

PY32F002B 系列数据手册

32 位 ARM® Cortex®-M0+ 微控制器

Puya Semiconductor (Shanghai) Co., Ltd

PY32F002B 系列

32 位 ARM® Cortex®-M0+ 微控制器

产品特性

- 内核
 - 32 位 ARM® Cortex® M0+
 - 最高 24 MHz 工作频率
- 存储器
 - 24 KB Flash 存储器
 - 3 KB SRAM
- 时钟系统
 - 内部 24 MHz RC 振荡器 (HSI)
 - 内部 32.768 kHz RC 振荡器 (LSI)
 - 32.768 kHz 低速晶体振荡器 (LSE)
 - 一 外部时钟输入
- 电源管理和复位
 - 工作电压: 1.7~5.5 V
 - 低功耗模式: Sleep/Stop
 - 上电/掉电复位 (POR/PDR)
 - 掉电检测复位 (BOR)
- 通用输入输出 (I/O)
 - 多达 18 个 I/O,均可作为外部中断
- 1 x 12 位 ADC
 - 一 支持最多 8 个外部输入通道, 2 个内部通道
 - ─ 参考源:内置 1.5 V/2.048 V/2.5 V 参考电压,电源电压 Vcc
- 定时器
 - 1 个 16 位高级控制定时器 (TIM1)
 - 1 个通用的 16 位定时器 (TIM14)
 - 1 个低功耗定时器 (LPTIM),支持从 stop 模式唤醒
 - 1 个独立看门狗定时器 (IWDG)
 - 1 个 SysTick 定时器

■ 通讯接口

- 1 个串行外设接口 (SPI)
- 1 个通用同步/异步收发器 (USART),支持自动波特率检测
- 1 个 I²C 接口,支持标准模式 (100 kHz)、快速模式 (400 kHz),支持 7 位寻址模式
- 硬件 CRC-32 模块
- 2 路比较器
- 唯一 UID
- 串行调试 (SWD)
- 工作温度: -40~85°C, -40~105°C
- 封装: QFN20, TSSOP20, SOP20、QFN16, SOP16, SOP14, SOP8

目录

产	品特性		2
1.	简介	}	5
2.	功能	眕概述	9
	2.1.	Arm® Cortex®-M0+ 内核	9
	2.2.	存储器	9
	2.3.	Boot 模式	9
	2.4.	时钟系统	10
	2.5.	电源管理	11
	2.5.	1. 电源框图	11
	2.5.	2. 电源监控	11
	2.5.	S.—731 AA	
	2.5.	4. 低功耗模式	12
	2.6.	复位	12
	2.6.	1. 电源复位	12
	2.6.	2. 系统复位	12
	2.7.	通用输入输出 GPIO	13
	2.8.	中断	13
	2.8.	1. 中断控制器 NVIC	13
	2.8.	2. 扩展中断 EXTI	13
	2.9.	模数转换器 ADC	14
	2.10.	比较器(COMP)	14
	2.10	D.1. COMP 主要特性	14
	2.11.	定时器	14
	2.11	1.1. 高级定时器	15
	2.11	1.2. 通用定时器	15
	2.11	1.3. 低功耗定时器	15
	2.11	1.4. IWDG	15
	2.11	1.5. SysTick 定时器	16
	2.12.	I ² C 接口	16
	2.13.	通用同步异步收发器 USART	17
	2.14.	串行外设接口 SPI	18
	2.15.	SWD	18
3.	引胠	1配置	19
	3.1.	端口 A 复用功能映射	26
	3.2.	端口 B 复用功能映射	26
	3.3.	端口 C 复用功能映射	26
4.	存储	皆器映射	27
5.	电气	〔特性	31

5.1.	测试	条件	31
5.1	I.1.	最小值和最大值	31
5.1	1.2.	典型值	31
5.2.	绝对	最大额定值	31
5.3.	工作	条件	32
5.3	3.1.	通用工作条件	32
5.3	3.2.	上下电工作条件	32
5.3	3.3.	内嵌复位模块特性	32
5.3	3.4.	工作电流特性	33
5.3	3.5.	低功耗模式唤醒时间	
5.3	3.6.	外部时钟源特性	
5.3	3.7.	内部高频时钟源 HSI 特性	36
5.3	3.8.	内部低频时钟源 LSI 特性	
5.3	3.9.	存储器特性	
5.3	3.10.	EFT 特性	
5.3	3.11.	ESD & LU 特性	
5.3	3.12.	端口特性	
5.3	3.13.	NRST 引脚特性	
5.3	3.14.	ADC 特性	
5.3	3.15.	比较器特性	
5.3	3.16.	温度传感器特性	
5.3	3.17.	内置参考电压特性	
5.3	3.18.	ADC 内置参考电压特性	41
5.3	3.19.	COMP 内置参考电压特性(4 位 DAC)	41
5.3	3.20.	定时器特性	41
5.3	3.21.	通讯口特性	42
6. 封	装信息		46
6.1.	QFN	J20 (3*3*0.5) 封装尺寸	46
6.2.	QFN	J20 (3*3*0.55) 封装尺寸	47
6.3.	TSS	OP20 封装尺寸	48
6.4.	SOF	220 封装尺寸	49
6.5.	QFN	l16 封装尺寸	50
6.6.	SOF	P16 封装尺寸	51
6.7.	SOF	214 封装尺寸	52
6.8.	SOF	염 封装尺寸	53
7. 订!	购信息		54
ο не.	木压山		55

1. 简介

PY32F002B 系列微控制器采用高性能的 32 位 ARM® Cortex®-M0+内核,宽电压工作范围的 MCU。嵌入 24 KB Flash 和 3 KB SRAM 存储器,最高工作频率 24 MHz。包含多种不同封装类型产品。芯片集成 I^2C 、 SPI、USART 等通讯外设,1 路 12 位 ADC,2 个 16 位定时器,以及 2 路比较器。

PY32F002B 系列微控制器的工作温度范围为 -40 ~ 85 °C 或 -40 ~ 105 °C, 工作电压范围 1.7 ~ 5.5 V。 芯片提供 sleep/stop 低功耗工作模式,可以满足不同的低功耗应用。

PY32F002B 系列微控制器适用于多种应用场景,例如控制器、手持设备、PC 外设、游戏和 GPS 平台、工业应用等。

表 1-1 PY32F002Bx6 系列产品规划及特征

		表1	-1 PY32F002Bx6 系列产品规划及	2特征 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
	外设	PY32F002BF15U6	PY32F002BF15P6	PY32F002BW15S6	PY32F002BD15S6						
	Flash (KB)		24								
	SRAM (KB)			3	-						
	高级定时器		1 (16-bit)								
	通用定时器		1 (16-bit)							
定时器	低功耗定时器			1							
	SysTick			1							
	Watchdog		1								
	SPI	1									
通讯口	I ² C	1									
	USART			1							
	通用端口	18	18	14	12						
	ADC 通道数	0.0	0.2	7.0	7+2						
	(外部 + 内部)	8+2	8+2								
	比较器	2									
	最高主频		24 MHz								
	工作温度	-40 ~ 85 °C									
	工作电压		1.7	~ 5.5 V							
	封装	QFN20	TSSOP20	SOP16	SOP14						

表 1-2 PY32F002Bx7 系列产品规划及特征

<i>ከ</i> ኒው		PY32F002BF15	PY32F002BF15	PY32F002BF15	PY32F002BW15	PY32F002BW15	PY32F002BD15	PY32F002BL15					
	外设	U7	P7	S 7	U7	S7	S7 S7						
Fla	ash (KB)	24	24	24	24	24	24	24					
SR	AM (KB)	3	3	3	3	3	3	3					
	高级定时器		1 (16-bit)										
	通用定时器				1 (16-bit)								
定时器	低功耗定时器		1										
	SysTick		1										
	Watchdog		1										
	SPI	1											
通讯口	I ² C		1										
	USART				1								
Ĭ		18	18	18	14	14	12	6					
AD	C 通道数	8+2	8+2	8+2	8+2	7+2	7+2	6.2					
(外音	部 + 内部)	0+2	0+2	0+2	0+2	7+2	7+2	6+2					
	比较器	2	2	2	2	2	2	1					
	最高主频	24 MHz											
I	作温度			-40 ~	105 °C								
I	作电压			1.7~	5.5 V								
	封装	QFN20	TSSOP20	SOP20	QFN16	SOP16	SOP14	SOP8					

图 1-1 功能模块

2. 功能概述

2.1. Arm® Cortex®-M0+ 内核

Arm[®] Cortex[®]- M0+ 是一款为广泛的嵌入式应用设计的入门级 32 位 Arm Cortex 处理器。它为开发人员提供了显著的好处,包括:

- 结构简单,易于学习和编程
- 超低功耗,节能运行
- 精简的代码密度等

Cortex-M0+ 处理器是 32 位内核,面积和功耗优化高,为 2 级流水的冯诺伊曼架构。处理器通过精简但强大的指令集和广泛优化的设计,提供高端处理硬件,包含单周期乘法器,提供了 32 位架构计算机所期望的卓越性能,比其他 8 位和 16 位微控制器具有更高的代码密度。

Cortex-M0+ 与一个嵌套的矢量中断控制器(NVIC)紧密耦合。

2.2. 存储器

片内集成 SRAM。通过 byte (8 位)、half-word (16 位)或者 word (32 位)的方式可访问 SRAM。 片内集成 Flash,包含 2 个不同的物理区域组成:

- Main Flash 区域, 24 KB, 用于存储用户程序和用户数据, 另外可以根据客户配置可以设定最大 4 KB Load flash 作为 User bootloader 使用。
- Information 区域, 768 Bytes, 它包括以下部分:
 - Option bytes
 - UID bytes
 - Factory Configuration bytes
 - USER OTP memory

对 Flash main memory 的保护包括以下几种机制:

- write protection (WRP)控制,以防止不想要的写操作(由于程序存储器指针 PC 的混乱)。写保护的最小保护单位为 4 KB。
- Option byte 写保护,专门的解锁设计。

2.3. Boot 模式

通过配置位 nBOOT0/ nBOOT1(存放于 Option bytes 中),可选择三种不同的启动模式,如下表所示:

Boot mode	configuration	Mode			
nBOOT1 bit	nBOOT0 bit	Boot memory size == 0	Boot memory size != 0		
Х	0	Main flash 启动	Main Flash 启动		
0	1	SRAM 启动	SRAM 启动		
1	1	N/A	Load Flash 启动		

表 2-1 Boot 配置

2.4. 时钟系统

CPU 启动后默认系统时钟频率为 HSI 24 MHz,在程序运行后可以重新配置系统时钟频率和系统时钟源。可以选择的高频时钟有:

- 24 MHz 可配置的内部高精度 HSI 时钟。
- 一个 32.768 KHz 可配置的内部 LSI 时钟。
- 4~32 MHz 外部输入时钟
- 32.768 KHz LSE 时钟。

AHB 时钟可以基于系统时钟分频,APB 时钟可以基于 AHB 时钟分频。AHB 和 APB 时钟频率最高为 24 MHz。

图 2-1 系统时钟结构图

2.5. 电源管理

2.5.1. 电源框图

图 2-2 电源框图

编号 电源 描述 电源值 1 Vcc 1.7 V ~ 5.5 V 通过电源管脚为芯片提供电源,其供电模块为:部分模拟电路。 2 1.7 V ~ 5.5 V 给大部分模拟模块供电,来自于 Vcc PAD(也可设计单独电源 PAD)。 V_{CCA} 3 1.7 V ~ 5.5 V 给 IO 供电,来自于 Vcc PAD V_{CCIO}

表 2-2 电源框图

2.5.2. 电源监控

2.5.2.1. 上下电复位(POR/PDR)

芯片内设计 Power on reset (POR)/Power down reset (PDR)模块,为芯片提供上电和下电复位。该模块在各种模式之下都保持工作。

2.5.2.2. 欠压复位(BOR)

除了 POR/PDR 外,还实现了 BOR (brown out reset)。BOR 仅可以通过 option byte 进行使能和关闭操作。

当 BOR 被打开时,BOR 的阈值可以通过 Option byte 进行选择,且上升和下降检测点都可以被单独配置。

图 2-3 POR/PDR/BOR 阈值

2.5.3. 电压调节器

芯片设计两个电压调节器:

- MR (Main regulator)在芯片正常运行状态时保持工作。
- LPR (low power regulator)在 stop 模式下,提供更低功耗的选择。

2.5.4. 低功耗模式

芯片在正常的运行模式之外,有2个低功耗模式:

- Sleep mode: CPU 时钟关闭 (NVIC, SysTick 等工作),外设可以配置为保持工作。(建议只使能必须工作的模块,在模块工作结束后关闭该模块)
- **Stop mode**: 该模式下 SRAM 和寄存器的内容保持,HSI 关闭。GPIO,IWDG,nRST, LPTIM 可以唤醒 stop 模式。

2.6. 复位

芯片内设计两种复位,分别是:电源复位和系统复位。

2.6.1. 电源复位

电源复位在以下几种情况下产生:

- 上下电复位 (POR/PDR)
- 欠压复位 (BOR)

2.6.2. 系统复位

当产生以下事件时,产生系统复位:

- NRST pin 的复位
- 独立看门狗复位 (IWDG)
- SYSRESETREQ 软件复位
- option byte load 复位 (OBL)

2.7. 通用输入输出 GPIO

每个 GPIO 都可以由软件配置为输出 (push-pull 或者 open drain),输入 (floating, pull-up/down, analog),外设复用功能,锁定机制会冻结 I/O 口配置功能。

2.8. 中断

PY32F002B 通过 Cortex-M0+ 处理器内嵌的矢量中断控制器 (NVIC) 和一个扩展中断/事件控制器 (EXTI) 来处理异常。

2.8.1. 中断控制器 NVIC

NVIC 是 Cortex-M0+ 处理器内部紧耦合 IP。NVIC 可以处理来自处理器外部的 NMI (不可屏蔽中断)和可屏蔽外部中断,以及 Cortex-M0+ 内部异常。NVIC 提供了灵活的优先级管理。

处理器核心与 NVIC 的紧密耦合大大减少了中断事件和相应中断服务例程(ISR)启动之间的延迟。ISR 向量列在一个向量表中,存储在 NVIC 的一个基地地址。要执行的 ISR 的向量地址是由向量表基址和用作偏移量的 ISR 序号组成的。

如果高优先级的中断事件发生,而低优先级的中断事件刚好在等待响应,稍后到达的高优先级的中断事件将首先被响应。另一种优化称为尾链(tail-chaining)。当从一个高优先级的 ISR 返回时,然后启动一个挂起的低优先级的 ISR,将跳过不必要的处理器上下文的压栈和弹栈。这减少了延迟,提高了电源效率。

NVIC 特性:

- 低延时中断处理
- 4级中断优先级
- 支持1个NMI中断
- 支持 18 个可屏蔽外部中断
- 支持 10 个 Cortex-M0+ 异常
- 高优先级中断可打断低优先级中断响应
- 支持尾链(tail-chaining)优化
- 硬件中断向量检索

2.8.2. 扩展中断 EXTI

EXTI 增加了处理物理线事件的灵活性,并在处理器从 stop 模式唤醒时产生唤醒事件。

EXTI 控制器有多个通道,包括最多 18 个 GPIO, 2 个 COMP 输出,以及 LPTIM 唤醒信号。其中 GPIO,COMP 可以配置上升沿、下降沿或双沿触发。任何 GPIO 信号通过选择信号配置为 EXTIO~7 通道。

每个 EXTI line 都可以通过寄存器独立屏蔽。

EXTI 控制器可以捕获比内部时钟周期短的脉冲。

EXTI 控制器中的寄存器锁存每个事件,即使是在 stop 模式下,处理器从停止模式唤醒后也能识别唤醒的来源,或者识别引起中断的 GPIO 和事件。

2.9. 模数转换器 ADC

芯片具有 1 个 12 位的 SAR-ADC。该模块最多支持 10 个转换通道,包括 8 个外部通道和 2 个内部通道。参考电压可选择片内电压(1.5V、2.048V、2.5V)或 Vcc 电源。

各通道的转换模式可以设定为单次、连续、扫描、不连续模式。转换结果存储在左对齐或者右对齐的 16 位数据寄存器中。

模拟 watchdog 允许应用检测是否输入电压超出了用户定义的高或者低阈值。

ADC 实现了在低频率下运行,可获得很低的功耗。

在采样结束,转换结束,连续转换结束,模拟 watchdog 时转换电压超出阈值时产生中断请求。

2.10. 比较器(COMP)

芯片内集成通用比较器 (general purpose comparators) COMP, 也可以与 timer 组合在一起使用。比较器可以被如下使用:

- 被模拟信号触发,产生低功耗模式唤醒功能
- 模拟信号调节
- 当与来自 timer 的 PWM 输出连接时,Cycle by cycle 的电流控制回路

2.10.1. COMP 主要特性

- 每个比较器有可配置的正或者负输入,以实现灵活的电压选择
 - ─ 多路 I/O pin
 - 电源 Vcc 和通过分压提供的 15 个分数值(1/16、2/16 ... 15/16)
 - 参考电压可选择片内电压 (1.5 V、2.048 V、2.5 V) 或 Vcc 电源, 和通过分压提供的 15 个分数值(1/16、2/16 ... 15/16)
- 输出可以连接到 I/O 或者 timer 的输入作为触发
 - OCREF CLR 事件 (cycle by cycle 的电流控制)
 - 一 为快速 PWM shutdown 的刹车

每个 COMP 具有中断产生能力,用作芯片从低功耗模式 (sleep 模式) 的唤醒 (通过 EXTI)

