

密级状态: 绝密( ) 秘密( ) 内部( ) 公开(√)

# Rockchip RK180X/RK3399Pro 人脸 SDK 开发指南

(技术部,图形显示平台中心)

| 文件状态:    | 当前版本: | V1. 1       |
|----------|-------|-------------|
| []正在修改   | 作 者:  | HPC&AI Team |
| [√] 正式发布 | 完成日期: | 2020-02-07  |
|          | 审核:   | 熊伟 卓鸿添      |
|          | 完成日期: | 2019-02-07  |

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Semiconductor Co., Ltd

(版本所有,翻版必究)



## 更新记录

| 版本   | 修改人 | 修改日期       | 修改说明         | 核定人       |
|------|-----|------------|--------------|-----------|
| V1.0 | 杨华聪 | 2019-11-26 | 初始版本         | 熊伟 卓鸿添    |
| V1.1 | 杨华聪 | 2020-02-07 | 添加 RK1806 支持 | 熊伟<br>卓鸿添 |
|      |     |            |              |           |
|      |     |            |              |           |
|      |     |            |              |           |
|      |     |            |              |           |
|      |     |            |              |           |
|      |     |            |              |           |
|      |     |            |              |           |
|      |     |            |              |           |



## 目 录

| 1 | 主番    | 功能说明             | 4  |
|---|-------|------------------|----|
|   |       | 依赖说明             |    |
| 2 | 系统    | YK 颗记            | 4  |
|   | 2.1   | RK3399Pro 系统依赖   | 4  |
|   | 2.2   | RK180X 系统依赖      | 4  |
| 3 | 授权    | 说明               | 5  |
| 4 | SDK   | 〔使用说明            | 5  |
|   | 4.1   | C 接口使用说明         | 5  |
|   | 4.1.1 | 示例应用             | 5  |
|   | 4.1.2 | テン               | 5  |
|   | 4.1.3 | 初始化和释放           | 6  |
|   | 4.1.4 | <i>接口调用</i>      | 7  |
|   | 4.1.5 | API 参考指南         | 8  |
| 5 | 性能    | 指标               | 9  |
|   | 5.1   | 主要模块精度           | 9  |
|   | 5.1.1 | 人脸检测             | 9  |
|   | 5.1.2 | 人脸识别             | 9  |
|   | 5.1.3 | 人脸属性分析           | 10 |
|   | 5.1.4 | 人脸关键点定位          | 10 |
|   | 5.2   | <b>横执</b> 法 行性 能 | 10 |



## 1 主要功能说明

RK180X/RK3399Pro 人脸 SDK 提供一系列人脸识别分析相关功能,充分利用了 NPU 对算法模型进行加速。开发者通过 SDK 提供的 API 接口能够快速构建人脸 AI 应用。

SDK 当前支持 C/C++进行开发,支持运行于 RK180X/RK3399Pro Linux/Android 平台。 当前 SDK 提供的功能如表 1-1 所示。

 类别
 功能

 人脸检测、人脸跟踪、人脸矫正对齐

 人脸分析
 人脸关键点、人脸属性分析、人脸角度

 人脸识别
 人脸特征提取、人脸比对、人脸搜索

 活体检测
 活体检测(需要特定红外摄像头)

表 1-1 人脸 SDK 主要功能

## 2 系统依赖说明

#### 2.1 RK3399Pro 系统依赖

在 RK3399Pro 平台上,SDK 所提供的库和应用程序需要 RKNN 驱动版本为 1.2.0 以上。运行 Demo 应用以后,通过日志能够看到如下的驱动信息,请确保 DRV 版本为 1.2.0 以上。

**RKNN VERSION:** 

API: 1.2.0 (1190a71 build: 2019-09-25 12:39:14)
DRV: 1.2.0 (57b1656 build: 2019-09-04 09:27:47)

\_\_\_\_\_\_

## 2.2 RK180X 系统依赖

在 RK180X Linux 平台上,本 SDK 提供的库和应用程序需要 rknn\_runtime 版本在 1.3.1 以上,在 RK180X 平台上查看 rknn\_runtime 版本的方法如下所示:



\$ strings /usr/lib/librknn\_runtime.so |grep "librknn\_runtime version" librknn\_runtime version 1.3.1 (7c5d3d8 build: 2020-01-10 14:11:03 base: 1112)

## 3 授权说明

SDK 需要获得授权后才能使用,客户首先需要向对应业务提出申请,获得授权使用的用户名和密码,然后通过 sdk/auth 目录下的授权工具进行授权就可以正常使用。人脸识别授权流程如下所示:



图 1 人脸识别授权流程

具体配置方法请参考 sdk/auth 目录中的说明文档。在获得密钥文件后,修改应用中设置授权 key 的路径,就可以正常进行人脸识别。

## 4 SDK 使用说明

## 4.1 C 接口使用说明

#### 4.1.1 示例应用

人脸 SDK 提供了命令行执行程序代码示例,示例程序支持在 RK3399Pro/RK180X Linux 平台上运行,编译和运行方法请参见"demo/command line demo"目录下的 README 文件。

#### 4.1.2 导入 SDK 库

SDK 库位于 sdk 目录下,如下所示:



开发者只需要在自己工程的 CMakeLists.txt 中引入对应平台的库即可,下面以 RK1808 Linux 平台为例:

```
# Find RockFace Package
set(RockFace_DIR <path-to-rockface-sdk>/sdk/rockface-rk1808-Linux)
find_package(RockFace REQUIRED)

# Include RockFace Header
include_directories(${RockFace_INCLUDE_DIRS})

# Link RockFace Libraries
target_link_libraries(target_name ${RockFace_LIBS})

# Install RockFace
install(PROGRAMS ${RockFace_LIBS} DESTINATION lib)
install(PROGRAMS ${RockFace_DATA} DESTINATION lib)
```

注意,各个模块所需的数据文件位于 sdk/rockface-data 目录下,可以通过以下两种方式来设置其路径:

- 1)将 rockface-data 部署到设备任意路径,然后通过 rockface\_set\_data\_path 函数设置其路径;
- 2)将 rockface-data/目录下所需的 data 文件放置到和 librockface.so 同一目录下,如上 CMakeLists.txt 中的方式。

#### 4.1.3 初始化和释放

SDK 通过 rockface\_create\_handle 函数来创建一个句柄对象,示意代码如下所示,示例代码如下所示:



```
rockface_ret_t ret;
rockface_handle_t face_handle = rockface_create_handle();
```

创建完之后可以通过调用 rockface\_set\_licence 函数设置 licence 文件(licence 文件的获取请参见授权说明一节),示意代码如下所示:

```
ret = rockface_set_licence(face_handle, licence_path);
if (ret != ROCKFACE_RET_SUCCESS) {
    printf("Error: authorization error %d!", ret);
    return ret;
}
```

下来可以通过调用 rockface\_set\_data\_path 来设置数据文件(sdk/rockface-data)在设备的路径,示意代码如下所示:

```
rockface_set_data_path(face_handle, "/usr/share/rockface-data")
```

以上成功设置后,可以根据需要使用的模块来调用不同的初始化函数进行初始化,示意代码如下所示:

```
ret = rockface_init_detector(face_handle);
if (ret != ROCKFACE_RET_SUCCESS) {
    printf("Error: init detector error %d!", ret);
    return ret;
}
ret = rockface_init_recognizer(face_handle);
if (ret != ROCKFACE_RET_SUCCESS) {
    printf("Error: init recognizer error %d!", ret);
    return ret;
}
```

最后如果不需要继续使用,可以调用 rockface\_release\_handle 函数进行释放,示意代码如下:

```
rockface_release_handle(face_handle);
```

#### 4.1.4 接口调用

SDK 所包含模块的接口函数如表 3-1 所示。



表 3-1 SDK 接口函数

| 函数                       | 初始化函数                           | 描述     |
|--------------------------|---------------------------------|--------|
| rockface_detect          | rockface_init_detector          | 人脸检测   |
| rockface_track           | rockface_init_detector          | 人脸跟踪   |
| rockface_align           | rockface_init_detector          | 人脸对齐   |
| rockface_landmark        | rockface_init_analyzer          | 人脸关键点  |
| rockface_angle           | rockface_init_analyzer          | 人脸角度   |
| rockface_attribute       | rockface_init_analyzer          | 人脸属性分析 |
| rockface_feature_extract | rockface_init_recognizer        | 人脸特征提取 |
| rockface_feature_compare | rockface_init_recognizer        | 人脸特征比对 |
| rockface_liveness_detect | rockface_init_liveness_detector | 活体检测   |

