Important Facts

- The symmetric polynomials is a subring of R[u].
- Every permutation in S_n can be written as a product of transpositions.
- The orbit sums and monomials of the elementary symmetric functions are two bases of the symmetric polynomials.

Name: James Wang

Theorem 16.1.6 Symmetric Functions Theorem

Every symmetric polynomial $g(u_1, \ldots, u_n)$ with coefficients in a ring R can be written in a unique way as a polynomial in the elementary symmetric functions s_1, \ldots, s_n .

Lemma 16.1.11

Let g be a symmetric polynomial of degree d in the variables u_1, \ldots, u_n , and suppose that $g^{\circ} = Q(s_1^{\circ}, \ldots, s_{n-1}^{\circ})$. Then $g = Q(s_1, \ldots, s_{n-1}) + s_n h$, where h is a symmetric polynomial in u_1, \ldots, u_n of degree d - n.

Corollary 16.1.12

Suppose that a polynomial $f(x) = x^n - a_1 x^{n-1} + \cdots \pm a_n$ has coefficients in a field F, and that it splits completely in an extension field K, with roots $\alpha_1, \ldots, \alpha_n$. Let $g(u_1, \ldots, u_n)$ be a symmetric polynomial in u_1, \ldots, u_n with coefficients in F. Then $g(\alpha_1, \ldots, \alpha_n)$ is an element of F.

Proposition 16.1.14

Let $p_1 = p_1(u_1, \ldots, u_n)$ be a polynomial, let $\{p_1, \ldots, p_k\}$ be its orbit for the operation of the symmetric group on the variables, and let $w = w_1, \ldots, w_k$ be another set of variables, where k is the number of polynomials in the orbit of p_1 . If $h(w_1, \ldots, w_k)$ is a symmetric polynomial in w, then $h(p_1, \ldots, p_k)$ is a symmetric polynomial in u.

Confusion

• What does the second induction on the degree of a symmetric polynomial look like?