PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-183608

(43) Date of publication of application: 15.07.1997

(51)Int.CI.

CO1B 33/107

(21)Application number: 07-353386

(71)Applicant: AICHI STEEL WORKS LTD

(22)Date of filing:

28.12.1995

(72)Inventor: KOJIMA KOREHIKO

OKUDA TAKESHI

(54) PRODUCTION OF SILICON TETRAFLUORIDE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a producing method of extremely high practicality capable of efficiently producing silicon tetrafluoride useful in electronic material field with an inexpensive raw material particularly at a relatively low temp.

SOLUTION: Calcium fluoride and silicon dioxide are present in a contact state or adjacent with each other in the same particle in a sludge generated in a wet phosphoric acid or a phosphate fertilizer production process. Silicon tetrafluoride is obtained at high efficiency by using the sludge as a raw material and allowing it to react with sulfuric acid particularly in the quantity of 1.5 times, preferably ≥2 times of the stoichiometrically required quantity of fluorine. In the producing method, the reaction is performed at a low temp. of near room temp., particularly 50-100° C and silicon tetrafluoride is easily, efficiently and inexpensively produced.

OCCOLONA 120

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-183608

(43)公開日 平成9年(1997)7月15日

(51) Int.Cl.8

識別記号 庁内整理番号 \mathbf{F} I

技術表示箇所

C 0 1 B 33/107

C01B 33/107

Α

審査請求 未請求 請求項の数6 FD (全 7 頁)

(21)出願番号

特顧平7-353386

(22)出顧日

平成7年(1995)12月28日

(71)出願人 000116655

愛知製鋼株式会社

愛知県東海市荒尾町ワノ割1番地

(72)発明者 小島 是彦

愛知県東海市荒尾町ワノ割1番地 愛知製

鋼株式会社内

(72)発明者 奥田 剛士

愛知県東海市荒尾町ワノ割1番地 愛知製

鋼株式会社内

(74)代理人 弁理士 小島 清路

(54) 【発明の名称】 四フッ化ケイ素の製造方法

(57)【要約】

【課題】 電子材料分野において有用な四フッ化ケイ素 を、安価な原料を用いて、効率よく、特に比較的低温に おいて製造することができる、極めて実用性の高い製造 方法をを提供する。

【解決手段】 湿式法のリン酸及びリン酸肥料製造工程 において発生するスラッジ中では、同一粒子中にフッ化 カルシウムと二酸化ケイ素とが接して、或いは近接して 存在している。このスラッジを原料として使用し、これ に硫酸を反応させ、特にフッ素量に対して化学量論的に 必要な量の1.5倍、更には2倍以上の硫酸を反応させ ることにより、高い効率で四フッ化ケイ素を得る。この 製造方法では、室温程度の低温においても実用的な効率 でもって反応させることができ、特に50~100℃程 度の温度範囲において、容易に且つ効率よく、安価に四 フッ化ケイ素を製造することができる。

10

【特許請求の範囲】

【請求項1】 湿式法のリン酸製造工程又はリン酸肥料 製造工程において発生する、少なくともフッ化カルシウム(CaF,)と二酸化ケイ素(SiO,)とを含有す るスラッジと、硫酸とを反応させることを特徴とする四フッ化ケイ素の製造方法。

【請求項2】 上記硫酸は、上記スラッジ中のフッ素 (F)量に基づいて算出される化学量論的必要量の1. 5倍以上である請求項1記載の四フッ化ケイ素の製造方 注

【請求項3】 上記硫酸の濃度が90重量%以上である 請求項1又は2記載の四フッ化ケイ素の製造方法。

【請求項4】 20~150℃の温度範囲において反応 させることを特徴とする請求項1乃至3のいずれか1項 に記載の四フッ化ケイ素の製造方法。

【請求項5】 上記スラッジに予め二酸化ケイ素を混合し、その混合物と硫酸とを反応させることを特徴とする請求項1乃至4のいずれか1項に記載の四フッ化ケイ素の製造方法。

