Pengantar Analisis Fungsional

Cheatsheet

Normed Spaces

Definisi 2.1 Misalkan X ruang vektor atas \mathbb{F} . Suatu fungsi $||\cdot||:X\to\mathbb{R}$ dikatakan norm di X jika untuk setiap $x,y\in X$ dan $\alpha\in\mathbb{F}$ berlaku

- (i) $||x|| \ge 0$;
- (ii) $||x|| = 0 \iff x = 0;$
- (iii) $||\alpha x|| = |\alpha| \cdot ||x||$;
- (iv) ||x + y|| < ||x|| + ||y||.

Definisi 2.12 Misalkan X adalah ruang vektor dan $\|\cdot\|_1$ serta $\|\cdot\|_2$ adalah dua norma pada X. Norma $\|\cdot\|_2$ ekuivalen dengan norma $\|\cdot\|_1$ jika terdapat bilangan M,m>0 sedemikian sehingga untuk setiap $x\in X$ berlaku

$$m||x||_1 \le ||x||_2 \le M||x||_1.$$

Norm of Some Normed Spaces

1. Norm di \mathbb{R}^n dan \mathbb{C}^n didefinisikan oleh

$$||x|| = \left(\sum_{j=1}^{n} |\xi_j|^2\right)^{\frac{1}{2}}$$

2. Norm di Ruang l^p didefinisikan oleh

$$||x|| = \left(\sum_{j=1}^{\infty} |\xi_j|^p\right)^{\frac{1}{p}}$$

3. Norm di Ruang l^{∞} didefinisikan oleh

$$||x|| = \sup_{i} |\xi_j|$$

4. Norm di Ruang C[a,b] didefinisikan oleh

$$||x|| = \max_{t \in J} |x(t)|$$

Inner Products

Definisi 3.3 Misalkan X ruang vektor bernilai kompleks. Suatu fungsi $<\cdot,\cdot>:X\times X\to\mathbb{C}$ dikatakan inner product di X jika untuk setiap $x,y,z\in X$ dan $\alpha,\beta\in\mathbb{C}$ berlaku

- (i) $\langle x, x \rangle \in \mathbb{R} \operatorname{dan} \langle x, x \rangle \geq 0$;
- (ii) $\langle x, x \rangle = 0 \iff x = 0;$
- (iii) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$;
- (iv) $\langle x, y \rangle = \overline{\langle y, x \rangle}$

Some Examples of Inner Product

1. Inner Product di \mathbb{R}^n Untuk $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$$

2. Inner Product di \mathbb{C}^n Untuk $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$,

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

3. Inner Product di $L^2[a,b]$ Untuk fungsi $f,g \in L^2[a,b]$,

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx$$

4. Inner Product di ℓ^2 Untuk barisan $x=(x_1,x_2,\ldots), y=(y_1,y_2,\ldots)\in \ell^2,$

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}$$

5. Norma pada ℓ^p dan L^p untuk $p \neq 2$ Ruang ℓ^p dan L^p bukan inner product space jika $p \neq 2$, namun normanya didefinisikan sebagai:

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}, \quad x \in \ell^p$$

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \quad f \in L^p[a, b]$$

6. Inner Product di C[a,b]

Ruang C[a,b] bukan inner product space secara umum, tetapi dapat dilengkapi dengan inner product seperti di $L^2[a,b]$:

$$\langle f, g \rangle = \int_a^b f(x) \overline{g(x)} \, dx, \quad f, g \in C[a, b]$$

Orthogonal Complements

Definisi 3.31. Sebuah subset A dari sebuah ruang vektor X dikatakan konveks jika untuk sebarang $x, y \in A$ dan $\lambda \in [0, 1]$, maka $\lambda x + (1 - \lambda)y \in A$.

Teorema 3.32. Jika A adalah subset tak kosong, tertutup, dan konveks dari ruang Hilbert \mathcal{H} dan misalkan $p \in \mathcal{H}$, maka ada secara tunggal $q \in A$ sedemikian sehingga

$$||p - q|| = \inf \{||p - a|| : a \in A\}.$$

Teorema 3.34. Misalkan Y adalah subruang vektor tertutup dari ruang Hilbert \mathcal{H} . Untuk sebarang $x \in \mathcal{H}$, ada secara tinggal $y \in Y$ dan $z \in Y^{\perp}$ sedemikian sehingga x = y + z. Selain itu, $\|x\|^2 = \|y\|^2 + \|z\|^2$.

