CS130 - Sets Summary
4> Sets are an mordered collection of objects.
with no multiplicity * ∠> Notation:
→ Notation:
A = E 3, Set definition
· A , Set Continuity Clength
· A & B · A is a Subset of B
(every element in A is also an element of B
a EA, a is an element of A
· A & B , A is not a Subset of B
(Alontains at least one
element not in R)
· A & B, A is a Subset of, but
not eguel to B
· Ø (= {3}), the empty Set.
Subset of all other sets,
A B but has no Subsets itself
· AUB, Aurion B, the Set of elen
in the A pat B
A A B, A intersection B, the set of
elements in both A and B
A B. A Set difference B, the set of
elements in A bout not B
· A D B , A Symmetric difference B, the
Set of elements in A of B, but not both.
L> Sets also have laws like bodier algebra, but negation is only well defined if there is a universal set
regard is only were actively the isaminas se

alike Elt. . UA; = A, UA, U... UA, $\bigcap_{A_i} A_i = A_1 \wedge A_2 \wedge \dots \wedge A_n$ 4 Power Sets are the Sets of all the Subsets of a given set, e.g. S= {a,b}, 25 = {b, {a}, {b}, = 2151 for all finite sets 5' 4> Because you can make 2" Sets of n things. La caresian products Los the Set of all the ordered pairs that can be formed from two sets, e.g. A = & K, Z, M3 B= { 9, 13 [(u,r)(1,1)(m,r)] AXB (K, 2) (K, 2) (M, Q) - AXB= { (K, N), (C, N), (M, N), (K, q), (Y, q), (m, q) } Ly Is it were BxA, it would be {(r, k), (r, c),

Ly Axø = Ø (Think about there being no columns in the diagram, so it is empty.

L> (A × B) × C & A × (B × C)

L> Sets are not associative under

a caresian product.

L> e.g. & (Ca, b), c),...}

≠ { (a, (b, ()), ... }

L'S Sets are easy to intuitively understand, but had to thoroughly define, Since problems like Russalls pandox (considery the set of all Sets which don't contact, themselves) occur.

L's Intervals:

"[end points included (called closed)

"(end points excluded (called upen)

L's Examples:

[a; \infty) = \{\times \in \R: a \le \chi \le 0\}\)

(-00;b) = {xER: x < b}