Date of report: 6 April 2005

Contract Order Number F61775-01-C0004; Project SPC 01 4059

"Synthesis of Porphyrin Materials with Optimized Excited State Absorption Properties"

Principal Investigator: Prof. Harry L. Anderson (Oxford University)

EOARD Program Manager: Dr Matthew E. Morgan, USAF AFRL TD Program Manager: Dr Paul A. Fleitz, AFRL/MLPJ

Final Report on period October 2001 – January 2005

Introduction. An ideal reverse saturable absorber (RSA) should have the following properties: small, but measurable, ground state absorption throughout the visible or near infrared (NIR) spectral regions, large excited state absorption cross-section over the same wavelength range, and long (>1 μ s) excited state lifetime. Porphyrins are one of the most promising classes of RSA materials because their excited states have large absorption cross-sections and their molecular structure can be modified to obtain the desired spectral properties. Much progress has been made in establishing structure-property relationships among porphyrins in the visible spectral region (400–700 nm), but little has been done in the development of these materials for the NIR (700–900 nm). The aim of this project was to synthesize highly conjugated porphyrin oligomers with strong RSA behavior in this NIR region. Increasing the conjugation shifts the ground state, and excited state, absorption to longer wavelengths.

Summary of Results. This final report summarizes the contents of 13 quarterly reports. During the period of the project, 8 out of the 12 target milestones set in the original proposal were fully achieved; 3 out of the 4 remaining target milestones were partially achieved, and all the compounds targeted in the proposal were successfully synthesized, except for the cumulenic trimer (2) and the push-pull quinoidal dimer (10). Substantial effort was invested in pursuing these two elusive targets, and our failure to prepare them leads us to conclude that they are too unstable to be isolated. We also synthesized and tested many compounds not envisaged at the time of the proposal. 26 of the most interesting new materials generated from this research were tested by Dr Paul Fleitz's team at AFRL/MLPJ. The structures of these compounds, and the conclusions from their photophysical behavior, are summarized briefly in the Appendix to this report. Three of these compounds appear to be promising materials for RSA in the NIR (Ander4, Ander4-I, and C2H2-dimer). The following themes have emerged from this work:

(1) Control of Triplet Yield. Four key parameters need to be controlled in the design of an RSA dye: (i) the ground state S_0 – S_n absorption spectrum, (ii) the triplet excited state T_1 – T_n absorption spectrum, (iii) the triplet yield and (iv) the triplet lifetime. At the outset of this project we expected the main challenge to be control of the S_0 – S_n and T_1 – T_n absorption spectra, because most known porphyrins already had suitable triplet yields and triplet lifetimes. However the main challenge has been to maintain a high triplet yield while achieving a suitable shift in the absorption spectra. Shifting the S_0 – S_n and T_1 – T_n absorption to longer wavelengths generally results in faster S_1 – S_0 internal conversion, reducing the triplet yield. This effect is most prominent in the edge-fused systems (Ander1, Ander4, Ander6, Pb-TIPS triple-link dimer, Zn-TIPS triple-link trimer, Ander4-I, Ar6-dimer and D18Ar6-dimer). We found that satisfactory triplet yields could be achieved by attaching heavy atoms to the *meso*-positions of the dimers (as in Ander4 and Ander4-I), so as to increase the rate of S_1 – T_1 intersystem crossing. It

REPORT DOC	UMENTATION PAGE	Form Approved OMB No. 0704-0188
maintaining the data needed, and completing and revieincluding suggestions for reducing the burden, to Depa		urden estimate or any other aspect of this collection of information, or Information Operations and Reports (0704-0188), 1215 Jefferson
1. REPORT DATE (DD-MM-YYYY) 18-04-2005	2. REPORT TYPE Final Report	3. DATES COVERED (From – To) 1 October 2001 - 17-Oct-05
	•	

