(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-56971

(P2002-56971A) (43)公開日 平成14年2月22日(2002.2.22)

(51) Int. C1. TH05B 33/04 33/10 33/14	識別記号	F I H05B 33/04 33/10 33/14	
		審査請求	未請求 請求項の数3 OL (全7頁)
(21)出願番号	特願2000-244570(P2000-244570)	(71)出願人	000229117 日本ゼオン株式会社
(22) 出願日	平成12年8月11日(2000.8.11)	(72)発明者	東京都千代田区丸の内2丁目6番1号 柏木 幹文 神奈川県川崎市川崎区夜光1-2-1 日 本ゼオン株式会社総合開発センター内
		(72)発明者	田中 公章 東京都千代田区丸の内二丁目6番1号 日 本ゼオン株式会社内
		(74)代理人	100075351 弁理士 内山 充 考) 3K007 AB13 AB18 BB01 BB02 CA01 CA05 CB01 CB03 DA00 DB03 EB00 FA01 FA02

(54) 【発明の名称】有機エレクトロルミネッセンス素子用封止膜、それを用いた有機エレクトロルミネッセンス素子及びその製造方法

(57)【要約】

【課題】酸素や水分による有機EL素子の劣化を抑制して、該素子の発光機能を効果的に発揮させ得ると共に、素子の小型化や薄型化にも対応できる有機EL素子用封止膜、それを設けた有機EL素子及びその製造方法を提供する。

【解決手段】パーフルオロオレフィンの分解重合物からなる有機EL素子用封止膜、透明基板上に、少なくとも透明電極層、有機発光体薄膜層、金属電極層及び封止層が順次積層されてなり、かつ該封止層がパーフルオロオレフィンの分解重合物からなる封止膜である有機EL素子、並びに、該封止膜を、パーフルオロオレフィンを主体とする原料ガスを用い、プラズマCVD法により形成させる有機EL素子の製造方法である。

【特許請求の範囲】

【請求項1】パーフルオロオレフィンの分解重合物からなる有機エレクトロルミネッセンス素子用封止膜。

1

【請求項2】透明基板上に、少なくとも透明電極層、有機発光体薄膜層、金属電極層及び封止層が順次積層されてなる有機エレクトロルミネッセンス素子であって、上記封止層がパーフルオロオレフィンの分解重合物からなる封止膜であることを特徴とする有機エレクトロルミネッセンス素子。

【請求項3】透明基板上に、少なくとも透明電極層、有 10 機発光体薄膜層及び金属電極層が順次積層されてなる積層体上に、パーフルオロオレフィンを主体とする原料ガスを用い、放電解離条件下での化学的気相蒸着 (CVD) 法により、パーフルオロオレフィンの分解重合物からなる封止膜を形成させることを特徴とする有機エレクトロルミネッセンス素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機エレクトロルミネッセンス素子(以下、エレクトロルミネッセンスを 20「EL」と略記する)用封止膜、それを用いた有機EL素子及びその製造方法に関する。さらに詳しくは、本発明は、パーフルオロオレフィンの分解重合物からなる有機EL素子用封止膜、この封止膜を表面に設けてなる封止された有機EL素子、及びこのものを効率よく製造する方法に関するものである。

[0002]

【従来の技術】電界発光を利用したEL素子は、自己発 光のため視認性が高く、かつ完全固体素子であるため、 耐衝撃性に優れるなどの特徴を有することから、各種表 30 示装置における発光素子としての利用が注目されてい る。このEL素子には、発光材料に無機化合物を用いて なる無機EL素子と有機化合物を用いてなる有機EL素 子とがあり、このうち、特に有機EL素子は、印加電圧 を大幅に低くしうる上、小型化が容易であって、消費電 力が小さく、面発光が可能であり、かつ三原色発光も容 易であることから、次世代の発光素子としてその実用化 研究が積極的になされている。この有機EL素子の発光 体部の構成としては、一般に、透明基板上に順次設けら れた透明電極層(陽極)/有機発光体薄膜層(有機発光 40 層) /金属電極層(陰極)の構成を基本とし、これに正 孔注入輸送層や電子注入層を適宜設けたもの、例えば陽 極/正孔注入輸送層/有機発光層/陰極や、陽極/正孔 注入輸送層/有機発光層/電子注入層/陰極などの構成 のものが知られている。該正孔注入輸送層は、陽極より 注入された正孔を発光層に伝達する機能を有し、また、 電子注入層は陰極より注入された電子を発光層に伝達す る機能を有している。そして、該正孔注入輸送層を発光 層と陽極との間に介在させることによって、より低い電 界で多くの正孔が発光層に注入され、さらに、発光層に 50

陰極又は電子注入層より注入された電子は、正孔注入輸送層が電子を輸送しないので、正孔注入輸送層と発光層との界面に蓄積され発光効率が上がることが知られている。図1は、有機EL素子の1例の原理図であって、有機EL素子は、この図で示すように、一般に透明基板1上に設けられた透明電極層(陽極)2の上に、正孔注入輸送層7、有機発光層8及び電子注入層9からなる有機EL材料層5が積層され、さらにその上に金属電極層

(陰極) 6が積層された構成を有している。そして、陽

極と陰極との間に電流を流すことにより、有機発光層8 において発光が生じ、この場合は、透明基板1側から発 光が取り出される。このような構成を有する有機EL素 子は電流駆動型の発光素子であり、発光させるためには 陽極と陰極との間に高電流を流さなければならない。そ の結果、発光時において素子が発熱し、素子の周囲に酸 素や水分があった場合にはこれらの酸素や水分による素 子構成材料の酸化が促進されて素子が劣化する。酸化や 水による有機EL素子の劣化の代表的なものはダークス ポットの発生及びその成長である。ダークスポットとは 発光欠陥点のことである。そして、有機EL素子の駆動 に伴って当該素子の構成材料の酸化が進むと、既存のダ ークスポットの成長が起こり、ついには発光面全体にダ ークスポットが拡がるという好ましくない事態を招来す る。このような事態に対処するために、これまで様々な 方法が試みられている。例えばガラス製、プラスチック 製や金属製の封止缶を、有機EL素子の透明基板に接着 剤により接着し、該封止缶の内部に吸湿効果のある酸化 バリウムを含む窒素ガスなどの気体や、有機EL素子に 対する影響の少ない不活性液体を充填することにより、 封止層を形成させる方法などが用いられている。しかし ながら、このような封止層において、封止缶内部に気体 を充填したものは、環境温度により、該気体の体積が変 化し、その結果、封止缶と透明基板との間に亀裂が入り やすく、封止効果が十分に発揮されないおそれが生じる などの問題があった。また、このような封止缶を用いて 封止層を形成する技術においては、当該封止缶を接着剤 を用いて透明基板上に保持するため、該接着剤が素子内 部に進入したり、接着剤よりガスが発生したりすること で有機EL素子の発光機能を損傷するおそれがある上、 近年のさらなる小型化や薄型化の要求に対して対応が容 易ではないなどの問題を有している。そこで、封止缶を 用いる代わりに、フッ素フィルムなどの防湿性の高い熱 融着性プラスチックフィルムで、有機EL素子の発光体 部を封止する方法も試みられている。しかしながら、こ の方法においては、該フッ素フィルムが高価である上、 防湿性を有効に発揮させるには、膜厚を厚くする必要が あり、その結果、フィルム自体の透明性(光線透過性) が低下し、有機EL素子の発光体の発光能力が十分に発 揮されにくいなどの欠点があった。

[0003]

【発明が解決しようとする課題】本発明は、このような有機EL素子の封止に関する従来技術が有する欠点を克服し、周囲の酸素や水分による有機EL素子の劣化を抑制して、該素子の発光機能を効果的に発揮させ得ると共に、素子の小型化や薄型化にも対応できる有機EL素子用封止膜、それを設けた有機EL素子及びこのものを効率よく製造する方法を提供することを目的としてなされたものである。

[0004]

【課題を解決するための手段】本発明者らは、前記目的 10 を達成するために鋭意研究を重ねた結果、パーフルオロオレフィンを主体とする原料ガスを用い、放電解離条件下で化学的気相蒸着(CVD)法を施すことにより、有機EL素子の発光体部上に該パーフルオロオレフィンの分解重合物からなる膜を容易に形成し得ること、そして、この膜は有機EL素子用封止膜として有用であることを見出し、この知見に基づいて本発明を完成するに至った。すなわち、本発明は、(1)パーフルオロオレフィンの分解重合物からなる有機EL素子用封止膜、

