Instructions

Download:

First, download the zip file and extract it. The whole dataset we used is stored on the following webpage.

https://drive.google.com/drive/folders/167TgiMA92hYJBI8kifVkG1AW6XkJeI8t?usp=sharing

Required packages:

- Python 3.7+
- open3d==0.11.2
- opency-python==4.4.0.46
- Keras==2.3.1
- matplotlib==3.3.3
- for detailed list of packages check requirement.txt

Date folder structure:

First_pipeline

- layers.py
- fepth map.py
- ICP.py
- rigid3D.py
- first_pipeline.py

Second pipeline

- second_pipeline.py
- test_parallel.py

Third pipeline

• third pipeline.py

models (two pretrained models)

- nyu.h5
- kitti.h5

Test_Images(Input images and point clouds)

- parallel
- teapot1
- teapot2
- third pipeline

Final_results(Merged point clouds and results for each pipeline)

- First pipeline
- Second pipeline
- Third_pipeline

Test

depth_quality.py

 ground truth depth maps compute_pc.py(generate point clouds) requirements.txt

Python scripts for each pipeline

- To run the first pipeline, use command "cd" to go to the directory of folder First pipeline(as shown in the date folder structure).
 - A. Use ICP to merge point clouds

python first_pipeline.py icp

 $\ensuremath{\mathsf{B}}.$ Use rigid body transformation to merge point clouds

python first pipeline.py rigid

• To run the second pipeline, use command "cd" to go to the directory of folder of Second pipeline.

python second_pipeline.py

• To run the third pipeline, use command "cd" to go to the directory of folder of Third_pipeline.

python third_pipeline.py