1. REPORT DATE (DD- 18-04-20		2. REPO	ORT TYPE Final Report		3. DATES COVERED (From – To) 1 October 2001 - 17-Oct-05	
4. TITLE AND SUBTITL				5a. CC	5a. CONTRACT NUMBER	
Synthesis of Porphyrin Materials with Optimized Excited State Absorption Properties			F61775-01-C0004			
5b. G		5b. GR	GRANT NUMBER			
				5c. PR	OGRAM ELEMENT NUMBER	
6. AUTHOR(S)	6. AUTHOR(S) 5d. PROJECT NUMBER					
Dr. Harry Anderson						
·				5d. TA	5d. TASK NUMBER	
				5e. W0	ORK UNIT NUMBER	
					T	
	r, Masters and		University of Oxford		8. PERFORMING ORGANIZATION REPORT NUMBER	
Dyson Perrins Laboratory South Parks Road Oxford OX13QY United Kingdom		N/A				
9. SPONSORING/MONI	TORING AGE	NCY NAME(S)	AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)	
EOARD			, ,			
PSC 802 BOX 14 FPO 09499-0014		11. SPONSOR/MONITOR'S REPORT NUMBER(S) SPC 01-4059				
12. DISTRIBUTION/AVA	ALABILITY ST	TATEMENT				
Approved for public r	elease; distr	ribution is unli	mited.			
13. SUPPLEMENTARY NOTES						
14. ABSTRACT						
investigate the coefficients an	nonlinear responder of magr	ponse of porphy	rin-based materials to inter an other organic compound	nse laser illuminatio	University of Oxford as follows: The contractor will on. Porphyrin-based materials have shown nonlinear r will synthesize and analyze various forms of these	
15. SUBJECT TERMS						
EOARD, Orga	nic nonlinear c	optical materials,	Optoelectronic materials, 0	Chemistry		
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18, NUMBER 19a. NAME OF RESPONSIBLE PERSON						
a. REPORT b. AE	STRACT c	. THIS PAGE	17. LIMITATION OF ABSTRACT UL	18, NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON MATTHEW MORGAN, Lt Col, USAF	
UNCLAS UN	ICLAS	UNCLAS		10	19b. TELEPHONE NUMBER (<i>Include area code</i>) +44 (0)20 7514 4505	

is interesting that this strategy is more effective than the insertion of heavy atoms at the center of the porphyrin (as in **Pb-TIPS triple-link dimer**).

The deuterated compound **D18Ar6-dimer** was synthesized to test whether coupling with C-H vibrations has a significant role in facilitating internal conversion in these systems. Pumpprobe experiments detected no significant triplet absorption with either **D18Ar6-dimer** or **Ar6-dimer**, and fluorescence experiments (by Dr Nicola Armaroli, Istituto ISOF/CNR, Bologna, Italy) showed that these two compounds have identical fluorescence quantum yields in both dichloromethane and toluene. We still plan to investigate whether there is a difference in fluorescence efficiency in hydrogen-free solvents (such as CCl₄), but the current data indicate that coupling with C-H vibrations has little effect on the rate of internal conversion in these systems. There seems to be a need for theoretical work to gain a better understanding of the factors controlling the rates of internal conversion and intersystem crossing in these dyes.

(2) Use of Two-Photon Absorption and Excited State Absorption. During the course of this project, collaborative experiments with Prof. Aleks Rebane (Montana, USA) showed that some of our conjugated porphyrin dimers (e.g. PNT-dimer, C4-dimer and C2-dimer) exhibit extremely strong two-photon absorption (TPA) in the 800-900 nm region (these results were published in *J. Am. Chem. Soc.* 2004, *126*, 15325). This suggest that these materials might be able to exhibit RSA by a combination of TPA and ESA, so we synthesized highly soluble derivatives (C4/MJF-dimer and PNT/CJW-dimer) for testing at high concentrations. The results showed that the materials exhibit nonlinear absorption at 800, 840 and 880 nm, but the mechanism seems to be purely TPA because the T₁-T_n band at around 1000 nm does not overlap well with the TPA band. Recently we have synthesized an alkene-linked structure (C2H2-dimer) which exhibits a T₁-T_n band at shorter wavelengths (ca. 750–1000 nm). It will be interesting to see whether this provides better overlap with the two-photon absorption (TPA experiments are in progress).

