EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

2003

1.ª FASE 1.ª CHAMADA VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui seis questões de resposta aberta, algumas delas subdivididas em alíneas, num total de onze.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos, nem justificações.
- **1.** Seja f uma função de domínio \mathbb{R} .

Sabe-se que a primeira e a segunda derivadas de f são negativas em \mathbb{R} .

Em qual das figuras seguintes pode estar representada parte do gráfico da função $\,f\,$?

(A)

(B)

(C)

(D)

- 2. Considere uma função g, de domínio $[0, +\infty[$, contínua em todo o seu domínio. Sabe-se que:
 - O gráfico de g tem uma única assimptota
 - $\lim_{x \to +\infty} \frac{g(x)}{x} \ = \ \frac{1}{2}$

Em qual das alternativas seguintes podem estar representadas, em referencial o. n. xOy, parte do gráfico da função g e, a tracejado, a sua assimptota?

(A)

(B)

(C)

(D)

3. Na figura está representada parte do gráfico de uma função $\,h,\,$ de domínio $[0, 5[\cup]5, +\infty[$

> As rectas de equações $\ x=5$ e $y=3\,\,$ são as únicas assimptotas do gráfico de h.

 $\lim_{x \to +\infty} \frac{h(x)}{3 + e^{-x}}$ Indique o valor de

- **(A)** 0
- **(B)** 1
- **(C)** 5

4. Na figura está representado um cubo, em referencial o. n. Oxyz.

Três das arestas do cubo estão contidas nos eixos do referencial.

Os pontos $\,P\,$ e $\,Q\,$ são dois dos vértices do cubo, pertencentes ao plano $\,yOz.\,$

Admita que um ponto R, partindo da origem do referencial, se desloca ao longo do semieixo positivo Ox.

Seja g a função que faz corresponder, à abcissa x do ponto R, a área da secção produzida no cubo pelo plano PQR.

Qual dos seguintes pode ser o gráfico da função $\,g$?

(B)

(C)

(D)

5. Seja E o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset E$ e $B \subset E$). Tem-se que:

$$P(A) = 0.3$$
 e $P(B) = 0.5$

Qual dos números seguintes pode ser o valor de $P\left(A\cup B\right)$?

- **(A)** 0,1
- **(B)** 0,4
- **(C)** 0,6
- **(D)** 0,9

6. Numa caixa estão três cartões, numerados de 1 a 3.

Extraem-se ao acaso, e em simultâneo, dois cartões da caixa.

Seja $\, X \,$ o $\,$ maior $\,$ dos números saídos.

Qual é a distribuição de probabilidades da variável aleatória $\,X\,?\,$

(A)
$$x_i$$
 2 3 $P(X = x_i)$ $\frac{1}{3}$ $\frac{2}{3}$

(B)
$$x_i$$
 2 3 $P(X = x_i)$ $\frac{1}{2}$ $\frac{1}{2}$

(C)
$$x_i$$
 1 2 3 $P(X = x_i)$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

(D)
$$x_i$$
 1 2 3 $P(X = x_i)$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{2}$

7. Seja w um número complexo diferente de zero, cuja imagem geométrica pertence à bissectriz dos quadrantes ímpares.

A imagem geométrica de $\,w^4\,$ pertence a uma das rectas a seguir indicadas.

A qual delas?

- (A) Eixo real
- (B) Eixo imaginário
- (C) Bissectriz dos quadrantes pares
- (D) Bissectriz dos quadrantes ímpares

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

1. Em \mathbb{C} , conjunto dos números complexos, considere

$$z_{_1}=2-2i\,, \qquad z_{_2}=\sqrt{2}\,\,cis\,\,\frac{5\,\pi}{4} \qquad {\rm e} \qquad z_{_3}=\,-\,1+i$$

- 1.1. Sem recorrer à calculadora, determine $\frac{z_1}{z_2}$ apresentando o resultado na forma algébrica.
- **1.2.** Escreva uma condição em $\mathbb C$ que defina, no plano complexo, a circunferência que tem centro na imagem geométrica de z_1 e que passa na imagem geométrica de z_3
- 2. Num laboratório, foi colocado um purificador de ar.

Num determinado dia, o purificador foi ligado às zero horas e desligado algum tempo depois.

Ao longo desse dia, o nível de poluição do ar **diminuiu**, enquanto o purificador esteve ligado.

Uma vez o purificador desligado, o nível de poluição do ar começou de imediato a aumentar.

