

Report No.: EED32L00193801 Page 1 of 101

TEST REPORT

Product : Yanshee Robot

Trade mark : UBTCH

Model/Type reference : ERHA101

Serial Number : N/A

Report Number : EED32L00193801 **FCC ID** : 2AHJX-YANSHEE-1

Date of Issue : Aug. 26, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD 16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Alex Wu

Reviewed by:

Ware Xin

Aug. 26, 2010

Report Seal

Date: Aug. 26, 2019 Report Seal Check No.:3096399624

2 Version

Version No.	Date	Description
00	Aug. 26, 2019	Original
((2)	
1		

Page 3 of 101

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)		N/A
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Page 4 of 101

4 Content

1	COVER PAGE	1
2	VERSION	2
3	TEST SUMMARY	3
4	CONTENT	2
5	TEST REQUIREMENT	
	5.1 Test setup	
6	GENERAL INFORMATION	7
	6.1 CLIENT INFORMATION	
	EQUIPMENT LIST	
8	RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
	Appendix A): 20dB Occupied Bandwidth	
ΡI	HOTOGRAPHS OF TEST SETUP	91

Report No. : EED32L00193801 Page 5 of 101

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Report No. : EED32L00193801 Page 6 of 101

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(0)
Temperature:	24°C		
Humidity:	58% RH		
Atmospheric Pressure:	1010mbar	(4)	

5.3 Test Condition

Test Mode	Tv	RF Channel		
rest Mode	Tx	Low(L)	Middle(M)	High(H)
GFSK/π/4DQPSK/	0400MH - 0400 MH-	Channel 1	Channel 40	Channel79
8DPSK(DH1,DH3, DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz

Report No. : EED32L00193801 Page 7 of 101

6 General Information

6.1 Client Information

Applicant:	UBTECH ROBOTICS CORP LTD	
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA	(2)
Manufacturer:	UBTECH ROBOTICS CORP LTD	100
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA	
Factory:	UBTECH ROBOTICS CORP LTD BAOAN BRANCH	
Address of Factory:	1-2Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA	

6.2 General Description of EUT

Product Name:	Yanshee	Robot				
Model No.(EUT):	ERHA101		(3)			
Trade mark:	UBTCH	UBTCH				
EUT Supports Radios application:	4.1 BT Du	ual mode				
Power Supply:	AC Adapter	MODEL:HKA03609640-8A INPUT:100-240V 1.5A,50/60Hz OUTPUT:9.6V4.0A				
	Battery	Model: Yanshee 1.1-2S1P Capacity: 7.4V, 3000mAh/ 22.2Wh				
Sample Received Date:	Jul. 22, 20	019	(3)			
Sample tested Date:	Jul. 22, 20	019 to Aug. 23, 2019				

19

20

2420MHz

2421MHz

39

40

Page 8 of 101 Report No.: EED32L00193801

6.

Operation	Frequency:	2402MH	z to 2480MHz						
Bluetooth	Version:	3.0+EDF							
Modulatio	n Technique:	FHSS							
Modulatio	n Type:	GFSK, π	/4DQPSK, 8DI	PSK, OFDM,	DSSS		215		
Number o	f Channel:	79	(30))	(20)		(3)		
Hopping (Channel Type:	Adaptive	Frequency Ho	pping syster	ns		160		
Test Powe	er Grade:	(manufac	cturer declare)						
Test Softv	vare of EUT:	(manufac	(manufacturer declare)						
Antenna T	Гуре:	Chip ant	Chip antenna						
Antenna (Gain:	1.5 dBi	1.5 dBi DC 9.6V						
Test Volta	ige:	DC 9.6V							
Operation	Frequency ea	ch of channe	el						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz		
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz		
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz		
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz		
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz		
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz		

59

60

2460MHz

2461MHz

79

2480MHz

2440MHz

2441MHz

Report No.: EED32L00193801 Page 9 of 101

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Country and along test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32L00193801 Page 10 of 101

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Page 11 of 101

	(Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	152394	03-01-2019	02-28-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

Page 12 of 101

	SIVI C	Semi/full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-10-2020
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	(E)	01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020
Signal Generator	Agilent	E4438C	MY450957 44	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY534011 06	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB470505 34	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 13 of 101

		3M full-a	nechoic Cham	her		
	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
	RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020
	Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020
9	Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
	Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
	TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
	Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
	Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
	Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
1	Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
7	Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
	Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020
	Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
	Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020
	Preamplifier	Agilent	8449B	3008A0242 5	07-12-2019	07-10-2020
٦	Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
į.	Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
1	Fully Anechoic Chamber	TDK	FAC-3	(2	01-17-2018	01-15-2021
	Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020
N	Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020
/	Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
	Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
)	Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Report No. : EED32L00193801 Page 14 of 101

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No. : EED32L00193801 Page 15 of 101

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9455	0.88382	PASS
GFSK	MCH	0.9688	0.88853	PASS
GFSK	HCH	0.9711	0.88903	PASS
π /4DQPSK	LCH	1.330	1.1996	PASS
π /4DQPSK	MCH	1.328	1.2007	PASS
π /4DQPSK	HCH	1.328	1.2020	PASS
8DPSK	LCH	1.314	1.2062	PASS
8DPSK	MCH	1.314	1.2075	PASS
8DPSK	HCH	1.316	1.2094	PASS

Page 16 of 101

Test Graph

Page 17 of 101

Page 18 of 101

Report No. : EED32L00193801 Page 19 of 101

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.016	PASS
GFSK	MCH	1.208	PASS
GFSK	HCH	1.004	PASS
π/4DQPSK	LCH	0.660	PASS
π/4DQPSK	MCH	0.820	PASS
π/4DQPSK	HCH	0.950	PASS
8DPSK	LCH	1.012	PASS
8DPSK	MCH	1.096	PASS
8DPSK	HCH	1.204	PASS

Report No. : EED32L00193801 Page 20 of 101

Test Graph

Page 21 of 101

Page 22 of 101

Page 23 of 101

Appendix C): Dwell Time

Result Table

Mode	Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.38127	320	0.122	0.30	PASS
GFSK	DH1	MCH	0.381263	320	0.122	0.30	PASS
GFSK	DH1	HCH	0.38127	320	0.122	0.30	PASS
GFSK	DH3	LCH	1.6378	160	0.262	0.66	PASS
GFSK	DH3	MCH	1.637803	160	0.262	0.66	PASS
GFSK	DH3	HCH	1.637797	160	0.262	0.66	PASS
GFSK	DH5	LCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	MCH	2.8704	106.7	0.306	0.76	PASS
GFSK	DH5	HCH	2.8704	106.7	0.306	0.77	PASS

Report No.: EED32L00193801 Page 24 of 101

Test Graph

Page 25 of 101

Page 26 of 101

Page 27 of 101

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Report No. : EED32L00193801 Page 28 of 101

Test Graph

Report No.: EED32L00193801 Page 29 of 101

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	1.015	PASS
GFSK	MCH	3.627	PASS
GFSK	HCH	5.636	PASS
π/4DQPSK	LCH	-0.518	PASS
π/4DQPSK	MCH	1.410	PASS
π/4DQPSK	HCH	2.551	PASS
8DPSK	LCH	-0.147	PASS
8DPSK	MCH	1.797	PASS
8DPSK	HCH	2.812	PASS

Page 30 of 101

Test Graph

Page 31 of 101

Page 32 of 101

Report No.: EED32L00193801 Page 33 of 101

Appendix F): Band-edge for RF Conducted Emissions Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	0.862	Off	-57.752	-19.14	PASS
GFSK	LOTT	2402	0.982	On	-46.145	-19.02	PASS
GFSK	НСН	2480	5.454	Off	-55.464 -14	-14.55	PASS
GFSK	псп	2400	5.276	On	-45.858	-14.72	PASS
π/4DQPSK	LCH	2402	-3.179	Off	-59.019	-23.18	PASS
11/4DQF3K	LON		-3.379	On	-49.413	-23.38	PASS
#/4DODGK	НСН	2480	0.035	Off	-57.693	-19.97	PASS
π/4DQPSK	пСп	2400	-0.335	On	-57.719	-20.34	PASS
8DPSK	LCH	2402	-3.178	Off	-59.480	-23.18	PASS
ODPSK	LON	2402	-3.286	On	-58.591	-23.29	PASS
ODDCK	ПСП	0.400	-0.029	Off	-57.671	-20.03	PASS
8DPSK	HCH	2480	-0.263	On	-44.106	-20.26	PASS

Report No. : EED32L00193801 Page 34 of 101

Test Graph

Page 35 of 101

Page 36 of 101

Page 37 of 101

Report No. : EED32L00193801 Page 38 of 101

Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	0.837	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	3.468	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	5.472	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-3.294	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-1.203	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	0.041	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-3.213	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-1.233	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	-0.042	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32L00193801 Page 39 of 101

Test Graph

Page 40 of 101

Page 41 of 101

Page 42 of 101

Page 43 of 101

Page 44 of 101

Page 45 of 101

Page 46 of 101

Page 47 of 101

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46	77	 7	64	8	73	 16	75	1
	Г		Т		П			
	l	1			П		П	
	l	1		1			Ш	

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32L00193801 Page 49 of 101

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

Report No. : EED32L00193801 Page 50 of 101

Test Procedure:	Test frequency range :150KHz-	-30MHz							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.								
(173)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem							
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the								
	plane. This distance was be	etween the closest po	ints of the LISN 1 and	d the EU1					
	plane. This distance was be All other units of the EUT a	etween the closest poind associated equipning emission, the relative	oints of the LISN 1 and nent was at least 0.8 e positions of equipme	d the EUI m from th ent and al					
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	etween the closest poind associated equipning emission, the relative	oints of the LISN 1 and nent was at least 0.8 e positions of equipme	d the EUI m from th ent and al					
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement.	etween the closest poind associated equipning emission, the relative	oints of the LISN 1 and nent was at least 0.8 to positions of equipming to ANSI C63.10 on	d the EUI m from th ent and al					
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	etween the closest po nd associated equipn n emission, the relativ t be changed accordin	oints of the LISN 1 and nent was at least 0.8 to positions of equipming to ANSI C63.10 on	d the EUI m from th ent and al					
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement.	etween the closest point associated equipment emission, the relative to the changed according the changed according the change that the change	pints of the LISN 1 and the nent was at least 0.8 the positions of equipming to ANSI C63.10 on the pipe.	d the EUI m from th ent and al					
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz)	etween the closest point associated equipment emission, the relative be changed according Limit (conditions).	oints of the LISN 1 and nent was at least 0.8 to positions of equipming to ANSI C63.10 on the AVERAGE AVERAGE	d the EUI m from th ent and al					
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5	etween the closest point associated equipment emission, the relative to be changed according to Limit (conditional Quasi-peak) 66 to 56*	e positions of equipment was at least 0.8 e positions of equipment to ANSI C63.10 on ANSI C63.10 Average 56 to 46*	d the EUI m from th ent and al					

Page 51 of 101

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	35.65	9.97	45.62	66.00	-20.38	peak	
2		0.1500	12.98	9.97	22.95	56.00	-33.05	AVG	
3		0.1725	33.04	10.00	43.04	64.84	-21.80	peak	
4		0.1725	5.80	10.00	15.80	54.84	-39.04	AVG	
5		0.2580	22.13	10.07	32.20	61.50	-29.30	peak	
6		0.2580	0.27	10.07	10.34	51.50	-41.16	AVG	
7		0.3525	16.64	10.05	26.69	58.90	-32.21	peak	
8		0.3660	-1.98	10.03	8.05	48.59	-40.54	AVG	
9		2.8545	18.98	9.83	28.81	56.00	-27.19	peak	
10		3.0705	-0.26	9.83	9.57	46.00	-36.43	AVG	
11		10.1625	11.76	9.96	21.72	60.00	-38.28	peak	
12		10.5405	-3.53	9.96	6.43	50.00	-43.57	AVG	

Page 52 of 101

Neutral line:

Mk.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1500	12.82	9.97	22.79	56.00	-33.21	AVG	
	0.1590	32.47	9.98	42.45	65.52	-23.07	peak	
*	0.1860	31.62	10.01	41.63	64.21	-22.58	peak	
	0.1860	3.33	10.01	13.34	54.21	-40.87	AVG	
	0.2985	-0.70	10.10	9.40	50.28	-40.88	AVG	
	0.3075	23.21	10.09	33.30	60.04	-26.74	peak	
	0.4335	15.14	10.00	25.14	57.19	-32.05	peak	
	0.4335	-1.92	10.00	8.08	47.19	-39.11	AVG	
	2.9985	19.57	9.83	29.40	56.00	-26.60	peak	
	3.0975	-0.03	9.83	9.80	46.00	-36.20	AVG	
	10.1175	-2.21	9.96	7.75	50.00	-42.25	AVG	
	10.1535	12.43	9.96	22.39	60.00	-37.61	peak	
		MHz 0.1500 0.1590 * 0.1860 0.1860 0.2985 0.3075 0.4335 0.4335 2.9985 3.0975 10.1175	Mk. Freq. Level MHz dBuV 0.1500 12.82 0.1590 32.47 * 0.1860 31.62 0.1860 3.33 0.2985 -0.70 0.3075 23.21 0.4335 15.14 0.4335 -1.92 2.9985 19.57 3.0975 -0.03 10.1175 -2.21	Mk. Freq. Level Factor MHz dBuV dB 0.1500 12.82 9.97 0.1590 32.47 9.98 * 0.1860 31.62 10.01 0.1860 3.33 10.01 0.2985 -0.70 10.10 0.3075 23.21 10.09 0.4335 15.14 10.00 2.9985 19.57 9.83 3.0975 -0.03 9.83 10.1175 -2.21 9.96	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1500 12.82 9.97 22.79 0.1590 32.47 9.98 42.45 * 0.1860 31.62 10.01 41.63 0.1860 3.33 10.01 13.34 0.2985 -0.70 10.10 9.40 0.3075 23.21 10.09 33.30 0.4335 15.14 10.00 25.14 0.4335 -1.92 10.00 8.08 2.9985 19.57 9.83 29.40 3.0975 -0.03 9.83 9.80 10.1175 -2.21 9.96 7.75	Mk. Freq. Level Factor ment Limit MHz dBuV dB uV dBuV dBuV 0.1500 12.82 9.97 22.79 56.00 0.1590 32.47 9.98 42.45 65.52 * 0.1860 31.62 10.01 41.63 64.21 0.1860 3.33 10.01 13.34 54.21 0.2985 -0.70 10.10 9.40 50.28 0.3075 23.21 10.09 33.30 60.04 0.4335 15.14 10.00 25.14 57.19 0.4335 -1.92 10.00 8.08 47.19 2.9985 19.57 9.83 29.40 56.00 3.0975 -0.03 9.83 9.80 46.00 10.1175 -2.21 9.96 7.75 50.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB 0.1500 12.82 9.97 22.79 56.00 -33.21 0.1590 32.47 9.98 42.45 65.52 -23.07 * 0.1860 31.62 10.01 41.63 64.21 -22.58 0.1860 3.33 10.01 13.34 54.21 -40.87 0.2985 -0.70 10.10 9.40 50.28 -40.88 0.3075 23.21 10.09 33.30 60.04 -26.74 0.4335 15.14 10.00 25.14 57.19 -32.05 0.4335 -1.92 10.00 8.08 47.19 -39.11 2.9985 19.57 9.83 29.40 56.00 -26.60 3.0975 -0.03 9.83 9.80 46.00 -36.20 10.1175 -2.21 9.96 7.75 50.00	Mk. Freq. Level Factor ment Limit Margin 0.1500 12.82 9.97 22.79 56.00 -33.21 AVG 0.1590 32.47 9.98 42.45 65.52 -23.07 peak * 0.1860 31.62 10.01 41.63 64.21 -22.58 peak 0.1860 3.33 10.01 13.34 54.21 -40.87 AVG 0.2985 -0.70 10.10 9.40 50.28 -40.88 AVG 0.3075 23.21 10.09 33.30 60.04 -26.74 peak 0.4335 15.14 10.00 25.14 57.19 -32.05 peak 0.4335 -1.92 10.00 8.08 47.19 -39.11 AVG 2.9985 19.57 9.83 29.40 56.00 -26.60 peak 3.0975 -0.03 9.83 9.80 46.00 -36.20 AVG 10.1175 -2.

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32L00193801 Page 53 of 101

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frague ::	Dotastas	DDW	\/D\A/	Donasile
		Frequency	Detector	RBW	VBW	Remark
	100	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	(Qr.)	Above 1GHz	Peak	1MHz	3MHz	Peak
			Peak	1MHz	10Hz	Average
Test Procedure:	a. 1 6 b. 1 c. 1 d. F t t e. 1 f. F	The EUT was placed at a 3 meter semi-and at a 3 meter semi-and at the position of the EUT was set 3 m as mounted on the formation of the antenna height is determine the maximulations of the artenna was tuned able was turned from the test-receiver systematical and with Maximulation of the test-receiver systematical and with the test-receiver systematical and	on the top of a rocechoic camber. The of the highest rate ters away from top of a variable-to varied from one turn value of the fintenna are set to emission, the EUT of to heights from a 0 degrees to 360 tem was set to Penum Hold Mode. It end of the restrict mpliance. Also motivate analyzer plot to channel	he table ware adiation. the interfer neight anter meter to for eld strength make the rows arranged a meter to 0 degrees to eak Detect content of the easure any ending the easure any ending the easure any ending the end of the ending the end of the end o	ence-receinna tower. Four meters Four meters Four measurement Four find the insertion and the insertio	ving antenna, value the ground and verse the ground and verse the ground and the rotatable maximum read and Specified the transmit is in the restrict.
	g. [t r h. k i. 1	ve 1GHz test proced Different between about o fully Anechoic Chat meter(Above 18GHz or Test the EUT in the The radiation measur Fransmitting mode, a Repeat above proced	ove is the test site mber and change the distance is 1 le lowest channel ements are perfond found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.9 st channel Y, Z axis p ing which i	to 1.5 5 meter). positioning for t is worse case
Limit:		(20)	(20)		- ((12)
		Frequency	Limit (dBµV		Rer	mark
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value
	(10)	216MHz-960MHz	46.0	0	Quasi-pe	eak Value
	100	960MHz-1GHz	54.0	0	Quasi-pe	eak Value
			The state of the s	0	Avorag	
		Above 1GHz	54.0	U	Averag	je Value

Report No. : EED32L00193801 Page 54 of 101

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.88	52.06	74.00	21.94	Pass	Horizontal
2	2399.8874	32.26	13.30	-42.43	97.43	100.56	74.00	-26.56	Pass	Horizontal

Page 55 of 101

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

ОО	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.22	52.40	74.00	21.60	Pass	Vertical
2	2399.8874	32.26	13.30	-42.43	95.08	98.21	74.00	-24.21	Pass	Vertical

Page 56 of 101

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

•	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.35	41.53	54.00	12.47	Pass	Horizontal
	2	2400.1252	32.26	13.30	-42.43	89.13	92.26	54.00	-38.26	Pass	Horizontal

Page 57 of 101

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.33	41.51	54.00	12.49	Pass	Vertical
2	2400.1252	32.26	13.30	-42.43	88.86	91.99	54.00	-37.99	Pass	Vertical

Page	58	of	101
i ayc	$^{\circ}$	OI.	101

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.7547	32.37	13.40	-42.40	93.44	96.81	74.00	-22.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.49	52.85	74.00	21.15	Pass	Horizontal
3	2484.6033	32.38	13.37	-42.40	54.28	57.63	74.00	16.37	Pass	Horizontal

Page 59 of 101

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.7547	32.37	13.40	-42.40	93.44	96.81	74.00	-22.81	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.30	52.66	74.00	21.34	Pass	Vertical

Page 60 of 101

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2478.0401	32.37	13.40	-42.40	92.35	95.72	54.00	-41.72	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.30	40.66	54.00	13.34	Pass	Horizontal
3	2484.4130	32.38	13.37	-42.40	41.41	44.76	54.00	9.24	Pass	Horizontal

Page 61 of 101

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2478.0401	32.37	13.40	-42.40	92.27	95.64	54.00	-41.64	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.94	40.30	54.00	13.70	Pass	Vertical

Page 62 of 101

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.92	52.10	74.00	21.90	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	97.93	101.07	74.00	-27.07	Pass	Horizontal

Page 63 of 101

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.32	52.50	74.00	21.50	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	95.75	98.89	74.00	-24.89	Pass	Vertical

Page 64 of 101

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.26	41.44	54.00	12.56	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	55.11	58.25	54.00	-4.25	Pass	Horizontal

Page 65 of 101

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.29	41.47	54.00	12.53	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	54.86	58.00	54.00	-4.00	Pass	Vertical

Page 66 of 101

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7522	32.37	13.39	-42.39	93.41	96.78	74.00	-22.78	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	55.69	59.05	74.00	14.95	Pass	Horizontal
3	2484.8886	32.38	13.37	-42.40	59.26	62.61	74.00	11.39	Pass	Horizontal

Page	67	of 101	
ıayc	\circ	01 10 1	

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7522	32.37	13.39	-42.39	93.41	96.78	74.00	-22.78	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.44	53.80	74.00	20.20	Pass	Vertical
3	2484.8886	32.38	13.37	-42.40	56.61	59.96	74.00	14.04	Pass	Vertical

Page 68 of 101

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	55.37	58.74	54.00	-4.74	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	38.66	42.02	54.00	11.98	Pass	Horizontal

Page	69	of	101	
i ayc	\mathbf{o}	O.	101	

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

ОО	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-42.40	55.29	58.65	54.00	-4.65	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.36	40.72	54.00	13.28	Pass	Vertical

Page 70 of 101

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.32	52.50	74.00	21.50	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	98.25	101.39	74.00	-27.39	Pass	Horizontal

Page 71 of 101

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

ОО	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.24	52.42	74.00	21.58	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	96.11	99.25	74.00	-25.25	Pass	Vertical

Page 72 of 101

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.29	41.47	54.00	12.53	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	78.69	81.83	54.00	-27.83	Pass	Horizontal

Page 73 of 101

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.30	41.48	54.00	12.52	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	78.39	81.53	54.00	-27.53	Pass	Vertical

Page	74	of 101	
ı ayc	, –	01 10 1	

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7522	32.37	13.39	-42.39	93.41	96.78	74.00	-22.78	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	54.03	57.39	74.00	16.61	Pass	Horizontal
3	2484.8886	32.38	13.37	-42.40	60.32	63.67	74.00	10.33	Pass	Horizontal

Page 75 of 101

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7522	32.37	13.39	-42.39	93.41	96.78	74.00	-22.78	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.06	53.42	74.00	20.58	Pass	Vertical
3	2485.0313	32.38	13.37	-42.40	58.08	61.43	74.00	12.57	Pass	Vertical

Page 76 of 101

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-42.40	81.07	84.43	54.00	-30.43	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.71	45.07	54.00	8.93	Pass	Horizontal

Page 77 of 101

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-42.40	80.97	84.33	54.00	-30.33	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	38.27	41.63	54.00	12.37	Pass	Vertical
3	2484.9837	32.38	13.37	-42.40	42.30	45.65	54.00	8.35	Pass	Vertical

Note

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32L00193801 Page 78 of 101

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab av a 4011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

1		п	n	٦	I.	t	•
ı	_	и	П			ι	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	- 9	-	30
1.705MHz-30MHz	30	- 1	37	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32L00193801 Page 79 of 101

Radiated Spurious Emissions test Data:

Product : Yanshee Robot Model/Type reference : ERHA101

Temperature : 23 ℃ Humidity : 54%

Radiated Emission below 1GHz

Mode	e:	GFSK T	ransmitt	ing		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	84.5195	8.14	1.06	-32.08	46.30	23.42	40.00	16.58	Pass	Н
2	152.0382	7.62	1.45	-32.00	48.68	25.75	43.50	17.75	Pass	Н
3	217.3257	11.35	1.76	-31.95	48.30	29.46	46.00	16.54	Pass	Н
4	288.0458	12.96	2.02	-31.89	46.58	29.67	46.00	16.33	Pass	Н
5	432.9783	15.93	2.46	-31.84	46.48	33.03	46.00	12.97	Pass	Н
6	874.9545	21.80	3.54	-31.70	44.99	38.63	46.00	7.37	Pass	Н
7	36.8877	11.30	0.68	-32.11	51.41	31.28	40.00	8.72	Pass	V
8	121.0921	9.04	1.30	-32.07	53.62	31.89	43.50	11.61	Pass	V
9	208.8859	11.13	1.71	-31.94	52.59	33.49	43.50	10.01	Pass	V
10	273.3973	12.67	1.97	-31.90	47.72	30.46	46.00	15.54	Pass	V
11	649.9890	19.40	3.10	-32.07	40.76	31.19	46.00	14.81	Pass	V
12	875.0515	21.80	3.55	-31.70	44.61	38.26	46.00	7.74	Pass	V

Mode) :	GFSK T	ransmitt	ing		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	55.2225	12.36	0.84	-32.07	39.86	20.99	40.00	19.01	Pass	Н
2	118.7639	9.41	1.29	-32.07	49.22	27.85	43.50	15.65	Pass	Н
3	208.8859	11.13	1.71	-31.94	52.13	33.03	43.50	10.47	Pass	Н
4	273.3973	12.67	1.97	-31.90	48.05	30.79	46.00	15.21	Pass	Н
5	514.5635	17.29	2.71	-31.94	40.86	28.92	46.00	17.08	Pass	Н
6	649.9890	19.40	3.10	-32.07	39.54	29.97	46.00	16.03	Pass	Н
7	36.6937	11.24	0.67	-32.11	38.60	18.40	40.00	21.60	Pass	V
8	81.4151	7.43	1.05	-32.08	44.79	21.19	40.00	18.81	Pass	V
9	153.5904	7.68	1.46	-32.01	48.79	25.92	43.50	17.58	Pass	V
10	261.1741	12.42	1.92	-31.86	46.05	28.53	46.00	17.47	Pass	V
11	542.3082	17.85	2.79	-31.96	37.98	26.66	46.00	19.34	Pass	V
12	875.0515	21.80	3.55	-31.70	45.08	38.73	46.00	7.27	Pass	V

