Análisis de Algoritmos (I)

Profesor: Carlos Zerón Martínez Ayudante: Edwin Antonio Galván Gamez

Tarea 6: Algoritmos de Ordenamiento Fecha de entrega: Jueves 2 de Mayo del 2019

- 1. **Ejercicio práctico**. Implementa en Java algoritmos que generen ejemplares de tamaño n=50k, donde $1 \le k \le 20$. que constituyan el peor caso para la complejidad de los algoritmos:
 - 1) Shell Sort con la secuencia de incrementos de D. Shell
 - 2) Quicksort tomando como pivote el elemento en la primera posición

El programa debe imprimir los ejemplares generados por cada algoritmo.

- 2. Proporciona un algoritmo de complejidad $O(n \log k)$ que haga la mezcla de k listas ordenadas de elementos en forma no decreciente S_1, S_2, \ldots, S_k tales que $|S_1| + |S_2| + \ldots + |S_k| = n$, en una sola lista ordenada en forma no decreciente que tenga n elementos. Tu algoritmo puede involucrar operaciones de listas, indicando el propsito de cada una (Consejo: Recuerda el funcionamiento de los heaps).
- 3. Considera la Sección 8.2 del libro Introduction to Algorithms de Cormen.
 - a) Describe el funcionamiento del algoritmo Counting Sort y analiza su complejidad. No se aceptan traducciones literales del texto.
 - b) Construye un arreglo de tamaño n=8 con enteros en el rango de 0 a 10 y aplica Counting Sort para ordenar el arreglo en forma no decreciente.

Suerte!