

逻辑函数的卡诺图表示法

- •实质:将逻辑函数的最小项之和的以图形的方式表示出来
- 以2ⁿ个小方块分别代表 n 变量的所有最小项, 并将它们排列成矩阵,而且使几何位置相邻的 两个最小项在逻辑上也是相邻的(只有一个变量不同),就得到表示n变量全部最小项的卡诺 图。

表示最小项的卡诺图

• 二变量卡诺图

三变量的卡诺图

A	0	1
0	$A'B' m_0$	$A'B \\ m_1$
1	$\frac{AB'}{m_2}$	$\frac{AB}{m_3}$

表示最小项的卡诺图

• 二变量卡诺图

三变量的卡诺图

A	00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

表示最小项的卡诺图

• 二变量卡诺图

三变量的卡诺图

A	C 00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

• 4变量的卡诺图

\sim^{CD})			
AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	<i>m</i> ₉	m_{11}	m_{10}

• 五变量的卡诺图

AB	DE 000	001	011	010	110	111	101	100
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4
01	m_8	m_9	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}
10	m_{16}	m_{17}	m_{19}	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}

用卡诺图表示逻辑函数

- 1. 将函数表示为最小项之和的形式 $\sum m_i$
- 2. 在卡诺图上与这些最小项对应的位置上添入1, 其余地方添0。

用卡诺图表示逻辑函数

例:

$$Y(A,B,C,D) = A'B'C'D + A'BD' + AB'$$

$$= A'B'C'D + (C+C')A'BD' + AB'[(CD)' + C'D + CD' + CD]$$

$$= \sum m(1,4,6,8,9,10,11,15)$$

用卡诺图表示逻辑函数

CD)			
AB	00	01	11	10
00	0	1	0	0
01	1	0	0	1
11	0	0	1	0
10	1	1	1	1

用卡诺图化简函数

• 依据: 具有相邻性的最小项可合并, 消去不同因子。

• 在卡诺图中,最小项的相邻性可以从图形中直观地反映出来。

- 合并最小项的原则:
 - 两个相邻最小项可合并为一项, 消去一对因子
 - 四个排成矩形的相邻最小项可合并为一项,消去两对因子
 - 八个相邻最小项可合并为一项, 消去三对因子

两个相邻最小项可合并为一项,消去一对因子

用卡诺图化简函数

- 化简步骤:
 - -----用卡诺图表示逻辑函数
 - -----找出可合并的最小项
 - -----化简后的乘积项相加

(项数最少, 每项因子最少)

卡诺图化简的原则

化简后的乘积项应包含函数式的所有最小项,即覆盖 图中所有的1。

• 乘积项的数目最少,即圈成的矩形最少。

• 每个乘积项因子最少,即圈成的矩形最大。

例: Y(A,B,C) = AC' + A'C + B'C + BC'

A BO	00	01	1 1	1 0
0				
1				

例: Y(A,B,C) = AC' + A'C + B'C + BC'

ABC	00	01	1 1	10
0	0	1	1	1
1	1	1	0	

例:

$$Y(A,B,C) = AC' + A'C + B'C + BC'$$

$$AC' + A'B + B'C$$

化简结果不唯一

 $|S|: Y = ABC + ABD + AC'D + C' \cdot D' + AB'C + A'CD'$

AB CI	00	01	11	10
AB 00				
01				
11				
10				

例: $Y = ABC + ABD + AC'D + C' \cdot D' + AB'C + A'CD'$

CI AB	00	01	11	10		
00	1	0	0	$\sqrt{1}$		
01	1	0	0	1		
11	1	1	1	1		
10	1	1	1			
A + D'						

知识点小结

知识要点:卡诺图化简的原理和方法

知识难点: 用卡诺图表述和简化实际问题