חלוקה יעילה של משאבים Efficient Resource Division

אראל סגל-הלוי

חלוקת משאבים הומוגניים

משאבי מחשוב:

סחורות:

מניות:

חלוקה הוגנת - קל

אבל לא יעיל...

מהי יעילות כלכלית?

נסביר ע"י דוגמה. שלושה אחים רוצים ללכת יחד למסעדה ומתלבטים באיזו מסעדה לבחור. כל אח מדרג את המסעדות מהכי גרועה בעיניו (1) להכי טובה בעיניו (5):

מסעדה:	א	ב	λ	Т	ה
עמי:	1	2	3	3	5
תמי:	3	1	2	5	4
רמי:	3	5	5	1	1

איזו בחירה – מבין החמש – היא לא יעילה? ---- **ב**! כי בעיני כולם, היא פחות טובה מ-ג.

יעילות כלכלית

הגדרות:

- מצב א נקרא **שיפור פארטו** (Pareto) של מצב ב, אם הוא *טוב יותר* לחלק (improvement) מהמשתתפים, וטוב *לפחות באותה מידה* לכולם.
 - בעברית: "ז**ה נהנה וזה לא חסר**".
 - אם לא (Pareto efficient) מצב נקרא **יעיל פארטו** קיים מצב אחר שהוא שיפור-פארטו שלו.
- יעילות פארטו תנאי הכרחי לבחירה שהיא "נכונה" מנקודת-מבט כלכלית.

חלוקה לא יעילה (כנראה)

חלוקה יעילה פארטו - קל

...אבל לא הוגן

האתגר

האם תמיד קיימת חלוקה שהיא גם הוגנת וגם יעילה?

האם ייחתוך ובחריי יעיל פארטו?

:אלגוריתם

- .נשים את המשאבים על קו ישר
- •נחלק את הקו כמו שמחלקים עוגה.

עצים	נפט	פלדה	
80	19	1	:עמי
79	1	20	:תמי

האם ייחתוך ובחריי יעיל פארטו?

עמי	תמי			
ים	עצ	נפט	פלדה	
50	, 30	19	1	:עמי
49.4	29.6	1	20	:תמי

החלוקה:

- עמי מקבל 5/8 מהעצים.
- תמי מקבלת 3/8 מהעצים, וכל הפלדה והנפט. הערכים: אם שחקן i מקבל חלק x_{ij} מכל משאב j:

$$V_i(\mathbf{x}) = \operatorname{sum}_j (x_{ij} * V_i(j))$$

:הערך של תמי

• הערך של עמי:

 $\bullet 1*20+1*1+3/8*79=50.6$

5/8*80=**50**

האם ייחתוך ובחריי יעיל פארטו?

עמי	תמי			
ים	עצ	נפט	פלדה	
50	, 30	19	1	:עמי
49.4	29.6	1	20	:תמי

התוצאה **לא יעילה**: הערכים הם (50,6,50.6) אבל אפשר לשפר ל~(59,5,59.5):

עצים	נפט	פלדה	
40 , 40	19	1	:עמי
39.5, 39.5	1	20	:תמי

יעילות אוטיליטרית

הגדרה: חלוקה יעילה-אוטיליטרית (utilitarian) היא חלוקה הממקסמת את סכום הערכים של השחקנים:

$$\max_{X} \sum_{j=1}^{n} V_j(X_j)$$

• בבעיית בחירת המסעדה, יש שתי מסעדות שהן יעילות אוטיליטרית. מה הן?

יעילות אוטיליטרית ויעילות פארטו

משפט: כל חלוקה יעילה-אוטיליטרית (ממקסמת סכום ערכים) היא יעילה פארטו.

- **הוכחה**: נתונה חלוקה **א** הממקסמת סכום ערכים. • נניח בשלילה שהחלוקה לא יעילה פארטו.
 - אז קיימת חלוקה **ב** שהיא שיפור-פארטו שלה.
- •בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו בחלוקה **א**, ולחלק מהשחקנים יש ערך גבוה יותר.
- לכן בחלוקה ב סכום הערכים גבוה יותר בסתירה
 לכך שחלוקה א ממקסמת את סכום הערכים. ***

יעילות אוטיליטרית

הגדרה: חלוקה יעילה-אוטיליטרית (utilitarian) היא חלוקה הממקסמת את סכום הערכים של השחקנים:

$$\max_{X} \sum_{j=1}^{n} V_j(X_j)$$

חישוב: אפשר בפייתון.

