

Fatigue Design

Complements of Machine Elements

Carlos Fernandes

2023

Mestrado em Engenharia Mecânica

All machine and structural designs are problems in fatigue because the forces of Nature are always at work and each object must respond in some fashion.

Carl Osgood

Recommended bibliography

 Haberhauer, Horst: Maschinenelemente. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018, ISBN 978-3-662-53047-4

Hyperlink

Lecture 1

Lecture 2

KISSSoft Shaft Design

References

Lecture 1

Summary

1. Introduction	5
2. Review on yield criteria	6
3. Effort ratio	9
4. Smith diagram	15
5. Equivalent moment	23

Introduction

Figure 1: Typical fatigue fractures. **a.** bending fatigue fracture on the eccentric shaft of a crusher ($d=230\,\mathrm{mm}$) at the transition from the shaft to the eccentric, **b.** Circular bending fatigue fracture on the driving axis of a tilting plow. Cause: too small fillet radius, **c.** torsional fatigue failure on a torsion bar spring [1].

A: First crack at the flaw or notch on the surface; B: Zone of progressive fatigue fracture; C: Final fracture (forced fracture)

Review on yield criteria

Figure 2: Element of a shaft under bending (σ) and torsion (τ) .

Principal stresses:

$$\sigma_1 = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

$$\sigma_2 = \frac{\sigma}{2} - \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

Figure 3: Mohr's Circle or circle of stress for combined stresses [2].

Maximum shear stress theory:

$$\sigma_e = \sigma_1 - \sigma_2 = \sqrt{\sigma^2 + 4\tau^2}$$

Distortion-Energy Theory ¹

$$\sigma_e = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2}$$

$$\sigma_e = \sqrt{\sigma^2 + 3\tau^2}$$

The relation between the shear strength and the tensile strength is predicted by the maximum distortion energy theory as:

$$\tau_{\rm adm} = \frac{\sigma_{\rm adm}}{\sqrt{3}}$$

$$\frac{\sigma_{adm}}{\sqrt{3}\tau_{adm}}=1$$

Which can be included into the maximum distortion energy theory equation:

$$\sigma_{\rm e} = \sqrt{\sigma^2 + 3 \left(\frac{\sigma_{\rm adm}}{\sqrt{3}\tau_{\rm adm}}\tau\right)^2}$$

¹Topic mostly transcribed from Paulo M.S.T. Castro [3] based on a *must read* review of the german literature

Bach theory

$$\varepsilon_{\mathsf{X}} = \frac{\sigma}{\mathsf{E}} \quad \mathsf{and} \quad \varepsilon_{\mathsf{Y}} = \frac{-\nu\sigma}{\mathsf{E}}$$

$$\varepsilon_{max} = \frac{1}{E} \left[\frac{1}{2} \left(1 - \nu \right) \sigma + \frac{1}{2} \left(1 + \nu \right) \sqrt{\sigma^2 + 4\tau^2} \right]$$

$$\sigma_{\mathsf{e}} = \mathsf{E} \varepsilon_{\mathsf{max}}$$

A correction factor (effort ratio) can be added to the equation:

For an isotropic material with $\nu = 0.3$:

$$\sigma_e = 0.35\sigma + 0.65\sqrt{\sigma^2 + 4\left(\alpha_0\tau\right)^2}$$

$$\sigma_e = 0.35\sigma + 0.65\sqrt{\sigma^2 + 4\tau^2}$$

$$\alpha_{\rm O} = \frac{\sigma_{\rm adm}}{\left(1 + \nu\right) \tau_{\rm adm}}$$

Effort ratio

According to literature [4, 1], the ratio $\frac{\tau_{adm}}{\sigma_{adm}} = \frac{1}{\sqrt{3}}$ is sometimes not verified experimentally.

So, it is current to use a modification factor α_0 , called *effort ratio*^{2,3}. For the maximum distortion energy theory:

$$\sigma_{e} = \sqrt{\sigma^{2} + 3\left(\alpha_{0}\tau\right)^{2}}$$

The effort ratio is [4]:

$$\alpha_{\rm O} = \frac{\sigma_{\rm Grenz}}{\varphi \tau_{\rm Grenz}} = \frac{\sigma_{\rm adm}}{\varphi \tau_{\rm adm}}$$

Grenz is translated as limit, permissible stress.

