An Introduction to Proofs

Hassium, Fung San Gann, Tingyu Wu

1 Basic Logic

5 Introduction to Groups

2 Some Axioms of Sets

6 Real Numbers

3 Functions

Alphabetical Index

4 Integers and Cardinality

Introduction

In higher-level mathematics, students need a certain level of "mathematical maturity" to understand and apply abstract ideas. However, there is no clear way to measure this maturity, nor a definitive method to teach someone how to write a proof. This note is intended to be a transition from high/middle school math to proof-based formal mathematics.

You may notice that we use different names for the same object—a common practice in mathematics. For example, the set of all real numbers \mathbb{R} can be viewed as a set, a group, a ring, a field, a topological space, a metric space ... Each term highlights a particular aspect of the same structure. As Poincaré famously said, "Mathematics is the art of giving the same name to different things."

Finally, think deeper and enjoy mathematics!

1 Basic Logic

Logic is the formal framework and rules of inference that ensure the validity and coherence of arguments in math.

Remark. We shall accept that sentences can be either true or false. Moreover, we assume that every English sentence can be stated in symbolic logic form.

A proposition is a sentence that is either true or false in a mathematical system. The label "true" or "false" assigned to a proposition is called its $truth\ value$. We use the letters T and F to represent "true" and "false", respectively. An axiom is a proposition that is assumed to be true within a mathematical system without requiring proof. Axioms serve as the foundational building blocks of a mathematical theory, from which other propositions can be derived. A theorem is a proposition that has been proven to be true using logical reasoning and the accepted axioms and previously established theorems of the mathematical system. The proof demonstrates why the theorem must hold based on these foundations.

Consider the proposition " π is not a rational number", which is trivially true. However, we could always find some false companion of this proposition, such as " π is a rational number". Similarly, we can find a true companion of a false proposition. Let P be a proposition, such a companion of P is called the *negation* of P, denoted $\neg P$.

Let P and Q be propositions. Those sentences can be combined using the word "and", denoted $P \wedge Q$, and called the *conjunction* of P and Q. The proposition $P \wedge Q$ is true if both P and Q are true. We can combine the propositions by the word "or", denoted $P \vee Q$, and called the *disjunction* of P and Q. The proposition $P \vee Q$ is true if at least one of P or Q is true. A truth table is shown below.

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$
\overline{T}	T	F	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	F

Two propositions P and Q are logically equivalent if they have the same truth value in every possible combination of truth values for the variables in the statements, denoted $P \equiv Q$.

Example. Let P be a proposition, then $P \equiv \neg(\neg P)$ is logically equivalent. To prove this statement, consider $\neg P$ as a proposition Q, then we obtain the following truth table.

$$\begin{array}{c|ccc} P & Q \equiv \neg P & \neg Q \equiv \neg (\neg P) \\ \hline T & F & T \\ F & T & F \end{array}$$

Here P and $\neg Q$ has the same truth value in each case, so $P \equiv \neg(\neg P)$.

Problem 1.1. Let P, Q, and R be propositions. Consider the following statements:

- 1. $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$;
- 2. $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$.

Try to prove or disprove the statements.

Problem 1.2. Let P, Q, and R be propositions. Consider the following statements:

- 1. $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q);$
- 2. $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q);$
- 3. $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$.

Try to prove or disprove the statements. Based on your results, can you find more properties?

Let P and Q be propositions. Consider the proposition "if n is a natural number, then 2n is an even number". Let P denotes "n is a natural number" and let Q denotes "2n is an even number", then the sentence becomes "if P, then Q", denoted $P \implies Q$. This implication called a *conditional proposition*, P is called the *antecedent* and Q is called the *consequent*. The proposition $P \implies Q$ is true if P is true and Q is true. What if P is false? The answer arises from one's intuition.

Imagine your high school teacher say "if you didn't submit your homework, then you haven't completed it". How would you argue against this sentence? The most likely response would be, "I did the homework but I didn't submit it". Whether or not you submitted your homework does not affect the truth value of the implication.

You should be convinced by your own intuition. This case is called a *vacuous truth*. In the proposition $P \Longrightarrow Q$, when P is false, $P \Longrightarrow Q$ is true. The truth table of $P \Longrightarrow Q$ is shown below.

$$\begin{array}{c|ccc} P & Q & P \Longrightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Let P and Q be propositions, $(P \Longrightarrow Q) \land (Q \Longrightarrow P)$ is called a biconditional proposition, denoted $P \iff Q$. We will write this by "P is true if and only if Q is true".

Problem 1.3. Let P and Q be propositions, show $(\neg P \equiv \neg Q) \iff (P \equiv Q)$.

Example. Let P and Q be propositions. Consider the conditional proposition $P \implies Q$. It is false only if P is true and Q is false, that is, $\neg(P \implies Q) \equiv P \land (\neg Q)$. Now we take the negation of the right side, $\neg(P \land (\neg Q)) \equiv (\neg P) \lor (\neg(\neg Q)) \equiv (\neg P) \lor Q$.

Problem 1.4. Write down the truth table of a biconditional proposition. Based on your truth table and the previous example, try to find a proposition R by " \vee ", " \wedge ", and " \neg " such that $R \equiv (P \iff Q)$. If $P \iff Q$ is true, does $P \equiv Q$?

Problem 1.5. Let P, Q, R, and S be propositions. Rewrite $P \implies (Q \implies (R \implies S))$ by ' \vee ", " \wedge ", and " \neg ". What is the negation of this sentence?

Problem 1.6. Let P, Q, and R be propositions. Try to prove or disprove $P \implies (Q \vee R) \equiv (\neg P) \vee Q \vee R$. What about $P \implies (Q \wedge R)$?

Given a proposition $P \implies Q$, the converse is defined as $Q \implies P$ and the contrapositive is defined as $(\neg Q) \implies (\neg P)$. The truth table is shown below, and it suffices to conclude that $(P \implies Q) \equiv (\neg Q \implies \neg P)$.

P	Q	$P \implies Q$	$Q \implies P$	$\neg Q \implies \neg P$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

Problem 1.7. Let P and Q be propositions, when does $(P \implies Q) \equiv (Q \implies P)$?

Let P be the proposition "x is a natural number". Here x is a variable, and the truth value of this proposition depends on x. For instance, if x = 1, then P is true; if x = 0.86, then P is false. A propositional function is a family of propositions depending on one or more variables. The collection of permitted variables is the domain. Now we write P(x) instead of P, so P(1) is true and P(0.86) is false.

Problem 1.8. Let x be a variable and let x be a natural number. Give a proposition P(x) such that P(x) is true when $x \le 2024$ and false when $x \ge 2025$.

Propositional functions are often quantified. The universal quantifier is denoted by " \forall ", and the proposition $\forall x(P(x))$ is true if and only if P(x) is true for every x in its domain. The existential quantifier is denoted by " \exists ", and the proposition $\exists x(P(x))$ is true if and only if P(x) is true for at least one x in its domain. Consider the proposition $\forall x(P(x))$, this means all x make P(x) true, so there does not exist some x such that P(x) is false, which is $\neg(\exists x(\neg P(x)))$.

Example. Let P(x) be a proposition, then $\neg(\forall x(P(x))) \iff \neg(\neg(\exists x(\neg P(x)))) \iff \exists x(\neg P(x)).$

Problem 1.9. Let P(x) be a proposition, show that $\neg(\exists x(P(x))) \iff \forall x(\neg P(x))$.

The order of quantifiers does matter the meaning of a proposition. Consider the proposition "for all natural number x, there exists a natural number y such that y > x". Pick some x, let y = x + 1, then y > x and y is a natural number, so the proposition is true. However, switching the order of quantifiers gives "there exists a natural number y, for all natural number x, y > x". Suppose there exists such y, then y + 1 is a natural number, so let x = y + 1, it is trivial that y < x, hence the proposition is false.

Example. Let P(x) and Q(y) be propositions. Consider the proposition $\forall x (\exists y (P(x) \lor Q(y)))$. To find its negation, let $R(x) \equiv \exists y (P(x) \lor Q(y))$, now the negation becomes $\exists x (\neg R(x))$. Since P only depends on x, let $S(y) \equiv (P(x) \lor Q(y))$, then we have $\exists x (\neg (\exists y (S(y)))) \equiv \exists x (\forall y (\neg (P(x) \lor Q(y)))) \equiv \exists x (\forall y (\neg (P(x) \lor Q(y)))) \equiv \exists x (\forall y (\neg (P(x) \lor Q(y))))$.

Problem 1.10. Let P(x, y, z) be a proposition, consider the following propositions.

- 1. $Q(x, y, z) \equiv \exists x (\forall y (\forall z (P(x, y, z))));$
- 2. $R(x, y, z) \equiv \forall x (\exists y (\forall z (P(x, y, z))));$
- 3. $S(x, y, z) \equiv \forall x (\forall y (\exists z (P(x, y, z)))).$

What are the negations of those propositions? What is the negation of $Q \vee (R \wedge S)$?

