ГЛАВА 3. ПЕРВЫЙ МЕТОД ЛЯПУНОВА

Под первым методом Ляпунова понимают совокупность приемов и средств исследования устойчивости решений систем дифференциальных уравнений, основанных непосредственно на анализе общих или частных решений этих систем, а также использующих определенные характеристики указанных решений.

§ 1. Характеристический показатель функции

 ${f 1}^0$. Определение характеристического показателя функции. Рассмотрим комплекснозначную функцию

$$f(t) = f_1(t) + i \cdot f_2(t) \qquad t \ge 0,$$

где f_1 и f_2 – некоторые вещественные функции. Имеет место представление

$$|f(t)| = e^{\alpha(t)\cdot t},$$

где

$$\alpha(t) = \frac{1}{t} \ln |f(t)|.$$

Из данного представления видно, что, исследуя величину $\alpha(t)$, можно изучать скорость роста функции |f(t)| по сравнению со скоростью роста экспоненты.

О п р е д е л е н и е $\, 1. \,$ Число (или один из символов $-\infty \, , \, +\infty \,)$, определяемое равенством

$$\chi[f] = \lim_{t \to +\infty} \frac{1}{t} \cdot \ln |f(t)|,$$

называют показателем Ляпунова (характеристическим показателем).

3 а м е ч а н и е 1. Для обеспечения корректности в приведенном определении предполагается, что существует последовательность $t_k \to +\infty$ при $k \to +\infty$, такая, что $|f(t_k)| \neq 0$ для всех натуральных k, начиная с некоторого номера.

3 а м е ч а н и е 2. Отметим следующий факт, вытекающий из определения верхнего предела: для любой последовательности $\{t_k\}$, такой что $t_k \to +\infty$, выполнено неравенство

$$\varlimsup_{k\to +\infty}\frac{1}{t_k}\cdot ln \mid f(t_k)\mid \ \, \leq \, \chi\big[f\big]=\varlimsup_{t\to +\infty}\frac{1}{t}\cdot ln \mid f(t)\mid.$$

Примеры.

- 1) Пусть $f(t)=e^{\alpha t}$, $\alpha\in\mathbf{R}$. Тогда $\chi[e^{\alpha t}]=\alpha$ и в случае $\alpha>0$ выполнено $f(t)\to +\infty$, а при $\alpha<0$ верно $f(t)\to 0$ ($t\to +\infty$).
- 2) $\chi[t^m] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \ln t^m = 0, \quad m \in \mathbf{R}.$
- 3) $\chi[e^{t \cdot \text{sint}}] = \lim_{t \to +\infty} \frac{1}{t} \cdot |t \cdot \text{sint}| = 1$.
- 4) $\chi[e^{t^2}] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \ln e^{t^2} = +\infty$.

20. Свойства характеристических показателей.

- 1) $\chi[f(t)] = \chi[|f(t)|]$.
- 2) $\chi[c \cdot f(t)] = \chi[f(t)] \quad \forall c \neq 0$.
- 3) $|f(t)| \le |F(t)| \quad \forall t > T \quad \Rightarrow \quad \chi[f(t)] \le \chi[F(t)].$
 - □ Это свойство вытекает из определения характеристического показателя и свойства монотонности верхнего предела:

$$\varphi(t) \le \psi(t) \quad \forall t > T \quad \Rightarrow \quad \overline{\lim}_{t \to +\infty} \varphi(t) \le \overline{\lim}_{t \to +\infty} \psi(t) \blacksquare$$

4) Пусть $\chi[f(t)] = \alpha \neq \pm \infty$. Тогда для любого $\varepsilon > 0$ выполнено

i)
$$\lim_{t \to +\infty} \frac{|f(t)|}{e^{(\alpha+\epsilon)\cdot t}} = 0;$$
 (1)

іі) $\lim_{t\to +\infty}\frac{|f(t)|}{e^{(\alpha-\epsilon)\cdot t}}=+\infty$; это означает существование такой последовательности $\{t_k\}$, $t_k\to +\infty$, что

$$\lim_{k \to +\infty} \frac{|f(t_k)|}{e^{(\alpha - \varepsilon) \cdot t_k}} = +\infty.$$
 (2)

Обратно,

если найдется такое $\alpha \in \mathbf{R}$, что для всякого $\epsilon > 0$ верно (1), то $\chi[f] \leq \alpha$;

если найдется такое $\alpha \in \mathbf{R}$, что для всякого $\epsilon > 0$ верно (2), то $\chi[f] \geq \alpha$;

если найдется такое $\ \alpha \in \mathbf{R}$, что для всякого $\ \epsilon > 0$ выполнено (1)-(2), то $\chi[f]=\alpha$.

 \Box Необходимость. Выберем произвольное $\epsilon > 0$ и пусть

$$\chi[f] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \ln |f(t)| = \alpha \in \mathbf{R}.$$

По определению верхнего предела найдется такое Т, что

$$\frac{1}{t} \cdot \ln |f(t)| < \alpha + \frac{\varepsilon}{2} \qquad \forall t > T$$

И

$$\lim_{t\to +\infty} \frac{1}{t_k} \cdot \ln |f(t_k)| = \alpha$$

для некоторой последовательности $t_k \to +\infty$ при $k \to +\infty$.

Следовательно, при некотором натуральном N справедливо

$$\mid f(t)\mid < e^{(\alpha+\frac{\epsilon}{2})\cdot t} = e^{(\alpha+\epsilon)\cdot t}\cdot e^{-\frac{\epsilon}{2}t} \qquad \qquad \forall \, t>T \; ,$$

 $\mid f(t_{_k}) \mid > e^{(\alpha - \frac{\epsilon}{2}) \cdot t_k} = e^{(\alpha - \epsilon) \cdot t_k} \cdot e^{\frac{\epsilon}{2} t_k} \qquad \qquad \forall \, k > N \; ,$

где

$$e^{-\frac{\varepsilon}{2} \cdot t} \to 0 \quad (t \to +\infty) \quad \text{if} \quad e^{\frac{\varepsilon}{2} \cdot t_k} \to +\infty \quad (k \to +\infty).$$

Отсюда вытекают равенства (1) - (2).

Достаточность. Из (1) следует

$$\chi[f] \le \chi[e^{(\alpha+\varepsilon)\cdot t}] = \alpha + \varepsilon \qquad \forall \varepsilon > 0,$$

а значит $\chi[f] \le \alpha$. С другой стороны, из (2) имеем

$$\chi[f] \ge \lim_{k \to +\infty} \frac{1}{t_k} \cdot \ln |f(t_k)| \ge \alpha - \varepsilon \qquad \forall \varepsilon > 0,$$

и поэтому $\chi[f] \ge \alpha$. Полученные неравенства влекут равенство $\chi[f] = \alpha$

Пусть для определенности $\chi[f] = \alpha > 0$ (случай $\alpha < 0$ разбирается аналогично). Величина характеристического показателя дает возможность сравнить скорости роста данной функции (точнее говоря, ее модуля) и экспоненты. А именно, в соответствии с доказанным свойством функция модуля y = |f(t)| для любого $\varepsilon > 0$ растет *медленнее*, чем экспонента $y_1 = e^{(\alpha+\varepsilon)\cdot t}$, но по некоторой последовательности $t_k \to +\infty$ *быстрее*, чем экспонента $y_2 = e^{(\alpha-\varepsilon)\cdot t}$ (см. рис. 3.1).

Рис. 3.1. Характеризация скорости роста функции y = |f(t)|.

5) Пусть $\chi[f_k] \in \mathbf{R}$, k = 1,2,...,m. Характеристический показатель суммы конечного числа функций $f_1(t),...,f_m(t)$ не превышает наибольшего из характеристических показателей этих функций и совпадает с ним, если наибольшим характеристическим показателем обладает лишь одно этих из слагаемых:

$$\chi\left[\sum_{k=1}^{m} f_{k}\right] \leq \max_{k} \chi\left[f_{k}\right]. \tag{3}$$

 \square Пусть $\alpha:=\max_k \chi[f_k]\neq \pm \infty$. Согласно предыдущему свойству (часть «необходимость») для любого $\,\epsilon>0\,\,$ имеем

$$\lim_{t \to +\infty} \frac{|f_k(t)|}{e^{(\alpha+\varepsilon)\cdot t}} = 0, \qquad k = 1, 2, ..., m.$$

Отсюда

$$0 \le \frac{\left|\sum_{k=1}^{m} f_{k}(t)\right|}{e^{(\alpha+\epsilon)\cdot t}} \le \sum_{k=1}^{m} \frac{\left|f_{k}(t)\right|}{e^{(\alpha+\epsilon)\cdot t}} = o(1) \qquad (t \to +\infty).$$

Согласно предыдущему свойству (часть «достаточность»), верно

$$\chi\left[\sum_{k=1}^{m} f_{k}\right] \le \alpha = \max_{k} \chi\left[f_{k}\right]. \tag{*}$$

Тем самым, неравенство (3) установлено.

Теперь пусть $\max_k \chi[f_k] = \chi[f_p] = \alpha$, причем $\chi[f_k] = \alpha_k < \alpha$ для всех $k \neq p$.

В соответствии с частью «необходимость» предыдущего свойства для любого $\epsilon>0$ существует последовательность $\{t_q\}:t_q\to +\infty$ при $q\to +\infty$, причем

$$\lim_{q \to +\infty} \frac{|f_p(t_q)|}{e^{(\alpha-\epsilon)\cdot t_q}} = +\infty.$$

Если $0<\epsilon<\min_{k\neq p}\frac{\alpha-\alpha_k}{2}$, то при $\alpha_k\neq -\infty$ справедливо неравенство

$$\frac{|\sum_{k=1}^{m} f_k(t_q)|}{e^{(\alpha-\epsilon)\cdot t_q}} \ge \underbrace{\frac{|f_p(t_q)|}{e^{(\alpha-\epsilon)\cdot t_q}}}_{\to +\infty} - \underbrace{\sum_{k\neq p} \frac{|f_k(t_q)|}{e^{(\alpha_k+\epsilon)\cdot t_q}} \cdot \frac{1}{e^{(\alpha-\alpha_k-2\epsilon)\cdot t_q}}}_{\to 0},$$

где $q \to +\infty$. Поэтому

$$\lim_{q \to +\infty} \frac{\left| \sum_{k=1}^{m} f_k(t_q) \right|}{e^{(\alpha - \epsilon) \cdot t_q}} = +\infty,$$

а значит, в соответствии с частью «достаточность» предыдущего свойства, получаем неравенство

$$\chi[\sum_{k=1}^m f_k] \ge \alpha.$$

Это вместе с неравенством (*) ведёт к требуемому равенству

$$\chi[\sum_{k=1}^{m} f_k] = \alpha = \max_{k} \chi[f_k] \blacksquare$$

6) Пусть $\chi[f_k] \in \mathbf{R}$, k = 1,2,...,m. Характеристический показатель произведения конечного числа функций $f_1(t),...,f_m(t)$ не превышает суммы характеристических показателей этих функций, т.е.

$$\chi[\prod_{k=1}^{m} f_k] \le \sum_{k=1}^{m} \chi[f_k].$$

□ Используя свойство верхнего предела, легко получаем требуемое

$$\begin{split} \chi[\prod_{k=1}^{m} f_k(t)] &= \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \ln |\prod_{k=1}^{m} f_k(t)| = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \sum_{k=1}^{m} \ln |f_k(t)| \leq \\ &\leq \sum_{k=1}^{m} \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \ln |f_k(t)| = \sum_{k=1}^{m} \chi[f_k(t)] \end{split}$$

Следствие 1. Характеристический показатель конечной линейной комбинации функций $f_1(t),...,f_m(t)$ с ограниченными коэффициентами $c_1(t),...,c_m(t)$ не превышает наибольшего из характеристических показателей данных функций:

$$\chi\left[\sum_{k=1}^{m} c_k(t) \cdot f_k(t)\right] \leq \max_{k} \chi\left[f_k(t)\right].$$

 \square В самом деле, с учётом $\chi[c_k(t)] \le 0$ имеем

$$\chi[\sum_{k=1}^{m} c_k(t) \cdot f_k(t)] \leq \max_{k} \chi[c_k(t) \cdot f_k(t)] \leq \max_{k} \{\chi[c_k(t)] + \chi[f_k(t)]\} \leq \max_{k} \chi[f_k(t)] \blacksquare$$

Если $c_k(t) \equiv c_k$, то получаем следующий результат.

