Действия с линейни оператори.

Нека F е числово поле, а V е крайномерно линейно пространство над F с размерност $\dim V = n$. Разглеждаме множеството $\operatorname{Hom}(V)$, състоящо се от всички линейни оператори на V.

Фиксираме базис e_1, \ldots, e_n на V. Нека $\varphi \in \operatorname{Hom}(V)$. За всеки вектор $v \in V$ съществува единствен набор от числа $\lambda_1, \ldots, \lambda_n$, наречени координати на v, такива че $v = \lambda_1 e_1 + \cdots + \lambda_n e_n$. Знаем, че $\varphi(v) = \lambda_1 \varphi(e_1) + \cdots + \lambda_n \varphi(e_n)$. Следователно действието на φ се определя еднозначно от образите на базисните вектори $\varphi(e_1), \ldots, \varphi(e_n)$ (и ако за $\varphi, \psi \in \operatorname{Hom}(v)$ е изпълнено, че $\varphi(e_i) = \psi(e_i)$ за всяко $i = \overline{1, n}$, то ще следва, че $\varphi = \psi$). За всяко $j : 1 \leq j \leq n$ съществува единствен образ $\varphi(e_j) = \alpha_{1j}e_1 + \cdots + \alpha_{nj}e_j$ за някакви числа $\alpha_{ij} \in F, i = \overline{1, n}$. И така φ се определя от n^2 на брой числа $\alpha_{ij}, 1 \leq i, j \leq n$. Да разгледаме матрицата

$$A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1j} & \dots & \alpha_{1n} \\ \alpha_{21} & \dots & \alpha_{2j} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \dots & \alpha_{nj} & \dots & \alpha_{nn} \end{pmatrix}.$$

В j-тия стълб на A стоят координатите на вектора $\varphi(e_j)$. Матрицата A еднозначно определя φ и се нарича матрица на линейния оператор φ спрямо базиса e_1, \ldots, e_n . Така всеки линеен оператор на n-мерно линейно пространство притежава единствена матрица $A \in F_{n \times n}$. Например нулевият оператор O, за който $O(e_i) = o$ за $\forall j$ има матрица O спрямо кой да е базис на линейното пространство V. За единичния оператор е изпълнено, че $\mathcal{E}(e_i) = e_i = 0.e_1 + \cdots + 1.e_i + \cdots + 0.e_n$ и следователно неговата

матрица е

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = E$$

спрямо кой да е базис на V.

Вярно е също и че за всяка матрица $A \in F_{n \times n}$ съществува единствен линеен оператор $\varphi \in \text{Hom}(V)$ на n-мерното линейно пространство V, такъв че A да е негова матрица спрямо базиса e_1, \ldots, e_n . Наистина, нека $A = (\alpha_{ij})_{n \times n}$. Разглеждаме следните вектори на V:

$$v_{1} = \alpha_{11}e_{1} + \alpha_{21}e_{2} + \dots + \alpha_{n1}e_{n},$$

$$v_{2} = \alpha_{12}e_{1} + \alpha_{22}e_{2} + \dots + \alpha_{n2}e_{n},$$

$$\dots$$

$$v_{n} = \alpha_{1n}e_{1} + \alpha_{2n}e_{2} + \dots + \alpha_{nn}e_{n}.$$

Знаем, че съществува единствен $\varphi \in \text{Hom}(V)$, такъв че $\varphi(e_j) = v_j$ за всяко $j = 1, \ldots, n$, т.е. $\varphi(e_j) = \alpha_{1j}e_1 + \cdots + \alpha_{nj}e_n$, което означава точно, че A е матрицата на φ спрямо базиса e_1, \ldots, e_n .

 $B \operatorname{Hom}(V)$ дефинираме действията:

• Умножение със скалар: за $\varphi \in \text{Hom}(V), \lambda \in F$ дефинираме изображението

$$\lambda \varphi : V \to V$$

за което $(\lambda \varphi)(v) = \lambda.\varphi(v)$ за $\forall v \in V$. $\lambda \varphi$ също е линейно изображание (директна проверка) и следователно $\lambda \varphi \in \operatorname{Hom}(V)$.

• Събиране: за $\varphi, \psi \in \operatorname{Hom}(V)$ дефинираме изображението

$$\varphi + \psi : V \to V$$
,

за което $(\varphi + \psi)(v) = \varphi(v) + \psi(v)$ за $\forall v \in V. \ \varphi + \psi$ също е линейно изображение и следователно $\varphi + \psi \in \operatorname{Hom}(V)$.

В сила е, че $\varphi + \mathcal{O} = \mathcal{O} + \varphi = \varphi$ за $\forall \varphi \in \text{Hom}(V)$.

Дефинираме още изображението

$$-\varphi:V\to V$$

чрез равенството $(-\varphi)(v) = -(\varphi(v))$ за $\forall v \in V. -\varphi \in \text{Hom}(V)$ и е изпълнено, че $\varphi + (-\varphi) = -\varphi + \varphi = 0$.

И така нататък чрез директни проверки се доказва, че множеството $\operatorname{Hom}(V)$ с така въведените операции събиране и умножение със скалар удовлетворява всички осем аксиоми за линейно пространство. С други думи множеството от всички линейни оператори $\operatorname{Hom}(V)$ на линейно пространство V над поле F само по себе си също е линейно пространство над полето F.

