Movements in Yields, not the Equity Premium: Bernanke-Kuttner Redux (Nagel and Xu, 2024, WP)

Leitao Fu

UW-Madison

October 28, 2024

Key Findings

- Stock price response to MPS is explained mostly by changes in yield curve, rather than equity risk premium
 - ► Contradicts to Bernanke and Kuttner (2005)
- ► In turn, yield curve change reflects both a change in expected future short rates (professional forecast) and term premium
- ► Even/odd week FOMC cycle in stock returns is also largely due to cycle in the yield curve rather than equity risk premium
 - ► Contradicts to Cieslak et al. (2019)

BK(2005):

Two Steps

- 1. With monthly data, estimate a VAR including stock excess returns and dividend-price ratios, among other variables
- Regress monthly VAR innovations on FFR surprises from within-month FOMC announcement; Then, Iterate VAR to get IRFs.

Reults

► Stock price response to MPS shocks around FOMC is mainly due to the equity premium change

BK(2005):

What drives the VAR results?

- ► Fact 1: Stock prices fall in response to unexpected monetary tightening and hence pd ratio decrease (dividend is sticky in short run)
- Fact 2: Generally, pd ratio changes are due to changes in risk premium

Issues?

Use monthly VAR results to infer what happens in the high-freq event

Approach 1: Dividend Futures

Stock market index can be decomposed as

$$P_t = \sum_{n=1}^{\infty} P_{n,t} = \sum_{n=1}^{\infty} B_{n,t} G_{n,t}$$

where $G_{n,t}$ is dividend futures price and $B_{n,z}$ is zc bond price

Decomposing the announcement returns

1.
$$\Delta P_{B,t} \equiv \sum_{n=1}^{\infty} \frac{G_{n,t-}}{P_{t-}} (B_{n,t+} - B_{n,t-})$$

2.
$$\Delta P_{G,t} \equiv \sum_{n=1}^{\infty} \frac{B_{n,t-}}{P_{t-}} (G_{n,t+} - G_{n,t-})$$

▶ Question: ΔP_t mainly due to $\Delta P_{B,t}$ or $\Delta P_{G,t}$?

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ 夏 ● 夕 ○ ○

Approach 1: Dividend Futures

Data Limitation

▶ Dividend futures data are up to 7 years

Assumptions made for $\Delta P_{B,t}$

► Assume forward rate do not change on FOMC days

$$f_{n,8,t+} - f_{n,8,t-} = 0, \quad \forall n > 8, \forall t$$

Then, we can compute

$$\Delta P_{B,t} = \sum_{n=1}^{7} \frac{G_{n,t-}B_{n,t-}}{P_{t-}} \left(\frac{B_{n,t+}}{B_{n,t-}} - 1 \right) + \left(1 - \sum_{n=1}^{7} \frac{G_{n,t-1}B_{n,t-}}{P_{t-}} \right) \left(\frac{B_{8,t+}}{B_{8,t-}} - 1 \right)$$

Assumptions made for $\Delta P_{G,t}$

► Simply use

$$\Delta P_{G,t} = \sum_{n=1}^{7} \frac{B_{n,t-}}{P_{t-}} \left(G_{n,t+} - G_{n,t-} \right)$$

Approach 2: Campbell-Shiller Approximation

Define the excess return as $x_{n,t+n} \equiv r_{t+n} - f_{n,t}$, then

$$\rho_{t} = \frac{\kappa}{1-\rho} + \mathbb{E}_{t} \sum_{n=1}^{\infty} \rho^{n-1} \left[(1-\rho) d_{t+n} - \mathsf{x}_{n,t+n} \right] - \sum_{n=1}^{\infty} \rho^{n-1} f_{n,t}$$

Log price change around FOMC announcement

$$\begin{split} \Delta \rho_t &\equiv \rho_{t+} - \rho_{t-} \\ &= \left(\mathbb{E}_{t+} - \mathbb{E}_{t-} \right) \sum_{n=1}^{\infty} \rho^{n-1} \left[(1-\rho) d_{t+n} - \mathsf{x}_{n,t+n} \right] + \underbrace{\sum_{n=1}^{\infty} \rho^{n-1} \left(f_{n,t-} - f_{n,t+} \right)}_{\Delta \rho_{F,t} = \sum_{n=1}^{30} \rho^{n-1} \left(f_{n,t-} - f_{n,t+} \right)} \end{split}$$

Question: Δp_t mainly due to $\Delta p_{F,t}$ or not ?

