Model-based approach for determining COVID-19 incidence for different testing intensities

Rasmus Kristoffer Pedersen, Christian Berrig, Viggo Andreasen

PandemiX Center, Dept. Science and Environment, Roskilde University, Denmark Email: rakrpe@ruc.dk

ECMTB 2022, Heidelberg 22nd of September, 2022

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

Our approac

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

The data

Introduction to the problem

the world

▶ Different approaches to COVID-19 mitigation througout

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problematic

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data Relating to data

Introduction

The problematic Our approach

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

Relating to data

Discussion

▶ Different approaches to COVID-19 mitigation througout the world

► The impact of differences in data-collection must be understood, also for future research.

Introduction

The problematic

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data Relating to data

Discussion

▶ Different approaches to COVID-19 mitigation througout the world

- ► The impact of differences in data-collection must be understood, also for future research.
- ► In particular: For each reported case of COVID-19, how many unidentified cases?

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

The data Relating to data

- ▶ Different approaches to COVID-19 mitigation througout the world
- ► The impact of differences in data-collection must be understood, also for future research.
- ► In particular: For each reported case of COVID-19, how many unidentified cases?
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?

The problematic

Model presentation

Analysis

Data and simulations

Discussion

- Introduction

Fraction identified

- ▶ Different approaches to COVID-19 mitigation througout the world
- ► The impact of differences in data-collection must be understood, also for future research.
- ▶ In particular: For each reported case of COVID-19, how many unidentified cases?
- ▶ The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?

Model presentation

Analysis

Fraction identified

Data and simulations

Discussion

Introduction

▶ Different approaches to COVID-19 mitigation througout the world

- ► The impact of differences in data-collection must be understood, also for future research.
- ▶ In particular: For each reported case of COVID-19, how many unidentified cases?
- ▶ The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?

Let's look at some data...

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problematic

Our approac

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data Relating to data

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problematic

Our approach

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data

▶ We aim to determine the ratio between observed cases

and the total number of COVID-19 cases.

Pedersen, Berrig & Andreasen

Introduction
The problematic

Our approach

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

Relating to data

Introduction

Our approach

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size Data and

simulations The data

Relating to data

- ► We aim to determine the ratio between observed cases and the total number of COVID-19 cases.
- This ratio can be used as a correction-factor for observed data.

Introduction

Our approach

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size

Data and

simulations

The data

- ► We aim to determine the ratio between observed cases and the total number of COVID-19 cases.
- ► This ratio can be used as a correction-factor for observed data.
- ► We extend the classic SIR-model to include voluntary testing that identifies pre- and asymptomatic cases.

Introduction

Our approach

Model presentation

Analysis

Model dynamics Fraction identifie

Fixed final size

simulations The data

The data Relating to dat

- We aim to determine the ratio between observed cases and the total number of COVID-19 cases.
- ► This ratio can be used as a correction-factor for observed data.
- ► We extend the classic SIR-model to include voluntary testing that identifies pre- and asymptomatic cases.
- ► This allows us to investigate the relationship between the rate of voluntary testing and the appropriate correction-factor.

Introduction

The problematic

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

The data Relating to data

Introduction

The problema

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

The data Relating to data

$$\dot{S} = -\beta S(P+A) \qquad \dot{A} = \gamma (1-\rho)P - \nu A - \tau A$$

$$\dot{E}_1 = \beta S(P+A) - \gamma E_1 \qquad \dot{Q} = \tau (E_2 + P+A) - \nu Q$$

$$\dot{E}_2 = \gamma E_1 - \gamma E_2 - \tau E_2 \qquad \dot{R}_p = \nu Q + \nu I$$

$$\dot{P} = \gamma E_2 - \gamma P - \tau P \qquad \dot{R}_n = \nu A$$

$$\dot{I} = \gamma \rho P - \nu I$$

The model

 $S = -\beta S(P + A)$

 $\dot{E}_1 = \beta S(P+A) - \gamma E_1$

 $\dot{E}_2 = \gamma E_1 - \gamma E_2 - \tau E_2$

 $\dot{D} = \alpha F$, $\alpha D = \pi D$

Rate of testing

Determining COVID incidence Pedersen, Berrig &

Andreasen

Introduction

Model presentation

Analysis

Data and

Fraction identified

simulations The data

Discussion

$K_n = V_1 - V_1 - V_2$		
$\dot{I} = \gamma \rho P - \nu I$		
Symbol	Description	Default value
β	Infectivity	2/3
ν	Rate of recovery	1/3
γ	Rate of disease progression	1/3
ρ	Fraction of symptomatic cases	1/2

 $A = \gamma(1-\rho)P - \nu A - \tau A$

 $\dot{Q} = \tau(E_2 + P + A) - \nu Q$

0 to 0.5

 $R_p = \nu Q + \nu I$

All rates units of day⁻¹. Approximate R_0 of 1.4 initially.

