# **Set 3: Polynomial Interpolation – Part 3**

**Kyle A. Gallivan Department of Mathematics** 

Florida State University

Foundations of Computational Math 2 Spring 2013

## Conditioning, Stability, Error

- conditioning a polynomial with respect to representation
- conditioning of the interpolating polynomial with respect to function values
- stability and practical limitations
- interpolation error
- convergence of interpolation strategies

### References

In addition to the text, the following are useful references for this topic.

- Isaacson and Keller, Analysis of Numerical Methods, Wiley Press, 1966.
- Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Second Edition, 2002.
- W. Gautschi, Questions of numerical conditions related to polynomials, Studies in Numerical Analysis, Volume 24 of MAA Studies in Mathematics Series, G. H. Golub, Ed., pp. 140–177, 1984
- J. H. Wilkinson, The perfidious polynomial, Studies in Numerical Analysis, Volume 24 of MAA Studies in Mathematics Series, G. H. Golub, Ed., pp. 1–28, 1984

### **Conditioning of Representation**

- Various representations of polynomials have different condition relative to perturbation of their parameters.
- Successive basis functions that are "close" to the span of the previous basis functions yield ill-conditioned representations.
- The monomial (power) and Newton representations have "nearly colinear" basis functions as n gets large and grow increasingly ill-conditioned relative to perturbations.
- $\bullet$  Condition numbers that are exponential in n are possible.
- This theory will be very important later when discussing orthogonal polynomials and their uses.

**Basics** 

**Definition 3.1.** If  $f(x) \in \mathcal{C}^{(0)}[a,b]$  then its maximum or  $\infty$  norm is

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

If  $v \in \mathbb{R}^n$  then

$$||v||_{\infty} = \max_{1 \le i \le n} |e_i^T v|$$

### **Monomial (Power) Basis**

**Definition 3.2.** The linear mapping  $M_n : \mathbb{R}^n \to \mathbb{P}_{n-1}$  is defined by

$$M_n(a) = \alpha_0 + \alpha_1 x + \dots + \alpha_{n-1} x^{n-1}$$

and the condition number  $\kappa_n$  is such that

$$||p_n(x) - \tilde{p}_n(x)||_{\infty} \le \kappa_n ||a - \tilde{a}||_{\infty}$$

$$a^T = \begin{pmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_n \end{pmatrix}$$

$$\tilde{a}^T = \begin{pmatrix} \tilde{\alpha}_0 & \tilde{\alpha}_1 & \cdots & \tilde{\alpha}_n \end{pmatrix}$$

#### **Monomial (Power) Basis**

**Theorem 3.1** (Gautschi, 1984). For the linear mapping  $M_n : \mathbb{R}^n \to \mathbb{P}_{n-1}$  defined by

$$M_n(a) = \alpha_0 + \alpha_1 x + \dots + \alpha_{n-1} x^{n-1}$$

and for the interval  $[-\omega, \omega]$ , where  $\omega > 0$ , we have as  $n \to \infty$ 

$$\kappa(M_n) \approx \begin{cases} \left(1 + \sqrt{1 + \omega^2}\right)^n & \text{for } \omega \ge 1\\ \left(\frac{1 + \sqrt{1 + \omega^2}}{\omega}\right)^n & \text{for } \omega < 1 \end{cases}$$

whose minimum is at  $\omega = 1$ .

### **Orthogonal Basis**

- $\kappa(M_n)$  is a worst case perturbation result
- In practice, especially for moderate n, the power basis or the related Newton form may not be that sensitive.
- As in  $\mathbb{R}^n$ , an orthogonal basis is better conditioned.
- Families of polynomials that are orthogonal with respect to some inner product on  $\mathbb{P}_n$  exist and will be considered later in detail.

### **Orthogonal Basis**

**Theorem 3.2** (Gautschi, 1984). The condition number for the representation on  $-1 \le x \le 1$ 

$$p(x) = \alpha_0 \pi_0(x) + \dots + \alpha_{n-1} \pi_{n-1}(x)$$

where the  $\pi_k(x)$  are orthogonal polynomials is bounded:

$$\kappa(M_n) \leq \begin{cases} n & \sqrt{2} & \text{for Chebyshev polynomials} \\ n & \sqrt{2n-1} & \text{for Legendre polynomials} \end{cases}$$

Given  $x_0, x_1, \ldots, x_n$  consider two polynomials

- $p_n(x)$  that interpolates  $y_0, y_1, \dots, y_n$
- $\tilde{p}_n(x)$  that interpolates  $\tilde{y}_0, \tilde{y}_1, \dots, \tilde{y}_n$

We want a condition number  $\kappa_n$ 

$$||p_n(x) - \tilde{p}_n(x)||_{\infty} \le \kappa_n ||y - \tilde{y}||_{\infty}$$

$$y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \tilde{y} = \begin{pmatrix} \tilde{y}_0 \\ \tilde{y}_1 \\ \vdots \\ \tilde{y}_n \end{pmatrix}$$

The Lagrange basis relates function values to the interpolating polynomials:

$$||p_n(x) - \tilde{p}_n(x)||_{\infty} = \max_{x \in [a,b]} |\sum_{i=0}^n (y_i - \tilde{y}_i) \ell_i^{(n)}(x)|$$

$$\leq \max_{0 \leq i \leq n} |(y_i - \tilde{y}_i)| \max_{x \in [a,b]} \sum_{i=0}^{\infty} |\ell_i(x)| = \Lambda_n ||y - \tilde{y}||_{\infty}$$

$$\Lambda_n = \|\sum_{j=0}^n |\ell_j^{(n)}(x)|\|_{\infty}$$

- $\therefore \Lambda_n$ , the Lebesgue constant, can be viewed as a condition number with respect to the  $\infty$  norm of polynomial interpolation relative to changes in function values.
- It is also a condition number of the Lagrange representation of a polynomial.
- The choice of interpolation points can significantly affect the conditioning.

Examples of point selection effects:

• (Natonson, 1965) For equally spaced nodes

$$\Lambda_n(X) \approx \frac{2^{n+1}}{en \log n}$$

• (Gautschi, 1984) For the Chebyshev points,  $0 \le j \le n$ 

$$x_j = \cos \frac{(2j+1)\pi}{2n+2}, \quad \Lambda_n(X) \approx \frac{2}{\pi} \log n$$

• Among all Lagrange bases, best value, i.e., slowest growth, is

$$\Lambda_n(X) = O(\log n)$$

### **Interpolation Stability**

- Two parts of process:
  - 1. evaluation of the parameters, e.g., divided differences
  - 2. evaluation of the polynomial given the computed differences
- Many analyses in the literature.
- Horner's rule has a backward error, i.e., the computed value is the exact value of a perturbed polynomial.
- It can be adapted to Newton and orthogonal bases (any basis with a definition based on a recurrence)

### **Newton Form Interpolation**

- See Higham 2002 for a nice summary.
- It is possible to have significant errors in the difference table and still reproduce the original data accurately.
- $x_0 < x_1 < \cdots < x_n$  or  $x_0 > x_1 > \cdots > x_n$  are "optimal" ordering for keeping  $|fl(p_n(x_i)) p_n(x_i)|$  acceptably small, i.e., error in interpolation conditions.

#### **Newton Form Interpolation**

- If keeping  $|fl(p_n(x)) p_n(x)|$  small for  $x \neq x_i$  is the goal then Leja ordering (Reichel, BIT30:332–346, 1990) is useful.
- Ordered points satisfy

$$x_0 = \max_{i} |x_i|$$

$$\prod_{k=0}^{j-1} |x_j - x_k| = \max_{i \ge j} \prod_{k=0}^{j-1} |x_i - x_k|$$

• Two orderings:

$$-1, -0.5, 0, 0.5, 1,$$
 small reconstruction error  $1, -1, 0, 0.5, -0.5,$  Leja ordered

• A Leja ordering can be computed in  $O(n^2)$  operations.

### **Newton Form Interpolation**

- If *n* is small or moderately sized the entire divided difference table may be kept.
- ullet A dynamic point ordering heuristic can be used to choose a path through the table based on x
- Start at the  $x_i$  nearest x, then add to the polynomial the nearest in turn until desired degree achieved.
- Easy to locate initial  $x_{i_0}$ , then need only compare two values for each additional  $x_{i_j}$  included.

