Exploitation d'un système UNIX

Sommaire

- Les comptes utilisateur et l'authentification
- > Fichiers: permissions, ACLs étendues, quotas
- Exécution décalée : cron, at et les scripts d'exploitation
- Le noyau
- > X-Window
- Sauvegardes et restaurations
- Les impressions
- Le réseau
- Syslog et Accounting

Exploitation d'un système Unix

Gestion des comptes et authentification

Les comptes utilisateur

Plan

- Identification et authentification
- > UID et GID
- Hashage et signature numérique
- Les fichiers de gestion de compte
- Synoptique d'authentification
- Les autres fichiers pour l'authentification
- Les Pluggable Authentication Modules (PAM)
- > SU et SUDO

Identification et authentification

Identification

- Savoir qui est qui, pour déterminer les accès autorisés
- Notion de login ou username

Authentification

- Prouver qui on prétend être
- Notion de secret partagé ou password

UID et GID

UID : User IDentifier

- Identifie de manière unique un utilisateur sur le système
- Nous sommes tous des numéros
- UIDs spécifiques
 - ▶ 0 : ROOT
 - Notions d'utilisateurs spécifiques pour gérer la séparation des privilèges des daemons (lp, mail, sshd, ...)

GID : Group IDentifier

- Notion de groupes d'utilisateurs
- Tout utilisateur appartient à au moins un groupe
- Un utilisateur peut appartenir à plusieurs groupes
- Un groupe est aussi un numéro
- GID spécifiques
 - Privilèges pour accéder à des ressources spécifiques (audio, floppy, ...)

Hashage et signature numérique

- > Famille des algorithmes de chiffrement
- Appelés, aussi, algorithmes de chiffrement sans clé
- Transforme un message (chaîne de caractère, fichier) en une empreinte numérique de taille fixe (un grand entier de 128 bits ou plus)
- Transformation non réversible (fonction à sens unique)
 - Impossible de retrouver le message d'origine
- Problème des collisions
 - Différents messages peuvent avoir une empreinte identique
 - S'il est possible de générer deux messages ayant la même empreinte, alors l'algorithme est « cassé »
- > Exemple: md5sum
 - md5sum /bin/bash (fichier de 511 Ko):
 603492287ea2f26b9fb9266c961d5b0c /bin/bash

- /etc/passwd (lisible par tout le monde)
 - fred:x:1000:100:F. Combeau:/home/fred:/bin/bash
 - Champ 1 : nom de login
 - Champ 2 : mot de passe hashé ou x si mot de passe dans shadow (* permet d'invalider un compte)
 - Champ 3 : UID
 - Champ 4 : GID
 - Champ 5 : champs informatif (suivant I'OS)
 - Champ 6 : répertoire d'accueil
 - Champ 7 : exécutable du shell de commande
 - Si présent dans /etc/shells, l'utilisateur peut le changer
 - Si shell spécifique, l'utilisateur ne peut pas le changer

/etc/group (lisible par tout le monde)

- users:x:100:fred
- Champ 1 : nom du groupe
- Champ 2 : mot de passe du groupe (x si mot de passe dans gshadow)
- Champ 3 : GID
- Champ 4 : liste de noms de login qui appartiennent au groupe

- /etc/shadow (lisible uniquement par le système)
 - fred:<password hashé>:12129:0:99999:7:::
 - Champ 1 : nom de login
 - Champ 2 : mot de passe hashé (* : invalider un compte)
 - Champ 3 : dernier changement
 - Champ 4 : autorisation de changement de mot de passe
 - Champ 5 : mot de passe doit être changé
 - Champ 6 : avertissement utilisateur mot de passe à changer
 - Champ 7 : compte invalidé aprés expiration
 - Champ 8 : compte expiré
 - Champ 9 : réservé
 - Les champs 3 à 8 sont réservés à l'expiration des comptes
 - > Commandes: passwd et chage

/etc/gshadow (lisible uniquement par le système)

Champs 1 : nom de groupe

Champs 2 : mot de passe hashé

Champs 3 : administrateurs du groupe

Champs 4 : membres du groupe

Synoptique d'authentification

Comptes

11

Autres fichiers intervenant dans l'authentification

- > /etc/securetty
 - Points de connexion autorisés pour root (console, port série, tty...)
- /etc/shells
 - Shells autorisés (chemins complets)
- /etc/login.defs (Linux)
- /etc/login.conf (BSD)
 - Configuration des exécutables de la suite login
- > /etc/nologin
 - ➤ La présence de ce fichier interdit la connexion des utilisateurs autres que root
- /etc/ftpusers
 - Liste de comptes interdits de connexion en FTP

PAM: Pluggable Authentication Modules

Mécanisme d'authentification centralisé

- Les applications « PAMifiées » délèguent leur authentification
- Les librairies PAM contrôlent cette authentification
- La configuration des librairies PAM est effectuée et contrôlée par l'administrateur pour chaque application
- Deux types de configuration :
 - /etc/pam.conf (fichier unique)
 - Plusieurs lignes par application
 - /etc/pam.d (dossier)
 - Un fichier de configuration par application utilisant les PAM

Intégration des PAM suivant la distribution

- Support des PAM
 - Redhat, Mandriva, Debian, FreeBSD
- Pas de support des PAM
 - Slackware, OpenBSD

PAM

4 catégories gérées

- Authentification : vérification de l'identité (couple identifiant/authentifiant)
- Compte : vérification des informations de compte (mot de passe expiré, appartenance à un groupe)
- Mot de passe : mis à jour du mot de passe (obliger l'utilisateur à changer de mot de passe après expiration)
- Session : préparation de l'utilisation du compte (tracer la connexion, monter des répertoires utilisateurs)

4 contrôles de réussite

- requisite : tous ces modules DOIVENT réussir
- required : au moins un de ces modules doit réussir
- sufficient : la réussite de ce module suffit à valider la pile de modules
 - résultat ignoré si module "required" a échoué avant
- optional : résultat considéré seulement si aucun autre module n'a réussi ou échoué

