

Electronic Toll Collection Technologies for Road Pricing

World class Intelligent Transport Systems for Road User Charging and Traffic Surveillance

Q-FREE LEADING THE WAY

IN ROAD USER CHARGING AND TRAFFIC SURVEILLANCE

TCL workshop - Asilomar - 27. - 29. June 2011

Furnes, Per Jarle, Q-Free ASA **Ruja, Sascha, Q-Free ASA**Voss, Stefan, University of Hamburg

Congestion Charging on Roads

- Congestion Charging is not new
 Dupuit (Fr, 1849), Pigou (1920), Knight (1924), Walters (1961),
 Vickery (1969)
- Recent road pricing surveys
 Newbery (1990), Lindsey & Verhoef (2001), Lawphongpanich et al.
 (2006), Small & Verhoef (2007), Tsekeris & Voß (2009)
- Charging schemes are not the same
 - Policy objectives
 - Applications
 - Economic arguments
 - Technology choices

Conceptual Approaches to Managing Congestion

- Maximize Flows: (can lead to inherent instability and heighten the risk of unpredictable congestion)
- Optimize flows taking into account the balance between supply and demand for road space and what people are ready to pay in order to use the road [and for better performance]
- Technical vs. economical optimization need new hybrid approaches

Methods of Congestion Pricing

Types of Congestion Charging

- Facility-based
 - Roads, tunnels, bridges, HOT
 - Single or multiple points
- Area pricing
- (Multi)Cordon based
- Distance-based based
- [TDP based]

Static vs Dynamic Charging

Static

- (flat toll) Determined a priori, constant over given time horizon
- (scheduled) Determined a priori, vary over time, most common peak vs off peak

Dynamic

- (Responsive) vary in real time as a function of prevailing traffic conditions
- (predictive)

De Palma and Lindsey (2009)

Integrated framework for the evaluation of road pricing schemes

Theodore Tsekeris & Stefan Voß (2009)

I FREE

Technology alternatives - GNSS/DSRC and VIDEO

Technology Alternatives

Tech- nology	OBU	Investment Costs	Operational Costs		/sical intry	Additional Enforce.	Vehicle Speed	Weather	Updated Vehicle Reg.
GNSS	Yes	High	Medium- High	İ	No	Yes	No limit	Not sensitive	No
DSRC	Yes	High	Low-Medium	١	es/	Yes	High	Not sensitive	No
Video	No	Medium	Medium	١	es/	No	High	Sensitive	Yes
RFID	Yes	High	Low	١	es/	Yes	Low- Medium	Sensitive	No
Manual	No	Medium	High	١	/es	No	Stop	Not sensitive	No

Key questions related to Total Cost of Ownership Modelling

- Can TCO modeling explain customers' technology preferences ?
- Can TCO figures be accurately quantified to advise on a certain technology?
- Can TCO calculations predict certain strategies?
- And last but not least
- Does TCO really matter for our customers investment phase ?

Total Cost of Ownership Model

Total cost of Ownership validation based on empirical data

• Empirical data

- Amdal & Welde (2004)
 - Sensitivity analysis on Norway's toll collection projects
 - Findings: OPEX ranging from 7-25% relative to income, tag proliferation sensitivity, system magnitude sensitivity
- Oslo: OPEX :8% relative to income in 2006 (75% hit rate, 85% tags)
- Stockholm: OPEX 25% relative to income in 2008 (>95% hit rate, 0% tags)
- London: OPEX 67% relative to income in 2003 [Levinson and Odlyzko 2008]

Validation of Model

- Identified same effects as (Amdahl & Welde 2004) when using Norwegian manual labor costs
- Identified same OPEX levels as in Oslo, Stockholm and London when same ALPR hit rates and tag proliferation levels were used.
- Major model limitations (same for both ALPR, DSRC, GNSS)
 - Maintenance is linear to the system magnitude, 15%
 - Translating scheme rules and enforcement procedures into a unified model for back office operating costs is highly challenging

Technology Choice – Crossing Point GNSS/DSRC

Number of roads to cover gives an indication on how many physical charging points must be installed.

As for Road **User Charging** systems it is more common having a high number of cars for a small number of roads in a city.

Modeling results: DSRC versus ALPR

Scenario Investigations and Details

Scenario	City Zone	Motorway	Heavy Goods	
Parameters	Congestion	Open Road	Vehicle Charging	
	Charging	Tolling		
Charging principle	Point	Distance	Continuous	
Vehicles to charged (pr	400000	800000	850000	
day)				
Road Infrastructure Size	100	2500	12500	
(km)				
Chargeable Road	5	5	5	
Segment Length (km)				
Usage frequency pr day	0.7	2	8	
Enforcement operation	Stationary Offline	Stationary	Mixed (stationary	
		Offline	and mobile)	
Proof verification	Mandatory	Mandatory	Spot	
Payment Mode	Mixed	Mixed	Mixed	
Charging Fee pr km	0.07	0.03	0.07	

Technology Parameter Settings

Strategy	Video	DSRC	GNSS
Parameter			
OBU proliferation	0%	90% (unequipped	90%
		through Video)	
OBU acquisition and	0	15	350
distribution cost €			
OBU transaction unit	0	0	0.03
€			
Read Rate/Error rate	97%	99%	99%
Unequipped passage	100%	100%	20%
detection coverage (ratio			
of chargeable segments)			
Mobile Enforcement (ratio	0%	0%	10%
of chargeable segments)			
Back office stationary cost	500000	500000	500000
pr year €			
Back Office fee pr	0.2	0.2	0.2
transaction €			

Modelling Results

Technology grid based on the ratio between TCO and revenues. The latter is given in percentages. Cell values are highlighted in green and red to indicate a relatively low and high figure, respectively

	Video	DSRC	GNSS	
City 7ana Congostian Charging	0.50	7 20	17.20	
City Zone Congestion Charging	9,50	7,30	17,30	
Motorway Financing	9,80	9,40	12,40	
Truck Tolling	378,00	39,90	38,50	

Modelling Results

Technology	Video	DSRC	GNSS
Scenario			
City Zone Congestion Charging	Automated billing through accurate video and ALPR	Low cost OBU	High OBU CAPEX and OPEX.
Motorway Open Road tolling	amount of unregistered	Best fit as OBU costs are low for a high number of users.	
Heavy Good Vehicle Charging	High front end infrastructure costs and operation costs (and loss from foreign users)	when there are few	segments and few users but which are

Thank you!

