Eric Anthony Mitchell

eric.mitchell@cs.stanford.edu / https://ericmitchell.ai / @ericmitchellai

Education

Stanford University, Stanford, CA 2019 - 2024 (Expected)

Ph.D. Candidate, Computer Science

Advisors: Chelsea Finn & Christopher D. Manning

Fellowship: Stanford Knight-Hennessy Graduate Fellowship

Princeton University, Princeton, NJ 2014 - 2018

B.S.E., Computer Science (Highest Honors)

Advisor: H. Sebastian Seung

Professional Experience

DeepMind (AlphaCode team) London, England

Research Scientist Intern [hosts: Junyoung Chung, Nate Kushman, Aäron van den Oord]

2022

2023

Samsung Research America New York City, New York Research Intern, part-time 2019 - 2020

Machine Learning Research Engineer 2018 - 2019

Princeton Neuroscience Institute Princeton, New Jersey Research Engineer

Google Mountain View, California

Software Engineering Intern

TapTools LLC Winston-Salem, North Carolina 2012 - 2016

Founder, iOS Developer

*indicates equal contribution

Selected Works

Katherine Tian*, Eric Mitchell*, Huaxiu Yao, Christopher D. Manning, Chelsea Finn.	2023
Fine-tuning Language Models for Factuality. Preprint, under review.	

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, Christopher D. Manning. An Emulator for Fine-Tuning Large Language Models using Small Language Models. Preprint, under review.

Rafael Rafailov*, Archit Sharma*, Eric Mitchell*, Stefano Ermon, Christopher D. Manning, 2023 Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. Outstanding Paper, Runner-Up, Neural Information Processing Systems (NeurIPS).

Nathan Hu*, Eric Mitchell*, Christopher D. Manning, Chelsea Finn. Meta-Learning Online 2023 Adaptation of Language Models. Empirical Methods in Natural Language Processing (EMNLP).

Katherine Tian*, Eric Mitchell*, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, 2023 Chelsea Finn, Christopher D. Manning. Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback. Empirical Methods in Natural Language Processing (EMNLP).

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, Chelsea Finn. 2023 DetectGPT: DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature. Oral Presentation (2% of submissions), International Conference on Machine Learning (ICML).

Peter Henderson*, Eric Mitchell* , Christopher D. Manning, Dan Jurafsky, Chelsea Finn.	2023
Self-Destructing Models: Increasing the Costs of Harmful Dual Uses in Foundation Models. Honorable Mention, Best Student Paper. AAAI/ACM Conference on Artificial Intelligence, Ethics, & Society.	
Eric Mitchell , Joseph J Noh, Siyan Li, William S Armstrong, Ananth Agarwal, Patrick Liu, Chelsea Finn, Christopher D Manning. Enhancing Self-Consistency and Performance of Pretrained Language Models with NLI. <i>Oral Presentation (4% of submissions)</i> , Empirical Methods in Natural Language Processing (EMNLP).	2022
Eric Mitchell , Charles Lin, Antoine Bosselut, Christopher D. Manning, Chelsea Finn. Memory-Based Model Editing at Scale. <i>International Conference on Machine Learning (ICML)</i> .	2022
Eric Mitchell , Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D. Manning. Fast Model Editing at Scale. <i>International Conference on Learning Representations (ICLR)</i> .	2022
Rishi Bommasani et al. On the Risks and Opportunities of Foundation Models. Whitepaper, Center for Research on Foundation Models.	2021
Eric Mitchell , Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline Meta-Reinforcement Learning with Advantage Weighting. <i>International Conference on Machine Learning (ICML)</i> .	2021
Eric Mitchell , Selim Engin, Volkan Isler, Daniel D Lee. Higher-Order Function Networks for Learning Composable 3D Object Representations. <i>International Conference on Learning Representations (ICLR)</i> .	2020
Tarik Tosun*, Eric Mitchell *, Ben Eisner, Jinwook Huh, Bhoram Lee, Daewon Lee, Volkan Isler, H. Sebastian Seung, Daniel D Lee. Pixels to Plans: Learning Non-Prehensile Manipulation by Imitating a Planner. <i>IEEE International Conference on Intelligent Robots and Systems (IROS)</i> .	2019
Invited Talks	
Invited Talks Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT)	Dec 2023
Simplifying RLHF with Direct Preference Optimization	Dec 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT)	
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning	Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University)	Nov 2023 Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University)	Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University)	Nov 2023 Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent)	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Mar 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community Stanford Computer Systems Colloquium	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Mar 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community Stanford Computer Systems Colloquium Editing the Behaviors of Pre-Trained Neural Networks	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Feb 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community Stanford Computer Systems Colloquium Editing the Behaviors of Pre-Trained Neural Networks Hudson River Trading	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Feb 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community Stanford Computer Systems Colloquium Editing the Behaviors of Pre-Trained Neural Networks Hudson River Trading Allen Institute for AI	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Feb 2023
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community Stanford Computer Systems Colloquium Editing the Behaviors of Pre-Trained Neural Networks Hudson River Trading Allen Institute for AI Cohere	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Feb 2023 Feb 2022 Dec 2021
Simplifying RLHF with Direct Preference Optimization Massachusetts Institute of Technology (MIT) UC Berkeley CS285: Deep Reinforcement Learning Cornell Tech Princeton Language and Intelligence (PLI) Prof. Aditi Raghunathan Group Meeting (Carnegie Mellon University) Prof. Mark Dredze Group Meeting (Johns Hopkins University) A Gradient-Free Emulator for Fine-tuning Language Models Imbue (formerly Generally Intelligent) Toward More Truthful Language Models UNC CS 790-150: Reliable Machine Learning Stanford CS329T: Trustworthy Machine Learning Detecting Machine-Generated Text Google Beijing Academy of Artificial Intelligence (BAAI) Community Stanford Computer Systems Colloquium Editing the Behaviors of Pre-Trained Neural Networks Hudson River Trading Allen Institute for AI Cohere Stanford CS 330: Deep Multi-task and Meta-Learning	Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023 Oct 2023 Oct 2023 Mar 2023 Feb 2023 Jan 2023 Feb 2022 Dec 2021 Nov 2021

Academic Awards

2023
2019 - 2022
2018
2017
2017
2016 - 2017
2016
2023
2020 - 2021, 2023
2020 - 2022
2020 - 2021
2020 - 2021
2018
2023
2014 - 2018
2015