

- * NOTICES *
- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The process which prepares an electric conduction foil, forms a separation slot shallower than the thickness of said electric conduction foil in said electric conduction foil of the field except the electric conduction pattern which forms much loading sections of a circuit element at least, and forms an electric conduction pattern, The process which grinds said separation slot front face chemically, and carries out surface roughening of the front face, and the process which fixes a circuit element in said each loading section of said desired electric conduction pattern, The process which carries out common mold by insulating resin so that said circuit element of each loading section may be covered collectively and said separation slot may be filled up, The manufacture approach of the circuit apparatus characterized by providing the process which removes said electric conduction foil of the thickness part which has not prepared said separation slot, and the process which separates said insulating resin by dicing for every loading section.

[Claim 2] The process which prepares an electric conduction foil, forms a separation slot shallower than the thickness of said electric conduction foil in said electric conduction foil of the field except the electric conduction pattern which forms much loading sections of a circuit element at least, and forms an electric conduction pattern, The process which grinds said separation slot front face chemically, and carries out surface roughening of the front face, and the process which fixes a circuit element in said each loading section of said desired electric conduction pattern, The process which forms the connecting means which connects electrically the electrode of the circuit element of each of said loading section, and said desired electric conduction pattern, The process which carries out common mold by insulating resin so that said circuit element of each loading section may be covered collectively and said separation slot may be filled up, The manufacture approach of the circuit apparatus characterized by providing the process which removes said electric conduction foil of the thickness part which has not prepared said separation slot, and the process which separates said insulating resin by dicing for every loading section.

[Claim 3] Said electric conduction foil is the manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by consisting of copper, aluminum, or iron-nickel. [Claim 4] The manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by covering the front face of said electric conduction foil with an electric conduction coat partially at least.

[Claim 5] Said electric conduction coat is the manufacture approach of the circuit apparatus indicated by claim 4 characterized by nickel, gold, or carrying out silver plating formation. [Claim 6] Said separation slot alternatively formed in said electric conduction foil is chemical or the manufacture approach of a circuit apparatus indicated by claim 1 or claim 2 characterized by

being formed of physical etching.

[Claim 7] The manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by performing said chemical polish with the processing liquid which uses an organic acid as a principal component.

[Claim 8] The manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by performing said chemical polish with the processing liquid which uses a sulfuric acid and hydrogen peroxide solution as a principal component.

[Claim 9] Said circuit element is the manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by fixing both a semi-conductor bare chip, and chip circuit both [either or].

[Claim 10] Said connecting means is the manufacture approach of the circuit apparatus indicated by claim 2 characterized by being formed by wire bonding.

[Claim 11] Said insulating resin is the manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by adhering in a transfer mold.

[Claim 12] Said insulating resin is the manufacture approach of the circuit apparatus indicated by claim 11 characterized by having combined with the front face of said separation slot, and giving an anchor effect.

[Claim 13] The manufacture approach of the circuit apparatus indicated by claim 1 or claim 2 characterized by arranging in said electric conduction foil two or more blocks which arranged the electric conduction pattern which forms much loading sections of a circuit element at least in the shape of a matrix.

[Claim 14] Said insulating resin is the manufacture approach of the circuit apparatus indicated by claim 13 characterized by adhering in a transfer mold for said every block.

[Claim 15] The manufacture approach of the circuit apparatus indicated by claim 13 characterized by separating into each loading section by dicing for said each [by which mold was carried out by said insulating resin] the block of every.

[Claim 16] The manufacture approach of the circuit apparatus indicated by claim 15 characterized by performing dicing using the alignment mark formed together with said electric conduction pattern.

[Claim 17] The manufacture approach of the circuit apparatus indicated by claim 15 characterized by performing dicing using the alignment mark which was formed together with said electric conduction pattern, and which counters.

[Translation done.]

* NOTICES *

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] Especially this invention relates to the manufacture approach of the thin circuit apparatus which made the support substrate unnecessary about the manufacture approach of a circuit apparatus.

[0002]

[Description of the Prior Art] Conventionally, since the circuit apparatus set to electronic equipment is adopted as a cellular phone, a portable computer, etc., a miniaturization, thin-shapeizing, and lightweight-ization are called for.

[0003] For example, when it states by making a semiconductor device into an example as a circuit apparatus, there is a package mold semiconductor device by which the closure was carried out by the conventional usual transfer mold as a common semiconductor device. This semiconductor device is mounted in printed circuit board PS like <u>drawing 11</u>.

[0004] Moreover, this package mold semiconductor device covers the perimeter of a semiconductor chip 2 with the resin layer 3, and the lead terminal 4 for external connection is drawn from the flank of this resin layer 3.

[0005] However, the lead terminal 4 had come from the resin layer 3 outside, the whole size of this package mold semiconductor device 1 was large, and it was not what satisfies a miniaturization, thin-shape-izing, and lightweight-ization.

[0006] Therefore, that each company should compete and miniaturization, thin-shape-izing, and lightweight-ization should be realized, various structures are developed and, recently, CSP of larger size a little than the wafer scale CSP equivalent to the size of a chip or chip size called CSP (chip-size package) is developed.

[0007] <u>Drawing 12</u> shows larger CSP6 a little which adopted the glass epoxy group plate 5 as a support substrate than a chip size. Here, it explains as that by which the transistor chip T was mounted in the glass epoxy group plate 5.

[0008] The 1st electrode 7, 2nd electrode 8, and die pad 9 are formed in the front face of this glass epoxy group plate 5, and the 1st rear-face electrode 10 and the 2nd rear-face electrode 11 are formed in the rear face. And the 2nd electrode 8 and the 2nd rear-face electrode 11 are electrically connected for said 1st electrode 7 and the 1st rear-face electrode 10 through the through hole TH. Moreover, to a die pad 9, the transistor chip T of said raise in basic wages fixes, the emitter electrode and the 1st electrode 7 of a transistor are connected through the metal thin line 12, and the base electrode and the 2nd electrode 8 of a transistor are connected through the metal thin line 12. Furthermore, the resin layer 13 is formed in the glass epoxy group plate 5 so that a transistor chip T may be covered.

[0009] Although the glass epoxy group plate 5 is used for said CSP6, unlike the wafer scale CSP, it is simple for the extension structure from Chip T to the rear-face electrodes 10 and 11 for external connection, and has the merit which can be manufactured cheaply.

[0010] Moreover, said CSP6 is mounted in printed circuit board PS like <u>drawing 11</u>. The electrode and wiring which constitute an electrical circuit are prepared, it connects with printed circuit board PS electrically, and said CSP6, the package mold semiconductor device 1, chip resistor CR, or a chip capacitor CC fixes to it.

[0011] And the circuit which consisted of this printed circuit board is attached into various sets. [0012] Below, the manufacture approach of this CSP is explained, referring to <u>drawing 13</u> and <u>drawing 14</u>.

[0013] The glass epoxy group plate 5 is first prepared as a base material (support substrate), and

the Cu foils 20 and 21 are stuck to these both sides by pressure through insulating adhesives. Then, the resist 22 of etching-proof nature is covered in the Cu foils 20 and 21 with which the 1st electrode 7, the 2nd electrode 8, a die pad 9, the 1st rear-face electrode 10, and the 2nd correspond rear-face electrode 11, and patterning of the Cu foils 20 and 21 is carried out (see the drawing 13 A above). In addition, on a table and the reverse side, patterning forms the hole for a through hole TH in said glass epoxy group plate using a drill or laser, even if [it is good (see the drawing 13 B above)] separate, plates to this hole and forms a through hole TH. The 1st electrode 7, the 1st rear-face electrode 10 and the 2nd electrode 8, and the 2nd rear-face electrode 10 are electrically connected by this through hole TH. Although omitted in the drawing, while performing Au plating to a bonding post, and the 1st electrode 7 and the 2nd electrode 8 which change further, Au plating is performed to the die pad 9 used as a die bonding post, and die bonding of the transistor chip T is carried out (see drawing 13 C above).

[0014] Finally, it connected through the metal thin line 12, and the emitter electrode of a transistor chip T, the 1st electrode 7 and the base electrode of a transistor chip T, and the 2nd electrode 8 are covered with the resin layer 13. By the above manufacture approach, the electric element of the CSP mold which adopted the support substrate 5 is completed (see the <u>drawing 13</u> D above). Even if a flexible sheet is used for this manufacture approach as a support substrate, it is the same.

[0015] On the other hand, the manufacture approach which adopted the ceramic substrate is shown in the flow of drawing 14. After preparing the ceramic substrate which is a support substrate, the through hole was formed, after that, conductive paste was used, and the electrode of a table and a flesh side is printed and sintered. Then, it is the same as the manufacture approach of drawing 13 R> 3 until it covers the resin layer of the pre-manufacture approach, but a ceramic substrate is very weak, and unlike a flexible sheet or a glass epoxy group plate, since it is missing immediately, it has the problem which cannot do the mold using metal mold. Therefore, after carrying out potting of the closure resin and hardening it, polish which makes closure resin Taira and others is given, and individual separation is carried out at the last using dicing equipment.

[0016]

[Problem(s) to be Solved by the Invention] In <u>drawing 12</u>, although a transistor chip T, connecting means 7-12, and the resin layer 13 were components required when carrying out electrical installation with the exterior, and protection of a transistor, they were difficult for offering the circuit element which realizes miniaturization, thin-shape-izing, and lightweightization with the component of only this.

[0017] Moreover, originally the glass epoxy group plate 5 used as a support substrate is unnecessary, as mentioned above. However, on the manufacture approach, since an electrode was stuck, it had adopted as a support substrate and this glass epoxy group plate 5 was not able to be lost.

[0018] Therefore, by adopting this glass epoxy group plate 5, cost went up, since the glass epoxy group plate 5 was still thicker, it became thick as a circuit element and the limitation was in a miniaturization, thin-shape-izing, and lightweight-ization.

[0019] Furthermore, in the glass epoxy group plate or the ceramic substrate, the through hole formation process which surely connects a double-sided electrode is indispensable, and the production process and the problem which becomes long had it.

[Means for Solving the Problem] The process which accomplishes this invention in view of

many technical problems mentioned above, prepares an electric conduction foil, forms a separation slot shallower than the thickness of said electric conduction foil in said electric conduction foil of the field except the electric conduction pattern which forms much loading sections of a circuit element at least, and forms an electric conduction pattern, The process which grinds said separation slot front face chemically, and carries out surface roughening of the front face, and the process which fixes a circuit element in said each loading section of said desired electric conduction pattern, The process which forms the connecting means which connects electrically the electrode of the circuit element of each of said loading section, and said desired electric conduction pattern, The process which carries out common mold by insulating resin so that said circuit element of each loading section may be covered collectively and said separation slot may be filled up, It is characterized by providing the process which removes said electric conduction foil of the thickness part which has not prepared said separation slot, and the process which separates said insulating resin by dicing for every loading section.

[0021] In this invention, an electric conduction foil has a support function until the mold of the insulating resin is carried out, after mold can make a support substrate unnecessary because insulating resin has a support function, and the electric conduction foil which forms an electric conduction pattern is the ingredient of a start, and it can solve the conventional technical problem.

[0022] Moreover, in this invention, since a separation slot front face is ground chemically and surface roughening of the front face is carried out, an anchor effect can be given to insulating resin, it can process for every block, many circuit apparatus can be mass-produced, and the conventional technical problem can be solved.

[0023]

[Embodiment of the Invention] It explains referring to <u>drawing 1</u> about the manufacture approach of the circuit apparatus of this invention first.

[0024] The process which this invention prepares an electric conduction foil, forms a separation slot shallower than the thickness of said electric conduction foil in said electric conduction foil of the field except the electric conduction pattern which forms much loading sections of a circuit element at least, and forms an electric conduction pattern, The process which grinds said separation slot front face chemically, and carries out surface roughening of the front face, and the process which fixes a circuit element in said each loading section of said desired electric conduction pattern, The process which forms the connecting means which connects electrically the electrode of the circuit element of each of said loading section, and said desired electric conduction pattern, The process which carries out common mold by insulating resin so that said circuit element of each loading section may be covered collectively and said separation slot may be filled up, It consists of a process which removes said electric conduction foil of the thickness part which has not prepared said separation slot, and a process which separates said insulating resin by dicing for every loading section.

[0025] Although the flow shown in <u>drawing 1</u> is not in agreement with the process mentioned above, formation of an electric conduction pattern is performed by three flows, Cu foil, Ag plating, and half etching. A separation slot front face is chemically ground by the flow of chemical polish. Connection of fixing of the circuit element to each loading section, the electrode of a circuit element, and an electric conduction pattern is made by die bond and two flows of wire bonding. The common mold by insulating resin is performed in the flow of a transfer mold. In the flow of rear-face Cu foil removal, etching of the electric conduction foil of a thickness part without a separation slot is performed. In the flow of rear-face processing, electrotreatment of the

electric conduction pattern exposed to the rear face is performed. In the flow of measurement, the excellent article distinction of a circuit element and the property rank division which were included in each loading section are performed. Separation to the circuit element according to individual is performed by the flow of dicing by dicing from insulating resin.

[0026] Below, each process of this invention is explained with reference to $\underline{\text{drawing 2}}$ - $\underline{\text{drawing 10}}$.

[0027] The 1st process of this invention is to prepare the electric conduction foil 60, form the separation slot 61 shallower than the thickness of the electric conduction foil 60 in the electric conduction foil 60 of the field except the electric conduction pattern 51 which forms much loading sections of a circuit element 52 at least, and form the electric conduction pattern 51, as shown in drawing 4 from drawing 2.

[0028] At this process, the sheet-like electric conduction foil 60 is first prepared like <u>drawing 2</u> A. As for this electric conduction foil 60, the electric conduction foil which the adhesion of low material, bonding nature, and plating nature are taken into consideration, and that ingredient is chosen, and consists of alloys, such as an electric conduction foil which made Cu the charge of a principal member as an ingredient, an electric conduction foil which made aluminum the charge of a principal member, or Fe-nickel, is adopted.

[0029] When the thickness of an electric conduction foil took next etching into consideration, 10 micrometers - about 300 micrometers were desirable, and 70 micrometers (2 unciae) copper foil was adopted here. However, 300 micrometers or more or at least 10 micrometers or less are fundamentally good. What is necessary is just to be able to form the separation slot 61 shallower than the thickness of the electric conduction foil 60 so that it may mention later.

[0030] In addition, by predetermined width of face, for example, 45mm, it is wound in the shape of a roll, and is prepared, and it may be conveyed by each process which this mentions later, the electric conduction foil 60 of the shape of a strip of paper cut into predetermined magnitude may be prepared, and the sheet-like electric conduction foil 60 may be conveyed by each process mentioned later.

[0031] As shown in drawing 2 B, 4-5 blocks 62 with which much loading sections are formed in the strip-of-paper-like electric conduction foil 60 estrange, and, specifically, are put in order. A slit 63 is formed between each block 62, and the stress of the electric conduction foil 60 generated in the heat-treatment in a mold process etc. is absorbed. Moreover, an index hole 64 is formed in the vertical peripheral edge of the electric conduction foil 60 at fixed spacing, and it is used for positioning at each process.

[0032] Then, an electric conduction pattern is formed.

[0033] First, as shown in drawing 3, Photoresist (etching-proof mask) PR is formed on the Cu foil 60, and patterning of the photoresist PR is carried out so that the electric conduction foil 60 except the field used as the electric conduction pattern 51 may be exposed. And as shown in drawing 4 A, the electric conduction foil 60 is alternatively etched through Photoresist PR. [0034] The depth of the separation slot 61 formed of etching is 50 micrometers, and since the side face turns into a split face, its adhesive property with insulating resin 50 improves. [0035] Moreover, although the side attachment wall of this separation slot 61 is typically straight and is illustrated, it serves as structure which changes with removal approaches. Evaporation by wet etching, dry etching, and laser and dicing can be used for this removal process. In the case of wet etching, as for etchant, a ferric chloride or a cupric chloride is mainly adopted, dipping of said electric conduction foil is carried out into this etchant, or a shower ring is carried out by this etchant. Since wet etching is generally etched into a non-anisotropy, a side face becomes curve

structure here.

[0036] Moreover, in the case of dry etching, it can etch by the anisotropy and the non-anisotropy. Although it is said in current that it is impossible to remove Cu by reactive ion etching, it is removable by sputtering. Moreover, it can etch by the anisotropy and the non-anisotropy according to the conditions of sputtering.

[0037] Moreover, by laser, a direct laser beam is applied, the separation slot 61 can be formed, and the side face of the separation slot 61 is rather formed straight in this case.

[0038] In addition, in <u>drawing 3</u>, the electric conduction coat (not shown) which has corrosion resistance to an etching reagent instead of a photoresist may be covered alternatively. If a track and the part which changes are covered alternatively, this electric conduction coat turns into an etching protective coat, and a separation slot can be etched, without adopting a resist. The ingredient considered as this electric conduction coat is Ag, nickel, Au, Pt, or Pd. And the electric conduction coat of these corrosion resistance has the description utilizable as it is as a die pad and a bonding pad.

[0039] For example, it pastes up with Au and low material pastes up Ag coat. Therefore, if Au coat is covered by the chip rear face, the thermocompression bonding of the chip can be carried out to Ag coat on a track 51 as it is, and a chip can be fixed through low material, such as solder. Moreover, since Au thin line can be pasted up on the electric conduction coat of Ag, wire bonding also becomes possible. Therefore, it has the merit which can utilize these electric conduction coats as a die pad and a bonding pad as they are.

[0040] The concrete electric conduction pattern 51 is shown in drawing 4 B. This Fig. expanded one of the blocks 62 shown by drawing 2 B, and carries out thing correspondence. One of the part applied black is the one loading section 65, the electric conduction pattern 51 is constituted, much loading sections 65 are arranged by one block 62 in the shape of [of five line ten trains] a matrix, and the same electric conduction pattern 51 is formed every loading section 65. The frame-like pattern 66 is formed around each block, a few is estranged with it and the alignment mark 67 at the time of dicing is formed in the inside. It has the work which uses the frame-like pattern 66 for fitting with mold metal mold, and reinforces insulating resin 50 after rear-face etching of the electric conduction foil 60.

[0041] The 2nd process of this invention is to grind separation slot 61 front face chemically, and carry out surface roughening of the front face, as shown in <u>drawing 5</u>.

[0042] At this process, if the processing liquid which uses a sulfuric-acid-hydrogen peroxide as a principal component after forming the separation slot 61 is used, the surface roughening of the wall surface of the separation slot 61 can be carried out. as this processing liquid -- the MEC COMPANY LTD. make -- the activity front face which is immersed in this etching reagent for several minutes, and has the irregularity of about 1-2 micrometers in a front face is formed using CB-801. The area of the wall surface of the separation slot 61 increases by this, association with the insulating resin 50 which carries out mold at a next process can be strengthened, and a big anchor effect is acquired.

[0043] Moreover, at this process, there is also the approach of carrying out chemical polishing of the wall surface of the separation slot 61, and carrying out surface roughening using the etching processing liquid of an organic-acid system. as the etching reagent of an organic-acid system -- the MEC COMPANY LTD. make -- using CZ-8100, it is immersed in this etching reagent for several minutes, and the irregularity of about 1-2 micrometers is formed in a front face. A still bigger anchor effect is acquired compared with the etching reagent of a sulfuric-acid-hydrogen-peroxide system which this mentioned above. However, the processing liquid in the range out of

which a bad influence does not come to electric conduction pattern 51 front face needs to be chosen.

[0044] furthermore, except for the approach mentioned above -- melanism -- after processing, the approach of carrying out plasma etching is also employable.

[0045] As shown in <u>drawing 6</u>, the 3rd process of this invention fixes a circuit element 52 in each loading section 65 of the desired electric conduction pattern 51, and is to form the connecting means which connects electrically the electrode of the circuit element 52 of each loading section 65, and the desired electric conduction pattern 51.

[0046] As a circuit element 52, they are passive elements, such as semiconductor devices, such as a transistor, diode, and IC chip, a chip capacitor, and a chip resistor. Moreover, although thickness becomes thick, the semiconductor device of face downs, such as CSP and BGA, can also be mounted.

[0047] Here, die bonding of the transistor chip 52A of raise in basic wages is carried out to electric conduction pattern 51A, and it is connected through metal thin line 55A which an emitter electrode, electric conduction pattern 51B and a base electrode, and electric conduction pattern 51B fixed by the ball bonding by thermocompression bonding, or the wedge bonding by the supersonic wave. Moreover, 52B is a chip capacitor or a passive element, and fixes by low material, such as solder, or conductive paste 55B.

[0048] At this process, since many electric conduction patterns 51 are accumulated by each block 62, there is an advantage which fixing and wire bonding of a circuit element 52 can perform very efficiently.

[0049] As shown in $\underline{\text{drawing 7}}$, the 4th process of this invention covers the circuit element 52 of each loading section 63 collectively, and is to carry out common mold by insulating resin 50 so that the separation slot 61 may be filled up.

[0050] At this process, as shown in <u>drawing 7</u> A, insulating resin 50 covers completely circuit elements 52A and 52B and two or more electric conduction patterns 51A, 51B, and 51C, the separation slot 61 between the electric conduction patterns 51 is filled up with insulating resin 50, it combines with the split face of the side face of the electric conduction patterns 51A, 51B, and 51C, and a firm anchor effect is acquired. And the electric conduction pattern 51 is supported with insulating resin 50.

[0051] Moreover, at this process, it is realizable with a transfer mold, injection molding, or dipping. As a resin ingredient, thermosetting resin, such as an epoxy resin, can be realized by the transfer mold, and thermoplastics, such as polyimide resin and polyphenylene sulfide, can be realized by injection molding.

[0052] Furthermore, at this process, a transfer mold or in case injection molding is carried out, as shown in drawing 7 B, each block 62 dedicates the loading section 63 to one common mold metal mold, and performs mold in common with one insulating resin 50 for every block. For this reason, reduction of the large amount of resin can be aimed at compared with the approach of carrying out the mold of each loading section according to an individual like the conventional transfer mold.

[0053] The thickness of the insulating resin 50 covered by electric conduction foil 60 front face is adjusted so that about 100 micrometers may be covered from the maximum crowning of metal thin line 55A of a circuit element 52. This thickness can also be made [also thickening in consideration of reinforcement, and] thin.

[0054] The description of this process is that the electric conduction foil 60 used as the electric conduction pattern 51 serves as a support substrate until it covers insulating resin 50. Although

the support substrate 5 which originally is not needed is adopted like <u>drawing 13</u> and tracks 7-11 are formed in the former, the electric conduction foil 60 used as a support substrate is an ingredient required as an electrode material in this invention. Therefore, it has the merit which can work excluding a component as much as possible, and the fall of cost can also be realized. [0055] Moreover, since the separation slot 61 is formed more shallowly than the thickness of an electric conduction foil, the electric conduction foil 60 is not separately separated as an electric conduction pattern 51. Therefore, in case it can be dealt with by one as a sheet-like electric conduction foil 60 and the mold of the insulating resin 50 is carried out, it has the description to which conveyance to metal mold and the activity of mounting to metal mold become very easy. [0056] The 5th process of this invention is to remove the electric conduction foil 60 of the thickness part which has not formed the separation slot 61, as shown in <u>drawing 7</u>. [0057] This process is separated as an electric conduction pattern 51, removing the rear face of the electric conduction foil 60 chemically and/or physically. This process is given by polish, grinding, etching, metal evaporation of laser, etc.

[0058] In the experiment, about 30 micrometers of whole surface are deleted with polish equipment or grinding attachment, and insulating resin 50 is exposed from the separation slot 61. By drawing 7, the dotted line shows this field exposed. Consequently, it becomes the electric conduction pattern 51 with a thickness of about 40 micrometers, and dissociates. Moreover, to this side which insulating resin 50 exposes, whole surface WETO etching of the electric conduction foil 60 may be carried out, the whole surface may be deleted with polish or grinding attachment after that, and insulating resin 50 may be exposed. Furthermore, whole surface WETO etching of the electric conduction foil 60 may be carried out to the location of a dotted line, and insulating resin 50 may be exposed.

[0059] Consequently, it becomes the structure which the rear face of the electric conduction pattern 51 exposes to insulating resin 50. That is, the front face of insulating resin 50 and the front face of the electric conduction pattern 51 with which the separation slot 61 was filled up have structure which is substantially in agreement. Therefore, since a level difference is not prepared like the conventional rear-face electrodes 10 and 11 shown in drawing 12, the circuit apparatus 53 of this invention has the description which moves horizontally and can carry out a self aryne as it is in the surface tension of solder etc. at the time of mounting.

[0060] Furthermore, rear-face processing of the electric conduction pattern 51 is performed, and the last structure shown in <u>drawing 8</u> is acquired. That is, electric conduction material, such as solder, is put on the electric conduction pattern 51 exposed as occasion demands, and it completes as a circuit apparatus.

[0061] The 6th process of this invention is to measure the property of the circuit element 52 of each loading section 63 by which mold was collectively carried out by insulating resin 50, as shown in $\frac{drawing 9}{drawing 9}$.

[0062] After carrying out rear-face etching of the electric conduction foil 60 at a last process, each block 62 is separated from the electric conduction foil 60. Since this block 62 is connected with the residual section of the electric conduction foil 60 by insulating resin 50, it can be attained by removing from the residual section of the electric conduction foil 60 mechanically not using cutting metal mold.

[0063] As shown in <u>drawing 9</u>, the rear face of the electric conduction pattern 51 is exposed to the rear face of each block 62, and each loading section 65 is arranged in the shape of a matrix completely identically to the time of electric conduction pattern 51 formation. A probe 68 is applied to the rear-face electrode 56 exposed from the insulating resin 50 of this electric

conduction pattern 51, the property parameter of the circuit element 52 of each loading section 65 etc. is measured according to an individual, right [poor] is judged, and magnetic ink etc. performs marking to a defective.

[0064] At this process, since the circuit apparatus 53 of each loading section 65 is supported by one every block 62 by insulating resin 50, it does not dissociate according to the individual scatteringly. Therefore, the block 62 put on a circuit tester's installation base is making pitch delivery a lengthwise direction and a longitudinal direction like an arrow head by the size of the loading section 65, and can measure the circuit apparatus 53 of each loading section 65 of block 62 in large quantities very early. That is, since distinction of the front flesh side of the circuit apparatus which was the need conventionally, recognition of the location of an electrode, etc. can be performed unnecessarily, large compaction of the measuring time can be aimed at. [0065] The 7th process of this invention is to separate insulating resin 50 by dicing every loading section 65, as shown in drawing 10.

[0066] At this process, block 62 is made to stick to the installation base of dicing equipment under vacuum, the dicing of the insulating resin 50 of the separation slot 61 is carried out along the dicing line 70 between each loading section 65 with the dicing blade 69, and it separates into the circuit apparatus 53 according to individual.

[0067] After carrying out in the cutting depth from which the dicing blade 69 cuts insulating resin 50 mostly at this process and taking out block 62 from dicing equipment, it is good to carry out chocolate breaking with a roller. The alignment mark 67 in which the pattern 66 of the surrounding shape of a frame of each block established at the 1st process beforehand mentioned above and one carry out phase opposite is recognized at the time of dicing, and it performs dicing on the basis of this. Although it is common knowledge, after dicing makes dicing a lengthwise direction for all the dicing lines 70, it rotates an installation base 90 degrees and performs dicing according to the lateral dicing line 70.

[0068]

[Effect of the Invention] In this invention, when the electric conduction foil used as the ingredient of an electric conduction pattern itself is operated as a support substrate, and the time of the time of formation of a separation slot or mounting of a circuit element, and covering of insulating resin supports the whole with an electric conduction foil and an electric conduction foil is separated as each electric conduction pattern, insulating resin is operated by making it a support substrate. Therefore, it can manufacture by the necessary minimum of a circuit element, an electric conduction foil, and insulating resin. As the conventional example explained, when a circuit apparatus is originally constituted, it stops needing a support substrate and can do in cost and cheaply. Moreover, there is also a merit which can form a very thin circuit apparatus according to that a support substrate is unnecessary, that the electric conduction pattern is embedded to insulating resin, and adjustment of the thickness of insulating resin and an electric conduction foil being still more possible.

[0069] Moreover, the closure of the circuit element which depends on insulating resin at this invention in spite of a separation slot's being carrying out surface roughening of the front face to about 50 micrometers by chemical polish even if shallow, and association of insulating resin and each electric conduction pattern becoming strong and being a very thin circuit apparatus is good. [0070] Next, in this invention, it has further the advantage for which reduction of the large amount of resin can be aimed at and to which recognition of a dicing line is early ensured using an alignment mark at a dicing process by performing the common mold for every block at the mold process of insulating resin. Furthermore, cutting of only an insulating resin layer is

sufficient as dicing, and it does not have generating of the metal weld flash generated when the life of a dicing blade can also be lengthened and it cuts an electric conduction foil by not cutting an electric conduction foil, either.

[0071] Moreover, since the formation process of a through hole, the presswork (in the case of a ceramic substrate) of a conductor, etc. can be skipped from <u>drawing 13</u> so that clearly, conventionally, a production process can be sharply shortened from before and it has the advantage which can ** a stroke inside. Moreover, frame metal mold is also unnecessary entirely and it is the manufacture approach which serves as short time for delivery extremely.

[Translation done.]

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-280488

(43) Date of publication of application: 27.09.2002

(51)Int.Cl.

H01L 23/12

H01L 21/56

H01L 23/50

(21) Application number: 2001-083568

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

22.03.2001

(72)Inventor: SAKAMOTO NORIAKI

KOBAYASHI YOSHIYUKI

SAKAMOTO JUNJI OKADA YUKIO

IGARASHI YUUSUKE

MAEHARA EIJU

TAKAHASHI YUKITSUGU

(54) METHOD FOR MANUFACTURING CIRCUIT UNIT

(57) Abstract:

PROBLEM TO BE SOLVED: To solve the problem that the thicknesses of supporting substrates become a fault of reducing in size and thickness of a circuit unit in the circuit unit in which circuit elements are mounted as the supporting substrates such as a ceramic substrate, a flexible sheet and the like.

SOLUTION: A method for manufacturing the circuit unit comprises the steps of forming a conductive pattern 51 of each block by using isolation grooves 61 on a conductive foil 60, and then roughing the surfaces of the grooves 61 by chemical polishing. Thus, coupling of the pattern 5 to an insulating resin 50 is strong. A dicing step of each block is introduced. Hence, the method for manufacturing the circuit unit suitable for a mass production can be realized by executing a resource conservation.

LEGAL STATUS

[Date of request for examination]

03.06.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2002-280488

(P2002-280488A)

(43)公開日 平成14年9月27日(2002.9.27)

(51) Int.Cl.	識別記号	FΙ	デーマコート [*] (参考)
H01L 23/12	2 501	H01L 2	3/12 501W 5F061
		2:	1/56 H 5 F 0 6 7
21/56		2	3/50 R
23/50)	2	3/12 L
		審査請求	未請求 請求項の数17 OL (全 10 頁)
(21)出願番号	特顧2001-83568(P2001-83568)	(71)出顧人	
			三洋電機株式会社
(22)出顧日	平成13年3月22日(2001.3.22)		大阪府守口市京阪本通2丁目5番5号
		(72)発明者	
			大阪府守口市京阪本通2丁目5番5号 三
	•		洋電機株式会社内
	•	(72)発明者	小林 義幸
	•	,	大阪府守口市京阪本通2丁目5番5号 三
•			洋電機株式会社内
•		(74)代理人	100091605
			弁理士 岡田 敬 (外1名)
		1	

最終頁に続く

(54) 【発明の名称】 回路装置の製造方法

(57)【要約】

【課題】 セラミック基板、フレキシブルシート等を支持基板として回路素子が実装された回路装置がある。 しかしこれらの支持基板の厚みが、回路装置の小型薄型化の障害となる問題があった。

【解決手段】 導電箔60に分離溝61を用いてブロック毎の導電パターン51を形成した後、分離溝61の表面を化学的研磨で粗面化するので、絶縁性樹脂50と導電パターン51の結合が強く、ブロック毎のダイシング工程を導入して省資源で大量生産に適した回路装置の製造方法を実現できる。

【特許請求の範囲】

【請求項1】 導電箔を用意し、少なくとも回路素子の 搭載部を多数個形成する導電パターンを除く領域の前記 導電箔に前記導電箔の厚みよりも浅い分離溝を形成して 導電パターンを形成する工程と、

1

前記分離溝表面を化学的に研磨してその表面を粗面化す る工程と、

所望の前記導電パターンの前記各搭載部に回路素子を固 着する工程と、

に充填されるように絶縁性樹脂で共通モールドする工程

前記分離溝を設けていない厚み部分の前記導電箔を除去 する工程と.

前記絶縁性樹脂を各搭載部毎にダイシングにより分離す る工程とを具備することを特徴とする回路装置の製造方

【請求項2】 導電箔を用意し、少なくとも回路素子の 搭載部を多数個形成する導電パターンを除く領域の前記 導電バターンを形成する工程と、

前記分離溝表面を化学的に研磨してその表面を粗面化す る工程と、

所望の前記導電パターンの前記各搭載部に回路素子を固 着する工程と、

前記各搭載部の回路素子の電極と所望の前記導電パター ンとを電気的に接続する接続手段を形成する工程と、

各搭載部の前記回路素子を一括して被覆し、前記分離溝 に充填されるように絶縁性樹脂で共通モールドする工程 Ł.

前記分離溝を設けていない厚み部分の前記導電箔を除去 する工程と、

前記絶縁性樹脂を各搭載部毎にダイシングにより分離す る工程とを具備することを特徴とする回路装置の製造方 法。

【請求項3】 前記導電箔は銅、アルミニウム、鉄ーニ ッケルのいずれかで構成されることを特徴とする請求項 1または請求項2に記載された回路装置の製造方法。

【請求項4】 前記導電箔の表面を導電皮膜で少なくと も部分的に被覆することを特徴とする請求項1または請 40 製造方法に関するものである。 求項2に記載された回路装置の製造方法。

【請求項5】 前記導電被膜はニッケル、金あるいは銀 メッキ形成されることを特徴とする請求項4に記載され た回路装置の製造方法。

【請求項6】 前記導電箔に選択的に形成される前記分 **離溝は化学的あるいは物理的エッチングにより形成され** るととを特徴とする請求項1または請求項2に記載され た回路装置の製造方法。

【請求項7】 前記化学的研磨を有機酸を主成分とする

に記載された回路装置の製造方法。

【請求項8】 前記化学的研磨を硫酸および過酸化水素 水を主成分とする処理液で行うことを特徴とする請求項 1または請求項2に記載された回路装置の製造方法。

【請求項9】 前記回路素子は半導体ベアチップ、チッ プ回路部品のいずれかあるいは両方を固着されることを 特徴とする請求項1または請求項2に記載された回路装 置の製造方法。

【請求項10】 前記接続手段はワイヤーボンディング 各搭載部の前記回路素子を一括して被覆し、前記分離溝 10 で形成されることを特徴とする請求項2に記載された回 路装置の製造方法。

> 【請求項11】 前記絶縁性樹脂はトランスファーモー ルドで付着されることを特徴とする請求項1または請求 項2に記載された同路装置の製造方法。

> 【請求項12】 前記絶縁性樹脂は前記分離溝の表面と 結合してアンカー効果を持たせたことを特徴とする請求 項11に記載された回路装置の製造方法。

【請求項13】 前記導電箔には少なくとも回路素子の 搭載部を多数個形成する導電パターンをマトリックス状 導電箔に前記導電箔の厚みよりも浅い分離溝を形成して 20 に配列したブロックを複数個並べたことを特徴とする請 求項1または請求項2に記載された回路装置の製造方

> 【請求項14】 前記絶縁性樹脂は前記ブロック毎にト ランスファーモールドで付着されることを特徴とする請 求項13に記載された回路装置の製造方法。

> 【請求項15】 前記絶縁性樹脂でモールドされた前記 各ブロック毎に各搭載部にダイシングにより分離すると とを特徴とする請求項13に記載された回路装置の製造 方法。

30 【請求項16】 前記導電パターンと一緒に形成した合 わせマークを用いてダイシングを行うことを特徴とする 請求項15に記載された回路装置の製造方法。

【請求項17】 前記導電バターンと一緒に形成した対 向する合わせマークを用いてダイシングを行うことを特 徴とする請求項15に記載された回路装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、回路装置の製造方 法に関し、特に支持基板を不要にした薄型の回路装置の

[0002]

【従来の技術】従来、電子機器にセットされる回路装置 は、携帯電話、携帯用のコンピューター等に採用される ため、小型化、薄型化、軽量化が求められている。

【0003】例えば、回路装置として半導体装置を例に して述べると、一般的な半導体装置として、従来通常の トランスファーモールドで封止されたパッケージ型半導 体装置がある。この半導体装置は、図11のように、ブ リント基板PSに実装される。

処理液で行うことを特徴とする請求項1または請求項2 50 【0004】またこのパッケージ型半導体装置は、半導

3

体チップ2の周囲を樹脂層3で被覆し、この樹脂層3の 側部から外部接続用のリード端子4が導出されたもので ある。

【0005】しかしこのパッケーシ型半導体装置1は、 リード端子4が樹脂層3から外に出ており、全体のサイズが大きく、小型化、薄型化および軽量化を満足するも のではなかった。

【0007】図12は、支持基板としてガラスエポキシ基板5を採用した、チップサイズよりも若干大きいCSP6を示すものである。とこではガラスエポキシ基板5 にトランジスタチップTが実装されたものとして説明していく。

【0008】 このガラスエポキシ基板5の表面には、第1の電極7、第2の電極8およびダイパッド9が形成さ 20れ、裏面には第1の裏面電極10と第2の裏面電極11が形成されている。そしてスルーホールTHを介して、前記第1の電極7と第1の裏面電極10が、第2の電極8と第2の裏面電極11が電気的に接続されている。またダイパッド9には前記ペアのトランジスタチップ下が固着され、トランジスタのエミッタ電極と第1の電極7が金属細線12を介して接続され、トランジスタのベース電極と第2の電極8が金属細線12を介して接続されている。更にトランジスタチップTを覆うようにガラスエポキシ基板5に樹脂層13が設けられている。30

【0009】前記CSP6は、ガラスエポキシ基板5を採用するが、ウェハスケールCSPと違い、チップTから外部接続用の裏面電極10、11までの延在構造が簡単であり、安価に製造できるメリットを有する。

【0010】また前記CSP6は、図11のように、プリント基板PSに実装される。プリント基板PSには、電気回路を構成する電極、配線が設けられ、前記CSP6、パッケージ型半導体装置1、チップ抵抗CRまたはチップコンデンサCC等が電気的に接続されて固着される。