◄□▶◀圖▶◀불▶◀불▶ 불 ∽٩

Leitao Fu (UW-Madison)

Data

High-freq Measure of Monetary Policy Shocks

- 1. **POLICY** (Nakamura and Steinsson, 2018): First PC of price changes of Federal funds futures expiring at the end of the month of this and next FOMC; first three quarterly Eurodollar futures
- 2. **FFR** (BK, 2005): Price change in Federal funds futures expiring at the end of the month after FOMC
- 3. **BS** (Bauer and Swanson, 2023): First PC of price changes in first four quarterly Eurodollar futures
- 4. **BS**[⊥] (Bauer and Swanson, 2023): Residuals from regressing BS on six macro and financial variables

Sample Period

- Dividend futures method: Nov/02 Dec/23
- ► Campbell-Shiller method: Feb/95 Dec/23

4□ > 4□ > 4□ > 4 = > = 900

Daily Bond Market Response

Panel A	$: \Delta y_n$											
	1Y		2Y		5Y		10Y		20Y		30Y	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
POLICY	3.72 [11.04]		4.42 [9.29]		3.98 [8.27]		2.69 [5.01]		1.45 [2.92]		1.01 [1.94]	
FFR		2.17 [5.26]		1.82 [3.21]		1.56 [2.91]		1.09 [1.97]		0.61 [1.23]		0.54 [1.02]
Panel B:	Δf_n											
	13	<i>T</i>	23	<i>Y</i>	5	Y	10	Υ	20	Υ	30)Y
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
POLICY	3.72 [11.04]		5.11 [7.24]		2.90 [4.66]		1.30 [1.89]		0.00 [0.00]		$0.45 \\ [0.65]$	
FFR		2.17 [5.26]		1.47 [1.92]		1.25 [2.13]		0.77 [1.20]		0.82 [1.00]		0.30 [0.41]

- ► MPS have effects on long-term yields
- ▶ Nominal forward rate respond up to 5/10 years

<ロト < 部 > ∢ 重 > ∢ 重 > ・ 重 ・ 釣 Q で

Are Nominal Forward Rates Responses Robust?

From Hanson and Stein (2015)

- MPS is measured by changes in two-year nominal yields
- ▶ Yield data from GSW (2007, 2010); Sample period: 1999 Feb 2012

Nagel and Xu (2024) use Filipović et al. (2022)

Leitao Fu (UW-Madison) October 28, 2024 10 / 19

Daily Stock Market Response

	$\frac{\Delta p}{(1) (2)}$	$\frac{\Delta p_F}{(3)(4)}$	$\frac{\Delta p - \Delta p_F}{(5)}$
POLICY	-23.28	-26.48	(3.20
	[-2.22]	[-2.69]	[0.28]
FFR	-20.60	-12.45	-8.15
	[-1.94]	[-1.25]	[-0.62]

- ► A POLICY shock that decreases 1-year yield by 25 bp increase stock market index by 156 bp
- ► Yield curve changes seem to be the main driver

