MATH 4720 / MSSC 5720

Instructor: Mehdi Maadooliat

Chapter 6 (Part B)

Department of Mathematical and Statistical Sciences

CHAPTER 6 (PART B)

- Comparing Two Population Means
 - Independent Samples
 - Dependent Samples
- Two sample t-test (Independent Samples)
 - Pooled t-test
 - Unequal variance t-test
- Paired t-test (Dependent Samples)
- Power Analysis
 - Independent Samples
 - Dependent Samples
- Non-parametric Tests
 - Sign test (from Chapter 5, test for median M)
 - Wilcoxon Rank-Sum (or Mann–Whitney) Test (two independent samples)
 - Wilcoxon Signed-Rank Test (dependent samples)

COMPARING TWO DEPENDENT POPULATION MEANS (REMINDER)

Dependent Samples

 Here, there is only one group of subjects, but two different measurements are taken from this group.

Subject	Before	After
1	y_{11}	y_{21}
2	y_{12}	y_{22}
n	y_{1n}	y_{2n}

• Since the subjects are same for before and after measurements, the two samples are dependent.

COMPARING TWO DEPENDENT POPULATION MEANS (CONT'D)

Subjec t	Before (y ₁)	After (y ₂)	Difference $d = y_1 - y_2$
1	y_{11}	y_{21}	d_1
2	y_{12}	y_{22}	d_2
n	y_{1n}	y_{2n}	d_n

- μ_1 = Mean Before, μ_2 = Mean After
- $\bullet \qquad \mu_d = \mu_1 \mu_2$
- $H_0: \mu_1 = \mu_2 \equiv \mu_d = 0$
- $H_a: \mu_1 > \mu_2 \equiv \mu_d > 0$ or $\mu_1 < \mu_2 \equiv \mu_d < 0$

or
$$\mu_1 \neq \mu_2 \equiv \mu_d \neq 0$$

COMPARING TWO DEPENDENT POPULATION MEANS (CONT'D)

• Assumption: $n \ge 30$ or the differences are normally distributed.

• T.S.
$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

• Decision Rule: (df = n - 1)

- H_a : $\mu_d > 0$: Reject H_0 in favor of H_a if $t > t_\alpha$
- H_a : μ_d < 0: Reject H_0 in favor of H_a if $t < -t_\alpha$
- H_a : $\mu_d \neq 0$: Reject H_0 in favor of H_a if $|t| > t_{\alpha/2}$

 Note that this method is same as one sample t-test for the sample of differences. We call it paired t-test.

COMPARING TWO DEPENDENT POPULATION MEANS (CONT'D)

- p-values can be calculated in the similar manner.
- Confidence Interval for the difference $\mu_d = \mu_1 \mu_2$

$$\bar{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$$

- Example: Consider a drug that can be used to reduce blood pressure for the hypertensive individuals.
- Objective: Is this drug effective?
- Sample of 10 hypertensive individuals use the drug for four weeks.

Subject	Before y ₁	After y ₂	Difference $d = y_1 - y_2$
1	143	124	19
2	153	129	24
3	142	131	11
4	139	145	-6
5	172	152	20
6	176	150	26
7	7 155		30
8	8 149		7
9	9 140		-5
10	10 169		9

- $\bar{d} = 13.5$, $s_d = 12.48$
- Does the data provide sufficient evidence that the drug is effective in reducing the blood pressure?

EXAMPLE CONT'D

- $\mu_1 =$ Mean Before, $\mu_2 =$ Mean After
- $\mu_d = \mu_1 \mu_2$
- $H_0: \mu_1 = \mu_2 \equiv \mu_d = 0$
- $H_a: \mu_1 > \mu_2 \equiv \mu_d > 0$
- Assumption: Differences are normally distributed. This can be tested by normal probability plot of the differences.
 - In R: shapiro.test(d)
- Note that here the distribution of y_1 and y_2 is not important.

NORMAL PROBABILITY PLOT

- H_0 : Data is normally distributed
 - $P-Value < \alpha$, therefore Fail to reject H_0

• **TS.**
$$t = \frac{\overline{d}}{s_d/\sqrt{n}} = \frac{13.5}{\frac{12.48}{\sqrt{10}}} = 3.42$$

EXAMPLE CONT'D

- **Decision Rule:** $\alpha = 0.05, \ df = n 1 = 9$
- Reject H_0 in favor of H_a if $t > t_\alpha = 1.833$
- Conclusion: Is t>1.833? Yes, since t=3.42. We reject H_0 in favor of H_a , and conclude that the drug is effective in reducing blood pressure.
- Estimate the difference in the mean Blood Pressures using a 95% CI.
- Formula: $\bar{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$
- $df = 9, \frac{\alpha}{2} = 0.025$, $t_{\alpha/2} = 2.262$
- 95% CI: $13.5 \pm 2.262 \frac{12.48}{\sqrt{10}}$, $i.e. 4.57 < \mu_d < 22.42$

BOOK EXAMPLE: 6.8

 15 cars involved in accidents were taken to two garages (Garage I and Garage II).

