

(1) constructing manifold	ds using handles		
* A handlebody is a co	mpact manifold expressed handlebody	l as a union of handles.	
	ho ho	S2: ho Un ₁ Uh ₂ Uh ₂	
™ g ^ ^	Bauhauhzuh.		
If we start with the 0-No	X and "Ighu" the handles Indle gor 3-manifolds, wi	to the boundary of X, olln start with 133, the 3 din	oted ax
3x = 3(8,04T)	scent mysterious, can we be	more precise?	
* Techical details * Dunote f: 20 * * port - 3-manifold specifics:	> $>$ X as the attacking n \neq $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$	nap. Pis continuous, olif	ferontialale
For 92, Mapping the 2-had or B3 union all the 1-had Start adding handles, we shall be shown to the 1-had start adding handles, we shall be shown to the 1-had shall be	n the bournaary of a 3- under, we do not simply idles we have attacked. To begin to change the Spi your handle drawings to 15 of a "handle body" an	have B" anymore, we now his is why the map is "2.	have B3 Uha, 10 as once we
POIN 2 5 5 Onive HE CONO	or Lidolog Latings		

* handu sviaus & drawin	g 3-mmax		
~ The homework was to	snow:		
Fluin	= Np2 # 12p2) by using handle seider.	
eadditionally consider	:		
	=	can you explain why?	
* change decomposition	s gor 3 manifolds & A.= p "pools into existence"		
E1-hander: h D'xb', A *Attaching 1-hander HW. Think about W Imagine, We a klein COTO COTE *2-handle: h.= D' xD' ~we do not worny whether X is onewho	we have to worry about only not a non-onentable handle bottle of an inspiration.) beet sphere a "feet." A; = S' × D' at a igloos. about orientation here. At-	ntation. attachment might "look like" (very hard will discuss hext time. taching he to a mild x does not affer	

*cancuing pairs	
\sim	1-handu
11/1/1	ara ming region
	2-7t7md14
Proposition 4.2.9. A $(k-1)$ -handle h_{k-1} and a k - can be cancelled, provided that the attaching sphere a sphere of h_{k-1} transversely in a single point.	
≥ Restate for 3 mylds: eg the autaching sphere × VhzVh1 ××	of he intersect the beltsphere of he exactly one time, then
Len: Helgaard dia	gram for S3
B 3	this is the standard decomposition of 53 as the union of 2 solid tori.
~ Standard decompositi Hugadrd diagram	an? so how do we see s³ at 2 solid ton? How oldes this
1) What is a fibrar	
"FIBER" [umbidding	
the preimage of any point in B is F.	To or P 11 conventional name of this map.
3,777.	B "BASE Space"
	interval
* canonical example:	a product space. I -> S1 x I = annulus
[0,1]	S ²
interval	
F=p-1(x) ₹	I P thus point, XES2, is the fiber!

Hopf fibration		
S ²	in this case sixs?	vis moment) is offen not FXB,
value between 0 and 2	te angle Se, Sz (grock letter 2to, Angle N (grock letter	Xi) as angul that can take any Eta) where 0 = n = 17/2.
~in P": Xo= 00(\$150) X1 = 801 \$1 8 X2 = 005 \$2 00 X5 801 82 00	in'n IS N BS N	
** For any fixed valu	u of 17, show (32,52) paro 1se calculus 3 and draw	umeterize a 2D-torus
hint: don't over think u	he carculus 3 and draw	rings. Don't be too forman.
~ What happens when y=00	ourself this works	ho: B3
		h _i ·B'×B ²
2HWY HOW doll HAS relate	to the Huggaard diagram?	B B hz B2×B1
What is a o-handle 1) .		V3-handle h3: B3
~ this is a manunge questi	on we haven discussed yet In	it think on it, no preclure.

* Construction of 3-8phurus and gibrations &
~ let us first look at a geometric approach to the construction of spheres. (unit spheres have) recall: S" = n-dimensional sphere, B" = n-dimensional ball (sometimes B' gradist). ① construct S' from two B': B' gue along boundary (S') S' boundary B2
$= \int_{\mathbb{R}^2} du \text{ pived by } x^2 + y^2 \cdot 1.$
2 construct s2 grow two B2:
St boundary St boundary boundary 1 x1+y2+2=1.
St boundary (boundary) X1+y2+2=1.
5 boundary
3 construct S3 from 2 B3.
glue along 52 boundary.
S3= { X,y,z,w X2+y2+22+W2=13 in R4.
~ this is one common construction of higher dimensional spheres. (can't draw it though)
If The 2 ton is So is the boundary of B = D × D , and the boundary of D × D = S × D U D × S' -> S = S × D U D × < ((this is checky and perhaps non-neleftee) Nowever, let's apply this same idea to S', which is the boundary of D = D × D'.
B = M D now view S'= S° x B' U B' x S° = boundary of D' x D'.
(\$')

V	1 [] [CDAC	
1	LENS	JPAL	EJ X

~ we do the group theoretic approach first ~

* Lens spaces are 3-manyfolds denoted lipigs where gidlipigs-1 and 0=9<p by convention. we do a brief review of terminalogy before defining a tens space.

*defin: A group G acts on a set X of there is a map F GxX -> X where, of we denote f(g,x) by ax, then 1x= x +xex, 1 11 identity in a, \$ g(h x) = (gh) x +g, n & G, x & X

- if x is a topological space, the mapping to X → X given by to (x)=g x is a Womeomorphism and X is called a G-space

~ ig X is a G-space 8t gx = x gor some x implies g=1, then Gacts grady on X

* Given a act on x, */4 denotes the set of equivalence classes & [x] | x + x } where [x,] = [x] eff x = ax 2 for some as a ×14 is called the orboit space of x over 4, and the 6.x constitute a collection of disjoint orbits, corresponding to the equivalence classes

* dept. Define the 3-sphere So to be the set {(to,te) & 62 | 12,12+12,12=1} & recall the cyclic group with p elements is Zp = 10, 1, ..., p-17 (p not necessarily prime) and addition is defined (modp) where D is the additive identity.

~ Defining a lens space~

*Fix some qEI with 0=q =p and gcalp,q)=1, and let Ip act on S as follows:

melp, S3 = \$(z0, t1) ∈ 62 | |tol2 | |t| 2 = 1 = 2 tim 2 tigm +m: S3 → S3 given by +m(t0, t1) = (e + t0, e + t1)

~ this is a group action~

D 0 = 2p: 0(to,t) = (e°to,e°t) = (to,t) / zmi(m+n) zmi(m+n)q.

D m,n = 2p: m(n (to,t)) = m(e p to, e zminq t) = (e p to, e p t) = (m+n)(to,t).

~facts~ +m is bijective, continuous, had a continuous inverse -> homeomorphism. => 83 is a 4-space. Also to acts friely on 83

We now define L(P,q) to be the orbit space 5°/20 with respect to the action.

* Fact the fundamental group of all the lens spaces Lipigs is It (regardless of a).

construct up.q)

- O Remove v(u), the neighborhood of the runknot, which is a solid torus.
- O'GLUE" or "sew" back in another solid toms via some homeomorphism &.

ST= solid toms.

φ: ∂(st) → ∂(st) and ∂(st)= t², boundary of solid tom(is a toris.

so we have φ: t² → t² defined by φ(μ)=q2+pμ. We send the mendian to this q time longitudinally is primes around the meridian.

L(2,1):

*HWE How would me draw this as a handle diagram?

