Retransmission-based Access Class Barring for RAN overload control in Machine Type Communications

Yin-Hong, Hsu

09 22, 2016

Outline

Aim

Background

System model

Result

Aim

- In order to alleviate the RAN overload,
- We focus on the objective that can increase access success probability and relieve the access delays.
- Accroding to traditional ACB factor is fixed.
- We proposed an algorithm to make eNB be able to change ACB factor dynamically.

Background

Random Access Procedure

- when UE device is switched on or handover from on eNB to another.
- will contend resource blocks with others.
- Is classified into two type in LTE, contend based and contend free.

Background

4 step in random access procedure

Figure: RAP

System model Random Access Procedure

- Devices will receive info from SIB2
- Device will choose a preamble and increase preamble transmission
 - wait for RAR(Msg2)
 - if fail to receive RAR, it will wait for a backoff time to retry if the number of transmission is smaller than maximum
- Sending the connection request(Msg3)
- If successfully to transmit the preamble to eNB, it will finish the BAP

Figure: Some Figure Description

Result

Parameter	Value
Simulation Count	100 thousand
Area Width / Length	40.0 meter
eNB Intensity (λ_B)	$0.01 \ m^{-2}$
CeUE Intensity (λ_C)	$0.15 \ m^{-2}$
DeUE Intensity (λ_D)	$0.15 \ m^{-2}$
Path Loss Exponent (α)	4.0
eNB Power (P _B)	43.0 dBm
Maximum Medium Access Prob. \tilde{p}	0.9