

Junfan Huang

MRC Cancer Unit University of Cambridge

CRUK Bioinformatics Summer School 2021 27th July 2021

Visually

Visually

Visually (IGV or USCS genome browser)

Visually

Visually (Alignment)

Relative Enrichment in genomic intervals (REGI)

Visually (Alignment)

- Relative Enrichment in genomic intervals (REGI)
 - Proteins might have a high expected enrichment in certain genomic regions

Adapted from Dora Bihary's slides

Visually (Alignment)

- Relative Enrichment in genomic intervals (REGI)
 - Proteins might have a high expected enrichment in certain genomic regions

Promoter region UTRs

introns

Quality control - ALL NGS data

Visually

Computationally

Read Mapping% (Higher the better)

Visually

Computationally (Alignment)

- Remove Blacklisted regions
- Strand cross-correlation
- PCR Bottleneck coefficient (PBC)

Visually

Computationally (Alignment)

- Remove Blacklisted regions
- Strand cross-correlation
- PCR Bottleneck coefficient (PBC)

Strand dependent bimodality

The cross-correlation plot typically produces two peaks:

- ChIP peak fragment length
- Phantom peak read length

Marginal

200

strand shift

300

$$ext{NSC} = rac{cc(ext{ fragment length })}{\min(cc)}$$

$$RSC = \frac{cc(\text{ fragment length }) - \min(cc)}{cc(\text{ read length }) - \min(cc)}$$

100

Very successful ChIP experiments generally have NSC>1.05 and RSC>0.8

Very successful ChIP experiments generally have NSC>1.05 and RSC>0.8

Visually

Computationally (Alignment)

- Remove Blacklisted regions
- Strand cross-correlation
- PCR Bottleneck coefficient (PBC)

$$PBC = rac{N_1}{N_2}$$
 PBC < 0.5 o.5 < PBC < 0.8 o.8 < PBC

N1: # genomic positions with one read aligned (higher)

N2: # genomic positions with one or more reads

Visually

Computationally (peak)

Num of peaks with good FDR(<0.05)

Visually

- Num of peaks with good FDR(<0.05)
- Fold Change

Visually

- Num of peaks with good FDR(<0.05)
- Fold Change (enrichment ratio)

Visually

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%)

Visually

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%)

Visually

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%) FRiP = $\frac{\text{reads } \in \text{ peaks}}{\text{total reads}}$

Visually

Computationally (peak)

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%) FRiP = $\frac{\text{reads } \in \text{ peaks}}{\text{total reads}}$

N.B. FRiP is sensitive to the specifics of peak calling method, antibody & target factor pair, so FRiP < 1% does not automatically mean failure

Visually

Computationally (peak)

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%) FRiP = $\frac{\text{reads } \in \text{ peaks}}{\text{total reads}}$

Tools: deepTools2

Visually

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%)

What do you see here?

Adapted from Dora Bihary's slides

Visually

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%)
- Irreproducible discovery rate (IDR replicates)

Irreproducible discovery rate (IDR)

Useful for determining reproducibility of peaks in replicates

Tools: https://github.com/kundajelab/idr

IDR (lower the better)

RAD21 Replicates (high reproducibility)

SPT20 Replicates (low reproducibility)

Visually

- Num of peaks with good FDR (0.05)
- Fold Change
- Fraction of Reads in Peaks (FRiP>5%)
- Irreproducible discovery rate (IDR replicates)
- Standardised standard deviation (SSD)

Dispersion of coverage

The depth of coverage:

The number of fragments at a specific genomic region

Expectation:

The depth to have large diversity in an enriched ChIP dataset!

Depth	Base Pairs
1	3
2	4
3	3
5	3
6	4
7	3
8	26

Measure the dispersion of coverage

Based on whole genome pile-up signal

$$SSD = rac{SD}{\sqrt{n}}$$

An enriched sample: significant pile-up

SSD (higher the better)

- High for samples with enriched regions
- Low for controls with uniform coverage

Depth	Base Pairs
1	3
2	4
3	3
5	3
6	4
7	3
8	26

Visualisation

Coverage histogram

X: depth – read pileup height at a base pair position

Y: logBP - the number of positions that have this pileup height in log scale

- Good enrichment (1,2,3)
- Input (c1, c2)

Documentation from bioconductor ChIPQC (https://bioconductor.riken.jp/packages/3.4/bioc/html/ChIPQC.html) Carroll and Stark

Adapted from Shoko Hirosue

Database

• http://cistrome.org/db

Kesuits							
Batch	Species	Biological Source	Factor	Publication	Quality Control Library Complexity:		
	Homo sapiens	HeLa; Epithelium; Cervix	BTAF1	Johannes F, et al. Bioinformatics 2010	PCR bottleneck coefficient (PBC)		
	Homo sapiens	HeLa; Epithelium; Cervix	GAPDH	Johannes F, et al. Bioinformatics 2010			
	Homo sapiens	K562; Erythroblast; Bone Marrow	EGR1	Tang C, et al. Electrophoresis 2010	•••••		
	Homo sapiens	LS174T; Epithelium; Colon	TCF4	Mokry M, et al. PLoS ONE 2010	00000		
	Homo sapiens	LS174T; Epithelium; Colon	TCF4	Mokry M, et al. PLoS ONE 2010	•••••		
	Homo sapiens	LS174T; Epithelium; Colon	TCF4	Mokry M, et al. PLoS ONE 2010	00000		
	Homo sapiens	LS174T; Epithelium; Colon	TCF4	Mokry M, et al. PLoS ONE 2010	00000		
	Homo sapiens	LS174T; Epithelium; Colon	TCF4	Mokry M, et al. PLoS ONE 2010	00000		
	Homo sapiens	BJ; Fibroblast; Skin	TERF1	Simonet T, et al. Cell Res. 2011	00000		
	Homo sapiens	BJ; Fibroblast; Skin	TERF2	Simonet T, et al. Cell Res. 2011	00000		
	Homo sapiens	22RV1; Epithelium; Prostate	AR	Yu J, et al. Cancer Cell 2010	•••••		
	Homo sapiens	HEK293T; Epithelium; Embryonic Kidney	PHF8	Fortschegger K, et al. Mol. Cell. Biol. 2010	00000		
	Homo sapiens	aTconv; T Lymphocyte; Blood	H3K4me1	Tian Y, et al. PLoS ONE 2011	•••••		
	Homo sapiens	aTconv; T Lymphocyte; Blood	H3K4me3	Tian Y, et al. PLoS ONE 2011	•••••		
	Homo saniens	BG01: Embryonic Stem Cell: Embryo	H3K27me3	Guenther MG. et al. Cell Stem Cell 2010			

Lunch break before practical

Back at 13.30