עצים	נפט	פלדה	
80	19	1	:עמי
79	1	20	:תמי

החלוקה יעילה – אבל לא הוגנת.

יעילות אגליטרית

היא חלוקה (egalitarian) היא חלוקה אגליטרית (אגליטרית הערך הקטן ביותר: הממקסמת את הערך הקטן ביותר: $\max_X \min_i V_i(X_i)$

אלגוריתם: הגדר משתנה z המייצג את הערך הקטן ביותר. פתור את בעיית האופטימיזציה הבאה:

maximize zsubject to $V_i(X_i) \ge z$ for all i in 1,...,n

עצים	נפט	פלדה	
40.25 , 39.75	19	1	:עמי
39.75, 39.25	1	20	:תמי

יעילות אגליטרית ויעילות פארטו

אם חלק מהשחקנים מייחסים ערך 0 לחלק מהמשאבים, <mark>אז לא כל חלוקה אגליטרית היא יעילה.</mark>

־וגמה:

נפט	פלדה	
0	100	:עמי
50	0	:תמי

- החלוקה שנותנת חצי מהפלדה לעמי, ואת כל השאר לתמי, היא אגליטרית (מדוע?).
 - אבל היא לא יעילה פארטו (מדוע?).

סדר לקסימין

הגדרה: חלוקה לקסימין-אגליטרית (-leximin) היא חלוקה הממקסמת את *וקטור* (egalitarian *הערכים המסודר מהקטן לגדול*, לפי סדר *מילוני.* כלומר: מִמקסמת את הערך הקטן ביותר;

- •בכפוף לזה, את הערך השני הכי קטן;
- . בכפוף לזה, את הערך השלישי הכי קטן; וכו'.

דוגמה∶

- חלוקה עם ערכים (50, 100) טובה יותר, בסדר לקסימין, מחלוקה עם ערכים (50, 50).
 - חלוקה עם ערכים (3, 1, 3) טובה יותר, בסדר לקסימין, מחלוקה עם ערכים (1, 99, 2).

לקסימין ויעילות

משפט: כל חלוקה לקסימין-אגליטרית היא *יעילה-פארטו.*

הוכחה:

- נתונה חלוקה לקסימין-אגליטרית **א**. נניח בשלילה שקיים לה שיפור-פארטו - חלוקה **ב**.
- בחלוקה **ב**, לכל השחקנים יש ערך *לפחות* כמו ב-א, ולחלק מהשחקנים יש ערך *גדול יותר*.
- לכן וקטור-הערכים המסודר בחלוקה ב גדול יותר,
 בסדר מילוני, מבחלוקה א סתירה להנחה שחלוקה
 א היא לקסימין-אגליטרית.

וחישוב חלוקה לקסימין (א)

:אלגוריתם פשוט אבל לא מעשי

- 1. מצא חלוקה שבה הערך המינימלי גדול ביותר (חלוקה אגליטרית). סמן ערך זה באות Z_1 .
- 2. מבין כל החלוקות שבהן הערך המינימלי הוא Z_1 , מצא חלוקה שבה הערך השני מלמטה גדול ביותר. סמן ערך זה באות Z_2 .
- 13. מבין כל החלוקות עם ערך מינימלי Z_1 , וערך השני מלמטה הוא Z_2 , מצא חלוקה שבה הערך השלישי מלמטה גדול ביותר.
 - ... המשך באותו אופן n פעמים.

לא מעשי – כי "הערך השני מלמטה" לא ניתן לייצוג ע"י אילוצים פשוטים כמו "הערך הקטן ביותר".

חישוב חלוקה לקסימין (ב)

משפט. מצב הוא לקסימין-אגליטרי אם ורק אם הוא ממקסם את הערך הקטן ביותר; בכפוף לזה, ממקסם את *סכום שני הערכים הקטנים ביותר*; בכפוף לזה, את *סכום שלושת הערכים הקטנים ביותר*; וכן הלאה.

הוכחה. באינדוקציה על k = מס' הערכים הקטנים ביותר.

