Direcciones IPv4

Agradecemos a Larisa Toro por armar la presentación de base

DIRECCIONES IPv4

- ✓ Se utilizan para identificara los dispositivos en una red
- ✓ Es un número de 32 bits, agrupados en 4 bytes.
- ✓ Estos 4 bytes se pueden representar en decimal, separados por puntos.

✓ Una parte de esa dirección identifica a la red y otra al host.

$$(0....255).(0....255).(0....255).(0....255)$$

* Ejemplo de dirección IPv4:

En decimal: 155 . 210 . 13 . 45

En binario: 10011011. 11010010.00001101.00101101

Clasificación:

DIRECCIONES IP CLASE A

Comienza con 0 en el primer octeto ¿Entonces es el más chico y el más grande que podría tener en ese octeto?

Rta: <u>0</u> a 127

Redes distintas: $2^7 = 128$

Host distintos: 2²⁴-2 >16.000.000

Las redes 0.0.0.0 y 127 no se utilizan

DIRECCIONES IP CLASE B

Comienza con 10 en el primer octeto ¿Entonces es el más chico y el más grande que podría tener en ese octeto?

Redes distintas: $2^{14} > 16.000$

Host distintos: 2¹⁶-2 >64.000

DIRECCIONES IP CLASE C

Comienza con 110 en el primer octeto

¿Entonces es el más chico y el más grande que podría tener en ese octeto?

CLA 3C	
0-127	
128-191-	5
192-223	7

(11)(5

CLASE	COMIENZA	RED	HOST
A	0	1	3
В		2	2
C	<u>1</u> 10		1

34.- Identifique la clase de red según su dirección e indique la porción de dirección que corresponde a la red, y la porción que corresponde al host.

137	
<u> </u>	

DIRECCION	CLASE	RED	HOST
10)26.58.138	\bigwedge		26.58.138
132.64.100.49	Þ	132.64	100,49
170,65.34.124	B		,
220.100.94.48	Č		
119.1.32.65	\wedge		
195.35.42.24			

MÁSCARA DE RED

"Muestra la red y oculta el host"

Tanto los bits de red (unos) como los de host (ceros), en una máscara de red deben ser CONSECUTIVOS Y ADYACENTES. Los bits que identifican a la red comienzan siempre del lado izquierdo de la máscara.

Máscara de direcciones IP clase A:

 \rightarrow

Máscara de direcciones IP clase B:

En binario: 111111111.11111111.00000000.00000000

H05

En decimal: 255 . 255 . 0 . 0

Máscara de direcciones IP clase C:

En binario: 111111111.11111111.11111111.00000000

En decimal: 255 . 255 . 255 . 0

MÁSCARA DE RED

Dada la dirección IP de un host y su máscara, determinar a que red pertenece el host

* Ejemplo:

CLASEB

IP: 145.54.95.18

Máscara: 255.255.0.0

Hago un producto lógico entre ellas

oroducto	II .
tre ellas	Mask

	Decimal	Red	Bin	ario Ocu	ita
IP	145.54.95.18	10010001	00110110	01011111	00010010
Máscara	255.255. 0 .0	11111111	11111111	00000000	0 0 0 0 0 0 0 0
Red	Producto lógico	10010001	00110110	00000000	00000000
Red		145	54	0	0

- ✓ Se utiliza este procedimiento, para armar subredes a partir de una red.
- ✓ Para esto lo que se hace es "tomar" algunos bits de la parte de host y utilizarlos para armar las subredes.
- ✓ Recordemos que la *máscara de red muestra la red y oculta el host* (tiene **unos** en el lugar de los bits destinados a la **red** y **ceros** en el lugar de los bits destinada a los **host**).

¿ Como me doy cuenta si se aplicó subnetting?

Si NO se utilizó subnetting la **máscaras por defecto:**

Clase A: **255.0.0.0**

Clase B: **255.255.0.0**

Clase C: 255.255.25.0

135 por defecto

Ejemplos de máscaras de redes a las que se le aplicó subnetting:

Clase A: 255.**240.0.0**

Clase B:255.255.192.0

Clase C: 255.255.255.**224**

Ejercicio 37

Dada la siguiente dirección IP 201.222.5.121 y su máscara de subred 255.255.255.248 Obtener:

Cant de O de la mask

Subrea

- a) la dirección de Subred 201.222.5.120
- b) cantidad de máquinas que tendrá la misma 6
- c) el rango de direcciones de la Subred 201.222.5.121 220 222 5126
- d) la dirección broadcast 201.222.5.127

¿ Cuántas subredes puedo armar?

