Table IX. The screened QED contributions to the ionization energies of the 2s, $2p_{1/2}$, and $2p_{3/2}$ states and to the energy differences $2p_{1/2} - 2s$ and $2p_{3/2} - 2s$ in Li-like ions, in eV.

-					,		
	Z	$\langle r^2 \rangle^{1/2}$	2s	$2p_{1/2}$	$2p_{3/2}$	$2p_{1/2} - 2s$	$2p_{3/2} - 2s$
	10	3.005	-0.0070(2)	-0.0012(1)	-0.0017(2)	0.0058(2)	0.0053(2)
	12	3.057	-0.0113(2)	-0.0019(2)	-0.0028(3)	0.0094(2)	0.0085(3)
	14	3.122	-0.0168(3)	-0.0029(2)	-0.0044(3)	0.0138(3)	0.0123(3)
	15	3.189	-0.0200(3)	-0.0035(3)	-0.0053(4)	0.0165(3)	0.0146(4)
	18	3.427	-0.0317(4)	-0.0057(4)	-0.0089(5)	0.0260(4)	0.0228(5)
	20	3.476	-0.0414(5)	-0.0076(4)	-0.0119(5)	0.0338(5)	0.0294(5)
	21	3.544	-0.0467(6)	-0.0087(4)	-0.0137(5)	0.0380(6)	0.0330(6)
	26	3.737	-0.0797(8)	-0.0151(7)	-0.0243(8)	0.0646(8)	0.0554(8)
	28	3.775	-0.0959(9)	-0.0184(8)	-0.0296(10)	0.0775(9)	0.0662(10)
	30	3.929	-0.1139(10)	-0.0221(9)	-0.0357(11)	0.0917(10)	0.0782(11)
	32	4.074	-0.1339(11)	-0.0266(10)	-0.0426(12)	0.1073(11)	0.0913(12)
	36	4.188	-0.1800(14)	-0.0372(13)	-0.0590(15)	0.1428(14)	0.1211(15)
	40	4.270	-0.2351(17)	-0.0511(15)	-0.0790(18)	0.1840(17)	0.1561(18)
	47	4.544	-0.3564(22)	-0.0856(22)	-0.1243(24)	0.2708(22)	0.2322(24)
	50	4.654	-0.4195(26)	-0.1054(26)	-0.1482(27)	0.3141(26)	0.2713(27)
	52	4.735	-0.4657(27)	-0.1210(28)	-0.1663(27)	0.3447(28)	0.2994(27)
	54	4.787	-0.5154(30)	-0.1381(32)	-0.1851(31)	0.3773(32)	0.3303(31)
	60	4.912	-0.6883(38)	-0.2042(42)	-0.2522(38)	0.4841(42)	0.4361(38)
	66	5.221	-0.903(5)	-0.298(5)	-0.335(4)	0.604(5)	0.567(5)
	70	5.312	-1.073(5)	-0.381(7)	-0.401(5)	0.692(7)	0.672(5)
	74	5.367	-1.269(6)	-0.485(8)	-0.475(6)	0.784(8)	0.794(6)
	79	5.436	-1.556(7)	-0.652(10)	-0.583(6)	0.904(10)	0.973(7)
	80	5.463	-1.620(8)	-0.692(11)	-0.606(7)	0.928(11)	1.014(8)
	82	5.501	-1.753(8)	-0.778(12)	-0.656(7)	0.976(12)	1.097(8)
	83	5.521	-1.824(9)	-0.824(13)	-0.683(6)	1.000(13)	1.141(9)
	90	5.710	-2.394(11)	-1.241(17)	-0.882(8)	1.153(17)	1.512(11)
_	92	5.857	-2.584(11)	-1.394(19)	-0.948(9)	1.190(19)	1.637(11)