Word-Level Multi-Fix Rectifiability of Finite Field Arithmetic Circuits

Vikas Rao¹, Irina Ilioaea², Haden Ondricek¹, Priyank Kalla¹, and Florian Enescu³

¹Electrical & Computer Engineering, University of Utah ²Department of Mathematics, Louisiana State University Shreveport ³Mathematics & Statistics, Georgia State University

March 13, 2021

Outline

- Problem Description
- Motivation and Application
- Preliminaries
- Multi-Fix setup
 - Mathematical challenges
- Rectifiability check
- Experimental results
- Conclusion and Future work

Problem Description: Multi-error logic rectification

A faulty implementation of a 3-bit modulo multiplier

Problem Description

- Agnostic to the fault model, check for rectification at particular targets
 - Single-fix Rectification (SFR)
 - Correct circuit by changing function at a single net
- In a general setting, SFR might not be desired or may not exist
 - Multi-fix Rectification (MFR)
 - Correct circuit by changing functions at multiple nets
 - Contribution: Multi-fix rectifiability setup and check

Preliminaries: Finite field basics

- Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. ℝ, ℚ, ℂ
- Finite fields (Galois fields) Finite set of elements
 - Ex. \mathbb{F}_q , where $q = p^n$, p = prime, $n \in \mathbb{Z}_{\geq 1}$
 - When n = 1, $\mathbb{F}_p = \mathbb{Z}_p \pmod{p}$
 - With p = 2, $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$
 - On circuits, p = 2, n = data-operand width
- Hardware cryptography extensively based on \mathbb{F}_{2^n} (we use \mathbb{F}_{2^n})

Preliminaries: Modeling circuit polynomials over \mathbb{F}_{2^n}

 \bullet Boolean logic gates in $\mathbb{F}_2 \ (\mathbb{F}_2 \subset \mathbb{F}_{2^n}).$ Over $\mathbb{F}_2, \, -1 = +1 \pmod 2$

$$z = \sim a$$
 $\Longrightarrow z + a + 1$ (mod 2)
 $z = a \wedge b$ $\Longrightarrow z + a \cdot b$ (mod 2)
 $z = a \vee b$ $\Longrightarrow z + a \cdot b + a + b$ (mod 2)
 $z = a \oplus b$ $\Longrightarrow z + a + b$ (mod 2)

• Word-level polynomials $[\gamma = \text{primitive element of } \mathbb{F}_{2^n}]$

Output :
$$Z + z_0 + \gamma \cdot z_1 + \cdots + \gamma^{n-1} \cdot z_{n-1}$$

Input : $A + a_0 + \gamma \cdot a_1 + \cdots + \gamma^{n-1} \cdot a_{n-1}$

Problem Statement and Objective

- A multivariate specification polynomial $f \in \mathbb{F}_{2^n}$
 - n is the operand width
 - Ex. $Z = A \cdot B \pmod{P_n(x)}$ over \mathbb{F}_{2^n}
- A faulty circuit implementation C for specification f
 - Model gates as polynomials over F₂n
- A primitive polynomial $P_n(x)$ used to construct \mathbb{F}_{2^n}
 - \mathbb{F}_{2^n} constructed as $\mathbb{F}_{2^n} = \mathbb{F}_2[x] \pmod{P_n(x)}$
 - Let γ be one of the roots of $P_n(x)$, i.e. $P_n(\gamma) = 0$
- A set of m targets from C (modeled over \mathbb{F}_{2^m})
- Check if C is rectifiable at these m targets

Algebraic Geometry: Ideals

- Let $R = \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$
 - $\{f_1, \ldots, f_s\} \in R$
- In our context
 - x_1, \ldots, x_d : Variables (nets of the circuit)
 - Z: bit-vector representation for variables
 - f_1, \ldots, f_s : Polynomials from the circuit (logic gate relations)
- $J = \langle F \rangle = \langle f_1, \dots, f_s \rangle \subseteq R$
 - $\{h_1f_1 + \cdots + h_sf_s : h_i \in R\}$
 - Polynomials f_1, \ldots, f_s : basis or generators of J
- Vanishing Ideal: $J_0 = \langle F_0 \rangle = \langle x_1^2 + x_1, \dots, x_d^2 + x_d, Z^{2^n} + Z \rangle$
 - Restrict solutions to x_i in \mathbb{F}_2 , and solutions to Z in \mathbb{F}_{2^n}

Algebraic Geometry: Varieties

- $\bullet \ J = \langle F \rangle = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$
- Let ${\pmb a} = (a_1, \dots, a_d) \in {\mathbb F}_{2^n}^d \ s.t. \ f_1({\pmb a}) = \dots = f_s({\pmb a}) = 0$

$$V(J)= ext{Set of all } \{m{a}\} ext{ s.t. } \left\{ egin{align*} f_1(m{a})=0, \\ f_2(m{a})=0, \\ \vdots \\ f_s(m{a})=0. \end{array} \right.$$

• V(J) correspond to function mappings (Truth tables)

Gröbner Basis and Ideal membership

- An ideal $J = \langle f_1, \dots, f_s \rangle \subseteq R$ can have many generators.
 - $J = \langle p_1, \ldots, p_m \rangle = \cdots = \langle g_1, \ldots, g_t \rangle$
 - Gröbner Basis (GB) is one such set with special properties
- Let $J = \langle f_1, \dots, f_s \rangle = \langle g_1, \dots, g_t \rangle$ and $G = GB(J) = \{g_1, \dots, g_t\}$.
 - *G* is a Gröbner basis of $J \iff \forall f \in J, f \xrightarrow{g_1, \dots, g_t} 0$
 - Ideal membership: Let *f* be a polynomial in *R*:
 - if $f \xrightarrow{g_1, \dots, g_t} + 0$, then f is a member of J.

Application: Single-Fix Rectification

• Circuit designed over $\mathbb{F}_{2^n} = \mathbb{F}_{2^2}(n=2)$ using irreducible polynomial $P_n(x) = P_2(x) = x^2 + x + 1$ with $P_2(\gamma) = 0$

A 2-bit faulty modulo multiplier implementation.

SFR Application: Verification

- Denote polynomial $f: Z + A \cdot B$ as the design specification.
- Impose RTTO >

```
\begin{array}{lll} f_1: Z + z_0 + \gamma \cdot z_1; & f_7: e_0 + s_1 e_2; & f_{12}: s_1 + a_1 b_1; \\ f_2: A + a_0 + \gamma \cdot a_1; & f_8: e_1 + s_2 e_2; & f_{13}: s_2 + a_1 b_0; \\ f_3: B + b_0 + \gamma \cdot b_1; & f_9: e_2 + e_3 + s_4; & f_{14}: s_3 + a_0 + b_0 + a_0 b_0; \\ f_4: z_0 + s_0 + e_0; & f_{10}: e_3 + b_0 + s_3; & f_{15}: s_4 + b_0 + 1; \\ f_5: z_1 + e_0 + r_0; & f_{11}: s_0 + a_0 b_0; & f_{16}: s_5 + a_0 b_1; \\ f_6: r_0 + e_1 + s_5; & f_{16}: s_5 + a_0 b_1; \end{array}
```

- $F = \{f_1, \dots, f_{16}\}, F_0 = \{a_0^2 a_0, a_1^2 a_1, b_0^2 b_0, b_1^2 b_1\}$
- Ideal Membership Test: $f \xrightarrow{F,F_0} + \gamma^1 \cdot (a_0 a_1 b_1 b_0 + a_0 a_1 b_1 + a_1 b_1 b_0 + a_1 b_0) + \gamma^0 \cdot (a_0 a_1 b_1 b_0 + a_0 a_1 b_1 + a_1 b_1 b_0)$

SFR Application: Rectification Check

- Rectification check at net e_3 : $W = \{e_3\}$
 - $\bullet \ \ J_1=\langle F_1\rangle, \text{ where } F_1=\{f_1,\ldots,f_{10}=e_3+0,\ldots,f_{16}\}$
 - $J_2 = \langle F_2 \rangle$, where $F_2 = \{f_1, \dots, f_{10} = e_3 + 1, \dots, f_{16}\}$
- ② Compute r_1 and r_2 :
 - $r_1 = f \xrightarrow{J_1, J_0}_+ (\gamma + 1)a_1b_1b_0 + (\gamma + 1)a_1b_1$
 - $r_2 = f \xrightarrow{J_2, J_0} (\gamma + 1)a_1b_1b_0 + (\gamma)a_1b_0$
- **3** Single-fix rectification possible iff $V(r_1) \cup V(r_2) = \mathbb{F}_{2^3}^{|X_{PI}|} = V(J_0)$
 - Compute $G = GB(r1 \cdot r2, J_0)$ and check if $G = J_0$
 - In this example, target e₃ admits SFR

Unified framework motivation

- Single-fix is a special case of MFR with m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - Since m = 1 divides n, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$, $\forall n \in \mathbb{Z}_{>1}$
- For Multi-fix, since m > 1, \mathbb{F}_{2^m} might not be contained in \mathbb{F}_{2^n}
 - Ex. \mathbb{F}_{2^2} is not contained in \mathbb{F}_{2^3} , m=2, n=3
- Need a higher composite field \mathbb{F}_{2^k} such that
 - ullet $\mathbb{F}_{2^m}\subset\mathbb{F}_{2^k}$ and $\mathbb{F}_{2^n}\subset\mathbb{F}_{2^k}$
 - What are the mathematical challenges?
 - What primitive polynomial $P_K(x)$ should be used for constructing \mathbb{F}_{2^k}

Multi-fix Rectification: Prior work

- Craig interpolation and/or iterative SAT solving [Huang. et al, DAC'11][Huang. et al, DATE'12]
 - Iteratively and incrementally patch the circuit
 - Compute multiple partial single-fix functions at the given *m* targets
- Resource aware ECO patch generation [Jiang. et al, DAC'18][Mishchenko. et al, DAC'18] [Fujita. et al, ISCAS'19]
- Approaches infeasible on arithmetic circuits
- Symbolic sampling technique [Jiang. et al, DAC'19]
 - Enumerate rectification points functionally and match the circuitry of patches implicitly
 - Scalability achieved by modeling computations in symbolic sampling domain

Application: Multi-fix Rectification

A faulty implementation of a 3-bit (*n*=3) Mastrovito multiplier

Application: Word-level representation

Patch function modeled as a 2-bit-vector word (*m*=2)

$$W = \{r_3, rr_3\} = r_3 + \beta \cdot rr_3, (w_0 = r_3, w_1 = rr_3).$$

MFR Notation: Field setup

- Circuit with data-path size n modeled over \mathbb{F}_{2^n}
 - \mathbb{F}_{2^n} is constructed as $\mathbb{F}_{2^n} = \mathbb{F}_2[x] \pmod{P_n(x)}$
 - $P_n(x) \in \mathbb{F}_2[x]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$
 - The word-level polynomials for *Z*, *A* are modeled as:

•
$$f_Z: Z + \sum_{i=0}^{n-1} \gamma^i z_i, f_A: A + \sum_{i=0}^{n-1} \gamma^i a_i$$

- Patch size m modeled over \mathbb{F}_{2^m}
 - \mathbb{F}_{2^m} is constructed as $\mathbb{F}_{2^m} = \mathbb{F}_2[x] \pmod{P_m(x)}$
 - We select a degree-m primitive polynomial $P_m(x) \in \mathbb{F}_2[x]$; $P_m(\beta) = 0$
 - The word-level polynomial for W is modeled as:
 - $f_w: W + \sum_{i=0}^{m-1} \beta^i w_i$
 - $\bullet \ \{w_0,\ldots,w_{m-1}\}\subset \{x_1,\ldots,x_d\}$

MFR Challenges: \mathbb{F}_{2^k} and $P_k(x)$

- Smallest k is LCM(n, m)
 - $\mathbb{F}_{2^k} \supset \mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k} \supset \mathbb{F}_{2^m}$
 - \mathbb{F}_{2^k} is constructed as $\mathbb{F}_{2^k} = \mathbb{F}_2[x] \pmod{P_k(x)}$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- Mathematical challenge: Given $P_n(x)$ and $P_m(x)$, compute $P_k(x)$ such that $P_n(\gamma) = P_m(\beta) = P_k(\alpha) = 0$
 - $\gamma = \alpha^{(2^k 1)/(2^n 1)} = \alpha^{\lambda}$
 - $\beta = \alpha^{(2^k 1)/(2^m 1)} = \alpha^{\mu}$
- Solved using factorization of univariate polynomials over finite fields

Contribution: Computing $P_k(x)$

- Obtain UPFs of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$ in $\mathbb{F}_2[x]$
- Then, $\exists P_k(x) \in \mathbb{F}_2[x]$ as a common factor of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$, such that:
 - $P_k(x)$ is a degree-k primitive polynomial in $\mathbb{F}_2[x]$ with $P_k(\alpha) = 0$

Application: Word-level representation

Patch function modeled as a 2-bit-vector word (*m*=2)

$$W = \{r_3, rr_3\} = r_3 + \beta \cdot rr_3, (w_0 = r_3, w_1 = rr_3).$$

Application: Computing $P_k(x)$

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = al^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(x^9)) = (x^9)^3 + (x^9) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1);$
 - $UPF(P_2(x^{21})) = (x^{21})^2 + (x^{21}) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^5 + x^3 + x^2 + 1)(x^6 + x^5 + x^4 + x + 1)(x^6 + x^3 + 1);$
 - We choose $P_6(x) = x^6 + x^5 + 1$ as the required $P_k(x)$.

MFR Notation: Incorrect $P_k(x)$

- Note that if we incorrectly choose $P_k(x) = x^6 + x^3 + 1$
- For its root α , we have

$$\alpha^{6} + \alpha^{3} + 1 = 0$$

$$(\alpha^{3})(\alpha^{6} + \alpha^{3} + 1) = 0 \text{ (multiply by } \alpha^{3})$$

$$\alpha^{9} + \alpha^{6} + \alpha^{3} = 0$$

$$\gamma + 1 = 0 \tag{1}$$

- However, $\gamma \neq 1$, as γ is a primitive element of \mathbb{F}_{2^n}
- Selecting arbitrary $P_k(x)$ leads to erroneous results

MFR Notation: Word-level Formulation steps

- Modify field to \mathbb{F}_{2^k} and compute $P_k(x)$
- Update ring by adding word-level target representation W
- Construct a polynomial set F' as follows:
 - Start with F' = F
 - Remove polynomials with w_i 's as leading terms
 - ullet Substitute for w_i 's the respective word-level polynomials
 - Add $f_w : W + \sum_{i=0}^{m-1} \beta^i w_i$

MFR Application: Word-level Formulation

- 2-bit rectification patch over the 3-bit circuit can be performed over the field \mathbb{F}_{26}
 - Field $\mathbb{F}_{2^6} = \mathbb{F}_2[X] \pmod{P_6(X)}$
- Update polynomial set F to F' as:

$$F' = \{f_1, \dots, f_3, f'_4, f'_5, f_6, f'_7, f'_8, f_9, f_w, f_{11}, f_{13} \dots, f_{20}\}$$

$$f'_{4}: z_{0} + (\beta W^{2} + \beta^{2} W) + d_{0}; \quad f'_{5}: z_{1} + f_{0} + (W^{2} + W);$$

$$f'_{7}: f_{0} + (\beta W^{2} + \beta^{2} W) + e_{1}; \quad f'_{8}: e_{2} + (W^{2} + W) + d_{6};$$

$$f_{W}: W + e_{0} + \beta d_{5}; \quad \beta = \alpha^{21}; \gamma = \alpha^{9};$$

MFR Contribution: Rectification Check

- Multi-fix rectification at target W
 - Construct the following ideals:

•
$$J_i = \langle F'_i \rangle = \{f'_1, \dots, f_w = W + \delta(i), \dots, f'_s\} : 1 \le i \le 2^m,$$

 $\delta(0) = 0, \delta(1) = 1, \delta(2) = \beta, \dots, \delta(2^m) = \beta^{2^m - 2}$

- Performing the reductions for all $1 \le i \le 2^m$:
 - $f \xrightarrow{F_i', F_0} r_i$
- Let $V_{\mathbb{F}_q}(r_i)$ denote the varieties of the respective r_i 's
- Multi-fix rectification exists at target W:

if and only if
$$\bigcup\limits_{i=1}^{2^m}V_{\mathbb{F}_q}(r_i)=\mathbb{F}_q^{|\mathcal{X}_{P_i}|}=V(J_0)$$

