

CSE 574: INTRODUCTION TO MACHINE LEARNING – ASSIGNMENT 2

REGRESSION

TEAM MEMBERS:

Ankit Sarraf (5009 7190)

Karthick Krishna Venkatakrishan (5009 8126)

Rahul Singh (5009 7213)

Report 1: Experiment with Linear Regression

Without intercept:

The RSE for training data: 2149.899 The RSE for testing data: 4621.155

With Intercept:

The RSE for training data: 727.525 The RSE for testing data: 861.143

Inference: RSE obtained in the data with intercept is lesser than the RSE obtained in the data without intercept. So the RSE with intercept is better. The explanation for such a behavior is when data with bias (intercept) is considered; one can get a better fit while doing the linear regression. Therefore, the magnitude of error in case of data with intercept is lesser.

Report 2: Experiment with Ridge Regression

Lambda	RSE - Training data using Ridge Regression	RSE - Testing data using Ridge
_		Regression
0	727.5251139	861.1434241
1.00E-05	737.326654	800.9723471
2.00E-05	741.2290929	786.8214206
3.00E-05	744.2870026	778.4790109
4.00E-05	746.852344	772.9245672
5.00E-05	749.0735185	768.9805777
6.00E-05	751.0343349	766.0607267
7.00E-05	752.7897323	763.8343793
8.00E-05	754.3787264	762.0994537
9.00E-05	755.8303844	760.725077
0.0001	757.1670641	759.6226644
0.00011	758.4063656	758.7301159
0.00012	759.562394	758.0026338
0.00013	760.6466182	757.4071209
0.00014	761.6684775	756.9186234
0.00015	762.6358208	756.5179946
0.00016	763.5552341	756.1903176
0.00017	764.4322878	755.923813
0.00018	765.2717264	755.7090669
0.00019	766.0776174	755.538474
0.0002	766.8534678	755.4058303
0.00021	767.6023173	755.3060297
0.00022	768.3268139	755.2348359
0.00023	769.0292739	755.1887074
0.00024	769.7117325	755.1646639
0.00025	770.3759845	755.1601806
0.00026	771.0236183	755.1731066
0.00027	771.6560446	755.2015989
0.00028	772.2745198	755.2440702
0.00029	772.8801667	755.2991469
0.0003	773.4739908	755.3656348
0.00031	774.0568954	755.4424911
0.00032	774.6296938	755.5288016
0.00033	775.19312	755.6237615
0.00034	775.7478377	755.7266598
0.00035	776.2944486	755.8368662

0.00036	776.833499	755.9538198
0.00037	777.3654859	756.0770202
0.00038	777.8908623	756.2060191
0.00039	778.4100417	756.3404141
0.0004	778.9234022	756.4798426
0.00041	779.4312901	756.6239774
0.00042	779.9340231	756.7725219
0.00043	780.4318929	756.9252067
0.00044	780.9251677	757.0817869
0.00045	781.4140947	757.2420388
0.00046	781.8989015	757.4057576
0.00047	782.3797985	757.5727558
0.00048	782.85698	757.7428608
0.00049	783.3306258	757.9159139
0.0005	783.8009024	758.0917684
0.00051	784.2679642	758.2702887
0.00052	784.7319544	758.451349
0.00053	785.1930063	758.6348325
0.00054	785.6512434	758.8206306
0.00055	786.1067811	759.008642
0.00056	786.5597264	759.198772
0.00057	787.0101796	759.3909319
0.00058	787.4582338	759.5850388
0.00059	787.9039762	759.7810147
0.0006	788.3474881	759.9787863
0.00061	788.7888458	760.1782843
0.00062	789.2281205	760.3794437
0.00063	789.6653789	760.5822027
0.00064	790.1006836	760.7865031
0.00065	790.5340932	760.9922894
0.00066	790.9656628	761.1995093
0.00067	791.3954441	761.4081129
0.00068	791.8234858	761.6180525
0.00069	792.2498335	761.8292831
0.0007	792.6745302	762.0417614
0.00071	793.0976165	762.2554461
0.00072	793.5191305	762.4702978
0.00073	793.9391082	762.6862787
0.00074	794.3575837	762.9033527
0.00075	794.7745888	763.1214849
0.00076	795.190154	763.340642

