Функциональное программирование Лекция 2. Рекурсия и редукция

Денис Николаевич Москвин

СПбГУ, факультет МКН, бакалавриат «Современное программирование», 2 курс

11.09.2025

План лекции

- 1 Теорема о неподвижной точке
- 2 Нормальная форма
- Теорема Чёрча-Россера
- 4 Нормализация и стратегии редукции

План лекции

- 1 Теорема о неподвижной точке
- 2 Нормальная форма
- 3 Теорема Чёрча-Россера
- 4 Нормализация и стратегии редукции

Термовые уравнения

Отношение β -эквивалентности, основанное на схеме β -преобразования

$$(\lambda n. M) N =_{\beta} [n \mapsto N] M$$

даёт возможность решать простейшие уравнения на термы.

Пример

Найти G, такой что $\forall\,M,N,L$ верно G $M\,N\,L =_{\beta}\,M\,L\,(N\,L).$

GMNL = ML(NL) $GMNL = (\lambda l. Ml(Nl)) L$ $GMN = \lambda l. Ml(Nl)$ $GM = \lambda n. \lambda l. Ml(nl)$

 $= \lambda m n l. m l (n l)$

А если уравнение рекурсивное, например, GM = MG?

G

Термовые уравнения

Отношение β -эквивалентности, основанное на схеме β -преобразования

$$(\lambda n. M) N =_{\beta} [n \mapsto N] M$$

даёт возможность решать простейшие уравнения на термы.

Пример

Найти G, такой что $\forall\,M,N,L$ верно G $M\,N\,L =_{\beta}\,M\,L\,(N\,L).$

GMNL = ML(NL) $GMNL = (\lambda l. Ml(Nl)) L$ $GMN = \lambda l. Ml(Nl)$ $GM = \lambda n. \lambda l. Ml(nl)$ $G = \lambda mnl. ml(nl)$

А если уравнение рекурсивное, например, GM = MG? Оказывается, имеется универсальный способ решения!

Теоремы о неподвижной точке

Теорема

Для любого λ -терма F существует неподвижная точка: $\forall F \in \Lambda. \ \exists X \in \Lambda. \ \lambda \vdash FX =_{\beta} X$

Доказательство

Введем $W \equiv \lambda x$. F(x x) и $X \equiv WW$. Тогда $X \equiv WW \equiv (\lambda x. F(x x)) W =_{\beta} F(WW) \equiv FX$.

Теорема о комбинаторе неподвижной точки

Существует Y, такой что $\forall F \in \Lambda$. $\lambda \vdash F(YF) =_{\beta} YF$.

Доказательство

Введём $\mathbf{Y} \equiv \lambda \mathbf{f}.(\lambda x.\,\mathbf{f}\,(x\,x))(\lambda x.\,\mathbf{f}\,(x\,x)).$ Имеем $\mathbf{Y}\,\mathbf{F} =_{\boldsymbol{\beta}} WW$ из предыдущего доказательства.

Ү-комбинатор и рекурсия

Υ-комбинатор позволяет ввести рекурсию в λ-исчисление.

Пример

Факториал рекурсивно, как уравнение

$$fac = \lambda n. if (iszro n) 1 (mult n (fac (pred n)))$$

Переписываем в виде

$$fac = \underbrace{\left(\lambda f \, n. \, if \, (iszro \, n) \, 1 \, \left(mult \, n \, (f \, (pred \, n))\right)\right)}_{fac} \, fac'$$

Отсюда видно, что fac — неподвижная точка для вспомогательной функции fac $^{\prime}$:

$$fac = Y fac'$$

Работа Ү-комбинатора

Как работает $fac \equiv Y fac'$?