Publications. Three articles have been published on work directly resulting from this project:

- (i) "Fusion and planarization of a quinoidal porphyrin dimer", I. M. Blake, A. Krivokapic, M. Katterle and H. L. Anderson, Chem. Commun. **2002**, 1662–1663.
- (ii) "Reverse saturable absorption in the near infrared by fused porphyrin dimers", K. J. McEwan, P. A. Fleitz, J. E. Rogers, J. E. Slagle, D. G. McLean, H. Akdas, M. Katterle, I. M. Blake and H. L. Anderson, Adv. Mater. **2004**, *16*, 1933–1935.
- (iii) "Synthesis and crystal structure of a push-pull quinoidal porphyrin: a nanoporous framework assembled from cyclic trimer aggregates", M. J. Smith, W. Clegg, K. A. Nguyen, J. E. Rogers, R. Pachter, P. A. Fleitz and H. L. Anderson, Chem. Commun. 2005, in press.

The following articles are in various stages of preparation:

- (iv) "Pull-pull, push-pull and push-push quinoidal porphyrins: synthesis, crystallography and electronic structure", M. J. Smith, L. Thoresen, H. Akdas, I. M. Blake, A. Krivokapic, A. R. Cowley, W. Clegg, H. L. Anderson and other authors a full paper related to the above communication, in preparation for *Chem. Eur. J.*
- (v) "A conjugated porphyrin dimer with a C_2H_2 -meso bridge", M. J. Frampton, H. Akdas, A. R. Cowley, J. E. Rogers, P. A. Fleitz, H. L. Anderson and other authors a communication including a comparison of the T_1 - T_n spectra of the C2H2- and C2-dimers; in preparation for *Chem. Commun*.
- (vi) "Synthesis of a deuterated porphyrin dimer", M. J. Frampton, H. L. Anderson, J. E. Rogers, P. A. Fleitz and other authors.
- (vii) "Electron donating and withdrawing substituents in meso-tetra-ethynyl porphyrins", C. J. Wilson, J. E. Rogers, P. A. Fleitz and H. L. Anderson a full paper on some data from the first year of this project.

Appendix. List of compounds sent for photophysical testing at AFRL/MLPJ, Dayton, Ohio.

Date sample sent from Oxford	Compound	Date of report from AFRL and comments
17 May 2002	Ąr Ąr	18 Dec 2003
	N N N N N	no ESA detected
	N Ar Ander1 Ar	synthesis and crystal structure published in <i>Chem. Comm.</i> 2002, 1662.
17 May 2002	Ar Ar	18 Dec 2003
	N N N N N N N N N N N N N N N N N N N	complex ESA behavior indicating decomposition
17 May 2002	Ar Ar	24 Nov 2003
	Br Zn N N Br	ESA in visible region $\Phi_{\rm T} = 0.85$
	Ar Ander3 Ar	
17 May 2002	Ar Ar Ar Br Zn Br Ar Ander4 Ar	24 Nov 2003, 18 Dec 2003 and 25 May 2004 RSA at 610–930 nm $\Phi_{\rm T} = 0.12$
17 May 2002	Ar Ar	18 Dec 2003
	Ar Ander5 Ar	complex ESA behavior indicating decomposition
28 Oct 2002	Ąr	ESA similar to
	Br Zn Br Ar	Ander3 $\Phi_{\rm T} = 0.86$

