How to perform a meta-analysis with R: a practical tutorial

Sara Balduzzi, Gerta Rücker, Guido Schwarzer

This vignette provides up-to-date commands for the analyses in "How to perform a meta-analysis with R: a practical tutorial", *Evid Based Ment Health* (Balduzzi, Rücker, and Schwarzer 2019).

Install R packages

```
install.packages(c("meta", "metasens"))
```

Make R packages available

```
library(meta)
#> Loading required package: metadat
#> Loading 'meta' package (version 8.0-1).
#> Type 'help(meta)' for a brief overview.
library(metasens)
```

Note, a similar message would be printed for R package **metasens**. However, this vignette does not actually load **metasens** as it might not be installed in addition to **meta**.

Default settings for R session

Print results with two significant digits and use Paule-Mandel estimator for between-study variance.

```
settings.meta(digits = 2, method.tau = "PM")
```

Note, in the publication, argument 'method.tau' was used in R function metabin(). Here, we set the Paule-Mandel method as the default for any meta-analysis conducted in the current R session.

Import the dataset

```
joy = read.csv("Joy2006.txt")
# Add new variable: miss
joy$miss = ifelse((joy$drop.h + joy$drop.p) == 0,
 "Without missing data", "With missing data")
head(joy)
       author year resp.h fail.h drop.h resp.p fail.p drop.p
                                                                         miss
                   25
#> 1 Arvanitis 1997
                             25
                                   2
                                       18
                                                33 0
                                                             With missing data
                                                       34
#> 2 Beasley 1996
                      29
                             18
                                   22
                                          20
                                                14
                                                             With missing data
#> 3 Bechelli 1983 12
                             17
                                        2 28
                                   1
                                                      1
                                                             With missing data
#> 4 Borison 1992
                      3
                             9
                                    0
                                          0
                                                12
                                                      O Without missing data
                                                19 O Without missing data
14 O Without missing data
#> 5 Chouinard 1993
                      10
                                    0
                                           3
                             11
#> 6
       Durost 1964
                      11
                              8
                                           1
str(joy)
#> 'data.frame': 17 obs. of 9 variables:
```

Section 'Fixed effect and random effects meta-analysis'

```
m.publ = metabin(resp.h, resp.h + fail.h, resp.p, resp.p + fail.p,
  data = joy, studlab = pasteO(author, " (", year, ")"),
  label.e = "Haloperidol", label.c = "Placebo",
  label.left = "Favours placebo", label.right = "Favours haloperidol")
```

Print results of meta-analysis (Figure 1).

```
summary(m.publ)
#>
                                      95%-CI %W(common) %W(random)
                          RR
#> Arvanitis (1997)
                        1.42 [0.89;
                                      2.25]
                                                   21.1
                                                              14.1
#> Beasley (1996)
                        1.05 [0.73;
                                      1.50]
                                                   27.5
                                                              15.6
                                                   2.3
#> Bechelli (1983)
                        6.21 [1.52; 25.35]
                                                              4.7
#> Borison (1992)
                        7.00 [0.40; 121.94]
                                                   0.6
                                                               1.4
#> Chouinard (1993)
                        3.49 [1.11; 10.95]
                                                   3.5
                                                               6.3
#> Durost (1964)
                        8.68 [1.26; 59.95]
                                                   1.3
                                                               2.8
#> Garry (1962)
                        1.75 [0.58; 5.24]
                                                   4.7
                                                               6.7
#> Howard (1974)
                        2.04 [0.67;
                                      6.21]
                                                   4.0
                                                              6.6
#> Marder (1994)
                        1.36 [0.75;
                                     2.47]
                                                  16.6
                                                              12.2
#> Nishikawa (1982)
                        3.00 [0.14; 65.55]
                                                   0.6
                                                              1.2
#> Nishikawa (1984)
                        9.00 [0.57; 142.29]
                                                   0.8
                                                              1.5
#> Reschke (1974)
                        3.79 [1.06; 13.60]
                                                   3.4
                                                              5.4
#> Selman (1976)
                        1.48 [0.94; 2.35]
                                                  10.3
                                                             14.1
#> Serafetinides (1972) 8.38 [0.50; 141.44]
                                                   0.6
                                                              1.4
#> Simpson (1967)
                        2.27 [0.12; 41.77]
                                                   0.8
                                                              1.4
#> Spencer (1992)
                       11.00 [1.67; 72.40]
                                                   1.2
                                                              3.0
#> Vichaiya (1971)
                       19.00 [1.16; 311.71]
                                                   0.6
                                                              1.5
#>
\# Number of studies: k = 17
\# Number of observations: o = 818 (o.e = 446, o.c = 372)
#> Number of events: e = 274
#>
#>
                          RR
                                   95%-CI
                                            z p-value
#> Common effect model 2.09 [1.69; 2.59] 6.71 < 0.0001
#> Random effects model 2.15 [1.51; 3.06] 4.23 < 0.0001
#>
#> Quantifying heterogeneity (with 95%-CIs):
#> tau^2 = 0.1754 [0.0000; 1.0088]; tau = 0.4188 [0.0000; 1.0044]
#> I^2 = 41.3\% [0.0%; 67.0%]; H = 1.30 [1.00; 1.74]
#>
#> Test of heterogeneity:
       Q d.f. p-value
```

```
#> 27.24 16 0.0388
#>
#> Details of meta-analysis methods:
#> - Mantel-Haenszel method (common effect model)
#> - Inverse variance method (random effects model)
#> - Paule-Mandel estimator for tau^2
#> - Q-Profile method for confidence interval of tau^2 and tau
#> - Calculation of I^2 based on Q
#> - Continuity correction of 0.5 in studies with zero cell frequencies
```

