

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61B 5/00, G06F 17/00		A1	(11) International Publication Number: WO 97/20496 (43) International Publication Date: 12 June 1997 (12.06.97)
(21) International Application Number: PCT/US96/19297 (22) International Filing Date: 4 December 1996 (04.12.96) (30) Priority Data: 08/568,752 7 December 1995 (07.12.95) US 08/620,385 22 March 1996 (22.03.96) US		(81) Designated States: AU, BB, BR, CA, CN, CZ, EE, HU, IL, JP, KR, LT, LV, MX, NO, NZ, PL, SG, TR, UA, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
<p>(71) Applicant: CARBON BASED CORPORATION [US/US]; 153 Country Club Drive #5, Incline Village, NV 89451 (US).</p> <p>(72) Inventor: SCHAUSS, Mark, A.; 360 Alder Court #1, Incline Village, NV 89451 (US).</p> <p>(74) Agents: HAMRICK, Claude, A., S. et al.; Bronson & McKinnon L.L.P., Ten Almaden Boulevard #600, San Jose, CA 95113 (US).</p>			

(54) Title: MEDICAL DIAGNOSTIC ANALYSIS SYSTEM

(57). Abstract

The present invention is a computerized medical diagnostic method. It includes a first database (A) containing a correlation of a plurality of diseases with a plurality of indicators associated with each such disease. A second database (B) includes human experience test results associated with each indicator. An individual's test results are then compared with the second database (B) data to determine presence levels for each indicator. Thereafter the presence levels are compared with the data in the first database (A) to provide a pattern matching determination of diseases associated with the various indicator presence levels.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

1

Specification

2

MEDICAL DIAGNOSTIC ANALYSIS SYSTEM

4

BACKGROUND OF THE INVENTION

6

CROSS REFERENCE TO RELATED APPLICATION

8 This application is a continuation in part of my prior
9 application Serial No. 08/568,752, filed 12/07/95, entitled
10 "DISEASE INDICATOR ANALYSIS SYSTEM".

11

Field of the Invention

13 The present invention relates generally to automated
14 medical diagnosis systems, and more particularly to such
15 systems which compare patient diagnostic data with
16 predetermined ranges of specific indicators to provide a
17 specific disease diagnosis and suggested or contraindicated
18 treatment strategies.

19

Description of the Prior Art

21 Medical research in the second half of the 20th
22 century has produced, and continues to produce, an ever
23 increasing body of knowledge. The complexity and
24 interrelationships of various diseases and the indicators
25 that may be detected in various diagnostic tests for the
26 diseases are more than sufficient to tax the capacity of
27 most medical practitioners. To aid medical practitioners in
28 disease diagnosis, computerized expert systems have been,
29 and are being developed to collate medical diagnostic data
30 with various diseases to guide physicians in prescribing
31 treatments for their patients. Such prior art medical
32 diagnostic systems do not adequately provide an analytical
33 framework for analyzing the individual patient's diagnostic
34 results to collate such results into a disease indicator

1 pattern. Furthermore, such systems do not address
2 therapeutic and/or contraindicated treatment strategies.
3

4 SUMMARY OF THE INVENTION

5 The present invention is a computerized medical
6 diagnostic method. It includes a first database containing
7 a correlation of a plurality of diseases with a plurality
8 of indicators associated with each such disease. A second
9 database includes human experience test results associated
10 with each indicator. An individual's test results are then
11 compared with the second database data to determine
12 presence levels for each indicator. Thereafter the
13 presence levels are compared with the data in the first
14 database to provide a determination of disease pattern
15 matches associated with the various indicator presence
16 levels.

17 The presence level indicators for an individual may be
18 affected by many environmental and/or personal factors such
19 as age, sex, race, pregnancy, residence location, previous
20 or current diseases, previous or current drug usage, etc.,
21 all of which are factors to be considered in creating an
22 accurate analysis system. The present invention provides a
23 method for correlating such factors with the various test
24 indicators to identify therapeutic and/or contraindicated
25 treatments and drugs.

26 It is an advantage of the present invention that it
27 provides a method for automated analysis of an individual's
28 test results to provide increased accuracy in disease
29 identification.

30 It is another advantage of the present invention that
31 it provides increased accuracy in automated disease
32 identification systems by determining indicator presence
33 levels for use in the disease identification analysis.

34 It is a further advantage of the present invention
35 that it provides an automated medical diagnostic database
36 system wherein indicator test results for specific

1 individuals are automatically categorized as increased,
2 normal or decreased for increased accuracy in disease
3 determination.

4 It is yet another advantage of the present invention
5 that it provides an automated medical diagnostic database
6 system wherein indicator test results are combined in
7 various panels to provide diagnostic information regarding
8 various bodily conditions and functions.

9 It is yet a further advantage of the present invention
10 that it provides an automated medical diagnostic database
11 system wherein diagnostic data from a first date and a
12 second date can be compared to provide information
13 regarding the change in an individual's medical health and
14 the effectiveness of an ongoing medical treatment program.

15 It is still another advantage of the present invention
16 that it provides an automated medical diagnostic database
17 system wherein the known effects of various drugs and other
18 nutritional-biochemical elements can be utilized to better
19 analyze an individual's health status, and to identify
20 therapeutic and/or contraindicated drugs and elements.

21 It is still a further advantage of the present
22 invention that it provides an automated medical diagnostic
23 database system wherein the effects of personal and/or
24 environmental factors such as age, sex, pregnancy,
25 residence-location, prior or current diseases and drug
26 usage, may be utilized to provide a more accurate medical
27 health analysis.

28 These and other features and advantages of the present
29 invention will become well understood upon reading the
30 following detailed description of the invention.
31

IN THE DRAWINGS

33 Fig. 1 is a block diagram of the basic disease pattern
34 matching analytical method of the present invention.

35 Fig. 2 is a block diagram showing the derivation of
36 various panel status data results;

1 Fig. 3 is a block diagram showing the comparison of
2 disease pattern match results of two separate dates;

3 Fig. 4 is a block diagram depicting the comparison of
4 panel status data for two separate dates;

5 Fig. 5 is a block diagram showing the incorporation of
6 known drug effect data with indicator status levels of the
7 present invention;

8 Fig. 6 is a block diagram showing the utilization of
9 known effects of nutritional-biochemical elements with
10 indicator levels;

11 Fig. 7 is a block diagram showing the utilization of
12 the known effects of various personal and/or environmental
13 factors with the diagnostic system of the present
14 invention;

15 Fig. 8 is a block diagram showing the incorporation of
16 the various analytical methods of Figs. 2, 5, 6 and 7 with
17 the basic diagnostic method of Fig. 1; and

18 Fig. 9 is a block diagram showing the analytical
19 method depicted in Fig. 8 utilizing individual test data
20 from two separate dates and including data comparisons from
21 those dates, including those shown in Figs. 3 and 4.

22

23 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

24 Generally, the basic system of the present invention
25 involves the comparison of test results, typically from
26 blood or other bodily fluids of an individual with known
27 indicators for various diseases to determine the likelihood
28 that an individual might have particular ones of the
29 diseases. The method is basically accomplished in six
30 steps which are depicted in Fig. 1 and described herebelow.

31 Fig. 1 is a schematic diagram setting forth the
32 various steps in the analytical disease indication method
33 of the present invention. As depicted therein, step 1 is
34 the creation of a database for utilization within a
35 computer diagnostic system. The database is a correlation
36 of various diseases, denoted generally as A, B, C..., with

1 levels (Increased, Normal, Decreased) of various specific
2 indicators, denoted generally as 1, 2, 3...12..., in a
3 computerized database.

4 Table 1 depicts the step 1 database relationship of
5 various diseases (denoted A, B, C...) with known indicators
6 for the particular disease (denoted 1, 2, 3...12). It is
7 seen that various ones of the indicators in increased (I),
8 normal (N) or decreased (D) levels are associated with
9 various ones of the diseases.

10

TABLE 1

DISEASE (A, B, C,...)	INDICATORS (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,...)
A	1I, 2D, 7D, 9I, 10I
B	1D, 3D, 6D, 8D, 10I, 12I
C	2I, 3D, 5D, 7I, 10D
.	.
.	.

11

12 By way of specific example, Table 2 describes three
13 specific diseases, acute myocardial infarction, acquired
14 hemolytic anemia and acromegaly, with related indicators.
15 There are, of course, many diseases and several significant
16 indicators for each, and medical research daily discovers,
17 new diseases and derives new indicators for particular
18 diseases. Thus, step 1 actually comprises a tabulation of
19 known medical research of diseases and the indicator levels
20 indicative of those diseases.

21

TABLE 2ACUTE MYOCARDIAL INFARCTIONIndicators

Increased levels: Alkaline Phosphatase, Cholesterol, Creatinine, GGT, LDH, WBC, Neutrophils, Triglycerides, BUN, Uric Acid

Normal levels: Total Bilirubin, Calcium

Decreased levels: Albumin, Iron, Sodium

ACQUIRED HEMOLYTIC ANEMIA (AUTOIMMUNE)Indicators

Increased levels: SGOT, SGPT, Basophils, Total Bilirubin, Creatinine, LDH, Monocytes, Phosphorus, BUN, Uric Acid

Normal levels: none

Decreased levels: Hematocrit, Hemoglobin

ACROMEGALYIndicators

Increased levels: Alkaline Phosphatase, Calcium, Creatinine, Glucose, Phosphorous, Potassium, Sodium, BUN

Normal levels: none

Decreased levels: none

1

2 As depicted in Fig. 1, step 2 of the method of the
 3 present invention is the creation of a second database
 4 which comprises a correlation of human diagnostic
 5 experience with each of the many indicators that are
 6 identified in the database of step 1. In the preferred
 7 embodiment, the database of step 2 includes a low value, a
 8 high value and a mean value for each of the indicators.

9 Table 3 represents the database of step 2, comprising
 10 the human experience values related to each of the
 11 indicators (1-12). Thus, the range of human experience for
 12 indicator 1 reveals a low of .9 units, a high of 2 units
 13 and a mathematical mean of 1.45 units.

14

TABLE 3

INDICATOR	LOW	HIGH	MEAN
1	.9	2	1.45
2	3.5	5	4.25
3	60	415	237.5
4	4	14	9
5	0	3	1.5
6	0	200	100
7	.2	1.3	.75
8	8	20	14
9	6	25	15.5

10	8.8	10.1	9.45
11	1.3	3.3	2.3
12	95	105	100
.	.	.	.
.	.	.	.

1
2 Table 4 presents a typical tabulation of some known
3 indicators with test results to provide added understanding
4 by way of specific example. These test results and human
5 experience high, low and mean are derived from known in
6 medical research, and step 2 thus comprises a database of
7 known medical research.

8 TABLE 4

INDICATOR	RESULT	LOW	HIGH	MEAN	% STATUS	PRESENCE LEVEL
1.A/G Ratio	1.71	0.9	2	1.45	23.48	N
2. Albumin	4.1	3.5	5	4.25	-10.00	N
3.Alkaline Phosphatase	114	60	415	237.5	-34.79	D
4. Anion Gap	16.2	4	14	9	72.00	I
5. Basophils	0	0	3	1.5	-50.00	D
6.Basophil Count	0	0	200	100	-50.00	D
7. Bilirubin, Total	0.5	0.2	1.3	0.75	-22.73	N
8. B.U.N.	9	8	20	14	-41.67	D
9.B.U.N./Creatinine Ratio	18.00	6	25	15.5	13.16	N
10. Calcium	9.77	8.8	10.1	9.45	19.23	N
11.Calcium/Phosphorus Ratio	2.69	1.3	3.3	2.3	19.72	N
12. Chloride	105	95	105	100	50.00	I
.
.
.

9
10 Returning to Fig. 1, step 3 of the method of the
11 present invention is the development of test results for a
12 specific individual. In the present invention, the
13 individual test results are determined from testing blood,
14 serum, urine or other bodily fluids through medical
15 laboratory facilities. The results are correlated in a

1 third database which includes the appropriate numerical
 2 values for each of the various indicators found in the
 3 databases of steps 1 and 2 hereabove. Table 5 is a simple
 4 test result tabulation for a specific individual as regards
 5 each of the indicators (1-12). These test results are the
 6 common output of a blood test, urine test, etc. with regard
 7 to the known indicators. For further understanding, these
 8 test results are also presented in Table 4.

9

TABLE 5

PATIENT TEST RESULTS												
INDICATOR	1	2	3	4	5	6	7	8	9	10	11	12
RESULT	1.71	4.1	114	16.2	0	0	.5	9	18	9.77	2.69	105

10

11 As depicted in Fig. 1, step 4 of the method of the
 12 present invention is the computerized comparison of the
 13 individual's indicator test results from the database
 14 developed in step 3 with the human experience database for
 15 the indicators developed in step 2. The comparison of step
 16 4 is conducted utilizing the equation:

17

$$\% \text{ Status} = \frac{\text{Result} - \text{Mean}}{\text{Range (High-Low)}}$$

18

19 This comparison yields a result denoted as "percent
 20 status", which is a mathematical value which expresses a
 21 comparison of the individual's test results for a specific
 22 indicator with the typical human experience test result
 23 values for that particular indicator. It is an indication
 24 of where the individual's test results fall in comparison
 25 with the human experience test results of Table 3. Table 6
 26 represents the step 4 comparison of the individual test
 27 results of Table 5 with the indicator statistics of Table 3
 28 to derive a "percent status" according to the comparison
 29 equation presented above. For further understanding, the
 30 comparison results of step 4 (% status) are also presented
 31 in Table 4.

