This handout includes space for every question that requires a written response. Please feel free to use it to handwrite your solutions (legibly, please). If you choose to typeset your solutions, the \mid README.md \mid for this assignment includes instructions to regenerate this handout with your typeset LATEX solutions.

1.a

MDP
$$M = (S, A, R, T, \gamma)$$

 $\pi : S \rightarrow \Delta(A)^{1}$

M has a single, fixed, starting state $s_0 \in S$

Expression for $p^{\pi}(\tau)$

 $\tau = (s_0, a_0, s_1, a_1, ...)$ by running π in M

$$V^{\pi}\left(s_{0}\right) = \mathbb{E}_{r \sim p^{\pi}}\left(\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}, a_{t}\right) | s_{0}\right)$$

$$p^{\pi}\left(\tau\right) = \prod_{t=0}^{\infty} \pi\left(a_{t} | s_{t}\right) T\left(s_{t+1} | s_{t}, a_{t}\right)$$

1.b

Discounted, stationary state distribution of a policy π as

$$\boldsymbol{d}^{\pi}\left(\boldsymbol{s}\right) = \left(1-\boldsymbol{\gamma}^{t}\right)\sum_{t=0}^{\infty}\boldsymbol{\gamma}^{t}\boldsymbol{p}\left(\boldsymbol{s}_{t}=\boldsymbol{s}\right)$$

 $p(s_t = s)$ denotes the probability of being in state s at timestep t while following policy π

$$f(s, a) = 1, \ \forall (s, a) \in S \times A$$

 $p(s_t = s)$

$$\begin{split} f: S \times A &\rightarrow \mathbb{R} \\ \mathbb{E}_{\tau \sim p^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^{t} f(s_{t}, a_{t}) \right] &= \frac{1}{(1-\gamma)} \mathbb{E}_{s \sim d^{\pi}} \left[\mathbb{E}_{a \sim \pi(s)} \left[f(s, a) \right] \right] \\ \mathbb{E}_{\tau \sim p^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^{t} f(s_{t}, a_{t}) \right] &= \sum_{i=0}^{\infty} \gamma^{t} \mathbb{E}_{\tau \sim p^{\pi}} \left[f(s_{t}, a_{t}) \right] \\ &= \mathbb{E}_{\tau \sim p^{\pi}} \left[f(s_{0}, a_{0}) \right] + \gamma \mathbb{E}_{\tau \sim p^{\pi}} \left[f(s_{1}, a_{1}) \right] + \gamma^{2} \mathbb{E}_{\tau \sim p^{\pi}} \left[f(s_{2}, a_{2}) \right] + \dots \\ &= \sum_{a_{0}} \pi \left(a_{0} | s_{0} \right) f(s_{0}, a_{0}) + \gamma \sum_{a_{0}} \pi \left(a_{0} | s_{0} \right) \sum_{s_{1}} T \left(s_{1} | s_{0}, a_{0} \right) \sum_{a_{1}} \pi \left(a_{1} | s_{1} \right) f(s_{1}, a_{1}) + \dots \\ &= \sum_{s} p \left(s_{0} = s \right) \mathbb{E}_{a \sim \pi(s)} \left[f(s, a) \right] + \gamma \sum_{s} p \left(s_{1} = s \right) \mathbb{E}_{a \sim \pi(s)} \left[f(s, a) \right] + \dots \\ &= \sum_{s} \sum_{t=0}^{\infty} \gamma^{t} p \left(s_{t} = s \right) \mathbb{E}_{a \sim \pi(s)} \left[f(s, a) \right] \\ &= \frac{1}{(1-\gamma)} \sum_{s} d^{\pi} \left(s \right) \mathbb{E}_{a \sim \pi(s)} \left[f(s, a) \right] \\ &= \frac{1}{(1-\gamma)} \mathbb{E}_{s \sim d^{\pi}} \left[\mathbb{E}_{a \sim \pi(s)} \left[f(s, a) \right] \right] \end{split}$$

1.c

$$\begin{split} V^{\pi}(s_0) - V^{\pi'}(s_0) &= \mathbb{E}_{\tau \sim \rho^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t) \right] - V^{\pi'}(s_0) \\ &= \mathbb{E}_{\tau \sim \rho^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\mathcal{R}(s_t, a_t) + V^{\pi'}(s_t) - V^{\pi'}(s_t) \right) \right] - V^{\pi'}(s_0) \\ &= \mathbb{E}_{\tau \sim \rho^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\mathcal{R}(s_t, a_t) + \gamma V^{\pi'}(s_{t+1}) - V^{\pi'}(s_t) \right) \right] \\ &= \mathbb{E}_{\tau \sim p^{\pi}} \left[\mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \left(\mathcal{R}(s_t, a_t) + \gamma V^{\pi'}(s_{t+1}) - V^{\pi'}(s_t) \right) | s_t, a_t \right] \right] \\ &= \mathbb{E}_{\tau \sim p^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\mathcal{R}(s_t, a_t) + \gamma \mathbb{E} \left[V^{\pi'}(s_{t+1}) | s_t, a_t \right] - V^{\pi'}(s_t) \right) \right] \\ &= \mathbb{E}_{\tau \sim p^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\mathcal{Q}^{\pi'}(s_t, a_t) - V^{\pi'}(s_t) \right) \right] \\ &= \mathbb{E}_{\tau \sim p^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi'}(s_t, a_t) \right] \\ &= \frac{1}{(1-\gamma)} \mathbb{E}_{s \sim a^{\pi}} \left[\mathbb{E}_{a \sim \pi(s)} \left[A^{\pi'}(s, a_t) \right] \right] \end{split}$$

2.a

The maximum sum of rewards that can be achieved in a single trajectory in the test environment assuming $\gamma = 1$ is 6.2. This value is attainable in a single trajectory within the path $0 \to 2 \to 3$ $\to 2 \to 3 \to 0$.

No other trajectory can achieve a greater cumulative reward because first, the maximum reward achieved is 3 when the path goes from $2 \rightarrow 3$, wait for a step, execute it again.

There are 5 steps and 2 optimal moves—going less than 2 will have a smaller result. Going to 2 twice gives 0 reward on the 2 steps, which means that 4 steps give a maximum of 6.

The best reward that is achieved that is not starting from state 1 is 0.2. This yields an upper bound of 6.2

3.b

Maintain a table containing the value of Q(s, a), an estimate of $Q^*(s, a)$ for every (s, a) pair Update rule:

$$Q\left(s,a\right) \leftarrow Q(s,a) + \alpha \left(r + \gamma_{a' \in A}^{max} Q\left(s',a'\right) - Q\left(s,a\right)\right)$$

Where $\alpha > 0$ is the learning rate, $\gamma \in [0, 1)$ the discount factor

Q function is an unbiased estimator of Q^* , meaning that $\mathbb{E}[Q(s,a)] = Q^*(s,a)$ for all states s and actions a

$$\forall s, \ \mathbb{E}\left[\substack{max \ a} Q(s,a) \right] \geq \substack{max \ a} Q^*(s,a)$$

The expectation $\mathbb{E}[Q(s, a)]$ is over the randomness in Q resulting from the stochasticity of the exploration process

The expectation of max is \geq max of the expectation:

$$\mathbb{E}\left[\begin{smallmatrix} max \\ a \end{smallmatrix} Q(s,a) \right] \ge \begin{smallmatrix} max \\ a \end{smallmatrix} \mathbb{E}\left[\begin{smallmatrix} max \\ a \end{smallmatrix} Q(s,a) \right]$$
$$\mathbb{E}\left[Q(s,a) \right] = Q^*(s,a)$$

For all actions, we have $\max_{a'}Q(s,a') \ge Q(s,a)$ with probability 1: $\forall a, \ \mathbb{E}\left[\max_{a'}Q(s,a')\right] \ge \mathbb{E}\left[Q(s,a)\right]$

If $X \ge Y$ with probability 1, then $\mathbb{E}[X] \ge \mathbb{E}[Y]$. If $\forall x, c \ge f(x)$ then $c \ge \max_x f(x)$.

5.a

Represent the Q function as $Q_{\theta}\left(s,a,\right)=\theta^{\top}\delta\left(s,a\right)$, where $\theta\in\mathbb{R}^{|S||A|}$ and $\delta:S\times A\to\mathbb{R}^{|S||A|}$ with $\left[\delta\left(s,a\right)\right]_{s',a'}=\left\{egin{array}{l} 1 & \text{if }s'=s,\,a'=a\\ 0 & \text{otherwise} \end{array}\right.$

The equation for the tabular q-learning update rule:

$$Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma \max_{a' \in A} Q(s', a') - Q(s, a))$$

$$\theta \leftarrow \theta + \alpha (r + \gamma \max_{a' \in A} Q_{\theta}(s', a') - Q_{\theta}(s, a)) \nabla_{\theta} Q_{\theta}(s, a)$$

$$\nabla_{\boldsymbol{\theta}} Q_{\boldsymbol{\theta}} \left(s, a \right) = \nabla_{\boldsymbol{\theta}} \left(\boldsymbol{\theta}^{\top} \delta \left(s, a \right) \right) = \delta \left(s, a \right)$$

Update rule:

$$\theta \leftarrow \theta + \alpha \left(r + \gamma \max_{a' \in A} \theta^{\mathsf{T}} \delta(s', a') - \theta^{\mathsf{T}} \delta(s, a) \right) \delta(s, a)$$

$$= \theta + \alpha \left(r + \gamma \max_{a' \in A} \theta_{s', a'} - \theta_{s, a} \right) \delta(s, a)$$

$$\theta_{\overline{s},\overline{a}} \longleftarrow \{ \begin{matrix} \theta_{s,a} + \alpha \big(r + \gamma max_{a' \in A} \theta_{s',a'} - \theta_{s,a} \big) & \text{if } (\overline{s},\overline{a}) = (s,a) \\ \theta_{\overline{s},\overline{a}} & \text{otherwise} \end{matrix}$$