Same printout (result not shown)

```
print(summary(m.publ))
```

```
Create Figure 2 (file 'figure2.pdf').
```

```
forest(m.publ, sortvar = year, prediction = TRUE,
  file = "figure2.pdf", width = 10)
```

Study	Haloper Events 1			cebo Total	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Garry (1962)	7	25	4	25	 = 	1.75	[0.58; 5.24]	4.7%	6.7%
Durost (1964)	11	19	1	15		8.68	[1.26; 59.95]	1.3%	2.8%
Simpson (1967)	2	16	0	7		2.27	[0.12; 41.77]	0.8%	1.4%
Vichaiya (1971)	9	29	0	29		- 19.00	[1.16; 311.71]	0.6%	1.5%
Serafetinides (1972)	4	14	0	13	+ +	8.38	[0.50; 141.44]	0.6%	1.4%
Howard (1974)	8	17	3	13	++-	2.04	[0.67; 6.21]	4.0%	6.6%
Reschke (1974)	20	29	2	11	 ; = 	3.79	[1.06; 13.60]	3.4%	5.4%
Selman (1976)	17	18	7	11	 =	1.48	[0.94; 2.35]	10.3%	14.1%
Nishikawa (1982)	1	10	0	10	- •	3.00	[0.14; 65.55]	0.6%	1.2%
Bechelli (1983)	12	29	2	30		6.21	[1.52; 25.35]	2.3%	4.7%
Nishikawa (1984)	11	34	0	13	+ +	9.00	[0.57; 142.29]	0.8%	1.5%
Borison (1992)	3	12	0	12	 	7.00	[0.40; 121.94]	0.6%	1.4%
Spencer (1992)	11	12	1	12	+	11.00	[1.67; 72.40]	1.2%	3.0%
Chouinard (1993)	10	21	3	22	- i = -	3.49	[1.11; 10.95]	3.5%	6.3%
Marder (1994)	19	64	14	64	-	1.36	[0.75; 2.47]	16.6%	12.2%
Beasley (1996)	29	47	20	34		1.05	[0.73; 1.50]	27.5%	15.6%
Arvanitis (1997)	25	50	18	51		1.42	[0.89; 2.25]	21.1%	14.1%
Common effect model		446		372	♦	2.09	[1.69; 2.59]	100.0%	
Random effects model					\$	2.15	[1.51; 3.06]		100.0%
Prediction interval	2 0.475		0.0000		-		[0.82; 5.64]		
Heterogeneity: $I^2 = 41.3\%$	$, \tau = 0.175$	4, p =	0.0388		0.01 0.1 1 10 100				
					0.01 0.1 1 10 100	ا ماداد			
				Fa	avours placebo Favours halop	eriaoi			

Section 'Assessing the impact of missing outcome data'