PAM

- Modules PAM : /lib/security
 - pam_unix.so, pam_nologin.so, pam_rootok.so...
- Configuration des modules : /etc/security
 - group.conf, limits.conf, pam_env.conf, time.conf...
- Exemple : slackware dropline

% ls /etc/pam.d

dropline-installer	halt	poweroff	system-auth	xserver
gdm	login	reboot	time-admin	
gdm-autologin	other	samba	useradd	
gdmsetup	passwd	shadow	xdm	
gnome-system-log	pkgtool	su	xscreensaver	

PAM

Exemple : login


```
auth
           required
                        /lib/security/pam securetty.so
aut.h
           required
                        /lib/security/pam stack.so service=system-auth
             required
                          /lib/security/pam env.so
  auth
             sufficient
                          /lib/security/pam unix.so likeauth nullok
  auth
  auth
             required
                           /lib/security/pam deny.so
           required
                        /lib/security/pam nologin.so
auth
```

```
account required /lib/security/pam_stack.so service=system-auth account required /lib/security/pam_unix.so
```



```
password required /lib/security/pam_stack.so service=system-auth
  password required /lib/security/pam_cracklib.so retry=3
  password sufficient /lib/security/pam_unix.so nullok md5 shadow use_authtok
  password required /lib/security/pam_deny.so
```

```
session required /lib/security/pam_stack.so service=system-auth
session required /lib/security/pam_limits.so
session required /lib/security/pam_unix.so
session optional /lib/security/pam_console.so
```

PAM classiques

- pam_unix
 - Reproduit l'authentification Unix classique
 - auth
 - Compare le hash du mdp fourni avec passwd ou shadow
 - > nullok : mdp vide accepté
 - nodelay : supprime le délai en cas d'échec
 - account
 - Vérifie le statut du compte de l'utilisateur dans shadow
 - password
 - Met à jour le mot de passe de l'utilisateur
 - > md5 : utiliser le hash MD5 du mdp
 - shadow : utiliser le fichier shadow
 - > nullok : permet de modifier le mdp vide (sinon impossible)
 - session
 - Enregistre les évènements de connexion

PAM classiques

- pam_cracklib
 - password
 - Vérifie la robustesse du mot de passe
 - retry: nombre d'essais en cas de mdp faible
 - difok : nombre minimal de caractères différents
 - > minlen : taille minimale du mdp
- pam_env
 - auth
 - Configuration des variables d'environnement
- pam_limits
 - session
 - Configure les limites sur l'utilisation des ressources
- pam_stack
 - account, auth, password, session
 - Appelle la configuration PAM d'un autre service
 - > service : service dont la configuration est utilisée

Les mots de passe à usage unique (OTP)

- Le mécanisme OPIE (One-time Passwords In Everything) est inclus dans FreeBSD et OpenBSD
 - Il est supporté par login, ftpd et su
 - Un module PAM le prend également en charge
- L'algorithme S/KEY est utilisé pour générer les mots de passe à usage unique
 - Lors de la phase de login, l'utilisateur reçoit un challenge
 - Il doit recopier ce challenge dans un calculatrice
 - Celle-ci fournit la réponse au challenge
 - > L'utilisateur peut s'authentifier avec cette réponse
- Les commandes concernant l'usage de OPIE :
 - opiepasswd
 - Initialise OPIE pour un utilisateur avec le mdp fourni
 - opiekey
 - Calcule les réponse aux challenges OPIE
 - > opieinfo
 - Affiche le numéro de séquence et la graine courantes dans OPIE
 - Permet de générer une liste de futures réponses OPIE

SU et SUDO

> SU

- Permet de changer le compte sous lequel on est connecté (change UID et GID)
- Configuration classique :
 - root peut prendre n'importe quelle identité sans mot de passe
 - Tout autre utilisateur peut prendre une autre identité en fournissant le bon mot de passe
- La configuration de SU se fait par les PAM
 - Il est facile de changer la configuration par défaut
 - Exemple : restriction de SU à un groupe particulier
- > Lancé sans nom d'utilisateur, demande le passage sous root
- Avec -, demande la création de l'environnement de l'utilisateur dont on demande l'identité
 - > % su -
 - > Passage sous le compte root avec l'environnement de root

SU et SUDO

> SUDO

- Permet d'exécuter une commande sous l'identité d'un autre utilisateur
- Permet en particulier l'utilisation de commandes spécifiques sous le compte root
- > Configuration par le fichier /etc/sudoers
 - utilisateur1 hôte = commande [utilisateur2]
 - Permet à l'utilisateur1 sur la machine hôte d'exécuter la commande commande en tant qu'utilisateur utilisateur2
 - > Par défaut, utilisateur2 est root
- > Exemple: fred ALL=/sbin/shutdown -h now
- > Toute action effectuée à l'aide de la commande SUDO est enregistrée

Exploitation d'un système Unix

Gestion des fichiers

Gestion des fichiers

> Plan

- Permissions
- > ACLs étendues
- Quotas

- ➤ A chaque fichier, sont associés un utilisateur propriétaire (UID) et un groupe propriétaire (GID)
- A chaque fichier, sont associés des permissions
- 3 types de permissions :
 - > Lecture :
 - ➤ Ecriture : ₩
 - **Exécution**: X
- > UMASK permet de définir les droits hérités par défaut à la création des fichiers

3 groupes de droits qui s'appliquent :

- Au propriétaire du fichier
- Au groupe propriétaire du fichier
- > Au reste du monde
- -rw-r-xr-- 1 fred users 51991 Mar 20 20:42 admin_unix.sxi

Set UID : s à la place de x pour le propriétaire

Set GID : s à la place de x pour le groupe propriétaire

Sticky Bit : t à la place de x pour le reste du monde

Sticky bit . I a la place de x pour le reste du monde

Interprétation des permissions pour les fichiers :

