6. Risoluzione di un sistema lineare

I due teoremi di Cramer e Rouché-Capelli sono fondamentali per la risoluzione di un sistema lineare. Infatti:

- se il sistema è "quadrato", cioè il numero di equazioni è uguale al numero delle incognite, e risulta $\det(A) \neq 0$, il sistema è determinato, qualunque siano i termini noti. In particolare se il sistema è omogeneo l'unica soluzione è $x_1 = x_2 = ... = x_n = 0$, se non è omogeneo la soluzione si calcola utilizzando il teorema di Cramer.
- Se il sistema non verifica le ipotesi precedenti occorre stabilire se il sistema sia o meno compatibile confrontando r(A) con r(B).

Se $r(A) \neq r(B)$ il sistema è incompatibile, cioè non ha soluzioni.

Se r(A)=r(B) il sistema è compatibile e occorre trovare le soluzioni. In questo caso sia r(A)=r, ciò vuol dire che dalla matrice A è possibile estrarre un minore di ordine r non nullo. Distinguiamo due casi:

a) Se r(A)=r=numero delle incognite, consideriamo solo le r equazioni che riguardano le r righe del minore di ordine r non nullo, ottenendo così un sistema di r equazioni in r incognite con determinante $\neq 0$, quindi risolubile con il teorema di Cramer.

Esempio 1.

Consideriamo il sistema

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 8 \\ x_1 - x_2 + x_3 = -2 \\ 2x_1 + x_2 + 2x_3 = 2 \\ 5x_1 + 3x_2 + x_3 = 10 \end{cases}$$

e la matrice incompleta A e la matrice completa B

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & 1 & 2 \\ 5 & 3 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 2 & -1 & 8 \\ 1 & -1 & 1 & -2 \\ 2 & 1 & 2 & 2 \\ 5 & 3 & 1 & 10 \end{pmatrix}$$

Risulta r(A)=3 poiché è non nullo il minore formato dalle prime tre righe e dalle tre colonne

$$\begin{vmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} = -12$$

e r(B)=3 perché det(B)=0 (in questo caso si può osservare che la 4^a riga è la somma della 1^a e 3^a riga). Perciò risolviamo il sistema formato dalle prime tre equazioni:

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 8 \\ x_1 - x_2 + x_3 = -2 \\ 2x_1 + x_2 + 2x_3 = 2 \end{cases}$$

Utilizzando il metodo di Cramer si ottiene la terna soluzione

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = -1$

b) Se r(A)=r < numero delle incognite, consideriamo solo le r equazioni che riguardano le r righe e le r colonne del minore di ordine r non nullo, e diamo alle incognite eccedenti valori arbitrari λ , μ ecc. Le soluzioni saranno funzione di tali valori λ , μ ecc.

Esempio 2.

Consideriamo il sistema:

$$\begin{cases} x_1 + 3x_2 - 4x_3 = 1\\ 2x_1 - x_2 - x_3 = -1\\ 5x_1 + x_2 - 6x_3 = -1 \end{cases}$$

e la matrice incompleta A e la matrice completa B

$$A = \begin{pmatrix} \mathbf{1} & \mathbf{3} & -4 \\ \mathbf{2} & -\mathbf{1} & -1 \\ 5 & 1 & -6 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 3 & -4 & 1 \\ 2 & -1 & -1 & -1 \\ 5 & 1 & -6 & -1 \end{pmatrix}$$

Risulta det(A)=0 e r(A)=2 poiché è non nullo per esempio il minore formato dalle prime due righe e dalle prime due colonne.

Anche r(B)=2, in quanto sono nulli tutti i minori di ordine 3.

Consideriamo perciò il sistema formato dalle prime due equazioni nelle incognite x_1 e x_2 . Posto $x_3 = \lambda$, il sistema diventa

$$\begin{cases} x_1 + 3x_2 = 1 + 4\lambda \\ 2x_1 - x_2 = -1 + \lambda \end{cases}$$

le cui soluzioni sono $x_1 = \lambda - \frac{2}{7}$, $x_2 = \lambda + \frac{3}{7}$.

