极限与连续	
1.1.1 可数集与不可数集	
-双射函数: 单射 (每个输入映射到不同的输出) +满射 (覆盖了所有可能的输出)	
·等势: 两集合存在双射关系,则为等势 (势对于有限集合来说是集合元素个数) Eg.	
$y = \tan\left(\pi\left(x - \frac{1}{2}\right)\right)$ $x \in (0, 1)$ 可知 $(0, 1)$ 与 $(-\infty, +\infty)$ 等势	
Sigmoid(x) = $\frac{1}{1+e^x}$ $x \in R$ 将R与(0, 1)联系起来	
可数集与不可数集:如果存在正整数集N+到集合A的双射关系,则称为可数集。	
可数集: 离散的, 在数轴上长度为0。无理数集是连续的, 是不可数集。	
1.1.2数列的极限	
(极限定义、数列的上界与下界、单调收敛定理(可以由此得到	
e))	
1.判断方法: 定义法、单调收敛定理、夹逼法	
1.1.3函数的极限	
1.f (x) 在x点处趋近极限a的存在条件: 去心邻域内所有函数值都等	
于a。左极限=右极限(夹逼定理)	
1.1.4函数的连续性与间断点	
间断点:第一类(左右存在但不相等或者不等于函数值):跳跃间断	
点、可去间断点	
第二类(左右有一个不存在)	
介值定理	
1.1.6上确界、下确界	
上界最小值	
1.1.7李普希茨连续性	
给定函数f(x),如果对于区间D内任意两点a、b,都存在常数K使得	
$ f(a) - f(b) \le K a - b $,则称 $f(x)$ 在D内满足李普希茨连续	
李普希茨常数:满足的K的最小值,即为f(x)曲线斜率最大值的绝对	
1.1.7无穷小量	
$f(x)$ 在 x_0 的某去心邻域有定义且, $x \to x_0$ $f(x) = 0$,则称 $f(x)$ 是 $x \to x_0$	

的无穷小量。

假设f(x) 和 在此处键 <i>l</i> · · · · · · · · · · · · · · · · · · ·	、公式。 0.∞	C 水	小店 4		:(w) <i>目</i>	a(22)						
$\lim_{x \to x_0} \frac{f(x)}{g(x)} =$	0; ∞ <i>;</i>	C , ∃	に狙ノ	A0111 1	(X)定	g(x)						
高阶无穷小	小,比值	直为1时	,时套	等价无	穷小。							
下面是一些典型	的等价无穷	5小, 当 x	→ 0 时	,有								
$\sin(x) \sim x$	arcsin	$a(x) \sim x$		tai	$n x \sim x$	ln	(1+x)	$\sim x$				
$e^x - 1 \sim x$	$1-\cos$	$s(x) \sim \frac{x^2}{2}$		$\sqrt[n]{1+x}$	$-1 \sim \frac{x}{n}$		$a^x - 1$	$\sim x \ln a$				

1.2.1一阶导数

1.导数定义

Ü

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

左导数

$$f'_{-}(x) = \lim_{\Delta x \to 0_{-}} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

右导数

$$f'_{+}(x) = \lim_{\Delta x \to 0_{+}} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

2.左导数=右导数→导数可导→函数连续

$$f(x) = |x|$$
 在 $x = 0$ 处不可导

3.中心差分公式

$$f'(x) \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

4.重要公式

基本函数	求导公式
幂函数	$(x^a)' = ax^{a-1}$
指数函数	$(e^x)' = e^x$
指数函数	$(a^x)' = a^x \ln a$
三角函数	$(\sin x)' = \cos x$
三角函数	$(\cos x)' = -\sin x$
三角函数	$(\tan x)' = \sec^2 x$
三角函数	$(\cot x)' = -\csc^2 x$
对数函数	$(\ln x)' = \frac{1}{x}$
对数函数	$(\ln x)' = \frac{1}{x}$ $(\log_a x)' = \frac{1}{\ln a} \frac{1}{x}$
反三角函数	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$
反三角函数	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$ $(\arctan x)' = \frac{1}{1 + x^2}$
反三角函数	$(\arctan x)' = \frac{1}{1+x^2}$

基本运算	求导公式
加法	(f(x) + g(x))' = f'(x) + g'(x)
减法	(f(x) - g(x))' = f'(x) - g'(x)
数乘	(cf(x))' = cf'(x)
乘法	(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
除法	$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$
倒数	$\left(\frac{1}{f(x)}\right)' = -\frac{f'(x)}{f^2(x)}$

函数与反函数的导数呈倒数关系(Уо)

$$g'(y) = \frac{1}{f'(g(y))}$$

下面计算反三角函数的导数。如果令 $g(y) = \arcsin(y)$, 其反函数为 $f(x) = \sin(x)$ 。因此有

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{\cos(\arcsin(y))} = \frac{1}{\sqrt{1-y^2}}$$

令 $g(y) = \arccos(y)$, 其反函数为 $f(x) = \cos(x)$ 。从而有

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{-\sin(\arccos(y))} = -\frac{1}{\sqrt{1-y^2}}$$

令 $g(y) = \arctan(y)$, 其反函数为 $f(x) = \tan(x)$ 。从而有

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{\frac{1}{\cos^2(\arctan(y))}} = \cos^2(\arctan(y)) = \frac{1}{1 + \tan^2(\arctan(y))} = \frac{1}{1 + y^2}$$

5.机器学习常用函数

$Sigmoid(x) = \frac{1}{1 + e^x}$

在机器学习中广泛使用的 logistic 函数(也称为 sigmoid 函数) 定义为

$$f(x) = \frac{1}{1 + e^{-x}} \tag{1.17}$$

它可以看作是如下函数的复合

$$f(u) = u^{-1}, u = 1 + e^v, v = -x$$

根据复合函数与基本函数的求导公式, 其导数为

$$f'(x) = -\frac{1}{(1 + e^{-x})^2} (1 + e^{-x})' = -\frac{1}{(1 + e^{-x})^2} (e^{-x})' = -\frac{1}{(1 + e^{-x})^2} (e^{-x}) (-x)' = \frac{e^{-x}}{(1 + e^{-x})^2}$$

而

$$\frac{e^{-x}}{(1+e^{-x})^2} = \frac{1}{1+e^{-x}} \frac{e^{-x}}{1+e^{-x}} = \frac{1}{1+e^{-x}} \left(1 - \frac{1}{1+e^{-x}}\right)$$

因此

$$f'(x) = f(x)(1 - f(x))$$

1.2.2机器学习中的常用函数

1.ReLU函数

$$f(x) = \begin{cases} x, & x > 0 \\ 0, & x < 0 \end{cases}$$

图 1.13 ReLU 函数的曲线

2.softplus函数,是ReLU函数的光滑近似

$$f(x) = \ln(1 + e^x)$$

图 1.12 softplus 函数的曲线

图 1.14 绝对值函数的曲线

图 1.15 符号函数的曲线

1.2.3高阶导数

在 Python 语言中,符号计算(即计算问题的公式解,也称为解析解)库 sympy 提供了计算 各阶导数的功能,由函数 diff 实现。函数的输入值为被求导函数的表达式,要求导的变量,以 及导数的阶数(如果不指定,则默认计算一阶导数); 函数的输出值为导数的表达式。下面是示例代码,计算 cos(x) 的一阶导数。

```
from sympy import *
x = symbols('x')
r = diff(cos(x),x)
print(r)
程序运行结果为
-sin(x)
```

2. 创建符号变量:

这里, `symbols('x')` 创建了一个名为 `x` 的符号变量。这意味着 `x` 在这个上下文中是一个数学符号, 而不是一个具体的数值。

3. 计算导数:

`diff(cos(x), x)` 计算的是 `cos(x)` 关于 `x` 的导数。在微积分中, 余弦函数的导数是负的正弦函数, 因此导数是 `-sin(x)`。