Concepts de base de la cryptographie

Dr. Noureddine Chikouche

noureddine.chikouche@univ-msila.dz

https://sites.google.com/view/chikouchenoureddine

Plan du cours

- Terminologie
- Classification des algorithmes cryptographiques
- Historique
- •Mathématiques pour la cryptographie

Stéganographie (couvert, écrire)

► C'st l'art de cacher un message secret au sein d'un autre message porteur (texte, image, son, vidéo...) de caractère anodin, de sorte que l'existence même du secret en soit dissimulée.

Tatouage

C'est une technique permettant d'ajouter des informations de copyright ou d'autres messages de vérification à un document numérique.

- Cryptologie (caché, science)
 - C'est la science du secret. C'est une science mathématiques qui comporte deux branches: la cryptographie et la cryptanalyse.

Cryptologie = Science + Art

- ▶ Science: elle fait appel aux mathématiques et informatique.
- ► Art: elle fait appel aux talents d'intuition, d'imagination et d'invention du décrypteur.
 - Didier Muller

Cryptographie (caché, écrire)

- Science qui utilise les mathématiques pour le cryptage et le décryptage de données.
- C'est aussi l'étude des techniques mathématiques en rapport avec les propriétés de la sécurité informatique (confidentialité, intégrité et authentification).

Cryptanalyse

• C'est l'étude des informations cryptées, afin d'en découvrir le secret. Les cryptanalystes sont également appelés des « pirates ».

- ► Texte en clair (*Plaintext*)
 - Données lisibles et compréhensible sans intervention spécifique.
 - ► Texte chiffré (*Ciphertext*)
 - ► Texte inintelligible résultant du chiffrement.

- Cryptage (chiffrement)
 - Méthode permettant de convertir un texte clair en changeant son contenu. Cette opération permet s'assurer que seules les personnes auxquelles la clé de déchiffrement soient en mesure de les lire.
- Décryptage (déchiffrement):
 - Processus inverse de transformation du texte chiffré en texte clair.

Cryptosystème

- Il est défini comme l'ensemble des clés possibles (espace de clés), des textes clairs et chiffrés possibles associés à un algorithme donné.
- Quintuplet (9, C, K, &, D), tel que:
 - 9: ensemble de textes en clair
 - C: ensemble fini de textes chiffrés
 - **%**: espace de clés
 - Pour chaque $K \in \mathcal{K}$, il y a une fonction de cryptage $e_{K1} \in \mathcal{G}$, et une fonction de décryptage correspondante $d_{K2} \in \mathcal{D}$, tel que

$$d_{K2}(e_{K1}(x)) = x$$
, pour tout $x \in \mathcal{P}$

- Chiffrement par substitution
 - ► Chaque caractère du texte en clair est remplace par un caractère dans un texte chiffré.
- Chiffrement par transposition
 - Les lettres dans le texte en clair demeurent inchangés mais dont les positions sont modifiées.

Principe de Kerckhoff

- Aucun secret ne doit résider dans l'algorithme mais plutôt dans la clé.
- Sans celle-ci, il doit être impossible de retrouver le texte clair à partir du texte chiffré.
- ▶ Par contre, si on connaît K, le déchiffrement est immédiat.

- Cryptographie symétrique
 - C'est appelé aussi la cryptographie de clé secrète.
 - Les deux entités partagent une clé secrète.
 - La clé sert au chiffrement et au déchiffrement.

- Cryptographie symétrique
 - ▶ Dans ce cas, pour un message « m », on écrit :

$$e_K(m) = c$$
, $d_K(c) = m$ et $d_K(e_K(m)) = m$.

- Cryptographie asymétrique
 - C'est appelé aussi la cryptographie de clé publique.
 - On a deux types des clés:
 - ► Clé publique (K_1) diffusée à tout le monde, utilisée pour chiffrer le message,
 - ▶ Clé privée (K_2) tenue secrète, utilisée pour déchiffrer le message.

- Cryptographie asymétrique
 - ➤ On écrit :

$$e_{K1}(m) = c$$
, $d_{K2}(c) = m$ et $d_{K2}(e_{K1}(m)) = m$.

Chiffrement asymétrique (à clé publique)

Comment Amine peut envoyer un message à Salim en utilisant le chiffrement asymétrique?

- ❖ L'algorithme de chiffrement est connu pour tout le monde.
- La fonction Déchiffrement est la fonction inverse de la fonction Chiffrement.
- ❖ Le clé privée de Salim ne circule jamais sur le réseau.
- ❖ Salim diffuse sa clé publique pour tout le monde.

Classification des cryptosystèmes selon le temps

- Cryptographie classique
 - La science de la cryptographie est utilisée depuis l'antiquité.
 - ► Elle est basée sur l'utilisation des lettres de la langue pour le chiffrement des textes.
 - La même clé est utilisée pour le chiffrement et pour le déchiffrement.
 - ► Cette catégorie continué jusqu'à la fin de deuxième guerre mondiale.
 - Ces cryptosystèmes sont appliques pour protéger les documents physiques dans les domaines militaires et diplomatiques.

Classification des cryptosystèmes selon le temps

- Cryptographie moderne
 - ▶ Il dépend de l'apparition de l'informatique dans les années 60 et l'augmentation des systèmes de communications.
 - ► Elle est basée sur le langage machine 0/1.
 - ► Elle est appliquée dans la majorité des applications, telles que : commerciales, financières, militaires, communications, transports, santé, etc.

► Chiffrement assyrienne (600 A.V J-C)

César (50 A.V J-C)

► Al-Kindi (801-873)

▶ Vigénere (1553)

		Text																										
		A	В	С	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R	s	T	U	v	W	x	Y	z	
	1	A	В	С	D	E	F	G	Н	I	J	K	L	м	N	0	P	Q	R	s	T	U	v	W	x	Y	z	
	2	В	C	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	х	Y	Z	A	
	3	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	х	Y	Z	A	В	
	4	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	х	Y	z	A	В	C	
	5	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	A	В	C	D	
	6	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	v	W	х	Y	Z	A	В	C	D	E	
	7	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	v	W	х	Y	Z	A	В	С	D	E	F	
	8	н	I	J	K	L	M	N	0	P	Q	R	S	T	U	v	W	х	Y	Z	A	В	C	D	E	F	G	
	9	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	A	В	C	D	E	F	G	H	_
S	10	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	A	В	C	D	E	F	G	Н	I	G
С	11	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	e
h	12	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	h
•	13	м	N	0	P	Q	R	s	T	U	v	W	х	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	e
ü	14	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	М	_
s	15	0	P	Q	R	S	T	U	V	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	t
s	16	P	Q	R	S	T	U	v	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	
е	17	Q	R	S	T	U	V	W	Х	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	e
ı	18	R	S	T	U	V	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	î
	19	S	T	U	V	W	Х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	١.
	20	T	U	v	W	х	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	
	21	U	V	W	Х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	
	22	v	W	Х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	
	23	W	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	
	24	х	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	
	25	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	
	26	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	

➤ Vernam (1917)

► Alan M. Turing (1940)

▶ Diffie & Hellman (1976)

► RSA (1977)

Adi Shamir

Ron Rivest

Len Adleman

► EL GAMAL(1984)

▶ Rijmen & Daemen(2001)

Advanced Encryption Standard (AES)

Mathématiques pour la cryptographie

- Soient a et b deux entiers avec a≥b.
- Soit d est le PGCD de a et b.

L'algorithme d'Euclide étendu permet de calculer les coefficients de Bézout (u et v) ainsi que le PGCD d.

► Tel que:

$$au + bv = d = pgcd(a, b)$$

On utilise cet algorithme pour calculer la clé privée du cryptosystème RSA.

```
Fonction PGCDE(a,b); [la fonction retourne 3 entiers] a \leftarrow |a|; b \leftarrow |b|; Si (b > a) Alors |a \leftrightarrow b|; Fin Si Effectuer la division euclidienne de a par b; r \leftarrow reste; q \leftarrow quotient; Si (r \text{ est nul}) Alors |\text{Retourner } (b,0,1)|; Sinon |(d,u',v') \leftarrow PGCDE(b,r)|; u \leftarrow v'; v \leftarrow (u'-qv'); |\text{Retourner } (d,u,v)|; Fin Si
```

Exemple:

- ► Soit le calcul de pgcd(25,15).
- \triangleright 25 = 15 * 1 + 10 \rightarrow 10 = 25-15
- ► $15 = 10 * 1 + 5 \rightarrow 5 = 15 10 = 15 * 2 25$
- ► 10= 5 *2 + 0
- Donc le pgcd(25,15) = (-1)*25 + (2)*15 = 5.
 - u = -1
 - $\mathbf{v} = 2$
 - ▶ d= 5

Exercice:

Soit le calcul de pgcd(120,23).

120=
$$23x5 + 5 \rightarrow 5 = 120 - 23x5$$

23 = $5 \times 4 + 3 \rightarrow 3 = 23 - 5x4 = 23x21 - 120x4$
5 = $3x1 + 2 \rightarrow 2 = 5 - 3 = 120x5 - 23x26$
3 = $2 \times 1 + 1 \rightarrow 1 = 3 - 2 = 47x23 - 9x120$
Donc le pgcd(120,23)= $120*(-9) + 23*47=1$.

Inverse modulaire

•L'inverse modulo n de b est le nombre entier b-1 tel que:

$$b.b^{-1} \text{ (mod n)} = 1$$

avec $\frac{b}{b}$ et $\frac{d}{dt}$ sont premiers entre eux [pgcd($\frac{b}{dt}$, $\frac{d}{dt}$)].

Pour trouver b⁻¹,on utilise l'algorithme Euclide étendu, tel que:

$$nu + bv = 1$$

Alors, b^{-1} mod n = v

Trouver (17)-1 mod 26.

On applique l'algorithme Euclide étendu

$$26=17*1+9 \rightarrow 9=26-1*17$$

$$17 = 9*1 + 8 \rightarrow 8=17-1*9$$

$$\rightarrow$$
 8=17-1*(26-1*17)

$$\rightarrow$$
 1=(26-1*17)-1 (2*17-1*26)

$$\rightarrow$$
 1 = 2*26-3*17

Tant que d = 1, alors v est l'inverse modulaire de17 mod 26.

$$v < \square \rightarrow$$
 on calcule la valeur positive

$$(26-3=23)$$

d=1,1=2etv=3

Quiz

- Pour chiffrer un message utilisant le chiffrement asymétrique, on utilise:
 - ► Ma clé publique
 - Ma clé privée
 - La clé publique de destinataire
 - La clé privée de destinataire
- La science qui étudie la faiblesse des algorithmes de chiffrement est :
 - ▶ La cryptographie
 - La cryptanalyse
 - Le tatouage numérique
 - Stéganographie