Guía 1: Conceptos básicos

Conjuntos

General

- $R o ext{Conjunto de números reales}$
- Z → Conjunto de números enteros
- N o Conjunto de números naturales
- $\omega = N \cup \{0\}$, y $\forall x,y \in \omega$:
 - x y = x y si $x \ge y$ y 0 cc.
 - x|y si $\exists z \in w$ tal que $y = x \cdot z$
 - Por convención nuestra, $0^0 = 1$
- $P(A) = \{S : S \subseteq A\} \rightarrow \mathsf{partes} \mathsf{ de } \mathsf{A}$
- ullet $|A|
 ightarrow ext{cardinalidad de A}$

Propiedades

- Extensionalidad: $A = B \Leftrightarrow \forall x, (x \in A \Leftrightarrow x \in B)$
 - Es decir, A = B si $A \subseteq B$ y $B \subseteq A$

Producto cartesiano

- Dados A_1,\ldots,A_n con $n\geq 2,\,A_1\times\ldots\times A_n$ denota su producto cartesiano, es decir, al conjunto formado por todas las n-uplas (a_1,\ldots,a_n) con $a_i\in A_i$ para $i=1,\ldots,n$
- Si $A_1 = ... = A_n = A$, se denota A^n
- Denotamos con \lozenge a la única 0-upla, por lo que definimos $A^0 = \{\lozenge\}$
- A^N denota al conjunto formado por todas las *infinituplas* (a_1,a_2,\dots) con $a_i\in A$ para todo $i\in N$

Alfabetos

- Un alfabeto es un conjunto finito de símbolos (∅ es un alfabeto)
- Si Σ es un alfabeto, Σ^* denota al conjunto de todas las palabras finitas formadas por símbolos de Σ
 - La única palabra de longitud 0 es ε
 - Nótese que $\emptyset^* = \{\varepsilon\}$ y $\varepsilon \in \Sigma^* \forall \Sigma$
 - $\Sigma^+ = \Sigma^* \{\varepsilon\}$
- $|\alpha|$ denota la longitud de la palabra α
 - Si $\alpha \in \Sigma^*$ y $\sigma \in \Sigma$, $|\alpha|_{\sigma}$ denota el número de veces que σ aparece en α

- Si $\alpha_1, \ldots, \alpha_n \in \Sigma^*$, $\alpha_1 \ldots \alpha_n$ denota la concatenación de las palabras
 - Si $\alpha_1 = ... = \alpha_n = \alpha$, denotamos α^n
 - $\alpha^0 = \varepsilon$
- α es subpalabra (propia) de β si ($\alpha \notin \{\varepsilon, \beta\}$ y) $\exists \delta, \gamma \in \Sigma^*$ tal que $\beta = \delta \alpha \gamma$
 - β es tramo inicial (propio) de α si $\exists \gamma \in \Sigma^*$ tal que $\alpha = \beta \gamma$ (y $\beta \notin \{\varepsilon, \alpha\}$)
 - La definición de tramo final (propio) es análoga
- Dados $i \in \omega, \alpha \in \Sigma^*$, definimos $[\alpha_i] = \text{el i-\'esimo s\'embolo de } \alpha \text{ si } 1 \leq i \leq |\alpha| \text{ y } \varepsilon \text{ cc.}$
- Dada $\gamma \in \Sigma^*$, definimos $\gamma^R = [\gamma_{|\gamma|}] ... [\gamma_1]$ si $|\gamma| \ge 1$ y ε cc. o reciproca de γ

Ocurrencias

- Dadas $\alpha, \beta \in \Sigma^*$ con $|\alpha|, |\beta| \ge 1$ e $i \in \{1, \dots, |\beta|\}$, decimos que α *ocurre* a partir de i en β si $\exists \delta, \gamma \in \Sigma^*$ tales que $\beta = \delta \alpha \gamma$ y $|\delta| = i 1$
- Reemplazos de ocurrencias:
 - Cuando todas las ocurrencias de α en β son disjuntas entre sí, podemos aplicar los reemplazos
 - Notar que los reemplazos se hacen simultáneamente (de forma atómica) y no secuencialmente
 - Se pueden hacer reemplazos simultáneos de distintas palabras en una misma palabra dada (siempre y cuando se cumpla la condición de disyunción)

