Pure Mathematics 2

Solution Bank

Exercise 7A

1 **a**
$$f(x) = 3x^2 + 8x + 2$$

 $f'(x) = 6x + 8$
If $f'(x) \ge 0$ then
 $6x + 8 \ 0$
 $6x \ge -8$
 $x - \frac{4}{3}$

So f(x) is increasing for $x \ge -\frac{4}{3}$.

b
$$f(x) = 4x - 3x^2$$

 $f'(x) = 4 - 6x$
If $f'(x) \ge 0$ then $4 - 6x \ge 0$
 $4 \ge 6x$
 $x \le \frac{4}{6}$
 $x \le \frac{2}{3}$

So f(x) is increasing for $x \le \frac{2}{3}$.

c
$$f(x) = 5 - 8x - 2x^2$$

 $f'(x) = -8 - 4x$
If $f'(x) \ge 0$ then
 $-8 - 4x \ge 0$
 $-8 \ge 4x$
 $x \le -2$

So f(x) is increasing for $x \le -2$.

d
$$f(x) = 2x^3 - 15x^2 + 36x$$

 $f'(x) = 6x^2 - 30x + 36$
If $f'(x) \ge 0$ then
 $6x^2 - 30x + 36 \ge 0$
 $6(x^2 - 5x + 6) \ge 0$
 $6(x - 2)(x - 3) \ge 0$
Considering the 3 region

Considering the 3 regions:

$$x \le 2 \qquad 2 \le x \le 3 \qquad x \ge 3$$

$$6(x-2)(x-3) \quad +ve \qquad -ve \qquad +ve$$
So $x \le 2$ or $x \ge 3$

So f(x) is increasing for $x \le 2$ and $x \ge 3$.

e
$$f(x) = 3 + 3x - 3x^2 + x^3$$

 $f'(x) = 3 - 6x + 3x^2$
If $f'(x) \ge 0$ then
 $3 - 6x + 3x^2 \ge 0$
 $3(1 - 2x + x^2) \ge 0$
 $3(1 - x)^2 \ge 0$
So $f(x)$ is increasing for $x \in \mathbb{R}$.

1 **f** $f(x) = 5x^3 + 12x$ $f'(x) = 15x^2 + 12$ If $f'(x) \ge 0$ then $15x^2 + 12 \ge 0$ This is true for all real values of x. So f(x) is increasing for $x \in \mathbb{R}$.

g
$$f(x) = x^4 + 2x^2$$

 $f'(x) = 4x^3 + 4x$
If $f'(x) \ge 0$ then
 $4x^3 + 4x \ge 0$
 $4x(x^2 + 1) \ge 0$
 $x \ge 0$
So $f(x)$ is increasing for $x \ge 0$.

h
$$f(x) = x^4 - 8x^3$$

 $f'(x) = 4x^3 - 24x^2$
If $f'(x) \ge 0$ then
 $4x^3 - 24x^2 \ge 0$
 $4x^2(x - 6) \ge 0$
 $x \ge 6$
So $f(x)$ is increasing for $x \ge 6$.

$$f'(x) = 2x - 9$$
If $f'(x) \le 0$ then
$$2x - 9 \le 0$$

$$2x \le 9$$

$$x \le \frac{9}{2}$$
So $f(x)$ is decreasing for $x \le \frac{9}{2}$.

b
$$f(x) = 5x - x^2$$

 $f'(x) = 5 - 2x$
If $f'(x) \le 0$ then
 $5 - 2x \le 0$
 $2x \ge 5$
 $x \ge \frac{5}{2}$

2 **a** $f(x) = x^2 - 9x$

So f(x) is decreasing for $x \ge \frac{5}{2}$.

c
$$f(x) = 4 - 2x - x^2$$

 $f'(x) = -2 - 2x$
If $f'(x) \le 0$ then
 $-2 - 2x \le 0$
 $2x \ge -2$
 $x \ge -1$

So f(x) is decreasing for $x \ge -1$.

