Binary Logistic Regression

서울아산병원 임상의학연구소 이 지 성 totoro96a@gmail.com

결과변수종류에 따른 Regression Analysis

Type of outcome	Example of outcome variable	Type of regression analysis		
Continuous	Fetal Biparietal Diameter (BPD) Head circumference (HC) abdominal circumference (AC)	Linear regression		
Dichotomous	Fetal death(Y/N) Neonatal death(Y/N) Preterm Birth(Y/N)	Binary logistic regression		
Ordinal	Disease status (mild/moderate/sever)	Ordinal logistic regression		
Time to outcome	Time to death	Cox's proportional hazard regression		

Binary Logistic Regression

3

Example: Age and coronary heart disease (CHD)

Age	CHD	Age	CHD	Age	CHD
22	0	40	0	54	0
23	0	41	1	55	1
24	0	46	0	58	1
27	0	47	0	60	1
28	0	48	0	60	0
30	0	49	1	62	1
30	0	49	0	65	1
32	0	50	1	67	1
33	0	51	0	71	1
35	1	51	1	77	1
38	0	52	0	81	1

Source: Colton. Statistics in Medicine (1974)

Table 1. Prevalence (%) of CHD according to age group

		Diseased		
Age group	No. in group	No.	%	
20-29	5	0	0	
30-39	6	1	17	
40-49	7	2	29	
50-59	7	4	57	
60-69	5	4	80	
70-79	2	2	100	
80-89	1	1	100	

Transformed the "log odds" are linear.

로지스틱 모형에서 회귀계수 eta_1 이 가지는 의미

•
$$\Pr(Y = 1|X) = \frac{\exp(\beta_0 + \beta_1 X)}{1 + \exp(\beta_0 + \beta_1 X)}$$

 $\Leftrightarrow \ln\left(\frac{(Y = 1|X)}{1 - (Y = 1|X)}\right) = \ln(odds_{Y=1}(x)) = \beta_0 + \beta_1 X$

- ➤ 독립변수 X가 범주형 변수(범주가 2개)인 경우(예: sex(f=0, m=1))
 - female(X=0)이면, $\ln(odds(f)) = \beta_0 + \beta_1 \times 0 = \beta_0$
 - male(X=1)이면, $\ln(odds(m)) = \beta_0 + \beta_1 \times 1 = \beta_0 + \beta_1$
 - $\quad \text{$\uparrow$} 0 \mid: \ln(odds(m)) \ln(odds(f)) = \beta_1 \Leftrightarrow \ln\left(\frac{odds(m)}{odds(f)}\right) = \beta_1 \implies \text{OR} = \exp(\beta_1)$
- ▶ 변수 X가 연속형 변수인 경우
 - X= x_0 이면, $\ln(odds(x_0)) = \beta_0 + \beta_1 \times x_0$
 - $-X=x_0+1$ 이면, $\ln(odds(x_0+1))=\beta_0+\beta_1\times(x_0+1)$
 - $\quad \text{$\downarrow$} 0 : \ln(odds(x_0 + 1)) \ln(odds(x_0)) = \beta_1 \Leftrightarrow \ln\left(\frac{odds(x_0 + 1)}{odds(x_0)}\right) = \beta_1 \Rightarrow \text{OR} = \exp(\beta_1)$

SPSS: Logistic regression

NINDS trial dataset

11

SPSS: Logistic regression

NINDS trial dataset

	이름	유형	너비	소수점이	설명
1	TREATCD	숫자	8	0	Treatment Code (1/2)
2	DM	숫자	8	0	History of Diabetes at Baseline (0/1)
3	HTN	숫자	8	0	History of Hypertension at Baseline (0/1)
4	MI	숫자	8	0	History of Myocardial Infarction at Baseline (0/1)
5	ANGINA	숫자	8	0	History of Angina at Baseline (0/1)
6	CHF	숫자	8	0	History of Congestive Heart Failure at Baseline (0/1)
7	BVAL	숫자	8	0	History of Valvular Heart Disease at Baseline (0/1)
8	HX_STR	숫자	8	0	Patient Reported Prior Stroke at Baseline (0/1)
9	AGE	숫자	8	0	Age in Years (연속형)
10	AGEGRP	숫자	8	2	Age grouping (1/2/3/4/5)
11	GENDER	숫자	8	0	Patient's Gender (1/2)
12	SBP	숫자	8	0	Baseline Systolic BP (연속형)
13	DBP	숫자	8	0	Baseline Diastolic BP (연속형)
14	LGLU	숫자	8	0	Serum Glucose at Baseline (mg/dl) (연속형)
15	NIHSSB	숫자	8	0	NIH Stroke Scale at Baseline (연속형)
16	MRS3M	숫자	8	0	Modified Rankin Scale at 90 Days (0/1/2/3/4/5/6)
17	Poor_outco	숫자	8	2	Poor functional Outcome (0/1)

