

(11) EP 1 964 837 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: **03.09.2008 Bulletin 2008/36**

(21) Application number: 06833681.7

(22) Date of filing: 22.11.2006

(51) Int Cl.:

C07D 215/48 (2006.01) A61P 35/00 (2006.01) C12Q 1/02 (2006.01) A61K 31/47^(2006.01) A61P 43/00^(2006.01) G01N 33/68^(2006.01)

(86) International application number: **PCT/JP2006/323878**

(87) International publication number: WO 2007/061127 (31.05.2007 Gazette 2007/22)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK RS

(30) Priority: **22.11.2005 JP 2005337772 30.05.2006 US 803450 P**

(71) Applicant: Eisai R&D Management Co., Ltd. Tokyo 112-8088 (JP)

(72) Inventor: KAMATA, Junichi Ibaraki 300-2635 (JP)

(74) Representative: Woods, Geoffrey Corlett et al J.A. KEMP & CO.
 14 South Square
 Gray's Inn
 London
 WC1R 5JJ (GB)

(54) ANTI-TUMOR AGENT FOR MULTIPLE MYELOMA

(57) The object of the invention is to provide a pharmaceutical composition and a therapeutic method which can exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. The compound represented by General Formula

(I), a pharmacologically acceptable salt thereof or a solvate thereof can exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

Description

5

10

15

20

25

30

40

45

50

55

FIELD OF THE INVENTION

[0001] The present invention relates to a pharmaceutical composition comprising a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof (hereinafter, also referred to as a "compound of the invention") which are to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing fibroblast growth factor receptor 3 (hereinafter, also referred to as "FGFR3"), a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, to a method for treating a disease comprising administering an effective amount of the compound of the invention to the living organism, to use of the compound of the invention for producing the pharmaceutical composition and to the compound of the invention for the pharmaceutical composition.

[0002] Moreover, the present invention relates to a therapeutic drug and a method comprising a compound of the invention for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia (TD) and skeletal dysplasia, to use of the compound of the invention for producing the therapeutic drug and to the compound of the invention for the therapeutic drug.

[0003] Furthermore, the present invention relates to a FGFR3 inhibitor.

[0004] In addition, the present invention relates to a method for predicting the effect of the compound of the invention on a patient using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell.

BACKGROUND OF THE INVENTION

[0005] FGFR3 has three glycosylated domains, namely, an extracellular immunoglobulin-like domain, a transmembrane domain and an intracellular tyrosine kinase domain. Due to ligand stimulation, FGFR3 causes dimerization and autophosphorylation of tyrosine. FGFR3 is hardly expressed in B-cell line.

[0006] FGFR3 overexpression in a cell is known to play an important role in malignant alteration of multiple myeloma, bladder cancer, cervical cancer and the like⁽¹⁾.

[0007] In addition, a t(4;14) translocation has been found in about 10-20% of multiple myeloma⁽²⁾. The t(4;14) translocation has been reported to cause FGFR3 overexpression and activating mutation of FGFR3 at a constant frequency⁽²⁾.

[0008] On the other hand, FGFR3 mutations (Y373C, F384L, K650E and K650M) have been identified in a multiple myeloma patient. Activating mutations of FGFR3 have been reported to enhance malignant alteration of cancer⁽²⁻⁴⁾.

[0009] FGFR3 mutation has also been reported to play a central role in the early development of bladder cancer⁽¹¹⁾, and FGFR3 mutation has been reported in about 50% of papillary bladder cancer⁽¹²⁾.

[0010] FGFR3 mutation (S249C) has been found in cervical cancer⁽¹⁾.

[0011] Furthermore, FGFR3 mutation is known to cause hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia^(5, 13).

[0012] Achondroplasia is considered to result from FGFR3 mutation (G380R)⁽¹⁵⁾.

[0013] SU5402 and PD173074, i.e., substances that inhibit a FGFR3 kinase activity (hereinafter, also referred to as "FGFR3 inhibitors") have been reported to cause cell growth inhibition and apoptosis in multiple myeloma cells overexpressing mutant FGFR3 (6, 7).

[0014] A FGFR3 inhibitor CHIR-258 has been reported to cause *in vitro* and *in vivo* cell growth inhibition in a multiple myeloma cell overexpressing wild-type FGFR3 and a multiple myeloma cell overexpressing mutant FGFR3⁽⁸⁾. CHIR-258 has also been reported to inhibit cellular viability stronger for a multiple myeloma cell overexpressing mutant FGFR3 than for a multiple myeloma cell that is not expressing FGFR3 or a multiple myeloma cell overexpressing wild-type FGFR3⁽⁸⁾.

[0015] A FGFR3 inhibitor PKC412 has been reported to inhibit viability of multiple myeloma cell strains (OPM-1, LP1, and KMS-11) in a cell viability assay⁽⁹⁾.

[0016] RNAi of FGFR3 has been reported to cause apoptosis of a multiple myeloma cell overexpressing mutant FGFR3⁽¹⁰⁾.

[0017] Thus, FGFR3 inhibitors are suggested to cause cell growth inhibition and apoptosis of at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, and to show an anti-tumor effect on a tumor comprising such cell.

[0018] FGFR3 inhibitors are also suggested to be effective against multiple myeloma⁽¹⁴⁾.

[0019] Moreover, FGFR3 inhibitors seem to be effective against hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0020] As antiangiogenic agents, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinoline-carbox amide and its analogous compounds are known⁽¹⁶⁻¹⁸⁾. However, it has never been reported that 4-(3-chloro-

4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide and its analogous compounds have a FGFR3-inhibiting activity.

References

[0021]

5

10

15

20

25

30

35

40

45

55

- (1) Nature Genetics. 1999, 23, 18-20.
- (2) Nature Genetics. 1997, 16, 260-264.
- (3) Cell. 1994, 78, 335-342.
- (4) Blood. 2001, 97, 729-736.
- (5) Nature Genetics. 1996, 13, 233-237.
- (6) British Journal ofHaematology. 2004, 124, 595-603.
- (7) Blood. 2004, 103, 3521-3528.
- (8) Blood. 2005, 105, 2941-2948.
- (9) Oncogene. 2005, 24, 8259-8267.
- (10) Molecular Cancer Therapeutics. 2005, 4, 787-798.
- (11) Clinical Cancer Research. 2005, 11, 7709-7719.
- (12) Clinical Cancer Research. 2005, 11, 7743-7748.
- (13) Human Molecular Genetics. 2005, 14, 1153-1160.
- (14) Blood. 2000, 95, 992-998.
- (15) Nature. 1994, 371, 252-254.
- (16) International publication No. 02/32872 (pamphlet)
- (17) International publication No. 2004/080462 (pamphlet)
- (18) International publication No. 2005/063713 (pamphlet)

DISCLOSURE OF THE INVENTION

[0022] The present invention was achieved regarding the circumstances described above. The problem to be solved by the invention is to provide a pharmaceutical composition and a therapeutic method which can exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, and to provide a therapeutic drug and a method for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia. In addition, the problem to be solved by the present invention is to provide a method for predicting an effect of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof.

[0023] In order to solve the above problem, the present inventors have gone through keen examination, as a result of which they found that a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof has a FGFR3 kinase-inhibiting activity and found that the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof can exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. Furthermore, the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof was found to exert their effects with higher efficiency on at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia. The present inventors also found that the effect of the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof can be predicted by using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.

50 **[0024]** Thus, the present invention relates to:

- (1) A pharmaceutical composition comprising a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof, which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
- (2) A therapeutic drug for treating multiple myeloma comprising a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof.
- (3) A therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical

cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the therapeutic drug comprising a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof.

(4) A method for treating a disease, comprising administering an effective amount of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

5

10

15

20

25

30

35

40

45

50

- (5) A method for treating multiple myeloma, comprising administering an effective amount of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof to a patient.
- (6) A method for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the method comprising administering an effective amount of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof to a patient.
- (7) Use of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for producing a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
- (8) Use of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for producing a therapeutic drug for treating multiple myeloma.
- (9) Use of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for producing a therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, than atophoric dysplasia and skeletal dysplasia.
- (10) A compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
- (11) A compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for a therapeutic drug for treating multiple myeloma.
- (12) A compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for a therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.
- (13) A method for predicting whether or not a patient is highly sensitive to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- (14) A method for analyzing sensitivity of a cell to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- (15) A method for selecting a cell highly sensitive to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- (16) A method for selecting a patient highly sensitive to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- (17) A method for classifying a patient comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell to analyze sensitivity to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof, and classifying the patient according to the result.
- (18) A method for selecting a patient for administering a compound represented by General Formula (I), a pharma-cologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell, and selecting a patient having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3 based on the determination results.
- (19) A method for predicting a therapeutic effect of a compound represented by General Formula (I), a pharmaco-

logically acceptable salt thereof or a solvate thereof on a patient, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.

(20) A method for determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell from a patient for predicting a sensitivity level of the patient to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof.

The compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is as follows:

[wherein, R^1 represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR⁶CO- or group represented by Formula -NR⁶- (wherein, R⁶ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkyl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-10} aryl group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

5

10

15

20

25

30

35

40

45

50

55

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent);

 R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent,

a pharmacologically acceptable salt thereof, or a solvate thereof.

The present invention also relates to the followings.

5

10

15

20

25

30

35

40

45

50

- (21) A FGFR3 inhibitor comprising the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof.
- Preferably, the present invention also relates to the followings.
- (22) A pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, the composition comprising 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof.
- (23) A therapeutic drug for treating multiple myeloma, comprising 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof. (24) A therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the therapeutic drug comprising 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof.
- (25) A method for treating a disease, comprising administering an effective amount of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
- (26) A method for treating multiple myeloma comprising administering an effective amount of 4-(3-chloro-4-(cyclo-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof to a patient.
- (27) A method for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the method comprising administering an effective amount of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof to a patient.
- (28) Use of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof for producing a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
- (29) Use of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof for producing a therapeutic drug for treating multiple myeloma.
- (30) Use of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof for producing a therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.
- (31) 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof for a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
- (32) 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof for a therapeutic drug for treating multiple myeloma.
- (33) 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof for a therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.
- (34) A method for predicting whether or not a patient is highly sensitive to 4-(3-chloro-4-(cyclopropylaminocarbonyl) aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising using at least one index selected from the group consisting of the FGFR3 expression

level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.

- (35) A method for analyzing sensitivity of a cell to 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of FGFR3 mutation in the cell.
- (36) A method for selecting a cell highly sensitive to 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- (37) A method for selecting a patient highly sensitive to 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- (38) A method for classifying a patient, comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell to analyze its sensitivity to 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof according to the obtained results.
- (39) A method for selecting a patient for administering 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell, and selecting a patient having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3 from the obtained determination results.
- (40) A method for predicting a therapeutic effect of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof on a patient, the method comprising determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell. (41) A method for determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell from a patient for predicting a sensitivity level of the patient to 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophe-
- (42) A FGFR3 inhibitor comprising 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof.

[0025] According to the present invention, a pharmaceutical composition and a therapeutic method are provided which can exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

noxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof.

[0026] Specifically, the present invention provides: a pharmaceutical composition comprising a compound of the invention which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3; a method for treating a disease comprising administering an effective amount of the compound of the invention to the living organism; use of the compound of the invention for producing the pharmaceutical composition; and the compound of the invention for the pharmaceutical composition.

[0027] The present invention also provides: a therapeutic drug comprising a compound of the invention and a method for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia; use of the compound of the invention for producing the therapeutic drug; and the compound of the invention for the therapeutic drug.

[0028] The present invention also provides a FGFR3 inhibitor.

5

10

15

20

25

30

35

40

45

- [0029] Furthermore, the present invention provides a method for predicting an effect of the compound of the invention.
- [0030] More specifically, the effect of the compound of the invention can be predicted by using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell.
- [0031] According to the method of the invention, an effect of a compound can be predicted by selecting a patient who is expected to be more sensitive to the compound without administering the compound to the patient, thereby contributing to the QOL of the patient.

BEST MODES FOR CARRYING OUT THE INVENTION

[0032] Hereinafter, embodiments of the present invention will be described. The following embodiments illustrate the present invention, which are not intended to limit the present invention. The present invention may be carried out in various embodiments without departing from the spirits of the invention.

[0033] The documents, laid-open patent applications, patent publications and other patent documents cited herein are incorporated herein by reference. The present specification also incorporates the disclosures of Japanese Patent Application No. 2005-337772 and US provisional application US60/803,450 based on which the present application claims priority.

1. Pharmaceutical composition, therapeutic drug and therapeutic method of the invention

(1) FGFR3

5

10

15

20

25

30

35

40

45

50

55

[0034] According to the present invention, FGFR3 comprises a polypeptide having an amino acid sequence identical or substantially identical to the amino acids 23-806 (SEQ ID NO: 3) of the amino acid sequence represented by SEQ ID NO: 2 (GenBank Accession No: NM_000142). The polypeptide having the amino acid sequence represented by SEQ ID NO: 3 is generally processed and produced from a polypeptide having the amino acid sequence represented by SEQ ID NO: 2.

[0035] An example of the polypeptide having an amino acid sequence identical to the amino acid sequence represented by SEQ ID NO: 3 includes a polypeptide coded by polynucleotides having nucleotides 106-2460 of the nucleotide sequence represented by SEQ ID NO: 1 (GenBank Accession No: NM_000142).

[0036] An example of the polypeptide having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3 includes one selected from the group consisting of (a)-(d) below:

(a) a polypeptide including the amino acid sequence represented by SEQ ID NO: 3;

(b) a polypeptide that includes an amino acid sequence in which one or more (e.g., one or several) amino acids have been deleted, substituted, added or varied by any combination thereof in the amino acid sequence represented by SEQ ID NO: 3, and that has substantially the same activity as FGFR3;

(c) a polypeptide that is coded by a polynucleotide that hybridizes with a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460) under stringent conditions, and that has substantially the same activity as FGFR3; and

(d) a polypeptide that has an amino acid sequence having 90% or higher, preferably about 95% or higher, more preferably about 98% or higher identity to (also phrased as "homology with") the amino acid sequence represented by SEQ ID NO: 3, and that has substantially the same activity as FGFR3.

[0037] Herein, the phrase "having substantially the same activity as FGFR3" means that at least one intracellular signal resulting from ligand (e.g., FGF, etc.) binding is identical to a signal of a protein having the amino acid sequence represented by SEQ ID NO: 3, and that the activation level of the intracellular signal is comparable with that of the protein having the amino acid sequence represented by SEQ ID NO: 3. Furthermore, the phrase "comparable with" means, for example, that the activation level of an intracellular signal resulting from ligand (e.g., FGF, etc.) binding has an activation level of 10% or higher, preferably 30% or higher of the activation level of an intracellular signal of a protein having the amino acid sequence represented by SEQ ID NO: 3. In this case, they are considered to have substantially the same activities. Examples of intracellular signals resulting from ligand binding include FGFR3 phosphorylation, Raf, MEK, ERK1 and ERK2 phosphorylations resulting from FGFR3 phosphorylation (Blood. 2001, 97, 729-736.), phosphatidylinositol 3 kinase phosphorylation, Akt phosphorylation, phospholipase C-γ phosphorylation, increase in inositol 1,4,5-trisphosphate (IP3) and increase in diacylglycerol (DAG).

[0038] Activity of an intracellular signal resulting from ligand binding can be determined by a conventional method such as immunoprecipitation and western blotting.

[0039] Examples of the polypeptide having an amino acid sequence where one or more (e.g., one or several) amino acids are deleted, substituted, added or varied by any combination thereof in the amino acid sequence represented by SEQ ID NO: 3 include polypeptides having:

- (i) an amino acid sequence having 1-9 (e.g., 1-5, preferably 1-3, more preferably 1-2, still more preferably one) amino acids deleted from the amino acid sequence represented by SEQ ID NO: 3;
- (ii) an amino acid sequence having 1-9 (e.g., 1-5, preferably 1-3, more preferably 1-2, still more preferably one) amino acids added to the amino acid sequence represented by SEQ ID NO: 3;
- (iii) an amino acid sequence having 1-9 (e.g., 1-5, preferably 1-3, more preferably1-2, still more preferably one)

amino acids in the amino acid sequence represented by SEQ ID NO: 3 substituted with other amino acids; or (iv) an amino acid sequence varied by any combination of (i)-(iii) above.

[0040] Herein, "deletion" of an amino acid refers to mutation where one or more amino acid residues are deleted from the sequence, which includes the case where the amino acid residues are deleted from the end of the amino acid sequence and the case where the amino acid residues are deleted in the middle of the amino acid sequence.

5

10

15

20

25

30

35

40

45

50

55

[0041] Herein, "addition" of an amino acid refers to mutation where one or more amino acid residues are added to the sequence, which include the case where the amino acid residues are added to the end of the amino acid sequence and the case where the amino acid residues are added to the middle of the amino acid sequence. The latter case may also be referred to as "insertion".

[0042] Herein, "substitution" of an amino acid refers to mutation where one or more amino acid residues in the sequence are substituted with different types of amino acid residues. When the amino acid sequence of FGFR3 is to be modified by such substitution, it is preferably a conservative substitution in order to maintain the function of the protein. Conservative substitution means to modify the sequence such that the modified sequence codes for amino acids having similar nature to the unsubstituted amino acids. The natures of amino acids may be classified, for example, into non-polar amino acids (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val), uncharged amino acids (Asn, Cys, Gln, Gly, Ser, Thr, Tyr), acidic amino acids (Asp, Glu), basic amino acids (Arg, His, Lys), neutral amino acids (Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val), aliphatic amino acids (Ala, Gly), branched amino acids (Ile, Leu, Val), hydroxyamino acids (Ser, Thr), amide type amino acids (Gln, Asn), sulfur-containing amino acids (Cys, Met), aromatic amino acids (His, Phe, Trp, Tyr), heterocyclic amino acids (His, Trp), imino acids (Pro, 4Hyp) or the like.

[0043] Accordingly, it is favorable to substitute, for example, a non-polar amino acid for a non-polar amino acid and an uncharged amino acid for an uncharged amino acid. Above all, substitutions between Ala, Val, Leu and Ile, between Ser and Thr, between Asp and Glu, between Asn and Gln, between Lys and Arg and between Phe and Tyr are favorable as substitutions that maintain the nature of the protein. The numbers of amino acids and sites to be varied are not particularly limited.

[0044] A polypeptide having an amino acid sequence that is substantially identical to the amino acid sequence represented by SEQ ID NO: 3 comprises a polypeptide that is coded by a polynucleotide that hybridizes with a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460) under stringent conditions and that has substantially the same activity as FGFR3 as described above.

[0045] Herein, polynucleotides that hybridize under stringent conditions specifically include polynucleotides that have, for example, at least 90% or higher, preferably 95% or higher, more preferably 97% or higher, still more preferably 98% or higher, still yet preferably 99% or higher identity to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460) as calculated by a homology search software such as FASTA, BLAST, Smith-Waterman [Meth. Enzym., 164, 765 (1988)] or the like using default (initial setting) parameters. Examples of stringent conditions include "2 x SSC, 0.1% SDS, 42°C" and "1 x SSC, 0.1% SDS, 37°C". Examples of more stringent conditions include "2 x SSC, 0.1% SDS, 65°C", "0.5 x SSC, 0.1% SDS, 42°C" and "0.2 x SSC, 0.1% SDS, 65°C".

[0046] Hybridization may be carried out according to a known method. Alternatively, when a commercially available library is used, hybridization can be carried out according to the method described in the attached instruction.

[0047] Examples of a polynucleotide that hybridizes with a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460) under stringent conditions include polynucleotides including a nucleotide sequence that has 90% or higher, preferably 95% or higher, more preferably 98% or higher identity to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460).

[0048] Examples of a polynucleotide that hybridizes with a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460) under stringent conditions include polynucleotides including a nucleotide sequence having one or more (e.g., one or several) nucleic acids varied, for example, deleted, substituted, added or the like in the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460).

[0049] Examples of a polynucleotide that hybridizes with a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460) under stringent conditions include polynucleotides including:

- (i) a nucleotide sequence having 1-9 (e.g., 1-5, preferably 1-3, more preferably 1-2, still more preferably one) nucleic acids deleted from the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460);
- (ii) a nucleotide sequence having 1-9 (e.g., 1-5, preferably 1-3, more preferably 1-2, still more preferably one) nucleic acids added to the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460);
- (iii) a nucleotide sequence having 1-9 (e.g., 1-5, preferably 1-3, more preferably 1-2, still more preferably one) nucleic acids substituted with other nucleic acids in the nucleotide sequence represented by SEQ ID NO: 1 (nucleotides 106-2460); or

(iv) a nucleotide sequence varied by any combination of (i)-(iii) above.

[0050] Herein, the term "identity" (also referred to as "homology") of an amino acid sequence is used to indicate the degree of consistency of amino acid residues forming the sequences to be compared. In order to calculate identity of a given amino acid sequence to an amino acid sequence to be compared, the presence of gaps and the nature of the amino acids are considered (Wilbur, Natl. Acad. Sci. U.S.A. 80:726-730 (1983)). For the calculation of identity, a commercially available software BLAST (Altschul: J. Mol. Biol. 215:403-410 (1990)), FASTA(Peasron: Methods in Enzymology 183:63-69 (1990)) or the like can be used.

[0051] The "identity" value may be any value as long as it is obtained using a homology search program known to those skilled in the art. For example, the default (initial setting) parameters can be used in homology algorithm BLAST (Basic local alignment search tool) http://www.ncbi.nlm.nih.gov/BLAST/ of the National Center for Biotechnology Information (NCBI) for the calculation.

[0052] According to the present invention, FGFR3 comprises mutant FGFR3 described below.

