NSD CLUSTER DAY02

案例1: ipvsadm命令用法
 案例2: 部署LVS-NAT集群
 案例3: 部署LVS-DR集群

1 案例1: ipvsadm命令用法

1.1 问题

准备一台Linux服务器,安装ipvsadm软件包,练习使用ipvsadm命令,实现如下功能:

- 使用命令添加基于TCP一些的集群服务
- 在集群中添加若干台后端真实服务器
- 实现同一客户端访问,调度器分配固定服务器
- 会使用ipvsadm实现规则的增、删、改
- 保存ipvsadm规则

1.2 方案

安装ipvsadm软件包,关于ipvsadm的用法可以参考man ipvsadm资料。 常用ipvsadm命令语法格式如表-1及表-2所示。

表 - 1 ipvsadm命令选项

命令选项	含义
ipvsadm -A	添加虚拟服务器
ipvsadm -E	修改虚拟服务器
ipvsadm -D	删除虚拟服务器
ipvsadm -C	清空所有
ipvsadm -a	添加真实服务器
ipvsadm -e	修改真实服务器
ipvsadm -d	删除真实服务器
ipvsadm -L	查看 LVS 规则表
-s [rrwrrlcwlc]	指定集群算法

表 - 2 ipvsadm语法案例

命令	含义
ipvsadm -A -t u 192.168.4.5:80 -s [算法]	添加虚拟服务器,协议为tcp(-t)
Ipvsadm -A -t u 192.106.4.3:60 -s [异因	或者 udp (-u)
ipvsadm -E -t u 192.168.4.5:80 -s [算法]	修改虚拟服务器 协议为tcp或udp
ipvsadm -D -t u 192.168.4.5:80	删除虚拟服务器 协议为tcp或udp
ipvsadm -C	清空所有
	添加真实服务器
ipvsadm -a -t u 192.168.4.5:80 -r 192.168.2.100 [-g i m]	-g(DR 模式) ,
[-w 权重]	-i(隧道模式),
	-m(NAT 模式)
ipvsadm -e -t u 192.168.4.5:80 -r 192.168.2.100 [-g i m]	修改真实服务器
[-w 权重]	沙以央大瓜为南
ipvsadm -d -t u 192.168.4.5:80 -r 192.168.2.100	删除真实服务器
ipvsadm -Ln	查看 LVS 规则表

1.3 步骤

实现此案例需要按照如下步骤进行。

步骤一:使用命令增、删、改LVS集群规则

1)创建LVS虚拟集群服务器(算法为加权轮询:wrr)

- 01. [root@proxy ~] # y um y install ipv sadm
- 02. [root@proxy ~] # ipv sadm A t 192.168.4.5:80 s wrr
- 03. [root@proxy ~] # ipv sadm Ln
- 04. IP Virtual Server version 1.2.1 (size=4096)
- 05. Prot LocalAddress: Port Scheduler Flags
- 06. -> RemoteAddress: Port Forward Weight ActiveConn InActConn
- 07. TCP 192.168.4.5:80 wrr

2)为集群添加若干real server

- 01. [root@proxy ~] # ipv sadm a t 192.168.4.5:80 r 192.168.2.100 m w 1
- 02. [root@proxy ~] # ipv sadm Ln
- 03. IP Virtual Server version 1.2.1 (size=4096)
- 04. Prot LocalAddress: Port Scheduler Flags
- 05. -> RemoteAddress: Port Forward Weight ActiveConn InActConn
- 06. TCP 192.168.4.5:80 wrr
- 07. -> 192.168.2.100:80 Masq 1 0 0
- 08. [root@proxy ~] # ipv sadm a t 192.168.4.5:80 r 192.168.2.200 m w 2
- 09. [root@proxy ~] # ipv sadm a t 192.168.4.5:80 r 192.168.2.201 m w 3
- 10. [root@proxy ~] # ipv sadm a t 192.168.4.5:80 r 192.168.2.202 m w 4

Top

3)修改集群服务器设置(修改调度器算法,将加权轮询修改为轮询)

```
01.
       [root@proxy ~] # ipv sadm - E - t 192.168.4.5:80 - s rr
02.
       [root@proxy ~] # ipv sadm - Ln
03.
       IP Virtual Server version 1.2.1 (size=4096)
04.
       Prot LocalAddress: Port Scheduler Flags
05.
       -> RemoteAddress: Port
                                       Forward Weight ActiveConn InActConn
06.
       TCP 192, 168, 4, 5; 80 rr
07.
       - > 192, 168, 2, 100; 80
                                     Masq 1
                                                         0
08.
       - > 192, 168, 2, 200; 80
                                     Masq 2
                                                         0
09.
       - > 192, 168, 2, 201; 80
                                     Masq 2
       - > 192.168.2.202: 80
10.
                                               0
                                                         0
                                     Masq 1
```

