Examples on Mathematical Induction: Sum of integers

Created by Mr. Francis Hung.

Last updated: September 1, 2021

1. **AM 1968 Paper 1 Q9**

Prove that
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
. Hence find the value of $1 + 3 + 5 + \dots + (2n-1)$.

 $n = 1$, L.H.S. = 1, R.H.S. = $\frac{1(1+1)}{2} = 1$, it is true for $n = 1$

Suppose $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$
 $1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$
 $= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$
 $= \frac{(k+1)(k+2)}{2}$

If it is true for n = k then it is also true for n = k + 1

By the principle of mathematical induction, it is true for all positive integers n.

$$1+3+5+\dots+(2n-1) = 1+2+3+4+\dots+(2n-1)+2n-(2+4+\dots+2n)$$

$$= \frac{2n(2n+1)}{2} - 2(1+2+3+\dots+n)$$

$$= \frac{2n(2n+1)}{2} - 2\frac{n(n+1)}{2}$$

$$= n(2n+1) - n(n+1)$$

$$= n(2n+1-n-1)$$

$$= n^2$$

line

2. Mathematics 1976 Paper 1 Q7

John was asked to prove the statement $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. for all positive integers n.

His proof is as follows:

The statement is true when n = 1, because when

$$n = 1$$
. L.S. = R.S. = 1 \cdots (1)

$$n = k \text{ i.e. } 1 + 2 + \dots + k = \frac{k(k+1)}{2}$$
 ... (2)

$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=(k+1)\left(\frac{1}{2}k+1\right)=\frac{1}{2}(k+1)(k+2) \qquad \cdots (3)$$

So, the statement is also true when n = k + 1 ... (4)

 \therefore The statement is true when n = 1, n = k and n = k + 1, hence by the principle of mathematical induction, the statement is true for all positive integers n. \cdots (5)

Which two lines of John's proof are incorrect?

What would you write in the place of these two lines?

Line (2) and Line (5) are wrong. Correct statement should be:

Assume it it true for
$$n = k$$
, then $1 + 2 + 3 + \dots + k = \frac{1}{2}k(k+1)$ (2)

 \therefore The statement is true when n = 1. If it is true for n = k, then it is also true for n = k + 1. Hence, by the Principle of Mathematical Induction the

statement is true for all positive integers n. (5)

3. Prove that $1 + 3 + 5 + \cdots + (2n - 1) = n^2$.

$$n = 1$$
, L.H.S. = 1, R.H.S. = $1^2 = 1$, it is true for $n = 1$

Suppose $1 + 3 + 5 + \dots + (2k - 1) = k^2$.

$$1 + 3 + 5 + \dots + (2k - 1) + (2k + 1) = k^{2} + (2k + 1)$$
$$= (k + 1)^{2}$$

If it is true for n = k then it is also true for n = k + 1

By the principle of mathematical induction, it is true for all positive integers n.