Math 325 Problem Set 8 Solutions

Problems were due Friday, March 17.

28. [Zorn, p.152, # 1] Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x) = 0 for every $x \in \mathbb{Q}$. Show that f(x) = 0 for every $x \in \mathbb{R}$.

Suppose not. Suppose that there is an $a \in \mathbb{R}$ with $f(a) \neq 0$. Then $|f(a)| = \epsilon > 0$, and so, since f is continuous at a, there is a $\delta > 0$ so that $|x - a| < \delta$ implies that $|f(x) - f(a)| < \epsilon = |f(a)|$. In particular (borrowing from a previous problem!) we know that $|x - a| < \delta$ implies that $||f(x) - |f(a)|| \leq |f(x) - f(a)| < |f(a)|$ so -|f(a)| < |f(x)| - |f(a)|, so 0 < |f(x)|. In particular (again!) we have that $|x - a| < \delta$ implies the $f(x) \neq 0$.

But this is impossible. No matter what a and $\delta > 0$ are, we know that there is an $x \in \mathbb{Q}$ so that $|x - a| < \delta$. So, by hypothesis, f(x) = 0. But the above says that, for a particular choice of $\delta > 0$, every such x has $f(x) \neq 0$. Therefore, the assumption we made, that there is an $a \in \mathbb{R}$ with $f(a) \neq 0$, must be false. So f(x) = 0 for every $x \in \mathbb{R}$.

29. Using the problem above, show that if $f, g : \mathbb{R} \to \mathbb{R}$ are both continuous functions, and f(x) = g(x) for every $x \in \mathbb{Q}$, then f = g (i.e., f(x) = g(x) for every $x \in \mathbb{R}$).

['A continuous function is determined by its values on the rational numbers.']

This has a fairly quick proof. If f and g are both continuous, then h(x) = f(x) - g(x) is also continuous, and our hyppothesis iplies that h(x) = f(x) - g(x) = 0 for every $x \in \mathbb{Q}$. Our previous problem therefore tells us that h(x) = 0 for every x, so f(x) = g(x) for every $x \in \mathbb{R}$. So f = g.

30. ['Pasting' continuous functions together.] Show that if a < b < c and if $f : [a, b] \to \mathbb{R}$ and $g : [b, c] \to \mathbb{R}$ are both continuous functions, and f(b) = g(b), then the function $h : [a, c] \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \le b \\ g(x) & \text{if } x \ge b \end{cases}$$

is continuous at x = b. Why is it also continuous at every <u>other</u> point in [a, c]?

To establish that h is continuous at x=b, we wish to show that for any $\epsilon>0$ there is a $\delta>0$ so that $|x-a|<\delta$ implies that $|h(x)-h(a)|<\epsilon$. But since f is countinuous at x=b (which is the right endpoint of its interval of definition), we know that $\lim_{x\to b^-}f(x)=f(b)$, so for our $\epsilon>0$ above, there is a $\delta_1>0$ so that $|x-b|<\delta+1$ and x< b we have $|f(x)-f(b)|<\epsilon$. Also, since g is continuous at b (which is the left endpoint of its interval of definition), we know that $\lim_{x\to b^+}g(x)=g(b)$, so for our $\epsilon>0$ above, there is a $\delta_2>0$ so that $|x-b|<\delta_2$ and x>b we have $|g(x)-g(b)|<\epsilon$.

But since f(b) = h(b) = g(b), and h(x) = f(x) when x < b and h(x) = g(x) when x > b, we have actually established that if $|x - b| < \delta_1$ and x < b then $|h(x) - h(b)| < \epsilon$,

1

and if $|x-b| < \delta_2$ and x > b then $|h(x) - h(b)| < \epsilon$. Note that if x = b, then $|h(x) - h(b)| = |h(b) - h(b)| = 0 < \epsilon$ automatically. So, if we set $\delta = \min\{\delta_1, \delta_2\} > 0$, then $|x-b| < \delta$ implies that x = b or $|x-b| < \delta_1$ and x < b or $|x-b| < \delta_2$ and x > b; in every case, we can conclude that $|h(x) - h(b)| < \epsilon$. SO we have found a $\delta > 0$ so that $|x-b| < \delta$ implies the $|h(x) - h(b)| < \epsilon$. So h is continuous at h in the set of the set

