Importing Libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib.axes as ax
    import seaborn as sns
sns.set()
```

Loading Data

```
In [2]: data = pd.read_csv(r'C:\Users\vamsi\Desktop\ML\13.Agglomerative Clustering\study_
data
```

Out[2]:

	repetition_time	study_time	knowledge_level
0	0.00	0.00	Low
1	0.24	0.90	High
2	0.25	0.33	Low
3	0.65	0.30	High
4	0.98	0.24	Low
253	0.92	0.58	High
254	0.19	0.60	High
255	0.29	0.77	High
256	0.61	0.26	High
257	0.87	0.74	High

258 rows × 3 columns

```
In [3]: #data = data[:50]
data = data.drop(columns='knowledge_level',axis=1)
```

In [5]: data.describe()

Out[5]:

	repetition_time	study_time
count	258.000000	258.000000
mean	0.432713	0.458539
std	0.248108	0.255211
min	0.000000	0.000000
25%	0.250000	0.250000
50%	0.330000	0.500000
75%	0.647500	0.660000
max	0.990000	0.930000

Plotting data

```
In [6]: plt.scatter(data['repetition_time'],data['study_time'])
    plt.xlabel('Repetition Time')
    plt.ylabel('Study Time')
```

Out[6]: Text(0, 0.5, 'Study Time')

Preparing Input data

```
In [7]: from sklearn import preprocessing
        data_scaled = data.copy()
        data scaled = preprocessing.scale(data)
        data scaled[:5]
Out[7]: array([[-1.74744134, -1.80019743],
               [-0.77824063, 1.73315205],
               [-0.73785726, -0.50463595],
               [0.87747726, -0.62241427],
               [ 2.21012825, -0.8579709 ]])
In [8]: for i in range(data_scaled.size//2):
            plt.scatter(data_scaled[i][0],data_scaled[i][1])
        plt.xlabel('Repetition Time')
        plt.ylabel('Study Time')
```

Out[8]: Text(0, 0.5, 'Study Time')

Elbow Method

```
In [9]: from sklearn.cluster import KMeans
```

```
In [10]: #Within cluster sum of squares
         wcss = []
         for i in range(1,8):
             kmeans = KMeans(n clusters=i,random state=0)
             kmeans.fit(data_scaled)
             wcss.append(kmeans.inertia_)
         WCSS
Out[10]: [516.0000000000005,
          267.8668182480292,
          165.6928343152814,
          103.24699730418467,
          82.47097800189657,
          67.98237690657507,
          58.53043828711949]
In [11]: plt.plot(range(1,len(wcss)+1),wcss)
         plt.xlabel('# of Clusters')
         plt.ylabel('WCSS')
```

Out[11]: Text(0, 0.5, 'WCSS')

Dendogram

```
In [12]: from scipy.cluster.hierarchy import dendrogram, linkage
In [13]: z = linkage(data_scaled,method="ward")
```

```
In [14]: fig,ax = plt.subplots(figsize=(5,6))
ax = dendrogram(z)
plt.tight_layout()
plt.show()
```


Agglomerative Clustering

```
In [15]: from sklearn.cluster import AgglomerativeClustering
    ag = AgglomerativeClustering(n_clusters=4,affinity="euclidean",linkage="ward")
    ag.fit(data_scaled)
```

Out[15]: AgglomerativeClustering(n_clusters=4)

```
In [16]: cluster_data = data.copy()
    cluster_data['cluster_pred'] = ag.fit_predict(data_scaled)
    cluster_data
```

Out[16]:

	repetition_time	study_time	cluster_pred
0	0.00	0.00	1
1	0.24	0.90	0
2	0.25	0.33	1
3	0.65	0.30	3
4	0.98	0.24	3
253	0.92	0.58	2
254	0.19	0.60	0
255	0.29	0.77	0
256	0.61	0.26	3
257	0.87	0.74	2

258 rows × 3 columns

Clustering Labels

Visualization

```
In [18]: plt.scatter(data['repetition_time'],data['study_time'],c=cluster_data['cluster_pr
plt.xlabel('Repetetion Time')
plt.ylabel('Study Time')
```

Out[18]: Text(0, 0.5, 'Study Time')

