

Unit-3

Mining Frequent Patterns, Association and Correlations

Overview

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Summary

Frequent Pattern Analysis?

- Frequent pattern: A pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to a particular drug?
- Applications
 - Basket data analysis, catalog design, sale campaign analysis, Web log analysis, and DNA sequence analysis.

Which items are frequently purchased together by my customers? Shopping Baskets Shopping Baskets Shopping Baskets Customer 1 Customer 2 Customer 3

Basic Concepts

- Itemset: A set of items
- k-itemset: A set of k items
- Frequency or support count of an itemset: No. of transactions containing the itemset
- Frequent itemset: An itemset that has frequency count more that the minimum support threshold
- Association Rule mining problem: (a 2-step process)
 - Finding all frequent itemsets
 - Generate strong association rules from the frequent itemsets

What is Association Rule?

■ Let $X=\{X_1, X_2, ..., X_m\}$ be a set of items, D is dataset in which each transaction $T \subseteq X$

Let A is a set of items. A transaction T is said to contain A iff A \subseteq T.

 An association rule is defined as an implication of the form A → B, where A⊂X, B ⊂X, and A∩B=φ

Frequent Patterns and Association Rules

Transaction-id	Items bought	
10	A, B, D	l
20	A, C, D	l
30	A, D, E	1
40	B, E, F	1
50	B, C, D, E, F	l

Association rules:

 $A \to D$ (60%, 100%)

 $D \to A (60\%, 75\%)$

• Itemset $X = \{x_1, ..., x_k\}$

• Find all the rules $X \rightarrow Y$ with minimum support and confidence

Support: Probability that a transaction contains $X \cup Y$

 $sup(X \rightarrow Y) = P(X \cup Y)$

Let $\sup_{\min} = 50\%$, $\operatorname{conf}_{\min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

■ Confidence: Conditional probability that a transaction having X also contains Y

 $conf(X \rightarrow Y) = P(Y/X)$

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant, 1994)
 - Freq. pattern growth Fpgrowth (Han, Pei & Yin, 2000)
 - Vertical data format approach Charm (Zaki & Hsiao, 2002)

Apriori: A Candidate Generation-and-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm - An Example $Sup_{min} = 2$ TDB {A} L_{I} {A} 3 3 {B} 10 A, C, D {C} 3 1st scan 20 B, C, E 30 A, B, C, E {E} B, E C 2nd scan {A, B} {A, C} 2 {A, C} {A, E} {B, C} {B, E} {B, E} {B, C, E}

The Apriori Algorithm

Pseudo-code:

Ck: Candidate itemset of size k L_k : Frequent itemset of size k

 $L_1 = \{ \text{frequent items} \};$

for $(k = 1; L_k! = \emptyset; k++)$ do begin

 C_{k+1} = candidates generated from L_k for each transaction t in database do

increment the count of all candidates in C_{k+1} that are contained in t

 L_{k+1} = candidates in C_{k+1} with min_support

return $\cup_k L_k$

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining *L*_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄={abcd}

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

Generating Association Rules from Frequent Itemsets

- Once the frequent itemsets from transactions in a database D have been found, it is straightforward to generate strong association rules from them
 - Strong association rules satisfy both minimum support and minimum confidence
- A two step process:
 - For each frequent itemset S, generate all nonempty
 - For every nonempty subset p of S, output the rule "p → S-P" if its confidence is greater than or equal to the minimum confidence threshold

Cont...

- Let S = {I1, I2, I5}
- None-empty proper subsets are: {I1}, {I2}, {I5}, {I1, I2}, {I1, I5}, {I2, I5}
- Association rules:

$I1 \land I2 \Rightarrow I5$,	confidence = 2/4 = 50%
$I1 \wedge I5 \Rightarrow I2$,	confidence = 2/2 = 100%
$I2 \wedge I5 \Rightarrow I1$,	confidence = 2/2 = 100%
$I1 \Rightarrow I2 \wedge I5$,	confidence = 2/6 = 33%
$I2 \Rightarrow I1 \wedge I5$,	confidence = 2/7 = 29%
$I5 \Rightarrow I1 \wedge I2$,	confidence = 2/2 = 100%

Challenges of Frequent Pattern Mining

- Challenges
 - Huge number of candidates
 - Huge data size
 - Multiple scans of transaction database
- Improving Apriori: general ideas
 - Shrink number of candidates
 - Transaction reduction
 - Reduce passes of transaction database scans

3

Bottlenecks with Apriori

- Uses a generate-and-test approach generates candidate itemsets and tests if they are frequent
 - Generation of candidate itemsets is expensive (in both space and time)
 - Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)

Speeding up Apriori Algorithm

Dynamic Hashing and Pruning
Transaction Reduction
Partitioning

- Hashing itemsets into corresponding buckets
- Can be used to reduce the size of candidate k-itemsets, Ck, for k>1 – specially 2-itemsets

DHP: Reduce the Number of Candidates

- While scanning DB to L1, generate C2 for each t ∈ T and hash them into different bucket of a hash table – increase hash count
- If Supp_count(itemset)<min_sup then remove it from C2

