Barrare una sola risposta per ogni domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

ova pratica)	SUB \$1, %AL JO via JC vai qui: Il codice scritto sopra prosegue all'etichetta qui se AL: diverso da 0000 0000 Ha almeno uno dei 7 bit meno significativi pari a 1 contiene la rappresentazione di un numero negativo
NUOVO PROGRAMMA (prova pratica)	Nessuna delle precedenti NOT %BX NOT %AX AND %BX, %AX NOT %AX Il codice sopra scritto calcola: L'AND di BX e AX L'OR di BX e AX Il NOR di BX e AX Nessuna delle precedenti
	Sia dato un sommatore a una cifra in base 10 con codifica BCD. Le variabili logiche di ingresso sono: $X = 0110$, $Y = 0110$, $c_{in} = 1$. Le uscite sono: $Z = 1001, c_{out} = 0, ow = 1$ $Z = 0011, c_{out} = 1, ow = 0$ $Z = 0011, c_{out} = 1, ow = 1$ Nessuna delle precedenti $- X _m \le -X _m$ $Vero$ $Falso$ Non si può dire

☐ Nessuna delle precedenti							
\X ₁	X ₀	01	11	10	z		
S0	SO	S1	SO	SO	0		
S1	S0	S1	S2		0		
S2		S1	(S2)	S0	1		

Nella rete sequenziale asincrona descritta dalla tabella d
figura la codifica S0=00, S1=10, S2=01, introduce corse
delle variabili di stato.

	Vero
П	Falso

Una rete a due livelli di logica la cui uscita è presa da una porta XNOR può essere soggetta ad alee statiche del primo ordine

soltanto sul livello 0
soltanto sul livello 1

su entrambi i livelli

Nessuna delle precedenti

Una sintesi SP a costo minimo di una legge combinatoria può includere soltanto mintermini: Vero

Ш	Falso
	Non si può dire

Assumendo che le somme non generino riporto, quale dei due registri contiene il valore maggiore in S1?

A
В
Dipende dal loro valore iniziale al reset

Nessuna delle precedenti

Nell	a sintesi di una rete R secondo il modello con scom-
posi	zione PO/PC le variabili di comando:
	Possono dipendere dagli ingressi di R

Devono necessariamente dipendere dagli ingressi di
R

	Non possono	dipendere	dagli	ingressi	di R
--	-------------	-----------	-------	----------	------

La tabella delle interruzioni (IDT) viene riempita:

Da1	controllore	di	inter	rıızid	ne
Dai	controller	uι	men	LUZIO	ше

X ₁	X ₀	01	11	10	z
S0	SO	S1	SO	SO	0
S1	S0	S1	S2		0
S2		S1	S2	S0	1

acric	v ai i
	Ver

	7	$T \geq T_{p_1}$	roz	+T	, a valle
a	scritta	sopra	è	una	delle

Al filo /s proveniente dal bus

Nessuna delle precedenti

elle disuguaglianze di La formul temporizzazione delle reti sequenziali sincronizzate:

so alcuni tra i fili di indirizzo $a_{15} \dots a_0$ del bus

Per montare un'interfaccia nello spazio di I/O del calcolatore visto a lezione è necessario connettere il suo piedino

All'uscita di una rete combinatoria che ha in ingresso alcuni tra i fili di indirizzo $a_{23} \dots a_{16}$ del bus All'uscita di una rete combinatoria che ha in ingres-

	Di Moore
П	Di Mealv

/s:

☐ Di Mealy ritardato

□ Nessuna delle precedenti

	Domand	de di Reti Logiche	– compito del 1	18/02/2020	
Y	Cognome e nome:				
	Matricola	:			
	Co	onsegna:	Sì 🗌	No	

VECCHIO PROGRAMMA

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

	SUB \$1, %AL
	JO via
	JC vai
NUOVO PROGRAMMA (prova pratica)	JC vai qui: Il codice scritto sopra prosegue all'etichetta qui se AL:
O PR	AND %BX,%AX NOT %AX
S	Il codice sopra scritto calcola:
Z	☐ L'AND di BX e AX
	□ L'OR di BX e AX
	□ Il NOR di BX e AX
	□ Nessuna delle precedenti
	Sie date un commetere a une cifre in base 10 con codifice

Sia dato un sommatore a una cifra in base 10 con codifica
BCD. Le variabili logiche di ingresso sono: $X = 0110$,
$V = 0.110$ $c_{\odot} = 1$ Le uscite sono:

- $Z = 1001, c_{out} = 0, ow = 1$
- $Z = 0011, c_{out} = 1, ow = 0$
- $Z = 0011, c_{out} = 1, ow = 1$
- Nessuna delle precedenti
- $-|X|_m \le |-X|_m$
- Vero
- Falso
- Non si può dire

