

Processamento e Recuperação de Informação

Processamento e Recuperação de Informação Web Retrieval and Link Analysis

Departamento de Engenharia Informática Instituto Superior Técnico

1^o Semestre 2018/2019

Bibliography

- Bing Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 2nd edition. Chapter 7.
- Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. Chapters 19 and 21.
- Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval, 2nd edition. Chapter 11.

Outline

Traditional IR

Processamento e Recuperação de Informação

Traditional IR systems:

- Worth of a document regarding a query is intrinsic to the document.
- Documents are self-contained units
- Documents are descriptive and truthful

Web IR

Processamento e Recuperação de Informação

The World Wide Web is a shifting universe

- Indefinitely growing and changing
- Non-textual content
- Invisible keywords
- Web spam
- Documents are not self-complete
- Most web queries 2 words long
- Hyperlinked

Many features are included in a web similarity formula

 Ranking functions evaluate the reputation of pages, and different types of content within each page

Outline

The Web as a Graph

- The Web is an hyperlink graph
 - Evolves organically,
 - No central coordination,
 - Yet shows global and local properties
 - An example of a social network

Graph structure of the Web

Graph structure of the Web

Processamento e Recuperação de Informação

The Bow tie model (Broder et al., 2000)

A More Detailed View

Processamento e Recuperação de Informação

A study for link based web page ranking (Baeza-Yates & Castillo, 2001)

A More Recent View (cont.)

- Bridges: sites in CORE that can be reached directly from the IN component and that can reach directly the OUT component
- Entry points: sites in CORE that can be reached directly from the IN component but are not in Bridges
- Exit points: sites in CORE that reach the OUT component directly, but are not in Bridges
- Normal: sites in CORE not belonging to the previously defined sub-components

Outline

Social Network Analysis

- Social studies based on computing properties related to connectivity and distances in graphs
- Well established, long before the Web
- Example applications:
 - Epidemiology
 - Identifying a few nodes to be removed to significantly increase average path length between pairs of nodes
 - Citation analysis
 - Identifying influential or central papers
 - Identifying influential or central people

Finding influential researchers: H-index

Processamento e Recuperação de Informação J.E. Hirsch, *An index to quantify an individual's scientific research output*, 2005 (available here)

Definition

Index = h if h papers have at least h citations each, and the remaining papers have no more than h citations each.

Graph Centrality

Processamento e Recuperação de Informação

- Degree centrality of v
 - ullet Number of edges incident to v
 - Directed graphs: in-degree and out-degree centrality
- Betweenness centrality:

$$C(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where $\sigma_{st} = \#$ shortest paths from s to t (through v)

Example: http://onearmedman.com/research/swineflu24

Topic similarity using Co-citation

- Documents v and w are said to be co-cited by u if a document u cites documents v and w
- If E is the document citation matrix
 - E^TE is the co-citation index matrix
 - Indicator of relatedness between every v and w
- Example use: clustering
 - Using above pair-wise relatedness measure in a clustering algorithm

Clustering with Co-citation

Outline

The Web as a Graph

- Hypermedia is a graph of documents
- We can apply social network theory
 - Extensive research applying graph notions
 - Centrality and prestige
 - Co-citation
- Application: link analysis

Link Analysis

Processamento e Recuperação de Informação

Three levels of analysis:

- Macroscopic: related to the structure of the Web at large
 - E.g. the bow tie structure analysis
- Mesoscopic: related to the properties of areas or regions of the Web
 - E.g. link-based ranking
- Microscopic: related to the statistical properties of links and individual nodes
 - E.g. link properties

Using Link Analysis

Processamento e Recuperação de Informação

Main applications:

- Prioritize crawling
- Identify sub-structures on the Web graph, such as communities
- Infer relevance

Link-based Ranking Strategies

Processamento e Recuperação de Informação

Goal: Leverage linkage information to address the *abundance problems* inherent in broad queries

Two pioneering algorithms:

- PageRank: Measure of prestige for every page on web
- HITS: Identify hubs and authorities in a query result

Link Model

- Each page is a node without any textual properties
- Each hyperlink is an edge connecting two nodes (possibly with an edge weight)
- Some preprocessing procedure outside the scope of the algorithm may be used to choose what sub-graph of the Web to analyze

Outline

Overview

- Pre-computes a rank-vector
 - Provides a-priori (offline) importance estimates for all pages on Web (i.e., probability distribution over pages)
 - Independent of the search query
- Prestige \approx In-degree
- But not all votes are worth the same
- Prestige of a page is proportional to the sum of the prestige of citing pages
- PageRank is part of the ranking strategy adopted by Google
 - At query time: prestige scores used in conjunction with query-specific IR scores

PageRank Algorithm

Processamento e Recuperação de Informação

The algorithm:

• E is the adjacency matrix of the Web

$$E[u, v] = \begin{cases} 1 \text{ iff there is a link from } u \text{ to } v \\ 0 \text{ otherwise} \end{cases}$$

• The out-degree of node *u* is given by

$$N_u = \sum_{v} E[u, v]$$

- Start with an initial prestige vector $p_0[u]$
- Compute

$$p_{i+1}[v] = \sum_{(u,v)\in E} \frac{p_i[u]}{N_u}$$

Main Features

- PageRank simulates a user navigating randomly on the Web
- At infinity, the probability of finding the user at any given page becomes stationary
- This process can be modeled by a Markov chain
 - stationary probability of being at each page can be computed
- This probability is a property of the graph
 - referred to as PageRank in the context of the Web

Convergence Conditions

- Convergence to
 - stationary distribution of the normalized adjacency matrix L
 - PageRank vector p is principal eigenvector of L
- Convergence criteria
 - L is irreducible
 - there is a directed path from every node to every other node
 - L is aperiodic
 - for every node, there is no integer k > 1 that divides the length of every cycle that goes through the node
 - the reverse—periodic—means that a node is visited always after a regular nk number of steps (n = 1, 2, 3, ...)