1

TABLE 6

PRESENCE OF THE INDICATOR

INDICATOR	1	2	3	4	5	6	7	8	9	10	11	12
% STATUS	23.4	-10	-34	72	-50	-50	-22	-41	13	19	19	50
PRESENCE LEVEL	N	N	D	I	D	D	N	D	N	N	N	I

2

3 As depicted in Fig. 1, step 5 of the method of the
 4 present invention is the further analysis of the results of
 5 step 4 to determine the degree of presence of the various
 6 indicators in the specific individual's test results. In
 7 the present invention, where the percent status is greater
 8 than 25%, it is determined that an "increased level" (I) of
 9 that indicator is present. Where the percent status value
 10 of an indicator is less than -25%, it is determined that a
 11 "decreased level" (D) of that indicator is present. Where
 12 the percent status of an indicator is between -25% and
 13 +25%, it is determined that a "normal level" (N) of that
 14 indicator is present in the individual's test results.
 15 Table 6 includes the results of step 5, wherein an "I"
 16 represents an increased level presence, an "N" represents a
 17 normal level presence and a "D" indicates a decreased level
 18 presence of the various indicators. For further
 19 understanding, the presence indicator results of step 5 (I,
 20 N or D) are also presented in Table 4.

21 As depicted in Fig. 1, step 6 of the method of the
 22 present invention is the comparison of the indicator
 23 presence results of step 5 with the database of step 1.
 24 This correlation seeks to determine from the presence
 25 levels of various indicators in the individual's test
 26 results (I, N or D), the likelihood that particular
 27 diseases identified by the presence of specific
 28 combinations of indicators are afflicting the individual.
 29 This likelihood is derived by determining how many "pattern
 30 matches" exist between the presence levels (I, N or D) of

1 the indicator test results with the indicator data of the
 2 step 1 database.

3

TABLE 7

DISEASE INDICATOR			
DISEASE	# INDICATORS	# MATCHES	% MATCH
A	5	0	0%
B	6	4	67%
C	5	2	40%
.	.	.	.
.	.	.	.

4

5 For instance, as depicted in Table 7, the presence
 6 levels (I, N or D) of the various indicators are compared
 7 with various diseases A, B, C,... from the step 1 database
 8 as shown in Table 1 to determine the degree to which any of
 9 the diseases are indicated by the matching of the presence
 10 levels of various indicators with the disease data. Thus,
 11 as set forth in Table 7, it is seen that disease B is very
 12 likely present because 4 of 6 of the indicator levels are
 13 matched, whereas diseases A and C are not as likely present
 14 because fewer of the indicators levels for these diseases
 15 are matched. Table 8 is merely exemplificative of a
 16 portion of a typical result tabulation that is similar to
 17 Table 7 for added understanding.

18

TABLE 8

DISEASE	ICD-9 CODE	# OF MATCHES	# OF INDICATORS	PERCENT MATCH
Anterior Pituitary Hypofunction	253.40	5	10	50.00%
Pernicious Anemia	281.00	6	15	40.00%
Vitamin C Deficiency	267.00	3	8	37.50%
Rheumatoid Arthritis	714.00	5	15	33.33%
Acute Myocardial Infarction	410.00	5	15	33.33%
.

1

2 Therefore, the basic method presented in Fig. 1 herein
 3 enables a medical practitioner to input a patient's test
 4 results into a computerized system and have the system
 5 produce a listing of possible diseases that the patient may
 6 have based upon the variation between the individual's test
 7 results and the known human experience results for various
 8 indicators.

9 Fig. 2 depicts a further usage of the percent status
 10 data that was developed in step 4 of the basic method
 11 depicted in Fig. 1, and described above. It is well known
 12 in medical research that various ones of the specific
 13 indicators, denoted generally as 1, 2, 3...12...are useful
 14 for the analysis of certain bodily conditions and
 15 functions, and a database which references a particular
 16 condition or function is referred to herein as a panel.
 17 Table 9 presents hypothetical data for three panels (Panel
 18 A, Panel B and Panel C) of many contemplated panels.

19

TABLE 9

Panel A		Panel B		Panel C	
Indicator	% Status	Indicator	% Status	Indicator	% Status
131832	23.4 -34. 7.80 -6.43	3 7 8 18 47 85	-34. -22 -41 7.80 -18.88 23.61	7 13 71	-22. 50. -16.66
Deviation	17.91	Deviation	24.55	Deviation	29.56
Skew	-9.23	Skew	-14.08	Skew	3.78

20

21 As depicted in Fig. 2 and shown in Table 9, panel A
 22 (see reference numeral 10) refers to a specific bodily
 23 condition or function, and information related to the panel
 24 A condition or function is obtainable from a combined
 25 analysis of indicators 1, 3, 18 and 32 (for example)

1 wherein a percent status figure from step 4 is utilized for
2 each indicator. A mathematical data deviation (the average
3 of percent status without regard to the sign), and a data
4 skew (the average of the percent status wherein the sign is
5 taken into account), is calculated for each panel data set.
6 The deviation and skew provide a numerical framework for
7 referencing the status of the bodily condition or function
8 of panel A. Also shown in Table 9 and depicted in Fig. 2
9 is a panel B (see reference numeral 12) which (for example)
10 is represented by percent status data from indicators 3, 7,
11 8, 18, 47 and 85, with a deviation and skew being reported
12 for panel B. Additionally, in Table 9 and in Fig. 2, a
13 panel C (see reference panel 14) with indicators (for
14 example 7, 12 and 71 with percent status data from step 4
15 and deviation and skew data) represents yet another bodily
16 condition or function. Current medical knowledge teaches
17 that many such bodily functions and conditions can be
18 represented by data panels comprising a plurality of
19 specific indicators, and while only panels A, B and C are
20 shown in Table 9 and depicted in Fig. 2, arrow 13 is
21 presented in Fig. 2 to indicate that many more such panels
22 are contemplated by the inventor and considered part of the
23 present invention.

24 Specific panels for bodily conditions and functions
25 that are contemplated by the inventor include nitrogen
26 status, electrolyte status, protein status, cardiac marker
27 status, liver status, kidney function status, lipid status,
28 allergy status, hematology status, leukocyte percentage
29 differential status, blood element ratio status, leukocyte
30 count status, acid PH indicator status, alkaline PH
31 indicator status.

32 By way of specific examples to further the
33 comprehension of the present invention, Table 10 hereof
34 presents the electrolyte panel of an individual, the
35 cardiac marker panel of the specific individual, the kidney

1 function status panel of the individual and the blood
 2 elements ratio status panel of the individual.

3

TABLE 10

ELECTROLYTE		
INDICATOR	Result	% Status
Sodium	139	-10.00
Potassium	4.2	-12.50
Chloride	105	50.00
CO2	22	-30.00
Calcium	9.7	19.23
Phosphorus	3.6	-20.00
Panel Status Deviation		23.62
Panel Status Skew		-0.54
KIDNEY FUNCTION		
INDICATOR	Result	% Status
B.U.N.	9.0	-41.67
Phosphorus	3.6	-20.00
Cholesterol	181	-17.21
Creatinine	0.5	0.00
Uric Acid	4.1	26.00
Calcium	9.7	19.23
LDH	414	-31.95
Total Protein	6.5	-30.00
Albumin	4.1	-10.00
Globulin	2.4	-60.00
A/G Ratio	1.7	23.48
Panel Status Deviation		25.41
Panel Status Skew		-12.92
RATIO'S		
INDICATOR	Result	% Status
BUN/Creatinine	18.00	13.16
Sodium/Potassium	33.10	9.13
Calcium/Phosphorus	2.69	19.72
A/G Ratio	1.71	23.48
Anion Gap	16.20	72.00
Panel Status Deviation		27.50
Panel Status Skew		27.50
CARDIAC MARKER		

INDICATOR	Result	% Status
Cholesterol	181	-17.21
Triglycerides	98.0	28.75
SGOT	23.0	-5.00
LDH	414.0	-31.95
Panel Status Deviation		20.73
Panel Status Skew		-6.35

1

2 It is to be understood that other and further panels
 3 as identified above are within the contemplation of the
 4 inventor and will be known to those skilled in the art, and
 5 that medical research daily identifies other panels and
 6 further indicators that are suitable for usage in the
 7 various panels that may be derived utilizing the present
 8 invention.

9 The present invention contemplates the comparison of
 10 analytical test results data developed for an individual on
 11 a first date with test results data developed for the
 12 individual at a later date, in order to determine changes
 13 in the individual's medical condition. Fig. 3 is a
 14 schematic depiction of such a comparison, specifically a
 15 comparison of disease pattern match results and
 16 exemplificative data is provided in Table 11. As depicted
 17 in Fig. 3 and set forth in Table 11, a first set of disease
 18 pattern match data is derived from blood, urine or other
 19 fluid testing on a first date; this data is derived using
 20 portion 7 of the Fig. 3 schematic as discussed hereinabove
 21 with regard to Fig. 1 and shown in Table 8. On a second
 22 date (date A) further testing of the individual is
 23 accomplished, as represented by schematic portion 7A,
 24 wherein new personal bodily fluid test results 3A are
 25 developed. The test results 3A are compared with the human
 26 experience data 2 to yield new percent status data 4A for
 27 all indicators, which data 4A is utilized to develop in new
 28 presence levels 5A, and new disease pattern matches 6A as
 29 set forth in Table 11. The disease pattern match data of 6
 30 and 6A is compared 15 and changes in disease pattern

1 matches 16 are identified (see Table 11) as a means of
 2 providing health status data related to the individual.
 3

TABLE 11

DISEASE	ICD-9 CODE	First Date			Date A			% CHANGE
		# OF MATCHES	# OF INDICATORS	% MATCH	# OF MATCHES	% MATCH		
Anterior Pituitary Hypofunction	253.40	5	10	50.00	6	60.00	-10.00	
Pernicious Anemia	281.00	6	15	40.00	5	33.33	+6.67	
Vitamin C Deficiency	267.00	3	8	37.50	3	37.50	0	
Rheumatoid Arthritis	714.00	5	15	33.33	5	37.50	0	
Acute Myocardial Infarction	410.00	5	15	33.33	4	26.66	+6.67	
		
		

4
 5 The new percent status data developed for date A in
 6 step 4A of Fig. 3 can be utilized to develop new panel
 7 status information for date A in the same manner as is
 8 taught hereinabove with regard to Fig. 2. Thereafter, the
 9 panel status data of the first test date can be compared
 10 with the new panel status data for date A to provide
 11 information on the individual's medical health changes.
 12 Fig. 4 depicts such a panel status data comparison from a
 13 first date and a subsequent date A and Table 12 provides
 14 exemplificative data for panels A, B and C as discussed
 15 above in regard to Table 9.

TABLE 12

Panel A	First Date	Date A	Comparison
Indicator	% Status	% Status	% Change
1	23.4	25.0	-1.6
3	-34.	-28.0	+6.0
18	7.80	7.8	0.
32	-6.43	-6.43	0.
Deviation	17.91		
Skew	-9.23		

Panel B	First Date	Date A	Comparison
Indicator	% Status	% Status	% Change
8	-34	-28	+6.0
7	-22	-22	0.
8	-41	-45	-4.0
18	7.80	7.8	0.
47	-18.88	-20.0	-1.12
85	23.61	23.61	0.
Deviation	24.55		
Skew	-14.08		
Panel C	First Date	Date A	Comparison
Indicator	% Status	% Status	% Change
7	-22.	-22	0.
13	50.	42	+8.0
71	-16.66	-8.4	+8.26
Deviation	29.56		
Skew	3.78		

1

2 As depicted in Fig. 4, percent status data from step 4 of
 3 Fig. 3 at a first date is utilized to create panel status
 4 data 10, 12 and 14 as discussed above with regard to Fig. 2
 5 and Table 9. In an identical manner on date A, percent
 6 status data derived in step 4A of Fig. 3 is utilized to
 7 create panel status data 10A, 12A and 14A as provided in
 8 Table 12. As mentioned above, further panels represented
 9 by arrows 13 and 13A are contemplated in the present
 10 invention. A comparison 18 of panel A percent status
 11 results of first date 10 with panel A percent status
 12 results of second date 10A is now accomplished as is shown
 13 in Table 12. The comparison 18 is utilized to identify
 14 changes 20 in the percent status for each indicator
 15 relevant to panel A, together with changes in the deviation
 16 and skew data. In a like manner, a comparison 22 of panel
 17 B status data 12 and 12A permits the identification 24 of
 18 changes in panel B medical status. Likewise, panel C
 19 status data is compared 26 to identify changes 28 in panel
 20 C medical status.

21 A specific example of the panel status data comparison
 22 is presented in Table 13 wherein the specific panels of

1 Table 10 are utilized, those being the electrolyte panel,
 2 the cardiac marker panel, the kidney function status panel
 3 and the blood elements ratio status panel of a particular
 4 individual. As presented in Table 13, the panel results
 5 for the first date are reproduced from Table 10 and new
 6 panel results for date A are reported. It is furthermore
 7 indicated whether the change in specific indicators for
 8 each panel has improved (positive) or worsened (negative),
 9 and the change in the percent status of each indicator is
 10 reported. Additionally, the mathematical deviation and
 11 skew of the first date results and the date A results are
 12 provided and the change in the deviation and skew is also
 13 reported. The panel status data change of Table 13 is
 14 utilizable by a medical practitioner to provide insight
 15 into the medical health changes that the individual has
 16 undergone during the intervening period between the first
 17 date testing and the testing on date A.

18

TABLE 13

ELECTROLYTE	First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change
Sodium	139	-10.00	-19.09	Negative	-9.09
Potassium	4.2	-12.50	-17.50	Negative	-5.00
Chloride	105	50.00	-57.69	Negative	-7.69
CO2	22	-30.00	-42.50	Negative	-12.50
Calcium	9.7	19.23	8.12	Positive	11.11
Phosphorus	3.6	-20.00	-26.67	Negative	-6.67
Panel Status Deviation	23.62		32.30		-8.68
Panel Status Skew	-0.54		-5.51		-4.97
KIDNEY FUNCTION	First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change
B.U.N.	9.0	-41.67	-57.05	Negative	-15.38
Phosphorus	3.6	-20.00	-26.67	Negative	-6.67
Cholesterol	181	-17.21	-4.64	Positive	12.57
Creatinine	0.5	0.00	-14.29	Negative	-14.29
Uric Acid	4.1	26.00	28.00	Negative	-2.00
Calcium	9.7	19.23	8.12	Positive	11.11
LDH	414	-31.95	-45.90	Negative	-13.95
Total Protein	6.5	-30.00	-38.00	Negative	-8.00

Albumin	4.1	-10.00	12.22	Positive	22.22
Globulin	2.4	-60.00	-50.48	Positive	9.52
A/G Ratio	1.7	23.48	-4.61	Positive	28.09
Panel Status Deviation		25.41	12.34		13.07
Panel Status Skew		-12.92	-10.81		2.11
RATIO'S	First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change
BUN/Creatinine	18.00	3.16	11.41	Positive	1.75
Sodium/Potassium	33.10	9.13	11.67	Negative	-2.54
Calcium/Phosphorus	2.69	19.72	24.18	Negative	-4.46
A/G Ratio	1.71	23.48	-4.61	Positive	28.09
Anion Gap	16.20	72.00	71.00	Positive	1.00
Panel Status Deviation		27.50	24.57		2.93
Panel Status Skew		27.50	22.43		4.77
CARDIAC MARKER	First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change
Cholesterol	181	-17.21	-29.78	Positive	12.57
Triglycerides	98.0	28.75	29.25	Negative	-0.50
SGOT	23.0	-5.00	-7.38	Negative	-2.38
LDH	414.0	-31.95	-45.90	Negative	-13.95
Panel Status Deviation		20.73	13.38		7.35
Panel Status Skew		-6.35	-7.42		-1.07

1

2 A further feature of the present invention is the
 3 incorporation of the known effects of various drugs upon
 4 test results for various indicator levels. As depicted in
 5 Fig. 5, and set forth in exemplificative fashion in Table
 6 14, a database is created 30 which correlates the effects
 7 of known drugs upon the levels of each of the various
 8 indicators. Thus, as depicted in Table 14, for each
 9 indicator 1, 2, 3...12... known drugs are cataloged that
 10 can cause or aggravate an increased level (I) of an
 11 indicator and that can cause or aggravate a decreased level
 12 (D) of an indicator. The effects of the various drugs on
 13 the various indicator levels are well known in medical
 14 research and new drugs, and the corresponding effects

1 thereof on various indicators are developed in medical
2 research on a daily basis.

3 As shown in Fig. 5, the next step 32 in this analysis
4 is to compare the abnormal presence levels, both increased
5 (I) and decreased (D), determined in step 5 of the basic
6 analytical process, with the drug effects table data of
7 Table 14. By way of example, it is set forth hereabove in
8 Table 6 that a specific individual's test results showed
9 that indicators 1 and 2 showed a normal presence level,
10 indicator 3 had a decreased presence level, indicator 4 had
11 an increased presence level, indicators 5 and 6 had
12 decreased presence levels.

13

TABLE 14

INDICATOR	DRUG (a, b, c...) CAUSE OR AGGRAVATE	
	INCREASE (I)	DECREASE (D)
1	a, b, d, f, h	l, m, p
2	a, c, e, j, l	b, d, o, p
3	b, c, f, g	d, j, k, l, m
4	a, d, g, h	b, f, k
5	a, c, f, h, k, l	b, d, e, o, p
6	e, h, k, m	a, d, l, r, t
.	.	.
.	.	.

14

15 Table 15 identifies the abnormal indicators 3, 4, 5 and 6,
16 with their increased or decreased presence level, and
17 identifies the specific drugs from Table 14 that cause or
18 aggravate the increased or decreased presence level of the
19 indicator.

20

TABLE 15

INDICATOR	ABNORMAL PRESENCE LEVEL	DRUG CAUSE OR AGGRAVATE
3	D	d, j, k, l, m
4	I	a, d, g, h
5	D	b, d, e, o, p
6	D	a, d, l, r, t
.	.	.

HIGH INCIDENCE DRUG = d (CONTRAINDEDICATED)		

1

2 Thereafter, as set forth in step 34 of Fig. 5, the
3 incidence of the various drugs set forth in Table 15 is
4 determined. Specifically, it is seen in Table 15 that drug
5 "d" is identified as a drug that can cause or aggravate
6 each of the abnormal presence levels of each of the
7 indicators. The analytical result of this analysis is the
8 conclusion that drug "d" is contraindicated for this
9 individual.

10 To further enhance the understanding of the present
11 invention, Table 16 provides known drug effect medical
12 research data for a few specific indicator conditions.
13 Specifically, for the indicator chloride level in blood
14 testing, where the chloride level is increased (% status is
15 greater than 25%), some known drugs that can cause or
16 aggravate this condition are listed; it is specifically
17 noted that aspirin is one of these drugs. For the total
18 iron level indicator, which is decreased (% status is less
19 than -25%), some known drugs that can cause this reduced
20 level are provided. For the basophils indicator decreased
21 level (% status is less than -25%), a drug that can cause
22 this reduced level is procainamide. For the WBC level
23 indicator having a decreased level (% status is less than -
24 25%), drugs that can cause this reduced level are listed,
25 and it is specifically noted that aspirin is one of the
26 drugs. For the glucose level indicator having a decreased
27 level (% status is less than -25%), drugs which cause or
28 aggravate the decreased level are identified, and it is
29 specifically noted that aspirin is one such drug. The last
30 indicator provided in Table 16 (it being understood that as
31 many indicators as are identified in test results as having
32 an increased or decreased level would be included in Table
33 16) is total protein having a decreased level (% status is

1 less than -25%), and some of the various drugs that can
 2 cause or aggravate the reduced level are identified,
 3 specifically identifying aspirin as one of the drugs.

4

TABLE 16

INDICATOR	ABNORMAL PRESENCE LEVEL	DRUG CAUSE OR AGGRAVATE CONDITION
Chloride	I	Acetazolamide, Aspirin, Lithium, Boric Acid...
Total Iron	D	ACTH, Oxalate, Fluorides...
Basophils	D	Procainamide....
WBC	D	Aspirin, Busulfan, Mepazine...
Glucose	D	Aspirin, Ethanol, Insulin...
Total Protein	D	Aspirin, Arginine, Rifampin...

5

6 An analysis of the Table 16 data shows that the drug
 7 aspirin is identified as a drug that can cause or aggravate
 8 four of the six abnormal presence levels of the indicators
 9 set forth therein; thus aspirin is a contraindicated drug
 10 for the individual whose test results are provided in Table
 11 16.

12 It is therefore to be generally understood that the
 13 present invention includes a method as shown in Fig. 5 to
 14 identify specific drugs that are contraindicated for an
 15 individual based upon the increased or decreased levels of
 16 specific indicators in the individual's blood/fluid test
 17 analysis results. This output data of contraindicated
 18 drugs is obtained utilizing a database 30 correlating
 19 increased and decreased indicator levels with known drug
 20 effects from known medical research, and the specific
 21 indicators identified in step 5 test results as having
 22 increased or decreased levels pursuant to the analytical
 23 methods of the present invention.

24 Another feature of the present invention is the
 25 incorporation of the known positive effects of various
 26 pharmacological agents upon test results for various
 27 indicator levels. As depicted in Fig. 6, and set forth
 28 exemplary in Table 17, a database is created 40 which

1 correlates the effects of known pharmacological agents (a₁,
 2 b₁, c₁,...) upon the levels for each of the various
 3 indicators. This table is similar to Table 14 with the
 4 significant difference that the effect of the
 5 pharmacological agents is to improve the abnormal presence
 6 level of various indicators.

7

TABLE 17

INDICATOR	PHARMACOLOGICAL AGENT (a ₁ , b ₁ , c ₁ ...) EFFECT	
	INCREASE (I)	DECREASE (D)
1	b ₁ , d ₁ , f ₁ , h ₁	c ₁ , k ₁ , r ₁
2	a ₁ , g ₁ , l ₁	c ₁ , l ₁ , s ₁ , t ₁
3	d ₁ , g ₁ , h ₁ , k ₁	b ₁ , c ₁ , m ₁
4	a ₁ , k ₁ , m ₁	c ₁ , d ₁ , l ₁
5	c ₁ , k ₁ , r ₁ , s ₁	a ₁ , f ₁ , g ₁ , m ₁ , p ₁
6	a ₁ , c ₁ , n ₁ , t ₁ , v ₁	d ₁ , h ₁ , k ₁ , m ₁ , s ₁
.	.	.
.	.	.
.	.	.

8

9 Thus, as depicted in Table 17, for each indicator 1, 2,
 10 3...12... known agents are cataloged that can normalize a
 11 level of an indicator; that is, to reduce an increased
 12 level or to raise a decreased level. The effects of the
 13 various pharmacological agents on the various indicator
 14 levels are well known in medical research, and new agents,
 15 and the corresponding effects thereof on various indicators
 16 are developed in medical research on a daily basis.

17 As shown in Fig. 6, the next step 42 in this analysis
 18 is to compare the abnormal presence levels, both increased
 19 (I) and decreased (D), determined in step 5 of the basic
 20 analytical process with the pharmacological agent data of
 21 Table 17. By way of example, it is set forth hereabove in
 22 Table 6 that a specific individual's test results showed
 23 that indicators 1 and 2 showed a normal presence level,
 24 indicator 3 had a decreased presence level, indicator 4 had
 25 an increased presence level, indicators 5 and 6 had
 26 decreased presence levels. Table 18 identifies the

1 abnormal indicators 3, 4, 5 and 6 with their increased or
 2 decreased presence level, and identifies the specific
 3 pharmacological agents from Table 17 that can have a
 4 positive effect on the abnormal presence level indicated.
 5

TABLE 18

INDICATOR	ABNORMAL PRESENCE LEVEL	PHARMACOLOGY AGENT EFFECT
3	D	bl, cl, ml
4	I	al, kl, ml
5	D	al, fl, gl, ml, pl
6	D	dl, hl, kl, ml, sl
.	.	.
.	.	.
.	.	.
HIGH INCIDENCE AGENT = ml (INDICATED)		

6
 7 Thereafter, as set forth in step 44 of Fig. 6, the
 8 incidence of the various pharmacological agents set forth
 9 in Table 18 is determined. Specifically, it is seen in
 10 Table 18 that pharmacological agent ml is identified as an
 11 agent that can have a positive effect on each of the
 12 abnormal presence levels of each of the indicators. The
 13 analytical result of this analysis is the conclusion that
 14 pharmacological agent ml is positively indicated for this
 15 individual.

16 It is well known in medical research that various
 17 environmental/personal factors can affect the indicator
 18 levels of an individual, or segments of the population
 19 generally. For example, such factors as age, sex, race,
 20 pregnancy, residence location, previous or current
 21 diseases, previous or current drug usage, etc., can all
 22 affect the various indicator levels. That is, a particular
 23 indicator level might be normal for a ten year old male and
 24 abnormal (increased or decreased) for a 65 year old female.
 25 Fig. 7 depicts the analytical steps of the present
 26 invention that incorporate the various environmental/
 27 personal factors.

1 As depicted in Fig. 7, a first step 50 in this portion
 2 of the analysis method of this invention is to create a
 3 database which correlates the effects of various
 4 environmental/personal factors (a₂, b₂, c₂...), with the
 5 range and mean of each indicator (1, 2, 3...12...), and
 6 Table 19 is an example of such a database showing the
 7 effects of various factors, such as sex, pregnancy,
 8 altitude of residence and prior disease on the range (low
 9 and high) of various indicators, showing that some
 10 indicator ranges are affected by some of the factors
 11 whereas other indicator ranges are not.

12

TABLE 19

INDICATOR	RANGE		FACTORS (a ₂ , b ₂ , c ₂ ...)							
			SEX		PREGNANCY		ALTITUDE		PRIOR DISEASE	
	LOW	HIGH	L	H	L	H	L	H	L	H
1	.9	2	.6	1.5	1.2	4	.4	1.0	-	-
2	3.5	5	-	-	5	10	-	-	-	-
3	60	415	80	600	30	300	-	-	30	400
4	4	14	5	18	-	-	-	-	-	-
5	0	3	0	2	0	6	-	-	0	6
.
.

13

14 The initial--range results from Table 3 are presented for
 15 illustrative purposes.

16 Thereafter, as depicted in Fig. 7, an individual
 17 database of environmental/personal factors is created 52.
 18 Such a database is presented by way of example in Table 20.

19

TABLE 20

INDIVIDUAL ENVIRONMENTAL/PERSONAL FACTORS		
Age - 45,	Sex - M,	Residence - High Altitude,Prior
Disease - hypothyroid, current drugs - thyroxin, aspirin.		

20

1 The data which comprises Table 20 is obtained through a
 2 detailed medical background investigation and questionnaire
 3 responses of the individual.

4 In the next step 54 of this analysis, the
 5 environmental factor database 50 and the individual
 6 database of environmental factors 52 are compared 54 to
 7 identify the range adjustments of the specific indicators
 8 that require modification based upon the particular
 9 individual's environmental/personal factors. Such a
 10 comparison 54 is presented in Table 21 wherein it is seen
 11 that no adjustment to the normal levels (low and high) for
 12 indicators 2 and 4 is required, whereas adjustments for
 13 indicator levels 1, 3 and 5 are required due to the
 14 existence and effect of particular environmental/personal
 15 factors (altitude and prior disease) for this individual.

