Міністерство Освіти і Науки України

Київський Національний Університет імені Тараса Шевченка Факультет Інформаційних Технологій Кафедра Інформаційних систем та технологій

Звіт з лабораторної роботи № 3 з дисципліни «Data Science та машинне навчання» Тема: « МЕТОДИ РОЗДІЛЯЮЧИХ ФУНКЦІЙ »

Виконав студент 1-го курсу магістратури групи IРма-12 Гаврасієнко Є.О.

Київ — 2025 **Мета роботи:**

1. Опанувати непараметричні методи «навчання з учителем», засновані на

лінійних розділяючих функціях і методику побудови шматково-лінійних вирішальних правил;

2. Отримати навички статистичного оцінювання показників якості класифікації з використанням системи MathCAD для моделювання та подання об'єктів у вигляді даних спостережень.

Завдання:

- 1. За заданими (згідно з варіантом) двовимірними даними спостережень ξі = (xi, yi) двох класів об'єктів a1 і a2 за правилом найближчого сусіда провести межі між класами:
- а. за вибірковими значеннями межу g1(x, y) = 0;
- b. за вибірковим середнім межу g2(x, y) = 0.
- 2. Побудувати вирішальні правила g1 та g2.
- 3. Згенерувати масиви N даних спостережень (N = 100) класів a1 і a2 у припущенні, що спостерігається двовимірний випадковий вектор, компоненти якого некорельовані нормально розподілені величини. В якості параметрів розподілу класів відповідно) взяти їх статистичні оцінки, отримані за заданими вихідними даними.
- 4. Змоделювати процеси розпізнавання спостережень згідно вирішуючих правил g1 і g2 і порівняти ефективності класифікаторів за емпіричними оцінками ймовірностей правильних рішень.
- 5. Оформити звіт про лабораторну роботу, який повинен містити короткі теоретичні відомості, алгоритми моделювання даних та прийняття рішень, графічні подання реалізацій спостережень та меж між класами, висновки.

Хід роботи

Варіант для виконня згідно таблиці - 2

Параметри для варіанту:

Вхідні дані	
Клас a_1	Клас a_2
$x_{11} = 0$ $y_{11} = 2$	$x_{24}\!\coloneqq\!2 y_{24}\!\coloneqq\!2$
$x_{12} = 2 y_{12} = 0$	$x_{25} = 3$ $y_{25} = 3$
$x_{13} := 4$ $y_{13} := 2$	$x_{26} = 6$ $y_{26} = 3$

Завдання 1:

Нанесемо точки на площину для більш чіткого розуміння їх положення:

Далі будемо шукати координати середини відрізків, що сполучають об'єкти різних класів для проведення нормалі (перпендикулярних ліній) до цих відрізків, які і будуть слугувати межами між об'єктами цих класів. Шукати ці точки будемо за правилом найближчого сусіда.

Спочатку знайдемо координати середини відрізку між точками $\xi 1 \in a1$ та $\xi 4 \in a2$ та розрахуємо функцію нормалі для цієї пари точок:

$$norm3(n) \coloneqq \frac{\left(y_{13} + y_{25}\right)}{2} + \left(\frac{\left(y_{25} - y_{13}\right)}{-\left(x_{25} - x_{13}\right)}\right) \cdot \left(n - \frac{\left(x_{13} + x_{25}\right)}{2}\right)$$

Зобразимо нормаль на площині:

Схожим чином виконаємо розрахунок нормалей для інших точок і нанесемо їх на площину

$$norm1 := 1..4$$
 $norm5 := 0, 2.5..2.6$
 $norm3(n) := \frac{(y_{13} + y_{25})}{2} + \left(\frac{(y_{25} - y_{13})}{-(x_{25} - x_{13})}\right) \cdot \left(n - \frac{(x_{13} + x_{25})}{2}\right)$
 $norm4(n) := \frac{(y_{13} + y_{26})}{2} + \left(\frac{(y_{26} - y_{13})}{-(x_{26} - x_{13})}\right) \cdot \left(n - \frac{(x_{13} + x_{26})}{2}\right)$
 $norm2(n) := \frac{(y_{12} + y_{24})}{2} + \left(\frac{(y_{24} - y_{12})}{300}\right) \cdot \left(n - \frac{(x_{12} + x_{24})}{2}\right)$

Прорахуємо середні значення для всіх комбінацій

$$Mxn \coloneqq \left[rac{\left(x_{11} + x_{24}
ight)}{2}
ight] \qquad \left[rac{\left(x_{11} + x_{24}
ight)}{2}
ight] \qquad Mx \coloneqq \left[rac{\left(x_{11} + x_{24}
ight)}{2}
ight] \qquad My \coloneqq \left[rac{\left(y_{11} + y_{24}
ight)}{2}
ight] \qquad My \coloneqq \left[rac{\left(y_{11} + y_{24}
ight)}{2}
ight] \qquad \left[rac{\left(y_{12} + y_{24}
ight)}{2}
ight] \qquad \left[rac{\left(y_{12} + y_{24}
ight)}{2}
ight] \qquad \left[rac{\left(y_{12} + y_{24}
ight)}{2}
ight] \qquad \left[rac{\left(y_{13} + y_{25}
ight)}{2}
ight] \qquad \left[rac{\left(y_{13} + y_{25}
ight)}{2}
ight] \qquad \left[rac{\left(y_{13} + y_{26}
ight)}{2}
ight] \qquad \left[rac{\left(y_{13} + y_{26}
ight)}{2}
ight] \qquad \left[rac{\left(y_{13} + y_{26}
ight)}{2}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)}
ight] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left(y_{13} + y_{26}
ight)} \right] \qquad \left[\left(y_{13} + y_{26}
ight)} \qquad \left[\left$$

Нанесемо нормалі на графік для зображення в подальшому межі між класами

Проміжки, які ми використали для побудови неперервної ламаної, що буде відділяти класи один від одного

$$n_1 := 1$$
 $n_3 := 2 ... 4$ $n_5 := 5$ $n_2 := 1 ... 2$ $n_4 := 4 ... 5$

Отже, за отриманою межею, визначимо вирішальне правило (3.3):

≔ if	
11 11	if $y_i \ge 2$
	else
	else
	2
el	se if $1 \le x_i \le 2$
	if $y_i \ge 1$
	1
	1 else 2
	2
el	se if $2 \le x_i \le 3.5$
	if $y_i \ge 2.5$
	1
	else
	2
el	se if $3.5 \le x_i \le 5$
	if $y_i \ge 2.5$
	1
	else
	2
el	se if $x > 5$
	2

- Якщо x < 1:
 - Якщо $y \ge 2$, то клас **1**, інакше клас **2**.
- Якщо x знаходиться в діапазоні [1,2]:
 - Якщо $y \ge 1$, то клас **1**, інакше клас **2**.
- Якщо x знаходиться в діапазоні [2,3.5]:
 - Якщо $y \ge 2.5$, то клас **1**, інакше клас **2**.
- Якщо x знаходиться в діапазоні [3.5, 5]:
 - Якщо $y \ge 2.5$, то клас **1**, інакше клас **2**.
- Якщо x > 5, то клас 2.

Оскільки дані спостережень — випадкові величини ξі, можна провести межу між класами після статистичної обробки даних — знаходження середніх вибіркових значень. Визначимо компоненти векторів - статистичних оцінок математичних очікувань (МО) класів a1 та a2:

$$x_i \coloneqq egin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{24} \\ x_{25} \\ x_{26} \end{bmatrix} \qquad y_i \coloneqq egin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{24} \\ y_{25} \\ y_{26} \end{bmatrix}$$

$$m1_0 \coloneqq \frac{1}{3} \cdot \sum_{i=1}^{3} x_i \qquad m1_1 \coloneqq \frac{1}{3} \sum_{i=1}^{3} y_i$$

$$m2_0 \coloneqq \frac{1}{3} \cdot \sum_{i=4}^{6} x_i \qquad m2_1 \coloneqq \frac{1}{3} \sum_{i=4}^{6} y_i$$

$$m1_0 \coloneqq \frac{\left(x_{11} + x_{12} + x_{13}\right)}{2} = 3 \qquad m1_1 \coloneqq \frac{\left(y_{11} + y_{12} + y_{13}\right)}{2} = 2$$

$$m2_0 \coloneqq \frac{\left(x_{24} + x_{25} + x_{26}\right)}{2} = 5.5 \qquad m2_1 \coloneqq \frac{\left(y_{24} + y_{25} + y_{26}\right)}{2} = 4$$

Знайдемо рівняння межі g2 між класами a1 та a2 після усереднення даних спостережень. Ця межа проходить через точку з координатами:

$$\begin{split} My &:= \begin{bmatrix} m1_1 \\ m2_1 \end{bmatrix} \quad Mx := \begin{bmatrix} m1_0 \\ m2_0 \end{bmatrix} \\ M\left(\frac{(m1_0 + m2_0)}{2}, \frac{(m1_1 + m2_1)}{2}\right) \to M(4.25, 3.0) \\ x_0 &:= 4.25 \qquad y_0 &:= 3.0 \\ k &:= \frac{(m2_1 - m1_1)}{(m2_0 - m1_0)} = 0.8 \\ kt &:= \frac{1}{k} = 1.25 \\ g_2(x, y) &:= -y - (x - x_0) \cdot kt + y_0 \end{split}$$

