- 3 命題論理
- 3.1 命題

命題(proposition): 内容の真偽がはっきりしている文章

例:

「3 は素数である」: 真(true)

「1は偶数である」: 偽(false)

「今日は雨である」:天気により true

or false

の判断がつく

○ 論理演算 命題を組み合わせて別の命題を作る

P: S 君は投手である

Q: S 君は左ききである

PかつQ: S君は投手で左ききである

PまたはQ: S君は投手または左きき

である

Pでない: S君は投手でない

「かつ、または、でない」: 論理演算

〇 論理積 (conjunction) PかつQ, P and Q, $P \wedge Q$

命題 Pが真 (true) の時, Pの真理値 (truth value) を T, 偽 (false) の時 Pの真理値を F で表す.

P: S 君は投手である

Q: S 君は左ききである

 $P \wedge Q$: S君は投手であり, 左ききである

P, Qの真偽と $P \land Q$ の真偽の関係

真理値表(truth table)

Р	Q	$P \wedge Q$
T	Т	Т
Т	F	F
F	T	F
F	F	F

 $P \wedge Q \mid \mathcal{I}\{T,F\} \times \{T,F\} \rightarrow \{T,F\} \text{ rbs}$

 \bigcirc 論理和(disjunction) PまたはQ, P or Q, $P \lor Q$

真理値表(truth table)

Р	Q	$P \vee Q$
T	T	Τ
T	F	T
F	T	T
F	F	F

 $P \lor Q$ は $\{T,F\} \times \{T,F\} \rightarrow \{T,F\}$ である

 \bigcirc 否定(negation) Pでない, not P, \overline{P}

真理値表(truth table)

Р	$\overline{\overline{P}}$
T	F
F	T

 \overline{P} は $\{T,F\} \rightarrow \{T,F\}$ である

〇 含意(がんい)(implication) P ならば Q, if P then Q, $P \rightarrow Q$

真理値表(truth table)

Р	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

$$P \rightarrow Q$$
 は $\{T,F\} \times \{T,F\} \rightarrow \{T,F\}$ である

前提条件 Pが間違っていれば,何を言ってもウソではない(真)

(例)

$(P \land \overline{Q}) \rightarrow R$ の真理値を示せ

P	Q	R	$(P \wedge \overline{Q}) \to R$
T	\mathcal{T}	\mathcal{T}	T
T	\mathcal{T}	F	T
T	F	T	T
T	F	F	F
F	\mathcal{T}	T	T
\overline{F}	\mathcal{T}	F	T
F	F	\mathcal{T}	T
F	F	F	T

〇 その他の論理演算 $\{T,F\}^2 \rightarrow \{T,F\}$ の関数で考え得る 全てを列挙すると

		f_0	f_1	f_2	f_3
P	Q	T	$P \vee Q$	$Q \rightarrow P$	P
T	T	\mathcal{T}	T	T	\mathcal{T}
T	F	T	T	\mathcal{T}	\mathcal{T}
\overline{F}	T	T	T	F	F
F	F	T	F	T	F

		f_4	f_5	f_6	f_7
P	Q	$P \rightarrow Q$	Q	$P \leftrightarrow Q$	$P \wedge Q$
T	T	T	T	T	T
T	F	F	F	F	F
\overline{F}	T	T	T	F	F
\overline{F}	F	T	F	T	F

		f_8	f_9	f_{10}	f_{11}
P	Q	P Q	$P \oplus Q$	\overline{Q}	$P \rightarrow Q$
T	T	F	F	F	F
T	F	T	T	T	T
F	\mathcal{T}	T	T	F	F
F	F	T	F	T	F

		f_{12}	f_{13}	f_{14}	f_{15}
P	Q	\overline{P}	$Q \to P$	$P \downarrow Q$	F
T	T	F	F	F	F
T	F	F	F	F	F
F	T	T	T	F	F
F	F	T	F	T	\overline{F}

