Toric Geometry: Theorems and Definitions

Isaac Martin Lent 2022 Last compiled February 3, 2022

Contents

1	Dictionary	2
2	What makes a toric variety?	3
	2.1 Tori	3
	2.2 Toric Varieties	3
	2.3 Cones and Fans	3
3	Properties of Affine Toric Varieties	5
4	Smoothness of Affine Toric Varieties	6

1 Dictionary

Toric geometry is concerned with the construction of varieties and schemes given by specifying semigroups and fans and other combinatorial objects. It is therefore useful to fix certain symbols.

- N: We define $N = \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{C}^*, (\mathbb{C}^*)^n)$ and note that $N \cong \mathbb{Z}^n$.
- M: We define M to be the dual lattice of N, $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z}) \cong \mathbb{Z}^n$.
- $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$: We define $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{R}} \mathbb{R} \cong \mathbb{R}^n$.

2 What makes a toric variety?

- 2.1 Tori
- 2.2 Toric Varieties
- 2.3 Cones and Fans

Throughout this section, let $T \cong (\mathbb{C}^*)^n$ and $N = \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{C}^*, T) \cong \mathbb{Z}^n$. Note that N is the collection of 1-parameter subgroups of T, or the set of cocharacters if you prefer that terminology. In addition, every variety is an integral separated scheme of finite type over $\operatorname{Spec} \mathbb{C}$ unless otherwise specified.

Definition 2.1. A *rational polyhedral cone* σ in N is a set $\sigma \subseteq N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$ given by the positive span of some finite subset of $N_{\mathbb{R}}$, i.e. a set

$$\sigma = \operatorname{cone}(v_1, ..., v_k) = \left\{ \sum_{i=1}^k c_i v_i \, \middle| \, c_i \in \mathbb{R}_{\geq 0} \right\}.$$

By rescaling the cone basis set, we may assume $v_i \in N$ for each $1 \le i \le k$, and from now on will do so.

Definition 2.2. Let $\sigma = \text{cone}\{v_1, ..., v_k\}$ be a rational polyhedral cone. The *span* of σ is the smallest vector subspace V containing σ . We have that

$$V = \sigma + (-\sigma) = \{v_1, ..., v_k\} = \{\sigma\}.$$

The dimension of σ is the dimension of the span of σ . We say that σ is full-dimensional if dim $\sigma = \dim N_{\mathbb{R}} = n$.

Definition 2.3. A rational polyhedral cone is said to be *strictly convex* if it doesn't contain a line, i.e. if it doesn't contain a one dimensional affine subspace of $N_{\mathbb{R}}$.

Unless otherwise specified, by "cone" we mean "strictly convex rational polyhedral cone".

Definition 2.4. Given a cone $\sigma \subseteq N_{\mathbb{R}}$, the *dual cone* $\sigma \vee \subseteq M_{\mathbb{R}}$ is defined

$$\sigma^{\vee} = \{ m \in M_{\mathbb{R}} \mid \langle m, v \rangle \ge 0, \ \forall v \in \sigma \}.$$

The pairing $\langle -, - \rangle : M_{\mathbb{R}} \times N_{\mathbb{R}} \to \mathbb{R}$ is simply the evaluation map $\langle m, u \rangle = m(u)$.

We further define the double dual $(\sigma^{\vee})^{\vee}$ by

$$(\sigma^{\vee})^{\vee} = \{ v \in N_{\mathbb{R}} \mid \langle m, v \rangle \geq 0, \ \forall m \in \sigma^{\vee} \}$$

The following are fundamental facts regarding σ and σ^{\vee} .

Proposition 2.5. Let σ be a cone in N and σ^{\vee} be its dual.

- (a) σ^{\vee} is a rational polyhedral cone in M (not necessarily strictly convex)
- (b) $(\sigma^{\vee})^{\vee} = \sigma$
- (c) σ is full-dimensional if and only if σ^{\vee} is strictly convex

Definition 2.6. A fan Σ in N is a collection of cones in N such that

- (i) if $\sigma \in \Sigma$ then every face of σ belongs to Σ
- (ii) if $\sigma_1, \sigma_2 \in \Sigma$ then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .

We wish to construct varieties from cones and fans. Starting with a cone σ in N, we will associate to it an affine variety $X_{\sigma} = \operatorname{Spec} R_{\sigma}$. Given a fan Σ , we will construct a variety X_{Σ} by gluing together X_{σ_1} and X_{σ_2} along $X_{\sigma_1 \cap \sigma_2}$. We will first build affine toric varieties, and for that, we'll need affine semigroups.