2.11. 定时器

PY32F002B 不同定时器的特性如下表所示:

表 2-3 定时器特性

类型	Timer	位宽	计数方向	预分频	捕获/比较通道	互补输出
高级定时器	TIM1	16 位	上,下, 中央对齐	1 ~ 65536	4	3
通用定时器	TIM14	16-位	上	1 ~ 65536	1	-

2.11.1. 高级定时器

高级定时器(TIM1)由 16 位被可编程分频器驱动的自动装载计数器组成。它可以被用作各种场景,包括:输入信号(输入捕获)的脉冲长度测量,或者产生输出波形(输出比较、输出 PWM、带死区插入的 互补 PWM)。

TIM1包括4个独立通道,用作:

- 输入捕获
- 输出比较
- PWM产生(边缘或者中心对齐模式)
- 单脉冲模式输出

如果 TIM1 配置为标准的 16 位计时器,则它具有与 TIMx 计时器相同的特性。如果配置为 16 位 PWM 发生器,则具有全调制能力(0 - 100%)。

在 MCU debug 模式, TIM1 可以冻结计数。

具有相同架构的 timer 特性共享,因此 TIM1 可以通过计时器链接功能与其他计时器一起工作,以实现同步或事件链接。

2.11.2. 通用定时器

- 通用定时器 TIM14 由可编程预分频器驱动的 16 位自动装载计数器构成。
- TIM14 具有 1 个独立通道用于输入捕获/输出比较, PWM 或者单脉冲模式输出。
- 在 MCU debug 模式, TIM14 可以冻结计数。

2.11.3. 低功耗定时器

- LPTIM 为 16 位向上计数器,包含 3 位预分频器。只支持单次计数。
- LPTIM 可以配置为 stop 模式唤醒源。
- 在 MCU debug 模式,LPTIM 可以冻结计数值。

2.11.4. IWDG

芯片内集成了一个 Independent watchdog(简称 IWDG),该模块具有高安全级别、时序精确及灵活使用的特点。IWDG 发现并解决由于软件失效造成的功能混乱,并在计数器达到指定的 timeout 值时触发系统复位。

- IWDG 由 LSI 提供时钟,这样即使主时钟 Fail,也能保持工作。
- IWDG 最适合需要 watchdog 作为主应用之外的独立过程,并且无很高的时序准确度限制的应用。

- 通过 option byte 的控制,可以使能 IWDG 硬件模式。
- IWDG 是 stop 模式的唤醒源,以复位的方式唤醒 stop 模式。
- 在 MCU debug 模式,IWDG 可以冻结计数值。

2.11.5. SysTick 定时器

SysTick 计数器专门用于实时操作系统(RTOS),但也可以用作标准的向下计数器。

SysTick 特性:

- 24 位向下计数
- 自装载能力
- 计数器记到 0 时可产生中断(可屏蔽)

2.12. I²C 接口

I²C(inter-integrated circuit)总线接口连接微控制器和串行 I²C 总线。它提供多主机功能,控制所有 I²C 总线特定的顺序、协议、仲裁和时序。支持标准(Sm)、快速(Fm)。

I²C 特性:

- Slave 和 Master 模式
- 多主机功能:可以做 Master, 也可以做 Slave
- 支持不同通讯速度
 - 标准模式(Sm): 高达 100 KHz
 - 快速模式(Fm): 高达 400 KHz
- 作为 Master
 - 一 产生 Clock
 - Start 和 Stop 的产生
- 作为 Slave
 - 可编程的 I²C 地址检测
 - 一 Stop 位的发现
- 7位寻址模式
- 通用广播(General call)
- 状态标志位
 - 一 发送/接收模式标志位
 - 一 字节传输完成标志位
 - I²C busy 标志位
- 错误标志位
 - Master arbitration loss
 - 一 地址/数据传输后的 ACK failure
 - Start/Stop 错误
 - 一 Overrun/Underrun (时钟拉长功能 disable)
- 可选的时钟拉长功能

- 软件复位
- 模拟噪声滤波功能

2.13. 通用同步异步收发器 USART

通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。

它支持同步单向通信和半双工单线通信,它还允许多处理器通信。

支持自动波特率检测。

USART特性:

- 全双工异步通信
- NRZ 标准格式
- 可配置 16 倍或者 8 倍过采样,增加在速度和时钟容忍度的灵活性
- 发送和接收共用的可编程波特率,最高达 4.5 Mbit/s
- 自动波特率检测
- 可编程的数据长度8位或者9位
- 可配置的停止位(1或者2位)
- 同步模式和为同步通讯的时钟输出功能
- 单线半双工通讯
- 独立的发送和接收使能位
- 硬件流控制
- 检测标志
 - 接收 buffer 满
 - 一 发送 buffer 空
 - 一 传输结束
- 奇偶校验控制
 - 一 发送校验位
 - 一 对接收数据进行校验
- 带标志的中断源
 - ─ CTS 改变
 - 一 发送寄存器空
 - 一 发送完成
 - 一 接收数据寄存器满
 - 一 检测到总线空闲
 - 一 溢出错误
 - 一 帧错误
 - 一 噪音操作
 - 一 检测错误
- 多处理器通信
 - 一 如果地址不匹配,则进入静默模式

■ 从静默模式唤醒:通过空闲检测和地址标志检测

2.14. 串行外设接口 SPI

串行外设接口(SPI)允许芯片与外部设备以半双工、全双工、单工同步的串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。

SPI特性如下:

- Master 或者 Slave 模式
- 3线全双工同步传输
- 2线半双工同步传输(有双向数据线)
- 2线单工同步传输(无双向数据线)
- 8 位或者 16 位传输帧选择
- 支持多主模式
- 8 个主模式波特率预分频系数(最大为 12 M)
- 从模式频率(最大为 3 M)
- 主模式和从模式下均可以由软件或硬件进行 NSS 管理: 主/从操作模式的动态改变
- 可编程的时钟极性和相位
- 可编程的数据顺序,MSB 在前或 LSB 在前
- 可触发中断的专用发送和接收标志
- SPI 总线忙状态标志
- Motorola 模式
- 可引起中断的主模式故障、过载
- 2个32位 Rx和TxFIFOs

2.15. SWD

ARM SWD接口允许串口调试工具连接到 PY32F002B。

3.引脚配置

图 3-1 QFN20 Pinout1 PY32F002BF15Ux (Top view)

图 3-2 TSSOP20 Pinout1 PY32F002BF15Px (Top view)

图 3-3 SOP20 Pinout1 PY32F002BF15Sx (Top view)

图 3-4 QFN16 Pinout1 PY32F002BW15Ux (Top view)

图 3-5 SOP16 Pinout1 PY32F002BW15Sx (Top view)

图 3-6 SOP14 Pinout1 PY32F002BD15Sx (Top view)

图 3-7 SOP8 Pinout1 PY32F002BL15Sx (Top view)

表 3-1 引脚定义的术语和符号

类	型	符号	定义				
		S	Supply pin				
뉴므*피		G	Ground pin				
端口类型		I/O Input/output pin					
		NC	无定义				
<u>-</u> ₩ □ /++/-		СОМ	正常 5 V 端口,支持模拟输入输出功能				
端口结构		RST	-				
注意		-	除非有其他说明,不然所有端口都被在复位之前和之后,作为模拟输入				
	复用功能	-	通过 GPIOx_AFR 寄存器选择的功能				
端口功能	附加功能	-	通过外设寄存器直接选择或使能的功能				

表 3-2 QFN20/TSSOP20/SOP20 引脚定义

i	封装类型	1				端	口功能
QFN20 F1	TSSOP20 F1	SOP20 F1	复位	端口米型	端口结构	复用功能	附加功能
						USART_CK	
18	1	13	PA5	I/O	СОМ	TIM1_CH1	
						TIM14_CH1	
						SPI_NSS	ADC_IN3
19	2	14	PA6	I/O	СОМ	USART_TX	External_clock_in
						EVENTOUT	External_clock_iii
						SPI_MOSI	
						USART_TX	
20	3	15	PA7	I/O	СОМ	USART_RX	ADC_IN4
						TIM1_CH4	
						MCO	
						SWDIO	NDOT
1	4	16	PC0-NRST (1) (3)	I/O	RST	TIM1_CH1N	NRST
						EVENTOUT	ADC_IN5
2	5	17	PC1-OSCIN	I/O	СОМ	SPI_MISO	OSCIN
		40	DD7 OCCOUR	1/0	COM	SPI_MOSI	TUODOO
3	6	18	PB7-OSCOUT	I/O	COM	TIM14_CH1	OSCOUT
4	7	1	Vss	S		Ground	
_		0	DD0/0143103 (2)	1/0	0014	SPI_MISO	ADC INC
5	8	2	PB6(SWDIO) (2)	I/O	COM	USART_TX	ADC_IN6

