Experimento de Acústica

Determinação Experimental da Velocidade do Som no Ar

Grupo AD 11

Gabriel Humberto Dias Coelho, 234864
Pedro José Silva dos Santos, 204675
Pedro Sader Azevedo, 243245
Rodrigo Velásquez Solha, 165538
Stella Riko Uchidomari Nakamura, 193953
Yuan Shi Ki, 195766

Objetivo

Determinar a velocidade de propagação do som no ar (meio translúcido)

Quem dera...

Solução: medir frequências de ressonância!

Tubos

- Fundamentação Teórica
- 2. Metodologia
- 3. Previsões
- 4. Resultados

Fundamentação Teórica - Tubos

Condições:
$$r < \lambda \ll L$$

$$\gamma = 0$$

$$\gamma = 0$$

Aproximação: ondas planas

Consequências:

tubos aberto-aberto
$$f_{harm} = \frac{nv}{2L}$$

tubos aberto-fechado
$$f_{harm} = \frac{nv}{4L}$$

para n ímpar

Hipótese:

picos de pressão para $f = f_{harm}$

Metodologia -Tubos

Materiais

Cano, celular (*Phyphox*), fone de ouvido com microfone, fita adesiva

Procedimento

- 1. Medir a geometria do tubo
- 2. Configurar faixa de frequências
- 3. Fazer medida de calibração
- Fazer medida com o aparato experimental

Previsões - Tubos

$$f_{harm} = \frac{nv}{2L}$$

$$L = 1,001 \ m$$

$$v = 340, 27 \ m/s \label{eq:v}$$
 (Wolfram Alpha)

Modo harmônico	Frequência esperada no tubo aberto-aberto(Hz)	
1		172
2		344
3		516
4		688
5		860
6		1033
7		1205
8		1377
9		1549
10		1721
11		1893

Resultados - Tubos

Resultados - Tubos

Intesidade Relativa por Frequência em Tubo aberto-aberto

Resultados - Tubos

Intesidade Relativa por Frequência em Tubo aberto-aberto

$$a = 164 \pm 1s^{-1}$$

$$v_{tubo} = 336 \pm 2 \ m/s$$

Discussão dos Resultados

Tubos

$$v_{tubo} = 336 \pm 2 \ m/s$$

$$E_{\%} = \frac{|v_{tubo} - v|}{v} = 1,25\%$$

Por que o resultado foi tão exato?

- Escolha do melhor tamanho de tubo (ver anexos)
- Geometria simples, em comparação a ressoadores

Por que o resultado foi tão preciso?

 Minimização de incertezas aleatórias (Tipo A) com múltiplas medidas

Como melhorar?

 Minimizar incertezas sistemáticas (Tipo B) usando instrumentos de medida mais adequados, por exemplo um paquímetro ao invés de uma régua.

Dúvidas?

Referências

Imagem das ondas sonoras https://www.youtube.com/watch?v=z63fJUROeN0

Imagem de ressoador https://en.wikipedia.org/wiki/Helmholtz_resonance

Imagem da garrafa https://www.embavalesul.com.br/produtos/detalhe/garrafa-para-vinho-bordeaux-conica-750

Guia de laboratório

Tubo Pequeno

Fizemos previsões e algumas experiências com um tubo de 22,5 cm, mas os resultados não foram promissores

Modo harmônico	Frequência esperada no tubo pequeno aberto-aberto (Hz)	
1		42
3		126
4		168
5		210
6		252
7		294
8		336
9		378
10		420
11		462
12		504
13		546
14		588
15		630
16		672
17		714
18		756
19		798
20		840

Tubo Pequeno

Tubo Pequeno - Tubo Grande

Intesidade Relativa por Frequência em Tubo aberto-aberto

Ruído externo?

Fontes de Incerteza - Tubos

Comprimento

Leitura da fita métrica

Terminação do tubo

Efeito paralaxe

Diâmetro

Leitura da régua

Terminação do tubo

Efeito paralaxe

Alinhamento da régua com o diâmetro do tubo

Frequência harmônica

Determinação dos picos

Output do programa

```
a, b = regressao_linear(x_tubo, y_exp_tubo_grande, 8)
# print(a)
print('coeficiente angular corrigido', 'a =', a*(2*COMPRIMENTO_EFETIVO_TUBO_GRANDE))
print('coeficiente linear corrigido', 'b =', b*(2*COMPRIMENTO_EFETIVO_TUBO_GRANDE))

coeficiente angular corrigido a = 336.6+/-2.1
coeficiente linear corrigido b = 49+/-16
```

$$a = 336 \pm 2 \ m/s$$

 $b = 49 \pm 16 \ m/s$

Preferência pelo Tubo Grande

Razão Entre Comprimento de Onda (λ) e Comprimento do Tubo Grande aberto-aberto (L) em Função da Frequência Sonora