4)修改read server (使用-g选项,将模式改为DR模式)

```
01. [root@proxy ~] # ipv sadm - e - t 192.168.4.5:80 - r 192.168.2.202 - g
```

5) 查看LVS状态

```
01. [root@proxy ~] # ipv sadm - Ln
```

6)创建另一个集群(算法为最少连接算法;使用-m选项,设置工作模式为NAT模式)

```
    O1. [root@proxy ~] # ipv sadm - A - t 192.168.4.5: 3306 - s lc
    O2. [root@proxy ~] # ipv sadm - a - t 192.168.4.5: 3306 - r 192.168.2.100 - m
    O3. [root@proxy ~] # ipv sadm - a - t 192.168.4.5: 3306 - r 192.168.2.200 - m
```

6) 永久保存所有规则

01. $\lceil root@proxy \sim \rceil \# ipv sadm- save - n > /etc/sy sconf ig/ipv sadm$

7)清空所有规则 <u>Top</u>

01. [root@proxy ~] # ipv sadm - C

2 案例2: 部署LVS-NAT集群

2.1 问题

使用LVS实现NAT模式的集群调度服务器,为用户提供Web服务:

- 集群对外公网IP地址为192.168.4.5
- 调度器内网IP地址为192.168.2.5
- 真实Web服务器地址分别为192.168.2.100、192.168.2.200
- 使用加权轮询调度算法,真实服务器权重分别为1和2

2.2 方案

实验拓扑结构主机配置细节如表-3所示。

表-3

主机名	IP 地址
client	eth0:192.168.4.10/24
proxy	eth0:192.168.4.5/24
	eth1:192.168.2.5/24
web1	关闭 eth0:192.168.4.100(第一天实验的配置)
	eth1:192.168.2.100/24
	网关:192.168.2.5
web2	eth1:192.168.2.200/24
	网关:192.168.2.5

使用4台虚拟机,1台作为Director调度器、2台作为Real Server、1台客户端,拓扑结构如图-1所示,注意:web1和web2必须配置网关地址。

图-1

2.3 步骤

实现此案例需要按照如下步骤进行。

步骤一:配置基础环境

1)设置Web服务器(以web1为例)

```
01. [root@web1~] # y um - y install httpd
```

```
02. [root@web1~] # echo "192.168.2.100" > /var/www/html/index.html
```

2)启动Web服务器软件

```
01. [root@web1~] # sy stemctl restart httpd
```

3)关闭防火墙与SELinux

```
01. [root@web1 ~] # sy stmctl stop firewalld
```

02. [root@web1~] # setenforce 0

步骤三:部署LVS-NAT模式调度器

1)确认调度器的路由转发功能(如果已经开启,可以忽略)

```
01. [root@proxy ~] # echo 1 > /proc/sy s/net/ipv 4/ip_forward
```

- 02. [root@proxy ~] # cat /proc/sys/net/ipv4/ip_forward
- 03. 1
- 04. [root@proxy ~] # echo "net.ipv 4.ip_forward = 1" >> /etc/sy sctl.conf
- 05. #修改配置文件,设置永久规则

2) 创建集群服务器

```
01. [root@proxy ~] # y um - y install ipv sadm
```

02. [root@proxy ~] # ipv sadm - A - t 192.168.4.5:80 - s wrr

2)添加真实服务器

```
01. [root@proxy ~] # ipv sadm - a - t 192.168.4.5:80 - r 192.168.2.100 - w 1 - m
```

02. [root@proxy ~] # ipv sadm - a - t 192.168.4.5: 80 - r 192.168.2.200 - w 1 - m

3) 查看规则列表,并保存规则

01. [root@proxy ~] # ipv sadm - Ln

02. [root@proxy \sim] # ipv sadm- save - n > /etc/sy sconf ig/ipv sadm

步骤四:客户端测试

客户端使用curl命令反复连接http://192.168.4.5,查看访问的页面是否会轮询到不同的后端真实服务器。

3 案例3: 部署LVS-DR集群

3.1 问题

使用LVS实现DR模式的集群调度服务器,为用户提供Web服务:

- 客户端IP地址为192.168.4.10
- LVS调度器VIP地址为192.168.4.15
- LVS调度器DIP地址设置为192.168.4.5
- 真实Web服务器地址分别为192.168.4.100、192.168.4.200
- 使用加权轮询调度算法,web1的权重为1,web2的权重为2

说明:

CIP是客户端的IP地址;

VIP是对客户端提供服务的IP地址;