- Lecture : permet de lire le contenu du fichier
- Ecriture : permet d'écrire dans le fichier
- Exécution : permet d'exécuter le fichier sous son identifiant
- Set UID : permet d'exécuter le fichier sous l'identifiant du propriétaire du fichier
- Set GID : permet d'exécuter le fichier sous l'identifiant de groupe du groupe propriétaire du fichier
- SUID et SGID sont à éviter car peuvent engendrer des problémes de sécurité

Interprétation des permissions pour les dossiers :

- Lecture : permet de lire le nom des fichiers composant un répertoire
- > Ecriture : permet de créer et d'effacer des fichiers dans un répertoire
- Exécution : permet d'accéder aux informations des fichiers composant un répertoire et de s'y arrêter
- Set GID : permet de créer des fichiers dont le groupe propriétaire est celui du répertoire
- Sticky Bit : permet d'effacer uniquement les fichiers dont on est propriétaire

Les commandes importantes

- chown : change le propriétaire d'un fichier (ainsi que le groupe)
 - > chown toto /home/toto
 - > chown toto:users fichier
- > chgrp: change le groupe du fichier
- > chmod: modifie les permissions sur un fichier
 - deux façons de procéder
 - > spécifier les permissions chmod g+rx, o-rwx fichier
 - utiliser le masque
 chmod 755 fichier

Attributs

Attributs de fichiers

- dépendent du système de fichiers
- meta-info influençant le comportement du système
- > ext2/3: lsattr/chattr

- \triangleright A
 - Access Time pas mis à jour (gain de performance)
- a (root only)
 - Append only : fichier ouvrable seulement en APPEND
- ➤ i (root only)
 - Immutable : fichier ne peut être modifié, supprimé, hard-linké, ...
 - (root only)
- > S
 - Sync : comme le sync du mount(), mais pour des fichiers
- > u
- Undelete : sauvegarde du fichier pour récupération

ACLs étendues

Les ACL permettent d'étendre le modèle des permissions:

- ➤ Il est possible de définir des listes d'accès, accordant des droits particuliers à certains groupes ou utilisateurs
- Toutefois, cela complique l'administration
- Tout utilisateur peut définir des ACL sur ses fichiers
- Disponible sous Linux comme patch des sources du noyau
- Commandes:
 - > getfacl
 - > setfacl

Exemples

```
% setfacl -m u:titi:rwx fichier
%ls -l fichier
-r-xr-xr-x+ 1 toto users 216112 Jan 27 09:54 fichier
%getfacl fichier
user::rw-
user:titi:rwx
group::r--
mask:rwx
other:r--
```


30

Quotas

- Les quotas permettent de limiter l'utilisation des systèmes de fichier par les utilisateurs
 - Limites sur inodes et sur blocs
 - Deux types de limites :
 - Soft limit
 - Limite «souple» : permet d'accorder une période (grace period) pendant laquelle l'utilisateur peut dépasser la limite
 - > Hard limit
 - Limite «dure» : l'utilisateur ne peut dépasser cette limite, le système refusera d'accorder les inodes ou blocs
 - Quotas par utilisateur ou par groupe
 - Les systèmes de fichier doivent être montés avec l'option quota (ou plus spécifiques usrquota et grpquota)
 - Les quotas doivent être gérés par le système de fichier
 - ext(2|3) et reiserfs sous Linux

Quotas

Commandes

- quotacheck : met à jour les quotas, à utiliser au démarrage du système, puis périodiquement (toutes les semaines)
- par quotaon : active les quotas pour un système de fichier donné
 - quotaon -a (active les quotas suivant fstab)
- quotaoff: désactive les quotas
- edquota: permet de définir les quotas par utilisateur (lance l'éditeur sur le fichier de quota)
 - edquota -u toto (définition du quota de l'utilisateur toto)
 - edquota -g users (quota pour le groupe users)
 - edquota -t (configuration de grace period)
- repquota : rapport sur les quotas

Exploitation d'un système Unix

Planification de tâches

Planification de tâches

> Plan

- > Cron
- > At
- Scripts d'exploitation

cron

cron est un démon permettant la programmation de tâches exécutées périodiquement

- cron est lancé au démarrage du système
- > cron peut être configuré pour lancer des travaux chaque jour, chaque semaine, chaque mois
- > La configuration est faite par des fichiers crontab
- > Configuration globale: /etc/crontab
 - Parfois la crontab de root est utilisée
- Chaque utilisateur peut définir des tâches périodiques
 - Emplacement des fichiers crontab :
 - > Sous Linux: /var/spool/cron/<user>
 - ➤ Sous BSD: /var/cron/tabs/<user>
- L'utilisateur utilisé pour lancer les commandes est le propriétaire du fichier, sauf pour la crontab globale

cron

Structure du fichier crontab :

- Commentaires avec #
- > Liste de variables d'environnement
 - ➤ SHELL=<commande shell à utiliser>
 - HOME=<dossier d'exécution par défaut>
 - MAILTO=<adresse d'envoi du rapport>
- Lignes de tâches
- minutes heures jours-du-mois mois jours-de-la-semaine tâche
- Dans /etc/crontab, l'utilisateur utilisé pour lancer la tâche est spécifié avant la tâche elle-même

Exemples de tâches programmées :

- * * * * 1 quotacheck (quotacheck tous les lundis)
- > * * 1 * * updatedb (mise à jour de la base locate le 1° du mois)
- à noter : il existe des alias @daily, @weekly, @monthly, @yearly

Commandes

- > crond
 - C'est le démon lui-même, il est lancé par l'un des scripts de démarrage, sans option
- > crontab
 - C'est le programme de manipulation des crontab, qui modifie la crontab de l'utilisateur courant
 - crontab -1: affiche la crontab
 - crontab -r:efface la crontab
 - crontab -e: lance l'éditeur sur la crontab et valide le contenu en sortie

- at permet de lancer ponctuellement des commandes, à une date et une heure données
 - > Le démon atd est lancé par les scripts de démarrage
 - ➤ La commande at permet de programmer le lancement d'une tâche (une seule fois, pas de périodicité)
 - Utilisation: at HEURE
 at midnight, at noon, at 4pm
 at + 5 minutes, at + 2 days
 - puis saisir la liste des commandes à effectuer
 - > atq affiche la liste des tâches programmées
 - > at -c < numéro de tâche > affiche le contenu d'une tâche