(2) Cell overexpressing FGFR3

5

10

15

20

25

30

35

40

45

50

55

[0053] According to the present invention, a cell overexpressing FGFR3 comprises, for example, a cell expressing a significant amount of FGFR3 as compared to a normal cell. In addition, according to the present invention, a cell overexpressing FGFR3 comprises, for example, a cell expressing FGFR3 more than 1.5 times higher, preferably more than 2 times higher, more preferably more than 3 times higher, still more preferably more than 4 times higher than a normal cell.

[0054] Since a normal bone marrow cell barely expresses FGFR3 (Nature Genetics., 1997, 16, 260-264.), detection

of FGFR3 in a bone marrow cell can be considered to indicate overexpression.

[0055] Overexpression of FGFR3 is frequently observed in a cell that has a t(4;14) translocation described below

(Nature Genetics., 1997, 16, 260-264).

[0056] According to the present invention, a cell overexpressing FGFR3 is preferably a multiple myeloma cell.

[0057] An expression level of FGFR3 may be analyzed, for example, by determining a protein and/or mRNA of FGFR3 expressed in the cell.

[0058] An expression level of a protein can be determined, for example, by an immunochemical method (e.g., immunohistochemistry method, immunoprecipitation, western blotting, flow cytometry, ELISA, RIA, etc.), mass spectrometry or the like, preferably an immunochemical technique, particularly preferably flow cytometry. These methods may be carried out according to conventional techniques.

[0059] On the other hand, an expression level of mRNA can be determined, for example, by a method such as *in situ* hybridization, northern blot analysis, DNA microarray, RT-PCR or the like, preferably RT-PCR. These methods may be carried out according to conventional techniques.

(3) Cell with t(4;14) translocation

[0060] According to the present invention, a cell that has a t(4;14) translocation refers to a cell associated with a translocation between the immunoglobulin heavy chain gene (IgH) at 14q32 and FGFR3 gene at 4p16 (Nature Genetics., 1997, 16, 260-264.).

[0061] The presence or the absence of a t(4; 14) translocation can be analyzed, for example, by a method such as PCR, RT-PCR and fluorescence *in situ* hybridization (FISH). These methods may be carried out according to conventional techniques.

[0062] In addition, the presence or the absence of a t(4;14) translocation can also be analyzed, for example, by immunochemical methods (e.g., immunohistochemistry method, immunoprecipitation, western blotting, flow cytometry, ELISA, RIA, etc.). These methods may be carried out according to conventional techniques.

[0063] According to the present invention, a cell that has a t(4;14) translocation is preferably a multiple myeloma cell.

(4) Cell expressing mutant FGFR3

[0064] According to the present invention, mutant FGFR3 may be a polypeptide that includes an amino acid sequence having one or several amino acids deleted, substituted, added or varied by any combination thereof in the amino acid sequence of wild-type FGFR3 such as the amino acid sequence represented by SEQ ID NO: 3, and that has substantially the same activity as FGFR3. Preferably, mutant FGFR3 is a polypeptide that includes an amino acid sequence having one amino acid substituted in the amino acid sequence of wild-type FGFR3 such as the amino acid sequence represented by SEQ ID NO: 3, and that has substantially the same activity as FGFR3. According to the present invention, an example of a cell expressing mutant FGFR3 includes cell expressing the polypeptide above.

[0065] Examples of mutant FGFR3 include polypeptides including the sequences indicated in (i)-(ix) below.

- (i) An amino acid sequence having arginine at position 248 substituted with other amino acid, preferably cysteine (R248C), in the amino acid sequence represented by SEQ ID NO: 2 (Nature Genetics., 1996, 13, 233-237., British Journal of Haematology., 2001, 114, 362-364).
- (ii) An amino acid sequence having serine at position 249 substituted with other amino acid, preferably cysteine (S249C), in the amino acid sequence represented by SEQID NO: 2 (Clinical Cancer Research., 2005, 11, 7743-7748., Human Molecular Genetics., 2005, 14, 1153-1160).

5

10

15

20

25

30

35

40

45

50

55

- (iii) An amino acid sequence having glycine at position 370 substituted with other amino acid, preferably cysteine (G370C), in the amino acid sequence represented by SEQ ID NO: 2 (Clinical Cancer Research., 2005, 11, 7743-7748., Human Molecular Genetics., 2005, 14, 1153-1160).
- (iv) An amino acid sequence having serine at position 371 substituted with other amino acid, preferably cysteine (S371C), in the amino acid sequence represented by SEQ ID NO: 2 (Human Molecular Genetics., 2005, 14, 1153-1160).
- (v) An amino acid sequence having tyrosine at position 373 substituted with other amino acid, preferably cysteine (Y373C), in the amino acid sequence represented by SEQ ID NO: 2 (Nature Genetics., 1997, 16, 260-264).
- (vi) An amino acid sequence having glycine at position 380 substituted with other amino acid, preferably arginine (G380R), in the amino acid sequence represented by SEQ ID NO: 2 (Nature., 1994, 371, 252-254).
- (vii) An amino acid sequence having phenylalanine at position 384 substituted with other amino acid, preferably leucine (F384L), in the amino acid sequence represented by SEQ ID NO: 2 (Blood. 2001, 97, 729-736).
- (viii) An amino acid sequence having alanine at position 391 substituted with other amino acid, preferably glutamic acid (A391E), in the amino acid sequence represented by SEQ ID NO: 2 (Clinical Cancer Research., 2005, 11, 7743-7748).
- (ix) An amino acid sequence having lysine at position 650 substituted with other amino acid, preferably glutamic acid, methionine, glutamine or threonine (K650E, K650M, K650Q or K650T), in the amino acid sequence represented by SEQ ID NO: 2 (Nature Genetics. 1997, 16, 260-264., Human Molecular Genetics., 2005, 14, 1153-1160).

[0066] Moreover, examples of mutant FGFR3 include those containing at least one of the substitutions indicated in (i)-(ix) above, specifically those containing mutation sites where at least one amino acid selected from the group consisting of amino acids of codons 248, 249, 370, 371, 373, 380, 384, 391 and 650 is substituted with other amino acid in the amino acid sequence represented by SEQ ID NO: 2. For example, a polypeptide including an amino acid sequence containing a mutation site where arginine at position 248 is substituted with cysteine and a mutation site where tyrosine at position 373 is substituted with cysteine in the amino acid sequence represented by SEQ ID NO: 2 is comprised in mutant FGFR3.

[0067] Herein, alphabetical notation of amino acids is expressed in generally used three-letter or single-letter codes. The alphabet preceding the number indicates single-letter code of the unsubstituted amino acid, the alphabet following the number indicates single-letter code of the amino acid that has replaced the original amino acid, and the number indicates the position of the amino acid in the amino acid sequence. For example, as indicated in (i) above, when arginine at position 248 is substituted with cysteine, it may be indicated as "R248C". This applies to other substitutions and, for example, serine at position 249 substituted with cysteine in (ii) may be indicated as "S249C", tyrosine at position 373 substituted with cysteine in (v) may be indicated as "Y373C", phenylalanine at position 384 substituted with leucine in (vii) may be indicated as "F384L", lysine at position 650 substituted with glutamic acid in (ix) may be indicated as "K650E", and lysine at position 650 substituted with methionine may be indicated as "K650M".

[0068] The number following the codon may indicate the position of the amino acid in the amino acid sequence. For example, "an amino acid of codon 248" refers to 248th amino acid in the amino acid sequence.

[0069] Preferably, mutant FGFR3 is activating-mutation-type FGFR3. Activating-mutation-type FGFR3 refers to mutant FGFR3 that causes ligand-independent autophosphorylation and that activates an intracellular signal.

[0070] Examples of the activating-mutation-type FGFR3 include polypeptides including the sequences of (a)-(c) below.

- (a) An amino acid sequence where arginine at position 248 is substituted with cysteine (R248C) in the amino acids represented by SEQ ID NO: 2.
- (b) An amino acid sequence where tyrosine at position 373 is substituted with cysteine (Y373C) in the amino acids represented by SEQ ID NO: 2.
- (c) An amino acid sequence where lysine at position 650 is substituted with glutamic acid (K650E) in the amino acids represented by SEQ ID NO: 2.
- [0071] These sequences are provided only for illustration and activating-mutation-type FGFR3 is not limited thereto. Activating-mutation-type FGFR3 may be mutant FGFR3 other than those of (a)-(c).
- [0072] The presence or the absence of FGFR3 mutation can be determined by analyzing the gene sequence of FGFR3 or the transcript of FGFR3, i.e., the mRNA sequence. An example of a sequence analysis method includes dideoxynu-

cleotide chain termination method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463). The sequence may be analyzed by employing an appropriate DNA sequencer.

[0073] The presence or the absence of FGFR3 mutation can also be analyzed by methods such as *in situ* hybridization, northern blot analysis, DNA microarray, RT-PCR, SSCP-PCR (Single-Strand Conformation Polymorphism-PCR) or the like. These methods may be carried out according to conventional techniques.

[0074] In addition, the presence or the absence of FGFR3 mutation can also be analyzed by immunochemical methods (e.g., immunohistochemistry method, immunoprecipitation, western blotting, flow cytometry, ELISA, RIA, etc.). These methods may be carried out according to conventional techniques.

[0075] According to the present invention, a cell expressing mutant FGFR3 is preferably a multiple myeloma cell.

(5) Compound of the invention

5

10

15

20

25

30

35

40

45

50

55

[0076] Herein, "a halogen atom" refers to a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

[0077] Preferable examples of "a halogen atom" include a fluorine atom and a chlorine atom.

[0078] Herein, "C₁₋₆ alkyl group" refers to linear or branched alkyl group with a carbon number of 1-6, and specific examples include methyl group, ethyl group, 1-propyl group (n-propyl group), 2-propyl group (i-propyl group), 2-methyl-1-propyl group (i-butyl group), 2-methyl-2-propyl group (t-butyl group), 1-butyl group (n-butyl group), 2-butyl group, 3-pentyl group, 3-pentyl group, 2-methyl-1-butyl group, 3-methyl-1-butyl group, 2-methyl-2-butyl group, 3-methyl-2-butyl group, 2-dimethyl-1-pentyl group, 1-hexyl group, 2-methyl-2-pentyl group, 3-methyl-2-pentyl group, 3-methyl-2-pentyl group, 3-methyl-2-pentyl group, 3-methyl-3-pentyl group, 3-methyl-1-butyl group, 3-dimethyl-1-butyl group, 3-dimethyl-1-butyl group, 3-dimethyl-1-butyl group, 3-dimethyl-1-butyl group, 3-dimethyl-2-butyl group, 2-dimethyl-1-butyl group, 2-ethyl-1-butyl group, 3,3-dimethyl-2-butyl group and 2,3-dimethyl-2-butyl group.

[0079] Preferable examples of "C₁₋₆ alkyl group" include methyl group, ethyl group, 1-propyl group, 2-propyl group, 2-methyl-1-propyl group, 2-methyl-2-propyl group, 1-butyl group and 2-butyl group.

[0080] Herein, " C_{1-6} alkylene group" refers to divalent group derived from the " C_{1-6} alkyl group" defined above by removing any one hydrogen atom therefrom, and specific examples include methylene group, 1,2-ethylene group, 1,1-ethylene group, 1,3-propylene group, tetramethylene group, pentamethylene group and hexamethylene group.

[0081] Herein, "C₂₋₆ alkenyl group" refers to linear or branched alkenyl group having one double bond and a carbon number of 2-6, and specific examples include ethenyl group (vinyl group), 1-propenyl group, 2-propenyl group (allyl group), 1-butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group and hexenyl group.

[0082] Herein, " C_{2-6} alkynyl group" refers to linear or branched alkynyl group having one triple bond and a carbon number of 2-6, and specific examples include ethinyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, group, group, group, 2-butynyl group, group, pentynyl group and hexynyl group.

[0083] Herein, "C₃₋₈ cycloalkyl group" refers to monocyclic or bicyclic saturated aliphatic hydrocarbon group with a carbon number of 3-8, and specific examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, bicyclo[2. 1. 0]pentyl group, bicyclo[3. 1. 0]hexyl group, bicyclo[2. 1. 1]hexyl group, bicyclo[4. 1. 0]heptyl group, bicyclo[2. 2. 1]heptyl group (norbornyl group), bicyclo[3. 3. 0]octyl group, bicyclo[3. 2. 1]octyl group and bicyclo[2. 2. 2]octyl group.

[0084] Preferable examples of "C₃₋₈ cycloalkyl group" include cyclopropyl group, cyclobutyl group and cyclopentyl group.

[0085] Herein, "C₆₋₁₀ aryl group" refers to aromatic hydrocarbon cyclic group with a carbon number of 6-10, and specific examples include phenyl group, 1-naphthyl group, 2-naphthyl group, indenyl group and azulenyl group.

[0086] A preferable example of "C₆₋₁₀ aryl group" includes phenyl group.

[0087] Herein, "a heteroatom" refers to a nitrogen atom, an oxygen atom or a sulfur atom.

[0088] Herein, "5-10-membered heteroaryl group" refers to aromatic cyclic group having 5-10 atoms forming the ring and 1-5 heteroatoms included in the atom forming the ring, and specific examples include furyl group, thienyl group, pyrrolyl group, imidazolyl group, triazolyl group, tetrazolyl group, thiazolyl group, pyrazolyl group, oxazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thiadiazolyl group, oxadiazolyl group, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, purinyl group, pteridinyl group, quinolyl group, isoquinolyl group, naphthyridinyl group, quinoxalinyl group, cinnolinyl group, quinazolinyl group, phthalazinyl group, imidazopyridyl group, imidazothiazolyl group, imidazoxazolyl group, benzothiazolyl group, benzothiadiazolyl group, indazolyl group, pyridopyrimidinyl group, thienopyridyl group, benzothienyl group and thienofuryl group.

[0089] Preferable examples of "5-10-membered heteroaryl group" include furyl group, thienyl group, pyrrolyl group, imidazolyl group, thiazolyl group, pyrazolyl group, oxazolyl group, isoxazolyl group, isothiazolyl group, pyridyl group and pyrimidinyl group.

[0090] Herein, "3-10-membered nonaromatic heterocyclic group":

(a) has 3-10 atoms forming the ring;

5

10

15

20

25

30

35

40

45

50

55

- (b) has 1-2 heteroatoms included in the atoms forming the ring;
- (c) may include 1-2 double bonds in the ring;
- (d) may have 1-3 carbonyl group, sulfinyl group or sulfonyl group in the ring; and
- (e) is nonaromatic monocyclic or bicyclic group. When a nitrogen atom is included in the atoms forming the ring, the nitrogen atom may have a chemical bond. Specific examples include aziridinyl group, azetidinyl group, pyrrolidinyl group, piperidinyl group, azepanyl group, azocanyl group, piperazinyl group, diazepanyl group, diazocanyl group, diazabicyclo[2. 2. 1]heptyl group, morpholinyl group, thiomorpholinyl group, 1,1-dioxothiomorpholinyl group, oxiranyl group, oxetanyl group, tetrahydrofuryl group, dioxoranyl group, tetrahydropyranyl group, dioxanyl group, tetrahydrothiopyranyl group, oxazolidinyl group and thiazolidinyl group.

[0091] Preferable examples of "3-10-membered nonaromatic heterocyclic group" include aziridinyl group, azetidinyl group, pyrrolidinyl group, piperidinyl group, azepanyl group, piperazinyl group, diazepanyl group, morpholinyl group, thiomorpholinyl group, 1,1-dioxothiomorpholinyl group, tetrahydrofuryl group and tetrahydropyranyl group.

[0092] Herein, "C₁₋₆ alkoxy group" refers to group in which an oxygen atom is bound to the terminal of "C₁₋₆ alkyl group" defined above, and specific examples include methoxy group, ethoxy group, 1-propoxy group (n-propoxy group), 2-propoxy group (i-propoxy group), 2-methyl-1-propoxy group (i-butoxy group), 2-methyl-2-propoxy group (t-butoxy group), 1-butoxy group (n-butoxy group), 2-butoxy group (s-butoxy group), 1-pentyloxy group, 2-pentyloxy group, 3-pentyloxy group, 3-methyl-1-butoxy group, 3-methyl-1-butoxy group, 3-methyl-1-pentyloxy group, 1-hexyloxy group, 2-hexyloxy group, 3-hexyloxy group, 3-methyl-1-pentyloxy group, 4-methyl-1-pentyloxy group, 4-methyl-1-pentyloxy group, 2-methyl-3-pentyloxy group, 3-methyl-1-butoxy group, 3-dimethyl-1-butoxy group, 3-dimethyl-1-butoxy group, 3-dimethyl-1-butoxy group, 3-dimethyl-1-butoxy group, 3-dimethyl-1-butoxy group, 3-dimethyl-2-butoxy group and 2,3-dimethyl-2-butoxy group.

[0093] Preferable examples of "C₁₋₆ alkoxy group" include methoxy group, ethoxy group, 1-propoxy group, 2-propoxy group, 2-methyl-1-propoxy group, 2-methyl-2-propoxy group, 1-butoxy group and 2-butoxy group.

[0094] Herein, "C₁₋₆ alkylthio group" refers to group in which a sulfur atom is bound to the terminal of "C₁₋₆ alkyl group" defined above, and specific examples include methylthio group, ethylthio group, 1-propylthio group (n-propylthio group), 2-propylthio group (i-propylthio group), 2-methyl-1-propylthio group (i-butylthio group), 2-methyl-2-propylthio group (t-butylthio group), 1-butylthio group (n-butylthio group), 2-butylthio group (s-butylthio group), 1-pentylthio group, 2-pentylthio group, 3-methyl-1-butylthio group, 2-methyl-2-butylthio group, 3-methyl-1-pentylthio group, 1-hexylthio group, 2-hexylthio group, 3-hexylthio group, 2-methyl-1-pentylthio group, 3-methyl-1-pentylthio group, 3-methyl-2-pentylthio group, 4-methyl-1-pentylthio group, 2-methyl-3-pentylthio group, 2,3-dimethyl-1-butylthio group, 3,3-dimethyl-1-butylthio group, 3,3-dimethyl-1-butylthio group, 3,3-dimethyl-1-butylthio group, 2-ethyl-1-butylthio group, 3,3-dimethyl-2-butylthio group and 2,3-dimethyl-2-butylthio group.

[0095] Preferable examples of " C_{1-6} alkylthio group" include methylthio group, ethylthio group, 1-propylthio group (n-propylthio group), 2-propylthio group (i-propylthio group), 2-methyl-1-propylthio group (i-butylthio group), 2-methyl-2-propylthio group (t-butylthio group), 1-butylthio group (n-butylthio group) and 2-butylthio group (s-butylthio group).

[0096] Herein, " C_{3-8} cycloalkoxy group" refers to group in which an oxygen atom is bound to the terminal of " C_{3-8} cycloalkyl group" defined above, and specific examples include cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, cyclohexyloxy group, cyclohexyloxy group, bicyclo[2. 1. 0]pentyloxy group, bicyclo[3. 1. 0] hexyloxy group, bicyclo[2. 1. 1]hexyloxy group, bicyclo[4. 1. 0]heptyloxy group, bicyclo[2. 2. 1]heptyloxy group (norbornyloxy group), bicyclo[3. 3. 0]octyloxy group, bicyclo[3. 2. 1]octyloxy group and bicyclo[2. 2. 2]octyloxy group.

[0097] Preferable examples of "C₃₋₈ cycloalkoxy group" include cyclopropoxy group, cyclobutoxy group and cyclopentyloxy group.

[0098] Herein, "mono- C_{1-6} alkylamino group" refers to group in which a hydrogen atom in amino group is substituted with " C_{1-6} alkyl group" defined above, and specific examples include methylamino group, ethylamino group, 1-propylamino group (i-propylamino group), 2-methyl-1-propylamino group (i-butylamino group), 2-methyl-2-propylamino group (t-butylamino group), 1-butylamino group (n-butylamino group), 2-butylamino group, 2-pentylamino group, 3-pentylamino group, 2-methyl-1-butylamino group, 2-methyl-1-butylamino group, 3-methyl-2-butylamino group, 2-methyl-1-propylamino group, 1-hexylamino group, 2-hexylamino group, 3-hexylamino group, 2-methyl-1-pentylamino group, 3-methyl-1-pentylamino group, 3-methyl-2-pentylamino group, 3-methyl-2-pentylamino group, 3-methyl-1-pentylamino group, 2-methyl-3-pentylamino group, 2-methyl-1-butylamino group, 3-methyl-1-butylamino group, 3-dimethyl-1-butylamino group, 3,3-dimethyl-1-butylamino group, 3,3-dimethyl-1-butylamino group, 3,3-dimethyl-2-butylamino group, 3,3-dimethyl-3-butylamino gro

[0099] Herein, "di-C₁₋₆ alkylamino group" refers to group in which two hydrogen atoms in amino group are substituted

with identical or different " C_{1-6} alkyl group" defined above, and specific examples include N,N-dimethylamino group, N, N-diethylamino group, N,N-di-n-propylamino group, N,N-di-i-propylamino group, N,N-di-s-butylamino group, N,N-di-t-butylamino group, N-ethyl-N-methylamino group, N-n-propyl-N-methylamino group, N-i-propyl-N-methylamino group, N-n-butyl-N-methylamino group, N-i-butyl-N-methylamino group, N-s-butyl-N-methylamino group and N-t-butyl-N-methylamino group.

[0100] Herein, " C_{2-7} acyl group" refers to carbonyl group bound with " C_{1-6} alkyl group" defined above, and specific examples include acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group and pivaloyl group.

[0101] Herein, "C₂₋₇ alkoxycarbonyl group" refers to carbonyl group bound with "C₁₋₆ alkoxy group" defined above, and specific examples include methoxycarbonyl group, ethoxycarbonyl group, 1-propyloxycarbonyl group, 2-propyloxycarbonyl group and 2-methyl-2-propoxycarbonyl group.

