Matière: Recherche d'Information

TD2

Année: 2023/2024

Exercice 1:

Considérer un corpus de documents composé de trois documents :

- Document 1 : "Machine learning is an area of artificial intelligence"
- Document 2: "Artificial intelligence is the study of algorithms"
- Document 3 : Algorithms are used in various applications"
- 1) Donner la table des fréquences des termes dans les deux documents

Terme	Document 1	Document 2	Document 3
Machine	1	0	0
Learning	1	0	0
Artificial	0	1	0
Intelligence	1	1	0
Algorithms	0	0	1
Study	0	1	0
Area	1	0	0
Used	0	0	1
Various	0	0	1
Applications	0	0	1

2.1) Calculer le poids de chaque terme dans chaque document en utilisant la formule suivante :

$$w(t_i, d_j) = \frac{freq_{ij}}{\max\{\forall t_i \in d_j\} freq_{ij}} * \log\left(\frac{N}{n_i} + 1\right)$$

Où n_i représente le nombre de documents contenant le terme ti, N est le nombre de documents et le logarithme est calculé en base 10.

Terme	Document 1	Document 2	Document 3
Machine	0.25	0	0
Learning	0.25	0	0
Artificial	0	1	0
Intelligence	0.5	0.5	0
Algorithms	0	0	1
Study	0	1	0
Area	0.25	0	0
Used	0	0	1
Various	0	0	1
Applications	0	0	1

2.2) Calculer le poids de chaque terme dans chaque document en utilisant la formule suivante :

$$w(t_i, d_j) = 1 + \log(freq_{ij}) * \log(\frac{N}{n_i} + 1)$$

Terme	Document 1	Document 2	Document 3
Machine	1	N.D	N.D
Learning	1	N.D	N.D
Artificial	Non déterminé (N.D)	1	N.D
Intelligence	1.693	1.693	N.D
Algorithms	N.D	N.D	1.693
Study	N.D	1.693	N.D
Area	1	N.D	N.D
Used	N.D	N.D	1.693
Various	N.D	N.D	1.693
Applications	N.D	N.D	1.693

2.3) Calculer le poids de chaque terme dans chaque document en utilisant la formule suivante :

$$w(t_i, d_j) = \frac{freq_{lj}}{1.5 * \left(\frac{Longueur\ Document\ d_j}{Longeur\ moyenne}\right) + freq_{lj} + 0.5} * \log\left(\frac{N}{n_i}\right)$$

Longeur moyenne=21/3=7

Longueur Document $d_1 = 8$

Longueur Document $d_2 = 7$

 $Longueur\ Document\ d_3=6$

Terme	Document 1	Document 2	Document 3
Machine	0.343	0	0
Learning	0.343	0	0
Artificial	0	0.299	0
Intelligence	0.343	0.343	0
Algorithms	0	0	0.299
Study	0	0.299	0
Area	0.343	0	0
Used	0	0	0.299
Various	0	0	0.299
Applications	0	0	0.299

Exercice 2:

Soit la matrice de fréquence termes-documents suivante :

	t1	t2	t3	t4	t5
D1	6	2	3	6	2

D2	6	1	2	0	2
D3	6	5	1	0	0

Calculer la valeur de discrimination pour les deux termes t1 et t4 en utilisant la distance euclidienne normalisée sur la valeur maximale de la somme comme une mesure de similarité

$${\sf Disc(t1)} \!\!=\!\! AvgSim_2 - AvgSim_1$$

$$Disc(t4) = AvgSim_3 - AvgSim_1$$

1. Calculer la similarité moyenne $AvgSim_i$ entre le document d_i et v (vecteur centroid du corpus)

 $AvgSim_i = \frac{1}{N} * \sum_{i=1}^{N} sim(d_i, v)$ tel que N est le nombre de documents

$$sim(d_i, v) = 1 - \sqrt{\frac{\sum_{j=1}^{M} |d_{ij} - v_j|^2}{maxSomme}}$$

$$maxSomme = \sum_{j=1}^{j=M} \sum_{i=1}^{i=N} \max(d_{ij})^{2}$$

$$d_{ij} = \sqrt{\sum_{k=1}^{n} (d_{ik} - d_{jk})^2}$$

La table de distance d_{ij} entre les documents est la suivante :

	D1	D2	D3
D1	0	$\sqrt{38}$	$\sqrt{53}$
D2	$\sqrt{38}$	0	$\sqrt{21}$
D3	$\sqrt{53}$	$\sqrt{21}$	0

Pour calculer $maxSomme = \sum_{j=1}^{j=M} \sum_{i=1}^{i=N} \max(d_{ij})^2$, il faut :

- Trouver le maximum de chaque ligne de la table de distance
- Prendre le carrée de chaque maximum
- Somme des maximums de chaque ligne

Pour la ligne 1 (D1): $\max(0, \sqrt{38}, \sqrt{53})^2 = 53$

Pour la ligne 2 (D2): $\max(\sqrt{38}, 0, \sqrt{21})^2 = 38$

Pour la ligne 3 (D3): $\max(\sqrt{53}, \sqrt{21}, 0)^2 = 53$

MaxSomme= 53+38+53=144

2) Calculer le vecteur centroid v du corpus :

Le poids du terme t_i dans v est la moyenne de ses poids dans les documents :

$$p_j = \frac{\sum_{i=1}^{N} p_{ij}}{N}$$
 tel que: N est le nombre de documents

v	6	2.667	2	2	1.333
v_1	0	2.667	2	2	1.333
v_2	6	0	2	2	1.333
v_3	6	2.667	0	2	1.333
v_4	6	2.667	2	0	1.333
v_5	6	2.667	2	2	0

	t1	t2	t3	t4	t5
D1	6	2	3	6	2
D2	6	1	2	0	2
D3	6	5	1	0	0

• Calculer $sim(d_1, v)$, $sim(d_2, v)$, $sim(d_3, v)$

 $\sin(d1,v)\approx0.648$

 $\sin(d2,v)\approx 0.777$

 $\sin(d3,v)\approx0.697$

• Calculer $sim(d_1, v_1)$, $sim(d_2, v_1)$, $sim(d_3, v_1)$

 $\sin(d1,v1)\approx0.389$

 $sim(d2,v1)\approx 0.453$

 $sim(d3,v1)\approx 0.421$

• Calculer $sim(d_1, v_2)$, $sim(d_2, v_2)$, $sim(d_3, v_2)$

 $sim(d1,v2)\approx 0.614$

 $sim(d2,v2)\approx 0.805$

 $sim(d3,v2)\approx 0.522$

• Calculer $sim(d_1, v_3)$, $sim(d_2, v_3)$, $sim(d_3, v_3)$

 $sim(d1,v3)\approx 0.463$

$$\sin(d2,v3)\approx0.519$$

• Calculer $sim(d_1, v_4)$, $sim(d_2, v_4)$, $sim(d_3, v_4)$

 $sim(d1,v4)\approx 0.500$

 $\sin(d2,v4)\approx0.860$

 $im(d3,v4)\approx0.761$

• Calculer $sim(d_1, v_5)$, $sim(d_2, v_5)$, $sim(d_3, v_5)$

 $\sin(d1,v5)\approx0.648$

 $sim(d2,v5)\approx 0.774$

 $sim(d3,v5)\approx0.690$

La valeur de discrimination pour les deux termes t4 et t1:

$$AvgSim_1 = \frac{1}{3}(sim(d_1, v) + sim(d_2, v) + sim(d_3, v)) \approx 0.707$$

$$AvgSim_2 = \frac{1}{3}(sim(d_1, v_1) + sim(d_2, v_1) + sim(d_3, v_1)) \text{ (pour t1)} \approx 0.421$$

$$AvgSim_3 = \frac{1}{3}(sim(d_1, v_4) + sim(d_2, v_4) + sim(d_3, v_4)) \text{ (pour t4)} \approx 0.707$$

Disc(t1)= $AvgSim_2 - AvgSim_1 = -0.286 \rightarrow Le$ terme t1 n'est pas discriminant

 $\operatorname{Disc}(\mathsf{t4}) = AvgSim_3 - AvgSim_1 = 0 \rightarrow \text{Le terme t4 est indifférent}$

Exercice 3

Soient les deux documents suivants :

Doc1: Now is the time for all good men to come to the aid of their country

Doc2: It was a dark and stormy night in the country manor. The time was past midnight

1) Construire le fichier inverse correspondant

Soit la requête booléenne q : time and past and the,

2) Construire la matrice d'incidence documents-termes comme requis par le modèle booléen

	а	aid	all	and	come	contry	dark	fot	good	in	is	it	manner	men	midnight	night	now	of	past	stormt	the	their	time	to	was
Doc1	0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	1	1	1	1
Doc2	1	0	0	1	0	1	1	0	0	1	0	1	1	0	1	1	0	0	1	1	1	0	1	1	1

3) Calculer Rsv(q, Doc2) et Rsv(q, Doc1)

q: time and past and the

Rsv(q, Doc1)=0

Rsv(q, Doc2) = 1

4) Evaluer la requête (résultats de la recherche) : time and past and the : $numDoc_{time} \cap numDoc_{past} \cap numDoc_{the} = \{1, 2\} \cap \{2\} \cap \{1, 2\} = \{2\}$ Résutat retourné est le document 2

Exercice 4

Soient les trois documents suivants :

D 1 : {Le langage de programmation python est très utilisé pour le traitement de texte}

D2 : {Le langage JAVA est basé sur le langage C++}

D3 : {Un langage de programmation est un langage utilisé pour traduire un algorithme en un programme}

- 1) Indexer les 3 documents et donner le fichier inverse
 - Segmentation du texte en termes
 - Suppression des mots vides
 - Normalisation des termes (Porter, troncature à x caractères, N-gram)
 - Calcul des fréquences des termes

3.1) Construire le dictionnaire des termes

Terme	Numéro de document	Trie des	Terme	Numéro de
langage	1	termes	algorithme	document 3
programmation	1		basé	2
python	1		C++	2
utilisé	1		java	2
traitement	1		langage	1
texte	1		langage	3
langage	3		langage	3
programmation	3		langage	2
langage	3		langage	2
utilisé	3		programmation	1
traduire	3		programmation	3
algorithme	3		programme	3
programme	3		python	1
langage	2		texte	1
java	2		traduire	3
basé	2		traitement	1
langage	2		utilisé	1
c++	2		utilisé	3

3.2) Constuire le fichier inverse :

Terme	Nombre	Fréquence	Pointeur	
	de			
	documents			
algorithme (t1)	1	1		→ Doc3, 1
basé (t2)	1	1		▶ Doc2,1
c++(t3)	1	1		▶ Doc2,1
java(t4)	1	1		→ Doc2,1
langage (t5)	3	5		Doc1, 1 Doc2, 2 Doc3, 2
programmation (t6)	2	2		Doc1,1 Doc3, 1
programme (t7)	1	1		Doc3, 1
python(t8)	1	1		Doc1,1
texte(t9)	1	1		Doc3,1
traduire(t10)	1	1		Doc1,1
traitement(t11)	1	1		Doc1,1
utilisé (t12)	2	2		Doc1,1 Doc3,1

3.3) Indexer les documents :

D 1 : {Le langage de programmation python est très utilisé pour le traitement de texte}

D1: langage, 5, programmation, 2, python, 1, utilisé, 2, traitement, 1, texte, 1

D2 : {Le langage JAVA est basé sur le langage C++}

D2: langage, 5, java, 1, basé, 1, c++, 1}

D3 : {Un langage de programmation est un langage utilisé pour traduire un algorithme en un programme}

D3: langage, 5, programmation, 2, utilisé, 2, traduire, 1, algorithme, 1, programme, 1

Considérer la formule suivante pour la pondération :

$$w(t_i, d_j) = \frac{freq_{ij}}{\max\{\forall \ t_i \in d_j\} \ freq_{ij}} * \log(\frac{N}{n_i} + 1)$$

Où n_i représente le nombre de documents contenant le terme ti, N est le nombre de documents et le logarithme est calculé en base 2.