Следствие 2. Пусть в линейной комбинации $\sum_{k=1}^{m} c_k \cdot f_k(t)$ с отличными от нуля постоянными коэффициентами есть единственная функция с наибольшим характеристическим показателем. Тогда

$$\chi[\sum_{k=1}^{m} c_k \cdot f_k(t)] = \max_{k} \chi[f_k(t)].$$

Упражнения

- 1) Вычислить характеристические показатели следующих функций:
 - (i) $y = t \cdot e^{2t}$

(ii)
$$y = t^{100} / e^{0.1 \cdot t}$$

(iii)
$$y = (1 + e^{e^{-t}}) \cdot \sin t$$

(iv)
$$y = \frac{\ln(1+2^{t})}{\sqrt{t}}$$
.

2) Существуют ли ограниченные на промежутке $[0,+\infty)$ функции, имеющие бесконечные характеристические показатели $+\infty$ или $-\infty$?

§ 2. Характеристический показатель функциональной матрицы

Введенное в предыдущем параграфе понятие характеристического показателя функции здесь распространяется на векторные функции, а также функциональные матрицы. При этом основные из установленных ранее свойств сохраняются.

1⁰. Определение.

О пределение 1. Пусть $\mathbf{F}(t) = (\mathbf{f}_{jk}(t))$ — матрица, определенная на $[0,+\infty)$. Число (или один из символов $+\infty,-\infty$) определяемое равенством

$$\chi[\mathbf{F}(t)] = \max_{j,k} \chi[f_{jk}(t)],$$

называется характеристическим показателем матрицы $\mathbf{F}(t)$.

Очевидно, $\chi[\mathbf{F}^{T}(t)] = \chi[\mathbf{F}(t)]$.

20. Свойства характеристических показателей матриц.

1) Характеристический показатель матрицы $\mathbf{F}(t) = (f_{jk}(t))$ совпадает с характеристическим показателем ее нормы¹, т.е.

$$\chi[\mathbf{F}(t)] = \chi[||\mathbf{F}(t)||]. \tag{1}$$

 \square Для любого $t \ge 0$ и всех j,k верно неравенство $\|f_{jk}(t)\| \le \|F(t)\|$, от-куда следует $\chi[f_{ik}(t)] \le \chi[\|F(t)\|]$, а значит

$$\chi[\mathbf{F}(t)] \le \chi[||\mathbf{F}(t)||]. \tag{*}$$

С другой стороны, для всех $t \ge 0$ можно записать $\| \mathbf{F}(t) \| \le \sum_{j,k} |f_{jk}(t)|$. Следовательно, согласно свойству 5) характеристиче-

ских показателей, получаем

$$\chi[||\mathbf{F}(t)||] \le \max_{i,k} \chi[f_{jk}] = \chi[\mathbf{F}(t)].$$
 (**)

¹ Определение нормы матрицы (три варианта) см. в § 3 гл. 1.

Из неравенств (*) – (**) вытекает равенство (1) ■

- 2) Пусть $\chi[\mathbf{F}_s] \in \mathbf{R}$, s = 1,2,...,N. Характеристический показатель суммы конечного числа матриц \mathbf{F}_s не превышает наибольшего из характеристических показателей этих матриц.
 - \Box Пусть $\mathbf{F}_{s}(t)$ (s = 1, 2, ..., N) матрицы размера $m \times n$ и

$$\mathbf{F}(t) := \sum_{s=1}^{N} \mathbf{F}_{s}(t).$$

Для всех $t \ge 0$ верно $\|\mathbf{F}(t)\| \le \sum_{s=1}^N \! \|\mathbf{F}_s(t)\|$. Поэтому

$$\chi[\mathbf{F}(t)] = \chi[||\mathbf{F}(t)||] \le \chi[\sum_{s=1}^{N} ||\mathbf{F}_{s}(t)||] \le \max_{s} \chi[||\mathbf{F}_{s}(t)||] = \max_{s} \chi[\mathbf{F}_{s}(t)] \blacksquare$$

Следствие 1. Если среди матриц **F**_s(t) (s = 1,2,...,N) имеется лишь одна, обладающая наибольшим характеристическим показателем, то характеристический показатель суммы данных матриц равен этому наибольшему характеристическому показателю.

 $\square \ \ B \ \ \text{самом} \ \ \text{деле, пусть} \qquad \chi[\textbf{F}_1(t)] > \chi[\parallel \textbf{F}_s(t) \parallel] \qquad \text{для всех} \qquad s>1,$ $\textbf{F}_s(t) = (f_{jk}^{(s)}(t)) \ , \ \ s=1,2,...,N, \ \ \textbf{и}$

$$\mathbf{F}(t) := \sum_{s=1}^{N} \mathbf{F}_{s}(t) = (f_{jk}(t)).$$

Кроме того, пусть $\chi[\mathbf{F}_1(t)] = \max_{j,k} \chi[f_{jk}^{(1)}(t)] = \chi[f_{pq}^{(1)}(t)]$. Поскольку

$$\chi[f_{pq}^{(s)}(t)] \le \chi[F_s(t)] < \chi[f_{pq}^{(1)}(t)]$$
 $\forall s > 1$

с использованием свойства 5) характеристических показателей получаем

$$\chi[f_{pq}(t)] = \chi[f_{pq}^{(1)}(t)] = \chi[F_1(t)].$$

Следовательно,

$$\chi[\mathbf{F}(t)] \ge \chi[\mathbf{F}_1(t)] = \max_{s} \chi[\mathbf{F}_s(t)].$$

Отсюда, в силу доказанного выше свойства 2), следует

$$\chi[\mathbf{F}(t)] = \max_{s} \chi[\mathbf{F}_{s}(t)] \blacksquare$$

- 3) Пусть $\chi[\mathbf{F}_s] \in \mathbf{R}$, s = 1, 2, ..., N. Характеристический показатель произведения конечного числа матриц F_s не превышает суммы характеристических показателей этих матриц.
 - \square Пусть $\mathbf{F}(t) \coloneqq \prod_{s=1}^N \mathbf{F}_s(t)$. Норма произведения матриц не превышает про- изведения норм этих матриц: $\|\mathbf{F}(t)\| \le \prod_{s=1}^N \|\mathbf{F}_s(t)\|$. Поэтому с использова-

нием свойства 6) характеристических показателей, получаем

$$\chi[\mathbf{F}(t)] = \chi[||\mathbf{F}(t)||] \le \sum_{s=1}^{N} \chi[||\mathbf{F}_{s}(t)||] = \sum_{s=1}^{N} \chi[\mathbf{F}_{s}(t)] \blacksquare$$

Следствие 2. Характеристический показатель линейной комбинации $\sum_{s=1}^{N} c_s \cdot \mathbf{F}_s(t)$ $(c_s \neq 0, s = 1, 2, ..., N)$ нескольких матриц с постоянными коэффициентами не превышает наибольшего из характеристических этих матриц и равен ему, если наибольшим характеристическим показателем обладает лишь одна из данных матриц.

Упражнение

1. Вычислить характеристический показатель матрицы

$$\mathbf{F}(t) = \begin{pmatrix} e^{\sqrt{t^2 + t + 1} - \sqrt{1 - t + t^2}} & e^{\sqrt{t^2 + t} - t} \\ \ln(1 + 2^t) \sqrt{1 + 3^t} & (1 + 2^t)^{\ln(1 + \frac{3}{t})} \end{pmatrix}.$$

§ 3. Спектр линейной однородной системы

Рассмотрим линейную дифференциальную систему

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t) \cdot \mathbf{x} \,, \tag{1}$$

матрица которой составлена из непрерывных на промежутке $[0,+\infty)$ и в общем случае комплекснозначных функций.

Теорема 1. Если матрица A(t) линейной системы (1) ограничена на $[0,+\infty)$, m.e. cywecmbyem такое число c, что

$$\|\mathbf{A}(t)\| \le c < +\infty \qquad \forall t \ge 0,$$

то каждое вещественное или комплексное ненулевое решение $\mathbf{x} = \mathbf{x}(t)$ системы (1) имеет конечный характеристический показатель.

 \square Пусть $\mathbf{x}(t) = (\mathbf{x}_1(t),...,\mathbf{x}_n(t))^T$ — произвольное ненулевое решение системы (1), $t \ge 0$. Заметим, что $\|\mathbf{x}(0)\| \ne 0$, так как в противном случае благодаря единственности решения с начальными данными $(0,\mathbf{x}(0))$ оно должно было быть нулевым.

Из (1) вытекает

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_{0}^{t} \mathbf{A}(\tau) \cdot \mathbf{x}(\tau) d\tau.$$

Следовательно,

$$\|\mathbf{x}(t)\| \le \|\mathbf{x}(0)\| + \|\int_{0}^{t} \|\mathbf{A}(\tau)\| \cdot \|\mathbf{x}(\tau)\| d\tau$$
 $\forall t \ge 0$.

Применяя обобщенную лемму Гронуолла-Беллмана (см. § 9 гл. 1), при $t \ge 0$ получим

$$\parallel \boldsymbol{x}(0) \parallel \cdot exp \Biggl(-\int\limits_0^t \parallel \boldsymbol{A} \bigl(\tau\bigr) \parallel d\tau \Biggr) \leq \parallel \boldsymbol{x}(t) \parallel \leq \parallel \boldsymbol{x}(0) \parallel \cdot exp \Biggl(\int\limits_0^t \parallel \boldsymbol{A} \bigl(\tau\bigr) \parallel d\tau \Biggr).$$

Предварительно разделив эти неравенства на положительное число $\|\mathbf{x}(0)\|$, с учетом равенства

$$\chi \left[\frac{\|\mathbf{x}(t)\|}{\|\mathbf{x}(0)\|} \right] = \chi[\mathbf{x}(t)]$$

находим

$$\chi \left[\exp \left(-\int_0^t \| \mathbf{A}(\tau) \| d\tau \right) \right] \leq \chi [\mathbf{x}(t)] \leq \chi \left[\exp \left(\int_0^t \| \mathbf{A}(\tau) \| d\tau \right) \right].$$

Отсюда

$$-\underline{\mathbf{A}} \leq \chi[\mathbf{x}(t)] \leq \overline{\mathbf{A}}$$
,

где

$$\underline{\mathbf{A}} = \underline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} || \mathbf{A}(\tau) || d\tau \le c, \qquad \overline{\mathbf{A}} = \overline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} || \mathbf{A}(\tau) || d\tau \le c,$$

T.e. $\chi[\mathbf{x}(t)] \in [-c,c]$

Лемма 1. Если матрица $\mathbf{A}(t)$ линейной системы (1) вещественна и некоторое её комплексное решение $\mathbf{z} = \boldsymbol{\xi}_1(t) + i \cdot \boldsymbol{\xi}_2(t)$ имеет характеристический показатель $\chi[\mathbf{z}] = \alpha$, то найдётся такое вещественное решение $\mathbf{x}(t)$ системы (1), что $\chi[\mathbf{x}] = \alpha$.

□ Имеем

$$\frac{d\mathbf{z}}{dt} = \mathbf{A}(t) \cdot \mathbf{z} \quad \Leftrightarrow \quad \frac{d(\xi_1 + i \cdot \xi_2)}{dt} = \mathbf{A}(t) \cdot (\xi_1 + i \cdot \xi_2) \quad \Leftrightarrow \quad$$

$$\frac{d\xi_1}{dt} + i \cdot \frac{d\xi_2}{dt} = \mathbf{A}(t) \cdot \xi_1 + i \cdot \mathbf{A}(t) \cdot \xi_2 \qquad \Leftrightarrow \qquad \frac{d\xi_i}{dt} = \mathbf{A}(t) \cdot \xi_i, \quad i = 1, 2.$$

Следовательно, вещественная $\xi_1(t)$ и мнимая $\xi_2(t)$ части решения **z** также являются решениями системы (1).

