Gradient Descent, Stochastic Gradient Descent and Loss Functions

Mengye Ren

NYU

September 12, 2023

Review: ERM

Our Machine Learning Setup

Prediction Function

A **prediction function** gets input x and produces an output y = f(x).

Our Machine Learning Setup

Prediction Function

A **prediction function** gets input x and produces an output y = f(x).

Loss Function

A loss function $\ell(\hat{y}, y)$ evaluates an action in the context of the outcome y.

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{Y}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{Y}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Definition

A Bayes prediction function f^* is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_f R(f)$$
,

• The risk of a Bayes prediction function is called the **Bayes risk**.

Let $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathfrak{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of f with respect to \mathfrak{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- The unconstrained empirical risk minimizer can overfit.
 - i.e. if we minimize $\hat{R}_n(f)$ over all functions, we overfit.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{Y}$.

• This is the collection of prediction functions we are choosing from.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{Y}$.

- This is the collection of prediction functions we are choosing from.
- ullet An empirical risk minimizer (ERM) in ${\mathcal F}$ is

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Example: Linear Least Squares Regression

Setup

• Loss: $\ell(\hat{y}, y) = (y - \hat{y})^2$

Example: Linear Least Squares Regression

Setup

- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$
- Given a data set $\mathfrak{D}_n = \{(x_1, y_1), ..., (x_n, y_n)\},\$
 - Our goal is to find the ERM $\hat{f} \in \mathcal{F}$.

Objective Function: Empirical Risk

We want to find the function in \mathcal{F} , parametrized by $w \in \mathbb{R}^d$, that minimizes the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• How do we solve this optimization problem?

$$\min_{w \in \mathbb{R}^d} \hat{R}_n(w)$$

8 / 51

• (For OLS there's a closed form solution, but in general there isn't.)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Unconstrained Optimization

Setting

We assume that the objective function $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable.

We want to find

$$x^* = \arg\min_{x \in \mathsf{R}^d} f(x)$$

The Gradient

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.
- The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction in which f(x) increases fastest, if we start from x_0 .

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

• until the stopping criterion is satisfied.

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update x!

Gradient Descent: Step Size

 A fixed step size will work, eventually, as long as it's small enough (roughly — details to come)

Gradient Descent: Step Size

- A fixed step size will work, eventually, as long as it's small enough (roughly details to come)
 - \bullet If η is too large, the optimization process might diverge

Gradient Descent: Step Size

- A fixed step size will work, eventually, as long as it's small enough (roughly details to come)
 - If η is too large, the optimization process might diverge
 - In practice, it often makes sense to try several fixed step sizes
- Intuition on when to take big steps and when to take small steps?

Theorem

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable, and ∇f is **Lipschitz continuous** with constant L > 0, i.e.

$$\|\nabla f(x) - \nabla f(x')\| \le L\|x - x'\|$$

for any $x, x' \in R^d$. Then gradient descent with fixed step size $\eta \leqslant 1/L$ converges. In particular,

$$f(x^{(k)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|^2}{2nk}.$$

This says that gradient descent is guaranteed to converge and that it converges with rate O(1/k).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \leqslant \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \le \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)
- Early stopping:
 - evalute loss on validation data after each iteration;
 - stop when the loss does not improve (or gets worse).

Gradient Descent for Empirical Risk - Scaling Issues

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F} = \{f_w : \mathcal{X} \to \mathcal{Y} \mid w \in \mathsf{R}^d\}$
 - Parameterized by $w \in \mathbb{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- ullet Then we can do gradient descent on $\hat{R}_n(w)$

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

• How does this scale with n?

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with n?
- We have to iterate over all n training points to take a single step. [O(n)]
- Will not scale to "big data"!

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with n?
- We have to iterate over all n training points to take a single step. [O(n)]
- Will not scale to "big data"!
- Can we make progress without looking at all the data before updating w?

Stochastic Gradient Descent

"Noisy" Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!

"Noisy" Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!
- Intuition:
 - Gradient descent is an iterative procedure anyway.
 - At every step, we have a chance to recover from previous missteps.

