CENTRAL UNIVERSITY OF FINANCE AND ECONOMICS

中央财经大学 现代统计软件课程

代码文档

吴宇翀

高思琴

陈蔚

指导老师: 杨玥含

2020年6月20日

1 数据集说明 1

```
knitr::opts_chunk$set(fig.pos = 'H', warning = FALSE, message = FALSE)
library(ggplot2)
library(caret)
library(kernlab)
library(pROC)
library(knitr)
library(magrittr)
# base_family = 'STXihei'
# bibliography: cite.bib
```

1 数据集说明

```
dat = read.csv("data.csv")
dat = dat[,-1]
dat$SeriousDlqin2yrs = as.factor(dat$SeriousDlqin2yrs)
```

```
explain = read.csv("dictionary_chinese.csv", <u>header =</u> TRUE)

kable(explain, caption = " 变量描述解释")
```

表 1: 变量描述解释

变量名	描述	变量类型
是否逾期	是否有超过 90 天的逾期	Y/N
无担保放款的循环利用	无分期付款债务的信用卡和个人信用额度总额	百分比
年龄	借款人年龄	整数
过去 2 年间逾期 30-59 天的次数	有逾期 30-59 天,但在过去 2 年没有更糟的情况出现的次数	整数
负债比率	每月债务支付,赡养费,生活费用除以月总收入	百分比
月收入	每月的收入	实数
未偿还贷款数量	开放式贷款的数量和信用额度(如信用卡)	整数
90 天逾期次数	借款人逾期 90 天或以上的次数	整数
不动产贷款或额度数量	按揭及房地产贷款数目,包括房屋净值信贷额度。	整数
过去 2 年逾期 60-89 天的次数	借款人逾期 60-89 天的次数,但过去两年更糟的情况出现	整数
家属人数	不包括自己在内的家属(配偶,子女等)数量。	整数

2 数据预处理 2

2 数据预处理

```
dat$RevolvingUtilizationOfUnsecuredLines[which(dat$RevolvingUtilizationOfUnsecuredLines < 0)] = 0
dat$RevolvingUtilizationOfUnsecuredLines[which(dat$RevolvingUtilizationOfUnsecuredLines > 1)] = 1
dat$DebtRatio[which(dat$DebtRatio < 0)] = 0
dat$DebtRatio[which(dat$DebtRatio > 1)] = 1
dat_complete = dat[complete.cases(dat),]
```

3 描述分析

3.1 年龄

```
ggplot(dat_complete, aes(x = age, fill = SeriousDlqin2yrs)) +
geom_density(alpha = 0.3) +
theme_minimal() +
scale_fill_manual(values = c("#037418", "darkred"))
```


图 1: 信用卡逾期与否两类人群的年龄分布(红色代表逾期)

3 描述分析 3

3.2 债务数量

```
dat_process = dat_complete[which(dat_complete$NumberRealEstateLoansOrLines < 5),]
good = dat_process[which(dat_process$SeriousDlqin2yrs == 0),]
bad = dat_process[which(dat_process$SeriousDlqin2yrs == 1),]
dat_process = rbind(good[1:1000,], bad[1:1000,])
ggplot(dat_process, aes(x = NumberRealEstateLoansOrLines, fill = SeriousDlqin2yrs)) +
    geom_histogram(stat = "count", alpha = 0.6) +
    theme_minimal() +
    scale_fill_manual(values = c("#037418", "darkred")) +
    facet_grid(cols = vars(SeriousDlqin2yrs)) +
    labs(y = "percentage")</pre>
```


图 2: 信用卡逾期与否两类人群的债务数量(红色代表逾期)

3.3 月收入

```
dat_process = dat_complete[which(dat_complete$MonthlyIncome < 30000),]
ggplot(dat_process, aes(x = SeriousDlqin2yrs, y = MonthlyIncome, fill = SeriousDlqin2yrs)) +
   geom_violin(alpha = 0.3) +
   theme_minimal() +
   scale_fill_manual(values = c("#037418", "darkred"))</pre>
```


图 3: 信用卡逾期与否两类人群的月收入(红色代表逾期)

4 Logit 回归

4.1 拟合

```
set.seed(1)
inTraining <- createDataPartition(dat_complete$SeriousDlqin2yrs, p = .75, list = FALSE)
train <- dat_complete[inTraining,]
test <- dat_complete[-inTraining,]

logit2 = glm(SeriousDlqin2yrs ~ ., data = train, family = binomial(link = "logit"))
logit2_sum = summary(logit2)
translate = as.character(explain$变量名)
translate[1] = "(截距)"
rownames(logit2_sum$coefficients) = translate
kable(logit2_sum$coefficients, caption = "Logit 回归系数表", digit = 2)</pre>
```

表 2: Logit 回归系数表

	Estimate	Std. Error	z value	Pr(> z)
(截距)	-3.56	0.07	-51.33	0

	Estimate	Std. Error	z value	$\Pr(> z)$
无担保放款的循环利用	2.47	0.04	57.73	0
年龄	-0.01	0.00	-11.96	0
过去 2 年间逾期 30-59 天的次数	0.32	0.01	22.80	0
负债比率	0.25	0.06	3.96	0
月收入	0.00	0.00	-7.31	0
未偿还贷款数量	0.03	0.00	8.73	0
90 天逾期次数	0.28	0.02	15.66	0
不动产贷款或额度数量	0.06	0.01	4.18	0
过去 2 年逾期 60-89 天的次数	-0.57	0.02	-26.53	0
家属人数	0.07	0.01	6.45	0

4.2 预测

```
probability = predict(logit2, test, type = "response")
distribution = as.data.frame(probability)
distribution = cbind(distribution, group = test$SeriousDlqin2yrs)
ggplot(distribution, aes(x = probability, fill = group)) +
    geom_density(alpha = 0.3) +
    theme_minimal() +
    scale_fill_manual(values = c("#037418", "darkred"))
```


图 4: 预测的逾期概率值(红色代表已知为逾期)

```
testPred = probability
testPred[testPred > 0.5] = 1
testPred[testPred <= 0.5] = 0
testPred = as.factor(testPred)</pre>
```

4.3 混淆矩阵与验证结果

表 3: 混淆矩阵表

Prediction	Reference	Freq
0	0	27910
1	0	2003
0	1	68
1	1	86

```
table = as.data.frame(confusion$overall)
names(table) = c(" 指标值")
table = t(table)
rownames(table) = NULL
kable(table, caption = " 验证结果表", digit = 3)
```

表 4: 验证结果表

Accuracy	Kappa	AccuracyLower	AccuracyUpper	AccuracyNull	AccuracyPValue	McnemarPValue
0.931	0.068	0.928	0.934	0.995	1	0

```
table = as.data.frame(confusion$byClass[1:5])
names(table) = c(" 指标值")
table = t(table)
kable(table, caption = " 灵敏度和特异度等指标表", digit = 3)
```

表 5: 灵敏度和特异度等指标表

	Sensitivity	Specificity	Pos Pred Value	Neg Pred Value	Precision
指标值	0.558	0.933	0.041	0.998	0.041

4.4 接受者操作特征(ROC)曲线

图 5: Logit 模型的 ROC 曲线

5 模型选择

5.1 抽样、训练与评价指标

5.2 Logit 回归

```
set.seed(1)
logit <- train(SeriousDlqin2yrs ~ ., data = training,</pre>
```

```
method = "glm",
trControl = fitControl)

table = logit$results
rownames(table) = NULL
kable(table, caption = " 在重抽样下 Logit 模型的表现", digits = 3)
```

表 6: 在重抽样下 Logit 模型的表现

parameter	Accuracy	Kappa	AccuracySD	KappaSD
none	0.931	0.202	0.014	0.173

5.3 线性判别分析 (LDA)

表 7: 在重抽样下 LDA 模型的表现

parameter	Accuracy	Kappa	AccuracySD	KappaSD
none	0.925	0.122	0.013	0.161

```
trellis.par.set(caretTheme())
densityplot(lda, pch = "|")
```


图 6: 在重抽样下 LDA 模型的准确率分布

5.4 偏最小二乘判别分析(PLSDA)

表 8: 在重抽样下 PLSDA 模型的表现

ncomp	Accuracy	Kappa	AccuracySD	KappaSD
1	0.930	0.000	0.004	0.000
2	0.930	0.000	0.004	0.000
3	0.931	0.021	0.005	0.062
4	0.930	0.018	0.006	0.056
5	0.930	0.025	0.007	0.084
6	0.930	0.024	0.008	0.086
7	0.930	0.024	0.008	0.086
8	0.930	0.024	0.007	0.085
9	0.930	0.024	0.007	0.085
10	0.930	0.024	0.007	0.085

```
trellis.par.set(caretTheme())
plot(plsda, metric = "Kappa")
plot(plsda)
      0.025
                                                                                    Accuracy (Repeated Cross-Validation)
  Kappa (Repeated Cross-Validation)
                                                                                       0.9310
      0.020
                                                                                       0.9308
      0.015
                                                                                       0.9306
                                                                                       0.9304
      0.010
                                                                                       0.9302
      0.005
                                                                                       0.9300
      0.000
                                        #Components
                                                                                                                          #Components
```

图 7: Kappa 和准确率指标随主成分个数的变化

```
plsImp = varImp(plsda, scale = FALSE)

table = data.frame(variables = rownames(plsImp$importance), importence = plsImp$importance$Overall

ggplot(table, aes(x = reorder(variables, importence), y = importence)) +

geom_col() +

theme_minimal() +

coord_flip() +

labs(x = "variables")
```


图 8: 变量重要程度

5.5 SVM

表 9: 在重抽样下 SVM 模型的表现

sigma	С	Accuracy	Kappa	AccuracySD	KappaSD
0.149	0.25	0.930	0.000	0.004	0.000
0.149	0.50	0.930	0.000	0.004	0.000
0.149	1.00	0.929	-0.003	0.005	0.006
0.149	2.00	0.928	0.051	0.008	0.095
0.149	4.00	0.928	0.142	0.012	0.147

图 9: 调优参数不同取值下的准确率和 Kappa 指标变化

5.6 随机梯度助推法 (GBM)

```
trellis.par.set(caretTheme())
plot(gbm)
trellis.par.set(caretTheme())
plot(gbm, metric = "Kappa")
                                     Max Tree Depth
                                                                                                                  Max Tree Depth
  Accuracy (Repeated Cross-Validation)
                                                                                Kappa (Repeated Cross-Validation)
     0.934
                                                                                   0.30
     0.933
     0.932
                                                                                   0.26
     0.931
                                                                                   0.24
     0.930
                                                                                   0.22
                                                                                   0.20
     0.929
                                                                                                 60
                                                                                                                                               140
                     60
                                80
                                           100
                                                      120
                                                                 140
                                                                                                             80
                                                                                                                        100
                                                                                                                                   120
                                   # Boosting Iterations
                                                                                                                # Boosting Iterations
```

图 10: 调优参数和迭代次数不同取值下的准确率和 Kappa 指标变化

```
trellis.par.set(caretTheme())
densityplot(gbm, pch = "|")
```


图 11: 在重抽样下 GBM 模型的准确率分布

5.7 模型间的比较

```
resamp = resamples(list(LDA = lda, PLSDA = plsda, SVM = svm, GBM = gbm, Logit = logit))
s1 = summary(resamp)
s2 = summary(diff(resamp))
```


图 12: 模型间 Kappa 的比较 (0.95 置信区间)

图 13: 模型间准确率的比较(0.95 置信区间)

6 附录

6.1 模型间准确率和 Kappa 的比较

```
kable(s1$statistics$Accuracy, caption = " 模型间准确率的比较", digit = 3)
```

