0.1 X: 5, Y: 4

0.1.1 Generate ordinal data(same as the method in Li's paper)

Deriving from the (Li 2010 JASA), but don't generate the covariate Z.

The specifics of our four generating scenarios are as follows: we first generated X with five categories using the proportion odds model

$$P(X \le i) = [1 + exp(-(\alpha_i^X + \beta^X Z))]^{-1}$$

with $\alpha^X = (\alpha_1^X, \alpha_2^X, \alpha_3^X, \alpha_4^X) = (-1, 0, 1, 2)$. The Y was generated with four levels using the proportional odds model

$$P(Y \le j) = [1 + exp(-(\alpha_i^Y + \beta^Y Z + \eta_1 I_{\{X=1\}} + \eta_2 I_{\{X=2\}} + \dots + \eta_5 I_{\{X=5\}}))]^{-1}$$

with $\alpha^Y = (\alpha_1^Y, \alpha_2^Y, \alpha_3^Y) = (-1, 0, 1)$, and $\boldsymbol{\eta} = (\eta_1, \eta_2, \dots, \eta_5)$ specified as

- 1. $\eta = (0, 0, 0, 0, 0)$ (the null)
- 2. $\eta = (-0.4, -0.2, 0, 0, 2, 0, 4)$ (linear effect)
- 3. $\eta = (-0.30, -0.18, 0.20, 0.22, 0.24)$ (monotonic nonlinear effect)
- 4. $\eta = (-0.2, 0, 0.2, 0. 0.2)$ (nonmonotonic effect)

0.1.2 The result

NREPL=1000, Nemp=1000, N=500, Time=

Table 1. The result of the three statistics: Type I error and power

	Simulation scenarios				
Analysis method	Null	Linear	Nonlinear	Nonmonotonic	
T1emp	0.056	0.867	0.543	0.078	
T2emp	0.059	0.87	0.555	0.08	
T3emp	0.061	0.87	0.56	0.081	
CobT1	0.054	0.856	0.582	0.182	
T1s	0.052	0.864	0.538	0.076	
T2s	0.057	0.874	0.565	0.078	
T3s	0.056	0.874	0.565	0.078	
X linear	0.055	0.881	0.499	0.067	
X catego	0.054	0.706	0.537	0.281	
iso	0.063	0.821	0.592	0.365	
Spline	0.071	0.791	0.579	0.221	

0.2 X: 10, Y: 4

0.2.1 Generate ordinal data(same as the method in Li's paper)

Deriving from the (Li 2010 JASA), but don't generate the covariate Z.

The specifics of our four generating scenarios are as follows: we first generated X with five categories using the proportion odds model

$$P(X \le i) = [1 + exp(-(\alpha_i^X + \beta^X Z))]^{-1}$$

with $\alpha^X = (\alpha_1^X, \alpha_2^X, \alpha_3^X, \alpha_4^X) = (-4, -3, -2, -1, 0, 1, 2, 3, 4)$. The Y was generated with four levels using the proportional odds model

$$P(Y \le j) = [1 + exp(-(\alpha_i^Y + \beta^Y Z + \eta_1 I_{\{X=1\}} + \eta_2 I_{\{X=2\}} + \dots + \eta_5 I_{\{X=5\}}))]^{-1}$$

with $\alpha^Y = (\alpha_1^Y, \alpha_2^Y, \alpha_3^Y) = (-1, 0, 1)$, and $\boldsymbol{\eta} = (\eta_1, \eta_2, \dots, \eta_5)$ specified as

- 1. $\boldsymbol{\eta} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$ (the null)
- 2. $\eta = (-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1)$ (linear effect)
- 3. $\eta = (-0.65, -0.54, -0.3, 0.18, 0.2, 0.22, 0.24, 0.34, 0.36, 0.45)$ (monotonic nonlinear effect)
- 4. $\eta = (-0.2, 0, 0.2, 0, -0.2, -0.2, 0, 0.2, 0, -0.2)$ (nonmonotonic effect)

0.2.2 The result

NREPL=1000,Nemp=1000,N=500,Time=

Table 1. The result of the three statistics :Type I error and power

	Simulation scenarios				
Analysis method	Null	Linear	Nonlinear	Nonmonotonic	

0.3 X: 7, Y: 4

0.3.1 Generate ordinal data(same as the method in Li's paper)

Deriving from the (Li 2010 JASA), but don't generate the covariate Z.

The specifics of our four generating scenarios are as follows: we first generated X with five categories using the proportion odds model

$$P(X \leq i) = [1 + exp(-(\alpha_i^X + \beta^X Z))]^{-1}$$

with $\alpha^X = (\alpha_1^X, \alpha_2^X, \alpha_3^X, \alpha_4^X) = (-2, -1, 0, 1, 2, 3)$. The Y was generated with four levels using the proportional odds model

$$P(Y \le j) = [1 + exp(-(\alpha_i^Y + \beta^Y Z + \eta_1 I_{\{X=1\}} + \eta_2 I_{\{X=2\}} + \dots + \eta_5 I_{\{X=5\}}))]^{-1}$$

with
$$\alpha^Y=(\alpha_1^Y,\alpha_2^Y,\alpha_3^Y)=(-1,0,1),$$
 and $\boldsymbol{\eta}=(\eta_1,\eta_2,\ldots,\eta_5)$ specified as

- 1. $\boldsymbol{\eta} = (0, 0, 0, 0, 0, 0, 0)$ (the null)
- 2. $\eta = (-0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6)$ (linear effect)
- 3. $\eta = (-0.3, 0.18, 0.2, 0.22, 0.24, 0.34, 0.45)$ (monotonic nonlinear effect)
- 4. $\eta = (0, 0.2, 0, -0.2, -0.2, 0, 0.2)$ (nonmonotonic effect)

0.3.2 The result

 $NREPL{=}1000, Nemp{=}1000, N{=}500, Time{=}$

Table 1. The result of the three statistics :Type I error and power

	Simulation scenarios					
Analysis method	Null	Linear	Nonlinear	Nonmonotonic		