CS1231S Discrete Structures Help Sheet for Final Examinations

Disclaimer: This help sheet does not contain everything. It mainly contains the formulae which I deem important for solving questions for the Finals. I hereby affirm that any mistake found in this document is due to my own human error, and not committed on purpose in order to "snake".

Predicate and Propositional Logic

Logical Equivalences		
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Associative laws	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive laws	$p \wedge (q \vee r)$ $\equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r)$ $\equiv (p \lor q) \land (p \lor r)$
Identity laws	p ∧ true ≡ p	$p \vee false \equiv p$
Negation laws	$p \lor \sim p \equiv true$	$p \land \sim p \equiv false$
Double negative law	~(~]	p) ≡ p
Idempotent laws	$p \wedge p \equiv p$	$p \lor p \equiv p$
Universal bound laws	p ∨ true ≡ true	p ∧ false ≡ false
Ulliversal boullu laws	p ∨ ti ue = ti ue	$p \wedge talse = talse$
De Morgan's laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$p \land \text{false} = \text{false}$ $\sim (p \lor q) \equiv \sim p \land \sim q$
	,	

Conditionals			
Conditional	$p \rightarrow q$	if p, then q	p is a sufficient
Contrapositive	~q → ~p	p only if q	condition for q
Converse	$q \rightarrow p$	p if q	p is a necessary
Inverse	~p → ~q		condition for q
Biconditional	$p \leftrightarrow q$	p if, and only if, q	
Note that Conditional Statement = Contrapositive, Converse = Inverse, but Conditional Statement ≠ Converse.			
Implication	Law	$p \rightarrow q$	$\equiv \sim p \lor q$

Set Theory

Subsets (≡)		
Subset	$A \subseteq B$	$\forall x \ (x \in A \to x \in B)$
-Not a subset	$A \nsubseteq B$	$\exists x \ (x \in A \land x \notin B)$
Equality	A = B	$\forall x \ (x \in A \leftrightarrow x \in B)$
		$A \subseteq B \land B \subseteq A$
Proper Subset	$A \subsetneq B$	$(\forall x \in A, x \in B) \land (\exists y \in B, y \notin A)$
Transitivity		$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$

Set Operations (=)		
Union	$A \cup B$	$\{x \in \mathcal{U} \mid x \in A \lor x \in B\}$
Intersection	$A \cap B$	$\{x \in \mathcal{U} \mid x \in A \land x \in B\}$
Complement	A - B	$\{x \in A \mid x \notin B\}$
Union of 3 or more sets	$\bigcup_{i=1}^{n} A_{i}$	$A_1 \cup A_2 \cup \cdots \cup A_n$
Intersection of 3 or more sets	$\bigcap_{i=1}^{n} A_{i}$	$A_1\cap A_2\cap \cdots \cap A_n$

Set Identities		
Commutative laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associative laws	$(A \cup B) \cup C$ = $A \cup (B \cup C)$	$(A \cap B) \cap C$ = $A \cap (B \cap C)$
Distributive laws	$(A \cup B) \cap C$ = $(A \cup B) \cap (A \cup C)$	$(A \cap B) \cup C$ = $(A \cap B) \cup (A \cap C)$
Identity laws	$A \cup \emptyset = A$	$A \cap \mathcal{U} = A$
Complement laws	$A \cup \overline{A} = \mathcal{U}$	$A \cup \overline{A} = \emptyset$
Double complement law	$\overline{(\overline{A})}$	=A
Idempotent laws	$A \cup A = A$	$A \cap A = A$
Universal bound laws	$A \cup \mathcal{U} = \mathcal{U}$	$A \cap \emptyset = \emptyset$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorption laws	4 + 1 (4 o B) 4	$A \cap (A \cup B) = A$
Tibbot ption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Set difference law	` '	$= A \cap \overline{B}$

Disjoint Sets		
Sets are disjoint	₩	$A \cap B = \emptyset$
Sets are pairwise	\Leftrightarrow	$\forall A, B \in \mathcal{C}$ with $A \neq B$, we have $A \cap B = \emptyset$
disjoint		

Set Definitions (=)		
Cartesian Product	$A \times B$	The set of ordered pairs, $\{(a, b) \mid a \in$
		$A, b \in B$
Power Set	℘(A)	The set of all subsets of A, $\{X \mid X \subseteq A\}$

Partition of A	
P is a partition of $A \Leftrightarrow$ it is an unordered collection of:	
pairwise disjoint,	$\forall X, Y \in P \text{ with } X \neq Y, \text{we have } X \cap Y = \emptyset$
non-empty	$\emptyset \notin P$
subsets of A,	$P \subseteq \wp(A)$
whose union is A.	$\bigcup_{X \in P} X = A$

Counting and Probability

Number of elements in a set
There are $n - m + 1$ integers from m to n inclusive.
Number of elements in a power set
If a set X has n elements, then the power set $\wp(X)$ has 2^n elements.

Permutations	
Number of permutations of a set with n elements	n!
Number of r-permutations (ordered selection of r elements) from a set of n elements	$P_r^n = \frac{n!}{(n-r)!}$
Number of permutations of a set with n elements, where	n!
n_1, n_2, \cdots, n_k elements indistinguishable from each other	$\overline{n_1! n_2! \cdots n_k!}$

Combinations	
Number of r-combinations (subsets of size r) that can be chosen from a set of n elements	$\binom{n}{r} = \frac{n!}{r! (n-r)!} = \frac{P_r^n}{r!}$
Number of multisets of size r (r- combinations with repetition allowed) that can be selected from a set of n elements	$\binom{r+n-1}{r}$

Pigeonhole Principle	
Function	For any function <i>f</i>
Domain	From a finite set <i>X</i> with <i>n</i> elements
Codomain	To a finite set Y with m elements
Positive integer	For any positive integer k
If $k < \frac{n}{m'}$ then there is some $y \in Y$ such that y is the image of at least k+1	
distinct elements of X.	
If for each $y \in Y$, $f^{-1}(\{y\})$ has at most k elements, then X has at most km	
elements, i.e. $n \leq km$.	
Implication on the Function	
Domain > Codomain	f is not injective
Domain = Codomain	f is injective if, and only if, it is surjective.

Pascal's Formula		
$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$	$\binom{n}{r} = \binom{n}{n-r}$	
Binomial Theorem		
$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$		
$=a^{n}+\binom{n}{1}a^{n-1}b^{1}+\binom{n}{2}a^{n-2}b^{2}+\cdots$		
$= a^{n} + {n \choose 1} a^{n-1} b^{1} + {n \choose 2} a^{n-2} b^{2} + \cdots + {n \choose n-1} a^{1} b^{n-1} + b^{n}$		

Expected value	
$a_1p_1 + a_2p_2 + \cdots + a_kp_k$	a_1, a_2, \cdots, a_k are the possible outcomes,
$u_1p_1 + u_2p_2 + \dots + u_kp_k$	u ₁ , u ₂ , , u _k are the possible outcomes,
	p_1, p_2, \cdots, p_k are their associated
	probabilities

Probability	
Conditional Probability	$P(B A) = \frac{P(A \cap B)}{P(A)}$
Baye's Theorem	$P(B_k A) = \frac{P(A B_k) \cdot P(B_k)}{P(A B_1) \cdot P(B_1) + \dots + P(A B_n) \cdot P(B_n)}$
Independent Events	$P(A \cap B) = P(A) \times P(B)$
Pairwise	$P(A \cap B) = P(A) \times P(B)$
Independent	$P(B \cap C) = P(B) \times P(C)$
	$P(A \cap C) = P(A) \times P(C)$
Mutually	A, B and C are pairwise independent, and
Independent	$P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$

Images and Preimages	
Set of images, $f(X)$	$\{f(x) \mid x \in X\} = \{b \in B \mid \exists x \in X, f(x) = b\}$
Set of pre-images, $f^{-1}(X)$	$\{f(x) \mid x \in X\}$
Range, $\mathcal{R}(f)$	$\{f(a) \mid a \in X\} = f(A)$