Page 80 of 101

ansmitting Cable Pre		Channel:		2480			
Cable Dro		Channel:			2480		
loss ga		Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
1.29 -32	06 49.88	28.50	43.50	15.00	Pass	Н	
1.56 -31	97 49.76	28.16	43.50	15.34	Pass	Н	
1.71 -31	94 52.43	33.33	43.50	10.17	Pass	Н	
2.00 -31	91 48.54	31.48	46.00	14.52	Pass	Н	
3.31 -32	06 38.54	30.30	46.00	15.70	Pass	Н	
3.55 -31	70 44.46	38.11	46.00	7.89	Pass	Н	
0.67 -32	11 39.28	19.08	40.00	20.92	Pass	V	
1.06 -32	08 44.14	21.26	40.00	18.74	Pass	V	
1.46 -32	01 48.50	25.63	43.50	17.87	Pass	V	
1.88 -31	90 44.72	26.90	46.00	19.10	Pass	V	
2.71 -31	94 38.38	26.44	46.00	19.56	Pass	V	
3.38 -32	00 40.75	32.95	46.00	13.05	Pass	V	
	loss [dB] gai [dE] 1.29 -32. 1.56 -31. 1.71 -31. 2.00 -31. 3.31 -32. 3.55 -31. 0.67 -32. 1.46 -32. 1.88 -31. 2.71 -31.	loss [dB] gain [dB] Reading [dBμV] 1.29 -32.06 49.88 1.56 -31.97 49.76 1.71 -31.94 52.43 2.00 -31.91 48.54 3.31 -32.06 38.54 3.55 -31.70 44.46 0.67 -32.11 39.28 1.06 -32.08 44.14 1.46 -32.01 48.50 1.88 -31.90 44.72 2.71 -31.94 38.38	loss [dB] gain [dB] Reading [dBμV] Level [dBμV/m] 1.29 -32.06 49.88 28.50 1.56 -31.97 49.76 28.16 1.71 -31.94 52.43 33.33 2.00 -31.91 48.54 31.48 3.31 -32.06 38.54 30.30 3.55 -31.70 44.46 38.11 0.67 -32.11 39.28 19.08 1.06 -32.08 44.14 21.26 1.46 -32.01 48.50 25.63 1.88 -31.90 44.72 26.90 2.71 -31.94 38.38 26.44	loss [dB] gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1.29 -32.06 49.88 28.50 43.50 1.56 -31.97 49.76 28.16 43.50 1.71 -31.94 52.43 33.33 43.50 2.00 -31.91 48.54 31.48 46.00 3.31 -32.06 38.54 30.30 46.00 3.55 -31.70 44.46 38.11 46.00 0.67 -32.11 39.28 19.08 40.00 1.06 -32.08 44.14 21.26 40.00 1.46 -32.01 48.50 25.63 43.50 1.88 -31.90 44.72 26.90 46.00 2.71 -31.94 38.38 26.44 46.00	loss [dB] gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1.29 -32.06 49.88 28.50 43.50 15.00 1.56 -31.97 49.76 28.16 43.50 15.34 1.71 -31.94 52.43 33.33 43.50 10.17 2.00 -31.91 48.54 31.48 46.00 14.52 3.31 -32.06 38.54 30.30 46.00 15.70 3.55 -31.70 44.46 38.11 46.00 7.89 0.67 -32.11 39.28 19.08 40.00 20.92 1.06 -32.08 44.14 21.26 40.00 18.74 1.46 -32.01 48.50 25.63 43.50 17.87 1.88 -31.90 44.72 26.90 46.00 19.10 2.71 -31.94 38.38 26.44 46.00 19.56	loss [dB] gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1.29 -32.06 49.88 28.50 43.50 15.00 Pass 1.56 -31.97 49.76 28.16 43.50 15.34 Pass 1.71 -31.94 52.43 33.33 43.50 10.17 Pass 2.00 -31.91 48.54 31.48 46.00 14.52 Pass 3.31 -32.06 38.54 30.30 46.00 15.70 Pass 3.55 -31.70 44.46 38.11 46.00 7.89 Pass 0.67 -32.11 39.28 19.08 40.00 20.92 Pass 1.06 -32.08 44.14 21.26 40.00 18.74 Pass 1.88 -31.90 44.72 26.90 46.00 19.10 Pass 2.71 -31.94 38.38 26.44 46.00 19.56 Pass	

Page 81 of 101

IMHZJ [dB] <			7.30						- A			
NO Freq. [MHz] Factor [dB] loss [dB] gain [dB] Reading [dBμV/m] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polari 1 115.7566 9.92 1.27 -32.06 48.50 27.63 43.50 15.87 Pass H 2 208.8859 11.13 1.71 -31.94 52.29 33.19 43.50 10.31 Pass H 3 219.9450 11.42 1.77 -31.95 36.86 18.10 46.00 27.90 Pass H 4 273.3973 12.67 1.97 -31.90 48.86 31.60 46.00 14.40 Pass H 5 514.5635 17.29 2.71 -31.94 41.48 29.54 46.00 16.46 Pass H 6 875.0515 21.80 3.55 -31.70 43.87 37.52 46.00 8.48 Pass H 7 84.4224 8.12 1.06 -32.08	Mode	e:	π/4DQF	PSK Tran	nsmitting		Channel:		2402			
2 208.8859 11.13 1.71 -31.94 52.29 33.19 43.50 10.31 Pass H 3 219.9450 11.42 1.77 -31.95 36.86 18.10 46.00 27.90 Pass H 4 273.3973 12.67 1.97 -31.90 48.86 31.60 46.00 14.40 Pass H 5 514.5635 17.29 2.71 -31.94 41.48 29.54 46.00 16.46 Pass H 6 875.0515 21.80 3.55 -31.70 43.87 37.52 46.00 8.48 Pass H 7 84.4224 8.12 1.06 -32.08 45.89 22.99 40.00 17.01 Pass V 8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77	NO		Factor	loss	gain					Result	Polarity	
3 219.9450 11.42 1.77 -31.95 36.86 18.10 46.00 27.90 Pass H 4 273.3973 12.67 1.97 -31.90 48.86 31.60 46.00 14.40 Pass H 5 514.5635 17.29 2.71 -31.94 41.48 29.54 46.00 16.46 Pass H 6 875.0515 21.80 3.55 -31.70 43.87 37.52 46.00 8.48 Pass H 7 84.4224 8.12 1.06 -32.08 45.89 22.99 40.00 17.01 Pass V 8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 14.98 Pass V 11 792.5933 20.82 3.3	1	115.7566	9.92	1.27	-32.06	48.50	27.63	43.50	15.87	Pass	Н	
4 273.3973 12.67 1.97 -31.90 48.86 31.60 46.00 14.40 Pass H 5 514.5635 17.29 2.71 -31.94 41.48 29.54 46.00 16.46 Pass H 6 875.0515 21.80 3.55 -31.70 43.87 37.52 46.00 8.48 Pass H 7 84.4224 8.12 1.06 -32.08 45.89 22.99 40.00 17.01 Pass V 8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	2	208.8859	11.13	1.71	-31.94	52.29	33.19	43.50	10.31	Pass	Н	
5 514.5635 17.29 2.71 -31.94 41.48 29.54 46.00 16.46 Pass H 6 875.0515 21.80 3.55 -31.70 43.87 37.52 46.00 8.48 Pass H 7 84.4224 8.12 1.06 -32.08 45.89 22.99 40.00 17.01 Pass V 8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	3	219.9450	11.42	1.77	-31.95	36.86	18.10	46.00	27.90	Pass	Н	
6 875.0515 21.80 3.55 -31.70 43.87 37.52 46.00 8.48 Pass H 7 84.4224 8.12 1.06 -32.08 45.89 22.99 40.00 17.01 Pass V 8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	4	273.3973	12.67	1.97	-31.90	48.86	31.60	46.00	14.40	Pass	Н	
7 84.4224 8.12 1.06 -32.08 45.89 22.99 40.00 17.01 Pass V 8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	5	514.5635	17.29	2.71	-31.94	41.48	29.54	46.00	16.46	Pass	Н	
8 147.4787 7.46 1.43 -32.00 47.95 24.84 43.50 18.66 Pass V 9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	6	875.0515	21.80	3.55	-31.70	43.87	37.52	46.00	8.48	Pass	Η	
9 251.8612 12.24 1.89 -31.90 44.41 26.64 46.00 19.36 Pass V 10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	7	84.4224	8.12	1.06	-32.08	45.89	22.99	40.00	17.01	Pass	V	
10 532.9953 17.66 2.77 -31.92 39.48 27.99 46.00 18.01 Pass V 11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	8	147.4787	7.46	1.43	-32.00	47.95	24.84	43.50	18.66	Pass	V	
11 792.5933 20.82 3.38 -32.00 38.82 31.02 46.00 14.98 Pass V	9	251.8612	12.24	1.89	-31.90	44.41	26.64	46.00	19.36	Pass	V	
	10	532.9953	17.66	2.77	-31.92	39.48	27.99	46.00	18.01	Pass	V	
	11	792.5933	20.82	3.38	-32.00	38.82	31.02	46.00	14.98	Pass	V	
12 875.0515 21.80 3.55 -31.70 44.85 38.50 46.00 7.50 Pass V	12	875.0515	21.80	3.55	-31.70	44.85	38.50	46.00	7.50	Pass	V	

