AD-A178 151 1/1 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART.

NATIONAL BUREAU OF STANDARDS 1963-A

AD

CHEMOTHERAPY OF RODENT MALARIA

Final Report

by

WALLACE PETERS MD DSc

1 October 1981 - 30 September 1982

Supported by

US ARMY MEDICAL AND DEVELOPMENT COMMAND

Fort Detrick, Frederick, Maryland 21701

Contract No DAMD 17-81-G-9493

Department of Medical Protozoology

London School of Hygiene and Tropical Medicine

Keppel Street

London, WCIE 7HT, UK

Approved for public release; distribution unlimited

The findings in this report are not to be construed as official Department of the Army position unless so designated by other authorised documents

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DO	CUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
la REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY			N/AVAILABILITY O		
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			on unlimited	icase,	
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING	ORGANIZATION R	EPORT NU	MBER(S)
6a NAME OF PERFORMING ORGANIZATION London School of Hygiene and Tropical Medicine	OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION	
6c. ADDRESS (City, State, and ZIP Code) Keppel Street London, WCIE 7HT UK		7b. ADDRESS (Ci	ty, State, and ZIP	Code)	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. Army Medical Research & Development Command	OFFICE SYMBOL (If applicable)	9 PROCUREMEN DAMD17-81-	t instrument id G-9493	ENTIFICATI	ON NUMBER
8c. ADDRESS (City, State, and ZIP Code)	····	10. SOURCE OF	FUNDING NUMBER	S	
Fort Detrick, Frederick, MD 21701	-5012	PROGRAM ELEMENT NO 62770A	PROJECT NO. 3M162. 770A871	TASK NO. AF	WORK UNIT ACCESSION NO. 087
16. SUPPLEMENTARY NOTATION	RED /81 _{TO} 9/30/82 B. SUBJECT TERMS (6	14. DATE OF REPO October 1			PAGE COUNT (62) by block number)
19. ABSTRACT (Continue on reverse if necessary and	identify by block no		CURITY CLASSIFICA	ATION	
UNCLASSIFIED/UNLIMITED SAME AS RPT.	DTIC USERS				EIGE CYANGO
Mrs. Judy Pawlus	revious editions are r		Include Area Code, 25		FICE SYMBOL D-RMI-S

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

	- ,		Page
1.	INTR	ODUCTION	1
2.	ADMI	NISTRATIVE EVENTS	1
3.	··· CHEM	OTHERAPY STUDIES ()	1
	3.1	Causal prophylaxis	1
	3.2	Blood schizontocides	2
	3.3	Drug combinations	2
	3.4	Development and prevention of drug resistance	3
	3.5	Mode of drug action.	4
4.	PAPE	RS PUBLISHED	5
	4,1	Already published	5
	4.2	In press	5
5.	APPE	NDICES	7

Acces	sion	For			_
	GRA&	I		N	
DTIC				7	
Unann	ounce	đ			
Justi	ficat	ion			_
				·	
By					_
Distr	ibuti	on/			
Avai	labil	ity	Coc	le s	
1	Avail	ຄກ	d/o	,	_
Dist	Spe	cia	1		
A-1			'	1 3 m	

1. INTRODUCTION

This is the second full Annual Report to be submitted by the Principal Investigator since the commencement of WRAIR sponsored malaria chemotherapy research at the London School of Hygiene and Tropical Medicine. The programme is now gathering momentum and our routine techniques are well established. During the following twelve months we expect to have introduced a number of additional lines of approach to maximise the potential of this programme.

ADMINISTRATIVE EVENTS

Staff employed on US Army funds are as follows:

Senior Technologist - Mr B L Robinson 50% time

Junior Technician - Ms A West 100% time

Other staff associated with this project but paid from School sources are as follows:

Professor W Peters (PI) 20% time
Dr D C Warhurst (Biologist) 20% time
Dr D S Ellis (Electron Microscopist) 10% time
Dr W E Ormerod (Biologist-Pharmacologist) 20% time

The new laboratory and insectary unit at Winches Farm Field Station is now completed and functioning. We have an established colony of Anopheles stephensi (Beech strain) running and Plasmodium yoelii nigeriensis is being routinely passaged through the mosquitoes. A full range of resistant strains of rodent malaria is being maintained either by animal passage or in the cryobank.

A total of five new compounds have been received from WRAIR during the period covered by this contract.

3. CHEMOTHERAPY STUDIES

3.1 Causal prophylaxis

Causal prophylactic tests have been performed on nineteen WRAIR compounds and detailed summary sheets are attached in the Appendix (Tables 1 through 21). All but three of these compounds are 8-aminoquinolines.

The structure-activity relationships of this interesting series of primaquine analogues reveals some interesting features. The 2-CH $_3$ and 3-CH $_3$ derivatives increase the activity whereas the addition of a CH $_3$ at the 4 position by itself makes little difference. Whereas the 5-OCH $_3$ analogue was inactive at the MTD, the 5-OCH $_3$, 2-CH $_3$ analogue was rather more active than primaquine.

The 5-mCH $_3$ phenoxy analogue (WR 215295) was inactive at the MTD but the addition of a 3-CH $_3$ or the 2-OCH $_3$, 4-CH $_3$ derivative were more active than primaquine.

The most interesting series were the 5-alkyloxy analogues, the activity depending on the length of the sidechain. Of those tested to date, the 7 carbon compound, WR 246315 was the most active, with a MFED of 1-3 mg/kg. The 6 carbon compound WR 228708 was less active than primaquine but its 4-CH₃ analogue WR 242511 was very active. The 4-carbon compound WR 228000 was more active than primaquine (MFED 10-30 mg/kg), and equal to the 12 carbon, 4-CH₃ analogue WR 243789.

The $4-CH_3$, $6-CH_3S$ analogue of primaquine was inactive at the MTD.

Of the remaining compounds WR 61112 (clopidol) was inactive at 30 mg/kg, WR 158124 active at 10-30 mg/kg and the guanylhydrazone WR 9792 active at 3-10 mg/kg, the latter two compounds without evidence of residual activity on blood stages.

Still awaiting test are the primaquine analogues WR 228583 with a 4 carbon at the 5 - 0 position, WR 247705, the 5 carbon, 4-CH $_3$ analogue and WR 248412, the 8 carbon analogue. We also have still in test a number of putative primaquine metabolites from WRAIR and WHO which will be reported upon in our next report.

3.2 Blood schizontocides

In addition to the normal "four day tests" carried out on WRAIR compounds, the details of which are appended as Tables 22 through 32, we have also been examining some compounds to determine the $\rm ED_{50}$ and $\rm ED_{90}$ when administered as a single dose. These studies are in connection with our work on resistance to mefloquine and summary sheets are included in the Appendix (Tables 33 through 48).

The activity of two compounds WR 245082 and 246976 were compared directly with floxacrine. Neither were as effective in the N strain. All were effective in the NS line and the mefloquine resistant N/1100 line. The clopidol analogue WR 159251 which was active against the N strain only at a high dose level and with a very flat dose-activity curve, proved to be active against the NS and N/1100 lines. This compound will be compared with clopidol itself (WR 61112) in the 4-day test.

3.3 Drug combinations

A study to determine the nature of the interaction of mefloquine with a mixture of pyrimethamine and sulfadoxine (1:3) was carried out by calculating the ED_{QQ} of each compound alone and of a range of combined doses (Tables 49 through 54). These values were used to plot a graph to demonstrate the presence of potentiation,

antagonism or a simple additive effect (Figure 1). If potentiation were present the curve of the graph would be below the line joining the ED_{90} values of the pyrimethamine-sulfadoxine mixture and mefloquine when given independently of each other. It is apparent, however, that the ED_{90s} of the triple combination fall along that line indicating that only an additive effect is present.

3.4 Development and prevention of drug resistance

In our Annual Report for 1980 - 1981 (Contract DAMD-17-G-9473) we described our preliminary studies on the effects of administering a mixture of mefloquine with a pyrimethamine-sulfadoxine (PS) combination using the relapse technique ie fixed single drug dose at the time of infection. We have now carried out further work on this and have extended the study to include a line which has been developed from a PS resistant parent strain.

The three lines which we have established are:-

- PFM derived from the drug sensitive P.berghei N (= Keyberg 173)
- MPS derived from the moderately chloroquine-resistant "P.berghei NS", actually a subspecies of P.yoelii (Peters et al. 1978)
- MFY derived from <u>P.berghei</u> FY (= NK65 PS of Peters, 1974). The latter was developed originally as a PS resistant line and was subsequently found to be highly resistant to a 1:3 PS mixture eg 320 mg/kg at the time of passage was almost totally ineffective.

For comparison, data have been plotted against those from two other mefloquine-resistant lines, the N/1100 derived from P.berghei N and the NS/1100 derived from "P.berghei NS", produced by the same technique. In plotting the data we have adopted in the ordinate the ratio between the "2% delay time" of the infection in later passages to that observed in the first passage to indicate the manner in which this decreased over time. Since the numbers of days between individual passages varied during the course of the experiments depending on the level of adaptation of the parasites, we have plotted on the abscissa the number of days since the lines were started rather than the passage number. These graphs are shown in Figure 2.

Figure 2a illustrates a marked difference in the rate at which the drug <u>P.berghei</u> N parasites became resistant to mefloquine alone and to the MPS mixture. It required over 200 days before the PFM line showed a similar delay pattern to that developed by the N/1100 in a mere 40 days. Note also that the N/1100 line did not become completely unresponsive to M during the 80 days over which it was observed.

In contrast the NS/1100 line was started from "P.berghei NS" which has an inher at low-level resistance to chloroquine. This line rapidly became totally unresponsive to M. The opposite was observed with the MPS line (Figure 2b) which maintained a high level of sensitivity for the first 100 days, and only a moderate reduction in response over the next 100 days.

The MFY line, originally resistant to PS showed a rapid decrease of its response to the triple mixture but, surprisingly, the response seemed to stabilise after 30 or 40 days at a moderate level of resistance only.

Further experiments are needed to determine how stable the resistance of these lines would be in the absence of drug selection pressure and these are scheduled to commence shortly. It is also necessary to observe the effect of passaging the MPS line cyclically through A.stephensi.

3.5 Mode of drug action

As part of our programme to investigate the mode of action of WR225448 ultrastructural studies on animals which had been treated were carried out. Since in some of our initial studies the livers of treated animals showed some effects which were, possibly, unconnected with the infection, we examined samples from treated but uninfected controls. We found that liver damage had occurred and that the liver cells were vacuolated and disrupted. There were considerable lipid deposits and many of the mitochondria were affected. In general the liver had a fairly toxic appearance (Figure 3).

