(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-93216

(43)公開日 平成9年(1997)4月4日

•											
(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ						技術表	示箇所
	11/00			H04	J 1	1/00			Z		
H04L	27/36			H04	L 2	7/20			Z		
	27/20			H 0 4	N	5/40					
H 0 4 N	5/40			H 0 4	L 2	7/00			F		
	7/08			H 0 4	N	7/08			Z		
			審査請求	未請求	請求項	頁の数4	OL	(全	8 頁)	最終頁	こ続く
(21)出顧番号		特願平7-245911		(71) 出	人類と	000002	2185				
						ソニー	株式会	社			
(22)出顧日		平成7年(1995)9			東京都	品川区	北品儿	16丁目	7番35号		
				(72) 旁	的背	宫戸	良和				
						東京都	路川区	北品)	6丁目	7番35号	ソニ
						一株式	会社内				
				(72)务	的者	百代	俊久				
									116丁目	7番35号	ソニ
							C 会社内				
				(72)务	进明者						
									116丁目	7番35号	ソニ
							、会社内				
				(74) f	人野分	弁理□	上 佐藤	隆	ኢ		
				:						最終頁	に続く

(54) 【発明の名称】 データ伝送装置およびデータ伝送方法

(57)【要約】

【課題】 OFDM変調信号の品質をより向上させる。 【解決手段】 信号点送出装置 14 は、S/P変換回路 100から入力されたパラレルデータS100に、 IFFT回路 104以降の各部分および通信伝送路が変調信号S20に与えるアパーチャ効果を補償するように、振幅を変化させてQPSK変調回路 18における信号点 $Z_{k,1}$ を割り当てる。D/A変換回路 106_1 , 106_2 および LPF回路 108_1 , 108_2 は、それぞれ複素数データ $z_{k,m}$ をアナログ形式に変換し、不要な高調波成分を除去して伝送信号 $S106_1$, $S106_2$ を生成する。QPSK変調回路 18 は、QPSK変調方式により中間周波数帯域の変調信号 S18 を生成する。送信回路 20 は、変調信号 S18 を通信伝送路の搬送周波数帯域の変調信号 S20 に変換し、送出する。

【特許請求の範囲】

【請求項1】伝送の対象となる複数の伝送データそれぞれを所定の直交変調方式の所定の信号点に割り当てる信号点割当手段と、

それぞれ信号点に割り当てた前記複数の伝送データを1 組ずつ、周波数領域から時間領域に変換する周波数領域 ・時間領域変換手段と、

時間領域に変換したディジタル形式の前記複数の伝送データをアナログ形式に変換し、伝送信号を生成するディジタル・アナログ変換手段と、

前記所定の直交変調方式により、生成した前記伝送信号で所定の周波数の搬送波信号を変調し、所定の通信伝送路に送出する直交変調手段とを有するOFDM方式のデータ伝送装置であって、

前記信号点割当手段は予め、前記周波数領域・時間領域 変換手段以降が前記伝送信号に与えるアパーチャ効果を 補償する振幅特性を与えた前記所定の直交変調方式の信 号点に、前記複数の伝送データそれぞれを割り当てるデ ータ伝送装置。

【請求項2】前記信号割当手段は、前記複数の伝送データのビット列と、前記複数の伝送データの前記ビット列 それぞれに割り当てる前記所定の直交変調方式の信号点を示す複素数形式の信号点データとを対応付けて記憶し、入力される前記複数の伝送データの前記ビット列それぞれに応じて前記信号点データを出力する請求項1に記載のデータ伝送装置。

【請求項3】前記信号割当手段は、

入力される前記複数の伝送データの前記ビット列の数を 計数し、この計数値を前記信号点記憶手段に供給する計 数回路と、

1組の前記複数の伝送データの前記ビット列が入力されるたびに、前記計数回路の計数値をリセットするリセット回路と、

前記複数の伝送データの前記ビット列と前記計数手段の 計数値とをアドレス入力データとし、前記アドレス入力 データそれぞれが示す記憶アドレスに前記信号点データ それぞれを記憶し、前記アドレス入力データに応じた前 記信号点データを出力するメモリ回路とを有する請求項 2に記載のデータ伝送装置。

