SCOTCH COLLEGE

12 Mathematics Methods 2019

Test 2 – Integration and Area

Section 1: Calculator-free

Time allowed: 20 minutes	Maximum marks: 17		
Name:	_ Teacher: Foster Giese Reyhani		

Instructions:

- Show all working clearly.
- Sufficient detail must be shown for marks to be awarded for reasoning.
- A formula sheet will be provided.
- No calculators or personal notes are permitted.

Question 1 (9 marks)

a) Perform the following indefinite integral, leaving your answer in simplest form.

$$\int \frac{1}{x^2} + 4x^5 \, dx$$

b) Determine the following definite integrals.

i)
$$\int_0^2 (2x-3)^3 dx$$

$$ii) \qquad \int_0^1 \frac{6x}{\sqrt{3x^2 + 1}} dx$$

[3]

Question 2 (8 marks)

The graphs of y = 2x + 2 and y = f(x) are shown below, where $f(x) = x^3 - 2x^2 - x + 2$.

a) Use calculus techniques to show and justify that a point of inflection exists on the graph of y = f(x) when $x = \frac{2}{3}$ [3]

b) Two regions are trapped between the linear and cubic functions, marked A and B on the diagram. Show that the difference in the areas of these two regions is $10\frac{2}{3}$ square units. [5]

Extra working space

END OF SECTION

SCOTCH COLLEGE

12 Mathematics Methods 2019

Test 2 – Integration and Area

Section 2: Calculator-assumed

Time allowed: 25 minutes	Maximum marks: 23		
Name:	_ Teacher: Foster Giese Reyhani		

Instructions:

- Show all working clearly.
- Sufficient detail must be shown for marks to be awarded for reasoning.
- A formula sheet will be provided.
- Calculators and 1A4 double-sided page of personal notes are permitted.

Question 3 (6 marks)

The graph below shows the function $f(x) = \frac{9}{x+3}$

An estimate for the area under the curve between x = 0 and x = 9 is required.

a) Three circumscribed rectangles are shown on the diagram. Use these rectangles to calculate an over-estimate for the area. [2]

b) Use three inscribed rectangles to calculate an under-estimate for the area.

[2]

Use your over- and under- estimates to calculate a better estimate for the area under the curve between x = 0 and x = 9. [1]

d) The exact area is $18\log_e 2$. Calculate the error in the best estimate above as a percentage of the exact area.

Question 4 (5 marks)

A motor vehicle slows down from an initial velocity of 25 ms⁻¹ until it is stationary. During this interval, its acceleration t seconds after the brakes were applied is given by;

$$a(t) = \frac{t}{2} - 5 \text{ ms}^{-2}$$

a) Determine the velocity of the vehicle after four seconds. [3]

b) Calculate the distance travelled by the vehicle in the first two seconds after the brakes were applied. [2]

Question 5 (5 marks)

The graph below shows parts of the relationships $y = 0.25(x - 8)^2$ and $(x - 4)^2 + y^2 = 16$ That are being used to model a new fin for a surfboard. The picture below shows a cross-section of the fin. Both the x and y axis have the scale 1 unit = 2cm.

The fin is to be 1.5cm thick.

Determine the exact volume of a prototype of this fin.

Question 6 (7 marks)

The graph of the function y = f(x) is shown below for $-4 \le x \le 6$.

The area of each region enclosed by the curve and the x -axis is shown in the table below the graph.

Region	A	В	С	.D
Area of region	5	3	11	25

Determine the area enclosed between the graph of
$$y = f(x)$$
 and the x-axis, from $x = -4$ to $x = 6$.

b) Determine the value of

i)
$$\int_{-2}^{6} f(x) dx$$
 [1] ii) $\int_{-2}^{3} 3f(x) dx$ [2]

iii)
$$\int_0^6 6 - f(x) dx$$
 [3]

Extra working space

END OF TEST