FIN500 HW10

Junru Wang

Question 1: Buffered PLUS Securities

(a) Payoff Diagram

The payoff is calculated as:

$$\text{Payoff} = \begin{cases} 200 + 1000 \times \left(\frac{S_T}{S_0}\right), & \text{if } S_T < 0.8 \times S_0, \\ 1000, & \text{if } 0.8 \times S_0 \le S_T \le S_0, \\ 1000 + 2000 \times \frac{S_T - S_0}{S_0}, & \text{if } S_0 < S_T \le 1.076 \times S_0, \\ 1152, & \text{if } S_T > 1.076 \times S_0. \end{cases}$$

(b) Replicating Portfolio

Let:

$$\begin{split} S_0 &= 5460.48 \quad \text{(initial index level)}, \\ K_1 &= 0.8 \times S_0 = 4368.38 \quad \text{(strike for put)}, \\ K_2 &= S_0 = 5460.48 \quad \text{(strike for the first call)}, \\ K_3 &= 1.076 \times S_0 = 5873.69 \quad \text{(strike for the second call)}. \end{split}$$

The portfolio weights are:

$$\begin{split} w_1 &= \frac{1000}{S_0} = 0.1831 \quad \text{(weight for the put option)}, \\ w_2 &= \frac{2000}{S_0} = 0.3662 \quad \text{(weight for the first call option)}, \\ w_3 &= \frac{2000}{S_0} = 0.3662 \quad \text{(weight for the second call option)}. \end{split}$$

The net payoff is given by:

Net Payoff = Bond Payoff $+w_1 \times \text{Put Payoff} + w_2 \times \text{Call Payoff (K2)} + w_3 \times \text{Call Payoff (K3)}.$

Each component is defined as:

Put Payoff =
$$-\max(K_1 - S_T, 0)$$
,
Call Payoff (K2) = $\max(S_T - K_2, 0)$,
Call Payoff (K3) = $-\max(S_T - K_3, 0)$.

Figure 1: Payment

Conclusion

The replicating portfolio consists of:

- One zero-coupon bond maturing to \$1,000.
- Sell 0.1831 European put option, with K = 4368.38.
- Buy 0.3662 European call option with K = 5460.48.
- Sell 0.3662 European put option with K = 5873.69.

Part (c): Payoff and Return Calculation

Scenario 1: $S_T = 5733.504$

• **Index percentage increase**:

$$\label{eq:Index Percent Increase} \text{Index Percent Increase} = \frac{S_T - S_0}{S_0} = \frac{5733.504 - 5460.48}{5460.48} = 0.05 \, (5\%).$$

• **Payoff**:

Payoff =
$$1000 + 2000 \times 0.05 = 1000 + 100 = 1100$$
.

• **Return**:

$$Return = \frac{Payoff - Investment}{Investment} = \frac{1100 - 1000}{1000} = 0.1 (10\%).$$

Scenario 2: $S_T = 6006.528$

• **Index percentage increase**:

Index Percent Increase =
$$\frac{S_T - S_0}{S_0} = \frac{6006.528 - 5460.48}{5460.48} = 0.1 (10\%).$$

• **Payoff (Capped)**:

Payoff = 1152 (Capped at
$$S_{\text{cap}}$$
).

• **Return**:

$$Return = \frac{Payoff - Investment}{Investment} = \frac{1152 - 1000}{1000} = 0.152 (15.2\%).$$

Question 2: Early Exercise of American Call Option

Part (a): Cash Flows for Strategy A

At t = 1:

Cash flow =
$$S_1 - K$$
.

At t = 2:

Cash flow = 0.

Part (b): Cash Flows for Strategy B $(S_2 > K)$

If option executes:

At t = 1:

Net cash flow =
$$S_1 - K$$
.

At t = 2:

• Payoff from option:

Payoff from option =
$$S_2 - K$$
.

• Forward Contract: The forward price is given by:

$$F_{1,2} = S_1(1+r).$$

• Loan Repayment:

Loan repayment =
$$(S_1 - K)(1 + r)$$
.

• Net Cash Flow:

Net cash flow =
$$(S_2 - K) + (S_1(1+r) - S_2) - (S_1 - K)(1+r)$$
.

Simplifying:

Net cash flow = Kr.

If the option expires:

At
$$t = 1$$
:

Net cash flow =
$$S_1 - K$$
.

At
$$t=2$$
:

Option payoff
$$= 0$$
.

Payoff from forward =
$$F_{1,2} - S_2$$
.

• Loan repayment:

Loan repayment =
$$(S_1 - K)(1 + r)$$
.

• Net Cash Flow:

Net cash flow =
$$S_1(1+r) - S_2 - (S_1 - K)(1+r) = K(1+r) - S_2 < Kr$$
.

Therefore, Net cash flow should be Kr, in which we don't execute the option.

Part (c): Cash Flows for Strategy B $(S_2 \leq K)$

Net cash flow =
$$S_1(1+r) - S_2 - (S_1 - K)(1+r) = K(1+r) - S_2 \ge Kr$$
.

Net cash flow should be $K(1+r) - S_2$, in which we execute.

Part (d): Dividend Impact

At t = 1:

Net cash flow =
$$S_1 - K$$
.

At t = 2:

Net cash flow
$$B = max(K(1+r) - S_2, Kr) \ge Kr > 0$$
.

