This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

19 BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift _® DE 101 13 781 A 1

(5) Int. Cl.⁷: C 07 K 14/435

DEUTSCHES PATENT- UND MARKENAMT

(a) Aktenzeichen: 101 13 781.8 ② Anmeldetag: 21. 3.2001

(3) Offenlegungstag: 13. 12. 2001

(66) Innere Priorität:

100 28 212. 1 100 53 478.3 09.06.2000 24. 10. 2000

(7) Anmelder:

IPK-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, DE

(74) Vertreter:

Maiwald Patentanwalts-GmbH, 80335 München

② Erfinder:

Scheller, Jürgen, Dr., 06484 Quedlinburg, DE; Conrad, Udo, Dr., 06458 Hausneindorf, DE; Große, Frank, Prof. Dr., 07743 Jena, DE; Gührs, Karl-Heinz, Dr., 07745 Jena, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Synthetische Spinnenseidenproteine und deren Expression in transgenen Pflanzen
- Die Erfindung betrifft eine DNA-Sequenz, die für ein synthetisches Spinnenseidenprotein kodiert, rekombinante Spinnenseidenproteine, die durch die erfindungsgemäße DNA-Sequenz kodiert sind, Verfahren zur Herstellung von Pflanzen bzw. Pflanzenzellen, die rekombinantes Spinnenseidenprotein enthalten sowie transgene Pflanzenzellen und Pflanzen, die eine DNA-Sequenz enthalten, die für ein synthetisches Spinnenseidenprotein kodiert. Des weiteren betrifft die Erfindung ein Verfahren zur Gewinnung von pflanzlichem Spinnenseidenprotein aus transgenen Pflanzen sowie pflanzliche Spinnenseidenproteine, die nach einem derartigen Verfahren hergestellt worden sind.

Beschreibung

- [0001] Die Erfindung betrifft eine DNA-Sequenz, die für ein synthetisches Spinnenseidenprotein kodiert, rekombinante Spinnenseidenproteine, die durch die erfindungsgemäße DNA-Sequenz kodiert sind, Verfahren zur Herstellung von Pflanzen bzw. Pflanzenzellen, die rekombinantes Spinnenseidenprotein enthalten sowie transgene Pflanzenzellen und Pflanzen, die eine DNA-Sequenz enthalten, die für ein synthetisches Spinnenseidenprotein kodiert. Des weiteren betrifft die Erfindung ein Verfahren zur Gewinnung von pflanzlichem Spinnenseidenprotein aus transgenen Pflanzen sowie pflanzliche Spinnenseidenproteine, die nach einem derartigen Verfahren hergestellt worden sind. RN: MH: uh
- [0002] Spinnenseide weist hervorragende mechanische Eigenschaften auf, die jene vieler bekannter natürlicher und künstlicher Materialien übertrifft. Hauptbestandteile der Spinnenseide sind Faserproteine wie beispielsweise Fibroin aus dem Seidenspinner sowie Spidroin 1 und Spidroin 2 aus Nephila clavipes. Die Festigkeit und Elastizität der Seide beruht auf der Gegenwart von kurzen repetitiven Aminosäure-Einheiten, die in diesen natürlichen Proteinen vorliegen. Diese mechanischen Eigenschaften prädestinieren die Spinnenseide für eine Reihe von verschiedensten technischen Anwendungen wie beispielsweise die Herstellung von stabilen Fäden bzw. Seiden. Ferner verfügen die Spinnenseidenfäden aufgrund ihrer proteinchemischen Eigenschaften über ein geringes immunogenes und allergenes Potential, weshalb sich in Kombination mit den mechanischen Eigenschaften eine Anwendung in der Medizin beispielsweise als natürliches Garn zum Vernähen von Wunden, als Anheftungsflächen für kultivierte Zellen, als Gerüste für künstliche Organe und dergleichen anbietet.
- 20 [0003] Voraussetzung für eine derartige technische bzw. medizinische Nutzung der Spinnenseide ist jedoch die Herstellung von Spinnenfäden bzw. Spinnenseidenproteinen in großem Maßstab. Zu diesem Zweck wurde bislang versucht, die für die Produktion der Spinnenseide verantwortlichen Spidroin- bzw. Fibroingene in E. coli zu exprimieren. Die sich häufig wiederholenden Sequenzen in den entsprechenden Genen gehen jedoch bei der Reproduktion in Bakterien nach und nach verloren. Ein weiteres Problem ist die Größe der genetischen Information, die für das Bakterium zu umfangreich zu sein scheint, so daß die Spinnenseiden-Gene nicht immer vollständig ausgelesen werden.
 - [0004] Versuche der Expression in Hefezellen ergaben zwar stabilere und längere Seidenproteine, die Fäden, die daraus gesponnen wurden, weisen jedoch nicht die selben vorteilhaften Eigenschaften der natürlichen Seide auf, so daß beispielsweise eine medizinische Anwendung einer derart synthetisch hergestellten Seide nicht möglich ist. Es besteht somit ein Bedarf an synthetischen Seidenproteinen, die in technischem Maßstab hergestellt werden können und nach dem Verspinnen zu Fäden mechanische Eigenschaften aufweisen, die mit jenen der natürlichen Seide vergleichbar sind.
- [0005] Aufgabe der vorliegenden Erfindung ist es deshalb, DNA-Sequenzen bereitzustellen, die für ein synthetisches Spinnenseidenprotein kodieren, das eine möglichst große Ähnlichkeit mit den bisher bekannten natürlichen Sequenzen von Faserproteinen der Spinnenseide aufweist. Ferner ist es Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, mit dem synthetische Spinnenseidenproteine in großem Maßstab hergestellt werden können.
- [5006] Weitere Aufgaben der vorliegenden Erfindung ergeben sich aus der folgenden Beschreibung.
 - [0007] Oben genannte Aufgaben werden durch die Merkmale der unabhängigen Schutzansprüche gelöst.
 - [0008] Vorteilhafte Ausgestaltungen sind in den Unteransprüchen definiert.
 - [0009] Im Rahmen der vorliegenden Erfindung wird jetzt eine DNA-Sequenz offenbart, die für ein synthetisches Faserprotein, insbesondere ein synthetisches Spinnenseidenprotein kodiert, das eine mindestens 80%ige, vorzugsweise mindestens 84%ige, mehr bevorzugt mindestens 88%ige, besonders bevorzugt mindestens 90%ige und 92%ige, am meisten bevorzugt mindestens 94%ige Homologie zu Spidroin- und/oder Fibroin-Proteinen, insbesondere zu dem Spidroin 1-Protein, besonders bevorzugt zu dem Spidroin 1-Protein aus Nephila clavipes aufweist.
- [0010] Homologie bedeutet im Rahmen dieser Erfindung Ähnlichkeit zwischen Aminosäuresequenzen aufgrund von identischen bzw. homologen Aminosäurebausteinen. Welche Aminosäuren als homolog anzusehen sind, ist dem Fachmann bekannt, z. B. (i) Isoleucin, Leucin und Valin untereinander, (ii) Asparagin und Glutamin, (iii) Asparaginsäure und Glutaminsäure.
 - [0011] Die erfindungsgemäße DNA-Sequenz ist aus Modulen aufgebaut, die eine Gruppe von aneinandergereihten Oligonukleotidsequenzen umfassen, wobei die Oligonukleotidsequenzen jeweils für repetitive Einheiten aus Spidroin- und/ oder Fibroin-Proteinen kodieren.
- 50 [0012] Der Aufbau der erfindungsgemäßen DNA-Sequenz aus verschiedenen Modulen, welche wiederum aus unterschiedlichen, für Spidroine bzw. Fibroine typischen kurzen Aminosäure-Repeats konstruiert sind, wobei sich das Prinzip der Aneinanderreihung der entsprechenden Oligonukleotidsequenzen bzw. der Module an natürlichen Spidroin- und/ oder Fibroin-Sequenzen orientiert, gewährleistet eine sehr hohe Homologie zu bisher bekannten natürlichen Spidroin-bzw. Fibroin-Sequenzen. Dadurch wird sichergestellt, daß die durch die erfindungsgemäße DNA-Sequenz kodierten Spinnenseidenproteine nach dem Verspinnen zu Fäden hervorragende mechanische Eigenschaften bezüglich ihrer Festigkeit und Elastizität aufweisen, die mit den mechanischen Eigenschaften von natürlichen Spinnenfäden vergleichbar
- [0013] Des weiteren ermöglicht der modulartige Aufbau der erfindungsgemäßen DNA-Sequenz eine einfache gentechnische Modifizierung der synthetischen Gene, so daß Multimere von synthetischen Spinnenseidenproteinen mit beliebiger Größe je nach Wunsch hergestellt werden können. Ferner können die durch die erfindungsgemäße DNA-Sequenz kodierten Spinnenseidenproteine aufgrund des modulartigen Aufbaus mit anderen Faserproteinsequenzen fusioniert werden. Ein besonderer Vorteil der erfindungsgemäßen DNA-Sequenz ist, daß sie aufgrund ihres modulartigen Aufbaus auf einfache Weise mit für Reinigungselemente oder Löslichkeits-verändernde Peptide kodierenden Sequenzen fusioniert werden kann.
- [0014] Bei einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung weist das durch die erfindungsgemäße DNA-Sequenz kodierte Spinnenseidenprotein eine mindestens 84%ige, vorzugsweise mindestens 90%ige und besonders bevorzugt mindestens 94%ige Homologie zu dem Spidroin 1-Protein aus Nephila clavipes auf. Spidroin 1 aus Nephila clavipes ist wesentlich am Aufbau eines mechanisch besonders stabilen und elastischen Tragfadens beteiligt.

[0015] Aufgrund des modulartigen Aufbaus der erfindungsgemäßen DNA-Sequenz ist die Konstruktion von Genen, die sehr große Spinnenseidenproteine kodieren, ohne weiteres möglich, wobei die hohe Homologie zu Spidroin- und/ oder Fibroin-Proteinen, insbesondere zu Spidroin 1, besonders bevorzugt zu Spidroin 1 von Nephila clavipes immer erhalten bleibt. Die so erzielbare Größenverteilung der durch die erfindungsgemäßen DNA-Sequenzen kodierten Proteine entspricht dem Spektrum von Spinnenseidenproteinen, das nach der Auflösung von natürlicher Spinnenseide beobachten werden kann. Dieses identische Größenspektrum sowie die hohe Sequenzhomologie definieren die erfindungsgemäßen synthetischen Gene als Gene, die für Spinnenseidenproteine kodieren. Im Gegensatz zu natürlicher Spinnenseide, die aus einem Gemisch von Spinnenseidenproteinen besteht, werden durch die vorliegende Erfindung Spinnenseidenprotein-Gene bereitgestellt, die mit hoher Homologie eine Genklasse repräsentieren und eine einfache gentechnische Manipulation crlauben.

[0016] Die Module zum Aufbau der erfindungsgemäßen DNA-Sequenz umfassen eine Gruppe von aneinandergereihten Oligonukleotidsequenzen, die vorzugsweise ausgewählt sind aus der Gruppe, bestehend aus:

15

20

25

30

- a) TATGAGCGCTCCCGGGCAGGGT;
- b) AGCTTTTAGGTACCAATATTAATCTGGCCGGCTCCACC;

c) TATGGTCTGGGG;

- d) GGCCAGGGTGCTGGCCAA;
- e) GGTGCAGGAGCWGCWGCWGCWGCTGCAGGTGGA;
- f) GCCGGCCAGATTAATATTGGTACCTAAA;
- g) CTGCCCGGGAGCGCTCA;
- h) ACCACCATAACCTCC;
- i) AGCACCCTGGCCCCCAG;
- j) TGCAGCWGCWGCWGCTCCTGCACCTTGGCC;
- k) TATGAGATCTGGCCAAGGAGGT;
- TTGGCCAGATCTCA;
- m) AGTCAGGGTGCTGGTCGTGGAGGCCAA;
- n) TCCACGACCAGCACCCTGACTCCCCAG;
- o) AGTCAGGGCGCTGGTCGTGGGGGACTGGGTGGCCAA;
- p) ACCCAGTCCCCACGACCAGCGCCCTGACTCCCCAG;
- q) CTGGGAGGGCAGGGAGCGGCCAA;
- r) CGCTCCCTGCCCTCCCAGACCTCC; und
- s) Sequenzen, die zu den Sequenzen a) bis r) eine mindestens 80%ige, vorzugsweise mindestens 90%ige, besonders bevorzugt mindestens 94%ige Sequenzidentität aufweisen.

[0017] Die Module umfassen vorzugsweise mindestens vier Oligonukleotidsequenzen, die sich vorzugsweise unterscheiden, um die natürlichen Spinnenseidenproteine auf authentische Weise nachzugestalten. Die erfindungsgemäße DNA-Sequenz ist wiederum vorzugsweise aus mindestens vier der vorstehend beschriebenen Module aufgebaut.

[0018] Der Aufbau der erfindungsgemäßen DNA-Sequenz wird im folgenden beispielhaft dargestellt. Zunächst werden die in Abb. 1 angegebenen Oligonukleotide bereitgestellt, die für Aminosäuresequenzen kodieren, die Spidroin-typischen kurzen Aminosäure-Repeats entsprechen. Diese Oligonukleotide werden durch gentechnische Verfahren miteinander kombiniert, wobei sich die Kombination an der natürlichen Spidroin-Sequenz richtet (siehe Abb. 2). Die so entstandenen Module A, B, C, D, E und F werden erneut miteinander kombiniert (siehe Abb. 3). Auf diese Weise werden erfindungsgemäße DNA-Sequenzen bereitgestellt, die auf Aminosäureebene eine mindestens 85%ige, vorzugsweise mindestens 90%ige und besonders bevorzugt mindestens 94%ige Homologie zu Spidroin-Proteinen zeigen.

[0019] Bei einer weiteren Ausführungsform umfaßt die erfindungsgemäße DNA-Sequenz zusätzlich zu den vorstehend beschriebenen Modulen Nukleinsäuresequenzen, die für repetitive Einheiten aus Fibroin-Proteinen, vorzugsweise aus dem Fibroin-Protein des Seidenspinners kodieren.

[0020] Besonders bevorzugte erfindungsgemäße DNA-Sequenzen weisen die Sequenzen SEQ ID No. 19 bis 29 auf. [0021] Erfindungsgemäß ist es ferner überraschenderweise erstmals gelungen, synthetische Spinnenseidenproteine in transgenen Pflanzen zu erzeugen. Auf diese Weise können synthetische Spinnenseidenproteine in großem Maßstab hergestellt werden. Um eine stabile Expression der erfindungsgemäßen DNA-Sequenz in Pflanzen zu gewährleisten, wird erfindungsgemäße ein rekombinantes Nukleinsäuremolekül bereitgestellt, das die vorstehend beschriebene erfindungsgemäße DNA-Sequenz sowie einen ubiquitär wirkenden Promotor, vorzugsweise den CaMV35S-Promotor umfaßt. Die Bereitstellung des erfindungsgemäßen rekombinanten Nukleinsäuremoleküls ermöglicht die Expression und Akkumulation von synthetischen Spidroin- bzw. Fibroinsequenzen in transgenen Pflanzen.

[0022] Um sicherzustellen, daß die erfindungsgemäße DNA-Sequenz in geeigneten Kompartimenten von transgenen Pflanzen exprimiert und akkumuliert wird, umfaßt das erfindungsgemäße Nukleinsäuremolekül zusätzlich zu der erfindungsgemäßen DNA-Sequenz und einem ubiquitär wirkenden Promotor vorzugsweise mindestens eine Nukleinsäuresequenz, die für ein pflanzliches Signalpeptid kodiert.

[0023] Bei einer bevorzugten Ausführungsform wird als Zielkompartiment für die Expression bzw. Akkumulation des synthetischen Spinnenseidenproteins das endoplasmatische Retikulum (ER) ausgewählt. Dieses Kompartiment ist für die stabile Akkumulation von Fremdproteinen in Pflanzen besonders geeignet. Um den Transport in das ER zu gewährleisten, umfaßt das erfindungsgemäße Nukleinsäuremolekül bevorzugt entsprechende Signalpeptide, besonders bevorzugt die LeB4Sp-Sequenz.

[0024] Die Retention im ER, falls gewünscht, wird erfindungsgemäß dadurch gewährleistet, daß das erfindungsgemäße Nukleinsäuremolekül zusätzlich eine Nukleinsäuresequenz umfaßt, die für ein ER-Retentionspeptid kodiert. Vorzugsweise wird die Retention in ER durch die C-terminal angefügte Aminosäuresequenz KDEL erreicht.

[0025] Ferner kann es vorteilhaft sein, die erfindungsgemäße DNA-Sequenz an der Plasmalemma, d. h. der Zellmem-

3

bran, zu plazieren. Deshalb umfaßt das erfindungsgemäße rekombinante Nukleinsäuremolekül bei einer alternativen Ausführungsform die erfindungsgemäße DNA-Sequenz, fusioniert an den N-Terminus einer Transmembrandomäne. Vorzugsweise ist diese Transmembrandomäne die Transmembrandomäne des PDGF-Rezeptors, die sogenannte HOOK-Sequenz (siehe Abb. 4).

[0026] Bei einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das erfindungsgemäße Nukleinsäuremolekül mit ELP's (elastin-like polypeptides) fusioniert. ELP's sind oligomere Repeats des Pentapeptids Val-Pro-Gly-Xaa-Gly (wobei Xaa jede Aminosäure außer Prolin und vorzugsweise Gly ist) und unterliegen einem reversiblen inversen Temperaturübergang. Sie sind in Wasser unterhalb der inversen Übergangstemperatur (T₁) sehr gut löslich, unterliegend jedoch einem scharfen Phasenübergang im Bereich von 2°C bis 3°C, wenn die Temperatur über T₁ erhöht wird, was zur Ausfällung und Aggregation des Polypeptids führt. D. E. Meyer und A. Chilkoti, Nat. Biotech. 1999, 17, 1112–1115, haben beschrieben, daß ELP-Fusionen mit rekombinanten Proteinen das Löslichkeitsverhalten dieser rekombinanten Proteine bei verschiedenen Temperaturen und Konzentrationen gezielt verändern. Bei der vorliegenden Erfindung wird dies zur Etablierung von im nachfolgenden detailliert beschriebenen Reinigungsstrategien für das durch die erfindungsgemäße DNA-Sequenz kodierte Spinnenseidenprotein genutzt. Vorzugsweise umfassen die durch die Nukleinsäuresequenz in dem erfindungsgemäßen Nukleinsäuremolekül kodierten ELP's von 10 bis 100 der vorstehend beschriebenen Pentamer-Einheiten (siehe Abb. 5).

[0027] Die Herstellung der vorstehend beschriebenen chimären Genkonstrukte bzw. rekombinanten Nukleinsäuremoleküle erfolgt mittels konventioneller Klonierungstechniken (siehe beispielsweise Sambrok et al. (1989, Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York)). Mittels dieser gängigen molekularbiologischen Techniken ist es möglich, gewünschte Konstrukte für die Transformation von Pflanzen vorzubereiten bzw. herzustellen. Die für die gentechnische Manipulation in prokaryontischen Zellen üblicherweise eingesetzten Klonierungs-, Mutagenisierungs-, Sequenzanalyse- und Restriktionsanalyse-Methoden sowie weitere biochemisch-molekularbiologische Methoden sind dem Fachmann wohlbekannt. So können nicht nur geeignete chimäre Genkonstrukte mit der jeweils gewünschten Fusion von Promotor, erfindungsgemäßer DNA-Sequenz, für ein pflanzliches Signalpeptid kodierender Sequenz, für ein ER-Retentionspeptid kodierender Sequenz, für eine Transmembrandomäne kodierender Sequenz und/oder für Reinigungselemente bzw. Löslichkeits-verändernde Peptide kodierenden Sequenzen hergestellt werden. Vielmehr kann der Fachmann mittels Routinetechniken, falls erwünscht, verschiedenartige Mutationen oder Deletionen in die jeweiligen Gene einführen.

[0028] Die Erfindung betrifft weiterhin Vektoren und Mikroorganismen, die erfindungsgemäße Nukleinsäuremoleküle enthalten und deren Verwendung die Herstellung von Pflanzenzellen bzw. Pflanzen ermöglicht, die Spinnenseidenproteine produzieren. Dabei handelt es sich bei den Vektoren insbesondere um Plasmide, Cosmide, Viren, Bakteriophagen und andere in der Gentechnik gängige Vektoren. Bei den Mikroorganismen handelt es sich in erster Linie um Bakterien, Viren, Pilze, Hefen und Algen.

[0029] Da die erfindungsgemäßen DNA-Sequenzen aufgrund ihres repetitiven Charakters kaum unikale Restriktionsorte aufweisen, wurden die erfindungsgemäßen Vektoren bzw. die das synthetische Spinnenseidenprotein kodierenden
Gene durch verschiedene Strategien entsprechend angepaßt (siehe Abb. 6 bis 8). Bei der Amplifizierung der erfindungsgemäßen DNA-Sequenzen durch PCR werden aufgrund des extrem repetitiven Charakters der erfindungsgemäßen
DNA-Sequenzen vorzugsweise zunächst Oligonukleotide anligiert, welche dann als Matrizen für die nachfolgenden
PCR-Reaktionen dienen (siehe Abb. 7).

[0030] Des weiteren wird bei der vorliegenden Erfindung ein rekombinantes Spinnenseidenprotein bereitgestellt, das durch die erfindungsgemäße DNA-Sequenz kodiert wird. Dieses erfindungsgemäße synthetische Spinnenseidenprotein, vorzugsweise mit einem Molekulargewicht im Bereich von 10 bis 160 kDa, weist eine mindestens 85%ige, vorzugsweise mindestens 90%ige und besonders bevorzugt mindestens 94%ige Homologie zu Spidroin- und/oder Fibroin-Proteinen auf. Durch diese hohe Homologie mit den natürlichen Faserproteinen der Spinne und des Seidenspinners wird gewährleistet, daß die herausragenden mechanischen Eigenschaften der natürlichen Spinnenfäden erreicht werden, wenn die erfindungsgemäßen Proteine zu Fäden gesponnen werden.

[0031] Ferner weisen die erfindungsgemäßen Proteine überraschenderweise neuartige physikochemische Eigenschaften auf. So bleibt die Löslichkeit dieser erfindungsgemäßen synthetischen Faserproteine in wäßrigen Lösungen auch nach längerem Kochen außerordentlich gut erhalten. Gemeinsam mit der ebenfalls auftretenden Löslichkeit in organischen Lösungen und dem Fällungsverhalten bei hohen Salzkonzentrationen können diese neuen Eigenschaften der erfindungsgemäßen synthetischen Spinnenseidenproteine somit für die Entwicklung technisch durchführbarer Extraktionsund Reinigungsverfahren genützt werden. Diese Eigenschaften werden noch verstärkt, wenn die erfindungsgemäßen synthetischen Spinnenseidenproteine gezielt in bestimmten Kompartimenten, insbesondere im ER von transgenen Pflanzen akkumuliert werden.

[0032] Beispiele für Aminosäuresequenzen der erfindungsgemäßen rekombinanten synthetischen Spinnenseidenproteine weisen die Sequenzen SEQ ID No. 30 bis 40 auf. Die erfindungsgemäßen Spinnenseidenproteine können alternativ auch nach chemischen, dem Fachmann bekannten Methoden synthetisiert werden, eine rekombinante Herstellung ist jedoch bevorzugt.

[0033] Ferner betrifft die Erfindung ein Verfahren zur Herstellung von Spinnenseidenprotein-produzierenden Pflanzen bzw. Pflanzenzellen, umfassend die folgenden Schritte:

- a) Herstellung eines wie vorstehend beschriebenen erfindungsgemäßen rekombinanten Nukleinsäuremoleküls;
- b) Übertragung des Nukleinsäuremoleküls aus a) auf pflanzliche Zellen; und
- c) gegebenenfalls die Regeneration fertiler Pflanzen aus den transformierten Pflanzenzellen.

[0034] Des weiteren betrifft die Erfindung Pflanzenzellen, die die erfindungsgemäßen Nukleinsäuremoleküle bzw. den erfindungsgemäßen Vektor enthalten. Die Erfindung betrifft ferner Ernteprodukte und Vermehrungsmaterial transgener Pflanzen sowie die transgenen Pflanzen selbst, die ein erfindungsgemäßes Nukleinsäuremolekül enthalten.

[0035] Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen bzw. deren Zellen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, die ein Replikationssignal für E. coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pA-CYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird dann für die Transformation von E. coli-Zellen verwendet. Transformierte E. coli-Zellen werden in einem geeigneten Medium gezüchtet und anschließend geerntet und lysiert, und das Plasmid wird wiedergewonnen. Als Analysenmethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden.

[0036] Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung, wobei der Fachmann die jeweils geeignete Methode ohne Schwierigkeiten ermitteln kann. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmedium, die Fusion von Protoplasten, die Injektion, die Elektroporation, den direkten Gentransfer isolierter DNA in Protoplasten, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten die bereits seit mehreren Jahren gut etabliert sind und zum üblichen Repertoire des Fachmanns in der pflanzlichen Molekularbiologie bzw. Pflanzenbiotechnologie gehören.

[0037] Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden per se keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Ähnliches gilt für den direkten Gentransfer. Es können einfache Plasmide, wie z. B. pUC-Derivate, verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens empfehlenswert. Dem Fachmann sind die gängigen Selektionsmarker bekannt, und es stellt für ihn kein Problem dar, einen geeigneten Marker auszuwählen.

100381 Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z. B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muss mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der im Ti- bzw. Ri-Plasmid enthaltenen T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden. Werden für die Transformation Agrobakterien verwendet, muss die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E. coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarkergen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA-Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden. Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in allseits bekannten Übersichtsartikeln und Handbüchern zur Pflanzentransformation beschrieben worden. Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kultiviert werden. Aus dem infizierten Pflanzenmaterial (z. B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden.

[0039] Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin, Methotrexat, Glyphosat, Streptomycin, Sulfonylharnstoff, Gentamycin oder Phosphinotricin u. a. vermittelt. Der individuell gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten. Hierzu sind auch alternative Marker geeignet, wie nutretive Marker, Screeningmarker (wie GFP, green fluorescent protein). Selbstverständlich kann auch vollkommen auf Selektionsmarker verzichtet werden, was allerdings mit einem ziemlich hohen Screeningbedarf einhergeht. Falls markerfreie transgenen Pflanzen erwünscht sind, stehen dem Fachmann auch Strategien zur Verfügung, die eine nachträgliche Entfernung des Markergens erlauben, z. B. Cotransformation, Sequenz-spezifische Rekombinasen.

[0040] Die Regeneration der transgenen Pflanzen aus transgenen Pflanzenzellen erfolgt nach üblichen Regenerationsmethoden unter Verwendung bekannter Nährmedien. Die so erhaltenen Pflanzen können dann mittels üblicher Verfahren, einschließlich molekularbiologischer Methoden, wie PCR, Blot-Analysen, auf Anwesenheit der eingeführten Nukleinsäure, die ein synthetisches Spinnenseidenprotein kodiert, untersucht werden.

