Exercicio 12. Sobre a esfera $\mathbb{X}(\theta, \varphi) = (r\cos\theta\cos\varphi, r\cos\theta\sin\varphi, r\sin\theta)$ parametrizada en termos da latitude (θ) e lonxitude (φ) considérase a circunferencia $\theta = \theta_0$.

- Calculade a curvatura xeodésica desa circunferencia nun punto arbitrario.
- Comprobade se o campo de vectores tanxentes a esa circunferencia é paralelo ao longo da mesma.
- En caso negativo, se consideramos o vector tanxente á circunferencia nun punto p e o trasladamos paralelamente ao longo da mesma, obterase de novo un vector en p que formará un ángulo φ co vector de partida. Cal será ese ángulo φ?

Solución. Como é habitual, comezaremos dando unha orientación sobre a esfera S. En vista da nosa parametrización, esta é a esfera centrada na orixe e de raio r, que vén dada pola ecuación

$$x^2 + y^2 + z^2 = r^2$$
.

Así, se consideramos a función diferenciable $f: \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x,y,z) = x^2 + y^2 + z^2$, vemos que $S = f^{-1}(r^2)$ e o seu gradiente $\nabla f = 2(x,y,z)$ non se anula nos puntos da esfera. Polo tanto, en virtude do teorema do valor regular, o campo de vectores

$$ec{N}(x,y,z) = rac{
abla f(x,y,z)}{||
abla f(x,y,z)||} = rac{1}{r}(x,y,z)$$

é un campo normal unitario definido globalmente na esfera.

Consideremos pois a circunferencia $\theta=\theta_0$, que podemos parametrizar coa aplicación

$$lpha(t) = \mathbb{X}(heta_0,t) = (r\cos heta_0\cos t, r\cos heta_0\sin t, r\sin heta_0).$$

A curvatura xeodésica de α no punto $\alpha(t)$ está dada pola expresión $\kappa_q^{\alpha}(t) = \det(\alpha'(t), \alpha''(t), \vec{N}(\alpha(t)))/||\alpha'(t)||^3$. Agora ben,

$$lpha'(t) = (-r\cos heta_0\sin t, r\cos heta_0\cos t, 0), \ lpha''(t) = (-r\cos heta_0\cos t, -r\cos heta_0\sin t, 0), \ ec{N}(lpha(t)) = (\cos heta_0\cos t, \cos heta_0\sin t, \sin heta_0),$$

e $||\alpha'(t)||=r\cos\theta_0$ é constante (isto é, α está parametrizada proporcionalmente ao parámetro lonxitude de arco). Polo tanto,

$$\kappa_g^lpha(t) = rac{1}{r^3\cos^3 heta_0}egin{bmatrix} -r\cos heta_0\sin t & -r\cos heta_0\cos t & \cos heta_0\cos t \ r\cos heta_0\cos t & -r\cos heta_0\sin t & \cos heta_0\sin t \ 0 & 0 & \sin heta_0 \end{bmatrix} = rac{\sin heta_0}{r\cos heta_0}.$$

Pasemos a ver cando o campo de vectores tanxente a $\theta=\theta_0$ é paralelo. Por definición, esa condición é equivalente a que a curva α sexa unha xeodésica, así que dito campo é paralelo se e soamente se κ_g^{α} é identicamente nula. En vista da expresión de κ_g^{α} , a curvatura xeodésica será nula se e soamente se $\sin\theta_0=0$, que se corresponde con $\theta_0=0$.

Para $\theta_0 \neq 0$, a determinación do ángulo ϕ será equivalente ao cálculo do transporte paralelo $\mathcal{P}_{t_0}^{t_0+2\pi}$ ao longo de α desde un punto arbitrario $p=\alpha(t_0)$ ata volver ao mesmo. Polo tanto, a dificultade do problema estará en atopar un campo de vectores paralelo ao longo de α . Neste caso, como α non é xeodésica e non hai ningún campo de vectores paralelo "evidente" (por exemplo, un podería probar co campo coordenado \mathbb{X}_1 , mais non é paralelo), a única opción que temos é escribir a ecuación diferencial dos campos paralelos e ver se somos capaces de atopar solucións a esta.

