

k-Vizinhos Mais Próximos

Rafael Geraldeli Rossi

Conteúdo

- Introdução
- Algoritmo: k Vizinhos Mais Próximos
 - k-NN Sem Peso no Voto
 - kNN Com Peso no Voto
 - Padronização dos Dados
 - k-NN para Predição Numérica
- 3 Características e Consdiderações sobre o k-NN
- Material Complementar

Introdução

- O algoritmo *k*-Nearest Neighbors (*k*-NN) pertence ao paradigma de aprendizado baseado em instâncias
- Paradigma baseado em instâncias remete ao fato de não se induzir regras, hiperplanos de separação, ou probabilidades → o aprendizado e a classificação dos exemplos utilizam as próprias instâncias do conjunto de dados de treinamento ou criam protótipos (objetos representantes das classes) com base nos exemplos de treinamento
- Algoritmo amplamente utilizado na área de reconhecimento de padrões

Introdução

- O algoritmo k-NN é conhecido por aprendizado do tipo "lazy" (preguiçoso)
 - O algoritmo de aprendizado aguarda até o último instante para construir um modelo e classificar um exemplo
 - Dado os exemplos de treinamento, o aprendizado lazy apenas armazena os exemplos e espera até que seja dado um exemplo de teste para realizar algum tipo de processamento
 - Classifica um exemplo baseado na semelhança (proximidade) com os exemplos de treinamento

k-NN Sem Peso no Voto kNN Com Peso no Voto Padronização dos Dados k-NN para Predição Numéri

- A classificação utilizando os vizinhos mais próximos, como o próprio nome diz, faz uso dos rótulos dos vizinhos para descobrir a classe de um objeto não rotulado
- No caso do k-NN são utilizados os rótulos dos k vizinhos mais próximos
- Normalmente é atribuído o rótulo da classe mais frequente dos k vizinhos mais próximos ao exemplo de teste

Figura: Exemplo de classificação utilizando os 3 vizinhos mais próximos

Figura: Exemplo de classificação utilizando os 3 vizinhos mais próximos

Figura: Efeito do valor de k

Exemplo

Tabela: Parte do conjunto de dados Iris

ID	Sepal Length	Sepal Width	Petal Length	Petal Width	Class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
3	7,0	3,2	4,7	1,4	Iris-versicolor
4	6,4	3,2	4,5	1,5	Iris-versicolor
5	6,3	3,3	6,0	2,5	Iris-virginica
6	5,8	2,7	5,1	1,9	Iris-virginica

Sepal Length	Sepal Width	Petal Length	Petal Width	Class
5,4	3,1	2,5	1,0	???