Mode	e :	π/4DQF	PSK Trar	smitting		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	116.8237	9.74	1.28	-32.07	48.83	27.78	43.50	15.72	Pass	Н
2	208.8859	11.13	1.71	-31.94	52.49	33.39	43.50	10.11	Pass	Н
3	273.3973	12.67	1.97	-31.90	49.08	31.82	46.00	14.18	Pass	Н
4	514.5635	17.29	2.71	-31.94	40.56	28.62	46.00	17.38	Pass	Н
5	764.9455	20.51	3.31	-32.06	37.99	29.75	46.00	16.25	Pass	Н
6	875.0515	21.80	3.55	-31.70	44.09	37.74	46.00	8.26	Pass	Н
7	36.6937	11.24	0.67	-32.11	42.34	22.14	40.00	17.86	Pass	V
8	84.5195	8.14	1.06	-32.08	45.20	22.32	40.00	17.68	Pass	V
9	156.6947	7.78	1.46	-31.98	47.24	24.50	43.50	19.00	Pass	V
10	261.0771	12.42	1.92	-31.87	44.20	26.67	46.00	19.33	Pass	V
11	649.9890	19.40	3.10	-32.07	39.63	30.06	46.00	15.94	Pass	V
12	875.0515	21.80	3.55	-31.70	44.63	38.28	46.00	7.72	Pass	V

Page 82 of 101

	(Z) (Z)					1 431		((())		
Mode	e :	π/4DQF	PSK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	55.4165	12.33	0.84	-32.07	41.29	22.39	40.00	17.61	Pass	Н
2	119.1519	9.34	1.29	-32.06	48.67	27.24	43.50	16.26	Pass	Н
3	208.8859	11.13	1.71	-31.94	52.34	33.24	43.50	10.26	Pass	Н
4	282.6133	12.85	2.00	-31.91	47.73	30.67	46.00	15.33	Pass	Н
5	437.7318	16.00	2.47	-31.86	42.07	28.68	46.00	17.32	Pass	Н
6	874.9545	21.80	3.54	-31.70	44.13	37.77	46.00	8.23	Pass	Н
7	36.6937	11.24	0.67	-32.11	39.52	19.32	40.00	20.68	Pass	V
8	84.5195	8.14	1.06	-32.08	45.79	22.91	40.00	17.09	Pass	V
9	158.1498	7.84	1.47	-31.99	46.85	24.17	43.50	19.33	Pass	V
10	258.0698	12.36	1.91	-31.87	43.40	25.80	46.00	20.20	Pass	V
11	649.9890	19.40	3.10	-32.07	40.01	30.44	46.00	15.56	Pass	V
12	875.0515	21.80	3.55	-31.70	44.83	38.48	46.00	7.52	Pass	V

Page 83 of 101

	-174					-				
Mode	e :	8DPSK	Transmi	tting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	55.0285	12.40	0.84	-32.08	40.37	21.53	40.00	18.47	Pass	Н
2	118.6669	9.43	1.29	-32.07	48.78	27.43	43.50	16.07	Pass	Н
3	208.8859	11.13	1.71	-31.94	53.36	34.26	43.50	9.24	Pass	Н
4	273.3973	12.67	1.97	-31.90	48.42	31.16	46.00	14.84	Pass	Н
5	764.9455	20.51	3.31	-32.06	38.69	30.45	46.00	15.55	Pass	Н
6	874.9545	21.80	3.54	-31.70	44.03	37.67	46.00	8.33	Pass	Н
7	36.6937	11.24	0.67	-32.11	39.19	18.99	40.00	21.01	Pass	V
8	84.5195	8.14	1.06	-32.08	45.62	22.74	40.00	17.26	Pass	V
9	147.4787	7.46	1.43	-32.00	47.87	24.76	43.50	18.74	Pass	V
10	261.0771	12.42	1.92	-31.87	44.13	26.60	46.00	19.40	Pass	V
11	804.8165	20.96	3.40	-32.01	39.24	31.59	46.00	14.41	Pass	V
12	875.0515	21.80	3.55	-31.70	44.68	38.33	46.00	7.67	Pass	V

Mode	Mode:		8DPSK Transmitting			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	119.5400	9.28	1.30	-32.07	50.43	28.94	43.50	14.56	Pass	Н
2	176.5817	8.81	1.56	-31.97	52.00	30.40	43.50	13.10	Pass	Н
3	208.8859	11.13	1.71	-31.94	52.76	33.66	43.50	9.84	Pass	Н
4	273.3973	12.67	1.97	-31.90	48.39	31.13	46.00	14.87	Pass	Н
5	495.7436	16.93	2.66	-31.90	40.76	28.45	46.00	17.55	Pass	Н
6	875.0515	21.80	3.55	-31.70	44.44	38.09	46.00	7.91	Pass	Н
7	36.6937	11.24	0.67	-32.11	40.30	20.10	40.00	19.90	Pass	V
8	84.4224	8.12	1.06	-32.08	44.51	21.61	40.00	18.39	Pass	V
9	147.4787	7.46	1.43	-32.00	48.08	24.97	43.50	18.53	Pass	V
10	251.8612	12.24	1.89	-31.90	44.26	26.49	46.00	19.51	Pass	V
11	649.9890	19.40	3.10	-32.07	41.00	31.43	46.00	14.57	Pass	V
12	875.0515	21.80	3.55	-31.70	44.84	38.49	46.00	7.51	Pass	V