【請求項6】 上記スラッジを500~1000℃の温 20 度で焼成した後、硫酸と反応させることを特徴とする請求項1乃至5のいずれか1項に記載の四フッ化ケイ素の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、四フッ化ケイ素 (SiF,)の製造方法に関する。本発明の方法によって得られるSiF,は、アモルファスシリコン薄膜半導体、ドライエッチング、太陽電池、光ファイバー又はフュームドシリカ等の原料などとして使用される。

[0002]

【従来の技術】従来より、SiF,の製造方法としては、以下の各種方法が知られている。

①フルオロケイ酸水溶液と硫酸とを接触させ、互いに反応させてSiF,を発生させ、その後、SiF,を含むガス流を希硫酸液の液流から分離し、次いで、分離したガス流を特定濃度の硫酸によって洗浄し、更に固体吸収剤と接触させて精製し、純度の高いSiF,を得る(特開昭63-40714号公報)。

【0003】②金属珪弗化物を予め熱分解開始温度以上 40の温度で加熱処理した後、熱分解し、二酸化炭素 (CO,)等の不純物をほとんど含まない高純度のSiF, を得る(特開昭63-74910号公報)。

③特定量の珪酸を含有する蛍石に、珪酸の4 モル倍以上の弗化水素(HF)を含有するガス等を接触させた後、硫酸と反応させHFとSiF,を製造する。この方法では蛍石の分解率が高く、高収率でSiF,等が得られる(特開平1-153501号公報)。

Φ金属ケイ素とフッ素(F)を直接反応させてSiF,を得る。

【0004】しかし、SiF,は水との反応性が高く、フルオロケイ酸水溶液の濃度が低い上記①の方法では、発生したSiF,は容易に加水分解してしまう恐れがある。また、②の方法では、金属珪弗化物の製造にコストがかかり、且つ熱分解に要する温度が少なくとも300℃と高く、装置、操作上も問題が多い。更に、③の方法では、収率はそれほど高くはなく、硫酸との反応も100℃以上の高温であることを要するため、装置、エネルギーコストの点で不利であり、硫酸を含有するミストの発生も問題となる。また、④の方法は原料の純度が低く且つ高温での反応を利用する等の問題がある。

[0005]

【発明が解決しようとする課題】本発明は、上記問題点を解決するものであり、フッ化カルシウム(CaF、)と二酸化珪素(SiO。)とを含有する特定の原料を硫酸と反応させることにより、特に従来ではまったく予測できない室温から数十℃程度の低温、及び百数十℃程度までの広い温度範囲において、実用的な生産性と収率でSiF、を得ることができる製造方法を提供することを目的とする。また、本発明の製造方法では、湿式法による従来のリン酸及びリン酸肥料製造設備において、F分離装置に安価な水酸化カルシウム或いは酸化カルシウムを用いて得られるスラッジを原料とすることにより、更にコストを低減することができる。

[0006]

【課題を解決するための手段】本発明のSiF,の製造方法は、湿式法のリン酸製造工程又はリン酸肥料製造工程において発生する、少なくともCaF,とSiO,とを含有するスラッジと、硫酸とを反応させることを特徴とする。

【0007】リン酸又はリン酸肥料の製造方法としては湿式法と乾式法とがある。リン酸又はリン酸肥料の湿式製造法では、リン鉱石に硫酸或いはリン酸を反応させ、リン酸或いはリン酸肥料を得る。本発明のSiF.の製造方法では、この湿式法において発生するスラッジ等を原料として使用する。そして、このスラッジにおいてはCaF,とSiO,とが極めて近接して存在しているという予見されなかった新たな事実が見出された。

【0008】上記湿式法におけるスラッジ生成の条件によっては、CaF」の量がSiO2の量より相対的に多くなり、スラッジと硫酸との反応により過剰に発生したHFが生成するSiF4に混入し、F基準のSiF4の収率が低くなる場合がある。このような場合には発生したスラッジに予めSiO2を混合しておき、過剰のHFをこのSiO2と反応させることにより、F基準のSiF4の収率を高めることができる。

【0009】また、上記湿式法においては、スラッジ生成条件、使用するリン鉱石の組成或いはリン鉱石が焼成されたものか、非焼成のものか等によって発生するスラッジ中の炭酸塩の含有量が異なり、スラッジと硫酸との

