

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2550

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 2 โครงการพิเศษ สอบ วันพฤหัสบดีที่ 20 ฮันวาคม พ.ศ. 2550

เวลา 13.00-16.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 8 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา			
ชื่อ-สกุล	รหัสประจำตัว		
อาจารย์ราชวดี ศิลาพันธ์			
ผู้ออกซ้อสอบ โทร 0-2470-9062			

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรที่ใช้ในการคำนวณ

1. การแปลง unit vector และขนาดระหว่างพิกัดคาร์ที่เขียนกับพิกัดทรงกระบอก

	\hat{a}_{ρ}	\hat{a}_{ϕ}	â	ขนาด	ขนาด	
	ŕ	,		ทรงกระบอก → คาร์ทีเซียน	คาร์ทีเซียน -> ทรงกระบอก	
\hat{a}_x .	$\cos \phi$	$-\sin\phi$	0	$x = \rho \cos \phi$	$\rho = \sqrt{x^2 + y^2}$	
\hat{a}_y .	$\sin \phi$	$\cos \phi$	0	$y = \rho \sin \phi$	$\phi = \tan^{-1}(y/x)$	
\hat{a}_z .	0	0	1	z = z	z = z	

2.พิกัดทรงกลม (r, θ , ϕ)

Differential element

volume:

 $dv = r^2 \sin \theta dr d\theta d\phi$

surface vector: $d\vec{s} = r^2 \sin\theta d\theta d\phi \hat{a}_r$

3. พิกัด Cylindrical (ρ, ϕ, z)

Differential element

volume:

 $dv = \rho d\rho d\phi dz$

surface vector (ด้านบน): $d\vec{s} = \rho d\rho d\hat{\phi} \hat{a}_z$

surface vector (ด้านข้าง): $d\vec{s} = \rho d\phi dz \hat{a}_{\rho}$

4. Unit vector $\hat{a}_R = \frac{\vec{R}}{R}$

5. Electric flux $\psi = \oint \vec{D} \cdot d\vec{S}$ coulomb

6. Gauss's law $Q_{en} = \oint \overrightarrow{D} \cdot d\overrightarrow{S}$ coulomb

7. $\vec{E} = \frac{\vec{D}}{\varepsilon}$ V/m

โดย $\mathcal{E} = \mathcal{E}_{\iota}\mathcal{E}_{0}$

 \mathcal{E}_r = relative permittivity (\mathcal{E}_r ของอากาศ = 1)

 \mathcal{E}_0 = free space permittivity = 8.854x10⁻¹² F/m

8. Work $W = -Q \int_{A}^{B} \overrightarrow{E} \cdot d\overrightarrow{L}$ J

9 Electric potential $V = -\int_{A}^{B} \overrightarrow{E} \cdot d\overrightarrow{L} \, V$

.1	٩
ชื่อ	

_____ รหัสประจำตัว_____ เลขที่นั่งสอบ_____

- 1. Coordinate system: กำหนดให้ค่าความหนาแน่นฟลักซ์ $\vec{D} = (x^2 + y^2)^{-1} (x \hat{a}_x + y \hat{a}_y)$ C/m² จงคำนวณ (20 คะแนน)
- a) Dี ในพิกัดทรงกระบอก (10 คะแนน)

b) \vec{D} ที่จุด P (ho = 3, ϕ = 0.2 π , และ z = 5) (5 คะแนน)

c) unit vector ในทิศทาง Dีที่จุด P ในพิกัดคาร์ทีเซียน (5 คะแนน)

2. Electric field: เส้นลวดนำไฟฟ้าความยาวอนันต์มีความหนาแน่นประจุ $ho_{\!\scriptscriptstyle L}$ = 2 nC/m วางตัวอยู่บน แกน x โดยมีจุดประจุละ 8 nC อีก 2 ประจุอยู่ที่ตำแหน่ง (0, 0, 1) และ (0, 0, -1) ตามลำดับ จงคำนวณ (20 คะแนน)

แนะน้ำ: สนามไฟฟ้าสำหรับเส้นลวดอนันต์ $\overrightarrow{E}=rac{
ho_L}{2\piarepsilon_0}\hat{a}_
ho$ V/m

a) สนามไฟฟ้า Eี ที่จุด (2, 3, -4) (10 คะแนน)

	1				
الد		94 , 64		مأ ما	
ชื่อ			`		,
me		รหลบระจำตา	.	เลขทนงสอบ	l.
			·		

b) ควรจะกำหนดค่า $ho_{\!_{
m L}}$ เท่าไรจึงจะทำให้สนามไฟฟ้ารวมที่จุด (0, 0, 3) มีค่าเป็นศูนย์ (10 คะแนน)

3. Gauss's law: รูปทรงกลมมีชั้นนำไฟฟ้าซ้อนกัน 2 ชั้นที่ r=2 และ 4 เมตรโดยมีความหนาแน่น ประจุ $ho_{
m s_1}$ = 20 nC/m² และ $ho_{
m s_2}$ = -4 nC/m² ตามลำดับ (25 คะแนน)

a) จงเขียนนิยามของ Gauss's law (5 คะแนน)

b) จงคำนวณความหนาแน่นฟลักซ์ \vec{D} ที่ตำแหน่ง r=1 เมตร (10 คะแนน)

c) จงคำนวณความหนาแน่นฟลักซ์ \vec{D} ที่ตำแหน่ง r=3 เมตร (10 คะแนน)

ชื่อ	รหัสประจำตัว	เลขที่นั่งสอบ

4. Work and electric potential: กำหนดให้ $\vec{E}=2\hat{a}_x+z\hat{a}_y+y\hat{a}_z$ V/m จงคำนวณงานในการลาก ประจุขนาด 1 C จากจุด P (1, 0, 3) ไปยังจุด Q (0, 1, 3) ตามเล้นขอบของวงกลมที่มีสมการดังนี้ x^2 + $y^2 = 1$ และ z = 3 งานที่คำนวณได้เป็นงานที่ทำจากสนามไฟฟ้าหรือจากแรงภายนอก (20 คะแนน) แนะน้ำ: $d\vec{l} = dx\hat{a}_x + dy\hat{a}_y + dz\hat{a}_z$