Практикум на ЭВМ. План на семестр. Интерпретатор. Полиз

Баев А.Ж.

Казахстанский филиал МГУ

07 февраля 2020

План на семестр

- 1. Интерпретатор
- 2. Web сервер
- 3. Параллельное программирование
- 4. Обработка звука (VAD, diarization, STT, TTS)

Интерпретатор

- 1. Арифметические операторы
- 2. Оператор присваивания
- 3. Логические операторы
- 4. Оператор перехода (goto)
- 5. Условный оператор
- 6. Цикл while
- 7. Массивы
- 8. Функции
- 9. Рекурсия (стек для вызова функций)

Пример:

$$1 + 2$$

Польская инверсная запись:

Пример:

$$1 + 2 * 4$$

Польская инверсная запись:

1 2 4	4 * +
-------	-----------

TER AND DE MENE							
1	1						
2	1	2					
4	1	2	4				
*	1	8					
+	9						

Пример:

$$(1+2)*4$$

Польская инверсная запись:

1	2	-	4	
1	2	+	4	*

лек для вычисле							
1	1						
2	1	2					
+	3						
4	3	4					
*	12						

Пример:

$$1 + 2 * 3 * (9 - 4)$$

Польская инверсная запись:

1	2	3	*	9	4	_	*	+

CIEK	стек для вычислении.							
1	1							
2	1	2						
3	1	2	3					
*	1	6						
9	1	6	9					
4	1	6	9	4				
_	1	6	5					
*	1	30						
1	21							

Пример:

1 + 2

символ входной строки стек операторов

конец строки

+		
+		

выходная строка

1			
1			
1	2		
1	2	+	

Пример:

$$1 + 2 * 4$$

символ входной строки

1

+

2

*

конец строки

стек операторов

CTCK Oneparopob					
+					
+					
+	*				
+	*				

выходная строка

1				
1				
1	2			
1	2			
1	2	4		
1	2	4	*	+

Пример:

$$(1+2)*4$$

символ входной строки

1

1

+ >

)

*

4

конец строки

стек операторов

crek oneparopob					
(
(
(+				
(+				
*					
*					

выходная строка

	-Д., ч		P	•
1				
1				
1				
1	2			
1	2	+		
1	2	+		
1	2	+	4	
1	2	+	4	*

Пример:

$$1 + 2 * 3 * (9 - 4)$$

- 1. Читаем очередной символ.
- 2. Если символ является числом, добавляем его к выходной строке.
- Если символ является открывающей скобкой, помещаем его в стек.
- 4. Если символ является закрывающей скобкой, то выталкиваем все элементы из стека в выходную строку, пока верхним элементом стека не станет открывающая скобка.
- 5. Если символ является бинарной операцией «oper», то пока на вершине стека операция на вершине стека имеет приоритет больше (или равен для левоассоциативной операции), чем «oper», то выталкиваем верхний элемент стека в выходную строку, в конце помещаем «oper» в стек.
- 6. Когда входная строка закончилась, выталкиваем все символы из стека (операторы) в выходную строку.

```
class Lexem {
   public:
       Lexem();
4
   };
5
6
   class Number: public Lexem {
7
        int value;
8
   public:
9
        Number();
10
        int getValue();
11
   };
```

```
enum OPERATOR {
       PLUS, MINUS,
3
       MULTIPLY,
4
       LBRACKET, RBRACKET
5
   };
6
   int PRIORITY[] = {
       0,0,
8
       1,
9
       2, 2
10
   };
11
12
   class Oper: public Lexem {
13
        OPERATOR opertype;
14
   public:
15
       Oper();
16
       OPERATOR getType();
17
        int getValue(const Number& left,
18
                      const Number& right);
19
   };
                                       ◆□▶→□▶→□▶→□▶□□
```

```
#include <string>
   #include <vector>
3
4
   std::vector<Lexem> parseLexem(
5
       std::string input
6
   );
   std::vector<Lexem> buildPoliz(
8
       std::vector<Lexem> infix
   );
10
   int evaluatePoliz(
11
       std::vector<Lexem> poliz
12
   );
```

```
int main() {
       std::string codeline;
3
       std::vector<Lexem *> infix;
4
       std::vector<Lexem *> postfix;
5
       int value;
6
       while (std::getline(std::cin, codeline)) {
8
            infix = parseLexem(codeline);
9
            postfix = buildPostfix(infix);
10
            value = evaluatePostfix(postfix);
11
            std::cout << value << std::endl;
12
13
       return 0;
14
```