Cpr E 281 HW09 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Registers and Counters Assigned Date: Eleventh Week Due Date: First class of 13th week

When the Clock is low, the master copies D to Q_m and Q_s is not changed. When the Clock is high, Q_m is not changed and the slave copies Q_m to Q_s . Hence the only time that Q_s (=Q) is changed is when the Clock is changing from low to high (i.e., positive clock edge). Then value stored in Q after the positive clock edge is the last value copied from D to Q_m right before the Clock is switched to high.

P2.

P3. This gated D latch design consists of 4 NAND gates and 1 NOT gate.

So total # of transistors in one gated D latch = 4x4 + 1x2 = 18.

A 64-bit register consists of 128 gated D latches and 64 NOT gates.

Total # of transistors in a 64-bit register = 128x18 + 64x2 = 2432.

Cpr E 281 HW09 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Registers and Counters Assigned Date: Eleventh Week Due Date: First class of 13th week

P4. We can construct the circuit using four D flip-flops and four 4-to-1 MUXs only.

P5. The counting sequence is 000, 001, 010, 111.

P8.

Solution: let, S1 select= right shift and S0 select=left shift

s ₁	s ₀	у ₃	y ₂	y 1	y ₀
0	0	W ₃	w ₂	W ₁	w ₀
0	1	0	W3	W ₂	W ₁
1	0	W ₂	W ₁	w ₀	0
1	1	Х	Х	Х	Х

