Mathematics Primer Machine Intelligence

Neural Information Processing Group

Summer Term 2018

- 🕕 Linear Algebra
 - Transpose, Inverse, Rank and Trace
 - Determinant
 - Eigenanalysis
 - Matrix Gradient
- Analysis
 - Metrics
 - Jacobi and Hessian
 - Taylor Series
 - Optimization
- Probability Theory
 - Combinatorics
 - Random Variables and Vectors
 - Conditional Probabilities and Independence
 - Expectations and Moments

Outline

- Linear Algebra
 - Transpose, Inverse, Rank and Trace
 - Determinant
 - Eigenanalysis
 - Matrix Gradient
- 2 Analysis
 - Metrics
 - Jacobi and Hessian
 - Taylor Series
 - Optimization
- Probability Theory
 - Combinatorics
 - Random Variables and Vectors
 - Conditional Probabilities and Independence
 - Expectations and Moments

Matrix Multiplication, Transpose and Inverse

Consider matrices $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times p}$ with elements $(A)_{ij} = a_{ij}$, $(B)_{ij} = b_{ij}$.

- lacksquare The **product** $AB \in \mathbb{R}^{n imes p}$ has elements $(AB)_{ij} = \sum_{r=1}^m a_{ir} b_{rj}$.
- The transpose A^{\top} has elements $(A^{\top})_{ij} = a_{ji}$.
- The inverse A^{-1} of a square matrix satisfies $AA^{-1} = A^{-1}A = I$.
- The following identities hold:

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top} \tag{1}$$

$$(AB)^{-1} = B^{-1}A^{-1} \tag{2}$$

$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T \tag{3}$$

www.ni.tu-berlin.de Mathematics Primer Summer Term 2018 4/39

Rank and Trace

Linear independence

A set of vectors $\{a_1, \ldots, a_n\}$ is **linearly independent**, if $\sum_{i=1}^n \alpha_i a_i = 0$ holds only if all $\alpha_i = 0$. This means none of the vectors can be expressed as a linear combination of the others.

Rank

The ${\bf rank}\ {\bf rank}({\bf A})$ of a matrix ${\bf A}$ is the maximum number of linearly independent rows (or columns).

Trace

The **trace** of a square matrix $A \in \mathbb{R}^{n \times n}$ is defined as $\text{Tr}(A) = \sum_{i=1}^{n} a_{ii}$.

It holds:

$$Tr(AB) = Tr(BA)$$
 (4)

5 / 39

Determinant

The **determinant** $\det(A)$ shows certain properties of a square matrix A

- $\blacksquare \det(\mathbf{A}) = 0$ iff the rows (or columns) are linearly dependent
- \blacksquare det(\mathbf{A}) \neq 0 iff \mathbf{A} is invertible

Note:

- lacksquare Determinant of the identiy matrix: $\det(oldsymbol{I})=1$
- lacksquare Determinant of a transposed matrix: $\det(oldsymbol{A}) = \det(oldsymbol{A}^T)$
- Determinant of a product of two matrices:

$$\det(\boldsymbol{A}\boldsymbol{B}) = \det(\boldsymbol{A})\det(\boldsymbol{B})$$

Determinant calculation (general)

Calculation of the determinant of a $n \times n$ -Matrix A:

$$\det(\mathbf{A}) = \sum_{j} A_{ij} C_{ij}.$$

Row i can be any row, the result is always the same. The **cofactors** C_{ij} are defined as $C_{ij} = (-1)^{i+j} \det([\mathbf{A}]_{\varnothing ij})$, where $[\mathbf{A}]_{\varnothing ij}$ is the submatrix that remains when the i-th row and j-th column are removed:

$$[\mathbf{A}]_{\varnothing ij} = \begin{pmatrix} A_{11} & A_{12} & \cdots & \varnothing & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & \varnothing & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \varnothing & \ddots & \vdots \\ \varnothing & \varnothing & \varnothing & \varnothing & \varnothing & \varnothing \\ \vdots & \vdots & \ddots & \varnothing & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & \varnothing & \cdots & A_{nn} \end{pmatrix}$$

www.ni.tu-berlin.de

Determinant calculation (special cases)

$$|\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$|\mathbf{A}| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= aei + bfg + cdh - ced - bdi - afh$$

www.ni.tu-berlin.de Mathematics Primer Summer Term 2018 8 / 39

Determinant and Inverse

The inverse ${\bf A}^{-1}$ of a square matrix ${\bf A}$ exists iff $\det({\bf A}) \neq 0$ (matrix not singular).