Example. Let P(x) and Q(x) be propositions. Consider the negation of $P(x) \implies Q(x)$, $\neg(P(x) \implies Q(x)) \equiv \neg((\neg P(x)) \lor Q(x)) \equiv P(x) \land (\neg Q(x)) \equiv \forall x (P(x) \land (\exists x (\neg Q(x)))) \equiv \exists x (P(x) \land (\neg Q(x)))$. Notice that taking the negation brings an existential quantifier.

In the following sections, we shall assume readers are familiar with basic logic and use it as a tool to understand or prove propositions. Several expressions and their "translations" are shown below.

$$P \implies Q$$
 $P \iff Q$
 $P \text{ implies } Q; \text{ if } P, \text{ then } Q$ $P \text{ if and only if } Q$
 $P \text{ is sufficient for } Q; Q \text{ is necessary for } P$ $P \text{ is necessary and sufficient for } Q$

Problem 1.11. Given the following propositions, analyze their structures.

- 1. the number $\sqrt{2}$ is not a rational number;
- 2. if x is a natural number, then x is an integer;
- 3. for all natural number x, for all rational number y with x < y < x + 1, there exists a real number z such that y < z < y + 1 and z is irrational;
- 4. given a sequence (x_n) of real numbers, we say (x_n) converges to a real number L if, for all real number $\epsilon > 0$, there exists a real number N such that, for all natural number n, n > N implies $|x_n L| < \epsilon$.

Find the negation of each proposition.

2 Some Axioms of Sets

In this section, we begin investigating sets, the most basic entities in mathematics. It is natural to ask: What is a set? There is no precise definition of sets. Intuitively, a set is a collection of objects that satisfy some property, and the objects are called elements.

Remark. This note is based on the ZFC set theory. In this system, every object is a set and we allow sets of sets. From now on, assume that there exists a set.

If S is a set and x is an element in S, then we say x belongs to S, denoted $x \in S$. If x does not belong to S, then we write $x \notin S$. If S has no element, then we call it an *empty set*, denoted \varnothing .

Axiom of empty set. There exists an empty set.

Axiom of extensionality. Two sets A and B are equal if and only if they have the same elements.

Axiom schema of separation. If P is a property, then for any set X there exists a set $Y = \{x \in X \mid P(x)\}$.

Elements determine a set. One way to describe a set is to explicitly list the elements. For example, we can write a set $S = \{6, 7, 8\}$. Another way is to express the elements by the properties they satisfy.

Example. Here are several examples of sets.

- 1. the set $S = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$ has three elements;
- 2. the set $\{2n \mid n \in \mathbb{N}\}\$ is the set of all even numbers, where \mathbb{N} is the set of natural numbers;
- 3. the set $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z} \text{ and } b \neq 0\}$ is the set of rational numbers, where \mathbb{Z} is the set of integers.

We shall provide constructions for \mathbb{N} and \mathbb{Z} later.

Problem 2.1. Write out the set of all positive integers and the set of all prime numbers.

Definition 2.1. Let S be a set. A set R is a subset of S, denoted $R \subset S$, if for all $x \in R$, $x \in S$. If there exists some $x \in S$ such that $x \notin R$, then R is called a proper subset of S, denoted $R \subseteq S$.

It suffices to check that axiom schema of separation guarantees that subsets are sets.

Remark. Some textbooks use " \subseteq " for subsets and " \subset " for proper subsets.

Remark. From now on, try to vertify whether those constructions are actually sets.

Proposition. Let A be a set, then $A \subset A$.

Proof. For all $x \in A$, $x \in A$, so $A \subset A$.

Proposition. Let X and Y be sets, then X = Y if and only $X \subset Y$ and $Y \subset X$.

Remark. For a biconditional proposition $P \iff Q$, we use the notation " (\Rightarrow) " in the proof to show $P \implies Q$ and " (\Leftarrow) " for $Q \implies P$.

Proof. Let X and Y be sets. (\Rightarrow) For all $x \in X$, since X = Y, $x \in Y$, so $X \subset Y$. For all $y \in Y$, since X = Y, $y \in X$, so $Y \subset X$. (\Leftarrow) Suppose $X \neq Y$. If $X \subset Y$, then there exists $a \in Y$ such that $a \notin X$, so $X \not\subset Y$, a contradiction. \square

Proposition. Let A be any set, then $\emptyset \subset A$.

Proof. Suppose $\varnothing \not\subset A$, then there exists $x \in \varnothing$ such that $x \notin A$, since $x \in \varnothing$ is false, contradiction.

Problem 2.2. Prove that a set is independent of the order of its elements. For example, $\{1,2,3\} = \{3,2,1\}$.

Problem 2.3. If X, Y, and Z are sets such that $X \subset Y$ and $Y \subset Z$, prove that $X \subset Z$.

Axiom of pairing. For two objects a and b, there exists a set $\{a, b\}$ containing exactly a and b.

Definition 2.2. Let a and b be some objects. An ordered pair (a,b) is defined as the set $\{\{a\},\{a,b\}\}$.

Problem 2.4. Show that an ordered pair is indeed a set.

Proposition. Let (a,b) and (c,d) be ordered pairs, then (a,b)=(c,d) if and only if a=c and b=d.

Proof. We have $(a, b) = \{\{a\}, \{a, b\}\}$ and $(c, d) = \{\{c\}, \{c, d\}\}\}$. (\Rightarrow) Suppose $a \neq c$, then $\{a\} \neq \{c\}$. If $\{a\} = \{c, d\}$, then c = d = a, a contradiction. Suppose $b \neq d$. If a = c, then $\{a\} = \{c\}$ and $\{a, b\} \neq \{c, d\}$, a contradiction. (\Leftarrow) If a = c and b = d, then $\{a, b\} = \{c, d\}$ and $\{a\} = \{c\}$, hence (a, b) = (c, d).

The definition of ordered pairs can be extended to multiple elements. We call (a_1, \ldots, a_n) a n-tuple.

Problem 2.5. Prove that $\{a\} = \{a, a\}$. A set with one element is called a *singleton*.

Problem 2.6. Write out the definition to n-tuples, where n is a positive integer.

Axiom of union. For all set X, there exists a set $Y = \bigcup X$, the union of all elements of X.

Definition 2.3. Let A and B be sets. The *union* of A and B is the set $\{x \mid x \in A \text{ or } x \in B\}$, denoted $A \cup B$. The *intersection* of A and B is the set $\{x \mid x \in A \text{ and } x \in B\}$. We say A and B are disjoint if $A \cap B = \emptyset$. The complement of A in B is the set $\{x \mid x \in B \text{ and } x \notin A\}$, denoted $B \setminus A$.

Problem 2.7. Let A and B be sets. Prove that $A \cup B$, $A \cap B$, and $A \setminus B$ are sets based on the axioms.

Proposition. Let A and B be sets, then $A \cup B = B \cup A$.

Proof. For all $x \in A \cup B$, if $x \in A$, then $x \in B \cup A$; if $x \in B$, then $x \in B$, hence $A \cup B = B \cup A$.

Problem 2.8. Let A, B, and C be sets. Prove the following propositions.

- 1. $A \cap B = B \cap A$;
- 2. $A \cup (B \cup C) = (A \cup B) \cup C$;
- 3. $A \cap (B \cap C) = (A \cap B) \cap C$;
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
- 5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Theorem 2.1 (De Morgan's law). Let A, B, and C be sets, then $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$ and $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$.

Proof. Let $x \in C \setminus (A \cap B)$, then $x \in C$ and $x \notin A \cap B$, that is, $x \notin A$ and $x \notin B$. If $x \notin C \setminus A$, then $x \notin A$, so $x \notin B$ and $x \in C \setminus B$. Hence $C \setminus (A \cap B) \subset (C \setminus A) \cup (C \setminus B)$. Now let $x \in (C \setminus A) \cup (C \setminus B)$, then $x \in C$ and $x \notin A$ or $x \notin B$, so $x \notin A \cap B$, that is, $x \in C \setminus (A \cap B)$, hence $(C \setminus A) \cup (C \setminus B) \subset C \setminus (A \cap B)$. The proof of the second part is left as an exercise.

Definition 2.4. Let X be a set. A partition of X is a set $\{X_i\}$ of non-empty subsets of X such that every elements $x \in X$ lies in exactly one of there subsets.

Problem 2.9. Prove that a partition is a set.

