## SDSC3006 Steel Plates Faults Detection

```
In [84]: import math
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn import svm
         from sklearn import metrics
         from xgboost import XGBClassifier
         from sklearn import preprocessing
         from sklearn.decomposition import PCA
         from imblearn.over sampling import SMOTE
         from sklearn.naive_bayes import GaussianNB
         from sklearn.metrics import mean squared error
         from sklearn.metrics import roc_curve, roc_auc_score
         from sklearn.metrics import classification_report, confusion_matrix,accuracy
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.linear model import LogisticRegression
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import classification report
```

#### **Data Import & Description**

```
In [7]: df = pd.read_csv('faults.csv')
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1941 entries, 0 to 1940
Data columns (total 34 columns):

| #  | Column                | Non-Null Count | Dtype   |
|----|-----------------------|----------------|---------|
| 0  | X_Minimum             | 1941 non-null  | int64   |
| 1  | X_Maximum             | 1941 non-null  | int64   |
| 2  | Y_Minimum             | 1941 non-null  | int64   |
| 3  | Y_Maximum             | 1941 non-null  | int64   |
| 4  | Pixels_Areas          | 1941 non-null  | int64   |
| 5  | X_Perimeter           | 1941 non-null  | int64   |
| 6  | Y_Perimeter           | 1941 non-null  | int64   |
| 7  | Sum_of_Luminosity     | 1941 non-null  | int64   |
| 8  | Minimum_of_Luminosity | 1941 non-null  | int64   |
| 9  | Maximum_of_Luminosity | 1941 non-null  | int64   |
| 10 | Length_of_Conveyer    | 1941 non-null  | int64   |
| 11 | TypeOfSteel_A300      | 1941 non-null  | int64   |
| 12 | TypeOfSteel_A400      | 1941 non-null  | int64   |
| 13 | Steel_Plate_Thickness | 1941 non-null  | int64   |
| 14 | Edges_Index           | 1941 non-null  | float64 |
| 15 | Empty_Index           | 1941 non-null  | float64 |
| 16 | Square_Index          | 1941 non-null  | float64 |
| 17 | Outside_X_Index       | 1941 non-null  | float64 |
| 18 | Edges_X_Index         | 1941 non-null  | float64 |
| 19 | Edges_Y_Index         | 1941 non-null  | float64 |
| 20 | Outside_Global_Index  | 1941 non-null  | float64 |
| 21 | Log0fAreas            | 1941 non-null  | float64 |
| 22 | Log_X_Index           | 1941 non-null  | float64 |
| 23 | Log_Y_Index           | 1941 non-null  | float64 |
| 24 | Orientation_Index     | 1941 non-null  | float64 |
| 25 | Luminosity_Index      | 1941 non-null  | float64 |
| 26 | SigmoidOfAreas        | 1941 non-null  | float64 |
| 27 | Pastry                | 1941 non-null  | int64   |
| 28 | Z_Scratch             | 1941 non-null  | int64   |
| 29 | K_Scatch              | 1941 non-null  | int64   |
| 30 | Stains                | 1941 non-null  | int64   |
| 31 | Dirtiness             | 1941 non-null  | int64   |
| 32 | Bumps                 | 1941 non-null  | int64   |
| 33 | Other_Faults          | 1941 non-null  | int64   |

dtypes: float64(13), int64(21)

memory usage: 515.7 KB

In [8]: df.head()

| ıt[8]: |   | X_Minimum | X_Maximum | Y_Minimum | Y_Maximum | Pixels_Areas | X_Perimeter | Y_Perim |
|--------|---|-----------|-----------|-----------|-----------|--------------|-------------|---------|
|        | 0 | 42        | 50        | 270900    | 270944    | 267          | 17          |         |
|        | 1 | 645       | 651       | 2538079   | 2538108   | 108          | 10          |         |
|        | 2 | 829       | 835       | 1553913   | 1553931   | 71           | 8           |         |
|        | 3 | 853       | 860       | 369370    | 369415    | 176          | 13          |         |
|        | 4 | 1289      | 1306      | 498078    | 498335    | 2409         | 60          |         |

5 rows × 34 columns

# **Data Exploration and Visualization**

In [9]: def DataExploration(dataframe):

