

TFG del Grado en Ingeniería Informática

título del TFG Documentación Técnica

Presentado por José Luis Pérez Gómez en Universidad de Burgos — 1 de julio de 2024 Tutor: Bruno Baruque

Índice general

Índice general	i
Índice de figuras	iii
Índice de tablas	iv
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal	
A.3. Estudio de viabilidad	
Apéndice B Especificación de Requisitos	9
B.1. Introducción	9
B.2. Objetivos generales	9
B.3. Catálogo de requisitos	10
B.4. Especificación de requisitos	12
Apéndice C Especificación de diseño	19
C.1. Introducción	19
C.2. Diseño de datos	21
C.3. Diseño procedimental	21
C.4. Diseño arquitectónico	22
Apéndice D Documentación técnica de programación	23
D.1. Introducción	23
D.2. Estructura de directorios	
D 3 Manual del programador	23

II	Índice general

pénd	ice E Documentación de usuario
E.1.	Introducción
E.2.	Requisitos de usuarios
E.3.	Instalación
E.4.	Manual del usuario

Índice de figuras

A.1.	Commits realizados durante la realización del TFG				2
A.2.	Additions realizados durante la realización del TFG				3
A.3.	Deletions realizados durante la realización del TFG				3
A.4.	Commits-Etapa 1				4
A.5.	Commits-Etapa 2				5
A.6.	Commits-Etapa 3		•		6
C.1.	Cantidad de elementos para la característica Key				20
	Análisis característica Timestamp del conjunto de datos				

Índice de tablas

B.1.	CU-001	Iniciar notebook principal (Main)	13
B.2.	CU-002	Ejecución celda 1. Crear un entorno virtual	13
B.3.	CU-003	Ejecución celdas (Notebooks Preparatorios)	14
B.4.	CU-004	Ejecución celdas cargar de archivo CSV	15
B.5.	CU-005	Ejecución celdas (Notebooks análisis y preprocessing) .	16
B.6.	CU-006	Ejecución celdas (Notebooks experimentos)	17
B.7.	CU-007	Ejecución celdas (Notebook resultados)	18

Apéndice A

Plan de Proyecto Software

A.1. Introducción

La Universidad de Burgos, dentro del área de conocimiento de Ingeniería de Sistemas y Automática, dispone de un interfaz BCI (Brain Computer Interface) para la captación de señales cerebrales. Empleando ese interfaz se han realizado diferentes experimentos que han permitido recoger información de la actividad cerebral mientras los usuarios ejecutaban diferentes tareas cotidianas.

Este Trabajo de Fin de Grado (TFG) tiene como objetivo el análisis de la información obtenida en esos experimentos. Se entrenarán diferentes algoritmos para clasificar la acción realizada por el usuario a partir de las señales generadas por el BCI. Con este propósito, se evaluarán diferentes algoritmos de procesado de señales y de machine/deep learning para la clasificación automática de señales.

Los datos aportados son de tipo EEG (Electroencefalografía) para la realización del TFG son datos referentes a experimentos basados en pulsaciones sobre teclas de un teclado: arriba, abajo, izquierda, derecha.

El análisis de estos datos y su evaluación en diferentes algoritmos esta basada en predecir qué teclas del teclado se han pulsado según las señales captadas con la interfaz BCI.

Para esto no ha habido una planificación como tal registrada en Github, pero sí una progresión definida en los commits de código generados durante la composición del TFG.

A.2. Planificación temporal

En la reunión inicial con los tutores definimos utilizar Python para realizar el código y una serie de aprendizajes básicos para poder acometer el TFG sin problemas.

En las siguientes reuniones se definieron algoritmos y experimentos a realizar con los datos EGG aportados.

