Econometría I

Autocorrelación

Carlos Yanes | Departamento de Economía | 2023-04-19

Preguntas de la sesion anterior?

Antes de empezar

Recordeis

Antes del arranque... 🕸

- 1. Este curso tiene siempre **teoría** por aprender.
- 2. Tendrá ventajas sobre los demás que hacen data science si conoce o sabe de esto.
- 3. Los últimos test que hemos estado aprendiendo no son nada **fáciles**, requieren de saber **interpretar** los resultados de estos y del como esta planteada la **prueba de hipótesis nula**.

• Note un modelo de corte transversal:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- ullet Donde i o N
- Ahora uno de **series de tiempo**:

$$Y_i = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + u_t$$

ullet Donde t o T

Las **series de tiempo** a diferencia de los cortes transversales (diferentes por individuos) difieren o varian por periodos de tiempo.

Ejemplo

- ① Nos enfocamos en una **unidad/individuo** *p.e:* Colombia
- 1 Lo observamos varias veces en el **tiempo** *p.e:* Colombia: 2015-2025

Tiempo	Observaciones
2017	125
2018	451
2019	378
2020	391
2021	115

En una **serie de tiempo** los reportes deben ir organizados por un **indice** que debe variar en el tiempo.

• Para series con frecuencia mas desagregadas *p.e:* (mes, trimestre, semestre) habría que usar en **R** la opción de frequency:

```
y <- ts(datos, frequency=12, start=c(2010, 1))
```

• Donde 12 es la parte de frecuencia mensual y en la parte de start el año y mes donde inicia la serie.

Modelos MCO

Autocorrelación: Tipo de Modelos MCO

Nuestro modelo inicial puede ser:

$$Consumo_t = \beta_0 + \beta_1 Ingreso_t + u_t$$

O tal vez

$$Consumo_t = \beta_0 + \beta_1 Ingreso_t + \beta_2 Ingreso_{t-1} + u_t$$

Incluso puede ser

$$Consumo_t = \beta_0 + \beta_1 Ingreso_t + \beta_2 Ingreso_{t-1} + \beta_3 Consumo_{t-1} + u_t$$

- Las series pueden ser estáticos, un momento (t) en particular
- Y de otra forma dinámicos, que ya incluyen choques que afectan el futuro de la serie.

Autocorrelación: Tipo de Modelos MCO

Concepto

Autocorrelación: ocurre cuando nuestras *perturbaciones* están correlacionadas en el tiempo, *p.e*: $\mathrm{Cov}(u_t,\,u_j) \neq 0$ para $t \neq j$

Otra forma de pensar: Si el choque de la perturbación (t) se correlaciona con las perturbaciones "cercanas" en (t-1) y (t+1).

El término de correlación serial es el mismo que Autocorrelación

Operador rezago

Hay que estar atentos a lo que significa un rezago, esto es:

Tiempo	Observaciones	Rezago
2017	125	NA
2018	451	125
2019	378	451
2020	391	378
2021	115	391

Los rezagos o "lags" permiten medir los efectos temporales de una variable. Esto puede estar bien para (Y) pero mal para los residuos (u).

```
P.e.:,
{1, 2, 3, 4, 5, 6, 7, 8, 9} = x
{7, 1, 2, 3, 4, 5, 6, 7, 8} = lag(x)
{7, 7, 1, 2, 3, 4, 5, 6, 7} = lag(x, 2)
{7, 7, 1, 2, 3, 4, 5, 6} = lag(x, 3)
```

Autocorrelación Positiva: Residuos (u_t) en el tiempo

Autocorrelación Positiva: Dependiente (y_t) en el tiempo

Autocorrelación Negativa: Residuos (u_t) en el tiempo

Autocorrelación Negativa: Dependiente (y_t) en el tiempo

Autocorrelación: Modelos Estáticos

Empecemos con un modelo muy común: un modelo de serie temporal estática cuyas perturbaciones presentan **autocorrelación de primer orden**, *conocido como* **AR(1)**:

$$Consumo_t = \beta_0 + \beta_1 Ingreso_t + u_t$$

Donde

$$u_t = \rho u_{t-1} + \varepsilon_t$$

Y el residuo ε_t es independiente e idénticamente distribuido (i.i.d.).

