

第五章

整数规划

第1节

整数规划问题的提出

问题提出

- 在某些场合下的线性规划问题,要求解必须为整数,称为整数规划
 - □ 纯整数规划
 - □ 混合整数规划
 - □ 0-1规划

max
$$z = x_1 + 4x_2$$

s.t. $14x_1 + 42x_2 \le 196$
 $-x_1 + 2x_2 \le 5$
 $x_1 x_2 \ge 0$
 x_1, x_2 为非负整数

线性规划的最优解位于 A点(2.6,3.8),最优 解的目标函数值为 z=17.8

整数规划的最优解位于 B点(5,3),最优解 的目标函数值为z=17

注:简单地将线性规划的非整数的最优解,用四舍五入或舍去尾数的办法得到整数解,一般情况下并不能得到整数规划的最优解。

第2节

分支定界法

分支定界法(Branch & Bound)

- 对于可行域有界的整数规划问题,可以使用穷举法。但当规模一大,穷举法不可行。
 - □ n项任务指派n个人完成,方案有 n! 种

- 60's Land Doig, Dakin 提出分支定界法
 - □ 给出目标值的上下界,逐步去掉分支,并修正 上下界,直到获得最优解
 - □对于最大化IP问题,对应线性规划问题LP

求解IP问题 A: $\max Z = x_1 + 5x_2$

$$\begin{cases} x_1 - x_2 \ge -2 \\ 5x_1 + 6x_2 \le 30 \\ x_1 \le 4 \\ x_1, x_2 \ge 0$$
且全为整数

对应的**LP**问题 **B**: $\max Z = x_1 + 5x_2$

$$\begin{cases} x_1 - x_2 \ge -2 \\ 5x_1 + 6x_2 \le 30 \\ x_1 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

LP问题解

最优解:

$$x_1 = 18/11$$
, $x_2 = 40/11$
 $Z^{(0)} = 218/11 \approx 19.8$

即Z⁽⁰⁾是(IP)最大值的上限

 x_1 非整数 取 $x_1 \leq 1$, $x_1 \geq 2$ 先将 (LP) 划分为 (LP1) 和 (LP2)

一次划分

$$\max Z = x_1 + 5x_2$$

$$\begin{cases} x_1 - x_2 \ge -2 \\ 5x_1 + 6x_2 \le 30 \\ x_1 \le 4 \\ x_1 \le 1 \\ x_1, x_2 \ge 0$$
且为整数

$$\min Z = x_1 + 5x_2$$

$$\begin{cases} x_1 - x_2 \ge -2 \\ 5x_1 + 6x_2 \le 30 \\ x_1 \le 4 \\ x_1 \ge 2 \\ x_1, x_2 \ge 0$$
且为整数

注:划分不影响原(IP)问题的最优解

LP1 的解

先求(LP1),如图所示。 此时B 在点取得最优解。

$$x_1 = 1, x_2 = 3, \mathbf{Z}^{(1)} = 16$$

找到整数解,问题已探明, 此支停止计算

LP2 的解

再求(LP2),如图所示。 此时C在点取得最优解。

$$x_1 = 2, x_2 = 10/3,$$

 $\mathbf{Z}^{(2)} = 56/3 \approx 18.7$

 $Z^{(2)} > Z^{(1)}$ x_2 不是整数,加入条件 $x_2 \le 3$, $x_2 \ge 4$ 将(LP2)继续划分为(LP3),(LP4)

LP3与LP4

(LP4) 无可行解,不再分 支

再求 (LP3), 在D点取最 优值

$$x_1 = 12/5 \approx 2.4, x_2 = 3,$$
 $Z^{(3)} = 87/5 \approx 17.4$
 $Z^{(3)} > Z^{(1)} = 16$
 $U_{x_1} = 12/5$ 不是整数,可

即*x*₁≤2 , *x*₁≥3 划为 (LP5), (LP6)。

继续分枝。

LP5与LP6

(LP5),如图所示:

在E点取得最优解。

$$x_1 = 2, x_2 = 3, \mathbf{Z}^{(5)} = 17$$

找到整数解,问题已探明, 此枝停止计算。

再求(LP6),在F点取得最 优解。

$$x_1 = 3, x_2 = 2.5,$$

 $\mathbf{Z}^{(6)} = 31/2 \approx 15.5 < \mathbf{Z}^{(5)}$

如对 Z⁽⁶⁾ 继续分解, 其最大值也不会高于15.5 ,问题探明, 剪枝。

- 1. 求解伴随规划问题B,可能的情况有:
 - □ B没有可行解,这时A也没有可行解,停止
 - □ B有最优解,且符合A的整数条件,则也是A 的最优解,停止
 - □ B有最优解,但不符合A的整数条件,记它的目标函数值为z*
- 2. 利用观察法找出A的一个整数可行解,求得目标函数值 z,则A的最优解z满足 z≤z ≤z*,进行迭代:

分支

 \mathbf{E} **在B的最优解中任选一个不符合整数条件的变量** \mathbf{x}_{i} **,其值为\mathbf{b}_{i}**

■ 构造两个约束条件 $x_j \leq [b_j]$ 和 $x_j \geq [b_j] + 1$,加入问题 B,得到两个分枝B₁和B₂,求解

定界

■ 在各分枝的解中,找出最优目标函数值最大者,更新为上界z*

■ 在符合整数条件的解中,找出目标函数值 最大者,更新为下界**Z**

比较与剪支

■ 最优目标函数小于z者,剪掉,以后不予考虑

■ 若大于z, 且不符合整数条件,则重复分支 定界

■ 过程重复,直到z*=<u>z</u>

第3节

割平面解法

$$\max Z = x_1 + x_2$$

$$\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0$$
且为整数

对应松弛问题的最优解:

$$x_1 = 3/4$$

$$x_2 = 7/4$$

$$Z=10/4$$

$$\max Z = x_1 + x_2$$

$$\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0$$
且为整数

加上约束 CD之后,松弛问题最优解为C点,恰好为整数解。

CD称为割平面。

- 1、割去了非整数最优解
- 2、没有切割掉 整数解

加上约束 CD之后,松弛问题最优解为C点,恰好为整数解。

CD称为割平面。

如何求得割平面?

最终单纯形表

C_{j}			1	1	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4
1	x_{I}	3/4	1	0	-1/4	1/4
1	x_2	7/4	0	1	3/4	1/4
-z		-5/2	0	0	-1/2	-1/2

有:
$$x_1 - \frac{1}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{4}$$

移项,得:

整
$$x_1 - x_3 = \frac{3}{4} - (\frac{3}{4}x_3 + \frac{1}{4}x_4)$$

即切割方程: $-3x_3-x_4 \le -3$,加入上表计算

加入切割方程

由对偶单纯形法 x₂ 得最优解:

$$x_1=1$$

$$x_2=1$$

获得了整数解!

1. 用单纯形法求解(IP)对应的松弛问题(LP):

- (1). 若(LP)没有可行解,则(IP)也没有可行解, 停止计算。
- (2). 若(LP)有最优解,并符合(IP)的整数条件,则即为(IP)的最优解,停止计算。
- (3). 若(LP)有最优解,但不符合(IP)的整数条件, 转入下一步。

2. 从(LP)的最优解中,任选一个不为整数的分量 x_r ,由最优单纯形表得: $x_r + \sum_{j} a_{rj} x_j = b_r$

将系数 a_{rj} 和 b_r 分解为整数部分和小数部分之和,作割平面方程:

$$f_r - \sum_{j=m+1}^n f_{rj} x_j \leq 0$$

$$b_r 的小数部分$$

$$a_{rj}$$
 a_{rj}

的小数部分

注: 割平面方程不唯一!

3. 将所得的割平面方程作为一个新的约束条件置于最优单纯形表中,用对偶单纯形法 求出新的最优解,返回1。

注1: 割平面未必一步求得!

注2: 由于收敛不快,至今应用很少,可

与分支定界法配合使用。

第4节

0一1型整数规划

相互排斥的计划

- 拟从7个位置 A_i (i=1,2...7)选择建立东、西、南三区门市部。规定:
 - □ 在东区,由A₁,A₂,A₃三处至多选择两处;
 - □ 在西区,由A₄, A₅两处至少选择一处;
 - □ 在南区,由A₆, A₇两处至少选择一处。
 - □ 选用A_i点,投资为b_i元,获利 c_i元
 - □ 投资总额不超过 B 元
- 问应如何选择使年利润最大?

相互排斥的约束条件

某厂用车运和船运两种方式运送甲乙两种 货物,每箱体积、重量、利润及限制条件 如下表;

	体积 (车)	体积 (船)	重量	利润
甲	5	7	2	20
乙	4	3	5	10
限制	24	45	13	

- 运送方式相互排斥,如何构造约束条件?
 - □ 推广至m个互相排斥的约束条件?

固定费用问题

■ 设第 j 种设备(j=1, 2, ..., n)运行的固定成本为 k_j ,运行的变动成本为 c_j ,则生产成本与产量 x_i 的关系为

隐枚举法

- 0-1规划取值特殊,考虑枚举
 - □ 数量为 2ⁿ,n较大时不可行

- 只检查取值组合的一部分
 - □ 建立过滤条件
 - □ 模型标准化,建立隐枚举树

$$\int x_1 + 2x_2 - x_3 \le 2 \tag{1}$$

$$\max Z = 3x_1 - 2x_2 + 5x_3$$

max
$$Z = 3x_1 - 2x_2 + 5x_3$$

$$\begin{cases}
x_1 + 4x_2 + x_3 \le 4 & (2) \\
x_1 + x_2 & \le 3 & (3) \\
4x_2 + x_3 \le 6 & (4) \\
x_1, x_2, x_3 = 0$$

x_1 .	<i>x</i> ₂ .	x_3	(1)	(2)	(3)	(4)	是V 否X	Z值
(0.	0.	0)	0	0	0	0	V	0
(0.	0.	1)	-1	1	0	1	V	5
(0.	1.	0)	2	4	1	4	V	-2
(1.	0.	0)	1	1	1	0	V	3
(0.	1.	1)	1	5	1	5	V	3
(1.	0.	1)	0	2	1	1	V	8
(1.	1.	0)	3				X	
(1.	1.	1)	2	6			X	

$$x_1 + 2x_2 - x_3 \le 2 \qquad (1)$$

$$\max Z = 3x_1 - 2x_2 + 5x_3$$

$$x_1 - 2x_2 + 5x_3$$

加入约束:

$$3x_1 - 2x_2 + 5x_3 \ge 5$$

x_1 .	<i>x</i> ₂ .	x_3	(0)	(1)	(2)	(3)	(4)	是V 否X	Z值
(0.	0.	0)	0	0	0	0	0	\	0
(0.	0.	1)	5	-1	1	0	1	\	5
(0.	1.	0)	-2					X	
(1.	0.	0)	3					X	
(0.	1.	1)	3					X	
(1.	0.	1)	8	0	2	1	1	V	8
(1.	1.	0)	1					Х	
(1.	1.	1)	4					X	

第5节

指派问题

问题提出

设n个人被分配去做n件工作,已知第i个人去做第j件工作所需时间为 c_{ij} (i=1.2...n;j=1.2...n)并假设 $c_{ij} \ge 0$ 。

问应如何分配才能使所用时间最少?

- □n条航线,指派n艘船运输,总收入最大?
- □一种特殊的运输问题

问题提出

设n个人被分配去做n件工作,已知第i个人去 做第j件工作所需时间为 c_{ii} (i=1.2...n; j=1.2...n) 并假设 $c_{ii} \geq 0$ 。

设决策变量
$$x_{ij} = \begin{cases} 1 & \text{分配第} i \land \text{人去做第} j \pitchfork \text{工作} \\ 0 & \text{否则} \end{cases}$$

数学模型:

$$\min Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

匈牙利法

- 库恩(W.W. Kuhn)于1955年提出
- 从系数矩阵(c_{ij})的一行各元素减去a,得到 新的矩阵(b_{ij}),那么以(b_{ij})为系数矩阵求得 的最优解和原系数矩阵求得的最优解相同
 - □ 若乘上一个常数呢?
- 变换系数矩阵,使得在不同行不同列中至 少有一个零元素(独立0元素)
 - 令对应独立 元素位置 $x_{ij} = 1$,其余 $x_{ij} = 0$,得到最优分配方案

第一步

- 变换系数矩阵,使各行各列都出现0元素
 - 1. 每行元素减去该行的最小元素
 - 2. 再每列元素减去该列的最小元素

第二步

- 试求最优解(寻找n个独立0元素)
 - 1. 由零元素最少的行(或列)开始,圈出一个零元素,用◎表示
 - 2. 划去同行同列的其他零元素,用Ø表示
 - 3. 重复1、2,直至无法再划

- 若得到 n个◎,则得到了最优解:对应◎位置 x_{ij}=1,其余 x_{ij}=0
- □ 若圈出的◎数目不够n个

为何未能找到n个〇?

- 没找对?
 - □回第二步重新试探
- 找不到?
 - □重新变换系数矩阵

- 关键: 当前矩阵的独立0元素最多个数?
 - □ 康尼格:该数目等于能覆盖所有0元素的最少直 线数。

第三步

作最少直线覆盖所有零元素

- 1. 对没有◎的行打√
- 2. 对打√行上所有含Ø元素的列打√
- 3. 再对打√的列含◎元素的行打√
- 4. 重复2,3直到得不出新的打√的行、列为止
- 5. 对没有打√的行画横线,打√的列画纵线,即 得到覆盖所有0元素的最少直线数 *l*
- □ 若*l=n*,返回第二步
- □ 若*l*<*n*, 转第四步

第四步

- 变换矩阵增加0元素
 - 1. 在没有被直线覆盖的部分找出最小元素
 - 2. 在打√行各元素都减去这个最小元素
 - 五表不变)五素不变)
 - 4. 新系数矩阵若得到n个独立0元素,求解完成; 否则,回第三步。

进一步讨论

- 某个系数c_{ij}<0?
 - □ 变换系数矩阵,使得 $c_{ij} \ge 0$
- 求目标函数最大值问题?
 - □ 系数取反,转化为最小值问题

- n个任务分配给m个人员的问题?
 - □类似产销不平衡问题处理