CSCI596 (Scientific Computing and Visualization) Final Project Anything Related to What You Have Learned in the Class

Due: December 13 (Wed), 2023

Create a GitHub repository [1,2] containing your final project by Wednesday, December 13 — submit the URL of your GitHub repository to Blackboard (for a team project, every team member needs to submit the identical URL of the team repository individually for grading purpose). In addition, a brief (~one minute) informal presentation on your project is required in class on November 27 (Mon), November 29 (Wed) or December 1 (Fri). The presentation is just an outline of the project — what is the problem, what methods were used, and what are the expected results — you are only allowed to show your preliminary GitHub repository. Also, please discuss with me to agree on the topic of your project (during office hours) by Friday, November 17.

Project: Choose one of the following two options. The subject can be anything related to simulations such as molecular dynamics (MD), parallel computing or scientific visualization. If you are a Ph.D. student, try to enhance your own thesis research using techniques you have learned in this class. If you are a MS student, pick a compelling topic such that your GitHub repository becomes a good showcase in your job or Ph.D. application.

- I PROGRAMMING: Write a program that is related to one of the subjects covered in the class. The following is a list of possible topics (just to give you an idea, please come up with your own topic).
 - Enhance the parallel MD program, pmd.c.
 - > Traverse the linked-list cells according to the Hilbert or Morton curve to enhance the data locality and cache performance.
 - > Implement simple load balancing based on movable but rigid partition boundaries.
 - > Write a metacompting-enabled MD program based on processor grouping and message renormalization.
 - Optimize the performance of the hybrid MPI + OpenMP MD program or write a hybrid MPI + OpenMP + CUDA (or SYCL) program.
 - Add new features to the OpenGL visualization program, atomv.c. For example, you can color-code
 the stress tensor of each atom and trace the trajectory of one of the atoms. Speed up the code by
 reducing the number of vertices to represent a sphere, for further atoms from the viewer.
 - Write an OpenGL program to animate simulation in your own discipline.
- II PROPOSAL: Write a short research proposal containing novel extensions of any of the techniques you have learned in the class. The proposal should contain: Goal, specific objectives, current state of the knowledge/previous work, techniques to be used, and expected results.

Guidelines

- I. PROGRAMMING: Use your imagination; learn a new language (e.g., SYCL, TensorFlow) to make yourself marketable.
- II. PROPOSAL
 - 1. Goal: What's the "big" problem? Why important? Statement of the problem: If you can "clearly" state the problem, it often automatically suggests a solution.
 - 2. Specific objectives: Step-by-step path to the goal.
 - 3. Current state of the knowledge/previous work.
 - 4. Techniques to be used: How to solve it? Big idea? Well-planned detail?
 - 5. Expected results: Research full of surprises but needs hypothesis/test; broader impacts—so what?

References

- https://github.com/ http://swcarpentry.github.io/git-novice/ 2.