MATH 690: Topics in Probablity Theory

September 29, 2017

Dimension Reduction, Clustering

Lecturer: Xiuyuan Cheng Scribes: Dev Dabke and Andrew Cho

1 Introduction

The lecture covered

- A wrap up of *Topic 2: Dimension Reduction* by discussing convergence of eignemaps when p(x) is not uniform
- The start of *Topic 3: Clustering*

2 Dimension Reduction

Recall the convergence of eigenmap

$$L_{n,\epsilon} \xrightarrow{n \to \infty} L_{\epsilon} \xrightarrow{\Sigma \to 0} L$$

$$L_{\epsilon} f \xrightarrow{\epsilon \to 0} L f$$

for each f

This is a point-wise convergence operator and doesn't necessarily mean uniform convergence. Rather, what we need is a convergence of the spectrum eig $L_{\Sigma} \to \text{eig } L$. In essence, we seek $\sup ||L_{\Sigma}f - Lf|| \to 0$ where $f \in C^2(M)$, $||f||_2^2 = 1$ (i.e. $\int f(x)^2 dp(x) = 1$). Unfortunately, universal convergence is not always true. [BN03]

Definition 2.1: Heat Kernel

Assume on some manifold, we want to track the heat distribution over time, given by the function

u is the solution of the heat equation on the manifold such that

$$u_t = -\Delta_M u$$
$$u(x, t_0) = f(x)$$

where f is the initial condition, i.e. the initial heat distribution at time $t_0 = 0$. To solve this system, we use the *Heat Kernel H_t*, which gives us an order t approximation when $t = \frac{1}{2}\epsilon$. We write

$$H_t \approx ce^{t\Delta_M}$$

for some constant c. Furthermore, we write

$$L_t = \frac{I_\alpha - H_t}{t} + R_t$$

for the residual R_t .

As a result, we have that the residual $||R_t||$ can be controlled properly which implies that $\operatorname{eig} L_t = \operatorname{eig} \left(\frac{I_d - H_t}{t} \right)$ and $H_t f = e^{-t\Delta_M} f$

Remark 2.1: Exponential ODE

$$y'(t) = -at \implies y = e^{-at}y(0).$$

Additionally

$$\frac{1 - e^{-t\lambda_k}}{t} \xrightarrow{t \to 0} \lambda_k$$

Anyways, note that

$$H_t f = e^{-t\Delta_M} f$$

such that $\Delta_M : {\lambda_k, \psi_k}_k$ and that $H_t : {e^{-t\lambda_k}, \psi_k}_k$ such that $k = 1, \dots, d$.

Definition 2.2: Fokker-Planck

The Fokker-Planck equation is a famous stochastic differential equation that describes the evolution of the probability density function of the velocity of a particle subject to Brownian motion and other forces. It is a hallmark of statistical mechanics and its full derivation, context, and details will be omitted. [sch06]

For a random variable X with probability density p, we define

$$\frac{\partial}{\partial t}p(x,t) = -\frac{\partial}{\partial x}[\mu(x,t)p(x,t)] + \frac{\partial^2}{\partial x^2}[D(x,t)p(x,t)]$$

with drift μ and diffusion D. This equation can be easily extended to multiple dimensions. [Fok17]

Remark 2.2: p(x) Uniformity

When p(x) is not uniform, then

$$L_{n,\epsilon} \to L_{FK}$$

where $L_{FK}f = \Delta_M f - \nabla u \dot{\nabla} f$. and that

$$p(x) = e^{-\frac{1}{2}u(x)}$$
$$u(x) = -2\log p(x)$$

by Fokker-Planck in Definition 2.2.

We have to perform a "correction" of density by defining a Weight Matrix W such that $W_{ij} = k(x_i, x_j)$.

Definition 2.3: Density-Corrected Affinity Matrix

Let

$$d_i = \sum_j k(x_i, x_j)$$

$$\widetilde{k}(x, y) = \frac{k(x, y)}{\sqrt{d(x)}\sqrt{d(y)}}$$

$$d(x) = \int_M k(x, y)p(y)dy$$

where d is the degree function.

In practice, we cannot take a continuous integral, so instead we compute

$$d_R(x) = \frac{1}{n} \sum_{j=1}^n k(x, x_j) \xrightarrow{n \to \infty} d(x)$$

and we let

$$\widetilde{W_{ij}} = \frac{W_{ij}}{d(x)d(y)}$$

and so consider the eigenmap from \widetilde{W} instead of W.

