FU08 - Automata and Languages Exercise 7

 $\begin{array}{c} {\rm NGUYEN~Tuan~Dung} \\ {\rm s}1312004 \end{array}$

January 7, 2024

Solution:

Removing the useless state D. We reconstruct the DFA as.

Using the DFA, we can construct a distinguishable table.

В	F					
С	F	F				
E	Т	F	F			
F	F	F	F	F		
G	F	F	F	F	F	
Н	F	Т	F	F	F	F
state	Α	В	С	Е	F	G

Table 1: distinguishable table of the automaton

 ${f Note}:\ {f T}\ {f is}\ {f True},\ {f F}\ {f is}\ {f False}.$

Note that $\delta(AE, 1) = F$; $\delta(BH, 0) = G$. The automaton is minimal.

Solution:

Since there is no useless state in the DFA.

Immediately, we notice that: 2 and 4 are equivalent.

Since there are no obvious sign of equivalency, we construct a distinguishable table.

Note: T is True, F is False.

1	F				
2,4	F	F			
3	F	F	F		
5	F	F	F	F	
6	F	F	F	F	F
state	0	1	2,4	3	5

Table 2: distinguishable table of the automaton

From this table, we agree that the automaton is indeed minimal.

Question 3: Minimize the DFA

$$\begin{split} M &= (Q, \sum, \delta, q_0, F) \text{ with } \\ Q &= \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\} \\ \sum &= \{0, 1\} \\ F &= \{q_3\} \text{ , and } \delta \text{ is defined by } \end{split}$$

δ	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_3	q_1
q_3	q_3	q_0
q_4	q_3	q_5
q_5	q_6	q_4
q_6	q_5	q_6
q_7	q_6	q_3

Solution:

From the above transition table, we construct a DFA out of it.

Immediately, we notice the useless state q4,q5,q6,q7. Removing the useless states. We reconstruct the DFA as.

From the DFA, we construct a distinguishable table for the automaton.

1	F		
2	F	F	
3	F	F	F
state	0	1	2

Table 3: distinguishable table of the automaton

We conclude that the automaton is minimal.