電子學實習(上)

--二極體與電晶體電路

課程簡介

第一部份 電子實習之準備工作

第二部份 二極體電路

實習一 pn 接面二極體之特性分析

實習二 二極體整流電路

實習三二極體倍壓電路

實習四二極體截波電路

實習五 曾納二極體之特性分析

實習六 電壓調節電路

第三部份 雙載子接面電晶體電路

實習七 雙載子接面電晶體之特性分析

實習八雙載子接面電晶體偏壓電路

實習九 雙載子接面電晶體交流小訊號放大電路(一)

實習十 雙載子接面電晶體交流小訊號放大電路(二)

實習十一 雙載子接面電晶體交流小訊號放大電路(三)

實習十二 雙載子接面電晶體交流小訊號放大電路(四)

第四部份 單載子場效電晶體電路

實習十三 單載子場效電晶體之特性分析

實習十四 單載子場效電晶體偏壓電路

實習十五 單載子場效電晶體交流小訊號放大電路

第一部份

電子實習之準備工作與注意事項

槪 述

- ◆ 進行電子實習前,必須建立對電子電路的初步認識,然後再進一步了解實習所需各種電阻器 (Resistor)、電容器 (Capacitor) 與電感器 (Inductor) 等基本被動元件,接著再學習麵包板 (Breadboard)、三用電表 (Multimeter)、電源供應器 (Power Supply)、示波器 (Oscilloscope) 與訊號 函數產生器 (Function Generator) 等電子實習常用之電子儀器設備的使用方法,如此才能使電子實習 工作達到事半功倍之功效。
- ◆ 本實習將分 2 個部份,以討論電子實習之準備工作,首先介紹電阻器與電容器等常用被動元件的規格 與電氣特性後,接著說明一些常用電子儀器設備之使用方法與注意事項。

電阻器與電容器之認識

- ◆ 電阻器 (Resistor)、電容器 (Capacitor) 與電感器 (Inductor) 是構成電子電路之 3 種基本電子元件, 因這些電子元件僅消耗或暫時儲存能量,而無法提供能量或功率放大之功能,因此亦可稱為被動元件。
- ◆ 電阻器用來阻止電流流動之元件,即當加入適當之電壓或電流於電路後,藉由選用適當大小之電阻, 以產生符合實際電子電路所需之電壓或電流。
- ◆ 選用電阻器必須特別注意電阻値 (需留意容許誤差),功率散逸能力 (瓦特數)與包裝型式 (種類),使電子電路可達安全運作,以符合實際之需求。
- ◆ 大致上電阻器可分為固定電阻器 (Fixed Resistor) 與可變電阻器 (Variable Resistor) 等兩大類。

固定電阻器

- ◆ 當電阻器製造完成後,電阻値便不會再改變之電阻器,稱為固定電阻器 (Fixed Resistor)。
- ◆ 依構成電阻之材料來分類,固定電阻器大致可分為碳膜電阻、線繞電阻與金屬氧化膜電阻等3種。
- ◆ 依包裝型式來分類,大致上可分為水泥、陶瓷與色碼電阻器,前者通常製造消耗功率大於1 瓦特(Watt)
 以上之固定電阻器,而後兩者通常製造功率消耗小於1 瓦特之固定電阻器。
- ◆ 線繞電阻與金屬氧化膜電阻之價格較高,因此常被用來製造較大功率散逸能力之電阻器,導致此種電阻器通常需較大之面積,通常可將電阻器之電阻值與容許誤差值,直接標示於電阻器之外殼上,因此使用者可在電阻器上,直接選用適當電阻值之電阻器來使用。
- ◆ 水泥電阻器亦有較大之面積,因此亦可將瓦特數 (消耗功率)、電阻值與誤差量直接標示在電阻器上,而一個 3 瓦、5 欧姆、±5% 之水泥電阻器示意圖,如下圖所示。