Introduction

The problematic

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size Data and

simulations The data

Relating to data

Pedersen, Berrig &

Introduction

The problema

(1)

Model presentation

Analysis

Model dynamics

Fraction identified

Data and simulations

The data

Discussion

We consider the fraction of cases identified:

$$K = \frac{r_p}{r_p + r_n}$$

where $r_p = \lim_{t \to \infty} R_p(t)$ and $r_n = \lim_{t \to \infty} R_n(t)$.

Analysis of fraction of cases identified

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problema

(1)

Model presentation

Analysis

Model dynamics Fraction identified

Data and

simulations The data

The data Relating to data

Discussion

We consider the fraction of cases identified:

$$K = \frac{r_p}{r_p + r_n}$$

where $r_p = \lim_{t\to\infty} R_p(t)$ and $r_n = \lim_{t\to\infty} R_n(t)$. The correction-factor we want is K^{-1} .

Analysis

Fraction identified

Data and simulations

Discussion

We consider the fraction of cases identified:

$$K = \frac{r_p}{r_p + r_n} \tag{1}$$

where $r_p = \lim_{t \to \infty} R_p(t)$ and $r_n = \lim_{t \to \infty} R_n(t)$.

The correction-factor we want is K^{-1} .

Through the methods previously applied in (Andreasen, 2018), we are able to analytically determine:

$$K = 1 - \left(\frac{\nu}{\nu + \tau}\right) \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \quad (2)$$

Fraction identified

Data and

simulations The data

rne data Relating to data

Discussion

We consider the fraction of cases identified:

$$K = \frac{r_p}{r_p + r_n} \tag{1}$$

where $r_p = \lim_{t \to \infty} R_p(t)$ and $r_n = \lim_{t \to \infty} R_n(t)$.

The correction-factor we want is K^{-1} .

Through the methods previously applied in (Andreasen, 2018), we are able to analytically determine:

$$K = 1 - \left(\frac{\nu}{\nu + \tau}\right) \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \quad (2)$$

Note that K is independent of β .

We consider the fraction of cases identified:

Analysis

Fraction identified

Data and simulations

Discussion

 $K = \frac{r_p}{r_p + r_n}$ (1)

where $r_p = \lim_{t \to \infty} R_p(t)$ and $r_n = \lim_{t \to \infty} R_n(t)$.

The correction-factor we want is K^{-1} .

Through the methods previously applied in (Andreasen, 2018), we are able to analytically determine:

$$K = 1 - \left(\frac{\nu}{\nu + \tau}\right) \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \tag{2}$$

Note that K is independent of β .

(Andreasen, V. (2018). Epidemics in Competition: Partial Cross-Immunity. Bulletin of Mathematical Biology, 80(11), 2957-2977, https://doi.org/10.1007/s11538-018-0495-2)

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problema

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size

Data and simulations

The data

Relating to data

Discussion

Although the fraction of cases identified, K, is independent of β , the epidemic final size, i.e. $r_n + r_p$, is not.

Let us take a look at the final size as a function of τ and β .

0.5

0.0

0.1

0.2

0.3

τ

0.4

Model presentation

20

-10

0.5

0.0

0.1

0.2

0.3

τ

0.4

0.5

Determining COVID incidence

Model presentation

Determining COVID incidence

Introduction

The problematic

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size Data and

simulations

The data

Introduction

The problematic

Model presentation

Analysis

 $\tau = 0.001$ B = 0.667

 $\tau = 0.100$

Model dynamics Fraction identified

Fixed final size

Data and simulations

The data

(β chosen such that final size is fixed)

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Fraction identified

Fixed final size

Data and simulations

The data Relating to data

Discussion

(β chosen such that final size is fixed)

Determining COVID incidence

Introduction

The problematic

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size

Data and simulations

The data

Determining COVID incidence

Introduction

The problema

Model presentation

Analysis

Model dynamics Fraction identified

Fixed final size

Data and simulations

The data

Introduction

The problen

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

The data

Relating to data

2021

2021

Andreasen

December 2021: Variant-sampling of 80 to 90% of cases.