【0011】そしてこのプリント基板で構成された回路は、色々なセットの中に取り付けられる。

【0012】つぎに、とのCSPの製造方法を図13および図14を参照しながら説明する。

【0013】まず基材(支持基板)としてガラスエポキシ基板5を用意し、この両面に絶縁性接着剤を介してCu箱20、21を圧着する。(以上図13Aを参照)続いて、第1の電極7,第2の電極8、ダイパッド9、第1の裏面電極10および第2の裏面電極11対応するCu箱20、21に耐エッチング性のレジスト22を被覆50

4

し、Cu箱20、21をパターニングする。尚、パターニングは、表と裏で別々にしても良い(以上図13Bを参照)続いて、ドリルやレーザを利用してスルーホールTHのための孔を前記ガラスエポキシ基板に形成し、この孔にメッキを施し、スルーホールTHを形成する。このスルーホールTHにより第1の電極7と第1の裏面電極10、第2の電極8と第2の裏面電極10が電気的に接続される。(以上図13Cを参照)更に、図面では省略をしたが、ボンディングポストと成る第1の電極7、第2の電極8にAuメッキを施すと共に、ダイボンディングポストとなるダイパッド9にAuメッキを施し、トランジスタチップTをダイボンディングする。

【0014】最後に、トランジスタチップTのエミッタ電極と第1の電極7、トランジスタチップTのベース電極と第2の電極8を金属細線12を介して接続し、樹脂層13で被覆している。(以上図13Dを参照)以上の製造方法により、支持基板5を採用したCSP型の電気素子が完成する。この製造方法は、支持基板としてフレキシブルシートを採用しても同様である。

20 【0015】一方、セラミック基板を採用した製造方法を図14のフローに示す。支持基板であるセラミック基板を用意した後、スルーホールを形成し、その後、導電ペーストを使い、表と裏の電極を印刷し、焼結している。その後、前製造方法の樹脂層を被覆するまでは図13の製造方法と同じであるが、セラミック基板は、非常にもろく、フレキシブルシートやガラスエポキシ基板と異なり、直ぐに欠けてしまうため金型を用いたモールドができない問題がある。そのため、封止樹脂をボッティングし、硬化した後、封止樹脂を平らにする研磨を施し、最後にダイシング装置を使って個別分離している。【0016】

【発明が解決しようとする課題】図12に於いて、トランジスタチップT、接続手段7~12および樹脂層13は、外部との電気的接続、トランジスタの保護をする上で、必要な構成要素であるが、これだけの構成要素で小型化、薄型化、軽量化を実現する回路素子を提供するのは難しかった。

【0017】また、支持基板となるガラスエポキシ基板 5は、前述したように本来不要なものである。しかし製造方法上、電極を貼り合わせるため、支持基板として採用しており、このガラスエポキシ基板5を無くすことができなかった。

【0018】そのため、このガラスエポキシ基板5を採用することによって、コストが上昇し、更にはガラスエポキシ基板5が厚いために、回路索子として厚くなり、小型化、薄型化、軽量化に限界があった。

【0019】更に、ガラスエポキシ基板やセラミック基板では必ず両面の電極を接続するスルーホール形成工程が不可欠であり、製造工程も長くなる問題もあった。

0 (0020)

【課題を解決するための手段】本発明は、前述した多く の課題に鑑みて成され、導電箔を用意し、少なくとも回 路素子の搭載部を多数個形成する導電バターンを除く領 域の前記導電箔に前記導電箔の厚みよりも浅い分離溝を 形成して導電パターンを形成する工程と、前記分離溝表 面を化学的に研磨してその表面を粗面化する工程と、所 望の前記導電バターンの前記各搭載部に回路累子を固着 する工程と、前記各搭載部の回路素子の電極と所望の前 記導電バターンとを電気的に接続する接続手段を形成す る工程と、各搭載部の前記回路素子を一括して被覆し、 前記分離溝に充填されるように絶縁性樹脂で共通モール ドする工程と、前記分離溝を設けていない厚み部分の前 記導電箔を除去する工程と、前記絶縁性樹脂を各搭載部 毎にダイシングにより分離する工程とを具備することを 特徴とする。

【0021】本発明では、導電パターンを形成する導電 箔がスタートの材料であり、絶縁性樹脂がモールドされ るまでは導電箔が支持機能を有し、モールド後は絶縁性 樹脂が支持機能を有することで支持基板を不要にでき、 従来の課題を解決することができる。

【0022】また本発明では、分離溝表面を化学的に研 磨してその表面を粗面化するので、絶縁性樹脂にアンカ - 効果を持たせてブロック毎に処理でき、多数個の回路 装置を量産でき、従来の課題を解決することができる。 [0023]

【発明の実施の形態】まず本発明の回路装置の製造方法 について図1を参照しながら説明する。

【0024】本発明は、導電箔を用意し、少なくとも回 路素子の搭載部を多数個形成する導電パターンを除く領 域の前記導電箔に前記導電箔の厚みよりも浅い分離溝を 30 各工程に搬送されても良い。 形成して導電パターンを形成する工程と、前記分離溝表 面を化学的に研磨してその表面を粗面化する工程と、所 望の前記導電バターンの前記各搭載部に回路素子を固着 する工程と、前記各搭載部の回路素子の電極と所望の前 記導電バターンとを電気的に接続する接続手段を形成す る工程と、各搭載部の前記回路素子を一括して被覆し、 前記分離溝に充填されるように絶縁性樹脂で共通モール ドする工程と、前記分離溝を設けていない厚み部分の前 記導電箔を除去する工程と、前記絶縁性樹脂を各搭載部 毎にダイシングにより分離する工程から構成されてい る。

【0025】図1に示すフローは上述した工程とは一致 していないが、Cu箔、Agメッキ、ハーフエッチング の3つのフローで導電バターンの形成が行われる。化学 的研磨のフローで分離溝表面を化学的に研磨される。ダ イボンドおよびワイヤーボンディングの2つのフローで 各搭載部への回路素子の固着と回路素子の電極と導電バ ターンの接続が行われる。トランスファーモールドのフ ローでは絶縁性樹脂による共通モールドが行われる。裏 面Cu箔除去のフローでは分離溝のない厚み部分の導電 50 となる。この除去工程は、ウェットエッチング、ドライ

箔のエッチングが行われる。裏面処理のフローでは裏面 に露出した導電バターンの電極処理が行われる。測定の フローでは各搭載部に組み込まれた回路素子の良品判別 や特性ランク分けが行われる。ダイシングのフローでは 絶縁性樹脂からダイシングで個別の回路素子への分離が

【0026】以下に、本発明の各工程を図2~図10を 参照して説明する。

【0027】本発明の第1の工程は、図2から図4に示 10 すように、導電箔60を用意し、少なくとも回路素子5 2の搭載部を多数個形成する導電バターン51を除く領 域の導電箔60に導電箔60の厚みよりも浅い分離溝6 1を形成して導電パターン51を形成することにある。 【0028】本工程では、まず図2Aの如く、シート状 の導電箔60を用意する。この導電箔60は、ロウ材の 付着性、ボンディング性、メッキ性が考慮されてその材 料が選択され、材料としては、Cuを主材料とした導電 箔、Alを主材料とした導電箔またはFe-Ni等の合 金から成る導電箔等が採用される。

20 【0029】導電箔の厚さは、後のエッチングを考慮す ると 10μ m $\sim 300\mu$ m程度が好ましく、ことでは7 $0 \mu m (2 オンス) の銅箔を採用した。しかし300 \mu$ m以上でも10μm以下でも基本的には良い。後述する ように、導電箔60の厚みよりも浅い分離溝61が形成 できればよい。

【0030】尚、シート状の導電箔60は、所定の幅、 例えば45mmでロール状に巻かれて用意され、これが 後述する各工程に搬送されても良いし、所定の大きさに カットされた短冊状の導電箔60が用意され、後述する