[0041] Bei der transgenen Pflanze bzw. der transgenen Pflanzenzelle kann es sich um jede beliebige monokotyle oder dikotyle Pflanze bzw. Pflanzenzelle handeln. Vorzugsweise handelt es sich um Nutzpflanzen bzw. Zellen von Nutzpflanzen. Besonders bevorzugt handelt es sich um transgene Pflanzen ausgewählt aus der Gruppe, bestehend aus der Tabakpflanze (Nicotiana tabacum) und der Kartoffelpflanze (Solanum tuberosum).

[0042] Die Expression des erfindungsgemäßen synthetischen Spinnenseidenproteins in den erfindungsgemäßen Pflanzen bzw. in den erfindungsgemäßen Pflanzenzellen kann mit Hilfe herkömmlicher molekularbiologischer und biochemischer Methoden nachgewiesen und verfolgt werden. Dem Fachmann sind diese Techniken bekannt und er ist problemlos in der Lage, eine geeignete Nachweismethode zu wählen, beispielsweise eine Northern-Blot-Analyse oder eine Southern-Blot-Analyse.

[0043] Ein Beispiel für die Herstellung von transgenen Spinnenseidenprotein-produzierenden Pflanzen ist in Abb. 9 angegeben. Die durch PCR amplifizierten Sequenzen können möglicherweise frameshift-Mutationen enthalten. Deshalb

müssen die erfindungsgemäßen Sequenzen vor der Erzeugung transgener Pflanzen überprüft werden. Dies kann durch Sequenzanalyse jeweils von den flankierenden Vektorsequenzen aus erfolgen. Längere Konstrukte über 1 kB können auf diese Weise nicht geprüft werden, da aufgrund der repetitiven Eigenschaften der erfindungsgemäßen DNA-Sequenzen interne Sequenzierungsprimer keine auswertbaren sicheren Sequenzen liefern. Aus diesem Grund wurden amplifizierte Spidroinsequenzen vorzugsweise in den bakteriellen Expressionsvektor pet23a (Novagen, Madison, USA) kloniert. Durch immunchemischen Nachweis der Expression können dann frameshift-Mutationen ausgeschlossen werden.

[0044] Die erfindungsgemäßen Nukleinsäuremoleküle bzw. Expressionskassetten werden erfindungsgemäß üblicherweise als HindIII-Fragmente in Shuttle-Vektoren wie pBIN, pCB301 und/oder pGSGLUC1 kloniert. Diese Shuttle-Vektoren werden vorzugsweise in Agrobacterium tumefaciens transformiert. Die Transformation von Agrobacterium tumefaciens wird üblicherweise durch Southern-Blot-Analyse und/oder PCR-Screening überprüft.

[0045] Die Erfindung betrifft ebenfalls Vermehrungsmaterial und Ernteprodukte der erfindungsgemäßen Pflanzen, beispielsweise Früchte, Samen, Knollen, Wurzelstöcke, Sämlinge, Stecklinge usw.

[0046] Ferner betrifft die Erfindung ein Verfahren zur Gewinnung von pflanzlichem Spinnenseidenprotein, umfassend die folgenden Schritte:

a) die Übertragung eines erfindungsgemäßen rekombinanten Nukleinsäuremoleküls oder Vektors, der eine DNA-Sequenz erhält, die für ein synthetisches Spinnenseidenprotein kodiert, auf Pflanzenzellen;

b) gegebenenfalls die Regeneration von Pflanzen aus den transformierten Pflanzenzellen;

15

20

c) die Verarbeitung der Pflanzenzellen aus a) bzw. der Pflanzen aus b) zur Gewinnung von pflanzlichem Spinnenseidenprotein.

[0047] Bei einem weiteren wesentlichen Aspekt der vorliegenden Erfindung werden Verfahren zur Gewinnung von rekombinant hergestellten Spinnenseidenproteinen bereitgestellt, die die Übertragung eines erfindungsgemäßen rekombinanten Nukleinsäuremoleküls oder Vektors, der eine DNA-Sequenz enthält, die für ein synthetisches Spinnenseidenprotein kodiert, auf beliebige Zellen, d. h. neben Pflanzenzellen beispielsweise auch bakterielle oder tierische Zellen, umfassen. Wesentliches Merkmal bei diesen erfindungsgemäßen Verfahren ist dabei der Schritt der Reinigung der rekombinant hergestellten Spinnenseidenproteine, bei dem u. a. deren besondere Eigenschaften hinsichtlich der Löslichkeit bei Erwärmung und/oder Säurezugabe ausgenutzt werden.

[0048] So erfolgt bei einer Ausführungsform des erfindungsgemäßen Verfahrens die Reinigung des rekombinant hergestellten Spinnenseidenproteins durch Hitzebehandlung des Zellextrakts, z. B. eines Pflanzensamen-Extrakts, und anschließende Abtrennung der denaturierten zelleigenen, z. B. der pflanzeneigenen Proteine beispielsweise durch Zentrifugation. Dabei wird die Eigenschaft der rekombinant hergestellten Spinnenseidenproteine ausgenutzt, daß sie beim Erhitzen von wäßrigen Lösungen bis zum Siedepunkt löslich bleiben. Dagegen bleiben beispielsweise synthetische Faserproteine der Spinne und des Seidenspinners nach Expression in Pichia pastoris beim Erhitzen nur bis zu einer Temperatur von 63°C und dann nur für 10 Minuten in Lösung.

[0049] Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zur Gewinnung von rekombinant hergestellten Spinnenseidenproteinen erfolgt die Reinigung durch Einstellung eines sauren pH mittels Zugabe von Säure, vorzugsweise Salzsäure zu dem Zellextrakt, beispielsweise zu dem Pflanzenextrakt. Der saure pH, insbesondere ein pH im Bereich von 1,0 bis 4,0, besonders bevorzugt im Bereich von 2,5 bis 3,5, am meisten bevorzugt ein pH von 3,0, wird dabei vorzugsweise für eine Dauer von mehreren Minuten, besonders bevorzugt etwa 30 Minuten, bei einer Temperatur unterhalb Raumtemperatur, vorzugsweise etwa 4°C, beibehalten. Wiederum wird eine nicht zu erwartende Eigenschaft der durch das erfindungsgemäße Verfahren gewonnenen Proteine ausgenutzt, nämlich daß sie beim Ansäuern, insbesondere bis zu einem pH von 3,0 bei 4°C in Lösung bleiben. Die zelleigenen, beispielsweise pflanzeneigenen Proteine fallen dagegen aus und werden insbesondere durch Zentrifugation abgetrennt.

5 [0050] Die vorstehend beschriebenen Löslichkeitseigenschaften der nach dem erfindungsgemäßen Verfahren rekombinant hergestellten Spinnenseidenproteine sind sehr überraschend und waren in dieser Form nicht vorhersehbar und ermöglichen eine effiziente, schnelle und kostengünstige Reinigung bei deren Extraktion aus Zellen, insbesondere Pflanzenzellen.

[0051] Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird ein Nukleinsäuremolekül auf die Zellen übertragen, das zusätzlich eine Nukleinsäuresequenz umfaßt, die für ELP's kodiert. In diesem Fall erfolgt die Reinigung des rekombinant hergestellten Spinnenseidenproteins auf die folgende Weise: In einem ersten Schritt wird das Spinnenseiden-ELP-Fusionsprotein durch Hitzebehandlung des Rohextrakts angereichert. Überraschenderweise behalten die Fusionsproteine dabei die außerordentliche Löslichkeit der Spinnenseidenproteine bei hohen Temperaturen bei. Ein Großteil der zelleigenen Proteine fällt bei dieser Temperaturerhöhung aus. Im nächsten Schritt werden die Spinnenseiden-ELP-Fusionsproteine durch weitere Temperaturerhöhung, vorzugsweise auf eine Temperatur von mindestens 60°C, ausgefällt. Vorzugsweise erfolgt die Ausfällung bei einer geeigneten Salz-Konzentration, beispielsweise einer NaCl-Konzentration von mindestens 0,5 M, vorzugsweise im Bereich von 1 M bis 2 M. Schließlich wird das ELP-Fragment, vorzugsweise durch Verdauung mit CNBr, abgespalten.

[0052] Durch das vorstehend beschriebene erfindungsgemäße Verfahren zur Gewinnung von rekombinant hergestelltem Spinnenseidenprotein können die Proteine in Pflanzen zu hohen Konzentrationen, vorzugsweise bis zu einer Expressionshöhe von etwa 4% des gesamten löslichen Proteins angereichert werden. Damit werden erstmals Verfahren bereitgestellt, die zur technisch realisierbaren Anreicherung von rekombinantem Spinnenseidenprotein verwendet werden können.

[0053] Die erfindungsgemäßen Spinnenseidenproteine k\u00f6nnen bei einem weiteren Aspekt der vorliegenden Erfindung zur Herstellung von synthetischen F\u00e4den sowie von Folien und Membranen verwendet werden. Insbesondere sind derartige Produkte f\u00fcr medizinische Anwendungen, insbesondere zum Vern\u00e4hen von Wunden und/oder als Ger\u00fcste bzw. als Abdeckung f\u00fcr k\u00fcnnstliche Organe, geeignet. Ferner k\u00f6nnen die aus den erfindungsgem\u00e4\u00dfen Spinnenseidenproteine hergestellten Folien und Membrane u. a. als Anheftungsf\u00e4\u00e4chen f\u00fcr kultivierte Zellen sowie zur Filterung verwendet wer-

den.

[0054] Die vorliegende Erfindung wird in den nachfolgenden Beispielen, die der Veranschaulichung der Erfindung dienen und in keiner Weise als einschränkend zu verstehen sind, erläutert.

Beispiele

5

10

20

60

Beispiel 1

[0055] Expression und stabile Akkumulation von synthetischen Faserproteinen der Spinne und des Seidenspinners im endoplasmatischen Retikulum von Blättern bzw. Knollen transgener Tabak- und Kartoffelpflanzen.

[0056] In den Abb. 10a und b sind Aminosäuresequenzen von synthetischen Spinnenseidenproteinen mit einer hohen Homologie zu dem Spidroin 1-Protein aus Nephila clavipes dargestellt, wobei der C-terminale und nicht repetitive konstante Bereich nicht abgebildet sind. Diese synthetischen Spinnenseidenproteine bestehen aus Modulen, die wiederum aneinandergereihte Oligonukleotidsequenzen umfassen. Durch Kombination mehrerer Module wurden die verschiedenen synthetischen Gene assembliert, wobei auch Mischformen mit Fibroin 1-nachempfundenen Sequenzen erzeugt wurden.

[0057] In der nachfolgenden Tabelle 1 sind verschiedene Pflanzenexpressionskassetten aufgelistet, die für verschiedene erfindungsgemäße synthetische Faserproteine mit den Sequenzen SEQ ID No. 30 bis 40 kodieren.

Tabelle 1

Pflanzenexpressions-Kassette	Anzahl der Aminosäuren (mit Leadersequenz)	Berechnetes Molekulargewicht (mit Leadersequenz)	Homologie	25
SB1 (SEQ ID No. 19)	Nr. 1 – 149 AS	11 kDa	Spidroin 1	30
SD1 (SEQ ID No. 21)	Nr. 2 – 182 AS	13 kDa	Spidroin 1	
SA1 (SEQ ID No. 26)	Nr. 3 – 215 AS	16 kDa	Spidroin 1	
SEI (SEQ ID No. 20)	Nr. 4 – 275 AS	20 kDa	Spidroin 1	35
SF1 (SEQ ID No. 29)	Nr. 5 – 317 AS	24 kDa	Spidroin 1	
SM12 (SEQ ID No. 28)	Nr. 6 – 410 AS	31 kDa	Spidroin 1	40
SO1 (SEQ ID No. 27)	Nr. 7 – 676 AS	52 kDa	Spidroin 1	
SO1SM12 (SEQ ID No. 23)	Nr. 8 – 1035 AS	82 kDa	Spidroin I	
SO1SO1 (SEQ ID No. 22)	Nr. 9 – 1301 AS	102 kDa	Spidroin 1	45
SOISOISOI (SEQ ID No. 24)	Nr. 10 – 1926 AS	151 kDa	Spidroin 1	
FA2 (SEQ ID No. 25)	Nr. 11 – 264 AS	20 kDa	Spidroin I und Fibroin	50

[0058] Durch eine N-terminale Signalpeptidsequenz und eine C-terminale ER-Retentionssequenz (KDEL) wurde der zielgerichtete Transport und die Akkumulation der erfindungsgemäßen Sequenzen im endoplasmatischen Retikulum von Zellen transgener Pflanzen erreicht. Eine Nachweissequenz in Form eines c-myc-Tags am C-terminalen Ende der transgenen synthetischen Faserproteine erlaubt den Nachweis der transgenen Produkte in Pflanzenextrakten.

[0059] Die Kassetten SO1 und FA2 sind beispielhaft in den Abb. 10a und 10b im Detail dargestellt. Nach demselben Aufbauprinzip wurden die Pflanzenexpressionskassetten SB1, SD1, SA1, SE1, SF1, SM12, SO1SM12, SO1SO1 und SO1SO1SO1 erstellt. Durch Variation der Grundmodulwiederholungen entstehen synthetische Faserproteine verschiedener Aminosäureanzahl und entsprechend unterschiedlichen Molekulargewichts (siehe Tabelle 1).

[0060] Die Abb. 2 beschreibt schematisch den Weg zur Einstellung der oben genannten Konstrukte. Zur direkten Klonierung der erfindungsgemäßen synthetischen Faserproteingene wurden die Schnittstellen SmaI und NaeI eingeführt. Dazu wurde ein PCR-Produkt, welches die entsprechenden Schnittstellen enthielt, mit der Primerkombination 5'-pRTRA-SmaI und 3'-pRTRA-NotI in das Plasmid pRTRA ScFv SmaI\(Delta\)BamHI\(Delta\) über BamHI und NotI kloniert. Synthetische Faserproteingene wurden aus den Faserproteingenderivaten der Plasmide 9905 oder 9609 in den Vektor pRTRA.7/3-Platzhalter kloniert. Durch die Wahl der Restriktionsendonukleaseerkennungssequenzen am 5'- und 3'-Ende der synthetischen Faserproteingene (SmaI und NaeI) sind diese frei miteinander kombinierbar, und größere Faserproteingene können erfindungsgemäß in einem Klonierungsschritt assembliert werden.

7

[0061] Auf diese Weise wurden transgene synthetische Spinnenseidenproteine zu hohen Konzentrationen im endoplasmatischen Retikulum transgener Tabak- und Kartoffelpflanzen akkumuliert (siehe Abb. 12a und 12b). In der folgenden Tabelle 2 ist die maximale Akkumulationshöhe von erfindungsgemäßen synthetischen Spinnenseidenproteinen im ER von Blättern transgener Tabak- und Kartoffelpflanzen dargestellt. Die Abschätzung der Anreicherung der transgenen synthetischen Faserproteine erfolgte über einen Vergleich mit transgenen rekombinanten Antikörpern, die auf identische Weise mit dem gleichen Tag versehen wurden. Damit wird erstmals eine Akkumulation von Spinnenseidenproteinen in Pflanzen am Beispiel von Kartoffeln und Tabak beschrieben.

Tabelle 2

10		Faserprotein								
		SD1	SM12	SO1	FA2					
15	Tabak Akkumulationsmenge in Prozent Gesamtprotein	~ 0,5 %	~ 0,5 %	~ 0,5 %	~ 0,5 %					
20	Kartoffel Akkumulationsmenge in Prozent Gesamtprotein	~ 0,5 %	~ 0,5 %	~ 0,5 %	~ 0,5 %					

[0062] Eine definierte Menge des faserproteinhaltigen Gesamtproteinextrakts (40 µg) und eine definierte Menge eines Referenzproteins mit c-myc-Immunotag (50 ng ScFv) wurden mittels SDS-Gelelektrophorese aufgetrennt, und synthetische Faserproteine und Referenzproteine wurden im Western Blot durch einen Antic-myc-Antikörper nachgewiesen (siehe Abb. 12 und 13). Die prozentualen Angaben resultieren aus dem Vergleich zwischen der Bandenintensität der Referenzproteine und der Bandenintensität der synthetischen erfindungsgemäßen Spinnenseidenproteine und stellen geschätzte Werte dar. Größenunterschiede der synthetischen Faserproteine und des Referenzproteins wurden berücksichtigt. Mögliche Unterschiede in der Markierungseffizienz können nahezu ausgeschlossen werden.

[0063] In Abb. 13 ist die Hitzestabilität von verschiedenen erfindungsgemäßen synthetischen Spinnenseidenproteinen in pflanzlichen Extrakten dargestellt. Überraschenderweise bleiben die erfindungsgemäßen Spinnenseidenproteine auch bei einer längeren Hitzebehandlung von 3 h in Lösung (Vergleich der Referenzprobe R zu den Proben H-60 min. H-120 min und H-180 min). Die übrigen pflanzlichen Proteine werden zu mehr als 90% denaturiert und können durch Zentrifugation einfach abgetrennt werden (Abb. 13a: Vergleich der Probe R zu H-60 min). Diese ungewöhnlichen Eigenschaften der erfindungsgemäßen synthetischen Spinnenseidenproteine, die unter anderem durch ihre Aminosäuresequenz und ihre Faltung im pflanzlichen ER bedingt sind, ermöglichen die Entwicklung von großtechnisch realisierbaren und kostengünstigen Reinigungsstrategien.

[0064] In Abb. 14 wird die Löslichkeit von synthetischen Faserproteinen aus transgenen Pflanzen dargestellt. Im Gegensatz zu den im Stand der Technik beschriebenen bakteriell exprimierten synthetischen Faserproteinen weisen die erfindungsgemäßen Spinnenseidenproteine eine überraschend gute Löslichkeit in wäßrigen Puffern auf (R1, R2 = Tris-Puffer; T1, T2 = Phosphatpuffer). Auch diese Eigenschaften beruhen unter anderem auf der Aminosäuresequenz und insbesondere auf der Faltung im endoplasmatischen Retikulum pflanzlicher Zellen.

45 Beispiel 2

[0065] Expression und stabile Akkumulation von synthetischen Spinnenseidenproteinen im Plasmalemma von Blättern transgener Tabak- und Kartoffelpflanzen.

[0066] In diesem Beispiel wird die membranassoziierte Akkumulation von erfindungsgemäßen Spinnenseidenproteinen in transgenen Tabak- und Kartoffelpflanzen beschrieben. Dabei wurden ausgehend von den in Beispiel 1 beschriebenen Konstrukten Fusionsgene hergestellt, die für ein Spinnenseidenprotein und für eine Membrandomäne kodieren. Das allgemeine Schema dieser Konstruktionen ist in Abb. 15 dargestellt. Dabei wurde aus dem Plasmid pRT-HOOK ein NotI-Fragment isoliert, welches sowohl für die HOOK-Domäne als auch für einen c-myc-Immunotag kodiert, welches dann in Spinnenseidenproteingen-tragende Derivate des Vektors pRTA.7/3 kloniert wurde. Durch die Wahl der Restriktionsendonukleaseerkennungssequenzen am 5'- und 3'-Ende der synthetischen Spinnenseidenproteingene (SmaI und NaeI) sind diese wiederum miteinander kombinierbar, wodurch größere Faserproteingene in einem Klonierungsschritt assimiliert werden können.

[0067] Abb. 16 zeigt die Expression der vorstehend beschriebenen Gene in transgenen Tabak- und Kartoffelpflanzen. Wie aus dem Vergleich der Proben 1, 2 und 3 in dieser Abbildung ersichtlich ist, sind diese transgenen Spinnenseidenproteine im Gegensatz zu den im Beispiel 1 beschriebenen erfindungsgemäßen Proteinen in der wäßrigen Phase nicht löslich. Auch diese Eigenschaft kann für die Entwicklung von Reinigungsstrategien ausgenutzt werden.

Beispiel 3

65 [0068] Gezielte Veränderung der Löslichkeit von Spinnenseidenproteinen durch Fusion mit elastin-like peptides.
[0069] In einem ersten Schritt wurde gezeigt, daß Fusionen mit elastin-like peptides auch bei bakteriell exprimierten Spinnenseidenproteinen zu einer gezielten Veränderung des Löslichkeitsverhaltens in Abhängigkeit von Temperatur und Konzentration führen.

[0070] Eine entsprechende Expressionskassette ist in Abb. 5 dargestellt. Beispiele für ELP mit 10, 20, 30, 40, 60, 70 und 100 Pentamereinheiten sind in den Sequenzen SEQ ID No. 41 bis 47 angegeben. Beispiele für DNA-Sequenzen und Aminosäuresequenzen in Form des Konstrukts SM12-70xELP als Pflanzenexpressionskassette bzw. als Expressionskassette für E. coli sind in den Sequenzen SEQ ID No. 48–51 bzw. in den Abb. 19 bis 22 angegeben. [0071] In Abb. 17 wird die gelelektrophoretische Analyse eines solchen Reinigungsverfahrens dargestellt. Durch Hitzebehandlung des Rohextrakts wurde das Spinnenseiden-ELP-Fusionsprotein angereichert. Überraschenderweise behielten die Fusionsproteine die außerordentliche Löslichkeit der Spinnenseidenproteine bei hohen Temperaturen bei. Ein Großteil der E. coli-Proteine wurde bei diesen Temperaturen ausgefällt.	5
[0072] Nach starker Konzentration des angereicherten Spinnenseidenproteinextrakts wurde das Extrakt einer Temperatur von 60°C ausgesetzt, woraufhin das ELP-Spinnenseidenprotein ausfiel und pelletiert wurde. Das Pellet wurde bei Raumtemperatur in Wasser gelöst, und unlösliche Bestandteile wurden durch Pelletieren entfernt. [0073] Anschließend wurde die Spinnenseidenproteinfraktion lyophilisiert und durch Cyanbromidspaltung verdaut. Die Cyanbromidspaltung wurde durch den Methionin-Rest zwischen dem Spinnenseidenprotein und dem ELP-Peptid ermöglicht.	10
[0074] Anschließend wurde erneut lyophilisiert und in wäßrigem Puffer gelöst. Dann erfolgte eine starke Konzentration, wobei das abgespaltene ELP-Fragment (ELP(T-R); siehe Abb. 2) ausfiel und durch Pelletieren entfernt wurde. Das Spinnenseidenprotein blieb dabei in Lösung (SM12(T-R); siehe Abb. 17). Die Löslichkeit blieb für einen längeren Zeitraum erhalten, bei SM12 bei 4°C für 24 H. Die Identität des auf diese Weise gereinigten Spinnenseidenproteins wurde durch Peptidsequenzierung des N-terminalen Endes gezeigt.	15
[0075] In einem zweiten Schritt wurden Spinnenseidenproteine als ELP-Fusionen im endoplasmatischen Retikulum von transgenen Tabakpflanzen akkumuliert. Der prinzipielle Aufbau dieser Expressionskassetten ist ebenfalls in Abb. 5 dargestellt. Diese Fusionsproteine mit Molekulargewichten von 35.000 Dalton bis 100.000 Dalton wurden sämtlich in Pflanzen zu hohen Konzentrationen mit einer Expressionshöhe von etwa 4% des gesamt löslichen Proteins angereichert.	20
Abbildungen	25
Abb. 1	
[0076] Oligonukleotid-Sequenzen, die für Spidroin-typische kurze Aminosäurerepeats kodieren.	
Abb. 2	30
[0077] Aneinanderreihung von Oligonukleotid-Sequenzen zum Aufbau von Modulen der erfindungsgemäßen DNA-Sequenzen.	
Авь. 3	35
[0078] Aufbau der erfindungsgemäßen DNA-Sequenzen aus Modulen.	
Abb. 4	40
[0079] Klonierung des Gens der Transmembrandomäne von HOOK mit NotI aus (pRT-HOOK) in (pRTA.73 syn.spidroin).	
Abb. 5	45
[0080] Schematische Darstellung der Spidroin-ELP-Expressionskassetten. xELP-Einheiten: 10, 20, 30, 40; 60, 70 oder 100 Pentamere (Val-Pro-Gly-Val-Gly). Das Methionin zwischen dem Spinnenseidenprotein und dem ELP-Peptid ermöglicht die Cyanbromidspaltung.	
Abb. 6	50
[0081] Veränderung einer Base in der Erkennungssequenz von BamHI (Position 1332) durch gezielte Mutagenese.	
Abb. 7	55
[0082] Vorbereiten von (pRTRA.73, BamHIA) auf die direkte Klonierung der synthetischen Spidroingene aus p9905 oder p9609 – Aufheben der SmaI-Erkennungssequenz (Position 463).	
Abb. 8	60
[0083] Einführung der Restriktionserkennungssequenzen von SmaI und NaeI in den Vektor (pRTRA.73, Bam- ΗΙΔ+SmaIΔ) für die Klonierung synthetischer Spidroingene.	
Abb. 9	65

[0084] Allgemeine Darstellung der Herstellung transgener Spinnseidenprotein-produzierender Pflanzen.

Abb. 10

[0085] (a) Darstellung des modulhaften Aufbaus der erfindungsgemäßen Spinnenseidenproteine am Beispiel der SO1-Sequenz. Aminosäuren 1–28: LeB4-Signalpeptid; Aminosäuren 29–659: synthetische Spinnenseidenproteinsequenz; Aminosäuren 660–672: c-myc-Tag; Aminosäuren 673–676 ER-Retentionssignal.

[0086] Anordnung der Sequenzmodule nach der in Simmons et al., 1996. Molecular orientation and two-component nature of the cristalline fraction of spider dragline silk. Science 271: 84–87 angegebenen Originalsequenz.

[0087] (b) Darstellung des modulhaften Aufbaus des synthetischen Faserhybridproteins FA2. Aminosäuren 1–28: LeB4-Signalpeptid; Aminosäuren 28–130: synthetische Faserproteinsequenz der Spinne; Aminosäuren 131–247: synthetische Faserproteinsequenz des Seidenspinners; Aminosäuren 248–260: c-myc-Tag; Aminosäuren 261–264: ER-Retentionssignal.

Abb. 11

[5088] Schematische Darstellung der Erstellung von Genkassetten für die Akkumulation von synthetischen Faserproteinen der Spinne und des Seidenspinners im ER von transgenen Pflanzen.

Abb. 12

[0089] (a) Expression der synthetischen Faserproteine der Spinne (SD1, SM12, SO1) bzw. des Hybrids aus Spinne und Seidenspinner (FA2) in Blättern von transgenen Tabakpflanzen. Analysiert wurden jeweils 40 μg Gesamtprotein in SDS-Probenpuffer. SD1: 13 kDa; FA2: 20 kDa; SM12: 31 kDa; SO1: 52 kDa; K: Positivkontrolle 50 ng ScFv. [0090] (b) Expression der synthetischen Faserproteine der Spinne (SD1, SM12, SO1) bzw. des Hybrids aus Spinne und Seidenspinner (FA2) in transgenen Kartoffelpflanzen.

