ICSE Paper 2011

MATHEMATICS

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

(a) Find the value of 'k' if (x-2) is a factor of:

$$x^3 + 2x^2 - kx + 10$$

Hence determine whether (x + 5) is also a factor.

[3]

- (b) If $A = \begin{bmatrix} 3 & 5 \\ 4 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, is the product AB possible? Give a reason. If yes, find AB.
- (c) Mr. Kumar borrowed ₹ 25,000 for two years. The rate of interest for the two successive years are 8% and 10% respectively. If he repays ₹ 6,200 at the end of the first year, find the outstanding amount at the end of the second year. [4]

Solution:

٥.

⇒

(a) Let

$$f(x) = x^3 + 2x^2 - kx + 10$$

(x-2) is a factor,

$$f(2) = 0$$

$$f(2) = 8 + 8 - 2k + 10 = 0$$

$$k = 13$$

To check for (x + 5) is a factor,

$$f(-5) = (-5)^3 + 2(-5)^2 - 13(-5) + 10$$
$$= -125 + 50 + 65 + 10 = 0$$

 \therefore (x + 5) is a factor.

(b) $A_{2\times 2} \cdot B_{2\times 1}$

From the order of both the matrix A and B, it is clear that AB is possible because the number of columns of A are equal to the number of rows of B.

$$AB = \begin{bmatrix} 3 & 5 \\ 4 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} 6 + 20 \\ 8 - 8 \end{bmatrix}$$
$$= \begin{bmatrix} 26 \\ 0 \end{bmatrix}$$

(c) Given: Principal = ₹ 15,000

We know that

$$A = P \left(1 + \frac{r}{100} \right)^{r}$$

Amount after 1st year =
$$15,000 \left(1 + \frac{8}{100} \right)$$

= $76,200$

Principal after repayment = 16,200 - 6,200 = ₹ 10,000

Amount outstanding at the end of second year

=
$$10,000\left(1+\frac{10}{100}\right)$$

= ₹11,000

Question 2.

(a) From a pack of 52 playing cards all cards whose numbers are multiples of 3 are removed. A card is now drawn at random.

What is the probability that the card drawn is:

- a face card (King, Jack or Queen) (i)
- an even numbered red card? (ii)

[3]

Ans.

(b) Solve the following equation :

$$x - \frac{18}{x} = 6.$$
 Give your answer correct to two significant figures. [3]

Ans.

- (c) In the given figure O is the centre of the circle. Tangents at A and B meet at C. If $\angle AOC = 30^\circ$, find
 - (i) ∠BCO
 - (ii) ∠AOB
 - (iii) ∠APB

Solution:

(a) Number of cards which are multiples of 3 = 12

Cards left in the pack = 40

(i) Number of face cards = 12

P (face card) =
$$\frac{12}{40} = \frac{3}{10}$$

[4]

(ii) Even numbered red cards = 10

P (even number red card) =
$$\frac{10}{40} = \frac{1}{4}$$
 Ans.

(b) Let $x^2-6x-18=0$ Compare with equation $ax^2 + bx + c = 0$, we get a = 1, b = -6, c = -18

Now,
$$x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{6 \pm \sqrt{36 + 72}}{2}$$

$$=\frac{6\pm6\sqrt{3}}{2} \Rightarrow x = 3\pm3\sqrt{3}$$

$$x = 3 \pm 5.196$$

Taking +ve and – ve sign respectively, we get

(c)
$$x = 8.196 \text{ or } x = -2.196$$

$$ARS.$$

$$ACO \cong \triangle BCO \qquad (R.H.S.)$$

$$\angle BCO = \angle ACO \qquad (C.P.C.T.)$$

$$\angle BCO = 30^{\circ}$$

$$\angle BCO = 90^{\circ} \quad (Radius is perpendicular to tangent)$$

$$\angle AOC = 60^{\circ}$$

$$\angle AOB = 120^{\circ}$$

$$\angle AOB = 120^{\circ}$$

$$\angle APB = 60^{\circ} \quad (Angle at circumference is half the angle at the centre)$$

Question 3.

- (a) Ahmed has a recurring deposit account in a bank. He deposits ₹ 2,500 per month for 2 years. If he gets ₹ 66,250 at the time of maturity, find
 - The interest paid by the bank.
 - (ii) The rate of interest.

[3]

(b) Calculate the area of the shaded region, if the diameter of the semi circle is equal to 14 cm.

$$Take \pi = \frac{22}{7}$$
 [3]

- (c) ABC is a triangle and G(4, 3) is the centroid of the triangle. If A = (1, 3), B = (4, b) and C = (a, 1), find 'a' and 'b'. Find the length of side BC.
 [4] Solution:
- (a) (i) Interest = $66,250 2,500 \times 24$ = 66,250 - 60,000= 66,250 (Ans.

(ii) Principal =
$$\frac{n(n+1)}{2} \times \text{sum of deposited per month}$$

= $\frac{24(24+1)}{2} \times 2,500$
= $\frac{24 \times 25}{2} \times 2,500$

$$I = Principal \times \frac{R}{100} \times \frac{1}{12}$$

$$R = \frac{6,250 \times 2 \times 100 \times 12}{2,500 \times 24 \times 25}$$
$$= 10\% \text{ p. a}$$

Ans.

(b) Area of shaded portion = Complete area - area of the two quadrants = (Area of ACDE + Area of semi circle EFD)

(Area of Quadrant ABE +

Area of Quadrant BCD)

$$= \left\{14 \times 7 + \frac{\pi}{2}(7)^2\right\} - \left\{\frac{\pi}{4}(7)^2 + \frac{\pi}{4}(7)^2\right\}$$
$$= \left\{14 \times 7 + \frac{\pi}{2}(7)^2\right\} - \left\{\frac{\pi}{2}(7)^2\right\}$$
$$= 98 \text{ cm}^2.$$

Ans.

[4]

(c) Coordinate of centroid
$$G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$\Rightarrow \frac{1+4+a}{3} = 4 \Rightarrow a =$$

$$\frac{3+b+1}{3}=3 \Rightarrow b=5$$

Now.

BC =
$$\sqrt{(4-7)^2 + (5-1)^2}$$

= $\sqrt{9+16} = 5$ units.

Question 4.

- (a) Solve the following inequation and represent the solution set on the number line $2x - 5 \le 5x + 4 < 11$, where $x \in I$. [3]
- (b) Evaluate without using trigonometric tables:

$$2\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}\right)^{2} + \left(\frac{\cot 55^{\circ}}{\tan 35^{\circ}}\right)^{2} - 3\left(\frac{\sec 40^{\circ}}{\csc 50^{\circ}}\right)$$
[3]

(c) A Mathematics aptitude test of 50 students was recorded as follows:

Marks	7 - 0,200,7	tes was re	coraea as	follows:	
No. of students	50-60	60-70	70-80	80-90	90-100
Draw a histogram for the a	4	8	14	19	5

Draw a histogram for the above data using a graph paper and locate the mode.

Solution:

(a) Given:
$$2x-5 \le 5x+4$$
 and $5x+4 < 11$
 $-3x \le 9$
 $x \ge -3$
 $-3 \le x$
 $x < 1.4$

Solution set,

$$x \in \{-3, -2, -1, 0, 1\}$$

(b) Given:
$$2\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}\right)^{2} + \left(\frac{\cot 55^{\circ}}{\tan 35^{\circ}}\right) - 3\left(\frac{\sec 40^{\circ}}{\csc 50^{\circ}}\right)$$

$$= 2\left(\frac{\tan (90^{\circ} - 55^{\circ})}{\cot 55^{\circ}}\right)^{2} + \left(\frac{\cot (90^{\circ} - 35^{\circ})}{\tan 35^{\circ}}\right) - 3\left(\frac{\sec (90^{\circ} - 50^{\circ})}{\csc 50^{\circ}}\right)$$

$$= 2\left(\frac{\cot 55^{\circ}}{\cot 55^{\circ}}\right)^{2} + \left(\frac{\tan 35^{\circ}}{\tan 35^{\circ}}\right) - 3\left(\frac{\csc 50^{\circ}}{\csc 50^{\circ}}\right)$$

$$= 2 + 1 - 3 = 0$$

Ans.