MFR Application: Rectification Check

- Constructing the J_i ideals:
 - $J_1 = \langle F_1' \rangle$, where $F_1'[f_w] = W + \delta(1) = W$,
 - $J_2 = \langle F_2' \rangle$, where $F_2'[f_w] = W + \delta(2) = W + 1$,
 - $J_3 = \langle F_3' \rangle$, where $F_3'[f_w] = W + \delta(3) = W + \beta$,
 - $J_4 = \langle F_4' \rangle$, where $F_4'[f_w] = W + \delta(4) = W + \beta^2$
- Reducing the specification f: Z + A · B modulo these ideals, we get:
 - $rem_1 = f \xrightarrow{F_1' \cup F_0'} \alpha^{27}(a_2b_1b_2) + \alpha^{36}(a_2b_2)$
 - $rem_2 = f \xrightarrow{F_2' \cup F_0'} \alpha^{27} (a_2b_1b_2 + a_2b_1) + \alpha^{36} (a_2b_2)$
 - $rem_3 = f \xrightarrow{F_3' \cup F_0'} \alpha^{27} (a_2b_1b_2)$
 - $rem_4 = f \frac{F_4' \cup F_0'}{} + \alpha^{27} (a_2b_1b_2 + a_2b_1)$
- Computing $GB(r_1 \cdot r_2 \cdot r_3 \cdot r_4, F_0) = F_0$
- Target W with nets r₃ and rr₃ admits MFR

Future work: Rectification function

- A polynomial which can be computed to rectify the circuit
 - $W = a_2b_1b_2 + \beta \cdot a_2b_2$
 - $r_3 = (a_2 \wedge b_1 \wedge b_2), rr_3 = (a_2 \wedge b_2)$

Focus: Finite Field Arithmetic Circuits

- Applications:
 - RSA, ECC, Error correcting codes, RFID, etc.
 - Crypto-system bugs can leak secret keys [Biham. et al, Crypto'08]
 - RFID tag cloning could cause counterfeiting [Batina. et al, Security'09]
 - Large datapath sizes in ECC crypto systems
 - In \mathbb{F}_{2^n} , n = 163, 233, 283, 409, 571 (NIST standard)
- Rectification Motivation:
 - Synthesize sub-functions as opposed to complete redesign
 - Automated debugging

MFR Experiments: SINGULAR Implementation

Table: Word-level multi-fix rectifiability check against word level specification. Time is in seconds; rows marked '*' indicates *m* ∤ *n*; Benchmark = Mastrovito architecture, *n* = Datapath Size, #Gates = No. of gates, K = 10³, *m* = patch size, *k* = encompassing composite field size, PF = time for polynomial factorization and computing minpoly for the composite field, RC = time for rectification check

n	#Gates	m	k	PF	RC
12	0.45K	2	12	NA	0.4
16	0.8K	2	16	NA	3.2
*16	0.8K	3	48	_	_
*20	0.0	3	60	_	_
32	2.8K	2	32	NA	184
48	6.4K	3	48	NA	_
64	11.2K	2	64	NA	_

MFR Experiments: Custom software

Table: Word-level multi-fix rectifiability check against word level specification. Time is in seconds; Benchmark = Mastrovito architecture, *n* = Datapath Size, #Gates = No. of gates, K = 10³, *m* = word length of patch function, *k* = encompassing composite field size (degree of primpoly used), PF = time for polynomial factorization and computing minpoly for the composite field, PBS = PolyBori setup (ring declaration/poly collection/spec collection), VF = time for verification, MFS = Multi-fix check setup, MFRC = time for multi-fix rectification check, TE = Total execution time

n	#Gates	m	k	PF	PBS	VF	MFS	MFRC	TE
12	0.45K	2	12	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
12	0.45K	3	12	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16	0.8K	2	16	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16	0.8K	3	48	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
32	2.8K	2	32	< 0.01	0.1	< 0.01	< 0.01	< 0.01	0.15
64	11.2K	2	64	< 0.1	0.5	< 0.01	< 0.01	0.2	0.9
96	24.5K	2	96	< 0.1	1.4	0.1	< 0.01	< 0.01	1.7
128	43.2K	2	128	< 0.3	3.1	0.3	< 0.1	< 0.1	3.6
163	69.8K	2	326	< 0.4	6.2	2.0	< 0.1	0.4	7.5
233	119K	2	466	<1	13.0	0.9	0.15	< 0.1	14.3
283	190K	2	566	<2	39.0	2.1	0.2	< 0.1	41.3
409	384K	2	818	<2	190	3.5	0.5	0.1	195.4
571	827K	2	1042	<3	2170	9.1	1.1	< 0.1	2183

Rectification function computation

- SFR of finite field arithmetic circuits [Rao. et al, FMCAD'18][Rao. et al, IWLS'18]
 - Quantification based computation
 - Alternate to Craig Interpolation
- Currently addressing function computation at a word-level for finite field arithmetic circuits:
 - Rectification function computation at multiple nets in terms of primary inputs [Due notification GLSVLSI'21]
 - Define and formulate existence of don't cares
 - Devise algorithms to explore don't cares for logic optimization
 - Formulate rectification setup in terms of internal nets of the circuit.
 - Explore word-level don't care formulation in terms of internal nets.
 - Extend the multi-fix approach to integer arithmetic circuits and address the associated challenges.

