Ordinary Differential Equations

Introduction

6 Abstract of every vibration/flow is asmooth curve / diffeqn.

- A carve can be represented as a function
- In y = f(x), x is independent variable &y is a dependent variable

also in z = f(x, y), x, y are independent variables & z is dependent variable.

Differential equation

An equation involving derivative(s) of dependent variable with respect to independent variable(s) is called differential equation.

e.g:
$$x \times \frac{dy}{dx} + y = 0$$

ODE

A diffeq. involving depen derivortives of dependent variable with respect to only one independent variable

is

• only polyromial diff. gqs have degree

$$3\left(\frac{d^2y}{dx^2}\right)^4 + \left(\frac{dy}{dx}\right)^5 = 0$$

degree 4

- Order: Order of highest order derivutive of dependent variable, wrt. independent variable involved in the equation.
- Degree: If diffeqn. is a polynomial equation of derivative, the highest (power (positive integral index) of highest order derivative is its degree.

creneral form: f(x, y, y') = 0

or
$$y' = g(x, y)$$

cy: $y^2 = \sqrt{x^2 + y^2}$

1st Order LDE

$$y' + P(x)y = Q(x)$$

p,q are continuous in same interval I solution: $g(F) = \int Q \cdot (F) dx + C$. $F = e^{\int P dx}$ Integration factor

1.
$$y_1' + 2xy = x$$

A). Given is an 1^{st} order LDE

$$P = 2x, Q = \infty,$$

$$\therefore F = e^2 \int x \cdot dx = e^{x^2} \text{ (integrating factor}$$

$$\therefore \text{ Solution: } y \cdot e^{x^2} = \int x \cdot e^{x^2} dx + c \quad x^2 =$$

$$= \frac{1}{2}e^{x^2} + c \quad 2xdx =$$

$$\therefore y = \frac{1}{2} + e^{-x^2} \cdot c \quad x \cdot dx$$

2. Solve $\frac{dy}{dx} + 2y \tan(x) = \sin(x)$

$$P(x) = 2\tan(x), Q(x) = \sin(x)$$

$$IF = e^{\int P \cdot dx}$$

$$= e^{2 \cdot \ln|\sec(x)|}$$

$$= |\sec(x)|^2 \equiv \sec^2(x)$$

Solution = $y \cdot \sec^2(x) = \int \sin(x) \cdot \sec^2(x) dx + c$

$$= \int \cdot \sec(x) \tan(x) dx + c$$
$$= \sec(x) + c$$

$$y = \cos(x) + \cos^{2}(x) \cdot c$$

3. Find solution of initial value problem:

$$x^{2}y' - xy = x^{4} \cdot \cos(2x), y(\pi) = 2\pi$$

$$A x^2y' - xy = x^4 \cdot \cos(2x)$$

$$\therefore y'_{-} - x^{-1}y = x^2 \cdot \cos(2x)$$

$$P(x) = -x^{-1}, Q(x) = x^2 \cdot \cos(2x)$$

$$\therefore y'_{-} - x^{-1}y = x^{2} \cdot \cos(2x)$$

$$\therefore P(x) = -x^{-1}, Q(x) = x^{2} \cdot \cos(2x)$$

$$\therefore IF = e^{\int p(x) \cdot dx} = e^{-\int x^{-1} \cdot dx} = e^{-10[x]} = 0 (x^{2})^{-1}$$

$$\therefore$$
 Solution: $y \cdot IF = \int Q \cdot IF \cdot dx + C$

$$y \cdot (x)^{-1} = \int x^2 \cdot (x)^{-1} \cdot \cos(2x) \cdot dx + c$$

$$= \int x \cdot \cos(2x) dx + c$$

$$= \frac{xx \cdot \sin(x)}{2} - \frac{1}{2} \int \sin(2x) dx + c$$

$$= \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4} + c$$

$$\therefore y = \frac{x^2 \cdot \sin(2x)}{2} + \frac{x \cdot \cos(2x)}{4} + x^4 \cdot c$$

I is given that $y(\pi) = 2\pi$

$$\therefore 2\pi = \frac{\pi^2 \cdot \sin(2\pi)}{2} + \frac{\pi \cdot \cos(2\pi)}{4} + \pi \cdot c$$
$$\therefore 2 = \frac{1}{4} + c \Rightarrow c = 1\frac{3}{4} = \frac{7}{4}$$

Substitute in (2) to get specific solutions

$$y = \frac{x^2 \sin(2x)}{2} + \frac{x \cdot \cos(2x)}{4} + \frac{7}{4}x$$
4 Solve $y' - 2xy = 2$
5. Solve $xy' - 2y = -x$

$$G = 4y' - 2xy = 2x$$
Let $P(x) = -2x$, $Q(x) = 2x$

$$IF = e^{\int Fdx} = e^{\int -2x \cdot dx} = e^{-x^2}$$

$$\therefore \text{ solution: } y \cdot e^{-x^2} = \int 2x \cdot e^{-x^2} dx + c$$

$$e^{\int e^{-\frac{\pi}{2}} = e^{-\frac{\pi}{2}} e^{-\frac{\pi}{$$

let
$$-x^2 = t$$
, $\Rightarrow -2x \cdot dx = dt$
Put $-x^2 = t$
 $\therefore \int \left(2x \cdot e^{-x^2} dx + c = -\int e^t dt = \frac{-e^t + 0}{-e^{x^2} + e^{x^2}}\right)$
 $= -e^{x^2} + e^{x^2} + e^$

$$\therefore y = x + cx^2$$
.

6.
$$xy' + 2y = \frac{\cos(x)}{x}$$

 $y' + \frac{2}{x} \cdot y = \frac{\cos(x)}{x^2}$
 $P(x) = \frac{2}{x}, Q(x) = \frac{\cos(x)}{x^2}, IF = e^{\int p \cdot dx} = e^{\ln(x^2)} = x^2 \ y \cdot IF = \int IF \cdot Q \cdot dx + c$
 $y \cdot x^2 = \int x^2 \cdot \frac{\cos(x)}{x^2} \cdot dx + c = \int \cos(x) dx + c$
 $y \cdot x^2 = \sin(x) + c \Rightarrow y = \frac{\sin(x)}{x^2} + \frac{c}{x^2}$
7. $y' + \frac{2y}{x} = \frac{4}{x}$,
 $P(x) = \frac{2}{x}, Q(x) = \frac{4}{x}$. $F = e^{\int Pdx} = e^{2 \cdot \int 1/x \cdot dx} = x^2$

$$P(x) = \frac{2}{x}, Q(x) = \frac{4}{x}, \quad F = e^{\int Pdx} = e^{2\cdot \int 1/x \cdot dx} = x^2$$

 \therefore solution: $y \cdot x^2 = \int x^2 \cdot \frac{4}{x} dx + c = 2x^2 + c$
 $\cdots y = 2 + \frac{c}{x^2}$
Given $y(1) = 6$,

$$\therefore \quad 6 = 2 + \frac{c}{1} \Rightarrow c = 4$$

$$\therefore y = 2 + \frac{4}{x^2}$$
Hw

1)
$$(x+1)y' + 2y = (x+1)^{5/2}$$
 2) $xy' - 2y = x^4 e^x$
3) $xy' - y = 2x \ln(x)$ 4) $y' + y \cdot \tan(x) = \cos^2(x)$
5) $y' + y \cdot \cot(x) = \csc^2(x)$ 6) $xy' + y = (1+x)e^x$

7)
$$y' + 2xy = xe^{-x^2}$$
 8) $xy' - 2y = x^3e^x, y(1) = 0$

Variable Separable Equation

A differential equation of the form 'm(x,y)dx + n(x,y)dy = 0' is a variable separable equation if it can be expressed in the form: f(x)dx + g(y)dy = 0

$$\therefore \frac{x}{x^2 + 1} dx + \frac{\cos(y)}{\sin(y)} dy = 0$$
$$\frac{1}{2} \int \frac{2x \cdot dx}{x^2 + 1} + \int \frac{\cos(y)}{\sin(y)} dy = \ln(c)$$

let $t = x^2 + 1$, dx 2x = dt, let $u = \sin(y)$, $\frac{du}{dy} = \cos(y)$, $dy \cdot \cos(y) = du$ $\therefore \frac{1}{2} \int \frac{dt}{t} + - \int \frac{du}{u} = \ln(c)$ $= \frac{1}{2} \ln(x^2 + 1) + \ln(\sin(y)) = \ln(c)$

$$\ln\left[\frac{\left(x^2+1\right)^2\sin(y)}{c}\right] = 0 \to \sin(y) = \frac{c}{\left(x^2+1\right)^2},$$
$$y = \sin^{-1}\left[\frac{c}{\left(x^2+1\right)^2}\right]$$

