CH 3 – Function Limits and Continuity

Luke Lu • 2025-09-22

Definitions

If $f: \mathbb{R} \to \mathbb{R}$ is a function and $a \in \mathbb{R}, \lim_{x \to a} f(x) = L$ if for all $\varepsilon > 0$ there exists $\delta > 0$ s.t. if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$

Examples:

1)Prove using the $\varepsilon-\delta$ definition that $\lim_{x \to 0} f(x)$ DNE where

$$f(x) = \begin{cases} -2 & \text{if } x < 0\\ 3 & \text{if } x > 0 \end{cases}$$

Domain: $\mathbb{R} \setminus \{0\}$

Take $\varepsilon = 1$. Consider some $\delta > 0$. Whitin $(0 - \delta, 0 + \delta)$

We have both $(-\delta,0)$ where f(x)=-2 and $(0,\delta)$ where f(x)=3. If this δ exists for $\varepsilon=1$ then the limit L would need to be distance 1 or both -2 and 3, where is impossible.

$$\therefore \lim_{x \to 0} f(x) = \mathrm{DNE}$$

2)
$$\lim_{x\to 7} 8x - 3 = 53$$

Let $\varepsilon > 0$ be arbitrary.

We want find δ s.t. if $0<|x-7|<\delta$ then $|8x-3-53|<\varepsilon\to\delta=\frac{\varepsilon}{8}$ Pick $\delta=\frac{\varepsilon}{8}$.

Then if $0 < |x-7| < \frac{\varepsilon}{8}, |(8x-3)-53| = |8x-56| = 8|x-7| < 8 \cdot \frac{\varepsilon}{8} = \varepsilon$