Notes: Practical Statistics for Physics & Astronomy

R.B. Metcalf

Alma Mater Studiorum - Universitá di Bologna

February 19, 2018

Contents

1	Wha	at is Probability?	5
	1.1	Frequentist	5
	1.2	classical interpretation of probability	5
	1.3	subjective or Bayesian probability	6
	1.4	Quantum mechanical probability	6
	1.5	the rules of probability	7
2	Som	ne warm up problems	10
	2.1	Rolling Dice	10
	2.2	Birthday Paradox	11
	2.3	Poker	13
	2.4	The Monty Hall Problem	14
3	Pro	bability distributions	15
	3.1	properties of a probability distribution function (PDF)	15
	3.2	mean, median, mode	15
	3.3	moment generating function	17
		3.3.1 changing of variables	17
	3.4	Binomial and Bernoulli	17
		3.4.1 drawing without replacement, the hypergeometric distribution	19
	3.5	Poisson distribution	19
		3.5.1 as a limit of the binomial distribution	20
	3.6	Gaussian and normal	21
	3.7	central limit theorem	22
		3.7.1 The distribution of the sum of independent random variables	23
	3.8	lognormal	25
	3.9	Power law distribution	25
	3.10	multivariant distributions	26
		multinomial distributions	27
		multivariant gaussian	27
	-	3.12.1 conditional Gaussian distribution	29
		3 12 2 marginalized Gaussian distribution	29

		χ^2 distribution	30 30 32
4	Sam	apling 3	3
	4.1		3
	4.2		86
	4.3	estimating the mean when the variance is known	37
	4.4		8
	4.5		39
	4.6	quintile estimation	89
5	The	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
	5.1	, , , , , , , , , , , , , , , , , , ,	10
	5.2		1
			1
		v v	12
	. .		4
	5.3		17
	F 4	1	17
	5.4	1	18 10
		T T T T T T T T T T T T T T T T T T T	19 50
	5.5		50
	5.5		51
			53
	5.6		53
	5.7		53
	5.8		53
6	Hyp	oothesis testing & frequentist parameter fitting 5	4
		6.0.1 mean of two populations are the same	64
			64
	6.1	3.6 67 18 3.6 5	64
	6.2		55
	6.3	r r r r r r r	55
	6.4		55
	6.5	VI	5
			55
	6.6	The early stop problem & shortcoming of frequenist hypothesis testing	55
7			6
	7.1		66
	7.2		66
			66
	7.0		66
	7.3	bootstrap & jacknife sampling methods	6

8	Frequentist vs Bayesian 56					
	8.1	frequentist & Bayesian confidence levels	56			
		8.1.1 Example: the highest redshift QSO	56			
	8.2	numerical methods, Monte Carlo	56			
		8.2.1 Creating a random number in a computer	50			
	8.3	the stop problem	56			
	8.4	When does a parameter count?	50			
9	Esti	imators	57			
	9.1	bias	5			
		9.1.1 Example: Eddington-Malmquist bias	5			
	9.2	maximum likelihood estimator	5			
	9.3	least squares estimator	5			
		9.3.1 weighting data	57			
	9.4	minimum variance estimator	57			
10		Fisher matrix and information	58			
	10.1	the Fisher matrix	58			
		The Gaussian approximation	58			
		10.2.1 marginalized error estimates	58			
	10.3	Rao-Cramer inequality	58			
		information content of data	58			
	-	10.4.1 different definitions of information	58			
		10.4.2 the maximum entropy principle for choosing a distribution	58			
		10.4.3 Kullback—Leibler divergence (information gain)	58			
		10.4.4 agreement/disagreement of data sets	58			
	10.5	error forecasting	58			
11	Ran	dom Fields	59			
	11.1	correlation function & power spectrum	59			
		going between discrete and continuous variables	59			
	11.3	Gaussian random fields	59			
		Poisson noise	59			
12	Esti	mating correlation functions, power spectra & time-delays from irregularly				
		pled data	60			
	12.1	power spectrum estimation	60			
	12.2	data compression, Karhunen-Loeve modes	60			
13	Ima	ge reconstruction and map making	61			
	13.1	Wiener filtering	6			
	13.2	maximum entropy	6			
		other filters & estimators	6			
14	Nun	nerical methods for the Bayesian Inference Problem	62			
		finding maximum likelihood	62			
		Markov Chain Monte Carlo (MCMC)	65			
		nested sampling & other strategies	62			
		meaning & calculation of evidence	62			

	14.5 displaying results graphically	62
15	Classification and regression from a machine learning prospective 15.1 prediction vs inference	63 63 63 63
A	Matrix basics	
В	3 notation	
\mathbf{C}	Some Useful Integrals and mathematical definitions	65