CE100 Algorithms and Programming II

Week-3 (Matrix Multiplication/ Quick Sort)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

<iframe width=700, height=500 frameBorder=0 src="../ce100-week-3matrix.md_slide.html"></iframe>

Matrix Multiplication / Quick Sort

Outline

- Matrix Multiplication
 - Traditional
 - Recursive
 - Strassen

Outline

- Quicksort
 - Hoare Partitioning
 - Lomuto Partitioning
 - Recursive Sorting

Outline

- Quicksort Analysis
 - Randomized Quicksort
 - Randomized Selection
 - Recursive
 - Medians

Matrix Multiplication

- Input: $A=[a_{ij}], B=[b_{ij}]$
- ullet Output: $C=[c_{ij}]=A\cdot B\Longrightarrow i,j=1,2,3,\ldots,n$

$$egin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \ c_{21} & c_{22} & \dots & c_{2n} \ dots & dots & dots & dots \ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot egin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \ b_{21} & b_{22} & \dots & b_{2n} \ dots & dots & dots & dots \ b_{n1} & a_{n2} & \dots & b_{nn} \end{bmatrix}$$

Matrix Multiplication

$$egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{2n} \ dots & dots & \ddots & dots \ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot egin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & dots & \ddots & dots \ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

$$ullet c_{ij} = \sum_{1 \leq k \leq n} a_{ik}.b_{kj}$$

Matrix Multiplication: Standard Algorithm

Running Time: $\Theta(n^3)$

```
for i=1 to n do
    for j=1 to n do
        C[i,j] = 0
        for k=1 to n do
            C[i,j] = C[i,j] + A[i,k] + B[k,j]
        endfor
    endfor
endfor
```


Matrix Multiplication: Divide & Conquer

IDEA: Divide the nxn matrix into 2x2 matrix of (n/2)x(n/2) submatrices.

$$egin{pmatrix} egin{pmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \cdot egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{pmatrix} & egin{pmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \cdot egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{pmatrix}$$

$$c_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \qquad \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22}$$

Matrix Multiplication: Divide & Conquer

$$egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \cdot egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$$

 $8 ext{ mults and 4 adds of (n/2)*(n/2) submatrices} = egin{cases} c_{11} = a_{11}b_{11} + a_{12}b_{21} \ c_{21} = a_{21}b_{11} + a_{22}b_{21} \ c_{12} = a_{11}b_{12} + a_{12}b_{22} \ c_{22} = a_{21}b_{12} + a_{22}b_{22} \end{cases}$

Matrix Multiplication: Divide & Conquer

```
MATRIX-MULTIPLY(A, B)
    // Assuming that both A and B are nxn matrices
    if n == 1 then
        return A * B
    else
        //partition A, B, and C as shown before
        C[1,1] = MATRIX-MULTIPLY (A[1,1], B[1,1]) +
                 MATRIX-MULTIPLY (A[1,2], B[2,1]);
        C[1,2] = MATRIX-MULTIPLY (A[1,1], B[1,2]) +
                MATRIX-MULTIPLY (A[1,2], B[2,2]);
        C[2,1] = MATRIX-MULTIPLY (A[2,1], B[1,1]) +
        MATRIX-MULTIPLY (A[2,2], B[2,1]);
       C[2,2] = MATRIX-MULTIPLY (A[2,1], B[1,2]) +
        MATRIX-MULTIPLY (A[2,2], B[2,2]);
    endif
    return C
```

Matrix Multiplication: Divide & Conquer Analysis

$$T(n) = 8T(n/2) + \Theta(n^2)$$

- 8 recursive calls $\Longrightarrow 8T(\cdots)$
- ullet each problem has size $n/2 \Longrightarrow \cdots T(n/2)$
- Submatrix addition $\Longrightarrow \Theta(n^2)$

Matrix Multiplication: Solving the Recurrence

$$ullet T(n) = 8T(n/2) + \Theta(n^2)$$

$$a = 8, b = 2$$

$$\circ \ f(n) = \Theta(n^2)$$

$$\circ \ n^{log^a_b} = n^3$$

$$ullet$$
 Case 1: $rac{n^{log_b^a}}{f(n)}=\Omega(n^arepsilon)\Longrightarrow T(n)=\Theta(n^{log_b^a})$

Similar with ordinary (iterative) algorithm.

Compute $c_{11}, c_{12}, c_{21}, c_{22}$ using 7 recursive multiplications.

