

Samedi 9 avril 2022

OPTION: PHYSIQUE

MP/PC/PSI/PT/TSI

Durée: 2 heures

Conditions particulières

Calculatrice et documents interdits

Concours CPGE EPITA-IPSA-ESME Option Physique

Isolation thermique et acoustique

• Calculatrices interdites.

On donne les valeurs approchées suivantes :

$$10^{-1/2} = 0.32, \quad 10^{-3/2} = 0.032, \quad \frac{2\pi}{24 \times 3600} = 7.3 \times 10^{-5}, \quad \frac{0.9}{1.4} = 0.64.$$

• Les différentes parties sont indépendantes.

Les sous-parties le sont également. En particulier les 3 études de la partie II peuvent être traitées indépendamment, et l'étude 3 mobilise presque uniquement des notions d'électronique.

I Double vitrage et isolation acoustique

Cette partie s'intéresse à l'isolation acoustique d'un double vitrage, notamment en la comparant à celle d'un simple vitrage.

I.1 Présentation de l'isolation acoustique du simple vitrage

Sur la figure 1, la courbe en trait tireté représente l'atténuation acoustique d'un simple vitrage en fonction de la fréquence de l'onde sonore incidente. La fréquence $f \approx 3000\,\mathrm{Hz}$, autour de laquelle on constate une baisse d'atténuation, est appelée fréquence critique de la vitre. On peut en obtenir une expression à l'aide d'une analyse de mécanique des fluides, qui ne sera pas faite ici.

Figure 1 : atténuation par un simple vitrage (vitre de 4 mm) et un double vitrage (vitre de 4 mm, vide de 12 mm, vitre de 4 mm). L'échelle verticale est en décibels, mais il n'est pas nécessaire d'en connaître la définition : simplement, plus l'atténuation en décibels est importante, plus l'onde sonore transmise est d'amplitude faible.

1 - Rappeler la gamme de fréquences audibles par l'être humain.

1.2 Double vitrage : étude en régime forcé

La figure 1 montre également la courbe d'atténuation acoustique du double vitrage (en trait plein). Elle présente deux baisses d'atténuation : une vers 250 Hz et une vers 3000 Hz.

2 - Comment s'explique la baisse d'atténuation vers 3000 Hz?

La présence de la baisse d'atténuation vers 250 Hz, absente pour le simple vitrage, montre que le double vitrage est globalement moins performant que le simple vitrage. Nous allons étudier l'origine de cette baisse.

Pour cela, on modélise le double vitrage comme deux masses m_1 et m_2 qui représentent chacune une vitre. La lame d'air qui sépare les deux vitres est modélisée par un ressort (pour son rôle élastique de transmission des vibrations) associé à un amortisseur visqueux (pour rendre compte de la dissipation).

- Le ressort possède une longueur à vide l_0 et une constante de raideur k.
- L'amortisseur exerce sur la masse 2 une force $\vec{f} = -\alpha(\dot{x}_2 \dot{x}_1)\vec{e}_x$ avec α une constante et \dot{x}_1 et \dot{x}_2 les vitesses des masses.
- Une onde sonore incidente force la vitre 1 à osciller selon $x_1(t) = A\cos(\omega t)$.

- 3 Donner l'expression de la force \vec{F} qu'exerce le ressort sur la masse 2, en fonction de l_0 , k, x_1 , x_2 et du vecteur unitaire \vec{e}_x .
- 4 Établir l'équation différentielle suivie par la position $x_2(t)$ de la masse 2.
- 5 On pose $u_2(t) = x_2(t) l_0$. En partant de la question précédente, montrer que $u_2(t)$ vérifie l'équation différentielle suivante :

$$\ddot{u}_2 + \frac{\omega_0}{Q} \dot{u}_2 + \omega_0^2 u_2 = \frac{\omega_0}{Q} \dot{x}_1 + \omega_0^2 x_1, \tag{1}$$

avec ω_0 et Q des paramètres dont on donnera les expressions en fonction de m_2 , k et α .

Dans la suite on travaille à partir de l'équation (1). On utilise le formalisme complexe, où une grandeur du type $u_2(t) = U_0 \cos(\omega t + \varphi)$ est représentée par la grandeur complexe $\underline{u}_2(t) = \underline{U}_0 e^{j\omega t}$ avec $\underline{U}_0 = U_0 e^{j\varphi}$ l'amplitude complexe associée (où j² = -1).