Problems of Convergence

- Web graph is not strongly connected
 - Only a fourth of the graph is!
- Web graph is not aperiodic
 - There can be many periodic nodes in the Web graph

A simple fix

- Two way choice at each node:
 - With a certain probability d (0.1 < d < 0.2), the surfer jumps to a random page on the Web
 - With probability 1-d the surfer decides to choose, uniformly at random, an out-neighbor

$$p_{i+1}[v] = \frac{d}{N} + (1 - d) \sum_{(u,v) \in E} \frac{p_i[u]}{N_u}$$

PageRank architecture at Google

- Ranking of pages more important than exact values of p
- Convergence of page ranks in 52 iterations for a crawl with 322 million links.
- Pre-compute and store the PageRank of each page.
 - PageRank independent of any query or textual content.
- Ranking scheme combines PageRank with textual match
 - Unpublished learning-to-rank approach
 - Many empirical parameters, human effort and regression testing.

Outline

HITS: Hypertext Induced Topic Selection

- Relies on query-time processing
 - ullet To select base set V_q of links for query q constructed by
 - selecting a sub-graph *R* from the Web (root set) relevant to the query
 - selecting any node u which neighbors any $r \in R$ via an inbound or outbound edge (expanded set)
 - To deduce hubs and authorities that exist in a sub-graph of the Web
- Every page *u* has two distinct measures of merit,
 - its hub score h[u]
 - its authority score a[u]
- Recursive quantitative definitions of hub and authority scores

Hubs and Authorities

Processamento e Recuperação de Informação

Hub

A page is a good hub if it contains links to many good authority pages

Authority

A page is a good authority if it is pointed to by many good hubs

- Authority pages provide good content.
- Hub pages provide links to the pages with good content.

The HITS Algorithm

Processamento e Recuperação de Informação

$$ec{a} \leftarrow (1,\dots,1)^T, \ ec{h} \leftarrow (1,\dots,1)^T$$
while $ec{h}$ and $ec{a}$ change 'significantly' do
 $ec{h} \leftarrow E ec{a}$
 $\ell_h \leftarrow ||ec{h}||_1$
 $ec{h} \leftarrow ec{h}/\ell_h$
 $ec{a} \leftarrow E^T ec{h}_0 = E^T E ec{a}_0$
 $\ell_a \leftarrow ||ec{a}||_1$
 $ec{a} \leftarrow ec{a} ||\ell_a$
end while

https://en.wikipedia.org/wiki/HITS_algorithm

Some Issues

- Does not work with non-existent, repeated, or automatically generated links
 - Solution: weigh each link based on surrounding content
- Topic diffusion
 - The result set might include pages that are not directly related to the query
 - One solution: associate a score with content of each page
 - This score is then combined with the link weight
 - Experiments show that recall and precision for first ten results increase significantly

PageRank vs. HITS

- PageRank advantage over HITS
 - Query-time cost is low
 - HITS computes an eigenvector for every query
 - Less susceptible to localized link-spam
- HITS advantage over PageRank
 - HITS ranking is sensitive to query
 - HITS has notion of hubs and authorities

Outline

Web Spamming

Processamento e Recuperação de Informação

Activity of deliberately misleading a search engine by a website owner.

Deceivers try to understand how a ranking function computes, by changing the ranking of a page without changing its user-perceived value.

SEO - Search Engine Optimization:

A business activity that sometimes is legitimate, but often is not perceived as ethical.

Content Spamming

Processamento e Recuperação de Informação Attempt to affect the content-based ranking features

Places where to add spam terms:

- Title
- Meta-tags
- Body
- Anchor text
- URL

Techniques

- repeat some important terms
 - the picture mining quality of the camera mining is amazing
- dumping of many unrelated terms

Tom Cruise

Link Spamming

- out-link spamming
 - easy: pick popular websites from directories
- in-link spamming
 - Create a honey pot
 - Add links to web directories
 - Post links to user-generated content sites
 - Participate in a link exchange
 - Create a spam farm

Link Spamming

Processamento e Recuperação de Informação

http://en.wikipedia.org/wiki/Link_farm

Hiding Techniques

Processamento e Recuperação de Informação

Content hiding: pick background white and font color also

white

Cloaking: serve one page to normal clients and another to

search engines

Redirection: redirect browser to another page (user sees one,

search engine will crawl both)

URL Redirection

Processamento e Recuperação de Informação

https://en.wikipedia.org/wiki/URL_redirection

Combating Spam

- Give higher weight to anchor text
- PageRank assign authority to pages based on number and importance of links
- TrustRank the good guys and the bad guys cluster together
- Learn from language features common in spam (longer titles, longer words, ...)
- Partition pages in blocks and compute PageRank on a block basis (instead of assigning a single PR value to each page), to defeat honeycombs and link exchanges
- ...an on-going process...

Click Farming

Processamento e Recuperação de Informação

https://en.wikipedia.org/wiki/Click_farm

The Deep Web

Processamento e Recuperação de Informação

http://thehackernews.com/2012/05/

 $\verb|what-is-deep-web-first-trip-into-abyss.html|$

Processamento e Recuperação de Informação

Questions?