

■ Índice □ Definición □ Propiedades de SVD □ Ejemplo de SVD □ Métodos para calcular SVD □ Aplicaciones de SVD

- Repaso de matrices:

 Una matriz A∈C^{mxm} es <u>Unitaria</u> si sus columnas forman una base ortonormal de vectores de C^m.

 Una matriz A∈R^{mxm} es <u>Ortogonal</u> si sus columnas forman una base ortogonal de de vectores de R^m.
 La inversa de una matriz unitaria es igual a su transpuesta
 Las transformaciones por matrices unitarias conservan la norma y el producto escalar
- Definición SVD

 Sea m, n enteros positivos y $A \in C^{mxn}$ Entonces una descomposición en valores singulares de A, es una factorización $A = U \sum V^H$ Tal que $U \in C^{mxm}$ y $V \in C^{nxn}$ son unitarias $\sum \text{ es diagonal de tamaño } m \times n.$

Definición SVD (Cont.) Los elementos no nulos de la diagonal de ∑ son los VALORES SINGULARES de la matriz A Se denotan como σ_i A los vectores u_i, ..., u_m y v_i, ..., v_n que forman las columnas de U y V respectivamente, se les llama: vectores singulares de A por la izquierda y por la derecha. Si A tiene entradas reales se cambia "matriz unitaria" por "matriz ortogonal"

Teorema de SVD

- Toda matriz $A \in F^{mxn}$ admite una descomposición en valores singulares.
- Además, los valores singulares están determinados en forma única.

Propiedades valores singulares

- Los valores singulares $\neq 0$ de $A \in C^{mxn}$ son las raíces cuadradas positivas de los <u>valores propios</u> $\neq 0$ de A^HA y también de los de AAH (Si estamos en los reales A^H pasa a ser A^T)
 - □ Dem:
 - $\Box A = U\Sigma V^t$

 $A^tA = V\Sigma^tU^tU\Sigma V^t = V(\Sigma^t\Sigma)V^t$

 $AA^{t} = U\Sigma V^{t}V\Sigma^{t}U^{t} = U(\Sigma\Sigma^{t})U^{t}$

Propiedades de valores singulares (cont)

- rang(A) = cantidad de valores singulares de A distintos de 0
- El valor absoluto de det(A) = σ_1 ·..... σ_n siendo A cuadrada de tamaño n
- Si $\sigma_n \neq 0$ entonces σ_1/σ_n es el número de condición de la matriz

Propiedades valores singulares (cont)

■ Si $A \in C^{n \times n}$ es invertible y $\sigma_1 \ge \cdots \ge \sigma_n$ son sus valores singulares. Entonces los valores singulares de A⁻¹ son $\frac{1}{2} \ge \cdots \ge \frac{1}{2}$

Propiedades valores singulares (cont)

■ Todo elemento de la diagonal σ_i cumple

$$Au_i = \sigma_i v_i \qquad A^T v_i = \sigma_i u_i$$

- Siendo u_i la columna U correspondiente a σ_i
- Siendo v_i la columna V correspondiente a σ_i

Propiedades valores singulares (cont)

■ A=U∑V^H es una descomposición de A en valores singulares y rang(A) = r,

entonces
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^H$$

u y v son los vectores columna de U y V respectivamente

Propiedades valores singulares (cont)

- La descomposición se puede representar como la suma de r matrices de rango 1.
- Este término $\sigma_i u_i v_i^H$ es conocido también como tripleta singular.
- El rango de la matriz A, nos da el máximo número de tripletas necesarias.

Aproximación de A por A_k

- $lacksquare A_k$ es la mejor aproximación de A, para cualquier norma unitariamente invariante
 - □ La norma 2 es unitariamente invariante
- Teorema
 - $\ \square$ Dada la SVD de A con rango r, p = min(m, n) y r < p
 - $\Box \operatorname{Sea:} A_k = \sum_{i=1}^k \sigma_i u_i v_i^T \quad \operatorname{con} k < r$

Entonces $\min_{r(B)=k} \|A - B\|_F^2 = \|A - A_k\|_F^2 = \sigma_{k+1}^2 + ... + \sigma_p^2$

Métodos para calcular SVD en matrices densas

- El método de Golub Kahan Reinsch
- Es un método eficaz basado en la iteración QR.
- Se divide en 2 fases.

Método de Golub - Kahan – Reinsch – Primera fase

- Primera fase
 - ☐ Se trata de reducir la matriz A a una bidiagonal mediante transformaciones ortogonales de Householder.

$$Q_{B}^{T}A\Pi_{B} = B = \begin{bmatrix} B_{1} \\ 0 \end{bmatrix} \qquad B_{1} = \begin{bmatrix} d_{1} & f_{2} & & & \\ & d_{2} & f_{3} & 0 & \\ & & \ddots & \ddots & \\ & 0 & & \ddots & f_{n} \\ & & & & d_{n} \end{bmatrix}$$

Método de Golub - Kahan – Reinsch – Primera fase

- $Q_{B} = Q_{1} \dots Q_{n} \in \Re^{m \times m}$
- $\blacksquare \quad \Pi_B = \Pi_1 \dots \Pi_{n-2} \in \Re^{n \times n}$

