

Data science módszerek python környezetben

Regresszió

2024.10.14.

Jónás Dániel data scientist

ADATELEMZÉSI PROBLÉMÁK CSOPORTOSÍTÁSA

MODELLEZÉSI ALAPOK

MODELLEZÉSI ALAPOK

A REGRESSZIÓ

Jellemzői

- Felügyelt tanulás
- Célváltozó: folytonos, numerikus változó
- Tipikus use-case: ár, szenzoradat, fogyasztás stb. előrejelzése
- Regressziós gépi tanulási modellek: lineáris, regularizált, döntési fa-alapú, stb..
- Kiértékelési metrikák: MAE, MSE, MAPE

Van egy tanító adathalmazom ... ahol ismerem a tulajdonságokat és

Tulajdonságleíró attribútumok – **bemeneti változók**

Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma
42	0432	82	3	1
88	0312	44	0	0
22	0101	32	0	1
38	4003	102	1	2

Van egy tanító adathalmazom ... ahol ismerem a tulajdonságokat és

X				
X1	X1 X2 X3		X4	X5

Tulajdonságleíró attribútumok – **bemeneti változók**

Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma
42	0432	82	3	1
88	0312	44	0	0
22	0101	32	0	1
38	4003	102	1	2

Van egy tanító adathalmazom

- ... ahol ismerem a tulajdonságokat és
- ... ahol ismerem a célváltozót

	у					
X1	X2	Х3	Х4	X5	Célváltozó	
Tulajdor	Tulajdonságleíró attribútumok – bemeneti változók					
Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma	Jövedelem	
42	0432	82	3	1	280 000	
88	0312	44	0	0	90 000	
22	0101	32	0	1	180 000	
38	4003	102	1	2	400 000	

És van egy új sor, ahol ... ismerem a tulajdonságokat

Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma	Jövedelem
55	3257	62	1	3	????

	У					
X1	X2	Х3	X4	X5	Célváltozó	
Tulajdor	Tulajdonságleíró attribútumok – bemeneti változók					
Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma	Jövedelem	
42	0432	82	3	1	280 000	
88	0312	44	0	0	90 000	
22	0101	32	0	1	180 000	
38	4003	102	1	2	400 000	

És van egy új sor, ahol

- ... ismerem a tulajdonságokat
- ... modell mondja meg mekkora a célváltozó

Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma	Jövedelem
55	3257	62	1	3	????
	•			•	
		X			у
X 1	X2	MC	DELL	X5	Célváltozó
Tulajd	onságleíró a	ttribútumo	k – beme r	neti változók	Target
Életkor	Foglalkozás	Lakásméret	Gyerekek	Autók száma	Jövedelem
42	0432	82	3	1	280 000
88	0312	44	0	0	90 000
22	0101	32	0	1	180 000
38	4003	102	1	2	400 000

Mi lenne a legjobb tipp? Mi minimalizálja a hibát? Attól függ, milyen hibát.

Mi lenne a legjobb tipp? Mi minimalizálja a hibát? Attól függ, milyen hibát.

Mi lenne a legjobb tipp? Mi minimalizálja a hibát? Attól függ, milyen hibát.

Hiba = valós érték – prediktált érték

Átlagos Hiba =
$$(2 + -3 + 1) / 3 = 0$$

Abszolút Átlagos Hiba =
$$(2 + 3 + 1) / 3 = 2$$

Mi lenne a legjobb tipp? Mi minimalizálja a hibát? Attól függ, milyen hibát.

Hiba = valós érték – prediktált érték

Átlagos Hiba = (2 + -3 + 1) / 3 = 0

Abszolút Átlagos Hiba = (2 + 3 + 1) / 3 = 2

Négyzetes Átlagos Hiba = (4 + 9 + 1) / 3 = 4.67

Mi lenne a legjobb tipp? Mi minimalizálja a hibát? Attól függ, milyen hibát.

