Minimum degree ordering

- In the matrix graph, choose the node with least edges connected to it.
- A tree graph will be ordered correctly.
- It is a local strategy; no guarantee it will produce the least amount of total fill.

Counter example:

The given order produces no fill.

Minimum degree ordering will start with node 5.

Produces fill at the first step -> not optimal

Tie-breaking

- 1) Select the node that had the smallest node number in the original order.
- 2) RCM preordering -> min. deg.

Tie broken by selecting earlier RCM ordered node.

Example

<u>k</u>	Elimination graph G(A(k-1))	<u>node</u>	min deg
1	a b d c	а	1
2	e b g	С	1
3	e b g	d	2
4	e f g	е	2
5	b	b	2
6	f	f	1
7	g	g	0

Stability of factorization

• Problem arises: 1) zero pivot: $a_{kk}^{(k-1)} = 0$, or 2) small pivot: $a_{kk}^{(k-1)} \approx 0$

Pivoting

Complete: search the largest element in A_{22} .

Partial: search the largest element in col k.

swap
$$\longrightarrow \begin{bmatrix} a_{kk} \\ a_{k^*k} \end{bmatrix}$$

- Modified LU factorization: PA = LU, P = permutation obtained from swapping during partial pivoting.
- Pivoting is stable but bad news for sparse matrices -> destroy sparsity
- Several conditions on A will ensure pivoting is not necessary.

Theorem: Suppose A is SPD. Then during GE, $a_{kk}^{(k-1)} > 0$.

Pf: For n = 1, obviously true. In general, use inductive argument.

Write

$$A = \left[\begin{array}{cc} a_{11} & v^T \\ v & A_{22} \end{array} \right]$$

Since A is SPD, $a_{11} > 0$.

Eliminate v using a₁₁ as pivot:

$$\begin{bmatrix} a_{11} & v^T \\ v & A_{22} \end{bmatrix} \xrightarrow{GE} \begin{bmatrix} a_{11} & v^T \\ & A_{22} - \frac{v}{a_{11}} v^T \end{bmatrix}$$

Let $A_{22}^{(1)} = A_{22} - vv^T/a_{11}$. Note $A_{22}^{(1)}$ is symmetric. Want to show $A_{22}^{(1)}$ is SPD.

Let x in R^{n-1} , $x \ne 0$. Consider y defined as

$$y = \begin{bmatrix} -\frac{x^T v}{a_{11}} \\ x \end{bmatrix} \in \Re^n$$

A SPD \Rightarrow $y^T A y > 0$

$$0 < \begin{bmatrix} -\frac{x^{T}v}{a_{11}} & x^{T} \end{bmatrix} \begin{bmatrix} a_{11} & v^{T} \\ v & A_{22} \end{bmatrix} \begin{bmatrix} -\frac{x^{T}v}{a_{11}} \\ x \end{bmatrix}$$

$$= \begin{bmatrix} 0 & x^{T}A_{22} - \frac{x^{T}vv^{T}}{a_{11}} \end{bmatrix} \begin{bmatrix} -\frac{x^{T}v}{a_{11}} \\ x \end{bmatrix}$$

$$= x^{T}A_{22}x - \frac{1}{a_{11}}x^{T}(vv^{T})x$$

$$= x^{T}(A_{22} - \frac{vv^{T}}{a_{11}})x = x^{T}A_{22}^{(1)}x$$

Thus $A_{22}^{(1)}$ is SPD => $a_{22}^{(1)} > 0$ => pivot is positive.

Continuing this process, one can show that

$$a_{kk}^{(k-1)} > 0 \qquad \forall k$$

Other matrices that pivoting is not necessary:

• Row diagonally dominant

i.e.
$$|a_{k,k}| > \sum_{j \neq k} |a_{k,j}|$$
 $k = 1, ..., n$

· Column diagonally dominant

i.e.
$$|a_{k,k}| > \sum_{i \neq k} |a_{i,k}|$$
 $k = 1, ..., n$

Image Denoising

• Images are treated as 2D functions:

$$u_{i,j}$$
 = pixel value at row i, col j

- Inverse problem: Given
 - 1) the observed image: $u^0 = u^* + n$ (n = noise)
 - 2) estimate of variance of noise:

$$||n||^2 = \sigma^2$$
 $\sigma = \text{known parameter}$

find an approximation to the original image u*

PDE approach

min "fluctuation of pixel values"

subject to "noise constraint level"

- The objective function is to get rid of noise
- The constraint is necessary so that you don't get an image of constant pixel values

i.e.
$$|| u - u^0 ||^2 \approx \sigma^2 = || u^* - u^0 ||^2$$

The noise level of u⁰ is the same w.r.t u and w.r.t. u*

- Ill-posed problem: many images u satisfy the same constraint.
- Need a selection criterion -> regularization

Regularization models

Noise level constraint optimization problem:

$$\min_{u} R(u)$$
subject to $\|u - u^0\|^2 = \sigma^2$

Equivalently:

$$\min_{u} f(u) = \alpha R(u) + \left\| u - u^{0} \right\|^{2}$$

 $\boldsymbol{\alpha}$ measures tradeoff between fit and regularity

- If $\alpha \approx 0$, $u \approx u^0$
- If $\alpha \approx \infty$, $u \approx constant$

What is R(u)? The idea is to min the fluctuation of u