Scripts d'exploitation

- L'ensemble des tâches d'exploitation du système peut être effectué par des scripts
 - Les scripts peuvent être programmés dans tout langage, par exemple le shell, Perl, python
 - Le lancement des scripts peut être automatisé par cron et at.
 - Exemples : vérification des comptes sans mot de passe, utilisation du disque, sauvegardes du système
 - Les scripts doivent être testés le plus possible avant d'être déployés : test sur des copies des vrais fichiers, dans une arborescence à part, tester les limites, ...
 - Les scripts ne peuvent pas tout faire, il faut parfois revenir à un langage de programmation (bien que le cas se présente rarement)

Exploitation d'un système Unix

Le noyau

Le noyau

> Plan

- > Fonctionnement
- Modules
- Configuration et compilation

Le noyau

Le noyau est le coeur du système d'exploitation

- Il est chargé au démarrage de la machine (cf. Boot)
- Il fournit les interfaces de communication avec les périphériques matériels
- Il peut être monolithique (un seul bloc) ou modulaire
- Emplacement
 - Sous Linux: /boot/vmlinuz (compressé)
 - Sous BSD: /boot/kernel/kernel (non compressé)
- Chargement
 - **≻** lilo

```
image = /boot/vmlinuz
  root = /dev/hda7
  label = Linux
  read-only
  vga = 834
  initrd = /boot/initrd
```

> grub

```
title Linux
kernel (hd0,6)/boot/vmlinuz root=/dev/hda7 ro vga=834
initrd (hd0,6)/boot/initrd
```

Everything about kernel

Noyau: options

- Linux : le boot loader (lilo, grub) peut passer des paramètres de démarrage au noyau (*ligne de commande du noyau*)
 - single : démarrage en mode single user (runlevel 1)
 - emergency: un shell est lancé à la place d'init
 - ro : système de fichier racine monté en lecture seule (recommandé)
 - vga=xxx: choix du mode graphique (normal pour le mode texte)
 - initrd: chargement d'un système de fichier en mémoire avant le lancement du noyau
- BSD : le boot loader contient un shell permettant de modifier l'environnement du noyau
 - lsmod : examen de l'espace mémoire (kernel + modules)
 - load/unload : chargement de fichiers en mémoire
 - ▶ boot [-s]: démarrage du noyau (mode single user)

Noyau : paramètres

- La commande sysctl permet de modifier les paramètres du noyau pendant le fonctionnement du système
 - > Initialisation selon le fichier /etc/sysctl.conf
 - > sysctl <variable> affiche la valeur d'une variable
 - sysctl -a pour voir toutes les variables (combiner avec grep)
 - Pour modifier une valeur :
 - > sysctl -w variable=valeur sous Linux
 - > sysctl variable=valeur sous *BSD
- /proc contient des informations sur les processus en cours d'exécution
 - Particularité de Linux : les paramètres du système peuvent être configurés par des entrées dans /proc
 - Exemples :
 - /proc/sys/net,/proc/modules,/proc/meminfo

Noyau: modules

Si le noyau n'a pas été compilé de façon monolithique, il est possible de charger des modules pour étendre les fonctionnalités du noyau après le démarrage du système

- Par exemple, pour les pilotes de périphériques
- Commandes :
 - > Sous Linux
 - lsmod (affiche la liste des modules chargés)
 - insmod (charge un module)
 - modprobe (charge un module avec les modules pré-requis)
 - rmmod (retire un module à condition qu'il ne soit plus utilisé)
 - >/lib/modules/<version du noyau> (contient les modules)
 - ➤ Sous *BSD
 - kldstat, kldload, kldunload
 - /boot/kernel contient les modules
- Chargement automatique possible

Noyau: Solaris

- Le code source du noyau de Solaris n'est pas fournit, cependant des modules peuvent être insérés
 - Il est impossible de recompiler le noyau Solaris
 - > Ce noyau fournit des interfaces pour le chargement de modules, il est donc possible de charger de nouveaux pilotes
 - Les modules ne sont chargés que lors du démarrage, il faut donc spécifier dans le fichier de configuration /etc/system le nouveau module à charger puis relancer la machine
 - > Le noyau et les modules sont dans /kernel, le noyau est /kernel/unix

Intallation d'un noyau modifié

Requis dans certains cas

- Besoin d'une fonctionnalité d'une nouvelle version
- Application d'un patch
- Correction d'un problème de sécurité
- Pas de mise à jour constructeur
- Optimisation pour une architecture

Précautions à prendre

- Conserver un ancien noyau fonctionnel
 - pas toujours possible
 - > sauvegarder la configuration de l'ancien noyau
- Sauvegarde éventuelle des partitions
 - en cas de corruption du système de fichiers

Opération longue

- Nombre d'options activées
- ➤ Nombre de processeurs (make -j N)
- Dossier Documentation

Noyau: configuration

Avant la configuration

- Enumération des périphériques matériels
 - > lspci
 - > dmesg
- Choix des systèmes de fichiers
- Déterminer les protocoles réseau nécessaires
- Installer les sources du noyau
- Appliquer les patches

Configuration

- Copier le fichier de configuration choisi en .config
- > make menuconfig
- Modulaire / Monolithique
- Important
 - Pilotes pour le disque dur et le système de fichier racine
 - > ou utiliser un initrd
 - ➤ CONFIG_HIGHMEM4G si 1Go de RAM ou plus

Noyau: compilation

Avant la compilation

- Vérifier l'espace libre : ~ 200 Mo nécessaires
- ➤ Editer Makefile pour certaines options spécifiques
 - Suffixe de version du noyau

Compilation

- ➤ Noyau 2.6.xx: make
 - >bzImage modules
 - compilation du noyau compressé
 - compilation des différents modules sélectionnés
 - > make O=<dir> : fichiers produits dans dir
- ➤ Noyau 2.4.xx
 - >make bzImage
 - >make modules
 - > Très verbeux

Noyau: installation

Avant l'installation

- Monter éventuellement la partition /boot
- Vérifier si lilo ou grub est utilisé

Installation

- > Automatique: make install
 - > exécute /sbin/installkernel
 - Comportement suivant la distribution
- A la main
 - copier le noyau : arch/<arch>/boot/bzImage
 - >/boot/vmlinuz-<version>
 - copier System.map
 - > /boot/System.map-<version>
 - >copier .config
 - >/boot/config-<version>

Noyau: test

Mettre à jour le bootloader

- Ajouter le nouveau noyau
- Préserver les anciennes entrées
- Relancer s'il s'agit de lilo

- Sélectionner le nouveau noyau
- Diagnostiquer les erreurs...

Exploitation d'un système Unix

X-Window System

X-Window

> Plan

- > Architecture client-serveur
- Modules
- Configuration

Architecture de X-Window

- X11 est X Window System version 11
- X-Window est une architecture client-serveur, destinée à la gestion des environnements graphiques
 - Le serveur X effectue le rendu graphique sur une machine donnée, en utilisant le matériel (carte graphique, écran, clavier, souris...)
 - Les clients X (gestionnaires de fenêtres, terminaux X...) se connectent au serveur X pour leur affichage
 - ➤ La communication se fait localement par un socket UNIX, mais peut aussi être faite par TCP/IP pour un serveur distant (ports TCP 6000 et suivants)
 - ➤ La variable d'environnement qui désigne le serveur X est DISPLAY (sur une machine autonome, DISPLAY=:0)
- Implémentations libres actuelles (toujours X11R6)
 - > XFree86 (version 4.4)
 - X.org (version 6.9.0)
 - Et maintenant X.org version 7

Architecture client/serveur

TCP/6000

Serveur

Display station:0

Station de travail

Display 0

Administration Unix 11/09/06 55

Architecture client/serveur + SSH

Administration Unix 11/09/06 56

Contrôle d'accès des clients

Par adresse IP

- > La commande xhost permet d'accorder l'accès par adresse IP
 - > xhost +: toutes les machines ont accès
 - > xhost -: aucune machine n'a accès
 - xhost + toto: ajout de la machine toto en accès

Avec une clé

- L'utilisateur obtient un cookie auprès du serveur, qui lui permet de s'y connecter
- Les cookies sont stockés dans ~/. Xauthority
- La commande xauth permet de gérer les cookies

Les modules

Le serveur X a une architecture modulaire

- Les différents pilotes utilisés par X sont des modules
 - Cartes graphiques
 - Périphériques d'entrée (clavier, souris, ...)
 - Extensions (freetype, GLX, ...)
 - Situés dans /usr/X11R6/lib/modules/
- Les modules sont chargés au démarrage du serveur X suivant la configuration
- L'échec du chargement d'un module n'est pas forcément fatal, mais entraîne le non-fonctionnement du périphérique associé
 - > Fatal s'il s'agit d'un module de carte graphique

Configuration

- La configuration du serveur X se fait par le fichier /etc/X11/xorg.conf (anciennement /etc/X11/XF86Config[-4])
 - ➤ Le fichier se compose de sections
 - Section Files : définition des ressources rgb, polices
 - Section Module : extensions à charger (GLX, extmod)
 - Sections InputDevice : définition des périphériques d'entrée et de leurs pilotes (souris, clavier, autres)
 - Sections Monitor : définition des écrans et de leurs modes de fonctionnement
 - Sections Device : définition des cartes graphiques et pilotes
 - Sections Screen : associe cartes et écrans à des résolutions de fonctionnement
 - Sections ServerLayout : associe une section Screen à des périphériques d'entrée, constitue le point d'entrée pour le démarrage du serveur X (on peut spécifier le layout sur la ligne de commande : X -layout <layout>)

59

Exploitation d'un système Unix

Sauvegarde et restauration

Sauvegardes et restauration

> Plan

- Politiques de sauvegardes
- Commandes : dump, tar, cpio, pax, dd

Politiques de sauvegarde

Pourquoi sauvegarder?

- parce que le matériel tombera en panne (disque dur défectueux, panne générale d'un système)
- parce que les utilisateurs ne sont pas infaillibles (ils effacent des fichiers par erreur)

Quand sauvegarder?

- ➤ Il faut adapter la politique de sauvegarde à l'importance des données (station de travail, serveur de calcul, base de données)
- ➤ Il faut autant que possible sauvegarder pendant les heures creuses (nuit, week-end)
- Bien utiliser les sauvegardes incrémentales
- Par exemple :
 - Sauvegarde complète le dimanche
 - Sauvegarde incrémentale tous les soirs de la semaine
- Aucune politique n'est applicable partout, il faut toujours s'adapter à la situation
- Fil conducteur : envisager la perte de tous les disques durs pendant que vous n'êtes pas connecté sur le système

Politiques de sauvegarde

Questions importantes :

- Quels fichiers doivent être sauvegardés ?
- Où sont ces fichiers ?
- Qui sauvegarde les fichiers ?
- Où sont faites les sauvegardes ?
- Quelle est la fréquence de modification des fichiers à sauvegarder?
- Quel est le délai de restauration à tenir ?
- Les fichiers seront-ils restaurés sur le système où ils ont été sauvegardés ?
- Où les sauvegardes sont-elles stockées ?

