Lecture 18: Descriptive Statistics

Monday, October 30, 2023

Your Teaching Fellows:

003/004: Zahra Abolghasem Bronwen Grocott

Vasileia Karasavva Ni An

010: Thalia Lang

Ruoning Li

Malina Lemmons

Irene Wen

Lectures: MWF 12:00 PM - 1:00 PM (003); 1:00 PM - 2:00 PM (004); 2:00 PM - 3:00 PM (010)

Office hours: Tuesdays 2:00 PM – 4:00 PM

Measures of Variability

- Variability
 - The spread of distribution of scores
- Measures
 - Range (Max Min)
 - Variance (s^2)
 - Sum of squared deviations around mean divided by N − 1
 - Need it for later analyses
 - Standard Deviation (s or SD) = $\sqrt{s^2}$
 - Square root of variance
 - On average, the deviations of each score from the mean

Measures of Variability

- Variability
 - The spread of distribution of scores
- Measures
 - Range (Max Min)
 - Variance (s^2)
 - Sum of squared deviations around mean divided by N-1
 - Need it for later analyses
 - Standard Deviation (s or SD) = $\sqrt{s^2}$
 - Square root of variance
 - On average, the deviations of each score from the mean

What does an intelligence score of 105 mean? Choose the best answer

	-1SD	Mean	+1SD
SD = \$4000	\$19 000	\$23 000	\$27 000

This is a normal distribution of women's height in the U.S in inches. What is the SD of women's height in the U.S.?

Mona, Eric, and John entered a track meet. Eric ran 10 laps in 15 minutes, which is faster than only 16% of competitors. Mona ran faster than exactly half of all the competitors. His time was 3 minutes faster than Eric's. Assuming that lap times are normally distributed, what was the lap time for

John, who finished faster than exactly 98% of all the competitors?

If the mean of a distribution is 5, what does a standard deviation of 2.62 mean?

0	0	0	0	0
34% of	68% of	96% of	14% of	All of the
scores fall	scores fall	scores fall	scores fall	above
between	between	between -	between	
2.38 and 5 2.38 and 7.62	0.24 and	7.62 and		
	7.62	10.24	10.24	

Learning objectives

- By the end of today, you'll be able to
 - Compare and contrast regression and correlation
 - Predict a score using a regression line
 - Define multiple correlation
 - Describe how partial correlation helps us address the third variable problem
 - Generate a null hypothesis and a research hypothesis

Descriptive Statistics

- Measures of central tendency
 - Mean, Median, Mode
- Measures of variability
 - Range, variance, standard deviation
- Measures of relationships
 - Correlation (r) and r^2
 - Multiple regression
 - Multiple correlation (R) and R^2
 - Partial correlation

Correlation

- Correlation coefficient
 - A numerical index that reflects the degree of *linear* relationship between two variables
 - Pearson r

Example: Delay of Gratification

Delay of Gratification

Delay of Gratification

- Variable 1:
 - Ability to delay gratification at age 5
- Variable 2:
 - Academic competence (rated by parents) at age 15
- Pearson r = .39
- Rough standards for interpreting correlations:
 - $0 \le |r| < .40 = \text{small}$
 - $.40 \le |r| < .60 = medium$
 - $.60 \le |r| \le 1.00 = large$

Delay of Gratification

$$r = .39$$

$$r^2 = .15$$

Coefficient of Determination

Coefficient of Determination

Shared variance

Variance in Delay of Gratification

Variance in Academic Competence

If
$$r^2 = 0$$

No Overlap

Coefficient of Determination

Variance in Variance in Delay of Academic Gratification competence

 $r^2 = 1.00$ Complete Overlap

Coefficient of Determination

- % of variability in y accounted for by variability in x
- % of variability in y predictable by variability in x