Introduction to pandas: Takeaways 🖻

by Dataquest Labs, Inc. - All rights reserved © 2020

Syntax

PANDAS DATAFRAME BASICS

• Reading a file into a dataframe:

```
f500 = pd.read_csv('f500.csv',index_col=0)
```

• Returning a dataframe's data types:

```
col_types = f500.dtypes
```

• Returning the dimensions of a dataframe:

```
dims = f500.shape
```

SELECTING VALUES FROM A DATAFRAME

• Selecting a single column:

```
f500["rank"]
```

• Selecting multiple columns:

```
f500[["country", "rank"]]
```

• Selecting the first n rows:

```
first_five = f500.head(5)
```

• Selecting rows from a dataframe by label:

```
drink_companies = f500.loc[["Anheuser-Busch InBev", "Coca-Cola", "Heineken Holding"]]
big_movers = f500.loc[["Aviva", "HP", "JD.com", "BHP Billiton"], ["rank", "previous_rank"]]
middle_companies = f500.loc["Tata Motors": "Nationwide", "rank": "country"]
```

Concepts

- NumPy provides fundamental structures and tools that make working with data easier, but there are several things that limit its usefulness as a single tool when working with data:
 - The lack of support for column names forces us to frame the questions we want to answer as multi-dimensional array operations.
 - Support for only one data type per ndarray makes it more difficult to work with data that contains both numeric and string data.
 - There are lots of low level methods however, there are many common analysis

- The panels instituted of the solution of Number and more. Pandas is not so much a replacement for Number as an extension of Number. The underlying code for pandas uses the Number library extensively. The main objects in pandas are Series and Dataframes. Series is equivalent to a 1D Ndarray while a dataframe is equivalent to a 2D Ndarray.
- Different label selection methods:

Select by Label	Explicit Syntax	Shorthand Convention
Single column from dataframe	df.loc[:,"col1"]	df["col1"]
List of columns from dataframe	df.loc[:,["col1","col7"]]	df[["col1","col7"]]
Slice of columns from dataframe	df.loc[:,"col1":"col4"]	
Single row from dataframe	df.loc["row4"]	
List of rows from dataframe	df.loc[["row1", "row8"]]	
Slice of rows from dataframe	df.loc["row3":"row5"]	df["row3":"row5"]
Single item from series	s.loc["item8"]	s["item8"]
List of items from series	s.loc[["item1","item7"]]	s[["item1","item7"]]
Slice of items from series	s.loc["item2":"item4"]	s["item2":"item4"]

Resources

• <u>Dataframe.loc[]</u>

• Indexing and Selecting Data

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2020