Practice Problems 23: Review of Vectors, Equations of lines and planes, Quadric surfaces

- 1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ such that $\mathbf{u} \cdot \mathbf{v} = 0$ and $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$. Let S denote the plane containing \mathbf{u}, \mathbf{v} and (0,0,0).
 - (a) Show that every element **p** in *S* can be expressed as $\mathbf{p} = \alpha \mathbf{u} + \beta \mathbf{v}$ for some $\alpha, \beta \in \mathbb{R}$. Further show that $\alpha = \mathbf{p} \cdot \mathbf{u}$ and $\beta = \mathbf{p} \cdot \mathbf{v}$.
 - (b) Suppose \mathbf{w} is not in S. Show that there exists an element \mathbf{q} in S such that $\mathbf{w} \mathbf{q}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
- 2. Find a parametric equation of the line passing through (5,2,0) and that is perpendicular to the plane 4x 2y + z = 2.
- **3**. Find a parametric equation of the line of intersection of x 2z = 3 and y + 2z = 5.
- **4.** Find an equation of the plane that contains the line x = 1 + 2t, y = t, z = 3 t and is parallel to the plane 2x + 4y + 8z = 1.
- **5**. Find an equation of the plane that passes through the point (6,0,0) and contains the line x=4-2t, y=2+3t, z=3+5t.
- **6.** Evaluate the distance between the lines $\frac{x-2}{4} = \frac{y-7}{-4} = \frac{z+2}{3}$ and $\frac{x+1}{1} = \frac{y+2}{4} = \frac{z-1}{-3}$.
- 7. Show that the distance between the point $Q = (x_0, y_0, z_0)$ and the plane $(x, y, z) \cdot \mathbf{n} = d$ is $\frac{|n \cdot (x_0, y_0, z_0) d|}{\|\mathbf{n}\|}$.
- 8. Consider the plane x 2y + 3z = 6. Show that the plane is expressed parametrically (with parameters s and t) as $X = P_0 + s(X_0 P_0) + t(Y_0 P_0)$ where $X = (x, y, z), P_0 = (6, 0, 0), X_0 = (0, -3, 0), Y_0 = (0, 0, 2)$ and $s, t \in \mathbb{R}$.
- **9.** Let \mathbf{r} denote (x, y, z). Suppose that $r \cdot \mathbf{n}_1 = d_1$, $\mathbf{r} \cdot \mathbf{n}_2 = d_2$ and $\mathbf{r} \cdot \mathbf{n}_3 = d_3$ are three distinct planes. Show that their intersection is a line if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\mathbf{n}_3 = \alpha \mathbf{n}_1 + \beta \mathbf{n}_2$ and $d_3 = \alpha d_1 + \beta d_2$.
- 10. Find an equation for the surface consisting of all points P such that the distance from P to the x-axis is twice the distance from P to the yz-plane.
- **11.** Find an equation for the surface consisting of all points that are equidistant from the point (-1,0,0) and the plane x=1.
- 12. Find an equation for the cylinder generated by a line through the curve $x^2 + y^2 = 4x$, z = 0 moving parallel to the vector i + j + k.
- 13. Find an equation for the surface generated by revolving the curve $4x^2 + 9y^2 = 36, z = 0$ around the y-axis.
- **14.** (*) Sketch the surfaces by sketching the cross sections cut from the surfaces by the planes x = 0, y = 0 and z = 1.
 - (a) $z = x^2$ (Cylinder)

- (b) $x^2 + y^2 = 4$ (Circular Cylinder)
- (c) $4z = x^2 + y^2$ (Paraboloid)
- (d) $4z^2 = x^2 + y^2$ (Circular cone(s))
- (e) $z = 5 \sqrt{x^2 + y^2}$ (Circular cone)
- **15.** (*) Sketch the surface $4z = y^2 x^2$ by sketching the cross sections cut from the surface by the planes x = 0, y = -1, y = 0 and y = 1.

