WHAT IS CLAIMED IS:

1	1. A method for making a colorful three dimensional model comprising steps of
2	inputting three dimensional original measured data;
3	reconstructing mesh models with regular data;
4	abstracting color information;
5	harmonizing color of texture images; ; and
6	pixel blending to overlapped texture images between the mesh models.
7	2. The method as claimed in claim 1, wherein the mesh model reconstructing
8	step comprises:
9	selecting a generic model according to the original measured data;
10	adjusting dimension and spatial position of the generic model to overlap with
11	the original measured data; and
12	mapping data of the generic model with the original measured data to deform
13	the generic model data to be close to the original measured data.
14	3. The method as claimed in claim 1, wherein the color abstracting step is to
15	establish texture-mapping relationship between two dimensional image of the original
16	measure data and the generic model, which comprises:
17	seeking mapping points of mesh points of the generic model on the original
18	measured data and triangles having the mapping points;
19	calculating corresponding texture coordinates of the mapping points; and
20	checking continuity of the triangles on the texture images.
21	4. The method as claimed in claim 1, wherein the color harmonizing step
22	comprises:
23	rearranging sequence of measured data according to the overlapped relationship

i	and the magnitude of the overlapping area to be $M' = \{M'_1, M'_2,, M'_n\}$, wherein M'_n
2	represents data consisting of n three dimensional mesh models M';
3	calculating color adjustment A _i (i=1,2,3n) of the texture image of each original
4	measured data; and
5	adjusting color average of the overlapped area.
6	5. The method as claimed in claim 2, wherein the color harmonizing step
7	comprises:
8	rearranging sequence of measured data according to the overlapped relationship
9	and the magnitude of the overlapping areat to be $M' = \{M'_1, M'_2,, M'_n\}$, wherein M'_n
10	represents data consisting of n three dimensional mesh models M';
11	calculating color adjustment A _i (i=1,2,3n) of the texture image of each original
12	measured data; and
13	adjusting color average of the overlapped area.
14	6. The method as claimed in claim 3, wherein the color harmonizing step
15	comprises:
16	rearranging sequence of measured data according to the overlapped relationship
17	and the magnitude of the overlapping area to be $M' = \{M'_1, M'_2,, M'_n\}$, wherein M'_n
18	represents data consisting of n three dimensional mesh models M';
19	calculating color adjustment A _i (i=1,2,3n) of the texture image of each original
20	measured data; and
21	adjusting color average of the overlapped area.
22	7. The method as claimed in claim 4, wherein the color harmonizing step
23	comprises:
24	rearranging sequence of measured data according to the overlapped relationship

- and the magnitude of the overlapping area to be $M' = \{M'_1, M'_2, ..., M'_n\}$, wherein M'_n
- 2 represents data consisting of n three dimensional mesh models M';
- 3 calculating color adjustment A_i (i=1,2,3...n) of the texture image of each original
- 4 measured data; and
- 5 adjusting color average of the overlapped area.
- 8. The method as claimed in claim 4, wherein $A_i = (A_{i,1} \times W_{i,1} + + A_i, A_{i-1} \times A_i)$
- 7 $W_{i}, W_{i-1})/(W_{i,1} + ... + W_{i,i-1})$
- 8 where W_i is mesh influenced weight value.
- 9. The method as claimed in claim 5, wherein $A_i = (A_{i,1} \times W_{i,1} + ... + A_i, A_{i-1} \times A_i)$
- 10 $W_{i}, W_{i-1})/(W_{i,1} + ... + W_{i,i-1})$
- where W_i is mesh influenced weight value.
- 12 10. The method as claimed in claim 6, wherein $A_i = (A_{i,1} \times W_{i,1} + + A_i, A_{i-1} \times A_i)$
- 13 $W_{i}, W_{i-1}/(W_{i,1}+...+W_{i,i-1})$
- where W_i is mesh influenced weight value.
- 11. The method as claimed in claim 7, wherein $A_i = (A_{i,1} \times W_{i,1} + + A_i, A_{i-1} \times A_i)$
- 16 $W_{i}, W_{i-1})/(W_{i,1}+...+W_{i,i-1})$
- where W_i is mesh influenced weight value.
- 12. The method as claimed in claim 1, wherein the pixel blending step to the
- 19 overlapped texture image comprises:
- seeking the overlapped images covered by each triangle within overlapped
- 21 areas;
- calculating distances of vertices of each of the triangles within the overlapped
- 23 areas to nearest edges of corresponding mesh; and
- calculating pixel weight average to mapping area corresponding to each

1	triangle.
2	13. The method as claimed in claim 2, wherein the pixel blending step to the
3	overlapped texture image comprises:
4	seeking the overlapped images covered by each triangle within overlapped
5	areas;
6	calculating distances of vertices of each of the triangles within the overlapped
7	areas to nearest edges of corresponding mesh; and
8	calculating pixel weight average to mapping area corresponding to each
9	triangle.
10	14. The method as claimed in claim 3, wherein the pixel blending step to the
11	overlapped texture image comprises:
12	seeking the overlapped images covered by each triangle within overlapped
13	areas;
14	calculating distances of distal points of each of the triangles within the
15	overlapped areas to nearest edges of corresponding mesh; and
16	calculating pixel weight average to mapping area corresponding to each
17	triangle.
18	15. The method as claimed in claim 4, wherein the pixel blending step to the
19	overlapped texture image comprises:
20	seeking the overlapped images covered by each triangle within overlapped
21	areas;
22	calculating distances of vertices of each of the triangles within the overlapped
23	areas to nearest edges of corresponding mesh; and
24	calculating pixel weight average to mapping area corresponding to each

1	triangle.
2	16. The method as claimed in claim 8, wherein the pixel blending step to the
3	overlapped texture image comprises:
4	seeking the overlapped images covered by each triangle within overlapped
5	areas;
6	calculating distances of vertices of each of the triangles within the overlapped
7	areas to nearest edges of corresponding mesh; and
8	calculating pixel weight average to mapping area corresponding to each
9	triangle.
10	17. The method as claimed in claim 11, wherein the pixel blending step to the
11	overlapped texture image comprises:
12	seeking the overlapped images covered by each triangle within overlapped
13	areas;
14	calculating distances of vertices of each of the triangles within the overlapped
15	areas to nearest edges of corresponding mesh; and
16	calculating pixel weight average to mapping area corresponding to each
17	triangle.