## Лабораторная работа № 6 ДО

# ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ И ЕГО ПРИМЕНЕНИЕ

## 1. Цель работы

Изучение основных характеристик и параметров интегрального операционного усилителя и исследование схем на его основе.

#### 2. Методика исследования схем

Исследование проводится методом моделирования в среде программы **Design Lab** или **OrCad**. Для операционного усилителя снимаются его две основные характеристики: передаточная характеристика и АЧХ. Исследуются также практические схемы на основе операционного усилителя: инвертирующий (рис. 1) и неинвертирующий усилитель (рис. 2), сумматор (рис. 3) и генератор прямоугольных импульсов — симметричный мультивибратор (рис. 4).

Тип операционного усилителя и напряжение питания определяются из таблицы, где M — номер группы, N — порядковый номер фамилии студента в учебном журнале.

| Остаток (N/3)         | 0     | 1     | 2     |
|-----------------------|-------|-------|-------|
| Напряжение источников | 10 B  | 12 B  | 15 B  |
| Остаток ((M+N)/3)     | 0     | 1     | 2     |
| Тип ОУ                | uA741 | LM324 | LF411 |





Рис. 1. Инвертирующий усилитель



Рис. 2. Неинвертирующий усилитель

Рис. 3. Сумматор



Рис. 4. Мультивибратор

## 3. Подготовка к работе

- 3.1. Изучить литературу и материалы по теме лабораторной работы.
- 3.2. Для инвертирующего (рис.1) и неинвертирующего усилителя (рис.2) рассчитать сопротивления резисторов  $R_1$  и  $R_2$  для обеспечения заданного коэффициента усиления напряжения  $K_u$ :

$$|K_u| = 5 + 0.5M + 0.2N$$
,

где M — номер группы, N — порядковый номер фамилии студента в учебном журнале.

3.3. Рассчитать напряжение на выходе сумматора (рис.3) при указанных параметрах элементов схемы:

$$\begin{split} R_1 &= (120-5\mathrm{M}-\mathrm{N}) \; \mathrm{KOM} \,, \\ R_2 &= (30+5\mathrm{M}-2\mathrm{N}) \; \mathrm{KOM} \,, \\ R &= (\mathrm{max}(R_1,R_2)+\mathrm{M}+\mathrm{N}) \; \mathrm{KOM} \,, \\ U_1 &= 0.5+0.1\mathrm{M}+0.02\mathrm{N} \; (\mathrm{B}) \,, \\ U_2 &= -0.5+0.1\mathrm{M}-0.02\mathrm{N} \; (\mathrm{B}) \,. \end{split}$$

3.4. Для симметричного мультивибратора (рис.4) рассчитать параметры элементов схемы для обеспечения заданного периода следования импульсов:

$$T = (300 + 10M + 5N)$$
 MKC.

3.5. Разработать бланки подготовки к работе и протокола рабочего задания. Результаты всех расчетов занести в соответствующие таблицы рабочего задания.

#### 4. Рабочее задание.

- 4.1. Собрать схему для получения амплитудной и амплитудно-частотной характеристик операционного усилителя.
- 4.2. Снять амплитудную характеристику операционного усилителя зависимость  $U_{\text{вых}}(U_{\text{вх}})$ . Для активного участка характеристики определить коэффициент усиления дифференциального напряжения  $K_{u\text{д}}$ . Определить также напряжение смещения  $U_{\text{см}}$  и допустимые пределы изменения выходного напряжения  $U_{\text{вых макс}}^{\dagger}$  и  $U_{\text{вых мин}}^{\dagger}$ .

| $K_{u_{ m I}}$ | $U_{ m cm}$ | $U_{_{ m BMX\ Makc}}^{^{+}}, { m B}$ | $U_{\scriptscriptstyle  m BЫХ\ MИН},$ В |
|----------------|-------------|--------------------------------------|-----------------------------------------|
|                |             |                                      |                                         |

4.3. Снять амплитудно-частотную характеристику операционного усилителя  $K_{uд}(f)$ . По характеристике определить коэффициент усиления дифференциального напряжения  $K_{uд}$  при f = 0, граничную частоту  $f_{B}$  и частоту единичного усиления  $f_{1}$ .

| $K_{u_{ m I}}$ | $f_{\!\scriptscriptstyle \mathrm{B}},$ Гц | $f_1$ , М $\Gamma$ ц |
|----------------|-------------------------------------------|----------------------|
|                |                                           |                      |

4.4. Собрать схему неинвертирующего усилителя (рис.2) с параметрами, рассчитанными в подготовке к работе. На вход подать синусоидальный сигнал с амплитудой 100 мВ и частотой 1 кГц. Определить коэффициент усиления неинвертирующего усилителя.

|       | Задание | Эксперимент |
|-------|---------|-------------|
| $K_u$ |         |             |

4.5. Собрать схему инвертирующего усилителя (рис.1) с параметрами, рассчитанными в подготовке к работе. На вход подать синусоидальный сигнал с амплитудой 100 мВ и частотой 1 кГц. Определить коэффициент усиления инвертирующего усилителя.

|       | Задание | Эксперимент |
|-------|---------|-------------|
| $K_u$ |         |             |

4.6. Собрать схему сумматора (рис. 3). Установить параметры элементов сумматора, рассчитанные в подготовке к работе. На входы схемы подать постоянные напряжения  $U_1$ ,  $U_2$  согласно варианту. Определить напряжение на выходе схемы.

|                                         | Расчет | Эксперимент |
|-----------------------------------------|--------|-------------|
| $U_{\scriptscriptstyle  m BbIX},{ m B}$ |        |             |

4.7. Собрать схему мультивибратора (рис. 4) с параметрами элементов, рассчитанными в подготовке к работе. Запустить схему на расчет, определить период следования прямоугольных импульсов.

|        | Задание | Эксперимент |
|--------|---------|-------------|
| T, MKC |         |             |

4.8. <sup>1</sup>Разработать схему несимметричного мультивибратора, работающего с той же частотой, но со скважностью Q=5 (для четных N) и Q=0,2 (для нечетных N). Собрать схему и запустить на расчет. Определить период и скважность следования прямоугольных импульсов.

# 5. Приложение

1. Коэффициент усиления инвертирующего усилителя равен

$$K_u = -R_2 / R_1.$$

2. Коэффициент усиления неинвертирующего усилителя равен

$$K_u = 1 + (R_1 / R_2).$$

3. Напряжение на выходе суммирующего усилителя можно определить так:

$$U_{\text{\tiny BMX}} = - \left( \frac{R}{R_1} U_1 + \frac{R}{R_2} U_2 \right).$$

-

<sup>&</sup>lt;sup>1</sup> По указанию преподавателя

4. Период следования импульсов в симметричном мультивибраторе можно рассчитать по следующей формуле:

$$T = 2RC \ln \frac{1 + \frac{R_2}{R_1 + R_2}}{1 - \frac{R_2}{R_1 + R_2}}.$$