- k=1: הערך הקטן ביותר שווה לפי שתי ההגדרות, כי בשתי k=1. ההגדרות מדובר על הערך המינימלי הגדול ביותר האפשרי.
- נניח שנכון עבור k. נסמן את k הערכים הקטנים ביותר בשני הוקטורים ב z₁,...,z_k. כעת:
 - בהגדרה הראשונה: ממקסמים את הערך ה k+1 מלמטה.
 - k,,...,1 ממקסמים את סכום הערכים 1,...,2,
 בהגדרה השניה: ממקסמים את סכום הערכים 2,...,z,
 k+1 אבל, הערכים 1,...,z כבר קבועים ושווים k,...,z.
 לכן הדבר שקול למיקסום הערך ה- k+1.

וחישוב חלוקה לקסימין (ג)

:אלגוריתם משופר

- מצא חלוקה שבה הערך המינימלי גדול ביותר (חלוקה אגליטרית). סמן ערך זה באות Z₁.
- 2. מבין כל החלוקות שבהן הערך המינימלי הוא Z_1 , מצא חלוקה שבה סכום שני הערכים הקטנים גדול ביותר. סמן ב $Z_1 + Z_2$.
- 3. מבין כל החלוקות עם ערך מינימלי Z_1 , וסכום שני ערכים מינימליים $Z_1 + Z_2$, מצא חלוקה שבה *סכום שלושת הערכים הקטנים* גדול ביותר.

... המשך באותו אופן n פעמים.

חישוב חלוקה לקסימין - דוגמה

	עצים	נפט	פלדה
א:	4	0	0
ב:	0	3	0
ג :	5	5	10
ד:	5	5	10

					: 1	71-	1,0
3 =	תר	ו ביו	קטו	ערר		סימ	מק

סיבוב 2: מקסימום סכום שני ערכים קטנים ביותר = 3+4 = 7.

סיבוב
$$\mathbf{4}$$
: מקסימום סכום ביותר $\mathbf{7}$ ארבעה ערכים קטנים ביותר $\mathbf{7}$ ארבעה $\mathbf{7}$ ארבעה $\mathbf{7}$ ארבעה $\mathbf{7}$ ארבעה $\mathbf{7}$ ארבער.

סיבוב 3: מקסימום סכום שלושה ערכים קטנים ביותר = 2+4+5 = 12.

ראו דוגמה בתיקיית הקוד.

חלוקה אגליטרית והוגנות (א)

משפט: אם הערכים של השחקנים *מנורמלים*, כך שכל השחקנים מייחסים את אותו ערך לעוגה כולה, אז כל חלוקה אגליטרית (לקסימין או לא) היא *פרופורציונלית*.

הוכחה:

- ימת חלוקה פרופורציונלית, למשל חלוקה שבה כל n שחקן מקבל n חלקי n מכל משאב.
- יהי V ערך העוגה כולה (בעיני כולם). בחלוקה פרופ., $^{\bullet}$ הערך הקטן ביותר הוא לפחות V חלקי n .
 - לכן, בחלוקה *הממקסמת* את הערך הקטן ביותר, n הערך הקטן ביותר הוא לפחות V חלקי.

• לכן, חלוקה זו גם היא פרופורציונלית.

חלוקה אגליטרית והוגנות (ב)

משפט: לפעמים אין חלוקה אגליטרית וללא-קנאה:

עצים	דלק	ברזל	
30	0	20	:עמי
2	1	0	:תמי

בחלוקה אוטיליטרית – כל העצים לעמי; תמי מקנאת. בחלוקה אגליטרית – כל העצים לתמי; עמי מקנא. האם יש דרך אמצעית?

> האם תמיד קיימת חלוקה שהיא גם **יעילה-פארטו** וגם **ללא קנאה**?

מיקסום סכום פונקציה עולה

משפט: כל חלוקה הממקסמת סכום של *פונקציה עולה כלשהי* של הערכים, היא יעילה פארטו.

הוכחה: נתונה חלוקה א הממקסמת סכום זה.נניח בשלילה שהחלוקה לא יעילה פארטו.

אז קיימת חלוקה ב שהיא שיפור-פארטו שלה.

בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו•

בחלוקה א, ולחלק מהשחקנים יש ערך גבוה יותר.

כיוון שהפונקציה עולה, בחלוקה **ב** הסכום גבוה יותר •

– סתירה לכך שחלוקה **א** ממקסמת את הסכום.