Operator Linear

Suatu operator T dikatakan sebagai **transformasi** linier jika untuk setiap $x,y\in T$ dan setiap skalar α , berlaku:

(a)
$$T(x+y) = T(x) + T(y)$$

(b)
$$T(\alpha x) = \alpha T(x)$$

Transformasi Linear Kontinu

Lemma 4.1. Misalkan X dan Y adalah ruang linear bernorma dan misalkan $T:X\to Y$ adalah sebuah transformasi linear. Pernyataan di bawah ini saling ekuivalen.

- (a) T kontinu seragam.
- (b) T kontinu.
- (c) T kontinu di 0.
- (d) Ada sebuah bilangan real positif k sedemikian hingga $||T(x)|| \le k$ ketika $x \in X$ dan $||x|| \le 1$.
- (e) Ada sebuah bilangan real positif k sedemikian hingga $||T(x)|| \le k||x||, \forall x \in X$.

Lemma 4.3. Jika $\{c_n\} \in \ell^{\infty}$ dan $\{x_n\} \in \ell^p$, dengan $1 \le p < \infty$, maka $\{c_n x_n\} \in \ell^p$ dan

$$\sum_{n=1}^{\infty} |c_n x_n|^p \le |\{c_n\}|_{\infty}^p \sum_{n=1}^{\infty} |x_n|^p.$$

Definisi 4.6. Misalkan X dan Y adalah ruang linear bernorma dan misalkan $T: X \to Y$ adalah transformasi linear. T dikatakan terbatas jika ada sebuah bialng real positif k demikia sehingga $||T(x)|| \le k||x||$, $\forall x \in X$.

Teorema 4.9. Jika X adalah ruang bernorma berdimensi hingga, Y adalah sebarang ruang

bernorma, dan $T:X\to Y$ adalah transformasi linear, maka Tkontinu. .

Lemma 4.11. Jika X dan Y adalah ruang linear bernorma dan $T: X \to Y$ adalah transformasi linear kontinu, maka ker(T) tertutup.

Definisi 4.12. Jika X dan Y adalah ruang bernorma dan $T: X \to Y$ adalah transformasi linear, graf dari T adalah subruang linear $\mathcal{G}(T)$ dari $X \times Y$ didefinisikan sbegai

$$\mathcal{G}(T) = \{(x,Tx) : x \in X\}.$$

Lemma 4.13. Jika X dan Y adalah ruang bernorma dan $T: X \to Y$ adalah transformasi linear, maka $\mathcal{G}(T)$ tertutup.

Lemma 4.14. Misalkan X dan Y adalah ruang linear bernorma dan misalkan $S,T\in B(X,Y)$ dengan $\|S(x)\|\leq k_1\|x\|$ dan $\|T(x)\|\leq k_2\|x\|, \, \forall x\in X.$ Jika $\lambda\in\mathbb{F}$, maka

- (a) $||(S+T)(x)|| \le (k_1+k_2)||x||, \forall x \in X;$
- (b) $\|(\lambda S)(x)\| \le |\lambda| k_1 \|x\|, \, \forall x \in X;$
- (c) B(X,Y) adalah subruang linear dari L(X,Y) sehingga B(X,Y) adalah ruang vektor.

Norma dari Operator Linear Terbatas

Lemma 4.15. Misalkan X dan Y adalah ruang bernorma. Jika $\|\cdot\|:B(X,Y)\to\mathbb{R}$ didefinisikan sebagai

$$||T|| = \sup \{||T(x)|| : ||x|| \le 1\},\$$

maka $\|\cdot\|$ adalah norma pada B(X,Y).

Definisi 4.16. Misalkan X dan Y adalah ruang linear bernorma dan misalkan $T \in B(X,Y)$. Norma dari T didefinisikan sebagai $\|T\| = \sup\{\|T(x)\| : \|x\| \le 1\}$.

