

Assignment Project Exam Help

https://tutorcsicom

WeChat: cstutorcs

A Historical View on Database Development¹

Assignment Project Exam Help Greenplum Teradata ITR Aster Explosion Data of DW's VoltDB 2000 BigTable Big Three: Dynamo Paper Paper CouchDB MongoDB Hadoop many more smaller) First Round of Object Databases Semi-structured Database Wars challenge

http://www.benstopford.com

NoSQL - Not only SQL

SSA unique parter than the set that the societ plant in the set that t

 Pioneered by Web 2.0 companies with huge, growing data and infrastructure needs, e.g. utorcs.com

Amazon introduced Dynamo

Google developed Bigtable

Web Defense WeChat: cstutor (14 Billion in ERP/CRM 2013-2018 **CAGR 21%** Image Finance/ Signal Banking Processing Geoscience

Biotech

Weather

The Need of NoSQL Databases - Big Data¹

Personal location data in 10 years

4 big companies since 2010

¹ Big Data: A Survey, M Chen, S. Mao, and Y. Liu, Mobile Networks and Applications, 19(2), pages 171–209, 2014

The Need of NoSQL Databases - Big Data

Assistance of Big Data: teraby e. petabytes, exabytes zettabytes ... Help

Source: IDC 2011 Digital universe study

21. 21.

Neo4i 🖽

DB-Engines Ranking (http://db-engines.com/en/ranking)

312 systems in ranking. December 2016 ent Projective 1. 1. Oracle 🖽 Relational DBMS 1404 40 -8.60 -93.15 2. MySQL 🔠 Relational DBMS 1374.41 +0.85 +75.87 3. 3. Microsoft SQL Server Relational DBMS 1226.66 +12.86 +103.50 Relational DBMS 330.02 Postgre@QL +4.20 +49.92

328.68 +27.29 184.34 +2.89 -11.78 7. Cassandra 🛅 Wide column store 134.28 +0.31 +3.44 8. Microsoft Access Relational DBMS 124.70 -15.51 -1.27Redis 🚻 9 Kev-value store 119.89 +4.35

+19.36 **SOLite** Relational DBMS 110.83 -1.17+9.98 103.27 +0.70 +26.71 73.37 -1.79 -2.34 SAP Adaptive Server 70.42 +0.26 13. Relational DBMS -11.05 14 14. **J** 12. Solr Search engine 69.00 +0.64 -10.1515. **HBase** 58.63 15. **16.** Wide column store -0.11+4.38 Splunk 16 16. **1**8. 54.92 +0.19 +11.06 Search engine 17. FileMaker 54.12 17. 17. Relational DBMS +0.20 +4.00 18. 18. **1**9. SAP HANA Relational DBMS 51.77 +2.50 +12.91 19. 19. **J** 15. Hive Relational DBMS 49.40 +0.28 -5.87 20. **1** 23. MariaDB 20. Relational DBMS 44.09 +1.42+16.35

Graph DBMS

36.83 +0.08

+3.64

A Battle between SQL and NoSQL

Assignment Project Exam Help

https://tutorcs:com

WeChat: cstutorcs

Why Relational Databases?

Assignment Projects Examerer Help

- Simple concepts, i.e., a database contains tables (called relations), and (a) Stable is made (p) of (o) Rons and (w).
- A logical data model with physical data independence
- A clear separation between schema and instance
- with mathematical foundation jet, set theory first-order logic, algebra, etc.
- The standard query and manipulation language SQL
- Transactions with ACID properties (Atomicity, Consistency, Isolation, Durability)

Why Not Relational Databases?

Assignment Project Exam. Help

Are relations (and their schemas) too rigid?

Local become tedious and error properties handling complex queries?

- Can we eliminate joins so as to improve performance?

 CSTUTOTCS
- At what scale is a database used (terabyte, petabyte or exabyte)?
- Do you just need a very small subset of features that the relational DBMSs have?

Reasons for Moving to NoSQL

Assignment Project Exam Help

1. Flexibility of Schemas

Assignating each polarifor jectatables as a fit in the light databases. But...the modelling approaches are quite different:

Relational modeling is driven by the structure of available data.

https://titalces.com

NoSQL modeling is driven by application-specific operation patterns.

we.g., What kinds of questions do we have? CSTUTOTCS

- Relational databases are not good for managing hierarchical or graph-like data, but many of NoSQL databases are.
- Relational databases require pre-defined schemas but NoSQL databases have no fixed schemas.

