クラウドサービス工学への挑戦

青山幹雄

南山大学 情報理工学部 ソフトウェア工学科

miko.aoyama@nifty.com

www. nise.org

We are NISE: Network Information and Software Engineering
2012年 1月19日

クラウドサービス工学とは? ソフトウェア工学, SOA, クラウドサービス工学?

- ☞クラウドサービス=抽象化(仮想化+サービス化)+多様化
 - ⊌ コンピューティング全体のサービス化
- ☞クラウドサービス工学[仮定義] :クラウドサービスの開発,提供,

利用、進化に関する技術体系

⊌ ソフトウェア工学/SOAとの関係?

S. Taiほか, 言葉の提示 何が本質か?

クラウドサービス工学 (コンピューティング サービス工学)

BP(M)/Integration as a Service

SaaS

PaaS

IaaS

クラウドサービス工学とは? クラウドサービス工学 for/by ソフトウェア工学

- ☞ CSE(クラウドサービス工学) for SE(ソフトウェア工学)
- - ₫ ソフトウェア工学のクラウドサービス工学への応用
- ♥技術進化: ソフトウェア工学⇒SOA⇒クラウドサービス工学

クラウドサービス工学とは? CSE(クラウドサービス工学) by SE(ソフトウェア工学)の課題

- ☞ソフトウェアエ学/SOAのクラウドサービス工学への拡張
 - 有効な技術は?, 新たに研究開発すべき技術は?
- ❤例: メタデータ駆動マルチテナントシングルインスタンスサービス(Salesforce CRM)
 - ₫ メタデータ駆動: サービスの可変性の制御
 - ₫ 有効な技術: プロダクトライン, 可変性モデル?
 - 新たに研究開発すべき技術: 動的可変性制御
 - ♥メタデータ駆動アーキテクチャ
 - 炒実行時スキーマ生成(動的型づけ)
- グクラウドサービスの本質的特性がもたらす課題
 - ⊌ 開発@Runtime: 開発と利用の融合

参考文献: 青山 幹雄、ほか、OVMに基づくマルチテナントSaaSの

可変性モデルの提案と評価, 電子情報通信学会人工知能と知識処理, Nov. 2011, pp. 1-6.

クラウドサービス工学の枠組み 4つの主要技術

☞クラウドサービス工学の4つの主要技術

⊌ 開発: クラウドサービス開発

● 提供: クラウドサービス提供

√ 利用: クラウドサービス統合(ハイブリッド, コミュニティ, ほか)

● 進化: クラウドサービスの進化, クラウドマイグレーション

クラウドマイグレーション(クラウド化): クラウドに適した部分の特定と期待効果 クラウド化(サービス化)技術

<u>クラウドサービス開発</u> 新しい情報処理モデル (トランザクション処理, etc)

既存システム(オンプレミス) クラウド化(サービス化)

クラウト

クラウド(サービス)の統合と提供

<u>クラウドサービス統合</u> 統合ユースケース クラウド統合技術

<u>クラウドサービス提供</u> QoS/SLA, セキュリティ サービス構成技術(マルチテナント, メタデータ)

クラウドサービス工学の課題 クラウドサービス開発

半構造的, 非構造的 データ (KVS)

クラウドサービス

・アーキテクチャ: 分散データフロー

·UI: Web,

・非ACID(BASE)/長寿命トランザクション

NoSQL DB

動的負荷 (SLA)

分散アーキテクチャ (分散処理,集中制御)

> クライアント/サーバ (状態を持つ)

・アーキテクチャ: MVC

·UI: Web/GUI

·ACIDトランザクション,

-SQL DB

動的リンク

テクチャ 進化

構造的 データ (RDB)

非集中アーキテクチャ (分散処理,分散制御)

Webサービス(SOA)

(状態を持たない)

•アーキテクチャ:

パブリッシュ/サブスクライブ

-UI: Web

・ACID(/長寿命)トランザクション

-SQL DB

BASE: Basically Available, Soft state, Eventually consistent)
All Rights Reserved, Copyright Mikio Aoyama, 2012