4. $\tan(\theta)dr + 2r \cdot d\theta = 0$

$$\frac{dr}{2r} + \frac{d\theta}{\tan(\theta)} = 0$$

$$\int \frac{dr}{2r} + \int \underbrace{\int \frac{d\theta}{\tan(\theta)}}_{\cot(\theta)d\theta} = \ln(c)$$

$$= \frac{1}{2}\ln(\gamma) + \ln(\sin(\theta)) = \ln(c)$$

$$= \ln(\sqrt{x}) + \ln(\sin(\theta)) = \ln(c)$$

$$\ln(\sqrt{r}) = \ln\left[\frac{c}{\sin(\theta)}\right]$$

$$\sqrt{\gamma} = \sec\frac{c}{\sin(\theta)} \longrightarrow r \cdot \gamma \cdot \sin^2(\theta) = c$$

$$\begin{array}{l} 4xydx + \left(x^2 + 1\right)dy = 0 \\ \rightarrow \frac{4x}{x^2 + 1}dx + \frac{dy}{y} = 0 \end{array}$$

2.
$$\int \frac{2x}{x^2+1} dx + \int \frac{dy}{y} = \int \frac{\ln(c)}{2} = 2\ln(x^2+1) + \ln(y) = \ln(c)$$

$$\Rightarrow y = \frac{c}{(x^2+1)^2}$$

Homogenfous Differential Equation

An differential equation that can be reduced into the form: $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$ is called homogeneous differential equation. This can be solved by putting y = vx and hence reducing to variable separable form.

1. Solve
$$2xy \cdot \frac{dy}{dx} - y^2 + x^2 = 0$$

$$2xy\frac{dy}{dx} = y^2 - x^2 \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy} - (1)$$

$$\text{pat } y = vx \ v = \frac{y}{x}$$

$$\therefore (1) \equiv v + x \cdot \frac{dv}{dx} = \frac{v^2x^2 - x^2}{2x^2v} = \frac{(v^2 - 1)}{2v} = \frac{(y^2/x^2 - 1)}{2 \cdot x/xx}$$

$$x \cdot \frac{dv}{dx} = \frac{v^2 - 1}{2v} - v = \frac{v^2 - 1 - 2v^2}{2v}$$

$$x \cdot \frac{dv}{dx} = \frac{-(1 + v^2)}{yv}$$

$$\frac{2v}{(c1 + v^2)} \cdot dv = \frac{dx}{x}$$

$$\therefore -\int \frac{2v}{(1 + v^2)} dv = \int \frac{dx}{x} + \ln(c)$$

$$= -\ln(v^2 + 1) = \ln(x) + \ln(c)$$

$$x \equiv \ln(v^2 + 1) = -\ln(x) + \ln(c)$$

$$\therefore v^2 + 1 = \frac{c}{x}$$

$$\frac{y^2}{x^2} + 1 = \frac{c}{x} \Rightarrow y^2 + x^2 = cx$$

$$\text{let } y = vx, \quad \therefore v = \frac{y}{x}$$

$$\therefore \frac{dy}{dx} = 1 + \frac{vx}{x} = 1 + v$$

$$= v + x \cdot \frac{dv}{dx} = 1 + v \Rightarrow x \cdot \frac{dv}{dx} = 1 \Rightarrow \frac{dx}{x} = dv$$

$$\therefore \int \frac{dx}{x} = \int dv + c$$

$$= \ln(x) = v + c$$

$$y = \ln\left(\frac{x}{D}\right) \cdot x$$

Bernoülli's Differential Equation

A differential equation of form $y' + p(x)y = Q(x)y^n$. $n \in \mathbb{R}/\{0,1\}$ called Bernocilli's Differential equation

Method to solve:

i.) Divide by y^n

$$y^{-n} \cdot y' + p(x)y^{1-n} = Q(x) - (1)$$

2. put
$$z \le y^{1-n}$$
, $\therefore \frac{dz}{dx} = (1-n)y^{-n} \cdot \frac{dy}{dx} \Rightarrow \underbrace{y^{-n} \cdot \frac{dy}{dx}}_{(2)} = \underbrace{\frac{1}{1-n} \cdot \frac{dz}{dx}}_{(2)}$

3. Substitute (2) in (1):

$$(1) \to \frac{1}{1-n} \cdot \frac{dz}{dx} + P(x) \cdot z = Q(x)$$

$$\Rightarrow z' + (1-n)P(x) \cdot z = (1-n)Q(x)$$

This is FLDE. in dependent variable z

: Solution:

$$Z \cdot (I \cdot F) = \int (1 - n)Q(x) \cdot IF \cdot dx + C \quad , IF = e^{\int (1 - n) \cdot P(x) \cdot dx}$$

Solve following:

a)
$$y' + 2y = y^2$$

A. Divide by y^2 :

$$y^{-2} \cdot y' + 2y^{-1} = 1$$

put
$$z = y^{-1}$$
 $\therefore z \frac{dz}{dx} = -y^{-2} \cdot \frac{dy}{dx}$

∴ (1) becomes:

$$-\frac{dz}{dx} + 2z = 1 \Rightarrow \frac{dz}{dx} - 2x = -1$$
This is FLDE.

$$P(x) = -2, \quad Q(x) = -1$$

$$IF = e^{\int Pdx} = e^{\int -2\cdot dx} = e^{-2x}$$

... General Solution:

$$\therefore z \cdot e^{-2x} = \int -e^{-2x} dz + c/2$$

$$zxe^{-2x} = \frac{1}{2}e^{-2x} + \frac{c}{2}$$

$$now \ z = y^{-1}$$

$$\therefore y^{-1} \cdot e^{-2x} = \frac{1}{2}e^{-2x} + \frac{c}{2}$$

$$\therefore y = \frac{2}{1 + e^{2x} \cdot c}$$

Divide by y^4 :

$$y^{-4} \cdot \frac{dy}{dx} - y^{-3} \cdot \tan(x) = \sec(x) - (1)$$

let $z = y^{-3}$, $\frac{dz}{dx} = -3.y^{-4} \cdot \frac{dy}{dx}$ multiply θ by -3 & substitute $\frac{dz}{dx}$

$$+3$$
, $z \tan(x) = -3 \sec(x)$

$$\frac{dz}{dx}$$

$$P(x) = 3\tan(x) \quad Q(x) = -3\sec(x)$$

$$I: F = e^{\int P \cdot dx} = e^{3\int \tan x \cdot dx} = e^{\ln(\sec^3(x))} = \sec^3(x)$$

multiply (2) by I.F.

 $\sec^3(x) \cdot \frac{dz}{dx} + 3 \cdot \tan(x) \cdot \sec^3(x)z = -3\sec^4(x)$

Apply reverse product rule: uv' + vu' = (4v)'

$$\Rightarrow \frac{d}{dx} \left(\sec^3(x) \cdot z \right) = -3 \sec^4(x)$$

 $\int sc.^4 \rightarrow \int se^2 \cdot sc^2$

Integrate both sides: $\rightarrow (1+t^2) sc^2$

$$\sec^{3}(x) \cdot z = -3 \int \sec^{4}(x) \cdot dx + c \tag{x}$$

 $=\int (1+\infty)dt$

$$= -3\left[\tan(x) + \frac{\tan^3(x)}{3}\right] + c$$

$$\Rightarrow \frac{\sec^3(x)}{y^3} = -3\tan(x) = \tan^3(x) + c$$

$$\therefore y = \frac{1}{\cos^5(x) \cdot \sqrt[3]{-3\tan(x) - \tan^3(x) + c}}$$
d) $\frac{dy}{dx} + \tan(x)\tan(y) = \cos(x) \cdot \sec(y)$

$$\therefore y = \frac{1}{\cos^5(x) \cdot \sqrt[3]{-3\tan(x) - \tan^3(x) + c}}$$

d)
$$\frac{dy}{dx} + \tan(x)\tan(y) = \cos(x) \cdot \sec(y)$$

A) This is B.D.E.