Exemplo

$$d(t,1) = \sqrt{(5,4-5,1)^2 + (3,1-3,5)^2 + (2,5-1,4)^2 + (1,0-0,2)^2}$$

$$d(t,1) = \sqrt{(0,09+0,16+1,21+0,64)} = \sqrt{2,1} = 1,44$$

$$d(t,2) = \sqrt{(5,4-4,9)^2 + (3,1-3,0)^2 + (2,5-1,4)^2 + (1,0-0,2)^2}$$

$$d(t,2) = \sqrt{(0,25+0,01+1,21+0,64)} = \sqrt{2,11} = 1,45$$

$$d(t,3) = \sqrt{(5,4-7,0)^2 + (3,1-3,2)^2 + (2,5-4,7)^2 + (1,0-1,4)^2}$$

$$d(t,3) = \sqrt{2,56+0,01+4,84+0,16} = \sqrt{7,21} = 2,68$$

$$d(t,4) = \sqrt{(5,4-6,4)^2 + (3,1-3,2)^2 + (2,5-4,5)^2 + (1-1,5)^2}$$

$$d(t,4) = \sqrt{1,0+0,01+4,0+0,25} = \sqrt{5,26} = 2,29$$

$$d(t,5) = \sqrt{(5,4-6,3)^2 + (3,1-3,3)^2 + (2,5-6,0)^2 + (1,0-2,5)^2}$$

$$d(t,5) = \sqrt{0,81+0,04+12,25+2,25} = \sqrt{15,35} = 3,91$$

$$d(t,6) = \sqrt{((5,4-5,8))^2 + (3,1-2,7)^2 + (2,5-5,1)^2 + (1,0-1,9)^2}$$

 $d(t,6) = \sqrt{0.16 + 0.16 + 6.76 + 0.81} = \sqrt{7.89} = 2.80$

Tabela: Ranking dos vizinhos mais próximos

Ranking	ID	Distância	Classe
1°	1	1,44	Iris-setosa
2°	2	1,45	Iris-setosa
3°	4	2,29	Iris-versicolor
4°	3	2,68	Iris-versicolor
5°	6	2,80	Iris-virginica
6°	5	3,91	Iris-virginica

Resultados de classificação

1-NN: Iris-setosa2-NN: Iris-setosa3-NN: Iris-setosa

4-NN: Empate entre Iris-setosa e Iris-versicolor
5-NN: Empate entre Iris-setosa e Iris-versicolor

• 6-NN: Empate entre Iris-setosa, Iris-versicolor e Iris-virginica

 Vale ressaltar que nesta versão tradicional do algoritmo k-NN, exemplos menos próximos tem o mesmo peso no voto de exemplos mais próximos

- Pode-se dar um peso diferente ao voto de cada vizinho
 - O peso do voto é dado por

$$voto = \frac{1}{dist(x, novo)}$$

na qual dist(x, novo) é a distância de um objeto x da base de treinamento ao objeto a ser classificado

- É realizado um somatório com o peso do voto dos objetos de cada classe
- O objeto é classificado com a classe que obteve o maior somatório de votos (considerando o peso)
- Reduz a sensibilidade da escolha do valor de k

Tabela: Ranking dos vizinhos mais próximos

Ranking	ID	Distância	Classe
1°	1	1,44	Iris-setosa
2º	2	1,45	Iris-setosa
3°	4	2,29	Iris-versicolor
4º	3	2,68	Iris-versicolor
5°	6	2,80	Iris-virginica
6°	5	3,91	Iris-virginica

Resultados da classificação

- 1-NN: Iris-setosa = 1/1, 44 = 0, 69; Iris-versicolor = 0; Iris-virginica = 0
- 2-NN: Iris-setosa = 1/1, 44 + 1/1, 45 = 1, 37; Iris-versicolor = 0; Iris-virginica = 0
- 3-NN: Iris-setosa = 1/1, 44 + 1/1, 45 = 1, 37; Iris-versicolor = 1/2, 29 = 0, 43; Iris-virginica = 0
- 4-NN: Iris-setosa = 1/1, 44 + 1/1, 45 = 1, 37; Iris-versicolor = 1/2, 29 + 1/2, 68 = 0, 8;
 Iris-virginica = 0
- 5-NN: Iris-setosa = 1/1, 44 + 1/1, 45 = 1, 37; Iris-versicolor = 1/2, 29 + 1/2, 68 = 0, 8; Iris-virginica = 1/2, 80 = 0, 35
- 6-NN: Iris-setosa = 1/1, 44 + 1/1, 45 = 1, 37; Iris-versicolor = 1/2, 29 + 1/2, 68 = 0, 8; Iris-virginica = 1/2, 80 + 1/3, 91 = 0, 60

- O uso de peso nos votos pode gerar erros devido a presença de outliers ou a classificação pode ser baseada em um único vizinho
- Um objeto pode estar tão próximo a um outlier (ou vizinho) de modo que o peso os votos de outros objetos não sejam o suficiente para definir a classe de um objeto

k-NN Sem Peso no Voto kNN Com Peso no Voto Padronização dos Dados k-NN para Predição Numérica

Padronização dos Dados

- Normalmente os valores dos atributos são normalizados ou padronizados para que um atributo não interfira excessivamente na (dis)similaridade dos exemplos
- Nos exemplos anteriores, o tamanho da pétala e da sépala de uma íris possuem o mesmo intervalo de valores
- Porém, ao considerar atributos com diferentes intervalos de valores, é necessário ter cuidado na hora de calcular a (dis)similaridade dos exemplos

Ex:

Tabela: Conjunto de dados original

ID	Idade	Salário	Classe
1	34	3000	Sim
2	36	3200	Sim
3	65	2700	Não
4	67	2600	Não

 Agora vamos supor que queiramos descobrir o exemplo mais próximo do conjunto de treinamento, utilizando a distância Euclidiana, para o segundo exemplo:

Tabela: Nova instância

Idade	Salário	Classe
35	2800	???

 Resultado do cálculo da distância Euclidiana entre os exemplos:

Tabela: Ranking dos vizinhos mais próximos

	0		
Ranking	ID	Distância	Classe
1°	3	104,4000	Não
2°	1	200,0024	Sim
3°	4	202,5400	Não
4°	2	400,0012	Sim

- No exemplo anterior pode-se perceber que a dissimilaridade é praticamente definida apenas pelo atributo salário
- Para fazer com que os atributos possuam os mesmos pesos e influenciem o cálculo da similaridade igualitariamente, deve-se padronizar os valores dos atributos
- Existem diversas formas de padronização dos dados
- Uma das mais utilizadas é a normalização linear ou normalização $min\text{-}max \rightarrow \text{que}$ mapeia o intervalo de dados original para o intervalo [0,1]

 Na normalização min-max, o novo valor (v_{novo}) em um determinado atributo é dado por:

$$v_{novo} = rac{V_{original} - V_{minimo}}{V_{maximo} - V_{minimo}}$$

na qual

- v_{original} é o valor original do atributo
- *v_{minimo}* é o menor valor do atributo sendo normalizado
- v_{maximo} é o maior valor do atributo sendo normalizado

 Utilizando a normalização, o conjunto de dados apresentado anteriormente fica da seguinte forma:

Tabela: Conjunto de dados original

ID	Idade	Salário	Classe
1	34	3000	Sim
2	36	3200	Sim
3	65	2700	Não
4	67	2600	Não

Tabela: Conjunto de dados padronizado

ID	Idade	Salário	Classe
1	0,00	0,66	Sim
2	0,06	1,00	Sim
3	0,93	0,16	Não
4	1,00	0,00	Não

 Com os dados padronizados, o cálculo da dissimilaridade utilizando a medida Euclidiana fica da seguinte forma:

Tabela: Nova instância

ldade	Salário	Classe
35	2800	???

Tabela: Ranking

Ranking	ID	Distância	Classe
1º	1	0,4177	Sim
2º	2	0,7506	Sim
3º	3	0,9132	Não
4º	4	1,0016	Não

 OBSERVAÇÃO: pode-se ponderar a importância do peso de cada atributo no cálculo da distância Euclidiana caso o usuário queira dar mais peso a um determinado atributo

k-NN para Predição Numérica

- O k-NN também pode ser utilizado para predição numérica, na qual o valor retornado é a média dos valores dos k vizinhos
 - Calcular a média do atributo alvo utilizando o valor do mesmo atributo dos k-vizinhos mais próximos
- Exemplo: calcular o salário do exemplo
 {Idade = 31; Tempo de Serviço = 13} utilizando 3 vizinhos
 mais próximos e o seguinte conjunto de treinamento

Tabela: Conjunto de dados original

Tabela: Conjunto de dados padronizado para o cálculo das distâncias

ID	Idade	Tempo de Serviço	Salário
1	20	2	2000
2	25	3	2500
3	50	25	8000
4	30	10	5000
5	27	5	3000
6	33	10	2700

ID	Idade	Tempo de Serviço	Salário
1	0,00	0,00	2000
2	0,17	0,04	2500
3	1,00	1,00	8000
4	0,33	0,35	5000
5	0,23	0,13	3000
6	0,43	0,35	2700

k-NN para Predição Numérica

Exemplo de teste padronizado:
 {Idade = 0, 37; Tempo de Serviço = 0, 48}

Tabela: Ranking dos vizinhos mais próximos

Ranking	ID	Distância	Salário
1°	4	0,1	5000
2°	6	0,1	2700
3°	2	0,47	2500
4°	1	0,6	2000
5°	3	0,66	8000
6°	5	0,7	3000

