Dynamique de réseaux multi-échelles complexes sous contraintes: Modélisation et Analyse

Liam Toran

Stage de fin de M2A 2019 au Laboratoire J.A. Dieudonné de l'Université de Nice sous la supervision de Yves D'Angelo, Rémi Catellier et Laurent Monasse

Thèmes : Mathématiques et leurs Interactions, Modélisation, Analyse, Processus Stochastiques, Équations aux dérivées partielles et ordinaires, Stabilité, Réaction-Diffusion, Ondes progressives, Simulation Numérique.

FIGURE 1 – Capture d'un réseau de champignon en expansion, par

Table des matières

1	L'éo	quation de Fisher ou KPP
	1.1	Préliminaire
	1.2	Réaction
	1.3	Réaction-Diffusion
	1.4	Solutions en onde plane stationnaire / onde progressive
	1.5	Théorèmes de sélection de la vitesse pour KPP
2	Dya	amique de Réseaux en Croissance
	2.1	Explication des équations du système (6)
	2.2	Dérivation de l'équation "KPP avec mémoire"
	2.3	Propriétés de l'EDO "KPP avec mémoire"

1 L'équation de Fisher ou KPP

1.1 Préliminaire

Notre point de départ est l'équation de diffusion :

$$\partial_t u = \Delta u \tag{1}$$

En plus de la diffusion, considérons des modèles où le taux d'accroissement de u dépend aussi de la densité u.

Ceci donne les équations de reaction-diffusion :

$$\partial_t u = \Delta u + F(u) \tag{2}$$

où F est assez lisse.

Il est souvent naturel dans les modèles de considérer F(u) proportionnel à u pour u petit ("croissance"), et quand u devient proche de 1, l'accroissement F(u) s'arrête : F(1) = 0 ("saturation"). Ces types de modèles ont étés introduits et examinés par les travaux de Fisher[1] et Kolmogorov, Petrovsky et Piscounuv (abrégés KPP).

Un exemple d'une telle équation est :

$$\partial_t u = \Delta u + r u (1 - u) \tag{3}$$

où r > 0, qui sera dans la suite étudiée dans le cas 1-dimensionnel en x : u = u(x,t).

1.2 Réaction

En observant les solutions constantes en x : u(x,t) = v(t) dans (3), l'équation différentielle ordinaire (EDO ou ODE) :

$$\partial_t v = r(v - v^2) = F(v) \tag{4}$$

est obtenue.

Il y a deux équilibres (F(v) = 0)) pour v = 0 et v = 1.Par le théorème de stabilité de Lyapunov, F'(0) > 0 montre que v = 0 est instable et F'(1) < 0 montre v = 1 est asymptotiquement stable.

1.3 Réaction-Diffusion

Dans l'espace $X = C^0_{b,unif}(\mathbb{R}, \mathbb{R})$ des fonctions bornées et uniformément continues, il y a existence locale et unicité des solutions de l'équation de Fisher-KPP (2). Grâce à un principe du maximum, il y a aussi existence globale et unicité des solutions.

Théorème 1. :

Existence et Unicité de la solution dans X: Soit $U_0 \in X$. Il existe une unique solution de l'équation de Fisher-KPP (2) $U \in C([0, \infty[, X)$ avec condition initiale U_0 .

Théorème 2.:

Principe du Maximum : Soit u_1 et u_2 deux solutions de (2). Si il éxiste t_0 tel que $u_1(x, t_0) < u_2(x, t_0)$ $\forall x$ alors $u_1(x, t) < u_2(x, t)$ $\forall x$ et $\forall t > t_0$

1.4 Solutions en onde plane stationnaire / onde progressive

Rappellons la définition d'une solution en onde plane stationnaire / onde progressive :

Définition 1.1. Solutions en onde plane stationnaire

Une solution en onde plane stationnaire est une solution de la forme u(x,t) = h(x-st) où $c \in \mathbb{R}$. On fera parfois l'abus de notation u(x,t) = u(x-st)

Sous des hypothèses "faibles" sur F, l'équation $(2): \partial_t u = \Delta u + F(u)$ a alors la propriété surprenante et importante de posséder des solutions en ondes planes stationnaires liant les états d'équilibre u = 1 (à $-\infty$) et u = 0 (à $+\infty$).

Les hypothèses sur F portent en partie sur le fait que (2) doit posséder :

- Deux états d'équilibre u = 1 et u = 0 : F(0) = F(1) = 0 :
- Un phénomène de "croissance" : F'(0) > 0
- Un phénomène de "saturation" : F'(1) < 0

Étude des solutions en ondes progressive de (2) :

En substituant u(x,t) = h(x-st) = h(y) pour y = x-st dans (2), les équations obtenues sur h sont :

$$\begin{cases} h''(y) + sh'(y) + F(h(y)) = 0\\ h(-\infty) = 1\\ h(+\infty) = 0 \end{cases}$$

$$(5)$$

qui est une équation elliptique non linéaire. Le problème est donc de trouver s et $h \in C^2$ tels que le système (5) soit vérifié. Le théorème obtenu est le suivant :

Théorème 3. Existence de solutions en onde progressive pour les équations de reactiondiffusion :

Soit $F \in C^1([0,1])$ tel F(0) = F(1) = 0 et $F \ge 0$. Il existe une vitesse critique s_* telle que $s_*^2 \ge 4F'(0)$ et :

- i) $\forall s \geq s_*$, l'équation (5) a une solution $h_s : \mathbb{R} \to]0,1[$ de classe C^3 .

Cette solution est unique à translation près.

- ii) $\forall s < s_*$ l'équation (5) n'a pas de solution $h: \mathbb{R} \to [0, 1]$

Remarques:

Dans le cas ii) il existe des solutions en ondes planes mais elles ne sont pas confinées dans [0,1] ni dans \mathbb{R}^+ , ce qui ne fait pas de sens dans une étude de densité de population.

Dans le cas de l'équation de Fisher-KPP, c'est à dire pour $F(u) = r(u-u^2)$, on a $s_*^2 = 4F'(0) = 4r$: la vitesse minimale de propagation est $s^* = 2\sqrt{r}$.

1.5 Théorèmes de sélection de la vitesse pour KPP

Le théorème important suivant est du aux travaux de Kolmogorov, Petrovsky et Piscounuv de 1937. C'est l'article et le résultat fondateur de la théorie des ondes planes dans les systèmes de réaction-diffusion.

Théorème 4. Convergence vers une solution d'onde à vitesse minimale pour les solutions de l'équation de Fisher-KPP avec une donnée initiale à support compact

Soit $u_0 \to]0,1[$ une donnée initiale à support compact. Soit u la solution de l'équation de Fisher-KPP (3) avec r=1 et de donnée initiale u_0 . Alors quand $t\to\infty$, u converge uniformément en x vers une solution d'onde h_{s^*} de (5) qui se de déplace à vitesse minimale $s^*=2$:

$$\sup_{y \in \mathbb{R}} |u(y + m(t), t) - h_{s^*}(y)| \to_{t \to \infty} 0$$

où
$$m(t) = 2t - (3/2)\log(t) + y_0$$
.

Remarque : La vitesse du front est alors $s(t) = \partial_t m(t) = 2 - \frac{3}{2t} \to_{t \to \infty} 2$.

Ce résultat à été raffiné par la suite par Uchiyama, Bramson et Lau. Leurs travaux apportent plus d'informations sur comment la vitesse du front se sélectionne en fonction de la donnée initiale, et comment il est possible d'obtenir d'autres vitesses de fronts que la vitesse minimale en fonction de la donnée initiale.

Théorème 5. Sélection de la vitesse pour les solutions de l'équation de Fisher-KPP en fonction de la donnée initiale

Si $u_0 \to]0,1[$ vérifie $\liminf_{x\to -\infty} u_0(x)>0$ et $\int_0^{+\infty} xe^x u_0(x)/dx<\infty$ alors il existe $y_0\in \mathbb{R}$ tel que la solution de (3) avec données initiales u_0 vérifie

$$\sup_{y \in \mathbb{R}} |u(y + m(t), t) - h_{s^*}(y)| \to_{t \to \infty} 0$$

où
$$m(t) = 2t - (3/2)\log(t) + y_0$$
.

D'autres vitesses peuvent être sélectionnées : Si la donnée initiale vérifie $u_0(x) \approx e^{-\lambda_-(s)x}$ quand $x \to +\infty$ alors la solution converge vers une onde progressive de vitesse s.

2 Dyamique de Réseaux en Croissance

Dans cette section et par la suite nous étudions le modèle sur la croissance de réseaux dynamiques branchant, par exemple un champignon, proposé par Rémi Catellier, Yves D'Angelo et Cristiano Ricci, avec rescaling adéquat :

$$\begin{cases}
\partial_t \mu + \nabla(\mu v) = f(C)(\mu + \rho) - \mu \rho \\
\partial_t (\mu v) + \nabla(\mu v \times v) + T \nabla \mu = -\lambda \mu v + \mu \nabla C - \mu v \rho \\
\partial_t \rho = F(v) \mu \\
\partial_t C = -b \rho C
\end{cases} \tag{6}$$

L'inconnue μ représente la densité des apex du champignon.

L'inconnue ρ représente la densité des hyphes/ du réseau.

L'inconnue v représente la vitesse des apex.

L'inconnue C représente la concentration des nutriments.

Les paramètres T, λ et b sont des scalaires représentants la température, l'amortissement fluide sur la vitesse des apex, et le taux de consommation des nutriments par le réseau.

La fonction f indique l'influence de la concentration de nutriments sur la croissance du champignon. Pour avoir un état stationnaire sur la croissance du champignon, f(0) = 0 et f(x)/x dans L^1 proche de 0 sont imposés.

La fonction F représente l'inverse du temps moyen passé par les apex dans un point donné, et est donné par l'expression :

$$F(V) = \left(\frac{1}{2\pi T}\right)^{\frac{d}{2}} \int_{\mathbb{R}^d} |v| \exp\left(-\frac{|v-V|^2}{2T}\right) dv \tag{7}$$

où d est la dimension du problème. Ceci est souvent simplifié en substituant F(V) par une constante : $F(V) = F_0$.

2.1 Explication des équations du système (6)

Le champignon est un réseau branchant dynamique qui peut être étudié en deux parties : les apex (pointes du réseau) représentés par leur densité μ et les hyphes (branches du réseau) représentés par leur densité ρ

Les lignes du système (6) représentent :

- i) La première ligne du système est le bilan de masse sur les apex avec le terme gauche classique $\partial_t \mu + \nabla(\mu v)$. Le terme de droite est composé de : $f(C)(\mu + \rho)$ correspondant a une croissance proportionnelle à la concentration de nutriments du réseau et la masse existante d'apex et d'hyphes, et un terme $-\mu\rho$ qui correspond à l'anastomose : une pointe qui rencontre une branche va fusionner avec elle et être détruite. Il y a un terme de croissance et un terme de saturation comme pour le modèle KPP.
- ii) La deuxième ligne est le bilan de vitesse avec le terme de gauche classique $\partial_t(\mu v) + \nabla(\mu v \times v)$. Le terme $T\nabla\mu$ représente le mouvement brownien suivi par les apex. Le terme $-\lambda\mu v$ représente un amortissement fluide dans la physique du problème. Le terme $+\mu\nabla C$ représente la tendance des apex à aller vers les milieux de forte concentration. Le terme $-\mu v\rho$ représente la perte de vitesse du à l'anastomose.
- iii) La troisième ligne correspond à la relation entre les branches et les pointes : la trace laissée par les apex sont les branches.
- iv) La quatrième ligne décrit l'évolution de la concentration de nutriments : ils sont consommés par les hyphe avec un taux bC où b est une constante positive.

2.2 Dérivation de l'équation "KPP avec mémoire"

En faisant tendre T et λ vers $+\infty$, avec $\frac{T}{\lambda}=K$ constant, la deuxième ligne de (6) donne :

$$+K\nabla\mu = -\mu v\tag{8}$$

En injectant ceci dans la ligne 1 du système, on obtient le système de 3 inconnues suivant :

$$\begin{cases}
\partial_t \mu = K \Delta \mu + f(C)(\mu + \rho) - \mu \rho \\
\partial_t \rho = F_0 \mu \\
\partial_t C = -b \rho C
\end{cases} \tag{9}$$

dit "KPP avec mémoire".

2.3 Propriétés de l'EDO "KPP avec mémoire"

Soit (μ, ρ, C) vérifiant le système d'équations suivant :

$$\begin{cases}
\partial_t \mu = f(C)(\mu + \rho) - \mu \rho \\
\partial_t \rho = F_0 \mu \\
\partial_t C = -b\rho C
\end{cases}$$
(10)

avec f(0) = 0 On s'intéresse au comportement de (μ, ρ, C) sur \mathbb{R}^+ :

Lemme 1. C est de signe constant.

En effet on a $C(t) = C(0) \exp(-b \int_0^t \rho(s) ds)$.

Lemme 2. Soit (μ, ρ, C) tel que $(\mu(0), \rho(0)) > (0, 0)$ (les deux positifs, au moins un non nul), C(0) > 0.

Alors $\mu(t) \ge 0 \ \forall t > 0$

Démonstration. Supposons par l'absurde que μ devient négatif alors soit $t^* = \min(t > 0/\mu(t) < 0)$. Alors :

 $\mu(t) \ge 0 \ \forall t \le t^*$

 $\partial_t \mu(t^*) \leq 0$ par définition de t^* . (Sinon $\mu(t^* + \epsilon) > 0 \ \forall \epsilon << 1$)

 $\rho(t) > 0 \ \forall t \le t^* \ \text{car} \ \partial_t \rho = F_0 \mu \ \text{et} \ F_0 > 0$

 $\partial_t \mu(t^*) = f(C(t^*))\rho(t^*) > 0$ ce qui est en contradiction avec la deuxième affirmation.

Dans la suite on se place dans le cas où $(\mu(0), \rho(0)) > (0,0), C(0) > 0$:

Lemme 3. ρ est croissante car $\partial_t \rho = F_0 \mu \geq 0$. En particulier ρ est positive

Lemme 4. C est décroissante et $\lim_{t\to +\infty} C(t)=0$

Démonstration. ρ est positive donc C est décroissante.

 $(\mu(0), \rho(0)) > (0,0)$ et $\partial_t \rho = F_0 \mu$ impliquent qu'il existe un t_0 tel que $\rho(t_0) > 0$.

Comme ρ est croissante $\forall t \geq t_0, \, \rho(t) \geq \rho(t_0)$.

Donc
$$\forall t \geq t_0$$
, $0 < C(t) = C(0) \exp(-b \int_0^t \rho(s) ds) \leq C_{ste} e^{-b\rho(t_0)t} \xrightarrow[t \to +\infty]{} 0$

Donc $\lim_{t \to +\infty} C(t) = 0$.

Lemme 5. Si f est croissante et $\int_0^1 \frac{f(x)}{x} dx < \infty$ alors μ est bornée.

Démonstration. On a $\partial_t \mu = f(C)(\mu + \rho) - \mu \rho \leq f(C)\mu + f(C)\rho$.

Montrons que f(C) est intégrable :

 $C(t) \leq C_{ste} e^{-b\rho(t_0)t} \text{ et } f \text{ est croissante donc } \int_0^\infty f(C)dt \leq \int_0^\infty f(C_{ste} e^{-b\rho(t_0)t})dt.$ Soit le changement de variable $u = C_{ste} e^{-b\rho(t_0)t}$, $du = -b\rho(t_0)u dt$: $\int_0^\infty f(C_{ste} e^{-b\rho(t_0)t})dt = \frac{1}{b\rho(t_0)} \int_0^1 \frac{f(u)}{u} du < \infty \text{ car } \int_0^{C_{ste}} \frac{f(x)}{x} dx < \infty \text{ donc } f(C) \text{ est intégrable.}$

Montrons que $\phi = f(C)\rho$ est intégrable :

Effectuons le changement de variable u = C, $du = -b\rho u$ dt dans $\int_0^\infty f(C)\rho dt$:

 $\int_0^\infty f(C)\rho \ dt = \frac{1}{b\rho(t_0)} \int_0^{C_{ste}} \frac{f(u)}{u} du < \infty \ \text{car} \ \int_0^{C_{ste}} \frac{f(x)}{x} dx < \infty \ \text{donc} \ \phi = f(C)\rho \ \text{est intégrable}.$

Par le lemme de Gronwall :

Par le lemme de Gronwan: $\mu(t) \leq \mu(0) + \int_0^t \phi(s) \ ds + \int_0^t \phi(s) f(C)(s) \exp(\int_s^t f(C)(u) du) \ ds \\ \leq \mu(0) + \int_0^{+\infty} \phi(s) \ ds + \int_0^t \phi(s) f(C)(s) \exp(\int_0^{+\infty} f(C)(u) du) \ ds \\ \leq \mu(0) + \int_0^{+\infty} \phi(s) \ ds + \exp(\int_0^{+\infty} f(C)(u) du) \int_0^t \phi(s) f(C)(s) \ ds \\ f(C) \text{ est bornée et } \phi \text{ est intégrable donc } f(C) \phi \text{ est intégrable.}$ On a donc : $\mu(t) \leq \mu(0) + \int_0^{+\infty} \phi(s) \ ds + \exp(\int_0^{+\infty} f(C)(u) du) \int_0^{+\infty} \phi(s) f(C)(s) \ ds \ \forall t$

Dans la suite on se place dans le cas où f est croissante et $\int_0^1 \frac{f(x)}{x} dx < \infty$

Lemme 6. $\lim_{t\to +\infty}\mu=0$ et $\lim_{t\to +\infty}\rho=\rho_{\infty}<+\infty$

 $D\acute{e}monstration$. μ est bornée, soit μ_n une suite extraite de la fonction μ qui tend vers ℓ .

On a $\ell - \mu(t) = \lim_{n \to +\infty} \int_t^{t_n} \partial_t \mu \ ds = \lim_{n \to +\infty} \int_t^{t_n} f(C)(\mu + \rho) - \mu \rho \ ds.$

Or f(C) est intégrable (c.f. preuve du lemme 5) et μ est bornée donc $f(C)\mu$ est intégrable.

De même $f(C)\rho$ est intégrable (c.f. preuve du lemme 5).

On a donc $\lim_{n \to +\infty} \int_t^{t_n} \mu \rho = \int_t^{+\infty} f(C) \mu + f(C) \rho \ dt + \ell - \mu(t)$

Or $\mu \rho = F_0 \rho \partial_t \rho = \frac{F_0}{2} \partial_t \rho^2$ donc $\int_t^{t_n} \mu \rho \ dt = \frac{F_0}{2} (\rho(t_n)^2 - \rho(t)^2)$.

Or ρ est croissante donc a une limite dans $[0, +\infty]$.

Ainsi ℓ est déterminée entièrement par la limite de ρ et ne dépend pas de la suite extraite.

Par critère séquentiel μ a une limite ℓ qui est finie car μ est bornée. Mais alors $\lim_{t\to +\infty} \frac{F_0}{2}(\rho(t)^2-\rho(T)^2)=\int_T^\infty (f(C)\mu+f(C)\rho)\ dt\ +\ell-\mu(T)<\infty.$

Donc ρ^2 a une limite finie et donc ρ aussi.

Comme $\mu = \frac{\partial_t \rho}{F_0}$ et ρ a une limite finie et μ aussi, μ tend nécessairement vers 0.

3 Recherche de la vitesse d'onde des solutions progressives de l'Équation KPP avec Mémoire

On a le modèle suivant :

$$\begin{cases}
\partial_t \mu - \frac{T}{\lambda} \Delta \mu = f(C)(\mu + \rho) - \mu \rho \\
\partial_t \rho = F_0 \mu \\
\partial_t C = -b \rho C
\end{cases}$$
(11)

où f(0) = 0 et f est positive. Typiquement, f(C) = C:

Dans la suite on pose $K = \frac{T}{\lambda}$

On recherche des solutions en onde plane, on pose s la vitesse d'onde et $\xi = x - st$.

$$\begin{cases}
-s\mu' - K\mu'' = f(C)(\mu + \rho) - \mu\rho \\
-s\rho' = F_0\mu \\
C' = \frac{b\rho C}{s}
\end{cases}$$
(12)

Nos états stationnaires sont $(\mu, \rho, C) = \begin{cases} (0, 0, C_0) \\ (0, \rho_{\infty}, 0), \rho_{\infty} > 0 \end{cases}$

3.1 Au voisinage de $(0, 0, C_0)$

Au voisinage de $(0,0,C_0)$ on a, en posant $f(C_0)=f_0$:

$$\begin{cases}
-s\mu' - K\mu'' = f_0(\mu + \rho) \\
-s\rho' = F_0\mu
\end{cases}$$
(13)

ce qui devient

$$\rho''' + \frac{s}{K}\rho'' + \frac{f_0}{K}\rho' - \frac{F_0 f_0}{Ks}\rho = 0$$
 (14)

de polynôme caractéristique

$$P(X) = X^{3} + \frac{s}{K}X^{2} + \frac{f_{0}}{K}X - \frac{F_{0}f_{0}}{Ks}$$
(15)

Pour s < 0, P(0) > 0 donc P a une racine négative r_1 .

Pour que P ait deux autres racines réelles $r_3 > r_2 > r_1$ il faut (condition nécessaire et suffisante) que P' s'annule deux fois et que le discriminant Δ de P soit positif.

3.1.1 Première condition: P' a deux annulations:

 $P'(X)=3X^2+2\frac{s}{K}X+\frac{f_0}{K}$ a pour discriminant $\Delta'=4\frac{1}{K^2}(s^2-3Kf_0)$ ce qui donne la condition

$$s^2 > 3Kf_0 \tag{16}$$

3.1.2 Deuxième condition : $\Delta > 0$:

Pour $P = aX^3 + bX^2 + cX + d$ on a $\Delta = b^2c^2 + 18abcd - 27a^2d^2 - 4ac^3 - 4b^3d$ ce qui dans notre cas donne

$$\Delta = \frac{1}{K^4} f_0^2 s^2 - 18 \frac{f_0^2 F_0}{K^3} - 27 \frac{F_0^2 f_0^2}{K^2 s^2} - 4 \frac{f_0^3}{K^3} + 4 \frac{F_0 f_0 s^2}{K^4}$$

$$= s^2 \frac{f_0 (f_0 + 4F_0)}{K^4} - \frac{f_0^2 (18F_0 + 4)}{K^3} - \frac{27 F_0^2 f_0^2}{K^2} \frac{1}{s^2}$$

$$= \frac{f_0}{K^4 s^2} [(f_0 + 4F_0)s^4 - K f_0 (18F_0 + 4)s^2 - 27K^2 F_0^2 f_0]$$

On est revenu à étudier le signe du polynôme en s^2

$$D(s^{2}) = (f_{0} + 4F_{0})s^{4} - Kf_{0}(18F_{0} + 4)s^{2} - 27K^{2}F_{0}^{2}f_{0}$$
(17)

de discriminant d:

$$d = (Kf_0(18F_0 + 4))^2 + 108(f_0 + 4F_0)K^2F_0^2f_0$$

= $K^2f_0(f_0(18F_0 + 4)^2 + 108(f_0 + 4F_0)F_0^2) > 0$

On obtient donc la condition sur la positivité de Δ :

$$s^{2} > K \frac{f_{0}(18F_{0} + 4) + \sqrt{f_{0}(f_{0}(18F_{0} + 4)^{2} + 108(f_{0} + 4F_{0})F_{0}^{2})}}{2(f_{0} + 4F_{0})}$$
(18)

3.1.3 Signe des racines au voisinage de $(0,0,C_0)$

On sait déjà que $r_3 < 0$. Comme $r_1r_2r_3 < 0$, on remarque que r_2 et r_1 sont du même signe.

De plus P' a un axe de symétrie $X = -\frac{s}{3K} > 0$ car s < 0 donc P atteint un minimum local (forcement négatif) en un point positif donc P a une racine positive.

On en déduit $r_1 > r_2 > 0$:

Sous les conditions (??) et (??), P a deux racines positives et une négative.

3.2 Au voisinage de $(0, \rho_{\infty}, 0)$

Autour de $(0, \rho_{\infty}, 0)$: Posons $(\mu, \rho, C) = (\mu, \rho_{\infty} + \epsilon, C)$. On a

$$\begin{cases}
-s\mu' - K\mu'' = f(C)\rho_{\infty} - \mu\rho_{\infty} \\
C' = \frac{b\rho_{\infty}C}{s} \\
-s\epsilon' = F_{0}\mu
\end{cases}$$
(19)

la deuxième ligne donne

$$C(y) = \Lambda \exp(\frac{b\rho_{\infty}}{s}y) \tag{20}$$

et la réunion de la première et la deuxième se traduit sur ϵ par :

$$s^{2}\epsilon'' + Ks\epsilon''' = f(C)F_{0}\rho_{\infty} + s\epsilon'\rho_{\infty}$$
(21)

est une EDO d'ordre trois en ϵ avec terme source $\frac{F_0f(C)}{Ks}\rho_{\infty}$ de polynôme caracteristique :

$$Q(X) = X^3 + \frac{s}{K}X^2 - \frac{\rho_{\infty}}{K}X \tag{22}$$

qui possède toujours trois racines : 0, une négative et une positive : $X = -\frac{1}{2K}(s \pm \sqrt{s^2 + 4\rho_{\infty}Ks})$ Sur μ on a :

$$-s\mu' - Ks\mu'' = f(C)\rho_{\infty} - \mu\rho_{\infty}$$
 (23)

Dans le cas f(C) = C:

 μ a pour polynôme caractéristique homogène $M(X)=X^2+\frac{1}{K}X-\frac{\rho_\infty}{Ks}$ de racines :

$$r_{1,2} = -\frac{1}{2K} (1 \pm \sqrt{1 + 4\frac{\rho_{\infty}K}{s}})$$

donc $\mu_H = Ae^{r_1y'} + Be^{r_2y}$ (On choisit $r_1 > r_2$).

En cherchant une solution particulière de la forme $\mu_p = M \exp(\frac{b\rho_\infty}{s}y)$ on obtient $M = -\frac{\Lambda}{b^2\rho_\infty K + b - 1}$ et donc $\mu = Ae^{r_1y} + Be^{r_2y} + Me^{\frac{b\rho_\infty}{s}y}$ et donc $\rho = \rho_\infty + \alpha e^{r_1y} + \beta e^{r_2y} + \Gamma \exp(\frac{b\rho_\infty}{s}y)$ pour $\Gamma = \frac{Ms}{b\rho_\infty}$

4 Schémas Numériques

On a le modèle suivant ("KPP avec mémoire") :

$$\begin{cases}
\partial_t \mu = K \Delta \mu + C(\mu + \rho) - \mu \rho \\
\partial_t \rho = F_0 \mu \\
\partial_t C = -b \rho C
\end{cases}$$
(24)

4.1 Pour l'équation différentielle ordinaire

Sans dépendance spatiale :

$$\begin{cases}
\partial_t \mu = C(\mu + \rho) - \mu \rho \\
\partial_t \rho = F_0 \mu \\
\partial_t C = -b \rho C
\end{cases}$$
(25)

4.1.1 Schéma semi-implicite I pour l'EDO

Soit le schéma semi-implicite I pour l'EDO:

$$\begin{cases} \mu^{n+1} = \mu^n + \Delta t (C^n(\mu^{n+1} + \rho^{n+1}) - \mu^{n+1}\rho^n) \\ \rho^{n+1} = \rho^n + \Delta t (F_0\mu^{n+1}) \\ C^{n+1} = C^n - \Delta t (b\rho^{n+1}C^{n+1}) \end{cases}$$
(26)

Ce schéma donne :

$$\begin{cases} \mu^{n+1}(1 - \Delta t(C^n(1 + \Delta t F_0)) + \rho^n) = \mu^n + \Delta t C^n \rho^n \\ \rho^{n+1} = \rho^n + \Delta t(F_0 \mu^{n+1}) \\ C^{n+1} = C^n \frac{1}{1 + \Delta t b \rho^{n+1}} \end{cases}$$

Positivité Pour conserver la positivité il suffit que le terme $(1 - \Delta t(C^n(1 + \Delta tF_0)) + \rho^n)$ reste positif :

Par exemple:

$$C^0 < \frac{1}{\Delta t(1 + F_0 \Delta t)} \tag{27}$$

4.1.2 Schéma semi-implicite II pour l'EDO

Soit le schéma semi-implicite II pour l'EDO:

$$\begin{cases} \mu^{n+1} = \mu^n + \Delta t (C^n(\mu^{n+1} + \rho^{n+1}) - \mu^n \rho^n) \\ \rho^{n+1} = \rho^n + \Delta t (F_0 \mu^{n+1}) \\ C^{n+1} = C^n - \Delta t (b\rho^{n+1} C^{n+1}) \end{cases}$$
(28)

Ce schéma donne :

$$\begin{cases} \mu^{n+1}(1 - \Delta t(C^n(1 + \Delta t F_0))) = \mu^n + \Delta t \rho^n(C^n - \mu^n) \\ \rho^{n+1} = \rho^n + \Delta t(F_0 \mu^{n+1}) \\ C^{n+1} = C^n \frac{1}{1 + \Delta t b \rho^{n+1}} \end{cases}$$

Positivité Pour conserver la positivité il suffit que les terme $(1 - \Delta t(C^n(1 + \Delta tF_0)))$ et μ^n + $\Delta t \rho^n (C^n - \mu^n)$ restent positif:

Par exemple:

$$C^0 < \frac{1}{\Delta t (1 + F_0 \Delta t)} \tag{29}$$

et

$$\rho^n < \frac{1}{\Delta t} \tag{30}$$

On obtient une condition de plus que le schéma semi-implicite I.

Pour l'équation aux dérivées partielles

Schéma semi-implicite I pour l'EDP 4.2.1

Soit le schéma semi-implicite I pour l'EDP :

$$\begin{cases}
\mu_i^{n+1} = \mu_i^n + K\Delta t \frac{\mu_{i+1}^{n+1} - 2\mu_i^{n+1} + \mu_{i-1}^{n+1}}{\Delta x^2} + \Delta t \left(C_i^n (\mu_i^{n+1} + \rho_i^{n+1}) - \mu_i^{n+1} \rho_i^n \right) \\
\rho_i^{n+1} = \rho_i^n + \Delta t \left(F_0 \mu_i^{n+1} \right) \\
C_i^{n+1} = C_i^n - \Delta t \left(b \rho_i^{n+1} C_i^{n+1} \right)
\end{cases}$$
(31)

Ce schéma donne:

$$\begin{cases} (1 + \frac{K\Delta t}{\Delta x^2} A - \Delta t (C^n (1 + \Delta t F_0)) + \rho^n) \mu^{n+1} = \mu^n + \Delta t C^n \rho^n \\ \rho^{n+1} = \rho^n + \Delta t (F_0 \mu^{n+1}) \\ C^{n+1} = C^n \frac{1}{1 + \Delta t b \rho^{n+1}} \end{cases}$$

où A est la matrice de $-\Delta$:

$$A = \begin{bmatrix} 2 & -1 & & 0 \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ 0 & & -1 & 2 \end{bmatrix}$$
 (32)

Positivité Afin de préserver la positivité, on obtient la même condition (suffisante) que pour l'EDO:

$$C^0 < \frac{1}{\Delta t (1 + F_0 \Delta t)} \tag{33}$$

Démonstration. Supposons $\mu^0 > 0$.

Raisonnons par l'absurde et supposons que $n = \min n \mid \exists j \mid \mu_j^{n+1} < 0$ existe. Soit $j = \arg\min \mu_i^{n+1}$. On a $(1 - \Delta t(C_j^n(1 + \Delta t F_0)) + \rho_j^n)\mu_j^{n+1} = \mu^n + \Delta t C^n + \frac{K\Delta t}{\Delta x^2}(\mu_{j+1}^{n+1} - 2\mu_j^{n+1} + \mu_{j-1}^{n+1})$. Or par définition de n et comme $C^0 < \frac{1}{\Delta t(1+F_0\Delta t)}$ et $C^n < C^0$:

On a
$$(1 - \Delta t(C_i^n(1 + \Delta t F_0)) + \rho_i^n)\mu_i^{n+1} = \mu^n + \Delta t C^n + \frac{K\Delta t}{\Delta x^2}(\mu_{i+1}^{n+1} - 2\mu_i^{n+1} + \mu_{i-1}^{n+1}).$$

$$\mu^n + \Delta t C^n > 0$$

$$1 - \Delta t(C_j^n(1 + \Delta t F_0)) + \rho_j^n > 0$$

$$\mu_{j+1}^{n+1} - 2\mu_j^{n+1} + \mu_{j-1}^{n+1} \ge 0$$

Et par définition de j: $\mu_{j+1}^{n+1}-2\mu_j^{n+1}+\mu_{j-1}^{n+1}\geq 0$ On a donc $\mu_j^{n+1}>0$ mais $\mu_j^{n+1}=\min(\mu_i^{n+1})<0$ par définition de j et n: C'est absurde.

5 Résolution numérique

5.1 Résolution de l'EDO

5.1.1 Résultat de la simulation de l'EDO

FIGURE 2 – Résolution du schéma implicite pour l'EDO

On observe les phénomènes attendus sur l'EDO :

- -i) μ est bornée et tend vers 0.
- -ii) ρ est croissante et bornée.
- -iii) C décroît vers 0.

5.2 Résolution de l'EDP en 1D

5.2.1 Résultat de la simulation de l'EDP en 1D

FIGURE 3 – Résolution du schéma semi implicite I pour l'EDP en 1D

On voit sur les simulations que la solution tend vers une solution de type onde plane stationnaire. Il est possible de calculer cette vitesse et de la comparer avec la vitesse théorique minimale obtenue dans la partie 3 :

FIGURE 4 – Vitesse du front observée numériquement en fonction de la vitesse minimale théorique

Soit

$$s_{theorique}^* = K \frac{f_0(18F_0 + 4) + \sqrt{f_0(f_0(18F_0 + 4)^2 + 108(f_0 + 4F_0)F_0^2)}}{2(f_0 + 4F_0)}$$

la vitesse minimale théorique obtenue dans la partie 3.

Ce graphe représente par les points bleus la vitesse du front observée numériquement pour différentes simulations en fonction de la vitesse minimale théorique associée à cette simulation. La droite rouge est la droite $s_{simu} = s_{theorique}^*$.

On remarque que la vitesse du front observée numériquement est très proche de la vitesse minimale théorique : ce phénomène est similaire à celui de l'équation de Fisher-KPP : pour une donnée initiale à support compact, le front se propage asymptotiquement à la vitesse minimale de l'équation d'onde associée à l'EDP.

Appendices

Code de résolution de l'EDO

```
import matplotlib.pyplot as plt
   from scipy.integrate import ode
   import numpy as np
1002
   b=.5 \# dtC=-b*rho*C
   F0=1 \# dtRho = Fo*Mu
   tf=20 # temps final de la simulation
   rho0=0 #rho initial
   mu0=.1 #mu initial
   c0=1 #concentration initiale
n=20000 #nombre de pas de temps
1012 #Résolution du schéma éxplicite
   def euler_explicite_edo(b, F0, tf, rho0, mu0, c0, n):
     #t0<t1, temps etudies,
1014
     #rho0, mu0,c0 reels positifs: condition initiale
     #n entier (nombre d'iterations)
     h=tf/n #pas Deltat
     rho=rho0
1018
     mu=mu0
      c=c0
      t=0
     Rho=[rho0]
     Mu=[mu0]
1024
     C=[c0]
     T=[t]
      for k in range(n):
1026
       new_mu = mu + h*(c*(mu+rho)-mu*rho)
       new_rho = rho + h*F0*mu
1028
        new_c = c - h*b*rho*c
       mu=new_mu
1030
        rho=new_rho
        c=new_c
1032
        t=t+h
       Mu. append (new_mu)
1034
       Rho. append (new_rho)
       C. append (new_c)
1036
       T. append(t)
      return T, Mu, Rho, C
1040 #Résolution du schéma semi- implicite I
   def euler_semi_I_edo(b, F0, tf, rho0, mu0, c0, n):
     \#t0 < t1 , temps etudies,
     #rho0, mu0,c0 reels positifs: condition initiale
     #n entier (nombre d'iterations)
1044
     h=tf/n #pas Deltat
     rho=rho0
1046
     mu=mu0
     c=c0
1048
      t=0
     Rho=[rho0]
1050
     Mu=[mu0]
     C = [c0]
1052
     T = [0]
```

```
for k in range(n):
1054
        new_mu = (mu + h*c*rho)/(1+h*rho-h*c*(1+h*F0))
        new\_rho = rho + h*F0*new\_mu
1056
        new_c = c/(1 + b*h*new_rho)
        mu=new_mu
1058
        rho=new_rho
        c=new_c
1060
        t=t+h
        Mu. append (new_mu)
1062
        Rho.append(new_rho)
1064
        C. append (new_c)
        T. append (t)
      return T, Mu, Rho, C
1066
1068 #Résolution du schéma semi- implicite II
   def euler_semi_II_edo(b, F0, tf, rho0, mu0, c0, n):
     \#t0 < t1 , temps etudies,
     #rho0, mu0,c0 reels positifs: condition initiale
     #n entier (nombre d'iterations)
1072
     h=tf/n #pas Deltat
1074
     rho=rho0
1076
     mu=mu0
     c=c0
     Rho=[rho0]
1078
     Mu=[mu0]
     C = [c0]
1080
     T = [0]
      for k in range(n):
1082
        new_mu = (mu + h*c*rho-h*rho*mu)/(1-h*c*(1+h*F0))
        new\_rho = rho + h*F0*new\_mu
1084
        new_c = c/(1 + b*h*new_rho)
        mu=new_mu
1086
        rho=new_rho
1088
        c=new_c
        t=t+h
        Mu. append (new_mu)
        Rho. append (new_rho)
        C. append (new_c)
        T. append (t)
      return T, Mu, Rho, C
1094
1096 #Programmation de la méthode de Newton-Raphson
   def newton(f, gradf, newton_steps, x0):
1098
      for k in range(newton_steps):
        x=x-f(x)/gradf(x)
1100
      return x
   #Résolution du schéma implicite
def euler_implicite_edo(b, F0, tf, rho0, mu0, c0, n):
     \#t0 < t1 , temps etudiés,
     #rho0, mu0,c0 reels positifs: conditions initiale
1106
     #n entier (nombre d'itérations)
1108
      newton_steps=10 #nombre d'itérations de la méthode de Newton-Raphson pour le
       calcul implicite
     h=tf/n #pas deltat
     rho=rho0
```

```
mu=mu0
1112
      c=c0
     Rho=[rho0]
     Mu=[mu0]
     C = [c0]
1116
     T = [0]
      for k in range(n):
1118
        #Calcul de new_mu par methode de Newton Raphson
        #coefficients du polynome d'ordre 3 en new_mu
1120
        alpha = -h**4*F0**2*b
        beta = -F0*h**2*(b+1+2*rho*b*h)
        gamma = -(1+b*h*rho)+b*h**2*F0*mu+h*(c*(1+h*F0)-rho*(1+b*h*rho))
        delta = (1+b*h*rho)*mu + h*c*rho
1124
        def P(X):
          return alpha *X**3+beta *X**2+gamma *X+delta
1126
        def gradP(X):
          return 3*alpha*X**2+2*beta*X+gamma
1128
        new_mu=newton(P, gradP, newton_steps, mu)
        new\_rho = rho + h*F0*new\_mu
1130
        new_c = c/(1 + b*h*new_rho)
        mu=new_mu
        rho=new_rho
        c=new_c
        t=t+h
        Mu. append (new_mu)
1136
        Rho. append (new_rho)
        C. append (new_c)
1138
        T. append(t)
      return T, Mu, Rho, C
1140
1142 #Utilisation des libraries python (scipy) pour résoudre l'EDO
    def black_box_edo(b, F0, tf, rho0, mu0, c0, n):
        def f(t,y,arg1,arg2):
1144
            mu=y[0]
            rho=y[1]
1146
            c=y[2]
            return [c*(rho+mu)-mu*rho, F0*mu, -b*rho*c]
        r = ode(f).set\_integrator('zvode', method='adams')
        r.set_initial_value([mu0, rho0, c0],0).set_f_params(F0,b)
        dt=tf/(n-1)
        Rho = [rho0]
        Mu=[mu0]
        C = [c0]
        t\!=\!\!0
1156
        T = [0]
        while r.t < tf:
1158
            mu, rho, c = r.integrate(r.t+dt)
            Mu. append (mu)
            Rho. append (rho)
            C. append (c)
            T. append (r.t)
        return T, Mu, Rho, C
1166 #Résolution
   T,Mu,Rho,C = black_box_edo(b, F0, tf, rho0, mu0, c0, n)
1168 rho_inf= Rho[n-1]
   \#\text{rho\_theorique} = \text{np.sqrt}(2*(c0/b + F0*mu0))
#print(1-rho_theorique/rho_inf)
```

```
TT, MMu, RRho, CC = [], [], [], []
1172
    for i in range (1,101):
1174
        t, m, r, c = euler_semi_l_edo(b, F0, tf, rho0, mu0, c0, i*100)
        TT. append(t)
        MMu. append (m)
1176
        RRho. append (r)
        CC. append(c)
1178
1180 #Étude Asymptotique
   A=[np.log(mu) for mu in Mu]
1182 B = [-\min(1,b) * y * rho_i \text{ in } T]
1184 #Tracé des solutions et de l'étude asymptotique
    plt.subplot(221)
1186 plt. plot (T,Mu)
    plt.ylabel('mu')
1188 plt.xlabel('t')
    plt.subplot(222)
1190
   plt.plot(T,Rho)
    plt.ylabel('rho')
   plt.subplot(223)
    plt.plot(T,C)
1194 plt.ylabel('C')
    plt.subplot(224)
1196 plt . plot (T,A)
    plt.plot(T,B)
plt.ylabel('\log (mu), -b*rho_inf*t')
    plt.show()
```

