Chapter 3 (Part 1) of "The Book of Why"

THE SOUNTY OF SAME

From Evidence to Causes—Reverend Bayes meets Mr. Holmes

Tomás Aragón and James Duren (Version F; Last compiled August 4, 2019) June 6, 2019, San Francisco, CA

Health Officer, City & County of San Francisco Director, Population Health Division (PHD) San Francisco Department of Public Health https://taragonmd.github.io/ (GitHub page)

PDF slides produced in Rmarkdown LATEX Beamer—Metropolis theme

A patient presents with chest pain to clinical provider.

The patient has a history of coronary artery disease.

Figure 1: A patient with a history of coronary artery disease (CAD) presents to a provider complaining of prolonged chest pain (CP). The provider's differential diagnosis (hypotheses) are myocardial infarction (MI) and gastroesophageal reflux disease (GERD). The provider sends a blood specimen for a Troponin Test (TT) to "rule out" a MI.

Sherlock Holmes: deduction vs. induction

Deduction vs. induction

"It's elementary, my dear Watson."

So spoke Sherlock Holmes . . . Holmes performed not just **deduction**, which works from a hypothesis to a conclusion. His great skill was **induction**, which works in the opposite direction, from evidence to hypothesis. 2

Multi-cause reasoning (an extension of causal reasoning)

"When you have eliminated the impossible, whatever remains, however improbable, must be the truth." Having *induced* several hypothesis, Holmes eliminated them one by one in order to *deduce* (by elimination) the correct one.

¹Causal reasoning

²Evidential reasoning

Synonyms

Graph	Conditional prob.	Probability	Synonym	Reasoning type
$H \to E$	$P(E \mid H)$	Forward prob.	deduction	causal reasoning ³
$H\toE$	$P(H \mid E)$	"Inverse" prob.	induction	evidential reasoning ⁴

³Also called "predictive" reasoning

⁴Also called "diagnostic" reasoning

Bayes' theorem for causal Hypothesis ullet \to ullet Evidence

Starting from left to right, and then from right to left:

Reasoning	N	Probability	Description	
Causal reasoning	1	P(H)	Prior probability (margin probability of H)	
leads to	2	$P(E \mid H)$	Likelihood (TP [sensitivity], FP [1-specificity])	
Evidential reasoning	3	P(E)	Marginal probability of E	
leads to	4	$P(H \mid E)$	Posterior probability (conditional probability)	

For Bayes' theorem just substitute probability expressions from table above:

$$(4) = \frac{(1)(2)}{(3)}$$

5

Bayes' theorem for causal (Hypothesis) \rightarrow (Evidence)

Public health examples: Cause (hypothesis) $\bullet \to \bullet$ Effect (evidence)

- Exposure ullet \to ullet Disease
- Disease ullet o Test result
- Smoking ullet o Lung cancer
- Jury trial: Guilty ullet \to ullet Evidence
- Citrus fruit consumption ullet o o Scurvy
- Green house gases ullet o Global warming
- Global warming ullet o Extreme weather events
- Implicit (nonconscious) bias ullet o Discrimination

Reverend Thomas Bayes' pool table example

L =length of pool table

x = feet from left end of table

$$L$$
 (cause) $\rightarrow x$ (effect)

Forward probability $P(x \mid L)$

"Inverse" probability $P(L \mid x)$

Tea-Scones example (default: assume probabilistic dependence)

Customer	Tea	Scones
1	Yes	Yes
2	No	Yes
3	No	No
4	No	No
5	Yes	Yes
6	Yes	No
7	Yes	No
8	Yes	Yes
9	Yes	No
10	Yes	No
11	No	No
12	Yes	Yes

