# **SBML Model Report**

# Model name: "Bachmann2011\_JAK2-STAT5-\_FeedbackControl"



May 5, 2016

## 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and Andreas Raue<sup>2</sup> at August nineth 2011 at 4:20 p.m. and last time modified at January 31<sup>st</sup> 2012 at 1:56 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 2        |
| species types     | 0        | species              | 26       |
| events            | 0        | constraints          | 0        |
| reactions         | 36       | function definitions | 0        |
| global parameters | 32       | unit definitions     | 0        |
| rules             | 0        | initial assignments  | 0        |

#### **Model Notes**

This model is from the article:

Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>Center for Biological Signaling Studies (BIOSS), Physikalisches Institute, University of Freiburg, Germany., andreas.raue@fdm.uni-freiburg.de

Bachmann J, Raue A, Schilling M, Bhm ME, Kreutz C, Kaschek D, Busch H, Gretz N, Lehmann WD, Timmer J, Klingmller U. Mol Syst Biol. 2011 Jul 19;7:516. 21772264,

#### Abstract:

Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

#### 2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

## 2.1 Unit substance

**Notes** Mole is the predefined SBML unit for substance.

**Definition** mol

#### 2.2 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.3 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

#### 2.4 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

## 2.5 Unit time

**Notes** Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

| Id         | Name       | SBO                | Spatial Dimensions | Size         | Unit   | Constant | Outside |
|------------|------------|--------------------|--------------------|--------------|--------|----------|---------|
| cyt<br>nuc | cyt<br>nuc | 0000290<br>0000290 | 3 3                | 0.4<br>0.275 | 1<br>1 | <b>1</b> |         |

# 3.1 Compartment cyt

This is a three dimensional compartment with a constant size of 0.4 litre.

Name cyt

SBO:0000290 physical compartment

# 3.2 Compartment nuc

This is a three dimensional compartment with a constant size of 0.275 litre.

Name nuc

SBO:0000290 physical compartment

# 4 Species

This model contains 26 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id           | Name         | Compartment | Derived Unit                        | Constant | Boundary<br>Condi-<br>tion |
|--------------|--------------|-------------|-------------------------------------|----------|----------------------------|
| EpoRJAK2     | EpoRJAK2     | cyt         | $\text{mol} \cdot l^{-1}$           |          | $\Box$                     |
| EpoRpJAK2    | EpoRpJAK2    | cyt         | $\text{mol} \cdot l^{-1}$           |          | $\Box$                     |
| p1EpoRpJAK2  | p1EpoRpJAK2  | cyt         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| p2EpoRpJAK2  | p2EpoRpJAK2  | cyt         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| p12EpoRpJAK2 | p12EpoRpJAK2 | cyt         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| EpoRJAK2_CIS | EpoRJAK2_CIS | cyt         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| SHP1         | SHP1         | cyt         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| SHP1Act      | SHP1Act      | cyt         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| STAT5        | STAT5        | cyt         | $\mathrm{mol}\cdot \mathrm{l}^{-1}$ |          |                            |
| pSTAT5       | pSTAT5       | cyt         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| npSTAT5      | npSTAT5      | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| CISnRNA1     | CISnRNA1     | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| CISnRNA2     | CISnRNA2     | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| CISnRNA3     | CISnRNA3     | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| CISnRNA4     | CISnRNA4     | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| CISnRNA5     | CISnRNA5     | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| CISRNA       | CISRNA       | cyt         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| CIS          | CIS          | cyt         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| SOCS3nRNA1   | SOCS3nRNA1   | nuc         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| SOCS3nRNA2   | SOCS3nRNA2   | nuc         | $\operatorname{mol} \cdot 1^{-1}$   |          |                            |
| SOCS3nRNA3   | SOCS3nRNA3   | nuc         | $\text{mol} \cdot 1^{-1}$           |          |                            |
| SOCS3nRNA4   | SOCS3nRNA4   | nuc         | $\text{mol} \cdot l^{-1}$           |          |                            |

| Id         | Name       | Compartment | Derived Unit                       | Constant | Boundary<br>Condi-<br>tion |
|------------|------------|-------------|------------------------------------|----------|----------------------------|
| SOCS3nRNA5 | SOCS3nRNA5 | nuc         | $\text{mol} \cdot l^{-1}$          |          | $\Box$                     |
| SOCS3RNA   | SOCS3RNA   | cyt         | $\operatorname{mol} \cdot 1^{-1}$  |          |                            |
| SOCS3      | SOCS3      | cyt         | $\mathrm{mol}\cdot\mathrm{l}^{-1}$ |          |                            |
| Еро        | Epo        | cyt         | $\text{mol} \cdot l^{-1}$          |          | $\Box$                     |

# **5 Parameters**

This model contains 32 global parameters.

Table 4: Properties of each parameter.

| Id             | Name    | SBO     | Value                   | Unit | Constant                |
|----------------|---------|---------|-------------------------|------|-------------------------|
| ActD           |         | 0000363 | 0.000                   |      | Ø                       |
| CISEqc         |         | 0000281 | 432.871                 |      |                         |
| CISEqc0E       |         | 0000281 | 0.530                   |      |                         |
| ${\tt CISInh}$ |         | 0000261 | $7.84653 \cdot 10^8$    |      |                         |
| CISRNADe       | lay     | 0000225 | 0.145                   |      |                         |
| CISRNAEq       | С       | 0000281 | 1.000                   |      |                         |
| CISRNATu       | rn      | 0000009 | 1000.000                |      |                         |
| CISTurn        |         | 0000009 | 0.008                   |      |                         |
| CISoe          |         | 0000009 | 0.000                   |      |                         |
| EpoRActJ       | AK2     | 0000363 | 0.267                   |      |                         |
| EpoRCISI       | nh      | 0000261 | 1000000.000             |      |                         |
| EpoRCISR       | emove   | 0000009 | 5.429                   |      |                         |
| JAK2ActE       | ро      | 0000363 | 633253.000              |      |                         |
| JAK2EpoR       | DeaSHP1 | 0000009 | 142.722                 |      | $\overline{\mathbf{Z}}$ |
| SHP1ActE       | poR     | 0000363 | 0.001                   |      |                         |
| SHP1Dea        |         | 0000009 | 0.008                   |      |                         |
| SOCS3Eqc       |         | 0000281 | 173.653                 |      |                         |
| SOCS3Eqc       | 0E      | 0000281 | 0.679                   |      |                         |
| SOCS3Inh       |         | 0000261 | 10.408                  |      |                         |
| SOCS3RNA       | Delay   | 0000225 | 1.065                   |      |                         |
| SOCS3RNA       | Eqc     | 0000281 | 1.000                   |      |                         |
| SOCS3RNA       | Turn    | 0000009 | 0.008                   |      |                         |
| SOCS3Tur       | n       | 0000009 | 10000.000               |      |                         |
| SOCS3oe        |         | 0000009 | 0.000                   |      |                         |
| STAT5Act       | EpoR    |         | 38.976                  |      |                         |
| STAT5Act       | JAK2    | 0000363 | 0.078                   |      |                         |
| STAT5Exp       |         | 0000009 | 0.075                   |      |                         |
| STAT5Imp       |         | 0000009 | 0.027                   |      | $\overline{\mathbf{Z}}$ |
| epo_leve       | 1       | 0000009 | $1.24997 \cdot 10^{-7}$ |      | $\overline{\mathbf{Z}}$ |
| init-          |         | 0000009 | 3.976                   |      |                         |
| _EpoRJAK2      | 2       |         |                         |      |                         |
| init_SHP:      | 1       | 0000009 | 26.725                  |      |                         |
| init_STA       | Г5      | 0000009 | 79.754                  |      | $\checkmark$            |

# **6 Reactions**

This model contains 36 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

|    |             | Table 5: Overview of all reactions                                                  |                                              |
|----|-------------|-------------------------------------------------------------------------------------|----------------------------------------------|
| N⁰ | Id Name     | Reaction Equation SBO                                                               |                                              |
| 1  | reaction_1  | $EpoRJAK2 \xrightarrow{Epo, SOCS3} EpoRpJAK2 \qquad 0000216$                        |                                              |
| 2  | reaction_2  | $EpoRpJAK2 \xrightarrow{SHP1Act} EpoRJAK2 \qquad 0000330$                           |                                              |
| 3  | reaction_3  | EpoRpJAK2 $\xrightarrow{SOCS3}$ p1EpoRpJAK2 0000216                                 |                                              |
| 4  | reaction_4  | EpoRpJAK2 $\xrightarrow{\text{EpoRJAK2\_CIS}}$ p2EpoRpJAK2 0000330                  |                                              |
| 5  | reaction_5  | p1EpoRpJAK2 $\xrightarrow{\text{EpoRJAK2\_CIS}}$ SOCS3 p12EpoRpJA <b>RCD</b> 0216   |                                              |
| 6  | reaction_6  | $p2EpoRpJAK2 \xrightarrow{SOCS3} p12EpoRpJAK2 \qquad 0000216$                       |                                              |
| 7  | reaction_7  | p1EpoRpJAK2 $\xrightarrow{\text{SHP1Act}}$ EpoRJAK2 0000330                         |                                              |
| 8  | reaction_8  | $p2EpoRpJAK2 \xrightarrow{SHP1Act} EpoRJAK2 \qquad 0000330$                         |                                              |
| 9  | reaction_9  | p12EpoRpJAK2 $\xrightarrow{\text{SHP1Act}}$ EpoRJAK2 0000330                        |                                              |
| 10 | reaction_10 | EpoRJAK2_CIS $\stackrel{\text{p12EpoRpJAK2}}{\longrightarrow} \emptyset$ 0000179    |                                              |
| 11 | reaction_11 | SHP1 EpoRpJAK2, p12EpoRpJAK2, p1EpoRpJAK2, p2EpoRpJAK                               | $\stackrel{(2)}{\rightarrow}$ SHP1Act        |
| 12 | reaction_12 | $SHP1Act \longrightarrow SHP1 \qquad 0000181$                                       |                                              |
| 13 | reaction_13 | STAT5 EpoRpJAK2, SOCS3, p12EpoRpJAK2, p1EpoRpJAK2, p2E                              | $\xrightarrow{\text{EpoRpJAK2}} \text{pSTA}$ |
| 14 | reaction_14 | STAT5 CIS, SOCS3, p12EpoRpJAK2, p1EpoRpJAK2                                         | _                                            |
| 15 | reaction_15 | $pSTAT5 \longrightarrow npSTAT5 \qquad 0000185$                                     |                                              |
| 16 | reaction_16 | $npSTAT5 \longrightarrow STAT5 \qquad 0000330$                                      |                                              |
| 17 | reaction_17 | $\emptyset \stackrel{\text{npSTAT5}}{=\!=\!=\!=\!=} \text{CISnRNA1} \qquad 0000393$ |                                              |

| N⁰ | Id                   | Name | Reaction Equation                                          | SBO     |
|----|----------------------|------|------------------------------------------------------------|---------|
| 18 | reaction_18          |      | CISnRNA1 → CISnRNA2                                        | 0000182 |
| 19 | ${\tt reaction\_19}$ |      | $CISnRNA2 \longrightarrow CISnRNA3$                        | 0000182 |
| 20 | $reaction_20$        |      | $CISnRNA3 \longrightarrow CISnRNA4$                        | 0000182 |
| 21 | $reaction_21$        |      | $CISnRNA4 \longrightarrow CISnRNA5$                        | 0000182 |
| 22 | $reaction_22$        |      | $CISnRNA5 \longrightarrow CISRNA$                          | 0000182 |
| 23 | $reaction_23$        |      | $CISRNA \longrightarrow \emptyset$                         | 0000179 |
| 24 | reaction_24          |      | $\emptyset \xrightarrow{\text{CISRNA}} \text{CIS}$         | 0000393 |
| 25 | reaction_25          |      | $CIS \longrightarrow \emptyset$                            | 0000179 |
| 26 | ${\tt reaction\_26}$ |      | $\emptyset \longrightarrow CIS$                            | 0000393 |
| 27 | reaction_27          |      | $\emptyset \xrightarrow{\text{npSTAT5}} \text{SOCS3nRNA1}$ | 0000393 |
| 28 | reaction_28          |      | $SOCS3nRNA1 \longrightarrow SOCS3nRNA2$                    | 0000182 |
| 29 | reaction_29          |      | $SOCS3nRNA2 \longrightarrow SOCS3nRNA3$                    | 0000182 |
| 30 | $reaction_30$        |      | SOCS3nRNA3 → SOCS3nRNA4                                    | 0000182 |
| 31 | $reaction_31$        |      | SOCS3nRNA4 → SOCS3nRNA5                                    | 0000182 |
| 32 | $reaction_32$        |      | $SOCS3nRNA5 \longrightarrow SOCS3RNA$                      | 0000182 |
| 33 | $reaction_33$        |      | $SOCS3RNA \longrightarrow \emptyset$                       | 0000179 |
| 34 | reaction_34          |      | $\emptyset \xrightarrow{SOCS3RNA} SOCS3$                   | 0000393 |
| 35 | reaction_35          |      | $SOCS3 \longrightarrow \emptyset$                          | 0000179 |
| 36 | ${\tt reaction\_36}$ |      | $\emptyset \longrightarrow SOCS3$                          | 0000393 |

## **6.1 Reaction** reaction\_1

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

# SBO:0000216 phosphorylation

# **Reaction equation**

$$EpoRJAK2 \xrightarrow{Epo, SOCS3} EpoRpJAK2$$
 (1)

#### Reactant

Table 6: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| EpoRJAK2 | EpoRJAK2 |     |

#### **Modifiers**

Table 7: Properties of each modifier.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| Epo<br>SOCS3 | Epo<br>SOCS3 |     |

## **Product**

Table 8: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| EpoRpJAK2 | EpoRpJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{1} = \frac{\text{JAK2ActEpo} \cdot [\text{Epo}] \cdot [\text{EpoRJAK2}]}{\frac{\text{SOCS3Inh} \cdot [\text{SOCS3}]}{\text{SOCS3Eqc}} + 1} \cdot \text{vol}(\text{cyt})$$
 (2)

## **6.2 Reaction** reaction\_2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# SBO:0000330 dephosphorylation

# **Reaction equation**

$$EpoRpJAK2 \xrightarrow{SHP1Act} EpoRJAK2$$
 (3)

## Reactant

Table 9: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| EpoRpJAK2 | EpoRpJAK2 |     |

#### **Modifier**

Table 10: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| SHP1Act | SHP1Act |     |

## **Product**

Table 11: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| EpoRJAK2 | EpoRJAK2 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{2} = \frac{\text{JAK2EpoRDeaSHP1} \cdot [\text{SHP1Act}] \cdot [\text{EpoRpJAK2}]}{\text{init.SHP1}} \cdot \text{vol}\left(\text{cyt}\right) \tag{4}$$

# **6.3 Reaction** reaction\_3

This is an irreversible reaction of one reactant forming one product influenced by one modifier. **SBO:0000216** phosphorylation

## **Reaction equation**

$$EpoRpJAK2 \xrightarrow{SOCS3} p1EpoRpJAK2$$
 (5)

#### Reactant

Table 12: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| EpoRpJAK2 | EpoRpJAK2 |     |

## **Modifier**

Table 13: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| SOCS3 | SOCS3 |     |

## **Product**

Table 14: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| p1EpoRpJAK2 | p1EpoRpJAK2 |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{3} = \frac{\text{EpoRActJAK2} \cdot [\text{EpoRpJAK2}]}{\frac{\text{SOCS3Inh} \cdot [\text{SOCS3}]}{\text{SOCS3Eqc}} + 1} \cdot \text{vol}(\text{cyt})$$
(6)

## **6.4 Reaction** reaction\_4

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

# SBO:0000330 dephosphorylation

# **Reaction equation**

$$EpoRpJAK2 \xrightarrow{EpoRJAK2\_CIS, SOCS3} p2EpoRpJAK2$$
 (7)

| Table 15: | <b>Properties</b> | of each | reactant. |
|-----------|-------------------|---------|-----------|
|-----------|-------------------|---------|-----------|

| THOSE TEXT TOP STATES OF SHORT TOHOUGHT. |           |     |
|------------------------------------------|-----------|-----|
| Id                                       | Name      | SBO |
| EpoRpJAK2                                | EpoRpJAK2 |     |

Table 16: Properties of each modifier.

| There is, ireperiors or their medicin |                       |     |
|---------------------------------------|-----------------------|-----|
| Id                                    | Name                  | SBO |
| EpoRJAK2_CIS<br>SOCS3                 | EpoRJAK2_CIS<br>SOCS3 |     |

#### **Product**

Table 17: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| p2EpoRpJAK2 | p2EpoRpJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{4} = \frac{3 \cdot EpoRActJAK2 \cdot [EpoRpJAK2]}{\left(\frac{SOCS3Inh \cdot [SOCS3]}{SOCS3Eqc} + 1\right) \cdot (EpoRCISInh \cdot [EpoRJAK2\_CIS] + 1)} \cdot vol(cyt)$$
(8)

# **6.5 Reaction** reaction\_5

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

# SBO:0000216 phosphorylation

# **Reaction equation**

$$p1EpoRpJAK2 \xrightarrow{EpoRJAK2\_CIS, SOCS3} p12EpoRpJAK2$$
 (9)

Table 18: Properties of each reactant.

| There is in a perment of the information |             |     |
|------------------------------------------|-------------|-----|
| Id                                       | Name        | SBO |
| p1EpoRpJAK2                              | p1EpoRpJAK2 |     |

Table 19: Properties of each modifier.

| Id                    | Name                  | SBO |
|-----------------------|-----------------------|-----|
| EpoRJAK2_CIS<br>SOCS3 | EpoRJAK2_CIS<br>SOCS3 |     |

#### **Product**

Table 20: Properties of each product.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| p12EpoRpJAK2 | p12EpoRpJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{5} = \frac{3 \cdot EpoRActJAK2 \cdot [p1EpoRpJAK2]}{\left(\frac{SOCS3Inh \cdot [SOCS3]}{SOCS3Eqc} + 1\right) \cdot (EpoRCISInh \cdot [EpoRJAK2\_CIS] + 1)} \cdot vol(cyt)$$
(10)

## **6.6 Reaction** reaction\_6

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# SBO:0000216 phosphorylation

# **Reaction equation**

$$p2EpoRpJAK2 \xrightarrow{SOCS3} p12EpoRpJAK2 \tag{11}$$

Table 21: Properties of each reactant.

| THE I THE PUBLIC OF THE ITEMS O |             |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Name        | SBO |
| p2EpoRpJAK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p2EpoRpJAK2 |     |

Table 22: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| SOCS3 | SOCS3 |     |

## **Product**

Table 23: Properties of each product.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| p12EpoRpJAK2 | p12EpoRpJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{6} = \frac{\text{EpoRActJAK2} \cdot [\text{p2EpoRpJAK2}]}{\frac{\text{SOCS3Inh} \cdot [\text{SOCS3}]}{\text{SOCS3Eqc}} + 1} \cdot \text{vol}(\text{cyt})$$
(12)

# **6.7 Reaction** reaction\_7

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# SBO:0000330 dephosphorylation

# **Reaction equation**

$$p1EpoRpJAK2 \xrightarrow{SHP1Act} EpoRJAK2$$
 (13)

Table 24: Properties of each reactant.

| Tueste 2 Treperines er euem reuemin. |             |     |
|--------------------------------------|-------------|-----|
| Id                                   | Name        | SBO |
| p1EpoRpJAK2                          | p1EpoRpJAK2 |     |

Table 25: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| SHP1Act | SHP1Act |     |

## **Product**

Table 26: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| EpoRJAK2 | EpoRJAK2 |     |

## **Kinetic Law**

Derived unit contains undeclared units

$$v_7 = \frac{JAK2EpoRDeaSHP1 \cdot [SHP1Act] \cdot [p1EpoRpJAK2]}{init\_SHP1} \cdot vol(cyt) \tag{14}$$

# **6.8 Reaction** reaction\_8

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

# SBO:0000330 dephosphorylation

# **Reaction equation**

$$p2EpoRpJAK2 \xrightarrow{SHP1Act} EpoRJAK2$$
 (15)

Table 27: Properties of each reactant.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| p2EpoRpJAK2 | p2EpoRpJAK2 |     |

Table 28: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| SHP1Act | SHP1Act |     |

## **Product**

Table 29: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| EpoRJAK2 | EpoRJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$\nu_8 = \frac{JAK2EpoRDeaSHP1 \cdot [SHP1Act] \cdot [p2EpoRpJAK2]}{init\_SHP1} \cdot vol(cyt) \tag{16}$$

## **6.9 Reaction** reaction\_9

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

## SBO:0000330 dephosphorylation

# **Reaction equation**

$$p12EpoRpJAK2 \xrightarrow{SHP1Act} EpoRJAK2$$
 (17)

## Reactant

Table 30: Properties of each reactant.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| p12EpoRpJAK2 | p12EpoRpJAK2 |     |

## **Modifier**

Table 31: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| SHP1Act | SHP1Act |     |

## **Product**

Table 32: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| EpoRJAK2 | EpoRJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$\nu_9 = \frac{JAK2EpoRDeaSHP1 \cdot [SHP1Act] \cdot [p12EpoRpJAK2]}{init\_SHP1} \cdot vol\left(cyt\right) \tag{18}$$

# **6.10 Reaction** reaction\_10

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

# SBO:0000179 degradation

# **Reaction equation**

EpoRJAK2\_CIS 
$$\stackrel{\text{p12EpoRpJAK2}}{\longrightarrow} \emptyset$$
 (19)

#### Reactant

Table 33: Properties of each reactant.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| EpoRJAK2_CIS | EpoRJAK2_CIS |     |

## **Modifiers**

Table 34: Properties of each modifier.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| p12EpoRpJAK2 | p12EpoRpJAK2 |     |

| Id          | Name        | SBO |
|-------------|-------------|-----|
| p1EpoRpJAK2 | p1EpoRpJAK2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{10} = \frac{EpoRCISRemove \cdot [EpoRJAK2\_CIS] \cdot ([p12EpoRpJAK2] + [p1EpoRpJAK2])}{init\_EpoRJAK2} \cdot vol (cyt)$$
 (20)

## 6.11 Reaction reaction\_11

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

# SBO:0000181 conformational transition

## **Reaction equation**

$$SHP1 \xrightarrow{EpoRpJAK2, \ p12EpoRpJAK2, \ p1EpoRpJAK2, \ p2EpoRpJAK2} SHP1Act \qquad (21)$$

## Reactant

Table 35: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| SHP1 | SHP1 |     |

#### **Modifiers**

Table 36: Properties of each modifier.

| Id                                                      | Name                                                    | SBO |
|---------------------------------------------------------|---------------------------------------------------------|-----|
| EpoRpJAK2<br>p12EpoRpJAK2<br>p1EpoRpJAK2<br>p2EpoRpJAK2 | EpoRpJAK2<br>p12EpoRpJAK2<br>p1EpoRpJAK2<br>p2EpoRpJAK2 |     |

#### **Product**

Table 37: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| SHP1Act | SHP1Act |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$\begin{aligned} & \nu_{11} \\ &= \frac{\text{SHP1ActEpoR} \cdot [\text{SHP1}] \cdot ([\text{EpoRpJAK2}] + [\text{p12EpoRpJAK2}] + [\text{p1EpoRpJAK2}] + [\text{p2EpoRpJAK2}])}{\text{init\_EpoRJAK2}} \\ & \cdot \text{vol}\left(\text{cyt}\right) \end{aligned}$$

## **6.12 Reaction** reaction\_12

This is an irreversible reaction of one reactant forming one product.