【請求項4】前記所定の直交変調方式の信号点に割り当て、周波数領域から時間領域に変換し、アナログ形式に変換した複数の伝送データで、所定の周波数の複数の搬送波信号それぞれを所定の直交変調方式により変調して伝送するOFDM方式のデータ伝送方法であって、

前記変調処理および伝送の際に前記複数の伝送データそれぞれに与えられるアパーチャ効果を補償するように、 予め所定の振幅特性を与えた前記所定の直交変調方式の 信号点に、前記複数の伝送データそれぞれを割り当てる データ伝送方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、データ伝送装置の 内部で伝送信号に与えられるアパーチャ効果を補償し、 伝送特性を向上したデータ伝送装置およびデータ伝送方 法に関する。

[0002]

【従来の技術および発明が解決しようとする課題】従来から、ディジタルデータを伝送する際の変調方法として、例えば、単一の搬送波信号の位相をデータの値に応じて変化させるPSK(Phase Shift Keying)方式、および、データの値に応じて搬送波信号の位相および振幅を変化させて変調を行うQAM(Quadrature Amplitude Modulation)方式等の直交変調方式がよく用いられている。

【0003】また、最近、ディジタルデータを伝送する 際の新しい変調方法として、直交周波数分割多重方式

(OFDM方式; Orthgonal Frequency Division Multiplexing) が提案されている。このOFDM方式は、伝送周波数帯域に含まれる複数の搬送波信号それぞれを比較的、低いデータレートの複数のデータそれぞれで変調して複数の変調信号を生成し、これらの変調信号を平行して伝送するものである。

【0004】OFDM方式においては、伝送周波数帯域を複数の搬送波信号対応に分割して用いるので、1つの変調信号(搬送波信号)当たりの伝送帯域は狭くなり、1つの変調信号当たりの伝送データレートはQAM方式等と比べて高くすることができない。しかし、OFDM方式は複数の変調信号を平行して伝送することができるので、伝送周波数帯域全体の伝送データレートはQAM方式等と同等にすることができる。

【0005】さらに、OFDM方式は、1つの変調信号当たりの伝送データレートが低いため、マルチパスゴースト障害に対する耐性が高く、地上波を用いた無線通信回線を介したデータ伝送に適しており、例えば新しいディジタルテレビジョン放送のための伝送方式として注目されている。また、OFDM方式は、複数の放送エリアごとにテレビジョン放送局を設け、これらのテレビジョン放送局が同一の周波数の電波信号を用いて、それぞれの放送エリアにディジタルテレビジョン放送のデータ配信を行い、周波数資源の有効利用が可能なSFN (Sing le Frequency Network) 方式を実現し得る伝送方式としても注目されている。

【0006】OFDM方式における変調処理および復調処理は、それぞれ高速フーリエ変換処理および高速フーリエ逆変換処理を応用して一括して行うのが好適であるが、従来は、高速にフーリエ変換処理およびフーリエ逆変換処理を行い得る装置の実現が難しく、OFDM方式は必ずしも実用的ではなかった。しかし、近年のディジタル信号処理技術の向上に伴い、フーリエ変換処理およびフーリエ逆変換処理を高速に、かつ、ハードウェア的

に実現可能になった。つまり、多数の搬送波信号それぞれを多数の伝送データそれぞれで一括して変調し、多数の変調信号それぞれから多数の伝送データを一括して復調することができるようになり、OFDM方式は実用性が一層、増してきている。

【0007】また、OFDM方式の伝送信号を生成する際には、高速フーリエ逆変換した伝送データを、ディジタル/アナログ変換する必要があり、このディジタル/アナログ変換処理を実行する回路は、通常、所定の周波数特性を有し、生成する伝送信号にはアパーチャ効果が与えられることになる。このように、ディジタル/アナログ変換処理により、あるいは、通信伝送路上でアパーチャ効果が与えられた伝送信号を通信回線に送出すると、再生される伝送データに誤り率が増加する等の不具合が生じる。

【0008】従って、伝送信号に与えられるアパーチャ効果を補償してから通信回線に伝送信号する必要がある。アパーチャ効果を補償するために、従来は、アナログ形式に変換した後の伝送信号を、所定の周波数特性を有するフィルタを通す等により等化する方法が採られていた。しかしながら、伝送信号を等化してアパーチャ信号をフィルタ等により等化すると、等化処理を行うための回路の回路規模が大きくなり、伝送装置の小型化、低コスト化が妨げられる上、アパーチャ効果を必ずしも充分に補償することができなかった。

【0009】本発明は、上述した従来技術の問題点に鑑みてなされたものであり、OFDM方式により生成される変調信号の品質をより向上させることができるデータ伝送装置およびデータ伝送方法を提供することを目的とする。また、本発明は、通信回線を経た変調信号から再生した伝送データのデータ誤り率を低下させることができるデータ伝送装置およびデータ伝送装置を提供することを目的とする。

【0010】また、本発明は、OFDM方式の伝送信号を生成する際に、変調信号に与えられるアパーチャ効果を充分に補償することができるデータ伝送装置およびデータ伝送方法を提供することを目的とする。また、本発明は、アパーチャ効果を充分に補償した高品質なOFDM方式の変調信号を、小型で低コストな装置で生成することができるデータ伝送装置およびデータ伝送方法を提供することを目的とする。

[0011]

【課題を解決するための手段】上記目的を達成するために、本発明に係るデータ伝送装置は、伝送の対象となる複数の伝送データそれぞれを所定の直交変調方式の所定の信号点に割り当てる信号点割当手段と、それぞれ信号点に割り当てた前記複数の伝送データを1組ずつ、周波数領域から時間領域に変換する周波数領域・時間領域変換手段と、時間領域に変換したディジタル形式の前記複数の伝送データをアナログ形式に変換し、伝送信号を生

成するディジタル・アナログ変換手段と、前記所定の直交変調方式により、生成した前記伝送信号で所定の周波数の搬送波信号を変調し、所定の通信伝送路に送出する直交変調手段とを有するOFDM方式のデータ伝送装置であって、前記信号点割当手段は予め、前記周波数領域・時間領域変換手段以降が前記伝送信号に与えるアパーチャ効果を補償する振幅特性を与えた前記所定の直交変調方式の信号点に、前記複数の伝送データそれぞれを割り当てる。

【0012】好適には、前記信号割当手段は、前記複数 の伝送データのビット列と、前記複数の伝送データの前 記ビット列それぞれに割り当てる前記所定の直交変調方 式の信号点を示す複素数形式の信号点データとを対応付 けて記憶し、入力される前記複数の伝送データの前記ビ ット列それぞれに応じて前記信号点データを出力する。 【0013】好適には、前記信号割当手段は、入力され る前記複数の伝送データの前記ビット列の数を計数し、 この計数値を前記信号点記憶手段に供給する計数回路 と、1組の前記複数の伝送データの前記ビット列が入力 されるたびに、前記計数回路の計数値をリセットするリ セット回路と、前記複数の伝送データの前記ビット列と 前記計数手段の計数値とをアドレス入力データとし、前 記アドレス入力データそれぞれが示す記憶アドレスに前 記信号点データそれぞれを記憶し、前記アドレス入力デ ータに応じた前記信号点データを出力するメモリ回路と を有する。

【0014】本発明に係るデータ伝送装置は、例えばテレビジョン放送用の音声・映像データをN個に分割したN個(Nは整数)の伝送データをOFDM方式により伝送する。本発明に係るデータ伝送装置において、周波数領域・時間領域変換手段は、信号点割当手段が1組(N個)の伝送データに割り当てたPSK方式およびQAM方式等の直交変調方式の信号点を高速フーリエ逆変換(IFFT)処理して周波数領域から時間領域に変換し、伝送に用いる全ての搬送波信号について一括して変

調処理を行う。

送路に送出する。

【0015】ディジタル・アナログ変換手段は、時間領域に変換されたディジタル形式の伝送データをアナログ形式に変換し、伝送信号を生成する。ディジタル・アナログ変換手段は、所定の周波数特性を有し、生成された伝送信号はアパーチャ効果が与えられる。直交変調手段は、上記直交変調方式により、生成した伝送信号で中間周波数帯域の搬送波信号を変調し、さらに、必要な場合は、通信伝送路の搬送波周波数に周波数変換して通信伝

【0016】信号点割当手段は、ディジタル・アナログ変換手段により伝送信号にアパーチャ効果が与えられた後、全伝送周波数帯域内において伝送信号の振幅特性が平坦化するように、予め、N個の伝送データそれぞれをアパーチャ効果を打ち消すような振幅差を有する信号点

に割り当て、伝送信号の等化処理を不要にする。また、信号点割当手段は、ディジタル・アナログ変換手段以降の直交変調手段等の各構成部分および通信伝送路等により変調信号に与えられるアパーチャ効果が予め分かっている場合には、これらにより変調信号に与えられるアパーチャ効果を補償するように信号点に割り当てる。

【0017】また、本発明に係るデータ伝送方法は、前記所定の直交変調方式の信号点に割り当て、周波数領域から時間領域に変換し、アナログ形式に変換した複数の伝送データで、所定の周波数の複数の搬送波信号それぞれを所定の直交変調方式により変調して伝送するOFDM方式のデータ伝送方法であって、前記変調および伝送の際に、前記複数の伝送データそれぞれに与えられるアパーチャ効果を補償するように、予め所定の振幅特性を与えた前記所定の直交変調方式の信号点に、前記複数の伝送データそれぞれを割り当てる。

[0018]

【発明の実施の形態】

第1実施形態

以下、本発明の第1の実施形態を説明する。図1は、第1の実施形態における本発明に係るQPSK (Quadrature Phase Shift Keying) -OFDM方式のデータ伝送装置1の構成を示す図である。図1に示すように、データ伝送装置1は、シリアル/パラレル変換回路(S/P変換回路)100、信号点送出装置(MOD)102、Nポイントの離散的フーリエ逆変換回路(IFFT回路)104、ディジタル/アナログ変換回路(D/A変換回路)1061、1062、ローパスフィルタ回路(LPF回路)1081、1082、QPSK変調回路18、送信回路20およびアンテナ126から構成される

【0019】QPSK変調回路18は、アナログ乗算回路 110_1 , 110_2 、 π /2移相回路112、中間周波数用の局部発振回路(IFLOSC)114、アナログ加算回路116および中間周波数用のバンドパスフィルタ回路(BPF回路)118から構成される。送信回路20は、アナログ乗算回路120、伝送周波数帯域用の局部発振回路(RFLOSC)122および伝送周波数用のBPF回路124から構成される。

【0020】例えば、データ伝送装置1を地上波を用いたディジタルテレビジョン放送の音声・映像データの伝送に用いる場合、データ伝送装置1には、入力データINとして、MPEG方式により圧縮符号化された音声・映像データがシリアルに入力される。データ伝送装置1は、入力データINをQPSK変調方式の信号点に対応する1個2ビットのN個のデータとして取り扱い、伝送周波数帯域内にN個の搬送波信号を有するOFDM方式の変調信号を生成し、伝送する。

【0021】S/P変換回路100は、入力された入力データ I Nに含まれるN個の伝送データ I Nk, 1 それぞ

[0022]

【数1】 $Z_{k,1} = X_{k,1} + j Y_{k,1}$

但し、k, l は整数、k はOFDMシンボルのシーケンス数、 $X_{k,1}$ は信号点データ $Z_{k,1}$ の実数成分、 $Y_{k,1}$ は信号点データ $Z_{k,1}$ の虚数成分である。

【0023】また、データ伝送装置1においては、下式に示すように、信号点データ $2_{k,1}$ の絶対値は一定である。

[0024]

【数2】 $|Z_{k,1}| = Const$ 但し、Const > 0である。

【0025】 IFFT回路104は、信号点送出装置102から入力されるN個1組の信号点データ $Z_{k,1}$ ($Z_{k,0}$, $Z_{k,1}$,…, $Z_{k,N-1}$)を IFFT処理し、N個1組の複素数データ $z_{k,m}$ ($z_{k,0}$, $z_{k,1}$,…, $z_{k,N-1}$)を生成する。但し、IFFT回路104が出力する複素数データは、下式で表される。

[0026]

【数3】 $z_{k,1} = x_{k,m} + j y_{k,m}$ 但し、 $x_{k,1}$ は複素数データ $z_{k,1}$ の実数成分、 $y_{k,1}$ は複素数データ $z_{k,1}$ の虚数成分である。