3

反応によって発生するCO₂の量も異なる。そのため硫 酸との反応に先だって、スラッジを炭酸塩の熱分解温度 以上、好ましくは500~1000℃において焼成し、 炭酸塩を分解除去することにより、純度の高いSiF↓ を得ることもできる。

【0010】更に、上記硫酸は、比較的高濃度のものが 好ましく、90重量%以上、特に95重量%以上の濃度 の濃硫酸が使用される。この硫酸の使用量は、CaFュ 中のFに基づいて算出される化学量論的必要量と等量或 いはそれ以下であってもSiF、を生成させることはで 10 きる。しかし、より効率よく高い収率でSiF.を得る ためには、硫酸の量は上記化学量論的必要量の1.5倍 以上とすることが好ましい。

【0011】SiF、は容易に加水分解されるため、反 応系に存在する水はできるだけ少量であることが好まし い。一方、CaF、と硫酸との反応によって生成するH Fが、SiO、と反応する際には水が生成する。上記の ように過剰に使用される硫酸はこの水を吸収してしまう ため、SiF。の加水分解が抑えられ、収率が向上す る。また、特に濃硫酸はこの吸水性が大きいため、上記 20 のように濃度の高い硫酸の使用により効率よくSiF。 を製造することができる。

【0012】CaF、及びSiO、を含有するスラッジ からなる原料と、硫酸とを反応させる温度は特に限定さ れない。本発明の製造方法では、この温度は20~15 0℃、特に20~75℃、更に20~50℃という低温 とすることもできる。SiF、を製造する従来の方法で は、通常、反応温度は100℃を越える高温とする必要 があるが、本発明では、上記のように室温において反応 させることもできる。そのため、装置、エネルギーコス 30 ト等の点でも有利であり、また、操作も容易で安全性も 高い。更に、硫酸根を含むミストの発生も少なく、より 純度の高いSiF、を得ることができる。

【0013】尚、反応時間が同じであれば、上記の反応※

*温度が高い方が収率も高い。また、低温であっても長時 間反応させれば収率を上げることはできる。しかし、あ まりに長時間を要したのでは実用的ではない。更に、本 発明の製造方法ばかりでなく他の方法でも同様である が、後工程等とのバランスを考慮すれば、反応が速けれ ばいいというものでもない。本発明では、他の方法では 反応が十分に進まない低温域において、他工程との連動 をとりながら実用上十分な反応速度で、SiF.を効率 よく製造することができる。

[0014]

【発明の実施の形態】以下に実施例及び比較例によって 本発明を詳しく説明する。

(1) 使用したスラッジの組成

リン酸肥料製造工程において発生したスラッジを110 ℃で十分乾燥し、SEM-EDS分析、X線回折、IC P-発光分光分析及びイオンクロマトグラフィー分析に よって、組成分析した。SEM-EDS分析の結果によ れば、上記スラッジ中には元素としてF、Ca、ケイ素 (Si)及び〇等が認められた。

【0015】また、ICP-発光分光分析及びイオンク ロマトグラフィー分析の結果によれば、表1のように F、Ca及びSiの各元素の割合が合計で約75重量% と高く、その他の検出元素は極く微量である。尚、表1 には比較のためにリン鉱石の分析結果も載せたが、スラ ッジに比べてCa元素のみは同等量であるが、F及びS i元素の含有量は非常に少ない。更に、X線回折の結果 によれば、スラッジ中のF、Ca及びSiの各元素は、 結晶質のCaF、と非晶質のSiO、とを構成している ことが確認された。尚、上記のX線回折によれば、スラ ッジ中にはCa、F及びSiの3元素を含む化合物は実 質的に認められない。

[0016]

【表1】

表	

元	義	S i	F	Са	P	Fe	ΑI
	重量%	12, 0	28, 0	35. 2	_	0.060	0. 780
スラッジA	原子数比 (F基準)	0. 292	1.000	O. 59B	_	0. 0007	0. 020
// > . A =	重量%	2. 45	3. 20	36. 0	15.3	0.60	1. 30
リン鉱石	原子数比 (F基準)	0. 524	1.000	5. 36	2. 93	0.065	0. 286

