Métodos Monte Carlo

Motivación

Estatura media de una población.

Ley de los grandes números (Law of large numbers)

El promedio de los resultados obtenidos de un gran número de ensayos debe estar cerca de la media y tiende a acercarse al valor esperado a medida que se realizan más ensayos.

Método Monte Carlo

- 1. Definir un dominio de posibles entradas.
- 2. Genere entradas aleatoriamente a partir de una distribución de probabilidad sobre el dominio.
- 3. Realizar un cálculo determinista en las entradas.
- 4. Construir los resultados.

Estimación de π

Geometría de π

$$C = 2 \pi r$$

 $C = \pi d$

π mediante un círculo inscrito

$$A_{\odot} = \pi r^{2}$$

 $A_{\Box} = (2r)^{2} = 4 r^{2}$

$$A_{\bigcirc}/A_{\square} = \pi/4$$

Conceptos básicos de programación

Arreglos

Funciones

• Bucles

Condicionales

Desintegración radioactiva

$$N(t) = N_0 \exp(-\lambda t)$$

$$\lambda = \frac{1}{-\lambda}$$

half-life (t_{1/2})

Definition: time required for half of the radioactive parent atoms to decay

From Law of Radioactive Decay:

$$t_{1/2} = \frac{\ln 2}{\lambda}$$
 where

 λ = decay constant

TABLE 10B.3 Half-Lives of Radioactive Isotopes*

Nuclide	Half-life, $t_{1/2}$
tritium	12.3 a
carbon-14	5.73 ka
carbon-15	2.4 s
potassium-40	1.26 Ga
cobalt-60	5.26 a
strontium-90	28.1 a
iodine-131	8.05 d
cesium-137	30.17 a
radium-226	1.60 ka
uranium-235	0.71 Ga
uranium-238	4.5 Ga
fermium-244	3.3 ms

^{*}d = day; a = year.

Time required for the amount of the radionuclides to reduce to half = (physical) half-life

Stanislaw Ulam & John Von Neumann

Difusión de neutrones en el núcleo de un arma nuclear

