Numerical Matrix Analysis

Lecture Notes #13 — Conditioning and Stability: Stability of Back Substitution

Peter Blomgren

⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics

Dynamical Systems Group Computational Sciences Research Center

San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2020

Outline

- 1 Looking Back
 - Stability of Householder Triangularization
- Backward Stability of Back Substitution
 - Introduction: Algorithm, Conventions, Axioms, and Theorem
 - Proof
 - Comments

Last Time: Stability of Householder Triangularization

- We discussed the stability properties of QR-factorization by Householder triangularization (HT-QR).
 - Numerical "evidence" that HR-QR is backward stable.
 - Statement (proof by handout) that HT-QR is backward stable

Last Time: Stability of Householder Triangularization

- We discussed the stability properties of QR-factorization by Householder triangularization (HT-QR).
 - Numerical "evidence" that HR-QR is backward stable.
 - Statement (proof by handout) that HT-QR is backward stable
- Showed that solving $A\vec{x} = \vec{b}$ using HT-QR and backward substitution is backward stable, assuming that
 - (1) QR = A by HT-QR is backward stable
 - (2) $\tilde{w} = Q^* \vec{b}$ is backward stable
 - (3) $R\vec{x} = \vec{w}$ by back substitution is backward stable

Stability of Back Substitution

Last Time: Stability of Householder Triangularization

- We discussed the stability properties of QR-factorization by Householder triangularization (HT-QR).
 - Numerical "evidence" that HR-QR is backward stable.
 - Statement (proof by handout) that HT-QR is backward stable
- Showed that solving $A\vec{x} = \vec{b}$ using HT-QR and backward substitution is backward stable, assuming that
 - (1) QR = A by HT-QR is backward stable
 - (2) $\tilde{w} = Q^* \vec{b}$ is backward stable
 - (3) $R\vec{x} = \tilde{w}$ by back substitution is backward stable
- Today: Explicit proof of (3), and implicit proof of (2).

Backward Stability of Back Substitution

Back substitution is one of the **easiest non-trivial algorithms** we study in numerical linear algebra, and is therefore a good venue for a full backward stability proof.

The proof for backward stability of Householder triangularization follows the same pattern, but the details become more cumbersome.

Stability of Back Substitution

Backward Stability of Back Substitution

Back substitution is one of the **easiest non-trivial algorithms** we study in numerical linear algebra, and is therefore a good venue for a full backward stability proof.

The proof for backward stability of Householder triangularization follows the same pattern, but the details become more cumbersome.

Back-substitution applies to $R\vec{x} = \vec{b}$, where

$$\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Upper (and lower) triangular matrices are generated by, e.g. the QR-factorization [Notes#6-7], Gaussian elimination [Notes#16-17], and the Cholesky factorization [Notes#17].

Algorithm: Back-Substitution

Algorithm (Back-Substitution)

1:
$$x_m = b_m / r_{mm}$$

2: **for**
$$j \in \{(m-1), \dots, 1\}$$
 do

3:
$$x_j = \left(b_j - \sum_{k=j+1}^m x_k r_{jk}\right) / r_{jj}$$

4: end for

Note that the algorithm breaks of $r_{ii} = 0$ for some j.

For this discussion we make the assumption that $b_j - \sum (x_k r_{jk})$ is computed as m - j subtractions performed in k-increasing order.

Convention: In the theorem/proof, we use the convention that if the denominator in a statement like $\frac{|\delta r_{ij}|}{|r_{ij}|} \leq m\epsilon_{\rm mach}$ is zero, we implicitly assert that the numerator is also zero, as $\epsilon_{\rm mach} \to 0$.

Reference: Key Floating Point Axioms

Floating Point Representation Axiom

 $\forall x \in \mathbb{R}$, there exists ϵ with $|\epsilon| \le \epsilon_{\text{mach}}$, such that $fl(x) = x(1 + \epsilon)$.