【0017】(2) スラッジ中のCaF, とSiO, の分 布

上記スラッジ中ではCaF、とSiO、とは一つの粒子 内に混在している。この一つの粒子とは、それぞれの化 合物からなるクラスター及び/又は粒子の凝集体である 50 め、EPMAによる分析結果をコンピューター処理する

と思われ、その中でCaF、分子とSiO、分子とは互 いに近接して存在していると考えられる。

【0018】湿式法において発生するスラッジ粒子で は、上記のような状況になっていることを確認するた

ことにより画像化し、F及びSi各元素の濃度マップを 作成した。また、比較のため、試薬として供給されてい るCaF、とSiO、を重量比1:25の割合でメノウ 乳鉢によって十分に混練、粉砕し、同様の処理によって マップを作成した。尚、このマップは濃度を色によって 表すものであるため、これらマップにおいてそれぞれの 元素の濃度の高い部分を写し取って図1 (実施品)及び 図2(比較品)に示す。

【0019】図1は実施品中のF及びSi各元素の濃度 の高い部分をそれぞれ表す。図1において、ドットを付 10 した部分はSiを含む化合物(SiO,)が、その箇所 において60重量%以上存在し、残部はFを含む化合物 (CaF,) であることを示す。また、黒塗りの部分は Fを含む化合物(CaF,)が、その箇所において60 重量%以上存在し、残部はSiO,であることを示し、 白抜きの部分はSiとFが同程度の濃度で混在している 部分である。これらはいずれの部分においても、Siと FがEPMAの分解能以下の距離で隣接していることを 示しており、更に黒塗りの部分は、SiとFの濃度比が を意味している。

【0020】図2は比較品の濃度マップを示したもので あり、ドットを付した部分はSiを含む化合物(SiO 。)が、また、黒塗りの部分はCaを含む化合物(Ca F,)が高濃度で存在していることを示す。この図2に よれば、比較品においてはCaF、とSiO、とがそれ ぞれ別個に存在し、しかも相当に離れて存在しているこ とが明らかであり、スラッジのようにEPMAの分解能 の範囲内で両化合物が共存していることはない。

【0021】上記のスラッジを使用し、以下のようにし*30

* てSiF。を製造し、硫酸の使用量、硫酸の濃度、反応 温度、原料の種類、スラッジの組成及びスラッジ焼成の 温度の影響を確認した。

【0022】(3) 硫酸の使用量の影響

反応室において、以下の条件でスラッジAと98重量% 硫酸とを反応させ、発生したSiF,ガスを4連の吸収 瓶中の水酸化ナトリウム(NaOH)水溶液によって吸 収し、吸収液のSi濃度から発生したSiF。量を求め た。表2に使用した硫酸の量並びに発生したSiF,量 及びF基準のSiF,の発生効率を示す。

【0023】反応条件:

スラッジA; 0.4g

反応温度;120℃

反応時間:30分

硫酸使用量:表2の通り

キャリアガス及びその流量:アルゴンガス、300ml

/min.

吸収液;1NのNaOH水溶液100ml

【0024】尚、スラッジAに含まれるFの量から硫酸 SiF,のSiとFの化学量論的比率1:4に近いこと 20 の量を計算した結果、CaF』:硫酸=1:1となる硫 酸の量は0.289gであった。表2において硫酸量の 欄の倍率はこの量を基準とするものである。また、表2 においてSi量はICP-発光分光分析によって求め た。そしてこのSi量から発生したSiF、量を求め、 使用したスラッジに含まれるFの量から計算されるSi F, の理論発生量によって除して100倍した値がSi F. 発生効率であり、この数値が高ければSiF. の収 率が高い。

[0025]

【表2】

硫酸量 (倍)	0, 5	1	2	4	8
SIF4発生量(mg)	70. 2	124	137	145	144
SiF 4 発生効率(%)	45. 9	81.0	89. 5	94.8	94.1

【0026】表2の結果によれば、硫酸の使用量が0. 5倍ではSiF.発生効率は少し低いが、1倍では8 1. 0%となって相当に高い効率でSiF,が得られて 40 いることが分かる。また、倍率が2倍の条件で発生効率 は90%程度となり、更に硫酸の使用量を4倍まで増加 させると、発生効率は約95%となり、非常に効率よく SiF、が得られる。しかし、それ以上多量の硫酸を使 用しても、更なる効率の上昇はみられない。従って、硫 酸の使用量は2倍程度から多くても4~5倍程度までの 量が最適であることが分かる。尚、30分で反応を打ち

切っているが、これを継続すれば、特に低温でも発生効 率は更に上昇する。

【0027】(4) 硫酸濃度の影響

スラッジA:0.4gを用い、表3に示す濃度の硫酸1 Om 1 を使用した他は(3) と同じ条件でSiF, を発生 させた。また、SiF、発生量及び発生効率も上記(3) の場合と同様にして求めた。その結果を表3に示す。

[0028]

【表3】

表 3

硫酸濃度 (氫量光)	70	80	90	98
SiF4 発生量 (mg)	100	114	143	147
SIF4 発生効率(%)	65. 5	74.8	93. 2	95. 9

【0029】表3の結果によれば、SiF、発生効率は 硫酸濃度によって異なり、硫酸濃度が90重量%以上の ↓ が水によって加水分解され、結果的に発生量が低下す るものと考えられる。

【0030】(5) 反応温度の影響

スラッジA; 0. 4gを用い、98%硫酸の量を10m*

*1、反応温度を表4のようにした以外は、上記(3)の場 合と同様にしてSiF、を発生させた。また、SiF、 場合に高い効率となる。低濃度の場合は発生したSiF 10 発生量及び発生効率も上記(3) の場合と同様にして求め た。その結果を表4に示す。

[0031]

【表4】

反応温度 (℃)	24	70	100	150
SIF4 発生量(mg)	51.8	90. 0	135	147
SIF4 発生効率(%)	33. 9	58. B	B8. 2	96. 1

【0032】表4の結果によれば、反応温度が24℃と 低い場合であってもSiF,が発生している。このよう に、常温下でも30%以上の発生効率で反応するという ことは従来ではまったく考えられなかったことである。 これはCaF、とSiO、とが一つの粒子中に接して、 或いは近接して存在しており、粒子表面が不規則で表面 積が大きいためであると考えられる。また、SiF、発 生効率は反応温度の上昇に伴って向上している。しか し、150℃では飽和状態に近く、実用上、それ以上の 30 0gとの混合物 高温にしてもあまり意味がないように思われる。尚、上 記(3) の場合と同様、30分経過後も反応を継続すれ ば、特に低温においても発生効率は更に上昇する。

【0033】(6) 原料種の影響

原料として下記の3種類のものを使用した。98%硫酸 の量はスラッジA及び工業材料混合物では10ml、試

薬混合物では20m1とした。また、反応温度は25 ℃、50℃及び75℃とし、それ以外は(3) の場合と同 様にしてSiF、を発生させた。更に、SiF、発生量 及び発生効率も上記(3)の場合と同様にして求めた。そ の結果を表5に示す。

【0034】原料種:

スラッジA; 0.4g

試薬混合物;試薬CaF, 0.2gと試薬SiO, 5.

工業材料混合物;工業材料CaF, (ほたる石)0.2 gと工業材料SiO1(ケイ石)5.0gとの混合物 尚、混合の方法は前記の通りである。

[0035]

【表5】

反応温	25	50	75	
7.5.4	SiF4発生量 (mg)	62.3	71.5	95. 4
スラッジA	SiF4発生効率(%)	40.8	46.7	62.3
	Sif4発生量 (mg)	10.3	13.5	19.1
	SiF4発生効率(%)	7.54	10.1	14.3
工业计划混合体	SiF + 発生量 (mg)	0.90	6.80	11.70
工業材料混合物	SiF₄発生効率 (%)	0.67	5. 07	8.73

