One way ANOVA

Session 3

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Recap

F tests

Parametrizations and interpretation

Planned comparisons and *post-hoc* tests

Refresher on hypothesis tests

General recipe of hypothesis testing

(1) Define variables

(5) Compute the *p*-value

(2) Write down hypotheses

(6) Conclude (reject/fail to reject)

(3) Choose/compute a test statistic

(7) Report findings

(4) Benchmark

Level

Level = probability of judicial error Analyst fixes **level** α **before** the experiment.

Choose α as small as possible (don't condemn the innocent!) (typical value is 5%)

Reject \mathscr{H}_0 if p-value less than lpha

Errors

Confidence intervals

Test statistics are standardized,

- Good for comparisons with benchmark
- typically meaningless (standardized = unitless quantities)

Two options for reporting:

- p-value: probability of more extreme outcome if no mean difference
- confidence interval: set of all values for which we fail to reject the null hypothesis at level lpha for the given sample

Interpretation of confidence intervals

confidence interval = [lower, upper] units

Interpretation: under the null, if we repeat the experiments 95%, of intervals will contain the true value (if model correctly calibrated)

Analogy: coin toss

One way analysis of variance

F-test for one way ANOVA

Global null hypothesis

No difference between treatments

- ullet \mathscr{H}_0 (null): all of the K treatment groups have the same average μ
- \mathcal{H}_a (alternative): at least two treatments have different averages

F-test statistic

Omnibus test

With K groups and n observations, the statistic is

$$F = rac{ ext{between sum of squares}/(K-1)}{ ext{within sum of squares}/(n-K)}$$

The null distribution (benchmark) is F(K-1,n-K).

Why does it work?

Denote

- y_{ik} is observation i of group k
- $\widehat{\mu}_1,\ldots,\widehat{\mu}_K$ the sample average of groups $1,\ldots,K$
- $\widehat{\mu}$ is overall sample mean

Decomposing variability into bits

$$\sum_{i} \sum_{k} (y_{ik} - \widehat{\mu})^2 = \sum_{i} \sum_{k} (y_{ik} - \widehat{\mu}_k)^2 + \sum_{k} n_i (\widehat{\mu}_k - \widehat{\mu})^2.$$
total sum of squares within sum of squares between sum of squares

null model

alternative model

added variability

Degrees of freedom

The parameters of the null distribution are called degrees of freedom

- ullet K-1 is the number of constraints imposed by the null
- ullet n-K is the number of observations minus number of mean parameters estimated under alternative

Idea of *F*-statistic: under the null, both numerator and denominator are variance estimators.

- but the numerator is more variable...
- ullet the F ratio should be approximately one on average

Parametrizations and interpretation

Parametrization 1: sample averages

Most natural parametrization, not useful for test

- Sample sizes in each group: n_1, \ldots, n_K , are known.
- ullet sample average of each treatment group: $\widehat{\mu}_1,\ldots,\widehat{\mu}_K$.

$$K$$
 means = K parameters

Overall mean is

$$n\widehat{\mu} = n_1\widehat{\mu}_1 + \cdots + n_K\widehat{\mu}_K$$

Parametrization 2: contrasts

In terms of differences, relative to a baseline category j

- Intercept = sample mean $\widehat{\mu}_j$ Coefficient for group $k \neq j$: $\widehat{\mu}_k \widehat{\mu}_j$
 - \circ difference between averages of group k and baseline

In **R**, the baseline is the smallest alphanumerical value.

```
lm(response ~ group)
```

Parametrization 3: sum-to-zero

In terms of differences, relative to average of $\widehat{\mu}_1,\ldots,\widehat{\mu}_K$

- Intercept = $(\widehat{\mu}_1 + \cdots + \widehat{\mu}_K)/K$
- Coefficient for group k: $\widehat{\mu}_k$ minus intercept

In **R**, the last factor level is dropped by default.

```
lm(response ~ group, contrasts = contr.sum(group))
```

Warning: Intercept $eq \widehat{\mu}$ unless the sample is balanced

Comparison for the arithmetic example

group	mean	contrasts	sum-to-zero
intercept		19.66	21.00
control 1	19.66		-1.33
control 2	18.33	-1.33	-2.66
praised	27.44	7.77	6.44
reproved	23.44	3.77	2.44
ignored	16.11	-3.55	

Planned comparisons and posthoc tests

Planned comparisons

Oftentimes, we are not interested in the global null hypothesis.

