Радиоконструктор «Трансивер Selenite Lite» Руководство по эксплуатации

Дмитрий Руднев (RD9F) версия от 15.03.2024

Вводная часть

Радиоконструктор «Трансивер Selenite Lite» (далее — изделие) был разработан в рамках проекта «Селенит» и предназначен для приёма радиосигналов в диапазоне частот от 1500 кГц до 32 МГц.

Для уверенного приёма радиосигналов в вышеуказанном диапазоне частот необходимо подключение изделия к внешнему антенному устройству с соответствующими диапазону частот характеристиками.

ВНИМАНИЕ! При применении внешних антенных устройств существует опасность причинения вреда здоровью и/или повреждения изделия атмосферным электричеством или статическим зарядом на антенном устройстве.

Обработка принятых радиосигналов производится внешним программным обеспечением, для связи с которым изделие должно быть подключено к компьютеру под управлением операционной системы Windows 10 (Windows 11) по интерфейсу USB 2.0 и выше.

Управление режимами работы изделия и настройка частоты производится по САТ-интерфейсу при подключении к управляющему компьютеру по интерфейсу USB 2.0 и выше и/или локальными органами управления в расширенном варианте исполнении изделия.

Изделие предназначено для настольного применения в нормальных климатических условиях. Корпус изделия не обеспечивает защиту изделия от пыли, влаги, коррозии и сильных механических и термических воздействий.

Электропитание изделия осуществляется от разъема USB компьютера, к которому подключено изделие, и/или внешнего стабилизированного источника постоянного тока с напряжением 5 В.

Изделие допускает загрузку встроенного программного обеспечения по интерфейсу DFU при подключении к управляющему компьютеру по интерфейсу USB 2.0 и выше.

Изделие допускает возможность применения в качестве симплексного передающего устройства радиолюбителями с действующим позывным для экспериментов в области любительской радиосвязи на КВ.

ВНИМАНИЕ! Трансивер Selenite Lite поставляется «как есть». Коммерческое применение изделия не предусмотрено. Изготовитель не несёт ответственности за возможный причинённый ущерб или упущенную выгоду от применения или неприменения изделия. Риски, связанные с применением изделия, лежат на потребителе.

Конструкция изделия

Внешний вид базового исполнения изделия со снятыми передней и задней панелями приведен на рисунке ниже:

Справа расположены разъемы микро-USB (сверху) и микротелефонной гарнитуры (снизу). Слева расположены (сверху вниз): разъем расширения, разъем РТТ и антенный разъем.

Антенный разъем обозначен на плате «ANTENNA» и предназначен для подключения внешнего антенного устройства.

Разъем микро-USB обозначен на плате «USB» и предназначен для подключения изделия к компьютеру по интерфейсу USB 2.0 (и выше) для обмена данными для управления и обработки сигналов.

Разъем микротелефонной гарнитуры обозначен на плате «HEADSET» и предназначен для подключения стереофонических головных телефонов (наушников) или микротелефонной гарнитуры (гарнитуры), предназначенных для использования с мобильными телефонами и другой бытовой аппаратурой. Диаметр разъёма 3.5 мм.

Разъем РТТ обозначен на плате «РТТ» и предназначен для подключения кнопки (педали) переключения «прием/передача» или телеграфного ключа. Диаметр разъёма 3.5 мм.

Разъем расширения служит для подключения к изделию внешнего стабилизированного источника электропитания постоянного тока с напряжением 5 В, передаче внешним устройствам сигнала переключения «прием/передача» и подключения внешних устройств к шине I2C изделия

Подключение и настройка

Изделие подключается к компьютеру с помощью входящего в комплект поставки шнура микро-USB длиной 30 см.

При подключении изделия в списке оборудования Диспетчера устройств должны появиться: звуковое устройство Selenite TRX, еще одно составное USB устройство и COM-порт:

Подключение к изделию по CAT-интерфейсу производится с помощью бесплатной программы Omni-Rig 1.20, установочный файл которой можно загрузить по ссылке: https://www.dxatlas.com/omnirig/

Контроль подключения изделия к Omni-Rig при настройке производится с помощью бесплатной программы Omni-Rig Client, которую можно загрузить по той же ссылке.

