

Fig. 1. Mutual information  $I(\sigma^2)$  versus SNR for different numbers of transmit signatures  $n, N = 16, N_i = 8, \mathbf{P}_i = \mathbf{I}_n, \alpha = 0.5$ . Error bars represent one standard deviation on each side.



Fig. 2. ROC curve for a priori unknown  $\sigma^2$  of the Neyman-Pearson test (N-P), condition number method and GLRT, N=4, M=8, SNR = 0 dB,  $\mathbf{h} \sim \mathcal{CN}(0, \mathbf{I}_N)$ . For the Neyman-Pearson test, both uniform and Jeffreys prior, with exponent  $\beta=1$ , are provided.



Fig. 3. Histogram of the eigenvalues of  $\mathbf{R}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{x}_k \mathbf{x}_k^*$ ,  $\mathbf{x}_k \sim \mathcal{CN}(0, \mathbf{I}_N)$ , for n = 2000, N = 500.





## channel coherence interval ${\cal T}$

| `               |                            |
|-----------------|----------------------------|
| uplink training | coherent data transmission |
| $T_t$           | $T-T_t$                    |