La terna $x_1 = \lambda - \frac{2}{7}$, $x_2 = \lambda + \frac{3}{7}$, $x_3 = \lambda$ fornisce al variare di λ le ∞^1 soluzioni del sistema dato.

Esercizi

(gli esercizi con asterisco sono avviati)

Dopo aver stabilito la compatibilità del sistema confrontando i ranghi delle matrici incompleta r(A) e completa r(B), calcolare le eventuali soluzioni:

$$1. \begin{cases} 2x - 4y = 1 \\ x - 2y = 3 \end{cases}$$

2.
$$\begin{cases} x - 2y + z = 1 \\ 2x - y - z = 2 \end{cases}$$

3.
$$\begin{cases} 4x - y + z = 1 \\ 8x - y - 3z = 5 \end{cases}$$

4.
$$\begin{cases} x - 4y + 2z = 1 \\ x - 2y + 3z = 5 \end{cases}$$

5.
$$\begin{cases} x + 2y - z = 3 \\ 2x - 4y + 3z = -2 \end{cases}$$

6.
$$\begin{cases} x + 2y - z = 2 \\ 3x + y + z = 1 \end{cases}$$

7.
$$\begin{cases} 2x - y + 2z = 1 \\ x + 2y - z = -1 \end{cases}$$

8.
$$\begin{cases} x - 2y + z = -1 \\ 2x - y + 3z = 4 \\ 3x - 3y + 4z = 3 \end{cases}$$

$$\mathbf{9.} \begin{cases} 3x - y + z = 2 \\ -2x - y + 4z = -3 \\ x - 2y + 5z = -1 \end{cases}$$

*10.
$$\begin{cases} 4x + 2y = 3 \\ x - 5y = -1 \\ 2x + 12y = 5 \end{cases}$$

11
$$\begin{cases} 5x - y = 0 \\ x + 2y = 1 \\ 2x + 3y = -1 \end{cases}$$

*12.
$$\begin{cases} x - 5y = 1 \\ 2x - y = 0 \\ 3x - 6y = 1 \end{cases}$$

13.
$$\begin{cases} x - 5y + 3z = 0 \\ 5x - 10y + 5z = 1 \\ x - 2y - z = 0 \\ 2x - y + 4z = 1 \end{cases}$$

14.
$$\begin{cases} x - y - 3z = 4 \\ x - 5y + z = 1 \\ 2x - y + z = 1 \\ 4x - y - z = 0 \end{cases}$$

Sistemi omogenei

15.
$$\begin{cases} x - 4y + 5z = 0 \\ x - 2y + z = 0 \\ x - y - 5z = 0 \end{cases}$$
17.
$$\begin{cases} x + 8y + 3z = 0 \\ x - 3y = 0 \\ x + 2y + 3z = 0 \end{cases}$$

16.
$$\begin{cases} -x - 2y + z = 0 \\ x + y + 2z = 0 \\ 3x - 4y - z = 0 \end{cases}$$

17.
$$\begin{cases} x + 8y + 3z = 0 \\ x - 3y = 0 \\ x + 2y + 3z = 0 \end{cases}$$

18.
$$\begin{cases} 2x + 2y - z = 0 \\ x - y + 4z = 0 \\ 5x - y + 11z = 0 \end{cases}$$

19.
$$\begin{cases} -x + y + z = 0\\ x + 2y + 2z = 0\\ 3x - y - z = 0 \end{cases}$$

$$20. \begin{cases} x + y + 3z = 0 \\ x - y + z = 0 \\ x - 3y - z = 0 \end{cases}$$

$$21. \begin{cases} x + 8y + 3z = 0 \\ -x + 3y = 0 \\ 5x - 4y + 3z = 0 \end{cases}$$

22.
$$\begin{cases} x + 3y - z = 0 \\ 2x + 2y + 3z = 0 \\ -x + 5y - 9z = 0 \end{cases}$$

23.
$$\begin{cases} x - 2y + 3z = 0 \\ 2x - 8y + z = 0 \\ 3x - 2y + 14z = 0 \end{cases}$$

24.
$$\begin{cases} x - 4y + 7z + t = 0 \\ 2x - y - z = 0 \\ 3x + 2y - t = 0 \\ x + y + z - t = 0 \end{cases}$$

Sistemi parametrici

*25.
$$\begin{cases} x - ky + z = k \\ 3x + y + z = 1 \end{cases}$$

*26.
$$\begin{cases} x + ky + z = 1 \\ (k-1)x - (k-1)y = 0 \\ x + y + kz = 1 \end{cases}$$

*27.
$$\begin{cases} x + y - z = 1 \\ y + (k+2)z = 1 \\ x + ky + 3z = 2 \end{cases}$$

*27.
$$\begin{cases} x+y-z=1\\ y+(k+2)z=1\\ x+ky+3z=2 \end{cases}$$
 *28.
$$\begin{cases} 2x+ky-z=1\\ kx-3y+2z=-2\\ 5x+13y-10z=1 \end{cases}$$

*29.
$$\begin{cases} 3x - ky + z = 0 \\ 2x - y + kz = 1 \\ -2x + 4y - (k+1)z = -1 \end{cases}$$
 *30.
$$\begin{cases} (k-1)x + y - 2z = 1 \\ kx + 3y - z = -1 \\ x - y - z = 3 \end{cases}$$

*30.
$$\begin{cases} (k-1)x + y - 2z = 1\\ kx + 3y - z = -1\\ x - y - z = 3 \end{cases}$$

*31.
$$\begin{cases} x + 3y - z = 2k \\ x + y - kz = 1 \\ 2x - ky + z = 7 \end{cases}$$

*32.
$$\begin{cases} x + 2y - z = k \\ 3x - ky + z = -1 \\ x + ky = -2 \end{cases}$$

*33.
$$\begin{cases} -x + (k-1)y + z = 2 \\ x - y - 2kz = -1 \\ x - y + 2z = -k \end{cases}$$
 *34.
$$\begin{cases} 2x + (1-k)y + z = 4 \\ x + y + kz = 2 \\ x - 2y + kz = 2 \end{cases}$$

*34.
$$\begin{cases} 2x + (1-k)y + z = 4\\ x + y + kz = 2\\ x - 2y + kz = 2 \end{cases}$$

*35.
$$\begin{cases} kx + y = 2 \\ 3x - y - kz = 1 \\ x + 3y + 2kz = 0 \end{cases}$$

*36.
$$\begin{cases} 2y = -k \\ -2x + 3y - z = 0 \\ 4x - 6y + 2z = k^2 - 1 \end{cases}$$

*37.
$$\begin{cases} x + y + kz = 6 \\ x + ky + z = 0 \\ kx + y + z = h \end{cases}$$

38.
$$\begin{cases} x - ky + z = 1 \\ x + 2y + z = k \\ 2x - y + kz = 1 \end{cases}$$

39.
$$\begin{cases} x - ky + z = 2 + k \\ 2x - (k - 1)y = 7 \\ kx - 2y + z = 4k \end{cases}$$

40.
$$\begin{cases} kx - 2y + z = 3\\ x + y - z = 1 - k\\ (k+2)x - z = 5 - 2k \end{cases}$$

41.
$$\begin{cases} x - 2y + 2z = 1 \\ kx - 4y + 4z = 2 \\ 3x - 2(k+1)y + 3kz = 6 \end{cases}$$
 42.
$$\begin{cases} x - 2y = 1 \\ 3x - y = 3 \\ x - y = k - 1 \end{cases}$$

42.
$$\begin{cases} x - 2y = 1 \\ 3x - y = 3 \\ x - y = k - 1 \end{cases}$$

43.
$$\begin{cases} 4x + (k-1)y = 3 \\ x + ky = 1 \\ 2x - 3y = 1 \end{cases}$$

44.
$$\begin{cases} 3x + 3y - 2z = 4 \\ x - y = 0 \\ x + y - kz = 3 \end{cases}$$

