Training Course: Ideal case

MesoNH Tutorial Class 12-15 November 2024

Presentation

Objectives

- run an ideal case
- discover and modify namelists

For each simulation:

- create a new directory
- modify namelists to change the name of the outputs files

Preparation

cd ~/MNH-V5-7-1/MY_RUN/KTEST mkdir TP_CAS_IDEAL cd TP_CAS_IDEAL tar xvf ~rodierq/tp_ideal_makefile.tar cd SIMULATION1

For each new working terminal

Load the profile :

source $\sim\!\!/\text{MNH-V5-7-1/conf/profile}_\text{mesonh-LXgfortran-R8I4-MNH-V5-7-1-MPIAUTO-DEBUG}$

- 1. Modify the namelists to have :
 - ▶ a square domain of 24×24 points with a mesh of 1 km
 - ▶ a time step of 16s
 - 1 hour of simulation
 - a numerical diffusion for momentum
 - ▶ 4 output files (at 1200s, 1800s, 2400s and 3600s)
- 2. Run the simulation (run_prep_ideal_case + run_mesonh)
- 3. Modify the python script to plot graphics for the 1800s output

Note on how to execute the program ./run prep ideal case bin/sh set -x set -e rm -f KWRAIN* OUTPUT LISTING* pipe* *.tex time \${MONORUN} PREP IDEAL CASE\${XYZ} ./run mesonh #!/bin/sh set -x set -e ln -fs ../001 prep ideal case/KWRAIN.* . rm -f KWRAI.1.SEG* OUT* time \${MPIRUN} MESONH\${XYZ}

- 1. From the namelists created for the **simulation 1**, modify the namelists to add orography with this features :
 - a bell orography
 - in the center of the domain
 - with a heigth of 2000m
 - ▶ and a width of 2000m in x and y
- 2. Run the simulation
- 3. Plot the figures and compare with the simulation 1

- 1. From the namelists created for the simulation 1, modify the namelists to remove the perturbation in θ
- 2. Run the simulation
- 3. Plot the figures and compare with the simulation 1

Technical checks: "Did my simulation work?"

 Check the listing OUTPUT_LISTINGn files: look for "ENDS CORRECTLY" and/or the computing time-analysis ending Table

Technical checks: "Did my simulation work?"

- 2. Check the presence of the output NetCDF files
- 3. Check the global attributes "MNH_cleanly_closed" of the NetCDF files with

ncdump -h file.nc

```
// global attributes:
:Conventions = "CF-1.7 COMODO-1.4" ;
:MNH_REAL = "8" ;
:MNH_INT = "4" ;
:history = "2020-08-25T16:25:52+0200: /home/rodierq/E
I4-MNH-V5-4-3-MPIAUTO-03/MASTER/PREP_IDEAL_CASE" ;
:MNH_cleanly_closed = "yes" ;
}
```

How to debug a simulation?

Common errors come from

- ▶ namelist : unclosed "", missing /, &, or wrong data input (see user's guide)
- missing or wrong input files

Look for error message or warnings on

- 1. the screen
- 2. the end of the OUTPUT_LISTINGn files
- 3. or the *.eo.* file (on supercomputer)

Contact the support team

mesonh support @obs-mip.fr

Bonus

If you have finished early, here are extra exercices.

- Run the simulation 1 with the turbulence scheme turned on (name it simulation 4)
- ▶ Plot an horizontal section of the TKE at model level=5