Matemática orientada a objetos

- Nuestras categorías de objetos son disjuntas entre sí y son las siguientes (no consideramos existencia de 1-uplas):
 - NÚMERO
 - CONJUNTO
 - PALABRA (incluye a los símbolos)
 - 0-UPLA
 - 2-UPLA
 - 3-UPLA
 - ...
 - INFINITUPLA
- Definimos Ti como la función que asigna a cada objeto de la categoría i su tipo

Función

- Definiciones:
 - Una función es un conjunto f de pares ordenados tales que si $(x,y),(x,z)\in f$, entonces y=z
 - Notar que ∅ es una función
 - Definimos

- $D_f = Dom(f) = ext{dominio de } f = \{x: (x,y) \in f \text{ para algún } y\}$
- $I_f = Im(f) = \text{imagen de } f = \{y: (x,y) \in f \text{ para algún } x\}$
- Escribiremos f:A o B para denotar que f es una función con $D_f=A$ e $I_f\subseteq B$
- Una función f se puede definir dando su dominio y su regla de asignación.
- Composición: Dadas funciones f, g, definimos $f \circ g$ como

$$D_{f\circ g}=\{x\in D_g: g(x)\in D_f\}$$
 $(f\circ g)(x)=f(g(x))$

Notar que entonces $f \circ g = \{(u,v) : \exists z : (u,z) \in g \ y \ (z,v) \in f\}$

• "Agrupadas": Dadas funciones f_1,\ldots,f_n con $n\in N$, definimos $[f_1,\ldots,f_n]$ como

$$D_{[f_1,..,f_n]}=D_{f_1}\cap\ldots\cap D_{f_n}$$
 $[f_1,\ldots,f_n](x)=(f_1(x),\ldots,f_n(x))$

Notar que $I_{[f_1,..,f_n]} \subseteq I_{f_1} \times ... \times I_{f_n}$ y $[f_1] = f_1$.

- Propiedades
 - Igualdad de funciones: $f=g \Leftrightarrow D_f=D_g \ \mathrm{y} \ orall x \in D_f, f(x)=g(x)$
 - Sobre composición de funciones: $f\circ g
 eq \emptyset \Leftrightarrow I_g\cap D_f
 eq \emptyset$
 - *Inyectividad*: f es inyectiva si $\forall x,y \in D_f, f(x) = f(y) \Rightarrow x = y$
 - *Suryectividad*: Sea $f: A \rightarrow B$, f es suryectiva si $I_f = B$
 - Biyectividad: $f: A \rightarrow B$ es biyectiva si es inyectiva y suryectiva
 - Podemos definir la *inversa* de f como $f^{-1}:B o A$ tal que $f^{-1}(y)=x\Leftrightarrow f(x)=y$

Notar que
$$f^{-1}=Id_B$$
 y $f^{-1}\subset f=Id_A$

- Condición de biyectividad: Sean $f:A\to B$ y $g:B\to A$ tales que $f\circ g=Id_B$ y $g\circ f=Id_A$, entonces f,g son biyectivas, $f=g^{-1}$ y $g=f^{-1}$.
- Ejemplos
 - *Identidad*: $Id_A = \{(x, x) : x \in A\}$ para cualquier conjunto A

Funciones Σ -mixtas

Definiciones

- *Notación*: Sea Σ un alfabeto finito, y dados $n, m \in \omega$, usamos $\omega^n \times \Sigma^{*m}$ para abreviar a $\omega \times ... \times \omega \times \Sigma^* \times ... \times \Sigma^*$ (n veces ω y m veces Σ^*)
 - Casos a tener en cuenta:
 - Si n=m=0, $\omega^n imes \Sigma^{*m}=\{\lozenge\}$
 - Si n=0, $\omega^n imes \Sigma^{*m} = \Sigma^{*m}$
 - Si m=0, $\omega^n \times \Sigma^{*m}=\omega^n$

