## 华中科技大学

光电子工程系二00二级《光纤光学》期末考试试卷(半开卷)

| 专业: |     |                                    | 班级:                                                                 |                                    | 姓名:                   |                      | 学号:         |              |               |
|-----|-----|------------------------------------|---------------------------------------------------------------------|------------------------------------|-----------------------|----------------------|-------------|--------------|---------------|
| 题   | 号   | _                                  | =                                                                   | 三 (1)                              | 三 (2)                 | 三 (3)                | 三 (4)       | 四            | 总分            |
| 得   | 分   |                                    |                                                                     |                                    |                       |                      |             |              |               |
| 阅え  | 长人  |                                    |                                                                     |                                    |                       |                      |             |              |               |
|     |     | <b>题</b> (下列》<br>话号内。每             | —                                                                   |                                    |                       | <b>-个</b> 正确?        | 答案,请次       | 将其代号         | 写在题干          |
| (   | ) 1 | B、NA<br>C、NA                       | A 越大,<br>A 越大,<br>,<br>越大, う<br>A 越大, う                             | 光纤的收<br>光纤的收<br>光源与光:              | 光能力起<br>光角越大<br>纤的耦合  | 或大;<br>;<br>效率越高     | ī;          | 题是 <b>错误</b> | 的?            |
| (   | ) 2 |                                    | 光纤通信点<br>纤的弯曲<br>度金属离                                               | 损耗;                                | В                     | 、OH <sup>一</sup> 吸   | 收损耗;        |              |               |
| (   | ) 3 | B、TE                               | 千中传输的<br>模光纤对<br>οι、TM <sub>01</sub><br>个模式都<br>Ξ <sub>11</sub> 模是唯 | 于所有源<br>和 HE <sub>21</sub><br>有自己对 | 皮长的光位<br>模具有相<br>应的截止 | 言号都是<br>同的截止<br>二频率; | 单模传输        |              |               |
| (   | ) 4 |                                    |                                                                     |                                    |                       | 材料色散                 | ζ;          | 钟色散?         |               |
| (   | ) 5 | 有关光印<br>A、实现 <sup>5</sup><br>C、完成何 | 背向散射                                                                | 功率的测                               | l量; B                 | 、进行光                 | 2.纤间连挂      |              |               |
| (   | ) 6 | B、正位<br>以,                         | 散的存在                                                                | 使光纤通<br>纤使光脉<br>内光纤也               | 信系统的<br>冲展宽,<br>成为色散  | 而负色情<br>补偿光约         | 效的光纤/<br>f; | 使光脉冲         | 过变小;<br>·压缩,所 |

D、通过适当调整光纤波导的结构参量可使波导色散和材料色散互相

抵消。

- ( )7 下列光纤的传输带宽,由小到大的排列次序为:
  - A、多模的 GIOF、多模 SIOF、单模光纤;
  - B、多模 SIOF、多模的 GIOF、单模光纤;
  - C、单模光纤、多模的 GIOF、多模 SIOF:
  - E、多模 SIOF、单模光纤、多模的 GIOF;
- ( ) 8 以下关于自聚焦透镜论述错误的是:
  - A、 折射率分布与平方律光纤的折射率分布相同:
  - B、能完成与普通球面透镜相同的功能;
  - C、任意光源与光纤间的高效耦合,均可由自聚焦透镜来实现;
  - D、自聚焦透镜的长度一般以节距来表示。
- ( )9 *LP<sub>ℓ,m</sub>* (ℓ≠0)线偏振模的模斑为:
  - A、 径向亮斑数为2m, 角向亮斑数为 $\ell$ , 而且中心为暗;
  - B、 径向亮斑数为 $\ell$ , 角向亮斑数为2m, 而且中心为亮;
  - C、 径向亮斑数为 $2\ell$ , 角向亮斑数为m, 而且中心为亮;
  - D、 径向亮斑数为m, 角向亮斑数为 $2\ell$ , 而且中心为暗;
- ( )10 以下那一种说法是错误的:
  - A、OH<sup>-</sup>是造成光纤吸收损耗的主要因素;
  - B、OH<sup>-</sup>将造成光纤的微裂;
  - C、OH<sup>-</sup>使光纤的色散增加;
  - E、OH<sup>-</sup>使光纤的传输容量减小。
- ( )11 下列光波长不属于通常所说的光纤的三个传输窗口是:
  - $A \sim 0.85 \mu m$ ;
  - $B_{s}$  1.31 µm;
  - C、1.48µm;
  - D<sub>2</sub> 1.55μm<sub>6</sub>
- ( )12 以下那一种是非零色散位移光纤:
  - A、G. 651 光纤;
  - B、G. 652 光纤;
  - C、G. 653 光纤;
  - D、G. 655 光纤。
- ( )13 下列波长用作掺铒光纤放大器的信号波长的是:
  - A \ 1480nm:
  - B、1535nm;
  - C<sub>2</sub> 980nm:
  - D, 800nm.

