IMATHS

BOOK-13

en erstelletelstelstelstelstelstelse

E CONTROL OF THE RESIDENCE OF THE SECOND OF THE FORM OF THE SECOND OF TH

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

ā,

Introduction:

In elementary treatments, the Process of integration is generally introduced as the inverse of

If f'(x) = f(x) for all x belonging to the domain of the function f'(x) = f(x) function f'(x) = f(x) function f'(x) = f(x)

of integral arose in connection with the problem of finding areas of plane regions in which the area of a plane region is calculated as the limit of adams of this notion of integral as summitten its based on geometrical Contepts is

A German mathematician.

Grif B. Riemann gave the first organise arithmetic treatment of definite integral free from geometrical concepts.

Riemann's definition covered only bounded functions.

It was cauchy who extended this definition to unbounded functions.

In the present Chapter we shall study the Riemann integral of real valued, bounded functions defined on

Some Closed Interval.

Partition of a closed Internal Let I = [a,b] be a closed bounded internal and a closed bounded in the closed bounded i

 $P = \left\{ x_0, x_1, x_2, \dots, x_{s-1}, x_s - \frac{x_n}{s} \right\}$ where $r = 1, 2, \dots$ is called a partition of r.

Calted Partition points of Pl

a=no n; n_2 . n_3 : n_3 : n_4

determined by P are called sigment of the partition P.

Clearly U Is = U [x, 1, 2,] + [c, 6] -

 $P = \left\{ \left[x_{r-1}, x_r \right] \right\}_{r=1}^{r}$

The length of the rth subinterval. $I_{r} = \begin{bmatrix} x_{r-1} & x_{r} \end{bmatrix}$ is denoted by δ_{r} . i.e. $\delta_{r} = x_{r} - x_{r-1}$, $r = x_{r} - x_{r-1}$.

Note: (1) By changing the partition points, the partition can be changed and hence there can be an infinite number of partitions of the interval!

attps://upscpdf.com

the set (or family) of all partitions finer than Post [a,b]. Le :31 P' is finer than Post [a,b].

@ Partition is also known as dissection (or) net.

* Norm of a partition:

The maximum of the lengths of the subintervals of a portition Pis Called norm (ex) mesh of the Partition P and is denoted by UPII (or) MED).

i.e. $\|P1\| = \max \left\{ \frac{x_0}{8} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right\}$ $= \max \left\{ \frac{x_0 - x_{0-1}}{8} \right\} \frac{1}{2} - \frac$

Note (1): If $P = \{x_{0,1}x_{1}, \dots - x_{n}\}$ is

a partition: of $\{a_{1}b\}^{-}$ then $\sum_{\delta=1}^{n} \delta_{\delta} = \delta_{1} + \delta_{2} + \dots + \delta_{n}$ $= (x_{1} - x_{0}) + (x_{2} - x_{1}) + \dots + (x_{n} - x_{n-1})$ $= x_{n} - x_{n}$

Refinement of a partition:

If P, p' be two partitions of

[a,b] and Pap! then the partition

P! is called a refinement of partition

Pon[a,b] we also say p'is.

finer than P.

i.e. If P' is finer than P, then

every point of P is used in the

construction of P' and P' has atleast

one additional point.

→ If P, P2 are two partitions of [a,b]

then P, C P, UP, and P2 C P, UP2.

Therefore P, UP2 is called a common

Tetinement of P, & P2.

Note: If P, P2 ∈ P[a,b] and P, EP2

then IIP2 II ≤ II P, II.

Let f! [a,b] -> IR be a bounded

function and

P= [a= zo, z, --- zn=o] be

a partition of [a,b].

Since f is bounded on [a,b], f is

also bounded on each of the

subintervits. (i.e. Ir = [z_{s-1}, z_b]_{s=1,2-n})

Let M, m be the supremum

and infimum of f in [a,b] and M_r, m_s

be the supremum and infimum of f.

in the oth Subintervals.

is called the Upper Darboux Sun of i.e w(P,A) = 50, 80 f corresponding to the partition P and is denoted by U(Pif) or U(fip) function and PEP[a,b] then + The Sum mis, + misit --- + misit --- | m(b-a) < L(Pit) < U(Pit) < H(b-a) is talled the lower Darboux Sum of f Supremum of f on [a,b] ۹ corresponding to orthe partition Pand's denoted by L(P.f) or L(f, P). (2) 1.e. U(P,P) = = Ny 8, L(P.f) = = mror: 4 € * Oscillatory Sum · Let f: [a,b]—riR be a bounded 8 an=b) be ۱ a partition of [a,b] 0 Let m, and Mr be the infinitions · 🚇 and supremum of f on Ix = (3,2) ۱ 0 $= \sum_{r=1}^{N} (N_{r} - m_{r}) \delta_{r}$ = 2 Orbr. where Or = Mr-mr denotes the oscillation of P on Ix $U(P,f)-L(P,f)=\sum_{r=1}^{n}O_{r}S_{r}$ is

Called the oscillatory olum of I

Corresponding to the partition Pand is

by w (P.A).

denoted

If f: [a,b] is bounded + moon = 2 mrs. Where m, H are the infimum and Proof: Letp={ a=20, 2, ... - 2,=6} b partition of [a,b]. since fis bounded on [a, b] => P is bounded on each subinterval of [a,b]. i.e. Pis bounded on Ix = 2x=1 1xx Let mr and Mr be the infimum & and $P = \{a = x_0, x_1, \dots, x_n\}$ appremium of f on $I_r = [x_{r-1}, x_r]$ $\Rightarrow \sum_{n=1}^{\infty} m_n \sigma_n \leq \sum_{n=1}^{\infty} M_n \sigma_$ >m = 50 < L(Pf) ≤ O(P, A) = NO >> m(b-a) < L(P,f) < U(P,f) < H(b-c · 2 3 = b-a Note: The above theorem implies that L(P.f) & U(P.f) are bounded if f is bounded. * Upper and Lower Riemann Integrals:

Let f: [a,b] -> IR be a bounded function and PEP[a,b] then

 $m(b-a) \leq L(P,f) \leq O(P,f) \leq M(b-a)$ where

m, M are infimum and supremum of f on [a,b].

for every PEP[a,b],

we have

ωë have'

L(Pof) & M(b-a) and

U(P,f) > m (b-a)

⇒ the Set { L(Prf) }

PEP[arb]

of lower sums is bounded above.

by M(b-a).

It has the least upper bound.

the set {U(Prf)} of PEP[ab] the upper sums is bounded below

by m(b-a).

has the greatest lower bound (926)

Now the sup ['L[P,f')] &

18 Collect 1 Bower Riemann Integral

of I on [a,b] and is denoted by

founds.

le fferida = Lub { L(P,f)}

and the glb {u(P,f}

is called Upper Riemann Intregral of

on [a,b] and is denoted by

fer) dr -

ie Ifaxtx = glb {U(P,4)}... in pep[a,6]

A Riemann Integral:

- A bounded f is said to be.

Riemann integrable (or R-integrable)

on [a,b] if its lower and upper

Riemann integrals are a equal.

i.e. if $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$.

The Common Value of these integrals is called the Riemann integral of from [a, b] and is denoted by If(2)dx.

i.e., $\int_{-1}^{1} f(\alpha) d\alpha = \int_{-1}^{1} f(\alpha) d\alpha = \int_{-1}^{1} f(\alpha) d\alpha$

Note: (1)

the interval [aib] is called the range of the integration. The numbers a and b are called the lower and upper limits of integration respectively.

Perfait (2) the family of all bounded

functions which are R-integrable

gral of on [a,b] is denoted by R [a,b].

red by 9f f is R-integrable on [a,b] then

-fe R[a,b].

<i>(2)</i>	N. s.
)	is f is R-integrable on [a,b]
.	⇒(i) is bounded on [a,b]
) :	$\lim_{x \to 0} \int f(x) dx = \int f(x) dx$
.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(4) A bounded function f. on [a, b] is
	la time to the control of the contro
3	Such that
()	10. 24. 4
Ö	$\int_{0}^{\infty} f(x) dx \neq \int_{0}^{\infty} f(x) dx$
9	
(9)	then f is not R-integrable on [aib]
٧	P r1
0	Problems:
.	1. Activity
. , (3)	P={0,3,23,1} be a position of
([OI] Compute U(PIF) and (PIF)
9	sor'n; Partition set P divide the
9	1,74
*	interval [0,1] into subintervals.
(8)	$\mathbb{T}_1 = [0, \frac{1}{3}], \mathbb{T}_2 = [\frac{1}{3}, \frac{2}{3}], \mathbb{T}_3 = [\frac{1}{3}, \frac{1}{3}]$
.	
8	Now 5, = 13-0=13-
®	5 = 3-3=3
3	$\delta_3 = 1 - \frac{2}{3} = \frac{1}{3}$
8	Since $f(x) = x$ is an
9	
(3)	increasing function on [0,1].
8	$M_1 = \frac{1}{3}$ $m_1 = 0$
@	$M_2 = \frac{2}{3}$, $M_2 = \frac{1}{3}$
9	$M_3 = L$, $M_3 = \frac{2}{3}$
(3)	

.. $U(P, I) = \sum_{r=1}^{3} M_r s_r$

Now
$$L(P,f) = \frac{3}{2}$$
 moso
=\frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} + 1\right) = \frac{2}{3} \rightarrow \frac{1}{3} \r

= 3.3+3.3+1.3

301 ni- Let P= {a=x0, x1, --- xn=b} be any partition of [a,b]. Let Ir = [ar-1, ar], r=1,2--n be the orth Subinterval of [a,b]. Since f(x) = K(Constant). $. M_r = m_{\chi} = \kappa.$ U(P.f) = B. Mror

 $= \frac{3}{s-1} K (3s-3s-1)$ $= K \stackrel{\nabla}{\succeq} (\pi Y - \chi Y - 1)$ = k(b-a) and L(Pif) = 5 mrar = K (b-a) Now I flada = lub { L (P.f)}

= R(b-a).and fraid = glo [U(P,d)] person

· fer [a,b] and $\int f(a)dx = k(b-a)$.

2000 show that the function of defined by f(2) = {0 when a is rational

is not Riemann integrable on any interval.

show by an example that every bounded fauetion need not be R-integrable jeffre Let I be denoted on [a,b] by $f(x) = \begin{cases} 0 & \text{when } x \text{ is rational} \\ 1 & \text{when } x \text{ is irrational} \end{cases}$ Clearly f(x) is bounded on [a,b] because $0 \le f(x) \le 1 \ \forall \ x \in [a,b]$ Let P={a=20, 2, --- 2n=b} be a partition of [a,b] Let Pr= [ar-1, 2r]; r=1,2--n be 1th subinterval of [a,b]. Mr=1; mr=0.

U(Pot) = $\frac{n}{s}$ Myor = $\frac{n}{s}$ 1. δ_0

and L(P,f) = m my for = 2 0.3₈ -

 $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx = K(b-a) \quad | \text{Now} \quad \int_{a}^{b} f(x) dx = \text{Lub} \left\{ L(P, f) \right\} \exp[a]_{a}$

and 1 f(x) dx = glb [U(P,f)] peplaib if(2) da + |f(2) dx.

8	f is not	Riemann integrable
*	1 .	on faib].
3 :		

be a Riemann integrable.

as follows.

 $f(x) = \begin{cases} f(\omega) & \text{when } x \text{ is retional.} \end{cases}$

show that fix not Riemann

integrable over [0,1]

 $\underline{sol} n := P = \{ o = \alpha_0, \alpha_1, \dots, \alpha_n = 1 \}$

a partition of [01].

1 Let 2x = [201,2x], 0=

> Evaluate Ida by applying

the definition of Riemann-integral

@_______. Let f(x) =1 + 2 € [0,1].

at is defined on [0,1] by

fla = 2 + 2 = [0,1]. then

fer[0:1] and $\int_{0}^{\infty} f(x) dx = \frac{1}{2}$.

801" Let P={0,1,2,---

 $\frac{\partial -1}{n}, \frac{\pi}{n}, ---\frac{n}{n} = 1$ } be

any partition of [oil].

$$\delta r = \alpha_8 - \alpha_{5-1}; \quad \delta = 1, 2, n - n$$

$$= \frac{\delta}{n} - \left(\frac{s-1}{n}\right)$$

$$= \frac{\delta}{n} - \left(\frac{s-1}{n}\right)$$

$$= \frac{\delta}{n} - \frac{\delta}{n} + \frac{1}{n}$$

$$= \frac{\delta}{n} = \frac{1}{n}$$

Since f(x) = x is an increasing on [0,1].

 $M_{T} = \frac{s-1}{m}; \quad M_{S} = \frac{s}{m}$ $U(P, f) = \sum_{\delta=1}^{\infty} M_{\delta} \delta_{\delta}$

 $=\frac{1}{n^2}\sum_{n=1}^{\infty} \frac{1}{n} \cdot \frac{1}{n}$

 $=\frac{1}{n^2}(1+2+--+n)$

 $=\frac{1}{n^2}\left[\frac{n(n+1)}{2}\right]$ $=\frac{(n+1)}{n(2)}$

= 1 + 1/2 = 1/2 | 1+ | 2

L(P.f) = 2 miles

 $=\frac{2}{8\pi i}\left(\frac{8-1}{n}\right)\cdot\frac{1}{n}$

= 1 2 (2-1)

 $=\frac{1}{n^2}\left[0+1+2+-4(n-1)\right]$

 $=\frac{1}{n^2}\left[(1+2+-4n-1)+n-n\right]$

 $=\frac{1}{n^2}\left[\frac{n(ntt)}{2}-n\right]$

= [1 2 (1+/n) -1]

 $=\frac{1}{2}\left(1+\frac{1}{2}n\right)-\frac{1}{2}n$

Now I for) dr = Lub [L(Pd)] Pep[o,1] = dt [2(1+1/2)-1/2) = 1/2 (1+0)-0 and flatax = glb { U(P.d)} =此[生(1+公] = 4 ((1+0) - 0 $\int f(x) dx = \int f(x) dx = \frac{1}{2}.$ · fere[oi] and fraidx=12 If fix defined on [0,a]; a>0 1 - f(2)=2 + 20[0,a] then fer[0,a] and $ff(x)dx = \frac{a^3}{3}$. Bot ?: Let. P= {0, a, 2a, 3a, ... $= -\frac{\left(\frac{3-1}{n}\right)a}{\left(\frac{3}{n}\right)a}, -\frac{na}{n} = \alpha \left(\frac{3}{6}\left(1+\frac{1}{2}\right)\left(2+\frac{1}{2}\right) - \frac{1}{n}\right)$ be any partition of [o,a] 30 = 30 - 50 + a $\delta_{\delta} = \frac{\alpha}{3}$ Since f(x) = x is an increasing

function on [0,a]; a>0.

 $M_{\delta} = \left(\frac{\delta a}{n}\right)^{2} ; m_{\delta} = \left(\frac{\delta - i}{n}\right)^{2}$ = 80-120 $U(Rf) = \sum_{r=1}^{n} M_r \delta_r$ $=\frac{\sum_{k=1}^{\infty} \sqrt{2^k \alpha^k}}{n^k} \cdot \frac{\alpha}{n}$ $=\frac{\alpha^3}{n^3} \sum_{k=1}^{\infty} \sqrt{2^k}$ $=\frac{\sigma_3}{\sigma_3}\left[\frac{\nu(\nu+1)(\nu+1)}{\nu(\nu+1)(\nu+1)}\right]$ $=\frac{1}{6}\left(1+\frac{1}{2}\right)\left(2+\frac{1}{2}\right)\alpha^{2}$ $L(P_i - f) = \sum_{k=1}^{n} m_k \delta_k$ $=\sum_{n=1}^{n}\frac{(n-1)^{2}a^{2}}{n^{2}}\cdot\frac{a}{n}$ $=\frac{\alpha_8}{n_3}\sum_{n=1}^{\infty}(n-1)^2$ $= \frac{a^3}{n^3} \left[0 + 1 + 2 + \dots + (n-1)^2 \right]$ $= \frac{\alpha^3}{n^3} \left[1 + 2^n + 3^2 + \dots + (n-1)^2 + n^2 + n^2 \right]$ $=\frac{\alpha^2\left[\infty(n+1)(2n+1)-\frac{1}{2}+\frac{1}{2}\right]}{6}$ Now If(x) dx = Lub {L(P, f)] = P[0 a] $= dt \int_{-\infty}^{\infty} \frac{a^3}{6} (1+\frac{1}{2}) (2+\frac{1}{2}) \frac{1}{n}$ $=\frac{n^3}{4}(1)(2)-0$ and I fine dr = glb { U(P,f)} PEP[oia]

	₩ . †	
	= IF	[1+1/2] (2+1/2)]
eton Pro		-
- -	$= \frac{a^3}{6} \left(1+0\right)$) (2+0 <u>)</u> -
	$= \frac{\alpha^2}{6} (a)$	$=\frac{\alpha^3}{2}$
	1 . ()	_ ~ _
	e in I-f(x) dx	$= \int_{0}^{a} f(x) dx = \frac{a^{3}}{3}.$
AMARCO.	\$ feelow	I and if (x) dx = $\frac{a^3}{3}$
		0
	of the fire	letined on [0,a], a>0 by
romo,		e[o,a] then
ar and	اما	ad Jeffer da = $\frac{a^4}{4}$.
		0
	show that	t -f(n) = 3x+1 is rigion
[]		n[0,1] and T
	6	
	@ Saloi- Fet	<u>\$</u>
		bounded on [o,1].
	Let P= {0,	/a. 2/m, 3/m,
econora Pa		-(<u>t-1</u>), \frac{1}{n}, -\frac{1}{n}=]
	@ IF=[xs:1,1	\mathcal{L} = $\begin{bmatrix} \mathcal{L} - 1 & \mathcal{I} \\ \mathcal{L} & \mathcal{I} \end{bmatrix}$
		X=1
	8 : 6x = 1 -	(b-1)
	8 : Ar = 1 -	(n)
· ************************************	= X - \	1 + 1 = 1/n
	Since frat	=3x+1 is an increasing
0.78888	Function -0	V.
		+1; $m_0 = 3\left(\frac{n-1}{n}\right)+1$
1	(n)	Ch.Z
	<u>.</u> -	
https://t	lunca ndf	http://www.
https://t.me	rupsc_pai	https://upscpd

NOW U(P.f) = in Myor
$=\sum_{n=1}^{\infty}\left[3\left(\frac{\kappa}{n}\right)+1\right]\frac{1}{n}$
$=\frac{1}{n}\sum_{n=1}^{\infty}\left[\frac{3r}{n}+1\right]$
$=\frac{1}{N}\left[\frac{n}{3}\sum_{p=1}^{p=1}p+\sum_{p=1}^{p=1}(1)\right]$
$=\frac{1}{n}\left(\frac{3}{n}\left(1+2+\cdots+n\right)+\left(1+1+\cdots+n\right)\right)$
$=\frac{1}{n}\left(\frac{3}{2}\left(\frac{n(n+i)}{2}\right)+n(i)\right)$
$- = \frac{1}{n} \left(\frac{3}{2} (n+1) + n \right)$
$=\frac{3}{2}(1+1/n)+1$
$L(P;f) = \sum_{n=1}^{\infty} m_n s_n$
$=\sum_{n=1}^{\infty} \left[3\left(\frac{n}{n}\right) + 1 \right] \frac{1}{n}$
$=\frac{1}{n}\left[3\sum_{r=1}^{n}\frac{(r-1)}{n}+\sum_{b=1}^{n}(1)\right]$
$=\frac{1}{n}\left[\frac{3}{n}\sum_{b=1}^{n}(b-1)+\sum_{b=1}^{n}(1)\right]$
$=\frac{1}{n}\left(\frac{8}{n}\left(0+1+2+-+(n-1)+n-1\right)\right)$
$=\frac{1}{2\pi}\left(\frac{3}{n}\left(1+2+-+n\right)-3+n(1)\right).$
$- = \frac{1}{n} \left[\frac{9}{2} \frac{y(n+1)}{2} - 3 + n \right]$
$=\frac{3}{2}\left(1+\frac{1}{n}\right)-\frac{3}{n}+1$
Now of finish = tub [L(P.f)] = PEP(0)
$= \lim_{N\to\infty} \left[\frac{3}{2} \left(1 + \frac{1}{N} \right) - \frac{3}{N} + \frac{1}{N} \right]$
$=3l_2+1=5l_2$

41

and I fla) dx = glb {U(Pit)} = 4 [3/(4/2)+1] _=3/41 = 5/2 $\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} f(x) dx = 5/2$ · fer[0,1] and [(3x+2)dx = 5/2 \rightarrow show that f(x) = 2x + 1 is integrable on [1,2] and [22+1)d=4 801'2: Let f(a) = 22+1 Vac[12] then of(2) is bounded on [1,2] Let P= \$ 1,1+1/n, 1+2/n, 1+3/n,-- $--\frac{1}{n}$, $1+\frac{\pi}{n}$, $--\frac{1}{n}=2$ be any partition of [1,2] Let $T_r = \left[1 + \frac{\delta - 1}{\eta}, 1 + \frac{\delta}{\eta} \right]$ Prove that If(7)dx=7, where f(x) = 22+4. -Hig Prove that -f(x) = 3x+1 is integrable on [1,2] and) (32+1) dx = 1/2. -> show that f(x) = 2-3x is integrable on [1,3] and [(2-3x) dx =-8. show that ifin)=1 is integrable on [a,b] and [flx)dx = 5 (b-a)

sol'n: Let fra) = x + 20 faib) then fra) is bounded on [a,b] Let the partition P= {a=a, a+b, a+2h , --- a+nb} [.] where h=b-a be dividing the interval [a,b] into in signal parts. Let Pr = [a+(v-1)h, a+3h] -> Let I be defined on [0,1] by f(2) = 1/2 when 200. Then show that f is bounded but not Riemann integrable on [0,1] - A function f is bounded on Paib) . show that (1) when k is a tre constant: I kilds = k) f dr and I kilds = k flax il, when k is a -ve constant; lkfda=klfda and lkfda=klffa Also deduce that if is integrable on [a, b], then kf is also Riemann integrable where k is a constant. and Skfdi=Kfdx sol's: Let f be a bounded function on [a,b] and Let P= {a=n0, 2, 1, 2, ---1 -- xx-1 1xx--xn=b} be

3

partition of [a,b]. Let Is = [x=1, xs]; r=1,2,---n Let my and My be the infimum and Supremum of f on Ir=[28-1,28] Let my & My be the infimum and Sagremum of kf on $P_{\gamma} = \left[\alpha_{\gamma-1}, \alpha_{\gamma}\right], \quad \gamma = 1, 2 - - - \gamma.$ cii when K 18 tve constant: $m_{\chi}^{1} = km_{\chi}$ and $M_{\chi}^{1} = kM_{\chi}$ U(P, Kf) = E My or = 3 KMybr Similarly L(Pikf) = KL(Pif) : Skfdx = glb {U(P, kf) PEREA, b) = glb { KU(Pid)} F:
- PEPfais]
- Kglb {U(Pid)} ? Cook
Pepfais] $= K \int f(x) dx$ and f kf dx = Lub [L(Rkf)] replate = Lub { KL(P,f)} = K Lub { L(P,f)}:

 $= k \int_{\alpha} f(x) dx$

k 1s -ve Constant ili, when my = kMy and My = kmy : U (P, KF) = 5 M368 = Ekmrox = K \(\frac{5}{1} m_0 \delta_0 \) = K L(P.f) Similarly L (P. Kf) = KU (P.f) : 1 kf dx = 926 {U(P, kf)} peppais =glb {KL(P,f)} PEP[a,b] = K & ab [L(P. f)] 10 Pa = KZ Mr 8 = KU (P. f) similarly Skfdx = K ffdx (ii) If f is integrable on [a,b] the $\int_{\underline{a}} f(x) dx = \int_{\underline{a}} f(x) dx = \int_{\underline{a}} f(x) dx.$.: from parts (i) kgi, use have $\int_{0}^{\infty} k^{2} dx = \int_{0}^{\infty} k^{2} dx = k \int_{0}^{\infty} f dx.$ > Kf is Riemann-Integrable on land and $\int_{\Omega} Kf dx = K \int_{\Omega} f dx$. -> Let f(x) = Sinx Yxe [O.T/2] Let P= [0, 11/2n, 211/2n, -be a partition of [0, 1/2]. Compute

then f is bounded on
$$[0, \Pi/_2]$$

$$\text{Let } P = \left\{ 0, \frac{\pi}{4}, \frac{3\pi}{4n}, \frac{3$$

	• • • • • • • • • • • • • • • • • • •
9: I	1
9	$=\frac{\pi}{2n}\cdot\frac{1}{2}\left[\cot\left(\frac{\pi}{\mu_n}\right)-1\right]$
j. j.	= 2 ((40)
- 1	Ψ/2 (
9 _.	Now I fra) dx = Sup { L(PA)} PEP[0]
) -	0
9	$= \underbrace{1 + \underbrace{\pi}_{kn} \left[\cot \left(\underbrace{\pi}_{kn} \right) - 1 \right]}_{n \to \infty}$
ð	
9	1 tan (1/4n) 120 m
9	1 tan (1/4n)
€,	
9	$= 3-0 \qquad . \qquad . \qquad . \qquad . $
3	= 1
<u></u>	and $\int f(x) dx = \inf \{ U(P_1P) \} P \in P[D_1T_2]$
)	
\$	$= dt \frac{\pi}{4n} \left[\cot \frac{\pi}{4n} - 1 \right]$
.	
B	$=1$ t $\frac{\sqrt{4}n}{\sqrt{4}}$ + $\sqrt{6}$
\$	The tantum notification
9	= 1+0
þ	= 1
	π_{2} $\frac{1}{\pi_{6}}$
9	$-\int f(\alpha) d\alpha = \int f(\overline{x}) d\alpha = 1.$
(2)	Ó 0 TI/2
	, feroing and $f(x)dx = 1$
<u> </u>	
⊜_	If f be a function defined on
	Control Po Took if x is national
	$[0,1]/L_{+}] by f(x) = \begin{cases} Colx & if x is national \\ sinx & if z is imational \end{cases}$
9	then ffR[0,17/4].
.	
(Sod :- Let f = {0, \overline{\pi}, \frac{2\overline{1}}{4n}, \frac{2\overline{1}}{4n}, \frac{3\overline{1}}{4m}.
	(2-1) TI 2TI
	ግ ክ

Since
$$Cosx > Sinx$$

i.e. $Sinx \le Cosx in [0, T/4]$

i.e. $Sin (S-1)T$

and $So = T$

$$= T$$

 $\int f(x) dx = Lub \int L(P_i f) \int PeP[O_i T_{i_1}]$ $\frac{1}{n \to \infty} \left[\frac{\pi}{4n} \cdot \frac{\sin \left(\frac{(n-1)\pi}{8n} \right) \cdot \sin \left(\frac{\pi}{8} \right)}{\sin \left(\frac{\pi}{8n} \right)} \right] \sin \left(\frac{\pi}{8n} \right)$ $\sum_{n\to\infty} \frac{\left(\frac{\pi}{8n}\right)}{\sin\left(\frac{\pi}{8n}\right)} 2\sin\left(\frac{\pi}{8} - \frac{\pi}{8n}\right) \sin\frac{\pi}{8}$ 1x 2 8in (1/8) sin (1/8). = 2 sin (17/8) $1 - \cos \frac{\pi}{4} = 1 - \frac{1}{\sqrt{2}}$ and finds = get (0(P. P)) PEPO. Lt II Cos 6-12 17 . 8in 18 8 1 Sin (17/8n) $= \underbrace{11}_{N \to \infty} \underbrace{\frac{11}{8n}}_{Sin} \cdot 2\cos\left(\frac{1}{8} - \frac{11}{8n}\right) \sin\frac{11}{8}$ & cos TI Sin TI $f(\alpha)d\alpha \neq \int f(\alpha)d\alpha$.

* Some Theorems Statements: ->, If f:[a,b]->1R is a bounded function and PEP[a,b] then i, L(P.f) < U(P.f) (i), L(P,-f) = -U(P,f)(ii) U(P,-f) = -L(P,f) → If f:[a,b]—riR and g:[a,b]→R are bounded functions and PEPlatin then d, U(P,fig) < U(P,f) + U(P,8) ci, L (P,f+g) ≥ L(P,f)+2/1(P,g) $(P, f+g) \leq \omega(P, f) + \omega(P, g)$ $\rightarrow \mathcal{I}$ $f:[a,b] \rightarrow \mathbb{R}$ is a bounded Levetion then John da & John da Cannot exceed upper Riemain integral. YIF f: [a b] TIR: is a bounded function, then m(b-a) < ffex) dn & ff(x) dx & M(b-a) where m&M are the infimum and supremum of f on [a,b]. If f CR[a,b] then $(i \cdot m(b-a) \leq \int f(x) dx \leq M(b-a) i db > a$ (11) m(b-a) > 5 f(m) dx > M(b-a).

· f & R[0, 17/4]

where m and M are the infimum and supremium of f on [aib]. ₩. Definition: The meaning of Jenda when b<a It fits bounded and integrable on The for ash i.e. b<a. we define Ifix) dx = - Ifix) dx when a>b Also I fra) de = 0 when a=b. + Darboux Theorem: If f: [a,b] -IR is a bounded function then for each exo, 3 a 800 Such that there exists (i) U(Pit) < If(n)di+E ii, Lifef) > Johanda-E # ٥ for each PEP[a,b] with 11P11×4. ⊜. , A bounded function is 4 integrable on [a,b] iff for each 8 exo, is a partition P of [a,b] such that $U(P,f) - L(P,f) < \epsilon$. The It [a,b] - IR is Continuous function on [a,b] then f is integrable on [a,b] Engl If filarb] -> IR is monotonic on [a,b] then it is integrable on [a,b].

Imp If the set of points of discontinuity of bounded function f! [a,b] → R is finite, then fis. integrable on [a,b]. Emp of the set of points of discontinuity of a bounded fund f![a,b] -> 18 has a finité num! of limit points then it is integral on [a,b]. A Riemann Sum: -. Let of be a real valued fune defined on [a,b]! Let P= {a=20, x,,-- 2, =6} be a partition of [a,6] \$ 5 € (XF1, 2Y , 8=1,2 Then sum E f(E) 58 a Ricmann modern of relative to P. It is denoted by S(fip) or s(fif) ie. S(P,f) = 5 f(4) 60 Nobe!(1) Since & is any arbitrary point of 78-1, 77], therefore corresponding to each partition P of [a, b], there Notein

exist infinitely many Riemann sum

If the function is the on ab then the Riemann Sum (1) is the

whose bases are the Subintervals It = [20-1, 22] and whose heights are _ f(\$).

* Integral as the limit of a Sum (second definition of Riemann - Protegral): Note: Earlier, we arrived at the integral of affunction via the capper and the lower sums. The number Mr my which appear in there during are not necessarily the Values of the function of they are values of f if f is continuous

flax can also be considered as the limit of a sequence of Scone in which Mr and mr are

we shall now show that

Sum of the areas of in rectargles replaced by the values of f; Corresponding to a partition P of [a,b], let us choose points. ξ1, ξ2, ξ3 --- - ξn , such that... $a_{\delta-1} \leq \xi_{\delta} \leq a_{\delta}$ ($\delta = 1, 2 - - n$) and f. Consider the Sum S(Pof)= 2 +(E) or The Sum S(P.f) is called Riemann Sum of f on [a, b] relative to P. Definition! He say that s(Pit) Converges to L as 11 PII->0. i.e. It S(Pid) = L ie if for each e>0, 7 a 3>0 Such that |s(P,f)-L|<E. For every Partition P= }a= no, no 11P11 < 5 and for every choice of points fre [azinar] A function of is said said said integrable on [a,b] if it s(A,f) exists and

Lt S(Pf)= fex)dx 11P11-0

Note(1). since IIPII->0 when n->0 It - Can be replaced by therefore It in the above definition.

AT THE SECOND PROPERTY OF THE PROPERTY OF THE

: (D) stop. $f \in R[a,b] \Rightarrow \mathcal{L}_{S}(P,f)$ exists. corollargeright is integrable on [a,b] then

 $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ where $h = \frac{b-a}{n}$

3

٩

۹ ٨

(4)

9

٩ <u>څ</u>

(۹

(#)

٩

.

let P={a,a+h,a+2h, - - - a+nh=b}. be a partition of [a,b].

It divides the interval [aid] into n aqual Subintervals; each of length h= b-a

: 11P11 = b-a

As IIPII->0 -n->0

Po = [a+(v-1)h, a+oh]

Let & E Ir Such that

a+(+-1)h = 5, 5a+11 : 161, Then If(a)dx = It S(P.f)

It Zf(atrh)h

= It 5 hf (a+xh) -

Corollary-2!

If It is integrable on [011] Then

soin: Let P= (0, \frac{1}{n}, \frac{5-1}{n}, \frac{5-1}{n}, \frac{5}{n} - \frac{n}{n-1}]

be a partition of [o.1].

It divides [0,1] into n' equal Subintervals, each of leights in * IIPII = Ko

AS IIPII -> 0 , n -> 0 $\mathcal{L}_r = \left[\frac{\tau - 1}{n}, \frac{\tau}{n}\right], \quad \tau = 1, 2 - -n$

Then Standa = It = f (Gr)

the limit of a lum To evaluate

(i) write the limit of sam this It standards

il, replace of by x and of the in teplace It & bill

Note that the limits of integration are the values of The first and last terms as n >0)

 $\frac{3}{n} + \frac{1}{2} + \left(\frac{\pi}{n}\right) \left(\frac{1}{n}\right) = \int_{0}^{\infty} f(x) dx.$

Corollary -3)!

If fis integrable on [a,b]. then I for) dx = It & (attains)

Set ?: - Let $P = \{a, ah, ah^2, -ah^2, ah^2, -ah^2, ah^2, -ah^2, ah^2\}$ be a partition of [a, b] $P = [ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ $P = [ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ As $P = [ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ As $P = [ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ Let $P = [ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ Let $P = [ah^{s-1}, ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ Let $P = [ah^{s-1}, ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$ Let $P = [ah^{s-1}, ah^{s-1}, ah^{s-1}, ah^{s-1}]; r = 1, 2 - -n$

Then I fin) $dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$ $\int_{0}^{N} f(x) dx = 4t - \sum_{n=0}^{N} -f(\xi_{r}) \delta r$

madalalains;

from definition, Prove that

If (a) dx = 6 where f(x) = 2x+3.

2010 - Let f(x) = 2x+3 + 2e[1,2]

Since fis bounded and continuous

fis integrable on [1,2]

Let P={ 1=20,21,22--2,25,200

 $= \left\{ \frac{1}{n}, \frac{1}{n}, \frac{2}{n}, \frac{1}{n}, \frac{3}{n}, \frac{1}{n}, \frac{5}{n}, \frac{1}{n}, \frac{7}{n}, \dots \right\}$ $\{ \frac{1}{n}, \frac{1}{n}, \frac{2}{n} \}$

be a partition of [1,2] which

divider [1,2] Into n equal subinterval

- Each of length = $\frac{b-a}{n}$ $= \frac{2-1}{n} = \frac{1}{n}$ - It P II = $\frac{1}{n}$ and

i'lp11 → o as n → ∞.

 $\mathcal{I}_{\sigma} = \left[\alpha_{\sigma-1}, \alpha_{r} \right] = \left[i + \frac{\sigma-1}{n}, i + \frac{r}{n} \right], \forall = 1, 2 - - n$ Let $\xi_{r} \in I_{\sigma}$ Such that $1 + \frac{\sigma-1}{n} \leq \xi_{r} \leq 1 + \frac{\sigma}{n}$.

ie. Exer such that rough ser

 $\int_{\mathbb{R}^{2}} f(x) dx = JL \sum_{\|P\| \to 0} \int_{\partial \Xi_{1}} f(\xi_{1}) \Delta_{x}.$

 $= 2L \sum_{n \to \infty} f(n_x) \text{ for (taking } \xi_x = \lambda_x)$

 $= dt \sum_{n \to \infty} f(1 + \frac{\pi}{n}) \frac{1}{n}$

 $= 4r \frac{1}{1} \sum_{n=1}^{\infty} \left(2\left(1 + \frac{n}{r}\right) + 3\right)$

 $= \frac{1}{n+\infty} \frac{1}{n} \left[5 \sum_{\delta=1}^{n} (1) + \frac{2}{n} \sum_{\delta=1}^{n} \delta \right]$

 $= \frac{1}{n} \left[\frac{\delta}{n} \left(n + \frac{x}{n} \right) - \frac{n(n+1)}{2^{2}} \right]$

=H [5+ (1+h)]

 $\frac{=6.}{240}$ $2 dx = 3\frac{1}{2}$

 $\int_{1}^{1} x \, dx = \frac{3}{2}$

) (22°=3x+5) dx = 25/6.

Evaluate If(2)d2

where f(x) = 12).

<u>sol</u>n: _ Let f(n) = |x| + xe[-i, 1].

المحمطة فاحت	Join Telegram for More Update :
	· · · · · · · · · · · · · · · · · · ·
	$f(x) = \begin{cases} x & x > 0 \\ -x & x < 0 \end{cases}$
	-2 2<0
,	
	fra) is bounded and continuous
	on-[-1,1]
<u> </u>	on [-11]
,	-> f(x) is integrable on [-1,1].
;.	Lety P= {-1=x0, a1, x2, nn=0,
,	7n+1 1, 1/2 1 1/2 = 1/2 = 1}
)	
	$= \{-1, -1+\frac{1}{n}, -1+\frac{2}{n},1+\frac{n+1}{n}, \dots \}$
) ($-1 + \frac{n+2}{n} = -1 + \frac{n+n}{n} = 1$
) (
	be a partition of [-1,1], which divides
)	[-1,1] into an equal Submervale, each
•	
9	of length $=\frac{b-a}{an}=\frac{1-(-1)}{an}=\frac{1}{n}$
∌ ∙	$: \ P\ = \frac{1}{n} \rightarrow 0 \text{ as } n \rightarrow \infty.$
)	
9	Let Ir=[78=1,90]; 8=1,2, 2n.
9	Let Eg ? r Such that is-15 & s 2r;
)	7
3	r=1,2,n
<u>.</u> . ⊗a	and or = /n
6 2.	1 (Era) do -11 > f(Er) sr.

f(a) =
$$\begin{cases} -2 & 2 < 0 \end{cases}$$

f(a) = $\begin{cases} -2 & 2 < 0 \end{cases}$

f(b) is bounded and continuous

on $\begin{bmatrix} -1 & 1 \end{bmatrix}$

first term but term

$$\begin{cases} -1 = 20, a_1, x_1, \cdots, x_n = 0, \\ a_{n+1} = x_n, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 = 20, a_1, x_1, \cdots, x_n = 0, \\ a_{n+1} = x_n, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{1}{n}, -1 + \frac{2n}{n}, \cdots, -1 + \frac{n+n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2n}{n} = 1 \end{cases}$$

$$= \begin{cases} -1 & -1 + \frac{2n}{n}, -1 + \frac{2$$

Let Ere Ir such that 18-15 95 5 x8; $\int_{|r|}^{\infty} f(x) dx = \mu \int_{|r|}^{\infty} f(\xi_r) \delta_r.$ = 11- $\frac{3n}{n-\infty}$ f(xx) $\frac{1}{n}$ (Taking $\frac{1}{n}$ = xx) $= dt + \frac{3\pi}{2} + \left(-1 + \frac{\pi}{2}\right)$ $\frac{1}{2} \frac{1}{2} \frac{1}$ = $\frac{1}{1} \frac{1}{n} \left[n - \frac{1}{n} \frac{n(n+1)}{2} - 2n + \frac{1}{n} \left\{ (n+1) \right\} \right]$ $\delta_r = \frac{\alpha}{n} ; - \frac{1}{n} = 1, 2, ..., n$ =dt 1 -n-1(n+1)+1 -2m(n+14-3n) (: in an A-P S2n= 2m (a+l)) $\frac{1}{1 + \frac{1}{2} \left(1 + \frac{1}{2} \right) + \left(4 + \frac{1}{2} \right) }$ = -3/2+4 = -3+8show that I strada = 1-losa where ais-fixed Real number.

soln: - since f(x) = sinx is bounded and Continuous on [o,a]. if is Riemann integrable on [0,a] Let P= {0= x0, x, x, --- xn=a} $= \left\{0, \frac{\alpha}{n}, \frac{2\alpha}{n} - - \frac{n\alpha}{n} - \alpha\right\} be$ Partition of [o,a] which divides [ora] into negual subinterval cach $\frac{1}{n \rightarrow \infty} \frac{1}{n} \left[\frac{1}{n} \left(-1 + \frac{\pi}{n} \right) + \frac{3n}{n} \left(-1 + \frac{\pi}{n} \right) \right] = \frac{1}{n} \frac{1}{n} \frac{1}{n} = \frac{1}{n} \frac{1}{n} \frac{1}{n} = \frac{1}{n} \frac{1}{n} \frac{1}{n} = \frac{1}{n} \frac$ · IIPII -> O au n -> 0 $\mathcal{L}_{r} = \left[\alpha_{r-1}, \alpha_{r}\right] = \left[\frac{(r-1)a}{r}, \frac{ra}{r}\right]$ +(n+2)+(n+3)+-+3n : I find $dx = 1 + \sum_{i \neq j \neq k}^{n} f(\xi_i) \delta_{ij}$ $= \lim_{n\to\infty} \frac{n}{f(n_0)} \frac{a}{n}$ THE ST F (Ta) a $= \frac{1}{n} + \frac{a}{n} + \frac{n}{n} \sin \left(\frac{na}{n} \right)$ = U-a Sin 2 Sin 2a+ $\frac{a}{n} \left[\sin \left(\frac{\alpha}{n} + \frac{n-1}{2} \cdot \frac{a}{n} \right) \sin \left(\frac{n}{2} \right) \right]$ $8 \sin \left(\frac{a}{2n} \right)$ (Sin x + Sin (x+ p) + Sin (x + 2p)+ ---+sin (++n-1B)= $\frac{\sin(\alpha + (n-1)\beta)}{2}\sin(\frac{n\beta}{2})$

	÷
1	
= d (Sin(n+2-2n) sin(2))	÷
$n \rightarrow \infty$ $\sin\left(\frac{\alpha}{2n}\right)$	
a (a. 2 a)	
an sint no	
in on the	
2/0.	+
= &. (1) 31/1 (量)	. ,
= 1-600	
a	11
H.W. show that I cosxdx = sina.	
where are of their neumber.	_
• (
H: w T/2_ coadx = 1	
l o	
2004 P. Hat He greatest Mager	~
SHOW SHOW	
The state of the s	
[o,4] and [a]dx 6	!
3.4	
sol'n fen) = [a] : V = x = [014]	
O when 0 \ 2 < \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-
$\frac{1}{2} \cosh n = \frac{1}{2} \times 2$	~
3 when 3 = 2 < 4 < 3	
L. L.	
= fis bounded and her only four	
points of finite discontinuity-at	
1.2.3,4.	
of f on [014] are finite in number.	
· · · · · · · · · · · · · · · · · · ·	. :
8	
(Fa) da = [Fa]da+ [Fa]da+]la lda	ľ
0 + [[a] da	
	Sin(a) -olt 2 \frac{a}{2m} \text{. It in (a + a - a) argolution of sin (a) n > \text{. It in (a + a - a) argolution of finite discontinuity of finite in number. - olt 2 \frac{a}{2m} . It in (a + a - a) argolution of (a) = [a] is interpolation of finite discontinuity of our of and has only four of finite discontinuity. - on [o] the points of discontinuity of our of finite discontinuity. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number. - on [o] the on [o] the finite in number.

```
= \int_{0}^{1} o dx + \int_{0}^{1} 1 dx + \int_{0}^{3} z dx + \int_{3}^{3} z dx + \int_
                                                          =1(2-1)+2(3-2)+3(4-3)
                              Prove that f(x) = x[x] is
 integrable on [012] and fa[à]dx=
Prove that f(x) = x-[x] is
      integrable on [1, 10] and Ifix ) dx =
show that the function of
      defined by
f(\alpha) = \frac{1}{2^n} \quad \text{when } \frac{1}{2^{n+1}} < \alpha \le \frac{1}{2^n},
             f(0)=0. Is integrable on [0,1],
 although it has an infinite number of
   points of discontinuity shows that
           Shardr = 23.
(1) - f(x) = 1- when 21+ < 1 < 1
                                                                          =\frac{1}{20}=1 when \frac{1}{21}<\chi<\frac{1}{20}=
                                                                           = 1/2 When 1/2 < x < 1/1
```

bounded and Continuous on [on!] except at the points 8/2 / 22 , 3/--The set of points discontinuity of f on [o,1] is {21/2, 1/21, ----} which has only one limit point o. Since the Set of points of discontinuity of f on [0,1] has a firste number of limit points. if is integrable on [0,1]: Now I find dx = I fix dx + I fix dx + \int \fallx + -- + \int \fan\) dx =(1-1/2)+1/2(1/2-1/22)+1/2-(1/2-1/28)- $+\frac{1}{2n-1}\left(\frac{1}{2n-1}-\frac{1}{2n}\right)$ $= (1 - \frac{1}{2}) + \frac{1}{2} (\frac{1}{2}) + \frac{1}{2} (\frac{1}{2}) + \dots - \frac{1}{2} (\frac{1}{$ $--+\frac{1}{2^{n-1}}\left(\frac{1}{2^n}\right).$

Paking limit when n->00, we get $\frac{dt}{m\to\infty} \iint dx = Lt \frac{2}{3} \left(1 - \frac{1}{4n} \right)$ $\Rightarrow \int f(\alpha) d\alpha = \frac{2}{3}.$ show that I defined on [0,1] by $f(x) = \begin{cases} \frac{1}{n}, \frac{1}{n+1} < x \leq \frac{1}{n}, (n = 0, 1, 2 - 0) \\ 0; x = 0 \end{cases}$ is integrable on [ori]. Also show that /f(2) dx = 172-1. $\underline{Sol'n}:=\underbrace{f(n)=\begin{bmatrix} \frac{1}{n}, \frac{1}{n+1} < x \leq \frac{1}{n}; n=1,2,\dots \\ \frac{1}{n} = \frac$ 0, 2=0. = 1; 1 < 7 < 1 = 1 : 1 < 2 5 1 1 1/11 $=\frac{1}{3}; \frac{1}{4} \times 2 \times \frac{1}{3}$ $\frac{1}{2n-1}, \frac{1}{2n} < x \le \frac{1}{2n-1}$

 $=\frac{1}{2}\left[1+\frac{1}{2^{2}}+\left(\frac{1}{2^{2}}\right)^{2}+\frac{1}{2^{2}}\right]\xrightarrow{\eta-1} \Rightarrow f(\pi) \text{ is bounded and continuous}$ $=\frac{1}{2}\left[1+\frac{1}{2^{2}}\right]^{\eta} = \frac{2}{3}\left[1-\frac{1}{4}\right]$ $=\frac{1}{2}\left[\frac{1}{2}\right]^{\eta} = \frac{2}{3}\left[1-\frac{1}{4}\right]$ The Set of points of discontinuity

off on [0,1] is [1/2,1/4, ---] Now taking limit as n - 00, we get which has one limit point of.

It f(x)dx = It $\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n}\right)$ which of discontinuity $\frac{1}{n+1}$ The set of points of discontinuity of f on [o,1] has a finite number Africalimit points. It is integrable on [0,1] Now Ifinda = Ifin da + Ifin da+ 4 $\frac{1}{2} \operatorname{Id} + \int_{3}^{1} \frac{1}{2} dx + \int_{3}^{1} dx + - + \int_{3}^{1} \frac{1}{2} dx + \int_{3}^{1} \frac{1} dx + \int_{3}^{1} \frac{1}{2} dx + \int_{3}^{1} \frac{1}{2} dx + \int_{3}^{1} \frac$ = (1-2)+2(2-13)+5(3-14)+-- is in $---+\frac{1}{n}\left(\frac{1}{n}-\frac{1}{n+1}\right).$ $= \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + - - + \frac{1}{n^2}\right) -\left(\frac{1}{2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \frac{1}{-10(nH)}\right) \rightarrow \text{If } f \in \mathbb{R}[a_1b_1] \text{ then } H \in \mathbb{R}[a_1b_1]$ = (1/1 + 1/1 + 1/32 + --- + 1/1) Note: Converse is not true.

i. e. If If I ER[a16] then f need not. -(1-1/2)+(3-1/2)+(3-1/2)+--- be R-integrable on [a,b]] $--+\left(\frac{1}{n}-\frac{1}{n+1}\right)$ $= \left(\frac{1}{12} + \frac{1}{2} + \frac{1}{12} + \cdots + \frac{1}{n^2}\right) - \left(1 - \frac{1}{n+1}\right) \quad f(\alpha) = \begin{cases} 1, & \text{if } \alpha \text{ is rational} \\ -1, & \text{if } \alpha \text{ is irrational} \end{cases}$ $\int f(x)dx = \left(\frac{1}{17} + \frac{1}{2^{\frac{1}{2}}} + \frac{1}{3^{\frac{1}{2}}} + \cdots + \frac{1}{n^{\frac{1}{2}}}\right) \longrightarrow \text{If } f(g \in \mathbb{R}[a,b] \text{ then } f(g \in \mathbb{R}[a,b])$

 $\Rightarrow \int f(\alpha) d\alpha = dt \int_{N\to\infty} \left(\frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{N^2} \right)$ $-dt \left(1 - \frac{1}{n+1}\right)$ $= \frac{\pi^2}{6} - 1$ (: The Series $\frac{1}{12} + \frac{1}{32} + \frac{1}{32} + \cdots + \frac{1}{n^2} + \cdots$ Converges to II2

Converges to II2

Show that the function of define on [0,1] as $f(x) = 20x 6000 + 1 < x \leq \frac{1}{8}$ adable on [0,1] and faxdz=1 * Properties of Riemann Poligia \rightarrow If $f \in R[a,b]$ then $-f \in R[a,b]$. Ex:- f: [a, 6] → IR defined as follows $(1-\frac{1}{n+1})$ and $\int_{-\infty}^{\infty} (1+g)(x) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx$.

If figer[aib] and «iBEIR then aft BJER[a,b] >If fer[a, b] then fer[a, b] -> If fige R[a,b] and there exists too such that Igan tale [aib] then of ex[a,b]. -> If figer[a,b] then

fger[ais] Note: Heren though fig are not integrable

on [a, b], fg may be integrable on [a,b] Ex:- Let f! [a,b] -> IR; q! [a,b] -> IR be deferred by

 1×0 and 0 = 0, 1×0

Then $(fg)_{x} = f(x).g(x)$

FO VXER

Since fg is Constant function => fger[a,b]

But fig are not Riemann integrable soin! figer[a,b] on [a,b]

Tif fer[a,b] and a < c < b then | since f(x) > g(x) + re[a,b] fer[a,c], fer[c,b]

and I find to = I find to + I find dx

-> If LER [a,c], LER[C,b] and accep then felaib] TH fer[a,b] and f(x)>0 4xe ab then faith >0. solo: since ferfait] => f is bounded on [a,b] Let m & M be the infimum & Supremium of fon [a,b].

Since f(a)>0 tre[a,b] Now for every PEP[a,b]

L(P.f) > m(b-a)> L(PA)>0

Now If(x) dx = Lub (L(Pd)) >0 If (a) dx = I f(a) dx (.. fertab) : Sf(a)dx>o

2004> If figer[a,b] and f(2)>g(x)+xe[a,6] then If(x) dx > Jq(x) dx!

 \Rightarrow f-g \in R[a,b].

 \Rightarrow f(x)-g(x) > 0 \forall xe [a,b].

>(f-g)(2)>0 Yzela,6) we know that

If fer [a,b] and f(x)>0 tre[a,b] then Ifaida >0.

(1.)(fg) (a)dx >0 => f (f(2)-g(2))d2 >0 ⇒ Sf(a) dx - Sg(a)da >0 Jefa) px > Tg(a)da. Corollary, of fig. heR[a,b] and f(a) > g(a) > h(a) +ae[a,b] then faidx > faidx > fraidx. Since exponential function is an inoxeasing faintion on Pake f(x)=1, g(x)=ex, h(x)=e ne have fex) < g(x) < h(x) tre[oi] Now Lub {L(P.f)} per[oi] + f(x) de $\Rightarrow \int f(x) dx \times \int g(x) dx < \int h(x) dx$ $\Rightarrow 1 < \int e^{x^2} dx < e$

> If fer[a,b] then $\left|\int_{a}^{b}f(x)dx\right| \leq \int_{a}^{b}|f(x)|dx.$ Solb! - Since ferfait) If ER ab =>-HIER[a,b]-- |f(a) | < f (a) < | f(a) | \tag{a,b} $\Rightarrow \int_{-1}^{6} |f(x)| dx \leq \int_{-1}^{6} f(x) dx \leq \int_{-1}^{6} |f(x)| dx$ = - Ilfallda < Ifalda < Ilfalda $\left| \int_{-1}^{0} f(x) dx \right| \leq \left| \int_{-1}^{1} f(x) dx \right|.$ ReR[a,b] and m,M are infimur Expression of f in [a,b], then m(b-a) < f(a) dx < M(b-a) and for da = " u (b -a) where he from sol'ni- For every PEP[a,b] whave $m(b-a) \leq L(P,f) \leq (P,f) < M(b-a)$ = If(a)da a PER ab => L(P,f) < jf(x) dx -@ glb (U(PA)) Eplaibj = J franda = |f(x)dx: (: fer[a,b])

 $\Rightarrow U(P,f) \geqslant \int f(x) dx$ — 3 ... from O, O & 3 we have $m(b-a) \leq L(P,F) \leq \int f(x) dx \leq U(P,F)$ < M (b-a) \Rightarrow m(b-a) \leq $\int f(x) dx \leq M(b-a)$. $\Rightarrow m < \frac{1}{b-a} \int f(x) dx \le M \text{ for } a \ne b$. $\Rightarrow \frac{1}{b-a} \int f(x) dx$ is a number H(x,y)between the bounds in & M. $\frac{1}{b-a}$ $\int f(x) dx = \mu$. f(x) da = \(\hat{\mu}(b-a)\) where m< M< M. For a=6, the result is trividly Ex - f(2) = \(\frac{1}{3} + \frac{1}{12} + 2 \in \big[1,3 \] : Fifex) bounded & Reemann integrable on [1,3] Now #(2) = 3 >0 +20[1,3]. if (1) is an increasing. M = f(3)= 13+32 $a(3-1) \leq \int \sqrt{3+2^2} dz \leq \sqrt{12} (3-1)$

If f is continuous on [a,b] I ce [a,b] such that If(x)dx=(b-a)f(x) proof - since f is continuous on[a, b] -> fer[a,b] . I HE [m, M] Such that I fardix= fulbor Since fis continuous on [a,b]; it attains every value between its Lounds m, M. Le[m,m] => ∃ a number Ce[ab] Such that f(c) = \mu. : 0 = sf(2) dx = (b-a)f(c) > 2f. fer[aib] and If(x) sk and KER+ then | fa)da | < k(b-a). Solo: - Since Harlek + re[a,b] => -K=f(x)≤K \xe[a,b] Ke If mim are the infimum (style Supremum of I on [a,b] then we have -k < m < f(a) < M < k Hate a, b] since. fer [a,b] ~ m(b-a) ≤ (f(a)da & M(b-a) ~ -k(b-a) ≤ m(b-a) € f-f(w)dx ≤n(b-a) k(b-a) $\leq k(b-a)$

7 4 < 1/3+2+ da <7

	. Join relegram for More Opdate:
~	r
3	$\frac{E_{\lambda}}{H^{\lambda}} = \frac{3ina}{H^{\lambda}} \forall \chi \in [10,19]$
÷	. P+3.º
3	for 2>10 ⇒ 28 >108
*	⇒1+x8 > 1+108
(g)	⇒ (1+28) > (1+108)
.)	li stativi di
9	$\Rightarrow \frac{1}{ 1+x8 } \le \frac{1}{ 1+x8 } \le \frac{1}{108}$
9	Since 18ina SI & a EIR
(3)	
<u></u>	H-48 < 108 = 108 Axe[10,19]
3	By theorem,
(*)	
(3)	$\int f(a) da \leq k(b-a).$
9	l
9	- Where Hall≤k.
®	we have
9	10 1+28 dx ≤ 108 (19-10)
9	10 H78
3	= 15
.	* 11 × 5 × 10
.	night.
*	A Functions defined by integration
9.	- Let fer[a,b]. Then for each
9	tela, b], [a,t] < [a,b] and hence
9	for Quet
-	to the
*	Therefore I fla) dx is well defined.
9	the fraction obits - (end)
3	the function (D(t) = \(\int \text{fcx} \dx, \text{te[a,6]} \)
8	The function of is called an
(a)	integral function or Industrite
⊜	and the Mark the second of
0	integral of the integrable function f.

Note: the integral function of f may also be defined as P(x) = f(x) dx, te[a,b]. Continuity of the integral function: If fe R[a,b] then obtis=fresh is continuous on [a,b]. The integral function of on integrable is continuous. Proof: Since fe R[a,b] This bounded on [a,b]. I ke R + such that Hirlsk Haela Pf x, 12 e [a,b] such that arrays then D(a2) - p(x) = f(x)/2 f(x)/dx x = f(x)/dx x x		l' '
may also be defined as O[t) = If(x) dx, te[a,b]. The integral then of the integral fauction: (or) The integral fauction of on integrable is continuous. Proof: since fe R[a,b]. I se R such that f(x) k vae fa I hen D(a2) - p(x1) = If(x) h A continuous		Note! The integral function of i
The integral of the integral fauntion: The Rearb then of the integral fauntion: The integral faureton of on integrable is continuous. Proof: since ferearb This bounded on [a,b]. This bounded on [a,b]. Then p(az) - p(xz) = f(xz) - f(z) Then p(xz) - p(xz) = f(xz) - f(xz) Then p(xz) - p(xz) The integral faureton of one The integral faureto		may also be defined as
faution: If $f \in R[a_1b]$ then $\phi(x) = \int f(x)d$ is continuous on $[a_1b]$. (or) The integral function of an integrable is continuous. Proof: Since $f \in R[a_1b]$ It is bounded on $[a_1b]$. If $f : x \in R + s \in$		ا غ
fauction: If $f \in R[a_1b]$ then $\phi(x) = \int f(x)d$ is continuous on $[a_1b]$. (or) The integral function of an integrable is continuous. Proof: Since $f \in R[a_1b]$ If $x = f(x) = f(x) = f(x) = f(x)$ Then $ \phi(x_2) - \phi(x_1) = \int f(x) dx - f(x) dx$ Then $ \phi(x_2) - \phi(x_1) = \int f(x) dx - f(x) dx$ $= \int f(x) dx - f(x) = \int f(x) dx - f(x) dx$ Now for each $f \in S(x)$. Othersing $f \in K$ Choosing $f \in K$		φω, - jtw/dx, te[a,b].
fauction: If $f \in R[a_1b]$ then $\phi(x) = \int f(x)d$ is continuous on $[a_1b]$. (or) The integral function of an integrable is continuous. Proof: Since $f \in R[a_1b]$ If $x = f(x) = f(x) = f(x) = f(x)$ Then $ \phi(x_2) - \phi(x_1) = \int f(x) dx - f(x) dx$ Then $ \phi(x_2) - \phi(x_1) = \int f(x) dx - f(x) dx$ $= \int f(x) dx - f(x) = \int f(x) dx - f(x) dx$ Now for each $f \in S(x)$. Othersing $f \in K$ Choosing $f \in K$	~	· · · Continuity of the integral
If $f \in R[a_1b]$ then $\phi(t) = \int f(x)dx$ is continuous on $[a_1b]$. (or) The integral function of an integrable is continuous. Proof: Since $f \in R[a_1b]$ If is bounded on $[a_1b]$. If $x \in R^+$ such that $a \in X_1 \in X_2 \in A_1b$ such that $a \in X_1 \in X_2 \in A_1b$ such that $a \in X_1 \in X_2 \in A_1b$ such that $a \in X_1 \in X_2 \in A_1b$ such that $a \in X_1 \in X_2 \in A_1b$ such that $a \in X_1 \in A_1b$ such that	•	
is continuous on [a,b] (or) The integral function of an integrable is continuous. Droof: Since fe R[a b] This bounded on [a,b]. If is bounded on [a,b]. Off 2., 2. E [a,b] such that agreement of then $\phi(\alpha_2) - \phi(\alpha_1) = f(\alpha_1)$. I for large and then $\phi(\alpha_2) - \phi(\alpha_1) = f(\alpha_1)$. Sk $(\alpha_2 - \alpha_1)$ ("for R[a,b]. And then $\phi(\alpha_2) - \phi(\alpha_1) = f(\alpha_1)$. And then $\phi(\alpha_2) - \phi(\alpha_1) = f(\alpha_1)$. Sk $(\alpha_2 - \alpha_1)$ ("for R[a,b]. Now for each $e>0$, too have $\phi(\alpha_1) = f(\alpha_1) = e$ whenever $ \alpha_1 - \alpha_1 < e$ Choosing $\delta = e$ K		<u> </u>
The integral function of an integrable is continuous. Proof: Since $f \in R[a_1b]$ If is bounded on $[a_1b]$. If $x = x \in R^+$ such that $[f(x)] \leq k$ value then $[f(x)] = f(x) = f(x)$. Ithen $[f(x)] = f(x) = f(x)$. If $[f(x)] = f(x)$.		a
the integral function of an integrable is continuous. Proof: Since $f \in R[a_1b]$ I have $f \in R[a_1b]$ I have $f \in R[a_1b]$ Then $ f(x_2) - f(x_1) = f(x_1) \leq f(x_1) \leq f(x_1) $ I hen $ f(x_2) - f(x_1) = f(x_1) = f(x_1) $ I have $ f(x_1) \leq f(x_1) \leq f(x_1) \leq f(x_1) $ Now for each $f \in R[a_1b]$ Choosing $f \in E[x_1]$		is continuous on [a,b]
integrable is Continuous. Droof! Since $f \in R[a_1b]$ It is bounded on $[a_1b]$. It		
Droof: Since f∈ R[a16] → fis bounded on [a,6]. → Fis bounded on [a,6		4
This bounded on [a,b]. The property of that $ f(x) \le k $ $ f(x) \ge k $ $ f(x) \le k $ $ f(x) \ge k $		
Then $ \phi(x_2) - \phi(x_1) = \int_{-\infty}^{\infty} f(x_1) \leq k \sqrt{2} + k \sqrt{2} = \int_{-\infty}^{\infty} f(x_1) =$		
If $x_1, x_2 \in [a,b]$ but that $a \in x_1 \in x_2 \le 1$ then $ \phi(x_2) - \phi(x_1) = \int_{-1}^{2} f(x) dx - f(x_1) $ $= \int_{-1}^{2} f(x) dx - f(x_1) $ $= \int_{-1}^{2} f(x) dx - f(x_1) $ $\leq k(x_2 - x_1) \text{ (if } f(x_1) \le k, k \in 1)$ Now for each $\epsilon > 0$, too lave $ \phi(x_1) - \phi(x_1) < \epsilon \text{ whenever } x_1 - x_1 < \epsilon $ Choosing $\delta = \epsilon$ K		
then $ \phi(\alpha_z) - \phi(x_i) = \int_{-\infty}^{\infty} f(x)dx - \int_{-\infty}^{\infty} f(x)dx$ $= \int_{-\infty}^{\infty} f(x)dx - \int_{-\infty}^{\infty} f(x)dx$ $= \left \int_{-\infty}^{\infty} f(x)dx - \int_{-\infty}^{\infty} f($	7	15 15 15 15 15 15 15 15 15 15 15 15 15 1
$= \left \int_{\alpha}^{\alpha_{1}} f(x) dx \right _{\alpha_{1}} dx = \int_{\alpha_{1}}^{\alpha_{2}} f(x) dx = \int_{\alpha_{1}}^{\alpha_$	36	If a 2 E [a,b] but that agricante
$= \left \int_{\alpha}^{\alpha_{1}} f(x) dx \right _{\alpha_{1}} dx = \int_{\alpha_{1}}^{\alpha_{2}} f(x) dx = \int_{\alpha_{1}}^{\alpha_$		then $ \phi(\alpha_2) - \phi(\alpha_1) = \int_{-1}^{\infty} f(\alpha) d\alpha - \int_{-1}^{\infty} f(\alpha) d\alpha$
$= \int_{\alpha_1}^{\alpha_2} f(\alpha) d\alpha - \frac{1}{2} \int_{\alpha_1}^{\alpha_2} f(\alpha) d\alpha - \frac{1}{2} \int_{\alpha_1}^{\alpha_2} f(\alpha) d\alpha - \frac{1}{2} \int_{\alpha_2}^{\alpha_2} f(\alpha) d\alpha - $		50 M DEST
$= \int_{\alpha_1}^{\alpha_2} f(\alpha) d\alpha - \frac{1}{2} \int_{\alpha_1}^{\alpha_2} f(\alpha) d\alpha - \frac{1}{2} \int_{\alpha_1}^{\alpha_2} f(\alpha) d\alpha - \frac{1}{2} \int_{\alpha_2}^{\alpha_2} f(\alpha) d\alpha - $	-	一一 一种的人
Sk($\alpha_1-\alpha_1$) ("for R[a,b] and Har! Sk, ker Now for each $\epsilon>0$, too have $ \phi(\alpha_1) = \phi(\alpha_1) < \epsilon$ whenever $ \alpha_1-\alpha_1 < \epsilon$ Choosing $\delta = \epsilon$ K		4
Sk($\alpha_1-\alpha_1$) ("for R[a,b] and Har! Sk, ker Now for each $\epsilon>0$, too have $ \phi(\alpha_1) = \phi(\alpha_1) < \epsilon$ whenever $ \alpha_1-\alpha_1 < \epsilon$ Choosing $\delta = \epsilon$ K		$= \int f(x) dx - y dx$
Now for each $\epsilon>0$, too lave $ \phi(x_i) <\epsilon \text{ whenever} x_i-x_i <\frac{\epsilon}{2}$ Choosing $\delta=\epsilon$		
Now for each $\epsilon>0$, too lave $\left \phi(x_i) \right < \epsilon$ whenever $ x_i - x_i < \frac{\epsilon}{2}$ Choosing $\delta = \epsilon$	-	
too have $ \phi(x_i) < \varepsilon $		
$ \phi(x_i) < \varepsilon$ whenever $ x_i - x_i < \frac{\varepsilon}{2}$ Choosing $\delta = \frac{\varepsilon}{K}$		
Choosing $\delta = \frac{\epsilon}{K}$		
	7:	
Φ(no) - Φ(n) < € coheneves 1		
		$ \Phi(n_c) - \Phi(n_1) < \epsilon \text{ coheneves}$

φ(x) is coniformly continuous on [a,b].

* Derivability of the integral function:

If fer[a,b] and f is continuous at ce[a,b] then $\phi(t) = \int_{a}^{b} f(x) \, dx$.

is derivable at c and p'(c) = f(c).

Proof: Since of is Continuous at Celab.

Such that $|f(x) - f(c)| < \epsilon$ whenever $|\Phi(c+h) - \Phi(e)| = \epsilon$ whenever

Take b, so Hat Photo = Italda-Harda

= If(x) dx = fiff(x)dx - If(x)dx -

since f is continuous on [a,b].

· JCE [a.6] such that

 $\int_{a}^{b} f(x) dx = (b_{\pi}a) f(c)$

 $= \frac{1}{h} \int_{c}^{C+h} f(x) dx - \frac{1}{h} \int_{c}^{C+h} f(c) dx$ $= \frac{1}{h} \int_{c}^{C+h} f(x) - f(c) dx$ $\leq \frac{1}{h} \int_{c}^{C+h} f(x) - f(c) dx$

= & whenever 0< /2-C/5.

 $\frac{|\Phi(c+h)-\Phi(c)|}{h} - |f(c)| \leq |chenever|$ $0 < |\alpha-c| < 6$ $(i-e\cdot 0 < |h| < 6)$

Moios (C+h) - (c) = f(x)dx - f(x)dx le h+0 h = f(c)

i.e. \$(cc) = f(c) 1832 111

. o is derivable at 18 fd. 7

i.e. continuity of p'at calcino is derivability of \$ at calcino

i.e. continuity of for [a,b] is derivability of on [a,b].

Note:

(1) This theorem is some times-referred to as the first fundamental theorem of military tradeulus.

ો

1

্ৰ

3

(i)

33

(E) (2)

(*)

্ৰ

ુ)

:30)

٩

43) (

₩

3

(2) The integral function of defined by O(t) = If(x)dx is continuous and, derivable on [a,b] curder the conditions of the above two theorems. (3) Sinta Ott) = If(a) is Continuous on 1, te[a,b] $\phi(0) = \int f(x) dx = H \phi(t)$.

(4) If fix continuous on [a,b] then oft) = Ifin) de V te [a, b] is derivable existence of a primitive. at every re[a,b] and o'(2)=f(2): Ex-Consider

If fer[a,b] and if] p:[a,b] such that O'(x) = f(2) & xe[a,b] then the falled a primitive or autiderivative Note (1) If I is continuous on [a, b] then of possesses a primitive.

(2) Primitive of f is not unique. If \$ is a primitive of f then Otc, CEIR is also a primitive of f.

fraid Yte[a,b]

Ex! f: [a,b] -> 1R be defined by -f(x) = Sin x.

Since f(x) = Sinx is Continuou on $[a_1b]$.

. Primitive of sinx exists on last : If \$ [a,b] - iR is defined & $\phi(x) = -\cos x$ then we know that φ'(x) \$ (corx) = 3 on γ re[a, 6]. . - Colx is the primitive of sinx on a,b.

(3) Continuity of a function is not a necessary condition for the

the function of defined agon for I was a subtract the second

(2) = (x/sin/k, x+0)

225in - 105 ; 1#0 Then $\phi'(x) =$

we know that \$100 pis not Continuous at 2=0.

If f(a) = 0 (a) on [0,1] then fex) is not continuous on [0,1];

Even though f(a) admits of Q(2) in [0,1], it a Primitive

fails to be continuous in [0,1]

of fundamental theorem of integral Caleulus:

If fer[a,b] and \$ is primitive of f on [a,b] (i-e ob'(e) = f(w) b V xefa,b]) then I fail dx = $\phi(b) - \phi(a)$.

Proof! & is a primitive of fon [a, 6].

 $\phi'(x) = f(x) \forall x \in [a,b]$ since fertais?

Consider a partition

and Ir = [xr-1 1 2x]; 8=1.

let & e I such that $x_{s-1} \leqslant \xi_s \lesssim 1_s$

Item dx = It = f(\xi_1) &.

Since pis derivable or [a,b]

-> \$ is "Continuous and derivable On [25-1-, 7]; , 8=1,2 --- n.

By Lagranges Mean Value

theorem,

 $\phi'(\xi_{\tau}) = \frac{\phi(x_{\tau}) - \phi(x_{\tau-1})}{\int \tau^{+} h en ds ts}.$

 $\Rightarrow \phi(\alpha_1) - \phi(\alpha_{r-1}) = (\alpha_r - \alpha_{r-1})\phi'(\xi_1)$

 $\Rightarrow \sum_{n=1}^{\infty} \left[\phi(x_n) - \phi(x_{n-1}) \right] = \sum_{n=1}^{\infty} \phi'(\xi_n) \delta_n$ $= \sum_{r=1}^{n} f(\xi_r) s_r (from \mathbb{O}).$ $\Rightarrow \frac{1}{2} + (\xi_i) \delta_i = [(\phi(x_i) - \phi(x_i)) + (\phi(x_i) - \phi(x_i))]$

 $+--+(\phi(q_n)-\phi(q_{n-1}))$ = \phi(2n)-\phi(20)

 $= \phi_{(6)} - \phi_{(6)}$ $\Rightarrow \sum_{r=1}^{n} f(\xi_r) \, \delta_r = \phi(\iota_0) - \phi(\iota_0)$

 $\Rightarrow \int f(\alpha) d\alpha = \phi(b) - \phi(\alpha) \qquad \text{and insign}$

Note: (1) The above theore Sometimes called the

fundamental theorem of integral taleula (2) If of is continuous on [a,b] +

 $\int \phi(x) dx = \phi(b) - \phi(a).$

(3) $\phi(6) - \phi(a)$ is denoted as pages.

Ex- show that Int da = 1/2.

sab: f(x)=x4 is continuous on R.

i'It's continuous on [0,1].

let 0(x) = 35 +x = [0,1]

 $\Rightarrow \phi'(n) = n^4 \text{ exists. on } [0,n].$

\$

. 🗐 .

變.

()

; φ(x) is derivable on [O.4]. : $\phi^{1}(x) = x^{4} = f(x) \ \forall \ x \in [0,1]$: o(x) is a primitive of from [0,1]. . By fundamental theorem of Integral calculus. 1 /x4 dx = (4(i) - (40) = 15-0=15 Ext(2) show that I cosx dz=Sinb-sina. flow = con is continuous on [a,b] .) Cora exists.

Let o(n) = Sinn & ne[arb] $\phi(n) = \cos x \forall x \in [a,b]$.: Φ(α) is derivable on [a,b]

· 0'(x) = cox = f(x) \ 7 = [a] of the a primitive of it on least? mental theorem

1 = p(6) - p(a)

= Sinb -sina

* Mean value theorems of Entyral Calculus:

If light and gen >0 (or)

g(x)≤0 Va∈[a,b] then there exists

a number 4 with m< HS M Such

 $\int f(x) g(x) dx = \mu \int g(x) dx.$ Proof- let g(x)>0 + xe[a,6]. Since fer [a,b] => fis bounded on [a,b] . If m, M are the infinem and supremiem of f on [aib] then msf(x) SM V acfarb]

Since gas >0 + 2€ [a:6]

i mg(a) ≤ f(a) g(a) < Ng(a) ∀xeb > Imgan da ≤ Ifangaida ≤ Ingai

in fluda = I for goar da = MJgara

=> = Me[m, m] Such that

Now Suppose that gex) = 0 the at

>-g(n)>0 +ne [ais

=>] HE[m,M], we have

ffex) (-g(x))dx = H/C g(xs)dx

=> fla). g(x)dx =pr fg(x)dx

9(2) = 1 + x = [a,b] then ge r[a,b] and g(x)>0 Vxe[a,b]

By Mean value Theorem,

we have

b

f(a) (1) da = \(\beta \) ida

= \(\beta \) (b-a) where

b

\text{He[m,M]}

Constany: If f is continuous on a, b)

PER[a,b] and g(x)>0 (b) g(x)<0

V xe[a,b]

then I ce[a,b] such that

b

f(x) g(x) dx = f(e) f g(x) dx.

Proof : since f is continuous on [aib]

⇒ fe R[aib]

Herry g(x) de = p / g(x) dr.

shile fib continuous on [a,b]

its bounds m, M.

∴ Me[m, M] => 3 C∈ [a,b] seels

that $f(c) = \mu$ $\int_{a}^{b} f(x) g(x) dx = f(c) \int_{a}^{b} f(x) dx$

Problems

I show that $\exists \xi \in [0, \pi/2]$ such that $\pi/2$ I asima $dx = \xi$ Solit: Let f(x) = x, $g(x) = \sin x$ Then f(x) is Continuous and. g(x) is integrable on $[0, \pi/2]$ and $g(x) = \sin x > 0$ $\forall x \in [0, \pi/2]$ Applying first mean value

三学

Prove that I Simma dis

Soln: Let A(a) = 11 79 (m)=Sinta

then fig are continuous on [0,1] and hence integrable on [0,1] and g(2) >0. 426 [0,1]

Since fis thecreasing on [0,1].

Supremum $f = f(1) = \frac{1}{2}$. Supremum f = f(0) = 1.

.. By first Mean value theorem.

	Join Telegram for More Update : -
	[∃ RE [Y2.1].
· 😥	
	Such that I ferilgion) = p Iging dx
❸.	Sinta
⊜	$\Rightarrow \int \frac{8 \ln \pi x}{1+x^2} dx = H \int \sin \pi x dx$
۹	$=\mu\left[\frac{-\cos\pi^2}{\pi}\right]$
3	
(3)	$=\mu\left[\frac{2}{\pi}\right]-0$
(3)	
*	Since fis Continuous on [0,1].
*	it attains every value between its
	bounds 12 and 1.
*	
*	He[1/2,1]
9	a number ce[0,1] such that
۹	$f(c) = \mu$
₩ .	from (1)
**	1
9	$f(c) = \frac{\pi}{2} \int \frac{\sin \pi x}{1+x^2} dx - \emptyset$
9	6
*	But OSC < 1 and fix decreasing on [0]
· 😂 ·	=>fo> fc> ≥ fc) -
8	=> 1> f(c) > 1/2
6	
	$\frac{1}{12} \leq \frac{1}{12} \int \frac{\sin \pi x}{1+x^2} dx \leq 1$
⊜ •	- Storm
	$\frac{1}{111} \lesssim \int_{0}^{\infty} \frac{\sin \pi x}{1 + x^{2}} dx \lesssim \frac{2}{\pi}$
	1/2
9	Prove that $\frac{\pi^2}{9} < \int \frac{\pi}{2\pi} d\pi < 2\pi^2$
(3)	9 June dr. Can
8	Sol'n det f(x) = 1/1/2, 8(x)=x
0	31/12
89	Prove that $\frac{1}{3\sqrt{2}} \le \int \frac{x^9}{\sqrt{1+x^9}} dx < \frac{1}{3}$.
(B)	3/2 3/14/2 3

got's: Let f(x) = 1/(1+3", g(x): Prove that \frac{\pi^3}{24} \left(\frac{\pi^2}{5+3cdx}) Let for = 1
5+3cola / (4) = 1 H.W. Prove that TI & Seconda < TT Lett-f(n) = secx g(n) = 1> By applying Mean value theorem of integral Calculus sho that e'44 < 4/3 < e'3 by Monsidering soin: Let fox) = 1/2 1 g(x)=1 Vxe[then fig are Continuous on [3.4] and hence integrable on [3,4] and 9(x)=1>0 + xe 3,4] Since fex) is decreasing function " infimum f = f(4) = 14 . Steprement = f(3) = 3 By first Mean Value theorem. If (a) $g(x) dx = f(c) \int_{3}^{4} g(x) dx$ $\Rightarrow - \int_{3}^{4} f(x) dx = f(c) \int_{3}^{c} c(t) dx$ = f(c)(4-3)= f(c) where CE[3.4]

Now 3< C ≤ 4

(-fisdecreasing)

 $\Rightarrow \xi > f(c) > \frac{1}{4}$ $\Rightarrow \xi > f(x) > \frac{1}{4}$ $\Rightarrow \xi > f(x) > \frac{1}{4}$

= 1/4 < (log 7 14 < 1/4

⇒ ¼ ≤ log (4) ≤ ⅓

=> 1/5 log (1/3) ≤ 1/3

→ 845 4350%.

A Bonnet's Mean Value Theorems-

Let ger [aib] and let fbe:

Monotonically decreasing and non-negline

on [a,b]. Then for some {∈ [a,b]

Sich that If(x)g(x)dx=f(x)/g(x)dx

Let ger[a,b], and let f be

monotonically, increasing and non-

negative on [a,b] then for some

Me[a,b] such that

If (a) g(a) da = f(b) fg(a)dm

Problems . _

> If Ocacb, Show that

 $\left|\int_{\alpha}^{\infty} \frac{g_{imx}}{g_{imx}} dx\right| < \frac{2}{\alpha}.$

sot's! Let f(a)= \frac{1}{2}; g(a) = sin/s

>> \tag{\frac{1}{2}} \tag{\frac{1}{2}}, \tag{\frac{1}{2}} \tag{\frac{1}{2}}

Since f(x) = \frac{1}{2} \times xe[a, b], a>0.

=> fent is monotonically decreasing on [a,b].

and $f(x) > 0 \quad \forall x \in [a,b], a>0.$

and g(x) = sinx + xe(a,b)

=> g(x) is Continuous on [a, b]

→ ge R[a,b]:

... The Conditions of Bonnet's Mean

Value theorem are satisfied.

:] EE[a,b] Such that

Jon gen de = fear Jgen de

 $\int_{\alpha}^{\beta} \frac{\sin \alpha}{x} dx = \frac{1}{\alpha} \int_{\alpha}^{\beta} \sin \alpha d\alpha$

 $= \frac{1}{2} \left[-\cos x \right]_{\alpha}^{\frac{1}{2}}$

=1[-cose + cosa]

 $\left| \int_{a}^{b} \frac{8in}{x} dx \right| = \frac{1}{a} \left| \cos a - \cos \xi \right|$ $\leq \frac{1}{a} \left| \cos a \right| + \left| \cos \xi \right|$

(1000

< = (1+1) (COSO

= 2

 $\left|\int_{a}^{b} \frac{9 \ln a}{a} da\right| \leq \frac{2}{a}$

first mean value theorem in [-1,1]

first mean value theorem in [-1,1]

in [-1,1] for the functions $f(x) = e^x$ and f(x) = x.

Solo : (i) f(x) = x, $f(x) = e^x \forall x \in [-1,1]$ $\Rightarrow f_1g$ are continuous on [-1,1] $\Rightarrow f_1g \in \mathbb{R}[-1,1]$

and g(n) = e2 >0 & 2.e. [-1, 1].

The conditions of first mean value

theorem are satisfied.

Now $\int f(x) g(x) dx = \int ze^{x} dx$ $= \left[xe^{x} - e^{x} \right]$ $= \left(e' - e^{1} \right) - \left(-e^{x} - e^{x} \right)$ $= 0 + 2e^{x}$

Now $\int_{-1}^{1} g(x) dx = \int_{-1}^{2} e^{x} dx = \begin{bmatrix} e^{x} \end{bmatrix}^{1}$ $= e^{1} - e^{-1}$

Since f is Continuous on [-1,1]; it attains every value between f(-1)=1 and f(1)=1.

If $\mu = \frac{9}{e^2 - 1}$ then $0 < \mu < 1$. as e > 2.

 $\Rightarrow e^{2}-1>3$

Now 3 CE [1,1] Such that

 $\bar{A}(c) = \frac{2}{2^{2}-1}$

from (D&D) we have

theorem

i The first Mean Value theorem is verified.

ii, Since $g(x)=x \ \forall x \in [-1,1]$ $\Rightarrow \exists t \text{ is continuous on } [-1,1]$ $\Rightarrow g \in \mathbb{R}[-1,1]$

and f(x) = ex is monotonically increasing and the on [-1, 1].

. The Conditions of Bonnet's Mean value

= (e'-e1) - (-des) Blow. If (a) q(a)dx = | zex dx

and $\int g(x) dx = \int x dx = \frac{1}{2}(1-n^2)$ Therefore $\int g(x) dx = \frac{1}{2}(1-n^2)$ $\int g(x) dx = \frac{1}{2}(1-n^2)$

Let us choose of such that

 $\frac{1}{a} = \frac{e}{2} (1 - \eta^2)$ i.e. $\eta^2 = \frac{e^2 + 4}{r^2}$

For this value of n , we have

fra) gada = f(i) fada.

Bonnet's Mean Value theorem is

> show that the Bonnel's Mean Malue theorem doesnot hold on[1,1] for f(x) = g(x) = x2. son :- f(x) =x is not monotonic on [1,1]. Because fox the interval It is decreasing and for the internalized It is increasing. conditions of Bonnet's mean Value Theorem oro not Satisfied. . Bonnets mean Value theorem does not hold on [i,i]. 4 Second Mean Phiesen = Let gerfati and let f be bounded and monotonic on [a, b] then If = fa /9++(6) /9. Proof: Let I be monotonically decreasing on [a16] then fix)-f(b) is monotonically decreasing and nonnegative on [aib] · By Bonnet's theorem I & E[a, b] Such that

=> [f(a) g(2) d2-f(b)[g(2)d2

= f(a) / g(a)dx-f(b) / g(a)bx.

.. I fund g(a) dr = f(a) [g(a)da + i of (b) [] granda - fgranda]. = f(a) \(\int \f(\alpha\) \(\alpha\) \(\alp = = (a) Sq(a) da + f(b) Sq(a) da. Now if it is monotonically increasing on[a,b] then - fls monotonically. decreasing on [a, b]. $\int_{-\infty}^{\infty} \left[-f(x) \right] g(x) dx = \left[-f(x) \right] \int_{-\infty}^{\infty} g(x) dx$ +(+(b)) /8(2)d2: = f(n) f(x)dr =f(a) f f(x)dn + f (6) / g(a)dx >* Integral as the limit of (Formula, given in Pg. NO. 45) \rightarrow Evaluate It $\geq \frac{n^2}{(n^2+1)^{3/2}}$ soln: The given limit (f(x)=(b)) g(x)dx = (f(a)-f(b)) f(x)dx $\frac{d+\sum_{n\to\infty}^{n}\frac{1}{n}}{\sum_{k=1}^{n}\frac{1}{(1+(\frac{r}{n})^{2})^{3}}=\int \frac{dx}{(1+x^{2})^{3}}$ See 0 do limits for 0

$$= \frac{dt}{n + \infty} \sum_{r=1}^{n} \frac{1}{n} e^{3(\sqrt[n]{n})}$$

$$= \int e^{3x} dx = \left[\frac{e^{3x}}{3}\right]^{\frac{1}{3}} = \frac{e^{3}}{3} - \frac{e^{0}}{3}$$

$$= \frac{e^{3}}{3} - \frac{1}{3}$$

+ show that the function of defined by fin) = { o, if z is an integer otherwise.

integrable, on [o, m], m being a tre

Soll f(a) for H a=0,1,2

The bounded and has only mits with a finite discontinuity at 10-17 - m-17m

Since the Points of discontinuity of f

form are finite in number.

integrable on [o, m]

Jour Friday Frida+ Hayda+

My + flda+ + fida

1 (m-m-(m-1) +--+[m-(m-1)]

+ + (mhinus)

> Let f be a function on [0,1] defined

and find for

sol bi dearly 05fa)<1 4 xe[0,1]

=if(x) is bounded on [011] and the

function has only point of discontinuity! . f(m)=0 & XE [a,b]

How I down = 12 fordx + I findx

Town ldx + 1 ldx = 1/2+1-1/2= follows $f(x) = \begin{cases} K & \text{the constant) when } x \neq 0 \end{cases}$ show f is integrable on [-1,1] and Jefardx = 2k.

+ If fis continuous on [a, b], flatzo and If(a)da =0 then f(a)=0 Vac(a,b)

sofn: - of possible suppose that f(x) +0 +2e[a,b].

Then Ice [a, b] Such that f(c) \$0 \$ f(c) >0 Let e= 1/2 f(c)

suppose a < c < b

Since fis continuous at c 7 a 8 > o Such that

Ha)-f(c) | < B whenever 12-c/< \$ \Rightarrow f(c)-e < f(x) < f(c)+e

→ fra) >+(c) - (c) = (c)

·· f(a) > kf(c)

Now choosing & such that

arc-5 < c < c+5 < b

b C-6 C+6 Ifinida = I-finida + J-finida + J-finida

> Ifings ...f(x) ovice o

12 / 12 f(c) d = 1/2 f(c) (26)

J-f(a)da >0:

by few 1 if 2 ± 1/2 show that ter[si] which is contradiction to ffee dize

If C=a or C=b then also we get

a Contradiction.

: f(x) = b + re [a,b] is wrong.

· & Uniform [Sequences and Tust as Sequence and Series of real numbers play a fundamental tole in analysis. sequence and series of-functions are also important elements of modern analysis. In many situations, we come across these elements, particularly in connection with convergence. > Sequences of real-valued -functions! 9 Let for be a real valued function defined on an interval I (or on a subset D of IR) and for each new. (Then {f, f2, f3, --- fn, ---} is called a sequence of real-valued functions on I. It is denoted by [fn: 17-17 , nen] (or) by (fn) fn> (or)(-fn). for example. in It. In is a real valued function is a sequence of real number defined by for a = 27, 05 x 1 then (film), fo(a), fo(a), ---? is a sequence of a real valued , Pointwise functions on [01]

Conversionce * Series of Punctions Dample (2): 3f for is a real-valued-lu delined by $f_n(x) = \frac{Sinnx}{x}, 0 < x < 1$ then \f_1(a), -\f_2(a), \f_3(a), \dots } = $\left\{8 \ln x, \frac{\sin 2x}{2}, \frac{\sin 3x}{3}, ---\right\}$ is a of real valued functions or. [c -> It \fo } is a sequence of \$ defined on I, then for CEI, ffn(c)= {f, (c), f2(c),---fn(b),-is a sequence of real numbers For example: If Ifn } is a sequence of reflexion defined by fn(x) = xm, osasi,t 病(2) = { +, (3), +, (2), +3(3 --- fn(/2); ----- } Corresponding to be [0,1] : to each riel, we have a sequence of real numbers. Convergence of a sequence of functions: Let {fn} be a sequence of fair

in I and CFI. Then the sequence of real number of (1) may be Convergent.

In fact - for each CCI the Corresponding sequence of real numbers may be convergent. It I'm is a sequence of real-Valued functions on I and for each iscI, the Corresponding, sequence of real numbers is conveged then we say the sequence Efn? Converges pointwise the limiting Values of the Sequences of real numbers Corresponding to XEI define a function of called the limit function (or) simply the limit of the Sequence In of faintions

* Dedinition!

NOO I.

Let Ifn) be a sequence of feartions on I . If to each XEI and to each exo, there corresponds to positive integer in seeds that His - flas - KE V n>m then tue by that Ifn] Converges. Pointwise to the function of on I.

Note (5: { [9] (coveries printing to 1) landies of co 1 :> A later (12) Paris called the finit function(Simply the limit (os) the pointwise limit of {folx)} on I

Noteces: - The Positive integer in deper On all and given <> 0 i.e. m=m(: Ex-(1) Let $f_n(x) = x^n, x \in [0,1]$

Since It x" =0 for osax1.

When x=1, the consesponding sequence \frac{1}{1,1,1,1,--} is a consta Sequence Converging to 1.

. It frag =
$$\begin{array}{l}
0 & \text{when } 0 \leq n \leq 1 \\
1 & \text{when } n \leq 1
\end{array}$$

Hence Ifn] Converges on [0,1]

f(n) = [a when == is the lie function of {fn(x)} on [0,1].

+ Let E=1/2 be given Then for each x∈[0,1], thereen; a tree integer in such that fn(2)-f(2) < 1/2 + n>m -- (1) If x=0 ,f(x)=0 and fn(x) =0 the $\left| f_{n}(x) - f(x) \right| = |0 - 0|$

٩

Ξ	0<	1/2	A	n≽	١
---	----	-----	---	----	---

Similarly () is true for m=1 when x=0.

If x=3/4, f(x)=0 and $f_n(x)=(3/4)^n$.

If $f_n(x)=f(x)+\frac{1}{2}(3/4)^n-0=(3/4)^n<\frac{1}{2}$.

.. (B) is true for m=3 when z=3/4.

Similarly (1) is true for m=4 when x=1/10

.. There is no single value of infor which (1) holds & ze[a,1].

i-e in is depending on x&E.

Example (1): Let $f_n(x) = \frac{\alpha}{1+n\alpha}$, $\alpha > 0$, It $f_n(\alpha) = 0$

Also Into 1:0 Viney Bothat (Into))

:Herice (fin(x)) (onverges to zero pointwise on [0:00] and fex) =0 is the limit

function of flact) on [0,00).

Frample(3): Let $f_n(x) = \frac{nx}{1+n^2x^2}$, $x \in \mathbb{R}$

for $x \neq 0$, $f_n(x) = \frac{y_{nx}}{\frac{t}{nx}t+1} \longrightarrow 0$ as:

Alo fin(o) = 0 V new

· 北北山(2)=0 + XEIR.

Hence [Pn(x)] Converges to Zero point is not equal to the derivative

wise on IR and f(x) = 0 is the function of $\{f_n(x)\}$ on IR.

Note (3): For a sequence (fn) of functions, an important question

If each function of a sequence has a Certain property such as

Continuity, differentiability (0x) inter

then to what extent is this prevanted to the limit function of the limit function.

Strong enough to transfer any the Properties mentioned above the terms for of Ifn to the

coith a discontinuous limit function.

Consider the Sequence If where

 $f_n(x) = \frac{x}{1+x^{2n}} \cdot x \text{ et } R$ $\text{then } -f(x) = 1 + f_n(x) = \begin{cases} 0 & \text{if } |x| < 1 \\ 2 & \text{if } |x| > 1 \end{cases}$ If |x| > 1

Here each fin is continuous on I but it is discontinuous at z=±1.

in which the limit of the deduct

the limit function. Consider the sequence find where $f_n(x) = \frac{\sin nx}{\sin n}$, $x \in \mathbb{R}$ Then $f(\alpha) = dt \cdot \frac{\sin \alpha x}{\sin \alpha} = 0 \quad \forall x \in \mathbb{R}$ 1.e. -f(x) = 1+ fn(x) =0 V. ZER Now f((x) = 0 A sell => +1(0) = 0 and fright-Income. $\Rightarrow f_{n}(0) = \infty \qquad \left(\text{and } \sqrt{n} \to \infty \right)$ At x=0 . It $f_{D}(x) \neq f(0)$. (ili) A sequence of functions in which the limit of integrals is not equal to the integral of the limit function we need to investigate under what Considerathe. Sequence Etn} where -fn(x) = ny(1-27)n; xe [0:1] Also the ocx < 1 then f(x) = 11 fn(x) = 11 nx (1-x2) 17 form 0000

Now $\int_{-1}^{1} \int_{\Omega} (x) dx = \int_{\Omega} ux (1-x^2)^n dx$ $=-\frac{\eta}{2}\int_{0}^{\infty}\left(1-\chi^{2}\right)^{\eta_{1}}\left(-2\chi\right),$ $=\frac{-n}{2}\left[\frac{\left(1-\chi^2\right)^{n+1}}{n+1}\right]^{\frac{1}{2}}$ $=\frac{-\eta}{2}\left[0-\frac{1}{\eta+1}\right]$ $\Rightarrow \frac{1}{n+\infty} \int_{0}^{\infty} f_{n}(x) dx = \frac{1}{n+\infty} \frac{n}{2(n+1)} = \frac{1}{2}$ Also $\int_{x}^{x} f(x) dx = \int_{x}^{x} dx = 0$ if $\int_{-\infty}^{\infty} \int_{0}^{\infty} f_{n}(x) dx \neq \int_{0}^{\infty} f(x) dx$. The above few examples showthing supplementary conditions these conjusting properties of the terms of this are transformed to the limit function f. A Concept of great importance in this respect, is that known as conform convergence. * Uniform Convergence

Sequence of functions: Let {fn} to a sequence of f(x)=0 + x ∈ [0,1] \[\frac{d}{dx} = \alpha^x \logar\] functions on I then (fm) is said to \\ \frac{d}{dx} = \alpha^x \logar\] be uniformly Convergent to a i.e. fix) = It fin(x) = 0 + re[or], if function f on I , if to each exp,

AND SECTION OF THE SE

there exists a Positive integer in (depending on & only) such that In(x)-f(x) < E y n>m and txei. The function is called uniform limit of the sequence fint on I Ex!- Now Consider the Sequence I'm defined by In(2) = 2 , 2>0. It converges pointroise to zero i-e. f(a)=0 + x>0. Now $0 \le -\ln(2) = \frac{\alpha}{1+n\alpha} \le \frac{\alpha}{n\alpha} = \frac{1}{n}$ infor any 6>0, |fn(x)-f(x)|=ffn(x)| < 1/2 < 6 whenever n>/e Y re[0,00). If mis a tre integer > &, then thick)-f(2) < + n>m and 2000) in for which the statement thus in this example, we can find from fox = E + no more an in cohich depends only on E and not on recons). we say that the sequence Ifn 18 uniformly convergent tof on [0 100) Note (1) - If a uniform in 1stound for all a values of I, the

sequence Ifn) is conformly conveyes

tof on I.

Note(2) .- A conformly conver is a Pointwise Convers Sequience Seguna caniform convergence > pointwise G -thowever, the converse is not to for example . If for(x) = xn tre then the sequence {fin} Con pointwise to the function for but In] does not corvere uni Britis A sequence Hin of France on I doesnot converge wi to f on I iff there exists so Such that there is no positi holds. Definition: & Uniformly Bounded sequence

-functions:

A Sequence Ifn of funct defined on I is said to be uniformly bounded on I 4.] real number K Such that Ifn(x) < K + NEN and + WEI

The number k is Called a uniform bound for {fn} on I

Ex: - If $f_n(x) = 8in\pi x$, $\forall \tau \in \mathbb{R}$ then $|f_n(x)| = |8in\pi x| \leq 1 \; \forall n \in \mathbb{N}$ and $\tau \in \mathbb{R}$ The Sequence $\{f_n\}$ is uniformly bounded on \mathbb{R} .

Theorem (Cauchy's Contenion for Uniform Convergence):

A Sequence [fn] of functions defined
On I is uniformly Convergent On I iff
for each 6>0 and for all all,

I a tyc integer in Such that for
any integer P>1, |fnfp -fn(a)|<6

Vn>m.

Trollians

That the sequence {fn}

convergent

on [Oik] K<1 but only pointwise

Convergent on [Oil]

the sequence find converges pointwise

TO See whether the sequence {fn}
is uniformly convergent.

Let $\epsilon > 0$ be given.

For 0<3 <1 , [-fn(2) - f(2)]=|20-0|

whenever 1 > 1

i.e whenever $n > \frac{\log x}{\log x}$ i.e whenever $n > \frac{\log x}{\log x}$ $\log x = \frac{1}{2} > 1$ the number $\frac{\log x}{\log x}$ increases with xhaving maximum value $\frac{\log x}{\log x}$ on (0 : k], k < 1.

Choose a positive integer in $\frac{\log x}{\log x}$ then $\frac{\ln(x) - \ln(x)}{\log x} < \frac{\log x}{\log x}$ At x = 0, $\frac{\ln(x) - \ln(x)}{\log x} = \frac{\log x}{\log x}$ $\frac{\log x}{\log x}$

If $n(x) - f(x) | < \in \forall n \ge m$ and o. $\forall x \in [o, K], K < 1.$ $\Rightarrow \{f_n\}$ is uniformly convergent on

[OK], K<1, when $\alpha \rightarrow 1$, the number $\frac{\log k_e}{\log k_a}$ $\frac{\log k_e}{\log k_a}$ to $\frac{\log k_e}{\log k_a}$ thus it is not Possible to, find α

Positive integer in Such that

Ifin(x) - f(x) | C & ninn and

V xe[011]. Hence the sequence [fin]
is not uniformly convergent on any
interval containing 1 and in
particular on [011]

-	7-11 lest for Simon Considerate
•	of <u>Sequences</u> of <u>Functions</u> :— To determine whether a given
	Sequence [fn] is uniformly convergent
	(or) not in a given interval, we have
	been using the definition of uniform
	Convergence. Thus, we find a tre
	integer m, independent of x which is
	not easy in most of the cases the
	-following test is more Convenient in
	practice and does not involve the
	Computation of m.
1	

* Theorem. (Mn Test):let (fn) be a sequence of function On I such that It fn(x)=f(x)+xex and let Mn = Sup { | fn(a) - fix re] then {fn} Converges uniformly on I iff It Hn =0.

Note (1) Hn = the Maximum value of

Ifn(x) - f(x) for fixed in and xcI. Notece): If My does not tend to o'. the sequence $\{f_n\}$ is not $\Rightarrow y$ is maximum when $x = \frac{1}{\sqrt{n}}$ and wiformly Convergent. Note(3): F(a) is maximum at a=CEI

Ψ (i) F'(c) = 0 and (ii) F"(c) <1 Problems show that the suguence of faince cohere for = x , zer con uniformy on any closed inter gd'n'- Here $f(q) = at f_{\eta}(a)$ Now $|f_n(x) - f(x)| = \frac{x}{1+nx^2}$ Let y= 2 then yo $\frac{dy}{dx} = \frac{(1+nx^2) \cdot 1 - x(2nx)}{(1+nx^2)^2}$

 $\gamma = \frac{\sqrt{m}}{1+1} = \frac{1}{2\sqrt{n}} \cdot 2^{n}$

How max
$$|f_{n}(x) - f_{(x)}|$$
 for max of $x \in [a,b]$ $|f_{n}(x) - f_{(x)}|$ $|f_{n}(x)|$ $|f_{$

$$\begin{aligned} &\text{Tor max of min} \frac{dy}{dx} = 0 \\ &= \text{Hax} \\ &= \text{Res} \left[\frac{\alpha}{1 + m^{1}} \left| \left(\frac{4 \text{ free(0)}}{1 + m^{1}} \right) \right] \\ &= \frac{1}{2 \sqrt{n}} \rightarrow 0 \text{ as } n \rightarrow \infty \end{aligned}$$

$$= \frac{1}{2 \sqrt{n}} \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$= \frac{1}{2 \sqrt{n}} \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$= \frac{1}{2 \sqrt{n}} \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$= \frac{1}{2 \sqrt{n}} \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{4} x^{2} \right) = 0$$

$$\Rightarrow n^{2} \left(1 - n^{$$

ie Mn -> /2 ain -> 0 which does not tend to Zero as now :{fn} converges non-uniformly on [01] -> show that the sequence {fn}, where $-\ln(\pi) = \frac{\eta \pi}{4\pi^2}$ is not conformly Convergent on any interval Containing Zero. | 7=1 ->0 as n->0 () OE any interval -> show that the sequence find, where fn(x)= n-x is not uniformly Convergent on [0,1] 0 > show that the sequence of -functions {fn}, where fn(a)= XER converges writing on Closed interval [a,b]. (+ show that the sequence of functions {fn} , where fn(x) = nz (1-x) , is not uniformly convergent on [orl]. edin: For 0<x<1 $f(x) = Jt - f_n(x) = Jt - nx(1-x)^n$ (1-x) [64(1-x) da7=-a709x

Also when x o ,-fn(x)=0 Vn when x: 1, In(x) = 0 Vn · f(x)=0 Vxe [01]... Now |fn(x) -f(x) | = | mx (1-2) -0 = nx (1-x)n . let y= nx(1-x)" -10. then dy = n (1-x) m- m2x(1-x) $= n (1-x)^{n-1} \lceil 1-x-nx \rceil$ = n(1-x)n-1[1-(n+1)x] For max or min $\frac{dy}{dt} = 0 \Rightarrow x = \frac{1}{n+1}$ Also dy = n (n=1) (1-2) [1-(n+1)2]- $\frac{d^{n}y}{dx^{n}}\Big|_{x=1} = 0 - n(n-1) \left(\frac{n}{n+1}\right)$ $=-n(n+1)\left(\frac{n}{n+1}\right)^{n-1}<0.$ y is maximum at x = not and max value of Y-is not (nit) $=\frac{n}{n+1}\left(\frac{n}{n+1}\right)^n$ $= \left(\frac{n}{nH}\right)^{nH} = \left(1 - \frac{1}{nH}\right)^{n}$ $\frac{1}{2} M_n = Max \left[f_n(x) - f(x) \right]$ $x \in [0,1]$ = 1 as n > 00

i.e., Mn does not tend to zero as : The Sequence {fn} is not uniformly Convergent on [0,1]

r show that the sequence [fr], where $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ is uniformly Convergent on [O.TT]

 $\frac{\text{sot'n'}}{\text{lere}} - f(x) = dt \cdot f_n(x)$

 $= dt \cdot \frac{1}{\sqrt{n}} sinnx = 0$

Now $\left| f_n(x) - f(x) \right| = \left| \frac{\sin n\alpha}{\sqrt{n}} - 0 \right| = \left| \frac{\sin n\alpha}{\sqrt{n}} \right|$

Lit $y = \frac{\sin \pi x}{\sqrt{n}} - 0$

For max or min , dy =0

> max when x = Then. and the max value of y is

 $\frac{\sin \pi \sqrt{2}}{\sqrt{n}} = \frac{1}{\sqrt{n}} \left[\text{from } \bigcirc \right]$

 $M_n = \max_{x \in \mathbb{R}^n} \left\{ f_n(x) - f(x) \right\}$ $= \max_{\chi \in [0,1]} \left(\frac{1}{\sqrt{n}} \right)$ = $\frac{1}{\sqrt{n}} \rightarrow 0$ asn $\rightarrow \infty$

! The Sequence [fn] Converges uniformly to o on [O,TT]

* Series of real valued functi Definition: If [fn] is a sequence of real valued functions on an interva I, then fitfith the toft -- thatis called a series of real-valued functions defined on I.

This Series is denoted by \$ fn (0)

for example: (i) If fn: [0,∞) - Ri defined by fn(x) = 1 , then the Series is \(\sum_{f_1} = f_1 + f_2 + f_3 + ---

il If In : IR -> IR is defined by fn(x) = Sinnx, then the series! ∑fn =f1 +f2+f3+ ---

 $= Sinx + \frac{Sin2x}{\sqrt{2}} + \frac{Sin3x}{\sqrt{2}} + \frac{1}{\sqrt{2}}$

A Convergence (or Pointwise Convergen of a Series of functions: Let Ety be a series of a function defined on an interval I.

<a>)

Let S. = f. . S, = f. + f. + Q2 then the sequence (Sn) is a soquence of partial Sums of the Series Z-fn. If the seres [Sn] Converges pointon I, then the series Efn is soid to Converge pointwise, on I the limit function f of [Sn] is called the pointwise sum(or) Simply the Sum of the Series Efn and we write = fn(x) = f(x) \forall xeI (Or) Simply I fin = fo for example: consider the series Etn defined by fola)=xn,-1<2<1. then Sty(x)=f(x)+f2(x)+-. The sequence [sn] of partial Sums Converges pointwise to x

 $\Rightarrow \sum_{n} f_n(x) = \frac{x}{1-x} \quad \text{on } (-1, 1)$

2 Uniform Convergence C - Kunctions: Series of Definition. Let Eln be a sessics functions defined on an interv & Sn = 1, +1, +13+ - +4n. If the Sequence [Sn] of partio Converges uniformly on I , then the Series Etn is Said to be unif Convergent on I. Thus, a series of functions. Converges uniformly to a few P' on an interval I, if for each and for each REI, I +ve intege (deprinding only on and not on | sn(2)-f(2) | < E \n>m. set othe uniform limit femation {Sn} is called the sum of the Series Sign and loe write Sign = f V XEI. A Theorem: Cauchy's Criterion cuisform Convergence of a se of femelions: => The Series I for Converges point-A Series of functions Zin U wise to f(a) = 2 on (-1,1) uniformly convergent on an inte

iff for each e>o and for all of

Note(2): The method of testing the curiform convergence of a series

In by definition, involves finding

So which is not always easy. The following test avoids so.

He orem [Weierstrass's M-Test]:

A series of functions of fine

Converges uniformly (and absolutely)

on an interval I.

if there exists a convergent series

or Mn of non-negative terms

(i-e. Mn>0 Vnen) Such that

Ifn(x) | & Mn Vnen and xeI.

convergent for pe

Ui) & theositat (iv) & onsinana

 $\frac{\operatorname{sol}^{n}}{\operatorname{N}} : (i) \sum_{n=1}^{\infty} \sigma^{n} (\operatorname{csn} x)$ Let $f_{n}(x) = \chi^{n} (\operatorname{csn} x) \forall \chi (\operatorname{R} \operatorname{dhen} x)$ $= \chi^{n} |\operatorname{Cosn} x|$ $= \chi^{n} |\operatorname{Cosn} x|$

≤ 3ⁿ (:'3>0)
= M_n ∀ x∈IR — (j)

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} v^n$ is a geometric Series with 0 < v < 1, it is Convergen Hence by weierstrass's M = test, The given series is convergent uniform

Sol'n:-(i) there following series as $\frac{8in(x^2+in^2x)}{n(n+2)}$ and $\frac{8in(x^2+in^2x)}{n(n+2)}$ and $\frac{8in(x^2+in^2x)}{n(n+2)}$ and $\frac{8in(x^2+in^2x)}{n(n+2)}$

 $= \frac{18in \left(n^{2} + n^{2} \alpha\right)!}{\left[n(n+2)\right]} \leqslant \frac{1}{h(n+2)}(1)$ $\leq \frac{1}{n^{2}} = M_{n}$

Since Mn = 5 for is convergent (by P-Test). ! By weistras's H-test, the given

Series is uniformly convergent for all real 2.

20	
•	> show that the following series are
8	Show that Convergent
· •	uniformly and absolutely convergent
***	for all real values of z and P>1.
9 .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2003 n=1 nP n=1 nP
3	PI
8	$Solo(1)$: Here $fin(x) = \frac{Sinnx}{nP}$
9	. "
	$\left f_n(x) \right = \left \frac{sinnx}{n^p} \right = \frac{ sinnx }{n^p}$
9	$\leq \frac{1}{n^p} = M_0$
	nr ∀xeiR
9	Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{nP}$ is Convergent
9	-for P>1 (by P-Test)
-	Ry wind water go's He trust the sitter
3	By weierstrass's H-test, the given
	Series converges ciniformly and
9	absolutely for all real values of a
	/ 4.5
9 -	Test for uniform convergers the
	Series (i) = 1 (n+x2)2 (ii) = n=1 n(1+nx2)
\(\rightarrow\)	
\$	$\frac{\text{Sol'}^{n}}{\text{i}} - \text{i}$ Here $f_n(x) = \frac{x}{(n+x^2)^2} - \mathbb{C}$
	dfn(x) (n+x2).1-x2(n+x2).2x
***	Ox (n+22)4
9:3	- (n+2) (n+x2-422)
9 .	m-32 ²
- 😂	= (n+x²)3
9	dh(2) = 0
*	for man or min dx 50
F3	- · · · · · · · · · · · · · · · · · · ·

Also
$$\frac{d^{2}f_{n}(x)}{dx^{3}} = \frac{(n+x^{2})^{3}(-6x)-(n-3x^{2})}{(n+x^{2})^{6}}$$

$$= \frac{(n+x^{2})^{4}\left[(n+x^{2})(-6x)-(n-3x^{2})(n+x^{2})(-6x)(n-3x^{2})\right]}{(n+x^{2})^{4}}$$

$$= \frac{-6x\left[(n+x^{2})+(n-3x^{2})\right]}{(n+x^{2})^{4}}$$

$$= \frac{-97(3)}{32n^{5/2}} < 0$$

$$\Rightarrow f_{n}(x) \text{ is maximum at } x=\sqrt{\frac{n}{3}} \text{ a}$$

$$= \frac{-97(3)}{32n^{5/2}} < 0$$

$$\Rightarrow f_{n}(x) \text{ is maximum at } x=\sqrt{\frac{n}{3}} \text{ a}$$

$$= \frac{-97(3)}{32n^{5/2}} < 0$$

$$= \frac{-97(3)$$

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent by weierstross H-test, the given Also d'In(2): 1 (Hnx2)(-2mx)-(1-m2)2(Hm2)2m2 - Beries is coniformly convergent txell. show that the seriesing and $=\frac{-2x\left[(1+nx^{2})+2(1-nx^{2})\right]}{(1+nx^{2})^{3}}$ 1) 5 and 1 Courselle milestyle $\frac{d^{2}f_{n}(x)}{dx^{\nu}}/_{x=\frac{1}{\sqrt{n}}} = \frac{-\frac{1}{\sqrt{n}}\left[1+1+0\right]}{\left(1+1\right)^{3}}$ all real values of 7, if $\sum_{n=1}^{\infty} a_n$ is absolutely conveyant. $\operatorname{sol}^{\overline{n}}$ - Here $f_n(\alpha) = \frac{a_n \chi^{2n}}{1 + 2n}$ $=\frac{-1}{2\sqrt{n}}<0$ Since arm < 1 YZER \Rightarrow $f_n(x)$ is max at $x = \frac{1}{\sqrt{n}}$ and the max $\left| \int_{\Gamma_n} |f_n(x)| = \frac{a_n x^{2n}}{|+x^{2n}|} = |a_n| \frac{x^{2n}}{|+x^{2n}|} < |a_n|$ Value of $f_n(x)$ is $\frac{1}{\sqrt{n}} = \frac{1}{3\pi^{3/2}}$ [from Since is absolutely converge $\Rightarrow |f_n(\alpha)| \leqslant \frac{1}{2n^{3/2}} < \frac{1}{n^{3/2}} = M_n$: Z Mn = E | an is convergent. Since Hence by weiestrass M-test, the gloven series is cariformly convigs (ii) Here $f_n(\alpha) = \frac{a_n \alpha^n}{1 + \lambda^{2n}}$ · By weightrans in test, the given Let $y = \frac{\alpha^{\eta}}{1+x^{2\eta}}$ genies is writtening Convergent for all value of a. Show that the series $\frac{1}{2}$ $\frac{dy}{dx} = \frac{nx^{n-1}(1-x^{2n})}{(1+x^{2n})^{2}}$ torrowges in (1-x2n)

For max or min $\frac{dy}{dx} = 0$ Here $f_n(\alpha) = \frac{1}{1+n^2\chi}$ $\frac{1+n^2\chi}{1+n^2\chi} = \frac{1}{1+n^2\chi} =$

~.	1.
9	
**	$\left \frac{dy}{dx}\right _{x=1} = \frac{a\left(0-an^2\right)-0}{an^2}$
3 .	$(3)^3$
9	
9	$= \frac{-n^2}{2} < 0$
9	Y = 2h 18 man 1 2 1 1 1
9	$\Rightarrow y = \frac{x^h}{1+x^{2n}}$ is max at $x=1$ and the
· 	man value of y is 12.
3	18 my - ana" a"
**	$\left \frac{1}{1+x^{2n}} \right = \left \frac{2n\alpha^n}{1+x^{2n}} \right = \left \frac{2n\alpha^n}{1+x^{2n}} \right \alpha_n $
9	
*	$\leq \frac{1}{2} a_n < a_n = H_n$
	Since 5
8	Since San is absolutely Convergent
	$\frac{5}{n} H_n = \frac{\infty}{n} a_n \text{ is convergent.}$
6	
₩	House by weiestrais M-test, the
•	given Sides is uniformly convergent
: 😂	for all real a.
9	5
9 -	THE Seites Zan Converges
	absolution then Prove that
*	(1) Zandry, and cil, Exandina
· •	are unitomly Convergent on IR.
- ⁼	
•	Here Inla) = an Cosna
9	$ f_n(x) = a_n \cos nx = a_n \cos nx $
	$\leq a_n = M_n$
8	
	[: (conals) + xeir]
£.	Since Z an is absolubly Convergent

risio chinic & with Iknee Bd Lies Zancolne is uniformly Co + show that the sesses \$\frac{5(-1)^n}{100}. absolutely and ceniformly Conver for all red a if P>1. solo - Here $-f_n(x) = \frac{f_1)^n}{n^p} \frac{\chi^{2n}}{1+\chi^1}$ Since y2n <1 + rep $\left| -\int_{D} (x) \right| = \left| \frac{(-1)^{n}}{n^{p}} \cdot \frac{x^{2n}}{1+x^{2n}} \right| < \frac{1}{n^{p}}$ Since $\sum_{n=1}^{\infty} H_n = \sum_{n=1}^{\infty} \frac{1}{n^p}$ is Conve Weierstrass's M-test, the ign Series is absolutely and uniformly * Uniform Convergence Continuity :-> Theorem 1: If a sequence of Con functions [fn] to uniformly conver to a function f- on [a,b], then continuous on [a, b]. + Theorem 2: If a Series 5-In o Continuous functions is uniformly Convergent to a function for [G

then the Sum function it is also

Continuous

Note: - The above theorems converse is not true. i.e. uniform convergence of the sequence [In] is only a sufficient clearly it is discontinuous at x= but not a necessary Condition for the Continuity of the limit functions, ie. if the limit function of is continuous Alto. Fri(x) = xn. 0 < x < 1. on [arb], then it is not necessary that the sequence [fn] is ceriformly Convergent on [a,b].

function f is discontinuous then the Sequence I'm of Continuous Functions. Cannot be uniformly convergent on [a,b]. Thus the theorem provides a very good negative test for -uniform convergence of a sequence Similarly, if the Sum function of is discontinuous. then the series I'm of Continuous functions Connot be uniformly Convergent.

Packleing! O Test for uniform Convergence and Continuity the Sequence Efn ?.

where $f_n(x) = x^n$, $0 \le x \le 1$ Here In(x) = 10, 05251. $f(x) = dt - f_n(x)$

and hence I is discontinuous on [0,1].

is continuous on [0,1] + nEN. Since In is a sequence of Continuous functions and its limit Theorem 1 shows that if the limit function it is discontinuous on [OIL . The sequence Efn & Cannot Converge uniformly on [0,1].

> > Test the uniform Convergence and Continuity of Efficience $f_n(x) = \frac{1}{1+nx}$, $0 \le x \le 1$.

> solor- the limit function of is given by $f(x) = Jt - fn(x) = Jt \frac{1}{1 + n}$

Cliary of is discontinuous at 2=0 and hence f'is discontinuous on louil.

Also $-f_n(x) = \frac{1}{1+n\alpha}$, $0 \le x \le 1$ is Continuous on [OII] Y-DEN. Since Ifin ? is a sequence of

Continuous function and its limit

function f is discontinuous on [0,1].	
The sequence (In) Cannot Converge	
uniformly on [0,1]	1
Show that the Sequence (In),	
where fn(2) = law nx is not	
uniformly convergent on [01].	
(The if 0<25)	
$\begin{cases} \begin{cases} \frac{1}{2} & \text{if } x = 0 \end{cases} \end{cases}$	
discontinuous at x=0.	٠
@ · · · · · · · · · · · · · · · · · · ·	<u>.</u>
of fn(x)-= 1 , x >0 then show	
that [fn(a)] converges uniformly	ł
to the Continuous function Zero.	
sol'n: Here $f_n(x) = \frac{1}{x+n}$, $x > 0$.	
which is continuous Y new and 2>0.	
TEP	
Now $f(x) = \int_{n\to\infty}^{\infty} f_n(x)$	
= 11 = 0 \ x70	
7-0 2+1	\$
flying a constabil function is the	8
Continuous for all x 70.	
But continuity of it is no guarantee	
	1
For anyon 7	1
Now $ f_{n(x)} - f_{(x)} = \left \frac{1}{x+n} - 0 \right $	1
	\cdot
= 3+10	
1 333	1
© 7etn	1
what seemed the seemed to the	

choose any tre integer > % - (fin(x)) is uniformly convergent Hw Examine for uniform Convex and Continuity of the limit fun of the sequence find where $f_n(x) = \frac{nx}{1 + n^2 x^2} \cdot 0 \le x \le 1.$ \rightarrow show that the series $\sum (1$ not uniformly convergent on to $\underline{\mathfrak{Bl}^{'n}}:=\mathfrak{f}_{n}(x)=(1-x)x^{n}\forall xc$ $\Rightarrow f_1(x) = (1-x)x$ も(ス) = (1-x)22 $f_3(x) = (1-x)x^3$ $-f_n(x) = (1-x)x^n$ $S_n(x) = \chi(1-x) + \chi^2(1-x) + \cdots + \chi^2(1-x)$ = (1-x)[2+x2+x2+--+x $= \left(\left(-x \right) \frac{x \left(1 - x^n \right)}{1 - x} = x \left(1 - x^n \right)$ $S(x) = \{t : S_n(x) = \{t : \alpha(t-x^n)\}$ Since the Sum function s(x) is discontinuous at z=0:0[01] . The given series not uniformly

+ show that the scales I from Let y. where In(2) = \frac{nx}{1+ n^2 2^2} - \frac{(n-1)^2 2^2}{1+(n-1)^2 2^2} is not uniformly (onvergent on[0,1] though the dum function is Continuous on[0,1] Soin - Here $f_n(x) = \frac{nx}{1+n^2x^2} = \frac{(n-1)x}{1+(n-1)^2x^2}$

$$f_{1}(x) = \frac{x}{1+x^{2}} - 0$$

$$f_{2}(x) = \frac{2x}{1+2^{2}x^{2}} - \frac{x}{1+x^{2}}$$

$$f_{3}(x) = \frac{3x}{1+3^{2}x^{2}} - \frac{2x}{1+2^{2}x^{2}}$$

$$-\frac{1}{\ln(x)} = \frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2}$$

The Sum S(x) is Continuous tre[0,]

But the Continuity of s(x) is no guarantee for uniform Convergence

of $\leq fn(x)$.

maximum when a : In and the maximum value of Y= 1/2 (Prove il Yourself). Now $M_h = Max |S_n(x) - S(x)|$

= Max 1 | sn(x) -s(x) | re[0,1]

" which - doesnot tend to o'asn-so : By Mn- Test for Sequences, the sequence {Sn(x)} of partial Sems is not uniformly convergent. . The Series is not uniformly Converge

Convergence and か米 <u>Oniform</u> Integration:

Theorem ()! If a sequence (fn) converges uniformly to f on [a,b] and each function - In is Intigrable on [a, b] then if is integrable on [a, b] and the sequence { Ifn(2) dx}. Axe [01] Converges uniformly to Hirldx. Theorem D: - If a series of a functional

In Converges conformly to I'on [a, b] and each function in is integrable on [aib], then I is integrable on [a,b] and $\sum_{n=1}^{\infty} \int_{-n}^{\infty} f_n(x) dx$ Converges = | mx | - 10 withomby to 16 flanda.

 \odot

 6 (3) () ٨

9 9

4 **(**) ٩

561		
)	i.e $\sum_{n=1}^{\infty} \int_{-f(x)dx}^{b} = \int_{-f(x)dx}^{f(x)dx}$	$= \int \sum_{i} e^{-t} dt \qquad \text{where } i = 0$
)	n=1 a	
.	ie. the series is term by term	$=-\frac{1}{2}\left[e^{-\frac{1}{2}}\right]_{0}^{n} \text{and at } z=1$
\$.	integrable.	= - ys e - 1]
9	Note (1) the uniform Convergence of	= 1/2 [1-e ⁻ⁿ]
.	the sequence (fn) (or series 5 fn)	, · · · · · · · · · · · · · · · · · · ·
*** ***	is only sufficient but not a necessary	$n \rightarrow \infty$ 0
0	Condition for the Validity of term	= 1/2 = 5 f(a) dx
\$	by term integration.	→ The sequence {fn} is not unifo
◎	Note(2): If {fn} is a sequence of	Convergent on [oil].
	integrable functions (converging to f	1(00 m) 14 - 5
9	on [a,6] and if it fin(x)dx + fix)dx	Prove that $\int_{0}^{\infty} \left(\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \right) dx = \sum_{n=1}^{\infty} \frac{1}{n^{2}} dx$
: •	~	Solo - Let $f_n(n) = \frac{\alpha^n}{n!}$
_ _	then I-In(2) Cannot Converge	1 ⁻ ·
* -	coniformly to.f.	$\left \frac{1}{n^2} \right = \left \frac{x^n}{n^2} \right \le \frac{1}{n^2} = M_n \text{ for } 0 \le$
	Problems -	$\lim_{n \to \infty} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is Convergex}$
	- show that the sequence (In) cohore	(%)
*	Incx) = nxe nx new is not contients	. By weierstrass's M-test, the s
◎ _	Convergent—On [Orl]	$\sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \frac{2^n}{n^2} i c \text{ ani-form}$
\$	<u>Bol'n</u> : Here $f(x) = dt - f_n(x)$	n=1
8	har	Convergent for 0<251.
9	= It enxr	the series can be integrated to
· 🔪		by term.
•	± nα	_
9	1+ mc + m2 +	$\Rightarrow \iint_{n=1}^{\infty} \frac{x^n}{n^2} dx = \sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{x^n}{n^2} dx$
	n (00 (anti]
9	=0 for xe[01]	- Syn41)
	Also ff(x) =0	n=1[ncryy]8
	and $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} nxe^{-nx^2} dx$	= 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AND THE TAX TO SERVE THE PROPERTY OF THE PROPE

1,100,000

COMPANY CONTRACTOR

.........

1

→show that the series t-x+x=23+ , 0 < x < 1, admits.of term by term integration the society term by term integration on [0,1], -though it is not uniformly convergent $\frac{2}{n=1}$ $\frac{2}{(n+x)^2}$ on[0,1].

8din! - The given series is 1-2+22-23+-

tohen x=1, the series 1-1+1-1+-oscillates.

For 0≤ <<1,

$$1-x+x^2-x^3+\cdots=\frac{1}{1-(-x)}=\frac{1}{1+x}$$

. The series is not uniformly convergent on [0,1]:

However, integrating LHS of 1 term by term over the interval [0,1], we have $\int_{0}^{\infty} 1 dx - \int_{0}^{\infty} x dx + \int_{0}^{\infty} x^{2} dx - \int_{0}^{\infty} x^{3} dx + \dots$ =1-1/2+1/3-1/4+---=1092.

Riff.s.
$$\int \frac{1}{1+x^2} dx = \left[\log (1+x) \right]_0^x$$

$$= \log_2 x$$

he the two sides are equal. Term by term integration is possible over [0,1], eventhough the given series is not consormly Convergent on [0,1]

-> Test for Uniform Convergence con $\int_{0}^{\infty} \frac{x}{(n+x^2)^2} dx = \frac{1}{2}$ soin: - we know that the series

 $\sum_{n=1}^{\infty} \frac{x}{(1+x^2)^n}$ is uniformly Convergent. Hence it is integrable term by term between any finite limits.

 $\Rightarrow \int_{0}^{\infty} \frac{\alpha}{(n+x^{2})^{2}} dx = dt \int_{0}^{\infty} \frac{\overline{x}}{(n+x^{2})^{2}} dx$

 $= dt \sum_{n\to\infty}^{\infty} \int \chi(n+x^2)^2 dx$ $= 1 + \sum_{n \to \infty} \frac{(n+2^n)^{-1}}{n}$ $= \lim_{n \to \infty} \frac{1}{n-1} \left(\frac{1}{n} - \frac{1}{n+1} \right)$

 $= dt \cdot \frac{1}{2} \left((1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{2}) + (\frac{1}{2}$ +--+(1 -1+1)

= dt /2 (1-1)

* Uniform Convergence and

Differentiation:

Theorem 1: - If a sequence of function Etn] is such that

(i) each for is differentiable on [a, b]

(1)

()

(

8

%

: 🛞 ۱ () ۹ (Ó * ₽.

		• •
	i, each of is continuous on [a,b]	$= 4f - \frac{1+u_s \mu_s}{2} = \lambda$
`	(iii, {fn} converges to f on[a,b]	for the contraction of the contraction
	iv, [tn] converges uninformly to g on	⇒ f(0) ≠ dt -fn(0)
	[a,b].	COB a the differentiat
	then f is differentiable and f(x)=qx) Y re [a,b].	term by term at =0.
,	V Action.	-> show that for the seque
	Theorem 2:- 2f a series of functions	Efn 3 where fn(2) = 1
<u>.</u>	n=1 for such that	formula It $f_n(x) = f(x)$ is to
	n=1 d, each fn is differentiable on [a,b]	x+0 and false if x=0. wh
	il, each in is continuous on [a,b]	sol'n: we know that the se
÷ .	iii, \sum_{n=1}^{\infty} for converges to f on [a,b].	Styl Converges uniformly to:
	iv & for Converges uniformly to g on	for all real ?.
ľ	[a,b].	=> f(x) =0 +xelR C
r A	then f is differentiable on [a16] and	when x +0
ज्यास्त्राच्या	f'(2)=g(2) \telab]	when $x \neq 0$ $f'(x) = \frac{(1+nx^2)\cdot 1 - 2nx \cdot x}{(1+nx^2)^2}$
distant metari	Problems:	(14nx²)
- Consideration	>U) show that the sequence (fin)	= 1-na2
٠	where $f_n(x) = \frac{nx}{1+n^2x^2}$, 05251,	11- 11-m2 (fo
•	Cannot be differentiated term by term at x=0	n-so (1+nxt)
	at $x=0$ $Sol^n = Here f(x) = Jt f_n(x) = 0$	$= \underbrace{1t}_{n\to\infty} \underbrace{-3^{2^{2}}}_{2(1+n)^{2}} \underbrace{x^{2}}_{x^{2}}$
	N->00 Axe[01]	TO ACTUMENT
	f(0) = 0	= 0 == eff(a) (from 1)
	Also fit (0) = It for (0+h) - for (0)	
**************************************	$= 1 + \frac{nh}{1 + n^2 h^2} - 0$	So that if x to, the formula It for (x) = fl (x) true At x
1.		

$$f_{n}(0) = \underbrace{\{t - f(0th) - f(c)\}}_{h \to 0}$$

$$= \underbrace{dt - \frac{h}{1+nh^{2}} - 0}_{h}$$

$$= \underbrace{dt - \frac{1}{1+nh^{2}}}_{h \to 0} = 1$$

$$\underbrace{dt - \frac{1}{1+nh^{2}}}_{h \to 0} = 1$$

Sothat It In (0) = 1 ≠ p:(0) [from (3)]

Hence at 2=0, the formula

If $f_n(x) = f'(x)$ is false.

I to because the sequence

The most turnformly convergent

In any internal Containing zero.

(); t

11 (m)

(Contract.)

Fans

The function 40b 09999197625 The Concept of Ricmann integrals requires that the range of integration is finite and the integrand of Kemains bounded in that domain. If either (or both) of these assumptions is not satisfied, it is necessary to attach a new interpretation to the integral

In case the integrand fibrance infinite in the interval a < x < b; i.e. of has points of infinite discontinuity (Singular points) in [a,b] (or) the limits of integration a or b (or both) become infinite, the Symbol I fla) dx is Called an improper integral or (infinite 1001) generalised) integral _

$$\int_{-\infty}^{\infty} \frac{1}{1+2^{2}} dx, \int_{-\infty}^{\infty} \frac{1}{2(1-2)} dx, \int_{-\infty}^{\infty} \frac{1}{2^{2}} dx$$

all improper integrals.

The integrals which are not improper are Called Louper integrals.

(: AS z -> 0 f(x)= Simx -> 1)

Integrals * the definite integral H(x). if either a or b (or both) are infini So that the interval of integration unbounded (ie. the range of the integration is unbounded) but of is bounded then flanda is Called a impropes integral of the first kin $\underline{\underline{\mathsf{E}}}' = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\infty}^{\frac{\pi}{2}} \frac{1}{1+2^{2}} dx, \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2^{2}} d$ are improper integrals of the first Kind.

-> In the definite integral If(a)da; both a and b are finite sother the interval of integration is finite but has one or more points of infinite. discontinuity. i.e. I is not bounded or [a,b] then If(a)da is called an improper integral of the second kind

Ex. $\int \frac{1}{x(1-x)} dx$, $\int \frac{1}{x^n} dx$, $\int \frac{1}{2-x} dx$,

 $\int \frac{1}{(x-1)(4-x)} dx$ are improper integrals Second Bind

- In the definite integral frister if the interval of the integration is sinx of is a Propos integral unbounded (so that a or b or both are infinite and f is also unbounded

then I frida is called an improper intogral of the third kind = 1 - | e dx 1 is an improper integral of the third kind.

Improper Integral as the limit of a proper Integral: - when the improper integral is of the first kind, either a look on noth a and b are infinite but fis bounded. we define (i) $\iint (x) dx = It \iint (x) dx$ $t \to \infty$ (t>a) The improper integral I + (a) da is said be divergent. to be convergent if the limit on the right hand side exists finitely and the integral is said to divergent to when the improper integral is of If the limit is $+\infty$ (or) $-\infty$:

Convergent nor divergent then it is Said to be oscillating. iii $\int_{-\infty}^{\infty} f(x) dx = dt \qquad \int_{-\infty}^{\infty} f(x) dx (t < 6)$ The improper integral I (x) the is said to be convergent if the limit The improper integral if(a) dx On the right handride exists converges if the limit on the Similarly and the integral is and right hardlide exists finitely,

— If the integral is neither.

to be divergent of the limit $+\infty$ (cr) $-\infty$ (iii) $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx$ where c is any real number. $= dt \int_{1}^{1} f(x)dx + dt \int_{1}^{2} f(x)dx$

The improper integral If(x)dx is said to be convergent if both the limits on the right handside exist finitely and independent of eachother. Otherwise, it is said to

Note! I fanda + It | faxx+ faxx

the secondrind, both a and bare finite but I has one (or more) points of infinite discontinuity on a,b (1) If f(x) becomes infinite at z=a only; b
we define fa)dx = it fa)dx

e-o4

ate

0<6<6-a Otherwise it is said to be divergent.

15 If for becomes infinite at 2=6 only; we define the improper integral Ita du is said to be convergent if the limit on the right hand crists. finitely and the integral is said to be divergent if the limit The improper integral I fraz dx is is +00 (0x) -00. (ii) If f(x) becomes infinite at 2=af limits on the right hand side exi 2=b only. we define $\int f(x) dx = \int f(x) dx + \int f(x) dx$ The improper integral Ifanda is said to-be convergent if both the limits on the right hand exist -finitely and independent of each Other, Otherwise It is said to be divergent. Note: The improper integral is also @defined as $\int f(x) dx = dt$ €, >0+ a+E,

The improper integral exists if the

limit erists.

iv) If f(a) becomes infinite at a only where accep and cism interior point. we define If(x)dx = If(x)dx + If(x) $= dt \int_{\alpha} f(x)dx + dt \int_{\beta} f(x)dx$ said to be Convergent if both th finitely and independent of each other

. If the function has a finite number of points of infinite discontinuity,

Otherwise it is said to be diverger

Similarly,

C1, C2, C3 --- Cm with in [a, b]. where a < C, < C2 << 3 < --- . Cm < b we define the improper integral (fa) de as Ifa)dx = Ifa)dx + Ifa)dx + Ifa)dx+

to be convergent if all and is said the integrals on the P.H.s are convergent, otherwise it is divergent.

Note(1): If I have infinite discontinuity at an end point of the interval of the integration then the point of infinite discontinuity is approached from within the interval.

i.e. if the interval of integration is

, f has infinite discontinuity at a then we consider [a+ ϵ , b] as $\epsilon \rightarrow 0+$.

· f has infinite discontinuity at b'
then we consider [a, b-e] as $\epsilon \rightarrow 0+$

10te (2)

A Proper integral is always convergent.

If If(a) da is convergent then

(1) & K-Knoda is convergent; KEIR.

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx$$

where a< c<b. and each integral on right band side is convergent.

10te (4):;

to any point c between as bine.

a < c < b, we have

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx.$$

If J-l(1)da is a proper integral

then the two integrals ff(1)da

and fl(1)da converge or diverge

integral flada for Convergence at a it may be replaced by flada for any convenient c' such that a<< < 6.

Problems !-

Examine the convergence of the improper integral.

 $di \int_{-\pi}^{\infty} \frac{1}{x} dx \qquad chi, \int_{0}^{\infty} \frac{1}{1+x^{\nu}} dx.$

sol": 1) By definition

$$\int_{1}^{\infty} \frac{1}{x} dx = \frac{1}{4} + \infty$$

$$= \lim_{t \to \infty} \left[\log x \right]_{1}^{t} = \lim_{t \to \infty} \left(\log t - \log x \right)$$

$$= \lim_{t \to \infty} \left(\log t \right) = \infty$$

Jan dr is divergent.

il, By definition.

$$\int_{0}^{\infty} \frac{1}{1+x^{2}} dx = dt$$

$$\int_{0}^{\infty} \frac{1}{1+x^{2}} dx$$

inition

$$= \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} \frac{1}{12} \right) \left(\frac{1}{12} + \frac{1}{12} \frac{1}{1$$

, Jae da viv, Jase da vi Jasinada . 0= I'm iii, $\int_{0}^{\infty} re^{-x} dx = dt$ $\int_{0}^{\infty} re^{-x} dx = dt$

$$= dt \int_{0}^{2\pi} (-e^{-\chi}) - \int_{0}^{2\pi} (e^{-\chi}) d\chi \int_{0}^{t}$$

$$= dt \left[-\chi^{2} e^{-\chi} + 2 \left(-\chi e^{-\chi} - e^{-\chi} \right) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \int_{t \to \infty}^{t} \left[-x^{n} e^{-x} - 2x e^{-x} (x+1) \right]_{0}^{t}$$

$$= \frac{dr}{t \to \infty} \left[-t^2 e^{-t} - 2e^{t} + 2e^{t$$

$$= dt \int \frac{\frac{1}{2}(1+2x)^{-1/2}}{(1+2x)^{3}} dx$$

$$\int x^{2} e^{-x} dx \text{ is convegent.}$$

$$\int_{0}^{\infty} \pi e^{-x^{2}} dx = \lim_{t \to \infty} \int_{0}^{t} \pi e^{-x^{2}} dx - 0$$

Put
$$x^2 = 2$$
 and $x = d2$

$$\int_{0}^{\infty} e^{-x^{2}} dx = dt \int_{0}^{\infty} e^{-t} \frac{dz}{z}.$$

$$= \int_{-\infty}^{\infty} \left[-\frac{1}{2} \left(\frac{1}{2} \right) \right]_{0}^{\infty}$$

$$\frac{du}{dx} = \frac{dx}{dx} = \frac{dx}{dx}$$

$$\frac{d^{2}}{dx} = Lt \int \frac{1}{(Hx)\sqrt{x}} dx$$

+11-(2) Put
$$\overline{R}=\overline{Z} \Rightarrow \frac{1}{2\sqrt{\chi}}dx=dZ$$

$$\Rightarrow \frac{1}{\sqrt{1}} d\alpha = 2dz$$

when
$$x=1 \Rightarrow z=1$$
; when $x=t \Rightarrow z=\sqrt{t}$

-dt
$$\frac{\partial t}{\partial t}$$
 - $\frac{\partial t}{\partial t}$ + $\frac{\partial t}{\partial$

	· · · · · · · · · · · · · · · · · · ·
	-= It (-tau't-+log t
	+ tou (1) - log (1/2)]
)	$- = \frac{-\pi i}{\infty} + \log \left(\frac{1}{\sqrt{1+i\omega}} \right) + \frac{\pi}{4} + \log \left(\frac{1}{\sqrt{1+i\omega}} \right)$
	= 0 to+11/4 +log([2])
	=T/4 +1/2 loge which is finit
	iv) $\int_{0}^{\infty} e^{\sqrt{x}} dx = dt$ $t \to \infty$
)	
	Put √1 = -2.
	\Rightarrow dz = 22dz
	When 2=0 => Z=0
	7=t => ==VE
	$\int_{0}^{\infty} e^{\sqrt{t}} dx = dt \int_{0}^{\infty} e^{\overline{t}} (27d7)$
	(iii) $\int_{-\infty}^{6} \cosh x dx \left[\text{tosing } \cosh x = \frac{e^{x} + e^{x}}{s} \right]$
	(iv) $\int_{\infty}^{0} \sin hx dx$ [using $\sinh x = \frac{e^{3} - \overline{e}^{3}}{2}$]
	$\frac{\operatorname{sd}^{n}}{-\infty} \int_{-\infty}^{\infty} e^{2x} dx = \underbrace{1}_{+} \int_{-\infty}^{\infty} \int_{-\infty}^{2x} dx.$
	$\frac{1}{\sqrt{11}} \int_{-\infty}^{\infty} e^{-x} dx \qquad \text{(ii)} \int_{0}^{\infty} \frac{dx}{1+x^{2}} \text{(iii)} \int_{0}^{\infty} \frac{dx}{1+e^{-x}}$
	$\int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 2} dx$

$$\begin{aligned} & \frac{\partial f}{\partial t} = \int_{0}^{\infty} e^{-t} dx = \int_{0}^{\infty} e^{-t} dx + \int_{0}^{\infty} e^{-t} dx \\ & = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t^{2} + 2\pi i 2} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}$$

$$\begin{aligned}
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + 1t & \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}} dx \\
&= 1t & \int \frac{1}{2^{2}} dx + \int \frac{1}{2^{2}}$$

Comparision Pests for

onvergence at a of frada:

The last when b' is the

sty point of infinite discontinuity

an be dealt with in the same way.

when the integrand of keeps the ame sign, the con-ve in a small eighbourhood of a, we may suppose hat f is non-negative there in, for if negative it can be replaced by (=f), for testing the convergence of flix) or testing the convergence of flix) or case f=0 being toivial so there is a loss of generality to suppose that f is the throughout.

inecessary and sufficient Condition or the convergence of the improper stegral Jofan dx at the point a, where is the on (a,b] is that there is the number of (i.e. M>0), independent of E>0. Such that by Jofanda < M; $0 < \epsilon < b-a$.

at \(\epsilon = \text{Inequal Jofanda } \text{Max} \)

inverges iff Ja M>0 and independent of \(\epsilon > 0 \)

such that Jofanda < M

Note: - If for every M>0. and some. E
in (0,6-a);

b f(a)dx > M, then \int f(a)dx is not
ate

bounded above.

b f(a)dx \rightarrow as \int O+ and
ate
hence the improper integral \int f(a)dx

diverges to too.

Comparison Test-I:-

If f and g are two +ve functions with $f(x) \leq g(x) \quad \forall \quad z \in [a_1b]$ and a' is the only point of infinite discontinuity on $[a_1b]$ then

(i) ∫g(x) dx is convergent ⇒ ∫f(x)dx is

a Convergent

di, ∫f(x) dx is divergent ⇒ ∫g(x)dx is

a divergent...

Comparison Test II (Limi Form):

If f and g be two tree functions on (a is is the only point of infinite discontinuity and

It $\frac{f(x)}{g(x)} = 1$ where I is a non-zero

finite neuroser, then the two integrals

b

f(a) da and fg(a) dx Converge (or)

a

diverge together.

 \rightarrow Let f and g be two +ve functions on $(a \cdot b)$, a is the point of infinite

discontinuity. then $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = 0 \text{ and } \int_{\alpha}^{\beta} g(x) dx \text{ converged} \int_{\alpha}^{\beta} \frac{dx}{(x^2 - \alpha)^n} = dx \int_{\alpha + c}^{\alpha} (x - \alpha)^n dx$ ⇒ ff(a)da Converges. in dt fear = + 00 and squide diverges Ifa) da diverges > Useful Comparison Integral

The improper integral $\int_{-\alpha,n}^{1} dx$ bood! If n≤0 then the integral - I (2-a) is proper.

If n>0, the integral is improper and à is the only point of infinite $\frac{b}{a} \frac{dx}{(x-a)^n}$ through the integrand on [a,b] $\frac{dx}{a} \frac{dx}{(x-a)^n}$

 $\int_{0}^{\pi} \frac{1}{(x-a)^{n}} dx = \int_{0}^{\pi} \frac{1}{(x-a)} dx$

 $= H \left[\log(\theta - \alpha) - \log \epsilon \right]$

 $= dt \frac{1-n}{1-n} \int_{-\infty}^{\infty} dt$ $= \lim_{\epsilon \to 0} \left(\frac{1}{1-n} \right) \left[(b-a)^{1-n} - \epsilon^{1-n} \right]$

I searched.

is convergent if and only if n < 1. $0 = \int \frac{dx}{(2-a)^n} = dt \frac{1}{(1-n)} \frac{1}{(b-a)^{n-1}} = \frac{1}{\epsilon^n}$

 $= \left(\frac{1}{1-n}\right) \left[\frac{1}{(b-a)^{n-1}} - \infty\right]$

 $= \frac{1-n}{1-n} (-\infty) = \infty \quad (: 1-n < 0)$

(1-a)m diverges if n>1

 $= dt \left[\log (x-a) \right]_{a+c} \quad \therefore \quad 0 = \int_{a}^{\infty} \frac{dx}{(x-a)^n} = dt - \frac{1}{1-n} \left[\frac{(x-a)^n}{(x-a)^n} - \frac{1}{1-n} \right]_{a+c} \quad \vdots$

 $=\left(\frac{1}{1-n}\right)\left(b-a\right)^{1-n}$

 $= \log(b-a) - \infty$ $\int \frac{dx}{(x-a)^n}$ (onverges if n < 1)

 $\int_{a}^{b} \frac{dx}{(n-a)^n} \text{ diverges if } n=1.$

is convergent iff n<1. \rightarrow (2) If a is the only point of rfinite discontinuity of i on [a, b] dt (x-a) f(x) exists and is on-zero finite then If(2)dx Converges iff n<1.

) If b is the only point of infinite discontinuity of f on [a,b] and If (b-x)n f(x) exists and is nonzero finite then Sf(x) dx Converges iff n<1.

) If f is tre on (a,b) a is the Only point of infinite discontinuity then the integral I f(x)dx converges at 'à'.

If I the number n<1 and a fixed +ve number M Such that f(a) & M v 2 e (a,b]

Also If(a) dx diverges if I a number > | and a fixed the number G Such that $f(x) > \frac{G_1}{(x-a)^n} \forall x \in (\alpha, b]$

Problems.

Examine the convergence of the Method (2)! Let $f(x) = \frac{1}{\sqrt{x^2 + x}}$ integrals (i) $\int \frac{1}{\sqrt{\chi^2+x}} dx$ (ii) $\int \frac{1}{(+x)\sqrt{2-x}} dx$: f is +ve on (0,1]

the improper integral $\int \frac{dx}{(b-x)^n}$ (ii) $\int \frac{1}{\sqrt{1-x^2}} dx$ (iv) $\int \frac{1}{\sqrt{1-x^2}} dx$ (V) Sina da. Solicin !- Method (): Let $f(x) = \frac{1}{\sqrt{x^2+x}}$ $=\frac{1}{\sqrt{2}(\sqrt{2+1})}$ Let $g(x) = \frac{1}{\sqrt{x}}$ indig are the on (OII) and o'is the only point of infinite discontinuity Now dt $\frac{f(x)}{2 \rightarrow 0_{+}} = dt$ $\frac{1}{\sqrt{x+1}} = 1$ (non-zero finite numba) .. By Comparison Test I fix the & Sq(x) dx are convergent (or) divergent together. Since $\int g(\alpha) d\alpha = \int \frac{1}{F_{x}} d\alpha$ $\int_{0}^{\infty} \frac{1}{(2-0)^{\frac{1}{2}}} dx \text{ is of }$ tterc n=1/5<1 :) g(a) da is convergent. I fai da is Convergent.

discontinuity of f- on [0,1] Now $f(x) = \frac{1}{\sqrt{2}(\sqrt{2n+1})}$

Clearly 1/2+1 is bounded function on

. I a tre number Hai an experiound

 $f(x) \leq \frac{M}{\sqrt{x}} \forall x \in (0.1]$

 $\Rightarrow -f(x) \leq \frac{M}{(x-0)^{\frac{1}{2}}} \forall x \in (0,1].$

Also $\int \frac{1}{(\alpha-0)^k 2}$ is convergent (: $n=\frac{1}{2}<1$) discontinuity of f on [0,1).

: By Comparison test. , of the dx is convergent.

if is +ve on [1,2).

Now $f(x) = \frac{1}{(1+x)(12-x)}$

clearly it is bounded on [1,2]

ELECT M be the upperbound

" - 1 ≤ M + x ∈ [1,2].

 $f(x) \leq \frac{M}{\sqrt{2-x}} + 7e\left(1.2\right)$

 $\Rightarrow f(x) \leq \frac{M}{(2-x)^{\frac{1}{2}}} \forall x \in (t_{12})$

and o is the only point of infinite Also 1 (2-2) 12 dx is convergent

. By Comparison test.

 $-\int_{-1}^{1} \frac{1}{(1+x)(\sqrt{2-x})} dx is Convergent.$

Let $f(x) = \frac{1}{\sqrt{1-x^3}}$

 $=\frac{1}{\sqrt{(1-x)(1+x+x_2)}}$

. . 1 is the only point of infini

clearly 1/1+x+x2 is bounded on [o.

Let Mbe the Lepper bound

" TITATAS M A XE[01]

 $\frac{1}{1} \text{ of } f(x) = \frac{1}{(1-x)^{\frac{1}{2}}} \quad \forall x \in [0,1].$

and 2 is the only point of infinite Also \(\frac{1}{(1-x)^2} \) dz is convergent discontinuity of \(\frac{1}{2} \) on \(\lambda \).

 $\int \frac{1}{\sqrt{1-x^3}} dx \text{ is Convergent.}$

(V) For PSI it is a proper integra

For P>1, it is an improper integral and o is the only point of infinite

discontinuity.

Now let $-f(x) = \frac{Sinx}{3p}$

Let g(x) = 1 → + x ∈ (0, T/2] $\frac{dt}{x\to 0+} \frac{f(x)}{g(x)} = dt \frac{\sin x}{x} = 1$ $x\to 0+} \frac{1}{x} (a non-zero)$ finite number) By Comparison Test I f(x)dx &) g(x)dx are (onvergent(o)) divergent together. Since $\int g(x)dx = \int \frac{1}{(x-0)^{p-1}} ig$ Convergent if P-1<1 ie P<2 . July dr is Convergent for P<2 and \[\left\{ \frac{\sinz}{\chi P} \, \dz \text{ divergent P > 2.} \] $\Rightarrow (i) \int \frac{dx}{\sqrt{3(2+x^2)^5}} \quad (ii) \int \frac{dx}{\sqrt{12}(1+x)^2}$ $\int_{0}^{\infty} \frac{dx}{(1+x)^{2}(1-x)^{3}} = (iv), \int_{0}^{\infty} \frac{dx}{\sqrt{x(1-x)}} = \frac{1}{(1-x)^{3}} = \frac{1}{(1-x$ ol Frivs :-Let $f(x) = \frac{1}{(\sqrt{2})(\sqrt{1-x})}$ Both the end points 0 & 1 are the Points of infinite discontinuity of f on [0,1].

To examine the convergence at x=0 Let $T_1 = \int_0^\infty \frac{dx}{\sqrt{x(1-x)}}$ O is the only paint of infinite discontinuity of f' on [o,a]. Let 9(x) = 1 + x ∈ (0,a) then $1+\frac{f(x)}{g(x)}$ (a non-zero . By Comparison Test I, = I fear dx & J gen dx are Convergent (or) divergent together. But $\int_{0}^{\infty} g(x) dx = \int_{0}^{\infty} \frac{dx}{(x-0)^{1/2}}$ is converged

("n=\(\xeta(1) \) .. I, is convergent. the convergence at z=1 Let $I_2 = \int \frac{1}{\sqrt{2(1-x)}} dx$ I is, the only point of discontinuity of it on [a,1] Let $g(x) = \frac{1}{\sqrt{1-x}} \forall x \in [a,1)$ then at $\frac{f(\alpha)}{g(\alpha)} = \frac{1}{\alpha + 1} = 1$ (which is finite and non-zero) By Comparison test In & Jg(a)da Convergent (or) divergent together. But Igar) du = Julia du is

I is convergent. Since T, &T_ are both convergent i from (1)

ova (1-2)

Note: If I, or I, is divergent then

ff(z)dx is divergent. $\implies (i) \int_{(x-2)^{1/4}(3-x)^{2}}^{3-2}$

 $\begin{array}{ccc}
& & & & \\
& & \downarrow \downarrow \downarrow \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$

iv. $\int_{0}^{2^{n}} \frac{x^{n}}{1+x} dx$ $\frac{1}{2}$ $\frac{1}$

Sol'n'(w) Lat I(n) = \frac{x^n}{1-x}

Caselin if n>0 then 1 is the only

point of infinite discontinuity on [0,1]

Let 9(a)=. 1-2 + x = [011).

Then $dt \frac{f(x)}{x} = dt x^n = 1$

: By Comparison test

Ifixida and Igiaida are

But $\iint g(x)dx = \int \frac{1}{(1-x)} dx$ is

divergent (n=1)

.. Jefanda is divergent.

. 0 &1 both are the points of infin

discontinuity of f on [0,1]

Now $\int f(x)dx = \int f(x)dx + \int f(x)dx$

where o<a<1

Next please try Yourself.

(V) Here $f(x) = \frac{x^n}{1+x}$ of n > 0 then

If(a) is a Proper integral and here

it is Convergent.

if no then let n=-m; where m>

 $\frac{1}{2m}(1+1)$

Here 'o' is the point of infinite

discontinuity of on [0,1]

Let g(x) = im proceed Next

 $\frac{1}{2} \Rightarrow (i, \int \frac{\log x}{\sqrt{2}} dx) = \frac{1}{2} \frac{\log x}{\sqrt{2}} dx$

iii, Juanda

Convergent (or) divergent logettur soin (1) Let $f(\alpha) = \frac{\log \alpha}{\sqrt{2-\alpha}}$.

finite number

clearly 0 & 2 are only the points of . . By Comparison test. infinite discontinuity of f on [0,2] Stada = Stada + Stada To test the Convergence of If(a) dx at 2=0: Since fra) is -ve on [0,1] we consider -f(a) Pake g(a) = 1 Now it $\frac{-f(x)}{x \to 0+} = \lambda t - \frac{x^n \log x}{\sqrt{2-x}}$ = 0 if n>0 (: It 2 loga = 0 if n>0.) · Taking on blu Obl_ I g(x) dx is convergent. .. By Comparison Test Istanda is convergent. o test the Convergence of fraids Take $g(a) = \frac{1}{\sqrt{2-x}} \forall x \in [r, 2)$ is By comparison test $\frac{d+\frac{1}{2}}{3(3)} = 16 - \log x$

Standa & Sganda Converge or diverge together. But $\int_{-\infty}^{\infty} g(x) dx = \int_{-\infty}^{\infty} \frac{1}{(2-x)^{1/2}}$ is convergent (: n=1/2<1) - Ifanda is also Convergent. : -from 1 -I-f(x)dx is convergent. (ii) Let $f(\alpha) = \frac{\sqrt{x}}{\log x}$ I is the only point of infinite discontinuity of it on [1,2] Take g(x) = 1 $= dt \frac{n(x-1)^{n-1}\sqrt{x} + (x-1)^n \sqrt{x}}{1/x}$ $= dt \left(\frac{(n-1)^{n-1}}{n} \left[\frac{n}{n} \frac{3/2}{2} + \left(\frac{2-1}{2} \right) \cdot \sqrt{n} \right]$ (... a non-zero finite number) I fear da & I genra da are convergent (or) divergent together. But (a non-zero-finite nember). Ig(2) dx diverges. (-n=1)

iii)
$$\int \frac{\log x}{1+\alpha} dx$$
 (ii) $\int \frac{\log x}{1+\alpha^2} dx$

iii) $\int \frac{\log x}{2-\alpha} dx$ (iv) $\int \frac{\log x}{1+\alpha^2} dx$

$$= \log x \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$$

$$= \log x \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$$

$$= \log x \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$$

By Comparison Test.

If (x) dx = $\int f(x) dx \cdot f(x) dx$

$$= \int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$$

By Comparison Test.

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

By Comparison Test.

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

By Comparison Test.

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

By Comparison Test.

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ non-} \frac{1}{2} - a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx = $\int f(x) dx \cdot (a \text{ numb})$

If (x) dx is divergent.

If (x) dx is

```
= log2 . (a non-Zero-fir
                                                       number)
                          By Comparison Test.
                           Hardx & I good da are convergen
                            (or) divergent together.
                          but \int f(x) dx = \int \frac{1}{(2-x)} dx is divergen
                           · IfixIdx is divergent. :
                           in from (1)
                            If(a) da is divergent.
                          giv, since logx is -ve in (0,1) then
                            Let f(x) = \frac{-\log x}{\log x}
                           Now It -f(x) = It \frac{1-x^2}{\log x} \frac{1}{\log x}
                                            = \frac{1}{x} - \frac{1}{x} = \frac{1}{x}
(: Lt xn logx =0 if n>0); . O is the only point of infinite
                          discontinuity of
                                                on [oil].
                           = 0 \text{ if } n > 0.
                          Take in blw OSI, the integral /graydo
                         is convergent
                                Comparison test, sfix)dx
```

is convergent. $\int \frac{\log x}{1-x^{2}} dx \text{ is convergent.}$ $\int \frac{1-x^{2}}{(1+x)^{2}} dx \text{ iii, } \int \frac{x^{2} \log x}{1+x^{2}} dx$ $\lim_{n \to \infty} \int \frac{|x^{n}|^{2}}{(1+x)^{2}} dx \text{ iii.} \int \frac{x^{2} \log x}{1+x^{2}} dx$ $\lim_{n \to \infty} \int \frac{|x^{n}|^{2}}{(1+x)^{2}} dx dx$ $\lim_{n \to \infty} \int \frac{|x^{n}|^{2}}{(1+x)^{2}} dx dx$

 $\frac{\chi''(1)}{(1+x)^2}$ Let $f(x) = \frac{\alpha'' \log x}{(1+x)^2}$

 $\Rightarrow 0^{+} \frac{(1+x)^{2}}{(1+x)^{2}} = 0 \text{ if } u > 0$

- Janloga da is a proper integral

and hence it is convergent.

 $\frac{2f n=0}{Let f(x) = -logx}$

) is the only point of infinite discontinuity.

Take g(2)= 1

= 0 if P≥o

Taking P 5/10-0-21.

g(a) da is convergent.

 $\Rightarrow \int_{0}^{\infty} f(a) da \text{ is Convergent}.$

 $\Rightarrow \int_{0}^{1} \frac{a^{n} \log x}{(1+x)^{2}} dx \text{ is Convergent.}$

 $\frac{2f n < 0}{100}, \quad \text{let} \quad n = -m, m > 0$ Let $f(n) = -x^n \log x$

Let $f(x) = \frac{-x^n \log x}{(1+x)^n}$

 $= \frac{-\log x}{x^m(1+x)^2}$

Pake 9(2) - 1

 $\frac{d+\frac{f(x)}{g(x)}}{2\rightarrow0+\frac{g(x)}{g(x)}} = d-\frac{x^{p-m}\log x}{(1+x)^2}$

= 0 if 9-m>0

Taking 0<9<1 and also 9-m>0.

i.e.q>m

⇒ 0<m < 9<1

⇒ -n<1

- Ig(a) dx is convergent and hence

If(n) dx is convergent.

o (Ita)2 da is convergent

iri, Let P>0 and

 $f(x) = \left(x^{p} + \frac{1}{x^{p}}\right) \frac{\log(1+x)}{x}$

Here o is the point of infinite

Take g(7) = 1

New

 $x \to 0^{\frac{1}{2}} \frac{d(x)}{d(x)} = 7 + \left(x_{33} + 1\right) \frac{x}{\sqrt{3}(1+x)}$

7 → 0+ 2 → 0+ 2 = (1)(1) =1 (anon-Zerofinite Since $\int_{0}^{\infty} g(x) dx = \int_{0}^{\infty} \frac{1}{x^{p}} dx$ is convergent :) failer is convergent if 0<P<1. 와 P=0 f(x) = 2log(1+x) Since it $f(x) = it \frac{2\log(1+x)}{2\log x}$ i Ifaxda is a proper integral and hence Convergent. PF P<0: Let $g(x) = \frac{1}{2^{-P}}$ the $\frac{f(\alpha)}{\alpha \to 0_+} = dt$ $\left(1 + \frac{1}{x^2 P}\right) \frac{\log(Hx)}{\alpha}$ when n < 1: = 1 (Since P<0). which is non-zero and finite. Take $g(\alpha) = \frac{1}{\alpha P}$ Since $\int \frac{1}{3}(x) dx = \int \frac{1}{2-p} dx$ is convergent $\int \frac{1}{2-p} \frac{1}{2-p} dx = \int \frac{1}{2-p} dx = \int \frac{1}{2-p} \frac{1}{2-p} dx = \int \frac{1}{2-p} \frac{1}{2-p} dx = \int$ Dif -P<1 i.e. if P>-1

f(a)da is convergent if P>faida is convergent if P>-:- - f(a) is convergent if -1<P< div, we know that it alloga =0. .. Jan-1 loga da is a proper integral when (n-1)>0 i.e. when n>1. when n'=1 o is the point of infinite discontinuity. $\int_{0}^{\infty} \log x \, dx = \iint_{0}^{\infty} \log x \, dx$ = dt [aloga-a] =1- [0-1-eloge+e] (. The elode-0) in Jan-1 logada is convergent if n=1. Let f(x) = -xn-1 logx = $\frac{1}{x \to 0_4} \left(1 + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x}\right] \left(\frac{1}{x} \times \frac{x^{n-1} \log x}{x}\right] = \frac{1}{x \to 0_4} \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x \to 0_4} \frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left[\frac{1}{x} + \frac{1}{x^{2R}}\right] \left(\frac{1}{x} + \frac{1}{x^{2R}}\right) \left(\frac{1}{x} + \frac$ =17 Here o is the point of infinite discontinuity. $= 7f^{-3}b+v-1$ Judy ...

=0 lf P+n-1>0 = 00 if P+n-1 ≤0 Taking OSPSI and P>1-n Since Ig(2) ctx =) = is convergent. If(x) da is also convergent if M >0 (ieocnci) P=1 and Ps 1-n ⇒ 151-n Since Ig(a) da is divergent (: P=1) Ha) dx is divergent and logada is divergent 4nso $\Rightarrow (i) \int_{0}^{\sqrt{1/2}} \frac{\cos x}{\cos x} dx \quad (ii) \int_{0}^{\sqrt{1/2}} \frac{\cos x}{x} dx$ secx dr Sol " (1) Let $f(x) = \frac{\cos x}{2}$ If new then the integral Coix dr is a proper integral If n>0 then 0 is the only point of

infinite discontinuity of Pon (0. 1/2)

Let 9(n) = 1 + TE (0, 1/2) = 1 (a non-zero finite number) i By Comparison test I fa) de le J g(a) da ave Convergent or divergent together. $g(x)dx = \int \frac{1}{x^n} dx$ is convergent $\int f(x)$ is convergent. 19 (a)da is divergent if no1 f(a) da is divergent if no1. (1), Let f(a) = Coseex 0 is the only point of infinite discontinuity of f on [0,1]. Since Islux ST + xeiR. ⇒ Coseca >! => [ryecx | > 1x1. Axe (0'1)] ⇒ f(x) > = + x ∈ (0,1] Since $\int \frac{1}{(x-0)!} dx$ is divergent ('.' n=1) : By Comparison test (f(x) dx is divergent.

Let f(a) = am Cosecna $=\frac{x_m}{s_{lm}}$ $=\left(\frac{x}{\sin x}\right)^{\eta} x^{(m-\eta)}$ $\frac{1}{x \to 0} \text{ dt } f(x) = \begin{cases} 0 & \text{if } m-n > 0 \\ 1 & \text{if } m-n = 0 \end{cases}$ $\infty & \text{if } m-n < 0$ => The given integral is proper integral if m-n≥0 i-e. if m≥n. The given integral is improper integral if m-nxo i.e. if men. is the only the point of infinite discontinuity of P on [O, T/2]. Let $q(x) = \frac{1}{2^{n-m}} \forall x \in (0, TV_2)$ Now of fa) =1 (a non-zero finite number) By Comparison test J falda la J galda are convergent or divergent together. g(x) dx = 1 1 is convergent @iff n-m<1 ic. (# n<m+1.

show that I am cosec na da -> show that I sin ma da exists Let $f(\alpha) = \frac{\sin^m \alpha}{\sin^m \alpha}$ $= \left(\frac{3 \ln x}{x}\right)^m, \ 3^{m-n}$ $\rightarrow (i)$ $\int_{0}^{\pi/4} \frac{1}{\sqrt{\tan x}} dx (ii)$ $\int_{0}^{(\log \frac{1}{x})^{n}} dx$ soli:-(i) O Is the only point of infini discontinuity of f on [0, 17/4] Let $f(x) = \frac{1}{\sqrt{\tan x}}$ = Cosx Let 9(x) = 1 Y x & (0, 11/4) then $d \vdash \frac{f(x)}{g(x)} = d \vdash \frac{f(x)}{f(x)} \cdot \sqrt{\cos x}$ = dt | x . dt Vrosx By Comparison test. 17/4 It(a)dz & I g(a)da are convergent or divergent together. But $\int g(x)dx = \int \frac{1}{x^{1/2}} dx$ is I for) dx is convergent iff n<m+1.

1 Let f(x) = (log 1/2) ince 021 are the only points of nfinite discontinuity on [0,1]. Now we write Standa = Jfanda+ Jfanda

where oca<1.

To test the convergence of ffraida 과 X=0.

Now It f(x)=It (log 1/x)" $= \begin{cases} 1 & \text{if } n=0. \\ 0 & \text{if } n < 0. \end{cases}$

... The integral is proper if n < 0.

if n>0: 0 is the only point of infinite discontinuity: -

let 9(2) = 1 + x + (0,a)

Now at $\frac{f(x)}{g(x)} = 4t \left(\log \frac{x}{x}\right)^{n} x^{p}$

since of from the from (1),

By Comparison test

f(a)da is convergent

10 lest the convergence of)-f(x)dx at a=1;

The integral is proper if 12/0! If n<0 then 1 is the only point of infinite discontinuity.

for- n<0:

Let $f(x) = \frac{1}{(1-x)^{-n}}$

Now dt $\frac{f(x)}{x \rightarrow -\frac{1}{2}} = dt \left(\frac{\log \frac{1}{x}}{1-x}\right)$

 $= \frac{1}{1-x} \frac{\log \frac{1}{x}}{1-x}$

= dt 7 (-1/22)

(which is non-zero and finite)

But $\int g(x) dx = \int \frac{1}{(1-x)^{-n}}$ is convergent

i.e. if n>-1

.. By Comparison test, | f, (2) da = | (log - 1) da is

Convergent if -1< n<0.

I (log 1/2) da is convergent if -i<n<0.

7 Find the values of men for which the integral lemaxnda Converge Solo! Irrespective of the values

the given integral is proper and hence it is convergent. when n<0! whatever in may be, 'o' is the only point of infinite discontinuity. Let $f(x) = e^{-mx} \cdot x^n$ Let $g(x) = x^n = \frac{1}{x^{-n}}$ idt f(a) = dt e^{-ma}=1 Since $\int g(x) dx = \int \frac{dx}{x-n}$ converges . By comparison test, I f(m) dx also Converges. if -1<x<0. Je-manda converges only for irrespective of the value of .m. show-that I log sinx dx is Convergent. Sot $n - \text{Let } f(x) = \log \sin x$ O is the point of infinite discontinuity. Since fig-ve on [0, 17/2]

Take $g(x) = \frac{1}{x^n}$; n>0 $\frac{1}{200} + \frac{-f(x)}{g(x)} = 1 + -2^n \log \sin x$ $\begin{array}{c|c} = 1 + -\log \sin \alpha & \frac{1}{2} \\ \hline & \frac{1}{2} \end{array}$ $= 1t \frac{\cot x}{n}$ $= df \frac{x^n}{n} \cdot \frac{x}{\tan x}$ Taking in blue O&1, J g(x) dx is convergent By Comparison test. J-f(a) du is convergent. ⇒ ff(x) dx is convergent. \rightarrow Show that $\int \frac{\cos cx}{x^n} dx$ is divergent if n >1. soin! Let $f(\alpha) = \frac{\cos(\alpha)}{2^n}$ Since - [ginx) < 1 & XEIR → | (csecx | > 1 YzeiR $\Rightarrow \left| \frac{\text{Cose}(x)}{2^n} \right| \ge \frac{1}{|x^n|} \text{ for all } x \in (0,1].$ $\therefore f(x) \geqslant \frac{1}{2^n} \forall x \in [0,1]$ Since Janda is divergent

By Comparison Test

 $\int_{0}^{\infty} \frac{\operatorname{Cose}(x)}{x^{n}} dx \text{ is divergent if } x > 1.$

integral July da.

 $\frac{301^{1/n}}{2} \cdot \text{Let} - f(\alpha) = \frac{3 \ln \alpha}{2^{3/2}}$ $= \frac{(3) \ln \alpha}{2} \cdot \frac{1}{\sqrt{2}}$

Fet 8(2) = 1/2 + 26 [0.1]

Ois the only point of infinite

 $\frac{1}{x \to 0} + \frac{1}{y(x)} = \frac{1}{x \to 0} + \frac{1}{x}$

=1=

Since $\int_0^1 g(x) dx = \int_0^1 \frac{1}{xh_2} dx$ is

Convergent $(:n=\frac{1}{2}<1)$

By Comparison test

I f(a) da is also Convergent

Fintegrand may change sign):

This test for convergence of an improper integral (finite limits of integration that discontinuous integrand) hold whether or not the integrand keeps the came sign.

Cauchy's Test

the improper integral

b f(x)dx, a' is the only the point

of infinite discontinuity, converges

at a' iff to each \$\infty\$, a \$>0

such that | f(x)dx | \$\infty\$ e \forall \cdots, \lambda_{\infty}\$ of \text{ath}, \lambda_{\infty}\$

Note: | f(x)dx \rightarrow as \lambda_{\infty}\$, \lambda_{\infty}\$ \rightarrow as \lambda_{\infty}\$, \lambda_{\infty}\$ \rightarrow as \lambda_{\infty}\$.

Absolute Convergence: b

The improper integral $\int f(a)dx$ is said to be absolutely convergent

if $\int |f(x)| dx$ is Convergent.

Every absolutely Convergent.

integrand is convergent.

| f(x) | dx exists.

Note: (1) The Converse of the all is not true.
i.e. Every Convergent integral not not be absolutely. Convergent.

A Convergent integral which is not absolutely convergent is called a conditional Convergent integral.

Problems:

2000 Test the Convergence of $\int \frac{\sin x}{\sqrt{x}} dx$ Sol'n: Let $f(x) = \frac{\sin x}{x}$

clearly of does not keep the same sign in a bounded of o.

Now $|f(x)| = \left| \frac{\sin \frac{1}{x}}{\sqrt{x}} \right|$ $= \frac{1\sin \frac{1}{x}}{|\sqrt{x}|} \le \frac{1}{\sqrt{x}} \forall x \in [6]$ $[\cdot \cdot |\sin \frac{1}{x}| \le 1]$

Since $\int \frac{1}{\sqrt{x}} dx$ is convergent at 0

Since absolutely convergence convergence convergence convergence convergence

Show that $\int_{0}^{\infty} \frac{\sin kx}{x^{p}} = 0$.

Converges absolutely for $\frac{\sin kx}{x^{p}} = \frac{\sin kx}{x^{p}} = \frac{\sin$

clearly of does not keep the same. Sign in a neighbourhood of 0.

Now $|f(\tau)| = \frac{|Sin|A|}{2P} \le \frac{1}{2P}$ $= \frac{|Sin|A|}{2P} \le \frac{1}{2P}$ Since $\int \frac{1}{2P} dz$ is convergent iff PCI.

By Comparison test $\int |f(z)| dz$ is

Convergent if PCI.

If f(z) da Converges absolutely

for PCI.

Convergence at so, the integrand

I being the second and sufficient.

There the convergence

The for the convergence

The formula for the convergence

The formula for the convergence

The formula formula

The figure two functions

Such that O< fex) < g(z) + zefaxo

then (i) / g(z) dz is convergent

Ifanda < H + t>a

 $= \int_{-\infty}^{\infty} f(\tau) d\tau \text{ is Convergent.}$ $= \int_{-\infty}^{\infty} f(\tau) d\tau \text{ is divergent.}$

 $\Rightarrow \int g(\alpha) d\alpha$ is divergent.

Comparison test-II:

If f and g are +ve functions

on [a, ∞) and It f(\overline{a}) = I then

\(\lambda \rightarrow \overline{g(a)} \)

if (I) I' is non-zero and finite.

then the two integrals—

on

f(a) da & f(a) da converge (or)

a diverge together.

di, If l=0 and fg(a) da converges

then f(a) da converges.

then for day diverges.

A cuseful Comparison integrals

The improper integral $\int_{0}^{\infty} \frac{dx}{x^{n}}$,

(a>0) is convergent iff n>1. $\int_{0}^{\infty} \frac{dx}{x^{n}} (a>0)$ is divergent iff a>0.

Problems:

Examine the Convergence of the

following:

of the convergence of the

of the convergence of the

of the convergence of the convergence of the

of the convergence of the convergence

 $\frac{\sqrt{3}}{\sqrt{3}+1} dx \quad \text{(iv)} \quad \int_{1}^{\infty} \frac{\sqrt{3}+1}{x^{4}} dx$

	Join Telegram for More Upda
, · , ·	$\frac{\partial g(x)}{\partial x} = \frac{\partial g(x)}{(1+x)^5}$
39 ,	- 23
*	= \frac{\alpha^3}{\alpha^5} = \frac{1}{\alpha^5} \frac{1}{\alpha^6} = \frac{1}{\alpha^5} \frac{1}{\alpha^6} = \frac{1}{\alpha^5} = \frac{1}{\alpha^6} = \fra
٨	Take 9(x) = /2
(9)	l .
3	$\frac{1}{\lambda + \infty} \frac{f(\lambda)}{g(\lambda)} = \frac{1}{\lambda + \infty} \frac{1}{(1 + \frac{1}{\lambda})^5}$
9	7007
٩	= (finite & non-zero)
3	By Comparison test.
**	Jeridx & Jeridi are convergention
	divergent together.
8	or or
303	But I grandre = J 1/22 dris convergent.
	(., n=551)
7	is convergent.
	n
	$\frac{1}{1} \int_{0}^{\infty} \frac{x^{2m}}{1+x^{m}} dx m, n > 0$
Ĭ	0 1+2xm
	$\frac{11}{1+\alpha}$, $\int_{0}^{\infty} \frac{\alpha^{p-1}}{1+\alpha} d\alpha$
I	, U
#	$\int_{0}^{\infty} \frac{d^{2m}}{1+x^{2m}} dx = \int_{0}^{\infty} \frac{dx}{1+x^{2m}} dx$
) 0 1 1 /Hx ²¹
- 63	where oca < 0
	Bince 1 22m de le a proper integral.
863)
. 6	Sheuce it is a Convergent.
-	The given integral $\int \frac{x^{2m}}{1+x^{2m}} dx$ is
	•
. I	Sonvergent or ditergent according as
	dr is conserent or divergent
6	a 1+x10
	$\rho_{cab} = \frac{\rho_{cab}}{\rho_{cab}}$
	1+x2n
106	α^{2m}

2m-2n
$=\frac{\chi^{2m-2n}}{\left(1+\frac{1}{2^{2m}}\right)}$
1) Let 9(a) = 22m-2n = 1
· , ^
$\frac{1}{1+\frac{f(x)}{g(x)}} = \frac{1}{2+\infty} = 1$
χ _{τυ} (; n>(
By Comparison test
I fixed and I grade convergent
or dévergent together.
Nut (da
But $\int_{\alpha}^{\infty} g(x) dx = \int_{\alpha}^{\infty} \frac{dx}{x^{2n-2m}}$ Converges.
iff 2n-2m>1 i-e- iff n-m>1/2.
f(x) dx converges iff n-m>1/2
a &
2013 [P-7] A tout a Dougle - 1 Sinha da Sinha da
(iii), $\int_{e}^{\infty} \frac{dx}{x(\log x)^{3/2}}$ (iv), $\int_{e}^{\infty} \frac{dx}{x(\log x)^{n+1}}$
80/2: (1)
$\frac{1}{(1)} \frac{1}{(1+x^{1/2})^{1/3}} dx = \frac{1}{(1+x^{1/2})^{1/3}}$
2 tau x dx + \ \(\frac{1}{(1+24)\frac{1}{3}}\) dx - \(\frac{1}{(1+24)\frac{1}{3}}\)
cohere oxac∞ — D
Since $\int_{0}^{\infty} \frac{2 \tan^{1} x}{(1+x^{4})^{V_{3}}} dx$ is a proper integral.
and hence it is convergent.
The given integral is of atomix da convergent
(er) divegent according as Jatanta da (1+x4)/3 da
is (envergent (or) divergent.
ų,

35.

Let +(a) = atanta (+24)/3 Let gal = 1/2/3 Put logx =t Sothat /2dx =dr when z=e => t=1 when $x \rightarrow \infty \Rightarrow t \rightarrow \infty$ $\Rightarrow_{i,j} \int_{0}^{\infty} e^{-x^{2}} dx \quad (i,j) \int_{0}^{\infty} x^{n} e^{-x} dx$ (iii) $\int_{-\infty}^{\infty} \frac{\log x}{x^2} dx$ (iv) $\int_{-1+2x^2}^{\infty} dx$ $\frac{|g|^{n}}{|g|^{n}} \cdot (i) \int_{0}^{\infty} e^{-x^{2}} dx = \int_{0}^{\infty} e^{-x^{2}} dx + \int_{0}^{\infty} e^{-x^{2}} dx$ since le d'a is a proper integral. heure it is convergent. Let us consider se da we those that ex > 22 YZEIR Since 1 -1 de Converger at a Je-7 dx also Convergent

from (1), let'dx is Convergent.

Note! Jexda is called the Euler-poison integral and its value is $\frac{\sqrt{11}}{2}$: il, Let +(2) = 2 ne-2 Take g(x) = == $dt \frac{f(x)}{2} = dt \frac{x^{n+2}}{e^2} = 0 \forall n$ Since Ig(x) dx = 1 - dx is convergent (: n=2>1) . By Comparison test Itandr = 1 xne-2 dris Convergent. (iv) since (con) < 1 + 2 EIR. $\Rightarrow \left| \frac{(\alpha)}{1+\alpha^2} \right| \leq \frac{1}{1+\alpha^2} \quad \forall \ \chi \in [0,\infty).$ Since $\int_{0}^{\infty} \frac{da}{1+a^{2}} = dr \int_{-1+a^{2}}^{-1} da \, dr$ = dt [tauta]t = Lt (tout t) 1. 1 Haz da is convergent .. By Comparison test.) (colx is convergent. (1+x - e-x) dn is convergent.

Join Telegram for More tipdate: -https://t.me/upsc_pdf

Sol in: Let
$$f(x) = \left(\frac{1}{1+2} - e^{-x}\right) \frac{1}{x}$$

$$= \left(\frac{1}{1+x} - \frac{1}{e^{x}}\right) \frac{1}{x}$$

$$= \frac{1}{1+x} - \frac{1}{e^{x}} \frac{1}{x}$$

$$= \frac{1}{1+x} + \frac{1}{x} + \frac{1$$

hence it is convergent.

Now $f(x) = e^{x} - 1 - x$

Let $q(x) = \frac{1}{x^2}$

 $\frac{1}{x \to \infty} \frac{f(x)}{g(x)} = \underbrace{\text{It}}_{x \to \infty} \left(\underbrace{e^x - 1 - x}_{e^x} \right).$ $= dt \frac{e^{x} - 1 - x}{e^{x}} \cdot dt$ $= \frac{1}{2} + \frac{e^{4} - 1}{e^{2}}$ and $\frac{1}{2} + \frac{1}{2} + \frac{1}{$ = 2+ (1-e-7) Since $\int_{\alpha}^{\infty} g(x) dx = \int_{\alpha}^{\infty} \frac{1}{x^2} dx$ is conven (n=2>1 If(x) dx is also convergent ... The given integral fa) da is Convergent. * Greneral Test For Convergence at \o (Integrand may Change sign): It(x)dx is proper integral and Cauchy's Test. The improper integral. Ista Ida Converger at a iff to each e>o, 3 a +ve real number K Such that $|\int f(x)dx| < \xi \ \forall \ t_1,t_2 > k$. Absolute Convergence: Definition: The improper integral

Italda is said to be absolutely and monotonic function for a -> Every absolutely Convergent integral is convergent. i.e. Ilfa) da exists. \Rightarrow ff(x) dx exists.

oteur. The converse of above is not true.

) A convergent integral which is not absolutely convergent is Called a conditionally convergent integral.

t Tests for Convergence of the integral of a product of two -functions:

+ Abel's Test !-If It is convergent at ∞ and g(x) is bounded and monotonic for a≲a then

Converges at co.

Dirichlet's Test! If If(a) dx is bounded for tza and g(x) is a bounded

convergent if |f(x)|dx is convergent tending to o as x -> 0. then If(n)g(n) da le Convergent at co.

the convergence of

the integrals:

(i) $\int_{0}^{\infty} \frac{\sin x}{x} dx$ (ii) $\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx$

 $\int_{0}^{\infty} \frac{g_{inx}}{x^{3/2}} dx \left[\int_{0}^{\infty} = \int_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{x^{3/2}} \right]$

"O is the point of infinite discontinuity

civ. Julia de cohere a la mare tre

 $\int_{0}^{\infty} \frac{\sin kx}{x} dx$ (Vi) $\int_{0}^{\infty} \frac{\sin x^{m}}{x^{m}} dx$.

Soin! dr Let f(a) = Sinx

clearly of doesnot keep the same

- sign in (0,∞)

Since It linx =

. O is not a point of infinite

discentinuity.

Now $\int \frac{\sin x}{x} dx = \int \frac{\sinh x}{x} dx + \int \frac{\sinh x}{x} dx$

Since I sina de le a proper integral

Let f(x)=3inx; g(x)= 名 $\left|\int f(x) dx\right| = \left|\int Sinx dx\right|$ $= |\cos 1 - \cot t|$ 1 cos1 + | cost | (+1 (: (cosa(<1) (x) dx (2) If(n) da is bounded for all t>1. Now g(n) is bounded and Monotonically decreasing function to o as x->0 and tending Dirichlet's test $\int f(x)g(x) dx = \int \frac{\sin x}{x} dx is$ $\frac{11}{2 \rightarrow 0} = \frac{1}{12} \left(\frac{9 \ln \kappa x}{\kappa x} \right) = \kappa + 1$

O is not point of infinite

discontinuity.

the given integral $\int \frac{Sinam}{an} dx$ reduces to sin1 1 an dris Convergent at so of n>1. Put $x^m = t \Rightarrow x = t^m$ $dx = k_1 t^{m-1} dt$ $\therefore \int \frac{\sin x^m}{x^m} dx = \frac{1}{m} \int \frac{\sinh x}{t^{n/m}} \cdot t^{N_m-1} dt$ $=\frac{1}{m}\int \frac{\sin t}{t^{n/m-1/m+1}} dt$ $\int_{-\infty}^{\infty} \frac{\sin t}{t^{\frac{n-1}{m}} + 1} dt$ Let f(t) = Sint; $g(t) = \frac{1}{+\frac{n-1}{n}+1}$ \rightarrow () $\int_{0}^{\infty} \sin x^{\alpha} dx$ (ii), $\int_{0}^{\infty} \frac{1}{1+x^{\alpha}} \sin x dx$ $\lim_{n \to \infty} \int_{-\infty}^{\infty} \cos^{2} dx = \sin x \int_{-\infty}^{\infty} \frac{\cos x}{\sqrt{x+x^{2}}} dx$ $\int_{0}^{\infty} \sin x^{2} dx = \int_{0}^{\infty} \sin x^{2} dx + \int_{0}^{\infty} \sin x^{2} dx$ Since | sin'x dx is a proper integral.

Let f(x) = 2x sinx & g(x) = 1 Since | Parda = | Jarsina da

I'f(a) dx is bounded for all t>1. - Let f(x) = cosx iv, since 2=0 is a point of infinite liscontinuity. . we have to test the convergence If the given integral both at 08 00 Let $-f(x) = \frac{\cos x}{\sqrt{x+x^2}} = \frac{\cos x}{\sqrt{x}\sqrt{1+x}}$ Yz∈ (o,a) Let 9(x) = 1 + x ∈ (0,0] x→0 (9(x)) Since $\int_0^{\infty} \frac{dx}{dx} dx = \int_0^{\infty} \frac{1}{\sqrt{2}} dx$ is convergent. - (F. n=1/2 <1) By Comparison $\int_{0}^{4} f(x) dx = \int_{0}^{4} \frac{Coix}{\sqrt{x^{2}x^{2}}} dx$ is Convergent .

Join Telegram for More Update : - https://t.me/upsc_pdf. To test the convergence $= |\cos 1 - \cot^2 | \qquad \int \frac{\cos x}{\sqrt{x + x^2}} dx \quad \text{of } \infty$ →ii) Se-an sinn ch; a>,0 il , g e-x sina dx; a >0 $\int_{0}^{\infty} \frac{\cos x}{\sqrt{x+x^{2}}} dx = \int_{0}^{\infty} \frac{\cot x}{\sqrt{x+x^{2}}} \frac{\cot x$ Since If(a) dx is convergent. (By known method) and g(a) is bounded and monotonically V function for 2>0. .. By abels test $\int_{0}^{\infty} f(x) g(x) dx = \int_{0}^{\infty} e^{-\alpha x} \frac{\sin x}{x} dx$ is convergent

function

 $\frac{x}{dx}$ dx is

wergent)

Beta and Gamma Functions

BETA FUNCTION (M.D.U. 1981; K.U. 1982; G.N.D.U. 1981 S, 82 S; Kanpur 1987; Meerut 1988, 90)

Definition. If m>0, n>0 then the integral $\begin{bmatrix} 1 \\ 0 \end{bmatrix} x^{m-1}(1-x)^{-1}dx$, which is obviously a function of m and n, is called a Beta function and is denoted by B(m, n).

Thus B(m, n)= $\int_0^1 x^{n-1}(1-x)^{n-1} dx$, $\forall m>0$, n>0. Beta function is also called the First Eulerian Integral.

For example,

(i)
$$\int_0^1 x^3 (1-\bar{x})^5 dx = B(3+1, 5+1)$$

(i)
$$\int_{0}^{1} x^{3}(1-x)^{5} dx = B(3+1, 5+1)$$

$$= B(4, 6)$$
(ii)
$$\int_{0}^{1} \sqrt{x} (1-x)^{3} dx = B(\frac{1}{2}+1, 3+1)$$

$$=B\left(\frac{3}{2},4\right)$$

(iii)
$$\int_0^1 x^{-\frac{2}{3}} (1-x)^{-\frac{1}{2}} dx = B\left(-\frac{2}{3}+1, -\frac{1}{2}+1\right)$$

= $B\left(\frac{1}{3}, \frac{1}{3}\right)$

$$(iv) \int_0^1 x^{-s} (1-x)^5 dx$$
 is not a Beta function since $m=-3+1$

12.2. CONVERGENCE OF BETA FUNCTION

Theorem. Show that $\int_0^1 x^{m-1}(1-x)^{n-1} dx$ exists if and only if m and n are both positive. (M.D.U. 1991)

Proof. The integral is proper if $m \ge 1$ and $n \ge 1$. 0 is the only point of infinite discontinuity if m < 1 and 1 is the only point of infinite discontinuity if n < 1.

4

2	PSTA
For m<1 and n<1;	12-3
Take a number, ½ (say), between 0 and 1 and examine the convergence of the improper integrals	B(n, 1
$\int_0^{\frac{1}{4}} x^{m-1} (1-x)^{n-1} dx, \qquad \int_{\frac{1}{4}}^1 x^{m-1} (1-x)^{n-1} dx$	*
at 0 and 1 respectively.	j.]
Convergence at 0, when m<1	
Let $f(x) = x^{m-1} (1-x)^{n-1} = \frac{(1-x)^{\kappa-1}}{x^{1rm}}$.	•
Take $g(x) = \frac{1}{x^{1-m}}$	
Then Lt $\frac{f(x)}{g(x)} = $ Lt $(1-x)^{e-1} = 1$ which is non-zero, finite.	
Also $\int_{0}^{1} g(x) dx = \int_{0}^{1} \frac{dx}{x^{1-x}}$	H
is convergent if and only if $1-m<1$ i.e., $m>0$.	1
$\int \frac{b}{a} \frac{dx}{(x-a)^n}$ is convergent iff $n < 1$	

.. By comparison test, $\int_0^{\frac{1}{2}} f(x) dx = \int_0^{\frac{1}{2}} x^{m-1} (1-x)^{n-1}$

is convergent at x=0 if m>0. Convergence at 1, when n<1

Let
$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$

Take
$$g(x) = \frac{1}{(1-x)^{1-n}}$$

Then Lt
$$g(x) = Lt \quad x^{m-1} = 1$$
 which is non-zero, finite

Take
$$g(x) = \frac{1}{(1-x)^{1-n}}$$

Then Lt $f(x) = \frac{f(x)}{x+1} = \frac{1}{g(x)}$ which is non-zero, finite.
Also $\int_{\frac{1}{2}}^{1} g(x) dx = \int_{\frac{1}{2}}^{1} \frac{dx}{(1-x)^{1-n}}$ is convergent if and only if $1-n < 1$, i.e., $n > 0$

$$\begin{bmatrix} \vdots & \int_a^b \frac{dx}{(b-x)^n} & \text{is convergent iff } n < 1 \end{bmatrix}$$
By comparison test,

$$\int_{1}^{1} f(x) dx = \int_{1}^{1} x^{m-1} (1-x)^{n-1} dx$$

Hence
$$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$
 converges iff $m > 0$, $n > 0$.

49

Property I. Symmetry of Beta function i.e. B(m, n)=
B(n, m). (M.D.U. 1983; K.U. 1982; G.N.D.U. 1981)

Proof. By definition,

$$B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx, m > 0, n > 0$$

Changing x to
$$1-x$$
 $\left[: \int_0^a f(x) dx = \int_0^a f(a-x) dx \right]$

$$B(m, n) = \int_0^1 (1-x)^{m-1} [1-(1-x)]^{n-1} dx$$

$$= \int_0^1 (1-x)^{m-1} x^{n-1} dx$$

$$= \int_0^1 x^{n-1} (1-x)^{m-1} dx = B(n, m)$$

Hence B(m, n) = B(n, m).

Property II. If m, n are positive integers, then

$$B(m, n) = \frac{(m-1)!(m-1)!}{(m+n-1)!}$$

(M.D.U. 1983 S, 84; K.U. 1981; G.N.D.U. 1982 S)

Proof. B(m, n)=
$$\int_0^1 x^{n-1} (1-x)^{n-1} dx$$

Integrating by parts

$$= \left[x^{m-1} \frac{(1-x)^n}{n(-1)} \right]_0^1 - \int_0^1 (m-1)x^{m-2} \frac{(1-x)^n}{n(-1)} dx$$

$$= \frac{m-1}{n} \int_0^1 x^{m-2} (1-x)^n dx$$

$$= \frac{m-1}{n} \int_0^1 x^{m-2} (1-x)^{n-1} (1-x) dx$$

$$= \frac{m-1}{n} \int_0^1 \left[x^{m-2} (1-x)^{n-1} - x^{m-1} (1-x)^{n-1} \right] dx$$

$$= \frac{m-1}{n} \int_0^1 x^{n-2} (1-x)^{n-1} dx - \frac{m-1}{n} \int_0^1 x^{m-1} (1-x)^{n-1} dx$$
$$= \frac{m-1}{n} B(m-1, n) - \frac{m-1}{n} B(m, n)$$

$$=\left(1+\frac{m-1}{n}\right) B(m,n)=\frac{m-1}{n} B(m-1,n)$$

$$\Rightarrow B(m, n) = \frac{m-1}{m+n-1} B(m-1, n)$$
 ...(1

Changing m to (m-1), we have

$$B(m-1, n) = \frac{m-2}{m+n-2} B(m-2, n)$$

Putting this value of B(m-1, n) in (1), we have

$$B(m, n) = \frac{(m-1)(m-2)}{(m+n-1)(m+n-2)} B(m-2, n) \qquad ...(2)$$

Generalising from (1) and (2)

$$B(m,n) = \frac{(m-1)(m-2)\dots 1}{(m+n-1)(m+n-2)\dots (n+1)} B(1,n) \qquad \dots (3)$$

But B(1, n)=
$$\int_0^1 x^0(1-x)^{n-1} dx = \left[\frac{(1-x)^n}{n(-1)}\right]_0^1 = \frac{1}{n}$$

From (3), we get

B(m, n) =
$$\frac{(m-1)(m-2)....1}{(m+n-1)(m+n-2)....(n+1)n}$$

$$\cdot = \frac{(m-1)!}{(m+n-1)(m+n-2).....(n+1)n}$$

Multiplying the num. and denom. by (n-1)!, we have

$$B(m, n) = \frac{(m-1)! (n-1)!}{(m+n-1)(m+n-2)...(n+1)n.(n-1)!}$$

$$= \frac{(m-1)! (n-1)!}{(m+n-1)!}$$

Property_III.

$$B(\mathbf{m}, \mathbf{n}) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx, \, \mathbf{m} > 0, \, \mathbf{n} > 0.$$
(M.D.U. 1982, Rohilkhand 1984)

$$Preof. B(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$

Put

$$x = \frac{z}{1+z}$$

then

$$dx = \frac{(1+z).1-z.1}{(1+z)^2} dz = \frac{dz}{(1+z)^2}$$

$$1-x=1-\frac{z}{1+z}=\frac{1}{1+z}$$

$$x(1+z)=z \qquad \Rightarrow \qquad x=z(1-x)$$

$$z = \frac{1-x}{1-x}$$

YSIR BETA AND GAMMA PUNCTIONS

$$B(m,n) = \int_0^\infty \left(\frac{z}{1+z}\right)^{m-1} \left(\frac{1}{1+z}\right)^{m-1} \frac{dz}{(1+z)^2}$$

$$= \int_0^\infty \frac{z^{m-1}}{(1+z)^{m+n}} dz$$

$$= \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$$
[Second Method]

Put
$$\frac{x}{1+x} = z$$
 then $x = z(1+x)$
or $x(1-z) = z$ $x = \frac{z}{1-z}$

$$dx = \frac{(1-z) \cdot 1 - z(-1)}{(1-z)^2} dz = \frac{dz}{(1-z)^2}$$

$$1 + x = 1 + \frac{z}{1-z} = \frac{1}{1-z}$$

$$x = 0, z = 0$$

When
$$x \to \infty$$
;
 $z = \text{Li} \frac{x}{1+x}$ | Form $\frac{\infty}{\infty}$
 $= \text{Li} \frac{1}{1+x} = 1$

$$\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

$$= \int_{0}^{1} \left(\frac{z}{1-z}\right)^{m-1} \cdot (1-z)^{m+n} \cdot \frac{dz}{(1-z)^{3}}$$

$$= \int_{0}^{1} z^{m-1} (1-z)^{m-1} dz = B(m, n)$$

$$B(m, n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

$$B(n, m) = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$$

But
$$B(m, n) = B(n, m)$$

$$B(m, n) = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$$

Hence $B(m, n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$. $= \int_0^\infty \frac{x^{n-2}}{(1+x)^{m+n}} dx.$

ILLUSTRATIVE EXAMPLES

Example 1. Express the following integrals in terms of Bela

(i)
$$\int_0^1 x^m (1-x^2)^n dx$$
 if $m > -1$, $n > -1$

(ii)
$$\int_0^I \frac{x^2}{\sqrt{I-x^5}} \ dx$$

(iii)
$$\int_0^2 (8-x^2)^{-1/5} dx.$$

Sol. (i) Put $z^2=z l.e.$ $x=z^1/2$ so that $dx=\frac{1}{2}z^{-1/2} dz$

x=0, z=0; when x=1, z=1

$$\int_{0}^{1} x^{m} (1-x^{2})^{n} dx = \int_{0}^{1} \frac{m}{z^{2}} (1-z)^{n} \cdot \frac{1}{2} z^{-1/2} dz$$

$$= \frac{1}{2} \int_{0}^{1} z^{\frac{m-1}{2}} (1-z)^{n} dz$$

$$= \frac{1}{2} B\left(\frac{m-1}{2} + 1, n+1\right)$$

$$= \frac{1}{2} B\left(\frac{m+1}{2}, n+1\right) .$$

(ii) Put $x^5 = z$, i.e. $x = z^{1/6}$ so that $dx = \frac{1}{5} z^{-4/5} dz$

$$\int_{0}^{1} \frac{x^{2}}{\sqrt{-1-x^{5}}} dx = \int_{0}^{1} x^{2} (1-x^{5})^{-1/2} dx$$

$$= \int_{0}^{1} z^{2/5} (1-z)^{-1/2} \frac{1}{5} z^{-4/5} dz$$

$$= \frac{1}{5} \int_{0}^{1} z^{-2/5} (1-z)^{-1/2} dz$$

$$= \frac{1}{5} B \left(-\frac{2}{5} + 1, -\frac{1}{2} + 1 \right)$$

$$= \frac{1}{5} B \left(\frac{3}{5}, \frac{1}{2} \right)$$

BETA AND GAMMA FUNCTIONS

(iii) Put
$$x^3 = 8z$$
, i.e. $x = 2z^{1/3}$ so that $dx = \frac{7}{3}z^{-2/3}$ dz
When $x = 0$, $z = 0$; when $x = 2$, $z = 1$

$$\int_0^2 (8 - x^3)^{-1/3} dx = \int_0^1 (8 - 8z)^{-1/3} \frac{2}{3} z^{-2/3} dz$$

$$= \int_0^1 \frac{2}{3} z^{-2/3} \frac{1}{2} (1 - z)^{-1/3} dz$$

$$= \frac{1}{3} \int_0^1 z^{-2/3} (1 - z)^{-1/3} dz$$

$$= \frac{1}{3} B \left(-\frac{2}{3} + 1, -\frac{1}{3} + 1 \right)$$

$$= \frac{1}{3} B \left(\frac{1}{3}, \frac{2}{3} \right).$$

Example 2. Express the following as Beta functions:

(i)
$$\int_{0}^{2} \sqrt{x} (4-x^{2})^{-1/4} dx$$

(ii) $\int_{0}^{2} x^{3} (1-x^{2})^{3/2} dx$

(ii)
$$\int_{0}^{2} x^{2} (8-x^{2})^{-1/2} dx$$

(ii)
$$\int_{0}^{I} x^{n-1} (1-x^{2})^{n-1} dx$$

so that
$$dx = z^{-1/2} dz$$

when $x = 0, z = 0;$ when $x = 2, z = 1$

$$\int_{0}^{2} \sqrt{x} (4-x^{2})^{-1/4} dx$$

$$= \int_{0}^{1} 2^{1/3} z^{1/4} (4-4z)^{-1/4} z^{-1/2} \frac{dz}{dz}$$

$$= \int_{0}^{1} 2^{1/2} z^{-1/4} \cdot 4^{-1/4} (1-z)^{-1/4} dz$$

$$= \int_{0}^{1} z^{-1/4} (1-z)^{-1/4} dz$$

$$= B\left(-\frac{1}{4}+1, -\frac{1}{4}+1\right)$$

$$= B\left(\frac{3}{4}, -\frac{3}{4}\right)$$

Ans.
$$B\left(4, \frac{5}{2}\right)$$

	-		
			_

(iii) Please try yourself.
$$\left[\hat{A}_{ns}, \frac{8}{3} B \left(\frac{4}{3}, \frac{2}{3} \right) \right]$$

(iv) Please try yourseif.
$$\left[Ans. \frac{1}{2}B\left(\frac{1}{2}m,n\right)\right]$$

Example 3. Show that

$$\int_{0}^{p} x^{m} (p^{q} - x^{q})^{n} dx = \frac{p^{qn+m+1}}{q} B\left(n + 1, \frac{\widehat{m+1}}{q}\right)$$
if $p > 0$, $q > 0$, $m > -1$, $n > -1$. (K.U. 1981 S)

Sol. Put
$$x^q = p^q \cdot z$$
, i.e. $x = pz^{-\frac{1}{q}}$

so that
$$dx = \frac{p}{q} z^{\frac{1}{q} - 1} dz$$
When $x = 0, z = 0$; when $x = p, z = 1$

$$x=0, z=0$$
; when $x=p, z=1$

$$\int_{0}^{p} x^{m} (p^{q} - x^{q})^{n} dx = \int_{0}^{1} p^{m} z^{\frac{m}{q}} (p^{q} - p^{q} z)^{n} \cdot \frac{p}{q} z^{\frac{1}{q} - 1} dz$$

$$= \int_{0}^{1} p^{m} \cdot z^{\frac{m}{q}} \cdot p^{qn} (1 - z)^{n} \cdot \frac{p}{q} z^{\frac{1}{q} - 1} dz$$

$$= \frac{p^{qn+m+1}}{q} \int_{0}^{1} z^{\frac{m+1}{q} - 1} (1 - z)^{n} dz$$

$$= \frac{p^{qn+m+1}}{q} \cdot B \left(\frac{m+1}{q}, n+1 \right)$$

$$= \frac{p^{qn+m+1}}{q} \cdot B \left(n+1, \frac{m+1}{q} \right)$$

$$\int_0^a (a-x)^{m-1} \cdot x^{m-1} dx = a^{m+n-1} B(m, n).$$

Sol. Please try yourself. (Put
$$x=az$$
)

Example 5. Show that

$$\int_{0}^{n} \left(1 - \frac{x}{n} \right)^{n} \cdot x^{t-1} dx = n^{t} B(t, n+1) \text{ when } t > 0, n > -1.$$

SoI. Put
$$\frac{x}{n} = z$$
 so that $dx = ndz$

$$x=0, z=0$$
; when $x=n, z=1$

https://t.me/upsc_pdf

BETA AND GAMMA FUNCTIONS

$$\int_{10}^{n} \left(1 - \frac{x}{n}\right)^{n} x^{t-1} dx = \int_{0}^{1} (1 - z)^{n} (nz)^{t-1} n dz$$

$$= n^{t} \int_{0}^{1} z^{t-1} (1 - z)^{n} dz$$

$$= n^{t} B(t, n+1).$$

Example 6. Show that if
$$m > 0$$
, $n > 0$, then
$$\int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} B(m, n).$$
Sol. Put

Sol. Put
$$x=a+(b-a)z$$
; so that $dx=(b-a)dz$
When $x=a, z=0$; when $x=b, z=1$

$$\therefore \int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx$$

$$\begin{aligned}
&= \int_{0}^{1} \left[(b-a)z \right]^{n-1} dx \\
&= \int_{0}^{1} \left[(b-a)z \right]^{n-1} \left[b-a-(b-a)z \right]^{n-1} (b-a) dz \\
&= \int_{0}^{1} (b-a)^{m-1} z^{m-1} (b-a)^{n-1} (1-z)^{n-1} (b-a) dz \\
&= (b-a)^{m+n-1} \int_{0}^{1} z^{m-1} (1-z)^{n-1} dz \\
&= (b-a)^{m+n-1} B(m,n)
\end{aligned}$$
Example 7. Standard

Example 7. Show that:
$$\int_{0}^{1} \frac{x^{n-1} (1-x)^{n-1}}{(a+bx)^{m+n}} dx = \frac{1}{(a+b)^{m}} B(m, n).$$
Sol. By:
$$(K.11.16)$$

Sol. Put
$$\frac{x}{a+bx} = \frac{z}{a+b \cdot 1}$$
 (K.U.-1981)

so that
$$\frac{(a+bx)\cdot 1-x\cdot b}{(a+bx)^2} dx = \frac{dz}{a+b}$$
or a

or
$$\frac{a}{(a+bx)^3} \frac{dx}{dx} = \frac{dz}{a+b}$$
 $\frac{dx}{(a+bx)^2} = \frac{dz}{a(a+b)}$

When $x=0, z=0$; when $x=1, z=1$

$$\int_0^1 \frac{x^{m-1}(1-x)^{n-1}}{(a+bx)^{m+n}} \frac{dx}{dx}$$

$$= \int_0^1 \frac{x^{m-1}(1-x)^{m-1}}{(a+bx)^{m+n}} \frac{dx}{dx}$$

$$= \int_0^1 \left(\frac{x}{a+bx}\right)^{m-1} \cdot \left(\frac{1-x}{a+bx}\right)^{n-1} \cdot \frac{1}{(a+bx)^2} dx$$

$$= \int_0^1 \left(\frac{z}{a+b}\right)^{m-1} \cdot \left(\frac{1-z}{a}\right)^{n-1} \cdot \frac{dz}{a(a+b)}$$

$$= (a+b)x = az + bxz \text{ or } x = \frac{az}{a+b-bz} \cdot \frac{1-x}{a+bx} = \frac{1}{a+bx}$$

$$= \frac{1}{(a+b)^m \cdot a^n} \int_0^1 z^{m-1} (1-z)^{n-1} dz$$

$$= \frac{1}{(a+b)^m \cdot a^n} B(m, n).$$

Example 8. Show that

$$\int_0^1 \frac{x^{m-1} (1-x)^{n-1}}{(a+x)^{m+n}} dx = \frac{B(m, n)}{a^n (1+a)^m}$$

Sol. Please try yourself (same as Ex. 7 with b=1).

Example 9. Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Beta function and hence evaluate $\int_0^1 x^5 (1-x^2)^3 dx$. (G.N.D.U. 1981)

Sol. Put $x^n=z$, i.e. $x=z^{-\frac{1}{n}}$

so that $dx = \frac{1}{n} \cdot z^{-1} dz$

When x=0, z=0; when x=1, z=1

$$\int_{0}^{1} x^{m} (1-x^{n})^{p} dx = \int_{0}^{1} z^{\frac{m}{n}} (1-z)^{p} \cdot \frac{1}{n} z^{\frac{1}{n}} \frac{1}{z^{\frac{m+1}{n}}}$$

$$= \frac{1}{n} \int_{0}^{1} z^{\frac{m+1}{n}} (1-z)^{p} dz$$

$$= \frac{1}{n} B \left(\frac{m+1}{n}, p+1 \right) \qquad \dots (1)$$

Comparing $\int_{0}^{1} x^{5} (1-x^{3})^{3} dx$ with $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$,

we have m=5, n=3, p=3

From (1),
$$\int_0^1 x^5 (1-x^3)^3 dx = \frac{1}{3} B\left(\frac{5+1}{3}, 3+1\right)$$

$$= \frac{1}{3} B(2, 4) = \frac{1}{3} \int_0^1 x^3 (1-x)^5 dx$$

$$= \frac{1}{3} \int_0^1 (1-x) [1-(1-x)]^3 dx = \frac{1}{3} \int_0^1 (1-x)^3 x dx$$

$$= \frac{1}{3} \int_0^1 (x^3 - x^4) dx = \frac{1}{3} \left[\frac{x^4}{4} - \frac{x^5}{5}\right]_0^1$$

$$= \frac{1}{3} \left[\frac{1}{4} - \frac{1}{5}\right] = \frac{1}{60}$$

BETA AND GAMMA PUNCTIONS

Example 10. Prove that

$$\int_{0}^{\pi/2} \frac{\cos^{2m-1}\theta \sin^{2n-1}\theta}{(a\cos^{2}\theta + b\sin^{2}\theta)^{m+n}} d\theta = \frac{B(m, n)}{2a^{m}b^{n}}.$$
Sol. Let
$$I = \int_{0}^{\pi/2} \frac{\cos^{2m-1}\theta \sin^{2n-1}\theta}{(a\cos^{2}\theta + b\sin^{2}\theta)^{m+n}} d\theta$$

$$= \int_{0}^{\pi/2} \frac{\cos^{2m-2}\theta \sin^{2n-2}\theta}{(a\cos^{2}\theta + b\sin^{2}\theta)^{m+n}} d\theta$$

$$= \int_0^{\pi/2} \frac{(\cos^3 \ell)^{n-1} (\sin^2 \theta)^{n-1} \cos \theta \sin \theta}{(a \cos^2 \theta + b \sin^2 \theta)^{n-1}} d\theta$$
Put $\sin^2 \theta = x$ so that $2 \sin \theta \cos \theta d\theta = dx$

and $\cos^2 \theta = 1 - \sin^2 \theta = 1 - x$

When
$$\theta = 0$$
, $x = 0$; when $\theta = \pi/2$, $x = 1$

$$I = \begin{cases} 1 & \frac{(1-x)^{m-1} x^{n-1} \cdot \frac{1}{1} dx}{[a(1-x)+bx]^{n+n}} \\ = \frac{1}{2} \int_{0}^{1} \frac{(1-x)^{m-1} x^{n-1}}{[a+(b-a)x]^{n+n}} dx \end{cases}$$

Put
$$\frac{x}{a+(b-a)x} = \frac{z}{a+(b-a) \cdot 1} = \frac{z}{b}$$

$$\frac{[a+(b-a)x] \cdot 1-x \cdot (b-a)}{[a+(b-a)x]^2} dx = \frac{dz}{b}$$

$$\Rightarrow \frac{dx}{[a+(b-a)x]^2} = \frac{dz}{ab}$$

When x=0, z=0; when x=1, z=1

Also
$$\frac{x}{a + (b - a) x} = \frac{z}{b} \Rightarrow bx = az + (b - a) xz$$
$$\Rightarrow [b - (b - a) z] = azx \Rightarrow x = \frac{az}{b - (b - a) z}$$

$$1-x=1-\frac{az}{b-(b-a)}\frac{b(1-z)}{z-b-(b-a)}z$$

$$bx \qquad abz$$

so that
$$\frac{1-x}{a+(b-a)x} = \frac{1-z'}{az}$$

$$I = \frac{1}{2} \int_{0}^{1} \frac{(1-x)^{m-1} x^{m-1}}{[a+(b-a)x]^{m+n}} dx$$

$$= \frac{1}{2} \int_0^1 \left[\frac{1-x}{a+(b-a)x} \right]^{n-1} \left[\frac{x}{a+(b-a)x} \right]^{n-1} ; \frac{dx}{[a+(b-a)x]}$$

$$= \frac{1}{2} \int_0^1 \left(\frac{1-z}{az} \right)^{n-1} \left(\frac{z}{b} \right)^{n-1} \frac{dz}{ab}$$

	•		/	وتريين
1 (1)				
$=$ z^{n-1}	1(1111	B(n, m)		
$=\frac{1}{2a^mb^n}\int_0^1z^{n-1}$	(1 2) -az=	2071	1.5 1.5	٠.
	,	240		
$= \frac{B(m, n)}{2a^m b^n}$	-			
$2a^m b^n$	• •	E BC	n, m) = B(
		(.,, – b(.	m, n)
Example 11. Prove the	at the state of th			
1, 1,000 110	u y p, q are p	ositive then		
(1) $B(p, q+1) = B(p+1)$	(a) $R(a)$			
(1)	$\frac{1}{2}\frac{q_1}{q_2} = D(p,q)$			

(i)
$$\frac{B(p,q)}{q} = \frac{B(p+1,q)}{p} = \frac{B(p,q)}{p+q}$$

(ii) $B(p,q) = B(p+1,q) + B(p+1,q) + B(p+1,q)$

Sol. (i)
$$\frac{B(p,q+1)}{q} = \frac{1}{q} \int_0^1 x^{p-1} (1-x)^q dx$$

= $\frac{1}{q} \int_0^1 (1-x)^q . x^{p-1} dx$

(i)
$$\frac{B(p,q+1)}{q} = \frac{B(p+1,q)}{p} = \frac{B(p,q)}{p+q}$$
(M.D.U. 1982 S; K.U. 1983)

(ii) $B(p,q) = B(p+1,q) + B(p,q+1)$.

Sol. (i) $\frac{B(p,q+1)}{q} = \frac{1}{q} \int_{0}^{1} x^{p-1} (1-x)^{q} dx$

$$= \frac{1}{q} \int_{0}^{1} (1-x)^{q} x^{p-1} dx$$
Integrating by parts
$$= \frac{1}{q} \left[\left\{ (1-x)^{q} \cdot \frac{x^{p}}{p} \right\}_{0}^{1} - \int_{0}^{1} q(1-x)^{q-1} (-1) \cdot \frac{x^{p}}{p} dx \right]$$

$$= \frac{1}{q} \cdot \frac{q}{p} \int_{0}^{1} x^{p} (1-x)^{q-1} dx \qquad ...(1)$$

$$= \frac{B(p+1,q)}{p} \qquad ...(11)$$

$$\frac{B(p, q+1)}{q} = \frac{1}{p} \int_{0}^{1} x^{p}(1-x)^{q-1} dx$$

$$= \frac{1}{p} \int_{0}^{1} x^{p-1} \cdot x(1-x)^{q-1} dx$$

$$= \frac{1}{p} \int_{0}^{1} x^{p-1}[1-(1-x)] (1-x)^{q-1} dx$$

$$= \frac{1}{p} \int_{0}^{1} x^{p-1}[1-(1-x)] (1-x)^{q-1} dx$$

$$= \frac{1}{p} \int_{0}^{1} x^{p-1}(1-x)^{q-1} dx - \frac{1}{p} \int_{0}^{1} x^{p-1}(1-x)^{q} dx$$

$$= \frac{1}{p} B(p, q) - \frac{1}{p} B(p, q+1)$$

$$\frac{B(p, q+1)}{q} + \frac{B(p, q+1)}{p} B(p, q)$$

$$\frac{p+q}{pq} B(\bar{p}, q+1) = \frac{1}{p} B(p, q) - \frac{B(p, q+1)}{q} = \frac{B(p, q)}{p+q} - \frac{B(p, q)}{p+q}$$

From (II) and (III)-

$$\frac{B(p; q+1)}{q} = \frac{B(p+1, q)}{p} = \frac{B(p; q)}{p+q}$$

(

BETA AND GAMMA FUNCTIONS

Note. For another method, see Gamma function.

(ii) R.H.S.
$$= B(p+1,q) + B(p,q+1)$$

$$= \int_{0}^{1} x^{p}(1-x)^{q-1} dx + \int_{0}^{1} x^{p-1}(1-x)^{q} dx$$

$$= \int_{0}^{1} [x^{p}(1-x)^{q-1} + x^{p-1}(1-x)^{q}] dx$$

$$= \int_{0}^{1} x^{p-1}(1-x)^{q-1}[x+(1-x)] dx$$

$$= \int_{0}^{1} x^{p-1}(1-x)^{q-1} dx$$

$$= B(p,q) = L.H.S.$$

Example 12. Prove that

$$\frac{B(m+1,n)}{B(m,n)} = \frac{m}{m+n}, m>0, n>0.$$

Sol.
$$B(m+1, \hat{n}) = \int_{0}^{1} x^{m} (1-x)^{m-1} dx$$

Integrating by parts

$$= \left[x^{m} \cdot \frac{(1-x)^{n}}{-n} \right]_{0}^{1} - \int_{0}^{1} \frac{1}{m} x^{m-1} \cdot \frac{(1-x)^{n}}{-n} dx$$

$$= \frac{m}{n} \int_{0}^{1} x^{m-1} (1-x)^{n} dx$$

$$= \frac{m}{n} \int_{0}^{1} x^{m-1} (1-x)^{n-1} (1-x) dx$$

$$= \frac{m}{n} \left[\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx - \int_{0}^{1} x^{m} (1-x)^{n-1} dx \right]$$

$$=\frac{m}{n}\left[B(m,n)-B(m+1,n)\right]$$

$$\left(1+\frac{m}{n}\right)B(m+1,n)=\frac{m}{n}B(m,n)$$

$$\frac{B(m+1,n)}{B(m,n)} = \frac{m}{m+n}$$

Note. For another method, see Gamma function.

Example 13. Using the property B(m, n) = B(n, m), evaluate

$$\int_0^1 x^3 (1-x)^4 l^5 \ dx$$

Sol.
$$\int_{0}^{1} x^{3} (1-x)^{4/3} dx = B\left(3+1, \frac{4}{3}+1\right)$$

$$= B\left(4, \frac{7}{3}\right) = B\left(\frac{7}{3}, 4\right)$$

$$= \int_{0}^{1} x^{4/3} (1-x)^{3} dx$$

$$= \int_{0}^{1} x^{4/3} (1-3x+3x^{3}-x^{3}) dx$$

$$= \int_{0}^{1} (x^{4/3}-3x^{7/3}+3x^{10/3}-x^{13/3}) dx$$

$$= \left[\frac{x^{7/3}}{3} - 3 \cdot \frac{x^{10/3}}{3} + 3 \cdot \frac{x^{13/3}}{3} - \frac{x^{15/3}}{16}\right]_{0}^{1}$$

$$= \frac{3}{7} - \frac{9}{10} + \frac{9}{13} - \frac{3}{16} - \frac{243}{7280}$$

Example 14. Prove tha

B(m, n)=2
$$\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$
. (M.D.U. 1983)

Sol. B
$$(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

Put
$$x=\sin^2\theta$$
 so that $dx=2\sin\theta\cos\theta d\theta$
When $x=0$, $\theta=0$; when $x=1$, $\theta=\frac{\pi}{2}$

$$B(m, n) = \int_0^{\pi/2} (\sin^2 \theta)^{m-1} (1 - \sin^2 \theta)^{n-1} \cdot 2 \sin \theta \cos \theta \, d\theta$$

$$= 2 \int_0^{\pi/2} \sin^{2m-2} \theta \cos^{2n-2} \theta \cdot \sin \theta \cos \theta \, d\theta$$

$$= 2 \int_0^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta \, d\theta.$$

Example 15. Show that

$$\int_{0}^{\pi/2} \sin^{p}\theta \cos^{q}\theta \ d\theta = \frac{1}{2} B\left(\frac{p+1}{2}, \frac{q+1}{2}\right)$$

where p > -1, q > -1. Deduce that

$$\int_{0}^{2} x^{4} (8-x^{3})^{-1/3} dx = \frac{16}{3} B\left(\frac{5}{3}, \frac{2}{3}\right).$$

Sol. Put $\sin^2 \theta = z$ so that $2 \sin \theta \cos \theta \, d\theta = dz$

When
$$\theta=0$$
, $z=0$; when $\theta=\frac{\pi}{2}$, $z=1$

https://t.me/upsc_pdf

ı 🍪

BETA AND GAMMA FUNCTIONS

Also
$$\cos^2 \theta = 1 - \sin^2 \theta = 1 - z$$

$$\int_0^{\pi/2} \sin^p \theta \cos^q \theta \, d\theta = \int_0^{\pi/2} (\sin^{p-1} \theta \cos^{q-1} \theta) \sin \theta \cos \theta \, d\theta$$

$$= \int_0^{\pi/2} (\sin^2 \theta)^{\frac{p-1}{2}} (\cos^2 \theta)^{\frac{q-1}{2}} \sin \theta \cos \theta \, d\theta$$

$$= \int_0^1 z^{\frac{p-1}{2}} (1-z)^{\frac{q-1}{2}} dz$$

$$= \frac{1}{2} \int_0^1 z^{\frac{p-1}{2}} (1-z)^{\frac{q-1}{2}} dz$$

$$= \frac{1}{2} \operatorname{E} \left(\frac{p-1}{2} + 1, \frac{q-1}{2} + 1 \right)$$

 $=\frac{1}{2}\,\mathrm{B}\!\left(\frac{p+1}{2}\,,\,\frac{q+1}{2}\right)$

Second Part. Put $x^3=8z$ i.e., $x=2z^{1/3}$

so that
$$dx = \frac{2}{3} z^{-2/3} dz$$

When
$$x=0$$
, $z=0$; when $x=2$; $z=1$

$$\int_{0}^{2} x^{4} (8-x^{3})^{-1/3} dx = \int_{0}^{1} 16z^{4/3} (8-8z)^{-1/3} \frac{2}{3} z^{-2/3} dz$$

$$= \int_{0}^{1} \frac{32}{3} \times 8^{-1/3} z^{2/3} (1-z)^{-1/3} dz$$

$$= \frac{32}{3 \times 2} \int_{0}^{1} z^{2/3} (1-z)^{-1/3} dz$$

$$= \frac{16}{3} \int_{0}^{\pi/2} \sin^{4/3} \theta (\cos^{2} \theta)^{-1/3}$$

$$\times 2 \sin \theta \cos \theta d\theta$$

where
$$z = \sin^2 \theta$$

= $\frac{32}{3} \int_0^{\pi/2} \sin^{7/3} \theta \cos^{1/3} \theta d\theta$

$$= \frac{32}{3} \cdot \frac{1}{2} B\left(\frac{\frac{7}{3}+1}{2}, \frac{\frac{1}{3}+1}{2}\right)$$

$$\left[\text{Here } p = \frac{7}{3}, \ q = \frac{1}{3} \text{ [using I]}\right]$$

$$=\frac{16}{3}\,\mathrm{B}\!\left(\frac{5}{3}\,,\frac{2}{3}\right)$$

Example 16. By putting $\frac{x}{1-x} = \frac{at}{1-t}$, where the constant a -sultably selected, show that

$$\int_0^1 x^{-1} I^b (I-x)^{-2B} (I+2x)^{-1} dx = \frac{1}{9^{1/3}} B\left(\frac{2}{3}, \frac{1}{3}\right)$$

Sol.
$$\frac{x}{1-x} = \frac{at}{1-t}$$

$$\Rightarrow x-tx=at-atx$$

$$\Rightarrow x[1-(1-a)t]=at$$

$$\Rightarrow x = \frac{at}{1 - (1 - a)t}$$

$$1 - x = 1 - \frac{\vec{a}t}{1 - (1 - a)t} = \frac{1 - t}{1 - (1 - a)t}.$$

$$1+2x=1+\frac{2at}{1-(1-a)t}=\frac{1-(1-3a)t}{1-(1-a)t}$$

Also
$$dx = \frac{[1-(1-a)t] \cdot a - at[-(1-a)]}{[1-(1-a)t]^2} dt$$

$$=\frac{adt}{[1-(1-a)t]^2}$$

when x=0, t=0; when x=1, $\frac{at}{1-(1-a)t}=1$ so that t=1

$$\int_0^1 x^{-1} \mu(1-x)^{-2/3} (1+2x)^{-1} dx$$

$$= \int_0^1 \left[\frac{at}{1 - (1 - a)t} \right]^{-\frac{1}{3}} \cdot \left[\frac{1 - t}{1 - (1 - a)t} \right]^{-\frac{2}{3}}$$

$$\times \left[\frac{1 - (1 - 3a)t}{1 - (1 - a)t} \right]^{-1} \cdot \frac{adt}{[1 - (1 - a)t]^2}$$

$$=a^{2/3} \int_0^1 t^{-\frac{1}{3}} (1-t)^{-\frac{2}{3}} [1-(1-3a)t]^{-1} dt$$

$$\int_0^1 x^{-1/3} (1-x)^{-2/3} (1+2x)^{-1} dx'$$

$$= \left(\frac{1}{3}\right)^{2/3} \int_{0}^{1} t^{-1/3} (1-t)^{-2/3} dt$$

$$= \frac{1}{9^{1-3}} B\left(-\frac{1}{3} + 1, -\frac{2}{3} + 1\right)$$

$$=\frac{1}{9^{1/3}}\,\mathbb{B}\left(\frac{2}{3},\frac{1}{3}\right).$$

BETA AND GAMMA FUNCTIONS

Example 17. Show that

$$\int_0^1 \frac{(1-x^4)^{2/4}}{(1+x^4)^2} dx = \frac{4}{4(2)^{1/4}} B\left(\frac{7}{4} - \frac{1}{4}\right).$$

Sol. Put
$$\frac{1-x^4}{1+x^4} = z$$
 so that $x^4 = \frac{1-z}{1+z}$

$$x = \left(\frac{1-z}{1+z}\right)^{1/s}$$

$$dx = \frac{1}{4} \left(\frac{1-z}{1+z} \right)^{-3/4} \times \frac{(1+z)(-1) - (1-z) \cdot 1}{(1+z)^2} dz$$

$$= \frac{1}{4} \left(\frac{1+z}{1-z} \right)^{3/4} \cdot \frac{-2}{(1+z)^2} dz$$

$$=\frac{-dz}{2(1-z)^{3/4}(1+z)^{8/4}}$$

Also
$$1-x^2=1-\frac{1-z}{1+z}=\frac{2z}{1+z}$$

$$1+x=1+\frac{1-z}{1+z}-\frac{2}{1+z}$$

When
$$x=0$$
, $z=1$,

When
$$x=1, z=0$$

$$\int_{0}^{1} \frac{(1-x^{4})^{3/4}}{(1+x^{4})^{2}} dx = \int_{1}^{0} \frac{\left(\frac{2z}{1+z}\right)^{3/4}}{\left(\frac{2}{1+z}\right)^{2}} \times \frac{-dz}{2(1-z)^{3/4}(1+z)^{4/4}}$$

$$= \int_0^1 \frac{1}{4(2)^{1/4}} z^{3/4} (1-z)^{-8/4} dz$$

$$= \frac{1}{4(2)^{1/4}} \ \mathbb{B}\left(\frac{7}{4}, \frac{1}{4}\right).$$

Example 18: Show that

$$\int_{0}^{\pi} \frac{\sin^{n-1} x}{(a+b\cos x)^{n}} dx = \frac{2^{n-1}}{(a^{2}-b^{2})^{n/2}} B\left(\frac{1}{2}n, \frac{1}{2}n\right),$$

if
$$a^2 > b^2$$

Sol. Let
$$1 = \int_0^{\pi} \frac{\sin^{n-1} x}{(a+b\cos x)^n} dx$$

$$= \int_{0}^{x} \frac{\left(2\sin\frac{x}{2}\cos\frac{x}{2}\right)^{n-1} dx}{\left[a+b\left(1-2\sin^{2}\frac{x}{2}\right)\right]^{n}}$$

$$= 2^{n-1} \int_{0}^{\pi} \frac{\sin^{n-1}\frac{x}{2}\cos^{n-1}\frac{x}{2}}{\left(a+b-2b\sin^{2}\frac{x}{2}\right)^{n}} dx$$

Put
$$\frac{x}{2} = \theta$$
 then $dx = 2d\theta$

when
$$x=0$$
, $\theta=0$; when $x=\pi$, $\hat{\theta}=\frac{\pi}{2}$

$$I = 2^{n-1} \int_0^{\pi/2} \frac{\sin^{n-1}\theta \cos^{n-1}\theta}{(a+b-2b\sin^2\theta)^n} \cdot 2d^{\frac{n}{2}}$$

$$= 2^{n-1} \int_0^{\pi/2} \frac{\sin^{n-2}\theta \cos^{n-2}\theta \cdot 2\sin\theta\cos\theta}{(a+b-2b\sin^2\theta)^n} d\theta$$

Put $\sin^2 \theta = i$ so that $2 \sin \theta \cos \theta d\theta = dt$

when
$$\theta=0$$
, $t=0$, when $\theta=\frac{\pi}{2}$, $t=1$.

$$I = 2^{n-1} \begin{cases} \frac{n-2}{(\sin^2 0)^2} & \frac{n-2}{(1-\sin^2 0)^2} & 2 \sin \theta \cos \theta \\ 0 & \frac{(a+b-2b\sin^2 \theta)^\alpha}{(a+b-2b\sin^2 \theta)^\alpha} & \frac{a-2}{(a+b-2b\sin^2 \theta)^\alpha} \end{cases}$$

$$=2^{n-1}\int_{0}^{1} \frac{t^{2}(1-t)^{2}}{(a+b-2bt)^{n}} dt$$

Put
$$\frac{1-i}{a+b-2bt} = \frac{z}{a+b} i.e. \quad t = \frac{(a+b)(1-z)}{a+b-2bz}$$

$$dt = \frac{a + \overline{b}}{(a + b - 2bz)^2} [(a + b - 2bz)(-1) - (1 - z)(-2b)] dz$$

$$= \frac{(a+b)(-a+b)}{(a+b-2bz)^2} dz = -\frac{a^2-b^2}{(a+b-2bz)^2} dz$$

Also
$$1-t=1-\frac{(a+b)(1-z)}{a+b-2bz}=\frac{(a-b)z}{a+b-2bz}$$

and
$$a+b-2bi=a+b-\frac{2b(a+b)(1-z)}{a+b-2bz}$$

$$=\frac{a^2-b^2}{a+b-2bz}$$

When
$$t=0, z=1, when t=1, z=0$$

BETA AN

function to

Sol.

Wher

BETA-AND GASENAST NCTIONS

$$\therefore I = -2^{-1} \int_{1}^{0} \frac{\left[\frac{(a+b)(1-z)}{a+b-2bz}\right]^{\frac{n-2}{2}} \left[\frac{(a-b)z}{a+b-2bz}\right]^{\frac{n-2}{2}}}{\left[\frac{a^{2}-b^{2}}{a+b-2bz}\right]^{\frac{n}{2}}}$$

$$\times \frac{a^2 - b^2}{(a + b - 2bz)^2} \ dz$$

$$=2^{n-1} \int_{0}^{1} \frac{(a^{2}-b^{2})^{\frac{n-2}{2}} \frac{n-2}{(1-z)^{\frac{n-2}{2}}} \frac{n-2}{z^{\frac{n-2}{2}}}}{(a^{2}-b^{2})^{\frac{n-1}{2}}} dz$$

$$=2^{n-1} \int_{0}^{1} \frac{z^{n/2-1} (1-z)^{n/2-1}}{(a^{2}-b^{2})^{n/2}} dz$$

$$=\frac{2^{n-1}}{(a^{2}-b^{2})^{n/2}} B\left(\frac{n}{2}, \frac{n}{2}\right).$$

Example 19. Prove that
$$\int_{0}^{\infty} \frac{t^{3}}{(1+t)^{7}} dt = \frac{1}{60}$$
Sol.
$$\int_{0}^{\infty} \frac{t^{3}}{(1+t)^{7}} dt = \int_{0}^{\infty} \frac{t^{4-1}}{(1+t)^{4+3}} dt$$

$$\begin{bmatrix} \text{Form} \end{bmatrix}_{0}^{\infty} \frac{t^{m-1}}{(1+t)^{m+n}} dt = B(m, n) \end{bmatrix}$$

$$= B(4, 3) = \int_{0}^{1} t^{3}(1-t)^{2} dt$$

$$= \int_{0}^{1} t^{3}(1-2t+t^{2})dt = \int_{0}^{1} (t^{3}-2t^{4}+t^{5}) dt$$

$$= \int_{0}^{1} t^{2}(1-2t+t^{2})dt = \int_{0}^{1} (t^{3}-2t^{4}+t^{3}) dt$$

$$= \frac{t^{4}}{4} - \frac{2t^{5}}{5} + \frac{t^{6}}{6} \int_{0}^{1} dt$$

$$= \frac{1}{4} - \frac{2}{5} + \frac{1}{6} = \frac{1}{60}.$$

Example 20. Express $\int_0^\infty \frac{x^{m-1}}{(a+bx)^{m+n}} dx \text{ in terms of Beta}$ function, where m>0, n>0; a>0, b>0.

Sol. Put
$$bx=az$$
 or $x=\frac{az}{b}$ so that $dx=\frac{a}{b}-dz$

When
$$x=0$$
, $z=0$ and when $x\to\infty$, $z\to\infty$

$$\int_0^\infty \frac{x^{m-1}}{(a+bx)^{m+n}} dx = \int_0^\infty \left(\frac{az}{b}\right)^{m-1} \cdot \frac{1}{(a+az)^{m+n}} - \frac{a}{b} dz$$

$$= \int_0^\infty \frac{a^{m-1} \cdot z^{m-1} \cdot a}{b^{m-1} \cdot a^{m+n} (1+z)^{m+n} \cdot b} dz$$

	COLUMN HEAT	The state of the s	BETA AN
$=\frac{1}{a^nb^m}\int_0^\infty\frac{z^{m-1}}{(1+z)^{m+n}}dz,$			E
$\int_{a}^{\infty} B(m,n).$. ₇ n-1	-	Sc
Example 21. Show that $\int_0^\infty \frac{x^{m-1}+1}{(1+x)^m} dx = B(m, n)$ Sol. $\int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx = B(m, n)$	$\int_{J^{m+n}}^{J^{m+n}} dx = 2B (m, t)$ (M.D.U.	•	: :
Also $\int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx = B(m, n)$		3	12.4. (
Adding $\int_{0}^{\infty} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = 2B (m, \frac{1}{(1+x)^{m+1}})$ Example 22. Prove that $\int_{0}^{1} \frac{x^{m-1} + x}{(1+x)^{m+1}} dx = 2B (m, \frac{1}{(1+x)^{m+1}})$		=	is obviou
where m, n are both positive. Sol. B(m, n) =			denoted
$ = \int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} dx + \int_1^\infty \frac{1}{(1+x)^{m+n}} dx + \int_1^\infty$	$\frac{\chi^{m-1}}{(x)^{m+n}}dx$	eő(i)	For
In the second integral on R.H.S. of (i.e., $dx = -\frac{1}{t^2} - dt$.	"阿里拉斯里里"	that	(ii)
When $x=1$, $t=1$; when $x \to \infty$, $t=0$ $\begin{cases} x & x^{m-1} \\ 0 & x \end{cases}$) ^{m-1}		125. CC
$\int_{1}^{\infty} \frac{x^{m-1}}{(1+x)^{m^{2}n}} dx = \int_{1}^{\infty} \frac{1}{1+\frac{1}{t}}$	$\int_{0}^{1} \frac{1}{t^2} dt$	-	O Proc

at 0 and ∞

Lei

BETA AND GAMMA FUNCTIONS

(3)

7,30)

:381 S)

٨

٨

(9)

3

٨

Example 23. For m>0, n>0, show that

Sol.
$$\int_{0}^{\infty} \frac{x^{m-1} - x^{n-1}}{(1+x)^{m+n}} dx$$

$$= \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx - \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$$

$$= B(m, n) - B(n, m) = 0.$$

12.4 **GAMMA FUNCTION**

" (M.D.U. 1981; G.N.D.U. 1981 S

Kanpur 1987; Meerut 1988, 90)

Definition. If n>0, then the integral $\int_0^\infty x^{n-1} e^{-x} dx$, which is obviously a function of n, is called a Gamma function and is denoted by $\Gamma(n)$.

Thus
$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$$
, $\forall n > 0$

Gamma function is also called the Second Eulerian Integral.

For example,

(i)
$$\int_{0}^{\infty} x^{3} e^{-x} dx = \Gamma(3+1) = \Gamma(4)$$
(ii)
$$\int_{0}^{\infty} x^{2+3} e^{-x} dx = \Gamma\left(\frac{2}{3}+1\right) = \Gamma\left(\frac{5}{3}\right)$$

CONVERGENCE OF GAMMA FUNCTION

Theorem. Show that $\int_0^\infty x^{n-1} e^{-x} dx$ converges iff n > 0.

(M.D.U. 1990; Meerut 1981) **Proof.** If $n \ge 1$, the integrand $x^{n-1} e^{-x}$ is continuous at x = 0.

If n < 1, the integrand $\frac{e^{-x}}{x^{1-x}}$ has infinite discontinuity at x = 0.

Thus we have to examine the convergence at 0 and ∞ both. Consider any positive number, say I, and examine the convergence

$$-\int_{0}^{1-} x^{n-1} e^{-x} dx \text{ and } \int_{1}^{\infty} x^{n-1} e^{-x} dx$$

at 0 and ∞ respectively.

Convergence at 0, when n I

Let
$$f(x) = \frac{e^{-x}}{x^{1-n}}$$

j)	Join Telegram for More Update : - https://t.me/upsc_pdf	
3		
: 1 / -		
١. ک		BET
J. 1.	Take $g(x) = \frac{1}{x^1} \frac{1}{n}$	
1		
1 5	Then $\lim_{x \to 0+} \frac{f(x)}{g(x)} = \lim_{x \to 0+} e^{-x} = 1$	
ready wh		٠.
- F & wp	ich is non-zero, finite.	form
* 2	Also $\int_0^1 g(x) dx = \int_0^1 \frac{dx}{x^{1-n}}$	
4.	$\int_{0}^{\infty} g(x) dx = \int_{0}^{\infty} x^{1-n}$	·
alg is c	convergent iff $1-n < 1$ i.e. $n > 0$	
3 0 0		
', <u>l</u>	By comparison test	٠.
77	$\int_0^1 f(x)dx = \int_0^1 \frac{e^{-x}}{x^{1-n}} dx = \int_0^1 x^{n-1} e^{-x} dx$	
A. 33		
4 3 12 0	onvergent at $x=0$ if $n>0$.	
3 2	Convergence at co	-
4,0	We know that $e^{x} > x^{n+1}$ whatever value n may have	-
27	$e^{-2} < x^{n-1}$	
8 3		<u>.</u>
o d and	-2	
$\frac{1}{c}$		
\$ 9	Since $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent at ∞ .	14
- \$	and the second of the second o	e seri
8	* 1 A P = (/I is convergent of the town one	st fac
20.3	to the second of the first the second of the	
2 3	Now $\int_0^\infty x^{n-1} e^{-x} dx = \int_0^1 x^{n-1} e^{-x} dx + \int_1^\infty x^{n-1} e^{-x} dx$. 14
5		
7 5	$\int_{0}^{\infty} x^{n-1} e^{-x} dx \text{ converges iff } n > 0.$	(1:
a 3 17:0		(II
oi 0 12·6.	LOK GAMMIA PUNCTION	7.
	Prove that $\Gamma(n)=(n-1)$ $\Gamma(n-1)$, when $n>1$	
3	Proof. By def. $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$	- 3
<i>X</i>	Ju	

rating by parts
$$= \left[x^{n-1} \cdot \frac{e^{-x}}{-1} \right]_{0}^{\infty} - \int_{0}^{\infty} (n-1) x^{n-2} \cdot \left(\frac{e^{-x}}{-1} \right) dx$$

$$= -\left[\int_{0}^{\infty} \frac{x^{n-1}}{e^{x}} - 0 \right] + (n-1) \int_{0}^{\infty} e^{-x} \cdot x^{n-2} dx$$

$$= (n-1) \int_{0}^{\infty} e^{-x} \cdot x^{n-2} dx \left[\because \int_{0}^{\infty} \frac{x^{n-1}}{e^{x}} = 0 \text{ for } n > 0 \right]$$

$$= (n-1) \Gamma(n-1)$$

Hence $\Gamma(n)=(n-1)\Gamma(n-1)$.

: 😚

水の窓に

BETA AND GAMMA FUNCTIONS

Cor. If n is a positive integer, then

$$\Gamma(n)=(n-1)!$$

When n is a +ve integer, then by repeated application of above formula, we get

$$\Gamma(n) \equiv (n-1) \Gamma(n-1)$$
= $(n-1) \cdot (n-2) \Gamma(n-2)$
= $(n-1)(n-2) \cdot (n-3) \Gamma(n-3)$
= $(n-1)(n-2) \cdot \dots \cdot 1 \Gamma(1)$

$$= (n-1)! \Gamma(1)$$

But.

$$\Gamma(1) = \int_0^\infty x^0 e^{-x} dx \qquad (By def.)$$

$$= \int_0^\infty e^{-x} dx = \begin{bmatrix} e^{-x} \\ -1 \end{bmatrix}_0^\infty$$

$$= -\begin{bmatrix} Lt & \frac{1}{e^x} - e^0 \end{bmatrix} = -[0-1] = 1.$$

Hence
$$\Gamma(n)=(n-1)!$$
 when n is a +ve integer.

Note. (1) If n is a +ve fraction, then

 $\Gamma(n)$ —(n-1) x go on decreasing by 1....

the series of factors being continued so long as the factors remain positive, the last factor being P (last factor).

For example,
$$\Gamma\left(\frac{7}{2}\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right) = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}\Gamma\left(\frac{3}{2}\right)$$

$$= \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$

(ii) If n is a +ve integer, $\Gamma(n)$ -(n-1)!

12.7. RELATION BETWEEN BETA AND GAMMA FUNC-TIONS

To show that

$$E(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$
 where $m > 0$, $n > 0$.
(Agra 1984; Meerut 1986, 87, 88; Kanpur 1986)

Proof. We know that for n>0,

$$\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} dx$$

Putting x=az so that $dx=a_-dz$, we have

$$\Gamma(n) = \int_0^\infty (az)^{n-1} e^{-az} \cdot a \, dz$$
$$= \int_0^\infty a^n z^{n-1} e^{-az} \, dz$$

<i>'</i> &		BEFA AN
:	Replacing z by x.	T.
	$= \int_0^\infty a^n x^{n-1} e^{-ax} dx \qquad - \qquad \qquad -$	
-	Replacing a by z, we have	or ·
	$\Gamma(n) = \int_{0}^{\infty} z^{n} x^{n-1} e^{-zx} dx$	N
	Multiplying both sides by $e^{-z} z^{m-1}$, we have	•
	$\Gamma(n) \cdot e^{-\epsilon} z^{m-1} = \int_0^\infty x^{n-1} z^{m+n-1} e^{-\epsilon(1+x)} dx$	To
havo	Integrating both sides w.r.t. z between the limits 0 to ∞ , we	:
пало		
	$\Gamma(n) \int_0^\infty e^{-z} z^{m-1} dx = \int_0^\infty \int_0^\infty x^{n-1} z^{m+n-1} e^{-z(1+z)} dx dz$	-
. :-	$= \int_0^\infty \int_0^\infty x^{n-1} z^{m+n-1} e^{-z(1+z)} dz dx$	•
	$\Rightarrow \Gamma(n)\Gamma(m) = \int_0^\infty x^{n-1} \left[\int_0^\infty z^{m+n-1} e^{-z(1+z)} dz \right] dx$	•
٠	Putting $z(1+x)=p$	
th oa	1+x 1+x 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	or.
	$\Gamma(n)\Gamma(n) = \begin{bmatrix} \infty & x^{n-1} \\ 0 & 1+x \end{bmatrix} \begin{bmatrix} \infty & y & m+n-1 \\ 1+x & e & y \end{bmatrix} dx$	12 [.] 9. P
	$= \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} \left[\int_{0}^{\infty} y^{m+n-1} e^{-y} dy \right] dx$	Pro
		Wb
	$= \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} \left[\Gamma(m+n) \right] dx$	
	$=\Gamma(m+n)\int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$	
	$=\Gamma(m+n) B(m, n)$	·
	$-\left[\begin{array}{cc} & \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx = B(m,n) \end{array} \right]$	
	Hence $B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	<u> </u>
12.8.	PROVE THAT $\Gamma(\frac{1}{4}) = \sqrt{\pi}$	
	Manual 1006 a Visit 100 F or aver	

(Meerut 1986; Kanpur 1985, 87; K.U. 1983; G.N.D.U. 1982)

Proof. We know that

 $\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

Coi

BETA AND GAMMA FUNCTIONS

Taking
$$m=n=\frac{1}{3}$$
,

$$B(\frac{1}{2},\frac{1}{2}) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2}+\frac{1}{2})} = \frac{[\Gamma(\frac{1}{2})]^2}{\Gamma(1)}$$
or $B(\frac{1}{2},\frac{1}{2}) = [\Gamma(\frac{1}{2})]^2$ [$\Gamma(1)=1$]

Now $B(\frac{1}{2},\frac{1}{2}) = \int_0^1 x^{\frac{1}{2}-1} (1-x)^{\frac{1}{2}-1} dx$

$$\int_0^1 x^{-1/2} (1-x)^{-1/2} dx$$

Putting $x = \sin^2 \theta$ so that $dx = 2 \sin \theta \cos \theta d\theta$

When
$$x=0$$
, $\theta=0$; when $x=1$, $\theta=\frac{\pi}{2}$

$$B(\frac{1}{2}, \frac{1}{2}) = \int_{0}^{\pi/2} \frac{1}{\sin \theta} \cdot \frac{1}{\cos \theta} \cdot 2 \sin \theta \cos \theta \, d\theta$$

$$= 2 \int_{0}^{\pi/2} d\theta = 2 \left[\theta \right]_{0}^{\pi/2} = 2 \left(\frac{\pi}{2} - 0 \right) = \pi$$

$$\therefore \operatorname{From}(i), \left[\Gamma\left(\frac{1}{2}\right)\right]^2 = \pi$$

or
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

12.9. PROVE THAT
$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{1}{2} \sqrt{\pi}$$
. (M.D.U. 198

Proof. Put $x^2=z$ so that 2x dx=dz or dx=-1

When
$$x=0, z=0$$
; when $x\to\infty, z\to\infty$

$$\int_{0}^{\infty} e^{-x^{2}} dx = \int_{0}^{\infty} e^{-z} \frac{dz}{2\sqrt{z}} = \frac{1}{2} \int_{0}^{\infty} e^{-z} z^{-\frac{1}{2}} dz$$

$$=\frac{1}{2}\int_0^\infty e^{-z} z^{\frac{1}{2}-1} dz$$

$$=\frac{1}{2}\Gamma\left(\frac{1}{2}\right) \qquad \qquad \Gamma(n)=\int_0^\infty e^{-z} x^{n-1} dx, \text{ here}$$

$$= \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \qquad \left[: \Gamma(n) = \int_0^\infty e^{-s} x^{n-1} dx, \text{ here } n = \frac{1}{2} \right]$$
$$= \frac{1}{2} \sqrt{\pi} \qquad \left[: \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \right]$$

Cor. 1. Prove that
$$\int_{-\infty}^{0} e^{-\tilde{x}^{2}} dx = \frac{\sqrt{\pi}}{2}$$

Put
$$x=-z$$
 so that $dx=-dz$

When
$$x \to -\infty$$
, $z \to \infty$; when $x=0$, $z=0$

$$\int_{-\infty}^{0} e^{-x^{2}} dx = \int_{\infty}^{0} e^{-z^{2}} (-dz) = -\int_{\infty}^{0} e^{-z^{2}} dz$$

$$= \int_{0}^{\infty} e^{-z^{2}} dz = \int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$
[By Art. 12:9]

Cor. 2. Prove that
$$\int_{-\infty}^{\infty} e^{-x^{2}} dx = \sqrt{\pi}$$
$$\int_{-\infty}^{\infty} e^{-x^{2}} dx = 2 \int_{0}^{\infty} e^{-x^{2}} dx$$

 e^{-x^2} is an even function of x and

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ if } f(x) \text{ is an even function of } x$$

$$= 2 \cdot \frac{\sqrt{\pi}}{2}$$

12:10. TO EVALUATE $\int_{0}^{\pi/2} \sin^{p} x \cos^{q} x dx$

where $p \ge -1$, q > -1.

Put
$$\sin^2 x = z$$
 so that $2 \sin x \cos x \, dx = dz$.
When $x = 0$, $z = 0$, when $x = \frac{\pi}{2}$, $z = 1$

Also $\cos^2 x = 1 - \sin^2 x = 1 - z$ $\therefore \int_{0}^{\pi/2} \sin^p x \cos^q x \, dx$

$$\int_{0}^{-\sin^{p} x \cos^{q} x \, dx}$$

$$= \int_{0}^{\pi/2} (\sin^{p-1} x \cos^{q-1} x) \sin x \cos x \, dx$$

$$= \int_{0}^{\pi/2} (\sin^{2} x)^{\frac{p-1}{2}} (\cos^{2} x)^{\frac{q-1}{2}} \cdot \sin x \cos x \, dx$$

$$= \int_0^1 z^{\frac{p-1}{2}} (1-z)^{\frac{q-1}{2}} \cdot 1 \, dz$$

$$= \frac{1}{2} \int_{0}^{1} z^{\frac{p-1}{2}} (1-z)^{\frac{q-1}{2}} dz$$

$$= \frac{1}{2} B \left(\frac{p-1}{2} + 1, \frac{q-1}{2} + 1 \right)$$

$$=\frac{1}{2}\cdot B\left(\frac{p+1}{2}, \frac{q+1}{2}\right)$$

(3)

₹ -		100	the districtions
)			$\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{p+1}{2}\right)$
	<u></u>	_	$=\frac{1}{2}\cdot\frac{\sqrt{p+1}}{p!}\frac{q}{p+1}$

$$= \frac{1}{2} \cdot \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{p+1}{2} + \frac{q+1}{2}\right)}$$

$$\left[: B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \right]$$

Hence
$$\int_0^{\pi/2} \sin^p x \cos^q x \, dx = \frac{1}{2} \cdot \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{p+1}{2} + \frac{q+1}{2}\right)}$$

Example 1. Express the following in terms of Gamma functions:

(ii)
$$\int_{0}^{l} x^{p}(1-x^{q})^{n} dx$$
 where $p>0$, $q>0$, $n>0$
(ii)
$$\int_{0}^{l} x^{p-1} (1-x^{2})^{q-1} dx$$
 where $p>0$, $q>0$
(iii)
$$\int_{0}^{a} x^{p-1} (a-x)^{q-1} dx$$
 where $p>0$, $q>0$.

Sol. (i) Put
$$x^q = z$$
 or $x = z^{\frac{q}{q}}$

so that
$$dx = \frac{1}{q} \cdot \frac{1}{z} \cdot \frac{1}{dz} = \frac{1}{q} \cdot \frac{1-q}{z} dz$$
When $x=0, z=0$ and when $x=1, z=0$

When
$$x=0, z=0$$
 and when $x=1, z=1$

$$\therefore \int_{0}^{1} x^{p} (1-x^{q})^{n} dx = \int_{0}^{1} z^{\frac{p}{q}} (1-z)^{n} \frac{1}{q} z^{\frac{1-q}{q}} dz$$

$$= \frac{1}{q} \int_{0}^{1} z^{\frac{p+1-q}{q}} (1-z)^{n} dz$$

$$= \frac{1}{q} B(\frac{p+1-q}{q}+1, n+1)$$

$$= \frac{1}{q} B(\frac{p+1}{q}, n+1)$$

$$= \frac{1}{q} \Gamma(\frac{p+1}{q}) \Gamma(n+1)$$

$$\Gamma(\frac{p+1}{q}+n+1)$$

(ii) Please try yourself. (Put
$$x^2=z$$
)

Ans
$$\frac{\Gamma(p/2) \Gamma(q)}{2 \Gamma(p/2+q)}$$

		-	
(iii) Please try	yourself.	(Put $x = az$)	,

$$\left[\text{Ans. } a^{p+q-1} \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}\right]$$

Chickery with 5: 12-

Example 2. Show that
$$\int_0^1 \frac{dx}{\sqrt{1-x^n}} \frac{\sqrt{\pi}\Gamma\left(\frac{1}{n}\right)}{n\Gamma\left(\frac{1}{n}+\frac{1}{2}\right)}$$

Sol. Put
$$x^n = z$$
 i.e. $x = z^{\frac{1}{n}}$

$$dx = \frac{1}{n} z^{\frac{1}{n} - 1} dz = \frac{1}{n} z^{\frac{1 - n}{n}} dz$$

When
$$x=0, z=0$$
; when $x=1, z=1$

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{n}}} = \int_{0}^{1} \frac{\frac{1}{n} z^{\frac{1-n}{n}}}{\sqrt{1-z}} dz$$

$$= \frac{1}{n} \int_{0}^{1} z^{\frac{1}{n}-1} (1-z)^{-1/2} dz$$

$$= \frac{1}{n} B\left(\frac{1}{n}, \frac{1}{2}\right) = \frac{1}{n} \frac{\Gamma\left(\frac{1}{n}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{n}+\frac{1}{2}\right)}$$

$$= \frac{\sqrt{\pi}\Gamma\left(\frac{1}{n}\right)}{n\Gamma\left(\frac{1}{n} + \frac{1}{2}\right)} \qquad \left[\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \right]$$

Example 3. Show that

$$\int_{0}^{1} \frac{x^{-1} (I-x)^{n-1}}{(a+x)^{m+n}} dx = \frac{\Gamma(m) \Gamma(n)}{a^{n} (I+a)^{m} \Gamma(m+n)}$$

Sol.
$$\int_{0}^{1} \frac{x^{m-1} (1-x)^{n-1}}{(a+x)^{m+n}} dx = \frac{B(m,n)}{a^{n}(1+a)^{m}} [See Beta functions]$$
$$= \frac{\Gamma(m)\Gamma(n)}{a^{n}(1+a)^{m} \Gamma(m+n)}.$$

Example 4. Evaluate

(i)
$$\int_{0}^{\infty} e^{-x^{2}} dx$$

(i)
$$\int_{0}^{\infty} e^{-x^{3}} dx$$
 (ii) $\int_{0}^{\infty} x^{3} e^{-x^{3}} dx$

(iii)
$$\int_{0}^{\infty} \sqrt{x \cdot e^{-x^3}} dx$$

(iii)
$$\int_0^\infty \sqrt{x}.e^{-x^2} dx$$
 (iv) $\int_0^\infty e^{-a^2x^2} dx$, $a>0$.

https://t.me/upsc_pdf

BETA AND GAMMA FURCTIONS

Sol. (i) Put
$$x^3 = z^{1/3}$$
 or $x = z^{1/3}$

$$dx = \frac{1}{3} z^{-\frac{2}{3}} dz$$

When
$$x=0$$
, $z=0$; when $x\to\infty$, $z\to\infty$

$$\therefore \int_0^\infty e^{-x^2} dx = \int_0^\infty e^{-t} \cdot \frac{1}{3} z^{-\frac{2}{3}} dz$$

$$= \frac{1}{3} \int_0^\infty e^{-s} \cdot z^{\frac{1}{3} - 1} dz = i \Gamma(z)$$

Note.
$$\int_0^\infty e^{-x^2} dx = \frac{1}{3} \overline{\Gamma} \left(\frac{1}{3} \right) = \Gamma \left(\frac{4}{3} \right)$$

 $= [(n-1) \Gamma(n-1) = \Gamma(n)]$

(ii) Proceeding as in part (i)

$$\int_{0}^{\infty} x^{3} e^{-x^{3}} dx = \int_{0}^{\infty} z e^{-z} \frac{1}{3} z^{-\frac{2}{3}} dz$$

$$= \frac{1}{3} \int_0^\infty e^{-z} z^{1/3} dz = \frac{1}{3} \int_0^\infty e^{-z} z^{\frac{4}{3} - 1} dz = \frac{1}{3} \Gamma\left(\frac{4}{3}\right)$$

$$\frac{1}{3} \cdot \frac{1}{3} \cdot \Gamma\left(\frac{1}{3}\right)$$
 [: $\Gamma(n) = (n-1) \Gamma(n-1)$]

$$=\frac{1}{9} \Gamma\left(\frac{1}{3}\right)$$

(iii) Proceeding as in part (i)

$$\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} dx = \int_{0}^{\infty} z^{1/6} e^{-z} \cdot \frac{1}{3} z^{-\frac{2}{3}} dz$$

$$=\frac{1}{3}\int_0^\infty e^{-z}z^{-\frac{1}{2}}dz$$

$$= \frac{1}{3} \int_0^\infty e^{-z} z^{\frac{1}{2} - 1} dz = \frac{1}{3} \Gamma\left(\frac{1}{2}\right) = \frac{1}{3} \sqrt{\pi}$$

$$x = \frac{\sqrt{z}}{a}$$

$$-\frac{1}{2}$$

 $dz = \frac{-\frac{1}{2}}{2a} dz.$

x=0, z=0; when $z\to\infty$, $z\to\infty$

$$\int_{0}^{\pi/2} \sqrt{\sin\theta} \ d\theta \times \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} = \pi.$$
 (M.D.U. 1981 S)

Sol.
$$\int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta \times \int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}}$$

$$= \int_{0}^{\pi/2} \sin^{1/2}\theta \cos^{\circ}\theta \,d\theta \times \int_{0}^{\pi/2} \sin^{-\frac{\pi}{2}}\theta \cos^{\circ}\theta \,d\theta$$

$$= \frac{\Gamma\left(\frac{\frac{1}{2}+1}{2}\right)\Gamma\left(\frac{0+1}{2}\right)}{2\Gamma\left(\frac{\frac{1}{2}+1}{2}+\frac{0+1}{2}\right)} \times \frac{\Gamma\left(\frac{-\frac{1}{2}+1}{2}\right)\Gamma\left(\frac{0+1}{2}\right)}{2\Gamma\left(\frac{-\frac{1}{2}+1}{2}+\frac{0+1}{2}\right)}$$

$$\frac{1}{4} = \frac{[\Gamma_{*}(1)]^{2} \Gamma_{*}(1)}{\Gamma_{*}(5/4)} = \frac{1}{4} \cdot \frac{(\sqrt{\pi})^{2} \cdot \Gamma_{*}(1)}{1 + \Gamma_{*}(1)^{2}} = \pi$$

Example 6. Prove that if
$$n > -1$$
,
$$\int_0^\infty x^n e^{-a^2x^2} dx = \frac{1}{2a^{n+1}} \Gamma\left(\frac{n+1}{2}\right) \quad \text{(Agra 1984)}$$

Hence or otherwise show that $\int_{-\infty}^{\infty} e^{-a^{x}x^{2}} dx = \frac{\sqrt{\pi}}{a}$

Sol. Put
$$a^2x^2=z$$
, i.e. $x=-\frac{\sqrt{z}}{a}$

so that
$$dx = \frac{z^{-1/2}}{2a}$$

When
$$x=0$$
, $z=0$; When $x\to\infty$, $z\to\infty$.
$$\int_{0}^{\infty} x^{n} e^{-a^{2}x^{2}} dx = \int_{0}^{\infty} \frac{z^{n/2}}{a^{2}} e^{-z} \cdot \frac{z^{-1/2}}{2a} dz$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} e^{-z} z^{-1/2} dz$$

$$= \frac{1}{2a^{n+1}} \int_0^{\infty} e^{-z} z^{n-1/2} dz$$

$$= \frac{1}{2a^{n+1}} \Gamma\left(\frac{n-1}{2} + 1\right) = \frac{1}{2a^{n+1}} \Gamma\left(\frac{n+1}{2}\right) \qquad \dots$$

) 🖨

BETA AND GAMMA FUNCTION

Putting
$$n=0$$
,
$$\int_0^\infty e^{-a^2x^2} dx = \frac{1}{2a} \Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2a}$$
$$\int_{-\infty}^\infty e^{-a^2x^2} dx = 2 \int_0^\infty e^{-a^2x^2} dx = 2 \cdot \frac{\sqrt{\pi}}{2a} = \frac{\sqrt{\pi}}{a}$$

[: $e^{-a^3x^3}$ is an even function of x and

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ if } f(x) \text{ is an even function.}$$

Example 7. Show that if a > 1,

$$\int_{0}^{\infty} \frac{x^{a}}{a^{*}} dx = \frac{\Gamma(a+1)}{(\log a)^{a+1}}.$$
 (K.U. 1983 S)

Sol.
$$a = e^{\log a} \qquad a^{x} = e^{x \log a}$$
$$\therefore \int_{0}^{\infty} \frac{x^{a}}{a^{x}} dx = \int_{0}^{\infty} \frac{x^{a}}{e^{x \log a}} dx$$

$$= \int_0^\infty e^{-x \log a} \cdot x^a \, dx$$

Put $x \log a = z$, i.e. $x = \frac{z}{\log a}$

so that
$$dx = \frac{dz}{\log a}$$

When x=0, z=0; when $x\to\infty, z\to\infty$

$$\int_{0}^{\infty} \frac{x^{a}}{a^{x}} dx = \int_{0}^{\infty} e^{-t} \cdot \frac{z^{a}}{(\log a)^{a}} \cdot \frac{dz}{\log a}$$

$$= \frac{1}{(\log a)^{a+1}} \int_{0}^{\infty} e^{-t} \cdot z^{(a+1)-1} dz$$

$$= \frac{\Gamma(a+1)}{(\log a)^{a+1}}.$$

Example 8. Prove that $\int_{0}^{\infty} e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^{n}}$ where a, n are positive. Hence show that

(i)
$$\int_0^\infty e^{-ax} x^{n-1} \cos bx \ dx = \frac{\Gamma(n)}{r^{-1}} \cos n\theta$$

(ii)
$$\int_0^\infty e^{-ax} x^{n-1} \sin bx \, dx = \frac{\Gamma(n)}{r^n} \sin n\theta$$

where $r^2=a^2+b^2$ and $\theta=\tan^{-1}\frac{b}{a}$.

