Development Data Boot Camp Linear Regression: Understand OLS

Ge Sun

University of Notre Dame

May 19, 2023

Outline

Explore the relationship between Y and X

Linear regression models

Digressions: the GSS dataset

For five decades, the General Social Survey (GSS) has studied the growing complexity of American society. It is the only full-probability, personal-interview survey designed to monitor changes in both social characteristics and attitudes currently being conducted in the United States.

► GSS official website

Outline

Explore the relationship between Y and X

Linear regression models

- ► Suppose there are two variables: Y representing wages, and X representing years of education.
- ▶ We are interested in "explaining Y in terms of X," or in "studying how Y varies with changes in X."
- Suppose we can observe a group of data, indexed by $1, 2, \ldots, n$:

$$(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$$

- How would we get the sample above in reality?
 - * RCT
 - * Sample survey: the Quarterly Labour Force Survey (QLFS) database (randomly drawing 6,550 people from the working population)
 - * Administrative data

- ➤ *Y* is often called dependent variable, outcome variable, explained variable, and predicted variable.
- ➤ *X* is often called independent variable, regressor, explanatory variable, and covariate.

Terminology for Simple Regression					
x					
Independent variable					
Explanatory variable					
Control variable					
Predictor variable					
Regressor					

Figure 1: Terminology for simple regression

Draw a scatter figure of Y and X for 12 artificial observations:

Figure 2: Relationship between wages and years of education

Question of interest: Can I generate some general rules based on my observations?

▶ A natural way to explore the relationship between wages and years of education, is to add a best fitted **line** on the figure such that all points are "closely" enough to the line.

Outline

Explore the relationship between Y and X

Linear regression models

OLS

▶ The mathematical way to write down a line:

$$y = \beta_0 + \beta_1 x$$

In our wage and education example, we are trying to write a line as:

$$wage = \beta_0 + \beta_1 edu$$

Then, the original wage level is:

wage =
$$wage + u$$

= $\beta_0 + \beta_1 edu + u$

▶ The definition of "closely" / "bested fitted":

$$\min \sum_{i} (\mathsf{wage}_i - \mathsf{wage}_i)^2 \equiv \min \sum_{i} (u_i)^2$$

▶ the method to get β_0 and β_1 : Ordinary Least Square (OLS)

Implement OLS in Stata

► The command regression can be used to obtain the coefficients of the best fitted line. Type

reg wage edu

Source	SS	df	MS	Numb	er of obs		12
				<pre>- F(1,</pre>	10)		147.13
Model	1912605.78	1	1912605.7	8 Prob			0.0006
Residual	129997.996	10	12999.799	6 R-sq	uared		0.9364
				— Adj	R-squared		0.9300
Total	2042603.78	11	185691.25	2 Root	MSE		114.02
					fore		
wage	Coefficient	Std. err.	t	P> t	[95% cor	11.	interval
edu	115.6498	9.534552	12.13	0.000	94.40545	5	136.894
_cons	-128.0852	105.3845	-1.22	0.252	-362.8964	1	106.7261

Figure 3: Regression results

Implement OLS in Stata

► The best fitted line is:

$$wage = -128.0852 + 115.65 * edu$$

▶ and the corresponding plot in the figure is

Figure 4: Fitted line

Std.err.

- ▶ It is short for "Standard error"
- Basically it tries to evaluate how accurate our estimation is.
- ► The smaller, the better.

The coefficients and standard errors are the most common things that authors will report in their paper.

Understanding Std.err.

Figure 5: Sample with small and large variance

t, P>|t|, 95% conf.interval

t: t-statistics

$$t = \frac{\beta}{\textit{Std.err.}}$$

- ► P>|t|: p-value, calculated by t-statistics
 - * helps us to identify the "significance level"
 - * the smaller, the better

t, P>|t|, 95% conf.interval

- ▶ 95% conf.interval:
 - * We have 95% confidence that the true coefficient lies within this interval.

▶ t-statistics, P > |t|, and 95% confidence intervals: measure how confident we can say that explanatory variable does impact on explained variables.

 $|t|\uparrow\Rightarrow$ more confident $P>|t|\downarrow\Rightarrow$ more confident

0 is far from 95% confident intervals \Rightarrow more confident

Source				Numb	er of obs		12
							147.13
Model	1912605.78		1912605.7	8 Prob			0.0000
Residual	129997.996	10	12999.799	6 R-sq	uared		0.9364
				– Adj	R-squared		0.9300
	2042603.78		185691.25	2 Root	MSE		114.0
wage	Coefficient	Std. err.		P> t	[95% cor	ıf.	interval]
edu	115.6498	9.534552	12.13	0.000	94.40545	;	136.894
cons	-128.0852	105.3845	-1.22	0.252	-362.8964		106.7263

The upper-right corner

- R-squared: the proportion of wage variation that can be explained by edu variation.
- Prob > F: the overall significance level of this model. The smaller, the better
- Root MSE: root of MSE

$$MSE = \frac{1}{n} \sum_{i=1}^{N} (wage_i - w\hat{a}ge_i)^2$$

The upper-left table

- df: degree of freedom
 - Regression df: he number of independent variables in our regression model (just edu)
 - * Residual df: total number of observations of the dataset subtracted by the number of variables being estimated (12-2)
- SS: sum of squares
- ► MS: mean squared errors
- ightharpoonup R-squared = $Model_{SS}/Total_{SS}$

Multi-variate linear regression

- Education level (schooling years) is not the only determinant for people's future earnings.
- Mincer earnings function:

$$\log(wage) = \beta_0 + \beta_1 schooling + \beta_2 exp + \beta_3 exp_{sq}$$

► This seems more complex, but the simple *reg* command can help us get β_0 , β_1 and β_2 all at once.

How to interpret β_1 ?

► Recall the linear regression models

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 W + u$$

► Fix *u*, *W*, *Z*,

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 W + u$$

$$Y + \Delta Y = \beta_0 + \beta_1 (X + \Delta X) + \beta_2 Z + \beta_3 W + u$$

$$\Rightarrow \Delta Y = \beta_1 \Delta X$$

$$\Rightarrow \beta_1 = \frac{\Delta Y}{\Delta X}$$

- Thus, if we fix u and Z and W (that is, holding experience and other factors unchanged), β_1 measures the impact of one unit increment of X on Y.
- If Y is the (log)wage measured in dollars per month and X is years of education, then β_1 measures the change in monthly wage given another year of education, holding all other factors, including experience, fixed.

Implement multi-variate OLS in Stata

Now, it is time to try by your self! Use our South African Labour Force data,

reg logwage edyears exp exp_sq