Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 3

Consigna

Determinar si las siguientes series son convergentes o divergentes aplicando el criterio del equivalente:

- 1. $\sum_{n=0}^{+\infty} \frac{1}{n^2+1}$ 2. $\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3}$ 3. $\sum_{n=1}^{+\infty} \frac{\log(n+1) \log(n)}{10n+1}$

Resolución

Serie #1

• $\sum_{n=0}^{+\infty} \frac{1}{n^2+1}$

Veamos a que es equivalente el término general:

$$\frac{1}{n^2+1}\sim \frac{1}{n^2}$$

Entonces como $\sum \frac{1}{n^2}$ es convergente, también lo es $\sum \frac{1}{n^2+1}$.

Serie #2

• $\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3}$

Veamos a que es equivalente el término general:

$$\frac{n^2+1}{n^3} \sim \frac{n^2}{n^3} \sim \frac{1}{n}$$

Entonces como $\sum \frac{1}{n}$ es divergente, también lo es $\sum \frac{n^2+1}{n^3}$.

Serie #3

 $\bullet \quad \textstyle \sum_{n=1}^{+\infty} \frac{\log(n+1) - \log(n)}{10n+1}$

Veamos a que es equivalente el término general:

$$\frac{\log(n+1) - \log(n)}{10n+1}$$

$$= \text{(propiedades de logarítmos)}$$

$$\frac{\log(\frac{n+1}{n})}{10n+1}$$

$$= \text{(operatoria)}$$

$$\frac{\log(1+\frac{1}{n})}{10n+1}$$

Por desarrollo de Taylor, tenemos que si $x \to 0$, entonces $\log(1+x) \to x$. Entonces aplicando en nuestro caso:

$$\begin{aligned} &\frac{\log(1+\frac{1}{n})}{10n+1} \\ &= &(\text{por el argumento anterior}) \\ &\frac{\frac{1}{n}}{10n+1} \\ &= &(\text{operatoria}) \\ &\frac{1}{(10n+1)n} \end{aligned}$$

Y observemos que:

$$\bullet \quad \frac{1}{(10n+1)n} \sim \frac{1}{n^2}$$

Entonces como $\sum \frac{1}{n^2}$ converge, también lo hace $\sum_{n=1}^{+\infty} \frac{\log(n+1) - \log(n)}{10n+1}$