Chương 7. Phương trình vi phân

Trường Đại học Công nghệ Thông tin Đại học Quốc gia Thành phố Hồ Chí Minh

Ngày 16 tháng 9 năm 2024

- 7.1 Các khái niệm cơ bản
- 7.2 Phương trình vi phân cấp 1
- 7.3 Phương trình vi phân cấp 2

7.1 Các khái niệm cơ bản

Dinh nghĩa 7.1

Phương trình vi phân là phương trình có dạng

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$
(1)

trong đó x là biến số, y=f(x) là hàm số phải tìm và $y',y'',\ldots,y^{(n)}$ là các đạo hàm của nó.

- Nghiệm của phương trình vi phân là các hàm số y=f(x) thỏa mãn (1).
- Giải phương trình vi phân là tìm tất cả các nghiệm của nó.
- Cấp của phương trình vi phân là cấp cao nhất của đạo hàm có trong phương trình vi phân.

Các đạo hàm được viết dưới dạng $\frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}, \frac{\mathrm{d}^3y}{\mathrm{d}x^3}, \dots$ hoặc y', y'', y''', \dots

Ví dụ 7.2

- 1. $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$ (cấp 1, hàm cần tìm y = f(x))
- 2. $x'' + 4x' + 7x = 3 2\sin t$ (cấp 2, hàm cần tìm x(t))

7.2 Phương trình vi phân cấp 1

Định nghĩa 7.3 Phương trình vi phân cấp 1 là phương trình có dạng

$$F(x, y, y') = 0. (2)$$

Bài toán Cauchy. Tìm hàm số y=y(x) thỏa mãn

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

trong đó x_0, y_0 là các số đã cho.

Định lý 7.4 Cho hàm số f(x,y) liên tục trên $D\subseteq\mathbb{R}^2$ chứa (x_0,y_0) . Khi đó, trong mỗi khoảng U chứa x_0 tồn tại ít nhất một nghiệm y=y(x) của phương trình y'=f(x,y) thỏa mãn $y_0=y(x_0)$. Hơn nữa, nếu $\frac{\partial f}{\partial y}(x,y)$ liên tục trên D thì nghiệm trên là duy nhất.

Nghiệm tổng quát của PTVP (2) là họ các hàm số $y = \varphi(x, C)$ thỏa mãn:

- 1. Với mỗi C, hàm số $\varphi(x,C)$ là một nghiệm của phương trình (2)
- 2. Với mỗi $(x_0, y_0) \in D$, tồn tại C_0 sao cho $\varphi(x_0, C_0) = y_0$. Khi đó $\varphi(x, C_0)$ được gọi là **nghiệm riêng**

Nghiệm kì dị là nghiệm không nằm trong họ nghiệm tổng quát.

7.2.1 Phương trình có biến số phân ly

Định nghĩa 7.5 Phương trình vi phân có biến số phân ly (tách biến) có dạng

$$f(y)dy = g(x)dx \text{ hay } y' = \frac{g(x)}{f(y)}.$$
 (3)

Cách giải. Lấy tích phân hai vế của phương trình trên

$$\int f(y)dy = \int g(x)dx \Rightarrow F(y) = G(x) + C$$

Ví dụ 7.6 Giải các phương trình vi phân

a.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{1 - y^2}.$$

b.
$$xy^2 dy = -(y+1)dx$$
.

c.
$$1 + x + xy'y = 0$$

$$a. \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{1 - y^2}.$$

Giải. a. Ta có

$$(1 - y^2)\mathrm{d}y = x^2\mathrm{d}x$$

Lấy tích phân hai vế

$$\int (1 - y^2) \mathrm{d}y = \int x^2 \mathrm{d}x.$$

Nghiệm tổng quát của phương trình

$$y - \frac{y^3}{3} = \frac{x^3}{3} + C.$$

b.
$$xy^2 dy = -(y+1)dx$$
.

b. Nếu $x(y+1) \neq 0$ thì phương trình đã cho tương đương với

$$\frac{y^2}{y+1}\mathrm{d}y = \frac{-1}{x}\mathrm{d}x.$$

Lấy tích phân hai vế, ta được nghiệm của phương trình

$$\frac{y^2}{2} - y + \ln|y + 1| = -\ln|x| + C.$$

Nghiệm kì dị: x = 0 hoặc y = -1.

c.
$$1 + x + xy'y = 0$$

Ví dụ 7.7 Giải phương trình vi phân

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 + 4x + 2}{2y - 2}$$

với điều kiện đầu y(0)=-1.