edo.py

Code de la résolution de l'EDP en 1D

```
# %load edp_1d.py
   import matplotlib.pyplot as plt
   import numpy as np
1002
   import scipy.sparse as sp
   from scipy.sparse.linalg.dsolve import spsolve
   import matplotlib.animation as animation
1006
   #Coéfficients physiques
1008 K=.5 #coefficient diffusion
   b=.2 \# dtC=-b*rho*C
1010 F0= 1 # dtRho = Fo*Mu
1012 #Paramêtres numériques
   n_t=2001 #nombre de pas de temps
tf=100 \# temps final de la simulation
   xf = 400 #longeur de la simulation
1016 \, n_x = 500 \, \# \text{nombres de points de la simulation}
1018 #Données initiales
   rho0=np.zeros(n_x) #rho initial
1020 mu0=np.zeros(n_x) #mu initial
   mu0[(n_x//2):(n_x//2+10)]=.01
1022 c0=np.zeros(n_x)+1 #concentration initiale
|defedp_1d_explicite(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x):
       dt=tf/(n_t-1)
```

```
dx=xf/(n_x-1)
1026
                  X=np.linspace(0,xf,n_x)
                  T=np. linspace(0, tf, n_t)
                  M \sqsubseteq np. zeros((n_t, n_x))
                  Rho=np.zeros((n_t, n_x))
1030
                  C=np.zeros((n_t,n_x))
                  Mu[0] = mu0
                  Rho[0] = rho0
                 C[0] = c0
1034
                  #Résolution du schema éxplicite
1036
                  for n in range (0, n_t-1):
                           RHS=np.zeros(n_x)
                            alpha = -C[n] * dt * (1 + dt * F0) + dt * Rho[n] + 1
                           RHS[1:-1] = dt * ((K/(dx*2))*(Mu[n,:-2] - 2*Mu[n,1:-1] + Mu[n,2:]) + C[n,1:-1]*Rho[n,2:]) + C[n,1:-1]*(Rho[n,2:]) + C[n,1:-1
                  ,1:-1])
                           RHS[0] = dt * ((K/(dx**2))*(-2*Mu[n,0]+Mu[n,1])+C[n,0]*Rho[n,0])
1040
                           RHS[-1] = dt * ((K/(dx*2))*(-2*Mu[n,-1]+Mu[n,-2])+C[n,-1]*Rho[n,-1])
                           Mu[n+1]=(1/alpha)*(Mu[n]+RHS)
1042
                            Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
                            C[n+1]=C[n]/(1 + b*dt*Rho[n])
1044
                  return X,T,Mu,Rho,C
1046
         def edp_1d_semi_implicite_I(K, b, F0, rho0, mu0, c0, n_t , tf, xf, n_x):
1048
                  #Détermination des paramêtres numeriques deltat et deltax
                  dt=tf/(n_-t-1)
                  dx=xf/(n_x-1)
                  #Représentation de l'éspace et du temps
                  X=np.linspace(0,xf,n_x)
                  T=np. linspace (0, tf, n_t)
                  #Initialisation
                  M \sqsubseteq np. zeros((n_t, n_x))
                  Rho=np.zeros((n_t, n_x))
1056
                  C=np.zeros((n_t, n_x))
                 Mu[0] = mu0
                  Rho[0] = rho0
                  C[0] = c0
1060
                  #Résolution du schéma implicite-explicite I
                  for n in range (0, n_t - 1):
1062
                           #Matrice du Laplacien
                           A\!\!=\!\!\operatorname{np.diag}\left(-\operatorname{np.ones}\left(\left.\operatorname{n_{-}x}-1\right),-1\right)\!+\!\operatorname{np.diag}\left(2*\operatorname{np.ones}\left(\left.\operatorname{n_{-}x}\right)\right.,0\right)\!+\!\operatorname{np.diag}\left(-\operatorname{np.ones}\left(\left.\operatorname{n_{-}x}\right)\right.,0\right)\right)
1064
                 -1),1)
                           #Laplacien Numerique
                           A = A * K * dt / (dx * * 2)
1066
                           #Ajout des termes implicites
                            alpha = -C[n] * dt * (1 + dt * F0) + dt * Rho[n] + 1
1068
                            A+=np.diag(alpha,0)
                           A=sp.csc_matrix(A)
                            #Résolution du systême implicite
                           Mu[n+1] = spsolve(A, Mu[n]+dt*C[n]*Rho[n])
                            Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
                            C[n+1]=C[n]/(1 + b*dt*Rho[n])
1074
                  return X,T,Mu,Rho,C
1076
        def edp_1d_semi_implicite_II(K, b, F0, rho0, mu0, c0, n_t , tf, xf, n_x):
1078
                  #Détermination des paramêtres numériques deltat et deltax
                  dt=tf/(n_t-1)
1080
                  dx=xf/(n_x-1)
                  #Représentation de l'éspace et du temps
1082
```

```
X=np.linspace(0,xf,n_x)
        T=np.linspace(0,tf,n_t)
1084
        #Initialisation
1086
        M \sqsubseteq np. zeros((n_t, n_x))
        Rho=np.zeros((n_t, n_x))
        C=np.zeros((n_t,n_x))
1088
        Mu[0] = mu0
        Rho[0] = rho0
1090
        C[0] = c0
        #Résolution du schéma implicite-explicite II
        for n in range (0, n_t-1):
            #Matrice du Laplacien
1094
            A=np.diag(-np.ones(n_x-1),-1)+np.diag(2*np.ones(n_x),0)+np.diag(-np.ones(n_x),0)
       -1),1)
            A=A*K*dt/(dx**2) #Laplacien Numerique
1096
            #Ajout des termes implicites
            alpha = -C[n] * dt * (1 + dt * F0) + 1
1098
            A+=np.diag(alpha,0)
            A= sp.csc_matrix(A)
1100
            #Résolution du systême implicite
