AI on a microbudget

Methods of machine learning miniaturization

Katharina Rasch & Christian Staudt

https://github.com/ai-dojo/microbudget

About us

Christian Staudt
Freelance Data Scientist
https://clstaudt.me

Katharina Rasch
Freelance Data Scientist
https://krasch.io/

Plan for today

- 3 microbudget methods for adapting existing pre-trained models to your needs:
 - Transfer learning
 - Distillation
 - Quantization
- Microbudget = small team, a few GPUs, small datasets

Companion repository

https://github.com/ai-dojo/microbudget

- A collection of example notebooks for microbudget ML methods
 - Transfer learning for building a custom Image Classifier
 - Faster Speech Transcription through Model Distillation
 - Running a Large Language Model with Different Levels of Quantization

Method 1: Transfer learning

Label: water lily

Label: desert-rose

Label: gazania

Label: wild pansy

Label: oxeye daisy

Task: Create a classifier for botanical images

Oxford 102 Flowers dataset

- ca. 8000 images
- ca. 500px height
- ca. 400 MB
- 102 classes

training computer vision model from scratch = straining our microbudget

reuse an existing image classifier?

e.g. MobileNetV2

- deep CNN (53 layers)
- 3.4 M parameters
- good accuracy on ImageNet

> 150 GB

Basic idea idea of transfer learning

Model pre-trained for Task A on large dataset

partially retrain on (smaller) dataset for Task B

Model specialised for Task B

reuse convolutional layers (incl. weights) = feature extraction capabilities

Image source: A Study Review: Semantic segmentation with Deep Neural Networks

adapt & retrain for new task


```
# Load MobileNetV2 without the top layer
           base_model = keras.applications.MobileNetV2(
                input shape=(224, 224, 3),
                include_top=False,
                weights="imagenet",
 [7]
        ✓ 0.3s
                                                           Python
       # Create a new model on top of the output of the base model
       model = tf.keras.Sequential([
           base model.
           tf.keras.layers.GlobalAveragePooling2D(),
           tf.keras.layers.Dense(256, activation='relu'),
           tf.keras.layers.Dropout(0.5),
           tf.keras.layers.Dense(n_classes, activation='softmax')
[15]
                                                             Python
```

Transfer learning has great library support

Predicted: barbeton daisy, True: barbeton daisy

Predicted: pincushion flower, True: pincushion flower

Predicted: foxglove, True: foxglove

a decent image classifier with minimal engineering & training

Transfer Learning at a glance

	Transfer learning	
Model capability	different task	
Model size / inference cost	same *	
Training data and cost	less *	
Development effort	simple	

Method 2: Distillation

Basic idea of model / knowledge distillation

Large pre-trained teacher model

Large model teaches small model

model

trained on 680,000 hours of audio and transcripts

1.55 Billion parameters (for large model)

OpenAl

Whisper

HuggingFace Distil-Whisper

OpenAl Whisper "Look, penguins!"

→ → → → →

HuggingFace Distil-Whisper

OpenAl Whisper

"Look, penguins!"

→ → → → →

HuggingFace Distil-Whisper

Whisper

HuggingFace Distil-Whisper

Benefits of distillation

- Less annotated training data needed
- Without distillation, might not be able to train capable small model from scratch, even with full dataset →

why?

Our training regime is quite harsh

We train our models with hard labels

And punish them if they produce soft predictions

Our training regime is quite harsh

We train our models with hard labels

And punish them if they produce soft predictions

Distillation creates a more friendly learning environment

Distil-Whisper ends up being

- 6 times faster
- 50% smaller
- within 1% word error rate (WER) of original model

distillation cost? → trained on 14kh of audio instead of 680kh = ca. 2% of original

Drop-in replacement!*

Transcribe with whisper or distil-whisper: see (and hear) for yourself

Distillation at a glance

	Transfer learning	Distillation
Model capability	different task	potentially same *
Model size / inference cost	same *	much smaller *
Training data and cost	less *	less *
Development effort	simple	complex

Method 3: Quantization

Basic idea of quantization

Do we need full precision weights to represent a model's knowledge?

How to compress Float32 into Int8?

How to compress Float32 into Int8?

How to compress Float32 into Int8?

Post-training quantization of weights

For each layer / channel / etc

- 1. Analyze weight distribution and calculate S and z
- 2. Apply quantization formula and store quantized weights

 \rightarrow 4 x smaller weights

What happens during computation?

Post-training quantization of activations

For each layer / channel / etc

- 1. Run forward pass with a few samples
- 2. Analyze activation distribution and calculate S and z

 \rightarrow 2-4 x faster inference

Can we go even smaller with quantization?

- yes, 6-bit, 4-bit or even 2-bit quantization are common
- sacrificing capabilities?
 - o hard to predict, models vary in their sensitivity
 - capability loss needs to be evaluated experimentally
 - see the model card for recommended variants

 \rightarrow up to 16x smaller model files

potentially significant quality loss

- run "Large" Language Model on your local machine with Ollama
- get different levels of quantization from
- test and observe (loss) of?) capability

```
for qtype, model_path in quantized_model_paths.items():
             ollama_model_name = f"{model_name}:{qtype}"
             print(f"Creating Ollama model {ollama_model_name}")
             response = ollama.create(
                 model=ollama_model_name,
                 modelfile=make_model_file(model_path)
            print(response["status"])
[11]
      ✓ 13.3s
                                                              Pvthon
     Creating Ollama model rocket-3B-GGUF:Q8_0
     success
     Creating Ollama model rocket-3B-GGUF:Q4_K_M
     success
     Creating Ollama model rocket-3B-GGUF:Q2_K
     success
```

The open LLM ecosystem thrives on quantization

- quantization enables
 - medium-sized models on modest hardware (e.g. 15B parameters in 9 GB of RAM)
 - o online distribution
- many models in Ollama catalog are quantized by default

Quantization at a glance

	Transfer learning	Distillation	Quantization
Model capability	different task	potentially same *	potentially same *
Model size / inference cost	same *	much smaller *	much smaller *
Training data and cost	less *	less *	much less *
Development effort	simple	complex	simple

Microbudget methods at a glance

	Transfer learning	Distillation	Quantization
Model capability	different task	potentially same *	potentially same *
Model size / inference cost	same *	much smaller *	much smaller *
Training data and cost	less *	less *	much less *
Development effort	simple	complex	simple

BACKUP

Forward-pass with a quantized model

Our normal float32 forward pass looks like this:

$$y = w \cdot x + b$$

Let's plug in our quantization mapping (^ = quantized):

$$S_y * \hat{y} - Z_y = (S_w * \hat{w} - Z_y) \cdot (S_x * \hat{x} - Z_x)$$

Thanks to the rules of matrix multiplication ·, we get:

$$\hat{y} = z_y + (S_w * S_x / S_y) * ((\hat{w} - z_y); (\hat{x} - z_x))$$

float32 scalar multiplication int8 matrix multiplication