Giải. Từ phương trình đã cho, ta có

$$(2y - 2)dy = (3x^2 + 4x + 2)dx.$$

Lấy tích phân hai vế

$$y^2 - 2y = x^3 + 2x^2 + 2x + C$$

Thay điều kiện ban đầu y(0)=-1, ta được C=3. Do đó nghiệm của phương trình vi phân là

$$y^2 - 2y = x^3 + 2x^2 + 2x + 3.$$

7.2.2 Phương trình vi phân đắng cấp bậc 1

Dịnh nghĩa 7.8 Phương trình vi phân đẳng cấp bậc 1 là phương trình có dang

$$y' = f(\frac{y}{x}) \tag{4}$$

Cách giải. Đặt $u=\frac{y}{x}$, suy ra y'=u+xu'. Từ phương trình (4), ta có

$$u + xu' = f(u)$$
 hay $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{f(u) - u}{x}$

là phương trình vi phân có biến phân ly (đã biết cách giải).

Ví dụ 7.9 Giải phương trình vi phân

a.
$$xy' \ln \frac{y}{x} = y \ln \frac{y}{x} + x$$
.
b. $y' = \frac{x^2 - xy + y^2}{xy}$.

b.
$$y' = \frac{x^2 - xy + y^2}{xy}$$

a.
$$xy' \ln \frac{y}{x} = y \ln \frac{y}{x} + x$$
.

Giải. a. Từ phương trình đã cho suy ra

$$y' \ln \frac{y}{x} = \frac{y}{x} \ln \frac{y}{x} + 1.$$

Đặt $u = \frac{y}{x}$, khi đó y' = u + xu' và

$$(u + xu') \ln u = u \ln u + 1$$
 hay $\ln u du = \frac{1}{x} dx$.

Lấy tích phân 2 vế (vế trái dùng tích phân từng phần), ta có

$$u \ln u - u = \ln |x| + C$$

Vậy nghiệm của phương trình đã cho là

$$\frac{y}{x}\ln\frac{y}{x} - \frac{y}{x} - \ln|x| = C.$$

b.
$$y' = \frac{x^2 - xy + y^2}{xy}$$
.

b. Ta có

$$y' = \frac{1}{\frac{y}{x}} - 1 + \frac{y}{x}$$

và đặt $u=\frac{y}{x}$. Khi đó y'=u+xu' và $u+xu'=\frac{1}{u}-1+u$. Do đó

$$\frac{u}{-u+1}\mathrm{d}u = \frac{1}{x}\mathrm{d}x.$$

Sau khi lấy tích phân hai vế: $-u - \ln|-u+1| = \ln|x| + C_1$ hay $\ln|x(1-u)| + u = C_1.$

Khi đó $|x(1-\frac{y}{x})| = Ce^{-\frac{y}{x}}$

hay nghiệm tổng quát là $|x-y| = Ce^{-\frac{y}{x}}.$

7.2.3 Phương trình vi phân toàn phần

Định nghĩa 7.10 Cho hai hàm số P(x,y), Q(x,y) có các đạo hàm riêng liên tục trên một miền mở D thỏa mãn $P_y(x,y)=Q_x(x,y)$ với mọi $(x,y)\in D.$ Phương trình vi phân có dạng

$$P(x,y)dx + Q(x,y)dy = 0 (5)$$

được gọi là phương trình vi phân toàn phần. Giả sử hàm u(x,y) thỏa mãn

$$du(x,y) = P(x,y)dx + Q(x,y)dy$$

khi đó nghiệm tổng quát của (5) là

$$u(x,y) = C.$$

Suy ra

$$u_x(x,y) = P(x,y)$$
 và $u_y(x,y) = Q(x,y)$.

Cách giải.

- Bước 1. Kiểm tra điều kiện để PTVP là toàn phần.
- ullet Bước 2. Lấy tích phân theo biến x của biểu thức P(x,y),

$$\int P(x,y)dx = f(x,y) + C(y)$$

ullet Bước 3. Đạo hàm theo biến y hai vế của biểu thức bên trên

$$f_y(x,y) + C'(y)$$

• Bước 4. Đồng nhất thức $f_y(x,y)+C'(y)=Q(x,y),$ ta tìm được C(y). Từ đó tìm được nghiệm.

Ví dụ 7.11 Giải phương trình

$$(3y^2 + 2xy + 2x)dx + (x^2 + 6xy + 3)dy = 0.$$

Giải. Kiểm tra điều kiện để PTVP là toàn phần. Thật vậy

$$P_y(x,y) = Q_x(x,y) = 6y + 2x.$$

Khi đó

$$\int P(x,y)dx = 3y^2x + x^2y + x^2 + C(y)$$

và

$$(3y^2x + x^2y + x^2 + C(y))'_y = 6xy + x^2 + C'(y).$$

So sánh với Q(x,y), dẫn đến C'(y)=3. Suy ra $C(y)=3y+C_1$. Vậy nghiệm tổng quát có dạng

$$3y^2x + x^2y + x^2 + 3y + C_1 = 0.$$

Cách khác.

- Bước 1. Kiểm tra điều kiện để PTVP là toàn phần.
- Bước 2. Nghiệm của phương trình có dạng

$$\int_{x_0}^{x} P(t, y_0) dt + \int_{y_0}^{y} Q(x, t) dt = C$$
 (6)

hoặc

$$\int_{x_0}^{x} P(t, y) dt + \int_{y_0}^{y} Q(x_0, t) dt = C$$
 (7)

trong đó x_0, y_0 là các hằng số.

Ví dụ 7.12 Giải phương trình vi phân

$$(x+y-1)dx + (e^y + x)dy = 0.$$

Giải. Kiểm tra điều kiện để PTVP là toàn phần. Thật vậy

$$P_y(x,y) = Q_x(x,y) = 1.$$

Chọn $(x_0,y_0)=(0,1)$, nghiệm của phương trình là

$$\int_0^x (t+1-1)dt + \int_1^y (e^t + x)dt = C$$

hay

$$\frac{t^2}{2} \Big|_0^x + (e^t + xt) \Big|_1^y = C$$

$$\frac{x^2}{2} + e^y + xy - x = C_1$$

7.2.4 Phương trình vi phân tuyến tính cấp 1

Dịnh nghĩa 7.13 Phương trình vi phân tuyến tính là phương trình có dạng

$$y' + p(x)y = q(x) \tag{8}$$

trong đó p(x), q(x) là các hàm số liên tục.

Nếu q(x)=0 thì phương trình (8) được gọi là phương trình vi phân tuyến tính cấp 1 thuần nhất.

Xét phương trình vi phân tuyến tính cấp 1 thuần nhất

$$y' + p(x)y = 0$$
 hay $\frac{\mathrm{d}y}{y} = -p(x)\mathrm{d}x$.

- Lấy tích phân hai vế $\ln |y| = \int p(x) \mathrm{d}x \text{ và do đó } \\ y = e^{-\int p(x) \mathrm{d}x}.$
- ullet Nhân cả hai vế của (8) với $e^{\int p(x) \mathrm{d}x},$ ta được

$$y'e^{\int p(x)dx} + p(x)ye^{\int p(x)dx} = q(x)e^{\int p(x)dx}$$

hay

$$\left(ye^{\int p(x)dx}\right)_{r}' = q(x)e^{\int p(x)dx}.$$

Suy ra

$$ye^{\int p(x)dx} = \int q(x)e^{\int p(x)dx} + C.$$

Do đó

$$y = e^{-\int p(x)dx} \left(\int q(x)e^{\int p(x)dx} + C \right).$$

Cách giải.