Page 84 of 101

	- 1 m									
Mode	e :	8DPSK	Transmi	tting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	208.8859	11.13	1.71	-31.94	51.84	32.74	43.50	10.76	Pass	Н
2	282.6133	12.85	2.00	-31.91	48.89	31.83	46.00	14.17	Pass	Н
3	433.1723	15.93	2.46	-31.84	42.00	28.55	46.00	17.45	Pass	Н
4	517.5708	17.35	2.72	-31.93	39.21	27.35	46.00	18.65	Pass	Н
5	752.6253	20.38	3.30	-32.05	38.47	30.10	46.00	15.90	Pass	Н
6	875.0515	21.80	3.55	-31.70	43.63	37.28	46.00	8.72	Pass	Н
7	84.5195	8.14	1.06	-32.08	46.76	23.88	40.00	16.12	Pass	V
8	150.4860	7.57	1.45	-32.01	47.69	24.70	43.50	18.80	Pass	V
9	258.0698	12.36	1.91	-31.87	43.69	26.09	46.00	19.91	Pass	V
10	325.0065	13.75	2.14	-31.79	42.48	26.58	46.00	19.42	Pass	V
11	804.8165	20.96	3.40	-32.01	38.88	31.23	46.00	14.77	Pass	V
12	875.0515	21.80	3.55	-31.70	44.81	38.46	46.00	7.54	Pass	V

Page 85 of 101

Transmitter Emission above 1GHz

Mode	e:		GFSK T	Transmitti	ng		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2821.5822	32.91	4.24	-42.22	51.18	46.11	74.00	27.89	Pass	Н	PK
2	4800.1200	34.50	4.54	-40.66	54.00	52.38	74.00	21.62	Pass	Н	PK
3	7206.0000	36.31	5.81	-41.02	44.07	45.17	74.00	28.83	Pass	Н	PK
4	9608.0000	37.64	6.63	-40.76	42.21	45.72	74.00	28.28	Pass	Н	PK
5	12010.000	39.31	7.60	-41.21	43.08	48.78	74.00	25.22	Pass	Н	PK
6	13763.717	39.56	8.35	-41.22	46.70	53.39	74.00	20.61	Pass	Н	PK
7	3048.0032	33.22	4.83	-42.09	49.90	45.86	74.00	28.14	Pass	V	PK
8	4800.1200	34.50	4.54	-40.66	50.49	48.87	74.00	25.13	Pass	V	PK
9	7153.2769	36.25	5.70	-41.06	45.56	46.45	74.00	27.55	Pass	V	PK
10	9608.0000	37.64	6.63	-40.76	43.18	46.69	74.00	27.31	Pass	V	PK
11	12010.000	39.31	7.60	-41.21	44.31	50.01	74.00	23.99	Pass	V	PK
12	13662.710	39.50	8.19	-41.21	46.10	52.58	74.00	21.42	Pass	V	PK

Mode	e:		GFSK ⁻	Transmitti	ng		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2915.3915	33.06	4.39	-42.16	50.48	45.77	74.00	28.23	Pass	Н	PK
2	4878.1252	34.50	4.79	-40.60	53.39	52.08	74.00	21.92	Pass	Н	PK
3	7323.0000	36.42	5.85	-40.92	43.54	44.89	74.00	29.11	Pass	Н	PK
4	9764.0000	37.71	6.71	-40.62	42.75	46.55	74.00	27.45	Pass	Н	PK
5	12205.000	39.42	7.67	-41.16	42.82	48.75	74.00	25.25	Pass	Н	PK
6	13720.714	39.53	8.33	-41.21	46.20	52.85	74.00	21.15	Pass	Н	PK
7	2974.1974	33.16	4.47	-42.13	50.63	46.13	74.00	27.87	Pass	V	PK
8	4878.1252	34.50	4.79	-40.60	49.22	47.91	74.00	26.09	Pass	V	PK
9	7323.0000	36.42	5.85	-40.92	43.53	44.88	74.00	29.12	Pass	V	PK
10	9764.0000	37.71	6.71	-40.62	41.50	45.30	74.00	28.70	Pass	V	PK
11	12205.000	39.42	7.67	-41.16	42.98	48.91	74.00	25.09	Pass	V	PK
12	14477.765	40.18	8.99	-42.22	45.86	52.81	74.00	21.19	Pass	V	PK

Page 86 of 101

							01 1 0.400					
Mode	e :		GFSK T	Transmitti	ng		Channel:		2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3199.0133	33.28	4.65	-42.00	49.75	45.68	74.00	28.32	Pass	Н	PK	
2	4956.1304	34.50	4.82	-40.54	53.84	52.62	74.00	21.38	Pass	Н	PK	
3	7440.0000	36.54	5.85	-40.82	42.87	44.44	74.00	29.56	Pass	Н	PK	
4	9920.0000	37.77	6.79	-40.48	42.01	46.09	74.00	27.91	Pass	Н	PK	
5	12400.000	39.54	7.86	-41.12	43.56	49.84	74.00	24.16	Pass	Н	PK	
6	13696.713	39.52	8.34	-41.21	45.86	52.51	74.00	21.49	Pass	Н	PK	
7	3112.0075	33.24	4.68	-42.04	49.42	45.30	74.00	28.70	Pass	V	PK	
8	4956.1304	34.50	4.82	-40.54	52.57	51.35	74.00	22.65	Pass	V	PK	
9	7440.0000	36.54	5.85	-40.82	42.78	44.35	74.00	29.65	Pass	V	PK	
10	9920.0000	37.77	6.79	-40.48	41.41	45.49	74.00	28.51	Pass	V	PK	
11	12400.000	39.54	7.86	-41.12	43.30	49.58	74.00	24.42	Pass	V	PK	
12	14227.748	39.93	8.62	-41.73	46.91	53.73	74.00	20.27	Pass	V	PK	

Page 87 of 101

	40.00			250			Trans.					
Mode	e :		π/4DQPSK Transmitting				Channel:		2402	2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2961.9962	33.14	4.44	-42.15	50.48	45.91	74.00	28.09	Pass	Н	PK	
2	4804.0000	34.50	4.55	-40.66	54.90	53.29	74.00	20.71	Pass	Н	PK	
3	7206.0000	36.31	5.81	-41.02	43.99	45.09	74.00	28.91	Pass	Н	PK	
4	9608.0000	37.64	6.63	-40.76	42.52	46.03	74.00	27.97	Pass	Н	PK	
5	12010.000	39.31	7.60	-41.21	44.11	49.81	74.00	24.19	Pass	Н	PK	
6	13796.719	39.58	8.45	-41.23	46.07	52.87	74.00	21.13	Pass	Н	PK	
7	3019.0013	33.21	4.89	-42.11	50.34	46.33	74.00	27.67	Pass	V	PK	
8	4804.0000	34.50	4.55	-40.66	50.78	49.17	74.00	24.83	Pass	V	PK	
9	7206.0000	36.31	5.81	-41.02	43.82	44.92	74.00	29.08	Pass	V	PK	
10	9608.0000	37.64	6.63	-40.76	42.87	46.38	74.00	27.62	Pass	V	PK	
11	12010.000	39.31	7.60	-41.21	42.76	48.46	74.00	25.54	Pass	V	PK	
12	14929.795	40.37	9.11	-42.31	45.67	52.84	74.00	21.16	Pass	V	PK	