i	封装类型	Ī				端	口功能														
QFN20 F1	TSSOP20 F1	SOP20 F1	复位	端口米型	端口结构	复用功能	附加功能														
						I ² C_SDA															
						SWDIO															
6	9	20	Vcc	S			ower supply														
						SPI_NSS															
7	10	19	PB5	I/O	СОМ	USART_RX															
						TIM1_CH3															
						TIM14_CH1															
						USART_TX															
8	11	4	PB4	I/O	СОМ	I ² C_SDA															
						TIM1_BKIN															
		5					USART_CK														
9	12		PB3	1/0	СОМ	I ² C_SCL															
						TIM1_ETR															
						CMP1_OUT															
		6														SPI_SCK					
10	13		PB2	I/O	СОМ	USART_CTS															
																			TIM1_CH1N		
							TIM1_CH3														
		7																		USART_RTS	ADC_IN0
11	14		PB1	I/O	СОМ	TIM1_CH2N	CMP1_INP CMP1_INM														
						TIM1_CH4															
						MCO															
						SPI_SCK	ADC INT														
12	15	8	8	PB0	I/O	СОМ	USART_CK TIM1_CH2	ADC_IN7 CMP1_INM													
						TIM1_CH3N	CIVIF I_IIVIVI														
						SPI_MOSI															
13	16	9	PA0	I/O	СОМ	TIM1_CH1															
						SPI_MISO															
14	17	10	PA1	I/O	COM	TIM1_CH2															
						USART_RX															
						I ² C_SCL															
15	18	3	3 PA2(SWCLK) (2) (3)	I/O	СОМ	SWCLK															
						TIM1_CH4															
						0,,,,															

	封装类型	Ī				端口功能		
QFN20 F1	TSSOP20 F1	SOP20 F1	复位	器 二 業 二 業 日 業 日 業 日 業 日 業 日 業 日 業 日 業 日 業	端口结构	复用功能	附加功能	
						CMP2_OUT		
						USART_TX	ADC_IN1	
16	19	12	PA3	I/O	COM	TIM1_CH2	CMP2_INP CMP2_INM	
						USART_RX	ADC IN2	
17	20	11	PA4	I/O	СОМ	TIM1_CH3	ADC_IN2 CMP2_INM	
						TIM14_CH1	GIVIF 2_IIVIVI	

表 3-3 QFN16/SOP16/SOP14/SOP8 引脚定义

	封装	美类型					端	口功能
QFN16 W1	SOP16 W1	SOP14 D1	SOP8 L1	复位	器 二 器 二 業 二 業 二 業 二 業 二 業 二 業 二 、 二 、 二 、 二 、	端口结构	复用功能	附加功能
				•			SPI_NSS	ADC_IN3
6	12	10	6	PA6 (4)	I/O	СОМ	USART_TX	External_clock_in
							EVENTOUT	External_clock_iii
							SPI_MOSI	
							USART_TX	
7	13	11	7	PA7 ⁽⁴⁾	I/O	СОМ	USART_RX	ADC_IN4
							TIM1_CH4	
							MCO	
							SWDIO	NRST
8	13	13	6	PC0-NRST (1) (3) (4)	I/O	RST	TIM1_CH1N	ADC_IN5
							EVENTOUT	ADC_INS
9	14	12	7	PC1-OSCIN	I/O	СОМ	SPI_MISO	OSCIN
	15	13	_	PB7-OSCOUT (4)	I/O	СОМ	SPI_MOSI	OSCOUT
_	13	13	_	FB1-03C001 (7	1/0	COIVI	TIM14_CH1	030001
-	16	14	8	Vss	S		Ground	
							SPI_MISO	
4	10	8	5	PB6(SWDIO) (2)	1/0	СОМ	USART_TX	ADC ING
4	10	O		FBO(SWDIO)	I/O	COIVI	I ² C_SDA	ADC_IN6
							SWDIO	
15	1	1	1	Vcc	S		Digital p	power supply

	封装	类型					端口功能		
QFN16 W1	SOP16 W1	SOP14 D1	SOP8 L1	复位	器 二米四	端口结构	复用功能	附加功能	
							SPI_NSS		
10			_	PB5	I/O	СОМ	USART_RX		
10	_	-	_	1 55	1/0	COIVI	TIM1_CH3		
							TIM14_CH1		
							USART_TX		
-	2	-	-	PB4	I/O	СОМ	I ² C_SDA		
							TIM1_BKIN		
							USART_CK		
11	3			PB3	I/O	СОМ	I ² C_SCL		
11	3	-	-	FBS	1/0	COIVI	TIM1_ETR		
							CMP1_OUT		
							SPI_SCK		
12	4	2		PB2	1/0	СОМ	USART_CTS		
12	4	2	-	PD2	1/0	COIVI	TIM1_CH1N		
							TIM1_CH3		
)	USART_RTS	ADC INO	
13	5	3	2	PB1	I/O	СОМ	TIM1_CH2N	ADC_IN0 CMP1_INM	
13	5	3	2	PDI	1/0	COIVI	TIM1_CH4	CMP1_INP	
							MCO	CIME I_INF	
							SPI_SCK		
14	6	4	3	PB0	I/O	СОМ	USART_CK	ADC_IN7	
14	b	4	3	PBU	1/0	COIVI	TIM1_CH2	CMP1_INM	
							TIM1_CH3N		
	7	5		PA0	I/O	СОМ	SPI_MOSI		
		5		FAU	1/0	COIVI	TIM1_CH1		
16	8	6	_	PA1	I/O	СОМ	SPI_MISO		
10	0	0	-	FAI	1/0	COIVI	TIM1_CH2		
							USART_RX		
							I ² C_SCL		
3	11	7	4	PA2(SWCLK) (2) (3)	I/O	СОМ	SWCLK		
							TIM1_CH4		
							CMP2_OUT		
							USART_TX	ADC_IN1	
1	-	-	-	PA3	I/O	СОМ	TIM1_CH2	CMP2_INP	
							11W11_0112	CMP2_INM	

	封導	美类型					端口功能	
QFN16 W1	SOP16 W1	SOP14 D1	SOP8 L1	复位	選	端口结构	复用功能	附加功能
							USART_RX	ADO INO
2	9	9	-	PA4	I/O	СОМ	TIM1_CH3	ADC_IN2
							TIM14_CH1	CMP2_INM
							USART_CK	
5	-	-	-	PA5	I/O	СОМ	TIM1_CH1	
							TIM14_CH1	

- 1. 选择 PC0 或者 NRST/SWDIO 是通过 option bytes 进行配置。
- 2. 复位后(option byte 配置 0/0,0/1,1/0 时), PB6 和 PA2 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能, 前者 内部上拉电阻、后者内部下拉电阻被激活。
- 3. 复位后(option byte 配置为 1/1 时), PC0 和 PA2 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能, 前者内部上拉电阻、后者内部下拉电阻被激活。
- 4. 两个 IO 端口引出在同一个 pin 脚,同一时间只能使用其中任意一个 IO 端口,且另外一个 IO 必须配置为模拟模式 (MODEy[1:0] 为 0B11)。

3.1. 端口 A 复用功能映射

表 3-4 端口 A 复用功能映射

端口	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	SPI_MOSI	-	TIM1_CH1	-	-	-	-	-
PA1	SPI_MISO	-	TIM1_CH2	-	-	-	-	-
PA2	SWC	USART_RX	TIM1_CH4	-	CMP2_OUT	-	I ² C_SCL	-
PA3	-	USART_TX	TIM1_CH2	-	-	-	-	-
PA4	-	USART_RX	TIM1_CH3	-	-	TIM14_CH1	-	
PA5	-	USART_CK	TIM1_CH1	-	-	TIM14_CH1		<u> </u>
PA6	SPI_NSS	USART_TX	-	-	-	-	-	EVENTOUT
PA7	SPI_MOSI	USART_TX	TIM1_CH4	USART_RX	MCO	•	-	

3.2. 端口 B 复用功能映射

表 3-5 端口 B 复用功能映射

端口	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	SPI_SCK	USART_CK	TIM1_CH2	TIM1_CH3N	-	-	-	-
PB1	-	USART_RTS	TIM1_CH2N	TIM1_CH4	МСО	-	-	-
PB2	SPI_SCK	USART_CTS	TIM1_CH1N	TIM1_CH3	-	-	-	-
PB3	-	USART_CK	TIM1_ETR	-	CMP1_OUT	-	I ² C_SCL	-
PB4	-	USART_TX	TIM1_BKIN	-	-	-	I ² C_SDA	1
PB5	SPI_NSS	USART_RX	TIM1_CH3	-	-	TIM14_CH1	-	-
PB6	SWD	USART_TX	SPI_MISO	-	-	-	I ² C_SDA	-
PB7	SPI_MOSI		-	-	-	TIM14_CH1	-	-

3.3. 端口 C 复用功能映射

表 3-6 端口 C 复用功能映射

端口	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0	SWD	-	TIM1_CH1N	-	-	-	-	EVENTOUT
PC1	SPI_MISO	-	-	-	-	-	-	-

