The World Wide Web

WWW Background

- 1989-1990 Tim Berners-Lee invents the World Wide Web at CERN
 - Means for transferring text and graphics simultaneously
 - Client/Server data transfer protocol
 - Communication via application level protocol
 - System ran on top of standard networking infrastructure
 - Text mark up language
 - Not invented by Bernes-Lee
 - Simple and easy to use
 - Requires a client application to render text/graphics

WWW History contd.

- 1994 Mark Andreesen invents MOSAIC at National Center for Super Computing Applications (NCSA)
 - First graphical browser
 - Internet's first "killer app"
 - Freely distributed
 - Became Netscape Inc.
- 1995 (approx.) Web traffic becomes dominant
 - Exponential growth
 - E-commerce
 - Web infrastructure companies
 - World Wide Web Consortium

WWW Components

Structural Components

- Clients/browsers to dominant implementations
- Servers run on sophisticated hardware
- Caches many interesting implementations
- Internet the global infrastructure which facilitates data transfer

Semantic Components

- Hyper Text Transfer Protocol (HTTP)
- Hyper Text Markup Language (HTML)
 - eXtensible Markup Language (XML)
- Uniform Resource Identifiers (URIs)

WWW Structure

- Clients use browser application to send URIs via HTTP to servers requesting a Web page
- Web pages constructed using HTML (or other markup language) and consist of text, graphics, sounds plus embedded files
- Servers (or caches) respond with requested Web page
 - Or with error message
- Client's browser renders Web page returned by server
 - Page is written using Hyper Text Markup Language (HTML)
 - Displaying text, graphics and sound in browser
 - Writing data as well
- The entire system runs over standard networking protocols (TCP/IP, DNS,...)

Uniform Resource Identifiers

- Web resources need names/identifiers Uniform Resource Identifiers (URIs)
 - Resource can reside anywhere on the Internet
- URIs are a somewhat abstract notion
 - A pointer to a resource to which request methods can be applied to generate potentially different responses
 - A request method is eg. fetching or changing the object
- Instance: http://www.foo.com/index.html
 - Protocol, server, resource
- Most popular form of a URI is the Uniform Resource Locator (URL)
 - Differences between URI and URL are beyond scope
 - RFC 2396

HTTP Basics

- Protocol for client/server communication
 - The heart of the Web
 - Very simple request/response protocol
 - Client sends request message, server replies with response message
 - Stateless
 - Relies on URI naming mechanism
- Three versions have been used
 - 09/1.0 very close to Berners-Lee's original
 - RFC 1945 (original RFC is now expired)
 - 1.1 developed to enhance performance, caching, compression
 - RFC 2068
 - 1.0 dominates today but 1.1 is catching up

HTTP Request Messages

- GET retrieve document specified by URL
- PUT store specified document under given URL
- HEAD retrieve info. about document specified by URL
- OPTIONS retrieve information about available options
- POST give information (eg. annotation) to the server
- DELETE remove document specified by URL
- TRACE loopback request message
- CONNECT for use by caches

HTTP Request Format

```
request-line (request request-URI HTTP-version)
headers (0 or more)
<br/>
<br/>
blank line>
body (only for POST request)
```

- First type of HTTP message: requests
 - Client browsers construct and send message
- Typical HTTP request:
 - GET http://www.cs.wisc.edu/index.html HTTP/1.0

HTTP Response Format

```
status-line (HTTP-version response-code response-phrase)
headers (0 or more)
<black line>
body
```

- Second type of HTTP message: response
 - Web servers construct and send response messages
- Typical HTTP response:
 - HTTP/1.0 301 Moved Permanently
 Location: http://www.wisc.edu/cs/index.html

HTTP Response Codes

- 1xx Informational request received, processing
- 2xx Success action received, understood, accepted
- 3xx Redirection further action necessary
- 4xx Client Error bad syntax or cannot be fulfilled
- 5xx Server Error server failed

HTTP Headers

- Both requests and responses can contain a variable number of header fields
 - Consists of field name, colon, space, field value
 - 17 possible header types divided into three categories
 - Request
 - Response
 - Body
- Example: Date: Friday, 27-Apr-01 13:30:01 GMT
- Example: Content-length: 3001

HTTP/1.0 Network Interaction

- Clients make requests to port 80 on servers
 - Uses DNS to resolve server name
- Clients make separate TCP connection for each URL
 - Some browsers open multiple TCP connections
 - Netscape default = 4
- Server returns HTML page
 - Many types of servers with a variety of implementations
 - Apache is the most widely used
 - Freely available in source form
- Client parses page
 - Requests embedded objects

HTTP/1.1 Performance Enhancements

- HTTP/1.0 is a "stop and wait" protocol
 - Separate TCP connection for each file
 - Connect setup and tear down is incurred for each file
 - Inefficient use of packets
 - Server must maintain many connections in TIME_WAIT
- Mogul and Padmanabahn studied these issues in '95
 - Resulted in HTTP/1.1 specification focused on performance enhancements
 - Persistent connections
 - Pipelining
 - Enhanced caching options
 - Support for compression

Persistent Connections and Pipelining

Persistent connections

- Use the same TCP connection(s) for transfer of multiple files
- Reduces packet traffic significantly
- May or may not increase performance from client perspective
 - Load on server increases

Pipelining

- Pack as much data into a packet as possible
- Requires length field(s) within header
- May or may not reduce packet traffic or increase performance
 - Page structure is critical