16

TABLE 21

INDICATOR	INDIVIDUAL FACTORS			
	ALTITUDE		PRIOR DISEASE	
	L	H	L	H
1	.4	1.0	-	-
2	-	-	-	-
3	-	-	30	400
4	-	-	-	-
5	-	-	0	6
...

17

18 The next step 56 in this analysis is to compare the
 19 human experience range data from the database of step 2
 20 (see Tables 3 and 4) to create an adjusted range and mean
 21 for each indicator 1, 2, 3...12...). The result of this
 22 step 56 is the creation of a complete indicator database,
 23 similar to Table 3, wherein the individual factors are
 24 incorporated therewithin. Table 22 presents such a
 25 combined database.

TABLE 22

INDICATOR	LOW	HIGH	MEAN
1	.4	1.0	.70
2	3.5	5	4.25
3	30	400	215
4	4	14	9.
5	0	6	3.
.	.	.	.
.	.	.	.
.	.	.	.

4 The next step 58 in the analysis is to compare the
5 blood/fluid test results of the individual] (as derived in
6 step 3 of the basic analysis) with the adjusted indicator
7 database (see Table 22 from step 56). This step 58 is
8 substantially identical to step 4 of the basic analysis,
9 with the single difference being the utilization of the
10 adjusted indicator levels from step 56 (as shown in Table
11 22) in place of the database created in step 2 of the basic
12 analytical method. The result of this step 58 is the
13 creation of the % status level for each indicator. This %
14 status level is derived utilizing the equation set forth in
15 step 4 above:

% Status = Result - Mean
Range (High-Low)

19 As discussed hereabove with regard to the basic method, the
20 % status level is a mathematical value which expresses a
21 comparison of the individual's test results for a specific
22 indicator with the database of expected values and ranges
23 for that indicator. Thereafter, the % status data from
24 step 58 is utilized to determine the indicator presence
25 levels (I, N, D) in the identical matter described
26 hereabove in step 5 with regard to the basic method. The
27 indicator presence level data may then be utilized in any
28 and all of the analytical methods described hereabove.

1 A comprehensive schematic diagram of the test method
2 of the present invention is presented in Fig. 8. As
3 depicted therein and discussed hereabove, the result of
4 step 58 is the development of % status levels of all of the
5 indicators based upon the individual's blood/fluid test
6 results (step 3) and individualized indicator ranges (step
7 56). The % status levels from step 58 may then be utilized
8 in creating panels 10, 12, 14. Additionally, the % status
9 levels from step 58 are utilized in step 5 to identify
10 presence levels of the indicators (decreased, normal and
11 increased). The presence levels may then be utilized in a
12 disease pattern match analysis in step 6, and/or they may
13 be utilized in a drug effect analysis in steps 30, 32 and
14 34, and/or a pharmacological agent analysis in steps 40, 42
15 and 44, all as have been discussed hereabove.

16 Fig. 9 is a schematic diagram depicting the analysis
17 method of Fig. 8 utilized on two different dates (first
18 date and date B) to develop comparative medical results.
19 The development of such comparative results is discussed
20 hereabove with regard to Figs. 3 and 4. It is therefore to
21 be understood that on a first date a full analysis is
22 conducted to provide disease pattern match data 6, panel
23 data 10, 12, 14, drug interaction data 34 and
24 pharmacological agent output data 44. Thereafter, on date
25 B, further disease pattern match data 6B, panel data 10B,
26 12B and 14B, drug interaction data 34B and pharmacological
27 agent output data 44B are created. The corresponding data
28 from the two dates (first date and date b) may then be
29 compared to provide comparative medical data reflective of
30 the individual's medical health changes. Thus, the disease
31 pattern match data 6 and 6B may be compared 15B to provide
32 results indicative of changed disease pattern matches.

33 Similarly, panel data 10 and 10B, 12 and 12B, 14 and
34 14B may be compared, 18B, 22B and 26B respectively, to
35 yield medical results 20B, 24B and 28B respectively
36 indicating changes in panel results. Additionally, drug

1 interaction results 34 and 34B may be compared 64 to
2 provide data regarding changes in drug interactions that
3 have occurred in the intervening time period between the
4 first date and date B. Furthermore, the pharmacological
5 agent data 44 and 44B may be compared 70 to yield data
6 indicative of changes in pharmacological results during the
7 time period.

8 It is therefore to be understood that the medical
9 diagnostic analysis method of the present invention
10 provides a comprehensive means for the utilization of
11 individual blood/fluid test results, which may be combined
12 with environmental/personal factors related to a specific
13 individual to yield significant medical data that is
14 personalized and relevant to the individual's medical
15 health.

16 While the present invention has been described with
17 reference to certain preferred embodiments, it is to be
18 understood that the present invention is not to be limited
19 to such specific embodiments. Rather, it is the inventor's
20 intention that the invention be understood and construed in
21 its broadest meaning as reflected by the following claims.

22 Thus, these claims are to be understood as incorporating
23 and not only the preferred embodiment described herein but
24 all those other and further alterations and modifications
25 as would be apparent to those of ordinary skill in the art.
26

27 What I claim is:

CLAIMS

1 1. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 a. storing a first database in said data storage
5 means; said first database having indicator data including
6 human experience test result levels associated with each of
7 a plurality of indicators;

8 b. storing a second database in said data storage
9 means, said second database having indicator data including
10 a plurality of bodily conditions and a plurality of
11 indicators that are associated with each said bodily
12 condition;

13 c. inputting test results for an individual, said
14 test results including specific indicator levels associated
15 with said individual;

16 d. comparing said specific indicator levels with
17 said indicator data of said first database to determine an
18 indicator level for each of said indicators;

19 e. comparing said indicator levels with said
20 indicator data of said second database to provide a
21 determination related to the presence of particular ones of
22 said bodily conditions in said individual.

1 2. A method as described in claim 1 wherein said
2 determination of an indicator level includes the further
3 step of determining a percent status value for each said
4 indicator, said percent status value being determined from
5 the relationship:

$$6 \quad \% \text{ Status} = \frac{\text{Test Result} - \text{Mean}}{7 \quad \text{Range (High-Low)}}$$

1 3. A method as described in claim 1 including a further
2 step of:

3 f. determining an average indicator level for each
4 said bodily condition.

1 4. A method as described in claim 1 wherein steps a-e are
2 performed on two different dates utilizing individual test
3 results of step c created on said two different dates to
4 produce a said determination on each of said two different
5 dates; and

6 comparing said determinations from said two different
7 dates to provide a measure of the change in said bodily
8 condition between said two different dates.

1 5. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 a. storing a first database in said data storage
5 means, said first database having indicator data including
6 human experience test result levels associated with each a
7 plurality of indicators;

8 b. storing a second database in said data storage
9 means, said second database having indicator data including
10 a plurality of drugs and a plurality of indicators that are
11 associated with each said drug;

12 c. inputting test results for an individual, said
13 test results including specific indicator levels associated
14 with said individual;

15 d. comparing said specific indicator levels with
16 said indicator data of said first database to determine an
17 indicator presence level for said indicators;

18 e. comparing said indicator presence levels with
19 said indicator data of said second database to provide a
20 determination related to the effect of particular ones of
21 said drugs in said individual.

1 6. A method as described in claim 5 wherein said
2 indicator data of said second database includes a

3 correlation of said drugs with increased and decreased
4 levels of said indicators.

1 7. A method as described in claim 5 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said indicator presence
4 level is increased or decreased.

1 8. A method as described in claim 5 wherein said
2 indicator data of said first database includes a
3 correlation of high, low and mean human experience test
4 results for said indicators.

1 9. A method as described in claim 8 wherein said
2 determination of an indicator presence level includes the
3 further step of determining a percent status value for each
4 said indicator, said percent status value being determined
5 from the relationship:

$$\begin{aligned} 6 \quad \% \text{ Status} &= \frac{\text{Test Result} - \text{Mean}}{7 \quad \text{Range (High-Low)}} \end{aligned}$$

1 10. A method as described in claim 9 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said percent status
4 value is greater than 25% or less than -25%.

1 11. A method as described in claim 5 wherein said
2 determination of said effect of said drugs on said
3 individual includes a determination of drugs that cause or
4 aggravate said indicator presence levels.

1 12. A method as described in claim 11 further including
2 the step of:
3 f. determining those drugs that are most commonly
4 identified as causing or aggravating said indicator
5 presence levels.

1 13. A method as described in claim 5, wherein steps a-e
2 are performed on two different dates utilizing individual
3 test results created on said two different dates to produce
4 a said determination on each of said two different dates;
5 and

6 comparing said determinations from said two different
7 dates to identify changes in said determinations.

1 14. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 a. storing a first database in said data storage
5 means; said first database having indicator data including
6 human experience test result levels associated with each a
7 plurality of indicators;

8 b. storing a second database in said data storage
9 means, said second database having indicator data including
10 a plurality of pharmacological agents and a plurality of
11 indicators that are associated with each said agent;

12 c. inputting test results for an individual, said
13 test results including specific indicator levels associated
14 with said individual;

15 d. comparing said specific indicator levels with
16 said indicator data of said first database to determine an
17 indicator presence level for said indicators;

18 e. comparing said indicator presence levels with
19 said indicator data of said second database to provide a
20 determination related to the effect of particular ones of
21 said agents in said individual.

1 15. A method as described in claim 14 wherein said
2 indicator data of said second database includes a
3 correlation of said agents with increased and decreased
4 levels of said indicators.

1 16. A method as described in claim 14 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said indicator presence
4 level is increased or decreased.

1 17. A method as described in claim 14 wherein said
2 indicator data of said first database includes a
3 correlation of high, low and mean human experience test
4 results for said indicators.

1 18. A method as described in claim 17 wherein said
2 determination of an indicator presence level includes the
3 further step of determining a percent status value for each
4 said indicator, said percent status value being determined
5 from the relationship:

1 19. A method as described in claim 9 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said percent status
4 value is greater than 25% or less than -25%.

1 20. A method as described in claim 14 wherein said
2 determination of said effect of said agents on said
3 individual includes a determination of agents that
4 normalize said indicator presence levels.

1 21. A method as described in claim 20 further including
2 the step of:

3.. f. determining those agents that are most commonly
4 identified as normalizing said indicator presence levels.

1 22. A method as described in claim 14, wherein steps a-e
2 are performed on two different dates utilizing individual
3 test results created on said two different dates to produce

4 a said determination on each of said two different dates;
5 and
6 comparing said determinations from said two different dates
7 to identify changes in said determinations.

1 23. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 storing a first database in said data storage means;
5 said first database having indicator data including human
6 experience test result levels associated with each said
7 indicator;

8 storing a second database in said data storage means,
9 said second database having indicator data including a
10 plurality of factors and a plurality of indicators that are
11 associated with each said factor;

12 inputting test results for an individual, said test
13 results including specific indicator levels associated with
14 said individual;

15 storing a third database in said data storage means,
16 said third database identifying at least one individual
17 factor associated with said individual;

18 comparing said factors of said second database with
19 said individual factors of said third database to determine
20 individual indicators and indicator data associated
21 therewith;

22 comparing said indicator data related to said individual
23 factors with said human experience test result levels of
24 said first database to determine individually modified
25 human experience test result levels associated with each
26 said indicator;

27 comparing said specific indicator levels with said
28 modified human experience levels for each indicator to
29 determine an indicator presence level for each said
30 indicator.

1 24. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of diseases and a plurality of indicators that
6 are associated with each said disease;

7 comparing said indicator presence levels with said
8 indicator data of said fourth database to provide a
9 determination related to the presence of particular ones of
10 said diseases in said individual.

1 25. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of bodily conditions and a plurality of
6 indicators that are associated with each said bodily
7 condition;

8 comparing said indicator levels with said indicator
9 data of said fourth database to provide a determination
10 related to the presence of particular ones of said bodily
11 conditions in said individual.

1 26. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of drugs and a plurality of indicators that are
6 associated with each said drug;

7 comparing said indicator presence levels with said
8 indicator data of said fourth database to provide a
9 determination related to the effect of particular ones of
10 said drugs in said individual.

1 27. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of pharmacological agents and a plurality of
6 indicators that are associated with each said agent;
7 comparing said indicator presence levels with said
8 indicator data of said fourth database to provide a
9 determination related to the effect of particular ones of
10 said agents in said individual.

1 / 9

FIG. 1

2/9

FIG. 2

3 / 9

FIG. 3

4 / 9

FIG. 4

5 / 9

FIG. 5

6/9

FIG. 6

7 / 9

FIG. 7

8/9

FIG. 8

9/9

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/19297

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) A61B 5/00; G06F 17/00

US CL 128/630

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 128/630; 364/413.01-413.11

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,437,278 A (WILK) 01 August 1995, entire document.	1-27
Y	US 5,404,292 A (HENDRICKSON) 04 April 1995, entire document.	1-27
Y	US 5,199,439 A (ZIMMERMAN et al) 06 April 1993, entire document.	1-27
A	US 4,290,114 A (SINAY) 15 September 1981, entire document.	1-27

Further documents are listed in the continuation of Box C.

See patent family annex.

-	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O"	document referring to an oral disclosure, use, exhibition or other means		
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

27 FEBRUARY 1997

Date of mailing of the international search report

26 MAR 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3590

Authorized officer

SAMUEL GILBERT

Telephone No. 703-308-3553

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61B 5/00, G06F 17/00	A1	(11) International Publication Number: WO 97/20496 (43) International Publication Date: 12 June 1997 (12.06.97)
(21) International Application Number: PCT/US96/19297		(81) Designated States: AU, BB, BR, CA, CN, CZ, EE, HU, IL, JP, KR, LT, LV, MX, NO, NZ, PL, SG, TR, UA, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 4 December 1996 (04.12.96)		
(30) Priority Data: 08/568,752 7 December 1995 (07.12.95) US 08/620,385 22 March 1996 (22.03.96) US		
(71) Applicant: CARBON BASED CORPORATION [US/US]; 153 Country Club Drive #5, Incline Village, NV 89451 (US).		Published <i>With international search report.</i>
(72) Inventor: SCHAUSS, Mark, A.; 360 Alder Court #1, Incline Village, NV 89451 (US).		
(74) Agents: HAMRICK, Claude, A., S. et al.; Bronson & McKinnon L.L.P., Ten Almaden Boulevard #600, San Jose, CA 95113 (US).		

