Deep Learning Techniques

1

Lectures

- □ DL1: Word Embedding
- □ DL2. Recurrent Neural Networks (RNN)
- □ DL3. Convolutional Neural Networks (CNN)
- □ DL4. Neural Attention Models (Transformer, etc.)
- □ DL5. Large Language Models (BERT, GPT, BART, etc.)

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

Motivation

- □ J.R. Firth's hypothesis (1957): "You shall know a word by the company it keeps."
- □ Word2vec mapping (2013 2016)
 - Finding a k-dimensional vector (e.g., k=300) for each word based on the words co-occurring with it in many documents.
 - Widely used in text mining and NLP tasks (machine translation, question answering, text classification, information retrieval, summarization, etc.)

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

The Word Analogy Task

• Given a word pair and a word in another pair, find the word for "?"

$$\mathcal{R}(\text{man, woman}) \approx \mathcal{R}(\text{king, ?})$$

Given word embeddings, system finds the answer as

$$w_{?}^{*} = argmin_{w_{?}} \| (w_{man} - w_{woman}) + (w_{king} - w_{?}) \|$$

$$w_{man} - w_{woman} \approx w_{king} - w_{?}$$

$$w_{?} \approx w_{king} - w_{man} + w_{woman}$$

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

7

7

Word Analogy: A Geometrical View

We can draw a parallelogram as

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

Neural Word Embedding Methods

- CBOW and Skip-Gram
- GloVe (Global Vectors for Word Representation)

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

a

q

Training Data Generation

Consider a sliding window of words over a sequence as

"we have classes every Tuesday and Thursday in NSH 1305 ..." w_{i-2} w_{i-1} w_i w_{i+1} w_{i+2}

- The word in the middle is called the target word (w_i) , and the surrounding words together are called the context.
- Apply the sliding window over a large corpus of text we obtain many
 <word, context> pairs as the training set.

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

CBOW vs. Skip-Gram

CBOW (predicting each target word given its context)

$$\max_{\theta} \sum_{i} log P_{\theta}(w_{i} | \underbrace{\boldsymbol{w}_{< i,} \boldsymbol{w}_{> i}}_{context \, \boldsymbol{c}_{i}}) \qquad c_{i} = \{w_{j} : j \in i \pm k\}$$

Skip-Gram (predicting the context given a target word)

$$\max_{\theta} \sum_{i} log P_{\theta}(c_{i}|w_{i}) = \sum_{i} \sum_{w_{j} \in c_{i}} log P_{\theta}(w_{j}|w_{i})$$

Both methods ignore the word order in the context window.

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

11

11

CBOW Architecture

- Input: Each context word is represented as one-hot vector (all the elements are 0 except one), whose dimension is the vocabulary size V.
- **Hidden Layer**: $h \in R^N$ (with $N \ll V$) is the context embedding calculated as

$$h = \frac{1}{|c|} \sum_{j \in c} W^T x_j$$

where $W \in \mathbb{R}^{V \times D}$ is a matrix of learnable parameters.

 Output Layer: the predicted probabilistic distribution of candidate words in a vector

$$\hat{y} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_V) = softmax(W'h)$$

where $W' \in \mathbb{R}^{N \times V}$ is another matrix of learnable parameters.

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

ò

ò

Х

Hidden

(Average of vectors of

 $W \in \mathbb{R}^{V \times N}$

 $\mathbf{x} \in \mathbb{R}^V$

 $O|h_1$

Matrix W

Matrix W

13

 $\hat{y} = softmax(u)$ u = W'h

Output

softmax

1 y_j

13

CBOL with a Compact Input

Input Layer (with a merged vector)

$$x = \frac{1}{|c|} (x_{w_1} + x_{w_2} + \dots + x_{w_{|c|}})$$

Hidden layer

$$\begin{split} \boldsymbol{h} &= \boldsymbol{W}^T \ \boldsymbol{x} \\ \boldsymbol{W} &= \frac{1}{|c|} \Big(\boldsymbol{W}^T \boldsymbol{x}_{w_1} + \boldsymbol{W}^T \boldsymbol{x}_{w_2} + \dots + \boldsymbol{W}^T \boldsymbol{x}_{\boldsymbol{w}_{|c|}} \Big) \end{split}$$

Model Parameters

$$\Theta = (W, W')$$

• Matrix $W \in \mathbb{R}^{V \times N}$ contains all the word embeddings (each row is the embedding of a word).

