Chapter 12: Correlation and Regression

Siddiqua Mazhar Ph.D

Introduction

- -Looking to find a relationship between two variables
- offichelescomenson fow converseti

Words

Correlation: Tells you that relationship exists or not between two variables

Regression: Describes the relationship between two variables (mathematically).

Simple vs. Complex Relationships

Correlation

• Anumerical marker for correlation is called a correlation coefficient

Pearson correlation coefficient when linear relationship

Correlation

- -Symbolt $-1 \le r \le 1$
- -Close to Olinen Bad fit

Correlation

Regression

-Regression gives the relationship.

Computers will make the best eations niotican

Regression

fleatranesmestersion ine gives a ine of bestific

Example 1 - Gun Laws and Crime

Createaleast Squares regression tine and give core a fron coefficient for the following data:

- FThe data shows the Brady Scorecard points from 2014 and the murder rates for 2016
- 8 November Maria de la companio d

State	Brady Scorecard points 2014 (x)	Murder Rate 2016 (y)				
Wyoming	-28	3.4				
Idaho	-19	2.9				
Indiana	-14.5	6.5				
South Dakota	-9	3.2				
New Hampshire	-7	1.4				
Michigan	3	6.2				
Wisconsin	6	4.0				
Pennsylvania	23	5.3				
Illinois	40.5	8.3				
Maryland	56	8.9				

Predict what the Murder Rate will be if the Brady Points are 3.

Predict what the Murder Rate will be if the Brady Points are 30

Limitations

Correlation \neq Causation

Correlationitels usithat variables are Related inatematically of the PATTERN

Correlation \neq Causation

Correlation \neq Causation

-Don't use inistro dismiss

Extrapolation

Extrapolation is predicting outside of known bounds

For Example if 23 < X < 68, then should not se X = 5 in predictions and not use X = 7/2.

Extrapolation

-Where should we hot predict due to extrapolation in the Gun Laws example?

Prediction range

-We predicted Murder rate when Brady points were 3.

- Midnigamakatually has 3 for Brakly points.

Prediction Range

There is a formal way of how big of range should be

Example 2 - Money and Placement

• We want to see if there is a correlation between the money spent on a college wresting program and their final blacement in 2017

- We collect data on the Big 10 programs. We collect the placement in the NCAA wrestling finals along with their expenses on their wrestling teams.

Institution	Expenses in \$ (x)	Placement (y)
Indiana	1,169,695	35
Michigan State	973,026	41
Northwestern	1,445,648	46
Ohio State	2,349,054	2
Pennsylvania State	2,341,696	1
Purdue	1,122,255	50
Rutgers	1,698,342	19
Illinois	1,275,385	11
lowa	2,270,226	4
Maryland	1,246,160	35
Michigan	1,657,023	10
Minnesota	1,215,970	7
Nebraska	1,599,430	9
Wisconsin	1,531,224	13

-Find The Least Soughes regression Vine

-Find The Coire atton Coefficient

Where would you expect a college to place if a college spent \$1.500.000 on their team?

-Where would you expect a college to place if a college spent \$2.000,000 on their team?

• Circle all values where you should not predict due to extrapolation

																				////////										
						.''///////											<i>'///////</i>													"////
///, ?		0 m. c		900 8 8	10.8 11	%			///////////////////////////////////////		10 11 1	90. 8 8	(I) (II)	/// ////	8 11/1	9 911			////////			/////. W	91160 VI		3 M 990	0 m	////// ///	0 8 M	8 % M	1//
/////		% //// 3	<i>////.////////////////////////////////</i>	1/// 23	W 3 W	7).					11.10	W 8 8	W. W.	///.	3 8 9///	3. 9//						///////////////////////////////////////	~/////.		///////	% <i>911</i> 1, 3	/////.	Ø 3 W	3 8 9//	3 ///
	111111111111111111111111111111111111111	0. W D	M 111111	11/11/11/11	W V. V	9 ///////				111 %	11/2/2	W 2.3	/// ////	W), W)	12. W/	9. U							3			0. W 0	//////////////////////////////////////	9 12 41	1 12 W	
		Mudli	mille II	millin	ulllin	///////////////////////////////////////				v. /////	udlli	u///////		Illini	Mudi	Illini	/////////					111111111111111111111111111111111111111	MhM	In Ilmi	ulluull		11/1/11/11/11	dllini	Minn	/////
																														/////

5177000,000 52,2250,000 572,750,000

Example 3 - Money and Points

. We want to see if there is a correlation between the money spent on a college wrestling program and their final points earned in $2017\,$

- We collect data on the Big 10 programs. Points scored in the NCAA wrestling finals and total expenses on wrestling teams are displayed

Institution	Expenses \$ (x)	Points scored (y)
Indiana	1169695	8.5
Michigan State	973026	4.5
Northwestern	1445648	3.5
Ohio State	2349054	110
Pennsylvania State	2341696	146.5
Purdue	1122255	2.5
Rutgers	1698342	24.5
Illinois	1275385	43.5
lowa	2270226	97
Maryland	1246160	8.5
Michigan	1657023	47.5
Minnesota	1215970	62.5
Nebraska	1599430	59.5
Wisconsin	1531224	39.5

Find The Least Souares regression fine

-Find The Coire atton Coefficient

flow many points would vou expect a college to place if a college spent \$1,500,000 on their team?

·How many points would you expect a college to dace if a college spent \$2,000,000 on their team?

Example 4 - Big Mac and Happiness

- We want to see if there is a correlation between a country's Big Mac Index and their overall level of happiness.
- -Note: The Canitril ladder asks those to evaluate the quality of life on a scale from O to 10.

Country	Big Mac Index (x)	Cantril ladder (y)
Australia	4.33	7.272
Canada	5.25	7.328
Czech Republic	3.79	6.711
Denmark	4.61	7.555
Hungary	3.02	5.620
Japan	3.32	5.915
Mexico	2.57	6.488
Norway	5.95	7.594
Switzerland	6.55	7.487
United States	5.58	6.886
United Kingdom	4.12	6.814

-Find The Least Soughes regression Vine

-Find The Coire atton Coefficient

FUse the line to predict the Happiness levelif the Bowacindexis \$3.06.

Example 5 - McD's and Happiness

 We want to see if there is a correlation between the number of McDonalds restaurants per million people in a country and their overall level of happiness.

- -That data was collected for a sample of 11 countries.
- No recomposado de la companio por exemplo por la companio de la companio de la companio de la companio de la c

Country	McDonalds per Million (x)	Cantril ladder score (y)
Australia	32.2	7.272
Canada	33.9	7.328
Czech Republic	5.9	6.711
Denmark	17.9	7.555
Hungary	7.6	5.620
Japan	28.4	5.915
Mexico	1.8	6.488
Norway	11.7	7.594
Switzerland	15.6	7.487
United States	40.9	6.886
United Kingdom	17.8	6.814

-Find The Least Soughes regression Vine

-Find The Coire atton Coefficient

Ose the ine to predict the Fappiness levelift the Number of McDonalds per William people is 1845

A way to cheat...

• I want to show how we can paint a narrative if we selectively ignore data that we do not like and selectively focus on data we do like.

Focus on subsets of the data from number of McDonalds example for the next two examples

Example 6 - Number of McDonalds

Country	McDonalds per Million (x)	Cantril ladder score (y)
Japan	28.4	5.915
Norway	11.7	7.594
Switzerland	15.6	7.487
United Kingdom	17.8	6.814

Find The Least Souares regression fine

-Find The Coire atton Coefficient

Ose the ine to predict the Fappiness levelift the Number of McDonalds per William people is 1845

-Circle all values where you should not predict due to extrapolation:

Example 7 - Number of McDonalds

Country	McDonalds per Million	Cantril ladder score (y)
United Kingdom	17.8	6.814
Mexico	1.8	6.488
Australia	32.2	7.272
Canada	33.9	7.328

-Find The Least Soughes regression Vine

-Find The Coire atton Coefficient

Ose the ine to predict the Fappiness levelift the Number of McDonalds per William people is 1845

-Circle all values where you should not predict due to extrapolation:

Samples

Don't forget that samples should be consequently of population