Рассмотрим решение $\mathbf{x} = \boldsymbol{\xi}_{s}(t)$, где $\chi[\boldsymbol{\xi}_{s}(t)] = \max_{i} \chi[\boldsymbol{\xi}_{i}(t)]$. В силу $|\boldsymbol{\xi}_{s}| \leq |\boldsymbol{\xi}_{1} + i \cdot \boldsymbol{\xi}_{2}| \leq |\boldsymbol{\xi}_{1}| + |\boldsymbol{\xi}_{2}|$ имеем

$$\chi[\boldsymbol{\xi}_s(t)] \leq \chi[\boldsymbol{z}] = \chi[\boldsymbol{\xi}_1(t) + i\boldsymbol{\xi}_2(t)] \leq \max_{\boldsymbol{z}} \chi[\boldsymbol{\xi}_i(t)] = \chi[\boldsymbol{\xi}_s(t)],$$

что влечёт равенство $\chi[\xi_s] = \chi[\mathbf{z}] = \alpha$

3 а м е ч а н и е 1. Не ограничивая общности рассуждений, в лемме 1 всегда можно считать, что $\mathbf{x} = \boldsymbol{\xi}_s(t) = Re\,\mathbf{z}$, так как в противном случае (т.е. когда $\boldsymbol{\xi}_s = Im\mathbf{z}$) вместо \mathbf{z} можно рассмотреть решение $\hat{\mathbf{z}} = -i\mathbf{z}(t) = \boldsymbol{\xi}_2(t) - i \cdot \boldsymbol{\xi}_1(t)$.

Лемма 2. Вектор-функции $\mathbf{x}^{(k)}(t)$, k = 1,2,...,m, определённые на промежутке $[0,+\infty)$ и обладающие различными характеристическими показателями, линейно независимы.

 \square Пусть $\alpha_k := \chi[\mathbf{x}^{(k)}], \ k=1,2,...,m$. Для определённости примем

$$\alpha_1 < \alpha_2 < \dots < \alpha_m. \tag{*}$$

Предположим противное: найдутся одновременно не равные нулю коэффициенты $c_1, c_2, ..., c_m$, такие, что

$$\sum_{k=1}^{m} c_k \cdot \mathbf{x}^{(k)}(t) = \mathbf{0} \qquad \forall t \ge 0.$$
 (**)

Обозначим через р максимальный номер отличного от нуля коэффициента в (**). Из (**) получаем

$$\mathbf{x}^{(p)}(t) = \sum_{k=1}^{p-1} \left[-\frac{c_k}{c_p} \cdot \mathbf{x}^{(k)}(t) \right],$$

а значит, в соответствии со следствием 1 из \S 1 и неравенствами (*) при некотором q < p выполнено

$$\alpha_p = \chi[\mathbf{x}^{(p)}(t)] \le \max_{k < p} \chi[\mathbf{x}^{(k)}(t)] = \alpha_q,$$

что противоречит (*) ■

О п р е д е л е н и е 1. Совокупность всех конечных (т.е. отличных от $+\infty$ и $-\infty$) характеристических показателей решений линейной дифференциальной системы (1) называют её *спектром*.

Согласно замечанию 1, спектр линейной системы (1) с вещественной матрицей A(t) может быть реализован на множестве вещественных функций.

Теорема 2. Спектр линейной однородной системы (1) с непрерывной, ограниченной и в общем случае комплекснозначной матрицей $\mathbf{A}(t)$ состоит из конечного числа элементов:

$$\alpha_1 < \alpha_2 < ... < \alpha_m \qquad (m \leq n).$$

□ Доказательство теоремы прямо следует из леммы 2 и известного из курса дифференциальных уравнений того факта, что линейная система порядка п имеет не более п линейно независимых решений ■

Следующее утверждение показывает, что понятие характеристического показателя решения линейной однородной системы с переменными коэффициентами является прямым обобщением вещественной части собственного значения матрицы линейной однородной системы с постоянными коэффициентами.

Следствие 1. Характеристические показатели $\alpha_1, \alpha_2, ..., \alpha_m$ ненулевых решений линейной системы (1) с постоянной матрицей \mathbf{A} совпадают с вещественными частями характеристических (собственных) значений этой матрицы, т.е. $\alpha_i = \text{Re}\lambda_i$, i = 1,2,...,m, где λ_i – корень характеристического уравнения $\det(\mathbf{A} - \lambda \mathbf{E}) = 0$.

□ Как известно, фундаментальную совокупность решений линейной системы (1) с постоянными коэффициентами образуют функции вида

$$e^{(Re\lambda_i)\cdot t} \cdot [\cos((Im\lambda_i)\cdot t) + i\cdot \sin((Im\lambda_i)\cdot t)] \cdot \mathbf{P}_i(t),$$

где P_i — векторные полиномы, степень которых не превосходит кратности корня λ_i . Характеристический показатель такой функции совпадает с $\alpha_i = Re\lambda_i$, i=1,2,...,m.

Далее, никакое другое число, кроме $\alpha_1, \alpha_2, ..., \alpha_m$, не может быть характеристическим показателем решения, поскольку любое решение системы (1) есть линейная комбинация упомянутой фундаментальной совокупности, а характеристический показатель такой линейной комбинации равен одному из характеристических показателей $\alpha_1, \alpha_2, ..., \alpha_m$

Пример 1. Рассмотрим нелинейное уравнение

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \frac{x}{t+1} \cdot \ln x \qquad (t \ge 0).$$

Оно имеет общее решение $x=e^{c\cdot(t+1)},$ а значит, обладает сплошным спектром мощности континуума: $-\infty < \alpha < +\infty$.

§ 4. Достаточное условие асимптотической устойчивости линейной системы с переменными коэффициентами

Теорема 1 (Ляпунов). Пусть задана линейная система

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t) \cdot \mathbf{x} \qquad (t \ge 0) \tag{1}$$

с непрерывной, ограниченной и в общем случае комплекснозначной матрицей $\mathbf{A}(t)$, причем $\alpha_1,\alpha_2,...,\alpha_m$ – спектр этой системы ($m \le n$). Для асимптотической устойчивости системы (1) достаточно, чтобы все её характеристические показатели были отрицательными, т.е. $\alpha_k < 0$, k = 1,2,...,m.

Пусть $\mathbf{x}(t) \neq \mathbf{0}$ — произвольное ненулевое решение системы (1). Выберем $\epsilon > 0$ настолько малым, чтобы для числа $\alpha := \max_k \alpha_k < 0$ имело место неравенство $\alpha + \epsilon < 0$. В соответствии со свойством 4) характеристических показателей справедлива импликация

$$\chi[\mathbf{x}(t)] < \alpha + \varepsilon \implies \frac{\|\mathbf{x}(t)\|}{e^{(\alpha+\varepsilon)\cdot t}} \xrightarrow[t \to +\infty]{} 0.$$

Следовательно, $\mathbf{x}(t) \underset{t \to +\infty}{\longrightarrow} \mathbf{0}$, что согласно результатам § 3 главы 1 влечёт асимптотическую устойчивость линейной системы (1)

§ 5. Нормальная фундаментальная совокупность решений

Пусть задана линейная однородная система дифференциальных уравнений

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t) \cdot \mathbf{x} \qquad (t \ge 0) \tag{1}$$

с непрерывной, ограниченной и в общем случае комплекснозначной матрицей ${\bf A}(t)$, причем

$$-\infty < \alpha_1 < \alpha_2 < \dots < \alpha_m < +\infty$$
 $(m \le n)$

- спектр этой системы, записанный в порядке возрастания. Обозначим через

$$\mathbf{X}(t) = {\mathbf{x}^{(1)}(t),...,\mathbf{x}^{(n)}(t)}$$

некоторую фундаментальную совокупность решений (ф.с.р.) этой системы. Она является базисом в пространстве решений.

Рассмотрим произвольную линейную комбинацию заданной фундаментальной совокупности решений с постоянными коэффициентами. Являясь решением системы (1), она будет иметь характеристический показатель, который всегда меньше, либо равен наибольшему из характеристических показателей функций, участвующих в данной линейной комбинации. В случае реализации равенства получаем следующее понятие.

О п р е д е л е н и е 1. Ф.с.р. $\mathbf{X}(t)$ системы (1) называется нормальной фундаментальной совокупностью решений (н.ф.с.р.), если для каждого $\mathbf{k} \in \{1,2,...,n\}$ и для любых $\mathbf{c}_{i_1} \neq 0,\ 1=1,2,...,\mathbf{k}$, выполняется равенство

$$\chi \left[\sum_{l=1}^{k} c_{i_{l}} \cdot \mathbf{x}^{(i_{l})}(t) \right] = \max_{l \in \{1, 2, \dots, k\}} \chi[\mathbf{x}^{(i_{l})}(t)], \tag{2}$$

где совокупность попарно различных номеров $\{i_1,i_2,...,i_k\}$ является подмножеством множества $\{1,2,...,n\}$.

3 а м е ч а н и е 1. В определении 1 вместо включения $k \in \{1,2,...,n\}$ можно написать $k \in \{2,...,n\}$, так как характеристический показатель линейной комбинации, содержащей лишь одно слагаемое, заведомо удовлетворяет условию максимума (2).

В следующей теореме устанавливается одно экстремальное свойство н.ф.с.р.

Теорема 1. Пусть $\mathbf{X}(t) = \{\mathbf{x}^{(1)}(t),...,\mathbf{x}^{(n)}(t)\}$ — н.ф.с.р. системы (1) и \mathbf{n}_s — число решений из $\mathbf{X}(t)$, имеющих характеристический показатель α_s , а \mathbf{N}_s —

максимальное возможное число линейно независимых решений системы (1) с характеристическим показателем α_s , s = 1,2,...,m. Тогда

$$n_1 + n_2 + ... + n_s = N_s, \qquad s = 1, 2, ..., m.$$
 (3)

 \square Обозначим через $\mathbf{x} = \mathbf{x}(t)$ произвольное решение системы (1) с характеристическим показателем α_s . Как и всякое решение, оно может быть представлено в виде линейной комбинации $\mathbf{x} = \sum_{l=1}^k c_{i_l} \cdot \mathbf{x}^{(i_l)}(t)$ некоторых k решений из $\phi.c.p.$ $\mathbf{X}(t)$ ($k \le n$) с отличными от нуля коэффициентами. Так как по условию $\mathbf{X}(t) - \mathbf{h}.\phi.c.p.$, то

$$\alpha_{s} = \chi[\mathbf{x}] \stackrel{(2)}{=} \max_{l \in \{1,2,...,k\}} \chi[\mathbf{x}^{(i_{1})}(t)] \ge \chi[\mathbf{x}^{(i_{p})}(t)], \qquad p = 1,2,...,k.$$

В частности, всякое решение системы (1), имеющее характеристический показатель α_s и входящее в набор из максимального возможного числа N_s линейно независимых решений с характеристическим показателем α_s , может быть представлено в виде линейной комбинации не более чем $n_1+n_2+...+n_s$ решений из $\mathbf{X}(t)$. Поэтому максимальное возможное число N_s линейно независимых решений с характеристическим показателем α_s не может быть больше числа функций, на основе которых они строятся, т.е.

$$N_{s} \le n_{1} + n_{2} + \dots + n_{s}. \tag{*}$$

С другой стороны, располагая набором $n_1 + n_2 + ... + n_s$ функций из $\mathbf{X}(t)$ с характеристическими показателями, не превосходящими α_s , всегда можно сделать так, чтобы этот набор остался линейно независимым и все функции входящие в него, имели максимальный возможный характеристический показатель, т.е. равный α_s . Для этого к каждой функции указанного набора с характеристическим показателем, меньшим α_s , достаточно прибавить одну и ту же функцию с характеристическим показателем, равным α_s ; при этом линейная независимость, очевидно, не нарушится. Следовательно,

$$N_s \ge n_1 + n_2 + ... + n_s$$
. (**)

Неравенства (*) – (**) влекут (3) ■

В обычной ф.с.р. число решений, имеющих тот или иной фиксированный характеристический показатель, может варьироваться в зависимости от выбранной ф.с.р. В частности, все элементы такой ф.с.р. могут иметь один и тот же характеристический показатель.

В нормальной ф.с.р. число решений, имеющих фиксированный характеристический показатель, является инвариантом, причем в каждой н.ф.с.р. будут представлены решения всего спектра этой системы. Это положение подтверждают следующие два утверждения.

Следствие 1. Во всякой н.ф.с.р. системы (1) количество решений с характеристическим показателем α_s одно и то же, s=1,2,...,m.

□ В самом деле, количество решений с характеристическим показателем α_s благодаря (3) равно $n_s = N_s - N_{s-1}$, s = 1, 2, ..., m, где $N_0 = 0$

Следствие 2. Каждая н.ф.с.р. реализует весь спектр линейной системы (1), т.е. $n_s \ge 1$, s = 1, 2, ..., m.

