NP Completeness

Classes "P" and "NP"

- Class P consists of decision problems that are solvable in polynomial time:
 - O(n^k), k constant
- Class NP consists of problems that are verifiable in polynomial time
 - Could be solved by nondeterministic polynomial algorithms

Algorithms

2

Nondeterministic Algorithms

Nondeterministic algorithm = two stage procedure:

- 1) Nondeterministic ("guessing") stage:
 - generate an arbitrary string that can be thought of as a candidate solution ("certificate")
- 2) Deterministic ("verification") stage:
 - take the certificate and the instance to the problem and returns YES if the certificate represents a solution
- Nondeterministic polynomial (NP) = verification stage is polynomial

Polynomial Reduction Algorithm

- To solve a decision problem A in polynomial time
 - Use a polynomial time reduction algorithm to transform A into B
 - 2. Run a known polynomial time algorithm for B
 - 3. Use the answer for B as the answer for A

Algorithms

4

Reductions

Given two problems A, B, we say that A is

reducible to B (A
$$\leq_p$$
 B) if:

- There exists a function f that converts the input of A to inputs of B in polynomial time
- 2. $A(i) = YES \Leftrightarrow B(f(i)) = YES$

NP-Completeness

- A problem B is NP-complete if:
 - 1) B ∈ **NP**
 - 2) $A \leq_p B$ for all $A \in \mathbf{NP}$
- If B satisfies only property 2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Is P = NP?

Any problem in P is also in NP:

$$P \subseteq NP$$

- We can solve problems in P, even without having a certificate
- The big (and open question) is whether P = NP

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then P = NP.

P & NP-Complete Problems

Shortest simple path

- Given a graph G = (V, E) find a shortest path from a source to all other vertices
- Polynomial solution: O(VE)

Longest simple path

- Given a graph G = (V, E) find a longest path from a source to all other vertices
- NP-complete

P & NP-Complete Problems

Euler tour

- G = (V, E) a connected, directed graph find a cycle that traverses each edge of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)

Hamiltonian cycle

- G = (V, E) a connected, directed graph find a cycle
 that visits each vertex of G exactly once
- NP-complete

Reduction and NP-Completeness

- Suppose we know:
 - No polynomial time algorithm exists for problem A
 - We have a polynomial reduction f from A to B
- ⇒ No polynomial time algorithm exists for B

Proving NP-Completeness

Theorem: If A is NP-Complete and $A \leq_p B$

⇒ B is NP-Hard

In addition, if $B \in NP$

⇒ B is NP-Complete

Proof: Assume that $B \in P$

Since $A \leq_p B \Rightarrow A \in P$ contradiction!

⇒ B is NP-Hard

Proving NP-Completeness

- Prove that the problem B is in NP
 - A randomly generated string can be checked in polynomial time to determine if it represents a solution
- Show that one known NP-Complete problem can be transformed to B in polynomial time
 - No need to check that all NP-Complete problems are reducible to B

Boolean Formula Satisfiability

- 1. n boolean variables: x₁, x₂, ..., x_n
- 2. m boolean connectives: \land (AND), \lor (OR), \neg (NOT), \rightarrow (implication), \leftrightarrow if and only if
- 3. Parenthesis

Satisfying assignment: an assignment of values (0, 1) to variables x_i that causes Φ to evaluate to 1

E.g.:
$$\Phi = (x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2)$$

Certificate: $x_1 = 1$, $x_2 = 0 \Rightarrow \Phi = 1 \land 1 \land 1 = 1$

Formula Satisfiability is first to be proven NP-Complete

3-CNF Satisfiability

3-CNF Satisfiability Problem:

- n boolean variables: x₁, x₂, ..., x_n
- **Literal**: x_i or $-x_i$ (a variable or its negation)
- Clause: c_i = an OR of three literals (m clauses)
- Formula: $\Phi = c_1 \wedge c_2 \wedge ... \wedge c_m$
- *E.g.*:

$$\Phi = (\mathbf{x}_1 \vee \neg \mathbf{x}_1 \vee \neg \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_2 \vee \mathbf{x}_4) \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_3 \vee \neg \mathbf{x}_4)$$

3-CNF is NP-Complete

Clique

Clique Problem:

- Undirected graph G = (V, E)
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
- Size of a clique: number of vertices it contains

Optimization problem:

Find a clique of maximum size

Decision problem:

– Does G have a clique of size k?

