.4641303760e+01
  1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.2230715913e+02 0.3569542093e+01 -0.3874920393e+00 0.1712461411e-01
     LAMBDA EPOLI3 0.1793259165e+01 -0.4960294457e+01 0.1032808843e+01 -0.5633567903e-01
     CP JANAF CP 0.7485149500e-01 0.1339094670e-01 -0.5732858090e-05 0.1222925350e-08 -0.1018152300e-12
      H JANAF H 0.7485149500e-01 0.1339094670e-01 -0.5732858090e-05 0.1222925350e-08 -0.1018152300e-12 -0.9468344590e+04
      S JANAF S 0.7485149500e-01 0.1339094670e-01 -0.5732858090e-05 0.1222925350e-08 -0.1018152300e-12
                                                                                                        0.1843731800e+02
```

#### CO Carbon monoxide

JANAF-CHEMKIN

2

```
MW 0.2801055050e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1891819775e+02 0.2400975158e+01 -0.2357717790e+00 0.1054820948e-01
     LAMBDA EPOLI3 0.3641755785e+00 -0.3154801253e+01 0.6020483455e+00 -0.3032714733e-01
          JANAF CP 0.3579533470e+01 -0.6103536800e-03 0.1016814330e-05 0.9070058840e-09 -0.9044244990e-12
          JANAF H 0.3579533470e+01 -0.6103536800e-03 0.1016814330e-05 0.9070058840e-09 -0.9044244990e-12
                                                                                                           -0.1434408600e+05
          JANAF S 0.3579533470e+01 -0.6103536800e-03 0.1016814330e-05 0.9070058840e-09 -0.9044244990e-12
                                                                                                           0.3508409280e+01
  1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.1891819775e+02 0.2400975158e+01 -0.2357717790e+00 0.1054820948e-01
     LAMBDA EPOLI3 0.3641755785e+00 -0.3154801253e+01 0.6020483455e+00 -0.3032714733e-01
     CP JANAF CP 0.2715185610e+01 0.2062527430e-02 -0.9988257710e-06 0.2300530080e-09 -0.2036477160e-13
          JANAF H 0.2715185610e+01 0.2062527430e-02 -0.9988257710e-06 0.2300530080e-09 -0.2036477160e-13
                                                                                                           -0.1415187240e+05
      S JANAF S 0.2715185610e+01 0.2062527430e-02 -0.9988257710e-06 0.2300530080e-09 -0.2036477160e-13
                                                                                                           0.7818687720e+01
CO<sub>2</sub>
            Carbon dioxide
JANAF-CHEMKIN
MW 0.4400995064e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.2627315808e+02 0.5130426196e+01 -0.5724284704e+00 0.2440888722e-01
     LAMBDA EPOLI3 -0.2286363338e+02 0.5875667874e+01 -0.5677982250e+00 0.2031670239e-01
     CP JANAF CP 0.2356773520e+01 0.8984596770e-02 -0.7123562690e-05 0.2459190220e-08 -0.1436995480e-12
          JANAF H 0.2356773520e+01 0.8984596770e-02 -0.7123562690e-05 0.2459190220e-08 -0.1436995480e-12
                                                                                                           -0.4837196970e+05
          JANAF S 0.2356773520e+01 0.8984596770e-02 -0.7123562690e-05 0.2459190220e-08 -0.1436995480e-12
                                                                                                           0.9901052220e+01
  1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.2627315808e+02 0.5130426196e+01 -0.5724284704e+00 0.2440888722e-01
     LAMBDA EPOLI3 -0.2286363338e+02 0.5875667874e+01 -0.5677982250e+00 0.2031670239e-01
     CP JANAF CP 0.3857460290e+01 0.4414370260e-02 -0.2214814040e-05 0.5234901880e-09 -0.4720841640e-13
          JANAF H 0.3857460290e+01 0.4414370260e-02 -0.2214814040e-05 0.5234901880e-09 -0.4720841640e-13
                                                                                                           -0.4875916600e+05
          JANAF S 0.3857460290e+01 0.4414370260e-02 -0.2214814040e-05 0.5234901880e-09 -0.4720841640e-13
                                                                                                           0.2271638060e+01
```

```
#-----
          Hydrogen atom
JANAF-CHEMKIN
MW 0.1007969975e+01
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.2270792854e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
     LAMBDA EPOLI3 -0.1236835327e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
         JANAF CP 0.2500000000e+01 0.7053328190e-12 -0.1995919640e-14 0.2300816320e-17 -0.9277323320e-21
