다글로 홈페이지 : 로그인 전 (회원가 입 필요)

다글로 홈페이지:

https://daglo.ai/sign-in

로그인

로그인에 문제가 있으신가요?

구글계정이나 다른 SNS계정으로 회원가입

로그인

로그인에 문제가 있으신가요?

다글로 홈페이지 : 로그인 후

교 휴지통

[AI 추천 강의 🔷] 문쌤의 인생 강의

부모 엄마 긴장 잔소리 쇼파 오토바이 김규진 호신술 말싸움 용길이

2

2024. 7. 8. 오전 2:23

■ 기본 폴더

07:23

+ 새로 만들기

생성일 ↓

기본 폴더

기본 폴더

기본 폴더

기본 폴더

기본 폴더

■ 기본 폴더

기본 폴더

기본 폴더

기본 폴더

2024. 9. 7. 오후 7:07

2024. 9. 7. 오후 7:07

2024. 9. 5. 오후 10:42

2024. 7. 29. 오후 2:57

2024. 7. 29. 오후 2:56

2024. 7. 18. 오전 12:30

2024. 7. 18. 오전 12:27

2024. 7. 15. 오후 5:31

2024. 7. 15. 오후 5:25

2024. 7. 8. 오전 2:24

기본 폴더 / 랩미팅녹음.m4a

C

스크립트 Q 🛞

AI 요점 정리 북마크 다운로드

데이터 시뮬레이션 GCMC 소프트센싱 나연 용상 흡착 폴트 흡착량 DCMC

화자 1 00:00

방금 말씀드렸던 것처럼 실시간으로 수정할 수 있는 게 인씨티 데이터고 막 다 배터리를 까서 측정 장비에 일일이 손으로 넣어가지고 그걸 분석을 하 고 결과를 얻어야 되는 게 익스 시츄 데이터거든요. 네 그래서 그 2개를 연결하는 게 아마 좀 주된 연구 테마가 될 것 같기는 해요. 이렇게 하면 실시간 으로 불량 감지 같은 것도 좀 더 할 수 있고 이게 이게 폴트 디텍션을 하기에는 공정이 너무 빠르거든요.

화자 1 00:32

그래서 뭐 케미컬 공정 같은 경우에는 펄스 디텍션 기술이 좀 적용하기 좋은 이유 중의 하나가 이게 그 각각의 어 레지던스타인들이 조금 길고 그래서 리스폰스타인이 꽤 길기 때문에 이게 뭐 그 약간 폴트가 날 때까지 쪼끔씩 쪼끔씩 인제 딜레이가 좀 있는데, 이거는 엄청 빠르게 지나가기 때문에 폴트 디텍션보다는 이제 내가 생산한 공정에서 어떤 파츠의 약간 불량이라든지, 그 불량률을 체크하는 데 의의가 있을 것 같기는 해요. 그래서 요런 데이터 를 우리가 모을 수 있으면 좋은데 요것도 한번 준비를 해보시면 좋을 것 같습니다. 그래서 우선 첫 단계로는 나연이 했던 거 한번 일단은 흡수를 해 보 시고 그 다음에 거기서 이제 데이터 받아다가 할 수 있는 거를 좀 찾아보시면 좋을 것 같습니다.

화자 1 01:32

아 알겠습니다. 교수님

화자 2 01:34

이게 데이터가 GS에서 받았던 데이터여 가지고 보안성 문제만 없으면은 이제 몰래 이제 데이터는 전달해 줄 수 있을 거 같고, 근데 이게 폴트 디텍션 쪽으로 가면은 어려울 수 있는 부분이 저희도 볼트 디텍션 쪽도 생각을 했었는데 소프트센싱으로 가게 됐던 이유가 이게 상업적으로 운전되는 데이터 다 보니까 홀트 자체가 사실 발생하지 않으니까 이 홀트인지 아닌지를 판단할 수 있는 그 기준점이 좀 모호해서 소프트센싱 쪽으로 조금 더 논문에 초 점을 맞춰서 작성을 했었기는 했습 그래서 아마

화자 1 02:13

그래서 그때 터치렌싱으로 했어요.