Tea	Scones			
	No	Yes	Total	
No	3	1	4	
Yes	4	4	8	
Total	7	5	12	

$$P(X,Y,T) = P(X)P(T)P(Y\mid X,T)$$

Tea-Scones example (default: assume probabilistic dependence)

$$P(\mathsf{Tea}) = P(T)$$
 $P(\mathsf{Scone}) = P(S)$
 $P(\mathsf{Tea} \cap \mathsf{Scone}) = P(T, S)$
 $= P(S, T)$

$$P(S,T) = P(T)P(S \mid T)$$
 (1

$$P(T,S) = P(S)P(T \mid S)$$
 (2)

Bayes' Theorem

$$P(T)P(S \mid T) == P(S)P(T \mid S)$$

$$P(S \mid T) = \frac{P(S)P(T \mid S)}{P(T)}$$

$$P(\mathsf{Hypothesis} \mid \mathsf{Evidence}) = \frac{P(\mathsf{Hypothesis})P(\mathsf{Evidence} \mid \mathsf{Hypothesis})}{P(\mathsf{Evidence})}$$

$$P(\mathsf{Hypothesis} \mid \mathsf{Evidence}) = \frac{P(\mathsf{Hypothesis})P(\mathsf{Evidence} \mid \mathsf{Hypothesis})}{P(\mathsf{Evidence})}$$

Excerpt from "The Book of Why" (p. 101)

"This is perhaps the most important role of Bayes' rule in statistics: we can estimate the conditional probability directly in one direction, for which our judgment is more reliable (*deduction*),⁵ and use mathematics to derive the conditional probability in the other direction, for which our judgment is rather hazy (*induction*)."⁶

⁵causal reasoning

⁶evidential reasoning

$$P(S \mid T) = \frac{P(S,T)}{P(T)} = \frac{P(S)P(T \mid S)}{P(T)}$$

$$P(\mathsf{Hypothesis} \mid \mathsf{Evidence}) = \frac{P(\mathsf{Hypothesis})P(\mathsf{Evidence} \mid \mathsf{Hypothesis})}{P(\mathsf{Evidence})}$$

Excerpt from "The Book of Why" (p. 103)

[Bayes' rule] acts, in fact, as a normative rule for updating beliefs (causal hypotheses) in response to evidence. . . . [T]he belief a person attributes to S (cause) after discovering T (evidence) is never lower than the degree of belief that person attributes to S AND T before discovering T. Also, it implies that the more surprising the evidence T—that is, the smaller P(T) is—the more convinced one should become of its cause S.

Example: Mammogram for breast cancer screening

Cause
$$\bullet \rightarrow \bullet$$
 Effect Disease $\bullet \rightarrow \bullet$ Test

$$\begin{split} P(\mathsf{Disease} \mid \mathsf{Test}) &= \frac{P(\mathsf{Disease}, \mathsf{Test})}{P(\mathsf{Test})} \\ &= \frac{P(\mathsf{Disease})P(\mathsf{Test} \mid \mathsf{Disease})}{P(\mathsf{Test})} \\ &= P(\mathsf{Disease})(\frac{P(\mathsf{Test} \mid \mathsf{Disease})}{P(\mathsf{Test})}) \\ &= P(\mathsf{Disease})(\textbf{Likelihood Ratio}) \end{split}$$

Bayes' theorem example: Mammogram for breast cancer screening

Cause
$$\bullet \rightarrow \bullet$$
 Effect Disease $\bullet \rightarrow \bullet$ Test

$$\begin{split} P(\mathsf{Disease} \mid \mathsf{Test}) &= \frac{P(\mathsf{Disease}, \mathsf{Test})}{P(\mathsf{Test})} \\ &= \frac{P(\mathsf{Disease})P(\mathsf{Test} \mid \mathsf{Disease})}{P(\mathsf{Test})} \\ &= \frac{P(\mathsf{Disease})P(\mathsf{Test} \mid \mathsf{Disease})}{P(\mathsf{Test})} \\ &= \frac{P(D)P(T \mid D)}{P(D)P(T \mid D) + P(\bar{D})P(T \mid \bar{D})} \end{split}$$