          JANAF H 0.2500000000e+01 0.7053328190e-12 -0.1995919640e-14 0.2300816320e-17 -0.9277323320e-21
                                                                                                         0.2547365990e+05
          JANAF S 0.2500000000e+01 0.7053328190e-12 -0.1995919640e-14 0.2300816320e-17 -0.9277323320e-21
                                                                                                        -0.4466828530e+00
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.2270792854e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
     LAMBDA EPOLI3 -0.1236835327e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
     CP JANAF_CP 0.2500000010e+01 -0.2308429730e-10 0.1615619480e-13 -0.4735152350e-17 0.4981973570e-21
      H JANAF H 0.2500000010e+01 -0.2308429730e-10 0.1615619480e-13 -0.4735152350e-17 0.4981973570e-21
                                                                                                         0.2547365990e+05
          JANAF S 0.2500000010e+01 -0.2308429730e-10 0.1615619480e-13 -0.4735152350e-17 0.4981973570e-21
                                                                                                        -0.4466829140e+00
#-----
H2
          Hvdrogen
JANAF-CHEMKIN
MW 0.2015939951e+01
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1614293964e+02 0.1003491326e+01 -0.5016044555e-01 0.2330995224e-02
     LAMBDA EPOLI3 -0.2277096638e+01 -0.4674267764e+00 0.1156734789e+00 -0.2596025563e-02
     CP JANAF CP 0.2344331120e+01 0.7980520750e-02 -0.1947815100e-04 0.2015720940e-07 -0.7376117610e-11
          JANAF H 0.2344331120e+01 0.7980520750e-02 -0.1947815100e-04 0.2015720940e-07 -0.7376117610e-11
                                                                                                         -0.9179351730e+03
          JANAF S 0.2344331120e+01 0.7980520750e-02 -0.1947815100e-04 0.2015720940e-07 -0.7376117610e-11
                                                                                                         0.6830102380e+00
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1614293964e+02 0.1003491326e+01 -0.5016044555e-01 0.2330995224e-02
```

```
LAMBDA EPOLI3 -0.2277096638e+01 -0.4674267764e+00 0.1156734789e+00 -0.2596025563e-02
     CP JANAF CP 0.3337279200e+01 -0.4940247310e-04 0.4994567780e-06 -0.1795663940e-09 0.2002553760e-13
     H JANAF H 0.3337279200e+01 -0.4940247310e-04 0.4994567780e-06 -0.1795663940e-09 0.2002553760e-13
                                                                                                          -0.9501589220e+03
      S JANAF S 0.3337279200e+01 -0.4940247310e-04 0.4994567780e-06 -0.1795663940e-09 0.2002553760e-13
                                                                                                         -0.3205023310e+01
#-----
H<sub>2</sub>O
            Water
JANAF-CHEMKIN
MW 0.1801534009e+02
2
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1286013492e+02 -0.1377850379e+01 0.4213981638e+00 -0.2414423056e-01
     LAMBDA EPOLI3 0.1185254026e+02 -0.8965822807e+01 0.1528828068e+01 -0.7590175979e-01
          JANAF CP 0.4198640560e+01 -0.2036434100e-02 0.6520402110e-05 -0.5487970620e-08 0.1771978170e-11
         JANAF H 0.4198640560e+01 -0.2036434100e-02 0.6520402110e-05 -0.5487970620e-08 0.1771978170e-11
                                                                                                          -0.3029372670e+05
          JANAF S 0.4198640560e+01 -0.2036434100e-02 0.6520402110e-05 -0.5487970620e-08 0.1771978170e-11
                                                                                                         -0.8490322080e+00
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1286013492e+02 -0.1377850379e+01 0.4213981638e+00 -0.2414423056e-01
     LAMBDA EPOLI3 0.1185254026e+02 -0.8965822807e+01 0.1528828068e+01 -0.7590175979e-01
     CP JANAF CP 0.3033992490e+01 0.2176918040e-02 -0.1640725180e-06 -0.9704198700e-10 0.1682009920e-13
     H JANAF H 0.3033992490e+01 0.2176918040e-02 -0.1640725180e-06 -0.9704198700e-10 0.1682009920e-13
                                                                                                          -0.3000429710e+05
          JANAF S 0.3033992490e+01 0.2176918040e-02 -0.1640725180e-06 -0.9704198700e-10 0.1682009920e-13