【0027】 D/A変換回路 106_1 , 106_2 は、それぞれ I F F T 回路 104 から入力されたディジタル形式の複素数データ $z_{k,m}$ の実数成分 $x_{k,m}$ および虚数成分 $y_{k,m}$ をアナログ形式に変換し、伝送信号S 106_1 , S 106_2 としてL P F 回路 108_1 , 108_2 に対して出力する。L P F 回路 108_1 , 108_2 は、それぞれ D/A変換回路 106_1 , 106_2 から入力された伝送信号S 106_1 , S 106_2 の不要な高調波成分を除去し、伝送信号S 108_1 , S 108_2 としてQ P S K 変調回路 180乗算回路 110_1 , 110_2 に対して出力する。

【0028】QPSK変調回路18において、局部発振回路114は、中間周波数帯域の搬送波信号を生成し、乗算回路 110_1 および $\pi/2$ 移相回路112に対して出力する。 $\pi/2$ 移相回路112は、局部発振回路114から入力された搬送波信号の位相を、 $\pi/2$ rad (90°) 遅延して移相し、乗算回路 110_2 対して出力する。乗算回路 110_1 , 110_2 は、それぞれLP

F回路 108_1 , 108_2 から入力された伝送信号 $S108_1$, $S108_2$ と、局部発振回路114から入力された搬送波信号、および、局部発振回路114により $\pi/2$ rad移相された搬送波信号とをアナログ的に乗算し、乗算信号 $S110_1$, $S110_2$ として加算回路116に対して出力する。

【0029】加算回路116は、乗算回路1101, 1 102 から入力された乗算信号S1101, S1102 を加算し、変調信号S116としてBPF回路118に 対して出力する。 BPF回路118は、加算回路116 から入力された変調信号S116から中間周波数帯域以 外の不要信号成分を除去する。 QPSK変調回路18 は、これらの構成部分により中間周波数帯域の搬送波信 号をQPSK変調方式で変調して変調信号S18を生成 し、送信回路20の乗算回路120に対して出力する。 【0030】送信回路20において、局部発振回路12 2は、通信伝送路に適合した周波数の搬送波信号を生成 し、乗算回路120に対して出力する。乗算回路120 は、局部発振回路122から入力された搬送波信号と、 QPSK変調回路18から入力された変調信号S18と をアナログ的に乗算し、伝送周波数帯域の変調信号S1 20を生成し、BPF回路124に対して出力する。

【0031】BPF回路124は、乗算回路120から入力された変調信号S120から、伝送周波数帯域以外の不要信号成分を除去する。送信回路20は、これらの構成部分により、中間周波数帯域の変調信号S18を搬送周波数帯域の変調信号S20に変換し、アンテナ126を介して通信伝送路に送出する。

【0032】以上説明したように、データ伝送装置 1 は、圧縮符号化したテレビジョン放送の音声・映像データ等の入力データ 1 Nを構成する 1 N個の伝送データ 1 N 1 で、伝送周波数帯域内の 1 N個の搬送波信号を変調してOFDM方式の変調信号 1 S 1 2 0 を生成し、視聴者宅の受信装置に配信する。

【0033】本発明に係るデータ伝送装置1によれば、QAM方式等の変調方式を用いた場合と同等の伝送データレートで伝送データを伝送することができる上に、1つの変調信号当たりの伝送データレートを低くすることができるので、マルチパスゴースト障害等の影響を受けにくい。従って、データ伝送装置1は、地上波を用いたディジタルテレビジョン放送に好適である。また、データ伝送装置1はOFDM方式によりデータ伝送を行うので、SFN方式の伝送に適しており、周波数資源を有効に利用することができる。

【0034】なお、第1の実施例におけるデータ伝送装置1は、QPSK変調回路18における変調方式としてQPSK方式を用いたが、例えば、S/P変換回路100を4ビットパラレルデータを生成するように変更し、信号点送出装置102を16QAM方式の信号点を割り当てるように変更することにより、QPSK変調回路1

8において、16QAM方式等の他の多値直交変調方式を用いることもでき、さらに、QPSK変調回路18において複数の変調方式、例えはQAM方式とPSK方式とを混在させることも可能である。

