Lecture 1: Review of Pre Calculus

Trig Functions:
$$\sin \theta = \frac{\text{opp}}{\text{high}} = y$$
 $\cos \theta = \frac{\text{odd}}{\text{high}} = x$
 $\tan \theta = \frac{\text{opp}}{\text{ody}} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$

Reciprocal Identifics:

 $\frac{1}{\sin \theta} = CSC\theta$
 $\frac{1}{\cos \theta} = Sec\theta$

Pulhagorean Identify: $x^2 + y^2 = | \Rightarrow \sin^2 \theta + \cos^2 \theta = | \Rightarrow \cos^2 \theta + \cos^2 \theta + \cos^2 \theta = | \Rightarrow \cos^2 \theta + \cos^2 \theta + \cos^2 \theta = | \Rightarrow \cos^2 \theta + \cos^2 \theta + \cos^2 \theta = | \Rightarrow \cos^2 \theta + \cos^2 \theta + \cos^2 \theta + \cos^2 \theta = | \Rightarrow \cos^2 \theta + \cos^2$

y=ex; e≈2.7/828... Functions: · eeb = eath Properties: ·ex -0 fe allx · e/eb = e (0,1) · Strictly increasing · (ea)b = eab Ex/Simplify the following Ex Simplify The (5) = e^{x-5} (3) $(e^{x})^{2} + e^{x}$ (1) $e^{x}e^{-5} = e^{x+(-5)} = e^{x-5}$ (3) $(e^{x})^{2} + e^{x}$ (2) $\frac{e^{5x}}{e^{2x}} = e^{5x-2x} = e^{3x}$ $\frac{e^{2x}e^{3}}{e^{x}} = \frac{e^{2x+3}}{e^{x}} = e^{(2x+3)-x} = e^{x+3}$ $y = \ln(x) = \log_e(x) = \text{the exponent}$ $e^y = x$ • log(ab) = log(a) + log(b) $\left| \frac{e^x}{inverses} \right|$ That $\left| \frac{inverses}{is} \right|$. That **troperties** • log(a) = log(a) - log(b) $e^{\ln(x)} = x$ = blog(a) $ln(e^{x}) = x$ 3 e18+ ln(20x) = e18 e ln(20x) EXSimplify Oh(e)=1 = (50x)618

(2) $\ln(e^{2x}) = 2x \ln(e) = 2x$

EX Solve for x in $\ln(x^2) = 5$ $e^{\ln(x^2)} = e^5$ $\chi^2 = e^5$ $\chi = \pm 1e^5 = \pm e^{\frac{5}{2}}$