```
df = dataframe
    X=df.iloc[:,:27]
    Y=df.iloc[:,27:]
    # Box Plots
    ax = sns.boxplot(data=df, orient="h", palette="Set2")
    ax.set_title('Boxplots of all Features')
    plt.show()
    Pastry = df.query('Pastry==1')
    Z_Scratch = df.query('Z_Scratch==1')
    K Scatch = df.query('K Scatch==1')
    Stains =df.query('Stains==1')
    Dirtiness = df.query('Dirtiness==1')
    Bumps = df.query('Bumps==1')
    Other_Faults = df.query('Other_Faults==1')
    # Correlation matrix of all faults
    ax = sns.heatmap(Y.corr(), annot=True, fmt=".1f")
    ax.set title('Correlation matrix of all Faults')
    plt.show()
    # Correlation matrix of all features
    plt.figure(figsize=(20, 10))
    ax = sns.heatmap(X.corr(), annot=True, fmt=".1f")
    ax.set title('Correlation matrix of all Features')
    plt.show()
    # Frequency of 7 Faults
    fault_name=['Pastry', 'Z_Scratch', 'K_Scatch', 'Stains', 'Dirtiness', 'E
    value=[len(Pastry), len(Z_Scratch), len(K_Scatch), len(Stains), len(Dirt
    plt.bar(fault name, value, width=0.8)
    plt.title('Frequency of 7 Faults')
    plt.ylabel('Count')
    plt.show()
DataExploration(df)
```







#### No outliers:

"X\_Minimum","X\_Maximum","Length\_of\_Conveyer","TypeOfSteel\_A300","TypeOfSteel\_A400

Pastry Z\_ScratchK\_Scatch Stains Dirtiness BumpsOther\_Faults

#### Have outliers:

"Y\_Minimum","Y\_Maximum","Sum\_of\_Luminosity","Pixels\_Areas","X\_Perimeter","Y\_Perimete

We don't handle the outliers since they may belong to the fewer Faults classes (e.g Stains/ Dirtiness/...)

#### **Data Preprocessing**

```
In [39]: def DataPreprocessing(df):
             # Remove missing value
             df = df.dropna() # But no missing value, df do not change
             # Divide the dateset into features and faults
             faults =df[["Pastry","Z_Scratch","K_Scatch","Stains","Dirtiness","Bumps"
             X = df.drop(["Pastry","Z_Scratch","K_Scatch","Stains","Dirtiness","Bumps
             y = []
             for i in range(faults.shape[0]):
                 if faults["Pastry"].values[i] == 1:
                     y.append("Pastry")
                 elif faults["Z_Scratch"].values[i] == 1:
                     y.append("Z_Scratch")
                 elif faults["K_Scatch"].values[i] == 1:
                     y.append("K_Scatch")
                 elif faults["Stains"].values[i] == 1:
                     y.append("Stains")
                 elif faults["Dirtiness"].values[i] == 1:
                     y.append("Dirtiness")
```

```
elif faults["Bumps"].values[i] == 1:
            y.append("Bumps")
        else:
            y.append("Other Faults")
    y=np.array(y)
    faultstype= pd.DataFrame({'faults':y})
    # Label Encoder
    le=LabelEncoder()
    y=le.fit transform(y)
    # train test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, te
    # Min-max normalization (after spliting)
    X_train_minmax = pd.DataFrame(
        MinMaxScaler().fit_transform(X_train),
        columns = X train.columns
    X test minmax = pd.DataFrame(
        MinMaxScaler().fit_transform(X_test),
        columns = X_test.columns
    )
    # Normalization after spliting
    X_train_normalized = pd.DataFrame(
        StandardScaler().fit_transform(X_train),
        columns = X_train.columns
    X_test_normalized = pd.DataFrame(
        StandardScaler().fit_transform(X_test),
        columns = X_test.columns
    #X.plot(kind="density", layout=(6,5), subplots=True, sharex=False, sharey=
    #plt.show()
    #X.head()
    # oversample
    oversample = SMOTE()
    X_train_normalized, y_train = oversample.fit_resample(X_train_normalized
    return X_train_normalized, X_test_normalized, y_train, y_test
target_names=["Bump","Dirtiness","K_Scatch","Other_Faults","Pastry","Stains"
X train normalized, X test normalized, y train, y test = DataPreprocessing(d
```

### **Model Selection**

