Natural numbers

Marcel Schütz

October 26, 2021

Contents

Ι	Arithmetic	3
1	Peano Arithmetic1.1 The Peano axioms1.2 Immediate consequences1.3 Additional constants	3 3 4
2	Addition2.1 Axioms2.2 Immediate consequences2.3 Computation laws	4 4 4 5
3	Multiplication3.1 Axioms3.2 Computation laws	7 7 8
4 5	Exponentiation 4.1 Axioms	12 12 12 16
II	Ordering	17
6	Ordering 6.1 Definitions and immediate consequences 6.2 Basic properties 6.3 Ordering and successors	17 17 18 19
7	Ordering and addition	20
8	Ordering and multiplication	21

9	Ordering and exponentiation	23
10	Induction	26
	10.1 Least natural numbers	26
	10.2 Induction via predecessors	26
	10.3 Induction above a certain number	27
11	Standard exercises	27
II	I Divisibility	31
12	Divisibility	31
	12.1 Definitions	31
	12.2 Basic properties	31
13	Euclidean division	33
14	Primes	35
	14.1 Definitions	35
	14.2 Basic properties	36

Part I

Arithmetic

1 Peano Arithmetic

1.1 The Peano axioms

Signature 1. A natural number is an element.

Let k, l, m, n denote natural numbers.

Signature 2. 0 is a natural number.

Let n is nonzero stand for $n \neq 0$.

Signature 3. succ(n) is a natural number.

Let the direct successor of n stand for succ(n).

Axiom 4. (1st Peano axiom) If succ(n) = succ(m) then n = m.

Axiom 5. (2nd Peano axiom) 0 is not the direct successor of any natural number.

Axiom 6. (3rd Peano axiom) Let P be a class. Assume $0 \in P$ and for all natural numbers n we have $n \in P \implies \operatorname{succ}(n) \in P$. Then every natural number is an element of P.

1.2 Immediate consequences

Proposition 7. (NN 01 01 178800) For all n we have n = 0 or n = succ(m) for some natural number m.

Proof. Define $P = \{ \text{natural number } n : n = 0 \text{ or } n = \text{succ}(m) \text{ for some natural number } m \}.$

 $0 \in P$ and for all natural numbers n we have $n \in P \implies \operatorname{succ}(n) \in P$. Hence the thesis (by 3rd Peano axiom).

Proposition 8. (NN 01 01 670417) For no natural number n we have $n = \operatorname{succ}(n)$.

Proof. Define $P = \{ \text{natural number } n : n \neq \text{succ}(n) \}.$

(BASE CASE) 0 belongs to P.

(INDUCTION STEP) For all n we have $n \in P \implies \operatorname{succ}(n) \in P$.

Proof. Let n be a natural number. Assume that $n \in P$. Then $n \neq \operatorname{succ}(n)$. If $\operatorname{succ}(n) = \operatorname{succ}(\operatorname{succ}(n))$ then $n = \operatorname{succ}(n)$. Thus it is wrong that $\operatorname{succ}(n) = \operatorname{succ}(\operatorname{succ}(n))$. Hence $\operatorname{succ}(n) \in P$. Qed.

Therefore every natural number is an element of P. Then we have the thesis.

Definition 9. Let n be nonzero. pred(n) is the natural number m such that succ(m) = n.

Let the direct predecessor of n stand for pred(n).

1.3 Additional constants

```
Definition 10. 1 = succ(0).

Definition 11. 2 = succ(1).

Definition 12. 3 = succ(2).

Definition 13. 4 = succ(3).

Definition 14. 5 = succ(4).

Definition 15. 6 = succ(5).

Definition 16. 7 = succ(6).

Definition 17. 8 = succ(7).

Definition 18. 9 = succ(8).
```

2 Addition

2.1 Axioms

```
Signature 19. n+m is a natural number.

Let the sum of n and m stand for n+m.

Axiom 20. (1st addition axiom) n+0=n.

Axiom 21. (2nd addition axiom) n+\operatorname{succ}(m)=\operatorname{succ}(n+m).
```

2.2 Immediate consequences

```
Lemma 22. \operatorname{succ}(n) = n + 1.

Corollary 23. (1st Peano axiom) If n + 1 = m + 1 then n = m.

Corollary 24. (2nd Peano axiom) For no n we have n + 1 = 0.

Corollary 25. (3rd Peano axiom) Let P be a class. Assume 0 \in P and for all n: n \in P \implies n + 1 \in P. Then every natural number is an element of P.

Corollary 26. (2nd addition axiom) n + (m + 1) = (n + m) + 1.
```

Let n-1 stand for pred(n).

Proposition 27. (n+1) - 1 = n.

Proof. We have succ((n+1)-1) = n+1. Hence ((n+1)-1)+1 = n+1. Thus (n+1)-1 = n.

Corollary 28. Let n be nonzero. Then (n-1)+1=n.

Proof. Take a natural number m such that n=m+1. Then (n-1)+1=((m+1)-1)+1=m+1=n.

2.3 Computation laws

Proposition 29. (NN 01 02 468785) For all n, m, k we have

$$n + (m+k) = (n+m) + k.$$

Proof. Define $P = \{ \text{natural number } k : \text{for all } n, m : n + (m + k) = (n + m) + k \}.$

(BASE CASE) 0 is contained in P. Indeed n+(m+0)=n+m=(n+m)+0 for all natural numbers n,m.

(INDUCTION STEP) For all k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

Let us show that n + (m + (k + 1)) = (n + m) + (k + 1) for all natural numbers n, m.

Let n, m be natural numbers. Then n + m is a natural number.

$$n + (m + (k + 1))$$

$$= n + ((m + k) + 1)$$

$$= (n + (m + k)) + 1$$

$$= ((n + m) + k) + 1$$

$$= (n + m) + (k + 1).$$

Hence the thesis. End.

Therefore we have $k+1 \in P$. Qed.

Thus every natural number is an element of P.

Proposition 30. (NN 01 02 273100) For all n, m we have

$$n+m=m+n$$
.

Proof. Define $P = \{ \text{natural number } m : n + m = m + n \text{ for all natural numbers } n \}.$

(BASE CASE 1) 0 is an element of P.

Proof. Define $Q = \{ \text{natural number } n : n + 0 = 0 + n \}.$

0 belongs to Q.

For all n we have $n \in Q \implies n+1 \in Q$.

Proof. Let n be a natural number. Assume $n \in Q$.

$$(n+1) + 0$$

$$= n+1$$

$$= (n+0) + 1$$

$$= (0+n) + 1$$

$$= 0 + (n+1).$$

Qed.

Thus every natural number belongs to Q. Therefore 0 is an element of P. Oed.

(BASE CASE 2) 1 is contained in P.

Proof. Define $Q = \{ \text{natural number } n : n+1 = 1+n \}.$

0 is an element of Q.

For all natural numbers n we have $n \in Q \implies n+1 \in Q$.

Proof. Let n be a natural number. Assume that n is contained in Q.

$$(n+1)+1$$

= $(1+n)+1$
= $1+(n+1)$.

Qed.

Thus every natural number belongs to Q. Therefore 1 is an element of P. Oed.

(INDUCTION STEP) For all natural numbers n we have $n \in P \implies n+1 \in P$.

Proof. Let n be an natural number. Assume $n \in P$.

(n+1) + m = m + (n+1) for all natural numbers m.

Proof. Let m be a natural number.

$$(n+1) + m$$

$$= n + (1 + m)$$

$$= (1 + m) + n$$

$$= (m + 1) + n$$

$$= m + (n + 1).$$

Qed. Qed.

Hence every natural number is an element of P.

Proposition 31. (NN 01 02 882987) For all natural numbers n, m, k we have

$$n+k=m+k \implies n=m.$$

Proof. Define $P = \{ \text{natural number } k : \text{for all natural numbers } n, m \text{ if } n + k = m + k \text{ then } n = m \}.$

(BASE CASE) 0 is an element of P.

(INDUCTION STEP) For all k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

For all natural numbers n, m we have $n+(k+1)=m+(k+1) \Longrightarrow n=m$. Proof. Let n, m be natural numbers. Assume n+(k+1)=m+(k+1). Then (n+k)+1=(m+k)+1. Hence n+k=m+k. Thus n=m. Qed.

Hence the thesis. Qed.

Therefore every natural number is an element of P.

Corollary 32. (NN 01 02 402018) For all n, m, k we have

$$k + n = k + m \implies n = m$$
.

Proof. Let n, m, k be natural numbers. Assume k + n = k + m. We have k + n = n + k and k + m = m + k. Hence n + k = m + k. Thus n = m. \square

3 Multiplication

3.1 Axioms

Signature 33. $n \cdot m$ is a natural number.

Let the product of n and m stand for $n \cdot m$.

Axiom 34. (1st multiplication axiom) $n \cdot 0 = 0$.

Axiom 35. (2nd multiplication axiom) $n \cdot (m+1) = (n \cdot m) + n$.

3.2 Computation laws

Proposition 36. (NN 01 03 539933) For all n, m, k we have

$$n \cdot (m+k) = (n \cdot m) + (n \cdot k).$$

Proof. Define $P = \{\text{natural number } k : n \cdot (m+k) = (n \cdot m) + (n \cdot k) \text{ for all natural numbers } n, m\}.$

(BASE CASE) 0 is an element of P. Indeed for all natural numbers n, m we have $n \cdot (m+0) = n \cdot m = (n \cdot m) + 0 = (n \cdot m) + (n \cdot 0)$.

(INDUCTION STEP) For all natural numbers k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

For all natural numbers n, m we have $n \cdot (m + (k+1)) = (n \cdot m) + (n \cdot (k+1))$. Proof. Let n, m be natural numbers.

$$n \cdot (m + (k + 1))$$

$$= n \cdot ((m + k) + 1)$$

$$= (n \cdot (m + k)) + n$$

$$= ((n \cdot m) + (n \cdot k)) + n$$

$$= (n \cdot m) + ((n \cdot k) + n)$$

$$= (n \cdot m) + (n \cdot (k + 1)).$$

Hence the thesis. Qed. Qed.

Therefore every natural number is contained in P.

Proposition 37. (NN 01 03 322712) For all n, m, k we have

$$(n+m) \cdot k = (n \cdot k) + (m \cdot k).$$

Proof. Define $P = \{ \text{natural number } k : (n+m) \cdot k = (n \cdot k) + (m \cdot k) \text{ for all natural numbers } n, m \}.$

(BASE CASE) 0 belongs to P. Indeed $(n+m)\cdot 0 = 0 = 0+0 = (n\cdot 0)+(m\cdot 0)$ for all natural numbers n, m.

(INDUCTION STEP) For all natural numbers k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

 $(n+m)\cdot(k+1)=(n\cdot(k+1))+(m\cdot(k+1))$ for all natural numbers n,m. Proof. Let n,m be natural numbers. We have $((n\cdot k)+((m\cdot k)+n))+m=(((n\cdot k)+n)+(m\cdot k))+m$. Hence

$$(n+m)\cdot(k+1)$$

$$= ((n+m) \cdot k) + (n+m)$$

$$= ((n \cdot k) + (m \cdot k)) + (n+m)$$

$$= (((n \cdot k) + (m \cdot k)) + n) + m$$

$$= ((n \cdot k) + ((m \cdot k) + n)) + m$$

$$= (((n \cdot k) + n) + (m \cdot k)) + m$$

$$= ((n \cdot k) + n) + ((m \cdot k) + m)$$

$$= (n \cdot (k+1)) + (m \cdot (k+1)).$$

Qed. Qed.

Thus every natural number is an element of P.

Proposition 38. (NN 01 03 866630) $n \cdot 1 = n$.

Proof.
$$n \cdot 1 = n \cdot (0+1) = (n \cdot 0) + n = 0 + n = n.$$

Corollary 39. (NN 01 03 302621) $n \cdot 2 = n + n$.

Proof.
$$n \cdot 2 = n \cdot (1+1) = (n \cdot 1) + n = n + n.$$

Proposition 40. (NN 01 03 299637) For all n, m, k we have

$$n \cdot (m \cdot k) = (n \cdot m) \cdot k.$$

Proof. Define $P = \{\text{natural number } k : n \cdot (m \cdot k) = (n \cdot m) \cdot k \text{ for all natural numbers } n, m\}.$

(BASE CASE) 0 is contained in P. Indeed for all natural numbers n, m we have $n \cdot (m \cdot 0) = n \cdot 0 = 0 = (n \cdot m) \cdot 0$.

(INDUCTION STEP) For all natural numbers k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

For all natural numbers n, m we have $n \cdot (m \cdot (k+1)) = (n \cdot m) \cdot (k+1)$. Proof. Let n, m be natural numbers.

$$n \cdot (m \cdot (k+1))$$

$$= n \cdot ((m \cdot k) + m)$$

$$= (n \cdot (m \cdot k)) + (n \cdot m)$$

$$= ((n \cdot m) \cdot k) + (n \cdot m)$$

$$= ((n \cdot m) \cdot k) + ((n \cdot m) \cdot 1)$$

$$= (n \cdot m) \cdot (k+1).$$

Qed. Qed.

Hence every natural number is contained in P.

Proposition 41. (NN 01 03 850937) For all n, m we have

$$n \cdot m = m \cdot n$$
.

Proof. Define $P = \{ \text{natural number } m : n \cdot m = m \cdot n \text{ for all natural numbers } n \}.$

(BASE CASE 1) 0 is contained in P. Proof.

For all natural numbers n we have $n \cdot 0 = 0 \cdot n$.

Proof. Define $Q = \{ \text{natural number } n : n \cdot 0 = 0 \cdot n \}.$

0 is contained in Q.

For all natural numbers n we have $n \in Q \implies n+1 \in Q$.

Proof. Let n be a natural number. Assume $n \in Q$. Then

$$(n+1) \cdot 0 = 0 = n \cdot 0 = 0 \cdot n = (0 \cdot n) + 0 = 0 \cdot (n+1).$$

Qed. Qed. Qed.

(BASE CASE 2) 1 belongs to P.

Proof. Let us show that for all natural numbers n we have $n \cdot 1 = 1 \cdot n$. Define $Q = \{\text{natural number } n : n \cdot 1 = 1 \cdot n\}$.

0 is contained in Q.

For all natural numbers n we have $n \in Q \implies n+1 \in Q$. Proof. Let n be a natural number. Assume $n \in Q$. Then

$$(n+1) \cdot 1$$

= $(n \cdot 1) + 1$
= $(1 \cdot n) + 1$
= $1 \cdot (n+1)$.

Qed.

Thus every natural number is contained in Q. Hence the thesis. End. Qed.

(INDUCTION STEP) For all natural numbers m we have $m \in P \implies m+1 \in P$.

Proof. Let m be a natural number. Assume $m \in P$.

For all natural numbers n we have $n \cdot (m+1) = (m+1) \cdot n$.

Proof. Let n be a natural number. Then

$$n \cdot (m+1)$$
$$= (n \cdot m) + (n \cdot 1)$$
$$= (m \cdot n) + (1 \cdot n)$$

$$= (1 \cdot n) + (m \cdot n)$$
$$= (1 + m) \cdot n$$
$$= (m + 1) \cdot n.$$

Qed. Qed.

Hence every natural number is contained in P.

Proposition 42. (NN 01 03 692941) For all n, m we have

$$n \cdot m = 0 \implies (n = 0 \text{ or } m = 0).$$

Proof. Let n, m be natural numbers. Assume $n \cdot m = 0$.

If n and m are not equal to 0 then we have a contradiction.

Proof. Assume $n, m \neq 0$. Take natural numbers n', m' such that n = (n'+1) and m = (m'+1). Then

0

$$= n \cdot m$$

$$= (n'+1) \cdot (m'+1)$$

$$= ((n'+1) \cdot m') + (n'+1)$$

$$= (((n'+1) \cdot m') + n') + 1.$$

Hence 0 = k + 1 for some natural number k. Contradiction. Qed.

Thus
$$n = 0$$
 or $m = 0$.

Proposition 43. (NN 01 03 799692) Assume $k \neq 0$. Then for all n, m we have

$$n \cdot k = m \cdot k \implies n = m$$
.

Proof. Define $P = \{ \text{natural number } n : \text{for all natural numbers } m \text{ if } n \cdot k = m \cdot k \text{ and } k \neq 0 \text{ then } n = m \}.$

(BASE CASE) 0 is contained in P.

Proof. Let us show that for all natural numbers m if $0 \cdot k = m \cdot k$ and $k \neq 0$ then 0 = m. Let m, k be natural numbers. Assume that $0 \cdot k = m \cdot k$ and $k \neq 0$. Then $m \cdot k = 0$. Hence m = 0 or k = 0. Thus m = 0. End. Qed.

(INDUCTION STEP) For all natural numbers n we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Assume $n \in P$.

For all natural numbers m if $(n+1) \cdot k = m \cdot k$ and $k \neq 0$ then n+1=m. Proof. Let m be natural numbers. Assume $(n+1) \cdot k = m \cdot k$ and $k \neq 0$.

Case m = 0. Then $(n + 1) \cdot k = 0$. Hence n + 1 = 0. Contradiction. End.

Case $m \neq 0$. Take a natural number m' such that m = m' + 1. Then $(n+1) \cdot k = (m'+1) \cdot k$. Hence $(n \cdot k) + k = (m' \cdot k) + k$. Thus $n \cdot k = m' \cdot k$ (by NN 01 02 882987). Then we have n = m'. Therefore n+1 = m'+1 = m. End. Qed. Qed.

Thus every natural number is contained in P.

Corollary 44. (NN 01 03 169506) Assume $k \neq 0$. Then for all n, m we have

$$k \cdot n = k \cdot m \implies n = m.$$

Proof. Let n, m be natural numbers. Assume $k \cdot n = k \cdot m$. We have $k \cdot n = n \cdot k$ and $k \cdot m = m \cdot k$. Hence $n \cdot k = m \cdot k$. Thus n = m.

4 Exponentiation

4.1 Axioms

Signature 45. n^m is a natural number.

Let the square of n stand for n^2 . Let the cube of n stand for n^3 .

Axiom 46. (1st exponentiation axiom) $n^0 = 1$.

Axiom 47. (2nd exponentiation axiom) $n^{m+1} = n^m \cdot n$.