Stratégies de haute disponibilité

La restauration du système doit respecter des délais très courts en cas de panne

dump

dump est un outil permettant de sauvegarder des systèmes de fichier entier

- Le programme dump doit être adapté au système de fichier à sauvegarder
 - Exemple : dump sous Linux ne sauvegarde que ext2/3
- Il permet des sauvegardes incrémentales
 - dump -0 : garantit une sauvegarde complète
 - dump −1 : sauvegarde les fichiers modifiés depuis la dernière sauvegarde de niveau 0
 - Attention : le niveau par défaut est 9
- ➤ Le fichier /etc/dumpdates contient les dates et niveaux des dernières sauvegardes
 - dump -W: informations sur les sauvegardes à faire
 - dump -u: met à jour dumpdates si la sauvegarde réussit
- Dump sous Linux peut également sauvegarder des fichiers ou dossiers particuliers, mais seulement de niveau 0 et sans mettre d'entrée dans dumpdates (préférer tar/cpio)

restore

> restore est le pendant de dump, il permet la restauration des fichiers sauvegardés avec dump

➤ -r: restaure le système de fichier entier (formaté au préalable)

➤ -i : restauration interactive

-x : restauration de certains fichiers (préférer tar ou cpio)

➤ -f: spécifie le fichier

tar

> tar (tape archiver) est un outil de création d'archives adapté à la sauvegarde d'arborescences de fichiers

- A l'origine, tar est fait pour copier des arborescences de fichier sur un lecteur de bande
- Sous Linux et *BSD, tar est aujourd'hui un utilitaire d'archivage très souple, avec possibilité de compression
- options:
 - c : création d'archive
 - x : extraction d'archive
 - f : spécification du fichier
 - >v: mode verbeux
 - > z : compression gzip
 - j : compression bzip2 (plus lent mais plus efficace)
- > Anecdotique :
 - tar c : écriture type BSD
 - tar -c : écriture type GNU

Exemples

- tar c /home : simple sauvegarde de /home sur le périphérique de bande par défaut (/dev/rmt0)
- > tar czf projet.tar.gz projet: sauvegarde le dossier projet dans le fichier projet.tar.gz (compressé au format gzip)
- ➤ tar xvjf linux-2.4.24.tar.bz2 -C /usr/src: extraction des fichiers de l'archive linux-2.4.24 (compressée bzip2) dans le dossier /usr/src, en mode verbeux (les fichiers extraits sont écrits au fur et à mesure sur le terminal)
- > tar xj -p -f sauvegarde.tar.bz2: extraction de l'archive sauvegarde avec restauration des permissions
- > tar x <fichier à restaurer>: restauration d'un fichier précis à partir de la bande

cpio

- > cpio est comparable à tar, mais il est conçu pour sauvegarder des listes de fichier plutôt que des arborescences
 - > cpio est habituellement combiné avec find
 - Exemple:find /chemin | cpio
 - > cpio peut utiliser de nombreux formats d'archive, dont tar
 - cpio ne gère pas les formats compressés, mais il peut être combiné avec zcat ou bzcat
 - Options :
 - ➤ cpio -o: création d'archive
 - ▶cpio -i:restauration
 - → -F: spécification de l'archive
 - → –H: format d'archive (tar par défaut)

pax

pax est un hybride de tar et cpio, il permet de sauvegarder indifféremment des fichiers ou des arborescences

> -r: extrait des fichiers d'une archive

→ ¬w : crée une archive

➤ -f : spécifie le fichier

- dd est un outil de copie de bas niveau, il copie des blocs de données (disc dump)
 - On utilise dd pour faire des copie bas niveau de système de fichiers
 - dd if=/dev/hda of=fichier_de_sauvegarde
 - Cette commande extrait l'image brute du disque hda (bloc par bloc) vers un fichier de sauvegarde

Exploitation d'un système Unix

Gestion des impressions

Les impressions

- > Plan
 - Les différents systèmes
 - ▶ Ipd
 - > cups

lpd

Ipd est le système d'impression *BSD

- ➤ Il repose sur le démon d'impression lpd, et le fichier de configuration /etc/printcap
- ➤ Le fichier /etc/printcap définit pour chaque imprimante comment on y accède (port parallèle, réseau...), les filtres à appliquer pour les travaux d'impression
- ➤ Le démon lpd est responsable du *spooling* et de l'envoi des travaux à l'imprimante
- Les commandes accessibles aux utilisateurs :
 - lpr : envoie un travail d'impression au démon
 - > lpq: affiche la file d'attente des travaux d'impression
 - lprm: permet d'annuler un travail
- L'implémentation utilisée actuellement est lpr-ng

cups

Cups hérite du système d'impression de System V

- cups définit des classes d'imprimantes
- Ensuite, on peut attacher des imprimantes à des classes, avec un emplacement précis (port parallèle, réseau...)
- Les fichiers de configuration sont dans /etc/cups
 - Le fichier printers.conf contient la définition des imprimantes avec leur emplacement
 - Le fichier classes.conf contient la définition des classes avec les imprimantes qui appartiennent à ces classes
- Commandes utilisateur :
 - ▶ lp : envoie un travail d'impression
 - lpstat : informations sur les files d'attente des imprimantes
 - cancel : annule un travail d'impression

Le réseau

- > Plan
 - ➤ TCP/IP
 - > DNS

Exploitation d'un système Unix

Configuration du réseau

TCP/IP

Configuration des interfaces TCP/IP

- > ifconfig <interface> <adresse IP> netmask <masque réseau>
- La passerelle par défaut est configurée par les commande de routage
 - Linux: route add default gw <adresse IP>

> netstat

-a : liste les sockets non connectés (en écoute)

> -t : **TCP**

> −u : UDP

→ ¬p : donne le PID associé au socket

DNS

- La configuration DNS est importante pour le bon fonctionnement d'un système UNIX
 - > Fichier /etc/host.conf
 - définit l'ordre de recherche des noms DNS
 - > order hosts, bind
 - signifie que l'on regarde d'abord dans le fichier /etc/hosts puis ensuite on interroge le serveur DNS
 - > Fichier /etc/resolv.conf
 - Spécifie l'adresse IP des serveurs DNS
 - > nameserver <adresse IP>
 - Spécifie les domaines de recherche de noms DNS
 - > search <domaine>

