GPCO 453: Quantitative Methods I Sec 07: Samples

Shane Xinyang Xuan¹ Shane Xuan.com

November 13, 2017

¹Department of Political Science, UC San Diego, 9500 Gilman Drive #0521.

Contact Information

Shane Xinyang Xuan xxuan@ucsd.edu

The teaching staff is a team!

Professor Garg	Tu	1300-1500 (RBC 1303)
•		1300-1300 (NDC 1303)
Shane Xuan	M	1100-1200 (SSB 332)
	M	1530-1630 (SSB 332)
Joanna Valle-luna	Tu	
	Th	1300-1400 (RBC 3131)
Daniel Rust	F	1100-1230 (RBC 3213)

Roadmap

In this section, we cover the basics for probability:

► Sample proportion

Roadmap

In this section, we cover the basics for probability:

- ► Sample proportion
- ▶ Sample mean, known σ

Roadmap

In this section, we cover the basics for probability:

- ► Sample proportion
- ▶ Sample mean, known σ
- ▶ Sample mean, unknown σ

Statistic	Population	Sample
Mean	μ	\overline{x}
Proportion	p	\hat{p}
Standard Deviaion	σ	s

Statistic	Population	Sample
Mean	μ	\overline{x}
Proportion	p	\hat{p}
Standard Deviaion	σ	s

lacktriangle Standard error is the standard deviation of \overline{x} or \hat{p}

Statistic	Population	Sample
Mean	μ	\overline{x}
Proportion	p	\hat{p}
Standard Deviaion	σ	s

- ▶ Standard error is the standard deviation of \overline{x} or \hat{p}
- ▶ Standard deviation of \bar{x} is $\sigma_{\bar{x}}$:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \tag{1}$$

Statistic	Population	Sample
Mean	μ	\overline{x}
Proportion	p	\hat{p}
Standard Deviaion	σ	s

- ▶ Standard error is the standard deviation of \overline{x} or \hat{p}
- ▶ Standard deviation of \bar{x} is $\sigma_{\bar{x}}$:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \tag{1}$$

▶ Standard deviation of \hat{p} is $\sigma_{\hat{p}}$:

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \tag{2}$$

Assume that the population proportion is p=0.76, and the sample of 400 people is selected from the population

- Assume that the population proportion is p=0.76, and the sample of 400 people is selected from the population
- lacktriangle Show the sampling distribution of sample proportion \hat{p}

- ▶ Assume that the population proportion is p=0.76, and the sample of 400 people is selected from the population
- lacktriangle Show the sampling distribution of sample proportion \hat{p}
- ▶ The sampling distribution of \hat{p} can be approximated by a normal distribution whenever $np \geq 5$ and $np(1-p) \geq 5$

- Assume that the population proportion is p=0.76, and the sample of 400 people is selected from the population
- lacktriangle Show the sampling distribution of sample proportion \hat{p}
- ► The sampling distribution of \hat{p} can be approximated by a normal distribution whenever $np \geq 5$ and $np(1-p) \geq 5$
- We first calculate that

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \tag{3}$$

$$=\sqrt{\frac{0.76(1-0.76)}{400}}=0.0214\tag{4}$$

- Assume that the population proportion is p=0.76, and the sample of 400 people is selected from the population
- lacktriangle Show the sampling distribution of sample proportion \hat{p}
- ► The sampling distribution of \hat{p} can be approximated by a normal distribution whenever $np \geq 5$ and $np(1-p) \geq 5$
- ▶ We first calculate that

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \tag{3}$$

$$=\sqrt{\frac{0.76(1-0.76)}{400}}=0.0214\tag{4}$$

► The distribution is hence $\hat{p} \sim \mathcal{N}(0.76, 0.0214^2)$

► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.

- ► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.
- ► To calculate the confidence interval of the mean:

$$\overline{x} \pm z * \underbrace{\frac{\sigma}{\sqrt{n}}}_{\text{s.e.}}$$

- ► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.
- ► To calculate the confidence interval of the mean:

$$\overline{x} \pm z * \underbrace{\frac{\sigma}{\sqrt{n}}}_{\text{s.e.}}$$

- z is the statistic for the selected confidence level

- ► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.
- ► To calculate the confidence interval of the mean:

$$\overline{x} \pm z * \underbrace{\frac{\sigma}{\sqrt{n}}}_{\text{s.e.}}$$

- z is the statistic for the selected confidence level
- $-\sigma$ is the population standard deviation (if unknown, use s)

- ► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.
- ► To calculate the confidence interval of the mean:

$$\overline{x} \pm z * \underbrace{\frac{\sigma}{\sqrt{n}}}_{\text{s.e.}}$$

- z is the statistic for the selected confidence level
- $-\sigma$ is the population standard deviation (if unknown, use s)
- $-\frac{\sigma}{\sqrt{n}}$ is the standard error (that is, standard deviation of \overline{x})

- ► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.
- ▶ To calculate the confidence interval of the mean:

$$\overline{x} \pm z * \underbrace{\frac{\sigma}{\sqrt{n}}}_{\text{s.e.}}$$

- -z is the statistic for the selected confidence level
- $-\sigma$ is the population standard deviation (if unknown, use s)
- $-\frac{\sigma}{\sqrt{n}}$ is the standard error (that is, standard deviation of \overline{x})
- $-z\frac{\sigma}{\sqrt{n}}$ is the margin of error

- ► Confidence intervals provide more information than point estimates. The 95% confidence interval of the sample mean will contain the population mean 95% of the time.
- ▶ To calculate the confidence interval of the mean:

$$\overline{x} \pm z * \underbrace{\frac{\sigma}{\sqrt{n}}}_{\text{s.e.}}$$

- z is the statistic for the selected confidence level
- $-\sigma$ is the population standard deviation (if unknown, use s)
- $-\frac{\sigma}{\sqrt{n}}$ is the standard error (that is, standard deviation of \overline{x})
- $-z\frac{\sigma}{\sqrt{n}}$ is the margin of error
- ► Commonly used confidence level includes 68% (z=1), 90% (z=1.645), and 95% (z=1.96).

Example: Sample Mean with known σ

► Suppose the population standard deviation is 19. I selected a random sample. The sample size is 1000, and the sample mean is 127. Please write down the 95% confidence interval.

Example: Sample Mean with known σ

- ► Suppose the population standard deviation is 19. I selected a random sample. The sample size is 1000, and the sample mean is 127. Please write down the 95% confidence interval.
- ▶ The solution is

$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}} \tag{5}$$

$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}}$$
 (5)
=127 \pm 1.96 * \frac{19}{\sqrt{1000}}
=(125.82, 128.18)

▶ There are cases in which we do not know the population standard deviation σ . We use sample standard deviation s to estimate σ .

- ▶ There are cases in which we do not know the population standard deviation σ . We use sample standard deviation s to estimate σ .
- ► A little tweak on the formula

$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}} \implies \overline{x} \pm t * \frac{s}{\sqrt{n}}$$

- ▶ There are cases in which we do not know the population standard deviation σ . We use sample standard deviation s to estimate σ .
- ► A little tweak on the formula

$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}} \implies \overline{x} \pm t * \frac{s}{\sqrt{n}}$$

Use t-score instead of z-score

- ▶ There are cases in which we do not know the population standard deviation σ . We use sample standard deviation s to estimate σ .
- ► A little tweak on the formula

$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}} \implies \overline{x} \pm t * \frac{s}{\sqrt{n}}$$

- Use t-score instead of z-score
- Use s instead of σ

- ▶ There are cases in which we do not know the population standard deviation σ . We use sample standard deviation s to estimate σ .
- ► A little tweak on the formula

$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}} \implies \overline{x} \pm t * \frac{s}{\sqrt{n}}$$

- Use t-score instead of z-score
- Use s instead of σ
- ▶ That is, in the case in which σ is unknown, we can bootstrap σ with s, as long as we use t instead of z

▶ (Rule of thumb) We use z-table when $n \ge 30$, and t-table when n < 30. The t-statistics is calculated by

$$t_{\overline{x}} = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

Probability Density Function

The cartoon guide to statistics (Larry Gonick)

FOR A $(1-\alpha)\cdot 100\%$ CONFIDENCE INTERVAL, WE FIND THE CRITICAL VALUE $t_{\frac{\alpha}{2}}$ SUCH THAT $Pr(t \ge t_{\frac{\alpha}{2}}) = \frac{\alpha}{2}$. HERE IS A SHORT TABLE OF CRITICAL VALUES FOR THE t DISTRIBUTION:

	1-a	.80	.90	.95	.99
	α	.20	.10	.05	.01
	α/2	.10	.05	.025	.005
DEGREES OF	1	3.09	6.31	12.71	63.66
FREEDOM	10	1.37	1.81	2.23	4.14
The bottom	30	1.31	1.70	2.04	2.75
	100	1.29	1.66	1.98	2.63
	00	1.28	1.65	1.96	2.58

The cartoon guide to statistics (Larry Gonick)

Degrees	Area in Upper Tail					
of Freedom	.20	.10	.05	.025	.01	.005
1	1.376	3.078	6.314	12.706	31.821	63.656
2	1.061	1.886	2.920	4.303	6.965	9.925
3	.978	1.638	2.353	3.182	4.541	5.841
4	.941	1.533	2.132	2.776	3.747	4.604
5	.920	1.476	2.015	2.571	3.365	4.032
6	.906	1.440	1.943	2.447	3.143	3.707
7	.896	1.415	1.895	2.365	2.998	3.499
8	.889	1.397	1.860	2.306	2.896	3.355
9	.883	1.383	1.833	2.262	2.821	3.250

Table: When t-table only gives you information about Area in Upper Tail

$\frac{\alpha}{2}$	α	$1-\alpha$
0.05	0.1	90%
0.025	0.05	95%
0.01	0.02	98%
0.005	0.01	99%