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

14

 $\hat{y} = softmax(u)$

a = Softmax

 $W' \in \mathbb{R}^{N \times V}$

 $y_1 \\ y_2$

3/3

Word-embedding matrix W

Hidden layer

$$\mathbf{h} = W^T \mathbf{x} = \frac{1}{|c|} W^T (\mathbf{x}_{w_1} + \mathbf{x}_{w_2} + \dots + \mathbf{x}_{\mathbf{w}_{|c|}})$$

In CBOW, $A = W^T$ and x is the sum of a few one-hot vectors.

Ax picks a few columns of A to sum up (and average over) for context embedding. Each column of W^T (each row of is W) is the embedding of a word.

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

15

15

Training Process

- Denote Set: $\mathcal{D} = \{(x_i, y_i)\}$ context-word pairs.
- Model Initialization: Randomly initialize W and W'
- Model Update: For each pair $(x, y) \in \mathcal{D}$
 - Forward Propagation: Fix W and W', compute h, u and \hat{y} given x;
 - Backpropagation: Fix h, u and \hat{y} , update W and W' with mini-batch gradients.

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

Model Parameter Optimization

Iterative update

$$W_{kl}{}^{(new)} := W_{kl}{}^{(old)} - \eta \nabla_{W_{kl}} \left(\frac{1}{|B|} \sum_{y_i \in B} \, l_{\theta}(\hat{y}_i, y_i) \right)$$

$$W_{ij}^{\prime\,(new)} := W_{ij}^{\prime\,(old)} - \eta \nabla_{W_{ij}^\prime} \left(\frac{1}{|B|} \sum_{y_i \in B} \, l_\theta(\hat{y}_i, y_i) \right)$$

where $l_{\theta}\left(\hat{y}_{i},y_{i}\right)$ is the loss on each training pair;

B is a randomly sampled mini-batch from the training set.

07/23/2017

@Yiming Yang, lecture on Deep Learning for Text Mining

17

17

Loss Function (on a single training pair for simplicity)

Cross entropy loss

$$l(\hat{y}, y) = -\sum_{j=1}^{V} y_j log \hat{y}_j = -\log \hat{y}_{j^*}$$

where j^* is the index of the target word in training pair (x_i, y_i) .

Example

$$y = (0 \quad 1 \quad 0 \quad 0 \quad 0)$$
 $j^*=2$
 $\hat{y} = (0.1 \quad 0.5 \quad 0.2 \quad 0.1 \quad 0.1)$
 $L(\hat{y}, y) = -\log \hat{y}_2 = -\log 0.5$

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

[L.P. Morency: CMU 11-777]

Gradient Computation

☐ Chain rule

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dx}$$

07/23/2017

@Yiming Yang, lecture on Deep Learning for Text Mining

19

19

[L.P. Morency: CMU 11-777]

Gradient Computation (cont'd)

□ Chain rule

$$\frac{df}{dx} = \sum_{j} \frac{\partial f}{\partial h_j} \frac{dh_j}{dx}$$

07/23/2017

@Yiming Yang, lecture on Deep Learning for Text Mining

20

[L.P. Morency: CMU 11-777]

Gradient Computation (cont'd)

☐ Chain rule

$$\frac{\partial f}{\partial x_1} = \sum_{j} \frac{\partial f}{\partial h_j} \frac{\partial h_j}{\partial x_1}$$
$$\frac{\partial f}{\partial x_2} = \sum_{j} \frac{\partial f}{\partial h_j} \frac{\partial h_j}{\partial x_2}$$
$$\frac{\partial f}{\partial x_3} = \sum_{j} \frac{\partial f}{\partial h_j} \frac{\partial h_j}{\partial x_3}$$

07/23/2017

@Yiming Yang, lecture on Deep Learning for Text Mining

21

21

Gradient Computation (cont'd)

☐ the gradient (scalar-by-vector)

$$\nabla_{x} f = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}} \end{bmatrix}$$

 $= \overline{\nabla_h f} \left(\frac{\partial h}{\partial x} \right)$

Gradient of f w.r.t. h

 $\begin{bmatrix} \frac{\partial f}{\partial h_1} & \frac{\partial f}{\partial h_2} & \frac{\partial f}{\partial h_3} \end{bmatrix}^{A}$

 $\begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \frac{\partial h_1}{\partial x_3} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \frac{\partial h_2}{\partial x_3} \\ \frac{\partial h_3}{\partial x_1} & \frac{\partial h_3}{\partial x_2} & \frac{\partial h_3}{\partial x_3} \\ \frac{\partial h_3}{\partial x_1} & \frac{\partial h_3}{\partial x_2} & \frac{\partial h_3}{\partial x_3} \end{bmatrix}$

Jacobian matrix of size $|h| \times |x|$

07/23/2017

@Yiming Yang, lecture on Deep Learning for Text Mining

@Yiming Yang, lecture on Deep Learning for Text Mining

22

Packpropagation in CBOL

$$\frac{\partial L}{\partial W_{ij}'} = \frac{\partial L}{\partial u_j} \cdot \frac{\partial u_j}{\partial W_{ij}'}$$

$$\frac{\partial L}{\partial W_{li}} = \sum_{j=1}^{V} \frac{\partial L}{\partial u_j} \frac{\partial u_j}{\partial h_i} \frac{\partial h_i}{\partial W_{li}}$$

$$u_j = W'_{1j}h_1 + W'_{2j}h_2 + \dots + W'_{iN}h_N$$

$$h_i = W_{1i} \, \bar{x}_1 + W_{2i} \, \bar{x}_2 + \dots + W_{iV} \, \bar{x}_V$$

1/18/2024

23

Backpropagation [Xin Rong, arXiv 2016]

Partial derivative with respect to each element of W'

$$\frac{\partial L}{\partial w_{ij}'} = \frac{\partial L}{\partial u_j} \cdot \frac{\partial u_j}{\partial w_{ij}'}$$

$$\frac{\partial L}{\partial u_j} = \frac{\partial}{\partial u_j} \left(-\log \frac{\exp(u_{j*})}{\sum_{j'=1}^{|V|} \exp(u_{j'})} \right) = \frac{\partial}{\partial u_j} \left(-u_{j*} \right) + \frac{\partial}{\partial u_j} \left(\log(\sum_{j'=1}^{V} \exp(u_{j'})) \right)$$

$$= -\delta_j + \frac{\exp(u_j)}{\sum_{j'=1}^{V} \exp(u_{j'})} = -\delta_j + \hat{y}_j \tag{1}$$

(
$$\delta_j$$
 is the Kronecker delta function, $\delta_j=1$ if $j=j^*$; otherwise $\delta_j=0$)
$$\frac{\partial u_j}{\partial w_{ij}'}=\frac{\partial}{\partial w_{ij}'}\left(W_{1j}'h_1+W_{2j}'h_2+\cdots+W_{ij}'h_i+\cdots\right)=h_i \tag{2}$$

Combine (1) and (2), we have

$$\frac{\partial L}{\partial W_{ij}'} = (\hat{y}_j - \delta_j)h_i \tag{3}$$

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

Backpropagation (cont'd)

□ Partial derivative w.r.t. the elements of W

$$\frac{\partial L}{\partial W_{li}} = \frac{\partial L}{\partial h_i} \frac{\partial h_i}{\partial W_{li}} = \sum_{j=1}^{V} \frac{\partial L}{\partial u_j} \frac{\partial u_j}{\partial h_i} \frac{\partial h_i}{\partial W_{li}}$$

$$\frac{\partial L}{\partial u_j} = (\hat{y}_j - \delta_j) \tag{1}$$

$$\frac{\partial u_j}{\partial h_i} = \frac{\partial}{\partial h_i} \left(W'_{1j} h_1 + W'_{2j} h_2 + \dots + W'_{ij} h_i + \dots \right) = W'_{ij}$$
 (2)

$$\frac{\partial h_i}{\partial W_{li}} = \frac{\partial}{\partial W_{li}} \left(W_{1i} x_1 + W_{2i} x_2 + \dots + W_{li} x_l + \dots \right) = x_l$$
 (3)

 \square Finally, $\frac{\partial L}{\partial W_{li}} = \sum_{j=1}^{V} (\hat{y}_j - \delta_j) \cdot W'_{ij} x_l$

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

25

25

Neural Word Embedding Methods

- ✓ CBOW and Skip-Gram
- GloVe (Global Vectors for Word Representation)

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

GloVe [Jeffrey Pennington et. al., EMNLP 2014]

- Input matrix $X \in \mathbb{R}^{V \times V}$
 - o X_{ij} is the global sum of the weight of word j in local context window of ± 10 from word i;
 - o if word j is $k \ (\leq 10)$ words apart from word i, then it has the weight of $\frac{1}{k}$.
 - o Taking a log scale of each elevent as $X_{ij} \xrightarrow{logscale} log X_{ij}$
- Matrix $W \in \mathbb{R}^{V \times D}$ (word embeddings) and bias vector $b \in \mathbb{R}^{V}$
 - o Matrix W and vector $b = (b_1, b_2, ..., b_V)$ are the model parameters to be optimized given X.
 - Each row of W of is the embedding of a word, denoted as w_i .

