Clase 14

IIC 1253

Prof. Cristian Riveros

¿cuál es el tamaño de este conjunto?

¿por qué el conjunto tiene tamaño 5?

Sea A y B dos conjuntos.

Definición

A y B son equinumerosos si existe una biyección $f: A \rightarrow B$.

Si A es equinumeroso con B lo anotaremos como |A| = |B|.

¿qué propiedad cumple la relación |A| = |B|?

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Demostración

Refleja?

PD: Para todo conjunto A, |A| = |A|

La función $f: A \rightarrow A$ tal que f(a) = a es una biyección.

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Demostración

Simétrica?

PD: para todo conjunto A y B, si |A| = |B|, entonces |B| = |A|.

Supongamos que |A| = |B|.

```
\Rightarrow existe una biyección f: A \rightarrow B.
```

$$\Rightarrow f^{-1}: B \to A$$
 es una biyección. (¿por qué?)

$$\Rightarrow |B| = |A|$$
.

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Demostración

■ Transitiva?

PD: Para todo A, B, C, si |A| = |B| y |B| = |C|, entonces |A| = |C|.

Supongamos que |A| = |B| y |B| = |C|.

 \Rightarrow existen biyecciones $f: A \rightarrow B \ y \ h: B \rightarrow C$.

 $\Rightarrow f \circ h : A \to C$ es una biyección.

(¿por qué?)

$$\Rightarrow |A| = |C|$$
.

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Por lo tanto, podemos tomar las clases de equivalencia de $|\cdot| = |\cdot|$.

Definición

Para un conjunto A, denotaremos por |A| su **clase de equivalencia** según la relación $|\cdot| = |\cdot|$.

Cardinalidad (ejemplos)

Ejemplos

```
¿qué conjuntos están en las siguientes clases de equivalencia para |\cdot|=|\cdot|?

• |\{a,b,c,d,e,f\}|

• |\{\heartsuit, \spadesuit, \diamondsuit, \spadesuit\}|
```

- | {0,1,2,3,4} | ■ | Ø |
- | N |
- | N×N |
- . | Z |
- | Q |
- | R |

Cardinalidad de conjuntos finitos

Sea A un conjunto cualquiera.

Definición

■ Diremos que A es finito si existe un n tal que:

$$|A| = |\{0, 1, 2, \ldots, n-1\}|$$

■ Si $|A| = |\{0, 1, 2, ..., n-1\}|$ diremos que la cardinalidad de A es n.

$$|A| = n$$

¿sirve la relación $|\cdot| = |\cdot|$ para medir la cardinalidad de conjuntos **infinitos**?

Cardinalidad de conjuntos infinitos

Definición

Sea \mathbb{P} el conjunto de todos los números pares.

¿es \mathbb{P} mas infinito que \mathbb{N} ?

Con la biyección $f : \mathbb{N} \to \mathbb{P}$ tal que $f(n) = 2 \cdot n$, se tiene que $|\mathbb{N}| = |\mathbb{P}|$.

Demuestre que $f : \mathbb{N} \to \mathbb{P}$ es una biyección.

¿es \mathbb{Z} mas infinito que \mathbb{N} ?

\mathbb{Z} mas infinito que \mathbb{N} ?

Teorema

Los conjuntos \mathbb{N} y \mathbb{Z} son equinumerosos.

¿cómo demostramos que $|\mathbb{N}| = |\mathbb{Z}|$?

¿es \mathbb{Z} mas infinito que \mathbb{N} ?

Teorema

Los conjuntos \mathbb{N} y \mathbb{Z} son equinumerosos.

¿como demostramos que $|\mathbb{N}| = |\mathbb{Z}|$?

Definimos la biyección $f : \mathbb{N} \to \mathbb{Z}$ como:

$$f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ -\frac{n+1}{2} & \text{si } n \text{ es impar} \end{cases}$$

Por lo tanto, $|\mathbb{N}| = |\mathbb{Z}| !!$

Conjuntos numerables

Definición

Decimos que un conjunto A es numerable si: $|A| = |\mathbb{N}|$.

Proposición

A es numerable si, y solo si, existe una secuencia infinita:

$$a_0, a_1, a_2, a_3, \ldots, a_n, a_{n+1}, \ldots$$

- 1. $a_i \in A$ para todo $i \in \mathbb{N}$.
- 2. $a_i \neq a_j$ para todo $i \neq j$.
- 3. para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una lista infinita.

¿son los racionales $\mathbb Q$ numerables? ¿es $\mathbb N \times \mathbb N$ numerable?

Teorema

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables.

¿funciona?

Teorema

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables.

¿cuál es la secuencia que estamos siguiendo?

Teorema

 $\mathbb Q$ y $\mathbb N\times \mathbb N$ son conjuntos numerables.

```
(0,0),

(1,0),(0,1),

(2,0),(1,1),(0,2),

...

(n,0),(n-1,1),(n-2,2),...,(2,n-2),(1,n-1),(0,n),...
```

Teorema

 $\mathbb Q$ y $\mathbb N\times \mathbb N$ son conjuntos numerables.

$$S_0 := (0,0),$$
 $S_1 := (1,0),(0,1),$
 $S_2 := (2,0),(1,1),(0,2),$
...
 $S_n := (n,0),(n-1,1),(n-2,2),...,(2,n-2),(1,n-1),(0,n),...$

- 1. $\lambda a_i \in \mathbb{N} \times \mathbb{N}$ para todo $i \in \mathbb{N}$?
- 2. $\lambda a_i \neq a_j$ para todo $i \neq j$?
- 3. ¿para todo $(n_1, n_2) \in \mathbb{N} \times \mathbb{N}$, existe un $i \in \mathbb{N}$ tal que $(n_1, n_2) = a_i$?

Por lo tanto, $\mathbb{N} \times \mathbb{N}$ es un conjunto numerable.

Teorema

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables.

¿cómo podemos enumerar Q?

(Ejercicio)

¿por qué nos falla la intuición?

David Hilbert (1862 - 1943)

Paradoja del gran hotel de Hilbert