Surjectivity (Onto) (⇔)	
$A \xrightarrow{f} B$	Range is equal to the codomain, $\mathcal{R}(f) = B$.
a_1 a_2 a_3 a_4 a_5 b_3	$\forall b \in B, \exists a_b \in A, f(a_b) = b$
	Every element in the codomain has at least one arrow terminating there.
	Take a general element $b \in B$ and find an element $a_b \in A$ such that $f(a_b) = b$.
C ''' SE ''	f and g are surjective $\rightarrow g \circ f$ is surjective
Composition of Functions	$g \circ f$ is surjective $\rightarrow g$ is injective

Bijectivity (⇔)	
A B $X \longrightarrow 1$	Both injective and surjective. $\forall b \in B, \exists !\ a_b \in A, f(a_b) = b$
$\begin{pmatrix} Y & & & \\ Z & & & & \\ W & & & & & \\ & & & & & \\ & & & &$	Every arrow coming out of the domain terminates at a unique element in the codomain, and every element in the codomain has an arrow pointing to it.
Composition of Functions	f and g are bijective $\rightarrow g \circ f$ is bijective
	$g \circ f$ is bijective \rightarrow f is injective and g is surjective

Inverses	
Checking if a function has an	f has an inverse \Leftrightarrow f is bijective.
inverse	
Obtaining an inverse	$f: A \to B$, then an inverse of f is
	$g: B \to A$ such that $g \circ f = I_A$ and $f \circ g = I_B$.

Cantor-Bernstein Theorem

Let $f\colon A\to B$ and $g\colon B\to A$ be injective functions. Then there exists a bijective function $h\colon A\to B$.

Relations

Relations	
D C A v D	$(a,b) \in R \Rightarrow aRb$
$R \subseteq A \times B$	$(a,b) \notin R \Rightarrow a \mathbb{R} b$
Domain of R	$\{a \in A \mid \exists b \in B \ aRb\}$
Range of R	$\{b \in B \mid \exists a \in A \ aRb\}$

Inverse of R		$R^{-1} = \{(b, a) \in B \times A \mid aRb\}$
Types of Relations		
Reflexive	\$	$\forall x \in A (xRx)$
Symmetric	\$	$\forall x, y \in A (xRy \Rightarrow yRx)$
Transitive	⇔	$\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$
Equivalence	\$	Reflexive, symmetric and transitive
Relation		
Anti-Symmetric	\$	$\forall x, y \in A (xRy \land yRx \Rightarrow x = y)$

Equivalence Classes	
Equivalence class of an element a	$[a]_R = \{x \in A \mid aRx\}.$ $xRy \Rightarrow [x] = [y]$
	$x \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
Equivalence class of a relation R	The subset $S \subseteq A$ is an equivalence class of R if, and only if, $S = [a]$ for some $a \in A$.
Set of equivalence classes of R	The set of equivalence classes of R is $A/R \subseteq \mathcal{P}(A)$.
	A/R is a partition of A, and every partition is a set of equivalence classes.

Properties of Equivalence Classes

- Any two distinct equivalence classes of an equivalence relation are disjoint.
- 2. The set of equivalence classes of R, is $A/R \subseteq \mathcal{P}(A)$, is a partition of A.

Partial Orders

A partial order on A, \leq , is a relation on A that is reflexive, anti-symmetric and transitive

u anstuve.		
Properties of elements of a set that is partially ordered		
x and y are comparable	$x \leq y \text{ or } y \leq x$	
x and y are incomparable	$x \leq y \text{ or } y \leq x$	
a is minimal	$\forall x \in A \ (x \leqslant a \to x = a)$	
a is smallest	$\forall x \in A (a \leq x)$	
a is maximal	$\forall x \in A \ (a \leqslant x \to x = a)$	
a is largest	$\forall x \in A (x \leq a)$	
Properties of Partial Orders		
1. If R is a partial order on A, then so is R^{-1} .		
A has at most one largest element and one smallest element.		

Division Algorithm	
a = qb + r	$q = a \operatorname{div} b = \left\lfloor \frac{a}{b} \right\rfloor$
	$r = a \mod b$
a = q b + r = q(-b) + r = (-q)b + r	$a \operatorname{div} b = -(a \operatorname{div} b)$
	$a \mod b = a \mod b $

b-adic Expansion
$n = a_0 b^0 + a_1 b^1 + \dots + a_k b^k = (a_k a_{k-1} \dots a_0)_b$
To obtain a <i>b</i> -adic expansion of <i>n</i> ,
1. Write down <i>n</i> .

- Divide n by b, and write down the remainder at the right of n, and the quotient below n.
- Repeat step (2) for the quotient by dividing it by b, until you reach
- 0 at the bottom of the left column. Read the right column from top to bottom, and these are the coefficients of $b^0, b^1, \cdots b^k$. 4.

Divisibility			
$a b if$, and only if , $\exists k \in \mathbb{Z}$ such that $b=ak$.			
Properties of Divisibility			
Negative dividend / divisor	$(a b) \Leftrightarrow (-a b) \Leftrightarrow (a -b) \Leftrightarrow (-a -b)$		
If commutative	$(a b) \land (b a) \Rightarrow (a = b \lor a = -b)$		
Transitivity	$(a b) \land (b c) \Rightarrow (a c)$		
Constant multiplication	$(a b) \Rightarrow (ac bc)$		
	$(ac bc) \land (c \neq 0) \Rightarrow (a b)$		
Divisor has smaller absolute value	$(a b) \land (b \neq 0) \Rightarrow (a \leq b)$		

Common Divisors				
d is a common divisor of a	and b if and only if $(d a) \land (d b)$.			
Properties of Common Divisors				
Divides linear combinations	d (ax + by)			

Greatest Common Divisor	
The greatest common divisor is denoted as $gcd(a, b)$).

Euclidean Algorithm

- Find the quotient and remainder of a and b and write down an 1. equation in the form a = qb + r.
- Treat q and r as your new a and b and repeat step (1).
- Repeat until you obtain a 0 as your r.

In the last line, the q is your gcd(a, b).

Properties of the Greatest Common Divisor			
Subtracting a multiple of b from a	$gcd(a,b) = gcd(b,a \bmod b)$		
Divisible by other common divisors	$d \mid gcd(a,b)$		
I UIVISOI'S	1		

Bezout's Identity

 $\exists x,y \in \mathbb{Z} \, such \, that \, ax + by = gcd(a,b)$

In fact, $\gcd(a,b)$ is the minimum positive integer linear combination of a and

Extended Euclidean Algorithm

Manipulate the 1st to penultimate equations formed in the Euclidean Algorithm such that you eventually express $\gcd(a,b)$ as an integer linear combination of a and b.

Prime Integers			
Prime	$n \ge 2$ and n is not composite.		
Composite	There exist positive between 1 and n, su	e integers a , b that are strictly uch that $n = ab$.	
Properties of Prime Integers p and q			
If two prime integers divide each other		If $p \mid q$ then $p = q$.	
Set of prime integers		There are infinitely many prime integers.	
Greatest common d	livisor involving a	$gcd(p,n) = \begin{cases} p, & if \ p n; \\ 1, & otherwise \end{cases}$	
If an integran is divis	sible by a puime it	If $p \mid ab$ then $p \mid a$ or $p \mid b$.	
If an integer is divis must be due to one		If $p \mid a_1 a_2 \cdots a_n$ then $p \mid a_i$ for some <i>i</i> between 1 and n.	

Fundamental Theorem of Arithmetic			
Every $n \in \mathbb{Z}_{\geq 2}$ can be factorized uniquely up to order into primes.			
$a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$			
$b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$			
Things you can do with the Fundamental Theorem			
Comparing constituent $a = p_1 p_2 \cdots p_k, b = q_1 q_2 \cdots q_k.$			
primes to check equality	If $a = b$, then $p_1 = q_1, \dots, p_k = q_k$.		
Comparing exponents to	albiford only if a < b a < b a < b		
check divisibility	$a b$ if and only if $a_1 \le b_1$, $a_2 \le b_2$,, $a_k \le b_k$.		

from the prime $= p_1^{\min\{a_1,b_1\}} p_2^{\min\{a_2,b_2\}} \cdots p_k^{\min\{a_k,b_k\}}$ factorization	1	$gcd(a,b) = p_1^{\min\{a_1,b_1\}} p_2^{\min\{a_2,b_2\}} \cdots p_k^{\min\{a_k,b_k\}}$
---	---	---