Calculation of the inverse matrix:

$$\boldsymbol{A}^{-1} = \frac{\mathsf{adj}[\boldsymbol{A}]}{\det(\boldsymbol{A})}$$

where the **adjoint** $\operatorname{adj}[A]$ of A is the matrix whose elements are the cofactors:

$$(\operatorname{adj}[\boldsymbol{A}])_{ij} = C_{ji}$$

The determinant of an inverse matrix is given by

$$\det(\boldsymbol{A}^{-1}) = \frac{1}{\det(\boldsymbol{A})}$$

www.ni.tu-berlin.de

Eigendecomposition of a Matrix

Problem: Find the Eigenvectors and Eigenvalues of a $N \times N$ matrix A.

■ Consider the system of linear equations:

$$Ax = \lambda x$$
$$(A - \lambda I)x = 0$$

- Solutions: N Eigenvectors ${m x}={m v}_i$ and corresponding Eigenvalues ${m \lambda}={m \lambda}_i$
- $lackbox{\bf B} {m x} = {m 0}$ has non-trivial solutions iff $\det({m B}) = 0$
- Therefore, non-trivial λ are the roots of the **characteristic polynomial**:

$$p(\lambda) \equiv \det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

Eigenvalues and Eigenvectors

Characteristic Equation:

$$p(\lambda) \equiv \det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

- \blacksquare Polynomial of order N
- \blacksquare N (not necessarily distinct) solutions
- Number of non-zero Eigenvalues: rank(A)
- In general: Eigenvalues are complex
- lacksquare For symmetric matrices $(oldsymbol{A} = oldsymbol{A}^ op)$: Eigenvalues are real
- Determinant: $det(\mathbf{A}) = \prod_{i=1}^{M} \lambda_i$
- \blacksquare Trace: $\operatorname{Tr}(\boldsymbol{A}) = \sum_{i=1}^{M} \lambda_i$

Matrix Gradient

The **gradient** of a function $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$\nabla f \equiv \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)^{\top}$$

Examples:

- $$\begin{split} & \blacksquare \text{ linear } f: \boldsymbol{x} \mapsto \boldsymbol{a}^\top \boldsymbol{x} & \nabla f(\boldsymbol{x}) = \boldsymbol{a} \\ & \blacksquare \text{ quadratic } f: \boldsymbol{x} \mapsto \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x} & \nabla f(\boldsymbol{x}) = (\boldsymbol{A}^\top + \boldsymbol{A}) \boldsymbol{x} \end{split}$$

Consider a scalar-valued function f of the elements of an $n \times m$ matrix

$$\mathbf{W}$$
, $f: \mathbf{W} \mapsto \mathbb{R}$, $f(\mathbf{W}) = f(w_{11}, \dots, w_{nm})$.

The **matrix gradient** of f w.r.t. W is defined as

$$\frac{\partial f}{\partial \boldsymbol{W}} = \begin{pmatrix} \frac{\partial f}{\partial w_{11}} & \cdots & \frac{\partial f}{\partial w_{n1}} \\ \vdots & & \vdots \\ \frac{\partial f}{\partial w_{1m}} & \cdots & \frac{\partial f}{\partial w_{nm}} \end{pmatrix}$$

Outline

- Linear Algebra
 - Transpose, Inverse, Rank and Trace
 - Determinant
 - Eigenanalysis
 - Matrix Gradient
- Analysis
 - Metrics
 - Jacobi and Hessian
 - Taylor Series
 - Optimization
- Probability Theory
 - Combinatorics
 - Random Variables and Vectors
 - Conditional Probabilities and Independence
 - Expectations and Moments

Definitions from Functional Analysis

Functions, Functionals and Operators

Two sets $\mathcal M$ and $\mathcal N$ are connected by a **functional dependency**, if to each $x\in\mathcal M$ there corresponds a unique element $y\in\mathcal N$. This functional dependency is called

- \blacksquare a **function** if \mathcal{M} and \mathcal{N} are sets of numbers
- \blacksquare a **functional** if \mathcal{M} is a set of functions and \mathcal{N} a set of numbers
- an operator if both sets are sets of functions

Example: Linear integral operator T with kernel K(t,x):

$$Tf(x) = \int_{q}^{b} K(t, x) f(t) dt$$

Infimum and Supremum

Infimum, Supremum

Let D be a subset of \mathbb{R} . A number K is called **supremum** (**infimum**) of D, if K is the smallest upper bound (largest lower bound) of D:

$$x \le K \ (x \ge K), \, \forall \, x \in D$$

We write: $\sup D = K \text{ (inf } D = K).$

Examples:

- For the closed interval $D = [a, b], a \le b : \sup D = b, \inf D = a$.
- For $D = \{\frac{n}{n+1}, n \in \mathbb{N}\} : \sup D = 1.$

Metric Space

Metric

A metric (or distance function) on a set X is a non-negative mapping

$$d: X \times X \to \mathbb{R}^+$$

$$(x,y) \mapsto d(x,y)$$

with the following characteristics

- **①** Positive definiteness: d(x,y)=0 iff x=y, d(x,y)>0 otherwise
- ② Symmetry: d(x,y) = d(y,x), $\forall x,y \in X$
- **③** Triangle inequality: $d(x,z) \leq d(x,y) + d(y,z)$, $\forall x,y,z \in X$
- The pair (X, d) forms a **metric space**
- \blacksquare d(x,y) is called the distance between x and y.

Jacobi and Hessian

■ The matrix of the partial derivatives of a vector-valued function $f: \mathbb{R}^n \to \mathbb{R}^m$ is known as **Jacobi matrix** and given by

$$m{Jf} \equiv rac{\partial m{f}}{\partial m{x}} = \left(egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight)$$

■ The square matrix of second-order partial derivatives of a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$ is called **Hessian matrix** and given by

$$\boldsymbol{H}f \equiv \frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{pmatrix}$$

www.ni.tu-berlin.de

Taylor Series

Taylor Series in \mathbb{R}

Let $f:I\to\mathbb{R}$ be an infinitely often differentiable function, and $x_0\in I$. Then the Taylor series around x_0 is defined as

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f(x)}{dx^n} \Big|_{x_0} (x - x_0)^n$$

= $f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{1}{2} f''(x_0) \cdot (x - x_0)^2 + \dots$

Taylor Series in \mathbb{R}^n

Let f be an infinitely smooth scalar-valued function with domain in \mathbb{R}^n :

$$f(x) = f(x_0) + \nabla f_{(x_0)}^{\top}(x - x_0) + \frac{1}{2}(x - x_0)^{\top} H f_{(x_0)}(x - x_0) + \dots$$

www.ni.tu-berlin.de

Local Extrema

Let f be a scalar-valued function $\mathbb{R}^n \to \mathbb{R}$.

Critical Points

A point x_0 , where $\nabla f(x_0) = 0$ is called a critical point of f.

Local Extrema

A critical point x_0 of f is

- lacksquare a minimum of f, if all Eigenvalues of $(\boldsymbol{H}f)(\boldsymbol{x}_0)$ are positive (the Hessian is **positive definite**)
- lacksquare a maximum of f, if all Eigenvalues of $(\boldsymbol{H}f)(\boldsymbol{x}_0)$ are negative (the Hessian is **negative definite**)
- \blacksquare no extremum of f, in all other cases (the Hessian is **indefinite**)

Convexity

Convex Functions

Let $U \subset \mathbb{R}^N$ be open and convex. A function $f: U \to \mathbb{R}$ is called (strictly) convex, if for all $x_1, x_2 \in U$ with $x_1 \neq x_2$ and all $0 < \lambda < 1$

$$f(\lambda x_1 + (1 - \lambda)x_2)(<) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Concave Functions

f is called concave, if -f is convex.

The Lagrange Method (Equality Constraints)

Problem: Maximization of a function f(w): $\mathbb{R}^n \to \mathbb{R}$ under some **equality** constraints.

$$\max f(\boldsymbol{w}), \qquad \text{ s.t. } \quad g_i(\boldsymbol{w}) = 0, \quad \forall i \in \{1, \dots, k\}$$

Solution: Form the Lagrangian

$$\mathcal{L}(\boldsymbol{w}, \lambda_1, \dots, \lambda_k) = f(\boldsymbol{w}) + \sum_{i=1}^k \lambda_i g_i(\boldsymbol{w}),$$

where $\lambda_1, \ldots, \lambda_k$ are called Lagrange multipliers. Find the stationary points (saddle points) of the Lagrangian w.r.t. both w and all the λ_i :

$$\frac{\partial \mathcal{L}(\boldsymbol{w}, \lambda_1, \dots, \lambda_k)}{\partial \boldsymbol{w}} = \frac{\partial f(\boldsymbol{w})}{\partial \boldsymbol{w}} + \sum_{i=1}^k \lambda_i \frac{\partial g_i(\boldsymbol{w})}{\partial \boldsymbol{w}} = \mathbf{0}$$

and

$$\frac{\partial \mathcal{L}(\boldsymbol{w}, \lambda_1, \dots, \lambda_k)}{\partial \lambda_i} = g_i(\boldsymbol{w}) = 0, \forall i.$$

The Lagrange Method (Inequality Constraints)

Now: Maximization of a function f(w) under some **inequality** constraints.

$$\max f(\boldsymbol{w}), \quad \text{s.t.} \quad h_i(\boldsymbol{w}) \leq 0, \quad \forall i \in \{1, \dots, k\}$$

Solution: Find the stationary points of the Lagrangian

$$\mathcal{L}(\boldsymbol{w}, \lambda_1, \dots, \lambda_k) = f(\boldsymbol{w}) + \sum_{i=1}^k \lambda_i h_i(\boldsymbol{w}),$$

w.r.t. w under the constraints

$$h_i(\boldsymbol{w}) \le 0, \forall i$$

 $\lambda_i \ge 0, \forall i$
 $\lambda_i \cdot h_i(\boldsymbol{w}) = 0, \forall i,$

which are known as the Karush-Kuhn-Tucker (KKT) conditions.

Outline

- Linear Algebra
 - Transpose, Inverse, Rank and Trace
 - Determinant
 - Eigenanalysis
 - Matrix Gradient
- 2 Analysis
 - Metrics
 - Jacobi and Hessian
 - Taylor Series
 - Optimization
- Probability Theory
 - Combinatorics
 - Random Variables and Vectors
 - Conditional Probabilities and Independence
 - Expectations and Moments

Combinatorics

Consider a set consisting of n elements. The **power set** is the set of all subsets, its cardinality is 2^n .

- **Permutation:** arrangement of n elements in a certain order
 - # without repetitions: $P_n = n!$
 - # with repetitions ($k \le n$ repeated elements): $P_n^{(k)} = \frac{n!}{k!}$
- **Combination:** choice of k out of n elements regardless of order
 - **without** repetitions: $C_n^{(k)} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
 - **with** repetitions: $C_n^{(k)} = \binom{n+k-1}{k}$
- **Variation:** choice of k out of n elements taking their order into account
 - **without** repetitions $V_n^{(k)} = k! \binom{n}{k}$
 - \blacksquare # with repetitions: $V_n^{(k)} = n^k$

Random Variable

Consider a set Ω of elementary events w, e.g. all possible outcomes of an experiment. The mapping

$$\Omega \to R \subset \mathbb{R}$$

$$w \to X(w) \equiv X$$

is called a random variable.

- If R consists of a finite or countable infinite number of elements, then X is called a **discrete** random variable.
- If $R = \mathbb{R}$ or R consists of intervals from \mathbb{R} , then X is called a **continuous** random variable.

Example: Roll dice

$$w_1$$
: 1 comes up $\to X(w_1)=1,\ldots,w_6$: 6 comes up $\to X(w_6)=6$

Distribution of a Random Variable

The **cumulative distribution function (cdf)** or simply **distribution function** of a random variable X at point z is defined as the probability that $X \leq z$:

$$F_X(z) = P\left(X \le z\right)$$

- Allowing z to vary in $(-\infty, \infty)$ defines the cdf for all values of X.
- \blacksquare 0 \leq $F_X \leq$ 1, a nondecreasing and continuous function for continuous X

Example: Roll ideal dice, where $P(X=i) = \frac{1}{6} \ \forall i$

$$F_X(z) = \begin{cases} 0 & \text{for } z < 1 \\ 1/6 & \text{for } 1 \le z < 2 \\ 2/6 & \text{for } 2 \le z < 3 \\ & \dots \\ 1 & \text{for } z \ge 6 \end{cases}$$

www.ni.tu-berlin.de

Probability Density of a Continuous Variable

The **probability density function (pdf)** p_X of a continuous X is obtained as the derivative of its cdf:

$$p_X(z) = \frac{dF_X(x)}{dx}\Big|_{x=z}$$

In practice, the cdf is computed from the known pdf using the inverse relationship

$$F_X(z) = \int_{-\infty}^z p_X(t)dt$$

Example: Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$

$$\text{ cdf } \qquad F(z) \equiv P(X \leq z) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathrm{d}x$$

pdf
$$p(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(z-\mu)^2}{2\sigma^2}}$$

