| <b>—.</b> | 填空题(35')                                                                      |    |
|-----------|-------------------------------------------------------------------------------|----|
| 1.        | 法拉第电磁感应定律,其数学表达式。                                                             |    |
| 2.        | 电流连续性方程是建立在理论基础上,时变场中表达式。                                                     |    |
| 3.        | 3 个本构关系。                                                                      |    |
| 4.        | E=, A 是, V 是, A,V 满足的式子。                                                      |    |
| 5.        | 时谐电磁场中麦克斯韦方程组微分式。                                                             |    |
| 6.        | 两个理想电介质边界条件矢量形式。                                                              |    |
| 7.        | 静电场中电偶极子定义,在外场条件下,无极分子发生,                                                     | 有极 |
|           | 分子。                                                                           |    |
| 8.        | 色散定义, 群速度定义。                                                                  |    |
| 9.        | 损耗角正切定义,良导体条件,低损耗电介质条件                                                        |    |
| 10.       | 反射系数等于透射系数,驻波比。                                                               |    |
| 11.       | 根据有无 E,H 分量,可将波分为,,。                                                          |    |
|           |                                                                               |    |
| 二.        | 简答题(30')                                                                      |    |
| 2.        | 书上 18 页例 2.3 (原题)。<br>分别定性的说明电磁波在理想电介质和理想导体中的传播特性。<br>证明无反射(类似于书上 109 页例 4.9) |    |

4. 书上82页例4.5证明椭圆极化可分为振幅不等,旋向相反的两个圆极化。

## 三. 计算题(35')

5. 近区场性质,远区场与均匀平面波的异同

1套路

2.

2.  $H = a_y \frac{1}{6\pi} e^{j6(\sqrt{3}x-z)}$  理想媒质倾斜射入理想导体



- 1) 求入射角,波长
- 2) 求反射电场强度,反射磁场强度
- 3) 求极化面电荷密度

(改了一下数据,改为 x-√3z,其余不变。)

编者注: 为下一届留下试卷是一个应该传承的美德,望看到此卷的同学们能在考 完后也留一份回忆卷给下一届,切切。