Para una Autocorrelación de segundo-orden, o AR(2), puede ser

$$u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \varepsilon_t$$

Autocorrelación: Modelos Estáticos

Un modelo/proceso **AR(p)** tiene una estructura de perturbaciones:

$$u_t = \sum_{j=1}^p
ho_j u_{t-j} + arepsilon_t$$

Mostrando que las perturbaciones del presente (t) estan correlacionadas con sus rezagos p.

Recuerde que ρ es similar a un parámetro β solo que este se usa como si estuviera modelando a las perturbaciones (e_t)

Autocorrelación: Problemas

De forma similar a la **heterocedasticidad** tener **correlación serial** nos genera:

- MCO con estimadores **insesgados**.
- MCO los errores estandar (S. E) de los $(\beta' s)$ son sesgados
- MCO es ineficiente

La autocorrelación se vuelve más complicada con las variables dependiente rezagadas.

Autocorrelación: Modelo Dinámico

Considere un modelo de rezago distribuido de tal manera que:

$$\text{Consumo}_t = \beta_0 + \beta_1 \text{Ingreso}_t + \beta_2 \text{Consumo}_{t-1} + u_t$$

Donde

$$u_t = \rho u_{t-1} + \varepsilon_t$$

Problema:

Ambos $\operatorname{Consumo}_{t-1}$ (como regresor en el periodo t) y u_t (el residuo en t) dependen de u_{t-1} . p.e., un regresor esta correlacionado con el residuo contemporaneo

P: Por qué este problema?

R./: Esto viola **Exogeneidad contemporanea**, p.e., $\mathrm{Cov}(x_t,\,u_t) \neq 0$.

Autocorrelación: Modelo Dinámico

Para ver esto hay que escribir el modelo en t y en t-1:

$$\begin{aligned} & \operatorname{Consumo}_{t} = \beta_{0} + \beta_{1} \operatorname{Ingreso}_{t} + \beta_{2} \operatorname{Consumo}_{t-1} + u_{t} \\ & \operatorname{Consumo}_{t-1} = \beta_{0} + \beta_{1} \operatorname{Ingreso}_{t-1} + \beta_{2} \operatorname{Consumo}_{t-2} + u_{t-1} \end{aligned}$$

Observe ahora que $u_t = \rho u_{t-1} + \varepsilon_t$.

$$Consumo_{t} = \beta_{0} + \beta_{1} Ingreso_{t} + \beta_{2} Consumo_{t-1} + (\rho u_{t-1} + \varepsilon_{t})$$

$$Consumo_{t-1} = \beta_{0} + \beta_{1} Ingreso_{t-1} + \beta_{2} Consumo_{t-2} + u_{t-1}$$
(2)

En (1), podemos ver que u_t depende de (esta correlacionado) u_{t-1} .

En (2), miramos entonces que $Consumo_{t-1}$, un regresor en (1), también con covarianza con u_{t-1} .

∴ En síntesis, el modelo esta sesgado y no es **exogeno**

Autocorrelación: Test de corrección

- Tenemos a **Breush Pagan**
- Uno ampliamente conocido como **Durbin-Watson**

Paso 1: Estima su modelo estático $(y_t = eta_0 + eta_1 x_t + u_t)$ con MCO

```
modelo <- lm(y \sim x, data = base)
```

Paso 2: Agregamos residuos a la base

```
base$e <- residuals(modelo)</pre>
```

Paso 3: Estima la regresión del residuo con su rezago (sin intercepto)

```
mod_resid <- lm(e ~ -1 + lag(e), data = base)
```

Paso 4: Observe el t estadístico del parámetro $(\hat{\rho})$ que es el coeficiente en el paso 3.

tidy(mod_resid)

term	estimate	std.error	statistic	p.value
lag(e)	0.973	0.0508	19.1	1.28e-17

Si la probabilidad del t valor es menor al p-value de 0.05, tendríamos que rechazar a H_0 .