Example (1): 독립변수가 연속형

- Age가 Poor functional outcome에 미치는 영향을 평가
- 기술통계량

집단통계량

	Poor functional Outcome (0/1)	N	평균	표준편차	평균의 표준오차
Age in Years (연속형)	0-1	200	65.05	12.327	.872
	2-6	392	68.07	11.328	.572

- 3mo mRS='2-6'군의 평균 Age가 3mo mRS='0-1'군보다 높다.
- Age는 Poor functional outcome에 어느 정도로 영향을 미치는가?

로지스틱 회귀분석 결과

케이스 처리 요약

가중되지 않은 케이스 ^a	N	퍼센트
선택케이스 분석에 포함	592	100.0
결측 케이스	0	.0
합계	592	100.0
비선택 케이스	0	.0
합계	592	100.0

a. 가중값을 사용하는 경우에는 전체 케이스 수의 분류표를 참조하십시오.

종속변수 코딩

분석결과의 해석은 (내부 값=1)을 기준으로 해석해 야함.

_ 정식에 포함된 변수

								EXP(B)에 대한	95% 신뢰구간
		В	S.E,	Wals	자유도	유의확률	Exp(B)	하한	상한
1 단계ª	AGE	.022	.007	8.600	1	.003	1.022	1.007	1.037
	상수항	768	.496	2.396	1	.122	.464		

- a. 변수가 1: 단계에 진입했습니다 AGE. AGE.
- Age 행에서 Exp(B), 하한, 상한, 유의확률의 의미
 - Exp(B) = OR = 1.022, OR의 95% 신뢰구간 = (1.007, 1.037)
 - 유의확률 = 귀무가설 OR=1에 대한 P-value = 0.003
- Age가 1세씩 증가할 때 Poor outcome이 될 가능성이 1.022배로 증가한다.
 - Age가 Poor outcome에 미치는 영향을 평가할 수 있다.

- ※ Age가 10세씩 증가할 때의 OR을 계산하고자 한다면??
 - Age변수를 10으로 나눈 변수를 생성하여 그 변수로 로지스틱 회귀분석 실

AGE	AGE10
49	4.9
45	4.5
77	7.7
52	5.2
72	7.2
74	7.4
73	7.3
69	6.9
67	6.7
72	7.2
58	5.8
79	7.9
78	7.8
63	6.3
73	7.3
83	8.3
63	6.3
77	7.7

방정식에 포함된 변수

								EXP(B)에 대한 95% 신뢰구간		
		В	S.E,	Wals	자유도	유의확률	Exp(B)	하한	상한	
1 단계 ^a	AGE10	.216	.074	8.600	1	.003	1.242	1.074	1.435	
	상수항	768	.496	2.396	1	.122	.464			

a. 변수가 1: 단계에 진입했습니다 AGE10. AGE10.

• Age가 10세씩 증가할 때 Poor outcome이 될 가능성이 1.242배로 증가한다.

17

Example (2): 독립변수가 범주형

- 범주형 변수인 AGEGRP가 Poor functional outcome에 미치는 영향을 평
 - 30≤age≤39 → agegrp = 1 40≤age≤49 → agegrp = 2
 50≤age≤59 → agegrp = 3 60≤age≤69 → agegrp = 4

 - 70≤age \rightarrow agegrp = 5

Poor functional Outcome (0/1) * Age grouping (1/2/3/4/5) 교차표

				Age grouping (1/2/3/4/5)				
			30-39	40-49	50-59	60-69	≥70	전체
Poor functional Outcome	0-1	빈도	9	15	35	55	86	200
(0/1)		Age grouping (1/2/3/4/5) 중 %	64.3%	36.6%	38.0%	32.9%	30.9%	33.8%
	2-6	빈도	5	26	57	112	192	392
		Age grouping (1/2/3/4/5) 중 %	35.7%	63.4%	62.0%	67.1%	69.1%	66.2%
전체		빈도	14	41	92	167	278	592
		Age grouping (1/2/3/4/5) 중 %	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

로지스틱 회귀분석 결과

범주형 변수 코딩

			파러미터 코딩			
		빈도	(1)	(2)	(3)	(4)
Age grouping (1/2/3/4/5)	30-39	12	.000	.000	.000	.000
	40-49	36	1.000	.000	.000	.000
	50-59	82	.000	1.000	800	.000
	60-69	152	.000	.000	1.000	.000
	≥70	278	.000	.000	.000	1.000

