Bike Sharing Demand Forecast use of a city bikeshare system

Dong Zhu

Deakin University

(None)

Overview

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Conclusion

Problem Definition

Bike Sharing Demand Prediction

Data exploration

Check for missing vaules
Check for outliers

Data visualization

Time characteristic analysis
Weather characteristics analysis

Feature selection

Correlation analysis
Weather characteristics analysis
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects Identification

Evaluation Results

Synthetic Dataset

NBA Dataset

Problem Definition

Bike Sharing Demand Prediction

Data exploration

Data visualization

Feature selection

Evaluation Results

Conclusion

Problem Definition

Bike Sharing Demand Prediction

Problem Definition

Bike Sharing Demand Prediction

Data exploration

Data visualization

Feature selection

Evaluation Results

Conclusion

Bike-sharing systems are a means of renting bikes, through which people can rent a bike from any place and return it when they arrive at their destination. The bike-sharing system clearly records the time of travel, the place of departure, the place of arrival and the time. Therefore, it can be used to study mobility in cities. In this project, historical usage patterns were combined with weather data to predict bike rental demand in Washington, D.C.

- Researchers can use bike sharing systems as a sensor network, which can be used for studying mobility in a city.
- This is a Supervised regression machine learning task.
- The training set is comprised of the first 19 days of each month, while the test set is the 20th to the end of the month.

