AMENDMENTS TO THE CLAIMS:

Please amend the Claims as follows:

1. (Currently Amended) A method for making pods [[(1)]] of filter material

containing products for infusion, characterised in that it the method comprises at the least

the following steps:

[[-]] making at least one compressed disk [[(2)]] of product, equivalent to a dose of

the product, at respective dosing and forming stations (3, 4);, said step of making the disk

comprising a step of tamping to compress the product by translating and rotating a

respective forming piston; and

[[-]] forming the pod [[(1)]] with the compressed disk [[(2)]] positioned inside the

filter paper.

Claim 2 (Canceled).

3. (Currently Amended) The method according to claim 1, where the pods

[[(1)]] comprise two pieces (5, 6) of filter material placed over each other and sealed and

containing a dose of the product for infusion, the method being characterised in that it

further comprises at least comprising the following steps:

[[-]] feeding a first portion [[(5)]] of filter material;

[[-]] making the compressed disk [[(2)]] of product, equivalent to a dose of the

product, at respective dosing and forming stations (3, 4);

[[-]] depositing the compressed disk [[(2)]] on the first portion [[(5)]] of filter

material; and

Attorney Docket Number: 023349-00314

[[-]] associating a second portion [[(6)]] of filter material with the first portion [[(5)]] of filter material to encapsulate the compressed disk [[(2)]] to form the pod [[(1)]].

- 4. (**Currently Amended**) The method according to claim 3, characterised in that wherein the first and second portions of filter material are obtained from webs (5, 6) of the same filter material.
- 5. (**Currently Amended**) The method according to claim 3, characterised in that wherein the first portion of filter material is obtained from a web **[[(5)]]** fed in a straight line.
- 6. (**Currently Amended**) The method according to claim 3, characterised in that between the step of placing the compressed disk [[(2)]] and the associating step there is a further step of making in the second portion [[(6)]] of filter material a counterimpression [[(7)]] shaped to match the disk [[(2)]] and designed to be placed over the disk [[(2)]].
- 7. (**Currently Amended**) The method according to claim 1 or 3, eharacterised in that wherein the step of making the disk [[(2)]] comprises the sub-steps of:
- [[-]] depositing a dosed quantity of the product in a respective impression [[(8)]] while moving along a first defined path [[(P1)]] of the forming station [[(4)]]; and
- [[-]] compressing the dose of product inside the impression [[(8)]] while moving along a second defined path [[(P2)]] following the first path [[(P1)]].
- 8. (**Currently Amended**) The method according to claim 7, characterised in that wherein the the thind the the thind the thind

3

Application Number: 10/566,717 Attorney Docket Number: 023349-00314

- 9. (Currently Amended) The method according to claim 7, characterised in that wherein the first and second paths (P1, P2) are arc-shaped and cover respective angles (α) and (β) following each other.
- 10. (**Currently Amended**) The method according to claim 3, characterised in that <u>wherein</u> the depositing step is accomplished by allowing the compressed disk [[(2)]] to drop out of a respective impression [[(8)]] by gravity onto the first portion [[(5)]] of filter material.
- 11. (**Currently Amended**) The method according to claim 3, characterised in that wherein the depositing step is accomplished by allowing the compressed disk [[(2)]] of product to drop out of a respective impression [[(8)]] by gravity onto the first portion [[(5)]] of filter material where it is held in place by suction.
- 12. (**Currently Amended**) The method according to claim 3, characterised in that wherein the step of associating the first and second portions (5, 6) of filter material is performed by heat sealing.
- 13. (**Currently Amended**) The method according to claim 3, characterised in that <u>wherein</u> the associating step is followed by a step of cutting the first and second portions (5, 6) of filter material to form the pod [[(1)]].
- 14. (**Currently Amended**) An apparatus for making pods **[[(1)]]** containing products for infusion, the pods **[[(1)]]** being of the type comprising comprises two pieces of filter material placed over each other and sealed and containing a dose of the product for infusion; the apparatus **[[(9)]]** comprising at least two independent stations (10, 11) for feeding respective portions (5, 6) of filter material, the apparatus comprising and being characterised in that it comprises at least the following:

4

Application Number: 10/566,717 Attorney Docket Number: 023349-00314 [[-]] a station [[(12)]] for feeding the first portion [[(5)]] of filter material in a feed direction (A); and at least to

[[-]] a station [[(3)]] for dosing individual doses of the product into at least one forming impression [[(8)]] located on means [[(4)]] for forming a respective disk [[(2)]] of the infusion product and releasing the disk [[(2)]] onto the first portion [[(5)]] of filter material; and

[[-]] a station [[(13)]] for associating the first portion [[(5)]] of filter material with the second portion [[(6)]] of filter material to form the pod [[(1);]].

wherein the feed station comprises:

a first endless belt trained around a pair of sheaves and having a perforated or porous surface; and

means for creating a vacuum at least at the working section of the first belt which feeds the first portion of filter material and on which the product disk is deposited.

- 15. (**Currently Amended**) The apparatus according to claim 14, eharacterised in that, wherein downstream of the dosing and forming station [[(3)]] in the feed direction (A), [[it]] the apparatus further comprises a station [[(14)]] for making a counter-impression [[(7)]] in the second portion [[(6)]] of filter material and placing the counter-impression [[(7)]] over the product disk [[(2)]].
- 16. (**Currently Amended**) The apparatus according to claim 14, characterised in that wherein the two stations (10, 11) for feeding the filter material unwind respective webs (5, 6) of the filter material.

5

Application Number: 10/566,717 Attorney Docket Number: 023349-00314

- 17. (**Currently Amended**) The apparatus according to claim 14, characterised in that, wherein downstream of the associating station [[(13)]], [[it]] the apparatus further comprises a station [[(15)]] for cutting off the disk [[(2)]] encapsulated in the two portions (5, 6) of filter material to form a pod [[(1)]].
- 18. (**Currently Amended**) The apparatus according to claim 17, characterised in that it comprises <u>further comprising</u> a station [[(16)]] for separating the pod [[(1)]] from the waste material [[(17)]], which is collected in a recovery station [[(18)]].

Claim 19 (Canceled).

- 20. (Currently Amended) The apparatus according to claim 14, characterised in that wherein the dosing station [[(3)]] comprises a fixed hopper [[(23)]] mounted to face a first revolving drum [[(24)]], forming part of the forming means [[(4)]]; the hopper [[(23)]] having an arc-shaped discharge portion to peripherally follow a passing surface of the first drum [[(24)]] in such manner that the product is dosed in a predetermined area.
- 21. (Currently Amended) The apparatus according to claim 14, eharacterised in that wherein the means [[(4)]] for forming the disk [[(2)]] comprise comprises a first revolving drum [[(24)]] equipped with a plurality of pistons [[(25)]] arranged radially on the surface of the first drum [[(24)]] and having a hollow head [[(26)]] designed to receive a dose of the product fed by the dosing station [[(3)]]; radial drive means [[(27)]] being provided between each piston [[(25)]] and the first drum [[(24)]] to act upon the pistons [[(25)]] in such manner as to impart a plurality of synchronised movements to the pistons [[(25)]] according to their angular positions on a circular path (P)

6

and so as to receive the product, compress the product to form the disk [[(2)]], detach and deposit the disk **[[(2)]]** onto the first portion **[[(5)]]** of filter material.

22. (Currently Amended) The apparatus according claim 21,

characterised in that wherein the radial drive means comprise comprises cam means

[[(27)]] consisting of including at least one guide cam profile [[(28)]] stably associated with

the interior of the drum [[(24)]] and engaged by a cam follower roller [[(29)]] for each piston

[[(25)]]; each cam follower roller [[(29)]] being attached to the end of a respective

connecting rod [[(30)]] whose other end is associated with a control pin [[(31)]] rotatably

connected to the inside end of the cylinder [[(25c)]] of the piston [[(25)]] so as to drive the

piston [[(25)]] radially in both directions according to the angular position of the piston

[[(25)]] on the circular path (P).

23. (Currently Amended) The apparatus according to claims 21 and 22,

characterised in that wherein the cam means [[(27)]] cause causes each single piston

[[(25)]] to be positioned according to movements referenced to a relative position or

angular section of the circular path (P) and corresponding to:

[[-]] a first arc-shaped path section (P4) where the piston [[(25)]] is radially retracted

towards the first drum [[(24)]] in such a way that the piston [[(25)]] moves into a product

dosing configuration when [[it]] the piston reaches a point (P4A) corresponding to a its

bottom dead centre of the piston;

[[-]] a second arc-shaped path section (P1) for dosing where the piston [[(25)]] is

initially at the bottom dead centre (P4A), in such manner as to collect as much product as

possible in the head [[(26)]], and moves in a radial direction towards the outside of the first

drum [[(24)]] until [[it]] the piston reaches the endpoint (P3) of the dosing station [[(3)]]

7

where there is a wall [[(23a)]] for levelling off the product accommodated in the impression [[(8)]]; and

[[-]] a third arc-shaped path section (P2) for tamping the disc [[(2)]], where the piston [[(25)]] moves radially towards the outside of the first drum [[(24)]] and against a stop wall [[(35)]] corresponding to its a top dead centre (P2M) of the piston where [[it]] the piston remains until [[it]] the piston starts on [[-]] a fourth arc-shaped path section (P5) where the piston [[(25)]] moves back up in order to facilitate detachment of the disc [[(2)]] from the impression [[(8)]] just before reaching the point (P0) where the disc [[(2)]] is released.

- 24. (Currently Amended) The apparatus according to claim 22, characterised in that wherein the cam profile [[(28)]] is divided into two arc-shaped sections (28a, 28b), a fixed lower section [[(28a)]] and an adjustable upper section [[(28b)]] corresponding to a part of the path (P) of the pistons [[(25)]] comprising at least one area where the product is filled into the pistons [[(25)]].
- 25. (Currently Amended) The apparatus according to claim 21, characterised in that wherein the first drum [[(24)]] is equipped with rotational drive means [[(32)]] acting on each piston [[(25)]] and designed to continuously revolve each piston [[(25)]] about its—a corresponding axis; the rotational drive means [[(32)]] comprising a fixed ring gear [[(33)]] mounted inside the first drum [[(24)]] and meshed with corresponding gear wheels [[(34)]] keyed to the respective cylinder [[(25c)]] of each piston [[(25)]] so that the pistons [[(25)]] revolve continuously as they move round the circular path (P), thus tamping the disk [[(2)]] and preventing [[it]] the disk from sticking inside the

8

head [[(26)]] of the piston [[(25)]] while enabling the disk [[(2)]] to be detached completely when [[it]] the disk is deposited on the first portion [[(5)]] of filter material.

26. (Currently Amended) The apparatus according to claim 21, characterised in that there are wherein arc-shaped walls (35, 36) round the outer surface of the first drum [[(24)]] designed to permit the pistons [[(25)]] to be pushed against the impressions [[(8)]] in a part of the circular path (P) and in such a way as to co-operate with the pistons [[(25)]] at least when the disk [[(2)]] is formed and compressed.

27. (**Currently Amended**) The apparatus according to claim 21, characterised in that wherein the first portion [[(5)]] of filter material is fed close to the first drum [[(24)]] along an inclined path that partially and peripherally follows the surface of the first drum [[(24)]] in an area close to where the disk [[(2)]] is deposited on the first portion [[(5)]] of filter material.

28. (Currently Amended) The apparatus according to claim 21, characterised in that wherein the station [[(14)]] for making the counter-impression [[(7)]] on the second portion [[(6)]] of filter material comprises a second drum [[(37)]] presenting a plurality of recesses [[(38)]] distributed uniformly on its outer surface to which the second portion [[(6)]] of filter material is held by suction; one section of a second endless forming belt [[(39)]] being located and operative on a portion of the surface of the second drum [[(37)]] and being equipped with protrusions [[(40)]] positioned and shaped to match the recesses [[(38)]] as the latter move round, thus making a counter-impression [[(7)]] on the second portion [[(6)]] placed between the second drum [[(37)]] and the second belt [[(39)]] by pushing the second portion [[(6)]] into the recesses [[(38)]].

29. (Currently Amended) The apparatus according to <u>claim 28</u> elaims 14 and 28, eharacterised in that <u>wherein</u> the associating station [[(13)]] comprises a circular sealing element [[(41)]] positioned under the second drum [[(37)]] and designed to seal the first portion [[(5)]] of filter material, with the disk <u>thereon</u> [[(2)]] on it, to the second portion [[(6)]] of filter material placed over the disk [[(2)]] to form a succession of sealed pods [[(1)]].

30. (Currently Amended) The apparatus according to elaims claim 17, characterised in that wherein the cutoff station [[(15)]] comprises a circular knife [[(15a)]] and a counter-knife [[(15b)]] positioned on opposite sides of a feed line (A) of the first and second portions [[(5, 6)]] of filter material sealed to each other and forming a succession of pods [[(1)]].