Modern Pop Album Analysis using Spotify API

Jenny Eberling

2022-05-03

Uploading Data

```
# useful packages
library(dplyr)
library(spotifyr)
library(plotly)
library(ggplot2)
library(stringr) #to take out acoustic versions
library(knitr) # to be able to kable
library(tidyr) # for 'taken from class' section
library(GGally) #for ggpairs
library(ipred) # for bagging
library(factoextra) # for 'fun cluster graph in spotify learning
library(MASS) # QDA
library(e1071) # Naive Bayes
library(rpart) # classification tree
library(partykit) # pretty classification tree
library(caret) # VarImp
library(randomForest)
library(corrplot) # for fun correlation plot
library(gridExtra) # for Log plots
songs <- readRDS("C:/Users/Owner/OneDrive/Desktop/Semester IV/Data</pre>
Mining/Project/pop songs.rds")
### Serious data mining
songs num <- songs %>% ungroup() %>%
dplyr::select(c("danceability", "energy", "key", "loudness", "mode", "speechiness"
,"acousticness","instrumentalness","liveness","valence","tempo","explicit","d
uration_min", "aoty", "album_length"))
# ignore track number and third to compare which songs are diff
songs pred <- songs %>% ungroup() %>%
dplyr::select(c("danceability","energy","key","loudness","mode","speechiness"
,"acousticness","instrumentalness","liveness","valence","tempo","explicit","d
uration_min","aoty","album_length","song_third_num"))
```

```
# Same as above but with appropriate logged variables
# can't include log(instrumentalness) because too many -inf values when inst
songs numlog <- songs %>% ungroup() %>%
dplyr::select(c("danceability", "energy", "key", "loudness", "mode", "speechiness"
,"acousticness","instrumentalness","liveness","valence","tempo","explicit","d
uration_min","aoty","album_length")) %>%
  mutate(speechinesslog = log(speechiness),
         livenesslog = log(liveness))
songs_numlog <- songs_numlog %>%
dplyr::select(c("danceability","energy","key","loudness","mode","speechinessl
og", "acousticness", "instrumentalness", "livenesslog", "valence", "tempo", "explic
it","duration_min","aoty","album_length"))
songs_predlog <- songs %>% ungroup() %>%
dplyr::select(c("danceability","energy","key","loudness","mode","speechiness"
,"acousticness","instrumentalness","liveness","valence","tempo","explicit","d
uration_min","aoty","album_length","song_third_num")) %>%
  mutate(speechinesslog = log(speechiness),
         livenesslog = log(liveness))
songs_predlog <- songs_predlog %>%
dplyr::select(c("danceability", "energy", "key", "loudness", "mode", "speechinessl
og", "acousticness", "instrumentalness", "livenesslog", "valence", "tempo", "explic
it","duration min","aoty","album length","song third num"))
songs2 <- songs %>%
  mutate(third = ifelse(songs$song_third == "third",1,0))
# Songs but with Logged vars
songs log <- songs %>%
  mutate(livenesslog = log(liveness),
         speechinesslog = log(speechiness)) %>%
  dplyr::select(-c(liveness, speechiness))
# Predicting if songs are on acty or not
grammy <- songs %>% group_by(album_name) %>%
  summarize(danceability = mean(danceability),
            energy = mean(energy),
            loudness = mean(loudness),
```

```
mode = mean(mode),
            speechiness = mean(speechiness),
            acousticness = mean(acousticness),
            instrumentalness = mean(instrumentalness),
            liveness = mean(liveness),
            valence = mean(valence),
            tempo = mean(tempo),
            duration min = mean(duration min),
            explicit = ifelse(mean(explicit) > 0, 1,0),
            aoty = mean(aoty),
            album_length = mean(album_length))
# with logged variables
grammylog <- songs %>% group_by(album_name) %>%
  summarize(danceability = mean(danceability),
            energy = mean(energy),
            loudness = mean(loudness),
            mode = mean(mode),
            speechinesslog = mean(log(speechiness)),
            acousticness = mean(acousticness),
            instrumentalnesslog = mean(log(instrumentalness)),
            livenesslog = mean(log(liveness)),
            valence = mean(valence),
            tempo = mean(tempo),
            duration min = mean(duration min),
            explicit = ifelse(mean(explicit) > 0, 1,0),
            aoty = mean(aoty),
            album_length = mean(album_length))
```