Recordemos que, dada unha curva da forma $lpha(t)=\mathbb{X}(u(t),v(t))$, os campos tanxentes ao longo de lpha son da forma

$$ec{V}(t) = a(t)\mathbb{X}_1(u(t),v(t)) + b(t)\mathbb{X}_2(u(t),v(t)),$$

sendo a e b funcións diferenciables. O campo \vec{V} descrito anteriormente é paralelo se e soamente se se satisfai o seguinte sistema de EDOs:

$$\left\{ egin{aligned} &a' + au'\Gamma^1_{11} + (av' + bu')\Gamma^1_{12} + bv'\Gamma^1_{22} = 0, \ &b' + au'\Gamma^2_{11} + (av' + bu')\Gamma^2_{12} + bv'\Gamma^2_{22} = 0. \end{aligned}
ight.$$

Neste caso, $u(t) = \theta_0$ e v(t) = t. Ademais, os símbolos de Christoffel da esfera (calculados a partir da primeira forma fundamental) son

$$\begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 & \Gamma_{22}^1 \\ \Gamma_{11}^2 & \Gamma_{12}^2 & \Gamma_{22}^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cos\theta\sin\theta \\ 0 & -\frac{\sin\theta}{\cos\theta} & 0 \end{pmatrix}.$$

En definitiva, o campo de vectores $ec{V}$ será paralelo ao longo da curva $heta= heta_0$ se e soamente se

$$\left\{ egin{aligned} a' &= -b\cos heta_0\sin heta_0, \ b' &= arac{\sin heta_0}{\cos heta_0}. \end{aligned}
ight.$$

Posto que só necesitamos calcular un campo paralelo ao longo de α , imos buscar tal campo de xeito que en t=0 este sexa a velocidade da curva $\vec{V}(0)=\alpha'(0)=\mathbb{X}_2(\theta_0,0)$. Esta condición inicial correspóndese con a(0)=0 e b(0)=1. Resolvamos pois este problema de valor inicial.

Derivando a primeira ecuación, e tendo en conta que $a'(0)=-b(0)\cos\theta_0\sin\theta_0$, vemos que a función a(t) satisfai

$$egin{cases} a''=-a\sin^2 heta_0,\ a(0)=0,\ \ a'(0)=-\cos heta_0\sin heta_0, \end{cases}$$

que é unha ecuación diferencial linear de segunda orde con coeficientes constantes. A solución desta ecuación é

$$a(t) = -\cos \theta_0 \sin(t \sin \theta_0).$$

Por outra banda, b(t) cumpre a ecuación diferencial

$$\begin{cases} b' = -\sin \theta_0 \sin(t \sin \theta_0), \\ b(0) = 1, \end{cases}$$

cuxa solución é

$$b(t) = \cos(t\sin\theta_0).$$

En definitiva, o campo paralelo $ec{V}(t)$ ao longo de lpha con condición inicial $ec{V}(0)=lpha'(0)$ será

$$ec{V}(t) = -\cos heta_0\sin(t\sin heta_0)\mathbb{X}_1(heta_0,t) + \cos(t\sin heta_0)\mathbb{X}_2(heta_0,t).$$

Para rematar, calculemos o ángulo que forman $\vec{V}(t_0)$ e $\vec{V}(t_0+2\pi)$. Sen perda de xeneralidade, podemos supoñer que $t_0=0$, o que implica que

$$egin{aligned} ec{V}(0) &= \mathbb{X}_2(heta_0,0) = (0,r\cos heta_0,0), \ ec{V}(2\pi) &= -\cos heta_0\sin(2\pi\sin heta_0)\mathbb{X}_1(heta_0,2\pi) + \cos(2\pi\sin heta_0)\mathbb{X}_2(heta_0,2\pi) \ &= (r\sin heta_0\cos heta_0\sin(2\pi\sin heta_0),r\cos heta_0\cos(2\pi\sin heta_0),-r\cos^2 heta_0\sin(2\pi\sin heta_0)) \end{aligned}$$

O ángulo (orientado) que forman $\vec{V}(0)$ e $\vec{V}(2\pi)$ coincide co que forman $\vec{e}_1=(0,1,0)$ e $\vec{V}(2\pi)$, xa que $\cos\theta_0>0$. Para calculalo, estendemos $\{\vec{e}_1\}$ a unha base ortonormal de orientación positiva de T_pS engadindo o vector $\vec{e}_2=J\vec{e}_1=(-\sin\theta_0,0,\cos\theta_0)$. Tense pois que

$$egin{aligned} \langle ec{V}(2\pi),ec{e}_1
angle &= r\cos heta_0\cos(2\pi\sin heta_0),\ \langle ec{V}(2\pi),ec{e}_2
angle &= -r\cos heta_0\sin(2\pi\sin heta_0), \end{aligned}$$

e como a norma de \vec{V} é $r\cos\theta_0$, concluímos finalmente que o ángulo que forman $\vec{V}(0)$ e $\vec{V}(2\pi)$ é

$$\phi = -2\pi\sin heta_0$$

Observación. Existen métodos alternativos para determinar o transporte paralelo ao longo da curva pedida (ou máis xeneralmente, ao longo de curvas pechadas) sen necesidade de resolver unha ecuación diferencial. Véxase por exemplo *Differential geometry: a first course in curves and surfaces* (Theodore Shifrin; Exercicio 2.4.8) ou *Un curso de geometría diferencial* (Hernández Cifre, Pastor González; Sección 6.1.2), onde se ilustra o cálculo de φ empregando o concepto de *holonomía*.