L3

Hanwen Jin

October 9, 2019

Tools from calculus: Laplace equation:

$$\begin{cases} \Delta u = 0 \text{ in } \Omega \subset \mathbb{R}^n \\ u(x) = 0 \text{ for } x \in \partial \Omega \end{cases}$$
 (1)

In general Ω is an open set, and $\partial\Omega$ is boundary set, it has some regularity.

Definition 0.1. Ω is a C^1 domain, if $\forall x \in \partial \Omega$, there exists a system of coordinates $(y_1, \ldots, y_{n-1}, y_n) \equiv (y', y_n)$, where y' is the vector contianing all ys. with origin at x, a ball B(x) around x and a function φ in a neighbourhood $N \subset \mathbb{R}^{n-1}$ of y' = 0' such that φ is C^1 in the neighbourhood, $\varphi(0') = 0$ and two things happened.

1.
$$\partial\Omega\cap B(x) = \{(y', y_n) : y_n = \varphi(y'), y' \in \mathcal{N}\}$$

2.
$$\Omega \cap B(x) = \{y', y_n : y_n > \varphi(y') \ y' \in \mathcal{N}\}$$

Remark. 1 says that locally, $\partial\Omega$ is the graph of the C^1 function . 2 says that locally Ω lies on one side of the graph of φ .

Remark. A C^1 domain does not have corners, and the tangent line (n=2), the tangent plane (n=3) is always well defined.

Figure 1: L3F1

If $\varphi \in \mathbb{C}^k \implies \mathbb{C}^k - domain (c^{\infty} smooth domain)$ If $\varphi \in Lip \implies Lipschitz domain$

Figure 2: L3F2

Integration by parts

 $\Omega \in \mathbb{R}^n$ is \mathbb{C}^1 , take a vector fields $F = (F_1, \dots F_n) : \Omega \mapsto \mathbb{R}^n, F \in C^1(\Omega)$, we have Gauss divergence theorem.

$$\int_{\Omega} \operatorname{div} F dx = \int_{\partial \Omega} F \cdot v d\sigma \tag{2}$$

Where ν is the outer normal vector. and $d\sigma = \sqrt{1 + |\nabla \varphi(y')|} dy'$ it is the surface measure locally defined.

The consequences are : Take $v \cdot F$ where $v \in C^1(\Omega)$ (scalar).

$$\int_{\Omega} \operatorname{div}(vE) = \int_{\partial\Omega} vF \cdot \nu \tag{3}$$

$$\int_{\Omega} \operatorname{div}(vF) = \int_{\Omega} v \operatorname{div} F + \int_{\Omega} \nabla v \cdot F = \int_{\partial \Omega} v F \cdot \nu \tag{4}$$

Special case $F = \nabla u$

$$\operatorname{div} \nabla u = \Delta u \tag{5}$$

$$\int_{\Omega} v \Delta u = -\int_{\Omega} \nabla v \cdot \nabla u + \int_{\partial \Omega} v \partial \nu u \tag{6}$$

1. $\nu = 1$: this is the Newmann boundary condition.

$$\int_{\Omega} \Delta u = \int_{\partial \Omega} \partial_{\nu} u \tag{7}$$

(8)

2.
$$v = u$$

$$\int_{\Omega} u \Delta u = -\int_{\Omega} |\nabla u|^2 + \int_{\partial \Omega} u \partial_{\nu} u$$

Two useful theorems

Theorm 0.1 (ODES). Fix $t_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}^n$ a, b > 0, and define

$$R = \{(t, y) : t_0 \le t \le t_0 + a, |y - y_0| \le b\}$$

$$\tag{9}$$

Consider the ODE

$$y'(t) = f(t, y(t)), y(t_0) = y_0$$
 (10)

Where f is a ctn on R and uniformly Lipschitz in y $(\exists L > 0 : |f(t, y_1) - f(t, y_2)| \le L(y_1 - y_2) \forall t_1, y_1, y_2$ (with maximum equal to $M \ge 0$ in \mathbb{R}) Then (ODE) has a unique solution y(t) defined on $[r_0, t_0 + T]$ where $T = \min\{a, \frac{b}{M}\}$

Theorm 0.2 (Inverse function theorem). Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be C^1 assume DF(a) is invertable for some $a \in \mathbb{R}^n$, Where DF is a matrix of $[\partial_{x_i} F_j]$. for some $a \in \mathbb{R}^n$ let b = F(a), then

- 1. $\exists U, V$ open in \mathbb{R}^n such that $a \in U, b \in V$ F is bijecytion on U, F(u) = V
- 2. If G is the inverse of F in V(it exists by 1) defined by G(F(x)) = x then $G \in C^1(v)$ Roughly: a C^1 mapping F is invertable and in a neighbourhood of a point $a \in \mathbb{R}^n$ at which the matrix DF(a) is invertable.

Consequence: write the equation Y = F(x) componentwise $Y_i = F_i(x_1, \dots, x_n)$, the system can be solved for x_1, \dots, x_n in terms of y_1, \dots, y_n if we restrict x and y to a small neighbourhood of a and b.

The solutions are unique and C^1 .