[0102] Herein, "that may have a substituent" means "that may have one or more substituents in any combination at substitutable positions", and specific examples of substituents include a halogen atom, hydroxyl group, thiol group, nitro group, cyano group, formyl group, carboxyl group, amino group, silyl group, methanesulfonyl group, C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-8} cycloalkyl group, C_{6-10} aryl group, 5-10-membered heteroaryl group, 3-10-membered nonaromatic heterocyclic group, C_{1-6} alkoxy group, C_{1-6} alkylamino group, di- C_{1-6} alkylamino group, C_{2-7} acyl group and C_{2-7} alkoxycarbonyl group. In this case, C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-8} cycloalkyl group, C_{6-10} aryl group, 5-10-membered heteroaryl group, 3-10-membered nonaromatic heterocyclic group, C_{1-6} alkoxy group, C_{1-6} alkylthio group, C_{3-8} cycloalkoxy group, mono- C_{1-6} alkylamino group, di- C_{1-6} alkylamino group, C_{2-7} acyl group and C_{2-7} alkoxycarbonyl group may each independently have 1-3 groups selected from the group consisting of the following substituent groups.

<Substituent groups>

[0103] A halogen atom, hydroxyl group, thiol group, nitro group, cyano group, C_{1-6} alkyl group, C_{3-8} cycloalkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{6-10} aryl group, 5-10-membered heteroaryl group, 3-10-membered nonaromatic heterocyclic group, C_{1-6} alkoxy group and C_{1-6} alkylthio group.

[0104] According to the present invention, a compound represented by General Formula (I) is as follows.

40 (i) R¹

5

10

15

20

25

30

35

45

50

55

[0105] R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO₂NR6-, group represented by Formula -NR6SO₂-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkynyl group that may have a substituent, C_{1-6} alkynyl group that may have a substituent, C_{1-6} aryl group that may have a substituent, C_{1-6} aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent).

[0106] A preferable example of R^1 includes C_{1-6} alkyl group. In this case, R^1 may have a substituent selected from 3-10-membered nonaromatic heterocyclic group, hydroxyl group, C_{1-6} alkoxy group, amino group, mono- C_{1-6} alkylamino group and di- C_{1-6} alkylamino group which may have C_{1-6} alkyl group.

[0107] More preferable examples of R¹ include methyl group and group represented by any one of the following Formulae

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(wherein, R^{a3} represents methyl group; R^{a1} represents a hydrogen atom or hydroxyl group; R^{a2} represents methoxy group, ethoxy group, 1-pyrrolidinyl group, 1-piperidinyl group, 4-morpholinyl group, dimethylamino group or diethylamino group).

[0108] Still more preferable examples of R¹ include methyl group and 2-methoxyethyl group.

(ii) R²

5

10

15

20

25

30

35

40

45

50

[0109] R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11V12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkyl group that may have a substituent; C_{1-6} alkyl group that may have a substituent; C_{1-6} alkyl group that may have a substituent, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-10} aryl group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent).

[0110] Preferable examples of R² include cyano group or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} and V^{a12} have the same meaning as defined above).

[0111] More preferable examples of R^2 include cyano group or group represented by Formula -CONHV^{a16} (wherein, V^{a16} represents a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group, C_{1-6} alkoxy group or C_{3-8} cycloalkoxy group, where V^{a16} may have a substituent selected from a halogen atom, cyano group, hydroxyl group and C_{1-6} alkoxy group).

[0112] Still more preferable example of R^2 includes group represented by Formula -CONHV^{a17} (wherein, V^{a17} represents a hydrogen atom, C_{1-6} alkyl group or C_{1-6} alkoxy group).

[0113] The most preferable example of R² include group represented by Formula -CONHV^{a18} (wherein, V^{a18} represents a hydrogen atom, methyl group or methoxy group).

(iii) Y¹

[0114] Y¹ represents group represented by Formula

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent); and W¹ and W² each independently represent a carbon atom or a nitrogen atom that may have a substituent).

[0115] A preferable example of Y1 includes group represented by Formula

(wherein, R⁷¹ represents a hydrogen atom or a halogen atom).

(iv) R³ and R⁴

5

10

15

20

25

30

35

40

45

50

55

[0116] R³ and R⁴ each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent.

[0117] A preferable example of R³ and R⁴ includes a hydrogen atom.

(v) R⁵

[0118] R⁵ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent.

[0119] Preferable examples of R^5 include a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent.

[0120] More preferable examples of R^5 include a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group and C_{6-10} aryl group (where R^5 may have at least one substituent selected from the group consisting of a halogen atom and methanesulfonyl group).

[0121] More preferable examples of R⁵ include methyl group, ethyl group or cyclopropyl group.

[0122] Moreover, preferable examples of the compound represented by General Formula (I) include:

N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-(4-fluorophenyl)urea;

N-(2-chloro-4-((6-cyano-7-((1-methyl-4-piperidyl)methoxy)-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;

N-(4-((6-cyano-7-(((2R)-3-(diethylamino)-2-hydroxypropyl)oxy)-4-quinolyl)oxy)phenyl)-N'-(4-fluorophenyl)urea;

N-(4-((6-cyano-7-(((2R)-2-hydroxy-3-(1-pyrrolidino)propyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl)urea;

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quino linecarboxamide;

N6-cyclopropyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methox y-6-quinolinecarboxamide; N6-(2-methoxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-m ethoxy-6-quinolinecarboxamide:

N6-(2-fluoroethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-meth oxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloio-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-q uinolinecarboxamide;

N6-ethyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-qui nolinecarboxamide;

4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinol inecarboxamide;

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinol inecarboxamide;

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-((2S)-2,3-dihydroxypropyl) oxy-6-quinolinecarboxamide;

4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e;

4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide;

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-ethoxyethoxy)-6-quinoli necarboxamide;

4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarb oxamide;

N-(2-fluoro-4-((6-carbamoyl-7-methoxy-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;

N6-(2-hydroxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-me thoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(1-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxami de;

4-(3-chloro-4-(cis-2-fluoro-cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-qui nolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-(2-methoxyet hoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolin ecarboxamide;

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-(4-morpholino)ethoxy)-6 -quinolinecarboxamide;

4-(3-chloro-4-(2-fluoroethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide;

N6-((2R)tetrahydro-2-furanylmethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phe noxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-fluoro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-py rrolidino)propoxy)-6-quino-linecarboxamide;

N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylam ino-2-hydroxypropoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylamin o-2-hydroxypropoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino)propoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino)propoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-pipe ridyl)methoxy)-6-quinoline-carboxamide;

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-piperi dyl)methoxy)-6-quinoline-carboxamide;

N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopropylurea;

N-(4-(6-cyano-7-(3-(4-morpholino)propoxy)-4-quinolyl)oxyphenyl)-N'-(3-(methylsulfon yl)phenyl)urea;

4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-fluoro-4-((2-fluoroethylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarb oxamide;

N6-(2-ethoxyethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(4-(3-ethylureido)-3-fluoro-phenoxy)-7-methoxyquinoline-6-carboxylic acid (2-cyanoethyl)amide; and N-(4-(6-(2-cyanoethyl)carbamoyl-7-methoxy-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopr opylurea.

³⁵ [0123] More preferable examples of the compound represented by General Formula (I) further include:

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e; and

N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide.

[0124] A still more preferable example of the compound represented by General Formula (I) further includes 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide (see Formula (II)).

[0125] The most preferable example of the compound of the invention represented by General Formula (I) includes methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide.

$$H_2N \longrightarrow N$$
 (II)

55

5

15

20

25

30

40

45

[0126] The compound represented by General Formula (I) can be produced by a known method, for example, by methods described in International publication No. 02/32872 pamphlet (WO02/32872) and International publication No. 2005/063713 pamphlet (WO2005/063713)

[0127] According to the present invention, the compound represented by General Formula (I) may form a pharmacologically acceptable salt with acid or base. According to the present invention, the compound of the invention also comprises such pharmacologically acceptable salts. Examples of salts formed with acid include inorganic acid salts such as hydrochloride, hydrobromate, sulfate and phosphate, and organic acid salts such as formate, acetate, lactate, succinate, fumarate, maleate, citrate, tartarate, stearate, benzoate, methanesulfonate, benzenesulfonate, p-toluenesulfonate and trifluoroacetate. Examples of salts formed with base include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, organic base salts such as trimethylamine, triethylamine, pyridine, picoline, dicyclohexylamine, N, N'-dibenzyl ethylenediamine, arginine and lysine and ammonium salt.

[0128] Furthermore, according to the present invention, the compound represented by General Formula (I) also comprises, if any, solvates and enantiomers thereof. According to the present invention, the compound of the invention comprises these solvates and enantiomers. Examples of solvates include hydrates and nonhydrates, preferably hydrates. Examples of solvents include water, alcohols (for example, methanol, ethanol, n-propanol) and dimethylformamide.

[0129] Moreover, according to the present invention, the compound represented by General Formula (I) may be crystalline or amorphous. If a crystalline polymorph is present, it may be single crystalline or a polymorph mixture of any crystalline shape

[0130] According to the present invention, the compound of the invention also comprises compounds that generate the compound represented by General Formula (I) by undergoing metabolism such as oxidation, reduction and hydrolysis in vivo.

[0131] Preferably, the compound of the invention is a substance (a FGFR3 inhibitor) that has an activity of inhibiting a kinase activity of FGFR3 (hereinafter, also referred to as a "FGFR3-inhibiting activity"). Herein, a "kinase activity of FGFR3" refers to an activity of FGFR3 to phosphorylate a tyrosine residue of its or other protein.

[0132] Examples of methods for determining the FGFR3-inhibiting activity of the compound of the invention include cell free kinase assay, western blotting, cell growth assay and viability assay. Examples of the cell growth assay include tritium thymidine uptake method, MTT method, XTT method (cell counting kit-8 (Dojindo Laboratories)), AlamarBlue technique, Neutral Red technique, BrdU technique, Ki67 staining and PCNA staining. Examples of the viability assay include TUNNEL staining, Caspase-3 cleavage detection and PARP cleavage detection. These methods may be carried out according to conventional techniques (Blood. 2005, 105, 2941-2948., Molecular Cancer Therapeutics. 2005, 4, 787-798).

[0133] Hereinafter, an example of a method for determining a FGFR3-inhibiting activity will be described.

[0134] The FGFR3-inhibiting activity can be determined by cell free kinase assay.

[0135] FGFR3 can be prepared by gene-engineering means according to a conventional method. For example, according to the method of Baculovirus Expression System, human recombinant GST (glutathione S-transferase) fusion protein, human recombinant histidine-tag fusion protein or the like may be expressed in an insect cell (*Spondopteα frugiperda* 9 (Sf9)). Furthermore, the expressed recombinant protein can be purified by affinity chromatography (e.g., GSH-agarose (from Sigma) or Ni-NTH-agarose (from Qiagen)). The purity and identification of the protein can be confirmed by SDS-PAGE, silver staining and western blotting using an antibody specific to FGFR3.

[0136] The cell free kinase assay can be carried out as follows.

5

10

15

20

25

30

35

40

45

50

55

[0137] First, to each well of a plate (e.g., 96-well, 384-well, etc.), a mixed solution containing 20 μ l of standard reaction solution, 5 μ l of ATP solution, 5 μ l of the test substance, 10 μ l of solution containing 100 ng of FGFR3 recombinant protein and 10 μ l of solution containing 125 ng ofbiotinylated Poly(Glu, Tyr)_{4:1} can be added sequentially.

[0138] This kinase reaction solution (50 μ l) may contain 60 mM HEPES-NaOH (pH7.5), 3 mM MgCl₂, 3 mM MnCl₂, 3 μ M Na-orthovanadate, 1.2 mM DTT (dithiothreitol), 50 μ g/ml PEG (polyethylene glycol) ₂₀₀₀₀ and 1 μ M ATP. In this case, the ATP may be labeled with a radioactive isotope such as [γ-³²P]-ATP and [γ-³³P]-ATP.

[0139] The reaction solution may be incubated for a certain period of time, and then 50 μ l of 2% (v/v) H₃PO₄ solution may be added to terminate the reaction.

[0140] Each well may be subjected to an appropriate washing procedure.

[0141] A FGFR3-inhibiting activity can be assessed by determining the amount of ATP incorporation. When ATP labeled with a radioactive isotope as mentioned above is used, the amount of ATP incorporation can be assessed by determining radioactivity captured on the plate with a scintillation counter.

[0142] According to this method, the FGFR3-inhibiting activity of the compound of the invention can be assessed.

(6) Pharmaceutical composition, therapeutic drug and therapeutic method

[0143] The pharmaceutical composition of the invention is a pharmaceutical composition comprising a compound of

the invention, which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

[0144] The pharmaceutical composition of the invention may be used as a therapeutic drug for treating a disease comprising at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. Examples of such disease include multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

5

10

15

20

25

30

35

40

45

50

55

[0145] Furthermore, the pharmaceutical composition of the invention is effective as a pharmaceutical composition for treating cancer comprising at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, and thus may be used as a therapeutic drug for treating cancer.

[0146] According to the present invention, a therapeutic drug for treating cancer comprises an antitumor drug, a drug for improving prognosis of cancer, a drug for preventing cancer recurrence, a drug for suppressing cancer metastasis and the like.

[0147] The effect of cancer treatment may be confirmed by observation of an x-ray picture, CT or the like, by histopathological diagnosis of biopsy, or from a tumor marker value.

[0148] The types of cancer treated by the pharmaceutical composition for treating the cancer comprising at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3 may include, for example, multiple myeloma, bladder cancer and cervical cancer and the like, and more preferably multiple myeloma.

[0149] The pharmaceutical composition of the invention may be administered to a living organism, i.e., a mammal (e.g., human, rat, rabbit, sheep, pig, bovine, cat, dog, monkey, etc.). According to the present invention, the living organism may have any one, two or all of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

[0150] The therapeutic drug of the invention comprises the compound of the invention and is a drug for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia. Preferably, the therapeutic drug of the invention is used for a disease comprising at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

[0151] The therapeutic drug of the invention may be administered to a living organism, i.e., a mammal (e.g., human, rat, rabbit, sheep, pig, bovine, cat, dog, monkey, etc.).

[0152] Where a pharmaceutical composition or a therapeutic drug of the invention is used, the given dose of the compound of the invention differs depending on the degree of the symptom, age, sex, weight and sensitivity difference of the patient, administration mode, administration period, administration interval, nature, prescription and the type of the pharmaceutical formulation, and the type of the active ingredient. Usually, but without limitation, the dose of the compound is 0.1-1000 mg/day, preferably 0.5-100 mg/day, more preferably 1-30 mg/day for an adult (weight 60 kg), which may be administered usually once to three times a day.

[0153] Although the pharmaceutical composition or the therapeutic drug comprising the compound of the invention as an active ingredient may be used alone, it is usually mixed with appropriate additives and made into a formulation.

[0154] Examples of such additive include excipients, binders, lubricants, disintegrants, colorants, flavoring agents, emulsifiers, surfactants, solubilizing agents, suspending agents, tonicity agents, buffers, antiseptic agents, antioxidant agents, stabilizers, absorption promoters and the like that are generally used for medicine. If required, they may be used in combination. Examples of such additive are as follows.

[0155] Excipients: lactose, sucrose, glucose, cornstarch, mannitol, sorbitol, starch, alpha-starch, dextrin, crystalline cellulose, light anhydrous silicic acid, aluminum silicate, calcium silicate, magnesium aluminometasilicate and calcium hydrogen phosphate.

[0156] Binders: for example, polyvinyl alcohol, methyl cellulose, ethyl cellulose, gum arabic, tragacanth, gelatin, shellack, hydroxypropyl methylcellulose, hydroxypropylcellulose, carboxymethylcellulose sodium, polyvinylpyrrolidone and macrogol.

[0157] Lubricants: magnesium stearate, calcium stearate, sodium stearyl fumarate, talc, polyethyleneglycol and colloid silica.

[0158] Disintegrants: crystalline cellulose, agar, gelatin, calcium carbonate, sodium hydrogen carbonate, calcium citrate, dextrin, pectin, low substituted hydroxypropylcellulose, carboxymethylcellulose, carboxymethylcellulose calcium, croscarmellose sodium, carboxymethyl starch and carboxymethyl starch sodium.

[0159] Colorants: ferric oxide, yellow ferric oxide, carmine, caramel, beta-carotene, titanium oxide, talc, riboflavin sodium phosphate, yellow aluminum lake and the like that are approved as additives in drugs.

[0160] Flavoring agents: cocoa powder, menthol, aromatic powder, peppermint oil, camphor and cinnamon powder.

[0161] Emulsifiers and surfactants: stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionate, lecithin, glycerine monostearate, sucrose fatty acid ester and glycerine fatty acid ester.

[0162] Solubilizing agents: polyethyleneglycol, propylene glycol, benzyl benzoate, ethanol, cholesterol, trieth-anolamine, sodium carbonate, sodium citrate, Polysorbate 80 and nicotine acid amide.

[0163] Suspending agents: for example, in addition to the surfactants mentioned above, hydrophilic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose.

[0164] Tonicity agents: glucose, sodium chloride, mannitol and sorbitol.

[0165] Buffers: buffers such as phosphate, acetate, carbonate, citrate and the like.

[0166] Antiseptic agents: methylparaben, propylparaben, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid and sorbic acid.

[0167] Antioxidant agents: hydrosulfate, ascorbic acid and alpha-tocopherol.

[0168] Stabilizers: those generally used for medicine.

5

10

15

20

25

30

35

40

45

50

55

[0169] Absorption promoters: those generally used for medicine.

[0170] If required, components such as vitamins and amino acids may be blended.

[0171] Examples of formulations include oral formulations such as tablets, powder, granule, fine granule, capsule, syrup, lozenge and inhaler; external formulations such as suppository, ointment, eye ointment, poultice strip, eye-drops, nasal drops, eardrops, skin patch and lotion; and injectable formulations.

[0172] The oral formulations mentioned above may be formulated by appropriately combining the additives mentioned above. If necessary, surface of these formulations may be coated.

[0173] The external formulations mentioned above may be formulated by appropriately combining the additives mentioned above, particularly excipients, binders, flavoring agents, emulsifiers, surfactants, solubilizing agents, suspending agent, tonicity agents, antiseptic agents, antioxidant agents, stabilizers and absorption promoters.

[0174] The injectable formulations mentioned above may be formulated by appropriately combining the additives mentioned above, particularly emulsifiers, surfactants, solubilizing agents, suspending agents, tonicity agents, buffers, antiseptic agents, antioxidant agents, stabilizers and absorption promoters. The injectable formulations may be used through means such as infusion, intramuscular injection, subcutaneous injection, intradermal injection and intravenous injection.

[0175] The present invention relates to a method for treating a disease, comprising administering an effective amount of a compound of the invention to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. According to the present invention, the disease is preferably at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0176] Moreover, the present invention relates to a method for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the method comprising administering an effective amount of a compound of the invention to a patient.

[0177] According to the therapeutic method of the invention, the route and the method for administering the compound of the invention are not particularly limited and reference may be made to the description of the pharmaceutical composition of the invention or the description of therapeutic drug above.

[0178] The present invention relates to use of a compound of the invention for producing a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. According to the use of the invention, the pharmaceutical composition is effective as a therapeutic drug for treating at least one disease selected from multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0179] Moreover, the present invention relates to use of a compound of the invention for producing a therapeutic drug for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0180] The present invention relates to a compound of the invention for a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. According to the present invention, the pharmaceutical composition is effective as a therapeutic drug for treating at least one disease selected from multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0181] Moreover, the present invention relates to a compound of the invention for a therapeutic drug for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0182] The present invention further provides a FGFR3 inhibitor comprising a compound of the invention. The FGFR3 inhibitor has an effect of inhibiting a kinase activity of FGFR3.

[0183] Although the compound of the invention is as described above, it is preferably 4-(3-chloro-4-(cyclopropylami-nocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof.

[0184] The FGFR3-inhibiting activity of the FGFR3 inhibitor of the invention can be determined as described above.

[0185] As the FGFR3 inhibitor of the invention, the compound of the invention may be used alone, or it may be formulated with appropriate additives mentioned above.

[0186] As to the usage and the dosage of the FGFR3 inhibitor, reference may be made to the description of the pharmaceutical composition above.

[0187] The present invention also relates to use of a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for producing a FGFR3 inhibitor.

[0188] The present invention further relates to a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof for a FGFR3 inhibitor.

[0189] The present invention yet further relates to a method for inhibiting FGFR3, preferably a method for inhibiting FGFR3 kinase with a compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof. According to the method of the invention, the usage and the dosage of the compound are not particularly limited and reference may be made to the description of the pharmaceutical composition above.

2. Method for Predicting Sensitivity

5

10

15

20

25

30

35

40

45

50

55

[0190] The present invention provides a method for predicting whether or not a patient is highly sensitive to a compound of the invention using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.

[0191] According to the method of the invention, a patient is preferably a patient suffering from at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia. The patient is preferably a cancer patient, more preferably a patient suffering from multiple myeloma, bladder cancer or cervical cancer, particularly preferably a patient suffering from multiple myeloma.

(1) Step of determining at least one selected from the group consisting of FGFR3 expression level, presence or absence of t(4;14) translocation and presence or absence of FGFR3 mutation in cell

[0192] In this step, the cell is preferably a cell taken from the patient. The cell may be obtained, for example, by removing it from a patient by a surgical procedure (e.g., biopsy, marrow puncture, etc.).

[0193] Preferably, the cell is a tumor cell. In the case of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia or skeletal dysplasia that results from genetic variation, a blood cell is preferably used as the cell.

[0194] Examples of the types of tumor include multiple myeloma, bladder cancer and cervical cancer and the like, and more preferably multiple myeloma.

[0195] The FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation can be determined by the method described in "1. Pharmaceutical composition, therapeutic drug and therapeutic method of the invention".