После запуска Omni-Rig Client необходимо нажать кнопку «Open Dialog» и в открывшемся окне «Omni-Rig Settings» выбрать параметры как на рисунке ниже при условии, что номер COM-порта определяется по списку устройств в Диспетчере устройств.

При правильной настройке параметров соединения статус подключения по САТинтерфейсу должен измениться на «On-line». Обработка сигналов, принятых изделием, производится бесплатной программой HDSDR. Рекомендуется установка версии программы HDSDR 2.80 от 19.03.2020 с поддержкой Omnirig 1.20. После установки HDSDR в папку «C:\Program Files (x86)\HDSDR» нужно копировать файл ExtIO_SRlite.dll. Всё это программное обеспечение можно получить по ссылке:

https://disk.yandex.ru/d/0ghaTvp07Ut92Q

Поле запуска HDSDR необходимо настроить подключение к звуковому устройству изделия, как показано на рисунке ниже:

Настройка подключения HDSDR к CAT-интерфейсу производится через меню «Options» – «CAT to Radio (Omni-Rig)», как показано на рисунке ниже:

Применение по назначению

Для применения по назначению к изделию подключаются внешнее антенное устройство и головные телефоны, а само изделие подключается к компьютеру шнуром микро-USB.

Прием изделием радиосигналов производится с помощью программы HDSDR согласно руководству оператора этой программы.

Загрузка версии встроенного ПО

Загрузка версии встроенного ПО в изделие производится по интерфейсу USB в режиме DFU, в который изделие переходит при включении с нажатым телеграфным ключом (кнопкой/педалью PTT).

Для загрузки в изделие версии ПО на компьютере должна быть установлена бесплатная программа DfuSe Demo, которую можно получить по ссылке: https://www.st.com/en/development-tools/stsw-stm32080.html

или по QR-коду на предыдущей странице

Выбор файла прошивки производится при нажатии кнопки «Choose...», загрузка содержимого файла в изделие производится при нажатии кнопки «Upgrade». Рекомендуется включить верификацию загрузки установкой опции «Verify after download».

Пользовательский интерфейс

Взаимодействие оператора и изделия производится с помощью графического интерфейса пользователя (GUI).

Интерфейс состоит из дисплея, пяти кнопок и ручки «Tune». Текущее назначение кнопок указывается в строке меню, расположенной в нижней части дисплея над кнопками.

По умолчанию ручка «Tune» используется для изменения частоты настройки изделия с шагом, указанным сиреневым цветом выше текущего значения частоты. В этом режиме пятой кнопке (крайней справа) назначается функция «Vol».

При длительном нажатии кнопки «Vol» ручкой «Tune» производится настройка шага изменения частоты. Значение меняется циклически в последовательности: ... 50Hz - 100Hz - 500Hz - 1kHz - 5kHz - 10kHz...

При нажатии кнопки «ОК» производится выход с сохранением установленного значения. При нажатии кнопки «Васк» – выход без сохранения.

После нажатия кнопки «Vol» ручкой «Tune» производится изменение уровня громкости. При этом пятой кнопке назначается функция «Tune».

После нажатия кнопки «Tune» ручкой «Tune» производится изменение частоты настройки.

При нажатии кнопки «VFO» интерфейс переключается в режим управления гетеродинами. Ручкой «Tune» в этом режиме производится изменение частоты настройки текущего гетеродина.

При нажатии кнопки «A>>B» значение частоты настройки VFOA будет записано в VFOB. При нажатии кнопки «A<>B» произойдёт переключение гетеродинов, и экран будет иметь следующий вид:

При нажатии кнопки «В>>А» значение частоты настройки VFOB будет записано в VFOA. При нажатии кнопки «А<>В» произойдёт переключение гетеродинов.

При нажатии кнопки «Splt» производится включение (выключение) режима работы на разнесённых частотах «SPLIT», когда приём производится на частоте текущего гетеродина, а передача — на частоте другого.

Ручная установка частоты настройки изделия осуществляется после нажатия кнопки «Freq». Переключение между разрядами производится кнопками «Prev» и «Next». Значение разряда устанавливается вращением ручки «Tune».

При нажатии кнопки «ОК» производится выход с сохранением установленного значения. При нажатии кнопки «Васк» – выход без сохранения.

