F1:
$$Torque_{in} = \frac{p_{me}V_d}{2\pi n_r}$$

F2:
$$Clutch_{fric} = \mu \times c_{geo} \times F_n$$

F3:
$$c_{geo} = N \times 1/2 \times (r_o + r_i)$$

F4:
$$Clutch_{out} = Torque_{in} - Clutch_{fric}$$

F5:
$$0 = Clutch_{out} + bearing_{out} - \tau - fric_{viscous}$$

F6:
$$fric_{viscous} = 10^{-7} \times f_o \times (\eta \times RPM)^{2/3} \times dm^3$$

F7:
$$0 = ratio_1 \times bearing_{out} + gear_{1_{out}}$$

F8:
$$0 = ratio_2 \times gear_{1_{out}} + gear_{2_{out}}$$

 $p_{\it me}$: mean effective pressure

 V_d : engine displacement

 n_r : number of crankshaft rotations in cycle

 $Torque_{in}$: torque input to clutch

 $Clutch_{fric}$: amount of torque from friction

 μ : static coefficient of friction

 c_{geo} : geometric constant for clutch surface

 F_n : normal force between clutch plates

N: number of frictional surfaces of clutch

 r_o : outer surface diameter of clutch

 r_i : inner surface diameter of clutch

Clutch_{out}: torque output from clutch

bearing out torque output from bearing

 τ : bearing torque loss

fric_{viscous}: bearing torque from viscous friction

 f_o : bearing type factor

η: kinematic viscosity of lubricant

RPM: shaft speed

dm: bearing diameter

ratio₁: gear ratio for gear 1

 $gear_{1...}$: torque output from gear 1

*ratio*₂: gear ratio for gear 2

 $gear_{2_{out}}$: torque output from gear 2