(2)透明基板上に、少なくとも透明電極層、有機発光 20 体薄膜層、金属電極層及び封止層が順次積層されてなる有機EL素子であって、上記封止層がパーフルオロオレフィンの分解重合物からなる封止膜であることを特徴とする有機EL素子、及び(3)透明基板上に、少なくとも透明電極層、有機発光体薄膜層及び金属電極層が順次積層されてなる積層体上に、パーフルオロオレフィンを主体とする原料ガスを用い、放電解離条件下での化学的気相蒸着(CVD)法により、パーフルオロオレフィンの分解重合物からなる封止膜を形成させることを特徴とする有機EL素子の製造方法、を提供するものである。 30【0005】

【発明の実施の形態】本発明の有機EL素子用封止膜 は、パーフルオロオレフィンの分解重合物からなるもの であって、有機EL素子の発光体部上に設けることによ り、周囲の酸素や水分による該素子の劣化を抑制し、ダ ークスポットの発生及びその成長を抑え、発光機能を効 果的に発揮させるためのものである。この封止膜の製造 については、後述の有機EL素子の製造方法において詳 細に説明するが、パーフルオロオレフィンを主体とする 原料ガスを用い、放電解離条件下でのCVD法により、 有機EL素子の発光体部上に、該封止膜を形成すること ができる。本発明の有機EL素子用封止膜の厚さとして は特に制限はないが、膜強度の確保、防湿性などの観点 から、通常0.01~10μm、好ましくは0.05~5 μ m、より好ましくは 0.1~3 μ m の範囲で選定され る。次に、本発明の有機EL素子は、透明基板上に、少 なくとも透明電極層(陽極)、有機発光体薄膜層(有機 発光層)、金属電極層(陰極)及び封止層が順次積層さ れた構造を有している。上記透明基板としては、400 ~700nmの可視領域の光の透過率が50%以上であ 50

り、かつ平滑な基板が望ましい。このような透明基板と しては、例えばガラス板、ポリマー板等が挙げられる。 ガラス板としては、ソーダ石灰ガラス、バリウム・スト ロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラ ス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石 英等が好ましく挙げられる。またポリマー板としては、 ポリカーボネート、アクリル樹脂、ポリエチレンテレフ タレート、ポリエーテルサルファイド、ポリサルフォン 等を挙げることができる。これらの中で、通常ガラス板 が好ましく用いられる。本発明の有機EL素子の発光体 部は、前記の透明基板上に形成された陽極、有機EL材 料層(正孔注入輸送層、有機発光層、電子注入層など) 及び陰極とからなるものであって、その構成としては、 陽極/有機発光層/陰極の構成を基本とし、これに正孔 注入輸送層や電子注入層を適宜設けたもの、例えば陽極 /正孔注入輸送層/有機発光層/陰極や、陽極/正孔注 入輸送層/有機発光層/電子注入層/陰極などの構成を 挙げることができる。次に、発光体部が陽極/正孔注入 輸送層/有機発光層/電子注入層/陰極の構成の有機E L素子について説明する。

【0006】上記陽極としては、仕事関数の大きい(4 e V以上)金属、合金、電気伝導性化合物又はこれらの 混合物を電極物質とする透明電極が好ましく用いられ る。また、陽極のシート抵抗は、数百Ω/cm²以下のも のが好ましい。このようなものとしては、ITO (イン ジウムチンオキシド)、SnOュ、ZnO、In-Zn -Oなどの導電性材料を電極物質とするものを挙げるこ とができる。この陽極を形成するには、これらの電極物 質を、蒸着法やスパッタリング法等の方法で薄膜を形成 させればよい。陽極の膜厚は、材料にもよるが通常10 nm~1 μm、好ましくは10~200 nmの範囲で選 択される。有機発光層は(1)電界印加時に、陽極又は 正孔注入輸送層により正孔を注入することができ、かつ 陰極又は電子注入層より電子を注入することができる注 入機能、(2)注入した電荷(電子と正孔)を電界の力 で移動させる輸送機能、(3)電子と正孔の再結合の場 を発光層内部に提供し、これを発光につなげる発光機能 などを有している。この発光層に用いられる発光材料の 種類については特に制限はなく、従来有機EL素子にお 40 ける発光材料として公知のものを用いることができる。 このような発光材料の具体例としては、ベンソチアソー ル系、ベンゾイミダゾール系、ベンゾオキサゾール系な どの蛍光増白剤や、金属キレート化オキシノイド化合 物、スチリルベンゼン系化合物、ジスチリルピラジン誘 導体、芳香族ジメチリジン化合物などが挙げられる。正 孔注入輸送層は、正孔伝達化合物からなる層であって、 陽極より注入された正孔を発光層に伝達する機能を有 し、この正孔注入輸送層を陽極と発光層との間に介在さ せることにより、より低い電界で多くの正孔が発光層に 注入される。その上、発光層に陰極又は電子注入層によ

