(LOGARITHMIC) CHOW-TO-HODGE CYCLE MAPS

CHARLIE GODFREY

CONTENTS

1. Prelude	1
1.1. A classic Hartshorne problem	1
1.2. Idea: look at analogues for pairs/log schemes	2
2. Pairs	2
2.1. Log differentials	2
3. Chow-of-the-complement	3
3.1. Complements and their Chow	3
4. Construction of a cycle class	4
4.1. Setup	4
4.2. Case 1 (Z is normal)	4
4.3. Case 2 (reduction to the normal case)	5
References	5

1. Prelude

Let *k* be a *perfect* field.

1.1. A classic Hartshorne problem.

1.1.1. *Hartshorne exercise III.7.something.* Let X be a smooth projective variety over k and let $\iota: Z \hookrightarrow X$ be a *smooth* subvariety. Then the differential of ι gives a morphism of sheaves

$$d\iota^{\vee}:\Omega_X^{\dim Z}|_Z\to\Omega_Z^{\dim Z}=\omega_Z$$

and an induced map on cohomology

$$\mathrm{H}^{\dim Z}(X,\Omega_X^{\dim Z}) \xrightarrow{\mathrm{d}\iota^\vee} \mathrm{H}^{\dim Z}(Z,\omega_Z) \xrightarrow{\mathrm{tr}}_{\simeq} k$$
,

an element of $\mathrm{H}^{\dim Z}(X,\Omega_X^{\dim Z})^\vee$. Since we have a **perfect pairing**

$$\Omega_X^{\dim Z} \otimes \Omega_X^{\dim X - \dim Z} \xrightarrow{\wedge} \omega_X$$

 $\Omega_X^{\dim Z}=\operatorname{Hom}(\Omega_X^{\dim X-\dim Z},\omega_X)$ and so **Serre duality** gives an isomorphism

$$H^{\dim Z}(X,\Omega_X^{\dim Z})^\vee \simeq H^{\dim X - \dim Z}(X,\Omega_X^{\dim X - \dim Z})$$

In this way we get a **cycle class** $\operatorname{cl}_X(Z) \in \operatorname{H}^c(X, \Omega_X^c)$ with $c = \operatorname{codim}(Z, X)$.

Date: January 20, 2020.

- 1.1.2. Natural transformations out of Chow. In fact, the above can be upgraded to show that Hodge cohomology $H^d(X) := \bigoplus_{p+q=d} (X, \Omega_X^p)$ is almost 1 an example of a Weil cohomology theory. This means among other things that as a functor on, say, smooth projective varieties it's
 - contravariant for arbitrary morphisms,
 - covariant for proper morphisms,
 - satisfies a Künneth formula of the form

$$H^d(X \times Y) = \bigoplus_{i+j=d} H^i(X) \otimes H^j(Y)$$

• comes with cycle classes $\operatorname{cl}_X(Z) \in H^c(X)$ for integral closed subschemes of codimension c, plus compatibilities for the above 3 bullet points. For example, for a dominant morphism $f: X \to \mathbb{P}^1$,

$$\operatorname{cl}_X([f^{-1}(0)]) = \operatorname{cl}([f^{-1}(\infty)]) \in \operatorname{H}(X)$$

See [dJ], [Mus]. As a consequence, the cycle class descends to a natural transformation cl: $CH \rightarrow H$ compatible with pullbacks and pushforwards for proper morphisms.

Example 1.1. Set d = 1. Then we have a natural homomorphism

$$\operatorname{Pic}(X) \simeq \operatorname{CH}^1(X) \xrightarrow{\operatorname{cl}} \operatorname{H}^1(X, \Omega_X^1) \subset \operatorname{H}^1(X)$$

which can be viewed as a 1st Chern class in Hodge cohomology. When $k = \mathbb{C}$ we have a natural commutative diagram

$$\begin{array}{ccc} \operatorname{Pic}(X) & & \xrightarrow{\operatorname{cl}} & \operatorname{H}^1(X, \Omega^1_X) \\ & & \downarrow^{c_1} & \circlearrowleft & & \downarrow \\ \operatorname{H}^2(X, \mathbb{Z}) & \to & \operatorname{H}^2(X, \mathbb{Z}) \otimes \mathbb{C} \simeq \bigoplus_{p+q=2} \operatorname{H}^q(X, \Omega^p_X) \end{array}$$

The **Lefschetz theorem on (1,1)-classes** states that the image of Pic(X) in $H^2(X, \mathbb{Z})$ is the preimage of $H^1(X, \Omega^1_X)$.

