卷一 甲部

香港考試及評核局 0 1 4 年香港中學文憑考試

物理 試卷一

本試卷必須用中文作答 兩小時三十分鐘完卷 (上午八時三十分至上午十一時)

考生須知

- (一) 本卷分甲、乙兩部。考生宜於 50 分鐘內完成甲部。
- (二) 甲部爲多項選擇題,見於本試卷中;乙部的試題另見於試題答題簿 B 內。
- (三) 甲部的答案須填畫在多項選擇題的答題紙上,而乙部的答案則須寫在試題答題簿所預留的空位內。考試完畢,甲部之答題紙與乙部之試題答題鏡須分別繳交。
- (四) 本試卷的附圖未必依比例繪成。
- (五) 試卷最後兩頁附有本科常用的數據、公式和關係式以供參考。

甲部考生須知(多項選擇題)

- (一) 細讀答題紙上的指示。宣布開考後,考生須首先於適當位置貼上電腦條碼及填上各項所需 資料。宣布停筆後,考生不會獲得額外時間貼上電腦條碼。
- (二) 試場主任宣布開卷後,考生須檢查試題有否缺漏,最後一題之後應有「甲部完」字樣。
- (三) 各題佔分相等。
- (四) 本試卷全部試題均須回答。爲便於修正答案,考生宜用 HB 鉛筆把答案填畫在答題紙上。錯誤答案可用膠擦將筆痕徹底擦去。考生須清楚填畫答案,否則會因答案未能被辨認而失分。
- (五) 每題只可填畫一個答案,若填畫多個答案,則該題不給分。
- (六) 答案錯誤,不另扣分。

考試結束前不可將試卷攜離試場

本部共有 33 題。標有 * 的題目涉及延展部分的知識。

1.

從雪櫃取出兩球相同的雪糕,並放進上圖所示的紙杯 X和真空瓶 Y。在室溫下,容器內的雪糕完全熔化所需時間分別爲 t_X 及 t_Y 。下列哪項是預期的結果以及正確解釋?

- A. t_X>t_Y,因真空瓶可減少熱散失至周圍環境。
- B. $t_X > t_Y$, 因真空瓶可保持物件熱燙。
- C. $t_Y > t_X$,因真空瓶可透過放熱至周圍環境以保持物件冷凍。
- D. $t_Y > t_X$,因真空瓶可減低從周圍環境吸熱的率。

2.

跟周圍環境隔熱的一個固體物質 X,以功率恆定的電熱器將其加熱。它的溫度 θ 隨時間 t的變化如上圖所示。X在固態時的比熱容爲 $800 \, \mathrm{J \, kg}^{-1} \circ \mathrm{C}^{-1} \circ X$ 的熔解比潛熱是多少?

- A. 144 kJ kg^{-1}
- B. 192 kJ kg^{-1}
- C. 202 kJ kg^{-1}
- D. 沒法求得答案,因 X 的質量和電熱器的功率未有提供。

3.

勻截面的棒 PQR 是由兩段密度皆爲均勻的不同物料 PQ 和 QR 複合而成。PQ 段跟 QR 段長度的比率爲 2:3。當棒自 Q 點懸掛着時,它可如圖示保持水平。PQ 段跟 QR 段質量的比率爲多少?

- A. 2:3
- B. 1:1
- C. 3:2
- D. 沒法求得答案,因兩段的密度比率未有提供。

如圖所示,兩條輕繩穿越兩個在同一高度的滑栓並連接重量 W,繩子另外兩端分別繁着 $30 \, \text{N} \, \text{D} \, 20 \, \text{N} \, \text{的重量}$,整個系統處於平衡狀態。下列哪項有關 W的推斷是正確的?

- A. W小於 50 N。
- B. W等於50N。
- C. W大於 50 N。
- D. 未能獲得有關 W的資料,因角 θ 和 ϕ 為未知數。
- 5. 一粒子沿直線以勻加速度一直運動,用了 4 s 移動 36 m 的距離,接着用了 2 s 再移動 36 m。粒子的加速度是多少?
 - A. 2.5 m s^{-2}
 - B. 3.0 m s^{-2}
 - C. 4.0 m s^{-2}
 - D. 4.5 m s^{-2}
- 6. 兩個相同的細小方塊在光滑斜面於同一高度 H 從靜止滑下,如下面圖 (1) 和圖 (2) 所示。兩方塊到達斜面底部的速率分別為 v_1 和 v_2 ,所需時間分別為 t_1 和 t_2 。以下哪一項是正確的?空氣阻力可略去不計。

- A. $v_1 > v_2$ 及 $t_1 = t_2$
- B. $v_1 > v_2$ 及 $t_1 < t_2$
- C. $v_1 = v_2 \not \!\!\! D t_1 = t_2$
- D. $v_1 = v_2$ 及 $t_1 < t_2$

7.