Пример

План лекции

- Теорема о неподвижной точке
- 2 Нормальная форма
- Теорема Чёрча-Россера
- 4 Нормализация и стратегии редукции

Равенство и неравенство

- Мы строили λ-исчисление как теорию о равенстве термов.
- Эффективный способ доказывать равенство сократить все редексы:

Докажем, что $\mathbf{K} \ \mathbf{I} \ =_{eta} \ \mathbf{I} \ \mathbf{I} \ \mathbf{K}_*$

$$\mathbf{K} \mathbf{I} \equiv (\lambda x y. x) (\lambda z. z) =_{\beta} \lambda y z. z$$

I I
$$\mathbf{K}_* \equiv (\lambda x. x)$$
 I $\mathbf{K}_* =_{\beta}$ I $\mathbf{K}_* \equiv (\lambda x. x) (\lambda y z. z) =_{\beta} \lambda y z. z$

- А как доказывать неравенство? Например, ${f K}
 eq {f K}_*$?
- Является ли результат вычислений уникальным с точностью до α -эквивалентности?

Нормальная форма

Определение

 λ -терм M находится в β -нормальной форме (β -NF), если в нем нет подтермов, являющихся β -редексами.

Определение

 λ -терм M имеет β -нормальную форму, если для некоторого N выполняется $M=_{\beta}N$ и N находится в β -NF.

Примеры

- Терм $\lambda x y. x (\lambda z. z x) y$ находится в β -нормальной форме.
- Терм $(\lambda x. xx)$ у не находится в β -нормальной форме, но имеет в качестве β -nf терм у у.

Нормальная форма (2)

Утверждение

Не все термы имеют β-нормальную форму.

Пример

$$\begin{array}{rcl} \Omega & \equiv & \omega \, \omega \\ & \equiv & (\lambda x. \, x \, x) \, (\lambda x. \, x \, x) \\ & \leadsto_{\beta} & (\lambda x. \, x \, x) \, (\lambda x. \, x \, x) \\ & \leadsto_{\beta} & \dots \end{array}$$

Это пока не доказательство! Может быть существует терм N в β -NF, такой что $\Omega =_{\beta}$ N, например, так

Нормальная форма (3)

 $\sim \beta$

Бывают термы, «удлинняющиеся» при редукции.

Пример $\Omega_3 \equiv \omega_3 \omega_3 \\ \equiv (\lambda x. x x x) (\lambda x. x x x) \\ \leadsto_\beta (\lambda x. x x x) (\lambda x. x x x) (\lambda x. x x x) \\ \leadsto_\beta (\lambda x. x x x) (\lambda x. x x x) (\lambda x. x x x) (\lambda x. x x x)$

C какой скоростью будет расти $\Omega_4 \equiv \omega_4 \, \omega_4 ?$

Нормальная форма (4)

Не все последовательности редукций приводят к β-NF.

Редукционные графы (1)

Определение

 $extbf{Pедукционный граф}$ терма $M \in \Lambda$ (обозначаемый $G_{\beta}(M)$) — это ориентированный мультиграф с вершинами в $\left\{N \,|\, M \, op_{\beta} \, \, N \right\}$ и дугами \leadsto_{β} .

$$G_{\beta}\left(I\left(I\,x\right)\right) \;=\; \bullet \longrightarrow \bullet \qquad G_{\beta}\left(\Omega\right) \;=\; \stackrel{\longleftarrow}{\bullet} \qquad \qquad \\ G_{\beta}\left(\left(\lambda x.\,I\right)\Omega\right) \;=\; \stackrel{\longleftarrow}{\bullet} \longrightarrow \bullet \qquad \qquad \\ G_{\beta}\left(K\,I\,\Omega\right) \;=\; \stackrel{\longleftarrow}{\bullet} \longrightarrow \bullet \qquad \rightarrow \bullet \qquad \qquad$$

 $G_{\beta}(\Omega_3) = ??? \qquad G_{\beta}((\lambda x. I) \Omega_3) = ???$

Редукционные графы (2)

Не все редукционные графы конечны.

Пример

$$\mathsf{G}_{\beta}\left(\Omega_{3}\right) \; = \; \bullet \! \longrightarrow \! \bullet \! \longrightarrow \! \bullet \! \longrightarrow \! \bullet \! \longrightarrow \! \dots$$

Не все бесконечные редукционные графы не имеют нормальной формы.

