Programming Languages: Imperative Program Construction Practicals 8: Case Studies

Shin-Cheng Mu

Autumn Term, 2022

1. For r, b : Int, verify the following program.

$$\begin{cases} 0 \leqslant r < b \land even \ b \rbrace \\ b \coloneqq b \ / \ 2 \\ \textbf{if} \ \ r < b \rightarrow skip \\ \mid \ b \leqslant r \rightarrow r \coloneqq r - b \\ \textbf{fi} \\ \{0 \leqslant r < b \} \\ \end{cases}$$

2. Derive a $O(\log N)$ algorithm for computing square root:

con
$$N$$
: Int $\{0 \le N\}$
var x : Int
?
 $\{x^2 \le N < (x+1)^2\}$,

by introducing a variable y and use $P_0 \wedge P_1$ as the invariant, where

$$P_0 \equiv x^2 \leqslant N < (x+y)^2 ,$$

$$P_1 \equiv 0 \leqslant k \land y = 2^k .$$

3. Derive, again, a $O(\log N)$ algorithm for computing square root:

con N: Int
$$\{0 \le N\}$$

var x: Int
?
 $\{x^2 \le N < (x+1)^2\}$.

- (a) This time, construct an algorithm using binary search. What Φ will you use? Does your program rely on the fact that x^2 is monotonic on x (that is, $x \ge y \Rightarrow x^2 \ge y^2$)?
- (b) Knowing that $x \ge y \Rightarrow x^2 \ge y^2$, after the loop terminates, what can you conclude in addition to $x^2 \le N < (x+1)^2$?