访问数据库

598次阅读

程序运行的时候,数据都是在内存中的。当程序终止的时候,通常都需要将数据保存到磁盘上,无论是保存到本地磁盘,还是通过网络保存到服务器上,最终都会将数据写入磁盘文件。

而如何定义数据的存储格式就是一个大问题。如果我们自己来定义存储格式,比如保存一个班级所有学生的成绩单:

```
名字 成绩
Michael 99
Bob 85
```

Bart 59

Lisa 87

你可以用一个文本文件保存,一行保存一个学生,用,隔开:

```
Michael, 99
Bob, 85
Bart, 59
Lisa, 87
```

你还可以用JSON格式保存,也是文本文件:

```
[
     {"name":"Michael", "score":99},
     {"name":"Bob", "score":85},
     {"name":"Bart", "score":59},
     {"name":"Lisa", "score":87}]
```

你还可以定义各种保存格式,但是问题来了:

存储和读取需要自己实现,JSON还是标准,自己定义的格式就各式各样了;

不能做快速查询,只有把数据全部读到内存中才能自己遍历,但有时候数据的大小远远超过了内存(比如蓝光电影,40GB的数据),根本无法全部读入内存。

为了便于程序保存和读取数据,而且,能直接通过条件快速查询到指定的数据,就出现了数据库(Database)这种专门用于集中存储和查询的软件。

数据库软件诞生的历史非常久远,早在1950年数据库就诞生了。经历了网状数据库,层次数据库,我们现在广泛使用的关系数据库是20世纪70年代基于关系模型的基础上诞生的。

关系模型有一套复杂的数学理论,但是从概念上是十分容易理解的。举个学校的例子:

假设某个XX省YY市ZZ县第一实验小学有3个年级,要表示出这3个年级,可以在Excel中用一个表格画出来:

Grade_	ID	Name
	1	一年级
	2	二年级
	3	三年级

每个年级又有若干个班级,要把所有班级表示出来,可以在Excel中再画一个表格:

Grade_ID	Class_ID	Name
1	11	一年级一班
1	12	一年级二班
1	13	一年级三班
2	21	二年级一班
2	22	二年级二班
3	31	三年级一班
3	32	三年级二班
3	33	三年级三班
3	34	三年级四班

这两个表格有个映射关系,就是根据Grade_ID可以在班级表中查找到对应的所有班级:

Grade_ID Name	Grade_ID	Class_ID	Name
1 一年级	1	11	一年级一班
2 二年级	1	12	一年级二班
3 三年级	1	13	一年级三班
	2	21	二年级一班
	2	22	二年级二班
	3	31	三年级一班
	3	32	三年级二班
	3	33	三年级三班
	3	34	三年级四班

也就是Grade表的每一行对应Class表的多行,在关系数据库中,这种基于表(Table)的一对多的关系就是关系数据库的基础。

根据某个年级的ID就可以查找所有班级的行,这种查询语句在关系数据库中称为SQL语句,可以写成:

SELECT * FROM classes WHERE grade_id = '1';

结果也是一个表:

	L	L
grade_id	class_id	name
1	11	一年级一班
1	12	一年级二班
1	13	一年级三班
	L	L

类似的, Class表的一行记录又可以关联到Student表的多行记录:

Grade_ID	Class_ID	Name
1	11	一年级一班
1	12	一年级二班
1	13	一年级三班
2	21	二年级一班
2	22	二年级二班
3	31	三年级一班
3	32	三年级二班
3	33	三年级三班
3	34	三年级四班

	Class_ID	Num	Name	Score
	11	10001	Michael	99
	11	10002	Bob	85
	11	10003	Bart	59
_	11	10004	Lisa	87
	12	10005	Tracy	91

由于本教程不涉及到关系数据库的详细内容,如果你想从零学习关系数据库和基本的SQL语句,推荐Coursera课程:

英文: https://www.coursera.org/course/db

中文: http://c.open.163.com/coursera/courseIntro.htm?cid=12

NoSQL

你也许还听说过NoSQL数据库,很多NoSQL宣传其速度和规模远远超过关系数据库,所以很多同学觉得有了NoSQL是否就不需要SQL了呢?千万不要被他们忽悠了,连SQL都不明白怎么可能搞明白NoSQL呢?

数据库类别

既然我们要使用关系数据库,就必须选择一个关系数据库。目前广泛使用的关系数据库也就这么几种:

付费的商用数据库:

- Oracle, 典型的高富帅;
- SQL Server, 微软自家产品, Windows定制专款;
- DB2, IBM的产品, 听起来挺高端;
- Sybase, 曾经跟微软是好基友, 后来关系破裂, 现在家境惨淡。

这些数据库都是不开源而且付费的,最大的好处是花了钱出了问题可以找厂家解决,不过在Web的世界里,常常需要部署成千上万的数据库服务器,当然不能把大把大把的银子扔给厂家,所以,无论是Google、Facebook,还是国内的BAT,无一例外都选择了免费的开源数据库:

- MySQL, 大家都在用, 一般错不了;
- PostgreSQL, 学术气息有点重, 其实挺不错, 但知名度没有MySQL高;
- sqlite, 嵌入式数据库, 适合桌面和移动应用。

作为Python开发工程师,选择哪个免费数据库呢?当然是MySQL。因为MySQL普及率最高,出了错,可以很容易找到解决方法。而且,围绕MySQL有一大堆监控和运维的工具,安装和使用很方便。

为了能继续后面的学习,你需要从MySQL官方网站下载并安装MySQL Community Server 5.6,这个版本是免费的,其他高级版本是要收钱的(请放心,收钱的功能我们用不上)。