Definition 2.7. A *semigroup* is a set S together with an associative binary operation and an identity element. This is what some (most) people seem to call a monoid – it's a category with a single point. To be an *affine semigroup*, S must additionally satisfy:

• *S* is commutative. We will write the binary operation as + and the identity element as 0 to reflect this. Note that this means a finite set *A* ⊆ *S* therefore generates

$$\mathbb{N}A = \left\{ \sum_{m \in A} a_m m \mid a_m \in \mathbb{N} \right\}.$$

- *S* is finitely generated, i.e. there is a finite set $A \subseteq S$ such that $\mathbb{N}A = S$.
- The semigroup can be embedded in a lattice M.

We focus first on building a variety X_{σ} from a cone σ in N. Here is our construction/definition.

Construction 2.8. Given a cone $\sigma \subseteq N_{\mathbb{R}}$ and its dual cone $\sigma^{\vee} \subseteq M_{\mathbb{R}}$, we define

$$S_{\sigma} := \sigma \cap M \tag{1}$$

to be the semigroup associated to σ . We then consider the group algebra over \mathbb{C} with basis S_{σ} :

$$\mathbb{C}[S_{\sigma}] = \left\{ \sum_{i=1}^{r} c_{i} \cdot z^{m_{i}} \middle| c_{i} \in \mathbb{C}, \ m_{i} \in S_{\sigma} \subseteq M \right\}. \tag{2}$$

The addition on $\mathbb{C}[S_{\sigma}]$ is formal. The multiplication is defined $z^{m_i} \cdot z^{m_j} = z^{m_i + m_j}$ and is extended by distribution. E.g. we have that $\mathbb{C}[\mathbb{N}^n] = \mathbb{C}[t_1, ..., t_n]$ and $\mathbb{C}[\mathbb{Z}^n] = \mathbb{C}[t_1^{\pm}, ..., t_n^{\pm}]$.

Finally, we define

$$X_{\sigma} = \operatorname{Spec} \mathbb{C}[S_{\sigma}] \tag{3}$$

to be the affine toric variety associated to σ . Note that because we will eventually build toric varieties from fans whose affine pieces are given by pieces of the above form, we sometimes denote X_{σ} by U_{σ} instead.

It is still left to show that X_{σ} constructed in this way is in fact a toric variety.

Proposition 2.9. (Cox-Little-Scheck) If σ , S_{σ} , and X_{σ} are as in Construction (2.8) then X_{σ} is an affine toric variety.

Proof. See page 31 of Cox-Little Scheck. Fill it in later.

One might ask, "Why do we define S_{σ} as a subset of the dual lattice M rather than the lattice N? Surely we could take $S_{\sigma} = \sigma \cap N$ and get an equally reasonable result."

COME BACK TO THE ABOVE QUESTION. CONSIDER REVERSE CONSTRUCTION – GIVEN AFFINE TORIC VARIETY $T \subseteq X$ CONSTRUCT A SEMIGROUP (HOWEVER ONE DOESN'T ALWAYS GET A CONE)

3 Properties of Affine Toric Varieties

Definition 3.1. An affine semigroup $S \subseteq M$ is said to be *saturated* if for all $k \in \mathbb{N} \setminus \{0\}$ and $m \in M$, $km \in S$ implies $m \in S$.

An affine semigroup S is saturated if and only if $S = S_{\sigma} = \sigma^{\vee} \cap M$ for some strongly convex rational polyhedral cone $\sigma \subseteq N$. In terms of toric varieties, this means the following:

Proposition 3.2. Let V be an affine toric variety with torus T_N . Then the following are equivalent:

- (i) V is normal (for us this means $V \cong \operatorname{Spec} R$ for some integrally closed domain R.)
- (ii) $V \cong \operatorname{Spec}(\mathbb{C}[S])$, where $S \subseteq M$ is some saturated affine semigroup
- (iii) $V \cong \operatorname{Spec} \mathbb{C}[S_{\sigma}] = X_{\sigma}$, where $S_{\sigma} = \sigma^{\vee} \cap M$ and $\sigma \subseteq N_{\mathbb{R}}$ is a strongly convex rational polyhedral cone.

Proof:

Notice that embedded in the equivalence $(b) \iff (c)$ from Theorem (3.2) is the fact that a semigroup is affine if and only if it is isomorphic to S_{σ} for some strongly convex rational polyhedral cone σ .

4 Smoothness of Affine Toric Varieties

The main goal of this section is a classification of smooth affine toric varieties associated to cones σ . This is Theorem (4.4). Before we proceed, however, we prove several useful lemmas. Throughout this section X_{σ} is an affine toric variety associated to a cone $\sigma \subseteq M_{\mathbb{R}}$.

