3.2_Figures

Florian van Leeuwen

2023-02-15

First results simulation study

The following parameters were used for the simulation study:

- Number of person: 100, 300, 500, 700, 900, 1200
 Number of time points: 6, 8, 10, 12, 14, 16, 18
- Number of simulations: 100
- Intercept: 170
- Variance of the intercept: N(0,25)
- Slope: 12.7
- Variance added after data generation: N(0,20)
- Effect sizes as % of the slope: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06

The simulation was run for three conditions, see Figure below:

- Only a step change
- Only a slope change
- A step and slope change

The different simulation scenarios

Each took about 30 minutes to compute (1.5 hour in total) using the following OLS model:

$$Y_i = \beta_0 + \beta_1 * Time + \beta_2 * Intervention + \beta_3 * Time * Interventios$$

TOTAL NUMBER OF CONDITIONS: 676*3 = 756

The output of the simulation was assessed on three criteria:

- The average power
- The average bias
- The precision (number of times bias was > 5%)

The bias/precision was not estimated is the step/slope change was set to zero.

```
# import the data
out10 <- read.csv("results/sim10.csv")
out01 <- read.csv("results/sim01.csv")
out11 <- read.csv("results/sim11.csv")</pre>
```

Scenario 1: Only a step change

Power for pre-slope

Percentage bias in pre slope

Percentage bias in step

Scenario 2: Only a slope change

The pre-slope seems to be estimated well, so i will leave it out of the rest of the figures.

Power for slope

Percentage bias in slope

Precision in slope in nsim = 100

Scenario 3: A step and slope change

Percentage bias in step

Percentage bias in slope

Precision in step in nsim = 100

Number of times bias was > 5%

Precisio in slope in nsim = 100

Number of times bias was > 5%

Another option for the simulation plot

