Worksheet W2Wed: Logarithms

Problem 1. Find solutions to the following equations.

(a)
$$Log(z) = -i\pi/2$$

(c)
$$z^{1/2} = 1 - i$$

(b)
$$Log(z) = 3\pi i/2$$

(d)
$$z^{1/2} = -1 + i$$

Problem 2. Recall that log (lower-case) denotes the multi-valued logarithm function. Find all values of the following.

(a)
$$\log(-i)$$

(c) multi-valued
$$(-i)^i$$
, ie, $\exp(i \log(-i))$

(b)
$$\log(1 + i)$$

(d) multi-valued
$$(1+i)^{1+i}$$
, ie, $exp((1+i)\log(1+i))$

Problem 3. What is the image of the annulus 1 < |z| < e under Log? How does this image change if you choose a different branch of the logarithm?

Problem 4. For which $z \in \mathbb{C} \setminus \{0\}$ is it true that $Arg(\bar{z}) = -Arg(z)$?

Problem 5. Suppose $c \in \mathbb{C} \setminus \{0\}$ and let $f(z) = z^c$ for all $z \neq 0$. Is it true that $f'(z) = cz^{c-1}$? If so, prove this carefully. If not, give a counterexample. Does anything change if a non-principal branch of the logarithm is used to define z^c ?

Problem 6. (a) For what $z \in \mathbb{C}$ is it the case that Log(exp(z)) = z?

(b) For what $a, b \in \mathbb{C}$ is it the case that $Log \, a^b = b \, Log \, a$? (Find how a and b must be related geometrically in order for this equality to be true.)