How to Trim Candidate Itemsets

- In k-iteration, hash all "appearing" k+1 itemsets in a hash table, count all the occurrences of an itemset in the correspondent bucket.
- In k+1 iteration, examine each of the candidate itemset to see if its correspondent bucket count value is above the min. support (necessary condition)

A Quick look on Simple Apriori & DHP

Apriori

Generate candidate set

Count support

Make new hash table

3

Transaction Reduction

- Reduce no. of transactions for future iterations
- A transaction, t, not containing any frequent kitemset cannot contain any frequent (k+1)itemsets
 - Delete/mark t from further consideration

Partitioning (DB scan only twice)

- A two-phase process
- Phase1:
 - Divide D into n disjoint partitions d_i
 - min_sup(d_i)=min_sup ×|d_i|
 - Generate frequent itemsets for each di local frequent itemsets (special DS is employed to scan D only once)
 - Merge local frequent itemsets to generate global candidate itemsets
- Phase2:
 - Scan D once more to find global frequent itemsets

26

Frequent Pattern Growth (FP-Growth) Algorithm

- Allows frequent itemset discovery without candidate itemset generation.
- Two step approach:
 - Step 1: Build a compact data structure called the FP-tree
 - Built using 2 passes over the data-set.
 - Step 2: Extract frequent itemsets directly from the FP-tree
 - Traversal through FP-Tree

28

Step-1: FP-Tree Construction

- FP-Tree is constructed using 2 passes over the dataset:
- Pass 1:
 - Scan data and find support for each item.
 - Discard infrequent items.
 - Sort frequent items in decreasing order based on their support.
 - For our example: a, b, c, d, e
 - Use this order when building the FP-Tree, so common prefixes can be shared.

FP-Tree Construction (cont...)

- Pass 2: FP-Tree construction
 - Read transaction 1: {a, b}
 - Create 2 nodes a and b and the path null→a→b. Set counts of a and b to
 1.
 - Read transaction 2: {b, c, d}
 - Create 3 nodes for b, c and d and the path null \rightarrow b \rightarrow c \rightarrow d. Set counts to 1.
 - Note that although transaction 1 and 2 share b, the paths are disjoint as they don't share a common prefix. Add the link between the b's.
 - Read transaction 3: {a, c, d, e}
 - It shares common prefix item a with transaction 1 so the path for transaction 1 and 3 will overlap and the frequency count for node a will be incremented by 1. Add links between the c's and d's.
 - Continue until all transactions are mapped to a path in the FPtree.

Step-2: Frequent Itemset Generation

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Bottom-up algorithm which traverses leaves towards the root
 - Divide and conquer: first look for frequent itemsets ending in e, then de, etc. . . then d, then cd, etc. . .

32

Cont...

- Method
 - Identify prefix path sub-trees ending in an item(set)
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

TID	List of item_	IDs
T100	I1, I2, I5	
T200	I2, I4	
T300	I2, I3	L={{I2:7}, {I1:6},
T400	I1, I2, I4	{I3:6}, {I4:2},
T500	I1, I3	{I5:2}}
T600	I2, I3	
T700	I1, I3	
T800	I1, I2, I3, I5	
T900	I1, I2, I3	

ltem	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2
I4	{{I2, I1: 1}, {I2: 1}}	⟨I2: 2⟩	{I2, I4: 2}
13	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	{12, 13: 4}, {11, 13: 4}, {12, 11, 13: 2
11	{{I2: 4}}	(I2: 4)	{I2, I1: 4}

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database

Mining Frequent Itemset Using Vertical Data Format

- Both Apriori and FP-growth methods mine frequent patterns from a set of transactions in TID:itemset format
 - Horizontal data format
- Alternatively data can be arranged in itemset:TID format
 - Vertical data format
- ECLAT (Equivalence CLASS Transformation) algorithm developed by Zaki can be applied

42

TID	List of ite	em_IDs	
T100	11, 12, 15		
T200	12, 14	_	
T300	12, 13		
T400	11, 12, 14		
T500	11, 13		
T600	12, 13		
T700	11, 13 11, 12, 13, 15 11, 12, 13		
T800			
T900			Vertical Data Format
Horizontal Data Format		itemset	TID_set
		11	{T100, T400, T500, T700, T800, T900}
		12	{T100, T200, T300, T400, T600, T800, T900}
		13	{T300, T500, T600, T700, T800, T900}
		14	{T200, T400}
		15	{T100, T800}

itemset	TID_set	_	
{I1, I2}	{T100, T400, T800, T900	}	
{11, 13}	{T500, T700, T800, T900	}	
{11, 14}	{T400}		
{11, 15}	{T100, T800}		
{12, 13}	{T300, T600, T800, T900	}	
{12, 14}	{T200, T400}		
{12, 15}	{T100, T800}		
{13, 15}	{T800}		
2-itemse	ets in Vertical Data	2 itemset in Va	ortical Data Format
ruillat		3-itemset in ve	ertical Data Format
		itemset	TID_set
		{I1, I2, I3}	{T800, T900}
		{11, 12, 15}	{T100, T800}

Assignment-3

- Text Book
 - Exercises:
 - 5.3(a) [Page: 275],
 - 5.8 [Page: 276]

April 6, 2019 Data Mining: Concepts and Technique