Eksamen på Økonomistudiet sommer 2017

Lineære Modeller

27. juni 2017

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 3 sider incl. denne.

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn, blive registreret som syg hos denne. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM Juni 2017

Eksamen i Lineære Modeller

Tirsdag d.27 juni 2017.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^3 \to \mathbf{R}^4$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} .$$

- (1) Bestem nulrummet for L. Er L injektiv?
- (2) Bestem en basis for billedrummet, R(L), for L. Er L surjektiv? Hvad siger dimensionsætningen om denne situation?
- (3) Bestem løsningsmængden til ligningen Lx = y, hvor $y \in R(L)$. Hvad skal sammenhængen mellem y_1, y_2, y_3 og y_4 være for at $y = (y_1, y_2, y_3, y_4)$ tilhører billedrummet R(L)?
- (4) Vis at vektoren y = (6, 4, 5, 2) tilhører billedrummet R(L) og bestem koordinaterne til y med hensyn til den fundne basis for R(L).

Opgave 2. Vi betragter 3×3 matricen

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} .$$

- (1) Det oplyses at $v_1 = (-1, 0, 1), v_2 = (0, 1, 0)$ og $v_3 = (1, 0, 1)$ er egenvektorer for A. Bestem de tilhørende egenværdier.
- (2) Bestem egenværdierne for matricen $A^4(A-E)$.

- (3) Bestem matricen f(A), hvor f er en reel funktion defineret på spektret for A.
- (4) Bestem vektoren $f(A)(v_1 + v_2 + v_3)$.

Opgave 3.

- (1) Beregn integralet $\int \sin^2(bx) \cos((a+b)x) dx$, hvor a og b er reelle tal.
- (2) Løs ligningen $iz^2 + 1 = 0$. Løsningen ønskes angivet på rektangulær form a + ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} \left(\frac{5}{16}x^4 - x^2\right)^n.$$

- (1) Vis at funktionen f er veldefineret på intervallet]-2;2[.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.
- (6) For hvilke værdier af y i værdimængden for funktionen f har ligningen f(x) = y fire løsninger?