Creating the data - do not run

```
# getting setup
Sys.setenv(SPOTIFY CLIENT ID = 'f77ab842e2074e4085981927b265c1b4')
Sys.setenv(SPOTIFY CLIENT SECRET = 'd6d020e996e145c4aa5df8beac578d95')
access_token <- get_spotify_access_token()</pre>
my id <- 'qrovmuqylvycmj3vsnqk57qlj'</pre>
#my_plists <- get_user_playlists(my_id)</pre>
# the iconic track 5 - is it really different?
# " The fifth track is always the most emotional, tear-jerking and vulnerable
song on the album. "
swift0 <- get_artist_audio_features('taylor swift', include_groups =</pre>
c("album", "single")) # not including appears_on
singles <- swift0 %>% filter(track_name == "Christmas Tree Farm") # Later
I'll probably throw this into the big filter and consolidate later.
unique(swift0$album_name)
# cleaning Swift
```

```
swift1 <- swift0 %>%
  filter(swift0$album name %in% c("Taylor Swift", "Speak Now", "Fearless",
                                   "Red","1989",
                                   "reputation", "Lover", "folklore",
                                   "evermore")) %>%
select(c("artist name", "album release year", "danceability", "energy", "key", "lo
udness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
           "tempo", "time_signature", "duration_ms",
"explicit", "track_name", "track_number", "album_name",
           "key name","mode_name","key_mode"))
swift <- swift1 %>%
  filter((track_name == "Our Song" & album_name == "Fearless") == FALSE) %>%
  filter((track_name == "Should've Said No" & album_name == "Fearless") ==
FALSE) %>%
  group_by(track_name) %>% filter(row_number(track_name) == 1) %>%
  filter(track name != "Love Story - J Stax Radio Mix") %>%
  filter(track_name != "Picture To Burn - Radio Edit") %>%
  filter(str detect(track name, "Karaoke") == FALSE) %>%
  filter(track_name != "Invisible") %>%
  filter(track_name != "Teardrops On My Guitar") %>%
  filter(track_name != "A Perfectly Good Heart") %>%
  filter(track name != "Teardrops on My Guitar - Pop Version") %>%
  filter(track name != "Beautiful Eyes") %>%
  filter(track_name != "I'm Only Me When I'm With You") %>%
  filter(track_name != "I Heart ?") %>%
  filter(track_name != "Mine - POP Mix") %>%
  mutate(duration min = duration ms/1000/60)
swift$album = as.factor(swift$album name)
levels(swift$album)
# Nickname the albums
levels(swift$album) <-</pre>
c('1989','evermore','Fearless','folklore','Lover','Red','reputation',
                         'Speak Now', 'Debut')
# Now in order
swift$album <- factor(swift$album, levels = c("Debut", "Fearless", "Speak</pre>
Now",
                                               "Red", "1989", "reputation",
"Lover",
                                               "folklore", "evermore"))
table(swift$album)
########## Adele ###########
adele0 <- get_artist_audio_features('adele', include_groups =</pre>
c("album", "single")) # not including appears on
singles[2,] <- adele0 %>% filter(track_name == "Skyfall") # an adele single
```

```
adele1 <- adele0 %>%
  filter(adele0$album name %in% c("19", "21", "25", "30")) %>%
select(c("artist name", "album release year", "danceability", "energy", "key", "lo
udness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
"tempo", "time_signature", "duration_ms", "explicit", "track_name", "track_number"
,"album name",
           "key_name","mode_name","key_mode"))
adele <- adele1 %>%
  group_by(track_name) %>% filter(row_number(track_name) == 1) %>%
  filter(track_name != "Turning Tables - Live Acoustic")%>%
  filter(track name != "Don't You Remember - Live Acoustic")%>%
  filter(track name != "Someone Like You - Live Acoustic") %>%
  filter(!str_detect(track_name, "Live at Hotel Cafe")) %>%
  filter(!str detect(track name, "Many Shades Of Black - Performed by The
Raconteurs")) %>%
  mutate(duration min = duration ms/1000/60)
table(adele$album_name)
adele$album = as.factor(adele$album_name)
levels(adele$album)
lipa0 <- get artist audio features('dua lipa', include groups =</pre>
c("album", "single")) # not including appears_on
singles[3,] <- lipa0 %>% filter(track name == "UN DIA (ONE DAY) (Feat.
Tainy)")
lipa1 <- lipa0 %>%
  filter(lipa0$album_name %in% c("Dua Lipa", "Future Nostalgia")) %>%
select(c("artist name", "album release year", "danceability", "energy", "key", "lo
udness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
"tempo", "time_signature", "duration_ms", "explicit", "track_name", "track_number"
           "album name", "key name", "mode name", "key mode"))
lipa <- lipa1 %>%
```

```
group_by(track_name) %>% filter(row_number(track_name) == 1) %>%
 filter(track name != "Fever (feat. Angèle)") %>%
 mutate(duration_min = duration_ms/1000/60)
lipa$album = as.factor(lipa$album name)
levels(lipa$album)
# Nickname the albums
levels(lipa$album) <- c('Debut', 'Future Nos')</pre>
table(lipa$album)
jepsen0 <- get artist audio features('carly rae jepsen', include groups =</pre>
c("album", "single")) # not including appears_on
singles[4,] <- jepsen0 %>% filter(track_id == "6tcjcJFRSdkIlThUUP39mJ") #
"let's be friends"
jepsen1 <- jepsen0 %>%
 filter(jepsen0$album name %in% c("Tug Of War", "Kiss", "Emotion", "EMOTION
SIDE B",
                                   "Dedicated", "Dedicated Side B")) %>%
select(c("artist_name","album_release_year","danceability","energy","key","lo
udness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
"tempo","time_signature","duration_ms","explicit","track_name","track_number"
,"album name",
           "key_name", "mode_name", "key mode"))
jepsen <- jepsen1 %>%
 group by(track name) %>% filter(row number(track name) == 1) %>%
 filter(track_name != "Almost Said It") %>%
 filter(track name != "Melt With You") %>%
 filter(track_name != "Picture") %>%
 filter((album_name == "Emotion" & track_number > 12) == FALSE) %>%
 mutate(duration min = duration ms/1000/60)
table(jepsen$album name)
jepsen$album = as.factor(jepsen$album_name)
levels(jepsen$album)
# Nickname the albums
levels(jepsen$album) <- c("Dedicated", "Dedic B", "Emotion", "Emotion")</pre>
B", "Kiss", "ToW")
# Now in order
```

```
jepsen$album <- factor(jepsen$album, levels =</pre>
c("ToW", "Kiss", "Emotion", "Emotion B",
                                                  "Dedicated", "Dedic B"))
table(jepsen$album)
########## Justin Bieber ###########
bieber0 <- get artist audio features('justin bieber', include groups =</pre>
c("album", "single")) # not including appears on
singles[5,] <- bieber0 %>% filter(track name == "Attention")
bieber1 <- bieber0 %>%
  filter(bieber0$album name %in% c("My World", "My World 2.0", "Under The
Mistletoe", "Believe",
                                    "Journals", "Purpose (Deluxe)",
"Changes", "Justice")) %>%
select(c("artist name", "album release year", "danceability", "energy", "key", "lo
udness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
"tempo", "time signature", "duration ms", "explicit", "track name", "track number"
,"album name",
           "key_name","mode_name","key_mode"))
bieber <- bieber1 %>%
  group_by(track_name) %>% filter(row_number(track_name) == 1) %>%
  filter(track_name != "Been You")%>% # what is a more efficient way???
  filter(track_name != "Get Used to It")%>%
  filter(track_name != "We Are") %>%
  filter(track name != "Trust") %>%
  filter(track_name != "All In It") %>%
  filter(track name != "Get Used To It") %>%
  filter(track name != "Unstable (feat.The Kid LAROI)") %>%
  filter(track_name != "What Do You Mean? - Acoustic") %>%
  filter(!str detect(track name, "Single Version")) %>%
  mutate(duration_min = duration_ms/1000/60)
bieber$album = as.factor(bieber$album_name)
levels(bieber$album)
# Nickname the albums
levels(bieber$album) <-</pre>
c("Believe", "Changes", "Journals", "Justice", "World", "World 2.0",
                          "Purpose", "Mistletoe")
```

```
# Now in order
bieber$album <- factor(bieber$album, levels = c("World","World</pre>
2.0", "Mistletoe", "Believe",
"Journals", "Purpose", "Changes", "Justice"))
table(bieber$album)
########## Ariana Grande ############
grande0 <- get_artist_audio_features('ariana grande', include groups =</pre>
c("album", "single")) # not including appears on
singles[6,] <- grande0 %>% filter(track_id == "4HBZA5flZLE435QTztThqH") #
"stuck with u"
grande1 <- grande0 %>%
  filter(grande0$album_name %in% c("Yours Truly", "My Everything", "Dangerous
Woman",
                                    "Sweetener", "thank u, next", "Positions"))
%>%
select(c("artist name", "album release year", "danceability", "energy", "key", "lo
udness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
"tempo", "time signature", "duration ms", "explicit", "track name", "track number"
,"album_name",
           "key_name", "mode name", "key mode"))
grande2 <- grande1 %>%
  group_by(track_name) %>%
  filter(row number(track name) == 1) %>%
  filter(track_name != "Step On Up")%>%
  filter(track_name != "Focus")%>%
  filter(track name != "Jason's Song (Gave It Away)")%>%
  filter(track_name != "Bang Bang") %>%
  filter(track_name != "Only 1")%>%
  filter(track_name != "You Don't Know Me")%>%
  filter(track_name != "Cadillac Song")%>%
  filter(track name != "Too Close")%>%
  filter(track_name != "Baby I") %>%
  filter(track name != "Baby I - Cosmic Dawn Radio Edit") %>%
  filter(track_name != "Right There - 7th Heaven Radio Edit") %>%
  filter((track name == "thank u, next" & track number == "1") == FALSE) %>% #
a single got on there
  mutate(duration min = duration ms/1000/60)
# There is one song that is getting put on the wrong album
```

```
baby_I <- grande0 %>% dplyr::filter(track_id == "4TQYyBORpYzICpQtzINUbg") %>%
  dplyr::filter(album_name %in% c("Yours Truly", "My Everything", "Dangerous
Woman",
                                   "Sweetener", "thank u, next", "Positions"))
%>%
dplyr::select(c("artist name","album release year","danceability","energy","k
ey", "loudness",
"mode", "speechiness", "acousticness", "instrumentalness", "liveness", "valence",
"tempo", "time signature", "duration ms", "explicit", "track name", "track number"
,"album name",
           "key_name","mode_name","key_mode")) %>%
  mutate(duration_min = duration_ms/1000/60)
grande <- rbind(grande2,baby_I)</pre>
grande$album = as.factor(grande$album name)
levels(grande$album)
# Now in order
grande$album <- factor(grande$album, levels = c("Yours Truly", "My</pre>
Everything",
                                                 "Dangerous
Woman", "Sweetener",
                                                 "thank u, next", "Positions"))
grande <- grande %>%
  group_by(album_name) %>%
  arrange(track_number, .by_group = TRUE)
#swift$artist name = "Taylor Swift"
#adele$artist name = "Adele"
songs0 <- rbind(swift, adele, lipa, jepsen, bieber, grande)</pre>
# identify which ones won album of the year
songs0$aoty <- ifelse(songs0$album name %in%</pre>
c("folklore","25","1989","21","Fearless","Purpose (Deluxe)"),1,0)
# which third of the album is it in
songs1 <- songs0 %>%
  group by(album name) %>%
  mutate(album_length = n()) %>%
  mutate(track_placement = (track_number-.5)/album_length) %>%
  ungroup() %>%
```

```
mutate(song_third = ifelse(track_number/album_length > 2/3, "third",
                             ifelse(track number/album length > 1/3, "second",
"first")))
songs <- songs1 %>% ungroup() %>%
  mutate(song third num = ifelse(song third == 'first',1,
                                 ifelse(song_third == 'second',2,3)))
table(songs$song_third,songs$album_length)
table(songs$artist name)
table(swift$album)
table(bieber$album)
table(lipa$album)
table(jepsen$album)
table(grande$album)
saveRDS(adele, file = "adele.rds")
saveRDS(bieber, file = "bieber.rds")
saveRDS(grande, file = "grande.rds")
saveRDS(jepsen, file = "jepsen.rds")
saveRDS(lipa, file = "lipa.rds")
saveRDS(swift, file = "swift.rds")
saveRDS(songs, file = "pop songs.rds")
saveRDS(singles, file = "pop_singles.rds")
```