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

27

27

GloVe [Jeffrey Pennington et. al., EMNLP 2014]

Objective

$$\min_{W,b} \sum_{i,j=1}^{m} f(X_{ij}) \left(\underbrace{w_i^T w_j + b_i + b_j}_{\widehat{X}_{ij}} - X_{ij} \right)^2$$

where

$$f(x) = \begin{cases} (x/x_{max})^{\alpha} & \text{if } x < x_{max} \\ 1 & \text{otherwise} \end{cases}$$

Figure 1: Weighting function f with $\alpha = 3/4$.

Algorithm

stochastic gradient descent

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

Differences of GloVe from CBOW

☐ GloVe have the following differences

- Weight a local contextual word by $\frac{1}{K}$ (sensitive to word position)
- Giving more weights via $f(X_{ij})$ to larger cells (common word pairs) in X
- Adding a bias term per word in addition to its embedding vector
- Despite the name, GloVe (Global Vectors for word representation) is still based on the local context around each target word
- In fact, all the MF methods (SVD, NMF, PMF) can also be applied to the GloVe's input matrix *X* for producing the word-embedding matrix W.

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

20

29

Evaluation Results

- Word analogy task [Jeffrey Pennington et. al., EMNLP 2014]
- Other downstream tasks (not included here)
 - Name Entity Recognition (NER)
 - Sentimental Classification
 - Language Modeling
 - Neural Machine Translation

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

The Word Analogy Task

- Input question likes "a is to b as c is to ___?"
- System's answer by finding w_d that is closest to $w_b w_a + w_c$ according to cosine similarity
- Dataset contains 19,544 questions, divided into two subsets
 - Semantic: "Athens is to Greece as Berlin is to ___?"
 - Syntactic: "dance is to dancing as fly is to ___?"

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

31

31

Word Analogy Results [Jeffrey Pennington et. al., EMNLP 2014]

- Baseline Methods
 - o HPCA: PMI version of LSA (PCA) [10]
 - o vLBL, ivLBL: log-bilinear model [9]
 - SG: skip gram (another variant of w2v)
 - o CBOW: continuous bag-of-words
 - o SVD-S: take SVD of $\sqrt{X_{trunc}}$
 - SVD-L: take SVD of $log(1 + X_{trunc})$
- Metric: Accuracy
- Size: number of tokens in training set

Model	Dim.	Size	Sem.	Syn.	Tot.	
ivLBL	100	1.5B	55.9	50.1	53.2	_
HPCA	100	1.6B	4.2	16.4	10.8	
GloVe	100	1.6B	67.5	54.3	60.3	
SG	300	1B	61	61	61	
CBOW	300	1.6B	16.1	52.6	36.1	
vLBL	300	1.5B	54.2	64.8	60.0	
ivLBL	300	1.5B	65.2	63.0	64.0	
GloVe	300	1.6B	80.8	61.5	70.3	
SVD	300	6B	6.3	8.1	7.3	
SVD-S	300	6B	36.7	46.6	42.1	
SVD-L	300	6B	56.6	63.0	60.1	
CBOW [†]	300	6B	63.6	67.4	65.7	
SG [†]	300	6B	73.0	66.0	69.1	
GloVe	300	6B	<u>77.4</u>	67.0	<u>71.7</u>	
CBOW	1000	6B	57.3	68.9	63.7	
SG	1000	6B	66.1	65.1	65.6	
SVD-L	300	42B	38.4	58.2	49.2	
GloVe	300	42B	81.9	<u>69.3</u>	<u>75.0</u>	
						7

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

Summary of word2vec methods

- CBOW (and SkipGram) treats local context as a set of words (ignoring word order) and learns the word embeddings with a one-hidden-layer neural network.
- GloVe use a matrix to aggregates the global co-occurrence counts (weighted by proximity and learns word embeddings via gradient descent.
- Both methods produces a fixed embedding for each word that cannot differentiate word meanings under different contexts (more discussions in the DL5 Lecture).

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining

33

33

References

- Distributed representations of words and phrases and their compositionality. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013
- Efficient Estimation of Word Representations in Vector Space. Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean ICLR Workshop 2013
- Xin Rong: word2vec Parameter Learning Explained. <u>CoRR abs/1411.2738</u> (2016)
- 4. GloVe: Global Vectors for Word Representation. Jeffrey Pennington, Richard Socher, Christopher D. Manning. EMNLP 2014

1/18/2024

@Yiming Yang, lecture on Deep Learning for Text Mining