□ Требуемые неравенства вытекают из строгих неравенств

$$0 = N_0 < N_1 < ... < N_m$$

и равенств $n_s = N_s - N_{s-1}$, s = 1,2,...,m

Как показывает следующая теорема, из данной ф.с.р. системы (1) при помощи некоторого линейного преобразования с треугольной матрицей всегда получить некоторую н.ф.с.р.

Теорема 2 (теорема Ляпунова о построении н.ф.с.р.). Пусть

$$\mathbf{Z}(t) = (\mathbf{z}^{(1)}(t),...,\mathbf{z}^{(n)}(t))^2$$

есть некоторая фундаментальная матрица решений $(\phi.м.р.)$ системы (1) с непрерывной и ограниченной по норме на $[0,+\infty)$ матрицей коэффициентов $\mathbf{A}(t)$. Тогда существует такая постоянная треугольная матрица

$$C = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_{21} & 1 & \dots & 0 \\ & & & & \\ c_{n1} & c_{n2} & \dots & 1 \end{pmatrix}, \tag{4}$$

что

$$\mathbf{X}(t) = \mathbf{Z}(t) \cdot \mathbf{C} \tag{5}$$

является нормальной фундаментальной матрицей решений (н.ф.м.р.) системы (1).

□ 1) Сначала, на основе матрицы Z построим определенную матрицу

$$\mathbf{X}(t) = (\mathbf{x}^{(1)}(t),...,\mathbf{x}^{(n)}(t)),$$

столбцы которой образуют ф.м.р. системы (1).

Матрицу X будем строить в виде (5), т.е.

$$\begin{cases} \mathbf{x}^{(1)}(t) = \mathbf{z}^{(1)}(t) + c_{21} \cdot \mathbf{z}^{(2)}(t) + \dots + c_{n1} \cdot \mathbf{z}^{(n)}(t), \\ \mathbf{x}^{(2)}(t) = + \mathbf{z}^{(2)}(t) + \dots + c_{n2} \cdot \mathbf{z}^{(n)}(t), \\ \dots & \vdots \\ \mathbf{x}^{(n)}(t) = + \mathbf{z}^{(n)}(t). \end{cases}$$
(*)

Подберем в (*) числа c_{ik} (k < j) так, чтобы выполнялись равенства

$$\chi[\boldsymbol{x}^{(s)}(t)] = \min_{c_{s+1,s},...,c_{ns}} \chi[\boldsymbol{z}^{(s)}(t) + c_{s+1,s} \cdot \boldsymbol{z}^{(s+1)}(t) + ... + c_{ns} \cdot \boldsymbol{z}^{(n)}(t)], \quad s = 1,2,...,m \,. \tag{**}$$

Заметим, что минимум здесь всегда достигается, так как спектр линейной системы конечен и в правой части равенства (**) в квадратных скобках записана линейная комбинация решений системы, а значит, некоторое решение этой системы.

По построению матрица $\mathbf{X}(t)$ с выбранными коэффициентами c_{jk} удовлетворяет равенству (5). Ясно, что столбцы (их ровно n) этой матрицы являются решениями системы (1). Кроме того,

$$det(\mathbf{X}(t)) = det(\mathbf{Z}(t)) \cdot det(\mathbf{C}) = det(\mathbf{Z}(t)) \neq 0 \qquad \forall t \geq t_0 > a.$$

Следовательно, $X(t) - \phi$.м.р. системы (1).

2) Теперь установим, что X(t) – н.ф.м.р. системы (1).

С этой целью через $\alpha_1,...,\alpha_m$ $(m \leq n)$ обозначим полную совокупность различных характеристических показателей системы решений $\mathbf{X}(t)$ и, зафиксировав произвольно выбранное $s \in \{1,2,...,m\}$, рассмотрим произвольную группу решений $\mathbf{x}^{(n_{1s})}(t),...,\mathbf{x}^{(n_{ks})}(t)$, $n_{is} \in \{1,2,...,n\}$, i=1,2,...,k, из $\mathbf{X}(t)$, имеющих один и тот же характеристический показатель: $\chi[\mathbf{x}^{(n_{is})}(t)] = \alpha_s$.

Для всякой линейной комбинации

$$\mathbf{x}(t) = \sum_{i} a_{i} \cdot \mathbf{x}^{(n_{is})}(t) \qquad (\forall a_{i} \neq 0)$$

этих решений с отличными от нуля коэффициентами имеем

$$\chi[\mathbf{x}(t)] \leq \alpha_{s}$$
.

С другой стороны, полагая $n_{ps} = \min_{i} n_{is}$, на основании (*) получаем

 $[\]frac{1}{2}$ Векторы $\mathbf{z}^{(k)}$ в матрице \mathbf{Z} являются столбцами.

$$\mathbf{x}(t) = a_{p} \cdot \mathbf{x}^{(n_{ps})}(t) + \sum_{n_{is} > n_{ps}} a_{i} \cdot \mathbf{x}^{(n_{is})}(t) = a_{p} \cdot \left[\mathbf{z}^{(n_{ps})}(t) + \sum_{i > n_{ps}} c'_{i} \cdot \mathbf{z}^{(i)}(t) \right],$$

где $a_p \neq 0$ и c_i' – некоторые (не обязательно отличные от нуля) константы. Отсюда с учётом (**) будем иметь

$$\begin{split} \chi[\mathbf{x}(t)] &= \chi \left[\mathbf{z}^{(n_{ps})}(t) + \sum_{i > n_{ps}} c'_i \cdot \mathbf{z}^{(i)}(t) \right] \ge \\ &\geq \min_{c'_i(i > n_{ps})} \chi \left[\mathbf{z}^{(n_{ps})}(t) + \sum_{i > n_{ps}} c'_i \cdot \mathbf{z}^{(i)}(t) \right] = \chi[\mathbf{x}^{(n_{ps})}(t)] = \alpha_s, \end{split}$$

что вместе с установленным ранее неравенством

$$\chi[\mathbf{x}(t)] = \chi \left[\sum_{i} a_{i} \cdot \mathbf{x}^{(n_{is})}(t)\right] \leq \alpha_{s}$$

влечёт равенство

$$\chi \left[\sum_{i} a_{i} \cdot \mathbf{x}^{(n_{is})}(t) \right] = \alpha_{s} \qquad (\forall a_{i} \neq 0).$$
 (***)

Для завершения доказательства рассмотрим произвольную линейную комбинацию (где $n_i \in \{1,2,...,n\}$):

$$\sum_{i} b_{i} \cdot \mathbf{x}^{(n_{i})}(t) \qquad (\forall b_{i} \neq 0)$$

решений из $\mathbf{X}(t)$ с отличными от нуля коэффициентами. Группируя из данных решений максимальные (по числу решений) совокупности $\{\mathbf{x}^{(n_{is})}(t)\}$, обладающие одинаковыми характеристическими показателями α_s , обозначая получающиеся при этом коэффициенты через b_{is} , и, учитывая (***), будем иметь

$$\chi \left[\sum_{i} b_{i} \cdot \mathbf{x}^{(n_{i})}(t) \right] = \chi \left[\sum_{s} \sum_{i} b_{is} \cdot \mathbf{x}^{(n_{is})}(t) \right] =$$

$$= \max_{s} \chi \left[\sum_{i} b_{is} \cdot \mathbf{x}^{(n_{i})}(t) \right]_{s}^{(***)} = \max_{s} \alpha_{s} = \max_{i} \chi[\mathbf{x}^{(n_{i})}(t)].$$

Следовательно, $X(t) - H.\phi.м.р.$

Как известно, произведение двух треугольных матриц является треугольной матрицей, поэтому справедливо

Следствие 3. Если линейная система (1) имеет треугольную ф.м.р., то для этой системы существует треугольная н.ф.м.р.

Упражнение

1. Убедиться, что $\mathbf{X}(t) = \mathbf{e}^{(t-t_0)\mathbf{J}}$ — н.ф.м.р. линейной системы (1), в которой $\mathbf{A}(t) \equiv \mathbf{A} = \mathbf{J}$, где \mathbf{J} — матрица Жордана.

§ 6. Правильные линейные системы

1⁰. **Неравенство Ляпунова**. Вновь обратимся к линейной однородной системе дифференциальных уравнений

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}(t) \cdot \mathbf{x} \qquad (t \ge 0) \tag{1}$$

с непрерывной, ограниченной и в общем случае комплекснозначной матрицей ${\bf A}(t)$, обозначив через

$$-\infty < \alpha_1 < \alpha_2 < \dots < \alpha_m < +\infty$$
 $(m \le n)$

спектр этой системы.

О п р е д е л е н и е 1. Пусть $\mathbf{X}(t)$ — некоторая н.ф.с.р. системы (1) и \mathbf{n}_s есть число решений этой совокупности, имеющих характеристический показатель α_s , s=1,2,...,m. Множество всех характеристических показателей нетривиальных решений системы (1), где каждый характеристический показатель встречается столько раз, сколько \mathbf{n}_s линейно независимых решений с характеристическим показателем, равным α_s , содержится в $\mathbf{X}(t)$, называют *полным спектром системы* (1), а сумму

$$S = \sum_{s=1}^{m} n_s \cdot \alpha_s$$

именуют суммой характеристических показателей системы (1).

Нетрудно понять, что полный спектр и сумма характеристических показателей системы (1) не зависят от выбора н.ф.с.р.

З а м е ч а н и е 1. Понятие суммы характеристических показателей можно использовать и применительно к набору линейно независимых решений системы (1), в частности, для ф.с.р. В этом случае сумма характеристических показателей может меняться в зависимости от набора решений, даже если число решений набора сохраняется.

Теорема 1. Пусть $\mathbf{X}(t) = \{\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}\}$ – произвольная ф.с.р. системы (1) с вещественной матрицей $\mathbf{A}(t)$ и

$$S_{\mathbf{X}} = \sum_{k=1}^{n} \chi[\mathbf{X}^{(k)}] = \sum_{s=1}^{m} n_s \cdot \alpha_s$$
 (2)

— сумма характеристических показателей решений из \mathbf{X} , где n_s ($n_s \ge 1$) — число вектор-функций данной ф.с.р. с характеристическим показателем α_s , s=1,2,...,m.

Имеет место неравенство Ляпунова

$$S_{\mathbf{X}} \ge \chi \left[\exp \left(\int_{0}^{t} Sp\mathbf{A}(\tau) d\tau \right) \right].$$
 (3)

□ Для определителя Вронского

$$W(t) = det(X(t))$$

справедливо представление

$$W(t) = \sum_{p} (-1)^{\omega} \cdot x_{p_1 1}(t) \cdot ... \cdot x_{p_n n}(t),$$

где $(-1)^{\omega} \in \{1,-1\}$, $x_{p_ik}(t) - p_i$ -я компонента k-го решения $\mathbf{x}^{(k)} \in \mathbf{X}$, а $P = (p_1,...,p_n)$ – перестановка чисел 1,2,...n.

Используя свойства характеристических показателей (для суммы и произведения функций) с учётом (2), получаем

$$\begin{split} &\chi[W(t)] \leq \max_{p} \left\{ \!\! \chi[x_{p_{1}1}(t)] \!\!\! + ... + \chi[x_{p_{n}n}(t)] \!\!\! \right\} \!\!\! \leq \max_{p} \left\{ \!\!\! \chi[x_{p_{1}1}(t)] \!\!\! \right\} \!\!\! + ... \\ & ... + \max_{p} \left\{ \!\!\! \chi[x_{p_{n}n}(t)] \!\!\! \right\} \!\!\! = \chi[\mathbf{x}^{(1)}(t)] \!\!\!\! + ... + \chi[\mathbf{x}^{(n)}(t)] \!\!\!\! = \! S_{\mathbf{X}}. \end{split}$$

Вспомним формулу Остроградского-Лиувилля:

$$W(t) = W(t_0) \cdot \exp\left(\int_0^t SpA(\tau)d\tau\right).$$

Следовательно,

$$\chi[W(t)] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \ln \mid W(t) \mid = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \left(\int\limits_0^t Sp \mathbf{A}(\tau) d\tau \right).$$

Подставляя найденное для $\chi[W(t)]$ выражение в (**), придём к неравенству Ляпунова \blacksquare

Замечание 2. В случае комплекснозначной матрицы A(t) имеем $SpA = ReSpA + i \cdot ImSpA$. А так как согласно формуле Эйлера мнимая часть следа матрицы ограничена, то неравенство Ляпунова принимает вид

$$S_{\mathbf{X}} \geq \chi \left[exp \left(\int\limits_{t_0}^t Re \, Sp \mathbf{A}(\tau) d\tau \right) \right] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int\limits_{t_0}^t Re \, Sp \mathbf{A}(\tau) d\tau \; .$$

20. Равенство Ляпунова.