Bayes' theorem example: Mammogram for breast cancer screening

Cause
$$\bullet \to \bullet$$
 Effect Disease $\bullet \to \bullet$ Test

$$\begin{split} P(D+\mid T+) &= \textbf{Positive Predictive Value} \\ &= \frac{P(D+)P(T+\mid D+)}{P(D+)P(T+\mid D+) + P(D-)P(T+\mid D-)} \\ &= \frac{P(D+)(\text{True Positive})}{P(D+)(\text{True Positive}) + P(D-)(\text{False Positive})} \\ &= \frac{P(D+)(\text{Sensitivity})}{P(D+)(\text{Sensitivity}) + P(D-)(1-\text{Specificity})} \end{split}$$

Bayes' theorem example: Mammogram for breast cancer screening

Disease
$$ullet$$
 o Test

A 43 woman has a positive mammogram (T+). What is the probability of breast cancer given the positive test $(P(D+ \mid T+))$? What do we know?

$$P(D+) = 1/700$$
 for 43 year old women

$$P(T+ \mid D+) = 0.73 = \text{True Positive} = \text{Sensitivity}$$

$$P(T+\mid D-)=0.12=$$
 False Positive $=1$ - Specificity

$$P(D+ \mid T+) = \frac{P(D+)(TP)}{P(D+)(TP) + P(D-)(FP)}$$
$$= \frac{(1/700)(0.73)}{(1/700)(0.73) + (1-1/700)(0.12)} \approx 0.009$$

Bayes' theorem: Review sensitivity and specificity of a diagnostic test

Operating characteristics of a diagnostic test

Sensitivity =
$$P(T+ \mid D+) = \frac{TP}{TP+FN}$$

Specificity =
$$P(T - | D -) = \frac{TN}{TN + FP}$$

Remember "SnOut" and "SpIn"

SnOut: Use a very sensitive test (very low FN) to "rule out" a hypothesis. That is, when we have *confidence in a negative result* we can use the test to *rule out* a hypothesis.

SpIn: Use a very specific test (very low FP) to "rule in" a hypothesis. That is, when we have *confidence in a positive result* we can use the test to *rule in* a hypothesis.

Bayes' rule is a distillation of the scientific method (TBoW, p. 108)

- 1. Formulate a causal hypothesis
- 2. Deduce a testable consequence of the hypothesis (causal reasoning)
- 3. Design an evaluation (study) and collect evidence
- 4. Update your belief in the causal hypothesis (evidential reasoning)

Bayes' theorem for causal (Disease) \rightarrow (Test)

Bayesian networks are nodes with probabilistic dependence

Here is a **non-causal** Bayesian network. Smelling smoke increases the *credibility* (belief) of a fire nearby, but smoke does not cause fire.

Here is a **causal** Bayesian network. Fire *causes* smoke. Smoke is *evidence* of a fire (cause). Causal BNs have causal and evidential implications.

Directed acyclic graphs (DAGs) are **causal Bayesian networks**. The mammography example was a causal Bayesian network.

Bayesian networks generalize Bayes' theorem for complex causal graphs Core DAG patterns for three nodes and two edges

Figure 2: Core DAG patterns for three nodes and two edges: (a) chain (sequential cause), (b) fork (common cause), and (c) collider (common effect).

Recap: A patient presents with chest pain to clinical provider.

The patient has a history of coronary artery disease.

Figure 3: A patient with a history of coronary artery disease (CAD) presents to a provider complaining of prolonged chest pain (CP). The provider's differential diagnosis (hypotheses) are myocardial infarction (MI) and gastroesophageal reflux disease (GERD). The provider sends a blood specimen for a Troponin Test (TT) to "rule out" a MI. The pattern $CAD \rightarrow MI \rightarrow TT$ is a **chain** (sequential cause); $TT \leftarrow MI \rightarrow CP$ is a **fork** (common cause or confounder); and $MI \rightarrow CP \leftarrow GERD$ is a **collider** (common effect). Providers reason like Sherlock Holmes.