Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA и Generalized SSA

Погребников Н. В., гр. 21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д. ф.-м. н., доц. Голяндина Н. Э.

Санкт-Петербург, 2025

Введение

Пусть $\mathsf{X}=(x_1,\ldots,x_N)$ – временной ряд длины $N,\ x_i\in\mathbb{R}$ – наблюдение в момент времени i.

 $X = X_{Trend} + X_{Periodics} + X_{Noise}$, где:

- X_{Trend} тренд, медленно меняющаяся компонента;
- X_{Periodics} сумма периодических компонент;
- X_{Noise} шум, случайная составляющая.

Методы: SSA — метод, позволяющий раскладывать временной ряда в сумму интерпретируемых компонент [ссылка]; GSSA — модификация SSA на основе добавления весов [ссылка];

CiSSA – модификация **CiSSA** на основе циркулярной матрицы [ссылка].

Задача: Описание модификаций в контексте теории **SSA**, сравнение алгоритмов, реализация их на языке R.

∟Введение

ТООО Дописать ссылки

.....

X_{1-mi} + Alektio + Aleko 150.
 X_{1-mi} = 150 kg, wegate to mean outside to mean the second seco

- X_{February} cymm reprogramics accommunity;
- Хътът шум, случа йна и соста вликощия.
 Метод м: SSA метод, позволяющий раскладивать время кюй.

ряда в сумму ветерпретеруюмых сомонент (ссила); GSSA модефизация SSA на основе добамения весов (ссила); CISSA — модефизация CISSA на основе церкулярной матрицы (сила).

јскили ј. Задача: Описани модификаций в сонте оте теории SSA, срамени насалгорит мод, разлизация исти исти П.

Метод SSA. Алгоритм

 $\mathsf{X}_N = (x_1, \dots, x_N)$ — временной ряд. 1 < L < N — длина окна. Алгоритм SSA:

- **1** Построение траекторной матрицы: $\mathbf{X} = \mathcal{H}(\mathsf{X}) = [\mathsf{X}_1 : \ldots : \mathsf{X}_K], \ \mathsf{X}_i = (x_i, \ldots, x_{i+L-1})^T, \ 1 < i < K. \quad K = N-L+1.$
- ② Сингулярное разложение (SVD) траекторной матрицы:

$$\mathbf{X} = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^T = \sum_{i=1}^{d} \mathbf{X}_i, d = \operatorname{rank}(\mathbf{X}).$$

 ${f X}_i$ — элементарные матрицы ранга 1. $(\sqrt{\lambda_i}, U_i, V_i^{
m T})$ — i-ая собственная тройка.

- $egin{align*} egin{align*}$ **Группировка** индексов $1,\dots,d$ на m непересекающихся подмножеств I_1,\dots,I_m , $I_k=\{i_1^{(k)},\dots,i_{p_k}^{(k)}\}. \ \mathbf{X}_{I_k}=\mathbf{X}_{i_1^{(k)}}+\dots+\mathbf{X}_{i_{n_k}^{(k)}}. \ \mathbf{X}=\mathbf{X}_{I_1}+\dots+\mathbf{X}_{I_m}. \ \end{pmatrix}$
- $oldsymbol{0}$ Восстановление: $ilde{\mathsf{X}}_{I_k} = \mathcal{H}^{-1}(\mathbf{X}_{I_k})$, $\mathsf{X} = ilde{\mathsf{X}}_{I_1} + \cdots + ilde{\mathsf{X}}_{I_m}$.

Метод GSSA. Алгоритм

$$\mathsf{X}_N = (x_1, \dots, x_N)$$
 — временной ряд, параметры L и $lpha \geq 0$.

$$\boldsymbol{w}^{(a)} = (w_1, w_2, \dots, w_L) = \left(\left| \sin \left(\frac{\pi n}{L+1} \right) \right| \right)^{\alpha}, \quad n = 1, 2, \dots, L.$$

Шаг 1 алгорима GSSA:

$$\mathbf{X}^{(\alpha)} = \mathcal{H}^{(\alpha)}(\mathsf{X}) = [\mathsf{X}_1^{\alpha}: \ldots: \mathsf{X}_K^{\alpha}],$$

$$X_i^{(\alpha)} = (w_1 x_{i-1}, \dots, w_L x_{i+L-2})^{\mathrm{T}}, \ 1 \le i \le K.$$

Шаги 2-4: аналогичны SSA.

Замечание 1

При lpha=0, **GSSA** — в точности базовый алгоритм **SSA**.

└─Метод GSSA. Алгоритм

TODO Сослаться на статью авторов.

