

AutoGT: Automated Graph Transformer Architecture Search

Zizhao Zhang, Xin Wang, Chaoyu Guan, Ziwei Zhang, Haoyang Li, Wenwu Zhu Tsinghua University

> Motivation

- Graph Transformer gained success.
- Human labor and expert knowledge is needed for designing proper Transformer architecture and graph specific encoding.
- However, current Transformer automatic design works focus on non-graph data without considering graph encoding.
- How to design graph Transformer automatically?

> Method

- We propose <u>Automated Graph Transformer</u> (AutoGT) for <u>Graph Transformer Neural Architecture Search</u>.
- 1) Graph Transformer Search Space: based on a unified graph Transformer formulation, including both candidate Transformer architectures and various graph encodings

 Transformer Architecture
- Unified graph Transformer formulation:
- Node Attribution Augmentation
- $\bullet \quad \mathbf{H}_{aug}^{(l)} = \mathbf{H}^{(l)} + Enc_{node}(G)$
- Attention Map Augmentation
- $\mathbf{A}_{h,aug}^{(l)} = \operatorname{softmax} \left(\frac{\mathbf{Q}_h^{(l)} \mathbf{K}_h^{(l)}^T}{\sqrt{d}} + Enc_{map}(G) \right)$

• 2) Encoding-Aware Supernet Training: train a single supernet first and split into several subnets according to subspaces.

Experiment

Dataset	COX2_MD	BZR_MD	PTC_FM	DHFR_MD	PROTEINS	DBLP
GIN DGCNN DiffPool GraphSAGE Graphormer	45.82 _{14.35} 54.81 _{18.51} 51.45 _{14.28} 49.59 _{12.80} 56.39 _{15.03}	59.68 _{14.65} 62.74 _{20.59} 65.01 _{14.74} 57.43 _{13.50} 63.94 _{12.58}	57.87 _{8.86} 62.17 _{3.62} 60.16 _{5.87} 64.17 _{3.28} 64.88 _{7.58}	$62.88_{8.26} \\ 63.89_{5.91} \\ 61.06_{9.42} \\ 66.92_{2.35} \\ 64.88_{7.58}$	73.76 _{4.61} 72.68 _{3.75} 73.31 _{3.75} 67.19 _{6.97} 75.29 _{3.10}	91.18 _{0.42} 91.57 _{0.54} OOT 51.01 _{0.02} 89.36 _{2.31}
GT(ours) AutoGT(ours)	54.44 _{16.84} 59.72 _{23.26}	63.33 _{11.67} 65.92 _{10.00}	64.18 _{2.60} 65.60 _{3.71}	65.68 _{5.64} 68.22 _{5.02}	73.94 _{3.78} 77.17 _{3.40}	90.67 _{1.01} 91.66 _{0.79}

Dataset	OGBG-MolHIV	OGBG-MolBACE	OGBG-MolBBBP
GIN	71.11 _{2.57}	70.424.78	63.37 _{1.81}
DGCNN	69.972.16	75.62 _{2.64}	$60.92_{1.78}$
DiffPool	74.58 _{1.71}	73.87 _{4.50}	66.68 _{6.08}
GraphSAGE	67.823.67	72.91 _{1.24}	64.193.50
Graphormer	71.89 _{2.66}	76.42 _{1.67}	66.52 _{0.74}
AutoGT(ours)	74.95 _{1.02}	76.70 _{1.42}	67.29 _{1.46}

