SEGUNDO CUATRIMESTRE 2013

GUÍA 5: CUERPO NEGRO, FOTOELÉCTRICO, COMPTON

- 1. Mostrar la ley de Kirchhoff, es decir que la densidad de energía de un cuerpo negro depende solamente de la temperatura.
- 2. Hallar la relación entre la densidad de energía interna $u_v(T)$ y la energía que emite un cuerpo negro por unidad de área y tiempo $K_v(T)$. Deducir la relación entre la densidad de energía total u(T) y la energía total emitida por unidad de área y tiempo R.
- 3. La teoría electromagnética permite mostrar que p = u/3 para la radiación electromagnética. Considere un cilindro con un pistón sin fricción y conteniendo dicha radiación en equilibrio térmico a temperatura T. Se mueve el pistón de manera reversible.
 - a) Probar la ley de Stefan-Boltzmann (ayuda: escriba el diferencial de la entropía, teniendo en cuenta que es un diferencial exacto)

$$u = aT^4$$

b) Mostrar que

$$R = \sigma T^4; \qquad \sigma = \frac{ac}{A}$$

(σ es la constante de Stefan-Boltzmann y R fue definido en el ejercicio anterior).

4. Considere que el Sol irradia como cuerpo negro. Sabiendo que el radio del Sol es $R_S = 7 \times 10^8$ m, que la distancia Sol-Tierra es $R_{ST} = 1,49 \times 10^{11}$ m y que la energía por unidad de área y tiempo que llega a la Tierra es $W = 1,4 \times 10^3$ J/m²s, estimar la temperatura en la superficie del Sol ($\sigma = 5,73 \times 10^{-8} \frac{J}{m^2 s \, \text{K}^4}$).

5.

a) Suponiendo que la densidad de energía espectral $u_v(T)$ depende solamente de v, T y de las constantes dimensionales c (velocidad de la luz en el vacío) y k_B (constante de Boltzmann $= R/N_a$) mostrar vía analisis dimensional que

$$u_{\nu}(T) = \prod \frac{v^2 k_B T}{c^3}$$

donde Π es un número real

b) Suponiendo que existe una nueva constante fundamental que interviene en el problema, mostrar que

$$u_{\nu}(T) = \frac{v^{2}k_{B}T}{c^{3}}f\left(\frac{h\nu}{k_{B}T}\right)$$
$$= \frac{h\nu^{3}}{c^{3}}f_{1}\left(\frac{h\nu}{k_{B}T}\right)$$

donde

$$f_1(x) \equiv \frac{f(x)}{x}$$

Ayuda: Uno tendrá una nueva constante adimensional Π' tal que $\Pi = f(\Pi')$. Mostrar que no se pierde generalidad escribiendo $\Pi' = \alpha v T^{\chi}$ con α una combinación de c, k_B y la nueva constante. Determine χ usando la ley de Stefan-Boltzmann. Se obtiene la forma exacta del resultado definiendo, al final, $\alpha \equiv h/k_B$. Wien, usando datos experimentales, propuso $f_1(x) = \exp(-x)$.

1

c) Mostrar que se puede escribir el resultado anterior de la forma siguiente

$$u_{\lambda}(T) = \frac{hc}{\lambda^5}g(y)$$

con $g(y) \equiv y f(\frac{1}{y})$, $y \equiv \lambda k_B T/(hc)$. Usando este último resultado, demostrar la ley de desplazamiento de Wien

$$\lambda_m T = \text{cte.}$$

6. Demostrar que en una cavidad con radiación en equilibrio térmico, el número de modos de oscilación por unidad de volumen es

$$n_{\rm V} = \frac{8\pi {\rm V}^2}{c^3}$$

- 7. Usando la hipótesis de Planck para calcular el valor medio de la energía y el resultado del problema anterior, calcule la densidad de energía $u_v(T) dv$. Compare con lo que obtendría usando equipartición. Calcule los límites de baja y de alta frecuencias y corrobore que obtiene las leyes de Rayleigh-Jeans y Wien.
- 8. Calcule la constante de Stefan-Boltzmann

$$\sigma = \frac{2\pi^5 k_B^4}{15h^3 c^2}$$

9. Los datos del potencial de frenado *vs* longitud de onda en una experiencia de iluminación de una placa de sodio son

λ(Å)	2000	3000	4000	5000	6000
$V_0(\text{Volts})$	4,20	2,06	1,05	0,41	0,03

Cuadro 1: ejercicio 9

Obtener gráficamente la función trabajo ϕ , la frecuencia de corte y el valor de h/e.

- 10. En una dispersión Compton un electrón adquiere una energía cinética de 0,1 MeV cuando un fotón X de 0,5 MeV de energía incide sobre él.
 - a) Determinar la longitud de onda del fotón dispersado, si el electrón se hallaba inicialmente en reposo.
 - b) Hallar el ángulo de dispersión del fotón respecto de la dirección de incidencia.

11.

- a) Demostrar que el efecto fotoeléctrico no puede ocurrir con un electrón libre.
- b) ¿Por qué no puede observarse efecto Compton con luz visible? ¿Puede observarse fotoeléctrico?
- 12. Incide luz monocromática de longitud de onda λ sobre una placa cuya función trabajo es ϕ , arancando electrones por efecto fotoeléctrico. Estos electrones alcanzan una región donde existe un campo magnético B perpendicular a la velocidad de los electrones. Calcular el radio de giro de los electrones en función de ϕ .
- 13. Considere una superficie de potasio a 75 cm de una lámpara de 100 W de 5 % de eficiencia. Cada átomo de potasio tiene un radio aproximado de 1Å. Determinar el tiempo requerido por cada átomo para absorber una cantidad de energía igual a su función trabajo (φ = 2 eV) de acuerdo a la interpretación clásica.

14.

- a) Hallar la máxima energía que un fotón de 50 KeV de energía le transfiere a un electrón libre.
- b) ¿Cuál es la energía cinética de un electrón dispersado un ángulo θ? Expresarla en términos de la energía del fotón incidente.