21.A .SOME MORE EXAMPLES OF FOR LOOP TIME COMPLEXITIES

Suppose we have :

$$p = 0;$$
 $for (i = 1; p < n; i + +){$
 $k = k + 1; -- statement$
 $p = p + i;$
 $}$

SOLUTION:

THEN WHAT IS THE UPPER BOUND HERE?

p	i	\boldsymbol{n}	i + +	p + i
0	1	n	2	0 + 1
1	2	n	3	0+1+2
3	3	n	4	0+1+2+3
		•••		•••
0 + 1 + 2	k-1	n	k	0+1+2+3++
$+3+\cdots+k$				k-2+k-1
- 2				

$$p = 0 + 1 + 2 + 3 + \dots + k - 2 + k - 1$$

 $\Rightarrow 1 + 2 + 3 + \dots + k - 1 + k$

$$\pmb{p} = 1 + 2 + 3 + \dots + k - 1 + k = \frac{k(k+1)}{2} \le n$$

$$\Rightarrow \frac{k(k+1)}{2} \le n$$
$$\Rightarrow \frac{k^2 + k}{2} \le n$$

$$\implies k^2 + k \le 2n$$

$$\implies k^2 + k - 2n \le 0$$

By quadratic equation:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times -2n}}{2}$$

$$\Rightarrow \frac{-1 \pm \sqrt{1 + 8n}}{2}$$

WE GET:

$$\frac{-1+\sqrt{1+8n}}{2}$$
 and $\frac{-1-\sqrt{1+8n}}{2}$

AND THE GENERAL TERM UP TO WHICH (k = k + 1) will get printed:

ceil of
$$\left[\frac{-1+\sqrt{1+8n}}{2}\right]$$

Hence time complexity is $\sqrt{n} = O(\sqrt{n})$