Publications

- [1] V. Rao, U. Gupta, I. Ilioaea, A. Srinath, P. Kalla, and F. Enescu, "Post-Verification Debugging and Rectification of Finite Field Arithmetic Circuits using Computer Algebra Techniques," in *Formal Methods in Computer Aided Design (FMCAD)*, Oct 2018, pp. 1–9.
- [2] V. Rao, U. Gupta, I. Ilioaea, P. Kalla, and F. Enescu, "Resolving Unknown Components in Arithmetic Circuits using Computer Algebra Methods poster presentation," in *International Workshop on Logic and Synthesis(IWLS)*, 2018.
- [3] U. Gupta, I. Ilioaea, V. Rao, A. Srinath, P. Kalla, and F. Enescu, "Rectification of Arithmetic Circuits with Craig Interpolants in Finite Fields," in VLSI-SoC: Design and Engineering of Electronics Systems Based on New Computing Paradigms. Springer International Publishing, June 2019, vol. 561, ch. 5, pp. 79–106.

Publications

- [4] —, "On the Rectifiability of Arithmetic Circuits using Craig Interpolants in Finite Fields," in *IFIP/IEEE Intl. Conf. on VLSI (VLSI-SoC)*, Oct 2018, pp. 49–54.
- [5] U. Gupta, P. Kalla, and V. Rao, "Boolean Gröbner Basis Reductions on Finite Field Datapath Circuits Using the Unate Cube Set Algebra," *IEEE Trans. on CAD of Integrated Circuits and Systems*, vol. 38, no. 3, pp. 576–588, Mar 2019.
- [6] U. Gupta, I. Ilioaea, P. Kalla, F. Enescu, V. Rao, and A. Srinath, "Craig Interpolants in Finite Fields using Algebraic Geometry: Theory and Applications," in *Intl. Workshop on Logic and Synthesis (IWLS)*, June 2018, pp. 70–77.
- [7] U. Gupta, P. Kalla, and V. Rao, "Boolean Gröbner Basis Reductions on Datapath Circuits Using the Unate Cube Set Algebra," in *International Workshop on Logic & Synthesis*, pp. 124–131.

THANK YOU!

Questions?

Problem Description: Rectification

$$Z = A \cdot B \pmod{P(X)}$$

Problem Description: Rectification

Finite Field Notations

- Finite (Galois) Field F_a:
 - Set of q finitely many elements. $q = p^n$, p = prime
- $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$
- On circuits, p = 2, n = data-operand width
- Hardware cryptography extensively based on \mathbb{F}_{2^n} (we use \mathbb{F}_{2^n})
- $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$, n > 1
- Contribution: Application to integer arithmetic circuits
 - Infinite sets: More investigation needed

Modeling Circuits using Polynomials

- Circuit C modeled as polynomials
- Boolean logic gates in \mathbb{F}_2 ($\mathbb{F}_2 \subset \mathbb{F}_{2^n}$); Over $\mathbb{F}_2 1 = +1 \pmod{2}$)

$$z = \neg a \rightarrow z + a + 1 \pmod{2}$$

 $z = a \land b \rightarrow z + a \cdot b \pmod{2}$
 $z = a \lor b \rightarrow z + a + b + a \cdot b \pmod{2}$
 $z = a \oplus b \rightarrow z + a + b \pmod{2}$

- Specification in \mathbb{F}_{2^n} , $f_{spec}: Z + AB$
- Word level polynomials [$\gamma = \text{Primitive element of } \mathbb{F}_{2^n}$]
 - Output: $Z + z_0 + \gamma z_1 + \gamma^2 z_2 + \cdots + \gamma^{n-1} z_{n-1}$,
 - Input: $A + \sum_{i=0}^{n-1} \gamma^i a_i$, and so on

Polynomial Ring

- Given $\{x_1, ..., x_d\}$
 - Monomial $X = x_1^{e_1} \cdot x_2^{e_2} \cdots x_d^{e_d}$, where $e_i \in \mathbb{Z}_{\geq 0}, i \in \{1, \dots, d\}$
 - Polynomial $f = c_1 X_1 + c_2 X_2 + \cdots + c_t X_t$; $c_i \in \mathbb{F}_{2^n}$
- All such f form the ring $R = \mathbb{F}_{2^n}[x_1, \dots, x_d]$
- Multivariate polynomials: need to order the monomials
- Impose monomial order ">" on R
 - We utilize lex term order
- $f = c_1 X_1 + c_2 X_2 + \cdots + c_t X_t$ (with lex order)
 - $lt(f) = c_1 X_1$, $lm(f) = X_1$, $lc(f) = c_1$

Sum, Product, and Quotient of Ideals

Given
$$J_1 = \langle f_1, \dots, f_s \rangle \in R$$
 and $J_2 = \langle h_1, \dots, h_r \rangle \in R$

- Sum of ideals:
 - $J_1 + J_2 = \langle f_1, \ldots, f_s, h_1, \ldots, h_r \rangle$
- Product of ideals:

•
$$J_1 \cdot J_2 = \langle f_i \cdot h_j : 1 \leq i \leq s, 1 \leq j \leq r \rangle$$

- Ideal quotient of J_1 by J_2 :
 - $J_1: J_2 = \{f \in R \mid f \cdot h \in J_1, \forall h \in J_2\}$
- Ideals and varieties are dual concepts
 - $V(J_1 + J_2) = V(J_1) \cap V(J_2)$
 - $V(J_1 \cdot J_2) = V(J_1) \cup V(J_2)$
 - $V(J_1:J_2)=V(J_1)-V(J_2)$

