Errata and Notes

Mistakes are marked with red and their fixes with blue.

Introduction

1. End of page vi: "which shows the existence of sequences of Goppa codes which exceed the Gilbert-Varshamov bound." should have been: "which shows the existence of sequences of Goppa codes with parameters that exceed the Gilbert-Varshamov bound."

1 Error Correcting Codes

- 1. Middle of page 3: "This implies that the n-k rows of H are \mathbb{F}_q -linearly independent." should have been: "This implies that there exists n-k rows of H which are \mathbb{F}_q -linearly independent."
- 2. Middle of page 5 (in Example 1.21) $P := \{P_1, P_2, \dots, P_n\}$ should have been: $P := (P_1, P_2, \dots, P_n)$

2 Algebraic Geometry

Algebraic Preleminaries

1. Middle of page 10 (in the proof of Theorem 2.8): F is both defined as a finite field and a polynomial (Polynomials where originally written using lower case letters.).

Algebraic Geometry

- 1. Bottom of page 14 (Proposition 2.28 (iii) and the proof of Corollary 2.29): Should have noted that \mathcal{I} may be uncountable, and there is also a spare parenthesis (in 2.28).
- 2. Midde of page 16 (in the proof of Theorem 2.35): "Then multiplying both sides of Equation (2.1) by Y^n we see that:" should have been: "Then multiplying both sides of Equation (2.1) by Y^k we see that:"
- 3. Middle of page 19 (Proof of Proposition 2.43): "hence either $F_1(P) = 0$ or $F_2(P)$ for all $P \in V$." should have been: "hence either $F_1 \in I(V)$ or $F_2 \in I(V)$ which is a contradiction."
- 4. Middle of page 20: Needs an explaination as to why $k(\mathcal{X})$ and $k(\mathcal{X}^*)$ are isomorphic. However this follows as $k[\mathcal{X}]$ and $k[\mathcal{X}^*]$ are isomorphic.

Algebraic Plane Curves

- 1. Third last paragraph, strictly speaking Proposition 2.8 only concerns finite fields with a prime number of elements.
- 2. Page 25 onwards: The extended valuation v_P , that is to the domain $\overline{\mathbb{F}}_q(\mathcal{X})$ has codomain $\mathbb{Z} \cup \{\pm \infty\}$ not $\mathbb{Z} \cup \{\infty\}$.

- 3. Bottom of Page 27, onwards: When we speak of a principal divisor (f), i have sometimes assummed that $f \in \overline{\mathbb{F}}_q[\mathcal{X}] \setminus \{0\}$, this is of cause a mistake and should have been $f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\}$.
- 4. Page 29 (proof of Lemma 2.87): f having no zeros or poles implies that $f \in \overline{\mathbb{F}}_q^*$, however the result still holds as we get $L(D) = \overline{\mathbb{F}}_q^* \cup \{0\}$.

3 Algebraic Geometry Codes

- 1. Second last paragraph of page 32: "The vector space L(D) will only consist of rational divisors..." should have been: "The vector space L(D) will only be considered when D is rational..."
- 2. From page 34, onwards: I seem to have forgotten to convert $C_{D,G}$ to $C_{D,G}$ at some places.