$\mathbf{X}_N = (x_1, \dots, x_N) = \mathbf{1} \mathbf{p} \cdot \mathbf{w} \cdot \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{p} \mathbf{d}_1 \cdot \mathbf{1} \mathbf{p} \cdot \mathbf{w} \mathbf{1} \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{0} \mathbf{1} \mathbf{0} \mathbf{0}$ $\mathbf{w}^{(a)} = (w_1, w_2, \dots, w_L) = \left(\left|\sin\left(\frac{\pi \pi}{L+1}\right)\right|\right)^{\alpha}, \quad n = 1, 2, \dots, L$

Метод GSSA. Алториты

Пр и $\alpha=0$, GSSA=s точности баз свый ал гориты SSA.

Сравнение SSA и GSSA. Линейные фильтры 1

Определение 1

Пусть бесконечный временной ряд $X=(\dots,x_{-1},x_0,x_1,\dots)$. Линейный конечный фильтр — это оператор Φ , который преобразует временной ряд X в новый по следующему правилу:

$$y_j = \sum_{i=-r_1}^{r_2} h_i x_{j-i}; \quad r_1, r_2 < \infty.$$

 $A_{\Phi}(\omega)=\left|H_{\Phi}\left(e^{i2\pi\omega}
ight)
ight|$ — амплитудно-частотная характеристика (AЧX).

Пример. При применении фильтра Φ на $\mathsf{X}_{\cos}=\cos 2\pi\omega n$, получается ряд $y_j=A_\Phi(\omega)\cos{(2\pi\omega j+\phi_\Phi(\omega))}.$

Opposite 1 The state and print modes $\mathbf{g}_{\mathbf{x}} = (\dots, x_{-1}, x_0, x_1, \dots)$. Pure between mid spirit modes $\mathbf{g}_{\mathbf{x}} = -x_0$ supply $\mathbf{r}_{\mathbf{y}} \in \mathbf{g}_{\mathbf{x}}, \mathbf{g}_{\mathbf{y}}, \mathbf{g}_{\mathbf{$

 $A_{\Phi}(\omega) = |H_{\Phi}(e^{(2\pi\omega)})|$ — matry grounds as a sign of fig. $|A^{*}X|$. $|A^{*}X|$. $|B^{*}M$ we present that $|A^{*}M| = 1$ and $|A^{*$

 igsqc Сравнение SSA и GSSA. Линейные фильтры 1

TODO Переписать определение. Пояснить, что означает АЧХ на примере.

Сказать, что будем сравнивать эти методы с точки зрения линейных фильтров.

Сравнение SSA и GSSA. Линейные фильтры 2

Пусть ${\sf X}=(x_1,\ldots,x_N)$ — временной ряд длины N, $(\sqrt{\lambda},\,U,\,V)$ — одна из собственных троек разложения методом ${\sf SSA}$. $U=(u_1,\ldots,u_L)$.

Тогда компонента временного ряда X, восстановленная с использованием собственной тройки $(\sqrt{\lambda},\,U,\,V)$, для средних точек (индексы от L до K) имеет вид:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k u_{k+|j|} / L \right) x_{s-j}, \quad L \le s \le K.$$

Таким образом, имеется представление алгоритма **SSA** через линейные фильтры.

Аналогичное представления для GSSA:

$$\widetilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \le s \le K.$$

Сравнение SSA и GSSA. Линейные фильтры 2 Пусть $X = (x_1, ..., x_N) -$ ар меной ряд деяты N, $(\sqrt{\lambda}, U, V)$

— or a bit offer where the expension of SA. $U = (u_1, \dots, u_L)$. The (u_1, \dots, u_L) is the property of X decreased and x decreased a

$$\widetilde{x}_{s} = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_{k} u_{k+|j|} / L \right) x_{s-j}, \quad L \leq s \leq s$$

$$\tilde{x}_s = \sum_{j=-(L-1)}^{L-1} \left(\sum_{k=1}^{L-|j|} u_k^{(\alpha)} u_{k+|j|}^{(\alpha)} w_k / \sum_{i=1}^L w_i \right) x_{s-j}, \quad L \leq s \leq K.$$

TODO Убрать весь текст, оставить только представление в виде фильтров

Cравнение SSA и GSSA. Линейные фильтры 2

Сравнение SSA и GSSA. Пример

$$X = X_{\sin} + X_{\cos} = \sin\left(\frac{2\pi}{12}n\right) + \frac{1}{2}\cos\left(\frac{2\pi}{19}n\right)$$
. $N = 96 \cdot 2 - 1$, $L = 48$.

