See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51482339

Analytics of Surfactants in the Environment: Problems and Challenges

ARTICLE in CHEMICAL REVIEWS · JULY 2011

Impact Factor: 46.57 · DOI: 10.1021/cr100107g · Source: PubMed

CITATIONS READS
28 133

3 AUTHORS, INCLUDING:

Ewa Olkowska

Medical University of Gdansk

9 PUBLICATIONS 79 CITATIONS

SEE PROFILE

Jacek NamieŚnik
Gdansk University of Technology
616 PUBLICATIONS 8,186 CITATIONS

SEE PROFILE

pubs.acs.org/CR

Analytics of Surfactants in the Environment: Problems and Challenges

Ewa Olkowska,* Żaneta Polkowska, and Jacek Namieśnik

Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology (GUT), ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland,

CONTENTS

1. Introduction	5667
1.1. Classification of Surfactants	5667
1.2. Toxicity of Surfactants	5667
2. Problems and Challenges Posed by the Analysis of	
Surfactants in Environmental Samples	5667
2.1. Analytical Procedures for Determining	
Surfactants in Environmental Samples	5670
3. Literature Data on Concentrations of Surfactants	
Determined in Environmental Samples	5695
4. Summary	5696
Author Information	5696
Biographies	5696
Abbreviations	5697
References	5697

1. INTRODUCTION

Surfactants (surface active agents = SAAs) are a group of compounds with specific physicochemical properties (amphiphilicity, solubility in polar and nonpolar liquids, ability to form micelles, adsorption at phase boundaries). Because of their properties, surface-active compounds are widely applied in industry and the household (e.g., in detergents, personal-care products, paints, pesticides, petroleum products). As their applications are on a very large scale, it has become imperative to monitor SAAs levels in environmental samples with regard to the protection of human health and various aspects of the ecosystems. Consequently, there is a need to develop appropriate analytical methodologies enabling the determination of a wide range of SAAs in different types of environmental sample. The measurement data obtained thereby should be reliable and comply with quality assurance and control systems (QA/QC).

We give a general classification of SAAs (with examples of the structural formulas of selected compounds) and of their toxicity to living organisms. Next, we review the problems posed by the analysis of surfactants in environmental samples and the analytical techniques used to isolate and/or preconcentrate, identify and quantify a broad spectrum of analytes (i.e., ionic and nonionic compounds and their metabolites). Finally, we provide information on surfactants levels determined in environmental samples.

1.1. Classification of Surfactants

A number of criteria can be applied to classify surfactants. These compounds are usually categorized on the basis of

• the raw material used for their production (from renewable and nonrenewable sources)

- their effect on the environment (chemodegradable, biodegradable, hardly degradable and nondegradable)
- their possible applications (as wetting, dispersing and foaming agents, detergents, emulsifiers and antiemulsifiers solubilizers)
- their chemical structure (Figure 1).

To a large extent the chemical structure of surfactants determines their influence on different compartments of the biotic and abiotic environment and also the applicability of different analytical procedures for determining them in environmental samples. ^{1,3,4} In the context of this criterion, it is useful to present the structural formulas of a number of SAAs (Figure 2), which may give some idea of their specific physicochemical properties. ⁵

1.2. Toxicity of Surfactants

Because of their specific physical and chemical properties surface-active compounds are widely applied in industry, in the household and elsewhere. This means that they will inevitably get into the different compartments of the environment. It is therefore essential to ascertain whether these compounds adversely affect fauna and flora (especially aquatic organisms). Analysis of the literature data indicates that surfactants affect living organisms to different extents. Cationic SAAs, in particular, possess biostatic and biocidal properties. These properties are made use of in antibacterial and fungicidal preparations to retard the growth of or kill microorganisms like bacteria, yeasts and fungi.

The toxicity of surfactants (Table 1) is a significant parameter, which determines the extent of their applicability. A variety of indices are used to assess the toxic properties of these chemicals: in the case of ionic and nonionic SAAs two parameters, EC50 and LC50, are measured after a fixed period of exposure. Such tests are usually carried out with the aid of indicator organisms, mostly daphnia (Daphnia magna) and algae, but sometimes fish as well. It has been reported that algae are highly variable in their sensitivity to surfactants, with short response times. This means that algae can be used as organisms warning of the contamination of ecosystems by SAAs. 16 For some compounds, concentrations have been established at which a given effect occurs or which lead to the death of half the population of higher organisms (rats or rabbits). In humans, contact with SAAs may cause irritation or burning sensations of the skin or eyes, and also irritation of the respiratory system. Manufacturers include warnings of such effects on their product labels.

2. PROBLEMS AND CHALLENGES POSED BY THE ANALYSIS OF SURFACTANTS IN ENVIRONMENTAL SAMPLES

The very extensive application of products containing surfactants (often with a broad diversity of structure and toxicity to

Received: April 7, 2010 Published: July 11, 2011

Figure 1. Classification of surface active compounds according to their chemical structure.

different organisms) both in everyday life and in industry requires an assessment of the extent to which these substances (or their degradation products) get into different compartments of the environment; this is a crucial analytical problem. It is imperative to have the appropriate analytical tools to hand in order to monitor their presence in the various compartments of the environment. These tools include

- appropriate analytical procedures ensuring the preparation of suitable representative extracts, in which target analytes are present at levels sufficiently high for their quantitative determination
- appropriate analytical techniques for detection, identification, and quantitative determination
- reference materials for the validation of analytical procedures, the calibration of the several stages or the whole of the analytical process, and the calibration of the measurement instrumentation used.

As a consequence, new analytical methodologies need to be developed for SAAs that will enable very low concentrations of these compounds to be determined in different types of environmental sample (soil, bottom sediments, dusts, atmospheric air, surface waters, sewage) in a short time.

A particular challenge faced by chemical analysts is the development of analytical methodologies ensuring the detection, identification and quantitative determination of a broad spectrum of surfactants in the various compartments of the environment. The determination of SAAs in different types of environmental samples causes a lot of problems, mainly because of

- the complex composition of such samples
- the low concentrations of individual surfactants in such samples
- the diverse chemical structures of surfactants
- the amphiphilic nature of surfactants (a consequence of their chemical structure).

The complex and frequently variable matrix composition of environmental samples and the low levels of target SAAs mean that suitable isolation or preconcentration techniques have to be

ANIONIC

$$H_{3}C - \begin{bmatrix} CH_{2} \end{bmatrix}_{m} CH - \begin{bmatrix} CH_{2} \end{bmatrix}_{n} CH_{3}$$

$$Secondary alkyl sulfonate (SAS, R_{n} + R_{m} = C_{11} - C_{17})$$

$$H_{3}C - \begin{bmatrix} H_{2}C \end{bmatrix}_{n} O - SO_{3}^{-} Na^{+}$$

$$Alkyl sulfate AS (n = 12 + 18)$$

$$CATIONIC$$

$$R - \begin{bmatrix} R \\ CH_{2}C \end{bmatrix}_{m} O - SO_{3}^{-} Na^{+}$$

$$Alkyl trimethyl ammonium salts$$

$$CATIONIC$$

$$R - \begin{bmatrix} R \\ CH_{3}C \end{bmatrix} - CH_{3}C \end{bmatrix}$$

$$CH_{3}C - \begin{bmatrix} CH_{2}CH_{3}C \end{bmatrix} - CH_{3}C \end{bmatrix}$$

$$CH_{3}C - \begin{bmatrix} CH_{3}C \end{bmatrix} - CH_{3}C \end{bmatrix}$$

$$CH_{3}C - \begin{bmatrix} CH_{3}C \end{bmatrix} - CH_{3}C \end{bmatrix}$$

$$CH_{3}C - \begin{bmatrix} CH_{3}C \end{bmatrix} - CH_{3}C \end{bmatrix}$$

$$CH_{3}C - CH_{3}C \end{bmatrix}$$

$$CH_{2}CH$$

Figure 2. Structural formulas of selected surfactants.

applied at during sample preparation. The operations to be carried out during this stage involve

- the removal (masking) of interferents
- the isolation or preconcentration of target analytes.

During these operations, however, errors may be committed that will affect the final result of the analysis; hence it is crucial to select such conditions for analyte preconcentration that will ensure maximum sensitivity and reproducibility. ¹⁹ Interferents can usually be divided into those that overestimate SAAs levels (e.g., nonorganic and organic ions, chlorides, nitrates, cyanates, thiocyanates, sulfonates, carboxylates, phosphates, phenols) those that underestimate them (e.g., amines like QAC). ²⁰ The various groups of techniques for preparing samples for analysis of their SAAs content will be discussed in the next section.

In view of the characteristic molecular structures of surfactants and their properties, they have to be separated into subgroups during sample preparation; it is this that will determine the techniques applicable to the analysis of the solvent extracts.

Nevertheless, it is sometimes advantageous to isolate anionic and nonionic surfactants simultaneously (e.g., by SPE) and only then to separate them prior to their quantitative determination (fractionation using appropriate solvents). With this approach it becomes possible to determine a whole range of SAAs in a single analytical run without jeopardizing the reliability of the results. ^{21,22}

The amphiphilic properties of surfactants mean that these compounds may be adsorbed on the surface of solid particles contained in the environmental samples and on the surfaces of the laboratory glassware used at the sample preparation stage. Moreover, during the filtration of liquid samples, analytes may be lost through absorption on the membrane filter surface (the filter material and pore size are thus significant).²³ In the next step any surfactants retained on the filter surface have to be removed, after which this extract is combined with the solvent extract obtained during the isolation of analytes from the filtrate. During the preparation of solid samples (soil, bottom sediments, sewage sludge) for analysis, it is exceedingly difficult to obtain quantitative recoveries of analytes because SAAs are adsorbed on the solid particle surfaces as a result of strong hydrophobic or electrostatic interactions.²⁴ As a consequence of the amphiphilic properties of SAAs, an internal standard (the relevant SAAs analyte or a compound with similar properties) has to be added to the sample before solvent extraction so that the loss of target analytes during isolation and preconcentration can be estimated. This approach is taken with respect to chromatographic techniques during the final determination of the contents of compounds in various SAAs.^{25,26}

At this point it is relevant to draw attention to the fact that preparing suitable solutions of standard surfactants, adding an

Table 1. Toxicity of Surfactants

type of surfactant	surfactant (acronym)	organism	parameter/exposure time	concentration range [mg/L]	references
cationic	TMAC	green algae (Dunaliella salina)	EC ₅₀ /24 h	0.79	7
		daphnia (Daphnia magna)	IC ₅₀ /24 h	0.13-0.38	8
	BDMAC	green algae (Dunaliella salina)	EC ₅₀ /24 h	1.3	7
		daphnia (Daphnia magna)	IC ₅₀ /24 h	0.13 - 0.22	8
	DTDMAC	daphnia (Daphnia magna)	LC ₅₀ /48 h	0.49	9
		goldfish (Carassius auratus)	*EC ₅₀ /48 h	2.37	10
		rainbow trout (Salmo gairdneri)		0.74	
anionic	$Na(C_{10} LAS)$	daphnia (Daphnia magna)	LC ₅₀ /48 h	13.9 (11.7-17.2)	11
	$Na(C_{12} LAS)$	green algae (Dunaliella salina)	EC ₅₀ /24 h	3.5	7
		daphnia (Daphnia magna)	LC ₅₀ /48 h	8.1	11
	$Na(C_{14} LAS)$	daphnia (Daphnia magna)		1.22	
	LAS	algae (Raphidocelis subcapitata)	IC ₅₀ /72 h	112.4	12
		acute bladder snail (Physella acuta)	LC ₅₀ /24 h	16.65 (9.2-26)	
		Artemia salina		40.4 (38.7-48.5)	
		sunflower (Helianthuus annuus)	increase in EC50/21 days	260 (120-307) mg/kg	13
		potatoes (Solanum tuberosum)	efficiency and increase in	16 mg/kg	14
			NOEC/106 days		
	SDS	algae (Raphidocelis subcapitata)	IC ₅₀ /72 h	36.58	12
		acute bladder snail (Physella acuta)	LC ₅₀ /24 h	27.2 (17.6-37.9)	
		Artemia salina		41.04 (35.9-49.6)	
		daphnia (Daphnia magna)	EC ₅₀ /24 h	28.77	15
		rainbow trout (Salmo gairdneri)	*EC ₅₀ /48 h	33.61	10
			LC ₅₀ /24 h	42.04	15
		goldfish (Carassius auratus)	*EC ₅₀ /48 h	38.04	11
	AES	algae (Raphidocelis subcapitata)	IC ₅₀ /72 h	36.58	12
		acute bladder snail (Physella acuta)	LC ₅₀ /24 h	27.2 (17.6-37.9)	
		Artemia salina		41.04 (35.9-49.6)	
		algae (Skeletonema costatum)	EC ₅₀ /72 h	0.37 ± 0.08	16
		Pseudokirchneriella subcapitata		3.5 ± 0.66	
nonionic	NP	daphnia (Daphnia magna)	LC ₅₀ /48 h	0.19	17
	NPE	daphnia (Daphnia magna)		14	
		Mysidopsis bahia		1.23-1.89	18
	AE	algae (Raphidocelis subcapitata)	IC ₅₀ /72 h	6.87	12
		acute bladder snail (Physella acuta)	LC ₅₀ /24 h	5.33 (4.0-7.4)	
		Artemia salina		0.62 (0.58-0.67)	
		goldfish (Carassius auratus)	*EC ₅₀ /48 h	29.26	10
		rainbow trout (Salmo gairdneri)		22.38	

internal standard, and plotting appropriate calibration curves are problematic for several reasons, the most important of which are

- the limited availability of commercial standard solutions of surfactants (standards of only certain analytes are available, LAS, ABS, PFOA, PFOS, OPEO, NPEO, OP, NP)
- the application of standard solutions prepared from technically pure products that are mixtures of isomers, homologues or oligomers of compounds from the relevant group of SAAs (instead of commercial standard solutions)
- the occurrence of foaming or the formation of highly viscous solutions during the preparation of aqueous solutions of surfactant standards.

The analytical methodologies enabling the determination of a wide assortment of SAAs present at different levels in environmental samples with various matrix compositions should be validated against certified reference materials. At present only

liquid reference materials are available on the market; they can be used to validate methodologies for determining total contents of ionic (cationic or anionic) and nonionic surfactants. On the other hand, there are no reference materials suitable for validating entire analytical procedures. All we can do in these circumstances is to add a standard solution to a certified reference material, ²⁷ and then re-extract the same samples under optimal conditions to check that extraction of analytes is complete, ²¹ or else to compare two different analytical methodologies. ²⁸

2.1. Analytical Procedures for Determining Surfactants in Environmental Samples

Analysis of the subject literature indicates that the determination of surfactants in environmental samples requires different methodological approaches depending on whether the information required concerns the total SAAs content or the levels of individual SAAs in the sample.

During the collection and storage of environmental samples, no matter whether they are liquid or solid, the target compounds should not be allowed to decompose. A biocide is therefore added to aqueous media immediately after sampling in order to minimize the biodegradation of SAAs: the usual one is a solution of formaldehyde. Samples are then stored at a low temperature and in the dark until they need to be prepared for final determination. 4,25,29,30 Solid samples (bottom sediments, sewage sludges, soils) are first desiccated, then stored at a low temperature.^{31–35}

Apparatus and glassware likely to come into contact with the samples are first flushed with a mixture of acids and then rinsed with deionized water. During this procedure detergents (themselves containing SAAs) must not be used, as they could contaminate the environmental samples. The samples are stored in amber glass or polypropylene bottles.

The analytical procedures for determining surfactants in environmental samples can be divided into two types:

- determination of the total content of surfactants of a given group (cationic, anionic, nonionic)
- determination of analytes belonging to different classes of chemical compounds.

In the first case, the preparation of samples for analysis is relatively straightforward, as only a few operations like extraction (LLE or SLE) with ion-pair formation and photometric analyte determination need to be carried out. 36-40 In the second, analytes have first to be isolated and/or preconcentrated before the final determination (using the appropriate extraction techniques). Table 2 lists information on the extraction techniques commonly used in the preparation of environmental samples whose SAAs content is to be determined. The table also lists the operating parameters for analyte isolation, as well as the advantages and disadvantages of each technique. Perusal of the subject literature shows that the usual techniques for isolating and/or preconcentrating SAAs analytes from solid or liquid environmental samples are

- liquid—liquid extraction (LLE^{38–55} or solid—liquid extraction $(SLE)^{27,32,33,61-64}$
- solvent extraction in a Soxhlet apparatus $^{27,34,55,65-69}$ solid phase extraction (SPE) $^{22,62,68,68,70,74,76,77,81,86,97-131}$

For a long time, the traditional extraction techniques (solvent sublation, 44,45 LLE, SLE, Soxhlet extraction) used in the preparation of various types of environmental samples for analysis required large amounts of organic solvents for isolating the analytes, which itself produced highly toxic effluents.

These techniques do not ensure desirable analyte recoveries (they are often <50%); they are also time-consuming and laborintensive. But the search is now on for new analytical techniques, and existing ones are being modified, so that samples can be prepared in accordance with the principles of "green analytical chemistry"; analyses can then be carried out with minimal adverse effects on the environment. 142,143 The use of techniques assisting extraction, such as elevated temperature and pressure, microwave radiation, and ultrasound improve the efficacy of analyte isolation. In comparison with traditional solvent extraction, accelerated solvent extraction (ASE), ^{19,27,68,69,71–79} microwave-assisted extraction (MAE), ^{21,28,93,87,94–96} supercritical fluid extraction (SFE), ^{32,55,89–93} or ultrasound-assisted liquid extraction (USE) ^{39,49,80–88} shorten the sample preparation time and reduce the quantities of solvents required in the analytical procedure; these procedures also lend themselves to automation. On the one hand, ultrasound-assisted solvent extraction requires the use of considerable amounts of organic solvents, but the cost

of the apparatus is far less than in the case of ASE, MAE or SFE. Nowadays, SPE is the usual technique for isolating analytes from liquid samples. This technique is also used for cleaning up solvent extracts containing analytes obtained during the extraction of solid samples. With SPE the use of highly toxic chloroform can be wholly eliminated (at the sample preparation stage). It is also possible to isolate anionic and nonionic SAAs simultaneously (they are fractionated during analyte elution from SPE columns) and to automate sample preparation.

Researchers in many centers are working on new methodological approaches to extraction that are compliant with the requirements of sustainable development (solventless sample preparation techniques). These techniques are a major element of green analytical chemistry (GAC). Here are some examples of such methods (the SAAs analytes to which they are relevant are given in parentheses):

- DLLME (anionic and nonionic SAAs) 20,57-60
- membrane—MMLLE (cationic SAAs⁵⁶); HF-LPME (cationic ¹⁴⁴ and anionic 145 SAAs)
- SBSE (nonionic SAAs)¹³²
- SPME (anionic and nonionic SAAs) 111,133-141
- sorption of analytes from liquid samples on the surfaces of suitable materials (PTFE, compounds from all SAAs groups; MCE, nonionic SAAs; O-MWCNT, cationic SAAs¹⁴⁶)

The following techniques provide information on the total content of particular groups of SAAs (the groups of compounds to which they are applicable are given in parentheses):

- spectrophotometry (ionic and nonionic)
- flow injection analysis (ionic)
- potentiometric titration (ionic)
- tensammetry (anionic, nonionic)
- immunoanalysis (nonionic)

These techniques are quick, simple, and cheap, with limits of detection (LODs) between 110 and 1.7 μ g/L. The apparatus for such determinations is fairly straightforward, so the financial outlay is not great. These techniques are applied in the routine monitoring of various kinds of environmental samples and can be used in small laboratories not equipped with specialist apparatus. Spectrophotometry is a universal technique, as it can be applied to both ionic and nonionic surfactants. But its application is limited by the high LODs values and the considerable influence of organic interferents on the results.

The determination of the total content of particular groups of SAAs should be treated as the first step in studies aiming to measure the degree of contamination of particular environmental compartments by these analytes. The next step involves individual chemical speciation. $^{158-160}$, during which individual surfactants are detected and quantitatively determined. This becomes possible with the use of suitable equipment (in combination with a sensitive detector) for separating complex mixtures of analytes (present, for example, in a solvent extract) into separate chemical species; in most cases these are chromatographic and related techniques (the types of SAAs analytes to which they are applicable are given in parentheses):

- capillary electrophoresis (CE) (anionic)
- gas chromatography (GC) (anionic and nonionic)
- liquid chromatography (LC) (ionic and nonionic)

Chromatographic techniques require environmental samples to be prepared appropriately to preconcentrate the analytes they contain and to remove interferents (using extraction techniques).

The use of CE (LOD = 1 μ g/L) is limited to anionic surfactants, because cationic compounds can be adsorbed on **Chemical Reviews**

Table 2. Techniques for the Preparation of Environmental Samples Prior to Their Analysis for the Presence of Surfactants

refs	41	42	43			4	\$4
disadvantages	only for the determination of total SAAs	(1) anionic SAAs caused negative interference	only for the determination of total SAAs			• •	dissolved SAAs • removal of surfactant from the solid particles takes a very long time • interferents also separated
advantages	 liquid sample good determination of SAAs in wastewater simple, reproducible, selective and sensitive techniques 	(2) ionic SAAs cannot interfere in this method $ -1 = -1 = -1 $	 method for the determination of trace ionic and NS using spectrophotometric techniques isolation of analytes without toxic organic solvents 	simple techniques		procedures for the determination of higher concentrations SAAs (for sewage	or sewage treatment plant liquors and effluents) (3) higher recovery obtained with the addition of NaCl and NaHCO ₃
recovery (%)	on and membrane filters 96—103	98–104 Iters (without extraction	95	94–98	obrane filter etate buffer) solvent sublation → liquid sample		
conditions of isolation/ preconcentration	isolation of SAAS without extraction and membrane filters → liquid sample 1. addition of EDTA and standard 2. color reaction with BTDAB 3. mixing 4. determination after 10 min sensitive sensitive	 transferring Pb(II)—T(DBHP)P complex and Triton X-100 to flask addition of sample dilution to the mark with water isolation of SAAS with membrane filters (without extraction) → liquid sample 	addition to sample L.S filtration through PTFE membrane filter washing of filter (EB and acetate buffer) elution of analytes	 addition to sample CTMA* filtration through PTFE membrane filter washing of filter (EB and acetate buffer) elution of analytes 	dissolving KCl in sample filtration through MCE membrane filter washing of filter (BB and acetate buffer) elution of analytes solvent sublation	 solvent, ethyl acetate time, 20 min (3) 	 solvent: ethyl acetate time: n.g. deanup (reaction with modified Dragendorff reagent): glacial acetic acid
volume/weight e of sample	250 mL	n, g	n eg		90 mL	1000 mL	5000 mL
type of sample	wastewater		river water			river water	wastewater
analytes	total		total			total	
type of surfactant	cationic (1) total	nonionic (2)	cationic	anionic	nonionic	anionic	nonionic

ᇻ
47
•
_
_
_
.=
_
_
_
0
()
C
\cup
٠.
Τ,
7
Τ,

Table 2. Continued	ontinued							
type of			δ	conditions of isolation/	,			
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
				liquid—liquid extraction → liquid sample	on → liquid sample			
cationic	total	wastewater	100 mL	1 solvent, chloroform		 widely used for the determination of 	 the procedures are very 	38
						surfactants in different types of samples	complicated and time-	
						 samples with even a high content of 	consuming but	
				4. cleanup, water		particulate matter can be extracted	modifications can	
		sea-surface	20 mL	1. solvent, chloroform	08	(unlike SPE)	simplify them	39
		water		2. ion-pair reagent, disulfine blue		 overall concentration of SAAs 	 the consumption of organic 	
				3. time, 1 min		determined in aqueous and	solvents used in the liquid	
	DTDMAC	sewage	100-200 mL	1. solvent, chloroform	95–97			46
	DEEDMA	river water	500 mL	2. ion-pair reagent, LAS		• requires no sophisticated equipment or	• production of toxic wastes	
	C					well-trained staff	(s) because of the	
	DEQ					(4) hydrolysis at lower temperature of	formation of emulsions with	
	DDAC	wastewater	500 mL	1. solvent, chloroform	66-08	(6) reduction of sample volume from	short-chain nonionics and	47
	BAC	surface water		2. ion-pair reagent, LAS		\$000 to 100 mL	their degradation products	
	ATAC			3. cleanup, chloroform, water			can be efficiently recovered	
anionic	total	wastewater	5 mL	1. solvent, chloroform				48
				2. ion-pair reagent, MB				
				3. time, 0.5 min				
		sea-surface water 20 mL	r20 mL	1. solvent, chloroform	06			39, 49
				2. ion-pair reagent, MB				
				3. time, 4 min				
				4. cleanup, water (shaking 2 min)				
		tap water	50 mL	1. solvent, 5 mL chloroform				50
				2. ion-pair reagent, MB				
				3. time, 1 min				
	LAS	river water	250 mL	1. solvent, chloroform	86			57
	SPC	sea water	500 mL	2. ion-pair reagent, MG (methylene green) (4)				
				3. time, 1 min				
nonionic (5) total	total	water		1. solvent, dichloromethane	87—97			40
		wastewater		2. ion-pair reagent, cobalt thiocyanate				
				3. time, 1 min				
		river water	200 mL	1. solvent, ethyl acetate	83-100			52
				2. ion-pair reagent, modified Dragendorff reagent				
				3. cleanup, isooctane				
	APE, AP	wastewater	300 mL	 solvent, dichloromethane time, 18 h 	60-140			23
	total	river water	100 mL	1. solvent, ethyl acetate (6)	54-110			54

ರ
O
Ξ.
Ξ
Ħ
ပ္ပ
rì
<u> </u>
_
7
તં
le 2.
le 2.
તં

analytes	type of sample	volume/weight of sample	conditions of isolation/ preconcentration	recovery (%)	advantages	disadvantages	refs
I-NP, $OPII-NPE_{1-2}$	river water lake water	500-1000 mL	 solvent, I fraction = hexane, II fraction = dichloromethane time, 18 h 	08			55
	river water &	80 mL	microporous membrane liquid—liquid extraction (MMLLE) 1. solvent, 1-chlorobutane 2. ion reagent, heptanoic acid 3. flow rate, 8 mL/min 4. time, 25 min one analysis	extraction (MMLLE)	Iguid sample easy online connection to NP-LC (easy to automate) no premixing in system, minimizes the risk of foam and emulsion formation	chloroform leakage to aqueous phase low solubility of ion-pair reagents in organic solvent	99
	tap water mineral water well water	S mL	dispersive liquid—liquid microextraction (DLLME)/thin liquid film extraction (TLFE) → liquid sample 1. solvent, chloroform (extraction solvent), 93–96 ethanol (dispersant solvent) 2. time, 3 min 3. centrifuging, 5500 rpm	thin liquid film extrac 93—96	tion (TLFE) → liquid sample • very small amounts of microextraction solvent (<200 µL) required	 difficult to automate the need to use a disperser solvent lowers the partition coefficient of analytes into 	20
NPEO OPEO NP OP	tap water river water		solvent, trichloroethylene (extraction solvent), acetone (dispersant solvent) time, 10 min centrifuging, 5000 rpm	71–75	 technique cheap, straightforward and quick high level of preconcentration 	the extractant solvent • solvent drop is vulnerable to physical forces • analytes are subsequently	22
	river water		 solvent, chloroform (extraction solvent), methanol/pyridine (dispersant solvent and catalyst), MCF (derivatization) (7) time, 5 + 5 min (sonication + centrifuging) centrifuging, 5000 rpm 	88-106	(7) in situ derivatization	desorbed into methanol and then analyzed by HPLC	88
	tap water river water wastewater	20 mL 100 mL	 solvent, octanol time, 2 + 2 min (sonication + centrifuging) centrifuging, 3500 rpm solvent, octanol (8) time, 24 h (with stirring) 	63-111	(8) vortex mixing (a mild emulsification procedure) prevents the problems associated with the use of ultrasound		65 09
DTDMAC	sewage sludge marine sediments	0.5 8 8	solid—liquid extraction (SLE) — solid sample 1. solvent, methanolic HCl 2. ion-pair reagent, LAS 3. cleanup, LLE (chloroform), SAEC (methanol)	(SLE) — solid sampl 91)	e extraction is fast, simple and cost-effective does not require expensive equipment (10) PFC: comparison of (WAX) with (HLB) cartridges — HLB gives higher recoveries and better-resolved peaks than WAX	 requires the use of large amounts of organic solvents which are toxic and inflammable production of toxic wastes (9) the low recoveries of all homologues caused by overloading and displacement of the LAS by matrix 	32

ᇻ
ĕ
\simeq
=
.=
Ξ
=
0
C
\cup
_
_
7
_
_
le 2. (
_

Table 2. Continued	ontinued							
type of			×	conditions of isolation/				
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
anionic	total	soil	1 8	 solvent, water and chloroform ion-pair reagent, MB time of extraction, 1.5 min 				61
	LAS	sewage sludge	0.2 g	 solvent, methanol cleanup, with or without SPE (9) 	44-96 33-70			62
		floor dust	1 g	 solvent, ethanol time, 4 h temperature, 60 °C cleanup, SPE (SAX, C18) 	20-95			63
	PFOA	river sediment	S 8	solvent, water, MTBE ion-pair reagent, TBAHS time, 20 + 30 min (shaking + centrifuging)	81-108			33
		sludge	0.5 g	 solvent, acetonitrile/methanol time, 1 h cleanup, SPE (HLB) (10) 	91–99 82–99			49
nonionic	NP OP	river/lake sediment	10 g	 solvent, dichloromethane time, 20 min cleanup, LLE (dichloromethane), removing sulfur (copper powder), silylation (Florisil) 	91-97 87-100			72
cationic	DDAC BAC ATAC	sludge [33] / river sediment	1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Soxhlet extraction — solid sample 1. solvent, methanol 67—95 2. time, 18 h 3. cleanup, LLE (chloroform, water)		 technique for extracting nonvolatile and semivolatile compounds from solid samples (soils, sludge, and sediment) 	 long extraction time uses large volumes of organic solvents (toxic, 	65, 66
anionic	LAS	soil	δ0 90	 solvent, methanol time, 16 h cleanup, SPE (C18) 	77–93 13–74 (11)	50	expensive, and inflammable) • recoveries generally low	34
	LAS	lake sediment	5-20 g	 solvent, methanol time, 15 h cleanup, SPE (SAX) derivatization and deanup (1.5 g alumina) 	79–113	extraction	techniques costly (11) lower recoveries obtained for the most polar SPCs (C2—C4 SPCs) - difficult to retain in the	29
	LAS AES AS	sediment	S 8	 solvent, methanol time, 5 h cleanup, SPE 	94–112 61–109		solid phase	89
	PFOA PFOS	sewage sludge	2 g	1. solvent, methanol/water (99:1, v/v) 2. time, 6 h	48			69
nonionic	NPE NP, OP	river/lake sediment	88	 solvent, dichloromethane time, 6 h 	08			\$5
	N O O		10 g	 solvent, dichloromethane time, 18 h 	<80			27

		r	
		disadvantages	
		advantages	
		recovery (%)	
	conditions of isolation/	preconcentration	
	volume/weight	type of sample of sample	
Table 2. Continued	type of	surfactant analytes	

refs	35	70	71	89	22	69 73	47	72	27
disadvantages	 equipment costly applicable only to anionic and nonionic SAAs 		 high initial cost of ASE equipment ASE extractors can be automated but samples are always run one at a time 	extract purification required isolation of cationic SAAs requires a large amount of sample problems with degradation	at temperatures above 60 °C for APEOs and their degradation products (13) purification only by SPE not sufficient				
advantages	 semiautomated apparatus quicker lower cost (better solvent recovery) 	•	• ionic and nonionic analytes can be isolated from solid samples • faster sample preparation (this is important when analytes are volatile) • lower volume of organic solvents	 high level of automation extraction pressure has no influence when samples are dry (12) extraction efficiency better than Soxhlet 	 (14) small sample mass (15) one extraction for nonionic and anionic analytes (16) all steps performed automatically (17) modification of cleanup increases the granua of include. 	nonionic SAAs (18) milder extraction conditions with good recoveries of analytes			
recovery (%)	olid sample 91	71–92	on (ASE) — sond sample	81–125 55–99	70-107	119 (12) 91-96	60-81	70-107	
conditions of isolation/ preconcentration	Soxtec extraction → solid sample solvent, 100 mL methanol time, 45 min temperature, 30 °C	solvent, 50 mL mei time, 45 min deanup, SPE (C18	accelerated solvent extraction (AbE): solvent, acetonitrile/water psessure 10.34 MPa, temperature 120 °C time, 30 min cleanup, online SPE (PLRP)	solvent, methanol pressure, 10.34 MPa; temperature, 12.5 °C time, 15 min deanup, SPE (C18)	 solvent, methanol pressure, 10.34 MPa; temperature, 120 °C time, 15 min cleanup, SPE (C18) 	solvents, EtOAc—DMF—MeOH—H ₃ PO ₄ pressure, 14.28 MPa; temperature, 150 °C solvents, methanol pressure, 10.5 MPa; temperature, 100 °C deanup, SPE (C18), OT-GC (13)	solvent, acetone/methanol pressure, 10.34 MPa; temperature, 75 °C time, 10 min cleanup, SPE (C18)	. solvent, methanol . pressure, 10.34 MPa; temperature, 120 $^{\circ}$ C . time, 15 min . deanup, SPE (C18)	. solvent, dichloromethane . pressure, 13.17 MPa; temperature, 100 °C time 10 min
volume/weight of sample	2 g	10 g 1.	10 g 1		4 g	2 g 2. 1. 2. 2. 1 g (14) 1. 2. 2. 3. 3.	1 g (14, 15) 1. 2. 2. 3.	.1 .2 .8 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	3g 1.
type of sample	soil	sludge	sediment			sewage sludge	sludge	sediment	river/lake sediment
analytes	LAS	APEO AE	BAC	LAS AES AS	LAS	PFOA	NPEC NP	AEO NPEO	NP
type of surfactant	anionic	nonionic	cationic	anionic			nonionic		

85

Table 2.	Table 2. Continued						
type of	t analytec	volume/weight	ht conditions of isolation/	(%)	sanctucaho	sementerabesib	rafe.
		,		(2) (2)	69,000	a gramman and a	
	NPEO	river sediment 5 g	1. solvent, acetone/methanol	62 - 102			75
	OPEO		2. pressure, 10.34 MPa; temperature, 50 $^{\circ}$ C				
	NP		3. time, 2×5 min				
	OP		4. cleanup, SPE (OSP-2A) (16)				
		58	1-4 as above	74-97			19
			5. cleanup, SPE (C18) (17)				
		1 g (14)	1. solvent, acetone/hexane	67-110			76, 77
			2. pressure, 10.34 MPa; temperature, 100 °C				
			3. time, 45 min				
			4. cleanup (NH ₂)				
		soil 5 g	1. solvent, acetone/hexane	89-91			78
			2. pressure, 3.79 MPa; temperature, 60 °C (18)				
			3. time, 16 min				
			4. cleanup, SPE (C18)				
	OPEO	5 8	1. solvent, methanol	96-104			42
	NP		2. pressure, 6.9 MPa; temperature, 70 °C				
	OP		3. time, 12 min				
			ultrasound-assisted liquid extraction (USE) \longrightarrow solid and liquid sample	(USE) → solid and liquid	sample		
cationic	BAS	sediment river 10 g	1. solvent, methanol/hydrochloric acid	• 06<	• sonication systems do not face the	 isolation of all SAAs classes 	80
			2. time, 30 min		financial barrier of the high initial outlay	requires a large amount of	
			3. cleanup, SPE (SCX)		on SFE, PLE, or MAE equipment	sample (10-40 g) large	
	total	aerosols 20 mL (water	1. solvent, water	• 08	samples from a wide range of sources can	volumes of organic solvent	39
		solution			be readily analyzed	used (toxic, expensive and	
			3. cleanup, LLE (chloroform + DiSB)	•	• rapid extraction (5–45 min)	inflammable)	
anionic		soil (only in \$0 mg	1 colvant uniter	r) 06	(19) extractions are not dependent on the		39, 49
		sols		2	length of the alkyl chain of LAS	stable emulsions that result	
		ì				in long phase	
						separation times	
	AS, AES	river sediment 30-40 g	1. solvent, methanol	35-106	•	 low recoveries of some 	81
			2. time, 20 + 10 min (shaking + sonication)			analytes (35–57%)	
	LAS, CDEA	sewage sludge 2 g		90 (CDEA)			82
			2. cleanup, SPE (C18)				
	LAS	sewage sludge 0.5 g	1. solvent, methanol (19)	93-97			83
			2. time, 7 min				
	PFOA	dust 0.5 g	1. solvent, acetonitrile				84

			2	2. time, 30 min		financial barrier of the high initial outlay	requires a large amount o
			3	3. cleanup, SPE (SCX)		on SFE, PLE, or MAE equipment	sample $(10-40 \text{ g})$ large
	total	aerosols	20 mL (water 1	1. solvent, water	• 08	samples from a wide range of sources can	volumes of organic solven
			solution) 2	2. time, 45 min		be readily analyzed	used (toxic, expensive and
			3	3. cleanup, LLE (chloroform + DiSB)	•	• rapid extraction (5–45 min)	inflammable)
anionic		soil (only in 50 mg		1. solvent, water	1) 06	(19) extractions are not dependent on the	extraction often produces
		[11]) aerosols		2. time, 45 min		length of the alkyl chain of LAS	stable emulsions that resu
			3	3. cleanup, LLE (chloroform, water, + MB)			in long phase senaration times
	AS, AES	river sediment 30-40 g		1. solvent, methanol	35-106		low recoveries of some
			2	2. time, 20 + 10 min (shaking + sonication)			analytes (35–57%)
	LAS, CDEA	sewage sludge	2 g	1. solvent, methanol/dichloromethane	90 (CDEA)		
			2	2. cleanup, SPE (C18)			
	LAS	sewage sludge 0.5 g		1. solvent, methanol (19)	93-97		
			2	2. time, 7 min			
	PFOA	dust	0.5 g	1. solvent, acetonitrile			
	PFOS		2	2. cleanup, SPE (Envi Carb)			
		sludge	1 g 1	1. solvent, methanolic acetic acid/acetic acid	57-115		
		sediment	5 g 2	2. time, 45 min			
		soil	8	3. cleanup, SPE (WAX, EnviCarb)			

Continued	analytes	
Table 2. Con	type of surfactant	

Communica		,	,					
type of sample	ample	volume/weight of sample	żht	conditions of isolation/ preconcentration	recovery (%)	advantages	disadvantages	refs
sludge	. sut		3. 2. 1.	solvent, me time, 30 mi cleanup, SF	82-83		,	98
sewage sludge	ndge	28	1.	solvent, methanol/dichloromethane cleanup, SPE (C18)	67–101			82
river sediment	ment	Sg	3. 2. 1.	solvent, methanol time, 15 min cleanup (silica gel, sodium sulfate)	90 123			87
sludge		10 g	1.	solvent, dichloromethane time, 5 min (+ 2 h shaking)	30–61			88
sewage sludge	ludge	0.5 89	i 9 % 4	medium, CO ₂ mod pressure, 40.53 MP time, 45 min cleanup (LLE, anio chromatography)	supercritical fluid extraction (SFE) \rightarrow solid sample ified with methanol >70 . • a; temperature, 85 °C . • n-exchange	a reduction in sample cleanup; more efficient and rapid extractions	extraction of polar or ionic compounds with CO ₂ problematic (because of poor solubility)	68
ewage slu marine sedimei	sewage sludge marine sediments	0.5 g 5 g	.1 .2 .6. 4.	medium, CO $_2$ modified with methanol pressure, 38.50 MPa; temperature, 100 $^{\circ}C$ time, 17 min cleanup (SPE)	96			32
ewage	sewage sludge	15 mg	1. 2. 8. 4.	medium, subcritical water (20) pressure, 10 MPa; temperature, 200 $^{\circ}\mathrm{C}$ time, 15 min cleanup (Carbograph)	98	extractant easy to remove, is nontoxic (water, CO_2)	extractant has to be modified with a low molecular weight alcohol (methanol)	06
		100 mg	1.	pressure, 40.53 MPa; temperature, 80 $^{\circ}\mathrm{C}$ time, 15 min	86–91 89–94			91
sediment	nt	0.25-1 g	1. 2. 8. 4.	medium, CO $_2$ pressure, 35.14 MPa; temperature, 80 $^{\circ}\mathrm{C}$ time, 25 min cleanup (silica gel)	98	minimizes risk of laboratory contamination and considerably reduces the amounts of organic solvents used	 less interest partly because of the development of ASE, which has become a widely accepted extraction 	55
swage	sewage sludge	$0.1-1 \mathrm{~g}$	as above	ove	86–105		technique	92
		15 g	1. 4. 6. 4.	medium, subcritical water (20, 21) pressure, 10 MPa; temperature, 200 °C time, 15 min cleanup (Carbograph)	98 <	(20) water under subcritical conditions efficiently extracts polar and nonpolar compounds from solid matrices (21) fractionation of nonacidic and weakly acidic compounds	(22) the recovery of NP ₃ EC or NP ₄ EC by this method was not evaluated	06

Table 2. Continued	ontinued							
type of			volume/weight	conditions of isolation/				
surfactant	analytes	type of sample of s	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
	NPEC (22)	0.25 g		 medium, water with ethanol pressure, 15 MPa; temperature, 75 °C time, 20 min cleanup, SPE (SAX Empore disks) 	90-108			83
				microwave-assisted extraction (MAE) solid sample	on (MAE) → solid samp	le		
anionic	LAS	sewage sludge 0.5 g		1. solvent, methanol	94-102	MAE should be preferred to Soxhlet or	 high initial cost of MAE 	83, 94
						sonication because it requires less time	equipment	
				3. power of microwave irradiation, 250 W (23)		and solvent	(24) low recoveries for NP	
nonionic	NP, OP	river sediment 5 g		 solvent, hexane/ethyl acetate time, 15 min 	96-103	(23) no purification of the samples is required for the final determination		87
				3. pressure, 1.4 MPa; temperature, 130 $^{\circ} \rm C$ 4. cleanup (silica gel)		(HPLC) (25) technique not only for a specific group		
				 solvent, methanol time, 15 min 	94-102	ot analytes (isolation of PAH, PE, NP, NPEO during one extraction)		92
				3. pressure, 1.4 MPa; temperature, 100 $^{\circ}$ C 4. cleanup, SPE (HBL)				
		marine sediment l g		 solvent, dichloromethane/methanol time, 25 min 	60 (24) 86			96
				3. pressure, 1.4 MPa; temperature, 130 $^{\circ} \rm C$ 4. cleanup, SPE (Envi-Chrom P)				
	$\frac{1}{1}$ NP $\frac{1}{2}$ EC $\frac{1}{1}$	sediment 1 g (Atlantic		 solvent, acetone (25) time, 15 min 				21
		Ocean)		3. pressure, 0.145 MPa 4. cleanup, SPE (Florisil)				
		sediment		 solvent, methanol time, 15 min pressure, 0.159 MPa cleanup, SPE (Lichrolut) 				28

3. elution, methanol

ᇻ
47
ne
=
.=
Ξ
onti
-
0
Õ
$\mathbf{\mathcal{C}}$
_
_
તં
(4
41
ě
_
9
aþ
r`.

