Andrew Friedman Lab 3 Report ECE 2031 CS 9 June 2023

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
  2
3
4
                                                                         -- Describes the device from the outside
-- Defines the signals coming into and out of the device
         □entity RPS_VHDL is
  5
6
7
8
9
                                               : in std_logic;
: in std_logic;
: out std_logic;
: out std_logic
                          R2, P2, S2
W1, W2
10
                          E1, E2
end RPS_VHDL;
         □ architecture Internals of RPS_VHDL is -- Define the internal architecture of the device
                -- Create a 6-bit vector that will give us easy access to all inputs signal all_inputs : std_logic_vector(5 downto 0);
         ⊟begin
                -- "&" is CONCATENATION, not logical AND. all_inputs <= R1 & P1 & S1 & R2 & P2 & S2;
                -- Using a "selected signal assignment", aka "with/select"
with all_inputs select w1 <=
    '1' when "100001" -- p1 rock & p2 scissors
    | "010100" -- p1 paper & p2 rock
    | "001010", -- p1 scissors & p2 paper
    '0' when others;
                   - Using a "conditional signal assignment", aka "when/else"
                                when all_inputs = "001100" else -- p2 rock & p1 scissors
when all_inputs = "100010" else -- p2 paper & p1 rock
when all_inputs = "010001" else -- p2 scissors & p1 paper
35
36
37
38
39
40
41
42
43
44
45
46
47
48
                   - Using when/else in a different way
                E1 <= '1' when (R1 = '1' and P1 = '1') or (P1 = '1' and S1 = '1') or (S1 = '1' and R1 = '1') else '0';
                -- Using Boolean expression E2 <= (R2 and P2) or (P2 and S2) or (S2 and R2);
        Lend Internals:
```

Figure 1. The finalized VHDL code implementing the Rock-Paper-Scissors game logic on DE10-Standard using switches for inputs and LEDs for outputs.

Figure 2. The functional simulation waveform illustrating the correct behavior of the Rock-Paper-Scissors game logic under varying inputs.

Figure 3. The annotated schematic of the circuit showing the worst-case propagation delays for each gate and the overall worst-case path while providing a maximum estimate for the circuit's performance.

Figure 4. Oscilloscope screenshot capturing the measurement of the signal period at Test Point 2 (TP2) with vertical cursors indicating the calculated period.

Figure 5. Oscilloscope screenshot demonstrating the measurement of the high time of the signal, from which the duty cycle is calculated.

Figure 6. Oscilloscope screenshot showing the measurement of the signal's fall time. **Figure 7.** Oscilloscope screenshot demonstrating the high-to-low propagation delay of the inverter circuit.

Figure 8. Oscilloscope screenshot illustrating the low-to-high propagation delay of the inverter circuit.