Some texts assume the existence of an "universal set", denoted U, which has all objects as elements including itself, so we can define complements of any set S as the set $U \setminus S$. However, this assumption leads to a paradox. Consider the set S, defined as the set of all sets that are not members of themselves, that is, $S = \{X \mid X \notin X\}$. Does S belong to S? This is known as Russell's Paradox. Assume $S \in S$, then by the definition of S, $S \in S$ implies $S \notin S$, a contradiction. Assume $S \notin S$, then $S \in S$. This is also a contradiction.

Definition 2.5. Let X be a set, and let the *successor* of X be $X^+ = X \cup \{X\}$. A set S is called an *inductive set* if $\emptyset \in S$ and for all $X \in S$, $X^+ \in S$.

Axiom of infinity. There exists an inductive set.

Proposition. The intersection of two inductive sets is an inductive set.

Proof. Let A and B be inductive sets, then $\emptyset \in A \cap B$. For all $S \in A \cap B$, $S \in A$ and $S \in B$. Since A and B are inductive, $S^+ \in A$ and $S^+ \in B$, hence $A \cap B$ is inductive.

Definition 2.6. The set of all *natural numbers*, denoted \mathbb{N} , is the intersection of all inductive sets.

We denote $0 = \emptyset$, $1 = 0^+$, $2 = 1^+$, ...

Problem 2.10. Prove that the set of all natural numbers is a subset of any inductive set.

Axiom of power set. For any X there exists a set consisting of all subsets of X.

Definition 2.7. Given a set X, the set of all subsets of X is called its *power set*, denoted $\mathscr{P}(X)$.

Example. Let $X = \{a, b\}$, the power set $\mathscr{P}(X) = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}.$

Definition 2.8. Let X and Y be sets. The Cartesian product $X \times Y$ is the set of all ordered pairs (a, b), where $a \in X$ and $b \in Y$.

Problem 2.11. Let X and Y be sets. Write out the set $\mathscr{P}(\mathscr{P}(X \cup Y))$. Prove that $X \times Y = \{z \in \mathscr{P}(\mathscr{P}(X \cup Y)) \mid \text{there exists } x \in X \text{ and } y \in Y \text{ such that } z = (x,y)\} \subset \mathscr{P}(\mathscr{P}(X \cup Y)), \text{ hence } X \times Y \text{ is a set.}$

Problem 2.12. Let S be a set, prove that $S \subseteq \mathcal{P}(S)$.

Problem 2.13. Let A, B, and C be sets. Prove the following propositions.

- 1. $A \times B = B \times A$ if and only if A = B;
- 2. $A \times (B \times C) = (A \times B) \times C$;
- 3. $(A \cup B) \times C = (A \times C) \cup (B \times C)$;
- 4. $(A \cap B) \times C = (A \times C) \cap (B \times C)$;
- 5. $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.

Definition 2.9. The disjoint union of two sets A and B, denoted A II B, is the set A II $B = (A \times \{0\}) \cup (B \times \{1\})$.

Problem 2.14. Let A and B be sets, prove that $A \coprod B$ is a set.

Problem 2.15. Let X and Y be sets. The symmetric difference $X \triangle Y$ is defined to be $(X \setminus Y) \cup (Y \setminus X)$. Prove that $X \triangle Y$ is a set.

Definition 2.10. A binary operation R is a set of ordered pairs. If $(x,y) \in R$, we write xRy. The domain of R is the set $dom(R) = \{u \mid \text{there exists } v \text{ such that } (u,v) \in R\}$. The range of R is the set $ran(R) = \{v \mid \text{there exists } u \text{ such that } (u,v) \in R\}$.

It suffices to show a binary operation is indeed a set. Let R be a binary operation, then $R \subset X \times Y$ for some sets X and Y. By the axiom schema of separation, R is a set.

Problem 2.16. Let R be a binary operation. Prove that $dom(R), ran(R) \subset \bigcup(\bigcup R)$, hence, by axiom of union, dom(R) and ran(R) are sets.

Definition 2.11. Let R be a binary operation on a set S, that is, $R \subset S \times S$. We say R is an equivalence relation if the following properties hold.

1. For all $a \in X$, aRa.

(reflexive)

2. If aRb, then bRa.

(symmetric)

3. If aRb and bRc, then aRc.

(transitive)

For all $a \in A$, the set $S_a = \{b \mid aRb\}$ is the equivalence class of a.

Problem 2.17. Prove that an equivalence class is a set.

Problem 2.18. Prove that = is an equivalence relation in \mathbb{N} .

Problem 2.19. Let R be a binary operation on a set X. For all $a, b \in A$, prove that $S_a \cap S_b$ is either \emptyset or S_a . Prove that the collection of S_a forms a partition of X.

Definition 2.12. Let \leq be a binary relation on a set X. We say \leq is a partial ordering if the following conditions hold.

- 1. For all $x \in X$, $x \le x$.
- 2. For all $x, y \in X$, $x \le y$ and $y \le x$ implies x = y.
- 3. For all $a, b, c \in X$, if $a \le b$ and $b \le c$, then $a \le c$.

The set with a partial ordering is called a partially ordered set.

Definition 2.13. A partially ordered set (X, \leq) is linearly ordered if for all $p, q \in X$, either $p \leq q$ or $q \leq p$.

Example. The set of natural numbers \mathbb{N} forms a linearly ordered set in set inclusions.

Proposition. Let (X, \leq) be a partially ordered set and let $Y \subset X$, then Y is partially ordered.

Proof. For all elements $a, b, c \in Y$, $a, b, c \in X$, so Y inherits the partial ordering of X.

Problem 2.20. Let (X, \leq) be a linearly ordered set and let $Y \subset X$, prove that Y is linearly ordered.

Problem 2.21. Let X be a set. If $(\mathscr{P}(X), \subset)$ is a linearly ordered set, prove that X is either a singleton or the empty set.

Problem 2.22. Let L be a partially-ordered set in which the maximum length of a subchain is finite. Then L can be partitioned into n antichains.

Definition 2.14. Let (X, \leq) be a partially ordered set and let $Y \subset X$ be an nonempty subset. An element a is the *upper bound* of X if for all $x \in X$, $x \leq a$. An element b is the *lower bound* of X if for all $x \in X$, $b \leq x$. The least upper bound of X is called the *supremum* and the greatest lower bound of X is called the *infimum*.

Definition 2.15. Let (X, \leq) be a partially ordered set. The set is well-ordered if for every nonempty subset S of X, there exists $a \in S$ such that for all $s \in S$, $a \leq s$.

Theorem 2.2 (well-ordering theorem). Every set is well-orderable.

The well-ordering theorem is equivalent to the axiom of choice, which will be discussed later. You may assume it is correct for now.

Theorem 2.3 (finite induction). Given a subset $S \subset \mathbb{N}$ of the natural numbers with $0 \in S$ and $n \in S$ implies $n+1 \in S$, then $S = \mathbb{N}$.

Proof. Suppose $S \neq \mathbb{N}$, then $X = \mathbb{N} \setminus S$ is a nonempty set. By the well-ordering principle, X has a smallest element. Since $0 \in S$, $0 \notin X$, so the minimal element of X can be written in the form k+1, where $k \in \mathbb{N}$. Recall that $k+1=k^+=k \cup \{k\}$ is the successor of $k \in \mathbb{N}$, since k+1 is the smallest element, $k \notin X$, so $k \in S$. Now we have $k \in S$ and $k+1 \notin S$, a contradiction.

Example. Consider the statement: let $n \in \mathbb{N}$, show that $\sum_{i=0}^n = (n(n+1))/2$. If n=0, then the equation trivially holds. Assume $\sum_{i=0}^k = (k(k+1))/2$ holds for some $k \in \mathbb{N}$, then $\sum_{i=0}^{k+1} = (k(k+1))/2 + (k+1) = ((k+1)(k+2))/2$. Hence, by induction, $\sum_{i=0}^n = (n(n+1))/2$ for all $n \in \mathbb{N}$.

Problem 2.23. Prove that given a subset $S \subset \mathbb{N}$ of the natural numbers with $0 \in S$ and $\{0, 1, \dots, n\} \subset S$ implies $n+1 \in S$, then $S = \mathbb{N}$. This is known as the *complete finite induction*. Prove that the complete finite induction implies the finite induction, conclude that they are equivalent.

3 Functions

Definition 3.1. Let X and Y be sets. A function f is a binary operation $f \subset X \times Y$ such that for all $x \in X$, there exists a unique $y \in Y$ such that $(x,y) \in f$. We say f is a function from X to Y, denoted $f: X \to Y$. The set Y is called the *codomain* of f, denoted cod(f).

Definition 3.2. Let $f: X \to Y$ be a function, the *image* of X under f, denoted $\operatorname{im}(f)$, is the range of f. For all $(x,y) \in f$, we write f(x) = y. The *preimage* of Y under f, denoted $f^{-1}(Y)$, is the set $\{x \mid x \in X \text{ and } f(x) \in Y\}$. Two functions f and g are the same if $\operatorname{dom}(f) = \operatorname{dom}(g)$, $\operatorname{cod}(f) = \operatorname{cod}(g)$, and for all $x \in \operatorname{dom}(f)$, f(x) = g(x).

Example. Here are some examples of functions.

- 1. $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = n^+$, where $n \in \mathbb{N}$, is a function.
- 2. $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by f(x) = (x, x), where $x \in \mathbb{R}$, is a function.

Problem 3.1. Let f be a function, prove that $ran(f) \subset cod(f)$.

Problem 3.2. Consider a function $f: \varnothing \to A$, prove that $f=\varnothing$. Prove that such f is unique for every set A.

Problem 3.3. Verify whether the following binary operations are functions.

- 1. $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = \sqrt{x}$ for all $x \in \mathbb{R}$.
- 2. $f: \{1,2,3\} \rightarrow \{2,3\}$ with $f=\{\{1,2\},\{2,2\},\{3,2\}\}$.
- 3. $f: \mathbb{N} \to \mathbb{Q}$ with $f(x) = x^4 x^2$ for all $x \in \mathbb{N}$.
- 4. $f: \mathbb{Q} \to \mathbb{Z}$ with f(x) = |x| for all $x \in \mathbb{Q}$.

Definition 3.3. Let $f: X \to Y$ and $g: Y \to Z$ be functions. The *composition* of f and g, denoted $g \circ f$, is defined as $g \circ f: X \to Z$ with $(g \circ f)(x) = g(f(x))$ for all $x \in X$.

Problem 3.4. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove that $g \circ f$ is a well-defined function.

Proposition. The composition of functions is associative, that is, for all $f: X \to Y$, $g: Y \to Z$, and $h: Z \to S$, $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. For all
$$x \in X$$
, $(h \circ g \circ f)(x) = h(g(f(x))) = (h \circ g)(f(x)) = ((h \circ g) \circ f)(x)$.

Consider a diagram, where every vertex is an object and every arrow preserves the structure of those objects. Such a diagram is said to be *commutative* if all paths between two vertices are equivalent. In this section, every vertex is a set and every arrow is a function.

Example. Consider the following diagrams.

The left diagram is commutative if $g \circ f = h$. The right diagram is commutative if $g \circ f = h$ and $\psi \circ \varphi = h$.

Problem 3.5. Let $f: S_1 \times S_2 \to S_3$ be a function. We say f is commutative as a composition if f(a,b) = f(b,a). Similarly, f is associative as a composition if f(f(a,b),c) = f(a,f(b,c)). Prove that if f is commutative, then $S_1 = S_2$. Prove that if f is associative, then the following diagram commutes.

$$\begin{array}{c|c} S_1 \times S_2 \times S_3 & \xrightarrow{f} & S_4 \times S_3 \\ g:S_2 \times S_3 \to S_5 & & \downarrow \\ & & \downarrow \\ & S_5 & \xrightarrow{f} & S_6 \end{array}$$

Definition 3.4. A function $f: X \to Y$, where $X, Y \subset \mathbb{R}$, is said to be an *odd function* if for all $x \in X$, f(x) = -f(-x). The function f is said to be an *even function* if for all $x \in X$, f(x) = f(-x).

Example. Here are some examples of odd and even functions.

- 1. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ for all $x \in \mathbb{R}$ is even.
- 2. The function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = x for all $x \in \mathbb{R}$ is odd.
- 3. The function $0: \mathbb{R} \to \mathbb{R}$ defined by 0(x) = 0 for all $x \in \mathbb{R}$ is both odd and even.

Proposition. Any function $f: X \to Y$, where $X, Y \subset \mathbb{R}$, can be written as $f = \varphi + \psi$, where φ is an odd function and ψ is an even function.

Proof. For all
$$x \in X$$
, define $\varphi = (f(x) - f(-x))/2$ and $\psi = (f(x) + f(-x))/2$, then $\varphi(-x) = (f(-x) - f(x))/2 = -\varphi(x)$ and $\psi(-x) = (f(-x) + f(x))/2 = \psi(x)$. Moreover, $\varphi(x) + \psi(x) = (f(x) - f(-x) + f(x) + f(-x))/2 = f(x)$. \square

Problem 3.6. Write a function $f: \mathbb{R} \to \mathbb{R}$ that is neither odd nor even. Decompose f as a sum of an even and an odd function.

Problem 3.7. Prove that such decomposition for each $f: X \to Y$, where $X, Y \subset \mathbb{R}$, is unique.

Definition 3.5. Let $f: A \to B$ be a function. We say f is *injective* if for all $x, y \in B$ and x = y, then $f^{-1}(x) = f^{-1}(y)$. We say f is *surjective* if $\operatorname{ran}(f) = \operatorname{cod}(f)$. The function f is said to be *bijective* if it is both injective and surjective.

Problem 3.8. State an example if such a function exists.

- 1. $f:\{1,2,3\} \rightarrow \{4,5,6\}$ that is injective but not surjective.
- 2. $f: \{1,2,3\} \rightarrow \{4,5,6\}$ that is surjective but not injective.
- 3. $f: \mathbb{R} \to \mathbb{R}$ that is injective but not surjective.
- 4. $f: \mathbb{R} \to \mathbb{R}$ that is surjective but not injective.
- 5. $f: \mathbb{R} \to \{1, 2, 3\}$ that is injective but not surjective.
- 6. $f: \mathbb{R} \to \{1, 2, 3\}$ that is surjective but not injective.

Proposition. The composition of two surjective functions is surjective.

```
Proof. Let f: A \to B and g: B \to C be surjective functions, then \operatorname{ran}(f) = \operatorname{cod}(f) = B and \operatorname{ran}(g) = \operatorname{cod}(g) = C. For all x \in C, g^{-1}(x) \in B and f^{-1}(g^{-1}(x)) \in A, so C \subset \operatorname{ran}(g \circ f), hence g \circ f is surjective. \square
```

Problem 3.9. Let $f: X \to Y$ be a surjective function. Prove that there exists an injective function $g: Y \to X$.

Problem 3.10. Let f and g be functions. Prove or disprove the following statements.

- 1. If f and q are injective, then $f \circ q$ is injective.
- 2. If f and g are bijective, then $f \circ g$ is bijective.
- 3. If f is surjective and g is injective, then $f \circ g$ is injective.

Definition 3.6. A set S is said to be *finite* if there exists a bijective function $f: S \to n$, where $n \in \mathbb{N}$. The cardinality of S, denoted |S|, is the number n. If S is not finite, we say S is infinite.

Problem 3.11. Let S and X be finite sets with |S| = |X|. Let $f: S \to X$ be a function. Prove that if f is injective, then f is surjective. Does the converse hold?

Problem 3.12. Let S be a finite set. Prove that there does not exist a surjective function $f: S \to \mathscr{P}(S)$.

Definition 3.7. Let $f: X \to Y$ be a function. Let $Z \subset X$, then the *restriction* of f onto Z is the map $f|_Z: Z \to Y$ defined by $f|_Z(z) = f(z)$ for all $z \in Z$.

Definition 3.8. Let A be a set. The *identity function*, denoted id_A , is the function $id_A(x) = x$ for all $x \in A$.

Problem 3.13. Let $f: A \to B$ be a function, prove that $f \circ id_A = f = id_B \circ f$.

Definition 3.9. Let $f: A \to B$ be a function. The function $g: B \to A$ is a *left inverse* of f if $g \circ f = \mathrm{id}_A$. The function $h: B \to A$ is a right inverse of f if $f \circ h = \mathrm{id}_B$. A function φ is called an inverse of f if it is both a left inverse and a right inverse of f.

Proposition. Let f be a function. If g is an inverse of f, then g is unique.

Proof. Suppose g and h are inverses of f, then $h = h \circ f \circ g = (h \circ f) \circ g = g$.

Problem 3.14. Let f be a function with a left inverse g. Prove that if f has a right inverse, then the right inverse is g, conclude that g is the inverse of f.

Problem 3.15. Prove that a function has a left inverse if and only if it is injective. Prove that a function has a right inverse if and only if it is surjective, conclude that a function is bijective if and only if it has an inverse.

Definition 3.10. A category C consists of

- 1. a collection, denoted Ob(C), of objects;
- 2. for each pair of objects X and Y, there exists a collection of morphisms $f: X \to Y$, where X is called the domain and Y is called the codomain;
- 3. a composition operation, which gives, for each pair of morphisms $f: X \to Y$ and $g: Y \to Z$, a morphism $g \circ f: X \to Z$.

such that

- 1. given any $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$, we have the identity $(h \circ g) \circ f = h \circ (g \circ f)$;
- 2. for each object X, there exists an identity morphism $id_X : X \to X$ with the property that $f \circ id_X = f$ and $id_X \circ g = g$ for any $f : X \to Y$ and $g : Z \to X$.