Фильтры для различных α

 $X = X_{0n} + X_{0n} = \sin(\frac{n\pi}{2}n) + \frac{1}{2}\cos(\frac{n\pi}{2}n), N = 96, 2 - 1, L = 48$ $\frac{\Phi_{0n}}{\pi_{0n}} = \frac{1}{2} \frac{1}{\pi_{0n}} = \frac{1}{\pi_{0n}} = \frac{1}{\pi_{0n}} = \frac{1}{\pi_{0n}} \frac{1}{\pi_{0n}} = \frac{1}{\pi_{0n}}$

Сравнение SSA и GSSA. Пример

└─Сравнение SSA и GSSA. Пример

TODO Расписать, что **GSSA** хуже отделяет от шума, но лучше компоненты между собой, основываясь по рисунку. Дописать, по каким группам производилось объединение.

Сравнение SSA и GSSA. Пример, продолжение

Таблица 1: MSE разложений $X = X_{\sin} + X_{\cos}$

Метод/Ошибка	X_{\sin}	X_{\cos}	Χ
	5.15e-03		
$\text{GSSA, }\alpha=0.5$	3.68e-04	3.68e-04	9.53e-30

Таблица 2: MSE разложений ${\sf X}={\sf X}_{\sin}+{\sf X}_{\cos}+arepsilon_n$, $arepsilon_n\sim {
m N}(0,0.1^2)$

Метод	X_{\sin}	X_{\cos}	Χ
SSA	5.68e-03	5.44e-03	7.48e-04
GSSA, $\alpha = 0.5$	1.21e-03	1.25e-03	1.04e-03

Сравнение SSA и GSSA. Пример, продолжение

Tri reg 2 M5 Epartice et X = X_{sin} + X_{sin} Me ca/O ur6 a X_{sin} X_{sin} X SSA 5.15+1 5.15+1 1.11+11 655A, a = 0.5 1.11+14 1.11+14 1.51+11

required in MS Epistement 2 $X = X_{min} + X_{min} + \varepsilon_{ns} \cdot \varepsilon_{m} \sim N(0, 0.1^{2})$ $\frac{Ms \cdot eqs}{SSA} = \frac{X_{min}}{15.11 \cdot 11.1} \cdot \frac{X_{con}}{15.01 \cdot 11.14} \cdot \frac{X_{con}}{15.11 \cdot 11.14} \cdot \frac{X_{con$

Cравнение SSA и GSSA. Пример, продолжение

TODO Подтвердить этими таблицами слова из предыдущего слайда про шум и разделимость компонент.

Сравнение SSA и GSSA. Выводы

TODO Применение **SSA** для выделения сигнала, затем **GSSA** для разделения компонент для того же примера. Написать, что получилось объединить лучшие свойства двух методов. Оформить это как вывод.

Метод CiSSA. Алгоритм: разложение

Kак и в **SSA** считается \mathbf{X} , по которой строится $\hat{\mathrm{C}}_L$:

$$\hat{c}_m = \frac{L-m}{L}\hat{\gamma}_m + \frac{m}{L}\hat{\gamma}_{L-m}, \ \hat{\gamma}_m = \frac{1}{N-m}\sum_{t=1}^{N-m} x_t x_{t+m}, \ m = 0: L-1.$$

$$\hat{C}_{L} = \begin{pmatrix} \hat{c}_{1} & \hat{c}_{2} & \dots & \hat{c}_{L} \\ \hat{c}_{2} & \hat{c}_{1} & \dots & \hat{c}_{L-1} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{c}_{L} & \hat{c}_{L-1} & \dots & \hat{c}_{1} \end{pmatrix}.$$

Собственные числа и вектора матрицы $\hat{\mathrm{C}}_{L}$, задаются по формулам:

$$\begin{split} U_k &= L^{-1/2}(u_{k,1\cdot}\cdot\cdot\cdot,u_{k,L}), \text{ где } u_{k,j} = \exp\left(-\mathrm{i}2\pi\mathrm{d}(j-1)\frac{k-1}{L}\right), \\ \lambda_{L,k} &= \sum_{m=0}^{L-1} \hat{c}_m \exp\left(i2\pi m\frac{k-1}{L}\right), \ k=1:L. \end{split}$$

└─Mетод CiSSA. Алгоритм: разложение

$$\begin{split} \delta_m &= \frac{\epsilon_m \omega_m}{\epsilon_m} + \frac{\omega}{\epsilon_m} \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{K}} \sum_{k \in \mathcal{K}_{i+1}} \omega_{i+1} \omega_{i} = 0 \cdot L - 1. \\ C_L &= \begin{pmatrix} \delta_1 & \delta_1 & \dots & \delta_{i+1} \\ \delta_2 & \dots & \delta_{i+1} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_k & \delta_{k+1} & \dots & \delta_k \end{pmatrix}. \\ C_{\text{observed in the extension of the extension$$

TODO Полностью переписать алгоритм по аналогии того, как расписан **SSA**. Написать, что группировка производится по частотам, указать, что из-за этого можно работать с **CiSSA** только тогда, когда заранее знаем частоты. Указать про фиксированный базис **CiSSA**

Метод CiSSA. Свойства: нестационарный ряд

Для использования на нестационарных временных рядах, нужно выполнить расширения ряда (экстраполировать) [1].