Desde el principio del proyecto debido a las circunstancias personales del alumno no se ha podido realizar metodología Scrum, pero sí se produjeron estas lineas temporales:

Figura A.1: Commits realizados durante la realización del TFG

Figura A.2: Additions realizados durante la realización del TFG

Figura A.3: Deletions realizados durante la realización del TFG

Se pueden dividir en 3 grandes etapas:

- Etapa de estudio: (Febrero a Marzo)
- Etapa de desarrollo: (Abril a Mayo)
- Etapa de desarrollo y optimización: (Junio a Julio)

Figura A.4: Commits-Etapa 1

- Realización de cursos online propuestos por los tutores Bruno Baruque y Jesús Enrique Sierra. Tutorial de Inicio de Pandas, Visualización de Datos, Trabajo con series temporales
- Análisis del conjunto de datos, en archivo csv, proporcionado por los tutores. Creación esqueleto para la estructura el TFG en Github. Definición y creación de los primeros notebooks, principalmente análisis del conjunto de datos. Definición y creación de los primeros notebooks de machine learning, al final de la etapa. Comentar código e imprimir comentarios en los notebooks.

Los principales problemas o obstáculos que me encontré fueron principalmente los siguientes:

- Tiempo invertido en la realización de los cursos. - Estructuración del código. Me tomo mucho tiempo poder llegar a definir como quería mostrar el código, me decidí por un notebook principal que realizara llamadas al resto de notebooks con códigos mas específicos para cada modelo o experimento a realizar. - Plotteos y definiciones básicas como normalizar o escalar el conjunto de datos.

Etapa de desarrollo: (Abril a Mayo)

Figura A.5: Commits-Etapa 2

- Cambio de análisis del conjunto de datos, prepocessing.
- Definición y creación notebooks de machine learning.
- Definición y creación notebooks de deep learning.

Los problemas que me encontré en esta etapa fueron:

- Compilación modelos depp learning. Al ejecutar los primeros modelos de deep learning los datos normalizados me proporcionaban errores de compilación con modelos SRNN o LSTM, cambiando a datos escalados y shapeando los modelos pudieron ejecutarse.
- Utilización de ventanas temporales en los modelos deep learning. En esta etapa no supe identificar este requerimiento por parte de los tutores y estuve implementando varias formas de poder utilizar ventanas temporales en el código.
 - Utilización de modelos deep learning y callbacks.
- Gráficas y definiciones básicas como normalizar o escalar el conjunto de datos.

Etapa de desarrollo y optimización: (Junio a Julio)

Figura A.6: Commits-Etapa 3

- Añado nuevos gráficos en análisis del conjunto de datos, prepocessing.
- Definición y creación ventanas temporales acordadas con Bruno Baruque.
 - Definición y creación nuevos notebooks de deep learning
- Definición y creación nuevos datos sintéticos a través de el aplicativo smote.
- Continuar con el comentado del código e imprimir comentarios en los notebooks.

En la última etapa los problemas que se han acontecido son:

- - Utilización de ventanas temporales en los modelos deep learning. Después de varias algunas reuniones con Bruno Baruque se llego a la defincion correcta para las ventanas temporal en el conjunto de datos.
 - Utilización de modelos deep learning y callbacks.
- Utilización datos sintéticos. Definir correctamente esta generacion de datos y poder utilizarlos en los modelos deep learning correctamente.

A.3. Estudio de viabilidad

Viabilidad económica

Viabilidad legal

Apéndice B

Especificación de Requisitos

B.1. Introducción

La Especificación de Requisitos tiene como objetivo definir de manera clara y detallada las necesidades y expectativas del proyecto que consta de un notebook Jupyter definido en Python, el cual invoca a otros notebooks Jupyter secundarios para realizar diversas tareas.

Este documento sirve para asegurar que todas las partes interesadas comprendan y acuerden los objetivos y funcionalidades del sistema a desarrollar.

En un entorno de trabajo basado en notebooks Jupyter, es esencial contar con una especificación precisa que guíe el desarrollo, implementación y validación del sistema. Esto no solo facilita la colaboración y la comunicación entre los desarrolladores, analistas de datos y usuarios finales, sino que también ayuda a identificar posibles riesgos y desafíos durante el ciclo de vida del proyecto.

B.2. Objetivos generales

Los objetivos principales de este TFG son los siguientes:

- Facilitar el procesamiento de datos EEG. Generados en la universidad mediante el interfaz BCI.
- Automatizar tareas repetitivas. Con la creacion de notebooks secundarios para poder ejecutar las tareas comunes y repetitivas relacionadas con los datos EGG.

