Equivalência entre AFDs e AFNs Fecho sob as operações regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

21 de novembro de 2017

Plano de Aula

- Revisão
 - Fecho em Linguagens Regulares (cont.)
 - Não-determinismo
- Equivalência de AFNs e AFDs
- Fecho sob as operações regulares
 - Fecho sob união
 - Fecho sob concatenação
 - Fecho sob estrela

Sumário

- Revisão
 - Fecho em Linguagens Regulares (cont.)
 - Não-determinismo
- 2 Equivalência de AFNs e AFDs
- Fecho sob as operações regulares
 - Fecho sob união
 - Fecho sob concatenação
 - Fecho sob estrela

Teorema 1.25

A classe de linguagens regulares é fechada sob a operação de união.

Prova

Sejam A e B duas linguagens regulares. Se A e B são regulares, então existem dois AFDs $M_A = (Q_A, \Sigma_A, \delta_A, q_A, F_A)$ e $M_B = (Q_B, \Sigma_B, \delta_B, q_B, F_B)$ que as reconhecem, respectivamente. Como passo auxiliar, iremos construir o AFDs estendidos $M_A' = (Q_A', \Sigma_A', \delta_A', q_A', F_A')$ e $M_B' = (Q_B', \Sigma_B', \delta_B', q_B', F_B')$ dos AFDs M_A e M_B , respectivamente. Um AFD estendido O é um AFD equivalente a um dado AFD P de forma que $\Sigma_P \subset \Sigma O$. Desta forma, temos:

Prova (cont.)

Elementos de M'_{Δ} :

- $Q'_{A} = Q_{A} \cup \{q_{fugaA}\};$
- $\Sigma_A' = \Sigma_A \cup \Sigma_B$;
- $\bullet q'_{\Delta} = q_{A};$
- $F'_A = F_A$

Prova (cont.)

Elementos de M'_{R} :

- $Q'_B = Q_B \cup \{q_{fugaB}\};$
- $\Sigma_B' = \Sigma_A \cup \Sigma_B$;
- $q_B' = q_B;$
- $F'_B = F_B$

Prova (cont.)

De posse de M'_A e M'_{B^+} será construído o AFD $M_{A\cup B}=(Q,\Sigma,\delta,q_0,F)$ que reconhece $A\cup B$: Elementos de $M_{A\cup B}$:

$$Q = Q'_A \times Q'_B;$$

•
$$\Sigma = \Sigma'_A$$
;

•
$$\delta((x,y),a) = (\delta'_A(x,a), \delta'_B(y,a))$$

em que $(x,y) \in Q$ e $a \in \Sigma$;

•
$$q_0 = (q'_A, q'_B);$$

•
$$F = \{(x, y) \in Q \mid x \in F'_A \text{ ou } y \in F'_B\}.$$

Assim, como foi possível construir $M_{A \cup B}$, podemos dizer que a classe de linguagens regulares é fechada sob a operação de união I

FIGURA **1.27**

O autômato finito não-determinístico N_1

FIGURA 1.28

Computações determinísticas e não-determinísticas com um ramo de aceitação

FIGURA 1.31 O AFN N_2 que reconhece A

FIGURA 1.34 O AFN N_3

FIGURA 1.36 O AFN N_4

DEFINIÇÃO 1.37

Um autômato finito não-determinístico é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito de estados,
- **2.** Σ é um alfabeto finito,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ é a função de transição,
- **4.** $q_0 \in Q$ é o estado inicial, e
- **5.** $F \subseteq Q$ é o conjunto de estados de aceitação.

Descrição Formal

FIGURA **1.27**

O autômato finito não-determinístico N_1

Descrição Formal

FIGURA 1.31 O AFN N_2 que reconhece A

Sumário

- Revisão
 - Fecho em Linguagens Regulares (cont.)
 - Não-determinismo
- Equivalência de AFNs e AFDs
- Fecho sob as operações regulares
 - Fecho sob união
 - Fecho sob concatenação
 - Fecho sob estrela

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$.

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

- $0 r_0 = q_0;$
- ② $r_{i+1} \in \delta(r_i, \omega_{i+1})$ (para i = 0, ..., n-1); e
- \circ $r_n \in F$.

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

- $0 r_0 = q_0;$
- ② $r_{i+1} \in \delta(r_i, \omega_{i+1})$ (para i = 0, ..., n-1); e
- \circ $r_n \in F$.

Corolário

N reconhece a linguagem A, se $A = \{\omega \mid N \text{ aceita } \omega\}$.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

 Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;
- Se k é o número de estados do AFN, então ele tem 2^k subconjuntos de estados;

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;
- Se k é o número de estados do AFN, então ele tem 2^k subconjuntos de estados;
- Portanto o AFD equivalente terá 2^k estados.

Descrição Formal

Descrição Formal

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Sumário

- Revisão
 - Fecho em Linguagens Regulares (cont.)
 - Não-determinismo
- Equivalência de AFNs e AFDs
- Fecho sob as operações regulares
 - Fecho sob união
 - Fecho sob concatenação
 - Fecho sob estrela

Fecho sob união

Teorema 1.45

A classe de linguagens regulares é fechada sob a operação de união.

Fecho sob união

Teorema 1.45

A classe de linguagens regulares é fechada sob a operação de união.

Fecho sob união

Estrutura básica da prova

Suponha que
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 .

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 .

Construa $N=(Q,\Sigma,\delta,q_0,F)$ para reconhecer $A_1\cup A_2$.

