1	2
12	$y = \sqrt[3]{2 \cdot \sqrt{\frac{\ln x-a }{a+b \cdot x}}};$
13	$y = \frac{1}{\ln\left \sin^2 x + \cos x^2\right - tg(\sin\left x - a\right)};$
14	$z = tg \left[\frac{(b-x) \cdot tg \frac{bx}{2.4}}{\sqrt[3]{b^2 - \sqrt{x}}} \right];$
15	$z = \frac{\sqrt[5]{ x^2 - y^2 }}{x\sqrt{ay} + y\sqrt{bx}};$

3 Лабораторная работа «Логические функции в MS Excel»

Цель работы: Освоить приемы решения задач с применением логических функций в MS Excel 2010.

3.1 Технология работы

Рассмотрим примеры решения задач с применением логических функций MS Excel 2010.

Пример 1

Дана таблица MS Excel, содержащая характеристики кухонных комбайнов разных марок (рисунок 14)..

Сравнить соответствующие характеристики комбайнов и если имеются отличия, вывести в соответствующем столбце фразу «имеются отличия» (рисунок 14).

Залить светло-красным цветом ячейки исходной таблицы, если имеются отличия в характеристиках, применить условное форматирование (рисунок 14).

	E2 • (*)	E =ECЛИ(B2=D2;"":"имеются отл	Искомая формула, вве	дений в и неику н	
À	A	В	C	D	E
1	Кухонный комбайн	REDMOND RFP-3904	Кухонный комбайн MOULIN	EX FP513125	Совпадение характеристик
2	Тип управления	Механический	Тип управления	Механический	
3	Кол-во скоростей	2	Кол-во схоростей	2	
4	Импульсный режим	Есть	Импульсный режим	Есть	
5	Насадка для нарезки кубиками	Есть	Насадка для нарезки кубиками	Есть	
6	Насадка для шинковки	Есть	Насадка для шинковки	Нет	имеются отличия
7	Насадка терка-шинковка	Есть	Насадка терка-шинковка	Есть	
8	Насадка для измельчения	Есть	Насадка для измельчения	Есть	
9	Насадка для теста	Есть	Насадка для теста	Нет	имеются отличия
10	Материал чаши	Пластик	Материал	Пластик	
11	Общий объем чаши	3.5 л	Общий объем чаши	2.2 л	имеются отличия
12	Максимальная потребляемая мощность	1900 BT	Максимальная потребляемая мощность	750 BT	имеются отличия
13	Питание	220 B	Питание	220 8	
14	Отключение при перегреве	Есть	Отключение при перегреве	Есть	
15	Отсек для хранения насадок	Есть	Отсек для хранения насадок	Нет	имеются отличия
15	Лопаточка	Есть	Лопаточка	Есть	
17	Толкатель	Есть	Толкатель	Нет	имеются отличия
18	Bec	5 кг	Bec	3.3 KF	имеются отличия
19	Цвет	Черный	Цвет	Белый	имеются отличия

Рисунок 14 – Сравнение характеристик кухонных комбайнов

Решение

Для решения задачи необходимо:

- 1) в ячейку Е2 ввести формулу
- =ECЛИ(B2=D2;"";"имеются отличия") (рисунок 15);
- 2) скопировать формулу на диапазон ячеек Е2:Е19.

При использовании мастера функции, поля диалогового окна функции ЕСЛИ необходимо заполнить следующим образом:

Рисунок 15 – Диалоговое окно функции ЕСЛИ

Пример 2

Вычислить значения кусочно-заданных функций в зависимости от значений аргумента на интервале [-1;1] с шагом 0,5 и построить их графики в одной координатной плоскости:

$$y_1 = \begin{cases} \cos(x), x = 0 \text{ или } x = 0,5; \\ tg(x), \text{в остальных случаяx} \end{cases}$$

б)
$$y_2 = \begin{cases} \sin(x+2), \text{ если } x \leq 0; \\ e^x, 0 < x \leq 0,5; \\ 2x^2, \text{ в остальных случаях} \end{cases}$$

Решение

1) Проведем подготовительную работу, создадим таблицу с исходными данными.

Введем в ячейку A2 первое значение аргумента x, равного -1 из отрезка [-1;1]. В ячейку A3 введем значение, увеличенное на шаг -0.5.

Для нахождения следующих значений из интервала необходимо выделить диапазон ячеек A2:A3 и, удерживая маркер автозаполнения, протянуть диапазон до ячейки A6 (рисунок 16).

Рисунок 16 - Нахождение значений из отрезка от -1 до 1

2) В ячейке В2 для нахождения значений функции *y1* введем формулу, используя логическую функцию ЕСЛИ, как показано на рисунке 17. Скопируем формулу в нижние ячейки.