4.存储器映射

图 4-1 存储器映射

表 4-1 存储器地址

Туре	Boundary Address	Size	Memory Area	Description
00.444	0x2000 C000-0x3FFF FFFF	-	Reserved ⁽¹⁾	-
SRAM	0x2000 0000-0x2000 0BFF	3 KB	SRAM	-
	0x1FFF 0300-0x1FFF FFFF	-	Reserved	-
	0x1FFF 0280-0x1FFF 02FF	128 Bytes	USER OTP memory	存放用户数据
	0x1FFF 0180-0x1FFF 01FF	128 Bytes	Factory Configuration bytes	存放 trimming 数据(含 HSI triming 数据)、上电 读校验码
	0x1FFF 0100-0x1FFF 017F	128 Bytes	Factory Configuration bytes	存放用户用到的 HSI triming 数据、Flash 擦写时间配置参数
Code	0x1FFF 0080-0x1FFF 00FF	128 Bytes	Option bytes	芯片软硬件 option bytes 信息
	0x1FFF 0000-0x1FFF 007F	128 Bytes	UID	Unique ID
	0x0800 6000-0x1FFE FFFF	-	Reserved	-
	0x0800 0000-0x0800 5FFF	24 KB	Main flash memory	-
	0x0000 6000-0x07FF FFFF	-	Reserved	-
	0x0000 0000-0x0000 5FFF	24 KB	根据 Boot 配置选择: 1) Main flash memory 2) Load flash 3) SRAM	-

^{1.} 标注为 Reserved 的空间,无法进行写操作,读为 0,且产生 response error。

表 4-2 外设寄存器地址

Bus	Boundary Address	Size	Peripheral
	0xE000 0000-0xE00F FFFF	-	M0+
	0x5000 0C00-0x5FFF FFFF	-	Reserved
IODODT	0x5000 0800-0x5000 0BFF	1 KB	GPIOC
IOPORT	0x5000 0400-0x5000 07FF	1 KB	GPIOB
	0x5000 0000-0x5000 03FF	1 KB	GPIOA
	0x4002 3400-0x4FFF FFFF	-	Reserved
ALID	0x4002 300C-0x4002 33FF	4 1/D	Reserved
AHB	0x4002 3000-0x4002 3008	1 KB	CRC
	0x4002 2400-0x4002 2FFF	-	Reserved

Bus	Boundary Address	Size	Peripheral
	0x4002 2000-0x4002 23FF	1 KB	Flash
	0x4002 1C00-0x4002 1FFF	-	Reserved
	0x4002 1900-0x4002 1BFF	4 1/0	Reserved
	0x4002 1800-0x4002 18FF	1 KB	EXTI
	0x4002 1400-0x4002 17FF	-	Reserved
	0x4002 1080-0x4002 13FF	4 1/0	Reserved
	0x4002 1000-0x4002 107F	1 KB	RCC
	0x4002 0000-0x4002 0FFF	-	Reserved
	0x4001 5C00-0x4001 FFFF	-	Reserved
	0x4001 5880-0x4001 5BFF	4 1/0	Reserved
	0x4001 5800-0x4001 587F	1 KB	DBG
	0x4001 3C00-0x4001 57FF	-	Reserved
	0x4001 381C-0x4001 3BFF		Reserved
	0x4001 3800-0x4001 3018	1 KB	USART1
	0x4001 3400-0x4001 37FF	-	Reserved
	0x4001 3010-0x4001 33FF	1 VD	Reserved
	0x4001 3000-0x4001 300C	1 KB	SPI1
	0x4001 2C50-0x4001 2FFF	4.170	Reserved
	0x4001 2C00-0x4001 2C4C	1 KB	TIM1
	0x4001 2800-0x4001 2BFF	-	Reserved
APB	0x4001 270C-0x4001 27FF	1 KD	Reserved
	0x4001 2400-0x4001 2708	1 KB	ADC
	0x4001 0400-0x4001 23FF	-	Reserved
	0x4001 0220-0x4001 03FF		Reserved
	0x4001 0200-0x4001 021F	1 KB	COMP1/2
	0x4001 0000-0x4001 01FF		SYSCFG
	0x4000 8000-0x4000 FFFF	-	Reserved
	0x4000 7C28-0x4000 7FFF	1 KB	Reserved
	0x4000 7C00-0x4000 7C24	IND	LPTIM
	0x4000 7400-0x4000 7BFF	-	Reserved
	0x4000 7018-0x4000 73FF		Reserved
	0x4000 7000-0x4000 7014	1 KB	PWR
	0x4000 5800-0x4000 6FFF	-	Reserved

Bus	Boundary Address	Size	Peripheral
	0x4000 5434-0x4000 57FF	4 IZD	Reserved
	0x4000 5400-0x4000 5430	1 KB	I ² C
	0x4000 3400-0x4000 53FF	-	Reserved
	0x4000 3014-0x4000 33FF	4 1/0	Reserved
	0x4000 3000-0x4000 0010	1 KB	IWDG
	0x4000 2400-0x4000 2FFF	-	Reserved
	0x4000 2054-0x4000 23FF	4 1/0	Reserved
	0x4000 2000-0x4000 0050	1 KB	TIM14
	0x4000 0000-0x4000 1FFF	-	Reserved

5. 电气特性

5.1. 测试条件

除非特殊说明,所有的电压都以 Vss 为基准。

5.1.1. 最小值和最大值

除非特殊说明,通过在环境温度 $T_A = 25$ °C 和 $T_A = T_{A(max)}$ 下进行的芯片量产测试筛选,保证在最坏的环境温度、供电电压和时钟频率条件下达到最小值和最大值。

基于表格下方注解的电特性结果、设计仿真和/或工艺参数的数据,未在生产中进行测试。最小和最大数值参考了样品测试,取平均值再加或者减三倍的标准偏差。

5.1.2. 典型值

除非特殊说明,典型数据是基于 $T_A = 25$ °C 和 $V_{CC} = 3.3$ V_{oc} 这些数据仅用于设计指导未经过测试。 典型的 ADC 精度数值是通过对一个标准批次的采样,在所有温度范围下测试得到,95%的芯片误差小于等于给出的数值。

5.2. 绝对最大额定值

如果加在芯片上超过以下表格给出的绝对最大值,可能会导致芯片永久性的损坏。这里只是列出了所能承受的强度分等,并不意味着在此条件下器件的功能操作无误。长时间工作在最大值条件下可能影响芯片的可靠性。

 符号
 描述
 最小值
 最大值
 单位

 Vcc
 外部主供电电源
 -0.3
 6.25
 V

 V_{IN}
 其他 Pin 的输入电压
 -0.3
 V_{cc}+0.3
 V

表 5-1 电压特性(1)

表 5-2 电流特性

符号	描述	最大值	单位
Ivcc	流进 Vcc pin 的总电流(供应电流)(1)	80	mA
Ivss	流出 Vss pin 的总电流(流出电流) (1)	80	mA
	任意 IO 的输出灌电流	20	
IIO(PIN)	任意 IO 的拉电流	-20	mA

^{1.} 电源 Vcc 和地 Vss 引脚必须始终连接到外部允许范围内的供电系统上。

^{1.} 电源 Vcc 和地 Vss 引脚必须始终连接到外部允许范围内的供电系统上。

表 5-3 温度特性

符号	描述	条件	数值	单位
T _{STG}	存储温度范围	-	-65 ~ +150	°C
_		x6 版本	-40 ~ +85	
То	工作温度范围	x7 版本	-40 ~ +105	°C

5.3. 工作条件

5.3.1. 通用工作条件

表 5-4 通用工作条件

符号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 时钟频率	-	0	24	MHz
f _{PCLK}	内部 APB 时钟频率		0	24	MHz
Vcc	标准工作电压	-	1.7	5.5	V
V _{IN}	IO 输入电压	-	-0.3	V _{CC} +0.3	V
_	TT 1 英 2 日 中	x6 版本	-40	85	00
TA	环境温度	x7 版本	-40	105	°C
_	/ / /	x6 版本	-40	90	°C
TJ	结温	x7 版本	-40	110	°C

5.3.2. 上下电工作条件

表 5-5 上电和掉电工作条件

符号	参数	条件	最小值	最大值	单位
	Vcc 上升速率	> <u>-</u>	0	8	0.7
tvcc	Vcc 下降速率	-	20	8	µs/V

5.3.3. 内嵌复位模块特性

表 5-6 内嵌复位模块特性

符号	参数	条件	最小值	典型值	最大值	单位	
t _{RSTTEMPO} (1)	复位重置时间	-	-	4.0	7.5	ms	
Vpor/pdr	L由/下中有/冷阁/店	上升沿	1.5 ⁽²⁾	1.6	1.7	V	
	上电/下电复位阈值 	下降沿	1.45	1.55	1.65(2)	V	
V _{PDRhyst} ⁽¹⁾	PDR 迟滞	-	-	50	-	mV	
		BOR_LEV[2:0]=000 (上升沿)	1.7 ⁽²⁾	1.8	1.9		
V _{BOR}	BOR 阈值电压	BOR_LEV[2:0]=000 (下降沿)	1.6	1.7	1.8(2)	V	
		BOR_LEV[2:0]=001 (上升沿)	1.9(2)	2	2.1		

符号	参数	条件	最小值	典型值	最大值	单位
		BOR_LEV[2:0]=001 (下降沿)	1.8	1.9	2 ⁽²⁾	
		BOR_LEV[2:0]=010 (上升沿)	2.1 ⁽²⁾	2.2	2.3	
		BOR_LEV[2:0]=010 (下降沿)	2	2.1	2.2(2)	
		BOR_LEV[2:0]=011 (上升沿)	2.3(2)	2.4	2.5	
		BOR_LEV[2:0]=011 (下降沿)	2.2	2.3	2.4 ⁽²⁾	
		BOR_LEV[2:0]=100 (上升沿)	2.5(2)	2.6	2.7	
		BOR_LEV[2:0]=100 (下降沿)	2.4	2.5	2.6(2)	
		BOR_LEV[2:0]=101 (上升沿)	2.7(2)	2.8	2.9	
		BOR_LEV[2:0]=101 (下降沿)	2.6	2.7	2.8(2)	
		BOR_LEV[2:0]=110 (上升沿)	2.9(2)	3	3.1	
		BOR_LEV[2:0]=110 (下降沿)	2.8	2.9	3 ⁽²⁾	
		BOR_LEV[2:0]=111 (上升沿)	3.1 ⁽²⁾	3.2	3.3	
		BOR_LEV[2:0]=111 (下降沿)	3	3.1	3.2(2)	
V_BOR_hyst	BOR 迟滞	-	-	100	-	mV

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.4. 工作电流特性

表 5-7 运行模式电流

符号系统时钟			条	件			典型值		***
	系统时钟	频率	代码	运行	外设时钟	FLASH sleep	(1)	最大值	单位
	ЦСI	24 MHz			ON	DISABLE	1.10	-	mA
lcc(run)	Z4 IVITZ			OFF	DISABLE	0.90	-	IIIA	
	32.768 KHz	While ⁽¹⁾	Flash	ON	DISABLE	160	-		
	32.700 KHZ	vvrille	гіазіі	OFF	DISABLE	160	-		
	32.768 KHz			ON	ENABLE	108	-	μΑ	
		32.700 KHZ			OFF	ENABLE	108	-	

1. 数据基于考核结果,不在生产中测试。

表 5-8 sleep 模式电流

符号		;	条件		## TII / ± /1)	目上/生	** /
	系统时钟	频率	外设时钟	FLASH sleep	典型值 ⁽¹⁾	最大值	单位
Icc (sleep) HSI	Hei	24 MHz	ON	DISABLE	0.80	-	A
	24 MHz	OFF	DISABLE	0.50	-	mA	

符号		į	条件		## ##// # /(1)	*/-	
	系统时钟	频率	外设时钟	FLASH sleep	典型值 ⁽¹⁾	最大值	单位
	LSI	32.768 KHz	ON	DISABLE	159	-	
		32.700 KHZ	OFF	DISABLE	159	-	
		22.760 VU-	ON	ENABLE	85.3	-	μΑ
		32.768 KHz	OFF	ENABLE	84.8	-	

1. 数据基于考核结果,不在生产中测试。

表 5-9 stop 模式电流

符号		条	件		 	日上法	台台
105	Vcc	MR/LPR	LSI	外设时钟	典型值(1)	最大值	单位
		MR	-	-	75.3	-	
				IWDG+LPTIM	1.70	-	
Icc (stop)	1.7 ~ 5.5 V	LPR	ON	IWDG	1.70	-	μA
				LPTIM	1.70	-	
			OFF	No	1.50	-	

1. 数据基于考核结果,不在生产中测试。

5.3.5. 低功耗模式唤醒时间

表 5-10 低功耗模式唤醒时间

符号	参数 ⁽¹⁾		条件	典型值(2)	最大值	单位
twusleep	Sleep 的唤醒	醒时间	-	0.60	-	
	MR 供电 Stop 的唤	MR 供电	Flash 中执行程序,HSI(24 MHz) 作为系统时钟	6.40	-	μs
twustop	醒时间	LPR 供电	Flash 中执行程序,HSI 作为系统 时钟(24 M)	10.6	-	

- 1. 唤醒时间的测量是从唤醒时间开始至用户程序读取第一条指令。
- 2. 数据基于考核结果,不在生产中测试。

5.3.6. 外部时钟源特性

5.3.6.1. 外部高速时钟

在 HSE 的 bypass 模式(RCC_CR 的 HSEEN 置位),相应的 IO 作为外部时钟输入端口。

图 5-1 外部高速时钟时序图

参数(1) 典型值 单位 符号 最小值 最大值 用户外部时钟频率 1 8 32 MHz f_{HSE_ext} V_{HSEH} 输入引脚高电平电压 0.7* cc Vcc ٧ 0.3*V_{CC} 输入引脚低电平电压 Vss ٧ V_{HSEL} tw(HSEH) 15 输入高或低的时间 ns tw(HSEL) $t_{r(HSE)}$ 输入上升/下降的时间 20 ns t_{f(HSE)}

表 5-11 外部高速时钟特性

1. 由设计保证,不在生产中测试。

5.3.6.2. 外部低速时钟

在 LSE 的 bypass 模式(RCC_BDCR 的 LSEBYP 置位),芯片内的低速起振电路停止工作,相应的 IO 作为标准的 GPIO 使用。

图 5-2 外部低速时钟时序图

	农 5-12 月 即 队还的 计行任								
符号	参数 ⁽¹⁾	最小值	典型值	最大值	单位				
f _{LSE_ext}	用户外部时钟频率	-	32.768	1000	KHz				
V _{LSEH}	输入引脚高电平电压	0.7*Vcc	1	1	V				
V _{LSEL}	输入引脚低电平电压	-	1	0.3*Vcc	٧				
tw(LSEH)	输入高或低的时间	450	-	-	ns				

表 5-12 外部低速时钟特性

符号	参数 ⁽¹⁾	最小值	典型值	最大值	单位
tw(LSEL)					
t _{r(LSE)}	ta \ T (T-100 6611-1)-7			50	
t _{f(LSE)}	输入上升/下降的时间	-	-	50	ns

1. 由设计保证,不在生产中测试。

5.3.6.3. 外部低速晶体

可以通过外接 32.768 KHz 的晶体/陶瓷谐振器。在应用中,晶体和负载电容应该尽可能靠近管脚,这样可以使输出变形和启动稳定时间最小化。

符号	参数	条件 ⁽¹⁾	最小值	典型值	最大值	单位
		LSE_DRIVER [1:0] = 00	1	100		
	1.05 Th+T	LSE_DRIVER [1:0] = 01	-	700	-	A
Icc (4)	LSE 功耗	LSE_DRIVER [1:0] = 10		1200	-	nA
		LSE_DRIVER [1:0] = 11		1600	-	
tsu(LSE)(3) (4)	启动时间	-	-	3	-	S

表 5-13 外部低速晶体特性

- 1. 晶体/陶瓷谐振器特性基于制造商给出的数据手册。
- 2. 由设计保证,不在生产中测试。
- 3. tsu(LSE)是从启用(通过软件)到时钟振荡达到稳定的启动时间,针对标准晶体/谐振器测量的,不同晶体/ 谐振器可能会有很大差异
- 4. 数据基于考核结果,不在生产中测试。

5.3.7. 内部高频时钟源 HSI 特性

表 5-14 内部高频时钟源特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	HSI 频率	$T_A = 25^{\circ}C, V_{CC} = 3.3 \text{ V}$	23.83(2)	24	24.17 ⁽²⁾	MHz
		Vcc = 2.0 ~ 5.5 V	-2 ⁽²⁾		2(2)	
		T _A = -40 ~ 85 °C	- Z ⁽²⁾	1	Z ⁽²⁾	
		Vcc = 1.7 ~ 5.5 V	-2 ⁽²⁾		2 ⁽²⁾	
	山口地充冶中产海拉	T _A = 0 ~ 85 °C	- Z ⁽²⁾	1	Z ⁽²⁾	
$\Delta_{Temp(HSI)}$	HSI 频率温度漂移	V _{CC} = 1.7 ~ 5.5 V	-4 ⁽²⁾		2(2)	%
	24 MHz	T _A = -40 ~ 85 °C	-4 (2)	1	2 ⁽²⁾	
		V _{CC} = 2.0 ~ 5.5 V	O (2)		O F(2)	
		T _A = -40 ~ 105 °C	-2 ⁽²⁾	1	2.5 ⁽²⁾	
		Vcc = 1.7 ~ 5.5 V	-2 ⁽²⁾	-	2.5(2)	

符号	参数	条件	最小值	典型值	最大值	单位
		T _A = 0 ~ 105 °C				
		V _{CC} = 1.7 ~ 5.5 V	4/2)		0. 5(2)	
		T _A = -40 ~ 105 °C	-4 ⁽²⁾	-	2.5 ⁽²⁾	
f _{TRIM} ⁽¹⁾	HSI 微调精度	-	-	0.1	-	%
D _{HSI} ⁽¹⁾	占空比	-	45	-	55	%
t _{Stab(HSI)}	HSI 稳定时间	-	-	2	4 ⁽¹⁾	μs
Icc (HSI) (2)	HSI 功耗	24 MHz	-	193	-	μA

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.8. 内部低频时钟源 LSI 特性

表 5-15 内部低频时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI}	LSI 频率	T _A = 25 °C,V _{CC} = 3.3 V	31.6	-	33.6	KHz
^		T _A = 0 ~ 105 °C	-10 ⁽²⁾	-	10(2)	0/
$\Delta_{Temp(LSI)}$	(LSI) LSI 频率温度漂移	T _A = -40 ~ 105 °C	-20 ⁽²⁾	-	20(2)	%
f _{TRIM} ⁽¹⁾	LSI 微调精度	-	-	0.2	-	%
t _{Stab(LSI)} (1)	LSI 稳定时间	-	-	150	-	μs
I _{CC (LSI)} (1)	LSI 功耗		-	210	-	nA

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.9. 存储器特性

表 5-16 存储器特性

符号	参数	条件	典型值	最 大值 ⁽¹⁾	单位
t _{prog}	页编程时间	-	1.0	1.5	ms
terase	页/扇区/块擦除时间	-	3.5	5.0	ms
	页编程功耗	-	2.1	2.9	1
Icc	页/扇区/片擦除功耗	-	2.1	2.9	mA

1. 由设计保证,不在生产中测试。

表 5-17 存储器擦写次数和数据保持

符号	参数	条件	最 小值 ⁽¹⁾	单位
Nend	物字分粉	T _A = -40 ~ 85 °C	100	Kcycle
INEND	擦写次数	T _A = 85 ~ 105 °C	10	Reycle

符号	参数	条件	最 小值 ⁽¹⁾	单位
t	数据保持期限	10 Kcycle T _A = 55 °C	20	Year
t ret	安对店1木1寸共1PR	1 Kcycle T _A = 55 °C (-40 ~ 105°C)	20	rear

1. 数据基于考核结果,不在生产中测试。

5.3.10. EFT 特性

表 5-18 EFT 特性

符号	参数	条件	等级	典型值	单位
EFT to Power	-	IEC61000-4-4	A	4	KV

5.3.11. ESD & LU 特性

表 5-19 ESD & LU 特性

符号	参数	条件	典型值	单位
V _{ESD(HBM)}	静态放电电压(人体模型)	ESDA/JEDEC JS-001-2017	6	KV
V _{ESD(CDM)}	静态放电电压(充电设备模型)	ESDA/JEDEC JS-002-2018	1	KV
V _{ESD(MM)}	静态放电电压(机器模型)	JESD22-A115C	200	V
LU	静态 Latch-Up	JESD78E	200	mA

5.3.12. 端口特性

表 5-20 IO 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	输入高电平电压	$V_{CC} = 1.7 \sim 5.5 \text{ V}$	0.7*Vcc	-	-	V
V _{IL}	输入低电平电压	Vcc = 1.7 ~ 5.5 V	-	-	0.3*V _{CC}	V
V _{hys} ⁽¹⁾	斯密特迟滞电压	-	-	200	-	mV
likg	输入漏电流	-	-	-	1	μA
R _{PU}	上拉电阻	-	30	50	70	ΚΩ
R _{PD}	下拉电阻	-	30	50	70	ΚΩ
C ₁₀ ⁽¹⁾	引脚电容	-	-	5		pF

1. 由设计保证,不在生产中测试。

表 5-21 输出电压特性

符号	参数 ⁽¹⁾	条件		最小值	最大值	单位
		CDIOY OSDEED	I _{OL} = 20 mA, V _{CC} ≥ 5.0 V	ı	0.4	
V _{OL} ⁽²⁾	COM IO 输出低电平	GPIOx_OSPEED R=11	$I_{OL} = 8 \text{ mA}, V_{CC} \ge 2.7 \text{ V}$	-	0.4	V
		K-II	$I_{OL} = 4 \text{ mA}, V_{CC} = 1.8 \text{ V}$	-	0.5	
V _{OH} ⁽²⁾	COM IO 输出高电平		I _{OH} = 18 mA, V _{CC} ≥ 5.0 V	Vcc-0.6	-	V

符号	参数 ⁽¹⁾		条件		最大值	单位
		GPIOx_OSPEED	I _{OH} = 8 mA, V _{CC} ≥ 2.7 V	Vcc-0.4	-	
		R=11	I _{OH} = 4 mA, V _{CC} = 1.8 V	Vcc-0.5	-	

- 1. IO 类型可参考引脚定义的术语和符号。
- 2. 数据基于考核结果,不在生产中测试。

5.3.13. NRST 引脚特性

表 5-22 NRST 管脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	输入高电平电压	V _{CC} = 1.7 ~ 5.5 V	0.7*Vcc	-	-	V
VIL	输入低电平电压	V _{CC} = 1.7 ~ 5.5 V	-	-	0.2*Vcc	V
V _{hys} ⁽¹⁾	斯密特迟滞电压	-	-	300	-	mV
likg	输入漏电流	-		-	1	μA
R _{PU} ⁽¹⁾	上拉电阻	-	30	50	70	ΚΩ
R _{PD} ⁽¹⁾	下拉电阻	-	30	50	70	ΚΩ
Сю	引脚电容	-		5	-	pF

1. 由设计保证,不在生产中测试。

5.3.14. ADC 特性

表 5-23 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vcc	ADC 供电电压		1.8	-	5.5	V
Icc	功耗	@0.75 MSPS	-	300	-	uA
C _{IN} ⁽¹⁾	内部采样和保持电容	-	-	5	-	pF
		V _{REF+} = V _{CC} = 1.8 ~ 2.0 V	0.8	3	6(2)	
fadc	转换时钟频率	$V_{REF+} = V_{CC} = 2.0 \sim 5.5 \text{ V}$	0.8	6	12(2)	MHz
		VREF+ = VREFBUF	0.375	-	0.75	
		f _{ADC} =8 MHz	0.438	-	29.94	μs
(1)		Vcc = 1.8 ~ 2.0 V	3.5	-	239.5	1/f _{ADC}
t _{samp} ⁽¹⁾	采样时间	f _{ADC} =12 MHz	0.292	-	19.96	μs
		Vcc = 2.0 ~ 5.5 V	3.5	-	239.5	1/f _{ADC}
t _{samp_setup} (1)	VREFINT 采样建立时间	V _{REF+} = V _{CC} = 2.3 ~ 5.5 V	15	-	-	μs
t _{conv} ⁽¹⁾	总转换时间	-	-	12	-	1/f _{ADC}
t _{eoc} (1)	转换结束时间	-	-	0.5	-	1/f _{ADC}
DNL ⁽²⁾	微分线性误差	-	-	±2	-	LSB

符号	参数	条件	最小值	典型值	最大值	单位
INL ⁽²⁾	积分线性误差	-	-	±3	-	LSB
Offset ⁽²⁾	偏移误差	-	-	±2	-	LSB

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.15. 比较器特性

表 5-24 比较器特性(1)

符号	参数	条件	最小值	典型值	最大值	单位
ב נו	9 00	ぶ IT	故い田	74王旧	取八旦	丰江
VIN	输入电压范围	-	0	-	Vcc-1.5	٧
tstart	启动时间	-	-	-	5	μs
4_	to 翻转延时	输出从低翻转到高	-	-	200	20
ιD		输出从高翻转到低	-		150	ns
V _{offset}	失调电压	-		±5	-	mV
V _{hys}	迟滞电压	无迟滞功能	-	0	-	mV
Icc	工作电流	-	-	70	-	μΑ

^{1.} 由设计保证,不在生产中测试。

5.3.16. 温度传感器特性

表 5-25 温度传感器特性

符号	参数		典型值	最大值	单位
T _L ⁽¹⁾	Vrs 相对于温度的线性度	-	±1	±2	°C
Avg_Slope ⁽¹⁾	pe ⁽¹⁾ 平均斜率		2.5	2.7	mV/°C
V ₃₀	30 ℃ (±5 ℃)时的电压	0.74	0.76	0.78	V
tstart ⁽¹⁾	进入连续运行模式的启动时间	-	70	120	μs
t _{samp_setup} (1)	当读取温度时的 ADC 采样时间	15	-	-	μs

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.17. 内置参考电压特性

表 5-26 内置参考电压特性 (VREFINT) (1)