- Bước 1. Đặt $A(x) = e^{-\int p(x) dx}$.
- Bước 2. Đặt $B(x) = \int \frac{q(x)}{A(x)} dx$.
- Bước 3. Nghiệm tổng quát

$$y = A(x)(B(x) + C).$$

Chú ý: Trong quá trình tính các biểu thức A(x) và B(x), các hằng số của tích phân đều cho bằng 0.

Ví dụ 7.14 Giải các phương trình vi phân

a.
$$y' + y \cos x = e^{-\sin x}$$
.

b. $dy = (x^2 + y)dx$ thỏa điều kiện đầu y(0) = 1.

Giải. a. Ta có $p(x) = \cos x; q(x) = e^{-\sin x}$ và

$$A(x) = e^{-\int \cos x dx} = e^{-\sin x}$$

$$B(x) = \int \frac{q(x)}{A(x)} dx = \int dx = x.$$

Vậy nghiệm tổng quát là $y = e^{-\sin x}(x+C)$.

b. Từ phương trình đã cho, ta có

$$y' - y = x^2.$$

Đặt
$$p(x)=-1; q(x)=x^2$$
 và $A(x)=e^{-\int p(x)\mathrm{d}x}=e^x$

$$B(x) = \int \frac{q(x)}{A(x)} dx = \int x^2 e^{-x} dx = -e^{-x} (x^2 + 2x + 2)$$

Vậy nghiệm tổng quát là

$$y = A(x)(B(x) + C) = -x^2 - 2x - 2 + Ce^x$$
.

Thay điều kiện đầu, ta có C=3 và do đó nghiệm riêng là

$$y = -x^2 - 2x - 2 + 3e^x.$$

7.2.5 Phương trình vi phân Bernoulli

Dinh nghĩa 7.15 Phương trình vi phân Bernoulli là phương trình có dạng

$$y' + p(x)y = q(x)y^{\alpha} \tag{9}$$

trong đó $\alpha \neq 0, 1; p(x) \neq 0$ và $q(x) \neq 0$.

Cách giải.

• Bước 1. Chia hai vế của (9) cho y^{α} , ta được

$$\frac{y'}{y^{\alpha}} + p(x)\frac{y}{y^{\alpha}} = q(x)$$

• Bước 2. Đặt $z=y^{1-\alpha}$, suy ra $z'=(1-\alpha)y'y^{-\alpha}$. Từ (9), ta được

$$z' + (1 - \alpha)p(x)z = (1 - \alpha)q(x)$$

đây là phương trình vi phân tuyến tính cấp 1

Ví dụ 7.16 Giải phương trình vi phân

a.
$$y'+\frac{y}{x}=xy^2$$
 với điều kiện đầu $y(1)=1.$ b. $(x-x^2y^2)\mathrm{d}y+y\mathrm{d}x=0$

b.
$$(x - x^2y^2)dy + ydx = 0$$

Giải. a. Ta có
$$y'y^{-2} + \frac{1}{r}y^{-1} = x$$
.

Đặt $z=y^{-1}$ suy ra $z'=-y'y^{-2}$. Thay vào phương trình đã cho, ta có

$$z' - \frac{1}{x}z = -x.$$

Đặt
$$A(x) = e^{\int \frac{1}{x} dx} = x, \qquad B(x) = \int \frac{-x}{x} dx = -x.$$

Suy ra z=x(-x+C) và do đó $\frac{1}{y}=x(-x+C).$ Từ điều kiện ban đầu,

ta có C=2. Nghiệm riêng của phương trình là

$$y = \frac{1}{-x^2 + 2x}.$$

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{x^2y^2 - x}{y}$$

$$\frac{\mathrm{d}x}{\mathrm{d}y} = x^2y - \frac{x}{y}$$
$$\frac{\mathrm{d}x}{\mathrm{d}y} + \frac{x}{y} = x^2y$$
$$\frac{1}{x^2}\frac{\mathrm{d}x}{\mathrm{d}y} + \frac{1}{yx} = y$$

