$\label{lem:contest} Contest Duration: 2021-04-17 (Sat) 12:40 (http://www.timeanddate.com/worldclock/fixedtime.html? \\ iso=20210417T1610&p1=248) - 2021-04-17 (Sat) 14:40 (http://www.timeanddate.com/worldclock/fixedtime.html? \\ iso=20210417T1810&p1=248) (local time) (120 minutes) \\ Back to Home (/home) \\ \end{tabular}$

↑ Top (/contests/jsc2021)

≅ Tasks (/contests/jsc2021/tasks)

3 Clarifications (/contests/jsc2021/clarifications)

✓ Submit (/contests/jsc2021/submit?taskScreenName=jsc2021_g) ■ Results ▼

×

G - Spanning Tree

/

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 600 points

Problem Statement

We have a graph with N vertices numbered $1,2,\ldots,N$. Initially, it has no edges. Now, let us add some number of undirected edges to G so that the following condition holds for any i,j ($i\neq j$) after addition.

- If $A_{i,j}=1$, there is an edge directly connecting Vertex i and Vertex j;
- ullet if $A_{i,j}=0$, there is no edge directly connecting Vertex i and Vertex j;
- if $A_{i,j}=-1$, either is fine.

Among the graphs that can be G after addition, how many are trees? Since the count can be enormous, find it modulo (10^9+7) .

Constraints

- All values in input are integers.
- $2 \le N \le 300$
- $\bullet \ \ -1 \leq A_{i,j} = A_{j,i} \leq 1$
- $A_{i,i} = 0$

Input

Remaining Time 00:06:27

Input is given from Standard Input in the following format:

Ouput

Print the count modulo $(10^9 + 7)$.

Sample Input 1 Copy

```
4
0 1 -1 0
1 0 -1 -1
-1 -1 0 0
0 -1 0 0
```

Sample Output 1 Copy

```
Сору
```

We need an edge between Vertex 1 and Vertex 2, and we must not add an edge between Vertex 1 and Vertex 4 or between Vertex 3 and Vertex 4.

Thus, we have the following two valid graphs:

Sample Input 2 Copy

Sample Output 2 Copy

8 Remaining Time 00:06 Copy

Sample Input 3 Copy

```
3
0 0 0
0 0 0
0 0 0
```

Sample Output 3 copy

```
О
```

Sample Input 4 Copy

```
Copy

0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 0 -1 -1 -1 -1 -1 -1 -1
-1 -1 0 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 0 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 0 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 0 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 0 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1
```

Sample Output 4 Copy

```
З57947677
```

When we distinguish the vertices, there are 11^9 trees with 11 vertices.

Language

```
Python (3.8.2)
```

Source Code

```
Remaining Time 00:06:27
```

telegram)

Rule (/contests/jsc2021/rules) Glossary (/contests/jsc2021/glossary)

Terms of service (/tos) Privacy Policy (/privacy) Information Protection Policy (/personal) Company (/company) FAQ (/faq) Contact (/contact)

Copyright Since 2012 ©AtCoder Inc. (http://atcoder.co.jp) All rights reserved.