

IIT Guwahati

Lecture 21

Course BT 631

Protein Structure function and Crystallography

Prof. Arun Goyal

Dept. of Biosciences and Bioengineering

Enzyme Cofactors are also called coenzymes.

An additional non-protein molecule that is needed by some enzymes to help the reaction is called as Enzyme Cofactor.

Tightly bound cofactors are called prosthetic groups.

Cofactors that are bound and released easily are called coenzymes e.g. Many vitamins are coenzymes.

The nature of interaction between cofactor and enzyme is variable with both covalent and noncovalent bonds.

Cofactors found in enzyme with their biological functions.

Component	Co-factor	Metabolic role
Vitamin A (retinol)	Retinal	Visual Cycle
Vitamin B ₁ (thiamine)	Thiamine pyrophosphate	Carbohydrate metabolism
Vitamin B ₂ (riboflavin)	flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN)	Redox reaction in flavoenzymes
Vitamin B ₃ Niacin (Nicotinic acid)	Nicotinamide adenine dinucleotide (NAD)	Redox reaction involved NAD linked dehydrogenases
Vitamin B₅ (Panthothenic acid)	Co-enzyme A	Acyl group activation and transfer
Vitamin B ₆	pyridoxine	Transaminase reactions
Vitamin B ₁₂	cyanocobalamin	Methyl group transfer or intramolecular rearrangement
Biotin	Biotin	ATP dependent carboxylation of substrate
Folic acid	Tetrahydrofolate	Transfer of formyl or hydroxymethyl groups
Vitamin K	Phylloquinone	Carboxylation of Glu residues
Coenzyme Q	Ubiquinone	Electron and proton transfer

Vitamin A

@ 2001 Sinauer Associates, Inc.

Vitamin B1, B2, B3 and B5

$$H_3C$$
 N
 H_3C
 N
 H_3C
OH

Vitamin B1 (Thiamine)

Vitamin B3 (Nicotinic acid)

$$\begin{bmatrix} CH_2OH \\ HO-C-H \end{bmatrix}_3 \\ CH_2 \\ H_3C \\ C_{16}H_{20}N_4O_6 \\ \end{bmatrix}$$

Vitamin B2 (Riboflavin)

Vitamin B5 (Pantothenic acid)

Vitamin B5, B6, B12

Vitamin B5 (Pantothenic acid) and Coenzyme A

Biotin and Folic Acid

Tetrahydrofolate

2-amino-4-oxo-6-methylpteridine

Folic acid (Tetra hydro folic acid)

Vitamin K and Q

Role of metal ions as cofactors in enzyme catalysis.

Metal ion	Metalloenzyme	General Reaction Catalyzed
Fe ²⁺	Cytocrome oxidase	Reduction of O ₂ to H ₂ O
Co ²⁺	Vitamine B ₁₂	Transfer of methyl group
Mo ²⁺	Sulfite oxidase	Reduction of sulfite to sulfate
Mn²+	Water splitting enzyme	Photosynthetic splitting of water to oxygen
Ni ²⁺	Urease	Hydrolysis of urea to ammonia and carbamate
Cu ²⁺	Superoxide dismutase	Dismutation of superoxide into O ₂ and H ₂ O ₂
Zn ²⁺	Carboxypeptidase A	Hydrolysis of peptide bonds