Лекция 30 от 11.05.2016

Самосопряжённые линейные операторы (продолжение)

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n, \ \varphi \in L(\mathbb{E})$. Вспомним, что по определению сопряжённый линейный оператор это φ^* : $(x, \varphi(y)) = (\varphi^*(x), y)$.

Вспомним также, что такое самосопряжённый оператор, это такой оператор φ , что $\varphi = \varphi^*$.

Предложение. Пусть $\varphi = \varphi^*$. Если $U \subset \mathbb{E}$ — подпространство — является φ -инвариантным, то U^\perp тоже φ -инвариантно.

Доказательство. Посмотрим на матрицу φ . Поскольку $\mathbb{E} = U \oplus U^{\perp}$, то легко понять, что матрица линейного оператора будет выглядеть как $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, где A — матрица ограничения φ на U, а B — на U^{\perp} .

Пусть $\varphi(U) \subseteq U$. Хотим, чтобы $\varphi(U^{\perp}) \subseteq U^{\perp}$.

$$\forall x \in U, y \in U^{\perp} : (x, \varphi(y)) = (\varphi^*(x), y) = (\underbrace{\varphi(x)}_{\in U}, y) = 0$$

Предложение. У самосопряжённого оператора φ есть собственный вектор над \mathbb{R} .

Доказательство. Знаем: у φ есть одномерное(случай 1) или двумерное (случай 2) инвариантное подпространство.

- 1. В случае одномерного инвариантного подпространства всё уже ок, потому что его порождающий вектор уже собственный
- 2. Пусть $U \subseteq \mathbb{E}$ двумерное инвариантное подпространство, а е = (e_1, e_2) ортонормированный базис. Пусть $\psi \in L(U)$ ограничение φ на U. В прошлый раз доказывали, что матрица ψ симметричная. $A(\psi, e) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Её характеристический многочлен

$$\chi_{\psi}(t) = (-1)^2 \begin{vmatrix} a - t & b \\ b & c - t \end{vmatrix} = t^2 - (a + c)t + ac - b^2 = 0$$
$$D = (a - c)^2 + 4b^2 \geqslant 0$$

Значит у $\chi_{\psi}(t)$ есть корни, а у ψ есть собственный вектор, а значит и у φ .

Теорема. У всякого самосопряжённого линейного оператора есть ортонормированный базис из собственных векторов. В частности, φ диагонализуем над $\mathbb R$ и характеристический многочлен разлагается в произведение линейных сомножителей.

Следствие. Всякая симметричная подобна диагональной над \mathbb{R} .

Доказательство. Индукцией по n. Для n=1 всё очевидно.

Если n>1, то у φ есть собственный вектор v. Положим $e_1=\frac{v}{|v|}$. Положим $U=\langle e_1\rangle^\perp$. Тогда $\dim U=n-1$.

 $U - \varphi$ -инвариантное подпространство. По предположеню индукции в U есть ортонормированный базис из собственных векторов (e_2, \ldots, e_n) . Тогда (e_1, \ldots, e_n) — искомый базис.

Следствие. Пусть $\varphi = \varphi^*$; λ, μ — собственные значения. Тогда из того, что $\lambda \neq \mu$, следует, что $V_{\lambda}(\varphi) \perp V_{\mu}(\varphi)$.

Доказательство.

1. Координатный способ. Пусть $e = (e_1, \dots, e_n)$ — ортонормированный базис из собственных векторов. $x = x_1 e_1 + \dots + x_n e_n \in V_{\lambda}(\varphi)$, причём $\varphi(e_i) = \lambda_i e_i$.

$$\varphi(x) = x_1 \lambda_1 e_1 + \dots x_n \lambda_n e_n$$

$$x \in V_{\lambda}(\varphi) \Leftrightarrow \varphi(x) = \lambda x \Leftrightarrow x \in \langle e_i \mid \lambda_i = \lambda \rangle$$

$$\Rightarrow V_{\lambda}(\varphi) \perp V_{\mu}(\varphi), \text{ если } \lambda \neq \mu$$

2. Бескоординатный способ.

$$x \in V_{\lambda}(\varphi)$$

$$y \in V_{\mu}(\varphi)$$

$$\lambda(x,y) = (\lambda x, y) = (\varphi(x), y) = (x, \varphi(y)) = (x, \mu y) = \mu(x, y).$$

A поскольку $\lambda \neq \mu$, то (x,y) = 0.

Следствие (Приведение квадратичной формы к главным осям). Для любой квадратичной формы Q над \mathbb{E} существует ортонормированный базис, в котором Q имеет канонический вид. $Q(x_1, \ldots, x_n) = \lambda_1 x_1^2 + \ldots + \lambda_n x_n^2$.

 $\Psi ucna \lambda_1, \ldots, \lambda_n$ определены однозначно с точностью до перестановки.

Доказательство. Существует единственный самосопряжённый линейный оператор в $\mathbb E$ такой, что $Q(v)=(v,\varphi(v))$. Если е — ортонормированный базис, то матрица Q в базисе е будет равна матрице φ в базисе е.

$$\lambda_1,\ldots,\lambda_n$$
 — собственные значения φ .

Следствие. Пусть $A \in M_n(\mathbb{R}), A = A^T$. Тогда существует ортогональная матрица C такая, что $C^TAC = C^{-1}AC = D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$

Ортогональные линейные операторы

Определение. Линейный оператор $\varphi \in L(\mathbb{E})$ называется ортогональным, если $(\varphi(x), \varphi(y)) = (x,y)$. Другими словами, φ сохраняет скалярное произведение.