

As our probability space gets larger, we need better techniques to handle our decision making

Conditionally independent: given that C happens, events A,B are conditionally independent given C iff knowing that A happened, given C gives us no information on whether or not B happened given C. Mathematically: $P(A \text{ and } B \mid C) = P(A \mid C) P(B \mid C)$

For S, P(S = T) = 0.2 gives one free parameter, then P(F) is forced to be 1 - P(S = T)

For J, $P(J = T \mid S = T)$ gives one free parameter, then $P(J = F \mid S = T)$ is forced to be 1 - $P(J = T \mid S = T)$ For J, $P(J = T \mid S = F)$ gives one free parameter, then $P(J = F \mid S = F)$ is forced to be $1 - P(J = T \mid S = F)$

parents; their

distribution is

going from parents probability distribution to children's probability distribution

Updating our prediction of the probability distribution of S.

Suppose we know information about J, i.e. that J is having issues with her radio. Then we might increase the probability of S, a solar storm occuring. This could explain why Mike is having an issue with his radio R, rather than an issue with his battery B. Thus, we might lower P(B = True). So we can see how information propagates through this network.

