CS & IT ENGINEERING

DIGITAL LOGIC

(Sequential Circuit)

Latches, SR FF

Lecture No. 1

By- CHANDAN SIR

Recape

Basics.

Minimization.

Booleon algebra

(K-MAP)

Combinational circuit

HA, FA, H.S., F.S.

comparator, MUX, DEMUX, Encoder, Decoder, Parallel adder

LA(A)

7 Dolay

= 1 final carry

T= (n-1) Tcorry + Max & Tsom, Tcorry

Parallel adder [Ripple corsy adder] AZ BZ A3 B. FA FA FA

LOOK AHEAD CARRY ADDER :-

Citi=GitPici

$$G_1 = A_1 G_1$$

$$S_1 = P_1 \oplus C_1$$

$$f_2 = A_2 \oplus G_2$$

C3= Gy2+ P2 C2

P1= A10 B1

= C42+ P2 G1+ P2 P1 G40+ P2 P1 P0 (0

Ex.

Y	1 1
+ / .4	- +

Seguential circuit

SEQUENTIAL CIRCUIT

- A circuit with feedback and memory are called sequential circuit.
- Output of the sequential circuit depends on previous output as well as present state of input.

Mynamic c'icuit

Basic memory element

Basic memory element

- Latches are level triggered
- Latches has two output which is complement of each other

$$A = 1 \cdot A$$

X	Y	Q	Q
0	0	L	1 InValid
0	1	7	0
1	0	0	1
1	1	Q	Q → HOLD

A	B	y
0	0	1
0	J	1
1	0	1
۱.	Ţ	Ó

SR Latch

	<u>a</u>	Q	R	S
(1401	ā (Q	0	0
	1	O	1	0
	0	1	0	1
(in/	T (1	1	1

Note: Whenever S = R = 1 is applied and invalid condition occurs than a NAND having lower propagation delay first change its output and other remain on its previous state are called racing problem or raising problem.

S	R	Q	
0	0		
0	1		
1	0		
1	1		

X	Y	Q	
0	0		
0	1	BEEFFE	The same
1	0		
1	1		

X	Y	Q	
0	0		
0	1		
1	0	THE PARTY	
1	1	THE BE	

X	Y	Q	
0	0		
0	1		
1	0	BUDIES	
1	1	WHEN S	

X	Y	Q	
0	0		
0	1		
1	0		
1	1		

Q.1

Consider a latch circuit shown in figure below. Which of the following set of input is invalid for circuit?

- A. R = 0, H = 0
- B. R = 0, H = 1
- R = 1, H = 1
- D. R = 1, H = 0

Q.2

In the circuit shown below, initially A = 1 and B = 1. The input B is now replaced by a sequence 101010 the outputs X and Y will be

- A. Fixed at 0 and 1, respectively
- B. Fixed at 1 and 0, respectively
- C. X = 1010..... while Y = 1010....
- D. $X = 1010 \dots$ while $Y = 0101 \dots$

(i) Circuit Diagram:

(ii) Truth Table:

X	Y	Q	Q
0	0		
0	1		
1	0		
1	1	用外等	

(iii) Characteristic Table:

S	R	Qn	Q_{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	FIGURE
1	0	0	
1	0	1	
1	1	0	ILEAN
1	1	1	

(iv) Characteristic equations

(v) Excitation Table

Qn	Qn+1	S	R
0	0		
0	1		
1	0		
1	1		

S	R	Q _n	Q _{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	STORY.
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Pw

(vi) State Diagram:

R

Q.

The S and R inputs shown in the figure are applied to a NAND latch. Assuming the Q is 0 initially, which plot gives correct

The circuit would hold the previous state for S=0, R=1

The circuit would hold the previous state for S=1, R=1

The circuit would never be able to hold the previous state under any condition

Q.

Find the characteristics equation of following excitation table?

A.

$$X Q(t)' + Y' Q(t)$$

В.

$$X + Y'Q(t)$$

C.

$$X Q(t)+Y' Q(t)'$$

D.

$$X+Y'Q(t)'$$

X	Y	Q(t)	Q(t+1)
0	×	0	0
1	0	0	1
0	1	1	0
×	0	1	1

1	0	1
(W	U
	Ħ	

X	Y	Q _n	Q _{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	Est 1

\					
	100		6000	3 400	
				"Cipe	
				Fi 1	

S	R	Q _n	Q _{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	7 6-4

S	R	Q _{n+1}	02.00
0	0		
0	1		
1	0		
1	1		

Qn	Q _{n+1}	S	R
0	0		
0	1		
1	0	Paul	
1	1	- MARIE	W/Jan

