รายงานสรุปผลการศึกษา

วิชา 2110291 เอกัตศึกษาทางวิศวกรรมคอมพิวเตอร์ 1

(Individual Study in Computer Engineering I)

เรื่อง

Clock drawing task in Parkinson disease patients

จัดทำโดย

นายพีรณัฐ ธีระวัฒนชัย

รหัสประจำตัวนิสิต 6231343821

เสนอ

อาจารย์ เอกพล ช่วงสุวนิช

รายงานฉบับนี้เป็นส่วนหนึ่งของการศึกษารายวิชาเอกัตศึกษาทางวิศวกรรมคอมพิวเตอร์ 1
จุฬาลงกรณ์มหาวิทยาลัย
ภาคเรียนที่ 1 ปีการศึกษา 2563

คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของการศึกษารายวิชาเอกัตศึกษาทางวิศวกรรม
คอมพิวเตอร์ 1 (Individual Study in Computer Engineering I) จัดทำขึ้นเพื่อสรุปสิ่งที่
ได้เรียนรู้จากวิชานี้ โดยได้ร่วมทำโปรเจคเรื่อง Machine Learning เกี่ยวกับการทำนายการ
เป็น Parkinson Disease จาก Features ต่างๆ ได้แก่ ข้อมูลทั่วไป Drawing Parameter และ
Labels โดยในรายงานเล่มนี้ประกอบด้วยเนื้อหาดังนี้

- 1. ความเป็นมาและวัตถุประสงค์
- 2. ขั้นตอนการทำงาน สิ่งที่ทำ
- 3. ผลลัพธ์ของงาน
- 4. อุปสรรคที่เกิดขึ้น วิธีแก้ปัญหา และสิ่งที่ได้รับจาก Individual Study นี้

ทั้งนี้ข้าพเจ้าหวังเป็นอย่างยิ่งว่ารายงานเล่มนี้จะเป็นประโยชน์ต่อผู้ที่ได้มาศึกษาเป็นอย่างดี และหากมีข้อผิดพลาดประการใดขออภัยมา ณ โอกาสนี้ด้วย

> นายพีรณัฐ ธีระวัฒนชัย ผู้จัดทำ

สารบัญ

ราย	ละเอียด	หน้า
1.	ความเป็นมาและวัตถุประสงค์	4
2.	ขั้นตอนการทำงาน สิ่งที่ทำ	5
3.	ผลลัพธ์ของงาน	6
4.	อุปสรรคที่เกิดขึ้น วิธีแก้ปัญหา และสิ่งที่ได้รับจาก Individual Study นี้	15

1. ความเป็นมาและวัตถุประสงค์

- ความเป็นมา

ในปัจจุบันแม้เทคโนโลยีจะมีความก้าวหน้ามากขึ้น แต่การตรวจหาโรคบางชนิดก็ยังคงทำได้ ยาก หรือ หากทำได้ต้องใช้เงินจำนวนมาก บุคคลากรทางการแพทย์จึงคิดวิธีที่จะเก็บลักษณะเบื้องต้น ของบุคคลคนหนึ่งที่มีนัยสำคัญต่อโรคนั้นทั้งที่เป็น และ ไม่เป็นโรค เพื่อนำมารวบรวม และ วิเคราะห์ได้ ว่าบุคคลนั้นเป็นโรคชนิดนั้นหรือเปล่า ซึ่งวิธีหนึ่งในการเก็บข้อมูล คือ Clock drawing task ซึ่งเป็นการ ตรวจข้างเตียงที่ประสาทแพทย์ใช้ทดสอบผู้ป่วยที่มีความผิดปกติทางสมองชนิดต่างๆ เป็นการทดสอบ ทำได้ง่ายและให้ข้อมูลหลายแง่มุมที่ไว้ช่วยในการวินิจฉัยโรค เช่น โรคอัลไซเมอร์ โรคสมาธิบกพร่อง เป็นต้น โดยให้ผู้ป่วยวาดรูป "หน้าปัดนาพิกาบอกเวลา สิบเอ็ดนาพิกาสิบนาที" ลงบนกระดาษ ตัวอย่าง ความผิดปกติมีหลากหลาย เช่น การวาดนาพิกาที่เข็มสั้นชี้ที่เลขสิบ สอง การวาดตัวเลขบนหน้าปัดนาพิกา ไปรวมอยู่ทางด้านขวาของนาพิกา การวาดเข็มยาวกับเข็มสั้นยาวเท่ากัน วาดไม่เป็นนาพิกา เป็นต้น โดยทางปฏิบัติในปัจจุบันแพทย์จะแปลผลโดยอาศัยผลลัพธ์ภาพวาดสุดท้ายเท่านั้น อย่างไรก็ตาม ข้อมูล ระหว่างการวาด เช่น ความเร็ว หรือ ลำดับการวาด (temporal domain) ก็ดูจะมีความสำคัญ แม้ว่าทาง การแพทย์จะยังไม่ได้นำมาใช้เท่าที่ควร เช่น บางคนเริ่มจากการลงเลข 12 6 3 ก่อนจะไปเขียนเลขตัวอื่น ๆ ซึ่งบ่งว่ามีการวางแผนที่ดี

