CORRIGÉ DM N°10 : CENTRALE PC, 1991

PARTIE I: Polynômes de Newton

- 1. On a: $\Gamma_k(X) = \frac{X(X-1)...(X-k+1)}{k!}$; donc, pour x entier comprise entre 0 et k-1, $\Gamma_k(x) = 0$.
 - pour x entier supérieur ou égal à k on a : $\Gamma_k(x) = \binom{x}{k}$.
 - Enfin, pour x entier négatif, si on pose x = -y, on a :

$$\Gamma_k(x) = (-1)^k \frac{y(y+1)\cdots(y+k-1)}{k!} = (-1)^k \binom{y+k-1}{k} = (-1)^k \binom{k-1-x}{k}$$

2. On a facilement les égalités :

$$n\Gamma_{n}(X) = \frac{1}{(n-1)!} (X \cdots (X-n+1)) = (X-n+1)\Gamma_{n-1}(X)$$

$$\Gamma_{n}(X+1) - \Gamma_{n}(X) = \frac{1}{n!} ((X+1) \cdots (X-n+2) - X(X-1) \cdots (X-n+1))$$

$$= \frac{1}{n!} (X \cdots (X-n+2)(X+1-X+n-1))$$

$$= \frac{1}{(n-1)!} (X \cdots (X-n+2)) = \Gamma_{n-1}(X)$$

PARTIE II:

- 1. a) On doit avoir $f(0) = a_0 \Gamma_0(0)$, donc $a_0 = f(0)$. On doit avoir $f(1) = a_0 \Gamma_0(1) + a_1 \Gamma_1(1)$, donc $a_1 = f(1) - f(0)$. On a donc bien l'existence et l'unicité de a_0 et a_1 .
 - Supposons calculés a_0, a_1, \ldots, a_n . On cherche alors a_{n+1} tel que la fonction $g: x \mapsto f(x) \sum_{k=0}^{n+1} a_k \Gamma_k(x)$ soit nulle pour $x \in [0, n+1]$.

Pour $x \in [0, n]$, puisque $\Gamma_{n+1}(x) = 0$, on a $g(x) = f(x) - \sum_{k=0}^{n} a_k \Gamma_k(x) = 0$ d'après l'hypothèse de récurrence.

La relation cherchée équivaut donc à g(n+1) = 0, et, puisque $\Gamma_{n+1}(n+1) = 1$, elle s'écrit

 $a_{n+1} = f(n+1) - \sum_{k=0}^{n} a_k \Gamma_k(n+1)$ ce qui prouve l'existence et l'unicité de a_{n+1} , et démontre le résultat par récurrence sur n.

Remarque : On pouvait aussi faire une démonstration directe, en remarquant que les relations données s'écrivent sous la forme d'un système de n+1 équation à n+1 inconnues, dont la matrice est triangulaire supérieure avec des 1 sur la diagonale, donc inversible...

- **b)** On démontre le résultat par récurrence sur n; je reprends les calculs ci-dessus, avec $f(x) = b^x$:
 - Pour n = 0, $a_0 = f(0) = 1$, et, pour n = 1, $a_1 = f(1) f(0) = b 1$, donc la relation « $a_n = (b 1)^n$ » est vraie pour n = 0, 1.
 - Supposons là vérifiée jusqu'à l'ordre n. Alors :

$$a_{n+1} = f(n+1) - \sum_{k=0}^{n} a_k \Gamma_k(n+1)$$

$$= b^{n+1} - \sum_{k=0}^{n} \binom{n+1}{k} (b-1)^k$$

$$= b^{n+1} - \sum_{k=0}^{n+1} \binom{n+1}{k} (b-1)^k + (b-1)^{n+1} = b^{n+1} - \left[(b-1) + 1 \right]^{n+1} + (b-1)^{n+1} = (b-1)^{n+1}$$

ce qui est le résultat voulu à l'ordre n+1 et achève la démonstration.

- **2.** a) Si $x \in [0, n]$, $\Gamma_{N+1}(x) = 0$ et le résultat est immédiat avec θ quelconque.
 - Sinon, soit $\varphi(t) = f(t) \sum_{k=0}^{n} a_k \Gamma_k(t) A \Gamma_{n+1}(t)$; cette fonction est définie au moins sur \mathbb{R}_+ , de classe \mathscr{C}^{∞} et et est nulle par construction en $t = 0, \dots, t = n$.

