Universitatea Tehnică a Moldovei

Facultatea Calculatoare, Informatică și Microelectronică Specialitatea Tehnologii Informaționale

Raport

la lucrarea de laborator nr. 4

Tema: "Compunerea oscilațiilor armonice"

Disciplina: "Mecanică teoretică"

Varianta 3

A efectuat: A verificat: Student grupa TI-231 FR
Asistent universitar

Apareci Aurica Andronic Silvia

Cuprins

1. Cadru teoretic	2
2. Repere teoretice	
3. Mersul lucrării	2
3.1 Exercitiul 1	2
3.2 Exercitiul 2	2
4. Concluzii	2

1. Cadru teoretic

Scopul lucrării: Crearea file-funcțiilor și file-programelor pentru construirea graficelor cu ajutorul comenzii plot, pentru oscilații armonice necoerente și coerente în sistemul MATLAB.

Sarcina I: De ales două oscilații armonice de aceiași direcție (x 1 și x2), cu frecvențele ciclice $\omega 1$ și $\omega 2$, cu fazele inițiale $\alpha 1$ și $\alpha 2$, și cu amplitudinile A1 și A2. De compus (de adunat) aceste oscilații (x = x1 + x2, oscilația rezultantă), construind graficele respective cu inscripții informative pentru următoarele cazuri:

- a) Oscilații armonice necoerente ($\omega 1 \neq \omega 2$). De scris file-funcția de timp, ce ar construi în o fereastră grafică pe axe comune graficele funcțiilor x1(t), x2(t) și x(t). De analizat rezultatele obținute.
- b) Oscilații armonice coerente ($\omega 1 = \omega 2$). De scris file-funcția de timp, ce ar construi în o fereastră grafică pe axe comune graficele funcțiilor x1(t), x2(t) și x(t). De analizat rezultatele obținute.
- c) Oscilații armonice necoerente ($\omega 1 \ \omega 2$, oscilație de tip bătaie). De scris file-funcția de timp, ce ar construi în o fereastră grafică graficul funcției x(t). De determinat caracteristicile cinematice ale oscilației de tip bătaie.
- d) Oscilații armonice coerente ($\omega I = \omega 2$). De scris o file-funcție cu parametrii de intrare numărul figurii și diferența de faze $\alpha = \alpha 1 \alpha 2$, ce ar construi, în o fereastră grafică, graficele funcțiilor xI(t), x2(t) și x(t). pentru $\alpha = 0$; $\frac{\pi}{6}$; $\frac{\pi}{4}$; $\frac{\pi}{3}$; $\frac{\pi}{2}$; $\frac{2\pi}{3}$; $\frac{3\pi}{4}$; $\frac{5\pi}{6}$; π pe axe separate (fereastra grafică se divizează în 9 sectoare, fiecare cu axele sale, pentru fiecare valoare ale parametrului α).

Sarcina II: Punctul material ia parte la două oscilații armonice de direcții reciproc perpendiculare $(x \ \text{si} \ y)$ cu frecvențele ciclice $\omega 1 \ \text{si} \ \omega 2$, cu fazele inițiale $\alpha 1 \ \text{si} \ \alpha 2 \ \text{si}$ amplitudinile A1 $\ \text{si} \ A2$. Este necesar de selectat aceste oscilații în următoarele cazuri:

- a) $\omega 1 = \omega 2$. De scris o file-funcție cu parametrii de intrare numărul figurii și diferența de faze $\alpha = \alpha 1 \alpha 2$, ce ar construi, pe axe separate, în o fereastră grafică, traiectoriile mișcării punctului (figurile lui Lissajous), pentru $\alpha = 0$; $\frac{\pi}{6}$; $\frac{\pi}{4}$; $\frac{\pi}{3}$; $\frac{\pi}{2}$; $\frac{2\pi}{3}$; $\frac{3\pi}{4}$; $\frac{5\pi}{6}$; π b) $\omega_1 \neq \omega_2$, $\frac{\omega_1}{\omega_2} = \frac{n_1}{n_2}$, $n_1, n_2 = 1$, 2, 3,, $\alpha_1 = \alpha_2 = \alpha \frac{\pi}{2}$; De scris o file-funcție cu parametrii de intrare
- b) $\omega_1 \neq \omega_2$, $\frac{\omega_1}{\omega_2} = \frac{n_1}{n_2}$, $n_1, n_2 = 1, 2, 3, ...$, $\alpha_1 = \alpha_2 = \alpha \frac{\pi}{2}$; De scris o file-funcție cu parametrii de intrare numărul figurii și parametru α , ce ar construi, pe axe separate, în o fereastră grafică, traiectoriile mișcării punctului (figurile lui Lissajous), pentru $\alpha = 0$; $\frac{\pi}{6}; \frac{\pi}{4}; \frac{\pi}{3}; \frac{\pi}{2}; \frac{2\pi}{3}; \frac{3\pi}{4}; \frac{5\pi}{6}; \pi$

2. Repere teoretice

Fie că un proces oscilatoriu este descris de o mărime scalară variabilă cu timpul. Acest proces se numește periodic, dacă orice valoari ale mărimii oscilatorii se repetă după intervale egale de timp, adică există o asemenea valoare minima a timpului \mathbf{T} , că pentru orice \mathbf{t} se îndeplinește condiția: $\mathbf{x}(\mathbf{t} + \mathbf{T}) = \mathbf{x}(\mathbf{t})$