The collection of morphisms from X to Y is denoted by $\operatorname{Hom}_{\mathbb{C}}(X,Y)$.

Let sets be objects, let functions be morphisms, and let the composition of morphisms be the composition of functions. By our previous observations, it suffices to check this defines a category of sets, denoted Set.

Example. Let X be a set, then $Hom_{Set}(X, X)$ is a category.

Example. In the following diagram, each vertex is an object and each arrow is a morphism. This defines a category.

Problem 3.16. Morphisms are not guaranteed to be functions. Let (S, \leq) be a partially ordered set. Let Ob(C) = S and $x \to y$ be a morphism if $x \leq y$. Prove that C is a category.

Problem 3.17. Let C be a category. Let a system C^{op} consists of all objects in C and all morphisms $f: A \to B$ if $B \to A$ is a morphism in C. Prove that C^{op} is indeed a category. This is called the *dual category* of C.

Problem 3.18. Prove that the identity morphism is unique for each object A in a category C.

Definition 3.11. Let C be a category. A morphism $f: A \to B$ is a monomorphism if for all $g, h: C \to A$, $f \circ g = g \circ h$ implies g = h. A morphism $f: A \to B$ is called an *epimorphism* if for all $i, j: B \to D$, $i \circ f = j \circ f$ implies i = j.

Proposition. A function is injective if and only if it is a monomorphism in Set.

Proof. (\Rightarrow) Let $f: A \to B$ be injective. If $A = \emptyset$, then f is the unique empty function. If $A \neq \emptyset$, let $g: B \to A$ be the left inverse of f, (\Leftarrow) Let $f: A \to B$ be a monomorphism. If $A = \emptyset$, then $f: \emptyset \to B$ is vacuously injective. If $A \neq \emptyset$,

Problem 3.19. Prove that a function is surjective if and only if it is an epimorphism in Set.

Definition 3.12. Let C be a category. A morphism $f: A \to B$ is an *isomorphism* if there exists $g \in \operatorname{Hom}_{\mathsf{C}}(B,A)$ such that $f \circ g = \operatorname{id}_B$ and $g \circ f = \operatorname{id}_A$. If there exists a morphism between two objects A and B, then we say they are *isomorphic*, denoted $A \approx B$.

Problem 3.20. Prove that a morphism is an isomorphism if and only if it is a monomorphism and an epimorphism.

Problem 3.21. Let A and B be well-ordered sets that are isomorphic to each other. Prove that the isomorphism between them is unique.

Definition 3.13. An *initial object* 0 of a category C is an object in C such that for any object A, there is a unique morphism $0 \to A$. A *terminal object* 1 of a category C is an object of C such that for any object B, there is a unique morphism $A \to 1$.

Proposition. Initial objects of a category C are unique up to isomorphism.

Proof. Let 0 and 0' be initial objects in some category C. Let $\varphi: 0 \to 0'$ and $\psi: 0' \to 0$. Since the diagram is commutative, we have $\varphi \circ \psi \circ \varphi = \varphi \circ \mathrm{id}_0$, hence φ is an isomorphism.

Problem 3.22. Prove that the initial object in a category C is a terminal object in C^{op}, conclude that terminal objects in C are unique up to isomorphism.

Problem 3.23. Prove that \varnothing is the initial object in Set. Prove that any singleton is a terminal object in Set.

Definition 3.14. Let \sim be an equivalence relation on a set X. The quotient set, denoted X_{\sim} , is the set $\{[x] \mid x \in X\}$.

Example. Let $S = \{a, b, c, d\}$. Let \sim be an equivalence relation on S such that $a \sim b$ and $c \sim d$. The quotient set S_{\sim} is $\{a, c\}$.

Problem 3.24. Consider the set of all integers \mathbb{Z} . Fix $n \in \mathbb{Z}$, Let \sim_n be an equivalence relation on \mathbb{Z} such that $a \sim_n b$ if and only if a - b = kn for some $k \in \mathbb{Z}$. Prove that \sim_n is indeed an equivalence relation. Find the quotient set \mathbb{Z}_{\sim_n} for all n.

Definition 3.15. Let X and Y be sets. Let \sim be an equivalence relation on X. A function $f: X \to Y$ is *invariant* under the equivalence relation such that, $x \sim y$ if and only if f(x) = f(y).

Problem 3.25. Let X be a set and let \sim be an equivalence relation on X. Prove that $\pi: X \to X_{\sim}$ defined by $x \mapsto [x]$ is a well-defined surjective function. Prove it is invariant under \sim .

Proposition. Let $f: X \to Y$ be a function, then f is an invariant function under some equivalence relation on X.

Proof. Define \sim on X by $x \sim y$, where $x, y \in X$, if and only if $f(x) \sim f(y)$. For all x = y, f(x) = f(y). For all x = y, f(x) = f(y) = f(z). Hence \sim is a well-defined equivalence relation on X, and f is trivially invariant under \sim .

Universal property for quotient sets. Let X and Y be sets. Let \sim be an equivalence relation on X and let $f: X \to Y$ be invariant under the equivalence relation. Then there exists a unique function $\overline{f}: X_{\sim} \to Y$ such that $f = \overline{f} \circ \pi$.

The proof of the universal property has two parts. We first verify that a quotient set has the universal property. Then we verify that a quotient set is characterized by this universal property, that is, any set satisfying the universal property must be a quotient set. This proof will be separated into multiple propositions.

Proposition. There exists a map $\overline{f}: X_{\sim} \to Y$ such that $f = \overline{f} \circ \pi$.

Proof. Define the relation $\{([x],y)\}\in \overline{f}$ if and only if f(x)=y. Let $[x]\in X$ and $y,z\in Y$. Suppose $([x],y),([x],z)\in \overline{f}$, then there exists $u,v\in X$ such that [u]=[v]=[x], f(u)=y, and f(v)=z, so $u\sim v.$ Since f is invariant under \sim , y=z. Hence \overline{f} is well-defined. For all $x\in X$, $(\overline{f}\circ\pi)(x)=\overline{f}([x])=f(y).$

Problem 3.26. Prove that such \overline{f} is unique.

Problem 3.27. Let $f: X \to Y$ be a function that induces an equivalence relation \sim_f on X. Since X_{\sim_f} satisfies the universal property, prove that $X_{\sim_f} \approx \operatorname{im}(f)$.

Proposition. Let S be any set satisfying the universal property for quotient sets. Let X be a set and let \sim_1 be an equivalence relation on X, so $\pi_1: X \to X_{\sim_1}$ is invariant under the equivalence relation induced by $\pi_2: X \to S$. Then $S \approx X_{\sim_1}$.

Proof. Since π_1 is surjective, $\overline{\pi_1}$ is surjective. Suppose $\overline{\pi_1}(s_1) = \overline{\pi_1}(s_2)$, where $s_1, s_2 \in S$. Since π_2 is surjective, there exist $x, y \in X$ with $s_1 = \pi_2(x)$ and $s_2 = \pi_2(y)$. Then $\overline{\pi_1}(s_1) = \overline{\pi_1}(\pi_2(x)) = \pi_1(x)$ and $\overline{\pi_1}(s_2) = \overline{\pi_1}(\pi_2(y)) = \pi_1(y)$, which implies $\pi_1(x) = \pi_1(y)$, so [x] = [y]. Since π_2 is invariant under \sim_1 , it follows that $\pi_2(x) = \pi_2(y)$, so $s_1 = s_2$. Hence $S \approx X_{\sim_1}$.

This completes our proof of the universal property for quotient sets.

Theorem 3.1 (canonical decomposition of functions). Let $f: A \to B$ be a function, then there exists a surjective function π , a bijective function g, and an injective function i, such that $f = i \circ g \circ \pi$.

$$A \xrightarrow{\pi} A_{\sim} \xrightarrow{g} \operatorname{im}(f) \xrightarrow{i} B$$

Proof. Let $i: \operatorname{im}(f) \to B$ be the identity map, then i is injective. The function $f: A \to B$ induces an equivalence relation \sim on X, so g is bijective. The projection map $\pi: A \to A_{\sim}$ is surjective. For all $a \in A$, $(i \circ g \circ \pi)(a) = (i \circ g)([a]) = i(f(a)) = f(a)$.

Definition 3.16. Let C be a category. Let A and B be objects in C. The *product* of A and B, denoted P, is an object in C with morphisms $p_1: P \to A$ and $p_2: P \to B$ such that for all object X in C with morphisms $\varphi_1: X \to A$ and $\varphi_2: X \to B$, there exists a unique $u: X \to P$ such that the following diagram commutes.

Problem 3.28. Prove that in Set, the Cartesian product satisfies the universal property for product.

Proposition. Let A and B be objects in a category C. Then their product is unique up to isomorphism.

