

Universidade Federal do Piauí Centro de Ciências da Natureza Programa de Pós-Graduação em Ciência da Computação

Uso de Algoritmos de Aprendizado de Máquina Supervisionado para Rotulação de Dados

Tarcísio Franco Jaime

Número de Ordem PPGCC: M001

Teresina-PI, Fevereiro de 2019

Tarcísio Franco Jaime

Uso de Algoritmos de Aprendizado de Máquina Supervisionado para Rotulação de Dados

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciência da Computação da UFPI (área de concentração: Sistemas de Computação), como parte dos requisitos necessários para a obtenção do Título de Mestre em Ciência da Computação.

Universidade Federal do Piauí – UFPI Centro de Ciências da Natureza Programa de Pós-Graduação em Ciência da Computação

Orientador: Vinicius Ponte Machado

Teresina-PI Fevereiro de 2019

Tarcísio Franco Jaime

Uso de Algoritmos de Aprendizado de Máquina Supervisionado para Rotulação de Dados/ Tarcísio Franco Jaime. – Teresina-PI, Fevereiro de 2019-70 p. : il.

Orientador: Vinicius Ponte Machado

Dissertação (Mestrado) — Universidade Federal do Piauí — UFPI Centro de Ciências da Natureza

Programa de Pós-Graduação em Ciência da Computação, Fevereiro de 2019.

1. Rotulação. 2. Algoritmos Supervisionados. 3. CART. 4. Naive Bayes. 5. KNN. I. Dr. Vinicius Ponte Machado. II. Universidade Federal do Piauí. III. Uso de Algoritmos de Aprendizado de Máquina Supervisionado para Rotulação de Dados.

 $CDU\ 02{:}141{:}005.7$

Tarcísio Franco Jaime

Uso de Algoritmos de Aprendizado de Máquina Supervisionado para Rotulação de Dados

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciência da Computação da UFPI (área de concentração: Sistemas de Computação), como parte dos requisitos necessários para a obtenção do Título de Mestre em Ciência da Computação.

Teresina-PI, 28 de fevereiro de 2019:

Vinicius Ponte Machado
Orientador

Raimundo Santos Moura - UFPI

Erico Meneses Leão - UFPI

Ivanovitch Medeiros Dantas da Silva - UFRN

Teresina-PI Fevereiro de 2019

Resumo

Com o avanço da tecnologia, cada vez mais equipamentos estão se conectando nas redes, gerando fluxos e processamento de dados. Com isso, mais algoritmos de aprendizado de máquina estão sendo estudados para extraírem informações relevantes desses grandes volumes. Com o grande aumento desse fluxo de dados, a interpretação destes pode ser prejudicada, sendo o grau de dificuldade proporcional a esse crescimento. É nesse contexto que essa pesquisa atua utilizando algoritmos de aprendizado de máquina supervisionados, os quais são algoritmos capazes de aprender através de determinados exemplos ou comportamentos. Neste trabalho realizou-se uma pesquisa científica com o objetivo de identificar em grupos de dados quais são os atributos mais significativos junto aos valores que mais se repetem a ponto de representá-lo, denominando-se essa técnica de rotulação. Dessa forma, utilizou-se técnica de algoritmos supervisionados, que através dos dados de entrada fazem uma correlação com uma saída desejável, e mediante isso, essa técnica é aplicada em todos os atributos para encontrar o mais significativo no cluster. Em seguida, a partir desse atributo mais significativo, utiliza-se um intervalo de dados que possui maior incidência de valores compondo o rótulo (atributo/faixa de valor). Nas bases testadas, somente uma dentre as quatro, obteviveram acurácias em alguns clusters abaixo de 70%, mas em todas outras os rótulos tiveram acurácias acima desse valor, indicando que é possível identificar os grupos através dos rótulos encontrados.

Palavras-chaves: grupos. rotulação. aprendizado supervisionado.

Abstract

With the advancement of technology, more and more equipment is connected in the networks, generating flows and data processing. As a result, more algorithms from other languages are being studied to see the ones for which they are paid. With a great degree of data flow, an interpretation can be impaired, being a degree of difficulty proportional to that growth. This context that this study at the time using the apprentized behaviors of the supervised machine, which is algorithm in aquatic algorithm for behavior samples or behaviors. In this work a scientific investigation was carried out with the objective of identifying the data groups that are more characteristic at the level of the same ones that repeat a point of representation, denominating itself a technique of labeling. In this way, we use the controlled supervision technique, with the entry of the input data of one with the desired output, and through this, the same technique is applied in all the attributes to find the most significant in the cluster. Then use the most meaningful data, use a range of data that has the largest capacity or label. In the tested databases, only one among the four, we obtain accuracy in some clusters below 70%, but in all other keywords the accurances on this value are being identified in the groups through the labels found.

Keywords: cluster. Machine Learning. Supervised Learning. Classification. Labeling.

Lista de ilustrações

Figura 1 –	Hipóteses ajustadas – Função h próxima da função f real	5
Figura 2 –	Exemplo de Fluxograma de árvore: R1 a R5 são as folhas relacionadas	
	de acordo com as respostas sim ou não dos nós	6
Figura 3 –	Exemplo do funcionamento do algoritmo KNN	10
Figura 4 –	Exemplos de técnicas diferentes utilizada por algoritmos para dividir	
	em grupos	13
Figura 5 –	Ponto de Corte (R-1); $2(R)$ significa o valor de R=2; $2 - 1 = 1 \dots$	14
Figura 6 –	Discretização EWD	15
Figura 7 –	Discretização EWD de acordo com a amostra da tabela 3	15
Figura 8 –	Discretização EFD	17
Figura 9 –	Discretização EFD de acordo com a amostra da tabela $3 \ \dots \ \dots$	18
Figura 10 –	Modelo de (LOPES et al., 2016)	21
Figura 11 –	Modelo de Resolução Proposto	26
Figura 12 –	Exemplo da técnica de correlação aplicada ao atributo, atr1, sendo classe	27
Figura 13 –	Exemplo da técnica de correlação aplicada aos atributos atr1, atr2 e atr3.	28
Figura 14 –	Montagem da Tabela de Atributos Importantes	28
Figura 15 –	Discretização de atributos utilizando EFD com $\mathcal{R}=3$ (Figura adaptada	
	de (LOPES et al., 2016)	30
Figura 16 –	Resultado dos Algoritmos	32
Figura 17 –	Gráfico da disposição de elementos da Base Seeds entre os eixos Lkernel	
	e lkgroove	41
Figura 18 –	Gráfico da disposição de elementos da Base Seeds entre os eixos Lkernel	
	e lkgroove	41
Figura 19 –	Gráfico da disposição de elementos da Base Seeds entre os eixos Lkernel	
	e lkgroove	42
Figura 20 –	Gráfico da disposição de elementos da Base Iris entre os eixos petal-	
	length e petalwidth	46
Figura 21 –	Gráfico da disposição de elementos da Base Wine entre os eixos ${f FnF}$ e	
	Alcool	58
Figura 22 –	Acurácia média entre os clusters de todas as bases testadas com os	
	algoritmos: Naive Bayes, CART e KNN	59

Lista de tabelas

Tabela 1 –	Base de exemplo onde exibe através do atributo Decisão, se existe,	
	ou não condição de jogo perante as outras características (Aspecto,	
	temperatura, Umidade e Vento)	9
Tabela 2 –	Tabela em ordem crescente das distâncias euclidianas encontradas do	
	objeto a que se deseja classificar para os outros objetos da amostra, de	
	acordo com as setas da figura 3	11
Tabela 3 –	Amostra de dados para exemplificar a discretização EWD e EFD $$	16
Tabela 4 -	Base de Dados Modelo	30
Tabela 5 -	Base de Dados Modelo Discretizada	31
Tabela 6 –	Valores das faixas com R=3 da Base de Dados Modelo	32
Tabela 7 –	Informações retiradas da documentação do MATLAB v.2016a - Super-	
	vised Learning Workflow and Algorithms	36
Tabela 8 –	Resultado da rotulação com o algoritmo Naive Bayes	38
Tabela 9 –	Resultado da aplicação do algoritmo CART	39
Tabela 10 –	Resultado da aplicação do algoritmo KNN	39
Tabela 11 –	Resultado da aplicação do algoritmo Naive Bayes	44
Tabela 12 –	Matriz de Atributos Importantes do algoritmo Naive Bayes na base Iris	44
Tabela 13 –	Resultado da aplicação do algoritmo CART	45
Tabela 14 –	Resultado da aplicação do algoritmo KNN	45
Tabela 15 –	Resultado da aplicação do algoritmo Naive Bayes	48
Tabela 16 –	Resultado da aplicação do algoritmo CART	50
Tabela 17 –	Resultado da aplicação do algoritmo KNN	51
Tabela 18 –	Cluster 5 - Louças de mesa - Base Glass	52
Tabela 19 –	Acurácia média da Base Glass por $clusters$	53
Tabela 20 –	Resultado da aplicação do algoritmo Naive Bayes	54
Tabela 21 –	Resultado da aplicação do algoritmo CART	55
Tabela 22 –	Resultado da aplicação do algoritmo KNN	55
Tabela 23 –	Amostra da Base de Dados Wine com somente três atributos perten-	
	centes ao $\mathit{cluster}$ 1 do algoritmo Naive Bayes	57
Tabela 24 –	Rotulação de Dados utilizando a base de dados Seeds	68
Tabela 25 –	Rotulação de Dados utilizando a base de dados Iris	69
Tabela 26 –	Rotulação de Dados utilizando a base de dados Glass	70

Lista de abreviaturas e siglas

ANN Artificial Neural Networks

EWD Equal Width Discretization

EFD Equal Frequence Discretization

CART Classification and Regression Trees

RNAs Redes Neurais Artificiais

GP Grau de Pertinência

GS Grau de Seleção

IGS Incremento do Grau de Seleção

SVM Support Vector Machine

TEDA Typicality and Eccentricity Data Analytics

Sumário

1	INTRODUÇÃO
2	REFERENCIAL TEÓRICO
2.1	Aprendizado de Máquina
2.1.1	Aprendizado Supervisionado
2.1.1.1	Algoritmo Classification And Regression Trees - CART
2.1.1.2	Algoritmo Naive Bayes
2.1.1.3	Algoritmo k-Nearest Neighbor - KNN
2.1.2	Aprendizado Não-Supervisionado
2.2	Discretização
2.2.1	Equal Weight Discretization - EWD
2.2.2	Discretização por Frequência Iguais - EFD
2.3	Trabalhos Correlatos
3	METODOLOGIA 24
3.1	Rotulação de Cluster
3.2	O Modelo de Resolução
3.3	Técnica de Correlação entre Atributos através de Algoritmos Super-
	visionados
3.4	Exemplo
3.4.1	Processo (I) - Discretização
3.4.2	Processo (II) - Algoritmos Supervisionados
3.4.3	Processo (III) - Rotulação
4	RESULTADOS E DISCUSSÕES
4.1	Implementação
4.2	Base de Dados 1 - Seeds - Identificação de Tipos de Semente 37
4.2.1	Naive Bayes
4.2.2	Classification and Regression Trees - CART
4.2.3	K-Nearest Neighbor - KNN
4.2.4	Comparativo entre Algoritmos na Base de Dados Seeds
4.3	Base de Dados 2 - Iris - Identificação de Tipos de Plantas 43
4.3.1	Naive Bayes
4.3.2	Classification and Regression Trees - CART
4.3.3	K-Nearest Neighbor - KNN
4.3.4	Comparativo entre Algoritmos na Base de Dados Iris

4.4	Base de Dados 3 - Glass - Identificação de Tipos de Vidros	46
4.4.1	Naive Bayes	47
4.4.2	Classification and Regression Trees - CART	49
4.4.3	K-Nearest Neighbor - KNN	50
4.4.4	Comparativo entre Algoritmos na Base de Dados Glass	52
4.5	Base de Dados 4 - Wine - Dados de Reconhecimento de vinhos	53
4.5.1	Naive Bayes	54
4.5.2	Classification and Regression Trees - CART	55
4.5.3	K-Nearest Neighbor - KNN	55
4.5.4	Comparativo entre Algoritmos na Base de Dados Wine	56
4.6	Discussões	59
5	CONCLUSÕES, TRABALHOS FUTUROS	61
5.1	Conclusão	61
5.2	Trabalhos Futuros	62
	REFERÊNCIAS	63
	APÊNDICES	67
	APÊNDICE A – OUTROS RESULTADOS DE ROTULAÇÃO	68

1 Introdução

Agrupamento de dados, ou *clustering*, é o termo usado para identificar dois ou mais objetos pertencentes ao mesmo grupo que compartilham um conceito em comum (KUMAR et al., 2013). *Cluster* é um termo bastante pesquisado no aprendizado não-supervisionado (subárea do aprendizado de máquina) e aplicado em vários contextos, como segmentação de imagens, recuperação de informação e reconhecimento de objetos. Os algoritmos de agrupamento, conforme Kumar et al. (2013), são aplicados em diferentes campos: Biologia (classificação de plantas e animais); Marketing (encontrar grupos de clientes com comportamentos semelhantes); Planejamento de cidades (identificação de casas de acordo com seu tipo, valor e localização geográfica), entre outros.

Com a popularização da internet e mídias sociais, cada vez mais dados são processados, transportados e produzidos. É nesse cenário, com grandes volumes de dados, que não só a formação de grupos ganha importância, mas também torna-se importante sua compreensão, pois a interpretação dos grupos fornecerá informações úteis para análise desses *clusters*.

O grau de escalabilidade dos dados aumenta gradativamente no decorrer dos anos e, embora os estudos sobre o problema de agrupamento de dados estejam avançados, fica cada vez mais complexo entender como são formados esses *clusters* em razão do número crescente de grupos e suas características dificultando suas interpretações.

Diante desse contexto é que se extrai a temática desta proposta de dissertaão. O estudo em questão dedica-se à aplicabilidade de algoritmos supervisionados com paradigmas diferentes em bases de dados distintas, a fim de definir a tupla atributo/valor de maior importância nos *clusters*, determinando um significado para estes *clusters* (rotulação).

A rotulação dita neste trabalho segue a própria definição da palavra, que serve para informar sobre algo. Então, a partir de um grupo de dados, seria possível destacar neste grupo uma informação que o represente e uma forma seria encontrar por meio de técnicas uma tupla: atributo(s) e faixa(s), em que o atributo selecionado seria o que teria maior relevância no grupo, no sentido de representá-lo, e a faixa de valor escolhida seria a que mais tivesse ocorrência nos valores do atributo. Poderá também haver no grupo mais de um atributo com sua respectiva faixa representando o rótulo.

A formação do problema desta pesquisa nasce a partir do trabalho realizado por Lopes et al. (2016), que se dedicou a estudar a possibilidade de realização de rotulação automática de grupos, utilizando, para isso, dois algoritmos: i) Um para realizar a formação de grupos por meio de algoritmo não-supervisionado (K-means); e ii) utiliza o algoritmo supervisionado (Redes Neurais Artificiais - RNAs) para fazer a rotulação de grupos. Assim,

partindo do estudo já realizado, este trabalho se dedica a realizar rotulação de grupos de dados a partir de outros algoritmos supervisionados não testados e realizando um comparativo entre eles comprovando a eficácia do método.

Nesta pesquisa foi aferida a acurácia de cada resultado por meio do percentual de acertos dos atributos que são representados pelos rótulos gerados, sendo este cálculo possível em virtude da comparação dos registros representados pelos rótulos com os registros que participam do grupo. Isto posto, no desenvolvimento deste trabalho não há preocupação na criação de grupos e sim na rotulação dos mesmos, isto é, compreender os grupos de dados já formados.

Quando se analisam grupos que já estão formados, sabe-se que há uma correlação das características pelos quais seus dados se mantêm agrupados. Acontece que, com grandes números de grupos e características sendo criadas, isso acaba por não deixar visível qual característica se apresenta mais significativa dentro desses grupos.

Tecnicamente, a informação do rótulo aplicada no *cluster* pode ajudar na tomada de decisão em algum contexto. A exemplo disso, supõe-se uma situação empregada na área urbana, onde pessoas circulam, e imagina-se que os dados de controle de seus celulares estão sendo capturados pelas células das torres e gravados em uma base de dados pelas operadoras. Uma vez em posse desses dados, são criados clusters, podendo ser aplicada rotulação nestes grupos e por meio disso pode-se personalizar alguns serviços para os grupos já formados.

Seguindo o exemplo dos dados capturados do celular, caso o rótulo (r_{c_i}) de um cluster (c_i) fosse o atributo localização e os valores desse atributo escolhido para compor o rótulo fossem as coordenadas geográficas, definir-se-ia a região de localização. Logo, percebe-se que os participantes desse grupo possuem a característica de frequentar alguma localização em comum. A interpretação deste rótulo poderá implicar uma tomada de decisão personalizada para o grupo, objetivando otimizar um problema.

O trabalho será disposto em cinco capítulos, já inclusas a Introdução e Conclusão nos capítulos 1 e 5 respectivamente. O Referencial Teórico, abordado no capítulo 2, esclarece as tecnologias utilizadas nesta pesquisa, que é dividida em três seções. No capítulo 3 é abordada a definição do problema da pesquisa. A partir dessa definição, um modelo de resolução é definido e apresentado um fluxograma exibindo os processos a serem seguidos. E no capítulo 4,os resultados são separados por base de dados. Em cada seção referente a uma base de dados testada são criadas subseções referentes aos algoritmos utilizados e depois uma subseção de avaliação dos resultados dos algoritmos.

2 Referencial Teórico

Para se compreender a temática proposta, este capítulo abordará o conteúdo base deste trabalho dividido em 3 seções: Aprendizado de Máquina, Discretização e Trabalhos Correlatos.

Essa primeira seção discorrerá sobre aprendizado de máquina e os aprendizados indutivos concedendo maior ênfase ao aprendizado supervisionado, em virtude da utilização de algoritmos de aprendizado supervisionado na rotulação de grupos, já na seção 2.2, se dissertará sobre as técnicas de discretizações adotadas nesta pesquisa, a qual oferece grande contribuição para os resultados gerados, e ganhando, assim, uma seção própria para explanação do funcionamento dessas técnicas. Na última seção serão abordados trabalhos com mesmas características desta pesquisa, adicionando conhecimento ao tema.

2.1 Aprendizado de Máquina

A aprendizagem de máquina, diferente das metodologias tradicionais de implementação, utiliza sua experiência anterior para melhorar suas respostas a partir de problemas em determinadas áreas.

"Um programa de computador aprende com a experiência em relação a alguma classe de tarefas e medida de desempenho, se seu desempenho em tarefas em, conforme medido por, melhora com a experiência" (MITCHELL, 1997, p. 2).

O aprendizado de máquina corresponde a algoritmos capazes de aprender automaticamente através de determinados exemplos ou comportamentos. Esse aprendizado automático preenche algumas lacunas no desenvolvimento de programas, posto que não é possível simplesmente exigir do projetista implementar melhorias em um sistema, de forma que ele esteja robusto bastante para lidar com todas as situações (RUSSEL; NORVIG, 2013), pois seria impossível um programador antecipar todas as situações possíveis de implementação.

Utilizando a ideia acima, por exemplo uma vez inserida uma foto no banco de dados e determiná- la como masculina, nesse momento, estar-se-á fazendo uma classificação desse novo registro (nova foto). Uma vez com a base de dados classificada, pode-se utilizar algoritmos para predizer um novo registro e defini-lo como masculino ou feminino. Predizer uma determinada condição dependerá não só da base de dados como também do algoritmo utilizado para fazer essa classificação. Alguns exemplos de algoritmos são: RNA, K-Nearest Neighbor - KNN, Suport Vector Machine – SVM, etc. A escolha apropriada do algoritmo se dará por meio de métricas que avaliarão seu desempenho e a melhor servirá de parâmetro

para a escolha do algoritmo apropriado para aquele problema de classificação de dados.

Segundo (MOHRI et al., 2012) o aprendizado de máquina possui abordagens diferentes. São elas: aprendizado supervisionado, aprendizado não-supervisionado, aprendizado semisupervisionado, aprendizado por reforço. Todavia, nesta pesquisa serão comentadas somente as abordagens de referências específicas utilizadas neste trabalho.

2.1.1 Aprendizado Supervisionado

O aprendizado supervisionado é um método que, por meio de uma base de dados classificada, realiza uma predição de novos registros com base em vários desses exemplos já classificados, ou seja, é quando existem casos que possuem uma classificação disponível para determinados conjuntos de dados (conjunto de treinamento), mas precisa ser previsto para outras instâncias. Os responsáveis por essas predições de novos registros são algoritmos de aprendizado supervisionados projetados para determinados fins que funcionam como agentes que observam exemplos de entrada e saída, e aprendem uma função de mapeamento da entrada para uma saída (RUSSEL; NORVIG, 2013).

O termo "Supervisionado" indica uma correlação entre os dados de entrada com a saída desejada (classe). Seguindo essa afirmação, por exemplo, considere uma base de dados de imagens de rostos, em que cada imagem possui uma saída representada por uma classe (masculino ou feminino). A tarefa seria criar um preditor capaz de acertar a cada novo registro se a imagem é masculina ou feminina. Seria difícil implementar de maneira tradicional, utilizando estruturas condicionais e laços, uma vez que são inúmeras as diferenças das faces masculinas e femininas. Embora haja uma dificuldade de distinção entre as faces, uma alternativa seria dar exemplos de rostos classificados, masculino ou feminino, e através desses exemplos aplicar o algoritmo que automaticamente faça a máquina aprender uma regra para predizer a qual sexo pertence cada rosto (BARBER, 2011).

Em Russel e Norvig (2013), é feita apresentação formal do funcionamento da aprendizagem supervisionada, pois dado um conjunto de treinamento, $(x_1, y_2), (x_2, y_2), ...(x_n, y_n)$, onde cada y_j foi gerado por y = f(x) desconhecida, e encontrar uma função h (hipótese) dentre várias possíveis, que se aproxime ao máximo da função f (real). Quanto mais próxima de f, melhor o desempenho da função h, mas para medir esse desempenho é testado um conjunto diferente (dados de teste) do conjunto de treinamento e aferida a precisão da função hipótese.

O exemplo da figura 1a mostra a função h de grau 6,na qual acontece um sobreajuste (overfitting) no conjunto de dados de treinamento. Esse modelo exibe uma função mais complexa para atendera todo o conjunto de dados do gráfico, tornando-se um modelo específico para essa amostra de dados.

Figura 1 – Hipóteses ajustadas – Função h próxima da função f real

Já na figura 1b, o ajuste da função h se torna mais simples e mesmo o gráfico não passando por todos os pontos, acabou por generalizar melhor o conjunto de treinamento, tornando, um melhor resultado da predição de novos valores.

Em análise da figura 1 são apresentadas duas hipóteses que tentam se aproximar ao máximo da função verdadeira (f), que é desconhecida. Mesmo parecendo que na figura 1a obteve-se melhor resultado, pois todos os pontos são atingidos pelo gráfico da função, este modelo acabou se ajustando muito bem na amostra de dados, deixando a função h muito específica, não retratando os dados em um mundo real. Então, apesar de parecer que a figura 1a é a melhor opção por ela ser mais específica, não é, pois quanto mais generalizado for o modelo, melhor será para predizer os valores de y para novos conjuntos de dados.

O treinamento dos dados realizado nesta pesquisa utilizou validação cruzada com o número k igual a dez para os três algoritmos. Este k indica que o algoritmo supervisionado irá treinar com os dados dividido em dez subgrupos, onde um subgrupo é utilizado para validar os teste dos outros subgrupos restantes. Esse procedimento é feito k vezes alternando mutuamente entre os subgrupos e retirado uma média que é o valor resposta do algoritmo aplicado.

2.1.1.1 Algoritmo Classification And Regression Trees - CART

O algoritmo Classification And Regression Trees - CART constrói modelos de previsão a partir de dados de treinamento e seus resultados podem ser representados em uma árvore de decisão. Esta árvore é uma ferramenta que dá suporte a uma escolha utilizando como modelo um fluxograma semelhante a uma árvore, em que, a cada nó interno, é feito um teste, tendo como resposta "sim" ou "não" (a exemplo da figura 2), permitindo uma abordagem do problema de forma estruturada e sistemática até chegar a uma conclusão lógica. "Uma árvore de decisão alcança sua decisão executando uma sequência de testes" (RUSSEL; NORVIG, 2013, p. 811)

O CART pode se tornar uma árvore de classificação ou também uma árvore de regressão. O que definirá o tipo de árvore é o valor do atributo "classe", se categórico ou contínuo. Por exemplo, em um conjunto de dados de um paciente que tenta prever se ele possuirá câncer, ou não, a classe seria "Terá Câncer" ou "Não terá Câncer", podendo esse

Figura 2 – Exemplo de Fluxograma de árvore: R1 a R5 são as folhas relacionadas de acordo com as respostas sim ou não dos nós

atributo assumir duas categorias (classes) e assumindo uma árvore de classificação. Na regressão, o atributo "classe" pode assumir um valor contínuo, tornando-se uma árvore de regressão, que poderá prever valores numéricos como: período de tempo de internação do paciente, preço de uma cirurgia, temperatura do paciente ou quantidade de água ingerida. No caso de não ser probabilístico, o grau de confiança em seu modelo de predição será embasado em respostas semelhantes em outras circunstâncias antes analisadas e utiliza uma técnica como partição recursiva binária, na qual cada nó pai é sempre decomposto em dois nós filhos, e cada nó filho irá ser tratado posteriormente no processo como nó pai.

De acordo com Yohannes e Webb (1999), Raimundo et al. (2008), existem três componentes importantes na construção de uma árvore de decisão:

- Um conjunto de perguntas que servirá de base para fazer uma divisão de um nó;
- Regras de divisão para julgar o quanto é boa esta divisão;
- Regras para atribuir uma classe a cada nó;

Na divisão inicial será atribuída ao nó pai uma questão e, dependendo da resposta (sim ou não - a exemplo da figura 2), os registros irão para nó filho esquerdo ou direito, e depois será realizado o teste do ponto de divisão. O CART percorrerá todos os atributos e construirá uma árvore de decisão baseada no melhor ponto de divisão, uma vez que são testados todos os atributos como potencial divisor. Após a escolha do melhor ponto de divisão do nó, faz-se a atribuição de uma classe para o nó e, após essa etapa, o novo nó filho passa a ser nó pai, refazendo os mesmos passos anteriores para sua divisão.

A equação 2.1 é utlizado pelo CART para escolher a divisão dos nós em função da regra Gini de Impureza (BREIMAN et al., 1984). É definido o grau de pureza variando de 0 (zero) a 1 (um), portanto, quando o nó tende a um resultado de índice Gini aproximando-se de 1 (um), maior a impureza do nó, e o inverso, maior a pureza. A equação 2.1 mede a impureza do conjunto S e caso todos os dados forem da mesma classe (dados puros), o

resultado da equação seria 1 - 1 = 0.

$$Gini(S) = 1 - \sum [p(j/t)]^2$$
 (2.1)

Onde: p(j/t) é probabilidade a priori da classe j se formar no nó t, e S é um conjunto de dados que contém exemplos de n classes.

Este cálculo tem como finalidade a escolha da divisão do nó (conjunto S), em que é medida a impureza da divisão do nó pai com os nós filhos, e para isso, contém a média ponderada de cada índice do subgrupo formado por essa divisão de S. Então o menor valor encontrado em $Gini_{split}(S)$ será o escolhido para dividir o nó, de acordo com a equação 2.2.

$$Gini_{split}(S) = \frac{S_l}{S}gini(S_l) + \frac{S_r}{S}gini(S_r)$$
(2.2)

Onde:

- S conjunto de dados que contém exemplos de n classes;
- S_l subconjunto esquerdo de S;
- S_r subconjunto direito de S;

Para a escolha da variável e ponto de divisão necessário do nó, terão que ser aplicados testes em todos os atributos através das equações 2.1 e 2.2 e após o envolvimento de todos os atributos, será escolhido o nó com menor valor $Gini_{split}(S)$.

No procedimento da divisão do nó em dois subconjuntos, o atributo poderá conter valores contínuos ou categóricos. Nas duas opções será aplicada a equação 2.2 em todos os valores e escolhido o melhor ponto de divisão. No caso de serem valores contínuos, simplesmente após o valor ser o escolhido para a divisão, ela será menor, igual (ramo da esquerda) ou maior (ramo da direita) que o valor escolhido. Em outra situação, sendo as variáveis categóricas - por exemplo X, Y e Z, terá que ser testada, dentre todas as possibilidades, qual a melhor divisão entre elas e como é uma divisão binária, pois o nó não poderá ser dividido em 3 (três) ramos X, Y e Z, e sim em grupos de dois, como:{X} e {Y,Z}, {Y} e {X,Z} ou {Z} e {X,Y}.

2.1.1.2 Algoritmo Naive Bayes

O algoritmo bayesiano Naive Bayes é um modelo probabilístico de aprendizado que pode ser calculado diretamente entre seus dados de treinamento. Depois de calculado, o modelo pode ser utilizado para fazer previsões de novos dados através do teorema de Bayes. "O teorema de Bayes fornece uma maneira de calcular a probabilidade de uma hipótese com base em sua probabilidade anterior, as probabilidades de observar vários dados, dadas as hipóteses, e os dados observados em si" (MITCHELL, 1997, p. 156).

Esse teorema utiliza uma teoria estatística e probabilística para previsão de acontecimento de um evento, sendo este evento relacionado à condição da probabilidade de ocorrências anteriores a ele, portanto, é nesse segmento que o algoritmo Naive Bayes funciona, criando classificadores probabilísticos baseados no teorema de Bayes.

Pode-se citar, como exemplo desse evento, a descoberta do câncer em uma pessoa, pois se tal doença estiver relacionada ao sexo, então, utilizando o teorema de Bayes, o sexo de uma pessoa pode ser utilizado para dar maior precisão à probabilidade de câncer, em vez de fazer uma avaliação de probabilidade sem a utilização dele.

O Naive Bayes utiliza uma técnica de independência dos atributos, em que cada variável de entrada não depende de recursos de outras. Essa independência condicionada, entre os atributos que nem sempre ocorrem nos problemas reais, acabou ficando conhecida por Bayes ingênuo ou Naive Bayes.

Em Russel e Norvig (2013) a equação 2.3 mostra a relação P(causa/efeito) onde o efeito é evidência de alguma causa desconhecida, e quer se determinar a causa. Logo em seguida as equações 2.4 e 2.5 são responsáveis pelo cálculo de probabilidade do algoritmo.

$$P(causa|efeito) = \frac{P(efeito|causa)P(causa)}{P(efeito)}$$
(2.3)

Naive Bayes como classificador estatístico possui um modelo de simples construção, e ficou conhecido por ter bons resultados em relação a algoritmos mais sofisticados, mesmo trabalhando com grandes quantidades de dados, e possui uma característica de agrupar objetos de uma certa classe em razão da probabilidade do objeto pertencer a esta classe.

$$P(c/x) = \frac{P(x/c)P(c)}{P(x)}$$
(2.4)

$$P(x/c) = P(x_1|c) * P(x_2|c) * \dots * P(x_n|c) * P(c)$$
(2.5)

- P(c/x) probabilidade posterior da classe c, alvo dada preditor x, atributos.
- P(c) é a probabilidade original da classe.
- P(x|c) é a probabilidade que representa a probabilidade de preditor dada a classe.
- P(x) é a probabilidade original do preditor.

A utilização do algoritmo Naive Bayes já é bem difundida e está presente em vários trabalhos, como classificação de textos, filtro de SPAM, analisador de sentimentos, entre outros (MADUREIRA, 2017; LUCCA et al., 2013; WU et al., 2008; MCCALLUM; NIGAM, 1997), entretanto, mesmo atingido boa popularidade, o algoritmo se utiliza da suposição de ter preditores independentes e isso não acontece muito na vida real, pois acaba sendo difícil ter uma amostra de dados que sejam inteiramente independentes.

	Aspecto	Temperatura	Umidade	Vento	Decisão
1	Sol	Quente	Alta	Fraco	Não
2	Sol	Quente	Alta	Forte	Não
3	Nublado	Quente	Alta	Fraco	Sim
4	Chuva	Agradável	Alta	Fraco	Sim
5	Chuva	Fria	Normal	Fraco	Sim
6	Chuva	Fria	Normal	Forte	Não
7	Nublado	Fria	Normal	Forte	Sim
8	Sol	Agradável	Alta	Fraco	Não
9	Sol	Fria	Normal	Fraco	Sim
10	Chuva	Agradável	Normal	Fraco	Sim
11	Sol	Agradável	Normal	Forte	Sim
12	Nublado	Agradável	Alta	Forte	Sim
13	Nublado	Quente	Alta	Fraco	Sim
14	Chuva	Agradável	Alta	Forte	Não

Tabela 1 – Base de exemplo onde exibe através do atributo Decisão, se existe, ou não condição de jogo perante as outras características (Aspecto, temperatura, Umidade e Vento)

A tabela 1 é uma amostra de dados, na qual é possível aplicar o funcionamento do Naive Bayes através da equação 2.4, sendo esta tabela composta por 4 (quatro) características (Aspecto, Temperatura, Umidade e Vento) e pela coluna Decisão, representando a classe.

Então, cada registro assume uma condição de jogo Sim" ou "Não" - por exemplo, na linha 2 (dois) faz "Sol", é "Quente", possui umidade "Alta" e vento "Forte" e existe no atributo classe a não possibilidade de jogo (Decisão = Não). Pode-se com as informações dessa amostra prever algumas possibilidades de jogo, dependendo de como estão dispostos os valores dessas características. Para exemplificar melhor, as seguintes condições são para saber se há possibilidade de jogo, "Sim": P(Jogar=sim|Aspecto=sol, Temperatura=fria, Umidade=alta e Vento=forte). Para obter a resposta, será necessária a aplicação na equação 2.4.

$$= \frac{P(Sol|Sim) * P(Fria|Sim) * P(Alta|Sim) * P(Forte|Sim) * P(Sim)}{P(Sol) * P(Fria) * P(Alta) * P(Forte)}$$

$$= \frac{\frac{2}{9} * \frac{3}{9} * \frac{3}{9} * \frac{3}{9} * \frac{9}{14}}{\frac{5}{14} * \frac{4}{14} * \frac{7}{14} * \frac{6}{14}}$$

$$= \frac{0,0053}{0,02186}$$
(2.8)

$$= 0,242$$
 (2.9)

O resultado (0,242) mostra uma probabilidade aproximada de 20% de chance de acontecer o jogo de acordo com as características apresentadas, implicando aproximadamente 80% de não acontecer, portanto, seguindo esse resultado, pode-se afirmar que a previsão é de não ocorrer o jogo.

2.1.1.3 Algoritmo k-Nearest Neighbor - KNN

O K-Nearest Neighbor - KNN é um algoritmo de classificação simples, em que os objetos são classificados por meio de um conjunto de treinamento que estão próximos no espaço de características. Uma vez que seja necessário definir qual a classificação de um objeto, serão averiguados quais são os exemplos mais próximos determinados por uma distância e assim se definirá, por meio desses elementos próximos, qual sua classificação.

Na execução do KNN algumas considerações são importantes, como a definição da métrica entre os elementos e o número que a variável K assumirá; ademais, seguem alguns passos: i) o algoritmo funcionará calculando a distância entre todos os exemplos próximos do elemento a classificar; ii) serão identificados os K vizinhos mais próximos; iii) e através do número de K será determinada a mesma classe do vizinho para classificação do elemento.

Na figura 3 pode-se observar o comportamento do algoritmo: um objeto está próximo de outros objetos vizinhos e o número de vizinhos é determinado pelo K.

Figura 3 – Exemplo do funcionamento do algoritmo KNN

Neste exemplo da figura 3 um novo objeto precisa ser classificado e na amostra de dados distribuída no plano cartesiano o algoritmo KNN prevê sua classificação de acordo com objetos que estão próximos a ele. Na figura 3 existem objetos "círculos", "quadrados", e um novo objeto "triângulo" a ser classificado.

O algoritmo KNN calcula a distância do objeto "triângulo" para com os outros objetos utilizando a distância euclidiana (LACHI; ROCHA, 2005), conforme equação 2.10

que está na forma bidimensional de acordo com o exemplo apresentado na figura 3.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
(2.10)

Onde:

- d resultado da distância euclidiana entre dois objeto no plano cartesiano;
- $x_2 x_1$ distância no eixo x entre objetos;
- $y_2 y_1$ distância no eixo y entre objetos;

Ao calcular todas as distâncias, o algoritmo irá ordenar estes resultados de forma crescente de acordo com a tabela 2 e depois, dependendo do valor de K, será determinada a classe do objeto. A tabela de exemplo é formada por 3 (três) colunas, em que K significa o número de vizinhos, seguida da distância e também qual o tipo de objeto (quadrado ou círculo).

K	Distância	Classe
1	0,11	
2	0,29	
3	1,10	
4	1,40	
5	1,55	

Tabela 2 – Tabela em ordem crescente das distâncias euclidianas encontradas do objeto a que se deseja classificar para os outros objetos da amostra, de acordo com as setas da figura 3

Para definir qual a classe que o objeto "triangulo" assumirá, será necessário saber qual valor de K, pois o maior número de ocorrências de uma determinada classe será a classe eleita para o novo objeto - por exemplo, utilizando a tabela 2, com K=1, a classe deste registro é "círculo", dado que o número de ocorrências é CÍRCULO=1 e QUADRADO=0, então, caso K=1, o número de ocorrência do "círculo" é maior que "quadrado".

No caso de K=2, aparece uma ocorrência de "círculo" e uma ocorrência de "quadrado", totalizando CÍRCULO=1 e QUADRADO=1; nesse caso, não fica definida qual a classe, pois cada uma possui o mesmo número de ocorrências.

Já com K=3, a contagem de ocorrências em cada classe totaliza CÍRCULO=1 e QUADRADO=2 e, desta vez, a classe que possui maior número de ocorrências é a escolhida para o novo objeto "quadrado" e assim acontece sucessivamente para os outros valores K assumirem. Cada vez que o valor de K aumenta é feita a soma de ocorrências de cada classe, sendo a classe eleita a que apresentar mais ocorrências.

Ao escolher um valor par de K, poderá haver um empate no número de ocorrências das classes. Essa situação fica clara no exemplo acima, tabela 2, quando K=2 (CÍRCULO=1 e QUADRADO=1) e K=4 (CÍRCULO=2 e QUADRADO=2); para não acontecer um valor de empate, é necessário escolher sempre um valor K ímpar e este parâmetro é definido ao executar o algoritmo.

Diferente do estudo de Lopes et al. (2016) que em determinada fase de seu trabalho testou um algoritmo de paradigma conexionista para fazer rotulação, esta pesquisa aplicou algoritmos com paradigmas diferentes: bayesiano, simbolista e analogista Domingos (2017), comprovando que também é possível realizar rotulação de dados.

O primeiro, Naive Bayes, um algoritmo probabilístico bayesiano, possue uma característica de destaque, que é, a não dependência entre atributos em seus cálculos. O CART, outro algoritmo, é um exemplo simbolista implementado em árvore de decisão, e KNN, paradigma baseado em instâncias, que faz classificação levando em consideração a distâncias entre os espaço de características, mas possui melhores resultados quando aplicado em bases de pouca dimensionalidade - *i.e.*, quanto mais características menor a performance do modelo.

2.1.2 Aprendizado Não-Supervisionado

Outro modelo de aprendizado de máquina é o aprendizado não-supervisionado, em que não existe uma tentativa de se encontrar uma função que se aproxime da real, logo porque os registros não são classificados, visto que o conjunto de treinamento não possui informação da saída sobre determinada entrada. Desta forma, os algoritmos procuram algum grau de similaridade entre os registros e tentam agrupá-los de forma a ter algum sentido para estarem juntos.

Quando o algoritmo encontra dados com mesma similaridade a ele, estes são agrupados, formando clusters. Os números de clusters encontrados dependerá do funcionamento, técnica, configuração dos algoritmos e também do grau de dissimilaridade entre elementos de grupos diferentes. Segundo Barber (2011) não existe uma variável "classe" no aprendizado não-supervisionado, então, o maior interesse seria em uma perspectiva probabilística de distribuição p(x) de um determinado conjunto de dados $D = \{x_n, n = 1, ..., N\}$. Mesmo não possuindo rótulos (classes), novos dados inseridos são submetidos aos algoritmos não-supervisionados e esses algoritmos são capazes de encontrar padrões nos atributos em um conjunto de treinamento, conseguindo inferir sobre os dados de testes, classificando-os em algum grupo.

Cada algoritmo utilizará alguma característica para determinar grupos diferentes na base de dados; no exemplo da figura 4, fica visível por conta dos círculos coloridos a existência de agrupamentos diferentes (h1, h2, h3, h4).

2.2. Discretização

Figura 4 – Exemplos de técnicas diferentes utilizada por algoritmos para dividir em grupos

O que é apresentado na figura 4 são situações de agrupamentos em um conjunto distribuído bidimensional. Dependendo do algoritmo, ou mesmo da configuração, é possível ter 3 (três) grupos formados por h1, h2 e h3, ou 2 (dois) grupos formados por h3 e h4, ou mesmo, um grupo só pela união de h3 e h4.

2.2 Discretização

O método de discretização faz a conversão de valores contínuos em valores discretos. A partir de um atributo com valores contínuos, a discretização cria um ponto inicial e final definindo um intervalo e designando uma faixa para cada intervalo. Assim, ao invés de valores contínuos, teremos valores discretos representando as faixas de valores.

Segundo alguns autores, a discretização melhora a precisão e deixa um modelo de classificador mais rápido em seu conjunto de treinamento (CATLETT, 1991; HWANG; LI, 2002). De acordo com (KOTSIANTIS; KANELLOPOULOS, 2006; DOUGHERTY et al., 1995), os métodos de discretização mais comumente utilizados, no âmbito dos métodos não-supervisionados, são os de Discretização por Larguras Iguais (do inglês: Equal Width Discretization - EWD) e Discretização por Frequências Iguais (do inglês: Equal Frequency Discretization - EFD). Em quanto de um lado a discretização ajuda no treinamento do modelo, por outro, ambos os métodos sofrem com perda de informação, pois o número de faixas designado não é determinado levando em consideração as propriedades dos dados de treinamento, e dependendo do número de faixas há uma menor ou maior perda.

Mesmo com uma consequente perda, a discretização tem um papel importante na rotulação e dependendo dos tipos de dados, método e das faixas, os rótulos sofrerão alterações, e.g., pode haver registros que estejam representados em uma determinada faixa, ao alterar o método de discretização também altera o corte da faixa, fazendo esse registro

mudar de faixa, consequentemente o rótulo também muda, gerando uma nova visão ao analista do *cluster*.

2.2.1 Equal Weight Discretization - EWD

O método de Discretização por Larguras Iguais (Equal Weight Discretization - EWD) faz a discretização de um intervalo, entre valores contínuos, dividindo através de um ponto de corte as faixas de tamanhos iguais (BARON, 2016; YANG; WEBB, 2002). Logo, se existir um intervalo com valores contínuos [a,b] e deseja particionar em R faixas de tamanhos iguais, serão necessários R-1 pontos de corte. Na figura 5 exibe exatamente o que foi dito, caso tenha um R=2 simulando duas faixas em um intervalo [a,b].

Figura 5 – Ponto de Corte (R-1); 2(R) significa o valor de R=2; 2 - 1 = 1

Para exemplificar, a figura 5 exibe uma faixa com início em "[a", e final "b]", e pretende obter a divisão do intervalo [a,b] em 2 (duas) faixas iguais (R=2), então, utilizando a regra (Número_De_Faixas - 1 = 2-1=1), obtendo sempre o número de faixas que deseja particionar, menos 1 (um).

