PS5841

Data Science in Finance & Insurance

Yubo Wang

Autumn 2022

Decision Trees

- Prediction via stratification of the feature space
 - Divide the predictor space into highdimensional rectangles that minimizes "loss" via recursive binary splitting
 - Prediction based on the mean (for regression)
 or the most commonly occurring class (for
 classification) of training responses in the same
 terminal node

Recursive Binary Splitting

- Top-Down
 - Start from the top of the tree
- Greedy
 - The best split for a particular node is made at that particular step only, rather than taking into account of future steps
- Each split involves a cut-point s which splits a predictor X_j into two partitions

Example

$$R_{-}(j,s) = \{X | X_j \le s\}, R_{+}(j,s) = \{X | X_j > s\}$$

Find the values of j (feature) and s (cut point) that minimize "loss"

$$\sum_{i:x_i \in R_-(j,s)} loss(y_i, \hat{y}_{R_-}) + \sum_{i:x_i \in R_+(j,s)} loss(y_i, \hat{y}_{R_+})$$

Split Criteria ("loss")

- Regression
 - RSS

$$\sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

- Classification
 - Gini index

$$G_{R_m} = \sum_{k=1}^{K} \hat{p}_{R_m C_k} (1 - \hat{p}_{R_m C_k})$$

Entropy

$$D_{R_m} = -\sum_{k=1}^K \hat{p}_{R_m C_k} \log \hat{p}_{R_m C_k}$$

$\hat{p}_{R_m C_k}$ for Classification

• The proportion of training observations in the m-th region R_m that are from the k-th class \mathcal{C}_k

$$\hat{p}_{mk} = \hat{p}_{R_m C_k} = \frac{n_{R_m C_k}}{n_{R_m}}$$

Gini Index

• For the m-th region R_m

$$G_{R_m} = \sum_{k=1}^{K} \hat{p}_{R_m C_k} (1 - \hat{p}_{R_m C_k})$$

- a measure of variance across the K classes for observations in that region
- $-\ G_{R_m}$ will take on a small value if the m-th node is pure, containing predominantly observations from a single class
- Overall Gini Index

$$G = \sum_{m=1}^{M} \frac{n_{R_m}}{N} G_{R_m}$$

pooled variance involving regional variances

Example: Binary Split on Gini Index

- 2-class responses and 2-D features X_1 and X_2
- Find the optimal split for predictor X_1
 - Find $s_{X_1}^*$ that minimizes G as $G^{X_1}(s_{X_1}^*)$
- Find the optimal split for predictor X_2
 - Find $s_{X_2}^*$ that minimizes G as $G^{X_2}(s_{X_2}^*)$
- If $G^{X_1}(s_{X_1}^*) < G^{X_2}(s_{X_2}^*)$, the current step splits X_1 , otherwise, the current step splits X_2

Split, Node Purity

 Node purity – the degree to which a node contains predominantly observations from a single class Split for node purity Left $\hat{p}_{mk} = 0.64$ Right $\hat{p}_{mk} = 1.00$

Entropy

• For the m-th region R_m

$$D_{R_m} = -\sum_{k=1}^K \hat{p}_{R_m C_k} \log \hat{p}_{R_m C_k}$$

- D_{R_m} will take on a small value if the m-th node is pure, containing predominantly observations from a single class
- Overall entropy
 - is the sum of entropy over all regions
- The Gini index and the entropy are quite similar numerically

That was