0.00077	795.6043078	763.560792
0.00078	796.0170774	763.781904
0.00079	796.4284883	764.0039482
0.0008	796.8385649	764.226896
0.00081	797.2473301	764.4507198
0.00082	797.6548058	764.6753929
0.00083	798.0610126	764.9008894
0.00084	798.4659702	765.1271845
0.00085	798.8696973	765.3542541
0.00086	799.2722116	765.5820748
0.00087	799.6735301	765.8106239
0.00088	800.0736687	766.0398796
0.00089	800.4726428	766.2698205
0.0009	800.870467	766.500426
0.00091	801.2671553	766.7316761
0.00092	801.6627208	766.9635513
0.00093	802.0571764	767.1960327
0.00094	802.4505341	767.4291018
0.00095	802.8428055	767.6627407
0.00096	803.2340018	767.896932
0.00097	803.6241335	768.1316587
0.00098	804.013211	768.3669044
0.00099	804.4012439	768.6026528
0.001	804.7882417	768.8388882

Plot of training and testing data for different values of lambda (represented by the index):

Weights for OLE and Ridge Regression:

Relative magnitude of weights for	Relative magnitude of weights for ridge
OLE	regression
148.154876	150.8068266
1.274852078	12.26892106
-293.3835226	-127.7819386
414.7254475	327.3017954
272.0891343	217.2848727
-86639.45621	-16.99104123
75914.46723	-75.90604112
32341.62249	-157.2735006
221.1011579	127.8755115
29299.5509	362.8485039
125.230359	139.5960079
94.41108463	66.41530811

-93.86286198	63.46461804
-33.72827899	31.48643778
3353.197449	11.92277154
-621.0961829	-40.25522916
791.7362581	10.48312027
1767.76037	52.34760855
4191.673968	-20.77718512
119.4381201	36.92434467
76.61033921	82.8397509
-15.20013028	-5.830312851
82.24245944	61.40305464
-1456.662087	-41.96813329
827.3867004	-84.23558439
869.29096	33.01745857
586.2345027	11.7255643
427.0267304	60.5276294
90.24676871	34.08647223
-17.88762379	16.86415159
141.6967732	57.78432755
582.8193796	43.28103268
-234.0375038	-4.10072852
-256.071452	71.51781141
-385.177402	5.628010926
-33.41767078	30.13841585
-10.73500665	-27.70000254
257.1071871	73.3064036
59.95545989	-16.89097822
383.7280412	16.67076808
-404.1583922	-27.8463165
-514.2864356	5.79772715
38.36366489	-12.57234193
-44.61028765	50.21532059
-729.6434944	-41.67734077
377.408303	-34.83998137
439.7942787	21.66931078
308.5143791	2.165374581
189.8596652	10.17914742
-109.7737972	-20.6752362
-1919.656943	-3.1333501
-1924.633525	73.575854
-3489.794816	-59.44872226

11796.96852	-9.028338247
530.674454	8.371172755
543.3062412	31.84482717
1821.075743	-15.94763469
-10463.98071	47.87385561
-516.6276031	17.72398939
2064.359125	-37.07908572
-4199.413364	40.27425969
-140.4957053	-9.977183838
374.1570897	-39.03819219
51.47574926	56.27038742
-46.44927306	28.69075366

Comparing the weights of OLE Regression and Ridge Regression

A) Weights for OLE Regression for Data with Intercept:

B) Weights for the Data with intercept using Ridge Regression

Reason: In Ridge Regression the higher weights are penalized. Hence they fall in the similar ranges. Where as in case of OLE Regression, the higher order weights are not penalized. Therefore, such a high variation can be observed.

The mean weight in case of OLE Regression (with data that has bias) is 882.8076

The mean weight for the Ridge Regression is **25.7461**

So we infer that the relative weight of the ridge regression is lesser than the relative weight for the OLE with intercept, all corresponding to the optimal lambda value.

For OLE:

The RSE for training data: **727.525** The RSE for testing data: **861.143**

For Ridge Regression with the optimal lambda value (0.00025):

The RSE for training data is: **770.376** The RSE for testing data is: **755.160**

We can clearly infer that even though the RSE for training data is more in Ridge Regression than that of the OLE method with intercept, the RSE for testing data is lesser in Ridge Regression than that of the OLE method.

