Kelompok 2

Groceries (Market Basket Analysis)

Project by:

- 1.Denggan Aulia Lubis (winning eleven)
- 2. Ismi Oktaviani (winning eleven)
- 3. putri andriani (winning eleven)
- 4. Miftah khuljanah (Winning Eleven)
- 5. Rizkiyatul Komariyah (Jumatec)
- 6. MOKHAMMAD FATIKHUL IKHSAN (jumatec)
- 7. Rafli Saviola (Jumatec)
- 8. Jaya Hartina Harahap (Jumatec)

Workflow

- **Business**Understanding
- Manfaat

Tujuan

Data Understanding

- Data Preparation
- Modelling
- visualisasi dan memahami data
- Market basket analysis
- Conclusion

Business Understanding

Groceries adalah toko bahan makanan yang menyediakan pesanan pembelian orang-orang dari toko kelontong. Groceries memiliki penjualan yang cukup tinggi dam juga ingin memiliki peningkatan inovasi dalam mencapai profit penjualan yang maksimal.

Tim projek 2 akan membantu Groceries dalam membuat rekomendasi produk yang dapat membantu meningkatkan profit penjualan dengan menggunakan data penjualan.

Tujuan

Dengan Market Basket Analysis yaitu untuk melakukan analisis buying habit konsumen dengan menemukan asosiasi antar beberapa item yang berbeda, yang diletakkan konsumen dalam shopping basket (keranjang belanja) yang dibeli pada suatu transaksi tertentu. Tujuan dari Market Basket Analysis ini adalah untuk menentukan produk manakah yang pelanggan beli dalam waktu bersamaan. Hasil dari metode MBA kemudian akan dianalisis untuk merekomendasikan paket produk guna meningkatkan profit penjualan

Manfaat

Dengan memanfaatkan market basket analysis, akan mendapatkan pengetahuan tentang produk apa yang dibeli pelanggan (what), produk apa saja (which) yang sering dibeli secara bersama-sama dan berpeluang untuk dipromosikan, siapakah mereka (who) dan mengapa mereka melakukan suatu pembelian (why). Serta dengan menggunakan Market basket analysis dapat meningkatkan penjualan dan efisiensi promosi berdasarkan rekomendasi paket produk.

Data understading

Member number = nomer member

Date = Tanggal

Transaction = Transaksi

Item description = deskripsi barang

Data Understanding

itemDescription	Transaction	Date	Member_number	9
tropical fruit	1	21/07/2015	1808	0
whole milk	2	05/01/2015	2552	1
pip fruit	2	19/09/2015	2300	2
other vegetables	3	12/12/2015	1187	3
whole milk	3	01/02/2015	3037	4
***	* * *	***	4.4.4	***
whole milk	9111	15/10/2015	1721	19995
waffles	9112	10/04/2015	2877	19996
frozen vegetables	9112	11/10/2015	3848	19997

9113 long life bakery product

whole milk

9113

4344 01/03/2015

3475 10/06/2015

20000 rows × 4 columns

19998

19999

Data Preparation

Item Description

Hanya dibutuhkan 2 atribut yaitu Member number dan item Description dalam Tahap Data Preparation karena secara umum Association Rule (MBA) hanya berfokus pada data transaksi sehingga hanya melibatkan atribut no transaksi (Member number) dan item yang dibeli (item Description)

Modelling

Penggunaaan Market Basket Analysis dalam melihat kecenderungan pelanggan terhadap pembelian produk secara bersamaan menggunakan algoritma Apriori

Dalam melakukan MBA, kami menggunakan bahasa pemrograman Python

Source code untuk membaca Dataset

```
[ ] df = pd.read_csv('/content/Groceries_dataset.csv')
df
```

berikut adalah tampilan dari dataset yang kami gunakan

		-	
			ь.
- 11	п		
- 11	ю		
- 11			-
		-	

itemDescription	Transaction	Date	Member_number	
tropical fruit	1	21/07/2015	1808	0
whole milk	2	05/01/2015	2552	1
pip fruit	2	19/09/2015	2300	2
other vegetables	3	12/12/2015	1187	3
whole milk	3	01/02/2015	3037	4
***	***	***	4 4 4	
whole milk	9111	15/10/2015	1721	19995
waffles	9112	10/04/2015	2877	19996
frozen vegetables	9112	11/10/2015	3848	19997
long life bakery product	9113	01/03/2015	4344	19998
whole milk	9113	10/06/2015	3475	19999