```
In [67]: params = range(1,20)
    training_errors = []
    test_errors = []
    for p in params:
        clf = KNeighborsClassifier(n_neighbors=p)
        clf.fit(X_train_normalized, y_train)
        y_pred = clf.predict(X_train_normalized)
        training_err = mean_squared_error(y_train, y_pred)
        training_errors.append(training_err)
```

```
y_pred = clf.predict(X_test_normalized)
    test_err = mean_squared_error(y_test, y_pred)
    test errors.append(test err)
error_table = pd.DataFrame()
error table["degree"] = params
error_table["training_error"] = training_errors
error_table["test_error"] = test_errors
import matplotlib.pyplot as plt
plt.plot(error_table['degree'], error_table['training_error'], label = 'Trai
plt.plot(error_table['degree'], error_table['test_error'], label = 'Test Err
plt.title("KNN training & test error")
plt.ylabel("MSE")
plt.xlabel("Neighbors")
plt.legend(loc = 'center right')
plt.xticks(params, params)
plt.show()
```

# KNN training & test error



```
In [72]: params = range(1,20)
    training_errors = []
    test_errors = []
    for p in params:
        clf = RandomForestClassifier(max_depth =p, random_state=42)
        clf.fit(X_train_normalized, y_train)
        y_pred = clf.predict(X_train_normalized)
        training_err = mean_squared_error(y_train, y_pred)
        training_errors.append(training_err)
        y_pred = clf.predict(X_test_normalized)
        test_err = mean_squared_error(y_test, y_pred)
        test_errors.append(test_err)

error_table = pd.DataFrame()
    error_table["degree"] = params
```

```
error_table["training_error"] = training_errors
error_table["test_error"] = test_errors

import matplotlib.pyplot as plt
plt.plot(error_table['degree'], error_table['training_error'], label = 'Trai
plt.plot(error_table['degree'], error_table['test_error'], label = 'Test Err
plt.title("RandomForest training & test error")
plt.ylabel("MSE")
plt.xlabel("max_depth")
plt.legend(loc = 'center right')
plt.xticks(params, params)
plt.show()
```

## RandomForest training & test error



```
In [73]: params = [0.01,0.03,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.
         training_errors = []
         test errors = []
         for p in params:
             clf = XGBClassifier(n estimators=100, learning rate= p)
             clf.fit(X_train_normalized, y_train)
             y_pred = clf.predict(X_train_normalized)
             training_err = mean_squared_error(y_train, y_pred)
             training errors.append(training err)
             y pred = clf.predict(X test normalized)
             test_err = mean_squared_error(y_test, y_pred)
             test_errors.append(test_err)
         error table = pd.DataFrame()
         error table["degree"] = params
         error table["training error"] = training errors
         error_table["test_error"] = test_errors
         import matplotlib.pyplot as plt
         plt.plot(error_table['degree'], error_table['training_error'], label = 'Trai
         plt.plot(error_table['degree'], error_table['test_error'], label = 'Test Err
```

```
plt.title("XGBClassifier training & test error")
plt.ylabel("MSE")
plt.xlabel("learning_rate")
plt.legend(loc = 'center right')
plt.xticks(params, params)
plt.show()
```

#### XGBClassifier training & test error



```
In [82]:
ClassifierDict = {
    "RandomForest":RandomForestClassifier(max_depth =20, random_state=42),
    "KNN": KNeighborsClassifier(n_neighbors=3),
    "LogisticRegression":LogisticRegression(random_state=42),
    "XGBoost":XGBClassifier(n_estimators=100, learning_rate= 0.3)
}
for j in ClassifierDict:
    clf=ClassifierDict.get(j)
    clf.fit(X_train_normalized,y_train)