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Conclusion

Data exploration

Check for missing vaules

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Conclusion

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):
    # Column Non-Null Count Dtype
```

datetime 10886 non-null object season 10886 non-null int64 holiday 10886 non-null int64 workingday 10886 non-null int64 10886 non-null int64 temp 10886 non-null float64 10886 non-null float64 atemp humidity 10886 non-null int64 windspeed 10886 non-null float64 casual 10886 non-null int64 registered 10886 non-null int64 10886 non-null int64 11 count dtypes: float64(3), int64(8), object(1)

memory usage: 1020.7+ KB

None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6493 entries, 0 to 6492
Data columns (total 9 columns):
Column Non-Null Count Dtype
--- 0 datetime 6493 non-null object
1 season 6493 non-null int64
2 holiday 6493 non-null int64

1 season 6493 non-null int64
2 holiday 6493 non-null int64
3 workingday 6493 non-null int64
4 weather 6493 non-null int64
5 temp 6493 non-null float64
6 atemp 6493 non-null float64

7 humidity 6493 non-null int64 8 windspeed 6493 non-null float64

dtypes: float64(3), int64(5), object(1)
memory usage: 456.7+ KB

None

Figure 1: Training data information

Figure 2: Test data information

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Conclusion

Statistical description

	count	mean	std	min	25%	50%	75%	max
season	10886.0	2.506614	1.116174	1.00	2.0000	3.000	4.0000	4.0000
holiday	10886.0	0.028569	0.166599	0.00	0.0000	0.000	0.0000	1.0000
workingday	10886.0	0.680875	0.466159	0.00	0.0000	1.000	1.0000	1.0000
weather	10886.0	1.418427	0.633839	1.00	1.0000	1.000	2.0000	4.0000
temp	10886.0	20.230860	7.791590	0.82	13.9400	20.500	26.2400	41.0000
atemp	10886.0	23.655084	8.474601	0.76	16.6650	24.240	31.0600	45.4550
humidity	10886.0	61.886460	19.245033	0.00	47.0000	62.000	77.0000	100.0000
windspeed	10886.0	12.799395	8.164537	0.00	7.0015	12.998	16.9979	56.9969
casual	10886.0	36.021955	49.960477	0.00	4.0000	17.000	49.0000	367.0000
registered	10886.0	155.552177	151.039033	0.00	36.0000	118.000	222.0000	886.0000
count	10886.0	191.574132	181.144454	1.00	42.0000	145.000	284.0000	977.0000

Figure 3: Data description

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Figure 4: The distribution of the label "count"

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Figure 5: Count distribution compare

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Figure 6: Main features distribution

Problem Definition

Data exploration

Check for missing vaules

Check for outliers

Data visualization

Feature selection

Evaluation Results

Figure 7: Main features distribution

Problem Definition

Data exploration

Data visualization

Time characteristic analysis

Weather characteristics analysis

Feature selection

Evaluation Results

Conclusion

Data visualization

Time characteristic analysis

Problem Definition

Data exploration

Data visualization

Time characteristic analysis

Weather characteristics analysis

Feature selection

Evaluation Results

Conclusion

■ there are two peaks in the graph, one is from 7-8 in the morning, the other is from 5-6 in the afternoon, which is the morning peak and the evening peak respectively, which is in line with the actual situation.

Figure 8: The amount rented at different times of the day

Time characteristic analysis

Problem Definition

Data exploration

Data visualization

Time characteristic analysis

Weather characteristics analysis

Feature selection

Evaluation Results

Conclusion

■ from Monday to Friday, 8 in the morning of the day - 9 am and 5 to 7 PM, usage is more, may be caused by time going to work in the morning and evening after work time, include the reason of eating out at the same time, for the weekend, time is more focused, basic usage around 11 PM to 5 PM, This time is supposed to be everyone's leisure time.

Figure 9: Rental amount at different times of the non-working days and the non-working days

Time characteristic analysis

Problem Definition

Data exploration

Data visualization

Time characteristic analysis

Weather characteristics analysis

