Klausur zur Vorlesung Lineare Algebra für *-Informatik Modul-Nr.: FMI-MA0022

Wintersemester 2020/21

06.04.2021

Aufgabe 1: Lineare Gleichungssysteme

- a) (5 P.) Es sei $A := \begin{pmatrix} \frac{1}{2} & \frac{4}{3} & 0 & \frac{3}{2} \\ \frac{2}{2} & \frac{7}{3} & -1 & \frac{1}{3} \end{pmatrix} \in M_4(\mathbb{R})$ und $\vec{b} = \begin{pmatrix} 0 \\ \frac{3}{9} \\ -9 \\ -3 \end{pmatrix}$. Berechnen Sie LR $(A; \vec{b})$ sowie eine Basis von Spaltenraum(A). **Zur Kontrolle:** Ihre Rechnung sollte ergeben, dass Rang(A) = 3 und LR $(A; \vec{b}) \neq \emptyset$.
- b) (3 P.) Seien $A \in \mathbb{K}^{m \times n}$ und $\vec{b} \in \mathbb{K}^m$. Beweisen Sie: Wenn es <u>kein</u> $\vec{x} \in \mathbb{K}^n$ gibt mit $A \cdot \vec{x} = \vec{b}$, denn gibt es $\vec{y} \in \mathbb{K}^m$ mit $A^{\top} \cdot \vec{y} = \vec{0}$ und $\vec{b}^{\top} \cdot \vec{y} = 1$. **Hinweis:** Ränge von (A, \vec{b}) , $\begin{pmatrix} A^{\top} \\ \vec{b}^{\top} \end{pmatrix}$ und $\begin{pmatrix} A^{\top} & \vec{0} \\ \vec{b}^{\top} & 1 \end{pmatrix}$.

Aufgabe 2: Euklidische Räume

- a) (4 P.) Sei $A := \begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & 1 & 2 & 1 \\ 2 & -1 & 1 & -1 \\ 0 & -1 & 0 & 0 \end{pmatrix} \in M_4(\mathbb{R})$. Untersuchen Sie, ob A positiv definit ist.
- b) (4 P.) Sei $\vec{u}_1 := \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{u}_2 := \begin{pmatrix} 1 \\ 1 \\ -2 \\ 2 \end{pmatrix}$, $\vec{u}_3 := \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$. Berechnen Sie mit dem Gram-Schmidt-Verfahren eine ONB von $U := \operatorname{Span}(\vec{u}_1, \vec{u}_2, \vec{u}_3) \leq \mathbb{R}^4$ bezüglich des Standardskalarprodukts.

Aufgabe 3: (Abbildungs-)Matrizen

- a) (3 P.) Sei $A = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 2 \\ 3 & 4 & -4 \end{pmatrix} \in M_3(\mathbb{R})$. Berechnen Sie A^{-1} .
- b) (3 P.) Wir betrachten die Basen $B:=[\binom{2}{1},\binom{5}{2}],$ $C:=[\binom{1}{-1},\binom{-1}{3}]$ sowie die Standardbasis $E:=[\vec{e}_1,\vec{e}_2]$ des \mathbb{R}^2 . Die lineare Abbildung $f\colon\mathbb{R}^2\to\mathbb{R}^2$ sei gegeben durch ${}^C_Bf=(\frac{1}{2},\frac{-1}{1})\in M_2(\mathbb{R})$. Berechnen Sie E_Ef .

Bitte wenden

Aufgabe 4: Lineare Abbildungen

a) (3 P.) Seien $f, g: \mathbb{K}^5 \to \mathbb{K}^3$ K-lineare Abbildungen und $\alpha, \beta \in \mathbb{K}$. Zeigen Sie, dass auch die Abbildung $h \colon \mathbb{K}^5 \to \mathbb{K}^3$ gegeben durch $\forall \vec{v} \in \mathbb{K}^5 \colon h(\vec{v}) :=$ $\alpha f(\vec{v}) - \beta q(\vec{v})$ eine lineare Abbildung ist, und folgern Sie, dass es ein $\vec{v} \in \mathbb{K}^5$, $\vec{v} \neq 0$, mit $\alpha q(\vec{v}) = \beta f(\vec{v})$ gibt.

In den folgenden Teilaufgaben seien $\lambda, \mu \in \mathbb{K}, \lambda \neq \mu$ und $A \in M_n(\mathbb{K})$ so, dass $(A-\mu\mathbb{1}_n)\cdot(A-\lambda\mathbb{1}_n)=0$. Die linearen Abbildungen $\varphi,\psi\colon\mathbb{K}^n\to\mathbb{K}^n$ seien gegeben durch $\forall \vec{v} \in \mathbb{K}^n : \varphi(\vec{v}) := A \cdot \vec{v} - \lambda \vec{v} \text{ und } \psi(\vec{v}) := A \cdot \vec{v} - \mu \vec{v}.$

- b) (2 P.) Zeigen Sie $n = \dim(\text{Bild}(\varphi)) + \dim(E_{\lambda}(A))$. Hinweis: Wie kann man $E_{\lambda}(A)$, $E_{\mu}(A)$ mittels φ , ψ ausdrücken?
- c) (1 P.) Zeigen Sie Bild $(\varphi) \subseteq E_{\mu}(A)$.
- d) (1 P.) Folgern Sie aus den Aussagen der vorigen beiden Teilaufgaben, dass A diagonalisierbar ist.

Aufgabe 5: Hauptachsentransformation

(8 P.) Berechnen Sie eine Hauptachsentransformation (also eine speziell orthogo-Teil der Aufgabe, die Eigenwerte (und Eigenräume) zu berechnen. Zur Kontrolle: Sie sollten die Eigenwerte 1 und -2 finden.

Ich wünsche Ihnen viel Erfolg!