La hipótesis H_0 es H_0 : $\rho = 0$, p.e., es decir, no hay autocorrelación.

Paso 5: Concluimos para este caso que **existe** suficiente evidencia estadística para rechazar H_0 y por ende tenemos autocorrelación.

Ejemplo: Modelo rezagado

Paso 1: Estimamos el modelo en rezago (1, 0) con MCO.

```
# Estimar el modelo
mco_est <- lm(
   y ~ lag(y) + x,
   data = base
)
# Resumen
tidy(mco_est)</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	-3.85e-10	2.78e-10	-1.38	0.179
lag(y)	1.02	1.21e-15	8.42e+14	0
X	-1.84e-16	1.97e-16	-0.934	0.359

Ejemplo: Modelo rezagado

Paso 2: Guardamos los residuos de ese modelo

```
# Guardar residuos
base$ebg <- c(NA, residuals(mco_est))</pre>
```

Nota: Colocamos la parte de NA porque el primer rezago desaparece (valor perdido).

Ejemplo: Modelo rezagado

Ejemplo: Modelo rezagado

Paso 3: Regresión de los residuos con un intercepto, variables explicativas, y residuos rezagados.

```
# BG reg
bg_mod <- lm(
   ebg ~ lag(y) + x + lag(ebg) + lag(ebg, 2),
   data = base
)</pre>
```

	Estimate	Standard Error	t value	Pr(> t)
(Intercept)	0.000	0.000	1.768	0.0909 .
lag(y)	-0.000	0.000	-1.743	0.0953 .
X	0.000	0.000	1.702	0.1029
lag(ebg)	0.094	0.197	0.479	0.6366
lag(ebg, 2)	-0.039	0.087	-0.441	0.6633

Signif. codes: 0 <= '*' < 0.001 < " < 0.01 < '*' < 0.05 < '.' < 0.1 < " < 1

Ejemplo: Modelo rezagado

Paso 4: Prueba F (o LM) Para probar si $\rho_1=\rho_2=0$.

Recuerde: Debemos usar la prueba F, nos permite moldear de esta forma las hipótesis (Mire: $ho_1=
ho_2=0$)

$$F_{q,\,n-p} = rac{\left(\mathrm{SRC}_r - \mathrm{SRC}_{nr}
ight) ig/q}{\mathrm{SRC}_{nr} ig/\left(n-p
ight)}$$

Donde q es el número de restricciones y p es el número de parámetros del modelo no restringido (incluyendo el intercepto).

Podemos usar la función de waldtest() del paquete lmtest de R para esto.

Ejemplo: Modelo rezagado

Paso 4: Prueba F (o LM) Para probar si $\rho_1=\rho_2=0$.

```
# BG regresion
bg_mod <- lm(
  ebg ~ lag(y) + x + lag(ebg) + lag(ebg, 2),
  data = base
)
# Usamos el test
p_load(lmtest)
waldtest(bg_mod, c("lag(ebg)", "lag(ebg, 2)"))</pre>
```

Aquí, estamos implementando la opción de waldtest para probar

- La especificación del modelo bg_mod (nuestro modelo no restringido)
- Contra un modelo sin los términos lag(ebg) y lag(ebg, 2) (nuestro modelo restringido)

Ejemplo: Modelo rezagado

Paso 4: Prueba F (o LM) Para probar si $\rho_1=\rho_2=0$.

