

Polar™ HiperFET™ **Power MOSFET**

IXFT44N50P IXFH44N50P IXFK44N50P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

	٩D
_	
G	

500V **44A** $140 m\Omega$

Symbol	Test Conditions	Maximum R	atings
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	500	V
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	500	V
V _{GSS} V _{GSM}	Continuous Transient	± 30 ± 40	V
I _{D25}	T _C = 25°C	44	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	110	Α
I _A	T _C = 25°C	44	A
E _{AS}	$T_{c} = 25^{\circ}C$	1.7	J
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	10	V/ns
P _D	T _C = 25°C	658	W
T		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C
M _d	Mounting Torque (TO-247& TO-264)	1.13/10	Nm/lb.in
Weight	TO-268 TO-247 TO-264	4 6 10	g g

TO-247 (IXFH)	
G_	
b s	D (Tab)

G	= Gate	D	=	Drain
S	= Source	Tab	=	Drain

Features

- International Standard Packages
- Fast Intrinsic Rectifier
- Avalanche Rated
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol $(T_J = 25^{\circ}C)$	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic Typ.	Values Max.	
BV _{DSS}	$V_{gs} = 0V, I_{D} = 250\mu A$	500			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			140	mΩ

Symbol	Test Conditions	Chai	acteristic	Values
$(T_J = 25^{\circ}C \text{ Ur})$	nless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 20V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	20	32	S
C _{iss}			5440	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		639	pF
C _{rss}			40	pF
t _{d(on)}	Resistive Switching Times		28	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		29	ns
t _{d(off)}			85	ns
t,	$R_{g} = 3\Omega \text{ (External)}$		27	ns
Q _{g(on)}			98	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		35	nC
Q_{gd}			30	nC
R _{thJC}				0.19 °C/W
R _{thCS}	TO-247		0.21	°C/W
R _{thCS}	TO-264		0.15	°C/W

Source-Drain Diode

Symbol	Test Conditions	Cha	racteristic	Values	
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			44	Α
SM	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			110	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	L = 25A -di/dt = 100A/us			200	ns
I _{RM}	$I_F = 25A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		6.0		Α
Q_{RM}	$v_R = 100v, v_{GS} = 0v$		0.6		μC

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

TO-247 Outline

Terminals: 1 - Gate 2 - Drain 3 - Source

4.32

Millimotor

DIM.	Willimeter		l inc	nes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A_2	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b,	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
	ı			

Inches

5.49

.170 .216

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
С	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
E	19.81	19.96	.780	.786
е	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
Р	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics

Fig. 4. R_{DS(on)} Normalized to I_D = 22A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 22A Value vs. Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

0

3.5

Fig. 7. Input Admittance

60

50

70

T_J = 125°C

20

-40°C

5

V_{GS} - Volts

5.5

6

6.5

4.5

Fig. 8. Transconductance 60 50 $T_J = -40$ °C gfs-Siemens 40 25℃ 125℃ 20 10 0 0 10 20 70 30 40 50 60 I_D - Amperes

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

1

10

0.0001

0.001

M/O 0.1

Pulse Width - Seconds

0.01

Fig. 13. Maximum Transient Thermal Resistance

0.1