CS 580 ALGORITHM DESIGN AND ANALYSIS

Greedy Algorithms 2: Scheduling (cf. KT 4.1 & 4.2)

Vassilis Zikas

SO FAR

- Shortest paths
 - Dijkstra
 - Bellman-Ford
- Today:
 - Greedy algorithms that don't have to do with graphs!
 - Interval scheduling (4.1 in KT)
 - Scheduling to minimize lateness (4.2 in KT)

- There's an incoming set of jobs $\{1, ..., n\}$
- The *i*th job corresponds to an interval $[s_i, t_i]$
- · Two jobs are compatible if they don't overlap
- Goal: find maximum subset of compatible jobs

- There's an incoming set of jobs $\{1, ..., n\}$
- The *i*th job corresponds to an interval $[s_i, t_i]$
- · Two jobs are compatible if they don't overlap
- Goal: find maximum subset of compatible jobs

- There's an incoming set of jobs $\{1, ..., n\}$
- The *i*th job corresponds to an interval $[s_i, t_i]$
- Two jobs are compatible if they don't overlap
- Goal: find maximum subset of compatible jobs

- There's an incoming set of jobs $\{1, ..., n\}$
- The *i*th job corresponds to an interval $[s_i, t_i]$
- Two jobs are compatible if they don't overlap
- Goal: find maximum subset of compatible jobs

INTERVAL SCHEDULING GREEDY TEMPLATES

- Earliest start time?
- Earliest finish time?
- Pick smallest size first?
- Minimize number of overlaps?

INTERVAL SCHEDULING GREEDY TEMPLATES

- Earliest start time?
- Earliest finish time?
- Pick smallest size first?
- Minimize number of overlaps?

INTERVAL SCHEDULING GREEDY TEMPLATES

- Earliest start time?
- Earliest finish time?
- Pick smallest size first?
- Minimize number of overlaps?

INTERVAL SCHEDULING: EARLIEST FINISH TIME?

- Consider algorithms in increasing order of finish time t_i
 - Take a job if compatible with the ones picked so far
- 1. Sort by finish time to get $t_1 \le t_2 \le \cdots \le t_n$
- 2. $A \leftarrow \emptyset$. //Set of jobs selected so far
- 3. For j = 1, ..., n:
 - ∘ If *j* compatible with A: $A = A \cup \{j\}$

- Running time O(nlogn)
 - Sorting takes O(nlogn)
 - Checking if a job is compatible equivalent to $s_i \ge f_{j^*}$, the last job added: O(n)
- 1. Sort by finish time to get $t_1 \le t_2 \le \cdots \le t_n$
- 2. $A \leftarrow \emptyset$. //Set of jobs selected so far
- 3. For j = 1, ..., n:
 - If j compatible with $A: A = A \cup \{j\}$

- Theorem: The greedy algorithm is optimal Proof
- Assume greedy is not optimal
- Let i_1, \dots, i_k be the jobs selected by greedy
- Let $j_1, ..., j_m$ be the optimal set of jobs
 - $\circ m > k$

- Theorem: The greedy algorithm is optimal Proof
- Assume greedy is not optimal
- Let $i_1, ..., i_k$ be the jobs selected by greedy
- Let $j_1, ..., j_m$ be the optimal set of jobs
 - $\circ m > k$

Replacing j_{r+1} with i_{r+1} won't break feasibility

- Theorem: The greedy algorithm is optimal Proof
- Assume greedy is not optimal
- Let i_1, \dots, i_k be the jobs selected by greedy
- Let $j_1, ..., j_m$ be the optimal set of jobs

$$\circ m > k$$

Size of OPT didn't change either Contradiction: r was supposed to be maximal

- Lecture j starts at s_j and finishes at f_j
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room

- Perhaps possible with two?
 - \circ No: a, b and c overlap, so we need at least 3
- Definition: The depth of a set of intervals is the maximum number that pass over any single point in time

- Perhaps possible with two?
 - \circ No: a, b and c overlap, so we need at least 3
- Definition: The depth of a set of intervals is the maximum number that pass over any single point in time

- Question: does there exist a schedule equal to the depth?
 - If the answer is yes, then this is clearly optimal

- Greedy algorithm: consider lectures in increasing starting time
 - assign to any compatible classroom (including a new one)
- 1. Sort intervals by start time to get $s_1 \leq \cdots \leq s_n$
- 2. For j = 1 to n:
 - If lecture j is compatible with some classroom k, schedule j in k
 - Otherwise, schedule j in a new classroom

- Implementation:
 - $\circ O(n \log(n))$ to sort
 - At each time, need to figure out if a lecture is compatible
 - Use priority queue to remember end times of classrooms!

Theorem: Greedy is optimal

Proof

- Let *d* be the number of classrooms greedy needs
- Classroom d opened because we needed to schedule some job j that was incompatible with all d-1 previous classrooms
- These d jobs (the d-1 plus j) <u>all</u> end after s_j
- Since we sorted by start time, <u>all</u> these jobs also start before (or at) s_j
- Therefore, there exists a set of d jobs that overlap at $s_j \rightarrow$ need at least d classrooms

• Problem:

- We have a single resource and need to process n jobs
- We can process only one job at a time
- \circ Job j requires t_j units of time and expires at time d_j
 - If j starts at s_j it finishes at $f_j = s_j + t_j$
- ∘ Lateness: $\ell_j = \max\{0, f_j d_j\}$
- Goal: minimize maximum latency $L = \max_{j} \ell_{j}$

	1	2	3	4	5	6
t_j	3	2	1	4	3	2
d_j	6	8	9	9	14	15

- Greedy template: Consider jobs in some order
 - Shortest processing time first
 - Sort by t_i (ascending)
 - Smallest slack first
 - Sort by $d_j t_j$ (ascending)

 Greedy template: Consider jobs in some order

Shortest processing time first

• Sort by t_i (ascending)

Smallest slack first

• Sort by $d_j - t_j$ (ascending)

	1	2
t _j	1	10
d_j	100	10

Processing time ≠ Urgency
Deadline can be very far in the future

- Greedy template: Consider jobs in some order
 - Shortest processing time first
 - Sort by t_i (ascending)
 - Smallest slack first
 - Sort by $d_j t_j$ (ascending)

	1	2
t_{j}	1	10
$\mathbf{d}_{\mathbf{j}}$	2	10

Deadline - Processing time ≠ Urgency Ignores small deadlines that take little time

- Greedy algorithm: Earliest deadline first
 - Initially seems like a bad idea to not take processing time into account...
 - 1. Sort jobs so that $d_1 \le d_2 \le \cdots \le d_n$
 - 2. t=0
 - 3. For j = 1 ... n:
 - Assign job j to interval $[t, t + t_j]$
 - $t = t + t_j$

	1	2	3	4	5	6
t _j	3	2	1	4	3	2
d_j	6	8	9	9	14	15

- **Observation**: There exists an optimal schedule with no idle time
 - Proof:
 - Assume the optimal schedule has some time interval [t, t'] where nothing is scheduled
 - \circ For all jobs that start after t, move their start time earlier by t'-t
 - Still feasible, and latencies only decreased
- Observation: Greedy has no idle time

- **Definition**: Given a schedule S, an inversion is a pair of jobs i and j such that $d_i < d_j$ but j is scheduled before i
 - By definition, greedy has no inversions

- Observation: If an inversion exists, then a "consecutive" inversion exists
 - Start from the left, until you find the first violation

- What happens if we swap?
 - Everyone other than i and j remain unchanged

$$\circ \ \ell'_j$$

$$\circ \ \ell'_j = f'_j - d_j$$

$$\circ \ell'_j = f'_j - d_j = f_i - d_j$$

$$\ell'_{j} = f'_{j} - d_{j} = f_{i} - d_{j} < f_{i} - d_{i}$$

$$\ell'_{j} = f'_{j} - d_{j} = f_{i} - d_{j} < f_{i} - d_{i} = \ell_{i}$$

- Theorem: Greedy is optimal
- Proof:
- Let S^* be an optimal schedule (strictly) better than greedy, with the fewest number of inversions
- Wlog S^* has no idle times
- If S^* has no inversions, then $S^* = S$
- If S^* has an inversion, let (i, j) be an adjacent inversion: swap it!
 - Maximum latency didn't decrease (otherwise S^* is not optimal)
 - But, number of inversions decreased! Contradiction

SUMMARY

- Interval scheduling
- Interval Partioning
- Scheduling to minimize latency

- Meta lesson: similar (same?) analysis
 - Gradually transform the solution of any other algorithm to one of greedy, without changing the performance