

<u>Help</u>

sandipan_dey 🗸

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

☆ Course / Week 11: Orthogonal Projection, Low Rank Approximation,... / 11.3 Orthonorm...

()

11.3.2 Orthonormal Vectors (Continued)

□ Bookmark this page

Previous

■ Calculator

Week 11 due Dec 22, 2023 21:12 IST Completed

11.3.2 Orthonormal Vectors (Continued)

Homework 11.3.2.4

10.0/10.0 points (graded)

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ \checkmark \text{ Answer: 1} \\ 0 & 1 \end{bmatrix}$$

$$\checkmark \text{ Answer: 0}$$

$$\checkmark \text{ Answer: 0}$$

1.

$$\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ \checkmark \text{ Answer: 1} \\ 0 & 1 \end{bmatrix}$$

$$\checkmark \text{ Answer: 0}$$

$$\checkmark \text{ Answer: 0}$$

2.

3. The vectors
$$\begin{pmatrix} -\sin{(\theta)} \\ \cos{(\theta)} \end{pmatrix}$$
, $\begin{pmatrix} \cos{(\theta)} \\ \sin{(\theta)} \end{pmatrix}$ are mutually orthonormal.

TRUE
$$\checkmark$$
 Answer: TRUE

4. The vectors $\begin{pmatrix} \sin{(\theta)} \\ \cos{(\theta)} \end{pmatrix}$, $\begin{pmatrix} \cos{(\theta)} \\ -\sin{(\theta)} \end{pmatrix}$ are mutually orthonormal. True/False

TRUE \checkmark Answer: TRUE

Submit

Answers are displayed within the problem

Video 11.3.2 Part 5

TRUE

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: OK.

Well, from the insights from an earlier homework,

we know that this is just equal to the identity.

And similarly, notice that this is actually

▶ 0:00 / 0:00

▶ 2.0x X CC 66

Video

▲ Download video file

Transcripts

- **▲** Download SubRip (.srt) file
- **▲** Download Text (.txt) file

Homework 11.3.2.5

1/1 point (graded)

Let $q \in \mathbb{R}^m$ be a unit vector (which means it has length one). Then the matrix that projects vectors onto $\operatorname{Span}\left(\left\{q\right\}\right)$ is given by qq^{T} .

TRUE

✓ Answer: TRUE

The matrix that projects onto $\mathrm{Span}\left(\{q\}\right)$ is given by $q(q^Tq)^{-1}q^T$. But $q^Tq=1$ since q is of length one. Thus $q\left(q^Tq\right)^{-1}q^T=qq^T$.

Submit

Answers are displayed within the problem

Video 11.3.2 Part 6

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: So the answer is that this is true as well.

And why is that?

Well, the matrix that projects onto the span of q is given by that.

That's because the matrix that projects onto the span of vector a

was given by a, a transpose a inverse, a 💂

▶ 2.0x

X

CC

66

0:00 / 0:00

Video

▲ <u>Download video file</u>

⊞ Calculator

I ranscripts

- ▲ Download Text (.txt) file

Homework 11.3.2.5

1/1 point (graded)

Let $q \in \mathbb{R}^m$ be a unit vector (which means it has length one). Let $x \in \mathbb{R}^m$. Then the component of x in the direction of q (in $\mathrm{Span}\left(\{q\}\right)$) is given by q^Txq .

TRUE ✓ Answer: TRUE

In the last exercise we saw that the matrix that projects onto $\mathrm{Span}\left(\{q\}\right)$ is given by qq^T . Thus, the component of x in the direction of q is given by $qq^Tx=q\left(q^Tx\right)=q^Txq$ (since q^Tx is a scalar).

Submit

Answers are displayed within the problem

Video 11.3.2 Part 7

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: Well, in the last exercise,

we saw that multiplying by matrix Q Q transpose projects onto the span of Q.

So if you multiply that times x, we get this.

But then we recognize that the result of the product is just a scalar.

Column con move that to the front

Video

♣ Download video file

▶ 0:00 / 0:00

Transcripts

- ▲ Download Text (.txt) file

Homework 11.3.2.6

10.0/10.0 points (graded)

Let $Q \in \mathbb{R}^{m \times n}$ have orthonormal columns (which means $Q^TQ = I$). Then the matrix that projects vectors onto the column space of Q, $\mathcal{C}(Q)$, is given by QQ^T .

▶ 2.0x

CC

TRUE ✓ Answer: TRUE

■ Calculator

The matrix that projects onto $\mathcal{C}(Q)$ is given by $Q(Q^TQ)^{-1}Q^T$. But then $Q\underbrace{(Q^TQ)^{-1}}_{I^{-1}=I}Q^T=QQ^T$.

Submit

Answers are displayed within the problem

Video 11.3.2 Part 8

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: And this turns out to be true as well.

And why is that?

66

CC

X

▶ 2.0x

Well, we know that for general matrix A, the formula

for projecting onto the column space of A is given by this matrix right here.

If we substitute ${\bf Q}$ in for ${\bf A},$ we get this

▶ 0:00 / 0:00

Video

▲ Download video file

Transcripts

- ▲ Download SubRip (.srt) file
- ▲ Download Text (.txt) file

Homework 11.3.2.7

10.0/10.0 points (graded)

Let $Q\in\mathbb{R}^{m imes n}$ have orthonormal columns (which means $Q^TQ=I$). Then the matrix that projects vectors onto the space orthogonal to the columns of Q, $\mathcal{C}(Q)^\perp$, is given by $I-QQ^T$.

TRUE ~

✓ Answer: TRUE

In the last problem we saw that the matrix that projects onto $\mathcal{C}(Q)$ is given by QQ^T . Hence, the matrix that projects onto the space orthogonal to $\mathcal{C}(Q)$ is given by $I-QQ^T$.

Submit

1 Answers are displayed within the problem

■ Calculator

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Idea Hub

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>