Laboratorium nr 4

Zadanie:

Wykonaj w formie programistycznej implementacji poniżej przedstawione zadania.

- 1) Wygeneruj sygnały zmodulowane $z_A(t)$ oraz $z_P(t)$ dla następujących przypadków:
- a) $1 > k_A > 0$; $k_P < 2$;
- b) $12 > k_A > 2$; $\pi > k_P > 0$;
- c) $k_A > \widehat{B}\widehat{A}; k_P > \widehat{A}\widehat{B}$

Wykonaj wykresy, w tym sygnału informacyjnego.

- 2) Wykonaj wykresy widm amplitudowych sygnałów zmodulowanych $z_A(t)$ oraz $z_P(t)$. Należy tak dobrać skalę (liniową lub logarytmiczną) osi poziomej i pionowej aby jak najwięcej prążków widma było widocznych na wykresie.
- 3) Zbadaj szerokości pasma sygnałów zmodulowanych (dla poziomu -3dB) wykonując wyznaczenie granicy f_{min} i f_{max} oraz obliczenie

$$W = f_{max} - f_{min}.$$

Szerokości wyznaczonych w zadaniu pasm dla poszczególnych aproksymacji zapisz w formie komentarza w kodzie programu.

Sygnał informacyjny:

ZA(t), ka = 0.56:

Widmo i szerokość pasma = 0.33 [Hz]:

ZP(t), kp = 1.67:

Widmo i szerokość pasma = 10.67 [Hz]:

ZA(t), ka = 2.22:

Widmo i szerokość pasma = 3.67 [Hz]:

ZP(t), kp = 2.22:

Widmo i szerokość pasma = 10.67[Hz]:

ZA(t), ka = 12.22:

Widmo i szerokość pasma = 3.67 [Hz]:

ZP(t), kp = 15:

Widmo i szerokość pasma = 80 [Hz]:

Fragmenty kodu.

Sygnał wejściowy:

```
double Lab4::sFunction(double x)
{
    double amp = static_cast<double>(amplitude->value())/100;
    double freq = static_cast<double>(frequency->value())/100;
    return amp*sin(2*M_PI*freq*x);
}
```

Modulacja amplitudy:

```
double Lab4::modulateAmplitude(std::function<double(double)> foo, double x, double of

{
    return (1+kA*foo(x))*cos(2*M_PI*modFreq*x);
}
```

Modulacja fazy:

```
double Lab4::modulatePhase(std::function<double(double)> foo, double x, double modFreq
{
    return cos(2*M_PI*modFreq*x+kP*foo(x));
}
```

Obliczanie szerokości pasma:

```
QPair<double, double> Lab4::calculateBandwidth(QVector<QPointF> vec, double dec
    double min = 0;
    double max = 0;
    bool gotMin = false;
    for(int i=0; i<vec.length()/2; i++)</pre>
        if(vec.at(i).y()>dec)
            if (gotMin)
                max = vec.at(i).x();
            else
                min = vec.at(i).x();
                gotMin = true;
    if(min==0)
        max=0;
    if(max==0)
        min=0;
    return QPair<double, double>(min, max);
```

Reszta funkcjonalności podobnie jak w poprzednich zadaniach.