【0031】具体的には、図2Bに示す如く、短冊状の 導電箔60に多数の搭載部が形成されるブロック62が 4~5個離間して並べられる。各ブロック62間にはス リット63が設けられ、モールド工程等での加熱処理で 発生する導電箔60の応力を吸収する。また導電箔60 の上下周端にはインデックス孔64が一定の間隔で設け られ、各工程での位置決めに用いられる。

【0032】続いて、導電パターンを形成する。

【0033】まず、図3に示す如く、Cu箔60の上 に、ホトレジスト(耐エッチングマスク) PRを形成 し、導電バターン51となる領域を除いた導電箔60が 露出するようにホトレジストPRをパターニングする。 そして、図4Aに示す如く、ホトレジストPRを介して 導電箔60を選択的にエッチングする。

【0034】エッチングにより形成された分離溝61の 深さは、例えば50μmであり、その側面は、粗面とな るため絶縁性樹脂50との接着性が向上される。

【0035】またこの分離溝61の側壁は、模式的にス トレートで図示しているが、除去方法により異なる構造 る。ウェットエッチングの場合、エッチャントは、塩化

は、このエッチャントの中にディッピングされるか、こ

のエッチャントでシャワーリングされる。ここでウェッ

トエッチングは、一般に非異方性にエッチングされるた

め、側面は湾曲構造になる。

第二鉄または塩化第二銅が主に採用され、前記導電箔

の壁面を粗面化できる。との処理液としては、メック (株) 製CB-801を用い、このエッチング液に数分 間浸漬して表面に1~2µm程度の凹凸のある活性な表 面を形成する。とれにより分離溝61の壁面の面積が増 加し、この後の工程でモールドする絶縁性樹脂50との

結合を強くでき、大きなアンカー効果が得られる。

【0036】またドライエッチングの場合は、異方性、 非異方性でエッチングが可能である。現在では、Cuを 反応性イオンエッチングで取り除くことは不可能といわ 10 れているが、スパッタリングで除去できる。またスパッ タリングの条件によって異方性、非異方性でエッチング できる。

【0043】また、本工程では、有機酸系のエッチング 処理液を用いて分離溝61の壁面を化学研磨して粗面化 する方法もある。有機酸系のエッチング液としては、メ ック(株)製CZ-8100を用い、このエッチング液 に数分間浸漬して表面に 1~2 μm程度の凹凸を形成す る。これにより上述した硫酸一過酸化水素系のエッチン グ液に比べて更に大きなアンカー効果が得られる。ただ し、導電パターン51表面に悪影響のでない範囲での処 理液の選択が必要である。

【0037】またレーザでは、直接レーザ光を当てて分 **離溝61を形成でき、この場合は、どちらかといえば分** 離溝61の側面はストレートに形成される。

【0044】更に上述した方法以外に黒化処理した後に ブラズマエッチングする方法も採用できる。

【0038】なお、図3に於いて、ホトレジストの代わ りにエッチング液に対して耐食性のある導電被膜(図示 せず)を選択的に被覆しても良い。導電路と成る部分に 選択的に被着すれば、この導電被膜がエッチング保護膜 20 となり、レジストを採用することなく分離溝をエッチン グできる。この導電被膜として考えられる材料は、A g、Ni、Au、PtまたはPd等である。しかもこれ ら耐食性の導電被膜は、ダイパッド、ボンディングパッ ドとしてそのまま活用できる特徴を有する。

【0045】本発明の第3の工程は、図6に示す如く、 所望の導電パターン51の各搭載部65に回路素子52 を固着し、各搭載部65の回路素子52の電極と所望の 導電バターン51とを電気的に接続する接続手段を形成 することにある。

【0039】例えばAg被膜は、Auと接着するし、ロ ウ材とも接着する。よってチップ裏面にAu被膜が被覆 されていれば、そのまま導電路51上のAg被膜にチッ ブを熱圧着でき、また半田等のロウ材を介してチップを 固着できる。またAgの導電被膜にはAu細線が接着で 30 きるため、ワイヤーボンディングも可能となる。従って これらの導電被膜をそのままダイパッド、ボンディング パッドとして活用できるメリットを有する。

【0046】回路素子52としては、トランジスタ、ダ イオード、【Cチップ等の半導体素子、チップコンデン サ、チップ抵抗等の受動素子である。また厚みが厚くは なるが、CSP、BGA等のフェイスダウンの半導体素 子も実装できる。

【0040】図4Bに具体的な導電パターン51を示 す。本図は図2Bで示したブロック62の1個を拡大し たもの対応する。黒く塗られた部分の1個が1つの搭載 部65であり、導電パターン51を構成し、1つのプロ ック62には5行10列のマトリックス状に多数の搭載 部65が配列され、各搭載部65毎に同一の導電バター ン51が設けられている。各ブロックの周辺には枠状の 40 バターン66が設けられ、それと少し離間しその内側に ダイシング時の位置合わせマーク67が設けられてい る。枠状のパターン66はモールド金型との嵌合に使用 し、また導電箔60の裏面エッチング後には絶縁性樹脂 50の補強をする働きを有する。

【0047】 ここでは、ベアのトランジスタチップ52 Aが導電パターン51Aにダイボンディングされ、エミ ッタ電極と導電パターン51B、ベース電極と導電パタ ーン51Bが、熱圧着によるボールボンディングあるい は超音波によるウェッヂボンディング等で固着された金 属細線55Aを介して接続される。また52Bは、チッ プコンデンサまたは受動素子であり、半田等のロウ材ま たは導電ペースト55Bで固着される。

【0041】本発明の第2の工程は、図5に示す如く、 分離溝61表面を化学的に研磨してその表面を粗面化す ることにある。

【0048】本工程では、各ブロック62に多数の導電 パターン51が集積されているので、回路素子52の固 着およびワイヤーボンディングが極めて効率的に行える 利点がある。

【0042】本工程では、分離溝61を形成後に硫酸一

【0049】本発明の第4の工程は、図7に示す如く、 各搭載部63の回路素子52を一括して被覆し、分離溝 61 に充填されるように絶縁性樹脂50で共通モールド することにある。

【0050】本工程では、図7Aに示すように、絶縁性 樹脂50は回路素子52A、52Bおよび複数の導電パ ターン51A、51B、51Cを完全に被覆し、導電パ ターン51間の分離溝61には絶縁性樹脂50が充填さ れ、導電パターン51A、51B、51Cの側面の粗面 と結合して強固なアンカー効果が得られる。そして絶縁 過酸化水素を主成分とする処理液を用いると分離溝61 50 性樹脂50により導電バターン51が支持されている。

【0051】また本工程では、トランスファーモール ド、インジェクションモールド、またはディッピングに より実現できる。樹脂材料としては、エポキシ樹脂等の **熱硬化性樹脂がトランスファーモールドで実現でき、ポ** リイミド樹脂、ポリフェニレンサルファイド等の熱可塑 性樹脂はインジェクションモールドで実現できる。

【0052】更に、本工程でトランスファーモールドあ るいはインジェクションモールドする際に、図7Bに示 すように各ブロック62は1つの共通のモールド金型に 搭載部63を納め、各ブロック毎に1つの絶縁性樹脂5 0で共通にモールドを行う。このために従来のトランス ファーモールド等の様に各搭載部を個別にモールドする 方法に比べて、大幅な樹脂量の削減が図れる。

【0053】導電箔60表面に被覆された絶縁性樹脂5 0の厚さは、回路素子52の金属細線55Aの最頂部か ら約100μm程度が被覆されるように調整されてい る。との厚みは、強度を考慮して厚くすることも、薄く することも可能である。

【0054】本工程の特徴は、絶縁性樹脂50を被覆す るまでは、導電パターン51となる導電箔60が支持基 20 板となることである。従来では、図13の様に、本来必 要としない支持基板5を採用して導電路7~11を形成 しているが、本発明では、支持基板となる導電箔60 は、電極材料として必要な材料である。そのため、構成 材料を極力省いて作業できるメリットを有し、コストの 低下も実現できる。