質量 2 kg 的球 P 對正碰撞另一初始時靜止的球 Q , Q 的質量爲 1 kg 。 P 剛碰撞前的速率 爲 6 m s^{-1} 。如果碰撞後兩球沿相同方向運動,下列哪項可能爲 Q 剛碰撞後的速率?

- (1) 2 m s^{-1}
- (2) 4 m s^{-1}
- (3) 6 m s^{-1}
 - A. 只有(1)
 - B. 只有(1)和(2)
 - C. 只有(2)和(3)
 - D. (1)、(2)和(3)

8. 質量分別爲 5 kg 及 3 kg 的兩方塊,以一條繞過輕滑輪的輕繩連接,滑輪爲無摩擦並固定的。當方塊被釋放時,求它們加速度的量值,以重力加速度 g 表達。空氣阻力可略去不計。

A.

g

- B. $\frac{g}{2}$
- C. $\frac{g}{4}$
- D. $\frac{g}{8}$

9.

在一房子的屋頂將一粒子豎直擲下,初速爲 2.0 m s^{-1} 。如圖所示,粒子到達地面時的速率爲 11 m s^{-1} 。估算房子的高度,空氣阻力可略去不計。 $(g = 9.81 \text{ m s}^{-2})$

- A. 3.3 m
- B. 6.0 m
- C. 6.5 m
- D. 12 m

*10.

一粒子被水平拋射向 1.0 m 外的豎直牆壁。它擊中牆壁的位置在拋射點豎直下方 0.8 m。粒子以何速率拋射而出?空氣阻力可略去不計。 $(g=9.81 \text{ m s}^{-2})$

- A. 2.0 m s^{-1}
- B. 2.5 m s^{-1}
- C. 5.0 m s^{-1}
- D. 6.3 m s^{-1}

- *11. 在環繞地球的圓形軌道運動的太空船內,太空人好像失重是由於
 - A. 太空人離地球太遠,因而感受不到地球的引力。
 - B. 太空人和太空船兩者以向着地球的同一加速度運動。
 - C. 地球對太空人的引力被太空船地板的反作用力平衡。
 - D. 地球對太空人的引力被向心力平衡。
- *12. 人造衛星沿圓形軌道運動,距地球表面的高度等於地球半徑。求衛星的加速度,以地球表面的重力加速度 g表達。
 - A. $\frac{g}{8}$
 - B. $\frac{g}{4}$
 - C. $\frac{g}{2}$
 - D. g

13.

上圖顯示由落在水波槽的水滴造成的兩個圓形脈衝。脈衝隨後被直障礙物反射。以下哪一幅圖最能顯示反射脈衝?

A.

B.

C.

D.

14. 一列橫波沿長繩子向左傳播。 $P \times Q \times R$ 和 S 是繩子上的粒子。以下哪些敍述正確描述它們在圖示一刻的運動?

- (1) P 向上運動。
- Q 和 S 的運動方向相反。
- (3) R 爲瞬時靜止。
 - A. 只有(1)
 - B. 只有(3)
 - C. 只有(1)和(2)
 - D. 只有(2)和(3)
- 15. 圖示一條光線由介質 I 傳播至介質 III 的路徑,各個界面互相平行。試把光在各介質中的速率以**升序**排列。

- $A. \qquad I < III < II$
- B. II < III < I
- C. III < I < II
- D. III < II < I

上圖顯示連續的平面海浪穿過海堤中的一個缺口並發生繞射。假設海浪的頻率不變,下列哪項能增大繞射效應?

- (1) 海堤的缺口收窄。
- (2) 海浪的波長增加。
- (3) 海浪的振幅增大。
 - A. 只有(1)和(2)
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)、(2)和(3)

17.

圖 (1) 顯示一汽車在直路上以勻速率行駛,並離開一個靜止放於 Y 的超聲波產生器及探測器。當汽車與 Y 距離 $64\,\mathrm{m}$ 時,產生器向汽車發射一超聲波脈衝。脈衝然後被反射回在 Y 處的探測器並顯示於一示波器上,如圖 (2) 所示。估算汽車的速率。已知:超聲波在空氣中的速率為 $340\,\mathrm{m}\,\mathrm{s}^{-1}$

- A. 16 m s^{-1} B. 20 m s^{-1}
- C. 24 m s^{-1}
- D. 32 m s^{-1}

18.

兩個揚聲器 S_1 和 S_2 連接着一個訊號產生器,但它們產生的聲波是反相的。O 點跟兩揚聲器等距,而 P 點與兩揚聲器的距離如圖所示。如果聲波的波長爲 $10~\mathrm{cm}$,在 O 和 P 會產生哪類型的干涉?

	0	P
A.	相消	相長
B.	相長	相長
C.	相消	相消
D.	相長	相消

- 19. 下列哪項有關聲波的敍述是正確的?
 - (1) 聲波是電磁波。
 - (2) 聲波不能在真空中傳播。
 - (3) 聲波不能形成駐波。
 - A. 只有 (2)
 - B. 只有(3)
 - C. 只有(1)和(2)
 - D. 只有(1)和(3)

20.

兩個不帶電的絕緣金屬球 $X \times Y$ 互相接觸。如圖所示,把一根帶正電的棒移近 X,接着用手指短暫接觸 X 一下,然後把 Y 移走使兩球分開,最後將該帶電的棒移走。下列哪項有關 X 和 Y 所帶電荷的描述是正確的?

	球 <i>X</i>	球 Y	
A.	不帶電	不帶電	
B.	不帶電	正電	
C.	負電	不帶電	
D.	負電	負電	

21.

三個點電荷 $Q_1 \times Q_2$ 及 Q_3 固定於直線上, Q_2 位處 Q_1 及 Q_3 的中點,作用於每個電荷的合靜電 力爲零。下列哪項可以是 $Q_1 \times Q_2$ 和 Q_3 的符號及量值(以相同任意單位表示)?

	Q_1	Q_2	Q_3
A.	+2	+1	+2
B.	+2	-1	+2
C.	·4	+1	+4
D.	4	+1	-4

兩塊平行金屬板 P 和 Q 與電池組連接 (沒有顯示於圖上),使兩板維持於某電勢差。放在兩板之間的一粒電子感受到量值爲 8.0×10^{-18} N向 P 的靜電力。下列哪項有關板間的電場 E的描述是正確的?

- A. $E = 0.02 \text{ N C}^{-1}$ 從 $Q \cong P$ 。
- B. $E = 0.02 \text{ N C}^{-1}$ 從 $P \cong Q$ 。
- C. $E = 50 \text{ N C}^{-1}$ 從 $Q \cong P$ 。
- D. $E = 50 \text{ N C}^{-1}$ 從 $P \cong Q$ 。

*23.

圖示孤立點電荷 +Q 的位置。如果在 X 的電勢為 V,在 Y 的電勢為多少?

- A. $\frac{2}{3}V$
- B. $\frac{3}{2}V$
- C. $\frac{4}{9}V$
- D. $\frac{9}{4}V$

24.

在上圖的電路中,電池有恆定電動勢及固定的內阻。當開關 S 閉合,安培計的讀數爲 S 3.0 A。當開關 S 斷開時,安培計的讀數可以是多少?

- A. 1.6 A
- B. 2.0 A
- C. 2.4 A
- D. 3.2 A

圖示兩燈泡 P 和 Q 連接電動勢爲 6 V 的電池,而電池的內阻可略。當開關 S 閉合時,伏特計讀得 6 V 。下列哪一項可能發生?

- A. P和 Q都短路了。
- B. P和Q都燒毀了變成斷路。
- C. P短路了或 Q 燒毀了變成斷路。
- D. P燒毀了變成斷路或Q短路了。

26.

如圖所示,四條處於正方形頂點的長直平行導線 $P \cdot Q \cdot R$ 和 S 有等值的電流通過。 $P \cdot Q$ 和 R 每條導線上的電流指入紙面,而通過 S 的電流則指出紙面,在正方形中央 O 點的合磁場方向是沿着

- A. *OP* °
- B. $OQ \circ$
- C. $OR \circ$
- D. OS •

如圖 (1) 所示,一條載流長直導線 MN 和矩形線圈 PQRS 固定於同一平面。當電流 I 從 M流向 N 時其值設爲正數,而電流隨時間 t 的變化如圖 (2) 所示。在時段 0-T 內線圈 上感生電流的方向是

- A. 首先是逆時針,其後是順時針。
- B. 首先是順時針,其後是逆時針。
- C. 一直為逆時針。
- D. 一直爲順時針。

28.