(54) Title: MEDICAL DIAGNOSTIC ANALYSIS SYSTEM

(57) Abstract

The present invention is a computerized medical diagnostic method. It includes a first database (A) containing a correlation of a plurality of diseases with a plurality of indicators associated with each such disease. A second database (B) includes human experience test results associated with each indicator. An individual's test results are then compared with the second database (B) data to determine presence levels for each indicator. Thereafter the presence levels are compared with the data in the first database (A) to provide a pattern matching determination of diseases associated with the various indicator presence levels.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

1 **Specification**

2

3 **MEDICAL DIAGNOSTIC ANALYSIS SYSTEM**

4

5 **BACKGROUND OF THE INVENTION**

6

7 **CROSS REFERENCE TO RELATED APPLICATION**

8 This application is a continuation in part of my prior
9 application Serial No. 08/568,752, filed 12/07/95, entitled
10 "DISEASE INDICATOR ANALYSIS SYSTEM".

11

12 **Field of the Invention**

13 The present invention relates generally to automated
14 medical diagnosis systems, and more particularly to such
15 systems which compare patient diagnostic data with
16 predetermined ranges of specific indicators to provide a
17 specific disease diagnosis and suggested or contraindicated
18 treatment strategies.

19

20 **Description of the Prior Art**

21 Medical research in the second half of the 20th
22 century has produced, and continues to produce, an ever
23 increasing body of knowledge. The complexity and
24 interrelationships of various diseases and the indicators
25 that may be detected in various diagnostic tests for the
26 diseases are more than sufficient to tax the capacity of
27 most medical practitioners. To aid medical practitioners in
28 disease diagnosis, computerized expert systems have been,
29 and are being developed to collate medical diagnostic data
30 with various diseases to guide physicians in prescribing
31 treatments for their patients. Such prior art medical
32 diagnostic systems do not adequately provide an analytical
33 framework for analyzing the individual patient's diagnostic
34 results to collate such results into a disease indicator

1 pattern. Furthermore, such systems do not address
2 therapeutic and/or contraindicated treatment strategies.

3

4 SUMMARY OF THE INVENTION

5 The present invention is a computerized medical
6 diagnostic method. It includes a first database containing
7 a correlation of a plurality of diseases with a plurality
8 of indicators associated with each such disease. A second
9 database includes human experience test results associated
10 with each indicator. An individual's test results are then
11 compared with the second database data to determine
12 presence levels for each indicator. Thereafter the
13 presence levels are compared with the data in the first
14 database to provide a determination of disease pattern
15 matches associated with the various indicator presence
16 levels.

17 The presence level indicators for an individual may be
18 affected by many environmental and/or personal factors such
19 as age, sex, race, pregnancy, residence location, previous
20 or current diseases, previous or current drug usage, etc.,
21 all of which are factors to be considered in creating an
22 accurate analysis system. The present invention provides a
23 method for correlating such factors with the various test
24 indicators to identify therapeutic and/or contraindicated
25 treatments and drugs.

26 It is an advantage of the present invention that it
27 provides a method for automated analysis of an individual's
28 test results to provide increased accuracy in disease
29 identification.

30 It is another advantage of the present invention that
31 it provides increased accuracy in automated disease
32 identification systems by determining indicator presence
33 levels for use in the disease identification analysis.

34 It is a further advantage of the present invention
35 that it provides an automated medical diagnostic database
36 system wherein indicator test results for specific

1 individuals are automatically categorized as increased,
2 normal or decreased for increased accuracy in disease
3 determination.

4 It is yet another advantage of the present invention
5 that it provides an automated medical diagnostic database
6 system wherein indicator test results are combined in
7 various panels to provide diagnostic information regarding
8 various bodily conditions and functions.

9 It is yet a further advantage of the present invention
10 that it provides an automated medical diagnostic database
11 system wherein diagnostic data from a first date and a
12 second date can be compared to provide information
13 regarding the change in an individual's medical health and
14 the effectiveness of an ongoing medical treatment program.

15 It is still another advantage of the present invention
16 that it provides an automated medical diagnostic database
17 system wherein the known effects of various drugs and other
18 nutritional-biochemical elements can be utilized to better
19 analyze an individual's health status, and to identify
20 therapeutic and/or contraindicated drugs and elements.

21 It is still a further advantage of the present
22 invention that it provides an automated medical diagnostic
23 database system wherein the effects of personal and/or
24 environmental factors such as age, sex, pregnancy,
25 residence-- location, prior or current diseases and drug
26 usage, may be utilized to provide a more accurate medical
27 health analysis.

28 These and other features and advantages of the present
29 invention will become well understood upon reading the
30 following detailed description of the invention.
31

32 IN THE DRAWINGS

33 Fig. 1 is a block diagram of the basic disease pattern
34 matching analytical method of the present invention.

35 Fig. 2 is a block diagram showing the derivation of
36 various panel status data results;

1 Fig. 3 is a block diagram showing the comparison of
2 disease pattern match results of two separate dates;

3 Fig. 4 is a block diagram depicting the comparison of
4 panel status data for two separate dates;

5 Fig. 5 is a block diagram showing the incorporation of
6 known drug effect data with indicator status levels of the
7 present invention;

8 Fig. 6 is a block diagram showing the utilization of
9 known effects of nutritional-biochemical elements with
10 indicator levels;

11 Fig. 7 is a block diagram showing the utilization of
12 the known effects of various personal and/or environmental
13 factors with the diagnostic system of the present
14 invention;

15 Fig. 8 is a block diagram showing the incorporation of
16 the various analytical methods of Figs. 2, 5, 6 and 7 with
17 the basic diagnostic method of Fig. 1; and

18 Fig. 9 is a block diagram showing the analytical
19 method depicted in Fig. 8 utilizing individual test data
20 from two separate dates and including data comparisons from
21 those dates, including those shown in Figs. 3 and 4.

22

23 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

24 Generally, the basic system of the present invention
25 involves the comparison of test results, typically from
26 blood or other bodily fluids of an individual with known
27 indicators for various diseases to determine the likelihood
28 that an individual might have particular ones of the
29 diseases. The method is basically accomplished in six
30 steps which are depicted in Fig. 1 and described herebelow.

31 Fig. 1 is a schematic diagram setting forth the
32 various steps in the analytical disease indication method
33 of the present invention. As depicted therein, step 1 is
34 the creation of a database for utilization within a
35 computer diagnostic system. The database is a correlation
36 of various diseases, denoted generally as A, B, C..., with

1 levels (Increased, Normal, Decreased) of various specific
 2 indicators, denoted generally as 1, 2, 3...12..., in a
 3 computerized database.

4 Table 1 depicts the step 1 database relationship of
 5 various diseases (denoted A, B, C... with known indicators
 6 for the particular disease (denoted 1, 2, 3...12). It is
 7 seen that various ones of the indicators in increased (I),
 8 normal (N) or decreased (D) levels are associated with
 9 various ones of the diseases.

10

TABLE 1

DISEASE (A, B, C,...)	INDICATORS (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,...)
A	1I, 2D, 7D, 9I, 10I
B	1D, 3D, 6D, 8D, 10I, 12I
C	2I, 3D, 5D, 7I, 10D
.	.
.	.

11

12 By way of specific example, Table 2 describes three
 13 specific diseases, acute myocardial infarction, acquired
 14 hemolytic anemia and acromegaly, with related indicators.
 15 There are, of course, many diseases and several significant
 16 indicators for each, and medical research daily discovers,
 17 new diseases and derives new indicators for particular
 18 diseases. Thus, step 1 actually comprises a tabulation of
 19 known medical research of diseases and the indicator levels
 20 indicative of those diseases.

21

TABLE 2ACUTE MYOCARDIAL INFARCTIONIndicators

Increased levels: Alkaline Phosphatase, Cholesterol, Creatinine, GGT, LDH, WBC, Neutrophils, Triglycerides, BUN, Uric Acid

Normal levels: Total Bilirubin, Calcium

Decreased levels: Albumin, Iron, Sodium

ACQUIRED HEMOLYTIC ANEMIA (AUTOIMMUNE)Indicators

Increased levels: SGOT, SGPT, Basophils, Total Bilirubin, Creatinine, LDH, Monocytes, Phosphorus, BUN, Uric Acid

Normal levels: none

Decreased levels: Hematocrit, Hemoglobin

ACROMEGALYIndicators

Increased levels: Alkaline Phosphatase, Calcium, Creatinine, Glucose, Phosphorous, Potassium, Sodium, BUN

Normal levels: none

Decreased levels: none

1 As depicted in Fig. 1, step 2 of the method of the
 2 present invention is the creation of a second database
 3 which comprises a correlation of human diagnostic
 4 experience with each of the many indicators that are
 5 identified in the database of step 1. In the preferred
 6 embodiment, the database of step 2 includes a low value, a
 7 high value and a mean value for each of the indicators.

9 Table 3 represents the database of step 2, comprising
 10 the human experience values related to each of the
 11 indicators (1-12). Thus, the range of human experience for
 12 indicator 1 reveals a low of .9 units, a high of 2 units
 13 and a mathematical mean of 1.45 units.

14

TABLE 3

INDICATOR	LOW	HIGH	MEAN
1	.9	2	1.45
2	3.5	5	4.25
3	60	415	237.5
4	4	14	9
5	0	3	1.5
6	0	200	100
7	.2	1.3	.75
8	8	20	14
9	6	25	15.5

10	8.8	10.1	9.45
11	1.3	3.3	2.3
12	95	105	100
.	.	.	.
.	.	.	.
.	.	.	.

1

2 Table 4 presents a typical tabulation of some known
 3 indicators with test results to provide added understanding
 4 by way of specific example. These test results and human
 5 experience high, low and mean are derived from known in
 6 medical research, and step 2 thus comprises a database of
 7 known medical research.

8

TABLE 4

INDICATOR	RESULT	LOW	HIGH	MEAN	% STATUS	PRESENCE LEVEL
1.A/G Ratio	1.71	0.9	2	1.45	23.48	N
2. Albumin	4.1	3.5	5	4.25	-10.00	N
3.Alkaline Phosphatase	114	60	415	237.5	-34.79	D
4. Anion Gap	16.2	4	14	9	72.00	I
5. Basophil	0	0	3	1.5	-50.00	D
6.Basophil Count	0	0	200	100	-50.00	D
7. Bilirubin, Total	0.5	0.2	1.3	0.75	-22.73	N
8. B.U.N.	9	8	20	14	-41.67	D
9.B.U.N./Creatinine Ratio	18.00	6	25	15.5	13.16	N
10. Calcium	9.77	8.8	10.1	9.45	19.23	N
11.Calcium/Phosphorus Ratio	2.69	1.3	3.3	2.3	19.72	N
12. Chloride	105	95	105	100	50.00	I
.
.
.

9

10 Returning to Fig. 1, step 3 of the method of the
 11 present invention is the development of test results for a
 12 specific individual. In the present invention, the
 13 individual test results are determined from testing blood,
 14 serum, urine or other bodily fluids through medical
 15 laboratory facilities. The results are correlated in a

1 third database which includes the appropriate numerical
 2 values for each of the various indicators found in the
 3 databases of steps 1 and 2 hereabove. Table 5 is a simple
 4 test result tabulation for a specific individual as regards
 5 each of the indicators (1-12). These test results are the
 6 common output of a blood test, urine test, etc. with regard
 7 to the known indicators. For further understanding, these
 8 test results are also presented in Table 4.

9

TABLE 5

PATIENT TEST RESULTS												
INDICATOR	1	2	3	4	5	6	7	8	9	10	11	12
RESULT	1.71	4.1	114	16.2	0	0	.5	9	18	9.77	2.69	105

10

11 As depicted in Fig. 1, step 4 of the method of the
 12 present invention is the computerized comparison of the
 13 individual's indicator test results from the database
 14 developed in step 3 with the human experience database for
 15 the indicators developed in step 2. The comparison of step
 16 4 is conducted utilizing the equation:

17

$$\% \text{ Status} = \frac{\text{Result} - \text{Mean}}{\text{Range (High-Low)}}$$

18

19

20 This comparison yields a result denoted as "percent
 21 status", which is a mathematical value which expresses a
 22 comparison of the individual's test results for a specific
 23 indicator with the typical human experience test result
 24 values for that particular indicator. It is an indication
 25 of where the individual's test results fall in comparison
 26 with the human experience test results of Table 3. Table 6
 27 represents the step 4 comparison of the individual test
 28 results of Table 5 with the indicator statistics of Table 3
 29 to derive a "percent status" according to the comparison
 30 equation presented above. For further understanding, the
 31 comparison results of step 4 (% status) are also presented
 32 in Table 4.