Feature selection

Evaluation Results

Conclusion

■ The usage is obviously lower in spring, probably due to the lower temperature.

Figure 10: Seasonal comparison of the number of rental bike per hour

Weather characteristics analysis

Problem Definition

Data exploration

Data visualization

Time characteristic analysis

Weather characteristics analysis

Feature selection

Evaluation Results

- Temperatures below 10 degrees, above 30 degrees, and fewer bike rentals too cold or too hot will damper rental demand.
- The higher the wind, the fewer bike renters high winds dampen rental demand.
- The higher the humidity in the air, the fewer people who hire bikes it's more comfortable to ride on dry days.

Figure 11: The effect of weather on rental amount

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring Step Three - Outlying Aspects

Identification

Evaluation Results

Conclusion

Feature selection

Correlation analysis

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Figure 12: Correlation analysis

Correlation analysis

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

■ The influence of characteristics on count is as follows: hour>temp>atemp>humidity>month>season>year>weather>windspeed>workingday>weather>workingday>workingday>weather>workingday>workingday>workingday>workingday>workingday>workingday>workingday>workingday>workin

Figure 13: Correlation rank

Weather characteristics analysis

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Suppose f_1 , f_2 , f_3 are three features of G_q .

$$f_1$$
: $\{x_1, x_2, x_3, x_4, x_5, x_2, x_3, x_4, x_1, x_2\}$

$$f_2$$
: { $y_2, y_2, y_1, y_2, y_3, y_3, y_5, y_4, y_4, y_2$ }

$$f_3$$
: { $z_1, z_4, z_2, z_4, z_5, z_3, z_1, z_2, z_4, z_2$ }

Figure 14: Histogram of G_q on three features

Step Two - Outlying Degree Scoring

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Calculate Earth Mover Distance
 - Represent one feature among different groups
 - ◆ Purpose: calculate the minimum mean distance

Figure 15: EMD of one feature

Step Two - Outlying Degree Scoring

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

Calculate the outlying degree

$$OD(G_q) = \sum_{1}^{n} EDM(h_{q_s}, h_{k_s})$$

- \bullet n \Leftrightarrow the number of contrast groups.
- $h_{k_s} \Leftrightarrow$ the histogram representation of G_k in the subspace s.

Step Three - Outlying Aspects Identification

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Identify group outlying aspects mining based on the value of outlying degree.
- The greater the outlying degree is, the more likely it is group outlying aspect.

Pseudo code

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Pseudo code of GOAM algorithm

Illustration

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Table 1: Original Dataset

G_1	F_1	F_2	F_3	F_4	$ig G_2$	F_1	F_2	F_3	F_4
	10	8	9	8		7	7	6	6
	9	9	7	9		8	9	9	8
	8	10	8	8		6	7	8	9
	8	8	6	7		7	7	7	8
	9	9	9	8		8	6	6	7
G_3	F_1	F_2	F_3	F_4	G_4	F_1	F_2	F_3	F_4
G_3	<i>F</i> ₁	$oldsymbol{F_2}$	<i>F</i> ₃	F_4	$ig G_4$	F_1	<i>F</i> ₂	<i>F</i> ₃	<i>F</i> ₄
G_3					$ig G_4$				
G_3	8	10	8	8	$ig G_4$	9	8	8	8
G_3	8 9	10 9	8 7	8 9	$ig G_4$	9	8 7	8 7	8 9

Illustration

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

Table 2: outlying degree of each possible subspaces

Feature	Outlying Degree	Feature	Outlying Degree
$\{\pmb{F}_1\}$	4.351	$\{\pmb{F}_2,\pmb{F}_3\}$	4.023
$\{\pmb{F}_2\}$	2.012	$\{\pmb{F}_3,\pmb{F}_4\}$	4.324
$\{\pmb{F}_3\}$	1.392	$\{\pmb{F}_2,\pmb{F}_4\}$	2.018
$\{\pmb{F_4}\}$	2.207	$\{F_2, F_3, F_4\}$	2.012

Search process:

$$OD({F_1}) > \alpha$$
, save to T_1 .

$$OD({F_2}) < \alpha$$
, save to C_1 .

$$OD({F_3}) < \alpha$$
, save to C_2 .

$$OD({F_4}) < \alpha$$
, save to C_3 .

$$OD(\{F_2, F_3\}) > \alpha$$
, save to N_1 .

$$OD(\{F_3, F_4\}) > \alpha$$
, save to N_2 .

$$OD(\{F_2, F_4\}) < \alpha$$
, remove.

$$OD(\{F_2, F_3, F_4\}) < \alpha$$
, remove.

Strengths of GOAM Algorithm

Problem Definition

Data exploration

Data visualization

Feature selection

Correlation analysis

Weather characteristics analysis

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

- Reduction of Complexity
