CSARCH1 Mock Long Exam 3

by: Clive Jarel Ang

General Reminders:

- 1. Read ALL instructions carefully and thoroughly before answering this mock exam.
- 2. If applicable, denote don't-care conditions by "X" and inteterminate outputs as "indeterminate" or "indet."
- 3. Take note of what variables are used in the questions. Incorrect variables used will immediately be marked as 0.
- 4. All variables are to be written in lexographical order.

I. Concepts of Sequential Circuits [24 pts]

1
2^n
Karnaugh Maps
Clock
Moore Machine
Mealy Machine
Asynchronous Sequential Circuits
Synchronous Sequential Circuits
Latches
Flip-Flops
5
Introduction to Computer
Organization and Architecture

II. Understanding Synchronous Sequential Circuits [40 pts]

1. Fill in the truth table and excitation table for the following flip-flops:

Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	X
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	X

Q(t)	Q(t+1)	S	${f R}$
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Q(t)	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Q(t)	$\mathrm{Q}(\mathrm{t}{+}1)$	J	\mathbf{K}
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	$\mathbf{Q}(\mathbf{t}{+}1)$	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	${f T}$	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Q(t)	$\mathrm{Q}(\mathrm{t}{+}1)$	${f T}$
0	0	0
0	1	1
1	0	1
1	1	0

III. Analysis of Sequential Circuit #1 [16 pts]

A hypothetical BS flip-flop has four operations: no change, toggle, reset to 0, and set to 1 when B and S are 00, 01, 10, and 11 respectively.

1. Fill in the characteristic table:

В	${f S}$	$\mathrm{Q}(\mathrm{t}{+}1)$
0	0	Q(t)
0	1	$\overline{Q(t)}$
1	0	0
1	1	1

2. Fill in the truth table and excitation table:

Q(t)	В	\mathbf{S}	$\mathbf{Q}(\mathbf{t}{+}1)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Q(t)	Q(t+1)	В	S
0	0	X	0
0	1	X	1
1	0	X	X
1	1	X	X

IV. Analysis of Sequential Circuit #2 [46 pts]

Analyze the circuit diagram and complete the state table.

Input	Presen	t State		Flip-Flo	p Inputs	Inputs		Next	State
A	\mathbf{S}	${f T}$	JS	KS	\mathbf{JT}	KT	В	S	${f T}$
0	0	0	1	1	0	0	0	1	0
0	0	1	1	1	0	1	0	1	0
0	1	0	1	1	1	0	1	0	1
0	1	1	1	1	1	1	0	0	0
1	0	0	1	0	0	1	0	1	0
1	0	1	0	0	0	0	0	0	1
1	1	0	1	0	0	1	1	1	0
1	1	1	0	0	0	0	0	1	1

1) SOP for J input to flip-flop S	\overline{AT}
2) SOP for K input to flip-flop S	\overline{A}
3) SOP for J input to flip-flop T	$\overline{A}S$
4) SOP for K input to flip-flop T	$T \oplus A \text{ or } \overline{T}A + T\overline{A}$
5) SOP for output B	$S\overline{T}$
6) Type of FSM: Mealy or Moore?	Moore

V. Design of Sequential Circuit #1 [12 pts]

Design a T flip-flop using a JK flip-flop. Fill in the excitation table.

Present State	Input	Next State	Flip-Flop Inputs		
\mathbf{A}	${f T}$	A	$\mathbf{J}\mathbf{A}$	KA	
0	0	0	0	X	
0	1	1	1	X	
1	0	1	X	0	
1	1	0	X	1	

1) SOP for J input to flip-flop A	T
2) SOP for K input to flip-flop A	T

VI. Design of Sequential Circuit #2 [20 pts]

Design a sequential circuit with a single JK flip-flop A, and two inputs S and T.

If S = 0, the circuit goes to the other state.

If ST = 11, the circuit goes to state 1.

If ST = 10, the circuit remains at the same state.

Present State	Inp	outs	Next State	Flip-Flo	p Inputs
\mathbf{A}	${f S}$	${f T}$	A	${f JA}$	KA
0	0	0	1	1	X
0	0	1	1	1	X
0	1	0	0	0	X
0	1	1	1	1	X
1	0	0	0	X	1
1	0	1	0	X	1
1	1	0	1	X	0
1	1	1	1	X	0

1) SOP for J input to flip-flop A	$\overline{S} + T$
2) SOP for K input to flip-flop A	\overline{S}

VII. Design of Sequential Circuit #3 [63 pts]

Design a 3-bit Gray code counter using JK flip-flops that outputs 1 if there are an even number of 1s in the present state and outputs 0 otherwise.

Present State		Next State		Flip-Flop Inputs					Output			
A	В	\mathbf{C}	\mathbf{A}	В	\mathbf{C}	JA	KA	JB	KB	JC	KC	${f z}$
0	0	0	0	0	1	0	X	0	X	1	X	1
0	0	1	0	1	1	0	X	1	X	X	0	0
0	1	0	1	1	0	1	X	X	0	0	X	0
0	1	1	0	1	0	0	X	X	0	X	1	1
1	0	0	0	0	0	X	1	0	X	0	X	0
1	0	1	1	0	0	X	0	0	X	X	1	1
1	1	0	1	1	1	X	0	X	0	1	X	1
1	1	1	1	0	1	X	0	X	1	X	0	0

1) SOP for J input to flip-flop A	$B\overline{C}$
2) SOP for K input to flip-flop A	\overline{BC}
3) SOP for J input to flip-flop B	$\overline{A}C$
4) SOP for K input to flip-flop B	AC
5) SOP for J input to flip-flop C	$\overline{A \oplus B}$ or $\overline{A}\overline{B} + AB$
6) SOP for K input to flip-flop C	$A \oplus B$ or $A\overline{B} + \overline{A}B$
7) SOP for output Z	$\overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$