

ETAI – AI Foundation

More precise indoor navigation: Deep Learning-based approach

Salaheddine.bouzid@univ-nantes.fr

Background

Challenges

Standards:

"No unified standard exists for designing localization and proximity techniques" 1

Precision:

Precision: Every indoor localization technology faces inherent limitations.

¹ Zafari, F.; Gkelias, A.; Leung, K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568-2599.

Approaches

• GeoMagnetic field measurement (μT)

Technologies Utilized

• <u>Wi-Fi</u>:

- Received Signal Strength Indicator (RSSI):
 - Measure of the sxtrength of the radio signal received by the device from an access point (AP) in dBm.

AP	RSSI	
AP1	-80 dBm	
AP2	-50 dBm	
	-79 dBm	0

Technologies Utilized

■ <u>Inertial measurement unit (IMU) :</u>

Technologies Utilized

• a) Technologies:

- Geomagnetic field
- IMU
- Wi-Fi

• b) Techniques:

- Supervised / unsupervised model ?
- ML/DL?
- Regression / Classification / Clustering ?

Background

Overall system architecture :

Programs developed :

```
Programme d'acquisition de données
      MERGE_sample_project.c
        Données brutes (UART)
  Programme de formatage de données
           read_to_csv.py
          Dataset (data.csv)
Programme de pré-traitement de données
     Pretraitement_de_donnees.py
Données traitées (data_pretreated.csv)
```

Background

Devices used :

ESP32-C3 microcontroller

Samsung A70

Experimentations

Dataset

Path 1: Horizontal

Path 2: Vertical

Dataset

Path 3: Square

Dataset

Structure: X rows \times 30 columns

Features:

1.Index: A unique identifier for each row in the dataset.

2.Timestamp: The time of measurement, recorded as a string (e.g., 02:25:31:93).

3.RefP: A reference point value; (e.g., stationary points in the environment).

4.X, Y: Positional coordinates; most entries are missing (NaN). To be filled

5.AccelX, AccelY, AccelZ:

• Readings from the accelerometer in the X, Y, and Z axes, representing linear acceleration in these directions.

6.GyroX, GyroY, GyroZ:

• Readings from the gyroscope in the X, Y, and Z axes, representing angular velocity in these directions.

7. MagnetoX, MagnetoY, MagnetoZ:

• Readings from the magnetometer in the X, Y, and Z axes, representing magnetic field strength in these directions.

8.WiFi Signal Features (Columns 14–37):

- Detected WiFi networks or access points, each column corresponding to a specific network identified by a name or MAC address (e.g., eduroam_c8:b5:ad:f3:69:c0, etn-scm-iot_b8:27:eb:29:0f:19, etc.).
- These features may represent signal strength, connection status, or other related metrics.

Project

Objective:

Develop a AI-based localization system capable of predicting positions (X, Y) based on sensors and WiFi signals data.

Instructions:

Step 1: Dataset Exploration

- Load and examine the dataset.
- Visualize the features (e.g., AccelX, GyroY) to understand their distributions and relationships.
- Investigate missing values, focusing on X and Y where RefP is missing.

Step 2: Data Preprocessing

- Label Missing X, Y Values:
 - Use interpolation or modeling to estimate positions for rows where RefP is not set.
 - Incorporate sensor data (acceleration, gyroscope, etc.) and WiFi signal strength as inputs for position labeling.

Dataset

Instructions:

Step 3: Model Development

- Design a DNN architecture with:
 - Input: Sensor features (AccelX, GyroY, etc.) and WiFi signal strengths.
 - Output: Predicted positions (X, Y).
- •Experiment with hyperparameters like the number of layers, neurons, and activation functions.

Step 4: Training and Validation

- Split the dataset into:
 - Training set: For model fitting.
 - Validation set: For hyperparameter tuning.
 - Testing set: For final performance evaluation.
- Define and use a loss function and optimizer and train the model.
- Regularly evaluate performance using Mean Absolute Error (MAE).

Dataset

Step 5: Evaluation and Reporting

• Visualizations:

- Plot predicted vs. actual positions (X, Y).
- Analyze error distributions to identify patterns.

Deliverables:

1. Analysis Report:

- Dataset exploration results.
- Steps taken for preprocessing and labeling missing data.

2. DNN Model:

• Code and documentation for the localization system.

3. Evaluation Results:

- Performance metrics (MAE).
- Visualizations comparing predicted and actual positions.

4. Conclusion:

Discussion on system performance and possible enhancements.

Dataset Overview

• **Structure:** X rows × 30 columns

• **Key Columns:**

- *Index:* Row identifier.
- *Timestamp*: Time of data collection.
- *RefP*: Reference points (e.g., stationary points in the environment).
- *X*, *Y*: Positional coordinates.
- AccelX, AccelY, AccelZ: Acceleration in X, Y, Z axes.
- GyroX, GyroY, GyroZ: Angular velocity in X, Y, Z axes.
- MagnetoX, MagnetoY, MagnetoZ: Magnetic field strength in X, Y, Z axes.
- WiFi Signal Strength Columns (e.g., eduroam_*, TP-Link_*, etc.): Indicate signal strength for various networks.

TO DO

• 1: Labelling:

Data pre-processing

Labelling:

- Assigns specific labels or information to a dataset.
- Coordinate labeling by Linear Interpolation

Background

Caractéristiques du modèle LSTM proposée		
Entrées	Magnétomètre, IMU, RSSI, coordonnées antérieures	
Sorties	Coordonnées actuelles	
Nombre de couches cachées	3	
Nombres des unités par cachées	192 / 128 / 64	
Optimisateur	Adam	
Evaluation	MSE	
Taille de la fenêtre	W = 3	
Nombres des répétitions	5	
Nombres des datasets	4	