1 ト 4 差 ト 4 差 ト 差 少 9 ○ ○

High-freq Stock Market Response

Panel A	: Divide	end Fut	ures M	lethod								
	ΔP^H				ΔP_B^H			$\Delta P^H - \Delta P_B^H$				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
POLICY	-27.06 [-4.39]				-30.96 [-3.91]				$3.90 \\ [0.41]$			
FFR		-12.15 [-1.23]				-8.43 [-1.94]				-3.72 [-0.38]		
BS			-30.36 [-6.20]				-31.23 [-3.28]				$0.87 \\ [0.09]$	
BS^\perp				-32.64				-22.77				-9.87
				[-5.60]				[-3.66]				[-1.20]
Panel B:	: Camp				ty Meth			[-3.66]				[-1.20]
Panel B:		Δ_{j}	o^H	/ Identi		Δ	p_F^H				$-\Delta p_F^H$	
Panel B:	(1)				ty Meth		p_F^H (7)	[-3.66]	(9)	Δp^H (10)	$-\Delta p_F^H$ (11)	[-1.20]
Panel B:		Δ_{j}	o^H	/ Identi		Δ			(9) 13.89 [1.79]			
	(1)	Δ_{j}	o^H	/ Identi	(5)	Δ			13.89			
POLICY	(1)	(2)	o^H	/ Identi	(5)	(6)			13.89	-5.70		

Short-rate expectations

- ▶ Use monthly Blue Chip survey forecasts of 3-month Treasury bill rates (only 2 year horizons available)
- Assume short rates i_t follow AR(1): $i_{t+1} \mu = \gamma (i_t \mu) + \eta_{t+1}$
- Then, revisions in expectations of n-period-ahead short rates follow

$$\tilde{\mathbb{E}}_{t-}i_{t+n} - \tilde{\mathbb{E}}_{t+}i_{t+n} = \gamma^{n-1} \left(\tilde{\mathbb{E}}_{t-}i_{t+1} - \tilde{\mathbb{E}}_{t+}i_{t+1} \right), \quad n \ge 1$$

- lacktriangle Use forecasts of 1-year-ahead 3-month rates to measure $ilde{\mathbb{E}}_t i_{t+1}$
 - ▶ Latest forecast before FOMC: $\mathbb{E}_{t-}i_{t+1}$
 - ▶ First available forecast after FOMC: $\mathbb{E}_{t+}i_{t+1}$
- ▶ Use bi-annual long-range forecasts to estimate the AR(1):
 - $ightharpoonup \gamma$ and μ can have low-frequency variation at a bi-annual frequency: μ is measured as the average between 7 to 11 years
 - \blacktriangleright My Q: what if μ changes around FMOC (say, due to info on infl target)

□ ▶ ◀례 ▶ ◀ 분 ▶ ◀ 분 ▶ ○ 원 ※) 역(5

Term Premium

 \triangleright Forward rate $f_{n,t}$ can be composed into

$$f_{n,t} = \tilde{\mathbb{E}}_t i_{t+n-1} + \underbrace{\mathbb{E}_t \sum_{j=1}^n r x_{t+n-j+1}^j}_{n\lambda_{n,t}} - \underbrace{\mathbb{E}_t \sum_{j=1}^{n-1} r x_{t+n-j}^j}_{(n-1)\lambda_{n-1,t}}$$

- \triangleright $n\lambda_{n,t}$ is the term premium earned by an n-maturity zc bond
- $\theta_{n,t} = n\lambda_{n,t} (n-1)\lambda_{n-1,t}$ is the forward term premium

Dividend futures method

$$\Delta P_{B,t} = \sum_{n=1}^{\infty} \frac{G_{n,t-}}{P_{t-}} \left(B_{n,t+} - B_{n,t-} \right)$$

$$\approx \sum_{n=1}^{\infty} \frac{P_{n,t-}}{P_{t-}} \left(\tilde{\mathbb{E}}_{t-} \sum_{k=0}^{n-1} i_{t+k} - \tilde{\mathbb{E}}_{t+} \sum_{k=0}^{n-1} i_{t+k} \right) + \sum_{n=1}^{\infty} \frac{n P_{n,t-}}{P_{t-}} \left(\lambda_{n,t-} - \lambda_{n,t+} \right)$$

$$\Delta P_{B,s,t} = i_{t-} - i_{t+} + \frac{\left(\tilde{\mathbb{E}}_{t-} i_{t+1} - \tilde{\mathbb{E}}_{t+} i_{t+1} \right)}{1 - \gamma} \left(1 - \sum_{n=1}^{\infty} \frac{\gamma^{n-1} P_{n,t-}}{P_{t-}} \right)$$