Mode from graph = 82-5.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

- (a) A manufacturer sells a washing machine to a wholesaler for ₹ 15,000. The wholesaler sells it to a trader at a profit of ₹ 1,200 and the trader in turn sells it to a consumer at a profit of ₹ 1,800. If the rate of VAT is 8% find :
 - (i) The amount of VAT received by the State Government on the sale of this machine from the manufacturer and the wholesaler.
 - (ii) The amount that the consumer pays for the machine. [3]
- (b) A solid cone of radius 5 cm and height 8 cm is melted and made into small spheres of radius 0.5 cm. Find the number of spheres formed.
 [3]
- (c) ABCD is a parallelogram where A(x, y), B(5, 8), C(4, 7) and D(2, -4). Find
 - (i) Coordinates of A
 - (ii) Equation of diagonal BD.

[4]

Solution:

(a) (i) VAT received by Govt. from manufacturer = $15,000 \times \frac{8}{100} = ₹1,200$

VAT from wholesaler =
$$1200 \times \frac{8}{100} = ₹96$$

Total VAT from manufacturer and wholesaler

= 1200 + 96 = ₹1296 Ans.

(ii) Amount that customer pays =
$$(15000 + 1200 + 1800) + VAT$$

= $18,000 + \frac{18,000 \times 8}{100}$
= $18,000 + 1440 = ₹ 19,440$ Ans.
(b) Number of spheres = $\frac{Volume\ of\ cone}{Volume\ of\ each\ sphere}$

aber of spheres =
$$\frac{\text{Volume of cone}}{\text{Volume of each sphere}}$$

= $\frac{\frac{1}{3}\pi (5)^2 (8)}{\frac{4}{3}\pi (0.5)^3} = \frac{50 \times 10^3}{5 \times 5 \times 5}$
= 400

(c) In a parallelogram, mid point of diagonal BD co-incides with the mid point of

Mid point of BD =
$$\left(\frac{5+2}{2}, \frac{8-4}{2}\right) = \left(\frac{7}{2}, 2\right)$$

Mid point of AC = $\left(\frac{x+4}{2}, \frac{y+7}{2}\right)$

Equating, $\frac{x+4}{2} = \frac{7}{2} \Rightarrow x = 3$
 $\frac{y+7}{2} = 2 \Rightarrow y = -3$

Ans.

(ii)
$$m \text{ of BD} = \frac{8 - (-4)}{5 - 2} = \frac{12}{3} = 4$$

Equation of BD.

$$y-y_1 = m(x-x_1)$$

 $y+4 = 4(x-2)$
 $y = 4x-4$
Ans.

Question 6.

- (a) Use a graph paper to answer the following questions. (Take 1 cm = 1 unit on
 - (i) Plot A(4, 4), B(4, -6) and C(8, 0), the vertices of a triangle ABC.
 - Reflect ABC on the y-axis and name it as ABC. (ii)
 - Write the coordinates of the image A', B' and C'. (iii)
 - Give a geometrical name for the figure AA'C'B'BC. (iv)
 - Identify the line of symmetry of AA'C'B'BC.

(b) Mr. Choudhury opened a Saving's Bank Account at State Bank of India on 1st April 2007. The entries of one year as shown in his pass book are given below:

	Particulars	Withdrawals (in ?)	Deposits	Balance (in ₹)
1st April 2007 12th April 2007	By Cash	-	8550.00	8550.00
24th April 2007 24th April 2007	To Self By Cash	1200.00) <u></u>	7350.00
7 2001	By Cash	-	4550.00	11900.00

10.7 7 1 000#	m		1	ľ	
8th July 2007	By Cheque	VIEW.	1500.00	13400.00	
10th Sept. 2007	By Cheque		3500.00	16900.00	
17th Sept. 2007	To Cheque	2500.00	s s	14400.00	l
11th Oct. 2007	By Cash	_	800.00	15200.00	
6th Jan. 2008	To Self	2000.00	<u> </u>	13200.00	3
9th March 2008	By Cheque	<u>8</u>	950.00	14150.00	

If the bank pays interest at the rate of 5% per annum, find the interest paid on 1st April, 2008. Give your answer correct to the nearest rupee. [5]

Solution:

- (a) (i) In the given diagram.
 - (ii) In the given diagram.
 - (iii) A' (-4, 4) B' (-4, -6) C' (-8, 0)
 - (iv) Hexagon.
 - (v) Y-Axis is the line of symmetry.

