Biblioteki kryptograficzne

Atroszczyk Dominika, Daria Shevchenko

Założenia języka

- Język interpretowany: kod PHP jest wykonywany na serwerze, a wynikowy HTML jest przesyłany do przeglądarki użytkownika.
- Możliwe jest tworzenie dynamicznych stron internetowych, które mogą dostosowywać się do
 potrzeb użytkownika i generować zawartość na podstawie danych z bazy danych lub innych
 źródeł.

Historia Php

Stworzone w 1994 roku przez Rasmusa Lerdorfa jako zestaw skryptów CGI (Common Gateway Interface) do obsługi stron osobistych.

- Początkowo nazywane "Personal Home Page Tools"
- Udostępnienie koda PHP publicznie doprowadziło do rozwoju społeczności programistów, którzy przyczynili się do rozwoju języka.
- W 1997 roku wydano pierwszą oficjalną wersję PHP 3.0,
 która wprowadziła wiele nowych funkcji i udoskonaleń

Rasmus Lerdorf

Struktura i elementu.

Kod PHP jest umieszczany wewnątrz znaczników <? > i ?>. Pozwala to na oddzielenie kodu PHP od kodu HTML.

Podstawowe elementy składni PHP:

- Zmienne mogą przechowywać różne typy danych.
- Funkcje istnieje opcja tworzenia własnych funkcji.
- Warunki i pętle if, else, switch; for, while, foreach

```
<html lang="pl">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>How to plant</title>
7 </head>
8 <body>
        <h1>Bamboo world!</h1>
10
        <?php
            $flower = 'red';
12
            echo '<h3>flowering ' . $flower . '</h3>';
        ?>
   </body>
   </html>
```

- Obsługa plików manipulacja plikami na serwerze: odczyt, zapis, usuwanie, modyfikowanie.
- Tablice w PHP są strukturami danych, które pozwalają przechowywać wiele wartości w jednej zmiennej.

Przygotowanie do realizacji zadań

- Serwer XAMPP to narzędzie, które umożliwia łatwe uruchomienie lokalnego serwera internetowego na komputerze osobistym
- Zawiera interpreter PHP, który jest potrzebny do interpretowania i wykonywania kodu PHP

1. Działania w ciałach skończonych

Wykonać obliczenia w ciele GF(p), zmieniając rząd wielkości p (p jest liczbą pierwszą) Obliczenia wykonywane są na numerach indeksów: 335901 oraz 331156

10<p<100

p zapisana na 2048 bitach

- 1. <u>bcmath</u> wbudowana w PHP biblioteka służy do operacji na bardzo dużych liczbach i zapełnia większą poprawność obliczeniową
- 2. <u>phpseclib3</u> pobrana z internetu biblioteka do generowania dużych liczb pierwszych

2. Generator liczb pseudolosowych

W trakcie tysiąca powtórzeń generujemy liczby z zakresu od 0 do 9 i przedstawiamy, ile razy każda liczba się pojawiła. Istnieją cztery różne sposoby generowania

- 1. <u>mt_rand()</u> (the Mersenne Twister Random Number Generator)
- 2. <u>rand()</u>
 - funkcje wbudowane w PHP, generują liczby pseudolosowe
 - niebezpieczne do używania w kryptografii
 - seed można zmieniać
 - funkcje mt_rand() i rand() są różne, ale zmiana seeda jednej z nich wpłynie na seed drugiej

	mt_rand()	rand()
0	101	86
1	100	95
2	83	104
3	103	113
4	92	101
5	117	96
6	110	111
7	104	103
8	94	92
9	96	99

Tablica wystąpień poszczególnych liczb z zakresu 0-9 losowania liczb w pętli 1000 powtórzeń

2. Generator liczb pseudolosowych

- 3. <u>random_int()</u> z automatycznie ustawianym seedem
 - funkcja jest uważana za bezpieczną kryptograficznie
 - nie pozwala na zmianę seeda
 - jest wbudowana w PHP
 - generuje losowe liczby z ograniczeniami na podstawie danego seeda.

	mt_rand()	rand()	random_int()
0	101	86	97
1	100	95	107
2	83	104	92
3	103	113	107
4	92	101	112
5	117	96	107
6	110	111	105
7	104	103	84
8	94	92	92
9	96	99	97

Tablica wystąpień poszczególnych liczb z zakresu 0-9 losowania liczb w pętli 1000 powtórzeń

2. Generator liczb

- Randomizer to wysokiej klasy API służące do generowania losowości
- jest najbezpieczniejszą metodą do generowania losowych wartości
- jako jedyny z badanych jest funkcją z biblioteki
- Może korzystać z różnych silników do generowania losowości, w tym tych o charakterze kryptograficznym.

	mt_rand()	rand()	random_int()	\Random\Randomizer- >getInt()	
0	101	86	97	110	
1	100	95	107	90	
2	83	104	92	100	
3	103	113	107	118	
4	92	101	112	95	
5	117	96	107	79	
6	110	111	105	81	
7	104	103	84	112	
8	94	92	92	89	
9	96	99	97	126	
Tablica wystanień poszczególnych liczb z zakresu 0-9 losowania liczb w netli 1000 nowtórzeń					

rabilca wystąpiem poszczegolnych liczb z zakresu u-9 losowania liczb w pętii 1000 powtorzen

mt_rand() i rand() korzystają z różnych algorytmów generujących liczby losowe. Jednakże, jeśli zmienisz seed jednej z tych funkcji, automatycznie zmieni się również seed drugiej funkcji. W rezultacie otrzymujemy różne losowe wartości, co stanowi ciekawe zjawisko.

Generator losowy z seedem ustawionym na aktualny czas, powoduje, że każde odświeżenie strony generuje nowe losowe wartości. Wartości będą takie same w ciągu każdej sekundy. Gdybyś zatrzymał zegarek na tej samej godzinie, seed pozostałby taki sam, a generowane wartości pozostałyby identyczne.

	mt_rand() with seed = 5	rand() with seed = 5	rand() with seed = time()
0	87	122	128
1	101	102	96
2	107	79	73
3	98	99	94
4	104	102	98
5	103	99	105
6	97	105	114
7	114	88	96
8	88	95	93
9	101	109	103

3. Szyfrowanie i odszyfrowanie

\$newpassphrase = openssl_random_pseudo_bytes(strlen(\$filetext));

Inicjacja: zainicjowanie odpowiedniej biblioteki do generowania kluczy kryptograficznych

Generacja losowych bajtów: algorytm AES-128 wymaga klucza o długości 128 bitów, co odpowiada 16 bajtom. Więc trzeba wygenerować 16 losowych bajtów, które będą służyć jako klucz

Algorytm AES - 128:

- zaawansowany algorytm szyfrujący
- jeden z najbardziej bezpiecznych standardów szyfrowania
- szyfr symetryczny -> do szyfrowania i odszyfrowania używa się ten sam klucz o długości 128 bitów

4. Funkcja skrótu

Użyta wbudowana w PHP biblioteka hash do obliczenia skrótu dwóch podobnych wiadomości z plików, gdzie zmieniamy jedną literę:

"To wiadomość do zaszyfrowania"

"Ta wiadomość do zaszyfrowania"

Biblioteka oferuje wiele różnych algorytmów, ale przedstawimy skróty dla pierwszych 15: md, sha oraz whirlpool.

Nieważne, który algorytm użyjesz, skróty zawsze będą się różnić, nawet gdy zmienimy tylko jedną literę w tekście.

Źródła

Co to jest PHP

Father of PHP

AES - szyfr blokowy z kluczem symetrycznym

PHP manual

Biblioteki dla PHP