计数基础

俞畅

福建师范大学附属中学

2023年7月15日

目录

- 一些说明
- 2 排列与组合
- 3 容斥
- 4 特殊的"数"
- 5 综合运用

一些说明

以认识为主,不会讲太深。

前置知识:

- 加法原理、乘法原理
- 简单排列组合
- 简单 DP

请多多提问,积极发言。 明天早上的模拟赛会有比较多的计数题,

一些说明

以认识为主,不会讲太深。 前置知识:

- 加法原理、乘法原理
- 简单排列组合
- 简单 DP

请多多提问,积极发言。

明天早上的模拟赛会有比较多的计数题

一些说明

以认识为主,不会讲太深。 前置知识:

- 加法原理、乘法原理
- 简单排列组合
- 简单 DP

请多多提问,积极发言。 明天早上的模拟赛会有比较多的计数题。

目录

- □ 一些说明
- 2 排列与组合
- 3 容斥
- 4 特殊的"数"
- 5 综合运用

排列数与组合数

阶乘 (注意 0! = 1)

$$n! = \prod_{i=1}^{n} i$$

组合数

$$C_n^m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

n 个不同物品选出 m 个的方案数。

排列数/下降幂

$$A_n^m = n^{\underline{m}} = \frac{n!}{(n-m)!}$$

n 个不同物品选出 m 个排成一排的方案数。

排列数与组合数

阶乘 (注意 0! = 1)

$$n! = \prod_{i=1}^{n} i$$

组合数

$$C_n^m = {n \choose m} = \frac{n!}{m!(n-m)!}$$

n 个不同物品选出 m 个的方案数。

排列数/下降幂

$$A_n^m = n^{\underline{m}} = \frac{n!}{(n-m)!}$$

n 个不同物品选出 m 个排成一排的方案数。

排列数与组合数

阶乘 (注意 0! = 1)

$$n! = \prod_{i=1}^{n} i$$

组合数

$$C_n^m = {n \choose m} = \frac{n!}{m!(n-m)!}$$

n 个不同物品选出 m 个的方案数。

排列数/下降幂

$$A_n^m = n^{\underline{m}} = \frac{n!}{(n-m)!}$$

n 个不同物品选出 m 个排成一排的方案数。

• 二项式定理

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$

• 对称性

$$\binom{n}{m} = \binom{n}{n-m}$$

• 帕斯卡公式

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

• 二项式定理

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$

• 对称性

$$\binom{n}{m} = \binom{n}{n-m}$$

帕斯卡公式

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

• 二项式定理

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$

• 对称性

$$\binom{n}{m} = \binom{n}{n-m}$$

• 帕斯卡公式

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

• 阶乘展开式的推论

$$\binom{n}{m+1} = \frac{n-m}{m+1} \binom{n}{m}$$
$$\binom{n}{m} = \frac{n}{m} \binom{n-1}{m-1}$$

• 二项式定理的推论

$$2^{n} = \sum_{i=0}^{n} \binom{n}{i}$$
$$= 0] = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i}$$

• 阶乘展开式的推论

$$\binom{n}{m+1} = \frac{n-m}{m+1} \binom{n}{m}$$
$$\binom{n}{m} = \frac{n}{m} \binom{n-1}{m-1}$$

• 二项式定理的推论

$$2^{n} = \sum_{i=0}^{n} \binom{n}{i}$$
$$[n=0] = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i}$$

