

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2017-2018

MATERIA: FÍSICA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las cuestiones de la opción elegida.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos (1 punto cada apartado).

TIEMPO: 90 minutos.

OPCIÓN A

Pregunta 1.- Una nave espacial transporta colonos en estado de hibernación a un planeta lejano. Por un error, la nave llega a su destino 10 años terrestres antes de lo previsto, por lo que el ordenador de a bordo decide situar la nave en una órbita circular a una distancia del centro del planeta r = 5000 km y orbitar en ella durante 10 años.

- a) ¿Cuántas vueltas da la nave en la órbita circular a lo largo de los 10 años?
- b) ¿Cuál es el valor de la velocidad de escape en la superficie del planeta?

Datos: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; Masa del planeta, $M_P = 6.42 \cdot 10^{23} \text{ kg}$; Radio del planeta, $R_P = 3397.5 \text{ km}$.

Pregunta 2.- Una onda transversal se propaga en el sentido positivo del eje x. En las figuras se muestran: la variación de la elongación en un instante t=0 a lo largo del eje x y la elongación del punto de coordenada x=0 en función del tiempo. Determine:

b) La expresión matemática de la onda.

Pregunta 3.- Dos cargas Q_1 = -4 nC y Q_2 = 4 nC están situadas en los puntos P_1 (3, 4) y P_2 (-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

- a) El vector campo eléctrico en el origen de coordenadas.
- b) El potencial electrostático en el origen de coordenadas.

Dato: Constante de la Ley de Coulomb, K=1/(4\pi\varepsilon_0) = 9·10⁹ N m² C -².

Pregunta 4.- Un sistema óptico está formado por dos lentes convergentes de distancias focales $f_1' = 20 \,\mathrm{cm}$ y $f_2' = 30 \,\mathrm{cm}$. La segunda lente, de distancia focal f_2' , está situada a la derecha de la primera a 100 cm de distancia. Un objeto de 3 cm de altura se coloca 30 cm delante de la primera lente.

- a) Determine la posición y la altura de la imagen del objeto formada por el sistema óptico.
- b) Realice el diagrama de rayos correspondiente.

Pregunta 5.- Un láser emite luz de frecuencia 1,54·10¹⁵ Hz.

- a) Determine la longitud de onda de la luz emitida por el láser.
- b) Si el haz de luz incide sobre una superficie de wolframio cuya longitud de onda umbral es de 230 nm, ¿cuál es la energía cinética máxima de los electrones emitidos?

Datos: Constante de Planck, $h = 6.63 \cdot 10^{-34} \,\mathrm{J}$ s; Velocidad de la luz en el vacío, $c = 3 \cdot 10^8 \,\mathrm{m}$ s⁻¹.

OPCIÓN B

Pregunta 1.- Una masa de valor M = 4 kg se encuentra en el punto (4, 0) del plano xy (coordenadas expresadas en metros). Determine:

- a) El vector campo gravitatorio creado por la masa en el punto P (0, 3).
- b) El trabajo necesario para llevar una masa m = 10 kg desde el origen de coordenadas al punto P.

Dato: Constante de Gravitación Universal, $G = 6,67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Pregunta 2.- Dos altavoces A y B emiten ondas sonoras con potencias P_A y $P_B = 3P_A$, respectivamente. En un punto Q situado a una distancia d = 5 m, equidistante de ambos altavoces, el nivel de intensidad sonora es de 90 dB. Determine:

- a) La intensidad sonora en Q.
- b) La potencia del altavoz A.

Dato: Intensidad umbral, $I_0 = 10^{-12}$ W m⁻².

Pregunta 3.- Por un hilo conductor rectilíneo situado a lo largo del eje x y que pasa por el punto (0, 0, 0), circula una corriente eléctrica de intensidad I = 10 A en el sentido negativo del eje x (coordenadas expresadas en metros).

- a) Calcule el vector campo magnético debido al hilo en el punto P (0, 5, 0).
- b) Si una carga Q = 3 mC pasa por el punto P (0, 5, 0) con una velocidad $\vec{v} = 4\vec{i} + 4\vec{j} \, \text{m·s}^{-1}$, ¿cuál es el vector fuerza magnética que actúa sobre la carga?

Dato: Permeabilidad magnética del vacío, $\mu_0 = 4\pi \cdot 10^{-7} \text{ N A}^{-1}$.

Pregunta 4.- Un haz de luz de frecuencia $4,29\cdot10^{14}$ Hz incide desde un medio 1 de índice de refracción n_1 = 1,50 sobre otro medio 2 de índice de refracción n_2 = 1,30. El ángulo de incidencia es de 50°. Determine:

- a) La longitud de onda del haz en el medio 1.
- b) El ángulo de refracción. ¿A partir de qué ángulo de incidencia se produce la reflexión total del haz incidente?

Dato: Velocidad de la luz en el vacío $c = 3.10^8$ m s⁻¹.

Pregunta 5.- Una muestra, de masa m = 30 g, está compuesta por un elemento radiactivo cuya masa molar es de 87 g·mol⁻¹. En la actualidad la muestra posee una actividad de 2,85·10¹² Bq. Calcule:

- a) El periodo de semidesintegración del elemento radiactivo.
- b) La masa de la muestra dentro de 6000 años.

Dato: Número de Avogadro, N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}.