Отчет по лабораторной работе № 1 по курсу «Функциональное программирование»

Студент группы 8О-307 МАИ *Ефимов Александр*, №7 по списку Контакты: aleks.efimov2011@yandex.ru Работа выполнена: 27.02.2021

Преподаватель: Иванов Дмитрий Анатольевич, доц. каф. 806 Отчет сдан: Итоговая оценка: Подпись преподавателя:

1. Тема работы

Примитивные функции и особые операторы Common Lisp.

2. Цель работы

Научиться вводить S-выражения в Lisp-систему, определять переменные и функции, работать с условными операторами, работать с числами, используя схему линейной и древовидной рекурсии.

3. Задание (вариант №1.45)

С помощью формулы

$$\frac{1}{3}\left(\frac{x}{y^2} + 2y\right)$$

запрограммируйте на языке Common Lisp функцию для вычисления кубического корня. Причем у является приближением к кубическому корню из х.

Использовать функции good-enough-p, improve и cube.

4. Оборудование студента

Процессор Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, память: 7.6Gi, разрядность системы: 64.

5. Программное обеспечение

OC Arch Linux, утилита CLisp.

6. Идея, метод, алгоритм

Формула, предоставленная в задании, выводится из метода Ньютона, а именно: необходимо найти некоторый x – кубический корень числа a такой, что $x^3 = a$. Если это обозначить за функцию:

$$f(x) = x^3 - a$$

то с помощью метода Ньютона можно итеративно найти кубический корень:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - a}{3x_k^2} = \frac{3x_k^3 - x_k^3 + a}{3x_k^2} = \frac{1}{3} \left(2x_k + \frac{a}{x_k^2} \right)$$

Каждое новое значение x_{k+1} может иметь тип *float*, поэтому его нужно сравнивать с оригиналом в пределах машинного (или заданного разработчиком) эпсилона.

7. Распечатка программы и её результаты

7.1. Исходный код

```
;;;; Calculates a cubic root of value
   (defconstant +eps+ short-float-epsilon
     "Defines an epsilon, which will be used to compare two float variables.")
   (defun to-cube (x) (* x x x))
   (defun eps-equal (a b)
     "Checks if two values are close enough to be considered equal
     (float-point comparison)"
10
     (<= (abs (- a b)) +eps+))
12
   (defun calculate-next (previous-x original-x)
     "Calculates next value in Newton method"
14
       (+
16
         (/ original-x (* previous-x previous-x))
         (* 2 previous-x))
18
       3))
19
20
   (defun cuberoot-iteration (previous-x original-x)
21
     "Checks if cube of current value is close enough to
22
     be considered cube root of original"
23
     (if (eps-equal (to-cube previous-x) original-x)
         previous-x
25
```

```
(cuberoot-iteration
(calculate-next previous-x original-x)
original-x)))

(defun cuberoot (x)
"Calculates the cube root of the value 'x'"
(cuberoot-iteration (float x) (float x)))
```

7.2. Результаты работы

```
[1]> (load "cuberoot.lisp")
;; Loading file cuberoot.lisp ...
;; Loaded file cuberoot.lisp
#P"/home/rookstar/Documents/git/func-prog/lab1/cuberoot.lisp"
[2] > (cuberoot 0.001)
0.100085415
[3] > (cuberoot 1)
1.0
[4] > (cuberoot 1000)
10.0
[5] > (cuberoot 8)
2.0
[6] > (cuberoot 27)
3.0
[7] > (cuberoot 9)
2.0800838
[8] > (to-cube 2.0800838)
9.0
```

8. Замечания автора по существу работы

Сложность работы искусственно увеличивается ввиду её плохой описанности. Следует хотя бы упомянуть используемый для решении метод Ньютона для упрощения.

9. Выводы

При итеративном делении нужно быть аккуратным не передавать переменные с типом *rational*, иначе можно быстро получить ошибку переполнения.