

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Celebrate your love for learning!

Enjoy 20% off on CSIR-UGC NET subscriptions

Learn from Top Educators

Comprehensive Notes and PDFs

Prepare with Unacademy Lite Subscription

Subscribe Now

Use code

Call 8585858585 for more details

*T&C apply, as available on the platform.

Celebrate your love for learning!

Enjoy 20% off'on IIT-JAM subscriptions

Unlimited access to Live and Recorded Classes

PYQs, Live Test and Quizzes

In class doubt solving by Top Educators

Structured Batches & courses

Subscribe Now

Use code GPSIR

Call 8585858585 for more details

*T&C apply, as available on the platform.

FOUNDATION

BATCH FOR CSIR-NET 2023

Enroll Now

DETAILED COURSE 2.0

GROUP THEORY FOR IIT JAM 2023

6th OCTOBER

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

One-One linear transformation :Let $T: V \rightarrow V'$ be a linear

transformation with $\eta(T) = 0$ then T is called one-one linear transformation.

Onto linear transformation :Let T : V \rightarrow V' be a linear

transformation with $\rho(T) = \dim V$ ' Then T is called onto linear transformation.

Singular and non-singular linear transformation:

A linear transformation $T: V \rightarrow V'$ is called singular linear

transformation if $\eta(T) \ge 1$ and if $\eta(T) = 0$ then T will be non-singular.

Matrix representation: Let V(F) be an n-dimensional vector

space and V'(F) be an m-dimensional vector space over F.

Let $\beta_1 = \{x_1, x_2, ..., x_n\}$ & $\beta_2 = \{y_1, y_2,, y_m\}$ are ordered basis of V(F) & V'(F) respectively and T : V(F) \rightarrow V'(F) be a linear transformation s.t.

$$T(x_1) = a_{11}y_1 + a_{21}y_2 + \dots \cdot a_{m1}y_m$$

$$T(x_2) = a_{12}y_1 + a_{22}y_2 + \dots \cdot a_{m2}y_m$$

$$\vdots$$

$$T(x_n) = a_{1n}y_1 + a_{2n}y_2 + \dots \cdot a_{mn}y_m$$

Then matrix representation of T relative to the ordered basis $\beta_1 \& \beta_2$ is denoted by

$$[T:\beta_{1},\beta_{2}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \ddots & \vdots \\ a_{m1} & \cdots & & & a_{mn} \end{bmatrix}_{m \times n}$$

Q.2. Let $T: R^3 \rightarrow R^3$ be the linear transformation defined by T(x, y, z) = (x + y, y + z, z + x) for all $(x, y, z) \in R^3$. Then

- (a) rank (T) = 0, nullity (T) = 3
- (b) rank(T) = 2, nullity(T) = 1
- (c) rank(T) = 1, nullity(T) = 2
- (d) rank (T) = 3, nullity (T) = 0

Q.3 Let T: $R^4 \rightarrow R^4$ be a linear map defined by T(x, y, z, w) = (x + z, 2x + y + 3z, 2y + 2z, w). The rank of T is equal to

(a) 1

(b) 2

(c) 3

(d) 4

- Q.4. Let N be the vector space of all real polynomial of degree atmost 3. Define S: N →N by (S)p(x) = p(x + 1), p ∈ N. and the matrix of S in the basis {1, x, x², x³} considered as column vector then which of the following is true?
 - (a) S is upper triangular matrix with determinant 1.
 - (b) S is singular matrix
 - (c) S is upper triangular matrix with trace 1.
 - (d) S is identity matrix.

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Result:

- (1) Let T: M₂(R) → M₂(R) be a linear transformation such that T(X) = AX, where A is given matrix. If A is diagonalizable then T is also diagonalizable.
- (2) If $T: \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times p}$ be a linear transformation such that T(X) = AX then
 - (a) $\operatorname{Rank}(T) = \operatorname{n.Rank}(A)$
 - (b) Trace(T) = n.Trace(A)
 - (c) Nullity(T) = n.Nullity(A)

Q.5. Let A be a matrix of order n and let V be the vector space of all real $n \times n$ matrix X such that AX = 0. what is dimension of V. CSIR NET JUNE 2022

(a) nr

(b) n^2r

(c) $n^2 - m$

(d) n

- Q.6 Let M₂(R) denote the set of 2 × 2 real matrices. Let A ∈ M₂(R) be a trace 2 and determinant -3. Identifying M₂(R) with R⁴, consider the linear transformation T: M₂(R) → M₂(R) defined by T(B) = AB. Then which of the following statements are true?
 - (a) T is diagonalizable
 - (b) 2 is an eigenvalues of T
 - (c) T is invertible
 - (d) T(B) = B for some $0 \neq B$ is $M_2(R)$

Q.7 Let $T: R^4 \rightarrow R^4$ be the linear map satisfying $T(e_1) = e_2$, $T(e_2) = e_3$, $T(e_3) = 0$, $T(e_4) = e_3$ where $\{e_1, e_2, e_3, e_4\}$ is the standard basis of R^4 . Then

(a) T is idempotent

(b) T is invertible

(c) Rank(T) = 3

(d) T is nilpotent

Q.8 Let $R^{2\times 2}$ be the real vector space of all 2 $\times 2$ real matrices

for
$$Q = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$
, define a linear transformation T on

 $R^{2\times 2}$ as T(P) = QP. Then the rank of T is

- (a) 1 (b) 2
- (c) 3 (d) 4

Celebrate your love for learning!

Enjoy 20% off'on CSIR-UGC NET subscriptions

Unlimited access to Live and Recorded Classes

Learn from Top Educators

Comprehensive Notes and PDFs

Prepare with Unacademy Lite Subscription

Subscribe Now

Use code

Call 8585858585 for more details

*T&C apply, as available on the platform.

Celebrate your love for learning!

Enjoy 20% off'on IIT-JAM subscriptions

Unlimited access to Live and Recorded Classes

PYQs, Live Test and Quizzes

In class doubt solving by Top Educators

Structured Batches & courses

Subscribe Now

Use code GPSIR

Call 8585858585 for more details

*T&C apply, as available on the platform.

FOUNDATION

BATCH FOR CSIR-NET 2023

Enroll Now

DETAILED COURSE 2.0

GROUP THEORY FOR IIT JAM 2023

6th OCTOBER

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR