$p(\vec{x}) \equiv \frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{-1}} e^{-\frac{(\vec{x}-\vec{\mu})\Sigma^{-1}(\vec{x}-\vec{\mu})}{2}}$

General Multivariate Normal Denisty d Dimension

•
$$\vec{x}$$
 is a component vector

•
$$\vec{\mu}$$
 is a mean vector

•
$$\mu$$
 is a mean vector

•
$$\Sigma$$
 is a $d \times d$ covariance matrix

•
$$|\Sigma|$$
 determinant

•
$$|\Sigma|$$
 determinant of Σ

•
$$\Sigma^{-1}$$
 inverse of Σ

•
$$\Sigma^{-1}$$
 inverse of Σ

•
$$(\vec{x} - \vec{\mu})^T$$
 is the transpose of $(\vec{x} - \vec{\mu})$

•
$$\mu = \mathcal{E}[\vec{x}]$$

•
$$\Sigma = \mathcal{E}[\vec{x}]$$