[0196] In this step, any one, a combination of two or more or all of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell may be determined.

(2) Step of predicting whether or not a patient is highly sensitive to compound of the invention

[0197] In this step, at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell that has been determined in (1) can be preferably used to predict whether or not a patient is highly sensitive to the compound of the invention. Specifically, when the cell determined corresponds to at least one of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, the patient can be judged to be highly sensitive to the compound of the invention. Herein, the meanings of the cell overexpressing FGFR3, the cell that has a t(4;14) translocation and the cell expressing mutant FGFR3 are as described in "1. Pharmaceutical composition, therapeutic drug and therapeutic method of the invention".

[0198] Another aspect of the invention is a method for analyzing sensitivity of a cell to the compound of the invention using the results from determination in (1) as an index. When the cell corresponds to at least one of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3 based on the results from determination in (1), this cell can be judged to be highly sensitive to the compound of the invention as compared to a cell that does

not correspond to any of these cells.

5

10

15

20

25

30

35

40

45

50

55

[0199] Yet another aspect of the invention is a method for selecting a cell or a patient that is highly sensitive to the compound of the invention using the results from the determination in (1) as an index. When the cell corresponds to at least one of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3 based on the results from determination in (1), this cell or the patient having this cell can be judged to be highly sensitive to the compound of the invention as described above. Thus, such cell or such patient can be selected as a cell or a patient highly sensitive to the compound of the invention.

[0200] Still yet another aspect of the invention is a method comprising analyzing the sensitivity of a patient to the compound of the invention using the results from the determination in (1) as an index, and classifying the patient according to the results from the analysis. Specifically, according to the method of the invention, the sensitivity to the compound of the invention is analyzed as described above based on the results from the determination in (1), and the cell can be classified based on the analysis results. For example, a cell can be classified into a group of cells that correspond to at least one of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, or a group of cells that do not correspond to any of the above cells. Alternatively, the cell can be classified into a group of cells highly sensitive to the compound of the invention or a group of cells other than these cells.

[0201] Still yet another aspect of the invention is a method for selecting a patient for administering the compound of the invention, the method comprising selecting a patient having at least one cellselected from a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, based on the results from the determination in (1). Patients having at least one cell selected from a cell overexpressing FGFR3, a cell that has a t(4; 14) translocation and a cell expressing mutant FGFR3 can be a target intended for administering the compound of the invention.

[0202] Still yet another aspect of the invention is a method for predicting the therapeutic effect of the compound of the invention on a patient based on the results from the determination in (1). According to the method of the invention, when the cell determined corresponds to at least one of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3 based on the results from the determination in (1), the cell is judged to be highly sensitive to the compound of the invention, and thus the therapeutic effect of this compound can be predicted be high on the cell or a patient having this cell.

[0203] The present invention also relates to a method for determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell derived from a patient for predicting the sensitivity level of the patient to the compound of the invention. This determination method is as described in (1) above.

[0204] Determination of any one or two or more of the FGFR3 expression level, the presence or the absence of a t (4;14) translocation and the presence or the absence of FGFR3 mutation in the cell enables prediction of the sensitivity level of a patient to the compound of the invention.

[0205] In this step, although the compound of the invention is as described above, it is preferably 4-(3-chloro-4-(cy-clopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide, a pharmacologically acceptable salt thereof or a solvate thereof.

[0206] The method of the invention can be employed to predict the degree of the efficacy of the compound of the invention on a patient before administering the compound of the invention to the patient. Therefore, patients who are more susceptible to the effect of the compound of the invention can be selected for carrying out the treatment of the disease. Thus, the present invention is clinically highly effective.

[0207] The present invention provides a test kit for determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation for the method of the invention. The test kit of the invention comprises the reagents mentioned above used for the determination. The test kit of the invention allows prediction of whether or not a patient is highly sensitive to the compound of the invention.

[0208] The present invention also relates to use of a test kit for the prediction described above.

[0209] Hereinafter, the present invention will be illustrated by way of specific examples, although the invention should not be limited thereto.

[EXAMPLE 1]

[0210] A FGFR3-inhibiting activity of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide was examined by ProQinase (Freiburg, GmbH) on our request. Specifically, the FGFR3-inhibiting activity was determined as follows.

[0211] FGFR3 kinase was expressed in an insect cell (*Spondoptea frugiperda* 9 (Sf9)) as human recombinant GST fusion protein by the method of Baculovirus Expression System. The expressed recombinant protein was purified by affinity chromatography using GSH-agarose (from Sigma) or Ni-NTH-agarose (from Qiagen). The purity and identification

of the protein were confirmed by SDS-PAGE, silver staining and western blotting using an antibody specific to FGFR3 kinase.

[0212] Kinase assay was carried out as follows.

[0213] First, to each well of 96-well FlashPlate (from Perkin Elmer/NEM), a mixed solution containing 20 μl of standard reaction solution, 5 μl of ATP solution (diluted with H₂O), 5 μl of the test substance (10% aqueous dimethylsulfoxide solution), 10 μl of solution containing 100 ng of FGFR3 recombinant protein and 10 μl of solution containing 125 ng of biotinylated Poly(Glu, Tyr)_{4·1} was added sequentially.

[0214] Herein, methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide was used as the test substance. The methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl) aminophenoxy)-7-methoxy-6-quinolinecarbo xamide was produced based on the description in International publication No. 02/32872 (pamphlet) (WO02/32872) and International publication No. 2005/063713 (pamphlet) (WO2005/063713) **[0215]** This kinase reaction solution (50 μl) contained 60 mM HEPES-NaOH (pH7.5), 3 mM MqCl₂, 3 mM MnCl₂, 3

[0215] This kinase reaction solution (50 μl) contained 60 mM HEPES-NaOH (pH7.5), 3 mM MgCl₂, 3 mM MnCl₂, 3 μM Na-orthovanadate, 1.2 mM DTT, 50 μg/ml PEG₂₀₀₀₀ and 1 μM [γ -³³P]-ATP.

[0216] The reaction solution was incubated at 30 °C for 80 minutes, after which 50μ l of 2% (v/v) H_3PO_4 solution was added to terminate the reaction.

[0217] The 96-well plate was washed and suctioned twice with 200 μ l of 0.9% (w/v) NaCl solution.

[0218] The amount of ³³P_i incorporation was assessed by determining the radioactivity on the plate with a microplate scintillation counter (from Microbeta, Wallac).

[0219] The manipulation was performed with a BeckmanCoulter/Sagian robotic system.

[0220] The concentration (IC₅₀) of the test substance required for inhibiting a FGFR3 kinase activity by 50% was calculated using radioactivity with respect to 33 P at various concentrations (10 points ranging from 10 μ M to 0.0003 μ M) using Prism 3.03 (Windows (Registered Trademark), Graphpad, San Diego, California, USA).

[0221] In this case, the value obtained for the case where only substrate Poly(Glu, Tyr)_{4:1} (without the addition of FGFR3 protein) was added was assumed 0% while the value obtained for the case where FGFR3 protein and substrate Poly(Glu, Tyr)_{4:1} were added (without the addition of the test substance) was assumed 100%.

[0222] The kinase activity in the presence of the test substance at each concentration was assessed as percentage of the value obtained by subtracting the 0% value from the radioactivity value to the value obtained by subtracting the 0% value from the 100% value.

[0223] As a result, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide was found to have a FGFR3 kinase-inhibiting activity ($IC_{50} = 140 \text{ nM}$).

[0224] As described above, the FGFR3 inhibitor causes cell growth inhibition and apoptosis of at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, and thus shows effects (e.g., anti-tumor effect, etc.) on a living organism having these cells.

[0225] As described above, the FGFR3 inhibitor appears to be effective against multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0226] From these results and findings, the compound of the invention was shown to exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.

[0227] The compound of the invention was also expected to be more effective against at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.

[0228] Furthermore, since an effect of the compound of the invention can be predicted without administering the compound to a patient by determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell and using at least one or a combination of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation determined in the cell as an index, patients who are expected to be more susceptible to the compound can be selected, thereby contributing to the QOL of the patient.

[Reference Example]

50

[0229] Hereinafter, a method for producing a formulation of one of the compounds of the invention, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide will be described as a reference example.

55

5

10

15

20

25

30

35

40

(Production of pharmaceutical composition)

(1) 1 mg tablet

5

10

15

20

25

30

40

45

50

55

[0230] 24g of crystal (C) of methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide (hereinafter, also referred to as "crystal (C)", which was produced according to the method described in Example 7 of W02005/063713) and 192g of light anhydrous silicic acid (antigelling agent sold under the product name of AEROSIL (Registered Trademark) 200, Nippon Aerosil) were mixed with 20L Super Mixer, and then 1236g of D-mannitol (excipient, Towa-Kasei Co., Ltd.), 720g of crystalline cellulose (excipient sold under the product name of Avicel PH101, Asahi Kasei Corporation) and 72g of hydroxypropylcellulose (binder sold under the product name of HPC-L, Nippon Soda Co., Ltd.) were further added and mixed together. Subsequently, a suitable amount of anhydrous ethanol was added to obtain a granulated body containing crystal (C). This granulated body was dried in a rack dryer (60°C), and then size-regulated using PowerMILL to obtain granules. Together with the granules, 120g of croscarmellose sodium (disintegrant sold under the product name of Ac-Di-Sol, FMC International Inc.) and 36g of sodium stearyl fumarate (lubricant, JRS Pharma LP) were placed and mixed together in a 20L tumbler mixer, and molded with a tablet machine to obtain tablets with a total mass of 100 mg per tablet. Furthermore, the tablets were coated using aqueous 10% Opadry yellow (OPADRY 03F42069 YELLOW, Colorcon Japan) solution as a coating solution with a tablet coating machine, thereby obtaining coated tablets with a total mass of 105 mg per tablet.

(2) 10 mg tablet

[0231] 60g of crystal (C) and 192g of light anhydrous silicic acid (antigelling agent sold under the product name of AEROSIL (Registered Trademark) 200, Nippon Aerosil) were mixed with 20L Super Mixer, and then 1200g of D-mannitol (excipient, Towa-Kasei Co., Ltd.), 720g of crystalline cellulose (excipient sold under the product name of Avicel PH101, Asahi Kasei Corporation) and 72g of hydroxypropylcellulose (binder sold under the product name of HPC-L, Nippon Soda Co., Ltd.) were further added and mixed together. Subsequently, a suitable amount of anhydrous ethanol was added to obtain a granulated body containing crystal (C). This granulated body was dried in a rack dryer (60°C), and then size-regulated using PowerMILL to obtain granules. Together with the granules, 120g of croscarmellose sodium (disintegrant sold under the product name of Ac-Di-Sol, FMC International Inc.) and 36g of sodium stearyl fumarate (lubricant, JRS Pharma LP) were placed and mixed together in a 20L tumbler mixer, and molded with a tablet machine to obtain tablets with a total mass of 400 mg per tablet. Furthermore, the tablets were coated using aqueous 10% Opadry yellow (OPADRY 03F42069 YELLOW, Colorcon Japan) solution as a coating solution with a tablet coating machine, thereby obtaining coated tablets with a total mass of 411 mg per tablet.

35 (3) 100 mg tablet

[0232] 31.4g of crystal (C) and 4g of light anhydrous silicic acid (antigelling agent sold under the product name of AEROSIL (Registered Trademark) 200, Nippon Aerosil) were mixed with 1L Super Mixer, and then 40.1g of anhydrous calcium hydrogen phosphate (excipient, Kyowa Chemical Industry Co., Ltd.), 10g of low substituted hydroxypropylcellulose (binder sold under the product name of L-HPC (LH-21), Shin-Etsu Chemical Co., Ltd.) and 3g of hydroxypropylcellulose (binder sold under the product name of HPC-L, Nippon Soda Co., Ltd.) were further added and mixed together. Subsequently, a suitable amount of anhydrous ethanol was added to obtain a granulated body containing crystal (C). This granulated body was dried in a rack dryer (60°C), and then size-regulated using PowerMILL to obtain granules. Together with the granules, 10g of croscarmellose sodium (disintegrant sold under the product name of Ac-Di-Sol, FMC International Inc.) and 1.5g of sodium stearyl fumarate (lubricant, JRS Pharma LP) were mixed and molded with a tablet machine to obtain tablets with a total mass of 400 mg per tablet.

INDUSTRIAL APPLICABILITY

[0233] According to the present invention, there is provided a pharmaceutical composition and a therapeutic method which can exert their effects with higher efficiency on a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3. [0234] Specifically, the present invention provides: a pharmaceutical composition comprising a compound of the invention, which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3; a method for treating a disease comprising administering an effective amount of a compound of the invention to the living organism; use of a compound of the invention for producing the pharmaceutical composition; and a compound of the invention for the pharmaceutical composition.

[0235] In addition, the present invention provides: a therapeutic drug and a method for treating at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the therapeutic drug and the method comprising a compound of the invention; use of a compound of the invention for producing the therapeutic drug; and a compound of the invention for the therapeutic drug.

[0236] Furthermore, the present invention provides a FGFR3 inhibitor.

[0237] Moreover, the present invention provides a method for predicting the effect of a compound of the invention.

[0238] More specifically, the effect of the compound of the invention can be predicted by using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation and the presence or the absence of FGFR3 mutation in the cell.

[0239] According to the method of the invention, an effect of a compound can be predicted without administering the compound to a patient by selecting a patient who is expected to be more susceptible to the compound, thereby contributing to the QOL of the patient.

SEQUENCE LISTING

5	<110> Eisai R&D Management Co., Ltd.
5	<120> Antitumor agents for multiple myeloma
	<130> PCT06-0157
10	<150> JP2005-337772 <151> 2005-11-22
	<150> US60/803, 450 <151> 2006-05-30
15	<160> 3
	<170> PatentIn version 3.3
20	<pre><210> 1 <211> 4093 <212> DNA <213> Homo sapiens</pre>
25	<220> <221> CDS <222> (40) (2460)
30	<pre><400> 1 cgcgcgctgc ctgaggacgc cgcggccccc gccccgcc atg ggc gcc cct gcc</pre>
<i>35</i>	tgc gcc ctc gcg ctc tgc gtg gcc gtg gcc atc gtg gcc ggc gcc tcc Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile Val Ala Gly Ala Ser 10 15 20
40	tcg gag tcc ttg ggg acg gag cag cgc gtc gtg ggg cga gcg gca gaa 150 Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu 25 30 35
40	gtc ccg ggc cca gag ccc ggc cag cag gag cag ttg gtc ttc ggc agc Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser 40 45 50
45	ggg gat gct gtg gag ctg agc tgt ccc ccg ccc ggg ggt ggt ccc atg Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Gly Gly Gly Pro Met 55 60 65
50	ggg ccc act gtc tgg gtc aag gat ggc aca ggg ctg gtg ccc tcg gag Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu 70 75 80 85
55	cgt gtc ctg gtg ggg ccc cag cgg ctg cag gtg ctg aat gcc tcc cac Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His 90 95 100
55	gag gac tcc ggg gcc tac agc tgc cgg cag cgg ctc acg cag cgc gta 390

	Glu	Asp	Ser	Gly 105	Ala	Tyr	Ser	Cys	Arg 110	Gln	Arg	Leu	Thr	Gln 115	Arg	Val	
5				ttc Phe													438
10				ggg Gly				_									486
15				tgg Trp						_	_	-	_	_	_	_	534
				gcc Ala													582
20				tcc Ser 185									-		_		630
25				att Ile													678
30				agc Ser					-	_					_	-	726
				aag Lys						_	_		-	_	_		774
35				tcc Ser													822
40		_		gcg Ala 265													870
45				gca Ala	_				_								918
			_	aag Lys			_	_									966
50				ggc Gly					_	_				_			1014
55				gtc Val													1062

5									cac His 350		_					-	1110
10	_								gct Ala								1158
									ggc Gly			_					1206
15							_	_	ctg Leu	_	_			_			1254
20								_	atc Ile		_		_		_	_	1302
05									tcc Ser 430								1350
25									ggg Gly								1398
30									gac Asp								1446
35									ctt Leu								1494
40									att Ile								1542
40									ctg Leu 510		_	-				_	1590
45									atg Met								1638
50									ctg Leu								1686
<i>55</i>		_							gcg Ala	_	_			_			1734
55	ttt	ctg	cgg	gcg	cgg	cgg	ccc	ccg	ggc	ctg	gac	tac	tcc	ttc	gac	acc ·	1782

	Phe	Leu	Arg	Ala	Arg 570	Arg	Pro	Pro	Gly	Leu 575	Asp	Tyr	Ser	Phe	Asp 580	Thr	
5		aag Lys															1830
10		tac Tyr															1878
15		cac His 615		-	_	_	_	-									1926
		atg Met	_														1974
20	_	tac Tyr		_	_												2022
25		cct Pro		_	_		_	_	_								2070
30	tgg Trp	tcc Ser	ttt Phe 680	ggg Gly	gtc Val	ctg Leu	ctc Leu	tgg Trp 685	gag Glu	atc Ile	ttc Phe	acg Thr	ctg Leu 690	ggg Gly	ggc Gly	tcc Ser	2118
		tac Tyr 695															2166
35		cac His	_	_	_	_		-		_							2214
40		atg Met			_			_	-								2262
45		cag Gln															2310
		gag Glu															2358
50		cag Gln 775															2406
55		cac His	_	_	_		_	_				Ser	_		_		2454

5	acg tga agg Thr	gccactg gtc	cccaaca atg	tgagggg tco	ctagcag ccc	tccctgc	2510
	tgctggtgca	cagccactcc	ccggcatgag	actcagtgca	gatggagaga	cagctacaca	2570
	gagctttggt	ctgtgtgtgt	gtgtgtgcgt	gtgtgtgtgt	gtgtgcacat	ccgcgtgtgc	2630
10	ctgtgtgcgt	gcgcatcttg	cctccaggtg	cagaggtacc	ctgggtgtcc	ccgctgctgt	2690
	gcaacggtct	cctgactggt	gctgcagcac	cgaggggcct	ttgttctggg	gggacccagt	2750
15	gcagaatgta	agtgggccca	cccggtggga	ccccgtgggg	cagggagctg	ggcccgacat	2810
	ggctcggcct	ctgcctttgc	accacgggac	atcacagggt	gcgctcggcc	cctcccacac	2870
	ccaaagctga	gcctgcaggg	aagccccaca	tgtccagcac	cttgtgcctg	gggtgttagt	2930
20	ggcaccgcct	ccccacctcc	aggctttccc	acttcccacc	ctgcccctca	gagactgaaa	2990
	ttacgggtac	ctgaagatgg	gagcctttac	cttttatgca	aaaggtttat	tccggaaact	3050
25	agtgtacatt	tctataaata	gatgctgtgt	atatggtata	tatacatata	tatatataac	3110
-0	atatatggaa ;	gaggaaaagg	ctggtacaac	ggaggcctgc	gaccctgggg	gcacaggagg	3170
	caggcatggc	cctgggcggg	gcgtgggggg	gcgtggaggg	aggccccagg	ggtctcaccc	3230
30	atgcaagcag	aggaccaggg	ctttttctgg	caccgcagtt	ttgttttaaa	actggacctg	3290
	tatatttgta	aagctattta	tgggccctg	gcactcttgt	tcccacaccc	caacacttcc	3350
	agcatttagc	tggccacatg	gcggagagtt	ttaattttta	acttattgac	aaccgagaag	3410
35	gtttatcccg	ccgatagagg	gacggccaag	aatgtacgtc	cagcctgccc	cggagctgga	3470
	ggatcccctc	caagcctaaa	aggttgttaa	tagttggagg	tgattccagt	gaagatattt	3530
40	tatttgcttt	gtcctttttc	aggagaatta	gatttctata	ggatttttct	ttaggagatt	3590
	tattttttgg	acttcaaagc	aagctggtat	tttcatacaa	attcttctaa	ttgctgtgtg	3650
	tcccaggcag	ggagacggtt	tccagggagg	ggccggccct	gtgtgcaggt	tccgatgtta	3710
4 5	ttagatgtta	caagtttata	tatatctata	tatataattt	attgagtttt	tacaagatgt	3770
	atttgttgta	gacttaacac	ttcttacgca	atgcttctag	agttttatag	cctggactgc	3830
	tacctttcaa	agcttggagg	gaagccgtga	attcagttgg	ttcgttctgt	actgttactg	3890
50	ggccctgagt	ctgggcagct	gtcccttgct	tgcctgcagg	gccatggctc	agggtggtct	3950
	cttcttgggg	cccagtgcat	ggtggccaga	ggtgtcaccc	aaaccggcag	gtgcgatttt	4010
55	gttaacccag	cgacgaactt	tccgaaaaaat	aaagacacct	ggttgctaac	ctgaaaaaaa	4070
	aaaaaaaaaa	aaaaaaaaa	aaa				4093

