Компьютерное моделирование Моделирование динамических систем.

Черновик

Кафедра ИВТ и ПМ

2018

План

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Прошлые темы

- Что такое динамическая система?
- ▶ Примеры?
- Динамическая система противопоставляется ... ?

Прошлые темы

- Что такое динамическая система?
- Примеры?
- Динамическая система противопоставляется ... ?
- Примеры статических систем?

Современная наука стала возможной тогда, когда было решено самое первое дифференциальное уравнение

вольный перевод цитаты Дэвида Берлински

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Формальное определение

Моделирование динамических систем

Динамические модели популяций

Balance equations

Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?
- Простой пример ДУ?

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?
- Простой пример ДУ?

$$\frac{dv_{x}}{dt} = g$$
 или

$$\dot{V}_{x}=g$$

Что является решением дифференциального уравнения?

- Что является решением дифференциального уравнения?
- Какие решения бывают?

- Что является решением дифференциального уравнения?
- Какие решения бывают?
- Что такое общее решение?
- Что такое частное решение?
- Как получить из общего решения частное?

▶ Как представить общее решение ДУ графически?

Что такое численный метод?

- Что такое численный метод?
- Как численно определить производную известной функции в точке?

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Формальное определение

Моделирование динамических систем

Динамические модели популяций

Balance equations

Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Динамическая система

- ▶ Изменяется с течением времени t
- ightharpoonup Состояния системы s(t)
- ightharpoonup Состояние системы может быть представлено вектором $s(t)=(s_1(t),s_2(t),...,s_n(t))$
- ▶ Примеры: маятник, популяция животных, движение автомобиля, поток людей, ...

Способы представления

Дискретная система

$$s(t + \Delta t) = f(s(t))$$

где Δt - приращение времени, f - некоторая функция определяющая состояние системы на следующем шаге

Непрерывная система

$$\dot{s} \equiv \frac{ds}{dt} = f(s(t))$$

Всегда ли первой производной достаточно?

Состояние может зависеть от второй производной: непрерывная система

Предположим, что состояние системы зависит ещё и от второй производной

$$\dot{s} + \ddot{s} = f(s)$$

Обозначим

$$y = \dot{s}$$
$$\dot{y} = f(s) - y$$

Обозначим

$$u(t) \equiv f_1[s(t), y(t)]$$

 $\dot{u} = g(u)$

Состояние может зависеть от второй производной: дискретная система

$$s(t + \Delta t) = f(s(t)) + s(t - \Delta t)$$

Аналогично непрерывной системе

$$y(t + \Delta t) = \dot{s}$$
$$s(t + \Delta t) = f(s(t)) + y(t)$$

Обозначим

$$u(t) \equiv f_1[s(t), y(t)]$$

$$u(t + \Delta t) = g(u(t))$$

Состояние может зависеть от второй производной: непрерывная система

Если f явно зависит от t

$$\dot{s}=f(s,t)$$

$$\dot{s} = f(s, y)$$

$$\dot{y} = 1$$

для
$$y(0) = 0$$

$$u(t) \equiv f_1[s(t), y(t)]$$
$$\dot{u} = g(u)$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций

Balance equations Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Динамические модели популяций

Популяция (в биологии) - это совокупность особей одного вида, существующих в одно и занимающих определенную территорию.

В классической экологии рассматриваются взаимодействия нескольких типов:

- взаимодействие организма и окружающей среды;
- взаимодействие особей внутри популяции;
- взаимодействие между особями разных видов (между популяциями).

Динамические модели популяций

Зачем это нужно?

- описание роста количества микроорганизмов
- предсказание численности популяций промысловых животных
- предсказание численности популяций диких животных
- ▶ предсказание численности населения ¹

¹см. модель World3

Первая модель популяции 1202 г. Леонардо Пизанский

какое количество пар кроликов будет через год, кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов?

Первая модель популяции 1202 г. Леонардо Пизанский

какое количество пар кроликов будет через год, кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов?

Ряд описывающий количество пар кроликов: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Динамические модели популяций

- ▶ Число 2 особей в популяции P(t)
- ▶ При этом P(0) = 0
- На размер популяции влияет только два процесса
 - ▶ рождение особей B(t)
 - ightharpoonup смерть особей D(t)
- ▶ Тогда изменение популяции:

$$\dot{P}(t) = B(t) - D(t)$$

 $^{^2}$ вместо числа особей может использоваться плотность популяции и другие связанные с количеством особей величины $\square \mapsto \langle \not \square \rangle \mapsto \langle \not \supseteq \rangle$

Число родившихся особей можно задать как:

$$B(t) = r_b P(t)$$

Число умерших особей можно задать как:

$$D(t) = r_d P(t)$$

 r_b - темп воспроизводства в расчете на одну особь; r_d - темп вымирания.

$$\dot{P}(t) = r_b P(t) - r_d P(t)$$

обозначим $r = r_b - r_d$,

тогда

$$\dot{P} = rP(t)$$

Решение $ДУ^3$:

³похожий закон роста описывает изменение вклада (сложные проценты) см. другие примеры: en.wikipedia.org/wiki/Exponential_growth₃

$$\dot{P}(t) = r_b P(t) - r_d P(t)$$

обозначим $r = r_b - r_d$,

тогда

$$\dot{P} = rP(t)$$

Решение ДУ 3 :

$$P(t) = P_0 e^{rt}$$

wikimedia: анимация роста бактерий согласно экспоненциальному закону

 $^{^3}$ похожий закон роста описывает изменение вклада (сложные проценты) см. другие примеры: en.wikipedia.org/wiki/Exponential_growth $_{\odot}$

Технологическая сингулярность?

- r > 0 экспоненциальный рост
- r < 0 экспоненциальное сокращение
- ▶ r = 0 численность постоянна

Динамические модели популяций Модель Мальтуса

Линейный рост воспроизводства и экспоненциальный рост популяции.

Динамические модели популяций Модель Мальтуса

Динамические модели популяций Модель Мальтуса

Недостатки модели Мальтуса?

Модель Мальтуса

Рост популяции Saccharomyces cerevisiae (Пекарские дрожжи)

jmahaffy.sdsu.edu/courses/f06/math636/lectures/competition/competition.html

Модель Мальтуса

An attempt to unify some population growth models from first principles, Fabiano L. Ribeiro,

Rev. Bras. Ensino Fís. vol.39 no.1 São Paulo 2017 Epub Nov 21, 2016

Динамические модели популяций Логистическая модель

- Необходимо ограничить предельный размер популяции
- ▶ Введём дополнительный параметр С емкость среды.

Предельная нагрузка биологического вида на среду обитания (**ёмкость среды**) — максимальный размер популяции вида, который среда может безусловно стабильно поддерживать ⁴

 С - системный фактор (пища, убежища, хищничество, конкуренция с другими видами)

⁴В 2001 году в докладе ООН сообщалось, что две трети оценок ёмкости среды для человечества попадают в диапазон от 4 до 16 млрд (с неопределенным стандартным отклонением) с медианным значением в 10 млрд

Логистическая модель

коэффициент регулирующий прирост (убыль) популяции

$$r = v \left(1 - \frac{P}{C} \right)$$

► модель (уравнение популяционной динамики Ферхюльста (Verhulst equation)⁵:

$$\dot{P} = v \left(1 - \frac{P}{C} \right) P \tag{1}$$

⁵логистическое уравнение

Логистическая модель

Логистическая модель

Решение ДУ, описывающего модель - логистическая функция

$$P(t) = \frac{C}{1 + \frac{C - P_0}{P_0} e^{-vt}}$$

Параметры модели:

$$C=50, v=1$$

Синяя кривая (логистическая кривая) $P_0 = 10$

Красная кривая
$$P_0 = 90$$

Динамические модели популяций Теория r/K-отбора

перепишем уравнение 1:

$$\dot{P} = rP - \delta P^2$$

- r -стратегия: организмы (так называемые «оппортунистические»), стремятся к максимально возможной скорости роста численности (параметр r). Потомство таких видов с большой долей вероятности не доживает до зрелого возраста.
- ► K-стратегии: организмы («равновесные»), наоборот, находятся в состоянии равновесия со своими ресурсами и воспроизводят относительно мало, однако стремятся вложить в потомство как можно больше.

