NETVÆRKS- OG KOMMUNIKATIONSSIKKERHED

IPsec, VPN

Agenda

- IP
- IPsec
- AH
- ESP
- IKE
- VPN

Virtual Private Network (VPN)

Source: Kurose, Computer Network

Internet protocol stack

- *application:* supporting network applications
 - FTP, SMTP, HTTP
- *transport*: process-process data transfer
 - TCP, UDP
- *network*: routing of datagrams from source to destination
 - IP, routing protocols
- *link*: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application

transport

network

link physical

Internet Protocol v4

Internet Protocol Security (IPsec) services

- data integrity
- origin authentication
- replay attack prevention
- Confidentiality
- two protocols providing different service models:
 - AH
 - ESP

IPsec transport mode

- IPsec datagram emitted and received by end-system
- protects upper level protocols

IPsec - tunneling mode

 edge routers IPsecaware

hosts IPsec-aware

Two IPsec protocols

- Authentication Header (AH) protocol
 - provides source authentication & data integrity but *not* confidentiality
- Encapsulation Security Protocol (ESP)
 - provides source authentication, data integrity, and confidentiality
 - more widely used than AH

Four combinations are possible!

Network Security

Security associations (SAs)

- before sending data, "security association (SA)" established from sending to receiving entity
 - SAs are simplex: for only one direction
- ending, receiving entitles maintain *state information* about SA
 - recall: TCP endpoints also maintain state info
 - IP is connectionless; IPsec is connection-oriented!
- how many SAs in VPN w/ headquarters, branch office, and n traveling salespeople?

Example SA from R1 to R2

R1 stores for SA:

- 32-bit SA identifier: Security Parameter Index (SPI)
- origin SA interface (200.168.1.100)
- destination SA interface (193.68.2.23)
- type of encryption used (e.g., 3DES with CBC)
- encryption key
- type of integrity check used (e.g., HMAC with MD5)
- authentication key

Security Association Database (SAD)

- endpoint holds SA state in security association database (SAD), where it can locate them during processing.
- with n salespersons, 2 + 2n SAs in RI's SAD
- when sending IPsec datagram, R1 accesses SAD to determine how to process datagram.
- when IPsec datagram arrives to R2, R2 examines SPI in IPsec datagram, indexes SAD with SPI, and processes datagram accordingly.

IPsec datagram

focus for now on tunnel mode with ESP

What happens?

R1: convert original datagram to IPsec datagram

- appends to back of original datagram (which includes original header fields!) an "ESP trailer" field.
- encrypts result using algorithm & key specified by SA.
- appends to front of this encrypted quantity the "ESP header, creating "enchilada".
- creates authentication MAC over the *whole enchilada*, using algorithm and key specified in SA;
- appends MAC to back of enchilada, forming payload;
- creates brand new IP header, with all the classic IPv4 header fields, which it appends before payload.

Inside the enchilada:

- ESP trailer: Padding for block ciphers
- ESP header:
 - SPI, so receiving entity knows what to do
 - Sequence number, to thwart replay attacks
- MAC in ESP auth field is created with shared secret key

Psec sequence numbers

- for new SA, sender initializes seq. # to 0
- each time datagram is sent on SA:
 - sender increments seq # counter
 - places value in seq # field
- goal:
 - prevent attacker from sniffing and replaying a packet
 - receipt of duplicate, authenticated IP packets may disrupt service
- method:
 - destination checks for duplicates
 - doesn't keep track of *all* received packets; instead uses a window

Security Policy Database (SPD)

- policy: For a given datagram, sending entity needs to know if it should use IPsec
- needs also to know which SA to use
 - may use: source and destination IP address; protocol number
- info in SPD indicates "what" to do with arriving datagram
- info in SAD indicates "how" to do it

Summary: IPsec services

- suppose Trudy sits somewhere between R1 and R2. she doesn't know the keys.
 - will Trudy be able to see original contents of datagram? How about source, dest IP address, transport protocol, application port?
 - flip bits without detection?
 - masquerade as R1 using R1's IP address?
 - replay a datagram?

IKE: Internet Key Exchange

• previous examples: manual establishment of IPsec SAs in IPsec endpoints:

Example SA

SPI: 12345

Source IP: 200.168.1.100

Dest IP: 193.68.2.23

Protocol: ESP

Encryption algorithm: 3DES-cbc

HMAC algorithm: MD5

Encryption key: 0x7aeaca...

HMAC key:0xc0291f...

- manual keying is impractical for VPN with 100s of endpoints
- instead use *IPsec IKE* (*Internet Key Exchange*)

IKE: PSK and PKI

- authentication (prove who you are) with either
 - pre-shared secret (PSK) or
 - with PKI (pubic/private keys and certificates).
- PSK: both sides start with secret
 - run IKE to authenticate each other and to generate IPsec SAs (one in each direction), including encryption, authentication keys
- PKI: both sides start with public/private key pair, certificate
 - run IKE to authenticate each other, obtain IPsec SAs (one in each direction).
 - similar with handshake in SSL.

IKE phases

- IKE has two phases
 - *phase 1:* establish bi-directional IKE SA
 - note: IKE SA different from IPsec SA
 - aka ISAKMP security association
 - phase 2: ISAKMP is used to securely negotiate IPsec pair of SAs
- phase 1 has two modes: aggressive mode and main mode
 - aggressive mode uses fewer messages
 - main mode provides identity protection and is more flexible

IPsec summary

- IKE message exchange for algorithms, secret keys, SPI numbers
- either AH or ESP protocol (or both)
 - AH provides integrity, source authentication
 - ESP protocol (with AH) additionally provides encryption
- IPsec peers can be two end systems, two routers/firewalls, or a router/firewall and an end system

Virtual Private Network (VPN)

Source: Kurose, Computer Network