圖示一個密堆積的長螺線管,截面積爲A,長度爲L而總匝數爲N。螺線管一直帶恆定的直流電。以下哪項改變可增加在螺線管中央截面處的磁通量密度B?

	長度	截面積	總匝數
A.	2L	2 <i>A</i>	2 <i>N</i>
B.	L	2A	N
C.	2L	A	N
D.	L	A	2 <i>N</i>

上圖顯示電流從右向左通過金屬方塊,其橫截面爲 *PQRS*。當勻強磁場施於方塊時,方塊 *PQ* 邊的電勢比 *SR* 邊的高,磁場可沿哪個方向施於方塊?

- A. 從P至Q
- B. 從 Q 至 P
- C. 從 $P \subseteq S$
- D. 從S至P
- *30. 當一發熱器連接 $10 \lor$ 的直流電壓時,耗散的功率爲 P。如果發熱器連接一正弦交流電,耗散的功率則變爲 $\frac{1}{2}P$ 。該交流電源的**方均根電壓**是多少?設發熱器的電阻恆定。
 - A. 5 V
 - B. $5\sqrt{2}$ V
 - C. 10 V
 - D. $10\sqrt{2} \text{ V}$
- 31. 原子核 W 如下面所示衰變成原子核 Z:

$$W \xrightarrow{\alpha} X \xrightarrow{\beta} Y \xrightarrow{\beta} Z$$

下列哪些敍述是正確的?

- (1) 原子核 X 較原子核 Y多一顆質子。
- (2) 原子核 W 較原子核 X 多兩顆中子。
- (3) W和 Z是屬於同一元素的同位素。
 - A. 只有 (1)
 - B. 只有 (2)
 - C. 只有(1)和(3)
 - D. 只有(2)和(3)

32. 在一個會發射出 α 和 γ 輻射的放射源前方附近放置一 GM 計數器,所錄得計數率爲每分鐘 450 次,而本底輻射的計數率則爲每分鐘 50 次。把三種不同物料依次放於放射源與計數器之間,所得的結果見下表。

物料	所錄得計數率 / 每分鐘次數
(沒有)	450
卡紙	x ·
1 mm 鋁	y
2 mm 鉛	z

以下哪一個爲 x、y和z最合適的數值組合?

	x	y	z
A.	300	300	100
В.	300	100	50
C.	100	100	0
D.	100	50	50

- *33. 一個鐳原子核衰變成一個氦原子核時會發射出一個 α 粒子,過程中釋放出 4.9 MeV 的能量。一個氦原子核和一個 α 粒子的總質量比一個鐳原子核的質量
 - A. 少 $5.4 \times 10^{-11} \text{ kg}$ 。
 - B. 多 $5.4 \times 10^{-11} \, \text{kg}$ 。
 - C. \cancel{y} 8.7 × 10⁻³⁰ kg °
 - D. 多 8.7 × 10^{-30} kg \circ

甲部完

數據、公式和關係式

數據

摩爾氣體常數 阿佛加德羅常數 重力加速度 萬有引力常數 在真空中光的速率 電子電荷 電子靜質量 真空電容率 真空磁導率 原子質量單位 天文單位 光年

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $N_{\rm A} = 6.02 \times 10^{23} \, {\rm mol}^{-1}$ g=9.81 m s⁻² (接近地球) $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ $c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$ $e = 1.60 \times 10^{-19} \,\mathrm{C}$ $m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$ $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{N}^{-1} \,\mathrm{m}^{-2}$ $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H m}^{-1}$ $u = 1.661 \times 10^{-27} \text{ kg}$ $AU = 1.50 \times 10^{11} \,\mathrm{m}$

(1 u 相當於 931 MeV)

普朗克常數 直線運動

斯特藩常數

秒差距

匀加速運動:

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

數學

 $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

 $1y = 9.46 \times 10^{15} \text{ m}$

 $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

直線方程

y = mx + c

弧長

柱體表面面積

 $pc = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly} = 206265 \text{ AU}$

 $= 2\pi rh + 2\pi r^2$

柱體體積

 $= \pi r^2 h$

球體表面面積 = $4\pi r^2$

球體體積

 $= \frac{4}{3}\pi r^3$

細小角度

 $\sin \theta \approx \tan \theta \approx \theta$ (角度以 radians 表達)