### **Newton Form**

| i          | 0  |   | 1 |    | 2   |     | 3  |
|------------|----|---|---|----|-----|-----|----|
| $x_i$      | 0  |   | 1 |    | 3   |     | 4  |
| $y_i$      | -5 |   | 1 |    | 25* |     | 55 |
| y[-,-]     |    | 6 |   | 12 |     | 30* |    |
| y[-,-,-]   |    |   | 2 |    | 6*  |     |    |
| y[-,-,-,-] |    |   |   | 1* |     |     |    |

- Table generated with  $x_0 < x_1 < \cdots < x_n$ .
- $p_3(x) = -5 + 7x 2x^2 + x^3$
- $p_3(2.55) \approx 16.42638$  would use differences marked with \*.

#### **Pointwise Error**

Pointwise error is defined for all x in a region of interest via:

$$E_n(x) = f(x) - p_n(x)$$

**Theorem 3.3.** Let  $x_i \in [a,b]$  for  $0 \le i \le n$  be distinct points,  $f(x) \in \mathcal{C}^{(n+1)}[a,b]$ , and  $p_n(x) \in \mathbb{P}_n$  be the interpolating polynomial of degree n. For each  $x \in [a,b]$   $\exists \xi(x) \in [a,b] \ni$ 

$$E_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

*Proof.* See text p. 335.

#### **Pointwise Error**

Remark.

- $\bullet \ E_n(x_i) = 0$
- $E_n(x) = 0$  if  $f(x) \in \mathbb{P}_n$
- $E_n(x)$  tends to be very oscillatory.
- If  $f^{(n+1)}(x)$  is nicely bounded on [a, b] error can be estimated.
- Problems if  $f^{(n+1)}(x)$  grows faster than (n+1)! or  $\omega_{n+1}(x)$  is large.
- This is not a general result for all continuous f(x).

#### **Error and Derivatives**

Given nodes  $x_0, \ldots, x_n$ , an associated interpolant  $p_n(t)$ , an arbitrary x, and an associated interpolant  $p_{n+1}(t)$ , let I be the smallest interval containing all of the points.

$$p_{n+1}(t) = p_n(t) + f[x_0, \dots, x_n, x] \omega_{n+1}(t)$$

$$\therefore E_n(x) = f(x) - p_n(x) = f[x_0, \dots, x_n, x] \omega_{n+1}(x)$$

$$\therefore \text{ if, additionally, } f \in \mathcal{C}^{(n+1)}[I]$$

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

$$f[x_0, \dots, x_n, x] = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

The last one can be used as the basis for an error estimate.

#### **Some Useful Identities**

$$\omega'_{n+1}(x_i) = \prod_{k=0, k \neq i}^{n} (x_i - x_k)$$

$$f[x_0, \dots, x_n] = \sum_{i=0}^n \frac{f(x_i)}{\omega'_{n+1}(x_i)}$$

 $f[x_0,\ldots,x_n]=f[x_{i_0},\ldots,x_{i_n}]$  for any permutation of indices

$$f[x_0, \dots, x_n, x] = \sum_{i=0}^n \frac{f[x, x_i]}{\omega'_{n+1}(x_i)}$$

Many others, including nondistinct points, see Isaason and Keller (1966) and text.

### **Convergence on Interval**

Approximation by polynomials is motivated by the following theorem:

**Theorem 3.4.** (Weierstrass Approximation Theorem) If  $f(x) \in C^{(0)}[a, b]$  then  $\forall \epsilon > 0 \ \exists n \in \mathbb{Z}$  and polynomial  $p_n(x)$  with degree at most n such that

$$||f(x) - p_n(x)||_{\infty} < \epsilon.$$

This is uniform convergence, i.e., pointwise error at all points in interval is bounded and the bound is going to 0.

### **Convergence on Interval**

- Theorem 3.4 gives no insight into how to choose  $p_n(x)$  and does not relate necessarily to an interpolation strategy.
- The result can be derived as a corollary to a constructive theorem due to Bernstein.
- A sequence of polynomials is defined and shown to converge uniformly.