Coprime Integers				
a and b are coprime if, and only if, $gcd(a,b) = 1$				
Properties of Coprime Integers a and b				
Multiplying two coprime integers	If a and c are coprime, then a and bc are also coprime, since $(a \nmid b)$ and $(a \nmid c)$.			
Coprime integers cannot divide each other	If $a \mid bc$, then $a \mid c$ since $a \nmid b$.			
Two integers divided by their gcd are coprime	$gcd(\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)}) = 1$			

Congruences

only if $n \mid (a-h)$		a = b + kn		
omy n 70 (a	۵).	$a \bmod n = b \bmod n$		
Properties of Congruence Relations				
Reflexive $a \equiv$				
$a \equiv$	b (mod n	$a) \Rightarrow b \equiv a \pmod{n}$		
$[a \equiv b \pmod{n}] \land [b \equiv c \pmod{n}]$				
	⇒ [a =	$\equiv c \pmod{n}$		
Closure Properties				
Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$,				
	$a + c \equiv a$	$b+d \ (mod \ n)$		
	$a-c\equiv 1$	$b-d \ (mod \ n)$		
	$ac \equiv a$	bd (mod n)		
Suppose that $a \equiv b \pmod{n}$,				
$a + c \equiv b + c \pmod{n}$				
$ac \equiv bc \pmod{n}$				
ly and someho	w they st	ill congruent		
-	ab			
$\equiv (a \bmod n) \pm b \equiv a \pm (b \bmod n) \qquad \equiv (a \bmod n)$		od n)b		
		nodn)		
$\pm (b \mod n) \equiv (a \mod n)$		od n)(b mod n)		
$(mod \ n)$				
If $ac \equiv bc \pmod{n}$, if you want to eliminate the c ,				
then $a \equiv b \pmod{\frac{n}{\gcd(c,n)}}$.				
	Relations $a \equiv a \equiv b \pmod{a}$ $a \equiv b \pmod{a}$ $a \equiv b \pmod{a}$ $a \equiv b \pmod{n}$	$a \equiv b \pmod{n}$ $[a \equiv b \pmod{n} \pmod{n}]$ $at a \equiv b \pmod{n}$ $a + c \equiv a - c \equiv ac \equiv ac \equiv ac \equiv ac \equiv ac \equiv ac$		

Congruence Equations			
	$ax \equiv b \pmod{n}$		
Properties of Congruence Equations			
Checking if there is a	$x \in \mathbb{Z}$ exists to satisfy the above equation if, and		
solution	only if, $gcd(a, n) \mid b$.		
Dividing throughout by	$a = b \qquad n$		
gcd(a,n)	$\frac{1}{\gcd(a,n)} x \equiv \frac{1}{\gcd(a,n)} \pmod{\frac{1}{\gcd(a,n)}}$		

0 (,,	900 (00,10)	900 (0,10)	900 (0)10)					
Multiplicative Inverse Mod	lulo n							
x is a multiplicative inverse of $a \mod n$ if, and only if,								
$ax \equiv 1 \pmod{n}$ Properties of multiplicative inverse modulo n Given a congruence equation $ax \equiv b \pmod{n}$, let a' be the multiplicative inverse modulo n .								
					Checking if there is a solution	<i>a'</i> exists i	f, and only if, go	cd(a,n)=1.
					Multiplying throughout by a'	$x \equiv a'b \ (mod \ n)$		
Dividing throughout by $gcd(a, n)$	$x \equiv a' - \frac{1}{g}$	$\frac{b}{cd(a,n)}$ (mod	$\frac{n}{gcd(a,n)}$					
Finding other multiplicative inverses modulo n								
<i>x</i> is a multiplicative inverse of <i>a</i> mod <i>n</i> if, and only if, $x \equiv a' \pmod{n}$. Finding the Multiplicative Inverse Modulo n								
				Since $gcd(a,n) = 1$, make use of the Extended Euclidean Algorithm to obtain integers x and y such that $ax + ny = 1$, and x will be the multiplicative inverse of a modulo n.				