Theorem 2.1: Convergence of L under correction

Given the matrix $\widetilde{L}_{rw} = I - \widetilde{D}^{-1}\widetilde{W}$ where

$$\widetilde{D}_{ij} = \sum_{i} \widetilde{W}_{ij}$$

then

$$\widetilde{L}_{n,\epsilon} \xrightarrow{n \to \infty} \Delta_M$$

Proof 2.1: Convergence of L, Theorem 2.1

The proof is omitted, but as hint, note that $\epsilon \to 0$, $d_{\epsilon}(x) \approx p(x) \cdot \text{constant}$.

Additionally, we can generalize this to a graph Laplacian with any $0 < \alpha < 1$. The corrected kernel \widetilde{k} above uses $\alpha = \frac{1}{2}$. Therefore, we write

$$\widetilde{L}_{\alpha} = \frac{W_{ij}}{d_i^{\alpha} d_j^{\alpha}}$$

Recall that $k_{\epsilon}(x,y) = e^{-\frac{\|x-y\|^2}{2\epsilon}}$ and $d_{\epsilon}(x) = \int_M k_{\epsilon}(x,y) p(y) dy \approx p(x)$.

3 Topic 3: Clustering

We start the discussion of our third topic on clustering by defining what the problem of clustering is.

Problem: given $\{x_i\}_{i=1}^n$, find clusters. These clusters may or may not have labels (*supervised* vs. *unsupervised* learning). There are many possible definitions and models of clusters. For example, we will consider two possible cases:

- 1. given data points
- 2. given graph, affinity matrix W is $n \times n$ where W_{ij} is the similarity of node i and j

3.1 Case 1: With Data Points

We will consider a better and precise formulation of "clusters" using a scheme of "hard membership."

Definition 3.1: Cluster

Given $\{x_i\}_{i=1}^n$, find a partition of the vertices $\mathcal{V} = \{1, \ldots, n\}$ into disjoint subsets $\mathcal{C} = \{C_1, \ldots, C_k\}$ such that

$$\mathcal{V} = \bigcup_{C \in \mathcal{C}} C$$

where "disjoint" means $C_l \cap C_{l'} = \{\emptyset\} \iff l \neq l'$.

We say that each C_i is the i^{th} cluster.

Remark 3.1: Soft Membership

We can also consider some idea of "soft membership." In this case, we have some probability profile over each node such that $\mathbb{P}(\text{node } i \in C_l) = p_{i,l}$ with the constraint that $\forall i, \sum_{l=1}^k p_{il} = 1$

Definition 3.2: k-means

We use the following algorithm [Llo82]

- 1. Seeding: Randomly generate "centroids" $\{\mu_1, \ldots, \mu_k\} = \mu$
- 2. Assignment: $\forall i$ assign x_i to the closest centroid in μ and this gives a partition \mathcal{C}
- 3. Update of μ : for $l=1,\ldots,k$ we compute an updated μ'_l where we let

$$\mu_l' = \frac{1}{|C_l|} \sum_{i \in C_l} x_i$$

and $|C_l|$ is "the cardinal number of the set C_l ."

After step 3, we repeat step 2-3 until we reach the stopping condition: $\|\mu_{\text{NEW}} - \mu_{\text{OLD}}\| < \delta$ for some tolerance level δ .

Theorem 3.1: Optimality of k-means

The process in Definition 3.2 solves the objective function

$$\underset{\mu,C}{\operatorname{argmin}} \sum_{l=1}^{k} \sum_{i \in C_{l}} ||x_{i} - \mu_{l}||^{2}$$

Remark 3.2: k-means and k-medians

The squared L^2 norm $||x_i - \mu_l||_2^2$ gives the formulation of k-means. If using the (unsquared) L^1 norm $||x_i - \mu_l||_1$, it leads to the objective function of k-medians. One can also remove the square, that is, using $||x_i - \mu_l||_2$ instead of $||x_i - \mu_l||_2^2$, which is a mixed L^2 - L^1 norm.

References

- [BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Comput.*, 15(6):1373–1396, June 2003.
- [Fok17] FokkerPlanck equation. Fokkerplanck equation Wikipedia, the free encyclopedia, 2017. [Online; accessed 17-December-2017].
- [Llo82] S. Lloyd. Least squares quantization in pcm. *IEEE Transactions on Information Theory*, 28(2):129–137, March 1982.
- [sch06] Brownian Motion, Equations of Motion, and the Fokker-Planck Equations, pages 409–436. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.