12/01/2022 22:15 radioactivité

Aurélie 09/03

radioactivité dans la famille de l'uranium Antilles 03

	avec calculatrice	
	7	
Google™		Rechercher

unité de masse atomique : $1u = 1,660 54 10^{-27} \text{ kg}$; énergie de masse de l'unité de masse atomique 1u = 931,5 MeV ;

électronvolt $1eV = 1,6 \cdot 10^{-19} \text{ J}$; vitesse de la lumière dans le vide : $c = 3 \cdot 10^8 \text{ m/s}$.

nom	radon	radium	hélium	neutron	proton	électron
symbol	²²² 86Rn	²²⁶ 88Ra	⁴ ₂ He	$\begin{bmatrix} 1_0 \mathbf{n} \end{bmatrix}$	¹ ₁ p	0 ₋₁ e
masse (en u)	221,970	225,977	4,001	1,009	1,007	5,49 10 ⁻⁴

A-<u>désintégration du radium</u>: l'air contient du radon 222 en quantité plus ou moins grande. Ce gaz radioactif naturel est issu des roches contenant de l'uranium et du radium. le radon se forme par désintégration du radium (lui même issu de la famille radioactive de l'uranium 238) selon : $^{226}_{88}$ Ra --> $^{222}_{86}$ Rn + $^{4}_{2}$ He (1)

- 1. Quel est le type de radioactivité correspondant à cette réaction ? Justifier.
- 2. Donner l'expression littérale du défaut de masse Δm du noyau de symbol ${}^{A}_{Z}X$ et de masse m_{X} .
 - Calculer le défaut de masse du noyau de radium Ra (en u)
 - Ecrire la relation équivalence masse énergie.
- 3. Le défaut de masse du noyau de radon vaut 3,04 10⁻²⁷ kg. Définir l'énergie de liaison E₁ d'un noyau.
 - Calculer en joule cette énergie de liaison et vérifier que cette énergie vaut 1,71 10³ MeV.
 - En déduire l'énergie de liaison par nucléon du radon (en MeV/nucléon)
- 4. Etablir littérallement la variation d'énergie ΔE de la réaction (1) en fonction de m_{Ra} , m_{Rn} et m_{He} , masses respectives des noyaux de radium, de raddon et d'hélium.
 - Exprimer ΔE en joules.

B- <u>Fission de l'uranium 235</u>. A l'état naturel lélément uranium comporte principalement les isotopes ²³⁸₉₂U et ²³⁵₉₂U. Dans une centrale nucléaire le combustible est de l'uranium enrichi. Lors de la fission d'un noyau d'uranium voici l'une des réactions donne les noyaux de zirconium ⁹⁹₄₀Zr et de tellure ¹³⁴₅₂Te.

- 1. Définir le terme isotope.
- 2. Donner la définition de la fission
- 3. Ecrire la réaction de la fission d'un noyau d'uranium 235 bombardé par un neutron en zirconium et tellure.
- 4. A partir de la courbe d'Aston dégagé l'interêt énergétique de cette réaction de fision.

12/01/2022 22:15 radioactivité

C Désintégration du noyau Zr

Le noyau de zirconium est instable. Il se désintègre au cours d'une réaction β - donnant le noyau de nobium Nb

- 1. Donner la définition de la radioactivité β^{-} .
- 2. Ecrire l'équation de la désintégration du noyau Zr.

corrigé

radioactivité alpha: libération d'un noyau d'hélium 4.

 $|\Delta m| = |m_X - Z^* \text{masse proton au repos} - (A-Z)^* \text{ masse neutron au repos}|$

dans le cas du radium : $|\Delta m| = 225,977-88*1,007-(226-88)*1,009 = 1,881 \text{ u}$.

12/01/2022 22:15 radioactivité

relation équivalence masse énergie : E= mc²

Énergie de liaison du noyau : on appelle énergie de liaison notée E₁ d'un noyau l'énergie que doit fournir le milieu extérieur pour séparer ce noyau au repos en ses nucléons libres au repos.

$$3,04\ 10^{-27}*(3\ 10^8)^2=2,736\ 10^{-10}\ J$$
 $2,736\ 10^{-10}\ /1,6\ 10^{-19}=1,71\ 10^9\ eV=1,71\ 10^3\ MeV.$ $E_{l}/A=1,71\ 10^3\ /222=\frac{7,7\ MeV\ /\ nucl\acute{e}ons}.$ $|\Delta m|=|m_{He}+m_{Rn}-m_{Ra}|=|4,001+221,970-225,977|=6\ 10^{-3}\ u.$ $6\ 10^{-3}*1,66054\ 10^{-27}=9,963\ 10^{-30}\ kg$ $\Delta\ E=9,963\ 10^{-30}*(3\ 10^8)^2=\frac{8,97\ 10^{-13}\ J}{2}.$

<u>Isotopes</u>: des noyaux isotopes ont le même nombre de charge mais des nombres de nucléons A différents.

La <u>fission</u> est une réaction nucléaire provoquée au cours de laquelle un noyau lourd "fissible" donne naissance à deux noyaux plus légers

235
₉₂U+ $_{0}$ ¹n--> 99 ₄₀Zr+ 134 ₅₂Te+ x A _ZX

conservation de la charge : 92 = 40+52+Zx d'où Z=0

conservation du nombre de nucléons : 235 +1 = 99+134+Ax d'où x= 3 et A=1

235
₉₂U+ $_{0}$ ¹n--> 99 ₄₀Zr+ 134 ₅₂Te+ 3 1 ₀n

La fission conduit à des noyaux fils plus stables en libérant de l'énergie.

Un noyau émet un électron noté : $_{-1}^{0}$ e.

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}e$$

un neutron du noyau se transforme en proton

Les particules β - sont assez peu pénétrantes. Elles sont arrêtées par quelques millimètres d'aluminium

$$^{99}_{40}$$
Zr --> $^{A}_{Z}$ Nb+ $_{-1}^{0}$ e.

conservation de la charge : 40 = Z-1 d'où Z=41

conservation du nombre de nucléons : 99 = A+0 d'où A=99