		10	100	
	_	1	Į.	
	D			5
U	NI	VE	RS	TY

	USN						
C LIMIN/EDOLTY	DANIGAL			 _	_	_	

PES UNIVERSITY, BANGALORE-85 (Established under Karnataka Act 16 of 2013)

14MA101

END SEMESTER ASSESSMENT

B. Tech, I SEM, May-2019

ENGINEERING MATHEMATICS-I

(Common for All Branches)

Sub Code: 14MA101

	ne: 3 F	Max Mar	ks: 100
1.	a)	Find the n ^m order derivative of $y = \cos^6 x$	7
	b)	Show that for the curve $r \cos\left(\frac{\sqrt{a^2-b^2}}{a}\right)\theta = \sqrt{a^2-b^2}$, $p^2(r^2+b^2) = a^2r^2$	7
	_c)	Show that for the curve $r(1-\cos\theta) = 2a$, ρ^2 varies as r^3	6
2.	a)	If $u = f(r)$, where $r = \sqrt{x^2 + y^2 + z^2}$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2}{r}f'(r)$	7
	b)	Transform the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in to polar coordinates.	7
*	c)	Find $u_x u_y, u_{xx}, u_{yy}, u_{xy}$ and u_{yx} for $u = x^3 + y^3 + x^2y + xy^2$	6
3.	a)	Trace the curve $r = a \cos 2\theta$	7
	b)	Change the order of the integration in the integral $\int_{0}^{1} \int_{\sqrt{y}}^{2-y} xy dx dy$ and hence evaluate it.	7
	c)	Evaluate $\iint_{0}^{1} \int_{1}^{2} \int_{0}^{2} x^{2}yz^{2} dz dy dx$	6
4.	a)	Find the orthogonal trajectories of the curve $y = c x^2$ where c is a parameter.	7
	.b)	Solve: $y(2x - y + 1)dx + x(3x - 4y + 3)dy = 0$	7
	c)	Solve: $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$	6
5.	a)	Solve: $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$	7
	b)	Solve: $x^4y''' + 2x^3y'' - x^2y' + xy = \sin(\log x)$	7
	c)	Solve: $(D^2 - 1)y = \frac{2}{1 + e^x}$ by variation of parameters.	6