

Electronique Numérique Série TD Nº6 Mémoires

Exercice 1

Le plan mémoire de la figure 1 formé de quatre mémoires M1, M2, M3 et M4 est contrôlé par un système de 10 bits d'adresses :

- 1-1- Quel est le nombre de lignes d'adresse de chaque mémoire.
- 1-2- Quel est le nombre de lignes de données de chaque mémoire.
- 1-3- Quelle est la capacité de ce plan mémoire.
- 1-4- Que doivent être les états logiques des entrées d'adresse A8 et A9 pour valider successivement les mémoires M1, M2, M3 et M4. Compléter alors le tableaul.

Mémoire validée	Entrées d'adresse 49 A9 A8				
M1					
M2					
M3					
M4					

Tableau 1

- 1-5- Si l'adresse de début de la mémoire M1 (premier mot) est 000_H, quelle serait en Hexa l'adresse de la fin de cette mémoire (dernier mot).
- 1-6- Sachant que les mémoires M2, M3 et M4 sont implantées successivement juste après lamémoire M1, donner pour chacune de ces mémoires les adresses de début et de fin.
- 1-7- Laquelle des mémoires est validée lorsque le système de contrôle envoie les adressessuivantes :

a- 0FF_H

b-30D_H

с-219н

d-3FF_H

TD6

Exercice 2

Soit la mémoire M de la figure2 :

- 1- Quel est le nombre maximum de mots qu'on peut y stoker?
- 2- On voudrait mémoriser 200 mots de 8 bits chacun. Proposer un montage pouvant résoudrece problème. Utiliser autant de mémoires de ce type qu'il le faut.
- 3- On désire stocker 400 mots de 4 bits chacun. Réaliser le montage correspondant avec lemême type de mémoire.
- 4- A partir de cette mémoire, on veut obtenir un plan mémoire 512x8?
 - 4.a- Combien de circuits de mémoire de ce type faudra t-il?
 - 4.b- Comment les associer ensembles?

Exercice 3

On veut fabriquer un plan mémoire comprenant 10 Ko de PROM à partir de l'adresse D800_H et 6Ko de RAM à partir de l'adresse 4000_H. Ce plan mémoire est géré par un microprocesseur délivrant 16 bits d'adresse.

Sachant que les mémoires PROM et RAM utilisées contiennent toutes 2Ko par boîtier :

- Déterminer les adresses de fin des mémoires RAM et PROM utilisées.
- Proposer un schéma utilisant le décodeur 74138 pour la sélection des différentes mémoires.

Exercice 4

- 1. On souhaite réaliser une interface d'entrée/sortie : il faut pouvoir adresser 2044 mots (cases) de 1 octet sur la carte interface. Le bus d'adresse est de 16 bits et le bus de données de 8 bits, peut-on adresser toutes les cases mémoires ? Expliquer.
- 2. On considère le montage suivant utilisé par un microprocesseur 6809 à 16 bits d'adresses. Déterminer l'étendue (adresse de début, adresse de fin) et la taille des mémoires M1, M2, M3et M4.

Figure3

TD6

1) 8 Cignes . A. - Ax

2) Lilianis de Do- D3

3) 2 Grand Abrantatalon

x lignes de données 21° x 4

= Lk de Whits de Données = 1024 mots de Whits

SF.

= 4kbib

Hemois	re Enter	Entrei d'adrose			
valid	e Ag	1 A8			
H	(0	0			
¥.	0	1			
11,	1	0			
И.	1	1			

5) primiere Hetricinoire de M1: 000H derniere 4 " " M10 (OFF)H

		(6)								ELLEKA	Horese organ or our
6) A	diese	ent	Avail	A	T	I.A	A,I	AJ	A. Y	11/1/1	Boilier
A9	8A	Na	AG			-	-	0	0	(000)H	d" not
0	0	0	0	0	0	0	0		O	Coosy	Fi.
		1	1	1	1	1	1	1	1	(OFF)H	devier not
0	0		-	-		0	0	0	0	(100)H	(43)
0	1	0	0	0	0						(IL)
- 1		1	1	1	1	1	1	1		(1FF)n	
0	1				-	0	0	0	O	(200)H	(3)
1	0	0	0	0	0						(8/3)
		,	1	1	1	1	1	1	1	(2FF)H	
1	0	1		0	0	0	0	0	0	(3=0)H	0
1	1	9	9		,		1	1/	1/1	(SFP)H	(Pu)
	1	1	1	1	1		1	1		1 (311)	· ·
1	1										

7)a) (OFF)n - ofti (30D)n - ofti (219)u- M3 (3FF)n- M4

