# **Key concepts on Deep Neural Networks**

# LATEST SUBMISSION GRADE

# 100%

| 10070                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.Question 1 What is the "cache" used for in our implementation of forward propagation and backward propagation?                                                                             |
| C It is used to cache the intermediate values of the cost function during training.                                                                                                          |
| We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.    |
| • We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives. |
| C It is used to keep track of the hyperparameters that we are searching over, to speed up computation.                                                                                       |
| Correct                                                                                                                                                                                      |
| Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.            |
| 1 / 1 point                                                                                                                                                                                  |
| 2.Question 2 Among the following, which ones are "hyperparameters"? (Check all that apply.)                                                                                                  |
| $\Box$ activation values a^{[1]} $a$ [/]                                                                                                                                                     |
| $\Box$ bias vectors $b^{\{[1]\}}b_{[I]}$                                                                                                                                                     |
| $\square$ weight matrices $W^{\{[l]\}}W^{[l]}$                                                                                                                                               |
| size of the hidden layers $n^{\{[l]\}n[l]}$                                                                                                                                                  |
| Correct                                                                                                                                                                                      |
| learning rate alpha $lpha$                                                                                                                                                                   |
| Correct                                                                                                                                                                                      |
| number of iterations                                                                                                                                                                         |

#### **Correct**

ightharpoonup number of layers LL in the neural network

### **Correct**

# 1 / 1 point

### 3.Question 3

Which of the following statements is true?

- The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
- The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

#### Correct

### 1 / 1 point

### 4.Question 4

Vectorization allows you to compute forward propagation in an LL-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

- True
- False

### Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines  $(a^{[2]} = g^{[2]}(z^{[2]})a_{[2]}=g_{[2]}(z_{[2]}), z^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[2]}=W^{[$ 

### **1 / 1** point

#### 5.Question 5

Assume we store the values for  $n^{[l]}n_{[l]}$  in an array called layers, as follows: layer\_dims =  $[n_x n_x + 4,3,2,1]$ . So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims)/2)):

parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```



#### Correct

# 1 / 1 point

### 6.Question 6

Consider the following neural network.



How many layers does this network have?

- The number of layers LL is 4. The number of hidden layers is 3.
- The number of layers LL is 3. The number of hidden layers is 3.
- $^{\circ}$  The number of layers LL is 4. The number of hidden layers is 4.
- The number of layers LL is 5. The number of hidden layers is 4.

### **Correct**

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

# 1 / 1 point

### 7.Question 7

During forward propagation, in the forward function for a layer ll you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer ll, since the gradient depends on it. True/False?

- True
- False

### **Correct**

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

# 1 / 1 point

### 8. Question 8

There are certain functions with the following properties:

- (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?
- True
- False

### **Correct**

# 1 / 1 point

### 9.Question 9

Consider the following 2 hidden layer neural network:



Which of the following statements are True? (Check all that apply).

lacksquare W^{[1]}W[1] will have shape (4, 4)

