HLCV EXERCISE 3 REPORT

AKSHAY JOSHI 2581346 s8akjosh@stud.uni-saarland.de

ANKIT AGRAWAL 2581532 s8anagra@stud.uni-saarland.de

SUSHMITA NAIR 2581308 s8sunair@stud.uni-saarland.de

Question 1: Implement Convolutional Network

1. Report the training and validation accuracies

We have used **Kaiming Weight Initialization** method considering the ReLu activation used in the network. Because of this we have achieved slightly better results compared to Random Weight Init.

Validation Accuracy: 81.0 %

Plots to show the Accuracies & Loss of this model:

2. Report the number of trainable parameters of the model

Number of trainable parameters = 7682826

3. Visualize & compare the filters before and after training Before:

After:

It can be noticed that the filters after the network training process have slightly changed based on certain conditions/regions of the image on which our kernel/filter passes through.

Some colors from the input are more pronounced and picked over other (Light intensity -> Dark in the output) and vice versa. Though it is sad that we can't

understand/see much about the edge detection or fine features detected by the network.

Question 4: Use pre-trained networks

1. Validation and testing accuracies of Pre-trained Model:

Validation Accuracy: 64.8%

2. Compare the two models training curves, validation and testing performance

Please find the accuracy metrics for Model 2 (Fine-tuned) and Model 3 (Trained from scratch)

Test:

Accuracy of the best pre-trained network (using Early stopping) on the 1000 test images: **89.5** %

Accuracy of the network with weights from random init on the 1000 test images: 88.9 %

Validation:

Accuracy of the best pre-trained network (using Early stopping) on the 1000 test images: **89.9** %

Accuracy of the network with weights from random init on the 1000 test images: 89.1 %

It appears that the fine-tuned model is slightly out-performing the model which was trained from scratch in both Test and Validation accuracies

Model 2:

Test:

3a) Data Augmentation

Experiment Setup:

Here we use different data transformations:

For Geometric augmentation, we use:

- Resize
- Crop
- HorizontalFlip
- Rotation

For color space data augmentation, we use:

- ColorJitter
- GrayScale

We check the performance of each transformation individually using some combinations of hyperparameters to get higher accuracy values.

```
input_size = 3
num_classes = 10
hidden_size = [128, 512, 512, 512, 512, 512]
num_epochs = 30 #Default: 20
batch_size = 200 #Default: 200
learning_rate = 2e-3 #Default: 2e-3
learning_rate_decay = 0.95 #Default: 0.95
reg=0.001 #Default: 0.001
num_training= 49000
num_validation = 1000
norm_layer = True ("batch")
use_dropout = False
```

Note: here we use epochs of size 30.

Results:

1. Using Resize and RandomCrop:

```
transforms.Resize((40, 40)),
transforms.RandomCrop((32, 32))
```

The original image is of size 32*32 so we first resize to 40*40 and then do a random crop to get image of 32*32.

We get.

Validation Accuracy: 85.9 %

Test Accuracy: 75.1 %

2. Using Horizontal Flip: (0.5)

transforms.RandomHorizontalFlip(),

Horizontally flip the given PIL Image randomly with a given probability. Default = 0.5

We get.

Validation Accuracy: 86.9 %

Test Accuracy: 84.5 %

3. Using Horizontal Flip: (0.6)

transforms.RandomHorizontalFlip(0.6),

Horizontally flip the given PIL Image randomly with a given probability. Default = 0.5

We get.

Validation Accuracy: 85.4 %

Test Accuracy: 86.0 %

4. Using Rotation: (degree = 15)

transforms.RandomRotation(degree = 15),

Rotate the image by angle. Here degree is the range of degree to select from, for above case it will be in the range of (-15, +15)

We get.

Validation Accuracy: 83.6 %

Test Accuracy: 83.3 %

5. Using Rotation: (degree = 25)

transforms.RandomRotation(degree = 25),

Rotate the image by angle. Here degree is the range of degree to select from, for above case it will be in the range of (-25, +25)

We get.

Validation Accuracy: 81.9 %

Test Accuracy: 83.3 %

6. Using colorJitter

 $\label{transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),} \\$

Randomly change the brightness, contrast, and saturation of an image.

We get.

Validation Accuracy: 80.8 %

Test Accuracy: 84.1 %

7. Using Grayscale:

torchvision.transforms.Grayscale(num_output_channels=3)

The original image is of size 32*32 so we first resize to 40*40 and then do a random crop to get image of 32*32.

We get.

Validation Accuracy: 80.4 %

Test Accuracy: 59.8 %

Observations:

We can see from using different data transformations:

The best accuracy is given by using HorizontalFlip(0.5) i.e. 86.9%

We also notice that **Geometric data transformation performs better than color space** data augmentations.

Among which GrayScale transformation performs the worst.

Question 3b (Dropout)

Experimental Setup:

```
input_size = 3
num_classes = 10
hidden_size = [128, 512, 512, 512, 512, 512]
num_epochs = 20 #Default: 20
batch_size = 200 #Default: 200
learning_rate = 2e-3 #Default: 2e-3
learning_rate_decay = 0.95 #Default: 0.95
reg=0.001 #Default: 0.001
dropout_value = [0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
num_training= 49000
num_validation =1000
norm_layer = True  # (Batch Normalization)
data_transform = False
```

We experiment for different values of p for dropout ranging from 0.1 to 0.9.

Results:

Test and validation accuracies have been reported for each value of p.

Model	p-value	Validation Accuracy	Test Accuracy
Model 1	0.1	84.40%	85.40%
Model 2	0.15	85.20%	84.10%
Model 3	0.2	85.80%	85.00%
Model 4	0.25	85.80%	84.30%
Model 5	0.3	85.80%	84.90%
Model 7	0.4	83.20%	81.10%
Model 8	0.5	79.90%	79.20%
Model 9	0.6	75.70%	76.10%
Model 10	0.7	68.10%	66.10%
Model 11	0.8	38.90%	37.00%
Model 12	0.9	11.20%	12.40%

Observations:

We get maximum validation accuracy for Model with Dropout probability(p) = 0.2 I.e. Validation Accuracy = 85.50% And Test Accuracy = 85.00%

From the plots(below) we can also notice that high values of p regularize the model heavily and decrease model capacity, but with low values, the model overfits.

Plots for Accuracy and Loss for different values of p (Dropout probability):

p = 0.1