表 10: 模型间准确率的比较

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
LDA	0.901	0.917	0.925	0.925	0.933	0.967	0
PLSDA	0.926	0.926	0.933	0.931	0.933	0.942	0
SVM	0.926	0.926	0.933	0.930	0.933	0.933	0
GBM	0.908	0.926	0.933	0.934	0.942	0.959	0
Logit	0.901	0.925	0.933	0.931	0.942	0.975	0

表 11: 模型间准确率差异矩阵

	LDA	PLSDA	SVM	GBM	Logit
LDA		-0.0058209	-0.0049890	-0.0089642	-0.0061501
PLSDA	0.027190		0.0008320	-0.0031433	-0.0003292
SVM	0.076479	0.237793		-0.0039752	-0.0011612
GBM	0.001116	0.929403	0.356758		0.0028140
Logit	0.003293	1.000000	1.000000	1.000000	

kable(s1\$statistics\$Kappa, caption = " 模型间 Kappa 的比较", digit = 3)

表 12: 模型间 Kappa 的比较

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
LDA	-0.039	-0.015	0.118	0.122	0.188	0.732	0
PLSDA	0.000	0.000	0.000	0.021	0.000	0.211	0
SVM	0.000	0.000	0.000	0.000	0.000	0.000	0
GBM	-0.038	0.181	0.302	0.295	0.422	0.597	0
Logit	-0.038	0.105	0.183	0.202	0.322	0.757	0

kable(s2\$table\$Accuracy, caption = " 模型间 Kappa 差异矩阵", digit = 3)

表 13: 模型间 Kappa 差异矩阵

	LDA	PLSDA	SVM	GBM	Logit
LDA		-0.0058209	-0.0049890	-0.0089642	-0.0061501
PLSDA	0.027190		0.0008320	-0.0031433	-0.0003292
SVM	0.076479	0.237793		-0.0039752	-0.0011612
GBM	0.001116	0.929403	0.356758		0.0028140
Logit	0.003293	1.000000	1.000000	1.000000	

6.2 Logit 回归结果

logit2_sum

##

Call:

```
## glm(formula = SeriousDlqin2yrs ~ ., family = binomial(link = "logit"),
##
      data = train)
##
## Deviance Residuals:
##
      Min
               1Q
                                3Q
                   Median
                                       Max
## -2.5488 -0.3724 -0.2387 -0.1852
                                    4.5549
##
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
## (截距)
                           -3.559e+00 6.933e-02 -51.331 < 2e-16 ***
                           2.471e+00 4.280e-02 57.727 < 2e-16 ***
## 无担保放款的循环利用
## 年龄
                           -1.368e-02 1.143e-03 -11.962 < 2e-16 ***
## 过去2年间逾期30-59天的次数 3.177e-01 1.393e-02 22.801 < 2e-16 ***
## 负债比率
                            2.466e-01 6.234e-02 3.956 7.63e-05 ***
## 月收入
                           -2.978e-05 4.071e-06 -7.314 2.59e-13 ***
## 未偿还贷款数量
                            2.842e-02 3.255e-03 8.730 < 2e-16 ***
## 90天逾期次数
                            2.818e-01 1.800e-02 15.660 < 2e-16 ***
## 不动产贷款或额度数量
                           5.884e-02 1.407e-02 4.182 2.89e-05 ***
## 过去2年逾期60-89天的次数 -5.721e-01 2.157e-02 -26.526 < 2e-16 ***
## 家属人数
                            7.441e-02 1.154e-02 6.451 1.11e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 45518 on 90201 degrees of freedom
## Residual deviance: 38190 on 90191 degrees of freedom
## AIC: 38212
##
## Number of Fisher Scoring iterations: 6
```

