Multiple box plots

Histogram: what's wrong?

Frequency histogram

Class	Freq	CumulativeFreq
300-400	1	1
400-500	4	5
500-600	5	10
600-700	4	14
700-800	4	18

EXERCISE

(based on #17, p. 26) Construction industry data:

bidders	contracts	«) Mhat propartion of the	
2	7	a) What proportion of the contracts involved at most	
3	20	five bidders?	
4	26	b) What proportion of the	
5	16	contracts involved between five and ten bidders, inclusive?	
6	11		
7	9		
8	6	c) Draw a cumulative	
9	8	frequency histogram.	
10	3		

bidders contracts

11 2

Sample and population means

population mean: μ = sum of N population values / N

sample mean:
$$\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

population median: $\widetilde{\mu}$

sample median: \widetilde{x}

Measures of variability

deviations from the mean

Data: 3, 8, 11, 14

Mean: 9

value deviation deviation²

3	-6	36
8	-1	1
11	2	4
14	5	25

Sum of squared deviations

$$S_{xx}$$
: 36 + 1 + 4 + 25 = 66

Population variance

$$\sigma^2 = 66/4 = 16.5$$

$$\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 / N$$

Sample variance

Sum of squared deviations:

$$S_{xx}$$
: 36 + 1 + 4 + 25 = 66

Sample variance:

$$s^2 = 66 / 3 = 22$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Why n-1?

Short answer: using **n** would result in an underestimation, since the values in the sample are closer to the sample mean than to the true population mean (which we don't know)

Standard deviation

Square root of variance

- Population s.d. = $\sqrt{\sigma^2}$
- Sample s.d. = $\sqrt{s^2}$
- same units as original values

EXERCISE (p. 47, #62)

Consider the following information on ultimate tensile strength (lb/in^2) for a sample of n=4 hard zirconium copper wire specimens:

```
\bar{x} = 76,831

s = 180

smallest x_i = 76,683

largest x_i = 77,048
```

Set up equations to determine the values of the two middle sample observations. *Do not solve.*

Chapter 2

Probability

In 1654, writer Antoine Gombaud "Chevalier de Méré" wanted to know if the following bets are profitable:

- getting at least one six on 4 dice rolls
- getting at least one double-six on 24 dice rolls

Vocabulary (2.1)

- experiment process whose outcome is subject to uncertainty
 (ex. rolling a die)
- sample space set of all possible outcomes of an experiment

$$S = \{1, 2, 3, 4, 5, 6\}$$

 event – collection of outcomes contained in the sample space

Experiment with an infinite sample space

ex. flip a coin until you get tails

sample space

```
S = \{T, HT, HHT, HHHT, ...\}
```

event

```
you get tails in fewer than 8 flips
A = \{T, HT, HHT, HHHT, HHHHT, HHHHHT, HHHHHT\}
```

 complement of an event – all outcomes in the sample space that are not in the event

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $A = \{1, 3\}$
 A' ("not A") = $\{2, 4, 5, 6\}$

■ **union** of two events: all outcomes in *either* event or in $both A \cup B$ ("A or B")

$$A = \{1, 3\}$$

 $B = \{3, 5\}$
 $A \cup B = \{1, 3, 5\}$

intersection of two events: all outcomes in both events

$$A \cap B$$
 ("A and B")
 $A = \{1, 3\}$
 $B = \{3, 5\}$
 $A \cap B = \{3\}$

■ **null event**: no outcomes Ø or {}

$$C = \{1, 2\}$$

 $D = \{3, 4\}$
 $C \cap D = \emptyset$

 mutually exclusive – events that cannot occur at the same time

if $A \cap B = \emptyset$, then A and B are mutually exclusive or disjoint

Set theory: more than two events 1

■ $A \cup B \cup C$: all outcomes in at least one of A, B, & C

$$A = \{1, 2, 3\}$$

 $B = \{5\}$
 $C = \{1, 5, 10\}$
 $A \cup B \cup C = \{1, 2, 3, 5, 10\}$

■ $A \cap B \cap C$: all outcomes in A, B, and C $A \cap B \cap C = \{\}$