- Mejorar la tasa de acierto en los analisis de modelos implementando modelos precisos y fiables.
- Asegurar la accesibilidad y usabilidad en los notebooks. Los notebooks son herramientas intuitivas y accessibles que aportan esa facilidad a la hora de interacturar.
- Integracion y extensibilidad. Al utilizar llamadas a otros notebooks se asegura que se permita la integracion de nuevos notebooks y se asegura posibles nuevas mejoras en el codigo.

B.3. Catálogo de requisitos

Hay dos tipos de requisitos, los funcionales (qué debe hacer el código) y los no funcionales (cómo debe funcionar el código):

Requisitos funcionales

- RF-001 Iniciar notebook Main:
 - **Descripción:** Los usuarios han de poder iniciar el notebook principal para poder comenzar con la ejecución del trabajo.
 - Prioridad: Alta
 - Criterios de aceptación: El notebook Main debe abrirse correctamente en menos de 5 segundos.
- RF-002 Invocación de Notebooks Secundarios Preparatorios:
 - **Descripción:** Los usuarios han de poder invocar los notebook secundarios preparatorios para poder ejecutar con seguridad el resto de notebooks de preprocesado y modelados.
 - Prioridad: Alta
 - Criterios de aceptación: Los notebooks secundarios preparatorios se han de ejecutar correctamente y que la celda en la que se se llama al notebook secundario no devuelva errores. Los notebooks preparatorios. Su ejecucion no ha de ser mayor a 5 minutos.
- RF-003 Invocación de Notebook Secundarios carga de archivo CSV:
 - **Descripción:** Los usuarios han de poder invocar los notebook secundarios carga de archivo CSV, para la ejecucion de este notebook secundario se ha de subir un archivo csv con el conjunto

de datos a analizar y una vez subido el archivo, se iluminara un botón con nombre 'Procesar datos' que procesara los datos una vez pulsado.

- Prioridad: Alta
- Criterios de aceptación: Si no se ejecuta correctamente la llamada a este notebook no se podrá seguir con la ejecución del resto de notebooks puesto que sin datos no se podrían realizar las siguientes acciones.

RF-004 Invocación de Notebooks Secundarios análisis y preprocessing:

- **Descripción:** Los usuarios han de poder invocar los notebook secundarios análisis y preprocessing para poder proporcionar este procesado de datos antes de la ejecución de modelos machine o deep learning.
- Prioridad: Alta
- Criterios de aceptación: Si no se ejecuta correctamente la llamada a este notebook no se podrá seguir con la ejecución del resto de notebooks puesto que sin la realizacion del preprocessing de los datos no se generan los csv correcpondientes para poder seguir ejecutando los siguientes notebooks.

RF-005 Invocación de Notebooks Secundarios para experimentos:

- **Descripción:** Los usuarios han de poder invocar los notebook secundarios para experimentos y poder generar los datos sobre Tasa de acierto y generacion de matrices de confusión.
- Prioridad: Media
- Criterios de aceptación: Estos notebooks se puede ejecutar de manera individual o en el orden pre establecido. para realizar el análisis final lo ideal es ejecutar todos los notebooks de esta session.

■ RF-006 Invocación de Notebook Secundario resultados:

- **Descripción:** Los usuarios han de poder invocar los notebook Secundario resultados y poder visualizar los resultados de las particiones test del conjunto de datos. Se han de haber ejecutado todos los notebooks de esta sección.
- Prioridad: Alta
- Criterios de aceptación: Sin la ejecución de este notebook no se obtendrian los resultados del trabajo y por lo tanto es critico

este ultimo notebook para poder visualizar la tasa de acierto en datos que el modelo no conocía en la etapa de entrenamiento y validación.

Requisitos no funcionales

■ RNF-001 Rendimiento:

- **Descripción:** El sistema donde se ejecuten los notebooks ha de poder manejar la ejecución sin causar demoras significativas.
- Criterios de aceptación: El tiempo de ejecución para la ejecución de cada notebook secundario no ha de ser superior a 15 minutos.