Salário do exemplo de teste:

$$\textit{Salário} = \frac{5000 + 2700 + 2500}{3} = 3400,00$$

k-NN para Predição Numérica

- O mesmo procedimento pode ser utilizado para a imputação de valores ausentes
 - Deve-se desconsiderar o atributo que possui valor ausente no cálculo das distâncias

Tabela: Conjunto de dados original

ID	Idade	Tempo de Serviço	Salário
1	20	2	2000
2	25	-	2500
3	50	25	8000
4	30	10	5000
5	27	5	3000
6	33	10	2700

Tabela: Conjunto de dados padronizados

ID	Idade	Tempo de Serviço	Salário
1	0,00	2	0,00
2	0,17	-	0,08
3	1,00	25	1,00
4	0,33	10	0,50
5	0,23	5	0,17
6	0,43	10	0,12

Tabela: Ranking

Ranking	ID	Distância	Tempo de Serviço
1º	5	0,1	5
2º	1	0,14	2
3°	6	0,24	10
4º	4	0,43	10
5°	3	1,23	25

Utilizando 2 vizinho mais próximos temos

$$\textit{Tempo de Serviço} = \frac{5+2}{2} = 3,5$$

- O valor de k é determinado experimentalmente
- A cada valor de k é realizada uma avaliação em um conjunto de teste
- É escolhido o valor de k com melhor desempenho no conjunto de teste
- Em geral
 - Valor de k pequeno
 - Função de discriminação entre classes é muito flexível
 - Sensível a ruído
 - Valor de k grande
 - Função de discriminação entre classes é menos flexível
 - Tende a incluir objetos de outras classes
 - Menos sensível a ruído

- A escolha da métrica de distância é fundamental
- Seja |D| o número de exemplos de treinamento e |A| o número de atributos, a complexidade do k-NN é $O(|D| \times |A|)$
- Técnica para acelerar a classificação
 - Implementações paralelas
 - Calculo da distância baseada em um subconjunto de atributos
 - kD-tree
 - Remover exemplos de treinamento que s\u00e3o inconsistentes com seus pr\u00f3prios vizinhos
 - ...

- Técnica para acelerar a classificação
 - Remover exemplos de treinamento que são inconsistentes com seus próprios vizinhos → seleção de instâncias e deteção de outliers
 - Se os vizinhos de um exemplo de treinamento possuirem a classe diferente de um determinado exemplo de treinamento, esse exemplo deve ser removido

- Ao realizar um aprendizado do tipo lazy, há um menor esforço na etapa de aprendizado e um maior esforço na etapa de classificação
- Requer técnicas eficientes de armazenamento e recuperação
- Naturalmente suportam aprendizado incremental
- O k-NN é não paramêtrico → não assume qualquer distribuição a respeito dos dados
- São capazes de modelar espaços de decisões complexos
- Veja: http: //vision.stanford.edu/teaching/cs231n-demos/knn/

Material Complementar

K-nearest neighbors algorithm
 https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

 Aprendizagem de máquina com o KNN https://www.youtube.com/watch?v=_3uA9tGBx0s

 Feature scaling https://en.wikipedia.org/wiki/Feature_scaling

Material Complementar

Develop k-Nearest Neighbors in Python From Scratch

```
https://machinelearningmastery.com/
tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
```

outoffer to improment a nearest neighbors in python from sorteon,

Nearest Neighbors Classification

```
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#
sphx-glr-auto-examples-neighbors-plot-classification-py
```

Material Complementar

Preprocessing With Sklearn a complete and comprehensive guide

```
https://towardsdatascience.com/
```

preprocessing-with-sklearn-a-complete-and-comprehensive-guide-670cb98fcfb

Scale, Standardize, or Normalize with Scikit-Learn

```
https://towardsdatascience.com/
```

```
scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
```

Imagem do Dia

Rabbit

Rabbyte

Inteligência Artificial http://lives.ufms.br/moodle/

Rafael Geraldeli Rossi rafael.g.rossi@ufms.br

Slides baseados em [Han et al., 2011]

Referências Bibliográficas I

Han, J., Kamber, M., and Pei, J. (2011).

Data Mining: Concepts and Techniques.

The Morgan Kaufmann Series in Data Management Systems. Elsevier.