For every other point $d \in [a, c]$, either d < b or d > b. If d < b, then $b - d = \delta_1 > 0$, and so $|x - d| < \delta_1$ implies that x < b, so h(x) = f(x). So if we have an $\epsilon > 0$, then the continuity of f at x = d implies that there is a $\delta_2 > 0$ so that $|x - d| < \delta_2$ and $x \in [a, b]$ implies that $|f(x) - f(d)| < \epsilon$. Then, setting $\delta = \min\{\delta_1, \delta_2\} > 0$, if $|x - d| < \delta$, then $|x - d| < \epsilon_1$ so x < b and so $x \in [a, b]$, so f(x) = h(x), and so since $|x - d| < \delta_2$, as have $|h(x) - h(d)| = |f(x) - f(d)| < \epsilon$. So h is continuous at x = d.

The case of d > b is essentially identical. If d > b, then $d - b = \delta_1 > 0$, and so $|x - d| < \delta_1$ implies that x > b, so h(x) = g(x). So if we have an $\epsilon > 0$, then the continuity of g at x = d implies that there is a $\delta_2 > 0$ so that $|x - d| < \delta_2$ and $x \in [a, b]$ implies that $|g(x) - g(d)| < \epsilon$. Then, setting $\delta = \min\{\delta_1, \delta_2\} > 0$, if $|x - d| < \delta$, then $|x - d| < \epsilon_1$ so x > b and so $x \in [b, c]$, so g(x) = h(x), and so since $|x - d| < \delta_2$, as have $|h(x) - h(d)| = |g(x) - g(d)| < \epsilon$. So h is continuous at x = d.

31. [Zorn, p.154, #10] Suppose that a < 0 < b and $f : (a,b) \to \mathbb{R}$ is a function that is bounded (i.e., for some $M \in \mathbb{R}$, $|f(x)| \leq M$ for every $x \in (a,b)$). Show that the function $g : (a,b) \to \mathbb{R}$ defined by g(x) = xf(x) is continuous at x = 0. Show, on the other hand, that for any other $c \in (a,b)$ we have that g is continuous at c if and only if f is continuous at c.

[The last assertion can be attacked using 'general' results we have established, or directly using ϵ 's and δ 's (your choice!).]

First note that $g(0) = 0 \cdot f(0) = 0$. Because $|f(x)| \leq M$ for every $x \in (a,b)$, we know that $|g(x)| = |xf(x)| = |x| \cdot |f(x)| \leq M|x|$ for every $x \in (a,b)$. [Note that since $|f(x)| \geq 0$, we must have $M \geq 0$. Since (because this is really being written backwards) we will eventually want to divide by M, we would actually like to have M > 0, so if M = 0 actually works, then M = 1 does, too. So in waht follows we will assume that M > 0.]

So for any $\delta > 0$ we have $|x| = |x - 0| < \delta$ implies that $|g(x) - g(0)| = |xf(x) - 0| = |xf(x)| \le M|x| < M\delta$. So, given an $\epsilon > 0$, if we set $\delta = \epsilon/M$, then $|x - 0| < \delta$ implies that $|g(x) - g(0)| = |xf(x) - 0| = |xf(x)| \le M|x| < M\delta = M(\epsilon/M) = \epsilon$, so $|g(x) - g(0)| < \epsilon$. So g is continuous at x = 0.

On the other hand, if $c \neq 0$, then $h(x) = \frac{1}{x}$ and k(x) = x are both continuous at x = c. So if f(x) is continuous at x = c, then k(x)f(x) = xf(x) = g(x) is continuous at c, since the product of functions continuous at x - c is continuous at c, while if g is continuous at c then $h(x)g(x) = \frac{1}{x}(xf(x)) = f(x)$ is continuous at $c \neq 0$ if and only if c is continuous at c.

[There is an argument working directly with the ϵ - δ definition of continuity, but it is much less pleasant...]