2. Scalability

Assignment Project Exam Help

 Shared-nothing (SN) vs. shared-everything (SE): whether to share disk and memory between nodes.

 SE: has no "data shipping" issue but is limited by shared resources, e.g. IBM DB2.

scale Lipes Cahat: cstutores

- Scale up (vertically): add resources to a single node in a system, e.g.
 CPUs or memory.
- Scale out (horizontally): add more nodes to a system, e.g. web servers.

2. Scalability

Assignment Project Exam Help

at an acceptable cost and beyond certain point under ACID constraints.

• Notation of the Notation of

 Often designed to scale out by leveraging commodity hardware and free software, providing an inexpensive solution for scalability.

3. Performance

Assignment Project Exam Help

 Relational databases were invented in a way that implementation techniques are abstracted away from the user.

• No See databases promote exposing the implementation techniques to the programmer

Question: NoSQL databases just need programmers, not DBAs?

• Query performance is often one of the strengths of NoSQL databases,

 Query performance is often one of the strengths of NoSQL databases, particularly when handling complex-valued data (because they de-normalise data and don't use join).

4. Costs

Assignment Project Fxam Help dealing with large-scale data sets.

- A scrip proproach is using the argument than the state up alternative.
 - Many NoSQL databases are open source, while licensing costs of the cial BDBMSs can be quite expensive.
 - NoSQL databases often leverage commodity servers to scale out, while RDBMs tends to rely on expensive proprietary servers and storage systems

CAP Theorem

Assignment Project Exam Help Gilbert and Lynch (MIT)².

han been the same data at the same lime.

Availability

All-users can always read and write data.

CSTUTOTCS

Partition to restarce: CSTUTOTCS

The system works well with network partitions.

¹E. Brewer, Towards robust distributed systems, PODC, 2000.

²S. Gilbert and N. Lynch, Brewer's conjecture and the feasibility of consistent, available, partition-tolerant Web services. ACM SIGACT News, 2002

CAP Theorem

ASSI an application scales (i.e., distributed data the state of the st

A distributed data management system can only have **two out of these three** properties.

CAP Theorem³

³CAP Twelve Years Later: How the "Rules" Have Changed, Eric Brewer, https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

ACID

Assignment Project Exam. Help

• Atomicity: the execution of each transaction as atomic, i.e., either all operations are completed or not done at all.

Consistency: before and after each transaction, database will be in a consistent state.

- Isolation: execution results of each transaction should be unaffected by other consumently executing transactions.
- Durability: once the DBMS informs the user that a transaction has been successfully completed, its effects should persist in the database.

Question: What kinds of applications ACID properties will be useful for?

BASE

Assignment Project, Exam Help

• Basically available: The system may have partial failures. If a single node fails, part of the data won't be available, but the entire data layer sales oberational UTOTCS.COM

 Soft state: The state of the system could change over time (even during times without input), because there may be changes going on the to "eventual consistency".

Eventual consistency: Given a sufficiently long period of time, all updates can be expected to propagate eventually through the system and the replicas will be consistent.

Question: What kinds of applications will BASE be useful for?

Consistency Models

Assignment Project Exam Help

ACID vs BASE

Assing same in the refracted task in xis plan da and 1 p

Depending on your problems, you decide how close you want to be to one end of the continuum/or the other.
 TUDS://TUTOTCS.COM

[ACID	BASE
	Strong consistency	Weak consistency (stale data OK)
	Isolation echat: CS	Approximate answers OK
	Focus on Committal.	Elektert CO
	Nested transactions	Simpler! Faster
	Availability?	Availability first
	Conservative (pessimistic)	Aggressive (optimistic)
	Difficult evolution (e. g. schema)	Easier evolution

Influential NoSQL Solutions

 Companies like Google, Facebook, Amazon, LinkedIn, Baidu and Twitter all use NoSQL in one way or another.

Main Categories of NoSQL Solutions

Assignment Project Exam Help

NoSQL databases are mainly categorized according to their data models:

https://tutorcs.com

Column-oriented data stores

Wordent-briented data stotes utorcs

Graph databases

NoSQL Data Models¹

Assignment Project Exam Help

Complexity

¹ Figure taken from: