

Objective

Create a model capable of distinguishing between six distinct types of scenes.

Use

• Streamlines the image archiving workflow by automating the classification task.

Operational Benefits

- Significantly reduces the time required for image classification during the archiving process
- Enables better searchability and retrieval of archived images based on scene type.

glacier

glacier

street

street

forest

sea

mountain

buildings

DATASET

kaggle

The dataset is 17000 labeled images divided into 6 classes

images are colored 150 * 150 pixels

Target classes

Baseline Model (Neural network)

Test: 0.46 Train: 0.43

Input Layer (Flatten)
Hidden Layer (Dense with 128 neurons)
Output Layer (Dense with 6 neurons)

Baseline Model (Neural network)

Test: 0.46 Train: 0.43

Confusion Matrix

True: street Predicted: glacier

True: glacier Predicted: glacier

True: sea Predicted: glacier

True: buildings Predicted: glacier

True: forest Predicted: glacier

True: buildings Predicted: glacie

True: street Predicted: glacier

True: street Predicted: street

True: glacier Predicted: street

Model 2 (3 Convolutional Layers)

Test: 0.80 Train: 0.81

MaxPooling2D(pool_size=(3, 3))

Conv2D(filters=64, kernel_size=(3, 3))

MaxPooling2D(pool_size=(2, 2))

Conv2D(filters=128, kernel_size=(3, 3))

Flatten()

Dense(filters=128)

Dense(filters=6)

Model 2 (2 Convolutional Layers)

Test: 0.80 Train: 0.81

True: street Predicted: mountain

Model 3 (6 Convolutional Layers)

Test: 0.86 Train: 0.87

Training and Validation Loss

```
Conv2D(filters=32, kernel_size=(3, 3))
MaxPooling2D(pool_size=(3, 3))
Conv2D(filters=64, kernel_size=(3, 3))
MaxPooling2D(pool_size=(2, 2))
Conv2D(filters=128, kernel_size=(3, 3))
MaxPooling2D(pool_size=(2, 2))
Conv2D(filters=256, kernel_size=(3, 3))
MaxPooling2D(pool_size=(2, 2))
Conv2D(filters=512, kernel_size=(3, 3))
Conv2D(filters=1024, kernel_size=(3, 3))
Flatten()
Dense(filters=1024)
Dense(filters=6)
```


Model 3 (6 Convolutional Layers)

Test: 0.86 Train: 0.87

True: mountain Predicted: sea

True: buildings Predicted: sea

True: sea Predicted: sea

True: buildings Predicted: sea

True: sea Predicted: sea

True: mountain Predicted: sea

True: sea Predicted: sea

True: forest Predicted: sea

True: sea Predicted: sea

Model 3 (6 Convolutional Layers)

Test: 0.86 Train: 0.87

Mountain or Galcier?

Street or Building?

Best performing model

Baseline

Fully connected neural network

Test: 0.46 Train: 0.43

Model 2

3 Convolutional layers

Test: 0.80 Train: 0.81

Model 3

6 Convolutional layers

Test: 0.86 Train: 0.87

Recommendations

- Begin the implementation of the image classification model for archiving purposes.
- Establish a feedback loop with archivists and users to continually improve the model's performance.
- Explore partnerships and collaboration opportunities with organizations or platforms in related fields, such as content management or digital libraries.

Next steps

create an object detection or scene understanding model that would recognise all the components of the scene even if it included more than one element (Street, building)

