

INTELIGÊNCIA COMPUTACIONAL

CAT SWARM OPTIMIZATION

Carolina Ferreira nº 2018018459

Eduardo Pina nº2017010181

1 Introdução

- A ciência computacional tem sido, nas últimas décadas, um tema de pesquisa frequente por parte de muitos cientistas dos mais diversos ramos científicos.
- A razão pela qual esta ciência é alvo de grande interesse está
 nos grandes avanços que tem proporcionado e ao conjunto de
 modelos matemáticos e técnicas de soluções numéricas
 desenvolvidas, que, utilizando computadores, permitem encontrar
 soluções ou até mesmo a solução ótima para problemas
 complexos.

Entre os mais variados algoritmos já desenvolvidos, destacam-se três:

- Genetic Algorithm (GA)
- Ant Colony Optimization (ACO)
- Particle Swarm Optimization (PSO)

1 Introdução

- No contexto do ACO e do PSO e por influência destes, surge o Cat Swarm Optimization (CSO) desenvolvido por Chu e Tsai em 2007.
- Como o próprio nome indica, tem por base o comportamento dos gatos. Desenvolvido originalmente para resolução de problemas de otimização com espaço de resultados contínuos, este algoritmo acabou por revelar que, com algumas variantes adequadas especificamente às situações em causa, consegue também resolver problemas complexos com propriedades muito próprias.

1.1 COMPORTAMENTO BIOLÓGICO E INTELIGENTE DOS GATOS

• De acordo com a classificação biológica, existem atualmente cerca de 32 espécies diferentes de felinos: leões, tigres, leopardos, gatos, ...

- Padrões de comportamento com semelhanças
 - habilidade para caçar
 - o curiosidade sobre objetos que se movam ao seu redor

1.1 COMPORTAMENTO BIOLÓGICO E INTELIGENTE DOS GATOS

• "os gatos têm 7 ou 9 vidas" VITALIDADE VIOGOROSA

- constante estado de alerta
- extrema atenção a tudo o que acontece ao seu redor
- "modo de caça" no qual perseguem a presa até a conseguirem apanhar
- tempo de descanso > tempo de perseguição de presas

2 ALGORITMO

• Representação da Solução:

o são utilizadas as posições dos gatos no espaço de resultados, de forma a representar uma solução

Funcionamento geral:

- o Inicialmente, define-se o número de gatos a utilizar no algoritmo e aplica-se esse valor ao problema a otimizar;
- Cada gato contém a sua própria posição, composta por M dimensões, velocidades para cada dimensão, valor de fitness (que representa a aptidão do gato segundo a função fitness para o problema), e uma flag para identificar se o gato está no Seeking Mode ou no Tracing Mode.;
- O A solução final será a melhor posição de um gato, segundo a função fitness, encontrada pelo algoritmo

2 ALGORITMO

• Parâmetros:

Variável de decisão	Posição do gato em cada dimensão
Solução	Posição do gato
Solução anterior	Posição anterior do gato
Nova solução	Nova posição do gato
Melhor solução	A posição gato com melhor fitness
Função fitness	Distância entre o gato e a presa/objetivo
Solução Inicial	Posições aleatórias dos gatos
Processo de geração de nova solução	Aplicar os processo de Seeking e Tracing

• O Cat Swarm Optimization é composto por dois sub-modos que simulam o comportamento dos gatos:

- Seeking Mode: representa o momento em que o gato está a descansar, mas ao mesmo tempo atento ao que o rodeia.
- Tracing Mode: representa o momento em que o gato está a caçar a sua presa.

Seeking Mode:

- Seeking Memory Pool (SMP) definir o tamanho de memória de cada gato, isto é, indica o número de soluções
 vizinhas que este analisa por iteração
- Seeking Range of selected Dimension (SRD) taxa de alteração para as dimensões selecionadas, impondo limites ao movimento nas mesmas e, portanto, previne que a diferença entre a nova e a antiga posição não saia de um intervalo definido
- Count of Dimensions to Change (CDC) representa o número de dimensões que vão ser alteradas por iteração
- Self-Positon Consideration (SPC) variável booleana que indica se a atual posição do gato será considerada como movimento para a próxima iteração.

• Seeking Mode:

<u>1º Passo:</u> Fazer j cópias do gatok, onde j = SMP. Se o valor do SPC for <u>True</u>, então:

→ j=(SMP-1) e consideramos a posição atual do gato como uma das candidatas para a iteração seguinte (uma das cópias é igual à posição atual).

2º Passo: Para cada cópia, de acordo com o valor de CDC, calcular a nova posição usando a seguinte equação:

$$X_{nova} = (1 \pm SRD * R) * X_{atual}$$

X_{nova} nova posição do gato/nova solução

X_{atual} posição atual do gato

R valor aleatório, que varia entre 0 e 1

• Seeking Mode:

<u>3º Passo:</u> Calcular os valores de fitness (FS) para as novas posições. Se todos os valores de FS forem iguais, todas as posições ficam com igual probabilidade de serem selecionadas (dividindo 1 pelo número de SMP). Caso contrário, usar a equação seguinte para calcular a probabilidade de seleção das novas posições:

$$Pi = \frac{|FSi - FSb|}{|FS\max - FS\min|}, \quad onde \ 0 < i < j$$

FS_i valor de fitness do gato_i
FS_{max} valor maximo da função de fitness
FS_{min} valor minimo da função de fitness
FS_b = FS_{max} se for para problemas de minimização

probabilidade do atual gato

Pi

FS_b = Fs_{min} se for para problemas de maximização

<u>4º Passo:</u> Utilizando o método da roleta e de acordo com as probabilidades de seleção (calculadas no passo 3), escolher aleatoriamente a nova posição (solução) para o gato_k e atualizamos a posição do mesmo.

• Tracing Mode:

<u>1º Passo:</u> Atualizar as velocidades para cada dimensão (ykd) de acordo com a seguinte equação:

$$v_{k,d} = v_{k,d} + r_1 \times c_1(X_{\text{best},d} - X_{k,d})$$

v_{k,d} velocidade do gato_k na dimensão_d

X_{best,d} posição do gato com a melhor solução na dimensão_d

X_{k,d} posição do gato_k na dimensão_d

c₁ constante

r₁ valor aleatório entre 0 e 1

2º Passo: Confirmar se as velocidades não ultrapassam a velocidade máxima. Caso a nova velocidade estiver acima do limite máximo, esta é igualada ao limite.

• Tracing Mode:

3º Passo: Atualizar a posição do gatok de acordo com a seguinte equação:

2.2 CAT SWARM OPTIMIZATION

• De forma a combinar e alternar os dois sub-modos no algoritmo, foi definido um rácio de mistura (mixture ratio) MR. Tendo em conta que os gatos passam muito tempo a descansar e pouco a caçar, faz sentido que no algoritmo esteja representado este comportamento, isto é, que o número de gatos em Seeking Mode seja muito superior ao número de gatos em Tracing Mode. Desta forma o valor de MR deve ser um valor muito baixo.

2.2 CAT SWARM OPTIMIZATION

Vantagens e Desvantagens:

- O CSO com os seus dois sub-modos de comportamento conjuga o melhor de "dois mundos".
- O Pesquisa global do espaço de resultados evitando assim que o algoritmo acabe por convergir demasiado cedo para ótimos locais e fique por aí (tracing mode).
- A performance do algoritmo CSO supera muitos algoritmos tanto em global best solutions encontradas como no número de iterações para o fazer, visto que este converge para o ótimo global com mais facilidade.
- o É mais lento e envolve maiores custos computacionais.

CONCLUSÃO E FASE III

- O Cat Swarm Optimization é um algoritmo que surge fortemente influenciado pelo Ant Colony Optimization (ACO) e o Particle Swarm Optimization (PSO);
- Diversas espécies animais deram origem a algoritmos baseados em Swarm Intelligence considerando as suas características e comportamentos únicos. O Cat Swarm Optimization é um desses algoritmos e tem por base o comportamento dos gatos para solucionar problemas de otimização.
- Pode ser necessário efetuar algumas adaptações ao algoritmo já que o CSO original é especializado na resolução de problemas com espaço de resultados contínuos.

CONCLUSÃO E FASE III

• Os criadores deste algoritmo, efetuaram comparações entre os algoritmos CSO, PSO e uma outra variante deste último, sendo essa comparação realizada com base num benchmark de funções matemáticas.

Table 1. The Limitation ranges of dimensions for every test function

	Limitation Range
Test Function 1	
Test Function 2	$x_d \in [2.56, 5.12]$
Test Function 3	$x_d \in [300, 600]$
Test Function 4	$x_d \in [-30, 30]$
Test Function 5	$x_d \in [-5.12, 5.12]$
Test Function 6	

Table 2. Parameter settings for CSO

Parameter	Value or Range
MP	5
SRD	20%
CDC	80%
MR	2%
c_1	2.0
r_1	[0, 1]

Table 3. Parameter settings for PSO and PSO with WF

Parameter	Value or Range
Initial Weight	0.9
Final Weight	0.4
c_1	2.0
c_2	2.0
r_1	[0, 1]
r_2	[0, 1]

TABLE 4. Maximum velocities for PSO and PSO with WF

Function Name	Maximum Velocity
Test Function 1	
Test Function 2	10.0
Test Function 3	600.0
Test Function 4	100.0
Test Function 5	600.0
Test Function 6	10.0

1.00E+08 1.00E+06 1.00E+06 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04

Figure 2. The experimental result of test function 1

FIGURE 3. The experimental result of test function 2

CONCLUSÃO E FASE III

- Os resultados dos vários testes que fizeram, não lhes deixaram margem para dúvidas:
 - a performance do algoritmo CSO supera largamente os algoritmos PSO-type, tanto em global best solutions encontradas, como no número de iterações para o fazer, visto que este converge para o ótimo global com mais facilidade.
 - é de notar que este é mais lento e envolve um maior custo computacional comparativamente com os outros algoritmos em estudo.

CONCLUSÃO E FASE III

- Na fase seguinte deste projeto pretendemos, nós mesmos, comprovar estes factos conclusivos tendo por base as implementações disponíveis no repositório GitHub.
- Pela definição de alguns hyper-parâmetros do modelo segue-se a procura pela melhor configuração. No final da fase III do projeto devemos ser capazes de analisar e avaliar diferentes soluções e estabelecer uma análise comparativa e crítica fundamentada.

REFERÊNCIAS BIBLIOGRÁFICAS

Bahrami M., Bozorg-Haddad O. e Chu X., Cat Swarm Optimization (CSO) Algorithm, Capítulo 2. Disponível online em:

https://www.researchgate.net/publication/318128829_Chapter_2_Cat_Swarm_Optimization_CSO_Algorithm

Chu SC., Tsai P., Pan JS. (2006) Cat Swarm Optimization. In: Yang Q., Webb G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science, vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_94

Chu SC. e Tsai P. (2007), Computational intelligence based on the behavior of cats. Disponível online em:

https://www.researchgate.net/publication/228721750_Computational_intelligence_based_on_the_behavior_of_cats