Statistics of successful slots up to hime n: Let the error process be Markov, two-state Xn 0 = correct + x } 1 = error eous + x. Fig(k, n)=P[k good slots In 0,1,..., n-1, and j/n n | i hu o] $= P\left[\sum_{m=0}^{\infty} I\left\{X_{m} = 0\right\} = k, X_{n} = j \mid X_{o} = i\right]$ Condition on last transition: $\Phi_{ij}(k,n) = \Phi_{io}(k-1,n-1)P_{oj} + \Phi_{il}(k,n-1)P_{ij}, n>0$ $\Phi_{ij}(k, \mathbf{0}) = \{ | per i=j, k=0, n=0 = Lij H(n) J(k) \}$ dij(k,n)=0 k=0 oppme n<0 o k>n. Flually: ψ₁(k,n) = φ₁₀(k-1,n-1) poj + φ₁₁(k,n-1) pij + fij f(n) f(k) In mahi x form: φ(k,n) = (φ₁₀(k,n) φ₁(k,n)) ψ₁₀(k,n) φ₁(k,n) $\phi(k,n) = \phi(k-1,n-1) \begin{pmatrix} p_{00} & p_{01} \\ 0 & 0 \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{00} & p_{10} \\ 0 & p_{10} \end{pmatrix} + \phi(k,n-1) \begin{pmatrix} p_{$ + f(n) f(k) I let P(0/= (P10 P11) and P(1) = (P00 P01)

Therefore: $\phi(k,n) = \phi(k-1,n-1)P(1) + \phi(k,n-1)P(0) +$ + 1(n)+(k) I,n20 usle: P(1) contains "good a transitions (starting from 0)
P(0) a bad a a (" " 1) The comes pounds to i successes, i=0,1.

We can apply the same analytic to any finite-state

Markov chain where we want to count transitions

of a certain typevote: if we condition on first bour; doj(k,n)= poo doj(k-1,n-1)+ po1 dij(k-1,n-1)+ doj s(n) f(k) 4ij(k,n)= Protoj(k,n-1)+ Protij(k,n-1)+ dijd(n) f(k) lu matrix form: 中(k,n)= P(1) 中(k-1,前)+P(a) 中(k,前)+Ha/Hk/I * compared to the other equation, the order of the matrix products is reversed

* there matrix equations are convolutions-

How to solve these equations: (3)1) compute recursively 2) use transforms. $\varphi(s,z) = \underbrace{\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{$ cp(s,z) = y(s,z)p(1)sz + cp(s,z)p(0)z + I $y(s,z) = [I - P(1)sz - P(0)z]^{-1} = [I-z(P(1)s+P(0))]^{-1}$ $= \sum_{n=1}^{\infty} \left[P(1)s + P(n) \right]^n z^n$ $-\mu \varphi(s,n) = \sum_{k=0}^{\infty} s^k \varphi(k,n) = \text{for agiven } n$ $= \left(P(1)S + P(0)\right)^n$ which in principle could be inverted. Example: arronge munder of good slots in 0,1,2,..., n-1, given mitial state i: of the number of himes state 0 is his bed lu 0,1,2,..., n-1, given that we start in i Cushe: we wild to sum over 3). The a wage muster of visits is obtained by taking the fint den mhre for s=1.

$$\begin{aligned}
\varphi'(1,n) &= \frac{d\varphi(s,n)}{ds} \\
&= \sum_{k=0}^{n-1} \left(\frac{P(1)s + P(0)}{P(1)} \right)^k \frac{P(0)}{P(1)} \\
&= \sum_{k=0}^{n-1} \left(\frac{P(1)s + P(0)}{P(1)} \right)^k \frac{P(0)}{P(1)} \\
&= \sum_{k=0}^{n-1} \frac{P(1)}{P(1)} \frac{P(1)}{P(1)} \\
&= \sum_{k$$

Remark: me found the equation: $\left(\begin{array}{c} 1 \end{array} \right)$ Φ(k,n) = Φ(k-1,n-1)P(i)+Φ(k,n-1)P(o)+J(n) (k) I where we identified two types of transitions (good and bad, 1,1, one or zero sumestes). Suppose we associate an integer websix to each transition. Let P(e) be the maties that contains all elements of P that comes kand to a "reward" of l. We have: $\phi(k,n)=\sum_{n}$ with transform $\psi(s,z) = \psi(s,z)\psi(s)z + I$ uhur 4(s) = 5 P(l)sl fet. $y(s,z) = [I - y(s)z]^{-1}$ As before. $\varphi(s,n) = [\psi(s)]^n$.