מיקסום סכום פונקציה עולה

הכללה: נמצא חלוקה הממקסמת את הסכום של *פונקציה עולה* של הערכים:

$$\max \sum_{j=1}^{n} f(V_j(X_j))$$

נסמן: x = אחוז העצים שמקבל עמי

עצים	נפט	פלדה	
81	19	0	:עמי
80	0	20	:תמי

maximize
$$f(81 x + 19) + f(80(1-x)+20)$$

subject to $0 \le x \le 1$

מיקסום סכום פונקציה עולה

איזו פונקציה נמקסם כדי לקבל חלוקה שהיא גם יעילה וגם *הוגנת*?

איזו פונקציה לבחור?

מתברר שאם הפונקציה f היא לוגריתמית: $\mathbf{f}(\mathbf{V}) = \mathbf{log}(\mathbf{V})$ אז החלוקה לא רק יעילה אלא גם ללא קנאה!

יעילות נאש

הגדרה. מצב יעיל-נאש הוא מצב הממקסם את *סכום* הלוגריתמים של הערכים (f=log). משפט: כל חלוקה יעילה-נאש היא ללא קנאה. הוכחה: נסתכל בפרוסת עוגה אינפיניטיסימלית, Z. (1 היא: $f(V_i(X_i))$ היא: התרומה שלה ל $f(V_i(X_i))$ $f(V_i(X_i)+V_i(Z)) - f(V_i(X_i)) \sim f'(V_i(X_i)) * V_i(Z)$ jלכן, אלגוריתם המיטוב ייתן כל פרוסה Z לשחקן שהמכפלה הזאת עבורו גדולה ביותר: $f'(V_i(X_i)) * V_i(Z) \ge f'(V_i(X_i)) * V_i(Z)$ נסכם את המשוואה על כל הפרוסות שניתנו ל-j: $f'(V_i(X_i)) * V_i(X_i) \ge f'(V_i(X_i)) * V_i(X_i)$

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה יעילה-נאש היא ללא קנאה. הוכחה [המשך]: לכל חלוקה הממקסמת את הסכום של (f(V): $f'(V_i(X_i)) * V_i(X_i) \ge f'(V_i(X_i)) * V_i(X_i)$:כאשר f היא פונקציה לוגריתמית, מקבלים $(1 / V_i(X_i)) * V_i(X_i) \ge (1 / V_i(X_i)) * V_i(X_i)$ מעבירים אגף ומקבלים, לכל שני שחקנים i,i: $V_i(X_i) \geq V_i(X_i)$ וזו בדיוק ההגדרה של חלוקה ללא קנאה! ***

אוטיליטרית – נאש – אגליטרית

עצים	דלק	ברזל	
30	0	20	:עמי
2	1	0	:תמי

בחלוקה אוטיליטרית – כל העצים לעמי; תמי מקנאת.

בחלוקה אגליטרית – כל העצים לתמי; עמי מקנא.

בחלוקה יעילה-נאש – 42% מהעצים לעמי; אף אחד לא מקנא!

יעילות, הוגנות וקשירות

ראינו שתמיד אפשר למצוא חלוקה שהיא:

- יעילה וללא-קנאה•
- קשירה וללא-קנאה
 - יעילה וקשירה.

האם תמיד קיימת חלוקה ללא-קנאה, יעילה וקשירה? -- לא! הנה דוגמה:

עמי	2	0	3	0	2	0	0
תמי	0	0	0	0	0	7	0
צומי	0	2	0	2	0	0	3

חלוקה ללא קנאה - טרילמה

פרוסות קשירות	ללא קנאה	יעיל פארטו	
		לא	אלגוריתם סוּ והמשולשים
לא	J	J	מיקסום סכום לוגים
ID	לא	J	דיקטטורה סדרתית

הוגנות לעומת יעילות במבחנים

נתונים:

- בתקופת המבחנים, בכל יום ובכל כיתה יש שלושה מבחנים. המבחנים מתחילים בשעות 9, 13, 17. לכן הזמן המירבי האפשרי לכל מבחן הוא **4 שעות**.
- סטודנטים הזכאים להארכת-זמן מקבלים **25% יותר** זמן מכל שאר הסטודנטים.

שאלה: כמה זמן צריך לתת למבחן?

- . שעות לכולם יעיל פארטו אבל לא הוגן 4•
- .3 שעות לכולם, 3.75 לזכאים הוגן אבל לא יעיל

?האם יש פתרון שהוא הוגן וגם יעיל פארטו