Đặt
$$u=\frac{1}{x}$$
, khi đó $\frac{\mathrm{d}u}{\mathrm{d}y}=-\frac{1}{x^2}\frac{\mathrm{d}x}{\mathrm{d}y}$
$$-\frac{\mathrm{d}u}{\mathrm{d}y}+\frac{1}{y}u=y \text{ hay } \frac{\mathrm{d}u}{\mathrm{d}y}-\frac{1}{y}u=-y$$

Đặt
$$A(y)=e^{-\int \frac{1}{y}\mathrm{d}y}=-\frac{1}{y}$$

$$-\frac{1}{y}\frac{\mathrm{d}u}{\mathrm{d}y} + \frac{1}{y}\frac{1}{y}u = y\frac{1}{y}$$

Suy ra
$$\frac{1}{y}\frac{\mathrm{d}u}{\mathrm{d}y}-\frac{1}{y^2}u=-1$$
 và $\frac{1}{y}u=-y+C$

Nghiệm của phương trình

$$\frac{1}{xy} = -y + C.$$

Ví dụ 7.17 Giải các phương trình vi phân

a.
$$y' - y^2 - 3y + 4 = 0$$

b.
$$x^2y' + y^2 + xy + x^2 = 0$$

c.
$$y' - 2xy = 1 - 2x^2$$

d.
$$2ydx + (y^2 - 6x)dy = 0, y(1) = 1$$

e.
$$y' + 2y = y^2 e^x$$

f.
$$(xy^2 + x)dx + (-y + x^2y)dy = 0$$

g.
$$y' + 2xy = 2x^3y^3$$

7.3 Phương trình vi phân cấp 2

7.3.1 Các dạng phương trình khuyết

Định nghĩa 7.18 Phương trình vi phân khuyết y và y' là phương trình có dạng

$$y'' = f(x). (10)$$

Cách giải.

• Bước 1. Lấy tích phân hai vế (10)

$$y' = \int f(x) dx = g(x) + C_1$$

Bước 2. Lấy tích phân hai vế của bước 1

$$y = \int (g(x) + C_1) dx = h(x) + C_1 x + C_2$$

Ví dụ 7.19 Giải phương trình vi phân $y''=e^{2x}$ thỏa mãn điều kiện $y(0)=-\frac{7}{4},y'(0)=\frac{3}{2}.$

 $\frac{\text{Dinh nghĩa 7.20}}{\text{Phương trình vi phân khuyết } y$ là phương trình có dạng

$$y'' = f(x, y'). {(11)}$$

Cách giải. Đặt z=y', suy ra z'=y'' và z'=f(x,z). **Ví dụ 7.21** Giải phương trình vi phân

$$y'' - \frac{y'}{x-1} - x(x-1) = 0$$

thỏa điều kiện y(2) = 1, y'(2) = -1.

Giải. Đặt z=y', suy ra z'=y'' và ta có phương trình

$$z' - \frac{z}{x - 1} = x(x - 1).$$

(đây là phương trình vi phân tuyến tính cấp 1)

$$A(x) = e^{\int \frac{1}{x-1} dx} = e^{\ln|x-1|} = |x-1| = x-1; B(x) = \int \frac{x(x-1)}{x-1} dx = \frac{1}{2}x^2$$

(từ điều kiện y(2) = 1, ta chọn khoảng chứa x là x > 1)

Suy ra

$$y' = (x - 1)(\frac{1}{2}x^2 + C_1) = \frac{1}{2}x^3 - \frac{1}{2}x^2 + C_1x - C_1.$$

Thay x=2 và y'(2)=-1 và biểu thức trên, ta tìm được $C_1=-3$. Khi đó

$$y' = \frac{1}{2}x^3 - \frac{1}{2}x^2 - 3x + 3$$

và do đó $y = \frac{1}{8}x^4 - \frac{1}{6}x^3 - \frac{3}{2}x^2 + 3x + C_2.$

Thay y(2)=1 vào biểu thức trên, ta tìm được $C_2=\frac{1}{3}$. Vậy nghiệm của phương trình đã cho là

$$y = \frac{1}{8}x^4 - \frac{1}{6}x^3 - \frac{3}{2}x^2 + 3x + \frac{1}{3}.$$

Dịnh nghĩa 7.22 Phương trình vi phân khuyết x là phương trình có dạng

$$y'' = f(y, y').$$
 (12)

Cách giải.

