

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A2	(11) International Publication Number: WO 99/57144 (43) International Publication Date: 11 November 1999 (11.11.99)
C07K 14/47		
(21) International Application Number:	PCT/US99/09935	CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). GERSTIN, Edward, H. [US/US]; 1408 38th Avenue, San Francisco, CA 94122 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94547 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US).
(22) International Filing Date:	4 May 1999 (04.05.99)	
(30) Priority Data:		
60/084,254	5 May 1998 (05.05.98)	US
60/095,827	7 August 1998 (07.08.98)	US
60/102,745	2 October 1998 (02.10.98)	US
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications		
US	60/084,254 (CIP)	
Filed on	5 May 1998 (05.05.98)	
US	60/095,827 (CIP)	
Filed on	7 August 1998 (07.08.98)	
US	60/102,745 (CIP)	
Filed on	2 October 1998 (02.10.98)	
(71) Applicant (for all designated States except US):	INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).	
(72) Inventors; and		
(75) Inventors/Applicants (for US only):	HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View,	
(81) Designated States:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
Published		
		Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES

(57) Abstract

The invention provides human transcriptional regulator molecules (HTRM) and polynucleotides which identify and encode HTRM. The invention also provides expression vectors, host cells, antibodies, agonists and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with expression of HTRM.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon			PT	Portugal		
CN	China	KR	Republic of Korea	RO	Romania		
CU	Cuba	KZ	Kazakhstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia				

HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES

5

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of human transcriptional regulator molecules and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative and immune disorders.

10

BACKGROUND OF THE INVENTION

Differential control of gene expression is essential to the growth and development of all multicellular organisms. Although gene expression can be controlled at many steps along the path from DNA to protein, the major control point for most genes is at the initiation of transcription. This critical step is regulated both positively and negatively by a combination of general and tissue specific transcription factors, the majority of which function to regulate transcription of one or more target genes.

Mutations in transcription factors (TFs) contribute to oncogenesis. This is probably due to the role of transcription factors on the expression of genes involved in cell proliferation. For example, mutations in transcription factors encoded by proto-oncogenes, such as Fos, Jun, Myc, Rel, and Spi-1, may be oncogenic due to increased stimulation of cell proliferation. Conversely, mutations in transcription factors encoded by tumor suppressor genes, such as p53, RB1, and WT1, may be oncogenic due to decreased inhibition of cell proliferation. (Latchman, D. (1995) Gene Regulation: A Eukaryotic Perspective, Chapman and Hall, London, UK, pp 242-255.)

Many transcription factors are modular proteins that contain separate domains for DNA binding and transcriptional regulation. The DNA binding domain interacts with specific DNA sequences (control elements) near to or within the promoter region of the gene. This interaction brings the regulatory domain of the TF into a position where it can interact with other proteins to stimulate or repress transcription. Many TFs require dimerization or multimerization to be fully functional. Five different types of transcription factors have been described based on five well characterized structural motifs. These five types are the helix-turn-helix, zinc finger, leucine zipper, and helix-loop-helix (HLH) proteins and the steroid-hormone receptors.

The helix-turn-helix motif consists of two α helices held at a fixed angle. The two helices are connected by a short chain of amino acids, which represents the "turn". The more carboxyl-terminal helix is called the recognition helix and fits into the major groove of the DNA double helix. The recognition helix, whose amino acid side chains differ from protein to protein, plays an

important role in recognizing the specific DNA sequence to which the protein binds. All of the helix-turn-helix proteins bind DNA as dimers in which the two copies of the recognition helix are separated by exactly one turn of the DNA helix. Homeodomain proteins are a special class of helix-turn-helix protein. The homeodomain is folded into three α helices which are packed tightly together by hydrophobic interactions. Helices two and three closely resemble the helix-turn-helix motif, with the third helix acting as the recognition helix. Proteins containing homeodomain motifs often function as developmental switches.

The zinc finger motif consists of an α helix and antiparallel β sheet held together by a zinc atom. The zinc finger motif is usually repeated in a tandem array within a protein, such that the α helix of each zinc finger in the protein makes contact with the major groove of the DNA double helix. This repeated contact between the protein and the DNA produces a strong and specific DNA-protein interaction. The strength and specificity of the interaction can be regulated by the number of zinc finger motifs within the protein.

The leucine zipper motif consists of a single α helix which is involved in both protein dimerization and DNA binding. Two proteins containing leucine zippers can dimerize by interactions between hydrophobic amino acid residues, commonly leucines, that extend from one side of their respective α helices. In this way, the α helices of each protein monomer dimerize to form a short coiled-coil. Just beyond this coiled-coil, the two α helices separate to form a Y-shaped structure which contacts the major groove of the DNA. Leucine zipper proteins may form homodimers, in which the two protein monomers are identical, or heterodimers, in which the two protein monomers are different. The specificity of DNA binding depends on the dimer formed, since each protein monomer has distinct DNA-binding specificities.

The helix-loop-helix (HLH) motif consists of a short α helix connected by a loop to a second, longer α helix. The flexible loop allows the two helices to fold back and pack together. As with the leucine zipper, the HLH motif is involved in both protein dimerization and DNA binding. The dimers can be homodimers or heterodimers, thus increasing the repertoire of DNA-binding sites to which HLH proteins can bind.

The steroid-hormone receptors contain a motif composed of two perpendicular α helices. In the absence of ligand the steroid-hormone receptors assume a conformation which sequesters the α helices. Binding of ligand, commonly steroid hormones, thyroid hormones, retinoids, or vitamin D, to the receptor causes a conformational change which exposes the α helices. The first α helix contains about seventy residues and includes eight conserved cysteines. This helix fits into the major groove of the DNA double helix and enables DNA-receptor binding. The second α helix provides for protein dimerization. As with leucine zipper and HLH proteins, both homodimers and heterodimers may be formed by steroid-hormone receptors.

- Hundreds of regulatory proteins from a wide variety of organisms have been identified. Most of these proteins have at least one of the common structural motifs described. However, several important regulatory proteins, including the p53 tumor suppressor, have a unique structure not shared with other known regulatory molecules. (Faisst, S. and S. Meyer (1992) Nucl. Acids Res. 20:3-26.) Moreover, other domains of the regulatory proteins often form crucial contacts with the DNA, thereby affecting binding specificity. Accessory proteins can also provide important interactions which may convert a particular regulatory protein from an activator to a repressor, from a repressor to an activator, or it may prevent DNA binding by the regulatory protein completely.
- 10 The discovery of new human transcriptional regulator molecules and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and immune disorders.

SUMMARY OF THE INVENTION

- 15 The invention features substantially purified polypeptides, human transcriptional regulator molecules, referred to collectively as "HTRM". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of
- 20 SEQ ID NO:1-65, and fragments thereof.
- The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of
- 25 SEQ ID NO:1-65, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting
- 30 of
- SEQ ID NO:1-65, and fragments thereof.
- Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino

acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof.

10 The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one 15 aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

20 The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially 25 purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-65, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

30 The invention also provides a method for treating or preventing a disorder of cell proliferation associated with decreased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof, in conjunction 35 with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder of cell proliferation associated with increased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-5 65, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble 10 full-length sequences encoding HTRM.

Table 2 shows features of each polypeptide sequence including potential motifs, homologous sequences, and methods and algorithms used for identification of HTRM.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, 15 and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HTRM were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HTRM.

20

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the 25 purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an 30 antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described 35 herein can be used to practice or test the present invention, the preferred machines, materials and

methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of 5 prior invention.

DEFINITIONS

"HTRM" refers to the amino acid sequences of substantially purified HTRM obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, 10 semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to HTRM, increases or prolongs the duration of the effect of HTRM. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HTRM.

An "allelic variant" is an alternative form of the gene encoding HTRM. Allelic variants 15 may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination 20 with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding HTRM include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HTRM or a polypeptide with at least one functional characteristic of HTRM. Included within this definition are polymorphisms which may or may not be readily detectable using a particular 25 oligonucleotide probe of the polynucleotide encoding HTRM, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTRM. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTRM. Deliberate amino acid substitutions may be made 30 on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTRM is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, 35 and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and

phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HTRM which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HTRM. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to HTRM, decreases the amount or the duration of the effect of the biological or immunological activity of HTRM. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HTRM.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HTRM polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form

duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" 5 refers to the capability of the natural, recombinant, or synthetic HTRM, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the 10 complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in 15 amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an 20 aqueous solution. Compositions comprising polynucleotide sequences encoding HTRM or fragments of HTRM may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, 25 dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the 30 GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HTRM, by northern analysis is indicative of the presence of nucleic acids encoding HTRM in a sample, and 35 thereby correlates with expression of the transcript from the polynucleotide encoding HTRM.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

- The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for 5 example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
- 10 The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined 15 using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions 20 require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.
- 25 The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) 30 Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A 35 and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid

sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term “humanized antibody” refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

“Hybridization” refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_{ot} or R_{ot} analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words “insertion” or “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

“Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term “microarray” refers to an arrangement of distinct polynucleotides on a substrate.

The terms “element” or “array element” in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term “modulate” refers to a change in the activity of HTRM. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTRM.

The phrases “nucleic acid” or “nucleic acid sequence” refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may

represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length 5 polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain 10 genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or 15 microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. 20 PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HTRM, or fragments thereof, or HTRM itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic 25 DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the 30 presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt 35 concentration, the concentration of organic solvent, e.g., formamide, temperature, and other

conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are 5 removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

10 "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a 15 recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment.

20 The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of HTRM polypeptides refers to an amino acid sequence that is altered by one 25 or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, 30 inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HTRM. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice 35 variant may have significant identity to a reference molecule, but will generally have a greater or

lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A 5 polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

10 THE INVENTION

The invention is based on the discovery of new human transcriptional regulator molecules (HTRM), the polynucleotides encoding HTRM, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative and immune disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding 15 HTRM. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HTRM were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus 20 nucleotide sequence of each HTRM and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the 25 identity of each protein; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTRM. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HTRM as 30 a fraction of total tissue categories expressing HTRM. The third column lists the diseases, disorders, or conditions associated with those tissues expressing HTRM. The fourth column lists ~ the vectors used to subclone the cDNA library.

The following fragments of the nucleotide sequences encoding HTRM are useful in hybridization or amplification technologies to identify SEQ ID NO:110-130 and to distinguish 35 between SEQ ID NO:110-130 and related polynucleotide sequences. The useful fragments are the

fragment of SEQ ID NO:110 from about nucleotide 273 to about nucleotide 317; the fragment of SEQ ID NO:111 from about nucleotide 217 to about nucleotide 261; the fragment of SEQ ID NO:112 from about nucleotide 273 to about nucleotide 308; the fragment of SEQ ID NO:113 from about nucleotide 163 to about nucleotide 207; the fragment of SEQ ID NO:114 from about 5 nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:115 from about nucleotide 597 to about nucleotide 641; the fragment of SEQ ID NO:116 from about nucleotide 111 to about nucleotide 146; the fragment of SEQ ID NO:117 from about nucleotide 217 to about nucleotide 261; the fragment of SEQ ID NO:118 from about nucleotide 867 to about nucleotide 911; the fragment of SEQ ID NO:119 from about nucleotide 1082 to about nucleotide 1126; the fragment 10 of SEQ ID NO:120 from about nucleotide 702 to about nucleotide 748; the fragment of SEQ ID NO:121 from about nucleotide 380 to about nucleotide 424; the fragment of SEQ ID NO:122 from about nucleotide 352 to about nucleotide 396; the fragment of SEQ ID NO:123 from about nucleotide 219 to about nucleotide 263; the fragment of SEQ ID NO:124 from about nucleotide 326 to about nucleotide 370; the fragment of SEQ ID NO:125 from about nucleotide 595 to about 15 nucleotide 639; the fragment of SEQ ID NO:126 from about nucleotide 272 to about nucleotide 316; the fragment of SEQ ID NO:127 from about nucleotide 163 to about nucleotide 207; the fragment of SEQ ID NO:128 from about nucleotide 271 to about nucleotide 315; the fragment of SEQ ID NO:129 from about nucleotide 866 to about nucleotide 910; and the fragment of SEQ ID NO:130 from about nucleotide 487 to about nucleotide 531.

20 The invention also encompasses HTRM variants. A preferred HTRM variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HTRM amino acid sequence, and which contains at least one functional or structural characteristic of HTRM.

25 The invention also encompasses polynucleotides which encode HTRM. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:66-130, which encodes HTRM.

The invention also encompasses a variant of a polynucleotide sequence encoding HTRM. In particular, such a variant polynucleotide sequence will have at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the 30 polynucleotide sequence encoding HTRM. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID

NO:66-130 which has at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the 35 group consisting of SEQ ID NO:66-130. Any one of the polynucleotide variants described above

can encode an amino acid sequence which contains at least one functional or structural characteristic of HTRM.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTRM, some bearing minimal 5 similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTRM, and all such variations are to be 10 considered as being specifically disclosed.

Although nucleotide sequences which encode HTRM and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HTRM under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTRM or its derivatives possessing a substantially different codon usage, 15 e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTRM and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more 20 desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HTRM and HTRM derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell 25 systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HTRM or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:66-130 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. 30 and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low 35 stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide.

and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion 5 of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a 10 most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash 15 stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of 20 at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

25 Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the 30 ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system 35 (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of

algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding HTRM may be extended utilizing a partial 5 nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent 10 directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial 15 chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, 20 nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been 25 size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, 30 capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer),

and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HTRM may be cloned in recombinant DNA molecules that direct expression of HTRM, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTRM.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTRM-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HTRM may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, HTRM itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HTRM, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active HTRM, the nucleotide sequences encoding HTRM or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as

enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTRM. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTRM. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HTRM and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTRM and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTRM. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTRM. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTRM can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTRM into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these

vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HTRM are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTRM 5 may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HTRM. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors 10 direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of HTRM. Transcription of sequences 15 encoding HTRM may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell 20 Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HTRM may be ligated 25 into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HTRM in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. 30 SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 35 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of HTRM in cell lines is preferred. For example, sequences encoding HTRM can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides, neomycin and G-418; and *als* or *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTRM is inserted within a marker gene sequence, transformed cells containing sequences encoding HTRM can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTRM under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HTRM and that express HTRM may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR

amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HTRM using either 5 specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTRM is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. 10 (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul MN. Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art 15 and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTRM include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTRM, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are 20 commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, 25 fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HTRM may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the 30 sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTRM may be designed to contain signal sequences which direct secretion of HTRM through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications 35 of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation.

phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from 5 the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTRM may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTRM protein 10 containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTRM activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification 15 of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be 20 engineered to contain a proteolytic cleavage site located between the HTRM encoding sequence and the heterologous protein sequence, so that HTRM may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

25 In a further embodiment of the invention, synthesis of radiolabeled HTRM may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ³⁵S-methionine.

30 Fragments of HTRM may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra*, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HTRM may be synthesized separately and then combined to produce the full length 35 molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTRM and human transcriptional regulator molecules. In addition, the expression of HTRM is closely associated with cell proliferation, inflammation, and the immune response. Therefore, HTRM appears to play a role in cell proliferative and immune disorders. In the treatment of disorders associated with increased HTRM expression or activity, it is desirable to decrease the expression or activity of HTRM. In the treatment of disorders associated with decreased HTRM expression or activity, it is desirable to increase the expression or activity of HTRM.

Therefore, in one embodiment, HTRM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

In another embodiment, a vector capable of expressing HTRM or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HTRM in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM including, but not limited to, those provided above.

5 In still another embodiment, an agonist which modulates the activity of HTRM may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTRM including, but not limited to, those listed above.

In a further embodiment, an antagonist of HTRM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTRM. Examples of
10 such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HTRM may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HTRM.

In an additional embodiment, a vector expressing the complement of the polynucleotide
15 encoding HTRM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTRM including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination
20 therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

25 An antagonist of HTRM may be produced using methods which are generally known in the art. In particular, purified HTRM may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTRM. Antibodies to HTRM may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments,
30 and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTRM or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various
35 adjuvants may be used to increase immunological response. Such adjuvants include, but are not

limited to. Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

- 5 It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HTRM have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of
10 HTRM amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to HTRM may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci.* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate
20 antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci.* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HTRM-specific single chain antibodies. Antibodies with related specificity, but of distinct
25 idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) *Proc. Natl. Acad. Sci.* 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci.* 86:
30 3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

Antibody fragments which contain specific binding sites for HTRM may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be
35 constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired

specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HTRM and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTRM epitopes is preferred, but a competitive binding assay may also be employed (Pound, *supra*).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTRM. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of HTRM-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTRM epitopes, represents the average affinity, or avidity, of the antibodies for HTRM. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTRM epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the HTRM-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTRM, preferably in active form, from the antibody (Catty, D. (1988) *Antibodies, Volume I: A Practical Approach*, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) *A Practical Guide to Monoclonal Antibodies*, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HTRM-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available.

30 (See, e.g., Catty, *supra*, and Coligan et al. *supra*.)

In another embodiment of the invention, the polynucleotides encoding HTRM, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HTRM may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HTRM. Thus, complementary molecules

or fragments may be used to modulate HTRM activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTRM.

5 Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTRM. (See, e.g., Sambrook, *supra*; Ausubel, 1995, *supra*.)

10 Genes encoding HTRM can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HTRM. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a
15 month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTRM. Oligonucleotides derived from the transcription
20 initiation site, e.g., between about positions -10 and +10 from the start site, are preferred.

Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al.
25 (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

30 Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTRM.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences:
35 GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20

ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

- 5 Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTRM. Such DNA sequences may be
10 incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

- RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3'
15 ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterate linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutoxine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by
20 endogenous endonucleases.

- Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers
25 may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

- 30 An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HTRM, antibodies to HTRM, and mimetics, agonists, antagonists, or inhibitors of HTRM. The compositions may be administered alone or in combination with at least one other agent, such as a
35 stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical

carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, 5 intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used 10 pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, 15 pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable 20 excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, 25 agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for 30 product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft 35 capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty

oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain 5 substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the 10 suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a 15 manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the 20 corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an 25 appropriate container and labeled for treatment of an indicated condition. For administration of HTRM, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the 30 art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes 35 for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HTRM or fragments thereof, antibodies of HTRM, and agonists, antagonists or inhibitors of HTRM, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, 5 such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The 10 dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of 15 the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance 20 rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their 25 inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HTRM may be used for the diagnosis of disorders characterized by expression of HTRM, or in assays to monitor patients 30 being treated with HTRM or agonists, antagonists, or inhibitors of HTRM. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTRM include methods which utilize the antibody and a label to detect 35 HTRM in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known

in the art and may be used.

A variety of protocols for measuring HTRM, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTRM expression. Normal or standard values for HTRM expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HTRM under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HTRM expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HTRM may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HTRM may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTRM, and to monitor regulation of HTRM levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTRM or closely related molecules may be used to identify nucleic acid sequences which encode HTRM. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HTRM, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HTRM encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:66-130 or from genomic sequences including promoters, enhancers, and introns of the HTRM gene.

Means for producing specific hybridization probes for DNAs encoding HTRM include the cloning of polynucleotide sequences encoding HTRM or HTRM derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S . or by enzymatic labels,

such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HTRM may be used for the diagnosis of disorders associated with expression of HTRM. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, 5 cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, 10 parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune disorder such as acquired immunodeficiency syndrome (AIDS). Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes 15 mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, 20 Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding HTRM may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR 25 technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTRM expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HTRM may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The 30 nucleotide sequences encoding HTRM may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide 35 sequences encoding HTRM in the sample indicates the presence of the associated disorder. Such

assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HTRM, a normal or standard profile for expression is established. This may be accomplished by
5 combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTRM, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with
10 values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results
15 obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the
20 appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTRM may involve the use of PCR. These oligomers may be chemically synthesized, generated
25 enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTRM, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTRM, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

30 Methods which may also be used to quantitate the expression of HTRM include radiolabeling or biotinylation of nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format
35 where the oligomer of interest is presented in various dilutions and a spectrophotometric or

colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HTRM may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers. *supra*, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HTRM on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been

crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal 5 location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HTRM, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of 10 binding complexes between HTRM and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test 15 compounds are synthesized on a solid substrate. The test compounds are reacted with HTRM, or fragments thereof, and washed. Bound HTRM is then detected by methods well known in the art. Purified HTRM can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which 20 neutralizing antibodies capable of binding HTRM specifically compete with a test compound for binding HTRM. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HTRM.

In additional embodiments, the nucleotide sequences which encode HTRM may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely 25 on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of 30 the remainder of the disclosure in any way whatsoever.

The entire disclosure of all applications, patents, and publications, cited above and below, and of US provisional applications 60/084,254 (filed May 5, 1998), 60/095,827 (filed August 7, 1998), and 60/102,745 (filed Oct. 2, 1998) are hereby incorporated by reference.

EXAMPLES

35 I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting 5 lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was 10 isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding 15 cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA 20 was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid 25 (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

III. Isolation of cDNA Clones

Plasmids were recovered from host cells by *in vivo* excision, using the UNIZAP vector 30 system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit 35 from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified 5 fluorometrically using PICCOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in 10 combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE Terminator cycle sequencing ready 15 reaction kit (Perkin-Elmer). In yet another alternative, cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing 20 were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column 25 presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, S. San Francisco CA) and LASERGENE software (DNASTAR).

cDNAs were also compared to sequences in GenBank using a search algorithm developed 30 by Applied Biosystems and incorporated into the INHERIT™ 670 sequence analysis system. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles, CA) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of 35 homology to the query sequence, and the appropriate sequences were scored with an initial value.

Subsequently, these homologous regions were examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERIT- 670 sequence analysis system using the methods similar to those used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance matches.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, PFAM, and Prosite.

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:110-130 Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score,

which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported a percentage distribution of libraries in which the transcript encoding HTRM occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease categories included cancer, inflammation/trauma, fetal, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease expression are reported in Table 3.

V. Extension of HTRM Encoding Polynucleotides

The full length nucleic acid sequence of SEQ ID NO:66-130 was produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art.

PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+

were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequence of SEQ ID NO:66-130 is used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:66-130 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20

base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, XbaI, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the HTRM-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTRM. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTRM. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTRM-encoding transcript.

IX. Expression of HTRM

Expression and purification of HTRM is achieved using bacterial or virus-based expression systems. For expression of HTRM in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTRM upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HTRM in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTRM by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.

Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HTRM is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HTRM at specifically engineered sites. FLAG, an 8-amino acid

peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10 and 16). Purified HTRM obtained 5 by these methods can be used directly in the following activity assay.

X. Demonstration of HTRM Activity

HTRM activity is measured by its ability to stimulate transcription of a reporter gene, essentially as described in Liu, H.Y., et al (1997; EMBO J. 16:5289-5298.). The assay entails the use of a well characterized reporter gene construct, LexA_{op}-LacZ, that consists of LexA DNA 10 transcriptional control elements (LexA_{op}) fused to sequences encoding the *E. coli* β-galactosidase enzyme (LacZ). The methods for fusion gene construction, expression, and introduction into cells, and measurement of β-galactosidase enzyme activity, are well known to those skilled in the art. Sequences encoding HTRM are cloned into a plasmid that directs the synthesis of a fusion protein, LexA-HTRM, consisting of HTRM and a DNA binding domain derived from the LexA 15 transcription factor. The plasmid encoding the LexA-HTRM fusion protein is introduced into yeast cells along with the plasmid containing the LexA_{op}-LacZ reporter gene. The amount of β-galactosidase enzyme activity associated with LexA-HTRM transfected cells, relative to control cells, is proportional to the amount of transcription stimulated by the HTRM gene product.

20 XI. Functional Assays

HTRM function is assessed by expressing the sequences encoding HTRM at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 25 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μg of a recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and 30 is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose 35 events preceding or coincident with cell death. These events include changes in nuclear DNA

content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of HTRM on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTRM and either CD64 or CD64-GFP.

CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTRM and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of HTRM Specific Antibodies

HTRM substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the HTRM amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HTRM Using Specific Antibodies

Naturally occurring or recombinant HTRM is substantially purified by immunoaffinity chromatography using antibodies specific for HTRM. An immunoaffinity column is constructed by covalently coupling anti-HTRM antibody to an activated chromatographic resin, such as

CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HTRM are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTRM (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTRM binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTRM is collected.

XIV. Identification of Molecules Which Interact with HTRM

HTRM, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTRM, washed, and any wells with labeled HTRM complex are assayed. Data obtained using different concentrations of HTRM are used to calculate values for the number, affinity, and association of HTRM with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1 66	001106	U937NOT01	001106 (U937NOT01), 1291142 (BRAINOT11), 2590425 (LUNGNOT22), 1300570 (BRSTNOT07)	
2 67	004586	HMC1NOT01	004586 (HMC1NOT01), 3889843 (BRSTTUT16), 1432988 (BEPINON01), 788995 (PROSTUT03), 1605475 (LUNGNOT15)	
3 68	052927	FIBRNTO1	052927 (FIBRNTO1), 2516848 (BRAITUT21), 3520218 (LUNGNOT03), 086878 (LIVRNOT01)	
4 69	082843	HUVESTB01	082843 (HUVESTB01), 4008105 (ENDCNOT04), 2083528 (UTRSNOT08), 2345764 (TESTTUT02), 3771780 (BRSTNOT25), 190782 (CONNUTU01), 2206259 (SPLNFET02), 2509193 (CONUTU01)	
5 70	322349	EOSIHER02	322349 (EOSIHER02), 3686018 (HEAANOT01), 18533592 (LUNGFET03), 815966 (OVARTUT01), 1505002 (BRAITUT07), 1511883 (LUNGNOT14), 2232826 (PROSNOT16)	
6 71	397663	PITUNNOT02	397663 (PITUNNOT02), 491141 (HNT2AGT01), 3809879 (CONTUTU01) 3562349 (SKINNOT05), 1518413 (BLADTUT04), 3600151 (DRGTMNOT01), 2474103 (THPLNOT03), 2105304 (BRAITUT03), 2187330 (PROSNOT26), 1781572 (PGANNNOT02), 2056258 (BEPINOT01), 1888065 (BLADTUT07)	
7 72	673766	CRBLNOT01	673766 (CRBLNOT01), 2494421 (ADRETUT05), 3267748 (BRAINOT20) 2194042 (THYRTUT03), 3186455 (THYMNOT04), 1712236 (PROSNOT16) 1844092 (COLNNOT08), 1602283 (BLADNOT03), 0333357 (THP1NOB01), 1995828 (BRSTTUT03), 1485594 (CORPNOT02)	
8 73	1504753	BRAITUT07	1504753 (BRAITUT07), 633939 (NEUTGMNOT01), 2741379 (BRSTTUT14), 2959661 (ADRENNOT09), 3483904 (KIDNNOT31), 999401 (KIDNTUT01), 1965504 (BRSTNOT04), 588535 (UTRSNOT01)	
9 74	1760185	PITUNNOT03	1760085 (PITUNNOT03), 1914471 (PROSTUT04), 836831 (PROSNOT07), 729798 (LUNGNOT03), 1290847 (BRAINOT11), 1492387 (PROSNON01), 1368472 (SCORNNOT02)	

Table I cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
10	75	1805061	SINTNOT13	1805061 (SINTNOT13), 1435949 (PANCNOT08), 086122 (LIVRNOT01) 1482366 (CORPNOT02), 1835310 (BRAINON01), 1333758 (COLNNOT13), 3521449 (LUNGNOT03)
11	76	1850120	LUNGFET03	1850120 (LUNGFET03), 3126350 (LUNGUT12), 786916 (PROSNOT05) 2899740 (DRGCNOT01), 1259221 (MENITUT03), 13334740 (COLNNOT13), 2466350 (THYRNOT08)
12	77	1852290	LUNGFET03	1852290 (LUNGFET03), 2901081 (DRGCNOT01), 1384842 (BRAITUT08), 1293541 (PGANNOT03), 1964126 (BRSTNOT04)
13	78	1944530	FITUNOT01	1944530 (FITUNOT01), 2808142 and 2809196 (BLADTUT08), 2961779 (ADRENNOT09)
14	79	2019742	CONNNOT01	2019742 (CONNNOT01), 2968014 (SCORNOT04), 168472 (LIVRNOT01) 1875993 (LEURNOT02), 1522480 (BLADTUT04), 1418496 (KIDNNCT09), 149730 (FIBRNGT02)
15	80	2056042	BEPINOT01	2056042 (BEPINOT01), 3097391 (CERVNOT03), 1985203 (LUNGAST01) 1962619 (BRSTNOT04), 13335716 (COLNNOT13)
16	81	2398682	THP1AZT01	2398682 (THP1AZT01), 159706 (ADENINB01), 2443910 (THPINOT03) 2382189 (ISLTINOT01), 2288661 (BRAINON01), 1864422 (PROSNOT19)
17	82	2518753	BRAITUT21	2518753 (BRAITUT21), 4001219 (HNT2AZS07), 2606361 (LUNGUT07) 449043 (TLYMNNOT02), SAEA01390
18	83	2709055	PONSAZT01	2709055 (PONSAZT01), 2309703 (NGANNOT01), 1661042 (URETTUT01), 2761284 (ESCGTUT02), 2469634 (THP1NOT03), SBLA03183, SBLA00549 SBLA00975
19	84	2724537	LUNGUT10	2724537 (LUNGUT10), 3869823 (BMARNOT03), 952779 (SCORNON01), 2049127 (LIVRFET02), 1824284 (GBLATUT01), 1870588 and 1869666 (SKINB1T01), 2626505 (PROSTUT12), SAEA03404, SAEA01744 SAEA01672, SAEA004072, SAPA00149

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragment
20	85	025818	SPLNFET01	025818H1, 025818X12, and 025818X3 (SPLNFET01), 783259H1 (MYOMNOT01), 826162R1 (PROSNOT06)
21	86	438283	THYRNTO01	438283H1 and 438283X29 (THYRNTO01), SAGA01136F1, SAGA01671F1, SAGA02704F1, SAGA03722F1, SZZZ01038R1
22	87	619699	PGANNTO01	619699H1, 619699X11, and 619699X18 (PGANNOT01), 646198T6 (BRSTTUT02), 1322305X20F1 (BLADNOT04), 1724376F6 (PROSNOT14)
23	88	693452	SYNORAT03	118140R1 (MUSCNTO01), 693452H1 and 693452R6 (SYNORAT03), 2455538F6 and 2455538H1 (ENDANOT01), 4500333H1 (BRAVXTXT02)
24	89	839651	PROSTUT05	729341X12 (LUNGNOT03), 839651CTR1, 839651H1, and 839651X55 (PROSTUT05), 839651X60 (PROSTUT05)
25	90	1253545	LUNGFET03	1253545H1 and 1254914F6 (LUNGFET03), 1806337X13F1 and 1807402X11F1 (SINTNOT13), 2179882X22F1 (SININOT01), 2592938F6 (LUNGNOT22), 2840018F6 (DRGLMNOT01)
26	91	1425691	BEPINON01	2727135H1 (OVARTUT05), 587126X29R1, 588598X17, and 587126F1 (UTRSNOT01), 1714529F6 (UCMCNOT02), 1381341F6 (BRAITUT08), 1273513F6 (TESTTUT02), 060265R1 (LUNGNOT01), 1459659F1 (COLNFET02), 043139R1 (TBLYNOT01), 1425691H1 (BEPINON01)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
27	92	1484257	CORPNOT02	400685H1, 404702F1, 404702R6, 404702X45C1, 404702X47C1, and 404702X48C1 (TMLR3DT01), 1484257H1 (CORPNOT02), 3396312H1 (UTRSNOT16)
28	93	1732368	BRSTTUT08	920006H1 (RATRNOT02), 1732368F6 and 1732368H1 (BRSTTUT08), 2607269T6 (LUNGUT07), 2654363F6 (THYMNOT04)
29	94	1870914	SKINBIT01	1549551R6 (PROSNOT06), 1575349H1 (LNODNOT03), 1870914H1 (SKINBIT01), 2365851T6 (ADRENOT07), SBKA00149F1
30	95	1910984	CONNUTU01	859876X12 (BRAITUT03), 1234976H1 and 1241845H1 (LUNGNOT03), 1910984F6 and 1910984H1 (CONNUTU01), 3276505H1 (PROSBPT06)
31	96	1943040	HIPONOT01	824144R1 (PROSNOT06), 930281H1 (CERVNOT01), 1420545H1 (KIDNNNOT09), 1784405H1 (BRAINOT10), 1943040H1 and 1943040R6 (HIPONOT01), 2122271H1 (BRSTNOT07), 2729723H1 (OVARTUT04)
32	97	2076520	ISLTNOT01	419755R1 (BRSTNOT01), 954937R1 (KIDNNNOT05), 1460268H1 (COLNFEET02), 1599016H1 (BLADNOT03), 2076520H1 (ISLTNOT01), 2082255F6 (UTRSNOT08), 2184150F6 (SININOT01), 2884394F6 (SINJNOT02), 3726575H1 (BRSTNOT23), 3752466H1 (UTRSNOT18), 3764971H1 (BRSTNOT24), 4412005H1 (MONOTXT01)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
33	98	2291241	BRAINNON01	2291241CT1 and 2291241H1 (BRAINNON01), 2500586H1 (ADRETUT05)
34	99	2329692	COLMNNOT11	158014F1 (ADENINB01), 1519462F1 (BLADTUT04), 1543875R1 (PROSTUT04), 2329692H1, 2331530R6, and 2331530T6 (COLNNNOT11), 2478291F6 (SMCANOT01)
35	100	2474110	THP1NOT03	863265H1 (BRAITUT03), 131344F1 (BLADTUT02), 1872631T6 and 1872869F6 (LEUKNOT02), 2061219R6 (OVARNOT03), 2171863H1 (ENDCNOT03), 2474110H1 (THP1NOT03), 2690250H1 (LUNGNOT23), 2812791F6 (OVARNOT10)
36	101	2495790	ADRETUT05	1360349T1 (LUNGNOT12), 1689792H1 (PROSTUT10), 1795321H1 (PROSTUT05), 1905521F6 (OVARNOT07), 1907168F6 (OVARNOT07), 2495790H1 (ADRETUT05), 2587542F6 (BRAITUT22)
37	102	2661254	ADRENOT08	1241850H1 (LUNGNOT03), 1545867R1 (PROSTUT04), 2325561H1 (OVARNOT02), 2661254H1 (ADRENOT08), 2751457H1 (THP1AZS08)
38	103	2674047	KIDNNNOT19	489330H1 (HNT2AGT01), 2059316R6 (OVARNOT03), 2059316T6 (OVARNOT03), 2674047F6 and 2674047H1 (KIDNNNOT19), 2805474H1 (BLADTUT08), (BONEUNT01), 3080137T6 (BRAIUNT01)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
39	104	2762174	BRAINOS12	2573448T3 (HIPOAZT01), 2762174H1 (BRAINOS12), SBNA00508F1, SBNA01683F1, SBNA00674F1, SBNA00857F1
40	105	2765991	BRSTNOT12	082008R6 (HUVESTB01), 2127491T6 (KIDNNNOT05), 2765991F6 and 2765991H1 (BRSTNCT12), 3147681H1 (PENCNOT05), SZAHO1537F1, SZAHO1356F1
41	106	2775157	PANCNOT15	2325410H1 (OVARNOT02), 2506671F6 and 2506671T6 (CONUTUT01), 2775157F6 and 2775157H1 (PANCNOT15), 3376091F6 (PENGNOT01), 3412063H1 (BRSTUS08)
42	107	2918375	THYMFET03	227782F1 (PANCNOT01), 1225559H1 (COLNTUT02), 1511458T1 (LUNGNOT14), 2918375H1 (THYMFET03)
43	108	3149729	ADRENON04	605315F1 (BRSTTUT01), 3149729CT1 and 3149729H1 (ADRENON04)
44	109	3705895	PENCNOT07	744201R1 (BRAITUT01), 2550322H1 (LUNGUT06), 3705895H1 (PENCNOT07)

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
45	110	003256	HMC1NOT01	003256H1, 003256R6, 003256X305F1, 003256X313F, 003256X315F1, and 009404H1 (HMC1NOT01), 43104R1 (TBLYNOT01), 413017F1 (BRSTNOT01)
46	111	156986	THP1PLB02	010084F1 and 012909H1 (THP1PLB01), 156986H1 and 156986R1 (THP1PLB02), 1320255F1 (BLADNOT04), 1512255F1 (LUNGNOT14), 2061923T6 (OVARNOT03), 2398787F6 (THP1AZT01), 2517160H2 (LIVRTUT04)
47	112	319415	EOSIHET02	285773H1, 285773R1, 319415H1, and 319415X19F1 (EOSIHET02), 123145H1 (BRAITUT01), 1804042F6 (SINTNOT13), 1878858F6 (LEUKNOT03)
48	113	635581	NEUTGMT01	635581H1 (NEUTGMT01), 3045776F6 (HEAANOT01)
49	114	921803	RATRNOT02	921803H1 (RATRNOT02), 1275128T6 (TESTTUT02), 1709959F6 (PROSNOT16), 2416547F6 (HNT3AZT01), 3016146H1 (MUSCNOT07), 3577260H1 (BRONNOT01)
50	115	1250492	LUNGFFET03	691921X14F1 (LUNGUTU02), 1250492F6, 1250492H1, and 1252226F2 (LUNGFFET03), 1361644F6 (LUNGNOT12), 3049358F6 (LUNGNOT25), 4044523H1 and 4048275H1 (LUNGNOT35), 4145295H1 (SINITUT04)
51	116	1427838	SINTBSTD01	1261181H1 (SYNORAT05), 1427838H1 and 1427838T1 (SINTBSTD01), 1733769T6 (BRSTTUT08), 2551854H1 (LUNGUTU06)
52	117	1448258	PLACNOT02	1448258H1 and 1448258R1 (PLACNOT02), 1484126F1 (CORPNOT02), 1856631F6 and 1856631X11F1 (PROSNOT18), 2690070F6 (LUNGNOT23), SAMA00131F1 and SAMA00146F1

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
53	118	1645941	PROSTUT09	831680R6 (PROSTUT04), 1645941F6 and 1645941H1 (PROSTUT09), 1748682F6 (STOMTUT02), 1870831F6 (SKINBIT01), 1877907F6 (LEUKNOT03), 2310427R6 (NGANNOT01)
54	119	1646005	PROSTUT09	1646005H1, 1646005X309F1, 1646005X312F1 and 1646883F6 (PROSTUT09), SZAHO2276F1
55	120	1686561	PROSNOT15	1234124H1 (LUNGFFET03), 1299156F6 (BRSTTNOT07), 1425185R1 (BEPINNON01), 1544751T1 (PROSTUT04), 1686561H1 (PROSNOT15), 2723108H1 (LUNGTTUT10), 2752156H1 (THP1AZS08), 3335850F6 (BRAIFFET01), 35022259H1 (ADRENOT11), 3857461H1 (LNODNOT03), 5069547H1 (PANCNOT23)
56	121	1821233	GBLATUT01	030744H1 (THP1NOB01), 1272043F1 (TESTTUT02), 1419549F1 (KIDNNNOT09), 1433773R1 (BEPINON01), 1482848F1 (CORPNOT02), 1821233H1 (GBLATUT01), 1869022H1 (SKINBIT01)
57	122	1877278	LEUKNOT03	1871148F6 (SKINBIT01), 1877278H1 (LEUKNOT03), 2097362T6 (BRAITUT02), 3124246T6 (LNODNOT05), 34500007R6 (UTRSNON03), 4894340H1 (LIVRTUT12), SAEB02108R1
58	123	1880692	LEUKNOT03	1880692H1 (LEUKNOT03), SBAA00446F1, SARA03727F1

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
59	124	2280456	PROSNON01	1557906F6 (BLADTUT04), 2280456H1 (PROSNON01), 2799446F6 (NPOLNOT01), 3519009H1 (LUNGNON03)
60	125	2284580	BRAINON01	783560H1 (MYOMNNOT01), 1215190T2 (BRSTTUT01), 1458188F1 (COLNFFET02), 2284580H1 (BRAINNON01), 2398366F6 (THP1AZT01), 2469268H1 (THP1NOT03)
61	126	2779172	OVARTUT03	487548H1 and 487548R6 (HNT2AGT01), 1421684F1 (KIDNNNOT09), 2172754F6 (ENDCNOT03), 2672062F6 (ESOGTUT02), 2779172F6 and 2779172H1 (OVARTUT03), 2935502F6 (THYMFET02), 3206879F6 (PENCNOT03)
62	127	3279329	STOMFET02	885282R6 and 885282T1 (PANCNOT05), 901139R1 (BRSTTUT03), 1655530F6 (PROSTUT08), 1818669T6 (PROSNOT20), 2380664F6 (ISLTNOT01), 2921229H1 (SININOT04), 3279329H1 (STOMFET02), 3451425R6 (UTRSNON03)
63	128	3340290	SPLNNNOT10	102935H1 (ADRENOR01), 1363193F6 (LUNGNOT12), 1674514H1 (BLADNOT05), 2271374H1 (PROSNON01), 2827770H1 (TLYMNNOT03), 3340290H1 (SPLNNNOT10), 4556330H1 (KERAUNT01)
64	129	3376404	PENGNOT01	3376404H1, 3376404X300U1, 3376404X310U1, and 3376404X323U1 (PENGNOT01), 3741323X302B1 (MENTNOT01)
65	130	4173111	SINTNOT21	1337315F6 (COLNNNOT13), 2486184F6 (CONUTUT01), 4173111H1 (SINTNOT21), 4750042H1 (SMCRUNTO1)

Table 2

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
1	155	S9, S16, T25, S37, S56, S57, S81, S114, T152		G38-I73	sigma-54 interaction protein	BLOCKS
2	152	S6, T83, S103, T121, S136		H99-R112	LUPUS La protein	PRINTS
3	304	S30, S61, S94, T109, S132, S133, T183, T236, S277, S289	N65, N294	C228-C268 C231-I255	zinc finger/RING finger protein	PFAM, BLOCKS
4	178	T8, S48, S102, Y121, T144		N18-P32	histone H3 protein	PRINTS
5	301	T58, T70, T85, S148, T165, S256, T272, S281	N191	K21-F38	filaggrin structural protein	PRINTS
6	250	S99, S126, S142, S155, T182		F203-V214	maspin/breast tumor suppressor protein	PRINTS
7	371	T25, S46, S96, T123, S128, T144, S163, S167, S205, S221, T350	N203, N222, N307, N348	EQ165-Y185 K152-L192	luman/leucine zipper/CRE protein	BLAST, BLOCKS, PRINTS

Table 2 cont.

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature sequence	Identification	Analytical Methods
8	148	T35, S41, S92, S105	N144		TSC-22 transcription factor	BLAST
9	127	T69	N53	M1-E16	Ribosomal protein S6	PFAM
10	383	S22, T34, S53, S140, T155, T183, S225, T263, S273, S300, S308, T369, S375	N127	Q7-K112	PH-domain protein	Pfam
11	254	T57, S62, S92, S143, S148, T166, T176, S180, T187, S191, S194, T221			cyclin-dependent-k inase binding protein	BLAST
12	305	S65, T88, S146, S230, S248, S272	N221	G84-N271	ribosomal protein L2	PFAM, BLOCKS
13	230	T34, T49, S54, S122, T123, T150, S182, T209	N86, N130, N199	C155-C191	zinc finger/RING finger protein	PFAM, BLOCKS, MOTIFS
14	292	S2, T61, T89, T193, S223, S224, S225, S238, S288	N47, N101, N166, N259	A124-I145	FOS transforming protein	PRINTS

Table 2 cont.

Protein SEQ ID No:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
15	232	T58, S72, S127, S149, T154, S191, S199, T203, T204	N56, N183, N187	E39-F73	tropomyosin	BLOCKS PRINTS
16	376	T5, T34, S53, T70, S81, T86, S105, S256, T287, T288, T310, S331, S364, S369, T365		Q97-C135	RecA DNA repair protein	BLOCKS BLAST
17	204	T100, T118, T157, S187, S199		L179-H200	annexin	PRINTS
18	713	S46, T64, T71, T95, S96, T129, T171, S260, S286, T345, S438, S485, T527, T541, Y567, Y593, S644, T656	N110, N453, N460, N595	L563-L576 L583-1596	RSP-1 /Ras-signaling protein	BLAST, PRINTS
19	360	S22, T51, S69, T106, S133, S206, T232, S248			Nucleolar protein Surf-6	BLAST
20	196	S38 S69 T23 T30 S73 S183 S37 T84	N9 N51	E76-L91 R35-K58	Helix-loop-helix protein HES-1	MOTIFS BLOCKS BLAST

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
21	540	T136 S34 S69 S189 T322 S411 T7 S66 S75 T139 S193 S197 S205 T285 S324 S328 S380 S425	N240 N443	C230-H252, C260-H280, C288-H309, C316-H336, C344-H364, C372-H392, C400-H420, C428-H448, C456-H476, C484-H504, C512-H532	zinc finger protein	MOTIFS BLAST PRINTS
22	549	S123 S22 S182 T319 T465 S161 T205 S208 S332 S392 S459 S534	N167 N335 N422	C214-H234, C242-H262, C270-H290, C298-H318, C326-H346, C354-H374, C382-H402, C410-H430, C438-H458, C466-H486, C494-H514, C522-H542	zinc finger protein ZNF43	MOTIFS BLAST PRINTS
23	361	S244 T254 S8 S58 S180 S193 T269 T283 S284 T26 S45 S174 T254 S314		C139-L163 C227-K263	DNA binding protein	BLOCKS BLAST
24	241	S82 S62 S119 T147 Y111		C52-H75, C83-H105, C113-H133, C141-H161, C172-H193	zinc finger protein PZF	MOTIFS PRINTS BLAST

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
25	576	S90 T371 S56 T183 T195 S203 S316 T318 S347 S354 S432 S548 S37 S82 S281 T325 S343 S409 S414 S447 S466 T481 S502 S570 Y323	N42 N312 N339 N498	C507-L543, L168- L189, E262-R278	transcription factor	MOTIFS PRINTS BLOCKS BLAST
26	408	S74 S197 T226 S247 T289 S328 S338 S353 S386 S394 T14 S199 S234 T388	N245 N253	G164-R175	transcription factor	PRINTS BLAST
27	810	S392 S113 S155 S185 S225 S262 S283 T298 S342 S433 T449 T665 T695 S728 T756 T801 T79 T190 S377 T438 Y397		C315-H335, C343- H363, C371-H391, C399-H419, C427- H447, C455-H475, C483-H503, C511- H531, C539-H559, C567-H587, C595- H615, C623-H644, C726-H747	zinc finger protein Miz-1	MOTIFS PRINTS BLOCKS
28	324	S72 T189 S209 T223 S279 S302 S156 T182 S316 Y277	N187	C74-R85	Hormone-binding transcription factor protein	PRINTS BLAST
29	292	S242 T41 S136 S137 T176 T200 S205 S284 T52 S61	N229	G62-S69	putative nucleotide-binding protein	MOTIFS PRINTS BLAST

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
30	259	T79 S99 S180 T20 S152 S241		C71-H92, C43-C71	zinc finger protein	MOTIFS BLOCKS BLAST
31	97	S52		C15-L43	DNA-binding protein	MOTIFS BLOCKS BLAST
32	812	T239 T16 S55 T56 T104 S126 S127 T156 S176 T249 S268 T269 S330 T394 S450 T484 S583 S652 S658 S795 S33 S235 T314 S343 T730 S804	N45 N93 N165 N805	E418-S450	cell cycle protein	BLOCKS BLAST
33	392	T22 S30 T43 S55 S108 T140 S156 S318 T320 S343 S120 S270 S311	N277		TRAF family member-associated NF-kB activator TANK	BLAST
34	60	T49 T30 S50	I2-S55		DNA-binding protein	BLOCKS BLAST
35	209	S21 S57 T93	N67	F160-N179 S151-G185	cellular nucleic acid binding protein	PRINTS BLOCKS BLAST
36	257	T178 S187 S230 T249	N65	Y33-F44 S187-I205	cell-cycle control protein Hst2P	PRINTS BLOCKS BLAST

Table 2 cont.

Protein ID NO:	Seg	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
37	138		T106 T'3 S27 S46		E108-Q124	nucleic acid-binding protein	BLOCKS BLAST
38	999		T54 S634 S89 S126 S335 S414 S442 S451 T512 T762 T792 T858 S890 T97 T994 T205 S233 T274 T491 S525 S534 T577 T600 S610 S615 S634 S677 T951 S961 Y152 Y458 Y686 Y815	N43 N532 N672 N749 N818 N943	L574-L595 L647-L668	DNA-binding	MOTIFS BLAST
39	377		T142 T254 T48 T138 S292 S71 S74 S108 S114 T138 S222 S250 T332 T364		C130-H150, C158-H178, C186-H206, C214-H234, C242-H262, C270-H290, C296-H316, C324-H344, C352-H372	zinc finger protein ZNF132	MOTIFS PRINTS BLOCKS BLAST
40	324		S28 S214 S16 S81 S114 T225 T33 S44 T66 S203 S209 T229	N47	R26-S37 S77-L115	transcription regulatory protein IRLB	PRINTS BLOCKS BLAST
41	270		S16 T123 T141 T199 S9 S52 S90 T128 T175 S194 S214	N22 N109 N192 P250-Q263	V218-L242	MOTIFS BLOCKS PRINTS	

Table 2 cont.

Protein Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
42	252	T20 S48 S89 S101 T127 S218 T121 S126 T152	N33 N46 N216 N230	Y9-L18, S68-F88, D159-S168	cell-cycle control protein	PRINTS BLAST
43	228	T50 T107 T2 S42 S201 T31 S51 T52 T103 T107 T134 T143 T206 S210 T215	N132 N141 N165 N197	A38-S51, Q65- P100, S59-K89	Transcriptional Repressor Protein	PRINTS BLOCKS BLAST
44	117	T93 T11		A86-E104	CCAAT-Binding Transcription factor	PRINTS BLAST
45	252	S83 T2 S57 T159 S250 Y102	N197	M1-S29 A85-K123	Ribosomal protein	BLOCKS MOTIFS
46	530	T177 S234 S461 S519 T24 T238	N217 N227	TM Domains: Y147-A167 Y242-L262 L306-F325 L332-L351 S379-F399 L470-F489	melibiose carrier protein	BLAST MOTIFS HMM

Table 2 cont.

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
47	355	S7 S21 T127 S213 T279 S134 T276 S315 S331 S334 Y193 Y300	N37 N192 N263 N268 N337	I42-E69 W160-E187 G171-G200 N234-I256	Mylein P0 Protein	BLOCKS, PRINTS MOTIFS, IMM
48	136	T109 S130 T5 T69 T40 S121			geminin	BLAST, MOTIFS
49	235	T138 T142 S180 S230 S111 S120 S137 T224	N140 N198	ATP/GTP binding: G9-T16	PTB-associated splicing factor	BLAST MOTIFS
50	70	T2 S64			ninjurin	BLAST MOTIFS
51	169	T128 T26 S96			B locus M Beta chain 1	BLAST, MOTIFS
52	359	S55 S78 T161 S245 T292 T350 T57 T130 T289	N105	E205-S242 E271-V294	ribosomal protein S6 kinase 2	BLOCKS, PRINTS PFAM
53	545	S235 T317 S47 S73 S114 S146 S184 S236 S241 S394 S538 S2 T84 S109 S124 T230 S231 S266 S340 T360 S379 S525	N45 N139 N431 N478 N511	K88-I106 A333-K362	ribosomal protein	MOTIFS BLOCKS PRINTS

Table 2 cont.

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
54	99	T90 T43 T76			ORF E4	BLAST, MOTIFS
55	565	S27 S56 S132 T152 T197 S319 T411 T429 S475 T66 S156 S303 T390 S463 Y549	N2 N55 N165		Sec1 precursor	BLAST, MOTIFS
56	197	S65 T23 S102 S19 T60 T61 S136 S147	N20		Regulatory protein	BLAST, MOTIFS
57	321	S91 S119 T139 S283 S147 T300 Y238	N103 N194		putative ras effector Norel	BLAST, MOTIFS
58	356	T45 S85 S93 S95 T103 S114 T142 S168 T317 S340 S49 S58 T236 S258 S314 Y12 Y296	N91 N312		weak similarity to <i>S. cerevisiae</i> intracellular transport protein	BLAST MOTIFS
59	299	S273 T81 S116 S120 T122 S146 S86 S151 T210 S225 T268			PI3 Kinase P85 Regulator	MOTIFS, PRINTS
60	293	T34 S218 S247 S290 S291 T240 S79 S145 T156 T199 S204 S283	N152	V47-V71 K86-F93	RNA-binding protein	BLAST, MOTIFS BLOCKS, PFAM

Table 2 cont.

Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Identification	Analytical Methods
61	777	S81 S128 S141 T230 S315 S342 S352 T519 S564 S576 S684 T699 T758 T205 S213 S236 S294 S397 T417 S470 S515 T560 S640 T746	N228 N281 N319 N453 N481 N636 N682	Zinc finger helicase	Zinc finger helicase	BLAST, MOTIFS
62	97	T83	C20-C28	ferredoxin	MOTIFS	
63	308	S15 S81 T97 T102 S103 S135 S200 S238 S28 S131 T154 S171 S186 Y232	N58 N78 N95 N198 N236	ubiquitin-conjugating enzyme	BLAST, MOTIFS	
64	290	S121 S165 S167 S248 S17 T188 T207 Y86 Y203	N55 N79	M1-A22 C60-C76 C225-C235 W249-I272	prostasin	BLAST, MOTIFS, BLO CKS, PRINTS PFAM, HMM
65	198	S7 S9 S56 T115 T34 T86	N183	transcriptional regulator	BLAST MOTIFS	

TABLE 3

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
66	Nervous (0.256) Reproductive (0.209)	Cancer (0.442), Inflammation (0.279), Proliferative/Fetal (12%)	pBlueScript
67	Reproductive(0.274) Cardiovascular (0.194)	Cancer (0.484), Inflammation (0.145), Proliferative/Fetal (0.194)	pBlueScript
68	Reproductive (0.231) Cardiovascular (0.205)	Cancer (0.385), Inflammation (0.231), Proliferative/Fetal (0.205)	pBlueScript
69	Reproductive (0.215) Hematopoietic/Immune (0.190)	Cancer (0.397), Inflammation (0.314), Proliferative/Fetal (0.215)	pBlueScript
70	Reproductive (0.367) Cardiovascular (0.122)	Cancer (0.489), Inflammation (0.233), Proliferative/Fetal (0.189)	pBlueScript
71	Reproductive (0.292) Nervous (0.142)	Cancer (0.469), Inflammation (0.257), Proliferative/Fetal (0.177)	pSPORT1
72	Reproductive (0.261) Nervous (0.157)	Cancer (0.493), Inflammation (0.194), Trauma (0.142)	pSPORT1
73	Reproductive (0.343) Hematopoietic/Immune (0.200)	Cancer (0.457), Inflammation (0.257), Trauma (0.229)	PINCY
74	Reproductive (0.320) Nervous (0.160)	Cancer (0.507), Inflammation (0.187), Proliferative/Fetal (0.133)	pSPORT1
75	Gastrointestinal (0.300) Nervous (0.250)	Cancer (0.400), Inflammation (0.300)	PINCY
76	Reproductive (0.262) Nervous (0.180)	Cancer (0.443), Inflammation (0.262), Proliferative/Fetal (0.230)	PINCY
77	Reproductive (0.283) Nervous (0.151)	Cancer (0.509), Inflammation (0.208), Trauma (0.132)	PINCY

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
78	Cardiovascular (0.300) Nervous (0.200)	Cancer (0.450), Inflammation (0.200)	pBlueScript
79	Reproductive (0.270) Cardiovascular (0.150)	Cancer (0.440), Inflammation (0.180), Proliferative/Fetal (0.150)	PINCY
80	Reproductive (0.271) Cardiovascular (0.153)	Cancer (0.506), Inflammation (0.176), Proliferative/Fetal (0.188)	psPORT1
81	Hematopoietic/Immune (0.312) Reproductive (0.219)	Cancer (0.344), Inflammation (0.344), Proliferative/Fetal (0.281)	PINCY
82	Nervous (0.250) Hematopoietic/Immune (0.188)	Cancer (0.500), Inflammation (0.438), Proliferative/Fetal (0.188)	PINCY
83	Hematopoietic/Immune (0.276) Reproductive (0.276)	Cancer (0.552), Inflammation (0.310)	PINCY
84	Reproductive (0.309) Nervous (0.144)	Cancer (0.526), Inflammation (0.247), Proliferative/Fetal (0.134)	PINCY
85	Reproductive (0.315) Nervous (0.152) Cardiovascular (0.130)	Cancer (0.522) Fetal (0.174) Inflammation (0.141)	PBLUESCRIPT
86	Reproductive (0.545) Hematopoietic/Immune (0.182) Gastrointestinal (0.182)	Cancer (0.636) Fetal (0.273) Inflammation (0.182)	PBLUESCRIPT
87	Reproductive (0.218) Nervous (0.200) Hematopoietic/Immune (0.200)	Cancer (0.509) Inflammation (0.236) Fetal (0.164)	psPORT1
88	Nervous (0.296) Reproductive (0.185) Hematopoietic/Immune (0.148)	Cancer (0.407) Fetal (0.259) Inflammation (0.222)	psPORT1

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
89	Reproductive (0.339) Nervous (0.161) Gastrointestinal (0.145) Cardiovascular (0.145)	Cancer (0.613) Fetal (0.145) Inflammation (0.129)	pSPORT1
90	Cardiovascular (0.278) Gastrointestinal (0.204) Reproductive (0.185)	Cancer (0.519) Inflammation (0.204) Fetal (0.148)	pINCY
91	Reproductive (0.228) Nervous (0.149) Gastrointestinal (0.146)	Cancer (0.411) Inflammation (0.343) Fetal (0.240)	pT7T3
92	Reproductive (0.240) Hematopoietic/Immune (0.160) Gastrointestinal (0.160)	Cancer (0.460) Inflammation (0.260) Fetal (0.180)	pINCY
93	Reproductive (0.333) Cardiovascular (0.200) Hematopoietic/Immune (0.133)	Inflammation (0.533) Cancer (0.400) Fetal (0.133)	pINCY
94	Reproductive (0.230) Gastrointestinal (0.164) Cardiovascular (0.115) Hematopoietic/Immune (0.115)	Cancer (0.443) Inflammation (0.442) Fetal (0.197)	pINCY
95	Reproductive (0.333) Cardiovascular (0.167) Gastrointestinal (0.167)	Cancer (0.750) Inflammation (0.250)	pINCY
96	Reproductive (0.369) Nervous (0.215) Hematopoietic/Immune (0.108) Gastrointestinal (0.108)	Cancer (0.508) Inflammation (0.231) Fetal (0.108)	pBLUESCRIPT
97	Reproductive (0.321) Gastrointestinal (0.179) Hematopoietic/Immune (0.161)	Inflammation (0.411) Cancer (0.393) Fetal (0.161)	pINCY
98	Reproductive (0.205) Nervous (0.192) Cardiovascular (0.164)	Cancer (0.452) Inflammation (0.342) Fetal (0.178)	pSPORT1

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
99	Gastrointestinal (0.423) Reproductive (0.115)	Cancer (0.385) Inflammation (0.288) Fetal (0.173)	pSPORT1
100	Reproductive (0.281) Hematopoietic/Immune (0.234) Nervous (0.141)	Cancer (0.375) Fetal (0.312) Inflammation (0.312)	pINCY
101	Reproductive (0.294) Nervous (0.196) Gastrointestinal (0.118)	Cancer (0.529) Fetal (0.255)	pINCY
102	Reproductive (0.217) Nervous (0.163) Cardiovascular (0.141)	Cancer (0.435) Inflammation (0.174) Fetal (0.152)	pINCY
103	Reproductive (0.263) Hematopoietic/Immune (0.158) Musculoskeletal (0.158)	Cancer (0.526) Inflammation (0.263) Fetal (0.158)	pINCY
104	Nervous (0.400) Reproductive (0.300)	Cancer (0.400) Inflammation (0.300)	pSPORT1
105	Reproductive (0.375) Cardiovascular (0.125) Urologic (0.125)	Cancer (0.500) Inflammation (0.250) Fetal (0.208)	pINCY
106	Gastrointestinal (0.400) Reproductive (0.400) Developmental (0.100) Hematopoietic/Immune (0.100)	Cancer (0.600) Fetal (0.200) Inflammation (0.200)	pINCY
107	Reproductive (0.278) Gastrointestinal (0.152) Nervous (0.139)	Cancer (0.418) Inflammation (0.241) Fetal (0.165)	>pINCY
108	Reproductive (0.364) Hematopoietic/Immune (0.182) Nervous (0.167)	Inflammation (0.409) Cancer (0.364) Fetal (0.136)	pSPORT1

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
109	Nervous (0.227) Reproductive (0.205) Cardiovascular (0.136) Urologic (0.136) Gastrointestinal (0.136)	Cancer (0.568) Inflammation (0.182) Fetal (0.136)	pINCY
110	Hematopoietic/Immune (0.400) Urologic (0.400) Reproductive (0.200)	Cell proliferation (0.800) Inflammation (0.800)	pBluescript
111	Gastrointestinal (0.213) Hematopoietic/Immune (0.191) Nervous (0.191)	Cell proliferation (0.744) Inflammation (0.489)	pBluescript
112	Hematopoietic/Immune (0.405) Gastrointestinal (0.167) Cardiovascular (0.119)	Inflammation (0.619) Cell proliferation (0.381)	pBluescript
113	Hematopoietic/Immune (0.667) Cardiovascular (0.333)	Inflammation (1.000)	pSPORT1
114	Cardiovascular (0.412) Nervous (0.235) Musculoskeletal (0.118)	Cell proliferation (0.765) Inflammation (0.353)	pSPORT1
115	Cardiovascular (0.548) Reproductive (0.161) Developmental (0.129)	Cell proliferation (0.806) Inflammation (0.226)	pINCY
116	Reproductive (0.267) Cardiovascular (0.233) Hematopoietic/Immune (0.233)	Cell proliferation (0.467) Inflammation (0.500)	pINCY
117	Reproductive (0.400) Cardiovascular (0.167) Gastrointestinal (0.133)	Cell proliferation (0.600) Inflammation (0.267)	pINCY
118	Nervous (0.205) Reproductive (0.205) Other (0.154)	Cell proliferation (0.461) Inflammation (0.385)	pINCY
119	Reproductive (0.500) Nervous (0.167) Hematopoietic/Immune (0.167)	Cancer (0.500) Inflammation (0.167) Neurological (0.167)	pINCY

TABLE 3 cont.