Subgroup analysis of studies with and without missing data

```
m.publ.sub = update(m.publ, subgroup = miss, print.subgroup.name = FALSE)
m.publ.sub
#> Number of studies: k = 17
#> Number of observations: o = 818 (o.e = 446, o.c = 372)
#> Number of events: e = 274
#>
#> RR 95%-CI z p-value
#> Common effect model 2.09 [1.69; 2.59] 6.71 < 0.0001
#> Random effects model 2.15 [1.51; 3.06] 4.23 < 0.0001
#>
```

```
#> Quantifying heterogeneity (with 95%-CIs):
#> tau^2 = 0.1754 [0.0000; 1.0088]; tau = 0.4188 [0.0000; 1.0044]
#> I^2 = 41.3% [0.0%; 67.0%]; H = 1.30 [1.00; 1.74]
#> Test of heterogeneity:
   Q \ d.f. \ p-value
#>
#> 27.24 16 0.0388
#> Results for subgroups (common effect model):
                        k RR 95%-CI
                                               Q I^2
                        10 1.70 [1.35; 2.14] 13.73 34.4%
#> With missing data
#> Without missing data 7 4.36 [2.45; 7.77] 3.35 0.0%
#> Test for subgroup differences (common effect model):
                    Q d.f. p-value
#> Between groups 8.82 1 0.0030
#> Results for subgroups (random effects model):
                        k RR
                                   95\%-CI tau^2
                        10 1.71 [1.13; 2.59] 0.1785 0.4224
#> With missing data
#> Without missing data 7 3.80 [2.13; 6.80]
#> Test for subgroup differences (random effects model):
                   Q d.f. p-value
#> Between groups 4.80 1 0.0285
#>
#> Details of meta-analysis methods:
#> - Mantel-Haenszel method (common effect model)
#> - Inverse variance method (random effects model)
#> - Paule-Mandel estimator for tau^2
\#> - Q-Profile method for confidence interval of tau^2 and tau
#> - Calculation of I^2 based on Q
#> - Continuity correction of 0.5 in studies with zero cell frequencies
```

Create Figure 3 (file 'figure3.pdf').

```
forest(m.publ.sub, sortvar = year,
    xlim = c(0.1, 100), at = c(0.1, 0.3, 1, 3, 10, 30, 100),
    test.subgroup.common = FALSE,
    label.test.subgroup.random = "Test for subgroup differences:",
    file = "figure3.pdf", width = 10)
```


Use imputation methods

```
# Impute as no events (ICA-0) - default
mmiss.0 = metamiss(m.publ, drop.h, drop.p)
# Impute as events (ICA-1)
mmiss.1 = metamiss(m.publ, drop.h, drop.p, method = "1")
# Observed risk in control group (ICA-pc)
mmiss.pc = metamiss(m.publ, drop.h, drop.p, method = "pc")
# Observed risk in experimental group (ICA-pe)
mmiss.pe = metamiss(m.publ, drop.h, drop.p, method = "pe")
# Observed group-specific risks (ICA-p)
mmiss.p = metamiss(m.publ, drop.h, drop.p, method = "p")
# Best-case scenario (ICA-b)
mmiss.b = metamiss(m.publ, drop.h, drop.p, method = "b", small.values = "bad")
# Worst-case scenario (ICA-w)
mmiss.w = metamiss(m.publ, drop.h, drop.p, method = "w", small.values = "bad")
# Gamble-Hollis method
mmiss.gh = metamiss(m.publ, drop.h, drop.p, method = "GH")
\# IMOR.e = 2 and IMOR.c = 2 (same as available case analysis)
mmiss.imor2 = metamiss(m.publ, drop.h, drop.p, method = "IMOR", IMOR.e = 2)
\# IMOR.e = 0.5 and IMOR.c = 0.5
mmiss.imor0.5 = metamiss(m.publ, drop.h, drop.p, method = "IMOR", IMOR.e = 0.5)
```

Summarise results using R function metabind().

```
meths = c("Available case analysis (ACA)",
  "Impute no events (ICA-0)", "Impute events (ICA-1)",
  "Observed risk in control group (ICA-pc)",
  "Observed risk in experimental group (ICA-pe)",
  "Observed group-specific risks (ICA-p)",
  "Best-case scenario (ICA-b)", "Worst-case scenario (ICA-w)",
 "Gamble-Hollis analysis",
 "IMOR.e = 2, IMOR.c = 2", "IMOR.e = 0.5, IMOR.c = 0.5")
# Use inverse-variance method for pooling (which is used for
# imputation methods)
m.publ.iv = update(m.publ, method = "Inverse")
# Combine results (random effects)
mbr = metabind(m.publ.iv,
 mmiss.0, mmiss.1,
 mmiss.pc, mmiss.pe, mmiss.p,
 mmiss.b, mmiss.w, mmiss.gh,
 mmiss.imor2, mmiss.imor0.5,
 name = meths, pooled = "random")
```