Para haver o ponto de corte, terá que ser feita primeiro a ordenação dos dados e logo após definir a largura de cada faixa $r_1, ..., r_R$. O cálculo realizado na equação 2.11, para encontrar w, é a diferença entre os limites superior e inferior do intervalo, dividido pela quantidade de faixas (R).

$$w = \frac{b-a}{R} \tag{2.11}$$

- ullet w tamanho da faixa
- a,b limite inferior, limete superior respectivamente
- R número de faixas

De acordo com a figura 2.12, a variável w delimita o tamanho das faixas de valores e determina os pontos de corte $(c_1, ..., c_{R-1})$. O primeiro ponto de corte, c_1 , é obtido por meio da soma do limite inferior a com a tamanho de w, e os pontos de corte seguintes são

2.2. Discretização

calculados pela soma do ponto de corte anterior com w.

$$c_{i} = \begin{cases} a + w, & se \ i = 1 \\ c_{i-1} + w, & caso \ contr\'{a}rio \end{cases}$$
 (2.12)

- ullet w tamanho da faixa
- c_i ponto de corte da faixa
- a limite inferior

Seguindo a figura 6, o valor da faixa do intervalo $[a, c_1]$ será o valor discreto igual ao índice de sua faixa, nesse caso r_1 , então, o valor na faixa r_1 é representado por 1(um), pois i = 1. No caso do intervalo $]c_1, c_2]$ definido na faixa r_2 , é representado pelo valor discreto 2 (dois) e, e consequentemente, o valor que se encontra em uma faixa qualquer r_i será reprensentado por i.

Figura 6 – Discretização EWD. Figura baseada em (LOPES et al., 2016)

A tabela 3 contém uma amostra de valores dividida em duas colunas: a primeira coluna significa o número da linha e a segunda coluna o valor propriamente dito. Essa tabela servirá para exemplificar o que foi dito neste método de discretização e pode ser vista como um vetor de 150 (cento e cinquenta) posições e, dependendo do número de faixas, poderá ser dividido em vários pedaços, sendo cada pedaço uma faixa.

Para este exemplo descrito, é definido em 3 (três) o número de faixas (R=3) e aplicada a equação 2.11 na tabela 3 para encontrar a largura (fixa) da faixa, pois o método de discretização EWD mantém faixas com mesmo tamanho. O intervalo [a,b] seria o limite inferior, menor valor (a=4,3) e limite superior, maior valor (b=7,9), respectivamente, da tabela de amostra, portanto, logo que calculado o valor da largura w é utilizada a regra da equação 2.12 para encontrar os pontos de corte de cada faixa.

Utilizando a equação 2.11, encontra-se w=1.2; portanto, uma vez em posse da largura e sendo o primeiro ponto de corte (i=1), simplesmente utiliza-se equação 2.12 para encontrar o primeiro ponto de corte a+w=4.3+1.2=5.5, que está como asterisco na posição $c_1=5.5$. Os asteriscos na figura 7 delimitam os pontos de cortes e os pontinhos são todos os valores dispostos nas faixas definidos na tabela 3.

Figura 7 – Discretização EWD de acordo com a amostra da tabela 3

no.	Valor										
1	5.10	26	5.00	51	7.00	76	6.60	101	6.30	126	7.20
2	4.90	27	5.00	52	6.40	77	6.80	102	5.80	127	6.20
3	4.70	28	5.20	53	6.90	78	6.70	103	7.10	128	6.10
4	4.60	29	5.20	54	5.50	79	6.00	104	6.30	129	6.40
5	5.00	30	4.70	55	6.50	80	5.70	105	6.50	130	7.20
6	5.40	31	4.80	56	5.70	81	5.50	106	7.60	131	7.40
7	4.60	32	5.40	57	6.30	82	5.50	107	4.90	132	7.90
8	5.00	33	5.20	58	4.90	83	5.80	108	7.30	133	6.40
9	4.40	34	5.50	59	6.60	84	6.00	109	6.70	134	6.30
10	4.90	35	4.90	60	5.20	85	5.40	110	7.20	135	6.10
11	5.40	36	5.00	61	5.00	86	6.00	111	6.50	136	7.70
12	4.80	37	5.50	62	5.90	87	6.70	112	6.40	137	6.30
13	4.80	38	4.90	63	6.00	88	6.30	113	6.80	138	6.40
14	4.30	39	4.40	64	6.10	89	5.60	114	5.70	139	6.00
15	5.80	40	5.10	65	5.60	90	5.50	115	5.80	140	6.90
16	5.70	41	5.00	66	6.70	91	5.50	116	6.40	141	6.70
17	5.40	42	4.50	67	5.60	92	6.10	117	6.50	142	6.90
18	5.10	43	4.40	68	5.80	93	5.80	118	7.70	143	5.80
19	5.70	44	5.00	69	6.20	94	5.00	119	7.70	144	6.80
20	5.10	45	5.10	70	5.60	95	5.60	120	6.00	145	6.70
21	5.40	46	4.80	71	5.90	96	5.70	121	6.90	146	6.70
22	5.10	47	5.10	72	6.10	97	5.70	122	5.60	147	6.30
23	4.60	48	4.60	73	6.30	98	6.20	123	7.70	148	6.50
24	5.10	49	5.30	74	6.10	99	5.10	124	6.30	149	6.20
25	4.80	50	5.00	75	6.40	100	5.70	125	6.70	150	5.90

Tabela 3 – Amostra de dados para exemplificar a discretização EWD e EFD

A partir dos cálculos é definido as seguintes faixas de tamanhos iguais:

- Faixa 1 [4.3,5.5]
- Faixa 2]5.5,6.7]
- Faixa 3 [6.7,7.9]

2.2.2 Discretização por Frequência Iguais - EFD

Esse outro método de discretização já possui uma abordagem diferente do EWD, pois a ideia é manter a quantidade de elementos distintos entre os pontos de corte com o mesmo número (BARON, 2016; YANG; WEBB, 2002). Dado um intervalo [a,b], o número de faixas R e a quantidade de valores distintos ξ , em que $\xi \geqslant R$, o método EFD irá segmentar em R faixas de valores que possuem a mesma quantidade de elementos distintos λ . Então serão realizados R-1 pontos de corte gerando R faixas de valores, $(r_1,...,r_R)$, com a mesma quantidade de elementos distintos λ . Para encontrar λ , calcula-se o valor inteiro da divisão entre a quantidade de elementos distintos ξ pela quantidade de faixas de

2.2. Discretização 17

valores R, obtendo o número de elementos da faixa (equação 2.13).

$$\lambda = \frac{\xi}{R} \tag{2.13}$$

- $\bullet\,\,\lambda$ número de elementos da faixa
- $\bullet\,$ R total de elementos distintos nas faixas
- $\bullet~\xi$ número de faixas

Uma observação nesse método é a ocorrência de uma má distribuição de valores entre as faixas, portanto, caso haja um número significativo de valores repetidos de um atributo, isso causa um desequilíbrio na distribuição dos elementos dentro da faixa. Essa situação reflete em faixas com muitos valores e outras sem nenhuma.

Uma vez no intervalo [a,b] de elementos ordenados e calculado λ contendo R elementos em um vetor $v_{[R]}$, tem-se os pontos de corte $(c_1,...,c_{R-1})$ como delimitadores das faixas. Cada ponto de corte c_i pode ser calculado por $v_{i\lambda}$ – ésimo elemento (equação 2.14).

A equação 2.14 é responsável pelo ponto de corte da faixa:

$$c_i = v_{[i\lambda]} \tag{2.14}$$

- c_i iésimo ponto de corte
- $\bullet\,$ R total de elementos distintos nas faixas
- ξ quantidade de faixas de valores

Igual ao que aconteceu no método EWD, o valor que estiver no intervalo $[a, c_1]$ terá seu valor associado a um valor discreto igual ao índice i de sua faixa r_i , conforme figura 8 que exibe as faixas (r) de tamanhos variáveis no intervalor [a, b]. Então, caso o valor esteja na faixa r_2 , ele passará a ter o valor de seu índice i igual a 2(dois). De maneira consecutiva, os valores que estiverem na faixa $r_3 =]c_2, c_3]$ terão valor 3 (três). Uma outra observação desse método é que, diferente do EWD, os intervalos podem assumir faixas com tamanhos diferentes.

Figura 8 – Discretização EFD. Figura baseada em (LOPES et al., 2016)

Neste exemplo com o método EFD, exibido o resultado na figura 9, a tabela 3 também é utilizada na disposição dos valores em cada faixa, bem como o cálculo de λ (equação 2.13), que é a divisão do total de elementos distintos (ξ) pelo o número de

faixas R=3. Após tal cálculo, é realizado a ordenação dos valores, e uma vez os valores ordenados, soma-se o valor mínimo com λ , encontrando c_1 como primeiro ponto de corte, e assim sucessivamente, para os outros pontos de corte ($c_2=c_1+\lambda$), até R-1 pontos de corte. Na figura 9 pode-se perceber como a distribuição dos valores da amostra se comportam no método EFD. Os asteriscos delimitam o início e fim de cada faixa de valor, e os pontos são os valores propriamente ditos.

Neste exemplo com o método EFD, exibido o resultado na figura 9, a tabela 3 também é utilizada na disposição dos valores em cada faixa, bem como o cálculo de λ (equação 2.13), que é a divisão do total de elementos distintos (ξ) pelo número de faixas R=3. Após tal cálculo, é realizada a ordenação dos valores e, uma vez os valores ordenados, soma-se o valor mínimo com λ , encontrando c_1 como primeiro ponto de corte e assim sucessivamente para os outros pontos de corte ($c_2=c_1+\lambda$) até R-1 pontos de corte. Na figura 9, pode-se perceber como a distribuição dos valores da amostra se comportam no método EFD. Os asteriscos delimitam o início e fim de cada faixa de valor e os pontos são os valores propriamente ditos.

Figura 9 – Discretização EFD de acordo com a amostra da tabela 3

O número de elementos distintos na amostra de dados da tabela 3 é de 35 (trinta e cinco) elementos e dividindo-se por R=3, que é o número de faixas, encontrar-se-á $\lambda=11$. Na lista de números distintos o 11° (décimo primeiro) elemento a partir de a (menor valor da amostra) será o primeiro ponto de corte (c_1) . Então, todos os valores de 4,3 a 5,3 (identificados por asterisco) fazem parte da primeira faixa.

A seguir são definidas as faixas, percebendo-se que são de tamanhos diferentes ao do método EWD, pois há valores repetidos:

- Faixa 1 [4.3,5.3]
- Faixa 2 [5.3,6.4]
- Faixa 3]6.4,7.9]

2.3 Trabalhos Correlatos

Esta seção propõe relacionar outros trabalhos, servindo de complemento teórico envolvendo assuntos como: agrupamentos de dados, aprendizado de máquina, classificação e rotulação de dados.

Em (JIRASIRILERD; TANGTISANON, 2018), os autores fazem uso de rotulação automática de textos em Tailandês retirados de notícias da internet. É utilizado para

classificar esses textos com a devida categoria (TI, entretenimento, astronomia, etc). Essa pesquisa utiliza para rotulação vetor de representação de documentos e na separação das palavras Tailandesas é aplicado algoritmo de *Convolutional Neural Network* (CNN). Então o modelo faz: i) Conversão de parágrafos e palavras para os vetores utilizando a técnica de representação distribuída; ii) extrai vetores com parágrafos semelhantes; iii) cria um vetor de características; iv) extrai vetores com palavras semelhantes; v) rotula.

Em (YEGANOVA et al., 2010) é utilizada a ideia de dados naturalmente rotulados em uma abordagem que faz detecção e identificação de abreviações na literatura biomédica utilizando aprendizado de máquina supervisionado. Por meio dos textos é realizada uma extração de estruturas textuais (formas curtas, formas longas, formas curtas potenciais e formas longas potenciais), que quando são extraídas naturalmente em pares *i.g.* (forma curta - forma forma longa), (formas curtas potenciais - formas longas potenciais) são tratadas como exemplos positivos.

Nesse artigo, (CHEN et al., 2011) se propõe à criação de *clusters* a partir de textos e documentos através de uma abordagem eficaz de agrupamento de documentos, *Fuzzy Frequent Itemset-based Document Clustering* (F2IDC), que combina a mineração de regras de associação *fuzzy* com conhecimento da WordNet. A WordNet é um banco de dados léxico em inglês que agrupa palavras (substantivos, verbos, adjetivos, advérbios) em conjunto de sinônimos e tem com isso o objetivo de melhorar a qualidade dos grupos através dos relacionamentos semânticos.

Nos trabalhos acima citados (JIRASIRILERD; TANGTISANON, 2018; YEGANOVA et al., 2010; CHEN et al., 2011) acontecem processos de agrupamentos e rotulação em textos, sendo um tema bastante estudado e diferente desta dissertação, que utiliza o conceito de rotulação de dados no contexto do significado ao grupo formado.

O artigo em (GAN et al., 2013) propõe aprendizado de máquina semisupervisionado, que combina agrupamento e classificação com os devidos algoritmos Fuzzy C-Means e SVM respectivamente. A pesquisa utiliza dados rotulados e não rotulados, apostando na análise do cluster como diferencial para compensar a limitação de dados não rotulados e através do conhecimento adquirido melhorar o treinamento do classificador. Essa pesquisa (GAN et al., 2013), diferente desta dissertação, não envolve a interpretação dos grupos após sua formação.

Outro trabalho de agrupamento de dados pode ser visto em (SUN et al., 2011), no qual ele aborda o problema de agrupamento de dados e propõe um algoritmo híbrido com o support vector cluster e K-Means, ambos de aprendizagem não- supervisionada. Em uma primeira etapa é utilizada uma abordagem do support vector cluster com o objetivo de identificar os outliers e os pontos sobrepostos e na segunda etapa obtêm-se os núcleos removendo os outliers e os pontos sobrepostos e aplicando o K-Means nos núcleos para obter o conjunto de dados em clusters. Foram utilizadas algumas variáveis de extrema

importância para conclusão do trabalho e essas variáveis foram configuradas empiricamente em fases diferentes a fim de obter bons resultados nos agrupamentos de dados. O estudo desse trabalho é interessante no conceito da formação de bons grupos de dados, pois em rotulação de grupos há uma correlação de grupos bem definidos e bons rótulos.

Outro artigo, o autor (IWAMURA et al., 2013), faz rotulação automática de textos de cenas em uma base de dados. São textos que se encontram em uma imagem, e.g., uma imagem da fachada de uma casa que possui um número de identificação. O modelo utiliza imagens contendo caracteres, segmenta essas imagens e, após, classifica o caractere através de uma base de dados com várias amostras armazenadas, fazendo seu reconhecimento. Fica claro que esse artigo faz rotulação, mas não da mesma forma definida nesta dissertação, a qual faz uso de aprendizado de máquina a fim de rotular grupos e dando significado a eles.

O trabalho (COSTA et al., 2016) utiliza classificação não-supervisionada, mas possui uma característica diferenciada por utilizar dados online. O método faz uso da aprendizagem a partir de uma base de regras vazias com o processamento das amostras desses dados online e não é necessário pré-definir parâmetros iniciais e nem número ou tamanho das classes. Efetivamente, o autor foca em conceito-evolução, portanto, o algoritmo se adapta continuamente para lidar com mudanças de dados que podem surgir ao se lerem novas amostra de dados. Essa abordagem não-supervisionada conta com o conceito de Typicality and Eccentricity Data Analytics (TEDA), utilizado em problemas no mundo real como detecção de falhas; no entanto, mesmo sendo um comportamento não-supervisionado, em vez de clusters tradicionais, o algoritmo trabalha com conceito de nuvens de dados. Nesta dissertação a utilização da rotulação são para grupos já formados, diferente dessa pesquisa, que possui o objetivo da formação dinâmica de grupos.

O trabalho proposto por Lopes et al. (2016) faz um estudo abordando o tema de rotulação de dados conforme definição 1.

Definição 1 Dado um conjunto de clusters $C = \{c_1, ..., c_k | K \geqslant 1\}$, de modo que cada cluster contém um conjunto de elementos $c_i = \{\vec{e_1}, ..., \vec{e_n}_{(c_i)} | n^{(c_i)} \geqslant 1\}$ que podem ser representados por um vetor de atributos definidos em \mathbb{R}^m e expresso por $\vec{e^{c_i}} = (a_1, ..., a_m)$ e ainda que com $c_i \cap c_{i'} = \emptyset$ com $1 \leqslant i, i \leqslant K$ e $i \neq i'$; o objetivo consiste em apresentar um conjunto de rótulos $R = \{r_{c1}, ..., r_{ck}\}$, no qual cada rótulo específico é dado por um conjunto de pares de valores, atributo e seu respectivo intervalo, $r_{ci} = \{(a_1, [p_1, q_1]), ..., (a_{m^{(c_i)}}, [p_{m^{(c_i)}}, q_{m^{(c_i)}}])\}$ capaz de melhor expressar o cluster c_i associado.

- K é o número de clusters;
- c_i é o i-ésimo cluster;
- n^{c_i} é o número de elementos do cluster c_i ;
- ullet $\vec{e}_{j(c_i)}$ se refere ao j-ésimo elemento pertencente ao cluster c_i ;
- m é a dimensão do problema;

- r_{c_i} é o rótulo referente ao cluster c_i ;
- $]p_{m^{(c_i)}}, q_{m^{(c_i)}}]$ representa o intervalo de valores do atributo $a_{m^{(c_i)}}$, onde $p_{m^{(c_i)}}$ é o limite inferior e $q_{m^{(c_i)}}$ é o limite superior;

O estudo utilizou como entrada um conjunto de dados em que foi realizado o agrupamento com algoritmos não-supervisionados para formação de *clusters* e logo após a formação destes, é utilizado um algoritmo supervisionado (RNA) nos grupos de dados já discretizados e apresentado como saída um rótulo específico que melhor define o grupo formado.

Os rótulos são formados por uma tupla, atributos mais relevantes e faixa de valores que mais se repetem. A figura 10 representa o modelo de atuação do autor citado, que por meio de 4 passos (I, II, III, IV), obtiveram-se os rótulos que representaram os *clusters*.

Figura 10 – Modelo de (LOPES et al., 2016)

Em analogia a este trabalho na figura 10, em que é aplicado o algoritmo de RNA, o processo III é o local exato que esta pesquisa utiliza para testar a visibilidade de outros algoritmos supervisionados. Nesse modelo proposto, o autor não só tem a preocupação de processar a formação dos grupos como também aplicar um algoritmo supervisionado para rotular esses grupos formados. Já nesta dissertação, o foco é fazer testes em grupos já definidos utilizando algoritmos supervisionados com paradigmas ainda não testados, e apresentar os rótulos encontrados. Deixando claro que a utilização de grupos já classificados foi necessária para essa pesquisa para mostrar a acurácia, número de registros representados pelo rótulo, mas a aplicação deste estudo tem aplicabilidade nos grupos não classificados a fim de encontrar rótulos que identifiquem grupos.

Em Lima (2015), Lima et al. (2015) são trabalhos que tem como objetivo principal a rotulação de grupos de dados, mas no primeiro trabalho o autor utiliza uma técnica

de aprendizado semisupervisionada, que visa fazer rotulação de dados através de uma pequena amostra rotulada. Em Lima et al. (2015) é aplicada rotulação a uma base de dados de uma rede social chamada de Scientia.Net, com o objetivo na criação de grupos e identificação dos atributos que podem ser importantes ao ponto de representar estes grupos, chamando-os de rótulos. Nesse artigo, o autor utilizou o modelo de (LOPES et al., 2016) para rotulação de dados com os mesmos algoritmos, o k-means para agrupamento, e logo na segunda parte a utilização do algoritmo supervisionado, Artificial Neural Networks - ANN. Diferente dos trabalhos (LIMA, 2015; LIMA et al., 2015), este trabalho proposto tem o foco em testes somente nos algoritmos supervisionados nos grupos já formados de acordo com a origem da base de dados, a fim de gerar rótulos e assim, aferir suas acurácias para cada um desses algoritmos testados.

Outra pesquisa (FILHO et al., 2015) aborda o mesmo problema de rotulação, mas com atuação diferente, pois o modelo utiliza o algoritmo não-supervisionado Fuzzy C-Means para composição dos grupos, em que o número de grupos é fornecido na inicialização do algoritmo e também na definição das faixas de valores de atributos de cada atributo rótulo do grupo formado. A diferença entre esta dissertação e esse artigo de Filho et al. (2015) é o modelo de resolução, que utiliza somente o algoritmo Fuzzy C-Means para criar os grupos e definir as faixas de valores de cada atributo rótulo e também a ausência da técnica de discretização dos valores dos dados para obter os rótulos.

Outro autor IMPERES FILHO (2018) em seu trabalho utiliza uma proposta de rotulação semelhante a outra pesquisa Filho et al. (2015), mas com outro algoritmo, K-means não-supervisionado, baseado em distância. Esse modelo é constituído de duas etapas, sendo a primeira a transformação da distância gerada pelo K-means em GP, e logo após, na segunda etapa, é realizada a rotulação de dados de acordo com a tabela gerada na primeira etapa. São feitas várias iterações até encontrar faixas únicas de valores para cada atributo rótulo. Ao se comparar esta dissertação com a pesquisa desse autor (IMPERES FILHO, 2018), percebe-se que também não há um processo de discretização de valores dos atributos e também não há aplicação de dois algoritmos de aprendizado.

No trabalho de rotulação Araújo (2017) defende que uma etapa de fundamental importância para se ter bons resultados na rotulação de grupos de dados se dá na clusterização. Portanto, quanto mais eficiente for a técnica de agrupamento de dados utilizada, maior será acurácia dos grupos encontrados. A partir do que foi dito, o autor utiliza o DAMICORE no método de rotulação automática para criar grupos. DAMICORE é um método de detecção de correlação de dados e tem como característica a não informação do número de *clusters* ao qual o algoritmo é aplicado. O modelo é dividido em cinco etapas até se obterem os rótulos. A etapa I e II preparam os dados e ajudam a medir a similaridade dos elementos, oferecendo uma maior precisão e contribuindo para criação de grupos mais significativos. Na etapa III ocorre a clusterização, e como não é preciso informar o número

2.3. Trabalhos Correlatos 23

de cluster na utilização do DAMICORE, os resultados nesta etapa acabam por superar um número razoável de clusters para uma melhor compreensão e, em razão disso, a etapa IV, de mesclagem, faz a junção de clusters para criação de super-clusters, que são clusters maiores representando um conceito mais geral e de mais fácil entendimento. Por fim, os super-clusters são submetidos ao método de rotulação automática na etapa V, permitindo identificar os atributos mais relevantes e suas respectivas faixas de valores. Essa pesquisa mantém o foco na etapa de formação dos clusters e se diferencia do texto desta dissertação exatamente nisso, pois nesta dissertação é pressuposto que os grupos testados são clusters bem definidos e classificados, posto que este trabalho não cria grupos e sim os utiliza.