Data Exploration

Distribution of Liveness


```
songs %>% group_by(song_third) %>% summarize(mean(liveness))
## # A tibble: 3 x 2
     song_third `mean(liveness)`
##
     <chr>>
                           <dbl>
## 1 first
                           0.158
## 2 second
                           0.166
## 3 third
                           0.152
# Log of Liveness
ggplot(songs, aes(x = factor(song_third, level = c('third', 'second',
'first')), log(liveness))) +
  geom_violin(aes(color = song_third)) +
  geom_boxplot(aes(fill = song_third), width = 0.1) +
  guides(color = F, fill = F) + # removes legends for color and fill
aesthetics
  labs (title = "Distribution of Log of Liveness",
        y = "Log of Liveness",
        x = "Third") +
  coord_flip()
```

Distribution of Log of Liveness

Distribution of Energy


```
songs %>% group_by(song_third) %>% summarize(mean(energy))
## # A tibble: 3 x 2
     song_third `mean(energy)`
##
     <chr>>
                         <dbl>
## 1 first
                         0.602
## 2 second
                         0.620
## 3 third
                         0.579
# Tempo - picks up as album goes through
ggplot(songs, aes(x = factor(song_third, level = c('third', 'second',
'first')), tempo)) +
  geom_violin(aes(color = song_third)) +
  geom_boxplot(aes(fill = song_third), width = 0.1) +
  guides(color = F, fill = F) + # removes legends for color and fill
aesthetics
  labs (title = "Distribution of Tempo",
        y = "Tempo",
        x = "Third") +
 coord_flip()
```

Distribution of Tempo


```
songs %>% group_by(song_third) %>% summarize(mean(tempo))
## # A tibble: 3 x 2
     song_third `mean(tempo)`
##
     <chr>>
                        <dbl>
## 1 first
                         115.
## 2 second
                         118.
## 3 third
                         121.
# Tempo vs Third - thirds get less danceable
ggplot(songs, aes(x = factor(song_third, level = c('third', 'second',
'first')), danceability)) +
  geom_violin(aes(color = song_third)) +
  geom_boxplot(aes(fill = song_third), width = 0.1) +
  guides(color = F, fill = F) + # removes legends for color and fill
aesthetics
  labs (title = "Distribution of Tempo by Key",
        y = "Tempo",
        x = "Third") +
  coord_flip()
```

Distribution of Tempo by Key


```
# Since 1 represents a major mode and 0 is minor, third third is less "moody"
table(songs$mode,songs$song_third) %>% prop.table(2)
##
##
           first
                    second
                               third
##
     0 0.3541667 0.3443709 0.2727273
     1 0.6458333 0.6556291 0.7272727
##
# Valence vs Third - Second third of album is happiest
songs %>%
  ggplot(aes(x = factor(song_third, level = c('third', 'second', 'first')),
valence)) +
  geom_violin(aes(color = song_third)) +
  geom_boxplot(aes(fill = song_third), width = 0.1) +
  guides(color = F, fill = F) + # removes legends for color and fill
aesthetics
  labs (title = "Distribution of Valence by Third",
        y = "Valence",
        x = "Third") +
  coord_flip()
```

Distribution of Valence by Third

Distribution of Instrumentalness by Third

Distribution of Loudness by Third

Loudness

Distribution of Key by Third

Distribution of Acousticness

Distribution of Acousticness After 2015

Distribution of Speechiness

Distribution of Log of Speechiness


```
# variable plots
songs_num %>%
  pivot_longer(1:4,"varname","value") %>%
  ggplot() +
  geom_histogram(aes(value),fill="blue", color="white", bins = 20) +
  facet_wrap(~ varname, scales = "free")
```



```
songs_num %>% # instrumentalness no good
pivot_longer(5:8,"varname","value") %>%
ggplot() +
geom_histogram(aes(value),fill="blue", color="white", bins = 20) +
facet_wrap(~ varname, scales = "free")
```



```
songs_num %>% # time signature isn't good
pivot_longer(9:11,"varname","value") %>%
ggplot() +
geom_histogram(aes(value),fill="blue", color="white", bins = 20) +
facet_wrap(~ varname, scales = "free")
```



```
# log speechiness, liveliness and acousticness
sp<-songs %>% ggplot() + geom histogram(aes(speechiness),fill="blue",
color="white", bins = 20)
lsp<-songs %>% ggplot() + geom_histogram(aes(log(speechiness)),fill="blue",
color="white", bins = 20)
li<-songs %>% ggplot() + geom_histogram(aes(liveness), fill="blue",
color="white", bins = 20)
lli<-songs %>% ggplot() + geom histogram(aes(log(liveness)), fill="blue",
color="white", bins = 20)
ac<-songs %>% ggplot() + geom_histogram(aes(acousticness), fill="blue",
color="white", bins = 20)
lac<-songs %>% ggplot() + geom histogram(aes(log(acousticness)), fill="blue",
color="white", bins = 20) # regular acoustcness is better
ins<-songs %>% ggplot() + geom histogram(aes(instrumentalness), fill="blue",
color="white", bins = 20)
lins<-songs %>% ggplot() + geom_histogram(aes(log(instrumentalness)),
fill="blue", color="white", bins = 20) # regular acoustcness is better
grid.arrange(sp, lsp,li,lli,ac,lac,ins,lins, ncol=2)
```



```
songs_numlog %>%
  pivot_longer(5:8,"varname","value") %>%
  ggplot() +
  geom_histogram(aes(value),fill="blue", color="white", bins = 20) +
  facet_wrap(~ varname, scales = "free")
```



```
songs_numlog %>%
  pivot_longer(9:11,"varname","value") %>%
  ggplot() +
  geom_histogram(aes(value),fill="blue", color="white", bins = 20) +
  facet_wrap(~ varname, scales = "free")
```


pretty even, maybe gets a bit Longer
plot(songs\$track_placement, scale(songs\$duration_ms))


```
# Different because of cutoff
table(songs$song third num)
##
##
     1
        2
             3
## 144 151 165
# Does explicit change over course of album - not a ton (p=.24)
chisq.test(songs$explicit, songs$song_third) # %>% prop.table(1)
##
## Pearson's Chi-squared test
## data: songs$explicit and songs$song third
## X-squared = 2.8028, df = 2, p-value = 0.2463
# I test for difference in speechiness in first third and others - not sig
(p=.52).
t.test((songs2 %>% filter(song third=="first") %>%
dplyr::select(speechiness)),
       (songs2 %>% filter(song_third!="first") %>%
dplyr::select(speechiness)))
##
## Welch Two Sample t-test
##
## data: (songs2 %>% filter(song_third == "first") %>%
dplyr::select(speechiness)) and (songs2 %>% filter(song_third != "first") %>%
dplyr::select(speechiness))
## t = 0.64632, df = 258.04, p-value = 0.5186
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.008842954 0.017483724
## sample estimates:
## mean of x mean of y
## 0.07187292 0.06755253
# I test for difference in log(speechiness) in first third and others - not
sig (p=.47).
t.test((songs2 %>% filter(song third=="first") %>%
dplyr::select(speechiness)) %>% mutate(speechiness=log(speechiness)),
       (songs2 %>% filter(song third!="first") %>%
dplyr::select(speechiness))%>% mutate(speechiness=log(speechiness)))
##
## Welch Two Sample t-test
##
## data: (songs2 %>% filter(song_third == "first") %>%
dplyr::select(speechiness)) %>% mutate(speechiness = log(speechiness)) and
(songs2 %>% filter(song_third != "first") %>% dplyr::select(speechiness)) %>%
mutate(speechiness = log(speechiness))
```

```
## t = 0.72207, df = 265.3, p-value = 0.4709
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07792726 0.16818278
## sample estimates:
## mean of x mean of y
## -2.878172 -2.923300
# I test for difference in speechiness in second third and others - not sig
(p=.63).
t.test((songs2 %>% filter(song third=="second") %>%
dplyr::select(speechiness)),
       (songs2 %>% filter(song_third!="second") %>%
dplyr::select(speechiness)))
##
## Welch Two Sample t-test
##
## data: (songs2 %>% filter(song_third == "second") %>%
dplyr::select(speechiness)) and (songs2 %>% filter(song_third != "second")
%>% dplyr::select(speechiness))
## t = 0.46955, df = 252.31, p-value = 0.6391
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01027088 0.01670165
## sample estimates:
## mean of x mean of v
## 0.07106490 0.06784951
# I test for diff in means between third in speechiness - not sig (p = .217)
t.test((songs2 %>% filter(third==1) %>% dplyr::select(speechiness)),
       (songs2 %>% filter(third==0) %>% dplyr::select(speechiness)))
##
## Welch Two Sample t-test
## data: (songs2 %>% filter(third == 1) %>% dplyr::select(speechiness)) and
(songs2 %>% filter(third == 0) %>% dplyr::select(speechiness))
## t = -1.2355, df = 424.38, p-value = 0.2173
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.018449865 0.004207585
## sample estimates:
## mean of x mean of y
## 0.06433818 0.07145932
# Open energetic, get even more, then mellow in the third
songs %>% group_by(song_third) %>% summarise(mean(energy))
## # A tibble: 3 x 2
## song third `mean(energy)`
```

Now more exploration of how variables relate to each other

```
# select variables for correlation matrix
# took out: key, mode, explicit, instrumentalist
corr var <- songs %>%
dplyr::select(c("track_placement","danceability","energy","loudness",
                                      "speechiness", "acousticness",
"liveness", "valence", "tempo", "duration_min"))
# This has logged versions
corr var2 <- songs %>%
dplyr::select(c("track_placement","danceability","energy","loudness",
                                      "speechiness", "acousticness",
"liveness", "valence", "tempo", "duration_min")) %>%
  mutate(speechiness = log(speechiness),
         liveness = log(liveness))
#corrplot(corrplot.mixed(cor(corr var)),
 #
         lower = "number",
         upper = "circle"
 #
         tl.col = "black")
# This has logged versions - the differences are very minimal
#corrplot(corrplot.mixed(cor(corr var2)),
         Lower = "number",
         upper = "circle"
 #
         tl.col = "black")
# Distributions by AOTY
songs %>% ggplot() +
  geom violin(aes(x=as.factor(aoty), y=duration min, color=as.factor(aoty)))
  geom_boxplot(aes(x=as.factor(aoty), y=duration_min,
fill=as.factor(aoty)),width=.1) +
  labs(x="Album of the Year Winner",y="Duration of Album (min)",
       title = "Duration vs AOTY") + theme(legend.position="none")
```

Duration vs AOTY


```
songs %>% ggplot() + geom_violin(aes(x=as.factor(aoty), y=valence)) +
  geom_boxplot(aes(x=as.factor(aoty), y=valence),width=.1) +
  labs(x="Album of the Year Winner",y="Valence (Happiness)", title = "Valence
vs AOTY")
```

Valence vs AOTY


```
songs %>% ggplot() + geom_violin(aes(x=as.factor(aoty), y=acousticness)) +
  geom_boxplot(aes(x=as.factor(aoty), y=acousticness), width=.1) +
  labs(x="Album of the Year Winner", y="Acousticness", title = "Acousticness
vs AOTY")
```

Acousticness vs AOTY


```
# track_placement plots
songs %>% ggplot() + geom_point(aes(x=track_placement, y=tempo,
col=artist_name)) +
   #geom_smooth(aes(x=track_placement, y=tempo,, group=artist_name,
col=artist_name), se=F)+
   geom_smooth(aes(x=track_placement, y=tempo))+
   labs(x="Track Placement", y="Tempo",title="Track Placement vs Tempo by
Artist", color="Artist")
```



```
songs %>% ggplot() + geom_point(aes(x=track_placement, y=energy,
col=artist_name)) +
  geom_smooth(aes(x=track_placement, y=energy, group=artist_name,
col=artist_name), se=FALSE)+
  labs(x="Track Placement", y="Energy",title="Track Placement vs Energy by
Artist", color = "Artist Name")
```

Track Placement vs Energy by Artist


```
songs %>% ggplot() + geom_point(aes(x=track_placement, y=valence,
col=artist_name)) +
  geom_smooth(aes(x=track_placement, y=valence, group=artist_name,
col=artist_name), se=FALSE)+
  labs(x="Track Placement", y="Valence",title="Track Placement vs Valence by
Artist")
```

Track Placement vs Valence by Artist


```
songs %>% ggplot() + geom_point(aes(x=track_placement, y=duration_min,
col=artist_name)) +
  geom_smooth(aes(x=track_placement, y=duration_min, group=artist_name,
col=artist_name), se=FALSE)+
  labs(x="Track Placement", y="Duration (min)",title="Track Placement vs
Duration by Artist")
```

Track Placement vs Duration by Artist


```
# Artist Plots
# Dua Lipa's songs get sadder throughout the album
songs %>% filter(artist_name == "Dua Lipa") %>% ggplot() +
geom_line(aes(x=track_placement, y=valence, col=album_name)) +
geom_smooth(aes(x=track_placement, y=valence), se=FALSE)+
labs(x="Track Placement", y="Valence",title="Track Placement vs Valence by Album")
```

Track Placement vs Valence by Album


```
# Tempo by Swift's Later albums
songs %>% filter(artist_name == "Taylor Swift") %>%
  filter(album_release_year > 2010 & album_release_year<2020) %>%
  ggplot() + geom_line(aes(x=track_placement, y=tempo, col=album_name)) +
  geom_smooth(aes(x=track_placement, y=tempo), se=FALSE)+
  labs(x="Track Placement", y="Tempo",title="Track Placement vs Tempo by
Album (TS)", color="Album")
```

Track Placement vs Tempo by Album (TS)


```
songs %>% filter(artist_name == "Carly Rae Jepsen") %>% ggplot() +
geom_line(aes(x=track_placement, y=tempo, col=album_name)) +
  geom_smooth(aes(x=track_placement, y=tempo), se=FALSE)+
  labs(x="Track Placement", y="Tempo",title="Track Placement vs Tempo by
Album")
```

Track Placement vs Tempo by Album


```
songs %>% filter(artist_name == "Justin Bieber") %>%
  filter(album_name=="My World" | album_name == "Justice") %>%
  ggplot() + geom_line(aes(x=track_placement, y=loudness, col=album_name)) +
  geom_smooth(aes(x=track_placement, y=loudness), se=FALSE)+
  labs(x="Track Placement", y="Loudness",title="Track Placement vs Loudness
by Album", color = "Album")
```

Track Placement vs Loudness by Album

Track Placement vs Valence for Adele


```
# songs in the middle of Adele's albums are short
# Ariana likes to start with an outlier
songs %>% filter(artist_name == "Ariana Grande") %>% ggplot() +
geom_line(aes(x=track_placement, y=duration_min, col=album_name)) +
geom_smooth(aes(x=track_placement, y=duration_min), se=FALSE)+
labs(x="Track Placement", y="Duration",title="Track Placement vs Duration
by Album")
```

Track Placement vs Duration by Album


```
# songs in middle of Justin are longer
songs %>% filter(artist_name == "Justin Bieber") %>% ggplot() +
geom_line(aes(x=track_placement, y=duration_min, col=album_name)) +
   geom_smooth(aes(x=track_placement, y=duration_min), se=FALSE)+
   labs(x="Track Placement", y="Duration",title="Track Placement vs Duration
by Album")
```

Track Placement vs Duration by Album


```
# Very up and down danceability for Adele
# Justin goes up the first half of the ablum and down the second half
songs %>% filter(artist_name == "Justin Bieber") %>% ggplot() +
geom_line(aes(x=track_placement, y=danceability, col=album_name)) +
geom_smooth(aes(x=track_placement, y=danceability), se=FALSE)+
labs(x="Track Placement", y="Danceability",title="Track Placement vs
Danceability by Album")
```

Track Placement vs Danceability by Album


```
# Liveness - bottoms at beginning of second third
songs %>% filter(artist_name == "Adele") %>% ggplot() +
geom_line(aes(x=track_placement, y=log(liveness), col=album_name)) +
geom_smooth(aes(x=track_placement, y=log(liveness)), se=FALSE)+
labs(x="Track Placement", y="Log of Liveness",title="Track Placement vs
Liveness by Album")
```