Divide by sec(y)

$$\cos(y)\frac{dy}{dx} + \tan(x)\sin(y) = \cos(x) - (1)$$
let $z = \sin(y)$. $\frac{dz}{dx} = \cos(y) \cdot \frac{dy}{dx}$.

let
$$z = \sin(y)$$
. $\frac{dz}{dx} = \cos(y) \cdot \frac{dy}{dx}$

Substitute this in (1)

$$\frac{dz}{dx} + \tan(x) \cdot z = \cos(x)$$

$$\frac{dz}{dx} + \tan(x) \cdot z = \cos(x)$$
let IF = $e^{\int \tan(x) \cdot dx} = e^{\ln(\sec(z))} = \sec(x)$

multiply both sides by T.F.

$$\sec(x) \cdot \frac{dz}{dx} + \tan(x) \cdot \sec(x) \cdot z = 1$$

multiply both sides by T.F.
$$\sec(x) \cdot \frac{dz}{dx} + \tan(x) \cdot \sec(x) \cdot z \cdot = 1$$

$$\equiv \frac{d}{dx}(\sec(x) \cdot z) = 1 \quad \Rightarrow \quad \sec(x) \cdot z = x + c \Rightarrow \sec(x) \cdot \sin(y) = x + c.$$

$$\therefore y = \sin^{-1}(\cos(x) \cdot (x + c))$$
d)
$$\frac{dy}{dx} + x \cdot \sin(2y) = x^3 \cdot \cos^2(y)$$
Divide by
$$\cos^2(y) :$$

$$\sec^2(y) \cdot \frac{dy}{dx} + \frac{x \cdot 2 \sin(y) \cos(y)}{\cos^2(y)} = x^3$$

$$\sec^2(y) \cdot \frac{dy}{dx} + 2x \cdot \tan(y) = x^3 - 10$$
let $z = \tan(y)$
$$\frac{dy}{dx} = \sec^2(y) \cdot \frac{dy}{dx}$$
substitute this in (1):

$$\therefore y = \sin^{-1}(\cos(x) \cdot (x+c))$$

d)
$$\frac{dy}{dx} + x \cdot \sin(2y) = x^3 \cdot \cos^2(y)$$

$$\sec^2(y) \cdot \frac{dy}{dx} + \frac{x \cdot 2\sin(y)\cos(y)}{\cos^2(y)} = x^3$$

$$\sec^2(y)\frac{dy}{dx} + 2x \cdot \tan(y) = x^3 - 10$$

let
$$z = \tan(y)$$
 $\frac{dy}{dx} = \sec^2(y) \cdot \frac{dy}{dx}$

substitute this in (1):

$$\frac{dz}{dx} + 2x \cdot z = x^3$$

let I.F $e^{\sqrt{2x}\cdot dx} = e^{x^2}$, demultiply both sides by I.F $e^{x^2}\cdot \frac{dz}{dx} + z\cdot 2x\cdot e^{x^2} = x^3e^{x^2}$ $\Rightarrow \frac{d}{dx} \left(e^{x^2} \cdot z \right) = x^3 \varepsilon e^{x^2}$

$$e^{x^{2}}z = \int x^{3} \cdot e^{x^{2}} dx + C \longrightarrow \int e^{t} t = x^{3}, dt = 2x \cdot dx$$

$$= e^{x^{2}}z^{2}(x^{2}-1) + C \qquad \qquad \frac{1}{2}\int e^{t} e^{t} dt = x^{3}, dt = 2x \cdot dx$$

$$= ton(y) \cdot e^{x^{2}} = \frac{1}{2}e^{x^{2}}(x^{2}-1) + C \qquad \qquad = \frac{1}{2}(t \cdot \int e^{t} dt - \int \int e^{t} dt \cdot dt)$$

$$= \frac{1}{2}(t \cdot e^{t} - e^{t}) = \frac{1}{2}e^{t}(t-1)$$

1.)
$$\frac{dy}{dx} + y = xy^3$$
 2) $\frac{dy}{dx} - y \tan(x) = y^2 \cdot \sec(x)$

3)
$$\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x} \ln(x)$$
4)
$$\frac{dy}{dx} + xy = x^3 y^3$$

4)
$$\frac{dy}{dx} + xy = x^3y^3$$

Partial Differentiation

If z = f(x,y) it can be differentiated partially wort x ory $\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$, Here

we treat
$$y$$
 as constant $z_x = \frac{\partial z}{\partial x}$
e.y: $z(x,y) = x^2 + y^2 + 2xy$,
 $z_y = \frac{\partial z}{\partial x} \frac{\partial z}{\partial x} = 2x + 0 + 2y = 0$
or wirt. y by: $\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}$ [we treat x constaint] $\frac{\partial z}{\partial y} = 0 + 2y + 2x$
find $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ in following:
a) $f(x,y) = x^3 + 3x^2y + xy^3$
A) $\frac{\partial f}{\partial x} = 3x^2 + 6xy + y^3$, $\frac{\partial f}{\partial y} = 0 + 3x^2 + 3xy^2$

a)
$$f(x,y) = x^3 + 3x^2y + xy^3$$

A)
$$\frac{\partial f}{\partial x} = 3x^2 + 6xy + y^3$$
, $\frac{\partial f}{\partial y} = 0 + 3x^2 + 3xy^2$

b)
$$f(x,y) = 2x\cos(y) + 3x^2y$$

b)
$$f(x,y) = 2x\cos(y) + 3x^2y$$

A) $\frac{\partial f}{\partial x} = 2\cos(y) + 6xy$ $\frac{\partial f}{\partial y} = -2x\sin(y) + 3x^2$

$$f(x,y) = x \tan^{-1} \left(\frac{y}{x}\right)$$
c)
$$f_x = \frac{1}{1 + y^2/x^2} \cdot \frac{\partial}{\partial x} \cdot \left(\frac{y}{x}\right) = \frac{y}{x^2} \cdot \frac{x^2}{x^2 + y^2} \cdot -\frac{1}{x^2} = \frac{-y}{x^2 + y^2}$$

$$\Delta f_y = \frac{1}{1+y^2/x^2} \cdot \frac{\partial}{\partial y} \left(\frac{y}{x} \right) = \frac{x^2}{x^2+y^2} \cdot \frac{1}{x} = \frac{x}{x^2+y^2}$$
d) $f(x,y) = x^3 - x^2 \sin(y) - y$

d)
$$f(x,y) = x^3 - x^2 \sin(y) - y$$

 $f_x = 3x^2 - 2x \sin(y)$. $f_y = -x^2 \cos(y) - 1$

Higher Order Partial Derivative

•
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f_{xx}$$

•
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$$

$$\cdot \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{xy}$$

•
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{yx}$$

- If f(x,y) is continuous function, $f_{xy} = f_{yx}$
- 1. find I & II order partial derivatives of

a)
$$t = x^2 y$$

A)
$$f_x = 2xy$$
. $f_y = x^2$, $f_{xy} = 2x$, $f_{yx} = 2x$, $f_{xx} = 2y$, $f_{yy} = 0$
b) $x^3 f(x, y) = x^3 \sin(y)$

b)
$$x^3 f(x, y) = x^3 \sin(y)$$

$$f_x = 3x^2 \sin(y), f_{xx} = 6x \sin(y), f_{yx} = 3x^2 \cos(y)$$

 $f_y = x^3 \cos(y), \quad f_{yy} = -x^3 \sin(y), \quad f_{xy} = -3x^2 \sin(y)$

Differentials

If z = f(x, y), dz, dx, dy are known as differentials. in z, z, y respectively. $\operatorname{cex} dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

1.) find the differentials in f of if $f = \frac{x^3}{3} - xy^2$

$$df = \frac{df}{\partial x} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$
$$df = (x^2 - y^2) dx - 2xydy$$

Exact Differential Equation

• A Differential equation of the form M(x,y)dx + N(x,y)dy = 0 is sard to be exact differential equation.

such that
$$\frac{\partial \mu}{\partial x} = m(x,y), \& \frac{\partial \mu}{\partial y} = N(x,y)$$
 ie, $Mdx + Ndy = \frac{\partial \mu}{\partial x} dx + \frac{\partial \mu}{\partial y} dy = d\mu$

$$\therefore$$
 Solution is $\int d\mu \Rightarrow \mu(x,y) = c$

Method to find exact or not

• If Diff. eqn. is exact then $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

eg:
$$(1-x)\cdot dx - (1+y)dy = 0$$

 $M = 1-x, \quad N = -(1+y)$
 $\frac{\partial M}{\partial y} = 0, \quad \frac{\partial N}{\partial x} = 0 \quad \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \therefore$ Eqn. is exact.
Method to solve E.D.E

$$\frac{\partial M}{\partial y} = 0$$
, $\frac{\partial N}{\partial x} = 0$ $\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$... Eqn. is ex