In normal case we need 8 as below.

$$egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \cdot egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$$

 $8 ext{ mults and 4 adds of (n/2)*(n/2) submatrices} = egin{cases} c_{11} = a_{11}b_{11} + a_{12}b_{21} \ c_{21} = a_{21}b_{11} + a_{22}b_{21} \ c_{12} = a_{11}b_{12} + a_{12}b_{22} \ c_{22} = a_{21}b_{12} + a_{22}b_{22} \end{cases}$

• Reminder:

- \circ Each submatrix is of size (n/2)*(n/2)
- \circ Each add/sub operation takes $\Theta(n^2)$ time
- ullet Compute $P1\dots P7$ using 7 recursive calls to matrix-multiply

$$P_1 = a_{11} * (b_{12} - b_{22})$$
 $P_2 = (a_{11} + a_{12}) * b_{22}$
 $P_3 = (a_{21} + a_{22}) * b_{11}$
 $P_4 = a_{22} * (b_{21} - b_{11})$
 $P_5 = (a_{11} + a_{22}) * (b_{11} + b_{22})$
 $P_6 = (a_{12} - a_{22}) * (b_{21} + b_{22})$
 $P_7 = (a_{11} - a_{21}) * (b_{11} + b_{12})$

14

$$egin{aligned} P_1 &= a_{11} * (b_{12} - b_{22}) \ P_2 &= (a_{11} + a_{12}) * b_{22} \ P_3 &= (a_{21} + a_{22}) * b_{11} \ P_4 &= a_{22} * (b_{21} - b_{11}) \ P_5 &= (a_{11} + a_{22}) * (b_{11} + b_{22}) \ P_6 &= (a_{12} - a_{22}) * (b_{21} + b_{22}) \ P_7 &= (a_{11} - a_{21}) * (b_{11} + b_{12}) \end{aligned}$$

• How to compute c_{ij} using $P1 \dots P7$?

$$c_{11} = P_5 + P_4 - P_2 + P_6 \ c_{12} = P_1 + P_2 \ c_{21} = P_3 + P_4$$

- 7 recursive multiply calls
- 18 add/sub operations

e.g. Show that $c_{12}=P_1+P_2$

$$egin{aligned} c_{12} &= P_1 + P_2 \ &= a_{11}(b_{12} - b_{22}) + (a_{11} + a_{12})b_{22} \ &= a_{11}b_{12} - a_{11}b_{22} + a_{11}b_{22} + a_{12}b_{22} \ &= a_{11}b_{12} + a_{12}b_{22} \end{aligned}$$

Strassen's Algorithm

- Divide: Partition A and B into (n/2)*(n/2) submatrices. Form terms to be multiplied using + and -.
- Conquer: Perform 7 multiplications of (n/2)*(n/2) submatrices recursively.
- Combine: Form C using + and on (n/2)*(n/2) submatrices.

Recurrence:
$$T(n) = 7T(n/2) + \Theta(n^2)$$

Strassen's Algorithm: Solving the Recurrence

$$ullet T(n) = 7T(n/2) + \Theta(n^2)$$

$$a = 7, b = 2$$

$$\circ \ f(n) = \Theta(n^2)$$

$$\circ \ n^{log^a_b} = n^{lg7}$$

$$ullet$$
 Case 1: $rac{n^{log_b^a}}{f(n)}=\Omega(n^arepsilon)\Longrightarrow T(n)=\Theta(n^{log_b^a})$

$$T(n) = \Theta(n^{log_2^7})$$

$$2^3=8, 2^2=4$$
 so $\Longrightarrow log_2^7pprox 2.81$

or use https://www.omnicalculator.com/math/log

Strassen's Algorithm

- ullet The number 2.81 may not seem much smaller than 3
- But, it is significant because the difference is in the exponent.
- ullet Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.
- Best to date: $\Theta(n^{2.376...})$ (of theoretical interest only)

Maximum Subarray Problem

Input: An array of values

Output: The contiguous subarray that has the largest sum of elements

• Input array:

$$[13][-3][-25][20][-3][-16][-23]$$
 $\overbrace{[18][20][-7][12]}$ $[-22][-4][7]$

max. contiguous subarray

Maximum Subarray Problem: Divide & Conquer

- Basic idea:
- Divide the input array into 2 from the middle
- Pick the best solution among the following:
 - The max subarray of the left half
 - The max subarray of the right half
 - The max subarray crossing the mid-point

Maximum Subarray Problem: Divide & Conquer

Maximum Subarray Problem: Divide & Conquer

- **Divide:** Trivial (divide the array from the middle)
- Conquer: Recursively compute the max subarrays of the left and right halves
- ullet Combine: Compute the max-subarray crossing the mid-point
 - \circ (can be done in $\Theta(n)$ time).
 - Return the max among the following:
 - the max subarray of the left-subarray
 - the max subarray of the rightsubarray
 - the max subarray crossing the mid-point

TODO: detailed solution in textbook...

Conclusion: Divide & Conquer

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

Quicksort

- One of the most-used algorithms in practice
- Proposed by C.A.R. *Hoare* in 1962.
- Divide-and-conquer algorithm
- In-place algorithm
 - The additional space needed is O(1)
 - The sorted array is returned in the input array
 - Reminder: Insertion-sort is also an in-place algorithm, but Merge-Sort is not inplace.
- Very practical

Quicksort

- **Divide:** Partition the array into 2 subarrays such that elements in the lower part \leq elements in the higher part
- Conquer: Recursively sort 2 subarrays
- Combine: Trivial (because in-place)

Key: Linear-time $(\Theta(n))$ partitioning algorithm

References

TODO