Infected liver sections from animals treated with a single dose of 1 mg/kg of WR 225448 show normal peripheral enzyme production, but no liberation of enzyme granules. Adjacent hepatocyte tissue is apparently unaffected at the interface between the schizont and hepatocyte (Figure 4).

When examined at a higher magnification the extensive enzyme granule production and swollen mitochondria are clearly seen. In addition many of the nuclei in the schizonts show marked separation and blebbing of their surrounding membranes are apparent (Figure 5). A paper on this work is in preparation.

4. PAPERS PUBLISHED

4.1 Already published

- Landau, I., Boulard, Y., Seureau, C. and Peters, W. (1982)
 Schizogonie hepatique retardee par l'ethionie ou carences
 en methionine: etude histologique et ultrastructurale.
 Ann.Parasitol. (Paris) 57, 1-20.
- Peters, W. 4- and 8-aminoquinolines, chinin und chiniahnliche verbindungen. In: "Malaria: Diagnose, Klinik, Therapie", (Leichert, K.H.Ed.), Roche, Grenzach-Wyhlen, pp. 149-168.
- Peters, W. Suggestions for field research relating to drug-resistant P.falciparum. Joint FIELDMAL/CHEMAL SWG and SEAR/WPR principal investigators meeting on drug-resistant malaria, Kuala Lumpur, 10-15 August 1981.
- Peters, W. Policies on drug use aiming at preventing, delaying or reversing the selection of resistant P.falciparum parasites. Joint FIELDMAL/CHEMAL SWG and SEAR/WPR principal investigators meeting on drug-resistant malaria, Kuala Lumpur, 10-15 August 1981.
- Peters, W. Problems with presently used antimalarial drugs. Working paper for WHO 5th CHEMAL SWG, Washington, May/June 1982.
- Peters, W. Future deployment of mefloquine and essential measures for protecting mefloquine against resistance. In: Drug-resistant malaria. The report of a meeting held in Kuala Lumpur, Malaysia, 10-15 August 1981. (Ed. W.Wernsdorfer) Geneva UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, pp 123-128.
- Peters, W. (1982). Antimalarial drug resistance an increasing problem. <u>Brit.Med.Bull.</u>, <u>38</u>, 187-192.
- Peters, W., James, D.M., Li Ze-Lin and Robinson, B.L. (1981).

 Antimalarial activity of Arteannuin (Artemisinine, Quinghaosu), a
 Chinese plant derivative against Plasmodium berghei: preliminary
 data. Trans.R.Soc.Trop.Med.Hyg., 75, 4.
- Peters, W. and Robinson, B.L. (1982). Value of a triple combination in delaying the development of drug resistance in a rodent malaria. Paper presented at ICOPA V, held in Toronto, Canada, 7-14 August 1982.

4.2 In press

Boulard, Y., Ellis, D., Landau, I., Miltgen, F. and Peters, W. (1983)
The chemotherapy of rodent malaria XXXIV. Causal prophylaxis.
Part III: Ultrastructural changes induced in exoerythrocytic schizonts of Plasmodium yoelii by primaquine. Ann.Trop.Med.Parasitol.

- Gu, H.M., Warhurst, D.C. and Peters, W. Rapid action of Quinghaosu and related drugs on incorporation of 3H isoleucine by Plasmodium falciparum in vitro. Submitted to Biochem. Pharmacol.
- Knight, D.J., Mamalis, P. and Peters, W. (1983). The antimalarial activity of N-benzyl oxyhydrotriazines, Part III: the activity of 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5-trichloropropyloxy)-1,3,5-triazine hydrobromide (BRL51084) and hydrochloride (BRL5231). Ann.Trop.Med.Parasitol.
- Li, Z.L., Gu, H.M., Warhurst, D.C. and Peters, W. (1982). Effects of Quinghao3u and related compounds on incorporation of G-3H hypoxanthine by Plasmodium falciparum in vitro. Trans.R.Soc.Trop. Med.Hyg.
- Peters, W. The interaction of drugs and immunity in malaria.

 (Arun Banerjee Oration, Calcutta, 1980). Proceedings of the Symposium on a Hundred Years of Malaria Research.
- Peters, W. The menace of multiple-drug-resistant malaria. Paper presented at the 7th Saudi Medical Meeting, Dammam, May 1982.
- Peters, W. and Richards, W.H.G. (Eds.) Handbook of Pharmacology Antimalarials. Chapters 16, 18, 24 and 34.
- Peters, W. and Robinson, B.L. (1983). The chemotherapy of rodent malaria XXXV. Further studies on the retardation of drug resistance by the use of a triple combination of mefloquine, pyrimethamine and sulfadoxine in mice infected with P.berghei and "P.berghei NS". Ann.Trop.Med.Parasitol.
- Peters, W. New Answers Through Chemotherapy? In: The Present State of Malaria Research Worldwide. Experientia.

5. APPENDICES

- 5.1 Summary of causal prophylactic test data (Table 1)
- 5.2 Individual causal prophylactic test reports (Tables 2-21)
- 5.3 Summary of blood schizontocidal (4 day test) data (Table 22)
- 5.4 Individual blood schizontocidal (4 day test) reports
 (Tables 23~32)
- 5.5 Summary of blood schizontocidal (single dose) data (Table 33)
- 5.6 Individual blood schizontocidal (single dose) reports
 (Tables 34~48)
- 5.7 Interaction of mefloquine with pyrimethamine/sulfadoxine (1:3 mixture) in <u>P.berghei</u> (Figure 1).
- 5.8 Changing trends of 2% delay times for lines developed from P.berghei N, NS and FY strains (Figure 2)
- 5.9 Electron micrographs showing effects of WR 225,448 against EE stages of <u>P.yoelii</u> (Figures 3,4,5).

SUMMARY OF CAUSAL PROPHYLACTIC TESTS

LON	BN	WR	MFED mg/kgxl	RESIDUAL ACTIVITY at D+2	COMMENT
1711	BJ08241	2975	30 - 60	NIL AT 60	Primaquine diphosphate
1715	AG99266	5990	NA at MTD	NIL AT MTD(=10.0)	8-aminoquinoline
1719	BE50003	181023	>30	NIL AT 30	8-aminoquinoline 4-methylprimaquine
1720	BE17580	182234	3.0 -10.0	NIL AT 30	8-aminoquinoline
1721	ZP12775	211814	3.0 -10.0	NIL AT 30	8-aminoquinoline
1722	ZN43444	215295	NA at 30	NIL AT 30	8-aminoquinoline
1723	ZN81499	228000	10 - 30	NIL AT 30	8-aminoquinoline
1725	ВН13989	233627	10 - 30	NIL AT 30	8-aminoquinoline
1726	ВН35770	235485	10 - 30	NIL AT 30	8-aminoquinoline
1727	вн69990	238605	10 - 30	PRESENT AT 30	8-aminoquinoline
1728	BJ08189	243789	10 - 30	NIL AT 30	8-aminoquinoline
1729	BJ45691	246315	1.0-3.0	NIL AT 3.0 PRESENT AT 30	8-aminoqinoline
1732	ВН58120	237375	NA at 100	NIL AT 100	8-aminoquinoline
1733	BG66798	228708	30 -100	NIL AT 100	8-aminoquinoline
1734	вн89438	242511	3.0	NIL AT 30	8-aminoquinoline
1736	ВЈ78592	242511	3.0	NIL AT JOO	8-aminoquinoline
1716	AJ63248	9792	3.0-10.0	NIL AT 30	guanylhydrazone
1717	AB65541	61112	NA at 30	NIL AT 30	clopidol
1718	BD22997	158124	10 - 30	NIL AT 30	miscellaneous

PRINCIPAL INVESTIGATOR: PROFESSOR W.PETERS
DEPARTMENT OF MEDICAL PROTOZOOLOGY
LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE

DATE: 14th January'8

COMFOUND: LON/ 1711

FORMILATION: Tween 80/H20

HOST: 3 TFW mice

ROUTE: sc/¥p¥pŏ

WR2975 BOTTLE NO: BJ08241 TIME AFTER INFECTION: 2 HOURS

P. yoelii nigeriensis PARASITE:

STRAIN: NIG

	COMMENT		INACTIVE	INACTIVE	ACTIVE	FULLY ACTIVE		
S	Residual activity Prophylactic activity (d-c)		NIL	NIL	> 3.65	8.88		
ACTIVITY VALUES	Residual activity (d-c)		NIL	NII,	NIL	NIL		
	Total activity (b-a)		NIL	TIN	> 3.65	8.88		
CMP 2% P	Sporozuite and blood infected	(c) 3.27	(d) 3.46	(d) 3.42	(d) 3.37	(d) 3.29	(n)	(q)
CNP	Sporozoite irfected	(a) 5.12	(b) 5.27	(b) 5.67	(b)	(b) v 14	(9)	(p)
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3	3/3		
PATENCY RATE	Sporozoite infected	5/5	5/5	5/5	3/5	0/5		
	(i) , ii 7)	-	9.	<u>.</u>			•	

...3Q.=.6Q....mg/kg MINIMUM FULLY ACTIVE DOSE BESTRUAL ACTIVITY: NIL

..60...mg/kg KKKKKXX AT

MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Professor Department of Medical Protozoology London School of Hygiene & Tropical Medici

COMPOUND: LON/ 1715

FORMULATION: Tween 80/H₂0

BOTTLE NO: AG99266

WR5990

DATE: 28/9/82

ROUTE: sc/ip/po

TIME AFTER INFECTION: 2 HOURS

HOST: 8 TFW mice

P. yoelii nigeriensis PARASITE:

STRAIN: NIG

Sparozoite Sporozoite Spo		PATENCY RATE	RATE	GMP	GMP 2% P		ACTIVITY VALUES	S	
5/5 3/3 (a) (c) 3.14	が (2) (30) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			Sporozoite infected	Sporocoite and blood infected	Total activity (b-a)	Residual activity (d-c)	Prophylactic activity (b-a)-(d-c)	
3/3 3/4 (b) (d) (d) (d) (d) (e) (d) (d) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	ø		3/3	.61	(c) 3.14				
3/3 5.82 3.16 NIL NIL NIL OIL (b) (d) (b) (d) (b) (d) (d) (d) (d)	3.0	3/3	3/3	(b) 5.45	(d) 3.21	TIN	NIL	NIL	INACTIVE
(b) (d)	0.0	3/3	3/3	(b) 5.82	(d) 3.16	NIL	NIL	NIL	INACTIVE
	0.08	0/3	8/0	1		-	1	ı	➤ LD ₁₀₀
					(p)				
-					(R)				
					(P)		ż		