Lemma 4.1. Let $\sigma = \operatorname{cone}(v_1, ..., v_k) \subseteq N_{\mathbb{R}}$ be a cone. Suppose $\{v_1, ..., v_k\}$ forms some part of a \mathbb{Z} -basis for N. Then $X_{\sigma} \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}$ where $k = \dim \sigma \leq n$.

Proof. Choose a basis $e_1,...,e_n$ for N such that $v_i=e_i$ for $1 \le i \le k$ (that $\{v_1,...,v_k\}$ is a \mathbb{Z} -basis for N exactly makes this possible). This implies that $S_{\sigma}=\sigma^{\vee}\cap M$ is generated by

$$e_1^*,...,e_k^*,\pm e_{k+1}^*,...,\pm e_n^*\in M.$$

To see this, it helps to note the e_i^* for $k+1 \le i \le n$ are exactly the basis vectors of M which are zero on σ . This means

$$\mathbb{C}[S_{\sigma}] = \mathbb{C}[t_1, ..., t_k, t_{k+1}^{\pm}, ..., t_n^*] = \mathbb{C}[t_1, ..., t_n] \otimes_{\mathbb{C}} \mathbb{C}[t_{k+1}^{\pm}, ..., t_n^{\pm}].$$

Lemma 4.2. There exists a bijection correspondence

$$\left(\begin{array}{c} \text{closed points} \\ \text{of } X_{\sigma} \end{array}\right) \leftrightarrow \left(\begin{array}{c} \text{semigroup} \\ \text{homomorphisms} \\ S_{\sigma} \to \mathbb{C} \end{array}\right).$$

Proof. We have the following one-to-one correspondences:

$$\left\{ \begin{array}{c} \text{closed points} \\ \text{in X} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \text{maps of schemes} \\ \text{over } \mathbb{C} \\ \text{Spec } \mathbb{C} \to \text{Spec } \mathbb{C}[S_\sigma] \end{array} \right\} \leftrightarrow^{(*)} \left\{ \begin{array}{c} \text{semigroup morphisms} \\ S_\sigma \to \mathbb{C} \end{array} \right\}.$$

Only (*) is new. A morphism of schemes $\operatorname{Spec} \mathbb{C} \to \operatorname{Spec} \mathbb{C}[S_\sigma]$ over \mathbb{C} yields a morphism of \mathbb{C} -algebras $\varphi: \operatorname{Spec} \mathbb{C}[S_\sigma] \to \operatorname{Spec} \mathbb{C}$, which in turn determines an affine semigroup homomorphism $S_\sigma \to \mathbb{C}$ (with \mathbb{C} considered to be an affine semigroup under multiplication) since $\varphi(z^{t+s}) = \varphi(z^t)\varphi(z^s)$. Likewise, any homomorphism of affine semigroups $\psi: S_\sigma \to \mathbb{C}$ can be extended to an algebra homomorphism $\varphi: \mathbb{C}[S_\sigma] \to \mathbb{C}$ by making a choice for the field automorphism $\varphi|_{\mathbb{C}}$. Normally, we would have two choices for $\varphi|_{\mathbb{C}}$, but in order for this to be compatible with the structure maps on $\operatorname{Spec} \mathbb{C}$ and $\operatorname{Spec} \mathbb{C}[S_\sigma]$, we have only *one* choice. Therefore φ is uniquely determined by the image of S_σ in \mathbb{C} , and since it is a \mathbb{C} -algebra homomorphism it corresponds to a unique map of schemes over \mathbb{C} .

Definition 4.3. Define $x_{\sigma} \in X_{\sigma}$ to be the point corresponding to the semigroup map

$$S_{\sigma} \xrightarrow{x_{\sigma}} \mathbb{C}, m \mapsto \begin{cases} 1 & \text{if } m \in \sigma^{\perp} \\ 0 & \text{otherwise} \end{cases}$$

where

$$\sigma^{\perp} = \{ m \in M_{\mathbb{R}} \mid \langle u, m \rangle = 0, \ \forall u \in \sigma \}.$$

We now proceed to Theorem (4.4).

Theorem 4.4. Let $\sigma \subseteq N_{\mathbb{R}}$ be a cone and X_{σ} be the associated affine toric variety. The following are equivalent:

- (i) X_{σ} is smooth
- (ii) σ is generated by a subset of a \mathbb{Z} -basis for N
- (iii) $X_{\sigma} \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}$ where $k = \dim \sigma$.
- **4.4.** Lemma (4.1) gives us $(ii) \implies (iii)$. The fibre product of smooth schemes with smooth structure maps is again smooth, so $(iii) \implies (i)$ is clear. It is only left to prove $(i) \implies (ii)$.