Active Learning a Convex Body in Low Dimensions

Sariel Har-Peled, <u>Mitchell Jones</u> and Saladi Rahul SoCG '19 (YRF), June 18-21, 2019

University of Illinois at Urbana-Champaign

An innocent problem

Problem

Input: $P \subset \mathbb{R}^2$, oracle for unknown convex body C.

Oracle: Query $q \in \mathbb{R}^2$, returns true $\iff q \in C$.

Goal: Compute $P \cap C$ using fewest number of oracle queries.

Remarks

- Active learning
- Worst case: query all points
- ► Question: In what model can we do better?

Modified problem

Problem

Input: $P \subset \mathbb{R}^2$, oracle for unknown convex body C.

Oracle: Separation oracle

Goal: Compute $P \cap C$ using fewest number of oracle queries.

Motivation

Slighter stronger model

Motivation

- Slighter stronger model
- Separation oracles are well-known (OR)

Motivation

- Slighter stronger model
- Separation oracles are well-known (OR)
- ► Other models previously studied [Angluin, 1987] [Panahi, Adler, et al., 2013] [Har-Peled, Kumar, et al., 2016]

PAC learning

- ► Allow error in classification
- ► Random sampling

PAC learning

- ► Allow error in classification
- Random sampling
- ► C has bounded complexity \implies finite VC dimension \implies random sample of size $\approx O(\epsilon^{-1} \log \epsilon^{-1}) \implies \epsilon n$ error

PAC learning

- ► Allow error in classification
- Random sampling
- ► C has bounded complexity \implies finite VC dimension \implies random sample of size $\approx O(\epsilon^{-1} \log \epsilon^{-1}) \implies \epsilon n$ error
- Scheme fails for arbitrary convex regions

Hard vs. easy instances

Worst case: query all points

Hard vs. easy instances

- Worst case: query all points
- ► Goal: design instance sensitive algorithms

▶ F_{in} = convex polygon with fewest vertices s.t. $F_{\text{in}} \subseteq C$ and $C \cap P = F_{\text{in}} \cap P$.

- ► F_{in} = convex polygon with fewest vertices s.t. $F_{\text{in}} \subseteq C$ and $C \cap P = F_{\text{in}} \cap P$.
- ▶ F_{out} = convex polygon with fewest vertices s.t. $C \subseteq F_{\text{out}}$ and $C \cap P = F_{\text{out}} \cap P$.

- ► F_{in} = convex polygon with fewest vertices s.t. $F_{\text{in}} \subseteq C$ and $C \cap P = F_{\text{in}} \cap P$.
- ▶ F_{out} = convex polygon with fewest vertices s.t. $C \subseteq F_{\text{out}}$ and $C \cap P = F_{\text{out}} \cap P$.
- ► Separation price $\sigma(P, C) = |F_{in}| + |F_{out}|$.

- ► F_{in} = convex polygon with fewest vertices s.t. $F_{\text{in}} \subseteq C$ and $C \cap P = F_{\text{in}} \cap P$.
- ▶ F_{out} = convex polygon with fewest vertices s.t. $C \subseteq F_{\text{out}}$ and $C \cap P = F_{\text{out}} \cap P$.
- ► Separation price $\sigma(P, C) = |F_{in}| + |F_{out}|$.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P)\log n)$ (†)

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P)\log n)$ (†)
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(\sigma(P, C) \log^2 n)$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P)\log n)$ (†)
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$ (†)

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P)\log n)$ (†)
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$ (†)
Verify in (2D)	$ F_{ m in} $	$O(F_{\rm in} \log n)$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P)\log n)$ (†)
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$ (†)
Verify in (2D)	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out (2D)	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$ (‡)

- (†) k(P) = largest # of pts of P in convex position
- (‡) Randomized, w.h.p

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P)\log n)$ (†)
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$ (†)
Verify in (2D)	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out (2D)	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$ (‡)

- (†) k(P) = largest # of pts of P in convex position
- (‡) Randomized, w.h.p

▶ Maintain approximation $B \subseteq C$

- ▶ Maintain approximation $B \subseteq C$
- Operations:

- ▶ Maintain approximation $B \subseteq C$
- Operations:
 - 1. **expand**(p): Update $B = \mathcal{CH}(B + p)$
 - 2. **remove**(ℓ^+): Classify points $P \cap \ell^+$ as outside C

- ▶ Maintain approximation $B \subseteq C$
- Operations:
 - 1. **expand**(p): Update $B = \mathcal{CH}(B + p)$
 - 2. **remove**(ℓ^+): Classify points $P \cap \ell^+$ as outside C
- $c \in \mathbb{R}^2$ is a centerpoint for P if for all halfspaces ℓ^+ : $c \in \ell^+ \implies |P \cap \ell^+| \ge |P|/3$.

 $U \subseteq P$ unclassified points. While $U \neq \emptyset$:

1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$

 $U \subseteq P$ unclassified points. While $U \neq \emptyset$:

1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:

(A)
$$c \in C \implies \mathsf{expand}(c)$$

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:
 - (A) $c \in C \implies \mathsf{expand}(c)$
 - (B) $c \notin C$, h is a separating line \implies remove(h)

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:
 - (A) $c \in C \implies \mathsf{expand}(c)$
 - (B) $c \notin C$, h is a separating line \implies remove(h)

► Count visible pairs of points

- Count visible pairs of points
- ► In each iteration:

- Count visible pairs of points
- ► In each iteration:
 - (A) Pairs lose visibility

- Count visible pairs of points
- ► In each iteration:
 - (A) Pairs lose visibility
 - (B) Classify points

- Count visible pairs of points
- ► In each iteration:
 - (A) Pairs lose visibility
 - (B) Classify points

Our result

The greedy algorithm uses $O(k(P) \log n)$ queries.

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P) \log n)$
Classify (2D)	0(P,C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
Classify (2D)	0(P,C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

► Shaving log factors?

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
Classify (2D)	0(P,C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

- ► Shaving log factors?
- ► Near-optimal solution in 3D?

Problem	Lowerbound	Upperbound
Classify (2D)	σ(<i>P</i> , <i>C</i>)	$O(k(P) \log n)$
Classify (2D)	0(P,C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	F _{out}	$O(F_{\text{out}} \log n)$

- ► Shaving log factors?
- ► Near-optimal solution in 3D?
- ► Higher dimensions?

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
Classify (2D)	0(P,C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	F _{out}	$O(F_{\text{out}} \log n)$

- Shaving log factors?
- ► Near-optimal solution in 3D?
- Higher dimensions?
- ► Conjecture: Greedy extends to \mathbb{R}^d using $O(k(P)^{\lfloor d/2 \rfloor} \log n)$ queries (only interesting when $k(P) \ll (\frac{n}{\log n})^{2/d}$)

References i

- D. Angluin. Queries and concept learning. Machine Learning, 2(4): 319–342, 1987.
- F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity probing algorithm for metrology. Int. Conf. on Automation Science and Engineering, CASE 2013, 342–349, 2013.
- S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space exploration via proximity search. Discrete Comput. Geom., 56(2): 357–376, 2016.