Proof. Let P with $p_1: P \to A$ and $p_2: P \to B$ be the product of A and B. Suppose Q with $\varphi_1: Q \to A$ and $\varphi_2: Q \to B$ is another product of A and B. By the universal property, $u: Q \to P$ and $v: P \to Q$ are unique such that $p_1 \circ u = \varphi_1$, $p_2 \circ u = \varphi_2$, $\varphi_1 \circ v = p_1$, and $\varphi_2 \circ v = p_2$. We have $\varphi_1 \circ u \circ v = \varphi_1$ and $\varphi_2 \circ u \circ v = \varphi_2$, then $u \circ v = \mathrm{id}_Q$. Similarly, $v \circ u = \mathrm{id}_P$. Hence $P \approx Q$.

Problem 3.29. Let A, B, and C be sets. Use the universal property to prove that $A \times (B \times C) = (A \times B) \times C$.

Definition 3.17. Let C be a category. Let A and B be objects in C. The *coproduct* of A and B, denoted Q, is an object in C with morphisms $q_1: A \to Q$ and $q_2: B \to Q$ such that for all object Y in C with morphisms $\varphi_1: A \to Y$ and $\varphi_2: B \to Y$, there exists a unique $v: Q \to Y$ such that the diagram commutes.

Problem 3.30. Prove that in Set, the disjoint union satisfies the universal property for coproduct. Prove that the universal property characterizes disjoint union.

Problem 3.31. Describe the product and coproduct in Set op.

4 Integers and Cardinality

Theorem 4.1 (recursion). Given a set X and $x \in X$. Let $f: X \to X$ be a function, then there exists a unique function $F: \mathbb{N} \to X$ such that F(0) = x and $F(n^+) = f(F(n))$ for all $n \in \mathbb{N}$.

Proof. Construct such F inductively. Suppose F is not well-defined and $F(n^+) = f(F(n)) = f(F(m))$ for some $n, m \in \mathbb{N}$, since f is well-defined, a contradiction. Suppose G is another function satisfies the property, then F(0) = x = G(0). Assume F(n) = G(n) for some $n \in \mathbb{N}$, then $F(n^+) = f(F(n)) = f(G(n)) = G(n^+)$. Hence, by induction, F = G.

Definition 4.1. The addition on \mathbb{N} is defined to be $\{+_n\}_{n\in\mathbb{N}}$ such that $+_n(0) = n$ and $+_n(m^+) = (+_n(m))^+$ for a fixed n and every $m \in \mathbb{N}$. We denote $+_n(m)$ by n + m.

Proposition. For all $n \in \mathbb{N}$, n + 0 = n = 0 + n.

Proof. It is trivial that n+0=n. Let n=0, then 0+0=0. Suppose 0+k=k for some $k \in \mathbb{N}$, then $0+(k^+)=(0+k)^+=k^+$. Hence, by induction, n+0=n=0+n.

Problem 4.1. Prove that the following properties hold.

- 1. $n+1=n^+$ for all $n\in\mathbb{N}$.
- 2. m+n=n+m for all $m,n\in\mathbb{N}$.
- 3. a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{N}$.

Problem 4.2. Consider a relation $\sim_{\mathbb{N}^+} \subset \mathbb{N} \times \mathbb{N}$ defined by $(a,b) \sim (c,d)$ if and only if a+d=b+c. Prove that $\sim_{\mathbb{N}^+}$ is an equivalence relation.

Definition 4.2. The set of all *integers*, denoted \mathbb{Z} , is defined to be $(\mathbb{N} \times \mathbb{N})_{\sim_{\mathbb{N}^+}}$. Let $[(a,b)] \in \mathbb{Z}$, the *inverse* of [(a,b)] is defined to be [(b,a)].

Problem 4.3. Prove that there exists a bijection between $\{[(a,b)] \mid a,b \in \mathbb{N} \text{ and } a \subsetneq b\}$ and $\{[(b,a)] \mid a,b \in \mathbb{N} \text{ and } b \subsetneq a\}$, conclude that the inverse of an integer is unique.

Let $n \in \mathbb{Z}$, the inverse of n is denoted by -n.

Definition 4.3. Let $[(a,b)], [(c,d)] \in \mathbb{Z}$, the addition on \mathbb{Z} is defined to be [(a,b)] + [(c,d)] = [(a+c,b+d)].

Proposition. The addition on \mathbb{Z} is well-defined.

Proof. Suppose $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$, then a + b' = b + a' and c + d' = d + c'. We have (a + c) + (b' + d') = a + b' + c + d' = b + a' + d + c' = (b + d) + (a' + c'), hence $(a + c, b + d) \sim (a' + c', b' + d')$.

Definition 4.4. Let $[(a,b)], [(c,d)] \in \mathbb{Z}$, the multiplication on \mathbb{Z} is defined to be $[(a,b)] \cdot [(c,d)] = [(ac+bd,ad+bc)]$.

Problem 4.4. Prove that the multiplication on \mathbb{Z} is well-defined.

Problem 4.5. Consider the relation $\sim_{\mathbb{Z}\times}\subset\mathbb{Z}\times(\mathbb{Z}\setminus\{0\})$ defined by $(a,b)\sim(b,c)$ if and only if ad=bc. Prove that $\sim_{\mathbb{Z}\times}$ is an equivalence relation.

Definition 4.5. The rational numbers, denoted \mathbb{Q} , is defined to be the set $(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))_{\sim_{\mathbb{Z}\times}}$. Let $[(a,b)], [(c,d)] \in \mathbb{Q}$, the addition is defined to be [(a,b)] + [(c,d)] = [(ad+bc,bd)] and the multiplication on \mathbb{Q} is defined to be $[(a,b)] \cdot [(c,d)] = [(ac,bd)]$.

Problem 4.6. Prove that addition and multiplication on \mathbb{Q} are well-defined.

Problem 4.7. Let 0 be the element $[(0,x)] \in \mathbb{Q}$ and let 1 be the element $[(x,x)] \in \mathbb{Q}$ for any x. Verify the following algebraic properties of \mathbb{Q} .

(distributivity)

1. a+b=b+a and ab=ba for all $a,b\in\mathbb{Q}$. (commutativity) 2. a+b+c=a+(b+c) and abc=a(bc) for all $a,b,c\in\mathbb{Q}$. (associativity) 3. a+0=a for all $a\in\mathbb{Q}$. (additive identity) 4. $a\cdot 1=a$ for all $a\in\mathbb{Q}$. (multiplicative identity) 5. For all $a\in\mathbb{Q}$, there exists a unique $-a\in\mathbb{Q}$ such that a+(-a)=0. (additive inverse) 6. For all $a\in\mathbb{Q}$ and $a\neq 0$, there exists a unique $a^{-1}\in\mathbb{Q}$ such that $aa^{-1}=1$. (multiplicative inverse)

Definition 4.6. Let $a, b \in \mathbb{Q}$ and $b \neq 0$. The subtraction on \mathbb{Q} is defined to be a - b = a + (-b). The division on \mathbb{Q} is defined to be $a/b = a \cdot b^{-1}$.

Recall that we have defined \leq on \mathbb{N} by the natural inclusion, that is, for all $a, b \in \mathbb{N}$, $a \leq b$ if and only if $a \subset b$. Let $[(a,b)], [(c,d)] \in \mathbb{Z}$, we say $[(a,b)] \leq [(c,d)]$ if and only if a+d < b+c. Let $[(a,b)], [(c,d)] \in \mathbb{Q}$ with $b,d \geq 0$ and $b,d \neq 0$, then $[(a,b)] \leq [(c,d)]$ if and only if $ad \leq bc$.

Proposition. For all $a, b, c \in \mathbb{Q}$, the following properties hold.

1. a+c=b+c implies a=b.

7. a(b+c) = ab + ac.

- 2. $a \cdot 0 = 0$.
- $3. \ (-a)b = -ab.$
- 4. (-a)(-b) = ab.
- 5. ac = bc and $c \neq 0$ imply a = b.
- 6. ab = 0 implies either a = 0 or b = 0.

Proof. (i) We have a = a + (c + (-c)) = a + c + (-c) = b + c + (-c) = b + (c + (-c)) = b. (ii) We have $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$, then $a \cdot 0 + 0 = a \cdot 0 + a \cdot 0$, so $a \cdot 0 = 0$. (iii) We have ab + (-a)b = (a + (-a))b = 0b = 0. Hence (-a)b = -ab. (iv) We have (-a)(-b) + (-ab) = (-a)(-b) + (-a)b = (-a)(-b+b) = 0. Hence (-a)(-b) = ab. (v) We have $a = a(cc^{-1}) = acc^{-1} = bcc^{-1} = b(cc^{-1}) = b$. (vi) Let $b \neq 0$, then ab = 0 = 0b, so a = 0.

Problem 4.8. Prove that for all $a, b, c \in \mathbb{Q}$, the following properties hold.

- 1. If $a \leq b$, then $-b \leq -a$.
- 2. If $a \leq b$ and $c \leq 0$, then $bc \leq ac$.
- 3. If $0 \le a$ and $0 \le b$, then $0 \le ab$.
- 4. $0 \le a^2$.
- 5. If 0 < a, then $0 < a^{-1}$.
- 6. If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Definition 4.7. A set S is said to be *transitive* if for all $s \in S$, $s \subset S$. A set is an *ordinal* if it is transitive and well-ordered by \in .

Example. The set $0 \in \mathbb{N}$ is an ordinal.

Problem 4.9. Prove that if a set S is transitive, then $\mathscr{P}(S)$ is also transitive.

Problem 4.10. Prove that the set of natural numbers \mathbb{N} is an ordinal.

Definition 4.8. If $\varphi(x, p_1, p_2, ...)$ is some formula, then we say $C = \{x \mid \varphi\}$ is a *class*, that is, x is a member of C if and only if x satisfies φ .

Example. The collection of all sets is a class.

Problem 4.11. Prove that every set is a class.

Axiom schema of replacement. If a class F is a function, then for all X, there exists a set $Y = F(X) = \{F(x) \mid x \in X\}$.

Problem 4.12. Prove that axiom schema of replacement implies axiom schema of separation.

Theorem 4.2 (transfinite induction).

Proof.

Theorem 4.3 (transfinite recursion).

Proof.

Problem 4.13.

Axiom of choice.

Example.

Problem 4.14.

Theorem 4.4 (well-ordering theorem). Every set is well-orderable.

Proof.

By the well-ordering theorem, \mathbb{N} is well-ordered, this is called the well-ordering principle.

Remark. Well-ordering principle is based on ZF system, the set theory without axiom of choice. The well-ordering theorem is an equivalent form of axiom of choice, which is based on ZFC system.

5 Introduction to Groups

Definition 5.1. A monoid is a triple (M, \circ, e) , where M is a set and $\circ : M \times M \to M$, called a composition, is a function such that

- 1. for all $a, b, c \in M$, $a \circ (b \circ c) = (a \circ b) \circ c$; (associative)
- 2. there exists $e \in M$ such that for all $x \in M$, $e \circ x = x = x \circ e$. (identity)

Here e is called an *identity*.

Remark. We will use gf for $g \circ f$.

Example. Here are some examples of monoids.

- 1. The natural numbers $(\mathbb{N}, +, 0)$ is a monoid.
- 2. Given a set S, the set of all functions $f: S \to S$ forms a monoid with the usual composition of function, denoted M(S).

Problem 5.1. Prove that the identity element is unique in any monoid.

Definition 5.2. A triple (G, \circ, e) is a *group* if it is a monoid and for all $g \in G$, there exists $h \in G$ such that $h \circ g = e = g \circ h$. Such f is called an *inverse* of g. If \circ is commutative, then the group is *abelian*. The cardinality of a group is called its *order*, denoted |G|.

Example. Here are some examples of groups.

- 1. The trivial group is the group of one element, that is, $\{e\}$.
- 2. Let S be a set. All bijections $S \to S$ forms a group called the *symmetric group*. If S is finite, then the symmetric group is denoted by \mathfrak{S}_n . An element of the symmetric group is called a *permutation*.
- 3. Consider the set D_n of all rotations and reflections that map a regular n-gon into itself, this is called the *dihedral group*. Let the reflection be S, which gives $S^2 = e$. Multiply the rotations by S on the left, then we have n distinct rotational symmetries. Hence there are n rotations and n reflections, that is, $|D_n| = 2n$.

Let π be a permutation of \mathfrak{S}_n . A permutation can be expressed by two-line notation, that is,

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}.$$

The first line can be dropped to from an one-line notation. Given $1 \le i \le n$ and $i \in \mathbb{Z}$, we can write π in cycle notation, that is, $(i, \pi(i), \pi^2(i), \dots, \pi^{p-1}(i))$, where p is the first integer such that $\pi^p(i) = i$. Such a cycle means that π sends i to $\pi(i)$, $\pi(i)$ to $\pi^2(i)$, and eventually, $\pi^{p-1}(i)$ back to i. The cycle type of a permutation is an expression of the form $(1^{m_1}, 2^{m_2}, \dots, n^{m_n})$, where m_k is the number of cycles of length k in π . An *involution* is a permutation π such that $\pi^2 = e$.

Problem 5.2. Prove that every permutation in \mathfrak{S}_n can be written as a finite composition of involutions.

Definition 5.3. A permutation $\pi \in \mathfrak{S}_n$ is called an *odd permutation* if it can be written as the composition of an odd number of involutions. A permutation $\pi \in \mathfrak{S}_n$ is called an *even permutation* if it can be written as the composition of an even number of involutions.

Proposition. Let G be a group. For all $g \in G$, the inverse of g is unique.

Proof. For all $g \in G$, let f and h be two inverses, then f = f(gh) = (fg)h = h, hence the inverse of g is unique. \Box

For all $g \in G$, where G is a group, the inverse of g is denoted by g^{-1} .

Problem 5.3. Let G be a group and let $g \in G$. A *left inverse* of g is an element $h \in G$ such that hg = e. Similarly, we can define a right inverse of g. Prove that a left inverse is equivalent to a right inverse, conclude that any left or right inverse of an element is its inverse.

Problem 5.4. Let G be a group and let $g, h \in G$. Prove that the following statements hold.

- 1. (-e)g = -g;
- 2. -(-g) = g;
- 3. -g(-h) = gh.

Problem 5.5. Let G be a group and let $g_i \in G$, define the composition of finitely many elements by $\prod_{i=1}^n x_1 \cdots x_n = (x_1 \cdots x_{n-1})x_n$, prove that $\prod_{i=1}^m x_i \prod_{j=1}^n x_{m+j} = \prod_{j=1}^{m+n} x_j$. This is called the *generalized associativity*.

Problem 5.6. Prove that $|\mathfrak{S}_n| = n!$

Definition 5.4. Let G and H be monoids. A function $\varphi: G \to H$ is called a monoid homomorphism if $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(e_G) = e_H$ for all $a, b \in G$. Let G and H be groups, a function $\varphi: G \to H$ is called a group homomorphism if φ is a monoid homomorphism.

Problem 5.7. Let the objects be monoids and let the morphisms be monoid homomorphisms. Prove that this defines a category, denoted Mon. Let the objects be groups and let the morphisms be group homomorphisms. Prove that this defines a category, denoted Grp.

Problem 5.8. Prove that a group isomorphism is a bijective group homomorphism.

Definition 5.5. A subgroup of a group (G, \circ, e) is a subset $H \subset G$ containing e such that (H, \circ, e) is a group. If H is a subgroup of G, we write $H \subseteq G$.

Proposition. Let G be a group, then $H \leq G$ if and only if $e \in H \subset G$, for all $g, f \in H$, $gf^{-1} \in H$.

Proof. (\Rightarrow) Trivial. (\Leftarrow) Since $H \subset G$, the composition is associative. For all $g \in H$, take f = g, then $gg^{-1} = e$; take f = e, then $g^{-1} \in H$ for all g, hence $H \leq G$.

Problem 5.9. If $A \leq B \leq G$, prove that $A \leq G$.

Problem 5.10. Let G be a group. Prove that all subgroups of G form a set. Prove that the set is partially ordered under \subset . This is called the *lattice of subgroups* of G.

Definition 5.6. Let $H \leq G$ be a subgroup. A *left coset* for H is a set of the form $xH = \{xh \mid h \in H\}$. A right coset is of the form $Hx = \{hx \mid h \in H\}$. The set of all left cosets for H is denoted by G/H and the set of all right cosets for H is denoted by $H \setminus G$. The *index* of H in G is [G:H] = |G/H|.

Problem 5.11. Prove that there exists a bijection $\psi: G/H \to H \setminus G$, conclude that $[G:H] = |H \setminus G|$.

Proposition. Let $H \leq G$ be a subgroup. Then there exists a set of left cosets x_iH such that $x_nH \cap x_mH = \emptyset$ and $\bigcup x_iH = G$.

Proof.

Problem 5.12. Let $H \leq G$ be a subgroup. Prove that [G:1] = [G:H][H:1]. Let $K \leq G$ and $K \subset H$. Prove that [G:K] = [G:H][H:K].

Theorem 5.1 (Cayley's theorem). Any monoid is isomorphic to a submonoid of M(S) for some set S. Any group is isomorphic to a subgroup of some symmetric group.