Vanishing Ideals

- For variables in circuit ideals:
 - Bit-level x_i : $x_i^2 x_i$ or $x_i^2 + x_i$ as $-1 = +1 \pmod{2}$ over \mathbb{F}_{2^n}
 - Word-level Z, A: Z^{2ⁿ} − Z, A^{2ⁿ} − A
- Vanishing Ideal:

$$J_0 = \langle F_0 \rangle = \langle x_1^2 + x_1, \dots, x_d^2 + x_d, Z^{2^n} + Z, A^{2^n} + A \rangle$$

- Vanishing Ideal purpose:
 - Restrict solutions to x_i in \mathbb{F}_2
 - Restrict solutions to Z, A in \mathbb{F}_{2^n}
- For circuits [Lv. et al, TCAD'13]
 - ullet Only need $J_0^{X_{PI}}=\langle F_0^{X_{PI}}
 angle=\langle x_i^2+x_i:x_i\in X_{PI}
 angle$ added to J

MFR Notations: Composite Field

- For a given circuit with data-path size n
 - Polynomials modeled over $R = \mathbb{F}_{2^n}[Z, A, x_1, \dots, x_d]$
 - $\{x_1, \ldots, x_d\}$ are all the bit-level variables (nets) in the circuit
 - Z and A are the word-level output and input, respectively
 - \mathbb{F}_{2^n} is constructed as $\mathbb{F}_{2^n} = \mathbb{F}_2[X] \pmod{P_n(X)}$
 - $P_n(X) \in \mathbb{F}_2[X]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$
 - The word-level polynomials for *Z*, *A* are modeled as:
 - $f_z: Z + \sum_{i=0}^{n-1} \gamma^i z_i; f_a: A + \sum_{i=0}^{n-1} \gamma^i a_i;$
- Patch W for m targets is computed as a polynomial function in the field \mathbb{F}_{2^m}
 - \mathbb{F}_{2^m} is constructed as $\mathbb{F}_{2^m} = \mathbb{F}_2[X] \pmod{P_m(X)}$
 - We select a degree-m primitive polynomial $P_m(X) \in \mathbb{F}_2[X]; P_m(\beta) = 0$
 - The word-level polynomial for *W* is modeled as:
 - $f_w: W + \sum_{i=0}^{m-1} \beta^i w_i$
 - $\bullet \ \{w_0,\ldots,w_{m-1}\}\subset \{x_1,\ldots,x_d\}$

MFR Notations: Composite Field

- Determine the smallest single field (\mathbb{F}_{2^k}) to operate both circuit (\mathbb{F}_{2^n}) and patch (\mathbb{F}_{2^m})
- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^m}$
 - \mathbb{F}_{2^k} is constructed as $\mathbb{F}_{2^k} = \mathbb{F}_2[X] \pmod{P_k(X)}$
 - $P_k(X)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- Mathematical challenge: Given $P_n(X)$ and $P_m(X)$, compute $P_k(X)$ such that $P_n(\gamma) = P_m(\beta) = P_k(\alpha) = 0$
 - $\gamma = \alpha^{(2^k 1)/(2^n 1)} = \alpha^{\lambda}$
 - $\beta = \alpha^{(2^k 1)/(2^m 1)} = \alpha^{\mu}$
- Solved using factorization of univariate polynomials over finite fields

MFR Notations: Univariate Polynomial factorization (UPF)

- Given a monic univariate polynomial $f \in \mathbb{F}_q[X]$, where \mathbb{F}_q is any finite field
 - Find a complete factorization $f = f_1^{e_1} \cdot f_2^{e_2} \cdots f_l^{e_l}$
 - Where f₁, f₂,..., f_l are pairwise distinct monic irreducible polynomials in F_q[X] and e₁,..., e_l are positive integers.

MFR Notations: Finding Primitive Polynomial $P_k(X)$

- Obtain UPFs of $P_n(X^{\lambda})$ and $P_m(X^{\mu})$
 - Coefficients will be in \mathbb{F}_2 and degrees will be less than λ and μ , respectively.
 - $P_n(X^{\lambda}) = P_{n1}^{a1} \cdot P_{n2}^{a2} \cdots P_{nl}^{al}$, and
 - $P_m(X^{\mu}) = P_{m1}^{b1} \cdot P_{m2}^{b2} \cdots P_{mg}^{bg}$
- Conjecture: $\exists P_{ni}(X) \in \{P_{n1}, P_{n2}, \dots, P_{nl}\}$ and $\exists P_{mj}(X) \in \{P_{m1}, P_{m2}, \dots, P_{mg}\}$, such that:
 - $P_k(X) = P_{ni}(X) = P_{mj}(X)$,
 - $P_k(X)$ is a degree-k primitive polynomial in $\mathbb{F}_2[X]$ such that $P_k(\alpha) = 0$

MFR Application: Verification

- Circuit designed using irreducible polynomial $P(X) = X^3 + X + 1$ with $P(\gamma) = 0$
- Denote polynomial $f: Z + A \cdot B$ as the design specification.
- Impose RTTO >

```
f_1: Z + z_0 + \gamma z_1 + \gamma^2 z_2; f_{11}: e_1 + d_3 + d_4;
f_2: A + a_0 + \gamma a_1 + \gamma^2 a_2; f_{12}: d_5 + a_2 + b_2;
f_3: B + b_0 + \gamma b_1 + \gamma^2 b_2; f_{13}: d_6 + a_1 b_1;
f_4: z_0 + e_0 + d_0:
                                    f_{14}: d_7 + a_0b_2:
f_5: Z_1 + f_0 + d_5:
                                     f_{15}: d_8 + a_2b_0;
                                     f_{16}: d_0 + a_0 b_0:
f_6: Z_2 + e_2 + e_3:
f_7: f_0 + e_0 + e_1;
                          f_{17}: d_1 + a_1b_2;
f_8: e_2 + d_5 + d_6;
                                     f_{18}: d_2 + a_2 + b_1 + a_2b_1:
f_0: e_3 + d_7 + d_8:
                                    f_{19}: d_3 + a_1b_0;
f_{10}: e_0 + d_0 + d_2;
                                     f_{20}: d_4 + a_0b_1:
```