```
# BG regresion
bg_mod <- lm(
  ebg ~ lag(y) + x + lag(ebg) + lag(ebg, 2),
  data = base
)
# Usamos el test
p_load(lmtest)
waldtest(bg_mod, c("lag(ebg)", "lag(ebg, 2)"))</pre>
```

Res.Df	Df	F	Pr(>F)
22			
24	-2	0.399	0.676

Ejemplo: Modelo rezagado

Paso 5: Conclusiones

Con un p-value de ~0.676, No rechazamos la hipotesis nula.

- No podemos rechazar que $\rho_1=\rho_2=0$.
- No podemos rechazar la "no autocorrelación" en el modelo.

Sin embargo, Vamos a testear también la autocorrelación de orden: AR(2).

Podemos obtener diferentes respuestas con diferentes pruebas.

El *p*-value para el AR(1) es 0.0178—que sugiere una autocorrelación de primer orden *este modelo es para una econometría mas avanzada*.

Autocorrelación: Durbin-Watson

Es la mas conocida para encontrar autocorrelación.

- Asume que $\mu_t =
 ho \mu_{t-1} + \epsilon_t$ y sigue una distribución asintótica.
- La formula del estadístico es:

$$d = rac{\sum\limits_{t=2}^{T} (\mu_t - \mu_{t-1})^2}{\sum\limits_{t=1}^{T} \mu_t^2}$$

- ullet El estadístico DW, se puede aproximar como: dpprox 2(1ho)
- Como el coeficiente de correlación oscila entre -1 y 1, el estadístico DW se situara entre 0 y 4, es decir: $0 \le d \le 4$
- ullet En el mejor de los casos, d=2, nos indicaría que ${f NO}$ habría problema de autocorrelación.

Autocorrelación: Durbin-Watson

Como corregir

Realizar una **transformación** del modelo original con un **modelo de diferencias** teniendo en cuenta el parámetro de la correlación del residuo.

• Hallar el parámetro ρ .

$$\epsilon_t = \rho \epsilon_{t-1} + v_t$$

• Se aplica la transformación de primeras diferencias.

$$Y_t -
ho Y_{t-1} = eta_0 (1-
ho) + eta_1 (X_t -
ho X_{t-1}) + \mu_t$$

• De esta forma ya se ha corregido el problema.

Vamos a tener un modelo de:

$$Ventas_t = \beta_0 + \beta_1 inventarios_t + \epsilon_t$$

Paso 1: Estimar el modelo

```
library(dynlm) # Modelo dinámico
library(orcutt) # Corrección Autocorrelación
base_da<-read_excel("regauto.xlsx")
reg.dyn<-dynlm(ventas~inventarios, data = base_da)
reg.dyn %>% broom::tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	-903	1.17e+03	-0.775	0.443
inventarios	0.643	0.00289	223	1.72e-63

Paso 2: Hallar estadistico D-Watson

```
dwtest(reg.dyn)

#>
#> Durbin-Watson test
#>
#> data: reg.dyn
#> DW = 1.3743, p-value = 0.01175
#> alternative hypothesis: true autocorrelation is greater than 0
```

Note que el estadístico DW, cae en la zona de **autocorrelación positiva**. Debemos proceder a su corrección

Paso 3: Corregir el problema

```
cochrane.orcutt(reg.dyn)
#> Cochrane-orcutt estimation for first order autocorrelation
#>
#> Call:
#> dynlm(formula = ventas ~ inventarios, data = base_da)
#>
   number of interaction: 3
   rho 0.311047
#>
#> Durbin-Watson statistic
#> (original): 1.37429 , p-value: 1.175e-02
   (transformed): 2.04410 , p-value: 4.902e-01
#>
   coefficients:
#> (Intercept) inventarios
#> -966.166560
                  0.642991
```

De tal manera que el modelo ya esta corregido

	(1)	(2)
(Intercept)	-902.827	-966.167
	(1165.121)	(1673.581)
inventarios	0.643 ***	0.643 ***
	(0.003)	(0.004)
N	42	42
R2	0.999	0.998
logLik	-414.513	
AIC	835.026	
		_

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Bibliografía

- 🗏 Gujarati, D. N., & Porter, D. C. (2011). *Econometria Básica*. Ed. Porto Alegre: AMGH...
- Stock, J. H., Watson, M. W., & Larrión, R. S. (2012). *Introducción a la Econometría*.
- Wooldridge, J. M. (2015). *Introductory econometrics: A modern approach*. Cengage learning.

Gracias por su atención!

Carlos Andres Yanes Guerra

cayanes@uninorte.edu.co

keynes37