CSCI-GA 2565 21 / 51 September 12, 2023

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

• It's an average over the full batch of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_N(w) = \frac{1}{N} \sum_{i=1}^N \nabla_w \ell(f_w(x_{m_i}), y_{m_i})$$

22 / 51

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Batch vs Stochastic Methods

(Slide adapted from Ryan Tibshirani)

Rule of thumb for stochastic methods:

- Stochastic methods work well far from the optimum
- But struggle close the the optimum

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 23 / 51

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \nabla \hat{R}_{n}(w)$$

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \nabla \hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\frac{1}{N} \mathsf{Var} \left[\nabla \hat{R}_1(w) \right] = \mathsf{Var} \left[\nabla \hat{R}_N(w) \right]$$

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\frac{1}{N} \mathsf{Var} \left[\nabla \hat{R}_1(w) \right] = \mathsf{Var} \left[\nabla \hat{R}_N(w) \right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \Longrightarrow Worse$ estimate of gradient, but can be quite fast

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 24/51

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$rac{1}{N} \mathsf{Var} \left[
abla \hat{R}_1(w)
ight] = \mathsf{Var} \left[
abla \hat{R}_N(w)
ight]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \Longrightarrow$ Worse estimate of gradient, but can be quite fast
- Because of vectorization, we can often get minibatches of certain sizes for free

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Convergence of SGD

- For convergence guarantee, use diminishing step sizes, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate:
 - much faster to add a digit of accuracy.
 - but most of that advantage comes into play once we're already pretty close to the minimum.
 - However, in many ML problems we don't care about optimizing to high accuracy

Minibatch Gradient Descent (minibatch size *N*)

- initialize w = 0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving.
- Other tricks: Bottou (2012), "Stochastic gradient descent tricks"

Summary

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
- Stochastic gradient descent
 - Minibatch with N=1.
 - Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in large-scale ML.

Example: Logistic regression with ℓ_2 regularization

Batch methods converge faster :

(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

Stochastic methods are computationally more efficient:

(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

Batch methods are much faster close to the optimum:

(Example from Ryan Tibshirani)

Loss Functions: Regression

Regression Problems

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos

Regression Problems

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos
- Notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.
- A loss $\ell(\hat{y}, y)$ is called **distance-based** if:
 - 1 It only depends on the residual:

$$\ell(\hat{y}, y) = \psi(y - \hat{y})$$
 for some $\psi: R \to R$

② It is zero when the residual is 0:

$$\psi(0) = 0$$

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

• When might you not want to use a translation-invariant loss?

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 34/51

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)
- ullet Often you can transform response y so it's translation-invariant (e.g. log transform)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 34/51

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- Outliers typically have large residuals. (What is an outlier?)
- Square loss much more affected by outliers than absolute loss.

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (robust and differentiable)
 - Equal values and slopes at $r = \delta$

Classification Loss Functions

The Classification Problem

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is SPAM

The Classification Problem

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is SPAM
- Classification spaces:

The Classification Problem

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is SPAM
- Classification spaces:
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

The Score Function

- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- The magnitude of the score can be interpreted as our confidence of our prediction.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 40/51

The Margin

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1,1\}$ is $y\hat{y}$.

The Margin

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin
- Most classification losses depend only on the margin (they are margin-based losses).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 41/51

Classification Losses: 0-1 Loss

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: X \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(\tilde{f}(x) \neq y)$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Minimizing empirical 0-1 risk not computationally feasible

 $\hat{R}_n(f)$ is non-convex, not differentiable, and even discontinuous.

Classification Losses

Zero-One loss: $\ell_{0-1} = 1 (m \leq 0)$

• x-axis is margin: $m > 0 \iff$ correct classification

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Hinge Loss

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max(1 - m, 0)$

Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1.

We will cover SVM and Hinge loss in more details in week 4.

- Aka linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses.

- Aka linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses.
- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

45 / 51

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\mathsf{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

46 / 51

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\mathsf{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

• Remember the negative sign!

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\begin{split} \ell_{\text{Logistic}} &= \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases} \\ &= -\log(\sigma(yz)) \\ &= -\log(\frac{1}{1+e^{-yz}}) \\ &= \log(1+e^{-m}). \end{split}$$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\ell_{\mathsf{Logistic}} = egin{cases} -\log(\sigma(z)) & \text{if} & y=1 \ -\log(\sigma(-z)) & \text{if} & y=-1 \end{cases}$$

$$= -\log(rac{1}{1+e^{-yz}})$$

$$= \log(1+e^{-m}).$$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\ell_{\mathsf{Logistic}} = \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases}$$

$$= \log(1 + e^{-m}).$$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\begin{split} \ell_{\text{Logistic}} &= \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases} \\ &= -\log(\sigma(yz)) \\ &= -\log(\frac{1}{1+e^{-yz}}) \\ &= \log(1+e^{-m}). \end{split}$$

Logistic Loss

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 48/51

- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

$$= f^{2}(x) - 2f(x)y + y^{2}$$

$$= f^{2}(x)y^{2} - 2f(x)y + 1$$

$$= (1 - f(x)y)^{2}$$

$$= (1 - m)^{2}$$

What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 50 / 51

• Gradient descent: step size/learning rate, batch size, convergence

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin
- Logistic regression