You may assume without proof any statement proved in class or assigned as homework.

- (4 pts) 1 Let k be a fixed positive integer. Construct the smallest possible DFA for the language $L_k = (0 \cup 0^k 1)^*$ over the binary alphabet, and prove that your DFA is the smallest possible.
- $(3 \times 2 \text{ pts})$ **2** Consider the grammar $S \rightarrow SS \mid aS \mid b$.
 - a. Give an equivalent regular expression.
 - **b.** Prove that the grammar is ambiguous.
 - c. Construct an equivalent unambiguous grammar.
 - (4 pts) 3 Prove that the language $L \subseteq \{0, 1\}^*$ of strings of prime length is not context-free.
 - (4 pts) 4 Recall that L^R denotes the set of all strings in L written backwards. Prove that L^R is context-free whenever L is context-free.
 - (4 pts) 5 Let L^{π} denote the set of strings that can be obtained by permuting a string in L. For example, $\{\varepsilon, a, 123\}^{\pi} = \{\varepsilon, a, 123, 132, 213, 231, 312, 321\}$. Prove that context-free languages are not closed under the $^{\pi}$ operation.
 - (4 pts) **6** Prove or give a counterexample: if L is given by the context-free grammar (V, Σ, R, S) , then L^* is given by the context-free grammar $(V, \Sigma, R \cup \{S \rightarrow SS \mid \varepsilon\}, S)$.
 - (4 pts) 7 Let D and D' be DFAs with k and k' states, respectively, and input alphabet Σ . Prove that if D and D' agree on every input string of length at most kk', then D and D' recognize the same language. Formally, assume that $w \in L(D) \Leftrightarrow w \in L(D')$ holds for every string w of length at most kk', and prove that L(D) = L(D').
- $(7 \times 2 \text{ pts})$ 8 Rigorously establish the decidability or undecidability of the following languages:
 - **a.** $L = \{\langle D \rangle : D \text{ is a DFA that accepts a palindrome}\}$
 - **b.** $L = \{\langle D \rangle : D \text{ is a DFA, and } L(D) \text{ is not recognized by a DFA smaller than } D\}$
 - **c.** $L = \{\langle G, k \rangle : G \text{ is a CFG that generates exactly } k \text{ strings} \}$
 - **d.** $L = \{(G, w) : G \text{ is a CFG that generates a string containing } w \text{ as a substring}\}$
 - **e.** $L = \{\langle M \rangle : M \text{ is a Turing machine that accepts } w^R \text{ whenever it accepts } w\}$
 - **f.** $L = \{(M, k) : M \text{ is a Turing machine that halts within } k \text{ steps on every input}\}$
 - **g.** $L = \{ \langle M, M' \rangle : M, M' \text{ are Turing machines that recognize the same language} \}$

SOLUTIONS

1 L_k is the language of strings in which every 1 is immediately preceded by k or more 0's. It can be recognized by the DFA with k + 2 states shown below:

We now rule out a smaller DFA. The strings ε , 0, 00, 000, ..., 0^k are pairwise distinguishable because for i < j, we have $0^i \mathbf{0}^{k-j} \mathbf{1} \notin L_k$ but $0^j \mathbf{0}^{k-j} \mathbf{1} \in L_k$. Moreover, the string $1 \notin L_k$ is by definition distinguishable from ε , 0, 00, 000, ..., $0^k \in L_k$. Since L_k has at least k + 2 pairwise distinguishable strings, any DFA for L_k has at least k + 2 states.

- **2 a.** $(a \cup b)^*b$
 - **b.** The string bbb has more than one parse tree:

- c. $S \rightarrow aS \mid bS \mid b$
- For the sake of contradiction, assume that L is context-free. Let p be any prime larger than the pumping length of L. Since $0^p \in L$, the pumping lemma shows that $0^p = uvxyz$ for some strings u, v, x, y, z such that $|v| + |y| \neq 0$ and $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$. We arrive at a contradiction because the length of $uv^{p+1}xy^{p+1}z$ is the composite number $p + |v| \cdot p + |y| \cdot p = p(1 + |v| + |y|)$. Thus, L is not context-free.
- 4 Given a grammar for L, reverse the right-hand side of every rule. To illustrate, $X \to Y_1 Y_2 \cdots Y_m$ becomes $X \to Y_m Y_{m-1} \cdots Y_1$. The new grammar generates L^R because parse trees in the new grammar are precisely the mirror images of parse trees in the old grammar.
- The language $L = (abc)^*$ is regular and thus context-free. But L^{π} is the language of strings with equal numbers of a's, b's, and c's. As proved in class, L^{π} is not context-free.

- 6 The claim is false. Consider the grammar $S \to aSb \mid \#$, which generates the language $L = \{a^n \# b^n : n \ge 0\}$. The grammar $S \to aSb \mid \# \mid SS \mid \varepsilon$ generates the string $ab \notin L^*$ and thus is not a correct grammar for L^* .
- 7 Let L = L(D) and L' = L(D'). As shown in class, $L \cap \overline{L'}$ has a DFA of size kk'. Since that DFA rejects every string of length at most kk', it rejects all strings (Problem 1.64 from homework). Thus, $L \cap \overline{L'} = \emptyset$. Similarly, $\overline{L} \cap L' = \emptyset$. We conclude that L = L'.
- **8** Parts (a), (c), (d) use the fact that the intersection of a regular language and a CFL is a CFL.
 - **a.** Decidable: construct a grammar G for $L(D) \cap \{w : w = w^R\}$ and accept iff $L(G) \neq \emptyset$.
 - **b.** Decidable: accept iff $L(D') \neq L(D)$ for each of the (finitely many) DFAs D' smaller than D.
 - c. Decidable. Let p be the pumping length of G. If $L(G) \cap \Sigma^p \Sigma^* = \emptyset$, we examine every string of length at most p and accept iff exactly k of them are in L(G). If $L(G) \cap \Sigma^p \Sigma^* \neq \emptyset$, we reject right away because by the pumping lemma, L(G) contains a string that can be pumped and hence L(G) is infinite.
 - **d.** Decidable: construct a grammar G' for $L(G) \cap \Sigma^* w \Sigma^*$ and accept iff $L(G') \neq \emptyset$.
 - **e.** Let \mathscr{C} be the set of Turing-recognizable languages A with $A = A^R$. Then $L = \{\langle M \rangle : L(M) \in \mathscr{C}\}$. Since $\mathscr{C}, \overline{\mathscr{C}} \neq \varnothing$, Rice's theorem shows that L is undecidable.
 - **f.** Decidable: simulate M on inputs of length at most k, and verify in each case that M halts within k steps. If this verification succeeds, one need not consider longer inputs because the prefix of length k fully determines M's behavior and in particular prevents M from ever reaching the $(k+1)^{st}$ cell.
 - **g.** If L were decidable, one could also decide the language $A = \{\langle M \rangle : L(M) = \emptyset\}$, by fixing M' to be the Turing machine that disregards its input and enters the reject state right away. By Rice's theorem, A undecidable. Therefore, so is L.