

货拉拉基于DORIS的 OLAP体系演进及建设方法

杨秋吉 大数据引擎负责人 张斌 大数据工程师

目录 CONTENT

03 OLAP体系演进(下) **04** 总结思考与后续规划

1背景介绍

货拉拉介绍

352 国内城市 月活司机 760万 月活用户 8+ 业务线 20PB+ IDC 机器数 20PB+ 存储量 20K+ 日均任务数

货拉拉-大数据

货拉拉-大数据

02OLAP体系演进(上)

OLAP 演进简介

支撑业务: 罗盘 (实时智能决策系统, 支持实时分析、诊断和策略以及复盘)

需求特点:数据实时导入、自由组合

维度、实时聚合分析

引入引擎: Druid, 提供单表预聚合查

询能力

支撑业务:智能定位工具(基于埋点数据 提供司机和订单的汇总和明细数据查询功能)

需求特点:单表明细查询和聚合分析、

海量埋点数据实时导入

引入引擎: ClickHouse, 提供单表明细

查询且有数据高压缩率

支撑业务: AB Test和实时数仓

需求特点:多数据源(试验埋点数据、 订单数据、用户数据、司机数据)关联分析

引入引擎: Doris, 提供多张大表关联

分析能力

2021 H1

OLAP 1.0: 孕育期

2021 H2

OLAP 2.0: 完善期

2022

OLAP 3.0: 成熟期

OLAP 1.0 - 业务场景

存在问题

- 1. Mysql存储瓶颈
- 2. 开发成本高、效率低
- 3. 部分聚合需求不支持 (如长时间窗口聚合分析)

OLAP 1.0 - 需求分析

OLAP 1.0 - 解决思路

OLAP 1.0 - 技术调研

业务需求

1. 可横向扩容, 无存储瓶颈; 2. 可自由组合维度分析; 3. 可支持任意时间跨度的分析

OLAP 引擎	数据导人延迟	实时数据导入语义	数据 查询延迟	支持多维分 析	SQL支持程度	支持明细查询	JOIN支持度	支持复杂数据类型	集群成本	可控性	扩展性	可运维性
Druid	支持实时	Exactly-Once	低 (亚秒~秒级)	支持	较完善	可支持 (关闭rollup)	很低	不支持	中 (角色较多, 依赖HDFS)	高 (JAVA开发,社 区活跃,应用多)	回收	亩
ClickHouse	支持实时	At-least-once	低 (亚秒 [~] 秒级)	支持	较完善	支持	一般 (内存JOIN)	支持 (MAP/JSON/Array等)	低 (数据压缩率 高)	中 (C++开发,社区 一般活跃,应用较 多)	古同	中
Kylin	分钟级/天级	N/A	非常低 (亚秒级)	支持	非常完善	不擅长	不支持	不支持	高	高 (JAVA开发,社区 活跃)	亩	高
Presto	小时级/天级	N/A	一般 (秒 [~] 分钟级)	支持	非常完善	不擅长	支持	支持	低 (无存储)	高 (JAVA开发)	吉同	高
Doris	支持实时	Exactly-Once	低 (亚秒~秒级)	支持	非常完善	支持	支持	不支持 (2022 Roadmap 已有规划)	中	中 (JAVA/C++开发, 社区较活跃,应用 较多)	亩	高

OLAP 1.0 - POC验证

01 语法功能验证

- 1. 收集业务SQL,提取 SQL Pattern
- 2. Druid建表和SQL改写: UDF、rollup语义、count distinct语义

02 性能验证

- 1. 采用业务真实数据和 SQL测试
- 2. 关闭Cache, 统计P75、 P90、P99的查询时间
- 3. 结合Arthas火焰图分析性能
- 4. 性能调优: 优化建表导数和索引逻辑、参数调整、物化视图

03 数据准确性验证

- 1. 选择基准值: hive表
- 2. hive和druid双跑验证 (发现StringLast函数在特定 场景下计算值不稳定)

OLAP 1.0 - 稳定性保障

事前【故障预防】

1. 容量规划: 压测 (导数和查

询)、容量评估

2. 容灾演练: 扩容、缩容、停

服务、HA验证

3. 恢复预案: 前期业务双跑,

链路随时可切换

事中【故障处理】

1. 发现能力: 全链路监控告警 (机器、服务、任务)

2. 定位能力: 研究引擎原理,

关注业务分享,定位大盘

3. 恢复和规避能力: 业务双跑

事后【故障整改】

- 1. 故障复盘
- 2. 整改落地

OLAP 1.0 - 上生产

2.OLAP上线观察 1. 业务查询走Druid 2. 业务随时能切回MySQL 3.OLAP稳定运行 1. MySQL链路下线

1. OLAP测试阶段

- 1. 业务数据接入Druid
- 2. 线上查询走MySQL库
- 3. 验证Druid数据质量和稳定性

OLAP 1.0 - 问题总结

实时数据乱序

- ✓ 影响: 会产生大量的小文件(Segment),影响 查询效率,增大元数据压力
- ✓ 解决办法: 在上游Flink里过滤异常数据

StringLast函数结果值不稳定

- ✓ 影响: 多次查询的结果值不一致
- ✓ 解决办法:
 新增StringLastMax和StringLastMin函数

无高效的精准去重函数

- ✓ 影响: 离线场景业务需要精准去重能力
- ✓ 解决办法:
 - 1.引入社区里快手提供的patch, 合入 0.20版本
 - 2.另外新增SQL API, 并支持导入 hive 的bitmap二进制字符串类型

OLAP 2.0 - 业务需求分析

OLAP 2.0 - 业务需求分析

OLAP 2.0 - 解决思路(复用1.0的解决思路)

OLAP 2.0 - 技术调研

业务需求

1. 能同时支持明细查询和聚合分析; 2. 实时数据写入吞吐高; 3. 支持 Map 和 Json 格式数据的高效写入和查询

OLAP 引擎	数据导人延迟	实时数据导入语义	数据 查询延迟	支持多维分 析	SQL支持程度	支持明细查询	JOIN支持度	支持复杂数据类型	集群成本	可控性	扩展性	可运维性
Druid	支持实时	Exactly-Once	低 (亚秒~秒级)	支持	较完善	可支持 (关闭rollup)	很低	不支持	中 (角色较多, 依赖HDFS)	高 (JAVA开发,社区 活跃,应用多)	言同	亩
ClickHouse	支持实时	At-least-once	低 (亚秒~秒级)	支持	较完善	支持	一般 (内存JOIN)	支持 (MAP/JSON/Array等)	低 (数据压缩率 高)	中 (C++开发,社区 一般活跃,应用较 多)	盲同	中
Kylin	分钟级/天级	N/A	非常低 (亚秒级)	支持	非常完善	不擅长	不支持	不支持	台同	高 (JAVA开发,社区 活跃)	台回	台同
Presto	小时级/天级	N/A	一般 (秒 [~] 分钟级)	支持	非常完善	不擅长	支持	支持	低 (无存储)	高 (JAVA开发)	吉同	高
Doris	支持实时	Exactly-Once	低 (亚秒~秒级)	支持	非常完善	支持	支持	不支持 (2022 Roadmap 已有规划)	中	中 (JAVA/C++开发, 社区较活跃,应用 较多)	高	追

03 OLAP体系演进(下)

OLAP 3.0 - 需求分析

多表关联场景需求强烈

随着公司业务的发展,多个 产品线对于多数据源关联场 景下在线多维分析需求越来 越迫切。 ↓ AB-Test:

大数据量的多表关联场景 (各类埋点数据) 进一步做业务分析

实时数仓:

多表关联场景支持,任意时间跨度聚合分析

OLAP 3.0 - 需求分析

AB-Test:

- 业务持续增长更多靠产研驱动、离不开科学的AB实验;
- AB平台提供科学分流、智能统计能力,助力业务决策、实现业务增长;

通过AB数据与用户埋点数据**关联**,可以更直接有力的证明AB策略的优劣。

OLAP 3.0 - 解决思路(复用1.0的解决思路)

OLAP 3.0 - 技术调研

现有OLAP引擎支持大表JOIN能力较弱,druid/clickhouse均不支持千万级甚至亿级数据量下的大表JOIN。

Druid

采用内存字典(KV格式)方式只能支持简单维表JOIN;

Clickhouse

基于内存做MapJoin支持少量数据下的 JOIN;

OLAP 3.0 - 技术调研

业务需求

1. 数据导入准确性; 2. 支持大表join;

OLAP 引擎	数据导人延迟	实时数据导入语义	数据 查询延迟	支持多维分 析	SQL 支持程度	支持明细查询	JOIN支持度	支持复杂数据类型	集群成本	可控性	扩展性	可运维性
Druid	支持实时	Exactly-Once	低 (亚秒~秒级)	支持	较完善	可支持 (关闭rollup)	很低	不支持	中 (角色较多, 依赖HDFS)	高 (JAVA开发,社区 活跃,应用多)	回叶	回中
ClickHouse	支持实时	At-least-once	低 (亚秒~秒级)	支持	较完善	支持	一般 (内存JOIN)	支持 (MAP/JSON/Array等)	低 (数据压缩率 高)	中 (C++开发,社区 一般活跃,应用较 多)	官同	中
Kylin	分钟级/天级	N/A	非常低 (亚秒级)	支持	非常完善	不擅长	不支持	不支持	高	高 (JAVA开发,社区 活跃)	山中	吉同
Presto	小时级/天级	N/A	一般 (秒 [~] 分钟级)	支持	非常完善	不擅长	支持	支持	低 (无存储)	高 (JAVA开发)	亩	高
Doris	支持实时	Exactly-Once	低 (亚秒~秒级)	支持	非常完善	支持	支持	不支持 (2022 Roadmap 已有规划)	中	中 (JAVA/C++开发, 社区较活跃,应用 较多)	恒	追

OLAP 3.0 - POC

功能验证

TPC-DS数据集验证,业务数据真实场景验证;

性能验证

多表关联场景,单天数据查询,TP75耗时9s;

数据质量

TPC-DS数据集、业务侧真实数据分别在 hive和doris侧双跑比对;

OLAP 3.0 - 稳定性保障

事前【故障预防】

- 1. 容量规划确认容量指标
- 2. 压测确认容量最大水位

事中【故障处理】

- 1. 发现能力: 全链路监控告警
- 2. 定位能力:研究引擎原理, 关注业务分享,定位大盘

事后【故障整改】

- 1. 故障复盘
- 2. 整改落地

OLAP 3.0 - 稳定性保障

OLAP 3.0 - 问题总结

问题1-查询性能优化:

需求:查询7天数据,RT<=5s 优化前:查询7天数据耗时30s

	优化方法	原理	效果
1	小表 join 大表 -> 大表 join 小表	doris默认使用右表数据构建hashtable	30s> 16s
2	t1 join (t2 union all t3) ->	利用RuntimeFilter特性 运行时采用BloomFilter,将HashKey条件下推到 大表Scan时过滤	16s> 5s

OLAP 3.0 - 问题总结

问题2-UnhealthyTablet不下降,查询报错-230

场景:不停flink写任务,be机器交替重启,重启完后出现unhealthyTablet

This page lists the system info, like /proc in Linux.

Current path: //statistic

Dbld \$	DbName \$	TableNum \$	PartitionNum \$	IndexNum \$	TabletNum \$	ReplicaNum \$	UnhealthyTabletNu	n \$	Incon
11001	a	1	1	1	1	3	0		0
18642	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which i	2	2	2	2	6	0		0
13032		6	13	13	290	872	18		0

原因: 1. coordinator be在两阶段提交执行Commit后publish前被重启了

2. max_running_txn_num_per_db参数配置过大, compaction压力大

解决办法: 1. 引入社区1.10 patch (issue-9267)

2. 数据恢复

OLAP 3.0 - 参数优化

使用过程中的一些参数优化:

配置项	含义	默认值	修改值
enable_profile	进行查询分析	FALSE	TRUE
exec_mem_limit	单个查询的内存限制	2G	8G
parallel_fragment_exec_instance_num	BE上执行实例的个数	1	8
compaction_task_num_per_disk	并发compaction数量	2	4
streaming_load_json_max_mb	控制单次streamLoad数据量	100	150
max_segment_num_per_rowset	限制rowset中segment的数量	200	500
enable_sql_cache	SQL级缓存	FALSE	TRUE
enable_partition_cache	分区级缓存	FALSE	TRUE

OLAP 3.0 - 数据流

04

总结思考与后续规划

总结与思考

总结

- 1. 从业务需求出发匹配合适引擎,为业务精细化运营提供技术支持;
- 2. 摸索出一套较完善的上线流程及稳定性保障体系方案,为业务平稳运行提供能力保障;

思考

1. 没有单种引擎能高效支持各种场景,需要针对需求特点选取合适的引擎;

后续规划

OLAP平台化:

自助化建模; 多引擎路由、支持各类聚合、明细、关联等场景。

后续规划

01

高效

支持更多业务场景, 提升开发、决策效率, 降本增效

02

稳定

深入内核原理,提供二次开发支持;完善监控告警体系

03

内核演进

Doris逐步替换Druid,以Doris为主引擎、Clickhouse为辅

非常感谢您的观看

#加加 | *DataFun.