- 표에서 코딩값이 모두 0인 범주가 기준 범주임.
- (1): Agegrp=2(40대) vs. Agegrp=1(30대)
- (2): Agegrp=3(50대) vs. Agegrp=1(30대)
- (3): Agegrp=4(60대) vs. Agegrp=1(30대)
- (4): Agegrp=5(70세이상) vs. Agegrp=1(30대)

방정식에 포함된 변수

								EXP(B)에 대한	95% 신뢰구간
		В	S.E,	Wals	자유도	유의확률	Exp(B)	하한	상한
1 단계ª	AGEGRP			7.057	4	.133			
	AGEGRP(1)	1.138	.645	3.110	1	.078	3.120	.881	11.049
	AGEGRP(2)	1.075	.598	3.238	1	.072	2.931	.909	9.459
	AGEGRP(3)	1.299	.582	4.989	1	.026	3.665	1.172	11.459
	AGEGRP(4)	1.391	.573	5.899	1	.015	4.019	1.308	12.346
	상수항	588	.558	1.111	1	.292	.556		

- a. 변수가 1: 단계에 진입했습니다 AGEGRP. AGEGRP.
- AGEGRP(4)의 OR=4.019에 대한 해석
 - '30대'에 비해 '70세 이상'인 경우 Poor outcome이 될 가능성이 4.019배이다.
 - OR의 95% 신뢰구간 = (1.308, 12.346), P-value = 0.015

다중 로지스틱 회귀분석

- 독립변수가 X₁, X₂, ..., X₂인 경우
 - Dichotomous, ordinal, nominal, continuous ...

$$\log_e \frac{p_x}{1 - p_x} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- Interpretation of $\exp(\beta_i)$ $(i = 1, 2, \dots, p)$
 - 다른 독립변수(공변량)들의 효과가 통제된(Controlled) 또는 보정된 (Adjusted) 상태 하에서 해당 독립변수 X_i 의 OR
- 고려사항
 - 다중공선성 (Multicollinerarity)
 - 변수선택

21

1. 다중공선성 (Multicollinerarity)

- Example: TOSS2 study
 - 가설 : Initial DWI lesion pattern이 7개월 후 new ischemic lesion의 발생을 예측할 수 있다.
 - 독립변수:
 - ✓ sing multi (초기 병변 개수)
 - 1=single lesion/2=multiple lesions
 - ✓ location (병변 위치)
 - 1=subcortical/2=cortical/3=subcortico-cortical
 - ✓ Degree Sx steno (Stenosis degree)
 - 1=mild/2=moderate/3=severe
 - Outcome
 - ✓ New lesion
 - 1=yes/0=no

다중공선성(multicollinearity) check

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step	1 ^a sing_multi(1)	.975	.320	9.288	1	.002	2.652
	Constant	-2.269	.248	83.959	1	.000	.103

a. Variable(s) entered on step 1: sing_multi.

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	location			8.716	2	.013	
	location(1)	.646	.401	2.593	1	.107	1.908
	location(2)	1.077	.366	8.648	1	.003	2.936
	Constant	-2.271	.263	74.787	1	.000	.103

a. Variable(s) entered on step 1: location.

방정식에 포함된 변수

		В	S.E,	Wals	자유도	유의확률	Exp(B)
1 단계 4	degree_Sx_Steno			8.355	2	.015	
	degree_Sx_Steno(1)	.299	.426	.492	1	.483	1.348
	degree_Sx_Steno(2)	1.046	.393	7.103	1	.008	2.847
	상수항	-2.275	.317	51.622	1	.000	.103

a. 변수가 1: 단계에 진입했습니다 degree_Sx_Steno. degree_Sx_Steno.

23

다중공선성(multicollinearity) check

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1ª	sing_multi(1)	.749	.809	.856	1	.355	2.114
	location			.797	2	.671	
	location(1)	278	.809	.118	1	.731	.757
	location(2)	.077	.889	.008	1	.931	1.080
	degree_Sx_Steno			3.635	2	.162	
	degree_Sx_Steno(1)	.188	.438	.184	1	.668	1.207
	degree_Sx_Steno(2)	.759	.439	2.994	1	.084	2.137
	Constant	-2.458	.344	50.949	1	.000	.086

a. Variable(s) entered on step 1: sing_multi, location, degree_Sx_Steno.

