Groups of order ≤ 30

order	groups	order	groups	order	groups	order	groups
1	C_1	12 (cont.)	A_4	18 (cont.)	$D_3 \times C_2$	24 (cont.)	$Q_8 \times C_3$
2	C ₂	13	C ₁₃		$C_3 \rtimes D_3$		$D_3 \times C_4$
3	C ₃	14	C ₁₄	19	C ₁₉		$D_3 \times C_2^2$
4	C ₄		D ₇	20	C ₂₀		$C_3 \rtimes C_8$
	C ₄ C ₂ ² C ₅	15	C ₁₅		$C_{10} \times C_2$		$C_3 \rtimes D_4$
5	C ₅	16	C ₁₆		D ₁₀		C ₂₅
6	C ₆	14	$C_8 \times C_2$		Dic ₁₀		$C_5 \times C_5$
	D ₃		C_4^2		Fr ₂₀	26	C_{26}
7	C ₇		$C_4 \times C_2^2$	21	C ₂₁		D ₁₃
8	C ₈	16	$C_8 \times C_2$ C_4^2 $C_4 \times C_2^2$ C_2^4		C ₇ ⋊ C ₃	27	C ₂₇
	$C_4 \times C_2$		D ₈	22	C ₂₂		$C_9 \times C_3$
	C_2^3		SD ₈		D ₂₂		C_3^3
	D_4		Mod ₈	23	C ₂₃		C_3^3 $C_9 \rtimes C_3$
	Q ₈		Q_{16}	24	C ₂₄		$C_3^2 \times C_3$
9	C ₉		$D_4 \times C_2$		$C_{12} \times C_2$	28	C ₂₈
	$C_3 \times C_3$		$Q_8 \times C_2$		$C_6 \times C_2^2$		$C_{14} \times C_2$
10	C ₁₀		$C_4 \rtimes C_4$		D ₁₂		D_{14}
	$C_5 \times C_2$		$C_2^2 \rtimes C_4$		Dic ₁₂		Dic ₁₄
11	C ₁₁		$C_4 \circ D_4$		S ₄	29	C_{29}
12	C ₁₂	17	C ₁₇		$SL_2(\mathbb{Z}_3)$	30	C ₃₀
	$C_6 \times C_2$	18	C ₁₈		$A_4 \times C_2$		D ₁₅
	D ₆		$C_6 \times C_3$		$Dic_{12} \times C_2$		$D_5 \times C_3$
	Dic ₆		D ₉		$D_4 \times C_3$		$D_3 \times C_5$

The number of groups of order n is. . .

- 1009. 1
- 1010. 6
- 1011. 2
- 1012. 13
- 1013. 1
- 1014. 23
- 1015. 2
- 1016. 12
- 1017. 2
- 1018. 2
- 1019. 1
- 1020. 37
- 1021. 1
- 1022. 4
- 1023. 2
- 1024. 49,487,365,422

The number of *p*-groups, for p = 2, 3, 5 is. . .

2.	1	3
4.	2	9
8.	5	27
16.	14	81
32.	51	243
64.	267	729
128.	2,328	2187
256.	56,092	6561
512.	10,494,213	
1024.	49,487,365,422	

٥.	-	٥.	-
9.	2	25.	2
27.	5	125.	5
81.	15	625.	15
243.	67	3125.	77
729.	504	15625.	684
2187.	9,310	78125.	34,297
6561.	unknown	390625.	unknown

5. 1

"The human race will never know the exact number of groups of order 2048." –John Conway (Princeton University)

2048 unknown

Almost all finite groups are 2-groups

Amazing fact

There are 49,910,529,415 groups of order $|G| \le 2000$.

Of these, 49,487,365,422 of them (99.2%!) have order 1024

Conjecture

Almost all finite groups are 2-groups. That is,

$$\lim_{n \to \infty} \frac{\text{\# 2-groups groups of order} \le n}{\text{\# of groups of order} < n} = 1.$$

A few fun resources for exploring finite groups include:

- The interactive GroupExplorer website (only small groups):
 https://nathancarter.github.io/group-explorer/index.html
- The noninteractive GroupNames website (comprehensive list): people.maths.bris.ac.uk/~matyd/GroupNames/index.html