Рис. 1: Красный — настоящий ряд, черный — расширеннный

Так, алгоритм лучше выделяет нелинейную составляющую.

Proper nations plan print page (see plan print) plan print page (s

Та қ алтораты лучын выделяет жіла еей кую соста вляющую

 igspace Метод CiSSA. Свойства: нестационарный ряд

TODO Написать алгоритм расширения ряда, сказать, что изначально алгоритм пригоден только для стационарных рядов.

Метод CiSSA. Свойства: связь с разложением Фурье

Определение 2

Разложение

$$x_n = c_0 + \sum_{k=1}^{\lfloor \frac{N+1}{2} \rfloor} (c_k \cos(2\pi nk/N) + s_k \sin(2\pi nk/N)),$$
 (1)

где $1 \le n \le N$ и $s_{N/2} = 0$ для четного N, называется разложением Фурье ряда X.

Замечание 2

 $U_k U_k^H + U_{L+2-k} U_{L+2-k}^H$ является оператором проектирования на подпространство, которое порождено синусами и косинусами с частотой $w_k = \frac{k-1}{L}$. То есть, воспроизводится разложение Фурье для K векторов матрицы X. Затем вычисляется диагональное усреднение.

└─Метод CiSSA. Свойства: связь с разложением Фурье

 $\Phi_{\rm SP}$ ы дал Kы кирон шарын X. За тый ынчилангса двегон льног усрадиния.

Метод CiSSA, Свойства: связь с разложением Фурье

 ε честотой $w_k = \frac{k-1}{T}$. То есть, востроиль одити разлежения

TODO Переписать замечание

TODO Написать, что будем сравнивать алгоритмы **SSA** и **GSSA** по разделимости компонент между собой, когда заранее знаем, на какие частоты будем разделять. Для этого нужны определения разделимости.

Сравнение SSA, Фурье, CiSSA. Разделимость

Определение 3

Есть метод разделения ряда на компоненты с параметрами Θ , ряд $X = X^{(1)} + X^{(2)}$. \exists набор параметров $\hat{\Theta}$, L, N, что при разделении ряда на компоненты этим методом, $\hat{X}^{(1)}$ является оценкой $X^{(1)}$, при этом, $\mathrm{MSE}\left(X^{(1)},\hat{X}^{(1)}\right) = 0$. Тогда ряды $X^{(1)}$ и $X^{(2)}$ точно разделимы данным методом.

Определение 4

Есть метод разделения ряда на компоненты с параметрами Θ , ряд ${\sf X}={\sf X}^{(1)}+{\sf X}^{(2)}$. \exists набор параметров $\hat{\Theta}$ и L=L(N), $N\to\infty$, что при разделении ряда на компоненты этим методом, $\hat{\sf X}^{(1)}$ является оценкой ${\sf X}^{(1)}$, при этом, ${\sf MSE}\left({\sf X}^{(1)},\hat{\sf X}^{(1)}\right)\to 0$. Тогда ряды ${\sf X}^{(1)}$ и ${\sf X}^{(2)}$ называются асимптотически L(N)-разделимыми данным методом.

Сравнение SSA, Фурье, CiSSA. Точная разделимость

Фиксируем временной ряд
$$X = X_1 + X_2 =$$

= $A_1 \cos(2\pi w_1 n + \varphi_1) + A_2 \cos(2\pi w_2 n + \varphi_2)$.

Условия точной разделимости X для разложения Фурье:

 $Nw_1, Nw_2 \in \mathbb{N}, \ w_1 \neq w_2.$

Условия точной разделимости X для CiSSA:

 $Lw_1, Lw_2 \in \mathbb{N}, \ w_1 \neq w_2.$

Условия точной разделимости X для SSA:

 $Lw_1, Lw_2, Kw_1, Kw_2 \in \mathbb{N}, \ w_1 \neq w_2, \ A_1 \neq A_2.$

Таким образом, условия на разделение косинусов, слабее у методов **CiSSA** и Фурье, чем у **SSA**.