Пример

План лекции

- Теорема о неподвижной точке
- Пормальная форма
- Теорема Чёрча-Россера
- 4 Нормализация и стратегии редукции

Теорема Чёрча-Россера

Теорема [Чёрч-Россер]

Если $M \twoheadrightarrow_{\beta} N$, $M \twoheadrightarrow_{\beta} K$, то существует L, такой что $N \twoheadrightarrow_{\beta} L$ и $K \twoheadrightarrow_{\beta} L$.

• Иначе говоря, β-редукция обладает *свойством ромба*:

• Иногда используют термин конфлюентность.

Теорема Чёрча-Россера: наблюдение

Теорема Чёрча-Россера неверна в «одношаговых» терминах

Однако можно определить *параллельную редукцию*, позволяющую сокращать подобные повторения за один шаг.

Параллельная β-редукция

Определение

Бинарное отношение *параллельной* β -*редукции* \Rightarrow_{β} над Λ :

- $x \Rightarrow_{\beta} x$ для любой переменной x;
- ullet если $P\Rightarrow_{eta} P'$, то $\lambda x.\ P\Rightarrow_{eta} \lambda x.\ P';$
- ullet если $P \Rightarrow_{eta} P'$ и $Q \Rightarrow_{eta} Q'$, то $P\,Q \Rightarrow_{eta} P'\,Q'$;
- ullet если $P\Rightarrow_{eta}P'$ и $Q\Rightarrow_{eta}Q'$, то $(\lambda y.\,P)\,Q\Rightarrow_{eta}[y\mapsto Q']\,P'.$

$$\begin{array}{lll} \omega(II) \, \Rightarrow_{\beta} \, II & \omega(II) \, \Rightarrow_{\beta} \, \omega(II) \\ \omega(II) \, \Rightarrow_{\beta} \, II(II) & \omega(II) \, \Rightarrow_{\beta} \, \omega I \\ \omega(II) \, \not \Rightarrow_{\beta} \, I & \omega(II) \, \not \Rightarrow_{\beta} \, III \end{array}$$

Отношение \Rightarrow_{β} рефлексивно, но не транзитивно — можно сокращать только изначально существовавшие редексы.

Леммы о параллельной редукции

Определение параллельной β-редукции

- $x \Rightarrow_{\beta} x$ для любой переменной x;
- ullet если $P\Rightarrow_{eta} P'$, то $\lambda x.\,P\Rightarrow_{eta} \lambda x.\,P'$;
- ullet если $P \Rightarrow_{eta} P'$ и $Q \Rightarrow_{eta} Q'$, то $P \, Q \Rightarrow_{eta} P' \, Q'$;
- ullet если $P \Rightarrow_{eta} P'$ и $Q \Rightarrow_{eta} Q'$, то $(\lambda y.\,P)\,Q \Rightarrow_{eta} [y \mapsto Q']\,P'.$

Леммы о параллельной редукции

- lacktriangle Если $M \leadsto_{eta} M'$, то $M \Rightarrow_{eta} M'$.
- ullet Если $M \Rightarrow_{eta} M'$, то $M \twoheadrightarrow_{eta} M'$.
- $lace{3}$ Если $M \Rightarrow_{eta} M'$ и $N \Rightarrow_{eta} N'$, то $[x \mapsto N] M \Rightarrow_{eta} [x \mapsto N'] M'.$

Доказательство: (1) индукция по определению $M \leadsto_{\beta} M'$; (2) и (3) индукция по определению $M \Rightarrow_{\beta} M'$.

