Integration and differentiation, integration of vector-valued functions, rectifiable curves, discussion of main problem, uniform convergence

6.20 Theorem Let $f \in \mathcal{R}$ on [a, b]. For $a \le x \le b$, put

$$F(x) = \int_a^x f(t) dt.$$

Then F is continuous on [a, b]; furthermore, if f is continuous at a point x_0 of [a, b], then F is differentiable at x_0 , and

$$F'(x_0) = f(x_0).$$

Proof Since $f \in \mathcal{R}$, f is bounded. Suppose $|f(t)| \le M$ for $a \le t \le b$. If $a \le x < y \le b$, then

$$|F(y) - F(x)| = \left| \int_x^y f(t) \, dt \right| \le M(y - x),$$

by Theorem 6.12(c) and (d). Given $\varepsilon > 0$, we see that

$$|F(y)-F(x)|<\varepsilon,$$

provided that $|y-x| < \varepsilon/M$. This proves continuity (and, in fact, uniform continuity) of F.

Now suppose f is continuous at x_0 . Given $\varepsilon > 0$, choose $\delta > 0$ such that

$$|f(t) - f(x_0)| < \varepsilon$$

if $|t - x_0| < \delta$, and $a \le t \le b$. Hence, if

$$x_0 - \delta < s \le x_0 \le t < x_0 + \delta$$
 and $a \le s < t \le b$,

we have,

$$\left|\frac{F(t)-F(s)}{t-s}-f(x_0)\right|=\left|\frac{1}{t-s}\int_s^t \left[f(u)-f(x_0)\right]du\right|<\varepsilon.$$

It follows that $F'(x_0) = f(x_0)$.

6.21 The fundamental theorem of calculus If $f \in \mathcal{R}$ on [a, b] and if there is a differentiable function F on [a, b] such that F' = f, then

$$\int_a^b f(x) \ dx = F(b) - F(a).$$

Proof Let $\varepsilon > 0$ be given. Choose a partition $P = \{x_0, \ldots, x_n\}$ of [a, b] so that $U(P, f) - L(P, f) < \varepsilon$. The mean value theorem furnishes points $t_i \in [x_{i-1}, x_i]$ such that

$$F(x_i) - F(x_{i-1}) = f(t_i) \Delta x_i$$

for i = 1, ..., n. Thus

$$\sum_{i=1}^{n} f(t_i) \Delta x_i = F(b) - F(a).$$

It now follows from Theorem 6.7(c) that

$$\left| F(b) - F(a) - \int_a^b f(x) \, dx \right| < \varepsilon.$$

Since this holds for every $\varepsilon > 0$, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are differentiable functions on [a, b], $F' = f \in \mathcal{R}$, and $G' = g \in \mathcal{R}$. Then

$$\int_{a}^{b} F(x)g(x) \, dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x) \, dx.$$

Proof Put H(x) = F(x)G(x) and apply Theorem 6.21 to H and its derivative. Note that $H' \in \mathcal{R}$, by Theorem 6.13.

6.24 Theorem If f and F map [a, b] into R^k , if $f \in \mathcal{R}$ on [a, b], and if F' = f, then

$$\int_a^b \mathbf{f}(t) \ dt = \mathbf{F}(b) - \mathbf{F}(a).$$

6.25 Theorem If f maps [a, b] into R^k and if $f \in \mathcal{R}(\alpha)$ for some monotonically increasing function α on [a, b], then $|f| \in \mathcal{R}(\alpha)$, and

(40)
$$\left| \int_a^b \mathbf{f} \ d\alpha \right| \le \int_a^b |\mathbf{f}| \ d\alpha.$$

Proof If f_1, \ldots, f_k are the components of f, then

(41)
$$|\mathbf{f}| = (f_1^2 + \cdots + f_k^2)^{1/2}.$$

By Theorem 6.11, each of the functions f_i^2 belongs to $\mathcal{R}(\alpha)$; hence so does their sum. Note that the square root function is continuous on $[0, \infty)$.

If we apply Theorem 6.11 once more, (41) shows that $|\mathbf{f}| \in \mathcal{R}(\alpha)$.

