Regression/Correlation

Evaluating the model

- Intuitively, if points are grouped closely around the line of best fit we would expect the model to make very accurate predictions.
- We can measure how close points are grouped around the line using the correlation coefficient r.

Correlation Coefficient r

This is a measure of how closely the values of x and y are (linearly) related.

-

•
$$\Gamma = (n\Sigma xy - (\Sigma x)(\Sigma y)) / [(n\Sigma x^2 - (\Sigma x)^2)]^{1/2} [(n\Sigma y^2 - (\Sigma y)^2)]^{1/2}$$

-

Correlation Coefficient (r)

- If the correlation coefficient is close to +1 that means you have a strong positive relationship.
- If the correlation coefficient is close to -1 that means you have a strong negative relationship.
- If the correlation coefficient is close to 0 that means you have no correlation.

Correlation Coefficient (r)

If we are interested in determining whether a relationship exists:-

- Gives the percentage of variation of y explained by the variation in x.
- The rest is dues to noise/random flutations.
- More relevant than r.

```
model = LinearRegression()
model.fit(x,y)

print('coefficient of determination:', model.score(x, y))
print('correlation coefficient:', math.sqrt(model.score(x, y)))
```

- y' = predicted value of y
- m = mean of y
- → SSE = $\Sigma(y y')^2$ (unexplained variance)
- SST = $\Sigma(y m)^2$ (total variance)
- $R^2 = 1 SSE/SST$
- $R^2 = (SST SSE) / SST$
- (explained variance / total variance)

```
y hat = model.predict(x)
print('predicted response:', y hat)
residuals = y_hat - y
print("residuals: ", residuals)
# calculate Coefficient of determination
SSres = sum(np.square(residuals))
print(SSres)
SStot = sum(np.square(y-np.mean(y)))
print(SStot)
rSquared = 1 - (SSres/SStot)
print("Calculated coefficient of determination", rSquared)
print("From model:", model.score(x,y))
```

- The coefficient of determination is a good measure of how good the linear regression model is.
- It is the proportion of the total variation in the data that is explained by the model.
- For simple regression (one independent variable) it is equal to the square of the correlation coefficient.

Evaluating the Model – Other Measures

- Although R² is probably the best measure of how good the model, lets consider a number of alternatives.
- This is useful for demonstrating why R² is so useful.

Recap - Errors

 \mathbf{X}

Evaluating the Model – Other Measures

- SSE Sum of Squares of Errors?
 - No. the more points we have the larger the value
- MSE Mean of the Squares of the Errors?
 - Better, but still if on average the error is 5, MSE will be
 25.
- RMSE Root mean square error
 - Yes Gives good idea about the average error of predictions.
- MAE Mean Absolute error
 - Also good. Not as popular as RMSE

Alternatives to RMSE

- If RMSE is 5 and average value of y is 10, then thats a lot.
- If RMSE is 5 and average value of y is 100, then its not.
- We can compare the RMSE calculated using the model predictions with the RMSE calculated using the mean value of y as the prediction.
- This gives us R², the coefficient of determination.

R² – The Coefficient of Determination (again)

- → R² = 1 SSE/ SSEusingMean
- SSEusingMean is the SSE when using the mean of y as the prediction of y
- If the model is doing no better than the mean, $R^2 = 0$.
- → If it is perfect (RMSE = 0), $R^2 = 1$
- → R² * 100 gives the percentage of the variance of y that is explained by the model.
- (With simple regression, R² is the same as r², where r
 is the correlation coefficient.)