

SEQUENCE LISTING

<110> Khoja, Hamiduddin
Shyamala, Venkatakrishna

<120> Isolated VSHK-1 Receptor Polypeptides
and Methods of Use Thereof

<130> 2300-1544

<150> 60/107,112
<151> 1998-11-04

<150> 60/114,856
<151> 1999-01-06

<160> 14

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1958
<212> DNA
<213> Homo sapiens

<400> 1

aaaagttagt	ggagtttagt	catttgattt	tatactctgt	actcaagact	gctcctctct	60
gccgactaca	acagattgga	ccatggctt	tggagcagaa	ccagtcaaca	gattattatt	120
atgagaaaaa	tgaaatgaat	ggcacttatg	actacagtca	atatgaactg	atctgtatca	180
aagaagatgt	cagagaattt	gaaaagttt	tcctccctgt	attcctcaca	atagtttcg	240
tcattggact	tgcaggcaat	tccatggtag	tggcaattta	tgcctattac	aagaaacaga	300
gaaccaaaac	agatgtgtac	atcctgaatt	tggctgttagc	agatttactc	cttcttattca	360
ctctgcctt	ttggctgttt	aatgcagttc	atgggtgggt	tttagggaaa	ataatgtgca	420
aaataacttc	agccttgtac	acactaaact	ttgtctctgg	aatgcagttt	ctggcttgt	480
tcagcataga	cagatatgt	cgagtaacta	aagtccccag	ccaatcagga	gtggaaaaac	540
catgctggat	catctgtttc	tgtgtctgga	tggctgccat	cttgctgagc	ataccccagc	600
tgtttttta	tacagtaaat	gacaatgcta	ggtgcattcc	cattttcccc	cgctacctag	660
gaacatcaat	gaaagcattt	attcaaatgc	tagagatctg	cattggattt	gtagtaccct	720
ttcttattat	gggggtgtgc	tactttatca	cagcaaggac	actcatgaag	atgccaaaca	780
ttaaaatatac	tcgaccctta	aaagttctgc	tcacagtctg	tatagttttc	attgtcactc	840
aactgcctta	taacattgtc	aahttctgcc	gagccataga	catcatctac	tccctgatca	900
ccagctgcaa	catgagcaaa	cgcattggaca	tcgccatcca	agtcacagaa	agcatcgac	960
tcttcacag	ctgcctcaac	ccaatcctt	atgttttat	gggagcatct	ttcaaaaact	1020
acgttatgaa	agtggccaag	aaatatgggt	cctggagaag	acagagacaa	agtgtggagg	1080
agtttcctt	tgattctgag	ggtcctacag	agccaaccag	tacttttagc	attnaaaggt	1140
aaaactgctc	tgcctttgc	ttggatacat	atgaatgtat	cttccccctc	aaataaaaca	1200
tctgcattat	tctgaaactc	aaatctcaga	cggcggtt	gcaacttata	ataaaagaatg	1260
ggttggggga	agggggagaa	ataaaagcca	agaagaggaa	acaagataat	aaatgtacaa	1320
aacatgaaaaa	ttaaaatgaa	caatatacga	aaataattgt	aacaggcata	agtgaataac	1380

actctgctgt aacgaagaag agctttgtgg tgataattt gtatcttggt tgcagtggtg	1440
cttatacaaa tctacacaag tgataaaaatg acacagaact atatacacac attgtaccaa	1500
tttcaatttc ctgggtttga cattatagta taattatgta agatggaacc attggggaaa	1560
actgggtgaa gggtacccag gaccactctg taccatctt gtaacttcct gtgaatttat	1620
aataatttca aaataaaaaca agttaaaaaa aaacccacta tgctataagt taggccatct	1680
aaaacagatt attaaagagg ttcatgttaa aaggcattta taattattt taattatcta	1740
agtttaata caagaacgat ttccctgcat aatttagta cttgaataag tatgcagcag	1800
aactccaact atcttttcc ctgtttttt taaatttta agtaatttta taaaatccac	1860
cctctccaaa aaagcaataa aaaaaaaaaa aactataaaa aaaaaaaaaa aaaaaaaaaa	1920
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1958

