Progess of the Project

Tsung-Min Pai 2023/11/17

Outline

- GNN
 - Experiment
 - Recap
 - Observe the distribution of the prediction
 - Remove the predictable TTP from the dataset
 - Paper
 - GraphSMOTE
- Future Work

Experiment - Recap

Oversampling

- Previous Trial: hope to see the result on **training** dataset
 - Use data with **320** times single triplet \rightarrow # of training data = 13657600
 - Larger hidden dimension → more neurons to remember the data
 - Let the model overfit first → Succeed

Observation on Different Dimension

Observation on Different Dimension

Observation on Different Embedding

Observation on Different Embedding

Conclusion

Noticed that T1518_c9b always got predicted in all the experiments

• **Hidden Dimension** do have an effect on the result \rightarrow but it's all about from 0 to 0.05

Embedding (transR_50 and tansH_150) seems to have the similar result → try more

Experiment - Observe

Thoughts

- Try the ensemble
 - Different GNN
 - Different hidden dimension
 - Different embedding
 - Different model
 - Different type of model → MLP, RNN, GNN...
 - Maybe the different can identify the different single triplet class

Ensemble - Voting

- Noticed that T1518_c9b always got predicted in all the experiments
 - Euni's MLP and RNN also predict T1518_c9b perfectly → Reason ?!
- Experiment result on the single triplet case:

accuracy			0.02	5300
macro avg	0.02	0.02	0.02	5300
weighted avg	0.03	0.02	0.02	5300

Voting these three models (MLP, RNN, GNN) may not be useful

true_label	predicted_label
T1003.003_9f73269695e54311dd61dc68940fb3e1	T1490_9e5e4c0655fd1b5be88bd40b8251175f
T1003.003_9f73269695e54311dd61dc68940fb3e1	T1490_9e5e4c0655fd1b5be88bd40b8251175f
T1003.003_9f73269695e54311dd61dc68940fb3e1	T1490_9e5e4c0655fd1b5be88bd40b8251175f
T1003.003_9f73269695e54311dd61dc68940fb3e1	T1564.003_9a2edad4053a2b59fb9167a9bc29e7dc
T1003.003_9f73269695e54311dd61dc68940fb3e1	T1499_2fe2d5e6-7b06-4fc0-bf71-6966a1226731
T1003.003_9f73269695e54311dd61dc68940fb3e1	T1490_9e5e4c0655fd1b5be88bd40b8251175f

Observation of the Prediction

- Use the original training set
- The distribution of the prediction is so sparse
 - Most of the predictions are like this:

Observation of the Prediction

• The # of the predicted labels

Top 5 Labels and Counts:

T1082_29451844-9b76-4e16-a9ee-d6feab4b24db: 150
T1016_921055f4-5970-4707-909e-62f594234d91: 147
T1124_fa6e8607-e0b1-425d-8924-9b894da5a002: 143
T1053.005_ee454be9197890de62705ce6255933fd: 142
T1016 e8017c46-acb8-400c-a4b5-b3362b5b5baa: 136

Experiment - Remove

Remove the Popular TTPs

```
Top 5 Labels and Counts:

T1082_29451844-9b76-4e16-a9ee-d6feab4b24db: 150
T1016_921055f4-5970-4707-909e-62f594234d91: 147
T1124_fa6e8607-e0b1-425d-8924-9b894da5a002: 143
T1053.005_ee454be9197890de62705ce6255933fd: 142
T1016_e8017c46-acb8-400c-a4b5-b3362b5b5baa: 136
```

- Remove these 5 TTPs from the dataset and then train it again:
 - More prediction on the non-single triplet case is like this:

Remove the Popular TTPs

- Remove these 5 TTPs from the dataset and then train it again:
- The # of the predicted labels

GNN - Paper

GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks

WSDM '21, March 8–12, 2021, Virtual Event, Israel

Tianxiang Zhao, Xiang Zhang, Suhang Wang

{tkz5084,xzz89,szw494}@psu.edu

College of Information Science and Technology, Penn State University State College, The USA

https://github.com/TianxiangZhao/GraphSmote

Tianxiang ZhaoPhD student in PSU

co-advised by Prof.Xiang Zhang and Prof.Suhang Wang.

https://scholar.google.com/citation
s?user=pXkPq3YAAAAJ&hl=en

Xiang Zhang
Associate Professor in PSU

Data Mining, Machine Learning and Big Data Analytics

https://ist.psu.edu/directory/xzz89

Suhang Wang *Associate Professor in PSU*

Data Mining, Machine Learning and Social Media Mining

https://suhangwang.ist.psu.edu/

GraphSMOTE

Task:

Synthesized Minority Oversampling Technique (SMOTE)

0.020

0.025

0.030

0.010

0.015

- Used on i.i.d. data
- Doesn't consider the structure of the graph
- No edge connection between the nodes

GraphSMOTE

Framework

- a GNN-based feature extractor
 → Use GraphSAGE
- Synthetic Node Generation
 → Use SMOTE algorithm
- Edge Generator
 → weighted inner product decoder F
- GNN Classifier (downstream task)

Figure 2: Overview of the framework

Future Work

Future Work

• GNN

- Try some other methods to improve the performance of single triplet issue
 - Figure out why the model can detect the **T1518_c9b** (if available?)
 - Read the **GraphSMOTE** paper

Thanks!!

Appendix

Observation on Different Model

Experiment 3

Experiment 3:

- Consider the neighbor benign nodes
- Edge classification
- Given a graph → label the triplets with the benign or the specific AP

Experiment 3 - Oversampling

Bar Chart of hidden dimension = 256:

Experiment 3 - Oversampling

• Current Trial: Duplicate the data with single triplets → 20, 40, 80, 320 times

20 times	Number of Number of Number of	<pre>support=100: 5 support=100 an support=100 an support=200 an support>200 an</pre>	d f1-score<=0 d f1-score=0: d f1-score=0:	21 10	53		0.597445		0.594684	0.97156 310263.00000 310263.00000
40 times	Number of Number of Number of	support=100: 50 support=100 and support=100 and support=200 and support>200 and	d f1-score<=0: d f1-score=0: d f1-score=0:	14 10	53		0.602542		0.594387	0.971318 310263.000000 310263.000000
80 times	Number of Number of Number of	support=100: 50 support=100 and support=200 and support>200 an	d f1-score<=0: d f1-score=0: d f1-score=0:	18 10		accuracy macro avg weighted avg		0.598077	0.594237	0.971463 310263.000000 310263.000000

Experiment 3 - Oversampling

Experiment 3 - Model

- Concept from the DGL official website:
 - 1. Let the dgl graph's edge data have the attribute: edata["label"]
 - 2. Use **GraphSAGE** model to get the new **node embedding**
 - 3. Use **MLP** model to get the **score** of the edge
 - 4. Concatenate these two models
 - 5. Train the final model

```
g.ndata['feat'] = th.tensor(data["node_feat"])
g.edata['feat'] = th.tensor(data["edge_attr"])
g.edata['label'] = th.tensor(data["labels"])
```

```
def model_fn(batched_g, model, criterion, device, count=1, which_type='train'):
    """Forward a batch through the model."""
    batched_g = batched_g.to(device)
    labels = batched_g.edata['label'].to(device)

logits = model(batched_g, batched_g.ndata['feat'].float())
    loss = criterion(logits, labels)

output = torch.softmax(logits, dim=1)
    preds = output.argmax(1)

accuracy = torch.mean((preds == labels).float())
```

Experiment 3 - Model

```
class GraphSAGE(nn.Module):
    def __init__(self, in_dim, hidden_dim, out_dim):
        super(GraphSAGE, self).__init__()
        self.layer1 = dglnn.SAGEConv(in_dim, hidden_dim, 'pool')
        self.layer2 = dglnn.SAGEConv(hidden_dim, out_dim, 'pool')

def forward(self, g, inputs):
    h = self.layer1(g, inputs)
    h = torch.relu(h)
    h = self.layer2(g, h)
    return h
```

```
class MLPPredictor(nn.Module):
    def __init__(self, out_feats, out_classes):
        super().__init__()
        self.W = nn.Linear(out_feats*2, out_classes)

def apply_edges(self, edges):
        h_u = edges.src['h']
        h_v = edges.dst['h']
        score = self.W(torch.cat([h_u, h_v], 1))
        return {'score': score}

def forward(self, graph, h):
    with graph.local_scope():
        graph.ndata['h'] = h
        graph.apply_edges(self.apply_edges)
        return graph.edata['score']
```

```
class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, num_classes):
        super().__init__()
        self.sage = GraphSAGE(in_features, hidden_features, out_features)
        self.pred = MLPPredictor(out_features, num_classes)

def forward(self, g, node_feat, return_logits=False):
    h = self.sage(g, node_feat)
    logits = self.pred(g, h)

return logits
```

