THE ARDUINO - WRITING ALGORITHMS

Dr Chris Dennett

Algorithm Design

- Definition: A step-by-step procedure to solve a problem
- Before we get anywhere near a piece of hardware or write any code we must work out what needs to be done
- PLAN
- DO
- CHECK

Algorithm Design

- Define the problem
 - Analyse the task
 - Ask yourself questions
 - State your assumptions Do they make sense?
- Develop an algorithm
 - Break the task into steps that follow a sensible order
 - WRITE it down... On paper!!!!
- Test the algorithm
 - Work through your algorithm
 - Does it work properly?
 - If not, redevelop

- Define the problem
 - Start with assorted dirty clothes End with clean, dry clothes
- Ask Questions
 - Where are the clothes?
 - What am I washing them in?
 - How many clothes can I wash in one go?
 - What other things do I have to take into account?

- Make sensible assumptions
 - I'm using a washing machine
 - I'm going to have to take account of the colour of the clothes
 - Decide on which powder to use
 - Decide which wash to choose
 - I'm going to have to think about the weight of the load
 - I'm going to have to look at the weather to decide on how to dry the clothes
 - I don't 'do' ironing!

- Write your algorithm
 - In as little (or as much) detail as you need
- Go to laundry basket
 - If no clothes in laundry basket go to bedroom
 - Pick clothes up off bedroom floor
- Put clothes in washing basket
- Take clothes to washing machine
- Stuff clothes in washing machine
- Chuck some powder in the right drawer

- Press 'on'
- Wait for machine to finish
- Take washing out
- Put washing in dryer
- Wait for dryer to finish
- Stuff clothes in a drawer

- Test your algorithm
 - Better to do it as thoroughly as possible on paper
 - Debugging code can be a pain especially on the Arduino
- Run through the algorithm

- ...
- Take clothes to washing machine
- Stuff clothes in washing machine
 - ARG! Some of the clothes are colour and some are white!
 - Edit:
 - Take clothes to washing machine
 - Sort colours from whites
 - Stuff colours OR whites in washing machine

- ARG! Too many clothes to fit in washing machine
 - Edit:
 - If number of clothes > washing machine safe load limit
 - While number of clothes > washing machine safe load limit
 - Remove item
 - Return
 - Return
- ...
- Chuck some powder in the right drawer
- ARG! One powder for colours and another for whites

■ Edit:

- If clothes = white
 - Choose powder 'a'
- Else
 - Choose powder 'b'
- End

- Press 'on'
 - ARG! There's loads of settings
 - Edit:
 - Press 'on' Ask mum to choose suitable setting
 - Press 'on'
- Wait for machine to finish
- Take washing out
- · ...

- Put washing in dryer
 - ARG! Mum says it's a waste of electricity
 - Edit:
 - Go outside
 - Look up
 - If sunny
 - Hang washing out
 - Else
 - Put washing in dryer
 - End
- Wait for dryer to finish

Final Algorithm

- Go to laundry basket
- If no clothes in laundry basket go to bedroom
 - Pick clothes up off bedroom floor
- Put clothes in washing basket
- Take clothes to washing machine
- Sort colours from whites
- Stuff colours OR whites in washing machine
- If number of clothes > washing machine safe load limit
 - While number of clothes is larger than washing machine safe load limit
 - Remove item
 - Return
- return

- If clothes are white
 - Choose powder 'a'
- Else
 - Choose powder 'b'
- End
- Chuck some powder in right drawer
- Ask mum to choose suitable setting
- Press 'on'
- Wait for washer to finish
- Go outside
- Look up
 - If sunny
 - Hang washing out
 - Else
 - Put washing in dryer
 - End

Implementing Algorithm

- You'll notice that I have used code-like (pseudo code) statements in the algorithm design
 - If
 - Else
 - While
- These help the transition to program code

Implementing Algortihm

- From our algorithm
 - We can see where loops are
 - DON'T CONFUSE MY USE OF 'loop' with the 'loop' procedure in your sketch
 - The loop procedure is where you will put your algorithm. It repeats the algorithm
 - Here we mean smaller loops within the algorithm.
 Eg.
- If number of clothes > washing machine safe load limit
 - While number of clothes is larger than washing machine safe load limit
 - Remove item
 - Return
- return

Implementing Algorithm

- This would be analogous to
 - Int num_clothes; //Declared at the top
 - Int limit = 25;
 - If (num_clothes > limit){
 - " While (num_clothes > limit){
 - Num_clothes = num_clothes 1;
 - •

Implement Algorithm

- Write the sketch
- Test the sketch Debugging
 - If it doesn't do what it is supposed to do, debug
 - On paper, write out what values everything should be at what point in the code
 - Check this against what you actually get
- Once you've tested it satisfactorily
- Use it!

Arduino

- When creating hardware and software combined packages, we need to break the problem into bite-sized chunks
 - Develop the hardware
 - Taking notes which Arduino pins interface with which parts of the circuit
 - Use simple bits of code and LEDs to debug the circuit
 - Develop the software
 - This is where we write the algorithm
 - When transitioning from our original algorithm to a sketch, first define/declare your pins as names that make sense

Arduino

- Developing the hardware first means that when you come debugging the code, you know that issues are only in the software
- So now, look back at your portfolio assignment and design your algorithm
- Start Here!