Método de Golub - Kahan – Reinsch – Segunda fase

 Una vez bidiagonalizada la matriz A se hacen 0 los elementos que no están en la diagonal principal con un algoritmo que obtenga

$$Q_s^T B_1 \Pi_s = \Sigma = diag(\sigma_1, ..., \sigma_n)$$

• $Q_s \ y \ \Pi_s$ son matrices ortogonales de nxn

Método de Golub - Kahan – Reinsch – Segunda fase

 La descomposición en valores singulares de A es

$$A = U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$$

Donde: $U = Q_R \operatorname{diag}(Q_S I_{m-n})$

$$V = \Pi_B \Pi_S$$

Método de Golub - Kahan – Reinsch – Segunda fase

 Para obtener los valores singulares de la matriz bidiagonal B₁, se procede iterativamente

$$\boldsymbol{B}_{K+1} = \boldsymbol{U}_K^T \boldsymbol{B}_K \boldsymbol{V}_K$$

■ U_k y V_k son ortogonales

Otros métodos

- A partir de la primer propiedad presentada, (los valores singulares son iguales a las raíces cuadradas de los valores propios no nulos de A^TA)
- Se pueden usar otros métodos iterativos

Otros métodos (cont)

- En vez de calcular los valores singulares directamente, se podría calcular los valores propios de una nueva matriz que sea B = A^TA
- Tiene un costo extra (el cálculo de A^TA)
- Usando bibliotecas como BLAS o LAPACK, estas operaciones están optimizadas

Observaciones sobre estos métodos

- No son óptimas para matrices grandes o matrices dispersas.
- En estos métodos se aplican a transformaciones ortogonales (de semejanza), como Householder o Givens (sobre una matriz dispersa).
- Al emplear esas transformaciones, se incurre en fill-in de la matriz.

Observaciones sobre estos métodos

- Requieren mucha cantidad de memoria para su almacenamiento
- Computan todas las tripletas, cuando a veces sólo se desean unas pocas de las tripletas más grandes
 - □ O valores propios

Métodos SVD matrices dispersas

- SISVD (Subspace Iteration)
- TRSVD (Trace minimization)
- LASVD (Single-vector Lanczos)
- BLSVD (Block Lanczos)

Aplicaciones SVD

- Una herramienta común para resolver sistemas de ecuaciones mal condicionadas.
- Herramientas de regularización.

Aplicaciones – cálculo de inversa

- Se calcula en forma rápida la inversa de una matriz A (puede ser mal condicionada)
- A-1 = V S-1 U^T
- Recordar que U y V son ortogonales y S diagonal

Aplicaciones - mínimos cuadrados

- Se quiere resolver Ax = b
- Se multiplica por A^T quedando A^TA =A^Tb
- Se calcula la svd de A = UDV^T
- Es útil cuando la matriz A no es cuadrada (sería un sistema indeterminado)

Aplicaciones – Compresión de imágenes

- Una imagen a color es una matriz de (n,m,3) números, a cada píxel se le asigna un vector en R³, el vector representa la composición RGB del color
- Por ej. el vector (1,0,0) representa el color rojo.
- El píxel se verá

Aplicaciones – Compresión de imágenes

Una imagen en escala de grises es una matriz de n x m, a cada píxel se le asigna un valor entre 0 y k (donde k son los distintos niveles de gris):

Aplicaciones – Compresión de imágenes

- Este enfoque permite aplicar SVD al tratamiento de imágenes bidimiensionales
- Una imagen contiene información redundante, o sea, que puede ser eliminada sin que el efecto visual sea notable.
- Se podría sustituir A por otra matriz B de rango prefijado más pequeño

Aplicaciones – Compresión de imágenes

- Descomponer la matriz de imagen y luego comprimir la información utilizando solo algunos valores singulares dependiendo de la calidad que deseamos obtener.
- Para recuperar la matriz original después de aplicarle la SVD podemos utilizar la definición de suma de tripletas.

Aplicaciones – Compresión de imágenes

- Para una imagen de 600x800 pixeles, el rango será 600.
- En vez de sumar todos los valores singulares, podemos reconstruirla hasta un número de valores singulares entre 1 y el rango de la matriz (1 < k < r).
- Mientras mayor sea k mejor será la calidad de imagen pero menor la compresión, y viceversa.
- Se desea encontrar un valor de k el cual nos permita comprimir la imagen sin perder mucha información visual

Aplicaciones – Compresión de imágenes

- Una imagen de 480 x 640 pixels requiere almacenar 307200 elementos
- Esto es, aproximadamente, 0.3 Mbytes.
- Para almacenar A_k se necesita n x k para U, k x m V^T, k para S
- En total, (n + m+ 1) x k

Aplicaciones – Compresión de imágenes

- la relación de compresión es r = (n+m+1)k / nm
- Para la misma imagen n=480, m=640
- Tenemos con k = 50 que la imagen comprimida sólo requiere un 18% de la información original
- **50*** (480+640+ 1) / (480*640)

