BuildingSystems library from UdK Berlin

Prof. Dr.-Ing. Christoph Nytsch-Geusen

Outline

BuildingSystems library

Library Features

- Integration with the Modelica IBPSA library
- Building energy simulation (BES) on different levels of detail (room, building, district)
- Adaptable building models

- Library Applications

- Digital twins of energy building systems
- Integration of BES into Virtual Reality environments
- Web-based simulation environment

BuildingSystems Library

Modelica library for energetic simulation of

- single constructions, rooms,
- multi-zone buildings and
- whole districts.

Developed at UdK Berlin

Webpage: http://modelica-buildingsystems.de

 free available under the BSD 3-Clause license: (https://github.com/UdK-VPT/BuildingSystems)

Library models

- Building energy simulation
 - simplified and detailed building models (0D, 1D, 3D)
 - thermal and hygro-thermal models
- Energy plant simulation
 - HVAC systems
 - solar thermal & photovoltaic systems

3D spatial resolved room model (left) and multi-zone thermal building model (right)

System model of a solar thermal heating system

Library features - Integration with the Modelica IBPSA library

Example: BuildingSystems.Applications.AirConditingSystems.PhotovoltaicCoolingSystem

Fachgebiet Versorgungsplanung und Versorgungstechnik Institut für Architektur und Städtebau

Library features – BES on different levels of detail

- Room Scale

- Finite volume (FV)-based 3D-discritized room model
 → spatial resolved air temperature and velocity field
- Detailed 3D geometries from BIM (e.g. IFC)

FV-based room simulation

Building Scale

- Multi-zone building model
 - → mean air/operative temperature for different zones
- Sligthly simplified 1D/3D geometries from BIM

BIM-based building simulation

- District Scale

- · Grey and black box building models
- Strong simplified 0D/1D geometries from GIS (ALKIS, CityGML)

GIS-based district simulation

Library features – Adaptable building models

Option: Flexible room geometry during simulation runtime

 Geometry: time-dependent position, height, width, azimuth angle and tilt angle

Adaptable zone models

- · Geometry: time-dependent position and volume
- Radiation exchange: time-dependent view factor calculation
- Example: movable divider wall between two zones (right)
 - · wall geometry can change by user interaction
 - Long-wave radiation exchange between all zone surfaces dependent on the divider wall size and position

Room model with a movable divider wall

Library Applications – Digital twins of building energy systems

Real building system

(Rooftop building: www.solar-rooftop.de)

Building construction

Building energy technology (HVAC)

Sensors & actuators

Digital twin

Multi-zone thermal building model

Energy plant model

"Virtual" sensors & actuators

Library Applications – Digital twins of building energy systems

Modelica model of the energy building system of the Rooftop building from UdK Berlin

HVAC system

photovoltaic system

Library Applications – Digital twins of building energy systems

Rooftop building - Simulation analysis of a summer period

Library Applications - Integration of BES into Virtual Reality environments

Interactive immersive VR simulation environment with a thermal feedback for the user

Hard and software integration

VR user in the climate chamber surrounded by devices for indoor climate reproduction

- a) Research approach https://youtu.be/gyU_0lxzx9A
- b) Demonstration of the VR simulation environment https://youtu.be/a0GnX5KZit4

Library Applications - Web-based simulation environment

Simulation core and user network

- Thickness of brick and insulation layer
- Number of numerical nodes per layer
- Orientierung of the wall
- Steady state or dynamic boundary conditions
- · Simulation time period

•

Simulation results

Model parameterization

Contact

Prof. Dr.-Ing. Christoph Nytsch-Geusen

mail: nytsch@udk-berlin.de

Berlin University of the Arts, Institute for Architecture and Urban Planning

Department Building Physics and Building Technology (VPT)

Einsteinufer 43-53, 10587 Berlin

web: http://www.arch.udk-berlin.de/vpt

