What is the value of x?

(1)
$$\sqrt{x^4} = 9 \rightarrow x^2 = 9 \rightarrow x = 3$$
 or $x = -3$. Not sufficient.

(2)
$$\sqrt{x^2} = -x$$
 --> $|x| = -x$ --> just says that x is not positive (x could be 0 or any negative number). Not sufficient.

(1)+(2) As from (2) x is not positive then from (1) x=-3 . Sufficient.

Answer: C.

2

If ${\mathcal Y}$ is a positive integer is $\sqrt{{\mathcal Y}}$ an integer?

Note that as y is a positive integer then \sqrt{y} is either a positive integer or an irrational number. Also note that the question basically asks whether y is a perfect square.

(1)
$$\sqrt{4*y}$$
 is not an integer --> $\sqrt{4*y} = 2*\sqrt{y} \neq integer$... $\sqrt{y} \neq integer$. Sufficient.

(2)
$$\sqrt{5*y}$$
 is an integer --> y can not be a prefect square because if it is, for example if $y=x^2$ for some positive integer x then $\sqrt{5*y}=\sqrt{5*x^2}=x\sqrt{5}\neq integer$. Sufficient.

Answer: D.

3

If x is a positive integer, is \sqrt{x} an integer?

As given that x is a positive integer then \sqrt{x} is either an integer itself or an irrational number.

- (1) $\sqrt{4x}$ is an integer $\rightarrow 2\sqrt{x} = integer \rightarrow 2\sqrt{x}$ to be an integer \sqrt{x} must be an integer or integer/2, but as x is an integer, then \sqrt{x} can not be integer/2, hence \sqrt{x} is an integer. Sufficient.
- (2) $\sqrt{3x}$ is not an integer --> if x=9, condition $\sqrt{3x}=\sqrt{27}$ is not an integer satisfied and $\sqrt{x}=3$ IS an integer, BUT if x=2, condition $\sqrt{3x}=\sqrt{6}$ is not an integer satisfied and $\sqrt{x}=\sqrt{2}$ IS NOT an integer. Two different answers. Not sufficient.

Answer: A.

1

Is $\sqrt{7x}$ an integer?

Notice that we are not told that x is an integer.

(2)
$$\sqrt{28x}$$
 is an integer. If $x = \frac{1}{28}$, then $\sqrt{7x} = \frac{1}{2} \neq integer$ BUT if $x = 0$, then $\sqrt{7x} = 0 = integer$. Not sufficient.

Answer: A.

What is the cube root of w?

(1) The 5th root of w is 64 --> $\sqrt[5]{w}=64$ --> we can find w, hence we can find $\sqrt[3]{w}$: $w=64^5$ --> $\sqrt[3]{64^5}$. Sufficient.

(2) The 15th root of w is 4 --> $15\!/\overline{w}=4$. The same here. Sufficient.

Answer: D.