Solution:
$$\int M dx + \int [\text{Terms in } N \text{ not containing } x] dy = c$$

Solve
$$(1-x)dg - (1+y)dy = 0$$

A) Solution:
$$\int (1-x)dx + \int -(1+y)dy = c/2$$
 (soy)

$$x - \frac{x^2}{2} - y - \frac{y^2}{2} = c/2$$

$$\Rightarrow x - y = \frac{x^2 + y^2}{2} + c/2$$

$$2(x - y) = x^2 + y^2 + c$$

2.
$$(3x^2 + 4xy) dx + (2x^2 + 2y) dy = 0$$

$$M = 3x^2 + 4xy$$
, $\frac{\partial M}{\partial y} = 4x$
 $N = 2x^2 + 2y$, $\frac{\partial N}{\partial x} = 4x$ $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Rightarrow \text{ eqn. is Exact}$

Solution: $\int M \cdot dx + \int [\text{ terms in } N \text{ not containing } x]dy = c$

$$\int (3x^2 + 4xy) dx + \int 2y \cdot dy = c$$
$$x^3 + 2x^2y + y^2 = c$$

3. Why condition for exactness is $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$?

A) for E.DE.
$$\exists u(x,y): \frac{\partial u}{\partial y} = N(x,y) \cdot \frac{\partial u}{\partial x} = m(x,y)$$
 consider $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial N}{\partial x}$, $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial M}{\partial y}$ since. $u(x,y)$ represents a family of curve and it is continuous, $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x} \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

2. Anodian woy]:

$$\begin{array}{ll} m = 3x^2 + 4xy, (1) & N = 2x^2 + 2y - (2) \\ \frac{\partial M}{\partial H} = 4x \\ \nrightarrow \cdot m \ 0, 4xy + \Psi(x) \\ = 4xy + \psi(x) - 15 \\ \text{comparing (1) \& (3) } \psi(x) = 3x^2 \end{array}$$

4. $(2x\cos(y) + 3x^2y) dx + (x^3 - x^2\sin y - y) dy = 0$

$$M = 2x\cos(y) + 3x^2y \qquad N = x^3 - x^2\sin(y) - y$$

$$\frac{\partial M}{\partial y} = -2x\sin(y) + 3x^2, \qquad \frac{\partial N}{\partial x} = 3x^2 - 2x\sin(y)$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \Rightarrow \text{ eqn. is EDE}$$

Solution: $\int (2x\cos(y) + 3x^2y) dx + \int -ydy \pm c$

$$x^2 \cos(y) + x^3 y - \frac{y^2}{2} = c$$

Hw:

1. Solve:

a)
$$(5x^4 + 3x^2y^2 - 2xy^3) dx + (2x^3y - 3x^2y^2 - 5y^4) dy = 0$$

b) $(2xy + y - \tan(y)) dx + (x^2 - x \tan^2(y) + \sec^2(y) + 2y) dy = 0$

2. (another uy).

$$M = 3x^2 + 4xy, N = 2x^2 + 2y$$

Define f(x,y) f $f_x = m.f_y = N$ Then solution is given by $f(x,y) = c_1$

1. Integrate f_x wrt.ge to find f(x, y):

$$f(x,y) = \int (3x^2 + 4yx) dx = x^3 + 2x^2y + \psi(y)$$

Differentiate this curty to find $\psi(y)$:

$$\partial f_y = 2x^2 + \frac{d\psi}{dy}$$

Substitute $f_y = N$, (by def.)

$$2x^2 + \frac{d\psi}{dy} = 2x^2 + 2y \Rightarrow \frac{d\psi}{dy} = 2y$$

Integrate $d\psi$ sixy urty: $\psi(y) = y^2$ substitute $\psi(y)$ in f(x, y):

$$f(x,y) = x^3 + y^2 + 2x^2y$$

The Solution is f(x,y) = c:

$$: \frac{x^3 + y^2 + 2x^2y = c}{2}$$

$$x^4 + y^2 + 2x^2y = x^4 - x^3 + c$$

$$\Rightarrow (y + x^2)^2 = x^4 - x^3 + c$$

$$y + x^2 = \pm \sqrt{x^4 + x^3 + c}$$

$$y = -x^2 \pm \sqrt{x^4 - x^3 + c}$$

 $? \frac{dy^4}{dx} + \frac{xy}{1-x^2} = x\sqrt{y}$ divide by \sqrt{y} .

$$y^{-1/2}\frac{dy}{dx} + \frac{xy^{1/2}}{1-x^2} = x\tag{1}$$

let $z = y^{1/2}$, $\frac{dz}{dx} = \frac{1}{2}y^{-1/2}\frac{dy}{dx}$ \therefore (1) become:

$$\frac{dz}{dx} + \underbrace{\frac{dx}{2(1-x^2)}}_{x} \cdot z = \frac{1}{2}x.$$

let
$$f = e^{\frac{1}{e} \int \frac{x}{1-x^2} dx} = (1-x^2)^{-1/4}$$
 $-\frac{1}{2} \int \frac{x}{1-x^2} dx \ t = 1-x^2 \ dt = dx \cdot (-2x)$

$$s : \mathbb{Z} \cdot F = \int Q \cdot F \cdot dx + c = -2x \cdot dx$$

$$\Psi \cdot (1-x^2)^{-1/4} = \int \frac{1}{2} x \cdot (1-x^2)^{-1/4} dx + c - \frac{1}{4} \int \frac{dt}{t} \Rightarrow \Rightarrow n(t)$$

$$= \frac{1}{2} \int x \cdot (1-x^2)^{-1/4} dx + c - (2)$$

 \therefore Solution is: $y \cdot F = \int Q \cdot F \cdot dx + c$ let $t = 1 - x^2, dt = -2xdx$

 \therefore (2) becomes:

$$y \cdot (1 - x^{2})^{-1/4} = -\frac{1}{4} \int t^{-1/4} dt + c$$

$$= -\frac{1}{4} x \frac{t^{3/4}}{-1/4 + 1} = -\frac{1}{3} \cdot t^{3/4} + c$$

$$z \cdot (1 - x^{2})^{-1/4} = -\frac{1}{3} (1 - x^{2})^{3/4} + c$$

$$z = -\frac{1}{3} (1 - x^{2}) + c \cdot (1 - x^{2})^{1/4}$$

$$z = \sqrt{y}$$

$$\therefore y = \left[\sqrt[4]{c \cdot (1 - x^{2})} - \frac{1}{3} (1 - x^{2}) \right]^{2}$$

$$\frac{dy}{dx} + x \cdot \sin(2y) = x^{3} \cdot \cos^{2}(y)$$

$$\equiv \frac{dy}{dx} + x \cdot 2 \cdot \sin(y) \cos(y) = x^{3} \cdot \cos^{2}(y)$$

Divide by $\cos^2(y)$:

$$\sec^2(y) \cdot \frac{dy}{dx} + 2x \cdot \tan(y) = x^3$$

let $z = \tan(y) = \frac{dz}{dx} = \sec^2(y) \cdot \frac{dy}{dx}$.

$$\frac{dz}{dx} + 2x \cdot z = x^3$$

I.F = $e^{\sqrt{2x}} = e^{x^2}$, &multiply by it:

$$e^{x^2} \frac{dz}{dx} + 2x \cdot e^{x^2} \cdot z = x^3 \cdot e^{x^2}$$

$$\Rightarrow e^{x^2} \cdot z = \int x^3 \cdot e^{x^2} dx^+ + c$$

$$= \frac{1}{2} e^{x^2} (x^2 - 1) + c$$

$$\therefore \tan(y) = \frac{1}{2} (x^2 - 1) + e^{-x^2} \cdot c$$

3.
$$\frac{dy}{dx} + y\tan(x) = y^3 \cdot \sec(x)$$

EDE -Hw-1

$$\underbrace{\left(5x^4 + 3x^2y^2 - 2xy^3\right)}_{M} dx + \underbrace{\left(2x^3y - 3x^2y^2 - 5y^4\right)}_{N} dy = 0$$

$$M_{xy} = 6x^2y - 6xy^2, N_y = 6x^2y - 6xy^2$$

$$M_y = N_y \quad \therefore \text{ EDE}$$

... So ln: $\int_{\text{cor}} m dx + \int (N \not x) dxy = C$

$$= x^5 - y^5 + x^3y^2 - x^2y^3 = c$$

29/9

$$(3x^2 + 6xy^2) dx + (6x^2y + 4y^3) dy = 0$$

Solve:

a)
$$[\cos(x)\tan(y) + \cos(x+y)]dx + [\sin(x)\cdot\sec^2(y) + \cos(x+y)]dy = 0$$

A)
$$M = \cos(x)\tan(y) + \cos(x+y) \cdot \frac{\partial M}{\partial y} = \cos(x) \cdot \sec^2(y) - \sin(x+y)$$

$$N = \sin(x)\sec^2(y) + \cos(x+y), \frac{\partial N}{\partial x} = \sec^2(y) \cdot \cos(x) - \sin(x+y)$$

 $\frac{\partial M}{\partial y} = \frac{\partial r}{\partial x} \Rightarrow$ Equation is exact. \therefore Solution is:

$$\int_{y \cdot \cos x} M \cdot dx + \underbrace{\int (\tan s \operatorname{in} N \operatorname{not containing } x) dy}_{0} d = c$$

$$\tan(y) \int \cos(x) dx + \int \cos(x+y) dx = c$$

$$\tan(y) \cdot \sin(x) + \sin(x+y) = c$$

1.
$$(y\cos(x) + 1)dx + \sin(x)dy = 0$$

2.
$$(\sec(x)\tan(x)\tan(y) - e^x) dx + (\sec(x)\sec^2(y)dy = 0)$$

Linear D.E with Constant Coeffis.

