Задача A. Sage

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Побывав в команде разработки поиска по коду, Петя понял, что искать код – это не его. Но это не беда, ведь в Т-Банке много других команд. Ему приглянулся сервис $Sage^{[1]}$ – платформа мониторинга, куда все сервисы Т-Банка отправляют свои логи (текст, который вы печатаете при помощи cout/print), данные для графиков и прочее.

Пете разумеется доверили самую ответственную задачу: научиться считать количество логов на разных временных промежутках, чтобы потом строить красивые графики, типа того, что ниже.

Пример графика с логами

Петя тут же попытался формализовать задачу. Пусть в момент времени t есть a_t логов (время считаем дискретным). Пусть пользователь пытается построить график для промежутка [l,r]. Тогда нужно найти $\sum_{t=l}^r a_t$. Петя разумеется, знает что такая задача решается с помощью префиксных сумм. Но, как оказалось, есть нюансы. Из-за сбоев в сети (или просто тормозов интернета) логи могут приходить с большим опозданием. Более того, некоторые логи могут дублироваться (если интересно почему, почитайте про брокеры сообщений и гарантии exactly once/at least once и прочее). Но, благо, есть отдельная система, которая фильтрует дубликаты (правда тоже не сразу, а через какое-то время). Короче говоря, количество логов в разные моменты времени может меняться и это тоже нужно учитывать.

Формализовать задачу у Пети получилось хорошо, а вот придумать решение с чем-то кроме префиксных сумм не получается. Петя просит помощи у вас в решении задачи!

[1] https://www.tbank.ru/career/technologies/sage/

Формат входных данных

Первая строка содержит два числа n и m $(1 \leqslant n, m \leqslant 10^5)$ – количество «моментов времени» и число запросов.

Следующая строка содержит n чисел a_i – количество логов в i-м моменте времени $(0 \le a_i \le 10^9)$. Далее следует описание операций. Описание каждой операции имеет следующий вид:

- 1 i v поменять количество логов в i-м фрагменте времени на $v (0 \le i < n, 0 \le v \le 10^9)$.
- 2 l r посчитать сумму по количеству логов на отрезке от l до r-1 ($0 \le l < r \le n$).

Т-Образование АИСД. 2025. Дерево отрезков. Часть 1 Дистанционно, 16.04.2025

Формат выходных данных

Для каждой операции второго типа выведите соответствующее количество логов на отрезке.

стандартный ввод	стандартный вывод
5 5	11
5 4 2 3 5	8
2 0 3	14
1 1 1	
2 0 3	
1 3 1	
2 0 5	

Задача В. Число минимумов на отрезке

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Теперь измените код дерева отрезков, чтобы кроме минимума на отрезке считалось также и число элементов, равных минимуму.

Формат входных данных

Первая строка содержит два числа n и m $(1 \le n, m \le 10^5)$ — размер массива и число операций. Следующая строка содержит n чисел a_i — начальное состояние массива $(0 \le a_i \le 10^9)$. Далее следует описание операций. Описание каждой операции имеет следующий вид:

- 1 $i \ v$ присвоить элементу с индексом i значение $v \ (0 \le i < n, 0 \le v \le 10^9)$.
- $2 \ l \ r$ найти минимум и число элементов, равных минимуму, среди элементов с индексами от l до $r-1 \ (0 \leqslant l < r \leqslant n)$.

Формат выходных данных

Для каждой операции второго типа выведите два числа— минимум на заданном отрезке и число элементов, равных этому минимуму.

стандартный вывод
3 2
2 1
2 3

Задача С. K-я единица

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В этой задаче вам нужно добавить в дерево отрезков операцию нахождения k-й единицы.

Формат входных данных

Первая строка содержит два числа n и m $(1 \le n, m \le 10^5)$ – размер массива и число операций. Следующая строка содержит n чисел a_i – начальное состояние массива $(a_i \in \{0,1\})$. Далее следует описание операций. Описание каждой операции имеет следующий вид:

- \bullet 1 i изменить элемент с индексом i на противоположный.
- 2 k найти k-ю единицу (единицы нумеруются с 0, гарантируется, что в массиве достаточное количество единиц).

Формат выходных данных

Для каждой операции второго типа выведите индекс соответствующей единицы (все индексы в этой задаче от 0).

стандартный ввод	стандартный вывод
<mark>5 7</mark>	0
1 1 0 1 0	1
2 0	3
2 1	3
2 2	1
1 2	
2 3	
1 0	
2 0	

Задача D. Первый элемент не меньше X

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В этой задаче вам нужно добавить в дерево отрезков операцию нахождения по данным x и l минимального индекса j, для которого $j \ge l$ и $a[j] \ge x$.

Формат входных данных

Первая строка содержит два числа n и m $(1 \le n, m \le 10^5)$ – размер массива и число операций. Следующая строка содержит n чисел a_i – начальное состояние массива $(0 \le a_i \le 10^9)$. Далее следует описание операций. Описание каждой операции имеет следующий вид:

- 1 $i \ v$ изменить элемент с индексом i на $v \ (0 \le i < n, 0 \le v \le 10^9)$.
- 2 x l найти минимальный индекс j, для $j \ge l$ и $a[j] \ge x$ $(0 \le x \le 10^9, 0 \le l < n)$. Если такого элемента нет, выведите -1. Индексы начинаются с 0.

Формат выходных данных

Для каждой операции второго типа выведите ответ на запрос.

стандартный ввод	стандартный вывод
5 7	1
1 3 2 4 3	3
2 3 0	2
2 3 2	-1
1 2 5	<mark>3</mark>
2 4 1	
2 5 4	
1 3 7	
2 6 1	

Задача Е. Число возрастающих подпоследовательностей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Задана последовательность из n чисел. Необходимо найти число возрастающих подпоследовательностей наибольшей длины заданной последовательности a_1, \ldots, a_n . Так как это число может быть достаточно большим, необходимо найти остаток от его деления на $10^9 + 7$.

Формат входных данных

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка входного файла содержит n целых чисел: a_1, a_2, \ldots, a_n . Все a_i не превосходят 10^9 по абсолютной величине.

Формат выходных данных

В выходной файл выведите ответ на задачу.

стандартный ввод	стандартный вывод
5	1
1 2 3 4 5	
6	8
1 1 2 2 3 3	

Задача F. Противник слаб.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Римляне снова наступают. На этот раз их гораздо больше, чем персов, но Шапур готов победить их. Он говорит: «Лев никогда не испугается сотни овец».

Не смотря на это, Шапур должен найти слабость римской армии, чтобы победить ее. Как вы помните, Шапур — математик, поэтому он определяет, насколько слаба армия, как число — степень слабости.

Шапур считает, что степень слабости армии равна количеству таких троек i, j, k, что i < j < k и $a_i > a_j > a_k$, где a_x — сила человека, стоящего в строю на месте с номером x.

Помогите Шапуру узнать, насколько слаба армия римлян.

Формат входных данных

В первой строке записано одно целое число n ($3 \leqslant n \leqslant 10^5$) – количество солдат в римской армии. Следующая строка содержит n целых чисел a_i ($1 \leqslant i \leqslant n, 1 \leqslant a_i \leqslant 10^9$) – силы людей в римской армии.

Формат выходных данных

Выведите одно число – степень слабости римской армии.

стандартный ввод	стандартный вывод
3	1
3 2 1	
3	0
2 3 1	
4	4
10 8 3 1	
4	1
1 5 4 3	