SUBSTITUTE SHEET (RULE 26)

1

TABLE 6

PRESENCE OF THE INDICATOR												
INDICATOR	1	2	3	4	5	6	7	8	9	10	11	12
% STATUS	23.4	-10	-34	72	-50	-50	-22	-41	13	19	19	50
PRESENCE LEVEL	N	N	D	I	D	D	N	D	N	N	N	I

2

3 As depicted in Fig. 1, step 5 of the method of the
 4 present invention is the further analysis of the results of
 5 step 4 to determine the degree of presence of the various
 6 indicators in the specific individual's test results. In
 7 the present invention, where the percent status is greater
 8 than 25%, it is determined that an "increased level" (I) of
 9 that indicator is present. Where the percent status value
 10 of an indicator is less than -25%, it is determined that a
 11 "decreased level" (D) of that indicator is present. Where
 12 the percent status of an indicator is between -25% and
 13 +25%, it is determined that a "normal level" (N) of that
 14 indicator is present in the individual's test results.
 15 Table 6 includes the results of step 5, wherein an "I"
 16 represents an increased level presence, an "N" represents a
 17 normal level presence and a "D" indicates a decreased level
 18 presence of the various indicators. For further
 19 understanding, the presence indicator results of step 5 (I,
 20 N or D) are also presented in Table 4.

21 As depicted in Fig. 1, step 6 of the method of the
 22 present invention is the comparison of the indicator
 23 presence results of step 5 with the database of step 1.
 24 This correlation seeks to determine from the presence
 25 levels of various indicators in the individual's test
 26 results (I, N or D), the likelihood that particular
 27 diseases identified by the presence of specific
 28 combinations of indicators are afflicting the individual.
 29 This likelihood is derived by determining how many "pattern
 30 matches" exist between the presence levels (I, N or D) of

1 the indicator test results with the indicator data of the
 2 step 1 database.

3

TABLE 7

DISEASE INDICATOR			
DISEASE	# INDICATORS	# MATCHES	% MATCH
A	5	0	0%
B	6	4	67%
C	5	2	40%
.	.	.	.
.	.	.	.
.	.	.	.

4

5 For instance, as depicted in Table 7, the presence
 6 levels (I, N or D) of the various indicators are compared
 7 with various diseases A, B, C,... from the step 1 database
 8 as shown in Table 1 to determine the degree to which any of
 9 the diseases are indicated by the matching of the presence
 10 levels of various indicators with the disease data. Thus,
 11 as set forth in Table 7, it is seen that disease B is very
 12 likely present because 4 of 6 of the indicator levels are
 13 matched, whereas diseases A and C are not as likely present
 14 because fewer of the indicators levels for these diseases
 15 are matched. Table 8 is merely exemplificative of a
 16 portion of a typical result tabulation that is similar to
 17 Table 7 for added understanding.

18

TABLE 8

DISEASE	ICD-9 CODE	# OF MATCHES	# OF INDICATORS	PERCENT MATCH
Anterior Pituitary Hypofunction	253.40	5	10	50.00%
Pernicious Anemia	281.00	6	15	40.00%
Vitamin C Deficiency	267.00	3	8	37.50%
Rheumatoid Arthritis	714.00	5	15	33.33%
Acute Myocardial Infarction	410.00	5	15	33.33%
.

--	--	--	--	--

2 Therefore, the basic method presented in Fig. 1 herein
3 enables a medical practitioner to input a patient's test
4 results into a computerized system and have the system
5 produce a listing of possible diseases that the patient may
6 have based upon the variation between the individual's test
7 results and the known human experience results for various
8 indicators.

Fig. 2 depicts a further usage of the percent status data that was developed in step 4 of the basic method depicted in Fig. 1, and described above. It is well known in medical research that various ones of the specific indicators, denoted generally as 1, 2, 3...12...are useful for the analysis of certain bodily conditions and functions, and a database which references a particular condition or function is referred to herein as a panel. Table 9 presents hypothetical data for three panels (Panel A, Panel B and Panel C) of many contemplated panels.

TABLE 9

Panel A		Panel B		Panel C	
Indicator	% Status	Indicator	% Status	Indicator	% Status
131832	23.4 -34. 7.80 -6.43	3 7 8 18 47 85	-34. -22 -41 7.80 -18.88 23.61	7 13 71	-22. 50. -16.66
Deviation	17.91	Deviation	24.55	Deviation	29.56
Skew	-9.23	Skew	-14.08	Skew	3.78

20

21 As depicted in Fig. 2 and shown in Table 9, panel A
22 (see reference numeral 10) refers to a specific bodily
23 condition or function, and information related to the panel
24 A condition or function is obtainable from a combined
25 analysis of indicators 1, 3, 18 and 32 (for example)

1 wherein a percent status figure from step 4 is utilized for
2 each indicator. A mathematical data deviation (the average
3 of percent status without regard to the sign), and a data
4 skew (the average of the percent status wherein the sign is
5 taken into account), is calculated for each panel data set.
6 The deviation and skew provide a numerical framework for
7 referencing the status of the bodily condition or function
8 of panel A. Also shown in Table 9 and depicted in Fig. 2
9 is a panel B (see reference numeral 12) which (for example)
10 is represented by percent status data from indicators 3, 7,
11 8, 18, 47 and 85, with a deviation and skew being reported
12 for panel B. Additionally, in Table 9 and in Fig. 2, a
13 panel C (see reference panel 14) with indicators (for
14 example 7, 12 and 71 with percent status data from step 4
15 and deviation and skew data) represents yet another bodily
16 condition or function. Current medical knowledge teaches
17 that many such bodily functions and conditions can be
18 represented by data panels comprising a plurality of
19 specific indicators, and while only panels A, B and C are
20 shown in Table 9 and depicted in Fig. 2, arrow 13 is
21 presented in Fig. 2 to indicate that many more such panels
22 are contemplated by the inventor and considered part of the
23 present invention.

24 Specific panels for bodily conditions and functions
25 that are contemplated by the inventor include nitrogen
26 status, electrolyte status, protein status, cardiac marker
27 status, liver status, kidney function status, lipid status,
28 allergy status, hematology status, leukocyte percentage
29 differential status, blood element ratio status, leukocyte
30 count status, acid PH indicator status, alkaline PH
31 indicator status.

32 By way of specific examples to further the
33 comprehension of the present invention, Table 10 hereof
34 presents the electrolyte panel of an individual, the
35 cardiac marker panel of the specific individual, the kidney

- 1 function status panel of the individual and the blood
 2 elements ratio status panel of the individual.
 3

TABLE 10

ELECTROLYTE		
INDICATOR	Result	% Status
Sodium	139	-10.00
Potassium	4.2	-12.50
Chloride	105	50.00
CO2	22	-30.00
Calcium	9.7	19.23
Phosphorus	3.6	-20.00
Panel Status Deviation		23.62
Panel Status Skew		-0.54
KIDNEY FUNCTION		
INDICATOR	Result	% Status
B.U.N.	9.0	-41.67
Phosphorus	3.6	-20.00
Cholesterol	181	-17.21
Creatinine	0.5	0.00
Uric Acid	4.1	26.00
Calcium	9.7	19.23
LDH	414	-31.95
Total Protein	6.5	-30.00
Albumin	4.1	-10.00
Globulin	2.4	-60.00
A/G Ratio	1.7	23.48
Panel Status Deviation		25.41
Panel Status Skew		-12.92
RATIO'S		
INDICATOR	Result	% Status
BUN/Creatinine	18.00	13.16
Sodium/Potassium	33.10	9.13
Calcium/Phosphorus	2.69	19.72
A/G Ratio	1.71	23.48
Anion Gap	16.20	72.00
Panel Status Deviation		27.50
Panel Status Skew		27.50
CARDIAC MARKER		

INDICATOR	Result	% Status
Cholesterol	181	-17.21
Triglycerides	98.0	28.75
SGOT	23.0	-5.00
LDH	414.0	-31.95
Panel Status Deviation		20.73
Panel Status Skew		-6.35

1

2 It is to be understood that other and further panels
 3 as identified above are within the contemplation of the
 4 inventor and will be known to those skilled in the art, and
 5 that medical research daily identifies other panels and
 6 further indicators that are suitable for usage in the
 7 various panels that may be derived utilizing the present
 8 invention.

9 The present invention contemplates the comparison of
 10 analytical test results data developed for an individual on
 11 a first date with test results data developed for the
 12 individual at a later date, in order to determine changes
 13 in the individual's medical condition. Fig. 3 is a
 14 schematic depiction of such a comparison, specifically a
 15 comparison of disease pattern match results and
 16 exemplificative data is provided in Table 11. As depicted
 17 in Fig. 3 and set forth in Table 11, a first set of disease
 18 pattern match data is derived from blood, urine or other
 19 fluid testing on a first date; this data is derived using
 20 portion 7 of the Fig. 3 schematic as discussed hereinabove
 21 with regard to Fig. 1 and shown in Table 8. On a second
 22 date (date A) further testing of the individual is
 23 accomplished, as represented by schematic portion 7A,
 24 wherein new personal bodily fluid test results 3A are
 25 developed. The test results 3A are compared with the human
 26 experience data 2 to yield new percent status data 4A for
 27 all indicators, which data 4A is utilized to develop in new
 28 presence levels 5A, and new disease pattern matches 6A as
 29 set forth in Table 11. The disease pattern match data of 6
 30 and 6A is compared 15 and changes in disease pattern

1 matches 16 are identified (see Table 11) as a means of
 2 providing health status data related to the individual.
 3

TABLE 11

DISEASE	ICD-9 CODE	First Date			Date A		% CHANGE
		# OF MATCHES	# OF INDICATORS	% MATCH	# OF MATCHES	% MATCH	
Anterior Pituitary Hypofunction	253.40	5	10	50.00	6	60.00	-10.00
Pernicious Anemia	281.00	6	15	40.00	5	33.33	+6.67
Vitamin C Deficiency	267.00	3	8	37.50	3	37.50	0
Rheumatoid Arthritis	714.00	5	15	33.33	5	37.50	0
Acute Myocardial Infarction	410.00	5	15	33.33	4	26.66	+6.67

4
 5 The new percent status data developed for date A in
 6 step 4A of Fig. 3 can be utilized to develop new panel
 7 status information for date A in the same manner as is
 8 taught hereinabove with regard to Fig. 2. Thereafter, the
 9 panel status data of the first test date can be compared
 10 with the new panel status data for date A to provide
 11 information on the individual's medical health changes.
 12 Fig. 4 depicts such a panel status data comparison from a
 13 first date and a subsequent date A and Table 12 provides
 14 exemplificative data for panels A, B and C as discussed
 15 above in regard to Table 9.

16

TABLE 12

Panel A	First Date	Date A	Comparison
Indicator	% Status	% Status	% Change
1	23.4	25.0	-1.6
3	-34.	-28.0	+6.0
18	7.80	7.8	0.
32	-6.43	-6.43	0.
Deviation	17.91		
Skew	-9.23		

Panel B	First Date	Date A	Comparison
Indicator	% Status	% Status	% Change
8	-34	-28	+6.0
7	-22	-22	0.
8	-41	-45	-4.0
18	7.80	7.8	0.
47	-18.88	-20.0	-1.12
85	23.61	23.61	0.
Deviation	24.55		
Skew	-14.08		
Panel C	First Date	Date A	Comparison
Indicator	% Status	% Status	% Change
7	-22.	-22	0.
13	50.	42	+8.0
71	-16.66	-8.4	+8.26
Deviation	29.56		
Skew	3.78		

1
 2 As depicted in Fig. 4, percent status data from step 4 of
 3 Fig. 3 at a first date is utilized to create panel status
 4 data 10, 12 and 14 as discussed above with regard to Fig. 2
 5 and Table 9. In an identical manner on date A, percent
 6 status data derived in step 4A of Fig. 3 is utilized to
 7 create panel status data 10A, 12A and 14A as provided in
 8 Table 12. As mentioned above, further panels represented
 9 by arrows 13 and 13A are contemplated in the present
 10 invention. A comparison 18 of panel A percent status
 11 results of first date 10 with panel A percent status
 12 results of second date 10A is now accomplished as is shown
 13 in Table 12. The comparison 18 is utilized to identify
 14 changes 20 in the percent status for each indicator
 15 relevant to panel A, together with changes in the deviation
 16 and skew data. In a like manner, a comparison 22 of panel
 17 B status data 12 and 12A permits the identification 24 of
 18 changes in panel B medical status. Likewise, panel C
 19 status data is compared 26 to identify changes 28 in panel
 20 C medical status.

21 A specific example of the panel status data comparison
 22 is presented in Table 13 wherein the specific panels of

1 Table 10 are utilized, those being the electrolyte panel,
 2 the cardiac marker panel, the kidney function status panel
 3 and the blood elements ratio status panel of a particular
 4 individual. As presented in Table 13, the panel results
 5 for the first date are reproduced from Table 10 and new
 6 panel results for date A are reported. It is furthermore
 7 indicated whether the change in specific indicators for
 8 each panel has improved (positive) or worsened (negative),
 9 and the change in the percent status of each indicator is
 10 reported. Additionally, the mathematical deviation and
 11 skew of the first date results and the date A results are
 12 provided and the change in the deviation and skew is also
 13 reported. The panel status data change of Table 13 is
 14 utilizable by a medical practitioner to provide insight
 15 into the medical health changes that the individual has
 16 undergone during the intervening period between the first
 17 date testing and the testing on date A.