For the the maximum distortion energy theory, $\varphi = \sqrt{3} = 1.73$

²From german: Anstrengungsverhältnis

³In Niemman [1] it is described as *Schubfestigkeitsfaktor* which is "shear stress factor"

Equivalent stress

Criteria	Equivalent stress	Effort ratio
1. Maximum normal stress ⁴	$\sigma_{e} = \frac{1}{2} \left[\sigma + \sqrt{\sigma^{2} + 4(\alpha_{0}\tau)^{2}} \right]$	$lpha_{\mathrm{O}} = rac{\sigma_{\mathrm{adm}}}{ au_{\mathrm{adm}}}$
2. Maximum shear stress ⁵	$\sigma_{e} = \sqrt{\sigma^{2} + 4(lpha_{0} au)^{2}}$	$lpha_{ m O} = rac{\sigma_{ m adm}}{2 au_{ m adm}}$
3. Maximum distortion energy ⁶	$\sigma_e = \sqrt{\sigma^2 + 3\left(\alpha_0\tau\right)^2}$	$lpha_{\rm O} = rac{\sigma_{adm}}{1.73 au_{adm}}$
4. Maximum strain (Bach)	$\sigma_{e} = 0.35\sigma + 0.65\sqrt{\sigma^{2} + 4\left(\alpha_{0}\tau\right)^{2}}$	$lpha_{ m O} = rac{\sigma_{ m adm}}{({ m 1}+ u) au_{ m adm}}$

- 1. To be used mainly for brittle materials;
- 2. For ductile materials in the event of failure (static) due to sliding fracture (e.g. with copper and copper alloys);
- 3. For ductile materials.

⁴NH Normalspannungs-Hypothese

⁵SH Schubspannungs-Hypothese

⁶GEH Gestaltänderungsenergie-Hypothese

Load cases

According to Bach [4, 1] there are essentially three basic load cases:

Load case I (ruhende): static load

Figure 4: Lastfall I (ruhende Beanspruchung [4]

Load case II (rein schwellende): pulsating stress R=0

Figure 5: Lastfall II (schwellende Beanspruchung [4]

Load cases

Load case III (rein wechselnde): fully reversed stress R=-1

Figure 6: Lastfall III (wechselnde Beanspruchung) [4]

General load case (allgemeiner): oscilating stress – load case I plus load case III.

Figure 7: Allgemeiner Lastfall [4]

Effort ratio

Values for the *effort ratio* for different loading combinations:

Loa	d case	[4]	[5]	[6]	[7]
σ_{III}	$ au_{I}$	0.7	0.7	0.5	0.7
σ_{II}	$ au_{I}$			0.7	
σ	au	1	1	1	1
σ_{l}	$ au_{III}$	1.5	1.5	2	1.5
σ_{l}	$ au_{H}$			1.5	
σ_{III}	$ au_{H}$	0.7	0.7	0.75	
σ_{II}	$ au_{\mathrm{III}}$		1.5	1.35	

Safety factor

$$\sigma_{e} = \sqrt{\sigma^{2} + 3\left(\alpha_{0}\tau\right)^{2}}$$

For the the maximum distortion energy theory, $lpha_{
m O}=rac{1}{\sqrt{3}}rac{\sigma_{adm}}{ au_{adm}}$

$$\sigma_{\rm e}^2 = \sigma^2 + 3 \left(\frac{1}{\sqrt{3}} \frac{\sigma_{\rm adm}}{\tau_{\rm adm}} \tau \right)^2 = \sigma^2 + \left(\frac{\sigma_{\rm adm}}{\tau_{\rm adm}} \right)^2 \tau^2$$

Dividing by σ_{adm}^2 :