Следствие 1. Если для ϕ .с.р. $\mathbf{X}(t)$ линейной системы (1) с непрерывной, ограниченной вещественной матрицей $\mathbf{A}(t)$ имеет место равенство Ляпунова

$$S_{\mathbf{X}} = \chi \left[\exp \left(\int_{t_0}^t \mathrm{Sp} \mathbf{A}(\tau) d\tau \right) \right] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{t_0}^t \mathrm{Sp} \mathbf{A}(\tau) d\tau ,$$

то такая ф.с.р. является нормальной.

 \square Для доказательства, не ограничивая общности, предположим, что в фундаментальной совокупности $\mathbf{X}(t) = \{\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}\}$ решения записаны в порядке возрастания их характеристических показателей.

Если ф.с.р. $\mathbf{X}(t)$, напротив, не является нормальной, то найдётся $k \in \{2,...,n\}$ и линейная комбинация решений

$$\mathbf{z} = \sum_{l=1}^{k} c_{i_{l}} \cdot \mathbf{x}^{(i_{l})}(t),$$
 (*)

 $\{i_1,...,i_k\}\subset\{1,2,...,n\},\ i_1<...< i_k,\ c$ отличными от нуля коэффициентами (в частности, $c_{i_k}\neq 0$), для которой

$$\chi[\mathbf{z}] < \max_{i_1=1,...,k} \chi[\mathbf{x}^{(i_1)}(t)] = \chi[\mathbf{x}^{(i_k)}(t)].$$
 (**)

Рассмотрим совокупность решений

$$\mathbf{Z} = {\{\mathbf{x}^{(1)},...,\mathbf{x}^{(i_k-1)},\mathbf{z},\mathbf{x}^{(i_k+1)},...,\mathbf{x}^{(n)}\}}$$
.

Она является ф.с.р., так как если предположить обратное, т.е.

$$\sum_{j\neq i_k} a_j \cdot \boldsymbol{x}^{(j)}(t) + a_{i_k} \cdot \boldsymbol{z}(t) \equiv \boldsymbol{0} \qquad \text{при некоторых } a_j \colon \sum_{j=1}^n |a_j| \neq 0,$$

то в силу линейной независимости системы $\left\{\mathbf{x}^{(j)}(t)\right\}_{j\neq i_k}$ верно $a_{i_k}\neq 0$, а значит с учетом (*) получаем

$$\sum_{j < i_k} (a_j + a_{i_k} c_j) \cdot \boldsymbol{x}^{(j)}(t) + a_{i_k} c_{i_k} \cdot \boldsymbol{x}^{(i_k)}(t) + \sum_{j > i_k} a_j \cdot \boldsymbol{x}^{(j)}(t) \equiv \boldsymbol{0} \,.$$

Отсюда, благодаря линейной независимости системы векторов $\left\{\mathbf{x}^{(j)}(t)\right\}_{j=1}^n$, следует равенство $a_{i_k} \cdot c_{i_k} = 0$, которое невозможно в силу $c_{i_k} \neq 0$, $a_{i_k} \neq 0$.

Полученное противоречие говорит о том, что ${\bf Z}$ является ф.с.р., причём благодаря (**) выполнено

$$S_{\mathbf{Z}} < S_{\mathbf{X}} = \chi \left[\exp \left(\int_{0}^{t} Sp \mathbf{A}(\tau) d\tau \right) \right] = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{0}^{t} Sp \mathbf{A}(\tau) d\tau.$$

Это неравенство не совместимо с неравенством Ляпунова для ф.с.р. **Z** ■

Пример 1. Приведем пример ф.с.р. линейной однородной системы уравнений

$$\begin{cases} \dot{x} = y \cdot [\sin(\ln t) + \cos(\ln t)], \\ \dot{y} = x \cdot [\cos(\ln t) + \sin(\ln t)], \end{cases}$$
 (1 \le t < +\infty),

для которой равенство Ляпунова не выполняется.

После сложения и вычитания уравнений данной системы, находим

$$x + y = 2C_1 \cdot e^{t \cdot \sin(\ln t)},$$
 $x - y = 2C_2 \cdot e^{-t \cdot \sin(\ln t)},$

откуда получаем её общее решение

$$\begin{cases} x = C_1 \cdot e^{t \cdot \sin(\ln t)} + C_2 \cdot e^{-t \cdot \sin(\ln t)}, \\ \\ y = C_1 \cdot e^{t \cdot \sin(\ln t)} - C_2 \cdot e^{-t \cdot \sin(\ln t)}. \end{cases}$$

Нетрудно вычислить, что $\chi[x] = \chi[y] = 1$ (при $C_1^2 + C_2^2 \neq 0$). Поэтому ф.с.р.

$$\mathbf{X} = egin{pmatrix} e^{t\cdot sin(lnt)} & e^{-t\cdot sin(lnt)} \\ e^{t\cdot sin(lnt)} & -e^{-t\cdot sin(lnt)} \end{pmatrix}$$
 является нормальной и $\mathbf{S}_{\mathbf{X}} = 2$. Однако для матрицы

$$\mathbf{A}(t) = \begin{pmatrix} 0 & \sin(\ln t) + \cos(\ln t) \\ \cos(\ln t) + \sin(\ln t) & 0 \end{pmatrix}$$

данной системы верно $SpA(t) \equiv 0$, а значит равенство Ляпунова нарушается:

$$2 = S_X > \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{1}^{t} SpA(\tau) d\tau = 0.$$

3⁰. Правильные системы.

Существует известная связь между верхним и нижним пределами одной и той же функции. Благодаря этой связи и неравенству Ляпунова, получаем

$$S \geq \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{0}^{t} Sp \mathbf{A}(\tau) d\tau \geq \underline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} Sp \mathbf{A}(\tau) d\tau,$$

а значит,

$$S \geq \underline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int\limits_0^t Sp A(\tau) d\tau \ .$$

Линейная система, для которой в последнем неравенстве имеет место равенство, носит специальное название.

О п р е д е л е н и е 2. Линейную систему (1) с непрерывной, ограниченной, вещественной матрицей $\mathbf{A}(t)$ и спектром $\alpha_1,...,\alpha_m$ ($m \le n$) называют *правильной по Ляпунову* (или просто *правильной*), если

$$S = \lim_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} SpA(\tau)d\tau, \qquad (4)$$

где

$$S = \sum_{s=1}^m n_s \cdot \alpha_s$$

есть сумма характеристических показателей (с учётом кратностей n_s) некоторой н.ф.с.р. системы (1).

3 а м е ч а н и е 3. В аналогичном определении для системы (1) с комплекснозначной матрицей A(t) равенство (4) следует заменить на

$$S = \underline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} ReSpA(\tau)d\tau.$$

Пример 2 (неправильная система). Рассмотрим линейную систему второго порядка

$$\begin{cases} \dot{x} = x \cdot \cos(\ln t) + y \cdot \sin(\ln t), \\ \dot{y} = x \cdot \sin(\ln t) + y \cdot \cos(\ln t), \end{cases}$$
 $(t \ge 1).$

При помощи подстановки нетрудно убедиться, что вектор-функции

$$\mathbf{x}(t) = \begin{pmatrix} e^{t \cdot \sin(\ln t)} \\ e^{t \cdot \cos(\ln t)} \end{pmatrix}, \qquad \mathbf{y}(t) = \begin{pmatrix} e^{t \cdot \sin(\ln t)} \\ -e^{t \cdot \cos(\ln t)} \end{pmatrix}$$

являются решениями данной системы. Более того, они образуют линейно независимую систему и, тем самым, представляют собой ф.с.р. Кроме того, в силу

$$\chi[C_1\mathbf{x} + C_2\mathbf{y}] = \max\{\chi[\mathbf{x}], \chi[\mathbf{y}]\} = 1,$$

это будет н.ф.с.р. Для такой н.ф.с.р. верно равенство S = 2.

С другой стороны, имеем

$$\underbrace{\lim_{t \to +\infty} \frac{1}{t} \cdot \int_{1}^{t} 2\cos(\ln \tau) d\tau}_{t \to +\infty} = \underbrace{\lim_{t \to +\infty} \frac{1}{t} \cdot \left(\tau \cdot (\sin(\ln \tau) + \cos(\ln \tau))\right)\Big|_{\tau=1}^{\tau=t}}_{\tau=1} = \underbrace{\lim_{t \to +\infty} (\sin(\ln t) + \cos(\ln t))}_{t \to +\infty} = -\sqrt{2} \neq 2 = S.$$

Полученное в итоге неравенство свидетельствует о том, что данная система неправильная.

4⁰. Приводимые системы.

О пределение 3. Пусть $\mathbf{x} = (x_1, x_2, ..., x_n)^T$, $\mathbf{y} = (y_1, y_2, ..., y_n)^T$. Линейное преобразование

$$\mathbf{y} = \mathbf{L}(\mathbf{t}) \cdot \mathbf{x} \tag{5}$$

называют *преобразованием Ляпунова*, если непрерывно дифференцируемая при $t \ge 0$ матрица n-го порядка L(t) удовлетворяет следующим условиям:

- 1) $\sup_{t>0} ||\mathbf{L}(t)|| < +\infty$;
- 2) $\sup_{t>0} ||\dot{\mathbf{L}}(t)|| < +\infty;$
- 3) $\exists K > 0$, $\forall t \ge 0$: $|\det(\mathbf{L}(t))| \ge K$.

Важное свойство преобразования Ляпунова раскрывает следующая

Лемма 1. Преобразование Ляпунова сохраняет значение характеристического показателя, т.е.

$$\mathbf{y} = \mathbf{L}(t) \cdot \mathbf{x} \quad \Rightarrow \quad \chi[\mathbf{y}] = \chi[\mathbf{x}].$$

 \square Из (5) на основе условия 3) получаем $\mathbf{x} = \mathbf{L}^{-1}(\mathbf{t}) \cdot \mathbf{y}$. Поэтому

$$\begin{split} \parallel \mathbf{y} \parallel \leq \parallel \mathbf{L}(t) \parallel \cdot \parallel \mathbf{x} \parallel \\ \parallel \mathbf{x} \parallel \leq \parallel \mathbf{L}^{-1}(t) \parallel \cdot \parallel \mathbf{y} \parallel \end{split} \Rightarrow \begin{cases} \chi[\mathbf{y}] = \chi[\parallel \mathbf{y} \parallel] \leq \chi[\parallel \mathbf{L}(t) \parallel] + \chi[\parallel \mathbf{x} \parallel] = \chi[\parallel \mathbf{x} \parallel] = \chi[\mathbf{x} \parallel] \\ \chi[\mathbf{x}] = \chi[\parallel \mathbf{x} \parallel] \leq \chi[\parallel \mathbf{L}^{-1}(t) \parallel] + \chi[\parallel \mathbf{y} \parallel] = \chi[\parallel \mathbf{y} \parallel] = \chi[\mathbf{y}]. \end{cases}$$

Следовательно, $\chi[y] = \chi[x]$

О п р е д е л е н и е 4. Линейная система (1) называется *приводимой*, если при помощи некоторого преобразования Ляпунова (5) (с вообще говоря комплексной матрицей L) её можно привести к системе

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = \mathbf{B} \cdot \mathbf{y} \tag{6}$$

с постоянной матрицей В.

Как показывает следующая теорема, класс приводимых систем содержится в классе правильных систем.

Теорема 2. Всякая приводимая линейная система (1) является правильной.

