Data Warehouse no Suporte à Tomada de Decisão Relatório da Prova Individual

Arthur Moreira de Albuquerque DRE 114146877

Análise de microdados do ENADE dos anos de 2017, 2018, 2019

O trabalho foi feito no sistema operacional Windows 11. O Python Notebook precisa ser executado no VS Code (não pode ser executado no Colab) com as extensões 'Jupyter' e 'Jupyter Notebook Renderers' para baixar os dados na pasta Downloads do Windows. Isso é necessário pois a pasta Downloads é o endereço no qual o 'CSV reader' do Workflow KNIME vai pegar os dados. Depois disso é só abrir o Workflow KNIME e executar para ver a parte que contém a análise de dados e os resultados dos algoritmos de aprendizado.

Link do relatório (Google Doc):

https://docs.google.com/document/d/1Hb3K8dJsjC-m_pmD9Pycb-HtMgij0AFV5hV3at5bBVE/ed it?usp=sharing

Link do repositório no GitHub:

https://github.com/troclaux/dw_trabalho_final_individual

Questão 1

Neste trabalho achei melhor usar as mesmas ferramentas que foram utilizadas no trabalho em grupo. Primeiro se executa um Python Notebook para baixar os dados. Para isso, foi necessário importar a biblioteca <u>GoogleDriveDownloader</u>, que baixa os dados que estão salvos na minha conta do Google Drive na mesma pasta em que o Python Notebook se localiza. O próximo passo consiste em criar o banco de dados com a ajuda do SQLite. Finalmente, o programa em Python lê os arquivos .txt que contém os dados e os insere no banco de dados.

Depois que os arquivos foram baixados e o banco de dados foi preenchido, achei mais prático construir um workflow do knime para aplicar o algoritmo de aprendizado, particionar os dados e sintetizar representações visuais para responder as 5 perguntas propostas.

Os dados são armazenados no Google Drive, mas estão disponíveis originalmente neste <u>link</u>. Conforme o enunciado, serão utilizados os dados dos anos 2017, 2018 e 2019. Entre os arquivos obtidos estão:

- MICRODADOS ENADE 2017.txt
- microdados_enade_2018.txt
- microdados enade 2019.txt

Felizmente todos os arquivos .txt contém os dados no mesmo formato, com a primeira linha contendo os atributos separados por ponto e vírgula (;) e depois temos as tuplas com os dados, que também são separados por ponto e vírgula.

Observando o dicionário de dados que vem junto com os dados podemos ter maior clareza do conteúdo que foi baixado.

Questão 2

Depois de analisar o conjunto de dados no dicionário de dados, foi feita a escolha para organizar o modelo no seguinte formato:

- Tabela fato:
 - CLASSIFICACAO_ENADE
- Tabelas dimensão:
 - o TEMPO
 - SITUACAO_QUEST_DISCURSIVA
 - o IES
 - PROVA_OBJETIVA
 - PERCEPCAO_PROVA
 - QUESTIONARIO ESTUDANTE
 - ESTUDANTE
 - FEEDBACK
 - VETOR RESP ESTUDANTE
 - VETOR GABARITO

Foi utilizado o site https://www.diagrams.net/ para desenhar o modelo de dados e para executar a análise de dados, preferimos o KNIME.

Questão 3

Como o trabalho já estava sendo feito em Python, foi utilizado o SQLite para criar a base de dados do Data Warehouse. Para fazer isso, se cria um objeto Connection que representa o banco de dados usando a função connect() do módulo sqlite3. Com isso, o arquivo dw_prova_individual.db é criado. Segundamente, é preciso criar as tabelas com os respectivos atributos. Foi necessário escrever strings com os comandos para criar a tabelas conforme o exemplo abaixo:

Finalmente se cria uma função create_table() que aceita o objeto Connection juntamente com a string que contém os comandos SQL. Dentro da função, chamamos o método execute() do objeto Cursor para executar a declaração de criação de tabela. Com isso, o SQLite cria a base de dados.

Questão 4

Para inserir os dados foi necessário usar a biblioteca pandas. Com ela, é possível ler os dados de arquivos csv com a função to_sql(), que permite a leitura apenas das colunas (atributos) desejados, o que facilitava a inserção dos dados de cada tabela.

Ao implementar esse banco de dados, percebi que os atributos qe_i69 até o qe_i81 estavam presentes apenas nos dados do ENADE 2017. Foi necessário adaptar a inserção de dados para inserir esses atributos apenas para 2017.

O processo de preenchimento consistiu nas seguintes etapas:

- 1. Declaração das listas de atributos de cada tabela
- 2. Declaração de strings que contém o caminho para os microdados ENADE de cada ano
- 3. Declaração da função que vai criar a conexão com o banco de dados SQLite
- 4. Declaração da função que vai inserir os dados de 2017, 2018, 2019 no banco de dados
- 5. Finalmente se utiliza as funções e bibliotecas importadas para ler as colunas corretas de cada tabela e inserir os dados com a função to sql()

Questão 5

Para essa parte do trabalho foi utilizado o KNIME por conta da interface intuitiva e porque ele facilita a manipulação dos dados. Abaixo vamos ter a análise de dados com as respostas para 5 perguntas propostas:

1) Qual é a mediana do desempenho bruto dos participantes do ENADE?