Proof. Let M be a monoid. For all $\alpha \in M$, let $\alpha_l(\alpha) = \alpha x$ for all $x \in M$, then α_l maps M to itself. Consider $S = \{\alpha_l \mid \alpha \in M\}$, which is a subset of M(S). The identity map $\alpha_e \in S$. For all $\alpha, \beta \in M$, $\alpha_l(\beta_l(x)) = \alpha_l(\beta x) = \alpha \beta x = (\alpha \beta) x = (\alpha \beta)_l(x)$, so S is a submonoid of M(S). Consider the map $\varphi(\alpha) = \alpha_l$. For all $\alpha, \beta \in M$, $\varphi(\alpha)\varphi(\beta) = \alpha_l\beta_l = (\alpha \beta)_l = \varphi(\alpha \beta)$. The map is trivially surjective. Let $\varphi(\alpha) = \varphi(\beta)$, then $\alpha_l = \beta_l$, that is, $\alpha x = \beta x$. Consider x = 1, then $\alpha = \beta$, hence φ is an isomorphism. Now consider a group G and construct the same set S. For all α_l , the inverse is $(\alpha^{-1})_l$. We have $\alpha_l(\alpha^{-1})_l(x) = \alpha_l(\alpha^{-1}x) = x$ and $(\alpha^{-1})_l\alpha_l(x) = (\alpha^{-1})_l(\alpha x) = x$, hence S is a subgroup of some symmetric group. Construct the same φ , then S is isomorphic to G.

Definition 5.7. Let $H \leq G$ be a subgroup. We say H is a normal subgroup of G, denoted $H \subseteq G$, if xH = Hx for all $x \in G$. A non-trivial group G is said to be simple if the only normal subgroups of G are G and the trivial subgroup.

Problem 5.13. Prove that $H \subseteq G$ if and only if $gHg^{-1} = H$ for all $g \in G$.

Theorem 5.2 (first isomorphism theorem). Let $\varphi : G \to H$ be a group homomorphism. Then $\ker(\varphi) \leq G$, $\operatorname{im}(\varphi) \leq H$, and $G/\ker(\varphi) \approx \operatorname{im}(\varphi)$.

Proof. Let $a, b \in \ker(\varphi)$, then $\varphi(ab^{-1}) = \varphi(a)\varphi(b) = \varphi b^{-1}$. We have $e_H = \varphi(bb^{-1}) = e_H \varphi(b^{-1})$, then $\varphi(b^{-1}) = e_H$, which implies $\ker(\varphi) \leq G$. For all $g \in G$, $\varphi(g \ker(\varphi)g^{-1}) = \varphi(g)\varphi(\ker(\varphi))\varphi(g^{-1}) = e_H$, then $g \ker(\varphi)g^{-1} \subset \ker(\varphi)$. For all $g \in \ker(\varphi)$, we have

Problem 5.14. Let C_2 be a group of order 2. Prove that C_2 is unique up to isomorphism. Define the set $C_2 = \{1, -1\}$, where 1 is the identity. For all $\pi \in \mathfrak{S}_n$, define $\varphi : \mathfrak{S}_n \to C_2$ by $\varphi(\pi) = -1$ if π is an odd permutation and $\varphi(\pi) = 1$ if it is an even permutation. Prove that sgn is a well-defined group homomorphism. The kernel of φ is called the *alternating group*, denoted \mathfrak{A}_n . Prove that \mathfrak{A}_n is abelian if $n \leq 3$ and prove that \mathfrak{A}_n is not abelian for n > 3, conclude that a normal subgroup is not necessarily abelian.

Definition 5.8. Let G be a group and $N \subseteq G$. The quotient group G/N is defined to be $\{aN \mid a \in G\}$.

Problem 5.15. Prove that (aN)(bN) = (ab)N. Take this as a composition on G/N, prove that G/N is indeed a group. Prove that $\pi: G \to G/N$ defined by $\pi(g) = gN$ is a group epimorphism.

Universal property for quotient groups. Let G be a group and let $N \subseteq G$. Let $\pi: G \to G/N$ be the quotient epimorphism. For all group homomorphism $\varphi: G \to H$ with $N \subset \ker(\varphi)$, there exists a unique group homomorphism $\overline{\varphi}: G/N \to H$ such that $\overline{\varphi} \circ \pi = \varphi$.

Problem 5.16. Prove that the quotient groups satisfy the universal property and the universal property characterizes quotient groups.

Universal property for free groups. Let X be a subset of a group F. Then F is a free group with basis X if for any function $\varphi: X \to G$, where G is a group, there exists a unique extension $\overline{\varphi}: F \to G$.

Definition 5.9. Let G and H be groups. A group P is projective if $\gamma: G \to H$ and $\pi: P \to H$, then there exists a map $\varphi: P \to G$ such that $\varphi \gamma = \pi$.

Definition 5.10. Let $S \leq G$ be a subgroup. A map $\rho: G \twoheadrightarrow S$ is a retraction if $\rho^2 = \rho$, and S is called a retract of G.

Proposition. The projective groups are the retracts of free groups.

Know some new groups are important!

Problem 5.17. A Tarski monster group is a finitely generated infinite group, where every proper non-trivial subgroup is cyclic of order a fixed prime p. Prove that every Tarski monster group is simple.

Problem 5.18. A Burnside group B(m,n) is a group generated by m elements such that for all $g \in B(m,n)$, $g^n = e$. Prove that B(m,n) is finite if B(m,n) is abelian. Use this property to show that B(m,3) is finite.

Problem 5.19. A Baumslag-Solitar group BS(m,n) admits the presentation $\langle a,b \mid ba^mb^{-1}=a^n \rangle$. Prove that $BS(1,1)\approx C_2$. Prove that $\varphi:BS(m,n)\to BS(m,n)$ defined by $\varphi(a)=a^2$ and $\varphi(b)=b$ is a group epimorphism.

6 Real Numbers

${\bf Alphabetical\ Index}$

abelian, 19	converse, 3	involution, 19
addition, 16	coproduct, 15	isomorphic, 13
additive identity, 17	coproduct, 19	isomorphism, 13
additive inverse, 17	De Morgan's law, 6	isomorphism, 10
alternating group, 21	dihedral group, 19	lattice of subgroups, 20
antecedent, 2	disjoint, 6	left coset, 20
associativity, 17	disjoint union, 7	left inverse, 12, 19
axiom, 1	disjunction, 1	linearly ordered, 8
axiom, 1 axiom of choice, 18	distributivity, 17	logically equivalent, 2
	division, 17	lower bound, 8
axiom of empty set, 5	domain, 3, 7, 12	
axiom of extensionality, 5	dual category, 12	monoid, 19
axiom of infinity, 7		monoid homomorphism, 20
axiom of pairing, 6	elements, 5	monomorphism, 12
axiom of power set, 7	empty set, 5	morphisms, 12
axiom of union, 6	epimorphism, 12	multiplication, 16
Axiom schema of replacement,	equivalence class, 8	multiplicative identity, 17
18	equivalence relation, 7	multiplicative inverse, 17
axiom schema of separation, 5	even function, 11	
basis, 21	even permutation, 19	n-tuple, 6
Baumslag-Solitar group, 22	existential quantifier, 3	natural numbers, 7
		negation, 1
biconditional proposition, 2	finite, 11	normal subgroup, 21
bijective, 11	finite induction, 8	
binary operation, 7	free group, 21	objects, 12
Burnside group, 22	function, 10	odd function, 11
canonical decomposition of		odd permutation, 19
functions, 14	generalized associativity, 20	order, 19
cardinality, 11	group, 19	ordered pair, 6
	group homomorphism, 20	ordinal, 18
Cartesian product, 7	.1 10	
category, 12	identity, 19	partial ordering, 8
Cayley's theorem, 20	identity function, 11	partially ordered set, 8
class, 18	identity morphism, 12	partition, 6
codomain, 10, 12	image, 10	permutation, 19
commutative, 10	index, 20	power set, 7
commutativity, 17	inductive set, 7	preimage, 10
complement, 6	infimum, 8	product, 14
complete finite induction, 9	infinite, 11	projective, 21
composition, 10, 19	initial object, 13	proper subset, 5
composition operation, 12	injective, 11	proposition, 1
conditional proposition, 2	integers, 16	propositional function, 3
conjunction, 1	intersection, 6	
consequent, 2	invariant, 13	quotient group, 21
contrapositive, 3	inverse, 12, 16, 19	quotient set, 13

range, 7 subset, 5truth table, 1 rational numbers, 16 subtraction, 17 truth value, 1 recursion, 16 successor, 7 union, 6 restriction, 11 supremum, 8 universal quantifier, 3retract, 22 surjective, 11 upper bound, 8 retraction, 22symmetric difference, 7 right inverse, 12 symmetric group, 19 vacuous truth, 2 variable, 3 set, 5 Tarski monster group, 22 terminal object, 13 simple, 21 well-ordered, 8 singleton, 6 theorem, 1 well-ordering principle, 18 subgroup, 20transitive, 18 well-ordering theorem, 8