Динамические модели популяций Теория r/K-отбора

- ► Теория r/K-отбора хорошо описывает рост организмов без возрастной структуры
- к ним относятся бактерии, дрожжи, микроводоросли и др.

Динамические модели популяций Логистическая модель

- ▶ $P_0 < C$ популяция растёт, $P \to C$
- ▶ $P_0 > C$ популяция сокращается, $P \to C$
- ▶ $P_0 = 0$ популяция не растёт P(t) = 0.
- ▶ Система имеет две фиксированных точки: С к которой популяция стремится, 0 - от которой стремится популяция.
- Использование модели затруднено из-за того, что параметр часто не известен или является объектом исследования.

- Предыдущие модели хорошо описывают бесполое размножение
- На прирост популяции при половом размножении отличается:
- ightharpoonup При малых P частота контактов b(P) пропорциональна P^2
- ▶ При больших P частота контактов b(P) пропорциональна числу самок $\alpha \frac{\beta P^2}{\beta + \gamma P}$

$$\dot{P} = \alpha \frac{\beta P^2}{\beta + \gamma P} - \tau P$$

Динамические модели популяций Учёт наименьшей критический численности

Особые точки уравнения?

Учёт наименьшей критический численности

Особые точки уравнения?

$$P = 0$$
$$P = \dots = L$$

При $P_0 > L$ популяция растёт, при $P_0 < L$ погибает.

При падении численности популяции ниже критической величины из-за неблагоприятных условий, или в результате хищнического промысла, восстановление популяции становится невозможным

Учёт наименьшей критический численности

- Величина нижней критической плотности L различна для разных видов:
- это одна пара особей на тысячу квадратных километров в случае ондатр
- сотни тысяч особей для американского странствующего голубя.
- американский странствующий голубь вымер в начале XX века
- Для голубых китов критическая граница общей численности оказалась равной десяткам – сотням. Вид находится под угрозой вымирания.

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций

Balance equations

Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Balance equations

Пример с популяцией (слайд 22 и далее) показывает, что при описании динамических моделей используются уравнения вида

изменение величины = прирост – убыль

или для непрерывной системы

$$\dot{s} = f(s) = \text{creation rate} - \text{destruction rate}$$

Balance equations

Аналогично для дискретного случая:

$$s(t+\Delta t)-s(t)=$$
 (creation rate $-$ destruction rate) Δt

При $\Delta t o 0$ дискретный случай переходит в непрерывный, т.к.

$$\lim_{\Delta t o 0} rac{s(t+\Delta t)-s(t)}{\Delta t} = \dot{s}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations

Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

- ▶ а популяция антилоп; с популяция гепардов
- животные не иммигрируют и не эмигрируют
- Численность антилоп растёт экспоненциально (бесконечное количество еды)
- ▶ Шанс антилопы быть пойманной гепардом пропорционален вероятности их встречи
- Гепарды вымирают с голода экспоненциально
- Воспроизводство гепардов пропорционально их шансам поймать на охоте антилопу

- ▶ а популяция антилоп; с популяция гепардов
- животные не иммигрируют и не эмигрируют
- Численность антилоп растёт экспоненциально (бесконечное количество еды)
- ▶ Шанс антилопы быть пойманной гепардом пропорционален вероятности их встречи
- Гепарды вымирают с голода экспоненциально
- Воспроизводство гепардов пропорционально их шансам поймать на охоте антилопу

Как будут выглядеть дифференциальные уравнения описывающие такую модель?

