Gröbner bases & cryptographic applications

Prof. dr. ir. Frederik Vercauteren

COSIC, KU Leuven
Computer Algebra for Cryptography (B-KUL-H0E74A)

2022-2023

Polynomial systems

Resultant

Ideals and varieties

Gröbner bases

Cryptographic applications

Polynomial systems of equations

- Let F be a field, and let $R = F[x_1, ..., x_n]$ be the ring of polynomials with coefficients in F in n variables.
- What is the solution set described by a system of m polynomial equations:

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \vdots\\ f_m(x_1,\ldots,x_n)=0 \end{cases}$$

- ► Any solutions? Finite/infinite? Where do they live (in *F* or some extension)?
- Def: The set of solutions

$$V_F(f_1,...,f_m) = \{(a_1,...,a_n) \in F^n \mid f_i(a_1,...,a_n) = 0, \forall i\}$$

is called the **affine variety** (over F) defined by f_1, \ldots, f_m .

Example I: linear polynomials

▶ If f_1, \ldots, f_m are linear:

$$\begin{cases}
f_1(x_1, \dots, x_n) &= a_{1,1}x_1 + \dots + a_{1,n}x_n - b_1 &= 0 \\
\vdots & \vdots & \vdots \\
f_m(x_1, \dots, x_n) &= a_{m,1}x_m + \dots + a_{m,n}x_n - b_m &= 0
\end{cases}$$

Solutions iff

$$\operatorname{rank}\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} = \operatorname{rank}\begin{pmatrix} a_{1,1} & \dots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & \dots & a_{m,n} & b_m \end{pmatrix}.$$

- Infinitely many solutions iff this rank < n.
- ▶ If solutions exist, they do exist over *F*.
- Efficient determination via Gaussian elimination.

Example II: univariate polynomials

ightharpoonup Case m=1:

$$f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_0 = 0, \quad a_i \in F$$

- At most d solutions.
- ► Solutions may exist over extension of *F* only!
 - Example: $f(x) = x^2 + 1$ over $F = \mathbb{R}$ vs. $F = \mathbb{C}$
- Finding solutions via dedicated root finding algorithms
- ightharpoonup Case m > 1 reduces to case m = 1:

$$\begin{cases} f_1(x) = 0 \\ f_2(x) = 0 \end{cases} \Leftrightarrow \gcd(f_1(x), f_2(x)) = 0$$

Proof: by XGCD there exist $\alpha(x), \beta(x) \in F[x]$ such that

$$\gcd(f_1(x), f_2(x)) = \alpha(x)f_1(x) + \beta(x)f_2(x).$$

Another example

Let $f_1(x, y) = x^2 + y^2 - 4$ and $f_2 = x - y - 1$, then we can plot the solution set to each:

- ► Eliminate $y = x 1 \Rightarrow 2x^2 2x 3 = 0 \Rightarrow x = (1 \pm \sqrt{7})/2$
- No solutions over \mathbb{Q} , two solutions over \mathbb{R} , so $V_{\mathbb{Q}}(f_1, f_2) = \emptyset$, $V_{\mathbb{R}}(f_1, f_2) = \{(\frac{1+\sqrt{7}}{2}, \frac{-1+\sqrt{7}}{2}), (\frac{1-\sqrt{7}}{2}, \frac{-1-\sqrt{7}}{2})\}$
- Approach: eliminate variables to reduce to univariate case

Another example

▶ Let $f_1(x, y) = x^2 + y^2 - 4$ and $f_2 = y - 2$, then we can plot the solution set to each:

- System reduces to y=2 and $x^2=0$, so $V_{\mathbb{Q}}(f_1,f_2)=\{(0,2)\}$
- Remark: equations contain more information, namely multiplicity, than corresponding variety ("fat points")

Polynomial systems

Resultant

Ideals and varieties

Gröbner bases

Cryptographic applications

Resultant 8 / 64

Bivariate polynomials: elimination approach

▶ Given $f(x, y), g(x, y) \in F[x, y]$, find the solutions to

$$f(x,y) = 0 \quad \text{and} \quad g(x,y) = 0 \tag{1}$$

Can try to "eliminate y" by finding a combination

$$a(x,y)f(x,y) + b(x,y)g(x,y) = h(x)$$

Any common solution (x_0, y_0) to (1) will satisfy $h(x_0) = 0$ (converse does not necessarily apply, but can test solutions)

Resultant 9 / 64

Bivariate polynomials: GCD approach

Consider f(x, y), g(x, y) as univariate polynomials in y with coefficients in the field F(x)

$$f(x,y) = \sum_{i=0}^{d_{f,y}} f_i(x)y^i$$
 $g(x,y) = \sum_{i=0}^{d_{g,y}} g_i(x)y^i$

Compute univariate GCD using Euclid to obtain

$$d(x,y) = \alpha(x,y)f(x,y) + \beta(x,y)g(x,y)$$

▶ Multiply by common denominator $\gamma(x)$ (only depends on x)

$$d(x,y)\gamma(x) = a(x,y)f(x,y) + b(x,y)g(x,y)$$

If $deg_y(d(x,y)) > 0$, then ∞ many solutions over alg. closure. If $deg_y(d(x,y)) = 0$, then found an expression

$$a(x,y)f(x,y) + b(x,y)g(x,y) = h(x)$$

Resultant 10 / 64

Bivariate polynomials: resultant

- **Resultant**: easy and robust method for computing h(x) without using GCD with denominators
- ▶ Given $f, g \in R[y]$ with $f = \sum_{i=0}^{n} f_i y^i$ and $g = \sum_{i=0}^{m} g_i y^i$
- ▶ Here *R* is any **ring**, so not necessarily a field
- ▶ Sylvester matrix of f and g is $(m+n) \times (m+n)$ matrix

$$\mathsf{Syl}(f,g) = \begin{pmatrix} f_0 & f_1 & \cdots & f_n & 0 & \cdots & & 0 \\ 0 & f_0 & f_1 & \cdots & f_n & 0 & \cdots & 0 \\ \vdots & & & & & & \vdots \\ 0 & \cdots & & f_0 & \cdots & & & f_{n-1} & f_n \\ g_0 & g_1 & \cdots & g_m & 0 & \cdots & & 0 \\ 0 & g_0 & g_1 & \cdots & g_m & 0 & \cdots & 0 \\ \vdots & & & & & \vdots \\ 0 & \cdots & & g_0 & \cdots & & g_{m-1} & g_m \end{pmatrix} \right\} m \text{ rows}$$

Resultant: Res(f,g) = det(Syl(f,g))

Resultant 11 / 64

Resultant

▶ **Theorem**: given $f, g \in R[y]$, there exist polynomials $A, B \in R[y]$ such that

$$Af + Bg = Res(f, g)$$

and the coefficients of A, B are integer polynomial expressions in the coefficients of f and g

- **Exercise:** Prove this.
 - First show that $Syl(f,g)^T$ is a matrix of the linear map

$$R[y]_{\deg < m} \times R[y]_{\deg < n} \rightarrow R[y]_{\deg < m+n} : (A, B) \mapsto Af + Bg$$

▶ Use formula $M \cdot \operatorname{adj}(M) = (\det M)I$ applied to $M = \operatorname{Syl}(f, g)^T$

Resultant 12 / 64

Resultant: applications

- $ightharpoonup R = \mathbb{Z}$:
 - ▶ Given $f, g \in \mathbb{Z}[y]$, can find $A, B \in \mathbb{Z}[y]$ such that

$$A(y)f(y) + B(y)g(y) = \text{Res}(f,g) \in \mathbb{Z}$$

- ▶ If Res $(f,g) \neq 0$, then no common solutions (not even over \mathbb{C})
- ▶ If $p \nmid \text{Res}(f,g)$: same conclusion for reductions $\overline{f}, \overline{g} \in \mathbb{F}_p[y]$
- ightharpoonup R = F[x]:
 - ▶ Given $f, g \in F[x][y] = F[x, y]$, so: bivariate polynomials with coefficients in F
 - ► Can find $A(x, y), B(x, y) \in F[x, y]$ such that

$$A(x,y)f(x,y)+B(x,y)g(x,y)=\operatorname{Res}(f,g)\in F[x]$$

▶ If $Res(f,g) \neq 0$: have eliminated the variable y

Resultant 13 / 64

Resultant: example

Let
$$f(x,y) = y^2 + (x^2 - 4)$$
 and $g = -10y + x(x-1)(x+3)$

Resultant 14 / 6

Resultant: example

Sylvester matrix:

$$Syl(f,g,y) = \begin{pmatrix} x^2 - 4 & 0 & 1\\ x(x-1)(x+3) & -10 & 0\\ 0 & x(x-1)(x+3) & -10 \end{pmatrix}$$

- Res $(f, g, y) = x^6 + 4x^5 2x^4 12x^3 + 109x^2 400$
- ▶ All common solutions have x-coordinate a zero of Res(f, g, y)
- ightharpoonup Over \mathbb{R} :

$$x_0 \in \{-1.90599741272488, 1.849299981919\}$$

MAGMA: QQ := Rationals();
 R<x,y> := PolynomialRing(QQ, 2);
 f := y^2 + x^2 - 4;
 g := -10*y + x*(x-1)*(x+3);
 Resultant(f, g, y);

Resultant 15 / 64

Polynomial systems

Resultant

Ideals and varieties

Gröbner bases

Cryptographic applications

Ideals

- ▶ **Def**: An **ideal** is a subset $I \subset F[x_1, ..., x_n]$ such that
 - ▶ If $f, g \in I$, then $f + g \in I$
 - ▶ If $f \in I$ and $h \in F[x_1, ..., x_n]$, then $hf \in I$
- ▶ **Def:** The ideal generated by polynomials f_1, \ldots, f_m is given by

$$I = \langle f_1, \ldots, f_m \rangle = \left\{ \sum_{i=0}^m h_i f_i \mid h_i \in F[x_1, \ldots, x_n] \right\}$$

- ▶ The polynomials $f_1, ..., f_m$ are called a **basis** for I
- ▶ Clearly $V_F(f_1, ..., f_m) = V_F(I)$, so solution set only depends on I and not on the chosen basis
- ► **Goal:** find more useful basis for the ideal that allows us to determine solutions explicitly

Ideals and varieties

Ideals vs. varieties

- ▶ An ideal $I \subset F[x_1,...,x_n]$ determines a variety $V_F(I)$ as the zero set of **all** polynomials in I
- ▶ Given a subset $V \subset F^n$, can look at all polynomials in $F[x_1, \ldots, x_n]$ that vanish on V

$$I(V) = \{ f \in F[x_1, \dots, x_n] \mid \\ \forall (\alpha_1, \dots, \alpha_n) \in V : f(\alpha_1, \dots, \alpha_n) = 0 \}$$

- ▶ Clearly we have $I \subset I(V_F(I))$, but in general not an equality:
 - V_F forgets about multiplicities: $I(V_F(\langle x^2 \rangle)) = \langle x \rangle$
 - V_F does not see extension fields: $I(V_{\mathbb{R}}(\langle x^2+1\rangle))=\langle 1\rangle$
- ▶ **Def**: The **radical** of an ideal *I* is

$$\sqrt{I} = \{ f \in F[x_1, \dots, x_n] \mid \exists t \in \mathbb{N} : f^t \in I \}$$

Hilbert's Nullstellensatz:

If F is algebraically closed then
$$I(V_F(I)) = \sqrt{I}$$

Example I revisited: linear polynomials

- ▶ Consider $I = \langle f_1, \dots, f_m \rangle \subset F[x_1, \dots, x_m]$ with each f_i linear
 - ▶ What does $V_F(I)$ look like? Is it empty? How many elements?
 - Is there a nicer basis that allows us to see this?
 - ▶ Is there an efficient method to see if $h \in F[x_1,...,x_n]$ is in I?
- Method: use Gauss elimination to bring the matrix

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & \dots & a_{m,n} & b_m \end{pmatrix}$$

in row echelon form and back substitute if there are solutions (also easy to test ideal membership, \dots)

- **Now echelon form = nicer basis** for the ideal $\langle f_1, \ldots, f_m \rangle$
- Note: Gauss elimination cancels terms in x_1 , then x_2 , ...

Example II revisited: univariate polynomials

- ▶ Consider $I = \langle f, g \rangle$ with $f, g \in F[x]$. Again:
 - ▶ What does $V_F(I)$ look like? Is it empty? How many elements?
 - Is there a nicer basis that allows us to see this?
 - ▶ Is there an efficient method to see if $h \in F[x]$ is included in I?
- Method: compute GCD(f,g) via Euclid's algorithm and apply root finding algorithm
- **Exercise:** show that $I = \langle GCD(f,g) \rangle \leftarrow$ **nicer basis**
- Conclusions:
 - ▶ One generator is sufficient, i.e., all ideals in F[x] are **principal**
 - Efficient method to compute this generator (simple GCD computations)
 - ▶ Simple check to see if $h \in I$, namely check if $GCD(f,g) \mid h$
- ▶ Note: Euclid's algorithm repeatedly cancels top terms
- **Exercise:** what is \sqrt{I} for $I = \langle \prod (x \alpha_i)^{e_i} \rangle$ with $\alpha_i \neq \alpha_i$?

Ideals and varieties

Example II revisited: univariate polynomials

- ► An example:
 - ► Let

$$f = x^3 - x^2 - x - 2$$
 and $g = x^3 - 2x^2 - x + 2$

- and consider $I = \langle f, g \rangle$
- Let $h = x^2 3x + 2$, is it easy to see whether $h \in I$?
- Note that deg(h) < deg(f) and deg(h) < deg(g), so cannot try to divide h by f or g, i.e. direct approach is not possible
- ▶ Recall that $\langle f, g \rangle = \{ u(x)f(x) + v(x)g(x) \mid u, v \in F[x] \}$
- ➤ To find elements of **small degree** in *I*, we need to **cancel top terms of** *f* **and** *g* using *u* and *v*, leading to GCD algorithm
- ▶ GCD(f,g) = x 2 and indeed h(2) = 0 so $h \in I$

Example III: monomial ideals

▶ **Def**: A **monomial** is a polynomial of the form

$$x_1^{e_1} \cdots x_n^{e_n}$$

- ▶ We will write such monomial as x^e
- ▶ **Def**: A **monomial ideal** is an ideal that can be generated by monomials $I = \langle \{\mathbf{x}^{\alpha} \mid \alpha \in A\} \rangle$ with possibly infinite $A \subset \mathbb{N}^n$
- Ideal membership is easy:
 - ▶ A polynomial *h* belongs to a monomial ideal if and only if all monomials in *h* belong to *l*
 - lacktriangle A monomial $f x^e$ belongs to I if at least one $lpha\in A$ with $f e\geq lpha$
- ▶ Dickson's Lemma: a monomial ideal is generated by a finite number of monomials

Monomial orders and multivariate division

- ► To be able to define a division algorithm for multivariate polynomials, we need to identify "leading terms".
- ▶ **Def:** A monomial ordering \succ is a total ordering on $F[x_1, ..., x_n]$ that satisfies
 - ► Compatibility: if $\mathbf{x}^{\alpha} \succ \mathbf{x}^{\beta}$ then $\mathbf{x}^{\alpha} \mathbf{x}^{\gamma} \succ \mathbf{x}^{\beta} \mathbf{x}^{\gamma}$
 - Well-ordering: any non-empty set of monomials contains a smallest element
- lacktriangle Note: we can also simply look at exponent vectors $oldsymbol{lpha},oldsymbol{eta},\gamma$
- ► The **total degree** of a monomial deg \mathbf{x}^{α} is $\sum_{i=1}^{n} \alpha_{i}$

Monomial orders and multivariate division

- **Lexicographic ordering**: α ≻_{lex} β if and only if the first non-zero coefficient from the left of $\alpha \beta$ is positive
- ▶ Graded lexicographic ordering: $\alpha \succ_{grlex} \beta$ if and only if
 - $ightharpoonup deg(oldsymbol{lpha}) > deg(oldsymbol{eta})$ or
 - $ightharpoonup \deg(\alpha) = \deg(\beta)$ and $\alpha \succ_{lex} \beta$
- ▶ Graded reverse lexicographic ordering: $\alpha \succ_{\mathit{grevlex}} \beta$ if and only if
 - $ightharpoonup deg(\alpha) > deg(\beta)$ or
 - ▶ $\deg(\alpha) = \deg(\beta)$ and $\alpha \succ_{revlex} \beta$ with $\alpha \succ_{revlex} \beta$ if and only if the first non-zero coefficient from the right of $\alpha \beta$ is negative
- **Exercise:** Why is \succ_{revlex} **not** a monomial ordering?

