Question 1

Correct

Marked out of 42

(Numerical Differentiation). All numerical answers should be rounded to 8-digit floating-point numbers.

Consider the function

$$f(x)=\sqrt[3]{1+\sqrt[4]{1+\sqrt[8]{1+x}}}.$$

In what follows, you will be asked to obtain a number of approximations of

$$f_0' = f(x_0)$$
 and $f_0'' = f''(x_0)$

for the point $x_0=3$ using the grid centered at x_0 with step h=0.001 and the approximation formulas we have studied during the lectures.

(i) Evaluate the function f(x) at the grid points

$$x_{-1}, x_0, x_1, x_2, x_3, x_4.$$

Show your work by filling in the following standard table:

k	x_k	f_k
-1	2.999	1.3038116
0	3.0	1.3038126
1	3.001	1.3038137
2	3.002	1.3038147
3	3.003	1.3038157
4	3.004	1.3038167

Users of sci calculators are advised:

- ullet to keep the values of the grid points in the variable ${\tt X}$ and to keep the grid size h in the variable ${\tt D}$ (as we did in class);
- to keep the values

$$f_{-1}, f_0, f_1, f_2, f_3, f_4$$

in the variables

respectively;

ullet to store any approximation of either f_0' , or f_0'' below in the variable Y, as, e.g., in

$$(A - 2 \times B + C) \div D^2 \rightarrow Y$$

(ii) Execute the command

N[ReplaceAll[D[
$$(1 + (1 + (1+x)^{(1/8)})^{(1/4)})^{(1/3)}$$
], $\{x \rightarrow 3\}$], 15]

and the command

N[ReplaceAll[D[D[
$$(1 + (1 + (1+x)^{(1/8)})^{(1/4)})^{(1/3)}]], {x -> 3}], 15]$$

at the Wolfram Alpha website, thereby obtaining

- ullet the 15-digit representation $ar{z}$ of the value $z=f_0'=f'(x_0)$ and
- ullet the 15-digit representation ar t of $t=f_0''=f''(x_0)$.
- Recall that the command

returns the derivative of the function g(x) (this command, as is the case with the following two commands, is a simplified version of the corresponding command in the Wolfram Language);

• the command

ReplaceAll[
$$h(x)$$
, $\{x \rightarrow c\}$]

is used to replace all occurrences of the variable x in a math expression $\mathtt{h}(\mathtt{x})$ with a number c;

• the command

evaluates a *numerical* expression . . . , and then rounds the result to a d-digit floating-point number.

- (iii) Use (i) to find the following approximations z^* of $z=f_0'$ and the corresponding numbers $\mathrm{SD}(\bar{z}\approx z^*)$ of significant digits (recall that \bar{z} is the 15-digit representation of $z=f_0'$ you should have found in (ii)).
- (a) Apply the 2-point midpoint formula

$$z=f_0'pproxrac{f_1-f_{-1}}{2h}=z^*$$

to approximate $z=f_0^\prime.$ Then

$$z^* \doteq 0.0010122336$$

and

Here and below, please keep the corresponding relative error(s) in your records for the future use.

To continue the instructions for the user of sci calculators: in this and in the following parts, if your approximation is saved in the variable Y, find the corresponding relative error $\text{RE}(\bar{z}\approx z^*)$ by executing a command similar to

so that the number \bar{z} is entered 'as is', with all its 15 digits present.

(b) Apply the 3-point endpoint formula

$$z=f_0'pprox rac{-3f_0+4f_1-f_2}{2h}=z^*$$

to approximate $z=f_0^\prime.$ Then

$$z^* \doteq \bigcirc 0.0010122336$$

and

$$\mathrm{SD}(ar{z}pprox z^*)= igg|$$
 8 $igspace$.

(c) Apply the 4-point endpoint formula

$$z=f_0'pproxrac{-11f_0+18f_1-9f_2+2f_3}{6h}=z^*$$

to approximate $z=f_0^\prime.$ Then

$$z^* \doteq \bigcirc 0.0010122336$$

and

$$\mathrm{SD}(ar{z}pprox z^*)= \boxed{\hspace{0.1in}}$$
 10 $ightharpoons$.