- ▶ а популяция антилоп; с популяция гепардов
- животные не иммигрируют и не эмигрируют
- Численность антилоп растёт экспоненциально (бесконечное количество еды)
- ▶ Шанс антилопы быть пойманной гепардом пропорционален вероятности их встречи
- Гепарды вымирают с голода экспоненциально
- Воспроизводство гепардов пропорционально их шансам поймать на охоте антилопу

Как будут выглядеть дифференциальные уравнения описывающие такую модель?

$$\frac{da}{dt} = k_a a(t) - k_{c,a} c(t) a(t)$$

$$\frac{dc}{dt} = -k_c c(t) + k_{a,c} c(t) a(t)$$

Хищные и травоядные клещи

Typhiodromus occidentalis (светлый клещ) атакует Большой клещ, не Eotetranychus sexmaculaus, это Красный плодовый клещ

Хищные и травоядные клещи: экспериментальные данные

Huffaker's mite experiment, 1958

Лабораторный эксперимент (среде обитания смоделирована) с травоядным клещём Eotetranychus sexmaculaus и нападающего на него хищным Typhiodromus occidentalis.

Канадская рысь и Американский беляк

Канадская рысь и Американский беляк

Figure 48-1 Oscillation observed in Canada of populations of lynx and hare (data from E. P. Odum, Fundamentals of Ecology, Philadelphia: W. B. Saunders, 1953).

Другие модели

Конкуренция видов

Используем логистическую модель:

$$\dot{P} = v \left(1 - \frac{P}{C} \right) P$$

Рассмотрим популяции двух видов животных: P_1 и P_2 ; Каждая популяция имеет своё ёмкость среды: C_1 и C_2 соответственно.

Выражение в скобках, определяющее прирост, должно учитывать потребление ресурса двумя видами: $\frac{P_1 + \alpha_{12}P_2}{C}$ и $\frac{P_2 + \alpha_{21}P_1}{C}$

где $lpha_{12}$ - коэффициент учитывающий влияние популяции вида 2 на вид 1 и $lpha_{21}$ соответственно наоборот

Другие модели Конкуренция видов

Система ДУ описывающая конкуренцию двух видов

$$\dot{P}_1 = v \left(1 - \frac{P_1 + \alpha_1 2 P_2}{C_1} \right) P_1$$

$$\dot{P}_2 = v \left(1 - \frac{P_2 + \alpha_2 1 P_1}{C_2} \right) P_2$$

Моделирование популяций

Вопросы

- Как учесть некоторый постоянный фактор уменьшающий прирост популяции? например в логистической модели
- Как учесть некоторый фактор уменьшающий прирост популяции, постоянно действующий в течении определённого интервала времени? например в логистической модели
- ► Какая система ДУ описывает популяции трёх видов X, Y, Z, где Y охотится (потребляет) на X, Z охотится (потребляет) Y?
- Как решается система однородных дифференциальных уравнений первого порядка?
- ▶ Учитывает ли модель Лотки-Вольтерры возрастной фактор?
- Учитывает ли модель Лотки-Вольтерры распределение хищников и жертв в пространстве?
- Учитывает ли модель Лотки-Вольтерры внутривидовую конкуренцию?

Другие виды отношений между видами

В каких ещё отношениях могут состоять биологические виды?

Другие виды отношений между видами

В каких ещё отношениях могут состоять биологические виды?

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Уравнение учитывающие пространство и время

- Предыдущие примеры не учитывали пространство, но часто это важно (распределение вещества, температуры и т.д.)
- ightharpoonup Необходимо учесть движение чего-либо из некоторого объёма V через его поверхность ∂V
- ▶ Причём отнести это движение к единице времени

Уравнение учитывающие пространство и время

входящий поток исходящий поток

(на касательной к поверхности) - поток не покидающий данный объём V dS (тёмно серый участок) - площадь поверхности ∂V с нормалью n

Уравнение учитывающие пространство и время

 $\rho(t,x)$ - плотность исследуемой величины (массы, заряда, ...)

$$s(t) = \int_{V} \rho(t, x) dV$$

Уравнение баланса:

 $\dot{s} = -\mathsf{flux}\ \mathsf{through}\ \mathsf{surface} + \mathsf{volumic}\ \mathsf{creation/destruction}\ \mathsf{rate}$

знак минус в формуле выше появляется из-за того, что выходящий поток считается положительным, а он должен уменьшать некоторую величину внутри объёма V.

