

CLAIMS

We claim:

- 1 1. A method for analyzing inverse scattering spectral components comprising the steps of:
2 determining a reflection spectrum of an object of interest;
3 determining a transmission spectrum of the object;
4 calculating $\tilde{V}_1[n]$,

5 where $\tilde{V}_1[n]$ is absolutely and uniformly convergence and is amenable to efficient iterative
6 computational determination, with leading terms allowing for fast tentative identification of the object
7 from which the spectrum is obtained.

- 1 2. The method of claim 1, wherein the for $n = 0$ and/or 1.

- 1 3. The method of claim 2, wherein the $n = 1$.

- 1 4. The method of claim 3, wherein

$$\tilde{V}_1(z) = \int_{-\infty}^{+\infty} d(2k)e^{-2ikz} \frac{2i}{k} r_k \left[1 + \frac{ik\Delta}{2} \sum_j e^{-ikz_j} V(z_j) \tilde{\psi}_k(z) \right].$$

- 1 5. A method for constructing an acceptable approximation to a true interaction comprising the step
2 of computing an average according to the following equation:

$$\int_{z_j - \Delta_j/2}^{z_j + \Delta_j/2} dz V_1(z) = \Delta_j V(z_j)$$

4 adapted to obtain n approximate expressions for the $\Delta_j V(z_j)$ on a sufficiently dense set of points to using
5 the following equation:

$$V(z) = \sum_j \delta_M(z - z_j | \sigma) V(z_j),$$

7 where the average take into account effects of near-field terms in the Volterra integral equation.

- 1 6. A method for analyzing inverse scattering components of a spectrum of an object of interest,

2 where the method utilizes equations that are absolutely and uniformly convergence and amenable
3 efficient iterative computational determination, with leading terms allowing for fast tentative
4 identification of the object from which the spectrum is obtained, where the method comprises the steps
5 of:

6 obtaining a reflectance and/or transmission spectra of an object of interest using an incident
7 waveform from the group consisting of an electromagnetic waveform, sonic waveform and mixtures
8 or combinations thereof;

9 analyzing the spectra using an inverse scattering equations implemented on or in a processing
10 unit (digital or analog) to derive a potential function $\tilde{V}_1[n]$ representing the object,

11 where an adequate potential function $\tilde{V}_1[n]$ is derivable from first few leading terms of the iterative
12 solution of the equations.

1 7. The method of claim 1, wherein the first few terms comprise the first four terms.

1 8. The method of claim 1, wherein the first few terms comprise the first three terms.

1 9. The method of claim 1, wherein the first few terms comprise the first two terms.

1 10. An analytical instrument including an excitation source for producing an incident waveform,
2 a detector for receiving either a transmission spectrum or a reflectance spectrum or both a transmission
3 spectrum and a reflectance spectrum of an object or volume of interest, and a processing unit for
4 analyzing the spectra, where the processing unit includes software encoding the inverse scattering
5 method of Claims 1-9.

1 11. A sonic analytical instrument including a sonic excitation source for producing an incident
2 sonic waveform, a detector for receiving either a sonic transmission spectrum or a sonic reflectance
3 spectrum or both a sonic transmission spectrum and a sonic reflectance spectrum of an object or
4 volume of interest, and a processing unit for analyzing the sonic spectra, where the processing unit
5 includes software encoding the inverse scattering method of Claims 1-9.

1 12. An electromagnetic analytical instrument including an electromagnetic excitation source for

2 producing an incident electromagnetic waveform, a detector for receiving either an electromagnetic
3 transmission spectrum or an electromagnetic reflectance spectrum or both an electromagnetic
4 transmission spectrum and an electromagnetic reflectance spectrum of an object or volume of interest,
5 and a processing unit for analyzing the electromagnetic spectra, where the processing unit includes
6 software encoding the inverse scattering method of claims 1-9.

1 13. An analytical instrument including a sonic excitation source and an electromagnetic excitation
2 source for producing an incident sonic waveform and an incident electromagnetic waveform, a detector
3 for receiving either a sonic transmission spectrum or a sonic reflectance spectrum or both a sonic
4 transmission spectrum and a sonic reflectance spectrum of an object or volume of interest, a detector
5 for receiving either an electromagnetic transmission spectrum or an electromagnetic reflectance
6 spectrum or both an electromagnetic transmission spectrum and an electromagnetic reflectance
7 spectrum of an object or volume of interest, and a processing unit for analyzing the sonic and
8 electromagnetic spectra, where the processing unit includes software encoding the inverse scattering
9 method of Claims 1-9.