 $P \leftrightarrow Q$: 同値(equivalence)

 $P|Q:NAND(\overline{P \land Q}$ と真理値は同じになる)

 $P \oplus Q$: 排他的論理和(exclusive or)

 $P \downarrow Q: NOR (\overline{P \lor Q}$ と真理値は同じになる)

○ 完全系(任意のブール関数(論理関数) を表すために必要最小限の演算子の組)

① すべての論理演算 $(f_0 \sim f_{15})$ は \vee , \wedge , $^-$ を使って表すことができる $\{\vee,\wedge,^-\}$ は完全系を成す

(例)

$$f_4: P \to Q$$

P	Q	$P \rightarrow Q$	$\overline{P} \vee Q$
T	\mathcal{T}	T	T
T	F	F	F
F	\mathcal{T}	T	T
F	F	T	T

即ち, $P \rightarrow Q$ の真理値と $\overline{P} \lor Q$ の 真理値が同じになるので

$$P \rightarrow Q = \overline{P} \lor Q$$
である

 $\bigcirc P \rightarrow Q$ の真理値表より $\overline{P} \lor Q$ の 導出の仕方

まず, $P \rightarrow Q$ の真理値で,

Tの部分に着目する

(1)
$$P = T$$
, $Q = T$

$$(2) P = F, Q = T$$

(3)
$$P = F$$
, $Q = F$

の3つの場合で

 $P \rightarrow Q$ はTになる

そこで,

- (1)の場合のみTとなる論理式は $P \wedge Q$
- (2)の場合のみTとなる論理式は $\overline{P} \wedge Q$
- (3)の場合のみTとなる論理式は $\overline{P} \wedge \overline{Q}$

即ち, $P \rightarrow Q$ は $P \land Q$ または $P \land Q$ または $\overline{P} \land \overline{Q}$ の時のみTとなり, それ以外ではFとなる

$$\therefore P \to Q = (P \land Q) \lor (\overline{P} \land Q) \lor (\overline{P} \land \overline{Q})$$

ここで、 $\langle \{T,F\},\vee,\wedge,F,T\rangle$ はブール代数、即ち命題論理はブール代数であるので、結合律、分配律、ド・モルガンの法則、その他が成立する.

即ち,

$$P \to Q = (P \land Q) \lor (\overline{P} \land Q) \lor (\overline{P} \land \overline{Q})$$

$$= (P \land Q) \lor (\overline{P} \land Q) \lor (\overline{P} \land Q) \lor (\overline{P} \land \overline{Q})$$

$$= ((P \lor \overline{P}) \land Q) \lor (\overline{P} \land (Q \lor \overline{Q}))$$

$$= Q \lor \overline{P}$$

$$= \overline{P} \lor Q$$

同様に $f_0 \sim f_{15}$ の全てについても、 上記のような方法で \vee 、 \wedge 、により 全て表現できる

$$f_{0} = T(=P \vee \overline{P})$$

$$f_{1} = P \vee Q$$

$$f_{2} = Q \rightarrow P = \overline{Q} \vee P$$

$$f_{3} = P$$

$$f_{4} = P \rightarrow Q = \overline{P} \vee Q$$

$$f_{5} = Q$$

$$f_{6} = P \leftrightarrow Q = (P \rightarrow Q) \wedge (Q \rightarrow P)$$

$$= (\overline{P} \vee Q) \wedge (\overline{Q} \vee P)$$

$$= ((\overline{P} \vee Q) \wedge \overline{Q}) \vee ((\overline{P} \vee Q) \wedge P)$$

$$= (\overline{P} \wedge \overline{Q}) \vee (P \wedge Q)$$

$$f_{7} = P \wedge Q$$

$$f_{8} = P | Q = \overline{P \wedge Q} = \overline{P} \vee \overline{Q}$$

$$f_{9} = P \oplus Q = (P \wedge \overline{Q}) \vee (\overline{P} \wedge Q)$$

$$f_{10} = \overline{Q}$$

$$f_{11} = \overline{P} \to \overline{Q} = \overline{\overline{P}} \vee \overline{Q} = P \wedge \overline{Q}$$

$$f_{12} = \overline{P}$$

$$f_{13} = \overline{Q} \to \overline{P} = \overline{\overline{Q}} \vee \overline{P} = Q \wedge \overline{P}$$

$$f_{14} = P \downarrow Q = \overline{P} \vee \overline{Q} = \overline{P} \wedge \overline{Q}$$

$$f_{15} = F \ (= P \wedge \overline{P})$$

$$: P \to Q = \overline{P} \lor Q$$
より
$$P \lor Q = \overline{P} \to Q$$
となり
$$\lor (t \to b) = \overline{P} \to Q$$
となり

- ⑤ {|}は完全系をなす
- $P|Q = \overline{P \wedge Q} \downarrow \emptyset$

$$P \mid P = \overline{P \wedge P} = \overline{P}$$

$$(P|Q)|(P|Q) = \overline{P \wedge Q} \wedge \overline{P \wedge Q}$$

$$= (P \wedge Q) \vee (P \wedge Q)$$

$$= P \wedge Q$$

$$i.e.$$
 $\overline{P} = P|P,$ $P \wedge Q = (P|Q)|(P|Q)$ より \overline{S} および \overline{S} は により表される

$$P \downarrow Q = \overline{P \vee Q} \downarrow \emptyset$$

$$P \downarrow P = \overline{P \vee P} = \overline{P}$$

$$(P \downarrow Q) \downarrow (P \downarrow Q) = \overline{P \lor Q} \lor \overline{P \lor Q}$$

$$= (P \lor Q) \land (P \lor Q)$$

$$= P \lor Q$$

i.e.
$$\overline{P} = P \downarrow P$$
,
$$P \lor Q = (P \downarrow Q) \downarrow (P \downarrow Q)$$
より
$$\overline{\qquad}$$
および \lor は \downarrow により表される

命題論理の論理式〈{T,F},∨,∧,F,T〉はブール代数であるこの代数のブール式を命題論理の論理式という

ブール式 α が表すブール関数 $f_{\alpha}: \{T,F\}^{n} \to \{T,F\}$ を (命題) 論理関数という

論理式 α の各変数にTまたはFの値を 代入することを,論理式 α に解釈を 与えるという.その結果,論理式 α の 値TまたはFが決定される. (例)

$$\alpha = (P \rightarrow Q) \lor R$$
で $\alpha \vDash P = T, Q = F, R = T \succeq V$ う解釈を与えると $\alpha = (T \rightarrow F) \lor T = T \succeq$ なる

P	Q	R	$(P \to Q) \lor R$	$\overline{(P \to Q) \lor R}$
\mathcal{I}	\mathcal{I}	\mathcal{I}	T	F
\mathcal{I}	\mathcal{I}	F	T	F
\mathcal{I}	F	\mathcal{I}	T	F
\mathcal{I}	F	F	F	T
F	\mathcal{I}	\mathcal{I}	T	F
F	\mathcal{I}	F	T	F
\overline{F}	F	\overline{T}	T	F
\overline{F}	F	F	T	F

$$f_{\alpha}: \left\{T, F\right\}^{3} \to \left\{T, F\right\}$$

$$f_{\alpha}(P, Q, R) = (P \to Q) \lor R$$

$$= \overline{P} \lor Q \lor R$$

真理値表から $f_{\alpha}(P,Q,R)$ の 論理式の求め方

記号簡単のため \vee を+で、 \wedge を・で、Fを 0、Tを 1 で表すことにすると

 $f_{\alpha}(P,Q,R)$ $= f_{\alpha}(0,0,0)PQR + f_{\alpha}(0,0,1)PQR$ $+f_{\alpha}(0,1,0)PQR+f_{\alpha}(0,1,1)PQR$ $+f_{\alpha}(1,0,0)PQR+f_{\alpha}(1,0,1)PQR$ $+f_{\alpha}(1,1,0)PQR+f_{\alpha}(1,1,1)PQR$ = POR + POR + POR + POR+PQR+PQR+PQR**(1)** (主加法標準形)

 $f_{\alpha}(P,Q,R)$ $= f_{\alpha}(0,0,0) PQR + f_{\alpha}(0,0,1) PQR$ $+f_{\alpha}(0,1,0)PQR+f_{\alpha}(0,1,1)PQR$ $+ f_{\alpha}(1,0,0) PQR + f_{\alpha}(1,0,1) PQR$ $+ f_{\alpha}(1,1,0) PQR + f_{\alpha}(1,1,1) PQR$ $= f_{\alpha}(1,0,0)PQR = PQR$ $\therefore f_{\alpha}(P,Q,R) = PQR = P + Q + R$ $(=P\vee Q\vee R)$ (2)

(主乗法標準形)

(1)から(2)への式変形

$$\begin{split} f_{\alpha} &= \overline{P} \overline{Q} \overline{R} + \overline{P} \overline{Q} R + \overline{P} Q \overline{R} + \overline{P} Q R \\ &+ P \overline{Q} R + P Q \overline{R} + P Q R \\ &= (\overline{P} \overline{Q} \overline{R} + \overline{P} \overline{Q} R + \overline{P} Q \overline{R} + \overline{P} Q R) \\ &+ (\overline{P} \overline{Q} R + \overline{P} Q R + P \overline{Q} R + P Q R) \\ &+ (\overline{P} Q \overline{R} + \overline{P} Q R + P Q \overline{R} + P Q R) \\ &+ (\overline{P} Q \overline{R} + \overline{P} Q R + P Q \overline{R} + P Q R) \\ &= (\overline{P} \overline{Q} + \overline{P} Q) + (\overline{P} R + P R) + (\overline{P} Q + P Q) \\ &= \overline{P} + Q + R \\ &= \overline{P} \vee O \vee R \end{split}$$

[問題]

$$f(P,Q,R) =$$
 $T: P,Q,R$ の値で T の値を とるものが多い場合 $F:$ その他の場合

となるような関数f(P,Q,R)を作れ. このような関数を多数決関数という.

[解答]

P	Q	R	f (P, Q, R)
T	\mathcal{I}	T	T
T	\mathcal{T}	F	T
T	F	T	T
T	F	F	F
F	\mathcal{T}	T	T
F	\mathcal{I}	F	F
F	F	T	F
F	F	F	F

真理値表より

$$f(P,Q,R) = (P \land Q \land R) \lor (P \land Q \land \overline{R})$$
$$\lor (P \land \overline{Q} \land R) \lor (\overline{P} \land Q \land R)$$

「問題」

次の等式を式の変形により証明せよ.

(1)
$$P \rightarrow Q = \overline{Q} \rightarrow \overline{P}$$
 (対偶)

$$(2) P \to (Q \lor R) = (P \land \overline{Q}) \to R$$

$$(3) (P_1 \wedge P_2) \rightarrow (P_3 \wedge P_4)$$
$$= (P_1 \wedge P_2 \wedge P_3) \rightarrow P_4$$

[解答]

(1)
$$P \rightarrow Q = \overline{P} \vee Q$$

= $Q \vee \overline{P} = \overline{Q} \rightarrow \overline{P}$

(2)
$$P \to (Q \lor R)$$

$$= \overline{P} \lor (Q \lor R) = (\overline{P} \lor Q) \lor R$$

$$= \overline{(P \land \overline{Q})} \lor R$$

$$= (P \land \overline{Q}) \to R$$

(3) 等式は成立しない

反例: $P_1 = T$, $P_2 = T$, $P_3 = F$, $P_4 = T$ とすると

左辺= $(T \land T) \rightarrow (F \land T) = T \rightarrow F = F$ 右辺= $(T \land T \land F) \rightarrow T = F \rightarrow T = T$ より左辺≠右辺 ○同値な論理式