MINIMUM FULLY ACTIVE DOSE ...> MID.mg/kg RESIDUAL ACTIVITY: NIL

.. MID....mg/kgmg/kg PREKNAM AT MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

DATE: 28/9/82

CAUSAL PROPHYLAXIS TEST NO: 1148

COMPOUND: LON/ 1719

FURNULATION: Tween 80/H₂0

ROUTE: sc/KKKK PARASITE:

TIME AFTER INFECTION: 2 HOURS

WR181023

BOTTLE NO: BE50003

P. yoelii nigeriensis

NOST: 3 TFW mice

STRAIN: NIG

ı	,				1	1	:	1	
	COMMENT		INACTIVE	INACTIVE	ACTIVE				
S	Residual activity Prophylactic activity (d-c)		NIL	NIL	> 5.22				
ACTIVITY VALUES	Residual activity E (d-c)		NIL	NIL	NIL				
	Total activity (b-a)		NIL	NIL	> 5.22				T
2% P	Sporozoite and blood infected	(c) 3.14	(d) 3.17	(d) 3.15	(d) 3.24	(p)	(R)	(p)	
GMP 2% P	Sporozoite infected	(a) 5.61	(b) 5.64	(b) 5.78	(b) > 10.83	(4)	(9)	(a)	300
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3				
PATENCY RATE	Sporozoite infected	5/5	3/3	3/3	2/3				
	1000 1000 1000 1000 1000 1000 1000 100	Ø	3.0	10.0	30.0				!

MINIMUM FULLY ACTIVE DOSE ABSIDUAL ACTIVITY: NIL

.....30.0....mg/kg NIL **MKKKKW** AT

MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

COMPOUND: LON/ 1720

FURNULATION: Tween 80/H₂0

ROUTE: sc/KKXK&

TIME AFTER INFECTION: 2 HOURS

WR182234

BOTTLE NO: BE17580

DATE: 28/9/82

HOST: 3 TFW mice

P. yoelii nigeriensis

PARASITE:

STRAIN: NIG

	COMMENT		ACTIVE	FULLY ACTIVE	FULLY ACTIVE			
S	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		> 5.21	8.59	8.59			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			
	Total activity (b-a)		> 5.21	8.59	7 8.59			
GMP 2% P	Sporozoite and blood infected	(c) 3.14	(d) 3.22	(d) 3.20	(d) 3.24	(p)	(R)	(p)
CMP	Sporozoite infected	(a) 5.61	(b) >10.82	(b) v 14	(b) v 14	(p)	(q)	(q)
RATE	Sporozoite and blood infected	8/8	3/3	3/3	3/3			
PATENCY RATE	Sporozoite infected	5/5	2/3	0/3	0/3			
	13.00 13.00 14.00 15.00	9	3.0	10.0	30.0			

....3.0.7.10.0....пв/кв MINIMUM FULLY ACTIVE DOSE RESIDUAL ACTIVITY: NIL

KKKKKK AT

....10.0...mg/kg

....mg/kg MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozool-London colons Department of Medical Protozoology London School of Hygiene & Tropical Medici

COMPOUND: LON/ 1721

FORMULATION: Tween 80/H₂0

NOST: 3 TFW mice

ROUTE: sc/KkXkX

BOTTLE NO: ZP12775 WR211814

TIME AFTER INFECTION: 2 HOURS

28/9/82

DATE:

PARASITE: P. yoelii nigeriensis

STRAIN: NIG

	COMMENT		INACTIVE	FULLY ACTIVE	FULLY ACTIVE			
S	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		NIL	8.59	. 8*29 .			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			
	Total activity (b-a)		NIL	8.59	8.59			
GMP 2% P	Sporozoite and blood infected	(c) 3.14	(d) 3.16	(d) 3.17	(d) 3.23	(p)	(R)	(<i>p</i>)
GMP	Sporozoite infected	(a) 5.61	(b) 5.58	(b)	(b)	(b)	(4)	(b)
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3			
PATENCY RATE	Sporozoite infected	5/5	3/3	0/3	0/3			
: 0 6	100 (KS	8	3.0	10.0	30.0			

MINIMUM FULLY ACTIVE DOSE ...3.0.:.10.0....mg/kg RESIDUAL ACTIVITY: NIL

RNKKKNI AT30.0....mg/kg

MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

Department of Medical Pi London School of Hygien

COMPOUND: LON/ 1722

FORMULATION: Tween 80/H₂0

BOTTLE NO: ZN43444 WR215295

TIME AFTER INFECTION: 2 HOURS

DATE: 24/8/82

HOST: 8 TFW mice

P. yoelii nigeriensis PARASITE:

ROUTE: sc/乾鉢枝故

STRAIN: NIG

								:
	COMMENT		INACTIVE	INACTIVE	INACTIVE			
ŞŞ	Residual activity Prophylactic activity (d-c)		NIL	NIL	NIL .			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			÷
	Total activity (b-a)		NIL	NIL	NIL			
GMP 2% P	Sporozoite and blood infected	(c) 3.32	(d) 3.28	(d) 3.30	(d) 3.34	(p)	(R)	(p)
GMP	Sporozoite infected	(a) 5.21	(b) 5.15	(b) 5.38	(b) 5.81	(p)	(p)	(p)
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3			
PATENCY RATE	Sporozoite infected	5/5	3/3	3/3	3/3			
	ES / SE	8	3.0	10.0	30.0			

MINIMUM FULLY ACTIVE DOSE > 30.0.mg/kg RESIDUAL ACTIVITY: NIL

.30.0...mg/kg KNOKSOKYK AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

MARKED AT

....mg/kg

COMPOUND: LON/ 1723

FORMULATION: Tween 80/H₂0

ROUTE: sc/ENXNN

TIME AFTER INFECTION: 2 HOURS

WR228000

BOTTLE NO: ZN81499

DATE: 24/8/82

HOST: 3 TFW mice

P. yoelii nigeriensis PARASITE:

STRAIN: NIG

	PATENCY RATE	RATE	CMP	GMP 2% P		ACTIVITY VALUES	S	
88 4 . 80 EE	Sporozoite infected	Sporozoite and blood infected	Sporozoite infected	Sporozoite and blood infected	Total activity (b-a)	Residual activity (d-c)	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)	COMMENT
9	5/5	3/3	(a) 5.21	(c) 3.32				
3.0	3/3	3/3	(b) 5.48	(d) 3.18	NIL	NIL	NIL	INACTIVE
10.0	3/3	3/3	(b) 8.95	(d) 3.26	3.74	NIL	3.74	ACTIVE
30.0	0/3	3/3	(b) > 14	(d) 3.28	8.79	NIL	8.79	FULLY ACTIVE
			(9)	(p)				
			(p)	(R)				
			(b)	(P)				
						,	**************************************	

MINIMUM FULLY ACTIVE DOSE ... 10:0.7.30:0...mg/kg RESIDUAL ACTIVITY: NIL

...30.0....mg/kg KKKKKK AT

MARKED AT

Department of Medical Protozoology London School of Hygiene & Tropical Media: PRINCIPAL INVESTIGATOR: PROFESSOR W PETER

COMPOUND: LON/ 1725

FURNULATION: Tween 80/H₂0

HOST: 3 TFW mice

ROUTE: sc/XXXXX

WR233627

BOTTLE NO: BH13989

DATE: 24/8/82

TIME AFTER INFECTION: 2 HOURS

P. yoelii nigeriensis PARASITE:

STRAIN: NIG

	COMMENT		INACTIVE	ACTIVE	FULLY ACTIVE			
S	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		NIL	3.44	8.79			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			
	Total activity (b-a)		NIL	3.44	8.79			
GMP 2% P	Sporozoite and blood infected	(c) 3.32	(d) 3.37	(d) 3.34	(d) 3.37	(p)	(A)	(p)
CMP	Sporozoite infected	(a) 5.21	(b) 5.34	(b) > 8.65	(b)	(p)	(p)	(b)
RATE	Sporozoite and blood infected	3/3	3/3	3/3				
PATENCY RATE	Sporozoite infected	5/5	3/3	2/3	6/3			
	17.2 SE	8	3.0	10.0	30.0		<u>+</u>	

MINIMUM FULLY ACTIVE DOSE ...10.0.7.30.0....mg/kg hesidual activity: Nil

....30.0...mg/kg KKKKKK AT

.....mg/kg MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

DATE:12/11/82

CAUSAL PROPHYLAXIS TEST NO: 1282

COMPOUND: LON/1726

FURNULATION: Tween 80/H₂0

ROUTE: sc/XXXXX

TIME AFTER INFECTION: 2 HOURS

WR235485

BOTTLE NO: BH35770

HOST: 3 TFW mice

P. yoelii nigeriensis PARASITE:

STRAIN: NIG

	PATENCY RATE	RATE	GNP	GMP 2% P		ACTIVITY VALUES	ES	
な は . 4 カ ・ 日	Sporozoite infected	Sporozoite and blood infected	Sporozoite infected	Sporozoite and blood infected	Total activity (b-a)	Residual activity (d-c)	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)	COMMENT
			(a)	(c)				
3	7/7	3/3	5.87	3.82				
			(q)	(p)				
3.0	2/3	3/3	♦ 8.59	3.76	> 2.72	NIL	> 2.72	SLIGHTLY ACTIVE
	1/3	3/3	(b)	(d)	X 6 23	IIN	2 6 33	A CT 1117
		616	21.21		67.0	77 18	62.0	ACIIVE
30.0	0/3	3/3	(b) > 14	62°E	> 8.13	NIL	> 8.13	FULLY ACTIVE
			(q)	(P)				
			(a)	(R)				
!				-				
			(q)	(p)				
!								
	NININGM FUL	MINIMUM FULLY ACTIVE DOSE		10.0 - 30.0	ms/kg			-
	RESIDIAL ACTIVITY:	TIVITY: NIL				d.	PRINCIPAL INVESTIGATOR.	PROFESSOR W PETER

PRINCIPAL INVESTIGATOR PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medical

30.0mg/kg

RXXXXXX AT MARKED AT

CAUSAL PROPHYLAXIS TEST NO: 1282

COMPOUND: LON/ 1727

FORNULATION: Tween 80/H₂0

BOTTLE NO: BH69990

TIME AFTER INFECTION: 2 HOURS WR2 38605

HUST: 8 TFW mice

P. yoelii nigeriensis ROUTE: sc/ADAMpo PARASITE:

STRAIN: NIG

	PATENCY RATE	RATE	CMP	GMP 2% P		ACTIVITY VALUES	S	
전 (전) 전 (전) 건 (전)	Sporozoite infected	Sporozoite and blood infected	Sporozoite infected	Sporozoite and blood infected	Total activity (b-a)	Residual activity (d-c)	Residual activity Prophylactic activity (d-c)	COMMENT
3	5/7	3/3	(a) 5.87	(c) 3.82				
3.0	3/3	3/3	(p) (e,99	(d) 3.86	1.12	NIL	1.12	SLIGHTLY ACTIVE
10.0	2/3	3/3	(b) > 9.14	(d) 4.01	> 3.27	NIL	> 3.27	ACT1VE
30.0	0/3	3/3	(b) > 14	(d) 7.23	> 8.13	3.41	> 4.72	FULLY ACTIVE, SOME RESIDUAL ACTIVITY.
			(p)	(p)				
			(4)	(R)				
			(9)	(p)				
	NININGH FUL	VINING FULLY ACTIVE DOSE 10.9.9 - 30.9.	ΕΕΕ	30.0	mg/kg			

NEW INCHMENTED ACTIVE DOSE NEW INCHMENTAL ACTIVITY: XMX

30.0...mg/kg PRESENT AT

3x/8m.....mg/kg MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR WIRELES Department of Medical Protozoology London School of Hygiene & Tropical Medical

DATE: 12/11/82

CAUSAL PROPHYLAXIS TEST NO: 1282

COMPOUND: LON/ 1728

FURNULATION: Tween 80/H₂0

HOST: 8 TFW mice

BOTTLE NO: BJ08189

WR243789

TIME AFTER INFECTION: 2 HOURS

STRAIN: NIG

PARASITE:

P. yoelii nigeriensis

ROUTE: sc/knkpa

1		{			1	ţ	1	1		1
	COMMENT			SLIGHTLY ACTIVE	ACTIVE	FULLY ACTIVE				
S	Residual activity Prophylactic activity (d-c)			> 2.95	> 6.25	> 8.13				
ACTIVITY VALUES	Residual activity (d-c)			NIL	NIL	NIL				
	Total activity (b-a)			▶ 2.95	> 6.25	> 8.13				
GMP 2% P	Sporozoite and blood infected	(c) 3 82		(d) 3.68	(d) 3.79	(d) 3.84	(p)	(R)	(p)	
GMB	Sporozoite infected	(a) 5 87	7.67	(b)	(b) >12.12	(b)	(p)	(p)	(p)	
RATE	Sporozoite and blood infected	3/3	c/c	3/3	3/3	3/3				
PATENCY RATE	Sporozoite infected	7// 7/	+/+	2/3	1/3	0/3				1
	प्रस् भव स्रोत	5	•	3.0	10.0	30.0				

....30.0....mg/kg RKKKKK AT

....mg/kg MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER! Department of Medical Protozoology London School of Hygiene & Tropical Medici

COMPOUND: LON/ 1729

BOTTLE NO: BJ45691 WR246315

FORNULATION: Tween 80/H₂0

TIME AFTER INFECTION: 2 HOURS

DATE: 12/11/82

HUST: 3 TFW mice

PARASITE: P. yoelii nigeriensis

ROUTE: sc/KpXpX

STRAIN: NIG

:	PATENCY RATE	RATE	GMP	GMP 2% P		ACTIVITY VALUES	S	
1000 1120 124、 124 134 134 134 134 134 134 134 134 134 13	Sporozoite infected	Sporozoite and blood infected	Sporozoite infected	Sporozoite and blood infected	Total activity (b-a)	Residual activity (d-c)	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)	COMMENT
8	7/7	3/3	(a) 5.87	(c) 3.82				
3.0	0/3	3/3	(b) v 14	(d) 3.95	> 8.13	NIL	> 8.13	FULLY ACTIVE
10.0	0/3	3/3	(b) • 14	(d) 4.26	> 8.13	NIL	> 8.13	FULLY ACTIVE
30.0	0/3	3/3	(b) > 14	(d) 6.78	> 8.13	2.96	5.17	FULLY ACTIVE, SOME RESIDUAL ACTIVITY.
			(1.)	(p)				
			(p)	(R)				
			(a)	(p)				

MINIMUM FULLY ACTIVE DOSE 3.0.mg/kg

PRESENT AT .30.0....mg/kg

MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medical

4

DATE: 7/12/82

CAUSAL PROPHYLAXIS TEST NO: 1377

COMPOUND: LON/ 1729

FURNULATION: Tween 80/H₂0

BOTTLE NO: BJ45691

WR246315

ROUTE: sc/XXXXX

TIME AFTER INFECTION: 2 HOURS

HUST: 3 TFW mice

P. yoelii nigeriensis

PARASITE:

STRAIN: NIG

	CONFIENT		INACTIVE	SLIGHTLY ACTIVE	FULLY ACTIVE			
S	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		NIL	> 2.74	8.56			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			
	Total activity (b-a)		NIL	> 2.74	8.56			
GMP 2% P	Sporozoite and blood infected	(c) 3.47	(d) 3.43	(d) 3.48	(d) 3.56	(p)	(R)	(p)
CMP	Sporozoite infected	(a) 5.44	(b) 4.99	(b) y 8.18	(b) \ \ \ \ 14	(q)	(9)	(p)
RATE	Sporozoite and blood infected	3 /3	3/3	3/3	3/3			
PATENCY RATE	Sporozoite infected	5/5	3/3	2/3	0/3			
	が (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	, <i>5</i>	0.3	0.1	9.0		! !	

..... 1.0. -. 3.0. ... mg/kg MINIMUM FULLY ACTIVE DOSE RESIDIAL ACTIVITY: NIL

NIL **AABABA**A AT

...3.0....mg/kg

MARKED AT

Department of Medical Protozoology London School of Hygiene & Tropical Medial PRINCIPAL INVESTIGATOR: PROFESSOR W PETER

DATE: 7/12/82

CAUSAL PROPHYLAXIS TEST NO: 1377

COMPOUND: LON/ 1732

FURNILATION: Tween 80/H20

HOST: 3 IFW mice

BOTTLE NO:

WR237375 BH58120

ROUTE: sc/knxkw

TIME AFTER INFECTION: 2 HOURS

PARASITE:

P. yoelii nigeriensis

STRAIN: NIG

	COMMENT		INACTIVE	INACTIVE	INACTIVE	INACTIVE		
S	Residual activity Prophylactic activity (d-c)		NIL	NIL	lin	NIL		
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL	NIL		
	Total activity (b-a)		NIL	TIN	NIL	NIL		
GNP 2% P	Sporozoite and blood infected	(c) 3.47	(d) 3.46	(d) 3.53	(d) 3.47	(d) 3.52	(n)	(p)
GNP.	Sporozoite infected	(a) 5.44	(b) 4.87	(b) 5.10	(b) 4.81	(b) 4.61	(q)	(b)
RATE	Sporozoite and blood intected	3/3	3/3	3/3	3/3	3/3		
PATENCY RATE	Sperozo i te Infected	5/5	3/3	3/3	3/3	3/3		
	H A	• •	3.0	10.0	30.0	0.001		

STRINGT FULLY ACTIVE DOSEmg/kg

NOUSCOUR AT

.100.0...mg/kg ...mg/kg MAPPED AT

PRINCIPAL INVESTIGATOR: PROFESSOR WIREL Department of Medical Protozoelogy London School of Hygiene & Tropical Medical

C MERCIND: LON/ 1733

PERMITATION: Tween 80/H20

HOSE & TFW mice

ROUTE: sc/X核XXX

TIME AFTER INFECTION: 2 HOURS

WR228708

BOTTLE NO: BG66798

P. yoelii nigeriensis PARASITE:

STRAIN: NIG

Sperozeite Spering Spering Spering Spering Spering Specificated Specif		5	C.II 2.0 I		STOTUL INTINU	3	
iin	Sporozoite and blood infected	Sporozoite infected	Sport joite and blood infected	Total activity (b-a)	Residual activity (d-c)	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)	COMENT
-		(a)	(c)				
5/5	3/3	5.44	3.47				
			(p)				
3/3	3/3	4.81	3.52	NIL	NIL	NIL	INACTIVE
			(p)				
3/3	3/3	4.78	3.55	NIL	NIL	NIL	INACTIVE
			(p)				
1/3	3/3	▶ 10.81	3.49	▶ 5.37	NIL	5.37	ACTIVE
			(P)				
0/3	3/3	> 14	3.65	♦ 8.56	NIL	8.56	FULLY ACTIVE
		(a)	(R)				
		(b)	(P)				

MINIMUM FULLY ACTIVE DOSE SESTEVAL ACTIVITY: NIL

NIL MMKKKKK AT

.....190.0...mg/kg

MARKED AT

Department of Medical Protozoology London School of Hygiene & Tropical Media PRINCIPAL INVESTIGATOR: PROFESSOR WIRELING

COMPOUND: LON/ 1734

FURNULATION: Tween 80/H₂0

BOTTLE NO: BH89438

WR242511

DATE: 8/7/82

TIME AFTER INFECTION: 2 HOURS

HOST: 3 TFW mice

P. yoelii nigeriensis

PARASITE:

ROUTE: sc/ADPX/pox

STRAIN: NIG

1					1	,		
	COMMENT		FULLY ACTIVE	FULLY ACTIVE	FULLY ACTIVE			
S	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		8.88	8.88	8.88			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			
	Total activity (b-a)		8.88	8.88	> 8.88			
GMP 2% P		(c) 3.27	(d) 3.31	(d) 3.54	(d) 3.74	(p)	(R)	(p)
GMP	Sporozoite infected	(a) 5.12	(b) \ \ \ \ 14	(b) \ \ \ \ 14	(b) \ \ \ \ 14	(4)	(p)	(p)
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3			
PATENCY RATE	Sporozoite infected	5/5	9/2	9/0	9/0			
	が、 は、4 7 - 2 - 1 - 1 - 1	8	3.0	10.0	30.0			

... 30.0.mg/kg EXECUTIVE AT MARKED AT

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

COMPOUND: LON/ 1736

FURNULATION: Tween 80/H₂0

HOST: 3 TFW mice

ROUTE: sc/XXXXX

TIME AFTER INFECTION: 2 HOURS

DATE: 7/12/82

BOTTLE NO: BJ78592

PARASITE:

P. yoelii nigeriensis

STRAIN: NIG

	cophylactic activity (b-a)-(d-c)		> 8.56 FULLY ACTIVE	> 8.56 FULLY ACTIVE	► 8.56 ► LD ₃₃	FULLY ACTIVE ➤ B.56		
ACTIVITY VALUES	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		NIL	NIL	NIL	NIL		
	Total activity (b-a)		8.56	> 8.56	♦ 8.56	▶ 8.56		
GNP 2% P	Sporozoite and blood infected	(c) 3.47	(d) 3.62	(d) 3.52	(d) 3.57	(d) 3.65	(A)	(P)
GMP	Sporozoite infected	(a) 5.44	(b) • 14	(b) • 14	(b) > 14	(b) • 14	(9)	(p)
RATE	Sporozoite and blood infected	3/3	3/3	3/3	2/3	1/3		
PATENCY RATE	Sporozoite infected	ć, <u>č</u>	9/0	5/0	0/5	9/2		
:	が、 が、 の り り り 日 日	9	3.0	10.01	30.0	0.00		

..100.0...mg/kg APRECENT AT

PRINCIPAL INVESTIGATOR: PROFESSOR WIRELED Department of Medical Protozoology London School of Hygiene & Tropical Median

MARKEED AS

 \dots mg/kg

COMPOUND: LON/ 1716

FORMULATION: Tween 80/H₂0

HOST: 8 TFW mice

P. yoelii nigeriensis ROUTE: sc/xxxxx

DATE: 8/7/82

WR9792 AJ63248 BOTTLE NO:

TIME AFTER INFECTION: 2 HOURS

PARASITE:

STRAIN: NIG

1			1		ì	1	}	lyydlun }	i
	COMMENT		ACTIVE	FULLY ACTIVE	FULLY ACTIVE				
S	Residual activity Prophylactic activity (d-c)		> 3.95	8.88	8.88				
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	TIN				
	Total activity (b-a)		> 3.95	8.88	8.88				
GMP 2% P	Sporozoite and blood infected	(c) 3.27	(d) 3.19	(d) 3.26	(d) 3.37	(p)	(R)	(p)	
CAP	Sporozoite infected	(a) 5.12	(b) > 9.07	(b)	(b) \ \ \ 14	(4)	(9)	(p)	
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3				
PATENCY RATE	Sporozoite infected	5/5	4/5	9/0	9/0				•
	5. SE	0	3.0	10.0	30.0				

.....3:0.7.10.0....mg/kg NINIMUM FULLY ACTIVE DOSE RESIDUAL ACTIVITY: NIL

NIL REKEKK AT

30.0

MARYED AT

Department of Medical Protozoology London School of Hygiene & Tropical Medici PRINCIPAL INVESTIGATOR: PROFESSOR W PETER

COMPOUND: LON/ 1717

FORMULATION: Tween 80/H₂0

PARASITE:

WR61112 BOTTLE NO: AB65541 TIME AFTER INFECTION: 2 HOURS

DATE: 8/7/82

HOST: 3 TFW mice

P. yoelii nigeriensis

ROUTE: sc/kpxkpa

STRAIN: NIG

-				-				. zviva a	
	COMMENT		INACTIVE	INACTIVE	INACTIVE				
S	Residual activity Prophylactic activity (d-c)		NIL	NIL	NIĽ				
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL				
	Total activity (b-a)		TIN	NIL	NIL				
GMP 2% P	Sporozoite and blood infected	(c) 3.27	(4) 3.30	(d) _{3.42}	(d) 3.17	(p)	(A)	(p)	
CAR	Sporozoite infected	(a) 5.12	(b) 5.10	(b) 5.47	(b) 5.05	(9)	(9)	(b)	
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3				
PATENCY RATE	Sporozoite infected	5/5	5/5	5/5	5/5				
	1000円 1000 1000円 1000円 1000円 1000円 1000円 1000円 1000円 1000円 1000円 1000円 1000 1000円 1000 1000円 1000	0	3.0	10.0	30.0				!

.....m8/kg MARKED AT

Department of Medical Protozoology London School of Hygiene & Tropical Medici PRINCIPAL INVESTIGATOR: PROFESSOR W PETER

COMPOUND: LON/ 1718

WR158124

DATE:12/11/82

BOTTLE NO: BD22997

TIME AFTER INFECTION: 2 HOURS

HOST: 3 TFW mice

FURNULATION: Tween 80/H₂0

P. yoelii nigeriensis PARASITE:

ROUTE: sc/kkxkk

STRAIN: NIG

					1			
	COMMENT		INACTIVE	ACTIVE	FULLY ACTIVE			
Si	Residual activity Prophylactic activity (d-c) (b-a)-(d-c)		NIL	> 2.99	> 8. 13			
ACTIVITY VALUES	Residual activity (d-c)		NIL	NIL	NIL			
	Total activity (b-a)		NIL	> 2.99	> 8.13			
GMP 2% P	Sporozoite and blood infected	(c) 3.82	(d) 3.78	(d) 3.84	(b) 3.96	(p)	(R)	(p)
CMP	Sporozoite infected	(a) 5.87	(b) 6.12	(b) > 8.86	(b) > 14	(p)	(q)	(b)
RATE	Sporozoite and blood infected	3/3	3/3	3/3	3/3			
PATENCY RATE	Sporozoite infected	7/7	3/3	2/3	0/3			
1.00	18 8 B	3	3.0	10.0	30.0			

MINIMUM FULLY ACTIVE DOSE ..10.0.7.30.0....mg/kg RESIDUAL ACTIVITY: NIL

... 30.0...mg/kg NIL KKKSKKY AT

MARKED AT

....mg/kg

PRINCIPAL INVESTIGATOR: PROFESSOR W PETER Department of Medical Protozoology London School of Hygiene & Tropical Medici

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA.

00	06 _I	0.75	·.	0.5		0.3		c.5	;			I
N/1100	ED90	200	150	7.0		2.0		20.5				,
٨	06 _I								1			
ORA	ED ₉₀											
PYR	06 _I											
М	ED ₉₀											
	06 _I											
8	ED ₉₀	-										
	06 _I											
Ь	0603											
	06 _I											
RC	ED ₉₀		•									
	06 _I	0.4	3.0	1.6		1.9		0.4				
SN	ED90	100	300	3.1		11.8		15.0				
z	ED ₉₀	265	100	1.9		6.2		39.0				
	ED ₅₀	9.0	3.5	6.0		2.9		7.0				
	Route	၁ၭ	ođ	sc		sc		၁ၭ				
Suppliers No.		AW91877	WRIT 29 2 2 1		FLOXACRINE		uR245082	BK02780	WR246976			
LON Or	No.	1179			1528	, ,	7 () 7	1753				

 Er_{50} / ED_{90} = mg/kg x 4

MTD = maximum tolerated dose

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X100				
	1.0	5		_	77.8 + 4.8				
	3.0	5		-	66.2 + 5.9				
N	10.0	5	1	_	56.1 + 3.7				
	30.0	5			42.8 + 3.7				
	100.0	5			18.3 + 3.8				
	Ø	10		18.0					
					! !				
ED ₅₀ (range) 9.0(4.0-30)									
ED ₉₀ (rang	e) 265 (120-850)†	†Interpolated graphically							
Resistanc	e factor I ₉₀								
	1.0	5			77.6 + 7.4				
	3.0	5		-	66.1 + 5.2				
NS	10.0	5	1	.	57.0 = 3.1				
	30.0	5		-	52.5 + 4.4				
	100.0	5		_	32.9 = 7.4				
	Ø	10		16.1					

 $ED_{50}(range)$ 18.5 (7.5-60) $ED_{90}(range) \gg 100$ Resistance factor I_{90}

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NAM OR NUMBER	L1V 1179		PARASI	TE (SUB)SPECIES	P.berghei				
	Tugon 80/Ha0	ROUTE OF ADMINISTRATION : SC/\$RXREX\$¥X							
MAXIMUM TOLE	ERATED DOSE (MTD))	MG/KG X						
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X100				
	1.0	5		-	100 = 0.1				
	3.0	5		-	82.0 - 2.9				
N/1100	10.0	5		_	73.8 - 3.0				
	30.0	5	1	-	70.0- 2.9				
	100.0	5		-	41.8 + 9.1				
	Ø	10		12.0					
		-			i !				
ED ₅₀ (range)) 51 (10-100)	-							
ED ₉₀ (range)	200 (35-400)	1 1 							
Resistance	factor I ₉₀		· · · · · · · · · · · · · · · · · · ·						
					1				
			,						
					· ·				
ED ₅₀ (range)					 				
ED ₉₀ (range)									
Resistance	factor I ₉₀	•							

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

SUMMARY OF ANTIMAFARIAL DRUG TESTS (BLOOD SCHIZONIOCIDES).

FORMULATIO	Tween 80/H ₂ 0 DN	ROUT		TE (SUB)SPLCIES . ATION : %%¾¾ /PO/	k λ
MAXIMUM TO	DLERATED DOSE (MTD)	. MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR Control PR
	1.0	5		_	60.7 + 6.3
	3.0	5		-	48.1 + 3.1
N	10.0	5	1	-	45.8 + 3.5
_	30.0	5*		-	36.1 ±
	100.0	5**		-	21.1 +
	Ø	10		18.0	
ED ₉₀ (rang	e) 3.5 (1.6-10) e) \gg 100 e factor $!_{90}$	* 2/5 D ** 4/5 D			
·	1.0	5		_	77.0 + 6.2
	3.0	5**		-	77.0 +
NS	10.0	5*	1	_	73.0 ⁺ 3.3
	30.0	5*		_	60.4 + 1.4
-	100.0	5**	1	_	24.2 +
	Ø	10		16.1	
D ₅₀ (range	2) 25 (11–45) 3) 300 (125–640)†	* 1/5 DIF **4/5 DIF			·

Date: 18/1/83

Principal Investigator: Professor W. Peters

Department of Medical Protozoology

condon School of Hygiene & Tropical Medicine

SUMMAR: M. ANTIMALARIAE BRUG MESTIC (BEOOD SCHILDNIOCIDES)

COMPOUND NA	AME LIV 1179		DADAST	TE (SUB)SPECIES	P.berghei
	Tween 80/H ₂ 0			TE (300)3/20123 ATION : 3 03.x103./P0/1	
	ERATED DOSE (MTD			ATTON . Supplement of a	AU.
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of	Mean control parasite rate %	Treated PR X10
	1.0	5		-	100 +
	3.0	5		-	100 +
N/1100	10.0	5	1	-	100 +
	30.0	5		-	100 - 6.5
	100.0	5		-	53.2 [±] 10.6
	ø	10		12.0	
ED ₅₀ (range	e) 98 (49–115)				
ED ₉₀ (range	2)150 (75–180)				
Resistance	factor I ₉₀				
					1
					i ;
					i
ED ₅₀ (range	e)	.1			
ED ₉₀ (range	2)				
Resistance	e factor I ₉₀				

Date: 18/1/83

Principal Investigator: Professor W.Peters Department of Medical Protozoology onamous accommodates A Tropical Medicine

SUMMARY OF ANTIMALARIAL DRUG TESTS TALL I (BLOOK SCHIZONTOCIDES)

COMPOUND NAME

LIV 1528

OR NUMBER

FLOXACRINE PARASITE (SUB)SPECIES P.berghei

FORMULATION ... Tween $80.4.11_20...$ ROUTE OF ADMINISTRATION : SC/ $\frac{1}{2}$ R $\frac{1}{2}$

MAXIMUM TOLERATED DOSE (MTD) >30 ... MG/KG X .4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X100 Control PR X100
	1.0	5		-	61.4 + 3.7
	3.0	5		_	0.9 + 0.6
И	10.0	5	1	-	0
	30.0	5		-	0
	Ø	10		16.2	i
ED ₅₀ (range	2) 0.9(0.5-1.3)	i			
ED ₉₀ (range	e) 1.9(1.2-2.7)	!			

Resistance factor Inc. 1.0

	0.3	5		-	60.5 + 3.4
	1.0	5			50.0 + 3.5
NS	3.0	5	1		11.0 + 3.6
	10.0	5		_	1.1 ± 0.5
	Ø	10	!	20.0	
			1		(
					· · · · · · · · · · · · · · · · · · ·

EL₅₀(range) 0.6(0.3-1.1)

 $ED_{90}(range)$ 3.1(1.7-6.0)

Resistance factor i_{90} 1.6

Date: 18/1/83

Principal Investigator: Professor W.Peter

Department of Medical Protozoology

smoon shool or Hygiene's Implical Medicine

SUMMARY OF ANTIMALARIA, BACG TELTI (BLOOD SERI/ONTOCIDES

COMPOUND NAME

LIV 1528

OR NUMBER	FLOXACRINE		PARASI	TE (SUB)SPECIES . P.	.ber mei
FORMULATION	~ween 80 / H ₂ C	ROUTE	OF ADMINISTRA	KYGGYYGK\JZ : NOITA	¥
MAXIMUM TOL	ERATED DOSE (MTD)) .30	MG/KG X ∴		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X100
	0.1	5		-	94.8 ± 4.4
	0.3	5		-	71.7 + 4.1
N/1100	1.0	5	1	-	10.5 + 3.1
	3.0	5		_	0.3 + 0.2
	Ø	10		19.1	
					!
ED ₅₀ (range	0.33(0.26-0.64)	:	* - -		*************************************
	0.9(0.7-1.8)	1 1			
	factor 190 0.5	- 4 ! !			
					!
-					,
. — .					
		 			
ED ₅₀ (range)	<u> </u>	·		
ED ₉₀ (range		i i			
	factor I ₉₀	<u> </u>			

Date: 18/1/83 Principal Investigator: Professor W.Peters

Department of Medical Protozoology

Souton : hopi of mygiene & Ironical Medicine

SUMMAR: OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

 $\begin{array}{ccc} \text{COMPOUND NAME} & & \frac{\text{RKO2771}}{\text{WR}.245082} \end{array}$

OR NUMBER LON 1752 PARASITE (SUB)SPECIES Programmes

FORMULATION . Tween 80 / H20 ... ROUTE OF ADMINISTRATION : SC/ARX POXIN

MAXIMUM TOLERATED DOSE (MTD) .≥30... MG/KG X .⁴.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X100 Control PP X100
! !	1.0	5		-	73.5 =:
	3.0	5		-	40.1 - 4.4
N	10.0	5	1	_	23.5 - 7
	30.0	5		_	C
	ø	10		16.2	
<u> </u>					

ED ₅₀ (range	2) 2.9(1.3-7.2)				
ED ₉₀ (range	e) 6.2(2.9-15.6)	· · · · · · · · · · · · · · · · · · ·			

Resistance factor I₉₀ 1.0

		· · · · · · · · · · · · · · · · · · ·			
	1.0	5		-	5(±)
	3.0	5		-	1 (A. 1) 1 (A. 1)
NS	10.0	5	1	-	+ + + + + + + + + + + + + + + + + + +
	30.0	5		-	4.0
	Ø	10		20.0	

 $ED_{50}(range) = 1.4(0.8-2.5)$

ED₉₀(range) 11.8(6.8-21.0)

Resistance factor $I_{90-1.9}$

Date: 18/1/**83**

Principal Investigator: Professor Wileter

Department of Medical Protozoology

Statement and the statement of the search of

COMPOUND NAME OR NUMBER	process Marchados Actionos		PARASITE	(SUB)	SPECIES	Pupertones	
FORMULATION .	. Tween BOO. HgO ROUT	OF A	ADMINISTRATI	ION:	SC/IMMAN	DVMV	
MAXIMUM TOLER	ATED DOSE (MTD) .7.19	. MG/K	KG X .4				

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR Control PR
	0.1	5		-	60.7 - 3.9
	3.0	5		-	1.4 - 0.1
N/1100	10.0	5	1	-	· · · · · · · · · · · · · · · · · · ·
	30.0	5			C
	Ø	10		19.1	
ED ₅₀ (range	2) 1.2(1.0-1.3)		1		
ED ₉₀ (range	2.0(1.7-2.3)				
	2) 2.0(1.7-2.3) e factor Igg 0.3				
					· ·

Date: 18/1/**83**

Resistance factor 191

 $ED_{90}(range)$

- Principal Investigator: Professor Wileten Department of Medical Protozoology

o race o soci et mygiene v incrica. Medi ira

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

BKO2780

COMPOUND NAME

WR246976

OR NUMBER

LON 175+

..... PARASITE (SUB)SPECIES

FORMULATION . The solve is a second of administration : SC/ADM/PRO/XDX

MAXIMUM TOLERATED DOSE (MTD) $\stackrel{100}{\sim}$ MG/KG X $\stackrel{4}{\sim}$.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X100
	1.0	5			85.8 + 2.8
	3.0	5		_	69.1 = 3.7
N	10.0	5	1	-	52.5 + 8.7
; ; ;	30.0	5		-	33.3 [±] 7.6
	100.0	5		-	2.5 + 0.9
	Ø	10		16.2	
ED ₅₀ (range	?) 7.0(3.5-20)		-		
ED ₉₀ (range	2) 39.0(19-110)	-			

Resistance factor I₉₀ 1.0

	1.0	5		-	75.0 ± 4.1
	3.0	5		_	59.0 + 5.2
NS	10.0	5	1	-	46.0 - 10.0
•	30.0	5		-	8.5 + 1.1
	100.0	5		_	0.05 + 0.05
	Ø	10		20.0	:

ED₅₀(range) 5.0(1.8-9.0)

ED₉₀(range) 15.0(5.2-43.0)

Resistance factor I_{90} 0.4

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

Condon School of Hygiene & Tropical Medicine

SUMMARY SE ANDIMALARIAL DROIL TESTS TALLS

.Budut semiloNioCiDEs

BFO, 780 COMPOUND NAME WRPAG Co.

PARASITE (SUB)SPECIES P. Derguer OR NUMBER

FORMULATION ... TWOOD BO / B.O. ROUTE OF ADMINISTRATION : SC KRKROKKY

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR - 100
	0.3	5		-	73
	1.0	5		_	69.1 - 1.0
N/1100	3.0	5	1	~	55.C - v.
	10.0	5		_	41.4
	30.0	5			· · · · · · · · · · · · · · · · · · ·
	Ø	10		19.1	
ED ₅₀ (range	2.4(0.6-8.8)				
	2) 20.5(4.6-58.0)	* : :			
Resistance	e factor igo 0.5	1	•		
					· · · ·
		1			•·····
		<u> </u>			
***					******
		÷			•
		,			•
···		•	 		*·

ED₅₀(range)

ED₉₀(range)

Resistance factor :

Date: 18/1/**83**

John Thai This Linaton: Professor W.Peters Large there of Medical Protozoology

or of the second regiment & Inopical Medicane

BLOOD SCHIZONTOCIDAL ACTIVITY SINGLE DOSE ED₉₀ TESTS

STRAIN	MEFLO	OQUINE	1	ETHAMINE (P)	. SULFA	DOXINE)	P:S	(1:3)
	ED ₉₀	^I 90	ED ₉₀	¹ 90	ED ₉₀	I ₉₀	ED ₉₀	^I 90
N	15.3	1.0	2.0	1.0	10.1	1.0	0.5	1.0
N/1100	1000	> 65	13.8	6.9	4.2	0.4	1.3	2.6
PFM/37	250	16.3	10.3	5.2	1.3	1.3	0.9	1.8
NS	10.0	0.7	2.0	1.0	1.5	0.15	0.2	0.4
NS/1100	1000	65	2.2	1.1	1.7	0.17	0.52	1.0
MPS/28	66.0	4.3	2.1	1.1	1.7	0.17	0.32	0.64
FY/65/1	13.0	0.85	130	65.0	290	28.7	88.0	176
MFY/30	170	11.1	49.0	24.5	195	19.3	100	200

SUMMARY OF ANTIMALARIAL DRUG TESTS TABLE 34 (BLOOD SCHIZONTOCIDES)

COMPOUND NA	AME Mefloqu:		PARASI	TE (SUB)SPECIES	P.berghei
FORMULATION	Tween 80/H ₂ 0	ROUT		ATION: SC/MXXXXXX	
MAXIMUM TO	LERATED DOSE (MTD)	. MG/KG X		
Strain	Singledose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X1(
	3.0	5			58.9 ± 6.5
	10.0	5			37.9 ⁺ 7.3
N	30.0	5	1	-	1.1 + 0.6
	100.0	5		-	0
	Ø	10		19.4	
ED ₅₀ (range	2)5.9 (3.0-9.0)				
ED ₉₀ (range	2)15.3(7.0-24.0)				
Resistance	e factor I _{90 1.0}				
	3.0	5		_	70.8 + 5.0
	10.0	5		-	14.1 + 9.5
NS	30.0	5	1	-	0.07 + 0.07
	100.0	5		-	0
	Ø	10		29.2	
ED ₅₀ (range	2) 4.4(3.4-6.0)	 	· d		Lance of the second second
	2)10.0(7,8-14.0)				
	e factor I ₉₀ n.7				

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

. Indon ichoos of Hygiene & Iropical Medicine

SUMMARY OF ARTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NAME P.berghei Pyrimethamine OR NUMBER Tween 80/H₂0 FORMULATION MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Single dose No. of Treated PR X10 No. of Mean control Strain mg/kg D0 mice parasite rate % experiments 56.5 [±] 3.2 0.3 5 26.1 - 5.5 1.0 5 21.6 - 2.1 N 3.0 5 10.0 5 0.4 ± 0.3 30.0 5 Ø 10 19.4 $ED_{50}(range)$ 0.5 (0.2-1.4) ED₉₀(range)2.0 (1.0-5.4)

Resistance	factor	^I 90	1.0

	90	<u> </u>			
	0.3	5		_	49.3 ± 13.2
	1.0	5		_	32.7 + 5.4
NS	3.0	5	1	_	25.9 [±] 9.4
	10.0	5		-	0.07 ± 0.03
	30.0	5		-	0
	Ø	10		29.2	
	1	1	1		1

ED₅₀(range) 0.5 (0.2-2.5) ED₉₀(range) 2.0 (1.0-11.0)

Resistance factor I_{90} 1.0

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZUTTOCIDES)

COMPOUND NOR NUMBER	AME Sulphadox	ine	PARASI	TE (SUB)SPECIES	P.berghei
FORMULATIO	N Tween 80/H ₂ 0	ROUTE	OF ADMINISTRA	ATION : ŞÇ/IP/RXXI	XX X
MAXIMUM TO	LERATED DOSE (MTD)	. MG/KG X		
Strain	Single dose mg/kg DO		No. of experiments	Mean control parasite rate %	Treated PR X1C
	0.3	5		_	87.0 ± 5.3
	1.0	5		_	50.1 - 3.7
N .	3.0	5	1	_	40.0 - 2.7
	10.0	5		-	25.8 + 3.4
	Ø	10		19.4	
ED ₅₀ (range	e) _{1.7} (0.9-4.6)				
ED ₉₀ (range	e)10.1 (5.5-2.9)				
Resistance	e factor I ₉₀ 1.0				
	0.3	5		-	47.9 ⁺ 7.7
	1.0	5		-	25.3 ⁺ 8.2
NS	3.0	5	1	<u>-</u>	5.0 ⁺ 3.2
	10.0	5		-	0.07 - 0.07
	Ø	10		29.2	
					:
		· · · · · · · · · · · · · · · · · · ·			
	9)0.4 (0.2-0.7)				
ED ₉₀ (range	e) ^{1.5} (0.9-2.7)				
Resistance	e factor I ₉₀ 0.15				

Date: 18/1/83

Principal Investigator: Professor W.Peters

Jepartment of Medical Protozoology

Landon 2006, of Hygiene & Indical Medicine

SOMMARY OF ANTIMALARIAL DRUG TESTS TAKES TAKES OF (BLOOD SCHIPONIOCIDES)

ORMULATIO	Tween 80/H ₂ 0 ON	ROUTE	OF ADMINISTRA	ATION: NSC/IP/NP/09/XD	U X
MAXIMUM TO	OLERATED DOSE (MT)	. MG/KG X		
Strain	Simple dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X1
	0.04	5			62.4 - 7.5
	0.13	5			44.0 = 3.8
N	0.4	5	1	_	31.6 - 1.6
	1.3	5		-	8.2 - 1.9
	4.0	5		-	0.1 + 0.1
	Ø	10		19.4	
ED ₅₀ (rang	ge) 0.11(0.05-0.29)			
ED ₉₀ (rang	ge) _{0.5} (0.2-1.3)				
	ce factor I _{90 1.0}				
	0.04	5			47.9 - 7.7
	0.13	5		#-	25.3 ± 8.2
NS	0.4	5	1	_	5.0 ± 3.2
				-	0.07 + 0.07
	1.3	5			
	4.0	5		-	0
		+		29.2	
	4.0	5		29.2	
:D ₅₀ (rang	4.0	5		29.2	

Date: 18/1/83

Principal Investigator: Professor W.Peters Department of Medical Protozoology condon School of Hygiene & Tropical Medicine

SOMMARY OF ANDIMALARIAN DROW TESTS 140.0 18. (BLOOD SCHI!ONIDGIDES

OR NUMBER	Mefloquine		PARASI	TE (SUB)SPECIES	'.berghei ·····
ORMULATIO	N	ROUTI	OF ADMINISTRA	ATION : SCAMAMAAA	S KX
MAXIMUM TO	LERATED DOSE (MTD)	. MG/KG X		
Strain	Single dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PP K1
	3.0	5		-	75.7 - 14.9
	10.0	5		_	35.5 - 11.3
MPS	30.0	5	1	-	26.2 + 8.6
	100.0	5		_	9.3 + 5.4
	Ø	10		10.7	
					!
		1			
ED ₅₀ (range	9,5 (3,5-17.5)		<u> </u>		
ED ₉₀ (range	e)66.0 (25-120)	1			
Resistance	e factor I ₉₀	- : :			
	3.0	5			82.4 [±] 2.2
	10.0	5			74.4 [±] 12.6
NC/1100	30.0	5	1	_	54.2 [±] 1.4
	100.0	5		_	44.5 + 2.5
	Ø	5	!	12.5	
					! !
			* *		
ED ₅₀ (range	2) 52 (22-245)		**************************************		
ED ₉₀ (range	e) > 1000	:			
Resistance	e factor I ₉₀				

Date: 18/1/83

Principal Investigator: Professor W. Peters Department of Medical Protozoology

endon school of Hygiene & Propical Medicine

SUMMARY OF ANTIMALARIAL DRUG HESTS (BLOOD SCHIZONTOCIDES)

COMPOUND N. OR NUMBER	AME Pyrimethamine		PARASI	TE (SUB)SPECIES	P.berghei
				ATION: 88/1PX	
MAXIMUM TO	LERATED DOSE (MT	D)	. MG/KG X		
Strain	Signle dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X10
	0.3	5		-	85.2 + 6.8
	1.0	5		-	72.9 - 11.8
MPS	3.0	5	1	-	5.6 - 2.7
	10.0	5		-	0.02 - 0.02
	30.0	5		-	0
	Ø	10		10.7	
ED ₅₀ (range	e) o. 8 (o. 5-1.8)		<u> </u>		
ED ₉₀ (range	2)2.1 (1.4-4.4)				
Resistance	e factor I ₉₀				
	0.1	5		-	81.4 + 6.6
	0.3	5		_	52.3 + 12.4
NS/1100	1.0	5	1		30.1 - 11.8
	3.0	5		-	17.8 + 5.2
	10.0	5		-	1.0 - 0.5
	Ø	5		12.5	
FD(range	e) 0.4 (0.2-1.1)		<u>; </u>		
	2) 2.2 (1.2-6.5)	- 1			
	e factor I ₉₀	4			

Date: 18/1/83

Principal Investigator: Professor W.Peters Department of Medical Protozoology ondon School of Hygiene & Tropical Medicine

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NA	AME Sulfadoxine	• • • • • • • • • •	PARASI	TE (SUB)SPECIES	P.berghei
FORMULATION				ATION: XSXC/IP,XAPACXXX	
MAXIMUM TOL	ERATED DOSE (MTD)	. MG/KG X		
Strain	Single dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X10
	0.3	5			80.4 - 4.8
	1.0	5		-	40.6 - 5.2
MPS	3.0	5	1	~	2.4 - 1.4
	10.0	5		_	0
	Ø	10		10.7	
ED ₅₀ (range	0.6 (0.5-0.9)				
ED ₉₀ (range)1.7 (1.2-2.4)				
Resistance	factor I ₉₀				
	0.3	5			80.6 ± 2.2
	1.0	5		-	24.0 [±] 5.1
NS/1100	3.0	5	1	-	9.6 + 3.7
	10.0	5		-	0.5 ± 0.3
	30.0	5		-	0
	ø	5		12.5	
ED _{=o} (range) 0.6 (0.4-1.0)				
) 1.7 (1.2-2.7)	i	•		
		1			
Resistance	factor I ₉₀	-			

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Propical Medicine

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NAME Pyrimethamine:Sulfadoxine PARASITE (SUB)SPECIES P.berghei...... OR NUMBER Tween 80/H₂0 ROUTE OF ADMINISTRATION : XSC/IP/XPXXXXX FORMULATION MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Single dose Treated PR X10 No. of No. of Mean control Strain mg/kg DC mice parasite rate % experiments 0.075 5 75.7 + 15.6 63.6 + 18.5 0.15 5 MPS 0.31 5 8.8 - 5.4 0.62 2.1 - 1.4 5 1 0.05 + 0.04 1.25 5 2.5 5 0 10 10.7 ED₅₀(range)_{0.13} (0.09-0.27) ED₉₀(range) 0.32 (0.21-0.66) Resistance factor I₉₀ 0.075 73.8 + 7.1 5 59.5 + 6.9 0.15 5 NS/1100 0.31 14.4 + 3.9 5 0.62 5 4.2 + 1.2 1 1,25 2.0 ± 1.8 5 2.5 0.2 ± 0.2 5

ED₅₀(range)_{0.14} (0.09-0.23)

5

ED₉₀(range)_{0.52} (0.32-0.78)

Resistance factor 1₉₀

Date: 18/1/83

Principal Investigator: Professor W.Peters
Department of Medical Protozoology
London School of Hygiene & Tropical Medicine

12.5

om se se si pina. Aspar programas i La servició sonde

	ort on somethamic	De ¹			P.berghei
a North		· · · · · · · · · · · ·		TE (SUB)SPECIES	
M	the state of the s	ROUTI	E OF ADMINISTRA	ATION:XXX/IPXXXX	úΧ
MINIM AND			. MG/KG X		
ctmair	Single Jose m; →; Du	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR -X10
,	0.3	5		-	100 - 11.6
	1.0	5		-	83.2 - 7.1
PFMA	3.0	5	1	-	32.3 + 5.2
· · · · · · · · · · · · · · · · · · ·	10.0	5		-	17.0 - 6.9
	30.0	5			2.6 - 1.5
	Ø	10		11.4	:
ED ₅₀ (rang	e)3.5 (1.6-7.0)				
ED ₉₀ (rang	e) _{10.3} (4.7-20.5)			
Resistanc	e factor I ₉₀				
	0.1	5		-	76.9 ⁺ 7.2
	0.3	5		-	54.5 + 3.9
N/1100	1.0	5	1	-	45.7 ⁺ 12.2
	3.0	5		-	29.4 + 5.6
	Ø	10		13.4	**************************************
					
ED ₅₀ (rang	e)0.6 (0.3-1.5)		**************************************		•
	e) _{13.8} (6.8-34)				
	e factor I ₉₀				

Date: 18/1/83

Principal Investigator: Professor W.Peters
Department of Medical Protozoology
ondon School of Hygiene & Indical Medicine

COMPOUND NAME Pyrimethamine/Sulphadoxine P.berghei
OR NUMBER PARASITE (SUB)SPECIES

FORMULATION 1:3 in Tween 80/H₂O ROUTE OF ADMINISTRATION : §G/IP/ROKKXX

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Single dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X10
	0.15	5		_	68.8 [±] 13.1
	0.31	5		-	32.1 - 10.7
PFMA	0.62	5		_	20.0 - 6.1
	1.25	5		-	11.4 - 5.0
	2.5	5	1		5.2 - 0.9
	5.0	5		_	0.4 ± 0.3
 	10.0	5		_	.0
	20.0	5		-	0
	Ø	10		11.1	·

ED₅₀(range)_{0.26} (0.18-0.68)

 $E0_{90}(range)_{0.88}$ (0.48-1.9)

 ${\mathbb R}$ esistance factor ${\mathbb R}_{90}$

30				
0.075	5		_	100 + 4.2
0.15	5		-	83.3 ± 5.0
0.31	5		-	77.1 + 9.0
0.62	5	1	_	19.2 [±] 7.6
1.25	5		-	10,4 + 5.0
2.5	5		-	7.1 - 1.6
ø	10		9.6	
	0.075 0.15 0.31 0.62 1.25	0.075 5 0.15 5 0.31 5 0.62 5 1.25 5 2.5 5	0.075 5 0.15 5 0.31 5 0.62 5 1 1.25 5 2.5 5	0.075 5 0.15 5 0.31 5 0.62 5 1.25 5 2.5 5

E0₅₀(range) 0.28 (0.2-0.76)

ED₉₀(range) 1.3 (0.7-2.6)

Resistance factor I_{90}

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

undon School of Hygiene & Tropical Medicine

MEMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NAME Mefloqui OR NUMBER		ine	DADACI	TE /SURNSDECTES	P.berghei		
		ROUTE	OUTE OF ADMINISTRATION : SC/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
	LERATED DOSE (MTD)						
Strain	Singlé dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X10		
	3.0	5		-	81.8 + 11.9		
	10.0	5		-	62.3 + 12.3		
PFMA	30.0	5	1	-	54.6 - 5.5		
	100.0	5		~	27.2 + 9.7		
	Ø	10		11.1			
					!		
ED ₉₀ (range	e)25.0(8.0-52) e)250 (80-520) e factor I ₉₀	(= > MTD)	Graphically	interpolated			
	3.0	5		_	91.5 + 3.2		
	10.0	5		_	84.8 ± 5.0		
N/1100	30.0	5	1	-	62.1 ± 4.2		
	100.0	5		-	50.6 - 15.8		
	Ø	10		9.6			
		; i			•		
ED ₅₀ (range	Le)95 (48-215)						
ED ₉₀ (range	e) >1000 (= >MTD)	Graphi	cally interpol	ated			
Resistance	e factor l ₉₍₎						

Date: 18/1/83

Principal Investigator: Professor W.Peters Department of Medical Profozoolog,

london School of Hygiene & Dropica Medi. He

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

FORMULATIO	Tween 80/H ₂	o ROUTE	E OF ADMINISTRA	TE (SUB)SPECIES AXOXXXXXI)S : NOITA	X X
MAXIMUM TO	DLERATED DOSE (MT	D)	. MG/KG X		
Strain	Single dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X1
	3.0	5		-	88.1 - 5.8
	10.0	5		-	6.6 - 1.6
FY/65	30.0	5	1	-	2.0 - 1.5
	100.0	5		-	0
	Ø	10		13.0	1
ED ₅₀ (rang	ge)5.0 (3.0-8.0)				
ED ₉₀ (rang	ge)13.0 (7,5-23)				
Resistanc	ce factor I ₉₀				
	3.0	5		_	89.1 + 5.6
	10.0	5		5	71.9 + 10.5
MFY	30.0	5	1	-	36.2 [±] 7.0
	100.0	5		-	20.4 + 6.6
	ø	10		9.9	
ED ₅₀ (rang	je) ₂₁ (12–35)				}
	je) ₁₇₀ (100–280)	(= \MTD)	Craphy and 1	intounolot-3	
Porictano	e factor I ₉₀		oramicarly	rucerporated	

Date: 18/1/83

Principal Investigator: Professor W.Peters Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

Control PR

74.8 + 6.8

Mean control

parasite rate %

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZGNTOCIDES)

No. of

mice

5

Single dose

mg/kg DO

2.5

Strain

COMPOUND NAME Pyrimethamine/Sulphadoxine P.berghei PARASITE (SUB) SPECIES .. OR NUMBER FORMULATION 1:3 in Tween 80/H20. ROUTE OF ADMINISTRATION :XXX/IP/MXXXX MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Treated PR X10

No. of

experiments

		1	l		77.0 0.0
	5.0	5			65.4 + 11.8
FY/65	10.0	5	11		49.5 + 6.2
	20.0	5			33.8 + 1.6
	40.0	5		-	26.5 + 4.0
	Ø	10		13.0	
		i .			
ED ₅₀ (rang	e)9.5 (5.5-17.0)				
ED ₉₀ (rang	e)88 (52-155)				
Resistanc	e factor I ₉₀				
	2.5	5		_	100 + 3.1
	5.0	5		-	79.4 + 6.4
MFY	10.0	5	1	-	68.7 ⁺ 8.5
	20.0	5		-	30.3 + 5.8
	40.0	5		-	26.9 + 1.9
	Ø	10		9.9	

ED₅₀(range)₁₅ (7.0-30) ED₉₀(range)100 (50-210) Resistance factor I₉₀

Date:

18/1/83

Principal Investigator: Professor W.Peters Department of Medical Protozoology ondon School of Hygiene & Tropical Medicine

SUMMARY F ANTIMALARIAL DRUG 18815 TABLE 47 BLOOD SCHIEGHTOCIDES)

ORMULATIO	Tween 80/H ₂ 0	ROUTE	E OF ADMINISTRA	ATION : SE/IP/FS/F	хфхх
AXIMUM TO	LERATED DOSE (MT	D)	. MG/KG X		
Strain	Single dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR X
	1.0	5			69.2 - 8.1
	3.0	5			50.9 + 10.0
FY/65	10.0	5	1		41.5 - 1.5
	30.0	5			31.5 - 4.4
	60.0	5		_	16.2
	ø	10		13.0	
ED _{EO} (rang	e)4.8 (7.0-12.0)				
	e) 130 (45 - 300)				
	e factor I ₉₀	- 			
	1.0	5		-	70.2 + 2.4
	3.0	5		_	30.7 + 9.8
MFY	10.0	5	1	-	21.6 + 5.0
	30.0	5		_	19.9 + 9.7
	60.0	5		_	8.9 + 4.8
	ø	10		8.8	
~					
	$\frac{(e)}{(e)}$ 3.0 (<1 - 9.5) $\frac{(e)}{(e)}$ 49 (7.5 - 160)				
-090 raily	() · · · · · · · · · · · · · · · · · ·				

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoolog,

Condor noc taygiene v icchica Meditine

SUMMARY OF ANTIMALARIAL DRUG TESTS TABLE 48 (BLOOD SCHIZONTOCIDES)

FORMULATIO	Tween 80/H ₂ 0	ROUTE	E OF ADMINISTRA	ATION: XSXCX/IP/XPXCXXD	U X
	DLERATED DOSE (MTD)				
Strain	Single dose mg/kg DO	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR Control PR
	3.0	5		_	61.2 + 2.8
- <u>-</u>	10.0	5			51.5 - 1.5
FY/65	30.0	5	1	_	34.6 + 2.5
	100.0	5		_	17.4 + 4.9
	ø	10		13.0	
					:
ED ₅₀ (rang	ge)8.0 (3.8 - 12.5)				
ED ₉₀ (rang	ge) ²⁹⁰ (140 - 430)				
Resistanc	ce factor I ₉₀				
	3.0	5		_	80.9 + 9.4
	10.0	5		_	71.4 + 8.7
MFY	30.0	5	1	-	42.5 + 15.5
	100.0	5			17.7 + 7.0
	Ø	10		8.8	· •
					<u></u>
ED ₅₀ (rang	ge) 17.0 (8.2 - 43)				
	ge) 195 (90 - 470)				
90.	100 47(0)				

Date: 18/1/83

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

.ondon School of Hygiene & Tropical Medicine

Figure 1. The interaction of mefloquine with a 1:3 pyrimethamine-sulfadoxine mixture in different proportions to show the ED_{90} of mefloquine(M) with different levels of PS, or PS with different levels of M against <u>P.berghei</u> N in the "4-day test". An additive effect is shown when all points fall near the line joining the ED_{90} levels for each compound (i.e. M or PS) used alone, as in this experiment.

Figure 2. Changing trends of the "22 delay time" with piecessive passages under drug pressure as a function of the time the lines were maintained. Individual points indicate the "2 delay times" of parasites in individual passages, expressed as a percentage of the "2 delay time" of the initial passage.

2 a. P.berghei N exposed to mefloquine alone (N/1100) or a 300:1:3
mixture of mefloquine (M), pyrimethamine (P) and sulfadoxine (S)
(PFM line)

2 b. "P.berghei NS" exposed to M (NS/1100 line) or MPS (MPS line) in the same ratios.

2 c. P.berghei MK65 FY exposed to M and PS in a 1:1:3 ratio (MFY line)

Figure 3 Controls x 5200

These show uninfected liver sections exposed to 3 mg/kg WR225,448

The liver cells are vacuolated and disrupted. There are considerable lipid deposits and many of the mitochondria are affected. In general this liver looks pretty toxic.

Figure 4 Low power x 6600

Infected liver sections treated 1 mg/kg WR 225,448. Schizont shows normal peripheral enzyme production, but no liberation of enzyme granules. Adjacent hepatocyte tissue is apparently unaffected at schizont/hepatocyte interface.

Figure 5 High power x 26000

Same material as above, showing enzyme granule vacuoles intact at schizont boundary, and adjacent host cell mitochondria unaffected. Note extensive enzyme granule production and swollen mitochondria.

In addition many of the nuclei in the schizonts show marked separation and blebbing of their surrounding membranes.