【0035】また、データ伝送装置1の各構成部分は、同等の機能および性能を担保可能なかぎり、ハードウェア的に実現するか、あるいは、ソフトウェア的に実現するかを問わない。また、データ伝送装置1は、テレビジョン番組の音声・映像データを伝送する用途の他、他の種類、例えば計算機用のデータを伝送する用途に用いることができる。

【0036】また、データ伝送装置1におけるデータ伝送方法は、データ伝送装置のみでなく、例えば磁気記録装置の記録に応用することができる。また、データ伝送装置1は、無線通信伝送路を介したデータ伝送のみでなく、有線通信伝送路を介したデータ伝送に用いることができる。

【0037】第2実施形態

以下、本発明の第2の実施形態を説明する。図3は、第2の実施形態における本発明に係るQPSK-OFDM方式のデータ伝送装置2の構成を示す図である。図3に示すように、データ伝送装置2は、S/P変換回路100、信号点送出装置14、IFFT回路16、D/A変換回路106 $_1$, 106 $_2$ 、LPF回路108 $_1$, 108 $_2$ 、QPSK変調回路18、送信回路20およびアンテナ126から構成される。なお、図1に示したデータ伝送装置1と同-のデータ伝送装置2の構成部分および信号(データ)は、同-の符号を付して示してある。

【0038】図4は、図3に示した信号点送出装置14 の構成を示す図である。図4に示すように、信号点送出 装置14は、ROM142および搬送波カウンタ回路1 44から構成される。搬送波カウンタ回路144は、信 号点送出装置14にパラレルデータS100が入力され るたびに計数値をカウントアップする。つまり、信号点 送出装置14は伝送データINZkl の添字l(l= 0, 1, …, N-1) を計数し、計数値S144(0, 1, …, N-1; ROM#0~ROM#N-1 (図 5)) をROM142に対して、例えば、ROM142 のアドレスの上位ビットとして出力し、変調信号S20 における搬送波ごとにROM142に記憶されているR OMテーブル(ROM#0~ROM#N-1)を切り換 える。また、搬送波カウンタ回路144の計数値は、I FFT回路16から入力されるリセット信号S16cに よりリセットされ、Oになる。

【0039】ROM142のアドレスの上位ビットとしては、上述のように搬送波カウンタ回路144の計数値S144が入力され、例えば下位ビットとしては、S/P変換回路100から入力されるパラレルデータS100と、搬送波カウンタ回路144の計数値S144とが入力される。

【0040】図5は、図4に示したROM142のアドレスに記憶された信号点データ $Z_{k,1}$ の内容を示す図である。なお、信号点データ $Z_{k,1}$ は、IFFT回路16以降のD/A変換回路 106_1 , 106_2 等の各部分および通信伝送路が変調信号S20に与える振幅特性(アパーチャ効果)が $sinc[k\pi/2N]$ で表される場合について示してある。

【0041】ROM142の各アドレスには、図5に示すように信号点データ $Z_{k,1}$ が、変調信号S20のN個の搬送波信号ごとのROMテーブル($ROM\#0\sim ROM$ #N-1)として、複素数の形式で記憶されている。ここで、データ伝送装置<math>1(図1)の場合と同様に、データ伝送装置2においても、信号点データ $Z_{k,1}$ は、下式のように表すことができる。

[0042]

【数 4 】 $Z_{k,1} = X_{k,1} + j Y_{k,1}$ 但し、k , l は整数、k はOFDMシンボルのシーケンス数、 $X_{k,1}$ は信号点データ $Z_{k,1}$ の実数成分、 $Y_{k,1}$ は信号点データ $Z_{k,1}$ の虚数成分である。

【0043】また、ROM142に記憶されている信号点データ $Z_{k,1}$ の絶対値は、搬送波カウンタ回路144の計数値S144、および、S/P変換回路100から入力されるパラレルデータS100の値に応じて、IFFT回路16以降の各構成部分、特に、D/A変換回路 106_1 , 106_2 、あるいは、予め測定された通信伝送路の周波数特性により変調信号S20に与えられるアパーチャ効果を補償するように、所定の周波数特性が付加されている。データ伝送装置1(図1)と異なり、データ伝送装置2においては、下式に示すように、信号点データ $Z_{k,1}$ の絶対値(振幅、平均電力)は一定ではない

