MPI 异步通信小作业 实验报告

任务一

InfiniBand:

编号	消息长度	延迟 (us)	带宽(MB/s)
1	1	1.06	5.93
2	2	1.02	12.04
3	4	0.97	23.78
4	8	0.94	48.13
5	16	0.93	97.79
6	32	0.98	195.11
7	64	1.07	335.11
8	128	1.12	675.15
9	256	1.57	1134.15
10	512	1.68	2149.22
11	1024	1.90	3196.73
12	2048	2.33	5071.90
13	4096	3.16	4775.06
14	8192	4.51	9895.07
15	16384	6.35	10496.04
16	32768	8.30	11321.81
17	65536	11.50	11654.40
18	131072	18.15	11842.83
19	262144	31.33	11956.37
20	524288	55.75	12019.29
21	1048576	100.60	12044.47
22	2097152	185.22	12058.49
23	4194304	360.29	12060.82

以太网:

编号	消息长度	延迟 (us)	带宽(MB/s)
1	1	42.51	0.31
2	2	42.61	0.64
3	4	42.56	1.28
4	8	42.71	2.51
5	16	42.84	5.37
6	32	43.15	9.59
7	64	44.16	17.23
8	128	45.77	35.21
9	256	50.26	56.18
10	512	55.90	82.05
11	1024	67.40	96.36
12	2048	84.54	105.68
13	4096	106.17	111.20
14	8192	162.33	114.32
15	16384	210.99	116.03
16	32768	356.17	116.81
17	65536	631.51	117.20
18	131072	1193.22	117.40
19	262144	2404.14	117.51
20	524288	4634.67	117.58
21	1048576	9077.77	117.61

- 请描述当消息长度增加时,带宽和延迟分别呈现出什么样的趋势?
 - 。 消息增长时,带宽先快速上升后趋稳,延迟先稳定在一个较低值,后逐渐增加。
- 该趋势在两种网络下有何不同?
 - InfiniBand带宽更高且延迟显著更低,尤其小消息时差异大。以太网延迟更晚开始增加,带宽更早达到饱和。
- 为什么会有这样的趋势?

- 。 传输小信息时,延迟主要受网络的固有通信时延约束,传输大信息时,延迟主要受带宽约束。 InfiniBand优化低延迟/高吞吐,以太网协议栈更复杂。
- 对比InfiniBand和以太网络下的带宽和延迟,它们之间的差距是多少?
 - 。 InfiniBand带宽约高100倍, 延迟约低30倍。

任务二

编号	消息长度	计算量	mpi_sync 总耗时	mpi_async 总耗时
1	100000000	10	796.757	837.128
2	10000000	20	1042.34	837.447
3	100000000	40	1240.06	868.411
4	100000000	80	1650.68	867.835
5	10000000	160	2441.66	1600.52

- 通信时间和计算时间满足什么关系时,非阻塞通信程序能完美掩盖通信时间?
 - 。 当计算时间大于等于通信时间时, 非阻塞通信能完全隐藏通信开销。
- 简述两份代码的不同之处。
 - o mpi_async.cpp 用的是 MPI_Isend 和 MPI_Wait 这两个非阻塞通信函数, mpi_sync.cpp 用的是 MPI_Send 这个阻塞通信函数。