4 D > 4 B > 4 B > 4 B > 9 0 0

MFR Application: Verification

- Polynomial Set
 - $F = \{f_1, \ldots, f_{20}\}$

•
$$F_0^{PI} = \{a_0^2 - a_0, a_1^2 - a_1, a_2^2 - a_2, b_0^2 - b_0, b_1^2 - b_1, b_2^2 - b_2\}$$

- $f \xrightarrow{F,F_0^{Pl}} + = \gamma^2(a_2b_2 + a_2 + b_2) + \gamma(a_0b_0 + a_1b_2 + b_1 + a_2b_2 + b_2) + (1)(a_0b_0 + a_1b_2 + b_1 + a_2)$
- Set of affected outputs: $\mathcal{O}_a = \{z_0, z_1, z_2\}$
- Intersection of set of nets in fan-in cones of \mathcal{O}_a is \emptyset
 - Implies no SFR points
- We select m=2 and see if the circuit can be rectified by changing functions at two nets

MFR Application: Selecting *m* Targets

- Since all the outputs are affected, all the nets in the circuit are initial candidate targets
 - $\mathcal{I}_n = \{z_0, z_1, z_2, f_0, e_2, e_3, e_0, e_1, d_5, d_6, d_7, d_8, d_0, d_2, d_3, d_4\}$
 - Associate a cost for each net driven by synthesis constraints
 - Nets which lie in the intersection of multiple outputs are assigned lowest cost
 - Rest of the nets are assigned cost based on their topological level in the design
 - $\bullet \ \mathcal{I}_c = \{4,4,4,3,2,2,-2,2,-2,1,1,1,-2,-2,1,1\}$
- Solved as weighted set cover problem
 - Partition O_a into m distinct non-empty subsets such that
 - Intersection of fan-in cones of output bits within a subset is non-empty
 - If such a cover \mathcal{M} exists ($|\mathcal{M}| = m$), each of the m targets are selected from the m distinct covers
 - $\mathcal{O}_a = \{\{z_0, z_1\}, \{z_2\}\}$
 - $\mathcal{M} = \{\mathcal{M}_0 : \{e_0, d_0, d_2\}, \mathcal{M}_1 : \{d_5, d_6, d_7, d_8, e_2, e_3, z_2\}\}$

4 D > 4 A D > 4 B > 4 B > 9 Q P

MFR Application: Word-level Formulation

- Update ring properties
 - $R = \mathbb{F}_q[x_1, ..., x_d, Z, A, W]$
 - Modify RTTO > to place the target W before the lowest indexed target e₀
 - $\{Z\} > \{A > B\} > \{z_0 > z_1 > z_2\} > \{f_0 > e_2 > e_3\} > \{W > e_0 > e_1 > d_5 > d_6 > d_7 > d_8\} > \{d_0 > d_1 > d_2 > d_3 > d_4\} > \{a_0 > a_1 > a_2 > b_0 > b_1 > b_2\}.$
- Update polynomial set F to F':
 - Delete polynomials for wi's
 - Delete polynomials in the transitive fan-in of w_i's only
 - Transitive fan-outs of w_i's need to be replaced with their equivalent word-level representations in terms of W
 - Add $f_w : W + \sum_{i=0}^{m-1} \beta^i w_i$

MFR Application: Computing $P_k(X)$

- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(X^9)) = \{ \mathbf{X}^6 + \mathbf{X}^4 + \mathbf{X}^3 + \mathbf{X} + \mathbf{1}, X^6 + X^4 + X^2 + X + \mathbf{1}, \mathbf{X}^6 + \mathbf{X}^5 + \mathbf{1}, X^6 + X^5 + X^2 + X + \mathbf{1} \}$
 - $UPF(P_2(X^{21})) = \{ \mathbf{X^6 + X^4 + X^3 + X + 1}, \mathbf{X^6 + X^5 + 1}, X^6 + X^3 + 1, X^6 + X^5 + X^2 + X + 1, X^6 + X^5 + X^3 + X^2 + 1, X^6 + X + 1, X^6 + X^5 + X^4 + X + 1 \}$
 - We will pick $P_6(X) = X^6 + X^4 + X^3 + X + 1$ as the primitive polynomial to setup the unified framework.

MFR Notations: Incorrect Primitive Polynomial

- Note that if we incorrectly choose $P_k(X) = X^6 + X^3 + 1$
- For its root α , we have

$$\alpha^6 + \alpha^3 + 1 = 0$$

$$(\alpha^3)(\alpha^6 + \alpha^3 + 1) = 0 \text{ (multilying by } \alpha^3)$$

$$\alpha^9 + \alpha^6 + \alpha^3 = 0$$

$$\gamma + 1 = 0$$

- But we have $\gamma = \alpha^9$
- Selecting arbitrary $P_k(X)$ leads to erroneous results

MFR Application: Word-level Formulation

- 2-bit rectification patch over the 3-bit circuit can be performed over the field \mathbb{F}_{26}
 - Field $\mathbb{F}_{2^6} = \mathbb{F}_2[X] \pmod{P_6(X)}$
- Update polynomial set F to F' as:

$$F' = \{f_1, \dots, f_3, f'_4, f'_5, f_6, f'_7, f'_8, f_9, f_w, f_{11}, f_{13}, \dots, f_{20}\}$$

$$f'_{4}: z_{0} + (\beta W^{2} + \beta^{2} W) + d_{0}; \quad f'_{5}: z_{1} + f_{0} + (W^{2} + W);$$

$$f'_{7}: f_{0} + (\beta W^{2} + \beta^{2} W) + e_{1}; \quad f'_{8}: e_{2} + (W^{2} + W) + d_{6};$$

$$f_{w}: W + e_{0} + \beta d_{5}; \quad \beta = \alpha^{21}; \gamma = \alpha^{9};$$

MFR Contribution: Rectification Check

- Multi-fix rectification at target W
 - Construct the following ideals:

•
$$J_i = \langle F'_i \rangle = \{f'_1, \dots, f_w = W + \delta(i), \dots, f'_s\} : 1 \le i \le 2^m,$$

 $\delta(0) = 0, \delta(1) = 1, \delta(2) = \beta, \dots, \delta(2^m) = \beta^{2^m - 2}$

- Performing the reductions for all $1 \le i \le 2^m$:
 - $f \xrightarrow{F_i', F_0^{Pl}} r_i$
- Let $V_{\mathbb{F}_q}(r_i)$ denote the varieties of the respective r_i 's
- Multi-fix rectification exists at target W:

if and only if
$$\bigcup\limits_{i=1}^{2^m}V_{\mathbb{F}_q}(r_i)=\mathbb{F}_q^{|X_{Pl}|}=V(J_0^{Pl})$$

MFR Application: Rectification Check

- Constructing the J_i ideals:
 - $J_1 = \langle F_1' \rangle$, where $F_1'[f_w] = W + \delta(1) = W$,
 - $J_2 = \langle F_2' \rangle$, where $F_2'[f_w] = W + \delta(2) = W + 1$,
 - $J_3 = \langle F_3' \rangle$, where $F_3'[f_w] = W + \delta(3) = W + \beta$,
 - $J_4 = \langle \vec{F_4} \rangle$, where $\vec{F_4}[f_w] = W + \delta(4) = W + \beta^2$
- Reducing the specification $f: Z + A \cdot B$ modulo these ideals, we get:
 - $r_1 = f \xrightarrow{F_1', F_0^{P_1}} + a_1b_2\gamma^3 + a_2b_1\gamma^3 + \gamma^4a_2b_2$
 - $r_2 = f \xrightarrow{F_2', F_0^{Pl}} + a_1b_2\gamma^3 + a_2b_1\gamma^3 + \gamma^4a_2b_2 + \gamma^3$
 - $r_3 = f \xrightarrow{F_3', F_0^{Pl}} + a_1b_2\gamma^3 + a_2b_1\gamma^3 + \gamma^4a_2b_2 + \gamma^4$
 - $r_4 = f \xrightarrow{F_4', F_0^{Pl}} + a_1b_2\gamma^3 + a_2b_1\gamma^3 + \gamma^4a_2b_2 + \gamma^6$
- Computing $GB(r_1 \cdot r_2 \cdot r_3 \cdot r_4, F_0^{Pl}) = F_0^{Pl}$
- Target W with nets e₀ and d₅ admits MFR

MFR Notation: Computing Rectification Function

- Compute a rectification function of the form $W = U(X_{Pl})$
 - Here U is the unknown component computed as an m-bit-vector word
 - It represents the function $W = \sum_{i=0}^{m-1} \beta^i u_i$
 - Where u_i 's represent the individual Boolean functions for the respective w_i 's.
- The unknown component problem is then formulated as an ideal membership test and solved using extended Gröbner Basis:

$$W + \beta^0 e_0 + \beta d_5 = W + U = W + \beta^0 (a_1 b_2 + a_2 b_1) + \beta a_2 b_2;$$

 $e_0 = a_1 b_2 + a_2 b_1; d_5 = a_2 b_2;$

Research Objective: Synthesis of Rectification Function

- Exploring don't cares
 - We computed $U = b_0$, i.e. $f_{10} = e_3 + b_0$
 - We utilized quotient of ideals to compute alternate corrections
 - $U^1 = a_1 * b_0$
 - $U^2 = a_1 * b_1 * b_0 + a_1 * b_1 + a_1$
 - Polynomial *U* depends on the polynomial h_i (quotient of division by target x_i)
 - h_i actually represents the ODCs for the selected target x_i
- Algorithmic computation of rectification polynomials
- word-level formulation of don't cares

Research Objective: Integer arithmetic circuits

- Techniques valid over fields are inapplicable over rings
- Gröbner basis and division algorithms are complicated
- Can be modeled over
 - Rectification function computation can result in fractional coefficients
 - Extracting Boolean rectification function requires exhaustive simulation
 - No scope of optimization as Extended Gröbner basis technique gives zero control

Research Objective: Improving Scalability

- Enhance implementation for finite field circuits:
 - Rectification formulation in terms of internal nets
 - Address word-level formulation and the mathematical challenges
 - Devise efficient algorithms based on ZDDs
- Implementation for Integer arithmetic circuits
 - Bit level reduction technique increases the verification time exponentially
 - No monomial cancellations across output bits
 - Need implicit data structure with a word-level representation