固定電阻器

- ◆ 當電阻器製造完成後,電阻値便不會再改變之電阻器,稱為固定電阻器 (Fixed Resistor)。
- ◆ 依構成電阻之材料來分類,固定電阻器大致可分為碳膜電阻、線繞電阻與金屬氧化膜電阻等3種。
- ◆ 依包裝型式來分類,大致上可分為水泥、陶瓷與色碼電阻器,前者通常製造消耗功率大於1 瓦特(Watt)
 以上之固定電阻器,而後兩者通常製造功率消耗小於1 瓦特之固定電阻器。
- ◆ 線繞電阻與金屬氧化膜電阻之價格較高,因此常被用來製造較大功率散逸能力之電阻器,導致此種電阻器通常需較大之面積,通常可將電阻器之電阻值與容許誤差值,直接標示於電阻器之外殼上,因此使用者可在電阻器上,直接選用適當電阻值之電阻器來使用。
- ◆ 水泥電阻器亦有較大之面積,因此亦可將瓦特數 (消耗功率)、電阻值與誤差量直接標示在電阻器上,而一個 3 瓦、5 欧姆、±5% 之水泥電阻器示意圖,如下圖所示。

4色(5色)色碼電阻器之各個色帶顏色所代表的數值

色帶	第1色帶	第2色帶	第3色帶	第4色帶	第5色帶
顏色	十位數	個位數	十的次幕	容許誤差	可靠度
黑	0	0	10°		
棕	1	1	10 ¹	±1%	1%
紅	2	2	10 ²	± 2%	0.1%
橙	3	3	$10^3 = 1 K$		0.01%
黃	4	4	$10^4 = 10 \ K$		0.001%
緑	5	5	$10^5 = 100 \ K$	± 0.5%	
藍	6	6	$10^6 = 1 M$	± 0.25%	
紫	7	7	$10^7 = 10 M$	± 0.1%	
灰	8	8	$10^8 = 100 M$	± 0.05%	
ė	9	9	$10^9 = 1 G$		
金			10-1	± 5%	
銀			10-2	±10%	
無色				± 20%	

例題 1

如下圖所示之色碼電阻器,試求每個4色色碼電阻值為何?

(b) 同理, 所求 4 色色碼電阻所代表的電阻値為

 $22 \times 10^{-2} \pm 10\% = 0.22 \Omega \pm 10\%$

(c)同理,所求 4 色色碼電阻器所代表的電阻值為

解:

(a) 所求 4 色色碼電阻器所代表之數值如下:

第1個色帶: 十位數 → 棕 → 1

第2個色帶:個位數 → 黑 → 0

第3個色帶:十的次幂 → 紅 → 10²

第4個色帶:容許誤差 → 金 → ±5%

所求 4 色色碼電阻所代表之電阻値為

 $10 \times 10^2 \pm 5\% = 1 K\Omega \pm 5\%$

例題 2

如下圖所示之 5 色色碼電阻器之電阻值為何?

解:觀察所求之5色色碼電阻器所代表的數值如下:

第1個色帶:十位數 → 棕 → 1

第 2 個色帶: 個位數 → 黑 → 0

第3個色帶:十的次票 → 橙 → 103

第 4 個色帶:容許誤差 → 金 → ± 5%

第5個色帶: 可靠度 → 紅 → 0.1%

由以上之討論可知,所求 5 色色碼電阻器的電阻值為 $10 \times 10^3 \pm 5\% = 10 K\Omega \pm 5\%$ 可靠度為 0.1% 。

◆ 此表示所求 5 色色碼電阻器的規格為 9.5 KΩ 至 10.5 KΩ 之間,且在使用 1000 小時後,可能有千分之一之機率不在此範圍内。

可變電阻器

- ◆ 可透過手動旋轉控制,以調整出不同電阻値之電阻器,稱為可變電阻器 (Variable Resistor; VR)。
- ◆ 目前市面上比較容易找到之可變電阻器,通常是使用碳模或金品材料所製造的,因此種可變電阻器之面積較大,大部份皆將電阻值與型式直接印在外殼上。
- ◆ 使用碳膜製造之可變電阻器,功率散逸較差 (瓦特數較小),因此較適合小功率之電子電路使用:而使用金屬製造之可變電阻器,功率散逸較佳 (瓦特數較大),因此較適合大功率之電子電路使用。
- ◆ 可變電阻器之電路符號、外觀與端子對應之電阻値,如下圖所示。

◆ 觀察左圍可知,外殼所標示之「10 KΩ」之涵義,此表示該可變電阻器之 a - c 接腳間為固定電阻値 R_{ac} = 10 KΩ (此為這個可變電阻器之最大電阻値)。

