Nonparametric Tests for Independence in R

From Herwartz & Maxand (2018), tests for different types of dependence structures:

- 1. **Bivariate dependence:** Testing for dependence between two random variables x_1 and x_2 . The corresponding null hypothesis is $H_0: F_{x_1,x_2}(x_1,x_2) = F_{x_1}(x_1)F_{x_2}(x_2)$ with joint distribution function F_{x_1,x_2} and marginals F_{x_1}, F_{x_2} .
- 2. **Groupwise dependence:** Analyzing two sets of variables can be thought of as a generalization of bivariate dependence tests where two disjoint subsets of $\{x_1, \ldots, x_p\}$ are subjected to testing, i.e., $\boldsymbol{x}_1 \in \mathbb{R}^{p_1}$ and $\boldsymbol{x}_2 \in \mathbb{R}^{p_2}$ such that $p_1 + p_2 = p$. The corresponding null hypothesis is $H_0: F_{\boldsymbol{x}_1, \boldsymbol{x}_2}(\boldsymbol{x}_1, \boldsymbol{x}_2) = F_{\boldsymbol{x}_1}(\boldsymbol{x}_1)F_{\boldsymbol{x}_2}(\boldsymbol{x}_2)$ for multivariate distribution functions $F_{\boldsymbol{x}_1, \boldsymbol{x}_2}$, $F_{\boldsymbol{x}_1}$ and $F_{\boldsymbol{x}_2}$. Furthermore, some tests allow to diagnose the dependence between more than two disjoint subsets, where $p_1 + \ldots + p_c = p$ and c > 2.
- 3. Mutual dependence: To test for overall independence within a set of random variables $\{x_1, \ldots, x_p\}$ the null hypothesis is formulated as $H_0: F_{x_1, \ldots, x_p}(x_1, \ldots, x_p) = F_{x_1}(x_1) \cdots F_{x_p}(x_p)$. The tests exploit the fact that mutual independence is equivalent to independence within all subsets of $\{x_1, \ldots, x_p\}$. This hypothesis is equivalent to stating groupwise independence and choosing subsets of size $p_1 = p_2 = \ldots = p_c = 1$.

Table 1: R packages and functions corresponding to the procedures described in Section 3 of Herwartz & Maxand (2018).

	classical	spatial rank	empirical copula	distance covariance
R package	Hmisc (Harrell, 2015)	SpatialNP (Sirkia et al., 2013)	copula (Hofert et al., 2015)	energy (Rizzo & Szekely, 2014) steadyICA (Risk et al., 2015)
R function for distinct dependence levels				
bivariate mutual groupwise	hoeffd (d) Wilks' Lambda (L) Wilks' Lambda (L)	sr.indep.test (sr) Fisher comb. of sr sr.indep.test (sr)	$\begin{array}{l} {\tt indepTest}\;(B)\\ {\tt indepTest}\;(W,B)\\ {\tt multIndepTest}\;(B) \end{array}$	$\begin{array}{l} \texttt{indep.test} \; (dCov) \\ \texttt{permTest} \; (dCov) \\ \texttt{indep.test} \; (dCov) \end{array}$

References

Harrell, F. E. (2015). *Hmisc.* R package version 3.15-0.

Herwartz, H. & Maxand, S. (2018). Nonparametric tests for independence - a review and comparative simulation study with an application to malnutrition data in india. *Statistical Papers*.

Hofert, M., Kojadinovic, I., Maechler, M., & Yan, J. (2015). copula: Multivariate Dependence with Copulas. R package version 0.999-13.

Risk, B. B., James, N. A., & Matteson, D. S. (2015). steadyICA: ICA and Tests of Independence via Multivariate Distance Covariance. R package version 1.0.

- Rizzo, M. L. & Szekely, G. J. (2014). energy: E-statistics (energy statistics). R package version 1.6.2.
- Sirkia, S., Miettinen, J., Nordhausen, K., Oja, H., & Taskinen, S. (2013). SpatialNP: Multivariate nonparametric methods based on spatial signs and ranks. R package version 1.1-1.