• 竖线求和

$$\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

斜线求和

$$\sum_{k=m}^{n} \binom{k}{k-m} = \binom{n+1}{n-m}$$

• 三项式等式

$$\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$$

范德蒙等式

$$\sum_{k} \binom{r}{k} \binom{s}{m-k} = \binom{r+s}{m}$$

竖线求和

$$\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

斜线求和

$$\sum_{k=m}^{n} \binom{k}{k-m} = \binom{n+1}{n-m}$$

• 三项式等式

$$\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$$

• 范德蒙等式

$$\sum_{k} \binom{r}{k} \binom{s}{m-k} = \binom{r+s}{m}$$

• 竖线求和

$$\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

斜线求和

$$\sum_{k=m}^{n} \binom{k}{k-m} = \binom{n+1}{n-m}$$

• 三项式等式

$$\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$$

• 范德蒙等式

$$\sum_{k} \binom{r}{k} \binom{s}{m-k} = \binom{r+s}{m}$$

随堂小练习

- 求 *n* 个不同物品选出 *m* 个排成环的方案数,旋转后相同的也算相同的环。
- ② 有 k 种物品,其中第 j 种物品有 nj 个相同的,求把它们排成一排的方案数。
- ③ 求方程 $x_1 + x_2 + \cdots + x_n = b$ 的正整数解的个数。
- 4 求方程 $x_1 + x_2 + \cdots + x_n = b$ 的非负整数解的个数。

- 杨辉三角递推
- 逆元法
- 从相邻项递推
- 卢卡斯定理 *

- 杨辉三角递推
- 逆元法
- 从相邻项递推
- 卢卡斯定理 *

- 杨辉三角递推
- 逆元法
- 从相邻项递推
- 卢卡斯定理 *

- 杨辉三角递推
- 逆元法
- 从相邻项递推
- 卢卡斯定理 *

- 杨辉三角递推
- 逆元法
- 从相邻项递推
- 卢卡斯定理 *

目录

- □ 一些说明
- 2 排列与组合
- ③ 容斥
- 4 特殊的"数"
- 5 综合运用

求出 n 以内不能被 2,3,5 整除的整数个数。

考虑这个 Venn 图。三个圆分别表示被 2,3,5 整除的数构成的集合,那么要求的就是圆外的面积。

经过一番加加减减,你发现答案是:

 $n - \lfloor \frac{n}{3} \rfloor - \lfloor \frac{n}{3} \rfloor - \lfloor \frac{n}{5} \rfloor + \lfloor \frac{n}{2 \times 3} \rfloor + \lfloor \frac{n}{2 \times 5} \rfloor + \lfloor \frac{n}{3 \times 5} \rfloor - \lfloor \frac{n}{2 \times 3 \times 5} \rfloor$ 这就是**容斥**。

求出 n 以内不能被 2,3,5 整除的整数个数。

考虑这个 Venn 图。三个圆分别表示被 2,3,5 整除的数构成的集合,那么要求的就是圆外的面积。

 $n - \lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{3} \rfloor - \lfloor \frac{n}{5} \rfloor + \lfloor \frac{n}{2 \times 3} \rfloor + \lfloor \frac{n}{2 \times 5} \rfloor + \lfloor \frac{n}{3 \times 5} \rfloor - \lfloor \frac{n}{2 \times 3 \times 5} \rfloor$ 文就是**容斥**。

求出 n 以内不能被 2,3,5 整除的整数个数。

考虑这个 Venn 图。三个圆分别表示被 2,3,5 整除的数构成的集合,那么要求的就是圆外的面积。

经过一番加加减减, 你发现答案是:

$$n - \lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{3} \rfloor - \lfloor \frac{n}{5} \rfloor + \lfloor \frac{n}{2 \times 3} \rfloor + \lfloor \frac{n}{2 \times 5} \rfloor + \lfloor \frac{n}{3 \times 5} \rfloor - \lfloor \frac{n}{2 \times 3 \times 5} \rfloor$$

这就是容斥。

求出 n 以内不能被 2,3,5 整除的整数个数。

考虑这个 Venn 图。三个圆分别表示被 2,3,5 整除的数构成的集合,那么要求的就是圆外的面积。

经过一番加加减减, 你发现答案是:

$$n - \lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{3} \rfloor - \lfloor \frac{n}{5} \rfloor + \lfloor \frac{n}{2 \times 3} \rfloor + \lfloor \frac{n}{2 \times 5} \rfloor + \lfloor \frac{n}{3 \times 5} \rfloor - \lfloor \frac{n}{2 \times 3 \times 5} \rfloor$$

这就是**容斥。**

容斥

记 A_1 到 A_n 是 n 个集合, $U = \{1, 2, \dots, n\}$ 。那么

$$\left|\bigcup_{i=1}^{n} A_{i}\right| = \sum_{S \subset U, S \neq \emptyset} (-1)^{|S|-1} \left|\bigcap_{i \in S} A_{i}\right|$$

为什么?

