Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2015/2016

7. prednáška

Logika s rovnosťou

11. apríla 2016

Obsah 7. prednášky

1 Logika s rovnosťou Syntax logiky s rovnosťou Sématika logiky s rovnosťou Tablá pre logiku s rovnosťou

Symboly jazyka logiky s rovnosťou

Definícia

Symbolmi jazyka logiky s rovnosťou L sú:

- symboly (indivíduových) premenných z nejakej nekonečnej spočítateľnej množiny \mathcal{V} (označujeme ich x, y, \dots);
- mimologické symboly:
 - ► symboly konštánt z nejakej spočítateľnej množiny C (a, b, ...);
 - funkčné symboly z nejakej spočítateľnej množiny $\mathcal{F}(f, g, ...)$;
 - predikátové symboly z nejakej spočít. množiny $\mathcal{P}(P, R, ...)$;
- logické symboly:
 - ▶ logické spojky: unárna \neg , binárne \land , \lor , \rightarrow ;
 - ► symbol rovnosti = (niekedy zapisovaný priamo ako =);
- pomocné symboly (,) a , (ľavá, pravá zátvorka a čiarka);

Množiny \mathcal{V} , \mathcal{C} , \mathcal{F} a \mathcal{P} sú vzájomne disjunktné a neobsahujú logické a pomocné symboly.

Každému symbolu $S \in \mathcal{P} \cup \mathcal{F}$ je priradená *arita* ar $(S) \in \mathbb{N}^+$.

Symboly jazyka logiky s rovnosťou

Poznámka

Symboly (konštánt, funkčné, predikátové) môžu byť nealfanumerické (1, <, +), či tvorené viacerými znakmi (empty, Even, push).

Dohoda

Aritu budeme niekedy písať ako horný index symbolov (pop^1 , $<^2$).

Príklad

Jazyk grafov \mathcal{L}_G má dva predikátové symboly: unárny V a binárny E. Jazyk usporiadania \mathcal{L}_{O} má dva binárne predikátové symboly: <, \leq . Jazyk aritmetiky \mathcal{L}_A má symbol konštanty 0, funkčné symboly S^1 . $+^2$, \cdot^2 a predikátové symboly $<^2$, $<^2$.

Jazyk zásobníkov \mathcal{L}_{S} by mohol mať napr. symbol konštanty empty, funkčné symboly $push^2$, top^1 , pop^1 a predikátový symbol is $empty^1$.

Termy jazyka logiky s rovnosťou

Definícia

Termy jazyka logiky s rovnosťou \mathcal{L} sú postupnosti symbolov jazyka \mathcal{L} definované rekurzívne nasledujúcimi pravidlami:

- Každý symbol premennej x je termom.
- Každý symbol konštanty c je termom.
- Ak f je funkčný symbol s aritou n a t₁, ..., t_n sú termy, tak aj $f(t_1, \ldots, t_n)$ je termom.
- Nič iné nie je termom.

Dohoda

Termy označujeme písmenami t, s, r s prípadnými dolnými indexmi.

Termy jazyka logiky s rovnosťou

Príklad

Skonštruujme niekoľko termov v jazyku zásobníkov $\mathcal L$ so symbolmi premenných x, y, z, \ldots , symbolom konštanty empty, funkčnými symbolmi push², top¹, pop¹ a s predikátovým symbolom is empty¹.

Formuly jazyka logiky s rovnosťou

Definícia

Formuly jazyka logiky s rovnosťou \mathcal{L} sú postupnosti symbolov jazyka \mathcal{L} definované rekurzívne nasledujúcimi pravidlami:

- Ak t_1 a t_2 sú termy, tak $t_1 \doteq t_2$ je formula (rovnostný atóm).
- Ak P je predikátový symbol s aritou n a t₁, ..., t_n sú termy, tak $P(t_1, \ldots, t_n)$ je formula (predikátový atóm).
- Ak A je formula, tak aj $\neg A$ je formula (negácia A).
- Ak A a B sú formuly, tak aj $(A \wedge B)$, $(A \vee B)$, $(A \rightarrow B)$ sú formuly (konjunkcia, disjunkcia, implikácia A a B).
- Nič iné nie je formula.

