Contoh Soal

Akan dibangun jalan raya diatas lapis lempung kompresif setebal 10 m. Dibawah lapis lempung tadi berupa lapisan kedap air. Akibat beban jalan dan kendaraan setelah dihitung penyebarannya sampai ke tengah-tengah lempung terjadi tekanan $\Delta p = 0.65 \, kg/cm^2$. Untuk percepatan konsolidasi, dibuat sand drain (diameter 40 cm) disusun pola bujursangkar dengan jarak yang belum diketahui. Diketahui tanah lempung tadi punya parameter:

 $m_v = 0.025 cm^2/kg$ $C_v = 0.0015 cm^2/kg$ $C_r = C_h = 0.0025 cm^2/kg$

- 1. Hitung penurunan konsolidasi (sampai selesai) yang akan terjadi!
- 2. Hitung jarak sand drain (a) sedemikian hingga dalam 6 bulan, sisa penurunan tinggal 2,5 cm.

Penyelesaian:

Penurunan konsolidasi lempung total sampai selesai yang akan terjadi

$$S = m_v \cdot H \cdot \Delta p$$

 $S = 0.0025 \cdot 1000 \cdot 0.65 = 16.25 \ cm$

Sisa setlemen setelah 6 bulan = 2.5 cm

Jadi setlemen S1 = 16,25 - 2,5 = 13,75 cm

Derajat konsolidasi yang akan dicapai:

$$U = \frac{S1}{S} = \frac{13,75}{16,25} = 0.85$$
 atau 85%

Ini terjadi dalam 6 bulan = 183 hari

Konsolidasi vertikal:

Kondisi drainasi: 1 arah, jadi d = H = 10 m = 1000 cm

$$T_v = \frac{C_v}{d^2} \cdot t = \frac{0,0015}{1000^2} \cdot (183 \cdot 24 \cdot 60 \cdot 60) = 0,0237$$

Derajat konsolidasi vertikal U_v diasumsi < 60%, maka $T_v = \frac{\pi}{4} U_v^2$

maka
$$U_v = \sqrt{\frac{4 \cdot T_v}{\pi}} = \sqrt{\frac{4 \cdot 0,0237}{\pi}} = 0,174 < 60\%$$
 (asumsi benar)

derajat konsolidasi radial/horisontal \mathcal{U}_r dicari dari persamaan:

$$(1-) = (1-U_v)(1-U_r)$$

$$1-0.85 = (1-0.174)(1-U_r)$$

$$1-U_r = 0.182$$

$$U_r = 0.818$$
(1)

Berdasarkan pesamaan

$$T_r = \frac{C_r \cdot t}{4 \cdot R^2}$$
 dan $n = \frac{R}{r}$ atau $R = r \cdot n$

Diameter sand drain = 40 cm, maka r = 20 cm. Jadi

$$r = (20 \cdot n) cm$$

Maka:

$$T_r = \frac{0,0025}{4 \cdot (20 \cdot n^2)} \cdot (183 \cdot 24 \cdot 60 \cdot 60) = \frac{24,705}{n^2}$$

$$T_r = \frac{24,705}{n^2} \dots (2)$$

Rumus lainnya

$$T_r = \frac{-y}{8} \cdot \ln(1 - U_r) \dots (3)$$

$$y = \left(\frac{n^2}{n^2 - 1}\right) \cdot \ln(n) - \left(\frac{3 \cdot n^2 - 1}{4 \cdot n^2}\right)$$
 disederhanakan menjadi

$$y = \ln(n) - 0.75$$
(4)

Berdasarkan persamaan (1),(2),(3) dan (4). Dilakukan trail error nilai n agar cocok:

Percobaann = 5 masukkan persamaan (2) $T_r = 0.988$

$$n = 5 \& U_r = 0.818 \text{ maka } y = 0.936 \text{ dan } T_r = 0.199 \ (\neq 0.988)$$

Percobaann = 10masukkan persamaan (2) $T_r = 0.247$

$$n = 10 \& U_r = 0.818$$
 maka $y = 1.578 dan T_r = 0.336 (\neq 0.247)$

Terlihat nilai n antara 5 dan 10 dapat diinterpolasikan atau dicoba lagi

Percobaann = 9 masukkan persamaan (2) $T_r = 0.305$

$$n = 9 \& U_r = 0.818 \, \text{maka} \, y = 1.578$$

dan (3)
$$T_r = 0.315$$

 $(\neq 0,305)$ sudah mendekati

Percobaann = 8,9 masukkan persamaan (2) $T_r = 0.311$

$$n = 8.9 \& U_r = 0.818$$
 maka $y = 1.436$

dan (3)
$$T_r = 0.305$$
 (=0,305)

Jadi n = 8,9 maka
$$R = n \cdot r = 8,9 \cdot 20 = 178 cm$$

Jarak sand drain = a

Pola bujur sangkar $R = 0.564 \cdot a$ maka

$$a = \frac{178}{0,564} = 315,65 \ cm = 3,15 \ m$$

Jadi jarak sand drain = 3, 15 m