4.2 Computation laws

Proposition 48. (NN 01 04 876526) Assume that $n \neq 0$. Then

$$0^n = 0.$$

Proof. Take a natural number m such that n = m + 1. Then

$$0^n = 0^{m+1} = 0^m \cdot 0 = 0.$$

Proposition 49. (NN 01 04 577060) For all natural numbers n we have

$$1^n = 1.$$

Proof. Define $P = \{ \text{natural number } n | 1^n = 1 \}.$

(BASE CASE) P contains 0.

(INDUCTION STEP) For all natural numbers n we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Assume $n \in P$. Then

$$1^{n+1} = 1^n \cdot 1 = 1 \cdot 1 = 1$$
. Qed.

Hence every natural number is contained in P.

Proposition 50. (NN 01 04 848167) $n^1 = n$.

Proof.
$$n^1 = n^{0+1} = n^0 \cdot n = 1 \cdot n = n$$
.

Proposition 51. (NN 01 04 846549) $n^2 = n \cdot n$.

Proof.
$$n^2 = n^{1+1} = n^1 \cdot n = n \cdot n$$
.

Proposition 52. (NN 01 04 461164) For all n, m, k we have

$$k^{n+m} = k^n \cdot k^m.$$

Proof. Define $P = \{ \text{natural number } k : n^{m+k} = n^m \cdot n^k \text{ for all natural numbers } n, m \}.$

(BASE CASE) P contains 0.

Proof. Let us show that for all natural numbers n, m we have $n^{m+0} = n^m \cdot n^0$. Let n, m be natural numbers. Then

$$n^{m+0} = n^m = n^m \cdot 1 = n^m \cdot n^0$$
. End. Qed.

(INDUCTION STEP) For all natural numbers k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

Let us show that for all natural numbers n,m we have $n^{m+(k+1)}=n^m\cdot n^{k+1}$. Let n,m be natural numbers. Then

$$n^{m+(k+1)}$$

$$= n^{(m+k)+1}$$

$$= n^{m+k} \cdot n$$

$$= (n^m \cdot n^k) \cdot n$$

$$= n^m \cdot (n^k \cdot n)$$

$$= n^m \cdot n^{k+1}.$$

End. Qed.

Hence every natural number is contained in P.

Proposition 53. (NN 01 04 531499) For all n, m, k we have

$$k^{n \cdot m} = (k^n)^m.$$

Proof. Define $P = \{ \text{natural number } k : n^{m \cdot k} = (n^m)^k \text{ for all natural numbers } n, m \}.$

(BASE CASE) P contains 0. Indeed $(n^m)^0 = 1 = n^0 = n^{m \cdot 0}$ for all natural numbers n, m.

(INDUCTION STEP) For all natural numbers k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

For all natural numbers n, m we have $(n^m)^{k+1} = n^{m \cdot (k+1)}$.

Proof. Let n, m be natural numbers. Then

$$(n^m)^{k+1}$$

$$= (n^m)^k \cdot n^m$$

$$= n^{m \cdot k} \cdot n^m$$

$$= n^{(m \cdot k) + m}$$

$$= n^{m \cdot (k+1)}.$$

Qed. Qed.

Therefore every natural number is contained in P.

Proposition 54. (NN 01 04 644237) For all natural numbers n, m, k we have

$$((n \cdot m)^k) = n^k \cdot m^k.$$

Proof. Define $P = \{ \text{natural number } k : (n \cdot m)^k = n^k \cdot m^k \text{ for all natural numbers } n, m \}.$

(BASE CASE) P contains 0. Indeed $((n \cdot m)^0) = 1 = 1 \cdot 1 = n^0 \cdot m^0$ for all natural numbers n, m.

(INDUCTION STEP) For all natural numbers k we have $k \in P \implies k+1 \in P$.

Proof. Let k be a natural number. Assume $k \in P$.

 $((n \cdot m)^{k+1}) = n^{k+1} \cdot m^{k+1}$ for all natural numbers n, m.

Proof. Let n, m be natural numbers.

(Claim) We have

$$(n^k \cdot m^k) \cdot (n \cdot m)$$

$$= ((n^k \cdot m^k) \cdot n) \cdot m$$

$$= (n^k \cdot (m^k \cdot n)) \cdot m$$

$$= (n^k \cdot (n \cdot m^k)) \cdot m$$

$$= ((n^k \cdot n) \cdot m^k) \cdot m$$

$$= (n^k \cdot n) \cdot (m^k \cdot m).$$

Hence

$$(n \cdot m)^{k+1}$$

$$= (n \cdot m)^k \cdot (n \cdot m)$$

$$= (n^k \cdot m^k) \cdot (n \cdot m)$$

$$= (n^k \cdot n) \cdot (m^k \cdot m)$$

$$= n^{k+1} \cdot m^{k+1}.$$

Qed. Qed.

Therefore every natural number is contained in P.

Proposition 55. (NN 01 04 857078) For all n, m we have

$$n^m = 0 \iff (n = 0 \text{ and } m \neq 0).$$

Proof. (1) For all n, m if $n^m = 0$ then n = 0 and $m \neq 0$.

Proof. Define $P = \{ \text{natural number } m : \text{for all natural numbers } n \text{ if } n^m = 0 \text{ then } n = 0 \text{ and } m \neq 0 \}.$

(BASE CASE) P contains 0. Indeed for all natural numbers n if $n^0=0$ then we have a contradiction.

(INDUCTION STEP) For all natural numbers m we have $m \in P \implies m+1 \in P$.

Proof. Let m be a natural number. Assume $m \in P$.

For all natural numbers n if $n^{m+1} = 0$ then n = 0 and $m + 1 \neq 0$.

Proof. Let n be a natural number. Assume $n^{m+1}=0$. Then $0=n^{m+1}=n^m\cdot n$. Hence $n^m=0$ or n=0. We have $m+1\neq 0$ and if $n^m=0$ then n=0. Hence the thesis. Qed. Qed.

Thus every natural number is contained in P. Qed.

(2) For all n, m if n = 0 and $m \neq 0$ then $n^m = 0$.

Proof. Let n, m be natural numbers. Assume n = 0 and $m \neq 0$. Take a natural number k such that m = k + 1. Then

$$n^{m}$$

$$= n^{k+1}$$

$$= n^{k} \cdot n$$

$$= 0^{k} \cdot 0$$

$$= 0.$$

Qed.

5 Factorial

```
Signature 56. n! is a natural number.
Axiom 57. (1st factorial axiom) (0!) = 1.
Axiom 58. (2nd factorial axiom) ((n+1)!) = n! \cdot (n+1).
```

Part II

Ordering

6 Ordering

6.1 Definitions and immediate consequences

Definition 59. n < m iff there exists a nonzero natural number k such that m = n + k.

Let n is less than m stand for n < m. Let n > m stand for m < n. Let n is greater than m stand for n > m. Let $n \not< m$ stand for n is not less than m. Let $n \not> m$ stand for n is not greater than m. Let n is positive stand for n > 0.

Definition 60. A predecessor of n is a natural number that is less than n.

Definition 61. A successor of n is a natural number that is greater than n.

Definition 62. $n \leq m$ iff there exists a natural number k such that m = n + k.

Let n is less than or equal to m stand for $n \leq m$. Let $n \geq m$ stand for $m \leq n$. Let n is greater than or equal to m stand for $n \geq m$. Let $n \nleq m$ stand for n is not less than or equal to m. Let $n \ngeq m$ stand for n is not greater than or equal to m.

Proposition 63. (NN 02 01 206749) $n \le m \text{ iff } n < m \text{ or } n = m.$

Proof. Case $n \leq m$. Take a natural number k such that m = n + k. If k = 0 then n = m. If $k \neq 0$ then n < m. End.

Case n < m or n = m. If n < m then there is a positive natural number k such that m = n + k. If n = m then m = n + 0. Thus if n < m then there is a natural number k such that m = n + k. Hence the thesis. End.

Proposition 64. (NN 02 01 115117) $0 < n \text{ iff } n \neq 0.$

Proof. Case 0 < n. Take a positive natural number k such that n = 0 + k = k. Then we have $n \neq 0$. End.

Case $n \neq 0$. Take a natural number k such that n = k + 1. Then n = 0 + (k + 1). k + 1 is positive. Hence 0 < n. End.

6.2 Basic properties

• •
Proposition 65. (NN 02 01 659871) $n < n$.
<i>Proof.</i> Assume the contrary. Then we can take a positive natural number k such that $n = n + k$. Then we have $0 = k$. Contradiction.
Proposition 66. (NN 02 01 679789) If $n < m$ then $n \neq m$.
<i>Proof.</i> Assume $n < m$. Take a positive natural number k such that $m = n + k$. If $n = m$ then $k = 0$. Hence $n \neq m$.
Proposition 67. (NN 02 01 710123) If $n \le m$ and $m \le n$ then $n = m$.
<i>Proof.</i> Assume $n \leq m$ and $m \leq n$. Take natural numbers k, l such that $m = n + k$ and $n = m + l$. Then $m = (m + l) + k = m + (l + k)$. Hence $l + k = 0$. Therefore $l = 0 = k$. Then we have the thesis.
Proposition 68. (NN 02 01 662806) If $n < m < k$ then $n < k$.
<i>Proof.</i> Assume $n < m < k$. Take positive natural numbers a, b such that $m = n + a$ and $k = m + b$. Then $k = (n + a) + b = n + (a + b)$. $a + b$ is positive. Hence $n < k$.
Proposition 69. (NN 02 01 394529) If $n \le m \le k$ then $n \le k$.
<i>Proof.</i> Case $n = m = k$. Obvious.
Case $n = m < k$. Obvious.
Case $n < m = k$. Obvious.
Case $n < m < k$. Obvious.
Proposition 70. (NN 02 01 161701) If $n \le m < k$ then $n < k$.
<i>Proof.</i> Assume $n \le m < k$. If $n = m$ then $n < k$. If $n < m$ then $n < k$. \square
Proposition 71. (NN 02 01 807366) If $n < m \le k$ then $n < k$.
<i>Proof.</i> Assume $n < m \le k$. If $m = k$ then $n < k$. If $m < k$ then $n < k$. \square
Proposition 72. (NN 02 01 802467) If $n < m$ then $n + 1 \le m$.
<i>Proof.</i> Assume $n < m$. Take a positive natural number k such that $m = n + k$.
Case $k = 1$. Then $m = n + 1$. Hence $n + 1 \le m$. End.
Case $k \neq 1$. Then we can take a natural number l such that $k = l + 1$. Then $m = n + (l + 1) = (n + l) + 1 = (n + 1) + l$. l is positive. Thus $n + 1 < m$. End.

