ML LAB ASSIGNMENT 8

NAIVE BAYES ALGORITHM IMPLEMENTATION

Name: Madhumithaa RP | Reg No: 20BCE1648

```
Implementing the necessary libraries
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

data = pd.read_csv(r"C:\Users\abhia\Desktop\VIT SEM6\ML\Lab\Lab3\
final.csv")
data.head(10)

Destination Port	Flow Duration	Total Fwd Packets	Total Backward
Packets \		_	
0 80 5	99077735	7	
1 1010	42	1	
1			
2 15003	43	1	
3 8080	82322	26	
34	02322	20	
4 80	84813161	6	
6		_	
5 9090	71	1	
6 80	3000585	3	
0		_	
7 8080	60469	4	
3 8 21	0102261	0	
8 21 15	9182361	9	
9 22	106	1	
1			

	Total Length of Fwd Packets	Total Length of Bwd Packets \
0	373	11595
1	0	6
2	2	6
3	70312	320
4	355	11595
5	2	6
6	0	0

7 8 9		207 105					134 188 0	
Fwd Packet Ler Mean \	_	Fwd	Packet	Length	Min	Fwd	Packet	Length
0 53.285714	367				0			
1 0.000000	0				0			
2 2.000000 3	2 6060				2 0			
2704.307692 4	355				0			
59.166667 5	2				2			
2.000000 6	0				0			
0.000000 7	195				0			
51.750000 8 11.666667	23				0			
9 0.000000	0				0			
Fwd Packet Length Std	ngth Std		min_se	eg_size_	_forwa	ard	Active	Mean
Active Std \ 0	3.353068					20	10	936.0
	0.000000					40		0.0
	0.000000					24		0.0
	2.450175					20		0.0
0.0	1.928143					32		4.0
5 0.0	0.000000					24		0.0
6 0.0	0.000000					40		0.0
	5.541876					20		0.0
	0.300538					32		0.0
	0.000000					32		0.0

Acti	lve Max	Active Min	Idle Mean	Idle Std	Idle Max	Idle Min
Label						
0	1036	1036	98900000.0	0.0	98900000	98900000
4						
1	0	0	0.0	0.0	Θ	0
10						
2	0	0	0.0	0.0	Θ	0
10						
3	0	0	0.0	0.0	Θ	0
1						
4	4	4	84700000.0	0.0	84700000	84700000
4						
5	0	0	0.0	0.0	Θ	0
10						
6	0	0	0.0	0.0	Θ	0
6						
7	0	0	0.0	0.0	Θ	0
1						
8	0	0	0.0	0.0	0	0
7		_			_	_
9	0	Θ	0.0	0.0	Θ	0
11	•	•			•	

[10 rows x 79 columns]

Mapping the attributes and their correlation data["Label"].hist()

<AxesSubplot:>


```
corr = data.iloc[:,:-1].corr(method="pearson")
cmap = sns.diverging_palette(250,354,80,60,center='dark',as_cmap=True)
sns.heatmap(corr, vmax=1, vmin=-.5, cmap=cmap, square=True,
linewidths=.2)
```

<AxesSubplot:>

data = data[["Destination Port", "SYN Flag Count", "Fwd Avg
Bytes/Bulk", "Bwd Avg Packets/Bulk", "Label"]]
data.head(10)

Destination Fackets/Bulk \	Port SYN	Flag Count	Fwd Avg	Bytes/Bulk	Bwd Avg
0	80	0		0	
0 1	1010	0		0	
0 2 15	5003	0		0	
0 3	3080	0		0	
0		-		_	