Dohoda

Formuly označujeme písmenami A, B, C, ... s prípadnými indexmi. Predikátové a rovnostné atómy súhrnne nazývame atómy, atomické

Príklad

Skonštruujme niekoľko atómov a formúl v jazyku zásobníkov $\mathcal L$ so symbolmi premenných x, y, z, \ldots , symbolom konštanty empty, funkčnými symbolmi push², top¹, pop¹ a s predikátovým symbolom is $empty^1$.

Dohoda

Zápis formúl môžeme zjednodušovať nasledujúcim spôsobom:

- Vonkajší pár zátvoriek môžeme vždy vynechať, teda napr. namiesto ($a \doteq b \rightarrow b \doteq a$) môžeme písať $a \doteq b \rightarrow b \doteq a$.
- Binárnym spojkám priradíme prioritu: najvyššiu má \wedge , nižšiu \vee , najnižšiu \rightarrow . Ak $W = (A b_1 B)$ je priamou podformulou $(X b_2 Y)$ (teda W=X alebo W=Y) a b_1 má vyššiu prioritu ako b_2 , môžeme vynechať zátvorky okolo W. Napr. namiesto

$$((P(x,y) \land (P(z,x) \lor P(y,z))) \rightarrow (P(x,z) \lor P(z,x)))$$

môžeme písať

$$P(x,y) \land (P(x,z) \lor P(y,z)) \rightarrow P(x,z) \lor P(z,x)$$

Štruktúry

Definícia

Nech \mathcal{L} je jazyk logiky s rovnosťou.

Štruktúrou pre jazyk \mathcal{L} nazývame dvojicu $\mathcal{M} = (M, \square^{\mathcal{M}})$, kde

- *M* je neprázdna množina, *doména* štruktúry *M*;
- $\square^{\mathcal{M}}$ je zobrazenie, *interpretačná funkcia* štruktúry \mathcal{M} , ktoré
 - ► každému symbolu konštanty c jazyka L priraďuje prvok $c^{\mathcal{M}} \in M$:
 - \blacktriangleright každému funkčnému symbolu f jazyka \mathcal{L} s aritou npriraďuje funkciu $f^{\mathcal{M}}: M^n \to M$;
 - \blacktriangleright každému predikátovému symbolu P jazyka $\mathcal L$ s aritou npriraďuje množinu $P^{\mathcal{M}} \subset M^n$.

Dohoda

Štruktúry označujeme veľkými kaligrafickými písmenami $\mathcal{M},\,\mathcal{N},\,\dots$ Doménu označujeme rovnakým, ale tlačeným písmenom ako štruktúru. Struktúra priraďuje symbolom jazyka význam: konštantám prvky domény, funkčným symbolom skutočné funkcie na doméne, a predikátom množiny tých *n*-tíc prvkov, pre ktoré predikát platí.

Príklad

Popíšme príklady štruktúr pre \mathcal{L}_{G} , \mathcal{L}_{O} , \mathcal{L}_{A} , \mathcal{L}_{S} .

Jazyk sa dá prirovnať k abstraktnej triede (alebo interfacu v Jave): deklaruje mená metód, ale neurčuje ich význam.

Štruktúra je potom ako konkrétna podtrieda takejto abstraktnej triedy, v ktorej majú všetky metódy implementáciu.

Definícia

Nech $\mathcal{M} = (M, \square^{\mathcal{M}})$ je štruktúra pre jazyk \mathcal{L} .

Ohodnotenie (indivíduových) premenných je ľubovoľná funkcia $e: \mathcal{V} \to M$ (priraďuje premenným prvky domény).

Zápisom e(x/v) označíme ohodnotenie premenných, ktoré priraďuje premennej x hodnotu v z domény Ma všetkým ostatným premenným rovnakú hodnotu ako e.

Definícia

Nech $\mathcal{M} = (M, \square^{\mathcal{M}})$ je štruktúra, *e* je ohodnotenie premenných. Hodnotou termu t v štruktúre M pri ohodnotení premenných e je prvok $t^{\mathcal{M}}[e]$ z M určený nasledovne:

- $x^{\mathcal{M}}[e] = e(x)$, ak x je premenná,
- $a^{\mathcal{M}}[e] = a^{\mathcal{M}}$, ak a je konštanta,
- $(f(t_1,\ldots,t_n))^{\mathcal{M}}[e] = f^{\mathcal{M}}(t_1^{\mathcal{M}}[e],\ldots,t_n^{\mathcal{M}}[e])$, ak t_1,\ldots,t_n sú termy.

