HYPOTHESES TESTS

Hypotheses Tests for the Mean of the Normal Population

Let $X_1, X_2, ..., X_n$ be a random sample from normal distribution with the mean μ and the variance σ^2 . It is shown as $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$, then

Two-sided One(right)-sided One(left)-sided

$$\begin{split} H_0: \mu &= \mu_0 & H_0: \mu &= \mu_0 & H_0: \mu &= \mu_0 \\ H_1: \mu &\neq \mu_0 & H_1: \mu &> \mu_0 & H_1: \mu &< \mu_0 \\ H_0: \mu &\leq \mu_0 & H_0: \mu &\geq \mu_0 \\ H_1: \mu &> \mu_0 & H_1: \mu &< \mu_0 \end{split}$$

If population variance σ^2 is known,

Test statistic,
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
 table value, $z_{\alpha/2}$, z_{α} and $-z_{\alpha}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $z \le -z_{\alpha}$, H_0 is rejected.

If population variance σ^2 is unknown,

If the sample size n is enough large (n≥30), (Large sample size)

Test statistic, $z = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ table value, $z_{\alpha/2}$, z_{α} and $-z_{\alpha}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $z \le -z_{\alpha}$, H_0 is rejected.

NOT: If the population distribution is different from normal distribution, when $n \ge 30$ (Central Limit Theorem) the test statistics given above are used.

If the sample size n is not enough large (n<30), (Small sample size)

Test statistic,
$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$
 table value, $t_{\alpha/2, n-1}$, $t_{\alpha, n-1}$ and $-t_{\alpha, n-1}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|t| \ge t_{\alpha/2, n-1}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $t \ge t_{\alpha, n-1}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $t \le -t_{\alpha, n-1}$, H_0 is rejected.

Here, S is the standard deviation of the sample.

Hypotheses Tests for the Population Variance σ^2

Let $X_1, X_2, ..., X_n$ be a random sample from normal distribution, shown as $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$

Two-sided One(right)-sided One(left)-sided $H_0: \sigma^2 = \sigma_0^2 \qquad H_0: \sigma^2 = \sigma_0^2 \qquad H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2 \qquad H_1: \sigma^2 > \sigma_0^2 \qquad H_1: \sigma^2 < \sigma_0^2$ $H_0: \sigma^2 \leq \sigma_0^2 \qquad H_0: \sigma^2 \geq \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2 \qquad H_1: \sigma^2 < \sigma_0^2$

Test statistic, $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$.

Table value, $\chi^2_{\alpha/2,n-1}$, $\chi^2_{1-\alpha/2,n-1}$, $\chi^2_{\alpha,n-1}$, $\chi^2_{1-\alpha,n-1}$

Decision: According to alternative hypothesis given above,

If alternative hypothesis is two-sided: If $\chi^2 \ge \chi^2_{\alpha/2,n-1}$ or $\chi^2 \le \chi^2_{1-\alpha/2,n-1}$, H_0 is rejected. If alternative hypothesis is one(right)-sided: If $\chi^2 \ge \chi^2_{\alpha,n-1}$, H_0 is rejected. If alternative hypothesis is one(left)-sided: If $\chi^2 \le \chi^2_{1-\alpha,n-1}$, H_0 is rejected.

The Hypotheses Tests for the Comparison of Two Normal Population Variances

Let $X_{11}, X_{12}, ..., X_{1n_1}$ and $X_{21}, X_{22}, ..., X_{2n_2}$ be independent random samples from normal distributions, shown as $X_{11}, X_{12}, ..., X_{1n_1} \sim N(\mu_1, \sigma_1^2)$ and $X_{21}, X_{22}, ..., X_{2n_2} \sim N(\mu_2, \sigma_2^2)$.

$$H_0: \sigma_1^2 = \sigma_2^2$$
$$H_1: \sigma_1^2 \neq \sigma_2^2$$

Test statistic is: if
$$s_1^2 \ge s_2^2$$
, then $f = \frac{s_1^2}{s_2^2} \ge f_{\alpha/2, n_1-1, n_2-1}$ and

if
$$s_2^2 \ge s_1^2$$
, then $f = \frac{s_2^2}{s_1^2} \ge f_{\alpha/2, n_2-1, n_1-1}$, H_0 is rejected.