다중공선성(multicollinearity) check

• Method1: Correlation matrix for the parameters estimates output

25

다중공선성(multicollinearity) check

- Method2: Variance Inflation Factors (VIF)
 - 선형회귀분석의 공선성진단으로 확인가능

계수^a

	비표준화 계수		표준화 계수			공선성	통계량	
모형		В	표준오차	베타	t	유의확률	공차	VIF
1	(상수)	.280	.044		6.315	.000		
	sing_multi1	086	.088	121	983	.326	.192	5.199
	location1	020	.099	029	205	.838	.149	6.722
	location2	055	.059	066	932	.352	.584	1.712
	steno1	099	.053	133	-1.869	.063	.572	1.748
	steno2	082	.049	110	-1.667	.096	.661	1.512

- a. 종속변수: New_lesion
- ▶ 초기병변갯수와 병변위치간의 다중공선성 발생이 의심됨!!

다중공선성

- 두개의 독립변수가 서로 밀접하게 상관(혹은 연관)되어 있는 경우 혹은 특정 독립변수가 나머지 독립변수들의 선형결합의 형태인 경우
 - ► 다중 로지스틱 회귀모형에서 이들의 개별효과를 파악하기가 힘들수 있음.
 - ► 따라서 bivariate 분석에서는, 두 변수 모두 통계적으로 유의하게 나타났어도, 다중 로지스틱 회귀모형에 이 두 변수를 동시에 포함하였을 경우, 둘 다 종속변수와 관련이 없는 것으로 나타날 수 있음.
- 특정 변수들 사이에 공선성이 존재한다면 다중 로지스틱 회귀분석에서 의 이들의 표준오차는 각각의 bivariate 분석에서 나타난 표준오차에 비해 상당히 클 것임.
- 다중공선성 문제에 관한 가장 쉬운 해결방법은 해당 변수들 중 하나를 모형에서 제외하는 것임.
 - ▶ 병변위치를 제외하고 분석해보자!!

27

'병변위치'를 제거한 결과

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1ª	sing_multi(1)	.737	.350	4.435	1	.035	2.089
	degree_Sx_Steno			3.278	2	.194	
	degree_Sx_Steno(1)	.142	.436	.106	1	.745	1.153
	degree_Sx_Steno(2)	.689	.429	2.584	1	.108	1.992
	Constant	-2.455	.337	53.159	1	.000	.086

a. Variable(s) entered on step 1: sing_multi, degree_Sx_Steno.

• Correlation matrix for the parameters estimates output

		Constant	sing_r	nulti(1)	degree_Sx_ Steno(1)	degree_Sx_ Steno(2)
Step 1	Constant	1.000		326	631	576
	sing_multi(1)	326		1.000	181	387
	degree_Sx_Steno(1)	631		181	1.000	.612
	degree_Sx_Steno(2)	576		387	.612	1.000

• VIF output

ואר	~	3
ᆀ	┰	

		비표준	화계수	표준화 계수			공선성	통계량
모형		В	표준오차	베타	t	유의확률	공차	VIF
1	(상수)	.255	.036		7.059	.000		
	sing_multi1	090	.042	127	-2.148	.032	.831	1.204
	steno1	089	.051	121	-1.743	.082	.604	1.657
	steno2	079	.049	105	-1.611	.108	.677	1.478

a. 종속변수: New_lesion

로지스틱 회귀분석 결과

케이스 처리 요약

가중되지 않은	케이스a	Ν	퍼센트
선택 케이스	선택 케이스 분석에 포함		91.7
	결측 케이스	49	8.3
	합계	592	100.0
비선택 케이스		0	.0
합계		592	100.0

a. 가중값을 사용하는 경우에는 전체 케이스 수의 분류표를 참조하십시오.

종속변수 코딩

원래 값	내부 값
0-1	0
2-6	1

다중공선성점검 결과

살과 했 렬

		상수항	TREATCD(1)	DM(1)	HTN(1)	MI(1)	AGE	GENDER(1)	SBP	LGLU	NIHSSB
1 단계	상수항	1.000	.021	322	195	163	494	005	628	328	279
	TREATCD(1)	.021	1.000	.001	.021	.009	076	043	084	.007	102
	DM(1)	322	.001	1.000	167	042	.000	031	028	.559	050
	HTN(1)	195	.021	167	1.000	088	.146	.140	.164	089	082
	MI(1)	163	.009	042	088	1.000	.025	199	017	017	.033
	AGE	494	076	.000	.146	.025	1.000	037	136	.043	.012
	GENDER(1)	005	043	031	.140	199	037	1.000	.033	027	169
	SBP	628	084	028	.164	017	136	.033	1.000	099	.128
	LGLU	328	.007	.559	089	017	.043	027	099	1.000	004
	NIHSSB	279	102	050	082	.033	.012	169	.128	004	1.000

- Absolute maximum value = 0.559
 - → 0.8보다 작기 때문에 독립변수들 간에는 다중공선성이 없는 것으로 판단됨.

