Fiche de TD de révision

Exercice 1.

Soit θ un réel strictement positif fixé et X une variable aléatoire de densité

$$f(x,\theta) = \begin{cases} \frac{2x}{\theta^2} & \text{si } x \in [0,\theta] \\ 0 & \text{sinon.} \end{cases}$$

- 1. Montrer que f est bien une densité de probabilité.
- 2. Calculer $\mathbb{P}\left(X < \frac{\theta}{4}\right)$.
- 3. Calculer $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ puis Var(X) en fonction de θ .

Exercice 2.

- 1. Soit X une variable aléatoire de loi $\mathcal{N}(m, \sigma^2)$. Quelle est la densité de X? En déduire une expression de $\mathbb{P}(X > 1)$.
- 2. Quelle est la loi de la variable aléatoire $Z = \frac{X-m}{\sigma}$? Quelle est sa densité de probabilité?
- 3. Exprimer $\mathbb{P}(X > 1)$ en fonction de la fonction de répartition de Z.
- 4. Combien valent l'espérance et la variance de X et de Z?
- 5. Calculer $\mathbb{E}(Z^3)$ et $\mathbb{E}(Z^4)$. En déduire la valeur de $\mathbb{E}(X^3)$ et $\mathbb{E}(X^4)$.

Exercice 3. Deux lois sans mémoire

- 1. Soit X une variable aléatoire qui suit la loi géométrique de paramètre p.
 - (a) Rappeler les valeurs de $\mathbb{P}(X = k)$ pour tout $k \in \mathbb{N}^*$ et calculer la fonction de répartition de X.
 - (b) Pour j et k dans \mathbb{N}^* , comparer $\mathbb{P}(X > j)$ et $\mathbb{P}(X > j + k | X > k)$. Que remarquet-on? On dit donc que la géométrique est sans mémoire.
- 2. Le temps d'utilisation d'une ampoule avant qu'elle grille est une variable aléatoire T qui suit une loi exponentielle de paramètre a = 0.005 (jours⁻¹).
 - (a) Calculer $\mathbb{E}(T)$ et sa fonction de répartition.
 - (b) Pour $s, t \in \mathbb{R}_+$, calculer $\mathbb{P}(T > t)$ que l'ampoule soit encore allumée au bout de t jours, et la probabilité $\mathbb{P}(T > t + s | T > s)$ que l'ampoule dure encore t jours de plus si on constate au bout de s jours qu'elle est toujours allumé. Que remarque-ton?

(c) On allume l'ampoule, on contrôle une fois par jour si elle est toujours allumée, et on note Z=1 si on trouve l'ampoule grillée au soir du premier jour, Z=2 si cela se produit au soir du deuxième jour, etc. Déterminer la loi de Z.

Exercice 4.

Dans tout cet exercice, $\theta>0$ est un paramètre fixé. On appelle loi de Fréchet (θ) la loi qui a pour densité

$$f(x,\theta) = \begin{cases} \frac{\theta}{x^2} e^{-\frac{\theta}{x}} & \text{si } x > 0\\ 0 & \text{sinon.} \end{cases}$$

- 1. Calculer la fonction de répartition F_{θ} de la loi de Fréchet (θ) .
- 2. Si X suit la loi de Fréchet(θ), quelle est la loi de $\frac{1}{X}$?
- 3. Prouver que si X_1, \ldots, X_n sont indépendantes et toutes de loi de Fréchet (θ) , alors la variable aléatoire $M_n = \max(X_1, \ldots, X_n)$ suit la loi Fréchet $(n\theta)$. En déduire que $M_n = \max(X_1, \ldots, X_n)$ a même loi que nX_1 .
- 4. On vient de prouver que les lois de Fréchet ont la propriété de max-stabilité: $\max(X_1, \ldots, X_n)$ a même loi que nX_1 si les X_i sont indépendantes de même loi de Fréchet. Est-il vrai que toutes les lois de probabilité ont cette propriété?
- 5. Si X_1, \ldots, X_n sont indépendantes et toutes de loi de Fréchet (θ) , la suite des moyennes empiriques $\frac{1}{n} \sum_{i=1}^{n} X_i$ converge-t-elle presque surement? (Si oui, préciser la limite).