- Un elemento de $\omega^n imes \Sigma^{*m}$ es una n+m-upla $(x_1,\ldots,x_n,lpha_1,\ldots,lpha_m)$ con $x_i\in\omega$ y $lpha_i\in\Sigma^*$ para todo i
 - Para abreviar, escribiremos $(\vec{x}, \vec{\alpha})$ en lugar de $(x_1, \dots, x_n, \alpha_1, \dots, \alpha_m)$
- Definición: Sea Σ un alfabeto finito y sea f una función, diremos que es Σ -mixta si
 - (M1) $\exists n, m \geq 0 : D_f \subseteq \omega^n \times \Sigma^{*m}$
 - (M2) O bien $I_f \subseteq \omega$ o bien $I_f \subseteq \Sigma^*$
- Una función Σ -mixta es Σ -total si $\exists n,m\geq 0: D_f=\omega^n imes \Sigma^{*m}$
- *Tipo*: Si f es Σ -mixta y $n, m \in \omega : D_f \subseteq \omega^n \times \Sigma^{*m}$:
 - Si $I_f \subseteq \omega$, decimos que f es de tipo (n, m, #)
 - Si $I_f \subseteq \Sigma^*$, decimos que f es de tipo (n, m, *)
 - Notar que si $f \neq \emptyset$, entonces hay únicos $n, m \in \omega$ y \$s\in{#,}\$ tales que f es de tipo (n, m, s).*

Propiedades

• Sean $\Sigma \subseteq \Gamma$ alfabetos finitos y f una función Σ -mixta, entonces f es Γ -mixta

Ejemplos

• Suc: Sucesor de un número:

$$Suc:\omega
ightarrow\omega$$

$$n o n+1$$

• Pred: Predecesor de un número:

$$Pred:N o\omega$$

$$n
ightarrow n-1$$

• *Derecha*: Sea Σ un alfabeto no vacío, entonces $\forall b \in \Sigma$ definimos

$$d_b:\Sigma^*\to\Sigma^*$$

• *Proyecciones*: Sea Σ un alfabeto, para $n, m \in \omega$ e $i : 1 \le i \le n$, definimos

$$p_i^{n,m}:\omega^n imes \Sigma^{*m} o \omega$$

$$(\vec{x}, \vec{lpha})
ightarrow x_i$$

Y para $i: n+1 \le i \le n+m$, definimos

$$p_i^{n,m}:\omega^n imes \Sigma^{*m} o \Sigma^*$$

$$(ec{x},ec{lpha})
ightarrow lpha_{i-n}$$

• Constantes: Sea Σ un alfabeto, para $n,m,k\in\omega$ y $\alpha\in\Sigma^*$ definimos

$$C_h^{n,m}:\omega^n imes \Sigma^{*m} o \omega$$

У

$$egin{aligned} C^{n,m}_lpha : \omega^n imes \Sigma^{*m}
ightarrow \Sigma^* \ (ec{x},ec{lpha})
ightarrow lpha \end{aligned}$$

(Notar que $C_k^{0,0}:\{\lozenge\} o\{k\}$ y $C_lpha^{0,0}:\{\lozenge\} o\{lpha\}$)

• $\mathit{Predicado}$: Un predicado Σ -mixto es una función f tal que es Σ -mixta e $I_f \subseteq \{0,1\}$

Dados predicados $P: S \subseteq \omega^n \times \Sigma^{*m} \to \{0,1\}$ y $Q: S \subseteq \omega^n \times \Sigma^{*m} \to \{0,1\}$, con el mismo dominio, definimos nuevos predicados:

Negación:

$$eg P: S o \{0,1\}$$
 $(ec{x},ec{lpha}) o egin{cases} 1 & ext{si } P(ec{x},ec{lpha}) = 0 \ 0 & ext{si } P(ec{x},ec{lpha}) = 1 \end{cases}$

