a) h, = 0/9 hz = 0/25

Sea el conjunto de datos *D*:

j	X1	X 2	X 3	y
1	0.0	1.0	-1.0	1.5
2	0.5	1.0	0.5	3.5
3	-0.5	0.0	0.5	0.5
4	1.0	-1.0	1.0	0.5
5	-1.0	-0.5	-0.5	-2.0

Consideremos dos hipótesis lineales h_1 , h_2 .

$$h_1(\mathbf{x}) = 0.5 + 0.1 x_1 - 0.5 x_2 + 0.5 x_3$$

 $h_2(\mathbf{x}) = -0.5 - 1.0 x_1 - 1.0 x_2 + 1.5 x_3$

- (a) Calcular el valor de la salida de ambas hipótesis para la entrada (0.25, -0.25, 0.50)
- (b) Calcular la pérdida empírica (cuadrática) de ambas hipótesis sobre D. A falta de otra información o especificación, λ cuál crees que es mejor, h_1 o h_2 ?

información o especificación, ¿cuál crees que es mejor, h_1 o	
b) h, O	h _Z
1's - h, (j,) = 22 = 4	1's-hz(ji)=20'25
3'S-h, (jz)=3'22=10'20	9 3'S-hz(jz)= Zz'56z
0'5-h, (j3) = -0'2 = 0	
0'5 - h. (ju) = -1 / = 1/7	
2 -h, (js) = -242 = 517	6 -2 - hz(gs) = 80625
Pédide enfirie 425	h, nego, 9'6329