

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Basics of Neural Network Programming

Gradient Descent

Gradient Descent

• 1) $\alpha > 0$ Repeat { $w = w - \alpha \frac{dJ(w)}{d(w)}$ } until convergence $w = w - \alpha dw$ $w^* = (x^T x)^{-1} x^T y$ $y = (x^{-n^3} 1)^2$ $\frac{dy}{dx} = 2(x - 1) = 0$ x = 1

- $z = w^T x + b$
- $\hat{y} = a = \sigma(z)$
- $L(a, y) = -(y \log a + (1 y) \log(1 a))$

Gradient Descent

Computational Graph

Gradient Descent

$$egin{aligned} w_1 &= w_1 - \alpha \, dw_1 \ w_2 &= w_2 - \alpha \, dw_2 \ b &= b - \alpha \, db \end{aligned}$$

$$\begin{cases} w_1 temp = w_1 - \alpha \, dw_1 \\ w_2 temp = w_2 - \alpha \, dw_2 \\ b temp = b - \alpha \, db \end{cases}$$

$$\begin{cases} w_1 = w_1 temp \\ w_2 = w_2 temp \\ b = b temp \end{cases}$$

•
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y^{(i)})$$

$$a^{(i)} = \hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(wx^{(i)})$$

$$+ b)$$

•
$$dw_1^{(i)}$$
 $dw_2^{(i)}$ $db^{(i)}$

•
$$\underbrace{\mathrm{d}J(w,b)}_{dw_1} = \frac{1}{\mathrm{m}} \underbrace{\frac{\mathrm{d}L(a^{(i)},y^{(i)})}{dw_1}}_{i=1} \underbrace{\frac{\mathrm{d}L(a^{(i)},y^{(i)})}{dw_1}}_{dw_1}$$

Logistic regression on m examples

$$J=0;$$
 $dw_1=0;$ $dw_2=0;$ $db=0;$ $w_1\leftarrow \mathrm{ran} dom$ $w_2\leftarrow \mathrm{ran} dom$ $b\leftarrow \mathrm{ran} dom$ $\mathbf{Repeat}\{$

For
$$i=1$$
 to m

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += [y^{(i)}Loga^{(i)} + (1 - y^{(i)})Log(1 - a^{(i)})]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$dw_{1} += x_{1}^{(i)} dz^{(i)}$$

$$dw_{2} += x_{2}^{(i)} dz^{(i)}$$

$$db += dz^{(i)}$$

$$J/=m;$$
 $dw_1/=m;$ $dw_2/=m;$

$$w_1 = w_1 - \alpha dw_1$$

$$w_2 = w_2 - \alpha \, dw_2 \qquad d\theta = \begin{bmatrix} dw_1 \\ dw_2 \\ db \end{bmatrix} \qquad \theta^t = \begin{bmatrix} w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

$$b=b-\alpha db$$

$$\|d\theta\| \le \varepsilon = 10^{-4} \qquad \theta^{t+1} = \begin{bmatrix} w_1^{t+1} \\ w_2^{t+1} \\ b^{t+1} \end{bmatrix} \qquad \|\theta^{t+1} - \theta^t\|_2 \le \varepsilon$$

$$\|\theta^{t+1} - \theta^t\|_2 \leq \varepsilon$$