第6章線形演算子の成分表示(p.134)

2025年9月29日

表現行列のテンソル積(外積)表現

線形変換(演算子) \hat{F} の表現行列 \mathbf{F} は、基底ベクトル $|i\rangle$ と $\langle j|$ のテンソル積(外積)を用いて、以下のように表されます。

$$\mathbf{F} = \sum_{i=1}^{n} \sum_{j=1}^{n} F_{ij} |i\rangle\langle j|$$

解説:表現の導出

この表現は、ディラック記法(ブラケット記法)を用いる物理学、特に量子力学で広く使われます。

1. 表現行列成分の定義

まず、表現行列 ${f F}$ の成分 F_{ij} は、線形演算子 \hat{F} を基底ベクトル $|i\rangle$ と $|j\rangle$ で挟む(内積をとる)ことで定義されるスカラー値です。

$$F_{ij} = \langle i|\hat{F}|j\rangle$$

2. 単位演算子の完全性関係

ベクトル空間の基底 $\{|k\rangle\}$ が**完全系**をなすとき、**単位演算子** \hat{I} は、基底のテンソル積(外積)の和で表されます。

$$\hat{I} = \sum_{k=1}^{n} |k\rangle\langle k|$$

3. \hat{F} の展開

線形変換 \hat{F} を $\hat{F}=\hat{I}\hat{F}\hat{I}$ と見なし、 \hat{I} の完全性関係を代入します(和の添字を区別するため i と j を使用)。

$$\hat{F} = \left(\sum_{i=1}^{n} |i\rangle\langle i|\right) \hat{F} \left(\sum_{j=1}^{n} |j\rangle\langle j|\right)$$

和の順序を変更し、中央部分をまとめると、

$$\hat{F} = \sum_{i=1}^{n} \sum_{j=1}^{n} |i\rangle \underbrace{\langle i|\hat{F}|j\rangle}_{F_{ij}} \langle j|$$

よって、線形演算子 \hat{F} (すなわち表現行列 \mathbf{F})は、成分 F_{ij} を係数とする**基底のテンソル積** $|i\rangle\langle j|$ の線形結合として表現されます。

$$\mathbf{F} = \sum_{i=1}^{n} \sum_{j=1}^{n} F_{ij} |i\rangle\langle j|$$

テンソル積 $|i\rangle\langle j|$ の意味

テンソル積 $|i\rangle\langle j|$ は、ベクトル $|\nu\rangle$ を入力として受け取り、その j 成分 $\nu_j=\langle j|\nu\rangle$ を取り出し、それを i 方向 $|i\rangle$ に向ける行列(演算子)として機能します。

$$(|i\rangle\langle j|)|\nu\rangle = |i\rangle(\langle j|\nu\rangle) = \nu_j|i\rangle$$

 ${f F}$ は、これらの基本的な「成分を取り出して方向を変える」操作を、係数 F_{ij} で重み付けしながらすべて重ね合わせたもの、という意味を持ちます。