Conjunción:

$$P \wedge Q: S
ightarrow \{0,1\}$$
 $(ec{x},ec{lpha})
ightarrow egin{cases} 1 & ext{si } P(ec{x},ec{lpha}) = 1 ext{ y } Q(ec{x},ec{lpha}) = 1 \ 0 & ext{cc.} \end{cases}$

Disyunción:

$$Pee Q:S o\{0,1\}$$
 $(ec x,eclpha) oegin{cases} 1 & ext{si }P(ec x,eclpha)=1 ext{ o }Q(ec x,eclpha)=1 \ 0 & ext{cc.} \end{cases}$

Conjuntos Σ -mixtos

- Un conjunto S es Σ -mixto si $\exists n,m\in\omega:S\subseteq\omega^n imes\Sigma^{*m}$
 - Notar que \emptyset y $\{\lozenge\}$ son conjuntos Σ -mixtos, cualesquiera sea el alfabeto Σ
- S es Σ -mixto $\Leftrightarrow S = D_f$ para alguna función Σ -mixta f
- Dado un conjunto Σ -mixto S y $n,m\in\omega:S\subseteq\omega^n imes\Sigma^{*m}$, entonces S es de tipo (n,m)

Notar que si $S
eq \emptyset$, entonces hay únicos $n,m \in \omega$ tales que S es de tipo (n,m).

Notación Lambda

- Una expresión es *lambdificable* con respecto a Σ si cumple las siguientes características:
 - Involucra variables numéricas (que se valuaran en números de ω), y variables alfabéticas (que se valuaran en palabras del alfabeto previamente fijado)

- En cuanto a notación, las numéricas son con letras latinas minúsculas (x, y, z)) y las alfabéticas con letras griegas minúsculas (α, β, γ)
- Para ciertas valuaciones de sus variables la expresión puede *no* estar definida (por ejemplo, $Pred(|\alpha|)$ para $\alpha=\varepsilon$)
- Sea E la expresión, los valores que asuma cuando hayan sido asignados los valores de ω a sus variables numéricas y valores de Σ^* a sus variables alfabéticas, deberán ser siempre elementos de $O \in \{\omega, \Sigma^*\}$ (es decir, no puede tomar valores mixtos)
- La expresión puede involucrar lenguaje coloquial castellano (i.e., no únicamente operaciones matemáticas). Por ejemplo, "el menor número primo que es mayor que x"
- A las expresiones booleanas (como x=0), se les considerará que asumen valores de $\{0,1\}\subseteq\omega$
- Definición: sea Σ un alfabeto finito fijo, E una expresión lambdificable respecto a Σ y $x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m$ variables distintas tales que las numéricas que ocurren en E están en $\{x_1,\ldots,x_n\}$ y las alfabéticas en $\{\alpha_1,\ldots,\alpha_m\}$, entonces $\lambda_{x_1...x_n\alpha_1...\alpha_m}[E]$ denota la función definida por:
 - $D_{\lambda_{x_1..x_n\alpha_1..\alpha_m}[E]}=\{(k_1,\ldots,k_n,eta_1,\ldots,eta_m)\in\omega^n imes\Sigma^{*m}:E ext{ está definida cuando}$ asignamos a cada x_i el valor k_i , y a cada $lpha_i$, el valor $eta_i\}$
 - $\lambda_{x_1..x_n\alpha_1..\alpha_m}[E](k_1,\ldots,k_n,\beta_1,\ldots,\beta_m)=$ valor que asume o representa E cuando asignamos a cada x_i el valor k_i , y a cada α_i , el valor β_i

Propiedades

- $\lambda_{x_1..x_nlpha_1..lpha_m}[E]$ es Σ -mixta de tipo (n,m,s), donde $s\in\{\#,*\}.$
- Para $S\subseteq \omega^n imes \Sigma^{*m}$, $\chi_S^{\omega^n imes \Sigma^{*m}}=\lambda_{x_1..x_nlpha_1..lpha_m}[(ec x,eclpha)\in S].$