A

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 31 gennaio 2003

Nome: Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura.

Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min \quad x_1 - 4x_2 \\ \begin{cases} -3x_1 + 2x_2 \le 6 \\ 2x_1 + 3x_2 \ge 6 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$$

$$\min \quad 2x_1 - x_2$$

$$\begin{cases} 4x_1 + 2x_2 + x_3 \ge 5 \\ x_1 - x_2 + 10x_3 \le 12 \\ x_1 - x_2 + x_3 \ge 3 \\ x \ge 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo non orientato con 9 nodi 1...9. Trovare l'albero ricoprente di peso minimo, a partire dal nodo 1, utilizzando l'algoritmo di Prim-Dijkstra. Indicare in quale ordine vengono aggiunti archi all'albero ricoprente (in quale ordine vengono fissati ad 1 i flag dei nodi del grafo).

Archi	(1,2)	(1,4)	(2,3)	(2,4)	(2,5)	(2,6)	(3,6)	(4,5)	(4,7)	(5,6)	(5,7)	(5,8)	(6,8)	(6,9)	(7,8)	(8,9)
Costi	1	6	10	9	8	2	1	1	6	3	7	4	9	10	3	5

Domanda 4

Discutere i problemi di programmazione lineare in forma standard, dimostrando in particolare che se esiste soluzione ottima, esiste un vertice ottimo.

Ricerca Operativa 1 Primo appello

Nome: Cognome:

laurea V.O.

Esercizio 1

È dato il problema di PL in figura. Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare

inferiormente. Applicare la regola di Bland.

$$\max -2x_1 + x_2 \begin{cases} 3x_1 - x_2 \le 9 \\ 2x_1 + 3x_2 \ge 6 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 0 & 2 & 2 \end{pmatrix}$$

$$\min \quad 3x_1 + x_3$$

$$\begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 3 \\ -x_1 + 3x_2 + 2x_3 \le 10 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 \ge 2 \\ x \ge 0 \end{cases}$$

Esercizio 3

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi ed un flusso ammissibile. A partire dal flusso dato trovare il massimo flusso inviabile dal nodo 1 al nodo 8 con l'algoritmo di Ford e Fulkerson.

Archi	(1,2)	(1,3)	(2,4)	(2,5)	(3,7)	(4,3)	(4,6)	(5,6)	(6,8)	(7,6)	(7,8)
Capacità	10	8	4	6	7	5	3	2	10	4	1
Flussi	4	0	4	0	4	4	0	0	4	4	0

Domanda 4

Discutere il problema dell'albero ricoprente di peso minimo, dimostrando in particolare la correttezza degli algoritmi di Prim e di Kruskal.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 – Primo appello

31 gennaio 2003

Nome:

Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura.

Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min -x_1 - 3x_2$$

$$\begin{cases} x_1 + 2x_2 \ge 4 \\ x_2 \le 3 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

$$\min \quad x_1 - x_3$$

$$\begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 4 \\ -x_1 + 3x_2 + 2x_3 = 4 \\ x_1 + 2x_2 - x_3 \ge 2 \\ x \ge 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo con 8 nodi 1...8. Trovare l'albero dei cammini minimi dal nodo 1 a tutti gli altri nodi utilizzando l'algoritmo di Dijkstra. Indicare in quale ordine vengono fissati ad 1 i flag dei nodi del grafo. Evidenziare il cammino minimo dal nodo 1 al nodo 8.

I	Archi	(1,2)	(1,3)	(2,4)	(2,5)	(3,7)	(4,3)	(4,6)	(5,6)	(6,8)	(7,6)	(7,8)
(Costi	1	6	2	3	3	1	9	5	2	1	4

Domanda 8

Discutere il problema dell'albero ricoprente di peso minimo, dimostrando in particolare che l'algoritmo di Prim-Dijkstra ha complessità $O(n^2)$.

D

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 31 gennaio 2003

Nome: Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura. Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min \quad 2x_1 - x_2$$

$$\begin{cases} x_1 + 3x_2 \ge 3 \\ x_1 + x_2 \le 4 \\ x \ge 0 \end{cases}$$

Esercizio 2

In tabella sono riportate le 8 attività di un progetto, con durate e vincoli di precedenza tra attività. Rappresentare graficamente il progetto, calcolare il minimo tempo di completamento dello stesso e lo slittamento di tutte le attività. Infine, rappresentare il diagramma di Gantt del progetto evidenziando le attività critiche e gli slittamenti delle attività non critiche.

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
Durata	4	4	6	3	6	4	2	5
Predecessori	-	A_1	-	A_1	A_3	A_2	A_5	A_4
				A_3		A_4	A_6	A_7

Esercizio 3

State applicando l'algoritmo di Floyd e Warshall ad un grafo con 5 nodi. Alla fine del passo 3 ottenete le matrici in figura (quella di sinistra indica i cammini minimi, quella di destra i predecessori). Effettuate i passi 4 e 5 dell'algoritmo e mostrate i cammini minimi dal nodo 5 al nodo 4 e dal nodo 3 al nodo 1. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

0	8	2	5	1
∞	0	1	4	8
∞	∞	0	3	8
1	∞	3	0	2
∞	2	4	7	0

1	1	1	3	1
2	2	2	3	2
3	3	3	3	3
4	4	1	4	1
5	5	2	3	5

Domanda 4

Illustrare la teoria della dualità, dimostrando in particolare che valgono le condizioni di ortogonalità.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 31 gennaio 2003

Nome: Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura. Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min \quad 2x_1 - x_2
\begin{cases}
3x_1 + x_2 \ge 3 \\
-x_1 + 4x_2 \le 16 \\
x \ge 0
\end{cases}$$

Esercizio 2

In tabella sono riportate le 8 attività di un progetto, con durate e vincoli di precedenza tra attività. Rappresentare graficamente il progetto, calcolare il minimo tempo di completamento dello stesso e lo slittamento di tutte le attività. Infine, rappresentare il diagramma di Gantt del progetto evidenziando le attività critiche e gli slittamenti delle attività non critiche.

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
Durata	5	7	2	4	3	8	4	7
Predecessori	-	A_1	A_1	A_1	A_3	A_4	A_2	A_6
					A_4		A_5	A_7

Esercizio 3

State applicando l'algoritmo di Floyd e Warshall ad un grafo con 5 nodi. Alla fine del passo 3 ottenete le matrici in figura (quella di sinistra indica i cammini minimi, quella di destra i predecessori). Effettuate i passi 4 e 5 dell'algoritmo e mostrate i cammini minimi dal nodo 5 al nodo 4 e dal nodo 3 al nodo 1. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

0	8	3	4	7
1	0	4	5	8
∞	∞	0	1	4
2	∞	5	0	-1
-1	-2	2	3	0

1	1	1	3	3
2	2	1	3	3
3	3	3	3	3
4	4	1	4	4
2	5	1	3	5

Domanda 4

Illustrare la teoria della dualità, dimostrando che i problemi di programmazione lineare godono della proprietà di dualità forte.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Primo appello 31 gennaio 2003

Nome: Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura. Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\max x_1 + 2x_2$$

$$\begin{cases} x_1 + x_2 \ge 2 \\ 5x_1 + 3x_2 \le 15 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

$$\min \quad x_1 - x_3$$

$$\begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 3 \\ -x_1 + 3x_2 + 2x_3 = 4 \\ x_1 + 2x_2 - x_3 \le 2 \\ x \ge 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo con 8 nodi 1...8. Trovare l'albero dei cammini minimi dal nodo 1 a tutti gli altri nodi utilizzando l'algoritmo di Dijkstra. Indicare in quale ordine vengono fissati ad 1 i flag dei nodi del grafo. Evidenziare il cammino minimo dal nodo 1 al nodo 8.

Archi	(1,2)	(1,3)	(2,4)	(3,5)	(3,6)	(4,7)	(5,2)	(5,7)	(6,8)	(7,6)	(7,8)
Costi	6	1	1	2	9	2	1	5	1	3	5

Domanda 4

Illustrare i problemi di programmazione convessa, dimostrando in particolare che in questi problemi un punto di minimo locale è punto di minimo globale.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 – Primo appello 31 gennaio 2003

Nome:

Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura.

Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min -x_1 + 5x_2 \begin{cases} 10x_1 + 3x_2 \le 30 \\ x_1 + x_2 \ge 1 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$$

$$\min \quad 2x_1 - x_2$$

$$\begin{cases} 4x_1 + 2x_2 + x_3 \le 9 \\ x_1 - x_2 + 10x_3 \ge 12 \\ x_1 - x_2 + x_3 \ge 3 \\ x \ge 0 \end{cases}$$

Esercizio 6

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi ed un flusso ammissibile. A partire dal flusso dato trovare il massimo flusso inviabile dal nodo 1 al nodo 8 con l'algoritmo di Ford e Fulkerson.

Archi	(1,2)	(1,3)	(2,4)	(3,5)	(3,6)	(4,7)	(5,2)	(5,7)	(6,8)	(7,6)	(7,8)
Capacità	1	18	3	6	8	2	4	5	7	3	10
Flussi	0	2	2	2	0	2	2	0	2	2	0

Domanda 4

Discutere il problema del cammino minimo, dimostrando in particolare la correttezza dell'algoritmo di Floyd-Warshall.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica

Ricerca Operativa 1 – Primo appello 31 gennaio 2003

Nome:

Cognome:

Barrare la casella corrispondente: laurea V.O. Laurea N.O.

Esercizio 1

È dato il problema di PL in figura.

Utilizzando l'algoritmo del simplesso (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min \quad x_1 - 2x_2 \\ \begin{cases} x_1 - x_2 \le 2 \\ x_1 + 3x_2 \ge 3 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^{T} = (0 \ 2 \ 2)$$

$$\min \quad 3x_1 + x_3$$

$$\begin{cases} 2x_1 - 2x_2 + 4x_3 \ge 4 \\ -x_1 + 3x_2 + 2x_3 \le 11 \\ x_1 + 2x_2 - x_3 \ge 2 \\ x \ge 0 \end{cases}$$

Esercizio 3

In tabella è riportato il peso degli archi di un grafo non orientato con 9 nodi 1...9. Trovare l'albero ricoprente di peso minimo, a partire dal nodo 1, utilizzando l'algoritmo di Prim-Dijkstra. Indicare in quale ordine vengono aggiunti archi all'albero ricoprente (in quale ordine vengono fissati ad 1 i flag dei nodi del grafo).

Archi	(1,4)	(1,6)	(1,7)	(2,3)	(2,4)	(2,7)	(2,8)	(3,4)	(3,5)	(3,8)	(3,9)	(4,5)	(4,6)	(4,7)	(5,6)	(5,9)
Costi	1	4	7	9	3	4	8	6	9	1	4	10	5	6	7	8

Domanda 4

Discutere i problemi di flusso visti durante il corso, dimostrando in particolare il teorema di Ford e Fulkerson.