Module	Approximat	tion Algor	ithms fo	or NP-F	Hard Probler	 ns
MA-INF 1201	тррголіна	711601	ionnii i	,, ,,,		110
Workload	Credit points	Duration	Freque	ency		
270 h	9 CP	1 semester	_	t every y	ear	
Module	Prof. Dr. Marek Karpinski					
coordinator	r					
Lecturer(s)	Prof. Dr. Marek Karpinski, Prof. Dr. Norbert Blum,					
	Prof. Dr. Rolf Klein, Prof. Dr. Bernhard Korte,					
	Prof. Dr. Jens Vygen, Prof. Dr. Stefan Hougardy,					
	Prof. Dr. Stephan Held					
Classification	Programme		Mode	Seme	ster	
Classification	M. Sc. Computer Scient		Optiona			
Technical skills	Introduction to design and analysis of most important					
	approximation algorithms for NP-hard combinatorial					
	optimization problems, and various techniques for proving lower					
G & 1.11	and upper bounds, probabilistic methods and application					
Soft skills	Presentation of solutions and methods, critical discussion of					
	applied methods and techniques					
Contents	Approximation Algorithms and Approximation Schemes. Design					
	and Analysis of Approximation algorithms for selected NP-hard					
	problems, like Set-Cover, and Vertex-Cover problems,					
	MAXSAT, TSP, Knapsack, Bin Packing, Network Design,					
	Facility Location. Introduction to various approximation techniques (like Greedy, LP-Rounding, Primal-Dual, Local					
	Search, randomized techniques and Sampling, and					
	MCMC-Methods), and their applications. Analysis of					
	approximation hardness and PCP-Systems.					
Prerequisites	Recommended: Introductory knowledge of foundations of algorithms and complexity theory is essential.					
•						
	Teaching forms	at Gr	oup size	h/week	Workload[h]	CP
Format	Lecture		60	4	60 T / 105 S	5.5
	Exercises		30	2	30 T / 75 S	3.5
	T = face-to-face teaching; $S = independent study$					
Exam achievements	Oral exam (graded)					
Study achievements	Successful exercise participation (not graded)					
Forms of media						
Literature	• S. Arora, C. Lund: Hardness of Approximations. In:					
	Approximation Algorithms for NP-Hard Problems (D. S.					
	Hochbaum, ed	, .				
	• M. Karpinski: Randomisierte und approximative Algorithmen					
	für harte Berechnungsprobleme, Lecture Notes (5th edition),					
	Universität Bonn, 2007 • B. Korte, J. Vygen: Combinatorial Optimization: Theory and					
	Algorithms (5th edition), Springer, 2012					
	• V. V. Vazirani: Approximation Algorithms, Springer, 2001					
	• D. P. Williamson, D. B. Shmoys: The Design of					
İ	Approximation Algorithms, Cambridge University Press, 2011					
	Approximation	n Algorithms	. Cambri	dge Univ	ersity Press 20	11