P2 – ARQUITETURA DE COMPUTADORES

1) Um microcomputador possui uma capacidade máxima de Memória Principal de 16M células, cada uma capaz de armazenar uma palavra de 16 bits. Quantos bytes possuem o RDM, o REM e a Memória Principal se este

microcomputador for capaz de acessar duas células de memória simultaneamente?

a) RDM = 4 REM = 24

b) RDM = 4 REM = 3

c) RDM = 2 REM = 24

Memória Principal = 2^{25}

Memória Principal = 2^{25}

Memória Principal = 2^{25}

	•	RDM = 4 RDM = 2		Memória Prir Memória Prir	•			
2)	a)	esultado do 4EDC30 4DCC30	o valor A7BF4E su	ubtraído de F58 c) d)	BB7E? Todos 4DDC30 4EDC30	os valores estão em h		nal. 5EDC30
3)	capacida capacida acesso a a)	ade para 1 ade para 51	6 bits. Foi colo	cado neste co inha desta cac cache este da c)	mputador u he tem capa do será arm	ide para 4Gbytes. Cac ma memória cache o cidade para 64 bytes azenado?	de mape s. Supond	eamento direto com
4)	I. II. IV.	O projeto Em cache zero wait Algoritmo cache che Na técnica linha da ca	de uma memória s L2, os acessos (tempo de esper s de substituição ia. a de mapeament	a cache pode p são realizados a nulo). o de quadros to associativo,	orever sua im s mais rapid são indisper	de sistemas computar plementação de form amente que os ciclos nsáveis à eleição do l memória principal po	na unifica de barra bloco a s	amento, com estado ser retirado de uma
	a)	l e II		c)	III e IV		e)	II, III e IV
	b)	I e IV		d)	I, II e III			
5)	(control da subic Se o inte sua freq a)	ar a velocid la/descida d ervalo de te	lade) as ações ex de um pulso até o	xecutadas por o início de sua ações consecu c)	essa unidad descida/sub	que tem como finalic e. Em cada ciclo (inter da), uma ação é reali processador é igual a	rvalo de zada pelo 2 nanoss	tempo entre o início o processador.
6)	baseada velocida	n na veloci ade de acess os tipos de Registrado Registrado Registrado Memória	dade de acesso so (da mais rápid memória comun ores, memória ca ores, memória pr ores, memória ca cache, registrado	e no custo la para a mais l nente usados nche, memória rincipal, memó nche, memória ores, memória	de armazer enta), qual nos computa principal, dis ria cache, dis principal, dis principal, dis	ador podem ser orga namento. Levando-se hierarquia adequadan adores pessoais atuais sco magnético, disco ó sco magnético, disco ó sco ótico, disco magné co magnético e disco co magnético e disco	em cormente representation. Stico. Stico. Stico. Stico. Stico.	nsideração apenas a

P2 – ARQUITETURA DE COMPUTADORES

- 7) A utilização de memória cache entre a UCP e a memória principal é algo bastante comum nos computadores atuais. Essa utilização tem por objetivo:
 - a) Aumentar a capacidade global de memória de um computador.
 - b) Aumentar a taxa de transferência entre os dados residentes na UCP e os dispositivos de armazenamento secundário de alta velocidade, tais como discos magnéticos.
 - c) Garantir a integridade dos dados, pois dessa forma é possível comparar os dados lidos da memória principal com os dados armazenados no cache.
 - d) Obter uma velocidade de acesso à memória principal próxima à velocidade das memórias mais rápidas.
 - e) Reduzir o custo de armazenamento, já que as memórias cache são bem mais baratas do que os módulos DRAM usados como memória principal.
- 8) Defina o conceito de Localidade Temporal e Localidade Espacial e justifique a sua importância no funcionamento da Memória Cache
- 9) Faça um comparativo da política de carregamento associativa com a política de carregamento mapeamento direto.
- 10) Explique como funcionam as políticas de escrita em memórias cache.

P2 – ARQUITETURA DE COMPUTADORES

1)	Anulada
2)	В
3)	D
4)	В
5)	В
6)	A
7)	D
8)	Localidade Temporal é a propriedade de que, quando um programa acede a uma posição de memória, existe uma probabilidade maior de que ele aceda novamente à mesma posição de memória em um espaço de tempo.
	Localidade Espacial é a propriedade de que, quando um programa acede a uma posição de memória, existe uma probabilidade maior de que ele aceda a posições de memória contíguas em um espaço de tempo.
9)	
10)	