wole: 1. we can find average runn der of rewards In 0,1,..., n-1 as before (it was a particular case when Y(s)=P(o)+P(1/s) 72. each transition ij has a "label n 4/165) 3. in $\varphi(s,z)$, s labels successes and z labels the he number of trans hous. 4. the label on each transition does not weed to be a single term. That is, we can have $4ij(s) = \sum_{l=0}^{\infty} P_{lj}(l) s^{l}$ where Py(l) is the probability of transilien inj and that the websir has the value l. roperlies of tigls): a) 4/j(1) = Pij ; 4(1) = P Pij hedishish how of the me tric.

given the fourthour.

e) $\psi'(1) = \frac{d\psi'(1)}{ds} = \frac{2}{3} \sin^{3} \alpha \cos^{3} \alpha \cos^{3} \alpha \cos^{3} \alpha$ on ij

d) if the websis to the reward, Ri = S Yig(1) (arrage reward for a n'x't to state i)

5. We can define multiple metries, i.e., & could be a vector (s, sz,...) In this case, the average bleomes: Pij arrage of the k-th = $\frac{34ij(s_1,s_2,...)}{4s_k}$ $= \frac{34ij(s_1,s_2,...)}{4s_k}$ 6. Now to compute by (5): a) let E(i,j) be the set of all events that correspond to a transition from state i to state j b) let P[A] the probabil'ty of event A c) let $S(A) = S_1$ S_2 S_2 S_2 S_3 lk(A) is the value of the k-the metric that corresponds to the event A. d) we have '; 4 19(s) = 2 P[A] s(A)

$$\psi_{ij}(\underline{s}) = \sum_{A \in \mathcal{E}(l,j)} P(A) \underline{s}(A)$$

whethat $\psi_{ij}(\underline{l}) = \sum_{A \in \mathcal{E}(l,j)} P(A) = P_{ij}$

example: GBN with lid feedback temors (prob. f).

table et posible event:

from	to	pno5.	reward	h'un	
G	G	(1-8) 700	1		
G-	B	(1- d) Po,	1	1	
G	6	f 200 (m)	ρ	ш	
G	B	18 por (m)	0	m	
B	<i>C</i> -	(1-1)p10(m)	ρ	m	
13	В	(1-8) P10 (m)	0	m	
B	G	1 p10 (m)	PO	m	
1 13	B	f p11 (m)	0	m	

 $\psi(s_{1}, s_{2}) = \begin{cases} (1-s)q_{00}s_{1}s_{2} + 4q_{00}(m)s_{2}^{m} & (1-d)p_{01}s_{1}s_{2} + 4q_{00}(m)s_{2}^{m} \\ p_{10}(m)s_{2}^{m} & p_{11}(m)s_{2} \end{cases}$

$$P = \psi(1,1) = \begin{cases} (1-3)f_{00} + \delta f_{00}(m) & (1-3)f_{01} + \delta f_{01}(m) \\ f_{10}(m) & f_{01}(m) \end{cases}$$

$$P_{10}(m) \qquad P_{01}(m) \qquad P_{01}(m)$$

$$P_{11}(m) + (1-3)f_{01} + \delta f_{01}(m) ; \quad ng = 1-n_G$$

$$P_{11}(m) + (1-3)f_{01} + \delta f_{01}(m) ; \quad ng = 1-n_G$$

$$P_{11}(m) = \begin{cases} (1-3)f_{00} & (1-3)f_{01} + \omega \int_{01}^{\infty} f_{01}(m) \\ f_{11}(m) & (1-3)f_{01} + \omega \int_{01}^{\infty} f_{01}(m) \\ f_{11}(m) & (1-3)f_{01} + \omega \int_{01}^{\infty} f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \end{cases}$$

$$P_{11}(m) = \begin{cases} (1-3)f_{00} + \omega \int_{01}^{\infty} f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \end{cases}$$

$$P_{11}(m) = \begin{cases} (1-3)f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \end{cases}$$

$$P_{11}(m) = \begin{cases} (1-3)f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \end{cases}$$

$$P_{11}(m) = \begin{cases} (1-3)f_{01}(m) \\ f_{11}(m) & (1-3)f_{01}(m) \\ f_{12}(m) & (1-3)f_{01}(m) \\ f_{12}(m) & (1-3)f_{01}(m) \\ f_{12}(m) & (1-3)f_{01}(m) \\$$