45.
$$\begin{cases} x - 4y + 2z = -8 \\ 3x + y - z = 3 \\ 2x + y + kz = -3 \end{cases}$$

46.
$$\begin{cases} x - 2y + z = 3(1 - k) \\ x + y + z = 3k \\ 4x - 7y = k \\ x - 2y - z = 0 \end{cases}$$

47.
$$\begin{cases} 3x + 2y + (1 - k)z = 7 \\ x + 2y + 2z = 3 \\ 2x + y + z = 6 \\ 2x + 6y + (1 - 2k)z = -1 \end{cases}$$

Sistemi omogenei parametrici

*48.
$$\begin{cases} x - 2y + z = 0 \\ 2x - y + kz = 0 \\ x + 2y - 3z = 0 \end{cases}$$

*48.
$$\begin{cases} x - 2y + z = 0 \\ 2x - y + kz = 0 \\ x + 2y - 3z = 0 \end{cases}$$
 *49.
$$\begin{cases} 4x - y + z = 0 \\ x - (k-1)y + 2z = 0 \\ kx - y - z = 0 \end{cases}$$

*50.
$$\begin{cases} x - 2y + kz = 0 \\ 3x - ky + z = 0 \\ 3x + y + z = 0 \end{cases}$$

*50.
$$\begin{cases} x - 2y + kz = 0 \\ 3x - ky + z = 0 \\ 3x + y + z = 0 \end{cases}$$
 *51.
$$\begin{cases} 5x - 2y - kz = 0 \\ x - 2z = 0 \\ kx - y = 0 \end{cases}$$

Soluzioni

- **1. S.** r(A) = 1, r(B) = 2. Il sistema è incompatibile;
- **2. S.** r(A) = r(B) = 2. Il sistema è compatibile: $x = k + 1 \land y = k \land z = k$, cioè (k + 1; k; k); (∞¹ soluzioni)
- **3.S.** r(A) = r(B) = 2. Il sistema è compatibile (k+1; 5k+3; k); (∞^1 soluzioni);
- **4.5**. r(A) = r(B) = 2. Il sistema è compatibile $\left(-4k + 9; 2 \frac{k}{2}; k\right)$; (∞^1 soluzioni)
- **5.S.** r(A) = r(B) = 2. Il sistema è compatibile $\left(1 \frac{k}{4}; \frac{5}{8}k + 1; k\right)$; (∞^1 soluzioni);
- **6. S.** r(A) = r(B) = 2. Il sistema è compatibile $\left(-\frac{3t}{5}; \frac{4t+5}{5}; t\right)$; (∞^1 soluzioni);
- **7.S.** r(A) = r(B) = 2. Il sistema è compatibile $\left(\frac{1-3t}{5}; \frac{4t-3}{5}; t\right)$; (∞^1 soluzioni);
- **8. S.** (det(A) = 0 ; r(A) = r (B) = 2, ∞^1 soluzioni) ; $\left(\frac{9-5t}{3}; \frac{6-t}{3}; t\right)$;
- **9. S.** (det(A) = 0; r(A) = r (B) = 2, ∞^1 soluzioni); $\left(\frac{3t+5}{5}; \frac{14t+5}{5}; t\right)$;

L. Mereu – A. Nanni Matrici - Sistemi lineari

*10.S. $\left(\frac{13}{22}; \frac{7}{22}\right)$; r(A) = r (B) = 2, è sufficiente osservare che la terza equazione è una combinazione lineare delle prime due (la 3ª si ottiene sottraendo dalla 1ª riga la 2ª riga moltiplicata per 2); il sistema è determinato;

- **11. S.** nessuna soluzione r(A) = 2, r(B) = 3; il sistema è incompatibile;
- *12.5. r(A) = r(B) = 2. (la terza equazione è la somma delle prime due), il sistema è determinato $\left(-\frac{1}{9}; -\frac{2}{9}\right)$;
- **13.S.** r(A) = r(B) = 3. Il sistema è compatibile e determinato; risolto il sistema formato da tre delle equazioni date si ottiene $x = \frac{11}{30}$; $y = \frac{2}{15}$; $z = \frac{1}{10}$
- **14.S.** r(A) = 3, r(B) = 4. Il sistema è incompatibile.