Clique(G, 3) = YES Clique(G, 4) = NO

Clique Verifier

- Given: an undirected graph G = (V, E)
- Problem: Does G have a clique of size k?
- Certificate:
 - A set of k nodes

 Verify that for all pairs of vertices in this set there exists an edge in E

16

Start with an instance of 3-CNF:

- $-\Phi = C_1 \wedge C_2 \wedge ... \wedge C_k$ (k clauses)
- Each clause C_r has three literals: $C_r = I_1^r \vee I_2^r \vee I_3^r$

Idea:

Construct a graph G such that ₱ is satisfiable only if

G has a clique of size k

- For each clause $C_r = I_1^r \vee I_2^r \vee I_3^r$ place a triple of vertices v_1^r , v_2^r , v_3^r in V
- Put an edge between two vertices v_i^r and v_j^s if:
 - v_i^r and v_i^s are in different triples
 - I_i is not the negation of I_j (consistent correspondent literals)

$$\Phi = C_1 \wedge C_2 \wedge C_3$$

- Suppose

 has a satisfying assignment
 - Each clause C_r has a
 literal assigned to 1 this
 corresponds to a vertex v_i^r
 - Picking one such literal from each C_r ⇒ a set V' of k vertices

- Claim: V' is a clique
 - $-\forall\ v_i^r,\ v_j^s\in V'$ the corresponding literals are $1\Rightarrow$ cannot be complements
 - by the design of G the edge $(v_i^r, v_j^s) \in E$

$$\Phi = C_1 \wedge C_2 \wedge C_3$$

- Suppose G has a clique of size k
 - No edges between nodes in the same clause
 - Clique contains only one vertex from each clause
 - Assign 1 to vertices in the clique
 - The literals of these vertices cannot belong to complementary literals
 - Each clause is satisfied $\Rightarrow \Phi$ is satisfied

Vertex Cover

- G = (V, E), undirected graph
- Vertex cover = a subset V' ⊆ V
 such that covers all the edges
 - if $(u, v) \in E$ then $u \in V'$ or $v \in V'$ or both.
- Size of a vertex cover = number of vertices in it

Problem:

- Find a vertex cover of minimum size
- Does graph G have a vertex cover of size k?

Algorithms 21

Z

Clique ≤_p Vertex Cover

 $Size[Clique](G) + Size[V-C](G^C) = n$

- G has a clique of size k ⇔ G^C has a vertex cover of size n k
- S is a clique in G ⇔ V S is a vertex cover in G^C

Clique ≤_p Vertex Cover

•
$$G = (V, E) \Rightarrow G^C = (V, E^C)$$

 $E^C = \{(u, v):, u, v \in V, \text{ and } (u, v) \notin E\}$

Idea:

 $\langle G, k \rangle$ (clique) $\rightarrow \langle G^C, |V|-k \rangle$ (vertex cover)

The Traveling Salesman Problem

- G = (V, E), |V| = n, vertices
 represent cities
- Cost: c(i, j) = cost of travel from city i to city j
- Problem: salesman should make a tour (hamiltonian cycle):
 - Visit each city only once
 - Finish at the city he started from
 - Total cost is minimum
- TSP = tour with cost at most k

 $\langle u, w, v, x, u \rangle$

26

TSP ∈ NP

· Certificate:

Sequence of n vertices

Verification:

- Each vertex occurs only once
- Sum of costs is at most k

HAM-CYCLE ≤_p TSP

- Start with an instance of Hamiltonian cycle G = (V, E)
- Form the complete graph G' = (V, E')

$$\mathsf{E'} = \{(\mathsf{i},\,\mathsf{j}) \colon \mathsf{i},\,\mathsf{j} \in \mathsf{V} \text{ and } \mathsf{i} \neq \mathsf{j}\}$$

$$c(i, j) = \begin{cases} 0 & \text{if } (i, j) \in E \\ 1 & \text{if } (i, j) \notin E \end{cases}$$

- TSP: ⟨G', c, 0⟩
- G has a hamiltonian cycle has a tour of cost at most 0

HAM-CYCLE \leq_p TSP

- G has a hamiltonian cycle h
 - \Rightarrow Each edge in $h \in E \Rightarrow$ has cost 0 in G'
 - \Rightarrow h is a tour in G' with cost 0
- G' has a tour h' of cost at most 0
 - ⇒ Each edge on tour must have cost 0
 - ⇒ h' contains only edges in E

Approximation Algorithms

Ways to get around NP-completeness:

- 1. If inputs are small, an algorithm with exponential time may be satisfactory
- Isolate special cases, solvable in polynomial time
- 3. Find near-optimal solutions in polynomial time
 - Approximation algorithms

The Vertex-Cover Problem

- Vertex cover of G = (V, E), undirected graph
 - A subset V' ⊆ V thatcovers all the edges in G

Idea:

- Repeatedly pick an arbitrary edge (u, v)
- Add its endpoints u and v to the vertex-cover set
- Remove all edges incident on u or v

APPROX-VERTEX-COVER(G)

- 1. C ← Ø
- 2. E' ← E[G]
- 3. while $E' \neq \emptyset$
- 4. **do** choose (u, v) arbitrary from E'
- 5. $C \leftarrow C \cup \{u, v\}$
- 6. remove from E' all edges incident on u, v
- 7. return C

APPROX-VERTEX-COVER(G)

APPROX-VERTEX-COVER:

Optimal VERTEX-COVER:

The approximation algorithm returns an optimal solution that is no more than twice the optimal vertex cover

The Traveling Salesman Problem

- G = (V, E), |V| = n, c(i, j) = cost
 of travel from city i to city j
- Problem: salesman should make a tour (hamiltonian cycle):
 - Visit each city only once
 - Finish at the city he started from
 - Total cost is minimum
- TSP = tour with cost at most k
- Triangle inequality

$$c(u, w) \le c(u, v) + c(v, w)$$

$$\langle u, w, v, x, u \rangle$$

APPROX-TSP-TOUR

APPROX-TSP-TOUR (G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let *H* be a list of vertices, ordered according to when they are first visited in a preorder tree walk of *T*
- 4 **return** the hamiltonian cycle *H*

(d) A tour obtained by visiting the vertices in the order given by the preorder walk, which is the tour H returned by APPROX-TSP-TOUR. Its total cost is approximately 19.074. (e) An optimal tour H* for the original complete graph. Its total cost is approximately 14.715.

The Set Covering Problem

- Finite set X
- Family \mathcal{F} of subsets of X: $\mathcal{F} = \{S_1, S_2, ..., S_n\}$

$$X = \bigcup S$$

 $S \in \mathcal{F}$

- Find a minimum-size subset C ⊆ F that covers all the elements in X
- Decision: given a number k find if there exist k sets S_{i1}, S_{i2}, ..., S_{ik} such that:

$$S_{i1} \cup S_{i2} \cup ... \cup S_{ik} = X$$

Greedy Set Covering

Idea:

At each step pick a set S
 that covers the greatest
 number of remaining
 elements

Optimal: $C = \{S_3, S_4, S_5\}$

GREEDY-SET-COVER(X, F)

- 1. $U \leftarrow X$
- 2. C ← Ø
- 3. while $U \neq \emptyset$
- 4. **do** select an $S \in F$ that

- 5. $U \leftarrow U S$
- 6. $C \leftarrow C \cup \{S\}$
- 7. return C

Readings

• Chapter 34