Gesture Generation

Thanh Hoang-Minh

University of Science

October 30, 2024

Outline

Sinh cử chỉ

Bulleted list

- ► XXX
 - XXX
 - XXX
 - XXX
- ► XXX
 - XXX
 - XXX
 - XXX
- ► XXX

Pictures with tikz

Pictures with tikz

- \blacktriangleright convex envelope of (nonconvex) f is the largest convex underestimator g
- i.e., the best convex lower bound to a function

- **example**: ℓ_1 is the envelope of ${f card}$ (on unit ℓ_∞ ball)
- **example**: $\|\cdot\|_*$ is the envelope of \mathbf{rank} (on unit spectral norm ball)
- ightharpoonup various characterizations: e.g., f^{**} or convex hull of epigraph

Outline

Sinh cử chỉ

Second section

Group lasso

(e.g., Yuan & Lin; Meier, van de Geer, Bühlmann; Jacob, Obozinski, Vert)

problem:

minimize
$$f(x) + \lambda \sum_{i=1}^{N} ||x_i||_2$$

i.e., like lasso, but require groups of variables to be zero or not

▶ also called $\ell_{1,2}$ mixed norm regularization

Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)

problem:

minimize
$$f(x)+\sum_{i=1}^N\lambda_i\|x_{g_i}\|_2$$
 where $g_i\subseteq [n]$ and $\mathcal{G}=\{g_1,\ldots,g_N\}$

- like group lasso, but the groups can overlap arbitrarily
- particular choices of groups can impose 'structured' sparsity
- e.g., topic models, selecting interaction terms for (graphical) models, tree structure of gene networks, fMRI data
- generalizes to the composite absolute penalties family:

$$r(x) = \|(\|x_{g_1}\|_{p_1}, \dots, \|x_{g_N}\|_{p_N})\|_{p_0}$$

Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)

hierarchical selection:

- \triangleright $\mathcal{G} = \{\{4\}, \{5\}, \{6\}, \{2,4\}, \{3,5,6\}, \{1,2,3,4,5,6\}\}$
- nonzero variables form a rooted and connected subtree
 - if node is selected, so are its ancestors
 - if node is not selected, neither are its descendants

Sample ADMM implementation: lasso

```
prox_f = Q(v, rho) (rho/(1 + rho))*(v - b) + b;
prox_g = Q(v, rho) (max(0, v - 1/rho) - max(0, -v - 1/rho));
AA = A*A':
L = chol(eye(m) + AA);
for iter = 1:MAX_ITER
    xx = prox_g(xz - xt, rho);
    yx = prox_f(yz - yt, rho);
    yz = L \setminus (L' \setminus (A*(xx + xt) + AA*(yx + yt)));
    xz = xx + xt + A'*(yx + yt - yz);
    xt = xt + xx - xz;
    yt = yt + yx - yz;
end
```

Figure

Algorithm

if L is not known (usually the case), can use the following line search:

```
given x^k, \lambda^{k-1}, and parameter \beta \in (0,1).

Let \lambda := \lambda^{k-1}.

repeat

1. Let z := \mathbf{prox}_{\lambda g}(x^k - \lambda \nabla f(x^k)).
2. break if f(z) \leq \hat{f}_{\lambda}(z, x^k).
3. Update \lambda := \beta \lambda.

return \lambda^k := \lambda, x^{k+1} := z.
```

typical value of β is 1/2, and

$$\hat{f}_{\lambda}(x,y) = f(y) + \nabla f(y)^{T}(x-y) + (1/2\lambda)||x-y||_{2}^{2}$$