ETH zürich

Lecture «Robot Dynamics»: Kinematics 0

151-0851-00 V

HG F3 Tuesday 10:15 – 12:00, every week lecture:

Wednesday 8:15 – 10:00, according to schedule exercise: HGF3

Marco Hutter, Roland Siegwart, and Thomas Stastny

Recapitulation: Vectors, Position, and Vector Calculus

Builds upon notation of other dynamics classes at ETH and IEEE standards

Parameterization of Vectors

- Cartesian coordinates
 - Position vector
- Cylindrical coordinates
 - Position vector
- Spherical coordinates
 - Position vector

ETH zürich

Parameterization of Vectors

$${}_{A}\mathbf{r}_{AP} = {}_{A}\mathbf{r}_{AB} + {}_{A}\mathbf{r}_{BP}$$

$$(1) (1) (0)$$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : \begin{cases} \chi_{Pc} = \\ \chi_{Pz} = \\ \chi_{Ps} = \end{cases} \qquad \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} : \begin{cases} \chi_{Pc} = \\ \chi_{Pz} = \\ \chi_{Ps} = \end{cases} \qquad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : \begin{cases} \chi_{Pc} = \\ \chi_{Pz} = \\ \chi_{Ps} = \end{cases}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : \begin{cases} \chi_{Pc} = \\ \chi_{Pz} = \\ \chi_{Ps} = \end{cases}$$

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} : \begin{cases} \chi_{Pc} = \\ \chi_{Pz} = \\ \chi_{Ps} = \end{cases}$$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : \begin{cases} \chi_{Pc} = \\ \chi_{Pz} = \\ \chi_{Ps} = \end{cases}$$

Differentiation of Representation ⇔ Linear Velocity

The velocity of point P relative to point B, expressed in frame A is:

What is the relationship between the velocity Question: and the time derivative of the representation

Differentiation of Representation ⇔ Linear Velocity

Cartesian coordinates:

Cylindrical coordinates:

Rotations

- Position of P with respect to A expressed in A:
- Position of P with respect to A expressed in B:

Rotation Matrix

■ The rotation matrix transforms vectors expressed in B to A:

Passive and Active Rotation

Passive rotation = mapping of the same vector from frame B to A

Active rotation = rotating a vector in the same frame

Elementary Rotation

Find the elementary rotation matrix s.t $_{\mathcal{A}}u=C_{\mathcal{A}\!\mathcal{B}}\cdot_{\mathcal{B}}u$

Homogeneous Transformation

Combined Translation and Rotation

Robot Dynamics - Kinematics 0

17.09.2019

11

Homogeneous Transformations

Consecutive Transformation

This allows to transform an arbitrary vector between different reference frames (classical example: mapping of features in camera frame to world frame)

Quizz 3min 2min

Homogeneous TransformationSimple Example

- Find the position vector ArAP
 - Find the transformation matrix

Find the vector

Angular Velocity

- Angular velocity ${}^{A}{}^{\omega}{}^{A}{}^{\mathcal{B}}$ describes the relative rotational velocity of B wrt. A expressed in frame A
- The relative velocity of A wrt. B is:
- lacktriangle Given the rotation matrix ${f C}_{{\cal A}{\cal B}}(t)$ between two frames, the angular velocity is

- Transformation of angular velocity:
- Addition of relative velocities:

ETH zürich

Angular VelocitySimple Example

• Given the rotation matrix $\mathbf{C}_{\mathcal{AB}}(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos{(\alpha(t))} & \sin{(\alpha(t))} \\ 0 & -\sin{(\alpha(t))} & \cos{(\alpha(t))} \end{bmatrix}$ determine $_{\mathcal{A}}\boldsymbol{\omega}_{\mathcal{AB}}$

Outlook (next week) Rotation Parameterization

- Rotation matrix:
- Euler Angles
- Angle Axis
- Quaternions

