	Туре	L#	Hits	DBs	Search Text	Time Stamp
1	BRS	L27	1	USPAT	"4300205".pn.	2005/11/04 18:16
2	BRS	L28	1	USPAT	"4463605".pn.	2005/11/04 18:30
3	BRS	L29	0	USPAT	"4463605".pn. and simulation and actuator and sensro	2005/11/04 18:31
4	BRS	L30	0	USPAT	"4463605".pn. and simulation and actuator and sensor	2005/11/04 18:31
5	BRS	L31	1	USPAT	"4463605".pn. and simulation and actuator	2005/11/04 18:50
6	BRS	L33	495	USPAT	(sensor same actuator same simula\$)	2005/11/04 18:51
7	BRS	L32	286	USPAT	(sensor same actuator same simula\$)	2005/11/04 18:51
8	BRS	L34	205	USPAT	(sensor same actuator same simula\$) and amplifier	2005/11/04 18:51
9	BRS	L35	7	USPAT	(sensor same actuator same simula\$) and (four same amplifier)	2005/11/04 18:52
10	BRS	L36	7	USPAT	(sensor same actuator same simula\$) and (four same amplifier) and circuits	2005/11/04 18:53
11	BRS	L37	0	USPAT	(sensor same actuator same simula\$) and (four adj amplifier)	2005/11/04 18:54
12	BRS	L38	681	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor)	
13	BRS	L39	93	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$)	2005/11/04 18:55
14	BRS	L40	30	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$) and (real-time)	2005/11/04 18:55
15	BRS	L41	7	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$) and (real-time) and signals and (amplifiers)	2005/11/04 18:58
16	BRS	L43	0	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$) and (real-time) and signals and (amplifiers) and interfaces and (short adj circuit)	2005/11/04 18:58
17	BRS	L44	2	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$) and (real-time) and signals and (amplifiers) and interfaces and fault	2005/11/04 18:59
18	BRS	L42	7	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$) and (real-time) and signals and (amplifiers) and interfaces	2005/11/04 19:02
19	BRS	L45	4	USPAT	(simulat\$ same actuator) and (simulat\$ same sensor) and (simulator same electric\$) and (real-time) and signals and (amplifiers) and interfaces and interrupt	2005/11/04 19:03

Dial®g DataStar		
options logafi fe	redback help	*
	Advanced Search:	
	INSPEC - 1969 to date (INZZ)	

Search history:

No.	Database	Search term	Info added since	Results	
1	INZZ	four ADJ quadrant	unrestricted	1292	show titles
2	INZZ	'2' AND amplifier	unrestricted	12194	show titles
3	INZZ	2 AND electrical	unrestricted	641	show titles
4	INZZ	3 AND simulation	unrestricted	31	show titles
5	INZZ	4 AND (sensors OR actuators)	unrestricted	2	show titles
6	INZZ	four ADJ quadrant ADJ amplifier	unrestricted	2	show titles

hide | delete all search steps... | delete individual search steps...

Classification codes B: Electrical & Electronics, 6-9

Classification codes C: Computer & Control

Enter your search term(s): <u>Search tip</u>	os 🛘 Thesau	rus mapping	
		whole document	v (
			,025600.
Information added since: (YYYYMMDD)	or: none		
Select special search terms from the 1	following list(s)	:	
Publication year			
Classification codes A: Physics, 0-	·1		
Classification codes A: Physics, 2-	.3		
Classification codes A: Physics, 4-	·5		
Classification codes A: Physics, 6			
Classification codes A: Physics, 7			
Classification codes A: Physics, 8			
Classification codes A: Physics, 9			
Classification codes B: Electrical &	Electronics, 0	-5	

Google	"four quadrant amplifier"	Search	Advanced Scholar Search Scholar Preferences Scholar Help
--------	---------------------------	--------	--

Scholar

Results 1 - 9 of 9 for "four quadrant amplifier". (0.01 seconds)

Tip: Try removing quotes from your search to get more results.

