Bezpieczeństwo

Wykład 11

Zakres

- Zagrożenia bezpieczeństwa
- Ochrona
- Włamywacze
- Oprogramowanie agresywne
- •

Zagrożenia bezpieczeństwa

- Wymagania systemów komputerowych związane z bezpieczeństwem:
 - Poufność (ang. Confidentiality) Informacje w systemie komputerowym powinny być dostępne do odczytu tylko stronom upoważnionym. Ten typ dostępu obejmuje drukowanie, wyświetlanie i inne formy przedstawiania informacji, w tym proste ujawnianie istnienia obiektu.
 - Integralność (ang. Integrity) Aktywa systemu powinny być modyfikowane tylko przez strony upoważnione. Modyfikacja obejmuje zapis, zmianę treści, zmianę statusu, usunięcie i utworzenie.
 - Dostępność (ang. Availability) Aktywa systemu powinny być dostępne stronom upoważnionym.
 - Autentyczność (ang. Authenticity) System umożliwia weryfikację tożsamości użytkownika.

Rodzaje zagrożeń

- System komputerowy jest dostawcą informacji
 - Realizowany jest przekaz danych z punktu źródłowego do punktu przeznaczenia
- Rodzaje ataków:
 - Przerwanie przepływu informacji (ang. Interruption)
 - Aktywa systemu komputerowego ulegają zniszczeniu, stają się niedostępne lub nieużyteczne. Jest to atak na *dostępność* aktywów (*ang. availability*). Przykładem może być zniszczenie elementów sprzętu np. dysku, przecięcie linii komunikacyjnej lub unieruchomienie systemu zarządzania plikami.
 - Przechwycenie informacji (ang. Interception)
 - Strona nieupoważniona uzyskuje dostęp do aktywów (*jest to atak na poufność*). Może być to osoba fizyczna, program lub komputer. Chodzi tutaj np. o podłączenie się do sieci w celu przechwytywania danych lub nielegalne kopiowanie plików czy programów
 - Modyfikacja informacji (ang. Modification)
 - Strona nieupoważniona nie tylko uzyskuje dostęp do aktywów, ale również je narusza. Jest to atak na *integralność* (ang. integrity). Przykładem może być zmiana programu (zmiana jego zachowania) lub modyfikacja zawartości komunikatów przekazywanych siecią
 - Sfałszowanie informacji (ang. Fabrication)
 - Strona nieupoważniona wprowadza do systemu sfałszowane obiekty. Jest to atak na autentyczność (ang. authenticity). Przykłady obejmują wprowadzenie do sieci fałszywych komunikatów lub dodanie zapisów do pliku

Bezpieczeństwo: Zagrożenia i aktywa

	Dostępność	Poufność	Integralność/ Autentyczność
Sprzęt	Wyposażenie zostało skradzione/uszkodzon e stąd blokada usługi		
Oprogramowanie	Programy skasowano, odmowa dostępu użytkownikom	Wykonanie nielegalnej kopii oprogramowania	Działający program zmodyfikowano w celu wywołania błędu w czasie wykonania lub dla realizacji nieplanowanego zadania
Dane	Pliki skasowano, odmowa dostępu użytkownikom	Wykonanie nieupoważnionego odczytu danych. Analiza statystyczna ujawnia odpowiednie dane.	Istniejące pliki zmodyfikowano lub wygenerowano pliki sfałszowane
Linie komunikacyjne	Komunikaty zniszczono lub skasowano. Linie i sieci są zablokowane.	Odczytano komunikat. Obserwowany jest rozkład ruchu sieciowego	Komunikaty zmodyfikowano, opóźniono, zmieniono ich kolejność lub powielono je. Generowane są fałszywe komunikaty.

Ataki na sprzęt

- Głównym zagrożeniem jest sprzęt
- Najbardziej podatny na ataki, najmniej poddaje się zautomatyzowanej kontroli
- Zagrożenia
 - Przypadkowe lub świadome uszkodzenia
 - Kradzieże
- Potrzebne środki ochrony fizycznej i administracyjnej

Ataki na oprogramowanie

- Atak na dostępność
 - Oprogramowanie, zwłaszcza aplikacyjne, jest bardzo łatwe do usunięcia, zmiany lub uszkodzenia
 - Ważne jest staranne zarządzanie konfiguracją oprogramowania, w tym tworzenie kopii zapasowych większości jego aktualnych wersji, ułatwia utrzymanie wysokiego poziomu dostępności
 - Większym problemem jest modyfikacja oprogramowania, które nadal funkcjonuje, ale zmienia się jego zachowanie
 - Na przykład: ataki wirusów komputerowych i innych podobnych programów
 - Poufność
 - Mimo pewnych istniejących środków zaradczych, kwestia nieuprawnionego kopiowania oprogramowania nie została rozwiązana

Ataki na Dane

- Kwestie bezpieczeństwa w odniesieniu do danych:
 - dostępność (możliwość przypadkowego lub celowego uszkodzenia plików danych)
 - poufność
 - nieupoważniony odczyt plików z danymi/baz danych → przedmiot najszerszych badań jeśli chodzi o zagadnienia bezpieczeństwa systemów komputerowych
 - analiza danych, przejawiająca się w wykorzystaniu tzw. statystycznych baz danych
 - W miarę wzrostu popularności statystycznych baz danych zwiększa się ryzyko ujawnienia informacji osobistych
 - Problem ten nasila się ze względu na rosnącą tendencję łączenia zbiorów danych
 - integralność (modyfikacje plików danych mogą mieć skutki o różnej skali, od niewielkich po katastrofalne)

Ataki na linie komunikacyjne i sieci (1)

- Ataki pasywne (ang. Passive attack) polegają na podsłuchiwaniu lub monitorowaniu transmisji, celem atakujących jest przejęcie przesyłanej informacji
 - Ujawnienie zawartości komunikatu rozmowa teleforniczna, e-mail, transfer pliku mogą zawierać informacje wrażliwe lub poufne, celem jest zapobieżenie możliwości przejęcia treści tych transmisji przez atakujących
 - Analiza ruchu sieciowego
 - Nawet jeśli mamy możliwość maskowania (np. kodowania) zawartości pakietów, to można obserwować rozkład tych komunikatów, określić lokalizację i dane identyfikacyjne komputerów oraz częstotliwość i długość wymienianych komunikatów. Na podstawie tych informacji można stwierdzić, jaki jest charakter komunikacji
 - Ataki pasywne trudno wykryć, gdyż nie są one związane z żadną zmianą danych. Nacisk w tym przypadku położono bardziej na zapobieganie, niż na wykrycie.

Ataki na linie komunikacyjne i sieci (2)

- Ataki aktywne (ang.)
 - Ataki aktywne polegają na dokonaniu modyfikacji strumienia danych (lub na wygenerowaniu fałszywego strumienia danych) i mogą być podzielone na cztery grupy: maskowanie, odtwarzanie, modyfikacja zawartości komunikatów i blokada usługi.
 - Maskowanie (udawanie, symulowanie, ang. masquerade)zachodzi, gdy jeden podmiot podszywa się pod dane identyfikacyjne innego podmiotu
 - Atak maskowania zazwyczaj obejmuje jedną lub więcej form ataku aktywnego
 - Na przykład sekwencja uwierzytelniania może zostać przechwycona i odtworzona później, gdy pełna sekwencja zostanie zrealizowana, co umożliwi podmiotowi upoważnionemu z ograniczonymi uprawnieniami symulowanie uprawnień większych
 - Odpowiadanie (ang. Replay) polega na pasywnym przejęciu jednostki danych i późniejszej jej transmisji w celu uzyskania nieupoważnionego efektu

Ataki na linie komunikacyjne i sieci (3)

- Ataki aktywne (ang.)
 - Modyfikacja zawartości komunikatów
 - Pewna część prawidłowego komunikatu została zmieniona
 - Komunikaty są opóźniane albo jest zmieniana ich kolejność
 - Blokada usługi
 - Uniemożliwia lub blokuje normalne korzystanie lub zarządzanie komunikacją
 - Atak ten może mieć konkretny cel. np. napastnik może kasować wszystkie komunikaty kierowane do określonego adresu (np. do usługi odpowiedzialnej za kontrolowanie stanu bezpieczeństwa)
 - Inną możliwością jest zakłócenia pracy całej sieci przez jej zablokowanie lub przeciążenie komunikatami tak, by ją w praktyce całkowicie zablokować