3 Metodologia

O texto desta seção abordará o problema descrito neste trabalho e, logo em seguida, será apresentado um modelo proposto de rotulação utilizando algoritmos supervisionados e mais ao final deste capítulo é realizado um exemplo de rotulação, que será feita desde a discretização até a definição dos rótulos para melhor explanar o conteúdo descrito.

3.1 Rotulação de Cluster

A abordagem do problema referente a rotulação, proposta deste mestrado, segue uma linha já pesquisada, que seria o problema de rotulação. Muitas pesquisas realizadas na área de rotulação fazem referência à classificação dos dados e não da rotulação. Ao agrupar um conjunto de elementos por um determinado critério, está havendo uma classificação desses elementos de mesma similaridade, mas pouco se sabe qual é a compreensão desses grupos já classificados no sentido de quais os atributos são mais relevantes dentro desses grupos.

A importância do rótulo em um *cluster* é transparecer a compreensão do *cluster* formado, visto que, uma vez os clusters já agrupados, não fica claro o critério de criação desses grupos. Para o observador é interessante existir um rótulo de um grupo oferecendo elementos que possam ajudar em alguma tomada de decisão em razão de seu significado, ou seja, o rótulo. Dessa forma serão apresentadas 2 (duas) definições que se complementam.

Na definição 2 é expresso formalmente o comportamento dos *clusters*, e na definição 3 complementa a definição 2 definindo o comportamento do rótulo.

Definição 2 Dado um conjunto de clusters $C = \{c_1, ..., c_k | K \ge 1\}$, de modo que cada cluster contém um conjunto de elementos $c_i = \{\vec{e}_1, ..., \vec{e}_{n^{(c_i)}} | n^{(c_i)} \ge 1\}$ que podem ser representados por um vetor de atributos definidos em \mathbb{R}^m e expresso por $\vec{e}^{c_i} = (a_1, ..., a_m)$ e ainda que com $c_i \cap c_{i'} = \emptyset$ com $1 \le i, i \le K$ e $i \ne i'$ (Adaptada de (LOPES et al., 2016)).

- K é o número de clusters;
- a é o atributo
- c_i é o i-ésimo cluster qualquer;
- n^{c_i} é o número de elementos do cluster c_i ;
- ullet $ar{e}_{i}^{(c_{i})}$ se refere ao j-ésimo elemento (registro na tabela) pertencente ao cluster c_{i} ;
- m é o número de atributos da tabela de dados;

A criação do rótulo é a escolha de uma tupla **atributo** e **faixa de valor**, em que o atributo possui o maior valor de correlacionamento entre os outros atributos, e a faixa escolhida, uma vez com os dados já discretizados, é aquele valor que mais se repete, dentro do atributo rótulo selecionado - por exemplo, um vetor de valores já discretizados¹, $\vec{v}_i = \{1, 1, 1, 2, 2, 2, 2, 3, 3\}$, sendo $i \leq m$ e (\vec{v}) representando todos os elementos da coluna representada pelo atributo rótulo (a). Neste vetor (\vec{v}) o valor que mais se repete é o número 2, então, a **faixa 2** do atributo rótulo é a escolhida para compor o rótulo. Isto posto, o rótulo é o atributo representado por a junto com a representação da faixa 2 (dois) e podendo, em outra situação, o rótulo de um *cluster* ser composto por mais de uma tupla: atributo e faixa (Definição 2).

3.2 O Modelo de Resolução

A partir da definição do problema - Definição 2 - um estudo foi desenvolvido a fim de ser possível realizar rotulação de dados com algoritmos supervisionados tendo cada rótulo características distintas.

Este modelo de resolução consiste em apresentar como saída um conjunto de rótulos, em que cada rótulo específico é dado por um conjunto de pares de valores, atributo e seus respectivos intevalos, gerados a partir das frequências dos valores repetidos neste intervalo. Segue *Definição 3* formalizando a saída do modelo:

Definição 3 Dado um conjunto de rótulos $R = \{r_{c1}, ..., r_{ck}\}$, no qual cada rótulo específico é dado por um conjunto de pares de valores, correspondendo a um vetor com atributo e seu respectivo intervalo, $r_{ci} = \{(a_1, [p_1, q_1]), ..., (a_{m^{(c_i)}}, [p_{m^{(c_i)}}, q_{m^{(c_i)}}])\}$ capaz de melhor expressar o cluster c_i (Adaptada de (LOPES et al., 2016)).

- k número de rótulos;
- R representa o conjunto de rótulos na saída do modelo;
- a é o atributo
- c_i é o i-ésimo cluster;
- r_{c_i} é o rótulo referente ao cluster c_i ;
- $]p_{m^{(c_i)}}, q_{m^{(c_i)}}]$ representa o intervalo de valores do atributo $a_{m^{(c_i)}}$, onde $p_{m^{(c_i)}}$ é o limite inferior e $q_{m^{(c_i)}}$ é o limite superior;
- m é o número de atributos da tabela de dados;

Como apresentado na seção 2.3, o autor (LOPES et al., 2016) foca em rotulação automática de grupos utilizando a estratégia de aprendizagem de máquina supervisionada com paradigma conexionista para realizar seu trabalho. Porém, nesta pesquisa, foram

 $^{^{1}}$ seção 2.2

aplicados no modelo de resolução três algoritmos supervisionados com atuações diferentes do que já havia sido testado anteriormente, realizando a rotulação de dados. Logo na figura 11 é apresentado o modelo de resolução desta pesquisa.

Figura 11 – Modelo de Resolução Proposto

A base de dados do modelo (figura 11) já é classificada possuindo valores contínuos, contudo, conforme modelo, aplicará o método de discretização (I). Uma vez com a base discretizada, ocorrerá a divisão em clusters, que nada mais é do que a separação dos grupos já classificados que servirá de entrada para o processo (II). É importante ressaltar que os clusters já são definidos na própria base, mediante os testes para esse trabalho pois é necessário conferir os rótulos, mas este estudo tem aplicação em grupos não classificados.

No processo (II) será executado o algoritmo de aprendizagem supervisionado, já visto nas subseções 2.1.1.1, 2.1.1.2 e 2.1.1.3. Cada execução com determinado algoritmo é independente do outro, mediante isso, o modelo será executado independente e a cada execução serão armazenando os resultados para posterior análise. Essa etapa utiliza a técnica de correlação de atributos, que neste modelo de resolução é considerada um processo de grande importância e será vista na seção 3.3. Logo a saída deste processo gera uma tabela de atributos com seus respectivos valores e através desses valores armazenados é escolhido um, ou mais, atributo de maior relevância.

No processo (III) acontecerá a escolha do atributo mais relevante, e podendo, em caso de mesmo valor, ter mais de um. Esta seleção será feita a partir da tabela (Atributos Importantes) criada pela implementação dos algoritmos supervisionados utilizando a técnica de correlação entre atributos seção (3.3). Nessa parte o rótulo está quase completo, pois já tem o atributo selecionado, e mediante esse atributo é selecionado a faixa que possui o maior número de elementos. Uma vez conhecido essa faixa, será utilizada a base

discretizada para transformar o que era valor discretizado em valores que ele representa, e.g., o que era faixa 1, será o valor do intervalo que a faixa representa. Após essa etapa é definido o rótulo (atributo/intervalo de valor) para cada clusters.

3.3 Técnica de Correlação entre Atributos através de Algoritmos Supervisionados

Essa técnica de correleção entre atributos empregada por (LOPES et al., 2016) utiliza por analogia a aprendizagem supervisionada, na qual os atributos de entrada são correlacionados com um atributo de saída, e conforme o número de atributos do *cluster*, o atributo saída seria alterado seguindo uma sequência do primeiro ao último atributo desse *cluster*. Através desse processo, cada atributo seria saída em relação aos outros atributos, gerando um valor que seria armazenado em uma tabela.

Para exemplificar a técnica, é utilizado a figura 12 simulando com os seguintes atributos: atr1, atr2 e atr3. Em todo *cluster* será realizado três processamentos, o primeiro, atributo atr1 se torna a saída desejável, e os outros dois atributos atr2, atr3 a entrada com um algoritmo supervisionado.

Figura 12 – Exemplo da técnica de correlação aplicada ao atributo, atr1, sendo classe

A figura 12 simula como o algoritmo supervisionado irá ser aplicado, mas na prática não há somente uma aplicação para gerar o valor de **atr1**, visto que há uma divisão nos dados do cluster em teste e treinamento, após isso será treinado com o algoritmo supervisionado e testado. O resultado dos testes é a taxa de acerto do atributo de saída significando a relevância do **atr1**.

Foi utilizada validação cruzada com k igual a dez implicando em uma divisão nos dados do *cluster* em dez partes, onde uma dessas parte é teste, e as outras treinamento. Uma vez realizado o treinamento é trocado mutuamente essas partes e o que antes era teste vira treinamento e vice-versa, e após ter treinado k vezes é registrado o resultado dos testes em percentual de acerto, que é o valor de relevância do atributo gravado na tabela de atributos importantes.

Na figura 13 ocorre um exemplo de como funciona a técnica de correlação entre os três atributos, exibindo a quantidade de vezes que o algoritmo é executado é a mesma do número de atributos.

Figura 13 – Exemplo da técnica de correlação aplicada aos atributos atr1, atr2 e atr3.

Em resumo da técnica, o resultado da correlação entre os atributos **atr1**, **atr2**, **atr3** é armazanado em uma tabela denominada de **Atributos Importantes**, de acordo com figura 14. Por conseguinte, é realizado treinamntos e testes com algoritmo utilizando **atr1** como saída, e assim sucessivamente, até o último atributo (**atr3**). Essa etapa só é finalizada quando todos os atributos tiverem a chance de ser saída, e armazenados seus valores em taxa de acerto na tabela. Quanto maior sua taxa de acerto, mais bem correlacionado é o atributo em relação aos demais.

Figura 14 – Montagem da Tabela de Atributos Importantes

3.4. Exemplo 29

De acordo com essa técnica os atributos de um *cluster* seriam percorridos um por um, até o último, e a cada iteração de um atributo enquanto saída, é armazenado o valor do resultado dos treinamentos em uma tabela (atributos importantes). Essa tabela, após montada, mostraria os resultados do treinamento de cada atributo, enquanto saída, e quanto maior a taxa de acerto de cada algoritmo, mais relevante será este atributo em relação aos demais. Essa tabela é definida em linhas, nas quais são representados os *clusters* e as colunas, são os resultados dos treinamentos da aplicação do algoritmo de cada atributo de saída. Então, caso uma base possua 2 (dois) *clusters* e 3 (três) atributos, a tabela seria de ordem 2x3 (2 linhas e 3 colunas) conforme exemplo da figura 14.

Tal técnica possui um grau de processamento diretamente proporcional à quantidade de características expressa na base de dados definido em R^m descrita na definição 3, em que R representa o conjunto de rótulos e m a dimensão do problema (número de atributos). Ela implica em utilizar todos os atributos, para fazer uma correlação entre eles junto ao algoritmo.

3.4 Exemplo

Para melhor esclarecer as etapas do modelo de resolução exibido na figura 11, será utilizada a tabela 4 como um exemplo prático no modelo proposto nesta pesquisa. Essa tabela é composta por cinquenta registros (linhas) e quatro colunas (atributos), sendo último o atributo representando o *cluster*. Logo, a primeira coluna da tabela possui o índice da linha da tabela identificando cada registro e outros campos são atributos que definem características desse registro, e a quinta coluna, representando a classe de cada registro.

Seguindo a definição 2, um elemento é expresso por um vetor de dimensão m, com tamanho igual ao número de atributos. Um exemplo do elemento 2 da tabela 4 pode ser representado por $\vec{e}_2 = (1.26, 85.03, 20.45)$.

3.4.1 Processo (I) - Discretização

Segundo (CATLETT, 1991; HWANG; LI, 2002), por meio de resultados experimentais, na conversão em atributos discretos ordenados de vários domínios, constatou que a mudança de representação da informação, na maioria das vezes, pode aumentar a acurácia do sistema de aprendizado. Dessa maneira, a etapa de discretização ganha um papel importante no modelo e também no processo de Rotulação (III), pois é utilizada uma inferência na faixa discretizada para encontrar o intervalo na faixa.

Utilizando como exemplo a tabela 4, será utilizada a técnica de discretização por frequências iguais - EFD - e divisão de números de faixas igual a R=3. Na figura 15 pode-se visualizar como é feita a discretização.

n.	atr1	atr2	atr3	cluster	n.	atr1	atr2	atr3	cluster
1	2.08	92.11	22.07	2	26	1.42	53.51	19.64	3
2	1.26	85.03	20.45	1	27	1.12	62.71	19.07	1
3	2.00	108.36	22.68	2	28	2.09	60.58	20.20	1
4	1.74	43.78	18.72	3	29	1.95	69.23	19.68	1
5	1.82	100.20	23.09	2	30	1.03	47.81	19.47	3
6	1.43	77.59	21.80	1	31	1.75	90.92	21.39	2
7	1.53	44.01	20.98	3	32	1.72	42.35	22.89	3
8	1.14	107.77	18.99	2	33	1.47	101.77	19.20	2
9	1.97	98.00	22.32	2	34	1.53	41.16	22.67	3
10	1.50	39.67	21.78	3	35	1.44	93.61	21.03	2
11	1.74	55.86	20.31	3	36	1.51	98.65	19.24	2
12	1.80	65.72	19.62	1	37	1.06	68.82	21.68	1
13	1.33	82.01	19.82	1	38	1.48	80.40	21.43	1
14	1.66	103.93	21.10	2	39	1.14	61.59	19.90	1
15	1.42	66.14	21.61	1	40	1.08	91.93	20.81	2
16	1.87	88.36	22.45	2	41	1.62	79.21	18.43	1
17	1.11	107.82	19.32	2	42	1.68	80.87	18.42	1
18	2.08	67.66	20.74	1	43	1.81	98.24	22.13	2
19	1.85	82.65	20.35	1	44	1.30	69.27	18.83	1
20	1.04	102.62	19.46	2	45	1.80	101.21	21.61	2
21	1.97	100.37	21.94	2	46	1.79	72.02	22.02	1
22	1.95	45.70	22.10	3	47	1.56	81.71	22.10	1
23	1.77	50.04	20.16	3	48	1.98	77.16	21.71	1
24	1.97	81.57	19.83	1	49	1.86	89.12	22.84	2
25	1.52	93.13	20.61	2	50	1.55	76.01	19.74	1

Tabela 4 – Base de Dados Modelo

Figura 15 – Discretização de atributos utilizando EFD com R = 3 (Figura adaptada de (LOPES et al., 2016)

3.4. Exemplo 31

Por meio da figura 15 percebe-se o conteúdo da faixa 1, contendo o valor inicial, 1(um), até o primeiro ponto de corte. Na faixa 2, o valor inicial é o primeiro número após o primeiro ponto de corte (término da faixa 1) até o segundo ponto de corte, incluindo o próprio ponto de corte. E a faixa 3 contém todos valores a partir do segundo ponto de corte.

	atr1	atr2	atr3	classe		atr1	atr2	atr3	classe
1	3	3	3	2	26	1	1	1	3
2	1	2	2	1	27	1	1	1	1
3	3	3	3	2	28	3	1	2	1
4	2	1	1	3	29	3	2	1	1
5	3	3	3	2	30	1	1	1	3
6	1	2	3	1	31	3	3	2	2
7	2	1	2	3	32	2	1	3	3
8	1	3	1	2	33	2	3	1	2
9	3	3	3	2	34	2	1	3	3
10	2	1	3	3	35	1	3	2	2
11	2	1	2	3	36	2	3	1	2
12	3	1	1	1	37	1	2	3	1
13	1	2	1	1	38	2	2	2	1
14	2	3	2	2	39	1	1	2	1
15	1	1	2	1	40	1	3	2	2
16	3	2	3	2	41	2	2	1	1
17	1	3	1	2	42	2	2	1	1
18	3	1	2	1	43	3	3	3	2
19	3	2	2	1	44	1	2	1	1
20	1	3	1	2	45	3	3	2	2
21	3	3	3	2	46	3	2	3	1
22	3	1	3	3	47	2	2	3	1
23	3	1	2	3	48	3	2	3	1
24	3	2	2	1	49	3	3	3	2
25	2	3	2	2	50	2	2	1	1

Tabela 5 – Base de Dados Modelo Discretizada

A tabela 5 é o resultado após a discretização de todos os atributos. Para cada base de dados será definido o número de faixas de acordo com a configuração inicial antes da execução. Neste trabalho, o número de faixas serve para todos os atributos, e nesse exemplo o valor de R=3 é o mesmo tanto no **atr1**, no **atr2** e **atr3**, conforme figura 15. A escolha do valor de R é por conta de testes efetuados procurando melhores rótulos. As faixas de cada atributo podem ser conferidas junto a tabela 6.

3.4.2 Processo (II) - Algoritmos Supervisionados

Ao chegar nessa etapa, Processo (II) do modelo já apresentado, já se tem uma base discretizada e clusters formados como visto na tabela 5. A partir desta etapa é feita a

	Faixa 1	Faixa 2	Faixa 3
atr1	$[1.03 \sim 1.44]$] $1.44 \sim 1.74$]] 1.74 ~2.09]
atr2	$[39.67 \sim 67.66]$] $67.66 \sim 88.36$]] $88.36 \sim 108.36$]
atr3	$[18.42 \sim 19.82]$	$] 19.82 \sim 21.61]$	$] 21.61 \sim 23.09]$

Tabela 6 – Valores das faixas com R=3 da Base de Dados Modelo

execução do algoritmo de aprendizado supervisionado obtendo como saída a taxa de acerto em porcentagem, informando nessa porcentagem o grau de correlacionamento entre os atributos. Os valores dessas taxas são adicionadas na tabela, cuja função é armazenar os resultados das execuções dos algoritmos para posterior seleção do atributo de maior valor.

O algoritmo irá selecionar *cluster* por *cluster*, percorrendo todos os atributos destes clusters, em que a cada iteração terá um atributo saída da vez. Nesse exemplo, primeiramente, o atributo **atr1** será saída e os demais irão participar como entrada junto ao algoritmo, verificando sua taxa de acerto entre eles através do valor em porcentagem junto a tabela. Depois o **atr2** irá ser atributo saída, seguido do **atr3**, fechando o ciclo de todos os atributos do *cluster*.

Como amostra deste exemplo, serão executados dois algoritmos supervisionados para comparar os resultados, e através da figura 16 será possível perceber todos os valores de relevância dos atributos em cada algoritmo. Assim, apresentar-se-á valores em percentual da taxa de acerto dos atributos enquanto saída de cada *cluster*, após isso, será escolhido o maior valor definindo-se o atributo rótulo.

A figura 16 representa a tabela de atributos importantes já dita anteriormente, composta pelos clusters (C_1, C_2, C_3) e os atributos (atr1, atr2, atr3) com suas respectivas taxas de acerto de cada algoritmo.

Figura 16 – Resultado dos Algoritmos

A figura 16a mostra, por exemplo, o resultado da execução do Naive Bayes trabalhando com a base modelo (tabela 4), exibindo os resultados em porcentagem de acerto de cada atributo em relação aos demais. O mesmo acontece com a figura 16b, em que

3.4. Exemplo 33

é aplicado o algoritmo CART, exibindo o resultado de todas as taxas de acerto, em porcentagem, dos atributos de seus respectivos clusters.

3.4.3 Processo (III) - Rotulação

No processo de rotulação, os rótulos de cada *cluster* (c_i) serão compostos conforme o equação 3.1.

$$r_{ci} = \{(a_1, [p_1, q_1]), ..., (a_{m^{(c_i)}}, [p_{m^{(c_i)}}, q_{m^{(c_i)}}])\}$$
(3.1)

Cada rótulo é composto pela tupla: atributo de maior relevância (matriz de atributos importantes) e a faixa de valor desse atributo que mais se repete. Na figura 16 os rótulos em destaque são os que possuem maior valor, ademais, cada atributo que faz parte do rótulo possui um vetor de valores, do qual será escolhido a faixa de maior ocorrência. Uma vez calculada e definida a faixa, serão determinados os limites inferiores $(p_{m^{(c_i)}})$ e superiores $(q_{m^{(c_i)}})$, de acordo com a tabela discretizada (exemplo 6).

Por exemplo, utilizando a Base Modelo, mais especificamente o *cluster* 1 (c_1) , cujo resultado é apresentado na figura 16a, o rótulo apresentado é o atributo **atr2** com a **faixa** 2, faixa esta encontrada após cálculo dos elementos de maior ocorrência, conforme descrito no parágrafo acima.

O rótulo apresentado ao final do processo terá a substituição do número da faixa pelos valores do intervalo conforme a tabela 6. Os rótulos dos *clusters* descrito neste exemplo - conforme figura 16a e figura 16b - aplicado na BD Modelo são:

- $r_{c_1} = (atr2,]67.66, 88.36]);$
- $r_{c_2} = (atr2,]88.36, 108.36])$;
- $r_{c_3} = (atr2, [39.67, 67.66]);$

A representação acima do rótulo informa que no rótulo do *cluster* 1 é uma tupla composta pelo atributo **atr2** e a faixa variando de valor maior que 67,66 até 88,36. No *cluster* 2 verifica-se o rótulo composto também pelo atributo **atr2**, mas com faixa diferente, variando de um valor maior que 88,67 até 108,36. E, por último, o rótulo do *cluster* 3, com a faixa variando de 39,67 até 67,66. Isso significa que qualquer registro com valor no **atr2** no intervalo [67.66,88.36] será agrupado no *cluster* 1, podendo ajudar um analista a interpretar ou tomar decisão em conformidade a esse rótulo. Então, caso esse **atr2** fosse localização e esse intervalo determinasse uma região, isso poderia ser utilizado para tomada de decisão, dependendo do problema que queira resolver.