Proposition 73. (NN 02 01 299356) For all n, m we have n < m or n = m or n > m.

Proof. Define $P = \{\text{natural number } m : \text{for all natural numbers } n \text{ we have } n < m \text{ or } n = m \text{ or } n > m \}.$

(BASE CASE) P contains 0.

(INDUCTION STEP) For all natural numbers m we have $m \in P \implies m+1 \in P$.

Proof. Let m be a natural number. Assume $m \in P$.

For all natural numbers n we have n < m+1 or n = m+1 or n > m+1. Proof. Let n be a natural number.

Case n < m. Obvious.

Case n = m. Obvious.

Case n > m. Take a positive natural number k such that n = m + k.

Case k = 1. Obvious.

Case $k \neq 1$. Take a natural number l such that n = (m+1) + l. Hence n > m+1. Indeed l is positive. End. End. Qed. Qed.

Thus every natural number is contained in P.

Proposition 74. (NN 02 01 112345) $n \leq m$ iff $n \geq m$.

Proof. Case $n \not< m$. Then n = m or n > m. Hence $n \ge m$. End.

Case $n \ge m$. Assume n < m. Then $n \le m$. Hence n = m. Contradiction. End. \Box

6.3 Ordering and successors

Proposition 75. (NN 02 01 203608) If $n < m \le n+1$ then m = n+1.

Proof. Assume $n < m \le n+1$. Take a positive natural number k such that m = n+k. Take a natural number l such that n+1 = m+l. Then n+1 = m+l = (n+k)+l = n+(k+l). Hence k+l = 1.

We have l = 0.

Proof. Assume the contrary. Then k, l > 0.

Case k, l = 1. Then $k + l = 2 \neq 1$. Contradiction. End.

Case k = 1 and $l \neq 1$. Then l > 1. Hence k + l > 1 + l > 1. Contradiction. End.

Case $k \neq 1$ and l = 1. Then k > 1. Hence k + l > k + 1 > 1. Contradiction. End.

Case $k, l \neq 1$. Take natural numbers a, b such that k = a + 1 and l = b + 1. Indeed $k, l \neq 0$. Hence k = a + 1 and l = b + 1. Thus k, l > 1. Indeed a, b are positive. End. Qed.

Then we have n + 1 = m + l = m + 0 = m.

Proposition 76. (NN 02 01 126729) If $n \leq m < n + 1$ then n = m.

Proof. Assume $n \leq m < n + 1$.

Case n = m. Obvious.

Case n < m. Then $n < m \leq n + 1$. Hence n = m. End.

Proposition 77. (NN 02 01 408119) $n + 1 \geq 1$.

Proof. Case n = 0. Obvious.

Case $n \neq 0$. Then n > 0. Hence n + 1 > 0 + 1 = 1. End.

7 Ordering and addition

Proposition 78. (NN 02 02 179654) We have

$$n < m \iff n + k < m + k$$
.

Proof. Case n < m. Take a positive natural number l such that m = n + l. Then m + k = (n + l) + k = (n + k) + l. Hence n + k < m + k. End.

Case n+k < m+k. Take a positive natural number l such that m+k = (n+k)+l. (n+k)+l=n+(k+l)=n+(l+k)=(n+l)+k. Hence m+k=(n+l)+k. Thus m=n+l. Therefore n < m. End.

Corollary 79. (NN 02 02 316437) We have

$$n < m \iff k + n < k + m$$
.

Proof. We have k+n=n+k and k+m=m+k. Hence k+n < k+m iff n+k < m+k.

Corollary 80. (NN 02 02 143631) $n \le m$ iff $k + n \le k + m$.

Corollary 81. (NN 02 02 598206) $n \le m$ iff $n + k \le m + k$.

8 Ordering and multiplication

Proposition 82. (NN 02 03 496205) Assume $k \neq 0$. Then for all n, m we have

$$n < m \iff n \cdot k < m \cdot k$$
.

Proof. Define $P = \{ \text{natural number } n : \text{for all natural numbers } m \text{ if } n \cdot k < m \cdot k \text{ then } n < m \}.$

Let us show that every natural number is contained in P. (BASE CASE) P contains 0.

(INDUCTION STEP) For all natural numbers n we have $n \in P \implies n+1 \in P$. Proof. Let n be a natural number. Assume $n \in P$.

For all natural numbers m if $(n+1) \cdot k < m \cdot k$ then n+1 < m.

Proof. Let m be a natural number. Assume $(n+1) \cdot k < m \cdot k$. Then $(n \cdot k) + k < m \cdot k$. Hence $n \cdot k < m \cdot k$. Thus n < m. Then $n+1 \le m$. If n+1=m then $(n+1) \cdot k = m \cdot k$. Hence the thesis. Qed. Qed.

Therefore every natural number is contained in P. End.

Let n, m be natural numbers.

Case n < m. Take a positive natural number l such that m = n + l. Then $m \cdot k = (n + l) \cdot k = (n \cdot k) + (l \cdot k)$. $l \cdot k$ is positive. Hence $n \cdot k < m \cdot k$. End.

Case $n \cdot k < m \cdot k$. Then n < m. Indeed n and m are contained in P. End.

Corollary 83. (NN 02 03 332119) Assume $k \neq 0$. Then

$$n < m \iff k \cdot n < k \cdot m.$$

Proof. We have $k \cdot n = n \cdot k$ and $k \cdot m = m \cdot k$. Hence $k \cdot n < k \cdot m$ iff $n \cdot k < m \cdot k$.

Proposition 84. (NN 02 03 319805) For all n, m we have

$$n, m > k \implies n \cdot m > k$$
.

Proof. Define $P = \{\text{natural number } n : \text{for all natural numbers } m \text{ if } n, m > k \text{ then } n \cdot m > k \}.$

(BASE CASE) P contains 0.

(INDUCTION STEP) For all natural numbers n we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Assume $n \in P$.

For all natural numbers m if n+1, m>k then $(n+1)\cdot m>k$.

Proof. Let m be a natural number. Assume n+1, m > k. Then $(n+1) \cdot m = k$

 $(n\cdot m)+m.$ If n=0 then $(n\cdot m)+m=0+m=m>k.$ If $n\neq 0$ then $(n\cdot m)+m>m>k.$ Indeed if $n\neq 0 then n\cdot m>0.$ Indeed m>0. Hence $(n+1)\cdot m>k.$ Qed. Qed.

Hence every natural number is contained in P.

Corollary 85. (NN 02 03 496763) We have

$$n < m \implies k \cdot n < k \cdot m$$
.

Corollary 86. (NN 02 03 575338) Assume $k \neq 0$. Then

$$k \cdot n \le k \cdot m \implies n \le m.$$

Corollary 87. (NN 02 03 419208) We have

$$n \le m \implies n \cdot k \le m \cdot k.$$

Corollary 88. (NN 02 03 582576) Assume $k \neq 0$. Then

$$n \cdot k \le m \cdot k \implies n \le m.$$

Proposition 89. (NN 02 03 252473) Let k > 1 and m > 0. Assume $n = k \cdot m$. Then n > m.

Proof. Take a natural number l such that k = l + 2. Then

$$= k \cdot m$$

$$= (l+2) \cdot m$$

$$= (l \cdot m) + (2 \cdot m)$$

$$= (l \cdot m) + (m+m)$$

$$= ((l \cdot m) + m) + m$$

$$= ((l+1) \cdot m) + m$$

$$\geq 1 + m$$

> m.

9 Ordering and exponentiation

Proposition 90. (NN 02 04 770958) Assume $k \neq 0$. Then for all n, m we have

$$n < m \iff n^k < m^k$$
.

Proof. Define $P = \{ \text{natural number } k' : \text{for all natural numbers } n, m \text{ if } n < m \text{ and } k' > 1 \text{ then } n^{k'} < m^{k'} \}.$

Let us show that every natural number is contained in P. (BASE CASE 1) P contains 0.

(BASE CASE 2) P contains 1.

(BASE CASE 3) P contains 2.

Proof. Let us show that for all natural numbers n, m if n < m then $n^2 < m^2$. Let n, m be natural numbers. Assume n < m.

Case n = 0 or m = 0. Obvious.

