Lydia Teinfalt, 3/25/2025, HW6: Low-level Noise Added to Edgeworth Box Code simulating the real-world unpredictability of bilateral exchange between two agents and 2 goods specs: Python 3x on Google Collab and Spyder

Background from Homework 5

Consumer (agents) class is instantiated with Cobb-Douglas preferences with α randomly chosen from the list of values = 0.25, 0.33, 0.5 and β = 1 – α . Consumer's initial endowment x_1 is randomly initialized with possible values from 1 to K and x_2 with possible values 1 to L. The parameters, K and L, are global variables representing the dimensions of the Edgeworth box and maximum amounts of goods 1 and goods 2 that can be traded between consumer 1 and consumer 2.

The Population class is instantiated with N agents. The model selects two consumers randomly and determines if a trade is possible. Trade is possible if given the two selected consumers do not have the equal marginal rates of substitutions (MRS) (Foundations of ABM, p. 67)

Cobb-Douglas preferences (see appendix G), i.e.,
$$U^i \left(x_1^i, x_2^i \right) = \left(x_1^i \right)^{\alpha^i} \left(x_2^i \right)^{1-\alpha^i}$$
 From this we can compute the marginal rates of substitution:
$$MRS_{12}^i(\boldsymbol{x}^i) = \frac{\frac{\partial U^i(\boldsymbol{x}^i)}{\partial x_1^i}}{\frac{\partial U^i(\boldsymbol{x}^i)}{\partial x_2^i}} = \frac{\alpha^i x_2^i}{(1-\alpha^i)x_1^i}.$$

If exchange is possible, the trade is executed by randomly selected a new x_1 between consumer 1's x_1 initial endowment and consumer 2's x_1 initial endowment. A new x_2 is derived from a contract curve between the two consumers based on the following formula (1) (Foundations of ABM, p. 76)

Solving this for
$$x_2^i$$
 as a function of x_1^i gives
$$x_2^i = \frac{\alpha^j (1 - \alpha^i) x_1^i x_2^T}{\alpha^i x_1^T (1 - \alpha^j) - x_1^i (\alpha^i - \alpha^j)} \tag{1}$$

Code Introducing Low-Level Noise HW6

Function to execute trade between two consumers by picking a value from the contract curve

Low level noise added to simulate real-world unpredictability controlled by noise_level

If the randomly generated value is above or equal to the noise level which is set by default to 0.5,

then randomly select a y_new value between consumer 1 and 2's endowment2 values instead of a # value on the contract curve

def execute_trade(self, consumer1, consumer2, noise_level=0.5):

Pick a random value of x within the range of their endowments $x_new = random.uniform(consumer1.endowment1, consumer2.endowment1)$

#total endowments of consumers 1 and 2

x_total = consumer1.endowment1 + consumer2.endowment1

y_total = consumer1.endowment2 + consumer2.endowment2

generate random x between 0 and 1

introducing low level of noise into the process

to simulate real-world unpredictability in trades randx = random.rand()
if randx >= noise level:

#print("Random 'noise' variable meets criteria, execute trades",randx)

y_new= random.uniform(consumer1.endowment2, consumer2.endowment2) else:

Calculate the corresponding y value on the contract curve

y_new = (consumer1.beta*(1-

consumer1.alpha)*x_new*y_total)/(consumer1.alpha*x_total*(1-consumer1.beta)(x_new*(consumer1.alpha - consumer1.beta)))

Results HW 6

Simulation creates a population of N consumers trading two goods and have agents trade until the population reaches Pareto Optimality or the maximum number 1000 trades. Simulation re-run for 45 runs. Columns D and F display the new results of the run with low-level noise code introduced. With 10 agents, the new code shows a lower percentage of experiment runs (out of 45) where Pareto Optimality solution is found and at a lower number of trades required. At 20 agents, the new code resulted in more runs reaching pareto optimality than without the noise but at a cost of a greater average number of trades. For 50 agents, pareto optimality declines dramatically to only 4.44% and a steep rise in cost for number of trades. At 70 and 100 agents, pareto optimality is never reached before the 1000 maximum number of trades is reached first.

Α	В	С	D	E	F
Number of Agents	Number of Runs	% Runs with Pareto Optimal	With Noise % Run Pareto Optimal	Avg Number of Trades	With Noise Avg Number of
		Solution	Solution		Trades
10	45	31%	24.44%	691.02	652.04
20	45	27%	35.56%	737.18	792.73
50	45	29%	4.44%	721.55	996.44
70	45	24%	0.00%	768.0	1000.00
100	45	40%	0.00%	629.36	1000.00

Sample contract curves between two agents with different alpha and beta levels Cobb-Douglas preferences exchanging two goods: X & Y

Code repository

https://github.com/lydiateinfalt/CSS610-AgentBasedModelingSimulation-Spring2025/blob/main/EdgeworthBoxNoise.py