Nucleotide Seq ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
120	Reproductive (0.396) Cardiovascular (0.125) Musculoskeletal (0.125)	Cell proliferation (0.750) Inflammation (0.209)	pINCY
121	Reproductive (0.248) Hematopoietic/Immune (0.194) Gastrointestinal (0.147)	Cell Proliferation (0.651) Inflammation (0.380)	pINCY
122	Nervous (0.264) Cardiovascular (0.132) Reproductive (0.132)	Cell proliferation (0.547) Inflammation (0.396)	pINCY
123	Reproductive (0.242) Nervous (0.152) Urologic (0.152)	Cell proliferation (0.788) Inflammation (0.303)	pINCY
124	Nervous (0.333) Cardiovascular (0.167) Hematopoietic/Immune (0.167)	Cell proliferation (0.667) Inflammation (0.500)	pSPORT1
125	Reproductive (0.290) Cardiovascular (0.161) Hematopoietic/Immune (0.113)	Cell proliferation (0.709) Inflammation (0.306)	pSPORT1
126	Reproductive (0.360) Nervous (0.120) Urologic (0.100)	Cell proliferation (0.680) Inflammation (0.320)	pINCY
127	Reproductive (0.364) Gastrointestinal (0.145) Nervous (0.145)	Cell proliferation (0.600) Inflammation (0.400)	pINCY
128	Cardiovascular (0.154) Gastrointestinal (0.154) Reproductive (0.154)	Cell proliferation (0.616) Inflammation (0.308)	pINCY
129	Urologic (1.000)	Cancer (1.000)	pINCY
130	Hematopoietic/Immune (0.214) Cardiovascular (0.143) Gastrointestinal (0.143)	Cell proliferation (0.428) Inflammation (0.357)	pINCY

TABLE 4

Protein SEQ ID NO:	Clone ID	Library	Library Comment
1	001106	U937NOT01	U937NOT01 Library was constructed at Stratagene (STR937207) using RNA isolated from U937 monocyte-like cell line (ATCC CRL1593) established from malignant cells obtained from the pleural effusion of a 37-year-old Caucasian male with diffuse histiocytic lymphoma.
2	004586	HMC1NOT01	HMC1NOT01 Library was constructed using RNA isolated from HMC-1 human mast cell line derived from a 52-year-old female. Patient history included mast cell leukemia. Family history included atherosclerotic coronary artery disease, a joint disorder involving multiple joints, cerebrovascular disease, and diabetes insipidus.
3	052927	FIBRNOT01	FIBRNOT01 Library was constructed at Stratagene (STR937212) using RNA isolated from the WI38 lung fibroblast cell line derived from a 3-month-old Caucasian female fetus.
4	082843	HUVESTB01	HUVESTB01 Library was constructed using RNA isolated from shear-stressed HUV-EC-C (ATCC CRL 1730), an endothelial cell line derived from the vein of a normal human umbilical.
5	322349	EOSIHETO2	EOSIHETO2 Library was constructed using RNA isolated from peripheral blood cells apheresed from a 48-year-old Caucasian male. Patient history included hypereosinophilia.
6	397663	PITUNOT02	PITUNOT02 Library was constructed using RNA (Clontech 6584-1) isolated from the pituitary gland of 87 male and female donors, 15 to 75 years old.
7	673766	CRBLNOT01	CRBLNOT01 Library was constructed using RNA isolated from cerebellum tissue of a 69-year-old Caucasian male, who died from chronic obstructive pulmonary disease. Patient history included heart failure, myocardial infarction, hypertension, osteoarthritis, and tobacco use.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
8	1504753	BRAITUT07	BRAITUT07 Library was constructed using RNA isolated from left frontal lobe tumor tissue removed from the brain of a 32-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated low grade desmoplastic neuronal neoplasm. Family history included atherosclerotic coronary artery disease.
9	1760185	PITUNOT03	PITUNOT03 Library was constructed using RNA isolated from pituitary tissue of a 46-year-old Caucasian male who died from colon cancer. Patient history included arthritis and peptic ulcer disease.
10	1805061	SINTNOT13	SINTNOT13 Library was constructed using RNA isolated from ileum tissue removed from a 25-year-old Asian female during a partial colectomy and temporary ileostomy. Pathology indicated moderately active chronic ulcerative colitis involving colonic mucosa from the distal margin to the ascending colon. Family history included hyperlipidemia, depressive disorder, malignant cervical neoplasm, and viral hepatitis A.
11	1850120	LUNGFETO3	LUNGFETO3 Library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
12	1852290	LUNGFETO3	The mother was given seven days of erythromycin treatment for bronchitis during the first trimester.
13	1944530	PITUNOT01	PITUNOT01 Library was constructed using RNA (Clontech 6584-2) isolated from the normal pituitary glands of 18 male and female Caucasian donors, 16 to 70 years old, who died from trauma.
14	2019742	CONNNOT01	CONNNOT01 Library was constructed using RNA isolated from mesenteric fat tissue removed from a 71-year-old Caucasian male during a partial colectomy and permanent colostomy. Patient history included a cholecystectomy, viral hepatitis, and a hemangioma. Family history included atherosclerotic coronary artery disease, myocardial infarction, and extrinsic asthma.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
15	2056042	BEPINOT01	BEPINOT01 Library was constructed using RNA isolated from a bronchial epithelium (NHBE) primary cell line derived from a 54-year-old Caucasian male.
16	2398682	THP1AZT01	THP1AZT01 Library was constructed using RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
17	2518753	BRAITUT21	BRAITUT21 Library was constructed using RNA isolated from brain tumor tissue removed from the midline frontal lobe of a 61-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated subfrontal meningotheelial meningioma with no atypia. Patient history included depressive disorder; family history included cerebrovascular disease, senile dementia, hyperlipidemia, benign hypertension, atherosclerotic coronary artery disease, and congestive heart failure.
18	2709055	PONSAZT01	PONSAZT01 Library was constructed using polyA RNA isolated from diseased pons tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.
19	2724537	LUNGUT10	LUNGUT10 Library was constructed using RNA isolated from lung tumor tissue removed from the left upper lobe of a 65-year-old Caucasian female during a segmental lung resection. Pathology indicated a metastatic grade 2 myxoid liposarcoma and metastatic grade 4 liposarcoma. Patient history included soft tissue cancer, breast cancer, and secondary lung cancer. Family history included benign hypertension.
20	025818	SPLNFET01	SPLNFET01 Library was constructed at Stratagene using RNA isolated from a pool of fetal spleen tissue. 2x10 ⁶ primary clones were amplified to stabilize the library for long-term storage. Amplification may significantly skew sequence abundances.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
21	438283	THYRNOT01	THYRNOT01 Library was constructed using RNA isolated from thyroid tissue removed from a 64-year-old Caucasian female who died from congestive heart failure.
22	619699	PGANNNOT01	PGANNNOT01 Library was constructed using RNA isolated from paraganglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and was associated with a grade 2 renal cell carcinoma, clear cell type, which did not penetrate the capsule. Surgical margins were negative for tumor.
23	693452	SYNORATO3	SYNORATO3 Library was constructed using RNA isolated from the wrist synovial membrane tissue of a 56-year-old female with rheumatoid arthritis.
24	839651	PROSTUT05	PROSTUT05 Library was constructed using RNA isolated from prostate tumor tissue removed from a 69-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenocarcinoma (Gleason grade 3+4). Adenofibromatous hyperplasia was also present. Family history included congestive heart failure, multiple myeloma, hyperlipidemia, and rheumatoid arthritis.
25	1253545	LUNGFET03	LUNGFET03 Library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
26	1425691	BEPINON01	BEPINON01 normalized bronchial epithelium library was constructed from 5.12 million independent clones from the BEPINOT01 library. RNA was made from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male. The normalization and hybridization conditions were adapted from Soares et al., PNAS (1994) 91:9228, using a longer (24-hour) reannealing hybridization period.
27	1484257	CORPNOT02	CORPNOT02 Library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
28	1732368	BRSTTUT08	BRSTTUT08 Library was constructed using RNA isolated from breast tumor tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology indicated invasive nuclear grade 2-3 adenocarcinoma, ductal type, with 3 of 23 lymph nodes positive for metastatic disease. Greater than 50% of the tumor volume was <i>in situ</i> , both comedo and non-comedo types. Immunostains were positive for estrogen/progesterone receptors, and uninvolved tissue showed proliferative changes. The patient concurrently underwent a total abdominal hysterectomy. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, and rheumatic heart disease. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
29	1870914	SKINBIT01	SKINBIT01 Library was constructed using RNA isolated from diseased skin tissue of the left lower leg. Patient history included erythema nodosum of the left lower leg.
30	1910984	CONNUTU01	CONNUTU01 Library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin.
31	1943040	HIPONOT01	HIPONOT01 Library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis.
32	2076520	ISLTNOT01	ISLTNOT01 Library was constructed using RNA isolated from a pooled collection of pancreatic islet cells.
33	2291241	BRAINNON01	BRAINNON01 Library was constructed and normalized from 4.88 million independent clones from the BRAINNOT03 library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
34	2329692	COLNNOT11	COLNNOT11 Library was constructed using RNA isolated from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy.
35	2474110	THP1NOT03	THP1NOT03 Library was constructed using RNA isolated from untreated THP-1 cells (ATCC TIB 202), a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
36	2495790	ADRETUT05	ADRETUT05 Library was constructed using RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma.
37	2661254	ADRENNOT08	ADRENNOT08 PINCY Library was constructed using RNA isolated from adrenal tissue removed from a 20-year-old Caucasian male, who died from head trauma.
38	2674047	KIDNNOT19	KIDNNOT19 PINCY Library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated a grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included cardiovascular and cerebrovascular disease, and prostate cancer.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
39	2762174	BRAINOS12	BRAINOS12 pSPORT1 Library was constructed from 4.9 million clones from the BRAINOT03 library by subtraction of abundantly expressed clone pools. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.
40	2765991	BRSTNOT12	BRSTNOT12 PINCY Library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocytic disease. Family history included benign hypertension and atherosclerotic coronary artery disease.
41	2775157	PANCNOT15	PANCNOT15 PINCY Library was constructed using RNA isolated from diseased pancreatic tissue removed from a 15-year-old Caucasian male during a exploratory laparotomy with distal pancreatectomy and total splenectomy. Pathology indicated islet cell hyperplasia. Family history included prostate cancer and cardiovacular disease.
42	2918375	THYMFET03	THYMFET03 Library was constructed using RNA isolated from thymus tissue removed from a Caucasian male fetus.
43	3149729	ADRENON04	ADRENON04 normalized adrenal gland library was constructed from 1.36 million independent clones from an adrenal tissue library. Starting RNA was made from adrenal gland tissue removed from a 20-year-old Caucasian male who died from head trauma. The library was normalized in two rounds using conditions adapted from Soares et al. (PNAS (1994) 91:9228-9232) and Bonaldo et al. (Genome Res (1996) 6: 791-806) and a significantly longer (48-hours/round) reannealing hybridization period.
44	3705895	PENCNOT07	PENCNOT07 Library was constructed using RNA isolated from penis right corpora cavernosa tissue removed from a male.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
45	003256	HMC1NOT01	HMC1NOT01 library was constructed using RNA isolated from the HMC-1 human mast cell line derived from a 52-year-old female. Patient history included mast cell leukemia.
46	156986	THP1PLB02	THP1PLB02 library was constructed by reamplification of THP1PLB01, which was made using RNA isolated from THP-1 cells cultured for 48 hours with 100 ng/ml phorbol ester (PMA), followed by a 4-hour culture in media containing 1 ug/ml LPS. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
47	319415	EOSIHET02	EOSIHET02 library was constructed using RNA isolated from peripheral blood cells apheresed from a 48-year-old Caucasian male. Patient history included hypereosinophilia. The cell population was determined to be greater than 77% eosinophils by Wright's staining.
48	635581	NEUTGMT01	NEUTGMT01 library was constructed using RNA isolated from peripheral blood granulocytes collected by density gradient centrifugation through Ficoll-Hypaque. The cells were isolated from buffy coat units obtained from 20 unrelated male and female donors. Cells were cultured in 10 nM GM-CSF for 1 hour before washing and harvesting for total RNA preparation.
49	921803	RATRNOT02	RATRNOT02 library was constructed using RNA isolated from the right atrium tissue of a 39-year-old Caucasian male, who died from a gunshot wound.
50	1250492	LUNGFET03	LUNGFET03 library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation.
51	1427838	SINTBST01	SINTBST01 library was constructed using RNA isolated from ileum tissue obtained from an 18-year-old Caucasian female during bowel anastomosis. Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
52	1448258	PLACNOT02	PLACNOT02 library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks' gestation. Serologies of the mother's blood were positive for CMV (cytomegalovirus).
53	1645941	PROSTUT09	PROSTUT09 library was constructed using RNA isolated from prostate tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Patient history included lung neoplasm and benign hypertension. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease and lung cancer.
54	1646005	PROSTUT09	PROSTUT09 library was constructed using RNA isolated from prostate tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Patient history included lung neoplasm and benign hypertension. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease and lung cancer.
55	1686561	PROSNOT15	PROSNOT15 library was constructed using RNA isolated from diseased prostate tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 2+3). The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension.

TABLE 4 cont.

Protein SEQ ID No:	Clone ID	Library	Library Comment
56	1821233	GBLATUT01	The GBLATUT01 library was constructed using RNA isolated from gallbladder tumor tissue removed from a 78-year-old Caucasian female during a cholecystectomy. Pathology indicated invasive grade 2 squamous cell carcinoma, forming a mass in the gallbladder. Patient history included diverticulitis of the colon, palpitations, benign hypertension, and hyperlipidemia. Family history included a cholecystectomy, atherosclerotic coronary artery disease, atherosclerotic coronary artery disease, hyperlipidemia, and benign hypertension.
57	1877278	LEUKNOT03	The LEUKNOT03 library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).
58	1880692	LEUKNOT03	The LEUKNOT03 library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).
59	2280456	PROSNON01	The PROSNON01 library was constructed and normalized from 4.4 Million independent clones from the PROSNOT11 library. RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.
60	2284580	BRAINON01	The BRAINON01 library was constructed and normalized from 4.88 million independent clones from the BRAINOT03 library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.

TABLE 4 cont.

Protein SEQ ID NO:	Clone ID	Library	Library Comment
61	2779172	OVARTUT03	OVARTUT03 library was constructed using RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma forming a mass in the left ovary. Patient history included breast cancer, chronic peptic ulcer, and joint pain. Family history included colon cancer, cerebrovascular disease, breast cancer, type II diabetes, esophagus cancer, and depressive disorder.
62	3279329	STOMFET02	STOMFET02 library was constructed using RNA isolated from stomach tissue removed from a Hispanic male fetus, who died at 18 weeks' gestation.
63	3340290	SPLNNOT10	SPLNNOT10 library was constructed using RNA isolated from spleen tissue removed from a 59-year-old Caucasian male during a total splenectomy and exploratory laparotomy. Pathology for the spleen indicated splenomegaly with congestion. The lymph nodes showed reactive follicular hyperplasia. The liver showed mild, nonspecific steatosis. The patient presented with abdominal pain, bloating of the abdomen, low-grade fever, and diaphoresis. Family history included myocardial infarction, arteriosclerotic cardiovascular disease, primary tuberculous infection, cerebrovascular disease and lymphoma.
64	3376404	PENGNOT01	PENGNOT01 library was constructed using RNA isolated from glans tissue removed from the penis of a 3-year-old Black male. Pathology for the associated tumor tissue indicated invasive grade 4 urothelial carcinoma forming a soft tissue scrotal mass that invaded the cavernous body of the penis and encased both testicles.
65	4173111	SINTNOT21	SINTNOT21 library was constructed using RNA isolated from small intestine tissue obtained from a 8-year-old Black male, who died from anoxia. Serology was negative.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	Mismatch <50%
ABI PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	<i>ESTs:</i> Probability value= 1.0E-8 or less <i>Full Length sequences:</i> Probability value= 1.0E-10 or less
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	<i>ESTs:</i> Probability value= 1.0E-8 or less <i>Assembled ESTs:</i> Fast Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less <i>Full Length sequences:</i> fastx score=100 or greater
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	<i>ESTs:</i> fastx E value=1.0E-6 <i>Assembled ESTs:</i> Fast Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less <i>Full Length sequences:</i> fastx score=100 or greater
-85- FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, tfastx, and search.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Atwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=10-50 bits for PFAM hits, depending on individual protein families
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonhammer, E.L. L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 cont.

Program	Description	Reference	Parameter Threshold
PrositeScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score= 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phil's Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, W.A.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score= 5 or greater
Motif	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <i>supra</i> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-65, and fragments thereof.
- 5 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
4. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 3.
- 10 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
- 15 7. A method for detecting a polynucleotide, the method comprising the steps of:
 - (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
8. The method of claim 7 further comprising amplifying the polynucleotide prior to 20 hybridization.
9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:66-130, and fragments thereof.
10. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 9.
- 25 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
13. A host cell comprising the expression vector of claim 12.
- 30 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
15. A pharmaceutical composition comprising the polypeptide of claim 1 in 35 conjunction with a suitable pharmaceutical carrier.

16. A purified antibody which specifically binds to the polypeptide of claim 1.
 17. A purified agonist of the polypeptide of claim 1.
 18. A purified antagonist of the polypeptide of claim 1.
 19. A method for treating or preventing a disorder associated with decreased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
- 5
20. A method for treating or preventing a disorder associated with increased expression or activity of HTRM, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
HILLMAN, Jennifer L.
BANDMAN, Olga
LAL, Preeti
YUE, Henry
REDDY, Roopa
TANG, Y. Tom
GERSTIN, Edward H.
PATTERSON, Chandra
BAUGHN, Mariah R.
AZIMZAI, Yalda
LU, Dyung Aina M.

<120> HUMAN TRANSCRIPTIONAL REGULATOR MOLECULES

<130> PF-0509 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/084,254; 60/095,827; 60/102,745
<151> 1998-05-05; 1998-08-07; 1998-10-02

<160> 130

<170> PERL Program

<210> 1
<211> 155
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte clone 001106CD1

<400> 1

Met	Val	Ala	Arg	Lys	Gly	Gln	Lys	Ser	Pro	Arg	Phe	Arg	Arg	Val
1				5				10					15	
Ser	Cys	Phe	Leu	Arg	Leu	Gly	Arg	Ser	Thr	Leu	Leu	Glu	Leu	Glu
				20				25					30	
Pro	Ala	Gly	Arg	Pro	Cys	Ser	Gly	Arg	Thr	Arg	His	Arg	Ala	Leu
				35				40					45	
His	Arg	Arg	Leu	Val	Ala	Cys	Val	Thr	Val	Ser	Ser	Arg	Arg	His
				50				55					60	
Arg	Lys	Glu	Ala	Gly	Arg	Gly	Arg	Ala	Glu	Ser	Phe	Ile	Ala	Val
				65				70					75	
Gly	Met	Ala	Ala	Pro	Ser	Met	Lys	Glu	Arg	Gln	Val	Cys	Trp	Gly
				80				85					90	
Ala	Arg	Asp	Glu	Tyr	Trp	Lys	Cys	Leu	Asp	Glu	Asn	Leu	Glu	Asp
				95				100					105	
Ala	Ser	Gln	Cys	Lys	Lys	Leu	Arg	Ser	Ser	Phe	Glu	Ser	Ser	Cys
				110				115					120	
Pro	Gln	Gln	Trp	Ile	Lys	Tyr	Phe	Asp	Lys	Arg	Arg	Asp	Tyr	Leu
				125				130					135	
Lys	Phe	Lys	Glu	Lys	Phe	Glu	Ala	Gly	Gln	Phe	Glu	Pro	Ser	Glu
				140				145					150	
Thr	Thr	Ala	Lys	Ser										
				155										

<210> 2
<211> 152
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 004586CD1

<400> 2
Met Leu Ser Thr Leu Ser Gln Cys Glu Phe Ser Met Gly Lys Thr
1 5 10 15
Leu Leu Val Tyr Asp Met Asn Leu Arg Glu Met Glu Asn Tyr Glu
20 25 30
Lys Ile Tyr Lys Glu Ile Glu Cys Ser Ile Ala Gly Ala His Glu
35 40 45
Lys Ile Ala Glu Cys Lys Lys Gln Ile Leu Gln Ala Lys Arg Ile
50 55 60
Arg Lys Asn Arg Gln Glu Tyr Asp Ala Leu Ala Lys Val Ile Gln
65 70 75
His His Pro Asp Arg His Glu Thr Leu Lys Glu Leu Glu Ala Leu
80 85 90
Gly Lys Glu Leu Glu His Leu Ser His Ile Lys Glu Ser Val Glu
95 100 105
Asp Lys Leu Glu Leu Arg Arg Lys Gln Phe His Val Leu Leu Ser
110 115 120
Thr Ile His Glu Leu Gln Gln Thr Leu Glu Asn Asp Glu Lys Leu
125 130 135
Ser Glu Val Glu Glu Ala Gln Glu Ala Ser Met Glu Thr Asp Pro
140 145 150
Lys Pro

<210> 3
<211> 304
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte clone 052927CD1

<400> 3
Met Ala Glu Ala Ser Ala Ala Gly Ala Asp Ser Gly Ala Ala Val
1 5 10 15
Ala Ala His Arg Phe Phe Cys His Phe Cys Lys Gly Glu Val Ser
20 25 30
Pro Lys Leu Pro Glu Tyr Ile Cys Pro Arg Cys Glu Ser Gly Phe
35 40 45
Ile Glu Glu Val Thr Asp Asp Ser Ser Phe Leu Gly Gly Gly
50 55 60
Ser Arg Ile Asp Asn Thr Thr Thr His Phe Ala Glu Leu Trp
65 70 75
Gly His Leu Asp His Thr Met Phe Phe Gln Asp Phe Arg Pro Phe
80 85 90
Leu Ser Ser Ser Pro Leu Asp Gln Asp Asn Arg Ala Asn Glu Arg
95 100 105
Gly His Gln Thr His Thr Asp Phe Trp Gly Ala Arg Pro Pro Arg
110 115 120
Leu Pro Leu Gly Arg Arg Tyr Arg Ser Arg Gly Ser Ser Arg Pro
125 130 135
Asp Arg Ser Pro Ala Ile Glu Gly Ile Leu Gln His Ile Phe Ala

	140		145		150
Gly Phe Phe Ala Asn Ser Ala Ile Pro		Gly Ser Pro His Pro	Phe		
155		160		165	
Ser Trp Ser Gly Met Leu His Ser Asn Pro	Gly Asp Tyr Ala	Trp			
170		175		180	
Gly Gln Thr Gly Leu Asp Ala Ile Val	Thr Gln Leu Leu Gly	Gln			
185		190		195	
Leu Glu Asn Thr Gly Pro Pro Pro Ala	Asp Lys Glu Lys Ile	Thr			
200		205		210	
Ser Leu Pro Thr Val Thr Val Thr Gln	Glu Gln Val Asp Met	Gly			
215		220		225	
Leu Glu Cys Pro Val Cys Lys Glu Asp	Tyr Thr Val Glu Glu	Glu			
230		235		240	
Val Arg Gln Leu Pro Cys Asn His Phe	Phe His Ser Ser Cys	Ile			
245		250		255	
Val Pro Trp Leu Glu Leu His Asp Thr	Cys Pro Val Cys Arg	Lys			
260		265		270	
Ser Leu Asn Gly Glu Asp Ser Thr Arg	Gln Ser Gln Ser Thr	Glu			
275		280		285	
Ala Ser Ala Ser Asn Arg Phe Ser Asn	Asp Ser Gln Leu His	Asp			
290		295		300	
Arg Trp Thr Phe					

<210> 4
<211> 178
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 082843CD1

	<400> 4				
Met Pro Lys Ala Lys Gly Lys Thr Arg Arg	Gln Lys Phe Gly Tyr				
1	5	10		15	
Ser Val Asn Arg Lys Arg Leu Asn Arg Asn	Ala Arg Arg Lys Ala				
20		25		30	
Ala Pro Arg Ile Glu Cys Ser His Ile Arg	His Ala Trp Asp His				
35		40		45	
Ala Lys Ser Val Arg Gln Asn Leu Ala Glu	Met Gly Leu Ala Val				
50		55		60	
Asp Pro Asn Arg Ala Val Pro Leu Arg Lys	Arg Lys Val Lys Ala				
65		70		75	
Met Glu Val Asp Ile Glu Glu Arg Pro Lys	Glu Leu Val Arg Lys				
80		85		90	
Pro Tyr Val Leu Asn Asp Leu Glu Ala	Glu Ala Ser Leu Pro Glu				
95		100		105	
Lys Lys Gly Asn Thr Leu Ser Arg Asp	Leu Ile Asp Tyr Val Arg				
110		115		120	
Tyr Met Val Glu Asn His Gly Glu Asp	Tyr Lys Ala Met Ala Arg				
125		130		135	
Asp Glu Lys Asn Tyr Tyr Gln Asp Thr	Pro Lys Gln Ile Arg Ser				
140		145		150	
Lys Ile Asn Val Tyr Lys Arg Phe Tyr	Pro Ala Glu Trp Gln Asp				
155		160		165	
Phe Leu Asp Ser Leu Gln Lys Arg Lys	Met Glu Val Glu				
170		175			

<210> 5
<211> 301

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 322349CD1

<400> 5

Met	Ala	Arg	His	Gly	Leu	Pro	Leu	Leu	Pro	Leu	Leu	Ser	Leu	Leu	
1				5					10					15	
Val	Gly	Ala	Trp	Leu	Lys	Leu	Gly	Asn	Gly	Gln	Ala	Thr	Ser	Met	
				20					25					30	
Val	Gln	Leu	Gln	Gly	Gly	Arg	Phe	Leu	Met	Gly	Thr	Asn	Ser	Pro	
				35					40					45	
Asp	Ser	Arg	Asp	Gly	Glu	Gly	Pro	Val	Arg	Glu	Ala	Thr	Val	Lys	
				50					55					60	
Pro	Phe	Ala	Ile	Asp	Ile	Phe	Pro	Val	Thr	Asn	Lys	Asp	Phe	Arg	
	65								70					75	
Asp	Phe	Val	Arg	Glu	Lys	Lys	Tyr	Arg	Thr	Glu	Ala	Glu	Met	Phe	
				80					85					90	
Gly	Trp	Ser	Phe	Val	Phe	Glu	Asp	Phe	Val	Ser	Asp	Glu	Leu	Arg	
	95								100					105	
Asn	Lys	Ala	Thr	Gln	Pro	Met	Lys	Ser	Val	Leu	Trp	Trp	Leu	Pro	
	110								115					120	
Val	Glu	Lys	Ala	Phe	Trp	Arg	Gln	Pro	Ala	Gly	Pro	Gly	Ser	Gly	
	125								130					135	
Ile	Arg	Glu	Arg	Leu	Glu	His	Pro	Val	Leu	His	Val	Ser	Trp	Asn	
	140								145					150	
Asp	Ala	Arg	Ala	Tyr	Cys	Ala	Trp	Arg	Gly	Lys	Arg	Leu	Pro	Thr	
	155								160					165	
Glu	Glu	Glu	Trp	Glu	Phe	Ala	Ala	Arg	Gly	Gly	Leu	Lys	Gly	Gln	
	170								175					180	
Val	Tyr	Pro	Trp	Gly	Asn	Trp	Phe	Gln	Pro	Asn	Arg	Thr	Asn	Leu	
	185								190					195	
Trp	Gln	Gly	Lys	Phe	Pro	Lys	Gly	Asp	Lys	Ala	Glu	Asp	Gly	Phe	
	200								205					210	
His	Gly	Val	Ser	Pro	Val	Asn	Ala	Phe	Pro	Ala	Gln	Asn	Asn	Tyr	
	215								220					225	
Gly	Leu	Tyr	Asp	Leu	Leu	Gly	Asn	Val	Trp	Glu	Trp	Thr	Ala	Ser	
	230								235					240	
Pro	Tyr	Gln	Ala	Ala	Glu	Gln	Asp	Met	Arg	Val	Leu	Arg	Gly	Ala	
	245								250					255	
Ser	Trp	Ile	Asp	Thr	Ala	Asp	Gly	Ser	Ala	Asn	His	Arg	Ala	Arg	
	260								265					270	
Val	Thr	Thr	Arg	Met	Gly	Asn	Thr	Pro	Asp	Ser	Ala	Ser	Asp	Asn	
	275								280					285	
Leu	Gly	Phe	Arg	Cys	Ala	Ala	Asp	Ala	Gly	Arg	Pro	Pro	Gly	Glu	
	290								295					300	
Leu															

<210> 6

<211> 250

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 397663CD1

<400> 6

Met Glu Val Arg Asn His Gln Gln Lys Leu Arg Pro Arg Asp

1	5	10	15											
Trp	Pro	Gln	Lys	Pro	Gln	Cys	His	Gly	Ser	Gly	Val	Ile	His	Gly
				20					25				30	
Asn	Ser	Pro	Leu	Cys	Pro	Asn	Trp	Gln	Val	Phe	Pro	Leu	Val	Arg
				35					40				45	
Pro	His	Arg	Gln	Ser	Arg	Gln	Leu	Gln	Val	Pro	Glu	Pro	Ile	Gln
				50					55				60	
Ala	Gly	Gly	Pro	Ser	Cys	Gly	His	His	Ser	Pro	Trp	Arg	Leu	Phe
				65					70				75	
Leu	Pro	Gln	Arg	Lys	Ser	Gln	Val	Ser	Arg	Gly	Gly	Arg	Leu	Ala
				80					85				90	
Cys	Leu	Leu	Ser	Tyr	Ala	Gly	Leu	Ser	Gly	Asp	Asp	Pro	Asp	Leu
				95					100				105	
Gly	Pro	Ala	His	Val	Val	Thr	Val	Ile	Ala	Arg	Gln	Arg	Gly	Asp
				110					115				120	
Gln	Leu	Leu	Val	Pro	Phe	Ser	Thr	Lys	Ser	Gly	Asp	Thr	Leu	Leu
				125					130				135	
Leu	His	His	Gly	Asp	Phe	Ser	Ala	Glu	Glu	Val	Phe	His	Arg	Glu
				140					145				150	
Leu	Arg	Ser	Asn	Ser	Met	Lys	Thr	Trp	Gly	Leu	Arg	Ala	Ala	Gly
				155					160				165	
Trp	Met	Ala	Met	Phe	Met	Gly	Leu	Asn	Leu	Met	Thr	Arg	Ile	Leu
				170					175				180	
Tyr	Thr	Leu	Val	Asp	Trp	Phe	Pro	Val	Phe	Arg	Asp	Leu	Val	Asn
				185					190				195	
Ile	Gly	Leu	Lys	Ala	Phe	Ala	Phe	Cys	Val	Ala	Thr	Ser	Leu	Thr
				200					205				210	
Leu	Leu	Thr	Val	Ala	Ala	Gly	Trp	Leu	Phe	Tyr	Arg	Pro	Leu	Trp
				215					220				225	
Ala	Leu	Leu	Ile	Ala	Gly	Leu	Ala	Leu	Val	Pro	Ile	Leu	Val	Ala
				230					235				240	
Arg	Thr	Arg	Val	Pro	Ala	Lys	Lys	Leu	Glu					
				245					250					

<210> 7
<211> 371
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 673766CD1

<400> 7

Met	Glu	Leu	Glu	Leu	Asp	Ala	Gly	Asp	Gln	Asp	Leu	Leu	Ala	Phe
1				5					10				15	
Leu	Leu	Glu	Glu	Ser	Gly	Asp	Leu	Gly	Thr	Ala	Pro	Asp	Glu	Ala
				20					25				30	
Val	Arg	Ala	Pro	Leu	Asp	Trp	Ala	Leu	Pro	Leu	Ser	Glu	Val	Pro
				35					40				45	
Ser	Asp	Trp	Glu	Val	Asp	Asp	Leu	Leu	Cys	Ser	Leu	Leu	Ser	Pro
				50					55				60	
Pro	Ala	Ser	Leu	Asn	Ile	Leu	Ser	Ser	Ser	Asn	Pro	Cys	Leu	Val
				65					70				75	
His	His	Asp	His	Thr	Tyr	Ser	Leu	Pro	Arg	Glu	Thr	Val	Ser	Met
				80					85				90	
Asp	Leu	Glu	Ser	Glu	Ser	Cys	Arg	Lys	Glu	Gly	Thr	Gln	Met	Thr
				95					100				105	
Pro	Gln	His	Met	Glu	Glu	Leu	Ala	Glu	Gln	Glu	Ile	Ala	Arg	Leu
				110					115				120	
Val	Leu	Thr	Asp	Glu	Glu	Lys	Ser	Leu	Leu	Glu	Lys	Glu	Gly	Leu

	125	130	135
Ile Leu Pro Glu Thr Leu Pro Leu Thr Lys Thr Glu Glu Gln Ile			
140	145	150	
Leu Lys Arg Val Arg Arg Lys Ile Arg Asn Lys Arg Ser Ala Gln			
155	160	165	
Glu Ser Arg Arg Lys Lys Lys Val Tyr Val Gly Gly Leu Glu Ser			
170	175	180	
Arg Val Leu Lys Tyr Thr Ala Gln Asn Met Glu Leu Gln Asn Lys			
185	190	195	
Val Gln Leu Leu Glu Glu Gln Asn Leu Ser Leu Leu Asp Gln Leu			
200	205	210	
Arg Lys Leu Gln Ala Met Val Ile Glu Ile Ser Asn Lys Thr Ser			
215	220	225	
Ser Ser Ser Thr Cys Ile Leu Val Leu Leu Val Ser Phe Cys Leu			
230	235	240	
Leu Leu Val Pro Ala Met Tyr Ser Ser Asp Thr Arg Gly Ser Leu			
245	250	255	
Pro Ala Glu His Gly Val Leu Ser Arg Gln Leu Arg Ala Leu Pro			
260	265	270	
Ser Glu Asp Pro Tyr Gln Leu Glu Leu Pro Ala Leu Gln Ser Glu			
275	280	285	
Val Pro Lys Asp Ser Thr His Gln Trp Leu Asp Gly Ser Asp Cys			
290	295	300	
Val Leu Gln Ala Pro Gly Asn Thr Ser Cys Leu Leu His Tyr Met			
305	310	315	
Pro Gln Ala Pro Ser Ala Glu Pro Pro Leu Glu Trp Pro Phe Pro			
320	325	330	
Asp Leu Phe Ser Glu Pro Leu Cys Arg Gly Pro Ile Leu Pro Leu			
335	340	345	
Gln Ala Asn Leu Thr Arg Lys Gly Gly Trp Leu Pro Thr Gly Ser			
350	355	360	
Pro Ser Val Ile Leu Gln Asp Arg Tyr Ser Gly			
365	370		

<210> 8
<211> 148
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1504753CD1

<400> 8

Met Asn Ser Leu Ala Thr Ser Val Phe Ser Ile Ala Ile Pro Val			
1	5	10	15
Asp Gly Asp Glu Asp Arg Asn Pro Ser Thr Ala Phe Tyr Gln Ala			
20	25	30	
Phe His Leu Asn Thr Leu Lys Glu Ser Lys Ser Leu Trp Asp Ser			
35	40	45	
Ala Ser Gly Gly Val Val Ala Ile Asp Asn Lys Ile Glu Gln			
50	55	60	
Ala Met Asp Leu Val Lys Ser His Leu Met Tyr Ala Val Arg Glu			
65	70	75	
Glu Val Glu Val Leu Lys Glu Gln Ile Lys Glu Leu Val Glu Arg			
80	85	90	
Asn Ser Leu Leu Glu Arg Glu Asn Ala Leu Leu Lys Ser Leu Ser			
95	100	105	
Ser Asn Asp Gln Leu Ser Gln Leu Pro Thr Gln Gln Ala Asn Pro			
110	115	120	
Gly Ser Thr Ser Gln Gln Ala Val Ile Ala Gln Pro Pro Gln			

125	130	135
Pro Thr Gln Pro Pro Gln Gln Pro Asn Val Ser Ser Ala		
140	145	

<210> 9
<211> 127
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1760185CD1

<400> 9

Met Arg Pro Leu Asp Ile Val Glu Leu Ala Glu Pro Glu Glu Val		
1	5	10
Glu Val Leu Glu Pro Glu Glu Asp Phe Glu Gln Phe Leu Leu Pro		
20	25	30
Val Ile Asn Glu Met Arg Glu Asp Ile Ala Ser Leu Thr Arg Glu		
35	40	45
His Gly Arg Ala Tyr Leu Arg Asn Arg Ser Lys Leu Trp Glu Met		
50	55	60
Asp Asn Met Leu Ile Gln Ile Lys Thr Gln Val Glu Ala Ser Glu		
65	70	75
Glu Ser Ala Leu Asn His Leu Gln Asn Pro Gly Asp Ala Ala Glu		
80	85	90
Gly Arg Ala Ala Lys Arg Cys Glu Lys Ala Glu Glu Lys Ala Lys		
95	100	105
Glu Ile Ala Lys Met Ala Glu Met Leu Val Glu Leu Val Arg Arg		
110	115	120
Ile Glu Lys Ser Glu Ser Ser		
125		

<210> 10
<211> 383
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1805061CD1

<400> 10

Met Pro Tyr Val Asp Arg Gln Asn Arg Ile Cys Gly Phe Leu Asp		
1	5	10
Ile Glu Glu Asn Glu Asn Ser Gly Lys Phe Leu Arg Arg Tyr Phe		
20	25	30
Ile Leu Asp Thr Arg Glu Asp Ser Phe Val Trp Tyr Met Asp Asn		
35	40	45
Pro Gln Asn Leu Pro Ser Gly Ser Ser Arg Val Gly Ala Ile Lys		
50	55	60
Leu Thr Tyr Ile Ser Lys Val Ser Asp Ala Thr Lys Leu Arg Pro		
65	70	75
Lys Ala Glu Phe Cys Phe Val Met Asn Ala Gly Met Arg Lys Tyr		
80	85	90
Phe Leu Gln Ala Asn Asp Gln Gln Asp Leu Val Glu Trp Val Asn		
95	100	105

Val	Leu	Asn	Lys	Ala	Ile	Lys	Ile	Thr	Val	Pro	Lys	Gln	Ser	Asp
110									115					120
Ser	Gln	Pro	Asn	Ser	Asp	Asn	Leu	Ser	Arg	His	Gly	Glu	Cys	Gly
125									130					135
Lys	Lys	Gln	Val	Ser	Tyr	Arg	Thr	Asp	Ile	Val	Gly	Gly	Val	Pro
140									145					150
Ile	Ile	Thr	Pro	Thr	Gln	Lys	Glu	Glu	Val	Asn	Glu	Cys	Gly	Glu
155									160					165
Ser	Ile	Asp	Arg	Asn	Asn	Leu	Lys	Arg	Ser	Gln	Ser	His	Leu	Pro
170									175					180
Tyr	Phe	Thr	Pro	Lys	Pro	Pro	Gln	Asp	Ser	Ala	Val	Ile	Lys	Ala
185									190					195
Gly	Tyr	Cys	Val	Lys	Gln	Gly	Ala	Val	Met	Lys	Asn	Trp	Lys	Arg
200									205					210
Arg	Tyr	Phe	Gln	Leu	Asp	Glu	Asn	Thr	Ile	Gly	Tyr	Phe	Lys	Ser
215									220					225
Glu	Leu	Glu	Lys	Glu	Pro	Leu	Arg	Val	Ile	Pro	Leu	Lys	Glu	Val
230									235					240
His	Lys	Val	Gln	Glu	Cys	Lys	Gln	Ser	Asp	Ile	Met	Met	Arg	Asp
245									250					255
Asn	Ile	Phe	Glu	Ile	Val	Thr	Thr	Ser	Arg	Thr	Phe	Tyr	Val	Gln
260									265					270
Ala	Asp	Ser	Pro	Glu	Glu	Met	His	Ser	Trp	Ile	Lys	Ala	Val	Ser
275									280					285
Gly	Ala	Ile	Val	Ala	Gln	Arg	Gly	Pro	Gly	Arg	Ser	Ala	Ser	Ser
290									295					300
Met	Arg	Gln	Ala	Arg	Arg	Leu	Ser	Asn	Pro	Cys	Ile	Gln	Arg	Ser
305									310					315
Ile	Pro	Pro	Val	Leu	Gln	Asn	Pro	Asn	Thr	Leu	Ser	Val	Leu	Pro
320									325					330
Thr	Gln	Pro	Pro	Pro	Pro	His	Ile	Pro	Gln	Pro	Leu	Ala	Ala	Thr
335									340					345
Leu	Trp	Ser	Gln	Pro	Leu	Pro	Trp	Arg	Ser	Glu	Asp	Phe	Thr	Ser
350									355					360
Leu	Leu	Pro	Arg	Ser	Ser	Gln	Gly	Thr	Ser	Arg	Ser	Arg	Leu	Ser
365									370					375
Leu	Gln	Glu	Asn	Gln	Leu	Pro	Lys							
					380									

<210> 11
<211> 254
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1850120CD1

<400> 11
Met Ser Leu Ala Arg Gly His Gly Asp Thr Ala Ala Ser Thr Ala
1 5 10 15
Ala Pro Leu Ser Glu Glu Gly Glu Val Thr Ser Gly Leu Gln Ala
20 25 30
Leu Ala Val Glu Asp Thr Gly Gly Pro Ser Ala Ser Ala Gly Lys
35 40 45
Ala Glu Asp Glu Gly Glu Gly Arg Glu Glu Thr Glu Arg Glu
50 55 60
Gly Ser Gly Gly Glu Ala Gln Gly Glu Val Pro Ser Ala Gly
65 70 75
Gly Glu Glu Pro Ala Glu Glu Asp Ser Glu Asp Trp Cys Val Pro
80 85 90
Cys Ser Asp Glu Glu Val Glu Leu Pro Ala Asp Gly Gln Pro Trp
95 100 105

Met Pro Pro Pro Ser Glu Ile Gln Arg Leu Tyr Glu Leu Leu Ala		
110	115	120
Ala His Gly Thr Leu Glu Leu Gln Ala Glu Ile Leu Pro Arg Arg		
125	130	135
Pro Pro Thr Pro Glu Arg Gln Ser Glu Glu Glu Arg Ser Asp Glu		
140	145	150
Glu Pro Glu Ala Lys Glu Glu Glu Glu Lys Pro His Met Pro		
155	160	165
Thr Glu Phe Asp Phe Asp Asp Glu Pro Val Thr Pro Lys Asp Ser		
170	175	180
Leu Ile Asp Arg Arg Arg Thr Pro Gly Ser Ser Ala Arg Ser Gln		
185	190	195
Lys Arg Glu Ala Arg Leu Asp Lys Val Leu Ser Asp Met Lys Arg		
200	205	210
His Lys Lys Leu Glu Glu Gln Ile Leu Arg Thr Gly Arg Asp Leu		
215	220	225
Phe Ser Leu Asp Ser Glu Asp Pro Ser Pro Ala Ser Pro Pro Leu		
230	235	240
Arg Ser Ser Gly Ser Ser Leu Phe Pro Arg Gln Arg Lys Tyr		
245	250	

<210> 12
<211> 305
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1852290CD1

<400> 12			
Met Ala Leu Cys Ala Leu Thr Arg Ala Leu Arg Ser Leu Asn Leu			
1	5	10	15
Ala Pro Pro Thr Val Ala Ala Pro Ala Pro Ser Leu Phe Pro Ala			
20	25	30	
Ala Gln Met Met Asn Asn Gly Leu Leu Gln Gln Pro Ser Ala Leu			
35	40	45	
Met Leu Leu Pro Cys Arg Pro Val Leu Thr Ser Val Ala Leu Asn			
50	55	60	
Ala Asn Phe Val Ser Trp Lys Ser Arg Thr Lys Tyr Thr Ile Thr			
65	70	75	
Pro Val Lys Met Arg Lys Ser Gly Gly Arg Asp His Thr Gly Arg			
80	85	90	
Ile Arg Val His Gly Ile Gly Gly His Lys Gln Arg Tyr Arg			
95	100	105	
Met Ile Asp Phe Leu Arg Phe Arg Pro Glu Glu Thr Lys Ser Gly			
110	115	120	
Pro Phe Glu Glu Lys Val Ile Gln Val Arg Tyr Asp Pro Cys Arg			
125	130	135	
Ser Ala Asp Ile Ala Leu Val Ala Gly Gly Ser Arg Lys Arg Trp			
140	145	150	
Ile Ile Ala Thr Glu Asn Met Gln Ala Gly Asp Thr Ile Leu Asn			
155	160	165	
Ser Asn His Ile Gly Arg Met Ala Val Ala Ala Arg Glu Gly Asp			
170	175	180	
Ala His Pro Leu Gly Ala Leu Pro Val Gly Thr Leu Ile Asn Asn			
185	190	195	
Val Glu Ser Glu Pro Gly Arg Gly Ala Gln Tyr Ile Arg Ala Ala			
200	205	210	
Gly Thr Cys Gly Val Leu Leu Arg Lys Val Asn Gly Thr Ala Ile			
215	220	225	

Ile Gln Leu Pro Ser Lys Arg Gln Met Gln Val Leu Glu Thr Cys		
230	235	240
Val Ala Thr Val Gly Arg Val Ser Asn Val Asp His Asn Lys Arg		
245	250	255
Val Ile Gly Lys Ala Gly Arg Asn Arg Trp Leu Gly Lys Arg Pro		
260	265	270
Asn Ser Gly Arg Trp His Arg Lys Gly Gly Trp Ala Gly Arg Lys		
275	280	285
Ile Arg Pro Leu Pro Pro Met Lys Ser Tyr Val Lys Leu Pro Ser		
290	295	300
Ala Ser Ala Gln Ser		
305		

<210> 13
<211> 230
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1944530CD1

<400> 13			
Met Gly Gln Gln Ile Ser Asp Gln Thr Gln Leu Val Ile Asn Lys			
1	5	10	15
Leu Pro Glu Lys Val Ala Lys His Val Thr Leu Val Arg Glu Ser			
20	25	30	
Gly Ser Leu Thr Tyr Glu Glu Phe Leu Gly Arg Val Ala Glu Leu			
35	40	45	
Asn Asp Val Thr Ala Lys Val Ala Ser Gly Gln Glu Lys His Leu			
50	55	60	
Leu Phe Glu Val Gln Pro Gly Ser Asp Ser Ser Ala Phe Trp Lys			
65	70	75	
Val Val Val Arg Val Val Cys Thr Lys Ile Asn Lys Ser Ser Gly			
80	85	90	
Ile Val Glu Ala Ser Arg Ile Met Asn Leu Tyr Gln Phe Ile Gln			
95	100	105	
Leu Tyr Lys Asp Ile Thr Ser Gln Ala Ala Gly Val Leu Ala Gln			
110	115	120	
Ser Ser Thr Ser Glu Glu Pro Asp Glu Asn Ser Ser Ser Val Thr			
125	130	135	
Ser Cys Gln Ala Ser Leu Trp Met Gly Arg Val Lys Gln Leu Thr			
140	145	150	
Asp Glu Glu Cys Cys Ile Cys Met Asp Gly Arg Ala Asp Leu			
155	160	165	
Ile Leu Pro Cys Ala His Ser Phe Cys Gln Lys Cys Ile Asp Lys			
170	175	180	
Trp Ser Asp Arg His Arg Asn Cys Pro Ile Cys Arg Leu Gln Met			
185	190	195	
Thr Gly Ala Asn Glu Ser Trp Val Val Ser Asp Ala Pro Thr Glu			
200	205	210	
Asp Asp Met Ala Asn Tyr Ile Leu Asn Met Ala Asp Glu Ala Gly			
215	220	225	
Gln Pro His Arg Pro			
230			

<210> 14
<211> 292
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte clone 2019742CB1

<400> 14

Met	Ser	Gly	Met	Glu	Ala	Thr	Val	Thr	Ile	Pro	Ile	Trp	Gln	Asn
1				5					10				15	
Lys	Pro	His	Gly	Ala	Ala	Arg	Ser	Val	Val	Arg	Arg	Ile	Gly	Thr
					20				25				30	
Asn	Leu	Pro	Leu	Lys	Pro	Cys	Ala	Arg	Ala	Ser	Phe	Glu	Thr	Leu
					35				40				45	
Pro	Asn	Ile	Ser	Asp	Leu	Cys	Leu	Arg	Asp	Val	Pro	Pro	Val	Pro
					50				55				60	
Thr	Leu	Ala	Asp	Ile	Ala	Trp	Ile	Ala	Ala	Asp	Glu	Glu	Thr	
					65				70				75	
Tyr	Ala	Arg	Val	Arg	Ser	Asp	Thr	Arg	Pro	Leu	Arg	His	Thr	Trp
					80				85				90	
Lys	Pro	Ser	Pro	Leu	Ile	Val	Met	Gln	Arg	Asn	Ala	Ser	Val	Pro
					95				100				105	
Asn	Leu	Arg	Gly	Ser	Glu	Glu	Arg	Leu	Leu	Ala	Leu	Lys	Lys	Pro
					110				115				120	
Ala	Leu	Pro	Ala	Leu	Ser	Arg	Thr	Thr	Glu	Leu	Gln	Asp	Glu	Leu
					125				130				135	
Ser	His	Leu	Arg	Ser	Gln	Ile	Ala	Lys	Ile	Val	Ala	Ala	Asp	Ala
					140				145				150	
Ala	Ser	Ala	Ser	Leu	Thr	Pro	Asp	Phe	Leu	Ser	Pro	Gly	Ser	Ser
					155				160				165	
Asn	Val	Ser	Ser	Pro	Leu	Pro	Cys	Phe	Gly	Ser	Ser	Phe	His	Ser
					170				175				180	
Thr	Thr	Ser	Phe	Val	Ile	Ser	Asp	Ile	Thr	Glu	Glu	Thr	Glu	Val
					185				190				195	
Glu	Val	Pro	Glu	Leu	Pro	Ser	Val	Pro	Leu	Leu	Cys	Ser	Ala	Ser
					200				205				210	
Pro	Glu	Cys	Cys	Lys	Pro	Glu	His	Lys	Ala	Ala	Cys	Ser	Ser	Ser
					215				220				225	
Glu	Glu	Asp	Asp	Cys	Val	Ser	Leu	Ser	Lys	Ala	Ser	Ser	Phe	Ala
					230				235				240	
Asp	Met	Met	Gly	Ile	Leu	Lys	Asp	Phe	His	Arg	Met	Lys	Gln	Ser
					245				250				255	
Gln	Asp	Leu	Asn	Arg	Ser	Leu	Leu	Lys	Glu	Glu	Asp	Pro	Ala	Val
					260				265				270	
Leu	Ile	Ser	Glu	Val	Leu	Arg	Arg	Lys	Phe	Ala	Leu	Lys	Glu	Glu
					275				280				285	
Asp	Ile	Ser	Arg	Lys	Gly	Asn								
					290									

<210> 15
 <211> 232
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2056042CD1

<400> 15

Met	Ala	Ser	Ser	Ala	Ala	Ser	Ser	Glu	His	Phe	Glu	Lys	Leu	His
1					5				10				15	
Glu	Ile	Phe	Arg	Gly	Leu	His	Glu	Asp	Leu	Gln	Gly	Val	Pro	Glu
					20				25				30	
Arg	Leu	Leu	Gly	Thr	Ala	Gly	Thr	Glu	Glu	Lys	Lys	Lys	Leu	Ile
					35				40				45	
Arg	Asp	Phe	Asp	Glu	Lys	Gln	Gln	Ala	Asn	Glu	Thr	Leu	Ala	
					50				55				60	

Glu Met Glu Glu Glu Leu Arg Tyr Ala Pro Leu Ser Phe Arg Asn
 65 70 75
 Pro Met Met Ser Lys Leu Arg Asn Tyr Arg Lys Asp Leu Ala Lys
 80 85 90
 Leu His Arg Glu Val Arg Ser Thr Pro Leu Thr Ala Thr Pro Gly
 95 100 105
 Gly Arg Gly Asp Met Lys Tyr Gly Ile Tyr Ala Val Glu Asn Glu
 110 115 120
 His Met Asn Arg Leu Gln Ser Gln Arg Ala Met Leu Leu Gln Gly
 125 130 135
 Thr Glu Ser Leu Asn Arg Ala Thr Gln Ser Ile Glu Arg Ser His
 140 145 150
 Arg Ile Ala Thr Glu Thr Asp Gln Ile Gly Ser Glu Ile Ile Glu
 155 160 165
 Glu Leu Gly Glu Gln Arg Asp Gln Leu Glu Arg Thr Lys Ser Arg
 170 175 180
 Leu Val Asn Thr Ser Glu Asn Leu Ser Lys Ser Arg Lys Ile Leu
 185 190 195
 Arg Ser Met Ser Arg Lys Val Thr Thr Asn Lys Leu Leu Leu Ser
 200 205 210
 Ile Ile Ile Leu Leu Glu Leu Ala Ile Leu Gly Gly Leu Val Tyr
 215 220 225
 Tyr Lys Phe Phe Arg Ser His
 230

<210> 16
 <211> 376
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2398682CD1

<400> 16

Met	Arg	Gly	Lys	Thr	Phe	Arg	Phe	Glu	Met	Gln	Arg	Asp	Leu	Val
1				5				10					15	
Ser	Phe	Pro	Leu	Ser	Pro	Ala	Val	Arg	Val	Lys	Leu	Val	Ser	Ala
	20							25					30	
Gly	Phe	Gln	Thr	Ala	Glu	Glu	Leu	Leu	Glu	Val	Lys	Pro	Ser	Glu
	35							40				45		
Leu	Ser	Lys	Glu	Val	Gly	Ile	Ser	Lys	Ala	Glu	Ala	Leu	Glu	Thr
	50							55				60		
Leu	Gln	Ile	Ile	Arg	Arg	Glu	Cys	Leu	Thr	Asn	Lys	Pro	Arg	Tyr
	65							70				75		
Ala	Gly	Thr	Ser	Glu	Ser	His	Lys	Cys	Thr	Ala	Leu	Glu	Leu	
	80							85				90		
Leu	Glu	Gln	Glu	His	Thr	Gln	Gly	Phe	Ile	Ile	Thr	Phe	Cys	Ser
	95							100				105		
Ala	Leu	Asp	Asp	Ile	Leu	Gly	Gly	Val	Pro	Leu	Met	Lys	Thr	
	110							115				120		
Thr	Glu	Ile	Cys	Gly	Ala	Pro	Gly	Val	Gly	Lys	Thr	Gln	Leu	Cys
	125							130				135		
Met	Gln	Leu	Ala	Val	Asp	Val	Gln	Ile	Pro	Glu	Cys	Phe	Gly	
	140							145				150		
Val	Ala	Gly	Glu	Ala	Val	Phe	Ile	Asp	Thr	Glu	Gly	Ser	Phe	Met
	155							160				165		
Val	Asp	Arg	Val	Val	Asp	Leu	Ala	Thr	Ala	Cys	Ile	Gln	His	Leu
	170							175				180		
Gln	Leu	Ile	Ala	Glu	Lys	His	Lys	Gly	Glu	Glu	His	Arg	Lys	Ala
	185							190				195		

Leu Glu Asp Phe Thr Leu Asp Asn Ile Leu Ser His Ile Tyr Tyr
 200 205 210
 Phe Arg Cys Arg Asp Tyr Thr Glu Leu Leu Ala Gln Val Tyr Leu
 215 220 225
 Leu Pro Asp Phe Leu Ser Glu His Ser Lys Val Arg Leu Val Ile
 230 235 240
 Val Asp Gly Ile Ala Phe Pro Phe Arg His Asp Leu Asp Asp Leu
 245 250 255
 Ser Leu Arg Thr Arg Leu Leu Asn Gly Leu Ala Gln Gln Met Ile
 260 265 270
 Ser Leu Ala Asn Asn His Arg Leu Ala Val Ile Leu Thr Asn Gln
 275 280 285
 Met Thr Thr Lys Ile Asp Arg Asn Gln Ala Leu Leu Val Pro Ala
 290 295 300
 Leu Gly Glu Ser Trp Gly His Ala Ala Thr Ile Arg Leu Ile Phe
 305 310 315
 His Trp Asp Arg Lys Gln Arg Leu Ala Thr Leu Tyr Lys Ser Pro
 320 325 330
 Ser Gln Lys Glu Cys Thr Val Leu Phe Gln Ile Lys Pro Gln Gly
 335 340 345
 Phe Arg Asp Thr Val Val Thr Ser Ala Cys Ser Leu Gln Thr Glu
 350 355 360
 Gly Ser Leu Ser Thr Arg Lys Arg Ser Arg Asp Pro Glu Glu Glu
 365 370 375
 Leu

<210> 17
 <211> 204
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2518753CD1

<400> 17

Met	Ala	Lys	Val	Gln	Val	Asn	Asn	Val	Val	Val	Leu	Asp	Asn	Pro
1				5				10						15
Ser	Pro	Phe	Tyr	Asn	Pro	Phe	Gln	Phe	Glu	Ile	Thr	Phe	Glu	Cys
				20				25						30
Ile	Glu	Asp	Leu	Ser	Glu	Asp	Leu	Glu	Trp	Lys	Ile	Ile	Tyr	Val
				35				40						45
Gly	Ser	Ala	Glu	Ser	Glu	Glu	Tyr	Asp	Gln	Val	Leu	Asp	Ser	Val
				50				55						60
Leu	Val	Gly	Pro	Val	Pro	Ala	Gly	Arg	His	Met	Phe	Val	Phe	Gln
				65				70						75
Ala	Asp	Ala	Pro	Asn	Pro	Gly	Leu	Ile	Pro	Asp	Ala	Asp	Ala	Val
				80				85						90
Gly	Val	Thr	Val	Val	Leu	Ile	Thr	Cys	Thr	Tyr	Arg	Gly	Gln	Glu
				95				100						105
Phe	Ile	Arg	Val	Gly	Tyr	Tyr	Val	Asn	Asn	Glu	Tyr	Thr	Glu	Thr
				110				115						120
Glu	Leu	Arg	Glu	Asn	Pro	Pro	Val	Lys	Pro	Asp	Phe	Ser	Lys	Leu
				125				130						135
Gln	Arg	Asn	Ile	Leu	Ala	Ser	Asn	Pro	Arg	Val	Thr	Arg	Phe	His
				140				145						150
Ile	Asn	Trp	Glu	Asp	Asn	Thr	Glu	Lys	Leu	Glu	Asp	Ala	Glu	Ser
				155				160						165
Ser	Asn	Pro	Asn	Leu	Gln	Ser	Leu	Leu	Ser	Thr	Asp	Ala	Leu	Pro
				170				175						180
Ser	Ala	Ser	Lys	Gly	Trp	Ser	Thr	Ser	Glu	Asn	Ser	Leu	Asn	Val
				185				190						195
Met	Leu	Glu	Ser	His	Met	Asp	Cys	Met						

<210> 18
<211> 713
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2709055CD1

<400> 18

Met	Tyr	Leu	Leu	Ile	Gln	Met	Cys	Tyr	His	Leu	Ala	Leu	Pro	Trp
1				5					10				15	
Tyr	Ser	Lys	Tyr	Phe	Pro	Tyr	Leu	Ala	Leu	Ile	His	Thr	Ile	Ile
				20					25				30	
Leu	Met	Ala	Ser	Ser	Asn	Phe	Trp	Phe	Lys	Tyr	Pro	Lys	Thr	Cys
				35					40				45	
Ser	Lys	Val	Glu	His	Ser	Val	Ser	Ile	Leu	Gly	Lys	Cys	Phe	Glu
				50					55				60	
Ser	Pro	Trp	Thr	Thr	Lys	Ala	Leu	Ser	Glu	Thr	Ala	Cys	Glu	Asp
				65					70				75	
Ser	Glu	Glu	Asn	Lys	Gln	Arg	Ile	Thr	Gly	Ala	Gln	Thr	Leu	Pro
				80					85				90	
Lys	His	Val	Ser	Thr	Ser	Ser	Asp	Glu	Gly	Ser	Pro	Ser	Ala	Ser
				95					100				105	
Thr	Pro	Met	Ile	Asn	Lys	Thr	Gly	Phe	Lys	Phe	Ser	Ala	Glu	Lys
				110					115				120	
Pro	Val	Ile	Glu	Val	Pro	Ser	Met	Thr	Ile	Leu	Asp	Lys	Lys	Asp
				125					130				135	
Gly	Glu	Gln	Ala	Lys	Ala	Leu	Phe	Glu	Lys	Val	Arg	Lys	Phe	Arg
				140					145				150	
Ala	His	Val	Glu	Asp	Ser	Asp	Leu	Ile	Tyr	Lys	Leu	Tyr	Val	Val
				155					160				165	
Gln	Thr	Val	Ile	Lys	Thr	Ala	Lys	Phe	Ile	Phe	Ile	Cys	Tyr	
				170					175				180	
Thr	Ala	Asn	Phe	Val	Asn	Ala	Ile	Ser	Phe	Glu	His	Val	Cys	Lys
				185					190				195	
Pro	Lys	Val	Glu	His	Leu	Ile	Gly	Tyr	Glu	Val	Phe	Glu	Cys	Thr
				200					205				210	
His	Asn	Met	Ala	Tyr	Met	Leu	Lys	Lys	Leu	Leu	Ile	Ser	Tyr	Ile
				215					220				225	
Ser	Ile	Ile	Cys	Val	Tyr	Gly	Phe	Ile	Cys	Leu	Tyr	Thr	Leu	Phe
				230					235				240	
Trp	Leu	Phe	Arg	Ile	Pro	Leu	Lys	Glu	Tyr	Ser	Phe	Glu	Lys	Val
				245					250				255	
Arg	Glu	Glu	Ser	Ser	Phe	Ser	Asp	Ile	Pro	Asp	Val	Lys	Asn	Asp
				260					265				270	
Phe	Ala	Phe	Leu	Leu	His	Met	Val	Asp	Gln	Tyr	Asp	Gln	Leu	Tyr
				275					280				285	
Ser	Lys	Arg	Phe	Gly	Val	Phe	Leu	Ser	Glu	Val	Ser	Glu	Asn	Lys
				290					295				300	
Leu	Arg	Glu	Ile	Ser	Leu	Asn	His	Glu	Trp	Thr	Phe	Glu	Lys	Leu
				305					310				315	
Arg	Gln	His	Ile	Ser	Arg	Asn	Ala	Gln	Asp	Lys	Gln	Glu	Leu	His
				320					325				330	
Leu	Phe	Met	Leu	Ser	Gly	Val	Pro	Asp	Ala	Val	Phe	Asp	Leu	Thr
				335					340				345	
Asp	Leu	Asp	Val	Leu	Lys	Leu	Glu	Leu	Ile	Pro	Glu	Ala	Lys	Ile
				350					355				360	
Pro	Ala	Lys	Ile	Ser	Gln	Met	Thr	Asn	Leu	Gln	Glu	Leu	His	Leu
				365					370				375	
Cys	His	Cys	Pro	Ala	Lys	Val	Glu	Gln	Thr	Ala	Phe	Ser	Phe	Leu

380	385	390
Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val Ala		
395	400	405
Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu		
410	415	420
Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly		
425	430	435
Leu Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val		
440	445	450
Lys Ser Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala		
455	460	465
Pro His Leu Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu		
470	475	480
Leu Val Leu Asn Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu		
485	490	495
Glu Leu Gln Asn Cys Glu Leu Glu Arg Ile Pro His Ala Ile Phe		
500	505	510
Ser Leu Ser Asn Leu Gln Glu Leu Asp Leu Lys Ser Asn Asn Ile		
515	520	525
Arg Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu Lys Arg Leu		
530	535	540
Thr Cys Leu Lys Leu Trp His Asn Lys Ile Val Thr Ile Pro Pro		
545	550	555
Ser Ile Thr His Val Lys Asn Leu Glu Ser Leu Tyr Phe Ser Asn		
560	565	570
Asn Lys Leu Glu Ser Leu Pro Val Ala Val Phe Ser Leu Gln Lys		
575	580	585
Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile Ser Met Ile Pro		
590	595	600
Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu His Ile Thr		
605	610	615
Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys Cys Ile		
620	625	630
Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser Leu		
635	640	645
Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu		
650	655	660
Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys		
665	670	675
Arg Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe		
680	685	690
Asp Thr Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile		
695	700	705
Asn Ile Pro Phe Ala Asn Gly Ile		
710		

<210> 19
<211> 360
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2724537CD1

<400> 19
Met Ala Ser Leu Leu Ala Lys Asp Ala Tyr Leu Gln Ser Leu Ala
1 5 10 15
Lys Lys Ile Cys Ser His Ser Ala Pro Glu Gln Gln Ala Arg Thr
20 25 30
Arg Ala Gly Lys Thr Gln Gly Ser Glu Thr Ala Gly Pro Pro Lys
35 40 45
Lys Lys Arg Lys Lys Thr Gln Lys Phe Arg Lys Arg Glu Glu

50	55	60
Lys Ala Ala Glu His	Lys Ala Lys Ser	Leu Gly Glu Lys Ser Pro
65	70	75
Ala Ala Ser Gly Ala	Arg Arg Pro Glu Ala	Ala Lys Glu Glu Ala
80	85	90
Ala Trp Ala Ser Ser	Ser Ala Gly Asn	Pro Ala Asp Gly Leu Ala
95	100	105
Thr Glu Pro Glu Ser Val	Phe Ala Leu Asp	Val Leu Arg Gln Arg
110	115	120
Leu His Glu Lys Ile	Gln Glu Ala Arg	Gly Gln Gly Ser Ala Lys
125	130	135
Glu Leu Ser Pro Ala	Ala Leu Glu Lys	Arg Arg Arg Arg Lys Gln
140	145	150
Glu Arg Asp Arg Lys	Lys Arg Lys Arg	Lys Glu Leu Arg Ala Lys
155	160	165
Glu Lys Ala Arg Lys	Ala Glu Glu Ala	Thr Glu Ala Gln Glu Val
170	175	180
Val Glu Ala Thr Pro	Glu Gly Ala Cys	Thr Glu Pro Arg Glu Pro
185	190	195
Pro Gly Leu Ile Phe	Asn Lys Val Glu	Val Ser Glu Asp Glu Pro
200	205	210
Ala Ser Lys Ala Gln	Arg Arg Lys Glu	Lys Arg Gln Arg Val Lys
215	220	225
Gly Asn Leu Thr Pro	Leu Thr Gly Arg	Asn Tyr Arg Gln Leu Leu
230	235	240
Glu Arg Leu Gln Ala	Arg Gln Ser Arg	Leu Asp Glu Leu Arg Gly
245	250	255
Gln Asp Glu Gly Lys	Ala Gln Glu Leu	Glu Ala Lys Met Lys Trp
260	265	270
Thr Asn Leu Leu Tyr	Lys Ala Glu Gly	Val Lys Ile Arg Asp Asp
275	280	285
Glu Arg Leu Leu Gln	Glu Ala Leu Lys	Arg Lys Glu Lys Arg Arg
290	295	300
Ala Gln Arg Gln Arg	Arg Trp Glu Lys	Arg Thr Ala Gly Val Val
305	310	315
Glu Lys Met Gln Gln	Arg Gln Asp Arg	Arg Arg Gln Asn Leu Arg
320	325	330
Arg Lys Lys Ala Ala	Arg Ala Glu Arg	Arg Leu Leu Arg Ala Arg
335	340	345
Lys Lys Gly Arg Ile	Leu Pro Gln Asp	Leu Glu Arg Ala Gly Leu
350	355	360

<210> 20
<211> 196
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 025818CD1

<400> 20
Met Pro Ala Asp Ile Met Glu Lys Asn Ser Ser Ser Pro Val Ala
1 5 10 15
Ala Thr Pro Ala Ser Val Asn Thr Thr Pro Asp Lys Pro Lys Thr
20 25 30
Ala Ser Glu His Arg Lys Ser Ser Lys Pro Ile Met Glu Lys Arg
35 40 45
Arg Arg Ala Arg Ile Asn Glu Ser Leu Ser Gln Leu Lys Thr Leu
50 55 60
Ile Leu Asp Ala Leu Lys Lys Asp Ser Ser Arg His Ser Lys Leu

	65		70		75									
Glu	Lys	Ala	Asp	Ile	Leu	Glu	Met	Thr	Val	Lys	His	Leu	Arg	Asn
				80					85					90
Leu	Gln	Arg	Ala	Gln	Met	Thr	Ala	Ala	Leu	Ser	Thr	Asp	Pro	Ser
				95					100					105
Val	Leu	Gly	Lys	Tyr	Arg	Ala	Gly	Phe	Ser	Glu	Cys	Met	Asn	Glu
				110					115					120
Val	Thr	Arg	Phe	Leu	Ser	Ser	Pro	Ser	Thr	Pro	Ala	Thr	Ala	Ala
				125					130					135
Pro	Pro	Trp	Ala	Pro	Thr	Gln	Cys	His	Leu	Pro	Ala	Ala	Pro	Arg
				140					145					150
Leu	Arg	Arg	Thr	Pro	Cys	Gly	Gly	Arg	Gly	Gly	Thr	Glu	Gly	Ala
				155					160					165
Gln	Ala	Thr	Pro	Pro	Pro	Lys	Leu	Pro	Asn	Pro	Pro	Leu	Phe	Pro
				170					175					180
Pro	Asp	Ser	Lys	Gln	Glu	Leu	Glu	Tyr	Trp	Glu	Arg	Arg	Gly	Leu
				185					190					195
														Phe

<210> 21
<211> 540
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 438283CD1

	400	21												
Met	Leu	Arg	Glu	Glu	Ala	Thr	Lys	Lys	Ser	Lys	Glu	Lys	Glu	Pro
1				5					10					15
Gly	Met	Ala	Leu	Pro	Gln	Gly	Arg	Leu	Ala	Phe	Arg	Asp	Val	Ala
				20					25					30
Ile	Glu	Phe	Ser	Leu	Glu	Glu	Trp	Lys	Cys	Leu	Asn	Pro	Ala	Gln
				35					40					45
Arg	Aia	Leu	Tyr	Arg	Ala	Val	Met	Leu	Glu	Asn	Tyr	Arg	Asn	Leu
				50					55					60
Glu	Phe	Val	Asp	Ser	Ser	Leu	Lys	Ser	Met	Met	Glu	Phe	Ser	Ser
				65					70					75
Thr	Arg	His	Ser	Asn	Thr	Gly	Glu	Val	Ile	His	Thr	Gly	Thr	Leu
				80					85					90
Gln	Arg	His	Lys	Ser	His	His	Ile	Gly	Asp	Phe	Cys	Phe	Pro	Glu
				95					100					105
Met	Lys	Lys	Asp	Ile	His	His	Phe	Glu	Phe	Gln	Trp	Gln	Glu	Val
				110					115					120
Glu	Arg	Asn	Gly	His	Glu	Ala	Pro	Met	Thr	Lys	Ile	Lys	Lys	Leu
				125					130					135
Thr	Gly	Ser	Thr	Asp	Arg	Ser	Asp	His	Arg	His	Ala	Gly	Asn	Lys
				140					145					150
Pro	Ile	Lys	Asp	Gln	Leu	Gly	Leu	Ser	Phe	His	Ser	His	Leu	Pro
				155					160					165
Glu	Leu	His	Met	Phe	Gln	Thr	Lys	Gly	Lys	Ile	Ser	Asn	Gln	Leu
				170					175					180
Asp	Lys	Ser	Ile	Ser	Gly	Ala	Ser	Ser	Ala	Ser	Glu	Ser	Gln	Arg
				185					190					195
Ile	Ser	Cys	Arg	Leu	Lys	Thr	His	Ile	Ser	Asn	Lys	Tyr	Gly	Lys
				200					205					210
Asn	Phe	Leu	His	Ser	Ser	Phe	Thr	Gln	Ile	Gln	Glu	Ile	Cys	Met
				215					220					225
Arg	Glu	Lys	Pro	Cys	Gln	Ser	Asn	Glu	Cys	Gly	Lys	Ala	Phe	Asn
				230					235					240

Tyr	Ser	Ser	Leu	Leu	Arg	Arg	His	His	Ile	Thr	His	Ser	Arg	Glu
					245				250					255
Arg	Glu	Tyr	Lys	Cys	Asp	Val	Cys	Gly	Lys	Ile	Phe	Asn	Gln	Lys
					260				265					270
Gln	Tyr	Ile	Val	Tyr	His	His	Arg	Cys	His	Thr	Gly	Glu	Lys	Thr
					275				280					285
Tyr	Lys	Cys	Asn	Glu	Cys	Gly	Lys	Thr	Phe	Thr	Gln	Met	Ser	Ser
					290				295					300
Leu	Val	Cys	His	Arg	Arg	Leu	His	Thr	Gly	Glu	Lys	Pro	Tyr	Lys
					305				310					315
Cys	Asn	Glu	Cys	Gly	Lys	Thr	Phe	Ser	Glu	Lys	Ser	Ser	Leu	Arg
					320				325					330
Cys	His	Arg	Arg	Leu	His	Thr	Gly	Glu	Lys	Pro	Tyr	Lys	Cys	Asn
					335				340					345
Glu	Cys	Gly	Lys	Thr	Phe	Gly	Arg	Asn	Ser	Ala	Leu	Val	Ile	His
					350				355					360
Lys	Ala	Ile	His	Thr	Gly	Glu	Lys	Pro	Tyr	Lys	Cys	Asn	Glu	Cys
					365				370					375
Gly	Lys	Thr	Phe	Ser	Gln	Lys	Ser	Ser	Leu	Gln	Cys	His	His	Ile
					380				385					390
Leu	His	Thr	Gly	Glu	Lys	Pro	Tyr	Lys	Cys	Glu	Cys	Asp	Asn	
					395				400					405
Val	Tyr	Ile	Arg	Arg	Ser	His	Leu	Glu	Arg	His	Arg	Lys	Ile	His
					410				415					420
Thr	Gly	Glu	Gly	Ser	Tyr	Lys	Cys	Lys	Val	Cys	Asp	Lys	Ala	Phe
					425				430					435
Arg	Ser	Asp	Ser	Cys	Leu	Ala	Asn	His	Thr	Arg	Val	His	Thr	Gly
					440				445					450
Glu	Lys	Pro	Tyr	Lys	Cys	Asn	Lys	Cys	Ala	Lys	Val	Phe	Asn	Gln
					455				460					465
Lys	Gly	Ile	Leu	Ala	Gln	His	Gln	Arg	Val	His	Thr	Gly	Glu	Lys
					470				475					480
Pro	Tyr	Lys	Cys	Asn	Glu	Cys	Gly	Lys	Val	Phe	Asn	Gln	Lys	Ala
					485				490					495
Ser	Leu	Ala	Lys	His	Gln	Arg	Val	His	Thr	Ala	Glu	Lys	Pro	Tyr
					500				505					510
Lys	Cys	Asn	Glu	Cys	Gly	Lys	Ala	Phe	Thr	Gly	Gln	Ser	Thr	Leu
					515				520					525
Ile	His	His	Gln	Ala	Ile	His	Gly	Cys	Arg	Glu	Thr	Leu	Gln	Met
					530				535					540

<210> 22

<211> 549

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 619699CD1

<400> 22

Met	Leu	Glu	Asn	Tyr	Lys	Asn	Leu	Ala	Thr	Val	Gly	Tyr	Gln	Leu
1					5				10					15
Phe	Lys	Pro	Ser	Leu	Ile	Ser	Trp	Leu	Glu	Gln	Glu	Glu	Ser	Arg
					20				25					30
Thr	Val	Gln	Arg	Gly	Asp	Phe	Gln	Ala	Ser	Glu	Trp	Lys	Val	Gln
					35				40					45
Leu	Lys	Thr	Lys	Glu	Leu	Ala	Leu	Gln	Gln	Asp	Val	Leu	Gly	Glu
					50				55					60
Pro	Thr	Ser	Ser	Gly	Ile	Gln	Met	Ile	Gly	Ser	His	Asn	Gly	Gly
					65				70					75
Glu	Val	Ser	Asp	Val	Lys	Gln	Cys	Gly	Asp	Val	Ser	Ser	Glu	His
					80				85					90

Ser Cys Leu Lys Thr His Val Arg Thr Gln Asn Ser Glu Asn Thr
 95 100 105
 Phe Glu Cys Tyr Leu Tyr Gly Val Asp Phe Leu Thr Leu His Lys
 110 115 120
 Lys Thr Ser Thr Gly Glu Gln Arg Ser Val Phe Ser Gln Cys Gly
 125 130 135
 Lys Ala Phe Ser Leu Asn Pro Asp Val Val Cys Gln Arg Thr Cys
 140 145 150
 Thr Gly Glu Lys Ala Phe Asp Cys Ser Asp Ser Gly Lys Ser Phe
 155 160 165
 Ile Asn His Ser His Leu Gln Gly His Leu Arg Thr His Asn Gly
 170 175 180
 Glu Ser Leu His Glu Trp Lys Glu Cys Gly Arg Gly Phe Ile His
 185 190 195
 Ser Thr Asp Leu Ala Val Arg Ile Gln Thr His Arg Ser Glu Lys
 200 205 210
 Pro Tyr Lys Cys Lys Glu Cys Gly Lys Gly Phe Arg Tyr Ser Ala
 215 220 225
 Tyr Leu Asn Ile His Met Gly Thr His Thr Gly Asp Asn Pro Tyr
 230 235 240
 Glu Cys Lys Glu Cys Gly Lys Ala Phe Thr Arg Ser Cys Gln Leu
 245 250 255
 Thr Gln His Arg Lys Thr His Thr Gly Glu Lys Pro Tyr Lys Cys
 260 265 270
 Lys Asp Cys Gly Arg Ala Phe Thr Val Ser Ser Cys Leu Ser Gln
 275 280 285
 His Met Lys Ile His Val Gly Glu Lys Pro Tyr Glu Cys Lys Glu
 290 295 300
 Cys Gly Ile Ala Phe Thr Arg Ser Ser Gln Leu Thr Glu His Leu
 305 310 315
 Lys Thr His Thr Ala Lys Asp Pro Phe Glu Cys Lys Val Cys Gly
 320 325 330
 Lys Ser Phe Arg Asn Ser Ser Cys Leu Ser Asp His Phe Arg Ile
 335 340 345
 His Thr Gly Ile Lys Pro Tyr Lys Cys Lys Asp Cys Gly Lys Ala
 350 355 360
 Phe Thr Gln Asn Ser Asp Leu Thr Lys His Ala Arg Thr His Ser
 365 370 375
 Gly Glu Arg Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ala Phe Ala
 380 385 390
 Arg Ser Ser Arg Leu Ser Glu His Thr Arg Thr His Thr Gly Glu
 395 400 405
 Lys Pro Phe Glu Cys Val Lys Cys Gly Lys Ala Phe Ala Ile Ser
 410 415 420
 Ser Asn Leu Ser Gly His Leu Arg Ile His Thr Gly Glu Lys Pro
 425 430 435
 Phe Glu Cys Leu Glu Cys Gly Lys Ala Phe Thr His Ser Ser Ser
 440 445 450
 Leu Asn Asn His Met Arg Thr His Ser Ala Lys Lys Pro Phe Thr
 455 460 465
 Cys Met Glu Cys Gly Lys Ala Phe Lys Phe Pro Thr Cys Val Asn
 470 475 480
 Leu His Met Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys
 485 490 495
 Gln Cys Gly Lys Ser Phe Ser Tyr Ser Asn Ser Phe Gln Leu His
 500 505 510
 Glu Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys
 515 520 525
 Gly Lys Ala Phe Ser Ser Ser Ser Phe Arg Asn His Glu Arg
 530 535 540
 Arg His Ala Asp Glu Arg Leu Ser Ala
 545

<210> 23
<211> 361
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 693452CD1

<400> 23

Met	Ala	Asp	Phe	Lys	Val	Leu	Ser	Ser	Gln	Asp	Ile	Lys	Trp	Ala
1				5					10					15
Leu	His	Glu	Leu	Lys	Gly	His	Tyr	Ala	Ile	Thr	Arg	Lys	Ala	Leu
				20					25					30
Ser	Asp	Ala	Ile	Lys	Lys	Trp	Gln	Glu	Leu	Ser	Pro	Glu	Thr	Ser
				35					40					45
Gly	Lys	Arg	Lys	Lys	Arg	Lys	Gln	Met	Asn	Gln	Tyr	Ser	Tyr	Ile
				50					55					60
Asp	Phe	Lys	Phe	Glu	Gln	Gly	Asp	Ile	Lys	Ile	Glu	Lys	Arg	Met
				65					70					75
Phe	Phe	Leu	Glu	Asn	Lys	Arg	Arg	His	Cys	Arg	Ser	Tyr	Asp	Arg
				80					85					90
Arg	Ala	Leu	Leu	Pro	Ala	Val	Gln	Gln	Glu	Gln	Glu	Phe	Tyr	Glu
				95					100					105
Gln	Lys	Ile	Lys	Glu	Met	Ala	Glu	His	Glu	Asp	Phe	Leu	Leu	Ala
				110					115					120
Leu	Gln	Met	Asn	Glu	Glu	Gln	Tyr	Gln	Lys	Asp	Gly	Gln	Leu	Ile
				125					130					135
Glu	Cys	Arg	Cys	Cys	Tyr	Gly	Glu	Phe	Pro	Phe	Glu	Glu	Leu	Thr
				140					145					150
Gln	Cys	Ala	Asp	Ala	His	Leu	Phe	Cys	Lys	Glu	Cys	Leu	Ile	Arg
				155					160					165
Tyr	Ala	Gln	Glu	Ala	Val	Phe	Gly	Ser	Gly	Lys	Leu	Glu	Leu	Ser
				170					175					180
Cys	Met	Glu	Gly	Ser	Cys	Thr	Cys	Ser	Phe	Pro	Thr	Ser	Glu	Leu
				185					190					195
Glu	Lys	Val	Leu	Pro	Gln	Thr	Ile	Leu	Tyr	Lys	Tyr	Tyr	Glu	Arg
				200					205					210
Lys	Ala	Glu	Glu	Glu	Val	Ala	Ala	Ala	Tyr	Ala	Asp	Glu	Leu	Val
				215					220					225
Arg	Cys	Pro	Ser	Cys	Ser	Phe	Pro	Ala	Leu	Leu	Asp	Ser	Asp	Val
				230					235					240
Lys	Arg	Phe	Ser	Cys	Pro	Asn	Pro	His	Cys	Arg	Lys	Glu	Thr	Cys
				245					250					255
Arg	Lys	Cys	Gln	Gly	Leu	Trp	Lys	Glu	His	Asn	Gly	Leu	Thr	Cys
				260					265					270
Glu	Glu	Leu	Ala	Glu	Lys	Asp	Asp	Ile	Lys	Tyr	Arg	Thr	Ser	Ile
				275					280					285
Glu	Glu	Lys	Met	Thr	Ala	Ala	Arg	Ile	Arg	Lys	Cys	His	Lys	Cys
				290					295					300
Gly	Thr	Gly	Leu	Ile	Lys	Ser	Glu	Gly	Cys	Asn	Arg	Met	Ser	Cys
				305					310					315
Arg	Cys	Gly	Ala	Gln	Met	Cys	Tyr	Leu	Cys	Arg	Val	Ser	Ile	Asn
				320					325					330
Gly	Tyr	Asp	His	Xaa	Cys	Gln	Gln	Ser	Arg	Leu	Thr	Gly	Ala	Pro
				335					340					345
Phe	Gln	Gly	Val	Phe	Lys	Met	Leu	Ser	Met	Asp	Arg	Leu	Gln	Cys
				350					355					360
Lys														

<210> 24
<211> 241
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 839651CD1

<400> 24

Met	Trp	Pro	Ser	Leu	Glu	Ala	Leu	Cys	Ser	Leu	Phe	Ala	Ala	Arg
1				5					10					15
Ser	Thr	Gly	Ser	Gln	Ala	Gln	Ser	Ala	Pro	Thr	Pro	Ala	Trp	Asp
					20				25					30
Glu	Asp	Thr	Ala	Gln	Ile	Gly	Pro	Lys	Arg	Ile	Arg	Lys	Ala	Ala
					35				40					45
Lys	Arg	Glu	Leu	Met	Pro	Cys	Asp	Phe	Pro	Gly	Cys	Gly	Arg	Ile
					50				55					60
Phe	Ser	Asn	Arg	Gln	Tyr	Leu	Asn	His	His	Lys	Lys	Tyr	Gln	His
					65				70					75
Ile	His	Gln	Lys	Ser	Phe	Ser	Cys	Pro	Glu	Pro	Ala	Cys	Gly	Lys
					80				85					90
Ser	Phe	Asn	Phe	Lys	Lys	His	Leu	Lys	Glu	His	Met	Lys	Leu	His
					95				100					105
Ser	Asp	Thr	Arg	Asp	Tyr	Ile	Cys	Glu	Phe	Cys	Ala	Arg	Ser	Phe
					110				115					120
Arg	Thr	Ser	Ser	Asn	Leu	Val	Ile	His	Arg	Arg	Ile	His	Thr	Gly
					125				130					135
Glu	Lys	Pro	Leu	Gln	Cys	Glu	Ile	Cys	Gly	Phe	Thr	Cys	Arg	Gln
					140				145					150
Lys	Ala	Ser	Leu	Asn	Trp	His	Gln	Arg	Lys	His	Ala	Glu	Thr	Val
					155				160					165
Ala	Ala	Leu	Arg	Phe	Pro	Cys	Glu	Phe	Cys	Gly	Lys	Arg	Phe	Glu
					170				175					180
Lys	Pro	Asp	Ser	Val	Ala	Ala	His	Arg	Ser	Lys	Ser	His	Pro	Ala
					185				190					195
Leu	Leu	Leu	Ala	Pro	Gln	Glu	Ser	Pro	Ser	Gly	Pro	Leu	Glu	Pro
					200				205					210
Cys	Pro	Ser	Ile	Ser	Ala	Pro	Gly	Pro	Leu	Gly	Ser	Ser	Glu	Gly
					215				220					225
Ser	Arg	Pro	Ser	Ala	Ser	Pro	Gln	Ala	Pro	Thr	Leu	Leu	Pro	Gln
					230				235					240
														Gln

<210> 25
<211> 576
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1253545CD1

<400> 25

Met	Ala	Lys	Ala	Gln	Glu	Thr	Gly	His	Leu	Val	Met	Asp	Val	Arg
1				5					10					15
Arg	Tyr	Gly	Lys	Ala	Gly	Ser	Pro	Glu	Thr	Lys	Trp	Ile	Asp	Ala
					20				25					30
Thr	Ser	Gly	Ile	Tyr	Asn	Ser	Glu	Lys	Ser	Ser	Asn	Leu	Ser	Val
					35				40					45
Thr	Thr	Asp	Phe	Ser	Glu	Ser	Leu	Gln	Ser	Ser	Asn	Ile	Glu	Ser

50	55	60
Lys Glu Ile Asn Gly Ile His Asp Glu Ser Asn Ala Phe Glu Ser		
65	70	75
Lys Ala Ser Glu Ser Ile Ser Leu Lys Asn Leu Lys Arg Arg Ser		
80	85	90
Gln Phe Phe Glu Gln Gly Ser Ser Asp Ser Val Val Pro Asp Leu		
95	100	105
Pro Val Pro Thr Ile Ser Ala Pro Ser Arg Trp Val Trp Asp Gln		
110	115	120
Glu Glu Glu Arg Lys Arg Gln Glu Arg Trp Gln Lys Glu Gln Asp		
125	130	135
Arg Leu Leu Gln Glu Lys Tyr Gln Arg Glu Gln Glu Lys Leu Arg		
140	145	150
Glu Glu Trp Gln Arg Ala Lys Gln Glu Ala Glu Arg Glu Asn Ser		
155	160	165
Lys Tyr Leu Asp Glu Glu Leu Met Val Leu Ser Ser Asn Ser Met		
170	175	180
Ser Leu Thr Thr Arg Glu Pro Ser Leu Ala Thr Trp Glu Ala Thr		
185	190	195
Trp Ser Glu Gly Ser Lys Ser Ser Asp Arg Glu Gly Thr Arg Ala		
200	205	210
Gly Glu Glu Glu Arg Arg Gln Pro Gln Glu Glu Val Val His Glu		
215	220	225
Asp Gin Gly Lys Lys Pro Gln Asp Gln Leu Val Ile Glu Arg Glu		
230	235	240
Arg Lys Trp Glu Gln Gln Leu Gln Glu Glu Gln Glu Gln Lys Arg		
245	250	255
Leu Gin Ala Glu Ala Glu Glu Gln Lys Arg Pro Ala Glu Glu Gln		
260	265	270
Lys Arg Gln Ala Glu Ile Glu Arg Glu Thr Ser Val Arg Ile Tyr		
275	280	285
Gln Tyr Arg Arg Pro Val Asp Ser Tyr Asp Ile Pro Lys Thr Glu		
290	295	300
Glu Ala Ser Ser Gly Phe Leu Pro Gly Asp Arg Asn Lys Ser Arg		
305	310	315
Ser Thr Thr Glu Leu Asp Asp Tyr Ser Thr Asn Lys Asn Gly Asn		
320	325	330
Asn Lys Tyr Leu Asp Gln Ile Gly Asn Thr Thr Ser Ser Gln Arg		
335	340	345
Arg Ser Lys Lys Glu Gln Val Pro Ser Gly Ala Glu Leu Glu Arg		
350	355	360
Gln Gln Ile Leu Gln Glu Met Arg Lys Arg Thr Pro Leu His Asn		
365	370	375
Asp Asn Ser Trp Ile Arg Gln Arg Ser Ala Ser Val Asn Lys Glu		
380	385	390
Pro Val Ser Leu Pro Gly Ile Met Arg Arg Gly Glu Ser Leu Asp		
395	400	405
Asn Leu Asp Ser Pro Arg Ser Asn Ser Trp Arg Gln Pro Pro Trp		
410	415	420
Leu Asn Gln Pro Thr Gly Phe Tyr Ala Ser Ser Ser Val Gln Asp		
425	430	435
Phe Ser Arg Pro Gln Pro Gln Leu Val Ser Thr Ser Asn Arg Ala		
440	445	450
Tyr Met Arg Asn Pro Ser Ser Ser Val Pro Pro Pro Ser Ala Gly		
455	460	465
Ser Val Lys Thr Ser Thr Thr Gly Val Ala Thr Thr Gln Ser Pro		
470	475	480
Thr Pro Arg Ser His Ser Pro Ser Ala Ser Gln Ser Gly Ser Gln		
485	490	495
Leu Arg Asn Arg Ser Val Ser Gly Lys Arg Ile Cys Ser Tyr Cys		
500	505	510
Asn Asn Ile Leu Gly Lys Gly Ala Ala Met Ile Ile Glu Ser Leu		
515	520	525
Gly Leu Cys Tyr His Leu His Cys Phe Lys Cys Val Ala Cys Glu		

	530		535		540									
Cys	Asp	Leu	Gly	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Val	Arg	Ile	Arg
				545			550						555	
Asn	His	Gln	Leu	Tyr	Cys	Asn	Asp	Cys	Tyr	Leu	Arg	Phe	Lys	Ser
				560			565						570	
Gly	Arg	Pro	Thr	Ala	Met									
														575

<210> 26

<211> 408

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1425691CD1

<400> 26

Met	Pro	Gly	His	Leu	Gln	Glu	Gly	Phe	Gly	Cys	Val	Val	Thr	Asn
1				5					10					15
Arg	Phe	Asp	Gln	Leu	Phe	Asp	Asp	Glu	Ser	Asp	Pro	Phe	Glu	Val
					20				25					30
Leu	Lys	Ala	Ala	Glu	Asn	Lys	Lys	Lys	Glu	Ala	Gly	Gly	Gly	Gly
					35				40					45
Val	Gly	Gly	Pro	Gly	Ala	Lys	Ser	Ala	Ala	Gln	Ala	Ala	Ala	Gln
					50				55					60
Thr	Asn	Ser	Asn	Ala	Ala	Gly	Lys	Gln	Leu	Arg	Lys	Glu	Ser	Gln
					65				70					75
Lys	Asp	Arg	Lys	Asn	Pro	Leu	Pro	Pro	Ser	Val	Gly	Val	Val	Asp
					80				85					90
Lys	Lys	Glu	Glu	Thr	Gln	Pro	Pro	Val	Ala	Leu	Lys	Lys	Glu	Gly
					95				100					105
Ile	Arg	Arg	Val	Gly	Arg	Arg	Pro	Asp	Gln	Gln	Leu	Gln	Gly	Glu
					110				115					120
Gly	Lys	Ile	Ile	Asp	Arg	Arg	Pro	Glu	Arg	Arg	Pro	Pro	Arg	Glu
					125				130					135
Arg	Arg	Phe	Glu	Lys	Pro	Leu	Glu	Glu	Lys	Gly	Glu	Gly	Gly	Glu
					140				145					150
Phe	Ser	Val	Asp	Arg	Pro	Ile	Ile	Asp	Arg	Pro	Ile	Arg	Gly	Arg
					155				160					165
Gly	Gly	Leu	Gly	Arg	Gly	Arg	Gly	Gly	Arg	Gly	Arg	Gly	Met	Gly
					170				175					180
Arg	Gly	Asp	Gly	Phe	Asp	Ser	Arg	Gly	Lys	Arg	Glu	Phe	Asp	Arg
					185				190					195
His	Ser	Gly	Ser	Asp	Arg	Ser	Ser	Phe	Ser	His	Tyr	Ser	Gly	Leu
					200				205					210
Lys	His	Glu	Asp	Lys	Arg	Gly	Gly	Ser	Gly	Ser	His	Asn	Trp	Gly
					215				220					225
Thr	Val	Lys	Asp	Glu	Leu	Thr	Glu	Ser	Pro	Lys	Tyr	Ile	Gln	Lys
					230				235					240
Gln	Ile	Ser	Tyr	Asn	Tyr	Ser	Asp	Leu	Asp	Gln	Ser	Asn	Val	Thr
					245				250					255
Glu	Glu	Thr	Pro	Glu	Gly	Glu	Glu	His	His	Pro	Val	Ala	Asp	Thr
					260				265					270
Glu	Asn	Lys	Glu	Asn	Glu	Val	Glu	Glu	Val	Lys	Glu	Glu	Gly	Pro
					275				280					285
Lys	Glu	Met	Thr	Leu	Asp	Glu	Trp	Lys	Ala	Ile	Gln	Asn	Lys	Asp
					290				295					300
Arg	Ala	Lys	Val	Glu	Phe	Asn	Ile	Arg	Lys	Pro	Asn	Glu	Gly	Ala
					305				310					315
Asp	Gly	Gln	Trp	Lys	Lys	Gly	Phe	Val	Leu	His	Lys	Ser	Lys	Ser
					320				325					330
Glu	Glu	Ala	His	Ala	Glu	Asp	Ser	Val	Met	Asp	His	His	Phe	Arg

335	340	345
Lys Pro Ala Asn Asp Ile Thr Ser Gln Leu Glu Ile Asn Phe Gly		
350	355	360
Asp Leu Gly Arg Pro Gly Arg Gly Gly Arg Gly Arg Gly Gly		
365	370	375
Arg Gly Arg Gly Gly Arg Pro Asn Arg Gly Ser Arg Thr Asp Lys		
380	385	390
Ser Ser Ala Ser Ala Pro Asp Val Asp Asp Pro Glu Ala Phe Pro		
395	400	405
Ala Leu Ala		

<210> 27
<211> 810
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1484257CD1

<400> 27			
Met Asp Phe Pro Gln His Ser Gln His Val Leu Glu Gln Leu Asn			
1	5	10	15
Gln Gln Arg Gln Leu Gly Leu Leu Cys Asp Cys Thr Phe Val Val			
20	25	30	
Asp Gly Val His Phe Lys Ala His Lys Ala Val Leu Ala Ala Cys			
35	40	45	
Ser Glu Tyr Phe Lys Met Leu Phe Val Asp Gln Lys Asp Val Val			
50	55	60	
His Leu Asp Ile Ser Asn Ala Ala Gly Leu Gly Gln Val Leu Glu			
65	70	75	
Phe Met Tyr Thr Ala Lys Leu Ser Leu Ser Pro Glu Asn Val Asp			
80	85	90	
Asp Val Leu Ala Val Ala Thr Phe Leu Gln Met Gln Asp Ile Ile			
95	100	105	
Thr Ala Cys His Ala Leu Lys Ser Leu Ala Glu Pro Ala Thr Ser			
110	115	120	
Pro Gly Gly Asn Ala Glu Ala Leu Ala Gln Lys Val Cys Pro Val			
125	130	135	
Pro Ser Pro Gly Gly Asp Lys Arg Ala Lys Glu Glu Lys Val Ala			
140	145	150	
Thr Ser Thr Leu Ser Arg Leu Glu Gln Ala Gly Arg Ser Thr Pro			
155	160	165	
Ile Gly Pro Ser Arg Asp Leu Lys Glu Glu Arg Gly Gly Gln Ala			
170	175	180	
Gln Ser Ala Ala Ser Gly Ala Glu Gln Thr Glu Lys Ala Asp Ala			
185	190	195	
Pro Arg Glu Pro Pro Pro Val Glu Leu Lys Pro Asp Pro Thr Ser			
200	205	210	
Gly Met Ala Ala Ala Glu Ala Glu Ala Ala Leu Ser Glu Ser Ser			
215	220	225	
Glu Gln Glu Met Glu Val Glu Pro Ala Arg Lys Gly Glu Glu Glu			
230	235	240	
Gln Lys Glu Gln Glu Glu Gln Glu Glu Glu Gly Ala Gly Pro Ala			
245	250	255	
Glu Val Lys Glu Glu Gly Ser Gln Leu Glu Asn Gly Glu Ala Pro			
260	265	270	
Glu Glu Asn Glu Asn Glu Glu Ser Ala Gly Thr Asp Ser Gly Gln			
275	280	285	
Glu Leu Gly Ser Glu Ala Arg Gly Leu Arg Ser Gly Thr Tyr Gly			
290	295	300	
Asp Arg Thr Glu Ser Lys Ala Tyr Gly Ser Val Ile His Lys Cys			
305	310	315	

Glu	Asp	Cys	Gly	Lys	Glu	Phe	Thr	His	Thr	Gly	Asn	Phe	Lys	Arg
320					325								330	
His	Ile	Arg	Ile	His	Thr	Gly	Glu	Lys	Pro	Phe	Ser	Cys	Arg	Glu
335									340				345	
Cys	Ser	Lys	Ala	Phe	Ser	Asp	Pro	Ala	Ala	Cys	Glu	Ala	His	Glu
350									355				360	
Lys	Thr	His	Ser	Pro	Leu	Lys	Pro	Tyr	Gly	Cys	Glu	Cys	Gly	
365									370				375	
Lys	Ser	Tyr	Arg	Leu	Ile	Ser	Leu	Leu	Asn	Leu	His	Lys	Lys	Arg
380									385				390	
His	Ser	Gly	Glu	Ala	Arg	Tyr	Arg	Cys	Glu	Asp	Cys	Gly	Lys	Leu
395									400				405	
Phe	Thr	Thr	Ser	Gly	Asn	Leu	Lys	Arg	His	Gln	Leu	Val	His	Ser
410									415				420	
Gly	Glu	Lys	Pro	Tyr	Gln	Cys	Asp	Tyr	Cys	Gly	Arg	Ser	Phe	Ser
425									430				435	
Asp	Pro	Thr	Ser	Lys	Met	Arg	His	Leu	Glu	Thr	His	Asp	Thr	Asp
440									445				450	
Lys	Glu	His	Lys	Cys	Pro	His	Cys	Asp	Lys	Lys	Phe	Asn	Gln	Val
455									460				465	
Gly	Asn	Leu	Lys	Ala	His	Leu	Lys	Ile	His	Ile	Ala	Asp	Gly	Pro
470									475				480	
Leu	Lys	Cys	Arg	Glu	Cys	Gly	Lys	Gln	Phe	Thr	Thr	Ser	Gly	Asn
485									490				495	
Leu	Lys	Arg	His	Leu	Arg	Ile	His	Ser	Gly	Glu	Lys	Pro	Tyr	Val
500									505				510	
Cys	Ile	His	Cys	Gln	Arg	Gln	Phe	Ala	Asp	Pro	Gly	Ala	Leu	Gln
515									520				525	
Arg	His	Val	Arg	Ile	His	Thr	Gly	Glu	Lys	Pro	Cys	Gln	Cys	Val
530									535				540	
Met	Cys	Gly	Lys	Ala	Phe	Thr	Gln	Ala	Ser	Ser	Leu	Ile	Ala	His
545									550				555	
Val	Arg	Gln	His	Thr	Gly	Glu	Lys	Pro	Tyr	Val	Cys	Glu	Arg	Cys
560									565				570	
Gly	Lys	Arg	Phe	Val	Gln	Ser	Ser	Gln	Leu	Ala	Asn	His	Ile	Arg
575									580				585	
His	His	Asp	Asn	Ile	Arg	Pro	His	Lys	Cys	Ser	Val	Cys	Ser	Lys
590									595				600	
Ala	Phe	Val	Asn	Val	Gly	Asp	Leu	Ser	Lys	His	Ile	Ile	Ile	His
605									610				615	
Thr	Gly	Glu	Lys	Pro	Tyr	Leu	Cys	Asp	Lys	Cys	Gly	Arg	Gly	Phe
620									625				630	
Asn	Arg	Val	Asp	Asn	Leu	Arg	Ser	His	Val	Lys	Thr	Val	His	Gln
635									640				645	
Gly	Lys	Ala	Gly	Ile	Lys	Ile	Leu	Glu	Pro	Glu	Glu	Gly	Ser	Glu
650									655				660	
Val	Ser	Val	Val	Thr	Val	Asp	Asp	Met	Val	Thr	Leu	Ala	Thr	Glu
665									670				675	
Ala	Leu	Ala	Ala	Thr	Ala	Val	Thr	Gln	Leu	Thr	Val	Val	Pro	Val
680									685				690	
Gly	Ala	Ala	Val	Thr	Ala	Asp	Glu	Thr	Glu	Val	Leu	Lys	Ala	Glu
695									700				705	
Ile	Ser	Lys	Ala	Val	Lys	Gln	Val	Gln	Glu	Glu	Asp	Pro	Asn	Thr
710									715				720	
His	Ile	Leu	Tyr	Ala	Cys	Asp	Ser	Cys	Gly	Asp	Lys	Phe	Leu	Asp
725									730				735	
Ala	Asn	Ser	Leu	Ala	Gln	His	Val	Arg	Ile	His	Thr	Ala	Gln	Ala
740									745				750	
Leu	Val	Met	Phe	Gln	Thr	Asp	Ala	Asp	Phe	Tyr	Gln	Gln	Tyr	Gly
755									760				765	
Pro	Gly	Gly	Thr	Trp	Pro	Ala	Gly	Gln	Val	Leu	Gln	Ala	Gly	Glu
770									775				780	
Leu	Val	Phe	Arg	Pro	Arg	Asp	Gly	Ala	Glu	Gly	Gln	Pro	Ala	Leu
785									790				795	

Ala Glu Thr Ser Pro Thr Ala Pro Glu Cys Pro Pro Pro Ala Glu
800 . . . 805 . . . 810

<210> 28
<211> 324
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 1732368CD1

<400> 28
 Met Asp Trp Ser Glu Val Lys Glu Glu Lys Asp Asn Leu Glu Ile
 1 5 10 15
 Lys Gln Glu Glu Lys Phe Val Gly Gln Cys Ile Lys Glu Glu Leu
 20 25 30
 Met His Gly Glu Cys Val Lys Glu Glu Lys Asp Phe Leu Lys Lys
 35 40 45
 Glu Ile Val Asp Asp Thr Lys Val Lys Glu Glu Pro Pro Ile Asn
 50 55 60
 His Pro Val Gly Cys Lys Arg Lys Leu Ala Met Ser Arg Cys Glu
 65 70 75
 Thr Cys Gly Thr Glu Glu Ala Lys Tyr Arg Cys Pro Arg Cys Met
 80 85 90
 Arg Tyr Ser Cys Ser Leu Pro Cys Val Lys Lys His Lys Ala Glu
 95 100 105
 Leu Thr Cys Asn Gly Val Arg Asp Lys Thr Ala Tyr Ile Ser Ile
 110 115 120
 Gln Gln Phe Thr Glu Met Asn Leu Leu Ser Asp Tyr Arg Phe Leu
 125 130 135
 Glu Asp Val Ala Arg Thr Ala Asp His Ile Ser Arg Asp Ala Phe
 140 145 150
 Leu Lys Arg Pro Ile Ser Asn Lys Tyr Met Tyr Phe Met Lys Asn
 155 160 165
 Arg Ala Arg Arg Gln Gly Ile Asn Leu Lys Leu Leu Pro Asn Gly
 170 175 180
 Phe Thr Lys Arg Lys Glu Asn Ser Thr Phe Phe Asp Lys Lys Lys
 185 190 195
 Gln Gln Phe Cys Trp His Val Lys Leu Gln Phe Pro Gln Ser Gln
 200 205 210
 Ala Glu Tyr Ile Glu Lys Arg Val Pro Asp Asp Lys Thr Ile Asn
 215 220 225
 Glu Ile Leu Lys Pro Tyr Ile Asp Pro Glu Lys Ser Asp Pro Val
 230 235 240
 Ile Arg Gln Arg Leu Lys Ala Tyr Ile Arg Ser Gln Thr Gly Val
 245 250 255
 Gln Ile Leu Met Lys Ile Glu Tyr Met Gln Gln Asn Leu Val Arg
 260 265 270
 Tyr Tyr Glu Leu Asp Pro Tyr Lys Ser Leu Leu Asp Asn Leu Arg
 275 280 285
 Asn Lys Val Ile Ile Glu Tyr Pro Thr Leu His Val Val Leu Lys
 290 295 300
 Gly Ser Asn Asn Asp Met Lys Val Leu His Gln Val Lys Ser Glu
 305 310 315
 Ser Thr Lys Asn Val Gly Asn Glu Asn
 320

<210> 29
<211> 292

<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1870914CD1

<400> 29

Met	Glu	Glu	Val	Pro	His	Asp	Cys	Pro	Gly	Ala	Asp	Ser	Ala	Gln
1										10				15
Ala	Gly	Arg	Gly	Ala	Ser	Cys	Gln	Gly	Cys	Pro	Asn	Gln	Arg	Leu
										25				30
Cys	Ala	Ser	Gly	Ala	Gly	Ala	Thr	Pro	Asp	Thr	Ala	Ile	Glu	Glu
										40				45
Ile	Lys	Glu	Lys	Met	Lys	Thr	Val	Lys	His	Lys	Ile	Leu	Val	Leu
										55				60
Ser	Gly	Lys	Gly	Gly	Val	Gly	Lys	Ser	Thr	Phe	Ser	Ala	His	Leu
										70				75
Ala	His	Gly	Leu	Ala	Glu	Asp	Glu	Asn	Thr	Gln	Ile	Ala	Leu	Leu
										85				90
Asp	Ile	Asp	Ile	Cys	Gly	Pro	Ser	Ile	Pro	Lys	Ile	Met	Gly	Leu
										100				105
Glu	Gly	Glu	Gln	Val	His	Gln	Ser	Gly	Ser	Gly	Trp	Ser	Pro	Val
										115				120
Tyr	Val	Glu	Asp	Asn	Leu	Gly	Val	Met	Ser	Val	Gly	Phe	Leu	Leu
										130				135
Ser	Ser	Pro	Asp	Asp	Ala	Val	Ile	Trp	Arg	Gly	Pro	Lys	Lys	Asn
										145				150
Gly	Met	Ile	Lys	Gln	Phe	Leu	Arg	Asp	Val	Asp	Trp	Gly	Glu	Val
										160				165
Asp	Tyr	Leu	Ile	Val	Asp	Thr	Pro	Pro	Gly	Thr	Ser	Asp	Glu	His
										175				180
Leu	Ser	Val	Val	Arg	His	Leu	Ala	Thr	Ala	His	Ile	Asp	Gly	Ala
										190				195
Val	Ile	Ile	Thr	Thr	Pro	Gln	Glu	Val	Ser	Leu	Gln	Asp	Val	Arg
										205				210
Lys	Glu	Ile	Asn	Phe	Cys	Arg	Lys	Val	Lys	Leu	Pro	Ile	Ile	Gly
										220				225
Val	Val	Glu	Asn	Met	Ser	Gly	Phe	Ile	Cys	Pro	Lys	Cys	Lys	Lys
										235				240
Glu	Ser	Gln	Ile	Phe	Pro	Pro	Thr	Thr	Gly	Gly	Ala	Glu	Leu	Met
										250				255
Cys	Gln	Asp	Leu	Glu	Val	Pro	Leu	Leu	Gly	Arg	Val	Pro	Leu	Asp
										265				270
Pro	Leu	Ile	Gly	Ile	Gln	Glu	Phe	Cys	Asn	Leu	His	Gln	Ser	Lys
										280				285
Glu	Glu	Asn	Leu	Ile	Ser	Ser								

<210> 30
<211> 259
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1910984CD1

<400> 30

Met	Glu	Cys	His	Leu	Lys	Thr	His	Tyr	Lys	Met	Glu	Tyr	Lys	Cys
1										10				15
Arg	Ile	Cys	Gln	Thr	Val	Lys	Ala	Asn	Gln	Leu	Glu	Leu	Glu	Thr
										25				30

His	Thr	Arg	Glu	His	Arg	Leu	Gly	Asn	His	Tyr	Lys	Cys	Asp	Gln
35									40					45
Cys	Gly	Tyr	Leu	Ser	Lys	Thr	Ala	Asn	Lys	Leu	Ile	Glu	His	Val
50									55					60
Arg	Val	His	Thr	Gly	Glu	Arg	Pro	Phe	His	Cys	Asp	Gln	Cys	Ser
65									70					75
Tyr	Ser	Cys	Thr	Gly	Lys	Asp	Asn	Leu	Asn	Leu	His	Lys	Lys	Leu
80									85					90
Lys	His	Ala	Pro	Arg	Gln	Thr	Phe	Ser	Cys	Glu	Glu	Cys	Leu	Phe
95									100					105
Lys	Thr	Thr	His	Pro	Phe	Val	Phe	Ser	Arg	His	Val	Lys	Lys	His
110									115					120
Gln	Ser	Gly	Asp	Cys	Pro	Glu	Glu	Asp	Lys	Lys	Gly	Leu	Cys	Pro
125									130					135
Ala	Pro	Lys	Glu	Pro	Ala	Gly	Pro	Gly	Ala	Pro	Leu	Leu	Val	Val
140									145					150
Gly	Ser	Ser	Arg	Asn	Leu	Leu	Ser	Pro	Leu	Ser	Val	Met	Ser	Ala
155									160					165
Ser	Gln	Ala	Leu	Gln	Thr	Val	Ala	Leu	Ser	Ala	Ala	His	Gly	Ser
170									175					180
Ser	Ser	Glu	Pro	Asn	Leu	Ala	Leu	Lys	Ala	Leu	Ala	Phe	Asn	Gly
185									190					195
Ser	Pro	Leu	Arg	Phe	Asp	Lys	Tyr	Arg	Asn	Ser	Asp	Phe	Ala	His
200									205					210
Leu	Ile	Pro	Leu	Thr	Met	Leu	Tyr	Pro	Lys	Asn	His	Leu	Asp	Leu
215									220					225
Thr	Phe	His	Pro	Pro	Arg	Pro	Gln	Thr	Ala	Pro	Pro	Ser	Ile	Pro
230									235					240
Ser	Pro	Lys	His	Ser	Phe	Leu	Ala	Tyr	Leu	Gly	Leu	Arg	Glu	Arg
245									250					255
Ala	Glu	Thr	Val											

<210> 31
<211> 97
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1943040CD1

<400> 31

Met	Glu	His	His	Ser	Ser	His	Gly	Gly	Arg	Lys	Arg	Tyr	Ala	Cys
1									5	10				15
Gln	Gly	Cys	Trp	Lys	Thr	Phe	His	Phe	Ser	Leu	Ala	Leu	Ala	Glu
									20	25				30
His	Gln	Lys	Thr	His	Glu	Lys	Glu	Lys	Ser	Tyr	Ala	Leu	Gly	Gly
									35	40				45
Ala	Arg	Gly	Pro	Gln	Pro	Ser	Thr	Arg	Glu	Pro	Arg	Arg	Gly	Leu
									50	55				60
Gly	Arg	Ala	Val	Pro	Gln	Arg	Ala	Trp	Arg	Ala	Arg	Leu	Pro	Pro
									65	70				75
His	Pro	Gln	Arg	Arg	Arg	Gly	Glu	Pro	Leu	Cys	Cys	Pro	Val	Pro
									80	85				90
Glu	Gly	Pro	Leu	Cys	Arg	Pro								
									95					

<210> 32
<211> 812
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2076520CD1

<400> 32

Met	Ile	Glu	Pro	Asp	Gln	Cys	Phe	Cys	Arg	Phe	Asp	Leu	Thr	Gly
1					5				10					15
Thr	Cys	Asn	Asp	Asp	Asp	Cys	Gln	Trp	Gln	His	Ile	Gln	Asp	Tyr
					20				25					30
Thr	Leu	Ser	Arg	Lys	Gln	Leu	Phe	Gln	Asp	Ile	Leu	Ser	Tyr	Asn
				35					40					45
Leu	Ser	Leu	Ile	Gly	Cys	Ala	Glu	Thr	Ser	Thr	Asn	Glu	Glu	Ile
				50					55					60
Thr	Ala	Ser	Ala	Glu	Lys	Tyr	Val	Glu	Lys	Leu	Phe	Gly	Val	Asn
				65					70					75
Lys	Asp	Arg	Met	Ser	Met	Asp	Gln	Met	Ala	Val	Leu	Leu	Val	Ser
				80					85					90
Asn	Ile	Asn	Glu	Ser	Lys	Gly	His	Thr	Pro	Pro	Phe	Thr	Thr	Tyr
				95					100					105
Lys	Asp	Lys	Arg	Lys	Trp	Lys	Pro	Lys	Phe	Trp	Arg	Lys	Pro	Ile
				110					115					120
Ser	Asp	Asn	Ser	Phe	Ser	Ser	Asp	Glu	Glu	Gln	Ser	Thr	Gly	Pro
				125					130					135
Ile	Lys	Tyr	Ala	Phe	Gln	Pro	Glu	Asn	Gln	Ile	Asn	Val	Pro	Ala
				140					145					150
Leu	Asp	Thr	Val	Val	Thr	Pro	Asp	Asp	Val	Arg	Tyr	Phe	Thr	Asn
				155					160					165
Glu	Thr	Asp	Asp	Ile	Ala	Asn	Leu	Glu	Ala	Ser	Val	Leu	Glu	Asn
				170					175					180
Pro	Ser	His	Val	Gln	Leu	Trp	Leu	Lys	Leu	Ala	Tyr	Lys	Tyr	Leu
				185					190					195
Asn	Gln	Asn	Glu	Gly	Glu	Cys	Ser	Glu	Ser	Leu	Asp	Ser	Ala	Leu
				200					205					210
Asn	Val	Leu	Ala	Arg	Ala	Leu	Glu	Asn	Asn	Lys	Asp	Asn	Pro	Glu
				215					220					225
Ile	Trp	Cys	His	Tyr	Leu	Arg	Leu	Phe	Ser	Lys	Arg	Gly	Thr	Lys
				230					235					240
Asp	Glu	Val	Gln	Glu	Met	Cys	Glu	Thr	Ala	Val	Glu	Tyr	Ala	Pro
				245					250					255
Asp	Tyr	Gln	Ser	Phe	Trp	Thr	Phe	Leu	His	Leu	Glu	Ser	Thr	Phe
				260					265					270
Glu	Glu	Lys	Asp	Tyr	Val	Cys	Glu	Arg	Met	Leu	Glu	Phe	Leu	Met
				275					280					285
Gly	Ala	Ala	Lys	Gln	Glu	Thr	Ser	Asn	Ile	Leu	Ser	Phe	Gln	Leu
				290					295					300
Leu	Glu	Ala	Leu	Leu	Phe	Arg	Val	Gln	Leu	His	Ile	Phe	Thr	Gly
				305					310					315
Arg	Cys	Gln	Ser	Ala	Leu	Ala	Ile	Leu	Gln	Asn	Ala	Leu	Lys	Ser
				320					325					330
Ala	Asn	Asp	Gly	Ile	Val	Ala	Glu	Tyr	Leu	Lys	Thr	Ser	Asp	Arg
				335					340					345
Cys	Leu	Ala	Trp	Leu	Ala	Tyr	Ile	His	Leu	Ile	Glu	Phe	Asn	Ile
				350					355					360
Leu	Pro	Ser	Lys	Phe	Tyr	Asp	Pro	Ser	Asn	Asp	Asn	Pro	Ser	Arg
				365					370					375
Ile	Val	Asn	Thr	Glu	Ser	Phe	Val	Met	Pro	Trp	Gln	Ala	Val	Gln
				380					385					390
Asp	Val	Lys	Thr	Asn	Pro	Asp	Met	Leu	Leu	Ala	Val	Phe	Glu	Asp
				395					400					405
Ala	Val	Lys	Ala	Cys	Thr	Asp	Glu	Ser	Leu	Ala	Val	Glu	Glu	Arg
				410					415					420
Ile	Glu	Ala	Cys	Leu	Pro	Leu	Tyr	Thr	Asn	Met	Ile	Ala	Leu	His
				425					430					435
Gln	Leu	Leu	Glu	Arg	Tyr	Glu	Ala	Ala	Met	Glu	Leu	Cys	Lys	Ser

440	445	450
Leu Ieu Glu Ser Cys Pro Ile Asn Cys Gln Leu Leu Glu Ala Leu		
455	460	465
Val Ala Leu Tyr Leu Gln Thr Asn Gln His Asp Lys Ala Arg Ala		
470	475	480
Val Trp Leu Thr Ala Phe Glu Lys Asn Pro Gln Asn Ala Glu Val		
485	490	495
Phe Tyr His Met Cys Lys Phe Phe Ile Leu Gln Asn Arg Gly Asp		
500	505	510
Asn Leu Leu Pro Phe Leu Arg Lys Phe Ile Ala Ser Phe Phe Lys		
515	520	525
Pro Gly Phe Glu Lys Tyr Asn Asn Leu Asp Leu Phe Arg Tyr Leu		
530	535	540
Leu Asn Ile Pro Gly Pro Ile Asp Ile Pro Ser Arg Leu Cys Lys		
545	550	555
Gly Asn Phe Asp Asp Asp Met Phe Asn His Gln Val Pro Tyr Leu		
560	565	570
Trp Leu Ile Tyr Cys Leu Cys His Pro Leu Gln Ser Ser Ile Lys		
575	580	585
Glu Thr Val Glu Ala Tyr Glu Ala Ala Leu Gly Val Ala Met Arg		
590	595	600
Cys Asp Ile Val Gln Lys Ile Trp Met Asp Tyr Leu Val Phe Ala		
605	610	615
Asn Asn Arg Ala Ala Gly Ser Arg Asn Lys Val Gln Glu Phe Arg		
620	625	630
Phe Phe Thr Asp Leu Val Asn Arg Cys Leu Val Thr Val Pro Ala		
635	640	645
Arg Tyr Pro Ile Pro Phe Ser Ser Ala Asp Tyr Trp Ser Asn Tyr		
650	655	660
Glu Phe His Asn Arg Val Ile Phe Phe Tyr Leu Ser Cys Val Pro		
665	670	675
Lys Thr Gln His Ser Lys Thr Leu Glu Arg Phe Cys Ser Val Met		
680	685	690
Pro Ala Asn Ser Gly Leu Ala Leu Arg Leu Leu Gln His Glu Trp		
695	700	705
Glu Glu Ser Asn Val Gln Ile Leu Lys Leu Gln Ala Lys Met Phe		
710	715	720
Thr Tyr Asn Ile Pro Thr Cys Leu Ala Thr Trp Lys Ile Ala Ile		
725	730	735
Ala Ala Glu Ile Val Leu Lys Gly Gln Arg Glu Val His Arg Leu		
740	745	750
Tyr Gln Arg Ala Leu Gln Lys Leu Pro Leu Cys Ala Ser Leu Trp		
755	760	765
Lys Asp Gln Leu Leu Phe Glu Ala Ser Glu Gly Gly Lys Thr Asp		
770	775	780
Asn Leu Arg Lys Leu Val Ser Lys Cys Gln Glu Ile Gly Val Ser		
785	790	795
Leu Asn Glu Leu Leu Asn Leu Asn Ser Asn Lys Thr Glu Ser Lys		
800	805	810
Asn His		

<210> 33
<211> 392
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2291241CD1

<400> 33
Met Asp Ala Leu Val Glu Asp Asp Ile Cys Ile Leu Asn His Glu

1	5	10	15
Lys Ala His Lys Arg Asp Thr Val Thr Pro Val Ser Ile Tyr Ser			
20	25	30	
Gly Asp Glu Ser Val Ala Ser His Phe Ala Leu Val Thr Ala Tyr			
35	40	45	
Glu Asp Ile Lys Lys Arg Leu Lys Asp Ser Glu Lys Glu Asn Ser			
50	55	60	
Leu Leu Lys Lys Arg Ile Arg Phe Leu Glu Glu Lys Leu Ile Ala			
65	70	75	
Arg Phe Glu Glu Glu Thr Ser Ser Val Gly Arg Glu Gln Val Asn			
80	85	90	
Lys Ala Tyr His Ala Tyr Arg Glu Val Cys Ile Asp Arg Asp Asn			
95	100	105	
Leu Lys Ser Lys Leu Asp Lys Met Asn Lys Asp Asn Ser Glu Ser			
110	115	120	
Leu Lys Val Leu Asn Glu Gln Leu Gln Ser Lys Glu Val Glu Leu			
125	130	135	
Leu Gln Leu Arg Thr Glu Val Glu Thr Gln Gln Val Met Arg Asn			
140	145	150	
Leu Asn Pro Pro Ser Ser Asn Trp Glu Val Glu Lys Leu Ser Cys			
155	160	165	
Asp Leu Lys Ile His Gly Leu Glu Gln Glu Leu Glu Leu Met Arg			
170	175	180	
Lys Glu Cys Ser Asp Leu Lys Ile Glu Leu Gln Lys Ala Lys Gln			
185	190	195	
Thr Asp Pro Tyr Gln Glu Asp Asn Leu Lys Ser Arg Asp Leu Gln			
200	205	210	
Lys Leu Ser Ile Ser Ser Asp Asn Met Gln His Ala Tyr Trp Glu			
215	220	225	
Leu Lys Arg Glu Met Ser Asn Leu His Leu Val Thr Gln Val Gln			
230	235	240	
Ala Glu Leu Leu Arg Lys Leu Lys Thr Ser Thr Ala Ile Lys Lys			
245	250	255	
Ala Cys Ala Pro Val Gly Cys Ser Glu Asp Leu Gly Arg Asp Ser			
260	265	270	
Thr Lys Leu His Leu Met Asn Phe Thr Ala Thr Tyr Thr Arg His			
275	280	285	
Pro Pro Leu Leu Pro Asn Gly Lys Ala Leu Cys His Thr Thr Ser			
290	295	300	
Ser Pro Leu Pro Gly Asp Val Lys Val Leu Ser Glu Lys Ala Ile			
305	310	315	
Leu Gln Ser Trp Thr Asp Asn Glu Arg Ser Ile Pro Asn Asp Gly			
320	325	330	
Thr Cys Phe Gln Glu His Ser Ser Tyr Gly Arg Asn Ser Leu Glu			
335	340	345	
Asp Asn Ser Trp Val Phe Pro Ser Pro Pro Lys Ser Ser Glu Thr			
350	355	360	
Ala Phe Gly Glu Thr Lys Thr Lys Thr Leu Pro Leu Pro Asn Leu			
365	370	375	
Pro Pro Leu His Tyr Leu Asp Gln His Asn Gln Asn Cys Leu Tyr			
380	385	390	
Lys Asn			

<210> 34
<211> 60
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2329692CD1

<400> 34

Met	Ile	Tyr	Phe	Phe	Ile	Ile	Ile	Val	Glu	Tyr	Phe	Tyr	Gly	Lys
1				5					10					15
Ile	Phe	Val	Val	Leu	Ile	Ile	Pro	Ile	Lys	Ile	Met	Pro	Asn	Thr
					20				25					30
Lys	Tyr	Glu	Phe	Tyr	Asp	Val	His	Phe	Val	Leu	Gly	Ile	Lys	Arg
					35				40					45
Lys	Lys	His	Thr	Ser	Trp	Lys	Ser	Val	Ser	Cys	Phe	Leu	Leu	Leu
					50				55					60

<210> 35

<211> 209

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2474110CD1

<400> 35

Met	Asp	Pro	Ser	Asp	Ile	Tyr	Ala	Val	Ile	Gln	Ile	Pro	Gly	Ser
1				5					10					15
Arg	Glu	Phe	Asp	Val	Ser	Phe	Arg	Ser	Ala	Glu	Lys	Leu	Ala	Leu
					20				25					30
Phe	Leu	Arg	Val	Tyr	Glu	Glu	Lys	Arg	Glu	Gln	Glu	Asp	Cys	Trp
					35				40					45
Glu	Asn	Phe	Val	Val	Leu	Gly	Arg	Ser	Lys	Ser	Ser	Leu	Lys	Thr
					50				55					60
Leu	Phe	Ile	Leu	Phe	Arg	Asn	Glu	Thr	Val	Asp	Val	Glu	Asp	Ile
					65				70					75
Val	Thr	Trp	Leu	Lys	Arg	His	Cys	Asp	Val	Leu	Ala	Val	Pro	Val
					80				85					90
Lys	Val	Thr	Asp	Arg	Phe	Gly	Ile	Trp	Thr	Gly	Glu	Tyr	Lys	Cys
					95				100					105
Glu	Ile	Glu	Leu	Arg	Gln	Gly	Glu	Gly	Gly	Val	Arg	His	Leu	Pro
					110				115					120
Gly	Ala	Phe	Phe	Leu	Gly	Ala	Glu	Arg	Gly	Tyr	Ser	Trp	Tyr	Lys
					125				130					135
Gly	Gln	Pro	Lys	Thr	Cys	Phe	Lys	Cys	Gly	Ser	Arg	Thr	His	Met
					140				145					150
Ser	Gly	Ser	Cys	Thr	Gln	Asp	Arg	Cys	Phe	Arg	Cys	Arg	Glu	Glu
					155				160					165
Gly	His	Leu	Ser	Pro	Tyr	Cys	Arg	Lys	Gly	Ile	Val	Cys	Asn	Leu
					170				175					180
Cys	Gly	Lys	Arg	Gly	His	Ala	Phè	Ala	Gln	Cys	Pro	Lys	Ala	Val
					185				190					195
His	Asn	Ser	Val	Ala	Ala	Gln	Leu	Thr	Gly	Val	Ala	Gly	His	
					200									

<210> 36

<211> 257

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2495790CD1

<400> 36

Met	Val	Gly	Ala	Gly	Ile	Ser	Thr	Pro	Ser	Gly	Ile	Pro	Asp	Phe
1				5						10				15

Arg	Ser	Pro	Gly	Ser	Gly	Leu	Tyr	Ser	Asn	Leu	Gln	Gln	Tyr	Asp
20						25							30	
Leu	Pro	Tyr	Pro	Glu	Ala	Ile	Phe	Glu	Leu	Pro	Phe	Phe	Phe	His
35								40					45	
Asn	Pro	Lys	Pro	Phe	Phe	Thr	Leu	Ala	Lys	Glu	Leu	Tyr	Pro	Gly
50									55				60	
Asn	Tyr	Lys	Pro	Asn	Val	Thr	His	Tyr	Phe	Leu	Arg	Leu	Leu	His
65									70				75	
Asp	Lys	Gly	Leu	Leu	Leu	Arg	Leu	Tyr	Thr	Gln	Asn	Ile	Asp	Gly
80									85				90	
Leu	Glu	Arg	Val	Ser	Gly	Ile	Pro	Ala	Ser	Lys	Leu	Val	Glu	Ala
95										100			105	
His	Gly	Thr	Phe	Ala	Ser	Ala	Thr	Cys	Thr	Val	Cys	Gln	Arg	Pro
110									115				120	
Phe	Pro	Gly	Glu	Asp	Ile	Arg	Ala	Asp	Val	Met	Ala	Asp	Arg	Val
125									130				135	
Pro	Arg	Cys	Pro	Val	Cys	Thr	Gly	Val	Val	Lys	Pro	Asp	Ile	Val
140									145				150	
Phe	Phe	Gly	Glu	Pro	Leu	Pro	Gln	Arg	Phe	Leu	Leu	His	Val	Val
155									160				165	
Asp	Phe	Pro	Met	Ala	Asp	Leu	Leu	Leu	Ile	Leu	Gly	Thr	Ser	Leu
170									175				180	
Glu	Val	Glu	Pro	Phe	Ala	Ser	Leu	Thr	Glu	Ala	Val	Arg	Ser	Ser
185									190				195	
Val	Pro	Arg	Leu	Leu	Ile	Asn	Arg	Asp	Leu	Val	Gly	Pro	Leu	Ala
200									205				210	
Trp	His	Pro	Arg	Ser	Arg	Asp	Val	Ala	Gln	Leu	Gly	Asp	Val	Val
215									220				225	
His	Gly	Val	Glu	Ser	Leu	Val	Glu	Leu	Leu	Gly	Trp	Thr	Glu	Glu
230									235				240	
Met	Arg	Asp	Leu	Val	Gln	Arg	Glu	Thr	Gly	Lys	Leu	Asp	Gly	Pro
245									250				255	
Asp Lys														

<210> 37
<211> 138
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2661254CD1

Met	Ala	Thr	Lys	Arg	Leu	Phe	Gly	Ala	Thr	Arg	Thr	Trp	Ala	Gly
1				5					10				15	
Trp	Gly	Ala	Trp	Glu	Leu	Leu	Asn	Pro	Ala	Thr	Ser	Gly	Arg	Leu
					20					25			30	
Leu	Ala	Arg	Asp	Tyr	Ala	Lys	Lys	Pro	Val	Met	Lys	Gly	Ala	Lys
					35				40			45		
Ser	Gly	Lys	Gly	Ala	Val	Thr	Ser	Glu	Ala	Leu	Lys	Asp	Pro	Asp
					50				55			60		
Val	Cys	Thr	Asp	Pro	Val	Gln	Leu	Thr	Thr	Tyr	Ala	Met	Gly	Val
					65				70			75		
Asn	Ile	Tyr	Lys	Glu	Gly	Gln	Asp	Val	Pro	Leu	Lys	Pro	Asp	Ala
					80				85			90		
Glu	Tyr	Pro	Glu	Trp	Leu	Phe	Glu	Met	Asn	Leu	Gly	Pro	Pro	Lys
					95				100			105		
Thr	Leu	Glu	Glu	Leu	Asp	Pro	Glu	Ser	Arg	Glu	Tyr	Trp	Arg	Arg
					110				115			120		
Leu	Arg	Lys	Gln	Asn	Ile	Trp	Arg	His	Asn	Arg	Leu	Ser	Lys	Asn
					125				130			135		

Lys Arg Leu

<210> 38
<211> 999
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2674047CD1

<400> 38

Met	Gly	Pro	Ser	Arg	Leu	Arg	Leu	Gly	Phe	Phe	Xaa	Lys	Arg	Gly
1				5				10				15		
Cys	Ser	Arg	Ala	Met	Val	Glu	Ile	Glu	Leu	Phe	Arg	Ala	Ser	Gly
				20				25				30		
Asn	Leu	Val	Ile	Thr	Arg	Glu	Ile	Asp	Val	Ala	Lys	Asn	Gln	Ser
				35				40				45		
Phe	Trp	Phe	Ile	Asn	Lys	Lys	Ser	Thr	Thr	Gln	Xaa	Ile	Val	Glu
				50				55				60		
Glu	Lys	Val	Ala	Ala	Leu	Asn	Ile	Gln	Val	Gly	Asn	Leu	Cys	Gln
				65				70				75		
Phe	Leu	Pro	Gln	Asp	Lys	Val	Gly	Glu	Phe	Ala	Lys	Leu	Ser	Lys
				80				85				90		
Ile	Glu	Leu	Leu	Glu	Ala	Thr	Glu	Lys	Ser	Ile	Gly	Pro	Pro	Glu
				95				100				105		
Met	His	Lys	Tyr	His	Cys	Glu	Leu	Lys	Asn	Leu	Arg	Glu	Lys	Glu
				110				115				120		
Lys	Gln	Leu	Glu	Thr	Ser	Cys	Lys	Glu	Lys	Thr	Glu	Tyr	Leu	Gln
				125				130				135		
Lys	Met	Val	Gln	Arg	Asn	Glu	Arg	Tyr	Lys	Gln	Asp	Val	Glu	Arg
				140				145				150		
Phe	Tyr	Glu	Arg	Lys	Arg	His	Leu	Asp	Leu	Ile	Glu	Met	Leu	Glu
				155				160				165		
Ala	Lys	Arg	Pro	Trp	Val	Glu	Tyr	Glu	Asn	Val	Arg	Gln	Glu	Tyr
				170				175				180		
Glu	Glu	Val	Lys	Leu	Val	Arg	Asp	Arg	Val	Lys	Glu	Glu	Val	Arg
				185				190				195		
Lys	Leu	Lys	Glu	Gly	Gln	Ile	Pro	Ile	Thr	Cys	Arg	Ile	Glu	Glu
				200				205				210		
Met	Glu	Asn	Glu	Arg	His	Asn	Leu	Glu	Ala	Arg	Ile	Lys	Glu	Lys
				215				220				225		
Ala	Thr	Asp	Ile	Lys	Glu	Ala	Ser	Gln	Lys	Cys	Lys	Gln	Lys	Gln
				230				235				240		
Asp	Val	Ile	Glu	Arg	Lys	Asp	Lys	His	Ile	Glu	Glu	Leu	Gln	Gln
				245				250				255		
Ala	Leu	Ile	Val	Lys	Gln	Asn	Glu	Glu	Leu	Asp	Arg	Gln	Arg	Arg
				260				265				270		
Ile	Gly	Asn	Thr	Arg	Lys	Met	Ile	Glu	Asp	Leu	Gln	Asn	Glu	Leu
				275				280				285		
Lys	Thr	Thr	Glu	Asn	Cys	Glu	Asn	Leu	Gln	Pro	Gln	Ile	Asp	Ala
				290				295				300		
Ile	Thr	Asn	Asp	Leu	Arg	Arg	Ile	Gln	Asp	Glu	Lys	Ala	Leu	Cys
				305				310				315		
Glu	Gly	Glu	Ile	Ile	Asp	Lys	Arg	Arg	Glu	Arg	Glu	Thr	Leu	Glu
				320				325				330		
Lys	Glu	Lys	Lys	Ser	Val	Asp	Asp	His	Ile	Val	Arg	Phe	Asp	Asn
				335				340				345		
Leu	Met	Asn	Gln	Lys	Glu	Asp	Lys	Leu	Arg	Gln	Arg	Phe	Arg	Asp
				350				355				360		
Thr	Tyr	Asp	Ala	Val	Leu	Trp	Leu	Arg	Asn	Asn	Arg	Asp	Lys	Phe
				365				370				375		

Lys Gln Arg Val Cys Glu Pro Ile Met Leu Thr Ile Asn Met Lys
 380 385 390
 Asp Asn Lys Asn Ala Lys Tyr Ile Glu Asn His Ile Pro Ser Asn
 395 400 405
 Asp Leu Arg Ala Phe Val Phe Glu Ser Gln Glu Asp Met Glu Val
 410 415 420
 Phe Leu Lys Glu Val Arg Asp Asn Lys Lys Leu Arg Val Asn Ala
 425 430 435
 Val Ile Ala Pro Lys Ser Ser Tyr Ala Asp Lys Ala Pro Ser Arg
 440 445 450
 Ser Leu Asn Glu Leu Lys Gln Tyr Gly Phe Phe Ser Tyr Leu Arg
 455 460 465
 Glu Leu Phe Asp Ala Pro Asp Pro Val Met Ser Tyr Leu Cys Cys
 470 475 480
 Gln Tyr His Ile His Glu Val Pro Val Gly Thr Glu Lys Thr Arg
 485 490 495
 Glu Arg Ile Glu Arg Val Ile Gln Glu Thr Arg Leu Lys Gln Ile
 500 505 510
 Tyr Thr Ala Glu Glu Lys Tyr Val Val Lys Thr Ser Phe Tyr Ser
 515 520 525
 Asn Lys Val Ile Ser Ser Asn Thr Ser Leu Lys Val Ala Gln Phe
 530 535 540
 Leu Thr Val Thr Val Asp Leu Glu Gln Arg Arg His Leu Glu Glu
 545 550 555
 Gln Leu Lys Glu Ile His Arg Lys Leu Gln Ala Val Asp Ser Gly
 560 565 570
 Leu Ile Ala Leu Arg Glu Thr Ser Lys His Leu Glu His Lys Asp
 575 580 585
 Asn Glu Leu Arg Gln Lys Lys Glu Leu Leu Glu Arg Lys Thr
 590 595 600
 Lys Lys Arg Gln Leu Glu Gln Lys Ile Ser Ser Lys Leu Gly Ser
 605 610 615
 Leu Lys Leu Met Glu Gln Asp Thr Cys Asn Leu Glu Glu Glu
 620 625 630
 Arg Lys Ala Ser Thr Lys Ile Lys Glu Ile Asn Val Gln Lys Ala
 635 640 645
 Lys Leu Val Thr Glu Leu Thr Asn Leu Ile Lys Ile Cys Thr Ser
 650 655 660
 Leu His Ile Gln Lys Val Asp Leu Ile Leu Gln Asn Thr Thr Val
 665 670 675
 Ile Ser Glu Lys Asn Lys Leu Glu Ser Asp Tyr Met Ala Ala Ser
 680 685 690
 Ser Gln Leu Arg Leu Thr Glu Gln His Phe Ile Glu Leu Asp Glu
 695 700 705
 Asn Arg Gln Arg Leu Leu Gln Lys Cys Lys Glu Leu Met Lys Arg
 710 715 720
 Ala Arg Gln Val Cys Asn Leu Gly Ala Glu Gln Thr Leu Pro Gln
 725 730 735
 Glu Tyr Gln Thr Gln Val Pro Thr Ile Pro Asn Gly His Asn Ser
 740 745 750
 Ser Leu Pro Met Val Phe Gln Asp Leu Pro Asn Thr Leu Asp Glu
 755 760 765
 Ile Asp Ala Leu Leu Thr Glu Glu Arg Ser Arg Ala Ser Cys Phe
 770 775 780
 Thr Gly Leu Asn Pro Thr Ile Val Gln Glu Tyr Thr Lys Arg Glu
 785 790 795
 Glu Glu Ile Glu Gln Leu Thr Glu Glu Leu Lys Gly Lys Lys Val
 800 805 810
 Glu Leu Asp Gln Tyr Arg Glu Asn Ile Ser Gln Val Lys Glu Arg
 815 820 825
 Trp Leu Asn Pro Leu Lys Glu Leu Val Glu Lys Ile Asn Glu Lys
 830 835 840
 Phe Ser Asn Phe Phe Ser Ser Met Gln Cys Ala Gly Glu Val Asp
 845 850 855

<210> 39
<211> 377
<212> PRT
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<223> Incyte clone 2762174CD1
```

<400> 39
 Met Ala Glu Leu Glu Ser His Pro Cys Asp Ile Cys Gly Pro Ile
 1 5 10 15
 Leu Lys Asp Thr Leu His Leu Ala Lys Tyr His Gly Gly Lys Ala
 20 25 30
 Arg Gln Lys Pro Tyr Leu Cys Gly Ala Cys Gly Lys Gln Phe Trp
 35 40 45
 Phe Ser Thr Asp Phe Asp Gln His Gln Asn Gln Pro Asn Gly Gly
 50 55 60
 Lys Leu Phe Pro Arg Lys Glu Gly Arg Asp Ser Val Lys Ser Cys
 65 70 75
 Arg Val His Val Pro Glu Lys Thr Leu Thr Cys Gly Lys Gly Arg
 80 85 90
 Arg Asp Phe Ser Ala Thr Ser Gly Leu Leu Gln His Gln Ala Ser
 95 100 105
 Leu Ser Ser Met Lys Pro His Lys Ser Thr Lys Leu Val Ser Gly
 110 115 120
 Phe Leu Met Gly Gln Arg Tyr His Arg Cys Gly Glu Cys Gly Lys
 125 130 135
 Ala Phe Thr Arg Lys Asp Thr Leu Ala Arg His Gln Arg Ile His
 140 145 150
 Thr Gly Glu Arg Pro Tyr Glu Cys Asn Glu Cys Gly Lys Phe Phe
 155 160 165
 Ser Gln Ser Tyr Asp Leu Phe Lys His Gln Thr Val His Thr Gly
 170 175 180
 Glu Arg Pro Tyr Glu Cys Ser Glu Cys Gly Lys Phe Phe Arg Gln
 185 190 195
 Ile Ser Gly Leu Ile Glu His Arg Arg Val His Thr Gly Glu Arg
 200 205 210
 Leu Tyr Gln Cys Gly Lys Cys Gly Lys Phe Phe Ser Ser Lys Ser
 215 220 225
 Asn Leu Ile Arg His Gln Glu Val His Thr Gly Ala Arg Pro Tyr
 230 235 240

Val Cys Ser Glu Cys Gly Lys Glu Phe Ser Arg Lys His Thr Leu
 245 250 255
 Val Leu His Gln Arg Thr His Thr Gly Glu Arg Pro Tyr Glu Cys
 260 265 270
 Ser Glu Cys Gly Lys Ala Phe Ser Gln Ser Ser His Leu Asn Val
 275 280 285
 His Trp Arg Ile His Ser Ser Asp Tyr Glu Cys Ser Arg Cys Gly
 290 295 300
 Lys Ala Phe Ser Cys Ile Ser Lys Leu Ile Gln His Gln Lys Val
 305 310 315
 His Ser Gly Glu Lys Pro Tyr Glu Cys Ser Lys Cys Gly Lys Ala
 320 325 330
 Phe Thr Gln Arg Pro Asn Leu Ile Arg His Trp Lys Val His Thr
 335 340 345
 Gly Glu Arg Pro Tyr Val Cys Ser Glu Cys Gly Arg Glu Phe Ile
 350 355 360
 Arg Lys Gln Thr Leu Val Leu His Gln Arg Val His Ala Gly Glu
 365 370 375
 Lys Leu

<210> 40
<211> 324
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2765991CD1

<400> 40
 Met Asp Phe Pro Lys His Asn Gln Ile Ile Thr Glu Glu Thr Gly
 1 5 10 15
 Ser Ala Val Glu Pro Ser Asp Glu Ile Lys Arg Ala Ser Gly Asp
 20 25 30
 Val Gln Thr Met Lys Ile Ser Ser Val Pro Asn Ser Leu Ser Lys
 35 40 45
 Arg Asn Val Ser Leu Thr Arg Ser His Ser Val Gly Gly Pro Leu
 50 55 60
 Gln Asn Ile Asp Phe Thr Gln Arg Pro Phe His Gly Ile Ser Thr
 65 70 75
 Val Ser Leu Pro Gly Ser Leu Gln Glu Val Val Asp Pro Leu Gly
 80 85 90
 Lys Arg Pro Asn Pro Pro Pro Val Ser Val Pro Tyr Leu Ser Pro
 95 100 105
 Leu Val Leu Arg Lys Glu Leu Glu Ser Leu Leu Glu Asn Glu Gly
 110 115 120
 Asp Gln Val Ile His Thr Ser Ser Phe Ile Asn Gln His Pro Ile
 125 130 135
 Ile Phe Trp Asn Leu Val Trp Tyr Phe Arg Arg Leu Asp Leu Pro
 140 145 150
 Ser Asn Leu Pro Gly Leu Ile Leu Thr Ser Glu His Cys Asn Glu
 155 160 165
 Gly Val Gln Leu Pro Leu Ser Ser Leu Ser Gln Asp Ser Lys Leu
 170 175 180
 Val Tyr Ile Arg Leu Leu Trp Asp Asn Ile Asn Leu His Gln Glu
 185 190 195
 Pro Arg Glu Pro Leu Tyr Val Ser Trp Arg Asn Phe Asn Ser Glu
 200 205 210
 Lys Lys Ser Ser Leu Leu Ser Glu Glu Gln Gln Glu Thr Ser Thr
 215 220 225
 Leu Val Glu Thr Ile Arg Gln Ser Ile Gln His Asn Asn Val Leu
 230 235 240

Lys	Pro	Ile	Asn	Leu	Leu	Ser	Gln	Gln	Met	Lys	Pro	Gly	Met	Lys
245							250						255	
Arg	Gln	Arg	Ser	Leu	Tyr	Arg	Glu	Ile	Leu	Phe	Leu	Ser	Leu	Val
260							265						270	
Ser	Leu	Gly	Arg	Glu	Asn	Ile	Asp	Ile	Glu	Ala	Phe	Asp	Asn	Glu
275							280						285	
Tyr	Gly	Ile	Ala	Tyr	Asn	Ser	Leu	Ser	Ser	Glu	Ile	Leu	Glu	Arg
290							295						300	
Leu	Gln	Lys	Ile	Asp	Ala	Pro	Pro	Ser	Ala	Ser	Val	Glu	Trp	Cys
305							310						315	
Arg	Lys	Cys	Phe	Gly	Ala	Pro	Leu	Ile						
							320							

<210> 41
<211> 270
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2775157CD1

<400> 41															
Met	Pro	Cys	Pro	Met	Leu	Leu	Pro	Ser	Gly	Lys	Val	Ile	Asp	Gln	
1					5				10					15	
Ser	Thr	Leu	Glu	Lys	Cys	Asn	Arg	Ser	Glu	Ala	Thr	Trp	Gly	Arg	
					20				25					30	
Val	Pro	Ser	Asp	Pro	Phe	Thr	Gly	Val	Ala	Phe	Thr	Pro	His	Ser	
					35				40					45	
Gln	Pro	Leu	Pro	His	Pro	Ser	Leu	Lys	Ala	Arg	Ile	Asp	His	Phe	
					50				55					60	
Leu	Leu	Gln	His	Ser	Ile	Pro	Gly	Cys	His	Leu	Leu	Gly	Arg	Ala	
					65				70					75	
Gln	Thr	Ala	Leu	Ala	Val	Ile	Pro	Ser	Ser	Ile	Val	Leu	Pro	Ser	
					80				85					90	
Gln	Lys	Arg	Lys	Ile	Glu	Gln	Ala	Glu	His	Val	Pro	Asp	Ser	Asn	
					95				100					105	
Phe	Gly	Val	Asn	Ala	Ser	Cys	Phe	Ser	Ala	Thr	Ser	Pro	Leu	Val	
					110				115					120	
Leu	Pro	Thr	Thr	Ser	Glu	His	Thr	Ala	Lys	Lys	Met	Lys	Ala	Thr	
					125				130					135	
Asn	Glu	Pro	Ser	Leu	Thr	His	Met	Asp	Cys	Ser	Thr	Gly	Pro	Leu	
					140				145					150	
Ser	His	Glu	Gln	Lys	Leu	Ser	Gln	Ser	Leu	Glu	Ile	Ala	Leu	Ala	
					155				160					165	
Ser	Thr	Leu	Gly	Ser	Met	Pro	Ser	Phe	Thr	Ala	Arg	Leu	Thr	Arg	
					170				175					180	
Gly	Gln	Leu	Gln	His	Leu	Gly	Thr	Arg	Gly	Ser	Asn	Thr	Ser	Trp	
					185				190					195	
Arg	Pro	Gly	Thr	Gly	Ser	Glu	Gln	Pro	Gly	Ser	Ile	Leu	Gly	Pro	
					200				205					210	
Glu	Cys	Ala	Ser	Cys	Lys	Arg	Val	Phe	Ser	Pro	Tyr	Phe	Lys		
					215				220					225	
Glu	Pro	Val	Tyr	Gln	Leu	Pro	Cys	Gly	His	Leu	Leu	Cys	Arg	Pro	
					230				235					240	
Cys	Leu	Gly	Glu	Lys	Gln	Arg	Ser	Leu	Pro	Met	Thr	Cys	Thr	Ala	
					245				250					255	
Cys	Gln	Arg	Pro	Val	Ala	Ser	Gln	Asp	Val	Leu	Arg	Val	His	Phe	
					260				265					270	

<210> 42
<211> 252

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2918375CD1

<400> 42

Met	Leu	Arg	Lys	Gly	Ile	Cys	Glu	Tyr	His	Glu	Lys	Asn	Tyr	Ala
1				5					10					15
Ala	Ala	Leu	Glu	Thr	Phe	Thr	Glu	Gly	Gln	Lys	Leu	Asp	Ser	Ala
				20					25					30
Asp	Ala	Asn	Phe	Ser	Val	Trp	Ile	Lys	Arg	Cys	Gln	Glu	Ala	Gln
					35				40					45
Asn	Gly	Ser	Glu	Ser	Glu	Val	Trp	Thr	His	Gln	Ser	Lys	Ile	Lys
					50				55					60
Tyr	Asp	Trp	Tyr	Gln	Thr	Glu	Ser	Gln	Val	Val	Ile	Thr	Leu	Met
					65				70					75
Ile	Lys	Asn	Val	Gln	Lys	Asn	Asp	Val	Asn	Val	Glu	Phe	Ser	Glu
					80				85					90
Lys	Glu	Leu	Ser	Ala	Leu	Val	Lys	Leu	Pro	Ser	Gly	Glu	Asp	Tyr
					95				100					105
Asn	Leu	Lys	Leu	Glu	Leu	Leu	His	Pro	Ile	Ile	Pro	Glu	Gln	Ser
					110				115					120
Thr	Phe	Lys	Val	Leu	Ser	Thr	Lys	Ile	Glu	Ile	Lys	Leu	Lys	Lys
					125				130					135
Pro	Glu	Ala	Val	Arg	Trp	Glu	Lys	Leu	Glu	Gly	Gln	Gly	Asp	Val
					140				145					150
Pro	Thr	Pro	Lys	Gln	Phe	Val	Ala	Asp	Val	Lys	Asn	Leu	Tyr	Pro
					155				160					165
Ser	Ser	Ser	Pro	Tyr	Thr	Arg	Asn	Trp	Asp	Lys	Leu	Val	Gly	Glu
					170				175					180
Ile	Lys	Glu	Glu	Glu	Lys	Asn	Glu	Lys	Leu	Glu	Gly	Asp	Ala	Ala
					185				190					195
Leu	Asn	Arg	Leu	Phe	Gln	Gln	Ile	Tyr	Ser	Asp	Gly	Ser	Asp	Glu
					200				205					210
Val	Lys	Arg	Ala	Met	Asn	Lys	Ser	Phe	Met	Glu	Ser	Gly	Gly	Thr
					215				220					225
Val	Leu	Ser	Thr	Asn	Trp	Ser	Asp	Val	Gly	Lys	Arg	Lys	Val	Glu
					230				235					240
Ile	Asn	Pro	Pro	Asp	Asp	Met	Glu	Trp	Lys	Lys	Tyr			
					245				250					

<210> 43

<211> 228

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 3149729CD1

<400> 43

Met	Thr	Met	Gly	Asp	Lys	Lys	Ser	Pro	Thr	Arg	Pro	Lys	Arg	Gln
1				5					10					15
Ala	Lys	Pro	Ala	Ala	Asp	Glu	Gly	Phe	Trp	Asp	Cys	Ser	Val	Cys
					20				25					30
Thr	Phe	Arg	Asn	Ser	Ala	Glu	Ala	Phe	Lys	Cys	Ser	Ile	Cys	Asp
					35				40					45
Val	Arg	Lys	Gly	Thr	Ser	Thr	Arg	Lys	Pro	Arg	Ile	Asn	Ser	Gln
					50				55					60

Leu Val Ala Gln Gln Val Ala Gln Gln Tyr Ala Thr Pro Pro Pro
 65 70 75
 Pro Lys Lys Glu Lys Lys Glu Lys Val Glu Lys Gln Asp Lys Glu
 80 85 90
 Lys Pro Glu Lys Asp Lys Glu Ile Ser Pro Ser Val Thr Lys Lys
 95 100 105
 Asn Thr Asn Lys Lys Thr Lys Pro Lys Ser Asp Ile Leu Lys Asp
 110 115 120
 Pro Pro Ser Glu Ala Asn Ser Ile Gln Ser Ala Asn Ala Thr Thr
 125 130 135
 Lys Thr Ser Glu Thr Asn His Thr Ser Arg Pro Arg Leu Lys Asn
 140 145 150
 Val Asp Arg Ser Thr Ala Gln Gln Leu Ala Val Thr Val Gly Asn
 155 160 165
 Val Thr Val Ile Ile Thr Asp Phe Lys Glu Lys Thr Arg Ser Ser
 170 175 180
 Ser Thr Ser Ser Thr Val Thr Ser Ser Ala Gly Ser Glu Gln
 185 190 195
 Gln Asn Gln Ser Ser Ser Gly Ser Glu Ser Thr Asp Lys Gly Ser
 200 205 210
 Ser Arg Ser Ser Thr Pro Lys Gly Asp Met Ser Ala Val Asn Asp
 215 220 225
 Glu Ser Phe

<210> 44
 <211> 117
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3705895CD1

<400> 44
 Met Ala Ala Ala Ala Ala Ala Gly Ser Gly Thr Pro Arg Glu Glu
 1 5 10 15
 Glu Gly Pro Ala Gly Glu Ala Ala Ala Ser Gln Pro Gln Ala Pro
 20 25 30
 Thr Ser Val Pro Gly Ala Arg Leu Ser Arg Leu Pro Leu Ala Arg
 35 40 45
 Val Lys Ala Leu Val Lys Ala Asp Pro Asp Val Thr Leu Ala Gly
 50 55 60
 Gln Glu Ala Ile Phe Ile Leu Ala Arg Ala Ala Glu Leu Phe Val
 65 70 75
 Glu Thr Ile Ala Lys Asp Ala Tyr Cys Cys Ala Gln Gln Gly Lys
 80 85 90
 Arg Lys Thr Leu Gln Arg Arg Asp Leu Asp Asn Ala Ile Glu Ala
 95 100 105
 Val Asp Glu Phe Ala Phe Leu Glu Gly Thr Leu Asp
 110 115

<210> 45
 <211> 252
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 003256CD1

<400> 45

Met	Thr	Pro	Lys	Leu	Gly	Arg	Gly	Val	Leu	Glu	Gly	Asp	Asp	Val
1				5					10					15
Leu	Phe	Tyr	Asp	Glu	Ser	Pro	Pro	Pro	Arg	Pro	Lys	Leu	Ser	Ala
				20					25					30
Leu	Ala	Glu	Ala	Lys	Lys	Leu	Ala	Ala	Ile	Thr	Lys	Leu	Arg	Ala
				35					40					45
Lys	Gly	Gln	Val	Leu	Thr	Lys	Thr	Asn	Pro	Asn	Ser	Ile	Lys	Lys
				50					55					60
Lys	Gln	Lys	Asp	Pro	Gln	Asp	Ile	Leu	Glu	Val	Lys	Glu	Arg	Val
				65					70					75
Glu	Lys	Asn	Thr	Met	Phe	Ser	Ser	Gln	Ala	Glu	Asp	Glu	Leu	Glu
				80					85					90
Pro	Ala	Arg	Lys	Lys	Arg	Arg	Glu	Gln	Leu	Ala	Tyr	Leu	Glu	Ser
				95					100					105
Glu	Glu	Phe	Gln	Lys	Ile	Leu	Lys	Ala	Lys	Ser	Lys	His	Thr	Gly
				110					115					120
Ile	Leu	Lys	Glu	Ala	Glu	Ala	Glu	Met	Gln	Glu	Arg	Tyr	Phe	Glu
				125					130					135
Pro	Leu	Val	Lys	Lys	Glu	Gln	Met	Glu	Glu	Lys	Met	Arg	Asn	Ile
				140					145					150
Arg	Glu	Val	Lys	Cys	Arg	Val	Val	Thr	Cys	Lys	Thr	Cys	Ala	Tyr
				155					160					165
Thr	His	Phe	Lys	Leu	Leu	Glu	Thr	Cys	Val	Ser	Glu	Gln	His	Glu
				170					175					180
Tyr	His	Trp	His	Asp	Gly	Val	Lys	Arg	Phe	Phe	Lys	Cys	Pro	Cys
				185					190					195
Gly	Asn	Arg	Ser	Ile	Ser	Leu	Asp	Arg	Leu	Pro	Asn	Lys	His	Cys
				200					205					210
Ser	Asn	Cys	Gly	Leu	Tyr	Lys	Trp	Glu	Arg	Asp	Gly	Met	Leu	Lys
				215					220					225
Glu	Lys	Thr	Gly	Pro	Lys	Ile	Gly	Gly	Glu	Thr	Leu	Leu	Pro	Arg
				230					235					240
Gly	Glu	Glu	His	Ala	Lys	Phe	Leu	Asn	Ser	Leu	Lys			
				245					250					

<210> 46

<211> 530

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 156986CD1

<400> 46

Met	Ala	Lys	Gly	Glu	Gly	Ala	Glu	Ser	Gly	Ser	Ala	Ala	Gly	Leu
1				5					10					15
Leu	Pro	Thr	Ser	Ile	Leu	Gln	Ser	Thr	Glu	Arg	Pro	Ala	Gln	Val
				20					25					30
Lys	Lys	Glu	Pro	Lys	Lys	Lys	Gln	Gln	Leu	Ser	Val	Cys	Asn	
				35					40					45
Lys	Leu	Cys	Tyr	Ala	Leu	Gly	Gly	Ala	Pro	Tyr	Gln	Val	Thr	Gly
				50					55					60
Cys	Ala	Leu	Gly	Phe	Phe	Leu	Gln	Ile	Tyr	Leu	Leu	Asp	Val	Ala
				65					70					75
Gln	Val	Gly	Pro	Phe	Ser	Ala	Ser	Ile	Ile	Leu	Phe	Val	Gly	Arg
				80					85					90
Ala	Trp	Asp	Ala	Ile	Thr	Asp	Pro	Leu	Val	Gly	Leu	Cys	Ile	Ser
				95					100					105
Lys	Ser	Pro	Trp	Thr	Cys	Leu	Gly	Arg	Leu	Met	Pro	Trp	Ile	Ile
				110					115					120

Phe	Ser	Thr	Pro	Leu	Ala	Val	Ile	Ala	Tyr	Phe	Leu	Ile	Trp	Phe
				125					130				135	
Val	Pro	Asp	Phe	Pro	His	Gly	Gln	Thr	Tyr	Trp	Tyr	Leu	Leu	Phe
				140					145				150	
Tyr	Cys	Leu	Phe	Glu	Thr	Met	Val	Thr	Cys	Phe	His	Val	Pro	Tyr
				155					160				165	
Ser	Ala	Leu	Thr	Met	Phe	Ile	Ser	Thr	Glu	Gln	Thr	Glu	Arg	Asp
				170					175				180	
Ser	Ala	Thr	Ala	Tyr	Arg	Met	Thr	Val	Glu	Val	Leu	Gly	Thr	Val
				185					190				195	
Leu	Gly	Thr	Ala	Ile	Gln	Gly	Gln	Ile	Val	Gly	Gln	Ala	Asp	Thr
				200					205				210	
Pro	Cys	Phe	Gln	Asp	Leu	Asn	Ser	Ser	Thr	Val	Ala	Ser	Gln	Ser
				215					220				225	
Ala	Asn	His	Thr	His	Gly	Thr	Thr	Ser	His	Arg	Glu	Thr	Gln	Lys
				230					235				240	
Ala	Tyr	Leu	Leu	Ala	Ala	Gly	Val	Ile	Val	Cys	Ile	Tyr	Ile	Ile
				245					250				255	
Cys	Ala	Val	Ile	Leu	Ile	Leu	Gly	Val	Arg	Glu	Gln	Arg	Glu	Pro
				260					265				270	
Tyr	Glu	Ala	Gln	Gln	Ser	Glu	Pro	Ile	Ala	Tyr	Phe	Arg	Gly	Leu
				275					280				285	
Arg	Leu	Val	Met	Ser	His	Gly	Pro	Tyr	Ile	Lys	Leu	Ile	Thr	Gly
				290					295				300	
Phe	Leu	Phe	Thr	Ser	Leu	Ala	Phe	Met	Leu	Val	Glu	Gly	Asn	Phe
				305					310				315	
Val	Leu	Phe	Cys	Thr	Tyr	Thr	Leu	Gly	Phe	Arg	Asn	Glu	Phe	Gln
				320					325				330	
Asn	Leu	Leu	Leu	Ala	Ile	Met	Leu	Ser	Ala	Thr	Leu	Thr	Ile	Pro
				335					340				345	
Ile	Trp	Gln	Trp	Phe	Leu	Thr	Arg	Phe	Gly	Lys	Lys	Thr	Ala	Val
				350					355				360	
Tyr	Val	Gly	Ile	Ser	Ser	Ala	Val	Pro	Phe	Leu	Ile	Leu	Val	Ala
				365					370				375	
Leu	Met	Glu	Ser	Asn	Leu	Ile	Ile	Thr	Tyr	Ala	Val	Ala	Val	Ala
				380					385				390	
Ala	Gly	Ile	Ser	Val	Ala	Ala	Ala	Phe	Leu	Leu	Pro	Trp	Ser	Met
				395					400				405	
Leu	Pro	Asp	Val	Ile	Asp	Asp	Phe	His	Leu	Lys	Gln	Pro	His	Phe
				410					415				420	
His	Gly	Thr	Glu	Pro	Ile	Phe	Phe	Ser	Phe	Tyr	Val	Phe	Phe	Thr
				425					430				435	
Lys	Phe	Ala	Ser	Gly	Val	Ser	Leu	Gly	Ile	Ser	Thr	Leu	Ser	Leu
				440					445				450	
Asp	Phe	Ala	Gly	Tyr	Gln	Thr	Arg	Gly	Cys	Ser	Gln	Pro	Glu	Arg
				455					460				465	
Val	Lys	Phe	Thr	Leu	Asn	Met	Leu	Val	Thr	Met	Ala	Pro	Ile	Val
				470					475				480	
Leu	Ile	Leu	Leu	Gly	Leu	Leu	Leu	Phe	Lys	Met	Tyr	Pro	Ile	Asp
				485					490				495	
Glu	Glu	Arg	Arg	Arg	Gln	Asn	Lys	Lys	Ala	Leu	Gln	Ala	Leu	Arg
				500					505				510	

Asp	Glu	Ala	Ser	Ser	Ser	Gly	Cys	Ser	Glu	Thr	Asp	Ser	Thr	Glu
				515					520				525	
Leu	Ala	Ser	Ile	Leu										
				530										

<210> 47
<211> 355
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 319415CD1

<400> 47

Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	Glu	Asp	Lys	Cys	Ile	Phe	Lys
1				5				10					15	
Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu	His	Ala	Lys	Asp	Glu	Tyr
				20				25					30	
Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	Pro	Ile	Gly	Arg	Phe
				35				40					45	
Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Ile	Leu	Cys	Asn	Asp	Gly
				50				55					60	
Ser	Leu	Leu	Leu	Gln	Asp	Val	Gln	Glu	Ala	Asp	Gln	Gly	Thr	Tyr
				65				70					75	
Ile	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe	Lys	Lys
				80				85					90	
Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	Met
				95				100					105	
Val	His	Val	Gly	Gly	Leu	Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser
				110				115					120	
Thr	Glu	Val	Lys	His	Val	Thr	Lys	Val	Glu	Trp	Ile	Phe	Ser	Gly
				125				130					135	
Arg	Arg	Ala	Lys	Glu	Glu	Ile	Val	Phe	Arg	Tyr	Tyr	His	Lys	Leu
				140				145					150	
Arg	Met	Ser	Val	Glu	Tyr	Ser	Gln	Ser	Trp	Gly	His	Phe	Gln	Asn
				155				160					165	
Arg	Val	Asn	Leu	Val	Gly	Asp	Ile	Phe	Arg	Asn	Asp	Gly	Ser	Ile
				170				175					180	
Met	Leu	Gln	Gly	Val	Arg	Glu	Ser	Asp	Gly	Gly	Asn	Tyr	Thr	Cys
				185				190					195	
Ser	Ile	His	Leu	Gly	Asn	Leu	Val	Phe	Lys	Lys	Thr	Ile	Val	Leu
				200				205					210	
His	Val	Ser	Pro	Glu	Glu	Pro	Arg	Thr	Leu	Val	Thr	Pro	Ala	Ala
				215				220					225	
Leu	Arg	Pro	Leu	Val	Leu	Gly	Gly	Asn	Gln	Leu	Val	Ile	Ile	Val
				230				235					240	
Gly	Ile	Val	Cys	Ala	Thr	Ile	Leu	Leu	Leu	Pro	Val	Leu	Ile	Leu
				245				250					255	
Ile	Val	Lys	Lys	Thr	Cys	Gly	Asn	Lys	Ser	Ser	Val	Asn	Ser	Thr
				260				265					270	
Val	Leu	Val	Lys	Asn	Thr	Lys	Lys	Thr	Asn	Pro	Glu	Ile	Lys	Glu
				275				280					285	
Lys	Pro	Cys	His	Phe	Glu	Arg	Cys	Glu	Gly	Glu	Lys	His	Ile	Tyr
				290				295					300	
Ser	Pro	Ile	Ile	Val	Arg	Glu	Val	Ile	Glu	Glu	Glu	Pro	Ser	
				305				310					315	
Glu	Lys	Ser	Glu	Ala	Thr	Tyr	Met	Thr	Met	His	Pro	Val	Trp	Pro
				320				325					330	
Ser	Leu	Arg	Ser	Asp	Arg	Asn	Asn	Ser	Leu	Glu	Lys	Lys	Ser	Gly
				335				340					345	
Gly	Gly	Met	Pro	Lys	Thr	Gln	Gln	Ala	Phe					
				350				355						

<210> 48

<211> 136

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 635581CD1

<400> 48

Met	Val	Gly	Gln	Thr	Glu	Asp	Asp	Thr	Ala	Gln	Gln	Leu	Val	Pro
1					5					10				15
Thr	Cys	Gly	Met	Lys	Gly	Val	Gly	Glu	Arg	Ile	Val	Glu	Tyr	Val
				20					25				30	
Ser	Asn	Ile	Pro	Ala	Leu	Gln	Arg	Ala	Thr	Pro	Lys	Gly	Leu	Ala
					35				40				45	
Ser	Val	Ser	Pro	Asp	Leu	Glu	His	Arg	Gln	Glu	Trp	Thr	Tyr	Ser
				50					55				60	
Lys	Ser	Pro	Leu	Met	Gly	Lys	Gly	Thr	Arg	Leu	Glu	Ala	Ser	Glu
				65					70				75	
Asn	Lys	Arg	Ala	Gly	Trp	Leu	Ala	Ala	Ala	Pro	Glu	Asn	Leu	Lys
				80					85				90	
Tyr	His	Arg	Gln	Ile	Ala	Gln	Gly	Ala	Lys	Asp	Tyr	Glu	Ile	Leu
				95					100				105	
Lys	Lys	Glu	Thr	Asn	Lys	Phe	Ile	Leu	Arg	Ile	Tyr	Thr	His	Trp
				110					115				120	
Ser	Arg	Arg	Ser	Ile	Leu	Arg	Lys	Gly	Ser	Lys	Gly	Met	Gln	Asn
				125					130				135	
'Leu														

<210> 49

<211> 230

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 921803CD1

<400> 49

Met	Lys	Leu	Ile	Val	Gly	Ile	Gly	Gly	Met	Thr	Asn	Gly	Gly	Lys
1					5				10					15
Thr	Thr	Leu	Thr	Asn	Ser	Leu	Leu	Arg	Ala	Leu	Pro	Asn	Cys	Cys
					20				25				30	
Val	Ile	His	Gln	Asp	Asp	Phe	Phe	Lys	Pro	Gln	Asp	Gln	Ile	Ala
				35					40				45	
Val	Gly	Glu	Asp	Gly	Phe	Lys	Gln	Trp	Asp	Val	Leu	Glu	Ser	Leu
				50					55				60	
Asp	Met	Glu	Ala	Met	Leu	Asp	Thr	Val	Gln	Ala	Trp	Leu	Ser	Ser
				65					70				75	
Pro	Gln	Lys	Phe	Ala	Arg	Ala	His	Gly	Val	Ser	Val	Gln	Pro	Glu
				80					85				90	
Ala	Ser	Asp	Thr	His	Ile	Leu	Leu	Leu	Glu	Gly	Phe	Leu	Leu	Tyr
				95					100				105	
Ser	Tyr	Lys	Pro	Leu	Val	Asp	Leu	Tyr	Ser	Arg	Arg	Tyr	Phe	Leu
				110					115				120	
Thr	Val	Pro	Tyr	Glu	Glu	Cys	Lys	Trp	Arg	Arg	Ser	Thr	Arg	Asn
				125					130				135	
Tyr	Thr	Val	Pro	Asp	Pro	Pro	Gly	Leu	Phe	Asp	Gly	His	Val	Trp
				140					145				150	
Pro	Met	Tyr	Gln	Lys	Tyr	Arg	Gln	Glu	Met	Glu	Ala	Asn	Gly	Val
				155					160				165	
Glu	Val	Val	Tyr	Leu	Asp	Gly	Met	Lys	Ser	Arg	Glu	Glu	Leu	Phe
				170					175				180	
Arg	Glu	Val	Leu	Glu	Asp	Ile	Gln	Asn	Ser	Leu	Leu	Asn	Arg	Ser
				185					190				195	
Gln	Glu	Ser	Ala	Pro	Ser	Pro	Ala	Arg	Pro	Ala	Arg	Thr	Gln	Gly
				200					205				210	

Pro	Gly	Arg	Gly	Cys	Gly	His	Arg	Thr	Ala	Arg	Pro	Ala	Ala	Ser
				215					220					225
Gln	Gln	Asp	Ser	Met										
				230										

<210> 50
<211> 70
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1250492CD1

<400> 50
Met Thr Ile Lys Leu Arg Pro Leu Pro Phe Phe Lys Pro Lys Ser
1 5 10 15
Gly Asn Gln Glu Gln Gln Leu His Gly Leu Leu Ala Pro Asp Gln
20 25 30
Pro Gly Ser Gly Asp Ile Val Ser Leu Phe Gly Asn Cys Arg Pro
35 40 45
Gln Gly Val Gly Leu Ser His Phe Leu Val Leu Pro Thr Phe Pro
50 55 60
Ile Arg Ala Ser Ser Arg Gly Gln Val Cys
65 70

<210> 51
<211> 169
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1427838CD1

<400> 51
Met Leu Ala Phe Ser Glu Met Pro Lys Pro Pro Asp Tyr Ser Glu
1 5 10 15
Leu Ser Asp Ser Leu Thr Leu Ala Val Gly Thr Gly Arg Phe Ser
20 25 30
Gly Pro Leu His Arg Ala Trp Arg Met Met Asn Phe Arg Gln Arg
35 40 45
Met Gly Trp Ile Gly Val Gly Leu Tyr Leu Leu Ala Ser Ala Ala
50 55 60
Ala Phe Tyr Tyr Val Phe Glu Ile Ser Glu Thr Tyr Asn Arg Leu
65 70 75
Ala Leu Glu His Ile Gln Gln His Pro Glu Glu Pro Leu Glu Gly
80 85 90
Thr Thr Trp Thr His Ser Leu Lys Ala Gln Leu Leu Ser Leu Pro
95 100 105
Phe Trp Val Trp Thr Val Ile Phe Leu Val Pro Tyr Leu Gln Met
110 115 120
Phe Leu Phe Leu Tyr Ser Cys Thr Arg Ala Asp Pro Lys Thr Val
125 130 135
Gly Tyr Cys Ile Ile Pro Ile Cys Leu Ala Val Ile Cys Asn Arg
140 145 150
His Gln Ala Phe Val Lys Ala Ser Asn Gln Ile Ser Arg Leu Gln
155 160 165
Leu Ile Asp Thr

<210> 52
<211> 359
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1448258CD1

<400> 52

Met	Gly	Pro	Thr	Lys	Phe	Thr	Gln	Thr	Asn	Ile	Gly	Ile	Ile	Glu
1				5					10					15
Asn	Lys	Leu	Leu	Glu	Ala	Pro	Asp	Val	Leu	Cys	Leu	Arg	Leu	Ser
					20				25					30
Thr	Glu	Gln	Cys	Gln	Ala	His	Glu	Glu	Lys	Gly	Ile	Glu	Glu	Leu
					35				40					45
Ser	Asp	Pro	Ser	Gly	Pro	Lys	Ser	Tyr	Ser	Ile	Thr	Glu	Lys	His
					50				55					60
Tyr	Ala	Gln	Glu	Asp	Pro	Arg	Met	Leu	Phe	Val	Ala	Ala	Val	Asp
					65				70					75
His	Ser	Ser	Ser	Gly	Asp	Met	Ser	Leu	Leu	Pro	Ser	Ser	Asp	Pro
					80				85					90
Lys	Phe	Gln	Gly	Leu	Gly	Val	Val	Glu	Ser	Ala	Val	Thr	Ala	Asn
					95				100					105
Asn	Thr	Glu	Glu	Ser	Leu	Phe	Arg	Ile	Cys	Ser	Pro	Leu	Ser	Gly
					110				115					120
Ala	Asn	Glu	Tyr	Ile	Ala	Ser	Thr	Asp	Thr	Leu	Lys	Thr	Glu	Glu
					125				130					135
Val	Leu	Leu	Phe	Thr	Asp	Gln	Thr	Asp	Asp	Leu	Ala	Lys	Glu	Glu
					140				145					150
Pro	Thr	Ser	Leu	Phe	Gln	Arg	Asp	Ser	Glu	Thr	Lys	Gly	Glu	Ser
					155				160					165
Gly	Leu	Val	Leu	Glu	Gly	Asp	Lys	Glu	Ile	His	Gln	Ile	Phe	Glu
					170				175					180
Asp	Leu	Asp	Lys	Lys	Leu	Ala	Leu	Ala	Ser	Arg	Phe	Tyr	Ile	Pro
					185				190					195
Glu	Gly	Cys	Ile	Gln	Arg	Trp	Ala	Ala	Glu	Met	Val	Val	Ala	Leu
					200				205					210
Asp	Ala	Leu	His	Arg	Glu	Gly	Ile	Val	Cys	Arg	Asp	Leu	Asn	Pro
					215				220					225
Asn	Asn	Ile	Leu	Leu	Asn	Asp	Arg	Gly	His	Ile	Gln	Leu	Thr	Tyr
					230				235					240
Phe	Ser	Arg	Trp	Ser	Glu	Val	Glu	Asp	Ser	Cys	Asp	Ser	Asp	Ala
					245				250					255
Ile	Glu	Arg	Met	Tyr	Cys	Ala	Pro	Glu	Val	Gly	Ala	Ile	Thr	Glu
					260				265					270
Glu	Thr	Glu	Ala	Cys	Asp	Trp	Trp	Ser	Leu	Gly	Ala	Val	Leu	Phe
					275				280					285
Glu	Leu	Leu	Thr	Gly	Lys	Thr	Leu	Val	Glu	Cys	His	Pro	Ala	Gly
					290				295					300
Ile	Asn	Thr	His	Thr	Thr	Leu	Asn	Met	Pro	Glu	Cys	Val	Ser	Glu
					305				310					315
Glu	Ala	Arg	Ser	Leu	Ile	Gln	Gln	Leu	Leu	Gln	Phe	Asn	Pro	Leu
					320				325					330
Glu	Arg	Leu	Gly	Ala	Gly	Val	Ala	Gly	Val	Glu	Asp	Ile	Lys	Ser
					335				340					345
His	Pro	Phe	Phe	Thr	Pro	Val	Asp	Trp	Ala	Glu	Leu	Met	Arg	
					350				355					

<210> 53
<211> 545

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1645941CD1

<400> 53

Met	Ser	Arg	Lys	Gln	Asn	Gln	Lys	Asp	Ser	Ser	Gly	Phe	Ile	Phe
1				5					10					15
Asp	Leu	Gln	Ser	Asn	Thr	Val	Leu	Ala	Gln	Gly	Gly	Ala	Phe	Glu
					20				25					30
Asn	Met	Lys	Glu	Lys	Ile	Asn	Ala	Val	Arg	Ala	Ile	Val	Pro	Asn
					35				40					45
Lys	Ser	Asn	Asn	Glu	Ile	Ile	Leu	Val	Leu	Gln	His	Phe	Asp	Asn
					50				55					60
Cys	Val	Asp	Lys	Thr	Val	Gln	Ala	Phe	Met	Glu	Gly	Ser	Ala	Ser
					65				70					75
Glu	Val	Leu	Lys	Glu	Trp	Thr	Val	Thr	Gly	Lys	Lys	Lys	Asn	Lys
					80				85					90
Lys	Lys	Lys	Asn	Lys	Pro	Lys	Pro	Ala	Ala	Glu	Pro	Ser	Asn	Gly
					95				100					105
Ile	Pro	Asp	Ser	Ser	Lys	Ser	Val	Ser	Ile	Gln	Glu	Glu	Gln	Ser
					110				115					120
Ala	Pro	Ser	Ser	Glu	Lys	Gly	Gly	Met	Asn	Gly	Tyr	His	Val	Asn
					125				130					135
Gly	Ala	Ile	Asn	Asp	Thr	Glu	Ser	Val	Asp	Ser	Leu	Ser	Glu	Gly
					140				145					150
Leu	Glu	Thr	Leu	Ser	Ile	Asp	Ala	Arg	Glu	Leu	Glu	Asp	Pro	Glu
					155				160					165
Ser	Ala	Met	Leu	Asp	Thr	Leu	Asp	Arg	Thr	Gly	Ser	Met	Leu	Gln
					170				175					180
Asn	Gly	Val	Ser	Asp	Phe	Glu	Thr	Lys	Ser	Leu	Thr	Met	His	Ser
					185				190					195
Ile	His	Asn	Ser	Gln	Gln	Pro	Arg	Asn	Ala	Ala	Lys	Ser	Leu	Ser
					200				205					210
Arg	Pro	Thr	Thr	Glu	Thr	Gln	Phe	Ser	Asn	Met	Gly	Met	Glu	Asp
					215				220					225
Val	Pro	Leu	Ala	Thr	Ser	Lys	Lys	Leu	Ser	Ser	Asn	Ile	Glu	Lys
					230				235					240
Ser	Val	Lys	Asp	Leu	Gln	Arg	Cys	Thr	Val	Ser	Leu	Ala	Arg	Tyr
					245				250					255
Arg	Val	Val	Val	Lys	Glu	Glu	Met	Asp	Ala	Ser	Ile	Lys	Lys	Met
					260				265					270
Lys	Gln	Ala	Phe	Ala	Glu	Leu	Glu	Ser	Cys	Leu	Met	Asp	Arg	Glu
					275				280					285
Val	Ala	Leu	Leu	Ala	Glu	Met	Asp	Lys	Val	Lys	Ala	Glu	Ala	Met
					290				295					300
Glu	Ile	Leu	Leu	Ser	Arg	Gln	Lys	Lys	Ala	Glu	Leu	Leu	Lys	Lys
					305				310					315
Met	Thr	His	Val	Ala	Val	Gln	Met	Ser	Glu	Gln	Gln	Leu	Val	Glu
					320				325					330
Leu	Arg	Ala	Asp	Ile	Lys	His	Phe	Val	Ser	Glu	Arg	Lys	Tyr	Asp
					335				340					345
Glu	Asp	Leu	Gly	Arg	Val	Ala	Arg	Phe	Thr	Cys	Asp	Val	Glu	Thr
					350				355					360
Leu	Lys	Lys	Ser	Ile	Asp	Ser	Phe	Gly	Gln	Val	Ser	His	Pro	Lys
					365				370					375
Asn	Ser	Tyr	Ser	Thr	Arg	Ser	Arg	Cys	Ser	Ser	Val	Thr	Ser	Val
					380				385					390
Ser	Leu	Ser	Ser	Pro	Ser	Asp	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Thr
					395				400					405
Cys	Ala	Ser	Pro	Pro	Ser	Leu	Thr	Ser	Ala	Asn	Lys	Lys	Asn	Phe
					410				415					420

Ala Pro Gly Glu Thr Pro Ala Ala Ile Ala Asn Ser Ser Gly Gln
 425 430 435
 Pro Tyr Gln Pro Leu Arg Glu Val Leu Pro Gly Asn Arg Arg Gly
 440 445 450
 Gly Gln Gly Tyr Arg Pro Gln Gly Gln Lys Ser Asn Asp Pro Met
 455 460 465
 Asn Gln Gly Arg His Asp Ser Met Gly Arg Tyr Arg Asn Ser Ser
 470 475 480
 Trp Tyr Ser Ser Gly Ser Arg Tyr Gln Ser Ala Pro Ser Gln Ala
 485 490 495
 Pro Gly Asn Thr Ile Glu Arg Gly Gln Thr His Ser Ala Gly Thr
 500 505 510
 Asn Gly Thr Gly Val Ser Met Glu Pro Ser Pro Pro Thr Pro Ser
 515 520 525
 Phe Lys Lys Gly Leu Pro Gln Arg Lys Pro Arg Thr Ser Gln Thr
 530 535 540
 Glu Ala Val Asn Ser
 545

<210> 54

<211> 99

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1646005CD1

<400> 54

Met Asn Trp Val Ala Val Leu Cys Pro Leu Gly Ile Val Trp Met
 1 5 10 15
 Val Gly Asp Gln Pro Pro Gln Val Leu Ser Gln Ala Ser Ser Leu
 20 25 30
 Ala Val Tyr Leu Arg Ala Ala Pro Tyr Pro Asp Val Thr Ala Lys
 35 40 45
 Lys Leu Arg His Asp Thr Asn Cys Gly Phe Pro Arg Gln Gln Arg
 50 55 60
 Met Ala Arg Gly His Glu Gly Arg Ala Pro Leu Leu Asp Arg Pro
 65 70 75
 Thr Leu Lys Ser Arg Tyr Leu Arg Ala Asn His Lys Ile Asn Thr
 80 85 90
 Phe Glu Glu Ile Thr Ala Met Pro Ser
 95

<210> 55

<211> 565

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1686561CD1

<400> 55

Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr
 1 5 10 15
 Pro Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu
 20 25 30
 Glu Ser Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn
 35 40 45
 Ser Leu Ser Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe
 50 55 60

Ser Gln Ala His Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro
 65 70 75
 Val Ser Arg Gln Val Thr Cys Leu Arg Thr Gln Val Leu Glu Asp
 80 85 90
 Ser Glu Asp Ser Phe Cys Arg Arg His Pro Gly Leu Gly Lys Ala
 95 100 105
 Phe Pro Ser Gly Cys Ser Ala Val Ser Glu Pro Ala Ser Glu Ser
 110 115 120
 Val Val Gly Ala Leu Pro Ala Glu His Gln Phe Ser Phe Met Glu
 125 130 135
 Lys Arg Asn Gln Trp Leu Val Ser Gln Leu Ser Ala Ala Ser Pro
 140 145 150
 Asp Thr Gly His Asp Ser Asp Lys Ser Asp Gln Ser Leu Pro Asn
 155 160 165
 Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu Met Val Gln Arg
 170 175 180
 Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu Pro Thr Ile
 185 190 195
 Asp Thr Gly Tyr Asp Ser Gln Pro Gln Asp Val Leu Gly Ile Arg
 200 205 210
 Gln Leu Glu Arg Pro Leu Pro Leu Thr Ser Val Cys Tyr Pro Gln
 215 220 225
 Asp Leu Pro Arg Pro Leu Arg Ser Arg Glu Phe Pro Gln Phe Glu
 230 235 240
 Pro Gln Arg Tyr Pro Ala Cys Ala Gln Met Leu Pro Pro Asn Leu
 245 250 255
 Ser Pro His Ala Pro Trp Asn Tyr His Tyr His Cys Pro Gly Ser
 260 265 270
 Pro Asp His Gln Val Pro Tyr Gly His Asp Tyr Pro Arg Ala Ala
 275 280 285
 Tyr Gln Gln Val Ile Gln Pro Ala Leu Pro Gly Gln Pro Leu Pro
 290 295 300
 Gly Ala Ser Val Arg Gly Leu His Pro Val Gln Lys Val Ile Leu
 305 310 315
 Asn Tyr Pro Ser Pro Trp Asp Gln Glu Glu Arg Pro Ala Gln Arg
 320 325 330
 Asp Cys Ser Phe Pro Gly Leu Pro Arg His Gln Asp Gln Pro His
 335 340 345
 His Gln Pro Pro Asn Arg Ala Gly Ala Pro Gly Glu Ser Leu Glu
 350 355 360
 Cys Pro Ala Glu Leu Arg Pro Gln Val Pro Gln Pro Pro Ser Pro
 365 370 375
 Ala Ala Val Pro Arg Pro Pro Ser Asn Pro Pro Ala Arg Gly Thr
 380 385 390
 Leu Lys Thr Ser Asn Leu Pro Glu Glu Leu Arg Lys Val Phe Ile
 395 400 405
 Thr Tyr Ser Met Asp Thr Ala Met Glu Val Val Lys Phe Val Asn
 410 415 420
 Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp Ile Phe Glu
 425 430 435
 Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met Glu Arg Tyr
 440 445 450
 Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro Lys
 455 460 465
 Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp
 470 475 480
 Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile
 485 490 495
 Glu Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val
 500 505 510
 Leu Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln
 515 520 525
 Asn Thr His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu
 530 535 540

Leu Arg Leu Leu Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly	555
545	550
Pro Leu Pro Thr Leu Gln Val Val Pro Leu	
560	565

<210> 56
<211> 197
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1821233CD1

<400> 56

Met Thr Pro Thr Ser Ser Phe Val Ser Pro Pro Pro Pro Thr Ala																																																																															
1	5		10		15	Ser Pro His Ser Asn Arg Thr Thr Pro Pro Glu Ala Ala Gln Asn		20	25		30	Gly Gln Ser Pro Met Ala Ala Leu Ile Leu Val Ala Asp Asn Ala		35	40		45	Gly Gly Ser His Ala Ser Lys Asp Ala Asn Gln Val His Ser Thr		50	55		60	Thr Arg Arg Asn Ser Asn Ser Pro Pro Ser Pro Ser Ser Met Asn		65	70		75	Gln Arg Arg Leu Gly Pro Arg Glu Val Gly Gly Gln Gly Ala Gly		80	85		90	Asn Thr Gly Gly Leu Glu Pro Val His Pro Ala Ser Leu Pro Asp		95	100		105	Ser Ser Leu Ala Thr Ser Ala Pro Leu Cys Cys Thr Leu Cys His		110	115		120	Glu Arg Leu Glu Asp Thr His Phe Val Gln Cys Pro Ser Val Pro		125	130		135	Ser His Lys Phe Cys Phe Pro Cys Ser Arg Gln Ser Ile Lys Gln		140	145		150	Gln Gly Ala Ser Gly Glu Val Tyr Cys Pro Ser Gly Glu Lys Cys		155	160		165	Pro Leu Val Gly Ser Asn Val Pro Trp Ala Phe Met Gln Gly Glu		170	175		180	Ile Ala Thr Ile Leu Ala Gly Asp Val Lys Val Lys Lys Glu Arg		185	190		195	Asp Ser	
	10																																																																														
	15																																																																														
Ser Pro His Ser Asn Arg Thr Thr Pro Pro Glu Ala Ala Gln Asn																																																																															
20	25																																																																														
	30																																																																														
Gly Gln Ser Pro Met Ala Ala Leu Ile Leu Val Ala Asp Asn Ala																																																																															
35	40																																																																														
	45																																																																														
Gly Gly Ser His Ala Ser Lys Asp Ala Asn Gln Val His Ser Thr																																																																															
50	55																																																																														
	60																																																																														
Thr Arg Arg Asn Ser Asn Ser Pro Pro Ser Pro Ser Ser Met Asn																																																																															
65	70																																																																														
	75																																																																														
Gln Arg Arg Leu Gly Pro Arg Glu Val Gly Gly Gln Gly Ala Gly																																																																															
80	85																																																																														
	90																																																																														
Asn Thr Gly Gly Leu Glu Pro Val His Pro Ala Ser Leu Pro Asp																																																																															
95	100																																																																														
	105																																																																														
Ser Ser Leu Ala Thr Ser Ala Pro Leu Cys Cys Thr Leu Cys His																																																																															
110	115																																																																														
	120																																																																														
Glu Arg Leu Glu Asp Thr His Phe Val Gln Cys Pro Ser Val Pro																																																																															
125	130																																																																														
	135																																																																														
Ser His Lys Phe Cys Phe Pro Cys Ser Arg Gln Ser Ile Lys Gln																																																																															
140	145																																																																														
	150																																																																														
Gln Gly Ala Ser Gly Glu Val Tyr Cys Pro Ser Gly Glu Lys Cys																																																																															
155	160																																																																														
	165																																																																														
Pro Leu Val Gly Ser Asn Val Pro Trp Ala Phe Met Gln Gly Glu																																																																															
170	175																																																																														
	180																																																																														
Ile Ala Thr Ile Leu Ala Gly Asp Val Lys Val Lys Lys Glu Arg																																																																															
185	190																																																																														
	195																																																																														
Asp Ser																																																																															

<210> 57
<211> 321
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1877278CD1

<400> 57

Met Lys Glu Asp Cys Leu Pro Ser Ser His Val Pro Ile Ser Asp																	
1	5		10		15	Ser Lys Ser Ile Gln Lys Ser Glu Leu Leu Gly Leu Leu Lys Thr		20	25		30	Tyr Asn Cys Tyr His Glu Gly Lys Ser Phe Gln Leu Arg His Arg		35	40		45
	10																
	15																
Ser Lys Ser Ile Gln Lys Ser Glu Leu Leu Gly Leu Leu Lys Thr																	
20	25																
	30																
Tyr Asn Cys Tyr His Glu Gly Lys Ser Phe Gln Leu Arg His Arg																	
35	40																
	45																

Glu	Glu	Glu	Gly	Thr	Leu	Ile	Ile	Glu	Gly	Leu	Leu	Asn	Ile	Ala
50								55					60	
Trp	Gly	Leu	Arg	Arg	Pro	Ile	Arg	Leu	Gln	Met	Gln	Asp	Asp	Arg
65								70					75	
Glu	Gln	Val	His	Leu	Pro	Ser	Thr	Ser	Trp	Met	Pro	Arg	Arg	Pro
80								85					90	
Ser	Cys	Pro	Leu	Lys	Glu	Pro	Ser	Pro	Gln	Asn	Gly	Asn	Ile	Thr
95								100					105	
Ala	Gln	Gly	Pro	Ser	Ile	Gln	Pro	Val	His	Lys	Ala	Glu	Ser	Ser
110								115					120	
Thr	Asp	Ser	Ser	Gly	Pro	Leu	Glu	Glu	Ala	Glu	Glu	Ala	Pro	Gln
125								130					135	
Leu	Met	Arg	Thr	Lys	Ser	Asp	Ala	Ser	Cys	Met	Ser	Gln	Arg	Arg
140								145					150	
Pro	Lys	Cys	Arg	Ala	Pro	Gly	Glu	Ala	Gln	Arg	Ile	Arg	Arg	His
155								160					165	
Arg	Phe	Ser	Ile	Asn	Gly	His	Phe	Tyr	Asn	His	Lys	Thr	Ser	Val
170								175					180	
Phe	Thr	Pro	Ala	Tyr	Gly	Ser	Val	Thr	Asn	Val	Arg	Val	Asn	Ser
185								190					195	
Thr	Met	Thr	Thr	Leu	Gln	Val	Leu	Thr	Leu	Leu	Leu	Asn	Lys	Phe
200								205					210	
Arg	Val	Glu	Asp	Gly	Pro	Ser	Glu	Phe	Ala	Leu	Tyr	Ile	Val	His
215								220					225	
Glu	Ser	Gly	Glu	Arg	Thr	Lys	Leu	Lys	Asp	Cys	Glu	Tyr	Pro	Leu
230								235					240	
Ile	Ser	Arg	Ile	Leu	His	Gly	Pro	Cys	Glu	Lys	Ile	Ala	Arg	Ile
245								250					255	
Phe	Leu	Met	Glu	Ala	Asp	Leu	Gly	Val	Glu	Val	Pro	His	Glu	Val
260								265					270	
Ala	Gln	Tyr	Ile	Lys	Phe	Glu	Met	Pro	Val	Leu	Asp	Ser	Phe	Val
275								280					285	
Glu	Lys	Leu	Lys	Glu	Glu	Glu	Glu	Arg	Glu	Ile	Ile	Lys	Leu	Thr
290								295					300	
Met	Lys	Phe	Gln	Ala	Leu	Arg	Leu	Thr	Met	Leu	Gln	Arg	Leu	Glu
305								310					315	
Gln	Leu	Val	Glu	Ala	Lys									
320														

<210> 58

<211> 356

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1880692CD1

<400> 58

Met	Glu	Trp	Leu	Lys	Ser	Thr	Asp	Tyr	Gly	Lys	Tyr	Glu	Gly	Leu
1				5				10					15	
Thr	Lys	Asn	Tyr	Met	Asp	Tyr	Leu	Ser	Arg	Leu	Tyr	Glu	Arg	Glu
				20				25					30	
Ile	Lys	Asp	Phe	Phe	Glu	Val	Ala	Lys	Ile	Lys	Met	Thr	Gly	Thr
				35				40					45	
Thr	Lys	Glu	Ser	Lys	Lys	Phe	Gly	Leu	His	Gly	Ser	Ser	Gly	Lys
				50				55					60	
Leu	Thr	Gly	Ser	Thr	Ser	Ser	Leu	Asn	Lys	Leu	Ser	Val	Gln	Ser
				65				70					75	
Ser	Gly	Asn	Arg	Arg	Ser	Gln	Ser	Ser	Ser	Leu	Leu	Asp	Met	Gly
				80				85					90	
Asn	Met	Ser	Ala	Ser	Asp	Leu	Asp	Val	Ala	Asp	Arg	Thr	Lys	Phe
				95				100					105	

Asp	Lys	Ile	Phe	Glu	Gln	Val	Leu	Ser	Glu	Leu	Glu	Pro	Leu	Cys
						110			115					120
Leu	Ala	Glu	Gln	Asp	Phe	Ile	Ser	Lys	Phe	Phe	Lys	Leu	Gln	Gln
						125			130					135
His	Gln	Ser	Met	Pro	Gly	Thr	Met	Ala	Glu	Ala	Glu	Asp	Leu	Asp
						140			145					150
Gly	Gly	Thr	Leu	Ser	Arg	Gln	His	Asn	Cys	Gly	Thr	Pro	Leu	Pro
						155			160					165
Val	Ser	Ser	Glu	Lys	Asp	Met	Ile	Arg	Gln	Met	Met	Ile	Lys	Ile
						170			175					180
Phe	Arg	Cys	Ile	Glu	Pro	Glu	Leu	Asn	Asn	Leu	Ile	Ala	Leu	Gly
						185			190					195
Asp	Lys	Ile	Asp	Ser	Phe	Asn	Ser	Leu	Tyr	Met	Leu	Val	Lys	Met
						200			205					210
Ser	His	His	Val	Trp	Thr	Ala	Gln	Asn	Val	Asp	Pro	Ala	Ser	Phe
						215			220					225
Leu	Ser	Thr	Thr	Leu	Gly	Asn	Val	Leu	Val	Thr	Val	Lys	Arg	Asn
						230			235					240
Phe	Asp	Lys	Cys	Ile	Ser	Asn	Gln	Ile	Arg	Gln	Met	Glu	Glu	Val
						245			250					255
Lys	Ile	Ser	Lys	Lys	Ser	Lys	Val	Gly	Ile	Leu	Pro	Phe	Val	Ala
						260			265					270
Glu	Phe	Glu	Glu	Phe	Ala	Gly	Leu	Ala	Glu	Ser	Ile	Phe	Lys	Asn
						275			280					285
Ala	Glu	Arg	Arg	Gly	Asp	Leu	Asp	Lys	Ala	Tyr	Thr	Lys	Leu	Ile
						290			295					300
Arg	Gly	Val	Phe	Val	Asn	Val	Glu	Lys	Val	Ala	Asn	Glu	Ser	Gln
						305			310					315
Lys	Thr	Pro	Arg	Asp	Val	Val	Met	Met	Glu	Asn	Phe	His	His	Ile
						320			325					330
Phe	Ala	Thr	Leu	Ser	Arg	Leu	Lys	Ile	Ser	Cys	Leu	Glu	Ala	Glu
						335			340					345
Lys	Lys	Glu	Ala	Ala	Ile	Asn	His	Lys	Phe	Phe				
						350			355					

<210> 59
<211> 299
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2280456CD1

<400> 59

Met	Glu	Glu	Leu	Leu	Pro	Asp	Gly	Gln	Ile	Trp	Ala	Asn	Met	Asp
1				5					10					15
Pro	Glu	Glu	Arg	Met	Leu	Ala	Ala	Ala	Thr	Ala	Phe	Thr	His	Ile
					20				25					30
Cys	Ala	Gly	Gln	Gly	Glu	Gly	Asp	Val	Arg	Arg	Glu	Ala	Gln	Ser
					35				40					45
Ile	Gln	Tyr	Asp	Pro	Tyr	Ser	Lys	Ala	Ser	Val	Ala	Pro	Gly	Lys
					50				55					60
Arg	Pro	Ala	Leu	Pro	Val	Gln	Leu	Gln	Tyr	Pro	His	Val	Glu	Ser
					65				70					75
Asn	Val	Pro	Ser	Glu	Thr	Val	Ser	Glu	Ala	Ser	Gln	Arg	Leu	Arg
					80				85					90
Lys	Pro	Val	Met	Lys	Arg	Lys	Val	Leu	Arg	Arg	Lys	Pro	Asp	Gly
					95				100					105
Glu	Val	Leu	Val	Thr	Asp	Glu	Ser	Ile	Ile	Ser	Glu	Ser	Glu	Ser
					110				115					120
Gly	Thr	Glu	Asn	Asp	Gln	Asp	Leu	Trp	Asp	Leu	Arg	Gln	Arg	Leu
					125				130					135

Met Asn Val Gln Phe Gln Glu Asp Lys Glu Ser Ser Phe Asp Val		
140	145	150
Ser Gln Lys Phe Asn Leu Pro His Glu Tyr Gln Gly Ile Ser Gln		
155	160	165
Asp Gln Leu Ile Cys Ser Leu Gln Arg Glu Gly Met Gly Ser Pro		
170	175	180
Ala Tyr Glu Gln Asp Leu Ile Val Ala Ser Arg Pro Lys Ser Phe		
185	190	195
Ile Leu Pro Lys Leu Asp Gln Leu Ser Arg Asn Arg Gly Lys Thr		
200	205	210
Asp Arg Val Ala Arg Tyr Phe Glu Tyr Lys Arg Asp Trp Asp Ser		
215	220	225
Ile Arg Leu Pro Gly Glu Asp His Arg Lys Glu Leu Arg Trp Gly		
230	235	240
Val Arg Glu Gln Met Leu Cys Arg Ala Glu Pro Gln Ser Lys Pro		
245	250	255
Gln His Ile Tyr Val Pro Asn Asn Tyr Leu Val Pro Thr Glu Lys		
260	265	270
Lys Arg Ser Ala Leu Arg Trp Gly Val Arg Cys Asp Leu Ala Asn		
275	280	285
Gly Val Ile Pro Arg Lys Leu Pro Phe Pro Leu Ser Pro Ser		
290	295	

<210> 60
<211> 293
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2284580CD1

<400> 60			
Met Ala Thr Phe Ser Gly Pro Ala Gly Pro Ile Leu Ser Leu Asn			
1	5	10	15
Pro Gln Glu Asp Val Glu Phe Gln Lys Glu Val Ala Gln Val Arg			
20	25	30	
Lys Arg Ile Thr Gln Arg Lys Lys Gln Glu Gln Leu Thr Pro Gly			
35	40	45	
Val Val Tyr Val Arg His Leu Pro Asn Leu Leu Asp Glu Thr Gln			
50	55	60	
Ile Phe Ser Tyr Phe Ser Gln Phe Gly Thr Val Thr Arg Phe Arg			
65	70	75	
Leu Ser Arg Ser Lys Arg Thr Gly Asn Ser Lys Gly Tyr Ala Phe			
80	85	90	
Val Glu Phe Glu Ser Glu Asp Val Ala Lys Ile Val Ala Glu Thr			
95	100	105	
Met Asn Asn Tyr Leu Phe Gly Glu Arg Leu Leu Glu Cys His Phe			
110	115	120	
Met Pro Pro Glu Lys Val His Lys Glu Leu Phe Lys Asp Trp Asn			
125	130	135	
Ile Pro Phe Lys Gln Pro Ser Tyr Pro Ser Val Lys Arg Tyr Asn			
140	145	150	
Arg Asn Arg Thr Leu Thr Gln Lys Leu Arg Met Glu Glu Arg Phe			
155	160	165	
Lys Lys Lys Glu Arg Leu Leu Arg Lys Lys Leu Ala Lys Lys Gly			
170	175	180	
Ile Asp Tyr Asp Phe Pro Ser Leu Ile Leu Gln Lys Thr Glu Ser			
185	190	195	
Ile Ser Lys Thr Asn Arg Gln Thr Ser Thr Lys Gly Gln Val Leu			
200	205	210	

Arg Lys Lys Lys Lys Lys Val Ser Gly Thr Leu Asp Thr Pro Glu		
215	220	225
Lys Thr Val Asp Ser Gln Gly Pro Thr Pro Val Cys Thr Pro Thr		
230	235	240
Phe Leu Glu Arg Arg Lys Ser Gln Val Ala Glu Leu Asn Asp Asp		
245	250	255
Asp Lys Asp Asp Glu Ile Val Phe Lys Gln Pro Ile Ser Cys Val		
260	265	270
Lys Glu Glu Ile Gln Glu Thr Gln Thr Pro Thr His Ser Arg Lys		
275	280	285
Lys Arg Arg Arg Ser Ser Asn Gln		
290		

<210> 61
<211> 777
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2779172CD1

<400> 61			
Met Val Leu Cys His Ser Phe Leu Tyr Arg Ile Leu Thr Val Gln			
1	5	10	15
Gln His Gly Phe Phe Gly His Asp Arg Arg Pro Ala Asp Gly			
20	25	30	
Glu Lys Gln Ala Ala Thr His Val Ser Leu Asp Gln Glu Tyr Asp			
35	40	45	
Ser Glu Ser Ser Gln Gln Trp Arg Glu Leu Glu Glu Gln Val Val			
50	55	60	
Ser Val Val Asn Lys Gly Val Ile Pro Ser Asn Phe His Pro Thr			
65	70	75	
Gln Tyr Cys Leu Asn Ser Tyr Ser Asp Asn Ser Arg Phe Pro Leu			
80	85	90	
Ala Val Val Glu Glu Pro Ile Thr Val Glu Val Ala Phe Arg Asn			
95	100	105	
Pro Leu Lys Val Leu Leu Leu Thr Asp Leu Ser Leu Leu Trp			
110	115	120	
Lys Phe His Pro Lys Asp Phe Ser Gly Lys Asp Asn Glu Glu Val			
125	130	135	
Lys Gln Leu Val Thr Ser Glu Pro Glu Met Ile Gly Ala Glu Val			
140	145	150	
Ile Ser Glu Phe Leu Ile Asn Gly Glu Ser Lys Val Ala Arg			
155	160	165	
Leu Lys Leu Phe Pro His His Ile Gly Glu Leu His Ile Leu Gly			
170	175	180	
Val Val Tyr Asn Leu Gly Thr Ile Gln Gly Ser Met Thr Val Asp			
185	190	195	
Gly Ile Gly Ala Leu Pro Gly Cys His Thr Gly Lys Tyr Ser Leu			
200	205	210	
Ser Met Ser Val Arg Gly Lys Gln Asp Leu Glu Ile Gln Gly Pro			
215	220	225	
Arg Leu Asn Asn Thr Lys Glu Glu Lys Thr Ser Val Lys Tyr Gly			
230	235	240	
Pro Asp Arg Arg Leu Asp Pro Ile Ile Thr Glu Glu Met Pro Leu			
245	250	255	
Leu Glu Val Phe Phe Ile His Phe Pro Thr Gly Leu Leu Cys Gly			
260	265	270	
Glu Ile Arg Lys Ala Tyr Val Glu Phe Val Asn Val Ser Lys Cys			
275	280	285	

Pro	Leu	Thr	Gly	Leu	Lys	Val	Val	Ser	Lys	Arg	Pro	Glu	Phe	Phe
290									295					300
Thr	Phe	Gly	Gly	Asn	Thr	Ala	Val	Leu	Thr	Pro	Leu	Ser	Pro	Ser
	305								310					315
Ala	Ser	Glu	Asn	Cys	Ser	Ala	Tyr	Lys	Thr	Val	Val	Thr	Asp	Ala
	320								325					330
Thr	Ser	Val	Cys	Thr	Ala	Leu	Ile	Ser	Ser	Ala	Ser	Ser	Val	Asp
	335								340					345
Phe	Gly	Ile	Gly	Thr	Gly	Ser	Gln	Pro	Glu	Val	Ile	Pro	Val	Pro
	350								355					360
Leu	Pro	Asp	Thr	Val	Leu	Leu	Pro	Gly	Ala	Ser	Val	Gln	Leu	Pro
	365								370					375
Met	Trp	Leu	Arg	Gly	Pro	Asp	Glu	Glu	Gly	Val	His	Glu	Ile	Asn
	380								385					390
Phe	Leu	Phe	Tyr	Tyr	Glu	Ser	Val	Lys	Lys	Gln	Pro	Lys	Ile	Arg
	395								400					405
His	Arg	Ile	Leu	Arg	His	Thr	Ala	Ile	Ile	Cys	Thr	Ser	Arg	Ser
	410								415					420
Leu	Asn	Val	Arg	Ala	Thr	Val	Cys	Arg	Ser	Asn	Ser	Leu	Glu	Asn
	425								430					435
Glu	Glu	Gly	Arg	Gly	Gly	Asn	Met	Leu	Val	Phe	Val	Asp	Val	Glu
	440								445					450
Asn	Thr	Asn	Thr	Ser	Glu	Ala	Gly	Val	Lys	Glu	Phe	His	Ile	Val
	455								460					465
Gln	Val	Ser	Ser	Ser	Ser	Lys	His	Trp	Lys	Leu	Gln	Lys	Ser	Val
	470								475					480
Asn	Leu	Ser	Glu	Asn	Lys	Asp	Thr	Lys	Leu	Ala	Ser	Arg	Glu	Lys
	485								490					495
Gly	Lys	Phe	Cys	Phe	Lys	Ala	Ile	Arg	Cys	Glu	Lys	Glu	Glu	Ala
	500								505					510
Ala	Thr	Gln	Ser	Ser	Glu	Lys	Tyr	Thr	Phe	Ala	Asp	Ile	Ile	Phe
	515								520					525
Gly	Asn	Glu	Gln	Ile	Ile	Ser	Ser	Ala	Ser	Pro	Cys	Ala	Asp	Phe
	530								535					540
Phe	Tyr	Arg	Ser	Leu	Ser	Ser	Glu	Leu	Lys	Lys	Pro	Gln	Ala	His
	545								550					555
Leu	Pro	Val	His	Thr	Glu	Lys	Gln	Ser	Thr	Glu	Asp	Ala	Val	Arg
	560								565					570
Leu	Ile	Gln	Lys	Cys	Ser	Glu	Val	Asp	Leu	Asn	Ile	Val	Ile	Leu
	575								580					585
Trp	Lys	Ala	Tyr	Val	Val	Glu	Asp	Ser	Lys	Gln	Leu	Ile	Leu	Glu
	590								595					600
Gly	Gln	His	His	Val	Ile	Leu	Arg	Thr	Ile	Gly	Lys	Glu	Ala	Phe
	605								610					615
Ser	Tyr	Pro	Gln	Lys	Gln	Glu	Pro	Pro	Glu	Met	Glu	Leu	Leu	Lys
	620								625					630
Phe	Phe	Arg	Pro	Glu	Asn	Ile	Thr	Val	Ser	Ser	Arg	Pro	Ser	Val
	635								640					645
Glu	Gln	Leu	Ser	Ser	Leu	Ile	Lys	Thr	Ser	Leu	His	Tyr	Pro	Glu
	650								655					660
Ser	Phe	Asn	His	Pro	Phe	His	Gln	Lys	Ser	Leu	Cys	Leu	Val	Pro
	665								670					675
Val	Thr	Leu	Leu	Leu	Ser	Asn	Cys	Ser	Lys	Ala	Asp	Val	Asp	Val
	680								685					690
Ile	Val	Asp	Leu	Arg	His	Lys	Thr	Thr	Ser	Pro	Glu	Ala	Leu	Glu
	695								700					705
Ile	His	Gly	Ser	Phe	Thr	Trp	Leu	Gly	Gln	Thr	Gln	Tyr	Lys	Leu
	710								715					720
Gln	Leu	Lys	Ser	Gln	Glu	Ile	His	Ser	Leu	Gln	Leu	Lys	Ala	Cys
	725								730					735
Phe	Val	His	Thr	Gly	Val	Tyr	Asn	Leu	Gly	Thr	Pro	Arg	Val	Phe
	740								745					750
Ala	Lys	Leu	Ser	Asp	Gln	Val	Thr	Val	Phe	Glu	Thr	Ser	Gln	Gln
	755								760					765

Asn Ser Met Pro Ala Leu Ile Ile Ser Asn Val
 770 775

<210> 62
 <211> 97
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3279329CD1

<400> 62
 Met Pro Pro Gly Thr Val Leu Arg Tyr Val Gln Cys Leu Phe Leu
 1 5 10 15
 Asp Leu Cys Ile Cys His Glu Ala Pro Cys Gly Leu Cys Met Lys
 20 25 30
 Leu Leu Leu Cys Phe Trp Val Asn Arg Cys Ala Cys Gln Leu Ala
 35 40 45
 Cys Val Leu Ser Lys Phe His Lys Leu Lys Val Phe Lys Gly Cys
 50 55 60
 Val Val Ser Glu Leu Tyr Val Ser Phe Leu Ser Leu Tyr Leu Gln
 65 70 75
 Arg Val Arg Asn Glu Ile Tyr Thr Ser Lys Val Ser Leu Ile Asn
 80 85 90
 Met Ala Phe Cys Phe Ser Met
 95

<210> 63
 <211> 308
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3340290CD1

<400> 63
 Met Ser Val Ser Gly Leu Lys Ala Glu Leu Lys Phe Leu Ala Ser
 1 5 10 15
 Ile Phe Asp Lys Asn His Glu Arg Phe Arg Ile Val Ser Trp Lys
 20 25 30
 Leu Asp Glu Leu His Cys Gln Phe Leu Val Pro Gln Gln Gly Ser
 35 40 45
 Pro His Ser Leu Pro Pro Pro Leu Thr Leu His Cys Asn Ile Thr
 50 55 60
 Glu Ser Tyr Pro Ser Ser Ser Pro Ile Trp Phe Val Asp Ser Glu
 65 70 75
 Asp Pro Asn Leu Thr Ser Val Leu Glu Arg Leu Glu Asp Thr Lys
 80 85 90
 Asn Asn Asn Leu Asn Gly Thr Thr Glu Glu Val Thr Ser Glu Glu
 95 100 105
 Glu Glu Glu Glu Glu Glu Met Ala Glu Asp Ile Glu Asp Leu Asp
 110 115 120
 His Tyr Glu Met Lys Glu Glu Glu Pro Ile Ser Gly Lys Lys Ser
 125 130 135
 Glu Asp Glu Gly Ile Glu Lys Glu Asn Leu Ala Ile Leu Glu Lys
 140 145 150
 Ile Arg Lys Thr Gln Arg Gln Asp His Leu Asn Gly Ala Val Ser
 155 160 165

Gly Ser Val Gln Ala Ser Asp Arg Leu Met Lys Glu Leu Arg Asp
 170 175 180
 Ile Tyr Arg Ser Gln Ser Tyr Lys Thr Gly Ile Tyr Ser Val Glu
 185 190 195
 Leu Ile Asn Asp Ser Leu Tyr Asp Trp His Val Lys Leu Gln Lys
 200 205 210
 Val Asp Pro Asp Ser Pro Leu His Ser Asp Leu Gln Ile Leu Lys
 215 220 225
 Glu Lys Glu Gly Ile Glu Tyr Ile Leu Leu Asn Phe Ser Phe Lys
 230 235 240
 Asp Asn Phe Pro Phe Asp Pro Pro Phe Val Arg Val Val Leu Pro
 245 250 255
 Val Leu Ser Gly Gly Tyr Val Leu Gly Gly Ala Leu Cys Met
 260 265 270
 Glu Leu Leu Thr Lys Gln Asn Gln Tyr Asn Leu Ala Arg Ala Gln
 275 280 285
 Gln Ser Tyr Asn Ser Ile Val Gln Ile His Glu Lys Asn Gly Trp
 290 295 300
 Tyr Thr Pro Pro Lys Glu Asp Gly
 305

<210> 64
<211> 290
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 3376404CD1

<400> 64

Met Arg Arg Pro Ala Ala Val Pro Leu Leu Leu Leu Cys Phe	
1 5 10 15	
Gly Ser Gln Arg Ala Lys Ala Ala Thr Ala Cys Gly Arg Pro Arg	
20 25 30	
Met Leu Asn Arg Met Val Gly Gly Gln Asp Thr Gln Glu Gly Glu	
35 40 45	
Trp Pro Trp Gln Val Ser Ile Gln Arg Asn Gly Ser His Phe Cys	
50 55 60	
Gly Gly Ser Leu Ile Ala Glu Gln Trp Val Leu Thr Ala Ala His	
65 70 75	
Cys Phe Arg Asn Thr Ser Glu Thr Ser Leu Tyr Gln Val Leu Leu	
80 85 90	
Gly Ala Arg Gln Leu Val Gln Pro Gly Pro His Ala Met Tyr Ala	
95 100 105	
Arg Val Arg Gln Val Glu Ser Asn Pro Leu Tyr Gln Gly Thr Ala	
110 115 120	
Ser Ser Ala Asp Val Ala Leu Val Glu Leu Glu Ala Pro Val Pro	
125 130 135	
Phe Thr Asn Tyr Ile Leu Pro Val Cys Leu Pro Asp Pro Ser Val	
140 145 150	
Ile Phe Glu Thr Gly Met Asn Cys Trp Val Thr Gly Trp Gly Ser	
155 160 165	
Pro Ser Glu Glu Asp Leu Leu Pro Glu Pro Arg Ile Leu Gln Lys	
170 175 180	
Leu Ala Val Pro Ile Ile Asp Thr Pro Lys Cys Asn Leu Leu Tyr	
185 190 195	
Ser Lys Asp Thr Glu Phe Gly Tyr Gln Pro Lys Thr Ile Lys Asn	
200 205 210	
Asp Met Leu Cys Ala Gly Phe Glu Glu Gly Lys Lys Asp Ala Cys	
215 220 225	
Lys Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Val Gly Gln Ser	
230 235 240	

Trp	Leu	Gln	Ala	Gly	Val	Ile	Ser	Trp	Gly	Glu	Gly	Cys	Ala	Arg
					245				250					255
Gln	Asn	Arg	Pro	Gly	Val	Tyr	Ile	Arg	Val	Thr	Ala	His	His	Asn
					260				265					270
Trp	Ile	His	Arg	Ile	Ile	Pro	Lys	Leu	Gln	Phe	Gln	Pro	Ala	Arg
					275				280					285
Leu	Gly	Gly	Gln	Lys										
					290									

<210> 65
<211> 198
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 4173111CD1

<400>	65													
Met	Glu	Met	Ser	Gly	Leu	Ser	Phe	Ser	Glu	Met	Glu	Gly	Cys	Arg
					1				5		10			15
Asn	Leu	Leu	Gly	Leu	Leu	Asp	Asn	Asp	Glu	Ile	Met	Ala	Leu	Cys
					20				25					30
Asp	Thr	Val	Thr	Asn	Arg	Leu	Val	Gln	Pro	Gln	Asp	Arg	Gln	Asp
					35				40					45
Ala	Val	His	Ala	Ile	Leu	Ala	Tyr	Ser	Gln	Ser	Ala	Glu	Glu	Leu
					50				55					60
Leu	Arg	Arg	Arg	Lys	Vai	His	Arg	Glu	Val	Ile	Phe	Lys	Tyr	Leu
					65				70					75
Ala	Thr	Gln	Gly	Ile	Val	Ile	Pro	Pro	Ala	Thr	Glu	Lys	His	Asn
					80				85					90
Leu	Ile	Gln	His	Ala	Lys	Asp	Tyr	Trp	Gln	Lys	Gln	Pro	Gln	Leu
					95				100					105
Lys	Leu	Lys	Glu	Thr	Pro	Glu	Pro	Val	Thr	Lys	Thr	Glu	Asp	Ile
					110				115					120
His	Leu	Phe	Gln	Gln	Gln	Val	Lys	Glu	Asp	Lys	Lys	Ala	Glu	Lys
					125				130					135
Val	Asp	Phe	Arg	Arg	Leu	Gly	Glu	Glu	Phe	Cys	His	Trp	Phe	Phe
					140				145					150
Gly	Leu	Leu	Asn	Ser	Gln	Asn	Pro	Phe	Leu	Gly	Pro	Pro	Gln	Asp
					155				160					165
Glu	Trp	Gly	Pro	Gln	His	Phe	Trp	His	Asp	Val	Lys	Leu	Arg	Phe
					170				175					180
Tyr	Tyr	Asn	Thr	Ser	Glu	Gln	Asn	Val	Met	Gly	Leu	Thr	Met	Glu
					185				190					195
Pro	Glu	Ser												

<210> 66
<211> 789
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 001106CB1

<400> 66
atataatacgatataaccctt cttgcccttg aaggccggaa gtcggctta cagataaaaag 60
cgaaacacgga agtccccccc ctctatggaa agtaaatgggt agctcggaaag ggtcaaaaga 120
gtccgcggtt tcgcccgcgtg agttgcttt tgccggctggg gaggtctacg cttctagagc 180

ttgagccagc qgggcgaccc tgcagtggca ggactcgga ccgcgcctc caccgcgg 240
 tggtggcctg cgtgacagtt tcctcccgta gacatcgaaa ggaagccgga cgtggccgg 300
 cagagagtt catcgacgt ggaatggcag cccatctat gaaggaaaga caggtctgct 360
 gggggccccg ggatgagtac tggaagtgtt tagatgagaa ctttagaggat gcttctcaat 420
 gcaagaagtt aagaagctt ttgcataa gttgtccca acagtggata aaatatttg 480
 ataaaagaag agactactt aaattcaaag aaaaatttg a gcaggacaa tttgagcctt 540
 cagaaacaac tgcaaaatcc taggctgttc ataaagattt aaagtattt ttctggacat 600
 tgaaaaagct ccactgacta tggaacagta atagttgaa tcatagtgaa catcaatact 660
 tggccctat atacgacact tgataattaa gatgatcaag aaccagaaga tctgtgaaga 720
 aatgaaataa aatggtattt agtaagaaat ctctattttt agaaaaaaaaa taaaacctgt 780
 tataaacaa 789

<210> 67
<211> 1117
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 004586CB1

<400> 67
gccagagcgc ttcggccttc ccgacacttc cccggagccc cgggcctccc cggctgcttc 60
cctgagtcct tcctcccttc gccagagccc gagcgcctcc cggagaccct cggcttccc 120
cgtccgcctc cccggaggca ggcgcgggct ataggacgaa gttatacgga agcgtctcct 180
cattgttgc gatgggtctg gagatgatcg gagaattaat ctgtctgtgaa agagtttcat 240
taaatgttgc aactctgggt cccagaaga gggatatacg cagtaccaac gtatgctgag 300
cacgctgtct caatgttaat tttcaatggg caaaacttta ctgttatgt atatgaatct 360
cagagaaatg gaaaattatg aaaaatttta caaggaaata gaatgttaga tagctggagc 420
acatgaaaaa attgctgagt gaaaaaagca aattcttcaa gcaaaacgaa tacgaaaaaaa 480
tcgccaagaa tatgtatgctt tggcaaaagt gattcagcac catccagaca ggcattgagac 540
attaaaggaa cttagggctc tggggaaaaga attagagcat ctttcacaca taaaagaaaag 600
tggtaagat aagcttggaaat tgagacggaa acagtttcat gttcttctt gtaccatcca 660
tgaacttcag caaacattgg aaaaatgtga aaaactctca gaggttagaa aagctcagga 720
agcaagcatg gaaacagatc ctaagccata gacaggctaa ttgcccacca ctcccaggaa 780
tattgaaata gctacatgac cataatgtgt taaaatgtg gtatgctttt gagatatttta 840
aagtttggc agtaaaatac tctgtttta agtataatg tatttcattt atatttcctc 900
tcacaaaagga aatgacttc agtataatg tggggggattt aaaaatgtt ttttattttt 960
aagtggtagg aagcaacatc caaaatgtt taataaaaatg cttaatggc taaaaaaga 1020

annnaaanga gcantnanng ntgggggcnc cnntngtaaa ananaaaggg gnggnccccc 1080
ggntanntt aancatcn nccccggga ttaattt 1117

<210> 68
<211> 1628
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 052927CB1

<400> 68
ggcggccggcg acgactgcag ctcgggaggt agcggcctgg cgagggacgg gcccggctgcc 60
ctctcgacg gccgcggcg aggcaaaaaa tggcgaggc ttcggcggcc gggggccgact 120
cgccgcggcg ttagccgccc accgggtttt tctggccactt ttgcaaggc gagggtcagcc 180
ccaaactacc ggaatatata tgtcccgat gtgaatcagg ctttattgaa gaagtgcac 240
atgattccag ttttttaggt ggtggcgca gtcggataga caataccaca acaacacatt 300
ttgcagagct ttggggccat ttggatcaca cgatgtttt tcaagattt agacccttc 360
taagtagcag tccactggac caagataata gagccataga aagggtcac cagactcaca 420
ctgacttctg gggagcaaga cctccacggt tgccattggg tcggagatac agatctcgag 480
gaagttctcg tccgtacaga tctccagcta ttgaaggaat actacaacac atctttgcag 540

gatttttgc aaattctgcc attcctggat ctcccacaccc ttttcctgg agcgggatgc 600
 tgcactccaa cctggggac tatgcctgg gtcagacagg gcttgatgcc attgttaaccc 660
 agcttttagg acaactggaa aacacaggcc ctccccccagc tgacaaggaa aagatcacat 720
 ctcttccaac agtgacagta actcaggaac aagttgatat gggtttagag tgtccagtat 780
 gcaaagaaga ttacacaggta gaagaggaag tccggcagtt accttgcaat cacttcttc 840
 acagcagttg tattgtgccg tggctagaac tgcacatgac atgtcctgtat tgttagaaga 900
 gcttaaatgg tgaggactt actcggccaa gcccagac tgaggcctct gcaagcaaca 960
 gatttagcaa tgacagtcag ctacatgacc gatggactt ctgaagctaa agaccacacc 1020
 tgaatcaggc ctgttgtaa catcttacca tagctgtaaa ttgttatcaaa acaaaaaatt 1080
 agtagatgga tttaggaata tgtaagaaac tcaacacata atataaatgc aatgaatgtt 1140
 ttctctttt aaatttaaaag ttgtatcta cagatggaaat tgcacatcaca accaaatgcc 1200
 tctatccctt gaattcagag tgataatttt ataagtgtga aacttaatta tgttagggctc 1260
 ccccgctctg aatagaatta attccctaaa gtctagttag ggtcctgctg tctgtcatgt 1320
 tgcctgttaa cggatgtttc caccccttc tccaaacctt accccaccat tagtgttattt 1380
 tactataaaa acagtggaaac cacagcccta aagtccctgt gatataaaatg cctttgtct 1440
 taattgtatt taaaaaaaaan nnnnactact cttgnntcaca ttagctatga ggcgaggtca 1500
 anttcaggtt tctaagacta atgatttttt ttgnnttga tccccagagn gcanatcaaa 1560
 gnaaaattac agcaagnagg cgaaaagtgg tttnncatng nntngcttt nggtatttt 1620
 tnatttna 1628

<210> 69
 <211> 1706
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 082843CB1

<400> 69

tgataactgaa taaaatacaa gtggatttt agagtttatt aagcagggga gtggagggga 60
 gatgtggcac aaatagaagt atgttaacatt caaacaacag catctaggat tttgaaaaaa 120
 acttcggtt acagttacac aaagggtcac ttccctccca gcacacatg ggcctctcaa 180
 aggagaggag ggagtaagtc ccacggtagg gccagtgttt gctccctggg ttttggaaatc 240
 atttctgcgg agcttcaag gccagaccct gggcttaagg tcgagacttc atagcagtga 300
 cagccagacc cagcaagatg gctgcgaccg taaaaccctg ggccggcgatc cgggtgcgca 360
 tcatgagctg agagcgtctt ctgttgcctt ggtggaaagga gtagaggccg tagtgaggg 420
 cggcccccgt gcccaggca acctatgggt accaccgggt tctcgcgggt cttgcgaacg 480
 aactttctt taaaactctc tggattctg taaaacagtgg ggctcagccc ctcaatgact 540
 ggaggcttcg atggttcaaa gggacctcc ggaatcacag ggccgggagt cgccatgtcc 600
 gggccacagc agcaggagaa aatcgggact ccgacctcag cctcccggtg aaggtcatga 660
 aaggggcggg gaaacgaata aatttgcgtt tgcacatgcg cgaatgcgtt gttgcattcc 720
 gggatcgta gtgcctcaga cggtagtgcg taaaaggac tacatttccc caaatgccc 780
 caaaggcttgc tgcacgcctt ccggaaaggag tttgttacac gaggtctgag agacagaggc 840
 agcgttttgc agctgctgtt gcggtggtca ggcgcgtatgc caaggccaaag ggcaaaaccc 900
 ggaggcagaa gtttggttac agtgcacacc gaaagcgtct gaaccggaaat gctgcacgg 960
 aggccgcgc gcgatcgaa tgctccacca tccgacatgc ctgggaccac gctaaatcg 1020
 tacggcagaa cctggcccgat atggggttgg ctgtggaccc caacaggccg gtgcccctcc 1080
 gtaagagaaa ggtgaaggcc atggaggtgg acatagagga gaggtcttacca gagcttgc 1140
 ggaaggcccta tgcgtgaat gacctggagg cagaaggccg cttccagaa aagaaaggaa 1200
 atactctgtc tcgggacaccatttactatg tacgttacat ggttagagaac cacggggagg 1260
 actataaggc catggcccgat gatgagaaga attactatca agataccca aaacagattc 1320
 ggagtaagat caacgtctat aaacgtttt acccagccaga gtggcaagac ttccctcgatt 1380
 ctgtcgaa gaggaagatg gaggtggatg gactggatc catcacagat gccccaggct 1440
 gaggcgccccc ccggaccagt gaagctggag ccagggtta agggcaaggag gtgctgtgt 1500
 gctccagagg agctggcccgat gtcctcatgaa atcagaaggt tacacacaca cgtgcacact 1560
 ccccgctctg gggaaaggaaat gtttgcgtt ggcgttcaatt tatatttcatc tgggggttca 1620
 cgaaaaagcc agaacctgtt gtttgcgtt ggggtatgt aaatataatgtg tgcataat 1680
 aaagcaaata tattttactt ctctga 1706

<210> 70
 <211> 1864

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 322349CB1

<400> 70
 catgcgcacg tggccgtgg gtgtacgcgg cgcacgcggc agtcctgatg gcccggcatg 60
 ggtaaccgct gtcgcctcg ctgtcgctcc tggtcggcgc gtggctcaag ctagaaatg 120
 gacaggctac tagcatggtc caactgcagg gtggagatt cctgatggga acaaattctc 180
 cagacagcag agatggtgaa gggcctgtgc gggaggcgac agtgaacccc tttgccatcg 240
 acatatttc tgcaccaac aaagatttca gggattttgt cagggagaaa aagtatcgga 300
 cagaagctga gatgtttgga tggagcttg tcttggagga ctttgtctct gatgagctga 360
 gaaacaaagc cacccagcca atgaagtctg tactctggtg gcttccagtg gaaaaggcat 420
 ttggaggca gcctgcaggt cctggctctg gcatccgaga gagactggag caccctgt 480
 tacacgtgag ctggaatgac gcccgtgcct actgtgtttg gcggggaaaa cgactgccc 540
 cggaggaaga gtgggagtt gccgcccggag ggggcttcaa gggtaagtt taccatggg 600
 ggaactgggtt ccagccaaac cgaccaacc tggcggcagg aaagtcccc aaggagaca 660
 aagctgagga tggcttccat ggagtctccc cagtgaatgc tttccccgccc cagaacaact 720
 acgggctcta tgacccctcg gggAACGTGT gggagtggac agcatcaccg taccaggctg 780
 ctgagcagga catgcgcgtc ctccgggggg catcctggat cgacacagct gatggctctg 840
 ccaatcacccg gccccgggtc accaccagga tggcaacac tccagattca gcctcagaca 900
 acctcggtt ccgctgtgt gcagacgcgg gccggccccc aggggagctg taagcagccg 960
 ggtggtgaca aggagaaaaag cttcttaggg tcactgtcat tccctggcca tggtaaac 1020
 agcgcaattc caagctcgag agcttcagcc tcagggaaaga acttccccctt ccctgtctcc 1080
 catccctctg tggcaggcgc ctctcaccag ggcaggagag gactcagcct cctgtgtttt 1140
 ggagaagggg cccaatgtgt gttgacgatg gctggggcc aggtgtttct gtttagaggcc 1200
 aagtattatt gacacaggat tgcaaacaca caaaacattt gaacagagca ctctgaaagg 1260
 ccattttta agcattttaa aatctattct ctccccctttt ctccctggat gattcaggaa 1320
 gctgacattt tttccctcaag gcagaattt cctgggtctg tttctcagc cagttgtgt 1380
 ggaaggagaa tgctttctt gtggcctcat ctgtggttt gttccctctt gaaggaaact 1440
 agtttccact gtgtAACAGG cagacatgtt actagggtct ttctctgtt cccaggctag 1500
 agtgcactgg tgatcacggc tcactcttagc ttgaattcc tggcccaag caattctccc 1560
 acctcagcct cctgagtagc tggactaca agtgcaccc accatgcctg gctaattttt 1620
 tgaattttt tagtgatggg atctcgctt gttgcccagg gtggtctcga actcctggcc 1680
 tcaagcgatc ctcccaccc gacccccaat ggtctggga ttacaggtgt gagccaccc 1740
 gcctggggcc cttctccat atgcctccaa aaacatgtcc ctggagagta gcctgcctcc 1800
 acactgtcac tggatgtcat gggccaataa aaatctctt caattgtgtt tctcaaaaaa 1860
 aaaa 1864

<210> 71
 <211> 2738
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 397663CB1

<400> 71
 aggttaactgc agtaagtccc gcttggccct ggagtccacg cggtttcg aagctggggc 60
 tggcaagagg ccgctggaca ccacgcctca gtcgtcagcc cacttccttag ctgaacagcg 120
 cgaggccggcg gcagcgagcc gggccccacc atggccgcga attattccag taccatgtacc 180
 cggagagaac atgtcaaagt taaaaccagc tcccagccag gcttccttgc acggctgagc 240
 gagacctcggtt gttggatgtt tggggctc atggccttcc tgctctcctt ctacctaatt 300
 ttcaccaatg agggccgcgc attgaagacg gcaacccat tggctgaggg gctctcgctt 360
 gtggtgtctc ccgacagcat ccacagtgt gctccggaga atgaagggaaag gttggcgcac 420
 atcatggcg cttacggac atccaagctt ttgtctgatc caaactatgg ggtccatctt 480
 ccggctgtga aactgcggag gcacgtggag atgtaccaat ggtagaaac tgaggagtcc 540
 agggagtaca ccgaggatgg gcaggtgaag aaggagacga ggtattccctt caacactgaa 600
 tggaggtcag aaatcatcaa cagaaaaac ttgcaccgg agattggcca caaaaacccc 660
 agtgcacatgg cagtggagtc attcacggca acagccccct ttgtccaaat tggcaggctt 720

ttcccctcg	caggcctcat	cgacaaaagtc	gacaacttca	agtcccttag	cctatccaag	780
ctggaggacc	ctcatgtgg	catcattcgc	.cgtggagact	ttttctacca	cagcgaaaaat	840
cccaagtata	cagagggtgg	agacttgcgt	gtctcccttc	ctatgctgga	ctgagcggcg	900
atgaccctga	cctggggccca	gctcacgtgg	tcactgtgat	tgcccggcag	cgggggtgacc	960
agctagttcc	attctccacc	aagtctgggg	ataccttact	gctcctgcac	cacggggact	1020
tctcagcaga	ggaggtgtt	catagagaac	taaggagcaa	ctccatgaag	acctggggcc	1080
tgccccccgc	tggctggatg	gccatgtca	tgggcctcaa	ccttatgaca	cgatcctct	1140
acacccctgg	ggactggtt	cctgtttcc	gagacctggt	caacattggc	ctgaaagcct	1200
ttgcctctg	tgtggccacc	tcgctgaccc	tgctgaccgt	ggcggctggc	tggtcttct	1260
accgaccctt	gtggggccctc	ctcattgccc	gcctggccct	tgtgcccata	cttgttgc	1320
ggacacgggt	gcagccaaa	aagttggagt	aaaaagaccc	tggcacccgc	ccgacacctg	1380
cgtgagccct	agatccagg	tcctctcta	cctctgaccc	agctccatgc	cagagcagga	1440
gccccgggtca	attttggact	ctgcaetccc	tctctcttc	aggggccaga	cttggcagca	1500
tgtgcaccag	gttgggtttc	accagctat	gttttccca	catctcttct	tgccagtaag	1560
cagcttttgt	ggcagcagc	agctcatgaa	tggcaagctg	acagttctc	ctgctgtttc	1620
cttccctctt	tgactgtgat	gggtacggcc	agccactcag	cccattggca	gctgacaacg	1680
cagacacgct	ctacggaggc	ctgctgataa	agggctcagc	cttggccgtgt	gctgcttctc	1740
atcaactgcac	acaagtgcct	tgctttgcca	.ccaccaccaa	gcacatctgt	gatcctgaag	1800
ggccggccgtt	agtcgttact	gctgagtcct	gggtcaccag	cagacacact	gggcatggac	1860
cccttsaaggc	aggcacaccc	aaaacacaag	tctgtggcta	gaacctgtat	ttgtgtttaa	1920
aagagaagaa	acactgaaga	tgtccctgagg	agaaaaagctg	gacatatact	gggcttcaca	1980
cttaatcttat	ggcttggcag	aatcttgcata	gtgtgtggta	tctctgaagg	ccctatttaa	2040
gtttttcttc	gttactttgc	tgtttcatgt	gtactttcct	accccaagag	gaagttttct	2100
gaaatzaagat	ttaaaaacaa	aacaaaaaaaa	acacttaata	tttcagactg	ttacaggaaa	2160
cacccttttag	tctgtcagtt	gaattcagag	cactgaaagg	tgttaaattg	gggtatgtgg	2220
tttggatgtat	aaaaagttac	ctctcagtt	tttgcgtcac	tgagaagctt	tacaatggat	2280
gtttttgaaa	caagtatcag	caaaaggatt	tgttttcaact	ctggggaggag	agggtggaga	2340
aagcacttgc	tttcatccctc	tggcatcgga	aactccccta	tgcacttga	gatggtttaa	2400
aagatzaaag	aaacgattaa	gagaaaaagg	tggaaagctt	atactaaatg	ggctccttca	2460
tggtgacgccc	ccgtcaacca	caatcaagaa	ctgaggcctg	aggctgggtg	tacaatgccc	2520
acgcctgcct	ggctgctttc	acctggagat	gcttcgtat	tgggcacctg	ggtttcttag	2580
ggctgcgttct	gagtggttct	ttcacgttt	gtgtccatag	ctttagtctt	cctaaataag	2640
atccacccac	acttaagtca	cagaatttct	aagttcccca	actactctca	caccctttta	2700
aagataaaagt	atgttgtaac	caggatgtct	taaaaaaca			2738

<210> 72

<211> 3685

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 673766CB1

<400> 72

```

ctggcaggaa gcgagggtgc ggcgcaatcc ggagaggacg ccaggacgac gcccggatc 60
cctttaggc tagaactctt ctttttcta gcttgggta gaaggcggag ctagccccg 120
gaaccccccgc ctccgggtg cgaggcggca gcagggccgt cccctacatt tgcatagccc 180
ctgggacgtg ggcgtgcacc caagcctt ctcagttggg gggactcca agtcccacag 240
tgccacgggg tgggtgcgt cacttcgtc gcgttggagg ctgaggagaa ttgagcctgg 300
gaggcgggtc cggagagggc tatggaaagc cgccggcggg gaatcccgcc ctagaggg 360
cagtggatag gtgcccgggg cctacagctg gcctggggct cgtgtctggg cttcggacgt 420
tggggccccc tggcccaccc ttccgtagt tgteccaaat ggagctggaa ttggatgcgt 480
gtgaccaaga cctgtggcc ttccgtctag agggaaagtgg agatttgggg acggcacccg 540
atgaggccgt gaggggccca ctggacttgg cgctgccgt ttctgaggta ccgagcgaact 600
ggaaagtaga tgatttgcgt tgctccctgc tgagtcccccc agcgtcggt aacattctca 660
gtcctccaa cccctgcctt gtccaccatg accacaccta ctccctccca cggggaaactg 720
tctctatgga tctagagagt gagagctgtg gaaaagaggg gaccagatg actccacagc 780
atatggagga gctggcagag caggagattg cttaggtctag actgacagat gaggagaaga 840
gtctatggaa gaaggagggg cttattctgc ctgagacact tcctctcaact aagacagagg 900
aacaaattct gaaacgtgtg cggaggaaga ttcgaaataa aagatctgtc caagagagcc 960
gcaggaaaaaa gaagggttat gttgggggtt tagagagcag ggtctgaaa tacacagccc 1020
agaatatgga gcttcagaac aaagtacagc ttctggagga acagaatttg tcccttctag 1080

```

atcaactgag gaaaactccag gccatggtga ttgagatatac aaacaaaaacc agcagcagca 1140
gcacctgtcat cttggtccta ctgtctcct tctgcctcct ccttgtacci gctatgtact 1200
cctctgacac aaggggggagc ctgccagctg agcatggagt gttgtcccgc cagcttcgtg 1260
ccctccccag tgaggaccc taccagctgg agctgcctgc cctgcagtca gaagtgccga 1320
aagacagcac acaccaggctt ttggacggct cagactgtgt actccaggcc cctggcaaca 1380
cttcctgcct gctgcattac atgcctcagg cattccctga cctcttctca gagccctctc 1440
gcccagggtcc catcctccccc ctgcaggccaa 1500
atctcacaag gaagggagga tggcttccta ctggtagccc ctctgtcatt ttgcaggaca 1560
gatactcagg cttagatata gatatgtgg ggggtctcag caggagectg gggggctccc 1620
catctgtgtc caaataaaaaa gcgggtggca agggctggcc gca gcttcgtc tgccctgtca 1680
ggacgactga gggctcaa acaccacact taatggctt ctgggtctt tatttgta 1740
catgtgtctg tcacaccatg aatgtacctg gggaaatcaa ctgacccccc tgaacatttc 1800
acgcagtca ggaacaggtg aggaaagaaa taaataagt attctaatgc tgccttaggtc 1860
accctcaacc cccattact ggcacaattt ggtggagaga agggaaaggaa tatgattgtc 1920
ctgatggctc aggggttcag gaggttcaga ggggaaggag gaaaggccag gctggaggct 1980
gggctgttag cacttccctc ccacagtca gacggctcac tctggctca gtttgccat 2040
ggcttcctt ggtccaaaca tagggcctgt ctttagtcgt gtgcctgtt tgactttgg 2100
ccaggaggcc ttttgtgt gctgtgtt cagggtctagc tgcattggcc atatgctcag 2160
tggcccatg taggcccagt gacgaaacac tcgctgtt cagatgcct ctgggtctg 2220
gaaggccaga cccaggcgt cccacacggt acggtagcag cttcagctg tctggaaagcc 2280
ctcccaagtc aggcccttt ggatcatggt agctgcccagc ccgtagacca cacccaccca 2340
gacttcatca gactgcacac tggatttac agggacacca tggggctgca tcccatttcac 2400
agccccatg gccccctctg caaaggcctg gacgttca gtcatttttttgc 2460
acggaccaca tgggggtttag gaaacaccc tctcttgcacccatcc 2520
caggaaccac tggccagcac actggtcaga gataacacta cgagactgag gccgagagct 2580
gctgtcatag ttgtataac ggccatttca cggatccatc tcataggctt cttggccccg 2640
gctgaggata gaagaaaact tattctggat gtcctgttcc ccacacagag cagccatctg 2700
gaccatcaca gccacagctg ccagccacag ccctccacag taagcactgg ggcctgttgg 2760
caccatcca tcataggctt ggtctgcata gcctccatcc tcaatggatc catcatggtc 2820
cttgtcaaac ttcatttcag attccatcac agcttagacac acaggccaca tggccatttcag 2880
gaagtttga tcacccgtga gtaatagtc ccgataaacc tgca gca cua acttcagggtt 2940
caggtcttc caatcagcag tatcatggat taaatatgca ttgacgcggg gccatggttc 3000
atcatctggg tccccatat catggggat gacgttccctc ctttcacag gtccatcac 3060
cccactcatc aggtaccgtc gcccgttcag atactgttagg ctgagctcaa gttttggca 3120
gtggacatca tatgtgttgc acatgcggta gtagtcccgat ggggtgggc ggaggtgaca 3180
gtcctcaaga acttccagcc acactgtgcc cagcgcagat ttgttccagg cagggcgtga 3240
tgagatcctc tcttcccact ctgcgtatcg gacagtgca tagtggctga gggcagggtc 3300
tgcatactcca tcctggccaa agaacctgtt ataccgcctg tagtggactt ggcctttagc 3360
tccaaacatg atcctggca tgcctcaagc cagtaaaac tccaggccgc actggccctcg 3420
aggtcgcaac ttgctggaaa cacacacgc tccagcaatg cctactcctt tctgcgttgg 3480
ggtgcttgg ctttgcgtcg agccg 3660
3685

<210> 73
<211> 1801
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1504753CB1

<400> 73
ccgaattccgg anagnncat acgccagtca gcaggaggcag cagcataatc cagcatgtt 60
ggctgcccctt agcgccaggc acacacagcg caccaacaag tctaccacag tctgaccaa 120
gccagtttca aactcagacc cagcctttag tcgggcaagt cgacgatact agaagaaaat 180
cagaaccctt acctcaacca ccacttctc tcattgtga aaataaggctt gttgtgaagc 240
cgcctgttgc agattccctg gcaaaccctt ttcagttaac acctatgaac agtctggcca 300
cctctgtatt cagcatagct attcctgttgc atgggtatga agacaggaat cttcaactg 360

tttcttcca agcgttccat ttgaacacgt taaaggaatc aaagagcctc tgggatagtg 420
catctgggg aggtgttga gccattgaca acaaaaataga acaagcaatg gatcttgta 480
aaagccattt gatgtatgca gtaagagaag aagtggaaat tttaaaaggaa caaataaaag 540
aatttagttga aagaaaactct ttacttgaac gagaaaaatgc actgtttaaa tctcttcaa 600
gcaatgatca attatcccaa ctccccaccc aacaggccaa tcctggtagc acttctcaac 660
agcaagcagt gatagcacag cttccgcagc caacgcAAC tccacagcag ccgaatgtct 720
cctcagcata aagctttctt aagccttcatt aaaaaaaaaa ctgaaagcaa tctatcctg 780
tgtgccactg gtgttcttc cacttatac gaaagcaagt agccatgttt tggttggtg 840
tttggcctt tcagtattag acaatcattc tacaagagct tttctctctt ctgagatgtc 900
atgcagcgct gtgtatgtcc agttctatgt catcagtaca caaggagaat aatagatggg 960
gtttattaaa gcgagcaaag tctgcatttt acctggtagc catgagtggg gtctttaaga 1020
gttttgtgg ctctccatg tttccattt cccatggatt tacccctgagc cttccatatca 1080
cattataaat aacagttcat ctaaaagagcc acttttctt ctgattcagt aacatttgcc 1140
tacataagtt ttcattttt tttgttttat ttattacagg gctgttattt tcataatgt 1200
catgaacaat gtcacagaac ttttttaatt tttttgaata attataagta tcagtaaagg 1260
aagtgaaaaga caggattgca tttaaatagat aaaacgttta ggcaataatt gaacaaaaga 1320
atccctggcat atttctaaca ctaatggcaa tttactttat gtattttttt tcagtagtaa 1380
agaccgcagct tgaatgtaaa ttttggatag tggtaagtatg aagaacatag tgcaactgt 1440
caggttagtca ccagtttattt tgatatgata aataattggg ctatttgtt gaagaaaact 1500
ttgttcattt gtttctactt tctaaagagaa attggccacga ttcctctgtt ttcacacatt 1560
tcgtatgact ttttttgcg gtgggaataa aaagctgtga aattgttcaa cctactttgt 1620
aaccaaagaa gcaaagctgt gtaatggagt ttgggttttt tttgttgggg tttnttttt 1680
gtcttngtt tttttttata angcacaanc ntangnatt tntaatttagg gnnttcncag 1740
tcacaanttt cnnnacngnc tagnaaganc cgcaagaccc aaaaacnttg aaccaccc 1800
g 1801

<210> 74
<211> 1578
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<223> Incyte clone 1760185CB1
```

<210> 75
<211> 1624
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1805061CB1

<400> 75
gccgtcgccg acgcccgtcc gggcagccga gcctctgtgg gagccggggc cgcggccgc 60
cggtgtgtcc gggccgaggc cgctgtggc tcttgcgtat tgaatttcctt tggtgcagtt 120
tagcatgttc ctctgtgttc tgcatctcct gtagttaat gttcaagctc agaaatgcct 180
tatgtggatc gtcagaatcg catttgtgtt ttcttagaca ttgaagaaaa tgaaaacagt 240
ggaaatttc ttcaaggtt ctctactgt gataccagag aagatagttt cgtgtggta 300
atggataatc cacagaacct acctctgtt tcatacgtt ttggagccat taagcttacc 360
tacatttcaa aggtagcga tgctactaag ctaaggccaa aggcggagtt ctgtttgtt 420
atgaatgcag gaatgaggaa gtacttccta caagccaatg atcagcagga cctagtgaa 480
tggtaaatg tgtaaataaa agctataaaa attacagtac caaagcagtc agactcacag 540
cctaattctg ataacctaag tcgcacatgtt gaatgtggta aaaagcaagt gtcttacaga 600
actgatattt ttggggcggt acccatcatt actcccactc agaaaagaaga agtaaatgaa 660
tgtggtaaaa gtattgacag aaataatctg aaacggtcac aaagccatct tccttacttt 720
actccaaac caccicaaga tagtgcgtt atcaaagctg gatattgtgt aaaacaagga 780
gcagtgatga aaaactggaa gagaagatat ttcaatgg atgaaaacac aataggctac 840
ttcaaatctg aactggaaaa ggaaccttctt cgctgtata cacttaaaga gttcataaa 900
gtccaggaat gtaagcaaaag cgacataatg atgaggagca acctcttga aattgttaaca 960
acgtctcgaa ctttctatgt gcaggtgtt agccctgaag agatgcacag ttggattaaa 1020
gcagtcctg gcccattgtt agcacagccg ggtcccggca gatctgcgtc ttctatgcgg 1080
caggccagaa ggctgtcgaa ccctgtata cagaggagca tccccccggc cttcagaat 1140
ccaaacacgc tttccgtctt accaacgcag ccggccccac ctcacattcc acagccctc 1200
gcagcaactc tttggtctca acctttacca tggagaagcg aggattttac gagtctttg 1260
ccaagtcaa gccagggAAC ttcaagggtcc agactgtctc tccaaagagaa ccagcttcca 1320
aagtgactga acaagctctg ttaagacctc aaagtaaaaaa tggccctcag gaaaaagatt 1380
gtgacctagt agacttggac gatgcgagcc ttccggtcag tgacgtgtga ggcagaagcg 1440
cacggagcct gcctgcctt cccgtcctca gtttccttca atgaggcttc tagccaaaga 1500
tgataaaaggg gaaaaatgggt ttttagtgcgt atattatact gcctcttagg tgtactctt 1560
ataagctggt aaaccaagaa tcttagggagt ggccaaacta aatataattt ctttaaaaaa 1620
aaaa 1624

<210> 76
<211> 1675
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1850120CB1

<400> 76
cggtcttag ctccagggtgc gtacggcattc tgacttgacg tggcccacaa ctgaaaggcc 60
tggggagaag gcccgtgtc cgggtgtgg gggggcggtc gtggaaagcga gaagagtggc 120
ccgtccctct cctccccctt tcccttttgc gggaaagtgg ttcgtggggg cccgggagcc 180
tcggagttacc gaacccgtat ctccggggcg gggccttgg tggggacttga gcccggcc 240
ccggggacgg ggggtctggc cgccgggtcc cctgcgggag cgtgattggc tggaaacgg 300
cccgaaacccc caggggagcc cgatccctgg gggacccctgg cttcggactc cagtatctgt 360
cgtcgcaggc tccctgcctt agtggcctat gtcccttgc cggggccatg gagacactgc 420
ggccagttacg gcccggccctc tgcgttgcataa aggggaagtgc acctccggcc tccaggctc 480
ggccgtggag gataccggag gcccctctgc ctcggccgggt aaggccgagg acgaggggaa 540
aggaggccga gaggagaccg agcgtgaggg gtccgggggc gaggaggcgc agggagaagt 600
ccccagcgct gggggagaag agcctgcctc ggaggactcc gaggacttgc gctgtccctg 660
cagcgcacgg gagggtggagc tgcctgcgtt gggcagggcc tggatgcccc cggccctccga 720
aatccagcggtt ctctatgaac tgctggctgc ccacggtaact ctggagctgc aagccgagat 780

cctgccccgc cggcctccca cgccggagcg ccagagcgaa gaggagagat ccgatgagga 840
 gccggaggcc aaagaagagg aagagaaaa accacacatg cccacggaat ttgatttga 900
 ttagatgcca gtgacaccaa aggactccct gattgaccgg agacgcaccc caggaagctc 960
 agcccgagc cagaaaacggg aggcccgcct ggacaaagggtg ctgtcgacata 1020
 caagaagctg gaggagcaga tccttcgtac cgggaggggac ctcttcagcc tggactcgga 1080
 ggaccccgac cccgcccagcc ccccaactccg atccctccggg agtagtctct tccctcgca 1140
 gcggaaatac tgattccac tgctcctgcc tctaggggtc agtgccgtta cctgctggag 1200
 cctggccct ccttcccag cccagacatt gagaaacttg ggaagaagag agaaaccica 1260
 agctcccaaa cagcacgtt cgggaaagag gaagagagag tttgagttgtg tttgtgtgtt 1320
 tttctattt aacacctgtt gagttgtgtt gtgtgtttt tattgaacac ctataagagag 1380
 agtgtgtgtt ttttctattt aacatctata tagagagagt gtgtgtgtgt gtgtttctta 1440
 ttgaacacct attcagagac ctgactgaa ttttctgtt ctgaaataaa agatgcagag 1500
 ctatcatctc taaaaggag gggctgttagc ttttagctaa cagtttaggc ccacttgaag 1560
 ggagaggcag aattgtactc acccagattt gaaaatgaaa gccagatggg tagaggtgcc 1620
 ctcagtttgc acctgtccca ttcacttcct cccagtcctt cttca 1675

<210> 77
<211> 1319
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1852290CB1

<400> 77
gaaaggaggt gtgttatccag cttggggctc cagtttctg cccgcctcct tttacgttat 60
tgcggaggac ggcgcggac agtcaacgtc atcttaggagc accgagcagc ttggctaaaa 120
gtaagggtgt cgtgctgtat gcccgtgtcg cactgaccgg cgctctgcgc tctctgaacc 180
tggcgcccccc gaccgtcgcc gcccctgccc cagatgtatcg cccgcggcc 240
acaatggcct cctccaacag ccctctgcct tttatgttgc cccctgcgc ccagttctta 300
cttctgtggc ccttaatgcc aactttgtgt ccttggaaagag tcgtaccaag tacaccatta 360
caccagtgaa gatgaggaag tctgggggcc gagaccacac agggcgaatc cgggtgcatt 420
gtattggcgg gggccacaag caacgttatac gaatgattga ctttctgcgt ttccggcctg 480
aggagaccaa gtcaggaccc tttgaggaga agtttatcca agtccgctat gatccctgt 540
ggtcagcaga catagctctg gttgtgggg gcagccggaa acgctggatc atcgccacag 600
aaaacatgca ggctggagat acaatcttgc actctaacca cataggccga atggcagtt 660
ctgctcggga aggggatgtcg catccctttt gggctctgcct tttggggacc ctcatcaaca 720
acgtggaaag tgagccaggg cgggggtgcct aatatatccg agtgcaggg acgtgtgg 780
tgctactgcg gaaggtgaat ggcacagcc ttatccagct gcccctctaag aggcagatgc 840
aggtgctgga aacgtgcgtt gcaacagtag gccgagttatc caacgttgcata 900
gggtcatttgg caaggcaggt cgcaaccgcg ggttggccaa gaggcctaag agtggcggt 960
ggcaccgcgg ggggggctgg gcttggccaa agatttgcgc actacccccc atgaagagtt 1020
acgtgaagct gccttctgtc tctgtccaaa gctgatatacc ctgtactcta ataaaatgcc 1080
ccccccccc ttttaatctg attggncaaa angcccttt tattccaaa aaatggnc 1140
cccttaaaag gagggggaaaa tttnncanng ntnttttaa nnnnnnnnnn nnnnnnnnnn 1200
nnagggggtt ccacaaaaaa gggggggaaat tttttgggaa atggaaannt ttccccgnnc 1260
tggggaaaaaa ccccccccg ggtttttta aggtttnca agggaaatnn ncctttggg 1319

<210> 78
<211> 1113
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1944530CB1

<400> 78
gtcacccgca ggtctgagct gtgggctgag gcagcgcacc gcctgcccga gggtgccgca 60
tgcctgttgc acactctgtt atgttgcata acactctgtt ttttggaaaga catctttca 120

tcatgggaca	gcaaatttcg	gatcagacac	agttggttat	taacaagtta	ccagaaaaag	180
tagcaaaaaca	tgttacgttg	gttcgagaga	gtggctcctt	aacttatgaa	gaatttctcg	240
ggagagtagc	ttagcttaat	gatgtAACGG	ctaaagtggc	ttctggccag	aaaaaacatc	300
tttctcittga	ggtacaacct	gggtctgatt	cctctgctt	ttggaaagtg	gttgtacggg	360
tggtcgtac	caagattaac	aaaagcagtg	gcattgtgga	ggcatcacgg	atcatgaatt	420
tataccagtt	tattcaactt	tataaagata	tcacaagtca	agcagcagga	gtattggcac	480
agagcctccac	ctctgaagaa	cctgatgaaa	actcatcctc	tgtaacatct	tgtcaggcta	540
gtctttggat	gggaagggtg	aagcaクトga	ccgatgagga	ggagtgttgt	atctgtatgg	600
atgggcgggc	tgacctcatac	ctgccttgtg	ctcacagctt	ttgtcagaag	tgtattgata	660
aatggagtga	tcgacacagg	aattgcccta	tttgcgcct	acagatgact	ggagcaatg	720
aatcttgggt	ggtatcagat	gcaccactg	aagatgatat	ggctaactat	attcttaaca	780
tggctgtatga	ggcaggccag	ccccacaggc	catgaccttg	aagtggaaagt	cttctgtgc	840
tattgtggc	tcaaataattt	ggtcatgggg	gaagaatgta	gggttgcgtc	actggcacag	900
acacaggaaa	atccatTTTC	cccactctt	tatTTTGT	attctgatca	tttgcCCCCC	960
ttttaaaaat	aaacttccca	tgtctccat	ttgtggtaact	aaaatttgct	actgttttag	1020
accatattt	ccattattta	tcgttcaaAT	ttgtatnatt	acaactaata	gccttgaatt	1080
ctttgctaaa	ggtaacagca	acactccag	agg			1113

<210> 79
<211> 1963
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<223> Incyte clone 2019742CB1
```

<400> 79
gggtgaggcctt gggcgccccca aggttgcggagg agggggccgtg aggtgagaga gtccggggagc 60
ccgagcttga gatggccctga tatgaaggag tcacgcctcc cgcctcccg agctgcccag 120
tggctgcctt gtccttcaag tgcaggagct gttcaaatg tcaggaatgg aagccactgt 180
gaccatccca atctggcaaa acaaggccaca tggggctgtc cgaagtgtag taagaagaat 240
tgggaccacac ctacccttga agccgtgtgc ccgggctgtcc tttgagaccc tgcccaacat 300
ctctgacctg tggggatggat atgtcccccc agtcccttacc ctggctgaca tcgccttgat 360
tgctgcggat gaagaggaga catatggcccg ggtcaggagt gatacgcgcc ccctgaggca 420
cacctggaaa cccagccctc tgattgtcat gcagcgcaat gcctctgttc ccaacctgcg 480
tgggtcccgag gagaggcttc tggccctgaa gaagccagct ctggccagccc taagccgac 540
taactgagctg caggacgagc tgagccactt ggcgcagccag attgcaaaga tagtggcagc 600
tgatgcagct tcggcttcat taacgccaga ttcttatatc ccaggaagtt caaatgtctc 660
ttctccctta ccttgttttgc gatcctcatt ccactctaca acttcctttg tcatttagtga 720
catcaccggag gagacagagg tggaggtccc tgagcttcca tcagttccccc tgctttgttc 780
tgccagccctt gaatgttgc aaccagaaca caaagctgcc tgcaagtctgt ctgaagagga 840
tgactgcgtc tctttgtccaa aggccagcag ctttgcagac atgatgggtaa tcctgaagga 900
ctttcaccga atgaaacaga gtcaagatct gaaccggagt ttattgttgc aggaagaccc 960
tgctgtgtt atctctgttgc tccctaggag gaagtttgc ctaaaaggaa aagataatcag 1020
tagaaaaagga aattgacaac cctcagctct gcaaactcag tctcatgtct ctggaaatacc 1080
ttcaaatgtt gccttcctca ccgcagatgt ttctgcctct taaggataga tcttcgtcaa 1140
cagttttgtt gacaagctgtt agcttggact gaaagagaag agctggatta tatatttccc 1200
agacttcaaa ccctagcaga agctaaggct tggatgttgc cctgagacat ttgtttcagg 1260
taatcggttta gaatgttgc tcttagtttgc aagggttgc gagaagttgt ttctgggtt 1320
tccttgcctt tgggttgcggggaa taggttctaa atgactgtact tcactgcatt agaccctata 1380
gctggctcga caagacactt tggcccttgc tggacttgc tctcagcgc ttcccttgag 1440
cagagcagggtt ctggggggaa ggggctatgtt atggttgc acatgttgc agggcacgg 1500
aaatctttagt ctgtccgtc ataaacctac accaatgcgc agcaatcacc ctccctcactt 1560
ccttgcgtttagt atgttagaggt caggctgttgc aaccagccaa cacatgggtt actgcggga 1620
agcctgggtt gtttttttttgc ttaaacat tttatattac tgaacaacca aatctaccct 1680
ccacggccctt gaggccttat cagttccact gattaaaaac tttcttgc acggacttta 1740
agcccggttag gaaagagaga ggaggagggg gaaagagccaa accatcttgc ttccagggcc 1800
ttgactgttgc ctttgggttgc ggccaaagggtt tggatgttgc acaccatgtca tgactcagat 1860
gccctcaagggtt ccctttcttgc atggatgttgc tactgttgc gtttgggttgc aagcactacc 1920
tgacattaaa ggaaggactt ggagagagaa tgcaaaaaaaaaaaa aaa 1963

<210> 80
<211> 1089
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 2056042CB1

```

<400> 80
agccgcggct ccggaaagacc ctcgtcctgg gcggcggtgg tgccgcggtc gccgttatgg 60
ccactgggct gggcgctga ccgcggggct aggaaaaggc ccagggcccc gaatctcggt 120
ggccgctgct ccagcgccggc ctgcgccatg gcctcctccg ccgcctcctc ggagcatttc 180
gagaagctgc acgagatctt ccgcgcgcctc catgaagacc tacaagggggt gcccgagcgg 240
ctgctgggta cgcgccccac cgaaaaaaag aagaaattga tcagggattt tgatgaaaag 300
caacaggaag caaatgaaac gctggcagag atggaggagg agctacgtta tgcacccctg 360
tctttccgaa accccatgat gtctaagctt cggaaactacc ggaaggaccc tgctaaactc 420
catcgggagg tgagaagcac accttgaca gccacacccg gaggccgagg agacatgaaa 480
tatggcatat atgctgtaga gaatgagcat atgaatcggc tacagtctca aagggcata 540
cttctgcagg gcactgaaag cctgaaccgg gccaccccaa gtattgaacg ttctcatcg 600
attgccacag agactgacca gattggctca gaaatcatag aagagctggg ggaacaacga 660
gaccagttag aacgtaccaa gagtagactg gtaaaacacaa gtgaaaactt gagcaaaagt 720
cggaagattc tccgttcaat gtccagaaaa gtgacaacca acaagctgct gcttccatt 780
atcatcttac tggagctcgc catcctggg ggcctggtt actacaaatt cttcgcagc 840
cattgaacct ctataggaa gggtttgtgg accagaacct tgaccttgtg aatgcatgat 900
gttagggatg tggatagaat aagcatattt ctgctgtggg ctgacagttc aaggatgcac 960
tgtatagcca ggctgtggg ggagggagga aagatgaaaa accacttaaa tgtgaaggaa 1020
caacagcaac aagaccagta tggatatacca aggtataaaa tgctgtttat gacttctta 1080
aaaaaaaaaa 1089

```

<210> 81
<211> 1325
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<223> Incyte clone 2398682CB1
```

<210> 82
<211> 1579
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2518753CB1

<400> 82

tgcttcatgg atactggtcc tatcatgctc tttgaggcta ttgaactcat caatacagca 60
aaggccccca tctgcaagaa ctaatgcccc agcctccaaa ttccattctc ctgagtttt 120
tacagcagtt accgtcagac ttgttctcc gcctttgtcc taatccacac cagcagggtgg 180
agccgcagtt aaagttccg agtccattcc gggagcggga gcccatcttgc tggtctgccg 240
agggccctcgc tgaggagga ggtcagaac tcgggtgcag ccaatcgagg gcaacgtgc 300
taccttacag agcagaatgg gctgttagtt agtgaaatag gaaagctgca aaacactgtg 360
gagtgcctcc gtgtaaataa aaagaggaaa aaagtttctc aagtgcgcgc tgcacgcacgt 420
ctggccggcg ctggagcggg ggtctgcgt ctcccgagcg gccgcgcgt ggactttatt 480
gtgcccgaac cagccccagt tcccattgtt tgtgttttt tcaaaatatg gcaaaggttc 540
aggtgaacaa ttagtggtg ctggataacc cttctccctt ctacaacccg ttccagttcg 600
agatcacctt cgagtgcac tc gaggacctgt ctgaagactt ggaatggaaa attatctatg 660
tgggcctcgc agaaaagtgaa gaatacgatc aagttttaga ctctgtttta gtgggtcctg 720
ttcccgcagg aaggcatatg tttgtatttc aggctgtatgc acctaattcca ggactcattc 780
cagatgcaga tgca gtaggatgc gtaactgttgc tgtaattac ttgtacctat cgaggacaag 840
aatttattag agttggctat tatgtaaata atgaatatac tgagacagaa ttaaggggaaa 900
atccaccagt aaaaccagac ttttctaagc ttcaaaggaa tattttggca tctaattcca 960
gggtcacaag attccacatt aattggaaag ataacacaga aaaactggaa gatgcagaga 1020
gcagtaatcc aaatctacag tcacttctt caacagatgc attacccatca gcatcaaagg 1080
gatggtccac atcagaaaaac tcactaaatg tcatttttgc atcccatatg gactgcattgt 1140
gaccacctac catccctta gtacaaatta agctattaaa aatacaca gata actatccccc 1200
tgaaaattccg taagtacata gtcaaaacac aatgtgaaga atttggtaa aaacatcctg 1260
tagaaagttt ataagaaaaac cagtatttgc acaaatttgaa gaatataat acaactattt 1320
ttaagtaatt ttttctcta attcanntag ngagggngtt cnctagangt ggantaaatt 1380
nnaaggggcg gggnnccnc cagaggggtt tccaangtct ttcnnnngaag gggnnngccan 1440
tggcgnngnt ccangaggtt ccttngntt ggggggnnan nccnttnng tttgcnnnnn 1500
ntcnccccc gccgggtcgg tttntaancn cnggannnt tggcntgggg ggaaaacccc 1560
cnqqqqqgtt nccccctt n 1579

```
<210> 83
<211> 2641
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2709055CB1

<400> 83
ttcctttggg acatctgtg tgacacactgc acataccctt cagagccaca tatcctcgca 60
cagatttcgc acttccaaat caggaggcaa agaaaagagaa gaaagatcca acaggtcgaa 120
aaacaaacctt ggattttcag caatatgtat ttatattaattc aaatgtgtta ccattctgcc 180
cttccgttgtt attctaagtg cttccatatac cttagctctt tacatactat tattctcatg 240
gccagtagca acttttgggtt caaatatccc aaaacatgtt caaaagttaga acattctgtt 300
tcaatattatg gaaagtgtt tgaatcccc tggacgcacaa aagcgttg tcgagacagca 360
tgcgaagact cagagaaaaa caagcagaga ataacagggtt cccagactct accaaagcat 420
gtttctacca gcagtgtatga agggagcccc agtgcgcgtt caccaatgtat caataaaact 480
ggctttaaat tttcagctga gaagccgtt attgaagtgc ccagcatgac aatcctggat 540
aaaaaggatg gagagcaggc caaaggccctg ttggagaaag tgagaaagt ccgtgccccat 600
gtggaaagata gtgacttgat ctataaactc tatgtggtcc aaacagttat caaaacagcc 660
aagttcattt ttattctctg ctatacagcg aactttgtca acgcaatcag ctttgaacac 720
gtctgcaagc ccaaaggatgtt gcatctgatt gtgttatgagg tatttgagtgc caccacaaat 780
atggcttaca tggtaaaaa gcttctcatc agttacatatac ccattatttgc tgtttatggc 840
```

tttatctgcc tctacactct cttctggta ttcaaggatac ctttgaagga atatttttc 900
 gaaaaagtca gagaagagag cagtttagt gacattccag atgtcaaaaa cgatttgcg 960
 ttcccttc acatggtaga ccagtatgac cagctatatt ccaagcgtt tggtgttcc 1020
 ttgtcagaag tttagtggaaa taaacttagg gaaatttagtt tgaaccatga gtggacattt 1080
 gaaaaactca ggcagcacat ttcaacgcaac gcccaggaca agcaggagtt gcatctgttc 1140
 atgcgtcgg gggtccccga tgctgtctt gacctcacag acctggatgt gctaaagct 1200
 gaacaattc cagaagctaa aattcctgt aagatttctc aaatgactaa cttccaagag 1260
 ctccacctct gccactgccc tgcaaaagtt gaacagactg ctttagctt tttcgat 1320
 cacttigagat gccttacgt gaagttact gatgtggctg aaattcctgc ctgggttat 1380
 ttgctaaaaa accttcgaga gtttactta ataggcaatt tgaactctga aaacaataag 1440
 atgataggac ttgaatctct ccgagagttt cgccaccta agattctcca cgtgaagagc 1500
 aatttigacca aagttccctc caacattaca gatgtggctc cacatcttac aaagttagtc 1560
 attcataatg acggcactaa actcttggta ctgaacagcc ttaagaaaaat gatgaatgtc 1620
 gctgagctgg aactccagaa ctgtgagcta gagagaatcc cacatgttat tttcagcctc 1680
 tctaatttac aggaacttggaa tttaaagtcc aataacattc gcacaatttga gaaaatcatc 1740
 agttccacgc attttaaaacg actgacttgtt ttaaaaattt ggcataacaa aattgttact 1800
 attcccccctt tattaccca tgcataaaac ttggagtcac ttatattctc taacaacaag 1860
 ctcgaatccct taccagtggc agtatttagt ttacagaaaac tcagatgtt agatgtgagc 1920
 tacaacaaca tttcaatgtat tccaatagaa ataggattgc ttcaagacct gcagcattt 1980
 cataacttgc ggaacaaagt ggacattctg ccaaaacaat tggtaaatg cataaagtt 2040
 aggactttga atctgggaca gaactgcattt accttactcc cagagaaagt tggtagctc 2100
 tcccaactca ctcagctgga gctgaagggg aactgcttgg accgcctgcc agcccagctg 2160
 ggccagtgcc ggtatgtcaa gaaaagcggg ctgttggat aagatcacct ttttgcatacc 2220
 ctgcacttgc aagtcaaaaga ggcattgaat caagacataa atattccctt tgcaaatggg 2280
 attttaacta agataatata tgcacagtga tgcaggaa caacttcata gattgcaagt 2340
 gctcacgtac aagtatttac aagataatgc atttttaggag tagatacatc ttttaaaaata 2400
 aaacagagag gatgcataaga aggctgatag aagacataac tgaatgttca atgtttgttag 2460
 ggttttaagt cattcatttc caaatcattt ttttttttct tttggggaaa gggaaaggaaa 2520
 aattataatc actaatcttgc ttcttttta aattgtttagt aacttggatg ctggcgtac 2580
 tgaatgttta caaatgctt gcctgctaaa gttaatgattt aaattgacat tttcttacta 2640
 t
 2641

<210> 84
 <211> 3963
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2724537CB1

<400> 84

gctcgagggt gagagtgcga cggcagcgaa gaagggtgtga gtcgtgaacg gcccgggtct 60
 cccatggc ctctctactc gccaaggacg cttacctgca gagcctggcc aagaagatct 120
 gctccatcc gcccccgaa cagcaggcgc gcacgcggc tggcaaaactt caaggctcag 180
 aaactcgagg gcccccaaaa aagaaaaaggaa agaaaaacaca aaagaaaattt cggaaagcgag 240
 aagagaaggc tgctgagcac aaggcaagt cttggggga gaaatcttca gcagcctctg 300
 gggccaggag gcctgaggca gccaaggagg aagcagcttgg ggcctccacg tcagcaggga 360
 accctgcaga tggctggcc actgagctg agtctgttctt tgctctggat gttctgcac 420
 agcactgca tgagaagatc caggaggccc gggcccaagg cagtgccaaag gagctgtccc 480
 ctgccctt ggagaaaagg cggccggagaa agcaggaacg ggaccggaaag aagaggaagc 540
 gaaaggagct gccccggaaa gagaaggcca ggaaggctga ggaggccacg gaggcccaagg 600
 aggttgttggaa gcaacccca gaggggccct gcacggagcc gcgggagccg cccggctga 660
 tcttcaataa gttggaggtt agcgaagacg agccggccatg caaggcgcacg cgcagaaaaag 720
 agaagaggca gaggggtgaag gggAACCTCA cggcgttgc cggaggaaac taccggcagc 780
 tgcgtgagcg cctgcaggca cggcagagcc ggctggacga gctgcgcggc caggatgagg 840
 ggaaggcgca ggagctggag gcaagatga agtggacca cttctctac aaggcggagg 900
 gctgtggat ccgtgacgac gaacgcctgc tgcaggaggc cttcaagcgc aaggagaagc 960
 gcaggcgca gccccggcgc cgggtggaga agcgcacggc cggcgtggg gagaagatgc 1020
 agcagcgcca ggaccggcgg cggcagaacc tgcgcaggaa gaaggccgc cgcgcggc 1080
 gcccctctgtt cagagccccca aagaaggccc gcaccccttgc gcaggacctg gagcgcgc 1140
 gcctggcttg agtcttccc acctggggcc gccgttcc gtccttaggag actccaggac 1200
 accctctgag tccttgcacgc tggctctgtc ccaggatctc cacagacctc ggcctcttca 1260

tgtgagcggg acacagtggt gcctctgctga gttgtgaggg cccagatcac agatccccatg 1320
 tgagaaaagag agagtttcag cgtcatcctt gaacgcagga tccgggacct tcagacccag 1380
 ggaaagggtg agggagactg gggcctggc tgctttcccg ggcctgaaag ctccccgag 1440
 gtttgcaggg tcagggagga ggaacggtgg ggggtggcag tcactgcctg ttcccactg 1500
 cctgtgttcg caggagccac gggacagaag acggtgccct ctgctgccgg gccacgtta 1560
 gtccgcagct caccgcgaaca gagacaacc ctgagggtgt gcataatggc acctggca 1620
 gggagtcggg ggagcacgtc cagcgtggt gcattctggg gcagaacgc atggctcctc 1680
 cccgcctctc tggcttcgtc ctgttgggt ctcatcctt tctgttcccc agtgccccgg 1740
 ggcggcattt tactgctcag aatttggagg gagggagcag taccttcccc gagtcacgc 1800
 atgtgagtt ggtcaagtgc attggaccta gggaaagaga aagaaagaat aaaagctgga 1860
 gagagagtga agtgaatgca agatacaaag tggatggaa gaattaaatc cagagttcca 1920
 ggcaatcaaa atgagtgcag gttgaaagaa aacaggtaa ttttagtggc atatggatga 1980
 taaagctgta aataaaattc tttgtatgaa actctccgt tacgagacaa agactgtaac 2040
 tgaacaggag ctggtgtgac ttttaccaga cagaggcaac tggatggaa gcccctgtgaa 2100
 agataggatg tgaggtgagc atgagcttga gctgagagac agacacaaca gtatctgaaa 2160
 agaatacata ctcttcat gcatatatgg aacatggatg gaaactgacc acctactttg 2220
 tccagaaaaan nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 2280
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnaacata gcccctaaat gtatgtcat 2340
 ctacagataa atagtgcctt ttatcacac atacgcgtt tttttagtgc 2400
 aagaaaaata agcatgcagc ttaagttgga acaactaaa gtaaatggaa gaaaaatctc 2460
 caaaaactgac taaaagtaat agaaagcctg agttgtatc actgtatgaaa ttgagtcagt 2520
 agttaagaat gttcccttag acgttttac agggaaatgtc cacgatataag agaacaggta 2580
 attccagacq tagacaaatt ctaacagaat caattgagag aacacttcat tcgtgaactt 2640
 agctttgata cccaaactag gtaagagaaa gggaaattac caaatacctg tggcggcaa 2700
 gccacccagg caccgaggca agagacagag gacacgagct gtcccgat aataaaat 2760
 aaaacaagaa tagttatacc agatataat ctttagatatg attatataat aatattac 2820
 atcatttagtt tttttttttt ccaatattat aataatctc actctacaat 2880
 cataacctag gaaaaaccag gccatacaga gataggagct gaggggacat agtgagggt 2940
 gaccagaaga caagagtgcg agcctctgt tatgcccggc cagggccacc agagggctcc 3000
 ttggcttagc ggtgacgcca gcatctggg agacacctgt tgccaaagccc accgtggct 3060
 agctgttagcg ttgtgtcaaa gggaaaacac ccgctactt gcaagaccagg aaagggagtg 3120
 tacagtgaga tcaggatgag ggtgtgtgagg ttgtgtatcag gggggacccat gcttctgtc 3180
 agggggttgg cagaagccag caaggcttgg ggttccct gttggagcg ctccaaagttg 3240
 agagtgcaaa ggagtgttag atgcgtgtga aatgcacac ttggctctcc ctggctggag 3300
 gctggcattt ggtgagtctc ttgttaggacc aggccatgtt tactttttaa gctttttat 3360
 tcttggaaatg ttcaaaagata tacaagata gactatgcag gataatgagc ccccacata 3420
 tccgcacatc ttgtctgtaa ttatcagctc gtggctaccc ctacctctcc cctctaccc 3480
 ttgtctcatc tctacctctc cccctgaccc ctgcctctgg gtcattttgc agcaaatccc 3540
 aatgcctat atcatttac taaatatttca cataaacatt ccactatgtt gctctgaaag 3600
 ataaggacgc ttacaacaca actgcaatatt cttttgggn nnnnnnnnnn nnnnnnnnnn 3660
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 3720
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 3780
 nnnnnnnnnn cacaccttta caaaattaat aattccaaatc atcctatagt tgatcagtgt 3840
 tcaaatttcc aattgcctca taaaaggat atttctnaa cattnngnt gtcgaatng 3900
 gttgcngnta agtcaccaa atatctctc tttgtataa cttttagtgc gngtaaaaata 3960
 ggt 3963

<210> 85
 <211> 1093
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 025818CB1

<400> 85
 tggtgctgat aacagcggaa tccccgtct acctctctcc ttggcctgg aacagcgcta 60
 ctgatcacca agtagccaca aaatataata aaccctcagc acttgctcag tagtttgc 120
 aaagtctcaa gtaaaagaga cacaacaaa aaattcttt tcgtgaagaa ctccaaaaat 180
 aaaattctct agagataaaa aaaaaaaaaa aaaaaaggaa aatgccagct gatataatgg 240
 agaaaaatttcc ctcgtccccg gtggctgcta ccccaaggccag tgtcaacacag acaccggata 300
 aaccaaagac agcatctgag cacagaaagt catcaaagcc tattatggag aaaagacgaa 360

gagcaagaat aaatgaaaat ctgagccagc tgaaaacact gattttggat gctctgaaga 420
 aagatagctc gcggcattcc aagctggaga aggccgacat tctggaaatg acagtgaagc 480
 acctccggaa cctgcagcgg gcgcagatga cggctgcgtc gagcacagac ccaagtgtgc 540
 tggggaagta ccgagccggc ttcaagcgagt gcatgaacga ggtgaccgc ttccctgtcat 600
 ccccgctcac accagcaaca gcggcacctc cgtggcccc aacgcagtgt caccttccag 660
 cggcccctcg cttacggcgg actccatgtg gaggccgtgg cgaaactgag ggggctcagg 720
 ccacccctcc tcctaaactc cccaaacccac ctctcttccc tccggactct aaacaggaac 780
 ttgaataactg ggagagaaga ggacttttt gattaagtgg ttactttgtg ttttttaat 840
 ttctaagaag ttacttttg tagagagagc tgtattaagt gactgaccat gcactatatt 900
 tgtatatatt ttatatgttc atattggatt gcgccttgc attataaaaag ctcagatgac 960
 atttcgttt ttacacgaga ttcttttt atgtgatgcc aaagatgtt gaaaatgctc 1020
 ttaaaaatatc ttcccttggg gaagtttatt tgagaaaata taataaaaaga aaaaagtaaa 1080
 ggcaaaaaaaaaaaa aaa 1093

<210> 86
 <211> 2077
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 438283CB1

<400> 86
 atggcgttga ctgaaaagttg cacggcggcg tgtgcgtttc cttagttgtct ggtgctgcta 60
 tatagggggc gtggggtccc cacagacctg caggttccgg cccctctttt ctcacccag 120
 agcaaattga aacgtccggg atttccaaag actcatgtt cgtgaggaag ccaccaagaa 180
 gagcaaagaa aaggagccag ggtatggctct tcctcaggga cgcttggctt tcagggatgt 240
 ggctatagag ttctctttgg aggagtggaa atgcctgaac cctgcacaga gggcttata 300
 caaggctgtg atgttggaga actacaggaa cctggagttt gtggatagct ctttaaaatc 360
 catgatggag ttctcatcaa ccaggcacag taatacagga gaagtgtatcc acacagggac 420
 gttgcaaaga cataaaaagtc atcacattgg agatttttc ttcccagaaa tgaagaaaaga 480
 tattcatcac tttgagttt agtggcaaga agttgaaaga aatggccatg aagcaccat 540
 gacaaaaatc aaaaagttga ctggtagtac agaccgaagt gatcacaggc atgctggaaa 600
 caagcctatt aaagatcagc ttggattaag ctttcattcg catctgcctg aactccacat 660
 gtttcagact aaaggggaaaa ttagcaacca attggacaag tctatcagtg gtgcttcctc 720
 agcttcagaa tcccaaagaa tttcttgttag gctcaaact catatttcta ataagtatgg 780
 gaagaatttc ctccatttt cattcacaca aatacagggaa atatgcatga gagaaaaacc 840
 ttgccaaagt aatgagtgtg gcaaagcctt taattatagc tcactcttaa ggagacacca 900
 cataacccat tcaagagaga gagaatataa atgtgatgtt tggcaaga tctttaatca 960
 gaagcaatac attgtatatac atcacagatg tcacacttgtt gagaaaactt acaagtgtaa 1020
 tgagtgtggg aagaccttca ctcagatgtc atcccttgc tgccatcgta gacttcatac 1080
 tggagagaaaa ctttacaagt gtaatgatgtg tggcaagacc ttcaagtgaga agtcatccct 1140
 tagatgccat ctagacttc atactggaga gaaaccttac aagtgtatg agtggca 1200
 gacttttgtt ctagatttcg cccttgcata tcataaggca attcatactg gagagaaaacc 1260
 ttacaagtgt aatgagtgtg gcaagacctt cagtcagaaa tcatcccttc aatgcacatca 1320
 tataccatcac actggagaga aacccatcaa atgtgagaaa tggacaatg tttacattcg 1380
 cagatcacac cttgaaaagac ataggaaaat tcatactggaa gaggatcat acaaatgtaa 1440
 ggtttgtac aaggctttcc ggagtgtttc atgccttgc aaccatacg aagttcatac 1500
 tggagagaaaa ctttacaagt gtaataaatg tgcgaaggtt ttaatcaaa aaggaatcct 1560
 tgcacaacat cagagatgtc atactggaga gaaaccttac aagtgtatg aatgtggca 1620
 ggttttaat caaaaagca gccttgcata acatcagaga gttcatactg cagagaaaacc 1680
 ttacaagtgt aatgagtgtg gcaaaagcctt tactggacag tcaacactta ttcaccatca 1740
 agcaatccat gggtgttaggg aaactttaca aatgtaatga ttgtcacaaa gtcttcagta 1800
 atgctacaac cattgcaat cattacagaa tccatattga agagagatct acaagtgtaa 1860
 taaatgtggc aaattttca gacgtcattc ataacttgc gttcctcagt gaactcatac 1920
 tggagagaaaa ctttacaat atcatgactg tgacaaggc ttcaagtcaag cttccatccta 1980
 tgcaaaacat agaatgtcta caggagagaa acctcacaag tggatgtt gttggcaagc 2040
 tttacccat gttcacaccg tcttagacat cagagaa 2077

<210> 87
 <211> 2358

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 619699CB1

<400> 87

```
ggacttact ggacccaact cagagaaaacc tctacagaga tggatgctg gagaactaca 60
agaatttggc cacagtagga tatcaagctt tcaaaccagg tctgatctt tggctgaaac 120
aagaagagtc taggacagt cagagagggtt atttccaaagg ttcaaatgg aaagtgcac 180
ttaaaaccaa agagtttagcc cttaagcagg atgttttggg ggagccaaacc tccagtgaa 240
ttcaaatgtt aggaagccac aacggagggg aggtcagtga tggtaagcaa tggagatg 300
tctccatgtt acactcatgc cttaagacac atgtgagaac tcaaaaatgtt gagaacacat 360
ttgagtttgc tctgtatggc gttagacttcc ttactctgca caagaaaaacc tctactggag 420
agcaacgtt tttttttttt cagttgtggaa aagccttcag cctgaaccca gatgtttttt 480
gccagagaac gtgcacagga gagaaggtt ttgattcgag tgactctggg aaatccttca 540
ttaatcattt acacccatgc ggacattttaa gaactcacaa tggagaaagt ctccatgaat 600
ggaaggaatg tgggagaggg ttttttttcc ccacagacct tgctgtgcgt atacaaactc 660
acaggtcaga aaaaccctac aaatgtttaagg aatgtggaaa aggattttaga tattctgtcat 720
acctaataat tcacatggg acccacactg gagacaatcc ctatgagtgtt aaggagtgtt 780
ggaaagcctt caccaggctt tgtcaactt ctcagcacag aaaaactcac actggagaga 840
aaccttataa atgtttaaggat ttttttttcc ctttcaactt ttccttttgc ttaagtcaac 900
atatggaaat ccatgtgggt gagaagcctt atgaatgca ggaatgtggg atagccttca 960
ctagatctt tcaacttactt gaacatttaa aaactcacac tgcaaaaggat ccctttgaat 1020
gtttagttatg tggaaatcc ttttttttcc cctcatgcct cagttgttccat tttcgaattt 1080
acacttggaaat aaaaaccctat aaatgtttaagg atgttggggaa agccttcaactt cagaactcag 1140
accttactaa gcatgcacga actcacactg gagagaggcc ctatgaatgtt aaggaatgtt 1200
gaaagcctt tgccagatcc ttcgcctt gtaacatac aagaactcac actggagaga 1260
agcccttttga atgttcaaa ttttttttcc ctttgcctt ttcttcaat ttttttttgc 1320
attttggaaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1380
cgcatccctt cagtttttcaat aatcacatgc ggacccacag cgccaaaaaaa ccattcacgt 1440
gtatggaaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1500
acacttggaaat aaaaaccctat aaatgtttaac agtgtggggaa atcccttcaactt tactccaaatt 1560
cgcccttcaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1620
gaaagcctt ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1680
gactgtcaggc ataaggaaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1740
gaaaactcac ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1800
ggctttcaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1860
atgttttgc ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1920
tgttatggaaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 1980
tgtttagtttcaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 2040
actccatatt ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 2100
ggttttttcaat ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 2160
tcacttgggtt ttttttttcc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 2220
tccaccagaa gatggccatc ttttttttcc ttttttttcc ttttttttcc ttttttttcc 2280
atggcccttca gaggaaacca accctgttcc caccttgata ttgcacttcc aggctccaga 2340
actgttggggc aataaataa 2358
```

<210> 88
 <211> 1978
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 693452CB1

<400> 88

```
gcagcggctg ccacggagct ctagtgcac gctttggagg agtaagcggc gtggtagcga 60
aggtcggccga accccgcctgg ctagccggcg agttgatgg cgactctttt gaaacagatg 120
gtcaccatgt ttagatatta gcagttccgtt atgttgcatgt ctgcatttga aaatggaaaga 180
ggaaacaaac aatgttggagg taatttcaactt gaacaactt cactgcacatc ggggacaaga 240
```

ctttgtaatt ttcttctgga aaacccagat tatccaaaga gagaagacag aatcattata 300
 aatcccgta gcagtctgct ggccagccaa gatgagacaa agttgcctaa aataagactt 360
 ttttgactat tctaaatgta ctcccttctgta ccagcactgc ttcatccaag ctgctgacct 420
 cctcatggcc gacttcaaag tgctcagtag tcaggacatc aagtggccc tgcacgagct 480
 caaaggacac tatgcaatca cccgaaaaggc cttgtctgtat gccattaaaa aatggcagga 540
 gctgtcacca gaaaccagtg gaaaaaggaa gaagagaaaa caaatgaacc agtattctt 600
 cattgatttc aagttgaac aaggtagcat aaaaatagaa aagaggatgt tctttcttga 660
 aaataagcga cgacattgta ggtcttatgta ccgcacgtgct ctccttccag ctgtgcaaca 720
 agagcaggag ttctatgagc agaaaatcaa agagatggca gagcatgaag acttttgct 780
 tgccctacag atgaatgaag aacagtatca aaaggatggc cagctgattt agtgtcgctg 840
 ctgctatggg gaatttccat tcgaggagct gacgcagtgcc gcagatgctc acttggct 900
 caaagagtgt ctcatcagat atgccaaga ggcagtctt ggatctggaa agttggagct 960
 cagctgcattg gaaggcagct gcacgtgttc gttcccaacc agtggagctgg agaagggtct 1020
 cccccagacc atcctgtata agtactatga gcgaaaagcc gaggaggagg ttgcggcagc 1080
 ctacgcccac gagcttgc ggtgcccgtc ctgtagctt ccggctctgt tggacagtga 1140
 tgtgaagagg ttcagctgtc ctaatcctca ctgcccggaa gaaacctgtta ggaagttgtca 1200
 gggactctgg aaagaacata atggcctcac ctgtgaagag ctggctgaaa aagacgacat 1260
 caagtaccgt acctctattt aagaaaaat gactgctgcc cgcattagaa aatgcaccaa 1320
 gtgtgggact ggcctcatca aatctgaagg ctgcacccgc atgtcttgcc gctgtgggtc 1380
 ccagatgtgc tacctctgtc gagttcttat taatggatat gaccattnt gccaacaatc 1440
 ccggttaaca ggggccccctt tccagggagt gttcaagatg cttctatgg acagactcca 1500
 atgttaagtag acacatggct gcctatttct ttatagggag gaaataggaa tatattttaa 1560
 tgcagatatt ttgataaaacg aacataattt ccttggagga gatatggaaa tcaaaggctt 1620
 taaccaagga aaaatttggaa acttattaca agtactccaa aggtggtaaa ggagaacgcc 1680
 taacaagttt aaggaaaatc cttaaatctc aaggaaaaaaa cttcccccct tgaaaaccccg 1740
 gggagaagag gggcttaaaa gggtgtgaaa gcggaaaagg ggtccaagggg ggggggggtg 1800
 gtatattatt ttgtttcta tggcgtatgaa acatggtaa atggaaaaat tgaactgggg 1860
 acaacagggt tcttaggaaat aggtggatat aggtgatggg atttaaggca tggtggggag 1920
 ttggagataa agctggaggt gaaagaaagg ttgggggggg ggggaggaag tgggggggg 1978

<210> 89
 <211> 2084
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 839651CB1

<400> 89
 cgtggggcg cacagcctct ggtgcacatg gcttcctccc cggcggtgga cgtgtcctgc 60
 aggccgcggg agaagccgc gcagctggac gcgcgcgc gcaagtgcgg catccgcctg 120
 ggcggccaca tggagcagtg gtgcctcctc aaggagccgc tggcttctc cctgcactcg 180
 cagctgcaca agttcctgtt ggaccggtagc acttcttcag gctgtgtcct ctgtgcaggt 240
 aggttagggga tggcaggggg tgagagccag agggaaagagg gaccacaggg tgaccaggaa 300
 acaccctctt ttcaaaggaa gcccgtatgta agtttggaaa gggtgggtg agttggggag 360
 cacaggttag tttgtatggag gcaacctctg ggtggggaaag ggagcaatgt ctcaggatct 420
 agtgtgtcta gttctgaag aatgataaat tggactgggg ctgaggttgc cttgggttt 480
 gagggaaacag ggctccctgg gtatggctct ccaggtaag aggaggagac ttcccagttc 540
 agcctgactg cttcccccac ccctccaggat cctgagcctt tgcctccaaa aggtctgcag 600
 tatctgggtc tcttgcata tggccacagc cgagagtgc gcttgggtgccc cgggcttcgg 660
 gggcctggcg gccaagatgg gggccttgg tgggagttgtc cagcaggccca taccttctcc 720
 tggggaccct ctttgagccc tacaccttca gaggcacca agccagcctc cttccacat 780
 actactcgga gaagttgggt ttccgaggcc acgagtggc aggagttgc agatttggaa 840
 tctgagcatg atgagaggac tcaagaggcc aggttgc gtagtggagcc ttagtgccttcc 900
 agactactgc cttccctgt cacatgcaca cctaaagagg gggagacacc accagccct 960
 gcagcactct ccagtcctct tgctgtgcgc gccttgcag catcctcatt gagttccaga 1020
 gctcctccac ctgcagaagt cagggtgcag ccacagctca gcaggacccc tcaagccggcc 1080
 cagcagactg aggccctggc cagtaacct gatggcttag acagaaaggg cagggcgctc 1140
 ctggatgtg gcccctccctc gaggccctct gctccctt tgctgcccgt agcactggaa 1200
 gtcaggccca gtctgctcca accccggccct gggatggagga cactgcacaa attggccca 1260
 agagaattag gaaagctgcc aaaagagagc tgatgcctt tgacttccct ggctgtggaa 1320
 ggatcttctc caaccggcag tattgaatc accacaaaaa gtaccagcac atccaccaga 1380

agtctttctc	ctgcccagag	ccagcctgtg	ggaagtcttt	caactttaag	aaacaccgtga	1440
aggagcacat	gaagctgcac	agtgcacaccc	gggactacat	ctgtgagttc	tgcgccccgt	1500
ctttccgcac	tagcagcaac	cttgtcatcc	acagacgtat	ccacactgga	aaaaaacccc	1560
tgcagtgtga	gatatgcggg	tttacctgcc	gccagaaggc	ttccctgaac	tggcaccagc	1620
gcaaggcatgc	agagacggtg	gctgccttc	gcttccccctg	tgaattctgc	ggcaagcgct	1680
ttgagaagcc	agacagtgtt	gcagcccacc	gtagcaaaaag	tcacccagcc	ctgctttag	1740
ccccctaaga	gtcaccctagt	ggtccccctag	agccctgtcc	cagcatctct	gcccctgggc	1800
ctctgggatc	cagcgaggggg	tccagccct	ctgcatactcc	tcaggtcca	accctgtttc	1860
ctcagcaatg	agctctccctc	cagcttggc	tttgggaagc	cagactccag	ggactgaaaa	1920
ggagcaacaa	ggagagggtc	tgcttgagaa	atgccagatg	cttggtcccc	aggaactaag	1980
gcgacagagt	gcagggtggg	ggcaagactg	ggctgttaggg	gagctggact	actttatgtct	2040
tcctaaagga	caaataaac	agtatttat	gaaaaaaaaa	aaaa		2084

<210> 90
<211> 2024
<212> DNA
<213> Homo

<220>
<221> misc_feature
<223> Incyte clone 1253545CB1

<400> 90
tggaaattatt gctattaaca acaccaagtt ttcataataac gattcaaaaag agtgggagga 60
agccatggct aaggctcaag aaactggaca cctagtgtat gatgtgagggc gctatggaaa 120
ggctgggtca cctgaaacaa agtggattga tgcaacttct ggaatttaca actcagaaaa 180
atcttcaa at ctatctgtaa caactgattt ctccgaaagc cttcagagtt ctaatattga 240
atccaaagaa atcaatggaa ttcatgtat aagcaatgt tttgaatcaa aagcatctga 300
atccatttct ttgaaaaact taaaaggcg atcacaattt tttgaacaag gaagctctga 360
ttcgggtggtt cctgatcttc cagttccaac catcagtgcc ccgagtcgct ggggtgtggga 420
tcaagaggag gagcggaaagc ggcaggagag gtggcagaag gagcaggacc gcctactgca 480
ggaaaaatatac aacgtgagc aggagaaaact gagggaaagag tggcaaaggg ccaaacagga 540
ggcagagaga gagaattcca agtacttggta tgaggaactg atggcctaa gctaaacag 600
catgtctctg accacacggg agcccctct tgcccaccttgg gaagctaccc ggagtgaagg 660
gtccaagtct tcagacagag aaggaaccccg agcaggagaa gaggagagga gacagccaca 720
agaggaagtt gttcatgagg accaaggaaa gaagccgcag gatcagctt tattgagag 780
agagaggaaa tgggagcaac agttcagga agagcaagag caaaagcgc ttcaaggctga 840
ggctggggag cagaagcgtc ctgcggagga gcagaagcgc caggcagaga tagagcggga 900
aacatca gtc ayaatatacc agtacaggag gcctgttgat tcctatgata taccaaagac 960
agaagaagca tcttcagggtt ttcttcctgg tgacagggat aaatccagat ctactactza 1020
actggatgat tactccacaa ataaaaatgg aaacaataaa tatttagacc aaattggaa 1080
caccacccct tcacagagga gatccaagaa agaacaagta ccatcaggag cagaatttgg 1140
gaggcaacaa atccttcagg aaatgaggaa gagaacaccc cttcacaatg acaacagctg 1200
gatccgacag cgca gtc acacaa agagcctt agtcttcctg ggtcatgag 1260
aagaggcgaa tctttagata acctggactc ccccccgtatcc aattcttggaa gacagccccc 1320
ttggctcaat cagccccacag gattcttatgc ttcttcctct gtcaagact ttagtcgccc 1380
acaacccctcag ctggcttcca catcaaaccg tgcctacatg cggAACCCCT cctccagcgt 1440
ccccccaccc tca gcttggct ccgtaaagac ctccaccacca ggtgtggcca ccacacagtc 1500
ccccaccccg agaagccatt ccccttcagc ttacagatca ggctctcagc tgcgtazacag 1560
gtcagtca ggttggcgca tatgcttca ctgcataaaac attctggca aaggagccgc 1620
catgatcatc gagtccctgg gtctttgtt tcatttgcatt ttttttaagt gtgttgcctg 1680
tgagtgtac ctccggaggct cttcctcagg agctgaagtc aggatcagaa accaccaact 1740
gtactgcaac gactgtatc tcagattcaa atctggaccc ccaaccgcca tgtgtatgtaa 1800
gcctccatatac gaaagcactg ttgcagatag aagaagaggt ggttgcgtct catgtagatc 1860
tataaataatg ttttttatgt cttttttgtt ttttttttaa aaaaaagaat aacttttttt 1920
gcctctttag attacattga agcattgttag tcctggtaag accagtattt ttgggtttta 1980
tttataaggc aatttgtgggt gggggaaaag tgca gaaattt accc 2024

<210> 91
<211> 3518
<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1425691CB1

<400> 91

ctctccggc cggccatct tgggaaaga gctgaagcag gcgccttgg ctcggcg 60
 cccgtgcaa tccgtggagg aacgcgcgc cgagccacca tcatgcctgg gcacttacag 120
 gaaggctcg gctgcgtggt caccaaccga ttgcaccagt tatttgacga cgaatcgac 180
 cccttcgagg tgctgaaggc agcagagaac aaaaaaaag aagccggcgg gggcgcgtt 240
 gggggccctg gggccaagag cgcaagctcg gccgcggccc agaccaactc caacgcggca 300
 ggcaaacagc tgcgcaagga gtcccagaaa gaccgcaaga acccgctgcc ccccagcg 360
 ggcgtggttg acaagaaaaga ggagacgcag cgccccgtgg cgcttaagaa agaaggata 420
 agacgagttg gaagaagacc tgatcaacaa cttcagggtg aaggaaaat aattgataga 480
 agaccagaaa ggcgaccacc tcgtgaacga agattcgaaa agccacttga agaaaagggt 540
 gaaggaggcg aattttcagt tgatagaccg attattgacc gacctattcg aggtcgtggt 600
 ggtctggaa gaggtcgagg gggccgtgg cgtgaatgg gccgaggaga tggatttgat 660
 tctcgtggca aacgtgaatt tgataggcat agtgaatgt atagatctt ttttcacat 720
 tacagtggcc tgaagcacga ggacaaacgt ggaggttagcg gatctcacaa ctgggaaact 780
 gtcaaaagacg aattaacaga gtccccaaa tacattcaga aacaatatc ttataattac 840
 agtgacttgg atcaatcaa tgtgactgag gaaacacctg aaggtgaaga acatcatcca 900
 gtggcagaca ctgaaaataa ggagaatgaa gttgaagagg taaaagagga gggtccaaa 960
 gagatgactt tggatgagtg gaaggctatt caaaaatagg accgggcaaa agtagaattt 1020
 aatatccgaa aaccaaatga aggtgctgat gggcagtgga agaaggatt tttcttcat 1080
 aaatcaaaga gtgaagaggg tcatgctgaa gattcgttta tggaccatca tttccggaag 1140
 ccagcaaatg atataacgtc tcagctggag atcaattttg gagaccttgg cgcggcagg 1200
 cgtggcggca ggggaggacg aggtggacgt gggcgtggg ggcggccaaa cctggcgc 1260
 aggaccgaca agtcaagtgc ttctgctct gatgtggatg acccagaggc attccagct 1320
 ctggcttaac tggatgccat aagacaaccc tggttccctt gtgaaccctt ctgttcaaag 1380
 cttttgcattg cttaggatt ccaaacgact aagaaattaa aaaaaaaaaag actgtcattc 1440
 ataccattca cacctaaaga ctgaattta tctgtttaa aatgaactt ctccgctac 1500
 acagaagtaa caaatatggt agtcagttt gtatttagaa atgtattggg agcaggatg 1560
 ttttcataat tttcagagat tatgcattct tcatgaatac tttgtattt ctgcttgc 1620
 atatgcattt ccaaacttga aatatagggt tgaacagtgt gtaccagttt aaagctttca 1680
 cttcatttgt gtttttaat taaggattt gaagttcccc caattacaaa ctgttttaa 1740
 atattggaca tactggttt aataacctgct ttgcatttc acacatggc aactggaca 1800
 tgttaaactt tgatttgta aattttatgc tggcttggaaat actaactata tttttttaa 1860
 cttagttta atatttcat tttttggaa aatctttt tcacttctca tgatagctgt 1920
 tataatata tgctaaaatct ttatatacag aatatacgt acttgaacaa attcaaagca 1980
 catttgttt attaaccctt gctccttgc tggcttgcattt ggttcaattt ataaactgatt 2040
 tacatttca gctatattta ctttttaat gcttgaggat cccattttaa aatctaaact 2100
 agacatcttta attggtaaaa gtttttaaa ctacttattt ttggtaggca cattgtgtca 2160
 agtgaagttagt ttttataagt atgggtttt tctccctt caccagggtg ggttggataa 2220
 gttgatttgg ccaatgtgtaa atatttaac tggcttgcattt aataagtgtc tggccattt 2280
 gtatgatttgc tggatgtgaa aggtccaaa atcaaaatgg tacatccata atcagccacc 2340
 atttaaccctt cccttgcattt aaaacaaa ccaaaggccg ctggttggta gggtgagggt 2400
 ggggagtatt ttaatttttgaatttggaa agcagacacg tttactttgt aaggttggaa 2460
 cagcagcaat atacatgaaa tataaaccat aaaccttac tggcttgcattt ttcccttagat 2520
 tgcttattt tggatgtgaa ttgatgttcc cacagaaatgtt ggttcaattt tctctctt 2580
 cctccatttag aaaatttagt aaataatggat ttcctataat gggagcatca ccacttattt 2640
 aaacacacat agaatgtatgaa attaaaaaaat ttttcttgcattt ttctgcacaca 2700
 ttttattgtata aacagtgtaa gaattttttaa aaaatttttta agaattgttt gtcacgtcat 2760
 tttttagaaat gttctaccgt tatatggtaa tggccaggat taaaaatattt ggacatctt 2820
 aatcttaaac atttcttattt agctgattgg ttctcacata tacattctaaa agaaaactttt 2880
 atgttataag agttactttt tggataagat ttattaaatct cagttaccta ctattctgac 2940
 attttaggaa ggaggttaatt gtttttaatgtt atggataaaac ttgtgctggt gttttggatc 3000
 ttatgtatgt gggatgttgc tgcactgggt ctaatgtcta atataattttt atatttacac 3060
 acatacgtgc tacccagaga ttaattttgtt ccatatgaac tattgaccca ttgttcat 3120
 agacagcaac atacgcactc ctaaatcgtt gtgtttagac tttcaagta tctaactcat 3180
 ttccaaacat gtaccatgtt ttataaacctt cttgatttcc agcaacatac tataaaaaac 3240
 acctgctact caaaacacaa cttctcagtg tcatccattt ctgtcgtgag agacaacatac 3300
 gcaatatctg gtatgttgcag agcttcaag atagcctgaa cttaaaaaatgttgcattt 3360
 gtttatctg atggatataa atttgcctcc tagttcactt tggatgtcaaga gctaaaaactg 3420

tgaacctaac tttcttttat tggtgggtaa taactaaaaaa taaagattt ttttcatgct 3480
 cactttaaa aagtcataaa aacaatcaaa aaaaaaaaaa 3518

<210> 92
 <211> 2741
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1484257CB1

<400> 92

ttccggccga	ctctaacatg	gcggcgccct	ttgtctgctc	tggagtgccg	tccccggcct	60
tctcgccgccc	gtgatgcacc	tccctctgcg	gtggggcccg	ggacatggca	gttaatgagc	120
cggacgagggg	gagccaagct	ggagtttaca	caggcaact	gtcagaaaaag	atgagccctgg	180
gctgtctgga	aatctgagcc	atggactttc	cccagcacag	ccagcatgtc	ttggAACAGC	240
tgaaccagca	gcggcagctg	gggcttctct	gtgactgcac	cttgtgttgt	gacggtgttc	300
actttaaggc	tcataaagca	gtgctggcgg	cctgcagcga	gtacttcaag	atgctcttcg	360
tggaccagaa	ggacgttgtt	cacccggaca	tcagtaacgc	ggcaggcctg	gggcagggtgc	420
tggagtttat	gtacacggcc	aagctgagcc	tgagccctga	gaacgttgtt	atgtgttgttgg	480
ccgtggccac	tttcctccaa	atgcaggaca	tcatcacggc	ctgccatgccc	ctcaagtac	540
ttgctgagcc	ggctaccacgc	cctgggggaa	atgcggaggc	cttggcacaaq	aagggtctgccc	600
ctgttccatc	tccaggaggg	gacaagagag	ccaaagagga	gaaggtggcc	accagcacgc	660
tgagcaggct	ggagcaggca	ggacgcagca	cacccatagg	ccccagcagg	gacctaagg	720
aggagcgcgg	cgttcaggcc	cagagtgcgg	ccagcgtgc	agagcagaca	gagaaagccg	780
atgcgcggcc	ggagccggcg	cctgtggagc	tcaagccaga	ccccacaggt	ggcatggctg	840
ctgcagaagc	tgaggccgct	ttgtccgaga	ttcggagca	agaaatggag	gtggagcccg	900
cccgaaagg	ggaagagggag	caaaaggagc	aagaggagca	agaggaggag	ggcgcagggc	960
cagctgaggt	caaggaggag	ggtccccagc	tggagaacgg	agaggcccc	gaggagaacg	1020
agaatgagga	gtcagcgggc	acagactcgg	ggcaggagct	cgctccgag	gccccgggccc	1080
tgcgttcagg	cacccatccgc	gaccgcacgg	agtccaaaggc	ctacggctcc	gtcatccaca	1140
agtgcgagga	ctgtggaaag	gagttcacgc	acacggggaa	cttcaagcgg	cacatccgca	1200
tccacacggg	ggagaagccc	ttctctgtcc	gggagtgccag	caaggcctt	tccgaccgg	1260
cccggtgcga	ggcccatgag	aagacgcaca	gccctctqaa	gccctacggc	tgcgaggagt	1320
gcgggaagag	ctaccgcctc	atcagcctgc	tgaacctgca	caagaagcgg	cactcggcg	1380
aggcgcgcta	ccgctgcgag	gactgcggca	agctcttcac	cacctcgggc	aacctaagc	1440
gccaccagct	ggtgcacagc	ggcgagaagc	cctaccatgt	cgactactgc	ggccgctct	1500
tctccgaccc	cacttccaag	atgcqccacc	tggagaccca	cgacacggac	aaggagcaca	1560
agtgcacca	ctgcgacaag	aagttcaacc	aggttagggaa	cctgaaggcc	cacctgaaga	1620
tccacatcgc	tgacgggccc	ctcaagtgtcc	gagagtgtgg	gaagcagttc	accacccatcg	1680
ggaacctgaa	gccccaccc	cgatccaca	gccccggagaa	gccctacgtg	tgcatccac	1740
gccagcgcaca	gtttcgagac	ccccggcgtc	tgcagcggca	cgatccgtt	cacacaggcg	1800
agaagccatg	ccagtgtgt	atgtcggtt	aggccttcac	ccaggccagc	tccctccatcg	1860
cccacgtgcg	ccagcacacc	ggggagaagc	cctacgtctg	cgagcgtgc	ggcaagagat	1920
tcgtccagtc	cagccagtt	gccaatcata	ttcgccacca	cgacaacatc	cgccccacaca	1980
agtgcagcgt	gtgcagcaag	gccttcgtt	acgtggggga	cctgtccaaq	cacatcatca	2040
ttcacactgg	agagaagcc	tacccgtgtt	ataagtgtgg	gcgtggcttc	aaccgggttag	2100
acaacctgcg	ctcccacgtt	aagaccgtgc	accaggccaa	ggcaggcatc	aagatccatgg	2160
agccccgagga	gggcagtgtt	gtcagcgtgg	tcactgtgtt	tgacatggc	acgctggctt	2220
ccgaggcact	ggcagcgcaca	gccgtcactc	agtcacagt	ggtgcgggt	ggagctgcag	2280
tgacagccga	tgagacggaa	gtccctgttgg	ccgagatcgt	caaagctgtt	aagcaagtgc	2340
aggaagaaga	ccccaaact	cacatccct	acgcctgtt	ctccctgttgtt	gacaagttt	2400
tggatgccaa	cagccctggc	cagcatgtgc	aatccacac	agcccaggca	ctggtcatgt	2460
tccagacaga	cgccggacttc	tatcagcgtt	atggggccagg	tggcacgtgg	cctgccccggc	2520
aggtgctgc	ggctggggag	ctggctttcc	gccctcgccg	cgggggctgag	ggccagcccg	2580
cactggcaga	gacccccc	acagctccgt	aatgtcccc	gcctgcccgg	tgagctggcg	2640
gcccttctga	ctgttttattt	aaggatggat	ggcacccctgg	aaccgggaag	ggtggcctgt	2700
tccctagaga	gaataaaatg	gattatttc	aaaaaaaaaa	a		2741

<210> 93
 <211> 1305

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1732368CB1

<400> 93

```

gagggaaatac cgatggacct aacggtagtg aaggcaggaaa ttatagactg gccaggtaca 60
gaaggcagga gacggatagt agtttagtgg taaaagaagc gaagggtgggt gaaccagagg 120
taaaggaaga gaaggtaaag gaagaggtaa tggactggtc agaagtgaag gaagagaagg 180
ataacitgga gataaaaacag gaggagaagt ttgttggca atgcataaaa gaggaattga 240
tgcattggaga gtgtgtaaaaa gaagagaagg atttcctgaa gaaagaaaatc gtggatgata 300
caaaggtaaa agaagagacct ccgataaaatc accccgggtggg ctgcaagcg 360
tgtcaagggtg tgagacttgt ggtacagaag aagcaaagta cagatgtcca cgttgatgc 420
gataattcctg cagtttgcctg tgtgtaaaaga aacacaaaagc agaactgaca tctaattggag 480
ttcgagataa aactgcatac atttcaatac aacagtttac tggaaatgaat ctccctaagtg 540
attatcgatt ttttggaaagat gtggcaagaa cagcggacca tatttctaga gatgctttt 600
tgaagagacc aataagcaat aaatatatgt actttatgaa aaatcgtgcc cggaggcaag 660
gtatiaactt aaaacttctt cccaatggat tcaccaagag gaaggagaat tcaacccttt 720
ttgataagaa aaaacaacag ttttgggtggc atgtgaagct ccagtttcc caaagtcaag 780
ctgagatcat agaaaaaaaga gtaccagatg ataaaactat taatgaaatc ctaaaacctt 840
acatttatcc taaaaggatct gatcctgtaa ttctgtcaaag gttgaaagcc tacattcgct 900
ctcagactgg gggttcagatt ttaatgaaga ttgaatatat gcagcaaaat ttagttaagat 960
attatgtact agatccttat aaaagtctcc tagacaattt gaggacaacaat gttgatcattt 1020
agtaatccaaac attacatgtg gtattgaaag gatccaataa tgacatgaaa gttcttcacc 1080
aagtgaagag tgaatctacc aagaacgttg gcaatgaaaaa ttgagcattt tttctggaaag 1140
aagaaagtga aaacttccag acaactgcag cagactctgc attgtatggc ttttggctga 1200
ttggggtatt gtcaatgggt gatttggatt ttttctttgt atgaaaaata agcttaactc 1260
ttttaaaaaa tgtatttat aacctcttga attaatttgc ttgtt 1305