Sol. Put ax = z so that $dx = \frac{dz}{a}$

When
$$x=0$$
, $z=0$, when $x\to\infty$, $z\to\infty$

$$\int_0^\infty e^{-az} x^{n-1} dx = \int_0^\infty e^{-z} \left(\frac{z}{a}\right)^{n-1} \cdot \frac{dz}{a}$$

$$= \frac{1}{a^n} \int_0^\infty e^{-z} z^{n-1} dz = \frac{\Gamma(n)}{a^n}$$

Replacing a by a+ib, we have

$$\int_0^\infty e^{-(a+ib)x} x^{n-1} dx = \frac{\Gamma(a)}{(a+ib)^n} \qquad \dots (1)$$

Now $e^{-(a+ib)x} = e^{-ax-ibx} = e^{-ax} (\cos bx - i \sin bx)$

$$[: e^{p-iq}=e^p (\cos q - i \sin q)]$$

$$a^2+b^2=r^2$$
 and $\frac{b}{a}=\tan\theta$ i.e. $\theta=\tan^{-1}\frac{b}{a}$

$$(a+ib)^n = (r\cos\theta + i \cdot r\sin\theta)^n = r^n(\cos\theta + i\sin\theta)^n$$

$$= r^n(\cos n\theta + i\sin n\theta)$$
[De Moivre's Theorem]

From (1),

$$\int_0^\infty e^{-ax} (\cos bx - i \sin bx) x^{n-1} dx$$

$$\frac{\Gamma(n)}{r^n(\cos n\theta + i\sin n\theta)}$$

$$= \frac{\Gamma(n)}{r^n} (\cos n\theta + i\sin n\theta)^{-1}$$

$$= \frac{\Gamma(n)}{r^n} (\cos n\theta - i\sin n\theta)$$

Equating real parts

$$\int_0^\infty e^{-ax} x^{n-1} \cos bx \, dx = \frac{\Gamma(n)}{r^n} \cos n\theta$$

Equating imaginary parts

$$\int_0^\infty e^{-ax} x^{n-1} \sin bx \, dx = \frac{\Gamma(n)}{r^n} \sin n\theta.$$

Example 9. Evaluate

(i)
$$\int_0^{\pi/2} \sin^3 x \cos^{5/2} x \, dx$$
 (ii) $\int_0^{\pi/2} \sin^7 x \, dx$

(ii)
$$\int_0^{\pi/2} \sin^2 x \, dx$$

(iii)
$$\int_0^{\pi/2} \sqrt{\tan \theta} \, d\theta$$

i sin q)]

sin θ)"

Theorem)

BETA AND GAMMA FUNCTIONS

Sol. (i)
$$\int_{0}^{\pi/2} \sin^{2} x \cos^{5/2} x \, dx = \frac{1}{2} \cdot \frac{\Gamma\left(\frac{3+1}{2}\right) \Gamma\left(\frac{5/2+1}{2}\right)}{\Gamma\left(\frac{3+1}{2} + \frac{5/2+1}{2}\right)} - \frac{\Gamma\left(\frac{3+1}{2} + \frac{5/2+1}{2}\right)}{\Gamma\left(\frac{p+1}{2} + \frac{q+1}{2}\right)} - \frac{1}{2} \cdot \frac{\Gamma(2) \Gamma\left(\frac{7}{4}\right)}{\Gamma\left(\frac{15}{4}\right)} = \frac{1}{2} \cdot \frac{1! \cdot \Gamma\left(\frac{7}{4}\right)}{\frac{11}{4} \cdot \frac{7}{4} \Gamma\left(\frac{7}{4}\right)} = \frac{8}{77}$$

and $\Gamma(n) = (n-1) ! \text{ if } n \text{ is a +ve integer}$ $\Gamma(n) = (n-1) \Gamma(n-1)$ $\Gamma\left(\frac{15}{4}\right) = \frac{11}{4} \Gamma\left(\frac{11}{4}\right) = \frac{11}{4} \cdot \frac{7}{4} \Gamma\left(\frac{7}{4}\right)$ $\Gamma\left(\frac{7}{4}\right) = \frac{11}{4} \Gamma\left(\frac{11}{4}\right) = \frac{11}{4} \cdot \frac{7}{4} \Gamma\left(\frac{7}{4}\right)$ $\Gamma\left(\frac{\pi}{4}\right)^2 \sin^2 x \, dx = \int_0^{\pi/2} \sin^2 x \cos^0 x \, dx$

$$\frac{1}{2} \frac{\int_{0}^{2\pi} \sin^{2}x \, dx}{\Gamma\left(\frac{7+1}{2}\right) \Gamma\left(\frac{0+1}{2}\right)} = \frac{1}{2} \frac{\Gamma\left(\frac{7+1}{2}\right) \Gamma\left(\frac{0+1}{2}\right)}{\Gamma\left(\frac{7+1}{2}+\frac{0+1}{2}\right)}$$

$$= \frac{1}{2} \frac{\Gamma\left(4\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{9}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{(4-1) \cdot \Gamma(\frac{1}{2})}{\frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma(\frac{1}{2})}$$
$$= \frac{6}{105} = \frac{16}{35}.$$

(iii)
$$\int_{0}^{\pi/2} \sqrt{\tan \theta} \, d\theta = \int_{0}^{\pi/2} \sqrt{\frac{\sin \theta}{\cos \theta}} \, d\theta = \int_{0}^{\pi/2} \sin^{1/2} \theta \cos^{-1/2} \theta \, d\theta$$
$$= \frac{1}{2} \cdot \frac{\Gamma\left(\frac{\frac{1}{2}+1}{2}\right) \Gamma\left(-\frac{\frac{1}{2}+1}{2}\right)}{\Gamma\left(\frac{\frac{1}{2}+1}{2}+\frac{-\frac{1}{2}+1}{2}\right)}$$

$$= \frac{1}{2} \cdot \frac{\Gamma(\frac{3}{4}) \Gamma(\frac{1}{4})}{\Gamma(1)}$$

$$= \frac{1}{2} \cdot \frac{\sqrt{2\pi}}{1} \left[: \Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{4}\right) = \sqrt{2\pi}$$
[See Cor. with Duplication Formula]
$$= \frac{\pi}{\sqrt{2}}$$

Example 10. Show that

$$\int_{0}^{\pi/2} \sin^{n}\theta \ d\theta = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{-\Gamma\left(\frac{n+2}{2}\right)} \text{ where } n > -1.$$

Sol.
$$\int_0^{\pi/2} \sin^n \theta \ d\theta = \int_0^{\pi/2} \sin^n \theta \cos^\circ \theta \ d\theta$$
 (M.D.U. 1981)

$$=\frac{1}{2}\cdot\frac{\Gamma\left(\frac{n+1}{2}\right)\Gamma\left(\frac{0+1}{2}\right)}{\Gamma\left(\frac{n+1}{2}+\frac{0+1}{2}\right)}$$

$$\frac{\Gamma\left(\frac{n+1}{2} + \frac{0+1}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)\sqrt{\pi}}$$

$$\frac{1}{2} \frac{\Gamma\left(\frac{n+2}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{n+2}{2}\right)} \qquad [\Gamma(\frac{1}{2}) = \sqrt{\pi}]$$

$$\sqrt{\pi} \Gamma\left(\frac{n+1}{2}\right)$$

$$= \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$$

Example 11. Prove that

Sol. Put
$$x^4 = z$$
 i.e. $x = z^{1/4}$ so that $dx = \frac{1}{z^{-3/4}} dz$
When $x = 0$, $z = 0$; when $x = 1$, $z = 1$

When
$$x^4 = z$$
 i.e. $x = z^{1/4}$ so that $dx = 1 = 30$.

When
$$x=0$$
, $z=0$; when $x=1$, $z=1$

$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{4}}} dx = \int_{0}^{1} \frac{1}{\sqrt{1-z}} \frac{1}{4} z^{-3/4} dz$$

$$= \frac{1}{4} \int_{0}^{1} z^{-3/4} (1-z)^{-1/2} dz = \frac{1}{4} B\left(\frac{1}{4}, \frac{1}{2}\right)$$

$$= \frac{1}{4} \cdot \frac{\Gamma(\frac{1}{4}) \Gamma(\frac{1}{4})}{\Gamma(\frac{1}{4}+\frac{1}{4})}$$

BETA AND GAMMA PURCTIONS

$$= \frac{1}{4} \cdot \frac{\Gamma(\frac{1}{4}) \cdot \sqrt{\pi}}{\Gamma(\frac{3}{4})}$$

$$= \frac{\sqrt{\pi}}{4} \cdot \frac{\Gamma(\frac{1}{4})}{\sqrt{2\pi}i\Gamma(\frac{1}{4})} \left[\cdots \Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right) = \sqrt{2\pi} \right]$$

$$= \frac{1}{8} \sqrt{\frac{2}{\pi}} \left[\Gamma\left(\frac{1}{4}\right) \right]^{\frac{3}{4}}$$

Example 12. Prove that
$$\int_0^1 \frac{x^{m-1} + x^{n-1}}{(l+x)^{m+n}} dx = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

Sol.
$$\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = B(m, \pi)$$

[See examples with Beta Function]

$$=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

Example 13. Evaluate
$$\int_{0}^{1} x^{3}(1-x)^{4/3} dx$$
. (K.U. 1982)

Sol. Put $x = \sin^2 \theta$ so that $dx = 2 \sin \theta \cos \theta d\theta$.

When
$$x=0$$
, $\theta=0$; when $x=1$, $\theta=\pi/2$

$$\int_{0}^{1} x^{3} (1-x)^{6/3} dx = \int_{0}^{\pi/2} \sin^{6} \theta \cos^{8/3} \theta \cdot 2 \sin^{2} \theta \cos^{2} \theta d\theta$$

$$=2 \cdot \frac{1}{2} \cdot \frac{\Gamma\left(\frac{7+1}{2}\right) \cdot \Gamma\left(\frac{11/3+1}{2}\right)}{\Gamma\left(\frac{7+1}{2} + \frac{11/3+1}{2}\right)}$$

$$=\frac{\Gamma(4) \Gamma\left(\frac{7}{3}\right)}{\Gamma\left(\frac{19}{3}\right)}$$

$$= \frac{(4-1)! \cdot \Gamma\left(\frac{7}{3}\right)}{\frac{16}{3} \cdot \frac{13}{3} \cdot \frac{10}{3} \cdot \frac{7}{3} \Gamma\left(\frac{7}{3}\right)}$$

$$=\frac{6\times81}{16\times13\times10\times7} = \frac{243}{7280}$$

Example 14. Express $\int_0^\infty \frac{x^{m-1}}{(a+bx)^{n+n}} dx \text{ in terms of Beta}$ and Gamma functions; where m>0, n>0, a>0, b>0.

Or an in the

SETA AKED

Sol. Put
$$bx=az$$
 so that $dx=\frac{c}{b}dz$.

When x=0; z=0; when $x\to\infty$, $z\to\infty$

$$\int_{0}^{\infty} \frac{x^{m-1}}{(a+bx)^{m+n}} dx = \int_{0}^{\infty} \frac{\prod_{\alpha=0}^{\infty} \frac{az}{b}}{(a+az)^{m-n}} \cdot \frac{a}{b} dz$$

$$= \int_{0}^{\infty} \frac{a^{m-1} \cdot a}{b^{m-1} \cdot b \cdot a^{m+n}} \cdot \frac{z^{m-1}}{(1+z)^{m+n}} dz$$

$$= \frac{1}{a^{n}b^{m}} \int_{0}^{\infty} \frac{z^{m-1}}{(1+z)^{m+n}} dz$$

$$= \frac{1}{a^{n}b^{m}} B(m, n) \qquad | By def.$$

$$= \frac{1}{a^{n}b^{m}} \cdot \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$$

Example 15. Prove that $\Gamma(n) = \int_{0}^{1} \left(\log \frac{1}{y}\right)^{n-1} dy$.

(Meerut 1986; Kanpur 1985, 86; Agra 1981)

Sol. Put
$$\log \frac{1}{y} = z$$
, i.e. $\frac{1}{y} = e^{z}$

When y=0, $z \to \infty$; when y=1; z=0

$$\int_{0}^{1} \left(\log \frac{1}{y}\right)^{n-1} dy = \int_{\infty}^{0} z^{n-1} \left(-e^{-z}\right) dz - \int_{0}^{\infty} z^{n-1} e^{-z} dz = \Gamma(n).$$

Example 16. Show that

(i)
$$\int_0^\infty \sqrt{x} e^{-x^2} dx \times \int_0^\infty \frac{e^{-x^2}}{\sqrt{x}} dx = \frac{\pi}{2\sqrt{2}}$$

(ii)
$$\int_0^\infty \frac{e^{-y^2}}{\sqrt{y}} dy \times \int_0^\infty y^2 e^{-y^2} dy = \frac{\pi}{4\sqrt{2}}.$$

Sol. (i) Put $x^2=z$ i.e. $x=z^2$ so that dx=1 $z^{-\frac{1}{2}} dz$ When x=0, z=0: when $x \to \infty$, $z \to \infty$

$$\int_{0}^{\infty} \sqrt{x} e^{-x^{2}} dx = \int_{0}^{\infty} z^{\frac{1}{4}} e^{-x} \cdot \frac{1}{2} z^{-\frac{1}{2}} dz$$

$$=\frac{1}{2}\int_0^\infty z^{-\frac{1}{4}}e^{z}dz=\frac{1}{2}\Gamma\left(\frac{3}{4}\right)$$

and \int_0^∞

j Exai

.

Sol.

2:1

Z.Ţ.

Sol.

and
$$\int_{0}^{\infty} \frac{e^{-x^{3}}}{\sqrt{x}} dx = \int_{0}^{\infty} \frac{e^{-x^{3}}}{z^{1/4}} \cdot \frac{1}{2} z^{-\frac{1}{4}} dz$$

$$= \frac{1}{2} \int_{0}^{\infty} z^{-\frac{1}{2}} e^{-z} dz = \frac{1}{2} \Gamma(\frac{1}{2})$$

$$= \int_{0}^{\infty} \sqrt{x} e^{-x^{3}} dx \times \int_{0}^{\infty} \frac{e^{-x^{3}}}{\sqrt{x}} dx = \frac{1}{2} \Gamma(\frac{3}{4}) \cdot \frac{1}{2} \Gamma(\frac{1}{2})$$

$$= \frac{1}{4} \cdot \sqrt{2} \pi \qquad \left[: \Gamma(\frac{3}{4}) \Gamma(\frac{1}{2}) = \sqrt{2}\pi \right]$$

$$= \frac{\pi}{2\sqrt{2}}$$

(11) Put
$$y^2=z$$
, $\int_0^\infty \frac{e^{-y^2}}{\sqrt{y}} dy = \frac{1}{2} \Gamma\left(\frac{1}{2}\right)$ [As in part (1)]

Put $y^4 = z$ i.e. $y = z^{\frac{1}{4}}$ so that $dy = \left\{z^{-\frac{3}{4}}\right\} dz$

$$\therefore \int_0^\infty y^2 e^{-y^4} dy = \int_0^\infty z^{\frac{1}{2}} e^{-z} \cdot \frac{1}{2} z^{\frac{3}{4}} dz$$

$$= \frac{1}{0} \int_{0}^{\infty} \frac{z^{-\frac{1}{4}}}{z^{-r}} dz$$

$$= \frac{1}{0} \int_{0}^{\infty} \frac{e^{-y^{4}}}{\sqrt{y}} dy \times \int_{0}^{\infty} y^{3} e^{-y^{4}} dy = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \cdot \frac{1}{4} \Gamma\left(\frac{3}{4}\right)$$

$$= \frac{1}{8} \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3}{4}\right) = \frac{1}{8} \times \sqrt{2\pi} = \frac{\pi}{4\sqrt{2}}$$

$$\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta \ d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}$$
 (Kappur 1987)

Sol. Please try yourself.

Example 18. Show that
$$\binom{2n-1}{2} = 1.3.5 \dots (2n-1) \sqrt{n}$$

$$2^{n}\Gamma\left(n+\frac{1}{2}\right)=1.3.5....(2n-1)\sqrt{\pi},$$

wliere n is a positive integer.

Sol.
$$\Gamma\left(n+\frac{1}{2}\right) = \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{1}{2}\right)$$

= $\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\Gamma\left(n-\frac{3}{2}\right)$

$$= \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \left(n - \frac{5}{2}\right) \dots \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)$$

$$= \left(\frac{2n - 1}{2}\right) \left(\frac{2n - 3}{2}\right) \left(\frac{2n - 5}{2}\right) \dots \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}$$

$$= \frac{1}{2^{n}} (2n - 1)(2n - 3) \dots 3.1 \sqrt{\pi}$$

$$= 2^{n} \Gamma\left(n + \frac{1}{2}\right) = 1.3.5 \dots (2n - 1) \sqrt{\pi}$$

(writing the factors in reverse order)

Example 19. Show that

(i)
$$\int_{0}^{1} \frac{x^{2} dx}{\sqrt{1-x^{4}}} \times \int_{0}^{1} \frac{dx}{\sqrt{1+x^{4}}} = \frac{\pi}{4\sqrt{2}}$$

(Kanpur 1980)

(ii)
$$\int_{0}^{\infty} x e^{-x^{8}} dx \times \int_{0}^{\infty} x^{2} e^{-x^{4}} dx = \frac{\pi}{16\sqrt{2}}$$

(iii)
$$\int_{0}^{\pi/2} \sin^{p} x \, dx \times \int_{0}^{\pi/2} \sin^{p+1} x \, dx = \frac{\pi}{2(p+1)}$$

Sol. (i) Put
$$x^2 = \sin \theta$$

so that $dx = \frac{\cos \theta}{24/\sin \theta} d\theta$

When x=0, $\theta=0$; when x=1, $\theta=\frac{\pi}{2}$

$$\frac{\int_0^1 \frac{x^2}{\sqrt{1-x^4}} dx}{\int_0^1 \frac{1-x^4}{\cos \theta} dx} = \int_0^{\pi/2} \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{2\sqrt{\sin \theta}} d\theta$$

$$= \frac{1}{2} \int_0^{\pi/2} \sin^{1/2} \theta \cos^{\circ} \theta d\theta$$

$$= \frac{1}{2} \cdot \frac{\Gamma\left(\frac{1}{2}+1\right)\Gamma\left(\frac{0+1}{2}\right)}{2\Gamma\left(\frac{\frac{1}{2}+1}{2}+\frac{0+1}{2}\right)}$$

$$- = \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{2}\right)}{4\Gamma\left(\frac{5}{4}\right)} = \frac{\Gamma\left(\frac{3}{4}\right)\sqrt{\pi}}{4 \times \frac{1}{4}\Gamma\left(\frac{1}{4}\right)}$$

$$= \sqrt{\pi} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}$$

BETA AND GALEMA FUNCTIONS

When
$$x=0$$
, $\phi=0$; when $x=1$, $\phi=\frac{\pi}{4}$

$$\int_{0}^{1} \frac{dx}{\sqrt{1+x^{4}}} = \int_{0}^{\pi/4} \frac{1}{\sec \phi} \cdot \frac{\sec^{2} \phi}{2\sqrt{\tan \phi}} d\phi$$

$$= \frac{1}{2} \int_{0}^{\pi/4} \frac{d\phi}{\sqrt{\sin \phi \cos \phi}} = \frac{\sqrt{2}}{2} \int_{0}^{\pi/4} \frac{d\phi}{\sqrt{2 \sin \phi \cos \phi}}$$

$$= \frac{1}{\sqrt{2}} \int_{0}^{\pi/4} \frac{d\phi}{\sqrt{\sin 2\phi}} = \frac{1}{2\sqrt{2}} \int_{0}^{\pi/2} \frac{dt}{\sqrt{\sin t}}$$

$$= \frac{1}{2\sqrt{2}} \int_0^{\pi/2} \sin^{-1/2} t \cos^\circ t \, dt$$

$$=\frac{1}{2\sqrt{2}}\cdot\frac{\Gamma\left(\frac{-\frac{1}{2}+1}{2}\right)\Gamma\left(\frac{0+1}{2}\right)}{2\Gamma\left(\frac{-\frac{1}{2}+1}{2}+\frac{0+1}{2}\right)}$$

$$=\frac{1}{4\sqrt{2}}\cdot\frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{4}\right)}=\frac{\sqrt{\pi}}{4\sqrt{2}}\cdot\frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$$

$$\frac{\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{4}}} dx \times \int_{0}^{1} \frac{dx}{\sqrt{1+x^{4}}}}{\Gamma\left(\frac{1}{4}\right)} = \sqrt{\pi} \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \cdot \frac{\sqrt{\pi}}{4\sqrt{2}} \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$$

$$=\frac{\pi}{4\sqrt{2}}$$

(ii) Put
$$x^8 = z$$
 i.e. $x = z^{1.8}$

so that
$$dx = \frac{1}{8} z^{-7.8} dz$$

When
$$x=0$$
, $z=0$; when $x\to\infty$, $z\to\infty$

When
$$x=0, z=0$$
; when $x\to\infty, z\to\infty$

$$\therefore \int_0^\infty xe^{-x^2} dx = \int_0^\infty z^{1.8} e^{-z} \cdot \frac{1}{8} z^{-1/8} dz$$

$$=\frac{1}{8}\int_0^\infty z^{-5.4} e^{-z} dz = \frac{1}{8} \Gamma\left(\frac{1}{4}\right)$$

Now put $x^4 = t$ l.e. $x = t^{2/2}$ so that $dx = \frac{1}{4}t^{-3/4} dt$

-

When x=0, t=0; when $x\to\infty$, $t\to\infty$

$$\int_{0}^{\infty} x^{2} e^{-x^{2}} dx = \int_{0}^{\infty} t^{1/2} e^{-t} \frac{1}{4} e^{-x^{2}} dt$$

$$= \frac{1}{4} \int_{0}^{\infty} t^{-1/4} e^{-t} dt = \frac{1}{4} \Gamma\left(\frac{3}{4}\right)$$

$$= \int_{0}^{\infty} x^{2} e^{-x^{2}} dx = \int_{0}^{\infty} x^{2} e^{-x^{2}} dx$$

$$\int_0^\infty xe^{-x^2} dx \times \int_0^\infty x^2 e^{-x^2} dx$$

$$= \frac{1}{8} \Gamma\left(\frac{1}{4}\right) \times \frac{1}{4} \Gamma\left(\frac{3}{4}\right)$$

$$= \frac{1}{32} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{1}{32} \times \sqrt{2\pi}$$

[See cor. with Art. 12:11]

$$=\frac{\pi}{16\sqrt{2}}$$

(iii)
$$\int_{0}^{\pi/2} \sin^{p} x \, dx \times \int_{0}^{\pi/2} \sin^{p+1} x \, dx$$

$$= \int_{0}^{\pi/2} \sin^{p} x \cos^{o} x \, dx \times \int_{0}^{\pi/2} \sin^{p+1} x \cos^{o} x \, dx$$

$$= \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{0+1}{2}\right)}{2\Gamma\left(\frac{p+1}{2} + \frac{0+1}{2}\right)} \times \frac{\Gamma\left(\frac{p+1}{2} + 1\right) \Gamma\left(\frac{0+1}{2}\right)}{2\Gamma\left(\frac{p+1+1}{2} + \frac{0+1}{2}\right)}$$

$$= \frac{1}{4} \cdot \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{p+2}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{p+2}{2}\right) \Gamma\left(\frac{p+3}{2}\right)}$$

$$= \frac{1}{4} \cdot \frac{\Gamma\left(\frac{p+1}{2}\right) \left[\Gamma\left(\frac{1}{2}\right)\right]^{2}}{\Gamma\left(\frac{p+1}{2} + 1\right)}$$

$$= \frac{1}{4} \cdot \frac{\Gamma\left(\frac{p+1}{2}\right) (\sqrt{\pi})^{2}}{\frac{p+1}{2} \Gamma\left(\frac{p+1}{2}\right)} = \frac{\pi}{2(p+1)}$$

Example 20. Show that

$$\int_{0}^{1} \sqrt{1-x^{\epsilon}} dx = \frac{1}{12} \sqrt{\frac{2}{\pi}} \left[\Gamma \left(\frac{1}{4} \right) \right]^{2}$$

<u></u>

BETA AND CAMEA FUNCTIONS

Sol. Put
$$x^4 = z$$
 i.e. $x = z^{1/4}$
so that $dx = \frac{1}{4} z^{-3/4} dz$

When
$$x=0$$
, $z=0$, when $x=1$, $z=1$.

$$\int_{0}^{1} \sqrt{1-x^{4}} dx = \int_{0}^{1} (1-z)^{1/2} \cdot \frac{1}{4} z^{-\frac{1}{2}/4} dz$$

$$= \frac{1}{4} \int_{0}^{1} z^{-\frac{1}{2}/4} (1-z)^{1/2} dz$$

$$= \frac{1}{4} B(\frac{1}{4}, \frac{3}{2}) = \frac{1}{4} \cdot \frac{\Gamma(\frac{1}{4}) \Gamma(\frac{3}{2})}{\Gamma(\frac{1}{4} + \frac{3}{2})}$$

$$=\frac{\Gamma\left(\frac{1}{4}+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{4}\right)} = \frac{\Gamma\left(\frac{1}{4}\right)\sqrt{\pi}}{\frac{3}{4}\Gamma\left(\frac{3}{4}\right)}$$

$$= \frac{\sqrt{\pi}}{6} \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)} \frac{\sqrt{\pi}}{6} \frac{\Gamma\left(\frac{1}{4}\right)}{\frac{\sqrt{2} \pi}{\Gamma\left(\frac{1}{4}\right)}}$$

$$\begin{bmatrix} \vdots & \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \sqrt{2} \pi \\ = \frac{1}{6\sqrt{2\pi}} \left[\Gamma\left(\frac{1}{4}\right) \right] = \frac{1}{12} \sqrt{\frac{2}{\pi}} \left[\Gamma\left(\frac{1}{4}\right) \right]^{2}$$

Example 21. Prove that

(i)
$$B(p,q) = B(p+1,q) + B(p,q+1)$$

(ii)
$$B(p,q)B(p+q,r) = B(q,r)B(q+r,p)$$

= $B(r,p)B(r+p,q)$

(iii)
$$B(p,q) B(p+q,r) B(p+q+r,s) = \frac{\Gamma(p)\Gamma(q)\Gamma(r)\Gamma(s)}{\Gamma(p+q+r+s)}$$

SoI. (i) R.H.S. = B(p+1, q) + B(p, q+1)
$$= \frac{\Gamma(p+1)\Gamma(q)}{\Gamma(p+q+1)} + \frac{\Gamma(p)\Gamma(q+1)}{\Gamma(p+q+1)}$$

$$= \frac{p\Gamma(p)\Gamma(q) + \Gamma(p) \cdot q\Gamma(q)}{(p+q)\Gamma(p+q)}$$

$$= \frac{(p+q) \Gamma(p) \Gamma(q)}{(p+q) \Gamma(p+q)} = \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$$

$$= B(p, q) = L.H.S.$$

(ii)
$$B(p,q) B(p+q,r) = \frac{B(p) B(q)}{B(p+q)} \cdot \frac{B(p+q) B(r)}{B(p+q+r)} = \frac{B(p) B(q) B(r)}{B(p+q+r)}$$

Similarly for others.

(iii) Please try yourself.

Example 22. Prove that

(i)
$$\frac{B(p, q+1)}{q} = \frac{B(p+1, q)}{p} = \frac{B(p, q)}{p+q}$$

(ii)
$$\frac{B(m+1,n)}{B(m,n)} = \frac{172}{m+n}$$

(iii)
$$\frac{B(m+2, n-2)}{B(m, n)} = \frac{m(m+1)}{(n-1)(n-2)}$$

Sol. (i)
$$\frac{P(p, q+1) - \Gamma(p) \Gamma(q+1)}{q \Gamma(p+q+1)}$$
$$= \frac{\Gamma(p) q \Gamma(q)}{q (p+q) \Gamma(p+q)}$$
$$= \frac{\Gamma(p) \Gamma(q)}{(p+q) \Gamma(p+q)} = \frac{\Gamma(p) \Gamma(q)}{(p+q) \Gamma(p+q)}$$

Similarly $\frac{B(p+1,q)}{q} - \frac{B(p,q)}{p+q}$

Hence the result.

B(m, n)

(ii) B(m+1, n) =
$$\frac{\Gamma(m+1) \Gamma(n)}{\Gamma(m+n+1)}$$

$$= \frac{m}{m} \Gamma(m) \Gamma(n)$$

$$= \frac{m}{m+n} B(m, n)$$

$$= \frac{m}{m+n} B(m, n)$$

(iii)
$$B(m+2, n-2) = \frac{\Gamma(m+2) \Gamma(n-2)}{\Gamma(m+n)}$$
$$= \frac{(m+1)m \Gamma(m) \Gamma(n-2)}{\Gamma(m+n)}$$

m+n

then.

wher

BETA AND GAMMA FUNCTIONS

$$B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

$$B(m+2, n-2) = \overline{m}(m+1) \Gamma(m) \Gamma(n-2) \Gamma(m+n)$$

$$= \overline{m}(m+1) \Gamma(n-2)$$

$$\Gamma(n)$$

$$= \overline{m}(m+1) \Gamma(n-2)$$

Example 23. Evaluate the following integrals:

$$(i) \int_0^\infty x^6 e^{-2x} \ dx$$

$$(ii) \int_0^\infty e^{-4\pi} x^{3/2} dx$$

(iii)
$$\int_{0}^{2} \frac{x^{2}}{\sqrt{2-x}} dx$$
 (iv)
$$\int_{0}^{3} \frac{dx}{\sqrt{3x-x^{2}}}$$

$$(iv) \int_0^3 \frac{dx}{\sqrt{3x-x^2}}$$

(v)
$$\int_{0}^{\infty} \frac{x^{2}(1-x^{6})}{(1+x)^{24}} dx$$

$$(v) \int_0^\infty \frac{x^3 (1-x^6)}{(1+x)^{24}} dx \qquad (vi) \int_0^\infty \frac{x^4 (1+x^5)}{(1+x)^{15}} dx.$$

(Mcerut 1989; Kanpur 1985)-

Sol. (i) Put 2x=z i.e., $x=\{z\}$ then

when x=0, z=0; when $x \to \infty$, $z \to \infty$

$$\int_{0}^{\infty} x^{6}e^{-2x} dx = \int_{0}^{\infty} (|z|^{6}e^{-z} \cdot \frac{1}{2} dz - \frac{1}{128} \int_{0}^{\infty} z^{6}e^{-z} dz = \frac{1}{128} \Gamma(7)$$

$$= \frac{1}{128} (6!) \qquad \frac{\Gamma(n) = (n-1)!}{\text{where } n \in \mathbb{N}}$$

$$= \frac{6 \times 5 \times 4 \times 3 \times 2}{128} = \frac{45}{8}$$

(ii) Please try yoursels.

 $\left[\text{Ars. } \frac{3\sqrt{z}}{128} \right]$

(iii) Put x=2z then dx=2dz

When x=0, z=0; when x=2, z=1

$$\int_0^2 \frac{x^2}{\sqrt{2-x}} dx = \int_0^1 \frac{4z^2}{\sqrt{2(1-z)}} \cdot 2dz$$

$$=4\sqrt{2}\int_{0}^{1} z^{2} (1-z)^{-1/2} z^{2}$$

$$=4\sqrt{2}B\left(3, \frac{1}{2}\right)$$

$$=4\sqrt{2}\frac{\Gamma(3)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(3+\frac{1}{2}\right)}$$

$$=4\sqrt{2}\cdot\frac{(21)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{7}{2}\right)}$$

$$=8\sqrt{2}\cdot\frac{\Gamma\left(\frac{7}{2}\right)}{\frac{5}{2}-\frac{3}{2}\cdot\frac{1}{2}\Gamma\left(\frac{1}{2}\right)} = \frac{64\sqrt{2}}{15}$$

$$\begin{bmatrix} \frac{3}{2} & \frac{dx}{\sqrt{2}} & \frac{3}{2} & \frac{dx}{\sqrt{2}} \\ \frac{3}{2} & \frac{dx}{\sqrt{2}} & \frac{3}{2} & \frac{dx}{\sqrt{2}} \end{bmatrix}$$

(iv)
$$I = \int_0^3 \frac{dx}{\sqrt{3x - x^2}} = \int_0^3 \frac{dx}{\sqrt{x}\sqrt{3 - x}}$$

Put x=3z then dx=3dz

When
$$x=0, z=0;$$
 when $x=3, z=1$

$$I = \int_{0}^{1} \frac{3dz}{\sqrt{3z} \sqrt{3(1-z)}} = \int_{0}^{1} z^{-1/2} (1-z)^{-1/2} dz$$

$$= B \left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right) - \Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \left[\Gamma\left(\frac{1}{2}\right)\right]_{z}^{z}$$

$$= \Gamma\left(\frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right) - \Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right) - \Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right) - \Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right) - \Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = \frac{\Gamma\left(\frac$$

$$=(\sqrt{\pi})^2=\pi$$

(v)
$$\bar{1} = \int_{0}^{\infty} \frac{x^{4} (1-x^{6})}{(1+x)^{24}} dx$$

$$= \int_{0}^{\infty} \frac{x^{9}}{(1+x)^{24}} dx - \int_{0}^{\infty} \frac{x^{11}}{(1+x)^{24}} dx$$

$$= \int_{0}^{\infty} \frac{x^{9-1}}{(1+x)^{9+15}} dx - \int_{0}^{\infty} \frac{x^{75-1}}{(1+x)^{15+9}} dx$$

$$= B (9, 15) - B (15, 9)$$

$$\left[: \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = B (m, n) \right]_{0}^{\infty}$$

$$= 0$$

$$\left[: B (m, n) = B (n, m) \right]_{0}^{\infty}$$

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pd

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

THE CONTROL OF THE PARTY OF THE

si.

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

THE STATE OF THE S

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

gromment mender mention of the second mentio

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

×5

· "