Distances and clustering

Illustrative example: genotyping arrays

Clustering

Distance

- Clustering organizes things that are close into groups
- What does it mean for two genes to be close?
- What does it mean for two samples to be close?
- Once we know this, how do we define groups?

Distance

Distance=

$$\sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$$

In general

$$\sqrt{(A_1 - A_2)^2 + (B_1 - B_2)^2 + \Box + (Y_1 - Y_2)^2 + (Z_1 - Z_2)^2}$$

We can't draw in 26 dimensions

Dendrogram

Heatmap

Multidimensional Scaling

Using clustering to genotype

Human Variation

Single Nucleotide Polymorphism (SNP)

Genomic DNA:

TACATAGCCATCGGTANGTACTCAATGATGATA

Three genotypes

AA

TACATAGCCATCGGTAAGTACTCAATGATGATA

Mom

ATGTATCGGTAGCCATTCATGAGTTACTACTAT

Dad TACATAGCCATCGGTAAGTACTCAATGATGATA

ATGTATCGGTAGCCATTCATGAGTTACTACTAT

AG

TACATAGCCATCGGTAAGTACTCAATGATGATA

Mom

ATGTATCGGTAGCCATTCATGAGTTACTACTAT

Dad TACATAGCCATCGGTAGGTACTCAATGATA

ATGTATCGGTAGCCATCCATGAGTTACTACTAT

GG

TACATAGCCATCGGTAGGTACTCAATGATGATA

Mom

ATGTATCGGTAGCCATCCATGAGTTACTACTAT

Dad TACATAGCCATCGGTAGGTACTCAATGATA

ATGTATCGGTAGCCATCCATGAGTTACTACTAT

Affymetrix SNP chip terminology

Genomic DNA:

TACATAGCCATCGGTANGTACTCAATGATGATA

PM probe for Allele A: ATCGGTAGCCATTCATGAGTTACTA

PM probe for Allele B: ATCGGTAGCCATCCATGAGTTACTA

Genotyping: answering the question about the two copies of the chromosome on which the SNP is located:

Is a person AA, AG or GG at this Single Nucleotide Polymorphism?

Infer genotype from data

Using regions

Most information is in M

Most information is in M

M more stable than S

M more stable than S

M more stable than S

- We start with some data
- Interpretation:
 - We are showing expression for two samples for 14 genes
 - We are showing expression for two genes for 14 samples
- This is simplifaction

Iteration = 0

- Choose K centroids
- These are starting values that the user picks.
- There are some data driven ways to do it

Iteration = 0

- Make first partition by finding the closest centroid for each point
- This is where distance is used

Iteration = 1

 Now re-compute the centroids by taking the middle of each cluster

Iteration = 2

 Repeat until the centroids stop moving or until you get tired of waiting

Iteration = 3

K-means Limitations

Final results depend on starting values

 How do we chose K? There are methods but not much theory saying what is best.

 Where are the pretty heatmpas and dendrograms?

Hierarchical

 Divide all points into 2. Then divide each group into 2. Keep going until you have groups of 1 and can not divide further.

 This is divisive or top-down hierarchical clustering. There is also agglomerative clustering or bottom-up

Dendrograms

- We can then make dendrograms showing divisions
- The y-axis represents the distance between the groups divided at that point

Note: Left and right is assigned arbitrarily. Look at the height of division to find out distance. For example, S5 and S16 are very far.

But how do we form actual clusters?

We need to pick a height

Dendrogram

Note: distances susceptible to noise

Simulated Data with 4 clusters: 1-10, 11-20, 21-30, 31-40

A: 450 relevant genes plus 450 "noise" genes.

B: 450 relevant genes.