CIS367 Computer Graphics More Blender!

Erik Fredericks - <u>frederer@qvsu.edu</u>

What else could there possibly be?

Physics

Geometry nodes

Post processing

Animation

Physics nodes are fun!

There are a lot of things you can do here

We're going to focus on collisions, cloth, and liquids, however there is a ton you can do with physics here

Rigid body collisions

Need minimally **two** things for a collision to occur:

A rigid body that is **active** A rigid body that is **passive**

Otherwise →

If you're seeing oddities with physics, try changing the Collision Shape over to Mesh

Cloth - Collidable Object

GET RID OF THAT CUBE

Add a monkey it needs to look cute

Give your collidable object a collision

- Feel free to play with the params

Goal is to make the cloth interact with the object itself

Note: don't skip around in the timeline! Physics need calculation

https://docs.blender.org/manual/en/latest/physics/cloth/introduction.html https://docs.blender.org/manual/en/latest/physics/cloth/examples.html

The cloth itself

Modeled as a series of springs

"Illustration of cloth springs; tension springs (blue), compression springs (red), shear springs (cyan), and angular bending springs (green)."

Essentially - gives you the properties of a cloth!

What do we need?

- A plane - SUBDIVIDED

Why?

Let's make a spooky ghost

What do we need?

What do we need?

A **fluid domain** → to bound the simulation area

An **emitter** → to create liquid particles

and...

Other things to interact with!

Note: lots of fiddly bits here!

Liquid → Fluid Domain

(Bold → things we have to do)

Use the default cube

Physics tab → Fluid

Type → Domain

Domain Type → Liquid

Resolution Divisions → particle size

Cache → where the output goes

Set duration for amount of time to simulate

Cache → Type → All

Bake All is how we simulate! Need to free/re-bake when making changes

Liquid

Add an object to emit liquid particles

→ Liquid will fall from it

Physics

→ Fluid → Flow

Flow type

→ Liquid

Flow behavior

→ Inflow

Behavior notes:

Geometry

→ flow object becomes liquid

Inflow

→ flow object emits liquid

Outflow

→ Object will drain liquid

Now bake!

Catch that liquid

Add an object to interact with it

Physics → Fluid → Effector

- → Add "Is Planer" in case if things are wonky (or not enclosed object)
- → Rebake!

Liquid into Mesh

Less preview, more liquid!

Go to the Fluid Domain object (our cube)

Under Liquid, enable Mesh Disable Liquid

Add material!

. . .

Bake!

(Not verified)

https://blenderartists.org/t/fluid-not-simulating-after-domain-is-resized/1396316/2

Geometry nodes

Hoo boy....the number of changes this workspace has gone through in the last year...

Note: if you are looking through guides/tutorials ensure you have the correct version

→ And if you're at a newer version, lookup what old nodes have been renamed as :)

DUNGEON MAKER WITH GEOMETRY NODES Blender Tutorial

Lets instance some things

First, start with an object

Then, pop over to Geometry Nodes

Then make it the basis for some nodes

Some handy shortcuts

(There are many, but here are a couple that are helpful)

- Shift + right click will create a point on an edge you can add new edges from
- Ctrl + right click will sever an edge
- Dragging from a node outwards will auto-popup available nodes
- Shift + a will pop up the find menu where you can just start typing

(There's a popular extension called Node Wrangler that a lot of people use as well, if you get deep into this)

Either use that shape or sever the link and start building

```
Input \rightarrow Instance on Points \rightarrow Join Geometry \rightarrow Output | Icosphere -^ |
```

Borrowing some slides...

https://www.slideshare.net/ahlaamnss/3d-scientific-visualization-with-blender-geometry-nodespptx

https://uhstudio.com/posts/geometry-nodes-snippets

Set Position of the cube

The hiding key is M in the keyboard to see the changes in the geometric node

Adding a Subdivided Mesh to set The level of them

Connecting Nodes By Adding Join Geometry

Bland?

Need to Set Material!

Animation!

Animation!

Keyframes, interpolation, rendering

Keyframe:

- Starting or stopping point! Something is 'keyed' there
- Endpoint for a transition

Interpolation:

- Smooth transition between keyframes
- You can set the interpolation you want!

Can key on nearly any property!

Moving/Spinny camera?

First, let's parent it to our object

- Shift + grab camera → into cube

And then...

https://efredericks.github.io/gvsu-cis367/demos/

Rotate camera around object (at origin)

- 1 Add an empty (axes)
- 2 Parent camera to empty
 - Click the empty
 - · Hold shift, grab camera, move onto empty
- 3 Animate empty

Rendering an animation

Output settings tab! →

Format, resolution, location, etc.

To make things look nicer, need a "background"

Probably some appropriate lighting too

Post-Processing (a.k.a., the Compositor)

Unfortunately, this is the thing I'm least familiar with and have been most recently learning

Will apply nodes to each frame of your scene

- Can be used for stitching together movies, After Effects-style processing, etc.

Live view!

Split your output

- need to render first

Filters!

Dithering

Reducing color palette to give it a "chunky" look

Unfortunately the website where I got the original node group is down...

Link to Bayer samples: https://efredericks.github.io/gvsu-cis367/assets/bayer_all.7z

Another explanation: https://blog.kaetemi.be/2015/0
4/01/practical-bayer-dithering/

Going to need a sample and a node group!

(Glare was just to mess around a bit)

