Clinical implementation of deep learning: Automatic contouring via U-Net architecture

Matthew Cooper¹ Simon Biggs² Yu Sun¹

Yu Sun¹ Matthew Sobolewski²

Thesis: github.com/matthewdeancooper/masters_thesis

Video overview: docs.pymedphys/com/background/autocontouring

¹Institute of Medical Physics, The University of Sydney

²Riverina Cancer Care Centre, Cancer Care Associates.

Contouring - Current limitations

Variability

- Large intra and inter-observer variance (IOV).¹
- AAPM TG275 risk assessment multiple human-factor failure modes in RT.²

Time constraints

- Atlas methods
 ⇒ significant correction times.³
- Barrier to future technologies that require fast contouring.³

Deep learning potential

- Shown to reduce IOV and contouring time.³
- Significant improvement cf. atlas methods (time & accuracy).⁴

¹Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271, pp. 30.1111/1754-9485, 12844

²Eric Ford et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236–e272. DOI: https://doi.org/10.1002/mp.14030

³Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462

⁴Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

Research goals

Model 1: QA tool - Pelvic imaging for prostate cancer.

- Contour patient, bladder, rectum volumes
- Alert if prediction differs significantly from expert.
- Need for delineation to be part of regular QA.⁴

Model 2: Automatic contouring - Canine vacuum bag

- Automate time consuming aspect of canine RT
- ullet Previously, manual vacuum bag contouring pprox 30 min

Goal: Performance similar to human experts.

Performance metric (sDSC) that takes into account expert IOV.³

³ Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv:

⁴Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462

Performance - Surface dice similarity coefficient (sDSC)

$$DSC_{1,2} = \frac{2|M_1 \cap M_2|}{|M_1| + |M_2|}$$

$$sDSC_{1,2}^{(\tau)} = \frac{|S_1 \cap B_2^{(\tau)}| + |S_2 \cap B_1^{(\tau)}|}{|S_1| + |S_2|}$$

$$M_1 \qquad S_1 \qquad S_1 \qquad S_2^{(\tau)}$$

$$M_2 \qquad S_3 \qquad S_2^{(\tau)}$$

Figure: Clinical performance metric: Illustration of volume masks M_i , surfaces S_i , boundaries $B_i^{(\tau)}$ at organ specific tolerance τ , and intersection of surface boundaries $S_i \cap B_j^{(\tau)}$. Value states the percentage of surface contoured within expert IOV.³

³ Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv:

Figure: Modules required for end-to-end deep learning model deployment

Figure: Modules required for end-to-end deep learning model deployment

Figure: Modules required for end-to-end deep learning model deployment

Figure: Modules required for end-to-end deep learning model deployment

Figure: Modules required for end-to-end deep learning model deployment

Deployment - DICOM networking

Figure: TPS exports to remote server via DICOM networking protocol

Figure: Representative output for **patient**. Truth contour (yellow), prediction contour (red). Metrics: Dice similarity coefficient (DSC), and mean surface distance (MSD) in mm.

Figure: Representative output for **bladder**. Truth contour (yellow), prediction contour (red). Metrics: Dice coefficient (DSC), surface dice coefficient (sDSC), and mean surface distance (MSD) in mm

Figure: Representative output for **rectum**. Truth contour (yellow), prediction contour (red). Metrics: Dice coefficient (DSC), surface dice coefficient (sDSC), and mean surface distance (MSD) in mm

Figure: Representative output for **vacuum bag**. Truth contour (yellow), prediction contour (red). Metrics: Dice similarity coefficient (DSC), and mean surface distance (MSD) in mm.

Structure averaged metrics

	sDSC	DSC	MSD (mm)
Pelvic imaging Patient Bladder ($ au$ 1.46 mm) Rectum ($ au$ 6.99 mm) Average	0.9(2) 0.9(1)	0.998(1) 0.9(2) 0.7(1) 0.9(2)	0.002(5) 1(3) 1(2) 0.6(2)
Canine imaging Vacbag		0.952(1)	0.2(3)

Cf. expert IOV.²

 \bullet Clinically 'acceptable' bladder and rectum DSC ≥ 0.7

• Bladder: DSC 0.93(3), MSD 0.9(3) mm.

• Rectum: DSC 0.81(7), MSD 3(2) mm.

²Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754–9485.12844

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

Conclusion and future work

Pelvic imaging model:

- Patient contouring within tolerances
- Suspect more data will improve bladder and rectum segmentation.
- 3D architecture may identify gaseous rectal volumes.

Canine imaging model:

- Successfully deployed to clinic under a prototype warning
- Performance improvement of approximately 30 minutes per patient

Future

- Develop a soft surrogate for sDSC to optimise directly
- U-Net no longer S.O.T.A ⇒ HR-Net.¹⁶

¹⁶ Jingdong Wang et al. Deep High-Resolution Representation Learning for Visual Recognition. 2020. arXiv: 1908.07919 [cs.CV]

References I

- Ford, Eric et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236–e272. DOI: https://doi.org/10.1002/mp.14030.
- Nikolov, Stanislav et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV].
- Roach, Dale et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: *Journal of Medical Imaging and Radiation Oncology* 63.2 (2019), pp. 264–271. DOI: 10.1111/1754-9485.12844.
- Vinod, Shalini K et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: *Journal of Medical Imaging and Radiation Oncology* 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462.
- Wang, Jingdong et al. Deep High-Resolution Representation Learning for Visual Recognition. 2020. arXiv: 1908.07919 [cs.CV].