

Метрики качества классификации

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

1. Метрики качества моделей

В конце занятия научимся:

- *измерять качество* решений в задачах классификации.

МАТРИЦА ОШИБОК

confusion matrix	y = 1	y = 0
a = 1	True Positive	False Positive
a = 0	False Negative	True Negative

На тестовой выборке имеем:

- * у вектор истинных значений
- * а вектор предсказаний классификатора

Будем раскладывать все пары (предсказание, истина) по ячейкам матрицы ошибок

ACCURACY

confusion matrix	y = 1	y = 0
a = 1	0	0
a = 0	2	998

Accuracy, Доля верных ответов

(в просторечии точность, но не путать с точностью из ML!)

Простая метрика, но абсолютно непоказательна в задачах с несбалансированными классами

Пример:

определение качества теста на рак. Тест постоянно предсказывает отсутствие рака. Доля верных ответов: 99.8%

$$accuracy = rac{TP + TN}{TP + TN + FP + FN}$$

PRECISION

confusion matrix	y = 1	y = 0
a = 1	170	100
a = 0	30	700

Precision, Точность отсутствие ложных срабатываний

Пример:

правильное распознавание намерения пользователя: лучше переспросить пользователя, чем сделать не то, что нужно

Точность =
$$170 / (170 + 100) = 0.629$$

$$precision = \frac{TP}{TP + FP}$$

RECALL

confusion matrix	y = 1	y = 0
a = 1	170	100
a = 0	30	700

Recall, Полнота

отсутствие ложных пропусков

Пример:

определение мошеннических действий в банке: лучше найти лишнее и проверить, чем не найти

Точность =
$$170 / (170 + 30) = 0.85$$

$$recall = rac{TP}{TP + FN}$$

F1 - MEPA

F1-мера

комбинация точности и полноты в одну метрику

Пример:

правильное распознавание намерения пользователя. Насколько мы уверены в том, что правильно поняли? Надо ли уточнить?

$$F1 = 2 * 0.629 * 0.85 / (0.629 + 0.85) = 0.723$$

$$F = \frac{2 * \operatorname{precision} * \operatorname{recall}}{\operatorname{precision} + \operatorname{recall}}$$

ОЦЕНКА КАЧЕСТВА КЛАССИФИКАЦИИ

Классификаторы обычно работают в 2 этапа:

- оценка вероятности принадлежности к классам а(х);
- выбор порога отсечения, при котором идёт распределение в тот или иной класс.

Это 2 отдельные задачи, после получения оценки вероятности можно отсортировать объекты и в различные периоды времени использовать разные пороги.

МНОГОКЛАССОВАЯ КЛАССИФИКАЦИЯ

Задача: $a(x) \in \{1, ..., K\}$ сводится к K задачам отделения класса N от остальных

Как усреднить качество К задач?

ОЦЕНКА КАЧЕСТВА КЛАССИФИКАЦИИ

МНОГОКЛАССОВАЯ КЛАССИФИКАЦИЯ

macro-averaging:

- вычислим итоговую метрику для каждой задачи;
- усредним по задачам. все классы делают равный вклад

weighted-averaging:

- вычислим confusion matrix для каждой задачи;
- усредним по задачам;
- вычислим итоговую метрику. классы делают вклад, пропорциональный размеру

РЕАЛИЗАЦИЯ В SKLEARN

sklearn.metrics

Схожий интерфейс: функции от у, у_pred

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

Метрик качества много, они разные по смыслу, для своих задач надо выбирать подходящую

Метрики качества классификации

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