B2 - (=			f_w	f =ECЛИ(ИЛИ(A2=0;A2=0,5);COS(A2);TAN(A2						
4	A	В		С	D	E	F	G		
1	_x_	y1		y2						
2	-1	-1,55741								
3	-0,5	-0,5463			0.5.	\ F				
4.	0	1		V. = ($= \cos(x), x=0$ или $x=0,5$					
5	0,5	0,877583		1 [tg(x), bc	стальн	ых случа	XRI		
6	1	1,557408								
7		- I Starting to the Starting to								

Рисунок 17 - Вычисление значений функции yl

3) Аналогично вычислим значения функции у2 (рисунок 18):

	C2	* (*)	£ =ЕСЛИ(A	12<=0;SIN	(А2+2);ЕСЛ	и(и(A2>0;	A2<=0,5);E	KP(A2);2*A	2^2))
d	A	В	C	D	E	E	G	H	- 1
1	×	y1	y2						
2	-1	-1,55741	0,841471						
3	-0,5	-0,5463	0,997495	[-:-(-:3)0					
4	0	1	0,9092974		$\sin(x+2)$, если $x \le 0$;			0;	
5	0,5	0,877583	1,6487213	wull sen	X o				
6	1	1,557408	2	y2=	e ^X ,0<	(x≤0,5);		
7				-	- 2				and the same of
					2x2,1	в оста.	льных	случа	XRI

Рисунок 18- Вычисление значений функции *у2*

- 3) Для построения графиков функции:
- выделим диапазон ячеек: A1:C6;
- укажем тип диаграммы *Точечная* группы *Диаграммы* на панели *Вставка* (рисунок 19);

Рисунок 19 – группа Диаграммы вкладки Вставка

После выбора типа диаграммы она сразу вставится на текущий лист. Для того чтобы настроить диаграмму, необходимо ее выделить, при этом активизируется панель *Работа с диаграммами* (рисунок 20).

Данная панель имеет три вкладки: *Конструктор*, *Макет* и *Формат* (рисунки 21, 22, 23).

Рисунок 20 - Панель Работа с диаграммами

Вкладка *Конструктор* дает возможность изменить тип диаграммы, выбрать (или изменить) исходные данные, Использовать готовые стили и макеты диаграмм, выбрать расположение построенной диаграммы.

Рисунок 21 - Вкладка Конструктор

Вкладка *Макет* позволяет изменить параметры осей, задавать подписи диаграммы, осей, легенды.

Рисунок 22 - Вкладка Макет

Вкладка $\Phi opmam$ помогает изменить внешний вид диаграммы.

Рисунок 23 – Вкладка Формат

В результате должен получиться следующий вид графиков и область построения графиков, как показано рисунке 24:

Рисунок 24 - Графики функций

3.2 Задания лабораторной работы

Задание 1

Для функций $y_1(x)$ и $y_2(x)$ (таблица 11) составьте таблицы значений на интервале [a;b] с шагом **h** и постройте их *графики на одной координатной плоскости*. Значения **a,b** и **h** подобрать самостоятельно, исходя из особенностей заданной функции.

Таблица 11 – Задания для выполнения лабораторной работы

№B	Функция <i>у₁(х)</i>	Функция <i>у₂(х)</i>
1	2	3
1	$y_1 = \begin{cases} \frac{1}{\sqrt{\sin x}}, & x \ge 1; \\ x+1 , & \text{в ост. случаях.} \end{cases}$	$y_{2} = \begin{cases} \sqrt[3]{ e^{x} }, -3 \le x \le 1 \\ x^{2.5}, x > 1 \\ 3,2 \text{ в остальных случаях} \end{cases}$

1	2	3
2	$y1(x) = \begin{cases} \cos x , & x \le 0; \\ \sqrt[3]{x+3}, & \text{в ост. случаяx} \end{cases}$	$y2(x) = \begin{cases} x , & x \le 0 \\ -\sin(2\pi x)/(2\pi) & 0 \le x \le 1; \\ 1-x, & x \ge 1. \end{cases}$
3	$y1(x) = \begin{cases} \sin x , & x \le 0; \\ \sqrt[3]{x+3}, & \text{в ост. случаяx} \end{cases}$	$y2(x) = \begin{cases} x \cdot x - 1, & x \le -1; \\ \cos(\frac{\pi}{2x}), & x \le 1; \\ 0, & x \ge 1. \end{cases}$
4	$y1(x) = \begin{cases} x(x-2), & x \le 0; \\ \sqrt[3]{ x }, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} x(x+2), & x \le -2; \\ \sin(\pi x), & -2 \le x \le 0; \\ x(x+2), & x > 0. \end{cases}$
5	$yl(x) = \begin{cases} \frac{1}{x+2}, & x > 2; \\ x^2 - 3, \text{ в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} 0, & x \le 1; \\ 1+x, & -1 < x < 0; \\ \cos(\pi x/2) & x \ge 1. \end{cases}$
6	$y1(x) = \begin{cases} (x+3)^3, & x \le 1; \\ \sqrt[3]{x+3}, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \exp(-x), & x \le 0; \\ \cos(x\pi/2), & 0 \le x \le 1; \\ 0, & x \ge 1. \end{cases}$
7	$y1(x) = \begin{cases} \sin x, & x = 2 \text{ или } x = -2; \\ \sqrt{x-1}, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} 0, & x \le -\pi/2 \\ \cos x, & -\pi/2 \le x \le 0; \\ 1, & x > 0. \end{cases}$