With
$$\sigma_e S = \sigma_{adm}$$
:

$$\frac{\sigma_{\rm e}^2}{\sigma_{\rm adm}^2} = \frac{\sigma^2}{\sigma_{\rm adm}^2} + \frac{\tau^2}{\tau_{\rm adm}^2}$$

$$\frac{1}{S} = \sqrt{\frac{\sigma^2}{\sigma_{adm}^2} + \frac{\tau^2}{\tau_{adm}^2}}$$

$$\frac{\sigma_{\rm e}}{\sigma_{\rm adm}} = \sqrt{\frac{\sigma^2}{\sigma_{\rm adm}^2} + \frac{\tau^2}{\tau_{\rm adm}^2}}$$

$$S = \frac{1}{\sqrt{\frac{\sigma^2}{\sigma_{adm}^2} + \frac{\tau^2}{\tau_{adm}^2}}}$$

Smith diagram

Figure 8: Smith diagram.

Smith Diagram for Traction

Figure 9: Smith diagram for traction for structural steels according to DIN EN 10025 [5]

- ullet Fully reversed R=-1: $\sigma_{zdW}=$ 235 MPa
- Pulsating R=0: $\sigma_{zdSch}=335\,\mathrm{MPa}$

Yield strength: $\sigma_{zdF} = 335 \,\mathrm{MPa}$

Smith Diagram for Bending

Figure 10: Smith diagram for bending for structural steels according to DIN EN 10025 [5]

- ullet Fully reversed R=-1: $\sigma_{\it bW}=$ 290 ${
 m MPa}$
- Pulsating R=0: $\sigma_{bSch} = 400 \, \mathrm{MPa}$
- Yield strength: $\sigma_{bF} = 400 \, \mathrm{MPa}$

Smith Diagram for Torsion

Figure 11: Smith diagram for torsion for structural steels according to DIN EN 10025 [5]

- Fully reversed R=-1: $au_{tW}=$ 180 MPa
- Pulsating R=0: $au_{tSch} = 230 \, \mathrm{MPa}$
- Yield strength: $\tau_{tF} = 230 \, \mathrm{MPa}$

Determine effort ratio from Smith diagram

Consider a shaft made of steel E335 according to DIN 10025 EN under bending and torsion⁷. Determine the *effort ratio* for:

• σ_{III} reversed bending ($\sigma_{bw}=$ 290 MPa) and τ_{I} constant torsion ($\tau_{tF}=$ 230 MPa):

$$lpha_{\rm O} = rac{\sigma_{\it bW}}{\sqrt{3} au_{\it tF}} = rac{\it 290}{\it 230 \sqrt{3}} = \it 0.728$$

• σ_{lll} reversed bending ($\sigma_{bw}=$ 290 MPa) and τ_{lll} reversed torsion ($\tau_{tw}=$ 180 MPa):

$$\alpha_{\rm O} = \frac{\sigma_{\it bW}}{\sqrt{3}\tau_{\it tW}} = \frac{290}{180\sqrt{3}} = 0.930$$

• σ_l constant bending ($\sigma_{bF} = 400 \,\mathrm{MPa}$) and τ_{lll} reversed torsion ($\tau_{tw} = 180 \,\mathrm{MPa}$):

$$\alpha_0 = \frac{\sigma_{bF}}{\sqrt{3}\tau_{tW}} = \frac{400}{180\sqrt{3}} = 1.283$$

 $^{^7}$ Example transcribed from [8], effort ratio to be used with the maximum distortion energy (Gestaltänderungsenergiehypothese – GEH) theory with $\varphi=\sqrt{3}$

Comparison of effort ratio values

The following Table presents a comparison between the *effort ratio* calculated with the strength properties taken from Smith diagrams and values taken from literature.

The values taken from the literature are generic values, so, it is expected to find slight variations not only due to the loading conditions but also due to material specificity (ductility, anisotropy, manufacturing) [1].

Load case	Decker [6]	Roloff/Mattek [5]	Smith diagrams
σ_{III} , $ au_{\mathrm{I}}$	0.5	0.7	0.728
σ_{III} , $ au_{III}$	1	1	0.930
σ_{l} , $ au_{lll}$	2	1.5	1.283

Smith diagram

Figure 12: Smith diagrams for structural steels according to DIN EN 10025 [5]

Comparing the smith diagram for bending and the smith diagram for traction, it is possible to state that the yield strength $\sigma_{bF} > \sigma_{zdF}$ is bigger for bending.

