Seleção em tempo real de nó controlador em ambiente loT dinâmico e heterogêneo

Sócrates Soares Araújo Júnior - 85263

Vitor Barbosa Carlos de Souza (Orientador)

Névoa

Controle como Serviço (CaaS)

Imagem 2. Exemplo de controlador em Névoa.

Método de escolha do controlador

Seleção do controlador

Modelo matemático baseado nas características inerentes aos dispositivos e à rede.

Leva em consideração:

- capacidade de processamento;
- memória disponível para uso;
- bateria;
- mobilidade;
- potência do sinal.

Solução apresentada

$$Score = \sum w_i c_i,$$
$$\sum w_i = 1$$

Onde \mathbf{c}_i é a pontuação da característica em questão e \mathbf{w}_i seu peso para o cálculo do score.

Heterogeneidade de dispositivos

- Diferentes tipo de processadores;
- Variadas especificações de memória e sistemas operacionais;
- Capacidade de bateria;
- Mobilidade e potência do sinal.

Normalização

Capacidade de processamento e memória disponível divididos em níveis, e a pontuação é dada de acordo com seu nível;

Bateria e sinal é dado de acordo com sua porcentagem;

Mobilidade é calculada pelo nó com base em seu deslocamento.

Imagem 3. Exemplo de formato da curva de pontuação do processamento.

Simulador

INET Framework

An open-source OMNeT++ model suite for wired, wireless and mobile networks. INET evolves via feedback and contributions from the user community.

Diagrama de classes

Imagem 5. Diagrama de classes utilizadas pelo simulador para troca de mensagens.

Protocolo de comunicação e seleção inicial

Aplicação utiliza o protocolo UDP.

Conjunto de flags que informam o conteúdo do pacote:

- 1. Beacon do controlador;
- 2. Score;
- 3. Nova seleção;
- 4. Características do nó;
- 5. *Ack*.

Protocolo de comunicação e seleção

Aplicação utiliza o protocolo UDP.

Conjunto de *flags* que informam o conteúdo do pacote:

- 1. Beacon do controlador;
- 2. Score;
- 3. Nova seleção;
- 4. Características do nó;
- 5. *Ack*;
- 6. Novo líder.

Dados obtidos

- Testes preliminares mostraram melhorias no número de trocas;
- Dados ainda não estão limpos.

Próximos passos

- Teste com variados números de nós e configurações;
- Limpeza e extração dos dados de simulação;
- Escrever a monografia;
- Limpeza do código.

Referências

Imagem 1. Conceito de névoa: V. B. Souza, X. Masip-Bruin, E. Marín-Tordera, S. Sànchez-López, J. Garcia, G. J. Ren, A. Jukan, A. Juan Ferrer, *Towards a proper service placement in combined Fog-to-Cloud (F2C) architectures*, Future Generation Computer Systems, Volume 87, 2018, Pages 1-15, ISSN 0167-739X.

Imagem 2. Exemplo de controlador em névoa; Artigo referência: Souza, V. B. et al. Towards a Fog-to-Cloud Control Topology for QoS-Aware End-To-End Communication. In 2017 *IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)*, 2017, (pp. 1-5).

Imagem 3. Exemplo de formato da curva de pontuação do processamento: Própria.

Imagem 4. Logo do simulador e do framework de simulação de protocolos rede; Simulador: https://www.omnetpp.org/ com a biblioteca: https://inet.omnetpp.org/

Imagem 5. Diagrama de classes utilizadas pelo simulador para troca de mensagens: Própria.

Repositório público: https://github.com/socratessajr/loTcontrollerPublic