■ RNF-002 Usabilidad:

- **Descripción:** Los notebooks han de ser faciles de entender y usar por los usuarios.
- Criterios de aceptación: La interfaz de los notebooks ha de ser intuitiva y clara.

■ RNF-003 Escalabilidad:

- **Descripción:** En la configuración del notebooks principal se debe permitir la adhesión de nuevos notebooks y sus llamadas desde el notebook principal.
- Criterios de aceptación: Poder seguir integrando nuevos notebooks para ser llamados desde el notebook principal sin afectar al funcionamiento del código.

Restricciones

- R-001: El sistema debe operar en un entorno Jupyter Notebook.
- R-002: Todos los notebooks secundarios deben estar disponibles en el mismo entorno de ejecución que el notebook principal.
- R-003: El procesamiento y análisis de datos debe realizarse utilizando bibliotecas compatibles con Python 3.x.

B.4. Especificación de requisitos

Voy a describir cada caso de uso identificado:

CU-001	Iniciar notebook principal (Main)
Versión	1.0
Autor	José Luis Pérez Gómez
Requisitos asociados	RF-001
Descripción	El notebook principal necesita ser ejecutado para iniciar el análisis del conjunto de datos.
Precondición Acciones	R-001, R-002, R-003
	 Acceder a la carpeta donde se encuentren los notebooks. Seleccionar el notebook '1.Main.ipynb' y hacer doble clic sobre el archivo.
Postcondición	El usuario podra visualizar el codigo del notebook principal
Excepciones Importancia	Alta

Tabla B.1: CU-001 Iniciar notebook principal (Main).

CU-002	Ejecución celda 1. Crear un entorno virtual.
Versión	1.0
Autor	José Luis Pérez Gómez
Requisitos	RF-002
asociados	
Descripción	Desde el notebook principal se ejecuta la primera celda
	que llama a un notebook secundario.
Precondición	R-001, R-002, R-003 y Haber inciciado correctamente
	el notebook principal (Main).
Acciones	Pulsar Run en la celda ejecutable desde el notebook
	principal (1. Crear un entorno virtual)
Postcondición	La salida de la ejecución no de ningún error
Excepciones	
Importancia	Media

Tabla B.2: CU-002 Ejecución celda 1. Crear un entorno virtual.

CU-003	Ejecución celdas del notebook Main (Notebooks Preparatorios).
Versión	1.0
Autor	José Luis Pérez Gómez
Requisitos	RF-002
asociados	
Descripción	Desde el notebook principal se ejecutan las tres siguientes celdas ejecutables desde el notebook principal Main.
Precondición	R-001, R-002, R-003 y Haber iniciado correctamente
	el notebook principal (Main)
Acciones	
	 Pulsar Run en la celda ejecutable "2. Instalación de bibliotecas."
	2. Pulsar Run en la celda ejecutable "3. Importación de las bibliotecas instaladas."
	3. Pulsar Run en la celda ejecutable "4. Asignación de valores a variables y creación de funciones."
Postcondición	La salida de la ejecución en las tres celdas no debe tener ningún error
Excepciones	
Importancia	Alta

Tabla B.3: CU-003 Ejecución celdas (Notebooks Preparatorios).

CU-004	Ejecución celda del notebook Main carga de archivo CSV.
Versión Autor Requisitos asociados	1.0 José Luis Pérez Gómez RF-003
Descripción	Desde el notebook principal se ejecutan las tres siguientes celdas ejecutables desde el notebook principal Main.
Precondición	R-001, R-002, R-003, haber iniciado correctamente el notebook principal (Main) y haber ejecutado todas las celdas anteriores a esta celda
Acciones	 Pulsar Run en la celda ejecutable notebook carga de archivo CSV con el conjunto de datos a analizar: Pulsar sobre el botón nuevo llamado Üpload". Seleccionar el archivo de datos a analizar (para esta ejecución datosEEGTotal.csv) Pulsar sobre el botón nuevo llamado "Procesar Datos".
Postcondición	La salida de la ejecución ha de imprimir por pantalla los datos a analizar.
Excepciones Importancia	Alta

Tabla B.4: CU-004 Ejecución celdas cargar de archivo CSV.