Smith diagram

$$S = \frac{1}{\sqrt{\frac{\sigma^2}{\sigma_{adm}^2} + \frac{\tau^2}{\tau_{adm}^2}}}$$

From the Smith diagram for each loading type, it is evident that bending stresses and normal stresses should be treated separately [8, 5, 4, 1]:

$$S = \frac{1}{\sqrt{\left(\frac{\sigma_{zd}}{\sigma_{adm,zd}} + \frac{\sigma_{bw}}{\sigma_{adm,bw}}\right)^2 + \frac{\tau_t^2}{\tau_{adm,t}^2}}}$$

The shear stress due to shear forces is usually disregarded on these equations [1].

Equivalent moment

The equivalent stress can be transformed into an equivalent moment:

$$\sigma_{e} = \sqrt{\sigma^{2} + 3\left(\alpha_{0}\tau\right)^{2}}$$

Recall that for a round solid section:

$$\sigma = rac{32 M_f}{\pi d^3}$$
 and $au = rac{16 M_f}{\pi d^3}$

$$\sigma_e = \sqrt{\left(\frac{32M_f}{\pi d^3}\right)^2 + 3\left(\alpha_0 \frac{2 \times 16M_t}{2\pi d^3}\right)^2}$$

$$\sigma_{e} = \frac{32}{\pi d^{3}} \sqrt{M_{f}^{2} + \frac{3}{4} \left(\alpha_{0} M_{t}\right)^{2}}$$

$$\sigma = \frac{32M_f}{\pi d^3}$$
 and $\tau = \frac{16M_t}{\pi d^3}$ $\sigma_e \frac{\pi d^3}{32} = M_e = \sqrt{M_f^2 + \frac{3}{4} (\alpha_o M_t)^2}$

Lecture 2

Summary

1. DIN 743	25
2. Soderberg criterium	28
3. Comparison of different fatigue design criteria	30
4. Critical speed of a shaft	35

DIN 743

The DIN 743:2012 standard "Calculation of load capacity of shafts and axles" 8:

- · Part 1: General
- Part 2: Theoretical stress concentration factors and fatigue notch factors
- · Part 3: Strength of materials
- Part 4: Fatigue limit, endurance limit Equivalently damaging continuous stress
- Supplement 1: "Examples to part 1 to 3"
- Supplement 2: "Examples to part 4"

⁸In german: Tragfähigkeitsberechnung von Wellen und Achsen

DIN 743 - fatigue verification⁹

$$S = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdADK}} + \frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tADK}}\right)^2}}$$

The safety factor should be:

$$S \geq S_{min} \geq 1.2$$

If the load quantification is uncertain, higher safety factors should be used.

The standard calculates the safety factor against fatigue failure for infinite life.

⁹A comprehensive step by step explanation about the calculation guideline of DIN 743 is given in Course Notes [3]

DIN 743 - plastic deformation verification

Verification for plastic deformation:

$$S = \frac{1}{\sqrt{\left(\frac{\sigma_{zdmax}}{\sigma_{zdfK}} + \frac{\sigma_{bmax}}{\sigma_{bfK}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tfK}}\right)^2}}$$

For the plastic deformation verification, the stress concentration factors is not need (already discussed in "Machine Elements").

Strength of the part is calculated for any diameter d from the values for the specimen with d_B 10.

¹⁰To be discussed during KISSSoft class both for fatigue (two cases) and static verification

Soderberg criterium

Figure 13: Soderberg criterium with a safety factor.

The equation should be used after:

- correct the fatigue limit strength σ^c_{fo} = C₁ · C₂ · C₃ · C₄ · σ_{fo};
- add an adequate stress concentration factor for fatigue;
- · consider a safety factor.

$$\frac{K_f \cdot \sigma_a}{\sigma_{fo}^c} + \frac{\sigma_m}{\sigma_y} = \frac{1}{S}$$

Review on Soderberg criterium

Figure 14: Determination of an equivalent static stress.

$$\frac{\sigma_a}{\sigma_{fo}^c} + \frac{\sigma_m}{\sigma_y} = 1$$

The Soderberg line slope is $\frac{\sigma_{fo}^c}{\sigma_y}$ An equivalent static stress is then computed as:

$$\sigma_{\mathrm{est}}^{\mathrm{eq}} = \sigma_{\mathrm{m}} + \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{fo}}^{\mathrm{c}}} \cdot \sigma_{\mathrm{a}}$$

And for practical applications:

$$\sigma_{\rm est}^{\rm eq} = \sigma_{\rm m} + \frac{\sigma_{\rm y}}{\sigma_{\rm fo}^{\rm c}} \cdot {\rm K}_{\rm f} \cdot \sigma_{\rm a}$$

Comparison of different fatigue design criteria

For a solid shaft with circular cross section:

$$\sigma_a = K_f \frac{32M_{f_a}}{\pi d^3}$$

$$\sigma_{m} = \frac{32M_{f_{m}}}{\pi d^{3}}$$

$$\tau_a = K_f \frac{16M_{t_a}}{\pi d^3}$$

$$\tau_m = \frac{16M_{t_m}}{\pi d^3}$$

An equivalent static stress is calculated using the Soderberg criterium for normal stresses:

$$\sigma_{\mathrm{est}}^{\mathrm{eq}} = \sigma_{\mathrm{m}} + \mathrm{K}_{\mathrm{f}} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{fo}}^{\mathrm{c}}} \sigma_{\mathrm{a}}$$

And also for shear stresses:

$$au_{\mathrm{est}}^{\mathrm{eq}} = au_{\mathrm{m}} + K_{\mathrm{f}} rac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{fo}}^{\mathrm{c}}} au_{\mathrm{a}}$$

ASME-elliptic criterium

Using Soderberg and maximum shear stress theory for a solid circular section:

$$\frac{\sigma_{y}}{S} = \sqrt{\left(\sigma_{m} + K_{f} \frac{\sigma_{y}}{\sigma_{fO}^{c}} \sigma_{a}\right)^{2} + 4\left(\tau_{m} + K_{f} \frac{\sigma_{y}}{\sigma_{fO}^{c}} \tau_{a}\right)^{2}}$$

The section diameter can be estimated as:

$$d^{3} = \frac{32S}{\pi} \sqrt{\left(\frac{\textit{M}_{f_{m}}}{\sigma_{\textit{y}}} + \textit{K}_{\textit{f}} \frac{\textit{M}_{f_{a}}}{\sigma_{\textit{fo}}^{c}}\right)^{2} + \left(\frac{\textit{M}_{t_{m}}}{\sigma_{\textit{y}}} + \textit{K}_{\textit{f}} \frac{\textit{M}_{t_{a}}}{\sigma_{\textit{fo}}^{c}}\right)^{2}}$$

Also known as ASME-elliptic criterium [9, 10, 11]

ASME criterium

Using Soderberg and maximum distortion energy theory for a solid circular section:

$$\frac{\sigma_{y}}{S} = \sqrt{\left(\sigma_{m} + K_{f} \frac{\sigma_{y}}{\sigma_{fO}^{c}} \sigma_{a}\right)^{2} + 3\left(\tau_{m} + K_{f} \frac{\sigma_{y}}{\sigma_{fO}^{c}} \tau_{a}\right)^{2}}$$

The section diameter can be estimated as:

$$d^{3} = \frac{32S}{\pi} \sqrt{\left(\frac{\textit{M}_{f_{m}}}{\sigma_{\textit{y}}} + \textit{K}_{\textit{f}} \frac{\textit{M}_{f_{a}}}{\sigma_{\textit{fo}}^{c}}\right)^{2} + \frac{3}{4} \left(\frac{\textit{M}_{t_{m}}}{\sigma_{\textit{y}}} + \textit{K}_{\textit{f}} \frac{\textit{M}_{t_{a}}}{\sigma_{\textit{fo}}^{c}}\right)^{2}}$$

Also known as ASME criterium [9, 10, 11]

Comparison of different fatigue design criteria

Figure 15: Shaft under alternated bending and alternating torsion.

 $D=50 \,\mathrm{mm},\, d=42 \,\mathrm{mm},\, r=5 \,\mathrm{mm},\, Surface \, roughness \, R_Z=4 \,\mu\mathrm{m}^{\,11}$

Load at cross section with diameter d:

 $\sigma_b = 500 \, \mathrm{MPa} \pm 50 \, \mathrm{MPa}$ and $\tau_t = 100 \, \mathrm{MPa} \pm 30 \, \mathrm{MPa}$

Material: 34CrMo4 (strength values according to DIN 743-3, $d_B \leq$ 16 mm):

 $\sigma_B=\sigma_R=1000\,\mathrm{MPa},\sigma_S=\sigma_y=800\,\mathrm{MPa},\sigma_{zdW}=400\,\mathrm{MPa},\sigma_{bW}=500\,\mathrm{MPa},\tau_{tW}=300\,\mathrm{MPa}$

¹¹Example and result taken from Supplement 1 of DIN 743

Comparison of different fatigue design criteria

The ASME and ASME elliptic follow the same procedure already discussed during "Machine Elements":

• stress concentration factor K_t from Peterson [10, 12] assuming the notch sensitivity factor as q=1:

$$K_f = 1 + q \cdot (K_t - 1)$$

- Marine factors (C₁, C₂ and C₃) as described on [13] or [9];
- Fatigue strength calculated as $\sigma^{c}_{fo} = 0.5 \cdot \sigma_{R} \cdot C_{1} \cdot C_{2} \cdot C_{3}$

Criteria	Safety factor		
ASME	1.11		
ASME Elliptic	1.08		
DIN 743	2.61		

Critical speed of a shaft

The shaft should be verified for:

- static loading;
- fatigue;
- · critical speed.

The critical speed should be always accessed. Why?

Because the rotating shafts deflect during operation. The critical speed (natural frequency) is the point at which the shaft becomes dynamically unstable and large deflections associated with vibration are likely to develop [14].

Potential energy:

$$U=\frac{1}{2}k\delta^2$$

Kinetic energy:

$$T=\frac{1}{2}m\dot{\delta}^2$$

The potential energy is zero when the mass passes through the static equilibrium position and the kinetic energy is maximum. When the mass is at the position of maximum displacement, velocity is zero and the potential energy is maximum.

Critical speed of a shaft

The total mechanical energy is the sum of the potential and kinetic energies, which is constant over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(U+T\right)=\mathsf{o}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[\frac{1}{2}k\delta^2 + \frac{1}{2}m\dot{\delta}^2\right] = 0$$

$$k\delta\dot{\delta} + m\dot{\delta}\ddot{\delta} = 0 \longleftrightarrow \dot{\delta}\left(m\ddot{\delta} + k\delta\right) = 0$$

$$\ddot{\delta} + \omega^2 \delta = \mathbf{0}$$

 ω is the first natural frequency, usually used as critical speed:

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\delta}}$$

This model is valid only for a shaft that can be represented by a single mass and spring.

For a multiple-mass system, Rayleigh method or Dunkerley equation should be used.

KISSSoft Shaft Design

Summary

1. KISSSoft	38
2. KISSSoft modules	39
3. Shaft design basic calculation	44
4. Strength calculation (DIN 743)	52
5. Assignments	56

KISSSoft

KISSSoft presents several capabilities:

- Gears
- Shafts and Bearings
- Shaft-Hub Connections
- Bolts
- Springs
- · Belts and Chain Drives

There are other comercial software with similar capabilities, namely: Masta; Symscape; Romax; GWJ Technology GmbH and Mesys (both includes DIN 743:2012 calculation).

The focus should be the methods, not the software tools.

KISSSoft main window

Figure 16: KISSSoft main window, base modules tree and shaft calculation module.

Shaft Editor

Figure 17: KISSSoft shaft editor.

KISSSoft examples

Figure 18: KISSSoft built-in examples.

- Select "Examples" in bottom left of KISSSoft main window
- · Select "Shafts" tree
- Select "Shafts 1" example

The example is a shaft, two rolling element bearings, a helical gear pinion with a key and an interference fit.

Shaft 2D view

Figure 19: 2D view of the Shaft 1 example.

Shaft 3D view

Figure 20: 3D view of the Shaft 1 example.

Change gear type

Figure 21: Change the gear type from helical to spur ($m=3.5\,\mathrm{mm}$, $z_1=35$, $z_2=65$, $\alpha=20^\circ$, $a=175\,\mathrm{mm}$) and define the input Power (75 kW). Save the changes as a new model.

Shaft geometry and loads

Figure 22: Shaft design: cross sections and lengths, notches, rolling bearings, forces (coupling/gears)

In order to identify or modify the shaft notches the "Outer contour" section should be explored.

The "Cross sections" are important to make the strength calculations¹².

¹²Homework 5 is based on an example to use the shaft editor

Basic data

Figure 23: Basic data tab.

In this section, the user defines:

- · a load spectrum, if available;
- position (horizontal) and the speed of the shaft (1500 ${
 m rpm}$);
- the material of the shaft: (C45 steel);
- Number of eigenfrequencies ("critical speed" in KISSSoft is the second eigenfrequency);
- The behavior of the gear in the shaft (load, mass and stiffness, interference fit)

Gear load

Figure 24: Select "Gears as load applications only".

This is the typical behavior that we follow during the engineering course. However, other options apply:

- Gears as masses
- · Gears as mass and as stiffness
- Interference fit, with stiffness according to ISO 6336-1, to be discussed later on.

Despite those options could be more realistic, they are out of the scope of the course and the difference on the shaft strength calculation is negligible (as the user may verify).

Run basic calculation

Figure 25: Select "Gears as load applications only".

Please observe that before running the calculation, the software shows a message in bottom right: "INCONSISTENT" that after a successful calculation should become "CONSISTENT"

Figure 26: Check calculation consistency.

Verify forces calculated

Gear forces:

$$d_W = z \cdot m = 122.5 \,\mathrm{mm}$$

$$F_t = \frac{2M_t}{d_w} = \frac{2P}{\omega \cdot d_w} = 7795 \,\mathrm{N}$$

Normal:

$$F_n = \frac{F_t}{\cos \alpha} = 8296 \,\mathrm{N}$$

Radial:

$$F_r = F_t \cdot \tan \alpha = 2837 \,\mathrm{N}$$

Bearing forces (BL - left bearing, BR -

right bearing):

$$\sum \vec{F} = \vec{O} \Leftrightarrow \vec{R}_{BL} + \vec{R}_{BR} = \vec{F}_G$$

$$\sum \vec{M}_{BL} = \vec{O} \Leftrightarrow \vec{r}_{BR} \times \vec{R}_{BR} + \vec{r}_{G} \times \vec{F}_{G} = O$$

$$\vec{R}_{BL} = \begin{cases} 1153 \\ 0 \\ 3167 \end{cases}$$

$$\vec{R}_{BR} = \begin{cases} 1685 \\ 0 & N \\ 4628 \end{cases}$$

Bending and torque diagram

At this moment the calculation performed both a basic calculation and a strength calculation with the default settings. We will avoid for now the strength calculation and check if the calculation is according to the operating conditions that we established.

Figure 27: Torque (Y) and resultant bending moment (X - Z) diagram.

Displacement diagram

If you check the results along Y, the axis direction, no force or displacement should occur, because the load is zero in the Y direction. You can also check the critical speed of the shaft which is $n=41530\,\mathrm{rpm}$.

Figure 28: Resultant displacement of the shaft (X - Z).

Strength calculation

Figure 29: Select a strength calculation method: DIN 743:2012.

The other strength calculation methods are out of the scope of the course.