Case $n, m \neq 0$. Then $n \cdot n < n \cdot m < m \cdot m$. Hence $n^2 = n \cdot n < n \cdot m < m \cdot m = m^2$. End. End. Qed.

(INDUCTION STEP) For all natural numbers k' we have $k' \in P \implies k' + 1 \in P$.

Proof. Let k' be a natural number. Assume $k' \in P$.

For all natural numbers n, m if n < m and k' + 1 > 1 then $n^{k'+1} < m^{k'+1}$. Proof. Let n, m be natural numbers. Assume n < m and k' + 1 > 1. Then $n^{k'} < m^{k'}$. Indeed $k' \neq 0$ and ifk' = 1 then $n^{k'} < m^{k'}$.

Case $k' \le 1$. Then k'=0 or k'=1. Hence k'+1=1 or k'+1=2. Thus $k'+1 \in P$. Therefore $n^{k'+1} < m^{k'+1}$. End.

Case k'>1. Case n=0. Then $m\neq 0$. Hence $n^{k'+1}=0< m^{k'}\cdot m=m^{k'+1}.$ Thus $n^{k'+1}< m^{k'+1}.$ End.

Case $n \neq 0$. Then $n^{k'} \cdot n < m^{k'} \cdot n < m^{k'} \cdot m$. Indeed $m^{k'} \neq 0$. Hence $n^{k'+1} = n^{k'} \cdot n < m^{k'} \cdot n < m^{k'} \cdot m = m^{k'+1}$. Thus $n^{k'+1} < m^{k'+1}$ (by NN 02 01 662806). End. End.

Hence the thesis. Indeed $k' \leq 1$ or k' > 1. Qed.

 $k' + 1 \in P$. Qed.

Therefore every natural number is contained in P. End.

Define $Q = \{\text{natural number } k' : \text{for all natural numbers } n, m \text{ if } n \geq m \text{ then } n^{k'} \geq m^{k'} \}.$

Let us show that every natural number is contained in Q. (BASE CASE) Q contains 0.

(INDUCTION STEP) For all natural numbers k' we have $k' \in Q \implies$

 $k' + 1 \in Q$.

Proof. Let k' be a natural number. Assume $k' \in Q$.

For all natural numbers n, m if $n \ge m$ then $n^{k'+1} \ge m^{k'+1}$.

Proof. Let n, m be natural numbers. Assume $n \geq m$. Then $n^{k'} \geq m^{k'}$. Hence $n^{k'} \cdot n \geq m^{k'} \cdot n \geq m^{k'} \cdot m$. Thus $n^{k'+1} = n^{k'} \cdot n \geq m^{k'} \cdot n \geq m^{k'} \cdot n \geq m^{k'+1}$. Therefore $n^{k'+1} \geq m^{k'+1}$ (by NN 02 01 394529). Qed.

Hence the thesis. Indeed k' + 1 is a natural number. Qed.

Thus every natural number is contained in Q. End.

Let n, m be natural numbers.

Case n < m. Case k = 1. Obvious.

Case $k \neq 1$. Then k > 1. Indeed k < 1 or k = 1 or k > 1. Hence $n^k < m^k$. Indeed n and m belong to P. End. End.

Case $n^k < m^k$. Then $n^k \ngeq m^k$. Hence $n \ngeq m$. Indeed n and m are contained in Q. Thus n < m. End.

Corollary 91. (NN 02 04 537812) Assume $k \neq 0$. Then

$$n^k = m^k \implies n = m.$$

Proof. Assume $n \neq m$. Then n < m or m < n. If n < m then $n^k < m^k$. If m < n then $m^k < n^k$. Thus $n^k \neq m^k$. Hence the thesis.

Corollary 92. (NN 02 04 707319) Assume $k \neq 0$. Then

$$n^k \le m^k \iff n \le m.$$

Proof. If $n^k < m^k$ then n < m. If $n^k = m^k$ then n = m.

If n < m then $n^k < m^k$. If n = m then $n^k = m^k$.

Proposition 93. (NN 02 04 274623) Assume k > 1. Then for all n, m we have

$$n < m \iff k^n < k^m$$
.

Proof. Define $P = \{ \text{natural number } m : \text{for all natural numbers } n \text{ if } k > 1 \text{ and } n < m \text{ then } k^n < k^m \}.$

Let us show that every natural number is contained in P.

(BASE CASE) P contains 0.

(INDUCTION STEP) For all natural numbers m we have $m \in P \implies m+1 \in P$.

Proof. Let m be a natural number. Assume $m \in P$.

For all natural numbers n if k > 1 and n < m + 1 then $k^n < k^{m+1}$.

Proof. Let n be natural numbers. Assume k > 1 and n < m + 1. Then

 $n \leq m.$ We have $k^m \cdot 1 < k^m \cdot k.$ Indeed $k^m \neq 0.$ If n=m then $k^n = k^m < k^m \cdot k = k^{m+1}.$ If n < m then $k^n < k^m < k^m \cdot k = k^{m+1}.$ Qed. Qed.

Hence every natural number is contained in P. End.

Define $Q = \{ \text{natural number } n : \text{for all natural numbers } m \text{ if } n \geq m \text{ then } k^n \geq k^m \text{ or } k \leq 1 \}.$

Let us show that every natural number is contained in Q.

(BASE CASE) $0 \in Q$.

(INDUCTION STEP) For all natural numbers n we have $n \in Q \implies n+1 \in Q$.

Proof. Let n be a natural number. Assume $n \in Q$.

For all natural numbers m if $n+1 \ge m$ then $k^{n+1} \ge k^m$ or $k \le 1$.

Proof. Let m be natural numbers. Assume $n+1 \geq m$.

Case n + 1 = m. Obvious.

Case n+1>m. Then $n\geq m$. Hence $k^n\geq k^m$ or $k\leq 1$.

Case $k \leq 1$. Obvious.

Case $k^n \ge k^m$. We have $k^n \cdot 1 \le k^n \cdot k$. Indeed $1 \le k$ and $k^n \ne 0$. Hence $k^m \le k^n = k^n \cdot 1 \le k^n \cdot k = k^{n+1}$. End. End. Qed. Qed.

Thus every natural number is contained in Q. End.

Let n, m be natural numbers.

Case n < m. Then $k^n < k^m$. Indeed n and m are contained in P. End.

Case $k^n < k^m$. Then it is wrong that $k^n \ge k^m$ or $k \le 1$. Hence $n \not\ge m$. Indeed n and m are contained in Q. Thus n < m. End.

Corollary 94. (NN 02 04 837306) Assume k > 1. Then

$$k^n = k^m \implies n = m.$$

Proof. Assume $n \neq m$. Then n < m or m < n. If n < m then $k^n < k^m$. If m < n then $k^m < k^n$. Thus $k^n \neq k^m$. Hence the thesis. \square

Corollary 95. (NN 02 04 734298) Assume k > 1. Then

$$n \le m \iff k^n \le k^m$$
.

10 Induction

10.1 Least natural numbers

Let P denote a class. **Definition 96.** A least natural number of P is a natural number n such that $n \in P$ and no natural number that is less than n belongs to P. **Lemma 97.** Let n, m be least natural numbers of P. Then n = m. *Proof.* Assume $n \neq m$. Then n < m or m < n. If n < m then $n \notin P$ and if m < n then $m \notin P$. Contradiction. Therefore n = m. (NN 02 05 124228) Assume that P contains some Theorem 98. natural number. Then P has a least natural number. *Proof.* Assume the contrary. Define $Q = \{\text{natural number } n : n \text{ is less} \}$ than any natural number m such that $m \in P$. Let us show that every natural number belongs to Q. (BASE CASE) Q contains 0. Proof. If P contains 0 then 0 is the least natural number of P. Hence 0 is less than any natural number m such that $m \in P$. Therefore Q contains 0. Qed. For all natural numbers n we have $n \in Q \implies n+1 \in Q$. Proof. Let n be a natural number. Assume $n \in Q$. Then n is less than any natural number m such that $m \in P$. Assume that Q does not contain n+1. Then we can take a natural number m such that $m \in P$ and $n+1 \not< m$. Hence $n < m \le n+1$. Thus m = n+1. Then n+1 is the least natural number of P. Contradiction. Qed. End. Then every natural number is less than any natural number n such that $n \in$ P. Hence there is no natural number n such that $n \in P$. Contradiction.

10.2 Induction via predecessors

Theorem 99. (NN 02 05 167446) Assume for all natural numbers n if P contains all predecessors of n then P contains n. Then P contains every natural number.

Proof. Assume the contrary. Take a natural number n such that P does not contain n. Define $Q = \{$ natural number $k : k \notin P \}$. Then Q contains n. Thus we can take a least natural number m of Q. Hence Q does not contain any predecessor of m. Therefore P contains all predecessors of m. Thus P contains m. Contradiction.

10.3 Induction above a certain number

Theorem 100. (NN 02 05 497603) Let k be a natural number such that $k \in P$. Suppose that for all natural numbers n such that $n \ge k$ we have $n \in P \implies n+1 \in P$. Then for every natural number n such that $n \ge k$ we have $n \in P$.

Proof. Define $Q = \{ \text{natural number } n : \text{if } n \geq k \text{ then } n \in P \}.$

Let us show that every natural number belongs to Q.

(BASE CASE) We have $0 \in Q$.