โดยในงานนี้ผมได้รับมอบหมายให้นำข้อมูลที่เก็บมาจากตัวอย่าง 196 คน สร้าง Machine Learning เพื่อให้วิเคราะห์ว่า Clock drawing task สามารถใช้บ่งบอกการเป็นหรือไม่เป็นโรคพาร์คินสัน ได้หรือไม่ และ เป้าหมายหลัก คือ การใช้ข้อมูลต่างๆเพื่อทำให้การทำนายเกิดความแม่นยำมากที่สุด โดยข้อมูลที่กำหนดมาให้แบ่งออกเป็น

- 1. ข้อมูลทั่วไป ได้แก่ เพศ อายุ คะแนน TMSE (Thai mini mental status examination) การศึกษา วันที่เก็บข้อมูล ระยะเวลาที่เป็น และ มือข้างถนัด
- 2. Drawing Parameter ซึ่งเก็บมาอยู่ในรูป Array
 - 2.1 t เก็บเวลาที่แต่ละจุดที่ถูกวาด
 - 2.2 x เก็บพิกัด X ของแต่ละจุด
 - 2.3 y เก็บพิกัด Y ของแต่ละจุด
 - 2.4 p เก็บความหนักของการวาดแต่ละจุด
 - 2.5 pt เก็บลักษณะของแต่จุด (1 = เริ่ม , 2 = ลาก , 3 = ยก)
- 3. Labels ระลุว่าแต่ละคนแนนโรคพาร์คินสันหรือไม่ และ วาดรูปนาฬิกาปกติหรือไม่

- วัตถุประสงค์

- 1. เพื่อทำนายการเป็น Parkinson Disease จาก Features ต่างๆ ได้แก่ ข้อมูลทั่วไป (Age , Date , Ed , Gender , Duration , Side , TMSE) Drawing Parameter และ Labels ให้มีความแม่นยำ มากที่สุด
- 2. เพื่อทดสอบว่า Clock drawing task สามารถใช้บ่งบอกการเป็นหรือไม่เป็นโรคพาร์คินสันได้ หรือไม่
 - 3. เพื่อศึกษาการทำ Machine Learning ใน Google Colaboratory
 - 4. เพื่อศึกษาการเขียนโปรแกรมภาษา Python ใน Google Colaboratory

2. ขั้นตอนการทำงาน สิ่งที่ทำ

- ขั้นตอนการทำงาน

- ศึกษาการทำ Machine Learning จาก "Applied Machine Learning in Python by
 University of Michigan" ใน Coursera เพื่อให้ทราบถึงพื้นฐานการทำ Machine Learning เช่น การ แบ่งข้อมูล การทดสอบข้อมูลแบบต่างๆ และ การนำข้อมูลมาวิเคราะห์ เป็นตัน
 - 2. วางแผน หรือ แนวทางในการทำงาน
 - 3. เริ่มทำงานใน Google Colaboratory จนสำเร็จ
 - 4. ตรวจสอบความถูกต้องของงาน
 - 5. ทำรูปเล่มสรุปการทำงาน