Обозначим поток (flux) как j;

creation/destruction rate

$$\Sigma = \int_{V} \sigma dV$$

$$\dot{s} + \oint_{\partial V} j \cdot n dS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

Обозначим поток (flux) как j;

creation/destruction rate

$$\Sigma = \int_{V} \sigma dV$$

$$|\dot{s} + \oint_{\partial V} j \cdot ndS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

Обозначим поток как j

$$\Sigma = \int_{V} \sigma dV$$

$$|\dot{s} + \oint_{\partial V} j \cdot ndS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

$$\int_{V} \dot{s} dV + \int_{V} \nabla j \cdot n dV = \int_{V} \sigma dV$$
$$\dot{s} + \nabla j \cdot n = \sigma$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Требуется проинтегрировать однородное дифференциальное уравнение

$$\dot{s} = f(s, t)$$

на интервале $t_0 < t < t_f$ если известно $s(t=t_0) = s_0$

Не все интегралы могут быть вычислены аналитически или аналитическое интегрирование может быть сложным.

Во время численного интегрирования важно знать об ошибке вычисления

Для примера возьмём ранее рассмотренную модель популяции

$$\dot{s}=f(s,t)$$

$$f(s,t)=v\left(1-\frac{P}{C}\right)s$$

Аналитическое решение:

$$P(t) = \frac{C}{1 + \frac{C - P_0}{P_0} e^{-vt}}$$

Далее сравним точное решение с численным.

Используем ряд Тейлора

$$s(t) = \sum_{k=0}^{\infty} \frac{s^{(k)}(t_0)}{k!} (t - t_0)^k$$

где $s^{(k)}(t_0)$ означает производную k-го порядка.

Пусть $t-t_0=\Delta t$, тогда

$$s(t_0 + \Delta t) = \sum_{k=0}^{\infty} \frac{s^{(k)}}{k!} \Delta t^k$$

Выделим слагаемые для k=0,1:

$$s(t_0 + \Delta t) = s(t_0) + s'(t_0)\Delta t + \mathcal{O}(\Delta t^2)$$

Отбросим $\mathcal{O}(\Delta t^2)$:

$$s(t_1) = s(t_0) + \dot{s}(t_0) \Delta t$$

Заменим $\dot{s}(t_0) = f(s, t_0)$:

$$s(t_1) = s(t_0) + f(s, t_0) \Delta t$$

Явная схема Эйлера

Тогда уравнение можно использовать для определения состояния $s(t_i)$ в каждый следующий момент времени t_{i+1} :

$$s(t_{i+1}) = s(t_i) + f(s, t_i) \Delta t$$

где
$$t_{i+1} - t_i = \Delta t$$

- выражение дискретно по времени
- производную (но не саму функцию) можно выразить из дифференциального уравнения $\dot{s}(t_0) = f(s,t_0)$:
- аналитическое выражение для функции искать не нужно
- значение функции явно зависит только от известного значения функции в предыдущий момент времени и от производной

Сравнение численного решения и точного (слайд 67)

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Динамические модели популяций Balance equations
Модель Лотки — Вольтерры

Уравнение учитывающие пространство и время

Численное интегрирование

Моделирование химических реакций

Рассмотрим химическую реакцию в которой молекула (доля вещества) A превращается в молекулу B с интенсивностью k_1 . Аналогичные превращения происходят с молекулой B.

$$A \xrightarrow{k_1} B$$
$$B \xrightarrow{k_2} A$$

Как будут выглядеть дифференциальные уравнения описывающие химическую реакцию (превращение одного вещества в другое)?

Как будут выглядеть дифференциальные уравнения описывающие химическую реакцию (превращение одного вещества в другое)?

Система однородных дифференциальных уравнений первого порядка

$$\frac{d}{dt} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -k_1 & k_2 \\ k_1 & -k_2 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}$$

Решение:

$$A(t) = \frac{k_2}{k_1 + k_2} (A_0 + B_0) + \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

$$B(t) = \frac{k_1}{k_1 + k_2} (A_0 + B_0) - \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

При $t \to \infty$:

Как будут выглядеть дифференциальные уравнения описывающие химическую реакцию (превращение одного вещества в другое)?

