

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação

1ª Avaliação Presencial de Física para Computação 2010 I

Nome:	 	
D/I		
Pólo:		

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas. Desse modo, resultados parciais e evidências de compreensão do conteúdo pertinente podem ser considerados e pontuados. É permitido o uso de máquina de calcular.

Questão	Valor	Nota
1ª Questão	2,0	
2ª Questão	2,0	
3ª Questão	2,0	
4ª Questão	2,0	
5ª Questão	2,0	
Total	10,0	

1ª Questão

Um policial persegue um assaltante no topo de um edifício. Ambos correm a uma velocidade de 4,5m/s. Antes de o assaltante atingir a beirada do telhado ele terá de decidir se deve tentar ou não o salto para o próximo edifício, que está a 6,2m de distância e a 4,8m mais baixo, conforme a figura abaixo. Poderá fazê-lo? Suponha que ele pule horizontalmente e despreze qualquer influência de atrito. Adote g = 9,8m/s².

Solução:

Ele precisa cair de uma altura de 4,8m, o que lhe dará um tempo de queda que poderá ser calculado, fazendo $\theta_0 = 0^\circ$ e $y - y_0 = -4,8m$, assim tem-se:

$$t = \sqrt{-\frac{2(y - y_0)}{g}} = \sqrt{-\frac{2(-4.8m)}{9.8m/s^2}} = 0.990s$$

Agora perguntamos: "Que distância o assaltante percorreu horizontalmente neste intervalo de tempo?" A resposta pode ser obtida da seguinte forma:

$$x - x_0 = (v_0 cos \theta_0)t = \left(\frac{4,5m}{s}\right)(cos 0^\circ)(0,990s) = 4,5m.$$

Portanto ele não conseguiria percorrer os 6,2m.

2ª Questão

Duas partículas de mesma massa sofrem uma colisão elástica, estando a partículaalvo inicialmente em repouso. Mostre que (a menos que a colisão seja frontal) as duas partículas se moverão, após a colisão, em direções perpendiculares entre si.

Solução:

A figura abaixo mostra a situação antes após colisão, cada partícula e seu corresponde vetor de momento linear. Devido à conservação do momento linear, estes vetores formam um triângulo, como é mostrado na terceira figura. Sendo iguais as massas das partículas, o triângulo dos momentos (3^a figura) também é o triângulo das velocidades, pois as massas se cancelam algebricamente, isto é, $v_{1i} = v_{1f} + v_{2f}$.

Como a energia cinética se conserva

$$\frac{1}{2}m_2v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$$

Cancelando-se as massas temos:

$$v_{1inicial}^2 = v_{1final}^2 + v_{2final}^2$$

Aplicando essa relação ao triângulo da 3^a figura temos o Teorema de Pitágoras. Para isto, o triângulo deve ser retângulo e, portanto o ângulo φ entre os vetores $v_{1f} + v_{2f}$ deve ser um ângulo reto (90°).

3ª Questão

(a) Quando uma massa m1 é suspensa de uma determinada mola A e a massa m2 é suspensa da mola B, as molas são distendidas da mesma distância. Se os sistemas forem colocados em movimento harmônico simples vertical com a mesma amplitude, qual deles terá mais energia?

Solução:

Suponha que m1>m2.

Da equação de equilíbrio para um corpo suspenso de uma mola, $MG=k\Delta y$, concluímos que $k_1>k_2$.

Ademais, vê-se que $\frac{\Delta y}{g}=\frac{m_1}{k_1}=\frac{m_2}{k_2}$, A energia do oscilador é $E=\frac{1}{2}kx_m^2$ portanto $E_1>E_2$.

(b) O calor pode ser absorvido por uma substância sem que esta mude sua temperatura. Esta afirmação contradiz o conceito do calor como uma energia no processo de transferência, devido a uma diferença de temperatura? Solução:

Não. O sistema pode absorver calor e utilizar essa energia na realização de trabalho; a temperatura do sistema não muda e não é violado o principio da conservação da energia. O sistema também absorve calor sem mudar temperatura ao sofrer mudança de fase.

(c) Ondas sonoras podem ser usadas para medir a velocidade com que o sangue passa pelas veias e artérias. Explique como.

Solução:

Ondas ultra-sônicas atingem e são refletidas pelas estruturas de diferentes densidades presentes no sangue e movendo-se com ele ao longo das veias e artérias. A freqüência refletida será maior ou menor que a emitida, em função do movimento.

(d) Por que a temperatura de ebulição de um líquido aumenta com a pressão?

Solução:

Com a pressão externa maior aplicada sobre o líquido, as moléculas precisam ter uma energia cinética maior para vencer as forças (fracas) que as unem e "escapar" ou evaporar. Uma energia cinética maior das moléculas significa uma temperatura maior. A grande altitude acima do nível do mar, no topo das montanhas, onde a pressão atmosférica é menor, a água, por exemplo, pode ferver a uns 80°C; ao nível do mar, ferve a 100°C.

4ª Questão

- (a) Calcule o campo elétrico produzido por um anel de raio a carregado com carga Q uniformemente distribuída sobre ele, ao longo do eixo (coincidente com o eixo x) que passa por seu centro e é perpendicular ao plano definido por ele.
- (b) Quando $x \ll a$ pode-se considerar que o campo é proporcional a x. Explicite esta aproximação e, neste contexto, considere a colocação de uma partícula de massa m e carga -q próximo ao centro do anel, na posição x_p . Determine a força sobre a partícula de carga -q, o equivalente à constante da "mola", a velocidade e período da oscilação.

SOLUÇÃO:

(a)

O Campo elétrico é dado por

$$E = \int dE$$

onde $dE = k \frac{dq}{r^2}$

onde $dq = \frac{Q}{L} ds$, pois a carga Q está uniformemente distribuída por todo o anel de comprimento L ($L = 2\pi a$).