Definisi 4.17. Misalkan \mathbb{F}^p mempunyai norm standar dan misalkan A adalah matriks berukuran $m \times n$ dengan entrinya anggota \mathbb{F} . Jika $T: \mathbb{F}^n \to \mathbb{F}^m$ adalah transformasi linear terbatas yang didefinisikan sebagai T(x) = Ax, maka norma dari matriks A didefinisikan sebagai ||A|| = ||T||.

Teorema 4.19. Misalkan X adalah ruang linear bernorma dan misalkan W adalah subruang dari X yang rapat. Misalkan Y adalah ruang Banach dan misalkan $S \in B(W, Y)$.

- (a) Jika $x \in X$ dan $\{x_n\}$ serta $\{y_n\}$ adalah barisan di W sedemikian sehingga $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$, maka $\{S(x_n)\}$ dan $S(\{y_n\})$ keduanya konvergen dan $\lim_{n \to \infty} S(x_n) = \lim_{n \to \infty} S(y_n)$.
- (b) Ada $T \in B(X, Y)$ sedemikian sehingga ||T|| = ||S|| dan Tx = Sx, $\forall x \in W$.

Definisi 4.20. Misalkan X dan Y adalah ruang linear bernorma dan misalkan $T \in L(X,Y)$. Jika $||T(x)|| = ||x||, \forall x \in X$, maka T dikatakan isometry.

Lemma 4.23. Misalkan X dan Y adalah ruang linear bernorma dan misalkan $T \in L(X, Y)$. Jika T adalah *isometry*, maka T terbatas dan ||T|| = 1.

Definisi 4.24. Jika X dan Y adalah ruang linear bernorma dan T adalah isometry dari X pada Y (fungsi pada), maka T dikatakan sebagai isometric isomorphism dan X dan Y dikatakan isometrically isomorphic.

Teorema 4.25. Jika \mathcal{H} adalah ruang Hilbert berdimensi tak hingga atas lapangan \mathbb{F} dengan basis orthonormal $\{e_n\}$, maka ada sebuah isometry $T: \mathcal{H} \to \ell_{\mathbb{F}}^2$ sedemikian sehingga $T(e_n) = \tilde{e}_n$, untuk semua $n \in \mathbb{N}$.

Ruang B(X,Y) dan Ruang Dual

Teorema 4.27. Jika X adalah ruang linear bernorma dan Y adalah ruang Banach, maka ruang bernorma B(X,Y) adalah ruang Banach.

Definisi 4.28. Misalkan X adalah ruang bernorma atas lapangan \mathbb{F} . Ruang $B(X,\mathbb{F})$ dikatakan sebagai dual space (ruang dual) dari X dan dinotasikan sebagai X'.

Corollary 4.29. Jika X adalah ruang vektor bernorma, maka X' adalah ruang Banach.

Teorema 4.31. (Teorema Riesz-Frechet) Jika \mathcal{H} adalah ruang Hilbert dan $f \in \mathcal{H}'$, maka ada secara tunggal $y \in \mathcal{H}$ sedemikian sehingga $f(x) = \langle x, y \rangle$ untuk semua $x \in \mathcal{H}$. Lebih lanjut, ||f|| = ||y||.

Teorema 4.32.

(a) Jika $c = \{c_n\} \in \ell^{\infty}$ dan $\{x_n\} \in \ell^1$, maka $\{c_n x_n\} \in \ell^1$. Jika transformasi linear $f_c : \ell^1 \to \mathbb{F}$ yang didefinisikan sebagai $f_c(\{x_n\}) = \sum_{n=1}^{\infty} c_n x_n$, maka $f_c \in (\ell^1)'$ dengan

$$||f_c|| \leq ||c||_{\infty}$$

- (b) Jika $f \in (\ell^1)'$, maka ada $c \in \ell^{\infty}$ sedemikian hingga $f = f_c$ dan $||c||_{\infty} \leq ||f||$.
- (c) Ruang $(\ell^1)'$ isometrically isomorphic terhadap ℓ^{∞} .

Lemma 4.33. Jika X,Y, dan Z adalah ruang linear bernorma dan $T\in B(X,Y)$ dan $S\in B(Y,Z),$ maka $S\circ T\in B(X,Z)$ dan

$$||S \circ T|| \le ||S|| ||T||.$$

Notasi Jika X adalah ruang linear bernorma, maka himpunan B(X,X) dari semua operator linear terbatas dari X ke X akan dilambangkan dengan B(X).