CU-005	Ejecución celdas del notebook Main (Notebooks análisis y preprocessing)
Versión	1.0
Autor	José Luis Pérez Gómez
Requisitos	RF-004
asociados	
Descripción	Desde el notebook principal se ejecutan las dos si- guientes celdas ejecutables desde el notebook principal Main debajo de Notebooks análisis y preprocessing de conjunto de datos
Precondición	R-001, R-002, R-003, haber iniciado correctamente el notebook principal (Main) y haber ejecutado todas las celdas anteriores a esta celda
Acciones	
	 Pulsar Run en la celda ejecutable notebook carga de archivo CSV con el conjunto de datos a analizar Pulsar Run en la celda ejecutable "5. Análisis de datos inicial." Pulsar Run en la celda ejecutable "6. Preprocessing del conjunto de datos."
Postcondición	La salida de las ejecuciones ha de imprimir por pantalla los datos analizados y preprocesados del conjunto de datos sin errores.
Excepciones Importancia	Alta

Tabla B.5: CU-005 Ejecución celdas (Notebooks análisis y preprocessing)

CU-006	Ejecución celdas del notebook Main (Note-			
	books experimentos)			
Versión	1.0			
Autor	José Luis Pérez Gómez			
Requisitos	RF-005			
asociados				
Descripción	Desde el notebook principal se ejecutan las dos si-			
	guientes celdas ejecutables desde el notebook principal			
	Main debajo de Notebooks análisis y preprocessing de			
	conjunto de datos			
Precondición	R-001, R-002, R-003, haber iniciado correctamente el			
	notebook principal (Main) y haber ejecutado todas			
	las celdas anteriores a esta celda			
Acciones				
	1. Pulsar Run en la celda ejecutable 7. Implemen-			
	tación modelos Machine Learning			
	2. Pulsar Run en la celda ejecutable 8.1 MLP			
	3. Pulsar Run en la celda ejecutable 8.2 SRNN			
	4. Pulsar Run en la celda ejecutable 8.3 LSTM			
	5. Pulsar Run en la celda ejecutable 8.4 SRNN			
	Sliding Windows			
	6. Pulsar Run en la celda ejecutable 8.5 LSTM			
	Sliding Windows 7. Pulsar Pun and a calda ciacutable 0.1. Aumenta			
	7. Pulsar Run en la celda ejecutable 9.1 Aumento de datos con SMOTE			
	8. Pulsar Run en la celda ejecutable 9.2 SRNN			
	Sliding Windows			
	9. Pulsar Run en la celda ejecutable 9.3 LSTM			
	Aumento de datos			
	10. Pulsar Run en la celda ejecutable 9.4 SRNN			
	Aumento de datos Sliding Windows			
	11. Pulsar Run en la celda ejecutable 9.5 LSTM			
	Aumento de datos Sliding Windows			
				
Postcondición	La salida de las ejecuciones ha de imprimir por pantalla			
D	los datos Tasa de acierto y matrices de confusión.			
Exceptiones	A14 a			
Importancia	Alta			

Tabla B.6: CU-006 Ejecución celdas (Notebooks experimentos)

CU-007	Ejecución celda del notebook Main (Notebook recopilado de resultados)
Versión	1.0
Autor	José Luis Pérez Gómez
Requisitos	RF-006
asociados	
Descripción	Desde el notebook principal se ejecutan las dos si- guientes celdas ejecutables desde el notebook principal Main debajo de Notebooks análisis y preprocessing de conjunto de datos
Precondición	R-001, R-002, R-003, haber iniciado correctamente el notebook principal (Main) y haber ejecutado todas las celdas anteriores a esta celda
Acciones	
	1. Pulsar Run en la celda ejecutable Notebook recopilado de resultados
Postcondición	La salida de las ejecuciones ha de imprimir por pantalla los datos Tasa de acierto para el conjunto de datos validación y test en todos los experimentos.
Excepciones	•
Importancia	Alta

Tabla B.7: CU-007 Ejecución celdas (Notebook resultados)

Apéndice C

Especificación de diseño

C.1. Introducción

La especificación de datos es un componente crítico en el desarrollo de sistemas de información, especialmente cuando se trabaja con conjuntos de datos complejos como los datos EEG.