- ► First part: changes in expectations of short-term rates (survey data)
- ▶ Second part: changes in term premium, $\Delta P_{B,\lambda,t} \equiv \Delta P_{B,t} \Delta P_{B,s,t}$

4□ > 4□ > 4□ > 4 = > 4 = > 9 < ○</p>

Leitao Fu (UW-Madison)

Campbell-Shiller method

$$\Delta p_{F,t} = \underbrace{\sum_{n=1}^{\infty} \rho^{n-1} \left(\mathbb{E}_{t-} i_{t+n-1} - \mathbb{E}_{t+} i_{t+n-1} \right)}_{\Delta p_{F,s,t} = i_{t-} - i_{t+} + \frac{\rho}{1 - \rho \gamma} \left(\mathbb{E}_{t-} i_{t+1} - \mathbb{E}_{t+} i_{t+1} \right)} + \sum_{n=1}^{\infty} \rho^{n-1} \left(\theta_{n,t-} - \theta_{n,t+} \right)$$

- First part: changes in short-rate expectation (survey data)
- Second part: change in the forward risk premium $\Delta p_{F,\lambda,t} \equiv \Delta p_{F,t} \Delta p_{F,s,t}$

Leitao Fu (UW-Madison)

		BC	$^{ m CEI}$		BCFF					
	Short-	-Rate	Term	Premia	Short	-Rate	Term Premia			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
A. Divide	end Futu	ires Met	thod							
POLICY	-12.98		-10.65		-17.60		-6.03			
	[-2.82]		[-1.26]		[-3.76]		[-0.72]			
FFR		-1.00		-9.61		-4.45		-6.16		
		[-0.17]		[-0.96]		[-0.68]		[-0.59]		
B. Camp	bell-Shil	ler PV	Identity	Method						
POLICY	-10.49		-13.62		-13.13		-10.99			
	[-3.37]		[-1.17]		[-3.90]		[-0.97]			
FFR		1.73		-13.73		-2.22		-9.77		
		[0.41]		[-1.17]		[-0.55]		[-0.86]		

- ▶ 'POLICY' MPS: half short rates expectation, half term premium
- ► 'FFR' MPS: entirely term premium

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()

FOMC Cycle

- Cieslak et al.(2019) find that average stock index returns are much higher in even weeks than odd weeks in FOMC cycle time
- ▶ Due to yield changes or equity premium?
- ► Cieslak et al (2019) use equity premium bound of Martin (2017) and find it is mainly due to equity premium reductions in even weeks
- ► Using both Dividend futures and Campbell-Shiller methods, this paper reaches a different answer: yield changes

FMOC Cycle

			Dividend	Campbell-Shiller PV				
	ΔP ΔP_B ΔP_G $\Delta P - \Delta P_B$ $\Delta P - \Delta P_G$				Δp	Δp_F	$\Delta p - \Delta p_F$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
A. Even we	eks				I			
Week 0, 2, 4	5.26	1.39	-0.34	3.87	5.60	8.16	5.79	2.37
	[1.48]	[1.06]	[-1.21]	[0.93]	[1.60]	[2.94]	[2.34]	[0.57]
B. Week by	week							
Week 0	4.06	3.02	-0.43	1.04	4.49	9.30	8.97	0.33
	[0.75]	[1.50]	[-1.22]	[0.17]	[0.83]	[2.25]	[2.46]	[0.05]
Week 2	6.68	-0.41	-0.34	7.09	7.02	6.58	2.46	4.11
	[1.28]	[-0.21]	[-0.66]	[1.13]	[1.37]	[1.63]	[0.68]	[0.66]
Week 4	5.22	1.33	-0.23	3.89	5.45	8.52	5.61	2.91
	[1.13]	[0.73]	[-0.66]	[0.72]	[1.20]	[2.23]	[1.60]	[0.50]

- Average daily returns are 5.26 basis points higher in even weeks
- $ightharpoonup \Delta P_B$ explains about a third of the effect

コト 4 個 ト 4 恵 ト 4 恵 ト 9 年 9 9 9 0