Доказательство леммы 3 (4 случай)

Определение параллельной β-редукции (4 случай)

- ...
- ullet если $P \Rightarrow_{eta} P'$ и $Q \Rightarrow_{eta} Q'$, то $(\lambda y.\,P)\,Q \Rightarrow_{eta} [y \mapsto Q']\,P'.$

Лемма 3 о параллельной редукции

Если $M \Rightarrow_{\beta} M'$ и $N \Rightarrow_{\beta} N'$, то $[x \mapsto N] M \Rightarrow_{\beta} [x \mapsto N'] M'$.

4 случай:
$$M=(\lambda y.\,P)\,Q,\,M'=[y\mapsto Q']\,P'.$$
 IH: $[x\mapsto N]\,P\Rightarrow_\beta\,[x\mapsto N']\,P',\,[x\mapsto N]\,Q\Rightarrow_\beta\,[x\mapsto N']\,Q'.$

$$\begin{split} [x \mapsto N]M &\equiv [x \mapsto N]((\lambda y, P) \ Q) = & \operatorname{def} \mapsto \\ (\lambda y, [x \mapsto N]P) \ ([x \mapsto N]Q) \ \Rightarrow_{\beta} & \operatorname{IH} \ + \ \operatorname{def} \ \Rightarrow_{\beta} \\ [y \mapsto [x \mapsto N'] \ Q'] \ ([x \mapsto N'] \ P') = & \operatorname{Subst \ Lemma} \\ [x \mapsto N'] \ ([y \mapsto Q'] \ P') \equiv [x \mapsto N']M' \end{split}$$

Полная эволюция (complete development)

Определение

Полной эволюцией (complete development) терма M называют терм M^* , определяемый индуктивно

$$x^* = x,$$

 $(\lambda x. P)^* = \lambda x. P^*,$
 $(P Q)^* = P^* Q^*, \text{ если P не абстракция,}$
 $((\lambda x. P) Q)^* = [x \mapsto Q^*] P^*.$

Отношение $M\Rightarrow_{\beta} N$ порождается сокращением *некоторых* редексов в M (изнутри наружу), а M^* — сокращением *всех* редексов (тоже изнутри наружу).

$$(\omega(II))^* = II$$

Лемма о полной эволюции

Лемма о полной эволюции

Если $M \Rightarrow_{\beta} M'$, то $M' \Rightarrow_{\beta} M^*$.

Доказательство: индукция по определению $M \Rightarrow_{\beta} M'$ с использованием Леммы (3) для последнего случая.

Следствие

Если $M \Rightarrow_{\beta} M'$ и $M \Rightarrow_{\beta} M''$, то $M' \Rightarrow_{\beta} M^*$ и $M'' \Rightarrow_{\beta} M^*$.

Иными словами: для параллельной редукции выполняется свойство ромба.

Теорема Чёрча-Россера, доказательство

Теорема [Чёрч-Россер]

Если $M \twoheadrightarrow_{\beta} N$, $M \twoheadrightarrow_{\beta} K$, то существует L, такой что $N \twoheadrightarrow_{\beta} L$ и $K \twoheadrightarrow_{\beta} L$.

Доказательство. Если $M \leadsto_{\beta} \ldots \leadsto_{\beta} N$ и $M \leadsto_{\beta} \ldots \leadsto_{\beta} K$, то $M \Rightarrow_{\beta} \ldots \Rightarrow_{\beta} N$ и $M \Rightarrow_{\beta} \ldots \Rightarrow_{\beta} K$. Сцепляя диаграммки, находим L, такое что $N \Rightarrow_{\beta} \ldots \Rightarrow_{\beta} L$ и $K \Rightarrow_{\beta} \ldots \Rightarrow_{\beta} L$, откуда $N \twoheadrightarrow_{\beta} \ldots \twoheadrightarrow_{\beta} L$ и $K \twoheadrightarrow_{\beta} \ldots \twoheadrightarrow_{\beta} L$.

Следствия теоремы Чёрча-Россера (1)

Теорема о существовании общего редукта

Если $M=_{\beta}N$, то существует L, такой что, $M \twoheadrightarrow_{\beta}L$ и $N \twoheadrightarrow_{\beta}L$.

