8 TD8

8.1 Laplace, mélange et bayésien hiérarchique

On considère l'expérience botanique suivante : une plante située à l'origine émet une graine suivant un axe fixé, disons l'axe des abscisses. La graine est soumise à un mouvement aléatoire dû à l'effet d'un vent de force τ et aterrit à l'ascisse $X \mid \tau \sim \mathcal{N}(0, 2\tau)$. La force du vent est inconnue et modélisée par une loi exponentielle $\tau \sim \mathcal{E}(\lambda)$, $\lambda > 0$.

- 1. Ecrire la densité (marginale) $f_X(x)$ de X comme une intégrale que l'on ne cherchera pas à calculer.
- 2. Calculer la fonction génératrice $M_X(t) = E[e^{tX}]$ pour tout t tel que $|t| < \sqrt{\lambda}$.
- 3. Montrer que si Y est une loi de Laplace de paramètre μ , alors $M_Y(t) = \mu^2/(\mu^2 t^2)$, pour tout $|t| < \mu$.
- 4. Identifier la loi marginale de X et interpréter le résultat dans un contexte bayésien hiérarchique : quelle loi a priori correspond à la hiérarchie $\theta \mid \tau \sim \mathcal{N}(0, 2\tau)$ et $\tau \sim \mathcal{E}(\alpha)$ pour α une constante positive fixée ?

8.2 Test bayésien (1)

Soient $X = (X_1, \dots, X_n) \mid \theta \sim \mathcal{N}(\theta, \sigma^2)^{\otimes n}$ et $\theta \sim \Pi = \mathcal{N}(\mu, \tau^2)$, où σ^2, τ^2 sont fixés.

- 1. Déterminer la loi a posteriori.
- 2. On veut tester $H_0 = \{\theta \ge 1\}$ contre $H_1 = \{\theta < 1\}$ du point de vue bayésien. Pour un test $\varphi = \varphi(X)$ et $\theta \in \mathbb{R}$, on considère une fonction de perte équilibrée

$$\ell(\theta,\varphi) = \mathbb{1}_{\theta\in\Theta_0}\mathbb{1}_{\varphi=1} + \mathbb{1}_{\theta\in\Theta_1}\mathbb{1}_{\varphi=0}.$$

Construire le test bayésien correspondant pour la loi Π ci-dessous.

3. Que devient le test si on remplace H_0 par H_1 et vice-versa?

8.3 Test bayésien (2)

Soit $X = X_1 \mid \theta \sim \mathcal{N}(\theta, 1)$. Soient les deux problèmes de test

$$\begin{split} &H_0^1:\theta=0\quad\text{vs.}\quad H_1^1:\ \theta\neq0\\ &H_0^2:|\theta|\leq\varepsilon\quad\text{vs.}\quad H_1^2:\ |\theta|>\varepsilon \end{split}$$

- 1. Proposer une loi a priori avec une partie gaussienne $\mathcal{N}(0, \sigma^2)$ pour chaque situation.
- 2. Comparer les tests bayésiens correspondants lorsque ε et σ varient, dans le cas d'une fonction de perte équilibrée.

8.4 Estimation de densité marginale via importance sampling

Soit (X, Y) un couple de variables de loi $P_{X,Y}$ de densité $f_{X,Y}$ sur \mathbb{R}^2 . Soient $(X_1, Y_1), \dots, (X_N, Y_N)$ i.i.d. de loi $P_{X,Y}$ et soit w une densité quelconque sur \mathbb{R} .

1. Montrer que

$$\hat{f}_X(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_{X,Y}(x, Y_i) w(X_i)}{f_{X,Y}(X_i, Y_i)}$$

est un estimateur consistant de (i.e. converge en probabilité vers) $f_X(x)$.

- 2. Donner une expression de la variance de cet estimateur.
- 3. Dans le cas où $Y \sim \mathcal{N}(0,1)$ et $X \mid Y = y \sim \mathcal{N}(y,1+y^2)$, proposer une mise en oeuvre de la méthode ci-dessus pour estimer $f_X(x)$.

8.5 Autour de l'échantillonage de Gibbs

Dans la suite, (X,Y) est un couple de variables réelles à densité non nulle sur tout \mathbb{R}^2 . Les densités des lois de (X,Y), $Y \mid X$ et $X \mid Y$ sont notées respectivement $f(x,y) = f_{X,Y}(x,y)$, $f_{Y \mid X}(y \mid x)$ et $f_{X \mid Y}(x \mid y)$.

L'algorithme de Gibbs permet de simuler suivant une approximation de la loi jointe de (X, Y) si l'on sait simuler suivant chacune des lois conditionnelles $\mathcal{L}(Y \mid X)$ et $\mathcal{L}(X \mid Y)$.

- 1. Pour vérifier, déjà, que cela est concevable, montrons que connaissant les densités $f_{X|Y}$ et $f_{Y|X}$ il est possible de reconstruire $f_{X,Y}$. Pour cela
 - (a) En passant par $f_{X,Y}$, écrire une identité reliant $f_{X|Y}$, $f_{Y|X}$ et les lois marginales.
 - (b) En déduire une façon d'écrire f_X (puis f_Y) sous la forme d'une intégrale et des densités conditionnelles et conclure.
 - (c) Pourrait-on "prendre" $f_{X|Y}$, $f_{Y|X}$ densités d'une loi exponentielle?
- 2. Algorithme de Gibbs à deux variables
 - i) Générer X_0,Y_0 de façon arbitraire sur $\mathbb R$.
 - ii) Pour $n \geq 1$, si X_n, Y_n ont été générées, poser

$$X_{n+1} \sim f_{X \mid Y}(x \mid Y_n)$$

 $Y_{n+1} \sim f_{Y \mid X}(y \mid X_{n+1}).$

Soit $(X_n, Y_n)_{n\geq 0}$ générée suivant l'algorithme de Gibbs. Dans cette question, on suppose que pour un n donné, la loi du couple (X_n, Y_n) est de densité précisément $f_{X,Y}$.

- (a) Quelle est alors la loi de Y_n , de $X_{n+1} \mid Y_n$?
- (b) Montrer que $\mathcal{L}((X_{n+1}, Y_n)) = \mathcal{L}((X_n, Y_n)).$
- (c) En déduire que $\mathcal{L}((X_{n+1}, Y_{n+1})) = \mathcal{L}((X_n, Y_n)).$
- 3. Pour $(X_n, Y_n)_{n\geq 0}$ générée suivant l'algorithme de Gibbs, montrer que la suite $(Z_n)_{n\geq 0} = ((X_n, Y_n))_{n\geq 0}$ est une chaîne de Markov, et que $\mathcal{L}((X, Y))$ en est une loi stationnaire.
- 4. Proposer une généralisation de l'algorithme de Gibbs à p variables notées $X^{(1)}, \ldots, X^{(p)}$.
- 5. Application aux statistiques bayésiennes. Considérons un a priori hiérarchique $\theta \mid \alpha \sim \Pi_{\alpha}$ et $\alpha \sim Q$, dans le cadre et notations de l'exercice 1 du TD7. On souhaite simuler suivant une approximation de la loi a posteriori $\mathcal{L}(\theta \mid X)$. On suppose que l'on sait facilement simuler suivant les lois $\mathcal{L}(\theta \mid \alpha, X)$ et $\mathcal{L}(\alpha \mid \theta, X)$.
 - (a) Montrer qu'il suffit de savoir simuler suivant (une approximation de) $\mathcal{L}((\theta, \alpha) | X)$.
 - (b) Proposer un algorithme de type Gibbs pour simuler suivant la loi $\mathcal{L}((\theta, \alpha) | X)$.