 Can formulate planned comparisons at registration time for effects of interest

What is the scientific question of interest?

Arithmetic example

Setup group 2 group 1 group 3 (control) (praise, reprove, ignore) (control)

Hypothesis of interest

- \mathscr{H}_{01} : $\mu_{\mathrm{praise}} = \mu_{\mathrm{reproved}}$ (attention)
 \mathscr{H}_{02} : $\frac{1}{2}(\mu_{\mathrm{control}_1} + \mu_{\mathrm{control}_2}) = \mu_{\mathrm{praised}}$ (encouragement)

Contrasts

With placeholders for each group, write $\mathscr{H}_{01}:\mu_{ ext{praised}}=\mu_{ ext{reproved}}$ as

$$0 \cdot \mu_{ ext{control}_1}$$
 + $0 \cdot \mu_{ ext{control}_2}$ + $1 \cdot \mu_{ ext{praised}}$ - $1 \cdot \mu_{ ext{reproved}}$ + $0 \cdot \mu_{ ext{ignored}}$

The sum of the coefficients, (0, 0, 1, -1, 0), is zero.

Contrast = sum-to-zero constraint

Similarly, for
$$\mathscr{H}_{02}$$
: $\frac{1}{2}(\mu_{\mathrm{control}_1} + \mu_{\mathrm{control}_2}) = \mu_{\mathrm{praise}}$

$$\frac{1}{2} \cdot \mu_{\mathrm{control}_1} + \frac{1}{2} \cdot \mu_{\mathrm{control}_2} - 1 \cdot \mu_{\mathrm{praised}} + 0 \cdot \mu_{\mathrm{reproved}} + 0 \cdot \mu_{\mathrm{ignored}}$$

The contrast vector $\left(\frac{1}{2},\frac{1}{2},-1,0,0\right)$ sums to zero.

Equivalent formulation is obtained by picking (1,1,-2,0,0)

Contrasts in R

```
library(emmeans)
linmod <- lm(score ~ group, data = arithmetic)</pre>
linmod_emm <- emmeans(linmod, specs = 'group')</pre>
contrast_specif <- list(</pre>
  controlvspraised = c(0.5, 0.5, -1, 0, 0),
  praisedvsreproved = c(0, 0, 1, -1, 0)
contrasts res <-
  contrast(object = linmod_emm,
                     method = contrast_specif)
# Obtain confidence intervals instead of p-values
confint(contrasts_res)
```

Post-hoc tests

Maybe there is some difference between groups?

Unplanned comparisons: go fishing...

Comparing all pairwise differences =
$$\binom{K}{2}$$
 tests

With K=5 groups, we get 10 pairwise comparisons.

```
emmeans(modlin, pairwise ~ group)
```

If there were no differences between the groups, how many do we expect to find significant by chance with lpha=0.1?

Pairwise differences and t-tests

Technical aside

The pairwise differences (p-values) and confidence intervals for groups j and k are based on the t-statistic:

$$t = \frac{\text{estimated - postulated difference}}{\text{uncertainty}} = \frac{(\widehat{\mu}_j - \widehat{\mu}_k) - (\mu_j - \mu_k)}{\text{se}(\widehat{\mu}_j - \widehat{\mu}_k)}$$

which has a null $\mathsf{St}(n-k)$ distribution.

The standard error $\mathbf{se}(\widehat{\mu}_j-\widehat{\mu}_k)$ uses the pooled variance estimate (based on all groups).