RIP是后端服务器的真实IP地址;

DIP是调度器与后端服务器通信的IP地址(VIP必须配置在虚拟接口)。

3.2 方案

使用4台虚拟机,1台作为客户端、1台作为Director调度器、2台作为Real Server,拓扑结构如图-2所示。实验拓扑结构主机配置细节如表-4所示。

表-4

主机名	网络配置
client	eth0 (192.168.4.10/24)
proxy	eth0 (192.168.4.5/24)
	eth0:0 (192.168.4.15/24)
Web1	eth0 (192.168.4.100/24)
	lo:0 (192.168.4.15/32)
	注意子网掩码必须是 32
Web2	eth0 (192.168.4.200/24)
	lo:0 (192.168.4.15/32)
	注意子网掩码必须是 32

3.3 步骤

实现此案例需要按照如下步骤进行。

说明:

CIP是客户端的IP地址;

VIP是对客户端提供服务的IP地址;

RIP是后端服务器的真实IP地址;

DIP是调度器与后端服务器通信的IP地址(VIP必须配置在虚拟接口)。

步骤一:配置实验网络环境

1)设置Proxy代理服务器的VIP和DIP

注意:为了防止冲突, VIP必须要配置在网卡的虚拟接口!!!

- 01. [root@proxy ~] # cd /etc/sy sconfig/network- scripts/
- 02. [root@proxy \sim] # cp if cf g- eth0{,:0}
- 03. [root@proxy ~] # v im if cfg- eth0
- 04. TYPE=Ethernet
- 05. BOOTPROTO=none
- 06. NAME=eth0
- 07. DEVICE=eth0
- 08. ONBOOT=yes
- 09. IPA DDR=192.168.4.5
- 10. PREFIX=24
- 11. [root@proxy ~] # v im if cfg- eth0: 0
- 12. TYPE=Ethernet
- 13. BOOTPROTO=none
- 14. DEFROUT E=y es
- 15. NAME=eth0:0
- 16. DEVICE=eth0: 0
- 17. ONBOOT=yes
- 18. IPA DDR=192.168.4.15
- 19. PREFIX=24

Top

20. [root@proxy ~] # systemctl restart network

2)设置Web1服务器网络参数

- 01. [root@web1~] # nmcli connection modify eth0 ipv 4. method manual \
- 02. ipv 4. addresses 192. 168. 4. 100/24 connection. autoconnect yes
- 03. [root@web1~] # nmcli connection up eth0

接下来给web1配置VIP地址。

注意:这里的子网掩码必须是32(也就是全255),网络地址与IP地址一样,广播地址与IP地址也一样。

- 01 [root@web1~] # cd /etc/sy sconfig/network- scripts/
- 02. [root@web1 \sim] # cp if cf g- lo{,:0}
- 03. $[root@web1 \sim] # v im if cfg-lo:0$
- 04. DEVICE=lo:0
- 05. IPA DDR=192, 168, 4, 15
- 06. NET MA SK=255, 255, 255, 255
- 07. NETWORK=192, 168, 4, 15
- 08. BROA DCA ST=192, 168, 4, 15
- 09. ONBOOT=yes
- 10. NAME=10:0

防止地址冲突的问题:

这里因为web1也配置与代理一样的VIP地址,默认肯定会出现地址冲突;

sysctl.conf文件写入这下面四行的主要目的就是访问192.168.4.15的数据包,只有调度器会响应,其他主机都不做任何响应,这样防止地址冲突的问题。

- 01. [root@web1 ~] # v im /etc/sy sctl.conf
- 02. #手动写入如下4行内容
- 03. net.ipv 4. conf.all.arp_ignore = 1
- 04. net.ipv 4. conf.lo.arp_ignore = 1
- 05. net.ipv 4. conf.lo.arp_announce = 2
- 06. net.ipv 4. conf.all.arp_announce = 2
- 07. #当有arp广播问谁是192.168.4.15时,本机忽略该ARP广播,不做任何回应
- 08. #本机不要向外宣告自己的lo回环地址是192.168.4.15 <u>Top</u>
- 09. [root@web1~] # sy sctl p

重启网络服务,设置防火墙与SELinux

- 01. [root@web1~] # sy stemctl restart network
- 02. [root@web1~] # if conf ig
- 03. [root@web1~] # sy stemctl stop firewalld
- 04. [root@web1~] # setenforce 0

3)设置Web2服务器网络参数

- 01. [root@web2 ~] # nmcli connection modify eth0 ipv 4. method manual \
- 02. ipv 4. addresses 192. 168. 4. 200/24 connection. autoconnect y es
- 03. [root@web2 ~] # nmcli connection up eth0

接下来给web2配置VIP地址

注意:这里的子网掩码必须是32(也就是全255),网络地址与IP地址一样,广播地址与IP地址也一样。

- 01. [root@web2 ~] # cd /etc/sy sconfig/network- scripts/
- 02. [root@web2 ~] # cp if cf g- lo{,:0}
- 03. [root@web2 \sim] # v im if cf g- lo:0
- 04. DEVICE=lo: 0
- 05. IPA DDR=192. 168. 4. 15
- 06. NET MA SK=255. 255. 255. 255
- 07. NETWORK=192.168.4.15
- 08. BROA DCA ST=192, 168, 4, 15
- 09. ONBOOT=yes
- 10. NAME=10:0

防止地址冲突的问题:

这里因为web1也配置与代理一样的VIP地址,默认肯定会出现地址冲突;

sysctl.conf文件写入这下面四行的主要目的就是访问192.168.4.15的数据包,只有调度器会响应,其他主机都不做任何响应,这样防止地址冲突的问题。

- 01. [root@web2 ~] # v im /etc/sy sctl.conf
- 02. #手动写入如下4行内容
- 03. net.ipv 4.conf.all.arp_ignore = 1

<u>Top</u>

- 04. net.ipv 4.conf.lo.arp_ignore = 1
- 05. net.ipv 4. conf.lo.arp_announce = 2
- 06. net.ipv 4. conf.all.arp_announce = 2
- 07. #当有arp广播问谁是192.168.4.15时,本机忽略该ARP广播,不做任何回应
- 08. #本机不要向外宣告自己的lo回环地址是192.168.4.15
- 09. [root@web2 ~] # sy sctl p

重启网络服务,设置防火墙与SELinux

- 01. [root@web2 ~] # sy stemctl restart network
- 02. [root@web2 ~] # if conf ig
- 03. [root@web2 ~] # systemctl stop firewalld
- 04. [root@web2 ~] # setenforce 0

步骤二:配置后端Web服务器

1) 自定义Web页面

- 01. [root@web1~] # y um y install httpd
- 02. [root@web1~] # echo "192.168.4.100" > /var/www/html/index.html
- 03. [root@web2 ~] # y um y install httpd
- 04. [root@web2 ~] # echo "192.168.4.200" > /var/www/html/index.html

2) 启动Web服务器软件

- 01. [root@web1 ~] # sy stemctl restart httpd
- 02. [root@web2 ~] # sy stemctl restart httpd

步骤三:proxy调度器安装软件并部署LVS-DR模式调度器

- 1)安装软件(如果已经安装,此步骤可以忽略)
 - 01. [root@proxy ~] # y um y install ipv sadm
- 2)清理之前实验的规则,创建新的集群服务器规则

Top

3)添加真实服务器(-g参数设置LVS工作模式为DR模式,-w设置权重)

```
01. [root@proxy ~] # ipv sadm - a - t 192.168.4.15:80 - r 192.168.4.100 - g - w 1
02. [root@proxy ~] # ipv sadm - a - t 192.168.4.15:80 - r 192.168.4.200 - g - w 1
```

4) 查看规则列表,并保存规则

```
01.
       [root@proxy ~] # ipv sadm - Ln
02.
       TCP 192, 168, 4, 15; 80 wrr
03.
       - > 192. 168. 4. 100: 80
                                     Route 1
                                                  0
                                                          0
04.
       - > 192.168.4.200:80
                                     Route 2
                                                  0
                                                          0
       [root@proxy \sim] # ipv sadm- save - n > /etc/sy sconf ig/ipv sadm
05.
```

步骤四:客户端测试

客户端使用curl命令反复连接http://192.168.4.15,查看访问的页面是否会轮询到不同的后端真实服务器。

扩展知识:默认LVS不带健康检查功能,需要自己手动编写动态检测脚本,实现该功能:(参考脚本如下,仅供参考)

```
01.
       [root@proxy ~] # v im check. sh
02.
       #! /bin/bash
03.
       VIP=192, 168, 4, 15; 80
04.
       RIP1=192, 168, 4, 100
       RIP2=192, 168, 4, 200
05.
06.
       while:
07.
       do
08.
         for IP in $RIP1 $RIP2
09.
         do
               curl - s http://$IP &>/dev/vnull
10.
       if [ $? - eq 0]; then
11.
12.
                ipv sadm - Ln | grep - q $IP | | ipv sadm - a - t $VIP - r $IP
                                                                                         Top
13.
             else
14.
                 ipv sadm - Ln | grep - q $IP && ipv sadm - d - t $VIP - r $IP
```

15. fi16. done17. sleep 118. done