(INDUCTION STEP) For all natural numbers n we have $n \in Q \implies n+1 \in Q$.

Proof. Let n be a natural number. Assume $n \in Q$.

If $n+1 \ge k$ then $n+1 \in P$.

Proof. Assume $n+1 \ge k$.

Case n < k. Then n + 1 = k. Hence $n + 1 \in P$. End.

Case $n \geq k$. Then $n \in P$. Hence $n + 1 \in P$. End. Qed.

Thus we have $n+1 \in Q$. Qed. End.

Therefore Q contains every natural number. Hence the thesis.

11 Standard exercises

Proposition 101. (NN 02 06 276270) We have

$$(n+1)^2 = (n^2 + (2 \cdot n)) + 1.$$

Proof. We have

$$(n+1)^{2}$$

$$= (n+1) \cdot (n+1)$$

$$= ((n+1) \cdot n) + (n+1)$$

$$= ((n \cdot n) + n) + (n+1)$$

$$= (n^{2} + n) + (n+1)$$

$$= ((n^{2} + n) + n) + 1$$

$$= (n^{2} + (n+n)) + 1$$

$$= (n^{2} + (2 \cdot n)) + 1.$$

Proposition 102. (NN 02 06 671464) For all n if $n \ge 3$ then

$$n^2 > (2 \cdot n) + 1.$$

Proof. Define $P = \{ \text{natural number } n : n^2 > (2 \cdot n) + 1 \}.$

(BASE CASE) P contains 3.

(INDUCTION STEP) For all natural numbers n such that $n \geq 3$ we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Suppose $n \geq 3$. Assume $n \in P$.

$$(n^2 + (2 \cdot n)) + 1 > (((2 \cdot n) + 1) + (2 \cdot n)) + 1$$
. Indeed $n^2 + (2 \cdot n) > ((2 \cdot n) + 1) + (2 \cdot n)$.

 $(2\cdot(n+n))+1>(2\cdot(n+1))+1.$ Indeed $2\cdot(n+n)>2\cdot(n+1).$ Indeed n+n>n+1 and $2\neq 0.$

Hence

$$(n+1)^{2}$$

$$= (n^{2} + (2 \cdot n)) + 1$$

$$> (((2 \cdot n) + 1) + (2 \cdot n)) + 1$$

$$> ((2 \cdot n) + (2 \cdot n)) + 1$$

$$= (2 \cdot (n+n)) + 1$$

$$> (2 \cdot (n+1)) + 1.$$

Thus $(n+1)^2 > (2 \cdot (n+1)) + 1$ (by NN 02 01 662806). Qed.

Therefore P contains every natural number n such that $n \geq 3$ (by NN 02 05 497603).

Proposition 103. (NN 02 06 205395) For all n if $n \ge 5$ then

$$2^n > n^2.$$

Proof. Define $P = \{ \text{natural number } n : 2^n > n^2 \}.$

(BASE CASE) P contains 5. Indeed $2^5=2\cdot(2\cdot(2\cdot(2\cdot2)))=(5\cdot5)+7>5\cdot5=5^2.$

(INDUCTION STEP) For all natural numbers n such that $n \geq 5$ we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Suppose $n \geq 5$. Assume $n \in P$. Then $2^n > n^2$.

- (1) $2^n \cdot 2 > n^2 \cdot 2$ (by NN 02 03 496205). Indeed $2 \neq 0$.
- (2) $n^2 \cdot 2 = n^2 + n^2$.
- (3) $n^2 + n^2 > n^2 + ((2 \cdot n) + 1)$. Indeed $n^2 > (2 \cdot n) + 1$.
- $(4) n^2 + ((2 \cdot n) + 1) = (n+1)^2.$

Hence

$$2^{n+1}$$

$$= 2^{n} \cdot 2$$

$$> n^{2} \cdot 2$$

$$= n^{2} + n^{2}$$

$$> n^{2} + ((2 \cdot n) + 1)$$

$$= (n+1)^{2}.$$

Thus $2^{n+1} > (n+1)^2$. Qed.

Therefore P contains every natural number n such that $n \geq 5$ (by NN 02 05 497603).

Proposition 104. (NN 02 06 527159) For all n if $n \ge 2$ then

$$n^n > n!$$
.

Proof. Define $P = \{ \text{natural number } n : n^n > n! \}.$

(BASE CASE) P contains 2.

(INDUCTION STEP) For all natural numbers n such that $n \geq 2$ we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Suppose $n \geq 2$. Assume $n \in P$.

- (1) $(n+1)^n \cdot (n+1) > n^n \cdot (n+1)$ (by NN 02 03 496205). Indeed $(n+1)^n > n^n$ and $n+1 \neq 0$. Indeed $n+1 > nandn \neq 0$.
- (2) $n^n \cdot (n+1) > n! \cdot (n+1)$ (by NN 02 03 496205). Indeed $n^n > n!$ and $n+1 \neq 0$.

Hence

$$(n+1)^{n+1}$$

$$= (n+1)^n \cdot (n+1)$$

$$> n^n \cdot (n+1)$$

$$> n! \cdot (n+1)$$

$$= (n+1)!.$$

Thus $(n+1)^{n+1} > (n+1)!$. Qed.

Therefore P contains every natural number n such that $n \geq 2$ (by NN 02 05 497603).

Proposition 105. (NN 02 06 493411) For all n if $n \ge 4$ then

$$n! > 2^n$$
.

Proof. Define $P = \{ \text{natural number } n : n! > 2^n \}.$

(BASE CASE) P contains 4.

Proof.

$$(4!)$$

$$= 4 \cdot (3 \cdot 2)$$

$$= 2 \cdot (2 \cdot (3 \cdot 2))$$

$$= 3 \cdot (2 \cdot (2 \cdot 2))$$

$$> 2 \cdot (2 \cdot (2 \cdot 2))$$

$$= 2^{4}.$$

Qed.

(INDUCTION STEP) For all natural numbers n such that $n \ge 4$ we have $n \in P \implies n+1 \in P$.

Proof. Let n be a natural number. Suppose $n \ge 4$. Assume $n \in P$. Then $n! > 2^n$.

- (1) $0 \neq n+1 > 2$. Indeed n > 1.
- (2) $n! \cdot (n+1) > 2^n \cdot (n+1)$ (by NN 02 03 496205).
- (3) $2^n \cdot (n+1) > 2^n \cdot 2$ (by NN 02 03 332119). Indeed $2^n \neq 0$.

Hence

$$((n+1)!)$$

= $n! \cdot (n+1)$
> $2^n \cdot (n+1)$
> $2^n \cdot 2$
= 2^{n+1} .

Thus $(n+1)! > 2^{n+1}$. Qed.

Therefore P contains every natural number n such that $n \geq 4$ (by NN 02 05 497603).

Part III

Divisibility

12 Divisibility

12.1 Definitions

Definition 106. n divides m iff there exists a natural number k such that $n \cdot k = m$.

Let $n \mid m$ stand for n divides m. Let m is divisible by n stand for n divides m. Let $n \nmid m$ stand for n does not divide m.

Definition 107. A factor of n is a natural number that divides n.

Let a divisor of n stand for a factor of n.

Definition 108. n is even iff n is divisible by 2.

Definition 109. n is odd iff n is not divisible by 2.

12.2 Basic properties

Proposition 110. (NN 03 01 148842) Every natural number divides 0 .
<i>Proof.</i> Let n be a natural number. We have $n \cdot 0 = 0$. Hence $n \mid 0$.
Proposition 111. (NN 03 01 295259) Every natural number that is divisible by 0 is equal to 0.
<i>Proof.</i> Let n be a natural number. Assume $0 \mid n$. Take a natural number k such that $0 \cdot k = n$. Then we have $n = 0$.
Proposition 112. (NN 03 01 856465) 1 divides every natural number.
<i>Proof.</i> Let n be a natural number. We have $1 \cdot n = n$. Hence $1 \mid n$.
Proposition 113. (NN 03 01 258975) Every natural number n divides n .
<i>Proof.</i> Let n be a natural number. We have $n \cdot 1 = n$. Hence $n \mid n$.
Proposition 114. (NN 03 01 211137) Every natural number that divides 1 is equal to 1.

Proof. Let n be a natural number. Assume $n \mid 1$. Take a natural number k such that $n \cdot k = 1$. Suppose $n \neq 1$. Then n < 1 or n > 1.

Case n < 1. Then n = 0. Hence $0 = 0 \cdot k = n \cdot k = 1$. Contradiction. End.

Case n > 1. We have $k \neq 0$. Indeed if k = 0 then $1 = n \cdot k = n \cdot 0 = 0$. Hence $k \geq 1$. Take a positive natural number l such that n = 1 + l. Then $1 < 1 + l = n = n \cdot 1 \leq n \cdot k$. Hence 1 < n. Contradiction. End.

Proposition 115. (NN 03 01 364584) We have

$$(n \mid m \text{ and } m \mid k) \implies n \mid k.$$

Proof. Assume $n \mid m$ and $m \mid k$. Take natural numbers l, l' such that $n \cdot l = m$ and $m \cdot l' = k$. Then $n \cdot (l \cdot l') = (n \cdot l) \cdot l' = m \cdot l' = k$. Hence $n \mid k$.

Proposition 116. (NN 03 01 710814) We have

$$n \mid m \implies k \cdot n \mid k \cdot m$$
.

Proof. Assume $n \mid m$. Take a natural number l such that $n \cdot l = m$. Then $(k \cdot n) \cdot l = k \cdot (n \cdot l) = k \cdot m$. Hence $k \cdot n \mid k \cdot m$.

Proposition 117. (NN 03 01 382863) Assume $k \neq 0$. Then

$$k \cdot n \mid k \cdot m \implies n \mid m$$
.

Proof. Assume $k \cdot n \mid k \cdot m$. Take a natural number l such that $(k \cdot n) \cdot l = k \cdot m$. Then $k \cdot (n \cdot l) = k \cdot m$. Hence $n \cdot l = m$. Thus $n \mid m$.

Proposition 118. (NN 03 01 210721) If $k \mid n$ and $k \mid m$ then $k \mid (n' \cdot n) + (m' \cdot m)$ for all natural numbers n', m'.

Proof. Assume $k \mid n$ and $k \mid m$. Let n', m' be natural numbers. Take natural numbers l, l' such that $k \cdot l = n$ and $k \cdot l' = m$. Then

$$k \cdot ((n' \cdot l) + (m' \cdot l'))$$

$$= (k \cdot (n' \cdot l)) + (k \cdot (m' \cdot l'))$$

$$= ((k \cdot n') \cdot l) + ((k \cdot m') \cdot l')$$

$$= (n' \cdot (k \cdot l)) + (m' \cdot (k \cdot l'))$$

$$= (n' \cdot n) + (m' \cdot m).$$

Corollary 119. We have

$$(k \mid n \text{ and } k \mid m) \implies k \mid n+m.$$

Proof. Assume $k \mid n$ and $k \mid m$. Take n' = 1 and m' = 1. Then $k \mid (n' \cdot n) + (m' \cdot m)$ (by NN 03 01 210721). $(n' \cdot n) + (m' \cdot m) = n + m$. Hence $k \mid n + m$.

Proposition 120. (NN 03 01 695362) Assume $k \mid n$ and $k \mid n+m$. Then $k \mid m$.

Proof. Case k = 0. Obvious.

Case $k \neq 0$. Take a natural number l such that $n = k \cdot l$. Take a natural number l' such that $n + m = k \cdot l'$. Then $(k \cdot l) + m = k \cdot l'$. We have $l' \geq l$. Indeed if l' < l then $n + m = k \cdot l' < k \cdot l = n$. Hence we can take a natural number l'' such that l' = l + l''. Then $(k \cdot l) + m = k \cdot l' = k \cdot (l + l'') = (k \cdot l) + (k \cdot l'')$ (by NN 01 03 539933). Thus $m = (k \cdot l'')$. Therefore $k \mid m$. End.

Proposition 121. (NN 03 01 376821) Let n, m be nonzero. If $m \mid n$ then $m \leq n$.

Proof. Assume $m \mid n$. Take a natural number k such that $m \cdot k = n$. If k = 0 then $n = m \cdot k = m \cdot 0 = 0$. Thus $k \geq 1$. Assume m > n. Then $n = m \cdot k \geq m \cdot 1 = m > n$. Hence n > n. Contradiction.

13 Euclidean division

Proposition 122. (NN 03 02 332233) For all natural numbers n, m such that m is nonzero there exist natural numbers q, r such that

$$n = (m \cdot q) + r$$

and r < m.

Proof. (1) Define $P = \{ \text{natural number } n : \text{for all nonzero natural numbers } m \text{ there exist natural numbers } q, r \text{ such that } r < m \text{ and } n = (m \cdot q) + r \}.$

(BASE CASE) P contains 0. Proof. Take q = 0 and r = 0. Then for all nonzero natural numbers m we have r < m and $0 = (m \cdot q) + r$. Hence $0 \in P$. Qed.

(INDUCTION STEP) For all natural numbers $n: n \in P \implies n+1 \in P$. Proof. Let n be a natural number. Assume $n \in P$.

Let us show that for all nonzero natural numbers m there exist natural numbers q,r such that r < m and $n+1 = (m \cdot q) + r$. Let m be a nonzero natural number. Take natural numbers q',r' such that r' < m and $n = (m \cdot q') + r'$ (by 1). Indeed $n \in P$. We have r' + 1 < m or r' + 1 = m.

Case r'+1 < m. Take natural numbers q, r such that q = q' and r = r'+1. Then r < m and $n+1 = ((q' \cdot m) + r') + 1 = (q' \cdot m) + (r'+1) = (q \cdot m) + r$. End.

Case r' + 1 = m. Take natural numbers q, r such that q = q' + 1 and r = 0. Then r < m and $n + 1 = ((q' \cdot m) + r') + 1 = (q' \cdot m) + (r' + 1) = (q' \cdot m) + m = (q' + 1) \cdot m = (q \cdot m) + r$. End. End. Qed.

Then P contains every natural number. Let n, m be a natural numbers such that m is nonzero. Then $n \in P$. Hence the thesis (by 1).

Lemma 123. Let m be nonzero. Let q, q', r, r' be natural numbers such that $n = (m \cdot q) + r$ and $n = (m \cdot q') + r'$ and r, r' < m. Then q = q' and r = r'.

Proof. We have $(m \cdot q) + r = (m \cdot q') + r'$.

Case $q \geq q'$ and $r \geq r'$. Take natural numbers q'', r'' such that q = q' + q'' and r = r' + r''. Then $(m \cdot (q' + q'')) + (r' + r'') = (m \cdot q') + r'$. We have $(m \cdot (q' + q'')) + (r' + r'') = (m \cdot (q' + q'')) + r'' + r'$. Hence $((m \cdot (q' + q'')) + r'') + r' = (m \cdot q') + r'$. Thus $(m \cdot (q' + q'')) + r'' = m \cdot q'$. We have $m \cdot (q' + q'') = (m \cdot q') + (m \cdot q'')$. Hence $((m \cdot q') + (m \cdot q'')) + r'' = (m \cdot q') + ((m \cdot q'') + r'') = m \cdot q'$. Thus $(m \cdot q'') + r'' = 0$. Therefore r'' = 0 and $m \cdot q'' = 0$. Consequently q'' = 0. Indeed $m \neq 0$. Then we have q = q' + 0 = q' and r = r' + 0 = r'. End.

Case $q \geq q'$ and r < r'. Take a natural number q'' such that q = q' + q''. Take a nonzero natural number r'' such that r' = r + r''. Then $(m \cdot (q' + q'')) + r = (m \cdot q') + (r + r'')$. We have $(m \cdot q') + (r + r'') = (m \cdot q') + (r'' + r) = ((m \cdot q') + r'') + r$. Hence $(m \cdot (q' + q'')) + r = ((m \cdot q') + r'') + r$. Thus $m \cdot (q' + q'') = (m \cdot q') + r''$. We have $m \cdot (q' + q'') = (m \cdot q') + (m \cdot q'')$. Hence $(m \cdot q') + (m \cdot q'') = (m \cdot q') + r''$. Thus $m \cdot q'' = r'' < r' < m$. Therefore q'' = 0. Indeed if $q'' \geq 1$ then $m \cdot q'' \geq m$. Consequently q = q' + 0 = q'. Hence we have $(m \cdot q) + r = (m \cdot q) + r'$. Thus r = r'. End.

Case q < q' and $r \ge r'$. Take a nonzero natural number q'' such that q' = q + q''. Take a natural number r'' such that r = r' + r''. Then $(m \cdot q) + (r' + r'') = (m \cdot (q + q'')) + r'$. We have $(m \cdot q) + (r' + r'') = (m \cdot q) + (r'' + r'') = (m \cdot q) + r'' + r'$. Hence $((m \cdot q) + r'') + r' = (m \cdot (q + q'')) + r'$. Thus $(m \cdot q) + r'' = m \cdot (q + q'')$. We have $m \cdot (q + q'') = (m \cdot q) + (m \cdot q'')$. Hence $(m \cdot q) + r'' = (m \cdot q) + (m \cdot q'')$. Thus $m > r > r'' = m \cdot q''$. Therefore q'' = 0. Indeed if $q'' \ge 1$ then $m \cdot q'' \ge m$. Consequently q' = q + 0 = q. Hence we have $(m \cdot q) + r = (m \cdot q) + r'$. Thus r = r'. End.

Case q < q' and r < r'. Take nonzero natural numbers q'', r'' such that q' = q + q'' and r' = r + r''. Then $(m \cdot (q + q'')) + (r + r'') = (m \cdot q) + r$. We have $(m \cdot (q + q'')) + (r + r'') = (m \cdot (q + q'')) + (r'' + r) = ((m \cdot (q + q'')) + r'') + r$. Hence $((m \cdot (q + q'')) + r'') + r = (m \cdot q) + r$. Thus $(m \cdot (q + q'')) + r'' = m \cdot q$. We have $m \cdot (q + q'') = (m \cdot q) + (m \cdot q'')$. Hence $((m \cdot q) + (m \cdot q'')) + r'' = (m \cdot q) + (m \cdot q'')$.

 $(m \cdot q) + ((m \cdot q'') + r'') = m \cdot q$. Thus $(m \cdot q'') + r'' = 0$. Therefore r'' = 0 and $m \cdot q'' = 0$. Consequently q'' = 0. Indeed $m \neq 0$. Then we have q' = q + 0 = q and r' = r + 0 = r. End.

Definition 124. Let m be nonzero. $n \mod m$ is the natural number r such that r < m and there exists a natural number q such that $n = (m \cdot q) + r$.

Let the remainder of n over m stand for $n \mod m$.

Definition 125. Let m be nonzero. $n \operatorname{div} m$ is the natural number q such that $n = (m \cdot q) + r$ for some natural number r that is less than m.

Let the quotient of n over m stand for n div m.

Definition 126. Let k be nonzero. $n \equiv m \pmod{k}$ iff $n \mod k = m \mod k$.

Let n and m are congruent modulo k stand for $n \equiv m \pmod{k}$. Let n', n'' denote natural numbers.

Proposition 127. (NN 03 02 188421) Let m be nonzero. Then

$$n \equiv n \pmod{m}$$
.

Proof. We have $n \mod m = n \mod m$. $n \equiv n \pmod m$.

Proposition 128. (NN 03 02 880545) Let m be nonzero. Then

$$n \equiv n' \pmod{m} \implies n' \equiv n \pmod{m}$$
.

Proof. Assume $n \equiv n' \pmod{m}$. Then $n \mod m = n' \mod m$. Hence $n' \mod m = n \mod m$. Thus $n' \equiv n \pmod{m}$.

Proposition 129. (NN 03 02 310316) Let m be nonzero. Then

$$(n \equiv n' \pmod{m} \text{ and } n' \equiv n'' \pmod{m}) \implies n \equiv n'' \pmod{m}.$$

Proof. Assume $n \equiv n' \pmod{m}$ and $n' \equiv n'' \pmod{m}$. Then $n \mod m = n' \mod m$ and $n' \mod m = n'' \mod m$. Hence $n \mod m = n'' \mod m$. Thus $n \equiv n'' \pmod{m}$.

14 Primes

14.1 Definitions

Definition 130. A trivial divisor of n is a divisor m of n such that m = 1 or m = n.

Definition 131. A nontrivial divisor of n is a divisor m of n such that $m \neq 1$ and $m \neq n$.

Definition 132. n is prime iff n > 1 and n has no nontrivial divisors.

Let n is compound stand for n is not prime. Let a prime number stand for a natural number that is prime.

Definition 133. n is composite iff n > 1 and n has a nontrivial divisor.

14.2 Basic properties

Proposition 134. (NN 03 03 357744) Let n > 1. Then n is prime iff every divisor of n is a trivial divisor of n.

Proposition 135. (NN 03 03 175431) 2 and 3 are prime.

Proof. Let us show that 2 is prime. Let k be a divisor of 2. Then $0 < k \le 2$. Hence k = 1 or k = 2. Thus k is a trivial divisor of 2. End.

Let us show that 3 is prime. Let k be a divisor of 3. Then $0 < k \le 3$. Hence k = 1 or k = 2 or k = 3.

2 does not divide 3. Proof. Assume the contrary. Take a natural number l such that $3=2\cdot l$. If l=0 then $3=2\cdot 0=0$. If l=1 then $3=2\cdot 1=2$. If $l\geq 2$ then $3=2\cdot l\geq 2\cdot 2=4>3$. Hence it is wrong that $3=2\cdot l$. Contradiction. Qed.

Therefore k = 1 or k = 3. Thus k is a trivial divisor of 3. End.

Proposition 136. (NN 03 03 520376) Let p be a prime number. If p is even then p=2.

Proof. Assume that p is even. Then 2 divides p. Hence 2 is a trivial divisor of p. Thus p=2.

Proposition 137. (NN 03 03 130748) Every natural number that is greater than 1 has a prime divisor.

Proof. Define $P = \{ \text{natural number } n : \text{if } n > 1 \text{ then } n \text{ has a prime divisor } \}.$

Let us show that for every natural number n if P contains all predecessors of n then P contains n. Let n be a natural number. Assume that P contains all predecessors of n. n=0 or n=1 or n is prime or n is composite.

Case n = 0 or n = 1. Trivial.

Case n is prime. Obvious.

Case n is composite. Take a nontrivial divisor m of n. Then 1 < m < n. m is contained in P. Hence we can take a prime divisor p of m. Then we have $p \mid m \mid n$. Thus $p \mid n$. Therefore p is a prime divisor of n. End. End.

Thus every natural number belongs to P (by NN 02 05 167446). \square

Proposition 138. (NN 03 03 306779) Let n be composite. Then n has a nontrivial divisor m such that $m^2 \le n$.

Proof. Define $A = \{$ natural number m : m is a nontrivial divisor of $n \}$. A contains some natural number. Hence we can take a least natural number m of A. Consider a natural number k such that $m \cdot k = n$. Then $m \leq k$. Indeed if k < m then k is the least natural number of A. Hence $m^2 = m \cdot m \leq m \cdot k = n$. Therefore $m^2 \leq n$.

Definition 139. n and m are coprime iff for all nonzero natural numbers k such that $k \mid n$ and $k \mid m$ we have k = 1.

Let n and m are relatively prime stand for n and m are coprime. Let n and m are mutually prime stand for n and m are coprime. Let n is prime to m stand for n and m are coprime.

Proposition 140. (NN 03 03 356588) n and m are coprime iff for no prime number p we have $p \mid n$ and $p \mid m$.

Proof. Case n and m are coprime. Let p be a prime number such that $p \mid n$ and $p \mid m$. Then p is nonzero and $p \neq 1$. Contradiction. End.

Case for no prime number p we have $p \mid n$ and $p \mid m$. Let k be a nonzero natural number such that $k \mid n$ and $k \mid m$. Assume that $k \neq 1$. Consider a prime divisor p of k. Then $p \mid k \mid n, m$. Hence $p \mid n$ and $p \mid m$. Contradiction. End.

Proposition 141. (NN 03 03 691058) Let p be a prime number. If p does not divide n then p and n are coprime.

Proof. Assume $p \nmid n$. Suppose that p and n are not coprime. Take a nonzero natural number k such that $k \mid p$ and $k \mid n$. Then k = p. Hence $p \mid n$. Contradiction.

Proposition 142. (NN 03 03 703692) Let p be a prime number. Then

$$p \mid n \cdot m \implies (p \mid n \text{ or } p \mid m).$$

Proof. Assume $p \mid n \cdot m$.

Case $p \mid n$. Trivial.

Case $p \nmid n$. Define $N = \{\text{natural number } x : x \neq 0 \text{ and } p \mid x \cdot m\}$. We have $p \in N$ and $n \in N$. Hence N contains some natural number. Thus we can take a least natural number n' of N.

Let us show that n' divides all elements of N. Let $x \in N$. Take natural numbers q, r such that $x = (q \cdot n') + r$ and r < n'. Then $x \cdot m = ((q \cdot n') + r) \cdot m = ((q \cdot n') \cdot m) + (r \cdot m)$. We have $p \mid x \cdot m$. Hence $p \mid ((q \cdot n') \cdot m) + (r \cdot m)$. Thus $p \mid r \cdot m$ (by NN 03 01 695362). Indeed $p \mid ((q \cdot n') \cdot m) = (q \cdot (n' \cdot m))$.

Indeed $p \mid n' \cdot m$. Therefore r = 0. Indeed if $r \neq 0$ then r is an element of N that is less than n'. Hence $x = q \cdot n'$. Thus n' divides x. End.

Then we have $n' \mid p$ and $n' \mid n$. Hence n' = p or n' = 1. Thus n' = 1. Indeed if n' = p then $p \mid n$. Then $1 \in N$. Therefore $p \mid 1 \cdot m = m$. End. \square

Proposition 143. (NN 03 03 119851) Let k be nonzero. Then for all nonzero n, m if $k \cdot m^2 = n^2$ then k is compound.

Proof. Case k = 1. Obvious.

Case k > 1. (1) Define $P = \{\text{natural number } n : \text{for all natural numbers } m \text{ if } n \text{ and } m \text{ are nonzero and } k \cdot m^2 = n^2 \text{ then } k \text{ is compound} \}.$

Let us show that for all natural numbers n if P contains all predecessors of n then P contains n. Let n be a natural number. Presume that P contains all predecessors of n.

Let m be a natural number. Assume that n and m are nonzero and $k \cdot m^2 = n^2$.

Suppose that k is prime. Then k divides n^2 and k divides n. Take a natural number l such that $k \cdot l = n$.

- (1) Then $m^2 = k \cdot l^2$ (by NN 01 03 169506). Indeed $k \cdot m^2 = (k \cdot l)^2 = k \cdot (k \cdot l^2)$.
- (2) m is an element of P. Proof. We have $n^2 > m^2$ (by NN 02 03 252473). Indeed $k \cdot m^2 = n^2$ and k > 1 and $m^2 > 0$. Hence m < n. Indeed if $n \le m$ then $n^2 \le m^2$. Thus $m \in P$. Qed.
- (3) m is nonzero. Indeed $m=0 \implies n^2=k\cdot 0^2=k\cdot 0=0$ and $n^2=0 \implies n=0$.
- (4) l is nonzero. Indeed $l=0 \implies m^2=k\cdot 0^2=k\cdot 0=0$ and $m^2=0 \implies m=0$.

Therefore k is compound (by 1, 2, 3, 4). Contradiction. End.

Thus P contains every natural number (by NN 02 05 167446). Hence the thesis (by 1). End.