符号	参数	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	1.17	1.2	1.23	V
t _{start_VREFINT}	V _{REFINT} 的启动时间		10	15	μs
T _{coeff_VREFINT}	V _{REFINT} 温度系数	-	-	100(1)	ppm/°C

符号	参数	最小值	典型值	最大值	单位
Icc	Vcc产生的电流损耗	-	12	20	μΑ

1. 由设计保证,不在生产中测试。

5.3.18. ADC 内置参考电压特性

表 5-27 内置参考电压特性 (VREFBUF) (1)

符号	参数	条件	最小值	典型值	最大值	单位		
V _{REF25}		T _A = 25 °C,	2.425 2.5(2)	2.425	2.425	0.5(2)	0.575	>
	2.5 V 内置参考电压	V _{CC} = 3.3 V	2.425	2.5(2)	2.575	V		
.,	2.048 V 内置参考电压	T _A = 25 °C,	4.000	.988 2.048 ⁽²⁾	2.049(2)	2.400		
VREF20		V _{CC} = 3.3 V	1.988		2.108	V		
Vperas	1.5 V 内置参考电压	T _A = 25 °C,	1.485	1.5(2)	1.515	\ \		
V _{REF15}		Vcc = 3.3 V	1.403	1.5	1.515	V		
T _{coefft_} VREFBUF	V _{REFBUF} 温度系数	T _A = -40 ~ 85 °C	-	-	120(1)	ppm/°C		
t _{start_} VREFBUF	V _{REFBUF} 的启动时间	-		10	15	μs		

- 1. 由设计保证,不在生产中测试。
- 2. 1.5V 内置参考电压精准值存放地址: 0x1FFF002E;
 - 2.048V 内置参考电压精准值存放地址: 0x1FFF0032;
 - 2.5V 内置参考电压精准值存放地址: 0x1FFF0036;

例如: 从地址 0x1FFF002E 读取 16 bits 的值是 0x1501,则表示参考电压精准值为 1.501 V。

5.3.19. COMP 内置参考电压特性(4 位 DAC)

表 5-28 内置参考电压特性 (VREFCMP) (1)

符号	参数	条件	最小值	典型值	最大值	单位
ΔV_{abs}	绝对偏差	-	-	-	±0.5	LSB
tstart_VREFCMP	VREFCMP 的启动时间	-	-	10	15	μs

1. 由设计保证,不在生产中测试。

5.3.20. 定时器特性

表 5-28 定时器特性

符号	参数	条件	最小值	最大值	单位
	r→n+== 八 ☆kn+≀¬	-	1	-	t _{TIMxCLK}
t _{res(TIM)}	定时器分辨时间	f _{TIMxCLK} = 24 MHz	41.667	-	ns
	CH1~CH4的定时器外部时钟频	-	-	f _{TIMxCLK} /2	
f _{EXT}	率	f _{TIMxCLK} = 24 MHz	-	12	MHz

符号	参数	条件	最小值	最大值	单位
Resтім	定时器分辨率	TIM1/14	-	16	bit
选择内部时钟时 16 位计数器		-	1	65536	t _{TIMxCLK}
tcounter	钟周期	f _{TIMxCLK} = 24 MHz	0.041667	2730	μs

表 5-29 LPTIM 特性(时钟选择 LSI)

预分频	PRESC[2:0]	最小溢出值	最大溢出值	单位
/1	0	0.0305	1998.848	
/2	1	0.0610	3997.696	
/4	2	0.1221	8001.9456	
/8	3	0.2441	15997.3376	
/16	4	0.4883	32001.2288	ms
/32	5	0.9766	64002.4576	
/64	6	1.9531	127998.3616	
/128	7	3.9063	256003.2768	

表 5-30 IWDG 特性(时钟选择 LSI)

预分频	PR[2:0]	最小溢出值	最大溢出值	单位
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

5.3.21. 通讯口特性

5.3.21.1. I²C 总线接口特性

I²C 接口满足 I²C-bus specification and user manual 的要求:

■ 标准模式 (Sm): 100 Kbit/s ■ 快速模式 (Fm): 400 Kbit/s

时序由设计保证,前提是I2C外设被正确的配置,并且I2CCLK频率大于下表要求的最小值。

表 5-31 最小 I²C CLK 频率

符号	参数	条件	最小值	单位
f _{12CCLK(min)}	120 目小叶纳塔安	标准模式	2	MU
	I ² C 最小时钟频率	快速模式	9	MHz

I²C SDA 和 SCL 管脚具有模拟滤波功能,参见下表。

表 5-32 I²C 滤波器特性

符号	参数	最小值	最大值	单位
taf	限制过滤器抑制的尖峰持续时间(短于限制持续时间的尖峰被抑制)	50	260	ns

5.3.21.2. 串行外设接口 SPI 特性

表 5-33 SPI 特性

符号	参数	条件	最小值	最大值	单位	
fscĸ	SPI 时钟频率	主机模式	_	12 (1)	MHz	
1/t _{c(SCK)}	381 的钾测率	从机模式	-	3 (2)	IVITIZ	
$t_{r(\text{SCK})}$ $t_{f(\text{SCK})}$	SPI 时钟上升和下降时间	负载电容: C = 15 pF	-	6	ns	
t _{su(NSS)}	NSS 建立时间	从机模式, presc = 2	2Tpclk	-	ns	
t _{h(NSS)}	NSS 保持时间	从机模式	2Tpclk	-	ns	
$t_{w(\text{SCKH})}$ $t_{w(\text{SCKL})}$	SCK 的高低电频时间	主机模式	Tpclk - 2	Tpclk + 1	ns	
t _{su(MI)}	**************************************	主机模式	1	-	- ns	
$t_{\text{su}(\text{SI})}$	数据输入建立时间	从机模式	3	-		
t _{h(MI)}	*####	主机模式	5	-		
t _{h(SI)}	数据输入保持时间	从机模式	2	-	ns	
t _{a(SO)}	数据输出访问时间	从机模式	0	3Tpclk	ns	
t _{dis(SO)}	数据输出结束时间	从机模式	2Tpclk	-	ns	
t _{v(SO)}	数据输出有效时间	从机模式(使能有效沿之后)	0	20	ns	
t _{v(MO)}	数据输出有效时间	主机模式(使能有效沿之后)	-	5	ns	
t _{h(SO)}	*************************************	从机模式(使能有效沿之后)	2	-	20	
t _{h(MO)}	数据输出保持时间	主机模式(使能有效沿之后)	1	-	ns	
DuCy(SCK)	SPI 从机输入时钟占空比	从机模式	45	55	%	

- 1. 该参数测试条件为全双工模式。
- 2. 该参数测试条件为单线模式,全双工模式下最大为 0.75 MHz。

图 5-3 SPI 时序图-slave mode and CPHA=0

图 5-4 SPI 时序图-slave mode and CPHA=1

图 5-5 SPI 时序图-master mode

6. 封装信息

6.1. QFN20 (3*3*0.5) 封装尺寸

6.2. QFN20 (3*3*0.55) 封装尺寸

6.3. TSSOP20 封装尺寸

6.4. SOP20 封装尺寸

6.5. QFN16 封装尺寸

6.6. SOP16 封装尺寸

6.7. SOP14 封装尺寸

6.8. SOP8 封装尺寸

7. 订购信息

8. 版本历史

版本	日期	更新记录
V1.0	2024.03.08	初版
V1.1	2024.03.27	1. 新增型号: PY32F002BAW15S7/PY32F002BD15S7/PY32F002BL15S7 2. 更新表 5-32 SPI 特性
V1.2	2024.04.02	1. 新增 QFN16 封装
V1.3	2024.06.27	1. ADC V _{REFBUF} : 1.5V、2.048V、2.5V 2. 更新表 5-22 / 5-24 / 5-26 / 5-32 3. 变更 QFN20 封装尺寸图: 3*3*0.55
V1.4	2024.07.19	1. 新增 SOP20 封装 2. 更新表 5-11 外部高速时钟特性 3. 更新 QFN16 / SOP 14 / SOP8 封装尺寸图

Puya Semiconductor Co., Ltd.

吉 昨

普冉半导体(上海)股份有限公司(以下简称: "Puya")保留更改、纠正、增强、修改 Puya 产品和/或本文档的权利,恕不另行通知。用户可在下单前获取产品的最新相关信息。

Puya 产品是依据订单时的销售条款和条件进行销售的。

用户对 Puya 产品的选择和使用承担全责,同时若用于其自己或指定第三方产品上的,Puya 不提供服务支持且不对此类产品承担任何责任。

Puya 在此不授予任何知识产权的明示或暗示方式许可。

Puya 产品的转售,若其条款与此处规定不一致,Puya 对此类产品的任何保修承诺无效。

任何带有 Puya 或 Puya 标识的图形或字样是普冉的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代并替换先前版本中的信息。

普冉半导体(上海)股份有限公司 - 保留所有权利