Cinétique homogène

Agrégation 2020

Manipulation introductive

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$
 $K^{\circ}(25^{\circ}C) = 10^{49}$

 $Ag^{+}_{(a\alpha)} + I^{-}_{(a\alpha)} = AgI_{(s)}$

Réactions thermodynamiquement favorables

Comment et à quelles vitesses se déroulent ces réactions ?

Expérience:

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

Réaction lente

$$Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$$

Réaction rapide

Exemples de cinétique dans la nature et au quotidien

Réaction rapide

Cadre d'étude

- Système homogène
- Transformation isochore
- Transformation monotherme
- Réacteur fermé

Vitesse volumique de réaction

	2 I ⁻ (aq)	$S_2O_8^{2-}(aq) =$	l _{2(aq)} +	2 SO ₄ ²⁻ (aq)
Etat initial	C ₀	C ₀ '	0	0
A l'instant t Avancement = x(t)	C ₀ -2x	C ₀ '-x	X	2x

Suivi cinétique de la réaction fil rouge

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

- 15 mL de KI à 1mol/L
- 5 mL deNaS $_2$ O $_8$ à 10^{-3} mol/L

Cuve introduite dans le spectrophotomètre

Méthodes de suivi cinétique

	Méthode de suivi chimique	Méthode de suivi physique
Description de la méthode	Détermination de la concentration d'une espèce par un titrage	Suivi d'une grandeur physique [pH, Absorbance, conductivité, polarimétrie]
Avantages	Directement accès à la concentration	Très pratique. Suivi continu d'une grandeur directement proportionnel à la concentration.
Inconvénients	Long, nécessite de réaliser plusieurs titrages avec trempe préalable des différents échantillons pour arrêter la réaction.	Ne donne pas accès directement aux concentrations. Sensibles aux réactions parasites.

Influence de la concentration

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

- 15mL KI à 1mol/L
- 5 mLNaS₂O₈ à 10⁻² mol/L

- 15mL KI à 1mol/L
- NaS $_2$ O $_8$ à 10 $^{-3}$ mol/L

Exploitation des résultats

	2 I ⁻ (aq) +	$S_2O_8^{2-}$ =	l _{2(aq)} +	2 SO ₄ ²⁻ (aq)
Etat initial	C ₀ (EXCES)	C ₀ '	0	0
A l'instant t Avancement = x(t)	C ₀ -2x (EXCES)	C ₀ '-x	X	2x
A l'instant t final	EXCES	C0'-x=0	$x=C_0'$	2x=C ₀ '

Loi de Beer-Lambert: $A_t = \varepsilon(\lambda) . I.[I_2]$

$$[S_2O_8^{2-}] = C_0' - x = (1 - \frac{A_t}{A_\infty}). C_0'$$
 On a accès à $[S_2O_8^{2-}] = f(t)$

Méthode intégrale

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{-} + 2 SO_4^{2-}_{(aq)}$$

	Ordre 0	Ordre 1	Ordre 2
$[S_2O_8^{2-}]=f(t)$	$[S_2O_8^2]=[S_2O_8^2]_0$ -1.kapp.t	$ln(\frac{[S_2O_8^{2-}]}{[S_2O_8^{2-}]_0}) = -1. kapp.t$	$\frac{1}{[S_2O_8^2]} = \frac{1}{[S_2O_8^{2-}]_0} + 1. kapp.t$

Quelle est le temps de demi-vie, $t_{1/2}$, de la réaction ? $t_{1/2} =$

Pour un ordre 0 :
$$t_{1/2} = \frac{[A]_0}{2 \cdot \alpha \cdot kapp}$$

Pour un ordre 2 :
$$t_{1/2} = \frac{1}{[A]_0 \cdot \alpha \cdot kapp}$$

Influence de la température

$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

Préparation du mélange réactionnel initial:

- Eau distillée (tube à essai à mi hauteur) 10mL ??
- 1mL de KI à 0,1 mol/L
- 1mL de K₂S₂O₈