Ohodnotenie premenných, hodnota termov

Príklad

Vyhodnoťme v štruktúre $\mathcal{N}=(\mathbb{N},\square^{\mathcal{N}})$ pre jazyk aritmetiky \mathcal{L}_{A} so štandardnou interpretáciou symbolov pri ohodnotení premenných $e = \{x \mapsto 4, y \mapsto 9, \ldots\}$ termy:

$$+(S(S(S(0))), S(S(0))) + (x, \cdot (S(S(0)), y))$$

Definícia

Nech $\mathcal{M} = (M, \square^{\mathcal{M}})$ je štruktúra, *e* je ohodnotenie premenných. Relácia formula A je splnená v štruktúre M pri ohodnotení e (skrátene $\mathcal{M} \models \phi[e]$) má nasledovnú rekurzívnu definíciu:

- $\mathcal{M} \models t_1 \doteq t_2[e] \text{ vtt } t_1^{\mathcal{M}}[e] = t_2^{\mathcal{M}}[e],$
- $\mathcal{M} \models P(t_1, \ldots, t_n)[e] \text{ vtt } (t_1^{\mathcal{M}}[e], \ldots, t_n^{\mathcal{M}}[e]) \in P^{\mathcal{M}}$
- $\mathcal{M} \models \neg A[e] \text{ vtt } \mathcal{M} \not\models A[e].$
- $\mathcal{M} \models (A \land B)[e]$ vtt $\mathcal{M} \models A[e]$ a zároveň $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models (A \lor B)[e]$ vtt $\mathcal{M} \models A[e]$ alebo $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models (A \rightarrow B)[e]$ vtt $\mathcal{M} \not\models A[e]$ alebo $\mathcal{M} \models B[e]$.

pre všetky arity n > 0, všetky predikátové symboly P s aritou n, všetky termy t_1, t_2, \ldots, t_n , a všetky formuly A, B.

Príklad

Sú v štruktúre $\mathcal{N} = (\mathbb{N}, \square^{\mathcal{N}})$ pre jazyk aritmetiky \mathcal{L}_{A} so štandardnou interpretáciou symbolov pri ohodnotení premenných $e = \{x \mapsto 4, y \mapsto 9, \ldots\}$ splnené atómy:

$$+(S(S(S(0))), S(S(0))) = +(x, \cdot(S(S(0)), y)) +(S(S(S(0))), S(S(0))) < +(x, \cdot(S(S(0)), y))?$$

Príklad

V akých štruktúrach pre jazyk grafov \mathcal{L}_G je pri každom ohodnotení e splnená formula

$$V(x) \wedge V(y) \wedge E(x,y) \rightarrow E(y,x)$$
?

Definícia

Nech X je formula v jazyku \mathcal{L} .

Formulu X nazveme kvázitautológiou vtt X je splnená v každej štruktúre \mathcal{M} pre \mathcal{L} pri každom ohodnotení e.

Definícia

Nech X je formula v jazyku \mathcal{L} , nech T je množina formúl v jazyku \mathcal{L} . Formula X kvázitautologicky vyplýva z T (skrátene $T \models X$) vtt pre každú štruktúru \mathcal{M} pre \mathcal{L} a každé ohodnotenie e platí, že ak je každá formula Y z T splnená v \mathcal{M} pri e, tak aj X je splnená v \mathcal{M} pri e.

Tvrdenie

Nech X je formula v jazyku \mathcal{L} . Potom X je kvázitautológiou vtt X kvázitautologicky vyplýva z prázdej množiny formúl ($\{\} \models X$).

Kvázitautologická splniteľnosť

Definícia

Nech T je množina formúl v jazyku \mathcal{L} . Množina T kvázitautologicky splniteľná vtt pre každú štruktúru \mathcal{M} pre \mathcal{L} a každé ohodnotenie e platí, že ak je každá formula Y z T je splnená v \mathcal{M} pri e. T je kvázitautologicky nesplniteľná vtt nie je splniteľná.

Tvrdenie

Nech X je formula v jazyku \mathcal{L} , nech T je množina formúl v jazyku \mathcal{L} . Formula X kvázitautologicky vyplýva z T vtt $T \cup \{X\}$ je kvázitautologicky nesplniteľná.

Kvázitautológie vs. tautológie

Ako sa líšia kvázitautológie od tautológií?

