کاوش شبکه های مجازی اینستاگرام و توییتر به همراه تحلیل آنها

استاد : دكتر قائمي بافقي

دانشجو: على عادلخواه

روش های کاوش فضای مجازی

- استفاده از API توییتر از آدرس https://developer.twitter.com/en/apply/user
- استفاده از نرم افزار های تجاری کاوش و تحلیل فضای مجازی مانند NodeXL
- کاوش با استفاده از مرورگر شخصی و کتابخانه های وب گردی مانند selenium

كاربرد هاى تحليل فضاى مجازى

- اقتصادی
- Market Research .1
- Customer Service .2
- Competitive Intelligence .3
 - سیاسی
- Political Communication .1
 - Election Forecasting .2
- Political Risk Management .3

تطبیق شبکه ارتباطات به صورت گراف

معیار مرکزیت

$$g(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$

betweenness : بر اساس تعداد راه هایي که بین نود ها از این راس عبور میکنند.

degree: بر اساس تعداد همسایه های یك راس.

• closeness: بر اساس کمترین فاصله ای که دور ترین راس دارد.

• pagerank: يك روش بازگشتي است كه pagerank يك نود از pagerank همسايه هاي آن بدست مي آيد.

$$PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)},$$

تحقیق فیسبوک بر روی 721 میلیون کاربر در سال 2012 Average Distance = 4.74

تحقیق فیسبوک بر روی 1.6 میلیارد کاربر در سال 2016 Average Distance = 3.57

Modularity

$$\sum_{u} \left(\frac{m_u}{m} - \left(\frac{k_u}{2m} \right)^2 \right)$$

خوشه بندی گراف (NP Hard)

Algorithm	ξ	Complexity
Label propagation	Ν	O(V)
Louvain modularity	D	O(VlogV)
Infomap	Ν	O(VlogV)
Greedy opt. of modularity	D	$O(Vlog^2(V))$
Leading eigenvector	D	$O(V^2 log V)$
Walktrap	Ν	$O(V^2 log V)$
Edge betweenness	D	$O(V^3)$

مقایسه الگوریتم های خوشه بندی بر حسب Modularity

Table 1. The comparison of modularity from different algorithms on four datsets								
Dataset	ЕВ	FG	Infomap	LP	LE	Louvain	Walktrap	
2019 AAG related to GIS	0.8475	0.8066	0.8052	0.7626	0.8091	0.8499	0.8183	
1999 AAG	0.6702	0.6666	0.6194	0.6279	0.5842	0.6859	0.5940	
2009 AAG	0.5140	0.5122	0.4692	0.4389	0.4381	0.5447	0.4430	
2015-2019 AAG	-	0.4127	0.3377	0.0581	0.3045	0.4239	0.3320	

مقایسه الگوریتم های خوشه بندی بر حسب Time

Table 2. The comparison of processing time (in seconds) from different algorithms on the four datasets

Dataset	EB	FG	Infomap	LP	LE	Louvain	Walktrap
2019 AAG related to GIS	39	0.005	0.313	0.004	0.215	0.006	0.043
1999 AAG	2437	0.042	2.421	0.049	0.938	0.021	0.283
2009 AAG	181326	0.742	12.751	0.078	2.713	0.097	3.186
2015-2019 AAG	∞	29.609	137.501	0.424	8.523	0.565	119.938

Influence Maximization (NP Hard)

Linear Threshold

Independent Cascade

Link Prediction

پیاده سازی

- کاوش 22 هزار کاربر توییتر
- · کاوش 29 هزار کاربر اینستاگرام
- · نمایش گراف ارتباطات با جاوا اسکریپت و کتابخانه d₃
 - خوشه بندى گراف با الگوريتم Louvain
- ٔ مقایسه معیار های مرکزیت در مسئله Influence Maximization
- مقایسه دو الگوریتم celf و greedy در مسئله Influence Maximization
 - نمایش گراف تگ ها
- کلمات پر تکرار در کنار تگ ها و دسته بندی احساسی توییت ها برای هر تگ با استفاده از هوش مصنوعی
 - و پیشبینی پیوند های جدید با استفاده از هوش مصنوعی

گراف 29 هزار کاربر اینستاگرام

گراف 22 هزار کاربر توییتر

خوشه بندی گراف

مقایسه 3 معیار مرکزیت بر روی گراف توییتر

مقایسه دو الگوریتم greedy و celf

گراف تگ ها در توییتر

22//26

کلمات پر تکرار در کنار تگ ها

• دسته بندی احساسی توییت ها برای هر تگ با استفاده از هوش مصنوعی

پیشبینی پیوند ها جدید با هوش مصنوعی

References

- https://dajs.org/.
- https://pypi.org/project/hazm/.
- https://pypi.org/project/imgbeddings/.
- https://pypi.org/project/langdetect/.
- https://pypi.org/project/selenium/.
- https://pypi.org/project/sent2vec/.
- Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four degrees of separation. In Proceedings of the 4th Annual ACM Web Science Conference, pages 33–42, 2012.
- Sergey Edunov, Carlos Diuk, Ismail Onur Filiz, Smriti Bhagat, and Moira Burke. Three and a half degrees of separation. Research at Facebook, 694, 2016.
- [9] Dmitri Goldenberg. Social network analysis: From graph theory to applications with python. arXiv preprint arXiv:2102.10014, 2021.

- Petros Iosifidis, Mark Wheeler, Petros Iosifidis, and Mark Wheeler.
 The political economy of social media. Public Spheres and Mediated Social Networks in the Western Context and Beyond, pages 39–64, 2016.
- David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137—146, 2003.
- Youngho Lee, Yubin Lee, Jeong Seong, Ana Stanescu, and Chul Sue Hwang. A comparison of network clustering algorithms in keyword network analysis: A case study with geography conference presentations. International Journal of Geospatial and Environmental Research, 7(3):1, 2020.
- Jure Leskovec and Eric Horvitz. Planetary-scale views on a large instant-messaging network. In Proceedings of the 17th international conference on World Wide Web, pages 915–924, 2008.
- Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 420–429, 2007.