考虑一个元素。假设它出现在了 n 个集合中的 k(k > 0) 个。则它的贡献恰好是

$$\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i}$$

$$=1-\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}$$

$$=1-(-1+1)^k$$

= 1

我们发现有出现过的算了一次,没出现过的算了零次

容斥

记 A_1 到 A_n 是 n 个集合, $U = \{1, 2, \dots, n\}$ 。那么

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{S \subset U, S \neq \emptyset} (-1)^{|S|-1} \left| \bigcap_{i \in S} A_i \right|$$

为什么?

考虑一个元素。假设它出现在了n个集合中的k(k > 0)个。则它的贡献恰好是

$$\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i}$$

$$=1-\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}$$

$$=1-(-1+1)^k$$

= 1

我们发现有出现过的算了一次,没出现过的算了零次

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からで

容斥

记 A_1 到 A_n 是 n 个集合, $U = \{1, 2, \dots, n\}$ 。那么

$$\left|\bigcup_{i=1}^{n} A_{i}\right| = \sum_{S \subset U, S \neq \emptyset} (-1)^{|S|-1} \left|\bigcap_{i \in S} A_{i}\right|$$

为什么?

考虑一个元素。假设它出现在了 n 个集合中的 k(k > 0) 个。则它的贡献恰好是

$$\sum_{i=1}^{k} (-1)^{i-1} {k \choose i}$$

$$= 1 - \sum_{i=0}^{k} (-1)^{i} {k \choose i}$$

$$= 1 - (-1+1)^{k}$$

$$= 1$$

我们发现有出现过的算了一次,没出现过的算了零次。

随堂小练习

- ① 求欧拉函数 $\varphi(n)$ 。
- ② 求方程 $x_1 + x_2 + \cdots + x_n = b$ 的整数解的个数,满足 $\forall i, l_i \leq x_i \leq r_i$ 。

硬币购物

题目描述

有 m 种硬币,面值为 c_1, c_2, \dots, c_m 。 q 次询问,每次给出 d_1, d_2, \dots, d_m, s ,表示第 i 种硬币带了 d_i 个,要付的价格为 s,求有多少种付款方法。

数据范围

$$m = 4$$
, $1 \le q \le 1000$, $1 \le c_i, d_i, s \le 10^5$

题目来源

HAOI2008

硬币购物

Grid

题目描述

有一个 $h \times w$ 的网格,给出的 n 个单元格 $(r_1, c_1), (r_2, c_2), \cdots, (r_n, c_n)$ 有障碍,是不能经过的。每一步只能向右或向下走到相邻单元格,求从左上角 (1,1) 走到右下角 (h,w) 的方案数。答案对 M 取模。

数据范围

 $2 \le h, w \le 10^5, n \le 3000, M = 1 000 000 007$

题目来源

Atcoder DP Contest Y

Grid

目录

- □ 一些说明
- 2 排列与组合
- 3 容斥
- 4 特殊的"数"
- 5 综合运用

如果 $\{1,2,\cdots,n\}$ 的排列 p_1,p_2,\cdots,p_n ,满足 $p_i\neq i$,那么这个排列称为 1 到 n 的**错排**。

错排数 *D*, 即为 {1,2,···,*n*} 的错排个数。 考虑一个容斥。我们强行选定 *i* 个位置使 *p_i = i*, 其他位置任意排列,乘 上容斥系数 (-1)ⁱ 后相加即可。即:

$$D_{n} = \sum_{i=0}^{n} \binom{n}{i} (n-i)! (-1)^{i}$$

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$
$$D_n = nD_{n-1} + (-1)^n$$

如果 $\{1,2,\cdots,n\}$ 的排列 p_1,p_2,\cdots,p_n ,满足 $p_i\neq i$,那么这个排列称为 1 到 n 的**错排**。

错排数 D_n 即为 $\{1,2,\cdots,n\}$ 的错排个数。

考虑一个容斥。我们强行选定 *i* 个位置使 *pi = i*,其他位置任意排列,乘 上容斥系数 (-1)ⁱ 后相加即可。即 :

$$D_n = \sum_{i=0}^{n} \binom{n}{i} (n-i)! (-1)^i$$

弟推式

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$
$$D_n = nD_{n-1} + (-1)^n$$

