DSC550-T301 7.2 Exercise by Stephanie Benavidez

Part 1: PCA and Variance Threshold in a Linear Regression

1. Import the housing data as a data frame and ensure that the data is loaded properly.

```
In [1]: # import libraries for pandas, numpy, and matplotib
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
```

```
In [2]: # load csv file and look at header info
    df_housing = pd.read_csv('train.csv')
    df_housing.head()
```

Out[2]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	AllPub	 0	NaN	NaN	NaN	0	2	2008	WD	Normal	208500
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub	 0	NaN	NaN	NaN	0	5	2007	WD	Normal	181500
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	9	2008	WD	Normal	223500
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	2	2006	WD	Abnorml	140000
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	12	2008	WD	Normal	250000

5 rows × 81 columns

2. Drop the "Id" column and any features that are missing more than 40% of their values.

```
'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
    'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
    'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
    'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
    'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
    'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
    'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
    'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
    'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
    'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
    'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
    'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
    'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
    'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
    'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
    'SaleCondition', 'SalePrice'],
    dtype='object')
```

```
In [4]: # drop ID column using .drop function
    df_housing.drop(['Id'], axis=1, inplace=True)
    # remove any features missing 40% of values with .dropna function
    df_housing.dropna(axis=1, thresh=len(df_housing)*.4, inplace=True)
```

- 3. For numerical columns, fill in any missing data with the median value.
- 4. For categorical columns, fill in any missing data with the most common value (mode).

localhost:8888/notebooks/DSC550-T301_7.2Benavidez.ipynb

```
In [5]: # create a function fill_missing with for loop
        def fill_missing(df):
            for col in df_housing.columns:
                if df_housing[col].dtype == 'object':
                    df_housing[col].fillna(df_housing[col].mode()[0], inplace=True)
                    df_housing[col].fillna(df_housing[col].median(), inplace=True)
            return df_housing
        df_housing = fill_missing(df_housing)
In [6]: # show missing fields
```

df_housing.isna().sum()

```
Out[6]: MSSubClass
        MSZoning
        LotFrontage
                        0
        LotArea
                        0
        Street
        MoSold
        YrSold
        SaleType
        SaleCondition
        SalePrice
        Length: 76, dtype: int64
```

5. Convert the categorical columns to dummy variables.

```
In [7]: # use get_dummies function to convert categorical columns
        df_housing = pd.get_dummies(df_housing, drop_first=True)
        df_housing.head()
```

Out[7]:

_	MSSubClas	ss LotF	rontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2 .	SaleType_ConLI	SaleType_ConLw	SaleType_New	SaleType_Oth	SaleType_WD	SaleCondition_AdjLand	SaleCondition_Alloca	SaleCondition_Family	SaleCond
C	(60	65.0	8450	7	5	2003	2003	196.0	706	0 .	0	0	0	0	1	0	0	0	
1	2	20	80.0	9600	6	8	1976	1976	0.0	978	0 .	0	0	0	0	1	0	0	0	
2		60	68.0	11250	7	5	2001	2002	162.0	486	0 .	0	0	0	0	1	0	0	0	
3	-	70	60.0	9550	7	5	1915	1970	0.0	216	0 .	0	0	0	0	1	0	0	0	
4		60	84.0	14260	8	5	2000	2000	350.0	655	0 .	0	0	0	0	1	0	0	0	

5 rows × 237 columns

6. Split the data into a training and test set, where the SalePrice column is the target.

```
In [8]: # split data by SalePrice to be target
        X = df_housing.drop(['SalePrice'], axis=1)
        y = df_housing['SalePrice']
        # use sklearn to split data
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

7.Run a linear regression and report the R2-value and RMSE on the test set.

```
In [9]: # create linear regression from sklearn
         from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_squared_error
         from sklearn.metrics import r2_score
In [10]: # fit model
         model_linear_regression = LinearRegression()
         model_linear_regression.fit(X_train, y_train)
         y_pred = model_linear_regression.predict(X_test)
```

localhost:8888/notebooks/DSC550-T301 7.2Benavidez.ipynb 2/7

8.Fit and transform the training features with a PCA so that 90% of the variance is retained

(see section 9.1 in the Machine Learning with Python Cookbook).

```
In [12]: # fit model to show PCA 90%
    from sklearn.decomposition import PCA
    pca = PCA(.9)
    pca.fit(X_train)
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
```

9. How many features are in the PCA-transformed matrix?

Number of features in PCA-transformed matrix: 1

```
In [13]: # use print function to show transformed matrix
print(f'Number of features in PCA-transformed matrix: {X_train_pca.shape[1]}')
```

- 10. Transform but DO NOT fit the test features with the same PCA.
- 11. Repeat step 7 with your PCA transformed data.

R2: 0.0668996689358683

```
In [14]: # create linear regression model with PCA transformed data
model_linear_regression = LinearRegression()
model_linear_regression.fit(X_train_pca, y_train)
y_pred = model_linear_regression.predict(X_test_pca)
```

```
In [15]: # calculate R2 and RMSE on test
    rmse= np.sqrt(mean_squared_error(y_test, y_pred))
    r2_pca = r2_score(y_test, y_pred)
    print(f'RMSE: {rmse}')
    print(f'R2: {r2_pca}')
RMSE: 80692.38872737018
```

12. Take your original training features (from step 6) and apply a min-max scaler to them.

13. Find the min-max scaled features in your training set that have a variance above 0.1

(see Section 10.1 in the Machine Learning with Python Cookbook).

```
In [16]: # import sklearn processing and MinMax Scaler
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

14. Transform but DO NOT fit the test features with the same steps applied in steps 11 and 12.

localhost:8888/notebooks/DSC550-T301_7.2Benavidez.ipynb

```
In [17]: # fit model
    model_linear_regression = LinearRegression()
    model_linear_regression.fit(X_train_scaled, y_train)
    y_pred = model_linear_regression.predict(X_test_scaled)
```

15. Repeat step 7 with the high variance data.

16. Summarize your findings.

R2: -1.5160238525010898e+18

Looks like the first set of calculations RMSE: 43905.09876139055; R2: 0.7237558331420327. Then the second set was RMSE: 80692.38872737018; R2: 0.0668996689358683. Then the third set was RMSE: 102854054789167.28; R2: -1.5160238525010898e+18. The results continued to increase for the RMSE with each transformation, and the R2 kept decreasing.

Part 2: Categorial Feature Selection

1. Import the data as a data frame and ensure it is loaded correctly.

```
In [19]: # import libraries for pandas, numpy, and matplotib
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
```

```
In [20]: # load csv file and look at header info
    df_mushrooms= pd.read_csv('mushrooms.csv')
    df_mushrooms.head()
```

Out[20]:

	class	cap-shape	cap-surface	cap-color	bruises	odor	gill-attachment	gill-spacing	gill-size	gill-color	stalk-surface-below-ring	stalk-color-above-ring	stalk-color-below-ring	veil-type	veil-color	ring-number	ring-type	spore-print-color	population	habitat
0	р	х	s	n	t	р	f	С	n	k	. s	w	w	р	w	0	р	k	s	u
1	е	х	s	у	t	а	f	С	b	k	. s	w	w	р	w	0	р	n	n	g
2	е	b	s	w	t	- 1	f	С	b	n	. s	w	w	р	w	0	р	n	n	m
3	р	х	у	w	t	р	f	С	n	n	. s	w	w	р	w	0	р	k	s	u
4	е	х	s	g	f	n	f	w	b	k	s	w	w	р	w	0	е	n	а	g

5 rows × 23 columns

2. Convert the categorical features (all of them) to dummy variables.

```
In [21]: # use get_dummies function to convert categorical columns
    df_mushrooms = pd.get_dummies(df_mushrooms, drop_first=True)
    df_mushrooms.head()
```

Out[21]:

	class_p	cap-shape_c	cap-shape_f	cap-shape_k	cap-shape_s	cap-shape_x	cap-surface_g	cap-surface_s	cap-surface_y	cap-color_c	population_n	population_s	population_v	population_y	habitat_g	habitat_I	habitat_m	habitat_p	habitat_u	habitat_w
0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	1	0
1	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0
3	1	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0
4	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0

5 rows × 96 columns

3. Split the data into a training and test set.

localhost:8888/notebooks/DSC550-T301 7.2Benavidez.ipynb

```
In [22]: # use sklearn to split data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

4. Fit a decision tree classifier on the training set.

```
In [23]: # import Decision Tree Classifier from sklearn
    from sklearn.tree import DecisionTreeClassifier
    # fit Decision Tree Classifier to training set
    clf = DecisionTreeClassifier(max_depth = 3, random_state = 42)
    clf.fit(X_train, y_train)
```

Out[23]: DecisionTreeClassifier DecisionTreeClassifier(max_depth=3, random_state=42)

5. Report the accuracy and create a confusion matrix for the model prediction on the test set.

```
In [24]: # report accuracy of training set and print results
y_pred = clf.predict(X_test)
from sklearn.metrics import accuracy_score
print("Model accuracy score for Decision Tree Classifier: {0:0.4f}".format(accuracy_score(y_test,y_pred)))
```

Model accuracy score for Decision Tree Classifier: 0.0160

```
In [25]: # create matrix for model prediction
    from sklearn.metrics import confusion_matrix
    print(confusion_matrix(y_test,y_pred))

[[0 0 0 ... 0 0 0]
    [0 0 0 ... 0 0 0]
    [0 0 0 ... 0 0 0]
```

[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]]

6. Create a visualization of the decision tree.

```
In [26]: # import tree visualization
from sklearn import tree
import matplotlib.pyplot as plt
plt.figure(figsize=(30,10))
tree.plot_tree(clf.fit(X_train, y_train))
plt.show()
```


7. Use a χ 2-statistic selector to pick the five best features for this data

(see section 10.4 of the Machine Learning with Python Cookbook).

```
In [27]: # Load Libraries from sklearn
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
In [33]: # k = 5 tells top five features to be selected
# Score function Chi2 tells the feature to be selected using Chi Square
KBest = SelectKBest(chi2, k=5)
```

Out[33]: (1460, 5)

fit.shape

fit = KBest.fit_transform(X, y)

8. Which five features were selected in step 7? Hint: Use the get_support function.

```
In [34]: # five features using get_support
    results = KBest.get_support(5)
    print(results)

[ 2 8 13 32 33]
```

9. Repeat steps 4 and 5 with the five best features selected in step 7.

localhost:8888/notebooks/DSC550-T301_7.2Benavidez.ipynb

10. Summarize your findings.