Definisi 4.34. Misalkan X,Y, dan Z adalah ruang linear bernorma dab $T \in B(X,Y)$ dan $S \in B(Y,Z)$. Komposisi $S \circ T$ dari S dan T akan dinotasikan sebagai ST dan dinamakan sebagai T dari S dan T.

Lemma 4.35. Misalkan X adalah ruang linear bernorma.

- (a) B(X) adalah sebuah aljabar dengan identitas dan juga sebuah ring dengan identitas.
- (b) Jika $\{T_n\}$ dan $\{S_n\}$ adalah barisan in B(X) sedemikian hingga $\lim_{n\to\infty} T_n = T$ dan $\lim_{n\to\infty} S_n = S$, maka $\lim_{n\to\infty} S_n T_n = ST$.

Notasi Misalkan X adalah ruang bernorma dan misalkan $T \in B(X)$.

- (a) TT akan dinotasikan sebagai T^2 , TTT akan dinotasikan sebagai T^3 , dan secara umum product dari T dengan dirinya sendiri sebanyak n kali akan dinotasikan sebagai T^n .
- (b) Jika $a_0, a_1, \ldots, a_n \in \mathbb{F}$ dan $p : \mathbb{F} \to \mathbb{F}$ adalah polinomial yang didefinisikan sebagai $p(x) = a_0 + a_1 x + \cdots + a_n x^n$, maka p(T) didefinisikan sebagai $p(T) = a_0 + a_1 T + \cdots + a_n T^n$.

Lemma 4.36. Misalkan X adalah ruang linear bernorma dan $T \in B(X)$. Jika p dan q adalah polinomial dan $\lambda, \mu \in \mathbb{C}$, maka

- (a) $(\lambda p + \mu q)(T) = \lambda p(T) + \mu q(T)$;
- (b) pq(T) = p(T)q(t).

Invers Operator

Definisi 4.37 Misalkan X adalah ruang linier bernoma. Sebuah operator $T \in B(X)$ dikatakan **invertible** jika ada $S \in B(X)$ sehingga ST = I = TS.

Notasi Misalkan X adalah ruang linear bernorma dan $T \in B(X)$ bersifat invertibel. Elemen $S \in B(X)$ yang memenuhi ST = I = TS disebut invers dari T dan dilambangkan dengan T^{-1} .

Lemma 4.38 Jika X adalah ruang linear bernorma dan T_1, T_2 adalah elemen invertibel dari B(X), maka:

- (a) T_1^{-1} juga invertibel dengan invers T_1 ;
- (b) T_1T_2 invertibel dengan invers $T_2^{-1}T_1^{-1}$.

Teorema 4.40 Misalkan X adalah ruang Banach. Jika $T \in B(X)$ adalah suatu operator dengan ||T|| < 1, maka I - T dapat diinvertkan dan inversnya diberikan oleh $(I - T)^{-1} = \sum_{n=0}^{\infty} T^n$.

Notasi Derat di Teorema 4.40 kadang disebut Some Useful Inequality Deret Neumann.

Akibat 4.42 Misalkan X adalah ruang banach. Himpunan \mathcal{A} yang terdiri dari elemen-elemen yang invertible di dalam B(X) adalah himpunan yang terbuka.

Teorema 4.43 (Teorema Pemetaan Terbuka) Misalkan X dan Y adalah ruang Banach dan $T \in$ B(X,Y) memetakan X ke seluruh Y. Misalkan

$$L = \{T(x) : x \in X \text{ dan } ||x|| \le 1\},\$$

dengan closure \overline{L} . Maka:

- (a) Terdapat r > 0 sedemikian sehingga $\{y \in Y : x \in Y \}$ $||y|| \leq r \subseteq \overline{L};$
- (b) $\{y \in Y : ||y|| \le \frac{r}{2}\} \subseteq L;$
- (c) Jika, sebagai tambahan, T bersifat satuke-satu (one-to-one), maka terdapat $S \in$ B(Y, X) sehingga $S \circ T = I_X$ dan $T \circ S = I_Y$.

Akibat 4.44 (Teorema Graf Tertutup) Jika X dan Y adalah ruang banach dan T adalah transformasi linier dari X ke Y sehingga $\mathcal{G}(T)$, graf dari T, tertutup, maka T kontinu.