如果 $\{1,2,\cdots,n\}$ 的排列 p_1,p_2,\cdots,p_n ,满足 $p_i\neq i$,那么这个排列称为 1 到 n 的**错排**。

错排数 D_n 即为 $\{1,2,\cdots,n\}$ 的错排个数。

考虑一个容斥。我们强行选定 i 个位置使 $p_i = i$,其他位置任意排列,乘上容斥系数 $(-1)^i$ 后相加即可。即:

$$D_n = \sum_{i=0}^{n} \binom{n}{i} (n-i)! (-1)^i$$

弟推式

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$
$$D_n = nD_{n-1} + (-1)^n$$

如果 $\{1, 2, \dots, n\}$ 的排列 p_1, p_2, \dots, p_n , 满足 $p_i \neq i$, 那么这个排列称为 1 到 n 的**错排**。

错排数 D_n 即为 $\{1,2,\cdots,n\}$ 的错排个数。

考虑一个容斥。我们强行选定 i 个位置使 $p_i = i$,其他位置任意排列,乘上容斥系数 $(-1)^i$ 后相加即可。即:

$$D_{n} = \sum_{i=0}^{n} \binom{n}{i} (n-i)! (-1)^{i}$$

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$
$$D_n = nD_{n-1} + (-1)^n$$

欧拉数

求有多少个 $\{1, 2, \dots, n\}$ 的排列 p_1, p_2, \dots, p_n , 使得恰有 m 个位置 i 满足 $p_i < p_{i+1}$ 。

答案即为**欧拉数**
$$\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle$$
。

$$\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = (m+1) \left\langle \begin{array}{c} n-1 \\ m \end{array} \right\rangle + (n-m) \left\langle \begin{array}{c} n-1 \\ m-1 \end{array} \right\rangle$$

欧拉数

求有多少个 $\{1,2,\cdots,n\}$ 的排列 p_1,p_2,\cdots,p_n ,使得恰有 m 个位置 i 满足 $p_i < p_{i+1}$ 。

答案即为**欧拉数**
$$\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle$$
。

$$\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = (m+1) \left\langle \begin{array}{c} n-1 \\ m \end{array} \right\rangle + (n-m) \left\langle \begin{array}{c} n-1 \\ m-1 \end{array} \right\rangle$$

欧拉数

求有多少个 $\{1,2,\cdots,n\}$ 的排列 p_1,p_2,\cdots,p_n ,使得恰有 m 个位置 i 满足 $p_i < p_{i+1}$ 。

答案即为**欧拉数** $\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle$ 。

$$\left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = (m+1) \left\langle \begin{array}{c} n-1 \\ m \end{array} \right\rangle + (n-m) \left\langle \begin{array}{c} n-1 \\ m-1 \end{array} \right\rangle$$

卡特兰数 €_n 是

- 1 ~ n 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数, 结点无标号, 区分左右儿子
- 凸 n + 2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 × 轴下方的点,从 (0,0) 走到 (2*n*,0) 的路径数
-

$$C_0 = 1$$
 $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

卡特兰数 C_n 是

- $1 \sim n$ 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数,结点无标号,区分左右儿子
- 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 x 轴下方的点,从 (0,0) 走到 (2*n*,0) 的路径数
-

弟推式

$$C_0 = 1$$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

卡特兰数 Cn 是

- 1 ~ n 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数,结点无标号,区分左右儿子
- 凸 n + 2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 x 轴下方的点,从 (0,0) 走到 (2*n*,0) 的路径数
-

$$C_0 = 1$$
 $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

- $1 \sim n$ 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数,结点无标号,区分左右儿子
- 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 x 轴下方的点,从 (0,0) 走到 (2*n*,0) 的路径数
- o
- 递推式

- 1 ~ n 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数,结点无标号,区分左右儿子
- 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过x轴下方的点,从(0,0)走到(2n,0)的路径数
- o
- 递推式

- 1 ~ n 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数,结点无标号,区分左右儿子
- \bullet 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 × 轴下方的点,从 (0,0) 走到 (2n,0) 的路径数
-
- 递推式

- $1 \sim n$ 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数, 结点无标号, 区分左右儿子
- 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 x 轴下方的点,从 (0,0) 走到 (2n,0) 的路径数
- 详推式

- $1 \sim n$ 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数, 结点无标号, 区分左右儿子
- 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 x 轴下方的点,从 (0,0) 走到 (2n,0) 的路径数
-

卡特兰数 €, 是

- 1 ~ n 依次进栈,可能的出栈序列个数
- 长为 2n 的合法括号序列个数
- n 个结点的二叉树个数,结点无标号,区分左右儿子
- 凸 n+2 边形的三角剖分数,三角形的顶点必须是原多边形的顶点
- 每次往右或上走一步,不能经过 y = x 上方的点,从 (0,0) 走到 (n,n) 的路径数
- 每次往右上或右下走一步,不能经过 x 轴下方的点,从 (0,0) 走到 (2n,0) 的路径数
-

$$C_0 = 1$$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

抓住这个组合意义:每次往右上或右下走一步,不能经过x轴下方的点,从(0,0)走到(2n,0)的路径数。

对称思想得到通项

$$C_n = \binom{2n}{n} - \binom{2n}{n-1}$$

循环思想得到通项

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

抓住这个组合意义:每次往右上或右下走一步,不能经过x轴下方的点,从(0,0)走到(2n,0)的路径数。

对称思想得到通项

$$C_n = \binom{2n}{n} - \binom{2n}{n-1}$$

循环思想得到通项

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

抓住这个组合意义:每次往右上或右下走一步,不能经过x轴下方的点,从(0,0)走到(2n,0)的路径数。

对称思想得到通项

$$C_n = \binom{2n}{n} - \binom{2n}{n-1}$$

循环思想得到通项

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

第二类斯特林数

第二类斯特林数 $\binom{n}{m}$ 表示把 n 个不同小球放入 m 个相同盒子,盒子不能空的方案数。

递推

容斥

$$\begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{i=0}^{m} (-1)^i \binom{m}{i} (m-i)^r$$

第二类斯特林数

第二类斯特林数 $\binom{n}{m}$ 表示把 n 个不同小球放入 m 个相同盒子,盒子不能空的方案数。

$${n \brace m} = {n-1 \brace m-1} + m {n-1 \brack m}$$

容斥

弟推

$$\begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{i=0}^{m} (-1)^i \binom{m}{i} (m-i)^r$$

第二类斯特林数

第二类斯特林数 $\binom{n}{m}$ 表示把 n 个不同小球放入 m 个相同盒子,盒子不能空的方案数。

递推

$${n \brace m} = {n-1 \brace m-1} + m {n-1 \brack m}$$

容斥

$$\begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} (m-i)^{n}$$

贝尔数

贝尔数 B_n 表示把 n 个不同小球放入若干个相同盒子,盒子不能空的方案数。

容易发现贝尔数是第二类斯特林数一行的和

$$B_n = \sum_{j=0}^n \binom{n}{j}$$

也有弟推式

$$B_{n+1} = \sum_{i=0}^{n} B_i \binom{n}{i}$$

贝尔数

贝尔数 B_n 表示把 n 个不同小球放入若干个相同盒子,盒子不能空的方案数。

容易发现贝尔数是第二类斯特林数一行的和

$$B_n = \sum_{j=0}^n \begin{Bmatrix} n \\ j \end{Bmatrix}$$

也有弟推式

$$B_{n+1} = \sum_{i=0}^{n} B_i \binom{n}{i}$$

贝尔数

贝尔数 B_n 表示把 n 个不同小球放入若干个相同盒子,盒子不能空的方案数。

容易发现贝尔数是第二类斯特林数一行的和

$$B_n = \sum_{j=0}^n \begin{Bmatrix} n \\ j \end{Bmatrix}$$

也有递推式

$$B_{n+1} = \sum_{i=0}^{n} B_i \binom{n}{i}$$

n 的**拆分数**即为把 n 个相同小球放入若干个相同盒子的方案数。

拆分数虽然也是指数级,但增长很慢。 相当于有 n 个点的 Ferrers **图**的个数。

n 的**拆分数**即为把 n 个相同小球放入若干个相同盒子的方案数。 拆分数虽然也是指数级,但增长很慢。

相当于有 n 个点的 Ferrers 图的个数。

n 的**拆分数**即为把 n 个相同小球放入若干个相同盒子的方案数。 拆分数虽然也是指数级,但增长很慢。 相当于有 n 个点的 **Ferrers 图**的个数。

n 的**拆分数**即为把 n 个相同小球放入若干个相同盒子的方案数。 拆分数虽然也是指数级,但增长很慢。 相当于有 n 个点的 **Ferrers 图**的个数。