り注入された電子は、発光層と正孔注入輸送層の界面に 存在する電子の障壁により、この発光層内の界面付近に 蓄積されEL素子の発光効率を向上させ、発光性能の優 れたEL素子とすることができる。この正孔注入輸送層 に用いられる正孔伝達化合物については特に制限はな く、従来有機EL素子における正孔伝達化合物として公 知のものを使用することができる。この正孔伝達化合物 の具体例としては、トリアゾール誘導体、オキサジアゾ ール誘導体、イミダゾール誘導体、ポリアリールアルカ ン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェ 10 ニレンジアミン誘導体、アリールアミン誘導体、アミノ 置換カルコン誘導体、オキサゾール誘導体、スチリルア ントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘 導体、スチルベン誘導体、シラザン誘導体、ポリシラン 系化合物、アニリン系共重合体、チオフェンオリゴマー などの特定の導電性高分子オリゴマーなどが挙げられ る。

【0007】電子注入層は、陰極により注入される電子 を有機発光層に伝達する機能を有している。この電子注 入層に用いられる電子伝達化合物については特に制限は 20 しく、膜厚は通常10πm~1μm、特に50~200 なく、従来有機EL素子における電子伝達化合物として 公知のものを使用することができる。このような電子伝 達化合物の具体例としては、ニトロ置換フルオレノン誘 導体、アントラキノジメタン誘導体、ジフェニルキノン 誘導体、チオピランジオキシド誘導体、ナフタレンペリ レンなどの複素環テトラカルボン酸無水物、カルボジイ ミド、フレオレニリデンメタン誘導体、アントロン誘導 体、オキサジアソール誘導体、さらには8-キノリノー ル又はその誘導体の金属錯体、例えばトリス(8-キノ リノール)アルミニウム、ビス(8-キノリノール)マ 30 グネシウム、ビス (ベンゾー8-キノリノール) 亜鉛、 ビス (2-メチル-8-キノリラート) アルミニウムオ キシド、トリス (8-キノリノール) インジウム、トリ ス (5-メチル-8-キノリノール) アルミニウム、8 ーキノリノールリチウム、トリス(5ークロロー8ーキ ノリノール) カリウム、ビス (5-クロロー8-キノリ ノール)カルシウム、トリス(5,7ージクロロー8ー キノリノール)アルミニウム、トリス (5,7ージブロ モー8ーキノリノール)アルミニウム、ビス(8ーキノ リノール)ベリリウム、ビス(2-メチル-8-キノリ 40 ノール) ベリリウム、ビス (8-キノリノール) 亜鉛、 ビス (2-メチル-8-キノリノール) 亜鉛、ビス (8 ーキノリノール)スズ、トリス(7ープロピルー8ーキ ノリノール)アルミニウムなどが挙げられる。なお、上 記有機発光層、正孔注入輸送層及び電子注入層は、それ ぞれの材料の一種又は二種以上からなる一層で構成され ていてもよく、あるいは異なる材料からなる層を二層以 上積層したものであってもよい。また、上記の正孔注入 輸送層、有機発光層及び電子注入層は、それらを構成す

の方法としては、例えばスピンコート法、キャスト法、 蒸着法などがあるが、均質な膜が得られやすく、かつピ ンホールが生成しにくいなどの点から、真空蒸着法が好 ましい。この薄膜化に、この蒸着法を採用する場合、そ の蒸着条件は、使用する化合物の種類、分子堆積膜の目 的とする結晶構造、会合構造などにより異なるが、一般 にボート加熱温度50~450℃、真空度10-6~10 -1 Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚5nm~1μmの範囲で適宜選ぶ ことが望ましい。陰極としては、仕事関数の小さい(4 e V以下) 金属、合金、電気伝導性化合物及びこれらの 混合物などを電極物質とする金属電極が用いられる。こ のような電極物質の具体例としては、ナトリウム、ナト リウムーカリウム合金、マグネシウム、リチウム、マグ ネシウム・銀合金、A1/酸化アルミニウム、インジウ ム、希土類金属などが挙げられる。該陰極はこれらの電 極物質を蒸着やスパッタリングなどの方法により、薄膜 を形成させることにより、作製することができる。ま た、電極としてのシート抵抗は数百Ω/cm¹以下が好ま nmの範囲が好ましい。