Distribution of a Random Vector

The distribution function of a random vector X:

$$\Omega \to R^N \subset \mathbb{R}^N$$

$$w \to \boldsymbol{X}(w) \equiv \boldsymbol{X}$$

at a point z is given by

$$F_{\boldsymbol{X}}(\boldsymbol{z}) = P\left(\boldsymbol{X} \leq \boldsymbol{z}\right)$$

Distribution of a Random Vector

Example

Toss a German 2 Euro and a German 20 Cent coin.

$$lacksquare$$
 $w_1 = \{ 2 \text{ Euro: eagle, 20 Cent: gate} \}
ightarrow oldsymbol{X}(w_1) = (1,1)^{ op}$

$$lacksquare$$
 $w_2 = \{ \text{2 Euro: eagle, 20 Cent: number} \}
ightarrow oldsymbol{X}(w_2) = (1,2)^{ op}$

$$lacksquare$$
 $w_3 = \{ \text{2 Euro: number, 20 Cent: gate} \}
ightarrow oldsymbol{X}(w_3) = (2,1)^{ op}$

$$lacksquare$$
 $w_4 = \{ 2 \text{ Euro: number, 20 Cent: number} \}
ightarrow oldsymbol{X}(w_4) = (2,2)^ op$

$$F_{\boldsymbol{X}}(\boldsymbol{z}) = \left\{ \begin{array}{lll} 0 & \text{for} & (z_1 < 1) & \vee & (z_2 < 1) \\ 1/4 & \text{for} & (1 \leq z_1 < 2) & \wedge & (1 \leq z_2 < 2) \\ 1/2 & \text{for} & (1 \leq z_1 < 2) & \wedge & (2 \leq z_2) \\ 1/2 & \text{for} & (2 \leq z_1) & \wedge & (1 \leq z_2 < 2) \\ 1 & \text{for} & (2 \leq z_1) & \wedge & (2 \leq z_2) \end{array} \right.$$

Conditional Probabilities

Conditional Probabilities

Consider two discrete random variables X and Y. The conditional probability of Y given X:

$$P(Y = y|X = x) = \frac{P(X = x, Y = y)}{P(X = x)}, \quad P(X = x) \neq 0$$

Conditional Probability Densities

Consider two continuous random vectors X, Y and their joint probability density. The conditional probability density of Y given X: Probability for finding $Y \in [y, y + dy]$ if we already know that $X \in [x, x + dx]$.

$$p(\boldsymbol{y}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})}$$
 almost everywhere in \boldsymbol{X}

Independence

Statistical Independence of Continuous Random Vectors

The random vectors $oldsymbol{X}$ and $oldsymbol{Y}$ are statistically independent iff

$$p({m y}|{m x}) = p({m y})$$
 or equivalently $p({m x},{m y}) = p({m x})p({m y})$

31 / 39

www.ni.tu-berlin.de Mathematics Primer Summer Term 2018

Marginals

Law of Total Probability (Discrete Random Variables)

Marginalisation over Y:

$$P(X = x) = \sum_{k} P(X = x, Y = y_k)$$

Marginal Densities (Continuous Random Vectors)

Given the joint density $p_{X,Y}(x,y)$ of two random vectors X and Y, the marginal density $p_X(x)$ is obtained by integrating over the other random vector:

$$p_{\boldsymbol{X}}(\boldsymbol{x}) = \int_{-\infty}^{\infty} p_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\tilde{\boldsymbol{y}}) d\tilde{\boldsymbol{y}}$$

Bayes' Theorem

Bayes' Theorem (Discrete Random Variables)

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

$$= \frac{P(X = x | Y = y)P(Y = y)}{\sum_{k} P(X = x | Y = y_{k})P(Y = y_{k})}$$

Bayes' Theorem (Continuous Random Vectors)

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int p(x|\tilde{y})p(\tilde{y})d\tilde{y}}$$

www.ni.tu-berlin.de

Decomposition

Factorization of a joint pdf (or cdf), as given by the Chain Rule:

$$p(x_1, \dots, x_d) = p(x_1)p(x_2|x_1)\dots p(x_d|x_1, \dots, x_{d-1})$$

■ Special case: Statistical Independence

$$p(x_1, \dots, x_d) = p(x_1)p(x_2)\dots p(x_d) = \prod_{k=1}^d p(x_k)$$

■ Special case: 1st order Markov chain

$$p(x_1, \dots, x_d) = p(x_d|x_{d-1})p(x_{d-1}|x_{d-2})\dots p(x_2|x_1)p(x_1)$$

Expectations

- In Practice: Probability density usually unknown
- However: Expectations of functions can be directly estimated from the data