X

Hiba = valós érték – prediktált érték

Átlagos Hiba =
$$(2 + -3 + 1) / 3 = 0$$

Abszolút Átlagos Hiba =
$$(2 + 3 + 1) / 3 = 2$$

Négyzetes Átlagos Hiba =
$$(4 + 9 + 1) / 3 = 4.67$$

MEAN ABSOLUTE ERROR (MAE)

- ➤ | X_{valós} X_{pred} |
- \rightarrow MAE = | 10 12 | = 2
- A hiba mértéke a fontos, nem az iránya
- Könnyen értelmezhető

MEAN ABSOLUTE ERROR (MAE)

- ➤ | X_{valós} X_{pred} |
- \rightarrow MAE = | 10 12 | = 2
- A hiba mértéke a fontos, nem az iránya
- Könnyen értelmezhető

MEAN SQUARED ERROR (MSE)

- \rightarrow ($X_{\text{valós}} X_{\text{pred}}$)²
- \rightarrow MSE = $(10-12)^2 = 4$
- Könnyen optimalizálható
- A nagyobb eltérés nagyobb hibának számít

MEAN ABSOLUTE ERROR (MAE)

- ➤ | X_{valós} X_{pred} |
- \rightarrow MAE = | 10 12 | = 2
- A hiba mértéke a fontos, nem az iránya
- Könnyen értelmezhető

MEAN SQUARED ERROR (MSE)

- \rightarrow $(X_{\text{valós}} X_{\text{pred}})^2$
- \rightarrow MSE = $(10-12)^2 = 4$
- Könnyen optimalizálható
- A nagyobb eltérés nagyobb hibának számít

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

- $\rightarrow \frac{|Xva|_{\text{ós }-}X_{\text{pred}}|}{X_{\text{valós}}}$
- $\Rightarrow \frac{|10-12|}{10} = 20\%$
- Általánosan értelmezhető
- A hiba mértéke függ az értékkészlet nagyságrendjétől

MEAN ABSOLUTE ERROR (MAE)

- Ismerni kell a nagyságrendet
- pl MAE = 100 jó vagy rossz?

MEAN ABSOLUTE ERROR (MAE)

- Ismerni kell a nagyságrendet
- pl MAE = 100 jó vagy rossz?

MEAN SQUARED ERROR (MSE)

- ➤ MSE = 250.000.000.000
- Jó vagy rossz?
- 50 milliós nagyságrendű célváltozóknál ez 1% körüli hiba
- > RMSE = \sqrt{MSE} = 500.000

MEAN ABSOLUTE ERROR (MAE)

- Ismerni kell a nagyságrendet
- pl MAE = 100 jó vagy rossz?

MEAN SQUARED ERROR (MSE)

- ➤ MSE = 250.000.000.000
- Jó vagy rossz?
- 50 milliós nagyságrendű célváltozóknál ez 1% körüli hiba
- ightharpoonup RMSE = \sqrt{MSE} = 500.000

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

- 0 értékű célváltozónál nem értelmezhető
- A hiba mértéke függ az értékkészlet nagyságrendjétől

 Ha a célváltozó 0, akkor nem értelmezhető

 Ha a célváltozó 0, akkor nem értelmezhető

Ha a célváltozó 0, akkor nem értelmezhető Ha az értékkészlet szórása nagy, a MAPE nem általánosan értelmezhető


```
knn_5 = temp_df.price.iloc[:5]
predicted_price = knn_5.mean()
return(predicted_price)cols = ['accommodates', 'bathrooms']
       JET 'predicted_price'] = norm_test_df[cols].apply(predict_price_multivariate,feature_cold)
                        LINEÁRIS REGRESSZIÓ
```

temp_df['distance'] = distance.cdist(temp_df[feature_columns],[new_listing_value[feature_columns])

temp_df['distance'] = distance('distance')

Fifth_listing = normalized_listings.iloc[20][['accommodates', 'bathrooms']] irst_fifth_distance = distance.euclidean(first_listing, fifth_listing)

ef predict_price_multivariate(new_listing_value,feature_columns):

temp_df = temp_df.sort_values('distance')

temp_df = norm_train_df

$$y = b_0 + b_1 * x$$

Lineáris regresszió

LINEÁRIS REGRESSZIÓ

area	rooms	district	elevator	price
120	4	3	1	90
50	2	3	0	45
82	3	8	1	59
46	1	13	0	40
70	3	5	0	71
65	2	3	1	54

X input features

y target

LINEÁRIS REGRESSZIÓ

area	rooms	district	elevator	price
120	4	3	1	90
50	2	3	0	45
82	3	8	1	59
46	1	13	0	40
70	3	5	0	71
65	2	3	1	54

X input features y target

$$y = b_0 + b_1 * x_1 + \dots + b_n * x_n$$

MAE vs. MAPE

Célfüggvény: MAE

Célfüggvény: MAPE