8	$y1(x) = \begin{cases} \cos x , & x = 3 \text{ или } x = 0; \\ \sqrt[5]{\cos x}, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \sqrt{x}, & x \ge \pi; \\ \sin^2 x + \sqrt{x}, & 0 \le x \le \pi, \\ x^2, & x < 0. \end{cases}$
9	$yl(x) = \begin{cases} e^x, & x > 0; \\ cos x + sin x, B oct. cлучаях. \end{cases}$	$y2(x) = \begin{cases} \sqrt{x+2} - e^{\frac{x}{2}}, & 0 \le x \le 2; \\ x+3 e^{2x}, & 2 < x \le 6; \\ \sin x, \text{в ост. случаях.} \end{cases}$
10	$y1(x) = \begin{cases} \cos x + \frac{3}{2}, & x = 1 \text{ или } x = 2; \\ \sqrt{x+3}, \text{ в ост. случаях} \end{cases}$	$y2(x) = \begin{cases} e^{x} + \frac{1}{x+1}, & 0 \le x < 3; \\ \sin x + \sqrt{x}, & x = 3; \\ \cos x + x+5 , & x \ge 3. \end{cases}$
11	$y1(x) = \begin{cases} \lg x, & x = 2 \text{ или } x = 4; \\ \sqrt[3]{x+3}, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \frac{1}{\sin x + 2}, & x \le 0; \\ \lg x + e^{x}, & 0 < x \le 2; \\ 2x^{2}, & x > 2 \end{cases}$
12	$y1(x) = \begin{cases} \frac{\cos x }{3}, & x = 0 \text{ или } x = -1; \\ \frac{3}{\sqrt{x+1}}, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \pi x + \lg x^2, & 0 \le x < 1.5; \\ 3 + x, & x = 1.5; \\ e^x + tgx, & x > 1.5. \end{cases}$
13	$y1(x) = \begin{cases} 2\sin x, & x = -1\text{ или } x = 1; \\ \cos(x+3), & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \pi x^2 - 9x^2, & x < 1.4; \\ x^3 + 17\sqrt{x}, & x = 1.4; \\ \ln(x + 11\sqrt{ x + a }), & x > 1.4 \end{cases}$

14	$y1(x) = \begin{cases} \cos x , & x \le 0 \text{ или} = 3; \\ \sin^2 x, \text{ в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \lg x + \sqrt[3]{\sin(x)} & x > 1; \\ 2\cos x + e^x & < 0 \text{ x } \le 1; \\ \left x + 3 \right , \text{ в ост. случаях.} \end{cases}$
15	$y1(x) = \begin{cases} \cos(x+3) , & x = 5 \text{ или } x = -5; \\ \sqrt{x-2}, & \text{в ост. случаях.} \end{cases}$	$y2(x) = \begin{cases} \sin x \cdot \lg x , & x > 3.5; \\ \cos^2 x + e^x, & 0 < x \le 3.5; \\ \sqrt{x+5}, & \text{в ост. случаях.} \end{cases}$

Задание 2

Оформить электронную таблицу согласно заданию и произвести необходимые вычисления.

Кондитерская фабрика «Шоко и K° » для производства трех видов шоколада: A, B, и C использует три вида сырья: масло-какао, тертое какао и сахарную пудру.

Нормы расхода сырья на 1000 (кг) шоколада соответственно равны (рисунок 25):

	Вид				
Сырье	A	В	C	Расход сырья	
Масло-какао	175,2	353,1	392,8		
Тертое какао	204,1	185,1	0		
Сахарная пудра	620,7	461,8	607,2		
Выход					
Какао-масса (%)					
Вид шоколада					

Рисунок 25 – Исходные данные для расчетов с применением логических функций

Требуется:

а) при помощи электронной таблицы рассчитать:

- расход сырья каждого вида;
- выход сырья (итог);
- какао-массу (масло какао + тертое какао) в процентах;
- определить вид шоколада, зависящей от какао-массы, если какао-масса больше 50%, то вид шоколада «Горький», иначе шоколад «Молочный», и вывести «Белый», если меньше 32% (расчет выполнять с использованием функции ЕСЛИ);
- б) построить диаграмму по расходу сырья каждого вида для производства шоколада A, B, C.

4 Лабораторная работа «Знакомство с MathCAD, вычисление выражений»

Цель работы: Освоить основные приемы работы с математическим пакетом MathCAD. Ознакомиться с основными панелями инструментов. Ознакомиться с основными правилами ввода данных и оформления математических выражений, а также получения итогового результата.

4.1 Технология работы

Рассмотрим примеры решения задач с помощью математического пакета MathCAD.

Пример 1

Вычислить значение выражения $y = tg^2 \left(\frac{\sqrt[3]{\ln|x-a|}}{x+a} \right)$ в заданной точке a=1,3 и

х=5,25, сопровождая каждый шаг текстовыми комментариями.

Технология работы:

1) Установим крестообразный курсор в место ввода текстового комментария и, придерживаясь, правил ввода текста, введем комментарии для реализации алгоритмов линейных структур, а именно «ввод данных», «вычисление значения выра-