The Fundamental Axiom of Floating Point Arithmetic

For all $x, y \in \mathbb{F}$ (where \mathbb{F} is the set of floating point numbers), there exists ϵ with $|\epsilon| \leq \epsilon_{\text{mach}}$, such that

$$x \oplus y = (x+y)(1+\epsilon),$$
 $x \ominus y = (x-y)(1+\epsilon),$
 $x \otimes y = (x*y)(1+\epsilon),$ $x \oslash y = (x/y)(1+\epsilon)$

Back-Substitution: Backward Stability Theorem

Theorem (Solving an Upper Triangular System $R\vec{x} = \vec{b}$ Using Back-Substitution is Backward Stable)

Let the back-substitution algorithm be applied to $R\vec{x} = \vec{b}$, where $R \in \mathbb{C}^{m \times m}$ is upper triangular, $\vec{b}, \vec{x} \in \mathbb{C}^m$, in a floating-point environment satisfying the floating point axioms. The algorithm is backward stable in the sense that the computed solution $\tilde{x} \in \mathbb{C}^m$ satisfies

$$(R + \delta R)\tilde{x} = \vec{b}$$

for some upper triangular $\delta R \in \mathbb{C}^{m \times m}$ with

$$\frac{\|\delta R\|}{\|R\|} = \mathcal{O}(\epsilon_{mach}).$$

Specifically, for each i, j

$$rac{|\delta r_{ij}|}{|r_{ii}|} \leq m\epsilon_{ extit{mach}} + \mathcal{O}(\epsilon_{ extit{mach}}^2).$$

When m = 1, back substitution terminates in one step

$$\tilde{x}_1 = b_1 \oslash r_{11}$$

When m = 1, back substitution terminates in one step

$$\tilde{x}_1 = b_1 \oslash r_{11}$$

The error introduced in this step is captured by

$$ilde{x}_1 = rac{b_1}{r_{11}} (1 + \epsilon_1^{\oslash}), \quad |\epsilon_1^{\oslash}| \leq \epsilon_{\mathsf{mach}}.$$

When m = 1, back substitution terminates in one step

$$\tilde{x}_1 = b_1 \oslash r_{11}$$

The error introduced in this step is captured by

$$ilde{ ilde{\mathsf{x}}_1} = rac{b_1}{r_{11}} (1 + \epsilon_1^{\oslash}), \quad |\epsilon_1^{\oslash}| \leq \epsilon_{\mathsf{mach}}.$$

Since we want the express the error in terms of **perturbations of** R, we write

$$ilde{x}_1 = rac{b_1}{r_{11}(1+\epsilon_1')}, \quad |\epsilon_1'| \leq \epsilon_{\sf mach} + \mathcal{O}(\epsilon_{\sf mach}^2).$$

When m = 1, back substitution terminates in one step

$$\tilde{x}_1 = b_1 \oslash r_{11}$$

The error introduced in this step is captured by

$$ilde{x_1} = rac{b_1}{r_{11}} (1 + \epsilon_1^{\oslash}), \quad |\epsilon_1^{\oslash}| \leq \epsilon_{\mathsf{mach}}.$$

Since we want the express the error in terms of **perturbations of** R, we write

$$ilde{x}_1 = rac{b_1}{r_{11}(1+\epsilon_1')}, \quad |\epsilon_1'| \leq \epsilon_{\sf mach} + \mathcal{O}(\epsilon_{\sf mach}^2).$$

Hence,

$$ig(r_{11}+\delta r_{11}ig) ilde{x}_1=b_1,\quad rac{|\delta r_{11}|}{|r_{11}|}\leq \epsilon_{\sf mach}+\mathcal{O}(\epsilon_{\sf mach}^2)=\mathcal{O}(\epsilon_{\sf mach}).$$

A Note on $(1+\epsilon)$ and $1/(1+\epsilon')$

In backward stability proofs we frequently need to move terms of the type $(1+\epsilon)$ from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as perturbations to a specific part of the expression, e.g. the matrix R in the instance of backward substitution.

A Note on $(1+\epsilon)$ and $1/(1+\epsilon')$

In backward stability proofs we frequently need to move terms of the type $(1+\epsilon)$ from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as perturbations to a specific part of the expression, e.g. the matrix R in the instance of backward substitution.

