(5)

(5)

(5)

(5)

(6)

(6)

(8)

(6)

(6)

(8)

What is the value of $\int_0^1 (x-y+ix^2) dz$ along the line from z=0 to z=1+i

What is the value of
$$\int_{0}^{1+i} (x-y+ix^{2}) dz$$
 along the limit and h such that $\vec{F} = (axy + z^{3})i + x^{2}j + bz$

(b)

Find a and b such that
$$\vec{F} = (axy + z^3)i + x^2j + b$$

A random variable X has probability mass function.

(c)

Find a and b such that $\vec{F} = (axy + z^3)i + x^2j + bz^2xk$ is irrotational

A random variable X has probability mass function
$$p(x) = kx^3$$
; $x=1,2,3,4$ then find the value of k, mean, variance. Find the probability that at most 4 defective bulbs will be found in a box of 200 bulbs if it is known that 2% of the bulbs are defective. Find the rank correlation coefficient between X and Y;

Find the series of
$$X$$
:

(a) Find the series of X :

(b) A random variable has the MGF $M_X(t) = \frac{3}{3-t}$. Find mean and $\frac{3}{3-t} = \frac{3}{3-t}$. Find mean and $\frac{3}{3-t} = \frac{3}{3-t} = \frac{3}{3-t}$

Variance of X.

Obtain Laurent's series expansions of
$$f(x) = \frac{z^{-1}}{z^2 - 2z - 3}$$
; $|z| > 3$.

(c) Prove that
$$\overline{F} = (6xy^2 - 2z^3)i + (6x^2y + 2yz)j + (y^2 - 6z^2x)k$$
 is irrotational. Find scalar potential of \overline{F} . Hence find the work done of moving particle from $(1,0,2)$ to $(0,1,1)$.

Page 1 of 2

EQQQ1EE8F52

Using Green's Theorem evaluate $\int_c (xy + y^2) dx + x^2 dy$ and c is closed curve of the region bounded by y = x and $y = x^2$. (6)A machinist is expected to make engine parts with axle diameter of 1.75 cm. A (6)

random sample of 10 parts shows a mean diameter of 1.85 cm, with a S.D of 0.1 cm. Based on this sample, would you say that the work of the machinist is

inferior? A random variable X follows a normal distribution with mean 14 and standard

(8)deviation 2.5 find (1)P[X<8] (2) P[X>18](3) P[12<X<15] Given: Area between z=0 and z=2.4 is 0.4918; Area between z=0 and z=1.6 is 0.4452; Area between z=0 and z=0.8 is 0.2882; Area between z=0 and z=0.4

is 0.1554. The standard deviation from two random samples of sizes 9 and 13 are 1.99 and 1.9. Can the samples be regard as drawn from normal population with

(6)

(a) same standard deviation? $(F_{(8,12)}(0.025) = 3.51, F_{(12,8)}(0.025) = 4.20)$ Use Gauss's Divergence Theorem to evaluate $\iint_{\overline{S}} \overline{N} \cdot \overline{F} ds$, where (6) $\widetilde{F} = 4xi - 2y^2j + z^2k$ and S is region bounded by $x^2 + y^2 = 4$, z = 0, z = 0

Obtain both Line of regressions for the data given below (8)Given $\sum X = 250$; $\sum Y = 300$; $\sum XY = 7900$; $\sum X^2 = 6500$; $\sum Y^2 = 10000$ and

n=10 (in usual notation) Evaluate Value of $\int_{c}^{c} \frac{\sin 2z \, dz}{(z + \pi/3)^4} dz$ is where C: |z| = 2. **(6)** 0.6 (a)

The following data find the correlation coefficient to marks obtained by 11 (6)students in 2 tests, one held at the beginning of the year and the other at the end of the year after intensive coaching:

, O		ξ.	(7)		E.	Ū	55		(1)	9	0	Con
Test-1	19	23	16	24	17	18	(20	18	21	19	20	
m 20	17	24	20	24	20	22	20	20/	10	22	10	

quencies were observed. (8)

A die was thro	wn I	32 tii	mes a	ina ti	ne io	HOM	ng rreq
No. obtained		20.	5				Total
Frequency	15	20	25	15	29	28/	132

Test the hypothesis that the die is unbiased at 5% level of significance.

(Given: Table value of χ^2 at 5% level of significance and 5 degree of freedom is 11.07)

(c)

(A)