Lesson 8-1: Present Worth Analysis

Present Worth Analysis

Learning Objectives

- Present worth criteria
- Comparing two choices using present worth
- Equal, unequal, and infinite project lives
- Multiple alternatives using present worth

Assumptions in Solving Present Worth Problems

End-of-Period Convention

- All cash flow amounts are calculated as amounts at the end of each period:
 - Now = Period 0 (beginning of period 1)
 - Future amounts happen at the end of the period specified

No Sunk Costs

 Only the current situation and the potential future is considered

Two viewpoints

- Investor and Borrower (at some interest rate)
- Conventional assumption—required money is obtained at interest rate i

Present Worth Analysis

- Comparing the present value of two potential alternatives
- Relies on the principle of equivalence we developed before
- Consider a simple annuity The Daily Grand (always game responsibly)
 - \$1000 per day = \$365,000 per year
 - Assume 7% interest (balanced investments)
 - Assume you'll live for 60 years
- PV = \$365000(P/A, 7%, 60) = \$5,124,301
- VERSUS
- LottoMax:
- PV = \$33,000,000 (est)
 - A = \$33M(A/P, 7%, 60)
 - A = \$2,350,564 (also est)

Economic Criteria

 Investment projects are judged against an appropriate economic criterion, depending on the situation:

Situation	Rule
Neither input nor output fixed Fixed input	Maximize (output-input) Maximize output
Fixed input Fixed output	Minimize output

Economic Criteria Example: Electric Power Generation

Situation	Example	Criterion
Fixed input	\$10 million capital available	Maximize output and/or revenue
Fixed output	700 megawatts output required	Minimize the total cost of generation
Neither fixed	No limit on capital & at least 500 megawatts output required	Maximize output per invested \$ or (revenue – costs)

Applying Present Worth Techniques

- Three potential 'analysis periods' (or 'planning horizon' or 'project life') are possible when comparing alternatives:
 - 1. Equal lives; the useful lifetimes of the alternatives are equal to the analysis period
 - 2. Not equal lives; the alternatives have useful lifetimes that are different from the analysis period;
 - 3. Infinite analysis period, $n = \infty$

1. Single Project

Net Present Value (Net Present Worth)

$$NPV = PW_B - PW_C$$

• E.g. you're evaluating a new process improvement. The new process is more expensive, but will improve yields. Is it worth doing?

1. Single Project (con't)

- Expected Development costs: \$10,000
- Expected annual operating costs: \$2,000
- Expected annual savings: \$5,500, increasing \$500 per year.
 - Assume over 10 years and 12% interest
- PV of Development costs: P = F(P/F, 12%, 0)
- PV of Operating Costs: P = A(P/A, 12%, 10)
- PV of Annual Savings: P = A(P/A, 12%, 10) + G(P/G, 12%, 10)

1. Single Project (con't)

- PV of Development costs: P = F(P/F, 12%, 0)
 - P = \$10,000*1 = \$10,000
- PV of Operating Costs: P = A(P/A, 12%, 10)
 - P = \$2000*5.65 = \$11,300
- PV of Annual Savings: P = A(P/A, 12%, 10) + G(P/G, 12%, 10)
 - P = \$5500*5.65 + \$500*20.25 = \$41,200
- NPV = P(s)-P(d)-P(o&m) = \$41,200-\$11,300-\$10,000
- NPV = \$19,900

1.1. Useful Lifetime = Analysis Period

- When selecting between two alternatives using Present Worth Analysis:
 - Maximize:
 - Net Present Worth = Present worth benefits - Present worth of costs
 - Consider end of life costs (salvage, reclamation)
 - The alternative with the higher Net Present Worth (NPW) is selected

 $NPW = PW_B - PW_C$

Interest rate:	10%		
Year	Device A	Device B	
0	-\$1,000	-\$1,000	
1	\$310	\$400	
2	\$310	\$350	
3	\$310	\$300	
4	\$310	\$250	
5	\$310	\$200	
PV of costs=	-\$1,000	-\$1,000	
PV of benefits=	\$1,175.14	\$1,173.22	
NPV=	\$175.14	\$173.22	
Recommend Dev			
Interest rate:	10%		
Lifetime:	25	years	
Year	Plan A	Plan B	
0	-\$400	-\$360	
25	\$0	-\$360	
PV of costs=	-\$400.00	-\$393.23	
PV of benefits=	\$0.00	\$0.00	
NPV=	-\$400.00	-\$393.23	
Recommend Plan B.			

Present Worth Analysis: Problem 1

Two outdoor facilities are being considered for an upcoming Olympic baseball event in three years. The ticket price is fixed for the event at \$150/person payable in the event year.

Facility A requires a non-refundable deposit of \$250,000 and will hold 15,000 people for the event.

Facility B does not require a deposit but holds only 13,000 people. If the event sells out in either facility, which facility should be chosen based on a present worth analysis, if the interest rate is 10%?

Present Worth Analysis: Solution 1

$$n = 3 year i = 0.10$$

Present worth of Facility A

$$NPV = -P_c + P_b = -P_c + F(1+i)^{-n}$$

$$NPV = -250,000 + 15,000(150)(0.7513)$$

Present worth of Facility B

$$P = -P_c + P_b = -P_c + F(1+i)^{-n}$$

$$P = 0 + 13,000(150)(0.7513)$$

Choose Facility B because the NPW of B is more profitable based on a present worth analysis.

Present Worth Analysis:

The provincial government is considering building a new hospital in the Fraser Valley. Their two options are to build a full sized facility now for \$800 million, or build a smaller facility now for \$600 million and expand the facility in 40 years for another \$700 million. Regardless of

the option chosen, the

facility will be used for 80 years.

Assume 7% nominal interest.

Present Worth Analysis:

Fixed output, so criteria is to minimize costs.

Full Facility: PW = Pc = \$800 million

Two stage construction: PW = \$600m + 700m (P/F, 7%, 40)

= \$600m + \$700m(1+0.07)⁻⁴⁰ =\$600m + \$46.75m = \$646.75m

Province should take option 2, phased construction.