 \Box Пусть система (1) является приводимой и $\mathbf{X}(t)$ — некоторая её н.ф.м.р. По определению приводимой системы найдётся матрица $\mathbf{L}(t)$:

$$\mathbf{X}(t) = \mathbf{L}(t) \cdot \mathbf{Y}(t), \tag{*}$$

где $\mathbf{Y}(t)$ – ф.м.р. линейной системы (6) с постоянной матрицей \mathbf{B} . Из (*) следует

$$det(\mathbf{X}(t)) = det(\mathbf{L}(t)) \cdot det(\mathbf{Y}(t)).$$

Отсюда с использованием формулы Остроградского-Лиувилля (см. п. 1^0 в $\S 6$) получаем

$$\det(\mathbf{X}(0)) \cdot \exp\left(\int_{0}^{t} \operatorname{Sp}\mathbf{A}(\tau) d\tau\right) = \det(\mathbf{L}(t)) \cdot \det(\mathbf{Y}(0)) \cdot e^{t \cdot \operatorname{Sp}\mathbf{B}},$$

откуда

$$\exp\left(\int_{0}^{t} \operatorname{Sp}\mathbf{A}(\tau)d\tau\right) = c(0) \cdot |\det(\mathbf{L}(t))| \cdot e^{t \cdot \operatorname{Sp}\mathbf{B}},$$

где

$$c(0) = |\det(\mathbf{Y}(0) \cdot \mathbf{X}^{-1}(0))|.$$

Поэтому

$$\frac{1}{t} \cdot \int_{0}^{t} \operatorname{Sp} \mathbf{A}(\tau) d\tau = \frac{1}{t} \cdot \ln[c(0) \cdot |\det(\mathbf{L}(t))|] + \frac{1}{t} \cdot \operatorname{Sp} \mathbf{B} =$$

$$= \frac{1}{t} \cdot \overbrace{lnc(0)}^{const} + \frac{1}{t} \cdot \overbrace{ln \mid det(\mathbf{L}(t))}^{orp.} \mid + \frac{1}{t} \cdot Sp\mathbf{B} \underset{t \to +\infty}{\longrightarrow} Sp\mathbf{B}.$$

Таким образом,

$$\lim_{t\to +\infty} \frac{1}{t} \cdot \int_{0}^{t} Sp \mathbf{A}(\tau) d\tau = \underline{\lim}_{t\to +\infty} \frac{1}{t} \cdot \int_{0}^{t} Sp \mathbf{A}(\tau) d\tau = Sp \mathbf{B}. \tag{**}$$

Обозначим через S_X и S_Y суммы характеристических показателей ф.с.р. X и Y соответственно. Согласно лемме 1 справедливо равенство

$$S_{\mathbf{X}} = S_{\mathbf{Y}}, \tag{***}$$

причём, так как по условию \mathbf{X} — н.ф.с.р., то и \mathbf{Y} — н.ф.с.р. Но для \mathbf{Y} характеристическими показателями являются вещественные части корней характеристического уравнения $\det(\mathbf{B} - \lambda \mathbf{E}) = 0$, где каждый корень считается столько раз, какова его кратность. Поэтому

$$S_Y = \sum_k Re \lambda_k = Re \sum_k \lambda_k = Re Sp \mathbf{B} = Sp \mathbf{B}.$$

Отсюда вместе с учетом (**)-(***) следует

$$S_{\mathbf{X}} \stackrel{(***)}{=} S_{\mathbf{Y}} = Sp\mathbf{B} \stackrel{(**)}{=} \underline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} Sp\mathbf{A}(\tau) d\tau,$$

т.е. система (1) действительно правильная ■

Из доказанной теоремы очевидным образом вытекает

Следствие 2. Любая линейная однородная дифференциальная система с постоянной матрицей является правильной.

Можно доказать (см. [3]), что в случае, когда матрица A(t) линейной системы (1) является периодической, эта система также будет правильной.

Упражнение

1. Доказать, что линейная система (1) второго порядка с матрицей

$$\mathbf{A}(t) = \begin{pmatrix} 0 & 1 \\ \frac{2}{t^2} & 0 \end{pmatrix}$$
 (при $t \ge 1$)

неприводима.

§ 7. Теорема Перрона

 ${f 1}^0$. **Взаимно сопряжённые системы**. Рассмотрим линейную однородную систему дифференциальных уравнений

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}(t) \cdot \mathbf{x} \qquad (t \ge 0) \tag{1}$$

матрица A(t) которой в общем случае может быть комплекснозначной.

О пределение 1. Линейную однородную систему

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{A}^*(t) \cdot \mathbf{y} \qquad (t \ge 0), \tag{2}$$

где $\mathbf{A}^*(t) = \overline{\mathbf{A}^T(t)}$ есть сопряжённая матрица для $\mathbf{A}(t)$, называют *сопряжённой системой* для системы (1).

Если $\mathbf{A}(t)$ – вещественная матрица, то $\mathbf{A}^*(t) = \mathbf{A}^T(t)$ и сопряжённая система для системы (1) принимает вид

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{A}^{\mathrm{T}}(t) \cdot \mathbf{y} .$$

Нетрудно проверить, что система (1), в свою очередь, является сопряжённой для системы (2). На этом основании о системах (1) и (2) говорят как о вза-имно сопряжённых системах.

Лемма 1. 1) Для любых решений \mathbf{x} и \mathbf{y} взаимно сопряжённых систем (1) u (2) выполняется

$$\mathbf{y}^* \cdot \mathbf{x} = \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{C} - \mathbf{const} , \qquad (3)$$

rде \mathbf{y}^* – вектор, сопряжённый для \mathbf{y} .

2) Для любых ϕ .м.р. **X=X**(t) и **Y=Y** (t) указанных систем имеет место равенство

$$\mathbf{Y}^* \cdot \mathbf{X} = \mathbf{C} - nocmoянная матрица, \tag{4}$$

где \mathbf{Y}^* — сопряжённая для \mathbf{Y} матрица. Обратно, из выполнения равенства (4) с неособой матрицей \mathbf{C} и ф.м.р. \mathbf{X} системы (1) следует, что \mathbf{Y} — есть ф.м.р. сопряженной системы (2).

 \Box 1) Зафиксируем произвольные решения $\mathbf{x} = (x_1,...,x_n)^T$ и $\mathbf{y} = (y_1,...,y_n)^T$ взаимно сопряжённых систем (1) и (2).

Поскольку

$$(\dot{\mathbf{y}})^* = (-\mathbf{A}^* \cdot \mathbf{y})^* \implies \dot{\mathbf{y}}^* = -\mathbf{y}^* \cdot \mathbf{A},$$

строка у* является решением системы

$$\frac{\mathrm{d}\mathbf{y}^*}{\mathrm{d}t} = -\mathbf{y}^* \cdot \mathbf{A}(t) \,. \tag{5}$$

Из равенств (1) и (5) следует

$$\mathbf{y}^* \cdot \frac{d\mathbf{x}}{dt} = \mathbf{y}^* \cdot \mathbf{A}(t) \cdot \mathbf{x}, \qquad \frac{d\mathbf{y}^*}{dt} \cdot \mathbf{x} = -\mathbf{y}^* \cdot \mathbf{A}(t) \cdot \mathbf{x}.$$

Складывая почленно последние два равенства, получим

$$\mathbf{y}^* \cdot \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t} + \frac{\mathbf{d}\mathbf{y}^*}{\mathbf{d}t} \cdot \mathbf{x} = 0,$$

или

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{y}^* \cdot \mathbf{x}) = 0.$$

Отсюда вытекает равенство (3).

2) Первая половина этого утверждения для матриц X и Y устанавливается так же, как и для векторов x и y.

Для доказательства обратного предположим, что имеет место равенство (4). Из него следует

$$\mathbf{Y} = \left(\mathbf{C} \cdot \mathbf{X}^{-1}\right)^* = \left(\mathbf{X}^*\right)^{-1} \cdot \mathbf{C}^*,\tag{6}$$

где матрица \mathbf{X}^* такова, что

$$\dot{\mathbf{X}}^* = \mathbf{X}^* \cdot \mathbf{A}^*(\mathbf{t}). \tag{7}$$

Дифференцируя (6) по правилу дифференцирования обратной матрицы, с учётом (7) получаем

$$\dot{\mathbf{Y}} = \underbrace{-(\mathbf{X}^*)^{-1} \cdot \dot{\mathbf{X}}^* \cdot (\mathbf{X}^*)^{-1}}_{\frac{d}{dt}(\mathbf{X}^*)^{-1}} \cdot \mathbf{C}^* \stackrel{(7)}{=} - \underbrace{(\mathbf{X}^*)^{-1} \cdot \mathbf{X}^*}_{E} \cdot \mathbf{A}^*(t) \cdot (\mathbf{X}^*)^{-1} \cdot \mathbf{C}^* \stackrel{(6)}{=} - \mathbf{A}^*(t) \cdot \mathbf{Y},$$

причём

$$\det(\mathbf{Y}) = \det(\mathbf{X}^*)^{-1} \cdot \mathbf{C}^* = \det(\mathbf{X}^*)^{-1} \cdot \det(\mathbf{C}^*) = \det(\mathbf{X})^{-1} \cdot \det(\mathbf{C}) \neq 0.$$

Полученное означает, что У является ф.м.р. системы (2) ■

20. Критерий правильности системы.

Лемма 2. Линейная однородная система (1) с непрерывной, ограниченной и в общем случае комплекснозначной матрицей A(t) является правильной тогда и только тогда, когда

$$\lim_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} \text{ReSpA}(\tau) d\tau = S, \qquad (8)$$

где S – сумма всех характеристических показателей данной системы.

□ Часть «достаточность» вытекает из определения правильной системы. Для доказательства необходимости введём обозначения

$$\overline{\sigma} = \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{0}^{t} ReSp \mathbf{A}(\tau) d\tau , \qquad \underline{\sigma} = \underline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{0}^{t} ReSp \mathbf{A}(\tau) d\tau .$$

Согласно неравенству Ляпунова $S \geq \overline{\sigma}$. Но из-за того, что система (1) правильная, верно равенство $S = \underline{\sigma}$. Следовательно, $\underline{\sigma} \geq \overline{\sigma}$, что вместе с неравенством $\underline{\sigma} \leq \overline{\sigma}$, связывающим нижний и верхний пределы, влечёт равенство $\sigma = \overline{\sigma}$. Отсюда с учётом $S = \sigma$ приходим к (8)

3⁰. Теорема Перрона.

Теорема 1 (О. Перрон). Линейная система (1) с непрерывной, ограниченной и в общем случае комплекснозначной матрицей $\mathbf{A}(t)$ является правильной тогда и только тогда, когда полный спектр

$$\alpha_1 \le \alpha_2 ... \le \alpha_n$$

этой системы и полный спектр

$$\beta_1 \ge \beta_2 \ge ... \ge \beta_n$$

сопряжённой системы (2) симметричны относительно нуля, т.е.

$$\alpha_s + \beta_s = 0$$
, $s = 1, 2, ..., n$.

 \square Необходимость. Пусть система (1) правильная и $\mathbf{X}(t) = (x_{jk})_{n \times n}$ — её н.ф.м.р., состоящая из столбцов $\mathbf{x}^{(k)} = (x_{1k}(t),...,x_{nk}(t))^T$, k = 1,2,...,n, таких, что $\chi[\mathbf{x}^{(k)}] = \alpha_k$, причём характеристические показатели α_k упорядочены по возрастанию (как в условиях теоремы).

Согласно лемме 1 матрица

$$\mathbf{Y}(t) = \left[\mathbf{X}^{-1}(t)\right]^* = (\mathbf{y}_{jk})_{n \times n} \tag{9}$$

является ф.м.р. сопряжённой системы (2), так как $\mathbf{Y}^* \cdot \mathbf{X} = \mathbf{E}$.

Введём обозначение для столбцов матрицы У:

$$\mathbf{y}^{(k)} = (y_{1k}(t),...,y_{nk}(t))^{T}, \qquad \chi[\mathbf{y}^{(k)}] = \beta_{k}, \quad k = 1,2,...,n,$$

причём характеристические показатели β_k упорядочены в порядке убывания (как в условиях теоремы).

Равенство $\mathbf{Y}^* \cdot \mathbf{X} = \mathbf{E}$ влечёт $\mathbf{y}^{(s)^*} \cdot \mathbf{x}^{(s)} = 1$, s = 1, 2, ..., n. Переходя в этом равенстве к характеристическим показателям, получим

$$0 = \chi[\mathbf{y}^{(s)^*} \cdot \mathbf{x}^{(s)}] \le \chi[\mathbf{y}^{(s)^*}] + \chi[\mathbf{x}^{(s)}] = \alpha_s + \beta_s \implies \alpha_s + \beta_s \ge 0.$$
 (*)

С другой стороны, обозначая через $X_{jk}(t)$ алгебраическое дополнение элемента $x_{jk}(t)$ матрицы \mathbf{X} , согласно правилу обращения матрицы получаем

$$y_{js}(t) = \left\lceil \frac{X_{sj}(t)}{\det(\mathbf{X}(t))} \right\rceil^* = \frac{\overline{\mathbf{X}}_{js}(t)}{\overline{\det(\mathbf{X}(t))}}, \quad j = 1, 2, ..., n,$$

где в соответствии с формулой Остроградского-Лиувилля

$$\det(\mathbf{X}(t)) = \underbrace{\det(\mathbf{X}(0))}_{\neq 0} \cdot \exp \int_{0}^{t} \operatorname{Sp}\mathbf{A}(\tau) d\tau \neq 0.$$

Поэтому

$$\chi[y_{js}(t)] \le \chi \left[\frac{1}{\overline{\det(\mathbf{X}(0))}}\right] + \chi \left[\exp\left(-\int_{0}^{t} \operatorname{Sp}\mathbf{A}(\tau)d\tau\right)\right] + \chi[\overline{\mathbf{X}}_{js}(t)], \qquad j = 1, 2, ..., n. \quad (**)$$

Первое слагаемое в правой части (**) равно нулю. Рассмотрим подробнее второе и третье слагаемые. Прежде всего заметим, что система (1) правильная, а значит, в силу леммы 2

$$S = \sum_{s=1}^{n} \alpha_{s} = \lim_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} ReSpA(\tau)d\tau.$$

Поэтому

$$\begin{split} &\chi\Bigg[exp\Bigg(-\int\limits_0^t Sp\mathbf{A}(\tau)d\tau\Bigg)\Bigg] = \chi\Bigg[exp\Bigg(-\int\limits_0^t ReSp\mathbf{A}(\tau)d\tau - i\int\limits_0^t ImSp\mathbf{A}(\tau)d\tau\Bigg)\Bigg] = \\ &= \chi\Bigg[exp\Bigg(-\int\limits_0^t ReSp\mathbf{A}(\tau)d\tau\Bigg) \cdot \underbrace{\Bigg(cos\Bigg(\int\limits_0^t ImSp\mathbf{A}(\tau)d\tau\Bigg) - isin\Bigg(\int\limits_0^t ImSp\mathbf{A}(\tau)d\tau\Bigg)\Bigg)}_{orp.}\Bigg] = \\ &= \chi\Bigg[exp\Bigg(-\int\limits_0^t ReSp\mathbf{A}(\tau)d\tau\Bigg)\Bigg] = -S. \end{split}$$

Учитывая, что при составлении алгебраического дополнения $\mathbf{X}_{js}(t)$ вычёркивается s-й столбец, содержащий решение $\mathbf{x}^{(s)}$, будем иметь

$$\chi[\overline{X}_{js}(t)] = \chi[X_{js}(t)] \le S - \alpha_s$$
, $j = 1, 2, ..., n$.

На основе полученного из (**) следует

$$\chi[y_{j_S}(t)] \le 0 + (-S) + (S - \alpha_{_S}) = -\alpha_{_S} \,, \qquad j = 1, 2, ..., n \,, \label{eq:continuous}$$

а значит

$$\beta_{s} = \max_{i} \chi[y_{js}(t)] \le -\alpha_{s} \implies \alpha_{s} + \beta_{s} \le 0 \implies \alpha_{s} + \beta_{s} = 0, \quad s = 1, 2, ..., n.$$

Остаётся убедиться, что ф.с.р. $\mathbf{Y}(t)$ — нормальная и, следовательно, набор чисел $\beta_1,...,\beta_n$ реализуют весь спектр сопряжённой системы. Действительно, из равенства $\alpha_s + \beta_s = 0$ следует

$$S_{\mathrm{Y}} = \sum_{s=1}^{n} \beta_{s} = -\sum_{s=1}^{n} \alpha_{s} = -\lim_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} ReSp\mathbf{A}(\tau) d\tau = \lim_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} ReSp[-\mathbf{A}^{*}(\tau)] d\tau.$$

Это означает, что для ф.м.р. $\mathbf{Y}(t)$ сопряжённой системы (2) выполнено равенство Ляпунова. Согласно следствию 1 из § 6, $\mathbf{Y}(t)$ – н.ф.с.р.

Достаточность. Пусть

$$\alpha_1 \leq \alpha_2 \dots \leq \alpha_n \quad \text{if} \quad \beta_1 \geq \beta_2 \geq \dots \geq \beta_n$$

суть спектры взаимно сопряжённых систем, причём $\alpha_s + \beta_s = 0$, s = 1,2,...,n. Согласно неравенству Ляпунова

$$\sum_{s=1}^{n} \alpha_{s} \geq \overline{\lim}_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} ReSpA(\tau) d\tau =: \overline{\sigma}$$

И

$$\sum_{s=1}^{n}\beta_{s} \geq \overline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{0}^{t} ReSp[-\mathbf{A}^{*}(\tau)]d\tau = -\underline{\lim_{t \to +\infty}} \frac{1}{t} \cdot \int_{0}^{t} ReSp\mathbf{A}(\tau)d\tau =: -\underline{\sigma}.$$

Складывая почленно последние два неравенства, получаем

$$\sum_{s=1}^{n} \underbrace{(\beta_s + \alpha_s)}_{=0} = 0 \ge \overline{\sigma} - \underline{\sigma}.$$

Отсюда с учётом $\overline{\sigma} \ge \underline{\sigma}$ следует равенство верхнего и нижнего пределов: $\overline{\sigma} = \underline{\sigma}$. Поэтому существует предел

$$\sigma := \lim_{t \to +\infty} \frac{1}{t} \cdot \int_{0}^{t} \operatorname{ReSpA}(\tau) d\tau.$$

Кроме того, $\sum_{s=1}^{n} \alpha_s = \sigma$, так как если предположить $\sum_{s=1}^{n} \alpha_s > \sigma$, то благодаря не-

равенству $\sum_{s=1}^n \beta_s \ge -\sigma$ выполнено $0 = \sum_{s=1}^n (\beta_s + \alpha_s) > 0$, что невозможно.

В таком случае лемма 2 гарантирует, что система (1) – правильная ■

Следствие 1. Сопряжённая система для правильной линейной системы является правильной линейной системой.

Следствие 2. Если система (1) – правильная $u \ \mathbf{X}(t) \ - e\ddot{e} \ \textit{н.ф.м.р.}, то$

$$\mathbf{Y} = \left[\mathbf{X}^{-1}(t)\right]^*$$

является н.ф.м.р. сопряжённой системы (2).

Упражнение

1) Записать сопряжённую систему для системы второго порядка

$$\begin{cases} \frac{dx}{dt} = (2+i\cdot3)\cdot x + i\cdot(\sin t^2)\cdot y, \\ \frac{dy}{dt} = (i+\cos(1-t))\cdot x - (1-\frac{i}{(t+1)^2})\cdot y. \end{cases}$$

§ 8. Оценка нормы матрицы Коши для правильной линейной системы

Теорема 1. Предположим, что линейная однородная система дифференциальных уравнений

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t) \cdot \mathbf{x} \qquad (t \ge 0) \tag{1}$$

c непрерывной, ограниченной и вещественной матрицей $\mathbf{A}(t)$ является правильной и

$$\mathbf{X}(t) = (\mathbf{x}_{ik})_{n \times n} \tag{2}$$

её н.ф.м.р. Пусть $\alpha_1,\alpha_2,...,\alpha_n$ – характеристические показатели решений

$$\mathbf{x}^{(k)} = (\mathbf{x}_{1k}(t),...,\mathbf{x}_{nk}(t))^{T}, k = 1,2,...,n,$$

образующих фундаментальную матрицу $\mathbf{X}(t)$, и $\mathbf{K}(t,\tau) = \mathbf{X}(t) \cdot \mathbf{X}^{-1}(\tau)$ – матрица Коши при всех $\tau \in [0,t]$.

Тогда если все характеристические показатели $\alpha_1,\alpha_2,...,\alpha_n$ отрицательны, то для любого $\epsilon>0$ и для любого $\tau\in[0,t]$ при некотором $c_0>0$ выполнено неравенство

$$\|\mathbf{K}(t,\tau)\| \leq c_0 \cdot e^{\varepsilon \tau}$$
 (3)

 \square Введём диагональную матрицу $\Delta = diag(\alpha_1,...,\alpha_n)$. Имеем

$$\mathbf{\Phi}(t) = \mathbf{X}(t) \cdot e^{-t \cdot \mathbf{\Lambda}} = \begin{pmatrix} x_{11}(t) \cdot e^{-\alpha_1 t} \dots x_{1n}(t) \cdot e^{-\alpha_n t} \\ \dots \\ x_{n1}(t) \cdot e^{-\alpha_1 t} \dots x_{nn}(t) \cdot e^{-\alpha_n t} \end{pmatrix}.$$

Отсюда следует

$$\chi[\Phi(t)] = \max_{j,k} \chi[x_{jk} \cdot e^{-\alpha_k t}] = 0.$$
 (*)

Рассмотрим обратную матрицу

$$X^{-1}(t) = (y_{jk}(t))_{n \times n}$$
.

В силу следствия 2 из предыдущего параграфа её вектор-строки

$$\mathbf{y}^{(j)} = (y_{j1}(t),...,y_{jn}(t))$$

имеют характеристические показатели $\chi[\mathbf{y}^{(j)}] = -\alpha_j$. Поэтому

$$\boldsymbol{\Phi}^{-1}(t) = e^{-t \cdot \boldsymbol{\Lambda}} \cdot \mathbf{X}^{-1}(t) = \begin{pmatrix} e^{\alpha_1 t} \cdot y_{11}(t) \dots e^{\alpha_n t} \cdot y_{1n}(t) \\ \dots \\ e^{\alpha_1 t} \cdot y_{n1}(t) \dots e^{\alpha_n t} \cdot y_{nn}(t) \end{pmatrix}$$

И

$$\chi \left[\mathbf{\Phi}^{-1}(t) \right] = \max_{j,k} \chi \left[e^{\alpha_j t} \cdot y_{jk} \right] = 0.$$

На основании полученного имеем

$$\begin{split} &\| \, \mathbf{K}(t,\tau) \, \| \!\! = \!\! \| \, \mathbf{X}(t) \cdot e^{(t-\tau) \cdot \Delta} \cdot e^{-t \cdot \Delta} \cdot e^{\tau \cdot \Delta} \cdot \mathbf{X}^{-1}(\tau) \, \| \!\! = \!\! \| \, \boldsymbol{\Phi}(t) \cdot e^{(t-\tau) \cdot \Delta} \cdot \boldsymbol{\Phi}^{-1}(\tau) \, \| \!\! \leq \\ & \leq c \cdot e^{\frac{\epsilon}{2} \cdot t} \cdot e^{\left(\overline{\alpha} + \frac{\epsilon}{2}\right) \cdot (t-\tau)} \cdot e^{\frac{\epsilon}{2} \cdot \tau} = c \cdot e^{\left(\overline{\alpha} + \epsilon\right) \cdot (t-\tau)} \cdot e^{\epsilon \cdot \tau}, & 0 \leq \tau \leq t, \end{split}$$

где $\overline{\alpha} = \max_k \alpha_k$, положительное ϵ произвольно и c – положительная константа, зависящая от ϵ . Отсюда, благодаря тому, что для любых достаточно малых чисел $\epsilon > 0$ верно $\overline{\alpha} + \epsilon < 0$, приходим к оценке (3) \blacksquare

§ 9. Теорема Ляпунова об устойчивости по первому приближению

Рассмотрим вещественную нелинейную систему

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}(t) \cdot \mathbf{x} + \mathbf{f}(t, \mathbf{x}) \qquad (t \ge 0)$$
 (1)

с непрерывной, ограниченной и вещественной матрицей $\mathbf{A}(t)$, где $\mathbf{f}(t,\mathbf{0})=\mathbf{0}$ для всех $t\geq 0$, $\mathbf{f}(t,\mathbf{x})\in C_{t\mathbf{x}}^{(0,1)}$ в области $t\geq 0$, $\|\mathbf{x}\|< h$, причём справедливо неравенство

$$\|\mathbf{f}(\mathbf{t}, \mathbf{x})\| \leq \psi(\mathbf{t}) \cdot \|\mathbf{x}\|^{m} \qquad (m > 1)$$

с некоторой непрерывной положительной функцией $\psi(t)$ $(t \ge 0)$, такой, что $\chi[\psi(t)] = 0$. В качестве нормы матрицы здесь выступает $\|\mathbf{A}\| = \max_j \sum_k |a_{jk}|$.