Mărimea T se numește **perioada** procesului oscilatoriu. Mărimea inversă a lui T se numște frecvența procesului oscilatoriu și se notează cu f. f = 1/T. Frecvența se măsoară în Hz(Hertz). În tehnică se folosește noțiunea de frecvență circulară (pulsația), adică numărul de oscilații în 2π unități de timp (secunde) care se notează cu ω . Se măsoară în rad/s. $x = Asin(\omega t + \alpha)$

În mișcarea oscilatorie armonică valoarea la un moment dat al parametrului x se numește elongație. Valoarea maximă a elongației, adică A, se numește amplitutidea, $\omega t + \alpha - faza$ oscilației, α - faza inițială, ω - pulsația Sub compunerea oscilațiilor se înțelege determinarea oscilației rezultante dacă sistema oscilatorie simultan participă la mai multe procese oscilatorii.

a) Compunerea oscilațiilor cu aceeași direcție: a=a1+a2

$$a = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos[(\omega_2 - \omega_1)t + (\alpha_2 - \alpha_1)]} \quad tg(\omega t + \alpha) = \frac{a_y}{a_x} = \frac{a_1\sin(\omega_1 t + \alpha_1) + a_2\sin(\omega_2 t + \alpha_2)}{a_1\cos(\omega_1 t + \alpha_1) + a_2\cos(\omega_2 t + \alpha_2)}$$

b) Compunerea oscilațiilor cu direcții recirpoc perpendiculare:

Oscilații cu frecvențe egale: $\omega 1 = \omega 2 = \omega$

Oscilații cu frecvențe diferite: ω1≠ω2

3. Mersul lucrării

3.1 Exercitiul 1

a) Oscilații armonice necoerente ($\omega 1 \neq \omega 2$)

Oscilațiile armonice necoerente sunt acelea în care două sau mai multe oscilații au frecvențe diferite. În acest caz, ω1 (frecvența primei oscilații) și ω2 (frecvența celei de-a doua oscilații) nu sunt egale, astfel încât oscilațiile nu sunt sincronizate.

Deoarece frecvențele sunt diferite, oscilațiile vor prezenta variații în timp, iar rezultanta x(t) va arăta ca o suprapunere a două oscilații cu perioade diferite, ducând la un comportament complex în timp.

b) Oscilații armonice coerente ($\omega 1 = \omega 2$)

Oscilațiile armonice coerente apar atunci când două oscilații au aceeași frecvență. Aceste oscilații sunt sincronizate, dar pot avea faze și amplitudini diferite.

Pentru oscilații coerente, rezultanta x(t) va fi o altă oscilație armonică cu frecvența comună ω , dar cu o amplitudine Și fază care depind de valori.

c) Oscilații armonice necoerente (ω1 ω2, - oscilație de tip bătaie).

Bătăile sunt un fenomen specific oscilațiilor armonice necoerente în care frecvențele ω1 Şi ω2 sunt apropiate una de alta, iar suprapunerea acestora creează o variație lentă a amplitudinii.

```
/MATLAB Drive/fbataie.n
  function[x1,x2,x3]=fbataie(t,domega)
                                                   t=0:pi/20:80;
  a1=20;
                                                   n=0;
  a2=25;
                                                   for domega = [0.04, 0.07, 0.1];
  omega1=3;
                                                    n=n+1;
  omega2=omega1+domega;
                                                   [x1,x2,x3] = fbataie(t,domega);
  alfa1=1;
                                                   figure(n);
  alfa2=1;
                                                   axis equal
  x1=a1*sin(omega1*t+alfa1);
                                                   plot(t,x3,'-g','LineWidth',1);
  x2=a2*sin(omega2*t+alfa2);
                                                   legend('x1+x2');
  x3=x1+x2;
                                                   xlabel('t, sec'); ylabel('x, m');
  end
                                                   title({'Oscilatie-bataie cu diferenta
                                                   dintre pulsatie de ' domega 'radiani'});
```


d) Oscilații armonice coerente ($\omega 1 = \omega 2$)

Aceste oscilații au aceeași frecvență, dar diferența de fază α între ele influențează modul în care se suprapun. Diferența de fază α este dată de diferența dintre fazele individuale α 1 α 1 α 1 α 2 α 2 . În funcție de valoarea α , rezultanta α 1 va arăta oscilații diferite. Când α = 0, oscilațiile sunt în fază α amplitudinile se adaugă maxim, iar pentru != 0 rezultatul poate fi mai complex.

3.2 Exercitiul 2

a) $\omega 1 = \omega 2$

4. Concluzii

end

In cadrul acestui laborator, am explorat cum oscilațiile armonice pot interacționa pentru a produce fenomene complexe, cum ar fi interferența și bătăile. Graficele construite au arătat cum frecvențele și fazele inițiale ale oscilațiilor influențează comportamentul rezultant, iar figurile lui Lissajous au oferit o reprezentare vizuală a oscilațiilor pe două direcții perpendiculare. Aceste experimente au oferit o înțelegere mai profundă a fenomenelor ondulatorii.