ML Final Project

Shuyu Chen, Changlin Jiang, Chaoji Zuo

Classification

Dataset Description

The White Blood Cells dataset consists of 410 images, with 4 classes: Eosinophil, Lymphocyte, Monocyte, and Neutrophil.

Reduce the data dimensionality by cropping the exact white blood cell from each images.

KNN approach

Determine the class of the test sample by sorting the distance of sample to its neighboring points.

Random Forest approach

first try on whole data

precision score : 0.9859154929577465

try on test set

average precision: 0.6225352112676057

Test with optimized parameters


```
Best parameters:
{'max_depth': 30, 'max_features': 'auto', 'n_estimators': 100}
```

average precision: 0.6535211267605633

Naive Bayes approach

Gaussian Naive Bayes approach

- Discussion:Image data input is likely to be iid.The model is derived by real world so it's probably a Gaussian model.
- Result trained with first 300 samples and tested by the remaining samples(n=56):

Cross validation(k=5),confusion matrix:

Average accuracy = 0.5679434159053987

Regression

Dataset description

- True values of concentrations of some substance
- Concentrations of some substance responsed by a sensor
- Temperature, humidity
- Measured along with time

Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)
3/10/2004	18:00:00	2.6	1360	150	11.9	1046
3/10/2004	19:00:00	2	1292	112	9.4	955

NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(03)	Т	RH	AH
166	1056	113	1692	1268	13.6	48.9	0.7578
103	1174	92	1559	972	13.3	47.7	0.7255

Challenge

- Dataset attributes not explicitly tagged
- Unknown model
- Effort
 - Go back to the paper to find out which attribute is the label(by Changlin Jiang)
 - Implement random forest algorithm to learn the dataset regardless of model(by Chaoji Zuo)

Least Square Regression approach

Assumption:Linear model

- Input:Measured concentrations of CO and 4 other substance, temperature, humidity
- Labels:True benzene concentration
- Purpose: Estimate concentrations with measured concentrations of CO,NMHC,NOx,NO2,O3,temperature,humidity.

Result

Best cross validation K=6

Predicted versus true scatter plot

Result

Get rid of temperature and humidity in input data, now best CV k=3, smaller error derived

LASSO Regression approach

Random Forest approach

first try on whole datasets

2-norm error: 8.681710660923919 R^2 score of predict values: 0.9998489365496641

predict on test data

2-norm error: 14.214309507124208 R^2 score of predict values: 0.9988393238910085

third try by parameters optimization

2-norm error: 7.34916772622886 R^2 score of predict values: 0.9996897328273662

I really got a better solution using the best parameters of "min_samples_leaf" and "n_estimators".

But the progress was not very significant, because the former soultion is great enough.

model review

shape of decision path: (3357, 15240)

CO measured, NMHC measured, NOx measured, NO2 measured, O3 measured, temp, RH, AH

feature importances:

[4.00605965e-04 9.99040707e-01 8.42519545e-05 1.10125513e-04 1.10173806e-04 1.47280047e-05 1.46982777e-04 9.24247248e-05]

error: 226.72020689446524

Clustering

Dataset: Black-Friday

raw-data

	User ID	Product ID	Gender	Age	Occupa	ation City	Category \	6
324155	1001891	P00345742	M	46-50		1	C	
384692	1005193	P00084842	M	36-45		12	В	
34262	1005282	P00183642	F	18-25		4	В	
328396	1002590	P00128342	M	18-25		4	A	
270293	1005650	P00367042	F	36-45		12	В	
	Stav In (Current City	/ Years	Marita	1 Stati	ıs Product	: Category 1	\
324155			3			1		
384692			2			1	8	3
34262			1			1	4	1
328396			0			0	5	5
270293			2			1	8	3
	Product	Category 2	Produc	t Cated	orv 3	Purchase		
324155		2.0			15.0	11700		
384692		16.0			NaN	6051		
34262		5.0			9.0	766		
328396		12.0			14.0	3480		

NaN

6164

NaN

270293

Pre-processing

mean and mode data

	Occupation	Age City_	Category	Marital_St	atus Product	_CateGory_1	١
User_ID							
1004956	15	36-45	В		1	8	
1000839	0	26-35	A		0	8	
1003510	4	18-25	В		1	5	
1003016	12	18-25	A		0	1	
1005555	10	0-17	В		0	1	
	Stay_In_Curr	ent_City_Yea:	rs times	Gender_M	Purchase		
User_ID							
1004956			1 120	1	9324.600000		
1000839			2 435	1	10761.390805		
1003510			1 32	0	9913.406250		
1003016			1 18	1	11067.111111		
1005555			2 276	1	9055.329710		

Challenge

how to handle the discrete attributes?

categorical data

continuous data

- how to evaluate?