Ochrona

Współdzielenie zasobów

- Wprowadzenie wieloprogramowości stworzyło możliwości współdzielenia zasobów przez użytkowników, która obejmuje:
 - Procesor, Pamięć, Urządzenia I/O (np. dyski i drukarki), Programy, Dane
- Współdzielenie zasobów stwarza potrzebę ich ochrony przed nieupoważnionym dostępem
- System operacyjny jest w stanie zapewnić ochronę w następującym zakresie:
 - Tryb bez ochrony: Ma uzasadnienie, gdyż ważne procedury wykonywane są w wydzielonym czasie
 - Izolacja: Powoduje, że każdy proces realizowany jest niezależnie od innych, bez współdzielenia czy komunikacji – ma swoją przestrzeń adresową, swoje pliki i inne obiekty
 - Współdzielić wszystko lub nic: Właściciel obiektu (np. pliku czy pamięci) deklaruje go jako publiczny lub prywatny. W pierwszym przypadku każdy proces ma dostęp do danego obiektu., w drugim tylko procesy właściciela.
- Współdzielenie przez ograniczenie dostępu: System operacyjny sprawdza uprawnienia użytkownika przy każdej próbie dostępu do danego obiektu
- Współdzielenie dynamiczne: Jest to rozszerzenie koncepcji kontroli dostępu, dopuszczające dynamiczne tworzenie praw dostępu do obiektów
- Ograniczone wykorzystanie obiektu: Ta forma ochrony ogranicza nie dostęp, ale sposób korzystania z obiektu. Np. użytkownik może mieć prawdo do przeglądania dokumentu, ale nie do jego wydrukowania lub użytkownik może mieć dostęp do bazy danych w celu uzyskania informacji statystycznej, ale nie do uzyskiwania konkretnych wartości danych.

Ochrona pamięci

- Kluczowe znaczenie w środowisku wieloprogramowym zapewnia poprawne funkcjonowanie aktywnych procesów, a także bezpieczeństwo
- Możliwość wykonania przez proces zapisów w przestrzeni adresowej innego procesu może zakłócić jego pracę
- Separacja przestrzeni adresowej jest łatwa do przeprowadzenia – stronicowanie i segmentacja zapewniają efektywne środki zarządzania pamięcią główną
- Jeśli potrzebna jest pełna separacja, to system operacyjny musi zapewnić, że każda strona (czy segment) jest dostępna tylko dla tego procesu, do którego jest przypisana
- Jeśli współdzielenie ma być dostępne, wtedy ten sam segment lub strona może występować w więcej niż jednej tablicy.

Przykład sprzętowej obsługi ochrony pamięci

- Komputery rodziny IBM System 370, pracujące pod systemem OS/390
- Z każdą ramką strony pamięci operacyjnej jest związany 7-bitowy klucz sterujący pamięci, który może być ustawiany przez system operacyjny
- Dwa z tych bitów wskazują, czy były odwołania do strony zajmującej daną ramkę i czy strona ta była modyfikowana, Są one wykorzystywane przez algorytm wymiany stron.
- Pozostałe bity są wykorzystywane przez mechanizm ochrony: 4-bitowy klucz sterujący dostępu i bit ochrony pobrania.
- Odwołania procesora do pamięci (i odwołania I/O DMA) aby uzyskać pozwolenie dostępu do strony muszą stosować odpowiedni klucz.
- Bit ochrony pobrania (ang. fetch. protection bit) wskazuje, czy dany klucz sterujący dostępu należy uwzględnić tylko przy operacjach zapisu, czy także odczytu.
- W procesorze istnieje słowo statusu programu (PSW, ang. program status word), które mieści w sobie informacje sterujące, dotyczące aktualnie wykonywanego procesu (z 4-bitowym kluczem PSW).
 - Gdy proces próbuje uzyskać dostęp do danej strony lub zainicjować dla niej operację DMA, aktualny klucz jest porównywany z kodem dostępu.
 - Zapis jest dozwolony tylko wtedy, gdy kody są zgodne.
 - Gdy bit ochrony pobrania jest ustawionym, wtedy w przypadku operacji odczytu klucz PSW musi być zgodny z kodem dostępu.

Kontrola dostępu zorientowana na użytkownika

- Środki kontroli dostępu użytkownika są często nazywane uwierzytelnieniem (ang. authentication).
- Najpowszechniejsza technika: logowanie podanie identyfikatora oraz hasła
 - System pozwala się zalogować tylko wtedy, gdy rozpozna identyfikator oraz hasło do niego przypisane
 - Jest to szczególnie zawodna część kontroli dostępu, użytkownicy mogą zapominać lub ujawniać hasła, włamywacze sprawnie uzyskują informacje na temat identyfikatorów, plik zawierający identyfikatory i hasła jest narażony na penetrację