- ◆ 若 a-b 接腳與 b-c 接腳間之電阻値,分別用為 R_{ab} 與 R_{bc} 來表示,若藉由轉動手動旋轉控制柄,以改變 a-b 接腳與 b-c 接腳間之電阻値時,則 a-b 接腳間之電阻値,會隨著手動旋轉控制柄之轉動而變化,相對於 b-c 接腳間之電阻值恰好相反,即可變電阻器會保持 $R_{ab}+R_{bc}=R_{ac}=10~K\Omega$ 。
- ◆ 若往順時針旋轉導致 R_{ab} 增加,則 R_{bc} 便會減少:反之,若往逆時針旋轉導致 R_{ab} 減少,則 R_{bc} 便會增加,而 R_{ac} 之電阻値永遠不會改變。
- ◆ 可變電阻器之形式有相當多種,而最常用之形式為 A 型與 B 型兩種,其中「A」型表示轉動手動旋轉控制柄,導致 R_{ab} 相對 R_{bc} 之電阻值成指數函數變化;而「B」型表示轉動手動旋轉控制柄,導致 R_{ab} 相對 R_{bc} 之電阻值成線性變化。

電容器

- ◆ 在兩塊可導電之平行金屬板間放入絕緣材料,即可構成可儲存電荷之電容器 (Capacitor),其中絕緣材料亦可稱為介電質 (Dielectrics),而電容器之電氣特性與容量,大部份取決所使用之介電質的材料而定,即電容器之種類,大部份皆以所使用之介電質來區分為主。
- ◆ 電子實習常使用之電容器種類、電氣特性與規格如下:
 - 1、電解電容器(介電質為電解質):由於可使用相當薄之氧化層作介電值,因此可大量增加金屬板之面積,因此電解電容可提供較高電容值與低成本之優點,但具較大漏電電流與較低崩潰電壓之缺點。
 - ◆ 為增加電容之面積,以提高電解電容之電容量,大部份皆使用搭軸方式製作, 導致其外觀皆為圖桶狀,因此可將電容值、耐壓與極性直接標示在外殼上,以 方便使用者辨識,如右圖所示。
 - ◆電解電容較適合製造較大容量之電容器,但須注意此種電容器有一定之極性, 即電解電容之正、負極切不可接反,否則可能造成電容器之損毀。

- 2、陶瓷電容器、鉭電容器與塑膠電容器:這些電容之介電係數之變化範圍相當廣,導致此種電容之電氣特性與規格,受到介電值之影響相當大。
 - ◆ 上述之電容器佔用較小之面積,因此無法直接將電阻容直接標示於電容器上,通常在製造時,使用氧化物或絕緣層覆蓋在這些電容器上,再於包裝上印一些數字(一般為3個數字,其中第1個數字表示十位數、第2個數字表示個位數、第3為述表示十的次幂)與符號(使用英文字母表示耐壓與容許誤差之等級),以標示這些電容器之電容量、耐壓與容許誤差等相關規格,如下表所示。

電容器之電容量表示法

數值 位數 電容量	. 0	1	2	3	4	5	6	7	8	9
第一位數	0	1	2	3	4	5	6	7	8	9
第二位數	0	1	2	3	4	5	6	7	8	9
第三位數	10°	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	107	108	109

電容量之單位pF

電容器之前壓值表示法

符號 倍率 耐壓	A	В	С	D	Е	F	G	Н	I	J
0	1	1.25	1.6	2	2.5	3.15	4	5	6.3	8
1	10	12.5	16	20	25	31.5	40	50	63	80
2	100	125	160	200	250	315	400	500	630	800
3	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000

耐壓單位為レ

電容器之容許誤差表示法

符號	В	С	D	F	G	J	K	M	N	V	X	Y	P
容許誤差 (%)	+01	+0.25	+05	- 1		1.5	±10	± 20	T 30	+ 20	+ 40	+ 80	+100
GOI BX E (70)	± 0.1	± 0.25	1 0.5	± 1	± 2	13	T10	± 20	± 30	-10	- 20	- 20	-0

例題 3

試列出下圖所示之電容器所標示之數字與符號,所代表之電容量、耐壓與容許誤差。

解:

(a) 分別對照上頁之 3 個表,即可得所求電容器之電容量、耐

壓與容許誤差分別為

耐壓値 2B → 125V

電容量 $475 \rightarrow 47 \times 10^5 \ pF = 4.7 \times 10^6 \ pF = 4.7 \ \mu F$

容許誤差 J→ ±5%

(b) 分別對照上頁之 3 個表,即可得所求電容器之電容量、耐壓與容許誤差分別為

耐壓値 2D → 200V

電容量 $106 \rightarrow 10 \times 10^6 \ pf = 10^7 \ pf = 10 \ \mu f$

容許誤差 K → ±10%

電子儀器設備之使用方法與注意之事項

- ◆ 進行電子實習之前必須準備一些儀器設備,諸如一般電子電路實驗室,通常有直流電源供給器 (DC Power Supply)、函數波形產生器 (Function Generator) 和示波器 (Oscilloscope) 等 3 項儀器設備,以提供電子電路所需之直流電源、交流輸入訊號與測量輸入、輸出波形之用。
- ◆ 除了上述之基本的實習設備外,尚需準備超包板 (Breadboard) 與三用電表 (Multimeter),以便進行電路連接與測量電阻、電壓與直流電流之用途。
- ◆ 接著分別介紹這電子實習常用儀器設備之配置。 用途、使用方法與注意事項。

麵包板

◆ 麵包板 (Breadboard) 是由多組垂直共通連接的 5 個插孔與幾組水平共通連接 25 插孔,以做為組裝與連接電子零件之用,而 SK-10 麵包板之外觀與示意圖,如下圖所示。

◆ 一般而言,多組垂直共通連接的 5 個插孔可用來作為連接電路或電路測試點之用;而水平共通連接 25 插孔是用來做為共同信號之接點,如電源正端 (V_{cc} 或V_{pp})、電源負端 (接地點) 或任何需要超過 5 點共同連接信號點之用。

三用電表

- ◆ 三用電表 (Multimeter) 主要用來測量電阻 (Resistance)、電壓 (Voltage) 與電流 (Current) 之儀器,而目前市面可買到之三用電表可分為類比式 (使用指針來顯示測量值)與數位式 (使用數字來顯示測量值)。
- ◆ 對電子實習而言,類比式三用電表較適合作為測量之用,因此僅 討論類比式三用電表之配置圖、 用途、使用方法與注意事項。而常見之類比式三用電表之外觀與 配置圖,如右圖所示。

- 指針
- 2、面板刻度
- 指針歸零調整鈕
- 4、 調整鈕
- 5、串聯電容輸出
- 6、測量範圍選擇鈕
- 7、負極(或公共端)
 測試插孔
- 8、正端測試插孔

使用三用電表應注意之事項

- ◆ 當「測量範圍選擇鈕」放置於「Ω」之檔位時,應視待測電阻值慎選適當之倍率 (×1 × ×10 或 ×1 K), 再將正、負兩端測試棒短路,並使用 0 Ω 調整鈕,以調整指針置於右邊 0 Ω 之位置,即進行歸零調整。
- ◆ 當「測量範圍選擇鈕」放置於「Ω」之檔位時,由電表内部電池供應電力,切不可用來測量電壓,以 免燒毀電表内部電路。另外,當電表不使用時,不要將「測量範圍選擇鈕」放置於「Ω」之檔位上, 以免浪費内部電池之電力。
- ◆ 當「測量範圍選擇鈕」放置於「DCmA」之檔位,必須將正、負兩端測試棒與待測之分支事務,以測量流過該分支之直流電流。
- ◆ 利用三用電表來測量電壓(電流)時,若無法預估待測電壓(電流)之大小,可先將「測量範圍選擇鈕」之檔位,調整至該測量範圍之最大值,若指針無大之偏轉,再逐次降低測量檔位,直到指針有較大之偏轉,以降低測量之誤差值。
- ◆ 利用三用電表來測量交流電壓時,則不必考慮電壓正、負極性之問題;而測量直流電壓或電流時,必須注意電壓正、負極性或電流方向之判別,若在測量直流電壓或電流時,指針反向偏轉,則表示電壓之正、負極性接反或電流方向相反,則可將正、負對胃後,即可測得正確之直流電壓或電流值。

直流電源供給器

- ◆ 直流電源供應器(DC Power Supply)可提供電子電路所需之直流電源,即提供電子電路所需之能量。
- ◆ 目前市面上之直流電源供應器,可分為類比與數位式兩種,而這兩種直流電源供應器,皆以提供兩組 0~30V(3~5A)可謂式直流電壓為主。而類比直流電源供應器之配置圖,如下圖所示。

