

TEXT ANALYTICS

Book Fair with NLP

My Project Background (Business Problem)

	Problem	How to Solve
APA	Event pameran buku yang segera diadakan seorang pemilik toko buku perlu disukseskan	Untuk membantu mendukung acaranya, maka buku jualannya akan dianalisis.
BERAPA	Skala jumlah buku yang terlibat sangat banyak untuk dipersiapkan secara manual	Agar dapat menangani skala buku yang banyak, digunakan machine learning untuk membantu mengatur bukunya.
BAGAIMANA	Topik buku-buku yang ada perlu diatur dengan cara yang menarik calon pengunjung/pembeli	Agar layout pameran menarik calon pengunjung/pembeli, pengaturan buku dibantu dengan NLP, terutama berdasarkan book summary/alur bukunya.

Method & Workflow Project

Methods Used

Menggunakan metode machine learning, yaitu clustering, untuk membantu mengorganisasikan buku terutama berdasarkan book summary/alur bukunya, dengan input dari analisis text analytics.

Workflow

Secara garis besar:

Input: Book Summary/Metadata Buku Lainnya

⇒ Analisis Dengan Proses Text Analytics

⇒ Clustering

Output: Insight untuk Mengorganisasikan Buku

Demo Time!

Flow Chart Pembuatan Project

Pemilik toko buku kita memiliki berbagai macam buku!

- ~16,600 judul buku unik
- Setidaknya tersebar dalam ~230 genre buku
- Setidaknya dari ~5,600 penulis!*

^{*} Setelah pengisian missing value

Pemilik buku memiliki banyak stok buku antara 1970-2010*

Semakin mendekati decade tahun 2000-an, semakin banyak judul buku unik yang dimiliki per dekade periode publikasi.

* Setelah pengisian missing value

Beberapa penulis buku memiliki sangat banyak buku dalam stok toko!

Sebagian besar penulis hanya memiliki 1-5 buku, namun beberapa penulis memiliki hingga ratusan buku! Umumnya author fiksi fantasi, misteri, thriller, dan sci-fi.

Panjang summary buku cukup bervariasi!

- Rata-rata sepanjang 1-2 halaman*
- Ada buku-buku dengan summary belasan halaman!
- Ada juga buku-buku dengan summary
 - < 8 kata*

^{*} Asumsi 1 halaman 450-500 kata

CERTIFIED SENIOR DATA SCIENTIST PROGRAM

Ada pola dalam panjang book summary...

Penulis dan genre dengan book summary panjang umumnya memang berkaitan dengan buku yang plotnya rumit hingga membutuhkan summary panjang, dan sebaliknya juga untuk genre.

Kata-kata yang paling umum cukup penuh adventure dan kekerasan

Terdapat kata-kata seputar keluarga/hubungan atau angka pula, tetapi kata-kata paling umum adalah kata-kata prompt petualangan seperti take, return, find, time, leave.*

^{*} See: Monomyth. Kata-kata telah distemming.

Kata-kata yang paling umum cukup penuh adventure dan kekerasan

Kata-kata **per genre** umumnya juga **didominasi kata-kata populer** ini, **dengan beberapa kata-kata spesifik** seperti *vampire*, *demon*, *night*, dan entah kenapa nama Anita.*

^{*} Kata-kata telah distemming.

Preprocessing

Preprocessing General

- Koreksi **tipe data**
- Penghapusan baris-baris yang duplikat karena duplikasi genre
- Pengecekan **missing value**
- Pengisian beberapa missing value dari
 Wikidata (author, publication date)
- Koreksi ID genre misteri

Preprocessing NLP

- Lowercasing
- Pembersihan pattern/simbol noise
- Tokenisasi
- Pembersihan **stopwords** (dengan
 NLTK stopwords serta kata-kata angka)
- Lemmatisasi dan stemming (dengan WordNet dan Snowball Stemmer)

Feature Engineering

Doc2Vec

- Dipilih karena dapat menghasilkan vektor langsung per dokumen dengan jumlah dimensi ekonomis
- Menggunakan Gensim
- Dirasa lebih baik dibandingkan merata-ratakan
 Word2Vec untuk mendapatkan vektor
- Alternatif: TF-IDF, namun tidak dipakai karena sudah dicoba dan performa kurang optimal saat clustering

- vector_size = 250
- min_df = 3
- epochs = 30

- Daftar entity:
 - ['NORP', 'ORG', 'GPE',
 - 'LOC', 'EVENT']
- Minimum dokumen dengan

entity = 10

Feature Engineering

NER Event/Lokasi/Organisasi

- NER diaplikasikan pada summary buku karena setting buku bisa sangat berdampak pada alur buku!
- NER dilakukan dengan spaCy karena pertimbangan waktu, lalu nama orang yang salah deteksi dikoreksi dengan Stanford NER (Stanza)
- Hasil NER kemudian diproses dengan
 CountVectorizer() dan dipilih yang umum saja

Feature Engineering

Fitur-Fitur Lainnya

- Periode publikasi dibuat dari tahun publikasi yang telah diimputasi dan dilakukan binning yang sesuai, dan periode publikasi diyakini dapat mempengaruhi gaya atau alur populer zaman tersebut
- Panjang summary dibuat dari jumlah kata dalam summary tiap buku, yang saat EDA dapat membedakan tipe buku/genre dan penulis

Yang Tidak Masuk

- Author (sulit diimputasi)
- Genre (belum diimputasi dan missing value signifikan)

Modelling (clustering)

Modelling

(clustering)

Dipilih K-Means dengan k = 6

- Secara silhouette score, kandidatnya adalah k = 4
 hingga 6, sementara secara elbow method agak
 ambigu
- Mempertimbangkan jumlah kluster yang diperlukan untuk pameran dan hasil dari beberapa kali random state, maka angka 6 dipilih

Result of Project and Recommendations

To Be Continued...

- PPT dipublikasi hingga step modelling selesai
- Bagian selanjutnya under renovation karena ada yang mau ditingkatkan
- Ditunggu pada update selanjutnya!

Learning Takeaways

What learning do I get from working on this project?

Mencoba banyak metode baru di luar kelas pada bidang yang belum terlalu saya kenal sebelumnya (NLP)

What other learning do I feel throughout my journey in #SDSNarasioData?

Belajar untuk **siap dengan semua kemungkinan** dan belajar **membaca kode** yang **kompleks**

THANK YOU!