18

TABLE 13

ELECTROLYTE		First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change	
Sodium	139	-10.00	-19.09	Negative	-9.09	
Potassium	4.2	-12.50	-17.50	Negative	-5.00	
Chloride	105	50.00	-57.69	Negative	-7.69	
CO2	22	-30.00	-42.50	Negative	-12.50	
Calcium	9.7	19.23	8.12	Positive	11.11	
Phosphorus	3.6	-20.00	-26.67	Negative	-6.67	
Panel Status Deviation		23.62	32.30			-8.68
Panel Status Skew		-0.54	-5.51			-4.97
KIDNEY FUNCTION		First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change	
B.U.N.	9.0	-41.67	-57.05	Negative	-15.38	
Phosphorus	3.6	-20.00	-26.67	Negative	-6.67	
Cholesterol	181	-17.21	-4.64	Positive	12.57	
Creatinine	0.5	0.00	-14.29	Negative	-14.29	
Uric Acid	4.1	26.00	28.00	Negative	-2.00	
Calcium	9.7	19.23	8.12	Positive	11.11	
LDH	414	-31.95	-45.90	Negative	-13.95	
Total Protein	6.5	-30.00	-38.00	Negative	-8.00	

Albumin	4.1	-10.00	12.22	Positive	22.22
Globulin	2.4	-60.00	-50.48	Positive	9.52
A/G Ratio	1.7	23.48	-4.61	Positive	28.09
Panel Status Deviation		25.41	12.34		13.07
Panel Status Skew		-12.92	-10.81		2.11
RATIO'S	First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change
BUN/Creatinine	18.00	3.16	11.41	Positive	1.75
Sodium/Potassium	33.10	9.13	11.67	Negative	-2.54
Calcium/Phosphorus	2.69	19.72	24.18	Negative	-4.46
A/G Ratio	1.71	23.48	-4.61	Positive	28.09
Anion Gap	16.20	72.00	71.00	Positive	1.00
Panel Status Deviation		27.50	24.57		2.93
Panel Status Skew		27.50	22.43		4.77
CARDIAC MARKER	First Date		Date A Results	Comparison	
INDICATOR	Result	%Status	% Status	Direction	% Change
Cholesterol	181	-17.21	-29.78	Positive	12.57
Triglycerides	98.0	28.75	29.25	Negative	-0.50
SGOT	23.0	-5.00	-7.38	Negative	-2.38
LDH	414.0	-31.95	-45.90	Negative	-13.95
Panel Status Deviation		20.73	13.38		7.35
Panel Status Skew		-6.35	-7.42		-1.07

1
 2 A further feature of the present invention is the
 3 incorporation of the known effects of various drugs upon
 4 test results for various indicator levels. As depicted in
 5 Fig. 5, and set forth in exemplificative fashion in Table
 6 14, a database is created 30 which correlates the effects
 7 of known drugs upon the levels of each of the various
 8 indicators. Thus, as depicted in Table 14, for each
 9 indicator 1, 2, 3...12... known drugs are cataloged that
 10 can cause or aggravate an increased level (I) of an
 11 indicator and that can cause or aggravate a decreased level
 12 (D) of an indicator. The effects of the various drugs on
 13 the various indicator levels are well known in medical
 14 research and new drugs, and the corresponding effects

1 thereof on various indicators are developed in medical
2 research on a daily basis.

3 As shown in Fig. 5, the next step 32 in this analysis
4 is to compare the abnormal presence levels, both increased
5 (I) and decreased (D), determined in step 5 of the basic
6 analytical process, with the drug effects table data of
7 Table 14. By way of example, it is set forth hereabove in
8 Table 6 that a specific individual's test results showed
9 that indicators 1 and 2 showed a normal presence level,
10 indicator 3 had a decreased presence level, indicator 4 had
11 an increased presence level, indicators 5 and 6 had
12 decreased presence levels.

13

TABLE 14

INDICATOR	DRUG (a, b, c...) CAUSE OR AGGRAVATE	
	INCREASE (I)	DECREASE (D)
1	a, b, d, f, h	l, m, p
2	a, c, e, j, l	b, d, o, p
3	b, c, f, g	d, j, k, l, m
4	a, d, g, h	b, f, k
5	a, c, f, h, k, l	b, d, e, o, p
6	e, h, k, m	a, d, l, r, t
.	.	.
.	.	.
.	.	.

14

15 Table 15 identifies the abnormal indicators 3, 4, 5 and 6,
16 with their increased or decreased presence level, and
17 identifies the specific drugs from Table 14 that cause or
18 aggravate the increased or decreased presence level of the
19 indicator.

20

TABLE 15

INDICATOR	ABNORMAL PRESENCE LEVEL	DRUG CAUSE OR AGGRAVATE
3	D	d, j, k, l, m
4	I	a, d, g, h
5	D	b, d, e, o, p
6	D	a, d, l, r, t
.	.	.

HIGH INCIDENCE DRUG = d (CONTRAINDICATED)		

1
2 Thereafter, as set forth in step 34 of Fig. 5, the
3 incidence of the various drugs set forth in Table 15 is
4 determined. Specifically, it is seen in Table 15 that drug
5 "d" is identified as a drug that can cause or aggravate
6 each of the abnormal presence levels of each of the
7 indicators. The analytical result of this analysis is the
8 conclusion that drug "d" is contraindicated for this
9 individual.

10 To further enhance the understanding of the present
11 invention, Table 16 provides known drug effect medical
12 research data for a few specific indicator conditions.
13 Specifically, for the indicator chloride level in blood
14 testing, where the chloride level is increased (% status is
15 greater than 25%), some known drugs that can cause or
16 aggravate this condition are listed; it is specifically
17 noted that aspirin is one of these drugs. For the total
18 iron level indicator, which is decreased (% status is less
19 than -25%), some known drugs that can cause this reduced
20 level are provided. For the basophils indicator decreased
21 level (% status is less than -25%), a drug that can cause
22 this reduced level is procainamide. For the WBC level
23 indicator having a decreased level (% status is less than -
24 25%), drugs that can cause this reduced level are listed,
25 and it is specifically noted that aspirin is one of the
26 drugs. For the glucose level indicator having a decreased
27 level (% status is less than -25%), drugs which cause or
28 aggravate the decreased level are identified, and it is
29 specifically noted that aspirin is one such drug. The last
30 indicator provided in Table 16 (it being understood that as
31 many indicators as are identified in test results as having
32 an increased or decreased level would be included in Table
33 16) is total protein having a decreased level (% status is

1 less than -25%), and some of the various drugs that can
 2 cause or aggravate the reduced level are identified,
 3 specifically identifying aspirin as one of the drugs.

4

TABLE 16

INDICATOR	ABNORMAL PRESENCE LEVEL	DRUG CAUSE OR AGGRAVATE CONDITION
Chloride	I	Acetazolamide, Aspirin, Lithium, Boric Acid...
Total Iron	D	ACTH, Oxalate, Fluorides...
Basophils	D	Procainamide....
WBC	D	Aspirin, Busulfan, Mepazine...
Glucose	D	Aspirin, Ethanol, Insulin...
Total Protein	D	Aspirin, Arginine, Rifampin...

5

6 An analysis of the Table 16 data shows that the drug
 7 aspirin is identified as a drug that can cause or aggravate
 8 four of the six abnormal presence levels of the indicators
 9 set forth therein; thus aspirin is a contraindicated drug
 10 for the individual whose test results are provided in Table
 11 16.

12 It is therefore to be generally understood that the
 13 present invention includes a method as shown in Fig. 5 to
 14 identify specific drugs that are contraindicated for an
 15 individual based upon the increased or decreased levels of
 16 specific indicators in the individual's blood/fluid test
 17 analysis results. This output data of contraindicated
 18 drugs is obtained utilizing a database 30 correlating
 19 increased and decreased indicator levels with known drug
 20 effects from known medical research, and the specific
 21 indicators identified in step 5 test results as having
 22 increased or decreased levels pursuant to the analytical
 23 methods of the present invention.

24 Another feature of the present invention is the
 25 incorporation of the known positive effects of various
 26 pharmacological agents upon test results for various
 27 indicator levels. As depicted in Fig. 6, and set forth
 28 exemplary in Table 17, a database is created 40 which

1 correlates the effects of known pharmacological agents (a₁,
 2 b₁, c₁,...) upon the levels for each of the various
 3 indicators. This table is similar to Table 14 with the
 4 significant difference that the effect of the
 5 pharmacological agents is to improve the abnormal presence
 6 level of various indicators.

7

TABLE 17

INDICATOR	PHARMACOLOGICAL AGENT (a ₁ , b ₁ , c ₁ ...) EFFECT	
	INCREASE (I)	DECREASE (D)
1	b ₁ , d ₁ , f ₁ , h ₁	c ₁ , k ₁ , r ₁
2	a ₁ , g ₁ , l ₁	c ₁ , l ₁ , s ₁ , t ₁
3	d ₁ , g ₁ , h ₁ , k ₁	b ₁ , c ₁ , m ₁
4	a ₁ , k ₁ , m ₁	c ₁ , d ₁ , l ₁
5	c ₁ , k ₁ , r ₁ , s ₁	a ₁ , f ₁ , g ₁ , m ₁ , p ₁
6	a ₁ , c ₁ , n ₁ , t ₁ , v ₁	d ₁ , h ₁ , k ₁ , m ₁ , s ₁
.	.	.
.	.	.
.	.	.

8

9 Thus, as depicted in Table 17, for each indicator 1, 2,
 10 3...12... known agents are cataloged that can normalize a
 11 level of an indicator; that is, to reduce an increased
 12 level or to raise a decreased level. The effects of the
 13 various pharmacological agents on the various indicator
 14 levels are well known in medical research, and new agents,
 15 and the corresponding effects thereof on various indicators
 16 are developed in medical research on a daily basis.

17 As shown in Fig. 6, the next step 42 in this analysis
 18 is to compare the abnormal presence levels, both increased
 19 (I) and decreased (D), determined in step 5 of the basic
 20 analytical process with the pharmacological agent data of
 21 Table 17. By way of example, it is set forth hereabove in
 22 Table 6 that a specific individual's test results showed
 23 that indicators 1 and 2 showed a normal presence level,
 24 indicator 3 had a decreased presence level, indicator 4 had
 25 an increased presence level, indicators 5 and 6 had
 26 decreased presence levels. Table 18 identifies the

1 abnormal indicators 3, 4, 5 and 6 with their increased or
 2 decreased presence level, and identifies the specific
 3 pharmacological agents from Table 17 that can have a
 4 positive effect on the abnormal presence level indicated.
 5

TABLE 18

INDICATOR	ABNORMAL PRESENCE LEVEL	PHARMACOLOGY AGENT EFFECT
3	D	b1, c1, m1
4	I	a1, k1, m1
5	D	a1, f1, g1, m1, p1
6	D	d1, h1, k1, m1, s1
.	.	.
.	.	.
HIGH INCIDENCE AGENT = m1 (INDICATED)		

6
 7 Thereafter, as set forth in step 44 of Fig. 6, the
 8 incidence of the various pharmacological agents set forth
 9 in Table 18 is determined. Specifically, it is seen in
 10 Table 18 that pharmacological agent m1 is identified as an
 11 agent that can have a positive effect on each of the
 12 abnormal presence levels of each of the indicators. The
 13 analytical result of this analysis is the conclusion that
 14 pharmacological agent m1 is positively indicated for this
 15 individual.

16 It is well known in medical research that various
 17 environmental/personal factors can affect the indicator
 18 levels of an individual, or segments of the population
 19 generally. For example, such factors as age, sex, race,
 20 pregnancy, residence location, previous or current
 21 diseases, previous or current drug usage, etc., can all
 22 affect the various indicator levels. That is, a particular
 23 indicator level might be normal for a ten year old male and
 24 abnormal (increased or decreased) for a 65 year old female.
 25 Fig. 7 depicts the analytical steps of the present
 26 invention that incorporate the various environmental/
 27 personal factors.

1 As depicted in Fig. 7, a first step 50 in this portion
 2 of the analysis method of this invention is to create a
 3 database which correlates the effects of various
 4 environmental/personal factors (a₂, b₂, c₂...) with the
 5 range and mean of each indicator (1, 2, 3...12...), and
 6 Table 19 is an example of such a database showing the
 7 effects of various factors, such as sex, pregnancy,
 8 altitude of residence and prior disease on the range (low
 9 and high) of various indicators, showing that some
 10 indicator ranges are affected by some of the factors
 11 whereas other indicator ranges are not.

12

TABLE 19

INDICATOR	RANGE		FACTORS (a ₂ , b ₂ , c ₂ ...)							
			SEX		PREGNANCY		ALTITUDE		PRIOR DISEASE	
	LOW	HIGH	L	H	L	H	L	H	L	H
1	.9	2	.6	1.5	1.2	4	.4	1.0	-	-
2	3.5	5	-	-	5	10	-	-	-	-
3	60	415	80	600	30	300	-	-	30	400
4	4	14	5	18	-	-	-	-	-	-
5	0	3	0	2	0	6	-	-	0	6
.
.

13

14 The initial range results from Table 3 are presented for
 15 illustrative purposes.

16 Thereafter, as depicted in Fig. 7, an individual
 17 database of environmental/personal factors is created 52.
 18 Such a database is presented by way of example in Table 20.

19

TABLE 20

INDIVIDUAL ENVIRONMENTAL/PERSONAL FACTORS
Age - 45, Sex - M, Residence - High Altitude,Prior
Disease - hypothyroid, current drugs - thyroxin, aspirin.

20

1 The data which comprises Table 20 is obtained through a
 2 detailed medical background investigation and questionnaire
 3 responses of the individual.

4 In the next step 54 of this analysis, the
 5 environmental factor database 50 and the individual
 6 database of environmental factors 52 are compared 54 to
 7 identify the range adjustments of the specific indicators
 8 that require modification based upon the particular
 9 individual's environmental/personal factors. Such a
 10 comparison 54 is presented in Table 21 wherein it is seen
 11 that no adjustment to the normal levels (low and high) for
 12 indicators 2 and 4 is required, whereas adjustments for
 13 indicator levels 1, 3 and 5 are required due to the
 14 existence and effect of particular environmental/personal
 15 factors (altitude and prior disease) for this individual.

16

TABLE 21

INDICATOR	INDIVIDUAL FACTORS			
	ALTITUDE		PRIOR DISEASE	
	L	H	L	H
1	.4	1.0	-	-
2	-	-	-	-
3	-	-	30	400
4	-	-	-	-
5	-	-	0	6
...