```

<210> 94

<211> 1145

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1870914CB1

<400> 94

```

cacgaaggcg gcaaaggcga cggaatggag gaggtgcctc acgactgtcc agggggccgac 60
agcgccccagg cggggcagagg ggcttcatgt cagggtatgcc ccaaccagcg gctgtgcgc 120
tctggagcgg gggccactcc ggacacggct atagagggaaa tcaaagagaa aatgaagact 180
gtaaaacaca aaatcttggt attgtctggg aaaggcggtg ttggggaaaag cacattcagc 240
gcccaccttg cccatggctt acgagaggat gaaaacacac agattgtctc tctagacatc 300
gataatgtg ggcacatcgat tcccaagata atgggatgtt aaggagagca gtttaccagg 360
agtggctcag gctggcttcc agtgtacgtg gaagacaacc tgggggtgat gtcagtgccc 420
ttcctctca gcaatcttca ttagtctgtt atctggaggg gacccaagaa aaacggcatg 480
atcaagcagt tccctccgaga tggactggtgg gggagggatcg actacctcat tggacacc 540
ccacccggaa cgtcgatga acacccatcg gtcgtccggc acctggccac agcacacatc 600
gatggagcag ttagtcatcac cactccccag gaggtgtcac tccaggatgt ccggaaagaa 660
atcaacttctt gcccgaatgtt gaagctgccc atcatcgaaa tggggagaa catgagttgc 720
ttcattctgtc ttaatgtccaa gaaagaatct cagatattcc ctcccaacaac cggggggcg 780
gagctcatgt gcccaggactt ggaggtccct ctcctcgca gagtgccc ggtccgcgc 840
ataggaatcc aagatgttttgaatctccat cagtcaaaag aagagaacctt catcagtcc 900
tgaagcgaga gaatgttca gaccaagcag ttaccgaccc aggcactcac tggcagcac 960
atccagccag accccgaccatg ctccggatg ggggtgggtca cagcaaaagg accagatgt 1020
ggtgtgggtcc gaagccactt tctcagagac actttaatca ttgagttttt gtacactttt 1080
cttttagaaca tatataaaagg gcattctta caaatgtgcc gtttaagaa tagggcccccg 1140
gtcgaa 1145

```

<210> 95
<211> 1470
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1910984CB1

<400> 95
acccccaac agctgctgga gcataagaaa tgccacactg tccccaccgg tgggctcaat 60
ttatgttcta gatatgaccaa gtagaagaat actttaaaaa aattgataat gccttctggc 120
tatacagtgc ccattctgca tttattccac caaccgcccc gctgccatgg agtgccacct 180
caagaccac tacaagatgg agtacaagtg ccggatctgc cagacggta aggccaacca 240
gctggagctg gagacgcaca cccgggagca ccgcctggc aaccactaca agtgcgacca 300
gtgcggctac ctgtccaaga ccgccaacaa gctcatcgag cacgtgcgca tccacaccgg 360
ggagcggccc ttccactgtg accagtgcag ctacagctgc acaggcaagg acaatctcaa 420
cctgcacaag aagctgaagc acgccccacg ccagaccttc agtgcgaaag agtgcctgtt 480
caagaccaca caccctttcg tcttcagccg ccacgtcaag aagcaccaga gtggggactg 540
ccctgaggag gacaagaagg gcctgtgtcc agcccccaag gaaccggccg gcccggggc 600
cccgctcctg gtggtcggga gctcccgaa tctcctgtct cccctgtcag ttatgtctgc 660
ctcccaggct ctgcagaccc tggccctgtc ggcagccac ggcagcagct cagagccaa 720
cctggactc aaggctttgg cttcaacgg cttcccttg cgctttgaca agtaccggaa 780
ctcagattt gccccatctca ttcccttgac aatgttatac cccaaagaacc acttggatct 840
cacatccac cctccccgac ctcaactgc gcctcccgac atccccctcac ccaaacactc 900
cttcctggcc tatctcgac tgagagaaaag agcagagact gtctgaggc agccatgttc 960
tgtacaaaaa acagagagac aaaagacaaa aaaaaaaaaa aaaccacaaa acttaaacac 1020
aaccccaagca ggtgtatgtt gctgaaaaac ctacagaccc cgatgggtct ggaacatgtg 1080
tactgtatctttagtaag gaatagaaaa ttggctctgt gtgtataacctt attgcattga 1140
cctgaaagct gctttatcca atcttcagag aggtgaccta ctgcatactt ctaccttcag 1200
aggca:gcct ccccaagccac ccactccac tctcagccct tctccgtact tttctctgaa 1260
aggaatcttgc tcttggtaaa ccctaaagag agtgcctta atagcaatca gcacttgtaa 1320
gcttatatac tggtgcat tggtttctg tttaggtgaa tgccgtgtgt gggcgttgt 1380
ggattctgaa agagaaagcc gtgtgcgtg tgccatgaca ttcttattcc acattcttgg 1440
tactggcttc tttaacagcg atgaacgttc 1470

<210> 96
<211> 1399
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1943040CB1

<400> 96
ctgggaaggc cccggaccccg caggacccccc aggacgcgga gtccgactct gccacccggat 60
cgcagaggca gtccgtcattc cagcagctg ccccgacag gggcacggcg aaactggaa 120
ccaagaggcc gcaccccgag gatggggacg ggcagagct cgagggcgct tctagctccg 180
gcaacagcgc agggctggag gccgggcagg gcccctgggc tgacgagccg ggcttgcctc 240
gcgggaagcc ctatgcctgc ggcgagtgcg gggaggcctt cgcgtggctc tcgcacactga 300
tggagcacca cagcagccat ggcggccgga agcgctacgc ctgtcaggc tgctgaaaga 360
ccttcactt cagcctggcc cttagccgagc accagaagac ccacgagaag gaaaaaagct 420
acgcgtctgg gggcgcccg ggcccccaac cgtccaccccg cgaacccagg cggggcttag 480
ggcggggcggt ccccccagaga gctgtggaggg cgaggctccc cccgcacccc cagaggcgca 540
gaggtgagcc gctgtgtgtt cccgttccgg agggggccgtt ttggccggcg tgaatcccag 600
acgaggcatt gggccctttcc acgccccctgg gtggcggctt cctgtgtgt ttgtggacgt 660
cctctgcctg tgccctgaat ccgcctctga ggctaagcgc tcccaacccg aagggtccac 720
gggaagccct cacctctgta aacacacccct gggccagcgc tcgcacccgaa ggggagccgc 780
cgatgtgaa agaagactcg gctttcctgc agccatttag tgccgccccca tgcttaggtt 840
tttgacatttgc tgcagtgttag agttgcctta aagtgcgtga tctgcccagtg ctttcttcaa 900
gtcacccttg ccccgattcc tcctgtttgc gctcccccagg gttgctcaag tggaaatttt 960
gtcagctgtt tagccttttc gtacttggcg tgatgtcaac ttcacttcta atctgcaaaa 1020

gcagaagctg tttcctagtt tacccgcgt gtgttacct atatggagta gctcgacag 1080
 atcacagaaa tgcttgacgc ctaaggcagg gtttcagac cgtgggtccc agcccattha 1140
 gtaaaatggg aaatcaatta gcaagtggc accagcatta cacagcaatg aagcagaata 1200
 aagtaggcc aaatgcatac tgttagtaaag gcaaatactg ttttgtaaa ctttcaccc 1260
 atacaatcaa atgtgagaac tgggtcaat gtaagacatt tcttgctggg aagttgttag 1320
 caaaaataga taaaaacact aataaagatc tgtctgtctg agcaaaggag actaaactcc 1380
 ttggctaca aaaaaaaaaa 1399

<210> 97
 <211> 3247
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2076520CB1

<400> 97
 cggctcgaga tcgaaccaag gaaaaacttc ccctgagctc agtatcatac agtaatatga 60
 ttgaaccgga tcagtgtttc tgccgtttt atttaacagg aacatgtaat gatgatgatt 120
 gtcaatggca gcatatacaa gactatacac ttagccgaaa acagttattc caggacattc 180
 tgtcatataa tctgtcttg attggttgcg cagagacaag tactaatgaa gaaattactg 240
 cttcagcaga aaaatatgtt gagaaacttt ttggagtaaa caaagatcga atgtcaatgg 300
 accagatggc tggctccctt gttagcaata tcaatgaaag taaaggtca actcctccat 360
 ttacaaccta caaagataaa agaaagtgg a gccaaagtt ttggagaaaa cctatttcag 420
 ataatacgctt cagtagtgcg gagaaacagt ctacaggacc aattaagtat gctttccagc 480
 cagagaacca aataaatgtt ccagctctgg atacagtgt cactccagat gatgtcagat 540
 actttacaaa tgagactgat gacatcgta atttagaagc aagtgtctt gaaaatcctt 600
 ctcatgtaca actttggctc aagcttgcgt acaagtactt gaatcaaaa gaggggagtt 660
 gctcagaatc cttggattct gctttaatg ttctggcgcg agcattggaa aataacaaag 720
 acaatccaga aatttggcgc cattacctca gattgttctc aaaaagagga accaaggacg 780
 aggtgcagga aatgtgtgaa acagctgtt aatatgcctt agattatcaa agcttttgg 840
 cttttctaca cctagaaaat accttgcgtt aaaaaggatta cgtatgtgag agaatgttgg 900
 agtttctgat gggagcagcc aagcagggaa catccaatatttttgcctt cagcttttag 960
 aggctttttt gtttagaggat cagctgcaca tatttactgg aagatgcctt aatgtcactgg 1020
 caattttaca gaatgcattt aatctgcata atgatggaaat agtagctgaa tacctaaaa 1080
 ccagtatcg atgttggca tgggtggcct acatacatct tattgaattt aacattctcc 1140
 cttcaaaattt ttatgatcca tctaattgata atccttcaag aattgttaac actgaatcat 1200
 ttgttaatgcc atggcaagct gttcaagatg taaagactaa tcctgacatg ttgttagcag 1260
 tttttaaga tgcagtgaaa gcttgcacag atgagagctt tgctgttgag gaaagaatag 1320
 aggccctgcct tccacttttac acaaacatga ttgcctgcata ccaactcctg gagaggtatg 1380
 aggctcataat ggagctttt aatcttttattt tggaaatcatg tccttattaaac tgccagttgc 1440
 tggaaaggccct tggcatttatttgcataa tatttgcataa caaatcagca tgacaaagcc agagcaatgt 1500
 ggcttactgc atttggaaaaa aatcttcaga atgcagaggt ttttattcat atgtgcaat 1560
 tcttcatttca acagaatcga ggcgataatc ttcttccatttttgcctt tttatttgcatt 1620
 ccttcatttca accgggggtt gagaagttata ataacttgc tctgtttcgg tatctttttaa 1680
 atattttcagg accaatttgc attccatctc gtttatgtaa agggaaattt gatgatgata 1740
 tggtaatccca ccaagttcctt tatttgcgc tgatttactg ccttgcattt cctcttcaat 1800
 caagtattaa agaaacatgtt gaggcatatg aggccatggcattt aggggtggctt atgagatgt 1860
 atataatgtaca gaagatatgg atggattatc ttgtcttgc aaataataga gctgctggat 1920
 ccagaaaacaa agttcaagaa ttcaagatttt ttactgatggt agtgaataga ttgtttgtta 1980
 cagtcctgc ccgatcccc attccatttgc gcaatgcgttgc ttactggcattt aactatgat 2040
 ttccataatag gtttattttt ttttattttgc gctgtgtcc aaagacccatg cattccaaaa 2100
 ccttgcacg gtttgcatttgc gttatgcattt ctaatttgcattt acttgcattt aggttacttc 2160
 aacatgtatg ggaagaaagc aatgttgcataa ttctgaaact tcaagccaaat atgttttacat 2220
 ataataatccc aacatgcctg gccaccccttgc aatagccat tgctgttgatg atgttttcaat 2280
 agggacaaag agaggtccac cgtttatatttgc agagagccat acagaagttt cctcttgcgt 2340
 catcactgtt gaaagatcaa ctcttgcatttgc aagcatcataa aggaggtaaa actgataacc 2400
 tgagaaaactt agtttccaaat tgccaaagaga ttggagtcgtt cctttaatgatg ctctttaatt 2460
 taaacatgtt gaaacatgtt gcaagaatc actgaacactt gggtgcgtt agttcttaatgt 2520
 ccttataataa attgccttgcattt gatttgcattt gatttgcattt gatccctggctt 2580
 aaggctgttgc taaggcagac aagcgttattt gatcatatca agtcccttac aatatccctgt 2640
 cttcaaaacc ggaagcaatg aacatgtatcc tcttcgggtt gataaaatgaa cttccctgtt 2700

ggcctgcttc taggccctgc cagattctca taacatcata tacgtaagta tagttcctca 2760
 aagtgactga catttatttt aattttgtt .tgttttttt tattttctcc cccattcctt 2820
 tattttgtgt tattcctgac tcacttgaca ctctctgatg cctgagagat tcctgttgg 2880
 gattnaatat ccagggttgt gttagtgc aaaaaagcag gcagtcctt ttatgtttc 2940
 cttttaaat tttttgaga ttcttcattt caggattaa aactatagca gtccatctta 3000
 agggaaagtgt aactgccatg gccacaagtc tgctagttgc acttgaatgc tctatcaggg 3060
 ttgttattt cccttctac gttctggact ctttgcctg actgttaac ttgaagatta 3120
 aagaaactat tgcaaatgcc agtgcatcg aacctaagag tggtcaaata ttatgtgcaa 3180
 tttttgtt aagaaatttt aatttataat aaagtttaac agttaaaga aaaaaaaaaa 3240
 aaaaaaaaaa 3247

<210> 98
<211> 2348
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2291241CB1

<400> 98
 ttcggcagag gccgaacctg gcttcgctaa cgccctccca gctccctcg ggctgacttc 60
 cggttcctc ggcgcgtccct ggccggagc ccgcggacag cggcagcccc ttttccggct 120
 gagagctcat ccacacttcc aatcaacttc cggagtgctt cccctccctc cggcccggtgc 180
 tggtcccac ggcggggctg ggtctcgcc gcgtattgtt gggtaacggg ctttctcccg 240
 cgtcggcccg gcccctccctg ctcggctcg tccctccctc cagaacgtcc cgggctcccg 300
 ccgagtcaga agaaatggga ctccctccgc gacgtgccc gacgagctcc ttgcgtgtg 360
 gaagcggcgg tgcgttgcgaa gaaaccggaa gcccgtgtg acccctggcg acccgggttg 420
 ttttcggtcc gtttccaaac actaaggaat cggaaactcgg cggcccttggg ggcggcccta 480
 cgtagcctgg cttctggtt tcatggatgc actggtagaa gatgatatct gtattctgaa 540
 tcatgaaaaa gcccataaga gagatacgt gactccagtt tcaatataat caggagatga 600
 atctgttgc tcccattttt ctcttgcac tgcataatgaa gacatcaaaa aacgacttaa 660
 ggattcagag aaagagaact ctttggtaaa gaagagaata agatttttgg aagaaaaagct 720
 aatagctcg attgaagaag aaacaagttc cgtgggacga gaacaagtaa ataaggccta 780
 tcatgcataat cgagagggtt gcattgtatc agataatgg aagagcaaac tggacaaaat 840
 gaataaaagac aactctgaat ctttggaaat attgaatgag cagctacaat ctaaagaaggt 900
 agaactcctc cagctgagga cagaggtgga aactcagcag gtgtatggg atttaaatcc 960
 accttcatca aactgggggg tggaaaagtt gagctgtgac ctgaagatcc atgggttgg 1020
 acaagagctg gaactgtatc gggaaagaaatg tagcgtatcc aaaatagaac tacagaaagc 1080
 caaacaacg gatccatatac aggaagacaa tctgaagagc agagatctcc aaaaactaag 1140
 catttcaagt gataatatgc agcatgcata ctggaaactg aagagagaaa tgtctaattt 1200
 acatctgggt actcaagtac aagctgaact actaagaaaa ctgaaaacctt caactgcaat 1260
 caagaaagcc tgcgtccctg taggtatgcag tgaagacctt ggaagagaca gcacaaaact 1320
 gcacttgatg aattttactg caacatacac aagacatccc cctcttttac caaatggcaa 1380
 agctcttgc cataccacat cttccctt accaggagat gtaaagggtt tattcagagaa 1440
 agcaactcctc caatcatgga cagacaatga gagatccatt cctaatgtatc gtacatgtt 1500
 tcaggaacac agttcttgc gcaaaaaattt tctggaaagac aattcctggg tatttccaag 1560
 tcctccaaa tcaagtgaga cagcattttgg gggaaactaaa actaaaaactt tgcctttacc 1620
 caaccttcca ccactgcatt acttggatca acataatcag aactgccttt ataagaattt 1680
 atttggaaaga gattcacat ttcaccatga ggacacttt ctcttcagt ggtcctccca 1740
 agaaattatt taacaaactg aaaggagatt ttgataaaaa ttttgcagag gtcttcagta 1800
 tcttatattt aacacactgt acaatagttac aaaaaccaac atatgtggg ttcttagatg 1860
 aaagagcacc ctctagctcc atattctaa aatctgaaat atgtctactat actaattaaat 1920
 aagtaaaactt aaggtgtttt aaaaactctg ctttctatata taattgtaaa attttgcctc 1980
 tcagaagaat ggaattggag attgttagacg tggtttaca aaatgtgaaa tgtctaaata 2040
 tctgttcata aaaataaaag gaaaacatgt ttcttcaaat tgcataatgg aacaaatggc 2100
 aatgtgagta gtttacattt ctgttggat aatgcgtaaa gatattgaaa atataatgaa 2160
 ataaaagcat cttaggttat accatctta tatgtctattt cgtttcaata tttaagattt 2220
 aaagtgattt ttggtcaca gtgtttgtt gataaaattt ttttagaati gaagttgaa 2280
 ttctaaactg tggaaacaacc ttatcactga agccaacttt ttcccagcac attccttaan 2340
 tcctaaattt 2348

<210> 99
<211> 2508
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2329692CB1

<400> 99

catncnggaa accaaaactn gtaccaacac cactacaact ccccatcgcc agagacacac 60
acccncttcc aggaaaagag taaccccaa ggggataac aaccccaagc taanccaaac 120
ctcccnnacc gtgttaagcan ccattccanc cacaattccc anatcctcca aaaccaccaa 180
cctaattttaa aggccctccc cctnctaatt gacctnacag nagcccaaga tnaaaaagtt 240
tagggaccac ccctgtttt gcaaaaagat aatnttgaaa gnccnntttg nnttaaccat 300
tgtcagaana ttgggctaaa gagaagacga cgagagtaag gaaataaaagg gaattgcctc 360
tggcttagaga gtagtttagt gttaataacct ggttagagatg taaggatgat gacctccctt 420
tcttatgtg ctcactgagg atctgagggg accctgttag gagagcatag catcatgatg 480
tattagctgt tcatactgcta ctgggtggat ggacataact attgttaacta ttcagtttt 540
actggtaggc actgtccctt gattaaactt ggcctactgg caatggctac ttaggatgaa 600
tctaagggcc aaagtgcagg gtgggtgaac ttattgtac ttggatttg gttaacctgt 660
tttcctcaag cctgagggtt tatataaaaaa ctccctgaat actctttttg ccttgatct 720
tctcagccctc ctagccaatg cctatgtat atggaaaaca aacactgcag acttgagatt 780
cagttcccgaa tcaaggctct ggcattcaga gaacccttgc aactcgagaa gctgttttt 840
tttcgtttt gtttgatcc agtgcctcc catctaaca ctaaacagga gccattcaa 900
ggcgggagat attttaaaca cccaaaatgt tgggtctgtat ttcaaaactt ttaaactcac 960
tactgatgat tctcacgcta ggcgaattt tccaaacaca tagtgtgtgt gttttgtata 1020
caactgtatgaa cccccccccca aatctttgtt ttgtccacat tctccaacaa taaagcacag 1080
agtggtattt attaagcaca caaatgtcaa ggcagaattt tgagggtggg agagaagaaa 1140
agggaaaagaa gctgaaaatg taaaaccaca ccagggagga aaaatgacat tcagaaccag 1200
caaacactga atttctctt tttttttttt acatccat cttttttttt tctgccaatgg 1260
agatgactta agttggcaggc agtaatcttc ttttaggagc ttgtaccaca gtcttgacca 1320
taagtgcaga ttggctcaa gtaaagagaa ctagccaaatg tttttttttt tttttttttt 1380
cagcagcgtt actaccctaa aagcatatca tttttttttt tttttttttt 1440
tactgtgcctt atattaagac tagtacaaat tttttttttt tttttttttt 1500
gccatatctt taccatattt tattcgagtc tttttttttt tttttttttt 1560
attatagttag aatattttt tttttttttt tttttttttt 1620
atgccaaca ccaaataatg tttttttttt tttttttttt 1680
aaacacacat cctggaaatgc tttttttttt tttttttttt 1740
agtgttaatgtt aaaaatctgg tttttttttt tttttttttt 1800
aatgaaaatg tttttttttt tttttttttt 1860
tcaagcatgt tttttttttt tttttttttt 1920
tgacacaccg tttttttttt tttttttttt 1980
gctgaacatg tttttttttt tttttttttt 2040
aaaggttaac tttttttttt tttttttttt 2100
acgtatgcatt tttttttttt tttttttttt 2160
ttaaggagaa aatctaaaat tttttttttt tttttttttt 2220
tgccctaaatgtt tttttttttt tttttttttt 2280
atgttattatg tttttttttt tttttttttt 2340
ccttgctgtt tttttttttt tttttttttt 2400
agtttcatgtt tttttttttt tttttttttt 2460
tgctaaagag tttttttttt tttttttttt 2508

<210> 100
<211> 2232
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2474110CB1

<400> 100

tttccaggga gacgaggcg cctggccgac ccgggacttc gtggtaggag cgtttatcc 60
 gcgcstatc ggcaaggacc cgagcgacat ctacgcgtc atccagatcc cgggcagccg 120
 cgaattcgac gtgagcttc gctcaagcgga gaagctggcc ctgttcctac gcgtctacga 180
 ggagaagcg gaggcaggagg actgctggga gaacttctgt gtgctggggc ggagcaagtc 240
 cagctgaag acgccttca tccttcgtc gaacgagacg gtggacgtgg aggacattgt 300
 gacttggctc aagcgccact gcgcgtgtc ggcgtgccg gtgaaagtga cgcacagggt 360
 tgggacttgg accggggagt acaaatgcga gatcgagctg cgccaggggg agggcgggt 420
 caggcacttg ccaggggcct tcttcctggg ggccgagagg ggctacagct ggtacaagg 480
 gcagccaaag acatgttta aatgtggtc cgggaccac atgagcggca gtcgcacgca 540
 ggacaagggtc ttcaagggtc gggaggaggg gcacactgagc ccttactgac ggaaggcat 600
 cgtgtcaac ctctgtggca agcgaggaca cgccttgcc cagtgtccca aagcagtgca 660
 caattccgtg gcagctcagc taaccggcgt ggccgggac taaaacacccg cctgcctgac 720
 agggtaaca cacagccgc ttacccttct taagtgcaca aactttttt taaaccattt 780
 ttatcggtt ttaaggaga tctttttaaa acctacaaga gacatcttc tatgccttct 840
 taaaccagt ttactccatt tcagctgtt ctgaatttgt gactctgtca ccaataacga 900
 ctgcggagaa ctgttagcgtc cagatgtgtt gcccctccct ttaaaaattt tatttcgtt 960
 ttctatgg gtatgttt tggttctgt actttttctc tcttccttgc cccccctccc 1020
 gcccrrrrcc ccccatatcc ttcttccccc tggttctca cccttgggc tgccttgcc 1080
 atcttatgc cccagcacta ggtacggggc ccaacacgtg gtaaggcactc catcagtgtt 1140
 tgcgtgaaattg aaaacattgt tgactgtggc ttctatcaga gtgtctacct tttgcagcc 1200
 ttccctccct tcattttatt tgctgtttt aatctacgtg gtctgagaat ttgtgaaacc 1260
 agtgtgtta gaagtgata taatctgaat caataagtc tgaatgggtt ccaaggcc 1320
 ctcttatggc acaaagatgc atggacttca tgacagctt tttggggcgt cagaagccat 1380
 ttttataga atcatggaa cttagaatatt cctgctggaa agaacctgag agttggttt 1440
 gaccaattcc ctgggtttcc agcagatgaa acaggccaa agaggtaaa tgactgggt 1500
 aaaatcacat agctgtctgg tgccagagcc agcctatagt agagttccct gaccccaagc 1560
 ccgggtctca ttccactacc tctcacactt cacaacaatt tcctcaacac ttgagggccc 1620
 agaaagtctg atctctccag aatgatcagc ccagaggaat gctgagaaat cacctggagg 1680
 agggagcaga aagagaaggt ttttaaggag gggcttctga atactggga gatacggaa 1740
 ggaccaagga ccacactcca ggggtcattt gttgtccctt gggcaccac ttctggatta 1800
 cagtgtgcca gtcctttgg aggccttacc ctttccccat tcattgcccc cagtgagaaa 1860
 tgggggtgcc cctgtgtaaa gaaaccttacc aaaggtttac attgcaccc tagcctcaat 1920
 agctacgaac cctagagaag cagctagctg gagctcatgt gcaactcctg attctcagga 1980
 gaaagatgga ttttaaccctt aaattatgag tgagctgtt actctaaaat gtacttggg 2040
 gataggccaa gcgagaggc atggccaac taagtgttat ccagtagaaaa agacagtaca 2100
 ctgctttct tttagtgttt gctttccctt tgctatatgt ttgtctattt ctttgggtc 2160
 tagaatgtaa aattgattgt taaaagttt gttctgaata aatatttatac ttttgtattt 2220
 ctaaaaaaaaaa aa 2232

<210> 101
 <211> 1620
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2495790CB1

<400> 101
 aacatggcgt tctgggttt gcgcgcgcgc gcagccctcc ggctgtgggg ccgggtatc 60
 gaacgggtcg aggccggggg aggctgtggg ccgttccagg cctgcggctg tcggctgggt 120
 ctggcggca gggacgatta taaaagggtt aagaagggtcc atatctttt ctgtgggtgc 180
 ttcaagtgtt gttggaaagt gaggcagcag tgacaagggg aagcttccct tgcaggatgt 240
 agctgagctg attcgggcca gggctgcca gagggtgggt gtcatgtgg gggccggcgt 300
 cagcacaccc agtggcattt cagacttcag atcgcggggg agtggcctgt acagcaacct 360
 ccagcgtac gatctccgtt accccggggc cattttgaa ctcccattct tctttcacaa 420
 ccccaagccc ttttctactt tggccaagga gctgtaccct ggaaactaca agcccaacgt 480
 cactcaactac ttctccggc tgcttcatga caaggggctg ctctgcggc tctacacgca 540
 gaacatcgat gggcttgaga gagtgtcggtt catccctgccc tcaaagctgg ttgaagctca 600
 tggAACCTTt gcctctgcca cctgcacagt ctgccaaaga ccctcccttggggaggacat 660
 tcgggctgac gtgtatggcag acagggttcc cggctgccc gtctgcaccg gcgttggaa 720
 gcccgcacatt gtgttctttt gggagccgtt gccccagagg ttctgctgc atgtgggtga 780
 ttccccatg gcagatctgc tgctcatcctt tgggacctcc ctggaggtgg agcctttgc 840

cagcttggacc gaggccgtgc ggagctcagt tccccgactg ctcatcaacc gggacttggg 900
 gggccccttg gcttggcatc ctcgcagcag ggacgtggcc cagctgggg acgtgttca 960
 cggcgtaaa agcctagtgg agcttctggg ctggacagaa gagatgcggg accttgtgca 1020
 gcgggaaact gggaaacttgg atggaccaga caaataggat gatggctgcc cccacacaat 1080
 aaatggtaac ataggagaca tccacatccc aattctgaca agacctcatg cctgaagaca 1140
 gcttggcag gtgaaaaccag aatatgtcaa ctgagttggac acccgaggct gccactggaa 1200
 tgtcttctca ggccatgagc tgcaigtact ggttaggctg ttttacagt cagggccacc 1260
 ccgtcacata tacaaggag ctgcctgcct gtttctgtg ttgaactctt cactctgctg 1320
 aagctcctaa tggaaaaggc ttcttctga ctgtgaccct ctgaactga atcagaccaa 1380
 ctggaatccc agaccgagtc tgcttctgt gcctaggta acggcaagct cgccatctgt 1440
 tggttacaag atccagactt gggccgagcg gtcccccagcc ctcttcatgt tccgaagtgt 1500
 agtcttgagg ccctggtgc gcacttctag catgttggc tcctttagtg gggctatttt 1560
 taatgagaga aaatctgttc ttccagcat gaaatacatt tagtctcctc aaaaaaaaaa 1620

<210> 102
<211> 608
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2661254CB1

<400> 102
gcaatacgtt atggcgacca aacgcctttt cggggctacc cgacgtggg ccggctgggg 60
ggcctggag ctcctaaacc ccgcacttc cggaaagactc ctggcccgaa attatgcca 120
gaaaccagtt atgaaggggg ccaaatacgaa aaaaggtgca gtgaccagcg aggccctcaa 180
ggaccccgac gtatgcacag atccgtcca gtcaccaca tatgccatgg gcgtaacat 240
ctacaaggaa gggcaggatg taccctgtaa accggatgtc gagtaccctg aatggctgtt 300
cgagatgaac ttgggtcccc caaagaccct ggaggagctg gaccccgaga gcccggagta 360
ctggccggcg ctgcggaaac agaacatctg gcccacaac cgctgagca agaacaagag 420
gtttagcat ggaggggcccg gcatcgctga ccccccacgccc gagggcttgc cgtttcccg 480
gaggacgtgg acttttgc gacaagaggc ggctcccaag cctgggtttc catgtgaccc 540
cacagtgggg ctggaccagg gccctggagg ccaataaaga gcttctggg tagaccctaa 600
aaaaaaaaa 608

<210> 103
<211> 3257
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2674047CB1

<400> 103
ggannccant tggAACGGGA aangtcggag ccattgnngt tgnccatttg cccttggat 60
ttagcttggg aaancctgtt ttcatggac cgacgatggg aagggttggg ttttttngaa 120
agagaggatg ttcttagagcc atgggtgaaa ttgaattgtt cagggcttct gaaatcttg 180
taatcaccccg tgagattgtat gtggcaaaaa atcagtccctt ttgttcatc aacaaaaat 240
ctacaaccca gnaaatagtg gaagagaaat ttgcagccctt aaatattcaa gtggggaaatc 300
tttgcagtt tctccctcag gacaaaatgg gagaatttgc taaactcagc aaaattgaac 360
tcctcgaagc cactgaaaatg tcaattggc ccccaaaaaat gcacaaatat cactgtgaac 420
tcaaaaaactt aaggggagaaa gaaaaacagc tcgagacccatc atgcaaaagag aaaactgagt 480
atctacagaa aatggttcag aggaatgaaa gatataaaca agatgtggag aggttctatg 540
aacggaaagcg acattttagat ttaattgaga tgcttgaagc aaaaaggcca tgggtggaat 600
atgaaaaatgt tcgtcaggaa tatgaagaatg taaaactgt tcgtgaccga gtgaaggaaag 660
aggtcagaaa acttaaagaa gggcagattc ctataacatg tcgaattgaa gaaatggaaa 720
acgagcgtca caatttggag gctcgatca aaaaaaggc aacagatatt aaggaggcat 780
ctcaaaaaatg ccaaacagaag caagatgtt tagaaaggaa agataaacat attgaggaac 840
ttcagcaggc ttaatagta aagcaaaaatg aagagctgaa ccgacagagg agaataaggta 900
ataccgc当地 aatgatagag gatttgc当地 atgaaactaaa gaccacggaa aactgc当地 960

atcttcagcc ccagattgat gccattacaa atgatctgag acggattca gatgaaaagg 1020
 cattatgtga aggcgaaaata attgataagc gaagagagag gggaaactcta gagaaggaga 1080
 aaaagagtgt ggacgatcat attgtacgtt ttgacaatct tatgaatca gaggaaagata 1140
 agctaagaca gagattccgt gacacgtatg atgctgttt atggctaaga aataacagag 1200
 acaaattaa acaaagagtc tggagccca taatgctcac gatcaatataa aaagataata 1260
 aaaatgc当地 atatatggaa aatcatattc catcaaatga cttaagagcc tttgtatttg 1320
 aaagtcaaga agatatggag gtttcctca aagaggttcg tgacaataaa aaattaagag 1380
 taaatgc当地 tattgctccc aagagttcat atgc当地 gacacccca agatcttga 1440
 atgaactaa acaatacgga ttttcttatttgc当地 atttgagaga attatttgc当地 1500
 ctgtaatgag ttaccttgc tgc当地 tattcatgc当地 agttcctgtt ggaactgaaa 1560
 agaccagaga aagaattgaa cggtaatac aagaaacccg attaaaacag atttatacag 1620
 cagaagaaaa gtatgtggtg aaaacttctt tttatttcaaa caaagtttacttgc当地 1680
 catctt当地 aatgc当地 tttctactg tcactgtggc ccttagagca agaagacact 1740
 tagaagaaca gcttaaggaa attcatagaa aattgcaagc agtggattca gggttgatttg 1800
 ccttacgtga aacaagcaaa catctggc当地 acaaaagacaa tgaacttaga caaaagaaga 1860
 aggagcttct tggagagaaaa accaagaaaa gacaactggc acaaaaaatc agttccaaac 1920
 taggaagttt aagactgtg gaacaggata cttgc当地 tgaagaggaa gagcggaaaag 1980
 caagtaccaa aatcaaagaa ataaatgttca aaaaagcgaa acttgttacc gaattaacaa 2040
 acctaataaa gatttgtact tctttgc当地 tacaaaatgttacttgc当地 2100
 ctacagtgtat ctctgagaag aacaaattag aatcagatta tatggccgca tcttcacaac 2160
 tccgctt当地 agagcaacat ttcatgttacttgc当地 tggatggaaa tagacagaga ttattgc当地 2220
 aatgc当地 agatgttacttgc当地 aatgttacttgc当地 cctgggtgca gagcagactc 2280
 ttccctcaaga ataccagaca caagtaccca ccattccaaa tggacacaac tcctcactcc 2340
 ccatggctt当地 ccaagacccat ccaaacacat tggatggaaa tggatgttacttgc当地 2400
 aaagatcaag agcttc当地 ttcacgggac tgaatccatc aattgttacttgc当地 gaatatacaa 2460
 aaagagaaga agaaatagaa cagtaactg aggaactaaa gggaaagaaaa gttgaacttag 2520
 atcaatcacag gggaaacatttgc当地 tcacaggtaa aagaaagggtg gcttaatccct taaaagagc 2580
 tggtagaaaa aatataatgaa aaattcagca atttttttacttgc当地 tggatgttacttgc当地 2640
 aagttagatct ccatacagaa aatgagggaa atatgataa atatgaaatttgc当地 cgaatttagag 2700
 tcaaaatccatc当地 aagtagtacttgc当地 caactgc当地 aattaactcc tcatcatcaaa agtggagggtg 2760
 aaagaagtgt ttctaccatc当地 ttatacttgc当地 tggcacttca ggagctaaat agatgtccat 2820
 tcagagtagt tggatgttacttgc当地 aatcagggaa tggacccat caatgttacttgc当地 2880
 aaatgggtgt aaataacttgc当地 tggatgttacttgc当地 atacatctca atacttttca atacatccaa 2940
 agcttc当地 aatcttcttacttgc当地 tattctgaaa agatgacacttgc当地 ttttttgc当地 tacaatggcc 3000
 ctcatatgttacttgc当地 gggaaacccat ccatgttacttgc当地 taaaggctt ccaaggccgg cgccggccgtt 3060
 ttacatttccatc当地 tcaacccatc当地 taataaaatgttacttgc当地 aaagagggaa aacttggaa ttttttgc当地 3120
 taaatctgttacttgc当地 ttataatgttacttgc当地 aataaaagga gatttacttgc当地 aacgaaaagc 3180
 agttatccatc当地 gggaaacccatc当地 ttttttgc当地 aaatagggttacttgc当地 ataatggaaa ctataatgttacttgc当地 3240
 ctcccaaaa tagcgc当地 3257

<210> 104
 <211> 1945
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2762174CB1

<400> 104
 caggggactt agacctgggtt gttggcatgg agtggaggat gaagaggtat cttctgagca 60
 gagcatttt gtagtaggat tgc当地 agtggaggat caggacttcc atggcagagc tggatgttca 120
 cccatgtgac atatgtggcc caatattgaa agataccctt caccctggctt aataccatgg 180
 gggaaagcc aggc当地 aacccatc当地 catacttgc当地 tggggcatgt ggaaagcaat tctgggttca 240
 tacagactttt gaccagcacc agaaccagcc caatggaggaa aacttcccaatc当地 caaggaaggg 300
 gggc当地 agacactttt gctgc当地 agtggaggat ccatgttccca gagaagaccc tcacatgtgg 360
 gaaaggtagg agagactttt cagccacatc tggccttctt cagcatcagg cctctcttca 420
 cagcatgaag cccccacaaga gcactaagct tggatgttacttgc当地 tttctcatgg gacagaggta 480
 tcacagggtt ggttacttgc当地 gggaaacccat cacccttcccaatc当地 gacacacttgc当地 540
 gagaatccac actggagaaa ggccttatga tggatgttacttgc当地 tggatgttacttgc当地 600
 aagctatgttacttgc当地 ctctttaac accagacacttgc当地 tcacacttgc当地 gaaaggccat acgagtgcc 660
 cgaatgtggg aaatttcttgc当地 gacaaatctc cggccttgc当地 gggatgttacttgc当地 gagttcacac 720
 gggatgttacttgc当地 ctctatgttacttgc当地 tggatgttacttgc当地 ttttttgc当地 780

cattcggacac	caggaaggttc	acacaggagc	caggccttat	gtatgcagcg	aatgtggaa	840
agagttcagt	cgaaaacaca	cacttgttct	gcacccaacga	actcacactg	gagaaaggcc	900
ttatgagtgc	agtgaatgtg	ggaaggcctt	tagccaaagc	tcccaccta	atgtacactg	960
gagaattcac	agcagtgatt	atgagtgtag	cagatgttgt	aaagcttca	gctgcacatc	1020
caaactcatt	cagcaccaga	aagttcactc	tggagaaaaag	ccttatgagt	gcagcaagtg	1080
cggaaaagcc	ttcactcaa	gacccaaacct	catcaggcac	tggaaaagtcc	acactggga	1140
aaggccttat	gtgtgttagt	agtgcgggag	agaattcatc	cggaaaacaga	cacttgttct	1200
gcaccaagg	gttcatgtg	gagaaaagct	ttaagagtgt	agcaaatgtg	ggggaaagtc	1260
ttaggccaat	gcccccgact	tactatatgg	tggggaaacta	gcagtagtta	atgagtgcag	1320
cagatgcagg	aaagccttcc	cctggaggct	gaaccttacc	cgccattggg	aatttcacac	1380
cggacacagg	ccttagcagt	ctaagcaatg	tgctgtctct	gttcagccca	acagctcacc	1440
ctagagtgga	actctgggag	cagccattgg	gagggAACCA	tcagtaagaa	gtgaaacttc	1500
atacatatgg	acattcccac	tggggagatt	ccctgtgagt	gccaaagtatg	tgagatgctt	1560
tcagcagctg	tgttgcactt	tttaaatggc	tattggcctt	tgctggggca	ggagccatct	1620
gctcttacca	tctggcagaa	tcatactgcg	tttaccattt	accccagcat	gcttgtacg	1680
ggcagacctc	tcttcctcc	ccagtcctta	aaagggtgtg	tgagtggct	cacagcccac	1740
taggggtctt	aatttcctct	cttttgatgt	aatggcatg	gaaataatca	gctttgttca	1800
agaggacaca	gaaggattct	gcaaatagcc	tgcagagact	tacctgttgtt	gattgatttc	1860
atatgatgct	cgttatggat	atatccaata	tccaagtca	ccagctctgg	aactgcctgc	1920
ttcacattgc	tcatgataat	aaagg				1945

<210> 105
<211> 1829
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte clone 2765991CB1

<400>	105					
gcaacttctt	gcctttctc	aatatagaat	tcaaagattt	gagaggatct	gcaagctttt	60
tcctgaaacc	aagtacctct	ggtgacagtt	tacaaagttg	aagcattcca	ttggcaatg	120
aatccttgg	gcacaaacct	gtatccagtt	tagcagaacc	tgacttgatc	aactttatgg	180
acttccaaa	acataaccag	atcataactg	aagaaacagg	ctctgcagtt	gaaccaagtq	240
atgaaataaa	gagagccagt	ggagatgtcc	aaactatgaa	aatttcatct	gtgcctaata	300
gtttatcaaa	gcgaaatgtg	tcttgactc	gaagtcacag	tgttggaggc	ccattgcaga	360
atattgactt	tacccagcga	cggttcatg	gcatctcaac	agttagtcct	ccaggttagtc	420
tgcaggaagt	tgtggatcct	ttagaaaaaa	gacccaatcc	tccccctgtt	tctgtgccct	480
acttgagtcc	tctagtactc	cgtaaagaac	ttgaatctt	gctagaaaat	gaagggtgatc	540
aggtgtattca	tacatcttct	ttcatcaatc	aacatccaat	cattttctgg	aacctcgttt	600
ggtaatttcag	acgtttggac	cttcctagta	acttgccagg	acttatacctc	acatctgaac	660
attgtaatga	agggtgtacag	cttcctctgt	catctctgtc	ccaggatagc	aaacttgtgt	720
atattcggct	gttatggat	aatatcaacc	ttcatcagga	accaagagaa	cctctgtatg	780
tctcatggag	gaattttaat	tctgaaaaga	aatcatctct	cctgtcagag	gaacaacaag	840
aaacaagcac	tttagtagaa	accatcaggc	agagtattca	gcacaataat	gttcttaaac	900
ccatcaacct	actttcacag	caaataaaggc	caggcatgaa	aagacaaagg	agtttataaca	960
gagaaatcct	cttcttatca	ttagtgtctc	taggaagaga	gaatatttgat	attgaggcat	1020
ttgacaatga	atatggatt	gcataacaata	gtctgtcttc	agagattctt	gaaaggttgc	1080
agaaaaattga	tgtccacca	agtgcacgtg	tcgagtgggt	caggaagtgt	tttggagcgc	1140
ctctcattta	aatagagatt	cactagaatg	ttgacacacaca	aggcttgggg	attagatttc	1200
atctggaaac	attcaagttt	tttttccaa	atcgtaaagaa	ctggtaata	cggaatttggaa	1260
gtaactctt	gggacaatat	ataatgaatt	atgattcata	ttgcatttacc	ttgaaatatg	1320
aagtgcatt	tgaatgtccc	agggtttatt	aatattgaag	atttcaacc	cctgaactgc	1380
ttttctgcct	ctgtggaaaa	ctactttggg	attcttcagt	attttagtgc	gtttgataga	1440
aataatgagg	aaccatattc	attcttaggc	ttgtttatat	ttgaagttac	tgagtttgag	1500
gaatggcaaa	ttaaatttgc	ctaacccttca	aaacaaatga	aatatctcaa	ttataaaaagc	1560
aacatggccg	ggcacggtgg	ctcaggcctg	taatcccagc	acttgggag	gctgagcaag	1620
gtgggtggat	cacttgaggc	caggagttcg	agaccagcct	ggccaaacacg	gtgagaccct	1680
gtctttacta	aaaatacaaa	aattagccag	gcccaccaat	gtatgtccag	ctactcaggc	1740
tgaggcagga	gaatcgctt	aactgaggca	gaggctacag	tgagtggaga	tcacgcaact	1800
gcaactccag	cttgggtgac	agagtgtac				1829

<210> 106
<211> 1353
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2775157CB1

<400> 106
cccacgcgtc cggccacgcg tccgcccacg cgtccgatgc cttgtcccat gctgctgccs 60
tcaggcaagg tcatcgacca gagcacactg gagaagtgtt accgcagtga agccacatgg 120
ggccgagtgc ccagtgcaccc tttcacgggg gtagcttta ctccgcactc tcagccccgt 180
cctcaccctt ccctcaaggc ccggattgac catttcctgc tccagcactc catccctggc 240
tgccacctgc ttgggagagc acagacggca ttggcagtga tcccttcttc cattgttctg 300
cccttcaga aaaggaagat agagcaggtt gaacatgtcc cagacagtaa ctttgggtgt 360
aatgccttctt gttttctgc cacaagccct ttggtcttac ccactacctc agagcacact 420
gctaagaaaa tgaaagccac caatgagccc agcctgacac atatggactg ttgcacaggt 480
ccactgtccc acgagcagaa gctgtcacaa agcttggaaa ttgccttggc atccaccctt 540
ggctctatgc cctcccttac ggcacggctg accaggggac agctccagca ctttggcaca 600
agagggagca acacttcctg gaggcctggc accggctcgg agcagcctgg gagcatcctg 660
ggccccgaat gtgccttcctg caaaagagta ttttctccct acttcaaaaa ggagccggtg 720
taccagctgc cctgcggcca cctccctgtgc cgccccctggc tgggtgagaa gcaacgcctc 780
ctgcccatttga cgtgcacagc ctgcccacggc cgggttgcata gccaagacgt gctgcgggtc 840
cacttctgag tgactgacct ccactggagg agacccattt ctgggaggag ctgagggggga 900
acaggagcag gccacacagca cccctgaggt ctggccaggc cccaggcaca gagctgcctg 960
ctccctcccg gggcttcttct tcacccatctc acggtatagc acattgttcc tgcgctgggt 1020
gcaatagggc aacaaagcca taggcccagag ggcggggggga tgtccctgccc tccctgcccac 1080
ccccactgcc tgagccccagg acccactgga gccagccca ccctaggcag gaagaccctt 1140
gctgagggcc cccccgtgca gtccgcatac cccctgtcc agcagggcac tgtgggtggc 1200
tcaccctaga tttgtggccca gatctcagga gtctctgcct tcagggtcat caaaaatgg 1260
accttgggag cagtgggggt gtctgtggag tgcatgactc agccccccga ctgcagcct 1320
taataaagcg atggttgacg tctaaaaaaaaaaa 1353

<210> 107
<211> 1025
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 2918375CB1

<400> 107
gggccacttc gggccccgc tgacccgcct tctcccccga ccggccggaca gggaccgg 60
cttttgtga tgctgcgtct cagctccgga gctgactaag gcttggaaac agaaaccaga 120
tgatgcacag tattattgtc aaagagctt ttgtcacatt ctcttggga attactgtgt 180
tgctgttgc gatgcaaaga agtctctaga actcaatcca aataattcca ctgctatgt 240
gagaaaaagga atatgtaat accatggaaa aaactatgt gctgccttag aaacttttac 300
agaaggacaa aaatttagata gtgcagatgc taatttcagt gtctggattt aaagggtgtca 360
agaagctcag aatggctcag aatctgaggt gtggactcat cagtcaaaaaa tcaagtatgt 420
ctggtatcaa acagaatctc aagttagtcat tacactttagt atcaagaatgt ttcagaagaa 480
tgatgtaaat gtggaaatttt cagaaaaaga gttgtctgtt ttgtttaaac ttcccttctgg 540
agaggattac aatttggaaac tggaaacttct tcacccatata ataccagaac agagcacgtt 600
taaagtactt tcaacaaaga ttgaaattaa actgaaaaag ccagaggctg tgagatggga 660
aaagcttagag gggcaaggag atgtgcctac gccaaaacaa ttctgttagcag atgtaaagaa 720
cctatatcca tcatcatctc cttatataag aaattggat aaattgggtt gtgagatcaa 780
agaagaagaa aagaatgaaa agtggaggg agatgcagct ttaaacagat tatttcagca 840
gatctattca gatggttctg atgaagtgtt acgtgcctatg aacaaatctt ttatggagtc 900
gggtggtaca gttttggat ccaactggtc tgatgttagt aaaaggaaag ttgaaatcaa 960
tcctccatgtt gatatggaaat ggaaaaagta ctaaataat taatttgc tcaaaaaaaaaa 1020
aaaaaa 1025

<210> 108
<211> 3641
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 3149729CB1

<400> 108

gactacgtcg agcccccagcg gctgatggct gtctggcggg cgctgtggat ggaggggggc 60
cggtccgcga cgactccccg gacggcggtt ctccctccgag cggcgccggt ttcggcttgg 120
ggggggcggg gtacagccca tccatgacca tgggcgacaaa gaagagccc accaggccaa 180
aaagacaagc gaaacctgccc gcagaccaag gtttttggga ttgtacgc tcgcaccccca 240
gaaacagtgc tgaagcctt aaatgcagca tctgcgtatg gaggaaaggc acctccacca 300
gaaaacctcg gatcaattct cagctgggtg cacaacaagt ggcacaacag tatgccaccc 360
caccaccccc taaaaaggag aagaaggaga aagttgaaaaa gcaggacaaa gagaaacctg 420
agaaaagacaa gggaaatttagt cctagtgta ccaagaaaaa taccacaag aaaaccaa 480
caaagtctga cattctgaaa gatcctctta gtgaagcaaa cagcatcag tctgcaatg 540
ctacaacaaa gaccagcgaa acaaatcaca cctcaaggcc cggctgaaa aacgtggaca 600
ggagcactgc acagcagtttgc gcatgttgggcaacgt caccgtcatt atcacagact 660
ttaaggaaaa gactcgctcc tcatcgacat cctcatccac agtgcaccc agtgcaggg 720
cagaacacgca gaaccagagc agctcggggt cagagagcac agacaaggc tcctcccg 780
cctccacgccc aaagggcgcac atgtcagcag tcaatgtatg atcttctga aattgcacat 840
ggaattgtga aaactatgaa tcagggatg aaattcaaaa cctccacctg cccatgctgc 900
ttgcatccct ggagaatctt ctgtggacat cgacctctta gtgatgtgc caggataatt 960
tctgcttgcc atgggcatct ggccaccaag gaatttcgca ccctgacgat tactcttgac 1020
acttttatgt attccattgt ttatatgtat ttccctaaca atcattata attggatgtg 1080
ctccctgaatc tacccccat aaaaaaaaaaaa aaaatctgct gtgcacaatt ttccatgtac 1140
attacaactg gtttttgggtt ttgtttgt tgccgggtggg gaggctggg agggggaggg 1200
aacttttatt tattgtgttc acaaactcca tccttcagc atatccttt aagtttagt 1260
ctticttcca gttatactat gtactatcag tttgtatata actatata tataaatata 1320
aaattatata taaagggtta ttgaaacca atccatggca acgctggtgc ttgatacact 1380
gtgaagtgaa tacaacatttgc aacagttaca gatctggac agtcccttct atgaaagtgc 1440
tgaaatttaa taaaatcag tcttacatga agatgttcc aatccatgtg ggaacttgac 1500
tctctcatct gtctaaagag tactggacga tataaaaata tatattttt aaacaatgtg 1560
atctcaaaatt taaagactgc tccagatagc ctgcatttgc aatggaataa ctgacaaatc 1620
acaagtgggtt tagtggca gggctttgat cattcaaaaag taactaaagt agctccagaa 1680
tgccaagttat tcgtgttaat tacggttaca ttttatcatt tgctgttctt acataagcac 1740
tcatgaaaat atggtattct gtaacttgaa ttccatccat ttccagacg tctactcatg 1800
tctgaggtta atctagaaaat tgtcttagtt ttaggattga aacagtctat aaactgtatt 1860
tttggtccat ccaggaagct agtcccttgtt ttccctttc tacatgacat tgcagtggtg 1920
gtttctgtta taaaattttg ttgcctcat gttccctttgt ctgataaaacc ttcactctac 1980
cgattcagtt gtgagcattc ttttttccct tctcaaaaacc tactatgatt tttttactg 2040
aacaaggatc atcaaccaca catccagttc tgacatggag ctttcagtg tttggagaca 2100
tttctcaatc ccctgctgtg gtaggaactc cagtgggtgaa cggctgcgc gcctgcagcc 2160
agagttcag ggaaagctcg tacttactgc gaggcagcatg taatctttt tttctctgaa 2220
cataaagata gcttgagtaa actgttctat ttcatcttc tcaactttt tactgtctg 2280
aaaaaaaaaa aaataataat aataataatc aaagaccact aataagattc cacctctct 2340
tattaaaata atttttaaa atttgtttt gctttgttt ggtatgggg tctctttct 2400
atttgactt tacatttaga tacagagttt gtagtacttc agagacattt caagcatgag 2460
aatttgaggt tacctctttt tattgacct ttagggactc acggggggc agcctgtatt 2520
gtaatgaagc accacatttt ggtgttaaaa acttgggttt cttataataa gcatgtatt 2580
ctgtctgtgg aggaacaaaaaaa taaaaaaattt aacagcttga attgagtagc caacagggaa 2640
ggttcccttc acatttacat taaaactatt ctgtgtacac taatgtacca taattttaaat 2700
tctttctca aagttataga ttataaagca gtgccatttgc ttgctgtgtt cctattctca 2760
aatgcatgga caatgttccc ccctttttaa aataatgctt gtgtctggg tgcaagctt 2820
gcttatctt ttaaatacat ttttaaagta ttatataatg aacccaaagga aatcatgtc 2880
tttctataag catcagaata tataatcat agtgtttga ctatgaattt taaatccaca 2940
tttaatatt ggtggatata tgcaagaca ttccctctaa agtttaata ttccctttat 3000
taagggtctc aggagggtta aaaaactttaa atgcccacca actcatgtag gttgcactgc 3120
tgctgtttt aacttttga ggtatgcact ttgttcagac acactgtgtt cttttcaaa 3180
ttattgaacc aataactgtt aactagtttgc atgaaagtgc attagattgtt gaaaaaqct qattaaccaq 3240

tctactcatag	gctgctaatt	cattcatgcc	aatgttttgg	ttttcagtt	ttgcctccgt	3300
gataaattaa	agaatgggga	ggggtaagg	aaggggaaga	agattgctt	agaacaagt	3360
gcatgaaatt	accatcttg	tagaaaccgc	agctaacagt	gggagttatc	taagcaatca	3420
gatgttacag	ggccagccct	ttagctgctg	tggtgtattc	tgttgggtag	tgaggttagt	3480
ggtaactttat	agacttttaa	ttttgaaaat	tgatgacatc	cctcaggcat	gtattctggg	3540
aatggaaattc	ctgttaacttc	ctgtgtctgc	agtatgccct	acaatttagta	ggcagcgtgt	3600
aaaaacacta	gttagatta	taaagtata	cattaaaaag	g		3641

<210> 109
<211> 699
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<223> Incyte clone 3705895CB1
```

```

<400> 109
ggcgcgca cacgctcaag gccgggatgg cggcggcggc ggcggcagga agcgggacgc 60
cccgagagga ggagggacct gctggggagg cagcggcctc gcagccccag gccccaacga 120
gtgtgcctgg ggctcgctc tcgagggtgc ctctggcgcq agtgaaggcc ttggtaagg 180
cagatcccga cgtgacgcta gcgggacagg aagccatctt cattctggca cgagccgcgg 240
aactgttgttggagaccatt gcaaaaagatg cctactgttg cgctcagcag gaaaaaaagga 300
aaacccttca gaggagagac ttggataatg caatagaagc tgtggatgaa tttgcttttc 360
tggaaaggtagtttagattga ttgcccggcg gggcagttt gtgagccttc atctgaagcc 420
ttcagttcac ccctctgcac aggccctcagc ttgttggaaac ggagtctttg cacttacaca 480
caactttcttcttgcctt cacctatgcc gggataagca gagatctcat caattagctc 540
ttctctgc当地 ggtttccac tatttctgtc tgtctccat atcaagcctg gatgcagctg 600
ctgctgc当地 gagcagagat gaagaaagtgg ttcgtcataa gtggcttc当地 gaatgtatgag 660
gaccagaata aaggtttttgc atcaacctca aaaaaaaaaaaaa 699

```

<210> 110
<211> 2186
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte clone 003256CB1

<400> 110
atccgtaaa ccctgtttgc gtattttgac tgtatgttct taaaagattt ctgcagagct 60
caagtgaagt tgagagccca gctgtccat cttcatcaag acagccccct gctcagccct 120
cacggacagg atccgagttc cccaggctgg agggagcccc ggccacaatg acgcccaga 180
tggggcgagg tgcgttgaa ggagatgttgc ttctttta tgatgagtc ccaccaccaa 240
gaccaaaact gagtgctta gcagaagcca aaaagttagc tgctatcacc aaattaagg 300
caaaaaggcca ggttcttaca aaaacaaacc caaacagcat taagaagaaa caaaaggacc 360
ctcaggacat cctggaggtg aaggaacgtg tagaaaaaaa caccatgttt tttctcaag 420
ctgaggatga attggagcct gccagggaaaa aaaggagaga acaacttgcc tatctggaa 480
ctgaggaatt tcagaaaaatc ctaaaaagcaa aatcaaaaca cacaggcatc ctgaaagagg 540
ccgaggctga gatgcaggag cgctactttg agccacttgtt gaaaaaaagaa caaatggaa 600
aaaagatgag aaacatcaga gaagtgaagt gcgtgtcggt gacatgcaag acgtgcgcct 660
ataccactt caagctgtcg gagacctgctg tcagtgagca gcatgaatac cactggcatg 720
atggtgtgaa gaggttttc aatgtccct gtggaaacag aagcatctcc ttggacagac 780
tccccgaacaa gcactgcagt aactgtggcc tctacaaatg ggaacgggac ggaatgctaa 840
aggaaaaagac tggtccaaag ataggaggag aactctgtt accaagagga gaagaacatg 900
ctaaatttctt gaacagcctt aaataaccccg aacttcagac atttccac agacttcctg 960
gcctcctgtg actctggaaa gcaaaggatt ggctgtgtat tgtccattga ttccctgattg 1020
acgcccgtcaa aaacaaatgc ttgttaagcc cataagctt gcctgcttac tttctgccat 1080
tgggttggtt tgataccaca tttaacatttgc acatttaagt ggaaaaccaa gttatcatg 1140
tctttctaa gctcagtggtg gatgattgca ttacttcatt cactgaagt tttgccccaa 1200
aatttggaaagg taaacagaga gctatgttgc tgatctttt ggttatagag tggtcacttc 1260

tttataataaa caaaaattctta gtgtttataac gaacacccag aggcaaaaga atttggctta 1320
 attcactc caggtaaga gcttaacttc tgggcttcag tttctcatc tgtaaaatca 1380
 ggaagattgg actaagtgt cctgaaaatgt attttttagc actggatttc tacaataat 1440
 aaaacttcc catctagata atgatgatca catagtctt atgtacggac attaaaagcc 1500
 agatttttc attcaattctt gttatctctg tttactctt tgaatttgat caagccactg 1560
 aatcactttg catttcagg tataatataga gagagaaaaga aggctgtctg ctcttacatt 1620
 attgtggagc cctgtgtatg aaatatgtaa aatctcatat tattttttt ttaattttt 1680
 ttatrttta tgacagggtc tcactatgtc accctggctg gagtgcagta gtgcgatcgc 1740
 ggcacactgc agccttggct tccctggct caagcagtc tcccacctca gtctcccaa 1800
 tagcttaggac tacaggcgtg cgtgaccaag cccagctaat tttgcattt tttgtagaga 1860
 tggggtttg ccatgttgc caggctggc tcaaactctt gaggactagc aatccaccac 1920
 ctcgn:ttca aaaaagaaaa aaaaaccccg ggggggggccc ccgaactcaa ttggcccaa 1980
 agggggggcg gaataaaaaat tcagggggcc ggggggtttt aaaaaggcgg aaaactgggg 2040
 aaacacctct ggggggtacc ccaagttaaa gggcgcctt cagcctngt gnccgatgt 2100
 agagggggat gacnnnngca gtatttctg gggagtaaga ggccgcgagt gcgtgcaggg 2160
 aggac:gtgc gagtgagggg agggtg 2186

<210> 111
<211> 2133
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 156986CB1

<400> 111
 gttcc:cgtc tgccagccgg cttggctagc gcgcggccgc cgtggctaag gctgctacga 60
 agcgagcttggaggagcag cggccgtcggt ggcagaggag catcccgctt accaggtccc 120
 aagcggcgtg gccccgggtt catggccaaa ggagaaggcg ccgagagccg ctccgcggcg 180
 gggctgtac ccaccagcat cctccaaagc actgaacgcc cggcccagggt gaagaaagaa 240
 ccgaaaaaga agaaacaaca gttgtctgtt tgcaacaacgc ttgtctatgc acttggggga 300
 gccccctacc aggtgacggg ctgtgcctt ggttcttcc ttcatgtcta cctattggat 360
 gtggctcagg tggcccttt ctctgcctcc atcatctgt ttgtggccg agcctggat 420
 gccatcacag accccccttgtt gggccctctgc atcagcaaattt cccctggac ctgcctgggt 480
 cgccttatgc cctggatcat cttctccacg cccctggccg tcattgccta cttccatc 540
 tggttcgtgc ccgacttccc acacggccag acctatttgtt acctgtctttt ctattgcctc 600
 tttgaaacaa tggtcacgtt tttccatgtt ccctactcgg ctctcaccat gttcatcagc 660
 accgagcaga ctgagcggga ttctgccacc gcctatcggta tgactgtggaa agtgcggc 720
 acagtgtgg gcacggcgat ccaggacaa atcgtggcc aaggagacac gccttggc 780
 caggacctca atagctctac agtagcttca caaagtgcac accatacaca tggcaccacc 840
 tcacacaggg aaacgcaaaaa ggcatacctg ctggcagccg ggtcattgt ctgtatctat 900
 ataatttgtt ctgtcatcctt gatctggc gtgcgggagc agagagaacc ctatgaagcc 960
 cagcagtctg agccaatcgc ctacttccgg ggcctacggc tggcatgag ccacggccca 1020
 tacatcaaacc ttattactgg cttcccttcc acctccttgg cttcatgtctt ggtggagggg 1080
 aacttgtct tggggcac cttacaccttgg ggcttccgc atgaattcca gaatctactc 1140
 ctggccatca tgctctcggc cactttaacc attccatctt ggcagtgggtt cttgaccgg 1200
 tttggcaaga agacagctgt atatgttgg atctcatcag cagtgcatt tctcatctt 1260
 gtggccctca tggagagtaa cctcatcatt acatatgcgg tagtgcgttgc agctggcatc 1320
 agtgtggcag ctgccttctt actaccctgg tccatgtcgc ctgtatgtcat tgacgacttc 1380
 catctgaagc agccccactt ccatggaaacc gagcccatct tttctcctt ctatgtcttc 1440
 ttccacaagg ttgcctctgg agtgcactg ggcatttcta ccctcagtc ggactttgca 1500
 gggtaccaga cccgtggctg ctcgcagccg gaacgtgtca agtttactt acatgcgg 1560
 gtgaccatgg ctccccatagt tctcatcttgg ctggccctgc tgctttcaa aatgtacccc 1620
 attgtatggg agaggcggcg gcagaataag aaggccctgc aggactgag ggacgaggcc 1680
 agcagctctg gtcgtcaga aacagactcc acagagctgg ctagcatctt ctagggcccg 1740
 ccacgttgcc cgaaggccacc atgcagaagg ccacagaagg gatcaggacc tgtctggccg 1800
 cttgctgagc agctggactg caggtgttagt gaaaggaaact gaagactcaa ggagggtggcc 1860
 caggacactt gctgtgtca ctgtggggcc ggctgtcttgc tggcctcttgc cttccctct 1920
 gcctgcctgt ggggccaagc cctggggctg ccactgtgaa tatgccttcaagg actgatcg 1980
 cctagcccg aacactaatg tagaaacctt ttttttaca gaggcttaattt aataactaa 2040
 tgactgtgtatc catagcaatg tgcgtgtatg tataatgtctt tgagcttataa atgttattaa 2100
 ttttcataaa agctggaaag caaaaaaaaaaaa aaa 2133

<210> 112
<211> 1649
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 319415CB1

<400> 112
cacgttttgcgtctg agcctaacct agagtgcgtc cagcagtctt tcagttgagc 60
ttggggactg cagctgtgg gagatttcag tgcattgcct cccctgggtg ctcttcatct 120
tggattattc cttggccctg aatgacttgat atgttcccc gcctgagcta acagtccatg 180
tgggtgattc agctctgtat ggtatgttt tccagagcac agaagacaaa tgtatattca 240
agatagactg gactctgtca ccaggagagc acgccaagga cgaatatgtg ctatactatt 300
actccaatct cagtgtgcct attgggcgc tccagaaccc cgtagacttg atggggaca 360
tcttatgcaa tcatggctt ctcctgtcc aagatgtgca agaggctgac caggaaacct 420
atatctgtga aatccgcctc aaaggggaga gccaggtgtt caagaaggcg gtggtaactgc 480
atgtgttcc agaggagccc aaagagctca tggtccatgt ggtggattt attcagatgg 540
gatgtgtttt ccagagcaca gaagtgaac acgtgaccaa ggtagaatgg atatttcag 600
gacggcgccgc aaaggaggag attgtatttc gttactacca caaactcagg atgtctgtgg 660
agtacccca gagctggggc cactccaga atcgtgtgaa cctgggtgggg gacatttcc 720
gcaatqacgg ttccatcatg cttcaaggag tgagggagtc agatggagga aactacacct 780
gcagratcca cctagggaac ctgggttca agaaaaccat tggctgtcat gtcagcccg 840
aagaggctcg aacactgggt accccggcag ccctgaggcc tctgggtctt ggtggtaatc 900
agttgggtat cattgtgggattgtctgtg ccacaatctt gctgtccctt gttctgtat 960
tgatcgtgaa gaagacctgt ggaataaaga gttcagtgaa ttctacagtc ttggtaaga 1020
acacgaagaa gactaatcca gagataaaag aaaaaccctg ccattttgaa agatgtgaag 1080
gggagaaaca catttactcc ccaataattt tacggggaggt gatcgaggaa gaagaaccaa 1140
gtgaaaaatc agaggccacc tacatgacca tgcacccagt ttggccttct ctgaggtcag 1200
atcggaaaca ctcacttggaa aaaaagtctg gtggggaaat gccaaaaaca cagcaagcct 1260
tttgagaaga atggagagtc ctttcatttc acgcgcgtg gagactctct cctgtgtgt 1320
tcctggcca ctctaccagt gattcagac tcccgcctc ccagctgtcc tcctgtctca 1380
ttgtttggtc aatacactga agatggagaa ttggaggtt ggcagagaga ctggacagct 1440
ctggaggaac aggccgtctg aggggggggg agcatggact tggctctgg agtgggacac 1500
tggccctggg aaccaggctg agctgagtgcc cctcaaaccc cccgttgat cagaccctcc 1560
tgtggcagg gttcttagtg gatgagttac tggaaagaat cagagataaa aaccaaccca 1620
aatcatttcctt ctggaaaaaa aaaaaaaaaa 1649

<210> 113
<211> 714
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 635581CB1

<400> 113
cttggggct aggtgcccaag gaggccactga gaacagaaga ctgttgctg ctctagagga 60
cctatgttag ggcagacaga ggatgataca gctcagcagc ttgtccctac gtgtggcatg 120
aaagggttg gagagagaat agtggatgtat gtgtccaaaca ttccagcact tcagagagct 180
accccaagg gactggctc tgttcacct gacttggagc acaggcagga gtggacatac 240
tctaaaagcc cactgatggg aaagggcacc aggttggagg cctctgaaaaa caagagagct 300
gggtggctt cagcagctcc agagaacctg aagtaccaca gacagatagc acagggagca 360
aaagattatg agatcctgaa aaagggaaacg aacaaggatca tcttgagaat ttatacacac 420
tggtcgagaa gaagcatctt cagggaaaggat tcaaaaaggca tgcagaatct ctgtcaggc 480
cgatcgtga ggtatcttct ctgtacagag ccagaccaca aagactggga ngggtat 540
tttttcaat gcttggatcc caacatgatg taaaagaca caccaagaaa taaggaacca 600
tggcacaatc aaagagtcaa aattatccag gaccctactt taaggaaccc cagttatct 660
ccattatctt cagaaggatt tccagcctaa ccaccatcaa acatgttacac gtgg 714

<210> 114
<211> 1165
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 921803CB1

<400> 114

