Two numeric explanatory variables

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Visualizing three numeric variables

- 3D scatter plot
- 2D scatter plot with response as color

Another column for the fish dataset

species	mass_g	length_cm	height_cm
Bream	1000	33.5	18.96
Bream	925	36.2	18.75
Roach	290	24.0	8.88
Roach	390	29.5	9.48
Perch	1100	39.0	12.80
Perch	1000	40.2	12.60
Pike	1250	52.0	10.69
Pike	1650	59.0	10.81

3D scatter plot

2D scatter plot, color for response

Modeling with two numeric explanatory variables

```
Intercept -622.150234
length_cm 28.968405
height_cm 26.334804
```

The prediction flow

```
from itertools import product
length_cm = np.arange(5, 61, 5)
height_cm = np.arange(2, 21, 2)
p = product(length_cm, height_cm)
explanatory_data = pd.DataFrame(p,
                                columns=["length_cm",
                                         "height_cm"])
prediction_data = explanatory_data.assign(
 mass_g = mdl_mass_vs_both.predict(explanatory_data))
print(prediction_data)
```

```
length_cm height_cm
                               mass_g
0
            5
                       2 -424.638603
                       4 -371.968995
2
                       6 -319.299387
3
                       8 -266.629780
                      10 -213.960172
4
115
           60
                      12 1431.971694
116
                      14 1484.641302
                      16 1537.310909
117
           60
118
                         1589.980517
                      20 1642.650125
119
           60
[120 rows x 3 columns]
```

Plotting the predictions

```
plt.show()
```


Including an interaction

3.545435

length_cm:height_cm

The prediction flow with an interaction

```
length_cm = np.arange(5, 61, 5)
height_cm = np.arange(2, 21, 2)
p = product(length_cm, height_cm)
explanatory_data = pd.DataFrame(p,
                                columns=["length_cm",
                                          "height_cm"])
prediction_data = explanatory_data.assign(
  mass_g = mdl_mass_vs_both_inter.predict(explanatory_data))
```

Plotting the predictions

```
sns.scatterplot(x="length_cm",
           y="height_cm",
           data=fish,
           hue="mass_g")
sns.scatterplot(x="length_cm",
                y="height_cm",
                data=prediction_data,
                hue="mass_g",
                legend=False,
                marker="s")
```

```
plt.show()
```


Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

More than two explanatory variables

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

From last time

Faceting by species

```
grid.map(sns.scatterplot,
     "length_cm",
     "height_cm")
```

```
plt.show()
```


Faceting by species

- It's possible to use more than one categorical variable for faceting
- Beware of faceting overuse
- Plotting becomes harder with increasing number of variables

Different levels of interaction

No interactions

```
ols("mass_g ~ length_cm + height_cm + species + 0", data=fish).fit()
```

two-way interactions between pairs of variables

```
ols(
   "mass_g ~ length_cm + height_cm + species +
   length_cm:height_cm + length_cm:species + height_cm:species + 0", data=fish).fit()
```

three-way interaction between all three variables

```
ols(
   "mass_g ~ length_cm + height_cm + species +
   length_cm:height_cm + length_cm:species + height_cm:species + length_cm:height_cm:species + 0", data=fish).fit()
```


All the interactions

```
ols(
   "mass_g ~ length_cm + height_cm + species +
   length_cm:height_cm + length_cm:species + height_cm:species + length_cm:height_cm:species + 0",
   data=fish).fit()
```

same as

```
ols(
  "mass_g ~ length_cm * height_cm * species + 0",
  data=fish).fit()
```


Only two-way interactions

```
ols(
   "mass_g ~ length_cm + height_cm + species +
   length_cm:height_cm + length_cm:species + height_cm:species + 0",
   data=fish).fit()
```

same as

```
ols(
  "mass_g ~ (length_cm + height_cm + species) ** 2 + 0",
  data=fish).fit()
```

The prediction flow

```
mdl_mass_vs_all = ols(
  "mass_g ~ length_cm * height_cm * species + 0",
  data=fish).fit()
length_cm = np.arange(5, 61, 5)
height_cm = np.arange(2, 21, 2)
species = fish["species"].unique()
p = product(length_cm, height_cm, species)
explanatory_data = pd.DataFrame(p,
                                columns=["length_cm",
                                         "height_cm",
                                         "species"])
prediction_data = explanatory_data.assign(
 mass_g = mdl_mass_vs_all.predict(explanatory_data))
```

```
length_cm
                height_cm species
                                        mass_q
                                   -570.656437
0
             5
                            Bream
             5
                        2
                            Roach
                                     31.449145
1
             5
2
                            Perch
                                     43.789984
3
                             Pike
                                    271.270093
4
             5
                            Bream
                                   -451.127405
475
            60
                       18
                             Pike 2690.346384
476
            60
                       20
                            Bream
                                  1531.618475
477
            60
                       20
                                   2621.797668
                            Roach
478
            60
                       20
                            Perch
                                  3041.931709
479
            60
                       20
                             Pike 2926.352397
[480 rows x 4 columns]
```


Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

How linear regression works

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck
Content Developer at DataCamp

The standard simple linear regression plot

Visualizing residuals

A metric for the best fit

The simplest idea (which doesn't work)

- Take the sum of all the residuals.
- Some residuals are negative.

The next simplest idea (which does work)

- Take the square of each residual, and add up those squares.
- This is called the sum of squares.

A detour into numerical optimization

A line plot of a quadratic equation

```
x = np.arange(-4, 5, 0.1)
y = x ** 2 - x + 10
xy_data = pd.DataFrame({"x": x,
                         "y": y})
sns.lineplot(x="x",
             y="y",
             data=xy_data)
```


Using calculus to solve the equation

$$y = x^2 - x + 10$$

$$\frac{\partial y}{\partial x} = 2x - 1$$

$$0 = 2x - 1$$

$$x = 0.5$$

$$y = 0.5^2 - 0.5 + 10 = 9.75$$

- Not all equations can be solved like this.
- You can let Python figure it out.

Don't worry if this doesn't make sense, you won't need it for the exercises.

minimize()

```
fun: 9.75
hess_inv: array([[0.5]])
    jac: array([0.])
message: 'Optimization terminated successfully.'
    nfev: 6
    nit: 2
    njev: 3
    status: 0
    success: True
        x: array([0.49999998])
```

A linear regression algorithm

Define a function to calculate the sum of squares metric.

Call minimize() to find coefficients that minimize this function.

```
def calc_sum_of_squares(coeffs):
  intercept, slope = coeffs
  # More calculation!
```

```
minimize(
  fun=calc_sum_of_squares,
  x0=0
)
```

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