Preferência pelo Tubo Grande

Razão Entre Comprimento de Onda (λ) e Comprimento do Tubo Pequeno aberto-aberto (L) em Função da Frequência Sonora

Preferência pelo Tubo aberto-aberto

Razão Entre Comprimento de Onda (λ) e Comprimento do Tubo Grande aberto-aberto (L) em Função da Frequência Sonora

Preferência pelo Tubo aberto-aberto

Razão Entre Comprimento de Onda (λ) e Comprimento do Tubo Grande aberto-fechado (L) em Função da Frequência Sonora

Ressoadores

- 1. Fundamentação Teórica
- 2. Metodologia
- 3. Previsões
- 4. Resultados

Fundamentação Teórica - Ressoadores

Condições: $V_{gargalo} \ll V$, $\gamma = 0$

Aproximação: ar como corpo rígido

Consequência:

$$f_{harm} = \frac{vr}{2\pi} \sqrt{\frac{\pi}{LV}}$$

para o harmônico fundamental

Hipotese:

picos de pressão para $f = f_{harm}$

Metodologia -Ressoadores

Materiais

Garrafa, celular (*Phyphox*), fone de ouvido com microfone, fita adesiva

Procedimento

- 1. Medir geometria da garrafa
- 2. Configurar faixa de frequências
- 3. Fazer medida de calibração
- 4. Fazer medida com o aparato experimental

Previsões - Ressoadores

$$f_{harm} = \frac{vr}{2\pi} \sqrt{\frac{\pi}{LV}}$$

$$L = 0,100 \ m$$

$$r = \frac{25}{2}$$

$$v = 340, 27 \ m/s^2$$

Volume (10 ⁻⁵ m³)	Frequência fundamental (Hz)	
16		276
20		247
24		225
28		208
32		195
36		184
40		174
44		166
48		159
52		153
56		147
60		142
64		138
68		134
72		130
76		127

Amplitude por Frequência em um Ressoador de Helmholtz

Regressão Lorentziana de Amplitude por Frequência em um Ressoador de Helmholtz

Usando a equação

$$f_{harm} = \frac{vr}{2\pi} \sqrt{\frac{\pi}{LV}}$$

para traçar uma curva teórica temos o seguinte gráfico:

Frequências fundamentais por Volume de um Ressoador de Helmholtz

Linearização de Frequências fundamentais por Volume de um Ressoador de Helmholtz

$$a = 2.9 \pm 0.4$$

$$d = \frac{r}{2\pi} \sqrt{\frac{\pi}{LV}}$$

$$\frac{a}{d} = v_{ress} = 242 \pm 16 \ m/s^2$$

Tubos X Ressoadores

Em qual dos experimentos conseguimos resultados melhores? Por quê?

Discussão dos Resultados

Tubos

$$v_{tubo} = 329 \pm 2m/s^2$$

$$E_{\%} = \frac{|v_{tubo} - v|}{v} = 3,3\%$$

Ressoadores

$$v_{ress} = 242 \pm 16 \ m/s^2$$

$$E_{\%} = \frac{|v_{ress} - v|}{v} = 29,2\%$$

Porque o resultado dos ressoadores foi tão inexato?

Primeiro suspeito: pico aparentemente mal-definido

Amplitude por Frequência em um Ressoador de Helmholtz

Repetindo os cálculos sem o pico destacado obtivemos:

$$v_{ress} = 241 \pm 31 \ m/s^2$$

Então não era isso...

Porque o resultado dos ressoadores foi tão inexato?

Segundo suspeito:

geometria do nosso ressoador

$$V_{gargalo} \ll V \equiv Falso$$

(gargalo com volume não desprezível)

Porque o resultado dos ressoadores foi tão inexato?

Segundo suspeito:

geometria do nosso ressoador

$$V_{gargalo} \ll V \equiv Falso$$

(gargalo com volume não desprezível)

Fontes de Incerteza - Ressoadores

Comprimento do gargalo	
Leitura da fita métrica	
Terminação do tubo	
Efeito paralaxe	

Diâmetro do gargalo	
Leitura da régua	
Terminação do tubo	
Efeito paralaxe	
Alinhamento da régua	

com o diâmetro do tubo

Volume principal
Leitura do medidor
Terminação do volume e início do gargalo

Frequência harmônica

Determinação dos picos