クラウドサービス工学の課題 クラウドサービス開発: SQL/ACIDとNoSQL/BASEの双対性

☞SQL/ACIDとNoSQL/BASEの双対性(NoSQL=CoSQL)

SQL/ACID	NoSQL/BASE(CoSQL)
Children Point to Parents(Primary)	Parents Point to Children(Foreign Key)
Closed World(Comparison, Safe)	Open World(Computation, May not be Safe)
Entities Have Identity (Extensional)	Environment Determines Identity (Intensional)
Necessarily Strongly Typed	Potentially Dynamically Typed
Synchronous (ACID) Updates Across Multiple Rows	Asynchronous (BASE) Updates Within Single Values
Environment Coordinates Changes (Transactions)	Entities Responsible to React to Changes (Eventually Consistent)
Value-Based, Strong Reference (Referentially Consistent)	Computation-Based, Weak Reference (Expect 404)
Not Compositional	Compositional
Query Optimizer	Developer/Pattern(Hard to Optimize)

参考文献: E. Meijer, et al., A Co-Relational Model of Data for Large Shared Data Banks,
CACM, Vol. 54, No. 4, Apr. 2011, pp. 49-58.

All Rights Reserved, Copyright Mikio Aoyama, 2012

クラウドサービス工学の課題 クラウドサービス提供

- ☞サービス提供の視点=プロバイダ側(Supply Side)
- - ♥ソフトウェアコンポジション
 - **炒システムコンポジション**
- - **♂ SPI階層を統合したサービス提供**
 - シングルインスタンスマルチテナント
 - ⊌ プロバイダの責任?

クラウドサービス工学の課題 クラウドサービス統合

- ☞クラウドサービス利用の視点=コンシューマ/ブローカ側
 - ₫ バリューチェイン: 付加価値を生むクラウドサービス
- ☞コンシューマの要求を満たすクラウドサービスの提供
 - ⊌ バリューチェインの設計: オーバレイネットワーク
 - **炒ASN(Agile Service Network): サービスの動的流通網**
 - ⊌ サービスレベル設計
 - サービスブローカのクラウドサービス化
 - **Integration as a Service**

クラウドサービス工学の課題 X@Run-Time

☞開発(Design-Time)と利用(Run-Time)の融合

- ・ 自己適応型システム(Self-Adaptive)

X@Run-Timeの例 RE@Run-Time Models@Run-Time

☞例: RE@Run-Time

- 実行時に自己の要求の表現(Run-Time Representations of Reqs)
- 要求モデルの進化とアーキテクチャとの同期(Evolution of the Reqs Model and its Synchronization with the Architecture
- 不確定性への対応(Dealing with Uncertainty)

☞研究の現状

- 2010年からワークショップ開催
- □ コミュニティは小さいが今後重要な研究課題となる可能性

参考文献: P. Sawyer, et al., Requirements-Aware Systems: A Research Agenda for RE for Self-Adaptive Systems, Proc. RE '10, IEEE CS, Sep. 2010, pp. 95-103.

まとめに代えて クラウドサービス工学への挑戦

☞クラウドサービス工学の体系化

- ๗ 枠組みの確立,技術の整理と体系化
- クラウドサービスの本質的特性がもたらす課題の解決

❤ソフトウェア工学の進化

● ソフトウェア工学の見直しと新たな枠組みへの拡張

論文募集のご案内

- **☞ IEEE CLOUD 2012: Jun. 24-29, 2012, Hawaii, USA**
- Call for Papers: Research, Industry, Work-in-Progress
- Important Dates
 - Abstract Submission Deadline: Feb. 10, 2012
 - Full Paper Submission Due Date: Feb. 15, 2012

Co-Located Events

- IEEE ICWS(Web Services)
- IEEE SCC(Services Computing)
- d IEEE MS(Mobile Services)
- IEEE SE(Services Economics)
- Services University
 - Services Computing Schools, Certificate Development, and Education Methodology Summit