Kontrola dostępu zorientowana na dane

- Procedura kontroli dostępu użytkownika umożliwia powiązanie go z profilem określającym dozwolone operacje i dostęp do plików → system operacyjny może realizować zasady operacji oparte na profilu użytkownika
- Ogólny model kontroli dostępu, realizowany przez systemy zarządzania plikami (lub bazami danych) korzysta z macierzy dostępu (ang. access matrix). Jego podstawowe elementy to:
 - Podmiot (ang. Subject): Jednostka realizująca dostęp do obiektów. Ogólnie koncepcja podmiotu odpowiada idei procesu. Dowolny użytkownik (lub aplikacja) uzyskuje dostęp do przedmiotu za pomocą środków w ramach procesu, który go reprezentuje.
 - Przedmiot (ang. Object): Wszystko, do czego dostęp podlega kontroli np. pliki, części programu, segmenty w pamięci
 - Prawa dostępu (ang. Access rights): Sposób, w jaki podmiot realizuje dostęp do przedmiotu np. operacje odczytu, zapisu czy realizacji
- Jeden wymiar macierzy to zidentyfikowane podmioty (zwykle użytkownicy i grupy, ale mogą też to być terminale, hosty czy aplikacje).
- Drugi wymiar macierzy stanowi lista przedmiotów, do których można uzyskać dostęp.
 - Np. rekordy, pliki, bazy danych
 - Na najniższym poziomie szczegółowości mogą być poszczególne pola danych.

Kontrola dostępu zorientowana na dane (2)

- W praktyce macierz dostępu jest implementowana dwiema metodami:
 - Rozkład kolumnowy powstają lisy kontroli dostępu (ACL) określające dla danego przedmiotu prawa dostępu wszystkich użytkowników
 - Rozkład wierszowy znaczniki uprawnień, określają one przedmioty i operacje dostępne dla danego użytkownika
 - Każdy użytkownik ma szereg takich znaczników i może być upoważniony do ich pożyczania lub przekazywania innym
 - Ponieważ informacje te mogą być rozproszone w całym systemie, z punktu widzenia bezpieczeństwa stanowią większy problem niż listy kontroli dostępu.

Włamywacze

Rodzaje włamywaczy

- Ukryty osoba, która nie upoważniona do korzystania z komputera, ale penetruje system kontroli dostępu w celu wykorzystania kont uprawnionych użytkowników
- Nadużywający znany w systemie użytkownik korzystający z danych, programów i zasobów, do których nie ma uprawnionego dostępu, lub posiadający odpowiednie prawa dostępu, ale używający ich niewłaściwie
- Tajny użytkownik osoba, która przejmuje kontrolę na całym systemem i korzysta z uzyskanych możliwości w celu uniknięcia skutków działań ochronnych lub wstrzymania rejestracji zapisów kontrolnych

Techniki włamań

- Ochrona pliku z hasłami:
 - Szyfrowanie jednokierunkowe system zapisuje hasła jedynie w postaci zaszyfrowanej
 - Kontrola dostępu dostęp do pliku haseł jest możliwy tylko z jednego lub niewielu kont
- Różne metody odnajdywania haseł
 - (hasła domyślne, krótkie, listy słów prawdopodobnych, podsłuchiwanie linii łączącej użytkownika zdalnego z hostem, stosowanie konia trojańskiego)

Oprogramowanie agresywne

Ogólna klasyfikacja

- Wymagające programu nosiciela
 - Tylne drzwi
 - Bomby logiczne
 - Trojany
 - Wirusy
- Niezależne
 - Robak
 - Zombie
- Wirusy, Robaki, Zombie mają możliwość replikacji

Tylne drzwi

- Jest to kod w programie rozpoznający pewną szczególną sekwencję wejściową
- Tylne drzwi do programu umożliwiają poinformowanej osobie uzyskać dostęp do jego opcji bez przechodzenia przez procedurę bezpieczeństwa
- Stosowane od lat do testowania i debugowania programów
- Zagrożenie w rękach pozbawionych skrupułów programistów

Bomba logiczna

 Jedno z najstarszych zagrożeń programowych, poprzedzające wirusy i robaki – jest to kod zapisany wewnatrz programu, który "eksploduje", jeśli zajdą pewne warunki (np. obecność lub brak pewnych plików, dzień tygodnia, data, konkretny użytkownik uruchamiający aplikację)

"Konie trojańskie"

- Koń trojański, trojan pozornie przydatny program lub skrypt, zawierający ukryty kod, który po wywołaniu wykonuje zbędne lub szkodliwe działania
- Programy takie mogą być używane do wykonywania funkcji, których użytkownik bez odpowiednich uprawnień nie może wykonać.
- Np. aby uzyskać dostęp do plików innego użytkownika w systemie wielodostępnym, dany użytkownik mógłby stworzyć odpwiedniego "trojana",
 - Po wywołaniu program taki zmienia uprawnienia do plików użytkownika, który go wywołuje, że stają się one dostępne do odczytu przez dowolną osobę.
 - Autor może skłaniać użytkowników do użycia swojego programu
 - Inne zastosowanie trojana: niszczenie danych, kasowanie plików użytkownika