[0091] Analysiert wurden ebenfalls jeweils 40 µg Gesamtprotein in SDS-Probenpuffer. SD1: 13 kDa; FA2: 20 kDa; SM12: 31 kDa; SO1: 52 kDa; K: Positivkontrolle 50 ng ScFv.

Abb. 13

- [0092] Darstellung der Hitzebeständigkeit der synthetischen Faserproteine der Spinne und des Seidenspinners anhand der Konstrukte SD1 und FA2. A: Coomassie-gefärbtes Gel. B: Immunochemischer Nachweis der synthetischen Faserproteine SD1 und FA2 mittels Anti-c-myc-Antikörper. PM: Proteinmarker; ScFv: 50 ng ScFv; R: wäßriges Pflanzenextrakt von Blättern von transgenen Pflanzen für SD1 und FA2; H: Hitzeschritt 60 min, 120 min, 180 min, 24 H und 48 H bei 90°C.
- 35 [0093] Bei der Hitzebehandlung ausgefallene Pflanzenextraktbestandteile wurden durch Zentrifugieren abgetrennt.

Abb. 14

[0094] Untersuchung der Lösungseigenschaften und Stabilität des synthetischen Spinnenseidenproteins SO1 nach Ammoniumsulfatfällung.

[0095] 10 g Blattmaterial wurden in Stickstoff schockgefroren, zermörsert, in 20 ml Rohextraktpuffer aufgenommen, für 30 min bei 38°C geschüttelt, und unlösliche Bestandteile wurden durch Zentrifugieren entfernt (30 min. 10.000 rpm). Anschließend wurde der Überstand (R) für 10 min auf 90°C erhitzt und das Präzipitat durch Zentrifugieren entfernt (30 min. 10.000 rpm). Der Überstand (H) wurde mit 20% Ammoniumsulfat versetzt, 4 h bei Raumtemperatur gerollt und

- das Präzipitat durch Zentrifugieren für 60 min bei 4000 rpm und 4°C entfernt. Der Überstand wurde auf 30% Endkonzentration Ammoniumsulfat eingestellt und über Nacht bei Raumtemperatur gerollt. Die Lösung wurde in 5 Aliquote getrennt und das Präzipitat durch Zentrifugieren entfernt (60 min. 4000 rpm, 4°C). Die Überstände wurden verworfen und die verbliebenen Pellets in folgenden Lösungen aufgenommen: R1: Rohextraktpuffer (50 mM Tris/HCl pH 8,0; 100 mM NaCl, 10 mM MgSO₄); S: SDS-Probenpuffer; G: 0,1 M Phosphatpuffer, 0,01 M Tris/HCl, 6 M Guanidiniumhydrochlorid/HCl pH 6,5; T: 1 × PBS, 1% TritonX-100; L: LiBr.
 - [0096] Die Ansätze wurden für 1 h bei 37°C geschüttelt, und durch Zentrifugieren wurden unlösliche Bestandteile entfernt (30 min. 10.000 rpm). Anschließend wurde ein Aliquot jedes Ansatzes entnommen und für die SDS-Gelelektrophorese vorbereitet (R1, S1, G1, T1, L1). Die Ansätze wurden nun 36 h bei Raumtemperatur stehen gelassen. Durch Zentrifugieren wurden unlösliche Bestandteile entfernt (30 min, 10.000 rpm). Wiederum wurde ein Aliquot jedes Ansatzes entnommen und für die SDS-Gelelektrophorese vorbereitet (R2, S2, G2, T2, L2). Es wurden jeweils vergleichbare Volu-

Abb. 15

60 [0097] Schematische Darstellung der Konstruktion von Genkassetten für die Akkumulation von Plasmalemma-ständigen synthetischen Faserproteinen der Spinne und des Seidenspinners in transgenen Pflanzen.

mina analysiert.

Abb. 16

65 [0098] Expression der Faserfusionsproteine SM12-HOOK, SO1-HOOK und FA2-HOOK in Blättern von transgenen Kartoffelpflanzen.

Abb. 17

[0099] Gelelektrophoretische Analyse der Anreicherung von bakteriell exprimierten Spinnenseidenproteinen nach Fusion mit ELP's. Spinnenseidenprotein: 30.000 Dalton.	
Abb. 18	5
[0100] Western Blot-Analyse der Expression von Spinnenseiden-ELP-Fusionsproteinen in transgenen Tabakpflanzen. Jeweils 2,5 µg Gesamtpflanzenprotein wurden getrennt und die Spinnenseidenproteine auf dem Western Blot durch ECL nachgewiesen. Durch Vergleich mit dem Standard wird die Spinnenseidenproteinkonzentration auf mindestens 4% des gesamtlöslichen Proteins geschätzt.	10
Abb. 19	
[0101] DNA-Sequenz von SM12-70xELP als Pflanzenexpressionskassette.	15
Abb. 20	
[0102] Proteinsequenz von SM12-70xELP aus pflanzlicher Expression (SM12, c-myc-Tag, 70xELP, KDEL - jeweils durch Absatz gekennzeichnet).	20
Abb. 21	
[0103] DNA-Sequenz von SM12-70xELP als Expressionskassette für E. coli.	25
Abb. 22	25
[0104] Proteinsequenz von SM12-70xELP aus bakterieller Expression (SM12, c-myc-Tag, 70xELP, c-myc-Tag, HisTag – jeweils durch Absatz gekennzeichnet).	30
	35
	40
	45
	50
	55
	60
	65

SEQUENZPROTOKOLL

```
<110> IPK - Institut für Pflanzengenetik und Kulturpflan
^{5} <120> Synthetische Spinnenseidenproteine und deren Expression
         in transgenen Pflanzen
10 <130> I 7222
   <140>
   <141>
   <150> DE 100 28 212.1
   <151> 2000-06-09
   <150> DE 100 53 478.3
   <151> 2000-10-24
25 <160> 51
   <170> PatentIn Ver. 2.1
<sup>30</sup> <210> 1
   <211> 22
   <212> DNA
35 <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:repetitive
         Einheit aus Spidroin-Proteinen
   <400> 1
                                                                         22
   tatgagcgct cccgggcagg gt
   <210> 2
50 <211> 38
   <212> DNA
   <213> Künstliche Sequenz
<sup>55</sup> <220>
   <223> Beschreibung der künstlichen Sequenz:repetitive
         Einheit aus Spidroin-Proteinen
   <400> 2
                                                                         38
   agettttagg taccaatatt aatetggeeg getecace
```

65

<210>	3		
<211>	12		
<212>	DNA		
<213>	Kûnstliche Sequenz		3
<220>			
<223>	Beschreibung der künstlichen Sequenz:repetitive		10
	Einheit aus Spidroin-Proteinen		
<400>	3		
	tetgg gg	12	15
	33		
<210>	4		20
<211>	18		
<212>	DNA		
<213>	Künstliche Sequenz		
			25
<220>			
<223>	Beschreibung der künstlichen Sequenz:repetitive		
	Einheit aus Spidroin-Proteinen		30
			Э.
<400>	4		
ggcca	gggtg ctggccaa	18	
			35
<210>	e		
<211>			
<211>			40
	Kûnstliche Sequenz		
10207	Managera and and and and and and and and and an		
<220>			45
<223>	Beschreibung der künstlichen Sequenz:repetitive		45
	Einheit aus Spidroin-Proteinen		
<400>			50
ggtgca	aggag cwgcwgcwgc wgctgcaggt gga	33	
<210>	6		55
<211>			
<212>			
	Künstliche Sequenz		,,
			60
<220>			
<223>	Beschreibung der künstlichen Sequenz:repetitive		
	Einheit aus Spidroin-Proteinen		65

	<400> 6	
	gccggccaga ttaatattgg tacctaaa	28
5		
	<210> 7	
	<211> 17	
10	<212> DNA	
10	<213> Künstliche Sequenz	
	<220>	
15	<223> Beschreibung der künstlichen Sequenz:repetitive	
	Einheit aus Spidroin-Proteinen	
	<400> 7	
20	ctgcccggga gcgctca	17
25	<210> 8	
	<211> 15	
	<212> DNA	
30	<213> Künstliche Sequenz	
	<220>	
	<223> Beschreibung der künstlichen Sequenz:repetitive	
35	Einheit aus Spidroin-Proteinen	
	<400> 8	
40	accaccataa cctcc	15
40		
	<210> 9	
45	<211> 18	
45	<212> DNA	
	<213> Künstliche Sequenz	
50	<220>	
	<223> Beschreibung der künstlichen Sequenz:repetitive	
	Einheit aus Spidroin-Proteinen	
55	<400> 9	
	agcaccetgg cocceag	18
	~5~~~~~3	20
60		
	<210> 10	
	<211> 33	
	<212> DNA	
65	<213> Künstliche Sequenz	

<220>		
<223> Beschreibung der künstlichen Sequenz:repetitive		
Einheit aus Spidroin-Proteinen		_
·		5
<400> 10		
tgcagcwgcw gcwgctc ctgcaccttg gcc	33	
		10
<210> 11		
<211> 22		
<212> DNA		15
<213> Künstliche Sequenz		
<220>		20
<223> Beschreibung der künstlichen Sequenz:repetitive		20
Einheit aus Spidroin-Proteinen		
<400> 11		25
tatgagatct ggccaaggag gt	22	
<210> 12		30
<211> 14		
<212> DNA		
<213> Künstliche Sequenz		35
<220>		
<223> Beschreibung der künstlichen Sequenz:repetitive		
Einheit aus Spidroin-Proteinen		40
	•	
<400> 12		
ttggccagat ctca	14	45
		45
<210> 13		
<211> 27		50
<212> DNA		
<213> Künstliche Sequenz		
<220>		55
<223> Beschreibung der künstlichen Sequenz:repetitive		
Einheit aus Spidroin-Proteinen		
		60
<400> 13		-
agtcagggtg ctggtcgtgg aggccaa	27	
		65
-210 - 14		

```
<211> 27
   <212> DNA
   <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:repetitive
         Einheit aus Spidroin-Proteinen
   <400> 14
                                                                       27
   tccacgacca gcaccctgac tccccag
   <210> 15
20 <211> 36
   <212> DNA
   <213> Künstliche Sequenz
25 <220>
   <223> Beschreibung der künstlichen Sequenz:repetitive
         Einheit aus Spidroin-Proteinen
   <400> 15
   agtcagggcg ctggtcgtgg gggactgggt ggccaa
                                                                       36
35
   <210> 16
   <211> 36
   <212>.DNA
^{40} <213> Künstliche Sequenz
   <220>
<223> Beschreibung der künstlichen Sequenz:repetitive
         Einheit aus Spidroin-Proteinen
   <400> 16
50 acccagtocc ccacgaccag cgccctgact ccccag
                                                                       36
   <210> 17
   <211> 24
   <212> DNA
   <213> Künstliche Sequenz
60
   <220>
   <223> Beschreibung der künstlichen Sequenz:repetitive
         Einheit aus Spidroin-Proteinen
65
   <400> 17
```

ctgggagggc agggagcggg ccaa	24
<210> 18	5
<211> 24	
<212> DNA	
<213> Künstliche Sequenz	10
<220>	
<223> Beschreibung der künstlichen Sequenz:repetitive	
Einheit aus Spidroin-Proteinen	15
<400> 18	
cgctccctgc cctcccagac ctcc	24
<210> 19	
<211> 327	25
<212> DNA	
<213> Künstliche Sequenz	
<220>	30
<223> Beschreibung der künstlichen Sequenz:Konstrukt SB1	
<400> 19	25
ggatcccagt tagggcaggg aggttatggt ggtctggggg gccagggtgc tggccaagga	60
ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca	
ggagetgetg etgeagetge aggtggagee gggeagggag gtetgggagg geagggageg	
ggccaaggtg caggagcagc tgcagcagct gcaggtggag ccgggcaggg aggttatggt	AC
ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct	
gcaggtggag ccggacaagc ggccgca	327
	45
<210> 20	
<211> 705	
<212> DNA	. 50
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:Konstrukt SE1	55
<400> 20	
ggateccagt tagggeaggg aggttatggt ggtetggggg geeagggtge tggeeaagga	60
ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca	•
ggagetgetg etgeagetge aggtggagee gggeagggag gtetgggagg geagggageg	
ggccaaggtg caggagcagc tgcagcagct gcaggtggag ccgggcaggg aggttatggt	
ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagcagct	
gcagctgctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct	360

```
ggtcgtggag qccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 420
   ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 480
   qqaqcaqctq caqctqctqc aggtqqaqcc ggqcaggqag gttatggtgg tctggggagt 540
   cagggtgctg gtcgtggagg ccaaggtgca ggagctgcag cagcagctgc aggtggagcc 600
   gggcagggag gttatggtgg tctggggagt cagggtgctg gtcgtggagg ccaaggtgca 660
   ggagetgeag cageagetge aggtggagee ggacaagegg eegea
                                                                      705
10
   <210> 21
   <211> 426
   <212> DNA
   <213> Künstliche Sequenz
20 <220>
   <223> Beschreibung der künstlichen Sequenz: Konstrukt SD1
   <400> 21
25 ggatcccagt tagggcaggg aggttatggt ggtctggggg gccagggtgc tggccaagga 60
   ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 120
   ggagctgctg ctgcagctgc aggtggagcc gggcagggag gtctgggagg gcagggagcg 180
   ggccaaggtg caggagcagc tgcagcagct gcaggtggag ccgggcaggg aggttatggt 240
   ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct 300
   gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 360
   ggactgggtg gccaaggtgc aggagcagct gcagctgctg caggtggagc cggacaagcg 420
35 gccgca
                                                                      426
   <210> 22
   <211> 3783
   <212> DNA
   <213> Künstliche Sequenz
45
   <220>
   <223> Beschreibung der künstlichen Sequenz:Konstrukt
         S01S01
50
   <400> 22
   ggatcccagt tacccgggca gggaggttat ggtggtctgg ggggccaggg tgctggccaa 60
   ggaggttatg gtggtctggg gggccagggt gctggccaag gtgcaggagc tgctgctgca 120
   gctgcaggtg gagccgggca gggaggttat ggtggtctgg ggagtcaggg tgctggtcgt 180
   qqaqqccaaq qtgcaqqaqc tgcaqcagca gctqcaqqtq gagccqgqca qggagqttat 240
   ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagca 300
60 gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gagtcagggt 360
   gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg agccgggcag 420
   ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 480
   gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 540
65 ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggggc tggtcgtggg 600
   ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 660
```

```
ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 720
gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg aggccaaggt 780
gcaggagctg cagcagcagc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 840
                                                                               5
ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggggc tggtcgtggg 900
ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 960
ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 1020
gccgggcagg gaggttatgg tggtctgggg agtcagggcg ctggtcgtgg gggactgggt 1080
                                                                              10
ggccaaggtg caggagcagc tgcagctgct gcaggtggag ccgggcaggg aggttatggt 1140
ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct 1200
gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 1260
                                                                              15
ggactgggtg gccaaggtgc aggagcagct gcagctgctg caggtggagc cgggcaggga 1320
ggttatggtg gtctggggag tcagggtgct ggtcgtggag gccaaggtgc aggagctgca 1380
gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct 1440
ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1500
                                                                              20
ggttatggtg gtctgggggg ccagggtgct ggccaaggag gttatggtgg tctggggagt 1560
cagggcgctg gtcgtggggg actgggtggc caaggtgcag gagctgctgc tgcagctgca 1620
ggtggagccg ggcagggagg tctgggaggg cagggagcgg gccaaggtgc aggagcagct 1680
                                                                              25
gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct 1740
ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1800
ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 1860
ggagcagctg cagetgetge aggtggagec gggcagggag gttatggtgg tetgggggge 1920
                                                                              30
cagggtgctg gccaaggagg ttatggtggt ctggggggcc agggtgctgg ccaaggtgca 1980
ggagctgctg ctgcagctgc aggtggagcc gggcagggag gttatggtgg tctggggagt 2040
cagggtgctg gtcgtggagg ccaaggtgca ggagctgcag cagcagctgc aggtggagcc 2100
gggcagggag gttatggtgg tctggggagt cagggcgctg gtcgtggggg actgggtggc 2160
                                                                              35
caaggtgcag gagcagctgc agctgctgca ggtggagccg ggcagggagg ttatggtggt 2220
ctggggagtc agggtgctgg tcgtggaggc caaggtgcag gagctgcagc agcagctgca 2280
ggtggagccg ggcagggagg ttatggtggt ctggggagtc agggcgctgg tcgtggggga 2340
                                                                              40
ctgggtggcc aaggtgcagg agcagctgca gctgctgcag gtggagccgg gcagggaggt 2400
tatggtggtc tggggggcca gggtgctggc caaggaggtt atggtggtct ggggagtcag 2460
ggcgctggtc gtgggggact gggtggccaa ggtgcaggag ctgctgctgc agctgcaggt 2520
ggagccgggc agggaggtct gggagggcag ggagcgggcc aaggtgcagg agcagctgca 2580
                                                                              45
gcagctgcag gtggagccgg gcagggaggt tatggtggtc tggggagtca gggtgctggt 2640
cgtggaggcc aaggtgcagg agctgcagca gcagctgcag gtggagccgg gcagggaggt 2700
tatggtggtc tggggggcca gggtgctggc caaggaggtt atggtggtct ggggagtcag 2760
ggcgctggtc gtgggggact gggtggccaa ggtgcaggag ctgctgctgc agctgcaggt 2820
                                                                              50
ggagccgggc agggaggtet gggagggcag ggagcgggcc aaggtgcagg agcagctgca 2880
gcagctgcag gtggagccgg gcagggaggt tatggtggtc tggggagtca gggcgctggt 2940
cgtgggggac tgggtggcca aggtgcagga gcagctgcag ctgctgcagg tggagccggg 3000
                                                                              55
cagggaggtt atggtggtct ggggagtcag ggtgctggtc gtggaggcca aggtgcagga 3060
gctgcagcag cagctgcagg tggagccggg cagggaggtt atggtggtct ggggagtcag 3120
ggcgctggtc gtgggggact gggtggccaa ggtgcaggag cagctgcagc tgctgcaggt 3180
ggagccgggc agggaggtta tggtggtctg gggagtcagg gtgctggtcg tggaggccaa 3240
                                                                              60
ggtgcaggag ctgcagcagc agctgcaggt ggagccgggc agggaggtta tggtggtctg 3300
gggagtcagg gtgctggtcg tggaggccaa ggtgcaggag ctgcagcagc agctgcaggt 3360
ggagccgggc agggaggtta tggtggtctg gggggccagg gtgctggcca aggaggttat 3420
                                                                              65
ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagct 3480
gctgctgcag ctgcaggtgg agccgggcag ggaggtctgg gagggcaggg agcgggccaa 3540
```

```
ggtgcaggag cagctgcagc agctgcaggt ggagccgggc agggaggtta tggtggtctg 3600
   gggagtcagg gtgctggtcg tggaggccaa ggtgcaggag ctgcagcagc agctgcaggt 3660
   ggagccgggc agggaggtta tggtggtctg gggagtcagg gcgctggtcg tgggggactg 3720
   ggtggccaag gtgcaggagc agctgcagct gctgcaggtg gagccggcgg acaagcggcc 3780
                                                                      3783
   gca
10
   <210> 23
   <211> 2985
   <212> DNA
   <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:Konstrukt
         S01SM12
   <400> 23
25 ggatcccagt tacccgggca gggaggttat ggtggtctgg ggggccaggg tgctggccaa 60
   ggaggttatg gtggtctggg gggccagggt gctggccaag gtgcaggagc tgctgctgca 120
   gctgcaggtg gagccgggca gggaggttat ggtggtctgg ggagtcaggg tgctggtcgt 180
   ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca gggaggttat 240
   ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagca 300
   gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gagtcagggt 360
   gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg agccgggcag 420
35 ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 480
   gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 540
   ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 600
   ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 660
   ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 720
   gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg aggccaaggt 780
   gcaggagctg cagcagcagc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 840
  ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggggc tggtcgtggg 900
   ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 960
   ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 1020
   gccgggcagg gaggttatgg tggtctgggg agtcagggcg ctggtcgtgg gggactgggt 1080
50 ggccaaggtg caggagcagc tgcagctgct gcaggtggag ccgggcaggg aggttatggt 1140
   ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct 1200
   gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 1260
   ggactgggtg gccaaggtgc aggagcagct gcagctgctg caggtggagc cgggcaggga 1320
   ggttatggtg gtctggggag tcagggtgct ggtcgtggag gccaaggtgc aggagctgca 1380
   gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctgggggag tcagggtgct 1440
   ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1500
60 ggttatggtg gtctgggggg ccagggtgct ggccaaggag gttatggtgg tctggggagt 1560
   cagggcgctg gtcgtggggg altgggtggc caaggtgcag gagctgctgc tgcagctgca 1620
   ggtggagccg ggcagggagg tctgggaggg cagggagcgg gccaaggtgc aggagcagct 1680
   gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct 1740
  ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1800
   ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 1860
```