On voit l'ensemble du double vitrage comme un filtre de fonction de transfert $\underline{H} = \frac{\underline{u}_2}{\underline{x}_1}$.

- **6** Donner l'expression de \underline{H} , notamment en fonction de ω , ω_0 et Q.
- 7 Donner l'expression du gain $G = |\underline{H}|$ du filtre.

On introduit la pulsation réduite $x = \omega/\omega_0$. Le graphique ci-dessous montre l'évolution de $|\underline{H}|$ en fonction de x pour différentes valeurs de x.

8 - Comment s'appelle le phénomène qui se manifeste ici par un maximum marqué sur la courbe de gain?

- 9 On souhaite obtenir la position du maximum de la courbe $|\underline{H}|(x)$. Pour les valeurs élevées de Q qui nous concernent ici, le numérateur de $|\underline{H}|$ ne varie pas beaucoup autour du maximum. Le maximum est donc atteint lorsque le dénominateur est minimum.
 - On admet que ce dénominateur s'écrit $D(x) = \sqrt{(1-x^2)^2 + x^2/Q^2}$.
 - Établir, en suivant la démarche décrite ici, la position x du maximum de $|\underline{H}|(x)$ en fonction de Q. Indiquer également à quelle condition sur Q ce maximum existe.
- 10 Montrer que si Q est assez grand (de l'ordre de 10 par exemple), alors la position de ce maximum correspond à $\omega \simeq \omega_0$.

1.3 Détermination plus fine de la fréquence de résonance

Les questions qui précèdent expliquent la présence de la baisse d'atténuation du double vitrage à basses fréquences : pour ces fréquences, l'ensemble vitre-air-vitre entre en résonance et laisse passer l'onde sonore. Nous avons montré que la pulsation de résonance est donnée (quasiment) par la pulsation propre ω_0 du système.

Notre expression de ω_0 n'est toutefois pas correcte, car elle ne prend en compte que la masse de la seconde vitre. Or celle de la première doit aussi intervenir, car sa mise en mouvement par l'onde sonore incidente en dépend.

Pour obtenir la bonne expression, il faut déterminer la pulsation des oscillations d'un système masse 1-ressort-masse 2 en oscillations libres. On considère donc un tel système.

On note $l=x_2-x_1$ la longueur du ressort et l_0 sa longueur à vide. Il est initialement comprimé d'une quantité $\delta: l(t=0)=l_0-\delta$, puis il est relâché sans vitesse initiale à t=0. On néglige ici toute force de frottement et on ne considère que l'action du ressort, du poids et de la réaction normale du support sur les masses.

- 11 Établir l'équation différentielle suivie par la position $x_1(t)$ de la masse m_1 , puis celle suivie par la position $x_2(t)$ de la masse 2.
- 12 En déduire une équation différentielle portant sur la longueur l(t).
- 13 En déduire l'expression de la pulsation ω_0 des oscillations en fonction de m_1 , m_2 et k.
- 14 Établir la solution l(t) de cette équation différentielle.

C'est cette pulsation qui correspond à la résonance d'un double vitrage. On trouve en effet dans les guides acoustiques la formule suivante pour la fréquence de résonance : $f_r = 84 \times \sqrt{\frac{1}{d} \left(\frac{1}{m_1'} + \frac{1}{m_2'}\right)}$ avec f_r la fréquence en hertz, d la distance entre les vitres en mètres (dont dépend la raideur du ressort équivalent), et m_1' et m_2' les masses surfaciques des vitrages en kg/m².

- 15 Si on souhaite envoyer le pic de résonance vers les basses fréquences hors du domaine de l'audible, que faut-il faire concernant les masses des vitres?
- 16 Revenons sur le problème du creux d'atténuation vers $f \approx 3000\,\mathrm{Hz}$. Cette fréquence critique est inversement proportionnelle à l'épaisseur de la vitre. La courbe ci-dessous représente schématiquement l'atténuation d'un double vitrage asymétrique (vitres de 4 mm et 8 mm). Expliquez pourquoi les creux d'atténuation liés aux fréquences critiques sont plus faibles.