- สิ่งที่ทำ

- 1. Google Colaboratory : ภายในเป็นการเขียนโปรแกรมด้วย Python เพื่อตอบสนอง วัตถุประสงค์ที่จะทำนายการเป็น Parkinson Disease จาก Features ต่างๆ ให้มีความแม่นยำมากที่สุด และ ทดสอบว่า Clock drawing task สามารถใช้บ่งบอกการเป็นหรือไม่เป็นโรคพาร์คินสันได้หรือไม่
- 2. รูปเล่มสรุปการทำงาน : ภายในเป็นการสรุปผลงานที่ทำ อุปสรรคที่เกิดขึ้นระหว่างการทำงาน แนวทางแก้ไข และ สิ่งที่ได้จากการศึกษาครั้งนี้

3. ผลลัพธ์ของงาน (Reading_mat_PD.ipynb)

- 0. Import สิ่งที่จำเป็นต้องใช้
- 1. Making Dataframe โดยใช้ pandas และ ปรับเปลี่ยน และ เพิ่มข้อมูลต่างๆ เข้าไปในตาราง
 - 1.1 clock_image : สร้างภาพวาดนาฬิกาจากพิกัดจุด และ ลักษณะของเส้นต่างๆ โดยจะ ใช้ ImageDraw ในจุดที่ pt!=1
 - 1.2 t : เปลี่ยนเป็นใช้ระยะเวลาสุดท้ายที่ใช้วาด
 - 1.3 ed , gender , side: เปลี่ยนเป็นใช้เฉพาะตัวเลขด้านหน้าแทน
 - 1.4 dates , month : เพิ่มข้อมูลวันและเดือนที่จัดเก็บข้อมูลลงไปในตาราง
 - 1.5 pressure_mean , pressure_std : เพิ่มข้อมูลค่าเฉลี่ย และ ส่วนเบี่ยงเบนมาตรฐาน ของแรงกดปากกาลงไปในตาราง
 - 1.6 TMSE_pass : เพิ่มข้อมูลว่าแต่ละคนผ่านเกณฑ์ทดสอบตามอายุหรือไม่ (0 = failed / 1 = pass)
 - 1.7 น้ำข้อมูล x , y , pt , duration ออกจากตาราง
 - 1.8 นำข้อมูลของคนที่กรอกอายุ และ TMSE ไม่ครบถ้วน ออกไปทั้งหมด
- 2. Classification

```
2.1 Use all features
```

'TMSE','clock_drawing','t','ed','gender','side','age','dates','month','pressure_mean',
'pressure_std','TMSE_pass' (Overfit)

```
Accuracy of KNeighborsClassifier: 0.8182 F1 score of KNeighborsClassifier: 0.8710
```

```
Accuracy of Logistic Regression on training set: 0.8182
Accuracy of Logistic Regression on test set: 0.7727
F1 score of Logistic Regression: 0.8276
```

```
Accuracy of Linear SVC classifier on training set: 0.8106
Accuracy of Linear SVC classifier on test set: 0.7500
F1 score of Linear SVC classifier: 0.8136
```

```
Accuracy of RBF-kernel SVC on training set: 0.8939
Accuracy of RBF-kernel SVC on test set: 0.7727
F1 score of RBF-kernel SVC: 0.8333
```

```
Accuracy of Cross Validation on training set: [0.77777778 0.66666667 0.73076923 0.61538462 0.80769231]
Mean of Cross Validation on training set: 0.7197
Accuracy of Cross Validation on test set: [0.77777778 0.77777778 0.66666667 0.77777778 0.625 ]
Mean of Cross Validation on test set: 0.7250
F1 score of DT classifier: 0.8710
```

Accuracy of DT classifier on training set: 1.00 Accuracy of DT classifier on test set: 0.84

F1 score of DT classifier: 0.8852

Logistic regression classifier

[[10 3] [7 24]]

[/ 24]]	precision	recall	f1-score	support
0	0.59	0.77	0.67	13
1	0.89	0.77	0.83	31
accuracy			0.77	44
macro avg	0.74	0.77	0.75	44
weighted avg	0.80	0.77	0.78	44

Kernelized Support Vector Machines

[[9 4] [6 25]]

[0 25]]	precision	recall	f1-score	support
0	0.60	0.69	0.64	13
1	0.86	0.81	0.83	31
accuracy			0.77	44
macro avg	0.73	0.75	0.74	44
weighted avg	0.78	0.77	0.78	44

Accuracy of GaussianNB classifier on training set: 0.7879 Accuracy of GaussianNB classifier on test set: 0.8182

