

LOUISIANA STATE UNIVERITY

College of Agriculture School of Plant, Environmental, and Soil Sciences AGRO 7075 Prediction-based Breeding

Selecting lines, testers and testcrosses

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, Mar 20th, 2023

Main method to obtain lines

Reestablish the vigor Heterosis

Single-cross (12,000 Kg / ha)

Line	Among					Within				
	Va	Vd	D 1	D2	H	Va	Vd	D 1	D2	Н
S 1	1	0.25	1	0.12	0	0.5	0.25	1	0.38	0.25
S2	1.5	0.13	2.5	0.56	0.06	0.25	0.13	0.5	0.19	0.13
S3	1.75	0.06	3.25	0.78	0.05	0.13	0.06	0.25	0.09	0.06
S6	1.97	0.01	3.95	0.97	0.01	0.02	0.02	0.03	0.01	0.01
S_{∞}	2	0	4	1	0	0	0	0	0	0

Double-haploids

- Advantages
- Reduce the time to obtain lines
- The unique method to achieve F = 1
- Conserve most of the parent's haplotypes

TRENDS in Biotechnology

- Drawbacks
- It allows just one crossing-over
- There is no selection too much variability
- Lots of lines in the end
- Must be associated with Genomic selection
- Challenges
- Low induce rate
- The identification is time-consuming and subjective
- High costs to obtain the lines
- Patents

Should we select genotypes based on lines or hybrids?

- Average degree of dominance (add)
- add = $d/a = \psi$
- Considering an F₂ population
- p = q = 0.5
- $\alpha = [a + (q p)d]$

•
$$Va = 2pq\alpha^2 = 2pqa^2 = \frac{1}{2}a^2$$
 $a = \sqrt{2. Va}$

•
$$Vd = (2pqd)^2 = \frac{1}{4}d^2$$
 $d = \sqrt{4.Vd}$

$$add = \frac{d}{a} = \frac{\sqrt{4.Vd}}{\sqrt{2.Va}}$$

0	Absence of dominance		
0 < d/a < 1	Partial dominance		
1	Complete dominance		
>1	Overdominance		

Correlation between lines and hybrids

$$r_{L,H} = rac{\sigma_{LH}}{\sigma_{L} \ \sigma_{H}}$$

- Line
- $G_{ii} = \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ii}$
- Hybrid
- $G_{ij} = \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_j + \boldsymbol{S}_{ij}$
- Genetic variance among lines
- $VgL = E[G_{ii} E(G_{ii})]^2$
- $= E[u + \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ii} u]^2$
- = $E[2\alpha_i + S_{ii}]^2$
- = $E[2\boldsymbol{\alpha}_i]^2 + 2E[\boldsymbol{\alpha}_i\boldsymbol{S}_{ii}] + E[\boldsymbol{S}_{ii}]^2$
- = $4E[\boldsymbol{\alpha}_i]^2 + 2E[2\boldsymbol{\alpha}_i \boldsymbol{S}_i] + E[\boldsymbol{S}_i]^2$
- = $4E[\boldsymbol{\alpha}_i]^2 + 4E[\boldsymbol{\alpha}_i \boldsymbol{S}_{ii}] + E[\boldsymbol{S}_{ii}]^2$
- = 2Va + 4D1 + D2

- Genetic variance among single-crosses
- $VgH = E[G_{ij} E(G_{ij})]^2$
- $= E[u + \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ii} u]^2$
- = $E[\boldsymbol{\alpha}_i + \boldsymbol{\alpha}_i + \boldsymbol{S}_{ij}]^2$
- $= E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{S}_{ii}]^2 + ...$
- $= E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{S}_{ii}]^2$
- = $\frac{1}{2}$ Va + $\frac{1}{2}$ Va + Vd
- = Va + Vd
- Covariance between lines and single-crosses
- $COV_{(L,H)} = E[G_{ij} E(G_{ij})] \cdot E[G_{ii} E(G_{ii})]$
- = $E[\alpha_i + \alpha_i + S_{ii}] \cdot E[2\alpha_i + S_{ii}]$
- = $2E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_i \boldsymbol{S}_{ii}] +$
- $2E[\boldsymbol{\alpha}_{i}\boldsymbol{\alpha}_{i}] + 2E[\boldsymbol{\alpha}_{i}\boldsymbol{S}_{ii}] + 2E[\boldsymbol{\alpha}_{i}\boldsymbol{S}_{ii}] + 2E[\boldsymbol{\alpha}_{i}\boldsymbol{S}_{ij}] + 2E[\boldsymbol{S}_{ii}\boldsymbol{S}_{ij}]$
- = $2E[\boldsymbol{\alpha}_i]^2 + E[\boldsymbol{\alpha}_i \boldsymbol{S}_{ii}]$
- = Va + D1

Correlation between lines and hybrids

$$r_{L,H} = \frac{\sigma_{LH}}{\sigma_{L} \sigma_{H}}$$

$$r_{L,H} = \frac{Va + D1}{\sqrt{(2Va + 4D1 + D2)(Va + Vd)}}$$

$$r_{L,H} = \frac{Va}{\sqrt{(2Va)(Va + Vd)}}$$

$$r_{L,H} = \frac{Va}{\sqrt{(2Va)(Va + \psi Va)}}$$

$$r_{L,H} = \frac{Va}{\sqrt{(2Va)Va(1+\psi)}}$$

•
$$F_2 = D1 = D2 = 0$$

•
$$H = Vd$$

•
$$\psi = Vd / Va$$

$$r_{L,H} = \frac{Va}{Va\sqrt{2(1+\psi)}}$$

$$r_{L,H} = \frac{1}{\sqrt{2\left(1 + \psi\right)}}$$

•
$$Vd = 0$$
; $\psi = 0$

•
$$r_{\text{r}} = 0.71$$

• Vd / Va =
$$\psi = \frac{1}{2}$$

•
$$r_{\rm LH} = 0.58$$

•
$$Vd = 0$$
; $\psi = 0$ • $r_{L, H} = 0.71$
• $Vd / Va = \psi = \frac{1}{2}$ • $r_{L, H} = 0.58$
• $Vd / Va = \psi = 1$ • $r_{L, H} = 0.50$

•
$$r_{\rm L, H} = 0.50$$

Obtaining lines – Early testcross

Early testcross

$$r_g = \frac{COV \ testcross(g,g')}{\sqrt{V_T g. V_T g'}}$$

$$V_T g = \frac{1}{2} pq[1 + Fg]\alpha_T^2$$

$$V_T g' = \frac{1}{2} pq[1 + Fg'] \alpha_T^2$$

$$COV_{Tg,g'} = \frac{1}{2}pq[1+Fg]\alpha_T^2$$

TABLE 4.2. Frequencies and testcross means of genotypes (F = inbreeding coefficient).

Pop	ulation	Testcross progeny			Testcross	
Genotype	Frequency	A_1A_1	A_1A_2	A_2A_2	mean	
A_1A_1	$p^2{+}pqF$	p_T	q_T		$\mu_T{+}q\alpha_T$	
A_1A_2	2pq(1-F)	$\frac{1}{2}p_T$	$\frac{1}{2}$	$\frac{1}{2}q_T$	$\mu_T + \tfrac{1}{2} (q-p) \alpha_T$	
A_2A_2	q^2+pqF		p_T	q_T	$\mu_T - p\alpha_T$	

$$r_g = \sqrt{\frac{1+Fg}{1+Fg'}}$$
 $r_g = \sqrt{\frac{1+Fg}{2}}$

Normally, at the end we have Fg' = 1

Early generation			Late Generation		
	Plant	Family	Inbreds		
	S0	S1	0.71		
	S1	S2	0.87		
	S2	S3	0.94		
	S3	S4	0.97		

Selecting for combining ability

- Increase the frequency of favorable alleles in lines
- Ideal tester:
- *Elite line* = *produce the new hybrid*
- Single cross = produce a three-way cross hybrid

•
$$CA_i = (C_i - C_{..}) = gi - \sum (p_i - p) \alpha_i^T$$

- Let's consider two different lines
- $g_1 \sum (p_1 p) \mathbf{\alpha}_1^T$
- $g_2 \sum (p_2 p) \alpha_2^T$

•
$$g_1 - g_2 = (p_1 - p) \alpha_1^T - (p_2 - p) \alpha_2^T$$

•
$$g_1 - g_2 = (p_1 - p) \alpha_1^T - (p_2 - p) \alpha_2^T$$

$$\bullet \qquad = (p_1 - p_2) \mathbf{\alpha}^{\mathrm{T}}$$

• The difference is due to the frequency of favorable alleles

Line	f(B)	Line x tester	CA
L1	p1	C1	CA1 = C1 - C
L2	p2	C2	CA2 = C2 - C
L3	p3	C3	CA3 = C3 - C
•••	•••		•••
L100	p100	C100	CA4 = C4 - C
Mean	p	C	

Choosing testers

E.g., d = 0.7

r = 0.6F = 1

- The best tester = correctly classifies the lines
- Normally, it comes from another heterotic group
- Should the tester be an elite or a poor line?
- Level of dominance and allele frequencies
- Consequences in breeding values

$$BV_i = (t_i - \bar{t})[a + (1 - 2r)d]$$

• genetic variability, and

$$\sigma_T^2 = \frac{1}{2}pq(1+F)[a+(1-2r)d]^2$$

• expected gain (unrelated tester)

$$\Delta_p = a + (1 - 2r)d$$

TABLE 4.2. Frequencies and testcross means of genotypes (F = inbreeding coefficient).

Pop	ulation	Test	cross pro	Testcross		
Genotype	Frequency	A_1A_1	A_1A_2	A_2A_2	mean	
A_1A_1	p^2+pqF	p_T	q_T		$\mu_T{+}q\alpha_T$	
A_1A_2	2pq(1-F)	$\frac{1}{2}p_T$	$\frac{1}{2}$	$\frac{1}{2}q_T$	$\mu_T + \frac{1}{2}(q-p)\alpha_T$	
A_2A_2	q^2+pqF		p_T	q_T	$\mu_T - p\alpha_T$	

$$BV_i = (t_i - \bar{t})[a - 0.28]$$

$$\sigma_T^2 = pq[a - 0.28]^2$$

$$\Delta_p = a - 0.14$$

Updating testers

