Neural Networks for Machine Learning

Huynh Xuan Phung - Coursera

Contents

1	Intr	roduction	5
2	Per	ceptrons	7
	2.1	Type of network	7
		Perceptron	
		Geometrical view of perceptron	
		2.3.1 Weight-space	

4 CONTENTS

Chapter 1

Introduction

Why is Machine Learning?

It is hard to write the program to compute and recognize

Chapter 2

Perceptrons

2.1 Type of network

- Feed-forward neural network: more hidden layers: deep. They compute a series
- Recurrent network: have directed cycles in their connection graph; complicated dynamics; biological
 - remember information
 - Symmetrically connected networks: John Hopfield

2.2 Perceptron

The first generation of neural networks

The standard paradigm of statistical pattern recognition:

- Convert the row input into a vector of features activation
- Learn how to weight each of the feature activation to get the single scalar quantity
 - set the threshold

Binary thresh neurons (decision units)

Learning procedure:

- add an extra component with value 1 to each input: bias
- Pick training case using any policy that ensure that every training case will keep getting picked
 - —— If the output unit is correct, leave its weight alone
- —— If the output unit is incorrectly outputs a zero, add the input vector to the weight vector
- —— If the output unit is incorrectly outputs a one, subtract the input vector from the weight vector (w = w input)

2.3 Geometrical view of perceptron

2.3.1 Weight-space

has one dimension per weight

Figure 2.1: The weight space view