Ejercicio 1-1

Los tiempos de servicio de un banco de la ciudad de Rosario se registraron en la siguiente tabla. Se desea determinar si los mismos corresponden a una distribución exponencial con parámetro β =10 y un nivel de significancia α = 10%.

3	15	45	3	8	11	2	23	21	5
13	2	1	5	16	9	3	16	10	13

Ejercicio 1-2

Se realizan 1000 ensayos de arrojar cinco (5) monedas y se registra el número de caras obtenidas. A continuación, se detallan las cantidades obtenidas:

Número de caras obtenidas	Oi
0	38
1	144
2	342
3	287
4	164
5	25

Se desea determinar si los valores obtenidos son compatibles con una distribución binomial con un nivel de significancia α del 5%.

Ejercicio 1-3

En un tambo se desea realizar un estudio sobre el nivel de parásitos en la población vacuna. Para ello se tomó una muestra de 5 vacunos cada día, repitiendo el experimento durante 550 días. Los vacunos seleccionados fueron analizados para saber si tenían o no parásitos y los resultados obtenidos fueron los siguientes:

Χ	0	1	2	3	4	5
Oi	17	81	152	180	104	16

Se desea determinar si los resultados obtenidos se ajustan a una distribución binomial con parámetro p = 0.517 y un nivel de significancia α del 5%.

Ejercicio 1-4

El número de alumnos de un colegio que compra una determinada golosina en el kiosco escolar se da según la siguiente tabla:

Nro. Alumnos que compraron la golosina	Frecuencias Observadas			
0	6			
1	8			
2	10			
3	6			
4 o más	6			

Determinar si la muestra de datos se ajusta a una distribución Poisson con parámetro λ = 1.94 con un nivel de significancia α = 5%.

Ejercicio 1-5

Generar 10 valores de una variable aleatoria con distribución Poisson con media 3 por unidad de tiempo. $X^{\sim}P(\lambda=3)$.

Ejercicio 1-6

Generar 10 valores de una variable aleatoria con distribución exponencial cuyo valormedio o esperanza matemática es 3. X^{\sim} exp(β =3).

En todos los casos utilizar los números aleatorios de la siguiente lista (utilizarlos de izquierda a derecha y de arriba hacia abajo).

0.934	0.213	0.011	0.781	0.454	0.332	0.819	0.097	0.115	0.625
0.269	0.843	0.906	0.587	0.201	0.413	0.738	0.187	0.369	0.273