F1 score of GaussianNB classifier: 0.8667

Accuracy of RF classifier on training set: 1.0000 Accuracy of RF classifier on test set: 0.7727 F1 score of RF classifier: 0.8276

Accuracy of GBDT classifier on training set: 1.0000 Accuracy of GBDT classifier on test set: 0.8636 F1 score of GBDT classifier: 0.8276

Accuracy of NN classifier on training set: 0.7955 Accuracy of NN classifier on test set: 0.7500 F1 score of NN classifier: 0.8276

Accuracy Score for KFold with SVC: 0.6980392156862745 +- 0.09069672553569494 F1 Score for KFold with SVC: 0.7310853962970667 +- 0.09508771613460701

Accuracy Score for KFold with lr: 0.7205882352941176 +- 0.11357560929561418 F1 Score for KFold with lr: 0.7645459080561383 +- 0.09700373904804684

Using KFold because this model has little amount of data (176 data). So, we should use KFold to divide data into test and train 10 times differently.

2.2 Using some important features : Using Heatmap to determine what features should we use

2.2.1 'clock_drawing', 't', 'dates' : most top 3 relation between 'diagnosis' and features (best for logistic regression)

```
Accuracy of Logistic Regression on training set: 0.7500 Accuracy of Logistic Regression on test set: 0.8636 F1 score of Logistic Regression: 0.8966
```

Accuracy of RBF-kernel SVC on training set: 0.7424 Accuracy of RBF-kernel SVC on test set: 0.8864

F1 score of RBF-kernel SVC: 0.9123

Logistic regression classifier [[12 1] [5 26]] precision recall f1-score support 0.71 0.92 0.80 13 0 0.96 0.84 0.90 1 31 0.86 44 accuracy macro avg 0.83 0.88 0.85 44 0.89 0.86 0.87 44 weighted avg Kernelized Support Vector Machines [[13 0] [5 26]] precision recall f1-score support 0.72 1.00 0.84 13 1.00 0.84 0.91 1 31 accuracy 0.89 44 0.86 0.88 macro avg 0.92 44 0.92 0.89 weighted avg 0.89 44

Accuracy Score of KFold with SVC: 0.6836601307189542 +- 0.09976477096776487 F1 Score of KFold with SVC: 0.736281354038791 +- 0.08702159707438034 Different between accuracy score with SVC: -0.0144 Different between F1 score with SVC: 0.0052

Accuracy Score of KFold with lr: 0.733333333333334 +- 0.11342458878188266 F1 Score of KFold with lr: 0.7674331223743871 +- 0.12513474798987131 Different between accuracy score with lr: 0.0127 Different between F1 score with lr: 0.0029

2.2.2 'TMSE','t','dates','month','clock_drawing' : most top 5 relation between 'diagnosis' and features (best for SVC) (best features)

Accuracy of Logistic Regression on training set: 0.7803 Accuracy of Logistic Regression on test set: 0.7727 F1 score of Logistic Regression: 0.8333

Accuracy of RBF-kernel SVC on training set: 0.8182 Accuracy of RBF-kernel SVC on test set: 0.7727 F1 score of RBF-kernel SVC: 0.8387

Logistic regr [[9 4] [6 25]]	ression class	ifier		
	precision	recall	f1-score	support
0	0.60	0.69	0.64	13
1	0.86	0.81	0.83	31
accuracy			0.77	44
macro avg	0.73	0.75	0.74	44
weighted avg	0.78	0.77	0.78	44
Kernelized Su [[8 5] [5 26]]	upport Vector	Machines		
	precision	recall	f1-score	support
0	0.62	0.62	0.62	13
1	0.84	0.84	0.84	31
accuracy			0.77	44
macro avg	0.73	0.73	0.73	44
weighted avg				

Accuracy Score of KFold with SVC: 0.7839869281045752 +- 0.08233024378575299 F1 Score of KFold with SVC: 0.827405808614875 +- 0.05471399697551324 Different between accuracy score with SVC: 0.0859 Different between F1 score with SVC: 0.0963

Accuracy Score of KFold with lr: 0.761111111111111 +- 0.11269962140518698 F1 Score of KFold with lr: 0.7890503696994198 +- 0.12059282565147927 Different between accuracy score with lr: 0.0405 Different between F1 score with lr: 0.0245