<210> 2
<211> 350
<212> PRT
<213> Homo sapiens

<400> 2			
Met Ala Leu Glu Gln Asn Gln Ser Thr Asp Tyr Tyr Tyr Glu Glu Asn			
1	5	10	15
Glu Met Asn Gly Thr Tyr Asp Tyr Ser Gln Tyr Glu Leu Ile Cys Ile			
20	25	30	
Lys Glu Asp Val Arg Glu Phe Ala Lys Val Phe Leu Pro Val Phe Leu			
35	40	45	
Thr Ile Val Phe Val Ile Gly Leu Ala Gly Asn Ser Met Val Val Ala			
50	55	60	
Ile Tyr Ala Tyr Tyr Lys Lys Gln Arg Thr Lys Thr Asp Val Tyr Ile			
65	70	75	80
Leu Asn Leu Ala Val Ala Asp Leu Leu Leu Leu Phe Thr Leu Pro Phe			
85	90	95	
Trp Ala Val Asn Ala Val His Gly Trp Val Leu Gly Lys Ile Met Cys			
100	105	110	
Lys Ile Thr Ser Ala Leu Tyr Thr Leu Asn Phe Val Ser Gly Met Gln			
115	120	125	
Phe Leu Ala Cys Ile Ser Ile Asp Arg Tyr Val Ala Val Thr Lys Val			
130	135	140	
Pro Ser Gln Ser Gly Val Gly Lys Pro Cys Trp Ile Ile Cys Phe Cys			
145	150	155	160
Val Trp Met Ala Ala Ile Leu Leu Ser Ile Pro Gln Leu Val Phe Tyr			
165	170	175	
Thr Val Asn Asp Asn Ala Arg Cys Ile Pro Ile Phe Pro Arg Tyr Leu			
180	185	190	
Gly Thr Ser Met Lys Ala Leu Ile Gln Met Leu Glu Ile Cys Ile Gly			
195	200	205	
Phe Val Val Pro Phe Leu Ile Met Gly Val Cys Tyr Phe Ile Thr Ala			
210	215	220	
Arg Thr Leu Met Lys Met Pro Asn Ile Lys Ile Ser Arg Pro Leu Lys			
225	230	235	240
Val Leu Leu Thr Val Val Ile Val Phe Ile Val Thr Gln Leu Pro Tyr			
245	250	255	
Asn Ile Val Lys Phe Cys Arg Ala Ile Asp Ile Ile Tyr Ser Leu Ile			
260	265	270	

Thr Ser Cys Asn Met Ser Lys Arg Met Asp Ile Ala Ile Gln Val Thr
275 280 285
Glu Ser Ile Ala Leu Phe His Ser Cys Leu Asn Pro Ile Leu Tyr Val
290 295 300
Phe Met Gly Ala Ser Phe Lys Asn Tyr Val Met Lys Val Ala Lys Lys
305 310 315 320
Tyr Gly Ser Trp Arg Arg Gln Arg Gln Ser Val Glu Glu Phe Pro Phe
325 330 335
Asp Ser Glu Gly Pro Thr Glu Pro Thr Ser Thr Phe Ser Ile
340 345 350

<210> 3

<211> 23

<212> DNA

<213> Homo sapiens

<400> 3

actaccaaca ggttggtaact tta

23

<210> 4

<211> 22

<212> DNA

<213> Homo sapiens

<400> 4

ctttgccatc tagagtggag cc

22

<210> 5

<211> 82

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)...(82)

<223> n = A,T,C or G

<223> encodes synthetic peptide

<400> 5

ctttctattc tcactccgct gaannsnnsn nsnnnsnsnn snnsnnnsnns nnnsnnnsnn
nsnnscggcc tccacctcca cc

60

82

<210> 6

<211> 93

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<222> (1)...(93)

<223> n = inosine

<223> encodes synthetic peptide

<400> 6
ggccgggtgga ggtggaggcg gnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
nnnnnnntca gcggagtgag aatagaaagg tac 60
93

<210> 7

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 7
gctgcccggag agatctgtat atatgagtaa acttgg 36

<210> 8

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 8
gcaggctcgg gaattcggga aatgtgcgcg gaaccc 36

<210> 9

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> mutagenic oligonucleotides

<400> 9
aaacttcctc atgaaaaagt c 21

<210> 10

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> mutagenic oligonucleotides

<400> 10
agaatagaaa ggtaccacta aagga 25

<210> 11
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> mutagenic oligonucleotides

<400> 11
tttagtggtt cctttctatt ctcactcggt cgaaactgt 39

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> mutagenic oligonucleotides

<400> 12
aaagcgcagt ctctgaattt accg 24

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primers

<400> 13
tcgaaagcaa gctgataaac cg 22

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> primers

<400> 14
acagacagcc ctcatagtta gcg 23