SBO:0000181 conformational transition

# **Reaction equation**

$$SHP1Act \longrightarrow SHP1 \tag{23}$$

#### Reactant

Table 38: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| SHP1Act | SHP1Act |     |

#### **Product**

Table 39: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| SHP1 | SHP1 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{12} = \text{SHP1Dea} \cdot [\text{SHP1Act}] \cdot \text{vol}(\text{cyt})$$
 (24)

# **6.13 Reaction** reaction\_13

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

# SBO:0000216 phosphorylation

# **Reaction equation**

$$STAT5 \xrightarrow{EpoRpJAK2,\ SOCS3,\ p12EpoRpJAK2,\ p1EpoRpJAK2,\ p2EpoRpJAK2} pSTAT5 \xrightarrow{(25)}$$

#### Reactant

Table 40: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| STAT5 | STAT5 |     |

## **Modifiers**

Table 41: Properties of each modifier.

| Id                                                               | Name                                                             | SBO |
|------------------------------------------------------------------|------------------------------------------------------------------|-----|
| EpoRpJAK2<br>SOCS3<br>p12EpoRpJAK2<br>p1EpoRpJAK2<br>p2EpoRpJAK2 | EpoRpJAK2<br>SOCS3<br>p12EpoRpJAK2<br>p1EpoRpJAK2<br>p2EpoRpJAK2 |     |

#### **Product**

Table 42: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| pSTAT5 | pSTAT5 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$\begin{aligned} & \nu_{13} \\ &= \frac{\text{STAT5ActJAK2} \cdot [\text{STAT5}] \cdot ([\text{EpoRpJAK2}] + [\text{p12EpoRpJAK2}] + [\text{p1EpoRpJAK2}] + [\text{p2EpoRpJAK2}])}{\text{init\_EpoRJAK2} \cdot \left(\frac{\text{SOCS3Inh} \cdot [\text{SOCS3}]}{\text{SOCS3Eqc}} + 1\right)} \\ & \cdot \text{vol}\left(\text{cyt}\right) \end{aligned}$$

## 6.14 Reaction reaction\_14

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

# SBO:0000216 phosphorylation

## **Reaction equation**

STAT5 
$$\xrightarrow{\text{CIS}}$$
, SOCS3, p12EpoRpJAK2, p1EpoRpJAK2  $\rightarrow$  pSTAT5 (27)

#### Reactant

Table 43: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| STAT5 | STAT5 |     |

#### **Modifiers**

Table 44: Properties of each modifier.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| CIS          | CIS          |     |
| SOCS3        | SOCS3        |     |
| p12EpoRpJAK2 | p12EpoRpJAK2 |     |
| p1EpoRpJAK2  | p1EpoRpJAK2  |     |

# **Product**

Table 45: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| pSTAT5 | pSTAT5 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$\nu_{14} = \frac{STAT5ActEpoR \cdot [STAT5] \cdot ([p12EpoRpJAK2] + [p1EpoRpJAK2])^2}{init\_EpoRJAK2^2 \cdot \left(\frac{CISInh \cdot [CIS]}{CISEqc} + 1\right) \cdot \left(\frac{SOCS3Inh \cdot [SOCS3]}{SOCS3Eqc} + 1\right)} \cdot vol\left(cyt\right) \quad (28)$$

## 6.15 Reaction reaction\_15

This is an irreversible reaction of one reactant forming one product.

SBO:0000185 transport reaction

## **Reaction equation**

$$pSTAT5 \longrightarrow npSTAT5 \tag{29}$$

#### Reactant

Table 46: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| pSTAT5 | pSTAT5 |     |

#### **Product**

Table 47: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| npSTAT5 | npSTAT5 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{15} = \text{STAT5Imp} \cdot [\text{pSTAT5}] \cdot \text{vol}(\text{cyt}) \tag{30}$$

#### 6.16 Reaction reaction\_16

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

# **Reaction equation**

$$npSTAT5 \longrightarrow STAT5 \tag{31}$$

#### Reactant

Table 48: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| npSTAT5 | npSTAT5 |     |

## **Product**

Table 49: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| STAT5 | STAT5 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{16} = \text{STAT5Exp} \cdot [\text{npSTAT5}] \cdot \text{vol}(\text{nuc})$$
 (32)

# **6.17 Reaction** reaction\_17

This is a reversible reaction of no reactant forming one product influenced by one modifier.

# SBO:0000393 production

## **Reaction equation**

$$\emptyset \xrightarrow{\text{npSTAT5}} \text{CISnRNA1} \tag{33}$$

#### **Modifier**

Table 50: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| npSTAT5 | npSTAT5 |     |

## **Product**

Table 51: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA1 | CISnRNA1 |     |

#### **Kinetic Law**

**Derived unit** mol

$$v_{17} = \left(\frac{\text{CISRNAEqc} \cdot \text{CISRNATurn} \cdot [\text{npSTAT5}] \cdot (\text{ActD} - 1)}{\text{init\_STAT5}} \cdot \text{vol} (\text{nuc})\right)$$
(34)

# **6.18 Reaction** reaction\_18

This is an irreversible reaction of one reactant forming one product.

#### SBO:0000182 conversion

## **Reaction equation**

$$CISnRNA1 \longrightarrow CISnRNA2 \tag{35}$$

#### Reactant

Table 52: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA1 | CISnRNA1 |     |

## **Product**

Table 53: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA2 | CISnRNA2 |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{18} = \text{CISRNADelay} \cdot [\text{CISnRNA1}] \cdot \text{vol}(\text{nuc})$$
 (36)

## **6.19 Reaction** reaction\_19

This is an irreversible reaction of one reactant forming one product.

#### SBO:0000182 conversion

# **Reaction equation**

$$CISnRNA2 \longrightarrow CISnRNA3 \tag{37}$$

## Reactant

Table 54: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA2 | CISnRNA2 |     |

## **Product**

Table 55: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA3 | CISnRNA3 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{19} = CISRNADelay \cdot [CISnRNA2] \cdot vol(nuc)$$
 (38)

## **6.20 Reaction** reaction\_20

This is an irreversible reaction of one reactant forming one product.

SBO:0000182 conversion

# **Reaction equation**

$$CISnRNA3 \longrightarrow CISnRNA4 \tag{39}$$

Table 56: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA3 | CISnRNA3 |     |

## **Product**

Table 57: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA4 | CISnRNA4 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{20} = CISRNADelay \cdot [CISnRNA3] \cdot vol(nuc)$$
 (40)

# **6.21 Reaction** reaction\_21

This is an irreversible reaction of one reactant forming one product.

SBO:0000182 conversion

# **Reaction equation**

$$CISnRNA4 \longrightarrow CISnRNA5 \tag{41}$$

## Reactant

Table 58: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA4 | CISnRNA4 |     |

#### **Product**

Table 59: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA5 | CISnRNA5 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{21} = CISRNADelay \cdot [CISnRNA4] \cdot vol(nuc)$$
 (42)

#### **6.22 Reaction** reaction\_22

This is an irreversible reaction of one reactant forming one product.

SBO:0000182 conversion

#### **Reaction equation**

$$CISnRNA5 \longrightarrow CISRNA \tag{43}$$

#### Reactant

Table 60: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| CISnRNA5 | CISnRNA5 |     |

#### **Product**

Table 61: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| CISRNA | CISRNA |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{22} = CISRNADelay \cdot [CISnRNA5] \cdot vol(nuc)$$
 (44)

## **6.23 Reaction** reaction\_23

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

# **Reaction equation**

$$CISRNA \longrightarrow \emptyset \tag{45}$$

#### Reactant

Table 62: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| CISRNA | CISRNA |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{23} = CISRNATurn \cdot [CISRNA] \cdot vol(cyt)$$
 (46)

## 6.24 Reaction reaction\_24

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

SBO:0000393 production

## **Reaction equation**

$$\emptyset \xrightarrow{\text{CISRNA}} \text{CIS} \tag{47}$$

#### **Modifier**

Table 63: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| CISRNA | CISRNA |     |

#### **Product**

Table 64: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| CIS | CIS  |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{24} = \frac{\text{CISEqc} \cdot \text{CISTurn} \cdot [\text{CISRNA}]}{\text{CISRNAEqc}} \cdot \text{vol}(\text{cyt})$$
 (48)

## 6.25 Reaction reaction\_25

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

# **Reaction equation**

$$CIS \longrightarrow \emptyset$$
 (49)

## Reactant

Table 65: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| CIS | CIS  |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{25} = \text{CISTurn} \cdot [\text{CIS}] \cdot \text{vol}(\text{cyt})$$
 (50)

## **6.26 Reaction** reaction\_26

This is an irreversible reaction of no reactant forming one product.

SBO:0000393 production

## **Reaction equation**

$$\emptyset \longrightarrow CIS$$
 (51)

## **Product**

Table 66: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| CIS | CIS  |     |

## **Kinetic Law**

Derived unit not available

$$v_{26} = \text{CISoe} \cdot \text{CISEqc} \cdot \text{CISTurn} \cdot \text{CISEqcOE}$$
 (52)

## **6.27 Reaction** reaction\_27

This is a reversible reaction of no reactant forming one product influenced by one modifier.

# SBO:0000393 production

## **Reaction equation**

$$\emptyset \xrightarrow{\text{npSTAT5}} \text{SOCS3nRNA1}$$
 (53)

#### **Modifier**

Table 67: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| npSTAT5 | npSTAT5 |     |

#### **Product**

Table 68: Properties of each product.

| Id Name    |            | SBO |
|------------|------------|-----|
| SOCS3nRNA1 | SOCS3nRNA1 |     |

## **Kinetic Law**

#### Derived unit mol

$$v_{27} = \left(\frac{\text{SOCS3RNAEqc} \cdot \text{SOCS3RNATurn} \cdot [\text{npSTAT5}] \cdot (\text{ActD} - 1)}{\text{init\_STAT5}} \cdot \text{vol} (\text{nuc})\right) \quad (54)$$

## 6.28 Reaction reaction\_28

This is an irreversible reaction of one reactant forming one product.

## SBO:0000182 conversion

## **Reaction equation**

$$SOCS3nRNA1 \longrightarrow SOCS3nRNA2 \tag{55}$$

Table 69: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA1 | SOCS3nRNA1 |     |

## **Product**

Table 70: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA2 | SOCS3nRNA2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{28} = SOCS3RNADelay \cdot [SOCS3nRNA1] \cdot vol(nuc)$$
 (56)

# **6.29 Reaction** reaction\_29

This is an irreversible reaction of one reactant forming one product.

## SBO:0000182 conversion

# **Reaction equation**

$$SOCS3nRNA2 \longrightarrow SOCS3nRNA3 \tag{57}$$

## Reactant

Table 71: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA2 | SOCS3nRNA2 |     |

#### **Product**

Table 72: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA3 | SOCS3nRNA3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{29} = SOCS3RNADelay \cdot [SOCS3nRNA2] \cdot vol(nuc)$$
 (58)

## **6.30 Reaction** reaction\_30

This is an irreversible reaction of one reactant forming one product.

SBO:0000182 conversion

#### **Reaction equation**

$$SOCS3nRNA3 \longrightarrow SOCS3nRNA4 \tag{59}$$

#### Reactant

Table 73: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA3 | SOCS3nRNA3 |     |

#### **Product**

Table 74: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA4 | SOCS3nRNA4 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{30} = SOCS3RNADelay \cdot [SOCS3nRNA3] \cdot vol(nuc)$$
 (60)

## **6.31 Reaction** reaction\_31

This is an irreversible reaction of one reactant forming one product.

SBO:0000182 conversion

## **Reaction equation**

$$SOCS3nRNA4 \longrightarrow SOCS3nRNA5 \tag{61}$$

#### Reactant

Table 75: Properties of each reactant.

| Tueste / et l'Irepetities et euent reuetunit |            |     |
|----------------------------------------------|------------|-----|
| Id                                           | Name       | SBO |
| SOCS3nRNA4                                   | SOCS3nRNA4 |     |

## **Product**

Table 76: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA5 | SOCS3nRNA5 |     |

## **Kinetic Law**

Derived unit contains undeclared units

$$v_{31} = SOCS3RNADelay \cdot [SOCS3nRNA4] \cdot vol(nuc)$$
 (62)

# **6.32 Reaction** reaction\_32

This is an irreversible reaction of one reactant forming one product.

## SBO:0000182 conversion

# **Reaction equation**

$$SOCS3nRNA5 \longrightarrow SOCS3RNA \tag{63}$$

## Reactant

Table 77: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| SOCS3nRNA5 | SOCS3nRNA5 |     |

## **Product**

| Id       | Name     | SBO |
|----------|----------|-----|
| SOCS3RNA | SOCS3RNA |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{32} = SOCS3RNADelay \cdot [SOCS3nRNA5] \cdot vol (nuc)$$
 (64)

#### **6.33 Reaction** reaction\_33

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

## **Reaction equation**

$$SOCS3RNA \longrightarrow \emptyset$$
 (65)

#### Reactant

Table 79: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| SOCS3RNA | SOCS3RNA |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{33} = SOCS3RNATurn \cdot [SOCS3RNA] \cdot vol(cyt)$$
 (66)

## **6.34 Reaction** reaction\_34

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

SBO:0000393 production

## **Reaction equation**

$$\emptyset \xrightarrow{SOCS3RNA} SOCS3 \tag{67}$$

Table 80: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| SOCS3RNA | SOCS3RNA |     |

#### **Product**

Table 81: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| SOCS3 | SOCS3 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{34} = \frac{SOCS3Eqc \cdot SOCS3Turn \cdot [SOCS3RNA]}{SOCS3RNAEqc} \cdot vol(cyt)$$
 (68)

# **6.35 Reaction** reaction\_35

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

## **Reaction equation**

$$SOCS3 \longrightarrow \emptyset \tag{69}$$

#### Reactant

Table 82: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| SOCS3 | SOCS3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{35} = SOCS3Turn \cdot [SOCS3] \cdot vol(cyt)$$
 (70)

#### 6.36 Reaction reaction\_36

This is an irreversible reaction of no reactant forming one product.

SBO:0000393 production

#### **Reaction equation**

$$\emptyset \longrightarrow SOCS3$$
 (71)

#### **Product**

Table 83: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| SOCS3 | SOCS3 |     |

#### **Kinetic Law**

Derived unit not available

$$v_{36} = SOCS3oe \cdot SOCS3Eqc \cdot SOCS3Turn \cdot SOCS3EqcOE$$
 (72)

# 7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

# 7.1 Species EpoRJAK2

Name EpoRJAK2

SBO:0000297 protein complex

Initial concentration  $3.97622 \text{ mol} \cdot l^{-1}$ 

This species takes part in five reactions (as a reactant in reaction\_1 and as a product in reaction\_2, reaction\_7, reaction\_8, reaction\_9).

$$\frac{d}{dt} \text{EpoRJAK2} = |v_2| + |v_7| + |v_8| + |v_9| - |v_1|$$
 (73)

# 7.2 Species EpoRpJAK2

Name EpoRpJAK2

SBO:0000297 protein complex

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in reaction\_2, reaction\_3, reaction\_4 and as a product in reaction\_1 and as a modifier in reaction\_11, reaction\_13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EpoRpJAK2} = |v_1| - |v_2| - |v_3| - |v_4| \tag{74}$$

## 7.3 Species p1EpoRpJAK2

Name p1EpoRpJAK2

SBO:0000297 protein complex

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in seven reactions (as a reactant in reaction\_5, reaction\_7 and as a product in reaction\_3 and as a modifier in reaction\_10, reaction\_11, reaction\_13, reaction\_14).

$$\frac{\mathrm{d}}{\mathrm{d}t} p 1 \text{EpoRpJAK2} = |v_3| - |v_5| - |v_7| \tag{75}$$

## 7.4 Species p2EpoRpJAK2

Name p2EpoRpJAK2

SBO:0000297 protein complex

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in five reactions (as a reactant in reaction\_6, reaction\_8 and as a product in reaction\_4 and as a modifier in reaction\_11, reaction\_13).

$$\frac{\mathrm{d}}{\mathrm{d}t} p 2 \mathrm{EpoRpJAK2} = |v_4| - |v_6| - |v_8| \tag{76}$$

# 7.5 Species p12EpoRpJAK2

Name p12EpoRpJAK2

SBO:0000297 protein complex

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in seven reactions (as a reactant in reaction\_9 and as a product in reaction\_5, reaction\_6 and as a modifier in reaction\_10, reaction\_11, reaction\_13, reaction\_14).

$$\frac{\mathrm{d}}{\mathrm{d}t} p12 \mathrm{EpoRpJAK2} = |v_5| + |v_6| - |v_9| \tag{77}$$

# 7.6 Species EpoRJAK2\_CIS

Name EpoRJAK2\_CIS

SBO:0000297 protein complex

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in reaction\_10 and as a modifier in reaction\_4, reaction\_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EpoRJAK2\_CIS} = -v_{10} \tag{78}$$

# 7.7 Species SHP1

Name SHP1

SBO:0000252 polypeptide chain

Initial concentration  $26.7251 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_11 and as a product in reaction\_12).

$$\frac{d}{dt}SHP1 = |v_{12}| - |v_{11}| \tag{79}$$

## 7.8 Species SHP1Act

Name SHP1Act

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in reaction\_12 and as a product in reaction\_11 and as a modifier in reaction\_2, reaction\_7, reaction\_8, reaction\_9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SHP1Act} = |v_{11}| - |v_{12}| \tag{80}$$