The optimal value of lambda is 0.00025. This value is chose since it is the best value obtained due to trade off between the bias and the variance. For this optimal value we get the minimal RSE for the test data. When the value of lambda < 0.00025, due to under-fitting (high bias), high error is observed. Where as in case of lambda > 0.00025, due to over-fitting (increased variance), error increases because of behavior similar to rote learning.

This clearly shows that the Ridge Regression method is more suitable than the OLE method as it gives lesser error for the test data.

Report 3: Using Gradient Descent For Ridge Regression Learning

Plotting of training and testing data obtained by gradient descent method of ridge regression by varying the values of regularization parameter (lambda).

Training and test errors for Gradient Descent Ridge Regression Learning:

lambda	The RSE for Training Data using Gradient Descent	The RSE for Testing Data using Gradient
	parameters:	Descent parameters:
0	732.7136891	833.9607773
1.00E-05	737.3741586	800.9847308
2.00E-05	741.3820506	786.6934061
3.00E-05	744.2918337	778.4780159
4.00E-05	746.8529278	772.9244374
5.00E-05	749.0737462	768.980135
6.00E-05	751.0344373	766.0607092
7.00E-05	752.7898233	763.8344377
8.00E-05	754.3786752	762.0994826

9.00E-05	755.8304055	760.7250815
0.0001	757.1670622	759.6226696
0.00011	758.4063624	758.7301253
0.00012	759.5624007	758.0026337
0.00013	760.6466234	757.4071207
0.00014	761.6684823	756.9186236
0.00015	762.6358283	756.5179918
0.00016	763.5552392	756.1903162
0.00017	764.4322829	755.92382
0.00018	765.2717231	755.7090704
0.00019	766.0776211	755.5384701
0.0002	766.8534685	755.4058298
0.00021	767.6023107	755.3060358
0.00022	768.3268166	755.2348377
0.00023	769.0292784	755.1887075
0.00024	769.7117227	755.1646714
0.00025	770.3759844	755.1601785
0.00026	771.0236101	755.173103
0.00027	771.6560526	755.2015941
0.00028	772.2745165	755.2440661
0.00029	772.8801603	755.2991535
0.0003	773.4739991	755.3656317
0.00031	774.0569	755.4424838
0.00032	774.6296969	755.528801
0.00033	775.1931341	755.6237592
0.00034	775.7478388	755.7266587
0.00035	776.2944505	755.8368676
0.00036	776.8335006	755.9538193
0.00037	777.3654944	756.0770148
0.00038	777.8908567	756.2060225
0.00039	778.4100361	756.3404105
0.0004	778.9233985	756.4798456
0.00041	779.4312826	756.6239794
0.00042	779.9340294	756.7725197
0.00043	780.4318982	756.9252054
0.00044	780.9251643	757.0817817
0.00045	781.4140935	757.2420398
0.00046	781.8989026	757.4057584
0.00047	782.3797953	757.5727563
0.00048	782.8569822	757.742862
0.00049	783.3306271	757.9159112

0.0005	783.8009051	758.091768
0.00051	784.2679657	758.2702864
0.00052	784.7319518	758.4513501
0.00053	785.1930144	758.6348334
0.00054	785.6512446	758.8206402
0.00055	786.106781	759.0086422
0.00056	786.5597285	759.1987731
0.00057	787.0101793	759.3909332
0.00058	787.4582358	759.5850381
0.00059	787.9039762	759.781014
0.0006	788.3474891	759.9787867
0.00061	788.7888477	760.1782848
0.00062	789.2281224	760.3794465
0.00063	789.665377	760.5821996
0.00064	790.1006886	760.7865021
0.00065	790.5340934	760.9922855
0.00066	790.965667	761.1995124
0.00067	791.3954466	761.4081172
0.00068	791.8234869	761.6180514
0.00069	792.2498322	761.8292831
0.0007	792.6745246	762.0417606
0.00071	793.0976194	762.2554455
0.00072	793.5191332	762.4702963
0.00073	793.9391052	762.6862746
0.00074	794.3575882	762.9033515
0.00075	794.7745889	763.121485
0.00076	795.1901525	763.3406437
0.00077	795.6043114	763.5608005
0.00078	796.0170772	763.7819056
0.00079	796.4284875	764.003947
0.0008	796.8385611	764.226896
0.00081	797.2473231	764.4507181
0.00082	797.6547981	764.6753927
0.00083	798.0610087	764.9008874
0.00084	798.4659731	765.1271835
0.00085	798.8697002	765.3542564
0.00086	799.2722125	765.5820751
0.00087	799.6735319	765.8106228
0.00088	800.0736698	766.0398785
0.00089	800.4726462	766.2698255
0.0009	800.8704714	766.5004266

0.00091	801.2671508	766.7316763
0.00092	801.6627195	766.9635543
0.00093	802.0571769	767.1960329
0.00094	802.4505247	767.4290975
0.00095	802.8428052	767.6627392
0.00096	803.2340016	767.8969315
0.00097	803.62413	768.13166
0.00098	804.0132105	768.3669043
0.00099	804.4012445	768.6026545
0.001	804.7882432	768.8388919

When RSE's for the Ridge Regression and Gradient descent is observed, it can be clearly seen that both the Errors are of the same magnitude. This suggests that for the given data set the Gradient Descent gives the same results as the Ridge Regression.

Again, the U-shaped nature of the test data is account by the Bias Variance Tradeoff as in Part 2.

Report 4: Non-Linear Regression

A) For lambda = 0:

Plotting of testing and training error with zero regularization parameter by varying the d value from 0 to 6.

	Train	
d	Errors	Test Errors
0	1169.3896	1121.2854
<mark>1</mark>	975.3366	<mark>876.9304</mark>
2	972.9672	883.9828
3	972.8863	881.8135
4	969.6827	942.6906
5	969.6745	954.4454
<mark>6</mark>	<mark>967.3602</mark>	1169.0560

^{*}Calculated using the $[\sim, index] = min(Error)$ function.

So for lambda = 0, the value of d = 6 gives the most optimal results for Training Data and the value of d = 1 produces the most optimal results for the Test Data.

B) For lambda = lambda_optimal (0.00025):

Plotting of testing and training error with optimal regularization parameter by varying the d value from 0 to 6.

Training and testing for different values of d when lambda=optimal.

	Train	
d	Errors	Test Errors
0	1169.39	1121.3283
1	977.9675	882.7724
2	977.8258	882.7409
3	977.8252	882.7408
<mark>4</mark>	977.8252	<mark>882.7408</mark>
5	977.8252	882.7408
<mark>6</mark>	<mark>977.8252</mark>	882.7408

^{*}Calculated using the $[\sim, index] = min(Error)$ function.

When observed the plot, it is evident that for lambda = 0.00025 (lambda_optimal), the value of d = 6 gives the most optimal results for Training Data and the value of d = 4 produces the most optimal results for the Test Data.

Report 5: Interpreting Results:

Testing error is the major metric used to distinguish the methods. From all the above 4 methods we can conclude that:

- 1) The OLE with intercepts seems to be giving lesser RSE compared to the OLE without intercepts.
- 2) Even though the training error seems to be lesser in the OLE than the Ridge Regression, the testing error of OLE seems to more in the OLE.
- 3) The Ridge Regression seems to be quick and has less RSE for testing data as well. Even though the Gradient Descent Ridge Regression seems to give the same error results as that of the Ridge Regression, it takes longer time to compute than the Ridge Regression. Hence if we take time factor also into consideration, we can find that the Ridge Regression method gives the best result

4) STATISTICS (When the different regressions are executed individually)

For OLE Regression Without Intercept:

Training Error: 2149.8991 Testing Error: 4621.1548

With Intercept:

Training Error: 727.5251 Testing Error: 861.1434

Time Taken: 0.022352 seconds

For Ridge Regression
Training error: 770.3760
Testing error: 755.1602

Time Taken for calculations: 0.497997 seconds

For gradient descent for ridge regression

Training error: 770.3760 Testing error: 755.1602

The time taken for calculation: 49.755288 seconds

For Non-linear regression

For lambda = 0

Training Error: 967.3602 (d = 6) Test Error: 882.7408 (d = 1)

For lambda = lambda optimal (0.00025)

Training Error: 977.8252 (d = 6) Test Error: 882.7408 (d = 4)

The time taken for calculation: 0.437013 seconds

FINAL CONCLUSION:

Non Linear Regression takes lesser time for this input dataset, but the error observed is comparatively higher than that of Gradient Descent and Ridge Regression. So when the time is the preference, OLE Regression or Non-Linear Regression can be chosen. But when the accuracy of results is of higher priority, Ridge regression or Gradient descent can be a better option.