It's a remarkable fact that $H^2(X,\mathbb{Z})$ classifies *topological* complex line bundles on X ("reason": \mathbb{CP}^{∞} is a $K(\mathbb{Z},2)$). Hence Lefschetz's theorem tells us when a topological complex line bundle on X is (topologically isomorphic to) an *algebraic* one.

1.2. Idea: look at analogues for pairs/log schemes.

2. Pairs

Definition 2.1.

- (1) A **simple normal crossing pair** (X, Δ_X) is a smooth scheme over k together with a *reduced*, *effective* simple normal crossing divisor $\Delta_X \subset X$. The **interior** $U_X \subset X$ of a simple normal crossing pair is $U_X := X \setminus \Delta_X$.
- (2) A **pulling morphism** $f:(X,\Delta_X)\to (Y,\Delta_Y)$ of simple normal crossing pairs is a map of schemes $f:X\to Y$ such that $f(U_X)\subset U_Y$.
- (3) A **pushing morphism** $f:(X,\Delta_X)\to (Y,\Delta_Y)$ of simple normal crossing pairs is a *proper* map of schemes $f:X\to Y$ such that $f(U_X)\subset U_Y$ and $f^*\Delta_Y-\Delta_X$ is effective..

2.1. Log differentials.

¹if char k > 0 then the "coefficient field" will have positive characteristic.

2.1.1. Classical case: differentials with log poles. A log smooth pair (X, Δ_X) comes with a sheaf of **differentials with log poles** $\Omega_X^1(\log \Delta_X)$. This naturally exists as the sheaf of differentials in the world of log geometry, but there's also a nice local description:

Proposition 2.2. Let $x \in X$ be a closed point and let z_1, \ldots, z_n be local coordinates at x such that in a neighborhood of x

$$\Delta_X = V(z_1 \cdots z_r)$$

Then near x the sheaf $\Omega_X(\log \Delta_X)$ is freely generated by

$$d \log z_1, \ldots, d \log z_r, dz_{r+1}, \ldots, dz_n$$

Definition 2.3. The **log Hodge cohomology of a simple normal crossing pair** (X, Δ_X) is the graded abelian group $H^{\bullet}(X, \Delta_X)$

$$\mathrm{H}^d(X,\Delta_X):=igoplus_{p+q=d}\mathrm{H}^q(X,\Omega_X(\log\Delta_X))$$

Example 2.4. When *X* is a smooth projective curve of genus *g*, there are only 2 sheaves of log differential forms to consider:

$$\Omega^0_X(\log \Delta_X) = \mathcal{O}_X$$
 and $\Omega^1_X(\log \Delta_X) = \omega_X(\Delta_X)$

 $h^0(\mathcal{O}_X)=1$ and $h^1(\mathcal{O}_X)=g$ per usual. Assume $\Delta_X\neq 0$ – then Δ_X is ample and since Kodaira vanishing always holds for curves, $h^1(\omega_X(\Delta_X))=0$. So, $h^0(\omega_X(\Delta_X))$ can be calculated with Riemann-Roch:

$$h^0(\omega_X(\Delta_X)) = \chi(\omega_X(\Delta_X)) = g - 1 + \deg \Delta_X$$

2.1.2. Log Hartshorne II.8.

3. Chow-of-the-complement

Chow for log schemes is a very active area of research. Here we use the most naïve possible version. For more interesting approaches, see e.g. [Bar], [BS17], [RS18]. There is also a growing body of work on algebraic K-theory of log schemes; see [Niz08], [Hag03].

3.1. Complements and their Chow.

Definition 3.1. The Chow groups of a simple normal crossing pair (X, Δ_X) are

$$CH(X, \Delta_X) := CH(U_X)$$

If $f:(X,\Delta_X) \to (Y,\Delta_Y)$ is a pulling morphism, since $f(U_X) \subset U_Y$ there's an induced morphism $f^*: \operatorname{CH}(Y,\Delta_Y) \to \operatorname{CH}(X,\Delta_X)$. If f is a pushing map, then the conditions $f(U_X) \subset U_Y$ and $f^*\Delta_Y - \Delta_X$ together require that $U_X = f^{-1}(U_Y)$, and hence $f|_{U_X}$ is *proper*. So there's a pushforward $f_*: \operatorname{CH}(X,\Delta_X) \to \operatorname{CH}(Y,\Delta_Y)$.