После нажатия кнопки «Mode» ручкой «Tune» производится установка вида модуляции.

При нажатии кнопки «ОК» производится выход с сохранением установленного значения. При нажатии кнопки «Васк» – выход без сохранения.

После нажатия кнопки «Time» ручкой «Tune» производится установка времени. Значение секунд устанавливается в ноль. Переключение между часами и минутами производится кнопками «Prev» и «Next».

При нажатии кнопки «ОК» производится выход с сохранением установленного значения. При нажатии кнопки «Васк» – выход без сохранения.

Перечень комплектующих электронных изделий

Value	Device	Qty	Parts	Description
120nH	MLF2012DR12JT000	1	L16	Inductor SMD 0805 120nH 5%
270nH	MLF2012DR27JT000	1	L13	Inductor SMD 0805 270nH 5%
470nH	MLF2012DR47JT000	3	L10, L14, L15	Inductor SMD 0805 470nH 5%
1.0uH	MLF2012A1R0JT000	2	L11, L12	Inductor SMD 0805 1uH 5%
2.2uH	MLF2012A2R2JT000	2	L8, L9	Inductor SMD 0805 2.2uH 5%
2.7uH	LQM21NN2R7K10	1	L7	Inductor SMD 0805 2.7uH 5%
5.6uH	MLF2012E5R6JT000	2	L5, L6	Inductor SMD 0805 5.6uH 5%
10uH	MLZ2012M100HT000	1	L1	Inductor SMD 0805 10uH 20% 0.2A
100uH	MLZ2012N101LT000	2	L2, L3	Inductor SMD 0805 100uH 20% 0.14A
12pF	CC0603JRNPO9BN120	2	C4, C5	Capasitor SMD 0603 NP0 12pF 5% 50V
100pF		2	C76, C77	Capasitor SMD 0805 NP0 12pr 5% 50V
	CC0805JRNPO9BN101			<u> </u>
180pF	CC0805JRNPO9BN181	2	C73, C74	Capasitor SMD 0805 NP0 180pF 5% 50V Capasitor SMD 0805 NP0 390pF 5% 50V
390pF	CC0805JRNPO9BN391	3	C70, C71, C78	<u> </u>
680pF	CC0805JRNPO9BN681	3	C67, C68, C75	Capasitor SMD 0805 NP0 680pF 5% 50V
680pF	CC0603JRNPO9BN681	4	C41, C42, C43, C44	Capasitor SMD 0603 NP0 680pF 5% 50V
1.5nF	CC0805JRNPO9BN152	2	C69, C72	Capasitor SMD 0805 NP0 1500pF 5% 50V
15nF	GRM2195C1H153JA01D	8	C37, C38, C39, C40, C49, C50, C51, C52	Capasitor SMD 0805 NP0 15nF 5% 50V
0.1	CC0603KRX7R7BB104	34	C1, C3, C9, C10, C11, C12, C13, C15, C16, C17, C19, C20, C21, C27, C28, C31, C32, C33, C34, C35, C36, C54, C55, C56, C58, C59, C60, C61, C62, C63, C64, C65, C66, C79	Capasitor SMD 0603 X7R 100 nF 10% 16V
1.0uF	CC0603KRX7R7BB105	3	C2, C7, C26	Capasitor SMD 0603 X7R 1.0 uF 10% 16V
4.7uF	CC0603KRX5R6BB475	1	C6	Capasitor SMD 0603 X5R 4.7 uF 10% 10V
10uF	CC0603KRX5R6BB106	15	C8, C14, C18, C22, C23, C24, C25, C29, C30, C45, C46, C47, C48, C53, C57	Capasitor SMD 0603 X5R 10 uF 10% 10V
0	DC0C031D 070DI	2	101 102 102	Desirboy CMD 0603 0 Ober F0/
0	RC0603JR-070RL		JP1, JP2, JP3	Resistor SMD 0603 0 Ohm 5%
10	RC0603FR-0710RL	8	R4, R5, R6, R7, R8, R9, R19, R20	Resistor SMD 0603 10 Ohm 1%
50	RC0603FR-0749R9L	6	R29, R30, R31, R32, R33, R34	Resistor SMD 0603 50 Ohm 1%
220	RC0603FR-07220RL	4	R21, R22, R23, R24	Resistor SMD 0603 220 Ohm 1%
330	RC0603FR-07330RL	1	R41	Resistor SMD 0603 330 Ohm 1%
2.2K	RC0603FR-072K2L	17	R10, R12, R14, R15, R16, R17, R25, R26, R27, R28, R35, R36, R39, R40, R42, R43	Resistor SMD 0603 2.2 K 1%
	RC0603FR-074K3L	1	R18	Resistor SMD 0603 4.3 K 1%
10K	RC0603FR-0710KL	5	R1, R2, R3, R11, R13	Resistor SMD 0603 10 K 1%
100K	RC0603FR-07100KL	2	R37, R38	Resistor SMD 0603 100 K 1%
500mA	MF-PSMF050X-2 BOURNS	2	FU1, FU2	Bourns MF-PSMF Series - PTC Resettable Fuse

Value	Device	Qty	Parts	Description
25MHz	X322525MOB4SI YXC	1	ZQ2	Crystal SMD 3.2x2.2mm 25MHz 4 pin
32.768 kHZ	NX3215SA-32.768K-STD- MUA-14 NDK	1	ZQ1	Crystal SMD 3.2x1.5mm 32768Hz 2 pin
	MABAES0061	1	TR1	4:1 RF Transformer
SMAJ5.0A	SMAJ5.0A	1	VD1	TLV Diode SMA 5.0V
MBR0520SOD	MBR0520SOD	1	VD2	Schottky Rectifier SOD123 0.5A 20V
PRTR5V0U2X	PRTR5V0U2X	1	VD3	Ultra low capacitance double rail-to-rail ESD protection diode SOT143B
PESD3V3S2UT	PESD3V3S2UT	1	VD4	Double ESD protection diodes SOT23-3
PDTC143ET	PDTC143ET	1	VT1	NPN Resistor-Equipped Transistor SOT23-3
L1117S33R	AMS1117-3.3	1	U1	LDO linear regulator SOT223 3.3 V 0.8 A
AP2120N-1.8TRG1	AP2120N-1.8TRG1	1	U2	LDO linear regulator SOT23-3 1.8 V 0.2 A
PC357N	PC357N1J000F SHARP	1	U3	SO-4 1-channel optocouple with transistor output
STM32F411CEU6	STM32F411CEU6	1	DD1	MCU STM32F411CEU6 QFN48
TLV320AIC3104IRHE	TLV320AIC3104IRHB	1	DD2	Stereo Audio Codec QFN32
P24C64C	P24C64C-TSH-MIR PUYA	1	DD3	Serial I2C bus EEPROM TSSOP8
SI5351A-B-GT	SI5351A-B-GT	1	DD4	I2C-Programmable CMOS Clock Generator MSOP10
74CBTLV3253PW	74CBTLV3253PW	3	DD5, DD6, DD7	A dual 1-of-4 high-speed FET multiplexer/ demultiplexer TSSOP16
PCA9515A	PCA9515A	1	DD8	Dual Bidirectional I2C Bus and SMBus Repeater SOT505-1
TS972IDT	TS972IDT	1	DA1	Dual low noise, rail-to-rail output op amps SOIC8
	MOLEX-105017-0001	1	USB	MicroUSB connector
	PJ-320E HOOYA	2	HEADSET, PTT	3.5 mm Audio Jack
	15EDGRC-3.5-5	1	XS1	15EDGRC-3.5-05P 5 pin connector
	15EDGK-3.5-05P-14-00AH DEGSON	1		15EDGK-3.5-05P-14-00AH 5 pin connector
	KLS1-SMA002-B	1	ANTENNA	Female SMA connector
	CR1220-856	1	GB1	CR1220 battery holder
	TJC-024-9341	1	HL1	ILI9341 TFT Display 320 x 240 dots
	TS-1109-7	5	S1, S2, S3, S4, S5	Button Thru-Hole DIP 6.2x6.2 mm
	EC12E24104A6	1	S6	ALPS EC12 encoder

SDR трансивер Selenite Lite. Плата печатная. Вид сверху

SDR трансивер Selenite Lite. Плата печатная. Вид снизу

SDR трансивер Selenite Lite. Схема электрическая принципиальная. Лист 2/2