O algoritmo 13 exibe a rotina em forma de pseudocódigo para melhor entendimento do que foi dito nesta seção. As variáveis V, R e TipoDiscretização possuem valores iniciais como V = 0, R = 3 e TipoDiscretização = EWD, mas não aparecem inicializadas

no código por serem variáveis que dependem de testes para melhor otimização dos rótulos, mediante isso estas variáveis sofrem alterações. A variância V foi a forma de eliminar uma possível ambiguidade entre os clusters, pois é utilizada para seleção de mais de um atributo rótulo na tabela de atributos importantes, caso aconteça dos rótulos se repetirem em clusters diferentes. Logo, todos os atributos que tiverem até uma diferença V em relação ao atributo de maior taxa de acerto, expresso em porcentagem, serão escolhidos como rótulo. Isto posto, se o atributo de maior taxa de acerto possuir 90%, e o V=10% então todos outros atributos da tabela que tiverem valores a partir de 80%, i.e., para cima, são selecionados como rótulo do cluster. A variável R é utilizada para definir em quantas faixas serão divididos os valores do atributo na discretização, e por fim a variável TipoDiscretização, já explicada anteriormente.

Algorithm 1: Rotina de Rotulação

```
1 Carrega_valores_auxiliares(V, R, TipoDiscretização);
2 Carrega\_BD;
\mathbf{3} Discretiza BD;
4 Separa_em_clusters_de_acordo_com_classificação_BD;
  while existir clusters do
      while existir atributos do
         atributo \ classe = seleciona\_nova\_classe(atributos) ;
         Aplica_algoritmo_supervisionado(atributo_classe, atributos_naoClasse);
8
         Calcula\_matriz\_de\_porcentagem\_de\_acertos;
9
      if V!=0 then
10
         Carrega\_atributos\_importantes\_considerando\_V;
11
      Associa\_valores\_aos\_intervalos;
13 Exibe rótulos todos clusters;
```

4 Resultados e Discussões

Este estudo conta com a realização de testes nas bases de dados da UCI Machine Learning¹ - um repositório de dados a serviço da comunidade de aprendizado de máquina criado por estudantes de pós-graduação na UC Irvine em 1987 e que é utilizado por educadores e pesquisadores como fonte primária de aplicações de aprendizado de máquina.

As bases de dados escolhidas para este trabalho foram: Seeds, Iris, Glass, Wine. Essas bases são bastante utilizadas em vários trabalhos² e por meio delas há possibilidade de análise de seus comportamentos mediante resultados, visto que todas as bases são classificadas e já possuem seus grupos definidos, servindo de referência para comparar os resultados desta pesquisa, sem esquecer que o trabalho é com os *clusters* já formados e não na formação deles. Outro motivo desta seleção das bases é mitigar ao máximo a utilização das técnicas de *Feature Engineering* (CASARI; ZHENG, 2018), que são técnicas de manipulação de dados empregadas na base para aplicação do algoritmo de aprendizado de máquina utilizado na fase de preparação dos dados.

As tabelas apresentadas como resposta dos algoritmos de rotulação para cada base de dados possuem o seguinte formato: a primeira coluna (Cluster) é um número que representa cada cluster de forma sequencial; a segunda coluna (Rótulos) é representada pelo par Atributo e Faixa, o qual define o rótulo do cluster respectivo, podendo haver ou não mais atributos para compor o rótulo; a coluna Relevância tem a importância de informar o quanto, em porcentagem, aquele atributo é relacionado aos demais na definição do rótulo daquele cluster. A quinta coluna, Fora da Faixa, exibe o erro em quantidade de elementos que não estão naquela faixa definida naquele rótulo e, por último, a Acurácia Parcial, que exibe, em porcentagem, o valor de acertos dos elementos que são representados pelo atributo e faixa da respectiva linha.

A obtenção da acurácia dos *clusters* só é possível porque as bases de dados já possuem seus grupos definidos, por conseguinte, há o conhecimento de quais elementos fazem parte de um determinado grupo. Dessa maneira, qualquer resultado da aplicação dos algoritmos nos clusters pode ser confrontado com as informações dos *clusters* inicialmente retirados da *UCI Machine Learning* e, assim, poderá ser calculada a porcentagem de acertos.

A divisão deste capítulo iniciará por uma explanação da implementação do trabalho, explicando as ferramentas utilizadas no desenvolvimento, bem como os algoritmos e as configurações de algumas variáveis, e cada seção referir-se-á a uma base de dados utilizada,

http://archive.ics.uci.edu/ml/

https://archive.ics.uci.edu/ml/datasets/glass+identific pation, https://archive.ics.uci.edu/ml/datasets/iris, https://archive.ics.uci.edu/ml/datasets/iris, https://archive.ics.uci.edu/ml/datasets/seeds

sendo esta dividida em subseções para os seguintes algoritmos: Naive Bayes, CART e KNN.

4.1 Implementação

Utilizando como referência o trabalho de (LOPES et al., 2016) foi utilizado como ferramenta de desenvolvimento o MATLAB³, uma poderosa ferramenta matemática e IDE de desenvolvimento com recursos de aprendizado de máquina em pacotes chamados de *Statistics and Machine Learning Toolbox*. A pesquisa de Lopes et al. (2016) utilizou na fase III, a execução de um algoritmo supervisionado com paradigma conexionista, já esta pesquisa, utilizou outros algoritmos com outros paradigmas, que não haviam sido testados, para fazer rotulação de dados. O autor (DOMINGOS, 2017) defende existir cinco paradigmas diferentes na aprendisagem supervisionada o qual ele os denomina de tribos: evolucionários, conexionista, simbolistas, bayesianos e analogistas (baseado em instância), sendo que a *toolbox* de acordo com a documentação do MATLAB⁴ implementa alguns algoritmos com diferentes paradigmas com exceção do paradigma evolucionário visto na tabela 7.

Tabela 7 – Informações retiradas da documentação do MATLAB v.2016a - Supervised Learning Workflow and Algorithms

Classificador	Suporta multi-classes	Suporta Preditor Categórico	Velocidade de Predição	Utilização de Memória	Interpretabilidade
Decision trees — fitctree	Yes	Yes	Fast	Small	Easy
Discriminant analysis — fitediscr	Yes	No	Fast	Small for linear, large for quadratic	Easy
SVM — fitcsvm	No. Combine multiple binary SVM classifiers using fitcecoc.	Yes	Medium for linear. Slow for others.	Medium for linear. All others: medium for multi- class, large for binary.	Easy for linear SVM. Hard for all other kernel types.
Naive Bayes — fitchb	Yes	Yes	Medium for simple distribu- tions. Slow for kernel distri- butions or high-dimensional data		Easy
Nearest neighbor — fitcknn	Yes	Yes	Slow for cubic. Medium for others.	Medium	Hard
Ensembles — fi- tensemble	Yes	Yes	Fast to medium depending on choice of algorithm	Low to high depending on choice of algorithm.	Hard

Esta tabela exibe algoritmos de aprendizado supervisionados e suas característica através de resultados estudados de bases de dados com mais de 7000 observações e 50 classes.

Uma vez decidido pela utilização da *toolbox* e suas característica expostas na tabela 7, foi escolhida para este trabalho um algoritmo por paradigma; simbólico (árvore de decisão com CART), bayesiano (probabilístico Nave Bayes) e analogia ou baseado em instância (KNN). Alguns dos algoritmos mostrado na tabela não foram utilizados, como:

³ http://www.mathworks.com/products/matlab/; versão: R2016a(9.0.0.341360); 64-bit (glnxa64)

 $^{^4\} https://la.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-algorithms.html?lang=en$

Discriminant analysis pois é do mesmo tipo bayesiano e Ensembles é do tipo contém vários outras implementações de regressões e classificações com pequenas nuances, e também não foi utilizado por sair do foco desta pesquisa.

Ao longo da pesquisa também foram realizados vários testes, porém, houve alterações de algumas variáveis e métodos de discretização, sempre com o objetivo de obter os melhores resultados. As variáveis e métodos alterados são: variância (V), número de faixas (R) e tipo de discretização TipoDiscretização (EWD,EFD).

Fazendo um breve resumo sobre as configurações das variáveis, a variação V existe para evitar a ambiguidade dos rótulos, ou seja, para quando os rótulos apresentarem os mesmos resultados: atributo e faixa de valor. O número de faixas (R) é definido de forma que os atributos tenham seus valores mapeados de acordo com a faixa de valor correspondente e, uma vez definido o número de faixas, será escolhido qual método de discretização será aplicado (EWD,EFD), decidindo-se com qual faixa cada valor irá ficar.

4.2 Base de Dados 1 - Seeds - Identificação de Tipos de Semente

Essa base é composta por sete atributos definindo suas características e mais um: a classe, que é responsável por identificar os tipos de sementes (CHARYTANOWICZ et al., 2010). Esses elementos foram construídos a partir de sete parâmetros geométricos medidos dos grãos de trigo: area - A, perimeter - P, compactness - C, length of kernel - Lkernel, width of kernel - Wkernel, asymmetry coefficient - asymetry, length of kernel groove - lkgroove.

Os valores dos atributos são todos contínuos e não existem valores em branco, possuindo um total de 210 registros classificados em três categorias bem distribuídas entre as classes, definindo-se estas como base de dados balanceada, por causa dessa distribuição dos registros:

- 70 elementos do tipo *Kama*;
- 70 elementos do tipo *Rosa*;
- 70 elementos do tipo Canadian.

Para classificar as sementes como *Kama*, *Rosa* e *Canadian*, foi utilizada uma técnica de raio X que é relativamente mais barata que outras técnicas de imagem, como microscopia ou tecnologia a laser. O material foi colhido de campos experimentais explorados no Instituto de Agrofísica da Academia Polonesa de Ciências em Lublin.

As tabelas com os resultados dos rótulos apresentadas a seguir (tabelas 8,9, 10) exibem os resultados de rotulação dos algoritmos Naive Bayes, CART e KNN, respectivamente, e no caso dos *clusters*, cada linha determina um grupo: (1) *Kama*, (2) *Rosa* e (3)

Canadian. Como já mencionado neste capítulo, na seção 4.1, antes de executar o algoritmo, algumas configurações são necessárias para executar o algoritmo, como a do método de discretização do tipo EFD ou EWD, e também a divisão dos valores dos atributos em faixas e variação v.

4.2.1 Naive Bayes

Na tabela 8 pode-se verificar o resultado da aplicação do algoritmo e através dela percebe-se que o pior rótulo foi no *cluster* 1, com acurácia de 70%, e com isso deixa de representar nove registros no total de setenta amostras, mas nos outros dois *clusters* a acurácia sobe para 88%, com um erro de nove registros, porém, os rótulos nestes *clusters* são diferentes, coincidindo somente os valores das colunas **Fora da Faixa** e **Acurácia Parcial**.

	I	Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	Lkernel] $5.357 \sim 5.826$]	2.85%	21	70%
2	lkgroove	$] 5.791 \sim 6.55]$	8.57%	9	87.15%
3	wkernel	$[2.63 \sim 3.049]$	4.28%	9	87.15%

Tabela 8 – Resultado da rotulação com o algoritmo Naive Bayes

A última coluna, **Acurácia Parcial**, apresenta em porcentagem o grau de acerto, por *cluster*, dos registros que são representados pelo rótulo. Analisando-se a coluna Relevância da tabela 8 nota-se que os valores são baixos, contudo, uma vez escolhido o atributo rótulo, o grau de confiabilidade passa a ser o número de erros dele, pois quanto menores são os erros mais representabilidade possui o rótulo. Dessa forma, o menor valor de acurácia ficou em 70% (setenta por cento) no *cluster* 1, indicando que, dentre as setenta amostras, 21 (vinte e um) não são representadas pelo rótulo, e nos outros *clusters* acima de 87% (oitenta e sete por cento).

Segue abaixo o resultado do algoritmo Naive Bayes na base de dados **Seeds** com seus rótulos:

- $r_{c_1} = \{(Lkernel,]5.357 \sim 5.826])\}$
- $r_{c_2} = \{(lkgroove,]5.791 \sim 6.55])\}$
- $r_{c_3} = \{(wkernel, [2.63 \sim 3.049])\}$

4.2.2 Classification and Regression Trees - CART

Na tabela 9, que segue o mesmo modelo da tabela visto anteriormente, é apresentado o resultado da aplicação do algoritmo supervisionado na base Seeds. O CART é utilizado pela toolbox do MATLAB como algoritmo de classificação de árvore de decisão.

		Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	perimetro] 13.73 ~ 15.18]	5.71%	14	80%
2	lkgroove	$]5.791 \sim 6.55]$	5.71%	9	87.15%
3	perimetro	$[12.41 \sim 13.73]$	4.28%	5	92.8%

Tabela 9 – Resultado da aplicação do algoritmo CART

Analisando-se os rótulos encontrados, percebe-se que as acurácias do CART são melhores que as do algoritmo visto anteriormente e na coluna *Atributos* há uma repetição do atributo **perimetro** em dois clusters: *Kama* e *Canadian*. Na situação apresentada na tabela 9, esses atributos repetidos não representam as mesmas amostras na base de dados, porque, mesmo com o rótulo possuindo o mesmo atributo, as faixas de cada atributo são diferentes, tornando-os rótulos distintos.

O resultado da rotulação utilizando o algoritmo CART na base de dados **Seeds** tem como rótulos:

- $r_{c_1} = \{(perimetro,]13.73 \sim 15.18])\}$
- $r_{c_2} = \{(lkgroove,]5.791 \sim 6.55])\}$
- $r_{c_3} = \{(perimetro, [12.41 \sim 13.73])\}$

4.2.3 K-Nearest Neighbor - KNN

Na tabela 10 exibe-se o resultado da aplicação do KNN na base Seeds e os rótulos encontrados são os mesmos do CART, com uma diferença somente nos dados de relevância do atributo, o que não muda o grau de representatividade do rótulo.

Tabela 10 -	Rogultado	do o	nligaçã	io do	alcoritmo	WNN
Tabela 10 -	- nesunado) (la a	DHCaca	10 (IO	aigorumo) KININ

		Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	perimetro] $13.73 \sim 15.18$]	12.85%	14	80%
2	lkgroove	$]5.791 \sim 6.55]$	7.14%	9	87.15%
3	perimetro	$[12.41 \sim 13.73]$	5.71%	5	92.8%

O resultado da rotulação utilizando o algoritmo KNN na base de dados **Seeds** tem como rótulos:

- $r_{c_1} = \{(perimetro,]13.73 \sim 15.18])\}$
- $r_{c_2} = \{(lkgroove,]5.791 \sim 6.55])\}$
- $r_{c_3} = \{(perimetro, [12.41 \sim 13.73])\}$

4.2.4 Comparativo entre Algoritmos na Base de Dados Seeds

O CART e KNN foram, dentre os três algoritmos, os que obtiveram os rótulos com melhores acurácias, que por sua vez tiveram os mesmos rótulos em todos os três grupos: Kama, Rosa e Canadian. Analisando-se os resultados: o Naive Bayes no cluster 1, $r_{c_1} = \{(Lkernel,]5.357 \sim 5.826])\}$ foi o que obteve maior número de elementos fora da faixa, isso quer dizer que, no total de setenta amostras de dados no grupo, vinte e um ficaram de fora do rótulo, resultando na menor acurácia entre os três algoritmos, que tiveram quatorze amostras cada um; no cluster 2, os três algoritmos coincidiram os resultados dos rótulos com nove erros cada; e no cluster 3 (Canadian) mais uma vez CART e KNN tiveram rótulos com acurácias mais altas com número de erros iguais a cinco registros nos dois algoritmos, comparado com nove registros do Naive Bayes.

Para compreender melhor a representatividade do rótulo nos *clusters*, foram postos alguns gráficos apresentando o comportamento da base de dados em relação a alguns atributos. Com estes gráficos é possível visualizar se o rótulo está de fato representando um determinado grupo. Os gráficos são dispostos em duas dimensões e o atributo referente a cada eixo foi escolhido para melhor representar a amostra.

O gráfico da figura 17 contém uma relação dos atributos **Lkernel** com **lkgro-ove** e representa a amostra de dados dos três grupos: Kama, Rosa e Canadian, contudo o objetivo deste gráfico é apresentar o comportamento do rótulo no Naive Bayes, $r_{c_1} = \{(Lkernel,]5.357 \sim 5.826])\}$ no cluster 1, e poder visualizar a representatividade do rótulo no grupo.

O gráfico da figura 17 contém uma relação dos atributos **Lkernel** com **lkgroove** e representa a amostra de dados dos três grupos: Kama, Rosa e Canadian, contudo, o objetivo deste gráfico é apresentar o comportamento do rótulo no Naive Bayes, $r_{c_1} = \{(Lkernel,]5.357 \sim 5.826])\}$, no $cluster\ 1$ e poder visualizar a representatividade do rótulo no grupo.

Na situação da figura 17, pode-se perceber que o grupo kama (cluster 1) contém alguns erros, pois logo no início da faixa (Lkernel, $]5.357 \sim 5.826]) é fácil visualizar que alguns dados ficam fora da faixa, indicando que não estão sendo representados pelo rótulo, ocasionando os erros, contudo é possível ter uma impressão generalizada de todos os registros que o rótulo representa através dos valores de intervalo do rótulo.$

A figura 18 também apresenta a base Seeds, distinguindo os grupos pelas formas geométricas: quadrados (Kama), losango (Rosa) e triângulos (Canadian), mas com uma relação entre **lkgroove** e **wkernel** que fazem parte dos resultados de rotulação do Naive Bayes no cluster 2 $r_{c_2} = \{(lkgroove,]5.791 \sim 6.55])\}$ e no cluster 3 $r_{c_3} = \{(wkernel, [2.63 \sim 3.049])\}$.

O atributo **lkgroove** faz parte do rótulo encontrado no grupo *Rosa* (*cluster* 2) pelo Naive Bayes, representado no gráfico pelo eixo Y da figura 18 e sua faixa de dados é de

Figura 17 – Gráfico da disposição de elementos da Base Seeds entre os eixos **Lkernel** e **lkgroove**

Figura 18 – Gráfico da disposição de elementos da Base Seeds entre os eixos **Lkernel** e **lkgroove**

fácil visualização no gráfico. Os valores do eixo Y acima de 5.791 até 6.55 são representados por r_{c_2} do grupo Rosa, figurado pelo losango no gráfico da figura 18. Já o r_{c_3} possui o atributo **wkernel**, representado no gráfico no eixo X, possuindo uma faixa de dados a partir de 2.63 até 3.049 e através desse intervalo é possível notar que há alguns dados não pertencentes ao r_{c_3} do grupo Canadian. Com o gráfico fica fácil perceber que, na disposição das amostras, o grupo que mais se mistura é o Kama, implicando também na menor acurácia entre os rótulos. No outro gráfico, figura 19, são relacionados dois eixos

X e Y com os atributos **perimetro** e **lkgroove**, respectivamente, e através desse plano cartesiano é possível identificar todos os grupos da base Seeds. Os dois algoritmos CART e KNN possuem os mesmos resultados de rotulação para os três grupos mediante os dois atributos que estão representados no gráfico. Dessa forma, com essa amostra de dados é possível representar o espaço de dados dos rótulos encontrados em cada algoritmo.

Figura 19 – Gráfico da disposição de elementos da Base Seeds entre os eixos **Lkernel** e **lkgroove**

Os elementos do rótulo $r_{c_1} = \{(perimetro,]13.73 \sim 15.18])\}$ representam o grupo Kama, que estão simbolizados por quadrados no gráfico, e através do atributo **perimetro** no intervalo de]13.73 até 15.78] consegue-se visualizar no gráfico a amostra que o rótulo representa do $cluster\ 1\ (Kama)$, como também alguns dados que não estão neste intervalo configurando os erros.

No cluster 2 (Rosa) figurando no gráfico como um losango, pode-se perceber, através de seu rótulo $r_{c_2} = \{(lkgroove,]5.791 \sim 6.55])\}$, que o atributo lkgroove e seu intervalo estão bem definidos no gráfico. Qualquer valor no eixo Y no intervalo, a partir de 5.6791 até 6.55, é representado pelo rótulo r_{c_2} , mas mesmo com alguns erros visíveis na amostra, esse grupo foi o que ficou melhor delineado no gráfico e de fácil visualização para comprovar a representatividade dos rótulos encontrados pelos algoritmos CART e KNN. Já no cluster 3, Canadian, não é diferente mediante o rótulo encontrado pelos dois algoritmos $r_{c_3} = \{(perimetro, [12.41 \sim 13.73])\}$. A partir da faixa do r_{c_3} no atributo **perimetro**, as amostras representadas iniciam em 12.41 até 13.73, mas, mesmo no valor final do intervalo, em que se pode encontrar alguns erros, é possível mostrar que o r_{c_3} consegue representar o grupo Canadian.

4.3 Base de Dados 2 - Iris - Identificação de Tipos de Plantas

A base de dados Iris pertence à UCI Machine Learning, já usada em trabalhos como Lopes et al. (2016), Filho et al. (2015), e utilizada em reconhecimento de padrões de plantas por lidar com classes bem definidas, pois contém 3 classes de 50 instâncias cada, totalizando 150 registros de amostras de plantas. A base possui amostras com 3 tipos (FISHER, 1936):

- 50 elementos da classe *Iris-setosa*;
- 50 elementos da classe *Iris-versicolor*;
- 50 elementos da classe Iris-virginica.

Os atributos correspondentes são comprimento da sepala - SL, largura da sepala - SW, comprimento da pétala - PL e largura da pétala - PW, e através dessas características há uma classificação para dizer se o tipo de planta é: *Iris-setosa*, *Iris-versicolor* e *Iris-virginica*.

Seguindo a análise, semelhante a da base de dados anterior, foram realizados testes utilizando os algoritmos Naive Bayes, CART e KNN e seus resultados depositados em tabelas divididas em colunas no mesmo formato das anteriores: Cluster, Rótulo, Relevância, Fora da Faixa e Acurácia Parcial. Os clusters são dispostos em números correspondentes a seguinte sequência: (1) Iris-setosa, (2) Iris-versicolor e (3) Iris-virginica.

Os atributos correspondentes são: comprimento da sepala - SL, largura da sepala - SW, comprimento da pétala - PL e largura da pétala - PW, e através dessas características há uma classificação para dizer se o tipo de planta é: *Iris-setosa*, *Iris-versicolor* e *Iris-virginica*. Seguindo a análise, semelhante à da base de dados anterior, foram realizados testes utilizando-se os algoritmos Naive Bayes, CART e KNN e seus resultados depositados em tabelas divididas em colunas no mesmo formato das anteriores: **Cluster**, **Rótulo**, **Relevância**, **Fora da Faixa** e **Acurácia Parcial**. Os *clusters* são dispostos em números correspondentes à seguinte sequência: (1) *Iris-setosa*, (2) *Iris-versicolor* e (3) *Iris-virginica*.

Para gerar os resultados da aplicação do algoritmo na base de dados, foi definido o método de discretização tipo EWD (seção 2.2.1), a divisão em três faixas de valores R=3 para todos os atributos e inserido o valor de variação V=0%.

4.3.1 Naive Bayes

Através da tabela 11 são exibidos os resultados da rotulação de dados de todos os grupos: cluster 1 (Iris-setosa), cluster 2 (Iris-versicolor) e cluster 3 (Iris-virginica). O Naive Bayes encontrou o mesmo atributo para cada rótulo, mas os intervalos foram diferentes, assegurando-se que os rótulos se tornassem distintos.

	Ró	tulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Cluster(%)
1	petalwidth	$[0.1 \sim 0.9]$	42%	0	100%
2	petalwidth	$] 0.9 \sim 1.7]$	36%	2	94%
3	petalwidth] $1.7 \sim 2.5$]	20%	4	92%

Tabela 11 – Resultado da aplicação do algoritmo Naive Bayes

O fato de os rótulos apresentarem o mesmo atributo pode ser analisado na tabela 12, que expõe os valores de correlacionamento entre atributos. Esta é a matriz de atributos importante e através dela que é escolhido o atributo de maior valor. Esta tabela é dividida em linhas representando os grupos e em colunas representando os atributos.

Tabela 12 – Matriz de Atributos Importantes do algoritmo Naive Bayes na base Iris

		Atributos				
		sepallength	sepalwidth	petallength	petalwidth	
	1	14	16	26	42	
Clusters	2	16	12	14	36	
	3	14	16	14	20	

A tabela 12 mantém os resultados de correlacionamento entre os atributos, e quando ela está toda preenchida, é realizada uma varredura por linha para saber qual o maior valor, servindo para indicar qual o atributo será o rótulo, desta forma como todos os maiores números estão na coluna do atributo **petalwidth**, este atributo é o rótulo de cada cluster.

Os rótulos com o algoritmo Naive Bayes na base de dados Iris são dados abaixo:

A tabela 12 mantém os resultados de correlacionamento entre os atributos e quando ela está toda preenchida é realizada uma varredura por linha para saber qual o maior valor, servindo para indicar qual o atributo será o rótulo; desta forma, como todos os maiores números estão na coluna do atributo **petalwidth**, este atributo é o rótulo de cada *cluster*. Os rótulos com o algoritmo Naive Bayes na base de dados Iris são dados abaixo:

- $r_{c_1} = \{(petalwidth, [0.1 \sim 0.9])\}$
- $r_{c_2} = \{(petalwidth,]0.9 \sim 1.7])\}$
- $r_{c_3} = \{(petalwidth,]1.7 \sim 2.5])\}$

4.3.2 Classification and Regression Trees - CART

A aplicação do algoritmo CART na base de dados Iris gerou a tabela 14 como resultado e, ao examiná-la, pode-se observar uma semelhança com a rotulação do algoritmo anterior.

Ao se analisar a tabela, percebe-se a importância do atributo **petalwidth** para essa base, pois este tem participação nos três *clusters:Iris-setosa*, *Iris-versicolor*, *Iris-*

	Rót	tulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Cluster(%)
1	petalwidth	$[0.1 \sim 0.9]$	38%	0	100%
2	petalwidth	$] 0.9 \sim 1.7]$	24%	2	94%
3	petalwidth] $1.7 \sim 2.5$]	24%	4	92%

Tabela 13 – Resultado da aplicação do algoritmo CART

virginica e também diferenciados apenas pelo intervalo de dados. Este resultado, para um especialista, ajudaria em uma tomada de decisão, pois a partir da leitura destes rótulos, para qualquer novo registro, basta verificar o valor da largura da pétala (**petalwidth**) para poder classificá-la em algum grupo.

Seguem abaixo os rótulos na base de dados Iris aplicado pelo algoritmo CART:

- $r_{c_1} = \{(petalwidth, [0.1 \sim 0.9])\}$
- $r_{c_2} = \{(petalwidth,]0.9 \sim 1.7])\}$
- $r_{c_3} = \{(petalwidth,]1.7 \sim 2.5])\}$

4.3.3 K-Nearest Neighbor - KNN

No resultado da rotulação utilizando-se KNN, constatam-se os mesmos rótulos dos dois algoritmos Naive Bayes e CART, mas com algumas diferenças nas relevâncias de atributos, porém, na coluna **Fora da Faixa** não houve alterações.

Tabela 14 – Resultado da aplicação do algoritmo KNN

	Ró	tulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Cluster(%)
1	petalwidth	$[0.1 \sim 0.9]$	50%	0	100%
2	petalwidth	$] 0.9 \sim 1.7]$	36%	2	94%
3	petalwidth] $1.7 \sim 2.5$]	24%	4	92%

Seguem abaixo os rótulos na base de dados Iris aplicado pelo algoritmo KNN:

- $r_{c_1} = \{(petalwidth, [0.1 \sim 0.9])\}$
- $r_{c_2} = \{(petalwidth,]0.9 \sim 1.7])\}$
- $r_{c_3} = \{(petalwidth,]1.7 \sim 2.5])\}$

4.3.4 Comparativo entre Algoritmos na Base de Dados Iris

Os resultados dos algoritmos na criação dos rótulos, nesta base de dados, foram bastante concisos entre eles, pois cada rótulo possui somente um atributo e faixa de valor representando o grupo e os três algoritmos Naive Bayes, CART e KNN tiveram exatamente os mesmos rótulos em todos os três *clusters*.

Uma forma de comprovar a qualidade do rótulo e mostrar que de fato ele cumpre seu papel de identificar o grupo, é colocar em prática um exemplo que pode ser visto na figura 20. Para essa análise, o gráfico exibe a relação de dois atributos representados pelos eixos X e Y, facilitando a visualização do comportamento dos três grupos: *Iris-setosa*, *Iris-versicolor* e *Iris-viginica*.

Figura 20 – Gráfico da disposição de elementos da Base Iris entre os eixos **petallength** e **petalwidth**

Todos os algoritmos, Naive Bayes, CART e KNN, encontraram os mesmos rótulos em todos os clusters da Iris e ao se analisar o gráfico, o cluster 1 (Iris-setosa), é possível perceber uma relação bem definida entre os demais grupos, pois todos os elementos que possuem largura da pétala (petalwidth) variando de 0.1 até 0.9 participam do grupo Iris-setosa, portanto, esse rótulo comprovadamente representa este grupo. Analisando-se os outros grupos através do gráfico da figura 20, percebe-se que a amostra de dados dos grupos Iris-versicolor e Iris-virginica contém elementos que se misturam, não deixando um ponto de corte tão preciso quanto o da Iris-setosa e isso acaba por também ocasionar ao rótulo alguns erros identificados nos clusters 1 e 2.

4.4 Base de Dados 3 - Glass - Identificação de Tipos de Vidros

Essa base ficou conhecida pelo Dr. Vina Spiehler, Ph.D. da DABFT Diagnostic Products Corporation, que conduziu pesquisas e testes de comparação em seu sistema baseado em regras, determinando se o tipo de vidro era temperado ou não. Institutos de investigação criminológica motivaram os estudos de classificação de tipos de vidro, porque, em uma cena de crime, uma classificação de tipos de vidro corretamente identificada pode

ser utilizada como prova, ajudando diretamente na investigação (EVETT; SPIEHLER, 1988).

Possui um total de 214 instâncias, caracterizados por 9 atributos: índice de refração (RI) e os demais atributos correspondentes à porcentagem do óxido no Sódio (Na), Magnésio (Mg), Alumínio (Al), Silício (Si), Potássio (K), Cálcio (Ca), Bário (Ba) e Ferro (Fe).

Os tipos de vidro (atributo classe) foram divididos em 7 grupos distintos:

- janelas de construção vidro temperado: 70 registros
- janelas de construção vidro não-temperado: 76 registros
- janelas de veículos vidro temperado: 17 registros
- janelas de veículos vidro não-temperado: 0 registro
- recipientes: 13 registros
- louças de mesa: 9 registros
- lâmpadas: 29 registros

Essa é uma base de dados diferente das demais por possuir mais grupos e, especificamente, o grupo de janelas de veículos - vidro não-temperado, que não possuem amostras de dados para exemplificar. Nos resultados dos rótulos exibidos nas tabelas adiante a coluna *Cluster*, que exibe uma sequência numérica dos grupos, não contemplará o grupo janelas de veículos - vidro não-temperado, pois não há exemplos de dados para definir o grupo, ficando somente seis grupos determinados na seguinte sequência : (1) janelas de construção - vidro temperado, (2) janelas de construção - vidro não-temperado, (3) janelas de veículos - vidro temperado, (4) recipientes , (5) louças de mesa e (6) lâmpadas.

Nos testes desenvolvidos nesta pesquisa, os valores de referência foram R=4 para o número de faixas. O método de discretização e também a variância V sofreu alterações nas execuções nos próprios algoritmos para melhorar seus resultados. O que mais diferenciou os resultados desta base foi a necessidade de se utilizarem valores de V bastante altos para poder conseguir criar rótulos distintos.

4.4.1 Naive Bayes

Na aplicação desse algoritmo, as melhores configurações para rotulação foram através do método EWD de discretização e a variação V=77%, que influencia diretamente nas escolhas dos atributos.

A tabela 15 apresenta os seis clusters nas ordens sequenciais:(1) janelas de construção - vidro temperado, (2) janelas de construção - vidro não-temperado, (3) janelas de veículos - vidro temperado, (4) recipientes, (5) louças de mesa e (6) lâmpadas, e junto a essa coluna são atributos e suas relevâncias com os erros (Fora da Faixa) e acurácia parcial indicada para cada atributo junto ao cluster.

		Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	Ba	$[0.0 \sim 0.7875]$	91%	0	100%
1	Fe	$[0.0 \sim 0.1275]$	58%	15	78.6%
	Mg	$] 3.3675 \sim 4.49]$	14%	25	68%
2	K	$[0.0 \sim 1.5525]$	11%	0	100%
<u> </u>	Ba	$[0.0 \sim 0.7875]$	85%	1	98.7%
	Fe	$[0.0 \sim 0.1275]$	51%	23	69.8%
	Na	$]12.3925 \sim 14.055]$	17%	3	82.4%
3	Ba	$[0.0 \sim 0.7875]$	94%	0	100%
	Fe	$[0.0 \sim 0.1275]$	70%	3	82.4%
	Mg	$[0.0 \sim 1.1225]$	46%	5	61.6%
	Al	$] 1.0925 \sim 1.895]$	15%	4	69.3%
4	K	$[0.0 \sim 1.5525]$	15%	3	77%
	Ba	$[0.0 \sim 0.7875]$	84%	1	92.4%
	Fe	$[0.0 \sim 0.1275]$	84%	2	84.7%
	K	$[0.00 \sim 1.5525]$	100%	0	100%
5	Ba	$[0.0 \sim 0.7875]$	100%	0	100%
	Fe	$[0.0 \sim 0.1275]$	100%	0	100%
	RI	$[1.511150 \sim 1.516845]$	6%	11	62.1%
	Na	$]14.055 \sim 15.7175]$	0%	6	79.4%
	Mg	$[0.0 \sim 1.1225]$	68%	6	79.4%
	Al	$] 1.895 \sim 2.6975]$	6%	11	62.1%
	Si	$]72.61 \sim 74.01]$	10%	6	79.4%
	K	$[0.0 \sim 1.5525]$	15%	2	93.2%
	Ca	$[8.12 \sim 10.81]$	0%	3	89.7%
6	Ba	$[0.0 \sim 0.7875]$	10%	15	48.3%
	Fe	$[0.0 \sim 0.1275]$	58%	0	100%

Tabela 15 – Resultado da aplicação do algoritmo Naive Bayes

Analisando-se a tabela 15 percebe-se, através da coluna Relevância, que entre os clusters 1 ao 3 o atributo ${\bf Ba}$ é mais relevante com a mesma faixa de valor. Dessa forma, isso configura uma ambiguidade de rótulos entre três grupos, i.e., o mesmo rótulo está representando três grupos ao mesmo tempo. A solução para evitar a ambiguidade entre rótulos é agregar mais atributos de menor relevância considerando valores para variância V até que os rótulos se tornem únicos por grupo.

Sabe-se que, ao incluir atributos de menor relevância nos rótulos para deixá-los únicos, isso resulta na diminuição da acurácia média do grupo, porém essa diminuição de confiança do rótulo é necessária para manter a representatividade dele. Essa situação ocorreu com o cluster 6, que possuiu umas das menores acurácias médias, devido ao alto valor da variância, V=77%, resultando também em um rótulo com todos os atributos.

Considerando-se a tabela 15, o cluster 5 foi o único a apresentar um rótulo com três atributos com relevância de 100% e, mesmo com V=77%, não foi adicionado nenhum outro atributo menos relevante ao rótulo, obtendo-se o valor de 100% na acurácia média do grupo. As menores acurácias médias, por grupo, foi do cluster 4 (**recipientes**) e cluster 6 (**lâmpadas**), com 77% e 77.06% respectivamente.

Em análise a um fato que ocorreu em específico no cluster 6, foi que o maior valor

de relevância do cluster é do atributo \mathbf{Mg} de 68%, visto que a variância é igual a V=77%, e tem o efeito de adicionar todos os atributos que possuem valores abaixo dele no rótulo, dessa forma o atributo \mathbf{Na} com relevância de 0% também é adicionado ao rótulo. Uma vez que o atributo faz parte do rótulo é calculado qual faixa de valor, do atributo, possui mais elementos. Então o motivo de um atributo que tem 0% de relevância, entre atributos, e ter 86.3% de acurácia é justificado pelo fato de contabilizar os registros que possuem valores de \mathbf{Na} no intervalo $]14.055 \sim 15.7175]$.

Em análise a um fato que ocorreu em específico no cluster 6, verificou-se que o maior valor de relevância do cluster é do atributo \mathbf{Mg} , de 68%, sendo menor que o valor de variância igual a V=77%. Uma vez que a variância tenha um valor maior do que relevância do atributo do cluster, então todos os atributos que possuem o valor abaixo da variância serão adicionados ao rótulo; dessa forma, o atributo \mathbf{Na} , com relevância de 0%, também é adicionado ao rótulo, e calculada qual faixa de valor do atributo possui mais elementos. Então, uma vez que o atributo faz parte do rótulo, irá ser contabilizado o número de registros que estejam entre o intervalo do atributo e calculado sua acurácia.

De acordo com a aplicação do Naive Bayes na base de dados **Glass** os rótulos são os seguintes:

```
• r_{c_1} = \{(Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}

• r_{c_2} = \{(Mg, ]3.3675 \sim 4.49]), (K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}

• r_{c_3} = \{((Na, ]12.3925 \sim 14.055]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}

• r_{c_4} = \{(Mg, [0.0 \sim 1.1225]), (Al, ]1.0925 \sim 1.895]), (K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}

• r_{c_5} = \{(K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}

• r_{c_6} = \{(RI, [1.511150 \sim 1.516845]), (Na, ]14.055 \sim 15.7175]), (Mg, [0.0 \sim 1.1225]), (Al, ]1.895 \sim 2.6975]), (Si, ]72.61 \sim 74.01]), (K, [0.0 \sim 1.5525]), (Fe, [0.0 \sim 0.1275])\}
```

4.4.2 Classification and Regression Trees - CART

Por meio de testes foi descartada a utilização do método de discretização EFD e adotado o EWD, em virtude da diminuição de erros por atributo em comparação ao outro método, e na divisão de faixas foi mantido R=4. Quanto à variável V, houve alteração em relação ao algoritmo anterior, mas mesmo assim manteve-se um valor alto com V=71%, em razão do número de clusters com rótulos iguais. Este aumento da variável V tem influência direta, diminuindo a acurácia média do cluster, embora seja justificado esse aumento de V devido não poder haver repetição dos rótulos nos clusters.

A execução do CART obteve os resultados apresentados na tabela 16.

Rótulos					
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	Ba	$[0.0 \sim 0.7875]$	95%	0	100%
1	Fe	$[0.0 \sim 0.1275]$	51%	15	78.6%
	Mg	$] 3.3675 \sim 4.49]$	17%	25	68%
2	Ba	$[0.0 \sim 0.7875]$	84%	1	98.7%
	Fe	$[0.0 \sim 0.1275]$	43%	23	69.8%
	K	$[0.0 \sim 1.5525]$	23%	0	100%
3	Ba	$[0.0 \sim 0.7875]$	88%	0	100%
	Fe	$[0.0 \sim 0.1275]$	70%	3	82.7%
	Mg	$[0.0 \sim 1.1225]$	30%	5	61.6%
	Al	$] 1.43 \sim 1.83]$	15%	4	69.3%
4	K	$[0.0 \sim 1.5525]$	15%	3	77%
	Ba	$[0.0 \sim 0.7875]$	76%	1	92.4%
	Fe	$[0.0 \sim 0.1275]$	69%	2	84.7%
	Mg	$[0.0 \sim 1.1225]$	33%	5	44.5%
5	K	$[0.00 \sim 1.5525]$	100%	0	100%
9	Ba	$[0.0 \sim 0.7875]$	100%	0	100%
	Fe	$[0.0 \sim 0.1275]$	100%	0	100%
6	Mg	$[0.0 \sim 1.1225]$	65%	6	79.4%
	K	$[0.0 \sim 1.5525]$	48%	2	93.2%
	Fe	$[0.0 \sim 0.1275]$	79%	0	100%

Tabela 16 – Resultado da aplicação do algoritmo CART

As acurácias parciais exibidas na tabela 16 foram bem diversificadas, bem como o número de atributos por rótulo, embora mais uma vez os elementos **Ba** e **Fe** sejam os atributos que aparecem com mais frequência mantendo os mesmos intervalos de dados. Somente no *cluster* 6 é que o **Ba** não participa do rótulo e **Fe** possui o maior valor de relevância, mas em todos os outros o valor de relevância do **Ba** é maior que os outros atributos. Fazendo um cálculo da acurácia média por grupo, os valores variam de 77%, o menor valor no *cluster* 4 (**recipientes**), e 90.8%, o maior valor no *cluster* 6 (**lâmpadas**).

De acordo com a aplicação do CART na base de dados **Glass**, os rótulos são os seguintes:

- $r_{c_1} = \{ (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275]) \}$
- $r_{c_2} = \{(Mg, [3.3675 \sim 4.49]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}$
- $r_{c_3} = \{((K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}$
- $r_{c_4} = \{(Mg, [0.0 \sim 1.1225]), (Al,]1.0925 \sim 1.895]), (K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}$
- $r_{c_5} = \{(Mg, [0.0 \sim 1.1225]), (K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]), (Fe, [0.0 \sim 0.1275])\}$
- $r_{c_6} = \{(Mg, [0.0 \sim 1.1225]), (K, [0.0 \sim 1.5525]), (Fe, [0.0 \sim 0.1275])\}$

4.4.3 K-Nearest Neighbor - KNN

Na tabela 17 é apresentado o resultado da execução do algoritmo KNN na base de dados Glass, aplicando-se o método de discretização EWD, com valor da variância

V=81% e alterando-se para R=3. Na mesma situação do Naive Bayes, o *cluster* 6 recebeu um rótulo com todos os atributos pelo alto valor de V; embora necessário para retirar as ambiguidades dos rótulos, a consequência é aumentar o número de atributos nos rótulos, implicando também na diminuição da acurácia média por grupo.

	-	Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
	Al	$[0.29 \sim 1.36]$	15%	10	85.8%
1	K	$[0.0 \sim 2.07]$	24%	0	100%
1	Ba	$[0.0 \sim 1.05]$	95%	0	100%
	Fe	$[0.0 \sim 0.17]$	64%	8	88.6%
	Mg	$] 2.993333 \sim 4.49]$	18%	19	75%
2	K	$[0.0 \sim 2.07]$	18%	0	100%
Z	Ba	$[0.0 \sim 1.05]$	92%	1	98.7%
	Fe	$[0.0 \sim 0.17]$	51%	16	79%
3	Ba	$[0.0 \sim 1.05]$	94%	0	100%
Э	Fe	$[0.0 \sim 0.17]$	70%	2	88.3%
	Mg	$[0.0 \sim 1.496667]$	53%	5	61.6%
	Al	$] 1.36 \sim 2.43]$	15%	3	77%
4	K	$[0.0 \sim 2.07]$	15%	2	84.7%
	Ba	$[0.0 \sim 1.05]$	84%	1	92.4%
	Fe	$[0.0 \sim 0.17]$	84%	2	84.7%
	K	$[0.00 \sim 2.07]$	100%	0	100%
5	Ba	$[0.0 \sim 1.05]$	100%	0	100%
	Fe	$[0.0 \sim 0.17]$	100%	0	100%
	RI	$[1.511150 \sim 1.516845]$	0%	4	86.3%
	Na	$]12.946667 \sim 15.163333]$	3%	2	93.2%
	Mg	$[0.0 \sim 1.1225]$	79%	6	79.4%
	Al	$[0.0 \sim 1.496667]$	6%	10	65.6%
6	Si] $71.676667 \sim 73.543333$]	6%	6	79.4%
	K	$[0.0 \sim 2.07]$	55%	1	96.6%
	Ca	$[5.43 \sim 9.016667]$	3%	7	75.9%
	Ba	$[0.0 \sim 1.05]$	20%	14	51.8%
	Fe	$[0.0 \sim 0.17]$	75%	0	100%

Tabela 17 – Resultado da aplicação do algoritmo KNN

Os resultados apresentados na tabela 17 apresentaram valores de intervalos diferentes dos demais algoritmos por suas faixas serem diferentes, pois foi utilizado um R=3 ao invés de R=4. Essa mudança de valor do número de faixas não altera os atributos rótulo, uma vez que a escolha do atributo rótulo é pelo valor de relevância dele junto aos demais.

Os rótulos sugeridos na tabela 17 apresentam em todos os clusters os elementos **Ba** e **Fe**, mantendo a mesma faixa de dados. O *cluster* 6 é aquele no qual o **Ba** possui menor valor de relevância em relação aos demais rótulos, por ser atributo adicionado para evitar ambiguidade de rótulo, embora nos outros clusters seu valor de relevância sejam os mais altos, empatando nos *cluster* 4 e 5, com 84% e 100% respectivamente.