18 Jan 2003 and 1 Feb 2005 no ESA observed	20.02002		107 2002
3 Jan 2003 Ar R BLACINY M = Zn, R = nBu HLACINY M = PD, R = NBu HLACINY M = NBu HLACINY M = PD, R = NBu HLACINY M = PD, R = NBu HLACINY M	28 Oct 2002	Ąr	18 Jan 2003 and
3 Jan 2003 Ar Ar 18 Jan 2003 and 1 Feb 2005 no ESA observed 7 July 2003 R HLA/CJW1 M = Zn, R = π-Bu HLA/CJW2 M = Pb, R = S0-Bu HLA/CJW3 M = Pb, R = S0-Bu HLA/CJW3 M = Pb, R = S0-Bu HLA/CJW6 M = Pb, R = N-HBu R 8 Oct 2003 Ar Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.31 8 Oct 2003 Ar Ar Ar Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.52		N N	1 Feb 2005
3 Jan 2003 Ar Ar 18 Jan 2003 and 1 Feb 2005 no ESA observed 7 July 2003 R HLA/CJW1 M = Zn, R = π-Bu HLA/CJW2 M = Pb, R = S0-Bu HLA/CJW3 M = Pb, R = S0-Bu HLA/CJW3 M = Pb, R = S0-Bu HLA/CJW6 M = Pb, R = N-HBu R 8 Oct 2003 Ar Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.31 8 Oct 2003 Ar Ar Ar Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.52		N N N	no ESA observed
3 Jan 2003 Ar 18 Jan 2003 and 1 Feb 2005 no ESA observed 7 July 2003 R HLA/CJW1 M = Zn, R = n-Bu HLA/CJW2 M = Pb, R = SO ₂ Bu HLA/CJW3 M = Pb, R = SO ₂ Bu HLA/CJW3 M = Pb, R = SO ₂ Bu HLA/CJW6 M = Pb, R = NHBu HLA/CJW6 M = Pb, R = NHBu R 8 Oct 2003 Ar Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.31 8 Oct 2003 Ar Ar Ar 18 Dec 2003 Po ESA observed		N NE	no Est tosserved
3 Jan 2003 Ar 18 Jan 2003 and 1 Feb 2005 19 Jan 2003 and 1 Feb 2003 10 Feb 2004 10		N N	
1 Feb 2005 no ESA observed 7 July 2003 R HLA/CJW1 M=Zn, R= n-Bu HLA/CJW2 M=Pb, R= n-Bu HLA/CJW3 M=Zn, R= n-Bu HLA/CJW3 M=Zn, R= sOyBu HLA/CJW3 M=Pb, R= SOyBu HLA/CJW3 M=Pb, R= SOyBu HLA/CJW6 M=Pb, R= N+Bu For PNT-dimer 10 Feb 2004 ESA around 1000 nm Φ _T = 0.31 8 Oct 2003 Ar Ar C4-dimer Ar 18 Dec 2003 Ar		l Ar	
7 July 2003 R HLA/CJW1 M = Zn, R = n-Bu HLA/CJW2 M = Pb, R = nBu HLA/CJW3 M = Zn, R = sO_Bu HLA/CJW3 M = Zn, R = sO_Bu HLA/CJW3 M = Pb, R = SO_Bu HLA/CJW6 M = Pb, R = NHBu R 8 Oct 2003 Ar Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.31 8 Oct 2003 Ar Ar C4-dimer Ar 18 Dec 2003 Ar Ar Ar 18 Dec 2003	3 Jan 2003	Ar	
Total Tot		N.	1 Feb 2005
7 July 2003 R HLA/CJW1 M = Zn, R = n-Bu HLA/CJW2 M = Pb, R = n-Bu HLA/CJW3 M = Zn, R = SO-Bu HLA/CJW3 M = Zn, R = SO-Bu HLA/CJW3 M = Pb, R = N-HBu HLA/CJW6 M = Pb, R = N-HBu R 8 Oct 2003 Ar Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm Φ _T = 0.52 8 Oct 2003 Ar Ar Ar 18 Dec 2003 PAR Ar Ar 18 Dec 2003			FCA -1
Ar Ar Ar Ar Ar Ar Ar Ar		Zń	no ESA observed
R		N N	
### HLA/CJW1 M = Zn, R = n-Bu ### donor and acceptor groups do not have a strong effect on RSA ### strong effect on RSA		Ar	
### HLA/CJW1 M = Zn, R = n-Bu ### donor and acceptor groups do not have a strong effect on RSA ### strong effect on RSA	7 July 2003	R R	24 Nov 2003
#LLA/CJW1 M = Zn, R = n -Bu HLA/CJW2 M = ph , R = n -Bu HLA/CJW3 M = ph , R = n -Bu HLA/CJW3 M = ph , R = n -Bu HLA/CJW3 M = ph , R = n -Bu HLA/CJW3 M = ph , R = n -Bu HLA/CJW3 M = ph , R = n -Bu HLA/CJW3 M = n			
HLA/CJW2 M = Pb, R = n-Bu		HI A/CIW1 M = 7n B = p-Bu	
HLA/CJW4 M = Pb, R = SO ₂ Bu HLA/CJW5 M = Zn, R = NHBu results in preparation for publication		HLA/CJW2 M = Pb, R = n -Bu	
HLA/CJW6 M = Zn, R = NHBu results in preparation for publication		7 2	strong effect on RSA
HLA/CJW6 M = Pb, R = NHBu for publication 8 Oct 2003 Ar Ar Si(C ₆ H ₁₃) ₃ Si			results in preparation
ESA around 1000 nm $\Phi_{T} = 0.31$ 8 Oct 2003 Ar Ar Ar Ar Ar Ar Ar Ar		HLA/CJW6 M = Pb, R = NHBu	
ESA around 1000 nm $\Phi_{T} = 0.31$ 8 Oct 2003 Ar Ar Ar Ar Ar Ar Ar Ar		R	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 Oct 2003	Ąr Ąr	10 Feb 2004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			EGA 11000
8 Oct 2003 Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm $\Phi_{\rm T} = 0.52$ 8 Oct 2003 Ar Ar Ar 18 Dec 2003			ESA around 1000 nm
8 Oct 2003 Ar Ar PNT-dimer Ar 10 Feb 2004 ESA around 1000 nm $\Phi_{\rm T} = 0.52$ 8 Oct 2003 Ar Ar Ar Ar 18 Dec 2003		$(C_6H_{13})_3Si$ \longrightarrow $Si(C_6H_{13})_3$	$\Phi_{\rm T} = 0.31$
8 Oct 2003 Ar Ar ESA around 1000 nm $\Phi_{\rm T} = 0.52$ 8 Oct 2003 Ar Ar Ar 10 Feb 2004 ESA around 1000 nm $\Phi_{\rm T} = 0.52$			Ī
8 Oct 2003 Ar Ar N N N N N N N N N N N N N		År PNT-dimer År	
ESA around 1000 nm $\Phi_{\rm T} = 0.52$ 8 Oct 2003 Ar Ar Ar 18 Dec 2003	8 Oct 2003		10 Feb 2004
$\Phi_{\rm T} = 0.52$ 8 Oct 2003 Ar Ar Ar 18 Dec 2003			
8 Oct 2003 Ar Ar 18 Dec 2003		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ESA around 1000 nm
8 Oct 2003 Ar Ar 18 Dec 2003		$\langle z_{\uparrow} \rangle = \langle z_{\uparrow} \rangle$	$\Phi = 0.52$
8 Oct 2003 Ar			$\Psi_{\rm T} = 0.32$
8 Oct 2003 Ar Ar 18 Dec 2003 no ESA observed		Ar C4-dimer Ar	
no ESA observed	8 Oct 2003		18 Dec 2003
no ESA observed			
_c':// `72 _// `75 \\c':_/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	no ESA observed
		⟩-\$i-=⟨ , , , , , , , , , , , , , , , , , ,	
Ar Ar		Ar Ar	
Ander6		Ander6	
TIPS triple-link dimer		TIPS triple-link dimer	