RSS = mean_squared_error(y_test, clf.predict(X_test_normalized))
    print(j,"with no PCA | accuary rate : ",clf.score(X_test_normalized,y_te
    print(classification_report(y_test, clf.predict(X_test_normalized), targ
    confusion_matrix = metrics.confusion_matrix(y_test, clf.predict(X_test_normalized))
    cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion
    cm_display.plot(cmap=plt.cm.Blues)

plt.show()
```

RandomForest with no PCA | accuary rate : 0.7598627787307033 | RSE : 1.94

| 339                                                                           | 33962264150944                 |                                                      |      |                                              |                  |                                                      |                                           |                   |       |  |
|-------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|------|----------------------------------------------|------------------|------------------------------------------------------|-------------------------------------------|-------------------|-------|--|
| precision                                                                     |                                |                                                      | sion | recall                                       | f1-9             | score                                                | support                                   |                   |       |  |
| Bump<br>Dirtiness<br>K_Scatch<br>Other_Faults<br>Pastry<br>Stains<br>Z_Scatch |                                | 0.65<br>1.00<br>0.97<br>0.71<br>0.52<br>1.00<br>0.98 |      | 0.69<br>0.88<br>0.92<br>0.72<br>0.72<br>0.64 | 3<br>2<br>2<br>2 | 0.67<br>0.94<br>0.95<br>0.72<br>0.61<br>0.78<br>0.84 | 121<br>17<br>117<br>202<br>47<br>22<br>57 |                   |       |  |
| we                                                                            | mac                            | ccuracy<br>cro avg<br>ced avg                        |      | 0.83<br>0.78                                 | 0.76<br>0.76     |                                                      | 0.76<br>0.79<br>0.77                      | 583<br>583<br>583 |       |  |
|                                                                               | 0 -                            | 84                                                   | 0    | 0                                            | 27               | 10                                                   | 0                                         | 0                 | - 140 |  |
|                                                                               | 1-                             | 1                                                    | 15   | 0                                            | 1                | 0                                                    | 0                                         | 0                 | - 120 |  |
|                                                                               | 2 -                            | 1                                                    | 0    | 108                                          | 7                | 1                                                    | 0                                         | 0                 | - 100 |  |
| True label                                                                    | 3 -                            | 35                                                   | 0    | 2                                            | 146              | 18                                                   | 0                                         | 1                 | - 80  |  |
| Ĕ                                                                             | 4 -                            | 4                                                    | 0    | 0                                            | 9                | 34                                                   | 0                                         | 0                 | - 60  |  |
|                                                                               | 5 -                            | 1                                                    | 0    | 0                                            | 7                | 0                                                    | 14                                        | 0                 | - 40  |  |
|                                                                               | 6 -                            | 4                                                    | 0    | 1                                            | 8                | 2                                                    | 0                                         | 42                | - 20  |  |
|                                                                               | 0 1 2 3 4 5 6  Predicted label |                                                      |      |                                              |                  |                                                      |                                           |                   |       |  |

KNN with no PCA | accuary rate : 0.7307032590051458 | RSE : 2.358490566037736

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Bump         | 0.61      | 0.71   | 0.65     | 121     |
| Dirtiness    | 0.73      | 0.94   | 0.82     | 17      |
| K_Scatch     | 0.93      | 0.94   | 0.94     | 117     |
| Other_Faults | 0.80      | 0.56   | 0.66     | 202     |
| Pastry       | 0.43      | 0.60   | 0.50     | 47      |
| Stains       | 0.79      | 0.86   | 0.83     | 22      |
| Z_Scatch     | 0.76      | 0.93   | 0.83     | 57      |
|              |           |        |          |         |
| accuracy     |           |        | 0.73     | 583     |
| macro avg    | 0.72      | 0.79   | 0.75     | 583     |
| weighted avg | 0.75      | 0.73   | 0.73     | 583     |



LogisticRegression with no PCA | accuary rate : 0.6826758147512865 | RSE : 2.607204116638079

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Bump         | 0.65      | 0.60   | 0.62     | 121     |
| Dirtiness    | 0.45      | 0.76   | 0.57     | 17      |
| K_Scatch     | 0.89      | 0.93   | 0.91     | 117     |
| Other_Faults | 0.73      | 0.49   | 0.59     | 202     |
| Pastry       | 0.43      | 0.79   | 0.56     | 47      |
| Stains       | 0.76      | 0.86   | 0.81     | 22      |
| Z_Scatch     | 0.64      | 0.86   | 0.74     | 57      |
|              |           |        |          |         |
| accuracy     |           |        | 0.68     | 583     |
| macro avg    | 0.65      | 0.76   | 0.68     | 583     |
| weighted avg | 0.71      | 0.68   | 0.68     | 583     |

/Users/sapphire/miniforge3/envs/tf/lib/python3.9/site-packages/sklearn/line ar\_model/\_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (st atus=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max\_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear\_model.html#logistic-regression

n\_iter\_i = \_check\_optimize\_result(



XGBoost with no PCA | accuary rate : 0.7547169811320755 | RSE : 2.3173241852487134

| 032407134    | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Bump         | 0.57      | 0.76   | 0.65     | 121     |
| Dirtiness    | 0.74      | 0.82   | 0.78     | 17      |
| K_Scatch     | 0.95      | 0.95   | 0.95     | 117     |
| Other_Faults | 0.81      | 0.61   | 0.70     | 202     |
| Pastry       | 0.55      | 0.74   | 0.63     | 47      |
| Stains       | 1.00      | 0.82   | 0.90     | 22      |
| Z_Scatch     | 0.90      | 0.81   | 0.85     | 57      |
| accuracy     |           |        | 0.75     | 583     |
| macro avg    | 0.79      | 0.79   | 0.78     | 583     |
| weighted avg | 0.78      | 0.75   | 0.76     | 583     |



# **Dimensionality reduction**