### **Correct**

| Yes. More generally, the shape of $W^{[l]}W_{[l]}$ is $(n^{[l]}, n^{[l-1]})(n_{[l]}, n_{[l-1]})$ .                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $lacksquare$ b^{[1]} $b$ [1] will have shape (4, 1)                                                                                                                                                                                                                                                                                                                                                                         |
| Correct                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Yes. More generally, the shape of $b^{\{[l]\}}b_{[l]}$ is $(n^{\{[l]\}},1)(n_{[l]},1)$ .                                                                                                                                                                                                                                                                                                                                    |
| $\square$ W^{[1]} $W_{[1]}$ will have shape (3, 4)                                                                                                                                                                                                                                                                                                                                                                          |
| $\Box$ b^{[1]} $b$ [1] will have shape (3, 1)                                                                                                                                                                                                                                                                                                                                                                               |
| $ ightharpoonup W^{\{[2]\}}W_{[2]}$ will have shape (3, 4)                                                                                                                                                                                                                                                                                                                                                                  |
| Correct                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Yes. More generally, the shape of $W^{[l]}W_{[l]}$ is $(n^{[l]}, n^{[l-1]})(n_{[l]}, n_{[l-1]})$ .                                                                                                                                                                                                                                                                                                                          |
| $\Box$ b^{[2]} $b$ [2] will have shape (1, 1)                                                                                                                                                                                                                                                                                                                                                                               |
| $\square$ W^{[2]} $W_{[2]}$ will have shape (3, 1)                                                                                                                                                                                                                                                                                                                                                                          |
| $lacksquare$ b^{[2]} $b$ [2] will have shape (3, 1)                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Correct                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Correct</b> Yes. More generally, the shape of $b^{[l]}b_{[l]}$ is $(n^{[l]}, 1)(n_{[l]}, 1)$ .                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes. More generally, the shape of $b^{[l]}b_{[l]}$ is $(n^{[l]}, 1)(n_{[l]}, 1)$ .                                                                                                                                                                                                                                                                                                                                          |
| Yes. More generally, the shape of $b^{[1]}b_{[1]}$ is $(n^{[1]}, 1)(n_{[1]}, 1)$ .                                                                                                                                                                                                                                                                                                                                          |
| Yes. More generally, the shape of $b^{[1]}b_{[1]}$ is $(n^{[1]}, 1)(n_{[1]}, 1)$ . $ W^{[3]}W_{[3]} \text{ will have shape (3, 1)} $ $ b^{[3]}b_{[3]} \text{ will have shape (1, 1)} $                                                                                                                                                                                                                                      |
| Yes. More generally, the shape of $b^{[1]}b_{[1]}$ is $(n^{[1]}, 1)(n_{[1]}, 1)$ .                                                                                                                                                                                                                                                                                                                                          |
| Yes. More generally, the shape of $b^{[1]}b_{[1]}$ is $(n^{[1]}, 1)(n_{[1]}, 1)$ . $W^{[3]}W_{[3]}$ will have shape $(3, 1)$ $b^{[3]}b_{[3]}$ will have shape $(1, 1)$ Correct  Yes. More generally, the shape of $b^{[1]}b_{[1]}$ is $(n^{[1]}, 1)(n_{[1]}, 1)$ .                                                                                                                                                          |
| Yes. More generally, the shape of $b^{[l]}b[I]$ is $(n^{[l]}, 1)(n[I], 1)$ . $W^{[3]}W_{[3]}$ will have shape $(3, 1)$ $b^{[3]}b_{[3]}$ will have shape $(1, 1)$ Correct  Yes. More generally, the shape of $b^{[l]}b_{[I]}$ is $(n^{[l]}, 1)(n_{[I]}, 1)$ . $W^{[3]}W_{[3]}$ will have shape $(1, 3)$                                                                                                                      |
| Yes. More generally, the shape of $b^{[1]}b_{[1]}$ is $(n^{[1]}, 1)(n_{[1]}, 1)$ . $ W^{[3]}W_{[3]}$ will have shape $(3, 1)$ $ b^{\{[3]}b_{[3]}$ will have shape $(1, 1)$ Correct  Yes. More generally, the shape of $b^{\{[1]}b_{[1]}$ is $(n^{\{[1]}, 1)(n_{[1]}, 1)$ . $ W^{\{[3]}W_{[3]}$ will have shape $(1, 3)$ Correct                                                                                             |
| Yes. More generally, the shape of $b^{[l]}b_{[l]}$ is $(n^{[l]}, 1)(n_{[l]}, 1)$ . $ W^{[3]}W_{[3]}$ will have shape $(3, 1)$ $ b^{[3]}b_{[3]}$ will have shape $(1, 1)$ Correct  Yes. More generally, the shape of $b^{[l]}b_{[l]}$ is $(n^{[l]}, 1)(n_{[l]}, 1)$ . $ W^{[3]}W_{[3]}$ will have shape $(1, 3)$ Correct  Yes. More generally, the shape of $W^{[l]}W_{[l]}$ is $(n^{[l]}, n^{[l-1]})(n_{[l]}, n_{[l-1]})$ . |

| Whereas the previous question used a specific network, in the general case what is the dimension of W^{[I]}, the weight matrix associated with layer $ll$ ?         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $^{\circ}$ W^{[l]} $W_{[l]}$ has shape $(n^{[l+1]}, n^{[l]})(n_{[l+1]}, n_{[l]})$                                                                                   |
| $^{\circ}$ W^{[l]} <i>W</i> [l] has shape (n^{[l-1]}, n^{[l]})(n[l-1],n[l])                                                                                         |
| • $W^{[l]}W_{[l]}$ has shape $(n^{[l]}, n^{[l-1]})(n_{[l]}, n_{[l-1]})$                                                                                             |
| $^{\circ}$ W^{[l]} $W_{[l]}$ has shape $(n^{\{[l]\}}, n^{\{[l+1]\}})(n_{[l]}, n_{[l+1]})$                                                                           |
| Correct                                                                                                                                                             |
| True                                                                                                                                                                |
|                                                                                                                                                                     |
| 10. Whereas the previous question used a specific network, in the general case what is the dimension of W^{[1]}, the weight matrix associated with layer <i>l</i> ? |
| $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$                                                                                                                     |
| $igcolom{W}^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$                                                                                                                  |
| $igotimes W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$                                                                                                                 |
| $igcolon W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$                                                                                                                  |
| ✓ Correct True                                                                                                                                                      |
|                                                                                                                                                                     |
|                                                                                                                                                                     |
|                                                                                                                                                                     |
|                                                                                                                                                                     |
|                                                                                                                                                                     |
|                                                                                                                                                                     |