PICO: Reconstructing 3D People in Contact with Objects

JNIVERSITY OF AMSTERDAM

Key Insight

3D contact correspondences are crucial for reconstructing human-object interactions (HOI) in the wild

Problem **Previous work**

Common limitations

- × Assumes known object mesh
- Uses SMPL (flat hands)
- × Relies on manual heuristics
- × Restricted to a small number of object categories

CONTHO, CVPR 2024[4]

CHORE, CVPR 2023 [2]

X Does not generalize well to natural images (in-lab, except PHOSA)

How to improve?

Get dense 3D contact correspondences for in-the-wild human-object interactions.

Leverage such data for reconstructing interactions in 3D.

PICO-fit _

PICO-db: Dataset of Vertex-level HOI Contact Correspondences

¹Max Planck Institute for Intelligent Systems, Tübingen ²Meshcapade ³Carnegie Mellon University ⁴UT Austin ⁵University of Amsterdam

Annotation Process

Step 1: Pick best object from top 3 *OpenShape* [6] similarity matches from Objaverse-LVIS[7]; Query object size from a VLM

Step 2: Simple two-click contact transfer on our web UI using the "contact axis" [9]

3D Contact Parametrization

Establishes 1:1 vertex-level correspondence on transfer

The Dataset

4000+ images 44 object categories 600+ unique object instances

PICO-fit: 3D HOI Reconstruction from Natural Images

I. Contact Pair Initialization

Finding the best proxy contact from PICO-db:

L. Predict human contact using DECO

2. Nearest neighbor search: find K closest human contacts in PICO-db within the object category

3. Select the best one, considering OpenShape [6] object match with the image

4. Take object mesh, object contact, and corresponding human contact from that sample

II. Reconstruction Pipeline

- Get object and contact pair
- 2. Predict SMPL-X human pose and shape from OSX^[8]
- Multi-stage optimization pipeline:

Stage 1: Object-to-Body Registration

 $L_1 = \lambda_c \mathcal{L}_c$

Human-Object

- Stage 1: Minimize contact distance between human and object
- Stage 2: Align 6DoF object pose using image cues
- Stage 3: Fine-tune human limbs in contact using image cues

Reconstruction CONTHO [4] (reg.) 13.14 12.81 on Intercap PHOSA [1] (opt.) 13.38 $PA-CD_{h+o}$ (cm) \downarrow PICO-fit (opt.) Perceptual study CONTHO* [4] (reg.) preference rate (%) PHOSA* [1] (opt.) X vs PICO-fit* PICO-fit (opt.) **Comparison with SOTA methods**

Note: methods marked by * use ground truth contact for reconstruction

Evaluations

[1] Zhang et al., Perceiving 3D human-object spatial arrangements from a single image in the wild., ECCV 2020 [2] Xie et al., CHORE: Contact, human and object reconstruction from a single RGB image., ECCV 2022 [3] Xie et al., Template free reconstruction of human object interaction with procedural interaction generation., CVPR 2024

PICO-db