Performance Analysis

Lucy Post and Vincent Li

testingAddAndNand

Multi-cycle:

IC: 6991

Cycles: 15987

$$t_{clk}: \frac{1}{5}t_{clk}$$
 $Avg. CPI = \frac{total\ number\ of\ cycles}{total\ number\ of\ instructions} = \frac{15987}{6991} \approx 2.287\ cyc/instr$
 $exec = IC \times CPI \times t_{clk}$
 $= 6991 \times 2.287 \times \frac{1}{5}t_{clk}$

Single-cycle:

IC:6991 Cycles: 6991 t_{clk} : t_{clk}

 $= 3197.683 \times t_{clk}$

$$Avg. CPI = \frac{total\ number\ of\ cycles}{total\ number\ of\ instructions} = \frac{6991}{6991} = 1\ cyc/instr$$

$$exec = IC \times CPI \times t_{clk}$$

$$= 6991 \times 1 \times t_{clk}$$

$$= 6991 \times t_{clk}$$

$$speedup = \frac{perf(multi)}{perf(single)} = \frac{exec(single)}{exec(multi)} = \frac{6991 \times t_{clk}}{3197.683 \times t_{clk}} \approx \textbf{2.186} x$$

The multi-cycle design is 2.186x faster than the single-cycle machine when executing a large number of adds and nands.

testingLwAndSw

Multi-cycle:

IC: 13976 Cycles: 62888

$$t_{clk}$$
: $\frac{1}{5}t_{clk}$

$$\begin{aligned} Avg. \textit{CPI} &= \frac{\textit{total number of cycles}}{\textit{total number of instructions}} = \frac{62888}{13976} \approx 4.500 \, \textit{cyc/instr} \\ exec &= \textit{IC} \, \times \, \textit{CPI} \, \times \, t_{clk} \\ &= 13976 \times \, 4.500 \times \, \frac{1}{5} t_{clk} \\ &= 12578.4 \times \, t_{clk} \end{aligned}$$

Single-cycle:

IC:13976 Cycles: 13976 t_{clk} : t_{clk}

$$\begin{aligned} exec &= IC \times CPI \times t_{clk} \\ &= 13976 \times 1 \times t_{clk} \\ &= 13976 \times t_{clk} \end{aligned}$$

$$speedup = \frac{perf(multi)}{perf(single)} = \frac{exec(single)}{exec(multi)} = \frac{13976 \times t_{clk}}{12578.4 \times t_{clk}} \approx \textbf{1.11} \textbf{x}$$

The multi-cycle design is 1.11x faster than the single-cycle design when executing a large number of lw and sw instructions. The speedup is less than the speedup for the other tests because the number of cycles (5) per lw and sw reduces the advantage of the clock being faster on the multi-cycle design.

testingBeq

Multi-cycle:

IC: 7997

Cycles: 22996

$$t_{clk}: \frac{1}{5}t_{clk}$$

$$Avg. CPI = \frac{total\ number\ of\ cycles}{total\ number\ of\ instructions} = \frac{22996}{7997} \approx 2.876\ cyc/instr$$

$$exec = IC \times CPI \times t_{clk}$$

$$= 7997 \times 2.876 \times \frac{1}{5}t_{clk}$$

$$= 4599.8744 \times t_{clk}$$

Single-cycle:

IC:7997
Cycles: 7997

$$t_{clk}$$
: t_{clk}
 $exec = IC \times CPI \times t_{clk}$
 $= 7997 \times 1 \times t_{clk}$
 $= 7997 \times t_{clk}$

$$speedup = \frac{perf(multi)}{perf(single)} = \frac{exec(single)}{exec(multi)} = \frac{7997 \times t_{clk}}{4599.8744 \times t_{clk}} \approx \mathbf{1.739}x$$

The multi-cycle design is 1.739x faster than the single-cycle design when executing a large number of beq instructions.

<u>testingJalr</u>

IC: 7001
Cycles: 14020

$$t_{clk}$$
: $\frac{1}{5}t_{clk}$
 $Avg. CPI = \frac{total\ number\ of\ cycles}{total\ number\ of\ instructions} = \frac{14020}{7001} \approx 2.003\ cyc/instr$
 $exec = IC \times CPI \times t_{clk}$
 $= 7001 \times 2.003 \times \frac{1}{5}t_{clk}$

```
= 2804.6006 \times \ t_{clk}
Single-cycle:
         IC:7001
         Cycles: 7001
         t_{clk}: t_{clk}
         exec = IC \times CPI \times t_{clk}
                  =7001\times~1\times~t_{clk}
                  =7001\times\ t_{clk}
```

$$speedup = \frac{perf(multi)}{perf(single)} = \frac{exec(single)}{exec(multi)} = \frac{7001 \times t_{clk}}{2804.6006 \times t_{clk}} \approx \textbf{2.496}x$$
 The multi-cycle design is 2.496x faster than the single-cycle design when executing a large

number of jalr instructions.