범주형 변수 코딩

			파러미터 코딩
		빈도	(1)
Patient's Gender (1/2)	M	236	.000
	F	307	1.000
History of Diabetes at	No	429	.000
Baseline (0/1)	Yes	114	1.000
History of Hypertension at	No	187	.000
Baseline (0/1)	Yes	356	1.000
History of Myocardial Infarction at Baseline	No	429	.000
(0/1)	Yes	114	1.000
Treatment Code (1/2)	rt-PA	268	.000
	Placebo	275	1.000

방정식에 포함된 변수

								EXP(B)에 대한	95% 신뢰구간
		В	S.E,	Wals	자유도	유의확률	Exp(B)	하한	상한
1 단계 ^a	TREATCD(1)	.894	.218	16.886	1	.000	2.446	1.597	3.747
	DM(1)	.108	.326	.109	1	.741	1.114	.588	2.109
	HTN(1)	.608	.237	6.606	1	.010	1.837	1.155	2.921
	MI(1)	166	.269	.384	1	.536	.847	.500	1.434
	AGE	.016	.010	2.636	1	.104	1.016	.997	1.035
	GENDER(1)	.410	.227	3.246	1	.072	1.507	.965	2.353
	SBP	.006	.005	1.383	1	.240	1.006	.996	1.016
	LGLU	.002	.002	1.447	1	.229	1.002	.999	1.006
	NIHSSB	.190	.020	94.280	1	.000	1.209	1.163	1.256
	상수항	-5.283	1.041	25.734	1	.000	.005		

a. 변수가 1: 단계에 진입했습니다 TREATCD, DM, HTN, MI, AGE, GENDER, SBP, LGLU, NIHSSB. TREATCD, DM, HTN, MI, AGE, GENDER, SBP, LGLU, NIHSSB.

31

결과 제시 Table

1) Poor outcome과 관련된 risk factor를 찾는 연구인 경우

	OR	95%	95% CI	
Placebo vs. rt-PA	2.45	(1.60	3.75)	<.001
DM	1.11	(0.59	2.11)	0.741
HTN	1.84	(1.16	2.92)	0.010
MI	0.85	(0.50	1.43)	0.536
AGE	1.02	(1.00	1.03)	0.104
Female	1.51	(0.96	2.35)	0.072
SBP	1.01	(1.00	1.02)	0.240
Glucose	1.00	(1.00	1.01)	0.229
NIHSS	1.21	(1.16	1.26)	<.001

† P-value by multiple logistic regression

2) 여러 가지 공변량들이 보정된 tr-PA의 효과를 평가하기 위한 연구인 경우

Adjusted OR		95%	P-value [†]	
Placebo vs. rt-PA	2.45	(1.60	3.75)	<.001

† P-value by multiple logistic regression

Adjusted for Age, sex, DM, HTN, MI, SBP, Glucose and NIHSS

로지스틱 회귀분석시 주의사항

방정식에 포함된 변수

								EXP(B)에 대한	95% 신뢰구간
		В	S.E,	Wals	자유도	유의확률	Exp(B)	하한	상한
1 단계 ^a	나이	.075	.064	1.360	1	.244	1.078	.950	1.223
	proteinuria(1)	3.595	1.742	4.261	1	.039	36.419	1.199	1106.098
	AKI(1)	2.214	1.289	2.948	1	.086	9.148	.731	114.447
	HTN(1)	1.643	1.369	1.440	1	.230	5.170	.353	75.646
	DM(1)	-2.238	1.462	2.343	1	.126	.107	.006	1.874
	smoking(1)	1.064	1.078	.975	1	.324	2.898	.351	23.960
	병리이상유무(1)	2.230	1.303	2.928	1	.087	9.298	.723	119.540
	수술방법(1)	21.641	9767.228	.000	1	.998	2503101049	.000	
	상수항	-30.742	9767.230	.000	1	.997	.000		

a. 변수가 1: 단계에 진입했습니다 나이, proteinuria, AKI, HTN, DM, smoking, 병리이상유무, 수술방법. 나이, proteinuria, AKI, HTN, DM, smoking, 병리이상유무, 수술방법.

수술방법 * CKD 교차표

빈도

	Ck		
	0	1	전체
수술방법 1	16	19	35
2	11	0	11
전체	27	19	46

■ 로지스틱 회귀분석에서 OR값 및 표준오차 값이 이상하게 크게(혹은 작게) 나올 경우 해 당 독립변수와 종속변수간의 교차표를 꼭 확인해볼 것