AI Project Proposal 3D printing defect (spaghetti) detection

Michal Raczkowski 10-01-2024

Contents

1	Introduction	1
2	Domain Understanding	1
3	Data Sourcing	1
4	Analytic Approach	1
5	Data Preparation	1
6	Modeling	2
7	Conclusion	2

1 Introduction

- Focus: Detecting 'spaghetti' defects in FFF (Fused Filament Fabrication) 3D printing using AI image recognition.
- Relevance: Reducing material waste and improving safety in personal 3D printing.

2 Domain Understanding

• **Problem:** 'Spaghetti' - Figure 1 defects due to print malfunctions or improper adjustments. The 'Spaghetti' error in 3D printing happens when the filament is extruded in a disorganized manner, resembling a pile of spaghetti, usually due to the print not adhering to the build plate or the printer losing its coordinates.

Figure 1: Extruded filament that resembles spaghetti

• Research: Focused on understanding the 3D printing process and defect characteristics.

3 Data Sourcing

- Data Type: Images (.jpeg, .png) of 3D prints, both defective and non-defective.
- Collection: Homemade pictures and open-source online repositories.

4 Analytic Approach

- Objective: Identify 'spaghetti' defects in 3D printed models.
- Target Variable: 'Defect Status' (0 for absent, 1 for present).

5 Data Preparation

• Process: Standardize image size/format, normalize pixel values, annotate, and label.

6 Modeling

- Approach: Use YOLO variants for defect detection.
- Metrics: IoU, AP, mAP, Precision, Recall, F1 Score.

7 Conclusion

• Impact: Enhancing quality control in 3D printing, reducing waste and risks.