2022

2022

2022

2022

2022

Introduction

The problema

Model presentation

Analysis

Model dynamics
Fraction identified

Data and simulations

The data

Relating to data

Introduction

-40

Model presentation

Analysis

Fraction identified

Data and simulations

The data

Introduction

The probles

-300

Weekly cases

May

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data

Relating to dat

The Danish data

Pedersen, Berrig & Andreasen

Introduction

The problema

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data

Relating to dat

Discussion

(Only PCR shown, Antigen-tests at similar magnitude)

The Danish data

Pedersen, Berrig & Andreasen

Introduction

The problema

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data

Relating to dat

Discussion

Scaled to tests per population per day (i.e. τ)

Introduction

The problematic

Model presentation

Analysis

Model dynamics
Fraction identified
Fixed final size

Data and simulations

The data

Relating to data

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Fraction identified

Fixed final size

Data and simulations

The data

Relating to data

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problematic
Our approach

Model presentation

Analysis

Model dynamics
Fraction identified
Fixed final size

Data and simulations

The data

Relating to data

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problematic
Our approach

Model presentation

Analysis

Model dynamics
Fraction identified
Fixed final size

Data and simulations

The data

Relating to data

Introduction

The problem

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

he data

Relating to data

Introduction

The problem

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

ne data

Relating to data

Introduction

The problem

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

he data

Relating to data

Testing data, all

Model, all

Testing data, Omicron

1.25

Daily cases

Introduction

Model presentation

Analysis

Fraction identified

Data and simulations

Relating to data

Discussion

 τ from data, β : 0.48, initial infections: 2500

Testing data, all

Model, all

Testing data, Omicron

1.25

1.00

Introduction

Model presentation

Analysis

Fraction identified

Data and simulations

Relating to data

Discussion

 τ from data, β : 0.48, initial infections: 2500

► For comparing the impact of COVID-19 between countries, accurate estimates of final size are necessary, particular when evaluating mitigation strategies.

Introduction

The problematic

Our approac

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data Relating to data

- ► For comparing the impact of COVID-19 between countries, accurate estimates of final size are necessary, particular when evaluating mitigation strategies.
- ► Using an extended SIR-model, we are able to estimate the fraction of COVID-19 cases identified in the Omicron wave of early 2022 in Denmark.

Introduction

Our approach

Model presentation

Analysis

Model dynamics Fraction identified

Data and simulations

The data Relating to data

Introduction

Model presentation

Analysis

Fraction identified

Data and simulations

Discussion

► For comparing the impact of COVID-19 between countries, accurate estimates of final size are necessary, particular when evaluating mitigation strategies.

- ▶ Using an extended SIR-model, we are able to estimate the fraction of COVID-19 cases identified in the Omicron wave of early 2022 in Denmark.
- ► The simple model allows for analytical results about the epidemic final size in addition to simulations.

Introduction

Model presentation

Analysis

Fraction identified

Data and simulations

Discussion

► For comparing the impact of COVID-19 between countries, accurate estimates of final size are necessary, particular when evaluating mitigation strategies.

- ▶ Using an extended SIR-model, we are able to estimate the fraction of COVID-19 cases identified in the Omicron wave of early 2022 in Denmark.
- ► The simple model allows for analytical results about the epidemic final size in addition to simulations.
- ► Results suggest between 58% and 63% were identified, a little lower than official estimates suggesting two-thirds.

Introduction

Model presentation

Analysis

Fraction identified

Data and simulations

- ► For comparing the impact of COVID-19 between countries, accurate estimates of final size are necessary, particular when evaluating mitigation strategies.
- ▶ Using an extended SIR-model, we are able to estimate the fraction of COVID-19 cases identified in the Omicron wave of early 2022 in Denmark.
- ► The simple model allows for analytical results about the epidemic final size in addition to simulations.
- ► Results suggest between 58% and 63% were identified, a little lower than official estimates suggesting two-thirds.
- ► Future work consists of further analysis, parameter-fitting and application to other countries.

Thank you for your attention. Any questions?

Feel free to also contact me with questions or comments later

Website:
rasmuspedersen.com

Email: rakrpe@ruc.dk

Determining COVID incidence

Pedersen, Berrig & Andreasen

Introduction

The problemat

Model presentation

Analysis

Model dynamics

Fraction identified

Fixed final size

Data and simulations

he data