O melhor jeito de responder a pergunta foi por meio de um boxplot que analisa os valores da variável nt_ger. Essa variável representa a nota bruta da prova, que consiste da média ponderada da formação geral (25 %) e componente específico (75%). A nota varia de 0 até 98,1.

Conforme podemos observar pelo gráfico, a nota geral possui mediana 42.5, com quartil inferior 32,5 e quartil superior 53,2. O limite inferior é 1,5 enquanto o limite superior é 84,2.

Ao gerar a tabela do atributo no KNIME, foi obtido uma tabela com 1000 linhas, já que os valores podem ser decimais. Por conta disso não vou incluir a tabela nessa pergunta, mas ela ainda está presente e disponível para consulta no workflow do KNIME.

Esperava um desempenho melhor dos graduandos do ENADE, mas imagino que essas notas são um reflexo sobre o sistema de educação brasileiro, que deveria receber maior investimento.

1) Qual é a distribuição dos participantes por renda familiar?

A resposta para a primeira pergunta está na coluna do atributo qe_i08, que armazena as respostas dos participantes no questionário do ENADE. A pergunta é "Qual a renda total de sua família, incluindo os seus rendimentos?". Para interpretar os dados, é necessário consultar o dicionário de dados, que nos fornece a seguinte legenda:

- A = Até 1,5 salário mínimo (até R\$ 1.405,50)
- B = De 1,5 a 3 salários mínimos (R\$ 1.405,51 a R\$ 2.811,00)
- C = De 3 a 4,5 salários mínimos (R\$ 2.811,01 a R\$ 4.216,50)
- D = De 4,5 a 6 salários mínimos (R\$ 4.216,51 a R\$ 5.622,00)
- E = De 6 a 10 salários mínimos (R\$ 5. 622,01 a R\$ 9.370,00)
- F = De 10 a 30 salários mínimos (R\$ 9.370,01 a R\$ 28.110,00)
- G = Acima de 30 salários mínimos (mais de R\$ 28.110,00)

A	273666
В	382981
С	284374
D	150636
E	154494
F	96110
G	18777

A partir do gráfico podemos notar que a maioria da população está na faixa de 1,5 a 3 salários mínimos. Listando cada faixa por tamanho, obtemos:

1,5 a 3	Maior parcela da população
3 a 4,5	
Até 1,5	
4,5 a 6 ≅ 6 a 10	
10 a 30	
Acima de 30	Menor parcela da população

Os resultados estão de acordo com o esperado, onde participantes com renda acima de 30 salários mínimos são uma parcela ínfima da população, assim como a maioria da população cair nos grupos de faixa salarial mais humilde (por exemplo 1,5 a 3 salários mínimos).

3) Qual é a distribuição de idade dos participantes do ENADE?

Novamente se utiliza o boxplot para responder, a variável analisada é nu_idade.

			38	24501		
			39	21728		
			40	19532		
			41	17132		
		[.	42	15177		
_	Row ID	count	43	13497		
	4	1	44	11943		
	5	1	45	10865		
	10	2	46	9486		
	11	3	47	8382		
L	12	1	48	7537		
	14	1	49	6626		
	16	1	50	5668		
	17	4	51	5148		
	18	80	52	4747	71	77
	19	3179	53	4134	72	54
	20	17484	54	3549	73	52
	21	61409	55	3107	74	44
	22	152747	56	2587	75	24
	23	188451	57	2194	76	20
	24	160372	58	1813	77	10
	25	126527	59	1488	78	11
	26	99646	60	1259	79	7
	27	79912	61	1039	80	5
	28	67731	62	805	81	4
	29	57856	63	653	82	1
	30	50919	64	535	83	7
	31	46055	65	403	84	1
	32	40810	66	329	85	2
	33	36528	67	265	86	2
	34	34024	68	187	87	1
	35	31673	69	149	90	1
	36	29904	70	124	94	2
	37	27257	71	77	95	1

Conforme o esperado, a mediana da idade dos graduandos é 26, valor que segue o que observo na vida real nos meus amigos que estão terminando o curso. Além disso, temos quartil inferior 23, quartil superior 32, limite inferior 10 e limite superior 45.

4) Qual é a cor/raça mais comum entre os participantes do ENADE?

Nesse atributo, os rótulos vieram como caracteres únicos, mas basta olhar para o dicionário de variáveis para compreender o significado de cada letra.

- A = Branca
- B = Preta
- C = Amarela
- D = Parda
- E = Indígena
- F = Não quero declarar

Conhecendo a legenda, podemos interpretar a tabela e o Pie Chart:

A	723696
В	121027
C	32921
D	448817
E	4750
F	29828

Conforme podemos observar, a maioria esmagadora dos participantes se identificou como cor branca, consistindo em 53% do total. Abaixo temos cada cor/raça, ordenada de maior para menor porcentagem do total de participantes.

Branca > Parda > Preta > Amarela > Indígena

5) Qual é a porcentagem de homens e mulheres participando do ENADE?

Para isso, basta utilizar o nó "Pie/Donut Chart" do KNIME, que seleciona a coluna tp_sexo do arquivo .csv e automaticamente constrói o gráfico que mostra a proporção de homens e mulheres participando do ENADE.

Row ID	count			
F	850965			
M	668528			

Nesse gráfico, o 'M' representa a parcela dos homens e o 'M' representa a das mulheres. Conforme podemos ver, existe uma diferença substancial entre as porcentagens. Com 44% dos participantes pertencendo ao sexo masculino e 56% pertencendo ao sexo feminino.

Questão 6

Para o aprendizado, novamente foi utilizado o KNIME, que já vem com os módulos de aprendizado e predição necessários. Nesse exercício, foram utilizados os algoritmos de aprendizado Naive Bayes e Decision Tree.

Primeiro os dados são particionados. Nesse workflow foi separado 90% dos dados para aprendizado e 10% para predição. Depois da partição, os dados são inseridos nos módulos de aprendizado e de predição, conforme podemos ver abaixo:

O atributo qe_i12 estava no questionário para os alunos do ENADE e armazena os resultados da seguinte pergunta:

"Ao longo da sua trajetória acadêmica, você recebeu algum tipo de auxílio permanência? No caso de haver mais de uma opção, marcar apenas a bolsa de maior duração".

Os participantes podiam marcar as seguintes alternativas:

- A. Nenhum
- B. Auxílio moradia
- C. Auxílio alimentação
- D. Auxílio moradia e alimentação
- E. Auxílio permanência
- F. Outro tipo de auxílio

Abaixo estão listados os resultados da primeira tentativa. Por precaução rodei mais 2 vezes para me certificar e felizmente os resultados foram consistentes. No final do processamento dos dados foi possível encontrar os seguintes resultados em cada algoritmo ao se analisar a acurácia e a precisão do atributo qe_i12:

Decision Tree:

- Acurácia de 0.9
- Precisão de 0.946

Naive Bayes:

- Acurácia de 0.886
- Precisão de 0.96

Questão 7

Recapitulando as ferramentas utilizadas, temos:

VS Code

Editor de texto da Microsoft, que foi utilizado por conter muitas funcionalidades, extensões e suporte para otimizar o desenvolvimento de software. Ele permite edição e execução de Python Notebooks com as extensões 'Jupyter' e 'Jupyter Notebook Renderers'. O VS Code também é o meu editor de texto favorito para programar.

Python

Escolhi essa linguagem porque existem várias bibliotecas que se especializam em manipulação de dados nela, como também o fato dela ser uma linguagem de fácil compreensão.

KNIME

Esse programa foi utilizado porque possui ferramentas (nós) que permitem a leitura, manipulação e representação gráfica de dados. Além disso, o KNIME possui nós para diversos algoritmos de aprendizado, que utilizei para responder a Questão 6.

SQLite

Essa ferramenta foi uma recomendação do professor e foi essencial para inserir os dados lidos no arquivo.bd. Por meio dela, foi possível criar a conexão com o banco de dados e inserir cada instância. Outro motivo para o uso do SQLite no trabalho foi o <u>tutorial</u> compreensível que encontrei na Web, que ensinava o básico para o manuseio de um banco de dados.

Pandas

Biblioteca mais importante para o trabalho, pois viabiliza a leitura tanto de arquivos .txt como .csv. Muito útil por permitir a leitura de colunas específicas, o que facilita o processo de inserir dados em cada tabela do banco de dados.

<u>GoogleDriveDownloader</u>

Escolhemos usar essa biblioteca para baixar os dados e o Workflow KNIME a partir da minha conta do Google Drive no computador. Esses arquivos são baixados na mesma pasta que o Python Notebook e os dados são copiados para pasta Downloads(que é onde o workflow KNIME vai buscar os dados para leitura).

DB Browser

Esse programa serviu mais para verificar se os dados estavam sendo corretamente adicionados no banco de dados. Por meio dele é possível ver as tabelas e cada dado que foi inserido no arquivo .db de forma intuitiva.

<u>Excel</u>

Foi usado esse programa para ler os arquivos .csv ocasionalmente, assim como para ler o dicionário de dados. O motivo pela escolha do programa foi pela conveniência, já que ele já estava instalado no meu computador.

https://www.diagrams.net/

O site foi utilizado por possuir interface intuitiva e por possuir todas funcionalidades necessárias para construir modelo estrela.