3.1.1. *Example: curves.* Suppose X is a smooth projective curve. Then Δ_X is just a bunch of points on X – say $\Delta_X = \{p_0, \dots, p_N\}$. For d = 0, 1 we have right exact sequences

$$CH_d(\Delta_X) \xrightarrow{j_*} CH_d(X) \xrightarrow{i^*} CH_d(U_X) \to 0$$

when d=1 this shows $CH_1(U_X) \simeq CH_1(X) \simeq \mathbb{Z}$. When d=0, $CH_0(\Delta_X) = \bigoplus_{i=0}^N \mathbb{Z}[p_i]$, and we have the identifications $CH_0(X) = Cl(X)$ and $CH_0(U_X) = Cl(U_X)$. Choose p_0 as a basepoint for

Cl(X) to get a splitting of the degree map $Cl(X) \xrightarrow{\text{deg}} \mathbb{Z}$, hence a decomposition

$$\operatorname{Cl}(X) \simeq \mathbb{Z}[p_0] \times \operatorname{Cl}^0(X)$$

We now get a diagram

$$\mathbb{Z}p_{0} \xrightarrow{\simeq} \mathbb{Z}p_{0} \longrightarrow 0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{i=0}^{N} \mathbb{Z}p_{i} \xrightarrow{j_{*}} \mathbb{Z}p_{0} \times \operatorname{Cl}^{0}(X) \longrightarrow \operatorname{CH}_{0}(U) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \simeq$$

$$\bigoplus_{i=1}^{N} \mathbb{Z}p_{i} \longrightarrow \operatorname{Cl}^{0}(X) \longrightarrow \operatorname{CH}_{0}(U) \longrightarrow 0$$

identifying $CH_0(U)$ with the cokernel of the homomorphism

$$\bigoplus_{i=1}^{N} \mathbb{Z}p_i \to \mathrm{Cl}^0(X) \text{ sending } [p_i] \mapsto [p_i] - [p_0]$$

4. Construction of a cycle class

Even in the absolute case $\Delta_X = 0$, the construction of a cycle class $\operatorname{cl}_X(Z)$ for a subvariety $Z \subset X$ is non-trivial (since Z may be arbitrarily singular). It was first carried out by El Zein in [EZ78], and the key ideas remain the same in the logarithmic setting.

4.1. **Setup.** Let (X, Δ_X) be a simple normal crossing pair of dimension n and suppose $Z \subset X$ is a closed subvariety (possibly singular) of co-dimension c, with $Z \cap U_X \neq \emptyset$. This means if $\varphi^* : Z \to X$ is the inclusion then $\varphi^* \Delta_X$ is a Cartier divisor on Z.

The construction that follows appears in [BS17]:

4.2. **Case 1** (Z **is normal**). In this case the smooth locus of Z contains the generic points of all components of $\varphi^*\Delta_X$. Since k is perfect supp Δ_X is generically smooth. Moreover the *non-simple normal crossing locus* of (Z, Δ_Z) has codimension > 1 in Z and hence > c + 1 in X.

So, after removing a closed subset $W \subset X$ with codimension > c + 1 we may assume: Z is smooth and $\varphi^* \Delta_X$ is a simple normal crossing divisor.

The local cohomology exact sequence for the sheaf $\Omega_X^c(\log \Delta_X)$ at W reads

$$\begin{split} & \cdots \to & H^c_W(X, \Omega^c_X(\log \Delta_X)) \to H^c(X, \Omega^c_X(\log \Delta_X)) \\ & \cdots \to & H^c(X \setminus W, \Omega^c_{X \setminus W}(\log \Delta_{X \setminus W})) \to H^{c+1}_W(X, \Omega^c_X(\log \Delta_X)) \to \cdots \end{split}$$

We will make use of a lemma:

Lemma 4.1. For a closed subset $W \subset X$ of codimension r,

$$H_W^i(X, \Omega_X^c(\log \Delta_X)) = 0$$
 for $i < r$

Hence
$$\mathrm{H}^{c}(X,\Omega_{X}^{c}(\log \Delta_{X}))=\mathrm{H}^{c}(X\setminus W,\Omega_{X\setminus W}^{c}(\log \Delta_{X\setminus W})).$$