Exploitation d'un système Unix

Les journaux d'évènements système : syslog et accounting

Administration Unix 11/09/06 79

Syslog et accounting

> Plan

- Syslog
- Logrotate
- Les outils d'accounting

Syslog

- syslog reçoit l'ensemble des logs du système et les répartit dans différents fichiers suivant sa configuration
 - Le démon syslogd est lancé au démarrage
 - Deux façons de recevoir les logs :
 - /dev/log:socket unix
 - >514/UDP : pour le réseau
 - Chaque message possède une facility et une priority :
 - facility indique le type de log (kernel, daemon, ...)
 - priority indique la gravité du message (debug, emerg, ...)
 - > Le fichier /etc/syslog.conf définit la configuration de syslog
 - Par facility et/ou par priority
 - Possibilité de diriger les logs dans des fichiers ou de les transmettre à d'autres programmes

Logrotate

- Logrotate contrôle la taille des fichiers de log et les sauvegarde au besoin
 - > Lancement périodique par cron
 - Dans la crontab de root

```
40 4 * * * /usr/bin/run-parts /etc/cron.daily 1> /dev/null
```

Dans le fichier /etc/cron.daily/logrotate

```
#!/bin/sh
/usr/sbin/logrotate /etc/logrotate.conf
```

> Configuration de logrotate: /etc/logrotate.conf

```
/var/log/wtmp {
    monthly
    create 0664 root utmp
    rotate 1
}
/var/log/syslog /var/log/messages {
    sharedscripts
    postrotate
        /bin/pkill -HUP syslogd
    endscript
}
```


Accounting

Les système de comptabilité (ou *accounting*) permettent de surveiller l'utilisation des ressources par les utilisateurs à des fins de statistiques ou de facturation (parfois le temps CPU n'est pas donné)

- La comptabilité classique sous *BSD stocke ses informations dans /var/adm (sous Linux /var/log/*acct)
- Les commandes permettant l'extraction des informations :
 - accton : activer ou désactiver l'accounting
 - sa: informations sur l'utilisation CPU et mémoire
 - > ac : temps de connexion des utilisateurs
 - lastcomm : dernières commandes lancées
 - > acctail : surveillance interactive de l'accounting
- Linux: options CONFIG_BSD_PROCESS_ACCT et CONFIG BSD PROCESS ACCT V3

Exploitation d'un système Unix

Tuning:
Systèmes de Fichiers,
Processus et
Mémoire Virtuelle

Qu'est-ce que le tuning ?

- C'est, le plus souvent, pouvoir répondre à la question :
 - « Pourquoi le système est-il si lent ? »
- En fait, c'est étudier l'affectation des ressources d'un système ...
- ... dans le but, de l'optimiser
- ➤ Le tuning consiste, donc, à paramétrer au mieux un système pour pouvoir l'utiliser au mieux de ses performances
- Un autre aspect du tuning est l'achat de matériels ou la mise à niveau matériel pour améliorer les performances
- Les performances du système dépendent de l'affectation des ressources
- Les ressources intervenant dans les performances :
 - > CPU
 - Mémoire
 - Entrées/Sorties Disques
 - Réseau et Périphériques

- Problème de performance = insuffisance de ressources
- Une insuffisance de ressources ne peut se régler que de 2 façons :
 - Ajouter des ressources (achat ou MAJ de matériels)
 - Rationner les ressources (tuner le système)
- Les mécanismes de contrôles des ressources système
 - > CPU
 - Gestion des priorités
 - Traitement par lot et files d'attente
 - Ordonnancement des processus
 - Mémoire
 - > Architecture du swap
 - Limitation des ressources utilisées
 - Paramètres de la gestion de la mémoire
 - Entrées/Sorties Disques
 - > Architecture du système de fichiers (disques, contrôleurs, ...)
 - Placement des fichiers sur les disques
 - Paramètres des Entrées/Sorties

Une bonne approche pour gérer des problèmes de performances :

- Poser le problème de manière la plus détaillée
- Déterminer la ou les causes du problème
- Formuler les améliorations des performances à atteindre
- Concevoir et implémenter les modifications au niveau du système et des applications
- Surveiller le système pour vérifier si les modifications ont fonctionné
- > Et recommencer

- Il faut savoir ce qu'il se passe sur son système, en temps normal
- Nécessite de surveiller le système ...
- … et de savoir quand le système dévie ou se comporte anormalement
- Permet, également, d'avoir un historique du comportement du système
- Pour chaque ressource, voyons comment la surveiller

Surveiller le CPU

- C'est, en fait, surveiller les processus
- uptime donne des valeurs moyennes de charge
- Charge : nombre moyen de processus actifs
 - Si > 3, souvent problématique sur un système interactif
- ps donne la liste des processus du système et le pourcentage de CPU qu'ils prennent
- ➤ top permet d'avoir la liste des processus en temps réel, ainsi que des informations importantes sur la charge du système
- pstree permet de créer l'arborescence des processus (en intégrant les liens de parentés)
- vmstat donne des informations sur l'utilisation CPU (mode utilisateur, mode noyau et idle)
- ps peut montrer les threads noyau, qu'il ne faut pas confondre avec des processus
- Sur les systèmes multi-threadés, il ne faut pas confondre processus et threads (un thread est un composant d'un processus et le scheduler système ne voit que les processus)

Surveiller le CPU

- Surveiller les entrées/sorties des processus
 - Quels sont les fichiers ouverts par les processus ?
 - répertoires, fichiers, fichiers temporaires, exécutables, librairies, devices, sockets réseau, pipes, ...
 - > Isof ou fuser sont des commandes Linux permettant de voir quels fichiers sont ouverts par un processus
 - fstat est l'équivalent sous FreeBSD et OpenBSD
- Surveiller les appels système d'un processus
 - Permet une surveillance très fine (trop fine !)
 - ➤ Une bonne connaissance du fonctionnement de l'OS est indispensable pour interpréter les informations recueillies
 - Très utile pour déboguer dans, presque, toutes les situations
 - strace est la commande Linux et FreeBSD de visualisation des appels système
 - ktrace est l'équivalent pour OpenBSD

Surveiller le CPU

- > Temps CPU utilisé
- Taille maximale du segment de données
- Taille maximale de segment de pile
- > Taille maximale du fichier core
- Quantité de mémoire virtuelle utilisée
- Toutes ces limitations peuvent être définies par les commandes limit ou ulimit
- Mais ces limitations ne s'appliquent qu'aux processus
 - > Pas de notion d'une connexion utilisateurs
 - Pas de notion de limitations par utilisateur
 - Donc peu utilisable