```
cgtacgagat gcgaggagggg agtggagaga gggcaggtaa ttcggaggag ggaagaggca 60
ccccctgcc cggccagctc gtgactaatt taggaaaag gcagcctgga gctatttcca 120
ttcggcgcc ggaacaggtg ccggcgcctc cgccccatcc ccaggggccc cctccccgg 180
ggcggcctcc aggctgccg gacctataaa ggcccaaggt tttctcaatg aagccggac 240
gcactccgga ggcgactcg tggcgcacc ctacccggc tgccctggaa gtcgtccccg 300
ccgcccctcc gcaccggcat gaagctcatc gtgggcatcg gaggcatgac caacggcggc 360
aagaccacgc tgaccaacag cctgctcaga gccctgcca actgctgcgt gatccatcag 420
gatgacttct tcaagccca agaccaaata gcagtgggg aagacggctt caaacagtgg 480
gacgtgctgg agtctctgga catggaggcc atgctggaca ccgtgcaggg ctggctgagc 540
agcccgaga agtttgcgg tgcccacggg gtcagcgtcc agccagaggg ctcggacacc 600
cacatcctcc tcctggagg cttctgtct tacagctaca agccctggg ggacttgtac 660
agccgcccgt acttcctgac cgtcccgat gaagagtgc agtggaggag aagtacccgc 720
aactcacag tccctgatcc ccccgccctc ttcatggcc acgtgtggcc catgtaccag 780
aagtataggc aggagatgga ggccaacggt gtggaaagtgg tctacctggc cggcatgaag 840
tcccggagg agcttcccg tgaagtccctg gaagacattc agaactcgct gctgaaccgc 900
tcccaggaaat cagccccctc cccggctcgc ccagccagga cacagggacc cggacgcgg 960
tgccggccaca gaacggccag gcctgcagcg tcccagcagg acagcatgtg agcgttccc 1020
tatgggggtg tctgtacgta ggagagtgg ggcggccactc ccagttggc gtccggagc 1080
tcagggactg agcccaaga cgcctctgta acctcgctgc agcttcagta gtaaactggg 1140
tcctgtttt tataaaaaaa aaaaaa 1165
```

<210> 115
<211> 2143
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1250492CB1

<400> 115

```
tgcagcaagt gctgcgagga cttggaggag gcgcaggagg ggcaggatgt ccctgtcaag 60
gctcttgaga cttttgataa cataaccatt agcagagagg ctcagggtga ggtccctgcc 120
tcggactcaa agaccgaatg cacggccttg tagggacgc cccagattgt caggatggg 180
gggatggtcc tttagtttg catgctctcc tccctccac ttctgcaccc tttcaccacc 240
tcgaggagat ttgctccca ttagcgaatg aaattgtatgc agtcctaccc aactcgattc 300
cctttggctt ggtggtagg cctgcaggcc acttttattc caacccctgg tcactcagta 360
atctttact ccaggaaggc acaggatgtt acctaaagag aatttagagaa tgaacctggc 420
gggacggatg tctaattctg cacctagctg gttggtcag tagaacctat tttcagactc 480
aaaaaccatc ttcagaaaga aaaggccca ggaaggaatg tatgagaggg tctccagat 540
gaggaagtgt actctctatg actatcaagc tcaggccctc ccctttttt aaaccaaagt 600
ctggcaacca agagcagcag ctccatggcc tccttgcccc agatcagcct gggtcagggg 660
acatagtgtc attgtttgga aactgcagac cacaagggtgt ggtctatcc cacttcttag 720
tgctccccac attccccatc agggctctc cacgtggaca ggtgtgctag tccaggcagt 780
tcacttgcag tttcttgtc ctcatgttcc gggatggga gccacgcctg aactagagtt 840
caggctggat acatgtgtc acctgctgtc cttgtcttcc taagagacag agagtggggc 900
agatggagga gaagaaaatg aggaatgatg agcatagcat tctgccaaa gggccccaga 960
ttcttaattt agcaaactaa gaagcccaat tcaaaaagcat tggctaaa gtctaacgct 1020
cctcttgg tcaagataaca aaagccctcc ctgtggatc ttttggaaaata aaacgtgcaa 1080
gttatccagg ctcgttagctt gcatgtgtcc accttgaatc ccaggagta tctgcacctg 1140
gaataagctt ccacccctt ctgcctccctt actttctgtg caagatgact tccctgggta 1200
acttccttct ttcctatccac ccacccactg gaatctctt ccaaacattt ttccattttc 1260
ccacagatgg gctttgatca gctgtcctct ctccatgcct gcaaagctcc agattttgg 1320
```

ggaaaagctgt acccaactgg actgcccagt gaactggat cattgagttac agtcgagcac 1380
 acgtgtgtgc atgggtcaaa ggggtgtt cttctcatac ctagatgcct tctctgtgcc 1440
 ttccacagcc tcctgcctga ttacaccact gccccccc caccctcagc catcccaatt 1500
 ctccctggcc agtgcgcctc agccttatct aggaaaggag gagtgggtgt agccgtgcag 1560
 caagattggg gcctccccca tcccaagcttc tccaccatcc cagaaggatca ggatatcaga 1620
 cagtcctccc ctgaccctcc cccttgtaga tatcaatcc caaacagagc caaatactct 1680
 atatctatag tcacagccct gtacagcatt tttcataagt tatatagtaa atggcttgca 1740
 tgatttgtgc ttctagtgtc ctcatttggaa atgaggcgag gcttcttcta taaaatgtaa 1800
 agaaagaaac cactttgtat atttttaat accacctctg tggccatgcc tgccccccc 1860
 actctgtata tatgttaatgg aaacccgggc aggggtgtg gccgtcttg tactctggtg 1920
 atttttaaaa attgaatctt tgtacttgca ttgattgtat aataatttt agaccaggc 1980
 tcgctgtt gctcaggctg gtctcaaact cctgagatca agcaatccgc ccacccctcagc 2040
 ctcccaaagt gctgagatca caggcgtgag ccaccaccag gcctgattgt aattttttt 2100
 tttttttt tactggttat gggaaaggag aaataaaatc ata 2143

<210> 116
<211> 1010
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1427838CB1

<400> 116
 atcaactagta gctggtgctc caggctggcg gcgcacccacct ttctccttagc cgggtgaccc 60
 aggggattta ttttatgttg gctttctctg aaatgccaaa gccaccgcatt tattcagagc 120
 tgagtactc tttaacgctt gccgtggaa caggaagatt ttcgggacca ttgcacagag 180
 catggagaat gatgaacttc cgtcagcggta tggatggat tggatggga ttgtatctgt 240
 tagccagtgc agcagcatt tactatgttt tggaaatcag tgagacttac aacaggctgg 300
 ccttggaaaca cattcaacag caccctgagg agcccttgcg aggaaccaca tggacacact 360
 ccttggaaagc tcaattactc tccttgcctt tttgggtgtg gacaqttatt tttctggta 420
 cttacttaca gatgtttttt ttcctataact cttgtacaag agctgatccc aaaacagtgg 480
 gctactgtat catccctata tgcttggcag ttatttgcg tcgccaccag gcatttgtca 540
 aggcttctaa tcaaatcagc agactacaac tgattgacac gtaaaatcag tcaccgtttt 600
 ttccctacga ttacaaaact gccagtccta tatggagttt gatcacaaga ctgcagttc 660
 ttccacagatc tcaggaagtt gtcgtggggc agaggctttt taaaaacatg tgatttaggg 720
 gctatctta tctgaataat aacgaatttt taggtaaaac ctgagataga gtactacaaa 780
 atcatgttga tgacttcaga ttttggaaatg taaatcatgt ctgttatttg cattctttag 840
 aaacttgact aagtacctga attcatattt ctattctact gtgcacacata gtgtatgttc 900
 agaaatttt ctttggggaa aaaaatgaa tatgaacatt tccattgtgt taagtgtaaa 960
 aaggccaga catgtcata aaatttaat ttatacaat aaaaaaaaaa 1010

<210> 117
<211> 2059
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1448258CB1

<400> 117
 aggggctcag atgactcagt gccagttatt tcatttaaag atgctgttt tgatgtatgtc 60
 agtggactg atgaaggaag acctgatctt cttgttaaatt tacctgggtga attggagtca 120
 acaagagaag ctgcagcaat gggacctact aagtttacac aaactaatat agggataata 180
 gaaaataaaac tcttggaaagc ccctgtatgtt ttatgcctca ggcttagtac tgaacaatgc 240
 caagcacatg aggagaaaagg catagaggaa ctgagtgatc cctctggggcc caaatcttat 300
 agtataacag agaaacacta tgcacaggag gatcccagga ttttattttt agcagctgtt 360
 gatcatagta gttcaggaga tatgtcttgc ttaccctact cagatcctaa gtttcaagga 420
 cttggagtgg ttgagttcagc agtaactgca aacaacacag aagaaagctt attccgtatt 480
 tgttagtccac tctcaggtgc taatgaatat attgcaagca cagacacttt aaaaacagaa 540

gaagtattgc tggcacatcaga tcagactgat gattggcta aagaggaacc aacttctta 600
 ttccagagag actctgagac taagggtgaa agtggttag tgctagaagg agacaaggaa 660
 atacatcaga ttttgagga ccttgataaa aaattagcac tagcctccag gttttacatc 720
 ccagaggct gcattcaaag atggcagct gaaatgggg tagcccttga tgctttacat 780
 agagaggaa ttgtgtgccg cgattgaac ccaaacaaca tcttattgaa tgatagagga 840
 cacattcagc taacgtatt tagcaggtgg agtgaggtt aagattctg tgacagcgat 900
 gccatagaga gaatgtactg tgcccagag gttggagcaa tcactgaaga aactgaagcc 960
 tgtgatttgt ggagtttggg tgctgtcctc tttgaacttc tcactggcaa gactctgggt 1020
 gaatgccatc cagcaggaat aaatactcac actacttga acatgccaga atgtgtctct 1080
 gaagaggctc gtcactcat tcaacagctc ttgcagttca atctctgga acgacttgg 1140
 gctggagttg ctgggtttga agatatcaa tctcatccat ttttacccc tgtggattgg 1200
 gcagaactga tgagatgaac gtaatgcagg gttatcttca cacattctga tcttctctgt 1260
 gacagggatc tccagcactg aggacacctt gactcacagt tacttatgga gcaccaaagc 1320
 atttgataa agaccgttat agggaaatggg ggggaaatgg ctaaaagaga acaattcggt 1380
 tacaattaca agatattacg taatttgcc aggggctgtt atatacatat atacacaacc 1440
 aagggtgtat ctgaatttaa tccacattt gtttgccaga tgagttgaa agccaactga 1500
 aagagttcct tcaagaagtt cctctgatag gaagctagaa gtgtagaatg aagttttact 1560
 tgacagaagg acctttacat ggcagctaac agtgctttt gctgaccagg attggtttat 1620
 atgataaaat taatatttgc ttaataatac actaaaaatgata tataaacaat gtcataatg 1680
 aaactaaaaa gcgagaaaaaa agaatataca cataatttct gacggaaaac ctgtaccctg 1740
 atgctgtata atgtatgtt aatgtggcc cagattttt ctgttggaaag acactccatg 1800
 ttgtcagctt tgtactctt gttgatactg cttatatttga gaagggttca tataaacact 1860
 cactctgtgt cttcaacacg atctttctt ccccatctt ctatattctg caccctctgc 1920
 ttgtccctc atattctgtt cttccgactc ctgctaacac acatgcaaca aaaaaggaa 1980
 gggagtgctt atttccctt gtgttggac taagaaatca tgatatcaaaa taaacatgg 2040
 gaaacattaa aaaaaaaaaa 2059

<210> 118
 <211> 2273
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 1645941CB1

<400> 118

ctgagagagc tgggggagga gcgcggcgcc gacggcggcg gtggctctag aaggggaggt 60
 ggaggatctc ctttcctctt ctcagaccccg ggagcgtccg ggacqcgqac ccggagctgg 120
 ggcgacgagg cgattgcggg ggcctggct agctgctggc taccatatt ctacttctg 180
 actctatgaa tgtgactacc ctggttaccc catataatct ccctggaaaa ggagacatga 240
 atgtctgcaa tgatacttcc tgacaagaag ttgatacaag aaaaggaaag gagattaaca 300
 gctagtgagc agaatttgcg acagcaggat ttctgttattt ttgcttccaa ctgcacactt 360
 ccgttgcctt cttttaatc agagataacctt acactaaaaa cccagacaag gcaaaaggat 420
 acttttcttg tatattttt gagatcgaaag aaacgcataat gtccaggaaa cagaaccaga 480
 aggattcattt aggattcattt ttgttgc agtccaatc cgtactggcc cagggaggag 540
 cttttgagaa catgaaagag aagataaaatg cggtacgtgc aatagttctt aataagagca 600
 acaatgaaat tattttttttt ttgcagactt ttgatatactg tttttttttt acagtacaag 660
 cattcatgga aggtatgtcc agtgaagtttac tcaaagaatg gacatgttccaa ggcaagaaaa 720
 agaacaaaaaa gaagaaaaac aaaccgaaac ctgcccggc accaagtttac ggcataccct 780
 attccatgaa atcagtttcc attcaagagg aacagtctgc gccttctca gagaagggt 840
 gtatgaatgg ctaccatgtc aatgggttccaa tcaatgacac tgatctgtg gactcactca 900
 gtatgtttt ggagacactt tcaatagatg ccagagaattt ggaggatccc gagtctgtcc 960
 tgcttagatac gctggataga acaggatcca tgctgcggaa tgggttctt gattttgaga 1020
 ccaagtttctt gactatgcac tctattcaca attctcaaca acccaggaaat gctgccaat 1080
 ctctctcaag acctaccaca gaaactcgtt tttcaatattt ggggatggaa gatgttcccc 1140
 tcgcccaccatg taaaagctt agttccaaata ttgaaaaatc tgtaaaagac ctccagcgct 1200
 gcacagtgtc tcttgcacgg tatcgatgtt tagttaaaga agatgttggat gcttccattt 1260
 agaaaaatgaa acaaggctttt gctgaattgg agagctgtt aatggatcgaa gaagtggcg 1320
 tgcttgctga aatggacaaa gtgaaagctg aagcaatgaa aattttgtctc agccgacaaa 1380
 agaaggctga acttctaaag aagatgactc atgtggctgt tcaaataatgtca gagcagcaat 1440
 tggttgagct cagagctgtatc atcaagcact ttgtttagtga acgtttaatat gatgaggatc 1500
 tgggacgagt agcccggttc acctgtatc tagagaccctt aaagaagagc attgattcat 1560

ttggacaagt gtctcatcca aagaacagct attcgaccag atcccgatgt agctcagtt 1620
 catctgtgc cttgagtagc ccaagtgtat cctctgtgc ttccttcc acctgtgcct 1680
 ctcctcccag ctttacaagt gctaacaaga aaaacttgc accgggagag actcctgcag 1740
 ccatagaaa ctccagtggc cagccctacc agccacttcg ggaggtattt ccaggaaca 1800
 gacgaggagg acagggttat agggcacaag gccaaaagtc caatgacccc atgaaccaag 1860
 ggcggcatga cagtatgggt cggttacagaa acagctgtgtt gtttcatct gttccagg 1920
 atcagagtgc tccatctcg gcaccaggaa acaccattga aagaggccag actcactctg 1980
 cagggaccaa tggaaactgga gtcagcatgg agcccagccc tcccacgcct tcattcaaaa 2040
 aggggctccc ccagcgaaaa cccaggaccc ttcagactga agccgtgaac tttttagaga 2100
 aaatccagtt ggcctctc ctctatccac acaattcaac ttgataactg gacttttagga 2160
 aacttacagt tagatgtaat aacaaaaaga agtttatgcg tatcactttt tgtgccattc 2220
 taagtatttt tggttcttgc ttccttttac catttttgga ggg 2273

<210> 119
<211> 1772
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1646005CB1

<400> 119
 ccctgctgtc atcaaataa aagctttctg aagggtggagg catctgatac ccagagtgt 60
 gctatcagcc ggcacgggtt gcccgtggg gcaggagcgt cgagaaggcc agctcgcttc 120
 ctatccggta ttcagaatca gctatggaaa cttgagagac cttagagaaaa taacttctt 180
 cactttaaac tgattcttgc cttcataaga aaagtattat ccagccacaa aaatggtcaa 240
 aattcagatc tacaaaagcc tgcgtggcag aaactgaccc cacttaggccc acgccaatgaa 300
 gcaagtcatc aaagcagcca agacagggtcc tggggggcc accatgcac agggccccc 360
 ctcgggtcct aaccccgctt atgtttccg ccaccataaa gaggcccattt tggtaagac 420
 ctgtcccccc tgcgtgtggg tattaggcgtt gatgggtctt gagggtctg agggctctg 480
 gagcagctgg cagctcaagg acatccggag ttggaggatg gagcaatgca ggccttgtg 540
 gtaaaagacag tccctgcagcc ggcgcaggcag ggatgtgcgtt agtggagtgc caggccgg 600
 cggagccctg tggactgtt gagggttcg agggaaagcc ggtttttggg gtctctgaga 660
 gtttggagaa gggaaagaag attaaagctt gtttcaaaaat ttctaatca ggtggcagg 720
 gccaagggtt gctgtgggtt gagaccatg actcagggtt gccactgtt actctattga 780
 tttttggcg ttttttcca aattgattat tcttgctgaa tgagacctt gtccttgact 840
 gtccccctaa agccaccttgc cttgtttca gttccactgg cctgtcggg tttttctac 900
 tcaacctccac tcttgcttgtt ctggccctccc tgcctgggc ccagccagca gtcagctcaa 960
 gggccagatg aattgggtgg ctgtgtctg cccactggc atcgtgtgg tgggtgggtg 1020
 ccagccccctt caggtgtca gccaggccctc aagccctgtt gtgtacccatca gagcagctcc 1080
 gtaccctgtat gtcacagccaa agaaacttag acatgacaca aactgtggct tcccaaggca 1140
 gcaaagaatg gccagggtt atgagggtcc tggccactt tggacagac ctactctaaa 1200
 gtcacgctac ctgcgtgcattt atcataaaaat caacactttt gaggagatca cagctatgcc 1260
 ttcgtAACAC agcccaatgc gaccagatag acgggtgcctc gtgacccgaa aacaagcccc 1320
 cggccccccca ccatgtgtgtt gaggcttacc tggactgcgtt cgtgaggggaa gggatggaa 1380
 gggacagccaa ggaggccgaa gcgtcgtag aggtactcat tggaggagct tcccttcagg 1440
 agggcggaaag gaatgaggta gagtcccccc tccagaacca ggttggacttgc cgggtggccgg 1500
 cccacggggc cgtggagggtt cataggccc tatggagccaa gacgggagag gctgacatgg 1560
 gtggcccccaggc aggcaagggtt ttcaggcacc aggacaaccc ctgagcccttca cctggatggac 1620
 accagcacga acaggtaag cctgttgggg gtttggggcg ccaatggggaa atggggccaa 1680
 gtggccaaacc ctgcaggaac cgggaacaaa ctggcatgc tccgctcggtt gaacttggca 1740
 aagggtggc ctttggaaaccc attcaatctt gc 1772

<210> 120
<211> 2260
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1686561CB1

<400> 120

gagaagggtgg agggagacga gaagccgccc agagccgact accctccggg cccagtctgt 60
 ctgtccgtgg tggatctaag aaactagaat gaaccgaagc attcctgtgg aggttcatgt 120
 atcagaacca tacccaagtc agttgtgaa accaatccca gaatattccc cggaagagga 180
 atcagaacca cctgtccaa atataaggaa catggcaccc aacagttgt ctgcacccac 240
 aatgcttcac aattcctccg gagactttc tcaagctcac tcaaccctga aacttgcaaa 300
 tcaccagcg cctgtatccc ggcaggtcac ctgcctgcgc actcaagttc tggaggacag 360
 tgaagacagt ttctgcagga gacacccagg cctggccaaa gcttccctt ctgggtgctc 420
 tgcagtca c gaggctgcgt ctgagttgt gtgtggagcc ctccctgcag agcatcagtt 480
 ttcatttatg gaaaaacgtt atcaatggct ggtatctcag ctttcagcgg ctttcctga 540
 cactgccat gactcagaca aatcagacca aagtttacct aatgcctcag cagactcctt 600
 gggcgtagc caggagatgg tgcaacggcc ccagcctcac aggaaccgag caggccctgga 660
 tctgccaacc atagacacgg gatatgattt ccagccccag gatgtcctgg gcatcaggca 720
 gctggaaagg cccctgcccc tcacccctgt gtgttacccc cagacccctt ccagacccct 780
 cagggtccagg gagttccctc agttgaacc tcagaggat ccagcatgtg cacagatgt 840
 gcctcccaat ctttccccac atgctccatg gaactatcat taccattgtc ctggaagtcc 900
 cgatecaccag gtgccccatgt gccatgactt ccctcgagca gcctaccage aagtgtatcca 960
 gccggctcg cctggcagc ccctgcctgg agccagtgtg agaggccctgc accctgtc 1020
 gaagggttatac ctgaattatc ccagccccctg ggaccaagaa gagaggcccg cacagagaga 1080
 ctgctccctt cccggggcttc caagcacca ggaccagcca catcaccagc cacctaata 1140
 agctgtgtgt cctggggagt ccttggagtg ccctgcagag ctgagaccac aggttccca 1200
 gcctccgtcc ccagctgtcg tgccttagacc cccttagcaac cctccagcca gaggaactct 1260
 aaaaacaagc aatttgcacag aagaattgcg gaaagtctt atcaactatt ccatggacac 1320
 agctatggag gtggtaaaat tcgtgaactt tttgttgtt aatggcttcc aaactgcaat 1380
 tgacatattt gaggatagaa tccgaggcat tgatatcatt aaatggatgg agcgctac 1440
 tagggataag accgtgtatga taatcgttagc aatcagcccc aaatacaaaac aggacgtg 1500
 aggcgctgag tcgcagctgg acgaggatga gcatggctt catactaagt acattcatcg 1560
 aatgatgcag attgagttca taaaacaagg aagcatgaat ttcaagattca tccctgtgt 1620
 cttcccaat gctaagaagg agcatgtgcc cacctggctt cagaacactc atgtctac 1680
 ctggcccaag aaaaaaaaaa acatcctgtt gcggctgtg agagaggaag agtatgtgg 1740
 tcctccacgg gggcctctgc ccacccttca ggtggttccc ttgtgacacc gttcateccc 1800
 agatcaactga ggccaggcga tggttgggc ctgttctga cagcattctg gctgaggctg 1860
 gtcggtagca ctccctggctg gttttttct gttccccc gagaggccct ctggccccc 1920
 gggaaacctgt tgcagagc tcttccccgg agacccctcac acaccctggc tttgaagtgg 1980
 agtctgtgac tgctctgtcat tctctgttt taaaaaaaaacc attgcaggatg ccagtgtccc 2040
 atatgttctt cctgacagtt tgatgtgtcc attctggcc tctcagtgct tagcaagtag 2100
 ataatgtaaag ggatgtggca gcaaattggaa atgactacaa acactctctt atcaatcact 2160
 tcaggctact tttatgatgtt agccagatgc ttgtgtatcc tcagacccaaa ctgattcatg 2220
 tacaataat aaaatgttta ctctttgtt aaaaaaaaaa 2260

<210> 121

<211> 1602

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1821233CB1

<400> 121

gccccaaagacc gtgcgcgaca cgctgtggc gtcgaccagg cacggccact cggggccctt 60
 cgagagcaag ttttggggagg agccggccctt gactgcaggc aggttgggtt gtttcgaggc 120
 caacggggcc aacgggtcta aagcagttgc aagaacagca agggaaaagga agccctctcc 180
 agaaccagaa ggtgaagtgc ggccccctaa gatcaacggc gagggccagc cgtggctgtc 240
 cacatccaca gaggggctca agatccccat gactccttaca tcctctttt tgcctccg 300
 accaccactt gcctcacccatttccaaaccg gaccacaccg cctgaagcgg cccagaatgg 360
 ccagtcccccc atggcagccc tgatcttagt agcagacaat gcagggggca gtcatgcctc 420
 aaaagatgcc aaccagggttc actccactac caggaggaat agcaacagtc cggccctctcc 480
 gtcctctatg aacccaaagaa ggctgggtcc cagagaggatgg gggggccagg gggcaggc 540
 cacaggagga ctggagccag tgcaccctgc cagcctcccg gactcctctc tggcaaccag 600
 tggccctgtc tgctgcaccc tctgcccacga gggctggag gacaccatt ttgtgcagt 660
 cccgtccgtc ctttcgcaca agttctgtt ccctgtctcc agacaaagca tcaaacagca 720
 gggagctgtt ggagagggtctt attgtccca gggggaaaaa tgccctctt gggctccaa 780

tgtccctgg gccttatgc aaggaaat tgcaaccatc cttgctggag atgtaaaagt 840
 gaaaaaagag agagactcg gactttccg gtttcagaaa aacccaatga ttacccttaa 900
 ttaaaactgc ttgaatttga tatataatctc catatatata tatatccaag acaaggaaa 960
 tgttagacttc ataaacatgg ctgtataatt ttgattttt ttgaatacat tgtgtttcta 1020
 tattttttt gacgacaaa ggtatgtact tataaagaca ttttttctt ttgttaacgt 1080
 tattagcata tctttgtgct ttattatcct ggtgacagtt accgttctat gtaggctgtg 1140
 acttgcgctg ctttttaga gcacttggca aatcagaaaat gcttctagct gtatttgtat 1200
 gcacttattt taaaaagaaa aaaaaagcca aatacattt ctgacattgt aagattgcct 1260
 tactgtctgt cattccttat tgctggcccc tttctcaggc cgagcgaat gtggggaga 1320
 aggaaaaggaa atgatcgAAC gggcatgttg tcaagtgggc atgccactgg gaaataccac 1380
 cagtttaccc taaaaacattt tcctcagagg agtaggaaag tggatttga atctctattt 1440
 tgctcaaaag ttcagttcct gagatactga tgactgagag tgctgctggg aaatttcag 1500
 gattgtgtgg tcttttgggg ttttttgggg aagacaaaagt tgaccgctgt 1560
 tcactgtcca cgtgatcagt tgtaagatta caatgctgca tc 1602

<210> 122
<211> 1655
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1877278CB1

<400> 122
 gcgggcgcac tccggtgcaa gcgaggacac gacacatgca gtggcttctg gactgcgcga 60
 tgactggacg caagtaactt ctagtctgc agacaaggagg aagagaagat gaaggaagac 120
 tgtctgcga gttctcacgt gccatcagt gacagcaagt ccattcagaa gtcggagctc 180
 ttaggcctgc taaaaaccta caactgctac catgaggggca agagcttcca gctgagacac 240
 cgtgaggaag aaggactt gatcatcgag gggctcctca acattgcctg ggggctgaa 300
 cggccatcc ggctgcagat gcaggatgac cgggagcagg tgcacccccc ctccaccc 360
 tggatccca gacggcctag ctgcctcta aaggagccat cggcccccagaa cgggaacatc 420
 acagcccagg gccaaagcat tcagccagtg cacaaggctg agagttccac agacagctcg 480
 gggccctgg aggaggcaga ggaggcccc cagctgatgc ggaccaagag cgacgcctgt 540
 tgcatgagcc agaggaggcc caagtgcgc gccccccgtg aggcccagcg catccggcga 600
 caccgttct ctatcaacgg ccacttctac aatcataaga cttccgtgtt tactccagcc 660
 tatggatccg tgaccaatgt gagggtcaac agcaccatga caaccctgca ggtgctcacc 720
 ctgctctga acaaatttag ggtgaaagat ggccccagtg agttcgact ctacatcggt 780
 cacgagtctg gggagcggac aaaattaaaa gactgcgagt acccgctgat ttccagaatc 840
 ctgcatggc catgtgagaa gatgcgcagg atttccctga tggaaagctga cttggcgtg 900
 gaagtccccc atgaagtgc tcagtagatt aagtttggaa tgccggctgtt ggacagtttt 960
 gttaaaaat taaaagaaga ggaagaaaga gaaataatca aactgaccat gaagttccaa 1020
 gcccgcgtc tgacgatgt gcagcgcctg gagcagctgg tggaggccaa gtaactggcc 1080
 aacacctgccc tcttccaaag tcccagcag tggcaggtgt aactgagcc ctgggtctg 1140
 gccccggccg gtcacattga ctgatggcca cccgcctgacg aatcgagtgc ctgtgtgtct 1200
 acctctctga agcctgagca ccatgattcc cacagccagc tctggctcc aagatgagca 1260
 cccacaggaa gcccgcacccag gcctgagggg ccaggaacctt gctgggtcag atctgtgtgg 1320
 ccagccctgt ccacaccatg ccttcctgc actggagagc agtgcggcc cagccctgc 1380
 ggcttaggt tcatctgctt gcacattggc tggccctgttggg tccacaagcc 1440
 cctgtccctt tccttcatat gagatttttgc tctggctca tatacagctg ccccacagga 1500
 atgctgtgg gaaaagcagg gcctgcccgc aggtatgaga tctagcctgc tttcagccat 1560
 cacctgcca cagtgtcccc ggcttctaaat caccctgtga gcctgcacca 1620
 gctcagcccc aacacagagg tgagaccagg aataa 1655

<210> 123
<211> 2225
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 1880692CB1

<400> 123
cttttagaan cttggggncn tttgaccang ccccaanatc caangttca ggcccnnna 60
taanctacnc gatncangnc ggtcangaa acncccnaaa aattggatcn nnttgatcac 120
atgccaagct gatggagtgg ctaaaagaga cagattatgg aaaatatgaa ggactaacaa 180
agaattacat ggattattta tccccactat atgaaagaga aatcaaagat ttcttgaag 240
ttgcaaagat caagatgact ggcacaacta aagaaagcaa gaagtttgtt cttcatggaa 300
gttcgggaa attaactgga tctacttcta gtctaaataa gctcagtgtt cagagttcag 360
ggaatcgca gatctcgtca tcttcctgt tggatatggg aaacatgtct gcctctgatc 420
tcgatgttgc tgacaggacc aaatttgata agatcttga acaggtacta agtgaactgg 480
agcccctatg tctggcagaa caggacttca taagtaaatt tttcaaaacta cagcaacatc 540
aaagtatgcc tggaaactatg gctgaagcag aggacctgga tggaggaaca ttatcacggc 600
aacataattg tggcacacca ctgcctgtt catctgagaa agatatgatc cgccaaatga 660
tgattaaaaat atttcgctgc attgagccag agctgaacaa cctaattgca ttaggagaca 720
aaattgatag cttaactct ctttatgt tagtcaaaaat gagtcatcat gtgtggactg 780
cacaatgtt ggaccctgtc tctttctaa gtactacatt gggaaatgtt ttggtgactg 840
tcaaaaaggaa ctttgacaaa tgcatttaga accaaataaag gcaaatggaa gaagtaaaga 900
tctaaaaaaa gagtaaagtt ggaattctc catttggc tgaatttgaa gaatttgctg 960
gacttgcaga atcaatctt caaaatgtc agcgtcggtt agacctggat aaagcataca 1020
ccaaacttat cagaggagta tttgttaatg tggagaaaatg agcaaatgaa agccagaaga 1080
cccccaggaa tgggttatg atggaaaact ttcaccat ttttgcactt ctttctcgat 1140
tgaatctc atgtctagaa gcagaaaaaa aagaagccgc tataaaccac aaattcttct 1200
gatgttaata ttattagcct cccactaaag tctacttacc aaaaccatgt gggctattag 1260
atggccccca agagctccaa atgtataata tacaagagcc ttgcctgac ttgaattaac 1320
accaagtcca gaggcataca gaaagccaag agcagtctgt cccttggag agccttcctc 1380
agttagcttc tcaaacatct ctctcgctgc ctggatattc tgtggcaagt aatcaccaaa 1440
taaaagagca tatgacactc tctccagggc tttgttatgg ttcatgcttgc tggcttttg 1500
gagataccga tatgtttctc tttttggct tttcttattt ctccattaa ggattttcat 1560
tccagttga tacatcattt ctgcttcgt catctggcgt ctcttagcag ccttcttc 1620
agtttccaaa aagccccact tttcatctgc tttgttagtca taggttgttag cacaccacag 1680
tctgcccattt tccctcccat ctgatgtaca ttcatcatac tccttatcta gaaaaagaaa 1740
agggaaagtgg cagggtccc catgtgtgt gccttcaatg ggggtcaaaatg ctgggttccg 1800
tactttctt ggcttcat agtccttgc ttctggatt ggagactcta gaaagctgat 1860
atcttctgtc acactttccc cctcttggct cttgaggctg tcttcctctt cttgaataga 1920
ggattctaat tcagattctt ctgaatcaag aaatatttga ccagcaacta ctctgcctgc 1980
agtagtatgg tccttactg actcatctga tgtcaaagata gtcttggat ctaaggattc 2040
atccctggctg cttcttcat ccgaggacgc cgaggccaag ctcagcagca ccgcacacag 2100
cagcagcgtc agccctatcc ggacccgcat cttctctcg gggccgggtgc caacccctag 2160
agctgtcgcc ttgcctctg ccaccacgga ctcagccacc accggccct cgccgctgct 2220
cttcc 2225

```
<210> 124  
<211> 1516  
<212> DNA  
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte clone 2280456CB1

<400> 124
cggatttaaaa cctcagcggt cgccggtaaa ccgcaggctc ggcgcgtggg ccggcagtgc 60
gcctgcgcaa gtacgcgaa agctaacaga atctgcggtg ctctgcgtgc gactggcatg 120
acgcggtgca gagagcggac ttccgcgacg cgggtgtttt ttttacttg aatgtaaata 180
ccaatcaaga tacattgaaa taagaaggtc ctacagtgtt ggggaagcaa tggagaagaact 240
tctacctgat ggacaaatat gggctaataat ggatccagaa gaacgaatgt tggcagctgc 300
tacagcttt acccacatct gtgcagggca gggtaaggg gatgtcagga gagaagccca 360
atctatccaa tatgatccct acagtaaaggc ttcaagttagcc ccagggaaagc gacctgcct 420
tcctgtgcaa ctacagtacc cacatgtaga aagtaatgtc ctttcagaaaa cagtctctga 480
ggccccc当地 agactccgaa agccagtgtat gaagagaaaag gtgctgcgca gaaaggccaga 540
tggggaaatg ttagtaacag atgagtcgtat tatcagtggaa tcagaatctg gtacagaaaa 600
tgcgtcggat ctctgggact taagacaag gctgtatgaat gtacagttcc aggaagacaa 660
ggaatctca tttgtatgttt caaaaaaaaatt taacctacca catgaataacc aaggaatttc 720
tcaagatcatc ctcatgtct ctcataaaag agaagggatg ggctctccaaq cttacqaaaca 780

agacctgatt gttgccagca gacccaagtc ctttattctc ccaaagctgg accagttaaq 840
 ccgaaaccgg ggcaagacag accgggtage ccggtatTTT gagtacaac gggactggga 900
 ctcaatacgt ttacctggtg aagatcatag aaaggaatta cgctggggtg tccgagagca 960
 gatgTTTGT cgagcagaac cccaatccaa acctcagcat atatatgtcc caaacaatta 1020
 tctagtacca acagagaaga aaaggctgc actccgttgg ggtgtcgTT gtgacctgc 1080
 aaatgggtgc atacccagga agctccctt ccctcttct ccttcttaaa tcTTTaaa 1140
 cttcttac aggattgtt gagataacct agctcttat atcttccctt ttaaatagaa 1200
 acaactgtct tgagaagctc ttGaaacat tttatggtaa ggacttcacc tatcattgg 1260
 ctttccttagc tatatatcac attggatca gatgatactt ccaaattgccc actcaaATCC 1320
 agcaattgca agataaatca tatcagagaa agaacaacag acctggctt tctatTTGT 1380
 caaattagta cggccctt gagtcctgta actttttta cctatcaata tgagtgcTG 1440
 tgcttcagtg tgtgttttt aagttgctgg gcattacact taccaattaa agaattttgg 1500
 aaattcaaaa aaaaaaa 1516

<210> 125
 <211> 1635
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2284580CB1

<400> 125
 cgggggagct gggagcccga cgTTTCCGGG agcGCCGCGT ggTTAGCGTC ggcggctttt 60
 ggcatggcga ctTTTCTGG cccggctggg ccaatCCTGT cgCTTAATCC gcaggaagat 120
 gtcgagTTTc aaaaggaggt ggCGCAGGTT cgcaAGCGCA taACCCAGCG aaaaaaaacaa 180
 gaacaactta ctccTGGAGT agtCTATGTG cgCCACCTAC ctaACCTACT tgacgaaacc 240
 cagatTTTT catATTTC ccaGTTGGC actGTGACAC ggtTCAGGCT gtCCAGAAGT 300
 aaaaggactg gaaatAGCAA aggCTATGC tttgtggagt ttGAGTCTGA ggatGTTGCC 360
 aaaatAGTTG ctgaaACAAT gaacaACTAC ctgtttggtg aaAGACTCTT ggAGTGTcat 420
 ttTATGCCAC ctgaaaaAGT acataAAAGAA ctctttaaAG actGGAATAT tccatttaAG 480
 cagccatcat atccatCAGT gaaACGGTAT aatCGGAATC ggacACTAAC acaAAAGCTA 540
 cggatggagg agcGATTAA aaAGAAAGAA agATTACTCA ggaAGAAATT agCTAAAAAA 600
 ggaattgact atgATTTCC ttCTTTGATT ttacAGAAA CGGAAAGTAT ttcaAAAAct 660
 aatCGTCAGA cgtCTACAAA aggCCAGGTT ttacGTAAGA agaAGAAAAG agTTTCAGGT 720
 actCTTGACA ctccTGGAGA gactGTGGAT agCCAGGGCC ccACACCAGT ttGTACACCA 780
 acATTTTGG agaggcGAAA atCTCAAGTG gctGAACTGA atGATGATGA taaAGATGAT 840
 gaaatAGTT tcaaACAGCC catATCCTGT gtAAAAGAAG aaATAcAAAGA gactCAAACa 900
 CCTACACATT cacGGAAAAGA aAGACGAAGA agcAGCAATC agtGATTTc aATGtATTAT 960
 atttCTTTG aaaaATATAA tattttatG agAGTGGACT ttGTATTTCA ctAGGTACAA 1020
 tggAAatCAA ccttGACAA gatTTCTAGA ggAAAATAC actGTTGGT caAGTTAAGG 1080
 aaAGCAGTGT gtaATTTGG attGCTGcc ctTGGCTGAA atACAGGGGT gcATACCATE 1140
 ttGCAgTGGC ttggCTGACA ttGCTCTTT gtcCTGGCCT ctAGTTTCT ttGATATTt 1200
 catAGCTCTC ctTAGTTAC tctGCTTGA tagAAAGTTG accACTAACT gcAGGTTAA 1260
 gtactAAact gcAGCCTTT ctGTCGCCAG caATAAAGA ccACCAATC tGTTTGTCCA 1320
 tctacatGGT ttGTCGGGGa cattAAACTC atGGAGGTGC ttTAGATTc AACATCAGAT 1380
 ggTTGAAGCT ggaAGTTAA ttATATGTAG agtGAGAAGG cAGTCCAGT ttTAGCACAG 1440
 atttGTTTAT gtGTTCAgAT ttAAATAGAG attCAAAAT gACTCATTT taccaATAAT 1500
 gttaAATTAG ttTGGTTGT gCTAGCATGA attAAATAACc accATTTAT accAGTATCA 1560
 tcAGTGAAGA attGTATTc aAGATTCAAa CAATAACCAG caATAAACT ttTTCTACA 1620
 atgtaaaaaaaaaaaaaa 1635

<210> 126
 <211> 2673
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 2779172CB1

<400> 126

cagggggctt tcctcagaga atatctttat gtttacaaga atgtaagtca gctgtcacca 60
 gatggtcctt tgccacagct tccttaccg tatattaaca gttcagcaac acgggttttt 120
 ttttggccat gacagacgac cagcggatgg tgaaaaacaa gcagctactc atgtaagtct 180
 ttagtcaagaa tatgattctg aatccctcta gcagtggcga gaacttgagg aacaagttgt 240
 ttctgtggtt aacaaaggag taattccatc caattttcat cccacacaa actgtttgaa 300
 cagttactca gataattcaa gattccact tgcagttgtg gaagaaccaa ttacagtgg 360
 agtggcttt agaaaacctt tgaaagttct acttttgtg actgatttg cattgcttt 420
 gaagttcat cctaaagatt tcagtgaaaa ggataatgaa gaagttaaac aactagttac 480
 aagtgaacct gaaatgattg gagctgaagt tatttcagag ttcttaatta atggcgaaga 540
 atcaaaagtg gcaagactaa agctcttcc ccatcacata ggggagctgc atattctggg 600
 agttgttat aatcttggca ctattcaggg ctctatgaca gttagatggca ttgggtgtct 660
 tcccggatgt cacacaggaa aatattcctt gtagatgtca gtccgaggga agcaggattt 720
 agaaattcaa ggtcctcgac ttaacaacac aaaagaagag aaaacatctg ttaaatatgg 780
 ccctgatcga cgtagatc ccataatcac agaagaaatg ccactgttg aggtgttctt 840
 tatacattt cctacagggc ttctctgtgg agaaatccga aaagcatatg tagaatttg 900
 caatgtcagc aaatgtccac ttactgtttt gaaggttgg tctaaacgtc cagagttctt 960
 tacttcgggt ggttaatactg ctgttctaac accactaagt ccctcagctt ctgagaattt 1020
 tagtgcttac aagactgtt tgacagatgc tacctctgtg tgtacagcac tcataatcatc 1080
 agcttcttct gtagacttt gcattggcac aggaagtcaa ccagaggtga ttcctgttcc 1140
 ccttcctgac actgttcttc taccggcggc ctcagtgcag ctgccaatgt gttacgtgg 1200
 gcctgatgaa gaagggttcc atgaaattaa cttttgttt tactatgaaa gtgtcaaaaa 1260
 gcagccaaaa atacggcaca gaatattaag acacactgca attatttgcgatccatc 1320
 tttaaatgtt cggggccactg tctgcagaag taattctctt gaaaatgaag aaggcagagg 1380
 aggcaataatg cttagtcttg tggatgttggaa aataccaaat actagtgaag caggcgat 1440
 ggaattccac atagtgcag tatcaagtag tagcaaacac tggaagttac agaaatctgt 1500
 aaatcttctt gaaaacaatg ataccaaact tgccagtagg gagaaggaa agtttgctt 1560
 taaggcaataa agatgtgaga aagaagaagc ggccacacag tcctctgaaa aatatacctt 1620
 tgcagatatc atcttggaa atgaacagat aataagttca gcaagccat gtgcagactt 1680
 ctttatcga agtttatctt ctgaatttggaa aaaaccacaa gctcacttgc ctgtgcatac 1740
 agaaaaacacg tcaacagagg atgctgttag attgattcaa aaatgcagtg aggttagattt 1800
 gaatattgtc atattatggaa aggatacgt tggaaagac agtaaacacg ttattttgg 1860
 aggtcaacat catgttattc ttgcactat agggaaatgg aactattgaa aataccaaat actgttgc 1920
 acaggagcca ccagaaatgg aactattgaa attttcagg ccagaaaaaca ttacagttc 1980
 ctcaaggcca tcaatgttgc agctttcttag ttcattttttt acgagtttc actaccaga 2040
 atcatattat catccatttc atcaaaaaatg cttttgttta gtaccagtca ctctttact 2100
 ttccaattgt tctaaggctg atgttagatgt catagttgat ctgcggcata aaacaacaag 2160
 tccagaagca ctggaaatcc atggatcatt cacatggctt ggacaaacac agtataaaact 2220
 tcaacttaaa agccaggaga ttcacagtct gcagctgaaa gcatgctttg ttcatacagg 2280
 tgtttataac cttggaaatc cttaggtatt tgccaagtt tcggaccaag ttacagtgtt 2340
 tgaaacaagt cagcagaatt ccatgcctgc cctgatcatc atcagtaatg tggacaact 2400
 tggaaatttg tactgaaatc cacaataatc agttttgtt ggatgggtt tacagcagta 2460
 tttgatatac ctaacttgg atggaggtt attgatatct gatccctgca aaatacttg 2520
 acttgcatt ttgttggatg tgcaagcac gttggactga gaataactaa cattcttct 2580
 ctgtatctt taaaaccctgg gataaattac atgcgcacaa tacagggtat ccgcataattt 2640
 gtgcaccttta ttaagccccca tcttaagaga aca 2673

<210> 127

<211> 2206

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 3279329CB1

<400> 127

gtctggcctt tgcacttagta gatcattgtc gacataggta agtttagaga cttttctgtg 60
 ttaatgcctc ctggtagtgc ttaagatac gtacagtgtc ttttttttgc tctatgcata 120
 tgtcatgaag ctccttggg gctctgcata aagctgtgc ttttttttgc gtttaacaga 180
 tgtgcctgtc aactagcatg ttttttttgc aaattccata aacttaaggt ttttaaggc 240
 tgtgtggttt ctgagctcta ttttttttgc ctatcctgt accttcaaaat ggtgagaaat 300
 gagatttata catccaaatgt tagtctgata aatatggctt ttttttttgc catgtacat 360

agactgtcaa aaataagtga tggtgataag taggcctgga gcctcagctt ctgtaaatct 420
 cattcctaaa attttgc tag actcgtagt gcaaaaacaa atacctgtgg attgtcccta 480
 aggctttaa tcagataacct gtgttgcgt tagctgaact gtagtgaagc atcgatccaa 540
 atcggtcttc tgaagtatca gttatgttt tgagtttga aaataacttag gtgttagtct 600
 agtcttcca ttcatgaatc agttagtgc catatcagag agcctcaact tctttttct 660
 tccttttaa aaatgattt agtgtttga tttagtgtat actacatagt tcagtattat 720
 tggcttacc agtgttgaca gaaaaattt aaatctccag ttgcaaacag caatgattt 780
 ggatatggaa ataaaatcat ggtgacatca ctgctgagg atcttaaacc tctgctactt 840
 aattctccat attgaaaatgc atactcctcc acatacatgg cttccaagta aaggcaattt 900
 tagaggggcc ctgtctatcc cagtaggtt ggattttaaa catatctgtg tttccgttat 960
 tttggaaact gattaatatt tacaatttt ttgttttgc agttattttt atactaagaa 1020
 aagagagaat ctagaacatc ttgcagttga aatacaaatt ttattcttt ggtcttgggaa 1080
 gaatttaagc agtctatgca actcatcaaa tggtgagaaa tagccctccg aggttccagt 1140
 aagcttcag tgactttgtt acctccccaa gtttcttgc ttgtctgtt ttaacacccaa 1200
 gcttttaact gagtggggc tccgtatgtt ttaggagatt ttcatgttgc atcacactgt 1260
 caagtttat ttgtcttt tattccctccg tggatgttgc ttgaaacaa gcacggtaca 1320
 gtaatcctgc ctgatagagt agtctggaa gagaattact tttgggtga gagagttctc 1380
 catttaatg tttctaaatg tttcatatg aacttggcat tggaaaaggg aggttaagaa 1440
 aaaggacgtt tactaaaagc agtgcactt cttcccttt gtgagtgtt attcatggct 1500
 aataaaaaaaaa agagaaggac tcttgggtt tggatgttgc ttgaaacaa ggagaggat 1560
 gcttgcacgc atgctaattt aagccagac aagtatgtcc ttcatcaggt aatcaggaac 1620
 tcttcagttt aagctgagga actaactgtt tagttgttgc tcataatata attgggttaca 1680
 aagtgaagt gccagctggc ttaagtaccc aaagaaaaaa atgcagcagc ctaacttagt 1740
 gttaccatat gttactgaat ttgaaactga cttttttcc caccctactt cacacaccta 1800
 aaactttttt ctgtcagac caaagagcga aaagaaaaaa aaaagtaaaa cactttacca 1860
 atctgtcact caggtacaat tttgggtga gattttgtc tttttctttt gtattgtct 1920
 taagagtccct ttctcagcat attattctgc cattgcctt gtcttcctt gggcacctca 1980
 gctctggatg ctacccttgc gatactact gctgttatgt gaatgtatagg aggttaatgt 2040
 ccattatagt aagggtcttt tggaaaaaaa ttcaaaaaat taaaaaagga tggatatacatt 2100
 ttatagtctg gctatcagg tggatatttgc ctgtcaagta tggatatttgc tctgtattt 2160
 tccatcccattt caataaatgt taatggtaaa acactcaaaa aaaaaaa 2206

<210> 128
 <211> 1426
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3340290CB1

<400> 128

gcccaggccg gccccgcggg gcggtcgcgg ccgtgacggc ggctccgggc cgggctcccc 60
 ttccnctcnc gnctcccctt ccgcgcncct cccgcccggag atgaggggaa gatgtccgtg 120
 tcagggtca aggccgagct gaaggccctg gctgtccatct tcgacaagaa ccacgagcga 180
 ttccgcatttgc tcaatgttggaa gctggacggc ctgcactgtcc agtccctggt gcccggcgg 240
 ggcagccgcg actcgctgcc gcccggactc acgctccact gcaacatcac ggaatcttat 300
 ccattttccctt caccgataatg gtttggat tctgaagacc caaatctgac atcagttctg 360
 gaacgtcttag aagataactaa gaacaacaat ttgaatggaa caacagaaga agtgcacttca 420
 gaagaagagg aagaagaaga agagatggct gaagatataag aagactttaga tcaactatgag 480
 atgaaggaag aagagcctat tagtggaaa aagtcagagg atgaaggaat tggaaaaagaa 540
 aatttggcaa tattagagaa aatttaggaag actcaaaggc aagaccattt aatgggtgca 600
 gtgtctgggt cagtgcaagc ttcatgttgc ttatgttggaa agtcaggaa catatacaga 660
 tcacagatgtt ataaaacagg gattattca gtggactca taaatgacatg tttatatgac 720
 tggcatgtt aactgcagaa ggttggccct gatagtccct tgccacagtga tcttcagatc 780
 ttggaaaaa aagaaggcat agaatatatt ttgcttaact tcttttttggataactt 840
 ccatttgcatttgc tccatgttgc ttacctgttgc tctcaggagg gtatgtattt 900
 ggtggaggagg cattatgtat ggaacttctc acaaaaacaga atcaatataa tctagcaaga 960
 gcccacaaat cctataattt cattgtacag atacatgaga aaaatggctg gtacaccctt 1020
 ccaaaggaag atggctaaat atgttgactg ttgtatgtt ggactaatgt tggatattt 1080
 aaaatcttc caacatgcag acaaaaagctt tgagtgcggg tattacagca gtaccgaaga 1140
 tggatatttgc tggatatttgc tggatatttgc tggatatttgc tggatatttgc tggatatttgc 1200
 ctttcgcattt ttgctcattt tagatatttgc ggactgagca gtggggcctt tactgtattt 1260

ttcctgataa atacacatac tggccactcc ttatctctt ttcttgaaaa gtgaactttt 1320
 taaaggcagcc aagtcaacat caggctactg aagttgaggc ttangggta ctttcctata 1380
 ttgagcccat ggggtacag gatttcaat atattggtcc attttc 1426

<210> 129
 <211> 1703
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 3376404CB1

<400> 129
 gcacttcgg caatcacgtt tcgggtcgac ccacgcgtcc ggaggtcagg agatcgagac 60
 tagcctggcc aacacggta aaccccgtct ctactaaaaa tacagaaaaat tagccggcg 120
 tggtggcacc tgcctgtat cccagctact caggaggctg aggcaggaga atggcttcaa 180
 cctgggagac ggagcttgca gtgagccgag attgcgtcc acgctggcg acagagcgag 240
 actctgtctc aaaaaattaa aaaaaaaaat aataataaca atgaatgaag ctggacggac 300
 ttcgcgtgca cccgcgtcag ctcgggtct gctgggggt ctgggtcagc tcagggtcca 360
 ggaaccgagg ccaacggcac cccgtgctgc gctggggta ggggtctgcc ctggggtctc 420
 ggggttcagg gcttaggtcac ggaggagtcg gctctggcg cttccttctt gaggagagga 480
 gctggcagg cccggccgac ggttgggccc gcatagccgg gcctgtgtc atctccagca 540
 taaaactcca cttcatggag cctgcaccc gctcgtgtc caacgcttct gccaccggcg 600
 accacggccc tgcgccccag ccaggcctga ggacatgagg cgccggcgcc cggtggccct 660
 cctgctgctg ctgtgtttt ggtctcagag ggccaaggca gcaacagcct gtggtcgccc 720
 caggatgctg aaccgaatgg tggggcggca ggacacgcag gagggcgaggt gcccctggca 780
 agtcagcatc cagcgcacg gaagccactt ctgcggggc agcctcatcg cggagcagtg 840
 ggtcctgacg gtcgcacact gcttccgaa cacctctgag acgtccctgt accaggtcct 900
 gctggggca aggagctag tgcagccggg accacacgct atgtatgccc gggtgaggca 960
 ggtggagagc aacccctgtt accagggcac ggcctccagc gctgacgtgg ccttggtgg 1020
 gctggaggca ccagtgcctt tcaccaatta catcctcccc gtgtgcctgc ctgacccttc 1080
 ggtgatctt gagacgggca tgaactgctg ggtcaactggc tggggcagcc ccagtggagga 1140
 agacccctg cccgaaccgc ggatctgca gaaactcgct gtgccatca tcgacacacc 1200
 caagtcaac ctgctctaca gcaaaagacac cgagtttggc taccaaccca aaaccatcaa 1260
 gaatgacatg ctgtgcgcgcg gttcgagga gggcaagaag gatgcctgca agggcgactc 1320
 gggcgcccc ctggtgtgcc tcgtgggtca gtcgtggctg caggcgcccc tgatcagctg 1380
 gggtgaggcc tgcgtccggcc agaaccgccc aggtgtctac atccgtgtca ccccccacca 1440
 caactggatc catcgatca tcccaacta gcaagttccag ccagcgaggt tggggcggcca 1500
 gaagtggagac ccccgggaaa aggagcccc ttagcagagc tctgcaccca gcctgcccgc 1560
 ccacaccatc ctgctggacc tcccaagcgt gctgttgcac ctgtgagccc caccagactc 1620
 attttaat agcgcaccta cctcacaat caaataccct tattttattt atgatctccc 1680
 aataaaacgc cggcagagag aga 1703

<210> 130
 <211> 1118
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte clone 4173111CB1

<400> 130
 agctcgcgtt gcgcgggggt ggcgggctgc tttccacgca cctgcacccgt cgccgcctcc 60
 aaggcgctct ttggaggag ggacttctct ttcggtaacc agctccctt cgatagatct 120
 atgttctcca tataaaccctt gcaactccct taatttggat acgtggact tcactccgtc 180
 cccagccgg aaccacaagt gaggcactg cggttccgtt ttgaccttctt tggcgattac 240
 ttccggccag gggcctggaa tactggaggc ctttcgacgg agaacaacaa gaaaggcact 300
 tccgggtct ttgcggccagg cgccggccca gtggggcgta gggcgacat tggccgtc 360
 gtcttccccc ccccaagtccc gggatggag atgtcgccgac tcagctttc agagatggag 420
 ggctgcccgtt acctacttgg cctactggac aacgacgaga tcatggccct atgcgacacc 480

gtcaccaacc gcctggtgca gcctcaggac cgccaagatg ctgttcatgc aatattagca 540
tacagtcaaa gtgcagaaga acttctgagg cgtagaaaag tccaccgaga agttatattt 600
aagtacttgg caacacaggg gatttgtata cctccagcta ctgaaaaaca caatcttatt 660
cagcatgcaa aagattactg gcaaaagcaa ccacaactga aattgaagga aacgccagag 720
ccagttacaa agacagagga catccaccta tttcaacacgc aggtgaaaga agataaaaaa 780
gctgaaaaag ttgatttcg tcgccttagga gaagaattct gtcattggtt ctttggactt 840
cttaattctc agaatcctt tctaggacca cctcaagatg aatggggacc acagcacttc 900
tggcatgatg tgaagcttag gtttattac aacacatcag aacaaaatgt tatgggacta 960
accatggagc cagaatcgta agccctcggt tgctgtcact agtaaaagaa gaatttctt 1020
ttctcagccc caacctagat tcacatggac tgaaatgtgc atcttctcct catggctgg 1080
ctaaggctgg gagtagctgg gactgtccat cgaggaaa 1118