It is eqn of form.

$$a_0 \cdot \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = \phi(x)$$

where $a_i \in \mathbb{R}$,

If $\phi(x) = 0$: to solve this we have to change the equation to symbolic form. is $(a_0D^n + Da, D^{n-1} + \cdots)$ s 0\$ ItS Auxillary equation is: $(a_{\theta}m^{n} + a_{1}m^{n-1} + \cdots)$ ky = 0

From the auxillory equation we get the roots, m_1, m_2, \cdots Now we procede by following rales. (which depends on nature of roots.

Roots	complimentary f_x
1 Roots are Rd equal	$\left(c_1+c_2x\right)e^{m_1x}$
$m_1 = m_2$	$c_1 e^{m_1 x} + c_2 e^{m_2 x}$
$m_1 \neq m_2$	
$2) m_1 = m_2 = m_3$	$(c_1+c_2x+c_3x^2)e^{m_1x}$
3) $m_1 \neq m_2 \neq m_3$.	$c_1 e^{m_1 x} + c_2 e^{m_2 x} + c_3 e_3 x$
$(4)m_1 = m_2 \neq m_3$	$(c_1 + c_2 2e^{m_1 x} + c_3 e^{m_3 x})$
$4) \ \mathbb{I} : \alpha \pm i\beta$	$e^{\alpha x} \left(c_1 \cos(\beta x) + c_2 \sin(\beta x) \right)$

• From the nature of roots, we get complimentary function, Hence the Solution is:

$$y = C \cdot F$$

1. Solve
$$\frac{d^2y}{dx} + \frac{\int}{dx} + 6y = 0$$

Symbolic form:
$$(D^2 + 5D + 6) y = 0 \Rightarrow (D+3)(D+2) = 0$$

$$\therefore$$
 roots are: $m = -3, -2$

Real & distinct.

 \therefore complimentary function is : $c_1 \cdot e^{m \cdot x} + c_2 \cdot e^{m_2 x}$

$$= c_1 e^{-2x} + c_2 e^{-3x}$$

$$\therefore \text{ Solution is: } y = c_1 e^{-2x} + c_2 e^{-3x}$$

2 Solve
$$(D^3 + 1)y = 0$$

$$\rightarrow D^3 = -1 \Rightarrow \text{roots ar: } , -1, \frac{1}{2} \pm \frac{\sqrt{2}}{2}i$$

usang: $(a+b)(a^2 - ab + b^2)$

$$CF: e^{1/2x} \left(c_1 \cos \left(\frac{\sqrt{3}}{2} x \right) + c_2 \sin \left(\frac{\sqrt{3}}{2} x \right) \right) + c_3 \cdot e^{-x}$$

To find particular seder integral $\frac{\phi(e)}{5}$

Case

$$I: \phi(x) = e^{ax}$$
, put $D = a$

e.g:
$$\frac{d^2y}{dx} - 13\frac{dy}{dx} + 12y = e^{-2x}$$

$$\therefore C \cdot F = c_1 e^x + c_2 e^{12x}$$

 \therefore Porticulor integral : $PI = \frac{e^{-2x}}{D^2 - 13D + 12}$, D = -2,

$$\Rightarrow \frac{e^{-2x}}{4+26+12} = \frac{e^{-2x}}{42}$$

 \therefore Solution: y = CF + PI

$$= c_1 e^x + c_2 e^{12x} + \frac{e^{-2x}}{42}$$

$$6D^2 y - D_y - 2y = e^{4x} , 6$$

$$\therefore \text{ Auy-fx } = 6D^2 - D - 2, \text{ rooks } = \frac{+1 \pm \sqrt{1 + 4 \times 6 \times 2}}{12} = \frac{1 \pm 7}{12} \Rightarrow \frac{2}{3} - \frac{1}{2}$$

$$\therefore CF = c_1 e^{2/3x} + c_2 e^{1/2x}$$

$$PI = \frac{e^{4x}}{6D^2 - D - 2} = \frac{e^{4x}}{6 \times 16 - 4 - 2} = \frac{e^{4x}}{90}$$

... Solution:

$$y = CF + PF$$

$$= c_1 e^{\frac{2}{3}x} + c_2 e^{\frac{1}{2}x} + \frac{e^{4x}}{90}$$

$$y = c_1 \sqrt[3]{e^x}^2 + c_2 \sqrt{e^x} + e^{4x}/90$$

Particular Integral

Particular Integral case
$$2: \phi(x) = \cos(ax)$$
 or $\sin(ax)$, put $D^2 = a - a^2$?. Solve $(0^2 + 4) y = \cos(3x)$ Aux. $f_x = D^2 + 4$, roots $= \pm 2i$

$$\therefore CF = e^{ox} (c_1 \cdot \sin(2x) + c_2 \cdot \cos(2x)) = c_1 \cdot \sin(2x) + c_2 \cdot \cos(22)$$

$$PI = \frac{\cos(3x)}{D^2 + 4} = \frac{\cos(3x)}{-9 + 4} = \frac{\cos(3x)}{-5}$$

$$\therefore y = CF + PI$$

$$= c_1 \sin(2x) + c_2 \cdot \cos(2x) - \frac{\cos(3x)}{5}$$
II? $(D^2 - 3D + 2) y = \sin(3x)$
Aux. $f_x : D^2 - 3D + 2 \rightarrow \text{routs} : 1, 2$

$$\therefore CF = c_1 e^x + c_2 e^{2x}$$

$$D^2 = -9$$

$$PI = \frac{\sin(3x)}{D^2 - 3D + 2} =$$

$$= -\frac{\sin(3x)}{67 + 3D} = \frac{-\sin(52)}{3D + 7}$$

$$= \frac{-\sin(3x)(30 - 7)}{9D^2 - 49}$$

$$= \sin(3x) \cdot (3D - 7)$$

$$= +81 + 49$$

$$= \frac{\sin(3x)(3D - 7)}{130}$$

$$= \frac{1}{130} \left(\frac{3D \cdot \sin(3x)}{\frac{d\sin(x)}{dx}} - 7 \cdot \sin(3x) \right)$$

$$= \frac{1}{130} (9\cos(3x) - 7\sin(30))$$

... Solution:
$$c_1 e^x + c_2 e^{2x} + \frac{1}{130} (9\cos(3x) - 7\sin(3x))$$

 $(D^2 - 2D - 8) y = 4\cos(2x) + e^{4x}$
Aus. $f_n = D^2 - 2D - 8 \Rightarrow (D - 4)(D + 2) \Rightarrow \text{roots } 24, -2,$
 $\therefore C \cdot F = c_1 e^{4x} + c_2 e^{-2x}$

$$PI_{1} = \frac{4\cos(2x)}{D^{2} - 2D - 8} \qquad D^{2} = -4$$

$$= \frac{4\cos(2x)}{-4 - 2D - 8} = -\frac{4\cos(2x)}{-2D + 12}$$

$$\Rightarrow \frac{-2\cos(2x)(D - 6)}{(D + 6)(D - 6)} = \frac{-2\cos(2x)(D - 6)}{D^{2} - 36}$$