模块接口函数示例代码如下:

```
rockface_det_array_t face_array;
memset(&face_array, 0, sizeof(rockface_det_array_t));

// detect face
ret = rockface_detect(face_handle, &input_image, &face_array);
if (ret != ROCKFACE_RET_SUCCESS) {
    printf("rockface_face_detect error %d\n", ret);
    return -1;
}
```

#### 4.1.5 API 参考指南

详细的接口描述请参考 API 文档(doc\rockface api doc cn\html\index.html)。



## 5 性能指标

## 5.1 主要模块精度

#### 5.1.1 人脸检测

表 4-2 人脸检测性能

| 参数   | 性能指标                |  |
|------|---------------------|--|
| 江宁在床 | 平面内人脸左右旋转±45°       |  |
|      | 侧脸左右偏转±60°          |  |
| 适应角度 | 侧脸上偏转 60°           |  |
|      | 侧脸下偏转 45°           |  |
| 最大距离 | 11 米(测试摄像头 FOV=60°) |  |
| mAP  | mAP@IOU0.5=0.857    |  |

注:

- 1) 图像质量较差时,支持的检测角度会减小。
- 2) 最大检测距离与摄像头 FOV 等参数有关。
- 3) 检测的最小人脸尺寸为图像分辨率的 1/19。

### 5.1.2 人脸识别

表 4-3 人脸识别性能

| 参数              | 性能指标                |  |
|-----------------|---------------------|--|
|                 | 平面内人脸左右旋转±45°       |  |
| 识别角度            | 侧脸左右偏转±60°          |  |
| 以               | 侧脸上偏转 60°           |  |
|                 | 侧脸下偏转 45°           |  |
| 识别距离            | 11 米(测试摄像头 FOV=60°) |  |
| 识别精度(LFW 标准数据集) | 99.65%±0.00088      |  |
| 会 W V 中立        | TPR=0.992@FAR=0     |  |
| 参考精度            | TPR=0.995@FAR=0.001 |  |

注:

1) 实际应用中,对距离和角度稍加限制,能获得更好的识别结果,用户可根据实际情况进行质量 筛选。



2) 人脸比对使用欧式距离。

#### 5.1.3 人脸属性分析

表 4-6 性别年龄性能

| 数据集       | 年龄精度     | 性别精度              |
|-----------|----------|-------------------|
| UTK_asian | 4.823283 | 92.96%(2220/2388) |

注:

- 1) UTK\_asian 是 UTK 公开数据集的亚洲人部分,使用 7-70 岁数据进行测试, 共 2388 张。
- 2) 年龄精度为平均年龄偏差。

### 5.1.4 人脸关键点定位

表 4-7 人脸特征点定位(68点)性能

| 数据集          | 误差    |  |
|--------------|-------|--|
| 300w_cropped | 6.01% |  |

注:

1) 误差计算公式如下

$$error = \frac{\sum_{j=1}^{68} [euclidean(d(j) - g(j))]}{(68*d)}$$

euclidean(d(j) - g(j)) 表是第 j 个检测点与标注点之间的欧式距离。 d 表示左外眼角和右外眼角的欧式距离。

## 5.2 模块运行性能

各模块运行时间和所需内存如表 4-9 所示。



表 4-9 模块运行时间和消耗内存

| 模块          | 运行时间(ms) | 消耗 NPU 内存(MB) |
|-------------|----------|---------------|
| 人脸检测        | 41       | 24            |
| 人脸矫正对齐      | 9        | 20            |
| 人脸跟踪        | 1        | 18            |
| 人脸关键点(68 点) | 11       | 34            |
| 人脸角度        | 2        | 21            |
| 人脸属性分析      | 16       | 19            |
| 人脸识别特征提取    | 44       | 117           |

注:

1) 图中所测的内存值为峰值内存。