Sistemi omogenei

- **15. S.** $det(A) \neq 0$, perciò il sistema ha l'unica soluzione (0;0;0)
- **16.S.** $det(A) \neq 0$; (0;0;0) **17.S.** $det(A) \neq 0$); (0;0;0)
- **18.5**. det(A)=0, r(A)=2, $\infty^{3-2} = \infty^1$ soluzioni $\left(\alpha; -\frac{9}{7}\alpha; -\frac{4}{7}\alpha\right)$;
- **19.S.** $\det(A) = 0$, r(A) = 2, $\infty^{3-2} = \infty^1$ soluzioni (0; -t; t);
- **20.S.** $\det(A) = 0$, r(A) = 2, $\infty^{3-2} = \infty^1$ solution (-2t; -t; t);
- **21.S.** $\det(A) = 0$, r(A) = 2, $\infty^{3-2} = \infty^1$ soluzioni $\left(-\frac{9}{11}t; -\frac{3}{11}t; t\right)$;
- **22.S.** $\det(A) = 0$, r(A) = 2, $\infty^{3-2} = \infty^1$ soluzioni $\left(-\frac{11}{4}t; \frac{5}{4}t; t\right)$;
- **23. S.** det(A)=0 , r(A)=2 ; ∞^1 soluzioni. $\left(-\frac{11}{2}\alpha; -\frac{5}{4}\alpha; \alpha\right)$;
- **24. S.** $\det(A) \neq 0$; il sistema ha l'unica soluzione (0;0;0);

Sistemi parametrici

*25. S. Considerato il minore $\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = -2 \neq 0$ della matrice dei coefficienti, posto $y = \alpha$, il sistema diventa. $\begin{cases} x+z=k+k\alpha \\ 3x+z=1-\alpha \end{cases}$, da cui , risolvendo, si hanno $\forall k \otimes^1$ soluzioni:

$$x = \frac{1}{2} - \frac{1}{2}\alpha - \frac{1}{2}k(1+\alpha); y = \alpha; z = -\frac{1}{2} + \frac{1}{2}\alpha + \frac{3}{2}k(1+\alpha)$$

*26. S. $\det(A) = -k^3 + 3k - 2 = -(k-1)^2(k+2)$. Se $k \neq -2$ e $k \neq 1$ il sistema è determinato $x = y = z = \frac{1}{k+2}$; se k = -2 è incompatibile; se k = 1 ha ∞^2 soluzioni $(\alpha; \beta; 1 - \alpha - \beta)$

*27.S. $\det(A) = -k^2 - k + 6 = -(k+3)(k-2)$. Se $k \neq 2$ e $k \neq -3$ il sistema è determinato e ha soluzione: x = 1; $y = \frac{1}{k+3}$; $z = \frac{1}{k+3}$; se k = 2 il sistema ha ∞^1 soluzioni $(5\alpha; 1 - 4\alpha; \alpha)$; se k = -3 il sistema è incompatibile.

*28.S.
$$det(A) = 10k^2 - 3k - 7$$
;

se
$$k \neq -\frac{7}{10} \land k \neq 1$$
 si ha una soluzione : $\left(\frac{9(3-2k)}{10k^2-3k-7}; \frac{9(k+4)}{10k^2-3k-7}; -\frac{k^2-3k-61}{10k^2-3k-7}\right)$;

se
$$k = -\frac{7}{10} \lor k = 1 \Rightarrow r(A) = 2, r(B) = 3 \Rightarrow \text{nessuna soluzione};$$

*29. S.
$$det(A) = 9 - 11k$$
; se $k \neq \frac{9}{11} \Rightarrow$ una soluzione : $\left(\frac{k-3}{11k-9}; \frac{3}{11k-9}; \frac{9}{11k-9}\right)$;

se
$$k = \frac{9}{11} \Rightarrow r(A) = 2, r(B) = 3 \Rightarrow$$
 nessuna soluzione;