In the case where (Z, Δ_Z) is smooth with simple normal crossings, apply Grothendieck Duality to the inclusion $\varphi: Z \hookrightarrow X$ and the coherent sheaf $\omega_Z(\Delta_Z)[\dim Z]$ to get a morphism

$$\begin{split} & \varphi_* \mathcal{R}\!\mathcal{H}\!\mathit{om}_Z(\omega_Z(\Delta_Z)[\dim Z], \omega_Z[\dim Z]) \simeq \mathcal{R}\!\mathcal{H}\!\mathit{om}_X(\varphi_*\omega_Z(\Delta_Z)[\dim Z], \omega_X[\dim X]) \\ & \xrightarrow{D(d\varphi^\vee)} \mathcal{R}\!\mathcal{H}\!\mathit{om}_X(\Omega_X^{\dim Z}(\log \Delta_X)[\dim Z], \omega_X[\dim X]) \end{split}$$

Using the perfect pairing

$$\Omega_X^p(\log \Delta_X) \otimes \Omega_X^{\dim X - p}(\log \Delta_X) \xrightarrow{\wedge} \omega_X(\Delta_X)$$

we have $\mathcal{RH}om_X(\Omega_X^p(\log \Delta_X),\omega_X)\simeq \Omega_X^{\dim X-p}(\log \Delta_X)(-\Delta_X)$ and similarly for Z, so that the morphism of Theorem 4.2 can be rewritten as

$$\varphi_* \mathcal{O}_Z(-\Delta_Z) \xrightarrow{D(df^{\vee})} \Omega^c_X(\log \Delta_X)(-\Delta_X)[c]$$

or using the projection formula,

$$\varphi_* \mathcal{O}_Z = \varphi_* \mathcal{O}_Z (\varphi^* \Delta_X - \Delta_Z) \xrightarrow{D(d\varphi^{\vee})} \Omega^c_X (\log \Delta_X)[c]$$

Now take global sections and let $cl_{(X,\Delta_X)}(Z)$ be the image of $1_Z \in H^0(Z,\mathcal{O}_Z)$

4.3. Case 2 (reduction to the normal case). Since Z is a variety, its *normalization* $\pi: \tilde{Z} \to Z$ is finite, and hence projective in the sense that there's a locally free sheaf \mathcal{F} on Z and a closed immersion $\psi: \tilde{Z} \hookrightarrow \mathbb{P}(\mathcal{F})$ over Z. Since X is smooth we can find a \mathcal{F} of the form $\mathcal{F} = \mathcal{E}|_Z$ where \mathcal{E} is locally free on X, and in this way we get a commutative diagram

$$\tilde{Z} \xrightarrow{\psi} \mathbb{P}(\mathcal{E}|_{Z}) \xrightarrow{\varphi'} \mathbb{P}(\mathcal{E})$$

$$\uparrow \qquad \qquad \downarrow \rho' \qquad \qquad \downarrow \rho$$

$$Z \xrightarrow{\varphi} X$$

Here $\tilde{Z} \subset \mathbb{P}(\mathcal{E})$ is normal and $\mathbb{P}(\mathcal{E})$ is smooth. Setting $\Delta_{\mathbb{P}(\mathcal{E})} = \rho^* \Delta_X$, we obtain a class $\mathrm{cl}_{\mathbb{P}(\mathcal{E})}(\tilde{Z}) \in \mathrm{H}^{\bullet}(\mathbb{P}(\mathcal{E}), \Omega_{\mathbb{P}(\mathcal{E})}^{\bullet}(\log \Delta_{\mathbb{P}(\mathcal{E})}))$.

The trick now is to set $\operatorname{cl}_X(Z) = \rho_* \operatorname{cl}_{\mathbb{P}(\mathcal{E})}(\tilde{Z})$.

REFERENCES

- [Bar] Lawrence J. Barrott, Logarithmic chow theory.
- [BS17] F. Binda and S. Saito, *Relative cycles with moduli and regulator maps*, Journal of the Institute of Mathematics of Jussieu (2017), 1–61.
- [dJ] Aise Johan de Jong, Weil cohomology theories.
- [EZ78] Fouad El Zein, *Complexe dualisant et applications a la classe fondamentale d'un cycle*, Memoire (Societe mathematique de France); no 58, Societe mathematique de France, Paris, 1978 (fre).
- [Hag03] K Hagihara, Structure theorem of kummer etale k-group, K-Theory 29 (2003), no. 2, 75–99 (English).
- [Mus] Mircea Mustata, Weil cohomology theories and the weil conjectures.
- [Niz08] W Niziol, K-theory of log-schemes i, Documenta Mathematica 13 (2008), 505–551 (English).
- [RS18] Kay Rlling and Shuji Saito, *Higher chow groups with modulus and relative milnor K-theory*, Transactions of the American Mathematical Society **370** (2018), no. 2, 987–1043 (eng).