Lors de problèmes de performance CPU, 3 solutions peuvent être utilisées :

- Gérer les priorités des processus
 - Chaque processus possède deux priorités
 - Priorité de base (définie à la création du processus)
 - Priorité courante (calculée pour allouer le CPU)
 - Commandes nice ou renice (modifier la priorité de base)
 - Un processus peut être arrêté ou suspendu en lui envoyant un signal : commandes kill et killall
 - Certains processus ont du mal à mourir
 - > Zombis
 - ➤ Attente de ressources réseau (type NFS)
 - Attente de ressources E/S (disque ou bandes)

Lors de problèmes de performance CPU, 3 solutions peuvent être utilisées :

- Déplacer les tâches consommatrices de CPU vers d'autres systèmes ou les exécuter lorsque le système est moins chargée (batch)
 - Utilisation de cron (exécution périodique)
 - Utilisation de at ou batch (exécution différée)
- Modifier les paramètres d'ordonnancement pour privilégier certains processus
 - > Très compliqué
 - Et surtout très risqué pour la stabilité du système
 - ➤ A faire, si l'on sait EXACTEMENT ce que l'on fait

Surveiller la mémoire

- Les Unix utilisent des mécanismes de pagination (gestion de l'espace mémoire d'un processus)
- Ne pas confondre :
 - Pagination (allocation d'une unité de mémoire virtuelle)
 - Swap (transfert d'un processus entier de/vers la zone de stockage secondaire)
 - Trashing (système ne possédant plus assez de mémoire virtuelle pour fonctionner)
- vmstat permet de surveiller l'utilisation de la mémoire
- ps donne la liste des processus avec le pourcentage de mémoire utilisée
- top donne la liste des processus en temps réel avec le pourcentage de mémoire utilisée
- free (sous linux) donne un bon aperçu de l'utilisation globale de la mémoire

Surveiller la mémoire

- L'espace de pagination (swap) est important
- Déterminer la taille adéquate pour le swap
 - Difficile
 - Dépend de ce que fait le système
 - Dépend de la configuration globale matérielle du système
- L'espace de pagination peut être
 - Une partition dédiée (à préférer pour de meilleure performance)
 - Un fichier
- Penser à bien architecturer l'espace de pagination
 - Répartir sur plusieurs disques
 - Ne pas créer de goulots d'étranglement
- Des priorités peuvent être définies pour assurer un ordre séquentielle d'utilisation d'un espace de pagination

> Architecture des E/S disques

- Pour optimiser les E/S, utiliser l'arborescence UNIX
 - / et /usr sont utilisés en parallèle
 - Il est judicieux de placer les deux partitions sur deux disques différents sur des contrôleurs différents
 - /var est plutôt utilisé à la fois en lecture et en écriture
 - Dans le cas d'un serveur, on pourra placer /var sur un disque dédié
- L'utilisation de RAID (même logiciel) peut améliorer les performances
- La fragmentation des fichiers diminue les performances
- L'utilisation de types de systèmes de fichiers peut améliorer les performances
 - Ext2 est très rapide mais peu robuste en cas de crash
 - Ext3 est très robuste mais moins rapide que ext2
 - Reiserfs est moins rapide que ext3
 - Le paramétrage du système de fichiers peut avoir un impact (taille des clusters, taille réservée à root)

Gérer l'espace disque

- Les commandes *du* et *df* permettent de surveiller l'espace disque utilisé
 - > df donne des informations sur les systèmes de fichiers
 - du donne la taille d'un répertoire sur disque
 - quot permet d'avoir la consommation d'espace disque par utilisateur
- Définir les fichiers inutiles (scripts automatiques)
- Définir une politique pour les fichiers inutiles
- Compresser les fichiers peut utilisés
- Convaincre les utilisateurs de faire le ménage
- Proposer des outils d'archivage de fichiers transparents pour l'utilisateur
- Définir une politique pour les fichiers non accédés depuis un certain temps :
 - Archivage (disque, CD-ROM, bandes)
 - Récupération (transparente si possible)

Gérer l'espace disque

- Utilisation de logrotate
- Limitation des fichiers core
- Surveiller /var et le purger le cas échéant
- L'utilisation des quotas
 - Permet de limiter l'espace utilisé pour un utilisateur
 - Permet de limiter l'espace utilisé pour un groupe d'utilisateur

Exploitation d'un système Unix

Bibliographie

Bibliographie

Les deux Bibles :

- Les bases de l'administration système, 3ème Edition
 - ➤ Æleen Frich O'Reilly 2841772225
- Unix System Administration Handbook, 3rd Edition
 - > Evi Nemeth, Scott Seebass, Garth Snynder
 - Prentice Hall PTR 0130206016

Le système Linux :

- ➤ Le système Linux, 4^{ème} Edition
 - Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson et Lar Kaufman
 - O'Reilly 2-84177-241-1
- ➤ Administration réseau sous Linux, 2^{ème} Edition
 - ➢ Olaf Kirch et Terry Dawson O'Reilly 2-84177-125-3
- Linux Administration Handbook
 - Evi Nemeth, Garth Snyder, Adam Boggs
 - Prentice Hall 0130084662

Bibliographie

Les BSDs :

- Absolute Openbsd: Unix for the Practical Paranoid
 - Michael W. Lucas No Starch Press 1886411999
- Freebsd Unleashed
 - Michael Urban, Brian Tiemann Sams Publishing 0672322064

Les Basics :

- Conception du système Unix
 - Maurice J. Bach Dunod 2225815968
- Conception et implémentation du système 4.4 BSD
 - Stephen L. Nelson Addison Wesley 284180142X

Références Internet :

- www.ugu.com : Unix Guru Universe (infos pour l'administration)
- www.sun.com/bigadmin/docs : Docs online sur l'administration Solaris
- www.sysadminmag.com : Articles sur l'administration Unix
- www.tldp.org : Linux Documentation Project