• Bước 1. Đặt z=y', ta có

$$z' = y'' = \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} = y' \frac{\mathrm{d}z}{\mathrm{d}y} = z \frac{\mathrm{d}z}{\mathrm{d}y}$$

Bước 2. Từ phương trình đã cho, suy ra

$$z\frac{\mathrm{d}z}{\mathrm{d}y} = f(y,z)$$

Ví dụ 7.23 Giải phương trình vi phân

$$(1-y)y'' + 2(y')^2 = 0.$$

Giải. Đặt z=y' suy ra $z'=z\frac{\mathrm{d}z}{\mathrm{d}y}$. Thay vào phương trình đã cho

$$(1-y)z\frac{\mathrm{d}z}{\mathrm{d}y} + 2z^2 = 0$$

hay
$$\frac{\mathrm{d}z}{z} = 2\frac{\mathrm{d}y}{y-1}.$$

Lấy tích phân hai về $\ln|z|=2\ln|y-1|+C_1=\ln(y-1)^2+\ln C_1$ suy ra $z = (y-1)^2 C_1$.

Thay
$$z=(y-1)$$
 C_1 . Thay $z=y'$ vào $\dfrac{\mathrm{d}y}{(y-1)^2}=C_1\mathrm{d}x$ và do đó $-\dfrac{1}{y-1}=C_1x+C_2$.

và do đó
$$-rac{1}{y-1}=C_1x+C_2.$$

Vậy nghiệm tổng quát là $y=1-rac{1}{C_1x+C_2}.$

7.3.2 Phương trình vi phân tuyến tính cấp 2 hệ số hằng

Định nghĩa 7.24 PTVP cấp 2 tuyến tính hệ số hằng tổng quát

$$y'' + ay' + by = f(x), \quad a, b \in \mathbb{R}$$
(13)

Phương trình vi phân cấp 2 tuyến tính hệ số hằng thuần nhất

$$y'' + ay' + by = 0, \quad a, b \in \mathbb{R}$$
 (14)

Phương trình đặc trưng của phương trình (14) là

$$k^2 + ak + b = 0.$$

Phương pháp giải PTVP cấp 2 tuyến tính thuần nhất

• PTĐT có hai nghiệm phân biệt k_1, k_2 . Khi đó (14) có nghiệm tống quát là

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$$

ullet PTĐT có nghiệm kép k. Khi đó (14) có nghiệm tống quát là

$$y = (C_1 + C_2 x)e^{kx}.$$

•	PTĐT có hai nghiệm phức phân biệt $k_1 = u + iv, k_2 = u - iv$. Khi
	đó (14) có nghiệm tổng quát là

$$y = e^{ux}(C_1\cos vx + C_2\sin vx).$$

Ví dụ 7.25 Giải phương trình vi phân

$$y'' + 4y' + 4y = 0$$

nỏa điều kiện $y(-1)=2, y'(-1)=1.$	

Nghiệm của phương trình y'' + ay' + by = f(x)

Nghiệm tổng quát của phương trình này có dạng

$$y = \overline{y} + y^*$$

trong đó

- \overline{y} là nghiệm tổng quát của PTVP y'' + ay' + by = 0
- y^* là nghiệm riêng của PTVP y'' + ay' + by = f(x)

Tìm nghiệm riêng của PTVP y'' + ay' + by = f(x) (*) Dạng 1. $f(x) = e^{ux}P_n(x)$ với $P_n(x)$ là một đa thức bậc n.