#### **Bernstein Polynomials**

**Definition 3.3.** Let f(x) be a real function defined on [0, 1]. The n-th Bernstein polynomial for f is

$$B_n(x) = B_n(x; f) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^k (1-x)^{n-k}$$

$$= \sum_{k=0}^n f(\frac{k}{n}) \phi_{n,k}(x)$$

$$= \sum_{k=0}^n f(x_k) \phi_{n,k}(x)$$

$$x_k = k/n$$

### **Bernstein Polynomials**

- Sum of f(x) at uniformly-spaced points.
- The weight  $\phi_{n,k}(x)$  is non-negative on [0,1] and  $\sum_{k=0}^{n} \phi_k(x) = 1$ .
- The weight  $\phi_{n,k}(x)$  can be very small for k where x is far from k/n.
- The weight  $\phi_{n,k}(x)$  achieves its maximum on [0,1] at x=k/n.
- The construction is not interpolatory, i.e.,  $B_n(x_k)$  is not necessarily equal to  $f(x_k)$ .
- $B_n(x)$  usually interpolates f(x) but where and how often it does is not controlled.

### **Bernstein Approximation**

**Theorem 3.5.** If  $f(x) \in C^{(0)}[0,1]$  then  $B_n(x)$  converges uniformly to f(x) on [0,1], i.e.,

$$\lim_{n \to \infty} ||f(x) - B_n(x)||_{\infty} = 0$$

Proof. See Bartle, Elements of Real Analysis (1976)

**Corollary 3.6.** If, in addition, on [0,1], f(x) satisfies the Lipschitz condition  $|f(x) - f(\hat{x})| < \lambda |x - \hat{x}|$  then

$$||f(x) - B_n(x)||_{\infty} < \frac{9}{4}\lambda n^{-1/2}$$

*Proof.* See Isaacson and Keller (1966)

### **Bernstein Approximation**

- Easily updated to apply to [a, b].
- Convergence is much slower than other approximation methods.
- Even if  $f(x) \in \mathcal{C}^{(p)}[0,1]$  with  $p \geq 2$  convergence remains relatively slow.
- Useful theoretical result but Bernstein polynomials are not used in practice for this type of approximation.
- Bernstein polynomials are used when "shape" is important.
- This shows that polynomials can converge uniformly to a continuous f.

### **Bernstein Convergence**



$$f(x) = 1/(1+10x^2) - 1 \le x \le 1$$
 shifted to  $[0,1]$  – black,  $B_3(x)$  – red,  $B_6(x)$  – blue,  $B_{15}(x)$  – green

**Definition 3.4.** An interpolating strategy is defined by a sequence, X, of sets of nodes  $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}.$ 

- The sets  $X_n$  are chosen independently of any particular f(x).
- Each  $X_n$  defines an interpolatory polynomial,  $p_n(x)$ , of degree n such that given an f(x),  $p_n(x_i^{(n)}) = f(x_i^{(n)})$  for  $0 \le i \le n$ .

Uniform interpolation:

$$X_n = \{x_i^{(n)} = x_0 + ih, \quad h = (b-a)/n\}$$

Chebyshev interpolation:

$$X_n = \{x_j^{(n)} = \cos(\frac{2j+1}{n+1}\frac{\pi}{2})\}\$$

The convergence of

$$||f(x) - p_n(x)||_{\infty}$$

on a closed interval [a, b] for  $f(x) \in \mathcal{C}^{(0)}[a, b]$  is complicated.

The result depends on

- the choice of X,
- the class of functions f(x) that may be more constrained than  $\mathcal{C}^{(0)}[a,b]$

#### **Runge's Phenomenon**

Let I = [-5, 5] and define  $x_j^{(n)} = -5 + jh_n$  with  $h_n = 10/n$  and  $0 \le j \le n$ . The sets  $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$  define a sequence, X, of sets of nodes each of which define an interpolatory polynomial,  $p_n(x)$ , of degree n. It can be shown that

$$\lim_{n\to\infty} ||f(x) - p_n(x)||_{\infty}$$

does not converge on I for  $f(x) = 1/(1+x^2)$ .