Estrutura básica da prova

•
$$Q = Q_1 \cup Q_2 \cup \{q_0\};$$

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\}$;
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$oldsymbol{\delta}(q,a)=\left\{egin{array}{ll} \delta_1(q,a), & ext{se } q\in Q_1 \ \end{array}
ight.$$

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$oldsymbol{\delta}(q,a) = \left\{egin{array}{ll} \delta_1(q,a), & ext{se } q \in Q_1 \ \delta_2(q,a), & ext{se } q \in Q_2 \end{array}
ight.$$

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\bullet \ \delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \\ \delta_2(q,a), & \text{se } q \in Q_2 \\ \{q_1,q_2\}, & \text{se } q = q_0 \text{ e } a = \epsilon \end{array} \right.$$

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\}$;
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\}$;
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \\ \delta_2(q,a), & \text{se } q \in Q_2 \\ \{q_1,q_2\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \end{array} \right.$$
 em que $q \in Q$ e $a \in \Sigma_\epsilon$;

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 . Construa $N=(Q,\Sigma,\delta,q_0,F)$ para reconhecer $A_1\cup A_2$.

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \\ \delta_2(q,a), & \text{se } q \in Q_2 \\ \{q_1,q_2\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \end{array} \right.$$
 em que $q \in Q$ e $a \in \Sigma_\epsilon$;

q₀ é o estado inicial;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \\ \delta_2(q,a), & \text{se } q \in Q_2 \\ \{q_1,q_2\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \end{array} \right.$$
 em que $q \in Q$ e $a \in \Sigma_\epsilon$:

- q_0 é o estado inicial;
- $F = F_1 \cup F_2$

Teorema 1.47

A classe de linguagens regulares é fechada sob operação de concatenação.

Teorema 1.47

A classe de linguagens regulares é fechada sob operação de concatenação.

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ reconheça A_2 .

Estrutura básica da prova

Estrutura básica da prova

•
$$Q = Q_1 \cup Q_2$$
;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2$;
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 .

Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

- $Q = Q_1 \cup Q_2$;
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconheça A_1 e que $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ reconheça A_2 .

- Construa $N = (Q, \Sigma, \delta, q_1, F_2)$ para reconhecer $A_1 \circ A_2$.
 - $Q = Q_1 \cup Q_2$:
 - Σ é o alfabeto da linguagem;

$$oldsymbol{\delta}(q,a)=\left\{egin{array}{ccc} \delta_1(q,a), & ext{se } q\in Q_1 ext{ e } q
otin F_1 \end{array}
ight.$$

Estrutura básica da prova

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconheça A_1 e que $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ reconheça A_2 .

- Construa $N = (Q, \Sigma, \delta, q_1, F_2)$ para reconhecer $A_1 \circ A_2$.
 - $Q = Q_1 \cup Q_2$:
 - Σ é o alfabeto da linguagem;

•
$$\Sigma$$
 é o alfabeto da linguagem;
• $\delta(q,a) = \begin{cases} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q
otin F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a
otin \epsilon \end{cases}$

Estrutura básica da prova

- $Q = Q_1 \cup Q_2;$
 - Σ é o alfabeto da linguagem;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2$;
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

- $Q = Q_1 \cup Q_2$:
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 . Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

- $Q = Q_1 \cup Q_2$;
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not \in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_2\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \delta_2(q,a), & \text{se } q \in Q_2. \end{array} \right.$$
 em que $q \in Q$ e $a \in \Sigma$;

q₁ é o estado inicial;

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 .

Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

- $Q = Q_1 \cup Q_2$;
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not \in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_2\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \delta_2(q,a), & \text{se } q \in Q_2. \end{array} \right.$$
 em que $q \in Q$ e $a \in \Sigma$;

- q₁ é o estado inicial;
- F₂ é o conjunto de estados finais.

Teorema 1.49

A classe de linguagens regulares é fechada sob operação de estrela.

Teorema 1.49

A classe de linguagens regulares é fechada sob operação de estrela.

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 .

Estrutura básica da prova

Estrutura básica da prova

•
$$Q = Q_1 \cup \{q_0\};$$

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$ullet$$
 $\delta(q,a)=\left\{
ight.$

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 .

Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$oldsymbol{\delta}(q,a)=\left\{egin{array}{ll} \delta_1(q,a), & ext{se } q\in Q_1 ext{ e } q
otin F_1 \ \end{array}
ight.$$

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ccc} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not\in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \end{array} \right.$$

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not \in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \end{array} \right.$$

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\bullet \ \delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not \in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \{q_1\}, & \text{se } q = q_0 \text{ e } a = \epsilon \end{array} \right.$$

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not\in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \{q_1\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \end{array} \right.$$

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not\in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \{q_1\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \\ \text{em que } q \in Q \text{ e } a \in \Sigma_\epsilon; \end{array} \right.$$

Estrutura básica da prova

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconheça A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not\in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \{q_1\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \\ \text{em que } q \in Q \text{ e } a \in \Sigma_\epsilon; \end{array} \right.$$

• q_0 é o estado inicial;

Estrutura básica da prova

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not\in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \{q_1\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \\ \text{em que } q \in Q \text{ e } a \in \Sigma_\epsilon; \end{array} \right.$$

- q₀ é o estado inicial;
- $F = F_1 \cup \{q_0\}.$

Equivalência entre AFDs e AFNs Fecho sob as operações regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

21 de novembro de 2017

