Universidad Nacional Autónoma de México

ELECTRODINÁMICA CLÁSICA

Semestre 2016-II

7 de abril de 2016

Tarea # 6. Ondas electromagnéticas planas y propagación de ondas.

 $\begin{array}{c} \textit{Autor:} \\ \text{Favio V\'AZQUEZ}^{\dagger} \end{array}$

 $^{^\}dagger favio.vazquez@correo.nucleares.unam.mx$

Problema 1. Problema 7.2 de Classical Electromagnetic Radiation de Jackson [1].

Una onda plana incidente en una interfaz de capas como se muestra en la figura. Los índices de refracción de los tres medios no impermeables son n_1 , n_2 y n_3 . El grosor de la capa intermedia es d. Cada uno de los otros medios es semi-infinito.

(a) Calcule los coeficientes de transmisión y reflexión (las tasas de del flujo de Poynting transmitida y reflejada al flujo incidente), y esboce su comportamiento como función de la frecuencia para $n_1 = 1$, $n_2 = 2$, $n_3 = 3$; $n_1 = 3$, $n_2 = 2$, $n_3 = 1$ y $n_1 = 2$, $n_2 = 4$, $n_3 = 1$.

(b) El medio n_1 es parte de un sistema óptico (e.g., una lente); el medio n_3 es aire $(n_3 = 1)$. Se desea colocar un revestimiento óptico (medio n_2) sobre la superficie para que no haya reflexión para ondas de frecuencia ω_0 . ¿Qué grosor d e índice de refracción n_2 son necesarios?

Problema 2. Problema 7.3 de Classical Electromagnetic Radiation de Jackson [1].

Dos losas planas semi-infinitas con el mismo dieléctrico sin pérdidas, uniformidad, isotropía, no-permeabilidad con índice de refracción n son paralelas, y están separadas por una brecha de aire (n=1) de ancho d. Una onda electromagnética de frecuencua ω incide en la brecha desde una de las losas con un ángulo de incidencia i. Para una polarización lineal tanto paralela como perpendicular al plano de incidencia,

- (a) calcule la tasa de potencia transmitida a la segunda losa con respecto al poder incidente y la tasa de poder reflejado con respecto al incidente;
- (b) para un *i* mayor que el ángulo crítico para reflexión interna total, esboce la tasa de potencia transmitida con respecto a la potencia incidente como una función de *d* medido en unidades de longitud de onda en la brecha.

Problema 3. Problema 7.5 de Classical Electromagnetic Radiation de Jackson [1].

Una onda electromagnética polarizada $\mathbf{E} = \mathbf{E}_i e^{i\mathbf{k}} \cdot \mathbf{x} - i\omega t$ incide normalmente sobre una lámina plana uniforme de una excelente conducción ($\omega \gg \omega \epsilon_0$) con un grosor de D. Asumiendo que en el espacio y en la lámina conductora $\mu/\mu_0 = \epsilon/\epsilon_0 = 1$, discuta la reflexión y transmisión de la onda incidente.

(a) Muestre que las amplitudes de las onda reflejada y transmitida, correctas a primer orden en $(\epsilon_0 \omega/\sigma)^1/2$, son

$$\frac{E_r}{E_i} = \frac{-(1 - e^{-2\lambda})}{(1 - e^{-2\lambda}) + \gamma(1 + e^{-2\lambda})}$$

$$\frac{E_t}{E_i} = \frac{2\gamma e^{-\lambda}}{(1 - e^{-2\lambda}) + \gamma(1 + e^{-2\lambda})}$$

donde

$$\gamma = \sqrt{\frac{2\epsilon_0\omega}{\sigma}}(1-i) = \frac{\omega\delta}{c}(1-i)$$

$$\lambda = (1 - i)D/\delta$$

y $\delta = \sqrt{2/\omega\mu\sigma}$ es la profundidad de penetración.

- (b) Verifique que para un grosor igual a cero y un grosor infinito se obtienen los resultados limitantes apropiados.
- (c) Muestre que, excepto para láminas de muy poco grosor, el coeficiente de transmisión es

$$T = \frac{8(\text{Re}\gamma)^2 e^{-2D/\gamma}}{1 - 2e^{-2D/\gamma}\cos 2D/\delta) + e^{-4/\gamma}}$$

Esboce log T como una función de (D/δ) , asumiendo que Re $\gamma=10^{-2}$. Defina "grosor muy pequeño".

Problema 4. Problema 7.14 de Classical Electromagnetic Radiation de Jackson [1]. (Es el 7.9 de la 2da ed.)

Un modelo simple para la propagación de ondas de radio en la atmósfera de la Tierra o ionosfera consiste en una tierra plana en z=0 y un medio no uniforme con $\epsilon=\epsilon(z)$ para z>0. Considere la ecuaciones de Maxwell bajo la suposición de que los campos son independientes de y y pueden escribirse como funciones de z por $e^{i(kx-\omega t)}$.

(a) Muestre que la ecuación de onda que gobierna la propagación para z > 0 es

$$\frac{d^2F}{dz^2} + q^2(z)F = 0,$$

donde

$$q^2(z) = \omega^2 \mu_0 \epsilon(z) - k^2$$

y $F=E_y$ para la polarización $\mathit{horizontal},$ y

$$q^{2}(z) = \omega^{2} \mu_{0} \epsilon(z) + \frac{1}{2\epsilon} \frac{d^{2} \epsilon}{dz^{2}} - \frac{3}{4\epsilon^{2}} \left(\frac{d\epsilon}{dz}\right)^{2} - k^{2}$$

con $F = \sqrt{\epsilon/\epsilon_0} E_z$ para la polarización vertical.

- (b) Use la aproximación WKB para tratar la propagación de ondas dirigidas verticalmente hacia la ionosfera (k=0), asumiendo que la constante dieléctrica está dad por (7.59) con una frecuencia de plasma $\omega_p(z)$ gobernada por una densidad electrónica como se muestra en la figura 7.11. Verifique que los argumentos cualitativos de la sección 7.6 se mantienen, con discrepancias en detalle solo para $\omega_{p,\text{max}}$.
- (c) Usando los resultados WKB de la parte (b) y los conceptos de propagación de un pulso de la sección 7.8, define una altura efectiva de la ionosfera $h'(\omega)$ calculando el tiempo T para un pulso de frecuencia dominante ω que viaja hacia arriba y se refleja ($h' \equiv cT/2$). [La aproximación WKB es discutida en la mayoría de los libros de mecánica cuántica].

Referencias

[1] J. Jackson, Classical Electrodynamics, 3ra edición. John Wiley and Sons, Inc. 1999.

[2] D. Griffiths, Indtroduction to Electrodynamics, 4ta edición. Pearson, 2013.