COMP250: Artificial Intelligence

7: Monte Carlo Tree Search

Heuristics for search

From session 2: Minimax search

```
procedure MINIMAX(state, currentPlayer)
   if state is terminal then
      return value of state
   else if currentPlayer is maximising then
      bestValue = -\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = Max(bestValue, v)
         if bestValue > 1 then
            break
      return bestValue
   else if currentPlayer is minimising then
      bestValue = +\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = MIN(bestValue, v)
         if bestValue < -1 then
            break
      return bestValue
```

Minimax for larger games

- ► The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully
 - ► Connect 4 has $\approx 10^{13}$ states
 - ► Chess has $\approx 10^{47}$ states

Depth limiting

- Standard minimax needs to search all the way to terminal (game over) states
- Depth limiting is a common technique to apply minimax to larger games
- ► Still evaluate terminal states as +1 / 0 / -1
- ► For nonterminal states at depth *d*, apply a heuristic evaluation instead of searching deeper
- ► Evaluation is a number between -1 and +1, estimating the probable outcome of the game

1-ply search

- ► Case d = 1
- ► For each move, evaluate the state resulting from playing that move
- ► This is computationally fast
- Often easier to design a "which state is better" heuristic than to directly design a "which move to play" heuristic

Designing heuristics

- ► The playing strength of depth limited minimax depends heavily on the design of the heuristic
- Good heuristic design requires in-depth knowledge of the tactics and strategy of the game
- ▶ What if we don't have that knowledge? ...

Monte Carlo evaluation

Expected value

- ► Let X be a random variable
- \blacktriangleright Let p(x) be the probability that X has value x
- ► Then the **expected value** of X is

$$\sum_{x} x \cdot p(x)$$

Expected value — example

- ► A slot machine pays out:
 - \$1 with probability 0.05
 - \$5 with probability 0.03
 - \$10 with probability 0.02
 - Nothing with probability 0.9
- ► The expected payout is

$$1 \times 0.05 + 5 \times 0.03 + 10 \times 0.02 + 0 \times 0.9 = 0.4$$

i.e. \$0.40

▶ What this means: if you play the slot machine N times, on average you will win $N \times \$0.40$

"Randomness" in computing

- Digital computers are deterministic, so there's no such thing as true randomness
 - Cryptographically secure systems use an external source of randomness e.g. atmospheric noise, radioactive decay
- What we actually have are pseudo-random number generators (PRNGs)
- A PRNG is an algorithm which gives an unpredictable sequence of numbers based on a seed
- Sequence is uniformly distributed, i.e. all numbers have equal probability
- Seed is generally based on some source of entropy,
 e.g. system clock, mouse input, electronic noise

Monte Carlo methods

- In computing, a Monte Carlo method is an algorithm based on averaging over random samples
- ► The average over a large number of samples is a good approximation of the expected value
- Used for quickly approximating quantities over large domains
- Generally designed to converge in the limit
 - An infinite number of samples would give an exact answer
 - As the number of samples increases, the accuracy of the answer improves
- Applications in physics, engineering, finance, weather forecasting, graphics, ...

Monte Carlo evaluation in games

Based on random rollouts

while s is not terminal do
let m be a random legal move from s
update s by playing m

- ► The value of a rollout is the value of the terminal state it reaches (i.e. 1 for a win, -1 for a loss, 0 for a draw)
- Averaging gives the expected value of the initial state
- ► Higher expected value = more chance of winning

Monte Carlo search

- ► Flat Monte Carlo search: 1-ply search with Monte Carlo evaluation
- How about minimax with d > 1 and Monte Carlo evaluation?
 - Minimax assumes the evaluation is deterministic, but Monte Carlo is not
 - Not commonly used, mainly because there's something better...

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS)

- ► Like Monte Carlo evaluation, based on rollouts
- ► First few rollouts are random
- However, statistics from these rollouts are used to bias future rollouts
- Bias rollouts towards plausible lines of play, i.e. where each player is trying to play the best move

The MCTS algorithm

- MCTS builds a tree
- ▶ Initially, the tree consists of a single root node
- ► Each rollout has four stages:
 - Selection: Starting from the root, descend the tree by choosing moves. Continue until we reach a node which does not yet have children for all legal moves.
 - ► **Expansion**: Choose a random legal move for which the current node does not have a child node. Add this new node to the tree.
 - Simulation: Perform a Monte Carlo rollout, playing random moves until a terminal state is reached.
 - Backpropagation: For each node visited during selection and expansion, update the node's statistics based on the result of the simulation.
- Perform many rollouts, then use the statistics at the top level of the tree to choose the best move

The MCTS algorithm

Selection policy

- Selection must balance:
 - Exploitation of moves that are known to be good
 - Exploration of moves that have not often been tried
- This can be modelled as a multi-armed bandit problem

Multi-armed bandits

- We have a row of one-armed bandits (slot machines)
- We do not know the payout probabilities of any of them, and they're all different
- ► How to maximise our winnings?
- ► Again must balance
 - Exploitation of machines that are known to have a high expected payout
 - Exploration of machines that have not been tried often, to get a better estimate of their expected payout

Upper Confidence Bound (UCB)

- ► For each machine *m*, record:
 - \triangleright n_m : the number of plays of this machine
 - \triangleright V_m : the total winnings from playing this machine
 - $n = \sum_{m} n_m$, total number of plays across all machines
- At each stage, play the machine for which

$$\frac{V_m}{n_m} + c\sqrt{\frac{\log n}{n_m}}$$

is largest

- ▶ $\frac{V_m}{n_m}$ is the **exploitation** part: average payout from this machine so far
- $\sqrt{\frac{\log n}{n_m}}$ is the **exploration** part: large if n_m is small
- c is a parameter for adjusting the balance between exploitation and exploration

UCB demo

Upper Confidence Bound for Trees (UCT)

- Use UCB as the selection policy
- ▶ In each node x, record:
 - \triangleright n_x : the number of visits to this node
 - \triangleright V_x : the total value of rollouts through this node
- ▶ From node p, choose the child q such that

$$\frac{V_q}{n_q} + c\sqrt{\frac{\log n_p}{n_q}}$$

is largest

UCT demo

Benefits of MCTS

- "Vanilla" MCTS is game independent
- But if game-specific heuristics are available, they can be used to enhance MCTS
- ► MCTS is anytime
 - Can stop it after any amount of computation (within reason) and get a reasonably good answer
 - ▶ Compare with minimax: $O(e^d)$ for depth d
- ► Does not suffer from horizon effect
 - Minimax at depth d cannot "see" what happens d+1 moves in the future
 - MCTS can build the tree as deep as it likes
 - Selects which parts of the tree to expand more deeply

MCTS for games of imperfect information