

랩타임 예측 기반 자동차 벤치마킹 모델

7000RPM 김정환 임요셉 정지혁 조재훈

목차

Lap 1 / 프로젝트 소개

Lap 2 / 회귀 분석

Lap 3 / 결론 및 의의

Lap 4 / 한계점

LE MANS '66

뉘르부르크링

- 독일 자동차 스포츠의 성지
- 남쪽코스로 F1, 북쪽코스 뉘르부르크링 24 시간 등의 경기
- 전세계를 통틀어 가장 거칠고 위험한 코스로 구성되어 있어 녹색지옥(The Green Hell)이라 불림

(악명 높은 Bergwerk 코너)

최신 양산차들의 성능 시험 무대 / 랩 라임 기록

Nürk	ustestlaps vehicles Trace	ap times		Filters ▼
f	yehicle	Driver	Time	PS / KG
1.	Porsche 911 GT2 RS Manthey Racing	Lars Kern	6:40.33	-/-
, 2.	AMG GT Black Series	Maro Engel	6:43.62	730 / 1633
3.	Lamborghini Aventador SVJ	Marco Mapelli	6:44.97	770 / 1718
4.	Radical SR8LM	Michael Vergers	6:48.00	455 / 650
5.	Huracán Performante	Marco Mapelli	6:52.01	640 / 1556
6.	Radical SR8	Michael Vergers	6:55.00	363 / 650
7.	Porsche 911 GT3 RS	Kevin Estre	6:56.40	520 / 1444
8.	Porsche 918 Spyder	Marc Lieb	6:57.00	887 / 1654
9.	Modified Subaru WRX STI	unknown	6:57.50	-/-
10.	Aventador LP750-4 SV	unknown	6:59.73	750 / 1699
11.	Ferrari 488 Pista	Christian Gebhardt	7:00.03	720 / 1476
12.	Dodge Viper ACR (Mk V)	Lance Arnold	7:01.30	654 / 1536
13.	Mercedes-Benz AMG GT R Pro	Maro Engel	7:04.63	585 / 1640
14.	Nio EP9	unknown	7:05.12	1360 / 1735
15.	Mercedes-Benz AMG GT R Pro	Christian Gebhardt	7:07.00	585 / 1640
16.	McLaren 720S	Christian Gebhardt	7:08.00	720 / 1429
17.	Nissan GT-R Nismo (R35)	Michael Krumm	7:08.68	600 / 1745
18.	McLaren 600LT	Christian Gebhardt	7:08.82	600 / 1404
19.	Mercedes-Benz AMG GT R	Christian Gebhardt	7:10.92	585 / 1638
20.	Gumpert Apollo Sport	Florian Gruber	7:11.57	700 / 1200
21.	Dodge Viper SRT-10 ACR	Dominik Farnbacher	7:12.13	608 / 1536
22.	Porsche 911 GT3	unknown	7:12.70	500 / 1469

H 한국경제

현대차, '뉘르부르크링 24시 내구레이스' 5년 연속 완주

현대차는 26일부터 27일(현지시간)까지 독일 뉘르부르크링 서킷에서 열린 '뉘르부르크링 24시 내구레이스'에 고성능 차량 '벨로스터 N TCR', 'i30 ... 2020. 9. 28.

△ 오토헤럴드

현대차 신형 투싼, 뉘르부르크링에서 알프스까지 섭렵한 주행성능

구영경등 현대차는 최근 몇 개월 동안 신형 투싼은 세계에서 가장 까다로운 트랙으로 알려진 뉘르부르크링 노르트슐라이페 서킷에서 고속 주행과 내구성 ... 2020. 9. 9.

🚨 모터그래프

포르쉐 타이칸, 뉘르부르크링 랩 타임 결과는?

포르쉐 순수전기스포츠카 타이칸이 독일 뉘르부르크링 노르트슐라이페 서 킷에서 7분 42초의 랩 타임 기록을 세웠다. 2019. 8. 28.

● 무런그래프

테슬라, 차세대 '로드스터' 뉘르부르크링 테스트 예정

테슬라 일론 머스크 최고 경영자에 따르면, 내년 독일 뉘르부르크링 서킷에 서 차세대 로드스터의 랩 타임 테스트를 진행할 예정이다. 지난달 포르쉐가

2019. 9. 15.

"어떤 부품을 튜닝해야 기록 단축에 효과적일까?"

"회귀 분석을 통해 알아보자 "

변수 설정 및 데이터 크롤링

	Α	В	С	D	E	F	G	Н
1		CurbWeigh	TopSpeed	isplacemei	Power	Torque	vehicle	laptime
2	1	1626	325	4	730	800	GT Black !	403.62
3	2	1525	354	6.5	770	720	hini Avent	404.97
4	3	650	290	2.8	455	380	idical SR8L	408
5	4	1526	328	5.2	640	600	án Perforr	412.01
6	5	650	270	2.6	363	271	Radical SR8	415
7	6	1420	312	4	520	469	che 911 G1	416.4
8	7	1634	345	4.6	887	1280	che 918 Sp	417
9	8	1545	280	2.5	309	393	d Subaru \	417.5
10	9	1525	353	6.5	750	690	ador LP750	419.73
11	10	1385	342	3.9	720	770	rari 488 Pi	420.03
12	11	1527	285	8.4	654	813	Viper ACR	421.3
13	12	1632	319	4	585	700	Benz AMC	424.63
14	13	1735	312	3.5	1360	1480	Nio EP9	425.12
15	14	1632	319	4	585	700	Benz AMC	427
16	15	1419	348	4	720	770	cLaren 720	428
17	16	1720	315	3.8	600	652	GT-R Nism	428.68
18	17	1356	328	3.8	600	620	cLaren 600	428.82
19	18	1554	318	4	585	700	es-Benz AN	430.92
20	19	1200	327	4.2	700	875	ert Apollo	431.57
21	20	1536	284	8.4	608	759	Viper SRT-	432.13
22	21	1413	320	4	500	460	sche 911 G	432.7
23	22	1634	345	4.6	887	1280	che 918 Sp	433
24	23	1587	315	6.2	659	881	t Corvette	433.9
25	24	1419	348	4	720	770	cLaren 720	434
26	25	1509	326	4.8	570	480	Nurburgrin	434.64
27	26	600	270	1.8	350	500	kervoort D	434.89
28	27	1733	310	6.2	659	881	ZL1 1LE F	436.04
29	28	1622	330	3.7	650	800	911 Turbo	437
30	29	1525	334	3.8	580	750	:he 911 Tu	437.11
31	30	1370	336	3.6	620	700	911 GT2 F	438
32	31	1670	322	5	600	700	r XE SV Pro	438.36
33	32	500	250	1.5	320	289	ical SR3 Τι	439
34	33	1736	315	3.8	550	632	GT-R (R35	439.1
25	~ -	4505	224	C 3	647	040	1.0	120.02

랩타임과 개별 변수간의 시각화

상관계수 행렬 Heatmap

strong multicollinearity or other numerical problems.

회귀 분석 P2: 선형회귀 모델

```
1 from sklearn.linear_model import LinearRegression
2 from sklearn import metrics, preprocessing
1 Im = LinearRegression(fit_intercept = True) # 선형회기함수 점의
1 Y_data = df["laptime"].values
                                           # X 데이터, Y 데이터로 나눈 뒤 Train 데이터, Test 데이터로 나눔
2 X_data = df[["CurbWeight","Displacement","TopSpeed", "Power","Torque","Zero"]].values
3 | X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size=0.2, random_state=1234)
1 | Im.fit(X_train.Y_train)
                                            #Train데이터로 선형회기 훈련
1 Y_pred = Im.predict(X_test)
                                            # Test데이터로 선형회기 예측 후 RMSE과 측정
2 difference = Im.predict(X_data)-Y_data
3 | print( "Tree best RMSE : " + str(np.round(np.sqrt(metrics.mean_squared_error(Y_test,Y_pred)),3)))
  plt.figure(figsize = (20,10))
                                            # 전체 데이터와 예측값의 차이를 Plot에 시각화
2 plt.plot([400,540],[0,0],'--', c ='blue')
3 plt.scatter(Y_data, difference, c = 'red')
4 plt.show()
```