ggagcagctg cagctgctgc aggtggagcc gggcagggag gttatggtgg	tctggggggc	1920	
cagggtgctg gccaaggagg ttatggtggt ctggggagtc agggcgctgg	tcgtggggga	1980	
ctgggtggcc aaggtgcagg agctgctgct gcagctgcag gtggagccgg	gcagggaggt	2040	_
ctgggagggc agggagcggg ccaaggtgca ggagcagctg cagcagctgc	aggtggagcc	2100	5
gggcagggag gttatggtgg tctggggagt cagggcgctg gtcgtggggg	actgggtggc	2160	
caaggtgcag gagcagctgc agctgctgca ggtggagccg ggcagggagg	ttatggtggt	2220	
ctggggagtc agggtgctgg tcgtggaggc caaggtgcag gagctgcagc			10
ggtggagccg ggcagggagg ttatggtggt ctggggagtc agggcgctgg			
ctgggtggcc aaggtgcagg agcagctgca gctgctgcag gtggagccgg	gcagggaggt	2400	
tatggtggtc tggggagtca gggtgctggt cgtggaggcc aaggtgcagg			
gcagctgcag gtggagccgg gcagggaggt tatggtggtc tggggagtca			15
cgtggaggcc aaggtgcagg agctgcagca gcagctgcag gtggagccgg			
tatggtggtc tggggggcca gggtgctggc caaggaggtt atggtggtct			
ggegetggte gtgggggaet gggtggecaa ggtgeaggag etgetgetge			20
ggagccgggc agggaggtct gggagggcag ggagcgggcc aaggtgcagg			20
gcagctgcag gtggagccgg gcagggaggt tatggtggtc tggggagtca			
cgtggaggcc aaggtgcagg agctgcagca gcagctgcag gtggagccgg			
tatggtggtc tggggagtca gggcgctggt cgtgggggac tgggtggcca			25
gcagctgcag ctgctgcagg tggagccggc ggacaagcgg ccgca		2985	
·			
<210> 24			30
<211> 5658			
<211> 5050 <212> DNA			
<213> Kûnstliche Sequenz			35
variations coduction			33
<220>			
<223> Beschreibung der künstlichen Sequenz:Konstrukt			
S01S01S01			40
001501501			
<400> 24			
ggatcccagt tacccgggca gggaggttat ggtggtctgg ggggccaggg	tactaaccaa	60	
ggaggttatg gtggtctggg gggccagggt gctggccaag gtgcaggagc			45
adadderaed deddeeeddd dddeeadda dedeaddad			
actaceanta menocanace annegatiet antantitan aneatceana			
getgeaggtg gageegggea gggaggttat ggtggtetgg ggagteaggg	tgctggtcgt	180	
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca	tgctggtcgt gggaggttat	180 240	50
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg	tgctggtcgt gggaggttat tgcaggagca	180 240 300	50
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt	180 240 300 360	50
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag	180 240 300 360 420	50
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggccaaggt	180 240 300 360 420 480	50
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggccaaggt tggtctgggg	180 240 300 360 420 480 540	
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggcaggtgtgtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaaggggcaggtcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctgggggagtggtcggggaggttatg gtggtctgggggagggttatg gtggtctgggggagggaggttatg gtggtctggggggagggttatg gtggtctggggggagggaggggag	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggcaaggt tggtctgggg	180 240 300 360 420 480 540 600	
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtga gccgggcagg gaggttatgg ggccagggtg ctggccaagg aggttatggt ggtctggga gtcagggcgc ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggccaaggt tggtctgggg tggtcgtggg	180 240 300 360 420 480 540 600	55
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcaggggg ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggccaaggt tggtctgggg tggtcgtggg cgggcaggga tgcaggtag	180 240 300 360 420 480 540 600 660 720	
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggcag ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtga gccgggcagg gaggttatgg ggactgggtg ctggccaagg aggttatggt ggtctgggga gtcagggcg ggactgggtg gccaaggtgc aggactgct gctgcagctg caggtggagc ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc gccgggcagg gaggttatgg tggtctggg agtcagggtg ctgctgtgg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggtctgggg tggtcgtggg cgggcaggga tgcaggtag	180 240 300 360 420 480 540 600 660 720 780	55
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggcag ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtga gccgggcagg gaggttatgg ggactgggtg ctggccaagg aggttatggt ggtctgggga gtcagggcgg ggactgggtg gccaaggtgc aggactgct gctgcagctg caggtggagc ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg gcaggagctg cagcagcagc tgcaggtgga gccgggcagg gaggttatgg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggccaaggt tggtctggg cgggcaggga tgcaggtagag	180 240 300 360 420 480 540 600 660 720 780 840	55
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggcag ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg ggactgggtg ctggccaagg aggttatggt ggtctgggga gtcaggggg ggactgggtg gccaaggtgc aggaccaaggt gcaggagcag ctgcagcagc gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg gcaggagctg cagcagcagc tgcaggtga gccgggcagg gaggttatgg gccagggtg cagcagcagc tgcaggtga gccgggcagg gaggttatgg ggccagggtg ctggccaagg aggttatggt ggccagggtg gaggttatgg ggccagggtg ctggccaagg aggttatggt ggccgggcagg gaggttatgg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggccaggg tggtcgtggg cgggcaggga tgcaggtga tgcaggtgga tgcaggtgga	180 240 300 360 420 480 540 600 660 720 780 840 900	55
ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggcag ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg gcaggagcag ctgcagctgc tgcaggtga gccgggcagg gaggttatgg ggactgggtg ctggccaagg aggttatggt ggtctgggga gtcagggcgg ggactgggtg gccaaggtgc aggactgct gctgcagctg caggtggagc ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg gcaggagctg cagcagcagc tgcaggtgga gccgggcagg gaggttatgg	tgctggtcgt gggaggttat tgcaggagca gagtcagggt agccgggcag tggtctgggg tggtcgtggg tgcaggtaa tgcaggtgaa aggcaaggt tggtctggga tgcaggtgaa aggcaaggt	180 240 300 360 420 480 540 600 660 720 780 840 900	55

```
gccgggcagg gaggttatgg tggtctgggg agtcagggcg ctggtcgtgg gggactgggt 1080
   ggccaaggtg caggagcagc tgcagctgct gcaggtggag ccgggcaggg aggttatggt 1140
   ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct 1200
   gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 1260
   ggactgggtg gccaaggtgc aggagcagct gcagctgctg caggtggagc cgggcaggga 1320
   ggttatggtg gtctggggag tcagggtgct ggtcgtggag gccaaggtgc aggagctgca 1380
_{10} gcagcagetg caggtggage cgggcaggga ggttatggtg gtctggggag tcagggtgct 1440
   ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1500
   ggttatggtg gtctgggggg ccagggtgct ggccaaggag gttatggtgg tctggggagt 1560
   cagggegetg gtegtgggg actgggtgge caaggtgeag gagetgetge tgeagetgea 1620
   ggtggagccg ggcagggagg tctgggaggg cagggagcgg gccaaggtgc aggagcagct 1680
   gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct 1740
   ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1800
   ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 1860
   ggagcagetg cagetgetge aggtggagee gggcagggag gttatggtgg tetgggggge 1920
   cagggtgctg gccaaggagg ttatggtggt ctggggggcc agggtgctgg ccaaggtgca 1980
   ggagctgctg ctgcagctgc aggtggagcc gggcagggag gttatggtgg tctggggagt 2040
   cagggtgctg gtcgtggagg ccaaggtgca ggagctgcag cagcagctgc aggtggagcc 2100
   gggcagggag gttatggtgg tctggggagt cagggcgctg gtcgtggggg actgggtggc 2160
   caaggtgcag gagcagctgc agctgctgca ggtggagccg ggcagggagg ttatggttggt 2220
   ctggggagtc agggtgctgg tcgtggaggc caaggtgcag gagctgcagc agcagctgca 2280
   ggtggagccg ggcagggagg ttatggtggt ctggggagtc agggcgctgg tcgtggggga 2340
   ctgggtggcc aaggtgcagg agcagctgca gctgctgcag gtggagccgg gcagggaggt 2400
   tatggtggtc tggggggcca gggtgctggc caaggaggtt atggtggtct ggggagtcag 2460
35 ggcgctggtc gtgggggact gggtggccaa ggtgcaggag ctgctgctgc agctgcaggt 2520
   ggagccgggc agggaggtct gggagggcag ggagcgggcc aaggtgcagg agcagctgca 2580
   gcagctgcag gtggagccgg gcagggaggt tatggtggtc tggggagtca gggtgctggt 2640
   cgtggaggcc aaggtgcagg agctgcagca gcagctgcag gtggagccgg gcagggaggt 2700
   tatggtggtc tggggggcca gggtgctggc caaggaggtt atggtggtct ggggagtcag 2760
   ggcgctggtc gtgggggact gggtggccaa ggtgcaggag ctgctgctgc agctgcaggt 2820
   ggagccgggc agggaggtct gggagggcag ggagcgggcc aaggtgcagg agcagctgca 2880
   gcagctgcag gtggagccgg gcagggaggt tatggtggtc tggggagtca gggcgctggt 2940
   cqtqgqqqac tqqqtqqcca aqqtqcaqqa qcaqctqcaq ctqctqcaqq tqqaqccqqq 3000
   cagggaggtt atggtggtct ggggagtcag ggtgctggtc gtggaggcca aggtgcagga 3060
   gctgcagcag cagctgcagg tggagccggg cagggaggtt atggtggtct ggggagtcag 3120
50 ggcgctggtc gtgggggact gggtggccaa ggtgcaggag cagctgcagc tgctgcaggt 3180
   ggagccgggc agggaggtta tggtggtctg gggagtcagg gtgctggtcg tggaggccaa 3240
   ggtgcaggag ctgcagcagc agctgcaggt ggagccgggc agggaggtta tggtggtctg 3300
   gggagtcagg gtgctggtcg tggaggccaa ggtgcaggag ctgcagcagc agctgcaggt 3360
   ggagccgggc agggaggtta tggtggtctg gggggccagg gtgctggcca aggaggttat 3420
   ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagct 3480
   gctqctqcaq ctqcaqqtqq aqccqqqcaq qqaqqtctqq qaqqqcaqqq aqcqqgccaa 3540
60 ggtgcaggag cagctgcagc agctgcaggt ggagccgggc agggaggtta tggtggtctg 3600
   gggagtcagg gtgctggtcg tggaggccaa ggtgcaggag ctgcagcagc agctgcaggt 3660
   ggagccgggc agggaggtta tggtggtctg gggagtcagg gcgctggtcg tgggggactg 3720
   ggtggccaag gtgcaggagc agctgcagct gctgcaggtg gagccgggca gggaggttat 3780
   ggtggtctgg ggggccaggg tgctggccaa ggaggttatg gtggtctggg gggccagggt 3840
   gctggccaag gtgcaggagc tgctgctgca gctgcaggtg gagccgggca gggaggttat 3900
```

```
ggtggtctgg ggagtcaggg tgctggtcgt ggaggccaag gtgcaggagc tgcagcagca 3960
gctgcaggtg gagccgggca gggaggttat ggtggtctgg ggagtcaggg cgctggtcgt 4020
gggggactgg gtggccaagg tgcaggagca gctgcagctg ctgcaggtgg agccgggcag 4080
                                                                               5
ggaggttatg gtggtctggg gagtcagggt gctggtcgtg gaggccaagg tgcaggagct 4140
gcagcagcag ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gagtcagggc 4200
gctggtcgtg ggggactggg tggccaaggt gcaggagcag ctgcagctgc tgcaggtgga 4260
geegggeagg gaggttatgg tggtetgggg ggeeagggtg etggeeaagg aggttatggt 4320
                                                                              10
ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagctgct 4380
gctgcagctg caggtggagc cgggcaggga ggtctgggag ggcagggagc gggccaaggt 4440
gcaggagcag ctgcagcagc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 4500
                                                                              15
agtcagggtg ctggtcgtgg aggccaaggt gcaggagctg cagcagcagc tgcaggtgga 4560
gccgggcagg gaggttatgg tggtctgggg ggccagggtg ctggccaagg aggttatggt 4620
ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagctgct 4680
gctgcagctg caggtggagc cgggcaggga ggtctgggag ggcagggagc gggccaaggt 4740
                                                                              20
gcaggagcag ctgcagcagc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 4800
agtcagggcg ctggtcgtgg gggactgggt ggccaaggtg caggagcagc tgcagctgct 4860
gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggtgc tggtcgtgga 4920
                                                                              25
ggccaaggtg caggagctgc agcagcagct gcaggtggag ccgggcaggg aggttatggt 4980
ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagcagct 5040
geagetgetg caggtggage egggeaggga ggttatggtg gtetggggag teagggtget 5100
ggtegtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 5160
                                                                              30
ggttatggtg gtctggggag tcagggtgct ggtcgtggag gccaaggtgc aggagctgca 5220
gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctgggggg ccagggtgct 5280
ggccaaggag gttatggtgg tctggggagt cagggcgctg gtcgtggggg actgggtggc 5340
caaggtgcag gagctgctgc tgcagctgca ggtggagccg ggcaggggagg tctgggaggg 5400
                                                                              35
cagggagegg gccaaggtgc aggagcagct gcagcagctg caggtggagc cgggcaggga 5460
ggttatggtg gtctggggag tcagggtgct ggtcgtggag gccaaggtgc aggagctgca 5520
gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggcgct 5580
                                                                              40
ggtcgtgggg gactgggtgg ccaaggtgca ggagcagctg cagctgctgc aggtggagcc 5640
                                                                   5658
ggcggacaag cggccgca
                                                                              45
<210> 25
<211> 672
<212> DNA
<213> Künstliche Sequenz
                                                                              50
<220>
<223> Beschreibung der künstlichen Sequenz:Konstrukt FA2
                                                                              55
<400> 25
qqatcccaqt tagggcaggg aggttatggt ggtctggggg gccagggtgc tggccaagga 60
qqttatqqtg gtctqggqaq tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 120
                                                                              60
ggagctgctg ctgcagctgc aggtggagcc gggcagggag gtctgggagg gcagggagcg 180
ggccaaggtg caggagcagc tgcagcagct gcaggtggag ccgggcaggg aggttatggt 240
ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagcagct 300
                                                                              65
gcagctgctg caggtggagc cgggtccgga agtggtgcag gtgccggaag cggagcagga 360
gccggtgccg gatctggtgc cggtgccgga agcggtgctg gtgccggaag cggtgctggt 420
```

```
gccggatcag gagcgggtgc cggttatggt gcgggagccg gtgttgggta cggagccggt 480
   tatggagegg gageeggtgt tgggtaegga geeggtgeag gtteegggge egeaagegge 540
   gcaggagccg gtgccggagc tgggacaggg agttcaggat ttgggcccta cgttgcaaat 600
   ggtggttatt caggctatga atacgcgtgg agtagtaagt ctgattttga gactgccgga 660
   caagcggccg ca
10
   <210> 26
   <211> 525
   <212> DNA
   <213> Künstliche Sequenz
   <220>
  <223> Beschreibung der künstlichen Sequenz: Konstrukt SAl
   <400> 26
   ggatcccagt tagggcaggg aggttatggt ggtctggggg gccagggtgc tggccaagga 60
25 ggttatggtg gtctgggggg ccagggtgct ggccaaggtg caggagctgc tgctgcagct 120
   gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggtgc tggtcgtgga 180
   ggccaaggtg caggagctgc agcagcagct gcaggtggag ccgggcaggg aggttatggt 240
   ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagcagct 300
   gcagctgctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct 360
   ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 420
   ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 480
35 ggagcagetg cagetgetge aggtggagee ggacaagegg eegea
   <210> 27
   <211> 1908
   <212> DNA
   <213> Künstliche Sequenz
45
   <220>
   <223> Beschreibung der künstlichen Sequenz: Konstrukt SO1
50 <400> 27
   ggatcccagt tacccgggca gggaggttat ggtggtctgg ggggccaggg tgctggccaa 60
   ggaggttatg gtggtctggg gggccagggt gctggccaag gtgcaggagc tgctgctgca 120
   gctgcaggtg gagccgggca gggaggttat ggtggtctgg ggagtcaggg tgctggtcgt 180
   qqaqqccaaq qtqcaqqaqc tqcaqcaqca qctqcaqqtg qaqccqgqca gggaggttat 240
   ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagca 300
   gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gagtcagggt 360
60 gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg agccgggcag 420
   ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 480
   gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 540
   ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggggc tggtcgtggg 600
65 ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 660
   ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 720
```

```
gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg aggccaaggt 780
geaggagetg cageageage tgeaggtgga geegggeagg gaggttatgg tggtetgggg 840
ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 900
                                                                               5
ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 960
ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 1020
gccgggcagg gaggttatgg tggtctgggg agtcagggcg ctggtcgtgg gggactgggt 1080
ggccaaggtg caggagcagc tgcagctgct gcaggtggag ccgggcaggg aggttatggt 1140
                                                                               10
ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct 1200
gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggggc tggtcgtggg 1260
ggactgggtg gccaaggtgc aggagcagct gcagctgctg caggtggagc cgggcaggga 1320
                                                                               15
ggttatggtg gtctggggag tcagggtgct ggtcgtggag gccaaggtgc aggagctgca 1380
geageagetg caggtggage egggeaggga ggttatggtg gtetggggag teagggtget 1440
ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1500
ggttatggtg gtctgggggg ccagggtgct ggccaaggag gttatggtgg tctggggagt 1560
                                                                               20
cagggegetg gtcgtggggg actgggtggc caaggtgcag gagetgetge tgcagetgca 1620
qqtqqaqccq qqcaqqqaqq tctgqgaggg cagggagcgg gccaaggtgc aggagcagct 1680
gcagcagctg caggtggagc cgggcaggga ggttatggtg gtctggggag tcagggtgct 1740
                                                                               25
ggtcgtggag gccaaggtgc aggagctgca gcagcagctg caggtggagc cgggcaggga 1800
ggttatggtg gtctggggag tcagggcgct ggtcgtgggg gactgggtgg ccaaggtgca 1860
ggagcagctg cagctgctgc aggtggagcc ggcggacaag cggccgca
                                                                   1908
                                                                               30
<210> 28
<211> 1110
<212> DNA
                                                                               35
<213> Künstliche Sequenz
<220>
                                                                               40
<223> Beschreibung der künstlichen Sequenz:Konstrukt
      SM12
<400> 28
                                                                               45
ggateceagt taccegggea gggaggttat ggtggtetgg ggggeeaggg tgetggeeaa 60
ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 120
gcaggagctg ctgctgcagc tgcaggttgga gccgggcagg gaggtctggg agggcaggga 180
gegggeeaag gtgeaggage agetgeagea getgeaggtg gageegggea gggaggttat 240
                                                                               50
ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagca 300
gctgcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gagtcagggt 360
gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg agccgggcag 420
                                                                               55
ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 480
gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 540
agtcagggtg ctggtcgtgg aggccaaggt gcaggagctg cagcagcagc tgcaggtgga 600
gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg aggccaaggt 660
                                                                               60
gcaggagctg cagcagcagc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 720
ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 780
ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 840
ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 900
                                                                               65
gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg aggccaaggt 960
```

gcaggagctg cagcagcagc tqcaggtqqa qccgggcagg gaggttatgg tggtctgggg 1020

```
agtcagggcg ctggtcgtgg gggactgggt ggccaaggtg caggagcagc tgcagctgct 1080
   qcaqqtqqaq ccqqcqqaca aqcqqccqca
                                                                     1110
   <210> 29
10 <211> 831
   <212> DNA
   <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz: Konstrukt SF1
   <400> 29
   ggatcccagt tacccgggca gggaggttat ggtggtctgg ggggccaggg tgctggccaa 60
   ggaggttatg gtggtctggg gggccagggt gctggccaag gtgcaggagc tgctgctgca 120
   gctgcaggtg gagccgggca gggaggttat ggtggtctgg ggagtcaggg tgctggtcgt 180
25 ggaggccaag gtgcaggagc tgcagcagca gctgcaggtg gagccgggca gggaggttat 240
   ggtggtctgg ggagtcaggg cgctggtcgt gggggactgg gtggccaagg tgcaggagca 300
   qctqcagctg ctgcaggtgg agccgggcag ggaggttatg gtggtctggg gagtcagggt 360
   gctggtcgtg gaggccaagg tgcaggagct gcagcagcag ctgcaggtgg agccgggcag 420
   ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 480
   gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 540
   ggccagggtg ctggccaagg aggttatggt ggtctgggga gtcagggcgc tggtcgtggg 600
35 ggactgggtg gccaaggtgc aggagctgct gctgcagctg caggtggagc cgggcaggga 660
   ggtctgggag ggcagggagc gggccaaggt gcaggagcag ctgcagcagc tgcaggtgga 720
   gccgggcagg gaggttatgg tggtctgggg agtcagggtg ctggtcgtgg aggccaaggt 780
                                                                     831
   gcaggagctg cagcagcagc tgcaggtgga gccggcggac aagcggccgc a
   <210> 30
45 <211> 104
   <212> PRT
   <213> Künstliche Sequenz
50 <220>
   <223> Beschreibung der künstlichen Sequenz:SB1-Protein
   <400> 30
   Gly Gln Gly Gly Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly
                                        10
  Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly
                20
   Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln
            35
                                40
                                                    45
```

Gly	Gly 50	Leu	Gly	Gly	Gln	Gly 55	Ala	Gly	Gln	Gly	Ala 60	Gly	Ala	Ala	Ala		
Ala 65	Ala	Ala	Gly	Gly	Ala 70	Gly	Gln	Gly	Gly	Tyr 75	Gly	Gly	Leu	Gly	Ser 80		5
Gln	Gly	Ala	Gly	Arg 85	Gly	Gly	Gln	Gly	Ala 90	Gly	Ala	Ala	Ala	Ala 95	Ala	1	(
Ala	Gly	Gly	Ala 100	Gly	Gln	Ala	Ala									1	•
<21	0> 31 L> 23 2> PF	30														2	.(
			liche	e Sed	quenz	z										2	
<220 <22		esch	reib	ng (der }	cünst	tlic	nen s	Seque	enz:S	SE1-1	Prote	ein				
<400)> 3:	L		•												3	(
			Gly	Tyr 5	Gly	Gly	Leu	Gly	Gly 10	Gln	Gly	Ala	Gly	Gln 15	Gly		
Gly	Tyr	Gly	Gly 20	Leu	Gly	Ser	Gln	Gly 25	Ala	Gly	Arg	Gly	Gly 30	Leu	Gly	3	
Gly	Gln	Gly 35	Ala	Gly	Ala	Ala	Ala 40	Ala	Ala	Ala	Gly	Gly 45	Ala	Gly	Gln	4	4
Gly	Gly 50	Leu	Gly	Gly	Gln	Gly 55	Ala	Gly	Gln	Gly	Ala 60	Gly	Ala	Ala	Ala	4	ļ.
Ala 65	Ala	Ala	Gly	Gly	Ala 70	Gly	Gln	Gly	Gly	Tyr 75	Gly	Gly	Leu	Gly	Ser 80	5	i
Gln	Gly	Ala	Gly	Arg 85	Gly	Gly	Leu	Gly	Gly 90	Gln	Gly	Ala	Gly	Ala 95	Ala	5	5
Ala	Ala	Ala	Ala 100	Gly	Gly	Ala	Gly	Gln 105	Gly	Gly	Tyr	Gly	Gly 110	Leu	Gly		
Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala	6	4
Ala	Ala	Gly	Gly	Ala	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu	Gly	Ser	Gln	6	i

Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala 155 145 150 Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser 170 165 10 Gln Gly Ala Gly Arg Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala 180 185 Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly 200 195 Ala Gly Arg Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly 210 215 220 Gly Ala Gly Gln Ala Ala 225 25 <210> 32 <211> 137 <212> PRT <213> Künstliche Sequenz 35 <220> <223> Beschreibung der künstlichen Sequenz:SD1-Protein <400> 32 Gly Gln Gly Gly Tyr Gly Gly Leu Gly Gln Gly Ala Gly Gln Gly 10 Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly 25 Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln 40 Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala 55 50 Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser 65 70 75 Gln Gly Ala Gly Arg Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala 95 85

65 Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly

			100					105					110		
Ala	Gly	Arg 115	Gly	Gly	Leu	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Ala	Ala							
<21:	0> 3: 1> 1: 2> PI 3> Ki	255 RT	liche	e Se	quen:	z									
<223> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:SO1SO1-Protein															
<40	0> 3:	3													
Gly 1	Gln	Gly	Gly	Tyr 5	Gly	Gly	Leu	Gly	Gly 10	Gln	Gly	Ala	Gly	Gln 15	Gly
Gly	Tyr	Gly	Gly 20	Leu	Gly	Gly	Gln	Gly 25	Ala	Gly	Gln	Gly	Ala 30	Gly	Ala
Ala	Ala	Ala 35	Ala	Ala	Gly	Gly	Ala 40	Gly	Gln	Gly	Gly	Tyr 45	Gly	Gly	Leu
Gly	Ser 50	Gln	Gly	Ala	Gly	Arg 55	Gly	Gly	Gln	Gly	Ala 60	Gly	Ala	Ala	Ala
Ala 65	Ala	Ala	Gly	Gly	Ala 70	Gly	Gln	Gly	Gly	Tyr 75	Gly	Gly	Leu	Gly	Ser 80
Gln	Gly	Ala	Gly	Arg 85	Gly	Gly	Leu	Gly	Gly 90	Gln	Gly	Ala	Gly	Ala 95	Ala
Ala	Ala	Ala	Ala 100	Gly	Gly	Ala	Gly	Gln 105	Gly	Gly	Tyr	Gly	Gly 110	Leu	Gly
Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Gly	Gly	Tyr	Gly	Gly 140	Leu	Gly	Ser	Gln
Gly 145	Ala	Gly	Arg	Gly	Gly 150	Leu	Gly	Gly	Gln	Gly 155	Ala	Gly	Ala	Ala	Ala 160

	Ala	Ala	Ala	Gly	Gly 165	Ala	Gly	Gln	Gly	Gly 170	Tyr	Gly	Gly	Leu	Gly 175	Gly
5	Gln	Gly	Ala	Gly 180	Gln	Gly	Gly	Tyr	Gly 185	Gly	Leu	Gly	Ser	Gln 190	Gly	Ala
10	Gly	Arg	Gly 195	Gly	Leu	Gly	Gly	Gln 200	Gly	Ala	Gly	Ala	Ala 205	Ala	Ala	Ala
15	Ala	Gly 210	Gly	Ala	Gly	Gln	Gly 215	Gly	Leu	Gly	Gly	Gln 220	Gly	Ala	Gly	Gln
20	Gly 225	Ala	Gly	Ala	Ala	Ala 230	Ala	Ala	Ala	Gly	Gly 235	Ala	Gly	Gln	Gly	Gly 240
25	Tyr	Gly	Gly	Leu	Gly 245	Ser	Gln	Gly	Ala	Gly 250	Arg	Gly	Gly	Gln	Gly 255	Ala
	Gly	Ala	Ala	Ala 260	Ala	Ala	Ala	Gly	Gly 265	Ala	Gly	Gln	Gly	Gly 270	Tyr	Gly
30	Gly	Leu	Gly 275	Gly	Gln	Gly	Ala	Gly 280	Gln	Gly	Gly	Tyr	Gly 285	Gly	Leu	Gly
35	Ser	Gln 290	Gly	Ala	Gly	Arg	Gly 295	_	Leu	Gly	Gly	Gln 300	Gly	Ala	Gly	Ala
40	Ala 305	Ala	Ala	Ala	Ala	Gly 310	Gly	Ala	Gly	Gln	Gly 315	Gly	Leu	Gly	Gly	Gln 320
45	Gly	Ala	Gly	Gln	Gly 325	Ala	Gly	Ala	Ala	Ala 330	Ala	Ala	Ala	Gly	Gly 335	Ala
50	Gly	Gln	Gly	Gly 340	Tyr	Gly	Gly	Leu	Gly 345	Ser	Gln	Gly	Ala	Gly 350	Arg	Gly
	Gly	Leu	Gly 355	Gly	Gln	Gly	Ala	Gly 360	Ala	Ala	Ala	Ala	Ala 365	Ala	Gly	Gly
55	Ala	Gly 370	Gln	Gly	Gly	Tyr	Gly 375	Gly	Leu	Gly	Ser	Gln 380	Gly	Ala	Gly	Arg
60	Gly 385	Gly	Gln	Gly	Ala	Gly 390	Ala	Ala	Ala	Ala	Ala 395	Ala	Gly	Gly	Ala	Gly 400
65	Gln	Gly	Gly	Tyr	Gly 405	Gly	Leu	Gly	Ser	Gln 410	Gly	Ala	Gly	Arg	Gly 415	Gly

I	eu	Gly	Gly	Gln 420	Gly	Ala	Gly	Ala	Ala 425	Ala	Ala	Ala	Ala	Gly 430	Gly	Ala			
C	Bly	Gln	Gly 435	Gly	Туг	Gly	Gly	Leu 440	Gly	Ser	Gln	Gly	Ala 445	Gly	Arg	Gly			5
C	Sly	Gln 450	Gly	Ala	Gly	Ala	Ala 455	Ala	Ala	Ala	Ala	Gly 460	Gly	Ala	Gly	Gln		:	10
	31y 165	Gly	Tyr	Gly	Gly	Leu 470	Gly	Ser	Gln	Gly	Ala 475	Gly	Arg	Gly	Gly	Gln 480		:	15
C	Bly	Ala	Gly	Ala	Ala 485	Ala	Ala	Ala	Ala	Gly 490	Gly	Ala	Gly	Gln	Gly 495	Gly		:	20
7	ſyr	Gly	Gly	Leu 500	Gly	Gly	Gln	Gly	Ala 505	Gly	Gln	Gly	Gly	Tyr 510	Gly	Gly		:	25
Ι	Leu	Gly	Ser 515	Gln	Gly	Ala	Gly	Arg 520	Gly	Gly	Leu	Gly	Gly 525	Gln	Gly	Ala			
C	Sly	Ala 530	Ala	Ala	Ala	Ala	Ala 535	Gly	Gly	Ala	Gly	Gln 540	Gly	Gly	Leu	Gly		:	30
	31y 545	Gln	Gly	Ala	Gly	Gln 550	Gly	Ala	Gly	Ala	Ala 555	Ala	Ala	Ala	Ala	Gly 560		:	35
c	Bly	Ala	Gly	Gln	Gly 565	Gly	Tyr	Gly	Gly	Leu 570	Gly	Ser	Gln	Gly	Ala 575	Gly		4	40
I	Arg	Gly	Gly	Gln 580	Gly	Ala	Gly	Ala	Ala 585	Ala	Ala	Ala	Ala	Gly 590	Gly	Ala		4	45
c	Sly	Gln	Gly 595	Gly	Tyr	Gly	Gly	Leu 600	Gly	Ser	Gln	Gly	Ala 605	Gly	Arg	Gly			50
C	Sly	Leu 610	Gly	Gly	Gln	Gly	Ala 615	Gly	Ala	Ala	Ala	Ala 620	Ala	Ala	Gly	Gly		·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Ala 525	Gly	Gln	Gly	Gly	Tyr 630	Gly	Gly	Leu	Gly	Gly 635	Gln	Gly	Ala	Gly	Gln 640		:	55
c	Bly	Gly	Tyr	Gly	Gly 645	Leu	Gly	Gly	Gln	Gly 650	Ala	Gly	Gln	Gly	Ala 655	Gly		•	60
Į	Ala	Ala	Ala	Ala 660	Ala	Ala	Gly	Gly	Ala 665	Gly	Gln	Gly	Gly	Tyr 670	Gly	Gly			65