distance calculation

show difference

$$ext{JC} = rac{a}{a+b+c} \; . \qquad ext{VDM}_p\left(a,b
ight) = \sum_{i=1}^k \left|rac{m_{u,a,i}}{m_{u,a}} - rac{m_{u,b,i}}{m_{u,b}}
ight|^p \; .$$

try some things

Jaccard coefficient

one-hot encoding

```
categorical data:
                            Age City Category Marital Status \
       Gender Occupation
User ID
1004322
                          51-55
                                                           0
                       0 26-35
1004518
                                                           0
        Product CateGory 1 Stay In Current City Years
User ID
1004322
1004518
one-hot encoding data:
        0-17 18-25 26-35 36-45 46-50 51-55 55+ A B C \
User ID
1002359
1005850
                        8 10 11 12 13 15 16 18
                                                    Gender M \
User ID
1002359
1005850
        Marital Status
User ID
1002359
1005850
[2 rows x 53 columns]
```

K-mode approach

```
n_cluster = 2 : 0.5000269875392017
n_cluster = 3 : 0.5294875041896924
n_cluster = 4 : 0.5534965418820955
n_cluster = 5 : 0.5645384012323531
n_cluster = 6 : 0.5720855312627525
n_cluster = 7 : 0.5890558734522645
n_cluster = 8 : 0.6010495871774273
n cluster = 9 : 0.6128901655705694
```

part features

	Gender	Occupation	City_Category
User ID			
1005314	F	0	A
1002289	F	1	c

average jc distance in selected features: 0.5 average ec distance in all one-hot features: 1.3071067811865476

All features

average jc distance in selected features: 0.35 average ec distance in all one-hot features: 1.8432220400206423

	Gender	Occupation	Age	City_Category	Marital_Status	1
User_ID						
1004639	M	11	36-45	В	0	
1004422	M	5	26-35	A	1	
	Produc	t_CateGory_1				
User_ID						
1004639		5				
1004422		5				

ROCK approach

Challenges and effort

- Most attributes in the dataset are discrete, all methods mentioned in class not working
- Searched for papers building categorical clustering algorithm
- Picked ROCK algorithm, tried to implement from library, but library doing totally different work and only works for continuous features
- BUILD THE WHOLE ALGORITHM BY MYSELF

ROCK algorithm

- Neighbors: Jaccard score and threshold
- Link(Ci,Cj) and Goodness(Ci,Cj)
- Clusters merging
- Disadvantage:computationally expensive O(n^3)
- Result for first 300 samples: 10 clusters (ni=25,124,115,16,5,2,6,2,2,3)

Number of clusters<=10

[[0, 18, 83, 190, 206, 48, 72, 96, 115, 149, 196, 5, 10, 36, 66, 197, 215, 103, 163, 192, 244, 272, 111, 135], [1, 13, 16, 24, 28, 49, 58, 63, 81, 82, 84, 97, 110, 114, 116, 117, 125, 139, 170, 177, 181, 184, 202, 221, 247, 251, 255, 274, 289, 175, 238, 278, 283, 91, 128, 140, 14, 218, 226, 257, 258, 80, 166, 223, 161, 267, 19, 252, 256, 159, 213, 70, 122, 185, 188, 195, 107, 2, 231, 55, 143, 118, 209, 266, 60, 210, 224, 74, 178, 38, 158, 89, 98, 127, 141, 241, 54, 8, 245, 240, 131, 187, 172, 263, 225, 296, 37, 67, 65, 148, 198, 186, 234, 269, 292, 11, 237, 30, 87, 108, 271, 182, 168, 298, 20, 35, 132, 222, 230, 165, 205, 2 12, 219, 254, 40, 105, 208, 216, 138, 21, 33, 59, 153, 201, 193, 220, 43, 44, 104, 176, 273, 157, 293, 249, 53, 99, 156, 229, 2 61, 285], [3, 6, 12, 22, 41, 45, 100, 121, 126, 144, 145, 173, 279, 73, 90, 200, 243, 259, 265, 268, 294, 79, 112, 113, 130, 6 2, 207, 204, 277, 77, 102, 211, 253, 291, 57, 106, 286, 236, 256, 39, 92, 46, 235, 61, 194, 246, 297, 4, 7, 26, 120, 129, 137, 169, 232, 264, 287, 32, 124, 262, 203, 227, 78, 47, 147, 68, 86, 270, 134, 42, 69, 76, 85, 155, 123, 179, 189, 9, 15, 27, 75, 150, 52, 34, 51, 151, 275, 88, 101, 214, 288, 142, 260, 23, 25, 239, 119, 146, 162, 191, 282], [17, 94, 136, 29, 31, 248, 281, 284, 78, 276, 299]]

K-means approach

Discussion about evaluation metrics for categorical clustering

- In K-modes, is the euclidean distance on one-hot transformed data really meaningful?
- In ROCK, is there anything we can do to evaluate it?
 - Found from paper: ANOVA distance
 - No libraries available, complex to go deeper and implement, computationally expensive