Example monomial orderings

- ► The polymomial $f = 4xyz^2 + 4x^3 5y^4 + 7xy^2z \in F[x, y, z]$ is
- $ightharpoonup >_{lex}: f = 4x^3 + 7xy^2z + 4xyz^2 5y^4$
- $ightharpoonup >_{grlex}: f = 7xy^2z + 4xyz^2 5y^4 + 4x^3$
- $ightharpoonup
 angle_{grevlex}$: $f = -5y^4 + 7xy^2z + 4xyz^2 + 4x^3$

Multivariate division

▶ Given polynomials f_1, \ldots, f_m and a polynomial f, we want to write

$$f = q_1 f_1 + \ldots + q_m f_m + r$$

for some quotients q_i and remainder r

- ▶ Will try to mimic univariate case, given monomial ordering ≻
- ▶ **Def:** Let $g = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} \mathbf{x}^{\alpha}$, the **multidegree** of g wrt \succ is

$$\mathsf{mdeg}(g) = \max_{\succ} \{\alpha \in \mathbb{N}^n \mid c_\alpha \neq 0\}$$

- ▶ **Def:** The **leading coefficient** lc(g) is $c_{mdeg(g)}$
- ▶ **Def:** The **leading monomial** Im(g) is $\mathbf{x}^{mdeg(g)}$
- ▶ **Def:** The **leading term** lt(g) is lc(g) lm(g)

Multivariate division

- Like in univariate case, we will try to cancel the leading term of f by substracting some multiple of the f_i
- ▶ If the leading term of f cannot be cancelled, we move it to the remainder
- ▶ Result: $f = q_1 f_1 + ... + q_m f_m + r$ such that no monomial in r is divisible by any $lt(f_i)$

```
1: \forall i \in [1 \dots m]: q_i \leftarrow 0, r \leftarrow 0, h = f

2: while h \neq 0 do

3: if \operatorname{lt}(f_i) divides \operatorname{lt}(h) for some i \in [1, \dots, m] then

4: q_i \leftarrow q_i + \operatorname{lt}(h)/\operatorname{lt}(f_i), h \leftarrow h - \operatorname{lt}(h)/\operatorname{lt}(f_i)f_i

5: else

6: r \leftarrow r + \operatorname{lt}(h), h \leftarrow h - \operatorname{lt}(h)

7: end if

8: end while

9: return q_1, \dots, q_m, r
```

Multivariate division

- Like in univariate case, multivariate division is **not sufficient** to test if $h \in \langle f_1, \dots, f_m \rangle$
- ▶ Main problem: in $I = \langle f_1, \dots, f_m \rangle$ there are possibly polynomials with smaller leading term (for \succ) than all $\operatorname{lt}(f_i)$
- ▶ Division algorithm only considers $lt(f_i)$
 - moves any intermediate lt(h) to the remainder if it is not divisible by any of the lt(fi)
- ▶ Ideally: want basis $\langle g_1, \ldots, g_t \rangle$ of I such that

$$\langle \mathsf{lt}(g_1), \ldots, \mathsf{lt}(g_t) \rangle = \langle \mathsf{lt}(I) \rangle$$

with lt(I) the set of leading terms of all polynomials in I

= definition of Gröbner basis

Multivariate division: example

For \succ_{lex} we will divide $f = x^2y + xy^2 + y^2$ by $f_1 = xy - 1$ and $f_2 = y^2 - 1$.

$$f = x(xy - 1) + xy^{2} + x + y^{2}$$
$$= x(xy - 1) + y(xy - 1) + x + y^{2} + y$$

► Leading term is now *x* which is not divisible so we move it to remainder and continue

$$f = (x + y)(xy - 1) + (x) + (y^2 - 1) + (y + 1)$$

= $(x + y)(xy - 1) + (y^2 - 1) + x + y + 1$

Final remainder is x + y + 1

Multivariate division: example

Same example but now instead of choosing f_1 always first, we can choose f_2

$$f = x(xy - 1) + x + x(y^2 - 1) + x + (y^2 - 1) + 1$$

= $x(xy - 1) + (x + 1)(y^2 - 1) + 2x + 1$

- ▶ Quotients, nor remainder are unique and depend on monomial order, but also on the order in which one chooses the f_i
- ▶ If smallest possible *i* is chosen, then obtain unique result, but again not good enough to test ideal membership
- Note: again the main problem is the existence of combinations of f₁ and f₂ with smaller leading term

$$yf_1 - xf_2 = x - y$$

Multivariate division: example

▶ Looking at exponent vectors of the leading terms of $f_1 = xy - 1$ and $f_2 = y^2 - 1$ we get

- ▶ In particular: unclear if $F[x, y] \mod I$ is finite-dimensional
- ▶ Gröbner basis for \succ_{lex} is $f_1 = x y$ and $f_2 = y^2 1$

Conclusion: $F[x, y] \mod I$ is 2-dimensional

Polynomial systems

Resultant

Ideals and varieties

Gröbner bases

Cryptographic applications

Gröbner bases 32 / 64

Gröbner basis

▶ **Def:** A **Gröbner basis** (wrt. \succ) for an ideal $I \subset F[x_1, \ldots, x_n]$ is a set of generators $\{g_1, \ldots, g_s\}$ such that $I = \langle g_1, \ldots, g_s \rangle$ and

$$\langle \mathsf{lt}(I) \rangle = \langle \mathsf{lt}(g_1), \dots, \mathsf{lt}(g_s) \rangle$$

- ▶ $\langle \operatorname{lt}(I) \rangle$ is the monomial ideal generated by all $\operatorname{lt}(f)$ with $f \in I$
- $ightharpoonup \langle lt(I) \rangle$ is sometimes called the **initial ideal**
- Dickson's lemma states that a finite number of monomials generates $\langle lt(I) \rangle$ so Gröbner bases exist
- ▶ **Exercise:** any set of elements $\{g_1, \ldots, g_s\} \subset I$ such that $\langle \operatorname{lt}(I) \rangle = \langle \operatorname{lt}(g_1), \ldots, \operatorname{lt}(g_s) \rangle$ is automatically a basis for I
- Conclusion: **Hilbert's basis theorem**: every ideal $I \subset F[x_1, ..., x_n]$ is finitely generated

Gröbner bases 33 / 64

Gröbner basis: ideal membership

▶ Given a **Gröbner basis** $\{g_1, \ldots, g_s\}$ for an ideal $I \subset F[x_1, \ldots, x_n]$, we now have the equivalence

$$f \in I \Leftrightarrow f \mod \{g_1, \dots, g_s\} = 0$$

Write out multivariate division

$$f = q_1g_1 + \ldots + q_sg_s + r$$

- $\blacktriangleright \Leftarrow$: If r=0 then clearly $f\in I$.
- ▶ ⇒: If $f \in I$, but $r \neq 0$, then $lt(r) \in \langle lt(I) \rangle$, so must be divisible by one of the $lt(g_i)$, which is impossible due to division rules, so r = 0.

Gröbner bases 34 / 6-

Gröbner basis: working modulo an ideal

- ▶ **Gröbner basis** $\{g_1, \ldots, g_s\}$ for an ideal $I \subset F[x_1, \ldots, x_n]$
- ▶ Given $f \in F[x_1, ..., x_n]$ we can write

$$f = q_1g_1 + \ldots + q_sg_s + r$$

- r is unique and does not depend on the chosen Gröbner basis, but only on I (and the choice of monomial ordering ≻)
- **Exercise:** prove the above
- ▶ Note: the order of division also does not matter
- ightharpoonup So we can write $r = f \mod I$

Gröbner bases 35 / 6

S-polynomials

- Let $f, g \in I$, we are looking for combinations of multiples of f and g such that the leading terms of these multiples cancel
- Let $Im(f) = \mathbf{x}^{\alpha}$ and $Im(g) = \mathbf{x}^{\beta}$, and let

$$\gamma = (\max\{\alpha_1, \beta_1\}, \dots, \max\{\alpha_n, \beta_n\})$$

- Note $\mathbf{x}^{\gamma} = \text{lcm}(\text{Im}(f), \text{Im}(g))$
- **Def:** The *S*-**polynomial** (or principal syzygy) of f, g is defined as

$$S(f,g) = \frac{\mathbf{x}^{\gamma}}{\mathsf{lt}(f)} \cdot f - \frac{\mathbf{x}^{\gamma}}{\mathsf{lt}(g)} \cdot g$$

- Note: $Im(S(f,g)) \prec Im(Icm(Im(f),Im(g)))$
- ▶ Clearly also $S(f,g) \in I$

Gröbner bases 36 / 6

Buchberger's algorithm

▶ Theorem (Buchberger): A set $\{g_1, \ldots, g_s\} \subset F[x_1, \ldots, x_n]$ is a Gröbner basis for the ideal $I = \langle g_1, \ldots, g_s \rangle$ if and only if

$$S(g_i, g_j) \mod \{g_1, \dots, g_s\} = 0 \qquad \forall i < j \in \{1, \dots, s\}$$

- ▶ Buchberger's algorithm: if an S-polynomial fails the test, simply add the remainder of it to set of generators, until no more failures occur
- ► Approach has to finish, essentially since every ideal is finitely generated (apply it to union of initial ideals)

Gröbner bases 37 / 6

Buchberger's algorithm

```
Function Buchberger(\{f_1, \ldots, f_m\}, order \succ)
       1: G \leftarrow \{f_1, \ldots, f_m\}
       2: repeat
              S \leftarrow \emptyset, label elements in G by \{g_1, \dots, g_t\}
       4: for 1 < i < j < t do
                   r \leftarrow S(g_i, g_i) \mod \{g_1, \dots, g_t\}
       5:
       6: if r \neq 0 then
                   S \leftarrow S \cup \{r\}
       7:
                   end if
       8:
       9: end for
      10: G \leftarrow G \cup S
      11: until S = \emptyset
      12: return G
```

Gröbner bases 38 / 64

Buchberger's algorithm

- Gröbner basis is not minimal, nor unique
 - ► Have to get rid of redundant polynomials g_i and also redundant terms in each g_i
 - Polynomial g_i is redundant if $lt(g_i) \in \langle lt(G \setminus \{g_i\}) \rangle$, since the leading term of g_i does not contribute anything new
 - ightharpoonup Can replace G by $G\setminus\{g_i\}$
- ▶ **Def:** Gröbner basis is called **minimal** if $\forall g \in G : lc(g) = 1$ and $lt(g) \notin \langle lt(G \setminus \{g\}) \rangle$
- ▶ **Def:** Element g is called **reduced** if no monomial in g belongs to $\langle \operatorname{lt}(G \setminus \{g\}) \rangle$
- ▶ Def: Gröbner basis is called reduced if it is minimal and all elements are reduced
- ► Theorem: each ideal / has a unique reduced Gröbner basis for a given order ≻

Gröbner bases 39 / 6-

Examples I and II revisited one more time

- Example I: Linear polynomials
 - ▶ monomial order = variable order $x_1 \succ x_2 \succ ... \succ x_n$
 - S-polynomials: pivoting method in Gaussian elimination
 - Gröbner basis: any basis containing row echelon form
 - minimal Gröbner basis: row echelon form
 - reduced Gröbner basis: reduced row echelon form
- Main difference with Gauss: a priori equations are added instead of replaced
 - number of equations can grow very fast at every iteration
- Example II: Univariate polynomials
 - ▶ only one monomial order possible: ... $\succ x^3 \succ x^2 \succ x \succ 1$
 - Gröbner basis: any basis containing GCD(f,g)
 - reduced Gröbner basis: $\{GCD(f,g)\}$

Gröbner bases 40 / 64

Buchberger's algorithm: complexity

▶ Cannot be easy, e.g. can encode NP-complete problem such as knapsack problem with weights $w_i \in \mathbb{N}$ and target $s \in \mathbb{N}_0$

$$s=\sum_{i=1}^n x_i w_i \qquad x_i(1-x_i)=0$$

(see Lecture 5)

- ► General case: K. Kühnle and E.W. Mayr (1996) Exponential space computation of Gröbner bases
 - Computing Gröbner bases is EXPSPACE-complete problem and has doubly exponential time complexity
 - Exist ideals in polynomial rings of n variables such that Gröbner basis has at least $2^{2^{\alpha n}}$ polynomials each of degree at least $2^{2^{\beta n}}$ for some constants $\alpha, \beta \in \mathbb{R}_{>0}$

Gröbner bases 41 / 6

Buchberger's algorithm: complexity

- Practice: many problems give rise to 0-dimensional ideals, i.e. only finitely many solutions
- \triangleright For system of m equations in n unknowns the complexity is

$$\mathcal{O}\left(\left(m\binom{n+d_{reg}-1}{d_{reg}}\right)^{\omega}\right)$$

- $ightharpoonup \omega$ complexity of matrix multiplication (practice $\omega \sim$ 3)
- $ightharpoonup d_{reg}$ the degree of regularity = highest degree that appears in computation of Gröbner basis
- $d_{reg} \leq \sum_{i=1}^{m} (d_i 1) + 1$ with $d_i = \deg(f_i)$ (for grevlex)
- ▶ *n* quadratic equations gives $d_{reg} \leq n+1$, so complexity

$$\mathcal{O}\left(\left(n\binom{2n}{n}\right)^{\omega}\right)$$

Gröbner bases 42 / 64

Buchberger's algorithm: complexity

For "semi-regular" systems = d_{reg} is **index** of first non-positive coefficient of

$$H(z) = \frac{\prod_{i=1}^{m} (1 - z^{a_i})}{(1 - z)^n}$$

for ideal $\langle f_1, \ldots, f_m \rangle$ with $\deg(f_i) = d_i$

For quadratic equations and n = 100 have following table

m	d_{reg}
100	101
101	51
110	35
120	28
200	14
1000	4

MAGMA: R<z> := PowerSeriesRing(Integers(), 200); H := &*[1-z^2 :i in [1..m]]/(1-z)^100;

Back to system solving: elimination

- ▶ Given ideal $I = \langle f_1, \dots, f_m \rangle \subset F[x_1, \dots, x_n]$
- Assume only finitely many solutions, so $V_F(I)$ is finite
- ▶ For each $i \in \{1, ..., n\}$ we have that the polynomial

$$g_i(x_i) = \prod_j (x_i - \tilde{x}_{i,j})$$

with $\tilde{x}_{i,j}$ all x_i -coord of all elements in $V_F(I)$ is zero on $V_F(I)$

- ▶ Modulo "subtleties" (F not alg. closed, $I \neq \sqrt{I}$): $g_i(x_i) \in I$
- Motivates to look for univariate polynomials within ideal

Gröbner bases 44 / 6

Elimination ideals

▶ **Def**: Let $I = \langle f_1, \dots, f_m \rangle \subset F[x_1, \dots, x_n]$, then the ℓ -th elimination ideal is

$$I_{\ell} = I \cap F[x_{\ell+1}, \dots, x_n]$$

- ▶ Elements in I_{ℓ} do not depend on x_1, \ldots, x_{ℓ}
- In particular: I_{n-1} contains only polynomials in the variable x_n and is principal (since only 1 variable), so $I_{n-1} = \langle g(x_n) \rangle$
- ▶ All x_n coordinates of the points in $V_F(I)$ are zeros of $g(x_n)$
- ▶ **Elimination theorem**: If G is a Gröbner basis for I wrt. \succ_{lex} , then

$$G_{\ell} = G \cap F[x_{\ell+1}, \ldots, x_n]$$

is a Gröbner basis for the elimination ideal I_ℓ

Gröbner bases 45 / 6

Elimination ideals

- ► Elimination theorem implies that Gröbner basis for >_{lex} automatically eliminates variables
- ► Example: $f_1 = x^2 + y^2 + z^2 4$, $f_2 = x^2 + 2y^2 5$, $f_3 = xz 1$ has Gröbner basis wrt. \succ_{lex}

$$g_1 = x + 2z^3 - 3z$$
, $g_2 = y^2 - 1 - z^2$, $g_3 = 2z^4 - 3z^2 + 1$

- \blacktriangleright Finding roots of g_3 and back substitution gives all solutions
- Not all partial solutions extend to full solutions

(Note: Magma default is "lex", so can be omitted)

Compare with EliminationIdeal(I, 2);

Gröbner bases

The Shape Lemma

- ► Captures structure of systems of random equations, where all points have one coordinate that is all different
- ▶ **Shape Lemma**: Let $I \subset F[x_1, ..., x_n]$ be a radical ideal such that $V_F(I)$ is finite. Assume that the x_n -coordinates of all points are different, then a Gröbner basis for I wrt. \succ_{lex} has the following shape:

$$g_1 = x_1 + h_1(x_n)$$

 \vdots
 $g_{n-1} = x_{n-1} + h_{n-1}(x_n)$
 $g_n = x_n^m + h_n(x_n)$

- ▶ Roots of g_n give x_n -coordinates. Evaluation of g_i for i < n gives values for $x_i = -h_i(x_n)$
- ▶ Gives *m* roots over algebraic closure

Gröbner bases 47 / 6

The Shape Lemma: example

- Let $f_1 = xy + z$, $f_2 = y^2 + x + 1$, $f_3 = xz + yz + z^2$
- Normal lexicographic ordering $x \succ_{lex} y \succ_{lex} z$ gives Gröbner basis

$$x + y^2 + 1$$
, $y^3 + y - z$, $yz - z^3$, $z^4 + z^3 - z$

- Does not satisfy shape lemma (why not?)
- ▶ Changed lexicographic ordering $x \succ z \succ y$ gives Gröbner basis

$$x + y^2 + 1$$
, $z - y^3 - y$, $y^6 - y^5 + 3y^4 - 2y^3 + 2y^2 - y$

Gröbner bases 48 / 6

Gröbner basis conversion

- ▶ Elimination theorem shows that \succ_{lex} is useful to find solutions of systems of equations
- ▶ In practice: $\succ_{grevlex}$ much faster to compute Gröbner basis
- ▶ Change of monomial ordering going from $\succ_{grevlex}$ to \succ_{lex}
- Faugère, Gianni, Lazard and Mora (FGLM) for dimension 0 ideals
- ► Complexity: given Gröbner basis for $\succ_{grevlex}$, can compute Gröbner basis for \succ_{lex} in time $\mathcal{O}(nD^3)$ with D the total number of solutions (over algebraic closure)

Gröbner bases 49 / 64

Polynomial systems

Resultant

Ideals and varieties

Gröbner bases

Cryptographic applications

Multivariate equations in cryptography: encryption

- Fact: finding solutions to systems of multivariate non-linear equations is NP-hard
- Basic idea for encryption:
 - ▶ Public key = $(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))$
 - ▶ Encrypt message $(m_1, ..., m_n)$ is evaluation

$$(c_1,\ldots,c_m)=(f_1(m_1,\ldots,m_n),\ldots,f_m(m_1,\ldots,m_n))$$

Decryption: given ciphertext (c_1, \ldots, c_m) find solution to

$$\begin{cases} f_1(x_1,\ldots,x_n)=c_1\\ \vdots\\ f_m(x_1,\ldots,x_n)=c_m \end{cases}$$

For decryption to work: solution should be unique (or easily recognizable from small set of solutions), so typically $m \ge n$

Multivariate equations in cryptography: signatures

- Basic idea for signatures:
 - ▶ Public key = $(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))$
 - ▶ To sign message M, compute its hash $H(M) = (h_1, ..., h_m)$
 - ▶ Signature is then a solution $(s_1, ..., s_n)$ to

$$\begin{cases} f_1(x_1,\ldots,x_n) = h_1 \\ \vdots \\ f_m(x_1,\ldots,x_n) = h_m \end{cases}$$

- ► For signing to work: for each hash there should be at least one solution, so typically *m* < *n*
- Verification: given M, public key and (s_1, \ldots, s_n) simply verify above system of equations

Multivariate equations in cryptography: public key

- ▶ Public key = $(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))$
- ▶ Number of monomials of degree $\leq d$ is

$$\binom{n+d}{d}$$

- ▶ Size over \mathbb{F}_q therefore is $m \cdot \binom{n+d}{d} \cdot \log q$
- ▶ Practice: d = 2

Multivariate equations in cryptography

- Main problem: solving random non-linear systems of equations is NP-hard, so basic idea is a no-go
- ➤ Solution (?): start from system of equations that is easy to solve, and then hide its structure

$$F = T \circ G \circ S$$

- G system of easy to invert quadratic multivariate polynomials (called central map)
- T and S are **invertible** affine maps

$$F: \mathbf{x} \stackrel{S}{\mapsto} \mathbf{y} = M_S \mathbf{x} + \mathbf{c}_S \stackrel{G}{\mapsto} \mathbf{z} = G(\mathbf{y}) \stackrel{T}{\mapsto} \mathbf{t} = M_T \mathbf{z} + \mathbf{c}_T$$

- $\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{t} = (t_1, \dots, t_m)$
- \blacktriangleright M_S is $n \times n$ matrix, \mathbf{c}_S is $n \times 1$ vector
- $ightharpoonup M_T$ is $m \times m$ matrix, \mathbf{c}_T is $m \times 1$ vector

Oil-Vinegar polynomials

Let \mathbb{F} be a finite field and let n = v + o, define

$$f(x_1,...,x_n) = \sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{i,j} x_i x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i,j} x_i x_j + \sum_{i=1}^{n} \gamma_i x_i + \delta$$

- \triangleright Vinegar variables: x_1, \ldots, x_v
- ightharpoonup Oil variables: x_{v+1}, \ldots, x_n
- ▶ Coefficients $\alpha_{i,i}, \beta_{i,i}, \gamma_i, \delta \in \mathbb{F}$
- ▶ Note: there are no quadratic terms of type oil × oil
- Consequence: if we choose random values x_1, \ldots, x_v , then obtain a **linear** system of equations in oil variables
 - ▶ ~→ easy to solve

Oil-Vinegar signature scheme

- Flagship of multivariate crypto, invented by Patarin in 1998
- ► Central map consists of *o* oil-vinegar polynomials

$$g^{(k)}(x_1,\ldots,x_n) = \sum_{i=1}^{\nu} \sum_{j=i}^{\nu} \alpha_{i,j}^{(k)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(k)} x_i x_j + \sum_{i=1}^{n} \gamma_i^{(k)} x_i + \delta^{(k)}$$

- ► Central map G is composed with invertible linear map $S : \mathbb{F}^n \to \mathbb{F}^n$ (affine change of variables)
- ▶ Public key is simply $F = G \circ S$ (no need for T)
- ► S mixes oil and vinegar variables

Oil-Vinegar signature scheme

- ▶ Signing message M: compute hash $H(M) = (h_1, \ldots, h_o) \in \mathbb{F}^o$
- ▶ Solve non-linear system of equations $F^{(k)}(x_1,...,x_n) = h_k$
- ightharpoonup Signer knows central map G, so he solves

$$\begin{cases} g^{(1)}(x_1,\ldots,x_n) = h_1 \\ \vdots \\ g^{(o)}(x_1,\ldots,x_n) = h_o \end{cases}$$