Admita que o nível de poluição do ar no laboratório, medido em mg/l de ar, às $\,t\,$ horas desse dia, pode ser dado por

$$P(t) = 1 - \frac{\ln{(t+1)}}{t+1} \;, \quad t \in [\; 0,24] \qquad \text{(In designa logaritmo de base } e)$$

Nas duas alíneas seguintes, sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

- **2.1.** Qual é o nível de poluição à uma hora e trinta minutos **da tarde**? Apresente o resultado na unidade considerada, arredondado às décimas.
- **2.2. Sem recorrer à calculadora**, a não ser para efectuar eventuais cálculos numéricos, resolva o seguinte problema:

Quanto tempo esteve o purificador de ar ligado?

Apresente o resultado em horas e minutos (minutos arredondados às unidades).

3. Na figura está representado a sombreado um polígono [ABEG] .

Tem-se que:

- ullet [ABFG] é um quadrado de lado 2
- FD é um arco de circunferência de centro em B; o ponto E move-se ao longo desse arco; em consequência, o ponto C desloca-se sobre o segmento [BD], de tal forma que se tem sempre $[EC] \perp [BD]$
- x designa a amplitude, em radianos, do ângulo CBE $\left(x \in \left[0\,,\,\frac{\pi}{2}\right]\right)$

3.1. Mostre que a área do polígono [ABEG] é dada, em função de x, por

$$A(x) = 2(1 + \sin x + \cos x)$$

(Sugestão: pode ser-lhe útil considerar o trapézio [ACEG])

3.2. Determine A(0) e $A(\frac{\pi}{2})$.

Interprete geometricamente cada um dos valores obtidos.

3.3. Recorra à calculadora para determinar **graficamente** as soluções da equação que lhe permite resolver o seguinte problema:

Quais são os valores de $x\,$ para os quais a área do polígono $[ABEG]\,$ é $4,3\,$?

Apresente todos os elementos recolhidos na utilização da calculadora, nomeadamente o **gráfico**, ou **gráficos**, obtido(s), bem como coordenadas relevantes de alguns pontos. Apresente os valores pedidos na forma de dízima, arredondados às décimas.

4. Prove que, para qualquer função quadrática g, existe um e um só ponto do gráfico onde a recta tangente é paralela à bissectriz dos quadrantes ímpares.

5. No balcão de uma geladaria existe um recipiente com dez compartimentos, cinco à frente e

cinco atrás, para colocar gelado. Em cada compartimento só é colocado um sabor, e nunca

existem dois compartimentos com o mesmo sabor.

Num certo dia, a geladaria tem sete sabores disponíveis: cinco são de fruta (morango,

ananás, pêssego, manga e framboesa) e os outros dois são baunilha e chocolate.

5.1. De quantas maneiras distintas se podem colocar os sete sabores no recipiente?

5.2. De quantas maneiras distintas se podem colocar os sete sabores no recipiente, de

tal forma que os cinco de fruta preencham a fila da frente?

6. Considere duas caixas: caixa A e caixa B.

A caixa A contém duas bolas verdes e cinco bolas amarelas.

A caixa B contém seis bolas verdes e uma bola amarela.

Lança-se um dado equilibrado, com as faces numeradas de 1 a 6.

Se sair face 1, tira-se, ao acaso, uma bola da caixa A.

Caso contrário, tira-se, ao acaso, uma bola da caixa B.

Considere os acontecimentos:

X : Sair face par no lançamento do dado

Y: Sair bola verde

Sem aplicar a fórmula da probabilidade condicionada, indique o valor de P(Y|X) e, numa

pequena composição (cinco a dez linhas), justifique a sua resposta.

Nota: comece por indicar o significado de P(Y|X), no contexto da situação descrita.

FIM

COTAÇÕES

Cad	a resposta certa	+9
	a resposta errada	
	a questão não respondida ou anulada	
Not	a: um total negativo neste grupo vale 0 (zero) pontos.	
II		
1		. 21
	1.1.	
2.		. 28
	2.1.	
3		. 42
•	3.1.	
	3.2. 14	
	3.3. 14	
4		. 14
5		. 20
	5.1	
	5.2.	
6.		. 12

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

($r - raio da base; g - geratriz$)

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r - raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$\cos{(a+b)} = \cos{a} \cdot \cos{b} - \sin{a} \cdot \sin{b}$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \, = \, \sqrt[n]{\rho} \, \cos \frac{\theta + 2 \, k \, \pi}{n} \ , \, k \in \{0,..., \, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$