[0044]

【数 5 】 | Z_{k,1} | = f (S 1 4 4, S 1 0 0) 但し、f (S 1 4 4, S 1 0 0) > 0、f (S 1 4 4, S 1 0 0) はパラレルデータS 1 0 0 および計数値S 1 4 4 に応じて定まる信号点の振幅である。

【0045】 IFFT回路16は、データ伝送装置1(図1)の IFFT回路104と同様に、信号点送出装置102から出力されるN個1組の信号点データ $Z_{k,1}$ ($Z_{k,0}$, $Z_{k,1}$,…, $Z_{k,N-1}$)をIFFT処理し、N個1組の複素数データ $z_{k,m}$ ($z_{k,0}$, $z_{k,1}$,…, $z_{k,N-1}$)を生成する。

【0046】また、IFFT回路16は、信号点送出装置14からN個(1組)の信号点データ $Z_{k,1}$ が入力されるたびにリセット信号S16cを活性化し、信号点送出装置14の搬送波カウンタ回路144の計数値S144を0クリアする。なお、データ伝送装置1(図1)の IFFT回路104と同様に、IFFT回路16が出力する複素数データは、下式で表される。

[0047]

【数6】 $z_{k,1} = x_{k,m} + j y_{k,m}$ 但し、 $x_{k,1}$ は複素数データ $z_{k,1}$ の実数成分、 $y_{k,1}$ は複素数データ $z_{k,1}$ の虚数成分である。

【0049】ROM142の下位ビットには、パラレルデータS100の値が入力され、ROM142は、図5に示したROM142の計数値S144およびパラレルデータS100に応じた信号点データ $Z_{k,1}$ をIFFT回路16は、信号点送出装置14から入力されるN個1組の信号点データ $Z_{k,1}$ ($Z_{k,0}$, $Z_{k,1}$,…, $Z_{k,N-1}$)をIFFT処理し、N個1組の複素数データ $Z_{k,n}$ ($Z_{k,0}$,

 $z_{k,1}$, …, $z_{k,N-1}$) を生成してD/A変換回路1061,1062 に対して出力する。

【0050】D/A変換回路1061, 1062 および LPF回路1081, 1082 は、それぞれ複素数データ $z_{k,m}$ の実数成分 $x_{k,m}$ および虚数成分 $y_{k,m}$ をアナログ形式に変換し、不要な高調波成分を除去して伝送信号S1061, S1062 を生成し、QPSK変調回路18に対して出力する。

【0051】QPSK変調回路18は、QPSK変調方 式により、中間周波数帯域の搬送波信号を伝送信号S1 061, S1062 で変調して変調信号S18を生成 し、送信回路20に対して出力する。送信回路20は、 変調信号S18を搬送周波数帯域の変調信号S20に変 換し、アンテナ126を介して通信伝送路に送出する。 【0052】以上述べたように、データ伝送装置2は、 信号点送出装置16により予め、D/A変換回路106 1,1062 あるいは通信伝送路により変調信号S20 に与えられるアパーチャ効果を補償するように、入力デ ータIN_{k.1} (パラレルデータS100)に応じて振幅 を変えた信号点データ $Z_{k,\, 1}$ を割り当てるので、等化用 のフィルタ等を用いずに、全伝送周波数帯域内で変調信 号S20の振幅特性を平坦化することができる。従っ て、再生される入力データINkl の誤り率を低下させ ることができる。

【0053】また、データ伝送装置2は、変調信号S20を等化するための等化用フィルタが不要であるので、回路規模が小さく、低コストである。また、データ伝送装置2は、入力データ $IN_{k,1}$ (パラレルデータS100)に、予め最適化した信号点データ $Z_{k,1}$ を割り当てることができるので、変調信号S20に対して充分なア

パーチャ効果の補償を行うことができる。なお、第2の 実施形態として示したデータ伝送装置2に対しても、第 1の実施形態として示したデータ伝送装置1(図1)に 対してと同様な変更が可能である。

[0054]

