A Parking Guidance and Information System for TinyOS

CSE 521S Final Presentation

By Matthew Lindsay, Patrick McBryde, and Michael Schultz

Project (Re-)Introduction

"However, [the World Wide Web] could start a revolution in information access." (Tim Berners-Lee, 1991)

- When driving to a new location, what do you want most?
 - How do I get there/what does it look like? Google Maps.
 - Where should I park when I get there? Hope.
- Parking can be highly inefficient and extremely frustrating
 - A driver should be able to find a spot easily
 - No aimless circling of a parking lot
- We can use today's technology to improve this situation!

Project Goals

- Develop a WSN to monitor each parking spaces in an area
 - Take advantage of low(-ish) cost TelosB motes
 - Use external connector to connect sensor(s)
- Reliable data delivery over wireless sensor network
 - Using Collection Tree Protocol
- Aggregate data for visitors and management to use
 - Web interface + published JSON format for queries

Design

• High-level view of system design

Hardware

- TelosB
 - Ultra low power
 - IEEE 802.15.4 compliant
 - Integrated sensors
- LV-MaxSonar-EZ1 Ultrasonic Rangefinder
 - Supply voltage 2.5V to 5.5V
 - Detects objects from 6 inches out to 254 inches with 1 inch resolution (0-6 inches range as 6 inches)
 - Output formats include pulse width, analog voltage, and serial digital
- Web Connected *nix computer
 - Macbook Pro

Software

- Motes
 - Sensor
 - TinyOS
 - Collects data from multiple sensors.
 - Updates base-station every 15 Seconds.
 - Base-Station
 - BaseStation app included with TinyOS install
- Base-Station
 - The base-station collects sensor data from the wireless sensor network and transfers what is needed to the AppEngine. This includes occupancy, light levels, and temperature.
 - Uses JSON to wrap sensor data and CURL to perform HTTP put to server.

Backend Aggregator

- AppEngine uses Google's infrastructure for web apps
- Allows our application to scale well (within constraints)
- When data comes in ...
 - extract it and update the space and lot stats
 - o log changes in the parking lot and parking space
 - o tell client success or failure
- When data goes out ...
 - o get data from all spaces in a lot
 - o find lots near to target lot
 - chart historical data (by request)

Information is money!

Frontend Display(s)

- Status of selected lot + map of nearby (~2 miles) lots
 - Markers let you see status of those lots too
- Chart of average use over time interval for date range
 - o i.e., from 5am to 7am in the last week
- Exported in JSON format for integration with other apps
 - Lot information + Per space information

(You'll see these in the demo!)

Experimentation

- To verify the system works we performed a test using a real vehicle and parking space.
 - Link to video of system test.
- What could be improved.
 - Vehicle detection: increase the ultrasonic rangefinder supply voltage and add a second rangefinder sensor.
 - o Rangefinder sampling decreased to save power.
 - Power consumption by the TelosB could be greatly improved.
- Day long simulation to test backend and chart interface
 - Random activity every 60--120 seconds
 - Increased activity from 6:00-7:00, 12:00-13:00, and 18:00-19:00

Demo

Related Work

- Streetline
 - San Francisco startup
 - Began deploy with SFpark in Summer 2010
 - Results pending
 - Great for us: validates the work and creates the market
- Signal-Park
 - Older, more traditional approach
 - Sonar detector per space in garage
 - Wired to central computer for collection
 - Not really publicly available information

Conclusions

- We created a functioning parking guidance and information system for TinyOS
 - Hardware
 - Scalable Infrastructure
 - RESTful API for apps
- With more resources and time this could be a viably solution for existing parking areas

Questions

Resources

LV-MaxSonar-EZ1 Data Sheet