When ϵ is small, we can set

$$\epsilon' = \frac{-\epsilon}{1+\epsilon} \sim -\epsilon(1-\epsilon+\mathcal{O}(\epsilon^2)) = -\epsilon+\mathcal{O}(\epsilon^2)$$

and thus (throwing away $\mathcal{O}(\epsilon^2)$ -terms)

$$1 + \epsilon' = \frac{1 + \epsilon}{1 + \epsilon} - \frac{\epsilon}{1 + \epsilon} = \frac{1 + \epsilon - \epsilon}{1 + \epsilon} = \frac{1}{1 + \epsilon} \implies \frac{1}{1 + \epsilon'} = 1 + \epsilon.$$

A Note on $(1+\epsilon)$ and $1/(1+\epsilon')$

In backward stability proofs we frequently need to move terms of the type $(1+\epsilon)$ from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as perturbations to a specific part of the expression, e.g. the matrix R in the instance of backward substitution.

When ϵ is small, we can set

$$\epsilon' = \frac{-\epsilon}{1+\epsilon} \sim -\epsilon(1-\epsilon+\mathcal{O}(\epsilon^2)) = -\epsilon+\mathcal{O}(\epsilon^2)$$

and thus (throwing away $\mathcal{O}(\epsilon^2)$ -terms)

$$1 + \epsilon' = \frac{1 + \epsilon}{1 + \epsilon} - \frac{\epsilon}{1 + \epsilon} = \frac{1 + \epsilon - \epsilon}{1 + \epsilon} = \frac{1}{1 + \epsilon} \implies \frac{1}{1 + \epsilon'} = 1 + \epsilon.$$

Bottom line: we can move $(1+\epsilon)$ terms (where $|\epsilon| \leq \epsilon_{\rm mach} \ll 1$) between the numerator and denominator, and only introduce errors of the order $\mathcal{O}(\epsilon_{\rm mach}^2)$, i.e. $|\epsilon'| \leq \epsilon_{\rm mach} + \mathcal{O}(\epsilon_{\rm mach}^2)$.

1 of 2

Step one (which computes \tilde{x}_2) is exactly like the m=1 case:

$$ilde{x}_2 = rac{b_2}{r_{22}(1+\epsilon_1^{ ilde{ ilde{O}}})}, \quad |\epsilon_1| \leq \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2).$$

The second step is defined by

$$\tilde{x}_1 = (b_1 \ominus (\tilde{x}_2 \otimes r_{12})) \oslash r_{11}.$$

1 of 2

Step one (which computes \tilde{x}_2) is exactly like the m=1 case:

$$ilde{x}_2 = rac{b_2}{r_{22}(1+\epsilon_1^{\oslash})}, \quad |\epsilon_1| \leq \epsilon_{\sf mach} + \mathcal{O}(\epsilon_{\sf mach}^2).$$

The second step is defined by

$$\tilde{x}_1 = (b_1 \ominus (\tilde{x}_2 \otimes r_{12})) \oslash r_{11}.$$

We get

$$\begin{array}{lcl} \tilde{x}_{1} & = & (b_{1} \ominus (\tilde{x}_{2}r_{12}(1+\epsilon_{2}^{\otimes}))) \oslash r_{11} \\ & = & (b_{1}-\tilde{x}_{2}r_{12}(1+\epsilon_{2}^{\otimes}))(1+\epsilon_{3}^{\ominus}) \oslash r_{11} \end{array}$$

$$= & \frac{(b_{1}-\tilde{x}_{2}r_{12}(1+\epsilon_{2}^{\otimes}))(1+\epsilon_{3}^{\ominus})(1+\epsilon_{4}^{\ominus})}{r_{11}}$$

2 of 2

As before, we can shift the $(1+\epsilon_3^\ominus)$ and $(1+\epsilon_4^\oslash)$ terms to the denominator

$$ilde{x}_1 = rac{b_1 - ilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})}{r_{11} (1 + \epsilon_3'^{\ominus}) (1 + \epsilon_4'^{\ominus})} = rac{b_1 - ilde{x}_2 \mathbf{r}_{12} (1 + \epsilon_2^{\otimes})}{\mathbf{r}_{11} (1 + 2\epsilon_5^{\ominus, \oslash})}$$

where $|\epsilon_{3,4}'|, |\epsilon_5| \leq \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$.

2 of 2

As before, we can shift the $(1+\epsilon_3^\ominus)$ and $(1+\epsilon_4^\oslash)$ terms to the denominator

$$\tilde{x}_1 = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})}{r_{11} (1 + \epsilon_3'^{\ominus}) (1 + \epsilon_4'^{\ominus})} = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})}{r_{11} (1 + 2\epsilon_5^{\ominus, \circlearrowleft})}$$

where $|\epsilon'_{3,4}|, |\epsilon_5| \leq \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$.

Now

$$(R + \delta R)\tilde{x} = \vec{b}$$

since $\mathbf{r_{11}}$ is perturbed by the factor $(\mathbf{1} + \mathbf{2}\epsilon_{\mathbf{5}}^{\ominus, \oslash})$, $\mathbf{r_{12}}$ by the factor $(\mathbf{1} + \epsilon_{\mathbf{2}}^{\otimes})$, and r_{22} by the factor $(\mathbf{1} + \epsilon_{\mathbf{1}}^{\oslash})$.

As before, we can shift the $(1+\epsilon_3^{\odot})$ and $(1+\epsilon_4^{\oslash})$ terms to the denominator

$$\tilde{x}_1 = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})}{r_{11} (1 + \epsilon_3'^{\ominus}) (1 + \epsilon_4'^{\ominus})} = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})}{r_{11} (1 + 2\epsilon_5^{\ominus, \circlearrowleft})}$$

where $|\epsilon'_{3,4}|, |\epsilon_5| \leq \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$.

Now

$$(R + \delta R)\tilde{x} = \vec{b}$$

since $\mathbf{r_{11}}$ is perturbed by the factor $(\mathbf{1}+\mathbf{2}\epsilon_{\mathbf{5}}^{\ominus,\oslash})$, $\mathbf{r_{12}}$ by the factor $(\mathbf{1}+\epsilon_{\mathbf{2}}^{\oslash})$, and r_{22} by the factor $(\mathbf{1}+\epsilon_{\mathbf{1}}^{\oslash})$. The entries satisfy

$$\left[\begin{array}{c|c} |\delta r_{11}|/|r_{11}| & |\delta r_{12}|/|r_{12}| \\ |\delta r_{22}|/|r_{22}| \end{array}\right] = \left[\begin{array}{c|c} 2|\epsilon_5^{\ominus,\oslash}| & |\epsilon_2^{\odot}| \\ |\epsilon_1^{\odot}| & |\epsilon_1^{\odot}| \end{array}\right] \leq \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right] \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$$

Thus $\|\delta R\|/\|R\| = \mathcal{O}(\epsilon_{\mathsf{mach}})$.

2 of 2

1 of 3

The first two steps are as before, and we get

$$\begin{cases} \tilde{x}_{3} = b_{3} \oslash r_{33} = \frac{b_{3}}{r_{33}(1 + \epsilon_{1}^{\oslash})} \\ \tilde{x}_{2} = (b_{2} \ominus (\tilde{x}_{3} \otimes r_{23})) \oslash r_{22} = \frac{b_{2} - \tilde{x}_{3}r_{23}(1 + \epsilon_{2}^{\circledcirc})}{r_{22}(1 + 2\epsilon_{3}^{\oslash, \ominus})} \end{cases}$$

The first two steps are as before, and we get

$$\begin{cases} \tilde{x}_3 = b_3 \oslash r_{33} = \frac{b_3}{r_{33}(1+\epsilon_1^{\oslash})} \\ \tilde{x}_2 = (b_2 \ominus (\tilde{x}_3 \otimes r_{23})) \oslash r_{22} = \frac{b_2 - \tilde{x}_3 r_{23}(1+\epsilon_2^{\otimes})}{r_{22}(1+2\epsilon_3^{\oslash},\ominus}) \end{cases}$$

where superscipts on ϵ s indicate the source operation; now

$$\left[egin{array}{cc} 2|\epsilon_3| & |\epsilon_2| \ & |\epsilon_1| \end{array}
ight] \leq \left[egin{array}{cc} 2 & 1 \ & 1 \end{array}
ight] \epsilon_{\sf mach} + \mathcal{O}(\epsilon_{\sf mach}^2)$$

The first two steps are as before, and we get

$$\begin{cases} \tilde{x}_3 = b_3 \oslash r_{33} = \frac{b_3}{r_{33}(1+\epsilon_1^{\oslash})} \\ \tilde{x}_2 = (b_2 \ominus (\tilde{x}_3 \otimes r_{23})) \oslash r_{22} = \frac{b_2 - \tilde{x}_3 r_{23}(1+\epsilon_2^{\otimes})}{r_{22}(1+2\epsilon_3^{\oslash},\ominus)} \end{cases}$$

where superscipts on ϵ s indicate the source operation; now

$$\left[egin{array}{c|c} 2|\epsilon_3| & |\epsilon_2| \ & |\epsilon_1| \end{array}
ight] \leq \left[egin{array}{c|c} 2 & 1 \ & 1 \end{array}
ight] \epsilon_{\sf mach} + \mathcal{O}(\epsilon_{\sf mach}^2)$$

We take a deep breath, and write down the third step

$$\tilde{x}_1 = [(b_1 \ominus (\tilde{x}_2 \otimes r_{12})) \ominus (\tilde{x}_3 \otimes r_{13})] \oslash r_{11}$$

2 of 3

We expand the two \otimes operations, and write

$$ilde{x}_1 = \left[\left(b_1 \ominus ilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes}) \right) \ominus ilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] \oslash r_{11}$$

2 of 3

We expand the two \otimes operations, and write

$$\tilde{x}_1 = \left[(b_1 \ominus \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes})) \ominus \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] \oslash r_{11}$$

We introduce error bounds for the \ominus operations

$$\tilde{x}_1 = \left[(b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes})) (1 + \epsilon_6^{\ominus}) - \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] (1 + \epsilon_7^{\ominus}) \oslash r_{11}$$

2 of 3

We expand the two \otimes operations, and write

$$\tilde{x}_1 = \left[\left(b_1 \ominus \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes}) \right) \ominus \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] \oslash r_{11}$$

We introduce error bounds for the \ominus operations

$$\tilde{x}_1 = \left[(b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes})) (1 + \epsilon_6^{\ominus}) - \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] (1 + \epsilon_7^{\ominus}) \oslash r_{11}$$

Finally, we convert \oslash to a mathematical division with a perturbation ϵ_8 ; and move both the $(1 + \epsilon_{7,8})$ expressions to the denominator

$$\tilde{x}_{1} = \frac{(\mathbf{b_{1}} - \tilde{x}_{2}r_{12}(1 + \epsilon_{4}^{\otimes}))(\mathbf{1} + \epsilon_{6}^{\ominus}) - \tilde{x}_{3}r_{13}(1 + \epsilon_{5}^{\otimes})}{r_{11}(1 + \epsilon_{7}^{\prime\ominus})(1 + \epsilon_{8}^{\prime\ominus})}$$

As it stands, we have introduced a perturbation in b_1 . This was not our intention, so we ship $(1+\epsilon_6^{\ominus})$ to the denominator as well...

3 of 3

We now have an expression with perturbations in only r_{1j} :

$$\tilde{x}_1 = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes}) - \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) (1 + \epsilon_6^{\prime \ominus})}{r_{11} (1 + \epsilon_6^{\prime \ominus}) (1 + \epsilon_7^{\prime \ominus}) (1 + \epsilon_8^{\prime \ominus})}$$

where $|\epsilon_{4,5}| \leq \epsilon_{\mathsf{mach}}$, and $|\epsilon_{6,7,8}| \leq \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$.

We now have an expression with perturbations in only r_{1j} :

$$\tilde{x}_1 = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes}) - \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) (\mathbf{1} + \epsilon_6^{\prime \ominus})}{r_{11} (\mathbf{1} + \epsilon_6^{\prime \ominus}) (1 + \epsilon_7^{\prime \ominus}) (1 + \epsilon_8^{\prime \odot})}$$

where $|\epsilon_{4,5}| \leq \epsilon_{\sf mach}$, and $|\epsilon_{6,7,8}| \leq \epsilon_{\sf mach} + \mathcal{O}(\epsilon_{\sf mach}^2)$.