(d) Apply the 5-point endpoint formula

$$z=f_0'pprox rac{-25f_0+48f_1-36f_2+16f_3-3f_4}{12h}=z^*$$

to approximate $z=f_0^\prime.$ Then

$$z^* \doteq \boxed{ 0.0010122336}$$

and

$$\mathrm{SD}(ar{z}pprox z^*)= \boxed{ \ \ 11 } \qquad ullet \ \ .$$

(e) Now arrange the relative errors you have found in (a-d) in *increasing* order (this will show which approximation is the best, the second best, and so on). Describe then your arrangement by entering a sequence of the corresponding letters separated by commas, similar to

Answer: d,c,a,b ✓

- (iv) Use (i) to find the following approximations t^* of $t=f_0''$ and the corresponding numbers $\mathrm{SD}(\bar{t}\approx t^*)$ of significant digits (to repeat, \bar{t} is the 15-digit representation of $t=f_0''$ you should have found in (ii)).
- (a) Apply the 3-point midpoint formula

$$t={f'}_0'pprox rac{f_{-1}-2f_0+f_1}{h^2}=t^*$$

to approximate $t=f_0^{\prime\prime}.$ Then

$$t^* \doteq -0.00023588531$$

and

(b) Apply the 4-point endpoint formula

$$t=f_0''pproxrac{2f_0-5f_1+4f_2-f_3}{h^2}=t^*$$

to approximate $t=f_0^{\prime\prime}.$ Then

$t^* \doteq -0.00023588465$	
-----------------------------	--

and

$$\mathrm{SD}(ar{t}pprox t^*)= egin{bmatrix}\mathsf{6} & & ullet & & \end{pmatrix}$$
 .

(c) As before in (iii), arrange the relative errors you have found in (a-b) in increasing order and enter a sequence of letters, separated by commas, describing your arrangement:

Answer:	a,b	~ .
Check		

Previous Activity

Jump to...

Question 2

Correct

(Numerical Integration: Composite Rectangle Rule). All numerical answers should be rounded to 8-digit floating-point numbers.

Marked out of 16

(i) (a) Use the Composite Rectangle Rule with n=20 to find an approximation I^st of the integral

$$I = \int_0^{0.5} \ln(\,40.1 + \sin^2(x)\,)\,dx$$

(b) Show your work by filling in the following table of selected values of the grid points and the values of the integrand at these points:

k	x_k	y_k
0	0	3.6913763
5	0.125	3.6917639
10	0.25	3.6929016
15	0.375	3.6947163
19	0.475	3.6965787

(ii) By (i),

In this and the following problems, it is a good idea to obtain a sufficiently accurate approximation of the integral in question by executing the commands similar to

evalf(integral(
$$f(x)$$
, $x = a .. b$), 14)

or to

at the Wolfram Alpha website, or any other online resource/software, in order to compare with your answer.

Check

Previous Activity

Jump to...

Question $\bf 3$

Correct

(Numerical Integration: Composite Trapezoidal Rule). All numerical answers should be rounded to 8-digit floating-point numbers.

Marked out of 18

(i) (a) Use the Composite Trapezoidal Rule with n=10 to find an approximation I^st of the integral

$$I = \int_0^{\pi/2} \sqrt{2.89 \sin^2(t) + 2.25 \cos^2(t)} \ dt.$$

(b) Show your work by filling in the following standard table

k	x_k	$(1/2 1)y_k$
0	0	0.75
1	0.15707963	1.5052116
2	0.31415927	1.520235
3	0.4712389	1.5433434
4	0.62831853	1.5719779
5	0.78539816	1.603122
6	0.9424778	1.6336724
7	1.0995574	1.6607502
8	1.2566371	1.6819291
9	1.4137167	1.6953873
10	1.5707963	0.85

(ii) By (i),

$$I^* \doteq$$
 2.5157291

Check

Previous Activity

Jump to...

Question 4

Correct

(Numerical Integration: Composite Simpson's Rule). All numerical answers should be rounded to 8-digit floating-point numbers.

Marked out of 24

(i) (a) Find an approximation I^{*} of the integral

$$I = \int_0^{\pi/2} e^{1.64 \sin(x)} \ dx$$

using the Composite Simpson's Rule with n=10.

(b) Show your work by filling in the following standard table

k	x_k	$(1 2 4)y_k$
0	0	1.0
1	0.15707963	5.1698666
2	0.31415927	3.3199013
3	0.4712389	8.421928
4	0.62831853	5.2441596
5	0.78539816	12.755333
6	0.9424778	7.5378353
7	1.0995574	17.245393
8	1.2566371	9.5150986
9	1.4137167	20.208499
10	1.5707963	5.1551695

(ii) By (i),

$$I^* \doteq 5.0042002$$
 \checkmark .

Check

Previous Activity

Jump to...