Доказательство (индукция по генерации $=_{\beta}$)

- $M =_{\beta} N$, поскольку $M \twoheadrightarrow_{\beta} N$. Возьмем $L \equiv N$.
- $M =_{\beta} N$, поскольку $N =_{\beta} M$. По гипотезе индукции имеется общий β -редукт L_1 для N, M. Возьмем $L \equiv L_1$.
- $M =_{\beta} N$, поскольку $M =_{\beta} N'$, $N' =_{\beta} N$. Тогда

Следствия теоремы Чёрча-Россера (2)

Теорема [Редуцируемость к NF]

Если M имеет N в качестве β -NF, то $M woheadrightarrow \beta$ N.

Теперь мы можем доказать отсутствие NF у Ω . Иначе выполнялось бы

 $\Omega \twoheadrightarrow_{\beta} N$, N является β -NF.

Ho Ω редуцируется лишь к себе и не является $\beta ext{-NF}.$

Теорема [Единственность NF]

 λ -терм имеет не более одной β -NF.

Теперь мы можем доказывать «неравенства», например

$$\lambda \nvdash tru = fls.$$

Иначе было бы $tru =_{\beta} fls$, но это две разные NF, что противоречит единственности.

План лекции

- Теорема о неподвижной точке
- Пормальная форма
- 3 Теорема Чёрча-Россера
- 4 Нормализация и стратегии редукции

Слабая и сильная нормализация для терма

Терм называют *слабо (weak) нормализуемым* (WN_{β}), если существует последовательность β -редукций, приводящих его к β -нормальной форме.

Терм называют *сильно (strong) нормализуемым* (SN_{β}) , если любая последовательность β -редукций, приводит его к β -нормальной форме.

Если терм M не является сильно нормализуемым, то пишут $M \in \infty_{\beta}$ (слабая *не*нормализуемость).

```
\begin{array}{lll} \textbf{KIK} \in SN_{\beta}, & \textbf{KIK} \in WN_{\beta}, & \textbf{KIK} \not\in \infty_{\beta}; \\ \textbf{KI}\Omega \not\in SN_{\beta}, & \textbf{KI}\Omega \in WN_{\beta}, & \textbf{KI}\Omega \in \infty_{\beta}; \\ \Omega \not\in SN_{\beta}, & \Omega \not\in WN_{\beta}, & \Omega \in \infty_{\beta}. \end{array}
```

Элементы WN_{β} обязаны сойтись на какой-то стратегии; элементы ∞_{β} обязаны разойтись на какой-то стратегии.

Аппликативная структура терма

Теорема

Лямбда-терм может иметь одну из двух форм:

$$\begin{array}{lll} \lambda \overrightarrow{x}. y \overrightarrow{N} & \equiv & \lambda x_1 \dots x_n. y \ N_1 \dots N_k \\ \lambda \overrightarrow{x}. (\lambda z. M) \ Q \overrightarrow{N} & \equiv & \lambda x_1 \dots x_n. (\lambda z. M) \ Q \ N_1 \dots N_k \end{array}$$

Здесь $n \geqslant 0, k \geqslant 0$.

Первая форма называется *головной нормальной формой* (HNF). Переменная у называется *головной переменной*, а редекс $(\lambda z. M) Q -$ *головным редексом*.

Переменная y может совпадать с одной из x_i .

Слабая головная нормальная форма (WHNF) — это HNF или лямбда-абстракция, то есть не редекс на верхнем уровне.

Стратегии редукции

Стратегия редукции F — это отображение множества Λ в себя, тождественное для нормальных форм и обладающее свойством $M \rightsquigarrow_{\beta} F(M)$ для прочих термов.

Нормальная (крайне левая) стратегия F_1 :

$$\begin{array}{rcl} F_l(\lambda \overrightarrow{x}. y \overrightarrow{P} Q \overrightarrow{R}) & = & \lambda \overrightarrow{x}. y \overrightarrow{P} F_l(Q) \overrightarrow{R}, \\ & & \mathrm{ec} \pi u \overrightarrow{P} \in \mathsf{NF}_\beta \ u \ Q \not \in \mathsf{NF}_\beta; \\ F_l(\lambda \overrightarrow{x}. (\lambda z. \ M) \ Q \overrightarrow{R}) & = & \lambda \overrightarrow{x}. [z \mapsto Q] \ M \overrightarrow{R}. \end{array}$$

Аппликативная стратегия F_a :

Нормализующая стратегия

Нормальная vs аппликативная стратегии

$$\mathbf{K}\mathbf{I}\mathbf{\Omega} \equiv (\lambda x y. x) \mathbf{I}\mathbf{\Omega} \leadsto_{\beta} (\lambda y. \mathbf{I}) \mathbf{\Omega} \leadsto_{\beta} \mathbf{I}$$

$$KI\Omega \leadsto_{\beta} (\lambda y.I) ((\lambda x.xx)(\lambda x.xx)) \leadsto_{\beta} \dots$$

Стратегия редукции называется нормализующей, если для любого $M\in WN_{\beta}$, существует конечное $i\in\mathbb{N}$, такое что $F^i(M)\in NF_{\beta}$.

Мы хотим доказать, что нормальная стратегия F_1 является нормализующей.

Это, например, позволит доказывать отсутствие NF $_{\beta}$ у терма. Например, K Ω I.

Виды редексов

Если $M \not\in \mathsf{NF}_\beta$, будем писать

- $M \stackrel{1}{\leadsto} N$ при сокращении самого левого редекса;
- $M \stackrel{1}{\leadsto} N$ при сокращении внутреннего редекса (т.е. не головного).

Головной — всегда самый левый, но самый левый может быть внутренним (когда головного нет).

Лемма о головных редексах

- Если $M \stackrel{h}{\leadsto} M'$, то $\lambda x. M \stackrel{h}{\leadsto} \lambda x. M'$.
- ② Если $M \stackrel{h}{\leadsto} M'$ и M не абстракция, то $M N \stackrel{h}{\leadsto} M' N$.
- **3** Если $M \stackrel{h}{\leadsto} M'$, то $[x \mapsto N] M \stackrel{h}{\leadsto} [x \mapsto N] M'$.

Параллельная внутренняя редукция

Параллельной внутренней редукцией $\stackrel{i}{\Rightarrow}$ называют отношение на Λ , определяемое правилами

- ullet Если $\overrightarrow{P}\Rightarrow_{eta}\overrightarrow{Q}$, то $\lambda\overrightarrow{x}.y\overrightarrow{P}\overset{i}{\Rightarrow}\lambda\overrightarrow{x}.y\overrightarrow{Q}$;
- Если $\overrightarrow{P} \Rightarrow_{\beta} \overrightarrow{Q}$, $S \Rightarrow_{\beta} T$ и $R \Rightarrow_{\beta} U$, то $\lambda \overrightarrow{x}$. $(\lambda y. S) R \overrightarrow{P} \stackrel{i}{\Rightarrow} \lambda \overrightarrow{x}$. $(\lambda y. T) U \overrightarrow{Q}$.

Лемма о параллельной внутренней редукции

- **①** Если $M \overset{i}{\leadsto} M'$, то $M \overset{i}{\Rightarrow} M'$.
- $lacksymbol{3}$ Если $M \stackrel{i}{\Rightarrow} M'$, то $M \Rightarrow_{\beta} M'$.

Разделенная параллельная редукция

Введем $M \Rrightarrow N$, если имеются $M_0 \dots M_n$ $(n \geqslant 0)$, такие что

$$M=M_0\overset{h}{\leadsto}M_1\overset{h}{\leadsto}\dots\overset{h}{\leadsto}M_n\overset{i}{\Longrightarrow}N$$

и все $M_i \Rightarrow_{\beta} N$.

Внутри одного шага параллельной редукции внутренние редексы сокращаем после головных.

