Warren - Stock Analysis

By AISHWARYA DIXIT SHARANG GUPTA AYUSH PANT

SENTIMENT ANALYSIS

Data Sources

- Tweets from the twitter API
- News from SeekingAlpha

ANALYSIS OF TWEETS

EXTRACTING TWEETS

Tweets

Jon Ogg @jonogg

Carl Icahn going to get lot of CNBC and Bloomberg time Tuesday saying "I want the \$AAPL buyback now; 'early next year' not soon enough"

Expand

Douglas Kass @DougKass

I am listening to the bullish spin on APPL and I cant share the enthusiasm, sorry Appleheads. \$AAPL

Expand

♣ Reply 13 Retweeted ★ Favorite ••• More

4m

CNBC @CNBC

\$AAPL CEO: Board & Mgmt. will consider wide range of capital return issues; will announce any changes to current program early

next year.

2. CLEANING
EXTRACTED
TWEETS

guruleak slab lolz spi aapl sq 3. TOKENIZING ge **CLEANED TWEETS** amzn intc msft bac twtr

4. SENDING THE TWEETS TO PYSENTIMENT

Discovering people opinions, emotions and feelings about a product or service

5. RETURNING THE SCORE

{'Polarity': 0.6250944821192187, 'Positive': 4300, 'Negative': 992, 'Subjectivity': 0.19996977024637358}

SENTIMENT RATIO: 4

Process finished with exit code 0

ANALYSIS OF NEWS

1. INITIALISING THE BROWSER VIA SELENIUM

2. GETTING THE PAGE SOURCE

```
<!DOCTYPE html>
    <html>
        <head>
            <title>Example<title>
 5
            <link rel="stylesheet" href="styl</pre>
 6
        </head>
        <body>
 8
            < h1>
 9
                 <a href="/">Header</a>
            </h1>
10
11
            <nav>
12
                 <a href="one/">0ne</a>
13
                 <a href="two/">Two</a>
                 <a href="three/">Three</a>
14
15
            </nav>
```

3. SENDING PAGE SOURCE TO BEAUTIFULSOUP

4. GENERATING THE

5. NAVIGATING TO THE REQUIRED ELEMENT

```
▲ <a class="market current title" href="/news/3336774-micro</p>
   a" target=" self" sasource="qp sum news 2">
     Microsoft signs solar power agreement in India
   </a>
 </div>

	✓ <span class="general summary light text bullets">
  > ...
 </span>
> <span class="mc new">...</span>
 <span class="mc gray separator">|</span>
 <span class="market current comment">3 Comments</span>
</div>
```

6. EXTRACTING THE TEXT

Microsoft signs solar power agreement in India

- Microsoft (NASDAQ:MSFT) signs an agreement to purchase
 3MW of solar-powered electricity from Atria Power in India.
- The power will supply 80% of the electricity needs of a new office in Bangalore.
- The agreement is Microsoft's first solar power deal in India. Last week, the company announced plans to buy solar energy output in Singapore.
- Microsoft shares are up 0.7% to \$94.27.
- Previously: Microsoft buying output from Singapore clean energy project (March 2)

Microsoft (NASDAQ:MSFT) signs an agreement to purchase 3MW of solar-powered electricity from Atria Power in India.

8. CLEANING AND TOKENIZING

Microsoft (NASDAQ:MSFT) signs an agreement to purchase 3MW of solar-powered electricity from **Atria Power** in India.

9. RETURNING THE SCORE

Cowen maintains an Outperform rating on Microsoft (NASDAQ:MSFT) and raises the price target by \$5 to \$105. Th Microsoft (NASDAQ:MSFT) launches a new gaming cloud division. Kareem Choudhry, who has worked on Outlook Microsoft (NASDAQ:MSFT) researchers believe they've created the first machine translation system that can translate ser 21Vianet Group (NASDAQ:VNET) and Microsoft (NASDAQ:MSFT) agree to extend their partnership that provides public clc {'Polarity': 0.5151515099479645, 'Positive': 75, 'Negative': 24, 'Subjectivity': 0.21521739083648395}

SENTIMENT RATIO: 3.125

Process finished with exit code 0

FUNDAMENTAL ANALYSIS

How does it work?

- We use machine learning to analyze company fundamentals like:
- price/book ratio
- P/E ratio
- Debt/Equity ... etc
- Then classify the stocks as either out-performers compared to the market (labeled as 1's), or under-performers (labeled as 0's).

STEP 1:

Gathering the Data and converting it into a usable form

Data Source

HTML source code for the S&P 500 index of companies over a decade from Yahoo Finance.

