Intervals, Transformations, and Slope Solution (version 13)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	(-5, -3)
Negative	$(-10, -9) \cup (-9, -5) \cup (-3, 3)$
Increasing	$(-8, -4) \cup (-2, 3)$
Decreasing	$(-10, -8) \cup (-4, -2)$
Domain	(-10,3)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 13)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=21$ and $x_2=66$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 21 & 67 \\ 66 & 92 \\ 67 & 66 \\ 92 & 21 \\ \end{array}$$

$$\frac{f(66) - f(21)}{66 - 21} = \frac{92 - 67}{66 - 21} = \frac{25}{45}$$

The greatest common factor of 25 and 45 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{5}{9}$$

2