TABLE 6.14

Repair estimates (in hundreds of dollars)

• Given $\alpha=0.05$, is there a significant difference between Garage I and Garage II?

Car	Garage I	Garage II	
1	17.6	17.3	
2	20.2	19.1	
3	19.5	18.4	
4	11.3	11.5	
5	13.0	12.7	
6	16.3	15.8	
7	15.3	14.9	
8	16.2	15.3	
9	12.2	12.0	
10	14.8 14.2		
11	21.3	21.0	
12	22.1	21.0	
13	16.9 16.1		
14	17.6 16.7		
15	18.4 17.5		
Totals:	als: $\bar{y}_1 = 16.85$ $\bar{y}_2 = 16.2$		
	$s_1 = 3.20$ s		

NORMAL PROBABILITY PLOTS

EXAMPLE 6.8 (CONT'D)

- Is it fine to do two independent sample t-test?
- NO
- WRONG ANALYSIS:
- Assume $\sigma_1 \neq \sigma_2$

Two-Sample T-Test and CI: Garage I, Garage II

```
N Mean StDev SE Mean
Garage I 15 16.85 3.20
                           0.83
Garage II 15 16.23 2.94
                           0.76
```

Two-sample T for Garage I vs Garage II

Difference = mu (Garage I) - mu (Garage II) Estimate for difference: 0.61 95% CI for difference: (-1.69, 2.92) T-Test of difference = 0 (vs not =): T-Value = 0.55 P-Value = 0.589 DF = 27

In R: t.test(exmp6.8\$Garage1,exmp6.8\$Garage2)

• Assume $\sigma_1 = \sigma_2$

```
Difference = mu (Garage I) - mu (Garage II)
Estimate for difference: 0.61
95% CI for difference: (-1.69, 2.91)
T-Test of difference = 0 (vs not =): T-Value = 0.55 P-Value = 0.589 DF = 28
Both use Pooled StDev = 3.0754
```

t.test(exmp6.8\$Garage1,exmp6.8\$Garage2, var.equal = T)

EXAMPLE 6.8 (CONT'D)

• Correct test is the paired t-test. Let $\,\mu_1=$ Garage I, $\,\mu_2=$ Garage II

•
$$\mu_d = \mu_1 - \mu_2$$

•
$$H_0: \mu_1 = \mu_2 \equiv \mu_d = 0$$

•
$$H_a: \mu_1 \neq \mu_2 \equiv \mu_d \neq 0$$

• **TS.**
$$t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{0.613}{\frac{0.394}{\sqrt{15}}}$$
$$t = 6.02$$

- Decision Rule (df = 14):
- Reject H_0 if $|t| > t_{\frac{\alpha}{2}}$

		Carana 1	C 2	D:ff=====	
L				Difference	
L	1	17.6	17.3	0.3	
L	2	20.2	19.1	1.1	
Г	3	19.5	18.4	1.1	
Г	4	11.3	11.5	-0.2	
Г	5	13.0	12.7	0.3	
	6	16.3	15.8	0.5	
	7	15.3	14.9	0.4	
	8	16.2	15.3	0.9	
Г	9	12.2	12.0	0.2	
Г	10	14.8	14.2	0.6	
	11	21.3	21.0	0.3	
	12	22.1	21.0	1.1	
Г	13	16.9	16.1	8.0	
	14	17.6	16.7	0.9	
	15	18.4	17.5	0.9	
<					

One-Sample T: Difference

In R: t.test(exmp6.8\$diff) t.test(exmp6.8\$Garage1, exmp6.8\$Garage2, paired = T)

Variable N Mean StDev SE Mean 95% CI T P Difference 15 0.613 0.394 0.102 (0.395, 0.832) 6.02 0.000

- 6.02 > 2.145, so we reject H_0 .
- There is a significant difference between garage estimates

POWER ANALYSIS

Independent Samples:

•
$$H_0: \mu_1 = \mu_2$$

• $H_a: \mu_1 > \mu_2$
• or $\mu_1 < \mu_2$ One-tail test
• or $\mu_1 \neq \mu_2$ Two-tail test