Experiment 3 - Result

Format of the edge labels:

Label 65 is benign

```
labels of Test: tensor([155, 65, 155, 155], device='cuda:0') torch.Size([5]) predicted of Test: tensor([155, 65, 155, 155], device='cuda:0') torch.Size([5]) labels of Test: tensor([61, 61, 61], device='cuda:0') torch.Size([3]) predicted of Test: tensor([61, 61, 61], device='cuda:0') torch.Size([3])
```

Classification report:

transR_50:					secureBERT_50:				
4a0dc2e1f5d1a 167175e8a019a c3579e9e3737b 43d838e0791ca benign	0.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00	100 800 6200 600 134563	714a0dc2e1f5d1a fb167175e8a019a 2ac3579e9e3737b 0243d838e0791ca benign	0.00 0.98 0.97 0.91 0.99	0.00 1.00 0.98 0.83 1.00	0.00 0.99 0.98 0.87 0.99	100 800 6200 600 134563
accuracy macro avg weighted avg	0.60	0.61 0.97	0.97 0.60 0.97	310263 310263 310263	accuracy macro avg weighted avg	0.52	0.48 0.92	0.92 0.49 0.91	310263 310263 310263

- Macro average is similar to previous experiments → won't be affected by benign
- Weighted average is very high since the # of the benign is high(unbalanced) and predictable
- TransX family performs better than secureBERT

Experiment 3 – Noise

- Current Trial 1:
 - Add the noise to the node feature

```
def collate(samples):
   data list = samples
   batched graphs = []
   for data in data list:
       g = dgl.graph((th.tensor(data["edge index"][0]), th.tensor(data["edge index"][1])), num nodes=data["num nodes"]
       node feat = th.tensor(data["node feat"])
       noise = th.normal(mean=0, std=0.01, size=node feat.shape, device=node feat.device)
       node feat += noise
       g.ndata['feat'] = node feat
       g.edata['feat'] = th.tensor(data["edge attr"])
       g.edata['label'] = th.tensor(data["labels"]) # Add edge labels to graph
       batched graphs.append(g)
                                                       Number of support=100: 54
                                                       Number of support=100 and f1-score<=0.2: 53
   return dgl.batch(batched graphs)
                                                       Number of support=100 and f1-score=0: 46
                                                       Number of support=200 and f1-score=0: 4
                                                       Number of support>200 and f1-score=0: 0
```

Experiment 3 – K-fold validation

k-fold cross-validation(k 折交叉驗證)是一種在機器學習中常用的模型評估方法,尤其在有限的數據集上評估模型性能時非常有效。其主要優點包括:

- 更可靠的性能估計:通過將數據集分成 k 個子集,每次使用其中一個子集作為測試集,其餘 k-1 個子集作為訓練集,然後重複此過程 k 次,每次選擇不同的子集作為測試集,可以使得模型評估的結果更加穩定和可靠。
- 2. **充分利用數據**:每個數據點都被用作 k-1 次的訓練和 1 次的測試,這意味著每個數據點都被充分利用,這在數據量不大時尤其重要。
- 3. **減少偏差**:由於模型需要在 k 個不同的訓練集上訓練,然後在 k 個不同的測試集上測試,這有助於降低模型在特定數據集上的性能估計偏差。
- 4. **更好的泛化性能評估**:通過對不同的訓練集和測試集進行訓練和測試,可以幫助評估模型對 未見數據的泛化能力。
- 5. **減少過擬合風險**: k-fold cross-validation 有助於識別模型是否對特定的訓練數據集過度擬合,因為它必須在多個不同的訓練集上表現良好。

然而,k-fold cross-validation 也有其局限性,例如計算成本較高(尤其是 k 較大和模型訓練時間較長時),並且結果可能依賴於 k 的選擇以及數據分割的方式。這些都是在使用此方法時需要考慮的因素。