Tree best RMSE : 12,023

회귀 분석 P2: RandomForestRegressor (GridSearch로 최적화)

```
1 from sklearn.model selection import train test split.GridSearchCV
2 from sklearn.ensemble import RandomForestRegressor
3 from sklearn import metrics
4 from sklearn.datasets import load digits
 1 depth grid = np.arange(1.21)
                                              # 하이퍼파라미터의 범위 설정
 2 | n_estimators=np.arange(50,200)
3 | min_samples_leaf_grid = np.arange(2.31.2)
4 max_leaf_nodes_grid = np.arange(2,51,2)
5 | parameters = {'max_depth':depth_grid, 'min_samples_leaf':min_samples_leaf_grid, 'max_leaf_nodes':max_leaf_nodes_grid }
l gridCV = GridSearchCV(RandomForestRegressor(), parameters, cv=10, n_jobs = -1) # RandomForestRegressor함수 일력
 gridCV.fit(X_train, Y_train)
                                                                               # 데이터의 최적화된 하이퍼파라미터의 찾기
 3 best_depth = gridCV.best_params_['max_depth']
4 best_min_samples_leaf = gridCV.best_params_['min_samples_leaf']
5 | best_max_leaf_nodes = gridCV.best_params_['max_leaf_nodes']
  RFR_best = RandomForestRegressor(max_depth=best_depth,min_samples_leaf=best_min_samples_leaf,max_leaf_nodes=best_max_leaf_node
2 RFR_best.fit(X_train, Y_train)
                                                                             #최적화된 하이퍼파라미터를 입력하고 훈련
3 Y_pred = RFR_best.predict(X_test)
                                                                             # 예측모델의 Test데이터를 이용하여 RMSE 출력
4 print( "Tree best RMSE: " + str(np.round(np.sgrt(metrics.mean_squared error(Y_test,Y_pred)),3)))
5 Y_pred_RFR=RFR_best.predict(X_data_)
  plt.figure(figsize = (20,10))
                                                                              # 전체 테이터와 예측값의 차이를 Plot에 시각화
 2 | plt.plot([400,540],[0,0],'--', c ='blue')
 3 | plt.xlabel("Laptime(sec)")
4 plt.ylabel("Difference")
5 plt.scatter(Y data, Y pred RFR-Y data)
6 plt.show()
```

