Eign-decomposition of the coveriance matrix

Example o	lata	Systolic BP	Diastolic BP
	0	126	78
BP mm Hg	•	128	30
0 K	9 •	128	82
Diasto	0	130	82
		130	84
	Systolic BP (mmHg)	132	86

We will use PCA to combine the two blood josessure variables into just one variable based on data from 6 individuals.

- 1. Center the data
- 2. Calculate the covariance matrix (CM)
- 3. Calculate ligenvalues of the cm
- 4. Il ligen vectors of the CM
- 5. Order the eigenvectors
- 6. Calculate the principal components (PCs)

Note that Step 1:	SBP	DBP	
so metime,	126-129=-3	78 - 82 = -4	4
We have	128-129=-1	80 - 82 = -2	
o standardy	128-129 = -1	82-82=0=	⇒ •°°
the data by	130 - 129 = 1	82-82=0	
<u>×-4</u>	130 - 129 = 1	84 - 82 = 2	derta centered
U	132-129=3	86 - 82 = 4	around (0,0).

$$SBP \Rightarrow CSBP$$

$$DBP \Rightarrow CDBP$$

navanus (spread in cDBP is ligher than in cSBP)

$$Van(CSBP) = \frac{1}{M-1} \sum_{i=1}^{M} (CSBP_i - \overline{CSBP})^2$$

$$Van (cDBP) = \frac{1}{M-1} \sum_{i=1}^{M} (cDBP_i - cDBP)^2$$

$$C_{xy} = \frac{1}{M-1} \sum_{i=1}^{M} (CSBP_i - CSBP)(CDBP_i - CDBP)$$

Step 3. det
$$|\hat{\mathcal{C}} - \lambda \hat{\mathbf{I}}| = 0$$

det
$$|4.4-\lambda|$$
 S.6 = 0 \Rightarrow 3.84 - 12.41 + $\lambda^2 = 0$

S.6 8- λ
 $\lambda_1 = 0.32$
 $\lambda_2 = 12.08$

to eigen values of the CM.

(2)

Step 4.
$$\hat{G} Y = \lambda Y$$

$$\begin{bmatrix} 4.4 & 5.6 \\ 5.6 & 8.0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12.08 & x \\ y \end{bmatrix}$$

$$\Rightarrow 5.6 \times = 7.68 \times \text{ solving for } y \Rightarrow y = 1.37 \times$$

$$5.6 \times = 4.08 \text{ y} \qquad \text{for } x=1 \Rightarrow y = 1.37$$

There fore:
$$V_2 = \begin{bmatrix} 1 \\ 1.37 \end{bmatrix}$$

After normalization:
$$Y_2 = \begin{bmatrix} 0.59 \\ 0.81 \end{bmatrix}$$

For the other eigenvalue
$$\lambda_1 = 0.32$$
 we get $\lambda_2 = \begin{bmatrix} -0.81 \\ 0.59 \end{bmatrix}$ (normalized)

Since the CM is a symmetric matrix, the eigenvectors will be ORTHOGONAL: Y. AY.

Step 5. Ordering light octor The eigen octor with the largest light value becomes our first eigenvector. Yz \rightarrow VRI We order these eigenvectors in a matrix $\gamma_1 \rightarrow \gamma_{RI}$ (alled $\hat{\gamma}$: VEI VRI Called $\hat{\gamma}$: $\hat{\gamma} = \begin{bmatrix} 0.59 \\ -0.81 \end{bmatrix} \begin{bmatrix} 0.59 \\ -0.81 \end{bmatrix} \begin{bmatrix} 0.59 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \\ -1 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \end{bmatrix}$ Principal Components

and make
$$\hat{D}\hat{V} = \begin{bmatrix} -5.0 & 0.1 \\ -2.2 & -0.4 \\ -0.6 & 0.8 \\ 0.6 & -0.8 \\ 2.2 & 0.4 \\ 5.0 & -0.1 \end{bmatrix}$$

transformed data! >> Principal component
Scores!

This represents the original centered data in the

difference

increased!

)		PCZ			(3)
					No	tated plot
	_	9	• 1.			lso married
		6			PCI	score plot!
	original			Rotatec	l	0.00
	CSBP	c DBP		PCI	PCZ	
	-3	-4		-5	0.1	
	-1	-2		-2.2	-04	
	-1	0		-0.6	0.8	
	1	0		0.6	-0.8	
	1	2		2.2	0.4	
1	_3	4		5.0	-0.1	
	Var = 4.4	Var = 8.0		Var=12-08	Van = 0.32	
				*		and variance
				lize	n values	difference

 $\% \text{ Var} = \frac{\lambda_{R1}}{\lambda_{R1} + \lambda_{R2}} = \frac{12.08}{12.08 + 0.32} = 97.4\%$

PCI captures 97.4% of the total variance of the data!

$$\hat{Q}_{RC} = \begin{pmatrix} 12.08 & 0 \\ 0 & 0.32 \end{pmatrix}$$

Rotation PC1 = 0.59 cSBP + 0.81 cDBP Transformed data PC2 = -0.81 CSBP + 0.59 CDBP centered data

For Example: PC score for person #6: PC16 = 0.59 x 3 + 0.81 x 4 = 5

But how variable reduction play a role in PCA?
We still have the same # of wariables as of PCs.

Since the 1º PC captures ×97% of all raiance (carries most of the information about the data), we can neglect PC2.

PC1 = 0.59 cSBP + 0.81 cDBP

We are combining the two rainble, CSBP and CDBP into 1 variable, the PCI, in a way that maximize the variance of the linear combination.

The weights tell how much each variable contributes to the PC.

WCDBP > WCSBP : PCA juits more weight into cDBP when the 2 variables are combined.

NOTE: the wraniance matrix transforms any vector into the direction of the eigenvector of largest eigenvalue or variance!

ignoring PCZ,
ignoring PCZ,
data is projected
into PCI.