Система однородных дифференциальных уравнений первого порядка

$$\frac{d}{dt}\begin{pmatrix}A\\B\end{pmatrix}=\begin{pmatrix}-k_1&k_2\\k_1&-k_2\end{pmatrix}\begin{pmatrix}A\\B\end{pmatrix}$$

Решение:

$$A(t) = \frac{k_2}{k_1 + k_2} (A_0 + B_0) + \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

$$B(t) = \frac{k_1}{k_1 + k_2} (A_0 + B_0) - \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

При $t \to \infty$:

$$A \to A_{\infty} = \frac{k_2}{k_1 + k_2} (A_0 + B_0)$$
 $B \to B_{\infty} = \frac{k_1}{k_1 + k_2} (A_0 + B_0)$

Моделирование химических реакций Метод Монте Карло

Рассматриваемая реакция моделируется с помощью Динамического метода Монте Карло. Этот метод применяется для моделирования систем которые не находятся в равновесии.

- ightharpoonup Время дискретно, с шагом Δt
- lacktriangle Δt следует выбрать таким, чтобы $\Delta t k_1 < 1$ и $\Delta t k_2 < 1$
- ▶ Величины $\Delta t k_1$ и $\Delta t k_2$ вероятности превращения доли вещества A в вещество B и наоборот

Моделирование химических реакций Метод Монте Карло

- ▶ Моделируя реакцию будем выбирать случайную молекулу (долю вещества) из всех N = A + B = const
- ▶ Вероятности выбора соответствующей молекулы A B $\frac{A}{A+B}$ и $\frac{B}{A+B}$ соответственно например если $\operatorname{rand}(0,1) < \frac{A}{A+B}$ то выбирается молекула A
- ▶ Если выбрана молекула A, то она превращается в молекулу B с вероятностью $\Delta t k_1 < 1$ Число молекул изменяется:

$$A = A - 1$$
$$B = B + 1$$

Аналогично для молекулы В

Моделирование химических реакций Метод Монте Карло

- операция превращения (или не превращения) повторяется для всех N молекул
- ▶ После того как N молекул обработано время увеличивается на Δt и процесс повторяется заново
- lacktriangle Моделирование происходит пока $t < t_{max}$

Моделирование химических реакций Метод Монте Карло. Результат

график построен для
$$\Delta = 0.02, \; k_1 = 0.5, \; k_2 = 0.8$$

Кривыми соответствующего цвета показаны аналитические решения. Для получения более точного результата нужно провести моделирование несколько раз.

Моделирование химических реакций Алгоритм Гиллиспи

- ightharpoonup Для каждого из возможных событий i=1..n заданы интенсивности $r_1,...,r_n$, с корой они происходят
- lacktriangle например $r_i=kAB$ для химической реакции A+B o C
- lacktriangle введём накопленные интенсивности $R_i = \sum\limits_{j=1}^{r} r_j$
- Выберем одно из событий сгенерировав случайное число 6 s=rand(0,1):
- ightharpoonup номер события будет определятся из соотношения $R_{k-1} < sR_n < R_{k+1}$

⁶равномерно распределённое

Моделирование химических реакций Алгоритм Гиллиспи

- после того как событие выбрано, оно происходит
- ▶ изменить время на $\Delta t = ln(\frac{1}{rand(0.1)})^7$
- ightharpoonup В течении интервала времени t происходит только одно событие

 $^{^7\}Delta t$ будет иметь экспоненциальное распределение $_{ ext{ iny 6}}$ $_{ ext{ iny 6}}$ $_{ ext{ iny 6}}$ $_{ ext{ iny 6}}$

Ссылки

▶ «Жесткие» и «мягкие» математические модели, Арнольд В. Использованы материалы курса Simulation and modeling of natural processes coursera.org/learn/modeling-simulation-natural-processes/

Ссылки

Материалы курса

github.com/ivtipm/computer-simulation