	4050	53 5 0.0			283
(b)	•		Minimum Bal	ances	
	April		7,350.00		
	May		11,900.00		
	June		11,900.00		
	July	W 52	13,400.00		
	August		13,400.00		
	September		14,400.00		
	October		14,400.00		
	November		15,200.00		
	December		15,200.00		at.
	January		13,200.00		
	February		13,200.00		
	March		14,150.00		
			1,57,700.00	⇒	P = ₹ 1,57,700
8			$I = \frac{1,57,700 \times 100}{100}$	$\frac{5}{12}$ $\times \frac{1}{12}$	
			$=\frac{7885}{12}=76$	57.08	

Question 7.

(a) Using componendo and dividendo, find the value of x

$$\frac{\sqrt{3x+4}+\sqrt{3x-5}}{\sqrt{3x+4}-\sqrt{3x-5}}=9$$
 [3]

- **(b)** If $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$ and I is the identity matrix of the same order and A^{I} is the transpose of matrix A, find $A^{I}.B + BI$. [3]
- (c) In the adjoining figure ABC is a right angled triangle with ∠BAC = 90°.

- (ii) If BD = 18 cm, CD = 8 cm, find AD.
- (iii) Find the ratio of the area of Δ ADB is to area of Δ CDA.
 [4]

Solution:

(a) Given:
$$\frac{\sqrt{3x+4}+\sqrt{3x-5}}{\sqrt{3x+4}-\sqrt{3x-5}} = \frac{9}{1}$$

Applying componendo and Dividendo.

$$\frac{\sqrt{3x+4}+\sqrt{3x-5}+\sqrt{3x+4}-\sqrt{3x-5}}{\sqrt{3x+4}+\sqrt{3x-5}} = \frac{9+1}{9-1}$$

$$\frac{2\sqrt{3x+4}}{2\sqrt{3x-5}} = \frac{10}{8}$$

$$\frac{\sqrt{3x+4}}{\sqrt{3x-5}} = \frac{5}{4}$$
Squaring both sides,
$$\frac{3x+4}{3x-5} = \frac{25}{16}$$

Applying Componendo and Dividendo,

$$\frac{3x+4+3x-5}{3x+4-3x+5} = \frac{25+16}{25-16}$$

$$\frac{6x-1}{9} = \frac{41}{9}$$

$$6x = 42$$

$$x = 7$$

(b) Transpose of matrix A,
$$A^{t} = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$

$$A^{t} \cdot B = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 8-1 & -4+4 \\ 20-3 & -10+9 \end{bmatrix} = \begin{bmatrix} 7 & -1 \\ 17 & -1 \end{bmatrix}$$

$$B.I = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$

Mathematics, 2011 | 517

$$A^{t} \cdot B + B \cdot I = \begin{bmatrix} 7 & -1 \\ 17 & -1 \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & -3 \\ 6 & 2 \end{bmatrix}$$

Ans.

(c) Let

$$\angle DAB = \theta$$

.

$$\angle DAC = 90 - \theta$$

$$\angle DBA = 90 - \theta$$

$$\angle DCA = \theta$$

... All three angles of Δ ADB are equal to all angles of Δ CDA.

(i) :.

Proved

$$\frac{CD}{AD} = \frac{AD}{BD}$$

$$AD^{2} = CD \times BD$$
$$= 8 \times 18 \implies AD = 12$$

$$\frac{\Delta \text{ ADB}}{\Delta \text{ CDA}} = \frac{\frac{1}{2} \text{ AD} \times \text{BD}}{\frac{1}{2} \text{ AD} \times \text{CD}}$$
$$= \frac{\text{BD}}{\text{CD}} = \frac{18}{8}$$

$$=\frac{9}{4}$$

Ans.

Question 8.

- (a) (i) Using step-deviation method, calculate the mean marks of the following distribution.
 - (ii) State the modal class:

[5]

Class Interval	Frequency
50–55	- 5
55–60	20
60–65	10
65–70	10
70–75	9
75–80	6
80–85	12
85–90	8

(b) Marks obtained by 200 students in an examination are given below:

Marks	No. of Students		
0–10	5		
10-20	11		
20-30	10		
30-40	20		
40-50	28		
50-60	37		
60–70	40		
70-80	29		
80-90	14		
90-100	6		

Draw an ogive for the given distribution taking 2 cm = 10 marks on one axis and 2 cm = 20 students on the other axis. Using the graph, determine

- (i) The median marks.
- (ii) The number of students who failed if minimum marks required to pass is 40.
- (iii) If scoring 85 and more marks is considered as grade one, find the number of students who secured grade on in the examination. [5]