To prove (40), put $y = (y_1, ..., y_k)$, where $y_j = \int f_j d\alpha$. Then we have $y = \int f d\alpha$, and

$$|\mathbf{y}|^2 = \sum y_i^2 = \sum y_j \int f_j d\alpha = \int (\sum y_j f_j) d\alpha.$$

By the Schwarz inequality,

(42)
$$\sum y_i f_i(t) \le |\mathbf{y}| |\mathbf{f}(t)| \qquad (a \le t \le b);$$

hence Theorem 6.12(b) implies

$$|\mathbf{y}|^2 \le |\mathbf{y}| \int |\mathbf{f}| d\alpha.$$

If y = 0, (40) is trivial. If $y \neq 0$, division of (43) by |y| gives (40).

6.26 Definition A continuous mapping γ of an interval [a, b] into R^k is called a *curve* in R^k . To emphasize the parameter interval [a, b], we may also say that γ is a curve on [a, b].

If γ is one-to-one, γ is called an arc. If $\gamma(a) = \gamma(b)$, γ is said to be a closed curve.

Remark It should be noted that we define a curve to be a mapping, not a point set. Of course, with each curve γ in R^k there is associated a subset of R^k , namely the range of γ , but different curves may have the same range.

We associate to each partition $P = \{x_0, \ldots, x_n\}$ of [a, b] and to each curve γ on [a, b] the number

$$\Lambda(P, \gamma) = \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|.$$

We define the length of γ as

$$\Lambda(\gamma)=\sup\Lambda(P,\,\gamma),$$

where the supremum is taken over all partitions of [a, b]. If $\Lambda(\gamma) < \infty$, we say that γ is *rectifiable*. **5.27 Theorem** If γ' is continuous on [a, b], then γ is rectifiable, and

$$\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt.$$

Proof If $a \le x_{i-1} < x_i \le b$, then

$$|\gamma(x_i)-\gamma(x_{i-1})|=\left|\int_{x_{i-1}}^{x_i}\gamma'(t)\,dt\right|\leq \int_{x_{i-1}}^{x_i}|\gamma'(t)|\,dt.$$

Hence

$$\Lambda(P, \gamma) \leq \int_a^b |\gamma'(t)| dt$$

for every partition P of [a, b]. Consequently,

$$\Lambda(\gamma) \leq \int_a^b |\gamma'(t)| \ dt.$$

To prove the opposite inequality, let $\varepsilon > 0$ be given. Since γ' is uniformly continuous on [a, b], there exists $\delta > 0$ such that

$$|\gamma'(s) - \gamma'(t)| < \varepsilon$$
 if $|s - t| < \delta$.

Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b], with $\Delta x_i < \delta$ for all i. If $x_{i-1} \le t \le x_i$, it follows that

$$|\gamma'(t)| \leq |\gamma'(x_i)| + \varepsilon.$$

Hence

$$\int_{x_{i-1}}^{x_i} |\gamma'(t)| dt \le |\gamma'(x_i)| \Delta x_i + \varepsilon \Delta x_i$$

$$= \left| \int_{x_{i-1}}^{x_i} [\gamma'(t) + \gamma'(x_i) - \gamma'(t)] dt \right| + \varepsilon \Delta x_i$$

$$\le \left| \int_{x_{i-1}}^{x_i} \gamma'(t) dt \right| + \left| \int_{x_{i-1}}^{x_i} [\gamma'(x_i) - \gamma'(t)] dt \right| + \varepsilon \Delta x_i$$

$$\le |\gamma(x_i) - \gamma(x_{i-1})| + 2\varepsilon \Delta x_i.$$

If we add these inequalities, we obtain

$$\int_{a}^{b} |\gamma'(t)| dt \le \Lambda(P, \gamma) + 2\varepsilon(b - a)$$

$$\le \Lambda(\gamma) + 2\varepsilon(b - a).$$

Since ε was arbitrary,

$$\int_a^b |\gamma'(t)| \ dt \le \Lambda(\gamma).$$

This completes the proof.

Sequences and series of functions

7.1 **Definition** Suppose $\{f_n\}$, n = 1, 2, 3, ..., is a sequence of functions defined on a set E, and suppose that the sequence of numbers $\{f_n(x)\}$ converges for every $x \in E$. We can then define a function f by

(1)
$$f(x) = \lim_{n \to \infty} f_n(x) \qquad (x \in E).$$

Under these circumstances we say that $\{f_n\}$ converges on E and that f is the *limit*, or the *limit function*, of $\{f_n\}$.