Create Figure 4 (file 'figure4.pdf').

```
forest(mbr, xlim = c(0.5, 4),
  leftcols = c("studlab", "I2", "tau2", "Q", "pval.Q"),
  leftlab = c("Meta-Analysis Method", "I2", "Tau2", "Q", "P-value"),
  type = "diamond",
  digits.addcols = c(4, 2, 2, 2), just.addcols = "right",
  file = "figure4.pdf", width = 10)
```

Meta-Analysis Method	12	Tau2	Q	P-value	Risk Ratio	RR	95%-CI
Available case analysis (ACA)	41%	0.1754	27.24	0.04		2.15	[1.51; 3.06]
Impute no events (ICA- 0)	25%	0.0885	21.36	0.16		2.22	[1.63; 3.04]
Impute events (ICA- 1)	60%	0.2264	40.06	< 0.01		1.99	[1.39; 2.84]
Observed risk in control group (ICA- pc)	41%	0.1821	27.34	0.04		2.11	[1.47; 3.02]
Observed risk in experimental group (ICA- pe)	46%	0.1797	29.76	0.02		1.99	[1.40; 2.83]
Observed group- specific risks (ICA- p)	41%	0.1715	27.03	0.04		2.13	[1.50; 3.03]
Best- case scenario (ICA- b)	25%	0.0609	21.45	0.16		2.64	[1.98; 3.51]
Worst- case scenario (ICA- w)	74%	0.4270	61.83	< 0.01		1.90	[1.22; 2.94]
Gamble- Hollis analysis	16%	0.0715	19.16	0.26		2.25	[1.59; 3.18]
IMOR.e = 2, $IMOR.c = 2$	48%	0.2004	30.58	0.02		2.11	[1.47; 3.03]
IMOR.e = 0.5, IMOR.c = 0.5	34%	0.1399	24.40	0.08		2.16	[1.54; 3.03]
						٦	
				0.5	1 2	4	

Section 'Assessing and accounting for small-study effects'

Funnel plot

```
funnel(m.publ)
```

Harbord's score test for funnel plot asymmetry

```
metabias(m.publ, method.bias = "score")
#> Linear regression test of funnel plot asymmetry
#>
#> Test result: t = 4.56, df = 15, p-value = 0.0004
#> Bias estimate: 2.21 (SE = 0.4853)
```

```
#>
#> Details:
#> - multiplicative residual heterogeneity variance (tau^2 = 1.0948)
#> - predictor: standard error of score
#> - weight: inverse variance of score
#> - reference: Harbord et al. (2006), Stat Med
```