随堂小练习

- ① 求有多少 1 到 n 的排列 p_1, p_2, \dots, p_n , 满足恰有 k 个位置 $p_i = i$ 。
- ② 有 $n \cap 1$ 和 $m \cap -1$, 求把它们排成一排的方案数, 使所有前缀和 非负。

跑步

题目描述

求 n 的拆分数。

数据范围

 $1 \le n \le 100\ 000,\ 1 \le m \le 2^{30}$

题目来源

NOI Online #1 入门组

跑步

凸多边形正则划分

题目描述

求把一个凸 nk-2n+2 边形添加一些不相交的对角线划分成 n 个凸 k 边形区域的方案数。

答案对 M 取模。

数据范围

 $1 \le n \le 555\ 555$, $3 \le k \le 200$, $M = 1\ 000\ 000\ 007$

题目来源

FJO12020

凸多边形正则划分

最大前缀和

题目描述

将 $n \cap 1$ 和 $m \cap -1$ 任意排成一列,记为序列 $\{a_i\}$ 。记 $\{a_i\}$ 的前缀和为 $\{b_i\}$,其中 $b_0 = 0$,定义 $\max_{i=0}^{n+m} b_i$ 为 a_i 的前缀和最大值。 求对于所有可能得到的序列,前缀和最大值之和是多少。 答案对 M 取模。

数据范围

 $1 \le n, m \le 10^6$, $M = 998 \ 244 \ 353$

题目来源

CF1204E 加强版

最大前缀和

目录

- □ 一些说明
- 2 排列与组合
- 3 容斥
- 4 特殊的"数"
- 5 综合运用

多叉堆

题目描述

初始时有 n 个结点, 每个结点都是一棵单点树。q 次操作, 操作有两种:

- ① $1 \times y$ 将 x 所在树的根直接接在 y 所在树的根之下,保证 x, y 原本不在同一棵树。
- ② 2 x 设 x 当前所在树的结点数为 s。求有多少种方式将 $0 \sim s-1$ 这 s 个数分别填入 x 所在树的结点中,使所有儿子上的数大于父亲。

答案对 M 取模。

数据范围

 $1 \le q, n \le 3 \times 10^5, M = 10^9 + 7$

题目来源

CSP-S 2019 江西

多叉堆

Emiya 家今天的饭

题目描述

给定一个 $n \times m$ 的表格,每个位置写有非负整数 $a_{i,j}$ 。你需要在表格中选取至少一个位置,使得:

- 每行最多选一个位置;
- 设总共选了 c 个位置, 那么不存在一列选的个数超过 | c/2|。

对于一种合法方案,它的权值是所有选的位置的 $a_{i,j}$ 的乘积,求所有合法方案的权值之和。

答案对 M 取模。

数据范围

 $1 \le n \le 100$, $1 \le m \le 2000$, $0 \le a_{i,j} < M = 998 244 353$

题目来源

CSP-S 2019

Emiya 家今天的饭

微信步数

题目描述

你在 $w_1 \times w_2 \times \cdots \times w_k$ 的 k 维空间里面散步。你从空间中 $w_1 \times w_2 \times \cdots \times w_k$ 个位置都分别要出发一次,按照以下规则散步:

- 第 i 步时第 $c_{(i-1) \mod n+1}$ 维坐标加上 $d_{(i-1) \mod n+1}$;
- 一旦走出这个空间范围, 停止本次散步。

求一共走了多少步。 答案对 *M* 取模。

数据范围

$$1 \le n \le 5 \times 10^5, 1 \le k \le 10, 1 \le w_j \le 10^9, d_i \in \{-1, 1\}$$
, $M = 1\ 000\ 000\ 007$

题目来源

NOIP2020

微信步数

谢谢大家