Code	LOGISTIC_REGRESSION.PY
Author	Nathaniel Heatwole, PhD (<u>heatwolen@gmail.com</u>) (<u>GitHub</u>) (<u>LinkedIn</u>)
Summary	Uses logistic regression to predict probability of passing an exam using number of hours studied (using both sklearn and statsmodels)
Methods/ Process	 Extends concepts of linear regression (OLS) to model a binary (0/1) rather than continuous quantity Basis is the logistic function, which takes the form of an s-curve, with dual asymptotes at zero and one Therefore, functions as binary classifier, outputting the probability that Y = 1 Argument (X) of the logistic function is a linear equation containing one or multiple variables (continuous or categorical) Accordingly, the logistic function maps an unbounded quantity (X) onto the bounded probability space (0-1) Coefficients for linear component (X) often estimated using maximum likelihood¹ Model fit typically assessed by examining rates of true/false positives Extensions of logistic regression exist for non-binary outcome variables (Y), or those that can take on more than two possible levels²
Training Data	Exam data – synthetic data on whether 20 students passed an exam and number of hours studied (from <i>Wikipedia</i>)
Results	Predictions from the two logistic regression modules (sklearn and statsmodels) are similar, although the statsmodels fit is slightly better (based on log-likelihood)

¹ Informally, this means choosing the model parameters so as to maximize the likelihood that the particular training data would be observed. More rigorously, it means selecting the s-curve parameters (location, steepness) so as to minimize the aggregate distance between the s-curve and the true outcomes (0 or 1).

² If there is a "natural" order (monotonicity) to the groups (e.g., small/medium/large), <u>ordinal logistic</u> <u>regression</u> is useful. Otherwise, if no such natural order exists (e.g., favorite color), <u>multinomial logistic regression</u> relaxes the monotonicity assumption, and allows the regression to select the order of the groups.