Contextualized Explanations via Bayesian Model-Extensions

David Reber¹

¹University of Chicago

Abstract

Your abstract here

1 Introduction

Suppose we have a model of reality's true data-generating process M_R . This could be a model that is only valid in the regime of the training data, and on a particular task: it doesn't need to be comprehensive of reality everywhere.

When we train a generative model to optimality over this context/task, it learns a model M_L which is *compatible* with some constraints induced by M_R .

Definition 1. Two models M and M' are said to be C-compatible if they both respect the constraints in C. In this case we write $M \sim^C M'$.

Definition 2. Constraints can take many forms. For instance:

- Conditional independencies
- symmetries / conservation laws
- bounds on states (nonnegativity of quantities, etc)
- conditional independencies of interventional distributions (if the training data contained a diverse set of environments, then the model should be invariant to interventions on the environment variables)

Example 3. Bayes Nets Suppose M_R consists of observable variables V such that P(V) factorizes according to a Bayes net G. Then C will contain the conditional independences induced by G. If M_L is trained to optimality, it will inherit these conditional independencies.

However, constraints aren't enough to fully specify M_L , so there's a lot of freedom for M_L to deviate from M_R . The question is, given two explanations E_A and E_B for the output behavior of a M_L , how do we decide which is more compatible with the learned model M_L ?

Let's associate our informal (natural language, etc) explanations E_A and E_B with formal models $M_A \sim^C M_R$ and $M_B \sim^C M_R$ and ask whether based on observed quantities, M_L is more likely to be M_A or M_B .

 M_A and M_B are two guesses for M_L , and based on a limited observation function O(M) we want to assess a posterior estimate about whether M_A or M_B is the right guess for M_L , given that M_L , M_A , and M_B are all C-compatible with M_R .

Definition 4. Let O(M) be a function that takes a model M and returns a set of observations. Practically, O(M) is whatever information about M_L we can reliably extract using our interpretability tools.

The key is that if we can only infer the values of a few concepts, then we can only use those concepts to distinguish between M_A and M_B .

Assume M_A and M_B are both equally likely to be the true model M_L . Then we can compute the posterior probability that M_L is M_A given the observations $O(M_L) = x$, by using the likelihoods $P(O(M_L) = x | M_L = M_A)$ and $P(O(M_L) = x | M_L = M_B)$.

If O(M) simply reports the values of a few concepts, then these reduce to $P_A(x)$., that is, P(x) in the model M_A .

The more informative O(M), the faster the convergence to M_A or M_B ; or on the flip side, if O(M) is not informative enough, it may be possible to prove that M_A and M_B can't be distinguished.