```
In [35]: from sklearn.decomposition import PCA
    pca=PCA(whiten=True)
    pca.fit(X_train_normalized)
    plt.figure(figsize=(8,6))
    plt.plot(pca.explained_variance_)
    plt.ylabel("Variance")
    plt.xlabel("Components")
```

Out[35]: Text(0.5, 0, 'Components')



The graph above shows that the feature vector of 10-20 principal components can be represented. Let's do the PCA conversion based on 19 key components

```
In [99]:
    pca=PCA(n_components=19)
    X_train_pca=pca.fit_transform(X_train_normalized)
    X_test_pca=pca.transform(X_test_normalized)

for j in ClassifierDict:
    clf=ClassifierDict.get(j)
    clf.fit(X_train_pca,y_train)

    RSS = mean_squared_error(y_test, clf.predict(X_test_pca))
    print(j,"with PCA | accuary rate : ",clf.score(X_test_pca,y_test), "| RS
    print(classification_report(y_test, clf.predict(X_test_pca), target_name
    confusion_matrix = metrics.confusion_matrix(y_test, clf.predict(X_test_pca),
    cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion
    cm_display.plot(cmap=plt.cm.Blues)
    plt.show()
```

RandomForest with PCA | accuary rate : 0.7667238421955404 | RSS : 1.91938

| 25042881647                                                                   |     | preci | sion         | recall              | f1_0                                                 | score                                     | support |                |  |  |       |
|-------------------------------------------------------------------------------|-----|-------|--------------|---------------------|------------------------------------------------------|-------------------------------------------|---------|----------------|--|--|-------|
| Bump<br>Dirtiness<br>K_Scatch<br>Other_Faults<br>Pastry<br>Stains<br>Z_Scatch |     | 0.66  |              | 3<br> -<br> -<br> - | 0.67<br>0.94<br>0.94<br>0.72<br>0.59<br>0.83<br>0.88 | 121<br>17<br>117<br>202<br>47<br>22<br>57 |         |                |  |  |       |
| accuracy<br>macro avg<br>weighted avg                                         |     |       | 0.81<br>0.77 | 0.79<br>0.77        |                                                      | 0.77<br>0.79<br>0.77                      |         | 33<br>33<br>33 |  |  |       |
|                                                                               | 0 - | 82    | 0            | 0                   | 29                                                   | 8                                         | 0       | 2              |  |  | - 140 |
|                                                                               | 1 - | 0     | 16           | 0                   | 1                                                    | 0                                         | 0       | 0              |  |  | - 120 |
| _                                                                             | 2 - | 0     | 0            | 106                 | 10                                                   | 1                                         | 0       | 0              |  |  | - 100 |
| True label                                                                    | 3 - | 32    | 0            | 2                   | 148                                                  | 14                                        | 2       | 4              |  |  | - 80  |
| Ė                                                                             | 4 - | 8     | 1            | 0                   | 9                                                    | 29                                        | 0       | 0              |  |  | - 60  |