【0055】また分離溝61は、導電箔の厚みよりも浅 く形成されているため、導電箔60が導電パターン51 として個々に分離されていない。従ってシート状の導電 箔60として一体で取り扱え、絶縁性樹脂50をモール 30 いるので、個別にバラバラに分離されていない。従っ ドする際、金型への搬送、金型への実装の作業が非常に 楽になる特徴を有する。

【0056】本発明の第5の工程は、図7に示す如く、 分離溝61を設けていない厚み部分の導電箔60を除去 することにある。

【0057】本工程は、導電箔60の裏面を化学的およ び/または物理的に除き、導電パターン51として分離 するものである。との工程は、研磨、研削、エッチン グ、レーザの金属蒸発等により施される。

【0058】実験では研磨装置または研削装置により全 40 面を30μm程度削り、分離溝61から絶縁性樹脂50 を露出させている。この露出される面を図7では点線で 示している。その結果、約40μmの厚さの導電パター ン51となって分離される。また絶縁性樹脂50が露出 する手前まで、導電箔60を全面ウェトエッチングし、 その後、研磨または研削装置により全面を削り、絶縁性 樹脂50を露出させても良い。更に、導電箔60を点線 の位置まで全面ウェトエッチングし、絶縁性樹脂50を 露出させても良い。

【0059】との結果、絶縁性樹脂50に導電バターン 50 た第1の工程で設けた各ブロックの周辺の枠状のパター

51の裏面が露出する構造となる。すなわち、分離溝6 1に充填された絶縁性樹脂50の表面と導電パターン5 1の表面は、実質的に一致している構造となっている。 従って、本発明の回路装置53は図12に示した従来の 裏面電極10、11のように段差が設けられないため、 マウント時に半田等の表面張力でそのまま水平に移動し てセルフアラインできる特徴を有する。

【0060】更に、導電パターン51の裏面処理を行 い、図8に示す最終構造を得る。すなわち、必要によっ 10 て露出した導電パターン51に半田等の導電材を被着 し、回路装置として完成する。

【0061】本発明の第6の工程は、図9に示す如く、 絶縁性樹脂50で一括してモールドされた各搭載部63 の回路素子52の特性の測定を行うことにある。

【0062】前工程で導電箔60の裏面エッチングをし た後に、導電箔60から各ブロック62が切り離され る。このブロック62は絶縁性樹脂50で導電箔60の 残余部と連結されているので、切断金型を用いず機械的 に導電箔60の残余部から剥がすことで達成できる。

【0063】各ブロック62の裏面には図9に示すよう に導電パターン51の裏面が露出されており、各搭載部 65が導電パターン51形成時と全く同一にマトリック ス状に配列されている。との導電パターン51の絶縁性 樹脂50から露出した裏面電極56にプローブ68を当 てて、各搭載部65の回路素子52の特性パラメータ等 を個別に測定して良不良の判定を行い、不良品には磁気 インク等でマーキングを行う。

【0064】本工程では、各搭載部65の回路装置53 は絶縁性樹脂50でブロック62毎に一体で支持されて て、テスターの載置台に置かれたブロック62は搭載部 65のサイズ分だけ矢印のように縦方向および横方向に ピッチ送りをすることで、極めて早く大量にブロック6 2の各搭載部65の回路装置53の測定を行える。すな わち、従来必要であった回路装置の表裏の判別、電極の 位置の認識等が不要にできるので、測定時間の大幅な短 縮を図れる。

【0065】本発明の第7の工程は、図10に示す如 く、絶縁性樹脂50を各搭載部65毎にダイシングによ り分離することにある。

【0066】本工程では、ブロック62をダイシング装 置の載置台に真空で吸着させ、ダイシングブレード69 で各搭載部65間のダイシングライン70に沿って分離 溝61の絶縁性樹脂50をダイシングし、個別の回路装 置53に分離する。

【0067】本工程で、ダイシングブレード69はほぼ 絶縁性樹脂50を切断する切削深さで行い、ダイシング 装置からブロック62を取り出した後にローラでチョコ レートブレークするとよい。ダイシング時は予め前述し

ン66と一体の相対向する位置合わせマーク67を認識して、これを基準としてダイシングを行う。周知ではあるが、ダイシングは縦方向にすべてのダイシングライン70をダイシングをした後、載置台を90度回転させて横方向のダイシングライン70に従ってダイシングを行う

[0068]

【発明の効果】本発明では、導電バターンの材料となる 導電箔自体を支持基板として機能させ、分離溝の形成時 あるいは回路素子の実装、絶縁性樹脂の被着時までは導 電箔で全体を支持し、また導電箔を各導電パターンとし て分離する時は、絶縁性樹脂を支持基板にして機能させ ている。従って、回路素子、導電箔、絶縁性樹脂の必要 最小限で製造できる。従来例で説明した如く、本来回路 装置を構成する上で支持基板が要らなくなり、コスト的 にも安価にできる。また支持基板が不要であること、導 電バターンが絶縁性樹脂に埋め込まれていること、更に は絶縁性樹脂と導電箔の厚みの調整が可能であることに より、非常に薄い回路装置が形成できるメリットもあ ス

【0069】また、本発明では分離溝は約50μmと浅くてもその表面を化学的研磨で粗面化することで、絶縁性樹脂と各導電パターンの結合が強くなり、非常に薄い回路装置であるにも拘わらず絶縁性樹脂に依る回路素子の封止が良好である。

【0070】次に、本発明では絶縁性樹脂のモールド工程でブロック毎の共通モールドを行うことにより大幅な樹脂量の削減が図れる更に、ダイシング工程では位置合わせマークを用いてダイシングラインの認識が早く確実に行われる利点を有する。更にダイシングは絶縁性樹脂 30層のみの切断でよく、導電箔を切断しないことによりダイシングブレードの寿命も長くでき、導電箔を切断する場合に発生する金属バリの発生もない。

【0071】また図13から明白なように、スルーホールの形成工程、導体の印刷工程(セラミック基板の場合)等を省略できるので、従来より従来より製造工程を大幅に短縮でき、全行程を内作できる利点を有する。ま*

* たフレーム金型も一切不要であり、極めて短納期となる 製造方法である。

【図面の簡単な説明】

- 【図1】本発明の製造フローを説明する図である。
- 【図2】本発明の回路装置の製造方法を説明する図である。
- 【図3】本発明の回路装置の製造方法を説明する図である。
- 【図4】本発明の回路装置の製造方法を説明する図であ 10 る。
 - 【図5】本発明の回路装置の製造方法を説明する図である。
 - 【図6】本発明の回路装置の製造方法を説明する図であ ス
 - 【図7】本発明の回路装置の製造方法を説明する図である。
 - 【図8】 本発明の回路装置の製造方法を説明する図である。
- 【図9】本発明の回路装置の製造方法を説明する図であ 20 る。
 - 【図10】本発明の回路装置の製造方法を説明する図で ある
 - 【図11】従来の回路装置の実装構造を説明する図である。
 - 【図12】従来の回路装置を説明する図である。
 - 【図13】従来の回路装置の製造方法を説明する図である。
 - 【図14】従来の回路装置の製造方法を説明する図である。

【符号の説明】

50	絶縁性樹脂
5 1	導電パターン
5 2	回路素子
5 3	回路装置
6 1	分離溝
6.2	ブロ … カ

[図3]

[図5]

【図10】

【図11】

【図12】

【図13】

【図14】

フロントページの続き

(72)発明者 阪本 純次

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 岡田 幸夫

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 五十嵐 優助

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 前原 栄寿

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 高橋 幸嗣

群馬県伊勢崎市喜多町29番地 関東三洋電

子株式会社内

Fターム(参考) 5F061 AA01 BA01 CA07 CA21 CB12

0013

5F067 AA01 AB04 DA16 DE01 DF01

EA02 EA04 EA06