- ► Choose random values for the vinegar variables x_1, \ldots, x_v
- ▶ Obtain linear system of equations in oil variables x_{v+1}, \ldots, x_n
- ▶ If linear system has no solutions, choose new vinegar variables
- ▶ Return signature $\mathbf{z} \in \mathbb{F}^n$ as $\mathbf{z} = S^{-1}\mathbf{x}$
- ▶ Signature verification: check that $F(\mathbf{z}) = H(M)$

Oil-Vinegar signature scheme: security

- Nipnis-Shamir (1999): beautiful polynomial time attack on balanced O-V scheme, i.e. where v = o
- ▶ In general: attack complexity is $\mathcal{O}(q^{v-o}o^4)$
- ► Currently: UOV, unbalanced Oil-Vinegar scheme with $v \approx \frac{3}{2}o$
- Direct attack using Gröbner bases appears to behave like for random systems
 - System under-determined, so filling in variables makes system look random
- Example: UOV(\mathbb{F}_{16} , o=47, v=71) believed to meet NIST level I, public key size is 242kB, signature size 89B
- ▶ Rainbow: UOV variant submitted to NIST but broken in 2022 by Beullens in "a weekend on a laptop"
- ▶ Plain UOV will be submitted to renewed call in 2023
 - as well as variants such as MAYO (stirred up version of UOV)

Finite field extensions

- Recall finite field \mathbb{F}_p (p prime) is simply modular arithmetic modulo p
- **Extension** field \mathbb{F}_q with $q = p^n$ can be constructed as

$$\mathbb{F}_q = \mathbb{F}_p[w]/(f(w))$$

with f a monic, irreducible polynomial over \mathbb{F}_p

▶ Element $a \in \mathbb{F}_q$ can be written as

$$a = \sum_{i=0}^{n-1} a_i w^i \quad a_i \in \mathbb{F}_p$$

Finite field extensions: multiplication & Frobenius

▶ Given two elements $a, b \in \mathbb{F}_q$, can compute product in \mathbb{F}_q

$$c = a \cdot b = \sum_{i=0}^{n-1} c_i w^i \quad c_i \in \mathbb{F}_p$$

- **Easy** to see: c_i are **quadratic** polynomial expressions in a_i, b_i
- $ightharpoonup p^k$ -Frobenius: given $a \in \mathbb{F}_q$ compute a^{p^k}

$$a^{p^k} = \sum_{i=0}^{n-1} a_i w^{ip^k} = \sum_{j=0}^{n-1} a'_j w^j$$

where the a'_i are **linear** polynomials in the a_i

 \triangleright since w^{jp^k} can be written as fixed linear expression in w^i

Hidden Field Equations (HFE)

▶ Also Patarin (1996): take univariate polynomial in $\mathbb{F}_q[X]$

$$G(X) = \sum_{0 \le i \le j \le d} \alpha_{i,j} X^{p^i + p^j} + \sum_{0 \le i \le d} \beta_i X^{p^i} + \gamma$$

- ▶ Coefficients $\alpha_{i,j}, \beta_i, \gamma \in \mathbb{F}_q$ all have n coefficients in \mathbb{F}_p
- ▶ If we write $X = \sum_{i=0}^{n-1} x_i w^i$ with x_i unknowns (over \mathbb{F}_p), then
 - ▶ G(X) is mapping $G: \mathbb{F}_p^n \to \mathbb{F}_p^n$
 - lacktriangle given by n quadratic multivariate polynomials in $\mathbb{F}_p[x_1,\ldots,x_n]$

$$G(X) = \sum_{i=0}^{n-1} g_i(x_1, \ldots, x_n) w^i$$

▶ Public key: *n* quadratic multivariate polynomials

$$F = T \circ G \circ S$$

with $T, S \in \mathbb{F}_{p}^{n \times n}$ invertible matrices

Hidden Field Equations (HFE): encryption / decryption

- ▶ Encryption: evaluate public key F in message $(m_1, ..., m_n)$
- Decryption:
 - ightharpoonup given (c_1,\ldots,c_n) compute $\mathbf{z}=T^{-1}\mathbf{c}$
 - ► Consider **z** as element $z \in \mathbb{F}_q$ as $z = \sum_{i=0}^{n-1} \mathbf{z}[i] w^i$
 - Find root x of **univariate** polynomial over \mathbb{F}_q as G(X) = z
 - ► Compute message $(m_1, ..., m_n)$ as S^{-1} **x**
- ▶ Decryption: need to compute root of univariate polynomial of degree $D \le 2p^d$
- ► Cantor-Zassenhaus (Lecture 8): runtime $\mathcal{O}(D^3 + nD^2 \log p)$
 - d cannot be taken too large
 - Multiple roots are possible so need some form of redundancy in message
 - ► Also signature is possible, need counter to admit root for each message

Hidden Field Equations (HFE): direct attack

- Public key of HFE does **not** behave like random system of polynomials
- ▶ Upper bound for degree of regularity

$$d_{reg} \leq \frac{p-1}{2}(\lfloor \log_p(D-1)\rfloor + 1) + 2$$

- ▶ Much lower than for random systems, so HFE is not secure
- Variants of HFE: HFEv-, GUI, MHFEv
- ▶ Typical parameters: p = 2, $n \sim 128$, $D \sim 10$

Further reading

- Available on Toledo:
 - ► Chapter 11: Polynomial systems and Gröbner base computations of book "Algorithmic cryptanalysis" by Joux
 - Summer school slides on HFE and UOV/Rainbow by Petzoldt
- ► Short summary: "What is a Gröbner basis?" by Sturmfels https://www.ams.org/notices/200510/what-is.pdf
- Breaking Rainbow takes a weekend on a laptop, by Beullens https://eprint.iacr.org/2022/214.pdf