Four Quadrant Amplifier Based on the Flyback Topology

J Walker, W Technol, CA San Diego - APEC, 1995 - ieeexplore.ieee.org
Page 1 947 O-7803-2482-X/95 \$4.00 © 1995 IEEE Four Quadrant Amplifier Based on the
Flyback Topology Jim Walker Walker Technology 17561 Hada Drive San Diego ...
Cited by 4 - Web Search - ieeexplore.ieee.org

A Unique Four Quadrant Flyback Converter

D Dalal - Unitrode Power Supply Design Seminar, 1997 - www-s.ti.com
Page 1. A Unique Four Quadrant Flyback Converter By Dhaval Dalal . both legs
of the bridge to filter out the high frequency component. ...
Cited by 2 - View as HTML - Web Search - altor.sytes.net

A Complete Control Solution for a Four-Quadrant Flyback Converter Using the New UCC3750 Source ...

D Dalal - www-s.ti.com
Page 1. APPLICATION NOTE U-169 Dhaval Dalal A Complete Control Solution for a
Four-Quadrant Flyback Converter Using the New UCC3750 Source Ringer Controller ...
View as HTML - Web Search - nalanda.nitc.ac.in

A 3 Hz, 1MW peak Bending Magnet Power Supply for the Swiss Light Source (SLS) G Irminger, M Horvat, F Jenni, HU Boksberger - Paul Scherrer Institut, November, 1998 - slsbd.psi.ch ... p.926-8 vol.2 [8] Lieshout-LAE; 800 kW Four Quadrant Amplifier with large full signal bandwidth for fusion experiments consisting of IGBT's and aktive filter ... Cited by 1 - View as HTML - Web Search

A Low Distortion Switching Audio Power Amplifier

Z Lai, K Smedley - IEEE Power Electronics Specialists Conference (Cat. No. 95CH ..., 1995 - ieeexplore.ieee.org

Page 1 0-7803-2730-6/95 \$4.00 © 1995 IEEE 174 A Low Distortion Switching Audio Power Amplifier Zheren Lai and Keyue M. S medley Dept. ... Cited by 7 - Web Search - ieeexplore.ieee.org

A new high-efficiency and super-fidelity analog audio amplifier with the aid of digital switching

NS Jung, NI Kim, GH Cho - Power Electronics Specialists Conference, 1998 - ieeexplore.ieee.org Page 1 O-7803-4489-8198/\$IO.OO © 1998 IEEE 457 A New High-Efficiency and Super-Fidelity Analog Audio Amplifier with the aid of Digital Switching Amplifier ... Cited by 7 - Web Search - ieeexplore.ieee.org

Contactless Self-Resonant Induced Movable Converter for the Linear Synchronous Machine M Guadalajara - ieeexplore.ieee.org
Page 1. Guadalajara, MEXICO October 20-24 Contactless Self-Resonant Induced
Movable Converter for the Linear Synchronous Machine ...
Web Search

Analysis and Design of Contactless Self-Resonant Induced Movable Chopper for the Linear

<u>Synchronous ...</u>
JL Kuo, M IEEE, SM IEEE, M IEEE, PH Lee - ieeexplore.ieee.org Page 1. 12012012' Analysis and Design of Contactless Self-Resonant Induced Movable Chopper for the Linear Synchronous Machine Jian ... Web Search

Voltage regulator with unity power factor and high efficiency

C Hernandez, N Vazquez, E Rodriguez, R Osorio, J ... - Power Electronics Specialists Conference, 2001. PESC. 2001 ..., 2001 - ieeexplore.ieee.org

Page 1. Voltage regulator with unity power factor and high efficiency. C. Hernandez,

N. Vkquez, E. Rodriguez Instituto Tecnologico de Celaya. Depto. ...

Cited by 1 - Web Search - ieeexplore.ieee.org

Search "four quadrant amplifier"

Google Home - About Google - About Google Scholar

©2005 Google