25. Approximating functions: Fourier analysis

25. Approximating functions: Fourier analysis

Last time

- Conditioning of solving linear systems
- Iterative methods for solving linear systems

Goals for today

- Approximating functions
- Fourier series for periodic functions
- Rate of decay of Fourier coefficients

Manipulating functions

 \blacksquare Suppose that we are given a complicated function f over an interval [a,b]

Manipulating functions

- \blacksquare Suppose that we are given a complicated function f over an interval [a,b]
- Want to do numerical calculations with f:
 - $\begin{tabular}{ll} \bf Addition: $g=f+f$, \\ \begin{tabular}{ll} {\it i.e. } g(x)=f(x)+f(x) & \forall x\in[a,b] \\ \end{tabular}$
 - $\qquad \text{Multiplication } g = \alpha f^2 \text{, i.e. } g(x) = \alpha * f(x) * f(x)$
 - Derivative: f'
 - Definite integral: $\int_a^b f(x) dx$
 - lacksquare Find roots of f in [a,b]

Manipulating functions

- \blacksquare Suppose that we are given a complicated function f over an interval [a,b]
- Want to do numerical calculations with f:
 - $\begin{tabular}{ll} \bf Addition: $g=f+f$, \\ \begin{tabular}{ll} {\it i.e. } g(x)=f(x)+f(x) & \forall x\in[a,b] \\ \end{tabular}$
 - Multiplication $g = \alpha f^2$, i.e. $g(x) = \alpha * f(x) * f(x)$
 - Derivative: f'
 - Definite integral: $\int_a^b f(x) dx$
 - Find roots of f in [a, b]

Idea: Find **approximation** of f that can manipulate

lacktriangle Have seen some possibilities for approximating f:

- Have seen some possibilities for approximating f:
- Taylor series:
 - lacktriangleright Polynomial that reproduces f locally near a point
 - Works well only near that point

- Have seen some possibilities for approximating f:
- Taylor series:
 - lacktriangle Polynomial that reproduces f locally near a point
 - Works well only near that point
- Lagrange interpolation:
 - Expensive to calculate and manipulate
 - Need to be careful about location of interpolation points

- Have seen some possibilities for approximating f:
- Taylor series:
 - lacktriangle Polynomial that reproduces f locally near a point
 - Works well only near that point
- Lagrange interpolation:
 - Expensive to calculate and manipulate
 - Need to be careful about location of interpolation points
- lacksquare So far we have not discussed **periodic** functions f:

$$f(t+T) = f(t) \quad \forall t$$

T is **period** of function

Where we are heading

■ We will see in this and the next lectures that:

For **smooth** functions f, approximate using sum of **basis functions**

Where we are heading

We will see in this and the next lectures that:

For **smooth** functions f, approximate using sum of **basis functions**

- Will start with the case of periodic functions, which is hopefully more familiar
- \blacksquare Same idea will apply in non-periodic setting to approximate a function f on interval [-1,1]

Where we are heading

■ We will see in this and the next lectures that:

For **smooth** functions f, approximate using sum of **basis functions**

- Will start with the case of periodic functions, which is hopefully more familiar
- \blacksquare Same idea will apply in non-periodic setting to approximate a function f on interval [-1,1]
- Will use "linear algebra with functions" i.e. functional analysis

Fourier series

- lacktriangle Consider a **periodic** function f with period 2π
- lacktriangle We will assume f is not "nasty", say continuous

Fourier series

- lacktriangle Consider a **periodic** function f with period 2π
- We will assume f is not "nasty", say continuous
- \blacksquare Can show that f can be written as

$$f(x) = \sum_{n = -\infty}^{\infty} \hat{f}_n e^{inx}$$

- lacksquare i.e. sum of **basis functions** ϕ_n with $\phi_n(x) := e^{inx}$
- Alternatively

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

Infinite-dimensional vector space

- We have linear combination of infinite number of basis functions
- Does that even make sense?

Infinite-dimensional vector space

- We have linear combination of *infinite* number of basis functions
- Does that even make sense?
- I.e. any (sufficiently nice) periodic function can be so expressed

Infinite-dimensional vector space

- We have linear combination of *infinite* number of basis functions
- Does that even make sense?
- I.e. any (sufficiently nice) periodic function can be so expressed
- Need to specify of which space

 $\blacksquare \ L^2 := \{ f : \int_0^{2\pi} |f|^2 < \infty \}$ – square–integrable functions

- $\blacksquare \ L^2 := \{f: \int_0^{2\pi} |f|^2 < \infty\}$ square–integrable functions
- Is a Hilbert space complete inner product space
- Infinite-dimensional generalization of Euclidean space

- $\blacksquare \ L^2 := \{ f : \int_0^{2\pi} |f|^2 < \infty \}$ square–integrable functions
- Is a Hilbert space complete inner product space
- Infinite-dimensional generalization of Euclidean space
- lacksquare Can show ϕ_n form complete basis of L^2

- $\blacksquare \ L^2 := \{ f : \int_0^{2\pi} |f|^2 < \infty \}$ square–integrable functions
- Is a Hilbert space complete inner product space
- Infinite-dimensional generalization of Euclidean space
- lacksquare Can show ϕ_n form complete basis of L^2
- Eigenfunctions of Laplacian operator $\frac{\partial^2}{\partial x^2}$
- Sturm-Liouville theory

 \hat{f}_n are **Fourier coefficients** of f. How can they be calculated?

 \widehat{f}_n are **Fourier coefficients** of f. How can they be calculated?

- Expansion is a linear combination but an *infinite* one
- And "vectors" are functions

• \hat{f}_n are **Fourier coefficients** of f. How can they be calculated?

- Expansion is a linear combination but an infinite one
- And "vectors" are functions

Saw that coefficients of linear combination can be easy to find

 \widehat{f}_n are **Fourier coefficients** of f. How can they be calculated?

- Expansion is a linear combination but an infinite one
- And "vectors" are functions

- Saw that coefficients of linear combination can be easy to find
- When have orthogonal vectors

 \widehat{f}_n are **Fourier coefficients** of f. How can they be calculated?

- Expansion is a linear combination but an infinite one
- And "vectors" are functions

- Saw that coefficients of linear combination can be easy to find
- When have orthogonal vectors
- Need to be able to talk about orthogonality of functions

Inner product

- Inner product generalizes the dot product in Euclidean space
- Abstract the properties of the dot product
- Denote as

$$(f,g) := \int_0^{2\pi} \overline{f(x)} g(x) dx$$

- Where for $z=x+iy\in\mathbb{C}$, the complex conjugate \overline{z} denotes **complex conjugate** is $\overline{z}:=x-iy$
- lacksquare Properties: Linear in g and $(f,f)\geq 0$
- Two functions are **orthogonal** if (f, g) = 0

Orthogonality

Let's look at inner products of our basis functions:

$$\begin{split} (\phi_n,\phi_m) &= \int_0^{2\pi} e^{-inx} e^{imx} dx \\ &= \int_0^{2\pi} e^{i(m-n)x} dx \\ &= \frac{1}{i(m-n)} \left[e^{i(m-n)x} \right]_{x=0}^{2\pi} \end{split}$$

- lacksquare So $(\phi_n,\phi_m)=0$ for m
 eq n and $=2\pi$ for m=n
- lacktriangle Hence basis functions (ϕ_n) are orthogonal

- \blacksquare We have $f = \sum_{-\infty}^{\infty} \hat{f}_n \, \phi_n$
- lacktriangle Take inner product with ϕ_m :
- Obtain

$$(\phi_m, f) = \sum_n \hat{f}_n (\phi_m, \phi_n)$$
$$= 2\pi \hat{f}(m)$$

Thus

$$\hat{f}_m = \frac{1}{2\pi} \int_0^{2\pi} e^{-imx} f(x) dx$$

Representation on computer

Natural idea to represent periodic function on computer:

sum finite number of terms

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}(n)\phi_n$$

Representation on computer

Natural idea to represent periodic function on computer:
sum finite number of terms

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}(n)\phi_n$$

- Natural question: How many terms should we take?
- Want to take enough terms so that neglected terms are "small"
- What does this depend on?

Representation on computer

Natural idea to represent periodic function on computer:

sum finite number of terms

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}(n)\phi_n$$

- Natural question: How many terms should we take?
- Want to take enough terms so that neglected terms are "small"
- What does this depend on?
- Depends on how fast $\hat{f}(n)$ decay

Fourier coefficients of derivative

. .

- lacksquare Suppose f is periodic and differentiable
- lacksquare f' is also periodic, so can expand in Fourier series:

$$f' = \sum \widehat{f'}_n \phi_n$$

where
$$\widehat{f'}_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f'(x) dx$$

Integrate by parts to get

$$\widehat{f'}_n = in\widehat{f}_n$$

Rate of decay of Fourier coefficients

lacktriangle Can show: If f integrable, e.g. continuous, on interval, then

$$\hat{f}_n \to 0$$
 as $n \to \infty$

■ Riemann–Lebesgue lemma

Rate of decay of Fourier coefficients

lacksquare Can show: If f integrable, e.g. continuous, on interval, then

$$\hat{f}_n \to 0$$
 as $n \to \infty$

- Riemann-Lebesgue lemma
- \blacksquare If $f\in C^k$ then $\widehat{f^{(k)}}_n=(in)^k\widehat{f}_n\to 0$
- $\blacksquare \text{ Hence } \widehat{f}_n = o(n^{-k})$

Rate of decay II

 \blacksquare If f is $\mathbf{smooth}\ (C^{\infty})$ then decays faster than any polynomial

In fact, if analytic in a suitable region then

$$\hat{f}_n = \mathcal{O}(e^{-\alpha n})$$

- i.e. coefficients decay exponentially fast
- Spectral convergence

Representing functions on the computer

■ This suggests that we should calculate *enough* terms

Representing functions on the computer

- This suggests that we should calculate enough terms
- After a while they should start decaying fast
- Soon reach machine epsilon

Representing functions on the computer

- This suggests that we should calculate enough terms
- After a while they should start decaying fast
- Soon reach machine epsilon
- Stop!
- We now have an excellent approximation of our general periodic function to something like machine epsilon!

Summary

- Periodic functions may be expanded in Fourier series
- Expansion in (infinite) linear combination of orthogonal basis functions
- lacksquare Fourier coefficients decay at a rate determined by smoothness of f