Homework 3 Design for Testability with DFT Compiler and TetraMAX

Dr. Yu-Cheng Fan

National Taipei University of Technology, Taipei, Taiwan

Outline

- DFT Concept
- TetraMAX Overview

DFT Concept

- Design For Testability
- What is Testing
 - Testing is a process of determining whether a device is good (function correctly) or not.
 - Testing includes <u>test pattern generation</u>, <u>application</u> and <u>output</u> evaluation.
- Why testing?
 - In order to guarantee the product quality, reliability, performances, etc.
 - Cost is the most important.

Test Circuit Design Flow

Overview of DFT Compiler Flow

Automatic Test Pattern Generator(ATPG)

- Generate the test patterns for target fault model and keep the number of test pattern as small as possible.
- We will use Synopsys Tetramax EDA tool to automatically generate test pattern.
- Besides, "fault coverage" of the testing circuits can also be estimated.

ATPG Flow in TetraMAX

TetraMAX ATPG Command Modes

BUILD mode:

- Initial mode
- Read in design, libraries, models
- Construct ATPG simulation model in preparation for DRCs

DRC mode:

- Testability Design Rule Checks (DRCs) are performed
- Successful conclusion of DRCs sets mode to "TEST"

■ TEST mode:

- ATPG, Fault Simulation, Fault Diagnosis are performed
- Test program files, simulation testbenches, etc. written out

Test Pattern Generation

- \blacksquare TA/0={10}, TA/1={00}
- \blacksquare TB/0={01}, TB/1={00}
- \blacksquare Ty/0={01}or{10}or{11},Ty/1={00}
- $T = \{00,01,10\}$

Α	В	Υ	Y(A/0)	Y(A/1)	Y(B/0)	Y(B/1)	Y(Y/0)	Y(Y/1)
0	0	0	0	1	0	1	0	1
0	1	1	1	1	0	1	0	1
1	0	1	0	1	1	1	0	1
1	1	1	1	1	1	1	0	1

Fault Coverage

■ Fault coverage (FC) is the measure of the ability of a test set to detect a given class of faults that may occur on the device under test (DUT).

$$FC = \frac{\text{# faults detected}}{\text{# faults in fault list}}$$

Test Pattern (A,B)	Faults Detected	Fault Coverage
{(0,0)}	A/1, B/1, Y/1	3/6= 50%
{(0,1)}	B/0, Y/0	2/6=33.33%
{(1,1)}	Y/0	1/6=16.67%
{(0,0),(0,1),(1,1)}	all	6/6= 100%

Lab

- Objective
 - Understand the baseline DFT Compiler flow.
 - Learn how to use TrtraMAX after we generated the STIL procedure file and synthesized netlist from DFT Compiler.

Getting Start

- Enter the directory (open terminal)
 - cd electronic_circuit_102

```
[t101418095@is1abx6~]$ cd electronic_circuit_102
```

- Copy files
 - cp -r /home/standard/electronic_circuit_102/lab7.
- Enter the directory
 - cd lab7
- Invoke the Design Vision XG mode
 - dv

Read Design

Read files

DFT Compiler Flow(1/5)

Create test protocol and Perform pre-DFT DRC

- create_port -dir in SCAN_IN
- create_port -dir out SCAN_OUT
- create_port -dir in SCAN_EN
- set_dft_signal -view exist -type ScanClock -timing {45 55} port clock
- set_dft_signal -view exist -type Reset -active_state 1 -port reset
- create_test_protocol
- dft_drc

DFT Compiler Flow(2/5)

- Perform Test-Ready Compile
 - compile -scan -map_effort high -area_effort high boundary_optimization

DFT Compiler Flow(3/5)

Specify test components

- set_scan_configuration -chain_count 1 -clock_mixing
 mix_clocks_not_edges -internal_clocks single -add_lockup
 false
- set_dft_signal -view spec -port SCAN_IN -type ScanDataIn
- set_dft_signal -view spec -port SCAN_OUT -type
 ScanDataOut
- set_dft_signal -view spec -port SCAN_EN -type ScanEnable active_state 1
- set_scan_path chain1 -scan_data_in SCAN_IN scan_data_out SCAN_OUT

DFT Compiler Flow(4/5)

- Preview the scan synthesis, if it is ok, then insert scan.
 - preview_dft -show all
 - insert_dft

DFT Compiler Flow(5/5)

- Check scan rules after scan inserting and report the result.
 - dft_drc -coverage_estimate

What was the test coverage reported? _____ %

- How many scan chains did you get? _____
 - report_scan_path -view existing_dft -chain all
- How many flip-flops are in each chain? _____
 - report_scan_path -view existing_dft -cell all

Save File For TrtraMAX

- Save synthesized netlist & STIL procedure file
 - write -format verilog -hier -out chip_scan.vg
 - write_test_protocol -out chip_scan.spf
- Now you can close Design Vision

Open TetraMAX

- Invoke TetraMAX
 - □ tmax &
- Set messages
 - set_messages -log chip.log -replace

```
BUILD-T> set_messages -log chip.log -replace
```

TetraMAX(1/3)

- Read in library and netlist file
 - read_netlist tsmc18.v
 - read_netlist chip_scan.vg
- Build the fault simulation model
 - run_build_model alu

TetraMAX(2/3)

- Run design rule checking using STIL procedure file
 - set_rules C4 ignore
 - run_drc chip_scan.spf
- Add fault list
 - add_faults -all

TetraMAX(3/3)

Run ATPG

- set_pat -internal
- run_atpg –auto
- set_faults -fault_coverage
- set_faults -summary verbose
- report_summaries

How many patterns needed?	
---------------------------	--

- What is the total fault count?
- What is the test coverage? _____ %
- What is the fault coverage? ______ %

Uncollapsed Stuck Fault Sum	_	-			
fault class	code	#faults			
Detected detected_by_simulation detected_by_implication Possibly detected Undetectable undetectable-redundant ATPG untestable atpg_untestable-not_detected Not detected	DI PT UD UR AU AN ND	1130 (1060) (70) 0 7 (7) 5 (5)			
total faults test coverage fault coverage Pattern Summary Report #internal patterns #basic_scan patterns					

Answer

