

General information

Designation

Quercus rubra (T)

Typical uses

Lumber; sleepers; mine timbers; fenceposts; veneer; pulpwood; fuelwood; flooring; furniture; general millwork; boxes; pallets & crates; agricultural implements; caskets; woodenware; handles; railroad cars;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%
Composition detail (polymers and natural materials	•	
Wood	100	%

Price

Price	* 2.01	-	2.68	USD/kg
Price per unit volume	* 1.29e3	-	2.09e3	USD/m^3

Physical properties

Density	640	-	780	kg/m^3

Mechanical properties

moontamout proportion				
Young's modulus	* 2.11	-	2.35	GPa
Yield strength (elastic limit)	* 3	-	3.66	MPa
Tensile strength	5	-	6.1	MPa
Elongation	* 0.7	-	0.86	% strain
Compressive strength	6.27	-	7.66	MPa
Flexural modulus	1.92	-	2.14	GPa
Flexural strength (modulus of rupture)	* 5	-	6.1	MPa
Shear modulus	* 0.218	-	0.299	GPa
Shear strength	* 33.1	-	40.3	MPa
Rolling shear strength	* 1.22	-	3.67	MPa
Bulk modulus	* 1.08	-	1.2	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.7			
Hardness - Vickers	5.16	-	6.31	HV
Hardness - Brinell	* 22.7	-	27.7	НВ

Weak acids

Strong acids Weak alkalis

Oak (quercus rubra) (t)

#EDUPACK				
Hardness - Janka	5.16	-	6.31	kN
Fatigue strength at 10^7 cycles	* 1.5	-	1.83	MPa
Mechanical loss coefficient (tan delta)	* 0.016	-	0.021	
Differential shrinkage (radial)	0.14	-	0.18	%
Differential shrinkage (tangential)	0.28	-	0.34	%
Radial shrinkage (green to oven-dry)	3.6	-	4.4	%
Tangential shrinkage (green to oven-dry)	7.7	-	9.5	%
Volumetric shrinkage (green to oven-dry)	12.3	-	15.1	%
Work to maximum strength	* 9	-	11	kJ/m^3
Impact & fracture properties				
Fracture toughness	0.366	-	0.448	MPa.m^0.5
Thermal properties				
Glass temperature	77	-	102	C
Maximum service temperature	120	-	140	\mathcal{C}
Minimum service temperature	* -73	-	-23	\mathcal{C}
Thermal conductivity	* 0.111	-	0.135	W/m.℃
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃
Thermal expansion coefficient	* 31.5	-	42.2	µstrain/℃
Electrical properties				
Electrical resistivity	* 3.63e14	-	5.42e14	μohm.cm
Dielectric constant (relative permittivity)	* 3.93	-	4.8	
Dissipation factor (dielectric loss tangent)	* 0.054	-	0.067	
Dielectric strength (dielectric breakdown)	* 1	-	2	MV/m
Magnetic properties				
Magnetic type	Non-mag	netic		
Optical properties				
Transparency	Opaque			
Critical materials risk				
Contains >5wt% critical elements?	No			
Durability				
Water (fresh)	Limited u	se		
Water (salt)	Limited u	se		

Limited use
Unacceptable

Acceptable

Oak (quercus rubra) (t)

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	-	12.8	MJ/kg	
Courses					

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574	-	0.633	kg/kg
---	---	-------	-------

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 665	- 735	l/kg	
-------------	-------	-------	------	--

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.568	-	0.628	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0426	-	0.0471	kg/kg
Fine machining energy (per unit wt removed)	* 1.41	-	1.55	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.106	-	0.117	kg/kg
Grinding energy (per unit wt removed)	* 2.34	-	2.58	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.175	-	0.194	kg/kg

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	- 9.45	%	
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 19.8	- 21.3	MJ/kg	
Combustion CO2	* 1.69	- 1.78	kg/kg	
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

LIIING	
ProcessUniverse	
Reference	
Shape	

