

# **K-anonymity**: The devil's advocate





With increasing amount of *public data*, increases the need for *data privacy*!



**Anonymization** 



# K-Anonymization: general idea

- Direct identifier attributes
- Quasi-identifier attributes

- Generalization
  - Generalization hierarchies
- Suppression



## Trade-off

#### DATA PRIVACY

Anonymization is primarily a **privacy** concept → it **always** generates information loss.



#### DATA SCIENCE

- How much anonymization is too much?
- How does the anonymization affect the performance of the ML algorithms?
- Can we optimize datasets for model performance while keeping privacy?



Analyze the impact of anonymization in performance of ML tasks.

### Problem

Previous studies are **limited** in data science aspects:

- Evaluate one dataset, model trained with default hyperparameters!
- Evaluation conditions are not fair!



# Analyze the impact of anonymization in performance of ML tasks.

### Solution

- Three datasets with diversity of domain and tasks
- Two ML algorithms
- $\circ$  Search for the **best hyperparams** for each K, using Bayesian optimization
- Lots of models!







## **Datasets**

### ADULT

- target variable: income (1= "<= 50K", 2=" 50K")
- QIDs: "age", "education", "marital status", "native country", "occupation", "race", "sex", and "work class"
- O Size: 45K

### California Housing

- target variable: median house value (continues values)
- OlDs: "latitude", "longitude", "housing median age", "median income"
- O Size: 20K

### Contraceptive Methods Choice

- target variable: choice of contraceptive method (1=None, 2=Short-term, 3=Long-term)
- Olds: "education", "age" and the "number of children ever born"
- O Size: 1473

7





# K-Anonymization: methods

Classic & Basic Mondrian

Datafly









# **Preprocessing**

- Initial:
  - Removal of the irrelevant variables
  - Encoding of the categorical variables
- After anonymization:
  - Complete suppression
  - Overlapping categories
    - Numerical values solved with mean imputation
    - Categorical values tricky problem

| ID | Age          | Imputed |
|----|--------------|---------|
| 1  | 20~36        | 28      |
| 2  | 31           | 31      |
| 3  | $20 \sim 30$ | 25      |

| ID | Occupation     | Imputed |
|----|----------------|---------|
| 1  | Programmer     | ?       |
| 2  | Tech-sector    | ?       |
| 3  | Private-sector | ?       |



# ML tasks

- Algorithms
  - Random Forest
  - XGBoost
- Bayesian Optimization implemented with Hyperopt
  - 20 search rounds
  - 4-fold CV in the training set for each round





## Classification



Regression

 $RMSE = \frac{1}{n} \sqrt{\sum_{i=1}^{N} (y - \hat{y})^2}$   $F1_{macro} = \frac{1}{M} \sum_{i=1}^{M} F1_i$ 

**Multiclass** 

$$F1_{macro} = rac{1}{M} \sum_{i=1}^{M} F1_i$$



| Components               | Count |
|--------------------------|-------|
| ML Algorithms            | 2     |
| Datasets                 | 3     |
| Ks                       | 21    |
| Bayesian opt. iterations | 20    |
| Cross-validation         | 4     |
| Pipeline runs            | 4     |
| Total models             | 40320 |





## **Discussion - ADULT**

### Datafly

- Performance drop
- Overgeneralization

### Basic Mondrian

- Best performance
- Well-suited for categorical QIDs

### Classic Mondrian

- Worse than Basic Mondrian
- Ill-suited for categorical QIDs





## **Discussion - CA Housing**

- Performance gap w.r.t. Baseline
  - High cardinality of attribute values
- Datafly
  - Overgeneralization
- Classic Mondrian
  - Best performance
  - Well-suited for numerical QIDs



- Worse than Classic Mondrian
- Generalization hierarchies not granular enough





## **Discussion - CMC**

### Dataset size

- Not satisfactory baseline performance
- High variation

### • High impact of *K*

| Dataset | Maximum K | % of the dataset |
|---------|-----------|------------------|
| ADULT   | 100       | 0.307            |
| CAH     | 100       | 0.484            |
| CMC     | 100       | 6.789            |

- Smaller performance gap w.r.t. baseline
  - Low cardinality numerical attributes
  - Granular enough generalization hierarchy





## **Conclusions**

- Important factors we knew :
  - Increase  $K \rightarrow Information loss \rightarrow Performance decrease$
  - Datafly problem: overgeneralization tendency
- Important factors we found:
  - Hierarchy granularity
    - High cardinality attributes, i.e. numerical
  - Type of QID
    - Numerical → Ordering based
    - Categorical → Generalization hierarchy based



# **Conclusions**

**DATA PRIVACY** 



DATA SCIENCE



### References

- 1. Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. 1998.
- 2. Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Mondrian multidimensional k-anonymity. In 22nd International conference on data engineering (ICDE'06), pages 25–25. IEEE, 2006.
- 3. Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517, 1975.
- 4. Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Workloadaware anonymization. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 277–286, 2006.
- 5. Vanessa Ayala-Rivera, Patrick Mcdonagh, Thomas Cerqueus, and Liam Murphy. A systematic comparison and evaluation of k-anonymization algorithms for practitioners. Transactions on Data Privacy, 7:337–370, 12 2014.
- 6. Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
- 7. Cam Nugent. California housing prices, Nov 2017.
- 8. Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pages 785–794, New York, NY, USA, 2016. ACM.
- 9. Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.
- 10. Djordje Slijep cević, Maximilian Henzl, Lukas Daniel Klausner, Tobias Dam, Peter Kieseberg, and Matthias Zeppelzauer. k-anonymity in practice: How generalisation and suppression affect machine learning classifiers, 2021.
  - 1. [11] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a python library for model selection and hyperparameter optimization. Computational Science Discovery, 8(1):014008, 2015.