|                                                                               | 5 - | 0     | 0            | 0                   | 5                                                    | 0                                         | 17      | 0              |  |  | - 40  |
|                                                                               | 6 - | 2     | 0            | 0                   | 6                                                    | 0                                         | 0       | 49             |  |  | - 20  |
|                                                                               |     | Ó     | i            | 2                   | 3                                                    | 4                                         | 5       | 6              |  |  | - 0   |

KNN with PCA | accuary rate : 0.7307032590051458 | RSS : 2.33276157804459 67

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Bump         | 0.61      | 0.71   | 0.66     | 121     |
| Dirtiness    | 0.73      | 0.94   | 0.82     | 17      |
| K_Scatch     | 0.93      | 0.94   | 0.94     | 117     |
| Other_Faults | 0.80      | 0.56   | 0.66     | 202     |
| Pastry       | 0.43      | 0.62   | 0.51     | 47      |
| Stains       | 0.79      | 0.86   | 0.83     | 22      |
| Z_Scatch     | 0.76      | 0.93   | 0.83     | 57      |
| accuracy     |           |        | 0.73     | 583     |
| macro avg    | 0.72      | 0.79   | 0.75     | 583     |
| weighted avg | 0.75      | 0.73   | 0.73     | 583     |

Predicted label



LogisticRegression with PCA | accuary rate : 0.6826758147512865 | RSS : 2.5368782161234993

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Bump         | 0.66      | 0.60   | 0.63     | 121     |
| Dirtiness    | 0.43      | 0.76   | 0.55     | 17      |
| K_Scatch     | 0.88      | 0.92   | 0.90     | 117     |
| Other_Faults | 0.73      | 0.48   | 0.58     | 202     |
| Pastry       | 0.45      | 0.81   | 0.58     | 47      |
| Stains       | 0.76      | 0.86   | 0.81     | 22      |
| Z_Scatch     | 0.65      | 0.88   | 0.75     | 57      |
|              |           |        |          |         |
| accuracy     |           |        | 0.68     | 583     |
| macro avg    | 0.65      | 0.76   | 0.69     | 583     |
| weighted avg | 0.71      | 0.68   | 0.68     | 583     |

/Users/sapphire/miniforge3/envs/tf/lib/python3.9/site-packages/sklearn/line ar\_model/\_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (st atus=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max\_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear\_model.html#logistic-regression

n\_iter\_i = \_check\_optimize\_result(



XGBoost with PCA | accuary rate : 0.7375643224699828 | RSS : 2.104631217838765

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| Bump         | 0.64      | 0.64   | 0.64     | 121     |  |
| Dirtiness    | 0.93      | 0.82   | 0.87     | 17      |  |
| K_Scatch     | 0.97      | 0.89   | 0.93     | 117     |  |
| Other_Faults | 0.67      | 0.71   | 0.69     | 202     |  |
| Pastry       | 0.52      | 0.57   | 0.55     | 47      |  |
| Stains       | 0.84      | 0.73   | 0.78     | 22      |  |
| Z_Scatch     | 0.89      | 0.82   | 0.85     | 57      |  |
|              |           |        |          |         |  |
| accuracy     |           |        | 0.74     | 583     |  |
| macro avg    | 0.78      | 0.74   | 0.76     | 583     |  |
| weighted avg | 0.75      | 0.74   | 0.74     | 583     |  |