Лемма о разделенной параллельной редукции

- **①** Если $M \Rightarrow M'$, то $\lambda x. M \Rightarrow \lambda x. M'$.
- ullet Если $M \Rrightarrow M'$ и $N \Rightarrow_{eta} N'$, то $M \, N \Rrightarrow M' \, N'$.
- **③** Если $M \Rightarrow M'$ и $N \Rightarrow N'$, то $[x \mapsto N] M \Rightarrow [x \mapsto N'] M'$.
- (1) тривиально, (2) и (3) нудно.

Теорема о нормализации

Лемма

- **①** Если $M \Rightarrow_{\beta} N$, то существует L, такой что $M \xrightarrow{h}_{\beta} L \xrightarrow{i} N$.
- ② Если $M \stackrel{i}{\Rightarrow} N \stackrel{h}{\leadsto} L$, то существует O, такой что $M \stackrel{h}{\Rightarrow}_{\beta}^{+} O \stackrel{i}{\Rightarrow} L$.
- (1) показываем, что $M \Rightarrow_{\beta} N$ влечет $M \Rrightarrow N$.
- (2): В предположении $P \Rightarrow_{\beta} P'$, $Q \Rightarrow_{\beta} Q'$, $\overrightarrow{R} \Rightarrow_{\beta} \overrightarrow{R'}$ $M = \lambda \overrightarrow{z}. (\lambda x. P) Q \overrightarrow{R}, \qquad N = \lambda \overrightarrow{z}. (\lambda x. P') Q' \overrightarrow{R'};$ $L = \lambda \overrightarrow{z}. [x \mapsto Q'] P' \overrightarrow{R'}, \qquad O = \lambda \overrightarrow{z}. [x \mapsto Q] P \overrightarrow{R}.$

Последнее дает $M \stackrel{h}{\leadsto} O \Rightarrow_{\beta} L$. Теперь пользуемся (1). ■

Теорема о нормализации

Если у терма M имеется нормальная форма N, то $M \xrightarrow{1}_{\beta} N$.

Свойства стратегий

Недостаток нормальной стратегии — возможная неэффективность, достоинство — не считает ничего «лишнего».

Нормальная vs аппликативная стратегии

• Пусть N — «большой» терм

$$(\lambda x. Fx (Gx) x) N \leadsto_{\beta} FN (GN) N$$

В процессе дальнейших редукций редексы в N придётся сокращать три раза.

• Зато в

$$(\lambda x y. y) N \leadsto_{\beta} \lambda y. y$$

нормальная стратегия не вычисляет N ни разу.

• Аппликативная стратегия в обоих примерах вычислит N один раз.

Стратегии редукции и ЯП

- Аппликативная стратегия похожа на стратегию вычислений («энергичную», eager) большинства языков программирования. Сначала вычисляются аргументы, затем происходит применение функции.
- Нормальная стратегия похожа на способ вычисления в «ленивых» (lazy) языках (Haskell, Clean).
- Для решения проблем с эффективностью в «ленивых» языках используют механизм разделения (через вычисления в контекстах или через редукцию на графах).

Стратегии редукции и ЯП (2)

- Нет необходимости всегда доводить редукцию до NF. На практике часто ограничиваются WHNF.
- Это позволяет избежать захвата переменной при редуцировании замкнутого терма. (почему?)
- При наличии констант (в расширенных системах) понятие WHNF (и HNF) дополняют частично применёнными константными функциями, например

and true

поскольку его можно записать в η-эквивалентном WHNF-виде

λx . and true x

 В Haskell к WHNF относят и конструктор данных, примененный полностью или частично.

Механизмы вызова

- Механизм вызова термин, применяемый при исследовании высокоуровневых языков программирования.
- В функциональных языках:
 - «вызов по значению» аппликативный порядок редукций до WHNF;
 - «вызов по имени» нормальный порядок редукций до WHNF;
 - «вызов по необходимости» «вызов по имени» плюс разделение.