Null distribution

The blue area defines the set of values for which we fail to reject null \mathcal{H}_0 . All values of t falling in the red aread lead to rejection at level 5%.

t-tests

If we postulate $\Delta_{jk}=\mu_j-\mu_k=0$, the test statistic becomes

$$t = rac{(\widehat{\Delta}_{jk}) - 0}{\mathsf{se}(\widehat{\Delta}_{jk})}$$

The p-value is $p=1-\Pr(-|t|\leq \mathsf{St}_{n-k}\leq |t|).$

The larger the values of t (positive or negative), the more evidence against the null hypothesis.

Critical values

For a test at level lpha (two-sided), fail to reject all values of the test statistic t that are in interval

$$\mathfrak{t}_{n-k}(\alpha/2) \leq t \leq \mathfrak{t}_{n-k}(1-\alpha/2)$$

Because of symmetry around zero, $\mathfrak{t}_{n-k}(1-lpha/2)=-\mathfrak{t}_{n-k}(lpha/2)$.

- We call $\mathfrak{t}_{n-k}(1-\alpha/2)$ a critical value.
- in R, qt(1-alpha/2, df = n k) where n is the number of observations and k the number of groups

Confidence interval

Let $\Delta_{jk}=\mu_j-\mu_k$ denote the population difference, $\widehat{\Delta}_{jk}$ the estimated difference (difference in sample averages) and $\mathbf{se}(\widehat{\Delta}_{jk})$ the estimated standard error.

The region for which we fail to reject the null is

$$\mathfrak{t}_{n-k}(lpha/2) \leq rac{\widehat{\Delta}_{jk} - \Delta_{jk}}{\mathsf{se}(\widehat{\Delta}_{jk})} \leq \mathfrak{t}_{n-k}(1-lpha/2)$$

which rearranged gives the (1-lpha) confidence interval for the (unknown) difference Δ_{jk} .

$$\widehat{\Delta}_{jk} + \mathsf{se}(\widehat{\Delta}_{jk}) \mathfrak{t}_{n-k}(lpha/2) \leq \Delta_{jk} \leq \widehat{\Delta}_{jk} + \mathsf{se}(\widehat{\Delta}_{jk}) \mathfrak{t}_{n-k}(1-lpha/2)$$

and the reported confidence interval is

$$[\widehat{\Delta}_{jk} + \mathsf{se}(\widehat{\Delta}_{jk})\mathfrak{t}_{n-k}(lpha/2), \widehat{\Delta}_{jk} + \mathsf{se}(\widehat{\Delta}_{jk})\mathfrak{t}_{n-k}(1-lpha/2)].$$

Example

Consider the arithmetic data and the pairwise difference between praised (group C) and reproved (group D).

- ullet Sample average are $\widehat{\mu}_C=27.4$ and $\widehat{\mu}_D=23.4$, the pooled standard deviation is 1.15
- ullet The estimated average difference between groups C and D is $\widehat{\Delta}_{CD}=4.$
- ullet The standard error for the difference between groups is $\mathsf{se}(\widehat{\Delta}_\mathit{CD}) = 1.6216$
- If $\mathscr{H}_0:\Delta=0$, the t statistic is t=4/1.6216=2.467.
- The critical values for a test at level $\alpha=5\%$ are -2.021 and 2.021 (qt(0.975, df = 45 5))
- ullet Since |t|>2.021, reject \mathscr{H}_0 : the two population are statistically significant at level lpha=5%
- ullet The confidence interval is [4-1.6216 imes 2.021, 4+1.6216 imes 2.021] = [0.723, 7.28]
- The p-value is p=0.018. We reject the null at level lpha=5% since 0.018<0.05.

Pairwise differences in R

```
library(tidyverse) # data manipulation
library(emmeans) # marginal means and contrasts
url <- "https://edsm.rbind.io/data/arithmetic.csv"</pre>
# load data, define column type (factor and integer)
arithmetic <- read_csv(url, col_types = "fi")
# fit one-way ANOVA model
model <- lm(score ~ group, data = arithmetic)</pre>
# Compute average of groups with model specification
margmeans <- emmeans::emmeans(model, specs = "group")</pre>
# Contrasts (default to pairwise comparisons) - no adjustment
contrast(margmeans, adjust = 'none', infer = TRUE)
#infer = TRUE for confidence intervals
```