*30.S.
$$\det(A) = 9 - k$$
; $k \neq 9 \Rightarrow \text{una solutione} : \left(\frac{8}{9-k}; \frac{k+7}{k-9}; \frac{4(3-k)}{k-9}\right)$;

se
$$k = 9 \Rightarrow r(A) = 2, r(B) = 3 \Rightarrow$$
 nessuna soluzione;

*31. S.
$$det(A) = -k(k+5)$$
; $k \neq -5 \land k \neq 0 \Rightarrow$ una soluzione :

$$\left(\frac{2(k^3+9k-2)}{k(k+5)}; \frac{4k^2-5k+4}{k(k+5)}; \frac{2k^2+3k+8}{k(k+5)}\right);$$

se
$$k = -5 \lor k = 0 \Rightarrow r(A) = 2, r(B) = 3 \Rightarrow$$
 nessuna soluzione;

*32. S.
$$\det(A) = 2 - 5k$$
; se $k \neq \frac{2}{5} \Rightarrow$ una soluzione : $\left(\frac{k^2 - 3k + 4}{5k - 2}; \frac{k + 7}{2 - 5k}; \frac{4k^2 + 3k + 10}{2 - 5k}\right)$

se
$$k = \frac{2}{5} \Rightarrow r(A) = 2, r(B) = 3 \Rightarrow$$
 nessuna soluzione;

*33. S. $\det(A) = 2(k+1)(2-k)$; se $k \neq -1 \land k \neq 2 \Rightarrow$ una soluzione :

$$\left(\frac{k-5}{2(k+1)(2-k)}-k;\frac{2k^2-5k-1}{2(k+1)(2-k)};\frac{1-k}{2(k+1)}\right);$$

se
$$k = -1 \lor k = 2 \Rightarrow r(A) = 2, r(B) = 3 \Rightarrow$$
 nessuna soluzione;

*34. S.
$$\det(A) = 6k - 3$$
; per $k \neq \frac{1}{2}$ una soluzione : $x = 2 \land y = 0 \land z = 0$ cioè (2; 0; 0);

se
$$k = \frac{1}{2}$$
 allora $r(A) = r(B) = 2 \Rightarrow \infty^1$ soluzioni : $x = \frac{4-z}{2} \land y = 0$ cioè $\left(\frac{4-t}{2}; 0; t\right)$;

***35. S.**
$$\det(A) = k^2 - 7k$$
; se $k \neq 0 \land k \neq 7$ una soluzione : $(0; 2; -\frac{3}{k})$;

se
$$k = 0 \Rightarrow r(A) = 2$$
, $r(B) = 3 \Rightarrow$ nessuna soluzione;

se
$$k = 7 \Rightarrow r(A) = 2$$
, $r(B) = 2 \Rightarrow \infty^1$ soluzioni : $\left(\frac{7t+3}{10}; \frac{-49t-1}{10}; t\right)$;

L. Mereu – A. Nanni Matrici - Sistemi lineari

*36.S. det(A) = 0, r(A) = 2; $\forall k \neq \pm 1 \Rightarrow r(B) = 3 \Rightarrow$ nessuna soluzione ;

$$k=1 \Rightarrow r(B)=2 \Rightarrow \infty^1 \text{ soluzioni: } x=\frac{-2z-3}{4} \land y=-\frac{1}{2} \operatorname{cioè}\left(\frac{-2t-3}{4};-\frac{1}{2};t\right)$$

$$k=-1\Rightarrow r(B)=2\Rightarrow \infty^1$$
 soluzioni: $x=\frac{-2z+3}{4} \land y=\frac{1}{2} \operatorname{cioè}\left(\frac{-2t+3}{4};\frac{1}{2};t\right);$

*37. S. $\det(A) = -k^3 + 3k - 2 = -(k+2)(k-1)^2$, se $k \neq -2$ e $k \neq 1$ il sistema è

determinato e ha soluzione:
$$\left(\frac{h(k+1)-6}{(k-1)(k+2)}; \frac{6-h}{(k-1)(k+2)}; \frac{6(k+1)-h}{(k-1)(k+2)}\right);$$

se
$$k = -2$$
 e $h = -6$ il sistema ha ∞^1 soluzioni $(\alpha + 4; \alpha + 2; \alpha)$;

se
$$k = -2$$
 e $h \neq -6$ il sistema è incompatibile;

se k=1 il sistema è incompatibile $\forall h$.

