MATH 417

2/6/2023

Kerrew

Systems of linear equations

Example: Find all 1 thations of p+r+2s+f=1

Solution:
$$\begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 3 & 3 & 1 & 2 \\ 3 & 4 & 5 & 2 & 5 \end{pmatrix}$$
 $\begin{pmatrix} 3 & 4 & 5 & 2 & 5 \\ 3 & 4 & 5 & 2 & 5 \end{pmatrix}$

2p + 3r + 3s + 6 = 2 3p + 4v + 5s + 2t = 5

$$\begin{pmatrix}
1 & 1 & 2 & 1 & 1 & 1 \\
0 & 1 & -1 & +1 & 0 \\
0 & 1 & -1 & -1 & 2
\end{pmatrix}$$

Example: Find all solutions: 4p + v + 2s + 3f + 4u = 1 3p + v + s + u = 2

$$\begin{pmatrix} 4 & 1 & 2 & 3 & 4 & 1 & 1 \\ 3 & 1 & 1 & 0 & 1 & 1 & 2 \end{pmatrix} -1$$

$$\begin{pmatrix} 1 & 0 & 1 & 3 & 3 & 1 & -1 \\ 3 & 1 & 1 & 0 & 1 & 1 & 2 \end{pmatrix} -1$$

$$\begin{pmatrix} 0 & 1 & 3 & 3 & 1 & -1 \\ 0 & 1 & -2 & 9 & -8 & 5 \end{pmatrix} RRFF$$

Anne:

Au the following metrics con-equivalent?

$$A = \begin{pmatrix} 1 & 3 & 1 & 4 & 7 \\ 2 & 6 & 1 & 7 & 13 \end{pmatrix} 2 - 2 \qquad b = \begin{pmatrix} 0 & 3 & 1 & 4 & 7 \\ 1 & 3 & 0 & 3 & 6 \end{pmatrix} 5$$

$$\begin{pmatrix} 1 & 3 & 1 & 4 & 7 \\ 0 & 0 & -1 & -1 & -1 \end{pmatrix} 2 - 1 \qquad \begin{pmatrix} 1 & 3 & 0 & 3 & 6 \\ 0 & 3 & 1 & 4 & 7 \end{pmatrix} 2 \frac{1}{3}$$

$$\begin{pmatrix} 1 & 3 & 1 & 4 & 7 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} 2 - 1 \qquad \begin{pmatrix} 1 & 3 & 0 & 3 & 6 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} 2 \frac{1}{3}$$

$$\begin{pmatrix} 1 & 3 & 0 & 3 & 6 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} 2 - 1 \qquad \begin{pmatrix} 1 & 3 & 0 & 3 & 6 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} 2 \frac{1}{3}$$

$$\begin{pmatrix} 1 & 3 & 0 & 3 & 6 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} 2 - 1 \qquad \begin{pmatrix} 1 & 3 & 0 & 3 & 6 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} 2 \frac{1}{3}$$
RREF

Annel: NO

A = (26 1713) Find the columns which are not linear comminations of columns to their left and express the other columns as these columns. Not lineau comminations af so struitelit: Ist and 3 ad (2) (from fre von $\binom{3}{6} = 3 \cdot \binom{1}{2}, \binom{4}{7} = 3 \cdot \binom{1}{2} + 1 \cdot \binom{1}{1}, \binom{7}{13} = 6 \cdot \binom{1}{2} + 1 \cdot \binom{1}{1}$ example)

Consider the following con	operation on 4 × 7	matrices A:
First add 5 times the se		.0 .
Then switch the first and	fourth vow. Fir	nd the matrix M
of this operation.		The mastrie after the operation is MA
It only defends on the number Do these operations in the same or	of wws (7 plays	no cole in the colution)
Do these operations in the same or	der on the unit m	atrix with the given runder
of Fows: (1000)	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Auswer

Find the inveck matrix (if any) of
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 3 & 5 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 3 & | & 1 & 0 & 0 \\
2 & 1 & 5 & | & 0 & 0 & 0 \\
5 & 3 & 5 & | & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 3 & | & 1 & 0 & 0 \\
0 & -1 & -5 & | & -2 & 1 & 0 \\
0 & -2 & -10 & | & -5 & 0 & 1
\end{pmatrix}$$

Find the inverse (if any) of the motrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & 1 \\ 4 & 5 & 3 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & 100 \\
3 & 4 & 1000 \\
4 & 5 & 3001
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 100 \\
4 & 5 & 3001
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 100 \\
0 & 1 & -2 & -310 \\
0 & 1 & -100
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & | 4 & -100 \\
0 & 1 & -2 & -310
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & | 4 - | & 0 \\
0 & 1 & -2 & | & -3 & | & 0 \\
0 & 0 & | & | & -1 - | & | & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 7 & 2 & -3 \\
0 & 1 & 0 & -5 & -1 & 2 \\
0 & 0 & 1 & -1 & -1 & 1
\end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 7 & 2 & -3 \\ -5 & -1 & 2 \\ -1 & -1 & 1 \end{pmatrix}$$

Find all left in with inverses of the matrix $A = \begin{pmatrix} 3 & 1 \\ 4 & 3 \\ 1 & 3 \end{pmatrix}$ (if any). No right invects $\begin{pmatrix} 3 \\ 4 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix}$ Right inverse to AT (-i-11a-76 1+8a+56 a 6) (4-11c-7d-3+8c+5d cd) (017144)(01-8-5)1-3)(3411/10)2 f-11a-75 q-11c-7d\ 1+8a+55 -3+8c+5d $(\frac{1}{3}, \frac{1}{4}, \frac{1}{1}, \frac{1}{1},$ (01-85 1-3)5-1

Find the formula for the linear transformation

Is linear & cansformation? If U so, find its matrix $\begin{pmatrix} x \\ 5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (x)=(0) $f\left(\begin{array}{c}1\\0\end{array}\right) = \left(\begin{array}{c}2\\-1\end{array}\right) \qquad f\left(\begin{array}{c}0\\1\end{array}\right) = \left(\begin{array}{c}4\\1\end{array}\right)$

Connector's examples

(constend by a counterclockwise (around the owgin in IR)

(cosal - which)

(in a cosa)

Reflection by [(x axs votated by & comberchonwise

Sind - God

Martine of the reflection by the line Lostained by otating the x aris 30° dochnorse by the origin! $\frac{d}{dx} = -30^{\circ}$ L=-60° $cos(-60^{\circ}) = \frac{1}{7}$ 8m(-60°)=- 13

$$\cos 30^{\circ} = \frac{13}{2}$$
 $81 \text{m} 30^{\circ} = \frac{1}{2}$

$$cos(-\alpha) = ros(\alpha)$$