

Master thesis

Anomaly detection in streaming data using autoencoders

Student: Bin Li

Supervisor: Prof. Dr. Eirini Ntousi

Outline

- Motivation
- Previous works
- Proposed model
- Experiments
- Conclusion and outlook
- References

Motivation

Anomaly detection applications

- Industrial: Predictive maintenance
- Commercial: Credit card fraud detection

Challenges

- High-volume data (out of memory)
- High-velocity streaming data (concept drift, bias classes)
- Contextual anomaly

Previous works

Traditional approaches

- One-Class SVM [Schölkopf et al.] [Tax and Duin]
- Local Outlier Factor [Breunig et al.]
- Distance based approaches ...
- Density based approaches...

Previous works

Autoencoder based approaches

- Vanilla autoencoder [Martinelli et al.]
- LSTMs-Autoencoder [Malhotra et al.]
- Autoencoders for stream learning [Dong et al.]

Anomaly score = f(|X' - X|)

Proposed model

1. LSTMs-Autoencoder

LSTMs-Autoencoder

LSTMs-Autoencoder unfolded through time

- Decoder input d_i is the real value of previous time step
- Estimate a normal distribution **D** of normal reconstruction errors
- Anomaly score of a point is defined as its Mahalanobis distance to D

Proposed model

2. Framework overview

Proposed model

3. Online model updating

- Hard windows criterion
 - Normal window (labeled) with more than ${\mathcal N}$ scores over threshold
- Updating trigger
 - Retrain buffers are full
 - Buffer size is a hyperparameter
- Updating strategy
 - Continue training LSTMs-Autoencoder
 - Learn new anomaly score threshold

Model Updating

Model continue training

Learn new parameters

Buffer data

1. Datasets

	Dimensionality	# instances	Anomaly proportion (%)	
Power Demand	1	35 040	2.20	
SMTP[1]	34	96 554	1.22	
HTTP[1]	34	623 091	0.65	
SMTP+HTTP[2]	34	719 645	0.72	
Forest Cover[3]	7	581 012	0.47	

- [1] extracted from KDD99Cup dataset
- [2] is derived by connecting SMTP and HTTP
- [3] contains 7 kinds of forest cover types, here take the smallest subset TYPE4 as anomaly

2. Anomaly detection

Power Demand dataset example

2. With & without updating

	AUC without updating	AUC with updating	#Updating
Power Demand	0.91	0.97	2
SMTP	0.94	0.98	2
НТТР	0.76	0.86	2
SMTP+HTTP	0.64	0.85	3
Forest Cover	0.74	0.82	8

2. With & without updating

- Stationary
 - Only trained during initialization
- Adaptive
 - Model updating over stream with buffer data

- 3. Reaction of concept drift (SMTP+HTTP)
 - Concept drift happened between SMTP and HTTP

- 3. Reaction of concept drift (FOREST)
- Data arrive type by type
- After each type change, performance is shortly influenced
- Model updating in time

Conclusion and outlook

- Contributions
 - Robust detection of contextual anomaly
 - In time and efficient online model updating
 - Keep hard data for model updating
- Future work
 - Adaptive model updating according to different data coming rate
 - Optimal hyperparameters learning approach for different data (Buffer size, hard window criterion etc.)

Thanks for your attention.

Q&A

References

[Schölkopf et al.] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, John C Platt Support Vector Method for Novelty Detection. 2000.

[Tax and Duin] David M.J. Tax, Robert P.W. Duin. Support Vector Data Description. 2004.

[Breunig et al.] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander. LOF: Identifying Density-Based Local Outliers. 2000.

[Martinelli et al.] Marco Martinelli, Enrico Tronci, Giovanni Dipoppa, and Claudio Balducelli2. Electric power system anomaly detection using neural networks. 2004.

[Malhotra et al.] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection. 2016.

[Dong et al.] Yue Dong and Nathalie Japkowicz. Threaded ensembles of autoencoders for stream learning. 2017.

Model parameters

	Batch size	Hidden size	Window Length	nBuffer trigger size	Hard window criterion	Init. data
PowerDemand	8	15	80	9 Batches	5/10	1 000
SMTP	8	15	10	50 Batches	4/10	60 000
HTTP	8	35	30	100 Batches	5/30	100 000
SMTP+HTTP	8	15	10	100 Batches	4/10	60 000
ForestCover	8	25	10	100 Batches	9/10	100 000

Adam Optimizer (Default parameters in TensorFlow)

- Learning rate (0.001)
 - The proportion that weights are updated
- beta1 (0.9)
 - The exponential decay rate for the first moment estimates
- beta2 (0.999)
 - The exponential decay rate for the second-moment estimates
- epsilon (1e-08)
 - To prevent any division by zero in the implementation
- Loss function
 - RMSE

Run time compare: With & without updating

All experiments ran on 2.6-GHz Intel Core i7 CPU with 16-GB RAM

ForestCover buffer

SMTP+HTTP buffer

Init.

Reaction of concept drift (SMTP+HTTP)

Concept drift happened between SMTP and HTTP