17

18 The next step 56 in this analysis is to compare the
 19 human experience range data from the database of step 2
 20 (see Tables 3 and 4) to create an adjusted range and mean
 21 for each indicator 1, 2, 3...12...). The result of this
 22 step 56 is the creation of a complete indicator database,
 23 similar to Table 3, wherein the individual factors are
 24 incorporated therewithin. Table 22 presents such a
 25 combined database.

1
2TABLE 22

INDICATOR	LOW	HIGH	MEAN
1	.4	1.0	.70
2	3.5	5	4.25
3	30	400	215
4	4	14	9.
5	0	6	3.
.	.	.	.
.	.	.	.
.	.	.	.

3

4 The next step 58 in the analysis is to compare the
 5 blood/fluid test results of the individual (as derived in
 6 step 3 of the basic analysis) with the adjusted indicator
 7 database (see Table 22 from step 56). This step 58 is
 8 substantially identical to step 4 of the basic analysis,
 9 with the single difference being the utilization of the
 10 adjusted indicator levels from step 56 (as shown in Table
 11 22) in place of the database created in step 2 of the basic
 12 analytical method. The result of this step 58 is the
 13 creation of the % status level for each indicator. This %
 14 status level is derived utilizing the equation set forth in
 15 step 4 above:

$$16 \quad \% \text{ Status} = \frac{\text{Result} - \text{Mean}}{\text{Range} (\text{High} - \text{Low})}$$

$$17$$

18

19 As discussed hereabove with regard to the basic method, the
 20 % status level is a mathematical value which expresses a
 21 comparison of the individual's test results for a specific
 22 indicator with the database of expected values and ranges
 23 for that indicator. Thereafter, the % status data from
 24 step 58 is utilized to determine the indicator presence
 25 levels (I, N, D) in the identical manner described
 26 hereabove in step 5 with regard to the basic method. The
 27 indicator presence level data may then be utilized in any
 28 and all of the analytical methods described hereabove.

1 A comprehensive schematic diagram of the test method
2 of the present invention is presented in Fig. 8. As
3 depicted therein and discussed hereabove, the result of
4 step 58 is the development of % status levels of all of the
5 indicators based upon the individual's blood/fluid test
6 results (step 3) and individualized indicator ranges (step
7 56). The % status levels from step 58 may then be utilized
8 in creating panels 10, 12, 14. Additionally, the % status
9 levels from step 58 are utilized in step 5 to identify
10 presence levels of the indicators (decreased, normal and
11 increased). The presence levels may then be utilized in a
12 disease pattern match analysis in step 6, and/or they may
13 be utilized in a drug effect analysis in steps 30, 32 and
14 34, and/or a pharmacological agent analysis in steps 40, 42
15 and 44, all as have been discussed hereabove.

16 Fig. 9 is a schematic diagram depicting the analysis
17 method of Fig. 8 utilized on two different dates (first
18 date and date B) to develop comparative medical results.
19 The development of such comparative results is discussed
20 hereabove with regard to Figs. 3 and 4. It is therefore to
21 be understood that on a first date a full analysis is
22 conducted to provide disease pattern match data 6, panel
23 data 10, 12, 14, drug interaction data 34 and
24 pharmacological agent output data 44. Thereafter, on date
25 B, further disease pattern match data 6B, panel data 10B,
26 12B and 14B, drug interaction data 34B and pharmacological
27 agent output data 44B are created. The corresponding data
28 from the two dates (first date and date b) may then be
29 compared to provide comparative medical data reflective of
30 the individual's medical health changes. Thus, the disease
31 pattern match data 6 and 6B may be compared 15B to provide
32 results indicative of changed disease pattern matches.

33 Similarly, panel data 10 and 10B, 12 and 12B, 14 and
34 14B may be compared, 18B, 22B and 26B respectively, to
35 yield medical results 20B, 24B and 28B respectively
36 indicating changes in panel results. Additionally, drug

1 interaction results 34 and 34B may be compared 64 to
2 provide data regarding changes in drug interactions that
3 have occurred in the intervening time period between the
4 first date and date B. Furthermore, the pharmacological
5 agent data 44 and 44B may be compared 70 to yield data
6 indicative of changes in pharmacological results during the
7 time period.

8 It is therefore to be understood that the medical
9 diagnostic analysis method of the present invention
10 provides a comprehensive means for the utilization of
11 individual blood/fluid test results, which may be combined
12 with environmental/personal factors related to a specific
13 individual to yield significant medical data that is
14 personalized and relevant to the individual's medical
15 health.

16 While the present invention has been described with
17 reference to certain preferred embodiments, it is to be
18 understood that the present invention is not to be limited
19 to such specific embodiments. Rather, it is the inventor's
20 intention that the invention be understood and construed in
21 its broadest meaning as reflected by the following claims.

22 Thus, these claims are to be understood as incorporating
23 and not only the preferred embodiment described herein but
24 all those other and further alterations and modifications
25 as would be apparent to those of ordinary skill in the art.

26

27 What I claim is:

CLAIMS

1 1. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 a. storing a first database in said data storage
5 means; said first database having indicator data including
6 human experience test result levels associated with each of
7 a plurality of indicators;

8 b. storing a second database in said data storage
9 means, said second database having indicator data including
10 a plurality of bodily conditions and a plurality of
11 indicators that are associated with each said bodily
12 condition;

13 c. inputting test results for an individual, said
14 test results including specific indicator levels associated
15 with said individual;

16 d. comparing said specific indicator levels with
17 said indicator data of said first database to determine an
18 indicator level for each of said indicators;

19 e. comparing said indicator levels with said
20 indicator data of said second database to provide a
21 determination related to the presence of particular ones of
22 said bodily conditions in said individual.

1 2. A method as described in claim 1 wherein said
2 determination of an indicator level includes the further
3 step of determining a percent status value for each said
4 indicator, said percent status value being determined from
5 the relationship:

$$6 \quad \% \text{ Status} = \frac{\text{Test Result} - \text{Mean}}{7 \quad \text{Range (High-Low)}}$$

1 3. A method as described in claim 1 including a further
2 step of:

3 f. determining an average indicator level for each
4 said bodily condition.

1 4. A method as described in claim 1 wherein steps a-e are
2 performed on two different dates utilizing individual test
3 results of step c created on said two different dates to
4 produce a said determination on each of said two different
5 dates; and

6 comparing said determinations from said two different
7 dates to provide a measure of the change in said bodily
8 condition between said two different dates.

1 5. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 a. storing a first database in said data storage
5 means, said first database having indicator data including
6 human experience test result levels associated with each a
7 plurality of indicators;

8 b. storing a second database in said data storage
9 means, said second database having indicator data including
10 a plurality of drugs and a plurality of indicators that are
11 associated with each said drug;

12 c. inputting test results for an individual, said
13 test results including specific indicator levels associated
14 with said individual;

15 d. comparing said specific indicator levels with
16 said indicator data of said first database to determine an
17 indicator presence level for said indicators;

18 e. comparing said indicator presence levels with
19 said indicator data of said second database to provide a
20 determination related to the effect of particular ones of
21 said drugs in said individual.

1 6. A method as described in claim 5 wherein said
2 indicator data of said second database includes a

3 correlation of said drugs with increased and decreased
4 levels of said indicators.

1 7. A method as described in claim 5 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said indicator presence
4 level is increased or decreased.

1 8. A method as described in claim 5 wherein said
2 indicator data of said first database includes a
3 correlation of high, low and mean human experience test
4 results for said indicators.

1 9. A method as described in claim 8 wherein said
2 determination of an indicator presence level includes the
3 further step of determining a percent status value for each
4 said indicator, said percent status value being determined
5 from the relationship:

6 % Status = Test Result - Mean
7 Range (High-Low)

1 10. A method as described in claim 9 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said percent status
4 value is greater than 25% or less than -25%.

1 11. A method as described in claim 5 wherein said
2 determination of said effect of said drugs on said
3 individual includes a determination of drugs that cause or
4 aggravate said indicator presence levels.

1 12. A method as described in claim 11 further including
2 the step of:

3 f. determining those drugs that are most commonly
4 identified as causing or aggravating said indicator
5 presence levels.

1 13. A method as described in claim 5, wherein steps a-e
2 are performed on two different dates utilizing individual
3 test results created on said two different dates to produce
4 a said determination on each of said two different dates;
5 and

6 comparing said determinations from said two different
7 dates to identify changes in said determinations.

1 14. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 a. storing a first database in said data storage
5 means; said first database having indicator data including
6 human experience test result levels associated with each a
7 plurality of indicators;

8 b. storing a second database in said data storage
9 means, said second database having indicator data including
10 a plurality of pharmacological agents and a plurality of
11 indicators that are associated with each said agent;

12 c. inputting test results for an individual, said
13 test results including specific indicator levels associated
14 with said individual;

15 d. comparing said specific indicator levels with
16 said indicator data of said first database to determine an
17 indicator presence level for said indicators;

18 e. comparing said indicator presence levels with
19 said indicator data of said second database to provide a
20 determination related to the effect of particular ones of
21 said agents in said individual.

1 15. A method as described in claim 14 wherein said
2 indicator data of said second database includes a
3 correlation of said agents with increased and decreased
4 levels of said indicators.

1 16. A method as described in claim 14 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said indicator presence
4 level is increased or decreased.

1 17. A method as described in claim 14 wherein said
2 indicator data of said first database includes a
3 correlation of high, low and mean human experience test
4 results for said indicators.

1 18. A method as described in claim 17 wherein said
2 determination of an indicator presence level includes the
3 further step of determining a percent status value for each
4 said indicator, said percent status value being determined
5 from the relationship:

6 % Status = Test Result - Mean
7 Range (High-Low)

1 19. A method as described in claim 9 wherein said step of
2 determining an indicator presence level includes the
3 further step of determining whether said percent status
4 value is greater than 25% or less than -25%.

1 20. A method as described in claim 14 wherein said
2 determination of said effect of said agents on said
3 individual includes a determination of agents that
4 normalize said indicator presence levels.

1 21. A method as described in claim 20 further including
2 the step of:

3 f. determining those agents that are most commonly
4 identified as normalizing said indicator presence levels.

1 22. --A method as described in claim 14, wherein steps a-e
2 are performed on two different dates utilizing individual
3 test results created on said two different dates to produce

4 a said determination on each of said two different dates;
5 and
6 comparing said determinations from said two different dates
7 to identify changes in said determinations.

1 23. A medical diagnostic method utilizing a computerized
2 system having a data storage means and a data processing
3 means, comprising:

4 storing a first database in said data storage means;
5 said first database having indicator data including human
6 experience test result levels associated with each said
7 indicator;

8 storing a second database in said data storage means,
9 said second database having indicator data including a
10 plurality of factors and a plurality of indicators that are
11 associated with each said factor;

12 inputting test results for an individual, said test
13 results including specific indicator levels associated with
14 said individual;

15 storing a third database in said data storage means,
16 said third database identifying at least one individual
17 factor associated with said individual;

18 comparing said factors of said second database with
19 said individual factors of said third database to determine
20 individual indicators and indicator data associated
21 therewith;

22 comparing said indicator data related to said individual
23 factors with said human experience test result levels of
24 said first database to determine individually modified
25 human experience test result levels associated with each
26 said indicator;

27 comparing said specific indicator levels with said
28 modified human experience levels for each indicator to
29 determine an indicator presence level for each said
30 indicator.

1 24. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of diseases and a plurality of indicators that
6 are associated with each said disease;

7 comparing said indicator presence levels with said
8 indicator data of said fourth database to provide a
9 determination related to the presence of particular ones of
10 said diseases in said individual.

1 25. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of bodily conditions and a plurality of
6 indicators that are associated with each said bodily
7 condition;

8 comparing said indicator levels with said indicator
9 data of said fourth database to provide a determination
10 related to the presence of particular ones of said bodily
11 conditions in said individual..

1 26. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of drugs and a plurality of indicators that are
6 associated with each said drug;

7 comparing said indicator presence levels with said
8 indicator data of said fourth database to provide a
9 determination related to the effect of particular ones of
10 said drugs in said individual.

1 27. A medical diagnostic method as described in claim 23,
2 comprising:

3 storing a fourth database in said data storage means,
4 said fourth database having indicator data including a
5 plurality of pharmacological agents and a plurality of
6 indicators that are associated with each said agent;
7 comparing said indicator presence levels with said
8 indicator data of said fourth database to provide a
9 determination related to the effect of particular ones of
10 said agents in said individual.

FIG. 1

SUBSTITUTE SHEET (RULE 26)

FIG. 2

SUBSTITUTE SHEET (RULE 26)

FIG. 3

SUBSTITUTE SHEET (RULE 26)

FIG. 4

SUBSTITUTE SHEET (RULE 26)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

FIG. 6

SUBSTITUTE SHEET (RULE 26)

FIG. 7

FIG. 8

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/19297

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : A61B 5/00; G06F 17/00

US CL : 128/630

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 128/630; 364/413.01-413.11

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,437,278 A (WILK) 01 August 1995, entire document.	1-27
Y	US 5,404,292 A (HENDRICKSON) 04 April 1995, entire document.	1-27
Y	US 5,199,439 A (ZIMMERMAN et al) 06 April 1993, entire document.	1-27
A	US 4,290,114 A (SINAY) 15 September 1981, entire document.	1-27

Further documents are listed in the continuation of Box C.

See patent family annex.

-	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O"	document referring to an oral disclosure, use, exhibition or other means		
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

27 FEBRUARY 1997

Date of mailing of the international search report

26 MAR 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3590

Authorized officer

SAMUEL GILBERT

Telephone No. 703-308-3553

Form PCT/ISA/210 (second sheet)(July 1992)*