Quantum Algorithms 2021/2022: Exercices 5

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) -December 6, 2021

1 Density matrix and quantum state tomography

The density matrix ρ summarizes all the physical properties of a quantum S. For a system S embedded in an environment E, it is defined as

$$\rho = \text{Tr}_E |\psi_{SE}\rangle \langle \psi_{SE}|, \tag{1}$$

where Tr_E is the trace over the environment, defined as $\text{Tr}_E(.) = \sum_{i_E} \langle i_E | . | i_E \rangle$, and where $|\psi_{SE}\rangle$ is the combined state of the system and environnement.

1. Calculate ρ when the system is decoupled from the environnement, i.e., $|\psi_{SE}\rangle = |\psi_S\rangle \otimes |\psi_E\rangle$. Describe the physical meaning of this situation when S is a quantum computer.

Solution:

$$\rho = \sum_{i_E} \langle i_E | (|\psi_S\rangle \otimes |\psi_E\rangle) (\langle \psi_S | \otimes \langle \psi_E |) | i_E\rangle = |\psi_S\rangle \langle \psi_S | \sum_{i_E} \langle i_E | |\psi_E\rangle \langle \psi_E |) | i_E\rangle = |\psi_S\rangle \langle \psi_S |$$
(2)

In this case, the system is isolated from its environment. This is the ideal scenario for a quantum computer: Quantum algorithm create a state $|\psi_S\rangle$, before the influence of the environment, i.e. errors, starts playing a role.

2. Let us define an observable O acting on the system, i.e $O = O_S \otimes 1$. Write the expression of the expectation value $\langle O \rangle$ as a function of ρ .

Solution:

$$\langle O \rangle = \langle \psi_{SE} | O | \psi_{SE} \rangle = \text{Tr}_{SE}(O | \psi_{SE} \rangle \langle \psi_{SE} |)$$
 (3)

as we can always perform the trace in a basis involving $|\psi_{SE}\rangle$

$$\langle O \rangle = \langle \psi_{SE} | O | \psi_{SE} \rangle = \text{Tr}_S(\text{Tr}_E((O_S \otimes 1) | \psi_{SE} \rangle \langle \psi_{SE} |)) = \text{Tr}_S(O_S \rho) \tag{4}$$

where we have used

$$\operatorname{Tr}_{E}((A \otimes 1)C) = \sum_{i_{E}} \langle i_{E} | (A \otimes 1)C | i_{E} \rangle = \sum_{i_{E}} A \langle i_{E} | C | i_{E} \rangle = A \operatorname{Tr}_{E}(C)$$
 (5)

3. Write the evolution of a density matrix via a unitary operation, i.e gate, U?

Solution:

$$|\psi_{SE}\rangle' = (U \otimes 1) |\psi_{SE}\rangle \tag{6}$$

$$\rho' = \text{Tr}_E[(U \otimes 1) | \psi_{SE} \rangle \langle \psi_{SE} | (U^{\dagger} \otimes 1)] = U \rho U^{\dagger}$$
(7)

4. Quantum state tomography describes a protocol to measure the matrix ρ in a quantum computer. It is based on decomposing ρ is a basis of Pauli strings.

$$\rho = \sum_{\sigma} c_{\sigma} \sigma \tag{8}$$

with $\sigma = \bigotimes_i \sigma_i$, $\sigma_i = 1_i, X_i, Y_i, Z_i$. Write the expression of c_{σ} as a function of ρ and σ .

Solution:

$$Tr(\rho\sigma) = \sum_{\sigma'} Tr(c'_{\sigma}\sigma\sigma') = c_{\sigma}2^{N}$$
(9)

5. Write a quantum circuit to measure c_{σ} . We recall the identities X = HZH, $Y = SXS^{\dagger} = SHZHS^{\dagger}$. Solution: Based on the identities above, we have

$$Tr(\rho U^{\dagger} \sigma_Z U) = Tr(U \rho U^{\dagger} \sigma_Z) \tag{10}$$

We then have to measure the multi-qubit operators σ_Z , which involve only Z or 1 operators, i.e which is diagonal in the computational basis. This measurement is performed after application of the gate U which transform the X and Y of the Pauli string σ into Z.