Tree best SCORE : 0.69

Tree best RMSE : 11.518

회귀 분석 P2: XGBoostRegressor (GridSearch로 최적화)

```
1 Y_data_ = df["laptime"], values
2 # X_data_ = df[["CurbWeight", "TopSpeed", "Power", "Torque", "Zero"]].values
3 X_data_ = df[["CurbWeight","Displacement","TopSpeed", "Power","Torque","Zero"]].values
4 X_train, X_test, Y_train, Y_test = train_test_split(X_data_, Y_data_, test_size=0.2, random_state=1234)
  depth_grid = np.arange(1,21)
                                                               #하이퍼파라미터의 범위 설정
2 n_estimators=np.arange(50,200)
3 min_samples_leaf_grid = np.arange(2,31,2)
4 max leaf nodes grid = np.arange(2.51.2)
 5 | parameters = { 'max_depth':depth_grid, 'min_samples_leaf':min_samples_leaf_grid, 'max_leaf_nodes':max_leaf_nodes_grid }
  gridCV = GridSearchCV(XGBRegressor(), parameters, cv=10, n_jobs = -1)
                                                                         # XGBoostRearessor함수 입력
                                                                          # 데이터의 최적화된 하이퍼파라미터의 찾기
2 gridCV.fit(X_train, Y_train)
3 best depth = gridCV.best params ['max depth']
4 best_min_samples_leaf = gridCV.best_params_['min_samples_leaf']
5 best_max_leaf_nodes = gridCV.best_params_['max_leaf_nodes']
| XGBR_best = XGBRegressor(max_depth=best_depth,min_samples_leaf=best_min_samples_leaf,max_leaf_nodes=best_max_leaf_nodes)
2 XGBR_best.fit(X_train, Y_train)
                                                                          #최적화된 하이퍼파라미터를 입력하고 훈련
3 Y_pred = XGBR_best.predict(X_test)
                                                                          # 예측모델의 Test데이터를 이용하여 RMSE 출력
4 print( "Tree best RMSE: " + str(np.round(np.sgrt(metrics.mean_squared_error(Y_test,Y_pred)),3)))
  plt.figure(figsize = (20,10))
                                                                         # 예측모델의 Test데이터를 이용하여 RMSE 출력
2 plt.plot([400,540],[0,0],'--', c ='blue')
3 plt.xlabel("Laptime(sec)")
4 plt.vlabel("Difference")
5 plt.scatter(Y_data_,Y_pred_XGBR-Y_data_)
6 plt.show()
```

Tree best SCORE : 0.7

Tree best RMSE: 11,416

회귀 분석 P2: XGBoostRegressor (Feature Importance로 추출)

결론 및 의의

회귀분석 1: 튜닝할 때 중량과 토크 값에는 신경을 쓰지 않아도 된다 회귀분석 2: 따라서 랩타임에 가장 영향을 미치는 요소는 제로백이므로 제로 백을 낮추는 것에 포커스를 맞추어 튜닝을 한다.

- 모든 변수들이 랩 타임에 중요한 것은 사실, 하지만 우선순위 결정에 도움을 준다는 점에 의의
- 그 밖에 2순위인 최고속력 등의 변수들도 조합하여 레이싱 테스트 비용 절 감에 도움을 줄 수 있음

따라서 벤치마킹 툴로써 유효

추가 활용 방안: 그래서 포드(i30) vs 페라리(K3 GT) 누구 이길까?

차종	Laptime
G70 3.3 터보가솔린 스팅어 3.3 터보가솔린 K9 3.3 터보가솔린 G90 3.3 터보가솔린 그랜저 3.3 가솔린 말리부 2. 0터보 그랜저 2.4 가솔린 K7 2.5 가솔린 팰리세이드 2.2디젤	: 502.52 : 507.32 : 517.7 : 519.73 : 528.05 : 528.05
I30N 라인 K3 GT(5도어)	: 519.46 : 527.8
G80 3.3 가솔린 코나 1.6 터보가솔린 셀토스 1.6터보가솔린 쏘울 EV 니로 EV 스포티지 2.0 디젤 K5 2.0 가솔린 쏘나타2.0 가솔린 투싼2.0 디젤 티볼리 1.6 디젤 베뉴 1.6 가솔린 K3 1.6 가솔린 아반떼 1.6 가솔린 카니발 2.2디젤	: 503.33 : 526.63 : 526.58 : 524.61 : 524.89 : 516.63 : 513.31 : 512.98 : 516.63 : 522.49 : 525.76 : 517.59 : 519.07 : 516.05 : 524.97 : 525.76 : 525.76

"i30 N라인 승!"

한계점

- 주행 성능 이 외의 안전, 연비 등의 자동차 전반에 대한 평가 불가
- 기타 성능에 요인을 미치는 변수의 부재 (타이어 상태, 서스펜션 세팅 등)

Finish ZMELICH