

TTENNE I - ANTENNE PER SISTEMI DI TELECOMUNICAZION

Lezione 10 – Antenne filari

LEZIONE 10

ANTENNE FILARI

Giuseppe Pelosi
Dipartimento di Elettronica e Telecomunicazioni
Università di Firenze
E-mail: giuseppe.pelosi@unifi.it

URL: http://ingfi9.det.unifi.it/

1/53

Lezione 10 – Antenne filari

EQUAZIONI INTEGRALI PER ANTENNE FILARI

Equazione di Hallén – EFIE (Electric Field Integral Equation)

Antenna in trasmissione

$$\int_{-h}^{h} K(z,z') I(z') dz' = \frac{B}{\mu} \cos(kz) - \frac{j}{2\zeta} V_g \sin(k|z|) \qquad \text{(equazione di Hallén)}$$

$$K(z,z') = G(z,z') = \frac{e^{-jk|\mathbf{r}-\mathbf{r}'|}}{4\pi|\mathbf{r}-\mathbf{r}'|}$$

Modello di generatore a δ - gap

$$\mathbf{E}^{i}(z) = V_{g} \ \delta(z)\hat{z} \,, \quad \rho = a$$

2/53

	ANTENNA	A DIPOLO – Im	pedenza d'ingres	SSO
For	rmule pratiche per il calcolo	o della resistenza o	l'ingresso (L: lung	ghezza totale del fi
		#11111	Input	
		ngth	Resistance (R_{ti}) , Ω	
		<i>L</i>	$\frac{(R_{ri}), \Omega}{(L)^2}$	
	0 < L	$<\frac{\Lambda}{4}$	$20\pi^2 \left(\frac{\omega}{\lambda}\right)$	
	$0 < L$ $\frac{\lambda}{4} < L$	$<\frac{\lambda}{2}$	$24.7\left(\pi \frac{L}{\lambda}\right)^{2.4}$	
	4 λ		$1.14\left(\pi \frac{L}{\lambda}\right)^{4.17}$	
	$\frac{n}{2} < L$	< 0.637λ	$1.14 \left(\frac{\pi}{\lambda} \right)$	
27 1 1			5 27	
Nei di	poli reali la lunghezza di ri	sonanza diminuisc	e all'aumentare d	ello spessore (a=ra
	Length to	Percent	Danasant	Dipole
	Diameter Ratio, $L/2a$	Shortening Required	Resonant Length L	Thickness Class
	5000	2	0.49λ	Very thin
	50	5	0.475λ	Thin
	10	0	0.455λ	Thick