                                                                                                          0.4966770100e+01
#-----
H2O2
            Peroxide
JANAF-CHEMKIN
MW 0.3401474023e+02
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1943012788e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01
     LAMBDA EPOLI3 -0.1063014819e+02 0.1315528335e+01 0.1916184484e-01 -0.4416817199e-02
     CP JANAF CP 0.4276112690e+01 -0.5428224170e-03 0.1673357010e-04 -0.2157708130e-07 0.8624543630e-11
     H JANAF H 0.4276112690e+01 -0.5428224170e-03 0.1673357010e-04 -0.2157708130e-07 0.8624543630e-11
                                                                                                          -0.1770258210e+05
          JANAF S 0.4276112690e+01 -0.5428224170e-03 0.1673357010e-04 -0.2157708130e-07 0.8624543630e-11
                                                                                                          0.3435050740e+01
```

#### 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.1943012788e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01 LAMBDA EPOLI3 -0.1063014819e+02 0.1315528335e+01 0.1916184484e-01 -0.4416817199e-02 CP JANAF CP 0.4165002850e+01 0.4908316940e-02 -0.1901392250e-05 0.3711859860e-09 -0.2879083050e-13 JANAF H 0.4165002850e+01 0.4908316940e-02 -0.1901392250e-05 0.3711859860e-09 -0.2879083050e-13 -0.1786178770e+05 S JANAF S 0.4165002850e+01 0.4908316940e-02 -0.1901392250e-05 0.3711859860e-09 -0.2879083050e-13 0.2916156620e+01 #-----HO<sub>2</sub> **Hvdroperoxvl** JANAF-CHEMKIN MW 0.3300677025e+02 2 200.0 1000.0 GASIDEAL RO MU EPOLI3 -0.1944516852e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01 LAMBDA EPOLI3 -0.1264302144e+02 0.2340066563e+01 -0.1632055933e+00 0.5799980518e-02 CP JANAF CP 0.4301798010e+01 -0.4749120510e-02 0.2115828910e-04 -0.2427638940e-07 0.9292251240e-11 JANAF H 0.4301798010e+01 -0.4749120510e-02 0.2115828910e-04 -0.2427638940e-07 0.9292251240e-11 0.2948080400e+03 Н JANAF S 0.4301798010e+01 -0.4749120510e-02 0.2115828910e-04 -0.2427638940e-07 0.9292251240e-11 0.3716662450e+01 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.1944516852e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01 LAMBDA EPOLI3 -0.1264302144e+02 0.2340066563e+01 -0.1632055933e+00 0.5799980518e-02 CP JANAF CP 0.4017210900e+01 0.2239820130e-02 -0.6336581500e-06 0.1142463700e-09 -0.1079085350e-13 H JANAF H 0.4017210900e+01 0.2239820130e-02 -0.6336581500e-06 0.1142463700e-09 -0.1079085350e-13 0.1118567130e+03 S JANAF S 0.4017210900e+01 0.2239820130e-02 -0.6336581500e-06 0.1142463700e-09 -0.1079085350e-13 0.3785102150e+01 N Nitrogen atom JANAF-CHEMKIN MW 0.1400669956e+02 200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.1725619603e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02 LAMBDA EPOLI3 -0.9548218134e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02

```
CP JANAF CP 0.2500000000e+01 0.0000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00
          JANAF H 0.2500000000e+01 0.000000000e+00
                                                                       0.0000000000e+00
                                                      0.0000000000e+00
                                                                                        0.0000000000e+00
                                                                                                           0.5610463700e+05
          JANAF S 0.2500000000e+01 0.0000000000e+00
                                                      0.0000000000e+00
                                                                       0.0000000000e+00
                                                                                        0.0000000000e+00
                                                                                                           0.4193908700e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1725619603e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     LAMBDA EPOLI3 -0.9548218134e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
          JANAF CP 0.2415942900e+01 0.1748906500e-03 -0.1190236900e-06 0.3022624500e-10 -0.2036098200e-14
          JANAF H 0.2415942900e+01 0.1748906500e-03 -0.1190236900e-06 0.3022624500e-10 -0.2036098200e-14
                                                                                                          0.5613377300e+05
         JANAF S 0.2415942900e+01 0.1748906500e-03 -0.1190236900e-06 0.3022624500e-10 -0.2036098200e-14
                                                                                                         0.4649609600e+01
#-----
N2
          Nitrogen
JANAF-CHEMKIN
MW 0.2801339912e+02
2
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1886822179e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01
     LAMBDA EPOLI3 0.1417117599e+01 -0.3528374680e+01 0.6455829015e+00 -0.3194413600e-01
          JANAF CP 0.3298677000e+01 0.1408240400e-02 -0.3963222000e-05 0.5641515000e-08 -0.2444854000e-11
      Η
          JANAF H 0.3298677000e+01 0.1408240400e-02 -0.3963222000e-05 0.5641515000e-08 -0.2444854000e-11
                                                                                                         -0.1020899900e+04
          JANAF S 0.3298677000e+01 0.1408240400e-02 -0.3963222000e-05 0.5641515000e-08 -0.2444854000e-11
                                                                                                         0.3950372000e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1886822179e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01
     LAMBDA EPOLI3 0.1417117599e+01 -0.3528374680e+01 0.6455829015e+00 -0.3194413600e-01
     CP JANAF CP 0.2926640000e+01 0.1487976800e-02 -0.5684760000e-06 0.1009703800e-09 -0.6753351000e-14
          JANAF H 0.2926640000e+01 0.1487976800e-02 -0.5684760000e-06 0.1009703800e-09 -0.6753351000e-14
                                                                                                         -0.9227977000e+03
      S JANAF S 0.2926640000e+01 0.1487976800e-02 -0.5684760000e-06 0.1009703800e-09 -0.6753351000e-14
                                                                                                         0.5980528000e+01
#-----
N2O
JANAF-CHEMKIN
MW 0.4401279926e+02
2
 200.0 1000.0
```

```
RO GASIDEAL
     MU EPOLI3 -0.2607150910e+02 0.5067455296e+01 -0.5674645603e+00 0.2432611681e-01
     LAMBDA EPOLI3 -0.2297207455e+02 0.6034436002e+01 -0.6061276742e+00 0.2281390045e-01
     CP JANAF CP 0.2257150200e+01 0.1130472800e-01 -0.1367131900e-04
                                                                         0.9681980600e-08 -0.2930718200e-11
          JANAF H 0.2257150200e+01 0.1130472800e-01 -0.1367131900e-04
                                                                        0.9681980600e-08 -0.2930718200e-11
                                                                                                           0.8741774400e+04
          JANAF S 0.2257150200e+01 0.1130472800e-01 -0.1367131900e-04 0.9681980600e-08 -0.2930718200e-11
                                                                                                           0.1075799200e+02
  1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.2607150910e+02 0.5067455296e+01 -0.5674645603e+00
                                                                         0.2432611681e-01
     LAMBDA EPOLI3 -0.2297207455e+02 0.6034436002e+01 -0.6061276742e+00 0.2281390045e-01
          JANAF CP 0.4823072900e+01 0.2627025100e-02 -0.9585087400e-06 0.1600071200e-09 -0.9775230300e-14
          JANAF H 0.4823072900e+01 0.2627025100e-02 -0.9585087400e-06
                                                                       0.1600071200e-09 -0.9775230300e-14
                                                                                                           0.8073404800e+04
          JANAF S 0.4823072900e+01 0.2627025100e-02 -0.9585087400e-06 0.1600071200e-09 -0.9775230300e-14
                                                                                                           -0.2201720700e+01
           Nitrogen monoxide
NO
JANAF-CHEMKIN
MW 0.3000609970e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1883386291e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01
     LAMBDA EPOLI3 -0.1947028576e+01 -0.2131168801e+01 0.4544282044e+00 -0.2335117715e-01
          JANAF CP 0.4218476300e+01 -0.4638976000e-02 0.1104102200e-04 -0.9336135400e-08 0.2803577000e-11
          JANAF H 0.4218476300e+01 -0.4638976000e-02 0.1104102200e-04 -0.9336135400e-08
                                                                                        0.2803577000e-11
