Logistic Regression

Use Case: Telecom Dataset

Fellow: Jithin J Kumar

Telecom Dataset

Understand the Telecom data provided by analysing and visualising the data. Build the model using Logistic Regression with the train data. Predict the customers churning for the test data provided based on the built and validate

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
import seaborn as sns
from sklearn import preprocessing
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
```

```
df=pd.read_excel('train_telecom.xlsx')
```



```
df.shape
(3333, 20)
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3333 entries, 1 to 3333
Data columns (total 20 columns):
                                 3333 non-null object
state
                                 3333 non-null int64
account length
                                 3333 non-null object
area code
international plan
                                 3333 non-null object
voice mail plan
                                 3333 non-null object
number vmail messages
                                 3333 non-null int64
total day minutes
                                 3333 non-null float64
total day calls
                                 3333 non-null int64
total day charge
                                 3333 non-null float64
total eve minutes
                                 3333 non-null float64
total eve calls
                                 3333 non-null int64
total eve charge
                                 3333 non-null float64
total night minutes
                                 3333 non-null float64
total night calls
                                 3333 non-null int64
total night charge
                                 3333 non-null float64
total intl minutes
                                 3333 non-null float64
total intl calls
                                 3333 non-null int64
                                 3333 non-null float64
total intl charge
number customer service calls
                                 3333 non-null int64
                                 3333 non-null object
churn
dtypes: float64(8), int64(7), object(5)
memory usage: 546.8+ KB
```

As seen: 20 Columns

Dependent Variable is Y Independent Variables are as shown

3333 observations in the training data.

Categorical Variables are State, Area_code, International_plan, Voice_mail_plan and Churn

Rest all are Continuous Variables.

Data Exploration (Some Intresting Insights)

churn	no	yes	All	Percent		
state						
NJ	50	18	68	26.0		
CA	25	9	34	26.0		
TX	54	18	72	25.0		
MD	53	17	70	24.0		
SC	46	14	60	23.0		
MI	57	16	73	22.0		
MS	51	14	65	22.0		
WA	52	14	66	21.0		
ME	49	13	62	21.0		
NV	52	14	66	21.0		

churn area_code		no	у	es	All	Percent	
area_code_408	716		122		838	15.0	
area_code_510	169	715	125		840	15.0	
area_code_415	1419		236		1655	14.0	
All	2850		483		3333	14.0	
chu	rn	n	0	yes	s All	Percent	
international_pla	an						
	10	266	4	346	3010	11.0	
y	es	18	6	137	323	42.0	
ı	All	285	0	483	3333	14.0	
chu	rn	n	0	yes	s Al	l Percent	
voice_mail_pla	an						
	10	200	8	403	3 2411	17.0	
y	es	84	2	80	922	9.0	
	AII	285	0	483	3 3333	14.0	

	churn	no	yes	All	Percent	
number_customer_se	vice_calls					
	0	605.0	92.0	697	13.0	
	1	1059.0	122.0	1181	10.0	
	2	672.0	87.0	759	11.0	
	3	385.0	44.0	429	10.0	
	4	90.0	76.0	166	46.0	
	5	26.0	40.0	66	61.0	
	6	8.0	14.0	22	64.0	
	7	4.0	5.0	9	56.0	
	8	1.0	1.0	2	50.0	
	9	NaN	2.0	2	100.0	
	All	2850.0	483.0	3333	14.0	

With all X Variables

model=testmodel(x,y)

Training Data
accuracy : 0.8714
precision : 0.6429
recall : 0.1837

Validation Data

accuracy : 0.8683 precision : 0.5385 recall : 0.1045

With 6 main features

Training Data
accuracy: 0.8686
precision: 0.6154
recall: 0.1633

Validation Data
accuracy : 0.8663
precision : 0.5
recall : 0.1045

with 10 major features

Training Data
accuracy : 0.8714
precision : 0.6429
recall : 0.1837

Validation Data accuracy: 0.8683 precision: 0.5385 recall: 0.1045

Final Test Score:

Test Data
accuracy : 0.8758
precision : 0.6
recall : 0.2277

Thank You....!

Open for Questions