Name:		
MATH 308	"The art of simplicity is a puzzle of complexity."	
Fall 2022		
HW 22: Due 12/15	–Douglas Horton	

Problem 1. (10pt) Showing all your work and fully justifying your reasoning, answer the following:

- (a) Show that $f(x) = x^5 + 3x^4 x^2 + 6$ is $\Omega(x^5)$. Does this imply that f(x) is $\Omega(x^4)$?
- (b) Show that $g(x) = x^4 3x^2 + 6x^2 8$ is $O(x^5)$. Does this imply that g(x) is $O(x^6)$?
- (c) Show that $h(x) = x^3 x + 7$ is $\Theta(x^3)$. For $n \neq 3$, can h(x) be $\Theta(x^n)$? Explain.

Problem 2. (10pt) Show that $\sum_{i=0}^{n} (3i+2)$ is $\Theta(n^2)$.

Problem 3. (10pt) Define $f(x) = 2x + \log x$ and $h(x) = x^2 + 2^x + 5$. Show that f(x) is $\Theta(x)$ and h(x) is $\Theta(2^x)$.

Problem 4. (10pt) Assume that each addition, subtraction, multiplication, division, and print 'costs' one flop while defining/redefining variables 'cost' no flops. Suppose you have an algorithm, whose pseudocode is given below.

```
\begin{split} &\text{for } i := 1 \text{ to n} \\ &\text{ for } j := 1 \text{ to n} \\ &a := i^3 \dot{} j + i \cdot 2 + n \\ &\text{ print(a)} \\ &\text{ next } j \end{split}
```

- (a) Find the outputs for this algorithm for n=2.
- (b) Find the total number of flops performing this algorithm. What is Θ for this algorithm?