Problème Edhec 2020

On convient que, pour tout réel x, on a $x^0 = 1$

1. Pour tout n de \mathbb{N} , justifier l'existence des intégrales :

$$I_n = \int_0^1 \frac{x^n}{(1+x)^2} dx$$
 et $J_n = \int_0^1 \frac{x^n}{1+x} dx$

- 2. Calculer I_0 et I_1
- 3. (a) Pour tout n de \mathbb{N} , calculer $I_{n+2} + 2I_{n+1} + I_n$
 - (b) En déduire I_2
 - (c) Compléter le script Python suivant pour qu'il permette le calcul de I_n (dans la variable b) et son affichage pour une valeur de n entrée par l'utilisateur.

```
def I (n):
a=1/2
b= math.log(2) - 1/2
for k in range(2,n+1):
    aux = a
    a=----
    b=-----
return b
```

- 4. (a) Montrer que : $\forall n \in \mathbb{N}, 0 \le I_n \le \frac{1}{n+1}$
 - (b) En déduire que la suite (I_n) est convergente et donner sa limite.
- 5. Établir, à l'aide d'une intégration par parties, que : $\forall n \in \mathbb{N}^*, I_n = n.J_{n-1} \frac{1}{2}$
- 6. (a) Calculer J_0 puis exprimer, pour tout entier naturel $n, J_n + J_{n+1}$ en fonction de n
 - (b) En déduire la valeur de J_1
- 7. En utilisant les questions 5) et 6), compléter le script Python suivant afin qu'il permette le calcul et l'affichage de I_n pour une valeur de n entrée par l'utilisateur.

- 8. Établir que : $\forall n \in \mathbb{N}^*, J_n = (-1)^n \left(\ln 2 \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \right)$
- 9. (a) Utiliser les questions 4) et 5) pour déterminer la valeur de $\lim_{n \to +\infty} J_n$

- (b) En déduire la nature de la série de terme général $\frac{(-1)^{k-1}}{k}$ ainsi que la valeur de $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k}$
- (c) Utiliser la question 5) pour déterminer un équivalent de J_n , du type $\frac{1}{\alpha n}$, avec $\alpha > 0$, lorsque n est au voisinage de $+\infty$
- 10. Pour tout n de \mathbb{N}^* , on pose $u_n = \ln 2 \sum_{j=1}^n \frac{(-1)^{j-1}}{j}$
 - (a) Déduire des questions précédentes un équivalent de u_n lorsque n est au voisinage de $+\infty$
 - (b) Montrer que la série de terme général $\frac{(-1)^n}{2n}$ est convergente. Peut-on en déduire la nature de la série de terme général u_n ?
- 11. On se propose, malgré l'impasse précédente, de montrer que la série de terme général u_n est convergente. Pour ce faire, on admet le résultat suivant : si une suite (x_n) est telle que les suites (x_{2n}) et (x_{2n+1}) sont convergentes et de même limite ℓ , alors la suite (x_n) converge vers ℓ Pour tout entier naturel n non nul,

on pose
$$S_n = \sum_{k=1}^n u_k$$

(a) Justifier que, pour tout entier naturel k non nul, on a :

$$u_k = (k+1)u_{k+1} - ku_k + (-1)^k$$

(b) En déduire l'égalité suivante :

$$\forall n \in \mathbb{N}^*, S_n = (n+1)u_{n+1} - u_1 - \frac{1}{2}(1 - (-1)^n)$$

- (c) Montrer alors que $\lim_{n\to+\infty} S_{2n} = \lim_{n\to+\infty} S_{2n+1} = \frac{1}{2} \ln 2$. Conclure.
- 12. Des trois résultats suivants, expliquer lequel on vient de démontrer.

a)
$$\sum_{k=1}^{+\infty} \sum_{j=1}^{k} \frac{(-1)^{j-1}}{j} = \frac{1}{2} - \ln 2$$

b)
$$\sum_{k=1}^{+\infty} \sum_{j=1}^{+\infty} \frac{(-1)^{j-1}}{j} = \frac{1}{2} - \ln 2$$

c)
$$\sum_{k=1}^{+\infty} \sum_{j=k+1}^{+\infty} \frac{(-1)^{j-1}}{j} = \frac{1}{2} - \ln 2$$

Exercice 1 Eml 2017

On considère la fonction $f:]0; +\infty[\to \mathbf{R}$ définie, pour tout x de $]0; +\infty[$, par :

$$f(x) = e^x - e \ln(x)$$

On admet les encadrements numériques suivants :

$$2,7 < e < 2,8$$
 $7,3 < e^2 < 7,4$ $0,6 < ln(2) < 0,7$

Partie I : Etude de la fonction f

- 1. (a) Montrer que f est deux fois dérivable sur $]0; +\infty[$ et calculer, pour tout x de $]0; +\infty[$, f'x) et f''(x).
 - (b) Dresser le tableau de variations de f' avec la limite de f' en 0 et la limite de f' en $+\infty$ et préciser f'(1).
- 2. Dresser le tableau de variations de f avec la limite de f en 0 et la limite de f en $+\infty$ et préciser f(1).
- 3. Tracer la courbe représentative de f.
- 4. (a) Etudier les variations de la fonction $u:]0; +\infty[\to \mathbf{R}, x \mapsto f'(x) x.$
 - (b) En déduire que l'équation f'(x) = x, d'inconnue $x \in]0; +\infty[$, admet une solution et une seule, notée α , et montrer : $1 < \alpha < 2$.

Partie II: Etude d'une suite, étude d'une série

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 2$$
 et, pour tout n de \mathbb{N} , $u_{n+1} = f(u_n)$

- 5. Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \geq 2$.
- 6. (a) Etudier les variations, puis le signe, de la fonction $g:[2;+\infty[\to \mathbf{R}, x\mapsto f(x)-x]]$
 - (b) En déduire que la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- 7. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ admet $+\infty$ pour limite.
- 8. Ecrire un programme en Scilab qui, étant donné un réel A, renvoie un entier naturel N tel que $u_N \geqslant A$.
- 9. (a) Démontrer : $\forall x \in [2; +\infty[, 2\ln(x) \le x \le \frac{e^x}{3}]$
 - (b) En déduire : $\forall n \in \mathbf{N}, \quad u_{n+1} \geqslant \frac{6-e}{2}u_n.$
 - (c) Déterminer la nature de la série de terme général $\frac{1}{u_n}$.

Partie III : Étude d'intégrales généralisées

- 10. Montrer que l'intégrale $\int_0^1 f(x) dx$ converge et calculer cette intégrale.
- 11. L'intégrale $\int_1^{+\infty} f(x)dx$ converge-t-elle?
- 12. Montrer que $\int_2^{+\infty} \frac{1}{f(x)} dx$ converge. On pourra utiliser le résultat de la question 9.(a).