Supervised Learning - Classification

Here is QDA

```
# ODA
mod_qda <- qda(song_third_num ~ danceability+energy+key+loudness+mode+</pre>
               speechiness+acousticness+instrumentalness+liveness+
               valence+tempo+duration_min+explicit+aoty+
               album_length, data = songs )
songs %>% # 49.78 so not great but I've seen worse
 mutate(pred third = predict(mod qda, newdata = songs)$class) %>%
 dplyr::select(song_third_num, pred_third) %>%
 table()
##
               pred third
## song_third_num
                 1
                     2
                         3
##
              1
                 38 89
                       17
##
              2
                 8 126
                        17
##
                 15 85 65
##############################
# QDA with Logged vars
```

```
mod qda log <- qda(song third num ~ danceability+energy+key+loudness+mode+
                 speechinesslog+acousticness+instrumentalness+livenesslog+
                 valence+tempo+duration_min+explicit+aoty+
                 album_length, data = songs_log )
songs %>% # 51.30 so a bit better
 mutate(pred_third = predict(mod_qda_log, newdata = songs_log)$class) %>%
 dplyr::select(song_third_num, pred_third) %>%
 table()
##
                 pred_third
## song_third_num
                  1 2
                          3
##
                 40 89 15
                1
                2
##
                  5 133 13
##
                3 16 86 63
Here is Naive Bayes
```

```
########################
# Naïve Bayes
##############################
nb <- naiveBayes(song_third_num ~ danceability+energy+key+loudness+mode+</pre>
                   speechiness+acousticness+instrumentalness+liveness+
                   valence+tempo+duration min+explicit+aoty+
                   album_length, data = songs )
songs %>% # 37.61% so less than QDA and bad at predicting first third
  mutate(nb_pred = predict(nb, newdata = songs),
         match = (song third num == nb pred)) %>%
  dplyr::select(song_third_num,nb_pred) %>%
  table()
##
                 nb_pred
## song_third_num
                    1
                        2
                            3
                    0 125 19
##
                1
##
                    1 127 23
                2
##
                3
                    3 116 46
######################################
# Naive Bayes with Logged vars
nb log <- naiveBayes(song third num ~ danceability+energy+key+loudness+mode+
                   speechinesslog+acousticness+instrumentalness+livenesslog+
                   valence+tempo+duration min+explicit+aoty+
                   album length, data = songs log )
songs log %>% # 38.47% so not a Lot better
  mutate(nb_pred = predict(nb_log, newdata = songs_log),
```

```
match = (song third num == nb pred)) %>%
  dplyr::select(song third num,nb pred) %>%
  table()
##
                 nb_pred
## song_third_num
                     1
                         2
##
                     0 127
                            17
##
                 2
                     0 131
                            20
##
                 3
                     3 116
                           46
```

Here is using classification trees


```
# percent right: 51.09% so a little better
data.frame(songs,predict(treetop, newdata=songs)) %>%
  mutate(id = c(1:nrow(songs))) %>% # give each row an id
  group_by(id) %>%
```

```
mutate(max_prob = max(first, second, third), # create columns for prob of
each cat and the max
        pred = case_when(
                                                      # assigned to cat
with highest prob
          max_prob == first ~ "first",
          max_prob == second ~ "second",
          max_prob == third ~ "third")) %>%
  ungroup() %>% # undo the group by row
  dplyr::select(song_third,pred) %>%
  table()
##
            pred
## song_third first second third
      first
                84
                      27
                            33
                51
                      58
                            42
##
      second
##
      third
                44
                      28
                            93
# Classification with logged variables
treetop_log <- rpart::rpart(song_third ~</pre>
danceability+energy+key+loudness+mode+
speechinesslog+acousticness+instrumentalness+livenesslog+
valence+tempo+duration_min+explicit+aoty+album_length,
                      data=songs_log, cp = .025)
treetop_log %>% as.party() %>% plot()
```



```
# percent right: 51.09% so exactly the same
data.frame(songs log,predict(treetop log, newdata=songs log)) %>%
  mutate(id = c(1:nrow(songs_log))) %>% # give each row an id
  group_by(id) %>%
  mutate(max_prob = max(first, second, third), # create columns for prob of
each cat and the max
         pred = case when(
                                                          # assigned to cat
with highest prob
           max_prob == first ~ "first",
           max_prob == second ~ "second",
           max_prob == third ~ "third")) %>%
  ungroup() %>% # undo the group by row
  dplyr::select(song_third,pred) %>%
  table()
##
             pred
## song_third first second third
##
       first
                 84
                        27
                              33
##
                        58
                              42
       second
                 51
##
       third
                 44
                        28
                              93
```

Some plots relevant to the above classification trees

```
# This plots track_placement against probability of being in third part of
album. Colored by cluster.
data.frame(songs,predict(treetop, newdata=songs)) %>%
  mutate(clust = kmeans(scale(songs_num),2)$cluster) %>%
```

```
ggplot() + geom_point(aes(x=track_placement,y=third, col=as.factor(clust)))
+
    labs(color = "Cluster", x="Track Placement", y= "Probability of Third",
title="Expected vs Actual Third")
```

Expected vs Actual Third


```
data.frame(songs,predict(treetop, newdata=songs)) %>%
  mutate(clust = kmeans(scale(songs_num),2)$cluster) %>%
  ggplot() + geom_point(aes(x=energy,y=third, col=as.factor(clust))) +
  labs(color = "Cluster", x="Energy", y= "Probability of Third",
  title="Energy vs P(Third)")
```


Here is classification using bagging


```
# Always changes - 43.48% Accuracy - it only ever predicted 2nd third of the
album
table(round(predict(bag1,newdata=songs)),songs$song_third_num) %>%
confusionMatrix()
## Confusion Matrix and Statistics
##
##
##
         1
             2
                 3
##
       11
                 0
             0
##
     2 133 150 116
##
         0
             1
                49
##
## Overall Statistics
##
##
                  Accuracy : 0.4565
                    95% CI: (0.4103, 0.5033)
##
##
       No Information Rate: 0.3587
##
       P-Value [Acc > NIR] : 1.016e-05
##
##
                     Kappa : 0.1874
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: 1 Class: 2 Class: 3
```

```
## Sensitivity
                       0.07639
                                 0.9934
                                         0.2970
## Specificity
                       1.00000
                                 0.1942
                                         0.9966
## Pos Pred Value
                                 0.3759
                                         0.9800
                       1.00000
## Neg Pred Value
                       0.70379
                                 0.9836
                                         0.7171
## Prevalence
                       0.31304
                                 0.3283
                                         0.3587
## Detection Rate
                       0.02391
                                 0.3261
                                         0.1065
## Detection Prevalence 0.02391
                                 0.8674
                                         0.1087
## Balanced Accuracy
                       0.53819
                                 0.5938
                                         0.6468
# Bagging with Logged vars
bag1log <- bagging(song_third_num ~ ., data = songs_predlog)</pre>
vi1log <- varImp(bag1log) # varImp in caret</pre>
ggplot() + geom_col(aes(reorder(rownames(vi1log), -desc(vi1log$0verall)),
vi1log$Overall), fill="blue") +
 labs(x = "Variable", y = "VarImp") +
 coord flip()
```



```
# 44.13% Accuracy - actually does worse
table(round(predict(bag1log,newdata=songs_log)),songs_log$song_third_num) %>%
confusionMatrix()

## Confusion Matrix and Statistics
##
##
```

```
##
        1
            2
##
    1
        9
            0
##
    2 135 150 125
##
            1 40
        0
##
## Overall Statistics
##
##
                 Accuracy : 0.4326
##
                   95% CI: (0.3868, 0.4793)
##
      No Information Rate: 0.3587
##
      P-Value [Acc > NIR] : 0.000642
##
##
                    Kappa: 0.1523
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                       Class: 1 Class: 2 Class: 3
## Sensitivity
                        0.06250
                                 0.9934 0.24242
## Specificity
                       1.00000
                                 0.1586 0.99661
## Pos Pred Value
                       1.00000
                                 0.3659 0.97561
## Neg Pred Value
                       0.70067 0.9800 0.70167
## Prevalence
                        0.31304
                                 0.3283 0.35870
## Detection Rate
                        0.01957
                                 0.3261 0.08696
## Detection Prevalence 0.01957
                                 0.8913 0.08913
## Balanced Accuracy 0.53125 0.5760 0.61952
```

Here is classification with random forest

```
# Random Forest
#####################################
rf1 <- train(as.factor(song_third_num) ~ ., data = songs_pred, method = "rf")
# Default in R
# Changes every time, average 35%
confusionMatrix(rf1) # table of percentages. Expect counts - x460
## Bootstrapped (25 reps) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
##
             Reference
                           3
## Prediction
                1
                     2
           1 8.2 9.8 8.5
##
           2 11.2 10.2 10.7
##
##
           3 11.9 12.1 17.4
##
## Accuracy (average): 0.3575
varImp(rf1)
```

```
## rf variable importance
##
##
                      Overall
## valence
                     100.0000
## danceability
                      93.9704
## liveness
                      93.2434
## energy
                      92.0200
## acousticness
                      89.3201
## tempo
                      86.7210
## speechiness
                      86.1497
## loudness
                      85.6300
## duration min
                      84.3809
## key
                      59.4759
## instrumentalness
                      56.1543
## album_length
                      42.8670
## mode
                       6.8608
## aoty
                       0.4457
## explicitTRUE
                       0.0000
plot(varImp(rf1))
```



```
# Always moving - 34.2%
confusionMatrix(rf1log) # table of percentages. Expect counts - x460
## Bootstrapped (25 reps) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
##
             Reference
                           3
                 1
                      2
## Prediction
##
            1 9.6 11.2 10.3
##
            2 9.0 9.7 8.4
##
            3 12.0 13.1 16.7
##
  Accuracy (average): 0.3605
##
varImp(rf1log)
## rf variable importance
##
##
                    Overall
## valence
                    100.000
## danceability
                     92.868
## livenesslog
                     88.117
## tempo
                     81.233
## energy
                     80.964
## acousticness
                     80.195
## speechinesslog
                     78.264
## duration_min
                     76.470
## loudness
                     74.026
## key
                     50.791
## instrumentalness 47.066
## album length
                     30.738
## mode
                      5.328
## explicitTRUE
                      1.882
## aoty
                      0.000
plot(varImp(rf1log))
```


Unsupervised Learning - Clustering


```
# Visual
songs %>%
  mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>% # bring songs_num
clusters in
  ggplot()+geom_bar(aes(x=song_third, fill=as.factor(clust)),position="fill")
+
  theme(legend.position="none")+
  labs(x="Third of Album",y="Percent",title="Thirds by Clusters")
```

Thirds by Clusters 1.00 0.75 0.50 0.00 first second third

Third of Album

```
# what goes into clusters
set.seed(1)
songs %>%
  mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>% # centers for
group 1 and 2
pivot_longer(c(danceability,energy,key,loudness,mode,speechiness,acousticness
,instrumentalness,liveness,valence,tempo,explicit,duration min,aoty,album len
gth),names_to = "varname", values_to = "value") %>%
  group_by(clust, varname) %>%
  mutate(value_mean = mean(value)) %>%
  group_by(varname) %>%
  summarize(ssmod = sum((value-value_mean)^2),
            sstot = sum((value-mean(value))^2)) %>%
  mutate(r_sq = ssmod/sstot) %>%
  arrange(desc(r_sq))
## # A tibble: 15 x 4
##
      varname
                             ssmod
                                          sstot r_sq
##
      <chr>>
                             <dbl>
                                          <dbl> <dbl>
##
  1 kev
                         5712.
                                      5712.
                                                1.00
   2 explicit
##
                           49.1
                                        49.2
                                                0.998
   3 instrumentalness
                                         0.0966 0.998
##
                            0.0964
  4 album length
                         2440.
                                      2469.
                                                0.988
##
  5 liveness
                            5.11
                                         5.17
                                                0.988
##
##
   6 tempo
                       328615.
                                    335564.
                                                0.979
## 7 mode
                           98.1
                                       100.
                                                0.977
```

```
## 8 speechiness
                             1.86
                                         1.91
                                                0.976
                                        64.8
                                                0.968
## 9 aoty
                            62.7
## 10 duration_min
                           248.
                                       257.
                                                0.964
## 11 valence
                            15.6
                                        20.1
                                                0.776
## 12 danceability
                             5.90
                                         7.68
                                                0.768
## 13 loudness
                          1357.
                                      2231.
                                                0.608
## 14 energy
                             6.86
                                        15.3
                                                0.450
## 15 acousticness
                            18.5
                                        42.9
                                                0.431
songs %>%
  mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>%
  ggplot() +
  geom_point(aes(x=key,y=instrumentalness,col=as.factor(clust)))
```



```
# This is the most revealing
songs %>%
  mutate(clust = kmeans(scale(songs_num),2)$cluster) %>%
  ggplot() +
  geom_point(aes(x=loudness,y=energy,col=as.factor(clust)))+
  labs(x="Loudness",y="Energy",title="Loudness Vs Energy by
Cluster",col="Cluster")
```

Loudness Vs Energy by Cluster


```
# They're very correlated
cor(songs$loudness,songs$energy)
## [1] 0.7234325
# High happy means high danceability
songs %>%
  mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>%
  ggplot() +
  geom_point(aes(x=valence,y=danceability,col=as.factor(clust)))+
  labs(x="Valence",y="Danceability",title="Valence Vs Danceability by
Cluster",col="Cluster")
```

Valence Vs Danceability by Cluster


```
# Log Looks better since instrumentalness is so low (just couldn't keep it
calculated)
songs %>%
   mutate(loginst = log(instrumentalness)) %>%
   mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>%
   ggplot() +
   geom_point(aes(x=loginst,y=tempo,col=as.factor(clust)))+
   labs(x="Instrumentalness",y="Tempo",title="Log Instrumentalness Vs Tempo by
Cluster",col="Cluster")
```

Log Instrumentainess Vs Tempo by Cluster


```
# Pretty evenly distributed on both parts
songs %>%
  mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>%
  ggplot() +
  geom_point(aes(x=track_placement,y=explicit,col=as.factor(clust)))+
  labs(x="Placement",y="Explicit",title="Placement vs Explicit by
Cluster",col="Cluster")
```