Príklad

Formula

$$x \doteq y \land g(f(z,x)) \doteq y \land \neg P(x) \rightarrow \neg P(g(f(z,x)))$$
 (1)

je kvázitautológia.

Je (1) tautológia? Vo výrokovej logike sa na atómy logiky s rovnosťou pozeráme ako na výrokové premenné. Formulu (1) teda vidíme ako

$$p \wedge q \wedge \neg r \rightarrow \neg s$$
,

čo určite nie je tautológia.

Odlišnosť kvázitautológií (a kvázitautologického vyplývania) od tautológií (a výrokovologického vyplývania) spočíva práve v zohľadnení vlastností rovnosti.

Definícia

Nech \mathcal{L} je jazyk logiky s rovnosťou.

Axiómami rovnosti sú všetky formuly vytvorené podľa nasledujúcich schém pre všetky arity n > 0, všetky funkčné symboly f s aritou n, všetky predikátové symboly P s aritou n, všetky termy t_1, t_2, t_3, \ldots t_n, s_1, \ldots, s_n :

- $t_1 \doteq t_1$ (reflexívnosť),
- $t_1 \doteq t_2 \rightarrow t_2 \doteq t_1$ (symetria),
- $t_1 \doteq t_2 \land t_2 \doteq t_3 \rightarrow t_1 \doteq t_3$ (tranzitívnosť),
- $t_1 \doteq s_1 \wedge \cdots \wedge t_n \doteq s_n \rightarrow f(t_1, \ldots, t_n) \doteq f(s_1, \ldots, s_n)$ (substitúcia pre funkčné symboly),
- $t_1 \doteq s_1 \wedge \cdots \wedge t_n \doteq s_n \wedge P(t_1, \ldots, t_n) \rightarrow P(s_1, \ldots, s_n)$ (substitúcia pre predikátové symboly),

Množinu axióm rovnosti označíme Eq.

Výrokovologické a kvázitautologické vyplývanie

Veta

Všetky axiómy rovnosti sú kvázitautológie.

Dohoda

Vzťah výrokovologického vyplývania budeme odteraz označovať symbolom $\models_{\mathbf{p}}$.

Keď sa na formuly v jazyku \mathcal{L} pozeráme z hľadiska výrokovej logiky, chápeme všetky atómy $\mathcal L$ ako výrokové premenné.

Veta

Nech X je formula v jazyku \mathcal{L} , nech T je množina formúl v jazyku \mathcal{L} . Potom $T \models X$ vtt existuje konečná množina axióm rovnosti $E \subset Eq$ taká, že $T \cup E \models_{p} X$.

Výrokovologické a kvázitautologické vyplývanie

Príklad

Nájdime množinu axióm rovnosti $E \subset Eq$, z ktorej výrokovologicky vyplýva kvázitautológia

$$x \doteq y \land g(f(z,x)) \doteq y \land \neg P(x) \rightarrow \neg P(g(f(z,x)))$$
 (1)

Tablový kalkul pre logiku s rovnosťou

Definícia

Pravidlami tablového kalkulu pre logiku s rovnosťou sú pravidlá typu α a β pre výrokovú logiku spolu s pravidlami:

$$\frac{\mathsf{T} t_1 \doteq s_1 \cdots \mathsf{T} t_n \doteq s_n}{\mathsf{T} f(t_1, \dots, t_n) \doteq f(s_1, \dots, s_n)}$$
(Fsub)

$$\frac{\mathsf{T} t_1 \doteq s_1 \quad \cdots \quad \mathsf{T} t_n \doteq s_n \quad \mathsf{T} P(t_1, \dots, t_n)}{\mathsf{T} P(s_1, \dots, s_n)} \tag{Psub}$$

Tablový kalkul pre logiku s rovnosťou

Doplnenie definície tabla

Vetvu tabla pre list y môžeme rozšíriť o jeden nový list obsahujúci dôsledok niektorého pravidla pre rovnosť, ak sa na vetve π_{ν} nachádzajú *všetky* jeho predpoklady.

Označené formuly definujeme podobne ako vo výrokovej logike.

Veta (Korektnosť a úplnosť tablového kalkulu pre logiku s rovnosťou)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} . Množina S^+ je nesplniteľná vtt existuje uzavreté tablo \mathcal{T} je pre S^+ .

Literatúra