Depende de la cantidad de bits de host que "tome" para armar las subredes $\longrightarrow N = 2^n$

Ejemplo: Dada la dirección IP de una red clase B: **145.54.0.0** (su máscara por defecto es 255.255.0.0).

¿ Cuantas subredes puedo armar si decimos que su máscara será: 255.255.240.0

$$2^4 = 16$$
 — Puedo armar 16 subredes

¿ Cuáles son esas subredes?

Se deben escribir todas las combinaciones posibles con los 4 bits que tomé para armar las subredes (0000, 0001, 0010, etc)

Bits con la máscara en 1 Subredes		Bits con la máscara en 0		IP resultante			
145	54	Octeto donde tomo los bits para subnetting		Octeto donde tomo los bits para subnetting		0	en decimal
10 0 1 0 0 0 1	00110110	0 0 0 0	0000	00000000	145.54.0.0		
10 0 1 0 0 0 1	00110110	0 0 0 16	0,5040201	00000000	145.54.16.0		
10 0 1 0 0 0 1	00110110	0 0 1 0	0 0 0 0	00000000	145.54.32.0		
10 0 1 0 0 0 1	00110110	0 0 1 1	0000	00000000	145.54.48.0		
10 0 1 0 0 0 1	00110110	0 1 0 0	0 0 0 0	00000000	145.54.64.0		
10 0 1 0 0 0 1	00110110	0 1 0 1	0 0 0 0	00000000	145.54.80.0		
10 0 1 0 0 0 1	00110110	0 1 1 0	0000	00000000	145.54.96.0		
10 0 1 0 0 0 1	00110110	0 1 1 1	0 0 0 0	00000000	145.54.112.0		
10 0 1 0 0 0 1	00110110	1 0 0 0	0000	00000000	145.54.128.0		
10 0 1 0 0 0 1	00110110	1 0 0 1	0000	00000000	145.54.144.0		
10 0 1 0 0 0 1	00110110	1 0 1 0	0 0 0 0	00000000	145.54.160.0		
10 0 1 0 0 0 1	00110110	1 0 1 1	0 0 0 0	00000000	145.54.176.0		
10 0 1 0 0 0 1	00110110	1 1 0 0	0 0 0 0	00000000	145.54.192.0		
10 0 1 0 0 0 1	00110110	1 1 0 1	0 0 0 0	00000000	145.54.208.0		
10 0 1 0 0 0 1	00110110	1 1 1 0	0000	00000000	145.54.224.0		
10 0 1 0 0 0 1	00110110	1 1 1 1	0 0 0 0	00000000	145.54.240.0		

NOMBRE	ACCIÓN	GRAL	EJEMPLO		
DIFUSIÓN DIRIGIDA BROADCAST	PERMITE DIRECCIONAR A TODOS LOS HOST DENTRO DE LA RED ESPECIFICADA	DIRECCIÓN DE RED. TODOS UNOS	7 . 255. 255. 5 00000111.11111111111111111111111111111		
LOOPBACK	SE UTILIZA PARA REALIZAR PRUEBAS DENTRO DE UN MISMO HOST (NO SALE POR PLACA DE RED)	127. CUALQUIER COMBINACIÓN (NORMALMENTE CERO.CERO.UNO)	127. 0. 0. 1 01111111.00000000.00000000.00000001		
DIRECCIONA A HOST INTERNO	PERMITE DIRECCIONAR A UN HOST INTERNO DE LA RED	CERO. DIR DE HOST	0. 24. 120. 240 00000000. 00011000.0111100.11110000		
DIFUSIÓN LIMITADA	DIRECCIONA A LOS HOST DE LA PROPIA RED	TODOS UNOS	255. 255. 255 11111111.11111111.11111111		
DIRECCIONA AL PROPIO HOST	PERMITE DIRECCIONAR AL Signal Por Para	TODOS CEROS	0. 0. 0. 0 00000000. 00000000. 00000000		
	ur ked	me ked			