Mediante BCI, sistema que permite mediante adquisición de señales EEG, se han podido interpretar las señales adquiridas a través de las señales EEG y poder transformarlas en un conjunto de datos para su posterior análisis.

Descripción de los Datos:

El archivo datosEEGTotal.csv contiene los datos facilitados para poder realizar los experimentos para la ejecución del TFG.

Su formato es de tipo CSV con un separador (;) entre los datos que lo componen.

Las características recogidas en el archivo de los datos EEG son las siguientes:

Timestamp, Attention, Meditation, Delta, Theta, LowAlpha, HighAlpha, LowBeta, HighBeta, LowGamma, HighGamma, Signal y Key.

Timestamp: Registro de tiempo para los experimentos, medido en mili-segundos.

Attention: Registra el grado de atención del participante que realiza el experimento.

Meditation: Grado de calma que tendría el individuo.

Delta: Son ondas de baja frecuencia (1 y 4 Hz), están presentes en etapas de sueño profundo, durante una meditación profunda y en pacientes con lesiones cerebrales o con TDAH severo.

Theta: Ondas entre 4 y 8 Hz, se encuentran en estados de calma profunda y sueño R.E.M., están ligadas al aprendizaje, memoria y intuición.

Alpha: Ondas entre 8 y 12 Hz, representan un estado de poca actividad cerebral y se asocian a un estado de calma mental. Divididas en dos señales LowAlpha y HighAplpha

Beta: Se diferencian en LowBeta y HighBeta, su frecuencia esta entre 12 y 35Hz, asociadas a una alta actividad mental.

Gamma: En los datos se diferencia LowGamma y HighGamma, son ondas por encima de 30Hz y suelen aparecer cuando hay una alta concentración o atención

Signal: Podría ser la señal de que aporta la interfaz BCI.

Key: Valores target de lo que el individuo estaba pensando o visualizando durante el experimento.

La transformación de datos o el preprocessing que se ha realizado para poder afrontar los experimentos del TFG han sido los siguientes:

Unificación de características Key: El conjunto de datos tiene varios valores en Key que indican los mismo. LButton y Left.

Figura C.1: Cantidad de elementos para la característica Key

División del conjunto de datos: El conjunto de datos tiene cuatro segmentos divididos por su Timestamp, superponiéndose entre ellos. Divido en estos cuatro segmentos para poder realizar experimentos y también dejo 21

el conjunto de datos sin dividir para realizar experimentos conjuntos a los cuatro segmentos.

Figura C.2: Análisis característica Timestamp del conjunto de datos

Eliminación de características: Elimino las características Signal por no aportar nada significativo en el conjunto de datos y Timestamp porque no quiero que los datos aportados puedan tener una patrón temporal que haga que los experimentos no sean reales.

Escalado de datos: He utilizado la opción de escalar los datos ya que no son datos normales puesto que no tienen una distribución gaussiana en sus datos.

C.2. Diseño de datos

C.3. Diseño procedimental

C.4. Diseño arquitectónico

Apéndice D

Documentación técnica de programación

- D.1. Introducción
- D.2. Estructura de directorios
- D.3. Manual del programador
- D.4. Compilación, instalación y ejecución del proyecto
- D.5. Pruebas del sistema

Apéndice E

Documentación de usuario

- E.1. Introducción
- E.2. Requisitos de usuarios
- E.3. Instalación
- E.4. Manual del usuario

Apéndice F

Anexo de sostenibilización curricular

F.1. Introducción

Este anexo incluirá una reflexión personal del alumnado sobre los aspectos de la sostenibilidad que se abordan en el trabajo. Se pueden incluir tantas subsecciones como sean necesarias con la intención de explicar las competencias de sostenibilidad adquiridas durante el alumnado y aplicadas al Trabajo de Fin de Grado.

Más información en el documento de la CRUE https://www.crue.org/wp-content/uploads/2020/02/Directrices_Sosteniblidad_Crue2012.pdf.

Este anexo tendrá una extensión comprendida entre 600 y 800 palabras.