5.3 Implementing Constant Elasticity Model using Simple Linear Regression

Tuesday, 18 October 2022 13:52

$R^2 = 0.8191$
• $R^2 o ext{Cofficient of Determination}$
• The given relationship between explanatory variable and response variable is able to explain 81.9% of variation in response variable (demand).
Therefore, this model looks to be a good model.
We're given a data demand vs price.
• We make it ln(demand) vs ln(price), and do regression statistics on it.
Link to understand the Regression Statistics
After performing the test we got:
$egin{aligned} &\operatorname{Intercept:} \ eta_0 = 11.238 = ln(C) \ . \ \Rightarrow C = e^{11.23} = 75962.87 = Dig(1ig) \ . \end{aligned}$
$egin{aligned} ext{Slope:} \ eta_1 = -1.506 = - \epsilon \ . \ \Rightarrow \epsilon = 1.506 \ . \end{aligned}$
• $\epsilon > 1 \; \Rightarrow \; ext{ Highly elastic product.}$