『Tracking/Independent』之切換開關的使用方法

- ◆ 若將『Tracking/Independent』之切換開關擺置於「Independent」時,則直流電源供應器可提供兩 組獨立之單極性電源,如左下圖所示。當調整電源之輸出電壓與電流大小,僅可分別由「Master」與 「Slave」之電壓與電流調整鈕來獨立控制。
- ◆ 若將『Tracking/Independent』之切換開關擺置於「Tracking」時,則直流電源供應器可提供雙極性輸出電配或雙倍輸出電流之等 2 種不同之電源,分別如中下與右下圖所示。當調整電源之輸出電壓與電流大小,僅可由「Master」之電壓與電流調整鈕來控制。

- ◆ 當「C.C.」(配置上 10 與 21 之位置)之指示燈亮時,表示直流電源供應器之輸出電流不足(負載過大),可轉動電流調整鈕,以適當加大輸出電流,使改變為「C.V.」(配置圖上 7 與 17 之位置)之指示燈亮。若將將電流調整鈕轉動至最大,仍無法使「C.C.」之指示燈熄滅,則表示待測電路短路(請檢查電路,以排除短路之原因)或電源供應器無法供應此大負載(更換可提供較大輸出電流之電源供應器)。
- ◆ 若將『Tracking/Independent』之切換開關擺置於「Independent」時,切不可將兩組獨立之單極性電源相互並接或與其他電源供器並聯,否則輸出電壓不平衡時,則可能完設電源供應器,造成不可彌補之損失。

函數波形產生器

- ◆ 函數波形產生器 (Function Generator) 可提供電子電路所需之交流訊號,以作為電子電路交流輸入訊號之用。目前市面上之函數波形產生器而言,只要適當的選擇與調整相關旋 (按)鈕,皆可提供不同輸出頻率與電壓 (振幅)之正弦波、方波與三角波等3種交流訊號。
- ◆ 本書僅介紹 FG1617 型之函數波形產生器的面板配置圖,如下圖所示。

示波器

- ◆ 示波器 (Oscilloscope) 可用來測量電壓訊號之波形 (Wave)、振幅 (Amplitude)、相位 (Phase)、頻率 (Frequency)、週期 (Period) 與電路之轉移函數 (Transfer Function) 等電氣特性,以分析電子電路中每一節點之工作狀態。
- ◆ 一般電子實習室較常使用皆為雙軌跡示波器 (可同時測量兩組電壓訊號)的配置圖,如下圖所示。
- ◆ 使用者只要打開電源,依照下圖之每個控制開關、旋鈕與相關顯示裝置,便可使用示波器於電子實習上,以測量各種交、直流電壓之電氣特性。

電子儀表之基本操作

◆ 利用三用電表與示波器測量電阻、電壓與電流

表 6 各個電阻之理論値與測量値

待測電阻	R ₁	R ₂	R ₃	R ₄		
理論値	1 <i>K</i> Ω±5%	1 <i>K</i> Ω±5%	$2.2 K\Omega \pm 5\%$	$4.7 K\Omega \pm 5\%$		
測量値	981Ω	992Ω	2.22ΚΩ	4.6 <i>K</i> Ω		

表 7 各分支之直流電流與各個電阻之直流壓降

待測量	I ₁	12	I _T	V ₁	V ₂	V ₃	V ₄	V _S
理論値	4.67mA	0.68mA	5.35mA	5.35V	4.65V	1.48V	3.17V	10V
測量値	4.6mA	0.7mA	5.3mA	5.3V	4.7V	1.5V	3.2V	10V

表 8 各個電阻的交流電壓波形

2 Volts/DIV

峰値電壓:2.4 V

0.5msec Time/DIV

週期: 1m sec

頻率:__<u>1K</u>___Hz

2 Volts/DIV

峰値電壓: 0.5_V

0.5msec Time/DIV

週期: 1m sec

頻率: 1K Hz

2_Volts/DIV

峰値電壓: 2.2 V

0.5msec Time/DIV

週期: <u>1m</u>sec

頻率: <u>1K</u>___Hz

2 Volts/DIV

峰値電歴:<u>1.6</u>V

0.5msec_Time/DIV

週期: <u>1m</u>sec

頻率: _1K_ Hz

利用示波器測量轉換特性曲線

表 9 電阻、電容兩端之交流電壓波形

表 10 $v_c(t) - v_R(t)$ 之轉換特性曲線

