Cours sino-français Hefei, automne 2023

Devoir n°1 pour le 13 septembre

Ι

Un espace topologique est connexe par arcs si et seulement si deux points x et y de X sont toujours reliés par un chemin, c'est à dire une application continue $p:[0,1] \to X$, p(0) = x, p(1) = y. Démontrer qu'un espace connexe par arcs est connexe.

II

Soit (X, \mathcal{T}) un espace topologique. Pour $x \in X$ on note $\mathcal{C}(x)$ la réunion de toutes les partie connexes de X qui contiennent x.

- 1. Formuler soigneusement ce qu'est une partie connexe de X.
- 2. Démontrer que C(x) est une partie connexe de X (on l'appelle la composante connexe de x).
- 3. Démontrer que pour $x \neq y$, on a soit $\mathcal{C}(x) = \mathcal{C}(y)$, soit $\mathcal{C}(x) \cap \mathcal{C}(y) = \emptyset$
- 4. Démontrer que l'adhérence d'une partie connexe est connexe.
- 5. Soit Y le sous-espace de \mathbb{R}^2 réunion du graphe de la fonction $x \mapsto \sin(\frac{1}{x})$ et de $\{0\} \times [-1,1]$. Est-ce que Y est une partie connexe ?

III

Démontrer que l'espace quotient du disque unité D^2 par le cercle unité S^1 est homéomorphe à la sphère S^2 .

Cours sino-français Hefei, automne 2023

Devoir n°2 pour le 25 septembre

Ι

A quelle surface standard sont homéomorphes les quotients du disque obtenus par les identifications du bord encodés par les mots suivants ?

- 1. abcdeabcde?
- 2. $abcde\overline{a}\overline{b}\overline{c}\overline{d}\overline{e}$?

II

Démontrer que la droite projective complexe

$$\mathbb{C}P^1 = \mathbb{C}^2 \setminus \{(0,0)\}/\sim,$$

où \sim est la relation de colinéarité: $(x,y) \sim (x',y') \Leftrightarrow \exists \lambda \in \mathbb{C}^* \ (x',y') = \lambda(x,y)$, est une surface homéomorphe à la sphère S^2 .

III

Soit X le quotient du tore $S^1 \times S^1$ par la relation qui identifie (x, y) et (y, x). Montrer que X est une surface à bord et identifier cette surface.

Cours sino-français Hefei, automne 2023

Devoir n°3 pour le 7 octobre

Ι

On suppose que M est une variété topologique.

- 1. Démontrer que les composantes connexes par arc sont ouvertes.
- 2. Démontrer que les composantes connexes par arc sont fermées.
- 3. Démontrer que si la variété M est connexe, alors elle est connexe par arc.

Π

Soit X l'espace obtenu en collant un disque D^2 au tore $S^1 \times S^1$ avec l'identification de $z \in S^1 \subset D^2$ à $(1, z) \in S^1 \times S^1$.

Calculer le groupe fondamental de X. On précisera le point de base utilisé et on rédigera avec précision les arguments.

III

Pour une matrice $A=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ à coefficients entiers et de déterminant 1, $A\in SL(2,\mathbb{Z})$, on note $f_A:\mathbf{S}^1\times\mathbf{S}^1\to\mathbf{S}^1\times\mathbf{S}^1$ l'application définie par

$$f_A(u,v) = (u^a v^c, u^b v^d) .$$

- 1. (a) Justifier que f_A est un homéomorphisme et décrire l'homéomorphisme inverse.
 - (b) Déterminer l'action de f_A sur $\pi_1(\mathbf{S}^1 \times \mathbf{S}^1, *)$, * = (1, 1), c'est à dire l'application

$$(f_A)_{\sharp}: \pi_1(\mathbf{S}^1 \times \mathbf{S}^1, *) \to \pi_1(\mathbf{S}^1 \times \mathbf{S}^1, *)$$
.

On note X_A l'espace obtenu en collant $\mathbf{S}^1 \times D^2$ à $D^2 \times \mathbf{S}^1$ avec l'application $f_A : \mathbf{S}^1 \times \mathbf{S}^1 = \partial(\mathbf{S}^1 \times D^2) \to \mathbf{S}^1 \times \mathbf{S}^1 \subset D^2 \times \mathbf{S}^1$.

- (a) Montrer que X_A est une variété.
- (b) Calculer le groupe fondamental de X_A .
- 2. Reconnaître \mathbf{S}^3 , $\mathbf{S}^1 \times \mathbf{S}^2$, $\mathbb{R}P^3$ parmi les variétés X_A .

Cours sino-français Hefei, automne 2023

Devoir n°4 pour le 16 octobre

Ι

Pour $n \geq 2$, soit $f_n : \mathbb{C}^* \to \mathbb{C}^*$ l'application définie par $f_n(z) = z^n$.

- 1. Démontrer que f_n est un revêtement. Décrire l'application $\pi_1(f_n) = (f_n)_{\sharp}$.
- 2. Soit $B = \mathbb{C}^* \setminus \{1\}$ et $X_n = f_n^{-1}(B)$. On note $g_n : X_n \to B$ la rectriction de f_n .
 - (a) Est-ce que g_n est un revêtement ?
 - (b) Décrire les groupes fondamentaux de B et de X_n .
 - (c) Démontrer que pour $m \geq 3$, le groupe libre à deux générateurs contient un sous-groupe qui est libre à m générateurs.

II

- 1. Construire un revêtement $p: \mathbb{C} \to S^1 \times S^1$.
- 2. Décrire un revêtement orientable (de type (o)) de la bouteille de Klein K.
- 3. Construire un revêtement universel (simplement connexe) de la bouteille de Klein.

Ш

On note S^3 la sphère unité de \mathbb{C}^2 . On rappelle que c'est un groupe multiplicatif. Pour des entiers premiers entre eux p et q, $\alpha = e^{\frac{i2\pi}{p}}$, $\beta = \alpha^q$.

- 1. (a) Montrer que le sous-groupe $G \subset S^1 \times S^1$ engendré par (α, β) agit par multiplication sur la sphère S^3 .
 - (b) Est-ce une action discrète?
- 2. On note L(p,q) l'espace quotient $G \setminus S^3$. Déterminer le groupe fondamental de L(p,q).
- 3. Reconnaître l'espace L(2,1).

IV (facultatif)

En utilisant l'action de conjugaison du groupe

$$SU(2) = \left\{ \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right), \ (a,b) \in \mathbb{C}^2 \ , \ |a|^2 + |b|^2 = 1 \right\},$$

contruire un revêtement de SU(2) sur le groupe SO(3) des endomorphismes orthogonaux orientés de \mathbb{R}^3 . En déduire le groupe fondamental de SO(3).

Cours sino-français Hefei, automne 2023

Devoir n°5 pour le 30 octobre

T

L'espace projectif complexe $\mathbb{C}P^n$, $n \geq 1$, est le quotient

$$\mathbb{C}P^n = \mathbb{C}^{n+1} - \{0\}/\mathbb{C} - \{0\} .$$

On note $[z_0,\ldots,z_n]$ la classe de (z_0,\ldots,z_n) dans $\mathbb{C}P^n$.

- 1. Démontrer que $\mathbb{C}P^n$ est une variété de dimension 2n compacte orientable.
- 2. Soit $Y_n = \{[z_0, \dots, z_n], [z_1] < |z_n|, \dots, |z_{n-1}| < |z_n]\}.$
 - (a) Identifier le sous-espace Y_n .
 - (b) Montrer que $X_n = \mathbb{C}P^n Y_n$ se rétracte par déformation sur un sous-espace homéomorphe à $\mathbb{C}P^{n-1}$.
- 3. En procédant par récurrence, déterminer $H_*(\mathbb{C}P^n)$.

 Π

On appelle involution libre sur un espace topologique X, tout homéomorphisme $\tau: X \to X$, tel que $\tau \circ \tau$ est l'identité de X, et $\tau(x) \neq x$ pour tout x. Dans le cas où X est une variété orientée, une involution libre $\tau: X \to X$ est dite orientée si et seulement si τ est de degré local égal à 1 en tout point.

- 1. (a) Montrer que si $\tau: M \to M$ est une involution libre sur une variété M, alors le quotient $B = M/\tau$, obtenu en identifiant $\tau(x)$ à x pour tout x, est une variété.
 - (b) Montrer que si $\tau:M\to M$ est une involution libre orientée sur une variété M orientée, alors le quotient $B=M/\tau$ est une variété orientée.
 - (c) Montrer que si τ est une involution libre non orientée sur une variété connexe orientée M, alors l'application quotient $M \to B = M/\tau$ est équivalente au revêtement d'orientation de B.
- 2. Etudier l'antipodie de la sphère S^n . Dans quels cas l'espace projectif $\mathbb{R}P^n$ est-il orientable ?
- 3. Calculer l'homologie des espaces projectifs $\mathbb{R}P^n$.