

Tesi di Laurea Magistrale in Ingegneria Aeronautica

# Sistemi hardware e software per il controllo di operazioni di un quadrirotore

Studente Claudio Capobianco

Relatore Prof. Daniele Nardi

# Obiettivi progetto "Quadrotto"

- \* unità volante teleguidata / autonoma
- \* acquisizione di conoscenza sull'ambiente
- \* coordinamento con altre unita' aeree o terrestri
- \* economico (spesa inferiore ai 5000 euro)

# Il quadrirotore

- \* meccanica semplice
- \* limitati problemi di collisione
- \* possibile utilizzo indoor
- \* dinamiche disaccoppiate
- \* necessità di un controllore



carico pagante massimo di 300g

# Prima parte del lavoro di tesi

Acquisizione delle basi teoriche e degli strumenti tecnici:









\* elettronica









# Schema generale



#### Schede Gumstix

#### **Gumstix**

- \* processore 400Mhz, ram 64Mb, flash 16Mb, os Linux
- \* comunicazione a terra, controllo alto livello



#### Robostix

- \* microcontrollore 8 bit, pwm, adc,
- 2 seriali, i2c
- \* controllore, real-time, acquisizione dati inerziali, comando motori

**45g** 

Scheda WiFi 802.11bg

## Scheda controllo motori





#### Sensori

Unità inerziale: Xsens

\* giroscopio, accelerometro, magnetometro, termometro

\* tutti gli angoli 3D, dati calibrati

\* campionamento 50-100Hz

\* risoluzione circa 16 bit

Videocamera

**Encoder rotori: effetto Hall** 



**30g** 



**8g** 



## Comunicazione a terra

Link principale: WiFi

- \* controllo completo del velivolo
- \* coordinazione multi-robot
- \* raggio d'azione ed affidabilità limitate

Link backup: radio 35MHz (PPM)

- \* controllo nativo dell'aeromodello
- \* poco soggetto ad interferenze
- > Passaggio automatico tra principale e backup <

Collegamento video: 2.4GHz

# Il radiocomando



#### **Software**

Robostix → C

\* Interrupt Service Routine, protocollo I2C, acquisizione dati xsens, interfaccia controllore

Gumstix → C++

\* Interfaccia pilotaggio testuale, keypad, telemetria

Stazione a terra → C++

\* Interfaccia radiocomando

Scripts di configurazione, documentazione on-line

#### Sistemi hardware e software per il controllo di operazioni di un quadrirotore

## **Simulink**

controllore dip. Mecc. Aeronautica

codice generato con RTW-EC

tuning dei parametri



# Procedure di emergenza

#### Interruzione delle comunicazioni

\* atterraggio

#### Interruzione dati IMU

\* atterraggio senza controllore

# Blocaggio rotori

\* motori bloccati

## Vincolo hard real-time non rispettato

\* allarme visivo

## Batteria quasi scarica

\* atterraggio con controllo dell'assetto

Sistemi hardware e software per il controllo di operazioni di un quadrirotore

### Conclusioni

Attualmente il velivolo e' in fase di prove di volo in hovering e collaudo del controllore.

## Prossimi passi

- \* Pilotaggio con radiocomando via radio e USB
- \* Confronto tra il controllore implementato e l'originale