Твърдение 1. $A \kappa o \varphi, \psi \in \text{Hom}(V) \ u \ \varphi \ u \text{ма матрица } A, \ a \ \psi \ u \text{ма матрица } B, \ mo \ \varphi + \psi \ u \text{ма матрица } A + B, \ a \ \lambda \varphi \ u \text{ма матрица } \lambda A.$

Доказателство. Нека $A=(\alpha_{ij})_{n\times n}, B=(\beta_{ij})_{n\times n}$. Тогава $\varphi(e_j)=\alpha_{1j}e_1+\cdots+\alpha_{nj}e_n$, а $\psi(e_j)=\beta_{1j}e_1+\cdots+\beta nje_n$ за $j=1,\ldots,n$. За оператора $\varphi+\psi$ имаме, че

$$(\varphi + \psi)(e_j) = \varphi(e_j) + \psi(e_j) = (\alpha_{1j} + \beta_{1j})e_1 + \dots + (\alpha_{nj} + \beta_{nj})e_n.$$

Следователно $\varphi + \psi$ има матрица $C = (\gamma_{ij})_{n \times n}$ с (i, j)-ти елемент $\gamma_{ij} = \alpha_{ij} + \beta_{ij}$, т.е. C = A + B.

По сходен начин се доказва и останалата част от твърдението.

Вече видяхме, че множеството от квадратните матрици от ред n $F_{n\times n}$ е линейно пространство над F. Също така $\operatorname{Hom}(V)$ е линейно пространство над F и имаме взаимно-еднозначно съответствие между линейните оператори и съответстващите им матрици спрямо фиксиран базис. Логично е да очакваме, че тези две множества могат, грубо казано, да бъдат отъждествени. Това показва и следващата теорема.

Теорема. Нека V е крайномерно линейно пространство над поле F с размерност $\dim V = n$. Тогава линейните пространства $\operatorname{Hom}(V)$ и $F_{n \times n}$ са изоморфни.

Доказателство. Нека e_1, \ldots, e_n е базис на V. Всеки $\varphi \in \text{Hom}(V)$ притежава единствена матрица $A \in F_{n \times n}$. Нека

$$f: \operatorname{Hom}(V) \to F_{n \times n},$$

дефинирано с $f(\varphi) = A$, е изображението, което на всеки линеен оператор съпоставя неговата матрица спрямо фиксирания базис. Ще докажем, че f е изоморфизъм на линейни пространства. Според предното твърдение имаме, че ако $\varphi, \psi \in \text{Hom}(V)$ и $\lambda \in F$, то $f(\varphi + \psi) = f(\varphi) + f(\psi)$ и

 $f(\lambda \varphi) = \lambda f(\varphi)$. По този начин f е хомоморфизъм на линейни пространства. Нека сега $A \in F_{n \times n}$ е произовлна матрица. Знаем, че съществува $\varphi \in \operatorname{Hom}(V): f(\varphi) = A$. Нека $\varphi, \psi \in \operatorname{Hom}(V): \varphi \neq \psi$. Това означава, че $\varphi(e_j) \neq \psi(e_j)$ за поне един индекс j. Оттук следва, че j-тия стълб на A – матрицата на φ е различен от j-тия стълб на B – матрицата на ψ , или $A \neq B$. Но т.к. $f(\varphi) = A$ и $f(\psi) = B$, то получихме, че от $\varphi \neq \psi \Rightarrow f(\varphi) \neq f(\psi)$. Така изображението f е биекция и в комбинация с това, че е изоморфизъм получаваме, че f е изоморфизъм на линейни пространства, а $\operatorname{Hom}(V) \cong F_{n \times n}$.

Нека $\varphi, \psi \in \text{Hom}(V)$. Дефинираме ново изображение

$$\varphi \psi : V \to V'$$

чрез $(\varphi\psi)(x) = \varphi(\psi(x)), \forall x \in V$. Директно проверяваме, че $(\varphi\psi)(x+y) = (\varphi\psi)(x) + (\varphi\psi)(y)$ и $(\varphi\psi)(\lambda x) = \lambda(\varphi\psi)(x)$ за всеки $x,y \in V, \lambda \in F$. Така $\varphi\psi \in \text{Hom}(V)$. Изображението $\varphi\psi$ се нарича композиция на изображенията ψ и φ . В общия случай $\varphi\psi \neq \psi\varphi$.

За произволни $\tau, \varphi, \psi \in \text{Hom}(V)$ са изпълнени свойствата: $\tau(\varphi\psi) = (\tau\varphi)\psi, \ \tau(\varphi+\psi) = \tau\varphi + \tau\psi$ и $(\varphi+\psi)\tau = \varphi\tau + \psi\tau$.

Твърдение 2. $A \kappa o \varphi, \psi \in \text{Hom}(V)$ и имат матрици съответно A и B, то $\varphi \psi$ има матрица AB.

Доказателство. Нека $A = (\alpha_{ij})_{n \times n}, B = (\beta_{ij})_{n \times n}$. Тогава имаме

$$(\varphi\psi)(e_j) = \varphi(\psi(e_j)) = \varphi\left(\sum_{k=1}^n \beta_{kj} e_k\right)$$

$$= \sum_{k=1}^n \beta_{kj} \varphi(e_k) = \sum_{k=1}^n \beta_{kj} \left(\sum_{i=1}^n \alpha_{ik} e_i\right)$$

$$= \sum_{i=1}^n \left(\sum_{k=1}^n (\alpha_{ik} \beta_{kj})\right) e_i.$$

Това означава, че матрицата на $\varphi\psi$ има (i,j)-ти елемент $\sum_{k=1}^{n} \alpha_{ik} \beta_{kj}$, т.е. тази матрица е AB.