Analysis of a Complex Kind Week 6

Lecture 3: The Radius of Convergence of a Power Series

Petra Bonfert-Taylor

The Ratio Test

Recall: Given a power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$, there exists a number R with

 $0 \le R \le \infty$ such that the series converges (absolutely) in $\{|z-z_0| < R\}$ and diverges in $\{|z-z_0| > R\}$.

How do you find R?

Theorem (Ratio Test)

If the sequence $\left\{ \left| \frac{a_k}{a_{k+1}} \right| \right\}$ has a limit as $k \to \infty$ then this limit is the radius of

convergence, R, of the power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$.

Note: " ∞ " is an allowable limit.

Examples

•
$$\sum_{k=0}^{\infty} z^k$$
: Here, $a_k = 1$, so $\left| \frac{a_k}{a_{k+1}} \right| = 1 \to 1$ as $k \to \infty$. Thus $R = 1$.

•
$$\sum_{k=0}^{\infty} kz^k$$
: Here, $a_k = k$, so $\left| \frac{a_k}{a_{k+1}} \right| = \frac{k}{k+1} \to 1$ as $k \to \infty$. Thus $R = 1$.

•
$$\sum_{k=0}^{\infty} \frac{z^k}{k!}$$
: Here, $a_k = \frac{1}{k!}$, so $\left| \frac{a_k}{a_{k+1}} \right| = \frac{(k+1)!}{k!} = k+1 \to \infty$ as $k \to \infty$. Thus $R = \infty$.

•
$$\sum_{k=0}^{\infty} \frac{z^k}{k^k}$$
: Here, $a_k = \frac{1}{k^k}$, so $\left| \frac{a_k}{a_{k+1}} \right| = \frac{(k+1)^{k+1}}{k^k} \rightarrow ???$ as $k \rightarrow \infty$.

The Root Test

The last example (where $a_k = \frac{1}{k^k}$) is easier to treat using the following:

Theorem (Root Test)

If the sequence
$$\left\{\sqrt[k]{|a_k|}\right\}$$
 has a limit as $k\to\infty$ then $R=\frac{1}{\displaystyle\lim_{k\to\infty}\left\{\sqrt[k]{|a_k|}\right\}}$.

Note:

- If $\lim_{k\to\infty} \left\{ \sqrt[k]{|a_k|} \right\} = 0$ then $R = \infty$.
- If $\lim_{k\to\infty} \left\{ \sqrt[k]{|a_k|} \right\} = \infty$ then R = 0.

Examples

•
$$\sum_{k=0}^{\infty} \frac{z^k}{k^k}$$
: Here, $a_k = \frac{1}{k^k}$, so $\sqrt[k]{|a_k|} = \frac{1}{k} \to 0$ as $k \to \infty$. Thus $R = \infty$.

- $\sum kz^k$: Here, $a_k=k$, so $\sqrt[k]{|a_k|}=\sqrt[k]{k} \to 1$ as $k\to\infty$. Thus R=1.
- $\sum_{k=0}^{\infty} 2^k z^k$: Here, $a_k = 2^k$, so $\sqrt[k]{|a_k|} = 2 \to 2$ as $k \to \infty$. Thus $R = \frac{1}{2}$.
- $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} z^{2k}$: Here, $a_{2k} = \frac{(-1)^k}{2^k}$, and $a_{2k+1} = 0$, so $\sqrt[2k]{|a_{2k}|} = \frac{1}{2^{1/2}}$ for $k \ge 1$ and $2^{k+1}\sqrt{|a_{2k+1}|}=0$, and so the sequence $\sqrt[k]{|a_k|}$ $(k \ge 1)$ is $0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0, \cdots,$

and this sequence does not have a limit. Note: $\left|\frac{a_k}{a_{k+1}}\right|$ has no limit either.

The Cauchy Hadamard Criterion

Thus for the series $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} z^{2k}$, neither the root test nor the ratio test "work".

Yet, letting $w = z^2$, the series becomes $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} w^k$, and $\sqrt[k]{\left|\frac{(-1)^k}{2^k}\right|} = \frac{1}{2} \to \frac{1}{2}$ as

 $k \to \infty$, so the new series converges for |w| < 2. Thus the original series converges for $|z|^2 < 2$, i.e. for $|z| < \sqrt{2}$. Is there a formula that finds this?

Fact (Cauchy-Hadamard)

The radius of convergence of the power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ equals

$$R = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}.$$

Analytic Functions And Power Series

Recall: $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ is analytic in $\{|z-z_0| < R\}$, where R is the radius of convergence of the power series. Now:

Theorem

Let $f: U \to \mathbb{C}$ be analytic and let $\{|z - z_0| < r\} \subset U$. Then in this disk, f has a power series representation

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad |z - z_0| < r, \quad \text{where } a_k = \frac{f^{(k)}(z_0)}{k!}, k \ge 0.$$

The radius of convergence of this power series is R > r.

Examples

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad |z - z_0| < r, \quad \text{where } a_k = \frac{f^{(k)}(z_0)}{k!}, k \ge 0.$$

• $f(z) = e^z$, then $f^{(k)}(z) = e^z$. Letting $z_0 = 0$, we have $f^{(k)}(z_0) = e^0 = 1$ for all k. Thus $a_k = \frac{1}{k!}$ for all k, and so

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 for all $z \in \mathbb{C}$.

• $f(z) = e^z$ as above, but now let $z_0 = 1$. Then $f^{(k)}(z_0) = e^1 = e$ for all k. Thus $a_k = \frac{e}{k!}$ for all k, and so

$$e^z = \sum_{k=0}^{\infty} \frac{e}{k!} (z-1)^k$$
 for all $z \in \mathbb{C}$.

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
, $|z - z_0| < r$, where $a_k = f^{(k)}(z_0)/k!$

• $f(z) = \sin z$ is analytic in \mathbb{C} . Let $z_0 = 0$. Then

$$f(z) = \sin z, \quad f(0) = 0$$

$$f'(z) = \cos z, \quad f'(0) = 1$$

$$f''(z) = -\sin z, \quad f''(0) = 0$$

$$f^{(3)}(z) = -\cos z, \quad f^{(3)}(0) = -1$$

$$f^{(4)}(z) = \sin z, \quad f^{(4)}(0) = 0 \cdots$$

Thus
$$\sin z = 0 + \frac{1}{1!}z + \frac{0}{2!}z^2 + \frac{-1}{3!}z^3 + \frac{0}{4!}z^4 + \frac{1}{5!}z^5 + \cdots$$
$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \frac{z^9}{9!} - + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}.$$

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
, $|z - z_0| < r$, where $a_k = f^{(k)}(z_0)/k!$

• $f(z) = \cos z$ is analytic in \mathbb{C} . Let $z_0 = 0$. We could do the same analysis as for $\sin z$, or . . . :

$$\cos z = \frac{d}{dz} \sin z = \frac{d}{dz} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (2k+1) z^{2k}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

$$= 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots$$

A Corollary

Note: The theorem implies that an analytic function is entirely determined in a disk by all of its derivatives $f^{(k)}(z_0)$ at the center z_0 of the disk.

Corollary

If f and g are analytic in $\{|z - z_0| < r\}$ and if $f^{(k)}(z_0) = g^{(k)}(z_0)$ for all k, then f(z) = g(z) for all z in $\{|z - z_0| < r\}$.

Next up: The Riemann Zeta Function and the Riemann Hypothesis.