I Dressed Graphene Model

I.1 Lattice Structure

Structure of honeycomb lattice following [1].

Monolayer graphene forms a honeycomb lattice, which is a hexagonal Bravais lattice with a two atom basis.

Figure I.1: *Graphene lattice structure*

Primitive lattice vectors of the hexagonal lattice:

$$\mathbf{a}_1 = \frac{a}{2} \left(\frac{1}{\sqrt{3}} \right) \tag{I.1}$$

$$\mathbf{a}_2 = \frac{a}{2} \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \tag{I.2}$$

with lattice constant $a \approx 2.46 \,\text{Å}$ (distance between unit cells). Have

$$a = \sqrt{3}a_0 \tag{I.3}$$

with the nearest-neighbour distance a_0 .

Vectors to the nearest-neighbor B_i (i = 1, 2, 3,) atoms from atom A:

$$\delta_{AB,1} = \begin{pmatrix} 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix}, \delta_{AB,2} = \begin{pmatrix} -\frac{a}{2} \\ -\frac{2a}{2\sqrt{3}} \end{pmatrix}, \delta_{AB,3} = \begin{pmatrix} -\frac{a}{2} \\ -\frac{a}{2\sqrt{3}} \end{pmatrix}$$
(I.4)

Vectors to the nearest-neighbor A_i (i = 1, 2, 3,) atoms from atom B:

$$\delta_{BA,1} = \begin{pmatrix} 0 \\ -\frac{a}{\sqrt{3}} \end{pmatrix}, \delta_{BA,2} = \begin{pmatrix} \frac{a}{2} \\ \frac{2}{2\sqrt{3}} \end{pmatrix}, \delta_{BA,3} = \begin{pmatrix} -\frac{a}{2} \\ \frac{a^2}{2\sqrt{3}} \end{pmatrix}$$
(I.5)

The vectors between the Graphene A atom and the six neighbours on the same sub lattice can be found by rotating \mathbf{a}_1 six times by $1/6 * 2\pi = \pi/3$:

$$\delta_{AA,1} = \mathbf{a}_1 = \frac{a}{2} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} = a \begin{pmatrix} \sin\left(\frac{\pi}{6}\right) \\ \cos\left(\frac{\pi}{6}\right) \end{pmatrix} \tag{I.6}$$

$$\delta_{AA,2} = a \begin{pmatrix} \sin\left(\frac{3\pi}{6}\right) \\ \cos\left(\frac{3\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{I.7}$$

$$\delta_{AA,3} = a \begin{pmatrix} \sin\left(\frac{5\pi}{6}\right) \\ \cos\left(\frac{5\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.8)

$$\delta_{AA,4} = a \begin{pmatrix} \sin\left(\frac{7\pi}{6}\right) \\ \cos\left(\frac{7\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.9)

$$\delta_{AA,5} = a \begin{pmatrix} \sin\left(\frac{9\pi}{6}\right) \\ \cos\left(\frac{9\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 (I.10)

$$\delta_{AA,6} = a \begin{pmatrix} \sin(\frac{11\pi}{6}) \\ \cos(\frac{11\pi}{6}) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.11)

Primitive unit cell

The primitive reciprocal lattice vectors \mathbf{b}_1 , \mathbf{b}_2 fulfill

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = \mathbf{a}_2 \cdot \mathbf{b}_2 = 2\pi \tag{I.12}$$

$$\mathbf{a}_1 \cdot \mathbf{b}_2 = \mathbf{a}_2 \cdot \mathbf{b}_1 = 0 \,, \tag{I.13}$$

Figure I.2: Graphene Brillouin Zone

so we have:

$$\mathbf{b}_1 = \frac{2\pi}{a} \left(\frac{1}{\frac{1}{\sqrt{3}}} \right) \tag{I.14}$$

$$\mathbf{b}_2 = \frac{2\pi}{a} \begin{pmatrix} 1\\ -\frac{1}{\sqrt{3}} \end{pmatrix} \tag{I.15}$$

Points of high symmetry in the Brillouin zone are:

$$\Gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{I.16}$$

$$M = \frac{\pi}{a} \left(\frac{1}{\sqrt{3}} \right) \tag{I.17}$$

$$K = \frac{4\pi}{3a} \begin{pmatrix} 1\\0 \end{pmatrix} \tag{I.18}$$

4

I.2 EG-X Model

Graphene lattice and a site X.