Trim-and-fill method

```
tf.publ = trimfill(m.publ)
tf.publ
\# Number of studies: k = 26 (with 9 added studies)
\# Number of observations: o = 1174 (o.e = 645, o.c = 529)
#> Number of events: e = 374
#>
#>
                         RR
                                  95\%-CI z p-value
#> Random effects model 1.40 [0.83; 2.38] 1.26 0.2063
#> Quantifying heterogeneity (with 95%-CIs):
#> tau^2 = 1.0983 [0.2929; 3.1894]; tau = 1.0480 [0.5412; 1.7859]
#> I^2 = 56.2% [32.1%; 71.8%]; H = 1.51 [1.21; 1.88]
#> Test of heterogeneity:
\#> Q d.f. p-value
#> 57.13 25 0.0003
#>
#> Details of meta-analysis methods:
#> - Inverse variance method
#> - Paule-Mandel estimator for tau^2
#> - Q-Profile method for confidence interval of tau^2 and tau
\#> - Calculation of I^2 based on Q
#> - Trim-and-fill method to adjust for funnel plot asymmetry (L-estimator)
```

```
summary(tf.publ)
#>
                                         95%-CI %W(random)
                               RR
                                         2.25]
                                                      6.2
#> Arvanitis (1997)
                             1.42 [0.89;
                            1.05 [0.73;
                                         1.50]
#> Beasley (1996)
                                                      6.4
                            6.21 [1.52; 25.35]
#> Bechelli (1983)
                                                      4.5
#> Borison (1992)
                             7.00 [0.40; 121.94]
                                                      2.2
#> Chouinard (1993)
                                                     5.0
                            3.49 [1.11; 10.95]
#> Durost (1964)
                            8.68 [1.26; 59.95]
                                                     3.5
                            1.75 [0.58;
                                                     5.1
#> Garry (1962)
                                         5.24]
                                                     5.1
#> Howard (1974)
                            2.04 [0.67;
                                        6.21]
#> Marder (1994)
                            1.36 [0.75; 2.47]
                                                     6.0
#> Nishikawa (1982)
                            3.00 [0.14; 65.55]
                                                     2.0
                            9.00 [0.57; 142.29]
#> Nishikawa (1984)
                                                      2.3
                            3.79 [1.06; 13.60]
#> Reschke (1974)
                                                      4.7
#> Selman (1976)
                            1.48 [0.94;
                                        2.35]
                                                     6.2
#> Serafetinides (1972)
                       8.38 [0.50; 141.44]
                                                     2.3
#> Simpson (1967)
                             2.27 [0.12; 41.77]
                                                     2.2
                                                    3.6
#> Spencer (1992)
                           11.00 [1.67; 72.40]
#> Vichaiya (1971)
                           19.00 [1.16; 311.71]
                                                     2.3
#> Filled: Chouinard (1993) 0.50 [0.16; 1.55] 5.0
```

```
#> Filled: Reschke (1974)
                                 0.46 [0.13; 1.64]
                                                            4.7
#> Filled: Bechelli (1983)
                                 0.28 [0.07;
                                               1.14]
                                                            4.5
#> Filled: Borison (1992)
                                 0.25 [0.01;
                                              4.31]
                                                            2.2
#> Filled: Serafetinides (1972) 0.21 [0.01;
                                             3.49]
                                                            2.3
#> Filled: Durost (1964)
                                 0.20 [0.03;
                                               1.38]
                                                            3.5
#> Filled: Nishikawa (1984)
                                 0.19 [0.01;
                                              3.04]
                                                            2.3
                                                            3.6
#> Filled: Spencer (1992)
                                 0.16 [0.02; 1.04]
#> Filled: Vichaiya (1971)
                                 0.09 [0.01;
                                                            2.3
                                              1.49]
#>
\# Number of studies: k = 26 (with 9 added studies)
\# Number of observations: o = 1174 (o.e = 645, o.c = 529)
#> Number of events: e = 374
#>
#>
                          RR
                                   95%-CI
                                             z p-value
#> Random effects model 1.40 [0.83; 2.38] 1.26 0.2063
#> Quantifying heterogeneity (with 95%-CIs):
#> tau^2 = 1.0983 [0.2929; 3.1894]; tau = 1.0480 [0.5412; 1.7859]
#> I^2 = 56.2% [32.1%; 71.8%]; H = 1.51 [1.21; 1.88]
#>
#> Test of heterogeneity:
#>
        Q d.f. p-value
#> 57.13 25 0.0003
#>
#> Details of meta-analysis methods:
#> - Inverse variance method
#> - Paule-Mandel estimator for tau^2
#> - Q-Profile method for confidence interval of tau^2 and tau
\#> - Calculation of I^2 based on Q
#> - Trim-and-fill method to adjust for funnel plot asymmetry (L-estimator)
funnel(tf.publ)
```

Limit meta-analysis

```
11.publ = limitmeta(m.publ)
```

Note, the printout for the limit meta-analysis is not shown in this vignette as the installation of R package **metasens** is optional.

11.publ

Create Figure 5 (file 'figure5.pdf').

```
funnel(m.publ, xlim = c(0.05, 50), axes = FALSE,
       contour.levels = c(0.9, 0.95, 0.99),
       col.contour = c("darkgray", "gray", "lightgray"))
legend("topright",
       c("p < 1\%", "1\% < p < 5\%", "5\% < p < 10\%", "p > 10\%"),
       fill = c("lightgray", "gray", "darkgray", "white"),
       border = "white", bg = "white")
axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50))
axis(2, at = c(0, 0.5, 1, 1.5))
title(main = "Panel B: Contour-enhanced funnel plot", adj = 0)
funnel(tf.publ, xlim = c(0.05, 50), axes = FALSE)
axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50))
axis(2, at = c(0, 0.5, 1, 1.5))
box()
title(main = "Panel C: Trim-and-fill method", adj = 0)
funnel(11.publ, xlim = c(0.05, 50), axes = FALSE,
       col.line = 8, lwd.line = 3)
axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50))
axis(2, at = c(0, 0.5, 1, 1.5))
title(main = "Panel D: Limit meta-analysis", adj = 0)
dev.off()
```


References

Balduzzi, Sara, Gerta Rücker, and Guido Schwarzer. 2019. "How to Perform a Meta-Analysis with R: A Practical Tutorial." *Evidence-Based Mental Health* 22 (4): 153–60. doi:10.1136/ebmental-2019-300117.