Procedure

- 1. By saving the sources offline we save on time and bandwidth
- 2. Parse the files one after another for all the stocks and proceed if the file for that stock is present
- 3. The files are stored by their tickers

Procedure

- 4. We extract their date-time and convert into unix time
- 5. We access the file, and save the full source code HTML contents to the "source" variable. From there, we do a quick search for the "gather" term, which is the name of the feature we're hunting for.
- 6. With this simple splitting method we pull the Debt/Equity ratios for all of the companies.
- 7. We use Pandas module for structuring and organizing the data into a dataframe.
- 8. Here we specify the columns as date, unix, ticker, and DE ratio.
- 9. We then store the dataframe in a csv file.

STEP 2:

We need to compare these values against the market

Procedure

- 10. Fetch the s&p500 values
- 11. We add 'price' and 's&p500' columns in the previously created dataframe

	Date	Open	High	Low	Close	Adj Close	Volume
2	2000-01-03	1469.25	1478	1438.359985	1455.219971	1455.219971	931800000
3	2000-01-04	1455.219971	1455.219971	1397.430054	1399.420044	1399.420044	1009000000
4	2000-01-05	1399.420044	1413.27002	1377.680054	1402.109985	1402.109985	1085500000
5	2000-01-06	1402.109985	1411.900024	1392.099976	1403.449951	1403.449951	1092300000
6	2000-01-07	1403.449951	1441.469971	1400.72998	1441.469971	1441.469971	1225200000
7	2000-01-10	1441.469971	1464.359985	1441.469971	1457.599976	1457.599976	1064800000
8	2000-01-11	1457.599976	1458.660034	1434.420044	1438.560059	1438.560059	1014000000
9	2000-01-12	1438.560059	1442.599976	1427.079956	1432.25	1432.25	974600000
10	2000-01-13	1432.25	1454.199951	1432.25	1449.680054	1449.680054	1030400000
11	2000-01-14	1449.680054	1473	1449.680054	1465.150024	1465.150024	1085900000
12	2000-01-18	1465.150024	1465.150024	1451.300049	1455.140015	1455.140015	1056700000
13	2000-01-19	1455.140015	1461.390015	1448.680054	1455.900024	1455.900024	1087800000
14	2000-01-20	1455.900024	1465.709961	1438.540039	1445.569946	1445.569946	1100700000
15	2000-01-21	1445.569946	1453.180054	1439.599976	1441.359985	1441.359985	1209800000
16	2000-01-24	1441.359985	1454.089966	1395.420044	1401.530029	1401.530029	1115800000
17	2000-01-25	1401.530029	1414.26001	1388.48999	1410.030029	1410.030029	1073700000
18	2000-01-26	1410.030029	1412.72998	1400.160034	1404.089966	1404.089966	1117300000
19	2000-01-27	1404.089966	1418.859985	1370.98999	1398.560059	1398.560059	1129500000
20	2000-01-28	1398.560059	1398.560059	1356.199951	1360.160034	1360.160034	1095800000
21	2000-01-31	1360.160034	1394.47998	1350.140015	1394.459961	1394.459961	993800000

FURTHER:

We're going to compare the stock's percentage change to the S&P 500's percentage change. If the stock's percent change is less than the S&P 500, then the stock is and under-performing stock. If the percentage change is more, than the label is out-perform.

We will **add more features** for better comparison and label accordingly

API INTEGRATION

Phase 1: Setting up the API

- Setting up the database(optional)
- Installing Django on local machine:
 - 1. Using GIT:

```
git clone https://github.com/django/django.git
    1. Using pip:
    pip install -e django/
```

Phase 2: Using the Server

Django Development Server:

django-admin.py runserver django-admin.py runserver 10.0.0.150:8001

Other Common Servers:

Mod_WSGI,uWSGI,Gunicorn

Phase 3: Creating the Project

```
$ django-admin startproject mysite
```

```
mysite/
manage.py
mysite/
__init__.py
settings.py
urls.py
wsgi.py
```

Phase 4: Creating the App

```
$ python manage.py startapp polls
```

```
polls/
   __init__.py
   admin.py
   apps.py
   migrations/
    __init__.py
   models.py
   tests.py
   views.py
```

Phase 5: Integrating Functions with views

Phase 6: Making the UI

- •Rendering the output in external html file.
- Including all the additional CSS and JS using the static os concept in Django API
- Using other External Libraries for beautifying the User Interface.
 - 1.Bootstrap
 - 2.Jquery
- Showing the output in Bootstrap Model.

THANK YOU