20000 rows × 4 columns

Visualisasi dan memahami data

Kita tahu bahwa dataset ini direkam dari 01/01/2014 hingga 30/12/2015. Sebelum kita masuk dalam pemodelan, kita harus mengeksplorasi dan memvisualisasikan penjualan dalam periode waktu ini. Barang apa yang paling banyak dibeli pelanggan

```
# Mencetak 20 data penjualan item terbanyak
most_sold = df['itemDescription'].value_counts().head(20)

print('Most Sold Items: \n')
print(most_sold)
```

Most Sold Items:

whole milk	1607
other vegetables	1186
sausage	924
tropical fruit	898
rolls/buns	843
root vegetables	749
citrus fruit	736
soda	672
yogurt	596
frankfurter	580
pip fruit	574
pork	531
peef	475
canned beer	456
chicken	406
pottled water	385
bottled beer	348
pastry	315
namburger meat	293
nam	252

Name: itemDescription, dtype: int64

```
[ ] transaction_count = df.groupby(by='itemDescription')[['Transaction']].count().sort_values(by='Transaction', ascending=False)
    def convert_to_percentage(x):
        return 100 * x / float(x.sum())

    transaction_percentage = transaction_count.apply(convert_to_percentage)
    transaction_percentage.head()
```

	Transaction
itemDescripti	ion
whole milk	8.035
other vegetab	les 5.930
sausage	4.620
tropical fruit	4.490
rolls/buns	4.215

```
# visualisasikan data penjualan item terbanyak ke line chart dan bar chart
plt.figure(figsize=(20,6))

plt.subplot(1,2,1)
    #plt.plot(most_sold)
    most_sold.plot(kind='line')
plt.title('Items Most Sold')

plt.subplot(1,2,2)
    most_sold.plot(kind='bar')
    plt.title('Items Most Sold')
```

berikut adalah tampilan hasil tampilan line chart dan bar chart

Market Basket Analysis

Pertama kita mengubah item list menjadi data transaksi dengan menggunakan TransactionEncoder. Kita akan menggunakan frequent item-sets untuk menghasilkan aturan asosiasi dengan menggunakan algoritma Apriori.

```
[ ] from mlxtend.preprocessing import TransactionEncoder from mlxtend.frequent_patterns import association_rules, apriori
```

kami membuat list transaction_list() yang unik sehingga kita dapat mengubah data kita ke dalam format yang benar

```
[ ] transaction_list = []

# For loop to create a list of the unique transactions throughout the dataset:
    for i in df['Transaction'].unique():
        tlist = list(set(df[df['Transaction']==i]['itemDescription']))
        if len(tlist)>0:
            transaction_list.append(tlist)
    print(len(transaction_list))
```

kita menggunakan TransactionEncoder untuk merubah bentuk transaction_list()

```
[ ] te = TransactionEncoder()
   te_ary = te.fit(transaction_list).transform(transaction_list)
   df2 = pd.DataFrame(te_ary, columns=te.columns_)
```

sekarang kita terapkan Apriori. Kita akan menggunakan parameter min_threshold (nilai ambang batas yang ditentukan) dalam aturan asosiasi untuk metrik lift menjadi 1,0 karena jika kurang dari satu, maka kedua item tersebut kemungkinan tidak akan dibeli bersama. Kita akan mengurutkan nilai berdasarkan keyakinan untuk melihat kemungkinan suatu barang dibeli jika pendahulunya dibeli.

Conclusion

Berdasarkan pembuatan rekomendasi paket dari hasil analisis MBA, disimpulkan bahwa pembuatan rekomendasi paketnya mendapatkan hasil yang sesuai dengan tujuan. Produk whole milk menduduki produk yang populer atau yang paling laris di groceries.

THANK YOU

REFERENSI

https://www.kaggle.com/datasets/heeraldedhia/groceries-dataset