5	<210> <211> <212> <213>	2 806 PRT Homo	sapie	ens										
10	<400>	2												
	Met Gly 1	Ala		Ala Cys 5	s Ala	Leu	Ala	Leu 10	Cys	Val	Ala	Val	Ala 15	Ile
15	Val Ala		Ala S 20	Ser Sei	Glu	Ser	Leu 25	Gly	Thr	Glu	Gln	Arg 30	Val	Val
20	Gly Arg	35	Ala (Glu Val	. Pro	Gly 40	Pro	Glu	Pro	Gly	Gln 45	Gln	Glu	Gln
05	Leu Val 50	Phe	Gly S	Ser Gly	Asp 55	Ala	Val	Glu	Leu	Ser 60	Cys	Pro	Pro	Pro
25	Gly Gly 65	Gly	Pro M	Met Gl ₃ 70	Pro	Thr	Val	Trp	Val 75	Lys	Asp	Gly	Thr	Gly 80
30	Leu Val	Pro			g Val							Leu	Gln 95	Val
35	Leu Asn		Ser H 100	dis Glu	ı Asp	Ser	Gly 105	Ala	Tyr	Ser	Cys	Arg 110	Gln	Arg
40	Leu Thr	Gln 115	Arg V	/al Leu	Cys	His 120	Phe	Ser	Val	Arg	Val 125	Thr	Asp	Ala
40	Pro Ser 130		Gly A	Asp Asp	Glu 135	Asp	G1y	Glu	Asp	Glu 140	Ala	Glu	Asp	Thr
45	Gly Val 145	Asp	Thr G	Gly Ala 150		Tyr	Trp	Thr	Arg 155	Pro	Glu	Arg	Met	Asp 160
50	Lys Lys	Leu		la Val .65	Pro	Ala	Ala	Asn 170	Thr	Val	Arg	Phe	Arg 175	Cys
	Pro Ala		Gly A 180	asn Pro	Thr	Pro	Ser 185	Ile	Ser	Trp	Leu	Lys 190	Asn	Gly
55	Arg Glu	Phe A	Arg G	ly Glu	His	Arg	Ile	Gly	Gly	Ile	Lys	Leu	Arg	His

			195					200					205			
5	Gln	G1n 210	Trp	Ser	Leu	Val	Met 215	G1u	Ser	Val	Val	Pro 220	Ser	Asp	Arg	Gly
10	Asn 225	Tyr	Thr	Cys	Val	Val 230	Glu	Asn	Lys	Phe	Gly 235	Ser	Ile	Arg	Gln	Thr 240
15	Tyr	Thr	Leu	Asp	Val 245	Leu	Glu	Arg	Ser	Pro 250	His	Arg	Pro	Ile	Leu 255	G1n
	Ala	Gly	Leu	Pro 260	Ala	Asn	Gln	Thr	Ala 265	Val	Leu	Gly	Ser	Asp 270	Val	Glu
20	Phe	His	Cys 275	Lys	Val	Tyr	Ser	Asp 280	Ala	G1n	Pro	His	Ile 285	Gln	Trp	Leu
<i>25</i>	Lys	His 290	Val	Glu	Val	Asn	Gly 295	Ser	Lys	Val	Gly	Pro 300	Asp	G1y	Thr	Pro
30	Tyr 305	Val	Thr	Val	Leu	Lys 310	Thr	Ala	Gly	Ala	Asn 315	Thr	Thr	Asp	Lys	G1u 320
	Leu (Glu	Val	Leu	Ser 325	Leu	His	Asn	Val	Thr 330	Phe	Glu	Asp	Ala	Gly 335	Glu
35	Tyr ′	Thr	Cys	Leu 340	Ala	Gly	Asn	Ser	Ile 345	Gly	Phe	Ser	His	His 350	Ser	Ala
40	Trp 1	Leu	Va1 355	Val	Leu	Pro	Ala	Glu 360	Glu	Glu	Leu	Val	Glu 365	Ala	Asp	Glu
45	Ala	Gly 370	Ser	Val	Tyr	Ala	Gly 375	Ile	Leu	Ser	Tyr	Gly 380	Val	Gly	Phe	Phe
	Leu 1 385	Phe	Ile	Leu	Val	Val 390	Ala	Ala	Val	Thr	Leu 395	Cys	Arg	Leu	Arg	Ser 400
50	Pro l	Pro	Lys	Lys	Gly 405	Leu	Gly	Ser	Pro	Thr 410	Val	His	Lys	Ile	Ser 415	Arg
55	Phe l	Pro		Lys 420											Met	Ser

5	Ser	Asn	Thr 435	Pro	Leu	Val	Arg	Ile 440	Ala	Arg	Leu	Ser	Ser 445	Gly	G1u	Gly
	Pro	Thr 450	Leu	Ala	Asn	Val	Ser 455	Glu	Leu	Glu	Leu	Pro 460	Ala	Asp	Pro	Lys
10	Trp 465	G1u	Leu	Ser	Arg	Ala 470	Arg	Leu	Thr	Leu	Gly 475	Lys	Pro	Leu	Gly	Glu 480
15	Gly	Cys	Phe	Gly	Gln 485	Val	Val	Met	Ala	Glu 490	Ala	Ile	G1y	Ile	Asp 495	Lys
20	Asp	Arg	Ala	Ala 500	Lys	Pro	Val	Thr	Val 505	Ala	Val	Lys	Met	Leu 510	Lys	Asp
	Asp	Ala	Thr 515	Asp	Lys	Asp	Leu	Ser 520	Asp	Leu	Val	Ser	Glu 525	Met	Glu	Met
25	Met	Lys 530	Met	Ile	Gly	Lys	His 535	Lys	Aşn	Ile	Ile	Asn 540	Leu	Leu	Gly	Ala
30	Cys 545	Thr	Gln	Gly	Gly	Pro 550	Leu	Tyr	Val	Leu	Val 555	Glu	Tyr	Ala	Ala	Lys 560
<i>35</i>	Gly	Asn	Leu	Arg	G1u 565	Phe	Leu	Arg	Ala	Arg 570	Arg	Pro	Pro	Gly	Leu 575	Asp
	Tyr	Ser	Phe	Asp 580	Thr	Cys	Lys	Pro	Pro 585	Glu	Glu	Gln	Leu	Thr 590	Phe	Lys
40	Asp	Leu	Val 595		Cys	Ala	Tyr	Gln 600		Ala	Arg	Gly	Met 605		Tyr	Leu
45	Ala	Ser 610		Lys	Cys	Ile	His 615		Asp	Leu	Ala	Ala 620		Asn	Val	Leu
50	Val 625		G1u	Asp	Asn	Val 630		Lys	Ile	Ala	Asp 635		Gly	Leu	Ala	Arg 640
	Asp	Val	His	Asn	Leu 645		Tyr	Tyr	Lys	Lys 650		Thr	Asn	Gly	Arg 655	Leu
55	Pro	Val	Lys	Trp	Met	Ala	Pro	Glu	Ala	Leu	Phe	Asp	Arg	, Val	Tyr	Thr

		660	665	670
5	His Gln Ser 675	Asp Val Trp	Ser Phe Gly Val L	eu Leu Trp Glu Ile Phe 685
10	Thr Leu Gly 690		Tyr Pro Gly Ile P:	ro Val Glu Glu Leu Phe 700
15	Lys Leu Leu 705	Lys Glu Gly 710		ys Pro Ala Asn Cys Thr 15 720
	His Asp Leu	Tyr Met Ile 725	Met Arg Glu Cys Tr 730	rp His Ala Ala Pro Ser 735
20	Gln Arg Pro	Thr Phe Lys 740	Gln Leu Val Glu As 745	sp Leu Asp Arg Val Leu 750
25	Thr Val Thr 755	Ser Thr Asp	Glu Tyr Leu Asp Lo 760	eu Ser Ala Pro Phe Glu 765
30	Gln Tyr Ser 770		Gln Asp Thr Pro So 775	er Ser Ser Ser Gly 780
	Asp Asp Ser 785	Val Phe Ala 790		ro Pro Ala Pro Pro Ser 95 800
35	Ser Gly Gly	Ser Arg Thr 805		
40	<210> 3 <211> 784 <212> PRT <213> Homo	sapiens		
45	<400> 3 Glu Ser Leu 1	Gly Thr Glu 5	Gln Arg Val Val G 10	ly Arg Ala Ala Glu Val 15
50		Glu Pro Gly 20	Gln Gln Glu Gln Le 25	eu Val Phe Gly Ser Gly 30
55	Asp Ala Val 35	Glu Leu Ser	Cys Pro Pro Pro Gi 40	ly Gly Gly Pro Met Gly 45

	Pro	Thr 50	Val	Trp	Val	Lys	Asp 55	Gly	Thr	G1y	Leu	Val 60	Pro	Ser	Glu	Arg
5	Val 65	Leu	Va1	Gly	Pro	Gln 70	Arg	Leu	Gln	Val	Leu 75	Asn	Ala	Ser	His	Glu 80
10	Asp	Ser	Gly	Ala	Tyr 85	Ser	Cys	Arg	Gln	Arg 90	Leu	Thr	Gln	Arg	Val 95	Leu
15	Cys	His	Phe	Ser 100	Val	Arg	Val	Thr	Asp 105	Ala	Pro	Ser	Ser	Gly 110	Asp	Asp
	G1u	Asp	Gly 115	Glu	Asp	Glu	Ala	Glu 120	Asp	Thr	Gly	Val	Asp 125	Thr	Gly	Ala
20	Pro	Tyr 130	Trp	Thr	Arg	Pro	Glu 135	Arg	Met	Asp	Lys	Lys 140	Leu	Leu	Ala	Val
25	Pro 145	Ala	Ala	Asn	Thr	Val 150	Arg	Phe	Arg	Cys	Pro 155	Ala	Ala	Gly	Asn	Pro 160
30	Thr	Pro	Ser	Ile	Ser 165	Trp	Leu	Lys	Asn	Gly 170	Arg	Glu	Phe	Arg	Gly 175	Glu
<i>35</i>	His	Arg	Ile	Gly 180	Gly	Ile	Lys	Leu	Arg 185	His	Gln	Gln	Trp	Ser 190	Leu	Val
	Met	G1u	Ser 195	Val	Val	Pro	Ser	Asp 200	Arg	Gly	Asn	Tyr	Thr 205	Cys	Val	Val
40	Glu	Asn 210	Lys	Phe	Gly	Ser	lle 215	Arg	Gln	Thr	Tyr	Thr 220	Leu	Asp	Val	Leu
45	Glu 225	Arg	Ser	Pro	His	Arg 230	Pro	Ile	Leu	G1n	Ala 235	Gly	Leu	Pro	Ala	Asn 240
50	Gln	Thr	Ala	Val	Leu 245	Gly	Ser	Asp	Val	Glu 250	Phe	His	Cys	Lys	Val 255	Tyr
	Ser	Asp	Ala	G1n 260	Pro	His	Ile	Gln	Trp 265	Leu	Lys	His	Val	Glu 270	Val	Asn
55	Gly	Ser	Lys 275			Pro						Val	Thr 285	Val	Leu	Lys

5	Thr	Ala 290	Gly	Ala	Asn	Thr	Thr 295	Asp	Lys	Glu	Leu	Glu 300	Val	Leu	Ser	Leu
10	His 305	Asn	Val	Thr	Phe	Glu 310	Asp	Ala	Gly	Glu	Tyr 315	Thr	Cys	Leu	Ala	Gly 320
	Asn	Ser	Ile	Gly	Phe 325	Ser	His	His	Ser	Ala 330	Trp	Leu	Val	Val	Leu 335	Pro
15	Ala	Glu	Glu	Glu 340	Leu	Val	Glu	Ala	Asp 345	G1u	Ala	Gly	Ser	Val 350	Tyr	Ala
20	Gly	Ile	Leu 355	Ser	Tyr	Gly	Val	Gly 360	Phe	Phe	Leu	Phe	Ile 365	Leu	Val	Val
<i>25</i>	Ala	Ala 370	Val	Thr	Leu	Cys	Arg 375	Leu	Arg	Ser	Pro	Pro 380	Lys	Lys	Gly	Leu
	Gly 385	Ser	Pro	Thr	Val	His 390	Lys	Ile	Ser	Arg	Phe 395	Pro	Leu	Lys	Arg	Gln 400
30	Val	Ser	Leu	G1u	Ser 405	Asn	Ala	Ser	Met	Ser 410	Ser	Asn	Thr	Pro	Leu 415	Val
35	Arg	Ile	Ala	Arg 420	Leu	Ser	Ser	Gly	Glu 425	G1y	Pro	Thr	Leu	Ala 430	Asn	Val
40	Ser	Glu	Leu 435	Glu	Leu	Pro	Ala	Asp 440	Pro	Lys	Trp	G1u	Leu 445	Ser	Arg	Ala
	Arg	Leu 450	Thr	Leu	Gly	Lys	Pro 455	Leu	Gly	Glu	Gly	Cys 460	Phe	G1y	G1n	Val
45	Val 465	Met	Ala	Glu	Ala	Ile 470	Gly	Ile	Asp	Lys	Asp 475	Arg	Ala	Ala	Lys	Pro 480
50	Val	Thr	Val	Ala	Val 485	Lys	Met	Leu	Lys	Asp 490	Asp	Ala	Thr	Asp	Lys 495	Asp
55	Leu	Ser	Asp	Leu 500	Val	Ser	Glu	Met	Glu 505	Met	Met	Lys	Met	Ile 510	Gly	Lys

	His	Lys	Asn 515	Ile	Île	Asn	Leu	Leu 520	Gly	Ala	Cys	Thr	Gln 525	Gly	Gly	Pro
5	Leu	Tyr 530	Val	Leu	Val	Glu	Tyr 535	Ala	Ala	Lys	Gly	Asn 540	Leu	Arg	Glu	Phe
10	Leu 545	Arg	Ala	Arg	Arg	Pro 55 0	Pro	Gly	Leu	Asp	Tyr 555	Ser	Phe	Asp	Thr	Cys 560
15	Lys	Pro	Pro	Glu	Glu 565	Gln	Leu	Thr	Phe	Lys 570	Asp	Leu	Val	Ser	Cys 575	Ala
	Tyr	Gln	Va1	Ala 580	Arg	Gly	Met	Glu	Tyr 585	Leu	Ala	Ser	Gln	Lys 590	Cys	Ile
20	His	Arg	Asp 595	Leu	Ala	Ala	Arg	Asn 600	Val	Leu	Val	Thr	Glu 605	Asp	Asn	Val
25	Met	Lys 610	Ile	Ala	Asp	Phe	Gly 615	Leu	Ala	Arg	Asp	Val 620	His	Asn	Leu	Asp
30	Tyr 625	Tyr	Lys	Lys	Thr	Thr 630	Asn	Gly	Arg	Leu	Pro 635	Val	Lys	Trp	Met	Ala 640
<i>35</i>	Pro	Glu	Ala	Leu	Phe 645	Asp	Arg	Val	Tyr	Thr 650	His	G1n	Ser	Asp	Val 655	Trp
	Ser	Phe	G1y	Val 660	Leu	Leu	Trp	Glu	Ile 665	Phe	Thr	Leu	Gly	Gly 670	Ser	Pro
40	Tyr	Pro	Gly 675	Ile	Pro	Val	Glu	G1u 680	Leu	Phe	Lys	Leu	Leu 685	Lys	Glu	Gly
45	His	Arg 690	Met	Asp	Lys	Pro	Ala 695	Asn	Cys	Thr	His	Asp 700	Leu	Tyr	Met	Ile
50	Met 705	Arg	Glu	Cys	Trp	His 710	Ala	Ala	Pro	Ser	Gln 715	Arg	Pro	Thr	Phe	Lys 720
50	G1n	Leu	Val	Glu	Asp 725	Leu	Asp	Arg	Val	Leu 730	Thr	Val	Thr	Ser	Thr 735	Asp
55	Glu	Tyr	Leu	Asp 740	Leu	Ser	Ala	Pro	Phe 74 5	Glu	Gln	Tyr	Ser	Pro 750	Gly	Gly

5	Gln	Asp	Thr 755	Pro	Ser	Ser	Ser	Ser 760	Ser	Gly	Asp	Asp	Ser 765	Val	Phe	Ala
	His	Asp 770	Leu	Leu	Pro	Pro	Ala 775	Pro	Pro	Ser	Ser	Gly 780	Gly	Ser	Arg	Thr
10																
15																
20																
25																
30																
35																
40																
45																
50																
55																

SEQUENCE LISTING

	<110>	Eisai R&	D Manage	ment	Co.,	Ltc	ł.							
5	<120>	Antitumo	r agents	for	mult	iple	mye	eloma	à					
	<130>	N.104615												
10	<140> <141>	06833681 2006-11-												
	<150> <151>	PCT/JP06 2006-11-												
15		JP2005-3 2005-11-3												
		US60/803 2006-05-	-											_
20	<160>	3												
	<170>	PatentIn	version	3.3										
25	<211>	1 4093 DNA Homo sap	iens											
30	<220> <221> <222>	CDS (40)(2	460)										-	
	<400> cgcgcg	1 ctgc ctga	ggacgc (:gcgg	cccc	c gcc	cccc					Pro A	Ala	54
35]					ō	100
		c ctc gcg a Leu Ala				ata	~~~			acc	ggc	gcc	tac	102
40		~	10	val	Ala									
40		g tcc ttg u Ser Leu 25	10 ggg acg	gag	cag	Val	Ala 15 gtc	Ile gtg	Val ggg	Ala	gcg	Ala 20 gca	Ser	150
45	Ser Gl	g tcc ttg u Ser Leu	ggg acg Gly Thr	gag Glu ggc	cag Gln cag	Cgc Arg 30	Ala 15 gtc Val gag	Ile gtg Val	yal ggg Gly ttg	Ala cga Arg	gcg Ala 35	Ala 20 gca Ala ggc	gaa Glu agc	150 198
	Ser Gl gtc cc Val Pr	g tcc ttg u Ser Leu 25 g ggc cca o Gly Pro 40 t gct gtg p Ala Val	ggg acg Gly Thr gag ccg Glu Pro	gag Glu ggc Gly	cag Gln cag Gln 45	Cgc Arg 30 cag Gln	Ala 15 gtc Val gag Glu ccg	Ile gtg Val cag Gln ccc	yal ggg Gly ttg Leu	Ala cga Arg gtc Val 50 ggt	gcg Ala 35 ttc Phe	Ala 20 gca Ala ggc Gly	gaa Glu agc Ser	
45	gtc cc Val Pr ggg ga Gly As 55	g tcc ttg u Ser Leu 25 g ggc cca o Gly Pro 40 t gct gtg p Ala Val	ggg acg Gly Thr gag ccg Glu Pro gag ctg Glu Leu	gag Glu ggc Gly agc Ser 60	cag Gln cag Gln 45 tgt Cys	Cgc Arg 30 cag Gln ccc Pro	Ala 15 gtc Val gag Glu ccg Pro	gtg Val cag Gln ccc Pro	yal ggg Gly ttg Leu ggg Gly 65 ctg	Ala cga Arg gtc Val 50 ggt Gly	Gly gcg Ala 35 ttc Phe ggt Gly ccc	Ala 20 gca Ala ggc Gly ccc Pro	gaa Glu agc Ser atg Met	198

	Arg	Val	Leu	Val	Gly 90	Pro	Gln	Arg	Leu	Gln 95	Val	Leu	Asn	Ala	Ser 100	His	
5	gag Glu	gac Asp	tcc Ser	ggg Gly 105	gcc Ala	tac Tyr	agc Ser	tgc Cys	cgg Arg 110	cag Gln	cgg Arg	ctc Leu	acg Thr	cag Gln 115	cgc Arg	gta Val	390
10	ctg Leu	tgc Cys	cac His 120	ttc Phe	agt Ser	gtg Val	cgg Arg	gtg Val 125	aca Thr	gac Asp	gct Ala	cca Pro	tcc Ser 130	tcg Ser	gga Gly	gat Asp	438
	gac Asp	gaa Glu 135	gac Asp	ggg	gag Glu	gac Asp	gag Glu 140	gct Ala	gag Glu	gac Asp	aca Thr	ggt Gly 145	gtg Val	gac Asp	aca Thr	ggg Gly	486
15				tgg Trp													534
20				gcc Ala													582
25				tcc Ser 185													630
20		His	Arg	att Ile	Gly	Gly	Ile	Lys	Leu	Arg	His	Gln		Trp			678
30																gtc Val	726
35																gtg Val 245	774
																gcc Ala	822
40																gtg Val	870
45	tac Tyr	agt Ser	gac Asp 280	gca Ala	cag Gln	ccc Pro	cac His	atc Ile 285	cag Gln	tgg Trp	ctc Leu	aag Lys	cac His 290	gtg Val	gag Glu	gtg Val	918
50	aac Asn	ggc Gly 295	agc Ser	aag Lys	gtg Val	ggc Gly	ccg Pro 300	gac Asp	ggc Gly	aca Thr	ccc Pro	tac Tyr 305	gtt Val	acc Thr	gtg Val	ctc Leu	966
																tcc Ser 325	1014
55	ttg	cac	aac	gtc	acc	ttt	gag	gac	gcc	aaa	gag	tac	acc	tgc	ctg	gcg	1062

	Leu	His	Asn	Val	Thr 330	Phe	Glu	Asp	Ala	Gly 335	Glu	Tyr	Thr	Cys	Leu 340	Ala	
5		aat Asn															1110
10		gcc Ala															1158
		ggc Gly 375															1206
15		gcg Ala															1254
20		ggc Gly						_			_				_	_	1302
25		gtg Val															1350
25		cgc Arg	Ile	Ala		Leu	Ser	Ser	Gly	Glu	Gly	Pro		Leu			1398
30		tcc Ser 455															1446
35		cgg Arg															1494
		gtc Val															1542
40		gtc Val															1590
45		ctg Leu															1638
50		cac His 535															1686
		ctg Leu															1734
<i>55</i>	ttt	ctg	cgg	gcg	cgg	cgg	ccc	ccg	ggc	ctg	gac	tac	tcc	ttc	gac	acc	1782

	Phe	Leu	Arg	Ala	Arg 570	Arg	Pro	Pro	Gly	Leu 575	Asp	Tyr	Ser	Phe	Asp 580	Thr	
5	_	_	_		gag Glu		_				_	_	_			_	1830
10					gcc Ala												1878
					ctg Leu												1926
15					gca Ala												1974
20					aag Lys 650												2022
25					ttg Leu												2070
		Ser	Phe	Gly	gtc Val	Leu	Leu	Trp	Glu	Ile	Phe	Thr	Leu	Gly			2118
30					atc Ile												2166
35				-	gac Asp	-		_		_			_	_		_	2214
					tgc Cys 730			-				_					2262
40					gag Glu												2310
45	_	_			gac Asp												2358
50		_	_		ccc Pro	_		_				-	_				2406
			_	_	ctg Leu		_	_			_	_			_		2454
55	acg	tga	aggg	gccac	ctg c	gtccc	caac	ca at	gtga	aggg	g ted	ctaç	gcag	ccct	ccct	.gc	2510

Thr

5	tgctggtgca	cagccactcc	ccggcatgag	actcagtgca	gatggagaga	cagctacaca	2570
5	gagctttggt	ctgtgtgtgt	gtgtgtgcgt	gtgtgtgtgt	gtgtgcacat	ccgcgtgtgc	2630
	ctgtgtgcgt	gcgcatcttg	cctccaggtg	cagaggtacc	ctgggtgtcc	ccgctgctgt	2690
10	gcaacggtct	cctgactggt	gctgcagcac	cgaggggcct	ttgttctggg	gggacccagt	2750
	gcagaatgta	agtgggccca	cccggtggga	ccccgtgggg	cagggagctg	ggcccgacat	2810
	ggctcggcct	ctgcctttgc	accacgggac	atcacagggt	gcgctcggcc	cctcccacac	2870
15	ccaaagctga	gcctgcaggg	aagccccaca	tgtccagcac	cttgtgcctg	gggtgttagt	2930
	ggcaccgcct	cccacctcc	aggctttccc	acttcccacc	ctgcccctca	gagactgaaa	2990
	ttacgggtac	ctgaagatgg	gagcctttac	cttttatgca	aaaggtttat	tccggaaact	3050
20	agtgtacatt	tctataaata	gatgctgtgt	atatggtata	tatacatata	tatatataac	3110
	atatatggaa	gaggaaaagg	ctggtacaac	ggaggcctgc	gaccctgggg	gcacaggagg	3170
05	caggcatggc	cctgggcggg	gcgtgggggg	gcgtggaggg	aggccccagg	ggtctcaccc	3230
25	atgcaagcag	aggaccaggg	ctttttctgg	caccgcagtt	ttgttttaaa	actggacctg	3290
	tatatttgta	aagctattta	tgggcccctg	gcactcttgt	tcccacaccc	caacacttcc	3350
30	agcatttagc	tggccacatg	gcggagagtt	ttaattttta	acttattgac	aaccgagaag	3410
	gtttatcccg	ccgatagagg	gacggccaag	aatgtacgtc	cagcctgccc	cggagctgga	3470
	ggatcccctc	caagcctaaa	aggttgttaa	tagttggagg	tgattccagt	gaagatattt	3530
35	tatttgcttt	gtcctttttc	aggagaatta	gatttctata	ggatttttct	ttaggagatt	3590
	tattttttgg	acttcaaagc	aagctggtat	tttcatacaa	attcttctaa	ttgctgtgtg	3650
	tcccaggcag	ggagacggtt	tccagggagg	ggccggccct	gtgtgcaggt	tccgatgtta	3710
40	ttagatgtta	caagtttata	tatatctata	tatataattt	attgagtttt	tacaagatgt	3770
	atttgttgta	gacttaacac	ttcttacgca	atgcttctag	agttttatag	cctggactgc	3830
45	tacctttcaa	agcttggagg	gaagccgtga	attcagttgg	ttcgttctgt	actgttactg	3890
43	ggccctgagt	ctgggcagct	gtcccttgct	tgcctgcagg	gccatggctc	agggtggtct	3950
	cttcttgggg	cccagtgcat	ggtggcċaga	ggtgtcaccc	aaaccggcag	gtgcgatttt	4010
50	gttaacccag	cgacgaactt	tccgaaaaat	aaagacacct	ggttgctaac	ctgaaaaaaa	4070
	aaaaaaaaa	aaaaaaaaa	aaa				4093
<i>55</i>	<210> 2 <211> 806						

	<212> <213>		RT omo	sapi	ens											
	<400>	> 2														
5	Met G 1	Sly A	Ala	Pro	Ala 5	Cys	Ala	Leu	Ala	Leu 10	Cys	Val	Ala	Val	Ala 15	Ile
10	Val A	Ala (Gly	Ala 20	Ser	Ser	Glu	Ser	Leu 25	Gly	Thr	Glu	Gln	Arg 30	Val	Val
15	Gly A		Ala 35	Ala	Glu	Val	Pro	Gly 40	Pro	Glu	Pro	Gly	Gln 45	Gln	Glu	Gln
	Leu V 5	7al :	Phe	Gly	Ser	Gly	Asp 55	Ala	Val	Glu	Leu	Ser 60	Cys	Pro	Pro	Pro
20	Gly G 65	Sly (Gly	Pro	Met	Gly 70	Pro	Thr	Val	Trp	Val 75	Lys	Asp	Gly	Thr	Gly 80
25	Leu V	/al	Pro	Ser	Glu 85	Arg	Val	Leu	Val	Gly 90	Pro	Gln	Arg	Leu	Gln 95	Val
20	Leu A	Asn .	Ala	Ser 100	His	Glu	Asp	Ser	Gly 105	Ala	Tyr	Ser	Cys	Arg 110	Gln	Arg
30	Leu T		Gln 115	Arg	Val	Leu	Cys	His 120	Phe	Ser	Val	Arg	Val 125	Thr	Asp	Ala
35	Pro S	Ser 130	Ser	Ģly	Asp	Asp	Glu 135	Asp	Gly	Glu	Asp	Glu 140	Ala	Glu	Asp	Thr
40	Gly V 145	/al .	Asp	Thr	Gly	Ala 150	Pro	Tyr	Trp	Thr	Arg 155	Pro	Glu	Arg	Met	Asp 160
	Lys I	Lys	Leu	Leu	Ala 165	Val	Pro	Ala	Ala	Asn 170	Thr	Val	Arg	Phe	Arg 175	Cys
45	Pro A	Ala	Ala	Gly 180	Asn	Pro	Thr	Pro	Ser 185	Ile	Ser	Trp	Leu	Lys 190	Asn	Gly
50	Arg G		Phe 195	Arg	Gly	Glu	His	Arg 200	Ile	Gly	Gly	Ile	Lys 205	Leu	Arg	His
<i>55</i>	Gln G	Gln 210	Trp	Ser	Leu	Val	Met 215	Glu	Ser	Val	Val	Pro 220	Ser	Asp	Arg	Gly

	Asn 225	Tyr	Thr	Cys	Val	Val 230	Glu	Asn	Lys	Phe	Gly 235	Ser	Ile	Arg	Gln	Thr 240
5	Tyr	Thr	Leu	Asp	Val 245	Leu	Glu	Arg	Ser	Pro 250	His	Arg	Pro	Ile	Leu 255	Gln
10	Ala	Gly	Leu	Pro 260	Ala	Asn	Gln	Thr	Ala 265	Val	Leu	Gly	Ser	Asp 270	Val	Glu
15	Phe	His	Cys 275	Lys	Val	Tyr	Ser	Asp 280	Ala	Gln	Pro	His	Ile 285	Gln	Trp	Leu
	Lys	His 290	Val	Glu	Val	Asn	Gly 295	Ser	Lys	Val	Gly	Pro 300	Asp	Gly	Thr	Pro
20	Tyr 305	Val	Thr	Val	Leu	Lys 310	Thr	Ala	Gly	Ala	Asn 315	Thr	Thr	Asp	Lys	Glu 320
25	Leu	Glu	Val	Leu	Ser 325	Leu	His	Asn	Val	Thr 330	Phe	Glu	Asp	Ala	Gly 335	Glu
30	Tyr	Thr	Cys	Leu 340	Ala	Gly	Asn	Ser	Ile 345	Gly	Phe	Ser	His	His 350	Ser	Ala
	Trp	Leu	Val 355	Val	Leu	Pro	Ala	Glu 360	Glu	Glu	Leu	Val	Glu 365	Ala	Asp	Glu
35	Ala	Gly 370	Ser	Val	Tyr	Ala	Gly 375	Ile	Leu	Ser	Tyr	Gly 380	Val	Gly	Phe	Phe
40	Leu 385	Phe	Ile	Leu	Val	Val 390	Ala	Ala	Val	Thr	Leu 395	Суѕ	Arg	Leu	Arg	Ser 400
	Pro	Pro	Lys	Lys	Gly 405	Leu	Gly	Ser	Pro	Thr 410	Val	His	Lys	Ile	Ser 415	Arg
45	Phe	Pro	Leu	Lys 420	Arg	Gln	Val	Ser	Leu 425	Glu	Ser	Asn	Ala	Ser 430	Met	Ser
50	Ser	Asn	Thr 435	Pro	Leu	Val	Arg	Ile 440	Ala	Arg	Leu	Ser	Ser 445	Gly	Glu	Gly
<i>55</i>	Pro	Thr 450	Leu	Ala	Asn	Val	Ser 455	Glu	Leu	Glu	Leu	Pro 460	Ala	Asp	Pro	Lys

	Trp 465	Glu	Leu	Ser	Arg	Ala 470	Arg	Leu	Thr	Leu	Gly 475	Lys	Pro	Leu	Gly	Glu 480
5	Gly	Cys	Phe	Gly	Gln 485	Val	Val	Met	Ala	Glu 490	Ala	Ile	Gly	Ile	Asp 495	Lys
10	Asp	Arg	Ala	Ala 500	Lys	Pro	Val	Thr	Val 505	Ala	Val	Lys	Met	Leu 510	Lys	Asp
15	Asp	Ala	Thr 515	Asp	Lys	Asp	Leu	Ser 520	Asp	Leu	Val	Ser	Glu 525	Met	Glu	Met
	Met	Lys 530	Met	Ile	Gly	Lys	His 535	Lys	Asn	Ile	Ile	Asn 540	Leu	Leu	Gly	Ala
20	Cys 545	Thr	Gln	Gly	Gly	Pro 550	Leu	Tyr	Val	Leu	Val 555	Glu	Tyr	Ala	Ala	Lys 560
<i>25</i>	Gly	Asn	Leu	Arg	Glu 565	Phe	Leu	Arg	Ala	Arg 570	Arg	Pro	Pro	Gly	Leu 575	Asp
30	Tyr	Ser	Phe	Asp 580	Thr	Cys	Lys	Pro	Pro 585	Glu	Glu	Gln	Leu	Thr 590	Phe	Lys
	Asp	Leu	Val 595	Ser	Cys	Ala	Tyr	Gln 600	Val	Ala	Arg	Gly	Met 605	Glu	Tyr	Leu
35	Ala	Ser 610	Gln	Lys	Cys	Ile	His 615	Arg	Asp	Leu	Ala	Ala 620	Arg	Asn	Val	Leu
40	Val 625	Thr	Glu	Asp	Asn	Val 630	Met	Lys	Ile	Ala	Asp 635	Phe	Gly	Leu	Ala	Arg 640
	Asp	Val	His	Asn	Leu 645	Asp	Tyr	Tyr	Lys	Lys 650	Thr	Thr	Asn	Gly	Arg 655	Leu
45	Pro	Val	Lys	Trp 660	Met	Ala	Pro	Glu	Ala 665	Leu	Phe	Asp	Arg	Val 670	Tyr	Thr
50	His	Gln	Ser 675	Asp	Val	Trp	Ser	Phe 680	Gly	Val	Leu	Leu	Trp 685	Glu	Ile	Phe
<i>55</i>	Thr	Leu 690	Gly	Gly	Ser	Pro	Tyr 695	Pro	Gly	Ile	Pro	Val 700	Glu	Glu	Leu	Phe

	Lys Leu L 705	eu Lys	Glu	Gly 710	His	Arg	Met	Asp	Lys 715	Pro	Ala	Asn	Cys	Thr 720
5	His Asp L	eu Tyr	Met 725	Ile	Met	Arg	Glu	Cys 730	Trp	His	Ala	Ala	Pro 735	Ser
10	Gln Arg P	ro Thr 740	Phe	Lys	Gln	Leu	Val 745	Glu	Asp	Leu	Asp	Arg 750	Val	Leu
15	Thr Val T	hr Ser 55	Thr	Asp	Glu	Туг 760	Leu	Asp	Leu	Ser	Ala 765	Pro	Phe	Glu
	Gln Tyr S 770	er Pro	Gly	Gly	Gln 775	Asp	Thr	Pro	Ser	Ser 780	Ser	Ser	Ser	Gly
20	Asp Asp S 785	er Val	Phe	Ala 790	His	Asp	Leu	Leu	Pro 795	Pro	Ala	Pro	Pro	Ser 800
25	Ser Gly G	ly Ser	Arg 805	Thr										
	<210> 3													
30	<211> 78 <212> PR <213> Ho		iens											
30	<212> PR	T	iens											
<i>30 35</i>	<212> PR <213> Ho	T mo sap		Glu	Gln	Arg	Val	Val 10	Gly	Arg	Ala	Ala	Glu 15	Val
35	<212> PR <213> Ho <400> 3 Glu Ser L	T mo sap eu Gly	Thr 5					10					15	
	<212> PR <213> Ho <400> 3 Glu Ser L 1 Pro Gly P Asp Ala V	T mo sap eu Gly ro Glu 20	Thr 5 Pro	Gly	Gln	Gln	Glu 25	10 Gln	Leu	Val	Phe	Gly 30	15 Ser	Gly
35	<212> PR <213> Ho <400> 3 Glu Ser L 1 Pro Gly P Asp Ala V	T mo sap eu Gly To Glu 20 Tal Glu 5	Thr 5 Pro	Gly	Gln Cys	Gln Pro 40	Glu 25 Pro	10 Gln Pro	Leu Gly	Val Gly	Phe Gly 45	Gly 30 Pro	15 Ser Met	Gly Gly
35 40	<212> PR <213> Ho <400> 3 Glu Ser L 1 Pro Gly P Asp Ala V 3	To saper sap	Thr 5 Pro Leu Val	Gly Ser Lys	Gln Cys Asp 55	Gln Pro 40 Gly	Glu 25 Pro	Gln Pro	Leu Gly Leu	Val Gly Val 60	Phe Gly 45	Gly 30 Pro	Ser Met	Gly Gly Arg
35 40 45	<212> PR <213> Ho <400> 3 Glu Ser L 1 Pro Gly P Asp Ala V 3 Pro Thr V 50 Val Leu V	To saper sap	Thr 5 Pro Leu Val	Gly Ser Lys Gln 70	Gln Cys Asp 55	Gln Pro 40 Gly Leu	Glu 25 Pro Thr	Gln Pro Gly Val	Leu Gly Leu 75	Val Gly Val 60	Phe Gly 45 Pro	Gly 30 Pro Ser	Ser Met Glu	Gly Arg . Glu 80

	Cys	His	Phe	Ser 100	Val	Arg	Val	Thr	Asp 105	Ala	Pro	Ser	Ser	Gly 110	Asp	Asp
5	Glu	Asp	Gly 115	Glu	Asp	Glu	Ala	Glu 120	Asp	Thr	Gly	Val	Asp 125	Thr	Gly	Ala
10	Pro	Tyr 130	Trp	Thr	Arg	Pro	Glu 135	Arg	Met	Asp	Lys	Lys 140	Leu	Leu	Ala	Val
	Pro 145	Ala	Ala	Asn	Thr	Val 150	Arg	Phe	Arg	Cys	Pro 155	Ala	Ala	Gly	Asn	Pro 160
15	Thr	Pro	Ser	Ile	Ser 165	Trp	Leu	Lys	Asn	Gly 170	Arg	Glu	Phe	Arg	Gly 175	Glu
20	His	Arg	Ile	Gly 180	Gly	Ile	Lys	Leu	Arg 185	His	Gln	Gln	Trp	Ser 190	Leu	Val
25	Met	Glu	Ser 195	Val	Val	Pro	Ser	Asp 200	Arg	Gly	Asn	Tyr	Thr 205	Cys	Val	Val
	Glu	Asn 210	Lys	Phe	Gly	Ser	Ile 215	Arg	Gln	Thr	Tyr	Thr 220	Leu	Asp	Val	Leu
30	Glu 225	Arg	Ser	Pro	His	Arg 230	Pro	Ile	Leu	Gln	Ala 235	Gly	Leu	Pro	Ala	Asn 240
35	Gln	Thr	Ala	Val	Leu 245	Gly	Ser	Asp	Val	Glu 250	Phe	His	Cys	Lys	Val 255	Tyr
40	Ser	Asp	Ala	Gln 260	Pro	His	Ile	Gln	Trp 265	Leu	Lys	His	Val	Glu 270	Val	Asn
40	Gly	Ser	Lys 275	Val	Gly	Pro	Asp	Gly 280	Thr	Pro	Tyr	Val	Thr 285	Val	Leu	Lys
45	Thr	Ala 290	Gly	Ala	Asn	Thr	Thr 295	Asp	Lys	Glu	Leu	Glu 300	Val	Leu	Ser	Leu
50	His 305	Asn	Val	Thr	Phe	Glu 310	Asp	Ala	Gly	Glu	Tyr 315	Thr	Cys	Leu	Ala	Gly 320
	Asn	Ser	Ile	Gly	Phe 325	Ser	His	His	Ser	Ala 330	Trp	Leu	Val	Val	Leu 335	Pro
55																

	Ala	Glu	Glu	Glu 340	Leu	Val	Glu	Ala	Asp 345	Glu	Ala	Gly	Ser	Val 350	Tyr	Ala
5	Gly	Ile	Leu 355	Ser	Tyr	Gly	Val	Gly 360	Phe	Phe	Leu	Phe	Ile 365	Leu	Val	Val
10	Ala	Ala 370	Val	Thr	Leu	Cys	Arg 375	Leu	Arg	Ser	Pro	Pro 380	Lys	Lys	Gly	Leu
	Gly 385	Ser	Pro	Thr	Val	His 390	Lys	Ile	Ser	Arg	Phe 395	Pro	Leu	Lys	Arg	Gln 400
15	Val	Ser	Leu	Glu	Ser 405	Asn	Ala	Ser	Met	Ser 410	Ser	Asn	Thr	Pro	Leu 415	Val
20	Arg	Ile	Ala	Arg 420	Leu	Ser	Ser	Gly	Glu 425	Gly	Pro	Thr	Leu	Ala 430	Asn	Val
25	Ser	Glu	Leu 435	Glu	Leu	Pro	Ala	Asp 440	Pro	Lys	Trp	Glu	Leu 445	Ser	Arg	Ala
	Arg	Leu 450	Thr	Leu	Gly	Lys	Pro 455	Leu	Gly	Glu	Gly	Cys 460	Phe	Gly	Gln	Val
30	Val 465	Met	Ala	Glu	Ala	Ile 470	Gly	Ile	Asp	Lys	Asp 475	Arg	Ala	Ala	Lys	Pro 480
35	Val	Thr	Val	Ala	Val 485	Lys	Met	Leu	Lys	Asp 490	Asp	Ala	Thr	Asp	Lys 495	Asp
40	Leu	Ser	Asp	Leu 500	Val	Ser	Glu	Met	Glu 505	Met	Met	Lys	Met	Ile 510	Gly	Lys
	His	Lys	Asn 515	Ile	Ile	Asn	Leu	Leu 520	Gly	Ala	Cys	Thr	Gln 525	Gly	Gly	Pro
45	Leu	Tyr 530	Val	Leu	Val	Glu	Tyr 535	Ala	Ala	Lys	Gly	Asn 540	Leu	Arg	Glu	Phe
50	Leu 545	Arg	Ala	Arg	Arg	Pro 550	Pro	Gly	Leu	Asp	Tyr 555	Ser	Phe	Asp	Thr	Cys 560
	Lys	Pro	Pro	Glu	Glu 565	Gln	Leu	Thr	Phe	Lys 570	Asp	Leu	Val	Ser	Cys 575	Ala
55																

49

Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn Cys Thr His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser Ser Gly Gly Ser Arg Thr

Claims

1. A pharmaceutical composition comprising a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3,

General Formula (I)

5

15

20

25

30

35

40

45

50

55

(l) 10

> [wherein, R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR6SO₂-, group represented by Formula -NR6CO- or group represented by Formula -NR6-(wherein, R⁶ represents a hydrogen atom, C₁₋₆ alkyl group that may have a substituent or C₃₋₈ cycloalkyl group that may have a substituent); V^3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent); R^2 represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6}

> alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; Va12 represents a hydrogen atom, C₁₋₆ alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4

(wherein, R⁷ and R⁸ each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C₁₋₆ alkyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C₁₋₆ alkoxy group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C₂₋₇ alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{a1} and V^{a2} each independently represent a hydrogen atom or C₁₋₆ alkyl group that may have a substituent);

W¹ and W² each independently represent a carbon atom or a nitrogen atom that may have a substituent); $\rm R^3$ and $\rm R^4$ each independently represent a hydrogen atom, $\rm C_{1-6}$ alkyl group that may have a substituent, $\rm C_{2-6}$ alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

- 2. The pharmaceutical composition according to Claim 1, wherein R^1 is C_{1-6} alkyl group (wherein, R^1 may have at least one substituent selected from the group consisting of 3-10-membered nonaromatic heterocyclic group, hydroxyl group, C_{1-6} alkoxy group, amino group, mono- C_{1-6} alkylamino group and di- C_{1-6} alkylamino group which may have C_{1-6} alkyl group).
- 3. The pharmaceutical composition according to Claim 1, wherein R¹ is methyl group or group represented by any one of the following Formulae

5

10

15

25

30

35

40

45

50

55

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(wherein, R^{a3} represents methyl group; R^{a1} represents a hydrogen atom or hydroxyl group; R^{a2} represents methoxy group, ethoxy group, 1-pyrrolidinyl group, 1-piperidinyl group, 4-morpholinyl group, dimethylamino group or diethylamino group).

- 20 **4.** The pharmaceutical composition according to Claim 1, wherein R¹ is methyl group or 2-methoxyethyl group.
 - 5. The pharmaceutical composition according to Claim 1, wherein R² is cyano group or group represented by Formula -CONVa¹¹Va¹² (wherein, Va¹¹ represents a hydrogen atom, C₁-6 alkyl group that may have a substituent, C₂-6 alkenyl group that may have a substituent, C₃-8 cycloalkyl group that may have a substituent, C₃-8 cycloalkyl group that may have a substituent, C₁-10 aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; Va¹² represents a hydrogen atom, C₁-6 alkyl group that may have a substituent, C₂-6 alkenyl group that may have a substituent, C₂-6 alkynyl group that may have a substituent, C₃-8 cycloalkyl group that may have a substituent, C₁-10 aryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C₁-6 alkoxy group that may have a substituent or C₃-8 cycloalkoxy group that may have a substituent).
 - 6. The pharmaceutical composition according to Claim 1, wherein R² is cyano group or group represented by Formula -CONHV^{a16} (wherein, V^{a16} represents a hydrogen atom, C₁₋₆ alkyl group, C₃₋₈ cycloalkyl group, C₁₋₆ alkoxy group or C₃₋₈ cycloalkoxy group, where V^{a16} may have at least one substituent selected from the group consisting of a halogen atom, cyano group, hydroxyl group and C₁₋₆ alkoxy group).
 - 7. The pharmaceutical composition according to Claim 1, wherein R^2 is group represented by Formula -CONHV^{a17} (wherein, V^{a17} represents a hydrogen atom, C_{1-6} alkyl group or C_{1-6} alkoxy group).
 - **8.** The pharmaceutical composition according to Claim 1, wherein R² is group represented by Formula -CONHV^{a18} (wherein, V^{a18} represents a hydrogen atom, methyl group or methoxy group).
 - 9. The pharmaceutical composition according to Claim 1, wherein Y¹ is group represented by Formula

(wherein, R⁷¹ represents a hydrogen atom or a halogen atom).

- 10. The pharmaceutical composition according to Claim 1, wherein R³ and R⁴ represent a hydrogen atom.
- 11. The pharmaceutical composition according to Claim 1, wherein R⁵ is a hydrogen atom, C₁₋₆ alkyl group, C₃₋₈

cycloalkyl group or C_{6-10} aryl group (where R^5 may have at least one substituent selected from the group consisting of a halogen atom and methanesulfonyl group).

- 12. The pharmaceutical composition according to Claim 1, wherein R⁵ is methyl group, ethyl group or cyclopropyl group.
- 13. The pharmaceutical composition according to Claim 1, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:
 - N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-(4-fluorophenyl)urea;

5

10

15

20

25

30

35

40

45

50

- N-(2-chloro-4-((6-cyano-7-((1-methyl-4-piperidyl)methoxy)-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
- N-(4-((6-cyano-7-(((2R)-3-(diethylamino)-2-hydroxypropyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;
- N-(4-((6-cyano-7-(((2R)-2-hydroxy-3-(1-pyrrolidino)propyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;
- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;
- 4-(3-chloro-4-(cyclopropylaminocrbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quino linecarboxamide;
- N6-cyclopropyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methox y-6-quinolinecarboxamide;
- N6-(2-methoxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-m ethoxy-6-quinolinecar-boxamide;
- N6-(2-fluoroethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;
- N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;
- N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-q uinolinecarboxamide;
- N6-ethyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-qui nolinecarboxamide;
- 4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinol inecarboxamide;
- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinol inecarboxamide;
- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-((2S)-2,3-dihydroxypropyl) oxy-6-quinolinecarboxamide;
- 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e;
- 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;
- N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide;
- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-ethoxyethoxy)-6-quinoli necarboxamide;
- 4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarb oxamide;
- N-(2-fluoro-4-((6-carbamoyl-7-methoxy-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
- N6-(2-hydroxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-me thoxy-6-quinolinecar-boxamide;
- 4-(3-chloro-4-(1-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxami de;
- 4-(3-chloro-4-(cis-2-fluoro-cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-qui nolinecarboxamide; N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-(2-methoxyet hoxy)-6-quinolinecarboxamide;
- N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolin ecarboxamide;
- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-(4-morpholino)ethoxy)-6 -quinolinecarboxamide;
- 4-(3-chloro-4-(2-fluoroethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide;
- N6-((2R)tetrahydro-2-furanylmethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phe noxy)-7-methoxy-6-quinolinecarboxamide;
- 4-(3-fluoro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;
- 4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-py rrolidino)propoxy)-6-quinolinecarboxamide;
- N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylam ino-2-hydroxypro-poxy)-6-quinolinecarboxamide;
- N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylamin o-2-hydroxypropoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino)propoxy)-6-quinolinecarboxamide;

N6- methyl- 4-(3- chloro- 4-(((ethylamino) carbonyl) amino) phenoxy)- 7-((2R)- 2- hydroxy- 3-(1- pyrrolidino) propoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-pipe ridyl)methoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-piperi dyl)methoxy)-6-quinolinecarboxamide;

N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopropylurea;

N-(4-(6-cyano-7-(3-(4-morpholino)propoxy)-4-quinolyl)oxyphenyl)-N'-(3-(methylsulfon yl)phenyl)urea;

4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-fluoro-4-((2-fluoroethylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarb oxamide;

N6-(2-ethoxyethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(4-(3-ethylureido)-3-fluoro-phenoxy)-7-methoxyquinoline-6-carboxylic acid (2-cyanoethyl)amide; and N-(4-(6-(2-cyanoethyl)carbamoyl-7-methoxy-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopr opylurea,

a pharmacologically acceptable salt thereof or a solvate thereof.

5

10

15

20

25

30

35

45

14. The pharmaceutical composition according to Claim 1, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e; and N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide,

a pharmacologically acceptable salt thereof or a solvate thereof.

15. The pharmaceutical composition according to Claim 1, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide), a pharmacologically acceptable salt thereof or a solvate thereof.

16. The pharmaceutical composition according to Claim 1, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide.

- 17. The pharmaceutical composition according to any one of Claims 1-16, wherein mutant FGFR3 comprises a mutation site where at least one amino acid selected from the group consisting of codons 248, 249, 370, 371, 373, 380, 384, 391 and 650 in the amino acid sequence represented by SEQ ID NO: 2 is substituted with other amino acid.
 - **18.** The pharmaceutical composition according to any one of Claims 1-16, wherein mutant FGFR3 is a polypeptide comprising at least one mutation selected from the group consisting of R248C, S249C, G370C, S371C, Y373C, G380R, F384L, A391E, K650E, K650M, K650Q and K650T in the amino acid sequence represented by SEQID NO: 2.
 - 19. The pharmaceutical composition according to any one of Claims 1-16, wherein the cell is a multiple myeloma cell.
- **20.** The pharmaceutical composition according to any one of Claims 1-16, wherein the living organism is a patient suffering from at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.
- 21. A therapeutic drug for treating multiple myeloma, comprising a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof,

 General Formula (I)

10

15

5

[wherein, R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR⁶SO₂-, group represented by Formula -NR⁶CO- or group represented by Formula -NR⁶-(wherein, R^6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V^3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

20

R² represents cyano group, C₁₋₆ alkoxy group that may have a substituent, carboxyl group, C₂₋₇ alkoxycarbonyl group that may have a substituent or group represented by Formula- CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; Va12 represents a hydrogen atom, C₁₋₆ alkyl group that may have a substituent, C₂₋₆ alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

30

25

Y¹ represents group represented by Formula

35

$$W^2$$
 W^2 or

40

45

(wherein, R⁷ and R⁸ each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkoxy group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C₂₋₇ alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C₁₋₆ alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent);

50

 R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

55

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

22. The therapeutic drug according to Claim 21, wherein R^1 is C_{1-6} alkyl group (wherein, R^1 may have at least one

substituent selected from the group consisting of 3-10-membered nonaromatic heterocyclic group, hydroxyl group, C_{1-6} alkoxy group, amino group, mono- C_{1-6} alkylamino group and di- C_{1-6} alkylamino group which may have C_{1-6} alkyl group).

23. The therapeutic drug according to Claim 21, wherein R¹ is methyl group or group represented by any one of the following Formulae

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

5

10

15

20

25

30

35

45

50

(wherein, R^{a3} represents methyl group; R^{a1} represents a hydrogen atom or hydroxyl group; R^{a2} represents methoxy group, ethoxy group, 1-pyrrolidinyl group, 1-piperidinyl group, 4-morpholinyl group, dimethylamino group or diethylamino group).

- 24. The therapeutic drug according to Claim 21, wherein R¹ is methyl group or 2-methoxyethyl group.
- 25. The therapeutic drug according to Claim 21, wherein R^2 is cyano group or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent).
- **26.** The therapeutic drug according to Claim 21, wherein R^2 is cyano group or group represented by Formula -CONHV^{a16} (wherein, V^{a16} represents a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group, C_{1-6} alkoxy group or C_{3-8} cycloalkoxy group, where V^{a16} may have at least one substituent selected from the group consisting of a halogen atom, cyano group, hydroxyl group and C_{1-6} alkoxy group).
- **27.** The therapeutic drug according to Claim 21, wherein R^2 is group represented by Formula -CONHV^{a17} (wherein, V^{a17} represents a hydrogen atom, C_{1-6} alkyl group or C_{1-6} alkoxy group).
- 28. The therapeutic drug according to Claim 21, wherein R² is group represented by Formula -CONHV^{a18} (wherein, V^{a18} represents a hydrogen atom, methyl group or methoxy group).
 - 29. The therapeutic drug according to Claim 21, wherein Y¹ is group represented by Formula

(wherein, R⁷¹ represents a hydrogen atom or a halogen atom).

- 30. The therapeutic drug according to Claim 21, wherein R³ and R⁴ represent a hydrogen atom.
 - **31.** The therapeutic drug according to Claim 21, wherein R^5 is a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group or C_{6-10} aryl group (where R^5 may have at least one substituent selected from the group consisting of a halogen

atom and methanesulfonyl group).

10

15

20

25

30

35

40

45

50

- **32.** A therapeutic drug according to Claim 21, wherein R⁵ is methyl group, ethyl group or cyclopropyl group.
- 33. The therapeutic drug according to Claim 21, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:
 - N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-(4-fluorophenyl) urea;
 - N-(2-chloro-4-((6-cyano-7-((1-methyl-4-piperidyl)methoxy)-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
 - N-(4-((6-cyano-7-(((2R)-3-(diethylamino)-2-hydroxypropyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl)
 - N-(4-((6-cyano-7-(((2R)-2-hydroxy-3-(1-pyrrolidino)propyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quino linecarboxamide;
 - N6-cyclopropyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methox y-6-quinolinecarboxamide;
 - N6-(2-methoxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-m ethoxy-6-quinolinecar-boxamide;
 - N6-(2-fluoroethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;
 - N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-q uinolinecarboxamide;
 - N6-ethyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-qui nolinecarboxamide; 4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinol inecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinol inecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-((2S)-2,3-dihydroxypropyl) oxy-6-quinolinecarboxamide;
 - 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e;
 - 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;
 - N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-ethoxyethoxy)-6-quinoli necarboxamide;
 - 4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarb oxamide;
 - N-(2-fluoro-4-((6-carbamoyl-7-methoxy-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
 - N6-(2-hydroxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-me thoxy-6-quinolinecarboxamide;
 - 4-(3-chloro-4-(1-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxami de;
 - 4-(3-chloro-4-(cis-2-fluoro-cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-qui nolinecarboxamide; N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-(2-methoxyet hoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolin ecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-(4-morpholino)ethoxy)-6 -quinolinecarboxamide;
 - 4-(3-chloro-4-(2-fluoroethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide;
 - N6-((2R)tetrahydro-2-furanylmethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phe noxy)-7-methoxy-6-quinolinecarboxamide;
 - 4-(3-fluoro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;
 - 4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-py rrolidino)propoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylam ino-2-hydroxypropoxy)-6-quinolinecarboxamide; N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylamino-2-hydroxypropoxy)-6-quinolinecarboxamide;
- N6- methyl-4-(3- chloro-4-(((methylamino) carbonyl) amino) phenoxy)-7-((2R)-2- hydroxy-3-(1-pyrrolidino) propoxy)-6-quinolinecarboxamide;
 - N6- methyl- 4-(3- chloro- 4-(((ethylamino) carbonyl) amino) phenoxy)- 7-((2R)- 2- hydroxy- 3-(1- pyrrolidino) propoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-pipe ridyl)methoxy)-6-quinolinecarboxamide:

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-piperi dyl)methoxy)-6-quinolinecarboxamide;

N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopropylurea;

N-(4-(6-cyano-7-(3-(4-morpholino)propoxy)-4-quinolyl)oxyphenyl)-N'-(3-(methylsulfon yl)phenyl)urea;

4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-fluoro-4-((2-fluoroethylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarb oxamide;

N6-(2-ethoxyethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(4-(3-ethylureido)-3-fluoro-phenoxy)-7-methoxyquinoline-6-carboxylic acid (2-cyanoethyl)amide; and N-(4-(6-(2-cyanoethyl)carbamoyl-7-methoxy-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopr opylurea,

a pharmacologically acceptable salt thereof or a solvate thereof.

34. The therapeutic drug according to Claim 21, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;

4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide:

4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e; and N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide,

a pharmacologically acceptable salt thereof or a solvate thereof.

- **35.** The therapeutic drug according to Claim 21, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide), a pharmacologically acceptable salt thereof or a solvate thereof.
 - **36.** The therapeutic drug according to Claim 21, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide.
 - **37.** The therapeutic drug according to any one of Claims 21-36, wherein multiple myeloma comprises at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
 - **38.** The therapeutic drug according to Claim 37, wherein mutant FGFR3 comprises a mutation site where at least one amino acid selected from the group consisting of codons 248, 249, 370, 371, 373, 380, 384, 391 and 650 in the amino acid sequence represented by SEQ ID NO: 2 is substituted with other amino acid.
- **39.** The therapeutic drug according to Claim 37, wherein mutant FGFR3 is a polypeptide comprising at least one mutation selected from the group consisting of R248C, S249C, G370C, S371C, Y373C, G380R, F384L, A391E, K650E, K650M, K650Q and K650T in the amino acid sequence represented by SEQ ID NO: 2.
- **40.** A therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, the drug comprising a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof,

General Formula (I)

55

5

10

15

20

25

30

35

40

10

15

5

[wherein, R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR⁶SO₂-, group represented by Formula -NR⁶CO- or group represented by Formula -NR⁶-(wherein, R^6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V^3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

20

25

R² represents cyano group, C₁₋₆ alkoxy group that may have a substituent, carboxyl group, C₂₋₇ alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; Va12 represents a hydrogen atom, C₁₋₆ alkyl group that may have a substituent, C₂₋₆ alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

30

Y¹ represents group represented by Formula

35

$$\mathbb{R}^7$$
 \mathbb{R}^8
 \mathbb{W}^2
 \mathbb{V}^3
 \mathbb{V}^4

40

45

(wherein, R⁷ and R⁸ each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C₁₋₆ alkyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C₁₋₆ alkoxy group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C₂₋₇ alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C₁₋₆ alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent);

50

 R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

55

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

41. The therapeutic drug according to Claim 40, wherein R^1 is C_{1-6} alkyl group (wherein, R^1 may have at least one

substituent selected from the group consisting of 3-10-membered nonaromatic heterocyclic group, hydroxyl group, C_{1-6} alkoxy group, amino group, mono- C_{1-6} alkylamino group and di- C_{1-6} alkylamino group which may have C_{1-6} alkyl group).

42. The therapeutic drug according to Claim 40, wherein R¹ is methyl group or group represented by any one of the following Formulae

5

10

15

20

25

30

35

45

50

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2} R^{a2} R^{a2} R^{a2} R^{a3} R^{a3}

(wherein, R^{a3} represents methyl group; R^{a1} represents a hydrogen atom or hydroxyl group; R^{a2} represents methoxy group, ethoxy group, 1-pyrrolidinyl group, 1-piperidinyl group, 4-morpholinyl group, dimethylamino group or diethylamino group).

- **43.** The therapeutic drug according to Claim 40, wherein R¹ is methyl group or 2-methoxyethyl group.
- 44. The therapeutic drug according to Claim 40, wherein R^2 is cyano group or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent).
- **45.** The therapeutic drug according to Claim 40, wherein R^2 is cyano group or group represented by Formula -CONHV^{a16} (wherein, V^{a16} represents a hydrogen atom, C₁₋₆ alkyl group, C₃₋₈ cycloalkyl group, C₁₋₆ alkoxy group or C₃₋₈ cycloalkoxy group, where V^{a16} may have at least one substituent selected from the group consisting of a halogen atom, cyano group, hydroxyl group and C₁₋₆ alkoxy group).
- **46.** The therapeutic drug according to Claim 40, wherein R^2 is group represented by Formula -CONHV^{a17} (wherein, V^{a17} represents a hydrogen atom, C_{1-6} alkyl group or C_{1-6} alkoxy group).
- 40 47. The therapeutic drug according to Claim 40, wherein R² is group represented by Formula -CONHV^{a18} (wherein, V^{a18} represents a hydrogen atom, methyl group or methoxy group).
 - 48. The therapeutic drug according to Claim 40, wherein Y¹ is group represented by Formula

(wherein, R⁷¹ represents a hydrogen atom or a halogen atom).

- 49. The therapeutic drug according to Claim 40, wherein R³ and R⁴ represent a hydrogen atom.
 - **50.** The therapeutic drug according to Claim 40, wherein R^5 is a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group or C_{6-10} aryl group (where R^5 may have at least one substituent selected from the group consisting of a halogen

atom and methanesulfonyl group).

10

15

20

25

30

35

40

45

50

55

- **51.** The therapeutic drug according to Claim 40, wherein R⁵ is methyl group, ethyl group or cyclopropyl group.
- 5 52. The therapeutic drug according to Claim 40, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:
 - N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-(4-fluorophenyl) urea;
 - N-(2-chloro-4-((6-cyano-7-((1-methyl-4-piperidyl)methoxy)-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
 - N-(4-((6-cyano-7-(((2R)-3-(diethylamino)-2-hydroxypropyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;
 - N-(4-((6-cyano-7-(((2R)-2-hydroxy-3-(1-pyrrolidino)propyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quino linecarboxamide;
 - N6-cyclopropyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methox y-6-quinolinecarboxamide;
 - N6-(2-methoxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-m ethoxy-6-quinolinecar-boxamide;
 - N6-(2-fluoroethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;
 - N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-q uinolinecarboxamide;
 - N6-ethyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-qui nolinecarboxamide;
 - 4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinol inecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinol inecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-((2S)-2,3-dihydroxypropyl) oxy-6-quinolinecarbox-amide;
 - 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e;
 - 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;
 - N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-ethoxyethoxy)-6-quinoli necarboxamide;
 - 4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarb oxamide;
 - N-(2-fluoro-4-((6-carbamoyl-7-methoxy-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
 - N6-(2-hydroxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-me thoxy-6-quinolinecarboxamide;
 - 4-(3-chloro-4-(1-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxami de;
 - 4-(3-chloro-4-(cis-2-fluoro-cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-qui nolinecarboxamide; N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-(2-methoxyet hoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolin ecarboxamide;
 - 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-(4-morpholino)ethoxy)-6 -quinolinecarboxamide;
 - 4-(3-chloro-4-(2-fluoroethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide;
 - N6-((2R)tetrahydro-2-furanylmethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phe noxy)-7-methoxy-6-quinolinecarboxamide;
 - 4-(3-fluoro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;
 - 4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-py rrolidino)propoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylam ino-2-hydroxypro-poxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylamin o-2-hydroxypropoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino)propoxy)-6-quinolinecarboxamide;
 - N6-methyl-4-(3-chloro-4-(((ethylamino) carbonyl) amino) phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino) pro-

poxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-pipe ridyl)methoxy)-6-quinolinecarboxamide;

N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-piperi dyl)methoxy)-6-quinolinecarboxamide;

N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopropylurea;

N-(4-(6-cyano-7-(3-(4-morpholino)propoxy)-4-quinolyl)oxyphenyl)-N'-(3-(methylsulfon yl)phenyl)urea;

4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-fluoro-4-((2-fluoroethylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarb oxamide;

N6-(2-ethoxyethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(4-(3-ethylureido)-3-fluoro-phenoxy)-7-methoxyquinoline-6-carboxylic acid (2-cyanoethyl)amide; and N-(4-(6-(2-cyanoethyl)carbamoyl-7-methoxy-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopr opylurea,

a pharmacologically acceptable salt thereof or a solvate thereof.

53. The therapeutic drug according to Claim 40, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;

4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide;

4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e; and N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide,

a pharmacologically acceptable salt thereof or a solvate thereof.

- 54. The therapeutic drug according to Claim 40, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide), a pharmacologically acceptable salt thereof or a solvate thereof.
 - 55. The therapeutic drug according to Claim 40, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is methanesulfonate of 4-(3-chloro-4-(cyclopropylamino-carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide.
 - **56.** The therapeutic drug according to any one of Claims 40-55, wherein the disease is a disease comprising at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3.
 - **57.** The therapeutic drug according to Claim 56, wherein mutant FGFR3 comprises a mutation site where at least one amino acid selected from the group consisting of codons 248, 249, 370, 371, 373, 380, 384, 391 and 650 in the amino acid sequence represented by SEQ ID NO: 2 is substituted with other amino acid.
 - **58.** The therapeutic drug according to Claim 56, wherein mutant FGFR3 is a polypeptide comprising at least one mutation selected from the group consisting of R248C, S249C, G370C, S371C, Y373C, G380R, F384L, A391E, K650E, K650M, K650Q and K650T in the amino acid sequence represented by SEQ ID NO: 2.
- 59. A method for treating a disease comprising administering an effective amount of a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3

 General Formula (I)

55

5

10

15

20

25

35

40

45

10

15

5

[wherein, R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO₂NR6-, group represented by Formula -NR6SO₂-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

20

25

 R^2 represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, . C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{6-10} aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-10} aryl group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

30

Y1 represents group represented by Formula

35

40

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

45

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

50

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent].

55

60. A method for treating multiple myeloma comprising administering an effective amount of a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof to a patient,

General Formula (I)

15

20

25

30

35

40

45

50

55

5 **(l)** 10

> [wherein, R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR6SO₂-, group represented by Formula -NR6CO- or group represented by Formula -NR6-(wherein, R^6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V^3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent); R^2 represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; Va12 represents a hydrogen atom, C1-6 alkyl group that

> may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4

(wherein, R⁷ and R⁸ each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C₁₋₆ alkyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C₁₋₆ alkoxy group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C₂₋₇ alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C₁₋₆ alkyl group that may have a substituent);

W¹ and W² each independently represent a carbon atom or a nitrogen atom that may have a substituent); $\rm R^3$ and $\rm R^4$ each independently represent a hydrogen atom, $\rm C_{1-6}$ alkyl group that may have a substituent, $\rm C_{2-6}$ alkenyl group that may have a substituent, C₂₋₆ alkynyl group that may have a substituent, C₃₋₈ cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

61. A method for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia (TD) and skeletal dysplasia, comprising administering an effective amount of a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof to a patient General Formula (I)

5

10

15

20

25

30

35

40

45

50

55

Y¹ represents group represented by Formula

[wherein, R^1 represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO₂NR6-, group represented by Formula -NR6SO₂-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

- R^7 R^8 W^2 W^2 W^3 W^4 W^4
- (wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);
- W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may

have a substituent:

5

10

15

20

25

30

35

40

45

50

55

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

62. Use of a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof for producing a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, General Formula (I)

[wherein, R^1 represents group represented by Formula -V1-V2-V3 (wherein, V1 represents C_{1-6} alkylene group that may have a substituent; V2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO2NR6-, group represented by Formula -NR6SO2-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y1 represents group represented by Formula

$$R^7$$
 R^8
 W^2
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group

that may have a substituent);

5

10

15

20

25

30

35

40

45

50

55

W¹ and W² each independently represent a carbon atom or a nitrogen atom that may have a substituent);

 R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

63. Use of a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof for producing a therapeutic drug for treating multiple myeloma General Formula (I)

[wherein, R¹ represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO₂NR6-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONVa11Va12 (wherein, Va11 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl

group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C₁₋₆ alkyl group that may have a substituent);

W¹ and W² each independently represent a carbon atom or a nitrogen atom that may have a substituent);

 R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

64. Use of a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof for producing a therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia,

General Formula (I)

5

10

15

20

25

30

35

40

45

50

55

[wherein, R^1 represents group represented by Formula $-V^1-V^2-V^3$ (wherein, V^1 represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula $-CONR^6$ -, group represented by Formula $-SO_2NR^6$ -, group represented by Formula $-NR^6CO$ - or group represented by Formula $-NR^6CO$ - (wherein, R^6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V^3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkyl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

$$R^7$$
 R^8
 W^2
 V^3
 V^4
 V^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent].

65. A compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof for a pharmaceutical composition which is to be administered to a living organism having at least one cell selected from the group consisting of a cell overexpressing FGFR3, a cell that has a t(4;14) translocation and a cell expressing mutant FGFR3, General Formula (I)

[wherein, R^1 represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO₂NR6-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R^6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

55

5

10

15

20

25

30

35

40

45

50

have a substituent;

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CON-V^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

66. A compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof for a therapeutic drug for treating multiple myeloma, General Formula (I)

[wherein, R^1 represents group represented by Formula -V1-V2-V3 (wherein, V1 represents C_{1-6} alkylene group that may have a substituent; V2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR6-, group represented by Formula -SO2NR6-, group represented by Formula -NR6SO2-, group represented by Formula -NR6CO- or group represented by Formula -NR6- (wherein, R6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group

that may have a substituent);

Y¹ represents group represented by Formula

10

15

20

25

30

35

40

45

50

55

W² ³4,

or

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

67. A compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof for a therapeutic drug for treating at least one disease selected from the group consisting of bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia, General Formula (I)

[wherein, R^1 represents group represented by Formula $-V^1-V^2-V^3$ (wherein, V^1 represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula $-CONR^6$ -, group represented by Formula $-SO_2NR^6$ -, group represented by Formula $-NR^6CO$ - or group represented by Formula $-NR^6CO$ - or group represented by Formula $-NR^6CO$ - (wherein, R^6 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent); V^3 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkynyl group that may have a substituent or C_{1-6} alkoxy group that may have a substituent or C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula $-CONV^{a11}V^{a12}$ (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that

may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that

may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y¹ represents group represented by Formula

5

10

15

20

25

30

35

40

45

50

55

$$R^7$$
 R^8
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

68. A method for predicting whether or not a patient is highly sensitive to a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof, the method comprising using at least one index selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell,

General Formula (I)

[wherein, R^1 represents group represented by Formula -V¹-V²-V³ (wherein, V¹ represents C_{1-6} alkylene group that may have a substituent; V² represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group, sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR⁶SO₂-, group represented by Formula -NR⁶CO- or group represented by Formula -NR⁶- (wherein, R⁶ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, C_{1-6} alkyl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{3-10} aryl group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y1 represents group represented by Formula

5

10

15

20

25

30

35

40

45

50

55

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

- **69.** The method according to Claim 68, wherein R^1 is C_{1-6} alkyl group (wherein, R^1 may have at least one substituent selected from the group consisting of 3-10-membered nonaromatic heterocyclic group, hydroxyl group, C_{1-6} alkylamino group, amino group, mono- C_{1-6} alkylamino group and di- C_{1-6} alkylamino group which may have C_{1-6} alkylamino.
- **70.** The method according to Claim 68, wherein R¹ is methyl group or group represented by any one of the following Formulae

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(wherein, R^{a3} represents methyl group; R^{a1} represents a hydrogen atom or hydroxyl group; R^{a2} represents methoxy group, ethoxy group, 1-pyrrolidinyl group, 1-piperidinyl group, 4-morpholinyl group, dimethylamino group or diethylamino group).

- 71. The method according to Claim 68, wherein R¹ is methyl group or 2-methoxyethyl group.
- 72. The method according to Claim 68, wherein R² is cyano group or group represented by Formula -CONV^{a11}V^{a12}

(wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; Va12 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} acryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C₁₋₆ alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent).

10

5

73. The method according to Claim 68, wherein R² is cyano group or group represented by Formula -CONHVa¹⁶ (wherein, V^{a16} represents a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group, C_{1-6} alkoxy group or C_{3-8} cycloalkoxy group, where Va16 may have at least one substituent selected from the group consisting of a halogen atom, cyano group, hydroxyl group and C_{1-6} alkoxy group).

15

74. The method according to Claim 68, wherein R² is group represented by Formula -CONHV^{a17} (wherein, V^{a17} represents a hydrogen atom, C_{1-6} alkyl group or C_{1-6} alkoxy group).

20

75. The method according to Claim 68, wherein R² is group represented by Formula -CONHV^{a18} (wherein, V^{a18} represents a hydrogen atom, methyl group or methoxy group).

25

30

(wherein, R⁷¹ represents a hydrogen atom or a halogen atom).

77. The method according to Claim 68, wherein R³ and R⁴ represent a hydrogen atom.

76. The method according to Claim 68, wherein Y¹ is group represented by Formula

35

78. The method according to Claim 68, wherein R^5 is a hydrogen atom, C_{1-6} alkyl group, C_{3-8} cycloalkyl group or C_{6-10} aryl group (where R⁵ may have at least one substituent selected from the group consisting of a halogen atom and methanesulfonyl group).

40

79. The method according to Claim 68, wherein R⁵ is methyl group, ethyl group or cyclopropyl group.

80. The method according to Claim 68, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:

45

- N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-(4-fluorophenyl) urea;
- N-(2-chloro-4-((6-cyano-7-((1-methyl-4-piperidyl)methoxy)-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea;
- N-(4-((6-cyano-7-(((2R)-3-(diethylamino)-2-hydroxypropyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;

N-(4-((6-cyano-7-(((2R)-2-hydroxy-3-(1-pyrrolidino)propyl)oxy)-4-quinolyl)oxy)phenyl) -N'-(4-fluorophenyl) urea;

50

- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;
- 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quino linecarboxamide;
- N6-cyclopropyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methox y-6-quinolinecarboxamide:

55

- N6-(2-methoxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-m ethoxy-6-quinolinecarboxamide;
- N6-(2-fluoroethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide:

N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide; N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-q uinolinecarboxamide; N6-ethyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-qui nolinecarboxamide; 5 4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinol inecarboxamide; 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinol inecarboxamide; 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-((2S)-2,3-dihydroxypropyl) oxy-6-quinolinecarboxamide; 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e; 10 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide; N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide; 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-ethoxyethoxy)-6-quinoli necarboxamide; 4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarb oxamide; N-(2-fluoro-4-((6-carbamoyl-7-methoxy-4-quinolyl)oxy)phenyl)-N'-cyclopropylurea; 15 N6-(2-hydroxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-me thoxy-6-quinolinecarboxamide; 4-(3-chloro-4-(1-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxami de; 4-(3-chloro-4-(cis-2-fluoro-cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-qui nolinecarboxamide; N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-(2-methoxyet hoxy)-6-quinolinecar-20 boxamide; N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolin ecarboxamide; 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-(4-morpholino)ethoxy)-6 -quinolinecarboxam-4-(3-chloro-4-(2-fluoroethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbo xamide; 25 N6-((2R)tetrahydro-2-furanylmethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phe noxy)-7-methoxy-6quinolinecarboxamide; 4-(3-fluoro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide; 4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-((2R)-2-hydroxy-3-(1-py rrolidino)propoxy)-6quinolinecarboxamide; 30 N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylam ino-2-hydroxypropoxy)-6-quinolinecarboxamide; N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((2R)-3-diethylamin o-2-hydroxypropoxy)-6-quinolinecarboxamide; N6-methyl-4-(3-chloro-4-(((methylamino) carbonyl) amino) phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino) pro-35 poxy)-6-quinolinecarboxamide; N6-methyl-4-(3-chloro-4-(((ethylamino) carbonyl) amino) phenoxy)-7-((2R)-2-hydroxy-3-(1-pyrrolidino) propoxy)-6-quinolinecarboxamide; N6-methyl-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-pipe ridyl)methoxy)-6-quinolinecarboxamide; 40 N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-((1-methyl-4-piperi dyl)methoxy)-6-quinolinecarboxamide; N-(4-(6-cyano-7-(2-methoxyethoxy)-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopropylurea N-(4-(6-cyano-7-(3-(4-morpholino)propoxy)-4-quinolyl)oxyphenyl)-N'-(3-(methylsulfon yl)phenyl)urea; 4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide; 45 4-(3-fluoro-4-((2-fluoroethylamino)carbonyl)aminophenoxy)-7-methoxy-6-quinolinecarb oxamide; N6-(2-ethoxyethyl)-4-(3-chloro-4-(((methylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide; 4-(4-(3-ethylureido)-3-fluoro-phenoxy)-7-methoxyquinoline-6-carboxylic acid (2-cyanoethyl)amide; and N-(4-(6-(2-cyanoethyl)carbamoyl-7-methoxy-4-quinolyl)oxy-2-fluorophenyl)-N'-cyclopr opylurea, 50 a pharmacologically acceptable salt thereof or a solvate thereof.

81. The method according to Claim 68, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is at least one compound selected from the group consisting of:

55

4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide;

4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide;

N6-methoxy-4-(3-chloro-4-(((cyclopropylamino) carbonyl) amino) phenoxy)-7-methoxy-6-quinolinecarboxam-

ide;

5

10

20

30

35

40

45

50

4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamid e; and N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinol inecarboxamide,

a pharmacologically acceptable salt thereof or a solvate thereof.

- **82.** The method according to Claim 68, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide), a pharmacologically acceptable salt thereof or a solvate thereof.
- **83.** The method according to Claim 68, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof is methanesulfonate of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarbox amide.
- 84. The method according to any one of Claims 68-83, wherein the mutation of FGFR3 is substitution of at least one amino acid selected from the group consisting of codons 248, 249, 370, 371, 373, 380, 384, 391 and 650 in the amino acid sequence represented by SEQ ID NO: 2 with other amino acid.
 - **85.** The method according to any one of Claims 68-83, wherein the mutation of FGFR3 is at least one mutation selected from the group consisting of R248C, S249C, G370C, S371C, Y373C, G380R, F384L, A391E, K650E, K650M, K650Q and K650T in the amino acid sequence represented by SEQ ID NO: 2.
 - 86. The method according to any one of Claims 68-83, wherein the cell is a multiple myeloma cell.
- **87.** The method according to any one of Claims 68-83, wherein the patient is a patient suffering from at least one disease selected from the group consisting of multiple myeloma, bladder cancer, cervical cancer, hypochondroplasia, achondroplasia, thanatophoric dysplasia and skeletal dysplasia.
 - 88. The method according to any one of Claims 68-83, wherein the method for predicting comprises the steps of: determining at least one selected from the group consisting of the FGFR3 expression level, the presence or the absence of a t(4; 14) translocation and the presence or the absence of FGFR3 mutation in the cell; and predicting whether or not the patient is highly sensitive to the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof using the result from the determination as an index.
 - **89.** The method according to Claim 88, wherein the determination of the FGFR3 expression level, the presence or the absence of a t(4;14) translocation or the presence or the absence of FGFR3 mutation in the cell is carried out by an immunochemical technique.
 - **90.** The method according to Claim 88, wherein the determination of the presence or the absence of a t(4; 14) translocation in the cell is carried out by FISH method.
 - **91.** A FGFR3 inhibitor comprising a compound represented by General Formula (I) below, a pharmacologically acceptable salt thereof or a solvate thereof,

General Formula (I)

55

[wherein, R^1 represents group represented by Formula - V^1 - V^2 - V^3 (wherein, V^1 represents C_{1-6} alkylene group that may have a substituent; V^2 represents a single bond, an oxygen atom, a sulfur atom, carbonyl group, sulfinyl group,

sulfonyl group, group represented by Formula -CONR⁶-, group represented by Formula -SO₂NR⁶-, group represented by Formula -NR⁶CO- or group represented by Formula -NR⁶- (wherein, R⁶ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent or C_{3-8} cycloalkyl group that may have a substituent); V³ represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent);

R² represents cyano group, C_{1-6} alkoxy group that may have a substituent, carboxyl group, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{a11}V^{a12} (wherein, V^{a11} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent; V^{a12} represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent, 3-10-membered nonaromatic heterocyclic group that may have a substituent, hydroxyl group, C_{1-6} alkoxy group that may have a substituent or C_{3-8} cycloalkoxy group that may have a substituent);

Y1 represents group represented by Formula

5

10

15

20

25

30

35

40

45

50

$$R^7$$
 R^8
 W^2
 W^2
 W^2
 W^3
 W^4
 W^4
 W^4
 W^4

(wherein, R^7 and R^8 each independently represent a hydrogen atom, a halogen atom, cyano group, nitro group, amino group, C_{1-6} alkyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{1-6} alkylthio group that may have a substituent, formyl group, C_{2-7} acyl group that may have a substituent, C_{2-7} alkoxycarbonyl group that may have a substituent or group represented by Formula -CONV^{d1}V^{d2} (wherein, V^{d1} and V^{d2} each independently represent a hydrogen atom or C_{1-6} alkyl group that may have a substituent);

 W^1 and W^2 each independently represent a carbon atom or a nitrogen atom that may have a substituent); R^3 and R^4 each independently represent a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{2-7} acyl group that may have a substituent or C_{2-7} alkoxycarbonyl group that may have a substituent;

 R^5 represents a hydrogen atom, C_{1-6} alkyl group that may have a substituent, C_{2-6} alkenyl group that may have a substituent, C_{2-6} alkynyl group that may have a substituent, C_{3-8} cycloalkyl group that may have a substituent, C_{6-10} aryl group that may have a substituent, 5-10-membered heteroaryl group that may have a substituent or 3-10-membered nonaromatic heterocyclic group that may have a substituent].

- **92.** The pharmaceutical composition according to Claim 1, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof has a FGFR3-inhibiting activity.
- **93.** The therapeutic drug according to Claim 21, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof has a FGFR3-inhibiting activity.
 - **94.** The therapeutic drug according to Claim 40, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof has a FGFR3-inhibiting activity.
- 95. The method according to Claim 68, wherein the compound represented by General Formula (I), a pharmacologically acceptable salt thereof or a solvate thereof has a FGFR3-inhibiting activity.

INTERNATIONAL SEARCH REPORT

International application No.

	PCT/JP:	2006/323878			
A. CLASSIFICATION OF SUBJECT MATTER C07D215/48(2006.01)i, A61K31/47(2006.01) (2006.01)i, C12Q1/02(2006.01)i, G01N33/		i, A61P43/00			
According to International Patent Classification (IPC) or to both national	l classification and IPC				
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification system followed by classifi		5/68			
Kokai Jitsuyo Shinan Koho 1971-2007 To:	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2007 1994-2007			
Electronic data base consulted during the international search (name of REGISTRY (STN), CAplus (STN), MEDLINE (S					
C. DOCUMENTS CONSIDERED TO BE RELEVANT		1			
Category* Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
X WO 2002/032872 A1 (Eisai Co. 25 April, 2002 (25.04.02),		1-58,62-67, 91-94			
A Full text; particularly, Clair & JP 2002-536056 A & EP & CN & KR 2003040552 A	1415987 A1	68-90,95			
X WO 2004/080462 A1 (Eisai Co. Y 23 September, 2004 (23.09.04) Full text; particularly, Clai) ,	65-67 19-58,63,64, 93,94			
	1604665 A1	68-90,95			
X WO 2005/063713 A1 (Eisai Co.	, Ltd.),	65-67			
Y 14 July, 2005 (14.07.05),	ima arramalas	19-58,63,64,			
Full text; particularly, Clai A & EP 1698623 A1 & NO	200603383 A	93,94 68-90,95			
Further documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the inte date and not in conflict with the applica the principle or theory underlying the in	tion but cited to understand			
"E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone				
cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination				
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	being obvious to a person skilled in the "&" document member of the same patent fa	art			
Date of the actual completion of the international search 05 January, 2007 (05.01.07)	Date of mailing of the international second 23 January, 2007 (
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer				
Facsimile No.	Telephone No.				

Facsimile No.
Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2006/323878

Continuation	i). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 2004/006862 A2 (CHILDREN'S MEDICAL CENTER CORP.), 22 January, 2004 (22.01.04), Full text; particularly, Claims & AU 2006251968 A	19-58,63,64, 93,94
Y	GILES, Francis J., The vascular endothelial growth factor (VEGF) signaling pathway: A therapeutic target in patients with hematologic malignancies, Oncologist, 2001, Vol.6, Suppl.5, p.32-39	19-58,63,64, 93,94
Y	JP 2005-504111 A (Novartis AG.), 10 February, 2005 (10.02.05), Full text; particularly, Claims & WO 2003/028711 A2 & EP 1432422 A2 & US 2004/266779 A1	19-58,63,64, 93,94
Y	LIN, Boris et al., The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment, Cancer Research, 2002, Vol.62, No.17, p.5019-5026	19-58,63,64,93,94

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2006/323878

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. X Claims Nos.: 59-61 because they relate to subject matter not required to be searched by this Authority, namely: Claims 59 to 61 pertain to methods for treatment of the human body by therapy. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, payment of a protest fee.. the The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0232872 A [0021] [0126] [0126] [0214] [0214]
- WO 2004080462 A [0021]
- WO 2005063713 A [0021] [0126] [0126] [0214] [0214] [0230]
- JP 2005337772 A **[0033]**
- US 60803450 B [0033]

Non-patent literature cited in the description

- Nature Genetics, 1999, vol. 23, 18-20 [0021]
- Nature Genetics, 1997, vol. 16, 260-264 [0021]
 [0054] [0055] [0060] [0065]
- *Cell,* 1994, vol. 78, 335-342 **[0021]**
- *Blood*, 2001, vol. 97, 729-736 [0021] [0037] [0065]
- Nature Genetics, 1996, vol. 13, 233-237 [0021]
 [0065]
- British Journal ofHaematology, 2004, vol. 124, 595-603 [0021]
- *Blood*, 2004, vol. 103, 3521-3528 **[0021]**
- *Blood,* 2005, vol. 105, 2941-2948 **[0021] [0132]**
- Oncogene, 2005, vol. 24, 8259-8267 [0021]
- *Molecular Cancer Therapeutics*, 2005, vol. 4, 787-798 [0021] [0132]
- Clinical Cancer Research, 2005, vol. 11, 7709-7719
 [0021]
- Clinical Cancer Research, 2005, vol. 11, 7743-7748
 [0021] [0065] [0065]

- Human Molecular Genetics, 2005, vol. 14, 1153-1160 [0021] [0065] [0065] [0065]
- *Blood,* 2000, vol. 95, 992-998 **[0021]**
- *Nature,* 1994, vol. 371, 252-254 **[0021] [0065]**
- **SMITH-WATERMAN.** *Meth. Enzym.,* 1988, vol. 164, 765 **[0045]**
- WILBUR. *Natl. Acad. Sci. U.S.A.*, 1983, vol. 80, 726-730 [0050]
- ALTSCHUL. *J. Mol. Biol.,* 1990, vol. 215, 403-410 [0050]
- **PEASRON.** *Methods in Enzymology,* 1990, vol. 183, 63-69 [0050]
- British Journal of Haematology, 2001, vol. 114, 362-364 [0065]
- SANGER et al. Proc. Natl. Acad. Sci. USA, 1977, vol. 74, 5463 [0072]