Solution:

(a) (i)

C.I.	f	x	d = x - 67.5	и	f.u
50-55	5	52.5	-15	-3	-15
55-60	20	57.5	-10	-2	-40
60–65	10	62.5	-5	-1	-10
65-70	10	67.5	0	0	0
70–75	9	72.5	5	1	9
75–80	6	77.5	10	2	12
80-85	12	82.5	15	3	36
85–90	8	87.5	20	4	32
	$\Sigma f = 80$	2997	a		$\Sigma fu = 24$

A.M. = 67.5

$$\bar{x} = A.M. + \frac{\Sigma f u}{\Sigma f} \times i$$

$$= 67.5 + \frac{24}{80} \times 5$$

$$= 67.5 + 1.5 = 69$$

(ii) Modal class is 55-60 (class with heighest freq.)

Ans.

(b)	C.I.	f	C.F.
	0–10	5	5
	10-20	11	16
	20-30	10	26
	30-40	20	46
	40-50	28	74
	50-60	37	111
	60-70	40	151
	70-80	29	180
	80-90	14	194
	90-100	6	200

(i) n = 200

Median =
$$\left(\frac{n}{2}\right)^{\text{th}}$$
 observation
= $\left(\frac{200}{2}\right)^{\text{th}}$ observation
= 100^{th} observation = 57.02

Ans.

(ii) Number of students who failed = 46

Ans.

(iii) Number of students who secured grade one = 200 - 1888 = 12.

Ans.

Question 9.
 (a) Mr. Parekh invested ₹ 52,000 on 100 shares at a discount of ₹ 20 paying 8% dividend. At the end of one year he sells the shares at a premium of ₹ 20. Find

(i) The annual dividend.

(ii) The profit earned including his dividend.

[3]

(b) Draw a circle of radius 3.5 cm. Mark a point P outside the circle at a distance of 6 cm from the centre. Construct two tangents from P to the given circle. Measure and write down the length of one tangent. [3]

(c) Prove that (cosec $A - \sin A$) (sec $A - \cos A$) $\sec^2 A = \tan A$. [4]

Solution:

(i)

(a) Investment = ₹ 52,000, N.V = ₹ 100, M.V. of one share = ₹ (100 - 20) = ₹ 80, Dividend = 8%

No. of shares =
$$\frac{\text{Investment}}{\text{MV}}$$
=
$$\frac{52,000}{80}$$
=
$$₹650$$
Annual Dividend =
$$\frac{8}{100} \times 650 \times 100$$
=
$$₹5,200$$

(ii) Profit = Total S.P. + Dividend – Investment =
$$650 \times 120 + 5,200 - 52,000$$
 = $78,000 + 5,200 - 52,000$ = $31,200$

(b) Length of the tangent = 4.8 cm.

(c) L.H.S. =
$$(\csc A - \sin A)(\sec A - \cos A) \cdot \sec^2 A$$

= $\left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right) \cdot \sec^2 A$
= $\left(\frac{1 - \sin^2 A}{\sin A}\right) \left(\frac{1 - \cos^2 A}{\cos A}\right) \cdot \sec^2 A$
= $\frac{\cos^2 A}{\sin A} \cdot \frac{\sin^2 A}{\cos A} \times \frac{1}{\cos^2 A}$
= $\frac{\sin A}{\cos A}$
= $\tan A = R.H.S.$

Hence Proved

Ans.

Question 10.

- (a) 6 is the mean proportion between two numbers x and y and 48 is the third proportional of x and y. Find the numbers. [3]
- (b) In what period of time will ₹ 12,000 yield ₹ 3,972 as compound interest at 10%. per annum, if compounded on an yearly basis?
- (c) A man observes the angle of elevation of the top of a building to be 30°. He walks towards it in a horizontal line through its base. On covering 60 m the angle of elevation changes to 60°. Find the height of the building correct to the nearest [4]

Solution:

(a)
$$xy = 6^{2}$$

$$\Rightarrow xy = 36$$

$$x: y :: y: 48$$

$$\frac{x}{y} = \frac{y}{48}$$

$$\Rightarrow y^{2} = 48x$$
Subtituting the value of x from (1) ...(2)

Subtituting the value of x from (1),

$$y^2 = 48 \times \frac{36}{y}$$

WWW.10YEARSQUESTIONPAPER.COM

Mathematics, 2011 | 521

$$y^{3} = 48 \times 36$$

$$y^{3} = 6 \times 8 \times 6 \times 6$$

$$y = 12$$

$$x = 3$$

Ans.

(b) Given: $P = \sqrt{12,000}$, C.I. $= \sqrt{3,972}$, R% = 10% p.a.

Let
$$A = P\left(1 + \frac{R}{100}\right)^n$$

$$\Rightarrow 15,972 = 12,000\left(1 + \frac{10}{100}\right)^n$$

$$\frac{1331}{1000} = \left(\frac{11}{10}\right)^n$$

$$\therefore \left(\frac{11}{10}\right)^3 = \left(\frac{11}{10}\right)^n$$

$$\Rightarrow n = 3 \text{ years.}$$
Let BC = r and AB - h

Ans.

(c) Let BC = x and AB = hIn right angled \triangle ADB

$$\tan 30^\circ = \frac{h}{60 + x}$$
$$60 + x = h\sqrt{3}$$

Now right angled ∆ ACB

$$\tan 60^{\circ} = \frac{h}{x}$$

$$\Rightarrow \qquad x = \frac{h}{\sqrt{3}}$$
Equating 'x',
$$h\sqrt{3} - 60 = \frac{h}{\sqrt{3}}$$

$$\Rightarrow \qquad 3h - 60\sqrt{3} = h$$

$$2h = 60\sqrt{3}$$

$$\therefore \qquad h = 30\sqrt{3}$$

$$= 51.96 \text{ m.}$$

Ans.

Question 11.

(a) ABC is a triangle with AB = 10 cm, BC = 8 cm and AC = 6 cm (not drawn to scale). Three circles are drawn touching each other with the vertices as their centres. Find the radii of the three circles.
 [3]

WWW.10YEARSQUESTIONPAPER.COM

522 | ICSE Last 10 Years Solved Papers

- (b) ₹ 480 is divided equally among 'x' children. If the number of children were 20 more then each would have got ₹ 12 less. Find 'x'.

 [3]
- (c) Given equation of line L_1 is y = 4.

- (i) Write the slope of line L_2 if L_2 is the bisector of angle O.
- (ii) Write the co-ordinates of point P.
- (iii) Find the equation of L_2 .

[4]

Ans.

1

Solution:

٠.

٠.

(a) Let the three radii be x, y, z respectively.

$$x+y = 10 \qquad \dots (1)$$

$$y + z = 8 \qquad \dots (2)$$

$$x + z = 6 \qquad \dots (3)$$

Adding equation's (1), (2) and (3), 2x + 2y + 2z = 24

$$x + y + z = 12 \qquad \dots (4)$$

Subtracting each equation (1), (2) and (3) from equation (4), we get

$$z = 2 \text{ cm}, x = 4 \text{ cm}, y = 6 \text{ cm}.$$

(b) Initial share of each child =
$$\frac{480}{x}$$

New share of each child = $\frac{480}{x+20}$

Difference in share is ₹ 12

$$\frac{480}{x} - \frac{480}{x + 20} = 12$$

$$\frac{1}{x} - \frac{1}{x + 20} = \frac{12}{480} = \frac{1}{40}$$

$$\frac{x + 20 - x}{x(x + 20)} = \frac{1}{40}$$

$$x^2 + 20x = 800$$

$$x^2 + 20x - 800 = 0$$

$$x^2 + 40x - 20x - 800 = 0$$

$$x(x + 40) - 20(x + 40) = 0 \text{ (not possible)}$$

$$x = 20 \text{ or } x = -40$$

$$x = 20$$

(c) (i) Slope of L_2 is $m = \tan 45^\circ$

 $\therefore \qquad \qquad m = 1 \qquad (L_2 \text{ makes an angle of } 45^\circ \text{ with X axis})$

(ii) Equation of line L2

$$y-0 = 1(x-0)$$

It passes through (0, 0)

 \therefore Equation of L_2 is y = x

P can be obtained by solving L_1 and L_2 simultaneously,

 $\mathbf{L_1} \qquad \qquad \mathbf{y} = \mathbf{3}$

 L_2 y = x

On solving, we get x = 3, y = 3

Co-ordinate of P (3, 3)

Ans.

(iii) Equation of L_2 is y = x [as solved above part (ii)].

Ans.

WWW.10YEARSQUESTIONPAPER.COM