Datu saspiešana 5

Aplūkosim JPEG formātu attēlu glabāšanai.

- Tzejas dati: $m \times n$ punktu attēls, katra punkta krāsu apraksta trīs 8 bitu skaitļi (robežās no 0 līdz 255) R, G, B, kur R sarkanā krāsa (red), G zaļā krāsa (green), B zilā krāsa (blue).
- * Mērķis iegūt saspiestu failu, no kura var atjaunot attēlu, kas ir līdzīgs sākotnējam. Saspiešana notiek ar zudumiem.
- ⁸ Soļi ir saistīti ar to, kā cilvēks uztver krāsu.

1. solis.

 $RGB \rightarrow YIQ$. Y, I, Q vērtības iegūst no R, G, B vērtībām, pareizinot tās ar koeficientu matricu. Piemēram, Y = 0.30R + 0.59G + 0.11B. Y apraksta krāsas gaišumu, I un Q – nokrāsu. Šī transformācija ir atgriezeniska, t.i., zinot Y, I, Q vērtības, var atjaunot R, G, B vērtības.

2. solis.

Atstāj visas Y vērtības, taču katrā virzienā atstāj tikai katru otro I un Q vērtību (punktu skaits tiek samazināts 4 reizes). Šeit tiek izmantots fakts, ka acs pārmaiņas gaišumā uztver daudz labāk nekā pārmaiņas nokrāsā.

3. solis.

Y vērtības, I vērtības un Q vērtības sadala 8×8 blokos. Tā kā tika atstāta tikai katra otrā I un Q vērtība, tad bloku, kas iegūti no I un Q, izmērs sākotnējā attēlā ir 16×16 . Katrs bloks tiek apstrādāts atsevišķi.

4. solis.

Katram 8 × 8 blokam pielieto diskrēto kosinusu transformāciju. Apzīmēsim bloku ar

$$X = \begin{pmatrix} x_{00} & \cdots & x_{07} \\ \vdots & \ddots & \vdots \\ x_{70} & \cdots & x_{77} \end{pmatrix}. \text{ Diskrētā kosinusu transformācija matricu} \begin{pmatrix} x_0 \\ \vdots \\ x_7 \end{pmatrix} \text{ transformē par}$$
 matricu $\begin{pmatrix} x'_0 \\ \vdots \\ x' \end{pmatrix}$, kur

$$x'_{0} = \frac{1}{\sqrt{8}} \sum_{i=0}^{7} x_{i}$$

$$x'_{j} = \frac{2}{\sqrt{8}} \sum_{i=0}^{7} \cos \frac{j(2i+1)\pi}{8} x_{i}, \text{ ja } 1 \le j \le 7$$

Vispirms diskrēto kosinusu transformāciju pielieto katrai matricas *X* kolonnai, domās sadalot matricu astoņās mazākās matricās:

$$\begin{pmatrix} x_{00} \\ \vdots \\ x_{70} \end{pmatrix} \begin{pmatrix} x_{01} \\ \vdots \\ x_{71} \end{pmatrix} \dots \begin{pmatrix} x_{07} \\ \vdots \\ x_{77} \end{pmatrix} \rightarrow \begin{pmatrix} x_{00}' \\ \vdots \\ x_{70}' \end{pmatrix} \begin{pmatrix} x_{01}' \\ \vdots \\ x_{71}' \end{pmatrix} \dots \begin{pmatrix} x_{07}' \\ \vdots \\ x_{77}' \end{pmatrix}$$

Pēc tam to pašu izdara katrai iegūtās matricas X' rindai:

Rezultātā tiek iegūta matrica
$$X'' = \begin{pmatrix} x_{00}'' & \cdots & x_{07}'' \\ \vdots & \ddots & \vdots \\ x_{70}'' & \cdots & x_{77}'' \end{pmatrix}$$
.

Ko šī matrica apraksta? Pēc diskrētās kosinusu transformācijas pielietošanas katrai matricas X kolonnai, iegūtās matricas X' pirmās rindas k-tais elements x'_{0k} ir vienāds ar visu matricas X k-tās kolonnas elementu vidējo aritmētisko, kas pareizināts ar kādu koeficientu. Līdz ar to skaitlis x''_{00} ir matricas $(x'_{00} x'_{01} ... x'_{07})$ elementu vidējais aritmētiskais, kas pareizināts ar kādu koeficientu. Tātad skaitlis x''_{00} ir proporcionāls visu matricas X elementu vidējam aritmētiskajam, t.i., tas raksturo vidējo gaišumu vai nokrāsu.

Pārējie matricas X'' elementi apraksta, kā krāsa mainās no viena punkta uz otru.

$$x_{ij}^{"} = \sum_{k=0}^{7} x_{ik}^{"} \cdot \cos \frac{(2k+1)j\pi}{8} = \sum_{k=0}^{7} \sum_{l=0}^{7} x_{lk} \cdot \cos \frac{(2l+1)i\pi}{8} \cdot \cos \frac{(2k+1)j\pi}{8}$$

5. solis.

Skalārā kvantizācija.

$$\begin{pmatrix} x_{00}^{\prime\prime} & \cdots & x_{07}^{\prime\prime} \\ \vdots & \ddots & \vdots \\ x_{70}^{\prime\prime} & \cdots & x_{77}^{\prime\prime} \end{pmatrix} \rightarrow \begin{pmatrix} \left\lfloor \frac{x_{00}^{\prime\prime}}{a_{00}} \right\rfloor & \cdots & \left\lfloor \frac{x_{07}^{\prime\prime}}{a_{07}} \right\rfloor \\ \vdots & \ddots & \vdots \\ \left\lfloor \frac{x_{70}^{\prime\prime}}{a_{70}} \right\rfloor & \cdots & \left\lfloor \frac{x_{77}^{\prime\prime}}{a_{77}} \right\rfloor \end{pmatrix}$$

Elementu $x_{ij}^{\prime\prime}$ noapaļojam līdz precizitātei a_{ij} . Elementu atšķirības, kas ir mazākas par a_{ij} , ir nebūtiskas. Galvenā viltība ir tā, ka skaitļi a_{ij} atšķiras dažādiem matricas elementiem. Ideja: tās komponentes, kuras acs uztver vājāk, tiek noapaļotas ar zemāku precizitāti. Mazākā vērtība $a_{13}=10$, lielākā $-a_{65}=121$.

6. solis.

Atsevišķi apstrādā $x_{00}^{"}$ (vidējo gaišumu vai nokrāsu) un pārējos iegūtās matricas elementus. Pamatidejas katrā gadījumā ir vienādas, tāpēc aplūkosim tikai elementa $x_{00}^{"}$ apstrādi.

7. solis.

Visus 8×8 matricu kreisos augšējos elementus (x_{00}'') saliek virknē. Šādi tiks iegūtas trīs virknes — katrai no trim krāsu telpas YIQ komponentēm. Aplūkosim kādu no šīm virknēm $a_1, a_2, a_3, a_4, \ldots, a_k$. Šai virknei pielieto starpību kodēšanu, iegūstot virkni $a_1, a_2 - a_1, a_3 - a_2, a_4 - a_3, \ldots, a_k - a_{k-1}$. Doma ir tāda, ka sākuma bildē blakusesošajos 8×8 blokos, ļoti iespējams, krāsas būs līdzīgas, līdz ar to šādā virknē pārsvarā būs mazi skaitļi.

8. solis.

Iegūtajai virknei pielieto Hofmana vai aritmētisko kodēšanu.