Similarly, if $\Sigma f_n(x)$ converges for every $x \in E$, and if we define

(2)
$$f(x) = \sum_{n=1}^{\infty} f_n(x) \qquad (x \in E),$$

the function f is called the sum of the series Σf_n .

The main problem which arises is to determine whether important properties of functions are preserved under the limit operations (1) and (2). For instance, if the functions f_n are continuous, or differentiable, or integrable, is the same true of the limit function? What are the relations between f'_n and f', say, or between the integrals of f_n and that of f?

To say that f is continuous at a limit point x means

$$\lim_{t\to x} f(t) = f(x).$$

Hence, to ask whether the limit of a sequence of continuous functions is continuous is the same as to ask whether

(3)
$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{t \to x} \lim_{t \to x} f_n(t).$$

Example Let

$$f_n(x) = \frac{x^2}{(1+x^2)^n}$$
 (x real; n = 0, 1, 2, ...),

and consider

(6)
$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$$

Since $f_n(0) = 0$, we have f(0) = 0. For $x \ne 0$, the last series in (6) is a convergent geometric series with sum $1 + x^2$

(7)
$$f(x) = \begin{cases} 0 & (x = 0), \\ 1 + x^2 & (x \neq 0), \end{cases}$$

so that a convergent series of continuous functions may have a discontinuous sum.

Example

Let $f_n : [0,1] \to \mathbb{R}$ be the function $f_n(x) = x^n$. The sequence $(f_n)_{n \in \mathbb{N}}$ converges pointwise to the function f defined by:

$$f(x) := \begin{cases} 0, & \text{if } 0 \le x < 1 \\ 1, & \text{if } x = 1. \end{cases}$$

For x = 1 we always have $f_n(x) = 1$, whereas for $0 \le x < 1$, given $\varepsilon > 0$ there exists an $N \in \mathbb{N}$, e.g. the smallest natural number greater than $\frac{\log \varepsilon}{\log x}$, such that

$$|f_n(x) - 0| = |f_n(x)| = x^n < \varepsilon$$
 for all $n \ge N$.

We observe that the limit function f is not continuous, although all the f_n are continuous. The concept of pointwise convergence is therefore too weak to allow for continuity properties to carry over to limit functions.

Example Suppose that $f^{(n)}:[a,b]\to \mathbf{R}$ a sequence of Riemann-integrable functions on the interval [a,b]. If $\int_{[a,b]} f^{(n)} = L$ for every n, and $f^{(n)}$ converges pointwise to some new function f, this does not mean that $\int_{[a,b]} f = L$. An example comes by setting [a,b] := [0,1], and letting $f^{(n)}$ be the function $f^{(n)}(x) := 2n$ when $x \in [1/2n, 1/n]$, and $f^{(n)}(x) := 0$ for all other values of x. Then $f^{(n)}$ converges pointwise to the zero function f(x) := 0. On the other hand, $\int_{[0,1]} f^{(n)} = 1$ for every n, while $\int_{[0,1]} f = 0$. In particular, we have an example where

$$\lim_{n \to \infty} \int_{[a,b]} f^{(n)} \neq \int_{[a,b]} \lim_{n \to \infty} f^{(n)}.$$

Example Let

$$f_n(x) = \frac{\sin nx}{\sqrt{n}}$$
 (x real, $n = 1, 2, 3, ...$),

and

$$f(x) = \lim_{n \to \infty} f_n(x) = 0.$$

Then f'(x) = 0, and

$$f_n'(x) = \sqrt{n} \cos nx,$$

so that $\{f'_n\}$ does not converge to f'. For instance,

$$f_n'(0) = \sqrt{n} \to +\infty$$

as $n \to \infty$, whereas f'(0) = 0.

Example Let

(10)
$$f_n(x) = n^2 x (1 - x^2)^n \qquad (0 \le x \le 1, n = 1, 2, 3, \ldots).$$

We have

(11)
$$\lim_{n \to \infty} f_n(x) = 0 \qquad (0 \le x \le 1).$$

$$\int_0^1 x (1 - x^2)^n dx = \frac{1}{2n + 2}.$$

$$\int_0^1 f_n(x) dx = \frac{n^2}{2n + 2} \to +\infty \quad \text{as } n \to \infty.$$

Thus the limit of the integral need not be equal to the integral of the limit.