• Bước 1. Dạng nghiệm riêng y^* của (*) có dạng

$$y^* = x^m e^{ux} Q_n(x)$$

với $Q_n(x)$ là một đa thức bậc n.

- Nếu u không là nghiệm của PTĐT thì m=0.
- Nếu u là nghiệm đơn của PTĐT thì m=1.
- Nếu u là nghiệm kép của PTĐT thì m=2.
- Bước 2. Thế dạng nghiệm riêng y^* vào (*) để tìm được nghiệm riêng.

Dạng 2. $f(x) = e^{ux}[P_n(x)\cos vx + Q_m(x)\sin vx]$, trong đó $P_n(x), Q_m(x)$ lần lượt là các đa thức bậc n và m.

• Bước 1. Đặt $k = \max\{m, n\}$ và dạng nghiệm riêng y^*

$$y^* = x^s e^{ux} [F_k(x) \cos vx + G_k(x) \sin vx]$$

trong đó $F_k(x), G_k(x)$ là các đa thức bậc k.

- Nếu $u\pm iv$ không là nghiệm của PTĐT thì s=0.
- Nếu $u\pm iv$ là nghiệm của PTĐT thì s=1.
 - Bước 2. Thế y^* tìm được ở bước 2 vào (*) và để được nghiệm riêng.

Ví dụ 7.26 Tìm nghiệm của phương trình

$$y'' + 2y' + y = xe^x.$$

Giải. Ta có $f(x) = xe^x$ và $P_1(x) = x, u = 1$. Suy ra dạng nghiệm riêng

$$y^* = x^m e^x (Ax + B).$$

Do u=1 không là nghiệm của $k^2+2k+1=0$ nên m=0. Suy ra

$$y^* = e^x (Ax + B).$$

Thế y^* vào phương trình, ta được

$$A = \frac{1}{4}; B = -\frac{1}{4}$$

và do đó nghiệm riêng

$$y^* = \frac{1}{4}e^x(x-1).$$

Ví dụ 7.27 Giải phương trình vi phân

$$y'' - 3y' + 2y = e^{3x}(x^2 + x).$$

Giải. Xét phương trình vi phân y'' - 3y' + 2y = 0 (1). Phương trình đặc trưng $k^2 - 3k + 2 = 0$ có nghiệm $k_1 = 1; k_2 = 2$. Nghiệm tổng quát của phương trình (1) là

$$\overline{y} = C_1 e^x + C_2 e^{2x}.$$

Tìm nghiệm riêng của phương trình đã cho. Ta có $f(x)=e^{3x}(x^2+x)$ và $u=3, P_2(x)=x^2+x.$ Suy ra dạng nghiệm riêng

$$y^* = x^m e^{3x} (Ax^2 + Bx + C).$$

Do u=3 không là nghiệm của $k^2-3k+2=0$ nên m=0. Suy ra

$$y^* = e^{3x}(Ax^2 + Bx + C).$$

Thay y^* vào phương trình đã cho, ta được $A=\frac{1}{2}, B=-1, C=1.$

Do đó nghiệm tổng quát của phương trình vi phân đã cho là

$$y = C_1 e^x + C_2 e^{2x} + e^{3x} (\frac{1}{2}x^2 - x + 1).$$

Ví dụ 7.28 Giải phương trình vi phân

$$y'' + 9y = 18\cos 3x - 30\sin 3x.$$

Giải. Xét phương trình vi phân y'' + 9y = 0. (1) Phương trình đặc trưng

$$k^2 + 9 = 0$$

có nghiệm $k_{1,2}=\pm 3i$. Nghiệm tổng quát của phương trình (1) là

$$\overline{y} = e^{0x}(C_1 \cos 3x + C_2 \sin 3x).$$

Tìm nghiệm riêng của phương trình đã cho. Ta có $f(x)=18\cos 3x-30\sin 3x \text{ và } u=0, v=3; P_0(x)=18, Q_0(x)=-30.$ Suy ra dạng nghiệm riêng

$$y^* = x^s e^{0x} (A\cos 3x + B\sin 3x) = x^s (A\cos 3x + B\sin 3x).$$

Do $0 \pm 3i$ là nghiệm của $k^2 + 9 = 0$ nên s = 1. Suy ra

$$y^* = x(A\cos x + B\sin x).$$

Thay y^* vào phương trình đã cho, ta được A=5, B=3. Nghiệm tổng quát của phương trình vi phân đã cho là

$$y = (C_1 \cos 3x + C_2 \sin 3x) + x(5 \cos 3x + 3 \sin 3x).$$

Dạng 3. $f(x) = f_1(x) + f_2(x)$ trong đó $f_1(x), f_2(x)$ thuộc dạng 1 hoặc dạng 2.

Nghiệm của phương trình y'' + ay' + by = f(x) có dạng

$$y = \overline{y} + y_1^* + y_2^*$$

trong đó

- \overline{y} là nghiệm tổng quát của PTVP y'' + ay' + by = 0
- y_1^* là nghiệm riêng của PTVP $y'' + ay' + by = f_1(x)$
- y_2^* là nghiệm riêng của PTVP $y'' + ay' + by = f_2(x)$

Ví dụ 7.29 Giải phương trình vi phân

$$y'' - y' = 5e^x - \sin 2x.$$

Giải. Tìm nghiệm riêng của phương trình

$$y'' - y' = 5e^x. (15)$$

Ta có $f_1(x) = 5e^x$ và $u = 1, P_0(x) = 5$ và dạng nghiệm riêng

$$y_1^* = x^m e^x A.$$

Vì u=1 là nghiệm của phương trình $k^2-k=0$ nên m=1.

Suy ra dạng nghiệm riêng

$$y_1^* = xe^x A.$$

Thay vào (15), ta được A=5.

Tìm nghiệm riêng của phương trình

$$y'' - y' = -\sin 2x. (16)$$

Ta có $f_2(x) = -\sin 2x$ và $u = 0, v = 2, P_0(x) = -1, Q_0(x) = 0$ và dạng nghiệm riêng

$$y_2^* = x^s e^{0x} (B\cos 2x + C\sin 2x).$$

Vì $0\pm 2i$ không là nghiệm của phương trình $k^2-k=0$ nên s=0. Suy ra

$$y_2^* = B\cos 2x + C\sin 2x.$$

Thay vào (16), ta được $A = -\frac{1}{10}; B = \frac{1}{5}$.

Xét phương trình vi phân y'' - y' = 0. Phương trình đặc trưng

$$k^2 - k = 0$$

có nghiệm $k_1 = 0; k_2 = 1.$

Nghiệm tổng quát của phương trình vi phân tuyến tính thuần nhất này là

$$\overline{y} = C_1 + C_2 e^x.$$

Nghiệm tổng quát của phương trình vi phân đã cho là

$$y = 5xe^{x} - \frac{1}{10}\cos 2x + \frac{1}{5}\sin 2x + C_{1} + C_{2}e^{x}.$$

Đề thi cuối kỳ Học kỳ 1 năm học 2020-2021

Câu 1. Đối thứ tự lấy tích phân

$$I = \int_0^1 dx \int_0^{x^2} f(x, y) dy + \int_1^2 dx \int_0^{2-x} f(x, y) dy$$

 Câu 2. Tính tích phân $I=\iiint_{\Omega}\sqrt{4-y^2-z^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z$ trong đó Ω là khối vật thể giới hạn bởi

$$\begin{cases} y^2 + z^2 \le 1 \\ x^2 + y^2 + z^2 \le 4 \end{cases}$$

- Câu 3. Tính $I=\int_C (x^2-xy)\mathrm{d}l$, với C là đường tròn $x^2+y^2+2x=0$. Câu 4. Tính $I=\int_L (y+2x+1)\mathrm{d}x+(y-1)\mathrm{d}y$, với L là đoạn thẳng nối từ A(0,1) đến B(1,0).
- Câu 5. Giải các phương trình vi phân sau a. $(x - x^2y^2)dy + ydx = 0$. b. $y'' - 3y' + 2y = (x+2)e^x$.