1

Pure Mathematics 2

Solution Bank

2 **d** $f(x) = 2x^3 - 3x^2 - 12x$ $f'(x) = 6x^2 - 6x - 12$ If $f'(x) \le 0$ then $6x^2 - 6x - 12 \le 0$ $6(x^2 - x - 2) \le 0$

$$6(x-2)(x+1) \le 0$$

Considering the 3 regions:

$$x \le -1 \qquad -1 \le x \le 2 \qquad x \ge 2$$

$$6(x-2)(x+1) \qquad +\text{ve} \qquad -\text{ve} \qquad +\text{ve}$$

$$\text{So } -1 \le x \le 2$$

So f(x) is decreasing on the interval [-1, 2].

e $f(x) = 1 - 27x + x^3$ $f'(x) = -27 + 3x^2$ If $f'(x) \le 0$ then $-27 + 3x^2 \le 0$ $3x^2 \le 27$ $x^2 \le 9$ $-3 \le x \le 3$

So f(x) is decreasing on the interval [-3, 3].

f $f(x) = x + 25x^{-1}$ $f'(x) = 1 - \frac{25}{x^2}$ If f'(x) < 0 then

If
$$f'(x) \le 0$$
 then
$$1 - \frac{25}{x^2} \le 0$$

$$1 \le \frac{25}{x^2}$$

$$x^2 \leq \frac{x^2}{25}$$

$$\begin{array}{c} x - 23 \\ -5 \le x \le 5 \end{array}$$

f(x) is not defined for x = 0.

So f(x) is decreasing on the intervals [-5, 0) and (0, 5].

 $\mathbf{g} \quad \mathbf{f}(x) = x^{\frac{1}{2}} + 9x^{-\frac{1}{2}}$ $\mathbf{f}'(x) = \frac{1}{2}x^{-\frac{1}{2}} - 9 \times \frac{1}{2}x^{-\frac{3}{2}}$ If $\mathbf{f}'(x) \le 0$ then $\frac{1}{2}x^{-\frac{1}{2}} - 9 \times \frac{1}{2}x^{-\frac{3}{2}} \le 0$ $\frac{1}{2}x^{-\frac{1}{2}} - \frac{9}{2}x^{-\frac{3}{2}} \le 0$ $\frac{x^{-\frac{3}{2}}}{2}(x - 9) \le 0$

f(x) is defined for x > 0.

 $f'(x) \le 0$ for $x \le 9$, so f(x) is decreasing on the interval (0, 9].

2 h $f(x) = x^{2}(x+3)$ $= x^{3} + 3x^{2}$ $f'(x) = 3x^{2} + 6x$ If $f'(x) \le 0$ then $3x^{2} + 6x \le 0$ $3x(x+2) \le 0$

Considering the 3 regions:

$$x \le -2 \quad -2 \le x \le 0 \quad x \ge 0$$

$$3x(x+2) \quad +ve \quad -ve \quad +ve$$
So $f(x)$ is decreasing on the interval $[-2, 0]$.

- 3 $f(x) = 4 x(2x^2 + 3) = 4 2x^3 3x$ $f'(x) = -6x^2 3$ $x^2 \ge 0 \text{ for all } x \in \mathbb{R} \text{ , so } -6x^2 3 \le 0 \text{ for all } x \in \mathbb{R} \text{ .}$ Therefore, f(x) is decreasing for all $x \in \mathbb{R}$.
- 4 **a** $f(x) = x^2 + px$ $f'(x) = 2x + p \ge 0 \text{ when } -1 \le x \le 1$ When x = -1, $f'(x) = -2 + p \ge 0$, so $p \ge 2$ So for $f'(x) \ge 0$, $p \ge 2$ e.g. p = 3When x = 1, $f'(x) = 2 + p \ge 0$, so $p \ge -2$ However, $p \ge 2$ to work with x = -1.
 - **b** Using the proof from part **a**, any value $p \ge 2$ will work.