MAT 300 1-29 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	Direct Proof	1
Problem 2.	Contrapositives	2
Problem 3.	Line creation proof	3
Problem 4.	Subset Transitivity	4
Problem 5.	Pondering Counting	5
Problem 6.	Tautology Proof	6

Problem 1. Direct Proof

Use a direct proof to prove that "If x + y is even and y + z is even, then x + z is even".

Solution

Part (a)

Theorem 0.0.1. If x + y is even and y + z is even, then x + z is even.

Proof The definition of an even number is that the number is divisible by two such that n=2a. By this definition, x+y=2a and y+z=2b. So x+y+y+z=2a+2b, which simplifies to x+z=2(a+b-y). Since a+b-y is just an integer (call it c), then x+z=2c and therefore x+z is even.

Problem 2. Contrapositives

Find the contrapositives of the following statements. Write in positive terms where possible.

- (a) If x < 0, then $x^2 > 0$.
- (b) If $x \neq 0$, then there exists y for which xy = 1.
- (c) If x is an even integer, then x^2 is an even integer.
- (d) If x + y is odd and y + z is odd, then x + z is odd.
- (e) If f is a polynomial of odd degree, then f has at least one real root.

Solution

Part (a)

- (a) If $x^2 \le 0$, then $x \ge 0$.
- (b) If for all $y, xy \neq 1$, then x = 0.
- (c) If x^2 is an odd integer, then x is an odd integer.
- (d) If x + z is even, then x + y is even and y + z is even.
- (e) If f does not have at least one real root, then f is a polynomial of even degree.

Problem 3. Line creation proof

Suppose that (a, b) and (c, d) are two distinct points in \mathbb{R}^2 . Prove that there exists a unique line passing through the two points.

Solution

Part (a)

Theorem 0.0.2. Given two distinct points (a, b) and (c, d) in \mathbb{R}^2 , there exists a unique line passing through the two points.

Proof A line is defined as either y = mx + n (n is used to distinguish from b, which is already defined), or x = l, where m, n, and l are real numbers.

If a=c, then the line is vertical and takes the form x=l, where l=a=c. No other value of l will work, because if another value for l is chosen, then $l \neq a \neq c$ and therefore neither point is on the line. Therefore in this case the line is unique.

If $a \neq c$, then the line takes the form y = mx + n. In this case, m is defined as $\frac{(b-d)}{(a-c)}$, and n is then solved for as $b = \frac{(b-d)}{(a-c)} * a + n$. This means that $n = b - \frac{(b-d)}{(a-c)} * a$. Since both m and n, the defining variables of the line, are in terms of a, b, c, and d, the line is unique with respect to the points. \blacksquare

Problem 4. Subset Transitivity

Prove that if $A \subseteq B$, and $B \subseteq C$, then $A \subseteq C$.

Solution

Part (a)

Theorem 0.0.3. If $A \subseteq B$, and $B \subseteq C$, then $A \subseteq C$.

Proof If $A \subseteq B$, for every element $x \in A$, $x \in B$. Similarly, if $B \subseteq C$, for every element $x \in B$, $x \in C$. Therefore, for every element $x \in A$, $x \in C$.

Problem 5. Pondering Counting

What would a theory of counting look like in terms of sets? If I say "These two sets have the same number of elements," what does that mean mathematically? If I say, "This set has twice as many elements as that set," what does that mean? How might we define this rigorously?

Solution

Part (a)

Two sets A and B would have the same number of elements if every element in set A corresponded to an element in set B. Similarly, if a set B has twice as many elements as a set A, then there are two elements in B for each element in set A.

Problem 6. Tautology Proof

This question contained a typo. I believe that the right hand side of the statement should be $((A \Rightarrow C) \land (B \Rightarrow C))$, but was $((A \Rightarrow C) \lor (B \Rightarrow C))$.

Prove that the following statement is a tautology:

$$((A \lor B) \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C))$$

Solution

Part (a)

Theorem 0.0.4. $((A \lor B) \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$ is a tautology.

Proof The left hand side $((A \lor B) \Rightarrow C)$ can be converted into $C \lor \neg (A \lor C)$ by rule nine (Absorption). Then, this can be transformed using DeMorgan's law: $C \lor (\neg A \land \neg B)$. Further, by distributivity, the statement is broken apart: $(C \lor \neg A) \land (C \lor \neg B)$. Each side of the statement can again be turned into an implication, resulting in $(A \Rightarrow C) \land (B \Rightarrow C)$.