Data Privacy Homework 3

严禁抄袭,可以使用Latex、word或手写拍照等方式,最终请提交pdf文件至bb系统。

Plagiarism is strictly prohibited, and methods such as Latex, Word, or handwritten photography can be used. Finally, please submit a PDF file to BlackBoard.

1. Permutation Cipher(10')

(a) 5' Consider the permutation π on the set $1,2,\ldots,8$ defined as follows. Find the inverse permutation π^{-1} .

x	1	2	3	4	5	6	7	8
$\pi(x)$	4	1	6	2	7	3	8	5

(b) 5' Decrypt the following ciphertext encrypted using a permutation cipher with the key being the permutation π from part (a).

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM

2. Perfect Secrecy(20')

(a) 10' Let n be a positive integer. An n-th order Latin square is an $n \times n$ matrix L such that each of the n integers $1, 2, \ldots, n$ appears exactly once in each row and each column of L. The following is an example of a Latin square of order 3:

1	2	3
3	1	2
2	3	1

For any n-th order Latin square L, we can define a related encryption scheme. Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=\{1,2,\ldots,n\}$. For $1\leq i\leq n$, the encryption rule e_i is defined as $e_i(j)=L(i,j)$ (thus, each row provides an encryption rule). Prove that if the key is chosen uniformly at random, the Latin square cipher has perfect secrecy.

(b) 10' Prove that if a cipher has perfect secrecy and $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$, then each ciphertext is equiprobable.

3. RSA(25')

Assuming that Bob uses RSA and selects two "large" prime numbers p=101 and q=113:

- (a) 5' How many possible public keys Bob can choose?
- **(b) 10'** Assuming that Bob uses a public encryption key e=3533. Alice sends Bob a message M=9726. What will be the ciphertext received by Bob? Show the detailed procedure that Bob decrypts the received ciphertext.
- (c) 10' Let n=pq be a product of two distinct primes. Show that if $\phi(n)$ and n are known, then it is possible to compute p and q in polynomial time. (Hint: Derive a quadratic equation (over the integers) in the unknown p.)

4. Multi-Party Computation(20')

(a) 10' Paillier encryption. Assuming Alice employs the Paillier encryption scheme with the prime numbers p=11 and q=17, along with a randomly chosen value of r=83. Alice transmits a message M=175 to Bob. What ciphertext will Bob receive? Additionally, please prove the Homomorphic addition property of Paillier: $\mathrm{Decrypt} \big((c_1 \cdot c_2) \bmod n^2 \big) = m_1 + m_2$

(b) 10' Secret Sharing. We define a 2-out-of-3 secret sharing scheme as follows. In order to share a bit v, the dealer chooses three random bits $x_1,x_2,x_3\in\{0,1\}$ under the constraint that $x_1\oplus x_2\oplus x_3=0$. Then:

- P_1 's share is the pair (x_1, a_1) where $a_1 = x_3 \oplus v$.
- P_2 's share is the pair (x_2,a_2) where $a_2=x_1\oplus v$.
- P_3 's share is the pair (x_3,a_3) and $a_3=x_2\oplus v$.

Let (x_1, a_1) , (x_2, a_2) , (x_3, a_3) be a secret sharing of v_1 , and let (y_1, b_1) , (y_2, b_2) , (y_3, b_3) be a secret sharing of v_2 . Try to explain that no communication is needed in order to compute a secret sharing of $v_1 \oplus v_2$. (\oplus means XOR)

5. Computational Security(25')

(a) 5' Explain the difference between Interchangeable and Indistinguishable

(a) 10' Which of the following are negligible functions in λ ? Justify your answers.

$$\frac{1}{2^{\lambda/2}} \quad \frac{1}{2^{\log(\lambda^2)}} \quad \frac{1}{\lambda^{\log(\lambda)}} \quad \frac{1}{\lambda^2} \quad \frac{1}{2^{(\log \lambda)^2}} \quad \frac{1}{(\log \lambda)^2} \quad \frac{1}{\lambda^{1/\lambda}} \quad \frac{1}{\sqrt{\lambda}} \quad \frac{1}{2^{\sqrt{\lambda}}}$$

(b) 10' Suppose f and g are negligible.

- (1) Show that f + g is negligible.
- (2) Show that $f \cdot g$ is negligible.
- (3) Give an example f and g which are both negligible, but where $f(\lambda)/g(\lambda)$ is not negligible.