The expectation of a scalar-, vector- or matrix-valued function g(X) of a random vector X, as defined below, can be estimated from a dataset of k i.i.d. samples $x^{(1)}, x^{(2)}, \ldots, x^{(k)}$:

$$\langle \boldsymbol{g}(\boldsymbol{X}) \rangle \equiv \int_{-\infty}^{\infty} \boldsymbol{g}(\boldsymbol{x}) \, p_{\boldsymbol{X}}(\boldsymbol{x}) \, d\boldsymbol{x} \approx \frac{1}{k} \sum_{j=1}^{k} \boldsymbol{g}(\boldsymbol{x}^{(j)})$$

- Linearity: $\langle aX + bX + c \rangle = a\langle X \rangle + b\langle Y \rangle + c$
- lacksquare $p_{m{X}}$ known \Rightarrow Expectations of arbitrary function available
- Expectations for all functions f known $\Rightarrow p_x$ can be determined \Rightarrow Statistics of X completely known

www.ni.tu-berlin.de

Moments

Moments of a random vector $\boldsymbol{X}=(X_1,\ldots,X_n)$ are typical expectations used to characterize it. They are obtained when $\boldsymbol{g}(\boldsymbol{X})$ consists of products of components of \boldsymbol{X} .

Examples:

- 1st order: $\langle X_i \rangle = \int p(x_i) \, x_i \, dx_i \dots$ mean value μ_i , $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$
- \blacksquare 2nd order: $\langle X_i X_j \rangle$... correlation between X_i, X_j
- 3rd order: $\langle X_i X_j X_k \rangle$... e.g. skewness

Correlation Matrix

The correlation matrix of a random vector \boldsymbol{X} contains all second order moments $\langle X_i X_j \rangle$:

$$oldsymbol{R}_{oldsymbol{X}} = \langle oldsymbol{X} oldsymbol{X}^{ op}
angle$$

- lacksquare Symmetry: $oldsymbol{R}_{oldsymbol{X}} = oldsymbol{R}_{oldsymbol{X}}^{ op}$
- Positive semidefinite: $\boldsymbol{a}^{\top}\boldsymbol{R}_{\boldsymbol{X}}\boldsymbol{a} \geq 0, \ \forall \boldsymbol{a}$
 - ⇒ all eigenvalues real and nonnegative
 - \Rightarrow all eigenvectors are mutually orthogonal

Covariance Matrix

The covariance matrix of a random vector $oldsymbol{X}$ is given by

$$C_X \equiv \langle (X - \mu_X)(X - \mu_X)^{\top} \rangle = \langle XX^{\top} \rangle - \mu_X \mu_X^{\top} = R_X - \mu_X \mu_X^{\top}$$

and the components C_{ij} are calculated as

$$C_{ij} = \langle X_i X_j \rangle - \mu_i \mu_j = \iint p(x_i, x_j) \, x_i \, x_j \, dx_i \, dx_j - \mu_i \mu_j.$$

- lacksquare $C_{ii} = \sigma_i^2 \dots$ variance of X_i
- For zero mean, correlation and covariance matrix are identical

38 / 39

Uncorrelatedness and Independence

Two random vectors X and Y are **uncorrelated** iff their cross-covariance matrix $C_{XY} = \langle XY^{\top} \rangle - \mu_X \mu_Y = 0$.

■ Uncorrelatedness implies that

$$\boldsymbol{R}_{\boldsymbol{X}\boldsymbol{Y}} = \langle \boldsymbol{X}\boldsymbol{Y}^{\top} \rangle = \langle \boldsymbol{X} \rangle \langle \boldsymbol{Y}^{\top} \rangle = \boldsymbol{\mu}_{\boldsymbol{X}}\boldsymbol{\mu}_{\boldsymbol{Y}}^{\top},$$

while independence implies that

$$\langle g(X)h(Y)
angle = \langle g(X)
angle \langle h(Y)
angle$$
 for any g,h

⇒ Independence much stronger property than uncorrelatedness

■ Special property of **Gaussian distributions**: uncorrelatedness = independence