화자 2 02:15

네 소프트센싱 원본이었습니다.

1. 배터리 제조 데이터 분석과 불량 감지

1-1. 배터리 제조 데이터의 중요성 및 필요성

- 🛨 실시간으로 수정 가능한 인씨티 데이터와 측정 장비에 일일이 손으로 넣어 분석하는 익스 시츄 데이터의 연결이 필요함
- 두 데이터를 연결하면 불량 감지에 도움이 될 수 있음
- 생산 공정에서 불량률을 체크하는 데 의의가 있음
- 폴트 디텍션보다 불량 감지에 더 효과적인 소프트 센싱 기술 적용을 고려 중임

1-2. 데이터 수집과 활용 방안

- 데이터 수집을 위한 여러 방법 고려 중, 그 중 하나는 특정 프로젝트의 결과 데이터임
- ◆ 홀트 발생 여부에 대한 판단 기준이 모호하여 소프트 센싱을 통해 데이터를 수집하고 분석함
- 한국전자기술 연구원에서 제공하는 데이터를 활용하기로 함
- 소프트 센싱 기술의 데이터 부족 가능성에 대비해 더욱 상세한 데이터를 수집하고자 함

1-3. 기술 적용과 향후 방향

- o GCMC(0이 나오는 것으로 간주)에서 분자를 1~2개만 사용하는 방법을 적용 중임
- ♦ 분자의 수에 따라 기체가 어느 부분에 붙느냐에 따라 헬리코입션트 값이 달라질 수 있음
- o 헬리코입션트 값이 일관성 없이 나올 경우, 다른 값으로 대체하거나 헬리코입션트 값 직접 계산하는 방안을 고려 중임
- 최종적으로 예측하는 업테이크 값으로 향하는 것이 목표임

1) 원하는 형식 선택

화자 2 02:15

네 소프트센싱 원본이었습니다.

다운로드 된 문서 화면

이를 GPT에 복붙하고 ①원하는 형태로 정리해 달라하기 ex) 회의록으로 작성해 줘

ſ

• GBM은 손실함수 커스텀이 가능하고, 적은 데이터셋에서 좋은 성능을 발휘할 수 있다는 장점이 있습니다. 그러나 하이퍼파라미터 튜닝에 많은 시간이 소요되며, 성능을 최적화하기 위해서는 많은 탐색과 분석이 필요했습니다. 설계 대회의 기간이 제한적이었으므로 이러한 시간을 줄이는 것이 중요했습니다.

3. GBM을 사용하지 않은 이유

 GBM이 입력과 출력 변수 간의 상관관계가 명확할 때 효과적일 수 있지만, 이 데이터셋에서는 상 관관계가 명확하지 않았기 때문에, DNN이 복잡한 비선형 관계를 학습하는 데 더 적합하다고 판 단했습니다. 또한, 수집한 데이터셋이 8만 행 10열로 충분히 크기 때문에 DNN을 학습시키기에 충분한 데이터 규모라고 판단했습니다. 적은 데이터셋에서는 GBM이 더 우수할 수 있지만, 충분 한 데이터셋 크기를 고려하면 DNN도 좋은 성능을 낼 수 있습니다.

결론

DNN을 선택한 이유는 복잡한 비선형 관계를 효과적으로 학습할 수 있는 모델이었으며, 데이터셋 규모가 커 GBM에 비해 DNN이 더 적합하다고 판단했습니다. 또한, 손실함수 커스터마이징, 모델 설계 파라미터 부담 감소 등 DNN의 장점이 이 프로젝트에 더 적합했기 때문에 최종적으로 DNN을 선택하게 되었습니다.

이러한 답변을 통해 질문자가 충분히 납득할 수 있을 것입니다.

15:19 화자 3 아 수고하셨습니다.

15:22 화자 2 고생했어.

15:23 화자 3 네

Ð