2) Calculer la similarité entre chaque document et la requête Q : {langage python java} en utilisant les quatre formules du modèle vectoriel (produit scalaire, coefficient de Dice, Cosine, et indice de Jaccard)

Produit scalaire:

$$RSV(q, d_j) = \sum_{i=1}^{n} w_{iq} w_{ij}$$

Coefficient de Dice:

$$RSV(q, d_j) = \frac{2\sum_{i=1}^{n} w_{iq} w_{ij}}{\sum_{i=1}^{n} (w_{iq})^2 + \sum_{i=1}^{n} (w_{ij})^2}$$

Coefficient de Cosine:

$$RSV(q, d_j) = \frac{\sum_{i=1}^{n} w_{iq} w_{ij}}{\sqrt{\sum_{i=1}^{n} (w_{iq})^2} \sqrt{\sum_{i=1}^{n} (w_{ij})^2}}$$

Indice de Jaccard:

$$RSV(q, d_j) = \frac{\sum_{i=1}^{n} w_{iq} w_{ij}}{\sum_{i=1}^{n} (w_{iq})^2 + \sum_{i=1}^{n} (w_{ij})^2 - \sum_{i=1}^{n} w_{iq} w_{ij}}$$

Calculer la matrice de fréquences des termes-documents

	D1	D2	D3
algorithme (t1)			
	0	0	1
basé (t2)			
	0	1	0
c++(t3)			
	0	1	0
java(t4)			
	0	1	0
langage (t5)			
	1	2	2
programmation			
(t6)	1	0	1
programme			
(t7)	0	0	1
python(t8)			
	1	0	1
texte(t9)			
, ,	1	0	1
traduire(t10)			
	0	0	1
traitement(t11)			
Ì	1	0	0
utilisé (t12)			
` ′	1	0	1

Produit scalaire:

$$RSV(q, d_1) = \sum_{i=1}^{n} w_{iq} w_{ij} = 1*1+1*2 +0*1$$

$$RSV(q, d_1) = 3$$

$$RSV(q, d_2) = \sum_{i=1}^{n} w_{iq} w_{ij} = 2$$

$$SV(q, d_3) = \sum_{i=1}^{n} w_{iq} w_{ij} = 1$$

	w(D1)	w(D2)	w(D3)	w(q) (=freq)
algorithme (t1)	0	0	1	/
basé (t2)	0	1	0	/
c++(t3)	0	1	0	/
java(t4)	0	1	0	1
langage (t5)	1	1	1	1
programmation (t6)	1.32	0	1	/
programme (t7)	0	0	0.66	/
python(t8)	2	0	0	1
texte(t9)	2	0	0	/
traduire(t10)	0	0	1	/
traitement(t11)	2	0	0	/
utilisé (t12)	1.32	0	0.66	/

Coefficient de Dice

$$RSV(q, d_1)=0.4$$

$$RSV(q, d_2) = 0.85$$

$$RSV(q,d_3)=0.76$$

Coefficient de Cosine (devoir)

Indice de Jaccard (devoir)

Exercice 6

Soit un ensemble des termes d'indexation T = (document, web, information, recherche, image, contenu)

Avec : d1 = (document 1, 0, web 0, 5, information 0, 3)

 $q1 = (document \lor web)$

 $q2 = (web \land document)$

 $q3 = ((web \lor document) \land image))$

Calculer la similarité entre d1 et chaque requête en considérant :

Le modèle booléen basé sur les ensembles flous

$$RSV(q_1, d_1) = max(1, 0.5) = 1$$

$$RSV(q_2, d_1) = min(1, 0.5) = 0.5$$

 $RSV(q_3, d_1)$?

 $S1q_3 = \text{web} \lor \text{document}$

 $S2q_3 = S1q_3 \wedge \text{image}$

$$RSV(S1q_3, d_1) = max(1, 0.5) = 1$$

$$RSV(S2q_3, d_1) = min(1, 0) = 0$$

Le modèle p_norme avec p = 2 (requête non pondérée de deux termes)

$$RSV(q_1, d_1) = \frac{\sqrt{1^2 + 0.5^2}}{\sqrt{2}} = 0.787$$

$$\begin{aligned} & \text{RSV}(q_2, d_1) = 1 - \frac{\sqrt{(1-1)^2 + (1-0.5)^2}}{\sqrt{2}} 0.354 \\ & \text{RSV}(q_3, d_1) = 1 - \frac{\sqrt{(1-0.787)^2 + (1-0)^2}}{\sqrt{2}} = 0.27 \end{aligned}$$

RSV(
$$q_3, d_1$$
)= 1 - $\frac{\sqrt{(1-0.787)^2 + (1-0)^2}}{\sqrt{2}}$ =0.27