Practical Session 3

Linear Regression

1 Weight regularization

Problem 1: Derive the closed form solution for ridge regression error function

$$E_{\text{ridge}}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}) - y_{i})^{2} + \frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}$$

Additionally, discuss the scenario when the number of training samples N is smaller than the number of basis functions M. What computational issues arise in this case? How does regularization address them?

Problem 2: See Jupyter notebook practical_03_notebook.ipynb.

Problem 3: Using singular value decomposition of the design matrix $\Phi = USV^T$ show that predicted target \hat{y} for the training set when using w^*_{ridge} can be written as

$$\hat{m{y}} := m{\Phi}m{w}^*_{ ext{ridge}} = \sum_{j=1}^M \left(rac{\sigma_j^2}{\sigma_j^2 + \lambda}m{u}_jm{u}_j^T
ight)m{y}$$

where u_j are the columns of U, d_j the elements of diagonal matrix S and λ the strength of the L_2 regularization. What is the interpretation of this formula?

2 Multi-output linear regression

Problem 4: In class, we only considered functions of the form $f: \mathbb{R}^n \to \mathbb{R}$. What about the general case of $f: \mathbb{R}^n \to \mathbb{R}^m$? For linear regression with multiple outputs, write down the loglikelihood formulation and derive the MLE of the parameters.