Limits, Math 221 Do as many as you can!

- 1. Evaluate the limit $\lim_{x\to 4} x^4 4x + 1$.
- 2. Evaluate the limit $\lim_{x\to 3} \frac{3x^2+1}{\sqrt{x^3+9}}$.
- 3. Evaluate the limit $\lim_{x\to 1} \frac{x^2 2x + 1}{x^2 3x + 2}$.
- 4. Evaluate the limit $\lim_{x\to 4} \frac{x-4}{\sqrt{x}-2}$.
- 5. Evaluate the limit $\lim_{x\to 1} \frac{2x-1}{8x^3-1}$
- 6. Evaluate the limit $\lim_{x\to 2} \frac{\frac{1}{x} \frac{1}{2}}{x-2}$.
- 7. Evaluate the limit $\lim_{x\to 3} \frac{\sqrt{x}-3}{x-9}$.
- 8. Evaluate the limit $\lim_{x\to 3} \frac{\sqrt{x+6}-3}{x^2-9}$ or show that it does not exist.

- 9. Evaluate the limit $\lim_{x\to\infty} \frac{x^3+2x+1}{3x^3-x+4}$ or show that it does not exist.
- 10. Evaluate the limit $\lim_{x\to-\infty}\frac{x^{17}-7x^{2013}}{3x^2+x^{2014}}$ or show that it does not exist.
- 11. Evaluate the limit $\lim_{x\to\infty} \frac{\sqrt{x^2+3x}}{2x}$ or show that it does not exist.
- 12. Evaluate the limit $\lim_{x\to-\infty}\frac{x-3}{\sqrt{x^2-9}}$ or show that it does not exist.
- 13. Evaluate the limit $\lim_{x\to\infty} \sqrt{x^2 + x} x$
- 14. Here are your tasks. Some might be impossible. Find functions f(x) and g(x) so that

(a)
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$$
 but $\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$.

(b)
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$$
 but $\lim_{x\to 0} \frac{f(x)}{g(x)} = 2$.

(c)
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$$
 but $\lim_{x\to 0} \frac{f(x)}{g(x)} = \infty$.

(d)
$$\lim_{x\to 0} f(x) = 0$$
, $\lim_{x\to 0} g(x) = +\infty$ but $\lim_{x\to 0} f(x)g(x) = 3$.

(e)
$$\lim_{x\to 0} f(x) = 0$$
, $\lim_{x\to 0} g(x) = +\infty$ but $\lim_{x\to 0} f(x)g(x) = -3$.

(f)
$$\lim_{x\to 0} f(x) = 0$$
, $\lim_{x\to 0} g(x) = +\infty$ but $\lim_{x\to 0} f(x)g(x) = 3$.

(g)
$$\lim_{x\to 0} f(x) = \infty$$
, $\lim_{x\to 0} g(x) = -\infty$ but $\lim_{x\to 0} f(x) + g(x) = 4$.