【発明の効果】以上述べたように本発明に係るデータ伝送装置およびデータ伝送方法によれば、OFDM方式により生成される変調信号の品質をより向上させることができる。また、本発明に係るデータ伝送装置およびデータ伝送方法によれば、通信回線を経た変調信号から再生した伝送データのデータ誤り率を低下させることができる。

【0055】また、本発明に係るデータ伝送装置およびデータ伝送方法によれば、OFDM方式の変調信号を生成する際に、変調信号に与えられるアパーチャ効果を充分に補償することができる。また、本発明に係るデータ伝送装置およびデータ伝送方法によれば、アパーチャ効果を充分に補償した高品質なOFDM方式の変調信号を、小型で低コストな装置で生成することができる。

【図面の簡単な説明】

【図1】第1の実施形態における本発明に係るQPSK -OFDM方式のデータ伝送装置の構成を示す図であ る。

【図2】伝送データ $IN_{k,1}$ の値と、図1に示した信号 点送出装置が割り当てるQPSK変調方式の信号点との 対応を示す図である。

【図3】第2の実施形態における本発明に係るQPSK -OFDM方式のデータ伝送装置の構成を示す図である

【図4】図3に示した信号点送出装置の構成を示す図である。

【図5】図4に示したROMのアドレスに記憶された信号点データ $Z_{k,l}$ の内容を示す図である。

【符号の説明】

1, 2…データ伝送装置、100…S/P変換回路、102, 14…信号点送出装置、104, 16…IFFT回路、1061, 1062…D/A変換回路、18…QPSK変調回路、1081, 1082…LPF回路、1101, 1102…乗算回路、112…π/2移相回路、114…局部発振回路、116…加算回路、118…BPF回路、20…送信回路、120…乗算回路、122…局部発振回路、124…BPF回路、126…アンテナ

【図1】

1

【図2】

S100	S102						
5100	00	01	10	11			
Zko	1+j	1-1	- 1 + j	-1-J			
Zk,)	1+j	1 — j	-1+j	-1-j			
Zk2	1+1	1-1	-1+j	-1-j			
ZKN-1	1+j	1 — j	-1+1	-1-j			

【図5】

アドレ	z	\$142					
8144	5100	00	01	10	11		
ROM#O	Zk.o	$\frac{1+j}{\operatorname{sinc}\left[\frac{0}{2N}\pi\right]}$	$\frac{1-j}{\operatorname{sinc}\left[\frac{2N}{n}\pi\right]}$	$\frac{-1+j}{\operatorname{sinc}\left[\frac{0}{2N}\pi\right]}$	$\frac{-1-]}{\operatorname{sinc}\left[\frac{\alpha}{2N}\pi\right]}$		
ROM#1	Zk,1	$\frac{1+j}{\operatorname{sinc}\left(\frac{1}{2N}\pi\right)}$	$\frac{1-j}{\operatorname{sinc}\left(\frac{1}{2N}\pi\right)}$	$\frac{-1+j}{\operatorname{sinc}\left[\frac{1}{2N}\pi\right]}$	$\frac{-1-j}{\operatorname{sinc}\left[\frac{1}{2N}\pi\right]}$		
ROM#2	Zk.2	$\frac{1+j}{\operatorname{sinc}\left[\frac{2}{2N}\pi\right]}$	$\frac{1-j}{\operatorname{sinc}\left[\frac{2}{2N}\pi\right]}$	$\frac{-1+j}{\operatorname{sinc}\left[\frac{2}{2N}\pi\right]}$	$\frac{-1-j}{\operatorname{sinc}\left[\frac{2}{2N}\pi\right]}$		
:	:						
ROM#N-1	Zĸ,N-1	$\frac{1+j}{\operatorname{sinc}\left[\frac{N-1}{2N}\pi\right]}$	$\frac{1-j}{\operatorname{sinc}\left[\frac{N-1}{2N}\pi\right]}$	$\frac{-1+j}{\operatorname{sinc}\left[\frac{N-1}{2N}\pi\right]}$	$\frac{-1-j}{\operatorname{sinc}\left[\frac{N-1}{2N}\pi\right]}$		

【図3】

<u>2</u>

14

フロントページの続き

(51) Int. Cl. ⁶

識別記号 庁内整理番号

FI

技術表示箇所

(72)発明者 池田 康成

H 0 4 N 7/081

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内