- **38.S.** Se $k \neq \pm 2$ il sistema ha una sola soluzione $\left(k + \frac{4k-1}{k^2-4}; \frac{k-1}{k+2}; \frac{2k^2-2k+3}{4-k^2}\right)$; Se $k = -2 \ \lor k = 2$ il sistema è incompatibile.
- **39.S.** Se $k \neq \pm \sqrt{3}$ il sistema ha una sola soluzione $x=3+\frac{2k-3}{k^2-3}$; $y=\frac{3-k}{k^2-3}$; $z=\frac{k^3-2k^2-2k+6}{k^2-3}$ Se $k=-\sqrt{3}$ V $k=\sqrt{3}$ il sistema è incompatibile.
- **40.S.** det(A)=0, r(A)=r(B)=2 Il sistema ha $\forall k \infty^1$ soluzioni :

$$(\alpha; \alpha(1+k) + k - 4; \alpha(k+2) + 2k - 5)$$

41.S Se $k \neq 2$ il sistema ha una sola soluzione x = 0; $y = \frac{3(k-4)}{2(2-k)}$; $z = \frac{k-5}{2-k}$;

Se k = 2 il sistema è incompatibile.

- **42. S.** Se $k \neq 2$ r(A) = 2 , r(B) = 3, quindi il sistema è incompatibile; se k = 2 ha la soluzione (1;0)
- **43.S**. Se $k \neq 2$ il sistema è incompatibile; se k = 2 ha la soluzione $(\frac{5}{7}; \frac{1}{7})$.
- **44. S.** Se $k \neq \frac{2}{3}$ il sistema è determinato e ha soluzione: $x = y = \frac{3-2k}{2-3k}$; $z = \frac{5}{2-3k}$ Se $k = \frac{2}{3}$ il sistema è incompatibile
- **45.S.** Se $k \neq -\frac{11}{13}$ il sistema è determinato; se $k = -\frac{11}{13}$ il sistema è incompatibile.
- **46.S.** Se k=1 il sistema è determinato, la soluzione è (2;1;0); se $k \neq 1$ è incompatibile
- **47.S.** Se k=1 il sistema è determinato, la soluzione è (3;-1;1); se $k \neq 1$ è incompatibile

L. Mereu – A. Nanni Matrici - Sistemi lineari

Sistemi omogenei parametrici

*48.5. $\det(A) = -4k - 4$. Se $k \neq -1$ il sistema è determinato con l'unica soluzione:

$$x = y = z = 0$$
; se $k = -1$ il sistema ha ∞^1 soluzioni $(\alpha; \alpha; \alpha)$

- *49.S. det (A)= $k^2 + k + 2 \neq 0 \forall k$, il sistema è determinato con l'unica soluzione x = y = z = 0.
- *50.S. $\det(A)=3k^2+2k-1$. Se $k\neq -1$ e $k\neq \frac{1}{3}$ il sistema è determinato con l'unica soluzione

$$x = y = z = 0$$
; se $k = -1$ il sistema ha ∞^1 soluzioni $(\alpha; 4\alpha; -7\alpha)$;

$$k = \frac{1}{3}$$
 il sistema ha ∞^1 soluzioni $(\alpha; 0; -3\alpha)$

*51.S. $\det(A)=5k-10$. Se $k \neq 2$ il sistema è determinato con l'unica soluzione x=y=z=0; se k=2 il sistema ha ∞^1 soluzioni $(2\alpha; 4\alpha; \alpha)$.