Placement vs Explicit by Cluster


```
# Not helpful
songs %>%
  mutate(clust = kmeans(scale(songs_numlog),2)$cluster) %>%
  ggplot() +
  geom_point(aes(x=tempo,y=album_length,col=as.factor(clust))) +
  labs(x="Tempo",y="Album Length (min)",title="Tempo Vs Length by
Cluster",col="Cluster")
```



```
# I test for an association between song third and the two clusters. #
p=.0265 so there is sig ev of an association
chisq.test(table(songs2$third, kmeans(scale(songs_numlog),2)$cluster))
##
##
   Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(songs2$third, kmeans(scale(songs_numlog), 2)$cluster)
## X-squared = 4.1476, df = 1, p-value = 0.04169
table(songs2$third, kmeans(scale(songs numlog),2)$cluster) %>% prop.table(1)
##
##
                         2
               1
     0 0.7118644 0.2881356
##
##
     1 0.6060606 0.3939394
# but not sig evidence of a diff here because of smaller sample sizes
chisq.test(table(songs2$song_third, kmeans(scale(songs_numlog),2)$cluster))
##
##
   Pearson's Chi-squared test
##
## data: table(songs2$song_third, kmeans(scale(songs_numlog), 2)$cluster)
## X-squared = 5.4052, df = 2, p-value = 0.06703
table(songs2$song_third, kmeans(scale(songs_num),2)$cluster) %>%
prop.table(1)
```

```
##
## 1 2
## first 0.7152778 0.2847222
## second 0.7218543 0.2781457
## third 0.6121212 0.3878788

# fun cluster graph
songs_num %>% kmeans(2) %>% fviz_cluster(songs_numlog)
```

Cluster plot

songs_num %>% kmeans(3) %>% fviz_cluster(songs_numlog) # maybe the best but
not very good

songs_num %>% kmeans(4) %>% fviz_cluster(songs_numlog)

Logistic Regression

I performed logistic regression on whether or not an album would be given a Grammy Award for Album of the Year. I used albums for units of measurement instead of songs and logged the same two variables. Both logged and unlogged models produce the same final model - valence alone predicts AOTY where an increase in 1 unit of valence is associated with a 1.4078 decrease in the log odds of winning AOTY.

```
####################
# loop regression
##################
varlist <- names(grammy[,c(2:13,15)]) # get a list without id and group</pre>
pval_list <- matrix(NA,nrow=2,ncol=13) # every variable will have a p-val</pre>
for (i in seq_along(varlist)){
  # First, create null model needed to calculate p-val.
  # It needs to be done like this so it's comparable to the models made in
the Loop
  base blueprint <- as.formula(sprintf("aoty ~ 1"))</pre>
  base model <- glm(formula = base blueprint, family = binomial, data =
grammy)
  # code blueprint lets me change the x variable in my qlm model
  code blueprint <- as.formula(sprintf("aoty ~ %s", varlist[i]))</pre>
  # create glmmodel with one variable each time
  glm_model <- glm(formula = code_blueprint, family = binomial, data =</pre>
grammy)
  # Find p-value by comparing each model to the null model. I want 2nd pval,
the one from hm full.
  pval_list[1,i] <- varlist[i] # first row is col name</pre>
  pval_list[2,i] <- anova(base_model, glm_model, test =</pre>
'Chisq')$"Pr(>Chi)"[2]
}
min(pval list)
# valence has smallest p-val
## add valence ##
varlist <- names(grammy[,c(2:9,11,12,13,15)])</pre>
pval_list <- matrix(NA, nrow=2, ncol=12)</pre>
```

```
for (i in seq along(varlist)){
  base blueprint <- as.formula(sprintf("aoty ~ valence"))</pre>
  base_model <- glm(formula = base_blueprint, family = binomial, data =</pre>
grammy)
  code blueprint <- as.formula(sprintf("aoty ~ valence + %s", varlist[i]))</pre>
  glm model <- glm(formula = code blueprint, family = binomial, data =</pre>
grammy)
  pval_list[1,i] <- varlist[i]</pre>
  pval_list[2,i] <- anova(base_model, glm_model, test =</pre>
'Chisq')$"Pr(>Chi)"[2]
min(pval list)
model <- glm(aoty ~ valence, data=grammy)</pre>
summary(model) # aic = 31.646
# Do it again with grammylog data
###################
# loop regression
###################
varlistlog <- names(grammylog[,c(2:13,15)]) # get a list without id and group</pre>
pval list <- matrix(NA,nrow=2,ncol=13) # every variable will have a p-val</pre>
for (i in seq_along(varlistlog)){
  base_blueprint <- as.formula(sprintf("aoty ~ 1"))</pre>
  base model <- glm(formula = base blueprint, family = binomial, data =
grammylog)
  code blueprint <- as.formula(sprintf("aoty ~ %s", varlistlog[i]))</pre>
  glm_model <- glm(formula = code_blueprint, family = binomial, data =</pre>
grammylog)
  pval list[1,i] <- varlistlog[i]</pre>
  pval_list[2,i] <- anova(base_model, glm_model, test =</pre>
'Chisq')$"Pr(>Chi)"[2]
}
min(pval list)
# valence has smallest p-val
## add valence ##
varlistlog <- names(grammylog[,c(2:9,11,12,13,15)])</pre>
pval list <- matrix(NA, nrow=2, ncol=12)</pre>
for (i in seq along(varlistlog)){
base_blueprint <- as.formula(sprintf("aoty ~ valence"))</pre>
```

```
base model <- glm(formula = base blueprint, family = binomial, data =
grammylog)
  code_blueprint <- as.formula(sprintf("aoty ~ valence + %s", varlistlog[i]))</pre>
  glm_model <- glm(formula = code_blueprint, family = binomial, data =</pre>
grammylog)
  pval_list[1,i] <- varlistlog[i]</pre>
  pval_list[2,i] <- anova(base_model, glm_model, test =</pre>
'Chisq')$"Pr(>Chi)"[2]
min(pval list) # stop here
modellog <- glm(aoty ~ valence, data=grammylog)</pre>
#summary(modellog) # aic = 31.646
The final model
modellog <- glm(aoty ~ valence, data=grammylog)</pre>
summary(modellog)
Call:
glm(formula = aoty ~ valence, data = grammylog)
Deviance Residuals:
                      Median
     Min
                10
                                     3Q
                                              Max
-0.41809 -0.22803 -0.13033 0.05648 0.81914
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         0.2884 2.882
                                           0.0069 **
(Intercept)
            0.8311
valence
             -1.4078
                         0.6016 -2.340
                                           0.0255 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.1292112)
    Null deviance: 4.9714 on 34 degrees of freedom
Residual deviance: 4.2640 on 33 degrees of freedom
AIC: 31.646
Number of Fisher Scoring iterations: 2
# Correlation plot
```


#Correlation plot with logged variables

