Optimizing Sale Price in Ames, Iowa

By Rose Dennis

Overview

- Problem Statement
- The Data and its Caveats
- The Impact of Neighborhood
- Kitchen Quality
- Modeling
- Conclusions

How can we maximize the sale price of a home in Ames, Iowa? What features are most important to potential clients?

*Full credit to BEH statistical consulting for this image

The Data and its Caveats

27 Neighborhoods2,051 homes80 original features

- Unbalanced Classes (ie. Neighborhood)
- Outliers
- Missing Values
- Ambiguous feature names (ie. Overall Quality)
- Multiple Linear Regression Assumptions

The Impact of Neighborhood

North Ridge Heights

Gilbert

The Impact of Neighborhood-Diving into the Data

The Impact of Neighborhood-Diving into the Data Random Sample of 5 Neighborhoods

- Gauge different mean/median
- Different number of potential outliers for each
- Types of houses differ
- Mix/Max Sale price

Kitchen Quality

The median price for each kitchen quality is clearly different. We will put this in our model. We can also see outliers.

Modeling-Features

- TotRms AbvGrd	- Central Air	- 1st Flr SF
- Have Pool	- Kitchen Qual	- Year Built
- Neighborhood	- Functional	- Year Remod/Add
- Utilities	- Garage Qual	- Full Bath
- Bldg Type	- Overall Qual	- Lot Frontage
- Exter Qual	- Gr Liv Area	- Mas Vnr Area
- Heating	Garago Arga	mas viii maa

- Total Bsmt SF

- Garage Area

Linear Regression Model Formula

$$\mathbf{Y}_{i} = \mathbf{\beta}_{0} + \mathbf{\beta}_{1} \mathbf{X}_{1} + ... + \mathbf{\beta}_{p} \mathbf{X}_{p} + \mathbf{\epsilon}_{i}$$

Interpretation for our model. Y_i represents our predicted values for Sale Price. The intercept implies if we had 0 features, this is how much the house would cost. Each beta represents for every one unit increase in X, there's a respective beta i increase in Y.

$$H_0$$
: $\beta_0 = \beta_1 = \beta_2 = ... \beta_p = 0$
 H_{Λ} : At least one $\beta_i \neq 0$

Our Model- The Math

 $\begin{aligned} \mathbf{Y_i} &= 5.2004 + 0.0741 (\text{Overall Qual}) + 0.0003 (\text{Garage Qual}) + 0.0013 (\text{Year} \\ \text{Built}) ... &- 0.0101 (\text{TotRms AbvGrd}) + 0.4575 (\text{Neighborhood_GrnHill}) + \\ &- 0.0935 (\text{Neighborhood_Greens}) + ... \end{aligned}$

 R^2 Score = 0.887

Remember! Our model uses the log(SalePrice) so we have to interpret slightly differently.

Our Model- Interpreting the coefficients

Numerical Feature

Overall Quality: $\beta = 0.0741$

Interpretation: For one unit increase in the overall quality, the sale price increases by about 7%.

Categorical Feature

Green Hill: $\beta = 0.4575$

Highest Beta coefficient while also having a significant p-value.

Interpretation: All else being held equal, the sale price of a house in Green Hill is about 45% more expensive than the next highest neighborhood, Greens.

Possible Next Steps

- Interaction term between Neighborhood and Total Rooms above ground
- Fine tuning the model
- Unbalanced Classes- up/down sampling or weighting

Conclusion

As expected- Neighborhood matters!

Renovating? Look at the kitchen quality first.

Let's sell some houses!

Outside Resources:

http://www.tomrandallrealestateteam.com/Newsletter

https://rstudio-pubs-static.s3.amazonaws.com/337439 24918eaefe724411be93e41ede48b256.html