INTRODUCTION

The **replication fork** is a structure that is formed by DNA helicase during replication between the areas of unreplicated and replicated DNA.

Fork initiation, structure, and progression has been inferred by genetic and molecular methods such as DNA combing, chip-ChIP, and sequencing, but there is a critical gap in knowledge as to what the fork actually looks like.

Replication protein co-localization can be used to model fork structures and dissociation.

model of replication fork in Schizosaccharomyces pombe

OBJECTIVE: Develop a tool to systematically correlate DNA synthesis with protein location

CHROMATIN FIBERS

Also called fiber-spreads, retain protein components and epigenetic domains, which can then be visualized

Preparation Method:

- I. Grow and treat cultures (if applicable)
- 2. Add nucleoside analogue to label replicating DNA
- 3. Dry cells on coverslip and lyse with salt/detergent buffer
- 4. Tip vertically to make fiber
- 5. Probe with antibodies (against protein/BrdU)
- 6. Add DAPI (labels DNA)

BrdU

- 5'-bromo-2'-deoxyuridine
- Thymidine analog
- Phosphorylated by thymidine kinase to be incorporated into DNA

Image: https://www.compoundmag.com/article/1049

FIBER ANALYSIS - INPUT AND OUTPUT

8.2992

8.4084

8.5176

45.2088

45.318

45.318

ODD BLOBS LOGIC

One Dimensional Data Boolean Logic Binning System (Sabatinos & Green, 2017)

INPUT – pixel intensity data

- thresholds
- smooth it
- tip window

ODD-BLOBS:

- Applies thresholds to pixel intensities:
 if intensity > threshold = ON, else OFF
- 2. Finds fork, replicated, and unreplicated regions
- 3. Finds localization of protein relative to region

OUTPUT (current)

mace	No. Start	.5 AL LINGS	AC EC.	ig cii	Prot1 in T	-	11002			. 5	K I LIIGS I O	rk 2 Starts Fork	Z Liius
	1	1	3	3		3		2	: 3	1	2	2	4
	2	15	17	3						14	16	16	18
	3	32	34	3				32 33	34	31	33	33	35
	4	64	68	5						63	65	67	69
	5	74	78	5	7	5 76				73	75	77	79
	6	84	89	6				84	85	83	85	88	90
	7	107	109	3	108	109		1	.09	106	108	108	110
	8	124	128	5			124 12!	5 126 1	.27	123	125	127	129
	9	143	151	9	150	151	148 149	150 1	.51	142	144	150	152
)	10	154	156	3				1	.56	153	155	155	157
L	11	158	187	30 163 164 175 176	177 180 181 182 186	187 169 170 171 176	177 18!	5 186 1	.87	157	159	186	188
	12	199	202	4	200	201				198	200	201	203
3	13	205	211	7						204	206	210	212
	14	225	228	4	227	228	225 226	5 227 2	28	224	226	227	229
paste(("Mean trac	t lenath	is ". r	mean tract length. "	+/-", std_tract_leng	th. "pixels")							

I) THRESHOLD

Threshold: value that allows desgination of ON (above) or OFF (below) signal at pixel

2) "SMOOTH IT"

Smooth it: value that accounts for gaps in signal when processing images

Abbe Raleigh theorem

Resolution (r) = 0.61
$$\lambda$$
 /NA

+

system pixel length = $0.1092 \mu m$

average limit of detection is ~ 2 pixels (0.2184 μm)

Wavelength (λ, nm)	r (nm)	pixels		
350	152.5	1.4		
488	212.6	1.9		
546	237.9	2.2		
647	281.9	2.6		

3) TIP WINDOW

ODD-BLOBS allows user to choose and change the "size" of a forks (i.e, the ends of a synthesizing tract (extent into replicated and unreplicated areas)

Question: How big is the fork?

Tip window: size of the fork defined by no. of "replicated" x "unreplicated" pixels

Default is IxI pixels

Symmetrical

Unsymmetrical

IxI

2xI

3x3

Tip window:
Pixels into Unreplicated zone
Number of pixels into replicated area
Number of pixels into unreplicated area
Number of pixels into unreplicated area

Tract end

APPLICATIONS

Replication protein co-localization to model fork structures and dissociation

e.g. Where is Protein X located relative to fork?

Use histone antibodies specific to particular modifications and see effect

e.g. DNA damage can be associated with a certain region

Determine role of nucleotide depletion (induced by drug) in changing protein deposition along fibers