(例)
$$P \rightarrow Q = \overline{Q} \rightarrow \overline{P}$$
 (対偶)

 $\lceil P t s b | t Q \rfloor$

「QでないならばPでない」

こととは同値であるため,

前者を示すのが難しい場合には

後者を示してもよい

(例)

「Pでないならば(QまたはR)である」 を証明するには,

$$\overline{P} \to (Q \lor R)$$

$$= P \lor (Q \lor R)$$

$$= \overline{Q} \to (P \lor R)$$

$$= \overline{R} \to (P \lor Q)$$

より、上記のいずれか一つを 証明すればよい. ○恒真命題

(tautology トートロジー) 任意の解釈のもとで真となる命題

(例) $P \lor (P \to Q)$ はトートロジー である

$$(\because) P \lor (P \to Q) = P \lor (\overline{P} \lor Q)$$

$$= (P \lor \overline{P}) \lor Q$$

$$= T \lor Q$$

$$= T$$

[問題] 以下の命題は トートロジーである ことを示せ.

$$(1) \quad P \to (Q \to P)$$

$$(2) \quad (P \land (P \rightarrow Q)) \rightarrow Q$$

[解答]

(1)
$$P \rightarrow (Q \rightarrow P)$$

 $= P \rightarrow (\overline{Q} \lor P)$
 $= \overline{P} \lor \overline{Q} \lor P = T$
(2) $(P \land (P \rightarrow Q)) \rightarrow Q$
 $= (P \land (\overline{P} \lor Q)) \rightarrow Q$
 $= (P \land \overline{P}) \lor (P \land Q)) \rightarrow Q$
 $= (P \land Q) \rightarrow Q$
 $= \overline{P} \lor \overline{Q} \lor Q$
 $= T$

○推論

トートロジーの利用 [A 君またはB 君の意見が正しい; B 君の意見は正しくない; ならばA 君の意見が正しい」

この推論は正しいか?

P=「A君の意見が正しい」

Q=「B君の意見が正しい」

上記の推論は

 $\lceil (P \lor Q か \bigcirc \overline{Q})$ ならば $P \rfloor$ としているが、これは

$$((P \lor Q) \land \overline{Q}) \rightarrow P = ((P \lor Q) \land \overline{Q}) \lor P$$

$$= \overline{P \lor Q} \lor Q \lor P$$

$$= \overline{(P \lor Q)} \lor (P \lor Q)$$

$$= T$$

より $((P \lor Q) \land \overline{Q}) \rightarrow P$ は トートロジーである.

即ち、いかなる解釈に対してもこれは成立するので上記の推論は正しいと言える.

各種の推論規則

$$\bigcirc ((P \vee Q) \wedge \overline{Q}) \to P$$

$$\bigcirc ((P \to Q) \land P) \to Q$$
(modus ponens)
$$((P \to Q) \land P) \to Q$$

$$= (P \to Q) \land P \lor Q$$

$$= (P \lor Q) \lor P \lor Q$$

$$= (P \lor Q) \lor P \lor Q$$

$$= \overline{(\overline{P} \vee Q)} \vee (\overline{P} \vee Q)$$

$$=T$$

$$\bigcirc ((P \to Q) \land \overline{Q}) \to \overline{P}$$

(modus tollens)

$$((P \to Q) \land \overline{Q}) \to \overline{P}$$

$$=(\overline{P}\vee Q)\wedge\overline{Q}\vee\overline{P}$$

$$= (\overline{P} \vee Q) \vee Q \vee \overline{P}$$

$$=(\overline{P}\vee Q)\vee(\overline{P}\vee Q)$$

$$=T$$

$$\bigcirc ((P \to Q) \land (Q \to R)) \to (P \to R)$$

(三段論法)

$$((P \to Q) \land (Q \to R)) \to (P \to R)$$

$$= \overline{(P \lor Q)} \land \overline{(Q \lor R)} \lor \overline{(P \lor R)}$$

$$= \underline{(P \land \overline{Q})} \lor \underline{(Q \land \overline{R})} \lor \overline{(P \lor R)}$$

$$= \underline{((P \land \overline{Q}) \lor \overline{P})} \lor \underline{((Q \land \overline{R}) \lor R)}$$

$$= ((P \lor \overline{P}) \land \overline{(Q \lor \overline{P})}) \lor$$

$$((Q \lor R) \land (R \lor \overline{R}))$$

$$= \overline{(Q \lor \overline{P})} \lor (Q \lor R)$$

$$= T$$

$$\bigcirc ((P \to Q) \land (R \to S))$$
$$\to ((P \land R) \to (Q \land S))$$

$$((P \to Q) \land (R \to S))$$

$$\to ((P \land R) \to (Q \land S))$$

$$= ((\overline{P} \lor Q) \land (\overline{R} \lor S))$$

$$\to ((\overline{P} \land R) \lor (Q \land S))$$

$$= (\overline{P} \lor Q) \land (\overline{R} \lor S)$$

$$\lor ((\overline{P} \land R) \lor (Q \land S))$$

$$= (\overline{P} \lor Q) \lor (\overline{R} \lor S)$$

$$\lor ((\overline{P} \land R) \lor (Q \land S))$$

$$\lor ((\overline{P} \land R) \lor (Q \land S))$$

(P*orR*)は式全体でor式だから カッコ外してもいい

$$= (P \wedge \overline{Q}) \vee (R \wedge \overline{S})$$

$$\vee (\overline{P} \vee \overline{R}) \vee (Q \wedge S)$$

$$= ((P \vee \overline{P}) \wedge (\overline{P} \vee \overline{Q}))$$

$$\vee ((R \vee \overline{R}) \wedge (\overline{S} \vee \overline{R})) \vee (Q \wedge S)$$

$$= (\overline{P} \vee \overline{Q}) \vee (\overline{S} \vee \overline{R}) \vee (Q \wedge S)$$

$$= (\overline{P} \vee \overline{Q} \vee \overline{S} \vee \overline{R} \vee Q)$$

$$\wedge (\overline{P} \vee \overline{Q} \vee \overline{S} \vee \overline{R} \vee S)$$

$$= T \wedge T$$

=T

$$\bigcirc (((P \to Q) \land (R \to S)))$$
$$\land (\overline{Q} \lor \overline{S})) \to (\overline{P} \lor \overline{R})$$

$$((P \to Q) \land (R \to S))$$

$$\land (\overline{Q} \lor \overline{S}) \to (\overline{P} \lor \overline{R})$$

$$= (\overline{P} \lor Q) \land (\overline{R} \lor S) \land (\overline{Q} \lor \overline{S})$$

$$\lor (\overline{P} \lor \overline{R})$$

$$= (P \land \overline{Q}) \lor (R \land \overline{S})$$

$$\lor (Q \land S) \lor (\overline{P} \lor \overline{R})$$

$$= (P \land \overline{Q}) \lor \overline{P} \lor (R \land S)$$

$$\lor \overline{R} \lor (Q \land S)$$

$$= \underline{((P \vee \overline{P}) \wedge (\overline{P} \vee \overline{Q}))}$$

$$\vee \underline{((R \vee \overline{R}) \wedge (\overline{S} \vee \overline{R})) \vee (Q \wedge S)}$$

$$= (\overline{P} \vee \overline{Q}) \vee (\overline{S} \vee \overline{R}) \vee (Q \wedge S)$$

$$= (\overline{P} \vee \overline{Q} \vee \overline{S} \vee \overline{R} \vee Q)$$

$$\wedge (\overline{P} \vee \overline{Q} \vee \overline{S} \vee \overline{R} \vee S)$$

$$= T \wedge T$$

$$= T$$

その他多数