CS 161 Final Cheat Sheet

Kerchoff's Principle

You should not rely on the secrecy of the algorithm/protocol and or keysize, as wall as the possible plain text for security because eventually the adversary will figure them out.

Mono-Alphabetic Ciphers: 1 to 1 mapping of characters to symbols

- Substitution
 - Shift or Caesar's Cipher $E_k(m) \leftarrow m + k \pmod{N}$ $D_k(c) \leftarrow c - k \pmod{N}$
 - Affine Cipher: $E_k(m) \leftarrow k_! m + k_2 \pmod{N}$ $D_k(c) \leftarrow k_!^{-1} (c - k \pmod{N})$
 - Substitution Ciphers have an extreme vulnerability to frequency attacks.

Poly-Alphabetic Ciphers

- Vigenere Cipher: Shift by a repeated key
- Book Cipher (Beale Cipher) key is hidded in a passage of a set book.
- Vernam Cipher
 - Message is m bits and the key is n bits.
 - Bitwise xor the message and the key, if m is greater than n, then use the key multiple times.
- One-Time Pad
 - Same idea as the Vernam Cipher except we use a key that is the same length or greater than the length of the message, then discard it after each use.

- Transposition/Permutation Cipher
 - Break the message into n bit blocks, then on each block perfom the same permutation
 - Despite being polyalphabit, the cipher is still vulnerable to frequency attacks. Because the original patterns are still basically present. You can attack by checking anagrams.

Data Encryption Standard (DES)

DES is a block cipher in which messages are divided into data blocks of a fixed length and each block is treated as one message either in M or in C. The DES encryping and decryption algorithms take as an input a 64-bit plaintext or ciphertext message and a 56-bit key, and output a 64-bit ciphertext or plaintext message. DES is done in 3 steps:

- 1. Apply a fixed "initial permutation" IP to the input block. $(L_0, R_0) \leftarrow IP(\texttt{Input Block})$ This step has no apparent cryptographic significance.
- 2. Iterate the following 16 rounds of operations (Feistel Cipher)

- the function is nonlinear and is considered a Substitution Cipher
- the move from $L_i \to R_{i-1}$ is a Transposition cipher
- Vernam cipher is used at the xor
- k is a 48 bit subsection of the 56 bit, "round key"

Single DES

• vulnerable to brute force or exaustive key search attacks

Triple DES

Triple DES uses an encryption-decryption-encryption scheme, $c \leftarrow E_{k_1}(D_{k_2}(E_{k_1}(m)))$ $m \leftarrow D_{k_1}(E_{k_2}(D_{k_1}(m)))$

This scheme enlarges the keyspace while maintaining backward compatibility with single DES if $k_1 = k_2$

Advanced Encryption Standard (AES)

AES is a block cipher with variable block size and variable keysize. (block size can be 128, 192, 256 bit)
AES has 4 states:

- 1. Sub Bytes State: nonlinear substitution on each byte
- 2. Shift Rows State: Transposition rearranges the order of elements in each row
- 3. Mix Columns State: Polynomial multiplication after converting column to polynomial.
- 4. Add Round Key State: adds elements of round key to the state, basically bitwise "OR"