If the stock pays a large dividend D at t=2, the forward price becomes:

$$F_{1,2} = S_1(1+r) - D.$$

At t = 2, S_2 is the price after dividend:

Net cash flow
$$B = max(K(1+r) - S_2 - D, Kr - D) \ge Kr - D$$
.

If D < Kr, our conclusion still works.

Part (e): Early Exercise of American Put Option

Strategy A: At t = 1:

Cash flow =
$$K - S_1$$
.

At t = 2:

Cash flow
$$= 0$$
.

Strategy B: At t = 1, borrow $(K - S_1)$:

Net cash flow =
$$K - S_1$$
.

At
$$t=2$$

• Payoff from option:

Payoff from option =
$$K - S_2$$
.

• Forward Contract: Buy stocks at t = 2:

$$F_{1,2} = S_1(1+r),$$

• Loan Repayment:

Loan Repayment =
$$(K - S_1)(1 + r)$$
.

• Net Cash Flow (if execute):

Net Cash Flow =
$$(K - S_2) + (S_2 - S_1(1+r)) - (K - S_1)(1+r)$$
.

Simplifying:

Net Cash Flow =
$$-Kr$$
.

• Net Cash Flow (if not execute):

Net Cash Flow =
$$(S_2 - S_1(1+r)) - (K - S_1)(1+r)$$
.

Simplifying:

Net Cash Flow =
$$S_2 - K(1+r)$$
.

Therefore,

Net cash flow =
$$max(S_2 - K(1+r), -Kr)$$
.

If $S_2 < K(1+r)$, we should exercise early, else we should delay it till t=2. —

Question 3: Expected Returns of Options

Part (a): Option Pricing

Using the parameters:

$$S_0 = 345$$
 (Initial stock price),
 $K = 350$ (Strike price),
 $u = e^{0.6\sqrt{0.5}} \approx 1.329$ (Up factor),
 $d = e^{-0.6\sqrt{0.5}} \approx 0.752$ (Down factor),
 $r = 0.05$ (3-month interest rate),
 $T = 0.5$ (Time to maturity in years).

The risk-neutral probability is:

$$p = \frac{e^{rT} - d}{u - d} = \frac{e^{0.05 \cdot 0.5} - 0.752}{1.329 - 0.752} \approx 0.4245.$$

The stock prices at maturity are:

$$S_u = S_0 \cdot u = 345 \cdot 1.329 \approx 458.51,$$

 $S_d = S_0 \cdot d = 345 \cdot 0.752 \approx 259.44.$

The option prices under risk-neutral probabilities are:

Call Price =
$$e^{-rT} [p \cdot \max(S_u - K, 0) + (1 - p) \cdot \max(S_d - K, 0)],$$

Put Price =
$$e^{-rT} [p \cdot \max(K - S_u, 0) + (1 - p) \cdot \max(K - S_d, 0)]$$
.

After substituting values, we get:

Call Price
$$\approx 73.41$$
, Put Price ≈ 69.76 .

Part (b): Real-World Probabilities

The real-world probabilities are calculated using the true expected stock price:

$$\mathbb{E}[S_T] = S_0 \cdot e^{\mu T}, \quad \mathbb{E}[S_T] = 345 \cdot e^{0.09 \cdot 0.5} \approx 361.7.$$

$$p_{\text{real}}^{\text{up}} = \frac{\mathbb{E}[S_T] - S_0 \cdot d}{S_0 \cdot (u - d)}, \quad p_{\text{real}}^{\text{down}} = 1 - p_{\text{real}}^{\text{up}}.$$

Substituting the values:

$$p_{\rm real}^{\rm up} = \frac{361.7 - 345 \cdot 0.752}{345 \cdot (1.329 - 0.752)} \approx 0.448, \quad p_{\rm real}^{\rm down} \approx 0.552.$$

Part (c): Expected Returns

The expected payoff under real-world probabilities is:

$$E[\text{Call Payoff}] = e^{-rT} \left[p^* \cdot \max(S_u - K, 0) + q^* \cdot \max(S_d - K, 0) \right],$$

$$E[\text{Put Payoff}] = e^{-rT} [p^* \cdot \max(K - S_u, 0) + q^* \cdot \max(K - S_d, 0)].$$

Substituting values, we get:

$$E[\text{Call Payoff}] \approx 77.50, \quad E[\text{Put Payoff}] \approx 66.89.$$

It is not surprising. The real world probability of down case here is smaller than risk-neutral probability, therefore the put option price is smaller.

The price difference between the real-world and risk-neutral pricing methods for a put option is given by:

$$\Delta P = \frac{e^{(r_{\text{real}} - r)T} - 1}{u - d} \cdot \left[\max(K - S_u, 0) - \max(K - S_d, 0) \right],$$

Given $S_u < K < S_d, r_{real} > r$, we have $\Delta P < 0$, that is $P_{real} < P_{neutral}$.

Figure 2: Price Analysis

Part (d): Strike Price Analysis

The expected return varies with the strike price:

- For low strike prices $(K \to 0)$, the call option becomes deep in-the-money, and the return converges to the real-world stock return.
- For high strike prices $(K \to \infty)$, the call option becomes out-of-the-money, and the expected return decreases significantly due to low probabilities of payoff.
- Put option returns follow a similar trend in reverse: higher expected returns for lower strike prices and diminishing returns for higher strike prices.