O cluster 6 teve o mesmo efeito do algoritmo Naive Bayes mediante uma variância com valor mais alto ao maior valor de relevância. Nesse caso, todos os atributos são incluídos no rótulo, até os que têm valores de relevância 0%. É o que aconteceu em relação do atributo \mathbf{RI} , com 0% de relevância e acurácia de 86.3

De acordo com a aplicação do KNN na base de dados **Glass**, os rótulos são os seguintes:

- $r_{c_1} = \{(Al, [0.29 \sim 1.36]), (K, [0.0 \sim 2.0700]), (Ba, [0.0 \sim 1.05]), (Fe, [0.0 \sim 0.17])\}$
- $r_{c_2} = \{(Mg, [2.993333 \sim 4.490]), (K, [0.0 \sim 2.0700]), (Ba, [0.0 \sim 1.05]), (Fe, [0.0 \sim 0.17])\}$
- $r_{c_3} = \{(Ba, [0.0 \sim 1.0500]), (Fe, [0.0 \sim 0.17])\}$
- $r_{c_4} = \{(Mg, [2.993333 \sim 4.490]), (Al, [0.29 \sim 1.36]), (K, [0.0 \sim 2.0700]), (Ba, [0.0 \sim 1.0500]), (Fe, [0.0 \sim 0.17])\}$
- $r_{c_5} = \{ (K, [0.0 \sim 2.0700]), (Ba, [0.0 \sim 1.0500]), (Fe, [0.0 \sim 0.17000]) \}$
- $r_{c_6} = \{(RI, [1.511150 \sim 1.516845]), (Na,]12.946667 \sim 15.163333]), (Mg, [0.0 \sim 1.1225]), (Al, [0.0 \sim 1.496667]), (Si,]71.676667 \sim 73.543333]), (K, [0.0 \sim 2.07]), (Fe, [0.0 \sim 0.17])\}$

4.4.4 Comparativo entre Algoritmos na Base de Dados Glass

Os valores que compõem a base Glass, por se tratarem de representações de elementos químicos através de atributos, possuem em cada um deles uma quantidade em porcentagem de óxido e como é um valor bastante complexo acaba por se tornar uma base com valores distintos em cada atributo.

A tabela 18 apresenta todos os nove registros do *cluster* 5 - louças de mesa - possuindo os valores respectivos de cada elemento em suas colunas.

RI	Na	Mg	Al	Si	K	Ca	Ba	Fe
1,51299	14,4	1,74	1,54	74,55	0	7,59	0	0
1,51115	17,38	0	0,34	75,41	0	6,65	0	0
1,51829	14,46	2,24	1,62	72,38	0	9,26	0	0
1,51888	14,99	0,78	1,74	72,5	0	9,95	0	0
1,51937	13,79	2,41	1,19	72,76	0	9,77	0	0
1,51969	14,56	0	0,56	73,48	0	11,22	0	0
1,51905	14	2,39	1,56	72,37	0	9,57	0	0
1,51916	14,15	0	2,09	72,74	0	10,88	0	0
1,51852	14,09	2,19	1,66	72,67	0	9,32	0	0

Tabela 18 - Cluster 5 - Louças de mesa - Base Glass

No caso do cluster 5 apresentado na tabela 18, percebe-se nessas amostras uma grande repetição de valores 0 (zero) em determinados atributos: **K**, **Ba** e **Fe**. Posto isso, o cluster 5 serve como exemplo prático para aferir a acurácia do rótulo, visto que com uma simples análise deste cluster é possível perceber um rótulo que o representa.

Os algoritmos que sugeriram os mesmos rótulos foram Naive Bayes e KNN, encontrando 100% de acurácia média no *cluster* 5, rc5 = (K,[0.0 2.0700]), (Ba,[0.0 1.0500]),

(F e,[0.0 0.17000]), e o CART teve um atributo a mais inserido em seu rótulo, que lhe custou uma acurácia média de 86.12%, $r_{c_5} = \{(Mg, [0.0 \sim 1.1225]), (K, [0.0 \sim 1.5525]), (Ba, [0.0 \sim 0.7875]),$

As informações da tabela 19 mostram as acurácias médias calculadas a partir das acurácias parciais dos clusters, servindo de referência para mensurar o quanto o rótulo está representando os clusters.

Clusters	Naive Bayes	CART	KNN
1	89.3%	89.3%	93.6%
2	84.12%	78.83%	88.17%
3	88.2%	94.23%	94.15%
4	77%	77%	80.08%
5	100%	86.12%	100%
6	77.06%	90.86%	80.91%

Tabela 19 – Acurácia média da Base Glass por *clusters*

Analisando os resultados da tabela 19 percebe-se que a acurácia média por rótulo no cluster 2 pelo CART foi de 78.83%, no cluster 4 nos algoritmos Naive Bayes e CART foram de 77% e no cluster 6 pelo Naive Bayes foi de 77.06%, e os demais, acima de 80%. Estes são índices indicando que cada tipo de vidro é representado de forma satisfatória pelos rótulos dos grupos

Analisando-se os resultados da tabela 19, percebe-se que a acurácia média por rótulo no *cluster* 2, pelo CART, foi de 78.83%; no *cluster* 4, nos algoritmos Naive Bayes e CART, foi de 77%; e no *cluster* 6, pelo Naive Bayes, foi de 77.06%; os demais, acima de 80%. Estes são índices indicando que cada tipo de vidro é representado de forma satisfatória pelos rótulos dos grupos

4.5 Base de Dados 4 - Wine - Dados de Reconhecimento de vinhos

Essa base (AEBERHARD et al., 1992) possui dados que são resultados de uma análise química de vinhos em uma mesma região da Itália, mas com três tipos de cultivos diferenciados, resultando em três classes distintas (tipos de vinho) e totalizando 178 registros. Por meio desta análise, foram determinadas treze características determinantes para classificação do tipo de vinho, que estão distribuídas em 178 amostras. Esses treze atributos são: (1) álcool, (2) ácido málico - AM, (3) cinzas, (4) alcalinidade das cinzas - AC, (5) magnésio, (6) total de fenois - TF, (7) flavonoides, (8) fenóis não-flavonoides - FnF, (9) proantocianidinas, (10) intensidade da cor - IC, (11) matiz, (12) OD280/OD315 de vinhos diluídos - OD e (13) prolina.

A divisão em número de instâncias por classe são:

- classe 1: 59 elementos;
- classe 2: 71 elementos;
- classe 3: 48 elementos;

Na descrição da base Wine⁵ não é dito quais seriam os nomes das classes (tipos de vinho) designadas como classe 1, 2 ou 3, portanto, os rótulos encontrados pelos algoritmos são apresentados em tabelas e na coluna **Cluster** as informações são inseridas por sequência numérica: *cluster* 1, *cluster* 2, *cluster* 3, com 59, 71 e 48 registros respectivamente.

O método de discretização variou dentre os algoritmos e prevaleceu os que obtiveram melhores resultados (menos erros) nos rótulos encontrados, mantendo-se o R=3 para todos os atributos e também a variância V=0%.

4.5.1 Naive Bayes

Os rótulos encontrados após aplicação do Naive Bayes são apresentados na tabela 20 e separados por *cluster* 1, 2 e 3, representando os três tipos de vinho. Foi utilizado o método de discretização EWD para demarcar os limites das faixas de dados dos atributos.

Rótulos					
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
	AM	$] 1.71 \sim 2.89]$	8%	28	52.6%
1	magnesium	$] 95.00 \sim 113.00]$	8%	24	59.4%
	proline] $880.00 \sim 1680.00$]	8%	10	83.1%
2	alcohol	$[11.03 \sim 12.64]$	11%	15	95%
3	FnF	$0.44 \sim 0.66$	10%	22	54.2%

Tabela 20 – Resultado da aplicação do algoritmo Naive Bayes

O cluster 1 foi o único a apresentar três atributos no rótulo, com relevância de 8% cada; dois desses atributos, **AM** e **magnesium**, possuem acurácias parciais baixas, 52.6% e 59.4% respectivamente e outro, **prolina**, com 83.1%, totalizando uma acurácia média aproximada no grupo de 65%. Em números de registros, o rótulo do cluster 1 consegue representar 19 registros dos 59 do grupo. O cluster 2 foi o que apresentou melhor acurácia, com 95%, representando 60 registros dos 71 do grupo, e o cluster 3 com a pior acurácia, representando 26 amostras, um pouco mais da metade dos 48 registros do grupo.

De acordo com a aplicação do Naive Bayes na base de dados Wine, os rótulos são:

- $r_{c_1} = \{(AM,]1.71 \sim 2.89]), (magnesium,]95.00 \sim 113.00]),$ $(proline,]880.00 \sim 1680.00])\}$
- $r_{c_2} = \{(alcohol, [11.03 \sim 12.64])\}$
- $r_{c_3} = \{ (FnF,]0.44 \sim 0.66]) \}$

⁵ https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names

4.5.2 Classification and Regression Trees - CART

A tabela 21 apresenta os rótulos encontrados pelo CART na base Wine utilizando o número de faixas R=3 e, dentre os *clusters*, percebe-se que o *cluster* 2 foi o que obteve a melhor acurácia, 76.1%. Foram realizados vários testes alterando o número de faixas, mas nenhuma melhora significativa nos erros foi encontrada nos rótulos dos *clusters*.

		Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	AC	$[10.60 \sim 17.066667]$	11%	27	54.3%
2	magnesium	$[70.00 \sim 100.666667]$	9%	17	76.1%
3	FnF	$] 0.483333 \sim 0.660]$	14%	27	43.8%

Tabela 21 – Resultado da aplicação do algoritmo CART

Nos rótulos sugeridos pelo CART, os valores de porcentagem de correlacionamento entre as variáveis, coluna **Relevância**, foram baixos, não passando de 14% nos grupos, indicando um baixo grau de correlação entre esse atributo e os demais. Embora a relevância do atributo implique na escolha dele como rótulo, a acurácia depende da divisão de valores da faixa do atributo, pois será contabilizado o número de registros em cada faixa.

Logo os rótulos da aplicação do CART na base de dados Wine são:

- $r_{c_1} = \{(AC, [10.60 \sim 17.066667])\}$
- $r_{c_2} = \{(magnesium, [70.00 \sim 100.666667])\}$
- $r_{c_3} = \{ (FnF, [0.483333 \sim 0.660]) \}$

4.5.3 K-Nearest Neighbor - KNN

No resultado do KNN, na tabela 22, percebe-se o atributo FnF sendo rótulo do cluster 1 e 3, mediante faixas distintas. O mesmo atributo se repete no cluster 3 dos três algoritmos, ainda que no Naive Bayes fora utilizado outro método de discretização, mantendo o atributo FnF, mas alterando os intervalos da faixa.

		Rótulos			
Cluster	Atributos	Faixa	Relevância(%)	Fora da Faixa	Acurácia Parcial(%)
1	FnF	$[0.13 \sim 0.306667]$	13%	20	66.2%
9	alcool	$[11.03 \sim 12.296667]$	11%	33	53.6%
۷	AC] $17.066667 \sim 23.533333$]	11%	21	70.5%
9	$\Gamma_{r_0}\Gamma$	1 0 400000 0 66 1	2007	27	19 007

Tabela 22 – Resultado da aplicação do algoritmo KNN

Os rótulos encontrados após a execução do KNN na base Wine são:

• $r_{c_1} = \{(FnF, [0.13 \sim 0.306667])\}$

```
• r_{c_2} = \{(alcool, [11.03 \sim 12.296667]), (AC, [17.066667 \sim 23.533333])\}
```

4.5.4 Comparativo entre Algoritmos na Base de Dados Wine

No geral, as acurácias foram bastante baixas entre os algoritmos e a única semelhança entre os rótulos aconteceu no cluster 3, o qual foi idêntico entre CART, KNN e Naive Bayes, mas, nesse último, houve diferença do intervalo de dados, ocasionando alteração na acurácia. Na execução do Naive Bayes, foi utilizada discretização EFD com variação na faixa 1 de $[0.13 \sim 0.29]$, na faixa 2 $]0.29 \sim 0.44]$ e na faixa 3 $]0.44 \sim 0.66]$ e os outros dois algoritmos utilizaram EWD variando na faixa 1 de $[0.13 \sim 0.3067]$, na faixa 2 $]0.3067 \sim 0.483333]$ e na faixa 3 $]0.483333 \sim 0.66]$. A faixa 3 do método de discretização EFD ficou maior e, por conseguinte, mais registros foram representados, aumentando a acurácia. Dos três algoritmos, o Naive Bayes obteve melhores acurácias nos rótulos dos clusters 2 e 3 e foi o único que no cluster 1 apresentou, em um mesmo rótulo, três atributos para representar o grupo. Uma forma de melhor explicar quais registros o rótulo está representando foi adicionar a tabela 23, que exibe todos os 59 registros do grupo 1, mas com somente três atributos. Esta amostra servirá de exemplo para visualizar quais os registros são representados pelo rótulo do cluster 1 do Naive Bayes.

A tabela possui quatro colunas, sendo a primeira um índice da linha e as outras três os atributos correspondentes ao rótulo. No cabeçalho da tabela 23 são exibidos os atributos com seus respectivos símbolos. Cada símbolo tem a função visual de marcar a linha que faz parte do rótulo r_{c_1} , ou seja, destaca qual atributo e faixa são representados na amostra:

```
• (AM, ]1.71 \sim 2.89]) - \Box
```

- $(magnesium,]95.00 \sim 113.00])$ \boxtimes
- $(proline,]880.00 \sim 1680.00]) \bigcirc$

Então, quando a linha for representada por um atributo e seu intervalo, este será marcado de acordo com o símbolo que ele representa e, caso esteja com os três símbolos, então a linha é representada pelo rótulo r_{c_1} , e, dessa forma, é possível visualizar na própria base quais amostras o rótulo representa e não representa.

Como exemplo, verificando a linha 3 percebe-se que ela está na faixa de representação tanto do atributo **magnesium** como também do atributo **proline**, mas não é representada pelo atributo \mathbf{AM} por possuir o valor 4.04, sendo que o limite do intervalo do atributo \mathbf{AM} é 2.89. Considerando essa informação, essa linha não consegue ser representada pelo três atributos e, por conseguinte, não é representada pelo rótulo r_{c_1} do Naive Bayes. Então, através da tabela 23 é contabilizado que o rótulo consegue representar 19

[•] $r_{c_3} = \{ (FnF,]0.483333 \sim 0.66]) \}$

Tabela 23 – Amostra da Base de Dados Wine com somente três atributos pertencentes ao cluster 1 do algoritmo Naive Bayes

n.	AM □	magnesium 🛛	proline ()		10	AM □	magnesium 🛛	proline ()	
1	3,98	103	680		n. 31	1,92	120	1280	
2	1,95	113	1480		32	1,92	102	1270	
3	4,04	111	1080		33	1,64	97	1045	
4	1,77	107	885		34	1,64	95	1045	
5	1,89	101	1095		35	1,64	110	880	0
6	3,99	128	760		36	1,64	126	780	
7	1,43	108	1285	⊠O	37	1,66	106	1515	
8	3,84	90	1035	0	38				M O
9	1,68	101	985			1,8	110	1095	
10	1,67	118	1060	0	39	1,86	101 98	1035 1105	
11	1,77	93	1195			1,65			8 0
12	1,7	118	970	0	41	1,81	96	845	
13	1,71	117	795		42	1,73	92	1150	
14	3,1	116	845		43	1,73	108	1260	
15	1,73	116	1120		44	2,05	124	830	
16	1,35	98	1045	M O	45	1,9	115	1375	
17	1,75	111	1190		46	1,57	115	1130	0
18	1,72	94	1285		47	1,73	89	1320	
19	1,87	96	1290		48	1,48	95	1280	0
20	3,8	102	770	\boxtimes	49	1,5	98	1020	M O
21	2,36	101	1185		50	1,5	101	1285	M O
22	1,68	96	1035	MO.	51	1,87	102	1547	
23	2,59	118	735		52	1,83	104	990	
24	1,81	100	920		53	1,59	108	1680	
25	1,71	127	1065	0	54	1,65	94	1265	0
26	3,59	102	1065	M O	55	1,53	132	1235	0
27	1,78	100	1050		56	1,9	107	915	
28	1,76	112	1450		57	2,16	105	1510	
29	2,15	121	1295		58	1,73	91	1150	
30	2,02	103	1060		59	1,81	112	1310	
	-,02	100	1000						

elementos no grupo de 59. Quando acontece de o rótulo apresentar mais de um atributo, uma análise dos valores dos atributos do grupo tem que ser realizada junto a base de dados, pois só assim é possível informar com precisão quais são os registros que pertencem aos rótulos.

Os outros rótulos dos *clusters* 2 e 3 do Naive Bayes são compostos por um atributo cada e por meio da figura 21 é possível conhecer o espaço amostral da base Wine em função de dois eixos:**FnF** e **alcool**.

Em uma análise do gráfico da figura 21, mesmo observando em uma pespectiva de duas variáveis, é possível visualizar o comportamento da base Wine quanto a disposição de seus dados, e através dos rótulos sugeridos de pelo Naive Bayes pode-se constatar suas representações nos grupos, bem como também visualizar seus erros. e.g., quando um especialista verificar um determinado dado que possui no atributo alcool o valor 12.1, e este conhece os rótulos sugeridos pelo Naive Bayes, logo o especialista atribui que esse dado pertence ao grupo de vinho tipo 2. Esse exemplo pode ser constatado com o gráfico da figura 21, pois ao confirmar o valor 12.1 no eixo X (alcool) percebe-se que este está junto a distribuição do grupo 2 conforme figura.

Em uma análise do gráfico da figura 21, mesmo observando em uma perspectiva

Figura 21 – Gráfico da disposição de elementos da Base Wine entre os eixos FnF e Alcool

de duas variáveis, é possível visualizar distribuição da base Wine e, através dos rótulos sugeridos pelo Naive Bayes, pode-se constatar suas representações nos grupos, bem como também visualizar seus erros, e.g., quando um especialista verificar um determinado dado que possui no atributo **alcool**, o valor 12.1, e conhece os rótulos sugeridos pelo Naive Bayes, logo ele atribui que esse dado pertence ao grupo de vinho tipo 2. Esse exemplo pode ser constatado com o gráfico da figura 21, pois, ao confirmar o valor 12.1 no eixo X (**alcool**), percebe-se visualmente que este está junto à distribuição do grupo 2, conforme figura.

A mesma figura também pode ser utilizada para explicar os rótulos sugeridos pelo KNN, que teve em comparação com CART melhor acurácia na rotulação do cluster 1, e igual ao cluster 3. Com rótulo do KNN $r_{c_1} = (FnF, [0.13 \sim 0.306667])$, e através da figura 21 percebe-se que a faixa coberta pelo rótulo aponta para os dados do grupo 1 (classe1 do gráfico). Da mesma forma acontece com o rótulo $r_{c_3} = \{(FnF,]0.483333 \sim 0.66])\}$ no qual valores do atributo **FnF** acima de 0.48 (vê gráfico figura 21) até 0.66 direcionam para o grupo 3 (classe3 do gráfico), de modo a constatar que os rótulos conseguem representar os grupos dos tipos de vinho.

A mesma figura também pode ser utilizada para explicar os rótulos sugeridos pelo KNN, que teve, em comparação com CART, melhor acurácia na rotulação do cluster 1 e igual ao cluster 3. Com rótulo do KNN $r_{c_1} = (FnF, [0.13 \sim 0.306667])$, e através da figura 21, percebe-se que a faixa coberta pelo rótulo aponta para os dados do grupo 1 (classe 1 do gráfico). Da mesma forma acontece com o rótulo $r_{c_3} = \{(FnF,]0.483333 \sim 0.66])\}$, no qual valores do atributo **FnF** acima de 0.48 (vê gráfico figura 21) até 0.66 direcionam para o grupo 3 (classe 3 do gráfico), de modo a constatar que os rótulos conseguem representar

4.6. Discussões 59

os grupos dos tipos de vinho.

Dos resultados encontrados pelo CART o rótulo do *cluster* 1, dentre os três algoritmos foi o melhor, com acurácia de 66.2%, já em relação a acurácia no *cluster* 2 foi pior comparando aos outros dois algoritmos, no *cluster* 3 já foi dito sobre a igualdade deste resultado com CART e teve a acurácia mais baixa do que o Naive Bayes.

Dos resultados encontrados pelo CART, o rótulo do *cluster* 1, dentre os três algoritmos, foi o melhor, com acurácia de 66.2%; já o cluster 2 em relação à acurácia, foi pior comparando-se aos outros dois algoritmos; no cluster 3, já foi dito sobre a igualdade deste resultado com CART, tendo a acurácia mais baixa do que o Naive Bayes.

4.6 Discussões

A figura 22 mostra um gráfico geral da acurácia média de todos os rótulos encontrados na aplicação dos algoritmos nas bases de dados. O eixo Y corresponde à porcentagem de acurácia média alcançada de um algoritmo e o eixo X está dividido nos *clusters* e a qual base de dados eles pertencem. Essa acurácia é aferida a partir das acurácias parciais do(s) atributo(s) que faz(em) parte do rótulo e, caso o rótulo possua mais de um atributo, é calculada uma média das acurácias parciais.

Figura 22 – Acurácia média entre os clusters de todas as bases testadas com os algoritmos: Naive Bayes, CART e KNN

Foram testadas quatro bases de dados e dentre elas a base Wine, uma base de resultado de análises químicas com 178 amostras dividida em três tipos de vinhos. Foi a

única a possuir algumas acurácias de rótulos por clusters abaixo de 60%, já as demais bases, Seeds, Iris e Glass, tiveram suas acurácias dos rótulos por clusters acima de 70%.

