第二十一章 重积分

第六节 重积分的应用

第二十一章 重积分

第六节 重积分的应用

1. 曲面的面积

问题: 设 D 为可求面积的平面有界区域, 函数 f(x,y) 在 D 上具有连续一 阶偏导数. 求方程

$$z = f(x, y), \quad (x, y) \in D$$

所确定的曲面 S 的面积.

- ① 对区域 D 做分割 T, 把 D 分割成 n 个小区域 σ_i , $(i = 1, 2, \dots, n)$;
- ② 把曲面 S 也分割分割成 n 个小区域 S_i , $(i=1,2,\cdots,n)$, 使 得 S_i 在 xy 平面上投影为 σ_i :
- **3** 在每个 S_i 上任取一点 M_i , 做经过 M_i 的切平面 π_i , 在 π_i 上取出一小 块 A_i , 使得 A_i 在 xy 平面上投影为 σ_i ;

则近似地

$$\Delta S = \sum_{i=1}^{n} \Delta S_i \approx \sum_{i=1}^{n} \Delta A_i.$$

分割 T 的细度为 $||T|| = \max_{1 \le i \le n} \{\sigma_i \text{ 的直径}\}$, 若极限

$$\lim_{\|T\| \to 0} \sum_{i=1}^{n} \Delta A_i = \Delta S$$

存在且 ΔS 与分割 T 与点 M_i 的取法无关, 则称此极限为 S 的面积.

计算 A_i 的面积:

$$\Delta A_i = \frac{\Delta \sigma_i}{|\cos \gamma_i|} = \sqrt{1 + f_x^2(\xi_i, \eta_i) + f_y^2(\xi_i, \eta_i)} \Delta \sigma_i,$$

其中 $M_i=(\xi_i,\eta_i,\zeta_i)$, γ_i 为点 M_i 处的法向量 $(f_x,f_y,-1)$ 与 z 轴的夹角,满足

$$|\cos \gamma_i| = \frac{1}{\sqrt{1 + f_x^2(\xi_i, \eta_i) + f_y^2(\xi_i, \eta_i)}}.$$

定理: 设有光滑曲面

$$S: z = f(x, y), \quad (x, y) \in D,$$

则

$$\Delta S = \iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy.$$

第一型曲面积分的计算

例题1: 计算半径为 R 的球面面积.

第一型曲面积分的计算

例题2: 求圆锥 $z = \sqrt{x^2 + y^2}$ 在圆柱体 $x^2 + y^2 \le x$ 内那一部分的面积.

本节作业

作业:

第 273 页: 第1题、第2题.

三重积分

例题: 试改变下列累次积分的顺序:

$$\int_0^1 dx \int_0^{1-x} dy \int_0^{x+y} f(x, y, z) dz.$$

三重积分

例题: 求三重积分

$$\iiint\limits_V (x^2 + xy) dx dy dz,$$

其中 V 是球体 $x^2 + y^2 + z^2 \le r^2$.

刘强 (数学与计算科学学院)