Pela figura podemos ver que r é a hipotenusa do triângulo de catetos a e x; assim, temos:

$$dE = k \frac{\frac{Q}{L} ds}{(a^2 + x^2)}$$

Podemos observar que não existem componentes de $\stackrel{\rightharpoonup}{E}$ nos eixos y e z. Para isso basta considerarmos dois elementos de carga do anel (dq₁ e dq₂) diametralmente opostos. O campo resultante devido a tais elementos é paralelo ao eixo x, pois as componentes perpendiculares a tal eixo se cancelam, ou seja, a componente em z gerada por dq₁ é cancelada pela componente em z gerada por dq₂, de forma análoga para o eixo y. Essa idéia pode ser usada para quaisquer dois elementos do anel e assim o campo resultante será paralelo ao eixo x.

A componente em x do campo é dada por:

$$dE_r = dE\cos\theta$$

E pela figura acima temos:

$$\cos\theta = \frac{x}{r} = \frac{x}{\sqrt{(x^2 + a^2)}}$$

Assim,

$$dE_x = dE\cos\theta = k \frac{\frac{Q}{L}ds}{(a^2 + x^2)} \frac{x}{\sqrt{(x^2 + a^2)}}$$
$$dE_x = \frac{k \times Q ds}{L (x^2 + a^2)^{\frac{3}{2}}}$$

$$E_x = \frac{k \times Q}{L(x^2 + a^2)^{\frac{3}{2}}} \int ds$$

Onde $\int ds = 2 \pi a = L$ (comprimento do anel).

$$E_{x} = \frac{kQx}{L(a^{2}+x^{2})^{\frac{3}{2}}}L$$

$$E_{x} = \frac{kQx}{(a^{2} + x^{2})^{\frac{3}{2}}}$$

$$E_x = \frac{k \times Q}{(x^2 + a^2)^{\frac{3}{2}}} \cong \frac{kQx}{a^3}$$

Nesse caso o campo aponta para cima na parte superior do anel e para baixo na parte inferior. Tomamos como a direção para cima sendo positiva e com isso a força que atua na carga –q é dada por:

$$F = -qE = -\frac{kqQx}{a^3} = -Kx$$

Com isso podemos notar que essa força é restauradora. Além disso, essa força tenta puxar a partícula para o ponto de equilíbrio(x = 0). Note que parece que a carga -q está conectada a uma mola como se a carga se movesse de acordo com um movimento harmônico simples ao longo do eixo x.

A freqüência angular é dada por:

$$w = \sqrt{\frac{K}{m}} = \sqrt{\frac{kqQ}{a^3m}}$$

Portanto o período de oscilação é:

$$T = \frac{2\pi}{w} = \frac{2\pi}{\sqrt{\frac{kqQ}{a^3m}}} = 2\pi \left(\frac{kqQ}{a^3m}\right)^{-1/2}$$

E a velocidade:

$$\frac{dv}{dt} = -w^2x = \frac{kqQ}{a^3m}x$$

$$v = \frac{kqQ}{a^3m}xt$$

5ª Questão

- (a) Uma carga puntiforme q de massa m é colocada em repouso num campo não uniforme. Será que ela seguirá, necessariamente, a linha de força que passa pelo ponto em que foi abandonada?
- (b) Uma carga puntiforme é colocada no centro de uma superfície gaussiana esférica. O valor do fluxo Φ mudará se (i) a esfera for substituída por um cubo do mesmo volume? (ii) a superfície for substituída por um cubo de volume dez vezes menor?

Solução:

(a) Não. A força elétrica sempre coincidirá com a direção tangente à linha de força. A força elétrica, em cada ponto onde se encontra a carga, é dada por qE, onde E é o vetor campo elétrico no ponto onde se encontra a carga. Como a carga parte do repouso, a direção de sua aceleração inicial é dada pela direção do campo elétrico no ponto inicial. Se o campo elétrico for uniforme (ou radial), a trajetória da carga deve coincidir com a direção da linha de força. Entretanto, para um campo elétrico não uniforme (nem radial), a trajetória da carga não precisa coincidir necessariamente com a direção da linha de força. Sempre coincidirá, porém, com a direção tangente à linha de força.

(b)

- (i) Não. O fluxo total só depende da carga total no interior da superfície gaussiana considerada. A forma da superfície gaussiana considerada não é relevante.
- (ii) Não. O fluxo total só depende da carga total no interior da superfície gaussiana considerada. O volume englobado pela superfície gaussiana considerada não é relevante.

Formulário:

$$\begin{split} v &= \sqrt{\frac{T}{\mu}}; \qquad k = \frac{w}{v}; \qquad dE = k.\frac{dq}{r^2}; \qquad \vec{F} = q.\vec{E}; \quad \vec{E} = \sum_i \frac{k.q_i}{r_i^2} \hat{r}_i; \\ \vec{F} &= m.\vec{a}; \qquad T = \frac{2\pi}{w}; \quad dq = \frac{Q}{L}ds; \quad P = m.v; \quad E_{cinetica} = \frac{1}{2}m.v^2; \\ F &= p.\frac{\Delta N}{\Delta t}; \quad x = x_0 + v_{0x}t + \frac{at^2}{2}; \quad y = y_0 + v_{0y}t - \frac{gt^2}{2} \\ m_1 v &= (m_1 + m_2)V; \qquad \qquad \frac{1}{2}m_2 v_{1inicial}^2 = \frac{1}{2}m_1 v_{1final}^2 + \frac{1}{2}m_2 v_{2final}^2; \\ E &= \int dE; \quad dq = \frac{Q}{L}ds \qquad w = \sqrt{\frac{K}{m}} \end{split}$$