【0008】本発明の有機EL素子は、このように透明 基板上に形成された透明電極(陽極)、有機EL材料層 及び金属電極(陰極)からなる発光体部上に、パーフル オロオレフィンの分解重合物からなる封止膜を形成させ たものであって、まず、上記発光体部の製造方法の1例 について説明する。ガラス板などの透明基板上に、蒸着 法やスパッタリング法などの方法でパターニングされた 透明電極膜(陽極)を形成したのち、その上に厚さが、 通常 $0.1\sim10\mu m$ 、好ましくは $0.1\sim5\mu m$ 、より 好ましくは0.5~2μmの絶縁膜を、従来公知の方法 で設ける。この絶縁膜としては、通常用いられているポ リイミド樹脂膜を設けてもよいし、あるいは遮光膜を兼 ねる目的で、(1) 黒色有機顔料及び/又は赤、青、 緑、紫、黄、シアン、マゼンタの中から選ばれる少なく とも2種の有機顔料を混合して擬似黒色化した混色有機 顔料からなる有機系顔料と、カーボンブラック、酸化ク ロム、酸化鉄、チタンブラック、アニリンブラックから 選ばれる少なくとも1種の遮光材と、感光性樹脂とを溶 剤中に含有させてなる遮光膜形成用レジストや、(2) アルカリ可溶性樹脂、キノンジアジド化合物、黒色顔料 及び溶剤を含む遮光膜形成用レジストなどを用い、フォ トリソグラフィー法により設けてもよい。次いで、この ようにして透明基板上に設けられた絶縁膜を介して、従 来公知の方法によりレジストパターン層を形成させる。 このレジストパターン層の断面形状としては、矩形型及 び逆テーパ型のいずれであってもよい。断面形状が矩形 型のレジストパターン層を形成させる場合、使用するフ ォトレジストとしては、非化学増幅型、化学増幅型のい る材料の薄膜を形成させることにより、作製される。そ 50 ずれであってもよいし、ポジ型、ネガ型のいずれであっ

てもよい。このようなフォトレジストとしては、例えば (1) アルカリ可溶性ノボラック型樹脂と、キノンジア シド基含有化合物を必須成分として含む非化学増幅型の ポジ型フォトレジスト、(2)酸の作用によりアルカリ に対する溶解性が変化する樹脂と、放射線の照射により 酸を発生する化合物を必須成分として含む化学増幅型の ポジ型フォトレジスト及び(3)アルカリ可溶性樹脂 と、酸架橋性物質と、放射線の照射により酸を発生する 化合物を必須成分として含む化学増幅型のネガ型フォト レジストなどを挙げることができる。一方、断面形状が 10 逆テーパ型のレジストパターン層を形成させる場合、使 用するフォトレジストとしては、例えば特許第2989 064号記載のもの、具体的には(A)光線による露光 によって、又は露光と引き続く熱処理によって架橋する 成分、(B)アルカリ可溶性樹脂、及び(C)露光する 光線を吸収する化合物を少なくとも1種含有し、かつ、 アルカリ性水溶液を現像液とするネガ型フォトレジスト などを挙げることができる。これらのフォトレジストを 用いて、レジストパターン層を設ける方法としては特に 制限はなく、従来慣用されているフォトリングラフィー 20 法によって、断面形状が矩形型又は逆テーパ型のレジス トパターン層を形成することができる。このレジストパ ターン層の厚さは、通常 0.5 ~数 μ m程度である。

【0009】次に、このようにして、パターニングされ た透明電極膜を有する透明基板上に、絶縁膜を介してレ ジストパターン層を形成したのち、まず、真空蒸着法に より正孔注入輸送層を設ける。この場合、蒸着条件は使 用する化合物(正孔注入輸送層の材料)、目的とする正 孔注入輸送層の結晶構造や再結合構造等により異なる が、一般に蒸着源温度50~450℃、真空度1×10 30 ⁻⁶~1×10⁻¹ Pa、蒸着速度0.01~50nm/ 秒、基板温度−50~300℃、膜厚5nm~1μmの 範囲で適宜選択することが好ましい。次いで、この正孔 注入輸送層上に有機発光層を真空蒸着法により形成す る。この場合、その蒸着条件は使用する化合物により異 なるが、一般的に正孔注入輸送層の形成と同様な条件範 囲の中から選択することができる。膜厚は10~40n mの範囲が好ましい。次に、この有機発光層上に、真空 蒸着法により電子注入層を設ける。この場合、蒸着条件 は正孔注入輸送層、有機発光層と同様の条件範囲から選 40 択することができる。膜厚は5 nm~1 μmの範囲で適 宜選択することが好ましい。そして、最後に、真空蒸着 法により陰極を積層する。この陰極は金属から構成され るものであり、その膜厚は50~200nmの範囲が好 ましい。このようにして、透明基板上に、透明電極層 (陽極)、有機EL材料層(正孔注入輸送層、有機発光 層、電子注入層)及び金属電極層(陰極)からなる積層

体(発光体部)が形成される。図2は、本発明の有機E

L素子における発光体部の1例の構成を示す部分断面図

である。すなわち、パターニングされた透明電極層2が

設けられた透明基板1上に、絶縁膜3を介して断面形状 が逆テーパ型のレジストパターン層 (樹脂隔壁層) 4が 設けられている。そして、このレジストパターン層とレ ジストパターン層との間に、表面に金属電極層6を有す る有機EL材料層(透明電極層側から、順次正孔注入輸 送層、有機発光層及び電子注入層が設けられた構成のも の) 5が設けられ、発光体部がレジストパターン層 4 と は非接触に独立の状態で形成されている。また、レジス トパターン層4上も、機能上必要ではないが、製造上の 都合から、表面に金属電極層6aを有する有機EL材料 層5aが形成されている。本発明においては、このよう にして透明基板上に、透明電極層、有機EL材料層及び 金属電極層が順次積層されてなる積層体(発光体部)上 に、パーフルオロオレフィンを主体とする原料ガスを用 い、放電解離条件下でのCVD法(以下、プラズマCV D法と称す)により、パーフルオロオレフィンの分解重 合物からなる封止膜を形成させ、封止された有機EL素 子を作製する。ここで「パーフルオロオレフィンを主体 とする原料ガス(以下、単に「原料ガス」と略すことが ある)」とは、原料ガス中の反応性成分(分解→重合に 寄与する成分)が実質的にパーフルオロオレフィンのみ からなるガスを意味する。パーフルオロオレフィンとし ては、直鎖又は分岐状パーフルオロオレフィンや、パー フルオロシクロオレフィンが挙げられる。また、この原 料ガスには、反応性を制御し、ハンドリング性を高める ために、希釈ガスを混入することができる。希釈ガスと しては、希ガスおよび炭化水素ガスが挙げられる。希ガ スの具体例としては、アルゴン、ヘリウム、キセノンな どが挙げられる。炭化水素ガスとしては、炭素数1~3 のものが通常用いられ、その具体例としては、メタン、 エチレン、アセチレンなどが挙げられる。好ましい希釈 ガスはアルゴン、メタンおよびエチレンである。これら の希釈ガスは単独で、または二種以上を組合せて用いる ことができる。希釈ガスの量は、通常、反応性成分との 合計量に基づき95重量%以下である。

【0010】パーフルオロオレフィンとしては、格別限定はないが、炭素数が通常3~8、好ましくは4~6、より好ましくは5の直鎖又は分岐状のパーフルオロオレフィンやパーフルオロシクロオレフィンが用いられる。

40 パーフルオロオレフィンは単独でまたは2種以上を組合せて用いることができ、特に1種以上のパーフルオロシクロオレフィンを用いるのが好ましい。パーフルオロシクロオレフィンを開した場合、直鎖又は分岐状のパーフルオロフィンを併用した場合、直鎖又は分岐状のパーフルオロオレフィンの量は、通常全フルオロオレフィン量の30重量%以下、好ましくは20重量%以下であると、特に高い防湿効果が得られる。直鎖又は分岐状パーフルオロオレフィンとしては、例えば、パーフルオロプロペン、パーフルオロプテン、パーフルオロペンテン、パーフルオロシロー2ーメチルブテンなどが挙げられ、パーフルオロシ