Теорема 1 (Ляпунов). Если система первого приближения

$$\frac{\mathrm{d}\xi}{\mathrm{d}t} = \mathbf{A}(t) \cdot \xi \tag{3}$$

правильная и все её характеристические показатели $\alpha_1, \alpha_2, ..., \alpha_n$ отрицательны, причём выполнено условие нелинейности (2), то нулевое решение $\mathbf{x} = \mathbf{0}$ системы (1) экспоненциально устойчиво³.

 \Box Введём положительное число α таким образом, чтобы $\alpha_k < -\alpha < 0$, k=1,2,...,n . Выполним над решением $\mathbf x$ системы (1) преобразование:

$$\mathbf{x} = \mathbf{y} \cdot \mathbf{e}^{-\gamma t}$$
, $0 < \gamma < \alpha$.

Получим следующую систему относительно у:

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = \mathbf{B}(t) \cdot \mathbf{y} + \mathbf{g}(t, \mathbf{y}), \tag{4}$$

где $\mathbf{B}(t) = \mathbf{A}(t) + \gamma \cdot \mathbf{E}$,

$$\mathbf{g}(\mathbf{t}, \mathbf{y}) = \mathbf{e}^{\gamma \mathbf{t}} \cdot \mathbf{f}(\mathbf{t}, \mathbf{y} \cdot \mathbf{e}^{-\gamma \mathbf{t}}), \tag{5}$$

причём

$$\mathbf{x}(0) = \mathbf{y}(0) = \mathbf{x}_0, \quad \mathbf{g}(t, \mathbf{y}) \in C_{ty}^{(0,1)} \qquad (t \ge 0, \|\mathbf{y}\| < h \cdot e^{\gamma t}).$$

Рассмотрим систему первого приближения для (4):

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = \mathbf{B}(t) \cdot \mathbf{y} \,. \tag{6}$$

Обозначим через $\beta_1,...,\beta_n$ характеристические показатели системы (6). Очевидно, $\beta_k = \alpha_k + \gamma < 0$, k = 1,2,...,n. Поскольку система (3) — правильная, имеем

³ Определение экспоненциально устойчивого решения см. в § 5 гл. 2.

$$\underline{\lim}_{t\to +\infty} \frac{1}{t} \cdot \int_{0}^{t} Sp \mathbf{A}(\tau) d\tau = \sum_{k=1}^{n} \alpha_{k} .$$

Поэтому

$$\underline{\lim_{t\to +\infty}}\frac{1}{t}\cdot \int\limits_0^t Sp \boldsymbol{B}\big(\tau\big)d\tau = \underline{\lim_{t\to +\infty}}\frac{1}{t}\cdot \int\limits_0^t \big[Sp \boldsymbol{A}\big(\tau\big) + n\gamma\big]d\tau = \sum_{k=1}^n \alpha_k + n\gamma = \sum_{k=1}^n \beta_k \;.$$

Это означает, что система (6) – правильная.

Обозначим через $\mathbf{H}(t)$ ($\mathbf{H}(0) = \mathbf{E}$) нормированную ф.м.р. системы (6). Нелинейную систему (6) с начальным условием $\mathbf{y}(0)$ можно заменить равносильным интегральным уравнением

$$\mathbf{y}(t) = \mathbf{H}(t) \cdot \mathbf{y}(0) + \int_{0}^{t} \mathbf{K}(t, \tau) \cdot \mathbf{g}(\tau, \mathbf{y}(\tau)) d\tau, \qquad (7)$$

где $\mathbf{K}(\mathbf{t}, \tau) = \mathbf{H}(\mathbf{t}) \cdot \mathbf{H}^{-1}(\tau)$.

В соответствии с локальной теоремой о существовании решений системы дифференциальных уравнений для любой пары $(0, \mathbf{x}_0)$, такой, что $\|\mathbf{x}_0\| < \mathbf{h}$, существует решение $\mathbf{y}(t)$ системы (4), а значит и интегрального уравнения (7), удовлетворяющее начальному условию $\mathbf{x}(0) = \mathbf{y}(0) = \mathbf{x}_0$, определённое на промежутке $0 \le t < 1$ и удовлетворяющее на этом промежутке неравенству $\|\mathbf{y}(t)\| < \mathbf{h}$, где 1, вообще говоря, зависит от $\mathbf{y}(t)$.

Из неравенств $\beta_k < 0$, k = 1, 2, ..., n, следует существование положительной константы c_1 , такой, что

$$\|\mathbf{H}(t)\| < c_1 \qquad \forall t \ge 0 \quad (c_1 \ge 1).$$
 (8)

Кроме того, благодаря теореме 1 предыдущего параграфа, для любого $\varepsilon > 0$ выполнено неравенство

$$\|\mathbf{K}(t,\tau)\| < c_2 \cdot e^{\varepsilon \tau} \qquad (0 \le \tau \le t < +\infty). \tag{9}$$

Далее, на основании (2) и (5) при $0 \le t < 1$ получаем

$$\|\mathbf{g}(\mathbf{t},\mathbf{y})\| = e^{\gamma t} \cdot \|\mathbf{f}(\mathbf{t},\mathbf{y}\cdot e^{-\gamma t})\| < c_3 \cdot e^{[\varepsilon - (m-1)\gamma] \cdot t} \cdot \|\mathbf{y}\|^m$$

где c_3 – достаточно большая положительная константа. Оценивая по норме при $0 \le t < 1$ левую часть интегрального уравнения (7), находим

$$\parallel \boldsymbol{y}(t) \parallel \leq \parallel \boldsymbol{H}(t) \parallel \cdot \parallel \boldsymbol{y}(0) \parallel + \int\limits_{0}^{t} \parallel \boldsymbol{K}(t,\tau) \parallel \cdot \parallel \boldsymbol{g}(\tau,\boldsymbol{y}(\tau)) \parallel d\tau \,,$$

или (с учетом полученной выше оценки для $\|\mathbf{g}(\mathbf{t},\mathbf{y})\|$)

$$\|\mathbf{y}(t)\| \le c_1 \cdot \|\mathbf{y}(0)\| + \int_0^t c_2 \cdot c_3 \cdot e^{[2\varepsilon - (m-1)\gamma] \cdot \tau} \cdot \|\mathbf{y}(t)\|^m d\tau.$$
 (10)

Выберем положительное $\,\epsilon\,$ настолько малым, чтобы $\,\delta:=(m-1)\gamma-2\epsilon>0.$ Тогда из (10) при $\,0\leq t<1\,$ следует неравенство

$$\|\mathbf{y}(t)\| \leq c_1 \cdot \|\mathbf{y}(0)\| + \int_0^t c_4 \cdot e^{-\delta \tau} \cdot \|\mathbf{y}(\tau)\|^m d\tau, \qquad (11)$$

где $c_4 = c_2 \cdot c_3$.

Неравенство (11) согласно следствию 1 из леммы Бихари (см. § 9, гл. 1) влечёт неравенство

$$\|\mathbf{y}(t)\| \leq \frac{c_{1} \cdot \|\mathbf{y}(0)\|}{\left[1 - (m-1) \cdot c_{1}^{m-1} \cdot \|\mathbf{y}(0)\|^{m-1} \cdot \int_{0}^{t} c_{4} \cdot e^{-\delta \tau} \cdot \|\mathbf{y}(\tau)\|^{m} d\tau\right]^{\frac{1}{m-1}}},$$
(12)

если только

$$(m-1) \cdot c_1^{m-1} \cdot ||\mathbf{y}(0)||^{m-1} \cdot \int_0^t c_4 \cdot e^{-\delta \tau} \cdot ||\mathbf{y}(\tau)||^m d\tau < 1.$$
 (13)

Но так как

$$\int_{0}^{t} e^{-\delta \tau} d\tau = \frac{1}{\delta} - \frac{1}{\delta} \cdot e^{-\delta t} < \frac{1}{\delta} < +\infty$$

неравенство (13) всегда можно считать выполненным за счёт выбора достаточно малой окрестности начальных данных $\mathbf{x}(0) = \mathbf{y}(0)$.

Из (12) следует, что если величина $\|\mathbf{y}(0)\|$ достаточно мала, то для любого $0 \le t < 1$ точка $\mathbf{y}(t)$ является внутренней точкой области

$$Z = \{0 \le t < +\infty, \quad ||\mathbf{y}|| \le \frac{h}{2} < h\}.$$

Следовательно, решение y(t) бесконечно продолжимо вправо, т.е. можно считать, что $1 = +\infty$. Тем самым,

$$\|\mathbf{y}(t)\| \le N \cdot \|\mathbf{y}(0)\| < \frac{h}{2} \qquad \forall t \ge 0,$$
 (14)

где N – некоторая константа.

Возвращаясь к исходной переменной \mathbf{x} в (14), при $\|\mathbf{x}(0)\| < \Delta < \mathbf{h}$ получаем

$$\|\mathbf{x}(t)\| \le N \cdot \|\mathbf{x}(0)\| \cdot e^{-\gamma t} \qquad \forall t \ge 0,$$

где положительная константа Δ достаточно мала. Это означает, что нулевое решение нелинейной системы (1) экспоненциально устойчиво \blacksquare

Из асимптотической устойчивости линейной системы с постоянной матрицей следует, что вещественные части собственных значений этой матрицы отрицательны. Поэтому доказанная теорема с учётом следствия 1 из § 3 влечёт следующее утверждение.

Следствие 1 (Ляпунов). Пусть дана вещественная нелинейная система

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A} \cdot \mathbf{x} + \mathbf{f}(t, \mathbf{x}) \qquad (t \ge 0), \tag{15}$$

где

 \mathbf{A} – постоянная матрица,

вектор-функция $\mathbf{f}(t,\mathbf{x}) \in C_{t\mathbf{x}}^{(0,1)}$ в области $t \geq 0$, $\|\mathbf{x}\| < h$,

$$\mathbf{f}(\mathbf{t},\mathbf{0}) = \mathbf{0} \qquad \forall \mathbf{t} \ge 0,$$

существуют константы $c, \alpha > 0$, при которых

$$\|\mathbf{f}(t,\mathbf{x})\| \le c \cdot \|\mathbf{x}\|^{1+\alpha} \quad \forall t \ge 0, \quad \forall \mathbf{x}: \|\mathbf{x}\| < h.$$

Тогда если система линейного приближения

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A} \cdot \mathbf{x}$$

асимптотически устойчива, то нулевое решение системы (15) экспоненциально устойчиво.

Упражнения

С помощью следствия 1 исследовать на экспоненциальную устойчивость нулевые решения следующих систем

1)
$$\begin{cases} \dot{x} = x^2 + y^2 - 2x, \\ \dot{y} = x^2 + \sin(x - y). \end{cases}$$

2)
$$\begin{cases} \dot{x} = \ln(5y + e^{-3x}), \\ \dot{y} = 2y - 1 + \sqrt[4]{1 - 6x}. \end{cases}$$

Литература

- 1. Александров А.Ю., Александрова Е.Б., Екимов А.В., Смирнов Н.В. *Сборник задач и упражнений по теории устойчивости*. СПб.: ООО «СОЛО», 2003.
- 2. Арнольд В.И. Обыкновенные дифференциальные уравнения. М.: Наука, 1984.
- 3. Беллман Р. *Теория устойчивости решений дифференциальных уравнений*. М.: ИЛ, 1954.
- 4. Демидович Б. П. *Лекции по математической теории устойчивости*. М.: Наука, 1967.
- 5. Зубов В. И. Методы Ляпунова и их применение. Л.: Изд-во ЛГУ, 1957.
- 6. Зубов В. И. Устойчивость движения. М.: Высшая школа, 1973.
- 7. Зубов В. И. Лекции по теории управления. М.: Наука, 1975.
- 8. Ляпунов А. М. *Общая задача об устойчивости движения*. В кн. А. М. Ляпунова «Избранные труды», Изд-во АН СССР, 1948.
- 9. Малкин И. Г. Теория устойчивости движения. М.–Л., 1952.
- 10. Меркин Д. Р. Введение в теорию устойчивости движения. М.: Наука, 1971.
- 11. Харитонов В. Л. *Асимптотическая устойчивость семейства систем линейных дифференциальных уравнений*//Дифференциальные уравнения. 1978, т. 14, № 11, С. 2086 2088.
- 12. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. М.: Нау-ка, 1979.
- 13. Четаев Н. Г. Устойчивость движения. М.-Л.: ОГИЗ, 1946.