Lazy Subtyping

a, bType variable $\widehat{\alpha}, \widehat{\beta}$ Existential variable $A, B, C ::= 1 \mid a \mid \forall x. A \mid A \rightarrow B \mid \widehat{\alpha}$ Type au $::= 1 \mid a \mid \tau_1 \rightarrow \tau_2$ Declarative Monotype $::= 1 \mid a \mid \tau_1 \to \tau_2 \mid \widehat{\alpha}$ Algorithmic Monotype l, u \mathcal{L}, \mathcal{U} Algorithmic Monotype List ::= $[l] \mid [u]$ Ψ $:= \cdot \mid \Psi, a$ Declarative Context $:= \cdot \mid \Gamma, a \mid \Gamma, \mathcal{L} \leq \widehat{\alpha} \leq \mathcal{U} \mid \Gamma \Vdash A \leq B$ Algorithmic Worklist Γ $\boxed{\Psi \vdash A \leq B}$ Declarative Subtyping $\frac{a \in \Psi}{\Psi \vdash a \leq a} \leq \mathtt{Var} \quad \frac{}{\Psi \vdash 1 \leq 1} \leq \mathtt{Unit}$ $\frac{\Psi \vdash B_1 \leq A_1 \ \Psi \vdash A_2 \leq B_2}{\Psi \vdash A_1 \to A_2 \leq B_1 \to B_2} \leq \to \quad \frac{\Psi \vdash \tau \ \Psi \vdash [\tau/a]A \leq B}{\Psi \vdash \forall a.A \leq B} \leq \forall \mathtt{L} \quad \frac{\Psi, b \vdash A \leq B}{\Psi \vdash A \leq \forall b.B} \leq \forall \mathtt{R}$ $\Gamma \Longrightarrow \Gamma'$ Γ reduces to Γ' (Algorithmic Subtyping) $\Gamma.a \Longrightarrow \Gamma$ $\Gamma, \widehat{\alpha} \Longrightarrow \Gamma$ $\Gamma, \cdot < \widehat{\alpha} < \cdot \Longrightarrow \Gamma$ $\mathcal{L} = \{l\}_n, n > 0$ $\Gamma, \mathcal{L} \leq \widehat{\alpha} \leq \cdot \Longrightarrow \Gamma \Vdash l_1 \leq l_2 \Vdash \dots \Vdash l_1 \leq l_n$ $\Gamma, \cdot \leq \widehat{\alpha} \leq \mathcal{U} \Longrightarrow \Gamma \Vdash u_1 \leq u_2 \Vdash \dots \Vdash u_1 \leq u_m$ $\mathcal{U} = \{u\}_m, m > 0$ $\Gamma, \mathcal{L} < \widehat{\alpha} < \mathcal{U} \Longrightarrow \Gamma \Vdash l_1 < u_1 \Vdash \dots \Vdash l_n < u_m$ $\mathcal{L} = \{l\}_n, \mathcal{U} = \{u\}_m, m, n > 0$ $\Gamma \Vdash 1 < 1 \Longrightarrow \Gamma$ $\Gamma[a] \Vdash a \leq a \Longrightarrow \Gamma$ $\Gamma[\widehat{\alpha}] \Vdash \widehat{\alpha} < \widehat{\alpha} \Longrightarrow \Gamma$ $\Gamma \Vdash A_1 \to A_2 \leq B_1 \to B_2 \Longrightarrow \Gamma \Vdash A_2 \leq B_2 \Vdash B_1 \leq A_1$ $\Gamma \Vdash \forall a.A < B \Longrightarrow \Gamma, \widehat{\alpha} \Vdash [\widehat{\alpha}/a]A < B$ $B \neq \forall * .*$ $\Gamma \Vdash A \leq \forall b.B \Longrightarrow \Gamma, b \Vdash A \leq B$ $\Gamma[\widehat{\alpha}][\widehat{\beta}] \Vdash \widehat{\alpha} < \widehat{\beta} \Longrightarrow \{\widehat{\alpha}/\widehat{\beta}\}^{>}\Gamma$ $\Gamma[\widehat{\alpha}][\widehat{\beta}] \Vdash \widehat{\beta} \leq \widehat{\alpha} \Longrightarrow \{\widehat{\alpha}/\widehat{\beta}\}^{<}_{\cdot} \Gamma$ $\Gamma[\widehat{\alpha}] \Vdash \widehat{\alpha} < u \Longrightarrow \{u/\widehat{\alpha}\} \stackrel{<}{\sim} \Gamma$ $\widehat{\alpha} \notin FV(u)$ $\Gamma[\widehat{\alpha}] \Vdash l \leq \widehat{\alpha} \Longrightarrow \{l/\widehat{\alpha}\}^{>}\Gamma$ $\widehat{\alpha} \notin FV(l)$

not monotype
$$(A \to B) \land \widehat{\alpha} \notin FV(A \to B)$$

 $\Gamma[\widehat{\alpha}] \Vdash A \to B \le \widehat{\alpha} \Longrightarrow \{\widehat{\alpha}_1 \to \widehat{\alpha}_2/\widehat{\alpha}\}^{>}(\Gamma, \cdot \le \widehat{\alpha}_1 \le \cdot, \cdot \le \widehat{\alpha}_2 \le \cdot) \Vdash \widehat{\alpha}_1 \to \widehat{\alpha}_2 \le A \to B$
not monotype $(A \to B) \land \widehat{\alpha} \notin FV(A \to B)$

 $\Gamma[\widehat{\alpha}] \Vdash \widehat{\alpha} \le A \to B \Longrightarrow \{\widehat{\alpha}_1 \to \widehat{\alpha}_2/\widehat{\alpha}\} < (\Gamma, \cdot \le \widehat{\alpha}_1 \le \cdot, \cdot \le \widehat{\alpha}_2 \le \cdot) \Vdash \widehat{\alpha}_1 \to \widehat{\alpha}_2 \le A \to B$

ReorderWL

where rev reverses a worklist and , , concatenates two worklists.