クロオレフィンとしては、例えばパーフルオロシクロプ ロペン、パーフルオロシクロブテン、パーフルオロシク ロペンテン、パーフルオロシクロヘキセン、パーフルオ ロシクロヘブテン、パーフルオロシクロオクテン、パー フルオロ (1-メチルシクロブテン)、パーフルオロ (3-メチルシクロブテン)、パーフルオロ(1-メチ ルシクロペンテン)、パーフルオロ(3-メチルシクロ ペンテン)などが挙げられる。これらの中でも、パーフ ルオロシクロブテン、パーフルオロシクロペンテンおよ びパーフルオロシクロヘキセンなどのパーフルオロシク ロオレフィンが好ましく、パーフルオロシクロペンテン が最も好ましい。プラズマCVD法の手法としては、従 来から知られている、例えば特開平9-237783号 公報に記載されている手法を採ることができる。プラズ マ生成条件としては、通常、高周波(RF)出力10W ~10kW、被処理物温度0~500℃、圧力1×10 - ²~ 1× 10 ⁴ P a にて行う。生成する膜の厚さは通常 $0.01 \sim 10 \mu m$ 、好ましくは $0.05 \sim 5 \mu m$ 、より 好ましくは $0.1 \sim 3 \mu m$ の範囲である。被処理物温度 は上述の範囲で任意に設定できるが、パーフルオロオレ 20 フィンを用いることで、被処理物温度が100℃以下、 好ましくは50℃以下でも成膜できるため、生産効率の 向上や、基板へのダメージの抑制に有効である。プラズ マCVDに用いる装置としては、平行平板型CVD装置 が一般的であるが、マイクロ波CVD装置、ECR-C VD装置、および高密度プラズマCVD装置(ヘリコン 波プラズマ、誘導結合プラズマなど)を用いることがで きる。また、原料ガスの解離促進および被処理物の損傷 低滅を目的として低圧水銀ランプなどによる紫外線照射 を行ったり、また、原料ガスの解離促進およびパーフル 30 オロオレフィンのマイグレーション促進のため被処理物 および反応空間に超音波を照射することができる。この ようにして、有機EL素子における発光体部上に、パー フルオロオレフィンの分解重合物からなる封止膜が形成 され、本発明の封止された有機EL素子が得られる。

[0011]

【実施例】次に、本発明を実施例により、さらに詳細に 説明するが、本発明は、これらの例によってなんら限定 されるものではない。

実施例1

(1) 有機EL素子の発光体部の形成

図 3 は、本実施例で用いた有機 E L 素子用基板の部分断面図であって、該基板は、表面にパターニングされた I T O 透明電極膜 1 2 を有する 2 5 × 7 5 × 1 . 1 mm サイズのガラス板 1 1 上に、厚さ 1 . 0 μ mの遮光膜 1 3 を介して、膜厚 3 . 5 μ mの逆テーパ型樹脂隔壁層 1 4 が設けられた構造を有している。この有機 E L 素子用基板を用い、市販の蒸着装置 [日本真空技術(株) 製] の基板ホルダーに固定すると共に、モリブデン製抵抗加熱ボートに N, N ' - \vee V + \vee + \vee V + \vee + \vee V + \vee

フェニルー [1,1'ービフェニル] ー4,4'ージアミン (以下、TPDと略記する) 200mgを入れ、また別の モリブデン製抵抗加熱ボートに4,4'ービス (2,2'ー ジフェニルビニル)ビフェニル(以下、DPVBiと略 記する) 200mgを入れたのち、真空槽を1×10⁻¹P aまで減圧した。次いで、TPD入りのボートを215 ~220℃まで加熱し、TPDを蒸発速度0.1~0.3 nm/秒で蒸着させて、膜厚60nmの正孔注入輸送層 を形成した。この際の基板温度は室温であった。これを 真空槽より取り出すことなく、DPVBi入りのボート を240℃まで加熱し、DPVBiを蒸着速度0.1~ 0.3 n m/秒で上記正孔注入輸送層上に蒸着させ、膜 厚40mmの発光層を形成した。この際の基板温度も室 温であった。これを真空槽より取り出し、上記発光層の 上にステンレススチール製のマスクを設置し、再び基板 ホルダーに固定したのち、モリブデン製ボートにトリス (8-キノリノール) アルミニウム (以下、Alqsと 略記する)200mgを入れ、また別のモリブデン製ボー トにマグネシウムリボン1gを入れ、さらにタングステ ン製バスケットに銀ワイヤー500mgを入れて、これら のボートを真空槽に装着した。