      Н
                                                                                                           0.9844623000e+04
          JANAF S 0.4218476300e+01 -0.4638976000e-02 0.1104102200e-04 -0.9336135400e-08 0.2803577000e-11
                                                                                                           0.2280846400e+01
  1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.1883386291e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01
     LAMBDA EPOLI3 -0.1947028576e+01 -0.2131168801e+01 0.4544282044e+00 -0.2335117715e-01
          JANAF CP 0.3260605600e+01 0.1191104300e-02 -0.4291704800e-06 0.6945766900e-10 -0.4033609900e-14
          JANAF H 0.3260605600e+01 0.1191104300e-02 -0.4291704800e-06 0.6945766900e-10 -0.4033609900e-14
                                                                                                           0.9920974600e+04
          JANAF S 0.3260605600e+01 0.1191104300e-02 -0.4291704800e-06 0.6945766900e-10 -0.4033609900e-14
                                                                                                           0.6369302700e+01
#-----
NO<sub>2</sub>
            Nitrogen dioxide
```

```
JANAF-CHEMKIN
MW 0.4600549984e+02
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.2468321217e+02 0.4668511699e+01 -0.5223152219e+00 0.2264144496e-01
     LAMBDA EPOLI3 -0.2541446897e+02 0.7263546623e+01 -0.7968863012e+00 0.3249189251e-01
     CP JANAF CP 0.3944031200e+01 -0.1585429000e-02 0.1665781200e-04 -0.2047542600e-07 0.7835056400e-11
          JANAF H 0.3944031200e+01 -0.1585429000e-02 0.1665781200e-04 -0.2047542600e-07 0.7835056400e-11
                                                                                                         0.2896617900e+04
          JANAF S 0.3944031200e+01 -0.1585429000e-02 0.1665781200e-04 -0.2047542600e-07 0.7835056400e-11
                                                                                                         0.6311991700e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.2468321217e+02 0.4668511699e+01 -0.5223152219e+00 0.2264144496e-01
     LAMBDA EPOLI3 -0.2541446897e+02 0.7263546623e+01 -0.7968863012e+00 0.3249189251e-01
     CP JANAF CP 0.4884754200e+01 0.2172395600e-02 -0.8280690600e-06 0.1574751000e-09 -0.1051089500e-13
     H JANAF H 0.4884754200e+01 0.2172395600e-02 -0.8280690600e-06 0.1574751000e-09 -0.1051089500e-13
                                                                                                         0.2316498300e+04
          JANAF S 0.4884754200e+01 0.2172395600e-02 -0.8280690600e-06 0.1574751000e-09 -0.1051089500e-13
                                                                                                        -0.1174169500e+00
#-----
0
          Oxygen atom
JANAF-CHEMKIN
MW 0.1599940014e+02
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1740286218e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
     LAMBDA EPOLI3 -0.9827899765e+01 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
     CP JANAF CP 0.3168267100e+01 -0.3279318840e-02 0.6643063960e-05 -0.6128066240e-08 0.2112659710e-11
          JANAF H 0.3168267100e+01 -0.3279318840e-02 0.6643063960e-05 -0.6128066240e-08 0.2112659710e-11
                                                                                                         0.2912225920e+05
          JANAF S 0.3168267100e+01 -0.3279318840e-02 0.6643063960e-05 -0.6128066240e-08 0.2112659710e-11
                                                                                                         0.2051933460e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1740286218e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
     LAMBDA EPOLI3 -0.9827899765e+01 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
     CP JANAF CP 0.2569420780e+01 -0.8597411370e-04 0.4194845890e-07 -0.1001777990e-10 0.1228336910e-14
      H JANAF H 0.2569420780e+01 -0.8597411370e-04 0.4194845890e-07 -0.1001777990e-10 0.1228336910e-14
                                                                                                         0.2921757910e+05
```

```
S JANAF S 0.2569420780e+01 -0.8597411370e-04 0.4194845890e-07 -0.1001777990e-10 0.1228336910e-14
                                                                                                         0.4784338640e+01
O2
          Oxygen
JANAF-CHEMKIN
MW 0.3199880028e+02
2
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1946067566e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01
     LAMBDA EPOLI3 -0.1344962361e+02 0.2890477542e+01 -0.2709591162e+00 0.1152570281e-01
         JANAF CP 0.3782456360e+01 -0.2996734160e-02 0.9847302010e-05 -0.9681295090e-08 0.3243728370e-11
          JANAF H 0.3782456360e+01 -0.2996734160e-02 0.9847302010e-05 -0.9681295090e-08 0.3243728370e-11
                                                                                                         -0.1063943560e+04
          JANAF S 0.3782456360e+01 -0.2996734160e-02 0.9847302010e-05 -0.9681295090e-08 0.3243728370e-11
                                                                                                         0.3657675730e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1946067566e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01
     LAMBDA EPOLI3 -0.1344962361e+02 0.2890477542e+01 -0.2709591162e+00 0.1152570281e-01
     CP JANAF CP 0.3282537840e+01 0.1483087540e-02 -0.7579666690e-06 0.2094705550e-09 -0.2167177940e-13
          JANAF H 0.3282537840e+01 0.1483087540e-02 -0.7579666690e-06 0.2094705550e-09 -0.2167177940e-13
                                                                                                         -0.1088457720e+04
      S JANAF S 0.3282537840e+01 0.1483087540e-02 -0.7579666690e-06 0.2094705550e-09 -0.2167177940e-13
                                                                                                         0.5453231290e+01
#-----
OH
           Hvdroxil
JANAF-CHEMKIN
MW 0.1700737011e+02
2
 200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1737231441e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
     LAMBDA EPOLI3 0.2649305782e+01 -0.3244626711e+01 0.5336588173e+00 -0.2328116832e-01
          JANAF CP 0.3992015430e+01 -0.2401317520e-02 0.4617938410e-05 -0.3881133330e-08 0.1364114700e-11
          JANAF H 0.3992015430e+01 -0.2401317520e-02 0.4617938410e-05 -0.3881133330e-08 0.1364114700e-11
                                                                                                         0.3615080560e+04
          JANAF S 0.3992015430e+01 -0.2401317520e-02 0.4617938410e-05 -0.3881133330e-08 0.1364114700e-11
                                                                                                       -0.1039254580e+00
 1000.0 5000.0
     RO GASIDEAL
```

RO GASIDEAL

MU EPOLI3 -0.2563911990e+02 0.4790351552e+01 -0.5364560276e+00 0.2318560947e-01

LAMBDA EPOLI3 -0.1920397367e+02 0.4564166690e+01 -0.4040787948e+00 0.1405248078e-01

 $CP \quad JANAF\_CP \quad 0.8086810940e + 00 \quad 0.2336156290e - 01 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.3551718150e - 04 \quad 0.2801524370e - 07 \quad -0.8500729740e - 11 \quad -0.85007296e - 11 \quad -0.850076e - 11 \quad -0.850076e - 11 \quad -0.850076e - 11 \quad -0.850076e - 11$ 

S JANAF S 0.8086810940e+00 0.2336156290e-01 -0.3551718150e-04 0.2801524370e-07 -0.8500729740e-11 0.1393970510e+02

#### 1000.0 5000.0

RO GASIDEAL

MU EPOLI3 -0.2563911990e+02 0.4790351552e+01 -0.5364560276e+00 0.2318560947e-01

LAMBDA EPOLI3 -0.1920397367e+02 0.4564166690e+01 -0.4040787948e+00 0.1405248078e-01

CP JANAF CP 0.4147569640e+01 0.5961666640e-02 -0.2372948520e-05 0.4674121710e-09 -0.3612352130e-13

H JANAF\_H 0.4147569640e+01 0.5961666640e-02 -0.2372948520e-05 0.4674121710e-09 -0.3612352130e-13 0.2593599920e+05

S JANAF\_S 0.4147569640e+01 0.5961666640e-02 -0.2372948520e-05 0.4674121710e-09 -0.3612352130e-13 -0.1230281210e+01

#-----

#### C10H22 (n-decane) (gas) (ref. <a href="http://webbook.nist.gov/chemistry/">http://webbook.nist.gov/chemistry/</a>)

$$h_f^o = -249.7 \pm 1.1 \, kJ/mol$$

$$s^{o}(298.15 K) = 545.8 \pm 1.1 J/mol * K$$

| Temperature (K)               | 200    | 273.15 | 298.15 | 300    | 400    | 500    | 600    | 700    | 800   | 900    | 1000   | 1100   | 1200   | 1300   | 1400   | 1500   |
|-------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| c <sub>p</sub> ,gas (J/mol*K) | 179.08 | 217.9  | 233.1  | 234.18 | 297.98 | 356.43 | 405.85 | 446.43 | 479.9 | 508.36 | 531.79 | 551.87 | 569.44 | 585.76 | 598.31 | 610.86 |