6.3 数据

str(dat)

```
## 'data.frame': 150000 obs. of 11 variables:
## $ SeriousDlqin2yrs : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ RevolvingUtilizationOfUnsecuredLines: num  0.766 0.957 0.658 0.234 0.907 ...
## $ age : int  45 40 38 30 49 74 57 39 27 57 ...
```

```
2 0 1 0 1 0 0 0 0 0 ...
    $ NumberOfTime30.59DaysPastDueNotWorse: int
                                                    0.803 0.1219 0.0851 0.036 0.0249 ...
##
    $ DebtRatio
                                            : num
    $ MonthlyIncome
                                                    9120 2600 3042 3300 63588 3500 NA 3500 NA 23684 .
##
                                            : int
    $ NumberOfOpenCreditLinesAndLoans
                                                    13 4 2 5 7 3 8 8 2 9 ...
##
                                            : int
    $ NumberOfTimes90DaysLate
                                                    0 0 1 0 0 0 0 0 0 0 ...
##
                                            : int
##
    $ NumberRealEstateLoansOrLines
                                            : int
                                                    6 0 0 0 1 1 3 0 0 4 ...
    $ NumberOfTime60.89DaysPastDueNotWorse: int
                                                    0 0 0 0 0 0 0 0 0 0 ...
##
                                                    2 1 0 0 0 1 0 0 NA 2 ...
    $ NumberOfDependents
                                             : int
summary(dat)
    SeriousDlqin2yrs RevolvingUtilizationOfUnsecuredLines
                                                                   age
    0:139974
                              :0.00000
                                                                     : 0.0
##
                      Min.
                                                             Min.
##
    1: 10026
                      1st Qu.:0.02987
                                                              1st Qu.: 41.0
                                                             Median: 52.0
##
                      Median :0.15418
                             :0.31920
                                                             Mean : 52.3
##
                      Mean
##
                      3rd Qu.:0.55905
                                                             3rd Qu.: 63.0
                             :1.00000
                                                                     :109.0
##
                      Max.
                                                             Max.
##
    NumberOfTime30.59DaysPastDueNotWorse
                                             DebtRatio
                                                             MonthlyIncome
##
    Min.
           : 0.000
                                                   :0.0000
                                                                    :
                                                                            0
##
                                           Min.
                                                             Min.
    1st Qu.: 0.000
                                           1st Qu.:0.1751
                                                              1st Qu.:
                                                                         3400
##
    Median : 0.000
                                           Median :0.3665
                                                             Median :
                                                                         5400
##
           : 0.421
                                                   :0.4663
                                                                         6670
##
    Mean
                                           Mean
                                                             Mean
##
    3rd Qu.: 0.000
                                           3rd Qu.:0.8683
                                                              3rd Qu.:
                                                                         8249
##
    Max.
            :98.000
                                           Max.
                                                   :1.0000
                                                             Max.
                                                                     :3008750
                                                             NA's
                                                                     :29731
##
    {\tt NumberOfOpenCreditLinesAndLoans} \ \ {\tt NumberOfTimes90DaysLate}
##
            : 0.000
                                              : 0.000
##
    Min.
                                      Min.
##
    1st Qu.: 5.000
                                      1st Qu.: 0.000
##
    Median : 8.000
                                      Median : 0.000
    Mean
           : 8.453
                                      Mean
                                            : 0.266
##
    3rd Qu.:11.000
                                      3rd Qu.: 0.000
##
                                              :98.000
##
    Max.
            :58.000
                                      Max.
##
##
    {\tt NumberRealEstateLoansOrLines\ NumberOfTime 60.89 Days PastDue NotWorse}
    Min.
            : 0.000
                                          : 0.0000
##
                                   Min.
    1st Qu.: 0.000
                                   1st Qu.: 0.0000
##
##
    Median : 1.000
                                   Median: 0.0000
    Mean
            : 1.018
                                   Mean
                                          : 0.2404
```

3rd Qu.: 2.000 3rd Qu.: 0.0000 ## Max. :54.000 Max. :98.0000

##

NumberOfDependents

Min. : 0.000 ## 1st Qu.: 0.000 ## Median : 0.000 ## Mean : 0.757 ## 3rd Qu.: 1.000 :20.000

NA's :3924

Max.