Claims

We claim:

1	1. A disk storage medium comprising:
2	a disk substrate;
3	a storage area provided on said disk substrate for recording
_4 	data; and
	a circumferential landing zone provided on an area of said
<u>#</u> # 6	disk substrate other than said storage area, the landing zone
型7 上	being used for landing a head/slider which has air bearing
	surfaces for floating a read-write head which reads out data from
8 9 0 1 0 0 0	said storage area; and
可 重0 直	said landing zone has a circumferential free zone which
11	faces a minumum fly height area of said head/slider which is
12	lowest in the height among said air bearing surfaces and also has
13	a circumferential bump zone adjacent to said free zone;
14	said bump zone is formed with bumps protruding from the
15	surface of said disk substrate; and
16	said free zone has no bumps.

JA996088

1

2

- 2. The disk storage medium of Claim 1, wherein said bumps comprise laser bumps formed by irradiating laser light on the said disk substrate.
- 3. The disk storage medium of Claim 1, wherein said bump zone is provided on both the inner circumferential side and the outer circumferential side of said free zone.
- 4. The disk storage medium of Claim 2, wherein said bump zone is provided on both the inner circumferential side and the outer circumferential side of said free zone.

1 5. A disk drive comprising:

2

3

7

15

16

17

18

19

a head/slider having an air bearing surface for floating a head/slider over a rotating disk;

the disk having a disk substrate, a storage medium on at least a portion of a surface of the disk, the storage medium having a storage area for recording data, the disk having a circumferential landing zone on an area of the disk other than said storage area, the circumferential landing zone being partially textured;

the landing zone having a texture free zone which faces a minimum fly height area of the air bearing surface of the head/slider when the head/slider is landing and also having a circumferential bump zone adjacent to said free zone, the bump zone being formed with bumps protruding from the surface of said disk, the free zone having no bumps; and

a landing position control unit for moving the head/slider so that the minimum fly height area of said head/slider is positioned over the free zone of said disk storage medium when landing said head/slider.

JA996088

The disk drive of claim 5 wherein the head/slider has at least an inner and an outer rail with the inner rail being closest to a center of the disk and wherein the minimum fly height area is on the inner rail.

The disk drive of claim 5 wherein the bumps have a

height above the surface such that the minimum fly height area of

1

2

the head/slider does not touch the surface of the disk during

landing.

7.

The disk drive of claim 5 wherein the bumps have a height above the surface equal to or greater than a difference Δ H1 between a fly height of a rear end portion of a side rail and a fly height of a rear end portion of the center rail.

3

9. A method of operating a disk drive comprising the steps
2 of:

rotating a disk under a head/slider having an air bearing surface and flying the head/slider over the disk;

positioning the head/slider over a area on the disk which includes a textured area and an untextured area with the untextured area being under an area on the air bearing surface having a lowest flying height;

reducing a rotation rate of the disk to allow a portion of the air bearing surface not having the lowest flying height to contact the textured area of the landing zone first; and stopping the disk.

10. The method of claim 9 wherein the head/slider has at least an inner and an outer rail with the inner rail being closest to a center of the disk and wherein the minimum fly height area is on the inner rail.

5

plurality of bumps protruding above a surface of the disk, the bumps having a height above the surface such that the minimum fly height area of the head/slider does not touch the surface of the disk during landing.

12. The method of claim 11 wherein the bumps have a height above the surface equal to or greater than a difference ΔH1 between a fly height of a rear end portion of a side rail and a fly height of a rear end portion of the center rail.