Mode	Mode:			π/4DQPSK Transmitting				Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3092.0061	33.24	4.74	-42.07	50.13	46.04	74.00	27.96	Pass	Н	PK	
2	4882.0000	34.50	4.81	-40.60	50.89	49.60	74.00	24.40	Pass	Н	PK	
3	7323.0000	36.42	5.85	-40.92	43.60	44.95	74.00	29.05	Pass	Н	PK	
4	9764.0000	37.71	6.71	-40.62	42.35	46.15	74.00	27.85	Pass	Н	PK	
5	12205.000	39.42	7.67	-41.16	43.77	49.70	74.00	24.30	Pass	Н	PK	
6	13647.709	39.49	8.13	-41.20	45.90	52.32	74.00	21.68	Pass	Н	PK	
7	2982.7983	33.17	4.50	-42.13	50.35	45.89	74.00	28.11	Pass	V	PK	
8	4882.0000	34.50	4.81	-40.60	50.16	48.87	74.00	25.13	Pass	V	PK	
9	6258.2172	35.85	5.37	-41.14	45.64	45.72	74.00	28.28	Pass	V	PK	
10	7323.0000	36.42	5.85	-40.92	43.77	45.12	74.00	28.88	Pass	V	PK	
11	9764.0000	37.71	6.71	-40.62	41.83	45.63	74.00	28.37	Pass	V	PK	
12	12205.000	39.42	7.67	-41.16	43.16	49.09	74.00	24.91	Pass	V	PK	

Page 88 of 101

Mode	· ·		#/4DOI	DSK Tran	emitting		Channel:	2490	2480		
Mode	5.		π/4DQPSK Transmitting				Chariner.		2400		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2951.7952	33.12	4.41	-42.15	50.77	46.15	74.00	27.85	Pass	Н	PK
2	4960.0000	34.50	4.82	-40.53	49.83	48.62	74.00	25.38	Pass	Н	PK
3	6329.2219	35.87	5.46	-41.16	45.59	45.76	74.00	28.24	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	43.54	45.11	74.00	28.89	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	41.07	45.15	74.00	28.85	Pass	Н	PK
6	12400.000	39.54	7.86	-41.12	44.24	50.52	74.00	23.48	Pass	Н	PK
7	2947.3947	33.12	4.40	-42.15	50.93	46.30	74.00	27.70	Pass	V	PK
8	4960.0000	34.50	4.82	-40.53	51.24	50.03	74.00	23.97	Pass	V	PK
9	7440.0000	36.54	5.85	-40.82	43.21	44.78	74.00	29.22	Pass	V	PK
10	9920.0000	37.77	6.79	-40.48	41.79	45.87	74.00	28.13	Pass	V	PK
11	12400.000	39.54	7.86	-41.12	44.21	50.49	74.00	23.51	Pass	V	PK
12	14300.753	40.00	8.62	-41.87	45.74	52.49	74.00	21.51	Pass	V	PK

Page 89 of 101

Mode	e:		8DPSK	Transmit	ting		Channel:		2402	2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	4804.0000	34.50	4.55	-40.66	54.11	52.50	74.00	21.50	Pass	Н	PK	
2	6082.2055	35.82	5.24	-41.11	45.10	45.05	74.00	28.95	Pass	Н	PK	
3	7206.0000	36.31	5.81	-41.02	43.57	44.67	74.00	29.33	Pass	Н	PK	
4	9608.0000	37.64	6.63	-40.76	42.42	45.93	74.00	28.07	Pass	Н	PK	
5	12010.000	39.31	7.60	-41.21	43.11	48.81	74.00	25.19	Pass	Н	PK	
6	15066.804	40.47	9.51	-42.41	45.92	53.49	74.00	20.51	Pass	Н	PK	
7	2985.3985	33.18	4.51	-42.14	50.05	45.60	74.00	28.40	Pass	V	PK	
8	4804.0000	34.50	4.55	-40.66	49.53	47.92	74.00	26.08	Pass	V	PK	
9	7206.0000	36.31	5.81	-41.02	44.00	45.10	74.00	28.90	Pass	V	PK	
10	9608.0000	37.64	6.63	-40.76	43.00	46.51	74.00	27.49	Pass	V	PK	
11	12010.000	39.31	7.60	-41.21	42.92	48.62	74.00	25.38	Pass	V	PK	
12	13667.711	39.50	8.21	-41.20	46.10	52.61	74.00	21.39	Pass	V	PK	

Mode	Mode:			8DPSK Transmitting				Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2791.3791	32.87	4.22	-42.23	50.66	45.52	74.00	28.48	Pass	Н	PK	
2	4882.0000	34.50	4.81	-40.60	54.15	52.86	74.00	21.14	Pass	Н	PK	
3	7323.0000	36.42	5.85	-40.92	44.10	45.45	74.00	28.55	Pass	Н	PK	
4	9764.0000	37.71	6.71	-40.62	41.95	45.75	74.00	28.25	Pass	Н	PK	
5	12205.000	39.42	7.67	-41.16	43.18	49.11	74.00	24.89	Pass	Н	PK	
6	15022.801	40.42	9.22	-42.35	46.24	53.53	74.00	20.47	Pass	Н	PK	
7	2938.3938	33.10	4.40	-42.16	50.55	45.89	74.00	28.11	Pass	V	PK	
8	4882.0000	34.50	4.81	-40.60	50.06	48.77	74.00	25.23	Pass	V	PK	
9	7323.0000	36.42	5.85	-40.92	42.99	44.34	74.00	29.66	Pass	V	PK	
10	9764.0000	37.71	6.71	-40.62	42.10	45.90	74.00	28.10	Pass	V	PK	
11	12205.000	39.42	7.67	-41.16	43.04	48.97	74.00	25.03	Pass	V	PK	
12	15489.832	40.89	9.19	-42.98	46.64	53.74	74.00	20.26	Pass	V	PK	

_			~ .
Page	90	ot 1	()1

Mode	Mode:			8DPSK Transmitting				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2821.7822	32.91	4.24	-42.22	50.91	45.84	74.00	28.16	Pass	Н	PK	
2	4960.0000	34.50	4.82	-40.53	51.28	50.07	74.00	23.93	Pass	Н	PK	
3	7440.0000	36.54	5.85	-40.82	43.58	45.15	74.00	28.85	Pass	Н	PK	
4	9920.0000	37.77	6.79	-40.48	42.21	46.29	74.00	27.71	Pass	Н	PK	
5	12400.000	39.54	7.86	-41.12	43.77	50.05	74.00	23.95	Pass	Н	PK	
6	14296.753	40.00	8.62	-41.87	46.38	53.13	74.00	20.87	Pass	Н	PK	
7	3576.0384	33.46	4.39	-41.66	48.87	45.06	74.00	28.94	Pass	V	PK	
8	4960.0000	34.50	4.82	-40.53	52.20	50.99	74.00	23.01	Pass	V	PK	
9	7440.0000	36.54	5.85	-40.82	43.85	45.42	74.00	28.58	Pass	V	PK	
10	9920.0000	37.77	6.79	-40.48	41.91	45.99	74.00	28.01	Pass	V	PK	
11	12400.000	39.54	7.86	-41.12	43.46	49.74	74.00	24.26	Pass	V	PK	
12	15077.805	40.48	9.54	-42.43	45.72	53.31	74.00	20.69	Pass	V	PK	

Note

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