2.2.3 'dates','TMSE','TMSE_pass' : most top 3 positive relation between 'diagnosis' and features (balance)

Accuracy of Logistic Regression on training set: 0.7879 Accuracy of Logistic Regression on test set: 0.8182 F1 score of Logistic Regression: 0.8621

Accuracy of RBF-kernel SVC on training set: 0.7576 Accuracy of RBF-kernel SVC on test set: 0.8182 F1 score of RBF-kernel SVC: 0.8621

[[11 2] [6 25]]	ression class	ifier		
	precision	recall	f1-score	support
0	0.65	0.85	0.73	13
1	0.93	0.81	0.86	31
accuracy			0.82	44
macro avg	0.79	0.83	0.80	44
weighted avg	0.84	0.82	0.82	44
Kernelized St	upport Vector	Machines		
[6 25]]				
[6 25]]	precision	recall	f1-score	support
[6 25]]	precision 0.65	recall 0.85	f1-score	support
0	0.65	0.85	0.73	13
0 1	0.65	0.85	0.73 0.86	13 31

Accuracy Score of KFold with SVC: 0.7163398692810456 +- 0.11272188829966062 F1 Score of KFold with SVC: 0.7657835913805762 +- 0.0871097812434922 Different between accuracy score with SVC: 0.0183 Different between F1 score with SVC: 0.0347

Accuracy Score of KFold with lr: 0.7663398692810457 +- 0.07296076411393804 F1 Score of KFold with lr: 0.8072525584673922 +- 0.061933738520241415 Different between accuracy score with lr: 0.0458 Different between F1 score with lr: 0.0427

2.2.4 'TMSE','TMSE_pass','side' : most top 3 positive relation between 'diagnosis' and features without date and month

Accuracy of Logistic Regression on training set: 0.6439 Accuracy of Logistic Regression on test set: 0.7273 F1 score of Logistic Regression: 0.8286

Accuracy of RBF-kernel SVC on training set: 0.6515 Accuracy of RBF-kernel SVC on test set: 0.7045 F1 score of RBF-kernel SVC: 0.8169

Logistic regr [[3 10] [2 29]]	ession class	ifier		
	precision	recall	f1-score	support
0	0.60	0.23	0.33	13
1	0.74	0.94	0.83	31
accuracy			0.73	44
macro avg	0.67	0.58	0.58	44
weighted avg	0.70	0.73	0.68	44
Kernelized Su [[2 11] [2 29]]	pport Vector	Machines		
	precision	recall	f1-score	support
0	0.50	0.15	0.24	13
1	0.72	0.94	0.82	31
accuracy			0.70	44
macro avg	0.61	0.54	0.53	44
weighted avg	0.66	0.70	0.65	44

Accuracy Score of KFold with SVC: 0.6088235294117647 +- 0.1318824850982451 F1 Score of KFold with SVC: 0.7483989221959189 +- 0.10354114875332512 Different between accuracy score with SVC: -0.0892 Different between F1 score with SVC: 0.0173

Accuracy Score of KFold with lr: 0.6578431372549021 +- 0.10022668569687757 F1 Score of KFold with lr: 0.7441033273569425 +- 0.09436600107734197 Different between accuracy score with lr: -0.0627 Different between F1 score with lr: -0.0204

2.2.5 Making Least accuracy: Using 'pressure_mean','pressure_std','gender' (most top 3 least relation between 'diagnosis' and features)

Accuracy of Logistic Regression on training set: 0.5758 Accuracy of Logistic Regression on test set: 0.6591 F1 score of Logistic Regression: 0.7826

Accuracy of RBF-kernel SVC on training set: 0.6818 Accuracy of RBF-kernel SVC on test set: 0.6818 F1 score of RBF-kernel SVC: 0.7941

	ession class	TTTer.		
[[2 11]				
[4 27]]				
	precision	recall	f1-score	support
0	0.33	0.15	0.21	13
1	0.71	0.87	0.78	31
accuracy			0.66	44
macro avg	0.52	0.51	0.50	44
weighted avg	0.60	0.66	0.61	44
Kernelized Su	pport Vector	Machines		
[[3 10]				
[[3 10] [4 27]]				
	precision	recall	f1-score	support
	precision	recall	f1-score	support
	precision 0.43	recall 0.23	f1-score	support
[4 27]]				
[4 27]]	0.43	0.23	0.30	13
[4 27]]	0.43	0.23	0.30	13
[4 27]] 0 1	0.43	0.23	0.30 0.79	13 31