Akibat 4.45 (Teorema isomorfisma Banach) Jika X adalah ruang banach dan $T \in B(X)$ adalah satu-satu dan memetakan X ke X maka T invert-

Lemma 4.46 Jika X adalah ruang linier bernorma dan $T \in B(X)$ invertible, maka untuk semua $x \in X$ berlaku $||T(x)|| \ge ||T^{-1}||^{-1}||x||$.

Lemma 4.47 Jika X adalah ruang banach dan $T \in B(X)$ mempunyai properti bahwa ada $\alpha > 0$ sehingga $||T(x)|| \geq \alpha ||x||$ untuk semua $x \in X$, maka Im(T) adalah himpunan tertutup.

Teorema 4.48 Misalkan X adalah ruang banach dan misalkan $T \in B(X)$. Pernyataan di bawah ini ekivalen:

- (a) T invertible
- (b) Im(T) rapat di X dan ada $\alpha > 0$ sehingga $||T(x)|| > \alpha ||x||$ untuk semua $x \in X$.

Akibat 4.49 Misalkan X Ruang Banach dan $T \in$ B(X). Operator T tidak invertible jika dan hanya jika Im(T) tidak rapat di X atau terdapat barisan $\{x_n\} \in X$ dengan $||x_n|| = 1, \forall n \in \mathbb{N}$ tetapi $\lim_{n \to \infty} T(x_n) = 0.$

Pertidaksamaan Hölder

Untuk p > 1, q > 1, dan $\frac{1}{p} + \frac{1}{q} = 1$,

$$\sum_{j=1}^{\infty} |\xi_j \eta_j| \le \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} \left(\sum_{m=1}^{\infty} |\eta_m|^q\right)^{1/q}$$

Pertidaksamaan Cauchy-Schwarz

Kasus khusus dari Hölder ketika p = q = 2,

$$\sum_{j=1}^{\infty} |\xi_j \eta_j| \le \left(\sum_{k=1}^{\infty} |\xi_k|^2\right)^{1/2} \left(\sum_{m=1}^{\infty} |\eta_m|^2\right)^{1/2}$$

Pertidaksamaan Minkowski

Untuk $p \ge 1$,

$$\left(\sum_{j=1}^{\infty} |\xi_j + \eta_j|^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} + \left(\sum_{m=1}^{\infty} |\eta_m|^p\right)^{1/p}$$

The Adjoint of an Operator

Teorema 5.1 Misalkan \mathcal{H} dan \mathcal{K} merupakan ruang kompleks Hilbert dan $T \in B(\mathcal{H}, \mathcal{K})$. Ada tunggal operator $T^* \in B(\mathcal{H}, \mathcal{K})$ sehingga $(Tx, y) = (x, T^*y)$ $\forall x \in \mathcal{H}$ dan $\forall y \in \mathcal{K}$.

Definisi 5.2 Jika \mathcal{H} dan \mathcal{K} merupakan ruang kompleks Hilbert dan $T \in B(\mathcal{H}, \mathcal{K})$, operator T^* yang dikonstruksi di teorema 5.1 disebut adjoint dari T.

Definisi 5.4 Jika $A = [a_{i,j}] \in M_{mn}(\mathbb{F})$, maka matriks $[\overline{a_{i,j}}]$ disebut adjoint dari A dan dinotasikan dengan A^* .

Lemma 5.8 Misalkan \mathcal{H} , \mathcal{K} dan \mathcal{L} merupakan ruang kompleks Hilbert. Misalkan $R, S \in B(\mathcal{H}, \mathcal{K})$ dan $T \in B(\mathcal{K}, \mathcal{L})$, serta $\lambda, \mu \in \mathbb{C}$, maka

- 1. $(\mu R + \lambda S)^* = \overline{\mu} R^* + \overline{\lambda} S^*;$
- 2. $(TR)^* = r^*T^*$

Teorema 5.10 Misalkan \mathcal{H} dan \mathcal{K} merupakan ruang kompleks Hilbert dan $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$.