	Leu	Gly	Ser 675	Gln	Gly	Ala	Gly	Arg 680	Gly	Gly	Gln	Gly	Ala 685	Gly	Ala	Ala
5	Ala	Ala 690	Ala	Ala	Gly	Gly	Ala 695	Gly	Gln	Gly	Gly	Tyr 700	Gly	Gly	Leu	Gly
10	Ser 705	Gln	Gly	Ala	Gly	Arg 710	Gly	Gly	Leu	Gly	Gly 715	Gln	Gly	Ala	Gly	Ala 720
15	Ala	Ala	Ala	Ala	Ala 725	Gly	Gly	Ala	Gly	Gln 730	Gly	Gly	Tyr	Gly	Gly 735	Leu
20	Gly	Ser	Gln	Gly 740	Ala	Gly	Arg	Gly	Gly 745	Gln	Gly	Ala	Gly	Ala 750	Ala	Ala
25	Ala	Ala	Ala 755	Gly	Gly	Ala	Gly	Gln 760	Gly	Gly	Tyr	Gly	Gly 765	Leu	Gly	Ser
	Gln	Gly 770	Ala	Gly	Arg	Gly	Gly 775	Leu	Gly	Gly	Gln	Gly 780	Ala	Gly	Ala	Ala
30	Ala 785	Ala	Ala	Ala	Gly	Gly 790	Ala	Gly	Gln	Gly	Gly 795	Tyr	Gly	Gly	Leu	Gly 800
35	Gly	Gln	Gly	Ala	Gly 805	Gln	Gly	Gly	туг	Gly 810	Gly	Leu	Gly	Ser	Gln 815	Gly
40	Ala	Gly	Arg	Gly 820	Gly	Leu	Gly	Gly	Gln 825	Gly	Ala	Gly	Ala	Ala 830	Ala	Ala
45	Ala	Ala	Gly 835	Gly	Ala	Gly	Gln	Gly 840	Gly	Leu	Gly	Gly	Gln 845	Gly	Ala	Gly
50	Gln	Gly 850	Ala	Gly	Ala	Ala	Ala 855	Ala	Ala	Ala	Gly	Gly 860	Ala	Gly	Gln	Gly
	Gly 865	Tyr	Gly	Gly	Leu	Gly 870	Ser	Gln	Gly	Ala	Gly 875	Arg	Gly	Gly	Gln	Gly 880
55	Ala	Gly	Ala	Ala	Ala 885	Ala	Ala	Ala	Gly	Gly 890	Ala	Gly	Gln	Gly	Gly 895	Tyr
60	Gly	Gly	Leu	Gly 900	Gly	Gln	Gly	Ala	Gly 905	Gln	Gly	Gly	Tyr	Gly 910	Gly	Leu
65	Gly	Ser	Gln 915	Gly	Ala	Gly	Arg	Gly 920	Gly	Leu	Gly	Gly	Gln 925	Gly	Ala	Gly

Ala Al 93		Ala	Ala	Ala	Gly 935	Gly	Ala	Gly	Gln	Gly 940	Gly	Leu	Gly	Gly	
Gln Gl 945	y Ala	Gly	Gln	Gly 950	Ala	Gly	Ala	Ala	Ala 955	Ala	Ala	Ala	Gly	Gly 960	•
Ala Gl	y Gln	Gly	Gly 965	Tyr	Gly	Gly	Leu	Gly 970	Ser	Gln	Gly	Ala	Gly 975	Arg	10
Gly Gl	y Leu	Gly 980	Gly	Gln	Gly	Ala	Gly 985	Ala	Ala	Ala	Ala	Ala 990	Ala	Gly	15
Gly Al	a Gly 995	Gln	Gly	Gly	_	Gly COOO	Gly	Leu	Gly		Gln 1005	Gly	Ala	Gly	20
Arg Gl 101		Gln	Gly		Gly 1015	Ala	Ala	Ala		Ala 1020	Ala	Gly	Gly	Ala	25
Gly Gl 1025	n Gly	Gly	-	Gly 1030	Gly	Leu	Gly		Gln 1035	Gly	Ala	Gly		Gly 1040	
Gly Le	eu Gly	_	Gln 1045	Gly	Ala	Gly		Ala 1050	Ala	Ala	Ala		Gly 1055	Gly	30
Ala Gl	-	Gly 1060	Gly	Tyr	Gly	_	Leu 1065	Gly	Ser	Gln		Ala 1070	Gly	Arg	35
Gly Gl	ly Gln 1075	Gly	Ala	Gly		Ala 1080	Ala	Ala	Ala		Gly 1085	Gly	Ala	Gly	4(
Gln Gl		Tyr	Gly		Leu 1095	Gly	Ser	Gln		Ala 1100	Gly	Arg	Gly	Gly	4:
Gln Gl 1105	ly Ala	Gly		Ala 1110	Ala	Ala	Ala		Gly 1115	Gly	Ala	Gly		Gly 1120	50
Gly Ty	r Gly	_	Leu 1125	Gly	Gly	Gln		Ala 1130		Gln	Gly		Туr 1135	Gly	
Gly Le		Ser 1140	Gln	Gly	Ala		Arg 1145	Gly	Gly	Leu		Gly 1150	Gln	Gly	53
Ala Gl	ly Ala 1155	Ala	Ala	Ala		Ala 1160	Gly	Gly	Ala		Gln 1165	Gly	Gly	Leu	60
Gly Gl	-	Gly	Ala		Gln 1175	Gly	Ala	Gly		Ala 1180	Ala	Ala	Ala	Ala	6:

Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly 10 Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gly Gln Ala Ala <210> 34 25 <211> 989 <212> PRT <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:SO1SM12-Protein <400> 34 Gly Gln Gly Gly Tyr Gly Gly Leu Gly Gln Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu 50 Gly Ser Gln Gly Ala Gly Arg Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly

Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Äla 125	Ala	Ala	Ala		
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Gly	Gly	Tyr	Gly	Gly 140	Leu	Gly	Ser	Gln		
Gly 145	Ala	Gly	Arg	Gly	Gly 150	Leu	Gly	Gly	Gln	Gly 155	Ala	Gly	Ala	Ala	Ala 160		1
Ala	Ala	Ala	Gly	Gly 165	Ala	Gly	Gln	Gly	Gly 170	Tyr	Gly	Gly	Leu	Gly 175	Gly		1
Gln	Gly	Ala	Gly 180	Gln	Gly	Gly	Tyr	Gly 185	Gly	Leu	Gly	Ser	Gln 190	Gly	Ala		2
Gly	Arg	Gly 195	Gly	Leu	Gly	Gly	Gln 200	Gly	Ala	Gly	Ala	Ala 205	Ala	Ala	Ala		2
Ala	Gly 210	Gly	Ala	Gly	Gln	Gly 215	Gly	Leu	Gly	Gly	Gln 220	Gly	Ala	Gly	Gln		
Gly 225	Ala	Gly	Ala	Ala	Ala 230	Ala	Ala	Ala	Gly	Gly 235	Ala	Gly	Gln	Gly	Gly 240		3
Tyr	Gly	Gly	Leu	Gly 245	Ser	Gln	Gly	Ala	Gly 250	Arg	Gly	Gly	Gln	Gly 255	Ala		3
Gly	Ala	Ala	Ala 260	Ala	Ala	Ala	Gly	Gly 265	Ala	Gly	Gln	Gly	Gly 270	Tyr	Gly		4
Gly	Leu	Gly 275	Gly	Gln	Gly	Ala	Gly 280	Gln	Gly	Gly	Tyr	Gly 285	Gly	Leu	Gly		4
Ser	Gln 290	Gly	Ala	Gly	Arg	Gly 295	Gly	Leu	Gly	Gly	Gln 300	Gly	Ala	Gly	Ala		4
Ala 305	Ala	Ala	Ala	Ala	Gly 310	Gly	Ala	Gly	Gln	Gly 315	Gly	Leu	Gly	Gly	Gln 320		
Gly	Ala	Gly	Gln	Gly 325	Ala	Gly	Ala	Ala	Ala 330	Ala	Ala	Ala	Gly	Gly 335	Ala		5
Gly	Gln	Gly	Gly 340	Tyr	Gly	Gly	Leu	Gly 345	Ser	Gln	Gly	Ala	Gly 350	Arg	Gly		•
Gly	Leu	Gly 355	Gly	Gln	Gly	Ala	Gly 360	Ala	Ala	Ala	Ala	Ala 365	Ala	Gly	Gly		•

	Ala	Gly 370	Gln	Gly	Gly	Tyr	Gly 375	Gly	Leu	Gly	Ser	Gln 380	Gly	Ala	Gly	Arg
5	Gly 385	Gly	Gln	Gly	Ala	Gly 390	Ala	Ala	Ala	Ala	Ala 395	Ala	Gly	Gly	Ala	Gly 400
10	Gln	Gly	Gly	Туr	Gly 405	Gly	Leu	Gly	Ser	Gln 410	Gly	Ala	Gly	Arg	Gly 415	Gly
15	Leu	Gly	Gly	Gln 420	Gly	Ala	Gly	Ala	Ala 425	Ala	Ala	Ala	Ala	Gly 430	Gly	Ala
20	Gly	Gln	Gly 435	Gly	Tyr	Gly	Gly	Leu 440	Gly	Ser	Gln	Gly	Ala 445	Gly	Arg	Gly
25	Gly	Gln 450	Gly	Ala	Gly	Ala	Ala 455	Ala	Ala	Ala	Ala	Gly 460	Gly	Ala	Gly	Gln
	Gly 465	Gly	Tyr	Gly	Gly	Leu 470	Gly	Ser	Gln	Gly	Ala 475	Gly	Arg	Gly	Gly	Gln 480
30	Gly	Ala	Gly		Ala '485	Ala	Ala	Ala	Ala	Gly 490	Gly	Ala	Gly	Gln	Gly 495	Gly
35	Tyr	Gly	Gly	Leu 500	Gly	Gly	Gln	Gly	Ala 505	Gly	Gln	Gly	Gly	Tyr 510	Gly	Gly
40	Leu	Gly	Ser 515	Gln	Gly	Ala	Gly	Arg 520	Gly	Gly	Leu	Gly	Gly 525	Gln	Gly	Ala
45	Gly	Ala 530	Ala	Ala	Ala	Ala	Ala 535	Gly	Gly	Ala	Gly	Gln 540	Gly	Gly	Leu	Gly
50	Gly 545	Gln	Gly	Ala	Gly	Gln 550	Gly	Ala	Gly	Ala	Ala 555	Ala	Ala	Ala	Ala	Gly 560
	Gly	Ala	Gly	Gln	Gly 565	Gly	Tyr	Gly	Gly	Leu 570	Gly	Ser	Gln	Gly	Ala 575	Gly
55	Arg	Gly	Gly	Gln 580	Gly	Ala	Gly	Ala	Ala 585	Ala	Ala	Ala	Ala	Gly 590	Gly	Ala
60	Gly	Gln	.Gly 595	Gly	Tyr	Gly	Gly	Leu 600	Gly	Ser	Gln	Gly	Ala 605	Gly	Arg	Gly
65	Gly	Leu 610	Gly	Gly	Gln	Gly	Ala 615	Gly	Ala	Ala	Ala	Ala 620	Ala	Ala	Gly	Gly

Ala 625	Gly	Gln	Gly	Gly	Tyr 630	Gly	Gly	Leu	Gly	Gly 635	Gln	Gly	Ala	Gly	Gln 640		
Gly	Gly	Tyr	Gly	Gly 645	Leu	Gly	Ser	Gln	Gly 650	Ala	Gly	Arg	Gly	Gly 655	Leu		:
Gly	Gly	Gln	Gly 660	Ala	Gly	Ala	Ala	Ala 665	Ala	Ala	Ala	Gly	Gly 670	Ala	Gly		10
Gln	Gly	Gly 675	Leu	Gly	Gly	Gln	Gly 680	Ala	Gly	Gln	Gly	Ala 685	Gly	Ala	Ala		15
Ala	Ala 690	Ala	Ala	Gly	Gly	Ala 695	Gly	Gln	Gly	Gly	Tyr 700	Gly	Gly	Leu	Gly		20
Ser 705	Gln	Gly	Ala	Gly	Arg 710	Gly	Gly	Leu	Gly	Gly 715	Gln	Gly	Ala	Gly	Ala 720		2.5
Ala	Ala	Ala	Ala	Ala 725	Gly	Gly	Ala	Gly	Gln 730	Gly	Gly	Tyr	Gly	Gly 735	Leu		
Gly	Ser	Gln	Gly 740	Ala	Gly	Arg	Gly	Gly 745	Gln	Gly	Ala	Gly	Ala 750	Ala	Ala		30
Ala	Ala	Ala 755	Gly	Gly	Ala	Gly	Gln 760	Gly	Gly	Tyr	Gly	Gly 765	Leu	Gly	Ser		35
Gln	Gly 770	Ala	Gly	Arg	Gly	Gly 775	Leu	Gly	Gly	Gln	Gly 780	Ala	Gly	Ala	Ala		4(
Ala 785	Ala	Ala	Ala	Gly	Gly 790	Ala	Gly	Gln	Gly	Gly 795	Tyr	Gly	Gly	Leu	Gly 800		45
Ser	Gln	Gly	Ala	Gly 805	Arg	Gly	Gly	Gln	Gly 810	Ala	Gly	Ala	Ala	Ala 815	Ala		50
Ala	Ala	Gly	Gly 820	Ala	Gly	Gln	Gly	Gly 825	Tyr	Gly	Gly	Leu	Gly 830	Ser	Gln		
Gly	Ala	Gly 835	Arg	Gly	Gly	Gln	Gly 840	Ala	Gly	Ala	Ala	Ala 845	Ala	Ala	Ala		55
Gly	Gly 850	Ala	Gly	Gln	Gly	Gly 855	Tyr	Gly	Gly	Leu	Gly 860	Gly	Gln	Gly	Ala		60
Gly 865	Gln	Gly	Gly	Tyr	Gly 870	Gly	Leu	Gly	Ser	Gln 875	Gly	Ala	Gly	Arg	Gly 880		65

	Gly	Leu	Gly	Gly	Gln 885	Gly	Ala	Gly	Ala	Ala 890	Ala	Ala	Ala	Ala	Gly 895	Ģly
5	Ala	Gly	Gln	Gly 900	Gly	Leu	Gly	Gly	Gln 905	Gly	Ala	Gly	Gln	Gly 910	Ala	Gly
10	Ala	Ala	Ala 915	Ala	Ala	Ala	Gly	Gly 920	Ala	Gly	Gln	Gly	Gly 925	Tyr	Gly	Gly
15	Leu	Gly 930	Ser	Gln	Gly	Ala	Gly 935	Arg	Gly	Gly	Gln	Gly 940	Ala	Gly	Ala	Ala
20	Ala 945	Ala	Ala	Ala	Gly	Gly 950	Ala	Gly	Gln	Gly	Gly 955	Tyr	Gly	Gly	Leu	Gly 960
25	Ser	Gln	Gly	Ala	Gly 965	Arg	Gly	Gly	Leu	Gly 970	Gly	Gln	Gly	Ala	Gly 975	Ala
20	Ala	Ala	Ala	Ala 980	Ala	Gly	Gly	Ala	Gly 985	Gly	Gln	Ala	Ala			
30																
35	<21	0> 39 L> 18 2> PI	880													
	<213		ünst]	liche	e Sed	quen	z									
40	<223				ng (nen							
45		0> 35 `Gln		Gly	Tyr 5	Gly	Gly	Leu	Gly	Gly 10	Gln	Gly	Ala	Gly	Gln 15	Gly
50	Gly	Tyr	Gly	Gly 20	Leu	Gly	Gly	Gln	Gly 25	Ala	Gly	Gln	Gly	Ala 30	Gly	Ala
55	Ala	Ala	Ala 35	Ala	Ala	Gly	Gly	Ala 40	Gly	Gln	Gly	Gly	Tyr 45	Gly	Gly	Leu
60	Gly	Ser 50	Gln	Gly	Ala	Gly	Arg 55	Gly	Gly	Gln	Gly	Ala 60	Gly	Ala	Ala	Ala
65	Ala 65	Ala	Ala	Gly	Gly	Ala 70	Gly	Gln	Gly	Gly	Tyr 75	Gly	Gly	Leu	Gly	Ser 80
	01 m	C1	N 3 -	01	A	01	G1	T 4	01.	01	01-	C1	21.0	G1	71-	83.

				85					90					95			
Ala	Ala	Ala	Ala 100	Gly	Gly	Ala	Gly	Gln 105	Gly	Gly	Tyr	Gly	Gly 110	Leu	Gly		:
Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala		10
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Gly	Gly	Tyr	Gly	Gly 140	Leu	Gly	Ser	Gln		1:
Gly 145	Ala	Gly	Arg	Gly	Gly 150	Leu	Gly	Gly	Gln	Gly 155	Ala	Gly	Ala	Ala	Ala 160		2
Ala	Ala	Ala	Gly	Gly 165	Ala	Gly	Gln	Gly	Gly 170	Tyr	Gly	Gly	Leu	Gly 175	Gly		
	Gly		180					185					190				2.
-	Arg	195	•		-	_	200	_		-		205					3
	Gly 210					215					220						3
225	Ala Gly				230					235					240		4
	Ala			245			_		250			-,		255			4:
_	Leu		260				-	265		-			270		_		5
	Gln	275			-		280					285					
Ala	290 Ala	Ala	Ala	Ala	Gly	295 Gly	Ala	Gly	Gln	Gly	300 Gly	Leu	Gly	Gly	Gln		5:
305 Gly	Ala	Gly	Gln	_	310 Ala	Gly	Ala	Ala		315 Ala	Ala	Ala	Gly		320 Ala		6
Gly	Gln	Gly	Gly	325 Tyr	Gly	Gly	Leu	Gly	330 Ser	Gln	Gly	Ala	Gly	335 Arg	Gly		6:

				340					345					330		
5	Gly	Leu	Gly 355	Gly	Gln	Gly	Ala	Gly 360	Ala	Ala	Ala	Ala	Ala 365	Ala	Gly	G1y
10	Ala	Gly 370	Gln	Gly	Gly	Tyr	Gly 375	Gly	Leu	Gly	Ser	Gln 380	Gly	Ala	Gly	Arg
15	Gly 385	Gly	Gln	Gly	Ala	Gly 390	Ala	Ala	Ala	Ala	Ala 395	Àla	Gly	Gly	Ala	Gly 400
20	Gln	Gly	Gly	Tyr	Gly 405	Gly	Leu	Gly	Ser	Gln 410	Gly	Ala	Gly	Arg	Gly 415	Gly
20	Leu	Gly	Gly	Gln 420	Gly	Ala	Gly	Ala	Ala 425	Ala	Ala	Ala	Ala	Gly 430	Gly	Ala
25	Gly	Gln	Gly 435	Gly	Tyr	Gly	Gly	Leu 440	Gly	Ser	Gln	Gly	Ala 445	Gly	Arg	Gly
30	Gly	Gln 450	Gly	Ala	Gly	Ala	Ala 455	Ala	Ala	Ala	Ala	Gly 460	Gly	Ala	Gly	Gln
35	Gly 465	Gly	Tyr	Gly	Gly	Leu 470	Gly	Ser	Gln	Gly	Ala 475	Gly	Arg	Gly	Gly	Gln 480
40	Gly	Ala	Gly	Ala	Ala 485	Ala	Ala	Ala	Ala	Gly 490	Gly	Ala	Gly	Gln	Gly 495	Gly
	Tyr	Gly	Gly	Leu 500	Gly	Gly	Gln	Gly	Ala 505	Gly	Gln	Gly	Gly	Туг 510	Gly	Gly
45	Leu	Gly	Ser 515	Gln	Gly	Ala	Gly	Arg 520	_	Gly	Leu	Gly	Gly 525	Gln	Gly	Ala
50	Gly	Ala 530	Ala	Ala	Ala	Ala	Ala 535	Gly	Gly	Ala	Gly	Gln 540	Gly	Gly	Leu	Gly
55	Gly 545	Gln	Gly	Ala	Gly	Gln 550	Gly	Ala	Gly	Ala	Ala 555	Ala	Ala	Ala	Ala	Gly 560
60	Gly	Ala	Gly	Gln	Gly 565	Gly	туr	Gly	Gly	Leu 570	Gly	Ser	Gln	Gly	Ala 575	Gly
65	Arg	Gly	Gly	Gln 580	Gly	Ala	Gly	Ala	Ala 585	Ala	Ala	Ala	Ala	Gly 590	Gly	Ala
	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu	Gly	Ser	Gln	Gly	Ala	Gly	Arg	Gly

		595					600					605			•	
Gly	Leu 610	Gly	Gly	Gln	Gly	Ala 615	Gly	Ala	Ala	Ala	Ala 620	Ala	Ala	Gly	Gly	5
Ala 625	Gly	Gln	Gly	Gly	Tyr 630	Gly	Gly	Leu	Gly	Gly 635	Gln	Gly	Ala	Gly	Gln 640	10
Gly	Gly	Tyr	Gly	Gly 645	Leu	Gly	Gly	Gln	Gly 650	Ala	Ġly	Gln	Gly	Ala 655	Gly	15
Ala	Ala	Ala	Ala 660	Ala	Ala	Gly	Gly	Ala 665	Gly	Gln	Gly	Gly	Tyr 670	Gly	Gly	20
Leu	Gly	Ser 675	Gln	Gly	Ala	Gly	Arg 680	Gly	Gly	Gln	Gly	Ala 685	Gly	Ala	Ala	20
Ala	Ala 690	Ala	Ala	Gly	Gly	Ala 695	Gly	Gln	Gly	Gly	Tyr 700	Gly	Gly	Leu	Gly	25
Ser 705	Gln	Gly	Ala	Gly	Arg 710	Gly	Gly	Leu	Gly	Gly 715	Gln	Gly	Ala	Gly	Ala 720	30
Ala	Ala	Ala	Ala	Ala 725	Gly	Gly	Ala	Gly	Gln 730	Gly	Gly	Tyr	Gly	Gly 735	Leu	35
Gly	Ser	Gln	Gly 740	Ala	Gly	Arg	Gly	Gly 745	Gln	Gly	Ala	Gly	Ala 750	Ala	Ala	40
Ala	Ala	Ala 755	Gly	Gly	Ala	Gly	Gln 760	Gly	Gly	Tyr	Gly	Gly 765	Leu	Gly	Ser	45
Gln	Gly 770	Ala	Gly	Arg	Gly	Gly 775	Leu	Gly	Gly	Gln	Gly 780	Ala	Gly	Ala	Ala	43
Ala 785	Ala	Ala	Ala	Gly	Gly 790	Ala	Gly	Gln	Gly	Gly 795	Tyr	Gly	Gly	Leu	Gly 800	50
Gly	Gln	Gly	Ala	Gly 805	Gln	Gly	Gly	Tyr	Gly 810	Gly	Leu	Gly	Ser	Gln 815	Gly	55
Ala	Gly	Arg	Gly 820	Gly	Leu	Gly	Gly	Gln 825	Gly	Ala	Gly	Ala	Ala 830	Ala	Ala	60
Ala	Ala	Gly 835	Gly	Ala	Gly	Gln	Gly 840	Gly	Leu	Gly	Gly	Gln 845	Gly	Ala	Gly	65
Gln	Gly	Ala	Gly	Ala	Ala	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Gly	Gln	Gly	

		850					855					860				
5	Gly 865	Tyr	Gly	Gly	Leu	Gly 870	Ser	Gln	Gly	Ala	Gly 875	Arg	Gly	Gly	Gln	Gly 880
10	Ala	Gly	Ala	Ala	Ala 885	Ala	Ala	Ala	Gly	Gly 890	Ala	Gly	Gln	Gly	Gly 895	Tyr
15	Gly	Gly	Leu	Gly 900	Gly	Gln	Gly	Ala	Gly 905	Gln	Gly	Gly	Tyr	Gly 910	Gly	Leu
20	Gly	Ser	Gln 915	Gly	Ala	Gly	Arg	Gly 920	Gly	Leu	Gly	Gly	Gln 925	Gly	Ala	Gly
20	Ala	Ala 930	Ala	Ala	Ala	Ala	Gly 935	Gly	Ala	Gly	Gln	Gly 940	Gly	Leu	Gly	Gly
25	Gln 945	Gly	Ala	Gly	Gln	Gly 950	Ala	Gly	Ala		Ala .955	Ala	Ala	Ala	Gly	Gly 960
30	Ala	Gly	Gln	Gly	Gly 965	Tyr	Gly	Gly	Leu	Gly 970	Ser	Gln	Gly	Ala	Gly 975	Arg
35	Gly	Gly	Leu	Gly 980	Gly	Gln	Gly	Ala	Gly 985	Ala	Ala	Äla	Ala	Ala 990	Ala	Gly
40	Gly	Ala	Gly 995	Gln	Gly	Gly	_	Gly 1000	Gly	Leu	Gly		Gln 1005	Gly	Ala	Gly
	_	Gly 1010	Gly	Gln	Gly		Gly 1015	Ala	Ala	Ala		Ala 1020	Ala	Gly	Gly	Ala
45	Gly 1025		Gly	Gly	_	Gly 1030	Gly	Leu	Gly		Gln 1035	Gly	Ala	Gly	-	Gly 1040
50	Gly	Leu	Gly	_	Gln 1045	Gly	Ala	Gly		Ala 1050	Ala	Ala	Ala		Gly L055	Gly
55	Ala	Gly		Gly 1060	Gly	Tyr	Gly	Gly	Leu 1065	Gly	Ser	Gln	_	Ala 1070	Gly	Arg
60	Gly	_	Gln 1075	Gly	Ala	Gly		Ala 1080	Ala	Ala	Ala		Gly 1085	Gly	Ala	Gly
65		Gly 1090	Gly	Tyr	Gly	_	Leu L095	Gly	Ser	Gln		Ala 1100	Gly	Arg	Gly	Gly
	Gln	Gly	Ala	Gly	Ala	Ala	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Gly	Gln	Gly

	1110	1115	1120	
• • •	Leu Gly Gly Gl	n Gly Ala Gly Gln Gly 1130	Gly Tyr Gly 1135	5
Gly Leu Gly Ser 1140	Gln Gly Ala Gl	y Arg Gly Gly Leu Gly 1145	Gly Gln Gly	10
Ala Gly Ala Ala 1155	Ala Ala Ala Ala 116	a Gly Gly Ala Gly Gln 0 1165	Gly Gly Leu	1.5
Gly Gly Gln Gly 1170	Ala Gly Gln Gly 1175	y Ala Gly Ala Ala Ala 1180	Ala Ala	24
Gly Gly Ala Gly 1185	Gln Gly Gly Ty	r Gly Gly Leu Gly Ser 1195	Gln Gly Ala 1200	20
	Gln Gly Ala Gl	y Ala Ala Ala Ala Ala 1210	Ala Gly Gly 1215	25
Ala Gly Gln Gly 1220	Gly Tyr Gly Gl	y Leu Gly Ser Gln Gly 1225	Ala Gly Arg 1230	30
Gly Gly Leu Gly 1235	Gly Gln Gly Al	a Gly Ala Ala Ala Ala 0 1245	Ala Ala Gly	35
Gly Ala Gly Gln 1250	Gly Gly Tyr Gl 1255	y Gly Leu Gly Gly Gln 1260	Gly Ala Gly	Δί
1250	1255	· .		40
1250 Gln Gly Gly Tyr 1265 Gly Ala Ala Ala	1255 Gly Gly Leu Gl 1270 Ala Ala Ala Gl	1260 y Gly Gln Gly Ala Gly	Gln Gly Ala 1280	49
1250 Gln Gly Gly Tyr 1265 Gly Ala Ala Ala	1255 Gly Gly Leu Gl 1270 Ala Ala Ala Gl	y Gly Gln Gly Ala Gly 1275 y Gly Ala Gly Gln Gly 1290 y Arg Gly Gly Gln Gly	Gln Gly Ala 1280 Gly Tyr Gly 1295	
1250 Gln Gly Gly Tyr 1265 Gly Ala Ala Ala Gly Leu Gly Ser 1300	1255 Gly Gly Leu Gl 1270 Ala Ala Ala Gl 1285 Gln Gly Ala Gl	y Gly Gln Gly Ala Gly 1275 y Gly Ala Gly Gln Gly 1290 y Arg Gly Gly Gln Gly 1305 a Gly Gln Gly Gly Gly Tyr	Gln Gly Ala 1280 Gly Tyr Gly 1295 Ala Gly Ala	4:
Gln Gly Gly Tyr 1265 Gly Ala Ala Ala Gly Leu Gly Ser 1300 Ala Ala Ala Ala 1315	1255 Gly Gly Leu Gl 1270 Ala Ala Ala Gl 1285 Gln Gly Ala Gl Ala Gly Gly Al 132	y Gly Gln Gly Ala Gly 1275 y Gly Ala Gly Gln Gly 1290 y Arg Gly Gly Gln Gly 1305 a Gly Gln Gly Gly Gly Tyr	Gln Gly Ala 1280 Gly Tyr Gly 1295 Ala Gly Ala 1310 Gly Gly Leu	45 50
Gln Gly Gly Tyr 1265 Gly Ala Ala Ala Gly Leu Gly Ser 1300 Ala Ala Ala Ala 1315 Gly Ser Gln Gly 1330	1255 Gly Gly Leu Gl 1270 Ala Ala Ala Gl 1285 Gln Gly Ala Gl Ala Gly Gly Al 132 Ala Gly Arg Gl 1335	y Gly Gln Gly Ala Gly 1275 y Gly Ala Gly Gln Gly 1290 y Arg Gly Gly Gln Gly 1305 a Gly Gln Gly Gly Gly Tyr 0 1325 y Gly Leu Gly Gly Gln	Gln Gly Ala 1280 Gly Tyr Gly 1295 Ala Gly Ala 1310 Gly Gly Leu Gly Ala Gly	4: 50 5:

		1365		1370		1375
5		Ala Gly Gly 1380		Gln Gly Gly 385	Tyr Gly Gly 1390	Leu Gly
10	Ser Gln Gly	Ala Gly Arg	Gly Gly	Leu Gly Gly	Gln Gly Ala 1405	Gly Ala
15	Ala Ala Ala 1410	Ala Ala Gly	Gly Ala (-	Gly Tyr Gly 1420	Gly Leu
20	Gly Gly Gln 1425	Gly Ala Gly 1430	_	Gly Tyr Gly 1435	Gly Leu Gly	Ser Gln 1440
20	Gly Ala Gly	Arg Gly Gly 1445	Leu Gly	Gly Gln Gly 1450	Ala Gly Ala	Ala Ala 1455
25		Gly Gly Ala 1460	-	Gly Gly Leu 465	Gly Gly Gln 1470	Gly Ala
30	Gly Gln Gly 1475	Ala Gly Ala	Ala Ala . 1480	Ala Ala Ala	Gly Gly Ala 1485	Gly Gln
35	Gly Gly Tyr 1490	Gly Gly Leu	Gly Ser		Gly Arg Gly 1500	Gly Gln
	Gly Ala Gly	Ala Ala Ala	Ala Ala		Ala Gly Gln	Gly Gly 1520
40	1505	1510)	1515		1320
					Gly Gly Tyr	
40	Tyr Gly Gly Leu Gly Ser	Leu Gly Gly 1525	Gln Gly	Ala Gly Gln 1530		Gly Gly 1535
	Tyr Gly Gly Leu Gly Ser	Leu Gly Gly 1525 Gln Gly Ala 1540	Gln Gly Gly Arg	Ala Gly Gln 1530 Gly Gly Leu 545	Gly Gly Gln	Gly Gly 1535 Gly Ala
45	Tyr Gly Gly Leu Gly Ser Gly Ala Ala 1555	Leu Gly Gly 1525 Gln Gly Ala 1540 Ala Ala Ala	Gln Gly Gly Arg 1 Ala Gly 1560	Ala Gly Gln 1530 Gly Gly Leu 545 Gly Ala Gly Gly Ala Ala	Gly Gly Gln 1550 Gln Gly Gly	Gly Gly 1535 Gly Ala Leu Gly
45 50	Tyr Gly Gly Leu Gly Ser Gly Ala Ala 1555 Gly Gln Gly 1570	Leu Gly Gly 1525 Glm Gly Ala 1540 Ala Ala Ala Ala Gly Glm	Gln Gly Gly Arg 1 Ala Gly 1560 Gly Ala 1575	Ala Gly Gln 1530 Gly Gly Leu 545 Gly Ala Gly Gly Ala Ala	Gly Gly Gln 1550 Gln Gly Gly 1565 Ala Ala Ala	Gly Gly 1535 Gly Ala Leu Gly Ala Gly
45 50 55	Tyr Gly Gly Leu Gly Ser Gly Ala Ala 1555 Gly Gln Gly 1570 Gly Ala Gly 1585	Leu Gly Gly 1525 Gln Gly Ala 1540 Ala Ala Ala Ala Gly Gln Gln Gly Gly 1590	Gln Gly Gly Arg 1 Ala Gly 1560 Gly Ala 1575 Tyr Gly	Ala Gly Gln 1530 Gly Gly Leu 545 Gly Ala Gly Gly Ala Ala Gly Leu Gly 1595	Gly Gly Gln 1550 Gln Gly Gly 1565 Ala Ala Ala 1580 Ser Gln Gly	Gly Gly 1535 Gly Ala Leu Gly Ala Gly 1600

1620 1625 1630	
Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly 35 1640 1645	5
Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg 1655 1660	10
eu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly 1670 1675 1680	15
Sly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly 1685 1690 1695	20
Sly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala 1700 1705 1710	
Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly 1720 1725	25
Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln 1735 1740 Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Tyr	30
1750 1755 1760 Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gln Gln	35
1765 1770 1775 Sly Ala Ala Ala Ala Ala Gly Gly Gly Gly Gly Gly	40
1780 1785 1790 Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala Ala	45
1800 1805 Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly	50
1815 1820 Arg Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly	
1830 1835 1840 Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly	55
1845 1850 1855 Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Ala	60
1860 1865 1870	65

Gly Gly Ala Gly Gly Gln Ala Ala

1875 1880

5	<210)> 36	5													
	<211	L> 2	19													
	<212	2> PI	RT													
10	<213	3 > Ki	inst	liche	e Sed	quena	Z									
	<220	0>														
_	<223	3 > Be	esch	reibu	ng o	der)	cūnst	lich	nen S	Seque	enz:I	FA2 - I	Prote	ein		
15	<401	0> 3(5					ė								
				Glv	Tvr	Glv	Glv	Leu	Glv	Glv	Gln	Glv	Ala	Gly	Gln	Gly
20	1		2		5		•		- 4	10		•		•	15	•
	Gly	Tyr	Gly	-	Leu	Gly	Ser	Gln		Ala	Gly	Arg	Gly	Gly	Leu	Gly
25				20					25					30		
25	01	61 -	0 3	21-	~ 3	3 1	21-	21-	N1-	77.	7 l a	G1.,	C1		C111	<i>(</i> 12 m
	GIY	GIII	35	ALG	GIY	Ala	Ala	40	Ата	Ala	Ala	GIY	45	Ala	GIY	Gin
			30			•		10					43			
30	Glv	Glv	Leu	Glv	Glv	Gln	Glv	Ala	Glv	Gln	Glv	Ala	Glv	Ala	Ala	Ala
	2	50		2	2		- 55		- 4		•	60	•			
35	Ala	Ala	Ala	Gly	Gly	Ala	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu	Gly	Ser
	65					70					75					80
40	Gln	Gly	Ala	Gly	Arg	Gly	Gly	Leu-	Gly	Gly	Gln	Gly	Ala	Gly		Ala
40					85					90					95	
						~7		~1		~ 3		-		a 1		0 1
	Ala	Ala	Ala		GIY	GIÀ	Ala	GIA		GIY	ser	GIA	AIA	Gly	Ala	GIY
45				100					105					110		
	Ser	Glv	Ala	Glv	Ala	Glv	Ala	Glv	Ser	Glv	Ala	Glv	Ala	Gly	Ser	Glv
		U-1	115	1		1		120		1		2	125	2		•
50																
	Ala	Gly	Ala	Gly	Ser	Gly	Ala	Gly	Ala	Gly	Ser	Gly	Ala	Gly	Ala	Gly
		130					135					140				
55	Tyr	Gly	Ala	Gly	Ala	Gly	Val	Gly	Tyr	Gly	Ala	Gly	Tyr	Gly	Ala	
	145					150					155					160
									_						_	
60	Ala	Gly	Val	Gly		Gly	Ala	Gly	Ala		Ser	Gly	Ala	Ala		Gly
					165					170					175	
	71 -	G 3	7. 7.4	G1	71 -	01. -	- 1 ה	g1	Th.∽	alv.	80~	802	Glv.	Phe	Gl v	Dro
65	WIG	GIĀ	MIG	180	WIG	GIY	VIG	GIY	185	Gry	267	261	CIY	190	O19	- 10
				_ ~ ~												

Tyr	Val	Ala 195	Asn	Gly	Gly	Tyr	Ser 200	Gly	Tyr	Glu	Tyr	Ala 205	Trp	Ser	Ser	
Lys	Ser 210	Asp	Phe	Glu	Thr	Ala 215	Gly	Gln	Ala.	Ala						:
<210)> 3'	7														1
<211 <212 <213	2> Pl		liche	e Sed	quens	z										1.
<220 <223		eschi	reib	ng (der)	cünst	tlicl	hen s	Sequ	enz:	5 A1 - I	Prote	ein			2
<400			0 1	m	01	01	Tan	a1	al	al n	01 11	212	01.	Cln	Cly	
1	GĽI	Gly	GIÀ	Tyr 5	GTÅ	GIÀ	ьеu	GIÀ	10	GIII	GIĀ	AIa	GIY	15	GIY	2
Gly	Tyr	Gly	Gly 20	Leu	Gly	Gly	Gln	Gly 25	Ala	Gly	Gln	Gly	Ala 30	Gly	Ala	3
Ala	Ala	Ala 35	Ala	Ala	Gly	Gly	Ala 40	Gly	Gln	Gly	Gly	Tyr 45	Gly	Gly	Leu	
Gly	Ser 50	Gln	Gly	Ala	Gly	Arg 55	Gly	Gly	Gln	Gly	Ala 60	Gly	Ala	Ala	Ala	3
Ala 65	Ala	Ala	Gly	Gly	Ala 70	Gly	Gln	Gly	Gly	Tyr 75	Gly	Gly	Leu	Gly	Ser 80	4
Gln	Gly	Ala	Gly	Arg 85	Gly	Gly	Leu	Gly	Gly 90	Gln	Gly	Ala	Gly	Ala 95	Ala	4
Ala	Ala	Ala	Ala 100	Gly	Gly	Ala	Gly	Gln 105	Gly	Gly	Tyr	Gly	Gly 110	Leu	Gly	5
Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala	5
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Gly	Gly	Tyr	Gly	Gly 140	Leu	Gly	Ser	Gln	
Gly 145	Ala	Gly	Arg	Gly	Gly 150	Leu	Gly	Gly	Gln	Gly 155	Ala	Gly	Ala	Ala	Ala 160	6
Ala	Ala	Ala	Gly	Gly 165	Ala	Gly	Gln	Ala	Ala 170							6

)> 38 L> 63														
		2> PI														
5			inst]	liche	Sec	TUOT	•									
	<41.) > KI	IIISC.	LICHE	: <i>5</i> et	ine	4									
	.22															
	<220					, ,										
10	<22.	3> B6	eschi	ceibu	ing c	ier)	cunst	TIC	ien s	seque	enz::	3OT - 1	rote	ein		
)> 38														
	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu	Gly	Gly	Gln	Gly	Ala	Gly	Gln	Gly
15	1				5					10					15	
												•				
	Gly	Tyr	Gly	Gly	Leu	Gly	Gly	Gln	Gly	Ala	Gly	Gln	Gly	Ala	Gly	Ala
20				20					25					30		
20																
	Ala	Ala	Ala	Ala	Ala	Gly	Gly	Ala	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu
			35					40					45			
25							•									
	Gly	Ser	Gln	Gly	Ala	Gly	Arg	Gly	Gly	Gln	Gly	Ala	Gly	Ala	Ala	Ala
	-	50		-		-	55	_	_		-	60	-			
30	Ala	Ala	Ala	Glv	Glv	Ala	Glv	Gln	Glv	Glv	Tvr	Glv	Glv	Leu	Glv	Ser
	65			1	1	70	1		1	1	75	1	1	_ •	1	80
	0,5					, ,										
	GÌ n	Glv	Δla	Glv	Ara	Glv	Glv	I.en	Glv	Glv	Gln	Glv	Δ1 =	Gly	Δla	Δla
35	GIII	Gry	ALA	Gry	85	GIY	Gry	пси	Cly	90	OI!!	OLY	ALU	O ₁	95	
					65					90					93	
	21-	71-	77.	71-	<i>α</i> 1	C1	חות	~1. ,	C1 n	C1	C1.,	m	C1	Gly	T ON	C3.
40	Ald	Ald	ALA		GIY	GIY	Ald	GTÀ		GIY	Gry	TAT	GIY		Бец	GIY
				100					105					110		
	_		~1		-1	_		~ 3	~1	- 31		~ 1				
	Ser	Gin	-	Ala	GTÀ	Arg	GIA	_	Gin	GIY	Ala	GIY		Ala	Ala	ATA
45			115					120					125			
	_	_								_			_		_	
	Ala		Gly	Gly	Ala	Gly		Gly	GIY	Tyr	GIY		Leu	Gly	Ser	Gin
		130					135					140				
50																
	Gly	Ala	Gly	Arg	Gly	Gly	Leu	Gly	Gly	Gln	Gly	Ala	Gly	Ala	Ala	Ala
	145					150					155					160
55	Ala	Ala	Ala	Gly	Gly	Ala	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu	Gly	Gly
					165					170					175	
								•								
60	Gln	Gly	Ala	Gly	Gln	Gly	Gly	Tyr	Gly	Gly	Leu	Gly	Ser	Gln	Gly	Ala
w		-		180		-	-	-	185			_		190	•	
	Gly	Arg	Gly	Gly	Leu	Gly	Gly	Gln	Gly	Ala	Gly	Ala	Ala	Ala	Ala	Ala

Ala Gly Gly Ala Gly Gln Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Leu Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly Arg Gly

Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln

		450					455					460				
5	Gly 465	Gly	Tyr	Gly	Gly	Leu 470	Gly	Ser	Gln	Gly	Ala 475	Gly	Arg	Gly	Gļy	Gln 480
10	Gly	Ala	Gly	Ala	Ala 485	Ala	Ala	Ala	Ala	Gly 490	Gly	Ala	Gly	Gln	Gly 495	Gly
15	Tyr	Gly	Gly	Leu 500	Gly	Gly	Gln	Gly	Ala 505	Gly	Gln	Gly	Gly	Tyr 510	Gly	Gly
	Leu	Gly	Ser 515	Gln	Gly	Ala	Gly	Arg 520	Gly	Gly	Leu	Gly	Gly 525	Gln	Gly	Ala
20	Gly	Ala 530	Ala	Ala	Ala	Ala	Ala 535	Gly	Gly	Ala	Gly	Gln 540	Gly	Gly	Leu	Gly
25	Gly 545	Gln	Gly	Ala	Gly	Gln 550	Gly	Ala	Gly	Ala	Ala 555	Ala	Ala	Ala	Ala	Gly 560
30	Gly	Ala	Gly	Gln	Gly 565	Gly	Tyr	Gly	Gly	Leu 570	Gly	Ser	Gln	Gly	Ala 575	Gly
35	Arg	Gly	Gly	Gln 580	Gly	Ala	Gly	Ala	Ala 585	Ala	Ala	Ala	Ala	Gly 590	Gly	Ala
40	Gly	Gln	Gly 595	Gly	Tyr	Gly	Gly	Leu 600	Gly	Ser	Gln	Gly	Ala 605	Gly	Arg	Gly
	Gly	Leu 610	Gly	Gly	Gln	Gly	Ala 615	Gly	Ala	Ala	Ala	Alà 620	Ala	Ala	Gly	Gly
45	Ala 625	Gly	Gly	Gln	Ala	Ala 630										
50																
)> 39														
		L> 36														
55		?> PF B> Ki		liche	e Sec	quenz	2									
	<220)>														
60	<223	3> Be	eschi	reibı	ing o	der }	cünst	lic	nen S	Seque	enz:S	5M12-	Prot	ein		
		> 39						_								
65		Gln	Gly	Gly		Gly	Gly	Leu	Gly		Gln	Gly	Ala	Gly		Gly
O)	1				5					10					15	

Gly	Tyr	Gly	Gly 20	Leu	Gly	Ser	Gln	Gly 25	Ala	Gly	Arg	Gly	Gly 30	Leu	Gly			
Gly	Gln	Gly 35	Ala	Gly	Ala	Ala	Ala 40	Ala	Ala	Ala	Gly	Gly 45	Ala	Gly	Gln		:	5
Gly	Gly 50	Leu	Gly	Gly	Gln	Gly 55	Ala	Gly	Gln	Gly	Ala 60	Gly	Ala	Ala	Ala		10	(
Ala 65	Ala	Ala	Gly	Gly	Ala 70	Gly	Gln	Gly	Gly	Tyr 75	Gly	Gly	Leu	Gly	Ser 80		1:	5
Gln	Gly	Ala	Gly	Arg 85	Gly	Gly	Leu	Gly	Gly 90	Gln	Gly	Ala	Gly	Ala 95	Ala		21	
Ala	Ala	Ala	Ala 100	Gly	Gly	Ala	Gly	Gln 105	Gly	Gly	Tyr	Gly	Gly 110	Leu	Gly		2:	
Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala			
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Gly	Gly	Tyr	Gly	Gly 140	Leu	Gly	Ser	Gln		3	(
Gly 145	Ala	Gly	Arg	Gly	Gly 150	Leu	Gly	Gly	Gln	Gly 155	Ala	Gly	Ala	Ala	Ala 160		3:	•
Ala	Ala	Ala	Gly	Gly 165	Ala	Gly	Gln	Gly	Gly 170	Tyr	Gly	Gly	Leu	Gly 175	Ser		41	(
Gln	Gly	Ala	Gly 180	Arg	Gly	Gly	Gln	Gly 185	Ala	Gly	Ala	Ala	Ala 190	Ala	Ala		4:	
Ala	Gly	Gly 195	Ala	Gly	Gln	Gly	Gly 200	Tyr	Gly	Gly	Leu	Gly 205	Ser	Gln	Gly		51	
Ala	Gly 210	Arg	Gly	Gly	Gln	Gly 215	Ala	Gly	Ala	Ala	Ala 220	Ala	Ala	Ala	Gly			
Gly 225	Ala	Gly	Gln	Gly	Gly 230	Tyr	Gly	Gly	Leu	Gly 235	Gly	Gln	Gly	Ala	Gly 240		5:	-
Gln	Gly	Gly	Tyr	Gly 245		Leu	Gly	Ser	Gln 250	Gly	Ala	Gly	Arg	Gly 255	Gly		64	(
Leu	Gly	Gly	Gln 260	_	Ala	Gly	Ala	Ala 265		Ala	Ala	Ala	Gly 270		Ala		6:	-

Gly Gln Gly Gly Leu Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala 280 275 Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu 295 10 Gly Ser Gln Gly Ala Gly Arg Gly Gln Gly Ala Gly Ala Ala Ala 310 315 Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser 325 330 Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala 345 Ala Ala Ala Gly Gly Ala Gly Gly Gln Ala Ala 355 360 25 <210> 40 <211> 271 <212> PRT <213> Künstliche Sequenz 35 <220> <223> Beschreibung der künstlichen Sequenz:SF1-Protein <400> 40 Gly Gln Gly Gly Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly 10 Gly Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu 40 Gly Ser Gln Gly Ala Gly Arg Gly Gln Gly Ala Gly Ala Ala Ala 50 55 Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser 70 75 80 65 Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala 85 65 Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly

110

105

. 100

Ser	Gln	Gly 115	Ala	Gly	Arg	Gly	Gly 120	Gln	Gly	Ala	Gly	Ala 125	Ala	Ala	Ala		
Ala	Ala 130	Gly	Gly	Ala	Gly	Gln 135	Gly	Gly	Tyr	Gly	Gly 140	Leu	Gly	Ser	Gln		
Gly 145	Ala	Gly	Arg	Gly	Gly 150	Leu	Gly	Gly	Gln	Gly 155	Ala	Gly	Ala	Ala	Ala 160		10
Ala	Ala	Ala	Gly	Gly 165	Ala	Gly	Gln	Gly	Gly 170	Tyr	Gly	Gly	Leu	Gly 175	Gly		1:
Gln	Gly	Ala	Gly 180	Gln	Gly	Gly	Tyr	Gly 185	Gly	Leu	Gly	Ser	Gln 190	Gly	Ala		20
Gly	Arg	Gly 195	Gly	Leu	Gly	Gly	Gln 200	Gly	Ala	Gly	Ala	Ala 205	Alà	Ala	Ala		2
Ala	Gly 210	Gly	Ala	Gly	Gln	Gly 215	Gly	Leu	Gly	Gly	Gln 220	Gly	Ala	Gly	Gln		
Gly 225	Ala	Gly	Ala	Ala	Ala 230	Ala	Ala	Ala	Gly	Gly 235	Ala	Gly	Gln	Gly	Gly 240		34
Tyr	Gly	Gly	Leu	Gly 245	Ser	Gln	Gly	Ala	Gly 250	Arg	Gly	Gly	Gln	Gly 255	Ala		3
Gly	Ala	Ala	Ala 260	Ala	Ala	Ala	Gly	Gly 265	Ala	Gly	Gly	Gln	Ala 270	Ala			4
<213	0> 4: 1> 1: 2> Di	82 NA															4
<220	0 >			e Sed			-] -i - a)	hon (Com.	. m 1	- n		10				5
	P	entar		inhe:		(uns	CIIC	nen :	seque	enz:	EDP (mit.	ίο				5:
ggc	gcag	tgg (gtg (ttcc	tggt	gt ag	ggtg	tgcc	g gg1	tgtt	ggtg	tgc	caaa	tgt	tggt	gtgccg gtacca gcggcc	120	6
																	,

```
<210> 42
   <211> 332
   <212> DNA
   <213> Künstliche Sequenz
   <220>
10 <223> Beschreibung der künstlichen Sequenz:ELP mit 20
         Pentamereinheiten
   <400> 42
ctcgagatgg gccacggcgt gggtgttccg ggcgtgggtg ttccgggtgg cggtgtgccg 60
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 120
   ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 180
20 ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 240
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccggggtgc aggcgttccg 300
                                                                      332
   ggtggcggtg tgccgggcgg gctggcggcc gc
25
   <210> 43
   <211> 482
   <212> DNA
   <213> Künstliche Sequenz
   <220>
35 <223> Beschreibung der künstlichen Seguenz: ELP mit 30
         Pentamereinheiten
   <400> 43
^{40} ctcgagatgg gccacggcgt gggtgttccg ggcgtgggtg ttccgggtgg cggtgtgccg 60
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 120
   ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 180
ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 240
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 300
   ggtggcggtg tgccgggcgt gggtgttccg ggcgtgggtg ttccgggttg cggtgtgccg 360
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 420
50 ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgg gctggcggcc 480
                                                                      482
   gc
   <210> 44
   <211> 632
   <212> DNA
60 <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:ELP mit 40
         Pentamereinheiten
```

<400> 44						•	
ctcgagatgg go	ccacggcgt	gggtgttccg	ggcgtgggtg	ttccgggtgg	cggtgtgccg	60	
ggcgcaggtg tt	tcctggtgt	aggtgtgccg	ggtgttggtg	tgccgggtgt	tggtgtacca	120	
ggtggcggtg tt	tccgggtgc	aggcgttccg	ggtggcggtg	tgccgggcgt	gggtgttccg	180	
ggcgtgggtg tt	tccgggtgg	cggtgtgccg	ggcgcaggtg	ttcctggtgt	aggtgtgccg	240	
ggtgttggtg tg	gccgggtgt	tggtgtacca	ggtggcggtg	ttccgggtgc	aggcgttccg	300	
ggtggcggtg tg	gccgggcgt	gggtgttccg	ggcgtgggtg	ttccgggtgg	cggtgtgccg	360	1
ggcgcaggtg tt	tcctggtgt	aggtgtgccg	ggtgttggtg	tgccgggtgt	tggtgtacca	420	
ggtggcggtg tt	tccgggtgc	aggcgttccg	ggtggcggtg	tgccgggcgt	gggtgttccg	480	
ggcgtgggtg ti	tccgggtgg	cggtgtgccg	ggcgcaggtg	ttcctggtgt	aggtgtgccg	540	
ggtgttggtg tg							1:
ggtggcggtg tg						632	
							2
<210> 45							Ī
<211> 932							
<212> DNA							
<213> Künstl:	iche Seque	enz					2
<220>							
<223> Beschre	eibung der	künstliche	en Sequenz:	ELP mit 60			30
Pentame	ereinheite	en					
<400> 45							
ctcgagatgg go							3:
ggcgcaggtg t							
ggtggcggtg t							
ggcgtgggtg ti							4
ggtgttggtg tg							41
ggtggcggtg tg						_	
ggcgcaggtg ti							
ggtggcggtg ti							4:
ggcgtgggtg ti	teegggtgg	cggtgtgccg	ggcgcaggtg	ttectggtgt	aggtgtgccg	540	
ggtgttggtg t							
ggtggcggtg tg							
ggcgcaggtg ti							50
ggtggcggtg ti							
ggcgtgggtg t							
ggtgttggtg tg	gccgggtgt	tggtgtacca	ggtggcggtg	ttccgggtgc	aggcgttccg	900	55
ggtggcggtg tg	gccgggcgg	gctggcggcc	gc			932	J.
		•					
<210> 46							60
<211> 1082							
<212> DNA							
<213> Künstl:	iche Seque	enz		•			,
							6:

<220>

<223> Beschreibung der künstlichen Sequenz:ELP mit 70 Pentamereinheiten

```
<400> 46
   ctcgagatgg gccacggcgt gggtgttccg ggcgtgggtg ttccggggtgg cggtgtgccg 60
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 120
10 ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 180
   ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 240
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 300
   ggtggcggtg tgccgggcgt gggtgttccg ggcgtgggtg ttccgggtgg cggtgtgccg 360
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 420
   ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 480
   ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 540
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 600
   ggtggcggtg tgccgggcgt gggtgttccg ggcgtgggtg ttccgggtgg cggtgtgccg 660
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 720
   ggtggeggtg ttccgggtgc aggcgttccg ggtggeggtg tgccgggcgt gggtgttccg 780
   ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 840
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 900
   ggtggcggtg tgccgggcgt gggtgttccg ggcgtggtg ttccgggtgg cggtgtgccg 960
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 1020
   ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgg gctggcggcc 1080
                                                                      1082
   gc
35
   <210> 47
   <211> 1532
   <212> DNA
   <213> Künstliche Sequenz
   <220>
45 <223> Beschreibung der künstlichen Sequenz:ELP mit 100
         Pentamereinheiten
   <400> 47
50 ctcgagatgg gccacggcgt gggtgttccg ggcgtgggtg ttccgggtgg cggtgtgccg 60
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 120
   ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 180
   ggcgtggttg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 240
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccggggtgc aggcgttccg 300
   ggtggcggtg tgccgggcgt gggtgttccg ggcgtgggtg ttccggggtgg cggtgtgccg 360
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 420
60 ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 480
   ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 540
   ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 600
   ggtggcggtg tgccgggcgt gggtgttccg ggcgtggtg ttccgggtgg cggtgtgccg 660
   ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 720
   ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 780
```

```
ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 840
qqtqttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 900
ggtggcggtg tgccgggcgt gggtgttccg ggcgtgggtg ttccggggtgg cggtgtgccg 960
                                                                               5
ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 1020
ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 1080
ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 1140
qqtqttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 1200
                                                                               10
ggtggcggtg tgccgggcgt gggtgttccg ggcgtgggtg ttccgggtgg cggtgtgccg 1260
ggcgcaggtg ttcctggtgt aggtgtgccg ggtgttggtg tgccgggtgt tggtgtacca 1320
ggtggcggtg ttccgggtgc aggcgttccg ggtggcggtg tgccgggcgt gggtgttccg 1380
                                                                               15
ggcgtgggtg ttccgggtgg cggtgtgccg ggcgcaggtg ttcctggtgt aggtgtgccg 1440
ggtgttggtg tgccgggtgt tggtgtacca ggtggcggtg ttccgggtgc aggcgttccg 1500
                                                                   1532
ggtggcggtg tgccgggcgg gctggcggcc gc
                                                                               20
<210> 48
<211> 2322
                                                                               25
<212> DNA
<213> Künstliche Sequenz
<220>
                                                                               30
<223> Beschreibung der künstlichen Sequenz:SM12-70xELP
      (Pflanzen)
<400> 48
                                                                               35
atggetteca aacettttet atetttgett teaettteet tgettetett tacaageaca 60
tgtttagcag gatcccagtt acccgggcag ggaggttatg gtggtctggg gggccagggt 120
gctggccaag gaggttatgg tggtctgggg agtcagggcg ctggtcgtgg gggactgggt 180
                                                                               40
ggccaaggtg caggagctgc tgctgcagct gcaggtggag ccgggcaggg aggtctggga 240
gggcagggag cgggccaagg tgcaggagca gctgcagcag ctgcaggtgg agccgggcag 300
ggaggttatg gtggtctggg gagtcagggc gctggtcgtg ggggactggg tggccaaggt 360
gcaggagcag ctgcagctgc tgcaggtgga gccgggcagg gaggttatgg tggtctgggg 420
                                                                               45
agtcagggtg ctggtcgtgg aggccaaggt gcaggagctg cagcagcagc tgcaggtgga 480
gccgggcagg gaggttatgg tggtctgggg agtcagggcg ctggtcgtgg gggactgggt 540
ggccaaggtg caggagcagc tgcagctgct gcaggtggag ccgggcaggg aggttatggt 600
                                                                               50
ggtctgggga gtcagggtgc tggtcgtgga ggccaaggtg caggagctgc agcagcagct 660
gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggtgc tggtcgtgga 720
ggccaaggtg caggagctgc agcagcagct gcaggtggag ccgggcaggg aggttatggt 780
ggtctggggg gccagggtgc tggccaagga ggttatggtg gtctggggag tcagggcgct 840
                                                                               55
ggtcgtgggg gactgggtgg ccaaggtgca ggagctgctg ctgcagctgc aggtggagcc 900
gggcagggag gtctgggagg gcagggagcg ggccaaggtg caggagcagc tgcagcagct 960
gcaggtggag ccgggcaggg aggttatggt ggtctgggga gtcagggtgc tggtcgtgga 1020
ggccaaggtg caggagctgc agcagcagct gcaggtggag ccgggcaggg aggttatggt 1080
                                                                               60
ggtctgggga gtcagggcgc tggtcgtggg ggactgggtg gccaaggtgc aggagcagct 1140
gcagctgctg caggtggagc cggcggacaa gcggccgcag aacaaaaact catctcagaa 1200
gaggatetga atggggeegt egagatggge caeggegtgg gtgtteeggg egtgggtgtt 1260
                                                                               65
ccgggtggcg gtgtgccggg cgcaggtgtt cctggtgtag gtgtgccggg tgttggtgtg 1320
ccgggtgttg gtgtaccagg tggcggtgtt ccgggtgcag gcgttccggg tggcggtgtg 1380
```

```
ccgggcgtgg gtgttccggg cgtgggtgtt ccgggtggcg gtgtgccggg cgcaggtgtt 1440
   cctggtgtag gtgtgccggg tgttggtgt ccgggtgttg gtgtaccagg tggcggtgtt 1500
   cegggtgcag gegtteeggg tggeggtgtg cegggegtgg gtgtteeggg egtgggtgtt 1560
   ccgggtggcg gtgtgccggg cgcaggtgtt cctggtgtag gtgtgccggg tgttggtgtg 1620
   ccgggtgttg gtgtaccagg tggcggtgtt ccgggtgcag gcgttccggg tggcggtgtg 1680
   ccgggcgtgg gtgttccggg cgtgggtgtt ccgggtggcg gtgtgccggg cgcaggtgtt 1740
10 cctggtgtag gtgtgccggg tgttggtgtg ccgggtgttg gtgtaccagg tggcggtgtt 1800
   cogggtgcag gcgttccggg tggcggtgtg ccgggcgtgg gtgttccggg cgtgggtgtt 1860
   ccgggtggcg gtgtgccggg cgcaggtgtt cctggtgtag gtgtgccggg tgttggtgtg 1920
   cegggtgttg gtgtaccagg tggeggtgtt cegggtgcag gegtteeggg tggeggtgtg 1980
   ccgggcgtgg gtgttccggg cgtgggtgtt ccgggtggcg gtgtgccggg cgcaggtgtt 2040
   cctggtgtag gtgtgccggg tgttggtgtg ccgggtgttg gtgtaccagg tggcggtgtt 2100
   ccgggtgcag gcgttccggg tggcggtgtg ccgggcgtgg gtgttccggg cgtgggtgtt 2160
20 ccgggtggcg gtgtgccggg cgcaggtgtt cctggtgtag gtgtgccggg tgttggtgtg 2220
   ccgggtgttg gtgtaccagg tggcggtgtt ccgggtgcag gcgttccggg tggcggtgtg 2280
   ccgggcggc tggcggccgc agaacccaaa gacgaactct ag
25
   <210> 49 ·
   <211> 773
   <212> PRT
   <213> Künstliche Sequenz
   <220>
35 <223> Beschreibung der künstlichen Sequenz:SM12-70xELP
       (Pflanzen)
   <400> 49
   Met Ala Ser Lys Pro Phe Leu Ser Leu Leu Ser Leu Ser Leu Leu Leu
                                        10
   Phe Thr Ser Thr Cys Leu Ala Gly Ser Gln Leu Pro Gly Gln Gly Gly
   Tyr Gly Gly Leu Gly Gly Gln Gly Ala Gly Gln Gly Gly Tyr Gly Gly
                                40
   Leu Gly Ser Gln Gly Ala Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala
        50
                            55
55
   Gly Ala Ala Ala Ala Ala Gly Gly Ala Gly Gln Gly Leu Gly
    65
                        70
                                            75
                                                                80
   Gly Gln Gly Ala Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala Gly
                    85
^{65} Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly Ala Gly
               100
                                   105
                                                       110 -
```

Arg	Gly	Gly 115	Leu	Gly	Gly	Gln	Gly 120	Ala	Gly	Ala	Ala	Ala 125	Ala	Ala	Ala		
Gly	Gly 130	Ala	Gly	Gln ·	Gly	Gly 135	Tyr	Gly	Gly	Leu	Gly 140	Ser	Gln	Gly	Ala		:
Gly 145	Arg	Gly	Gly	Gln	Gly 150	Ala	Gly	Ala	Ala	Ala 155	Ala	Ala	Ala	Gly	Gly 160		10
Ala	Gly	Gln	Gly	Gly 165	Tyr	Gly	Gly	Leu	Gly 170	Ser	Gln	Gly	Ala	Gly 175	Arg		1:
Gly	Gly	Leu	Gly 180	Gly	Gln	Gly	Ala	Gly 185	Ala	Ala	Ala	Ala	Ala 190	Ala	Gly		20
Gly	Ala	Gly 195	Gln	Gly	Gly	Tyr	Gly 200	Gly	Leu	Gly	Ser	Gln 205	Gly	Ala	Gly		2:
Arg	Gly 210	Gly	Gln	Gly	Ala	Gly 215	Ala	Ala	Ala	Ala	Ala 220	Ala	Gly	Gly	Ala		
Gly 225	Gln	Gly	Gly	Tyr	Gly 230	Gly	Leu	Gly	Ser	Gln 235	Gly	Ala	Gly	Arg	Gly 240		30
Gly	Gln	Gly	Ala	Gly 245	Ala	Ala	Ala	Ala	Ala 250	Ala	Gly	Gly	Ala	Gly 255	Gln		35
Gly	Gly	Tyr	Gly 260	Gly	Leu	Gly	Gly	Gln 265	Gly	Ala	Gly	Gln	Gly 270	Gly	Tyr		40
Gly	Gly	Leu 275	Gly	Ser	Gln	Gly	Ala 280	Gly	Arg	Gly	Gly	Leu 285	Gly	Gly	Gln		4:
Gly	Ala 290	Gly	Ala	Ala	Ala	Ala 295	Ala	Ala	Gly	Gly	Ala 300	Gly	Gln	Gly	Gly		-
Leu 305	Gly	Gly	Gln	Gly	Ala 310	Gly	Gln	Gly	Ala	Gly 315	Ala	Ala	Ala	Ala	Ala 320		50
Ala	Gly	Gly	Ala	Gly 325	Gln	Gly	Gly	Tyr	Gly 330	Gly	Leu	Gly	Ser	Gln 335	Gly		5:
Ala	Gly	Arg	Gly 340	Gly	Gln	Gly	Ala	Gly 345	Ala	Ala	Ala	Ala	Ala 350	Ala	Gly		60
Gly	Ala	Gly 355	Gln	Gly	Gly	Tyr	Gly 360	Gly	Leu	Gly	Ser	Gln 365	Gly	Ala	Gly		65

	Arg	Gly 370	Gly	Leu	Gly	Gly	Gln 375	Gly	Ala	Gly	Ala	Ala 380	Ala	Ala	Ala	Ala
5	Gly 385	Gly	Ala	Gly	Gly	Gln 390	Ala	Ala	Ala	Glu	Gln 395	Lys	Leu	Ile	Ser	Glu 400
10	Glu	Asp	Leu	Asn	Gly 405	Ala	Val	Glu	Met	Gly 410	His	Gly	Val	Gly	Val 415	Pro
15	Gly	Val	Gly	Val 420	Pro	Gly	Gly	Gly	Val 425	Pro	Gly	Ala	Gly	Val 430	Pro	Gly
20	Val	Gly	Val 435	Pro	Gly	Val	Gly	Val 440	Pro	Gly	Val	Gly	Val 445	Pro	Gly	Gly
25	Gly	Val 450	Pro	Gly	Ala	Gly	Val 455	Pro	Gly	Gly	Gly	Val 460	Pro	Gly	Val	Gly
	Val 465	Pro	Gly	Val	Gly	Val 470	Pro	Gly	Gly	Gly	Val 475	Pro	Gly	Ala	Gly	Val 480
30	Pro	Gly	Val	Gly	Val 485	Pro	Gly	Val	Gly	Val 490	Pro	Gly	Val	Gly	Val 495	Pro
35	Gly	Gly	Gly	Val 500	Pro	Gly	Ala	Gly	Val 505	Pro	Gly	Gly	Gly	Val 510	Pro	Gly
40	Val	Gly	Val 515	Pro	Gly	Val	Gly	Val 520	Pro	Gly	Gly	Gly	Val 525	Pro	Gly	Ala
45	Gly	Val 530	Pro	Gly	Val	Gly	Val 535	Pro	Gly	Val	Gly	Val 540	Pro	Gly	Val	Gly
50	Val 545	Pro	Gly	Gly	Gly	Val 550	Pro	Gly	Ala	Gly	Val 555	Pro	Gly	Gly	Gly	Val 560
	Pro	Gly	Val	Gly	Val 565	Pro	Gly	Val	Gly	Val 570	Pro	Gly	Gly	Gly	Val 575	Pro
55	Gly	Ala	Gly	Val 580	Pro	Gly	Val	Gly	Val 585	Pro	Gly	Val	Gly	Val 590	Pro	Gly
60	Val	Gly	Val 595	Pro	Gly	Gly	Gly	Val 600	Pro	Gly	Ala	Gly	Val 605	Pro	Gly	Gly
65	Gly	Val 610	Pro	Gly	Val	Gly	Val 615	Pro	Gly	Val	Gly	Val 620	Pro	Gly	Gly	Gly

Val	Pro	Gly	Ala	Gly		Pro	Gly	Val	Gly	Val	Pro	Gly	Val	Gly	Val 640			
625					630					033					040			_
Pro	Gly	Val	Gly	Val 645	Pro	Gly	Gly	Gly	Val 650	Pro	Gly	Ala	Gly	Val 655	Pro			5
Gly	Gly	Gly	Val 660	Pro	Gly	Val	Gly	Val 665	Pro	Gly	Val	Gly	Val 670	Pro	Gly			10
Gly	Gly	Val 675	Pro	Gly	Ala	Gly	Val 680	Pro	Gly	Val	Gly	Val 685	Pro	Gly	Val			15
Gly	Val 690	Pro	Gly	Val	Gly	Val 695	Pro	Gly	Gly	Gly	Val 700	Pro	Gly	Ala	Gly			20
Val 705	Pro	Gly	Gly	Gly	Val 710	Pro	Gly	Val	Gly	Val 715	Pro	Gly	Val	Gly	Val 720			25
Pro	Gly	Gly	Gly	Val 725	Pro	Gly	Ala	Gly	Val 730	Pro	Gly	Val	Gly	Val 735	Pro			
Gly	Val	Gly	Val 740	Pro	Gly	Val	Gly	Val 745	Pro	Gly	Gly	Gly	Val 750	Pro	Gly			30
Ala	Gly	Val 755	Pro	Gly	Gly	Gly	Val 760	Pro	Gly	Gly	Leu	Ala 765	Ala	Ala	Glu			35
Pro	Lys 770	Asp	Glu	Leu														40
<210 <211 <212	> 23	334																45
			lich	e Sed	quen	z												
<220 <223	> Be			ung (der 1	küns	tlic	nen :	Seque	enz:	SM12	-70x	ELP					50
	(1	E.co	li)															55
	ctag	gca													caggga			
															gggagt gctgca		1	60
															gcagct			
															ggcgct			
ggto	gtg	9 99 9	gact	gggt	gg c	caag	gtgc	a gg	agca	gctg	cag	ctgc	tgc	aggt	ggagcc	360		65

```
gggcagggag gttatggtgg tctggggagt cagggtgctg gtcgtggagg ccaaggtgca 420
   ggagetgeag cageagetge aggtggagee gggeagggag gttatggtgg tetggggagt 480
   cagggcgctg gtcgtgggg actgggtggc caaggtgcag gagcagctgc agctgctgca 540
   ggtggagccg ggcagggagg ttatggtggt ctggggagtc agggtgctgg tcgtggaggc 600
   caaggtgcag gagctgcagc agcagctgca ggtggagccg ggcagggagg ttatggttggt 660
   ctggggagtc agggtgctgg tcgtggaggc caaggtgcag gagctgcagc agcagctgca 720
10 ggtggagccg ggcagggagg ttatggtggt ctggggggcc agggtgctgg ccaaggaggt 780
   tatggtggtc tggggagtca gggcgctggt cgtgggggac tgggtggcca aggtgcagga 840
   gctgctgctg cagctgcagg tggagccggg cagggaggtc tgggagggca gggagcgggc 900
   caaggtgcag gagcagctgc agcagctgca ggtggagccg ggcagggagg ttatggtggt 960
   ctggggagtc agggtgctgg tcgtggaggc caaggtgcag gagctgcagc agcagctgca 1020
   ggtggagccg ggcagggagg ttatggtggt ctggggagtc agggcgctgg tcgtggggga 1080
   ctgggtggcc aaggtgcagg agcagctgca gctgctgcag gtggagccgg cggacaagcg 1140
gccgcagaac aaaaactcat ctcagaagag gatctgaatg gggccgtcga gatgggccac 1200
   ggcgtgggtg ttccgggcgt gggtgttccg ggtggcggtg tgccgggcgc aggtgttcct 1260
   ggtgtaggtg tgccgggtgt tggtgtgccg ggtgttggtg taccaggtgg cggtgttccg 1320
   ggtgcaggcg ttccgggtgg cggtgtgccg ggcgtgggtg ttccgggcgt gggtgttccg 1380
25 ggtggcggtg tgccgggcgc aggtgttcct ggtgtaggtg tgccgggtgt tggtgtgccg 1440
   ggtgttggtg taccaggtgg cggtgttccg ggtgcaggcg ttccgggtgg cggtgtgccg 1500
   ggcgtgggtg ttccgggcgt gggtgttccg ggtggcggtg tgccgggcgc aggtgttcct 1560
   ggtgtaggtg tgccgggtgt tggtgtgccg ggtgttggtg taccaggtgg cggtgttccg 1620
   ggtgcaggcg ttccgggtgg cggtgtgccg ggcgtgggtg ttccgggcgt gggtgttccg 1680
   ggtggcggtg tgccgggcgc aggtgttcct ggtgtaggtg tgccgggtgt tggtgtgccg 1740
   ggtgttggtg taccaggtgg cggtgttccg ggtgcaggcg ttccgggtgg cggtgtgccg 1800
35 ggcgtgggtg ttccgggcgt gggtgttccg ggtggcggtg tgccgggcgc aggtgttcct 1860
   ggtgtaggtg tgccgggtgt tggtgtgccg ggtgttggtg taccaggtgg cggtgttccg 1920
   ggtgcaggcg ttccgggtgg cggtgtgccg ggcgtgggtg ttccgggcgt gggtgttccg 1980
   ggtggcggtg tgccgggcgc aggtgttcct ggtgtaggtg tgccgggtgt tggtgtgccg 2040
   ggtgttggtg taccaggtgg cggtgttccg ggtgcaggcg ttccgggtgg cggtgtgccg 2100
   ggcgtgggtg ttccgggcgt gggtgttccg ggtggcggtg tgccgggcgc aggtgttcct 2160
   ggtgtaggtg tgccgggtgt tggtgtgccg ggtgttggtg taccaggtgg cggtgttccg 2220
   ggtgcaggcg ttccgggtgg cggtgtgccg ggcgggctgg cggccgcaga acaaaaactc 2280
   ateteagaag aggatetgaa tggggeegte gageaceace aceaceacea etga
                                                                     2334
50 <210> 51
   <211> 777
   <212> PRT
   <213> Künstliche Sequenz
55
   <220>
   <223> Beschreibung der künstlichen Sequenz:SM12-70xELP
         (E.coli)
60
   <400> 51
   Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Gln Leu
```

Pro	Gly	Gln	Gly 20	Gly	Tyr	Gly	Gly	Leu 25	Gly	Gly	Gln	Gly	Ala 30	Gly	Gln		
Gly	Gly	Tyr 35	Gly	Gly	Leu	Gly	Ser 40	Gln	Gly	Ala	Gly	Arg 45	Gly	Gly	Leu		5
Gly	Gly 50	Gln	Gly	Ala	Gly	Ala 55	Ala	Ala	Ala	Ala	Ala 60	Gly	Gly	Ala	Gly		10
Gln 65	Gly	Gly	Leu	Gly	Gly 70	Gln	Gly	Ala	Gly	Gln 75	Gly	Ala	Gly	Ala	Ala 80		15
Ala	Ala	Ala	Ala	Gly 85	Gly	Ala	Gly	Gln	Gly 90	Gly	Tyr	Gly	Gly	Leu 95	Gly		20
Ser	Gln	Gly	Ala 100	Gly	Arg	Gly	Gly	Leu 105	Gly	Gly	Gln	Gly	Ala 110	Gly	Ala		25
Ala	Ala	Ala 115	Ala	Ala	Gly	Gly	Ala 120	Gly	Gln	Gly	Gly	Tyr 125	Gly	Gly	Leu		
Gly	Ser 130	Gln	Gly	Ala	Gly	Arg 135	Gly	Gly	Gln	Gly	Ala 140	Gly	Ala	Ala	Ala		30
Ala 145	Ala	Ala	Gly	Gly	Ala 150	Gly	Gln	Gly	Gly	Tyr 155	Gly	Gly	Leu	Gly	Ser 160		35
Gln	Gly	Ala	Gly	Arg 165	Glγ	Gly	Leu	Gly	Gly 170	Gln	Gly	Ala	Gly	Ala 175	Ala		40
Ala	Ala	Ala	Ala 180	Gly	Gly	Ala	Gly	Gln 185	Gly	Gly	Tyr	Gly	Gly 190	Leu	Gly		45
Ser	Gln	Gly 195	Ala	Gly	Arg	Gly	Gly 200	Gln	Gly	Ala	Gly	Ala 205	Ala	Ala	Ala		50
Ala	Ala 210	Gly	Gly	Ala	Gly	Gln 215	Gly	Gly	Tyr	Gly	Gly 220	Leu	Gly	Ser	Gln		
Gly 225	Ala	Gly	Arg	Gly	Gly 230	Gln	Gly	Ala	Gly	Ala 235	Ala	Ala	Ala	Ala	Ala 240		55
Gly	Gly	Ala	Gly	Gln 245	Gly	Gly	Tyr	Gly	Gly 250	Leu	Gly	Gly	Gln	Gly 255			60
Gly	Gln	Gly	Gly 260	Tyr	Gly	Gly	Leu	Gly 265	Ser	Gln	Gly	Ala	Gly 270	Arg	Gly	-	65

	Gly	Leu	Gly 275	Gly	Gln	Gly	Ala	Gly 280	Ala	Ala	Ala	Ala	Ala 285	Ala	Gly	Gly
5	Ala	Gly 290	Gln	Gly	Gly	Leu	Gly 295	Gly	Gln	Gly	Ala	Gly 300	Gln	Gly	Ala	Gly
10	Ala 305	Ala	Ala	Ala	Ala	Ala 310	Gly	Gly	Ala	Gly	Gln 315	Gly	Gly	Tyr	Gly	Gly 320
15	Leu	Gly	Ser	Gln	Gly 325	Ala	Gly	Arg	Gly	Gly 330	Gln	Gly	Ala	Gly	Ala 335	Ala
20	Ala	Ala	Ala	Ala 340	Gly	Gly	Ala	Gly	Gln 345	Gly	Gly	Tyr	Gly	Gly 350	Leu	Gly
25	Ser	Gln	Gly 355	Ala	Gly	Arg	Gly	Gly 360	Leu	Gly	Gly	Gln	Gly 365	Ala	Gly	Ala
	Ala	Ala 370	Ala	Ala	Ala	Gly	Gly 375	Ala	Gly	Gly	Gln	Ala 380	Ala	Ala	Glu	Gln
30	Lys 385	Leu	Ile	Ser	Glu	Glu 390	Asp	Leu	Asn	Gly	Ala 395	Val	Glu	Met	Gly	His 400
35	Gly	Val	Gly	Val	Pro 405	Gly	Val	Gly	Val	Pro 410	Gly	Gly	Gly	Val	Pro 415	Gly
40	Ala	Gly	Val	Pro 420	Gly	Val	Gly	Val	Pro 425	Gly	Val	Gly	Val	Pro 430	Gly	Val
45	Gly	Val	Pro 435	Gly	Gly	Gly	Val	Pro 440	Gly	Ala	Gly	Val	Pro 445	Gly	Gly	Gly
50	Val	Pro 450	Gly	Val	Gly	Val	Pro 455	Gly	Val	Gly	Val	Pro 460	Gly	Gly	Gly	Val
	Pro 465	Gly	Ala	Gly	Val	Pro 470	Gly	Val	Gly	Val	Pro 475	Gly	Val	Gly	Val	Pro 480
55	Gly	Val	Gly	Val	Pro 485	Gly	Gly	Gly	Val	Pro 490	Gly	Ala	Gly	Val	Pro 495	Gly
60	Gly	Gly	Val	Pro 500	Gly	Val	Gly	Val	Pro 505	Gly	Val	Gly	Val	Pro 510	Gly	Gly
65	Gly	Val	Pro 515	Gly	Ala	Gly	Val	Pro	Gly	Val	Gly	Val	Pro 525	Gly	Val	Gly

Val	Pro 530	Gly	Val	Gly	Val	Pro 535	Gly	Gly	Gly	Val	Pro 540	Gly	Ala	Gly	Val		
Pro 545	Gly	Gly	Gly	Val	Pro 550	Gly	Val	Gly	Val	Pro 555	Gly	Val	Gly	Val	Pro 560		:
Gly	Gly	Gly	Val	Pro 565	Gly	Ala	Gly	Val	Pro 570	Gly	Val	Gly	Val	Pro 575	Gly		10
Val	Gly	Val	Pro 580	Gly	Val	Gly	Val	Pro 585	Gly	Gly	Gly	Val	Pro 590	Gly	Ala		15
Gly	Val	Pro 595	Gly	Gly	Gly	Val	Pro 600	Gly	Val	Gly	Val	Pro 605	Gly	Val	Gly.		20
Val	Pro 610	Gly	Gly	Gly	Val	Pro 615	Gly	Ala	Gly	Val	Pro 620	Gly	Val	Gly	Val		2:
Pro 625	Gly	Val	Gly	Val	Pro 630	Gly	Val	Gly	Val _.	Pro 635	Gly	Gly	Gly	Val	Pro 640		
Gly	Ala	Gly	Val	Pro 645	Gly	Gly	Gly	Val	Pro 650	Gly	Vaļ	Gly	Val	Pro 655	Gly		30
Val	Gly	Val	Pro 660	Gly	Gly	Gly	Val	Pro 665	Gly	Ala	Gly	Val	Pro 670	Gly	Val		3:
Gly	Val	Pro 675	Gly	Val	Gly	Val	Pro 680	Gly	Val	Gly	Val	Pro 685	Gly	Gly	Gly		40
Val	Pro 690	Gly	Ala	Gly	Val	Pro 695	Gly	Gly	Gly	Val	Pro 700	Gly	Val	Gly	Val		4:
Pro 705	Gly	Val	Gly	Val	Pro 710	Gly	Gly	Gly	Val	Pro 715	Gly	Ala	Gly	Val	Pro 720		50
Gly	Val	Gly	Val	Pro 725	Gly	Val	Gly	Val	Pro 730	Gly	Val	Gly	Val	Pro 735	Gly		
Gly	Gly	Val	Pro 740	Gly	Ala	Gly	Val	Pro 745	Gly	Gly	Gly	Val	Pro 750	Gly	Gly		5:
Leu	Ala	Ala 755	Ala	Glu	Gln	Lys	Leu 760	Ile	Ser	Glu	Glu	Asp 765	Leu	Asn	Gly		64
Ala	Val	Glu	His	His	His	His 775	His	His					•				6:

Patentansprüche

- 1. DNA-Sequenz, die für ein synthetisches Spinnenseidenprotein kodiert, dadurch gekennzeichnet, daß die DNA-Sequenz aus Modulen aufgebaut ist, die eine Gruppe von aneinandergereihten Oligonukleotidsequenzen umfassen, wobei die Oligonukleotidsequenzen jeweils für repetitive Einheiten aus Spidroin-Proteinen kodieren, mit der Maßgabe, daß das durch die DNA-Sequenz kodierte Protein eine mindestens 84%ige, vorzugsweise mindestens 90%ige, besonders bevorzugt mindestens 94%ige Homologie zu Spidroin-Proteinen, insbesondere zu dem Spidroin 1-Protein, besonders bevorzugt zu dem Spidroin 1-Protein aus Nephila clavipes aufweist.
- 2. DNA-Sequenz nach Anspruch 1, dadurch gekennzeichnet, daß die Oligonukleotidsequenzen ausgewählt sind aus der Gruppe, bestehend aus:
 - a) TATGAGCGCTCCCGGGCAGGGT;
 - b) AGCTTTTAGGTACCAATATTAATCTGGCCGGCTCCACC;
 - c) TATGGTCTGGGG;

5

10

15

20

25

30

40

45

55

- d) GGCCAGGGTGCTGGCCAA;
- e) GGTGCAGGAGCWGCWGCWGCTGCAGGTGGA;
 - f) GCCGGCCAGATTAATATTGGTACCTAAA;
 - g) CTGCCCGGGAGCGCTCA;
 - h) ACCACCATAACCTCC;
 - i) AGCACCCTGGCCCCCAG;
 - j) TGCAGCWGCWGCWGCTCCTGCACCTTGGCC;
 - k) TATGAGATCTGGCCAAGGAGGT;
 - 1) TTGGCCAGATCTCA;
 - m) AGTCAGGGTGCTGGTCGTGGAGGCCAA;
 - n) TCCACGACCAGCACCCTGACTCCCCAG;
 - o) AGTCAGGGCGCTGGTCGTGGGGGACTGGGTGGCCAA;
 - p) ACCCAGTCCCCCACGACCAGCGCCCTGACTCCCCAG;
 - q) CTGGGAGGGCAGGGAGCGGGCCAA;
 - r) CGCTCCCTGCCCTCCCAGACCTCC; und
 - s) Sequenzen, die zu den Sequenzen a) bis r) eine mindestens 80%ige, vorzugsweise mindestens 90%ige, besonders bevorzugt mindestens 94%ige Sequenzidentität aufweisen.
 - 3. DNA-Sequenz nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Module mindestens 4 Oligonukleotidsequenzen umfassen.
 - DNA-Sequenz nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sie aus mindestens 4 Modulen aufgebaut ist.
- 5. DNA-Sequenz nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sie zusätzlich Nukleinsäuresequenzen umfaßt, die für repetitive Einheiten aus Fibroin-Proteinen, vorzugsweise aus dem Fibroin-Protein des Seidenspinners kodieren.
 - DNA-Sequenz nach einem der vorangehenden Ansprüche, umfassend eine der in SEQ ID No. 19–29 angegebenen Sequenzen.
 - Rekombinantes Nukleinsäuremolekül, umfassend eine DNA-Sequenz nach einem der vorangehenden Ansprüche sowie einen ubiquitär wirkenden Promotor, vorzugsweise den CaMV 35S-Promotor.
 - 8. Nukleinsäuremolekül nach Anspruch 7, zusätzlich umfassend mindestens eine Nukleinsäuresequenz, die für ein pflanzliches Signalpeptid kodiert.
 - Nukleinsäuremolekül nach Anspruch 8, dadurch gekennzeichnet, daß das pflanzliche Signalpeptid den Transport in das endoplasmatische Retikulum (ER) gewährleistet.
 - 10. Nukleinsäuremolekül nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die für das pflanzliche Signalpeptid kodierende Nukleinsäuresequenz eine LeB4Sp-Sequenz ist.
 - 11. Nukleinsäuremolekül nach einem der Ansprüche 7 bis 10, zusätzlich umfassend eine Nukleinsäuresequenz, die für ein ER-Retentionspeptid kodiert.
- Nukleinsäuremolekül nach Anspruch 11, dadurch gekennzeichnet, daß das ER-Retentionspeptid die Sequenz KDEL umfaßt.
 - 13. Nukleinsäuremolekül nach einem der Ansprüche 7 bis 10, zusätzlich umfassend eine Nukleinsäuresequenz, die für eine Transmembrandomäne kodiert.
 - Nukleinsäuremolekül nach Anspruch 13, dadurch gekennzeichnet, daß die Nukleinsäuresequenz für die Transmembrandomäne des PDGF-Rezeptors kodiert.
 - 15. Nukleinsäuremolekül nach einem der Ansprüche 7 bis 14, zusätzlich umfassend eine Nukleinsäuresequenz, die für ELP's kodiert.
 - 16. Nukleinsäuremolekül nach Anspruch 15, dadurch gekennzeichnet, daß die ELP's von 10 bis 100 Pentamer-Einheiten umfassen.
- 17. Nukleinsäuremolekül nach Anspruch 15 oder 16, umfassend eine der in SEQ ID No. 48 und 50 angegebenen Sequenzen.
 - 18. Vektor, umfassend ein rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 7 bis 17.
 - 19. Mikroorganismus, enthaltend ein rekombinantes Nukleinsäuremolekül oder einen Vektor nach einem der Ansprüche 7 bis 18.
- Rekombinantes Spinnenseidenprotein, kodiert durch eine DNA-Sequenz nach einem der Ansprüche 1 bis 6.
 - 21. Spinnenseidenprotein nach Anspruch 20, dadurch gekennzeichnet, daß es ein Molekulargewicht im Bereich von 10 bis 160 kDa aufweist.
 - 22. Rekombinantes Spinnenseidenprotein, umfassend eine der in SEQ ID No. 30 bis 40 angegebenen Aminosäure-

sequenzen.

- 23. Verfahren zur Herstellung von Spinnenseidenprotein-produzierenden Pflanzen bzw. Pflanzenzellen, umfassend die folgenden Schritte:
 - a) Herstellung eines rekombinanten Nukleinsäuremoleküls nach einem der Ansprüche 7 bis 17;
 - b) Übertragung des Nukleinsäuremoleküls aus a) auf pflanzliche Zellen; und
 - c) ggf. die Regeneration fertiler Pflanzen aus den transformierten Pflanzenzellen.
- 24. Transgene Pflanzenzellen, enthaltend ein rekombinantes Nukleinsäuremolekül oder einen Vektor nach einem der Ansprüche 7 bis 18, oder hergestellt nach einem Verfahren nach Ansprüch 23.
- 25. Transgene Pflanzen, enthaltend eine Pflanzenzelle nach Anspruch 24 oder hergestellt nach Anspruch 23, sowie Teile dieser Pflanzen, transgene Ernteprodukte und transgenes Vermehrungsmaterial dieser Pflanzen, wie Protoplasten, Pflanzenzellen, Kalli, Samen, Knollen, Stecklinge, sowie die transgenen Nachkommen dieser Pflanzen.
- 26. Transgene Pflanzen nach Anspruch 25, ausgewählt aus der Gruppe, bestehend aus Tabakpflanze und Kartoffelpflanze.
- 27. Verfahren zur Gewinnung von pflanzlichem Spinnenseidenprotein, umfassend die folgenden Schritte:
 - a) die Übertragung eines rekombinanten Nukleinsäuremoleküls oder Vektors nach einem der Ansprüche 7 bis 18 auf Pflanzenzellen;
 - b) gegebenenfalls die Regeneration von Pflanzen aus den transformierten Pflanzenzellen; und
 - c) die Verarbeitung der Pflanzenzellen aus a) bzw. der Pflanzen aus b) zur Gewinnung von pflanzlichem Spinnenseidenprotein.
- 28. Verfahren zur Gewinnung von rekombinant hergestelltem Spinnenseidenprotein, umfassend die folgenden Schritte:
 - a) die Übertragung eines rekombinanten Nukleinsäuremoleküls oder Vektors nach einem der Ansprüche 7 bis 18 auf Zellen:
 - b) die Reinigung des Spinnenseidenproteins durch Hitzebehandlung des Zellextrakts und anschließende Abtrennung der denaturierten zelleigenen Proteine.
- 29. Verfahren zur Gewinnung von rekombinant hergestelltem Spinnenseidenprotein, umfassend die folgenden Schritte:
 - a) die Übertragung eines rekombinanten Nukleinsäuremoleküls oder Vektors nach einem der Ansprüche 7 bis
 18 auf Zellen:
 - b) die Reinigung des pflanzlichen Spinnenseidenproteins durch Einstellung eines sauren pH, vorzugsweise eines pH im Bereich von 2,5 bis 3,5 mittels Zugabe von Säure, vorzugsweise Salzsäure zu dem Zellextrakt und anschließende Abtrennung der denaturierten zelleigenen Proteine.
- 30. Verfahren zur Gewinnung von rekombinant hergestelltem Spinnenseidenprotein, umfassend die folgenden Schritte:
 - a) die Übertragung eines rekombinanten Nukleinsäuremoleküls nach einem der Ansprüche 15 bis 17 auf Zel- 35 len:
 - b) die Reinigung des Spinnenseidenproteins auf folgende Weise:
 - Anreicherung des Spinnenseiden-ELP-Fusionsproteins durch Hitzebehandlung des Zellextrakts;
 - Ausfällung des Spinnenseiden-ELP-Fusionsproteins durch weitere Temperaturerhöhung, vorzugsweise auf eine Temperatur von mindestens 60°C, und vorzugsweise bei einer Salzkonzentration von 1 M bis 2 M; und
 - Abspaltung des ELP-Fragments, vorzugsweise durch Verdauung mit CNBr.
- 31. Verfahren nach einem der Ansprüche 28 bis 30, dadurch gekennzeichnet, daß die Zellen ausgewählt werden aus Pflanzenzellen, tierischen Zellen und bakteriellen Zellen.
- 32. Pflanzliches Spinnenseidenprotein, hergestellt nach einem Verfahren nach einem der Ansprüche 27 bis 31.
- 33. Spinnenseidenprotein nach Anspruch 32, dadurch gekennzeichnet, daß es ein Molekulargewicht im Bereich von 10 bis 160 kDa aufweist.
- 34. Verwendung der Spinnenseidenproteine nach einem der Ansprüche 20 bis 22 bzw. nach Anspruch 32 oder 33 zur Herstellung von synthetische Fäden, Folien und/oder Membranen.
- 35. Verwendung nach Anspruch 34, wobei die Fäden, Folien und/oder Membrane für medizinische Anwendungen, insbesondere zum Vernähen von Wunden und/oder als Gerüste bzw. als Abdeckung für künstliche Organe, eingesetzt werden.
- 36. Verwendung nach Anspruch 35, wobei die Folien und/oder Membrane als Anheftungsflächen für kultivierte Zellen und/oder zur Filterung verwendet werden.

Hierzu 21 Seite(n) Zeichnungen

60

55

45

5

25

65

Nummer: Int. Cl.⁷: Offenlegungstag: DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Nr. des Oligos	Sequenz in 5' to 3' Richtung
1	TATGAGCGCTCCCGGGCAGGGT
2	AGCTTTTAGGTACCAATATTAATCTGGCCGGCTCCACC
3	TATGGTCTGGGG
4	GGCCAGGGTGCTGGCCAA
5	GGTGCAGGAGCWGCWGCWGCTGCAGGTGGA
6	GCCGGCCAGATTAATATTGGTACCTAAA
7	CTGCCCGGGAGCGCTCA
8	ACCACCATAACCTCC
.9	AGCACCCTGGCCCCCAG
10	TGCAGCWGCWGCWGCTCCTGCACCTTGGCC
11	TATGAGATCTGGCCAAGGAGGT
12	TTGGCCAGATCTCA
13	AGTCAGGGTGCTGGTCGTGGAGGCCAA
14	TCCACGACCAGCACCCTGACTCCCCAG
15	AGTCAGGGCGCTGGTCGTGGGGGACTGGGTGGCCAA
16	ACCCAGTCCCCACGACCAGCGCCCTGACTCCCCAG
17	CTGGGAGGCAGGGAGCGGCCAA
18	CGCTCCCTGCCCTCCCAGACCTCC

Abb. 1

Protein	Anordung der Genkassetten aus Abbildung 2
SD1	G_D_B_C
SM12	GDCBCBBGDBC
SO1	H B C B C G D C G D C B C B B G D B C
SOISOI	HBCBCGDCGDCBCBBGDBC
	HBCBCGDCGDCBCBBGDBC
FA1	G D C B C B B Fibroin

Abb. 3

Nummer: Int. Cl.⁷: Offenlegungstag: DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abbildung 2

В

A

C

D

E

F

$$H=A+F$$

Nummer: Int. Cl.⁷: Offenlegungstag: DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abb. 4
6. Klonierung des Gens der Transmembrandomäne von HOOK mit Noti aus (pRT-HOOK) in (pRTRA.73 syn. spidoin)

DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Spidroin-ELP-Expressionskassetten für Escherichia coli

Spidroin-ELP-Expressionskassetten für transgene Pflanzen

Abb. 5

Abb. 6
1 Veranderung einer Base in der Erkennungssequenz von BarnHI (Pos. 1332) durch gezielte Mutagenese

DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abb. 7

3. Vorbereiten von (pRTRA 73 BamHl∆) auf die direkte Klonterung der synthetischen Spidroingene aus p9905 oder p9609 - Aufheben der Smal-Erkennungssequenz (Pos. 463)

Nummer: Int. Cl.7: Offenlegungstag:

DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abb. 8 4. Einführung der Restriktionserkennungssequenzen von Smal und Nael in den Verktor (pRTRA.73 BamHi+Smal Δ) für die Klonierung synthetischer Spidrolngene

Paly A

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abb. 9
Generelle Darstellung der Herstellung transgener Spidroin-produzierender Pflanzen

1. Konstruktion geeigneter pflanzenkompatibler Spidroinexpressionskassetten in Escherichia coli

- a. Überprüfung der Expressionskassetten durch Sequenzierung und/oder Testexpression im pet-System in Escherichia coli
- 2. Einbringen der Expressionskassetten in shuttle-Vektoren (pBIN19; pGSGluc) in Escherichia coli
- 3. Transformation der shuttle-Vektoren in Agrobacterium tumefaciens-Stämme
 - a. Überprüfung der Klone durch Southern-Blot-Analyse
- 4. Herstellung transgener Tabak- und Kartoffelpflanzen
- 5. Analyse der transgenen Tabak- und Kartoffelpflanzen auf Spidroinproteinexpression durch immunochemische Detektion eines c-myc-Tags (Western-Analyse)

Nummer:

Int. Cl.7: Offenlegungstag: DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abb. 10a

LeB4-Signalpeptid MASKPFLSL LSLSLLLFT

deduzierte Aminosäureseguenz des synthetischen Faserproteins SO1

LSLSLLEFT

STCLAGSQLP

GQGGYGGLGGQGAGQGYGGLGGQGAGQGYGGLGGQGAGAAAAAAAGGAGQGGYGGLG

Zierte Aminosäuresequenz des
etischen Faserdroteins SO1

GLGGYGGQGAGGAAAAAAAAGAAGQGGYGGLGGGAGGAGAAAAAAAGAAGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAAGAAGQGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAGAAGQGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAGAAGQGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAGGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAAGAAGQGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAAGGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAAGGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAAGGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAGGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAAGGAGQGGYGGLG

GLGGYGGQGAGGAAAAAAAGGAGQGGYGGLG

SQGAGRGGQGAGAAAAAAAGAAGAGGGGYGGLG

SQGAGRGGQGAGAAAAAAAGGAGQGGYGGLG

SQGAGRGGQGAGAAAAAAAGGAGQGGYGGLG

SQGAGRGGQGAGAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGAAGGAGGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAAGGAGQGGYGGLG

AAAQGGAGGAAAAAAAGGAGGGGYGGLG

AAAQGGAGGAAAAAAAAGGAGGGGYGGLG

AAAQGGAGGAAAAAAAGGAGGGGYGGLG

AAAQGGAGGAAAAAAAGGAGGGGYGGLG

etaeokliseedlngs igorlightarrow kdel.

ER-Retentionssignal c-myc-lmmunotag

Abb. 10b

LeB4-Signalpeptid MASKPFLSL LSLSLLLFT

deduzierte Aminosäureseauenz des synthetischen Faseroroteins FA2

EQKLISEEDLNGS => KDEL.

ER-Retentionssignal c-mvc-lmmunotag

Abb. 11

Abb. 12

Abb. 13

Abb. 14

Abb. 15

Abb. 16

Abb. 17

DE 101 13 781 A1 C 07 K 14/43513. Dezember 2001

Abb. 18

SM12-10xELP - 35 KDa SM12-20xELP - 39 KDa SM12-60xELP - 55 KDa SM12-100xELP - 73 KDa

SO1-30xELP - 64 KDa SO1-40xELP - 69 KDa SO1-70xELP - 79 KDa SO1-100xELP - 91 KDa

DE 101 13 781 A1 C 07 K 14/43513. Dezember 2001

Abbildung 19

DNA-Sequenz von SM12-70xELP als Pflanzenexpressionskassette

atggcttccaaaccttttctatctttgctttcactttccttgcttctctttacaagcacatg tttagcaggatcccagttacccgggcagggaggttatggtggtctggggggccagggtgctg gccaaggaggttatggtggtctggggagtcagggcgctggtcgtgggggactgggtggccaa ggtgcaggagctgctgctgcagctgcaggtggagccgggcagggaggtctggggagggcaggg agegggeeaaggtgeaggageagetgeageagetgeaggtggageegggeagggaggttatg qtqqtctqqqqaqtcaqqqcqctqqtcqtqqqqactgqqtqqccaagqtqcagqaqcaqct gcaqctqctqcaqgtqgaqccqgqcaggqaggttatqqtqqtctqgqaqtcaggqtqctqq tcgtggaggccaaggtgcaggagctgcagcagcagctgcaggtggagccgggcagggaggtt atggtggtctggggagtcagggcgctggtcgtgggggactgggtggccaaggtgcaggagca gctgcagctgctgcaggtggagccgggcagggaggttatggtggtctggggagtcagggtgc tggtcgtggaggccaaggtgcaggagctgcagcagctgcaggtggagccgggcagggag gttatggtggtctggggagtcagggtgctggtcgtggaggccaaggtgcaggagctgcagca gcagctgcaggtggagccgggcagggaggttatggtggtctggggggccaggggtgctggcca aggaggttatggtggtctggggagtcagggcgctggtcgtgggggactgggtggccaaggtg caggagctgctgctgcagctgcaggtggagccgggcagggaggtctgggagggcagggagcg ggccaaggtgcaggagcagctgcagctgcaggtggagccgggcagggaggttatggtgg tctggggagtcagggtgctggtcgtggaggccaaggtgcaggagctgcagcagcagctgcag gtggagccgggcagggtggttatggtggtctggggagtcagggcgctggtcgtgggggactg ggtggccaaggtgcaggagcagctgcagctgcaggtggagccggcggacaagcggccgc agaacaaaaactcatctcagaagaggatctgaatggggccgtcgaggatgggccacggcgtgg gtgttccgggcgtgggtgttccgggtggcggtgtgccgggcgcaggtgttcctggtgtaggt gtgccgggtgttggtgccgggtgttggtgtaccaggtggcggtgttccgggtgcaggcgt cgggcgcaggtgttcctggtgtaggtgtgccgggtgtttggtgtccgggtgtttggtgtacca ggtggcggtgttccgggtgcaggcgttccgggtggcggtgtgccgggcgtgggtgttccggg cgtgggtgttccgggtgtgccgggcgcaggtgttcctggtgtaggtgtgccgggtg ttggtgtgccgggtgttggtgtaccaggtggcggtgttccgggtgcaggcgttccgggtggc ggtgtgccgggcgtgggtgttccgggtgtgtgcggtgtgccgggcgcagg tgttcctggtgtaggtgtgccgggtgttggtgccgggtgttggtgtaccaggtggcggtg ttccqqqtqcaqqcqttccqqqtqqqqqtqtqccqqqcqtqqqtttccqqqcqtqqqttt ccgggtggcggtgtgccgggcgcaggtgttcctggtgtaggtgtgccgggtgttggtgtgcc gggtgttggtgtaccaggtggcggtgttccgggtgcaggcgttccgggtggcggtgtgccgg gcgtgggtgttccgggcgtgggtgttccgggtggcggtgtgccgggcgcaggtgttcctggt gtaggtgtgccgggtgttggtgtgccgggtgttggtgtaccaggtggcggtgttccgggtgc aqqcqttccqqgtqqcqqtqtgccqqqcgtggtgttccqggcgtgggtgttccgggtgtgcg gtgtgccgggcgcaggtgttcctggtgtaggtgtgccgggtgttggtgtgccgggtgtttggt ggccgcagaacccaaagacgaactctag

DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abbildung 20

Proteinsequenz von SM12-70xELP aus pflanzlicher Expression (SM12, c-myc-Tag, 70xELP, KDEL – jeweils durch Absatz gekennzeichnet)

EOKLISEEDLNGAVE

KDEL

DE 101 13 781 A1 C 07 K 14/43513. Dezember 2001

Abbildung 21

DNA-Sequenz von SM12-70xELP als Expressionskassette für E. coli

atggctagcatgactggtggacagcaaatgggtcgcgggatcccagttacccgggcagggagg ttatggtggtctggggggccagggtgctggccaaggaggttatggtgtctggggagtcagg gegetggtegtggggaetgggtggeeaaggtgeaggagetgetgetgeagetgeaggtgga gccgggcagggaggtctgggagggcagggggccaaggtgcaggagcagctgcagcagc tgcaggtggagccgggcagggaggttatggtggtctggggagtcagggcgctggtcgtggg gactgggtggccaaggtgcaggagcagctgcagctgcaggtggagccgggcagggaggt tatggtggtctggggggtcagggtgctggtcgtggaggccaaggtgcaggagctgcagcagc agetgeaggtggageegggeagggttatggtggtetggggagteagggegetggtegtg ggggactgggtggccaaggtgcaggagcagctgcagctgctgcaggtggagccgggcaggga ggttatggtggtctgggagtcagggtgctggtcgtggaggccaaggtgcaggagctgcagc agcagctgcaggtggagccgggcagggaggttatggtggtctggggagtcagggtgctggtc gtggaggccaaggtgcaggagctgcagcagcagctgcaggtggagccgggcagggaggttat ggtggtctggggggccagggtgctggccaaggaggttatggtggtctggggagtcagggcgc tggtcgtggggactggtggccaaggtgcaggagctgctgctgcagctgcaggtggagccg ggcagggaggtctgggagggcaggggccaaggtgcaggagcagctgcagcagctgca ggtggagccgggcagggaggttatggtggtctggggagtcagggtgctggtcgtggaggcca aggtgcaggagctgcagcagctgcaggtggagccgggcagggaggttatggtggtctgg ggagtcagggcgctggtcgtggggactgggtggccaaggtgcaggagcagctgcagctgct gcaggtggagccggcggacaagcggccgcagaacaaaaactcatctcagaagaggatctgaa tggggccqtcgagatgggccacggcgtggtgttccgggcgtggtgttccgggtggcggtg tgccgggcgcaggtgttcctggtgtaggtgtgccgggtgttggtgtgccgggtgttggtgta ccaggtggcggtgttccgggtgcaggcgttccgggtggcggtgtgccgggcgtgggtgttcc gggcgtggtgttccgggtggcggtgtgccgggcgcaggtgttcctggtgtaggtgtgccgg gtgttggtgtgccgggtgttggtgtaccaggtggcggtgttccgggtgcaggcgttccgggt aggtgttcctggtgtaggtgtgccgggtgttggtgccgggtgttggtgtaccaggtggcg gtqttccqqqtqcaqqcqttccqqqtqqcqttqtqccqqqcqtqqqtqttccqqqcgtgggt gttccggqtgqcgqtgtqccqggcgcaggtgttcctggtgtagqtqtgccgggtgttggtgt gccgggtgttggtgtaccaggtggcggtgttccgggtgcaggcgttccgggtggcggtgtgc cgggcgtgggtgttccgggcgtgggtgttccgggtgtgccgggcgcaggtgttcct ggtgtaggtgtgccgggtgttggtgccgggtgttggtgtaccaqqtgqcggtgttccggg geggtgtgccgggcgcaggtgttcctggtgtaggtgtgccgggtgttggtgtgccgggtgtt ggtgtaccaggtggcggtgttccgggtgcaggcgttccgggtggcggtgtgccgggcgtggg tgttccgggcgtggtgttccgggtggcggtgtgccgggcgcaggtgttcctggtgtaggtg tgccgggtgttggtgccgggtgttggtgtaccaggtggcggtgttccgggtgcaggcgtt ccgggtggcggtgtgccgggctggcggccgcagaacaaaactcatctcagaagagga tctgaatggggccgtcgagcaccaccaccaccaccactga

DE 101 13 781 A1 C 07 K 14/435 13. Dezember 2001

Abbildung 22

Proteinsequenz von SM12-70xELP aus bakterieller Expression (SM12, c-myc-Tag, 70xELP, c-myc-Tag, HisTag – jeweils durch Absatz gekennzeichnet)

MASMTGGQQMGRGSQLPGQGGYGGLGGQGAGQGGYGGLGSQGAGRGGLGGQ GAGAAAAAAGGAGQGGLGGQGAGQGAGAAAAAAGGAGQGGYGGLGSQGAGRG GLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGRGGQGAGAAAAAAAGGAGQGGY GGLGSQGAGRGGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGRAGAA AAAGGAGQGGYGGLGSQGAGRGGQGAGAAAAAAGGAGQGGYGGLGGQGAGAA GGYGGLGSQGAGRGGLGGQGAGAAAAAAGGAGQGGLGGQGAGAAAAAA GGAGQGGYGGLGSQGAGRGGQGAGAAAAAAGGAGQGGYGGLGSQGAGRGGL GGQGAGAAAAAAGGAGQAAA

EQKLISEEDLNGAVE

EQKLISEEDLNGAVEHHHHHH.