5.5 微分

一、微分的概念

引例:设一半径为 r_0 的金属圆片受热后,其半径增加了 Δr ,求金属圆片面积S的增量 ΔS .

•
$$\Delta S = 2\pi r_0 \cdot \Delta r + \pi (\Delta r)^2$$

关于 Δr $\Delta r \rightarrow 0$ 时的
的线性主部 高阶无穷小

• $\Delta S \approx 2\pi r_0 \cdot \Delta r$

称为函数在 r_0 的微分

定义: 若函数 y = f(x) 在点 x_0 的增量可表示为

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x),$$

其中A是仅依赖于 x_0 而与 Δx 无关的常数,

则称 y = f(x) 在点 x_0 可微(differentiable).

称 $A\Delta x$ 为 y = f(x) 在 x_0 的 微分 (Differentials).

或
$$\mathbf{d}f(x)\Big|_{x=x_0} = A\Delta x$$
.

注: 固定 $x = x_0$, 微分 dy $|_{x=x_0}$ 是关于 Δx 的函数, 即 dy $|_{x=x_0}$ = dy $|_{x=x_0}$ (Δx) = $A\Delta x$.

例1、设 $y = x^3$, 求在点 $x_0 = 2$ 处当 Δx 分别为 0.1 与 0.01 时的 Δy 及 dy 的值.

定理: 函数 y = f(x) 在点 x_0 可微 $\Leftrightarrow y = f(x)$ 在点 x_0 可导且 $dy|_{x=x_0} = f'(x_0)\Delta x$.

$$\left| \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x=x_0} = f'(x_0) \Delta x$$

若
$$y = f(x)$$
 在点 x_0 可微,则

$$\Delta y = \mathrm{d}y \Big|_{x=x_0} + o(\Delta x) = f'(x_0) \Delta x + o(\Delta x).$$

当
$$f'(x_0) \neq 0$$
时,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\mathrm{d}y}\Big|_{x=x_0} = 1.$$

$$\Delta y \sim \mathrm{d}y\Big|_{x=x_0} (\Delta x \to 0)$$

微分的几何意义:

$$\Delta y \sim dy \Big|_{x=x_0}$$

$$(\Delta x \to 0).$$

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
, 当 $x \to x_0$.
曲线在 $M(x_0, y_0)$ 的切线

• 当 x 接近 x_0 时,用 (x_0, y_0) 处的切线近似代替曲线,即 "以直代曲".

定义2: 若 y = f(x) 在区间 I 内每一点可微,则称 f(x) 为 I 上的可微函数.

函数 y = f(x) 在 I 上任一点 x 处的微分记作

$$dy = f'(x)\Delta x.$$

(即
$$dy(\Delta x) = f'(x)\Delta x$$
.)

$$dy(\Delta x) = f'(x)\Delta x.$$

• $\Leftrightarrow f(x) = x, \emptyset dx(\Delta x) = \Delta x$.

故 dy = f'(x)dx. 两个微分之间的关系。

$$f'(x) = \frac{dy}{dx}$$
. \rightarrow \quad \text{导数,也称微商。}

二、微分的运算法则

- 1、基本初等函数的微分公式(由 P95-96) 16个导数公式对应于16个微分公式,如: $(\sin x)' = \cos x$ 对应于 $d\sin x = \cos x dx$.
- 2、四则运算法则: 设 u(x), v(x) 可微,则

$$(1) d(u \pm v) = du \pm dv \qquad (2) d(\lambda u) = \lambda du$$

$$(3)d(uv) = vdu + udv \qquad (4) d(\frac{u}{v}) = \frac{vdu - udv}{v^2} (v \neq 0)$$

3、复合函数微分法则(微分的形式不变性)

设
$$y = f(u)$$
与 $u = \varphi(x)$ 均可微,则
$$dy = f'(u)du, \quad du = \varphi'(x)dx.$$

复合函数 $y = f[\varphi(x)]$ 的微分为:

$$dy = f'(\varphi(x))\varphi'(x)dx$$
.

例2、求函数 $y = \sin(2x^2 + 1) + \ln(1 + e^{x^2})$ 的微分.

三、微分的应用1:近似计算

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
.

特别地, $x_0 = 0$ 时,

$$f(x) \approx f(0) + f'(0) x. \qquad (|x|)$$
很小)

$$y = f(0) + f'(0) x$$
:

为 y = f(x) 在点 (0, f(0)) 处的切线.

常用近似公式: (|x| 很小)

$$(1) e^x \approx 1 + x;$$

常用近似公式: (|x|很小)

(2) $\sin x \approx x$;

常用近似公式: (|x|很小)

 $(3) \ln(1+x) \approx x.$

常用近似公式: (|x| 很小)

(4)
$$(1+x)^{\alpha} \approx 1+\alpha x$$
; $y = 1+\frac{x}{2}$ $y = \sqrt{1+x}$

例3、求 $\sqrt{1.002}$ 的近似值.

三、微分的应用2:误差估计

某量的精确值为x,测量的近似值为 x_0 .

- $|x-x_0|$: x_0 的绝对误差.
- $\frac{|x-x_0|}{|x_0|}$: x_0 的相对误差.

若
$$|x-x_0| \leq \delta_x$$
,

• $\delta_x: x_0$ 的绝对误差限

设 y = f(x),测得 x 的近似值为 x_0 ,且 x_0 的绝对误差限为 δ_x ,计算 y 的误差。

$$|\Delta y| \approx |f'(x_0)| \cdot |\Delta x| \leq |f'(x_0)| \delta_x$$
.

则 y_0 的绝对误差限 $\delta_y \approx |f'(x_0)| \delta_x$.

$$y_0$$
 的相对误差限 $\frac{\delta_y}{|y_0|} \approx \left| \frac{f'(x_0)}{f(x_0)} \right| \delta_x$.

例4、计算球体体积时,要求精确度在1%以内. 问此时测量直径 D的相对误差不能超过 多少?

作 业

习题5-5: 2(4)(6)、4(4)