If we collect the limits on the relative sizes of the perturbations $|\delta r_{ij}|/|r_{ij}|$ we get the following 6 relations

$$\begin{bmatrix} |\delta r_{11}|/|r_{11}| & |\delta r_{12}|/|r_{12}| & |\delta r_{13}|/|r_{13}| \\ |\delta r_{22}|/|r_{22}| & |\delta r_{23}|/|r_{23}| \\ & |\delta r_{33}|/|r_{33}| \end{bmatrix} \leq \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 \\ & 1 \end{bmatrix} \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$$

Proof

Proof: m = 3

We now have an expression with perturbations in only r_{1j} :

$$\tilde{x}_1 = \frac{b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes}) - \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) (\mathbf{1} + \epsilon_6^{\prime \ominus})}{r_{11} (\mathbf{1} + \epsilon_6^{\prime \ominus}) (1 + \epsilon_7^{\prime \ominus}) (1 + \epsilon_8^{\prime \ominus})}$$

where $|\epsilon_{4,5}| \leq \epsilon_{\mathsf{mach}}$, and $|\epsilon_{6,7,8}| \leq \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$.

If we collect the limits on the relative sizes of the perturbations $|\delta r_{ij}|/|r_{ij}|$ we get the following 6 relations

$$\begin{bmatrix} |\delta r_{11}|/|r_{11}| & |\delta r_{12}|/|r_{12}| & |\delta r_{13}|/|r_{13}| \\ |\delta r_{22}|/|r_{22}| & |\delta r_{23}|/|r_{23}| \\ & |\delta r_{33}|/|r_{33}| \end{bmatrix} \leq \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 \\ & 1 \end{bmatrix} \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$$

We are now ready to identify the pattern for general values of m...

Proof: General m

1 of 4

The division by r_{ii} induces perturbations δr_{ii} only, since we always immediately shift that $(1+\epsilon_*)$ -term to the denominator $1/(1+\epsilon_*')$, hence the perturbation pattern is of the form

$$\oslash \longrightarrow I_{n \times n} \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$$

Proof: General m

1 of 4

The division by r_{ii} induces perturbations δr_{ii} only, since we always immediately shift that $(1+\epsilon_*)$ -term to the denominator $1/(1+\epsilon_*')$, hence the perturbation pattern is of the form

$$\oslash \quad \leadsto \quad I_{n \times n} \epsilon_{\mathsf{mach}} + \mathcal{O}(\epsilon_{\mathsf{mach}}^2)$$

The multiplications $\tilde{x}_i r_{ji}$ induces perturbations δr_{ji} of relative size $\leq \epsilon_{\rm mach}$, the perturbation pattern is of the form

$$\otimes \quad \leadsto \quad \left[\begin{array}{ccccc} 0 & 1 & 1 & \dots & 1 \\ & 0 & 1 & \dots & 1 \\ & & \ddots & \ddots & \vdots \\ & & & 0 & 1 \\ & & & & 0 \end{array} \right] \epsilon_{\rm mach}$$

Proof: General m

The most complicated contribution comes from the subtractions (and this is where the order of evaluation has an effect on the answer) — in computing \tilde{x}_k

$$r_{k,k}$$
 is perturbed by $(1+\epsilon'_*)^{m-k}$
 $r_{k,k+1}$ is perturbed by 0
 $r_{k,k+2}$ is perturbed by $(1+\epsilon'_*)$
 $r_{k,k+3}$ is perturbed by $(1+\epsilon'_*)^2$
 \vdots
 $r_{k,m}$ is perturbed by $(1+\epsilon'_*)^{m-k-1}$

See next slide for the pattern.

Putting all this together gives...

Proof: General m — Collecting It All

Which completes the proof. \Box

Comments

This is the standard approach for a backward stability analysis.

Errors introduced by the floating point operations \oplus , \ominus , \otimes , and \oslash (in accordance with the axiom) are **reinterpreted** as errors in the initial data.

Where appropriate, errors $\sim \mathcal{O}(\epsilon_{\text{mach}})$ are freely moved between numerators and denominators.

Perturbations of order $\mathcal{O}(\epsilon_{ exttt{mach}})$ are accumulated additively, e.g.

$$(1+\epsilon_1)(1+\epsilon_2)=(1+2\epsilon_3)+\mathcal{O}(\epsilon_{\sf mach}^2)$$

where $|\epsilon_{1,2,3}| \leq \epsilon_{\sf mach}$.

Least Squares Problems

Next, we turn our attention back to least squares problems.

- We take a detailed look at the conditioning of least squares problems; it is a subtle topic and has nontrivial implications for the stability (and ultimately, the accuracy) of least squares algorithms.
- Further, this will serve as our main example on detailed conditioning analysis (as Back-substitution served as the main example on detailed backward stability analysis).