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость

Асимптотически разделимы в методе **SSA** полиномы, гармонические функции, не удовлетворяющие условиям точной разделимости, экспоненты [3].

Замечание 3

Для **SSA** существуют алгоритмы улучшения разделимости, например, EOSSA и FOSSA [2]. По заданному набору компонент, они позволяют более точно отделять компоненты.

В алгоритме разложения **CiSSA** (Фурье) увеличение длины окна L (N) изменяет сетку частот. Это означает, что даже если не удастся подобрать такое L (N), при котором косинус будет точно отделим, его постепенное увеличение позволит приблизить частоты сетки к частоте компоненты. В итоге, можно снизить ошибку выделения нужной компоненты, учитывая соседние частоты.

Сравнение SSA, Фурье, CiSSA. Асимптотическая разделимость Сравнение SSA, Фурме, CISSA, Асимптотическая разделимость.

Асимптотичест разделии в месце SSA полнови, приветителя функция, и удовати по ней должно в раздели условия по ней должно в раздели условиям по ней должно в раздели в должно в раздели в должно в раздели в должно в должно в раздели в должно в д

разделически, а естопаты ()]. За междали 1

Для SSA существую та л гар итмы улуч шения раздял имости на примяр. EOSSA и FOSSA (2). По заданному на бару компонент, они полеоляют более точно отделять компоненты

В али регми раз домов не CISSA. В Вуран |y| малечен далы от $z \in L[N]$ ва меня се тор часто. Это означать то даже селя на удетства перебрать та оне L[N], тар мото дом села чус будет по чео отдали м, тот постати не оне учасатите по оне отдали м, тот постати не оне учасатите по оне от $z \in L[N]$, то то селя от $z \in L[N]$, то то селя от $z \in L[N]$, то $z \in L[N]$ от $z \in L[N]$

TODO Переформулировать с меньшим количеством слов, ссылки переделать

TODO Пример, когда известны частоты, попадаем / не попадаем в решетку.

TODO Пример, когда условия нарушаются (добавление тренда).

ТООО Пример, когда шум.

Сравнение SSA, Фурье, CiSSA. Выводы 1

Метод/Условие	cos,	cos,	cos,	X_{np1}	X_{np}	group
	$Lw \in \mathbb{N}$,	$Lw \in \mathbb{N}$,	$Lw \not\in \mathbb{N}$,			
	$Kw \in \mathbb{N}$	$Kw \not \in \mathbb{N}$	$Kw \not \in \mathbb{N}$			
SSA	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_
SSA EOSSA	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	+
CiSSA	+	+	\rightarrow	_	_	+
CiSSA extended	+	+	\rightarrow	\rightarrow	_	+

Таблица 3: Преимущества и недостатки методов SSA, CiSSA

Метод/Условие	cos,	COS,	$X_{\rm np1}$	$X_{\rm np}$	group
	$Nw \in \mathbb{N}$	$Nw \not \in \mathbb{N}$			
Fourier	+	\rightarrow	_	_	+
Fourier extended	+	\rightarrow	\rightarrow	_	+

Таблица 4: Преимущества и недостатки методов Fourier

Сравнение SSA, Фурье, CiSSA. Выводы 2

По полученным результатам, можно следующие выводы:

- Если понятно, что ряд состоит только из периодических компонент, стоит использовать CiSSA без процедуры расширения, поскольку она делает ошибки разделений периодики больше. И напротив, если есть непериодичность, лучше расширять ряд;
- Если данные зашумлены или имеется непериодичность, алгоритм SSA, чем CiSSA с расширением ряда или без.

Сравнение SSA, Фурые, CiSSA, Вышоды 2

По токуменным разументым, можно следующим выподы:

«В Ега токимно, что ряд состоит токно за переоднесках сомпонить, стоит детехнатом ста СББА бы процедую расшерным, токсом му она делене ошебе с разуменный переоднес больше. И напроме, след лесть интеграциямной, лучше преста расшерным р

 Есле данные зашумлены эле эмется нетереодечность, алгореты SSA, чем CISSA с расшерением рядь эле без.

└─Сравнение SSA, Фурье, CiSSA. Выводы 2

ТООО Переписать выводы в соответствии с примерами.

Список литературы

- [1] Juan Bogalo, Pilar Poncela, and Eva Senra. Circulant singular spectrum analysis: A new automated procedure for signal extraction. Signal Processing, 177, 2020.
- [2] Nina Golyandina, Pavel Dudnik, and Alex Shlemov. Intelligent identification of trend components in singular spectrum analysis. *Algorithms*, 16(7):353, 2023.
- [3] Nina Golyandina, Vladimir Nekrutkin, and Anatoly Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.