Outra pesquisa também realizou testes com essas mesmas bases para realizar rotulação de dados, mas, diferente deste trabalho, Lopes et al. (2016) não considerou a classificação das bases, ou seja, não utilizou os grupos já designados na origem das bases, e realizou uma nova classificação através de um algoritmo não-supervisionado, K-means, e só assim aplicou um algoritmo de aprendizado de máquina supervisionado (RNAs). Para esta pesquisa poder realizar uma comparação entre os resultados, é necessário recriar os grupos que Lopes et al. (2016) criou em seu trabalho e em seguida aplicar os algoritmos supervisionados para obter os rótulo. A rotulação de grupos tem dependência direta dos registros pertencentes ao grupo e qualquer alteração destes registros implica em uma alteração nos resultados dos rótulos. Dessa maneira foram realizados testes para recriar os mesmos grupos que Lopes et al. (2016), mas mesmo utilizando as mesmas técnicas as tentativas não lograram êxito em fazer grupos idênticos, pois mesmo configurando o número de grupos a ser encontrado pelo algoritmo, ao executá-lo, os resultados retornam grupos diferentes um do outro, de forma que uma comparação com grupos diferentes não retrataria uma comparação justa, pois os dados testados não seriam os mesmos⁶.

⁶ Resultados dos testes comparativos no Apêndice A

5 Conclusões, Trabalhos Futuros

Neste capítulo serão apresentadas as conclusões acerca deste trabalho, bem como a apresentação dos benefícios da pesquisa realizada, que teve como base a rotulação de algoritmos com vistas a analisar o seu comportamento considerando algumas bases de dados. Também serão apresentadas sugestões para continuidade deste trabalho já efetuado.

5.1 Conclusão

Assim, diante do problema de rotulação, que visa encontrar características relevantes em grupos de dados ao ponto de identificar esses grupos, e também de outra pesquisa já concluída (LOPES et al., 2016), que trata deste problema, esta pesquisa teve como diferencial aplicação de novos algoritmos com paradigmas diferentes ainda não testados, , Naive Bayes (estatístico), Classification and Regression Trees - CART (árvore de decisão) e K-Nearest Neighbor - KNN (baseado em instância), apresentando a viabilidade do método de rotulação de dados com algoritmos de aprendizado supervisionados e comparando os resultados através das acurácias dos rótulos encontradas em relação as bases já classificadas (separadas por grupos).

Esta pesquisa tem como referência o trabalho de Lopes et al. (2016) utilizando algumas bases de dados iguais como também a ferramenta de programação, MATLAB. Para simular o ambiente e fazer testes comparativos com este trabalho, foi também empregue os mesmos métodos de discretização e valores das faixas para poder compará-los, embora as respostas não tenham sido conclusivas visto que os grupos utilizados por (LOPES et al., 2016) não poderem ser reproduzidos fielmente, e sem essa fidelidade, não há como compará-los de forma justa, tendo em vista que os resultados desta pesquisa são totalmente dependentes dos clusters utilizados.

As análises foram feitas a partir das bases de dados: Seeds, Iris, Glass e Wine, e o resultado ao aplicar cada algoritmo nas bases e encontrar os rótulos foram satisfatórios. A avaliação da qualidade destes rótulos foi feita da seguinte forma: inicialmente, escolheram-se as bases de dados já classificadas; feito isso, foi possível saber quantas amostras pertencem a determinado grupo; em seguida, foi realizado um comparativo dos resultados dos rótulos através dos erros encontrados e nos grupos com as amostras originais das bases de dados, desta forma foi possível mensurar a acurácia de cada rótulo.

O funcionamento dos algoritmos foi também marcado pelas bases utilizadas, a base de dados 1 - Seeds, que é uma base de dados balanceada, e neste caso possui um número de exemplos iguais para as três classes (70 elementos cada classe), possuindo grupos bem

distribuídos conforme gráfico exposto. Sua acurácia foi alta, considerando que a menor acurácia parcial de grupo chegou a 80%, e a maior, aproximadamente 92%. A base de dados 2 - Iris teve rótulos idênticos nos três algoritmos, Naive Bayes, CART e KNN. As acurácias foram altas e foi percebido a importância da largura da pétala (**petalwidth**) que foi o atributo que se repetio entre os clusters alterando somente seus intervalos.

Na base de dados 3 - Glass, os rótulos foram bastante satisfatórios ao se analisarem as acurácias dos algoritmos, chegando-se em alguns clusters a acurácia de 100%; contudo, os rótulos do Naive Bayes e CART, em específico no cluster 4 (grupo **recipientes**), mesmo tendo poucos erros, a acurácia chegou em 77%, sendo o valor mais baixo. Vale ressaltar que essa base não é classificada como uma base balanceada e no grupo recipientes conta com somente treze elementos. Já a base de dados 4 - Wine possui um total de 178 (cento e setenta e oito) registros, de forma balanceada, pois possui três grupos; um número mínimo de 48 (quarenta e oito) elementos em um grupo, e nos outros dois, 59 (cinquenta e nove) e 71 (setenta e um). Nesta base, foi a que teve acurácias mais baixas por rótulos, chegando a 43% de acurácia nos clusters 3 do CART e KNN, e mais alta no cluster 2 do Naive Bayes com acurácia de 95%. Esta base é a que contém mais atributos e o tipo do vinho (classe 3) tem seus valores de atributos bem distribuídos entre as classes 1 e 2 (pode ser visualizado no gráfico), refletindo em acurácias mais baixas na classe 3 em todos os algoritmos.

Outro ponto que merece destaque é a tomada de decisão através dos rótulos encontrados neste trabalho, isto é, acurácias mais altas resultam em boa confiabilidade dos rótulos, portanto, quando um especialista da área verificar um rótulo de um grupo, esse será capaz de perceber o que é importante para o grupo, podendo fazer uma tomada de decisão mais eficiente a partir destes resultados.

5.2 Trabalhos Futuros

Espera-se realizar estudos mais profundos nos métodos de discretização, pois estes têm influência comprovada na geração dos rótulos nos grupos de dados e também no número de faixas, por estarem diretamente ligado aos métodos de discretização. A melhor discretização e o melhor número de faixas a serem utilizados estão relacionados aos valores das bases de dados utilizadas e, portanto, será necessário um estudo aprofundado para comparar os resultados com os deste trabalho.

- fgsd
- ddfs

- AEBERHARD, S.; COOMANS, D.; VEL, O. D. Comparison of classifiers in high dimensional settings. North Queensland, Austrália, 1992. 92–02 p. Citado na página 53.
- ARAÚJO, F. N. C. Rotulação Automática de Clusters Baseados em Análise de Filogenias. X Encontro Unificado de Computação - ENUCOMP 2017, v. 91, p. 399–404, 2017. Disponível em: <www.enucomp.com.br/2017>. Citado na página 22.
- BARBER, D. Bayesian Reasoning and Machine Learning. [s.n.], 2011. ISSN 9780521518147. ISBN 9780511804779. Disponível em: http://ebooks.cambridge.org/ref/id/CBO9780511804779. Citado 2 vezes nas páginas 4 e 12.
- BARON, G. On influence of representations of discretized data on performance of a decision system. In: *Procedia Computer Science 96 (2016) : 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, KES2016.* York, United Kingdom: [s.n.], 2016. p. 1418–1427. Citado 2 vezes nas páginas 14 e 16.
- BREIMAN, L. et al. *Classification and Regression Trees*. Taylor & Francis, 1984. (The Wadsworth and Brooks-Cole statistics-probability series). ISBN 9780412048418. Disponível em: https://books.google.com.br/books?id=JwQx-WOmSyQC. Citado na página 6.
- CASARI, A.; ZHENG, A. Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists. First edit. Sebastopol, CA: O'Reilly Media, Inc., 2018. ISBN 9781491953235. Citado na página 35.
- CATLETT, J. On changing continuous attributes into ordered discrete attributes. Springer, Berlin, Heidelberg: Springer Verlag, 1991. 164–178 p. Citado 2 vezes nas páginas 13 e 29.
- CHARYTANOWICZ, M. et al. Complete gradient clustering algorithm for features analysis of X-ray images. *Advances in Intelligent and Soft Computing*, v. 69, p. 15–24, 2010. ISSN 18675662. Citado na página 37.
- CHEN, C.-L.; TSENG, F. S. C.; LIANG, T. An integration of fuzzy association rules and WordNet for document clustering. *Knowledge and Information Systems*, v. 28, n. 3, p. 687–708, sep 2011. ISSN 0219-1377. Disponível em: http://link.springer.com/10.1007/s10115-010-0364-2. Citado na página 19.
- COSTA, B. S. J. et al. Unsupervised classification of data streams based on typicality and eccentricity data analytics. 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, p. 58–63, 2016. Citado na página 20.
- DOMINGOS, P. *O Algoritmo Mestre*. 1a.. ed. São Paulo Brasil: Novatec Editora Ltda, 2017. ISBN 9788575225424. Citado 2 vezes nas páginas 12 e 36.
- DOUGHERTY, J.; KOHAVI, R.; SAHAMI, M. Supervised and Unsupervised Discretization of Continuous Features. *Machine Learning Proceedings 1995*, Stanford, v. 0, p. 194–202, 1995. ISSN 0717-6163. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/B9781558603776500323. Citado na página 13.

EVETT, I. W.; SPIEHLER, E. J. Knowledge based systems. In: DUFFIN, P. H. (Ed.). New York, NY, USA: Halsted Press, 1988. cap. Rule Induction in Forensic Science, p. 152–160. ISBN 0-470-21260-8. Disponível em: http://dl.acm.org/citation.cfm?id=67040.67055. Citado na página 47.

- FILHO, V. P. R.; MACHADO, V. P.; LIRA, R. d. A. Rotulação de Grupos Utilizando Conjuntos Fuzzy. In: UNIVERSIDADE FEDERAL DO PIAUÍ. *XII Simpósio Brasileiro de Automação Inteligente (SBAI)*. Natal, RN, 2015. Disponível em: http://pubs.acs.org/doi/abs/10.1021/ja103937v. Citado 2 vezes nas páginas 22 e 43.
- FISHER, R. A. The Use of Multiple Measurements in Taxonomic Problems. *Annals of Eugenics*, v. 7, n. 2, p. 179–188, 1936. ISSN 20501420. Disponível em: http://doi.wiley.com/10.1111/j.1469-1809.1936.tb02137.x. Citado na página 43.
- GAN, H. et al. Using clustering analysis to improve semi-supervised classification. Neurocomputing, v. 101, p. 290–298, feb 2013. ISSN 09252312. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0925231212006601>. Citado na página 19.
- HWANG, G. J.; LI, F. A Dynamic Method for Discretization of Continuous Attributes. Lecture Notes in Computer Science Intelligent Data Engineering and Automated Learning IDEAL 2002: Third International Conference, v. 2412/2002, p. 506, 2002. ISSN 16113349. Disponível em: http://www.springerlink.com/content/4n05b2n6x0cx4tlk. Citado 2 vezes nas páginas 13 e 29.
- IMPERES FILHO, F. d. C. Dissertação (Programa de Pós Graduação da Ciências da Computação PPGCC). Rotulação de Grupos em Algoritmos de Agrupamento Baseados em Distância Utilizando Grau de Pertinência. Teresina-PI. 2018. Citado na página 22.
- IWAMURA, M.; TSUKADA, M.; KISE, K. Automatic Labeling for Scene Text Database. In: 2013 12th International Conference on Document Analysis and Recognition. IEEE, 2013. p. 1365–1369. ISBN 978-0-7695-4999-6. Disponível em: http://ieeexplore.ieee.org/document/6628837/. Citado na página 20.
- JIRASIRILERD, W.; TANGTISANON, P. Automatic Labeling for Thai News Articles Based on Vector Representation of Documents. In: 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). IEEE, 2018. p. 1–4. ISBN 978-1-5386-4956-5. Disponível em: https://ieeexplore.ieee.org/document/8434457/. Citado 2 vezes nas páginas 18 e 19.
- KOTSIANTIS, S.; KANELLOPOULOS, D. Discretization Techniques: A recent survey. GESTS International Transactions on Computer Science and Engineering, v. 32, n. 1, p. 47–58, 2006. Citado na página 13.
- KUMAR, A.; ANDU, T.; THANAMANI, A. S. Multidimensional Clustering Methods of Data Mining for Industrial Applications. *International Journal of Engineering Science Invention*, v. 2, n. 7, p. 1–8, 2013. Citado na página 1.
- LACHI, R. L.; ROCHA, H. V. Aspectos básicos de clustering: conceitos e técnicas. Campinas, SP, 2005. 1–26 p. Disponível em: http://www.ic.unicamp.br/{~}reltech/2005/05-03.p. Citado na página 10.

LIMA, B. V. A. Dissertação (Programa de Pós-graduação em Ciência da Computação), Método Semissupervisionado de Rotulação e Classificação Utilizando Agrupamento por Sementes e Classificadores. Teresina - PI: [s.n.], 2015. 47 p. Citado 2 vezes nas páginas 21 e 22.

- LIMA, B. V. A. de; MACHADO, V. P.; LOPES, L. A. Automatic labeling of social network users Scientia.Net through the machine learning supervised application. *Social Network Analysis and Mining*, v. 5, n. 1, p. 44, dec 2015. ISSN 1869-5450. Disponível em: http://link.springer.com/10.1007/s13278-015-0285-x. Citado 2 vezes nas páginas 21 e 22.
- LOPES, L. A.; MACHADO, V. P.; RABELO, R. D. A. L. Automatic Labeling of Groupings through Supervised Machine Learning. *Knowledge-Based Systems*, v. 106, p. 231–241, 2016. Citado 19 vezes nas páginas 9, 1, 12, 15, 17, 20, 21, 22, 24, 25, 27, 30, 36, 43, 60, 61, 68, 69 e 70.
- LUCCA, G. et al. Uma implementação do algoritmo Naïve Bayes para classificação de texto. In: CENTRO DE CIÊNCIAS COMPUTACIONAIS DA UNIVERSIDADE FEDERAL DO RIO GRANDE. *IX Escola Regional de Banco de Dados ERBD 2013*. Rio Grande RS, 2013. p. 1–4. Disponível em: http://ifc-camboriu.edu.br/erbd2013>. Citado na página 8.
- MADUREIRA, D. F. Analise de sentimento para textos curtos. Tese (Doutorado) Fundação Getulio Vargas, Rio de Janeiro, 2017. Citado na página 8.
- MCCALLUM, A.; NIGAM, K. A Comparison of Event Models for Naive Bayes Text Classification. 1997. Citado na página 8.
- MITCHELL, T. M. *Machine learning*. [S.l.]: McGraw-Hill Science/Engineering/Math, 1997. 432 p. ISSN 10450823. ISBN 9781577354260. Citado 2 vezes nas páginas 3 e 7.
- MOHRI, M.; ROSTAMIZADEH, A.; TALWALKAR, A. Foundations Machine Learning. [S.l.: s.n.], 2012. ISBN 9780262018258. Citado na página 4.
- RAIMUNDO, L. R. et al. O Algoritmo de Classificação CART em uma Ferramenta de Data Mining. In: *IV Congresso Sul Brasileiro de Ciências da Computação SULCOMP*. Pelotas RS: [s.n.], 2008. Citado na página 6.
- RUSSEL, S.; NORVIG, P. *Inteligência Artificial.* 3ª. ed. Rio de Janeiro: [s.n.], 2013. ISBN 9780136042594. Citado 4 vezes nas páginas 3, 4, 5 e 8.
- SUN, L.; YOSHIDA, S.; LIANG, Y. A support vector and k-means based hybrid intelligent data clustering algorithm. *IEICE Transactions on Information and Systems*, E94-D, n. 11, p. 2234–2243, 2011. ISSN 17451361. Citado na página 19.
- WU, X. et al. Top 10 algorithms in data mining. [S.l.: s.n.], 2008. v. 14. 1–37 p. ISSN 02191377. ISBN 1011500701. Citado na página 8.
- YANG, Y.; WEBB, G. I. A Comparative Study of Discretization Methods for Naive-Bayes Classifiers. In: *Proceedings of PKAW 2002: The 2002 Pacific Rim Knowledge Acquisition Workshop.* Gold Coast, Austrália: [s.n.], 2002. p. 159–173. Citado 2 vezes nas páginas 14 e 16.

YEGANOVA, L.; COMEAU, D. C.; WILBUR, W. J. Identifying Abbreviation Definitions Machine Learning with Naturally Labeled Data. In: *2010 Ninth International Conference on Machine Learning and Applications*. IEEE, 2010. p. 499–505. ISBN 978-1-4244-9211-4. Disponível em: http://ieeexplore.ieee.org/document/5708877/. Citado na página 19.

YOHANNES, Y.; WEBB, P. Classification and Regression Trees, CART: A User Manual for Identifying Indicators of Vulnerability to Famine and Chronic Food Insecurity. International Food Policy Research Institute, 1999. (Microcomputers in policy research). ISBN 9780896293373. Disponível em: https://books.google.com.br/books?id=7iuq4ikyNdoC. Citado na página 6.

APÊNDICE A – Outros resultados de Rotulação

Através da pesquisa de Lopes et al. (2016) que apresentou um modelo de rotulação de dados, ao qual através de um algoritmo não-supervisionado gera grupos de uma determinada base de dados, e logo após, é aplicado um outro algoritmo com aprendizagem supervisionada nesses grupos para detectar um rótulo para esses grupos. Mediante isso foram realizados testes com as mesmas bases de dados com finalidade de comparar os resultados, mas os testes não foram satisfatórios, embora algumas bases sejam iguais houve diferença entre os clusters criados. Foram realizados o uso das mesmas técnicas do autor citado acima, todavia não foi o bastante para que os grupos fossem os mesmos, ou seja, grupos definidos não são iguais e por consequência os teste ficaram incompatíveis.

Segue nas tabelas abaixo o comparativo do trabalho do (LOPES et al., 2016) com os testes realizados nos clusters recriados das bases: Seeds, Iris e Glass, com o trabalho

Tabela 24 – Rotulação de Dados utilizando a base de dados Seeds.

(a) Naive Bayes

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	72	asymetry	25	34.7
2	61	Lkernel	1	1.64
		lkgroove	5	8.19
3	77	perimetro	10	12.98
	Total		41	

(b) CART

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	72	perimetro	14	19.44
2	61	perimetro	0	0
3	77	perimetro	10	12.98
	Total	24		

(c) KNN

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	72	perimetro	14	19.44
2	61	lkgroove	5	8.19
3	77	perimetro	10	12.98
	Total	29		

(d) Resultado de Lopes et al. (2016)

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	67	area	8	11.95
1	07	perimetro	9	13.64
2	82	area	12	14.64
2		perimetro	10	12.2
	61	perimetro	0	0
3		wkernel	3	4.92
		lkernel	1	1.64
		area	0	0
	Total		43	

Tabela25 – Rotulação de Dados utilizando a base de dados Iris.

(a) Naive Bayes

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	38	sepallength	10	26.3
1	30	petalwidth	4	10.5
2	62	petalwidth	19	30.6
3	50	petalwidth	0	0
	Total		33	

(c) KNN

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	38	sepallength	10	26.3
2	62	petalwidth	19	30.6
3	50	petalwidth	0	0
	Total		29	

(b) CART

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	38	petalwidth	4	10.5
2	62	petalwidth	19	30.6
3	50	petalwidth	0	0
	Total		23	

(d) Resultado de Lopes et al. (2016)

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	50	petalwidth	0	0
1	50	petallength	0	0
2	62	petallength	6	9.68
3	38	petallength	3	7.9
າ		petalwidth	2	5.27
	Total	11		

Tabela 26 – Rotulação de Dados utilizando a base de dados Glass.

(a) Naive Bayes

Cluster	Num Elem	Atributo	Erro	Erro (%)
Cluster	Nuiii_Eieiii	Ba	1	1.45
1	69	Fe	11	,
				15,94
		Mg	2	50,00
		K	2	50,00
2	4	Ba	2	50,00
		Fe	0	0,00
		RI	11	35,48
		Mg	2	6,45
		Al	14	45,16
3	31	Si	6	19,35
		K	1	3,23
		Ba	12	38,71
		Fe	0	0,00
	36	RI	6	16,67
		Na	11	30,56
		Mg	12	33,33
		Al	17	47,22
4		Si	6	16,67
		K	0	0,00
		Ca	1	2,78
		Ba	1	2,78
		Fe	8	22,22
		Mg	2	12,50
	1.0	Al	6	37,50
5	16	Ba	1	6,25
		Fe	4	25,00
		Si	6	10,34
		K	0	0,00
6	58	Ba	0	0,00
		Fe	20	34,48
	Total	I	165	,

(b) CART

Cluster	Num Elem	Atributo	Erro	Erro (%)
1	69	Ba	1	1,45
		Fe	17	24,64
	4	Mg	1	25,00
2		K	0	0,00
		Ba	2	50,00
		Fe	0	0,00
3	31	Mg	0	0,00
		K	3	9,68
		Ba	22	70,97
		Fe	0	0,00
	36	RI	7	19,44
		Na	19	52,78
		Mg	20	55,56
		Al	16	44,44
4		Si	8	22,22
		K	15	41,67
		Ca	14	38,89
		Ba	2	5,56
		Fe	10	27,78
	16	Mg	0	0,00
5		Al	10	62,50
9		Ba	1	6,25
		Fe	5	31,25
6	58	K	12	20,69
		Ba	0	0,00
		Fe	23	39,66
	Total		208	

(c) KNN

Cluster	Num_Elem	Atributo	Erro	Erro (%)
1	69	Ba	1	1,45
		Fe	11	15,94
2	4	Mg	2	50,00
		K	2	50,00
		Ba	2	50,00
		Fe	0	0,00
	31	Mg	2	6,45
		Al	14	45,16
3		K	1	3,23
		Ba	12	38,71
		Fe	0	0,00
	36	RI	6	16,67
		Na	11	30,56
1		Al	17	47,22
		Si	6	16,67
		K	0	0,00
		Ca	1	2,78
		Ba	1	2,78
		Fe	8	22,22
5	16	Mg	2	12,50
		Ba	1	6,25
		Fe	4	25,00
6	58	K	0	0,00
		Ba	0	0,00
		Fe	20	34,48
Total			124	

(d) Resultado de Lopes et al. (2016)

Cluster	Num_Elem	Atributo	Erro	Erro (%)
		Ba	0	0
		K	0	0
1	74	Si	2	2,71
		Na	3	4,06
9	5	Fe	0	0
2		Ca	0	0
0	19	K	0	0
3		Ba	1	5,27
	32	K	0	0
4		Ba	1	3,13
		Ca	1	3,13
	56	Ba	0	0
		K	0	0
5		Na	2	3,58
		Al	4	7,15
		Mg	6	10,72
6	28	Fe	0	0
		K	1	3,58
Total			21	