$$= \frac{2\cos(2x)(D - 6)}{40}$$

$$= \frac{\cos(2x)(D - 6)}{20}$$

$$= \frac{D \cdot \cos(2x) - 6\cos(2x)}{20}$$

$$= -\frac{\sin(2x) + 3\cos(2x)}{10}$$

$$= \frac{e^{4x}}{20}$$

$$= \frac{D \cdot 4 \times 1}{20}$$

$$PI_{2} = \frac{e^{4x}}{D^{2}-2D-8}$$

$$= \frac{e^{4x}}{16-8-8} \frac{1}{f(a)} = 0, \frac{1}{f(D)}e^{ax} = \frac{x}{\phi}$$

$$= \frac{e^{4x}}{0} \frac{1}{0} f(x) = \cos(ax) \& \frac{1}{f(C^{2})} = 0$$

$$PI_{2} = \frac{e^{4x}}{(D-4)(D+2)} * If f(x) = \sin(ax) d \frac{1}{f(D^{2})} = 0$$

$$= \frac{1}{D-4} \times \frac{e^{4x}}{D+2} \frac{1}{f(D)} \sin(ax) = \frac{-x \cdot \cos(ax)}{29}$$

$$\Rightarrow = \frac{xe^{4x}}{4+2} = \frac{xe^{4x}}{6}$$

 \therefore Solution is: $CF + PI_1 + PI_2$

$$= c_1 e^{4x} + c_2 e^{-2x} - \frac{\sin(2x) + 3\cos(2x)}{10} + \frac{xe^{4x}}{6}$$

2.
$$(D^2 - 9)y = 1 + 5e^{4x} + 2e^{3x}$$

A)

Aus
$$F_n = D^2 - 9 = 3, -3$$

 $CF = c_1 e^{3x} + c_2 e^{-3x}$
 $PI_1 = \frac{e^{0x}}{D^2 - 9} = D^2 = 0$
 $= \frac{1}{-9} \quad D = 4$
 $PI_2 = \frac{5e^{4x}}{D^2 - 9} \quad \frac{5e^{4x}}{7} = \frac{1}{(D-3)} \cdot \frac{2e^{3x}}{(D+3)}$
 $= \frac{2e^{3x}}{D^2 - 9} = \frac{2xe^{3x}}{6} = \frac{xe^{3x}}{3}$

 \therefore Solution: $c_1e^{3x} + c_2e^{-3x} - \frac{1}{9} + \frac{5e^{4x}}{7} + \frac{xe^{3x}}{3}$

3.
$$(0^2 + 16) y = \cos(4x)$$

Case 3: $\phi(x) = x^m$

To find PI. $\frac{1}{f(D)}\phi(x)$, take $[f(D)]^{-1}\phi(x)$

 \rightarrow expand binomially, neglecting higher powers of D, (upto m^{th} power)

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \cdots$$
$$(1+x)^{-1} = 1 - x + x^{2} - x^{3} + x^{4} + \cdots$$
$$(1+x)^{-2} = 1 - 2x + 3x^{2}4 - 4x^{3} + \cdots$$

1.
$$(D^2 + D + 1)y = x^2$$

Aux.
$$f = D^2 + D + 1$$
, roots: $\frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$

$$EF = e^{-\frac{1}{2}x} \left(C_1 \cos(\sqrt{3}x) + C_2 \sin(x\sqrt{3}) \right)$$

$$PI = \frac{x^2}{D^2 + D + 1} = \left(1 + \left(D + D^2 \right) \right)^{-1} x^2$$

$$= \left(1 - \left(D + D^2 \right) + \left(D + D^2 \right)^2 - \left(D + D^2 \right)^3 + \cdots \right) x^2$$

$$= \left[1 - D - D^2 + D^2 + 2D^3 + D^4 \right] x^2$$

$$= x^2 - D \left(x^2 \right) - D^2 \left(x^2 \right) + D^2 \left(x^2 \right) + 2D^3 \left(x^2 \right) + D^4 \left(x^2 \right)$$

$$= x^2 - D \left(x^2 \right) + 2D^3 \left(x^2 \right) + D^4 \left(x^2 \right)$$

$$= x^2 - 2x + 0 + 0 = x^2 - 2x$$

: Solution:
$$y = cF + PI = e^{-\frac{1}{2}x} \left(c_1 \cos(x\sqrt{3}) + c_2 \sin(x\sqrt{3}) \right) + x^2 \to -p$$

$$(D^2 + 2D + 1) y = 2x + x^2 - 1$$

$$\therefore F = c_1 e^{-x} + c_2 e^{-x} x$$

$$PI_1 = \frac{2x}{D^2 + 2D + 1} = (D^2 + 2D + 1)^{-1} (2x)$$

$$= (D+1)^{-2}(2x)$$

$$= (1 - 2D + 3D^2) 2x$$

$$= 1 - 2D(2x) + 3D^2(2x)$$

$$=2x-4+6=2x-4$$

$$PI_2 = \frac{x^2}{(D+1)^2} = (D+1)^{-2} (x^2)$$

$$= (1 - 2D + 3D^2) x^2$$

$$= x^2 - 2D(x^2) + 3D^2(x^2)$$

$$= x^2 - 4x + 6 = x^2 - 4x + 6$$

$$\therefore \text{ Solution } = y = c_1 e^{-x} + x^2 \nrightarrow -2x + 2 + c_1 e^{-x}$$
$$= e^{-x} (c_1 + c_2 x) + x^2 - 2x + 2$$

$$(2D^{2} - 5D + 3) y = \cos(3x)\cos(2x)$$

$$= \frac{1}{2}(\cos(5x) - \cos(x)) \qquad C_{H}C_{B}$$

$$2D^{2} - 5D + 3 = \frac{5 \pm \sqrt{25 - 24}}{4} \Rightarrow \frac{3}{2}, 1 \qquad S_{1}S_{2} =$$

$$\therefore CF = C_{1}e^{3/2x} + C_{2}e^{x} \qquad S_{1}C_{2} =$$

$$PI_{1} = \frac{1}{2}\frac{\cos(5x)}{2D^{2} - 5D + 3} = \frac{1}{2}\frac{\cos(5x)}{5D - 13} = \frac{1}{2}\frac{\cos(5x)(5D + 13)}{25D^{2} - 16q}$$

$$C_{1} = \frac{1}{2}\frac{\cos(5x)}{10 - 5D + 3} = -\frac{1}{2}\frac{\cos(5x)}{5D - 13} = \frac{1}{2}\frac{\cos(5x)(5D + 13)}{25D^{2} - 16q}$$

$$C_A C_B = \frac{1}{2} [C(A+B) + C(A-B)]$$

$$= -\frac{1}{2} \frac{\cos(5x)(5D+13)}{125-169} = \frac{\cos(58)(50+13)}{88}$$

$$= \frac{5D(\cos(5x)) + 13\cos(5x)}{88}$$

$$= \frac{13\cos(5x) - 25\sin(5x)}{88}$$

$$PI_2 = \frac{1}{2} \frac{\cos(x)}{2D^2 - 50 + 3} \xrightarrow{Z}$$

: solution: $C_1 e^{3/2x} + c_2 e^x + \frac{1}{5668} (47\cos(5x) + 25\sin(5x))$ $(D^2 - 4D + 3) y = \sin(3x)\cos(2x)$

A 2^{nd} O.DE. has complimentary fo \$ particular integral compl.fn is of form: $Ae^mx + Be^{m_2x} + BCe^mx \dots$ where m_1, m_2, m_3 are roots of auzillory f_n . for imaginary roots: let a_{5bi} be the root,

 \therefore Solution is: $Ae^{(a+bi)x} + Be^{(a-bi)x}$

$$\Rightarrow Ae^{ax}e^{bix} + Be^{ax}e^{-bix}$$

$$= e^{ax} \left(Ae^{bix} + Be^{-bix} \right)$$

$$= e^{ax} \left(A(\cos(bx) + i\sin(bx)) + B(\cos(bx) - i\sin(bx)) \right)$$

$$= e^{ax} \left(A + B \right) (\cos(bx) + (A - B)i\sin(bx))$$

$$\Rightarrow e^{ax} (c \cdot \cos(bx))$$

$$\sin(3x) \cos(2x)$$

$$= \frac{1}{2}\sin(5x) + \frac{1}{2}\sin^{\sin}(x)$$
Aux. $f_n = D^2 - 4D + 3$, roots = 1,3
$$= (D - 1)(D - 3)$$

$$\therefore CF = c_1 e^x + c_2 e^{3x}$$

$$PI_1 = \frac{\sin(5x)}{2(D^2 - 4D + 3)} , D^2 = 5$$

$$\Rightarrow \frac{\sin(5x)}{13 - 8D} \Rightarrow \frac{\sin(5x)(13 + 8D)}{169 - 64D^2} = -\frac{\sin(5x)(13 + 8D)}{151}$$

$$= -\frac{13\sin(5x) - 40\cos(5x)}{151}$$

$$PI_2 = \frac{\sin(x)}{2(D^2 - 4D + 3)} \Rightarrow CD^2 = 1$$

$$\Rightarrow \frac{\sin(x)}{5 - 4D} \Rightarrow \frac{\sin^2(x)(5 + 4D)}{25 - 160^2} = \frac{\sin(x) + 4\cos(x)}{9}$$