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_0: \sigma_1^2 \le \sigma_2^2$
 $H_1: \sigma_1^2 > \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$

Test statistic is: if
$$f = \frac{s_1^2}{s_2^2} \ge f_{\alpha, n_1 - 1, n_2 - 1}$$
, H_0 is rejected.

$$S_2^2 + S_3 + S_4 + S_4 + S_2$$

$$H_0: \sigma_1^2 = \sigma_2^2 \qquad H_0: \sigma_1^2 \ge \sigma_2^2$$

$$H_1: \sigma_1^2 < \sigma_2^2 \qquad H_1: \sigma_1^2 < \sigma_2^2$$

Test statistic is: if $f = \frac{s_2^2}{s_1^2} \ge f_{\alpha, n_2-1, n_1-1}$, H_0 is rejected.

The Hypotheses Tests to Compare the Means of Two Normal Populations

Let $X_{11}, X_{12}, ..., X_{1n_1}$ and $X_{21}, X_{22}, ..., X_{2n_2}$ be independent random samples from normal distribution, shown as $X_{11}, X_{12}, ..., X_{1n_1} \sim N(\mu_1, \sigma_1^2)$ and $X_{21}, X_{22}, ..., X_{2n_2} \sim N(\mu_2, \sigma_2^2)$

One(left)-sided

$$H_0: \mu_1 - \mu_2 = \delta$$
 $H_0: \mu_1 - \mu_2 = \delta$ $H_0: \mu_1 - \mu_2 = \delta$

One(right)-sided

$$H_{1}: \mu_{1} - \mu_{2} \neq \delta \qquad H_{1}: \mu_{1} - \mu_{2} > \delta \qquad H_{1}: \mu_{1} - \mu_{2} < \delta$$

$$H_{0}: \mu_{1} - \mu_{2} \leq \delta \qquad H_{0}: \mu_{1} - \mu_{2} \geq \delta$$

$$H_{1}: \mu_{1} - \mu_{2} \leq \delta \qquad H_{1}: \mu_{1} - \mu_{2} \leq \delta$$

$$H_{1}: \mu_{1} - \mu_{2} > \delta \qquad H_{1}: \mu_{1} - \mu_{2} < \delta$$

If σ_1^2 and σ_2^2 are known,

Two-sided

Test statistic,
$$z = \frac{\overline{x}_1 - \overline{x}_2 - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 table value, $z_{\alpha/2}$, z_{α} and $-z_{\alpha}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, H₀ is rejected.

If alternative hypothesis is one(left)-sided: If $z \le -z_{\alpha}$, H_0 is rejected.

If σ_1^2 and σ_2^2 are unknown,

If the sample sizes are $\underline{n_1}$ and $\underline{n_2} \ge 30$, (Large sample sizes)

Test statistics,
$$z = \frac{\overline{x}_1 - \overline{x}_2 - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 table value, $z_{\alpha/2}$, z_{α} and $-z_{\alpha}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $z \le -z_\alpha$, H_0 is rejected.

NOT: If the populations' distributions are different from normal distribution, when n_1 and $n_2 \ge 30$ (Central Limit Theorem) the test statistics given above are used.

If the sample sizes are n_1 and $n_2 < 30$, (Small sample sizes)

Firstly, whether $\sigma_1^2 = \sigma_2^2 = \sigma^2$ or not must be tested.

If
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
,

Test statistics,
$$t = \frac{\overline{x}_1 - \overline{x}_2 - \delta}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

table value, $t_{\alpha/2,n_1+n_2-2},\ t_{\alpha,n_1+n_2-2}$ and $-t_{\alpha,n_1+n_2-2}$

Pooled variance
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|t| \ge t_{\alpha/2, n_1 + n_2 - 2}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $t \ge t_{\alpha, n_1 + n_2 - 2}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $t \le -t_{\alpha, n_1 + n_2 - 2}$, H_0 is rejected.