- 1. $(T^*)^* = T$
- 2. $||T^*|| = ||T||$
- 3. Fungsi $f: B(\mathcal{H}, \mathcal{K}) \to B(\mathcal{K}, \mathcal{H})$ yang didefinisikan sebagai $f(R) = R^*$ kontinu.
- 4. $||T^*T|| = ||T||^2$

Lemma 5.11 Misalkan \mathcal{H} dan \mathcal{K} adalah ruang Hilbert kompleks dan misalkan $T \in B(\mathcal{H}, \mathcal{K})$.

- (a) Ker $T = (\text{Im } T^*)^{\perp}$;
- (b) $\text{Ker } T^* = (\text{Im } T)^{\perp};$
- (c) Ker $T^* = \{0\}$ jika dan hanya jika Im T rapat dalam \mathcal{K} .

Akibat 5.12 Misalkan \mathcal{H} adalah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$. Pernyataan di bawah ini bersifat ekuivalen.

- (a) T invertible.
- (b) Ker $T^* = \{0\}$ dan ada $\alpha > 0$ sedemikian sehingga $||T(x)|| \ge \alpha ||x||$, $\forall x \in \mathcal{H}$.

Lemma 5.14 Jika \mathcal{H} adalah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$ invertible, maka T^* juga invertible dengan $(T^*)^{-1} = (T^{-1})^*$.

Operator Normal, Self-adjoint, dan Unitary

Definisi 5.15

(a) Jika \mathcal{H} adalah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$, maka T adalah operator normal jika

$$TT^* = T^*T.$$

(b) Matriks persegi A dikatakan normal jika

$$AA^* = A^*A$$
.

Akibat 5.20 Misalkan \mathcal{H} adalah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$ adalah operator normal. Pernyataan di bawah ini bersifat ekuivalen.

- (a) T invertible.
- (b) Ada $\alpha > 0$ sedemikian hingga $||T(x)|| \ge \alpha ||x||, \forall x \in \mathcal{H}.$

Definisi 5.21

- (a) Misalkan \mathcal{H} adalah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$, maka T dikatakan self-adjoint jika $T = T^*$.
- (b) Jika A adalah matriks persegi, maka A dikatakan self-adjoint jika $A = A^*$.

Lemma 5.25 Misalkan \mathcal{H} adalah ruang Hilbert kompleks dan \mathcal{S} adalah himpunan operator self-adjoint di $B(\mathcal{H})$.

- (a) Jika α dan β adalah bilangan real dan $T_1, T_2 \in S$, maka $\alpha T_1 + \beta T_2 \in S$.
- (b) S adalah subset tertutup dari $B(\mathcal{H})$.

Lemma 5.26 Misalkan \mathcal{H} adalah sebuah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$.

- (a) TT^* dan TT^* adalah self-adjoint.
- (b) $T = R + iS \operatorname{dengan} R \operatorname{dan} S \operatorname{adalah} \operatorname{self-adjoint}$.

Definisi 5.27

- (a) Jika \mathcal{H} adalah ruang Hilbert kompleks dan $T \in B(\mathcal{H})$, maka T dikatakan unitary jika $TT^* = T^*T = I$.
- (b) Jika A adalah matriks persegi, maka A dikatakan sebagai unitary jika $AA^* = A^*A = I$.

Lemma 5.31 Misalkan \mathcal{H} adalah ruang Hilbert kompleks dan \mathcal{U} adalah himpunan operator *unitary* di $B(\mathcal{H})$.

- (a) Jika $U \in \mathcal{U}$, maka $U^* \in \mathcal{U}$ dan $\|U\| = \|U^*\| = \langle Tz, z \rangle$, $\forall z \in X$, maka S = T.
- (b) Jika $U_1,\,U_2\in\mathcal{U},$ maka U_1U_2 dan U^{-1} juga elemen di \mathcal{U} .
- (c) \mathcal{U} adalah subset tertutup dari $B(\mathcal{H})$.

 ${\bf Lemma~5.29}$ Jika Xadalah ruang hasil kali dalam dan $S, T \in B(X)$ sedemikian hinga $\langle Sz, z \rangle =$

Teorema 5.30 Misalkan ${\mathcal H}$ adalah ruang Hilbert kompleks dan misalkan $T, U \in B(\mathcal{H})$.

- (a) $T^{\ast}T=I$ jika dan hanya jika Tadalah isom
- (b) U adalah unitary jika dan hanya jika Uadalah isometry dari \mathcal{H} ke \mathcal{H} .