Back-side Delivery Networks with Integrated Voltage Regulator

Hang Yang, Amaan Rahman, Lingjun Zhu PI: Callie (Cong) Hao, Sungkyu Lim ECE, Georgia technology of Institude

- Develop BS-PDN EDA flow;
- Address PDN challenges;
- > Enable Back-side DC-DC unit converter (BS-UC) for BS-PDN.

Recent Results

Design implementation (Benchmark: OpenPiton)

♦ BS-PDN → shorter wirelength (-14%)

→ less congestion.

FS-PDN vs. BS-PDN

9.	FS-PDN	BS-PDN	Δ
Footprint (mm ²)	0.13		-
Metal stack	6M	6M+2MB	-
Rail pitch (CPP)	32	3	(-90.6%)
# Cells	317061	307123	(-3.1%)
Area Utilization (%)	71.12%	77.05%	(+8.3%)
WL (m)	1.52 0.15	1.30 0.21	(+14.3%) (+39.0%)
PDN area (mm ²)			
Fmax (GHz)	0.97	1.05	(+8.2%)
Total power (mW)	92.4	85.9	(-7.0%)
Static IR-drop (mV)	69.3	33.7	(-51.4%)

PPA comparisons: Timing improvement (+8.2%); **❖** Power saving (-7.0%); Cell area increase (+8.2%). Static IR drop analysis: IR drop reduction (-51%);

	FS-PDN	BS-PDN	Δ (%)
	Type		
Internal (mW)	61.5	59.2	-3.7%
Switching (mW)	30.6	26.5	-13.49
Leakage (mW)	0.3	0.3	-3.6%

Performance boost (20.6%).

Static IR drop map

Technical Approach

> Technology setup: Based on in-house 3nm PDK

		Metals			1	Logic synthesis + P&R	
	Group	Layer	Width	Resistivity			
			(nm)	(Ω/um)	Design RTL	Synthesis	
back-side	MB	MB2-MB1	40	34			
Dack-Side	BPR	MBPR	25	65			
	Mx	M1-M3	12	347		Floorplan	Backside UC
front-side	My	M4-M5	18	101	3nm cell &		
	Mz	M6-M7	24	44	SRAM lib	FS-PDN BS-PDN	model
		Vias				13-1011	
	Size	Pitch	Resistance	KOZ			
	(um)	(um)	(Ohm)	(um)		Placement	
micro-TSV	1.00	5.00	0.29	2 x 2			
MB via	0.020	0.012	56.0		Input		
Mx via	0.012	0.024	63.5			Clock tree	RedHawk
My via	0.018	0.036	19.3	1.5			0.11
Mz via	0.024	0.048	10.8	2.40	BEOL stack	D. H.	Static noise
	Tochnol	ogy setup fo	r 2nm DDV	•		Routing	
	recillion	ogy setup id	JI SIIIII PUK		TF		Path analysis
						PPA analysis	
Design	flow d	evelopme	ent:		ITF	117 ariarysis	What-if study
0		· · · · · · · · · · · · · · · · ·				1	

TLUPlus

- Commercial tools and customized scripts;

Based on Ansys HFSS and RedHawk;

Pattern-based PDN design:

> TSV and BS-PDN modeling:

Detailed IR-drop analysis, etc.

DSPF or SPEF • Physical model \rightarrow electrical model \rightarrow tech file \rightarrow full chip simulation. RedHawk-S

Dynamic noise

Power integrity

Design and analysis flow

ASCII Renor

Voltage Report

TSV landing pad nano-TSV micro-TSV (w = 2.0um)Diameter (um) KoZ width (um) 0.12 2.0 Silicon substrate $(\epsilon_{Si} = 11.9)$ 5.0 Pitch (um) 0.5 Length (um) 0.6 10.0 Input R (Ohm) 3.81 L (pH) 0.72 C (fF) 0.27 Extract

TSV lumped parasitics

Ansys RedHawk full-chip simulation flow [1]

BS-UC design and modeling:

TSV array model

- Using SPICE simulation and cell characterization;
- * Key output: transient response, current switching behavior.

Characterization flow [1]

BS-UC benefits

- ➤ BS-UC can mitigate 10.34% worst instance IR-drop compared to backside without UC.
- > BS-UC can mitigate more than 80% IR drop from pkg.
- BS-UC reduce the overall IR drop for all instance (min layer wise drop) because pkg IR drop propagates to every layer.

Comparison with the SOTA

Key accomplishment

- > Implemented an EDA flow for BS-PDN design & analysis:
 - Highly configurable;
 - * BS-UC integration.
- > Evaluated the benefits of BS-PDN and BS-UC in CPU design:
- * Routing congestion reduced;
- Explainable performance and power improvements.
- > Detailed IR drop analysis:
- Identify the bottleneck for front-side power delivery;
- DSE between performance and power integrity.

Reference

[1] Ansys, "RedHawk User Manual", 2022.

[2] Prasad, Divya, S. S. Teja Nibhanupudi, Shidhartha Das, Odysseas Zografos, Bilal Chehab, Satadru Sarkar, Rogier Baart, et al. "Buried Power Rails and Back-Side Power Grids: Arm * CPU Power Delivery Network Design Beyond 5nm." In 2019 IEEE International Electron Devices Meeting (IEDM), 19.1.1-19.1.4. San Francisco, CA, USA: IEEE, 2019. https://doi.org/10.1109/IEDM19573.2019.8993617.

[3] Sisto, G., B. Chehab, B. Genneret, R. Baert, R. Chen, P. Weckx, J. Ryckaert, et al. "IR-Drop Analysis of Hybrid Bonded 3D-ICs with Backside Power Delivery and μ- Amp; n- TSVs." In 2021 IEEE International Interconnect Technology Conference (IITC), 1-3, 2021. https://doi.org/10.1109/IITC51362.2021.9537541.

[4] Chen, R., M. Lofrano, G. Mirabelli, G. Sisto, S. Yang, A. Jourdain, F. Schleicher, et al. "Power, Performance, Area and Thermal Analysis of 2D and 3D ICs at A14 Node Designed with Back-Side Power Delivery Network." Ir 2022 International Electron Devices Meeting (IEDM), 23.4.1-23.4.4, 2022.

[5] Kwak, et al. A Reconfigurable Monolithic 3D Switched Capacitor DC-DC Converter with Back-End-of-Line