 \therefore Solution: $y = CF + PI_1 + PI_2$

$$= c_1 e^x + c_2 e^{3x} - \frac{13\sin(5x) + 40\cos(5x)}{91} + \frac{5\cos(x) - 4\sin(x)}{9}$$

Case
$$\forall$$
 T $-e^{ax}f(x)$
 $\lambda (D^2 + 30 + 2) y = e^{2x} \sin(x)$

C.F in
$$y = c_1 e^{-1} + c_2 e^{-2x}$$

$$P.I, = \frac{e^{2x} \sin(x)}{D^2 + 3x + 2} = e^{2x} \cdot \frac{\sin(x)}{D^2 + 3D + 2} \cdot \frac{e^{2x}}{\sin(x)} \cdot e^{2x}$$

$$\frac{\sin(x)}{D^2 + 4D + 4 + 3D + 6 + 2} e^{23}$$

$$= \frac{\sin(x)}{D^2 + 7x + 12} e^{2x}$$

$$D^2 = -(1)$$

$$\Rightarrow \frac{\sin(x)}{70 + 11} e^{221}$$

$$\Rightarrow \frac{\sin(x)(7D\bar{a}11)}{\cos D^2 - 121} e^{22}$$

$$\Rightarrow \frac{\sin(x)(70 - 11)}{-170} (e^{2x}) \Rightarrow \frac{7\cos(x) - 11\cos\sin(x)}{9} \cdot e^{2x}$$

-Solution.

$$y = c_1 e^{-x} + c_2 e^{-2x} + \frac{11\sin(x) - 7\cos(x)}{170}e^{2x}$$

Но

$$\begin{cases} (D^2 + 4D + 5) y = 12e^{-12} \cdot \cos(x) \\ (D^2 - 2D + 1) y = xe^{2x} \end{cases}$$

e.

$$\therefore CF = c_1 e^{-x} + c_2 x e^x$$

$$PI = e^{2x} \cdot \frac{x}{D^2 - 2D + 1} = D^2$$

$$ye^{2x} - (D^2 - 2D + 1)x$$

$$\Rightarrow e^{2x} \cdot (D^2 - 2D + 1)^{21}x$$

$$\Rightarrow e^{2x} \cdot (D - 1)^{-2} \cdot x$$

$$\Rightarrow e^{2x} \cdot (1 + 2D - 3D^2)x$$

$$\Rightarrow e^{2x} \cdot (x + 2)$$

$$\Rightarrow \frac{x}{(D - 1 + 2)^2} \cdot e^{2x}$$

$$\Rightarrow (D + 1)^{-2}x \cdot e^{2x}$$

$$\Rightarrow (x - 2)e^{2x}$$

: Solution:
$$y = c_1 e^x + c_2 e^x + (x-2)e^{2x}$$

$$(D^{3} - 3D_{x}^{2} + 3D - 3) y = x^{2}e^{x}$$

$$\Rightarrow (D - 1)^{3} \Rightarrow D = 1$$

$$\therefore c = c_{1}e^{x} + c_{2}e^{x} \cdot x + c_{2}x^{2}e^{x}$$

$$PI = e^{x} \cdot \frac{x^{2}}{(Q - 1)^{3}}, \quad D \to D + 1$$

$$\Rightarrow e^{x}\frac{x^{2}}{D^{3}} \Rightarrow e^{x} \cdot (D^{-3}) x^{2}$$

$$e^{x} \cdot (D^{-2}) \frac{x^{3}}{3} = e^{x} \cdot \left(D^{-1} \cdot \frac{24}{12}\right) = e^{x} \cdot \frac{25}{650}$$

$$D^{-3} + (D + 1 - 1)^{-3} \to (1 + (D - 1))^{3}x^{2}$$

$$\to (1 + 3(D - 1) + 3(D - 1)^{2}) \geq^{2}$$

$$= x^{2} + 3(D - 1)x^{2} + 3(D^{2} - 2D + 1) x^{2}$$

$$\Rightarrow x^{2} + (3D - 3)x^{2} + (3D^{2} - 6D + 3) x^{2}$$

$$\Rightarrow x^{2} + -3x^{2} + 6$$

$$x^{2} + 6x^{3} + 6 - 12x$$

$$(D^{2} - 2D + 1) y = x \cdot e^{x} \sin(x)$$

$$C \cdot f = \sec(c_{1} + c_{2}x) e^{x}$$

$$PI = e^{x} \cdot \frac{x \sin(x)}{(D - 1)^{2}} \xrightarrow{D \to D + 1} e^{x} \cdot \frac{x \sin(x)}{D^{2}}$$

$$= e^{x} \cdot D^{1}(x \cdot \sin(x))$$

$$e^{x} \cdot D^{-4}(-x \cdot \cos(x) + \sin(x))$$

$$e^{x} \cdot (-x \cdot \sin(x) + \cos(x) + \cos(x)$$

$$\Rightarrow e^{x} \cdot (x \sin(x) + 2\cos(x))$$

$$\therefore \text{ soln } y = (c_{1} + c_{2}x - x\sin(x) - 2\cos(x)) e^{x}$$

Cauchy's LDE General form:

$$a_0 x^n \cdot \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_x x^{dy} dx + y = \phi(x)$$

is reduced to LDE with Const. coett by substituting

$$x = e^t$$
, or $t = \ln(x)$ $\frac{d}{dt} = D$, $\therefore x^2 \cdot \frac{d^2y}{dx^2} \Rightarrow D(D-1)y$
 $x\frac{dy}{dx} = Dy$: $x^3\frac{d^3y}{dx^3} \to D(D-1)(D-2)y$

Solve:

1).
$$x^2 \cdot \frac{d^2y}{dx^2} - x\frac{dy}{dx} + y = \ln(x)$$

This if Cauchy's LDG : put $x = e^t$, $\Rightarrow \sin(x) = t$
Redue to LDE with const-eoeth.

(1) →D(D-1)y - Dy + y = t

$$(D^{2} - 2D + 1) y = t$$

$$∴ CF = (c_{1} + c_{2}t) e^{t}$$

$$P_{I} = \frac{t}{(D-1)^{2}} →$$

$$= \frac{t}{D^{2} - 2D + 1} = (1 + (D^{2} - 2D))^{-2} =$$

$$= (1 - D^{2} + 2D) t$$

$$= t + 2$$

$$= \ln(x) + 2$$

: solution: $y = (c_1 + c_2 \ln(x)) e^{\ln(x)} + \ln(x) + 2$

$$= \oint_1 +r_2 \ln(x) \left[x + \ln(x) + 2 \right]$$
$$= c_1 x + \ln(x) (1 + xc_2) + 2$$

2.
$$x^2 \cdot y'' - 4xy' + 6y = x^2$$

put $x = e^t, t = \ln(x)$

$$D(D-1)y - 4Dy + 6y = e^{2t}$$

$$(D^2 - 5D + 6) y = e^{2t}$$

$$D = \frac{e^{2t}}{D^2 - 5D + 6}, \quad CF = c_1 e^{+3x} + c_2 e^{-12x}$$

$$\therefore PI_1 = 2$$

$$\Rightarrow \frac{e^{2t}}{4 - 10 + 6} =$$

$$\frac{+5 \pm \sqrt{25 - 25}}{2} = \frac{+5 \pm 1}{2}$$

$$= +2, -3$$

$$\frac{e^{2t}}{(D-3)(D-2)} \Rightarrow \frac{1}{D-2} \cdot \frac{te^{2t}}{D-3} = -te^{2t}$$

: Solution: $y = c_1 e^{3t} + c_2 e^{2t} + t e^{2t}$

$$= c_1 e^{\ln(x)^2} + c_2 e^{2 \cdot \ln(x)} - \ln(x) e^{2 \ln(x)}$$
$$= c_1 x^3 + c_2 x^2 - \ln(x) x^2$$
$$y = c_1 x^3 + x^2 (c_2 - \ln(x))$$

HT

3.
$$x^2y'' - 2xy' - 4y = x^4$$
.
4. $x^2y'' + 4xy' + 2y = x^2 + x^{-2}$
In 10

Η.

