Chapter 17 Circular functions

Past 2 times: ourgles arc lengths linear speed ourgulour speed.

In previous lectures we had to describe the position of an object on a circle and used angle for that. How can we find its x-y coordinates?

How can we find the x-y coordinates of the person given an angle?

Remember trigonometric ratios

Pright triangle ABC

8 0 has to be an acute angle.

Pefine

Sin
$$\theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1BCI}{1ABI}$$
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{|ACI|}{|ABI|}$
 $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\text{opposite}}{\text{ordjacent}}$
 $\frac{\text{ordjacent}}{\text{hypotenuse}} = \frac{\text{opposite}}{\text{ordjacent}}$

Note: By Pythagorean Hum:

$$\sin^2\theta + \cos^2\theta = \frac{|Bc|^2 + |Ac|^2}{|AB|^2} = \frac{|AB|^2}{|AB|^2} = 1$$

Want to define sind and cost for angles that aren't acute. We can't use right triangles anymore!

Draw unit circle:

Observe that for the x and y coordinate \Rightarrow of P we have $y = 10P1 \sin \theta = \sin \theta$ $x = (0P)\cos \theta = \cos \theta$.

Now, for any angle I we can find a point P such that 0 = 4 ROP, swept counterclockwise, and define

sind: y coord of P cosd:= x coord of P (called circular functions)

Now let's go back and anomer a question we had earlier: How do we find the coordinates of

Important Remarks:

central position!

- Be careful to use degrees/sadians on calculator!

To say that sind, coso correspond to the yound x words of a point P such that $0 = \angle POR$ it is important that one side of the angle agrees with x axis. "Standard central resition," Compute $\cos(n-\alpha)$ to in standard of P.

The signs of cosine and sine over as follows, for D in standard central

position.

		(B)	sin(0)
Lst	quadrant	+	+
2nd	27	_	+
3rd	>1	_	_
4th	رد	\	_

Out of the basic trigonometric functions we can create more:

$$foun(0) := \frac{\sin(0)}{\cos(0)} \quad \sec(0) := \frac{1}{\cos(0)}$$

$$\cot(0) := \frac{\cos(0)}{\sin(0)} \quad \csc(0) := \frac{1}{\sin(0)}$$

most important.

Note that tan(0) is not defined when $\partial = \frac{\pi}{2}$, $\frac{3\pi}{2}$ etc, whenever $cos \partial = 0$.

Why is tem(0) important: If a line how slope m = tound then it forms angle θ with the x axis.

Ex: Find eq'n of lines passing through (-2,4) and making angle of 50 with x-axis (-2.4)

slope: $m = tau5^{\circ}$ or $m = tau175^{\circ}$ $y - 4 = tau5^{\circ}(x - (-2))$ or $y - 4 = tau175^{\circ}(x - (-2))$

circular functions of some standard ongles (good to know!)

O(rad)	∂(°)	sind	wsd	ton 0
0	0	0	<u> </u>	6
16	30	2	13/2	13
<u>n</u>	45	15 15	12 N	1
TI C	60	[3] N	$\frac{1}{2}$	[3
<u> </u>	90	i	ol	not de find
		r	1	·

for o between o and n

Note that you don't need to remember famb, can find it easily by dividing!