Wirusy

- Programy, które mogą infektować inne programy przez ich modyfikację.
- Zmodyfikowany program zawiera kopię wirusa i może kontynuować zarażanie innych.
- Podobnie jak ich biologiczne odpowiedniki, wirusy komputerowe zawierają przepisy na generowanie dokładnych swoich kopii.
- Po wprowadzeniu do komputera, typowy wirus przejmuje czasowo kontrolę nad systemem/aplikacją
- Infekcja może być rozprzestrzeniana z komputera na komputer przez użytkowników
- W środowisku sieciowym możliwość dostępu do aplikacji i usług systemowych na innych komputerach stwarza doskonałe możliwości rozprzestrzeniania się wirusa

Robaki

- Korzystają z połączeń sieciowych do rozprzestrzeniania się z systemu na system
- Gdy robak jest aktywny, może zachować jak komputerowy wirus: wprowadzić trojana, lub wykonywać dowolne destrukcyjne/szkodliwe działania
- Do replikacji robak korzysta z technologii sieciowej np:
 - Poczty elektronicznej
 - Mechanizmu zdalnego wykonywania programów: Robak wykonuje swoją kopię w innym systemie
 - Mechanizmu zdalnego logowania: Robak loguje się w jednym systemie zdalnym jako użytkownik, a potem kopiuje się do innych systemów

Zombie

- Program, który w sposób ukryty przejmuje inny komputer podłączony do Internetu i korzysta z niego do przeprowadzania ataków.
- Właściwego autora takich ataków jest trudno ustalić.
- Programy zombie są wykorzystywane do przeprowadzania ataków "blokada usługi", zazwyczaj przeciwko wybranym stronom WWW.
- Są one wprowadzane do setek komputerów należących do niczego nie podejrzewających osób trzecich, a następnie wykorzystywane do zasypania wybranej strony wygenerowanym zmasowanym ruchem internetowym

Typy wirusów

- Wirus pasożytniczy tradycyjny, najpopularniejsza forma wirusa, doczepia się do plików wykonywalnych i podczas realizacji zainfekowanego programu replikuje się, wyszukując do zaatakowania inne pliki wykonywalne.
- Wirus rezydujący w pamięci Wprowadzony do pamięci głównej jako część rezydentnego programu systemowego. Z tego miejsca infekuje każdy wykonywany program.
- Wirus sektora początkowego Infekuje główny sektor ładowania początkowego (lub sektor ładowania początkowego) i rozprzestrzenia się, gdy system uruchamiany jest z dysku zawierającego ten wirus
- Wirus utajniony Forma wirusa zaprojektowana tak, by uniemożliwić wykrycie przez oprogramowanie antywirusowe. Np. wirus stosujący kompresję, by program zainfekowany miał taki sam rozmiar co niezainfekowany
- Wirus polimorficzny Wirus, który mutuje przy każdym zainfekowaniu, uniemożliwiając wykrycie na podstawie analizy sygnatury.

Makrowirusy

- Pod koniec 1999 roku, makrowirusy stanowiły 2/3 wszystkich wirusów komputerowych
- Korzystają z możliwości dostępnej w programie Word i w innych aplikacjach biurowych (np. Excel) a mianowicie z makro.
 - Makro wykonywalny program osadzony w dokumencie edytora tekstu czy pliku innego typu, np. używająca jakiejś formy Basica
- Makrowirusy są szczególnie groźne, gdyż:
 - Są niezależne od platformy. Niemal wszystkie infekują dokumenty edytora Word firmy Microsoft, zainfekowana może być każda platforma i każdy system operacyjny gdzie taki program działa
 - Infekują dokumenty a nie wykonywalne części kodu. Większość informacji w systemie komputerowym ma postać dokumentu, a nie programu.
- Łatwo się rozprzestrzeniają. Powszechne jest wykorzystanie poczty elektronicznej.

Techniki antywirusowe

- Profilaktyka nie dopuścić do instalacji wirusa
- Wykrycie zlokalizowanie wirusa
- Identyfikacja okreslenie typu wirusa
- Usunięcie usunięcie śladów wirusa i odtworzenie oryginalnego stanu systemu.