經過介質傳送的強度

天文學和航天科學		能量和能源的使用	
$U = -\frac{GMm}{r}$ $P = \sigma A T^4$	引力勢能	$E = \frac{\Phi}{A}$	照明度
l	斯特藩定律	$\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$	傳導中能量的傳遞率
$\left \frac{\Delta f}{f_0} \right \approx \frac{v}{c} \approx \left \frac{\Delta \lambda}{\lambda_0} \right $	$\frac{sf}{f_0} \approx \frac{v}{c} \approx \left \frac{\Delta \lambda}{\lambda_0} \right $ 多普勒效應		熱傳送係數 U-値
		$P = \frac{1}{2} \rho A v^3$	風力渦輪機的最大功率
原子世界		醫學物理學	
$\frac{1}{2}m_{\rm e}v_{\rm max}^2 = hf - \phi$	愛恩斯坦光電方程	$\theta \approx \frac{1.22\lambda}{d}$	瑞利判據 (解像能力)
$E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{m_{\rm e} e^4}{8h^2 \varepsilon_0^2} \right\} = -\frac{13}{n}$	<u>.6</u> eV 氫原子能級方程	焦强 = $\frac{1}{f}$	透鏡的焦强
$\lambda = \frac{h}{p} = \frac{h}{mv}$	德布羅意公式	$L = 10 \log \frac{I}{I_0}$	强度級 (dB)
*		$Z = \rho c$	聲阻抗
$\theta \approx \frac{1.22\lambda}{d}$	瑞利判據 (解像能力)	$\alpha = \frac{I_{\rm r}}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$	反射聲強係數

 $I = I_0 e^{-\mu x}$

A1.
$$E = mc \Delta T$$

A1. $E = mc \Delta T$ 加熱和冷卻時的能量轉移

D1.
$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$
 庫倫定律

A2.
$$E = l \Delta m$$

A2. $E = l \Delta m$ 物態變化時的能量轉移

D2.
$$E = \frac{Q}{4\pi\epsilon_0 r^2}$$
 點電荷的電場強度

A3.
$$pV = nRT$$
 理想氣體物態方程

D3.
$$V = \frac{Q}{4\pi\epsilon_0 r}$$
 點電荷的電勢

A4.
$$pV = \frac{1}{3} Nmc^{-2}$$
 分子運動論方程

D4.
$$E = \frac{V}{d}$$

D4. $E = \frac{V}{d}$ 平行板間的電場 (數值)

A5.
$$E_{\rm K} = \frac{3RT}{2N_{\rm A}}$$
 氣體分子動能

D5.
$$I = nAvQ$$
 普適電流方程

B1.
$$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$
 \mathcal{I}

Do.
$$R = \frac{1}{A}$$

D6. $R = \frac{\rho l}{4}$ 電阻和電阻率

B2. 力矩 =
$$F \times d$$
 力矩

D7. $R = R_1 + R_2$

B3.
$$E_P = mgh$$
 重力勢能

D8. $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ 並聯電阻器

D9.
$$P = IV = I^2R$$
 電路中的功率

B4.
$$E_{\rm K} = \frac{1}{2} m v^2$$
 動能

D10. $F = BQv \sin \theta$ 磁場對運動電荷的作用力

B5. *P = Fv* 機械功率

D11.
$$F = BIl \sin \theta$$
 磁場對載流導體的作用力

B6.
$$a = \frac{v^2}{r} = \omega^2 r$$
 向心加速度

D12.
$$V = \frac{BI}{nQt}$$
 霍耳電壓

B7.
$$F = \frac{Gm_1m_2}{r^2}$$
 牛頓萬有引力定律

D13. $B = \frac{\mu_0 I}{2\pi r}$ 長直導線所產生的磁場

C1.
$$\Delta v = \frac{\lambda D}{\Delta v}$$

C1. $\Delta y = \frac{\lambda D}{a}$ 雙縫干涉實驗中條紋的寬度

D14. $B = \frac{\mu_0 NI}{l}$ 螺線管中的磁場

C2.
$$d \sin \theta = n\lambda$$
 衍射光柵方程

D15.
$$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$$
 感生電動勢

D16. $\frac{V_s}{V_n} \approx \frac{N_s}{N_n}$ 變壓器副電壓和 原電壓之比

C3.
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 單塊透鏡方程

E1. $N = N_0 e^{-kt}$ 放射衰變定律

E2.
$$t_{\frac{1}{2}} = \frac{\ln 2}{k}$$
 半衰期和衰變常數

E3. A = kN

放射强度和未衰變的 原子核數目

E4. $\Delta E = \Delta mc^2$

質能關係式