Per montare un'interfaccia nello spazio di I/O del calcolatore visto a lezione è necessario connettere il suo piedino /s:

- Al filo /s proveniente dal bus
- All'uscita di una rete combinatoria che ha in ingresso alcuni tra i fili di indirizzo $a_{23} \dots a_{16}$ del bus
- All'uscita di una rete combinatoria che ha in ingresso alcuni tra i fili di indirizzo $a_{15} \dots a_0$ del bus
- Nessuna delle precedenti

$T \ge T_{prop} + T_{a \ valle}$

La formula scritta sopra è una delle disuguaglianze di temporizzazione delle reti sequenziali sincronizzate:

- ☐ Di Moore
- ☐ Di Mealy
- ☐ Di Mealy ritardato
- □ Nessuna delle precedenti

Una sintesi SP a costo minimo di una legge combinatoria può includere soltanto mintermini:

- Vero
- Falso
- Non si può dire

reg [3:0] A,B;

[...]

S0:[...] A<=B+1; B<=A+1; STAR<=S1;

S1:[...]

Assumendo che le somme non generino riporto, quale dei due registri contiene il valore maggiore in S1?

- Dipende dal loro valore iniziale al reset
- Nessuna delle precedenti

Nella sintesi di una rete R secondo il modello con scomposizione PO/PC le variabili di comando:

- Possono dipendere dagli ingressi di R
- Devono necessariamente dipendere dagli ingressi di
- Non possono dipendere dagli ingressi di R
- Nessuna delle precedenti

La tabella delle interruzioni (IDT) viene riempita:

- Dal controllore di interruzione
- Dal programma bootstrap del sistema operativo
- Dal programmatore
- Nessuna delle precedenti

\ x ₁ x ₀						
	00	01	11	10	Z	
S0	SO	S1	SO	SO	0	
S1	S0	S1	S2		0	
S2		S1	S2	S0	1	

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- Vero
- Falso

Una rete a due livelli di logica la cui uscita è presa da una porta XNOR può essere soggetta ad alee statiche del primo ordine

- soltanto sul livello 0
- soltanto sul livello 1
- su entrambi i livelli
- Nessuna delle precedenti

Domande di Reti Logiche – compito del 18/02/2020				
Cognome e nor	ne:			_
Matri	cola:			
	Consegna:	Sì 🗌	No	

VECCHIO PROGRAMMA

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

NUOVO PROGRAMMA (prova pratica)	SUB \$1, %AL JO via JC vai qui: Il codice scritto sopra prosegue all'etichetta qui se AL: \(\begin{align*} \text{ è diverso da 0000 0000} \\ \end{align*} Ha almeno uno dei 7 bit meno significativi pari a 1 \(\begin{align*} \text{ contiene la rappresentazione di un numero negativo} \\ \text{ Nessuna delle precedenti} \\ NOT %BX NOT %BX NOT %AX AND %BX, %AX NOT %AX Il codice sopra scritto calcola: \(\begin{align*} \text{ L'AND di BX e AX} \\ \end{align*} \(\begin{align*} \text{ L'OR di BX e AX} \\ \end{align*} \(\begin{align*} \text{ Nessuna delle precedenti} \end{align*} \]	Una sintesi SP a costo minimo di una legge combinatoria può includere soltanto mintermini: Vero
	Sia dato un sommatore a una cifra in base 10 con codifica BCD. Le variabili logiche di ingresso sono: $X = 0110$, $Y = 0110$, $c_{in} = 1$. Le uscite sono: $Z = 1001$, $c_{out} = 0$, $ow = 1$	 □ Possono dipendere dagli ingressi di R □ Devono necessariamente dipendere dagli ingressi di R □ Non possono dipendere dagli ingressi di R □ Nessuna delle precedenti

Sia dato un sommatore a una cifra in base 10 con codifica
BCD. Le variabili logiche di ingresso sono: $X = 0110$,
$Y = 0110, c_{in} = 1$. Le uscite sono:
\Box $Z = 1001, c_{out} = 0, ow = 1$

- $Z = 0011, c_{out} = 1, ow = 0$ $Z = 0011, c_{out} = 1, ow = 1$
- Nessuna delle precedenti
- $-|X|_m \le |-X|_m$
- Vero
- Falso
- Non si può dire

Per montare un'interfaccia nello spazio di I/O del calcolatore visto a lezione è necessario connettere il suo piedino /s:

- Al filo /s proveniente dal bus
- All'uscita di una rete combinatoria che ha in ingresso alcuni tra i fili di indirizzo $a_{23} \dots a_{16}$ del bus
- All'uscita di una rete combinatoria che ha in ingresso alcuni tra i fili di indirizzo $a_{15} \dots a_0$ del bus
- Nessuna delle precedenti

$T \ge T_{prop} + T_{a \ valle}$

La formula scritta sopra è una delle disuguaglianze di temporizzazione delle reti sequenziali sincronizzate:

