CS6360.001 DATABASE DESIGN

PROJECT: DATABASE SYSTEM FOR UBER EATS

TEAM NUMBER: Uber Eats – T5

TEAM MEMBERS

Harsha Priya Daggubati (HXD220007)

Surya Teja Sri Jonnada (STJ220000)

Step 3: Successive Normalization till 3NF

1st Normal Form (1NF):

There are no multi-valued attributes in the relational schema, all of them are handled when creating the schemas. We can state that every relation is in 1NF, as there are no existing multi-valued attributes in the relations.

2nd Normal Form (2NF):

We will have to check for the existence of partial dependency on a prime attribute of a relation. That is, a non-prime attribute should be fully functionally dependent on a prime attribute of a relation. Here are few functional dependencies violating the 2NF conditions.

ADDRESS table: ADDRESS(<u>loginId</u>, house no, st name, zip, city, state)

1. Zip attribute of Address table can determine the city and state attributes of this relation.

zip -> city, state

After 2NF normalization, we will have the following schema:

ADDRESS(loginId, house no, st name, zip)

ADDRESS ZIP(zip, city, state)

DELIVERY_PARTNER table: DELIVERY_PARTNER(loginId, employeeId, rating, \$_Share_Order, acc no, routing no, acc holder name, license no, gender, DOB, expiry, license issue state)

1. acc_no attribute of Delivery partner relation can determine the routing_no, acc_holder_name of this relation.

acc no -> routing no, acc holder name

2. license_no attribute of Delivery partner relation can determine gender, DOB, expiry, license issue state

license no -> gender, DOB, expiry, license issue state

After 2NF normalization, we will have the following schema:

DELIVERY_PARTNER(loginId, employeeId, rating, \$_Share_Order, acc_no, license_no)

ACC DETAILS(acc no, routing no, acc holder name)

LICENSE DETAILS(license no, gender, DOB, expiry, license issue state)

RESTAURANT table: RESTAURANT(<u>restaurantId</u>, restaurant_name, restaurant_manager, open_time, close_time, acc_no, routing_no, house_no, stree_name, city, state, zip, discount_percent)

1. Like Delivery partner table, acc_no can determine restaurant_name and routing_no.

acc no -> restaurant name, routing no

2. Like Address table, zip can determine city and state.

zip ->state, city

After 2NF normalization, we will have the following schema:

RESTAURANT(<u>restaurantId</u>, restaurant_manager, open_time, close_time, acc_no, house_no, stree_name, zip, discount_percent)

ADDRESS ZIP(zip, city, state)

ACC_DETAILS(<u>acc_no</u>, routing_no, acc_holder_name)

ORDER table: ORDER(<u>orderId</u>, customer_id, cart_id, discount_code, order_date, total_amount, tax, discount, rating, payment card no, card expiry)

1. payment card no can determine the card expiry attribute of this relation.

payment_card_no -> card_expiry

After 2NF normalization, we will have the following schema:

ORDER(<u>orderId</u>, customer_id, cart_id, discount_code, order_date, total_amount, tax, discount, rating, payment_card_no)

PAYMENT_DETAILS(<u>payment card no</u>, card_expiry)

3rd Normal Form:

To verify if the relations are in 3NF, we made the following checks:

- 1. Check if all the functional dependencies are in 2NF.
- 2. Check if a non-prime attribute depends on a non-prime attribute.

All the checks are satisfied, and the relations are in 3NF.

Attaching Modified Relational Schema in the next page:

