Zadanie 7 Lista 2

Mamy dane f(n) = O(g(n)), co jest równoważne z:

$$(\exists c)(\exists n_0)(\forall n > n_0)(|f(n)| \le c|g(n)|) \tag{1}$$

- $A \Leftrightarrow log_2 f(n) = O(log_2 g(n))$ Weźmy $f(n) = 2^{-n}$ i g(n) = n. Ponieważ $\lim_{n \to \infty} f(n) = 0$, a $\lim_{n \to \infty} g(n) = \infty$ łatwo zauważyć, że te funkcje spełniają założenie. Jednak $log_2 f(n) = -n$, a $log_2 g(n) = log_2 n$. A ponieważ $-n = \neq O(log_2 n)$, to A jest fałszywe \square
- $B \Leftrightarrow 2^{f(n)} = O(2^{g(n)})$ Weźmy f(n) = -n i g(n) = n. Wtedy $(\exists n_0)(\forall n > n_0)(|-n| \le c|n|)$ jest spełnione dla c > 1. Jednak $\lim_{n \to \infty} 2^{f(n)} = \lim_{n \to \infty} \frac{1}{2}^n = 0$, a

 $lim_{n\to\infty}2^{g(n)}=lim_{n\to\infty}2^n=\infty$, z czego wynika, że B jest fałszywe \Box

• $C \Leftrightarrow f(n)^2 = O(g(n)^2)$ Z założenia wiemy, że istnieją c > 0 i n_0 , takie że: $|f(n)| \le c|g(n)|$.

Po podniesieniu obustronnie do kwadratu, ponieważ mamy liczby dodatnie, otrzymujemy:

$$f(n)^2 \le c^2 g(n)^2.$$

Po nałożeniu wartości bezwzględnej na obie strony, wyciągnięcie c^2 przed nią i podstawienie $d=c^2$ otrzymujemy:

$$|f(n)^2| \leq d|g(n)^2|$$
dla pewnego d i $n_0 \Leftrightarrow C \;_\square$