Table 2. Continued	ontinued							
type of			Λ	(00)				
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
				solid-phase extraction (SPE) \rightarrow liquid sample	SPE) → liquid sample			
cationic	DDAC, BAC,	surface water	500 mL	type of cartridge, C18	66-08	 simple and rapid extraction 	 samples may not contain 	99
	ATAC,	wastewater				 high recoveries of ionic and anionic 	large amounts of	
	QAC	seawater	10 mL	type of cartridge, Strata-X	80-105	analytes	particulate matter	26
				1. conditioning, acetonitrile, water		 low consumption of organic solvents 	 sorbent size must be 	
				2. washing, water/acetic acid		 elimination of highly toxic solvent 	adapted to the contents of	
				3. elution, acetonitrile/acetic acid/water		(chloroform) from sample	analytes in the sample	
	BAC	tap water	50 mL	type of cartridge, Hysphere or PLRP-s (26)	71-90	preparation step	 relatively high price of 	86
		wastewater		1. conditioning acetonitrile, water		 smaller amount of sample needed 	cartridges	
				2. elution acetonitrile/ammonium huffer		 automation of isolation step is possible 	 the use of large volumes of 	
				in current		(26) online SPE	organic solvents to elute	
		river water	250-1000 mL	7	95-106	(27) SDS hemimicelle-based SPE	analytes generally implies an	99, I00
		wastewater				(28) the extraction of complex mixtures	evaporation step (the final	
				2. elution, methanol		from aqueous samples and their class	extract has to be compatible	
anionic	LAS	sewage	10 - 100 mL	type of cartridge, GCB (28)	91-100	fractionation by stepwise desorption can	with the mobile phase and	22
				1. conditioning (TMAOH/dichloromethane/		be rapidly and easily achieved by the use	analytical instrument)	
				methanol/water)		of a single GCB cartridge (LAS, SPC, NP,	evaporation step prolongs	
				2. washing (water/methanol)		NPEO, NPEC)	analysis and causes loss of	
				3. elution, fraction = TMAOH/dichloromethane		(29) determination of the concentration,	volatile analytes, which	
	LAS, DATS	sewage river	10-1000 mL	type of cartridge, GCB	94-98	both total surfactant and individual	affects the quality of the	101
		water		1. conditioning, water		homologue (LAS) or oligomer (APEO),	results	
		groundwater		2. washing, water, methanol, dichloromethane/		possible		
				methanol/formic acid		(30) isolation LAS + APE		
				3. elution, dichloromethane/methanol/TMAOH		(31) separation from sample different		
	LAS	river water	7 mL	type of cartridge, C18 (29)		homologues of analytes (LAS, BS, NPS)		102
		wastewater	50 mL	1. conditioning, methanol	96-120			103
		[76, 77]		2. washing, water/methanol				
		groundwater		3. elution, methanol				
		river water		type of cartridge, C18 (30)				104
		surface water		1. conditioning, methanol, water	>60			105
				2. elution, methanol				
		wastewater	10-250 mL	type of cartridge, C18	98-101			106
				1. conditioning, methanol, water				
				2. washing, methanol/water				
				3. elution, methanol				
	LAS, ASE, AS sea water	sea water	100 mL	type of cartridge, C18				89
				1. conditioning, methanol, water				
				2. washing, water				

ರ
ne
Ξ.
Ξ
Cor
\cup
તં
<u>_e</u>
7
-G

Die 2.	ole 2. Continued							
type of			volume/weight	conditions of isolation/				
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
	LAS, (31), AES	LAS, (31), AES, tap water river 100-200 mL	100-200 mL	type of cartridges, C18	99-101			107
	AS, ASo	water sewage		1. conditioning methanol, water				
				2. washing water, water/methanol				
				3. elution, methanol				
	LAS (31)	wastewater	200 mL	type of cartridge, Isolute ENV+	57-93 (32) 93	(32) low recoveries of		108
				1. conditioning methanol, water	85-103	LAS C13 (57%)		
				2. washing water/methanol				
				 elution, 1 EA/aceuc acid/methanol 				
	LAS			type of cartridge, Isolute ENV+	77—93			109
				 conditioning methanol, water elution, methanol 				
	sulfated and	seawater	10 mL	type of cartridges, SDB (33)	16-133	(33) addition to sample of ion-pair reagent		110
	sulfonated			1. conditioning methanol, water		(TBAOH) before SPE improves the		
	surfactants			2. washing water		extraction recovery; TBA+ has electrostatic		
				3. elution, methanol		interactions with hydrophobic anions such		
						as surfactants and can ion-pair in the SDB		
						substrate		
	AES, AS, LAS	river water	100 mL	type of cartridges, PTFE and SCX (34)	>60	(34) ion-pair SPE		81
				1. addition of SDS and filtration (PTFE filter)				
				2. washing filter, water, methanol				
				3. passing methanolic solution through SCX				
				4. elution, NaCl/methanol				
	LAS	seawater	25 mL	type of cartridges, C18, SAX (35)	71-94			111
		wastewater	100 mL	1. conditioning methanol, water	92-107			62
				2. washing, methanol/water				
				3. elution, methanol				
				1. conditioning methanol				
				2. washing, methanol/acetic acid				
				3. elution, methanol/HCl				
		coastal marine 250 mL	250 mL	type of cartridges, Isolute ENV+ SAX (35)	94-98	(35) sequential solid-phase extraction (SSPE)		108
		water		1. first elution, methanol		= higher recoveries that single SPE		
				2. second elution, HCI/methanol				
	PFOA, PFOS wastewater	wastewater	$500 - 1000 \mathrm{mL}$	500-1000 mL type of cartridge, C18				112
		street runoff		1. conditioning, methanol, water				
				2 washing: methanol/water				
				3 elution: methanol				

7
ne
Ë
ond
Ŭ
તં
<u>le</u>
ab
F -

advantages	nated
s0-109 49-130 99-103 55-137 55-137 550-105 97-104 96-103 (35, 36)	90–106 (36) semiautomated system
conditions of isolation/ preconcentration type of cartridge, C18 conditioning methanol, water washing, water conditioning ammonium hydroxide/methanol, methanol, water washing, ammonium hydroxide/methanol, water washing, ammonium acetate buffer fractionation, methanol or ammonium hydroxide/methanol water washing, water/ammonium hydroxide washing, water/ammonium hydroxide washing, water/ammonium hydroxide washing, sodium acetate buffer, methanol wethanol/MTBE type of cartridges, Oasis WAX conditioning, methanol, water washing, sodium acetate buffer, methanol selution, ammonium hydroxide/water/ methanol/MTBE type of cartridge, Strata XAW conditioning, methanol, water washing, formic acid elution, ammonium hydroxide/methanol type of cartridge, Oasis HLB conditioning, methanol, water washing, methanol, water washing, methanol, water all conditioning, methanol, water conditioning, methanol, water	type of cartridges, glass fiber cotton + Chromabond 90–106 HR-P (34, 36)
volume/weight of sample 0.2—200 mL 100 mL 500 mL 250 mL 250 mL 2 kg	10 L
sea water rain water river water river water wastewater wastewater wastewater rain snow	sea water

_
ed
<u>.</u>
E
S
Ĭ,
2
ble

able 2. Co	Communea							
type of			>	(00)	,			
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
nonionic	NPEC	wastewater	100 mL	type of cartridge, GL-Pak Carbograph 1. washing, acetonitrile/water 2. elution, dichloromethane/methanol				122
	NPEO, NP	sewage	10-100 mL	type of cartridge, GCB (29) 1. conditioning, TMAOH/dichloromethane/ methanol/water 2. washing, water 3. elution, dichloromethane/methanol and formic acid/dichloromethane/methanol	so 66-68			22
	NPE, AE	wastewater	500 mL	type of cartridge, GCB 1. conditioning, TMAOH/dichloromethane/ methanol/water 2. elution, dichloromethane/methanol	96-06			123
	total NPEO NPEC, OPEC OP, NP	surface water ground/river water		type of cartridges, C18 1. conditioning, methanol, water 2. elution, methanol	>80			105
	NPEC, NP wastewater NPEC, NPEO, tap/raw water NP wastewater	wastewater tap/raw water wastewater	100-500 mL	type of cartridge, C18 1. washing, water/methanol 2. elution, methanol	72–98			74 124, 125
	NPEO, OPEO, wastewater NP, OP	wastewater	250 mL	type of cartridge, C18 (37) 1. conditioning, methanol, water 2. washing, water 3. elution, methanol type of cartridges, C18 1. conditioning, methanol, water 2. washing, elution, hexane/dichloromethane	60-108	(37) reduction of volume of solvent for elution analytes (2 mL)		70
		river water	4000 mL	type of cartridges, Isolute ENV+ or C18 (38) 1 conditioning, dichloromethane, acetone, water 2 elution, dichloromethane, methanol, acetone	38-110 (39)	(38) ENV+, better for extracting large volumes of sample, faster isolationv	(39) low recoveries (38%)	76, 77 (40)
	NP, OP		2500 mL	type of cartridges, Oasis HLB 1. conditioning, ethyl acetate, methanol 2. washing, water 3. elution, ethyl acetate	94-102	(40) modification allows a smaller amount of solvent to be used for extraction -10 mL for all steps		98
			2500- 5000 mL	type of cartridge, SDVB 1. conditioning, methanol, methanol/acetonitrile, methanol, water 2. elution, methanol/acetonitrile				123, 127

	OHER THE PARTY							
type of			volume/weight	t conditions of isolation/				
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
	NPEO, NP	wastewater	1000 mL	type of cartridges, Sep-Pak PS-2+Sep-Pak Plus Silica (35, 41) 1. conditioning methanol, water 2. elution, methanol 1. conditioning chloroform/methanol, hexane 2. washing havane		(43) the second extraction procedure was a SSPE for the preconcentration of nonionic polar surfactants present in highly contaminated matrices (44) procedure is good for analyte fractionation	(41) toxic solvent used for cleanup (chloroform) (42) for samples containing a high level of sediment it is necessary to add a second cleanup stage (SPE) to	122
	NPEO, OPEO river water		7 mL	3. elution, chloroform/methanol type of cartridges, C18 + SAX (30, 42) 1. conditioning methanol 2. washing, water/methanol 3. elution, methanol		(45) triple-stage SPE improved spectrophotometric determination of total polyoxyethylene nonionic surfactants (provides quantitative results with high sensitivity) and minimal release	remove all anionic	102
	A, AEO,, n > 15 B, AEO	wastewater (43) 200 ML	700 mF	cartrages, Lichrolut KP-18 + Ein conditioning water/methanol acidification residual water and loading on second cartridge	72–73))
	C ₁₂ EO ₇	river water	800 mL	S. eutuon, KY-18-A, nexane; D, archoromenane, hexane; C, methanol/dichloromethane; EN D, methanol (44) type of cartridges, C18 +S CX + SAX (45) 1. conditioning SCX, SAX-methanol, methanol/HCl/water; C18, acetone, methanol, water		(4	(46) recovery values for C18 were the lowest, reflecting the higher hydrophobicity (cf. lower chain	129
	$C_{12-18}EO_{0-18}$ wastewater		4000 mL	2. isolation, methanol/water 3. elution, acetone (C18) type of cartridges, C2 + SCX + SAX (46) 1. conditioning water, acetonitrile, methanol/ethyl acetate/water, methanol, acetone/dichloromethane, acetonitrile; C2—water 2. fractionation A, acetonitrile; B,	37–97		lengths C ₁₂ —C ₁₆) and dependence on the quality (e. g, industrial composition) of the sample analyzed	130
	C _{12–16} E, NPE,, river water OPE, wastewat	.e.	2.50-750 mL	SC	95–106	SDS hemimicelle-based SPE		131

(56) extractionequilibria of most analytes achieved after 80 min SPME

_
\sim
e
=
=
=
•=
=
_
~~
()
U
O
٠
7
٠.
٠.
٠.
٠.
٠.
٠.

able 2.	able 2. Continued							
type of			volume/weight	conditions of isolation/				
surfactant	t analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
				stir bar sorptive extraction (SBSE)	traction (SBSE)			
nonionic	OP, NP	river water	2 mL			4)	(47) SBSE without derivatization,	132
				1. coating of stir bar, polydimethylsiloxane		 small sample volume 	lowest extraction efficiency	
				2. temperature, room		 simplicity of extraction 		
				3. time, 60 min		 solvent-free isolation 		
				4. stirring 500 rpm (47)		(48) in situ acylation may be useful for		
							(49) SBSE with in situ	
				1. addition of derivatization reagent to sample		ı may be useful for	derivatization, extraction less	
				2. 1-4 as above (48, 49)		hydrophobic analytes	effective than in tube	
					93 96 94 95			
				1. coating of stir bar, polydimethylsiloxane				
				2. temperature, room				
				4. stirring 500 rpm				
				5. derivatization in-tube (50)				
				solid-phase microextraction (SPME) \rightarrow liquid/solid sample	PME) → liquid/solid sam	ple		
anionic	LAS	sea water						133
				1. nondepletive SPME		· reduction and simplification of sample	 predesorption with solvent 	
				2. type of fiber, PA (51)		preparation	is performed to combine	
			5-7 mL			 use of organic solvents unnecessary 	this technique with HPLC	111
				no itemitations and the second of the second second of the	-	• small sample volume	(51) the applicability of the	•
						 high sensitivity of isolation 	current nondepletive SPME	
				time. 3		automation possible hydrophobic	for environmental sampling	
				4. temperature 25 °C		analytes sampled onto the fiber can be	is limited (small proportion	
	SCEE A DEG			calino in tube CDME	01 03 03 05	directly desorbed in the GC	of each LAS structure in	13.4
	FFOA, FFOS	2			01-03 02-03	injection port	commercial mixtures,	134
		wastewater				(53) compounds containing polar	relatively high background	
						groups in their structures should be	contamination from various	
						derivatized before analysis with GC to	sources)	
						improve the quality and sensitivity of	(52) background adsorption	
						separation	and matrix effects	
						(54) the introduction of a silyl group to	problematic (reduction	
						highly polar analytes improves various	during headspace extraction)	
						GC parameters (accuracy,	(55) silyl derivatives with	
						reproducibility, sensitivity and	limited stability to hydrolysis;	
						resolution by suppressing tailing and	moisture content may affect	
						enhancing thermal stability)	derivatization	
							20 similar and income (22)	

eq
atino
Col
તં
le
ap
ü

type of			volume/weight	conditions of isolation/				
surfactant	analytes	type of sample	of sample	preconcentration	recovery (%)	advantages	disadvantages	refs
ionionic	APE	sewage sludge 4 mL	4 mL				135	2
			1.	1. direct immersion without derivatization				
			2.	2. type of fiber, CWAX/TRCF				
			3,	3. time: 60 min				
			4	4. temperature, 25 °C				
	BPA, NP	wastewater	9.5 mL				136	9
			-i	1. direct immersion without derivatization (52)				
			2,	2. type of fiber, PDMS/DVB				
			3	3. time, 60 min				
			4	4. temperature, 30 °C				
	NP, NPEO,	tap water	40 mL				137	7
		river water	.1	1. direct immersion without derivatization (52)				
			2.	2. type of fiber, DVB/CAR/PDMS				
			83	3. time, 60 min				
			4	4. temperature, 50 °C				
			·S.	5. addition organic modifier, methanol				
	BPA, NP, OP	seawater	10 mL				138	138, 139
				1 direct immersion with derivatization on fiber				
			1	(silylation, BSTFA) (52, 53, 54, 55)				
			2.	2. type of fiber, PDMS, PDMS-DVB, PA				
			3.	3. time, 90 min				
	NP, OP	river water	100 mL				140	0
			1.	. direct immersion with derivatization on-fiber				
				(silylation, BSTFA) (52, 54, 55)				
			2.	2. types of fiber, PA				
			3,	3. time, 60 min				
			4	4. temperature, 25 °C				
		tap/lake water 2 mL	2 mL				141	1
			1.	1. direct immersion with derivatization on-fiber				
				(MTBSTFA/TBDMCS) (52)				
			.2.	2. types of fiber, PA, PDMS-DVB				
			8	3. time, 30 min				
			4	4. temperature, 65 °C				

Table 3. Analytical Techniques for Determining SAAs Contents in Environmental Samples

mara (mura) co aran a					
analytes	measurement principle	metrological parameters	advantages	disadvantages	refs
			spectrophotometry		
cationic	formation of ion-pairs with suitable reagent (e.g., DBAS, Orange II, Patent Blue V, Bromophenol Blue, Fe(III)-SCN, Bi(III)-I, Cu(II)—TPPS) extraction into organic solvent measurement of organic phase absorbance	linearity = 0.05 – 50 mg/L LOD = >0.22 mg/L RSD =4.9%	 analysis quick and simple for determining total contents of a particular group of SAAs uncomplicated apparatus techniques can be modified (more effective techniques for isolating SAAs; determination of lower concentrations, reduction or elimination 	 large-volume samples needed for preparation step (e.g., 5 L) susceptible to interferents in the sample no possibility of determining individual homologues or isomers production of very toxic wastes Only nonionic: limited applicability 	38, 42, 43, 45, 129, 147–150
anionic	 formation of ion-pairs with suitable reagent (e.g., MB, MG, EV, Azure A-) extraction into organic solvent measurement of the organic phase absorbance 	linearity = $0.05-2 \text{ mg/L}$ LOD = $1.7 \mu\text{g/L}$ RSD = $0.64-5.9\%$	of solvents for extracting analytes)	(from 5 to 30 ethoxylated groups)	
nonionic	 formation of a ion-pairs with suitable reagent (modified Dragendorff reagent - BiAS, Pb(II)—T(DBHP)P) determination of Bi (or Pb) ion content 	linearity = $0.2-200 \text{ mg/L}$ precision = $1.8-3.0\%$ LOD = $20 \mu \text{g/L}$ RSD = $0.8-10\%$			
cationic anionic	 based on ion-pair formation between analytes and reagent (MB, Fe(III)-SCN-, Bi(III)-I online measurement of organic phase absorbance 	LOD = $110-140 \mu\text{g/L}$ RSD = $0.7-2.4\%$	flow injection analysis (FIA) • technique simple and rapid • minimal consumption of organic solvents	total analyte content determined	151–153
cationic	 measurement of the change in EMF of the measurement cell caused by the addition of the titrant ion-selective electrode used to define the end point of the titration 	linearity = $7.9 \times 10^{-6} - 2.0 \times 10^{-3} \text{ mol/L}$ LOD = $4.0 \times 10^{-6} \text{ mol/L}$ RSD = 1.13%	fast analysis for determining total contents of a particular group of SAAs uncomplicated apparatus	 no possibility of determining individual homologues or isomers nonionic SAAs cannot be determined 	154, 155

ರ
0
=
- =
.=
=
Ξ
0
ŭ
Ü
Ξ.
3. C
Ξ.
le 3. (
le 3. (
Ξ.

Table 3. Continued	innued				
analytes	measurement principle	metrological parameters	advantages	disadvantages	refs
anionic nonionic	measurement of the capacitive current due to the adsorption and desorption of surfactants at the electrode surface	linearity = $0.5-20 \text{ mg/L}$ precision = 0.42 LOD = 0.15 mg/L RSD = $6-11\%$	 fast analysis for determining total contents of a particular group of SAAsOnly nonionic: tolerance to the presence of anionic SAAs applicable to compounds containing 1—30 EO groups 	 no possibility of determining individual homologues and isomers limited to the determination of anionic and nonionic SAAs 	52, 54, 156
nonionic	• based on the binding of antibodies to antigens (analytes) by means of selective bonds	$LOD = 10 \mu g/L$	 immunoanalysis small sample volumes reduced demand for solvents for the determination of the total level of nonionic surfactants screening technique 	restricted to the analysis of nonionic SAAs the main problem preventing further development of surfactant immunoanalysis is the lack of antibodies with acceptable specificity spectra	157
anionic	 based on the separation of analytes under the influence of an applied voltage detectors: UV-vis MS 	linearity = $33-2057 \mu g/L$ LOD = $1-23 \mu g/L$ RSD = $6-24\%$	capillary electrophoresis (CE) • reduced demand for organic solvents • short analysis time, easy to carry out	 limited to the determination of anionic SAAs in environmental samples high limit of detection (analyte isolation necessary) 	62, 108, 161
anionic nonionic	 technique for separating analytes and determining their levels with a suitable detector mobile phase, gases various types of detectors: NPD and FID*, limited applicability MS** (MS-MS), universal detectors 	LOD [ng/L or ng/kg] = * 300 ** 0.0003 or 3 SD = 0.15% RSD = 5-20%	gas chromatography (GC) • single analytes can be analyzed and at lower concentrations • addition of a standard enables estimation of analyte recovery at the sample preparation stage • tandem MS is a more selective analytical technique • lower SAAs contents can be determined than with HPLC	 requires isolation and/or preconcentration of analytes limited to determination of anionic and nonionic SAAs limited applicability to compounds of low volatility derivatization essential (except for nonionic of low molecular mass) complicated and expensive apparatus 	21, 28, 49, 51, 55, 58, 65, 67, 87, 91, 93, 96, 111, 123, 127, 132, 137
	תכוכרות			77 7	

ned	
Continued	
Ŝ	
'n	
9	
Table	
Τ	

analytes	measurement principle	metrological parameters	advantages	disadvantages	rets
		high perforr	high performance liquid chromatography (HPLC)		
cationic	 technique for separating ionic and 	LOD $[\mu g/kg \text{ or } \mu g/L] =$	• all groups of SAAs can be determined	 requires isolation and/or 	19, 28,
	nonionic SAAs, quantitative and	* 0.03 or 0.0067	 single analytes can be analyzed and 	preconcentration of analytes	30-32, 34,
	qualitative determination	** 3.7 or 0.03	at lower concentrations	complicated and expensive apparatus	35, 46, 47, 49,
	 mobile phase, liquid 	*** 0.026 or 0.00021	 low-volatility analytes with large 	 analysis is costly (use of high-purity 	55, 57, 63–66,
	 ionization, atmospheric pressure 	**** 0.000033 µg/L	molar masses can be determined	eluents, creation of a vacuum)	68-74, 76-78,
	chemical ionization, electrospray	RSD = 6 - 15%	 addition of a standard enables e 	 production of toxic wastes 	80-86, 88-90,
	ionization		stimation of analyte recovery	(organic solvents)	92, 94, 96–99,
			from environmental samples		101-104, 108,
anionic	• detector:		 the use of various types of 		112, 113, 115,
	*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		detector makes HPLC the most		116, 118, 120,
	ELD**		universal technique for determining		121, 124, 125,
	CD (for ionic SAAs)		ionic and nonionic SAAs		131, 134, 162,
	WS***				164, 166, 168

Table 4. Literature Information on Surfactant Concentrations in Environmental Samples

type of analyte	analytes	type/source of sample	concentration	refs
		soils [$\mu \mathrm{g/kg}$]		
anionic	LAS	100	50 000	3
	LAS, SPC	forest area	100-15000	3
	PFOA		3.28-47.5	8
	PFOS		8.58-10.4	
	total	soil surface	$330\pm170\mu\mathrm{M/kg}$	
nonionic	AEO	urban area	69-329	
	NPEO	forest area	92-329	
	OPEO		87-369	
	NP		142-500	
	OP		125-238	
	OPEO, NP, OP	agricultural area	200-229 000	
		dusts [µg/kg]		
anionic	LAS	indoor dust	34-1 500 000 (public buildings)	
	PFOA		0.7-56.9 (house)	
	PFOS		0.5-293 (office)	
		street dust	7.7 ± 0.9	
		officer dust	5.0 ± 0.9	
		sediments [mg/kg]		
cationic	total	river sediment	5-50	
	DDAC		n.d2.1	
	BAC		n.d3.6	
	DDAC		n.d.—2.1	
	BAC		0.002-3.6	
	ATAC		0.01-0.12	
	BAC		0.021-0.26	
	DTDMAC	marine sediment	1140-42 300	
anionic	LAS, TPS	lake sediment	0.19-3.4	
amome	LAS, AES, AS	river sediment	0.225-2.065 μ g/L (pore water)	
	LAS	marine sediment	0.54-1.01	
	AES	marine sediment	0.17-0.54	
	LAS		0.29-1.94	
	AES		0.043-0.16	
	PFOA	river sediment	0.0052-0.203	
	PFOS	river sediment	0.00157-0.00878	
	11.03		<0.0008-0.00017	
			<0.00012-0.00037	
		wetland	n.d0.0029	
		weuanu	0.0026-0.0307	
	NP	river sediment	<mdl-0.005< td=""><td></td></mdl-0.005<>	
nonionic	OP	river sediment		
	Or		<mdl-0.008< td=""><td></td></mdl-0.008<>	
			0.0047-0.0313	
	NDE	··············	<mld-0.011< td=""><td></td></mld-0.011<>	
	NPE	river/lake sediment	n.d.—38	
	NP OP		0.17-72	
	OP	atau P	n.d.—1.8	
	NPEO	river sediment	<mdl-395< td=""><td></td></mdl-395<>	
	OPEO		<mdl-1170< td=""><td></td></mdl-1170<>	
	NP		0.024 0.01	
	OP		0.024-0.91	7,
			<mql-0.41< td=""><td>70</td></mql-0.41<>	70
			-	
			0.41 - 6.7	

Table 4. Continued

Table 4. Continue	a			
type of analyte	analytes	type/source of sample	concentration	refs
		<mql-0.41< td=""><td></td><td></td></mql-0.41<>		
	NP, OP	marine sediment	n.d0.023	96
	AEO		0.11 - 2.7	72
	NPEO		0.26-2.6	
	NPEC	from Atlantic Ocean	<mdl-1.54< td=""><td></td></mdl-1.54<>	
				21, 28
	NP		0.14 - 0.41	
		sewage sludge [mg/kg]		
cationic	DHTDMAC	Germany	1600-3000	89
	DTDMAC	Switzerland	150-5870	32
anionic	LAS	Germany	110-1030	62
		Spain	0.1 - 13.39	162
		•	89-4207	
				83, 94
	LAS + CDEA		n.d4 340	82
	LAS	Switzerland	3830-7510	91
	SAS		370-800	
	AES	Germany	1.0-22	90
	AS	,	3.6-40	
	LAS		66-1770	
	SAS		6.4-23	
	PFOA, PFOS		6-10	69
nonionic	NPEC	U.S.A.	n.d-91.9	93
	NPEC	Canada	n.d38	92
	NPEO		4-304	
	AE	Germany	0.71 - 106	90
	NPE	,	3.2-100	
	NPEC		3.0-100	
	NPEC	Spain	n.d14	82
	NPEO		2.1-135	
	$C_{10-18}OE$		n.d98	
	NP		25.5-601	
	OP		n.d.	
	PEG		1.7-31	
		sludge [mg/kg]		
cationic	DDAC		n.d2.1	65
cationic	DDAC BAC	Austria		65
			n.d3.6	
amiamia	ATAC PFOA	China	n.d0.12 0.0052-0.2	85
anionic	PFOS	Cilifia	0.0032-0.2	03
	PFOS		n.d0.0157	86
			0.0031-7.3	80
		U.S.A.	0.0031-7.3	64
		U.S.A.		04
nonionic	NPEO	France	0.032-0.417 0.038	70
nomonic	OPEO	France	0.058	/0
	AE			
		Spain	0.032-1.5	74
	NPEC, NP	Spain	0.105-0.15	
	NPEO	U.S.A.	n.d.—43.6	88
	AEO		16.3-654	
		atmospheric water [pmol/m 3] or [μ g/l]		
cationic	total	atmospheric water	$1.0-11.7 \text{ pmol/m}^3$	163
		aerosols	$26.1 - 129.6 \text{ pmol/m}^3$	39
			, , , , , , , , , , , , , , , , , , ,	

Table 4. Continued

Table 4. Continue				
type of analyte	analytes	type/source of sample	concentration	refs
anionic			$14.9 - 229.1 \text{ pmol/m}^3$	
			$128 \pm 62 \text{ pmol/m}^3$	49
		atmospheric water	$12.5 - 285 \text{ pmol/m}^3$	163
			$39.4 - 932.2 \text{ pmol/m}^3$	
		cloud water	n.d. $-960~\mu\mathrm{g/L}$	36
	PFOA	rain	$0.0001 - 0.0033 \mu\mathrm{g/L}$	115
	PFOS		$0.0004{-}0.0093\mu{ m g/L}$	
			$0.0329{-}0.0408\mu{ m g/L}$	120
			$0.00992 - 0.113 \mu \mathrm{g/L}$	
		snow	$0.00774{-}0.0567\mu\mathrm{g/L}$	
			$0.0375{-}0.182~\mu \mathrm{g/L}$	
		street runoff	$0.09~\mu\mathrm{g/L}$	112
			$0.05~\mu\mathrm{g/L}$	
nonionic	NP	rain	$0.3{-}0.95~\mu{ m g/L}$	164
		snow	n.d. $-0.802\mu\mathrm{g/L}$	
	ground/wall	/mineral water [μ g/l] (for pfoa and p		
				165
cationic 	total	ground water	500-1300	165
anionic	DATS		n.d.	101
	total	tap water	20-193	50
		tap water	30-70	20
		mineral water		
	770	well water	2.47	
	PFOA	ground water	0.47-60	112
	PFOS		0.28-133	
		raw water	n.d.—67	166
			n.d.—22	
		tap water	n.d.—34	
			n.d.—22	
			<5-35.3	134
			n.d.	
nonionic	NPE	ground water	<0.11-0.2	137
	NP		n.d0.32	
	NPEO, OPEO, NP, OP	tap water	n.d.	57
	NPEO	raw water	13	125
	OPEO		1.2	
	NPEC		2.2 -2.9	
	OPEC		n.d.	
	NP		0.45	
	OP		0.12	
	NPEC	ground/tap water	0.1	104
	OPEC		<mdl< td=""><td></td></mdl<>	
	NP		0.1	
	OP		<mdl< td=""><td></td></mdl<>	
	NPEC	tap water	<0.001	124
	NPEO		< 0.025 - 100	
	NP		<0.01	
	surface v	vater $[\mu \mathrm{g/L}]$ (for PFOA and PFOS $[\mathrm{r}$	ng/L])	
cationic	DDAC	surface water	<mdl-0.19< td=""><td>47</td></mdl-0.19<>	47
	BAC		0.02-0.3	
	ATAC		0.015-0.3	
	DTDMAC, DEEDMAC, DEQ	river water	0.11-75	46

Table 4. Continued

Table 4. Continue				
type of analyte	analytes	type/source of sample	concentration	refs
	BAC		<mdl< td=""><td>99</td></mdl<>	99
	DTMABr	sea water	n.d.	97
	DDABr, DBDMAC		0.12 - 0.27	
			n.d.	
	total		$11{-}210\mu\mathrm{mol/L}$	39, 49
anionic		river water	5-150	44
	AES + AS		0.01 - 200	81
	LAS		0.24-3955	
	LAS		6-52	51
	SPC		total = 204	
	LAS		5.6	102
			48	104
	DATS		2.2-6.6	101
	PFOA		24-287	116
	PFOS			110
	PF03		16.3-155 11-1130	112
				113
			n.d2 210 000	440
			0.08-14	118
			<0.06-15	
			<0.06-8	167
			<0.12-32	
			<5-14.6	134
			n.d.	
		lake water	0.69-3.95	117
			2.67-7.83	
	total	sea water	5-360 pmol/L	
				39, 49
	LAS		n.d46	111
			739-911	108
	LAS		4-24	57
	SPC		total = 83	
	LAS		0.025-0.064	72
	AES + AS		0.0045-0.017	
	PFOA		n.d0.00455	121
	PFOS		n.d0.00226	
nonionic	total	river water	27-222	54
	NP		<0.025-1.22	127
	NPE		1.3-1.6	137
	NP		1.4-2.2	-57
	NP		<0.01-0.77	123
	OP		<0.01-0.42	123
	O1		2.40 ± 0.16	58
			0.037 ± 0.001	36
				122
			n.d0.018	132
			n.d0.0597	140
			4.67	140
			0.15	
			0.00001-0.0376	95
			0.0001-0.044	
	NPE		n.d0.15	55
	NP		n.d.	
	OP		n.d0.013	
	NPEO, OPEO		5.6	102
	NPEO		0.3-0.5	57

Table 4. Continued

Table 4. Continue				
type of analyte	analytes	type/source of sample	concentration	refs
	OPEO		0.1-0.3	
	NP		<mql< td=""><td></td></mql<>	
	OP		0.1	
			0.14-0.2	76
			<mdl< td=""><td></td></mdl<>	
			<mdl-0.067< td=""><td></td></mdl-0.067<>	
			<mdl< td=""><td></td></mdl<>	
	$C_{12-16}EO$		<mdl-8< td=""><td>131</td></mdl-8<>	131
				131
	NPE		4-12	
	OPE		<mdl-14< td=""><td></td></mdl-14<>	
	NPEC		1.2-2.5	104
	OPEC		0.1-0.3	
	NP		0.6	
	OP		<mdl< td=""><td></td></mdl<>	
	NPE	lake water	n.d10	55
	NP		n.d0.92	
	OP		n.d0.47	
		F (-7)		
		wastewater [μ g/L]		
cationic	total	China	374-2116	42
	DDAC	Austria	n.d0.03	47
	BAC		n.d0.17	
	ATAC		n.d0.0066	
			n.d. $-0.83 \mu\mathrm{g/L}$	168
			$0.014 - 3.5 \mu \text{g/L}$	
			n.d.—1.1 µg/L	
	CTAB	Algeria	>31	38
	BAC	Spain	0.1-49	99
	BAC	U.S.A.	n.d36.6	98
-mionio				
anionic	total	Canada	120-9340	103
	LAS	Germany	126-1410	62
		Spain	288-1630	108
			136-1309	
			1-16	107
			30.7-1635	104
		Austria	4.2-40	168
	PFOA	Germany	0.0087-0.093	118
	PFOS		0.012-0.014	
			0.020-3.9	167
			0.106-0.252	
		Japan	0.01-0.07	112
		<i>J</i> 1	0.05-0.65	
		China	0.019-0.0499	86
		Cimiu	<3* 0.00286-4.1	00
	4-4-1	China	374-2 116	42
nonionic	total	China		42
	NPEO	wastewater	n.d.—84	53
	OPEO	U.S.A.	n.d6	
	NP		n.d.	
	OP	Spain	0.0161 - 1.097	126
			<mdl-0.2057< td=""><td></td></mdl-0.2057<>	
			0.0097 - 0.0187	
			0.0061 - 0.0093	
	NPEO	France	38	70
	OPEO		150	
	AE		32-136	
			55-	

Table 4. Continued

Table 4. Continue				
type of analyte	analytes	type/source of sample	concentration	refs
	NPEO	Austria	0.042-0.83	168
	NP		0.18-1.6	
	OP		0.029-0.03	
	AEO	Spain	290-820	107
	NPEO		49	
	PEG		n.d2340	
	NPE	Italy	5.9-284	123
	AE		<mdl-405< td=""><td></td></mdl-405<>	
	$C_{12-16}EO$	Spain	0.6-30	131
	NPE		25-222	
	OPE		<mdl-188< td=""><td></td></mdl-188<>	
	AE	Canada/Europe	0.95-22.71	130
	NPEC	Spain/Russia	<0.01-0.82	124
	NPEO		< 0.025 - 198	
	NP		<0.01-2.58	
		Japan	n.d.	122
			1-58	
			0.5-66	
	NPEC	Spain	n.d47.8	104
	OPEC		n.d	
	NP		<mdl-18< td=""><td></td></mdl-18<>	
	OP		<mdl-14< td=""><td></td></mdl-14<>	
		sewage $[\mu extsf{g}/ extsf{L}]$		
cationic	DTDMAC	Germany	n.d140	46
	DEEDMAC			
	DEQ			
anionic	LAS		3.6-290	101
	DATS		0.52-106	
	LAS	Italy	7-2360	22
nonionic	NPEO		3-208	
	NP		0.3-13	

the inner surface of the fused silica capillary. A UV detector is usually used with this method.

Gas chromatography is a more universal means of analyzing surfactants, mainly in combination with single or tandem mass spectrometry. With GC—MS for the quantitative determination of SAAs in suitably prepared extracts, an LOD of the order of 0.02 ng/L is achievable. While GC-MS is suitable for determining highly volatile surfactants, with less volatile SAAs an additional derivatization step is needed. Indeed, this improves the selectivity of SAAs separation and leads to lower LODs and LOQs, which are the metrological parameters that determine the practicability of a methodology in routine monitoring. The derivatization step can be modified by the use of reagents that convert analytes to more stable derivatives (e.g., replacing BSTFA with MTBSTFA) or by using in-port, 91 on-fiber, 140 and in-tube 132 techniques. Like CE, GC cannot be used to determine the contents of cationic compounds in environmental samples.

High-performance liquid chromatography (HPLC) is suitable for determining levels of both ionic and nonionic surfactants; it also enables homologues, oligomers, and isomers of complex surfactant mixtures to be separated. For the quantitative determination of SAAs by HPLC the usual detectors are MS (MS-MS), UV, and FLD. The lowest LODs achieved

using HPLC hyphenated with MS—MS was 0.03 ng/L. An undoubted advantages of HPLC is that SAAs levels can be measured in a short time. Sometimes, however, sample preparation can be time-consuming and laborious, and several extraction techniques may need to be applied. A disadvantage of chromatographic methods is the high cost of the apparatus and its operation.

Table 3 summarizes the information on the analytical techniques for determining SAAs contained in diverse types of environmental samples, along with their basic metrological parameters, advantages, and disadvantages.

3. LITERATURE DATA ON CONCENTRATIONS OF SURFACTANTS DETERMINED IN ENVIRONMENTAL SAMPLES

The literature provides a wealth of information concerning the presence and concentrations of a wide range of surfactants in environmental samples of different composition and origin. The research objects included soil, street and indoor dust, bottom sediments, sewage sludge, and liquid samples, including precipitation (rain, snow, and cloudwater), atmospheric deposits, aerosols, ground waters, surface waters (river, lake, and sea waters), and sewage.

SAAs concentrations in environmental samples can take values from the LOD of the analytical procedure to over a dozen milligrams per kilogram or milligrams per liter, depending on the type of sample in which the analytes have been determined. Table 4 lists information on SAAs contents determined in different environmental samples from all over the world (soil, dust, bottom sediments, sewage sludge, sewage, rain, snow, aerosols, cloudwater, road runoff, surface waters, sea waters, and ground waters).

4. SUMMARY

The diverse practical applications and specific properties of surfactants (including their toxicity toward living organisms) makes it essential to learn their environmental fate. These compounds can move freely within the atmosphere, waters and sediments of various types, soils and even living organisms.

To this end it is essential to develop analytical procedures enabling the simultaneous identification and quantitative determination of different types of surfactants in environmental samples. The biggest problems in selecting appropriate analytical procedures are the complex composition of the samples to be analyzed and the low levels of target analytes, their diverse chemical structures and amphiphilic nature (the tendency for analytes to adsorb on surfaces). Applying increasingly effective means of preparing environmental samples for analysis can solve these problems. An ever-widening spectrum of techniques is available for the detection, identification, and quantitative determination of surfactants in environmental samples with a complex matrix composition.

Analysis of papers reporting the presence of surfactants in different compartments of the environment indicates that our knowledge of the contents of surface active compounds, especially anionic and nonionic ones, in environmental samples is far from complete.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ewaolkow@wp.pl.

BIOGRAPHIES

Ewa Olkowska, M.Sc., Eng. Gdańsk, Poland Graduate in Chemical Technology at the Faculty of Chemistry, Gdańsk University of Technology. She obtained her M. Eng. degree in 2009, having written her thesis under the supervision of the Department of Analytical Chemistry. At present, she is undergoing postgraduate studies at the Faculty of Chemistry,

Gdańsk University of Technology. Her main research interest is the analysis of ionic and nonionic surfactants in environmental samples.

Żaneta Polkowska, Ph.D., D.Sc, Eng. Gdańsk, Poland 1988, M. Eng. in the technology of inorganic chemistry at the Faculty of Chemistry, Gdańsk University of Technology; 1996, PhD in the chemical sciences, Faculty of Chemistry, Gdańsk University of Technology; 2008, second PhD (habilitation) in the chemical sciences, Faculty of Chemistry, Gdańsk University of Technology. Research interests include atmospheric precipitation and deposition, problems and challenges; biological materials as a source of information about human exposure to tobacco smoke; analysis of waters (runoff, drinking, bottled and surface); and the presence in the environment of surfactants (cationic, anionic, nonionic).

Prof. Jacek Namieśnik, Ph.D., D.Sc. Gdańsk, Poland Studies in chemistry at the Gdańsk University of Technology. PhD in 1978, professor for Analytical Chemistry since 1996. From 1996 to 2002 and from 2005, Dean of Chemical Faculty, Gdańsk University of Technology. Additionally, he served as Head of Analytical Chemistry Department since 1995. Major research interests included elaboration of new analytical procedures for determination of trace and ultratrace constituents in samples characterized by complex composition of the matrix, design and testing of specific (fit for purpose) analytical units and measuring devices, production of new types of matrix-free reference materials. He is the author and editor of 8 books, author and coauthor of over 300 papers and over 400 lectures and communications published in conference proceedings, and 10 patents. For many years, he was a member of the several Editorial Boards, for example, Journal of Chromatography A, Critical Reviews in

Analytical Chemistry, The Open Analytical Chemistry Journal, Regional Environmental Change, and Toxicological and Environmental Chemistry. Prof. Namieśnik has been the recipient of several awards, including the Award of Prime Minister of Poland in 2008, the Kemula Medal for achievements in the field of analytical chemistry in 2007 and Town Gdańsk Jan Hevelius Scientific Award in 2002. Professor honoris causa, University of Bucharest (Romania) since 2000.

ABBREVIATIONS

ABS alkylbenzenesulfonates ΑE alcohol ethoxylates **AES** alkylethoxysulfates alkylsulfates AS

ATAC alkyl trimethyl ammonium chloride

benzyl ammonium chloride BAC

BDMAC alkyl benzyl dimethyl ammonium chloride **BSTFA** bis(trimethylsilyl)trifluoroacetamide benzothiaxolydiazoaminoazobenzene **BTDAB**

conductometric detector CD **CDEA** coconut diethanol amides

CTAB cetyl trimethyl ammonium bromide

cetyltrimethylammonium **CTMA**

carbowax/template resin-coated fiber **CWAX-TR**

DATS dialkyltetralinsulfonates

DBDMAC dodecylbenzyldimethylammonium chloride **DEEDMAC** diethylester dimethylammonium chloride **DDAC** dialkyl dimethyl ammonium chloride didecyldimethylammonium bromide **DDABr**

DEQ diesterquaternary disulfine blue DiSB **DMF** dimethylformamide

ditallowdimethylammonium chloride **DTDMAC DTMABr** dodecyltrimethylammonium bromide

ervthrosine B EB

effective concentration EC_{50}

immobilization effective concentration *EC50 **EDTA** ethylenediaminetetraacetic acid

EO, polyethoxylate

flame ionization detector FID **FLD** fluorescence detector

HLB hydrophilic-lipophilic balanced **GCB** graphitized carbon black

GC-MS gas chromatography-mass spectrometry HF-LPME hollow fiber liquid-phase microextraction **HPLC** high performance liquid chromatography

inhibitory concentration IC_{50} linear alkylbenzenesulfonates LAS

lethal concentration

 LC_{50} limit of detection LOD limit of quantification LOQ lauryl sulfate LS MB methylene blue **MCE** mixed cellulose ester **MCF** methyl chloroformate **MDL** method detection limit MG methylene green

method quantitation limit MQL **MTBE** methyl *tert*-butyl ether

MTBSTFA N-tert-butyl-dimethylsilyl N-methyltrifluoroacet-

no observed effect concentration NOEC

NP nonylphenol

NPD nitrogen phosphorus detector NPE/NPEO nonyl phenol ethoxylates **NPEC** nonylphenol ethoxy carboxylates NP-LC normal-phase liquid chromatography

NPS naphthalene sulfonates

O-MWCNT oxidized multiwalled carbon nanotubes

OP octylphenol

OPE/OPEO octylphenol ethoxylate OT-GC open-top gel chromatography

PA polyacrylate

PDMS-DVB polydimethoxysilane-divinylbenzene

poly(ethylene glycols) PEG **PFOA** perfluorooctanoic acid **PFOS** perfluorooctane sulfonate **PLRP** polymer reversed phase PTFE polytetrafluoroethylene **RSD** relative standard deviations

SAEC subsequent anion-exchange chromatography

SDS sodium dodecyl sulfate

SAX or SCX strong anion exchange or strong cation exchange

SLES sodium lauryl ether sulfate

tetrabutylammonium hydrogen sulfate **TBAHS TBAOH** tetrabutylammonium hydroxide **TBDMCS** tert-butyl-dimethylchlorosilane

T(DBHP)P *meso*-tetra-(3,5-dibromo-4-hydroxyphenyl)

porphyrin

TLFE thin liquid film extraction

TMAOH tetramethylammonium hydroxide **TPPS** tetrabromophenolphthalein ethyl ester TPS tetrapropylenebenzenesulfonate

UV-vis ultra-violet detector WAX weak-anion exchange

REFERENCES

- (1) Myers, D. Surfactant Science and Technology; John Wiley & Sons: Hoboken, NJ, 2005.
 - (2) Ying, G. G. Environ. Int. 2006, 32, 417.
- (3) Rosen, M. J.; Dahanayake, M. Industrial Utilization of Surfactants: Principles and Practice; AOCS: Champaign, IL, 2000.
 - (4) Merretting-Bruns, U.; Jelen, E. Materials 2009, 2, 181.
- (5) Nollet, L. M. L. Chromatographic Analysis of the Environment; CRC Press/Taylor & Francis Group: Boca Raton, FL, 2005.
- (6) Ostroumov, S. A. Biological Effects of Surfactants; CRC Press/ Taylor & Francis Group: Boca Raton, FL, 2005.
- (7) Utsunomiya, A.; Watanuki, T.; Matsushita, K.; Nishina, M.; Tomita, I. Chemosphere 1997, 35, 2479.
- (8) Garcia, M. T.; Ribosa, I.; Guindulain, T.; Sanchez-Leal, J.; Vives-Rego, J. Environ. Pollut. 2001, 111, 169.
 - (9) Lewis, M.; Wee, V. Environ. Toxicol. Chem. 1983, 2, 105.
- (10) Singh, R. P.; Gupta, N.; Singh, S.; Singh, A.; Suman, R.; Annie, K. Bull. Environ. Contam. Toxicol. 2002, 69, 265.
- (11) Verge, C.; Moreno, A.; Bravo, J.; Berna, J. L. Chemosphere 2000, 44, 1749.
- (12) Liwarska-Bizukojc, E.; Miksch, K.; Malachowska-Jutsz, A.; Kalka, J. Chemosphere 2005, 58, 1249.
- (13) Van Ewijk, P. H.; Hoekstra, J. A. Ecotoxicol. Environ. Saf. 1993, 25, 25.
- (14) Figge, K.; Schöberl, P. Tenside, Surfactants, Deterg. 1989, 26, 122.
- (15) Sandbacka, M.; Christianson, I.; Isomaa, B. Toxicol. in Vitro
- (16) Pavlic, Z.; Vidakovic-Cifrek, Z.; Puntaric, D. Chemosphere 2005, 61, 1061.

- (17) Naylor, C. G. Text. Chem. Color. 1995, 27, 29.
- (18) Hall, W. S.; Potoczka, J. B.; Mirenda, R. J.; Porter, B. A.; Miller, E. Arch. Environ. Contam. Toxicol. **1988**, *18*, 765.
- (19) Petrovic, M.; Lacorte, S.; Viana, P.; Barcelo, D. J. Chromatogr. A **2002**, 959, 15.
- (20) Bidari, A.; Ganjali, M. R.; Norouzi, P. Cent. Eur. J. Chem. 2010, 8, 702.
- (21) Bartolomé, L.; Cortazar, E.; Raposo, J. C.; Usobiaga, A.; Zuloaga, O.; Etxebarria, N.; Fernandez, L. A. J. Chromatogr. A 2005, 1068, 229.
- (22) Di Corcla, A.; Samperi, R.; Marcomini, A. *Environ. Sci. Technol.* **1994**, 28, 850.
- (23) Łukaszewski, Z.; Szymański, A. Mikrochim. Acta 1996, 123, 185.
 - (24) Barceló, D. TrAC, Trends Anal. Chem. 2004, 23, 677.
- (25) Chen, Y.; Guo, Z.; Wang, X.; Qiu, Ch. J. Chromatogr. A 2008, 1184, 191.
- (26) Vogt, C.; Heinig, K. Fresenius' J. Anal. Chem. 1999, 363, 612.
- (27) Li, D.; Oh, J. R.; Park, J. J. Chromatogr. A 2003, 1012, 207.
- (28) Cortazar, E.; Bartolomé, L.; Delgado, A.; Etxebarria, N.; Ferńandez, L. A.; Usobiaga, A.; Zuloaga, O. *Anal. Chim. Acta* **2005**, *534*, 247
- (29) Shao, B.; Hu, J.; Yang, M.; An, W.; Tao, S. Arch. Environ. Contam. Toxicol. 2005, 48, 467.
- (30) Wurl, O.; Miller, L.; Röttgers, R.; Vagle, S. Mar. Chem. 2009, 115, 1.
- (31) Krogh, K. A.; Bugel Mogensen, B.; Halling-Sorensen, B.; Cortes, A.; Vejrup, K. V.; Barcelo, D. *Anal. Bioanal. Chem.* **2003**, *376*, 1089.
- (32) Fernandez, P.; Alder, A. C.; Suter, M. J.-F.; Giger, W. Anal. Chem. 1996, 68, 921.
- (33) Bao, J.; Jin, Y.; Liu, W.; Ran, X.; Zhang, Z. Chemosphere 2009, 77, 652.
 - (34) Andreu, V.; Picó, Y. Anal. Chem. 2004, 76, 2878.
- (35) Sablayrolles, C.; Montréjaud-Vignoles, M.; Silvestre, J.; Treilhou, M. Int. J. Anal. Chem. 2009, 2009, 6.
- (36) Cini, R.; Prodi., F.; Santachiara, G.; Porcu, F.; Bellandi, S.; Stortini, A. M.; Oppo, C.; Udisti, R.; Pantani, F. *Atmos. Res.* **2002**, *61*, 311
- (37) Ghose, N. C.; Saha, D.; Gupta, A. J. Water Res. Protect. 2009, 4, 290.
- (38) Idouhar, M.; Tazerouti, A. J. Surfactants Deterg. 2008, 11, 263.
- (39) Roslan, R. N.; Hanif, N. M.; Otoman, M. R.; Azmi, W. N. F. W.; Yan, X. X.; Ali, M. M.; Mohamed, C. A. R.; Latif, M. T. *Mar. Pollut. Bull.* **2010**, *60*, 1584.
- (40) Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC., 1989; p 5540D.
 - (41) Li, S.; Zhao, S. Anal. Chim. Acta 2004, 501, 99.
 - (42) Zhu, Z.; Li, Z.; Hao, Z.; Chen, J. Water Res. 2003, 37, 4506.
- (43) Yamamoto, K.; Oka, M.; Murakami, H. Anal. Chim. Acta 2002, 455, 83.
- (44) Pastewski, S.; Mędrzycka, K. Pol. J. Environ. Stud 2003, 12, 643.
 - (45) Wickbold, R. Tenside Deterg. 1972, 9, 173.
- (46) Radke, M.; Behrends, T.; Forster, J.; Herrmann, R. Anal. Chem. 1999, 71, 5362.
- (47) Martinez-Carballo, E.; Gonzaez-Barreiro, C.; Sitka, A.; Kreuzinger, N.; Scharf, S.; Gans, O. *Environ. Pollut.* **2007**, *145*, 489.
- (48) Jurado, E.; Fernandez-Serrano, M.; Nunez-Olea, J.; Luzon, G.; Lechuga, M. Chemosphere 2006, 65, 278.
- (49) Mohd Hanif, N.; Talib Latif, M.; Mohd Ali, M.; Rozali Otoman, M. Europ. J. Sci. Res. 2009, 32, 268.
- (50) Koga, M.; Yamamichi, Y.; Nomoto, Y.; Irie, M.; Tanimura, T.; Yoshinaga, T. *Anal. Sci.* **1999**, *15*, 563.
 - (51) Akyüz, M. Talanta 2007, 71, 471.
- (52) Wyrwas, B.; Szymański, A.; Łukaszewski, Z. Talanta 1998, 47, 325.

- (53) Nagarnaik, P. M.; Mills, M. A.; Boulanger, B. Chemosphere 2010, 78, 1056.
- (54) Szymański, A.; Wyrwas, B.; Łukaszewski, Z. Anal. Chim. Acta 1995, 305, 256.
- (55) Bennie, D. T.; Sullivan, C. A.; Lee, H.-B.; Peart, T. E.; Maguire, R. J. Sci. Total Environ. 1997, 193, 263.
- (56) Norberg, J.; Thordarson, E.; Mathiasson, L.; Jönsson, J. Å. J. Chromatogr. A 2000, 869, 523.
 - (57) Zgoła-Grześkowiak, A. J. Chromatogr. A 2010, 1217, 1761.
- (58) Luo, S.; Fang, L.; Wang, X.; Liu, H.; Ouyang, G.; Lan, C.; Luan, T. J. Chromatogr. A **2010**, 1217, 6762.
- (59) Yiantzi, E.; Psillakis, E.; Tyrovola, K.; Kalogerakis, N. Talanta 2010, 80, 2057.
- (60) Liu, J.; Hu, X.; Peng, J.; Jönsson, J.Å.; Mayer, P.; Jiang, G. Anal. Chem. 2006. 78, 8526.
- (61) Selberga, A; Budashovaa, J.; Tennoa, T. Proc. Est. Acad. Sci., Chem 2007, 56, 87.
 - (62) Heinig, K.; Vogt, C.; Werner, G. Analyst 1998, 123, 349.
 - (63) Vejrup, K. V.; Wolkoff, P. Sci. Total Environ. 2002, 300, 51.
- (64) Yoo, H; Washington, J. W.; Jenkins, T. M.; Libelo, E. L. J. Chromatogr. A 2009, 1216, 7831.
- (65) Martinez-Carballo, E.; Gonzaez-Barreiro, C.; Sitka, A.; Kreuzinger, N.; Scharf, S.; Gans, O. Environ. Pollut. 2007, 146, 543.
- (66) Kreuzinger, N.; Fuerhacker, M.; Scharf, S.; Uhl, M.; Gans, O.; Grillitsch, B. Desalination 2007, 215, 209.
 - (67) Reiser, R.; Toljander, H. O.; Giger, W. Anal. Chem. 1997, 69, 4923.
- (68) Lara-Martin, P. A; Gomez-Parra, A.; Gonzalez-Mazo, E. J. Chromatogr. A 2006, 1114, 205.
 - (69) Schröder, H.Fr. J. Chromatogr. A 2003, 1020, 131.
 - (70) Chiron, S.; Sauvard, E.; Jeannot, R. Analusis 2000, 28, 535.
 - (71) Ferrer, I.; Furlong, E. T. Anal. Chem. 2002, 74, 1275.
- (72) Lara-Martin, P. A.; Gomez-Parra, A.; Gonzalez-Mazo, E. Environ. Pollut. 2008, 156, 36.
 - (73) Murakami, M.; Takada, H. Chemosphere 2008, 73, 1172.
- (74) Petrovic, M.; Barceló, D.; Diaz, A.; Ventura, F. J. Am. Soc. Mass Spectrom. 2003, 14, 516.
- (75) Petrovic, M.; Tavazzib, S.; Barcelo, D. J. Chromatogr. A 2002, 971, 37.
- (76) Loyo-Rosales, J. E.; Schmitz-Afonso, I.; Rice, C. P.; Torrents, A. Anal. Chem. **2003**, 75, 4811.
- (77) Loyo-Rosales, J. E.; Rice, C. P.; Torrents, A. *Environ. Sci. Technol.* **2007**, 41, 6815.
- (78) Andreu, V.; Ferrer, E.; Rubio, J. L.; Font, G.; Picó, Y. Sci. Total Environ. 2007, 378, 124.
- (79) Jiménez-Díaz, I.; Ballesteros, O.; Zafra-Gómez, A.; Crovetto, G.; Vilchez, J. L.; Navalón, A.; Verge, C.; de Ferrer, J. A. *Chemosphere* **2010**, *80*, 248.
- (80) Sun, H. F.; Takata, A.; Hata, N.; Kasahara, I.; Taguchi, S. J. Environ. Monit. 2003, 5, 891.
- (81) Sanderson, H.; Price, B. B.; Dyer, S. D.; DeCarvalho, A. J.; Robaugh, D.; Waite, S. W. Sci. Total Environ. 2005, 367, 312.
 - (82) Petrovic, M.; Barcelò, D. Anal. Chem. 2000, 72, 4560.
- (83) Villar, M.; Fernández-Torres, R.; Callejón, M.; Villar, P.; Jiménez, J. C. Microchem. J. 2008, 90, 164.
- (84) D'Hollander, W.; Roosens, L.; Covaci, A.; Cornelis., C.; Reynders, H.; Van Campenhout, K.; de Voogt, P.; Bervoets, L. *Chemosphere* **2010**, *81*, 478.
- (85) Li, F.; Zhang, C.; Qu, Y.; Chen, J.; Chen, L.; Liu, Y.; Zhou, Q. Sci. Total Environ. 2010, 408, 617.
 - (86) Ma, R.; Shih, K. Environ. Pollut. 2010, 158, 1354.
- (87) Liu, R; Zhou, J. L.; Wilding, A. J. Chromatogr. A 2004, 1038, 19.
- (88) Cohen, A.; K. Klint, K.; Bøwadt, S.; Persson, P.; Jönsson, J.Å. J. Chromatogr. A 2001, 927, 103.
- (89) Breen, D.G.P A.; Horner, J. M.; Bartle, K. D.; Clifford, A. A.; Waters, J.; Lawrecne, J. G. *Wat. Res.* **1996**, 30, 476.
- (90) Bruno, F.; Curie, R.; Di Corcia, A.; Fochi, I.; Nazzari, M.; Samperi, R. Environ. Sci. Technol. 2002, 36, 4156.

- (91) Field, J. A.; Miller, D. J.; Field, T. M.; Hawthorne, S. B.; Gigert, W. Anal. Chem. 1992, 64, 3161.
- (92) Lee, H. B.; Peart, T. E.; Bennie, D. T.; Maguire, R. J. J. Chromatogr. A 1997, 785, 385.
 - (93) Field, J. A.; Reed, R. L. Environ. Sci. Technol. 1999, 33, 2782.
- (94) Villar, M.; Callejón, M.; Jiménez, J. C.; Alonso, E.; Guiráum, A. Anal. Chim. Acta 2007, 599, 92.
- (95) Hibberd, A.; Maskaoui, K.; Zhang, Z.; Zhou, J. L. *Talanta* **2009**, 77, 1315.
- (96) Stuart, J. D.; Capulong, C. P.; Launer, K. D.; Pan, X. J. Chromatogr. A 2005, 1079, 136.
 - (97) Bassarab, P. J. Chromatogr. A 2011, 1218, 673.
- (98) Ferrer, I.; Furlong, E. T. Environ. Sci. Technol. 2001, 35, 2583.
- (99) Merino, F.; Rubio, S.; Pérez-Bendito, D. Anal. Chem. 2003, 75, 6799.
- (100) Luque, N.; Merino, F.; Rubio, S.; Pérez-Bendito, D. J. Chromatogr. A 2005, 1094.
- (101) Crescenzi, C.; Di Corcia, A.; Marchiori, E.; Samperi, R.; Marcomini, A. War. Res. 1996, 30, 722.
- (102) Scullion, S. D.; Clench, M. R.; Cooke, M.; Ashcroft, A. E. J. Chromatogr. A 1996, 733, 207.
 - (103) Bradley, C.; Bérubé, P. R. J. Environ. Eng. Sci. 2008, 7, 63.
- (104) Tubau, I.; Vázquez-Suné, E.; Carrera, J.; González, S.; Petrovic, M.; de Alda, M. J. L.; Barceló, D. *J Hydrology* **2010**, DOI: 10.1016/j.jhydrol.2009.11.030.
 - (105) Sander, S.; Henze, G. Electroanalysis 1997, 9, 619.
- (106) Fabios, R.; Sicilia, M. D.; Rubio, S.; Pérez-Bendito, D. Anal. Chem. 2003, 75, 601.
- (107) Castillo, M.; Alonso, C.; Priu, J.; Barceló, D. *Environ. Sci. Technol.* **1999**, *33*, 1300–1306.
- (108) Riu, J.; Eichhorn, P.; Guerrero, J. A.; Knepper, Th.P.; Barceló, D. J. Chromatogr. A **2000**, 889, 221.
- (109) Pedraza, A.; Sicilia, M. D.; Rubio, S.; Pérez-Bendito, D. *Anal. Chim. Acta* **2007**, 588, 252.
- (110) Bruzzoniti, M. C.; De Carlo, M. R.; Sarzanini, C. *Talanta* **2008**, *75*, 734.
- (111) Alzaga, R.; Peña, A.; Ortiz, L.; Bayona, J. M. *J. Chromatogr. A*
- 2003, 999, 51. (112) Murakami, M.; Kuroda, K.; Sato, N.; Fukushi, T.; Takizawa, S.;
- Takada, H. Environ. Sci. Technol. 2009, 43, 3480.
 (113) Moody, C. A.; Kwan, W. C.; Martin, J. W.; Muir, D. C. G.;
- Mabury, S. A. *Anal. Chem.* **2001**, 73, 2200. (114) Ahrens, L.; Taniyasu, S.; Yeung, L. W. Y.; Yamashita, N.; Lam,
- P. K. S.; Ebinghau, R. Chemosphere **2010**, 79, 266.
- (115) Dreyer, A.; Matthias, V.; Weinberg, I.; Ebinghaus, R. *Environ. Pollut.* **2010**, *158*, 1221.
- (116) Nakayama, S.F.; Strynar, M. J.; Reiner, J. L.; Delinsky, A. D.; Lindstrom, A. B. *Environ. Sci. Technol.* **2010**, *44*, 4103.
- (117) Ahrens, L.; Felizeter, S.; Ebinghaus, R. Chemosphere 2009, 76, 179.
- (118) Weremiuk, A. M.; Gerstmann, S.; Frank, H. J. Sep. Sci 2006, 29, 2251.
- (119) Becker, A. M.; Gerstmann, S.; Frank, H. Chemosphere 2008, 72, 115
- (120) Liu, W.; Jin, Y. H.; Quan, X.; Sasaki, K.; Saito, N.; Nakayama, S. F.; Sato, I.; Tsuda, S. *Environ. Int.* **2009**, *35*, 737.
- (121) Ahrens, L.; Gerwinski, W.; Theobald, N.; Ebinghaus, R. *Mar. Pollut. Bull.* **2010**, *60*, 255.
- (122) Komori, K.; Okayasu, Y.; Yasojima, M.; Suzuki, Y.; Tanaka, H. PROGRAM and ABSTRACTS of IWA International Conference Sustainable Development of Chemical Industries with the Environment, Waste and Wastewater Management, International Water Association 2005.
- (123) Marcomini, A.; Pojana, G.; Patrolecco, L.; Capri, S. Analusis 1998, 26, 64.
 - (124) Martianóv, A. A. Talanta 2005, 65, 367.
- (125) Petrovic, M.; Diaz, A.; Ventura, F.; Barcelo, D. Anal. Chem. 2001, 73, 5886.

- (126) Vega-Morales, T. T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. J. Hazard. Mat. 2010, 183, 701.
 - (127) Fries, E.; Püttmann, W. J. Environ. Monit. 2003, 5, 598.
 - (128) Quednow, K.; Püttmann, W. Environ. Pollut. 2008, 152, 476.
- (129) Yokoyama, Y.; Okabe, T.; Kubo, H.; Sato, H. Microchim. Acta 2005, 149, 287.
- (130) Eadsforth, C. V.; Sherren, A. J.; Selby, M. A.; Toy, R.; Eckhoff, W. S.; McAvoy, D. C.; Matthijs, E. Ecotoxicol. Environ. Saf 2006, 64, 14.
- (131) Cantero, M.; Rubio, S.; Pérez-Bendito, D. J. Chromatogr. A 2005, 1067, 161.
- (132) Kawaguchi, M.; Sakui, N.; Okanouchi, N.; Ito, R.; Saito, K.; Nakazawa, H. J. Chromatogr. A 2005, 1062, 23.
- (133) Rico-Rico, A.; Droge, S. T. J.; Widmer, D.; Hermes, J. L. M. J. Chromatogr. A **2009**, 1216, 2996.
- (134) Saito, K.; Uemura, E.; Ishizaki, A.; Kataoka, H. Anal. Chim. Acta 2010, 658, 141.
- (135) Boyd-Boland, A. A.; Pawliszyn, J. B. Anal. Chem. 1996, 68, 1521.
- (136) Braun, P.; Moeder, M.; Schrader, St.; Popp, P.; Kuschk, P.; Engewald, W. J. Chromatogr. A 2003, 988, 41.
- (137) Diaz, A.; Ventura, F.; Galceranb, M. T. J. Chromatogr. A 2002, 963, 159.
- (138) Basheer, C.; Parthiban, A.; Jayaraman, A.; Lee, H. K.; Valiyaveettil, S. J. Chromatogr. A 2005, 1087, 274.
 - (139) Li, D.; Park, J.; Oh, J. R. Anal. Chem. 2001, 73, 3089.
 - (140) Yang, L.; Luan, T.; Lan, C. J. Chromatogr. A 2006, 1104, 23.
 - (141) Pan, Y.-P.; Tsai, S.-W. Anal. Chim. Acta 2008, 624, 247.
- (142) Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. TrAC, Trends Anal. Chem. 2009, 28, 943.
- (143) Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Chem. Soc. Rev. 2010, 39, 2869.
- (144) Hultgren, S.; Larsson, N.; Nilsson, B. F.; Jönsson, J. Á. Anal. Bioanal. Chem. **2009**, 393, 929.
- (145) Larsson, N.; Mizera, P.; Villar, M.; Petersson, E.; Jönsson, J.Á. In press
 - (146) Shrivas, K.; Wu, H. F. Anal. Chim. Acta 2008, 198.
- (147) Feng, S.; Chen, X.; Fan, J.; Hu, Z.; Internat., J. Environ. Anal. Chem. 2005, 85, 63.
- (148) Tersutaro, Y.; Yasuyuki, S.; Masarki, K.; Toshifumi, T. *Anal. Sci.* **1999**, *15*, 563.
- (149) Ródenas-Torralba, E.; Reis, B. F.; Morales-Rubio, Á.; de la Gwardia, M. *Talanta* **2005**, *66*, 591.
 - (150) Li, S.; Zhao, S. Anal. Chim. Acta 2004, 501, 99.
 - (151) Patel, R.; Singh Patel, K. Talanta 1999, 48, 923.
- (152) Agrawal, K.; Agnihotri, G.; Shrivas, K.; Mundhare, G. L.; Patel, S. K.; Hoffmann, P. Microchem, Acta 2004, 147, 273.
- (153) Aydan, T.; Takeuchi, M.; Tanaka, H. J. Flow Injection Anal. 2009, 26, 133.
- (154) Khaled, E.; Mohamed, G. G.; Awad, T. Sens. Actuators, B 2008, 135-74
- (155) Lizondo-Sabater, J.; Martínez-Máñez, R.; Sancenón, F.; Seguí, M. J.; Soto, J. *Talanta* **2008**, *75*, 317.
- (156) Szymański, A.; Wyrwas, B.; Jesiołowska, A.; Kaźmierczak, S.; Przybysz, T.; Grodecka, J.; Łukaszewski, Z. Pol. J. Environ. Stud. 2001, 10, 371.
- (157) Martianova, A. A.; Dzantieva, B. B.; Zherdeva, A. V.; Ereminb, S. A.; Cespedesc, R.; Petrovic, M.; Barcelo, D. *Talanta* **2005**, *65*, 367.
 - (158) Kot, A.; Namieśnik, J. TrAC, Trends Anal. Chem. 2000, 19, 69.
- (159) Wasik, A.; Namieśnik, J. Pol. J. Environ. Stud. 2001, 10, 405.
 - (160) Namieśnik, J.; Szefer, P. Ecol. Chem. Eng. S 2008, 15, 167.
- (161) Nitschke, L.; Muller, R.; Metzner, G.; Huber, L. Fresenius' J. Anal. Chem. 1992, 342, 711.
- (162) Cantarero, S.; Zafra-Gómez, A.; Ballesteros, O.; Navalón, A.; Vílchez, J. L.; Verge, C.; De Ferrer, J. A. *Environ. Toxicol. Chem.* **2011**, DOI: 10.1002/etc.447.
- (163) Latif, M. T.; Brimblecombe, P. Environ. Sci. Technol. 2004, 38, 6501.
 - (164) Fries, E.; Puttmann, W. Atmos. Environ. 2004, 38, 2013.

- (165) Patel, R.; Singh Patel, K. Talanta 1999, 48, 923.
- (166) Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Mimura, M.; Watanabe, I.; Tanabe, S.; Kannan, K. *Chemosphere* **2008**, 72, 1409.
- (167) Becker, A. M.; Suchan, M.; Gerstmann, S.; Frank, H. *Environ* . *Sci. Pollut. Res.* **2010**, *17*, 1502.
- (168) Clara, M.; Scharf, S.; Scheffknecht, C.; Gans, O. Water Res. 2007, 41, 4339.