Отже, за отриманою межею, визначимо вирішальне правило (3.4):

$$y(x)\!\coloneqq\!-kt\;x\!+\!x_0$$
 $x\!\coloneqq\!m1_1$ $x\!\coloneqq\!0,1..6$ + {Якщо y<= y(x) , тоді γ_1 , інакше γ_2 }

Зобразимо лінію на площині разом з точками:

Завдання 3

Для експериментальної перевірки якості роботи класифікаторів за правилами (3.3) і (3.4) змоделюємо результати спостережень — масиви ({x1i}; {y1i}) та ({x2i}; {y2i}), відповідні класам а1 і а2. Вважаємо, що x1 та y1 — некорельовані компоненти двовимірної випадкової величини, що підпорядковується нормальному закону розподілу з МО і середньоквадратичним відхиленням (СКВ) В якості значень параметрів розподілу приймемо їх статистичні оцінки:

$$i := 1, 2...6$$

$$D1_0 := \frac{1}{2} \cdot \sum_{i=1}^{3} (x_i - m1_0)^2 \qquad \sigma 1_0 := \sqrt{m1_0} = 1.732$$

$$D1_1 := \frac{1}{2} \cdot \sum_{i=1}^{3} (y_i - m1_1)^2 \qquad \sigma 1_1 := \sqrt{m2_0} = 2.345$$

$$D2_0 := \frac{1}{2} \cdot \sum_{i=3}^{6} (x_i - m2_0)^2 \qquad \sigma 2_0 := \sqrt{m1_1} = 1.414$$

$$D2_1 := \frac{1}{2} \cdot \sum_{i=3}^{6} (y_i - m2_1)^2 \qquad \sigma 2_1 := \sqrt{m2_1} = 2$$

Визначимо функцію користувача, яка здійснює алгоритм генерації масиву реалізацій нормально розподіленої випадкової величини:

$$n := 48$$
 $k := 1 ... n$
$$Norm(z, m, \sigma) := \sqrt{\frac{12}{n}} \cdot \sigma \cdot \left(\sum_{k} rnd(1) - \frac{n}{2}\right) + m$$

$$N := 100 \quad k := 0 ... N - 1$$

Формальними аргументами цієї функції є номери елементів масиву реалізацій і параметри нормального розподілу МО m і СКО σ випадкової величини, яка моделюється. Отримаємо 100 даних спостережень класу а1 та а2

$$\begin{aligned} &x1_{i} \coloneqq Norm\left(i\,, m1_{0}\,, \sigma1_{0}\right) & y1_{i} \coloneqq Norm\left(i\,, m1_{1}\,, \sigma1_{1}\right) \\ &x2_{i} \coloneqq Norm\left(i\,, m2_{0}\,, \sigma2_{0}\right) & y2_{i} \coloneqq Norm\left(i\,, m2_{1}\,, \sigma2_{1}\right) \end{aligned}$$

Зобразимо їх на площині:

Завдання 4

Виконаємо розпізнавання контрольної вибірки ($\{xi\}$; $\{yi\}$) за вирішальним правилом (3.3). Нехай контрольна вибірка належить класу a1, тоді

Формалізуємо опис процедури ухвалення рішення (3.3):

Проведемо розпізнавання контрольної вибірки ($\{xi\}$; $\{yi\}$) за вирішальним правилом (3.4):

$$b_i \coloneqq \text{if}\left(a_i \le 1, 1, 0\right)$$

$$P22 \coloneqq \frac{1}{N} \cdot \sum_i b_i = 0.48$$

$$P12 \coloneqq 1 - P22 = 0.52$$

Проведемо дослідження для правил 3.3 та 3.4 для класу а2:

$$\begin{split} & \boxed{N} \coloneqq 100 \qquad \boxed{\hat{y}} \coloneqq 0..N - 1 \\ & \boxed{x}_i \coloneqq x2_i \qquad \boxed{y}_i \coloneqq y2_i \\ & b_i \coloneqq \text{if} \left(a_i \le 1, 1, 0\right) \\ & P22 \coloneqq \frac{1}{N} \cdot \sum_i b_i = 0.32 \\ & P12 \coloneqq 1 - P22 = 0.68 \end{split}$$

За проведеними дослідженнями побудуємо таблицю результатів:

	Правило 3.3	Правило 3.4
P11	0.48	0.46
P21	0.52	0.54
P22	0.32	0.30
P12	0.68	0.70

Висновки

Виходячи з результатів досліджень, побудовані мною вирішальні правила за вибірковими значеннями та за узагальненим значенням дали дуже схожі

результати , а отже побудовано мною межі розділення класів ϵ вірними. При цьому , метод вибіркових значень статистикчно був точніший у задачі правильної класифікації об'єкта і менше припустився помилок. Отже можна зробити висновок, що узагальнене значення може негативно вплинути на вірну класифікацію об'єктів.