- ☐ Di Moore
- ☐ Di Mealy
- ☐ Di Mealy ritardato
- □ Nessuna delle precedenti

reg [3:0] A,B;
[]
S0:[] A<=B+1; B<=A+1; STAR<=S1;
S1:[]
Assumendo che le somme non generino riporto, quale de
due registri contiene il valore maggiore in S1?
\Box A
\Box B
☐ Dipende dal loro valore iniziale al reset
□ Nessuna delle precedenti
Nella sintesi di una rete R secondo il modello con scomposizione PO/PC le variabili di comando:

- ssi di R
- ndere dagli ingressi di
- ingressi di R

La tabella delle interruzioni (IDT) viene riempita:

- Dal controllore di interruzione
- Dal programma bootstrap del sistema operativo
- Dal programmatore
- Nessuna delle precedenti

$\setminus x_1x_0$							
/	00	01	11	10	Z		
S0	SO	S1	SO	SO)	0		
S1	S0	S1	S2		0		
S2		S1	S2	S0	1		

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- Vero
- Falso

Una rete a due livelli di logica la cui uscita è presa da una porta XNOR può essere soggetta ad alee statiche del primo ordine

- soltanto sul livello 0
- soltanto sul livello 1
- su entrambi i livelli
- Nessuna delle precedenti

Do	omande di Reti Logiche	– compito del	18/02/2020	
Cognome e no	me:			
Matr	icola:			
	Consegna:	Sì 🗌	No	
 				 -

VECCHIO PROGRAMMA

Barrare una sola risposta per domanda

Il punteggio finale è -1 \times (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

NUOVO PROGRAMMA (prova pratica)	SUB \$1, %AL JO via JC vai qui: Il codice scritto sopra prosegue all'etichetta qui se AL: è diverso da 0000 0000 Ha almeno uno dei 7 bit meno significativi pari a 1 contiene la rappresentazione di un numero negativo Nessuna delle precedenti NOT %BX NOT %AX AND %BX, %AX NOT %AX Il codice sopra scritto calcola: L'AND di BX e AX L'OR di BX e AX	Una sintesi SP a costo minimo di una legge combinatoria può includere soltanto mintermini: Vero Falso Non si può dire
	☐ Il NOR di BX e AX ☐ Nessuna delle precedenti	Nella sintesi di una rete R secondo il modello con scomposizione PO/PC le variabili di comando:
	Sia dato un sommatore a una cifra in base 10 con codifica BCD. Le variabili logiche di ingresso sono: $X = 0110$, $Y = 0110$, $c_{in} = 1$. Le uscite sono: $Z = 1001$, $c_{out} = 0$, $ow = 1$	 □ Possono dipendere dagli ingressi di R □ Devono necessariamente dipendere dagli ingressi di R □ Non possono dipendere dagli ingressi di R □ Nessuna delle precedenti
	$ □ Z = 0011, c_{out} = 1, ow = 0 $ $ □ Z = 0011, c_{out} = 1, ow = 1 $ $ □ Nessuna delle precedenti $	La tabella delle interruzioni (IDT) viene riempita: □ Dal controllore di interruzione □ Dal programma bootstrap del sistema operativo

Ш	$Z = 0011, c_{out} = 1, ow = 1$
	Nessuna delle precedenti
	T
- X	$ _{m} \le -X _{m}$
	Vero
	Falso
	Non si può dire
Dor 1	nontare un'interfaccia nello spazio di I/O del calcola-
	visto a lezione è necessario connettere il suo piedino
/s:	
	Al filo /s proveniente dal bus
	All'uscita di una rete combinatoria che ha in ingres-
	so alcuni tra i fili di indirizzo $a_{23} \dots a_{16}$ del bus
	All'uscita di una rete combinatoria che ha in ingres-
	so alcuni tra i fili di indirizzo $a_{15} \dots a_0$ del bus

$T \geq T_{prop} + T_{a \; valle}$

La formula scritta sopra è una delle disuguaglianze di temporizzazione delle reti sequenziali sincronizzate:

D ₁ Moore
Di Mealy
Di Mealy ritardato
Nessuna delle precedenti

Nessuna delle precedenti

$\setminus X_1$					z
\	00	01	11	10	
S0	SO)	S1	so)	SO)	0
S1	S0	S1	S2		0
S2		S1	S2	S0	1

Dal programmatore Nessuna delle precedenti

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

Ш	vero
	Falso

Una rete a due livelli di logica la cui uscita è presa da una porta XNOR può essere soggetta ad alee statiche del primo ordine

soltanto sul livello 0
soltanto sul livello 1
su entrambi i livelli
Nessuna delle precedenti

A	Domande di Reti Logiche – compito del 18/02/2020	
	Cognome e nome:	
	Matricola:	
	Consegna: Sì No	