TMT4110 KJEMI

ØVING NR. 7, VÅR 2011

Veiledning: Tirsdag 01.03.2011 kl. 1215 – 1400 Grupperom

Innleveringsfrist: Torsdag 03.03.2011 kl. 1315

Løsningsforslag legges ut på it's learning

OPPGAVE 1 (Kap. 9)

- a) Finn fra SI dannelsesentalpien, $\Delta H_{\rm f}^{\circ}$ for O_2 (g), H_2 (g), H_2 O (l), H_2 O (s), C(s), HCl (g), HCl (aq), Cl⁻ (aq), OH⁻ (aq), H⁺ (aq), O₃ (g)
- b) Hvilke av disse verdier var det unødvendig å slå opp? Hvorfor?
- c) Hva er ΔH° for reaksjonen $O_3(g) \rightarrow \frac{3}{2}O_2(g)$?
- d) Hva er ΔH° for reaksjonen 2 O₃ (g) \rightarrow 3 O₂ (g)?
- e) Hvilken vei går en reaksjon hvis ΔH er negativ?
- f) Hvilken reaksjon går lettest, c) eller d)?
- g) Hva er ΔH° for reaksjonen H₂O (s) \rightarrow H₂O (l)? Hvilken reaksjon er dette?
- h) Dette svaret skal stemme med ΔH° (smelting). (I SI er betegnelsen $\Delta_{\text{fus}}H^{\circ}$.) Hvorfor? Hvorfor er det avvik?
- i) Hva er ΔH° for reaksjonen HCl (g) \rightarrow HCl (aq)?
- j) Hva forteller dette om løseligheten av HCl i vann?
- k) Hvilket fortegn vil du vente for ΔH° for reaksjonen $H_2O \rightarrow H^+ + OH^-$? Finn ΔH° .

OPPGAVE 2 (Eksamensoppgave des. 96) (Kap. 9 og 10)

Hydrogenklorid kan fremstilles fra natriumklorid ved reaksjon med konsentrert svovelsyre:

$$2 \text{ NaCl } (s) + H_2SO_4 (1) = Na_2SO_4 (s) + 2 \text{ HCl } (g)$$

- a) Benytt SI til å bestemme ΔH° , ΔS° og ΔG° for denne reaksjonen ved 25 °C. Beregn også likevektskonstanten ved samme temperatur. Vil reaksjonen gå frivillig?
- b) Kommenter fortegnet for den beregnede ΔS° for reaksjonen.
- c) Anta at ΔH° og ΔS° for reaksjonen er uavhengig av temperaturen, og bestem den temperatur der likevektstrykket av hydrogenkloridgassen er 5,0 atm.

OPPGAVE 3 (Kap. 9 og Kap. 10)

a) Finn fra SI entropien for O₂ (g), H₂O (l), H₂O (s), C (s), HCl (g), HCl (aq) og Fe (s).

- b) Hvorfor måtte du her slå opp alle tallene?
- c) Hva er ΔS° for reaksjonen H₂O (s) \rightarrow H₂O (l)?
- d) Hva er ΔS° for reaksjonen H₂O (1) \rightarrow H₂O (g)?
- e) S er et mål for graden av uorden i systemet. Jo større S, jo høyere uorden. Kommenter ut fra dette svarene i c) og d).

OPPGAVE 4 (Kap. 9 og Kap. 10)

- a) Beregn ΔH° , ΔS° og ΔG° for følgende reaksjoner ved 25 °C:
 - $2 \text{ Al (s)} + \text{Cr}_2\text{O}_3 (s) = \text{Al}_2\text{O}_3 (s) + 2 \text{ Cr (s)}$
 - (2) $CaO(s) + SO_3(g) = CaSO_4(s)$

Er reaksjonene (1) og (2) endoterme eller eksoterme?

b) Beregn ΔH° ved 200 °C, dvs. ΔH_{473}° , for reaksjon (1). Hvilken viktig antagelse har du gjort for å løse oppgaven?

OPPGAVE 5 (Kap. 9)

n mol ideell gass befinner seg i en lukket stålsylinder (vi antar konstant volum). n mol av den samme gass inneholdes i en gummiballong. Vi hever temperaturen fra T_1 til T_2 både for sylinderen og ballongen.

Vil vi bruke mer, mindre eller lik varmemengde for å heve temperaturen i sylinderen? Vi antar at de spesifikke molare varmekapasiteter C_{ν} og C_p er konstante i temperaturintervallet T_1 $\rightarrow T_2$.

OPPGAVE 6 (Kap. 4)

- c) Angi oksidasjonstall for klor i hvert av følgende stoff:
 - 1) HCI
- 2) HCIO₃ 3) Cl₂ 4) HCIO₄ 5) Cl₂O 6) CIO₂

- d) Angi oksidasjonstall for fosfor i hvert av følgende stoff:
- 1) PH₃ 2) Ca₃P₂ 3) PCI₃ 4) P₄ 5) Ca₂P₂O₇ 6) CaHPO₃

e) Angi oksidasjonstall for Fe i Fe₂O₃ og Fe₃O₄.

Fasit:

2c) 331 K

4b) $\Delta H_{473}^{o} = -543 \text{ kJ}$