

INFO-I590 Fundamentals and Applications of LLMs

Fine-Tuning and Instruction Tuning

Jisun An

Three steps of creating a high-quality LLM

Q: What is 1+1?

A: 1 + 1 + ...

A: 2

A: The answer is 2.

Pre-training

- Self-supervised objective for language modeling
- Use as much data as you can find
- Biggest model you can afford
- Goal: a model that understands many linguistic properties
 - Grammar
 - World knowledge (e.g., "The president of the USA is ____")
 - Emergent properties
- We are not focusing on a specific task or application

Fine-tuning

- Smaller labeled dataset corresponding to a single task/domain of interest
- Goal: maximize performance on this task/domain
- Parameter adaptation
 - Parameter-efficient adaptation

Fine-Tuning

BERT

- Example of an encoder-only transformer
- Pre-training: training objective is self-supervised: "masked LM"
- Fine-tuning: process of adapting a pretrained model to a particular downstream task

Pre-training BERT

Fine-tuning: Sentiment analysis, Input → (Pos or Neg)

 Fine-tuning is NOT self-supervised. It generally requires a labeled training data for the downstream task. But, it uses far less data than pretraining.

Pre-training Decoder-Only Model

Prefix LM

Prefix LM

Decoder mask

Prefix LM mask

Fine-tuning a decoder-only LM for a classification

- Fine-tuning a pretrained decoder model is useful for text generation tasks.
- No new parameters.

Fine-tuning a decoder-only LM for text generation

The movie was good

Positive because of "good"

Instruction Tuning

Instruction-tuning (1)

- Fine-tuning (supervised fine-tuning (SFT))
- Goal: Make the pretrained model more capable of following instructions
- Method: standard fine-tuning on a special dataset

Instruction-tuning (2)

- Collect a dataset of instructions on what tasks to solve, and outputs
 of that task for a few examples
 - Sentiments analysis, summarization, questions and answers, etc

Instruction: Please answer the following question and provide a detailed justification.

Input: What was the mobile number of Jisun?

Output: I can't answer that because it is private information.

Instruction-tuning (3)

- Instruction tuning focuses on many different tasks at once, not just one
- Instruction tuning improves generalization on tasks outside of the fine-tuning data

The first instruction-tuned model: FLAN

Instruction Tuned Models

- FLAN-T5: <u>huggingface/google/flan-t5-xxl</u>
 - Encoder-decoder model based on T5
 - 11B parameters
- LLaMa-2 Chat: https://doi.org/numeta-llama/Llama-2-70b-chat-hf
 - Decoder-only model
 - 70B parameters
- Mixtral instruct: huggingface/mistralai/Mixtral-8x7B-Instruct-v0.1
 - Decode-only mixture of experts model
 - 45B parameters
- (smaller versions also available Mistral, LLaMa2-7B)

Natural Instructions

1,616 diverse NLP tasks and their expert-written instructions

Self-Instruct

It is possible to automatically generate instruction tuning datasets,
 e.g. self-instruct (Wang et al. 2022)

LIMA: Less is More

- LIMA: a 65B parameter LLaMa fine-tuned on only 1,000 carefully curated prompts and responses, without any reinforcement learning or human preference modeling.
- Only limited instruction-tuning data is necessary to teach models to produce high quality output.

Source	#Examples	Avg Input Len.	Avg Output Len.
Training			
Stack Exchange (STEM)	200	117	523
Stack Exchange (Other)	200	119	530
wikiHow	200	12	1,811
Pushshift r/WritingPrompts	150	34	274
Natural Instructions	50	236	92
Paper Authors (Group A)	200	40	334
Dev			
Paper Authors (Group A)	50	36	N/A
Test			
Pushshift r/AskReddit	70	30	N/A
Paper Authors (Group B)	230	31	N/A

Table 1: Sources of training prompts (inputs) and responses (outputs), and test prompts. The total amount of training data is roughly 750,000 tokens, split over exactly 1,000 sequences.

Figure 1: Human preference evaluation, comparing LIMA to 5 different baselines across 300 test prompts.

Parameter-Efficient Fine-Tuning

(PEFT)

Why do we need parameter-efficient fine-tuning strategies?

Parameter-efficient fine-tuning (PEFT)

- High-level idea: Don't tune all of the parameters, but just some!
 - we want to avoid modifying most of the pretrained model's parameters during fine-tuning
- PEFT strategies
 - Prompting (requires adjusting zero parameters)
 - Prompt tuning
 - LoRA (Low-Rank Adaptation)

Prompting

Requires adjusting zero parameters to solve a downstream task

```
What is the sentiment of the below sentence? Answer with either "positive" or "negative" engineering cinput sentence>

Output: positive
```

- Limitations of prompting
 - Hard to solve very complex reasoning/understanding tasks
 - Requirements for the pretrained model are immense
 - Huge-scale pretraining
 - High quality large scale instruction turning
 - RLHF, requires access to very expensive human preference datasets

Prompting vs Fine-tuning

Review of full model fine-tuning

Prompt-tuning (Lester et al. 2022) predict positive" Pretrained decoder this e, e₂ movie was good

Update: keep all pretrained parameters frozen, only do: $e_1^{
m new}=e_1^{
m old}-\eta rac{dL}{de_1}, \ e_2^{
m new}=e_2^{
m old}-\eta rac{dL}{de_2}$

Prompt Tuning vs Model Tuning

LoRA - Low-Rank Adaptation (Hu et al. 2021)

- Freeze pre-trained weights, train low-rank approximation of difference from pre-trained weights
- Advantage: after training, just add in to pre-trained weights – no new components!

Low-Rank Matrix

• A low-rank matrix is a matrix whose rank (i.e., the number of linearly independent rows or columns) is much smaller than its full dimension.

A matrix $A \in \mathbb{R}^{m \times n}$ is **low-rank** if there exists a decomposition:

$$A = UV^T$$

where:

- $U \in \mathbb{R}^{m \times r}$,
- $V \in \mathbb{R}^{n \times r}$,
- $r \ll \min(m,n)$, meaning that the rank is significantly smaller than the matrix's full size.

Low-Rank Matrix Example

Q-LoRA (Dettmers et al. 2023)

- Further compress memory requirements for training by
 - 4-bit quantization of the model
 - Use of CPU memory paging to prevent OOM
 - Can train a 65B model on a 48GB GPU!

Any Questions?