Motivation

- seltene schlechte Laufzeiten mit vielen effizienten Laufzeiten
 - nicht automatisch ineffizient
- Begründung
 - einzelne Operationen sind aufwendig
 - m aufeinander folgende Operationen sind dennoch effizient
 - seltene schlechte Laufzeit wird auf häufige gute Laufzeit aufgeteilt

Beispiel [[Dynamische Arrays]]

• n-mal Einfügen und einmal erweitern in O(n)

$$-n * O(1) + O(n) = O(2n) = O(n)$$

Beispiel Dynamisches Array

- add/delete hat im WC Laufzeit $\Omega(n)$.
- Wir betrachten *k* add/delete-Operationen auf einem Anfangs leerem Array.
- Benötigen wir dann $\Omega(k^2)$ Laufzeit?

Nein:

Man betrachte k aufeinanderfolgende $\verb"add"$ oder $\verb"delete-Operationen"$ in beliebiger Reihenfolge auf einem anfangs leeren dynamischen Array.

Dann ist die Laufzeit für diese k Operationen T(k) = O(k).

Man betrachte k aufeinanderfolgende $\verb"add"$ oder $\verb"delete-Operationen"$ in beliebiger Reihenfolge auf einem anfangs leeren dynamischen Array.

Dann ist die Laufzeit für diese k Operationen T(k) = O(k).

i-te Operation	Auszahlung a_i (Laufzeit)	Einzahlung e_i
add (ohne Umstrukturierung)	1	3
add (mit Umstrukturierung)	n_i	2
delete (ohne Umstrukturierung)	1	3
delete (mit Umstrukturierung)	n_i	2

n_i Anzahl der Elemente in Array nach Operation i

 $n_{cap,i}$... Größe des Arrays nach Operation i

 $K_i \dots Kontostand nach Operation i, K_0 = 0$