*Proof.* See Isaacson and Keller (1966)

## **Runge's Phenomenon**



$$f(x) = 1/(1+x^2) - \text{black}, p_5(x) - \text{blue}, p_{10}(x) - \text{red}$$

## **Runge's Phenomenon**

- The divergence occurs near the endpoints of the interval.
- This is typical behavior so keep order low to be effective with uniformly spaced points.
- Non-uniform points more dense near endpoints are needed for better interpolation strategies, e.g., Chebyshev.

For each degree n we can define the "best" polynomial approximation:

**Definition 3.5.** Let  $p_n^*(x) \in \mathbb{P}_n$  be such that

$$E_n^* = ||f(x) - p_n^*(x)||_{\infty} \le ||f(x) - q_n(x)||_{\infty} \quad \forall q_n(x) \in \mathbb{P}_n.$$

This approximation will be discussed in much more detail later.

**Lemma.** Let the sequence X define an interpolating strategy, and let the Lebesgue constant be

$$\Lambda_n(X) = \|\sum_{j=0}^n |\ell_j^{(n)}(x)|\|_{\infty}$$

for the set of nodes  $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$  where  $\ell_j^{(n)}(x)$  are the Lagrange characteristic functions associated with  $X_n$ .

If 
$$f(x) \in \mathcal{C}^{(0)}[a,b]$$
 then

$$E_n^* \le ||f(x) - p_n(x)||_{\infty} \le (1 + \Lambda_n(X))E_n^*$$

for 
$$n=0,1,\ldots$$

- A small Lebesgue constant  $\Lambda_n(X)$  guarantees good  $\infty$  norm approximation of f(x) for the associated  $p_n(x)$ .
- Bounding the Lebesgue constant  $\Lambda_n(X)$  is a key task when analyzing an interpolating strategy.
- Erdos (1961) showed  $\forall X \exists C > 0$  such that

$$\Lambda_n(X) > \frac{2}{\pi} \log(n+1) - C \ n = 0, 1, \dots$$

so 
$$\Lambda_n(X) \to \infty$$
.

• Natonson (1965) showed for equally spaced nodes

$$\Lambda_n(X) \approx \frac{2^{n+1}}{en \log n}$$

- The error bound predicted by the Lebesgue constant is not achieved for all  $f(x) \in \mathcal{C}^{(0)}[a,b]$ .
- ullet A particular strategy may work well with a particular f or some particular class of f
- Unfortunately, no interpolating strategy, X, converges for all  $f(x) \in \mathcal{C}^{(0)}[a,b]$ .

**Theorem 3.7.** (Faber 1914) Given an interpolating strategy defined by any sequence of node sets X on [a,b],  $\exists f(x) \in \mathcal{C}^{(0)}[a,b]$  such that  $||f(x) - p_n(x)||_{\infty}$  does not converge.

# **Summary**

- (Bernstein)  $B_n(x)$  converge uniformly for all  $f(x) \in \mathcal{C}^{(0)}[a, b]$  but not an interpolating strategy since the number and position of points where they agree with f(x) depend on f(x).
- (Faber) No  $p_n(x)$  defined by an X converges for all  $f(x) \in \mathcal{C}^{(0)}[a,b]$ .
- (Bernstein) and (Brutman, Passow) interpolant for |x| on [-1, 1] diverges almost everywhere for a variety of well-known node sets.
- For an interpolating strategy to converge uniformly:
  - the class of f(x) is more restrictive than  $\mathcal{C}^{(0)}[a,b]$ ,
  - the nodes in  $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$  are chosen carefully

**Theorem 3.8.** Let I = [-1, 1] and let the interpolating strategy be defined by the sets  $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$  given by the Chebyshev zeros

$$x_j^{(n)} = \cos(\frac{2j+1}{n+1}\frac{\pi}{2}) \ \ 0 \le j \le n.$$

- If  $f(x) \in C^{(2)}[I]$  then  $||f(x) p_n(x)||_{\infty}$  converges uniformly on I.
- If  $f(x) \in \mathcal{C}^{(0)}[I]$  satisfies the Lipschitz condition  $|f(x) f(\hat{x})| < \lambda |x \hat{x}|$  then  $||f(x) p_n(x)||_{\infty}$  converges uniformly on I.

*Proof.* See Isaacson and Keller (1966), Ueberhuber (1995)

We will discuss this interpolation strategy in more detail later.