Now we should also define (an infinite life verification will be done):

- Load case:
 - Case 1 the stress amplitude changes while the mean equivalent stress remains constant during a variation of the
 operational working load.
 - Case 2 the stress ratio between mean equivalent stress and effective stress amplitude remains constant during a variation of the operational working load.
- The stress behavior due to tension, bending (alternating), torsion (constant) and shearing force;
- Load factor K_△

Equivalent stress

Figure 30: Equivalent stress along Y according to von Mises (blue) and Tresca (brown) without stress concentration factors - equations on the figure.

Report: safety factors, critical sections

Figure 31: Percentage of utilization of the safety factors.

Stress concentration factors

SD: Safety endurance limit SS: Safety against yield point

Results:					
Cross section	βσ	KFσ	K2d	SD	SS
A-A	2.98	1.00	0.87	6.70	16.12
B-B	2.69	1.00	0.89	13.06	8.32
C-C	2.33	0.90	0.90	5.91	19.47
D-D	1.77	0.87	0.89	12.53	7.84
Required safeties:				1.20	1.20
Abbreviations:					
βσ: Notch factor, bending					
KFσ: Surface factor					
K2d: size factor bending					

Figure 32: Stress concentration factors on the 4 cross sections defined

Assignments

Assignment A4

Available on the Course Contents:

"Assignments" proposed for Complements of Machine Elements

References

References i

- Niemann, Gustav, Hans Winter, Bernd Robert Höhn, and Karsten Stahl: Maschinenelemente 1.
 Springer Berlin Heidelberg, Berlin, Heidelberg, 2019, ISBN 978-3-662-55481-4.
- [2] Timoshenko, Stephen: Strength of Materials. Part 1: Elementary Theory and Problems.CBS, third edition, 1986, ISBN 81-239-1030-4.
- [3] Castro, Paulo M S Tavares De: Aspectos da abordagem Alemã ao dimensionamento à fadiga: de Bach á norma DIN 743.
 Órgãos de Máquinas, DEMec, Faculdade de Engenharia da Universidade do Porto, 2016.

References ii

- [4] Haberhauer, Horst: Maschinenelemente.

 Springer Berlin Heidelberg, Berlin, Heidelberg, 2018, ISBN 978-3-662-53047-4.
- [5] Muhs, D., H. Wittel, M. Becker, D. Jannasch, and J. Voßiek: Roloff/Matek Maschinenelemente: Normung, Berechnung, Gestaltung - Lehrbuch und Tabellenbuch. Viewegs Fachbücher der Technik. Vieweg+Teubner Verlag, 2013, ISBN 9783322997821.
- [6] Kabus, Bearbeitet von Karlheinz, Frank Rieg, Frank Weidermann, Gerhard Engelken, and ReinhardHackenschmidt: Decker Maschinenelemente: Funktion, Gestaltung und Berechnung. Hanser, 18th edition, 2011.

References iii

- [7] Grote, K.H., B. Bender, and D. Göhlich: Dubbel: Taschenbuch für den Maschinenbau.
 Springer Berlin Heidelberg, 2018, ISBN 9783662548059.
- [8] Castro, Paulo M.S. Tavares de: Parafusos de Transmissão de Potência e de Ligação.
- [9] Budynas, Richard G.: Shigley's mechanical engineering design. McGraw-Hill, 2014, ISBN 9789339221638.
- [10] Castro, Paulo M S Tavares De: Dimensionamento à fadiga. Órgãos de Máquinas, DEMec, Faculdade de Engenharia da Universidade do Porto, 2017.
- [11] Castro, Paulo M.S. Tavares de: Fadiga: exemplos de cálculos de dimensionamento, 2015.ISSN 1905-9574.

References iv

- Pilkey, Walter D., Deborah F. Pilkey, and Zhuming Bi: Peterson's Stress Concentration Factors.
 Wiley, 2020, ISBN 9781119532514.
- [13] Castro, Paulo M S Tavares De: *Peças Curvas*. Órgãos de Máquinas, DEMec, Faculdade de Engenharia da Universidade do Porto, 2016.
- [14] Osgood, Carl and Fatigue Design: Fundamentals of Machine Elements.
 - 2014, ISBN 9781482247503.