            Mu[n+1] = spsolve(A, Mu[n]+dt*C[n]*Rho[n]-dt*Mu[n]*Rho[n])
            Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
            C[n+1]=C[n]/(1 + b*dt*Rho[n])
        return X, T, Mu, Rho, C
    \#X,T,Mu,Rho,C = edp_1d_semi_implicite_I(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x)
1106
   def notKPP(K, b, F0, rho0, mu0, c0, n_t , tf, xf, n_x):
1108
        #Détermination des paramêtres numeriques deltat et deltax
        dt=tf/(n_t-1)
1110
        dx=xf/(n_x-1)
        #Représentation de l'éspace et du temps
1112
        X=np.linspace(0,xf,n_x)
        T=np.linspace(0,tf,n_t)
1114
        #Initialisation
        Mu=np.zeros((n_t, n_x))
1116
        Rho=np.zeros((n_t, n_x))
1118
        C=np.zeros((n_t,n_x))
        Mu[0] = mu0
        Rho[0] = rho0
        C[0] = c0
        #Résolution du schéma implicite-explicite I
        for n in range (0, n_t - 1):
            #Matrice du Laplacien
1124
            A=np.diag(-np.ones(n_x-1),-1)+np.diag(2*np.ones(n_x),0)+np.diag(-np.ones(n_x),0)
            #Laplacien Numerique
1126
            A = A * K * dt / (dx * * 2)
            #Ajout des termes implicites
1128
            alpha = -np.exp(-.01*T[n+1])*dt*(1+dt*F0)+dt*Rho[n]+1
            A+=np.diag(alpha,0)
1130
            A=sp.csc_matrix(A)
            #Résolution du systême implicite
            Mu[n+1] = spsolve(A, Mu[n]+np.exp(-.01*T[n+1])*dt*Rho[n])
            Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
1134
            C[n+1]=C[n]/(1 + b*dt*Rho[n])
        return X, T, Mu, Rho, C
1136
1138 \mid X, T, Mu, Rho, C = notKPP(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x)
```

```
1140 def speed(X, Rho, rho_inf):
        #Position du front
1142
        argmed=np.zeros(n_t)
         for i in range(n<sub>t</sub>):
             argmed[i] = X[(n_x//2) + 
1144
                  np.\, min\, (\,np.\, where\, (\,np.\, append\, (\,Rho\, [\,i\,\,, (\,n_-x\,//2):]\,\,, \lceil\,0\,\rceil\,)\, {<} r\, h\, o_-i\, n\, f\,/2)\,)\,]
        #Vitesse du front
1146
        s = ((n_t - 1)/tf)*(argmed[(n_t / 2) + 150] - argmed[(n_t / 2)])/(150)
1148
        return s
1150
    rho_{inf} = Rho[n_{t}-1,(n_{x}/2)]
    s = speed(X, Rho, rho_inf)
   print ('La vitesse de propagation de la simulation est s=',s)
    # Comparaison de s theorique et numerique pour plusieurs données initiales
1154 # ~ memory =[]
   \# for i in range(5):
        \# for j in range (5):
1156
             \# \ \tilde{K} = .2 + .2 * i
             \# ^{\circ} b = .1 + .1*i
1158
             # ~ X,T,Mu,Rho,C= edp_1d_semi_implicite_I(K, b, F0, rho0, mu0, c0, n_t , tf,
         xf, n_x
             \mbox{\#\ ^{\sim}\ }\mbox{\#Valeur} de rho a l'infini\mbox{\#\ ^{\sim}\ } rho_inf = Rho[n_t-1,(n_x//2)]
1162
                 s = speed(X, Rho, rho_inf)
             # ~ s_theorique = np.sqrt (K*((18*F0+4)+np.sqrt(((18*F0+4)**2)+108*(1+4*F0)*(
        F0**2)))/(2*(1+4*F0))
             \# memory += [K, b, s, s_theorique]
        np.savetxt('memory_data3.dat', memory)
1166
   s_{theorique} = np. sqrt(K*((18*F0+4)+np. sqrt(((18*F0+4)**2)+108*(1+4*F0)*(F0**2)))
1168
        /(2*(1+4*F0))
    #Attention, ceci est pour C0=1
1170 print ('La vitesse théorique de propagation est s_theorique=', s_theorique)
1172
   #Animation
    fig = plt.figure()
1174
    ax = plt.axes(xlim=(0, xf), ylim=(0, rho_inf+1))
   line, = ax.plot([], [], lw=2)
    line2, = ax.plot([], [], lw=2)
    line3, = ax.plot([], [], lw=2)
    line4, = ax.plot([], [], lw=2)
    time_text = ax.text(0.02, 0.92, '', transform=ax.transAxes)
    legend_text = ax.text(0.80, 0.82, '', transform=ax.transAxes)
1182
    def init():
        line.set_data([], [])
1184
         line2.set\_data([], [])
         line3.set_data([], [])
1186
         line4.set_data([], [])
         time_text.set_text(',')
         legend_text.set_text(',')
         return line, line2, line3, line4, time_text, legend_text
1190
    def animate(i):
        line.set_data(X, C[i])
1194
         line2.set_data(X, Rho[i])
```

```
\begin{array}{lll} & line 3.set\_data\left(X,\;Mu[\,i\,]\right) \\ & line 4.set\_data\left(xf/2+((i*s)*tf/(n\_t-1))\;, np.\, linspace\left(0\;, rho\_inf+1\;, 10\right)\right) \\ & time\_text.set\_text\left('time=\left\{0\;:.1\;f\right\}\backslash n\;K=\left\{1\right\}\;\;b=\left\{2\right\}\;\;F0=\left\{3\right\}\;\;'.\, format\left(T[\,i\,]\;,K,b\;,F0\right)\right) \\ & legend\_text.set\_text\left('Rho=Orange\;\backslash nMu=Green\;\backslash nC=Blue\backslash ns=\left\{0\;:.3\;f\right\}'.\, format(s)\right) \\ & return\;\; line\;\;, line 2\;\;, \;\; line 3\;\;, line 4\;\;, \;\; time\_text\;\;, \;\; legend\_text \\ \\ 1202\\ & anim\;\; = \;\; animation\;. FuncAnimation\left(fig\;\;, \;\; animate\;\;, \;\; init\_func=init\;\;, \\ & frames=(n\_t-1)\;\;, \;\; interval=(tf*200)/(n\_t-1)\;\;, \;\; blit=True) \\ \\ 1208\\ & \#anim\;\; . \;\; save\left('EDP\_1D.\;gif\;',\; writer='imagemagick\;',\;\; fps=30\right) \\ & plt\;\; . show\left(\right) \end{array}
```

 $edp_1d.py$