Puisque $\Gamma_{N+1}(x)$ n'est pas nul, on peut choisir A tel que $\varphi(x)=0$. Alors φ s'annule en n+2 points distincts; le théorème de Rolle entraı̂ne que φ' s'annule en n+1 points distincts, etc... jusqu'à $\varphi^{(n+1)}$ qui s'annule au moins une fois en un point θ compris entre $\min(0,x)$ et $\max(n,x)$.

Or, pour $k \in [0, n]$, la dérivée n+1-ième de Γ_k est nulle puisque Γ_k est un polynôme de degré k, donc $\varphi^{(n+1)} = f^{(n+1)} - A\Gamma_{n+1}^{(n+1)} = f^{(n+1)} - A$ car le terme dominant de Γ_{n+1} est $\frac{X^{n+1}}{(n+1)!}.$

Ainsi
$$A = f^{(n+1)}(\theta)$$
, soit : $\forall x$, $\exists \theta$, $f(x) = \sum_{i=0}^{n} a_k \Gamma_k(x) + \Gamma_{n+1}(x) f^{(n+1)}(\theta)$

b) En particulier, il existe un réel λ_n tel que $f(n+1) = \sum_{k=0}^n a_k \Gamma_k(n+1) + 1.f^{(n+1)}(\lambda_n) = \sum_{k=0}^{n+1} a_k \Gamma_k(n+1)$ soit : $f^{(n+1)}(\lambda_n) = a_{n+1}$ et on peut affirmer que λ_n est positif, parce que x = n+1 l'est (voir ci-dessus). Ainsi, chaque a_n est la valeur de $f^{(n)}$ en un point λ_n de \mathbb{R}_+ .

PARTIE III : Étude de séries de Newton

- 1. Soient x réel non entier et ρ réel, et $\mu_n = n^{\rho} |\Gamma_n(x)|$, $u_n = \ln(\mu_{n+1}) \ln(\mu_n)$.
 - **a)** On a $u_n = \ln\left(\frac{n+1}{n}\right)^{\rho} \left|\frac{\Gamma_{n+1}(x)}{\Gamma_n(x)}\right| = \ln\left(\frac{n+1}{n}\right)^{\rho} \left|\frac{n-x}{n+1}\right|.$

Un développement limité (à l'ordre 1) donne : $u_n = (\rho - x - 1)\frac{1}{n} + O\left(\frac{1}{n^2}\right)$; la série de terme général u_n sera donc divergente en général (par équivalence à un terme de série divergente et de signe constant), sauf si $\rho = x + 1$ auquel cas $u_n = O\left(\frac{1}{n^2}\right)$ et la série converge.

- **b)** Par télescopage, on a : $\sum_{k=0}^{n-1} u_k = \ln(\mu_n) \ln(\mu_0)$; d'où le comportement de μ_n :
 - Si $\rho > x+1$, alors μ_n tend vers $+\infty$.
 - Si $\rho = x + 1$, alors $\ln \mu_n$ tend vers $\ell \in \mathbb{R}$ et on peut définir : $K(x) = \lim_{n \to \infty} n^{x+1} |\Gamma_n(x)|$ $(K(x) = e^{\ell})$.
 - Si $\rho < x + 1$, alors μ_n tend vers 0
- **2.** a) D'après la question II.2.a, $f(x) \sum_{k=0}^{n} a_n \Gamma_k(x) = \Gamma_{n+1}(x) f^{(n+1)}(\theta)$.

D'après la question précédente et l'hypothèse faite sur f, $\left|\Gamma_{n+1}(x)f^{(n+1)}(\theta)\right| = 0$ (M. $n.n^{-x-1}$). Comme n^{-x} tend vers 0 lorsque n tend vers l'infini pour x>0, le reste tend vers 0 et on a bien l'égalité (vraie encore pour

$$x = 0$$
 à cause du choix de a_0): $\forall x > 0 \ f(x) = \sum_{k=0}^{\infty} a_k \Gamma_k(x)$

- b) Si f est nulle sur \mathbb{N} , la suite (a_n) est nulle (d'après les formules obtenues dans la partie II) et f est nulle sur \mathbb{R}_+ .
- 3. Puisque x et y ne sont pas des entiers naturels, on a, lorsque $n \to \infty$: $\left|\Gamma_n(x)\right| \sim \frac{\mathrm{K}(x)}{n^{x+1}}$ et $\left|\Gamma_n(y)\right| \sim \frac{\mathrm{K}(y)}{n^{x+1}}$, d'où $\frac{\left|\Gamma_n(y)\right|}{\left|\Gamma_n(x)\right|} \sim \mathrm{A.}n^{x-y}$, où A ne dépend que de x et y, mais pas de n.

Puisque y > x, $\lim_{n \to \infty} \frac{\left|\Gamma_n(y)\right|}{\left|\Gamma_n(x)\right|} = 0$, donc $\left|\Gamma_n(y)\right| = 0$ $\left(\left|\Gamma_n(x)\right|\right)$, puis $\left|a_n\Gamma_n(y)\right| = 0$ $\left(\left|a_n\Gamma_n(x)\right|\right)$.

D'après les règles de comparaison des séries à termes positifs, si la série $\sum_{n=0}^{\infty} |a_n \Gamma_n(x)|$ converge, il en est de même

de la série $\sum_{n=0}^{\infty}\left|a_{n}\Gamma_{n}(y)\right|$, c'est-à-dire que la série la série $\sum_{n=0}^{\infty}a_{n}\Gamma_{n}(y)$ est absolument convergente.

- **4.** a) Le fait que la suite $(w_n(x))_{n \ge b}$ tende vers 0 a été fait à la question précédente.
 - $\frac{w_{n+1}(x)}{w_n(x)} = \frac{n-x}{n-x_0}$ qui est compris entre 0 et 1 lorsque $n \ge b \ge x > x_0$; donc : si $w_b(x) > 0$ alors $(w_n(x))$ décroît pour $n \ge b$ et est positif; sinon, $(w_n(x))$ croît pour $n \ge b$ et est négatif.
 - b) Il en résulte que la suite $(|w_n(x)|)_{n\geqslant b}$ est majorée par $|w_b(x)|$; et la fonction w_b est continue sur $[x_0,b]$, donc bornée. Si K désigne la borne supérieure de $|w_b|$ sur $[x_0,b]$, on a donc, pour tout $x\in]x_0,b]$ et tout $n\geqslant b$, $|w_n(x)|\leqslant K$ c'est-à-dire $|\Gamma_n(x)|\leqslant K|\Gamma_n(x_0)|$, et cette inégalité reste évidemment vraie pour $x=x_0$.
 - c) Soit C un compact de $[x_0, +\infty[$; il existe donc un entier b tel que $C \subset [x_0, b]$. D'après la question précédente, il existe une constante K telle que, pour tout $x \in C$ et tout $n \ge b$, on ait $|a_n \Gamma_n(x)| \le K |a_n \Gamma_n(x_0)|$, donc $||a_n \Gamma_n||_{\infty}^C \le K |a_n \Gamma_n(x_0)|$.

Il découle alors de l'hypothèse de l'énoncé que la série $\sum \|a_n \Gamma_n\|_{\infty}^{C}$ converge, i.e que la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x)$ converge normalement sur C.

5. a) En posant $R_k = \sum_{i=k+1}^{\infty} \lambda_i$, on a $\lambda_k = R_{k-1} - R_k$ donc

$$\sum_{k=n+1}^{n+p} \lambda_k V_k(x) = \sum_{k=n+1}^{n+p} (R_{k-1} - R_k) V_k(x)$$

$$= \sum_{k=n+1}^{n+p} R_{k-1} V_k(x) - \sum_{k=n+1}^{n+p} R_k V_k(x)$$

$$= \sum_{k=n}^{n+p-1} R_k V_{k+1}(x) - \sum_{k=n+1}^{n+p} R_k V_k(x)$$

$$= R_n V_{n+1}(x) + \sum_{k=n+1}^{n+p-1} R_k (V_{k+1}(x) - V_k(x)) - R_{n+p} V_{n+p}(x)$$

[Il s'agit de la transformation d'Abel...]

Soit $\varepsilon > 0$. La série $\sum \lambda_n$ étant convergente, la suite des restes (R_n) tend vers zéro, donc il existe un entier n_0 tel que pour tout $n \ge n_0$ on ait $\left| R_n \right| < \frac{\varepsilon}{4M}$.

Pour tout entier n, notons $S_n(x) = \sum_{k=0}^n \lambda_k V_k(x)$ pour $x \in I$. Compte tenu de la décroissance de la suite $(V_n(x))_{n \in \mathbb{N}}$ et de $|V_n(x)| \leq M$, la relation démontrée auparavant conduit à

$$\begin{aligned} \left| \mathbf{S}_{n+p}(x) - \mathbf{S}_{n}(x) \right| &= \left| \mathbf{R}_{n} \mathbf{V}_{n+1}(x) + \sum_{k=n+1}^{n+p-1} \mathbf{R}_{k} \left(\mathbf{V}_{k+1}(x) - \mathbf{V}_{k}(x) \right) - \mathbf{R}_{n+p} \mathbf{V}_{n+p}(x) \right| \\ &\leq \mathbf{M} \left| \mathbf{R}_{n} \right| + \sum_{k=n+1}^{n+p-1} \left| \mathbf{R}_{k} \right| \left| \mathbf{V}_{k+1}(x) - \mathbf{V}_{k}(x) \right| + \mathbf{M} \left| \mathbf{R}_{n+p} \right| \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4M} \sum_{k=n+1}^{n+p-1} \left(\mathbf{V}_{k}(x) - \mathbf{V}_{k+1}(x) \right) + \frac{\varepsilon}{4} \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4M} \left(\mathbf{V}_{n+1}(x) - \mathbf{V}_{n+p}(x) \right) + \frac{\varepsilon}{4} \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4M} \cdot 2\mathbf{M} + \frac{\varepsilon}{4} = \varepsilon \end{aligned}$$

Cela montre que, pour tout $x \in I$, la suite $(S_n(x))_{n \in \mathbb{N}}$ est de Cauchy, donc elle converge. Donc la série de fonctions $\sum_{n=0}^{\infty} \lambda_n V_n(x)$ converge simplement sur I.

De plus, en faisant tendre p vers $+\infty$ dans l'inégalité précédente, on obtient une majoration du reste de cette série par ϵ indépendamment de x, ce qui prouve la convergence uniforme.

Rem : On obtient exactement la même conclusion si on remplace l'hypothèse « la suite $n \mapsto V_n(x)$ est décroissante » par « la suite $n \mapsto V_n(x)$ est monotone ». En effet, ce qui est important dans la démonstration ci dessus est que la série $\sum |V_{k+1}(x) - V_k(x)|$ soit télescopique.

b) On suppose donc ici que la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x_0)$ converge.

Si C est un compact de $[x_0, +\infty[$, il existe b tel que $C \subset [x_0, b]$. On reprend les notations et les résultats de la question III.4.

Prenons $\lambda_n = a_n \Gamma_n(x_0)$ et $V_n(x) = w_n(x)$. On vient de supposer la convergence de la série de terme général λ_n , et on a prouvé que, si $x \in [x_0, b]$, $(V_n(x))$ est monotone à partir du rang b, et $|V_n| \le K$.

Ainsi, puisque $\lambda_n V_n(x) = a_n \Gamma_n(x)$, $\sum_{k=b}^{\infty} a_k \Gamma_k(x)$ converge uniformément sur $[x_0, b]$, donc sur le compact C,

- et $\sum_{k=0}^{\infty} a_k \Gamma_k(x)$ fait de même.
- c) Si on reprend les calculs de la question III, on voit qu'il existe une constante A (ne dépendant que de x et x_0) telle que $|w_n(x)| = \frac{|\Gamma_n(x)|}{|\Gamma_n(x_0)|} \underset{n\to\infty}{\sim} A.n^{x_0-x}$, soit $|a_n\Gamma_n(x)| \sim A \cdot |a_n\Gamma_n(x_0)| \cdot n^{x_0-x}$.

Puisque $\lim_{n\to\infty}a_n\Gamma_n(x_0)=0$ (car la série converge), on en tire $\left|a_n\Gamma_n(x)\right|=o\left(\frac{1}{n^{x-x_0}}\right)$, ce qui prouve la convergence absolue de la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x)$ lorsque $x-x_0>1$, par comparaison à une série de Riemann.

PARTIE IV:

a) Soit, pour $x \in \mathbb{R}$ fixé, $\varphi(t) = (1+t)^x$ pour $t \in]-1,1[$. φ est de classe \mathscr{C}^{∞} sur]-1,1[. On peut donc écrire pour cette fonction la formule de Taylor avec reste intégrale, entre 0 et t, à tout ordre n:

$$(1+t)^{x} = \sum_{k=0}^{n} \frac{\varphi^{(k)}(0)}{k!} t^{k} + \int_{0}^{t} \frac{(h-u)^{n}}{n!} \varphi^{(n+1)}(u) du$$

Or $\varphi^{(k)}(u) = x(x-1)...(x-k+1).(1+u)^{x-k}$ d'où :

- $(1+t)^{x} = \sum_{k=0}^{n} \Gamma_{k}(x)t^{k} + R_{n}(t,x) \text{ où } R_{n}(t,x) = (n+1)\Gamma_{n+1}(x) \int_{0}^{t} (t-u)^{n}(1+u)^{x-n-1}(u) du$ b) La fonction $u \mapsto \frac{t-u}{1+u}$ est homographique donc, sur l'intervalle [0,t], elle atteint ses extrema en 0 et en t;
 - par suite, $\sup_{u \in [0, t]} \left| \frac{t u}{1 + u} \right| = |t|$.

On a donc $\left| \mathbf{R}_n(t,x) \right| \le (n+1) \left| \Gamma_{n+1}(x) \right| |t|^n \left| \int_0^t (1+u)^{x-1} \, \mathrm{d}u \right|$, et il est facile de voir que cette expression tend

vers 0 quand $n \to \infty$, en utilisant l'équivalent obtenu en III.1 : $\left|\Gamma_n(x)\right| \underset{n \to \infty}{\sim} \frac{K(x)}{n^{x+1}}$ lorsque x non entier (si xest entier, on a de toutes façons $\Gamma_n(x) = 0$ à partir d'un certain rang!)

Rem : Je n'ai pas trop détaillé cette démonstration, puisqu'il s'agit exactement de celle faite en classe pour trouver le développement en série entière de $t \mapsto (1+t)^x$...

- **2.** Pour |t| > 1 et x non entier naturel, la série diverge, puisque $t^n |\Gamma_n(x)|$ est équivalent à $K(x)t^n n^{-x-1}$ de limite infinie.
- 3. Si x est un entier naturel, $\Gamma_n(x) = 0$ dès que $n \ge x + 1$, donc la série converge!
 - Sinon, $\left|\Gamma_n(x)\right| \sim \frac{\mathrm{K}(x)}{n^{x+1}}$, donc la série diverge grossièrement si $x \leq -1$.
 - Enfin, si x > -1, on peut reprendre le calcul fait dans la question précédente avec t = 1; on a alors $\left| \mathbf{R}_n(1,x) \right| \leq (n+1) \left| \Gamma_{n+1}(x) \right| \left| \int_0^1 (1+u)^{x-1} \, \mathrm{d}u \right|$, qui tend vers 0 quand $n \to \infty$, grâce à l'équivalent ci-dessus.

En conclusion, la série $\sum_{n=0}^{\infty} \Gamma_n(x)$ converge si et seulement si x > -1 et, dans ce cas, sa somme vaut 2^x .

Rem: je n'ai pas utilisé ici l'indication de l'énoncé...

4. • La série $\sum_{n=0}^{\infty} \left| \Gamma_n(x) \right|$ converge si et seulement si $x \ge 0$, toujours grâce à l'équivalent $\left| \Gamma_n(x) \right| \underset{n \to \infty}{\sim} \frac{\mathrm{K}(x)}{n^{x+1}}$ (pour xnon entier), et par comparaison à une série de Riemann

- Pour $x \le -1$, la série $\sum_{n=0}^{\infty} (-1)^n \Gamma_n(x)$ est grossièrement divergente (voir ci-dessus).
- Prenons donc $x \in]-1,0[$. Alors $\Gamma_n(x)=\frac{x(x-1)...(x-n+1)}{n!}$ est du signe de $(-1)^n$, donc la série $\sum_{n=0}^{\infty} (-1)^n \Gamma_n(x)$ est à termes positifs, et, compte tenu de l'équivalent de $|\Gamma_n(x)|$, elle diverge.
- Enfin, si x est entier, la somme est nulle puisque on retrouve le développement par la formule du binôme de $(1-1)^x$.
- 5. D'après tout ce qui précède, $\varphi_x(u) = (1-u)^x$ pour tout $u \in [0,1[$.

La convergence normale sur [0,1] de cette série de fonctions de u équivaut à la convergence de la série $\sum |\Gamma_n(x)|$, qui est réalisée pour $x \ge 0$ comme cela a déjà été dit.

La convergence normale implique la convergence uniforme, donc implique la continuité de φ_x sur [0,1]. Puisque φ_x coïncide avec $u \mapsto (1-u)^x$ sur [0,1[, les deux fonctions coïncident également en 1, donc $\sigma(x) = 0$ pour $x \ge 0$.

PARTIE V:

1. On pose : $f(x) = \int_{-1}^{0} (1+t)^x h(t) dt$. On sait que pour x > 0 on a : $(1+t)^x = \sum_{n=0}^{\infty} t^n \Gamma_n(x)$, et que cette convergence est normale $en\ t$ (pas en x!) sur [-1,0] (cf. IV.5).

On a donc $(1+t)^x h(t) = \sum_{n=0}^{\infty} t^n \Gamma_n(x) h(t)$, et la convergence est encore normale en t (donc uniforme), puisque h est continue donc bornée sur [0,1].

On peut donc intervertir série et intégrale, d'où :

$$f(x) = \sum_{n=0}^{\infty} \Gamma_n(x) \int_{-1}^{0} t^n h(t) dt$$

2. a) L'énoncé est ici imprécis. Il faut évidemment considérer $t \in]-1,0]$. On a alors $R_n(t,x) = (1+t)^x - \sum_{k=0}^n t^k \Gamma_k(x)$, donc l'intégrale $\int_{-1}^0 h(t) R_n(t,x) \, dt$ existe si et seulement si l'intégrale $\int_{-1}^0 (1+t)^x h(t) \, dt$, i.e f(x) existe (ce qui aurait du être demandé au début!).

Cela dit, cette intégrale existe pour x > -1, puisque h est continue donc bornée sur [-1,0], par comparaison avec l'intégrale de Riemann $\int_{-1}^{0} (1+t)^x dt$.

b) On a $R_N(t,x) = (N+1)\Gamma_{N+1}(x)\int_0^t \left(\frac{t-u}{1+u}\right)^N (1+u)^{x-1} du$.

Le changement de variable $s = \frac{t-u}{1+u}$ conduit à $u = \frac{t-s}{1+s}$, $du = -\frac{1+t}{(1+s)^2} ds$ puis

$$R_{N}(t,x) = (N+1)\Gamma_{N+1}(x)\int_{0}^{t} s^{N} \left(\frac{1+t}{1+s}\right)^{x-1} \frac{1+t}{(1+s)^{2}} ds = (N+1)\Gamma_{N+1}(x)(1+t)^{x} \int_{0}^{t} \frac{s^{N}}{(1+s)^{x+1}} ds$$

c) On écrit : $R_N(t,x) \cdot h(t) = K \cdot (1+t)^x h(t) r_N(t) = KH'(t) r_N(t)$ avec $K = (N+1)\Gamma_{N+1}(x)$ d'où :

$$\int_{-1}^{0} R_{N}(t,x)h(t) dt = K \left[H(t)r_{N}(t) \right]_{-1}^{0} - K \int_{-1}^{0} (t+1)^{-x-1} t^{N} H(t) dt$$

d) • Si M = sup {|h(t)|, $t \in [-1, 0]$ }, on a, puisque x > -1

$$\forall t \in]-1,0], |H(t)| \leq M \int_{-1}^{t} (1+s)^x ds = \frac{M}{x+1} (1+t)^{x+1}$$

donc $\left| \mathbf{H}(t)(1+t)^{-x-1} \right|$ est bornée. On notera C un majorant.

• On a :

$$\int_{-1}^{0} (1+t)^{x} h(t) dt = \sum_{k=0}^{N} \int_{-1}^{0} t^{k} \Gamma_{k}(x) h(t) dt + \int_{-1}^{0} R_{N}(t,x) h(t) dt$$

et il suffit de montrer que la dernière intégrale tend vers 0.

Or
$$\left|\int_{-1}^{0} R_{N}(t,x)h(t) dt\right| \le (N+1)\left|\Gamma_{N}(x)\right| \int_{-1}^{0} \left|H(t)(1+t)^{-x-1}t^{N}\right| dt \le C.(N+1)\left|\Gamma_{N}(x)\right| \int_{-1}^{0} t^{N} dt$$
, ce qui permet de conclure puisque $\Gamma_{N+1}(x)$ tend vers 0 quand $n \to \infty$ puisque $x > -1$ et $\left|\Gamma_{N+1}(x)\right| \sim K.n^{-x-1}$.

3. a) Avec $h(t) = (1+t)^{\lambda}$, par comparaison à une intégrale de Riemann, $\int_{-1}^{0} \frac{dt}{(1+t)^{-\lambda-x}}$ existe si et seulement si $-\lambda - x < 1$ soit $x > -\lambda - 1$, et on calcule aisément $f(x) = \int_{-1}^{0} (1+t)^{\lambda+x} dt = \frac{1}{\lambda+x+1}$ si $x > -\lambda - 1$.

b)
$$a_n = \int_{-1}^0 t^n (1+t)^{\lambda} dt = -\frac{n}{\lambda+1} \int_{-1}^0 t^{n-1} (1+t)^{\lambda+1} dt = \dots = \frac{n!}{(-\lambda-1)\dots(-\lambda-n-1)} = \frac{1}{(n+1)\Gamma_{n+1}(-\lambda-1)}$$

- c) L'égalité $f(x) = \sum_{n=0}^{\infty} a_n \Gamma_n(x)$ n'est rien d'autre que la relation (1). Il suffit donc d'appliquer le résultat de la question IV.2.d. (ce qui est possible, h étant bien continue sur [-1,0].
- d) L'égalité $f(x) = \frac{1}{x+\lambda+1} = \sum_{n=0}^{+\infty} \frac{\Gamma_n(x)}{(n+1)\Gamma_{n+1}(-\lambda-1)} = \sum_{n=0}^{\infty} a_n \Gamma_n(x)$ a lieu au moins $\operatorname{si} x > -1$ d'après ce qui précède. Elle est donc vraie également pour les entiers naturels, ce qui prouve que la suite (a_n) est bien celle associée à f au sens de la définition donnée dans la partie II, puisque, $\operatorname{si} x \in [\![0,N]\!]$, $f(x) \sum_{n=0}^{\infty} a_n \Gamma_n(x) = f(x) \sum_{n=0}^{\infty} a_n \Gamma_n(x) = 0$.
 - La série $\sum_{n=0}^{\infty} a_n \Gamma_n(x)$ ne peut converger pour $x \le -\lambda 1$, car sinon, d'après III.5.b, elle devrait aussi converger en $x = -\lambda 1$, ce qui est exclu car pour $x = -\lambda 1$, $a_n \Gamma_n(x) = \frac{\Gamma_n(x)}{(n+1)\Gamma_{n+1}(-\lambda 1)} = \frac{1}{n+1}$.
 - Enfin, supposons $x > -\lambda 1$. D'après III.1.c, il existe une constante A, ne dépendant que de x, telle que $\frac{\left|\Gamma_n(x)\right|}{\left|\Gamma_n(-\lambda 1)\right|} \sim \frac{A}{n^{x+\lambda+1}}$ donc $\frac{\Gamma_n(x)}{(n+1)\Gamma_{n+1}(-\lambda 1)} \sim \frac{A}{n^{x+\lambda+2}}$, et la série est en fait absolument convergente puisque $x + \lambda + 2 > 1$.

Conclusion: La relation (1) est valable pour $x > -\lambda - 1$.