Figure I.3: EG-X model

Without interaction:

$$H_0 = -t_{\mathcal{X}} \sum_{\langle ij \rangle, \sigma} d^{\dagger}_{i,\sigma} d_{j,\sigma} - t_{Gr} \sum_{\langle ij \rangle, \sigma} c^{(A),\dagger}_{i,\sigma} c^{(B)}_{j,\sigma} + V \sum_{i,\sigma\sigma'} d^{\dagger}_{i,\sigma} c^{(A)}_{i,\sigma'} + \text{h.c.}$$
 (I.19)

with:

- *d* operators on the X atom
- $c^{(\epsilon)}$ operators on the graphene site $(\epsilon = A, B)$
- t_X NN hopping for X
- t_{Gr} NN hopping of Gr
- V hybridization between X and Graphene B sites

We can also introduce an onsite Hubbard interaction:

$$H_{\rm int} = U_{\rm X} \sum_{i} d_{i,\uparrow}^{\dagger} d_{i,\downarrow}^{\dagger} d_{i,\downarrow} d_{i,\uparrow} + U_{\rm Gr} \sum_{i,\epsilon=A,B} c_{i,\uparrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{\epsilon} c_{i,\uparrow}^{\epsilon}$$
(I.20)

Write the Hamiltonian with orbital indeces Define sublattice index

$$\alpha = 1, 2, 3 \tag{I.21}$$

with $1 \cong Gr_1, 2 \cong Gr_2, 3 \cong X$. Then we can write the non-interacting term as

$$H_0 = -\sum_{\langle i,j\rangle,\alpha,\beta,\sigma} [\mathbf{t}]_{i\alpha,j\beta} c_{i\alpha}^{\dagger} c_{j\beta}$$
 (I.22)

with the matrix

$$\mathbf{t} = \begin{pmatrix} 0 & t_{\mathrm{Gr}} & 0 \\ t_{\mathrm{Gr}} & 0 & -V\delta_{ij} \\ 0 & -V\delta_{ij} & t_{\mathrm{X}} \end{pmatrix}$$
 (I.23)

Add chemical potential:

$$-\mu \sum_{i\alpha\sigma} n_{i\alpha\sigma} \tag{I.24}$$

Also write the interaction part with α (with changed signs compared to Niklas, to keep in line with papers about the attractive Hubbard model):

$$H_{int} = -\sum_{i\alpha} U_{\alpha} c_{i\alpha\uparrow}^{\dagger} c_{i\alpha\downarrow}^{\dagger} c_{i\alpha\downarrow} c_{i\alpha\uparrow}$$
 (I.25)

I.2.1 Review: Hubbard model on the honeycomb lattice

I.2.2 BAND STRUCTURE OF THE NON-INTERACTING EG-X MODEL

To treat eq. I.19, we first write out the sums over nearest neighbours $\langle i,j \rangle$ explicitly, writing δ_X , δ_ε ($\varepsilon=A,B$) for the connections to the nearest neighbours of the X atoms and Graphene A,B sites. Doing the calculation for the example of the X atoms:

$$-t_{X}\sum_{\langle ij\rangle,\sigma\sigma'}(d_{i,\sigma}^{\dagger}d_{j,\sigma'}+d_{j,\sigma}^{\dagger}d_{i,\sigma'})$$
(I.26)

$$= -\frac{t_X}{2} \sum_{i,\sigma,\sigma'} \sum_{\delta_X} d^{\dagger}_{i,\sigma} d_{i+\delta_X,\sigma'} - \frac{t_X}{2} \sum_{j,\sigma,\sigma'} \sum_{\delta_X} d^{\dagger}_{j,\sigma} d_{j+\delta_X,\sigma'}$$
 (I.27)

$$= -t_X \sum_{i,\sigma,\sigma'} \sum_{\delta_X} d_{i,\sigma}^{\dagger} d_{i+\delta_X,\sigma'}$$
 (I.28)

Write review for Hubbard model on the honeycomb lattice (The factor 1/2 is to account for double counting when going to the sum over all lattice sites i)

Now we can input the discrete Fourier transform (for both graphene and X operators) into eq. I.28

$$c_i = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}} \tag{I.29}$$

$$c_i^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}^{\dagger} \tag{I.30}$$

with the completeness relation:

$$\sum_{i} e^{i\mathbf{k}\mathbf{r}_{i}} e^{-i\mathbf{k}'\mathbf{r}_{i}} = N\delta_{\mathbf{k},\mathbf{k}'}. \tag{I.31}$$