Simultaneous LDE

It contains two or more dependent variables (soy x,y.. and one inclependent variable (say t)

1.
$$\frac{dx}{dt} = 7x - y, \quad \frac{dx}{dt} - \frac{dy}{dt} = 5(x - y)$$

$$\frac{dx}{dt} - 2x = y = 0 \to (D - 7)x + y = 0 \tag{1}$$

$$\frac{dx}{dt} - \frac{dy}{5x} - \frac{dy}{dx} + 5y = 0 \leadsto (D - 5)x + -(D - 5)y = 0$$

$$(D - 5) \times 0:$$

$$(D - 7)(D - 5)x + (D - 5)y = 0$$

$$+ [(D - 5)\dot{x} - (D - 5)y = 0]$$

$$\underline{(D^2 - 11D + 30)}_{\text{aux ff}} x = 0$$

 \therefore costs of aux ff z

5,6

$$C \cdot F_{12}x = C, e^{5t} + C_2 e^{6t}$$

$$D = \frac{d}{db}$$

 \therefore (1) becomv.

$$(D-7) (c_1 e^{st} + c_2 e^{st}) + y = 0$$

$$\Rightarrow = 5c_1 e^{st} + 6c_2 e^{6t} - 7c_1 e^{st} - 7c_2 e^{-st} = -y$$

$$\Rightarrow y = 2c_1 e^{st} + c_2 e^{6t}$$

$$\& x = c_1 e^{5t} + c_2 e^{6t}$$

$$2\frac{dx}{dt} + 2x - 3y = t \quad , \quad \frac{dy}{dt} - 3x + 2y = e^{2t}$$
A)

$$(D+2)x - 3y = t$$

 $(D+2) y - 3x = e^{2t}$
 $(1) \times 3:8$ (2)

$$3x(D+2) - 9y = 3t (3)$$

$$+ \left(-3x(D+2) + (D+2)^2 y = (D+2)e^{2t}\right) \tag{9}$$

$$(3) + (4)$$

$$y(D + 2)^{2} - 4 = 3t + 4e^{2t}$$

$$y(D^{2} + 4D - 5) = 3t + 4e^{2t}$$

$$= y(D + 5)(D - 1)$$

$$\therefore \text{ roots } = -5, +1$$

$$\therefore CF_{\text{an } y}c_{1}e^{-5t} + C_{2}e^{+t}$$

$$PI_{y_{1}} = \frac{3t}{(D^{2} + 4D - 5)}$$

$$= -\frac{3}{5} \times \left(1 + \left(\frac{D^{2}}{-5} - \frac{4}{5}D\right)\right)^{-1} t$$

$$= -\frac{3}{5} \times \left(1 - \frac{D^{2}}{-5} + \frac{4}{5}Dx^{2} + \cdots\right) t$$

$$= -\frac{3}{5} \left(t + 0 + \frac{4}{5}\right)$$

$$PI_{y_{1}} = \frac{4e^{2t}}{(D + 5)(D - 1)}$$

$$\Rightarrow \frac{4}{7}t - \frac{12}{25}$$

$$\Rightarrow y = CF_{y} + PI_{y_{1}} + PI_{y_{2}}$$

$$\therefore y = C_{1}e^{-5t} + C_{2}e^{t} - \frac{3}{5}t + \frac{4}{7}e^{2t} - \frac{12}{25}$$

Substitute in (2):

$$(D+2)y - e^{2t} = 3x \Rightarrow x = \frac{1}{3} \left[(D+2)y - \frac{t}{2}e^{2t} \right]$$

$$x = \frac{1}{3} \left(-5c_1e^{-5t} + c_2e^t - \frac{3}{5} + \frac{8}{7}e^{2t} + 2c_1e^{-5t} + 2c_2e^t - \frac{6}{5}t + \frac{8}{7}e^{2t} - \frac{24}{25} - e^{2t} \right)$$

$$= \frac{1}{3} \left(-3c_1e^{-5t} + 3c_2e^t + \frac{9}{7}e^{2t} - \frac{6}{5}t - \frac{39}{25} \right)$$

$$x = -c_1e^{-5t} + c_2e^t + \frac{3}{7}e^{2t} - \frac{2}{5}t - \frac{13}{25}$$

$$\frac{dx}{dt} + 2y = -\sin(t),$$

3.

$$\frac{dt}{dt} + 2y = -\sin(t)$$

$$\frac{dy}{dt} = 2x + \cos(t)$$

A)
$$\frac{dx}{dt} + 2y = -\sin(t) - 1$$

$$\frac{dx}{dt} + 2y = -\sin(t) - (D)(D-2)x + (D+2)y = \cos(t) - \sin(t)$$

$$\frac{dy}{dt} - 2x = \cos(t) \quad (D)$$

$$(1) \times 2,$$

$$2x \cdot 0 + 4y = -2\sin(t)$$

$$(2) \times 0.$$

$$D^2 \cdot y - 2x \cdot D = D \cdot \cos(t) - (4)$$

(3) + (4):

$$\begin{split} &D^2 \cdot y + 4y = -3\sin(t) \\ &\frac{d^2y}{dt} + 4y = -3\sin(t) \\ &\therefore \quad ye^{4t} = \int e^{4t}x - 3\sin(t)dt = -3\int \sin(t)e^{4t} \cdot dt \end{split}$$

$$I = -3 \int \sin(t)e^{4t}dt \quad I_2 = \cos(t)4e^{44} + 4 \int \sin(t) \dots$$

$$= -3(\sin(t) \times 4e^{4t} - 4 \underbrace{\cos(t) \cdot e^{4t}}_{I}) = 40 \cos(t)e^{4t} + 4I$$

$$= -8 \sin(t)e^{4t} + 32 \cos(t)e^{4t} + 32I$$

$$\therefore = \frac{e^{4t}}{4^2 + 1}(4 \sin(t) - \cos(4t)$$

$$\therefore = \frac{e^{4t}}{4^2 + 1}(4 \sin(t) - \cos(6t))$$
or $(p^2 + 4) y = -3 \sin(t)$

$$\therefore y = (c_1 \cos(2t) + c_2 \sin(2t))$$

$$PI = \frac{-3 \sin(t)}{D^2 + 4}, \quad D^2 = -1$$

$$\Rightarrow -\frac{3}{3} \sin(t) = -\sin(t)$$

$$\therefore y = c_1 \cos(2t) + c_2 \sin(2t) - \sin(t)$$

Substitute this in (2):

$$\Rightarrow x = -e^{2t} (\cos^5 (-c_1 + c_2))$$

$$\Rightarrow x = -2e^{2t} (c_1 + c_2) \cos(2t) + (c_2 - c_1) \sin(2E)) - \frac{1}{16} - \cos(t)$$

$$2 = -\frac{1}{2} (\cos(t) - 2c_1 \sin(2t) + 2c_2 \cos(2t) - \sin(t))$$

Hew 1.
$$\frac{dy}{dt} + 2y + x = \sin(t)$$
 $\frac{dx}{dt} - 4y - 2x = \cos(t)$ H)
$$Dy + 2y + x = \sin(t)$$

 $\mathcal{C} \times \bar{\partial} D$:

$$-D^{2}y + 2Dy - Dx = -\cos(t)$$

$$\oplus -4y + Dx - 42x = \sin(t)$$

$$-(+D^{2} + 2D + 4)y - 2x = \sin(t) - \cos(t)$$

 $Dx - 4y - 2x = \cos(t)$

$$\therefore + \frac{2Dy + 4y + 2x = 2\sin(t)}{4D^2 + 3}$$

$$- D^2y = 3\sin(t) - \cos(t)$$

$$\therefore y = \int (\cos(t) - 3\sin(t))dtdt$$

$$= \int (\sin(t) + 3\cos(t))dt$$

$$y = 3\sin(t)\cos(t) \quad y = 2\sin(t) + ct + 2$$

$$\sin(t) + 266\sin(t) - 2\cos(t) + x = \sin(t) \quad x = -6\sin(t) - \cos(t)$$

∴ from (0: $8\sin(t) + B3\cos(t) + 266\sin(t) - 2\cos(t) + x = \sin(t)$ ∴ $x = -6\sin(t) - \cos(t)$ $x = -3\sin(t) - 2\cos(\theta)$

$$-2ct + 2c_2 + c$$