If $\sigma_1^2 \neq \sigma_2^2$,

Test statistic,
$$t = \frac{\overline{x}_1 - \overline{x}_2 - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 table value, $t_{\alpha/2,\nu}$, $t_{\alpha,\nu}$ and $-t_{\alpha,\nu}$

Degrees of freedom $v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 \left(\frac{1}{n_1 - 1}\right) + \left(\frac{s_2^2}{n_2}\right)^2 \left(\frac{1}{n_2 - 1}\right)}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|t| \ge t_{\alpha/2, y}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $t \ge t_{\alpha, \gamma}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $t \le -t_{\alpha, \gamma}$, H_0 is rejected.

NOT: If the population distributions are different from normal distribution, when n_1 and $n_2 \ge 30$, Central Limit Theorem is used.

The Hypotheses Tests for Paired Samples

$$D_i = X_{1i} - X_{2i} \sim N(\mu_1 - \mu_2, \sigma_D^2)$$
 i=1,2,...,n

If σ_D^2 is known,

Two-sided	One(right)-sided	One(left)-sided
$H_0: \mu_1 - \mu_2 = d_0$	$H_0: \mu_1 - \mu_2 = d_0$	$H_0: \mu_1 - \mu_2 = d_0$
$H_1: \mu_1 - \mu_2 \neq d_0$	$H_1: \mu_1 - \mu_2 > d_0$	$H_1: \mu_1 - \mu_2 < d_0$
	$H_0: \mu_1 - \mu_2 \le d_0$	$H_0: \mu_1 - \mu_2 \ge d_0$
	$H_1: \mu_1 - \mu_2 > d_0$	$H_1: \mu_1 - \mu_2 < d_0$

Test statistic,
$$z = \frac{\overline{d} - d_0}{\sigma_D / \sqrt{n}}$$
. Table value, $z_{\alpha/2}$, z_{α} and $-z_{\alpha}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $z \le -z_{\alpha}$, H_0 is rejected.

If σ_D^2 is unknown,

One(right)-sided	One(left)-sided
$H_0: \mu_1 - \mu_2 = d_0$	$H_0: \mu_1 - \mu_2 = d_0$
$H_1: \mu_1 - \mu_2 > d_0$	$H_1: \mu_1 - \mu_2 < d_0$
$H_0: \mu_1 - \mu_2 \le d_0$	$H_0: \mu_1 - \mu_2 \ge d_0$
$H_1: \mu_1 - \mu_2 > d_0$	$H_1: \mu_1 - \mu_2 < d_0$
$\frac{-d_0}{\sqrt{\sqrt{n}}}$. Table value	$t_{\alpha/2,n-1}, t_{\alpha,n-1} \text{ and } -t_{\alpha,n-1}$
	$H_0: \mu_1 - \mu_2 = d_0$ $H_1: \mu_1 - \mu_2 > d_0$ $H_0: \mu_1 - \mu_2 \le d_0$ $H_1: \mu_1 - \mu_2 > d_0$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|t| \ge t_{\alpha/2, n-1}$, H_0 is rejected.

If alternative hypothesis is one(right)-sided: If $t \ge t_{\alpha, n-1}$, H_0 is rejected.

If alternative hypothesis is one(left)-sided: If $t \le -t_{\alpha, n-1}$, H_0 is rejected.

The Hypotheses Tests for the Population Proportion

 $X \sim Binom(n, p)$

Two-sided	One(right)-si	ded One(left)-sided
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_1: p \neq p_0$	$H_1: p > p_0$	$H_1 : p < p_0$
	$H_0: p \leq p_0$	$H_0: p \ge p_0$
	$H_1: p > p_0$	$H_1 : p < p_0$
Test statistic,	$z = \frac{\frac{x}{n} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	Table value, $z_{\alpha/2}$, z_{α} and $-z_{\alpha}$

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected. If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, H_0 is rejected. If alternative hypothesis is one(left)-sided: If $z \le -z_{\alpha}$, H_0 is rejected.

The Hypotheses Tests to Compare Two Population Proportions

 X_1 and X_2 are two random variables from a binomial distribution, shown as $X_1 \sim Binom(n_1, p_1)$ and $X_2 \sim Binom(n_2, p_2)$.

Decision: According to alternative hypotheses given above, respectively;

If alternative hypothesis is two-sided: If $|z| \ge z_{\alpha/2}$, H_0 is rejected. If alternative hypothesis is one(right)-sided: If $z \ge z_{\alpha}$, $z \ge$

Here,
$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$
.