SISTEMAS DE CONTROL ELÉCTRICO FLUIDSIM

Autor

Ing. Lenin Jiménez Torres

Quito - Ecuador 2019

1. TEMA

Sistemas de control eléctrico

2. OBJETIVOS

- Investigar los sistemas de control mayormente empleados en la industria
- Esquematizar y simular los diagramas de control eléctrico en software FluidSim

3. DESARROLLO

a) Mando contactor completo

b) Mando enclavamiento de dos contactores, circuito XOR

c) Activado y desactivado secuencial: C1-C2 or C2-C1

d) Activado y desactivado secuencial, forma estricta: C1-C2 and C2-C1

f) Apagado temporizado con temporizador Off-delay

g) Encendido temporizado de dos cargas

Las cargas C1 y C2 son accionadas secuencialmente.

h) Arranque estrella – delta, circuito de mando

CL, accionador de líneas.

CD, accionador de configuración delta

CY, accionador de configuración estrella

RTY, temporizador de desconexión de arranque en estrella

i) Arranque delta – estrella temporizado con inversor de giro

CL1 y CL2, accionadores de líneas.

CD, accionador de configuración delta

CY, accionador de configuración estrella

RTY, temporizador de desconexión de arranque en estrella

4. CONCLUSIONES

- Los sistemas de control eléctricos se componen por instrumentos de control eléctricos como los contactores, relés, temporizadores, indicadores, elementos de protección y máquinas eléctricas.
- FluidSim permite la simulación de una gran variedad de diagramas de sistemas eléctricos, neumáticos, hidráulicos y diagramas grafcet.

5. BIBLIOGRAFÍA

Molina, J., Dávila, m., & Angulo, P. (2009). Guías de control industrial.