Franck-Hertzov poskus

Bor Kokovnik

April 2024

1 Uvod

Diskretnost energijskih nivojev elektronov v atomu lahko pokažemo s Franck-Hertzovim poskusom. Plinska trioda, prikazana na sliki 1 vsebuje kapljico živega srebra Hg, plinska faza nad njo pa ima pri temperaturi 200°C tlak okoli 1 kPa. V cevi pospešujemo elektrone od katode proti anodni mrežici z napetostjo U_1 in jih nato lovimo s kolektorsko anodo, ki elektrone dodatno odbija z majhnim potencialom U_2 . Merimo tok elektronov I_2 , ki doseže anodni kolektor, to je kolikšen je tok elektronov, ki uspejo premagati nasprotni potencial U_2 med anodno mrežico in anodnim kolektorjem.

Slika 1: Shematičen prikaz plinske triode.

Med katodo in anodno mrežico se elektroni pospešujejo, hkrati pa trkajo ob atome Hg. Trki so elastični pri energijah elektronov manjših od $\Delta E = E_1 - E_0$, kjer sta E_1 in E_0 energiji prvega vzbujenega in osnovnega stanja elektrona v zunanji lupini Hg. Pri večjih energijah elektronov je verjetnost za neelastični trk dovolj velika, tako da so v vmesnem prostoru med katodo in anodno mrežico le elektroni s kinetičnimi energijami manjšimi od ΔE . (To velja pri dovolj veliki gostoti atomov, tako da med dvema trkoma elektroni ne morejo dobiti dosti večje energije. Pri nižji temperaturi, se pravi pri manjši gostoti atomov, ali pri višji pospeševalni napetosti, pridobijo elektroni med trki več energije in lahko atome Hg tudi vzbudijo v druga stanja ali ionizirajo. Tako dobimo plazmo - ki jo lahko opazimo, saj celica tedaj oddaja svetlobo - in s tem popolnoma drugačne razmere.)

Ko spreminjamo napetost U_1 , se spreminja povprečna kinetična energija elektronov ob anodni mrežici. Kinetična energija najprej narašča, ko pa napetost U_1 doseže vrednost $U_1 = \Delta E/e_0$, kjer je e_0 osnovni naboj, kinetična energija pade na 0. Ob nadaljnjem večanju U_1 se kinetična energija spet veča, dokler elektroni po prvem neelastičnem trku ne vzbudijo v prvo vzbujeno stanje še nekega drugega atoma Hg. To se ponavlja, če večamo napetost U_1 še naprej. Nas zanimajo predvsem elektroni tik ob anodni mrežici. Te elektrone polovimo z anodnim kolektorjem, če le imajo dovolj hitrosti usmerjene proti njemu. Napetost U_2 med anodno mrežico in anodnim kolektorjem služi za zmanjšanje ozadja. Elektroni namreč potrebujejo kinetično energijo najmanj e_0U_2 , da dosežejo anodni kolektor. Kot je razvidno iz prejšnje razlage, se bo kinetična energija elektronov ob mrežici spreminjala v odvisnosti od U_1 in s tem se bo spreminjal tudi tok elektronov I_2 .

Slika 2: Spreminjanje anodnega toka I_2 v odvisnosti od mrežne napetosti U_1 .

Krivulja na sliki 2, ki prikazuje spreminjanje anodnega toka od mrežne napetosti, ima zato periodično ponavljajoče se maksimume. Razdalje med sosednjimi maksimumi so enake in ustrezajo ekscitaciji elektrona v prvo vzbujeno stanje.

2 Potrebščine

- Franck-Hertzova cev v termostatiranem ohišju
- generator žagaste napetosti in izvor izmenične napetosti za gretje katode (5,42 V, 215 mA).
- digitalni osciloskop (Tektronix serija 2000)
- USB ključek za shranjevanje podatkov

3 Potrebščine

1. Opazuj odvisnost toka I2 med anodno mrežico in anodnim kolektorjem v odvisnosti od negativne napetost U1 na katodi. Spreminjaj temperaturo in posebej natančno

- opazuj in izmeri položaje vseh vrhov v merjenih odvisnostih. Skiciraj odvisnosti pri petih različnih temperaturah, ko se slike primerno razlikujejo, to je približno pri temperaturah okoli 180, 160, 140 in 120 °C in na koncu še pri sobni temperaturi.
- 2. Natančno določi položaje vrhov $U_{1,n}=U_2+n\Delta E/e_0$ pri posameznih temperaturah in rezultate vnesi v tabelo. Razlike napetosti med zaporednimi maksimumi ustrezajo energiji, ki jo izgubijo elektroni pri posameznem neelastičnem trku z atomom Hg. Določi $\Delta E=E_1-E_0=e_0\Delta U_1$, kjer sta E_1 in E_0 energiji prvega vzbujenega in osnovnega stanja elektrona v zunanji lupini Hg.

4 Meritve

Tabela 1: Tabela vrhov odčitanih iz grafov na sliki 3.

	U_1				
$T [^{\circ} C]$	1	2	3	4	5
189	35,4	30,4	25,2	20,2	15,6
160	34,4	30,4	25,4	20,4	15,6
138	31,3	26,0	20,6	15,2	10,4
119		21,0	15,6	10,4	5,8

Podatke iz tabele 1 lahko damo v graf, vidno na sliki 4. Iz naklonov fitanih premic lahko ugotovimo energijsko razliko ΔE , podano v eV. Odčitane vrednosti so v tabeli 2.

Tabela 2: Tabela izmerjenih ΔE pri vsaki temperaturi.

$T [^{\circ}C]$	$\Delta E [eV]$			
189	$4,98 \pm 0,06$			
160	$4,96 \pm 0.02$			
138	$5,28 \pm 0,07$			
119	$5,08 \pm 0,13$			
110	0,00 = 0,10			

Obteženo povprečje, kjer uporabimo za obtežitev inverze kvadratov negotovosti nam da končno vrednost ΔE :

$$\Delta E = (4.99 \pm 0.02) \text{eV}$$

Pri vaji smo si pogledali še odvisnost XY pri sobni temperaturi, a se graf nikoli ni stabiliziral in nisem videl nikakršnih vrhov. Ta odvisnost je prikazana na sliki 5.

Slika 3: XY odvisnosti pri različnih temperaturah.

Slika 4: Grafi zaporednih vrednosti vrhov pri različnih temperaturah, skupaj s fiti.

Slika 5: Odvisnost XY pri sobni temperaturi. Tu vrhovi niso očitno vidni.

5 Zaključek

Dobljena vrednost ΔE je zelo blizu tisti, ki sta jo dobila Franck in Hertz v svojem poskusu, ki znaša 4,9 eV. Ta vrednost ni popolnoma znotraj intervala negotovosti, a pri izračunu nisem upošteval negotovosti temperature in določenih drugih faktorjev, ki bi lahko vplivali na končno vrednost. Sumljiva se mi zdi podobnost med XY odvisnostima pri temperaturah 189 in 160 °C. Razlog za to bi bila lahko napaka pri zajemu podatkov, npr. če sem pozabil ponovno pognati meritev na osciloskopu, po tem, ko sem sliko ustavil za prvo meritev.