МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Программирование графических процессоров»

Освоение программного обеспечения для работы с технологией СИДА

Выполнил: Н.И. Лохматов

Группа: 8О-406Б

Преподаватель: А.Ю. Морозов

Условие

1. Цель работы: ознакомление и установка программного обеспечения для работы с программно-аппаратной архитектурой параллельных вычислений (CUDA)

2. Вариант 8: реверс вектора

Программное и аппаратное обеспечение

1. Графический процессор: Nvidia GeForce RTX 3050 Mobile

а. Количество потоковых процессоров: 2560

b. Частота ядра: 1552 МГц

с. Количество транзисторов: 8.7 млрд

d. Тех. процесс: 8 нм

е. Энергопотребление: 80 Вт

2. OC: Ubuntu 22.04

3. Текстовый редактор: VS Code

4. Компилятор: nvcc

Метод решения

Я итерируюсь по вектору до середины, меняя первый и последний элементы местами. Запоминаю первый элемент в temp, присваиваю первому элементу значение последнего, затем присваиваю последнему элементу значение temp.

Описание программы

Программа состоит из одного файла, в котором функция ядра называется reverseVector. В нём и происходит обход вектора с перестановкой элементов.

Результаты

1. Зависимость времени выполнения программы от количества используемых потоков.

Я 100 раз провёл вычисления и посчитал среднее время

Количество	Время, n = 10^5	Время, n = 10^6	Время, n = 10^7
потоков	(MC)	(MC)	(мс)
1×32	0.38	5.27	51.66
32×32	0.83	0.29	2.17
128×128	0.13	0.16	1.01
512×512	0.08	0.16	1.04
1024×1024	0.16	0.18	0.99

2. Сравнение программы на CUDA с 1024×1024 потоками и программы на CPU с одним потоком

Размер п	Время CUDA (мс)	Время СРИ (мс)
10^5	0.16	0.24
10^6	0.18	2.4
10^7	0.99	24.8

Выводы

Проделав лабораторную работу, я научился выполнять вычисления на CUDA. Задача, хоть и была простой, доставила немного проблем в чекере, так как я при итерировании перепутал і с іdх и долго не мог понять, в чём дело. Также, проведя тестирование своей программы, я убедился, что видеокарта намного эффективнее процессора в многопоточных вычислениях, что было весьма очевидно.