Practice Problems 23: Hints/Solutions

- 1. (a) Let **a** be the projection of **p** on to the line joining **u** and (0,0,0). Write $\mathbf{p} = \mathbf{a} + (\mathbf{p} \mathbf{a})$. Observe that $\mathbf{a} = (\mathbf{p} \cdot \mathbf{u})\mathbf{u}$ and $(\mathbf{p} \mathbf{a}) \cdot \mathbf{u} = 0$.
 - (b) Note that $(\mathbf{w} \cdot \mathbf{u})\mathbf{u} + (\mathbf{w} \cdot \mathbf{v})\mathbf{v}$ lies in S and that $\mathbf{w} [(\mathbf{w} \cdot \mathbf{u})\mathbf{u} + (\mathbf{w} \cdot \mathbf{v})\mathbf{v}]$ is perpendicular to both \mathbf{u} and \mathbf{v} .
- 2. The line is parallel to the normal vector of the plane. A parametric equation of the line is (x, y, z) = (5, 2, 0) + t(4, -2, 1).
- 3. Note that a point (x, y, z) lies on the line $\Leftrightarrow (x, y, z) = (3 + 2z, 5 2z, z) = (3, 5, 0) + z(2, -2, 1)$. Therefore a parametric equation of the line is $(x, y, z) = (3, 5, 0) + t(2, -2, 1), t \in \mathbb{R}$. One can also obtain the direction of the line (2, -2, 1) by taking the cross product of the normals of the planes.
- 4. Note that the line passes through (1,0,3) and is parallel to the vector $\mathbf{P}=(2,1,-1)$. Observe that the normal \mathbf{n} of the required plane is (2,4,8) and $\mathbf{n}.\mathbf{P}=0$. Therefore an equation of the required plane is $(x,y,z)\cdot(2,4,8)=(1,0,3)\cdot(2,4,8)$.
- 5. Note that (6,0,0) does not lie on the line as t=-1 gives (6,-1,-2). The line passes through (4,2,3) and is parallel to the vector (-2,3,5). So a normal vector \mathbf{n} for the plane is $[(6,0,0)-(4,2,3)]\times(-2,3,5)$. An equation of the plane is $(x,y,z)\cdot\mathbf{n}=(6,0,0)\cdot\mathbf{n}$.
- 6. Both the lines are perpendicular to the vector $(4, -4, 3) \times (1, 4, -3) = (0, 15, 20) = 5(0, 3, 4)$. The vector (3, 9, -3) joins the points (2, 7, -2) and (-1, -2, 1) which lie on the first and the second lines respectively. The required distance is $(3, 9, -3) \cdot \frac{1}{5}(0, 3, 4) = 3$.
- 7. Let P be any point on the plane. Let Q' be the point of intersection of the plane and the line passing through Q and parallel to \mathbf{n} . The required distance is obtained by projecting of the vector \overrightarrow{QP} on to $\overrightarrow{QQ'}$. The required distance is equal to $\|\frac{(Q-P)\cdot\mathbf{n}}{\mathbf{n}\cdot\mathbf{n}}\mathbf{n}\| = \frac{|Q\cdot\mathbf{n}-P\cdot\mathbf{n}|}{\|\mathbf{n}\|}$.
- 8. Observe that the points P_0, X_0 and Y_0 lie on the plane. If X is any point on the plane then $X P_0 = s(X_0 P_0) + t(Y_0 P_0)$ for some $s, t \in \mathbb{R}$.
- 9. Observe that the planes intersect in a line if and only if their normal vectors lie on a plane.
- 10. The distance from P to the x-axis is $\sqrt{y^2 + z^2}$ and distance from P to the yz-plane is |x|. An equation of the surface is $y^2 + z^2 = 4x^2$.
- 11. Let $P = (x_0, y_0, z_0)$ be any point on the surface and Q = (-1, 0, 0). Since the distance between P and Q is equal to the distance from P to the plane x = 1, we have $(x_0 + 1)^2 + y_0^2 + z_0^2 = (x_0 1)^2$. Therefore an equation of the surface is $y^2 + z^2 = -4x$.
- 12. The line passing through a point on the curve $(x_0, y_0, 0)$ and parallel to the vector (1, 1, 1) lie on the cylinder. The equation of the line is $\frac{x-x_0}{1} = \frac{y-y_0}{1} = \frac{z}{1}$. Therefore $x_0 = x z$ and $y_0 = y z$. Since $(x_0, y_0, 0)$ satisfies the equation $(x 2)^2 + y^2 = 4$, an equation for the surface is $(x z 2)^2 + (y z)^2 = 4$.
- 13. Let P = (x, y, z) be a point on the surface. Consider the point $Q = (x_0, y, 0)$ on the curve. Note that the distance from Q to the y-axis and the distance from P to the y-axis are same. Therefore we get $x_0^2 = x^2 + z^2$. An equation of the surface is $4(x^2 + z^2) + 9y^2 = 36$.
- 14. See Figure 1-5 for (a)-(e).
- 15. See Figure 6.