【0012】次に、真空槽を 1×10^4 Paまで減圧してから、Alq $_3$ 入りのボートを230 ℃まで加熱し、Alq $_3$ を蒸着速度 $0.01 \sim 0.03$ nm/秒で上記発光層上に蒸着させて、膜厚20 nmの電子注入層を形成した。さらに、銀を蒸着速度0.1 nm/秒で上記電子注入層上に蒸着させると同時に、マグネシウムを蒸着速度1.4 nm/秒で上記電子注入層上に蒸着させ、マグネシウムと銀との混合金属からなる膜厚150 nmの陰極を形成することにより、有機EL素子の発光体部を形成させた。

(2) 有機EL素子の作製

基板として、上記(1)で得られた表面に有機EL素子の発光体部を有するガラス板を用い、平行平板型プラズマCVD装置に装着し、下記の条件でプラズマCVDを施し、該発光体部上に封止膜を形成させた。

パーフルオロシクロペンテン $(C_s F_s)$ 40sccm アルゴン 400sccm

圧力 33Pa

40 RF出力(周波数:13.56MHz) 400W 基板温度 25±3℃

このプラズマCVDにより、厚さ 2μ mのパーフルオロシクロペンテンの分解重合物からなる封止膜が発光体部上に、密着性よく形成された。この膜はボイドの発生もなく、極めてち密で均質なものであった。このようにして、封止された有機EL素子を作製した。

(3) 有機EL素子の評価

上記(2)で得られた封止された有機EL素子を、40℃、90%RHの環境下で1000時間放置する試験を行った。放置試験前及び放置試験後の素子それぞれ

12

に、ITO膜を陽極、混合金属膜を陰極として直流電圧 を印加したところ、放置試験後も、放置試験前と同様 に、明所にて5Vから青色発光が確認でき、視認性が極 めて良好であり、また、発光面にはダークスポットは見 られず、均一発光であった。すなわち、上記放置試験に より、該有機EL素子はほとんど損傷を受けていないこ とが分かった。

実施例2

実施例1(2)において、パーフルオロシクロペンテン の代わりに、パーフルオロシクロペンテンとパーフルオ 10 して、該素子の発光機能を効果的に発揮させ得ると共 ロペンテンとの重量比80:20の混合物を用いた以外 は、実施例1と同様にして封止された有機EL素子を作 製し、評価を行った。結果は、実施例1と同様であり、 発光面にダークスポーットは見られなかった。

比較例1

実施例1(2)おいて、パーフルオロシクロペンテンの 代わりにシリコンナイトライド (SiN) を用い、CV D条件を下記のように変更し、1時間製膜を行い、実施 例1と同様にして封止された有機EL素子を作製した。 封止膜の厚さは $1 \mu m$ であり、そしてこの膜はボイドが 20 2 透明電極層 発生し、不均質なものであった。

SiN 40sccm

窒素 250sccm

圧力 33Pa

RF出力(周波数:13.56MHz) 1 0 W

基板温度 200℃

この有機EL素子について、実施例1と同様にして放置 試験を行った。放置試験前及び放置試験後の素子それぞ れに、ITO膜を陽極、混合金属膜を陰極として直流電 圧を印加したところ、放置試験前のものは、明所にて5 30 13 遮光膜 Vから青色発光が確認でき、視認性は良好であった。こ

れに対し、放置試験後のものは、5 Vから青色発光する ものの、輝度が低く、暗色でやっと発光が確認できる程 度であった。また、発光面には多数のダークスポットの 発生が見られた。すなわち、放置試験により、該有機E L素子がかなり損傷を受けていることが分かった。

[0013]

【発明の効果】本発明の有機EL素子用封止膜は、パー フルオロオレフィンの分解重合物からなるものであっ て、周囲の酸素や水分による有機EL素子の劣化を抑制 に、素子の小型化や薄型化にも対応することができる。 【図面の簡単な説明】

【図1】図1は、有機EL素子の1例の原理図である。

【図2】図2は、本発明の有機EL素子における発光体 部の1例の構成を示す部分断面図である。

【図3】図3は、実施例1及び比較例1で用いた有機E L素子用基板の部分断面図である。

【符号の説明】

- 1 透明基板
- 3 絶縁膜
- 4 逆テーパ型のレジストパターン層
- 5、5a 有機EL材料層
- 6、6a 金属電極層
- .7 正孔注入輸送層
- 8 有機発光層
- 9 電子注入層
- 11 ガラス板
- 12 ITO透明電極膜
- 14 逆テーパ型樹脂隔壁層

【図1】 【図2】 【図3】

