Determination of molecular formula of a compound using spectroscopy

Abhishek Dasgupta (06MS07)

Indian Institute of Science Education and Research, Kolkata

April 24, 2007

Introduction

- ▶ My project: Find out molecular formula of ferric salicylate
- ▶ I used Job's method for doing this experiment.

Job's Method

- Method of continuous variation.
- Dependent on validity of Beer's Law

$$A = \log I_0/I$$

and

$$A = \varepsilon c I$$

Job's Method

- Method of continuous variation.
- Dependent on validity of Beer's Law

$$A = \log I_0/I$$

and

$$A = \varepsilon c I$$

▶ We vary the concentration of Fe³⁺ and salicylic acid so that [Fe³⁺] + [Salicylic acid] is constant.

Job's Method

- Method of continuous variation.
- Dependent on validity of Beer's Law

$$A = \log I_0/I$$

and

$$A = \varepsilon c I$$

- ▶ We vary the concentration of Fe³⁺ and salicylic acid so that [Fe³⁺] + [Salicylic acid] is constant.
- ▶ ...in the ratios 1:9, 2:8, 3:7, ...9:1.
- Get spectral scans 400 nm 650 nm; visible region
- See peaks; plot absorbance vs composition of solution.
- Maxima gives us molecular composition!

What I used

A Spectrophotmeter, Ferric Nitrate, Salicylic Acid, Glass beakers (100 mL), Round bottomed flasks (3)

What I used

A Spectrophotmeter, Ferric Nitrate, Salicylic Acid, Glass beakers (100 mL), Round bottomed flasks (3)

Stocks

 0.0025M Sulphuric acid (Solvent). Prepared by standardisation with NaOH, which in turn was standardised against oxalic acid. Reference spectrum

What I used

A Spectrophotmeter, Ferric Nitrate, Salicylic Acid, Glass beakers (100 mL), Round bottomed flasks (3)

Stocks

- 0.0025M Sulphuric acid (Solvent). Prepared by standardisation with NaOH, which in turn was standardised against oxalic acid. Reference spectrum
- ▶ 0.0025M Ferric nitrate, 0.0025M Salicylic acid.

What I used

A Spectrophotmeter, Ferric Nitrate, Salicylic Acid, Glass beakers (100 mL), Round bottomed flasks (3)

Stocks

- 0.0025M Sulphuric acid (Solvent). Prepared by standardisation with NaOH, which in turn was standardised against oxalic acid. Reference spectrum
- ▶ 0.0025M Ferric nitrate, 0.0025M Salicylic acid.

Stocks showed negligible absorbance.

Procedure contd.

► Mix stocks → purple colour. Complex formation.

Procedure contd.

- ► Mix stocks → purple colour. Complex formation.
- ▶ 9 compositions taken: varying from 10 percent to 90 percent of Ferric nitrate.

Spectral scan of visible region.

Spectra

Spectra

Observation

As we see we get maximum absorbance at 5:5 at about 525nm.

Observation

As we see we get maximum absorbance at 5:5 at about 525nm. To illustrate this we pick 525 nm, and plot absorbance vs composition.

Observation

As we see we get maximum absorbance at 5:5 at about 525nm. To illustrate this we pick 525 nm, and plot absorbance vs composition.

From the graph we clearly see that maximal absorption at 1:1 ratio. So we have got the molecular formula!

From the graph we clearly see that maximal absorption at 1:1 ratio. So we have got the molecular formula!

Precautions

► Proper standardisation

From the graph we clearly see that maximal absorption at 1:1 ratio. So we have got the molecular formula!

Precautions

- Proper standardisation
- Spectral data should be in range where Beer's law is valid; otherwise we absorbance will not have a linear relationship with concentration.

From the graph we clearly see that maximal absorption at 1:1 ratio. So we have got the molecular formula!

Precautions

- Proper standardisation
- Spectral data should be in range where Beer's law is valid; otherwise we absorbance will not have a linear relationship with concentration.

..and so my project ended.

Other things that could be done

The stability constant

... is given by

$$K = \frac{[complex]}{[Fe^{3+}][Sal]}$$

We already know [Fe³⁺] and [Sal]; if we could find out the extinction coefficnt ε for [complex], then we would be done.

Acknowledgements

I thank Dr. Pradip Bag and Dr. Parna Gupta Bhattacharya, whose guidance greatly helped me in the completion of my project. I thank our Director, Dr. Sushanta Dattagupta, for giving us encouragement and organising the necessary infrastructure for my project to be possible.

I also thank Mr. Sudhangshu Maity and everyone in the Department of Chemistry for helping me in executing this project.