```
80
                                   0
                                                        0
4
0
5
               9090
                                   0
                                                        0
0
6
                 80
                                   0
                                                        0
0
7
               8080
                                   0
                                                        0
0
8
                 21
                                   0
                                                        0
0
9
                 22
                                   0
                                                        0
0
   Label
0
       4
1
      10
2
      10
3
       1
4
       4
5
      10
6
       6
7
       1
8
       7
9
      11
fig, axes = plt.subplots(1, 3, figsize=(18, 6), sharey=True)
sns.histplot(data, ax=axes[0], x="Fwd Avg Bytes/Bulk", kde=True,
color='r')
sns.histplot(data, ax=axes[1], x="Bwd Avg Packets/Bulk", kde=True,
color='b')
sns.histplot(data, ax=axes[2], x="SYN Flag Count", kde=True)
C:\Users\abhia\anaconda3\lib\site-packages\seaborn\
distributions.py:306: UserWarning: Dataset has 0 variance; skipping
density estimate.
  warnings.warn(msg, UserWarning)
C:\Users\abhia\anaconda3\lib\site-packages\seaborn\
distributions.py:306: UserWarning: Dataset has 0 variance; skipping
density estimate.
  warnings.warn(msg, UserWarning)
<AxesSubplot:xlabel='SYN Flag Count', ylabel='Count'>
```


Calculate P(Y=y) for all possible y

```
def calculate_prior(df, Y):
    classes = sorted(list(df[Y].unique()))
    prior = []
    for i in classes:
        prior.append(len(df[df[Y]==i])/len(df))
    return prior
```

Approach 1: Calculate P(X=x | Y=y) using Gaussian distribution formula

```
def calculate_likelihood_gaussian(df, feat_name, feat_val, Y, label):
    feat = list(df.columns)
    df = df[df[Y]==label]
    mean, std = df[feat_name].mean(), df[feat_name].std()
    p_x_given_y = (1 / (np.sqrt(2 * np.pi) * std)) * np.exp(-
((feat_val-mean)**2 / (2 * std**2 )))
    return p x given y
```

Calculate P(X=x1|Y=y)P(X=x2|Y=y)...P(X=xn|Y=y) * P(Y=y) for all y and find the maximum

```
# calculate posterior probability (numerator only)
        post prob = [1]*len(labels)
        for j in range(len(labels)):
            post prob[j] = likelihood[j] * prior[j]
        Y pred.append(np.argmax(post_prob))
    return np.array(Y pred)
Testing this Gaussian model
from sklearn.model selection import train test split
train, test = train test split(data, test size=.2, random state=41)
X test = test.iloc[:,:-1].values
Y test = test.iloc[:,-1].values
Y pred = naive bayes gaussian(train, X=X test, Y="Label")
from sklearn.metrics import confusion matrix, f1 score
print(confusion_matrix(Y_test, Y_pred))
print(f1_score(Y_test, Y_pred))
Convert continuous features to Categorical features
data["Con_Fwd Avg Bytes/Bulk"] = pd.cut(data["Fwd Avg
Bytes/Bulk"].values, bins = 3, labels = [0,1,2])
data["Con Bwd Avg Packets/Bulk"] = pd.cut(data["Bwd Avg
Packets/Bulk"].values, bins = 3, labels = [0,1,2])
data = data[["Con Fwd Avg Bytes/Bulk","Con Bwd Avg Packets/Bulk",
"Label"]]
data.head(10)
  Con Fwd Avg Bytes/Bulk Con Bwd Avg Packets/Bulk
                                                    Label
0
                        1
                                                  1
                                                        10
1
2
                        1
                                                  1
                                                        10
3
                        1
                                                  1
                                                         1
4
                        1
                                                  1
                                                         4
5
                        1
                                                  1
                                                        10
6
                       1
                                                  1
                                                         6
7
                        1
                                                  1
                                                         1
8
                        1
                                                  1
                                                         7
9
                                                  1
                                                        11
Approach 2: Calculate P(X=x|Y=y) categorically
def calculate likelihood categorical(df, feat name, feat val, Y,
label):
    feat = list(df.columns)
    df = df[df[Y]==label]
    p x given y = len(df[df[feat name] == feat val]) / len(df)
    return p_x_given_y
```

