

Capstone Project

Zomato Sentiment Analysis

- 1.Lalit Ahirrao
- 2.Aniket Gajmal
- 3. Rushikesh Pawar
- 4.Prasad Ghegade
- **5.Samarth Gangurde**

Table of Content

Reason Behind the Project Dataset Information Data Summary Features Analysis Data Preprocessing Exploratory Data Analysis Implementing Algorithms Challenges Conclusion

Reason behind the project

India is quite famous for its diverse multi cuisine available in a large number of restaurants and hotel resorts, which is reminiscent of unity in diversity. Restaurant business in India is always evolving. More Indians are warming up to the idea of eating restaurant food whether by dining outside or getting food delivered. The growing number of restaurants in every state of India has been a motivation to inspect the data to get some insights, interesting facts and figures about the Indian food industry in each city. So, project focuses on analysing the Zomato restaurant data for each city in India.

Problem Statement:-

The Project focuses on Customers Company, you have to analyze the sentiments of the reviews given by the customer in the data and made some useful conclusion in the form of Visualizations. Also, cluster the zomato restaurants into different segments. The data is visualized as it becomes easy to analyse data at instant. The Analysis also solve some of the business cases that can directly help the customers finding the Best restaurant in their locality and for the company to grow up and work on the fields they are currently lagging in.

Dataset Information

This dataset contains information on Names, Links, cost, collection, cuisines, Timings, Restaurants, Reviewer, Review, Rating, MetaData, Time and pictures. To cluster a data points and for sentiment analysis

Dataset 1:

- Name: Name of Restaurants
- Links: URL Links of Restaurants
- Cost: Per person estimated Cost of dining
- Collection : Tagging of Restaurants w.r.t.
 Zomato categories
- Cuisines: Cuisines served by Restaurants
- Timings : Restaurant Timings

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 105 entries, 0 to 104
Data columns (total 6 columns):
                  Non-Null Count
                                  Dtype
                  105 non-null
                                  object
    Links
                  105 non-null
                                  object
    Cost
                  105 non-null
                                  object
     Collections
                  51 non-null
                                  object
                  105 non-null
    Cuisines
                                  object
                  104 non-null
                                  object
     Timings
```


Dataset 2:

- Restaurant : Name of the Restaurant
- Reviewer: Name of the Reviewer
- Review : Review Text
- Rating: Rating Provided by Reviewer
- MetaData: Reviewer Metadata No. of Reviews and followers
- Time: Date and Time of Review
- Pictures : No. of pictures posted with review

```
dt.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 7 columns):
     Column
                Non-Null Count Dtype
    Restaurant
                10000 non-null
                                object
                9962 non-null
                                object
     Reviewer
    Review
                9955 non-null
                                object
                9962 non-null
                                object
     Rating
                                object
                9962 non-null
    Metadata
                9962 non-null
                                object
    Pictures
                10000 non-null
                                int64
dtypes: int64(1), object(6)
memory usage: 547.0+ KB
```


Preprocessing of dataset

In preprocessing we merged two datasets by using left joint, dropped unnecessary columns like links, dropped missing values which were negligible and replace considerable missing values with the others, Renamed the columns for better understanding, extracted Year, Month, Day from the Date column. Converted Time variable into categorical variable by replacing time to Morning, Afternoon and Evening

Exploratory Data Analysis

2017 was the expensive year according to the above tables

ANALYSIS OF MONTH VARIABLE

Avg cost in January, December, September is too high where as its low in July and June

ANALYSIS OF CUISINES VARIABLE

Italian, North Indian, Chinese, Continental, European, Mediterranean are most expensive cuisines

ANALYSIS OF RATING VARIABLE W.R.T PICTURES

People who are giving Rating more than 3 are oftenly posting pictures too

ANALYSIS OF DAY VARIABLE W.R.T NO_OF_REVIEWS

No_of _reviews received on Friday and Wednesday are more as compared to the other days

Most common words in reviews

Most common words in review

TFIDF Vectorizer

MultinomialNB

LogisticRegression

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.99 0.80	0.44 1.00	0.61 0.89	1250 2719	0 1	0.96 0.93	0.83 0.98	0.89 0.95	1250 2719
accuracy macro avg weighted avg	0.89 0.86	0.72 0.82	0.82 0.75 0.80	3969 3969 3969	accuracy macro avg weighted avg	0.94 0.94	0.90 0.93	0.93 0.92 0.93	3969 3969 3969
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	1.00	0.31	0.47	313	0	0.91	0.78	0.84	313
1	0.76	1.00	0.86	680	1	0.90	0.96	0.93	680
accuracy			0.78	993	accuracy			0.90	993
macro avg	0.88	0.65	0.67	993	macro avg	0.91	0.87	0.88	993
weighted avg	0.83	0.78	0.74	993	weighted avg	0.90	0.90	0.90	993

TFIDF Vectorizer

DecisionTreeClassifier

RandomForestClassifier

	precision	recall	f1-score	support					
	The same of the second second			ELECTRON CONTROL OF		precision	recall	f1-score	support
0	0.81	0.66	0.73	1250					
0	0.86	0.93	0.89	2719	0	1.00	1.00	1.00	1250
					1	1.00	1.00	1.00	2719
accuracy			0.85	3969					
macro avg	0.83	0.80	0.81	3969	accuracy			1.00	3969
weighted avg	0.84	0.85	0.84	3969	macro avg	1.00	1.00	1.00	3969
weighted dvg	0.04	0.03	0.04	3303	weighted avg	1.00	1.00	1.00	3969
	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.78	0.63	0.70	313	0	0.93	0.69	0.79	313
1	0.84	0.92	0.88	680	1	0.87	0.97	0.92	680
accuracy			0.83	993	accuracy			0.89	993
macro avg	0.81	0.78	0.79	993	macro avg	0.90	0.83	0.86	993
weighted avg	0.83	0.83	0.82	993	weighted avg	0.89	0.89	0.88	993

MultinomialNB

LogisticRegression

	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.91 0.93	0.85 0.96	0.88 0.95	1250 2719	0 1	0.99 0.99	0.98 0.99	0.99 0.99	1250 2719
accuracy macro avg weighted avg	0.92 0.93	0.91 0.93	0.93 0.91 0.93	3969 3969 3969	accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	3969 3969 3969
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.88	0.82	0.85	313	0	0.85	0.85	0.85	313
1	0.92	0.95	0.93	680	1	0.93	0.93	0.93	680
accuracy macro avg	0.90	0.88	0.91 0.89	993 993	accuracy macro avg	0.89	0.89	0.91 0.89	993 993
weighted avg	0.91	0.91	0.91	993	weighted avg	0.91	0.91	0.91	993

Bag Of Words

DecisionTreeClassifier

RandomForestClassifier

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.83	0.65	0.72	1250	0	1.00	0.33	0.50	1250
0	0.85	0.94	0.89	2719	1	0.77	1.00	0.87	2719
accuracy			0.85	3969	accuracy			0.79	3969
macro avg	0.84	0.79	0.81	3969	macro avg	0.88	0.67	0.68	3969
weighted avg	0.84	0.85	0.84	3969	weighted avg	0.84	0.79	0.75	3969
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.79	0.62	0.70	313	0 1	0.94	0.16	0.28	313
1	0.84	0.93	0.88	680	1	0.72	1.00	0.84	680
accuracy			0.83	993	accuracy			0.73	993
macro avg	0.82	0.77	0.79	993	macro avg	0.83	0.58	0.56	993
weighted avg	0.83	0.83	0.82	993	weighted avg	0.79	0.73	0.66	993

Challenges

- Merging of Two datasets
- Handled row dataset with outliers and missing values.
- plotting of Graphs to analyse.
- Feature engineering
- Feature selection
- Find Best cluster
- Use of TF IDF And Word2vec vectorizer
- Optimising the model
- Calculation of Accuracy score.

Conclusion

- Per person estimated Cost of dining in 2017 was too high so it was expensive year
- Cost per person was high avg.750 RS in january and very low avg. 600RS in july
- collage-Hyatt Hyderabad Gachibowli' and 'Feast sheraton hyderabad hotel are most expensive hotel
- North Indian, Chinese, Continental, European, Mediterranean are most rated cuisines
- Monday and Tuesday was the most expensive days in week
- people prefered posting reviews on friday, wednesday & sunday we call it traffic days
- Most Cheapest Restaurants are Amul & Mohammedia Shawarma

Al

Conclusion

- From elbow method we got 2 number of cluster is best among all.
- By using dendrogram we could found 2 as optimal number of cluster
- For 2 clusters silhouette_score is : 0.70

After applying Several Regression models such as MultinomialNB, Logistic Regression, DecisionTreeClassifier and Random forest Regression has yielded us Best Accuracy compared to all the other models which is of 99% for TFIDF Vectorizer

& for Bag of words we applied ,Logistic Regression, DecisionTreeClassifier and Random forest Regression and LogisticRegression gave us 98% accuracy for train dataset

References.

- Matplotlib Bars (w3schools.com)
- Seaborn (w3schools.com)
- Python Word Clouds Tutorial: How to Create a Word Cloud DataCamp