【0036】表5の結果によれば、いずれの原料を使用 しても反応温度の上昇に伴ってSi効率は向上している ものの、発生効率に著しい差のあることが分かる。すな わち、スラッジAでは反応温度が25℃と低い場合であ っても相当の効率で四フッ化ケイ素が発生しているのに 20 生効率に影響を与える。表6に示すスラッジBの組成の 対し、試薬或いは工業材料の混合物を使用した場合は、 25℃においては勿論のこと、温度を高くしても効率は それほど向上せず、全温度範囲においてスラッジAに比 べてSiF、発生効率が大きく劣っていることが分か

【0037】との理由は、試薬では表面が不規則であっ て25℃でもある程度反応するが、CaF、とSiO、 の粒子が別個に存在するため、スラッジAの場合に比べ てSiF,発生効率が低いものと考えられる。また、工 業材料ではCaF, 、SiO, ともに表面がファセット*30

*状になっており、物質として最も安定な状態であるため に反応し難いものと思われる。

【0038】(7) スラッジ組成の影響

SiF」の製造に用いるスラッジの組成は、SiF、発 場合は、Si量がF基準の原子数比で0.207であ り、SiF,の化学量論的原子数比0.25より低い。 これはF基準のSiF、発生効率が低下することを意味 する。そこで上記スラッジBと試薬SiO。を100: 5及び100:10の重量比で混合し、混練した合成ス ラッジA及びBを得た。それらの組成及びF基準の原子 数比を表6に示す。尚、混合は前記と同様の方法で行っ

[0039] 【表6】

元	亲	s ı	F	C a	P	Fe	A I
	重量%	9. 04	29. 7	37. 7		0.061	0.782
スラッジB	原子數比 (F基準)	0. 207	1,000	0, 603		0. 0007	0, 020
	重量%	10.8	28. 3	35. 9		0. 058	0.744
合戦スラッジA	原子数比 (F基準)	0. 258	1.000	0.603		0. 0007	0.020
A ## 1/ B	量量%	12. 5	27.0	34. 3	_	0, 055	0.711
合成スラッジB	原子数比 (F基準)	0.314	1, 000	0, 603		0.007	0.020

【0040】表6に示すリン酸肥料製造工程において発 生したスラッジB、合成スラッジA及びBのそれぞれ

0. 4gと98%硫酸10m1を(3) と同様の条件で反 50 応させてSiF, を発生させ、F基準のSiF, 発生量

12

及び発生効率を求めた。その結果を表7に示す。

11

*【表7】

[0041]

丧

-	スラッジB	合成スラッジA	合成スラッジB
SiF4発生量(mg)	128	137	139
SIF4 発生効率(%)	78.6	88. 4	94. 0

【0042】表7の結果によれば、スラッジBに不足す 10%、の濃度を低減させることができ、得られるSiF.の るSi元素を加えることにより、F基準のSiF、発生 効率を大幅に向上し、高価なF元素を有効に活用すると とができることが分かる。

【0043】(8) 焼成温度の影響

110℃で十分に乾燥したスラッジAを、500℃、7 00℃及び1000℃でそれぞれ3時間焼成し、スラッ ジA500、A750及びA1000を得た。これらの スラッジから上記(6) と同じ条件でSiF, を発生さ せ、液体窒素で冷却したトラップで捕集した。捕集した ガス中のCO、濃度をガスクロマトグラフィーにより定 20 ることができる。 量分析した。その結果、スラッジA、A500、A75 0及びA1000から得られるSiF,中のCO, 濃度 はそれぞれ1.5%、0.23%、0.021%及び 0.020%であった。このように、スラッジを500 ~1000℃で焼成することにより、不純物であるCO※

純度を髙めることができる。

[0044]

【発明の効果】本発明の方法によれば、CaF、とSi O、とが接触又は近接して存在する特定の原料を使用す るため極めて効率よく、また特に室温程度の低温におい ても実用的な生産性と収率でもってSiF。を製造する ととができる。また、そのような原料として湿式法のリ ン酸及びリン酸肥料製造工程において生成するスラッジ を使用することにより、非常に安価にSiF、を製造す

【図面の簡単な説明】

【図1】スラッジ中のCaF、とSiO、の髙濃度分布 域を表す説明図である。

【図2】試葉混合物中のCaF, とSiO, の高濃度分 布域を表す説明図である。

【図1】

【図2】