19 Dec 2003	Δr	17 Feb 2004
	Ar Ar N N N N Si Pb N N N N N N N N N N N N N N N N N N N	no ESA observed
19 Dec 2003	Ąr Ąr Ąr	17 Feb 2004
	Si Zn N N N N Si Si Ar Ar	no ESA observed strong ground state absorption at 1500 nm
	Zn-TIPS triple-link trimer	
5 April 2004	Ar Ar Ar Ar Ar Ander 4-1 Ar	25 May 2004 RSA at 604–973 nm $\Phi_{\rm T} = 0.20$ results published in Adv. Mater. 2004, 16, 1933.
3 Sep 2004	Ar Ar Ar N N N N N N N N N N N N N N N N	15 Dec 2004 and 16 Mar 2005 promising ESA at 750-1000 nm $\Phi_{\rm T} = 0.21$
3 Sep 2004	$(C_{8}H_{17}O OC_{8}H_{17} C_{8}H_{17}O OC_{8}H_{17} \\ (C_{6}H_{13})_{3}SI - N N - N N \\ - N N - N N - N N - N N N - N N N N$	31 Jan 2005 NLA at 850–950 nm due to TPA

7 Sept 2004	C ₈ H ₁₇ O OC ₈ H ₁₇ C ₈ H ₁₇ O OC ₈ H ₁₇	31 Jan 2005 NLA at 800–900 nm due to TPA
29 Jan 2005	Ar A	16 Mar 2005 ESA at >900 nm $\Phi_{\rm T} = 0.44$
29 Jan. 2005	Ar Ar6-dimer	14 Mar 2005 no detectable ESA experiments on measurement of $\Phi_{\rm F}$ in progress
29 Jan 2005	D18Ar6-dimer	14 Mar 2005 no detectable ESA experiments on measurement of $\Phi_{\rm F}$ in progress