 - ◆ Bottom-up search strategy.
 - Reduce the size of candidate subspaces.
- Efficiency
 - lacktriangle Before: $O(2^d)$

Now: $O(d * n^2)$

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Evaluation Results

Evaluation

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

 $Accuracy = \frac{P}{T}$

P: Identified outlying aspects

Bike Sharing Demand Prediction

T: Real outlying aspects

Synthetic Dataset

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Synthetic Dataset and Ground Truth

Table 3: Synthetic Dataset and Ground Truth

Query group	\mathbf{F}_1	$\mathbf{F_2}$	F_3	\mathbf{F}_4	F_5	F_6	F_7	$\overline{F_8}$
i_1	10	8	9	7	7	6	6	8
i_2	9	9	7	8	9	9	8	9
i_3	8	10	8	9	6	8	7	8
i_4	8	8	6	7	8	8	6	7
i_5	9	9	9	7	7	7	8	8
i_6	8	10	8	8	6	6	8	7
i_7	9	9	7	9	8	8	8	7
i_8	10	9	10	7	7	7	7	7
i_9	9	10	8	8	7	6	7	7
i_{10}	9	9	7	7	7	8	8	8

Synthetic Dataset Results

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Table 4: The experiment result on synthetic dataset

Method	Truth Outlying Aspects	Identified Aspects	Accuracy
GOAM	$\{F_1\},\ \{F_2F_4\}$	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	100%
Arithmetic Mean based OAM	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	$\{m{F}_4\},\ \{m{F}_2\}$	0%
Median based OAM	$\{m{F}_1\},\ \{m{F}_2m{F}_4\}$	$\{m{F}_2\},\ \{m{F}_4\}$	0%

NBA Dataset

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Data Collection

Source

Yahoo Sports website (http://sports.yahoo.com.cn/nba)

Data

- Extract NBA teams' data until March 30, 2018;
- 6 divisions;
- 12 features (eg: *Point Scored*).

NBA Dataset

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

The detail features are as follows:

Table 5: Collected data of Brooklyn Nets Team

Pts	FGA	FG%	3FA	3PT%	6FTA	FT%	Reb	Ass	To	Stl	Blk
18	12	42	2.00	50	7.00	100	0	4	3	0	0
15.7	14.07	41	5.45	32	3.05	75	3.98	5.1	2.98	0.69	0.36
14.5	11.1	47	0.82	26	4.87	78	6.82	2.4	1.74	0.92	0.66
13.5	10.8	42	5.37	37	3.38	77	6.66	2	1.38	0.83	0.42
12.7	10.59	39	5.36	33	3.37	82	3.24	6.6	1.56	0.89	0.31
12.6	10.93	40	6.94	37	1.70	84	4.27	1.5	1.06	0.61	0.44
12.2	10.39	44	3.42	35	2.70	72	3.79	4.1	2.15	1.12	0.32
10.6	7.85	49	4.51	41	1.35	83	3.34	1.6	1.15	0.45	0.24

NBA Dataset

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Data Preprocess

Table 6: The bins that used to discrete data of each feature

Labels	Pts	FGA	FG%	3FA	3PT%	FTA
low	[0,5]	[0,4]	[0,0.35]	[0,1.0]	[0,0.2]	[0,1.0]
medium	(5,10]	(4,7]	(0.35, 0.45]	(1.0, 2.5]	(0.2, 0.3]	(1.0, 1.5]
high	(10,15]	(7,10]	(0.45, 0.5]	(2.5, 3.5]	(0.3, 0.35]	(1.5, 2.5]
very high	$(15,+\infty]$	$(10,+\infty]$	(0.5,1]	$(3.5,+\infty]$	(0.35,1]	$(2.5,+\infty]$
Labels	FT%	Reb	Ass	To	Stl	Blk
low	[0,0.6]	[0,2.0]	[0,1.0]	[0,0.6]	[0,0.2]	[0,0.25]
medium	(0.6, 0.65]	(2,5]	(1,2]	(0.6, 0.9]	(0.2, 0.5]	(0.25, 0.5]
high	(0.65, 0.75]	(5,6]	(2,4]	(0.9, 1.7]	(0.6, 0.75]	(0.5, 0.7]
very high	(0.75,1]	$(6,+\infty]$	$(4,+\infty]$	$(1.7,+\infty]$	$(0.75,+\infty]$	$(0.7,+\infty]$

NBA Dataset Results

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Synthetic Dataset

NBA Dataset

Table 7: The identified outlying aspects of groups

Teams	Trivial Outlying Aspects	NonTrivial Outlying Aspects
Cleveland Cavaliers	{3FA}	{FGA, FT%}, {FGA, FG%}
Orlando Magic	{Stl}	None
Milwaukee Bucks	{To}, {FTA}	{FGA, FTA}, {3FA, FTA}
Golden State Warriors	$\{FG\%\}$	{FT%, Blk}, {FGA, 3PT%, FTA}
Utah Jazz	${Blk}$	{3FA, 3PT%}
New Orleans Pelicans	{FT%}, {FTA}	{FTA, Stl}, {FTA, To}

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Conclusion

Problem Definition
Data exploration
Data visualization
Feature selection
Evaluation Results
Conclusion

- Formalize the problem of *Group Outlying Aspects Mining* by extending outlying aspects mining;
- Propose a novel method GOAM algorithm to solve the *Group Outlying Aspects Mining* problem;
- Utilize the pruning strategies to reduce time complexity.

Questions?

Problem Definition

Data exploration

Data visualization

Feature selection

Evaluation Results

Conclusion

Contact Information

Associate Professor Gang Li School of Information Technology Deakin University, Australia

GANGLI@TULIP.ORG.AU

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING