Semaine 1 du 16 septembre 2024 (S38)

I Séries numériques

- 1 Rappel sur les sommes finies et les sommes doubles
- 1.1 Propriétés des sommes finies
- 1.2 Formules usuelles
- 1.3 Sommes doubles
- 2 Premières définitions sur les séries
- 3 Séries réelles à termes positifs
- 3.1 Propriété fondamentale
- 3.2 Outils de comparaison
- 3.3 Séries de Riemann
- 4 Comparaison série intégrale
- 4.1 Principe
- 4.2 Cas d'une fonction croissante
- 4.3 Estimation du reste dans le cas de convergence

5 Séries complexes et convergence absolue

- 5.1 Résultats généraux
- 5.2 Séries alternées
- 5.3 Comparaison logarithmique et règle de d'Alembert

6 Formule de Stirling

Démonstration non exigible.

7 Produit de Cauchy

Démonstration non exigible.

9 Exercices à connaître

9.1 Révision sur les suites : le théorème de Césaro

On considère une suite $(u_n)_{n\geqslant 0}$ de nombres réels ou complexes. On définit la suite $(v_n)_{n\geqslant 0}$ par

$$v_n = \frac{1}{n+1} (u_0 + u_1 + u_2 + \dots + u_n)$$

- 1) On suppose que la suite (u_n) converge vers 0. Montrer que la suite (v_n) converge vers 0. Indication: soit $\varepsilon > 0$. Montrer qu'il existe un rang N tel que, si $n \ge N, |v_n| \le \varepsilon$. Pour cela, couper v_n en deux morceaux.
- 2) On suppose que la suite (u_n) converge. Montrer que la suite (v_n) converge. C'est le théorème de Césaro.
- 3) Montrer que la réciproque est fausse.

On montrerait avec les mêmes outils que si $u_n \xrightarrow[n \to +\infty]{} +\infty$, v_n aussi.

9.2 Série harmonique et constante d'Euler

On considère pour tout $n \in \mathbb{N}^*$ la suite $u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$.

L'objectif est de montrer que (u_n) converge. Sa limite est appelée **constante** d'Euler et notée γ .

Pour tout $n \in \mathbb{N}^*$, on note $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1) Montrer que $H_n \sim \ln n$.
- 2) Montrer que $u_{n+1} u_n = O\left(\frac{1}{n^2}\right)$.
- 3) On pose pour tout n > 0, $v_n = u_{n+1} u_n$. Donner la nature de $\sum v_n$ et conclure.

9.3 Une décomposition de somme

Soit k > 1; on note $S_k = \sum_{n=1}^{+\infty} \frac{1}{n^k}$ et $T_k = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^k}$. Calculer T_k en fonction de S_k .

9.4 Natures de deux séries

Soit (u_n) une suite de réels strictement positifs, pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n u_k$ et $v_n = \frac{u_n}{S_n}$. L'objectif est de comparer la nature de $\sum u_n$ et $\sum v_n$.

On pourra traiter les cas où $\sum u_n$ converge ou diverge, et dans ce dernier étudier la série de terme général $w_n = \ln\left(1 - \frac{u_k}{S_k}\right)$ pour $n \ge 1$.

9.5 Transformation d'Abel

Soit (a_n) une suite positive décroissante de limite nulle et (S_n) une suite bornée.

- 1) Montrer que la série $\sum (a_n a_{n+1})S_n$ est convergente.
- 2) En déduire que la série $\sum a_{n+1}(S_{n+1}-S_n)$ est convergente.
- 3) Établir que la série $\sum \frac{\sin(n)}{n}$ est convergente.

 Indication: On pourra commencer par montrer que la suite $\sigma_n = \sum_{k=0}^{n} \sin k$ est bornée.