Accuracy Score of KFold with SVC: 0.6101307189542483 +- 0.11089993388243076 F1 Score of KFold with SVC: 0.752125592448173 +- 0.08354495697482286 Different between accuracy score with SVC: -0.0879

Different between F1 score with SVC : 0.0210

Accuracy Score of KFold with lr: 0.607843137254902 +- 0.09232821412909731 F1 Score of KFold with lr: 0.7517903816613494 +- 0.0750530672489475 Different between accuracy score with lr: -0.1127 Different between F1 score with lr: -0.0128

2.3 Use 'clock_image' by deep learning

2.3.1 Model1: Reference:

https://www.youtube.com/watch?v=CM92pIh1Unw&ab_channel=IBMDeveloper (Cannot used)

2.3.2 Model 2 : Change compile loss to 'binary_crossentropy' and output activation to 'sigmoid' (Overfit because train loss and val loss are very far)

Accuracy Score: 0.72727272727273

2.3.3 Dropout Model: https://www.bualabs.com/archives/1533/what-is-dropout-benefits-dropout-reduce-overfit-deep-learning-training-model-deep-neural-network-regularization-ep-2/ (Reduce Overfit)

Accuracy Score : 0.72727272727273

2.3.4 Change dropout value = 0.75 (least overfit) (best model)

Accuracy Score : 0.72727272727273

4. อุปสรรคที่เกิดขึ้น วิธีแก้ปัญหา และสิ่งที่ได้รับจาก Individual Study นี้

- อุปสรรคที่เกิดขึ้น และ วิธีแก้ปัญหา
- 1. **อุปสรรค** : ไม่ทราบโครงสร้างของโค้ดบางส่วนที่อยู่นอกเหนือจากการไปศึกษามา และ จำเป็นต้องใช้ในงานนี้

วิธีแก้ : ไปค้นหาเพิ่มเติมในอินเตอร์เน็ต หรือ ถามเพื่อนที่ทำงานด้วยกัน

2. **อุปสรรค :** ข้อมูลบางส่วนที่กำหนดมาให้ไม่สมบูรณ์ตามที่โจทย์บอกไว้ ได้แก่ อายุ และ คะแนน TMSE

วิธีแก้ : ตัดข้อมูลทั้งหมดของคนนั้นออกไปหากมีสักช่องที่กรอกข้อมูลมาไม่สมบูรณ์

3. อุปสรรค: ไม่รู้แนวทางในการวาดรูปนาฬิกาจากพิกัดจุดต่างๆ ที่กำหนดมาให้

ว**ิธีแก้** : ไปค้นหาเพิ่มเติมในอินเตอร์เน็ต หรือ ถามเพื่อนที่ทำงานด้วยกัน และ อาจารย์ที่ ปรึกษา

- สิ่งที่ได้รับจาก Individual Study นี้
- 1. ได้สรุปผลว่า Clock drawing task สามารถใช้บ่งบอกการเป็นหรือไม่เป็นโรคพาร์คินสันได้ เป็นส่วนใหญ่แต่ไม่ใช่ทั้งหมด (Model ที่เหมาะสมที่สุดบอกได้ประมาณ 72%) และ สามารถทำนายการ เป็น Parkinson Disease จาก Features ต่างๆ ได้โดยมีความแม่นยำที่สูง (มากที่สุดประมาณ 78%)
- 2. ได้เรียนรู้เกี่ยวกับการทำ Machine Learning ในรูปแบบต่างๆ ทั้ง Supervised และ Unsupervised Learning
- 3. ได้นำ Supervised Learning และ Deep Learning มาใช้ทำงานวิเคราะห์การเป็นโรคพาร์คิน สันจากข้อมูลต่าง ๆที่มีอยู่
 - 4. ได้ทบทวนการเขียนโปรแกรมด้วย Python และ การใช้ Google Colaboratory

Reference

https://www.youtube.com/watch?v=CM92pIh1Unw&ab_channel=IBMDeveloper
https://www.bualabs.com/archives/1533/what-is-dropout-benefits-dropout-reduceoverfit-deep-learning-training-model-deep-neural-network-regularization-ep-2/