We get:

$$-t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\delta_{X}}d^{\dagger}_{i,\sigma}d_{i+\delta_{X},\sigma'} = -t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\delta_{X}}\sum_{\mathbf{k},\mathbf{k'}}e^{-i\mathbf{k}\mathbf{r}_{i}}d^{\dagger}_{\mathbf{k},\sigma}e^{i\mathbf{k'}\mathbf{r}_{i}}e^{i\mathbf{k'}\delta_{X}}d_{\mathbf{k'},\sigma'} \quad (I.32)$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k'},\sigma,\sigma'}\sum_{\delta_{X}}d^{\dagger}_{\mathbf{k},\sigma}e^{i\mathbf{k'}\delta_{X}}d_{\mathbf{k'},\sigma'}\sum_{i}e^{-i\mathbf{k}\mathbf{r}_{i}}e^{i\mathbf{k'}\mathbf{r}_{i}}$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k'},\sigma,\sigma'}\sum_{\delta_{X}}d^{\dagger}_{\mathbf{k},\sigma}e^{i\mathbf{k'}\delta_{X}}d_{\mathbf{k'},\sigma'}N\delta_{\mathbf{k},\mathbf{k'}} \quad (I.34)$$

$$= -t_{X}\sum_{\mathbf{k},\sigma,\sigma'}d^{\dagger}_{\mathbf{k},\sigma}d_{\mathbf{k},\sigma'}\sum_{\delta_{Y}}e^{i\mathbf{k}\delta_{X}} \quad (I.35)$$

The nearest neighbours for X atoms are the vectors $\delta_{AA,i}$ from section I.1. With that, we can calculate:

$$f_X(\mathbf{k}) = -t_X \sum_{\delta_X} e^{i\mathbf{k}\delta_X}$$
 (I.36)

$$= -t_X \left(e^{ia(\frac{k_X}{2} + \frac{\sqrt{3}k_y}{2})} + e^{iak_X} + e^{ia(\frac{k_X}{2} - \frac{\sqrt{3}k_y}{2})} \right)$$
 (I.37)

$$+ e^{ia(-\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} + e^{-iak_x} + e^{ia(-\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})}$$
 (I.38)

$$= -t_X \left(2\cos(ak_x) + 2e^{ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) + 2e^{-ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) \right)$$
 (I.39)

$$= -2t_X \left(\cos\left(ak_x\right) + 2\cos\left(\frac{a}{2}k_x\right)\cos\left(\sqrt{3}\frac{a}{2}k_y\right)\right) \tag{I.40}$$

We can do the same for the hopping between Graphene sites, for example:

$$-t_{\rm Gr} \sum_{\langle ij\rangle,\sigma\sigma'} c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} = -t_{\rm Gr} \sum_{i,\sigma\sigma'} \sum_{\delta_{AB}} c_{i,\sigma}^{(A),\dagger} c_{i+\delta_{AB},\sigma'}^{(B)}$$
(I.41)

$$= -t_{Gr} \sum_{\mathbf{k}, \sigma, \sigma'} c_{\mathbf{k}, \sigma}^{(A)\dagger} c_{\mathbf{k}, \sigma'}^{(B)} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}}$$
(I.42)

We note

$$\sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} = \left(\sum_{\delta_{BA}} e^{i\mathbf{k}\delta_{BA}}\right)^* = \sum_{\delta_{BA}} e^{-i\mathbf{k}\delta_{BA}}$$
(I.43)

and calculate

$$f_{Gr} = -t_{Gr} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} \tag{I.44}$$

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{i\frac{a}{2\sqrt{3}}(\sqrt{3}k_x - k_y)} + e^{i\frac{a}{2\sqrt{3}}(-\sqrt{3}k_x - k_y)} \right)$$
(I.45)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{-i\frac{a}{2\sqrt{3}}k_y} \left(e^{i\frac{a}{2}k_x} + e^{-i\frac{a}{2}k_x} \right) \right)$$
 (I.46)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + 2e^{-i\frac{a}{2\sqrt{3}}k_y} \cos(\frac{a}{2}k_x) \right)$$
 (I.47)

Figure I.4: Bands of the non-interacting EG-X model. All the bands are spin-degenerate.

All together, we get:

$$H_{0} = \sum_{\mathbf{k},\sigma} \begin{pmatrix} c_{k,\sigma}^{A,\dagger} & c_{k,\sigma}^{B,\dagger} & d_{k,\sigma}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & f_{Gr} & V \\ f_{Gr}^{*} & 0 & 0 \\ V & 0 & f_{X} \end{pmatrix} \begin{pmatrix} c_{k,\sigma}^{A} \\ c_{k,\sigma}^{B} \\ d_{k,\sigma} \end{pmatrix}$$
(I.48)

The band structure for the non-interacting EG-X model is easily obtained by diagonalising the matrix in eq. I.48. This was done in fig. I.4.

Values used for calculation:

- $a_0 = 1$
- $t_{Gr} = 1$
- $t_{\rm X} = 0.01$

V is the control parameter. A range from V=0.1 to V=2 can be mapped onto materials in experiment.