특성추출 예제 - 데이터 다운로드

```
10 from sklearn.datasets import fetch lfw people
   import matplotlib.pyplot as plt
   import numpy as np
4 from sklearn.model selection import train test split
   import mglearn
   from sklearn.decomposition import PCA
   people = fetch lfw people(min faces per person=20, resize=0.7)
   image shape = people.images[0].shape
10
   fig, axes = plt.subplots(2, 5, figsize=(15, 8), subplot kw={'xticks':(), 'yticks':()})
   for target, image, ax in zip(people.target, people.images, axes.ravel()):
13
       ax.imshow(image)
14
       ax.set title(people.target names[target])
   plt.show()
16
17
   print(people.target[0:10], people.target names[people.target[0:10]])
18
   print("people.images.shape: {}".format(people.images.shape))
19
   print("클래스 개수: {}".format(len(people.target names)))
```

people.images.shape: (3023, 87, 65)

클래스 개수: 62

특성추출 예제 - 데이터 탐색

```
22 # 각 타깃이 나타난 횟수 계산
23 | counts = np.bincount(people.target)
24 # 타깃병 이름과 횟수 충력
25 for i, (count, name) in enumerate(zip(counts, people.target names)):
       print("{0:25} {1:3}".format(name, count), end=' ')
26
       if (i + 1) % 3 == 0:
27
28
           print()
29
   mask = np.zeros(people.target.shape, dtype=np.bool)
31
   for target in np.unique(people.target):
       mask[np.where(people.target == target)[0][:50]] = 1
32
33
  X people = people.data[mask]
  y people = people.target[mask]
36
  |# 0~255 사이의 흑백 이미지의 픽셀 값을 0~1 사이로 스케일 조정 MinMaxScaler를 적용하는 것과 거의 동일
38 | X people = X_people / 255.
```

Alejandro Toledo	39	Alvaro Uribe	35	Amelie Mauresmo	21
Andre Agassi	36	Angelina Jolie	20	Ariel Sharon	77
Arnold Schwarzenegger	42	Atal Bihari Vajpayee	24	Bill Clinton	29
Carlos Menem	21	Colin Powell	236	David Beckham	31
Donald Rumsfeld	121	George Robertson	22	George W Bush	530
Gerhard Schroeder	109	Gloria Macapagal Arroyo	44	Gray Davis	26

특성추출 - whitening

```
mglearn.plots.plot pca whitening()
   pca = PCA(n components=100, whiten=True, random state=0).fit(X train)
  X train pca = pca.transform(X train)
  X test pca = pca.transform(X test)
53
54
   print("X train pca.shape: {}".format(X train pca.shape))
55
   knn = KNeighborsClassifier(n neighbors=1)
56
   knn.fit(X train pca, y train)
57
   print("테스트 세트 정확도: {:.2f}".format(knn.score(X_test_pca, y_test)))
58
59
   print("pca.components .shape: {}".format(pca.components .shape))
```


특성추출예제 - 각 주성분 시각화

특성추출예제 - 주성분을 사용해 원본이미지 재구성

mglearn.plots.plot_pca_faces(X_train, X_test, image_shape)
plt.show()

군집 알고리즘 예제

```
1⊝ from sklearn.datasets import fetch lfw people
   import matplotlib.pyplot as plt
 3 import numpy as np
 4 | from sklearn.model selection import train test split
 5 import mglearn
6
   people = fetch lfw people(min faces per person=20, resize=0.7)
   image shape = people.images[0].shape
9
10
   mask = np.zeros(people.target.shape, dtype=np.bool)
   for target in np.unique(people.target):
       mask[np.where(people.target == target)[0][:50]] = 1
12
13
   X people = people.data[mask]
   y people = people.target[mask]
16
   from sklearn.decomposition import PCA
17
   pca = PCA(n components=100, whiten=True, random state=0)
18
   pca.fit transform(X people)
   X pca = pca.transform(X people)
```



```
23 | from sklearn.cluster import DBSCAN
24
  |dbscan = DBSCAN()
   labels = dbscan.fit predict(X_pca)
   print("unique labels: {}".format(np.unique(labels)))
26
28 |dbscan = DBSCAN(min samples=3)
   labels = dbscan.fit predict(X pca)
29
   print("unique labels: {}".format(np.unique(labels)))
30
31
   |dbscan = DBSCAN(min samples=3, eps=15)
   labels = dbscan.fit predict(X pca)
   print("unique labels: {}".format(np.unique(labels)))
34
35
                                                           unique labels: [-1]
36◉# 잡음 포인트와 클러스터에 속한 포인트 수름 셈
                                                           unique labels: [-1]
                                                           unique labels: [-1 0]
37 # bincounte 음수를 받을 수 없어서 labels에 1을 더함
                                                           count for cluster: [ 32 2031]
38 # 반환값의 첫 번째 원소는 잡음 포인트의 수입니다.
   print("count for cluster: {}".format(np.bincount(labels + 1)))
```



```
for eps in [1, 3, 5, 7, 9, 11, 13]:
    print("\neps={}".format(eps))
    dbscan = DBSCAN(eps=eps, min_samples=3)
    labels = dbscan.fit_predict(X_pca)
    print("클러스터 수: {}".format(len(np.unique(labels))))
    print("클러스터 크기: {}".format(np.bincount(labels + 1)))
```

```
클러스터 수: 1
클러스터 크기: [2063]
eps=7
클러스터 수: 14
클러스터 크기: [2004 3 14 7 4 3 3 4 4 3 3 5 3 3]
eps=9
클러스터 수: 4
클러스터 크기: [1307 750 3 3]
eps=11
클러스터 크기: [413 1650]
eps=13
클러스터 수: 2
클러스터 크기: [120 1943]
```



```
dbscan = DBSCAN(min samples=3, eps=7)
labels = dbscan.fit predict(X pca)
for cluster in range(max(labels) + 1):
   mask = labels == cluster
    n images = np.sum(mask)
    fig, axes = plt.subplots(1, 14, figsize=(14*1.5, 4),
                            subplot kw={'xticks': (), 'yticks': ()})
    i = 0
    for image, label, ax in zip(X_people[mask], y_people[mask], axes):
        ax.imshow(image.reshape(image_shape))
        ax.set title(people.target names[label].split()[-1])
        i += 1
    for j in range(len(axes) - i):
        axes[j+i].imshow(np.array([[1]*65]*87))
        axes[j+i].axis('off')
plt.show()
```


군집 알고리즘 예제 - kmeans

mglearn.plots.plot_kmeans_faces(km, pca, X_pca, X_people, y_people, people.target_names)

군집 알고리즘 예제 - AgglomerativeClustering

```
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import adjusted rand score
from scipy.cluster.hierarchy import dendrogram, ward
# 병한 군집으로 클러스터를 추출
agglomerative = AgglomerativeClustering(n clusters=10)
labels agg = agglomerative.fit predict(X pca)
print("병합 군집의 클러스터 크기: {}".format(
       np.bincount(labels agg)))
print("ARI: {:.2f}".format(adjusted rand score(labels agg, labels km)))
linkage array = ward(X pca)
# 클러스터 사이의 거리가 담겨있는 linkage array로 덴드로그램
plt.figure(figsize=(20, 5))
dendrogram(linkage array, p=7, truncate mode='level', no labels=True)
plt.xlabel("sample number")
plt.ylabel("cluster distance")
ax = plt.gca()
bounds = ax.get xbound()
ax.plot(bounds, [36, 36], '--', c='k')
plt.show()
```


군집 알고리즘 예제 - AgglomerativeClustering

