$S = \iiint \left(-\frac{1}{2} \left(\alpha_{0}^{\cdot} - 4 \beta_{1}^{\cdot} \right) \mathcal{A}^{\alpha\beta}_{\quad \alpha} \mathcal{A}^{\quad \chi}_{\beta \mid \chi} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + f^{\alpha\beta}_{\quad \tau} (\Delta + \mathcal{K})_{\alpha\beta} - \alpha_{0}^{\cdot} f^{\alpha\beta}_{\quad \partial\beta} \partial_{\beta} \mathcal{A}^{\quad \chi}_{\alpha \mid \chi} + \alpha_{0}^{\cdot} \partial_{\beta} \mathcal{A}^{\alpha\beta}_{\quad \alpha} - 2 \beta_{1}^{\cdot} \partial_{\beta} f^{\alpha}_{\quad \alpha} - 2 \beta_{1}^{\cdot} \partial_{\beta} f^{\alpha}_{\quad \alpha} + \alpha_{0}^{\cdot} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} \mathcal{A}^{\quad \chi}_{\beta} - \alpha_{0}^{\cdot} f^{\alpha}_{\quad \alpha} \partial_{\chi} \mathcal{A}^{\beta\chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\beta} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\alpha\beta}_{\quad \alpha} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi}_{\beta} - 2 \beta_{1}^{\cdot} \partial_{\alpha} f^{\quad \chi}_{\beta} \partial_{\chi} f^{\quad \chi$

<u>Wave</u> <u>operator</u>

PSALTer results panel

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
${\stackrel{\Theta^+}{\cdot}} r^{\perp} == \Theta$	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1 ⁻ τ α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \int_{\bullet}^{+} \sigma^{\perp}^{\alpha\beta} + \int_{\bullet}^{+} \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^$	3
Total expected gauge generators:		10

<u>Massive</u> <u>spectrum</u>

Massive particle			
Pole residue:	$\left \frac{1}{\alpha_{\cdot}} + \frac{1}{\alpha_{\cdot}} - \frac{1}{4\beta_{\cdot}} > 0\right $		
Square mass:	$-\frac{\frac{\alpha. (\alpha 4\beta.)}{0.0000000000000000000000000000000000$		
Spin:	0		
Parity:	Even		

<u>Massless</u> <u>spectrum</u>

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

 $\alpha_{\bullet} > 0 \&\& \alpha_{\bullet} > 0 \&\& \left(\beta_{\bullet} < 0 \mid\mid \beta_{\bullet} > \frac{\alpha_{\bullet}}{4}\right)$

Validity assumptions

(Not yet implemented in PSALTer)