
EE/CS 119A Homework 1 Edward Speer October 6, 2024

1. Problem 1: Simple Circuit

From the problem description, either B or C must be inactive with A active for X to be active. Clearly, this means that X = A(B' + C').

Active high circuit:

Active low circuit:

2. Problem 2: Gray Code to Binary Converter

- From inspection of the truth table, it is immediately apparent that $B_2 = G_2$.
- For B_1 , inspect the cases in which G_2 is active. There are 4 such cases: $(G_2, G_1, G_0) = \{(0,1,1), (0,1,0), (1,0,1), (1,0,0)\}$. It is clear that we may eliminate G_0 leaving the following: $(G_2, G_1) = (0,1), (1,0)$. This clearly shows $B_1 = G_2 \oplus G_1$
- For B_0 , enumerate the active cases as an equation and simplify:

$$B_0 = (G_2G_1'G_0') + (G_2'G_1'G_0) + (G_2G_1G_0) + (G_2'G_1G_0')$$

$$B_0 = G_2(G_1'G_0' + G_1G_0) + G_2'(G_1'G_0 + G_1G_0')$$

$$B_0 = G_2(G_1 \oplus G_0)' + G_2'(G_1 \oplus G_0)$$

$$B_0 = G_2 \oplus G_1 \oplus G_0$$

3. Problem 3: Squaring Circuit

First, create the truth table for the circuit. Then consider the active cases for each output bit seperately.

B_3	B_2	B_1	B_0	S_7	S_6	S_5	S_4	S_3	S_2	S_1	S_0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	1	0	0	1
0	1	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	1	1	0	0	1
0	1	1	0	0	0	1	0	0	1	0	0
0	1	1	1	0	0	1	1	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	1	0	0	0	1
1	0	1	0	0	1	1	0	0	1	0	0
1	0	1	1	0	1	1	1	1	0	0	1
1	1	0	0	1	0	0	1	0	0	0	0
1	1	0	1	1	0	1	0	1	0	0	1
1	1	1	0	1	1	0	0	0	1	0	0
1	1	1	1	1	1	1	0	0	0	0	1

- For S_0 trivially notice from the truth table that $S_0 = B_0$
- For S_1 , trivially notice that $S_1 = 0$ always
- For S_2 , the cases are 0010, 0110, 010, 1110. This holds all cases for B_3 and B_2 so that they can be eliminated, leaving $S_2 = B_1 B_0'$
- For S_3 , the cases are 0011, 0101, 1011, 1101. Clearly B_0 must be active. B_3 may be eliminated, since its value makes no difference. Notice that either B_2 or B_1 are always active but never both. Therefore, $S_3 = B_0(B_2 \oplus B_1)$.
- \bullet For S_4 , the cases are 0100, 0101, 0111, 1001, 1011, 1100. Notice that for the cases where B_0 is active:

$$S_4 = B_0 B_3' B_2 + B_0 B_3 B_2'$$

$$S_4 = B_0 (B_3' B_2 + B_3 B_2')$$

$$S_4 = B_0 (B_3 \oplus B_2)$$

This leaves 2 cases, 0100 and 1100. From these, B_3 is eliminated leaving $S_4 = B_0'B_1'B_2$. Therefore, $S_4 = B_0(B_3 \oplus B_2) + B_0'B_1'B_2$

 \bullet For S_5 , the cases are 0110, 0111, 1010, 1011, 1101, 1111. Eliminating trivial terms, these cases are summed up as follows:

$$S_5 = B_1 B_2 B_3 + B_1 B_2' B_3 + B_0 B_2 B_3$$
$$S_5 = B_1 (B_2 B_3' + B_2' B_3) + B_0 B_2 B_3$$

Then $S_5 = B_1(B_2 \oplus B_3) + B_0B_2B_3$

• For S_6 , the cases are 1000, 1001, 1010, 1011, 1110, 1111. Immediately notice that B_3 always must be active. When B_0 is low, notice that B_1 and B_0 enumerate all cases and may be eliminated. This leaves only the cases where B_2 is active, in which case B_0 enumerates all of its possibilities but all other inputs are active. Combining all factors, $S_6 = B_3(B_2' + B_2B_1)$

• For S_7 , the cases are the last 4 in the truth table. It is obvious to see that these are the only 4 cases where both B_3 and B_2 are active. Therefore, $S_7 = S_2 B_3$.

4. Problem 4: Binary to BCD Hours Converter

Notice from the truth table that $B_0 = Q_0$, and that $B_2 = Q_2$. Then solve for the remaining equations using Karnaugh maps.

B1	Q1Q0			
Q3Q2	0, 0	0, 1	1, 1	1, 0
0, 0	1	0	1	1
0, 1	0	0	1	1
1, 1	x	x	x	x
1, 0	0	0	0	0
B3	Q1Q0			
Q3Q2	0, 0	0, 1	1, 1	1, 0
0, 0	0	0	0	0
0, 1	0	0	0	0
1, 1	x	x	х	x
1, 0	1	1	0	0
B4	Q1Q0			
Q3Q2	0, 0	0, 1	1, 1	1, 0
0, 0	1	0	0	0
0, 1	0	0	0	0
1, 1	x	x	x	x
1, 0	0	0	1	1

These Karnaugh maps reveal the following:

$$\bullet \ B_1 = Q_3' Q_1 + Q_3' Q_2' Q_0'$$

- $\bullet \quad B_3 = Q_3 Q_1'$
- $\bullet \ B_4 = Q_3' Q_1 + Q_3' Q_2' Q_0'$

$\ensuremath{\mathsf{AND}}/\ensuremath{\mathsf{OR}}/\ensuremath{\mathsf{INVERT}}$ circuit:

NAND/NAND circuit:

