Try to compile a small appliation to wasm.

Try to compile CGAL to wasm.

Try to compile GDAL to wasm.

Experiment with different compilation methods and settings, and compare results

Define a guide of compiling large (C++) libraries to Wasm

Phase 2. Develop

Develop the basics of a browser-based visual programming language

Add general geometry processing & visualization support

Add core GIS functionalities including WFS and **WMS**

Add auxiliary functionalities Examine the state of this environment as it is right now

How to design and create

Phase 3. Synthesize

Add wasm plugin support to the geo web vpl

Add the wasm-compiled C++ libraries to the geo web vpl as plugins or dependencies

Experiment with different distribution strategies and considerations

Choose an effective method, and explain why

How can wasm-compiled geoprocessing libraries be used in

A "geo-GDAL &

Phase 4. Benchmark

Setup a 'benchmark test suite'

Perform **Benchmarks** Conclude the performance penaltiy compared to native

Result: A more performant environment

Phase 5. Utilize

Create an application using the environment

State advantages and disadvantages

Discuss what this means for the geospatial community

Result: Example projects utilizing the vpl environment

What are the advantages and of

using a client-side geoprocessing

Completed Preliminary work

Development

Assessment

What are t

client-side geoprocessing

Result:
GDAL & CGAL
compiled

to wasm

a client-side geoprocessing environment?

Result: A "geo-web-vpl" environment

a client-side geoprocessing environment?

Result: web-vpl" with CGAL support

the performance considerations of using a genvironment powered by WebAssembly?

disadvantages of GIS applications created genvironment powered by WebAssembly?