```
Calculate P(X=x1|Y=y)P(X=x2|Y=y)...P(X=xn|Y=y) * P(Y=y) for all y and find the
maximum
def naive bayes categorical(df, X, Y):
    features = list(df.columns)[:-1]
    prior = calculate prior(df, Y)
    Y pred = []
    for x in X:
        labels = sorted(list(df[Y].unique()))
        likelihood = [1]*len(labels)
        for j in range(len(labels)):
             for i in range(len(features)):
                 likelihood[j] *= calculate likelihood categorical(df,
features[i], x[i], Y, labels[j])
        post prob = [1]*len(labels)
        for j in range(len(labels)):
             post prob[j] = likelihood[j] * prior[j]
        Y pred.append(np.argmax(post prob))
    return np.array(Y pred)
Test Categorical model
from sklearn.model selection import train test split
train, test = train test split(data, test size=.2, random state=41)
X test = test.iloc[:,:-1].values
Y test = test.iloc[:,-1].values
Y pred = naive bayes categorical(train, X=X test, Y="Label")
from sklearn.metrics import confusion matrix, fl score
print(confusion matrix(Y test, Y pred))
print(f1_score(Y_test, Y_pred))
[[1987
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      0]
                0
                     0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
     1
                           0
                                0
                                                                      01
 [
                                           0
                                                0
                                                     0
                                                           0
                                                                0
     1
          0
                0
                     0
                           0
                                0
                                     0
                                                                      01
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      01
    12
 [ 205
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      01
     5
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      0]
 4
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      0]
     4
          0
                0
                     0
                          0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      0]
 [ 103
          0
                0
                     0
                          0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      01
     3
          0
                0
                     0
                          0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      01
 [
     2
          0
                0
                     0
                          0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      01
     2
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      0]
 [
 Γ
     1
          0
                0
                     0
                           0
                                0
                                     0
                                           0
                                                0
                                                     0
                                                           0
                                                                0
                                                                      011
```

```
ValueError
                                           Traceback (most recent call
last)
<ipython-input-22-b6e4cc749a14> in <module>
      8 from sklearn.metrics import confusion matrix, fl score
      9 print(confusion matrix(Y test, Y pred))
---> 10 print(f1 score(Y test, Y pred))
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
     61
                    extra args = len(args) - len(all args)
     62
                    if extra args <= 0:
                         return f(*args, **kwargs)
---> 63
     64
     65
                    # extra args > 0
~\anaconda3\lib\site-packages\sklearn\metrics\ classification.py in
f1_score(y_true, y_pred, labels, pos_label, average, sample weight,
zero division)
   1066
            modified with ``zero division``.
   1067
-> 1068
            return fbeta_score(y_true, y_pred, beta=1, labels=labels,
   1069
                                pos label=pos label, average=average,
   1070
                                sample weight=sample weight,
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
     61
                    extra args = len(args) - len(all args)
     62
                    if extra args <= 0:
                         return f(*args, **kwarqs)
---> 63
     64
     65
                    \# extra args > 0
~\anaconda3\lib\site-packages\sklearn\metrics\ classification.py in
fbeta score(y true, y pred, beta, labels, pos label, average,
sample_weight, zero_division)
   119\overline{0}
            11 11 11
   1191
            _, _, f, _ = precision_recall_fscore_support(y true,
-> 1192
y pred,
   1193
                                                           beta=beta,
   1194
labels=labels.
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
     61
                    extra args = len(args) - len(all args)
     62
                    if extra args <= 0:
                         return f(*args, **kwargs)
---> 63
```

```
64
     65
                    # extra args > 0
~\anaconda3\lib\site-packages\sklearn\metrics\ classification.py in
precision_recall_fscore_support(y_true, y_pred, beta, labels,
pos label, average, warn for, sample weight, zero division)
            if beta < 0:
   1459
   1460
                raise ValueError("beta should be >=0 in the F-beta
score")
-> 1461
            labels = check set wise labels(y true, y pred, average,
labels,
   1462
                                             pos label)
   1463
~\anaconda3\lib\site-packages\sklearn\metrics\ classification.py in
check set wise labels(y true, y pred, average, labels, pos label)
   1289
                    if y_type == 'multiclass':
   1290
                        average options.remove('samples')
-> 1291
                    raise ValueError("Target is %s but
average='binary'. Please "
   1292
                                     "choose another average setting,
one of %r."
   1293
                                     % (y_type, average_options))
```

ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].