7.7 **Definition** We say that a sequence of functions $\{f_n\}$, n = 1, 2, 3, ..., converges uniformly on E to a function f if for every $\varepsilon > 0$ there is an integer N such that $n \ge N$ implies

 $|f_n(x) - f(x)| \le \varepsilon$

for all $x \in E$.

We say that the series $\Sigma f_n(x)$ converges uniformly on E if the sequence $\{s_n\}$ of partial sums defined by

$$\sum_{i=1}^{n} f_i(x) = s_n(x)$$

converges uniformly on E.

Remark If a sequence $f_n\colon \mathsf{X}\to \mathsf{Y}$ of functions converges pointwise (or uniformly) to a function $f:\mathsf{X}\to \mathsf{Y}$, then the restrictions $f_n|_E\colon E\to \mathsf{Y}$ of f to some subset E of X will also converge pointwise (or uniformly) to $f|_E$.

Example

The functions $f_n:(0,1)\to\mathbb{R}$ defined by $f_n(x)=x^n$, $n=2,3,4,\ldots$, converge pointwise, but do not converge uniformly to the function f=0.

Example Let $f^{(n)}:[0,1] \to \mathbf{R}$ be the functions $f^{(n)}(x):=x/n$, and let $f:[0,1] \to \mathbf{R}$ be the zero function f(x):=0. Then it is clear that $f^{(n)}$ converges to f pointwise. Now we show that in fact $f^{(n)}$ converges to f uniformly. We have to show that for every $\varepsilon > 0$, there exists an N such that $|f^{(n)}(x) - f(x)| < \varepsilon$ for every $x \in [0,1]$ and every $n \geq N$. To show this, let us fix an $\varepsilon > 0$. Then for any $x \in [0,1]$ and $n \geq N$, we have

$$|f^{(n)}(x) - f(x)| = |x/n - 0| = x/n \le 1/n \le 1/N.$$

Thus if we choose N such that $N > 1/\varepsilon$ (note that this choice of N does not depend on what x is), then we have $|f^{(n)}(x) - f(x)| < \varepsilon$ for all $n \ge N$ and $x \in [0, 1]$, as desired.

7.8 **Theorem** The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E if and only if for every $\varepsilon > 0$ there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies

(13)
$$|f_n(x) - f_m(x)| \le \varepsilon.$$

Proof Suppose $\{f_n\}$ converges uniformly on E, and let f be the limit function. Then there is an integer N such that $n \ge N$, $x \in E$ implies

$$|f_n(x)-f(x)|\leq \frac{\varepsilon}{2},$$

so that

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| \le \varepsilon$$

if $n \ge N$, $m \ge N$, $x \in E$. Conversely, suppose the Cauchy condition holds. Then, the sequence $\{f_n(x)\}$ converges, for every x, to a limit which we may call f(x). Thus the sequence $\{f_n\}$ converges on E, to f. We have to prove that the convergence is uniform.

Let $\varepsilon > 0$ be given, and choose N such that (13) holds. Fix n, and let $m \to \infty$ in (13). Since $f_m(x) \to f(x)$ as $m \to \infty$, this gives

$$|f_n(x) - f(x)| \le \varepsilon$$

for every $n \ge N$ and every $x \in E$, which completes the proof.

7.9 Theorem Suppose

$$\lim_{n\to\infty} f_n(x) = f(x) \qquad (x \in E).$$

Put

$$M_n = \sup_{x \in E} |f_n(x) - f(x)|.$$

Then $f_n \to f$ uniformly on E if and only if $M_n \to 0$ as $n \to \infty$.

7.10 Theorem Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose

$$|f_n(x)| \le M_n$$
 $(x \in E, n = 1, 2, 3, ...).$

Then Σf_n converges uniformly on E if ΣM_n converges.

Proof If ΣM_n converges, then, for arbitrary $\varepsilon > 0$,

$$\left|\sum_{i=n}^{m} f_i(x)\right| \leq \sum_{i=n}^{m} M_i \leq \varepsilon \qquad (x \in E),$$

provided m and n are large enough. Uniform convergence now follows from Theorem 7.8.