InfoSPE Année 2009~2010

$\overline{\text{TD } 6}$: Les transistors à effet de champ

Exercice 1.

Dans les montages suivants, déterminer si le transistor est bloqué ou non

InfoSPE Année 2009~2010

Exercice 2.

On considère un JFET Canal N et son réseau de caractéristiques présenté ci-dessous.

On l'inclut dans le montage ci-dessous. On souhaite faire fonctionner le transistor dans sa zone linéaire avec un point de polarisation défini par : $V_{DS} = 5V$ et $V_{GS} = -3V$.

Déterminer les valeurs des deux résistances R_D et R_S .

Même question si on veut polariser le JFET dans sa zone ohmique avec, pour point de polarisation : $V_{DS} = 1,75V$ et $V_{GS} = -3V$.

Exercice 3.

On considère le montage ci-contre – le transistor est le même que celui de l'exercice précédent :

On donne : $R_1 = 800k\Omega$ et $R_2 = 400k\Omega$.

Déterminer la condition sur la valeur de la résistance R_D ainsi que la valeur de R_S pour que le transistor soit polarisé dans sa zone de fonctionnement linéaire avec $V_{GS} = -2V$

InfoSPE Année 2009~2010

Exercice 4.

On considère le montage ci-contre. Le transistor est supposé polarisé dans sa zone de fonctionnement linéaire.

Déterminer les expressions du gain en tension, en courant et des impédances d'entrée et de sortie de ce montage.

Exercice 5.

On considère le montage ci-dessous. Le transistor est supposé polarisé dans sa zone de fonctionnement linéaire.

Déterminer les expressions du gain en tension.

Exercice 6.

On considère le montage ci-contre. Le transistor est supposé polarisé dans sa zone de fonctionnement linéaire.

Déterminer les expressions du gain en tension, en courant et l'impédance de sortie de ce montage.