## 7.9 Species STAT5

Name STAT5

SBO:0000252 polypeptide chain

Initial concentration 79.7535 mol·1<sup>-1</sup>

This species takes part in three reactions (as a reactant in reaction\_13, reaction\_14 and as a product in reaction\_16).

$$\frac{d}{dt}STAT5 = |v_{16}| - |v_{13}| - |v_{14}| \tag{81}$$

## 7.10 Species pSTAT5

Name pSTAT5

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in reaction\_15 and as a product in reaction\_13, reaction\_14).

$$\frac{d}{dt}pSTAT5 = |v_{13}| + |v_{14}| - |v_{15}|$$
(82)

## 7.11 Species npSTAT5

Name npSTAT5

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in four reactions (as a reactant in reaction\_16 and as a product in reaction\_15 and as a modifier in reaction\_17, reaction\_27).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{npSTAT5} = |v_{15}| - |v_{16}| \tag{83}$$

## 7.12 Species CISnRNA1

Name CISnRNA1

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_18 and as a product in reaction\_17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CISnRNA1} = |v_{17}| - |v_{18}| \tag{84}$$

## 7.13 Species CISnRNA2

Name CISnRNA2

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_19 and as a product in reaction\_18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CISnRNA2} = |v_{18}| - |v_{19}| \tag{85}$$

#### 7.14 Species CISnRNA3

Name CISnRNA3

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_20 and as a product in reaction\_19).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CISnRNA3} = |v_{19}| - |v_{20}| \tag{86}$$

## 7.15 Species CISnRNA4

Name CISnRNA4

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_21 and as a product in reaction\_20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CISnRNA4} = |v_{20}| - |v_{21}| \tag{87}$$

## 7.16 Species CISnRNA5

Name CISnRNA5

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_22 and as a product in reaction\_21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CISnRNA5} = |v_{21}| - |v_{22}| \tag{88}$$

# 7.17 Species CISRNA

Name CISRNA

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in reaction\_23 and as a product in reaction\_22 and as a modifier in reaction\_24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CISRNA} = v_{22} - v_{23} \tag{89}$$

#### 7.18 Species CIS

Name CIS

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in reaction\_25 and as a product in reaction\_24, reaction\_26 and as a modifier in reaction\_14).

$$\frac{d}{dt}CIS = v_{24} + v_{26} - v_{25} \tag{90}$$

## 7.19 Species SOCS3nRNA1

Name SOCS3nRNA1

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_28 and as a product in reaction\_27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS3nRNA1} = v_{27} - v_{28} \tag{91}$$

# 7.20 Species SOCS3nRNA2

Name SOCS3nRNA2

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_29 and as a product in reaction\_28).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS3nRNA2} = |v_{28}| - |v_{29}| \tag{92}$$

## 7.21 Species SOCS3nRNA3

Name SOCS3nRNA3

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_30 and as a product in reaction\_29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS3nRNA3} = v_{29} - v_{30} \tag{93}$$

#### 7.22 Species SOCS3nRNA4

Name SOCS3nRNA4

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_31 and as a product in reaction\_30).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS3nRNA4} = v_{30} - v_{31} \tag{94}$$

## 7.23 Species SOCS3nRNA5

Name SOCS3nRNA5

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in reaction\_32 and as a product in reaction\_31).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS3nRNA5} = |v_{31}| - |v_{32}| \tag{95}$$

## 7.24 Species SOCS3RNA

Name SOCS3RNA

SBO:0000278 messenger RNA

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in three reactions (as a reactant in reaction\_33 and as a product in reaction\_32 and as a modifier in reaction\_34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS3RNA} = |v_{32}| - |v_{33}| \tag{96}$$

## 7.25 Species SOCS3

Name SOCS3

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in ten reactions (as a reactant in reaction\_35 and as a product in reaction\_34, reaction\_36 and as a modifier in reaction\_1, reaction\_3, reaction\_4, reaction\_5, reaction\_6, reaction\_13, reaction\_14).

$$\frac{d}{dt}SOCS3 = v_{34} + v_{36} - v_{35} \tag{97}$$

## 7.26 Species Epo

Name Epo

SBO:0000252 polypeptide chain

Initial concentration  $1.24997 \cdot 10^{-7} \text{ mol} \cdot l^{-1}$ 

This species takes part in one reaction (as a modifier in reaction\_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Epo} = 0\tag{98}$$

# A Glossary of Systems Biology Ontology Terms

**SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000179 degradation: Complete disappearance of a physical entity

- **SBO:0000181 conformational transition:** Biochemical reaction that does not result in the modification of covalent bonds of reactants, but rather modifies the conformation of some reactants, that is the relative position of their atoms in space
- **SBO:0000182 conversion:** Biochemical reaction that results in the modification of some covalent bonds
- **SBO:0000185 transport reaction:** Movement of a physical entity without modification of the structure of the entity
- **SBO:0000216 phosphorylation:** Addition of a phosphate group (-H2PO4) to a chemical entity
- SBO:0000225 delay: Time during which some action is awaited
- **SBO:0000252** polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000261 inhibitory constant:** Dissociation constant of a compound from a target of which it inhibits the function.
- **SBO:0000278 messenger RNA:** A messenger RNA is a ribonucleic acid synthesized during the transcription of a gene, and that carries the information to encode one or several proteins
- **SBO:0000281 equilibrium constant:** Quantity characterizing a chemical equilibrium in a chemical reaction, which is a useful tool to determine the concentration of various reactants or products in a system where chemical equilibrium occurs
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608
- **SBO:0000330 dephosphorylation:** Removal of a phosphate group (-H2PO4) from a chemical entity.
- **SBO:0000363** activation constant: Dissociation constant of a potentiator (activator) from a target (e.g. an enzyme) of which it activates the function
- **SBO:0000393** production: Generation of a material or conceptual entity.

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany