Organización y Arquitectura de Computadoras 2019-2

Práctica 3: Circuitos Combinacionales

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

3 de marzo del 2019

1 Ejercicios

1. Desarrolla un circuito que simule el comportamiento de la implicación lógica. Sólo puedes hacer uso de fuentes de alimentación power y ground, transistores tipo PNP y NPN y pines de entrada y salida.

Como es un operador binario de valores lógicos, entonces las entradas son dos variables lógicas $\in \{1,0\}^2$ y la salida es otro valor lógico $\in \{1,0\}$.

Luego, la implicación se defina como sigue

Table 1: Tabla de verdad de la implicación

p	q	$p \implies q$
0	0	1
0	1	1
1	0	0
1	1	1

Y el mapa de Karnaugh correspondiente es

Por lo que la regla de correspondencia es

$$(p \implies q) = p' + q$$

- 2. Sean $x, y \in \{0, 1, 2, 3\}$. Desarrolla un comparador electrónico de 2 bits, las salidas del comparador deben ser
 - x < y
 - \bullet x = y
 - $\bullet x > y$

Podemos considerar los números del 0 al 3 en su representación binaria. Como sólo son dos dígitos, entonces cada número puede ser representado con dos variables lógicas, lo que da un total de 4 variables lógicas, una para cada bit

de cada número.

Y a su vez, hay tres salidas, una por cada relación que hay que modelar.

Table 2: Tabla de verdad de las relaciones anteriores

a	b	c	d	ab < cd	ab = cd	ab > cd
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Los mapas de Karnaugh correspondientes son

 \bullet Igualdad

Por lo que la regla de correspondencia es

$$(ab = cd) = a'b'c'd' + a'bc'd + abcd + ab'cd'$$

• Menor que

		ab						
		00	01	11	10			
cd	00	0	1	1	1			
	01	0	0	1	1			
	11	0	0	0	0			
	10	0	0	1	0			

Por lo que la regla de correspondencia es

$$(ab < cd) = ac' + bc'd' + abd'$$

• Mayor que

Por lo que la regla de correspondencia es

$$(ab < cd) = a'c + b'cd + a'b'd$$

2 Preguntas

- 1. ¿Cuál es el procedimiento a seguir para desarrollar un circuito que recuelva un problema que involucre lógica combinacional?
- 2. Si una función de conmutación se evalua a más ceros que unos, ¿es conveniento usar mintérminos o maxtérminos? ξY en caso contrario?
- 3. En base al trabajo realizado, ¿cuáles son los inconvenientes de desarrollo de circuitos de forma manual?