- ( )14 两相同光纤理想对准,光纤的连接损耗是:
  - A, 0.16 dB:
  - B, 0.32 dB;
  - $C_{s}$  0.5 dB;
  - D, 0.6 dB.
- ( ) 15 光纤:
  - A \ 1480nm:
  - B、1535nm;
  - C, 980nm;
  - D、800nm。
- 二、简答题(每小题 4 分, 共 20 分)
- 1、简述光纤导模截止与远离截止条件,并说明在单模的 SIOF 光纤中,随着 V值的变小,模场半径的变化趋势。
- 2、简述掺铒光纤放大器与掺铒光纤激光器的工作原理。
- 3、简述光纤中包层存在的必要性。
- 4、比较自聚焦透镜成像特性与普通球面透镜的异同点。
- 5、简述增大单模光纤波导色散的技术技术途径及其原理。
- 三、计算与设计题(每小题10分,共40分)
- 1、单模光纤的纤芯半径为  $5\mu m$ ,纤芯和包层的折射率分别为 1.45 和 1.44,光源工作波长为  $1\mu m$ ,线宽为 0.15nm。其归一化传播常数可表示为:  $b=V^2/(4+V^2)$ ,材料色散为: -10ps/km/nm。求: (1) 该光纤的波导色散。(2) 光脉冲传输 100km,光脉冲的展宽值。(10 分)
- 2、一石英光纤, 其折射率分布如下:

$$n(r) = \begin{cases} 1.45 & \text{r} < 4.0 \mu\text{m} \\ 1.444 & \text{r} \ge 4.0 \mu\text{m} \end{cases}$$

纵向传播常数与归一化频率如下图所示,试计算:(1)该光纤的截止波长;(2)若该光纤工作波长为 1μm,将支持哪些模式传输;在忽略模式相互间的作用和光

纤总色散的情况下, 试分析这些模式在光纤中传输时的先后次序。(12分)



3、如下图所示为 X—型光纤耦合器,工作波长为  $1.55\mu m$ 。若仅由 Input1 端口注入光功率,从 Output1 和 Output 2 端口输出的分别为注入光功率的 75%和 25%。耦合器的耦合系数为: K=10  $cm^{-1}$ ,求:(1)耦合器的最小耦合长度;(2)若仅从 Input2 端口注入 0dBm 光功率,则从 Output1 和 Output 2 端口分别输出多少光功率;(3)如从 Input1 和 Input 2 端口同时注入相等的光功率,但光场的位相不同,输出分光比的范围为多少?(12 分)



4、试用掺铒光纤、980nm 半导体激光器、光隔离器、3dB 的 X 型光纤耦合器、波分复用光耦合器、8/2 的光纤耦合器、Bragg 光纤光栅,分别构成掺铒光纤放大器与掺铒光纤激光器。

## 四、论述题(共10分)

简述光纤应如何发展以适应高速大容量光通信系统要求。