• The samples sizes $n_1=n_2=n$ needed to correctly discover a difference in testing of hypothesis with the power $P(\Delta_a)$ when the difference in the means is $\geq \Delta_a$ is given by

•
$$n_1=n_2=rac{2\sigma^2(z_{lpha}+z_{eta})^2}{\Delta^2}$$
 - One-tail test

$$n_1=n_2=rac{2\sigma^2(z_{lpha/2}+z_eta)^2}{\Delta^2}$$
 - Two-tail test

• Note that
$$\beta = 1 - Power$$

POWER ANALYSIS CONT'D

Dependent Samples:

- $H_0: \mu_d = 0$ • $H_a: \mu_d > 0$ • or $\mu_d < 0$ One-tail test • or $\mu_d \neq 0$ — Two-tail test
- The samples sizes n needed to correctly discover a difference in testing of hypothesis with the power $P(\Delta_a)$ when the difference in the means is $\geq \Delta_a$ is given by

$$n=rac{\sigma_d^2(z_lpha+z_eta)^2}{\Delta^2}$$
 - One-tail test

•
$$n = \frac{\sigma_d^2(z_{\alpha/2} + z_\beta)^2}{\Delta^2}$$
 - Two-tail test

• Note that
$$\beta = 1 - Power$$

BOOK EXAMPLE 6.10

 In building construction, the set-up time needed for concrete to reach solid state is an important factor. An additive is developed to speed up this set-up time. An experiment is to be designed to test if the additive does work.

Without Additive

With additive

 n_1 n_2

- How many sample runs $n_1=n_2$ need to be performed to correctly discover with 90% power that "With Additive" reduces the set-up time by testing hypothesis at $\alpha=0.05$ when the true average reduction is 1.5 hours or more?
- It is known from previous experience that $\sigma = 2.4 \ hours$.

•
$$H_0: \mu_1 = \mu_2$$
 vs. $H_a: \mu_1 > \mu_2$.

BOOK EXAMPLE 6.10 CONT'D

- Two independent sample:
 - Two-sample t-test

• Formula:
$$n_1 = n_2 = \frac{2\sigma^2(z_{\alpha} + z_{\beta})^2}{\Delta^2}$$

- $\alpha = 0.05, \beta = 1 Power = 1 0.90 = 0.10,$
- $\Delta = 1.5, \sigma = 2.4$

•
$$z_{\alpha} = 1.645$$
, $z_{\beta} = 1.28$

•
$$n_1 = n_2 = \frac{2(2.4^2)(1.645 + 1.28)^2}{1.5^2} = 43.8 \approx 44.$$

SUMMARY

Case 2: Two Numerical Variables - Population Standard Deviations unknown

	Independe		
	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	Paired Samples
Parameters of Interest:	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$
Confidence Interval Formula:	$\begin{split} \overline{x}_1 - \overline{x}_2 &\pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ df &= n_1 + n_2 - 2 \\ \text{, where} \\ s_p &= \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \end{split}$	$\begin{split} \overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ df &= \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2 (n_1 - 1) + c^2 (n_2 - 1)} \\ , \text{ where } c &= \frac{\frac{s_1^2}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \end{split}$	$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ with df = $n-1$ where the subscript " d " denotes the calculation is performed on the differences "Sample1" – "Sample2"
Name of Hypothesis Test, H_0	Two-sample T Test, H_0 : $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$	Two-sample T Test, $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$	Paired T Test, $H_{\rm 0}: \mu_{\rm l}=\mu_{\rm 2} \ \ {\rm or} \ \ H_{\rm 0}: \mu_{\rm l}-\mu_{\rm 2}=0$
Test Statistic Formula:	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t' = rac{\overline{x}_1 - \overline{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$	$t = \frac{\overline{d}}{s_d/\sqrt{n}}$ with df = $n - 1$
P-value:	$H_a: \mu_1 \neq \mu_2$, p -value = $2P(T \geq t)$ $H_a: \mu_1 > \mu_2$, p -value = $P(T \geq t)$ $H_a: \mu_1 < \mu_2$, p -value = $P(T \leq t)$		$H_a: \mu_1 \neq \mu_2$, p -value = $2P(T \geq t)$ $H_a: \mu_1 > \mu_2$, p -value = $P(T \geq t)$ $H_a: \mu_1 < \mu_2$, p -value = $P(T \leq t)$

WHAT IF ASSUMPTIONS ARE VIOLATED?

- In both one-sample and two-sample t-tests, we assumed that either the sample size is ≥ 30 or the samples are drawn from normal populations.
- What if n < 30, and the distribution is non-normal?
- In such cases, we usually use non-parametric tests.
- No assumptions on the distribution means no parameters.