화학전지 실험 결과보고서

서울대학교 전기정보공학부 2018-12432 박정현* (Dated: September 15, 2023)

본 실험에서는 열방출된 전자빔의 자기장 내에서의 움직임을 측정하여 전자의 전하, 질량비를 측정한다. PASCO SE-9638을 이용해 전자빔을 형성한 뒤 균일한 자기장 내에서 전자를 원운동 시켰으며 실험의 정확도를 증가시키기 위해 전자 반지름을 앞, 뒤 모두에서 측정하였다. 10%내외에서 이론값과 일치하였으며 높은 재현도를 보였다. 실험의 주요 오차 원인은 정확하지 않은 반지름 측정으로 결론지었으며 이를 해결하기 위해 전자빔을 납작한 형태의 장비에서 원운동 시켜야함을 제시하였다.

I. DATA

A. 전기전도성

각각의 상황에서 측정된 전기전도성은 Tab.I와 같다. 이때 전기전도성은 연결된 LED가 켜지는지의 여부에 따라 결정하였다.

B. 전기화학적 서열

수용액의 종류와 금속의 종류에 따른 화학 반응 여부는 아래 Tab.II와 같다. 이 때, O는 화학반응이 일어난 경우, X 는 반응이 일어나지 않은 경우를 뜻한다. 실제 반응 결과는 아래 사진과 같다.

C. 화학전지 실험

다니엘 전지에서 각 전지의 종류에 따른 측정된 전압은 Tab.III와 같다. 단, 여기서 0.001MCu 와 0.1MZn 의 경우 1.029V에서 0.995V으로 값이 변화하는데 이는 시간에 따라 전압이 감소한 것을 기록한 것이다.

II. RESULTS

A. 전기전도성

증류수의 경우 순수한 H_2O 로 구성되어 있다. 따라서 $[H^+][OH^-]=10^{-14}M^2$ 임을 이용해 중성 전하를 띠고 있는 물은 $[H^+]=10^{-7}M$ 이므로 전류가 거의 흐르지 않을 것을 예측할 수 있으며 실제로도 전류가 흐르지 않음을

물질의 종류	증류수	
전기전도성	흐르지 않음	
물질의 종류	소금 $(NaCl(s))$	소금 $(NaCl(aq))$
전기전도성	흐르지 않음	매우 잘 흐름
물질의 종류	설탕 $(C_{12}H_{22}O_{11}(s))$	절탕 $(C_{12}H_{22}O_{11}(aq))$
전기전도성	흐르지 않음	매우 미미하게 흐름

TABLE I. 측정된 전기전도도

	$Cu(NO_3)_2$	$Pb(NO_3)_2$	$Zn(NO_3)_2$
Cu	-	X	X
Pb	О	-	X
Zn	О	О	-

TABLE II. 측정된 화학 반응여부

Cathode	Anode	Measured Voltage[V]	Ideal Votalge[V]
1.0MCu	1.0MZn	1.104	1.100
1.0MCu	1.0MPb	0.614	0.637
1.0MZn	1.0MPb	0.468	0.463
0.1MCu	0.1MZn	1.095	1.100
0.01MCu	0.1MZn	1.070	1.070
0.001MCu	0.1MZn	$1.029 \to 0.995$	1.041
0.1MCu	0.01MCu	0.013	0.030
0.01MCu	0.001MCu	0.013	0.030
0.1MCu	0.001MCu	0.045	0.059

TABLE III. 측정된 전압

확인하였다. NaCl(s)의 경우 고체 상태에서는 금속의 자유전자와 같이 자유롭게 이동이 가능한 전하가 존재하지 않으므로 실험 결과와 같이 전류가 흐르지 않는다. 하지만 수용액 상태가 되는 경우 $Na^+(aq)$ 와 $Cl^-(aq)$ 로 분리되어 자유롭게 이동이 가능한 전하가 만들어지므로 측정된 실험결과와 같이 전류가 흐르게 된다.

설탕의 경우 분자식을 $C_{12}H_{22}O_{11}$ 으로 가정했을 때 고체 상태일 경우 자유롭게 이동가능한 전하가 존재하지 않아 실험 결과와 같이 전류가 흐르지 않는다. 수용액이 되는경우에도 대부분 중성 상태의 분자들이 수화되어 자유롭게 이동가능해지며 이 때 탄소, 수소, 산소 사이에 존재하는전자친화도 차이로 인해 미세한 극성이 생기고 약간의 전하를 띤 분자들이 자유롭게 이동하므로 실험 결과와 같이미한 전류가 흐르게 된다. C의 경우 2.55, H의 경우 2.20, O의 3.44이며 가장 큰차이를 가지는 수소와 산소 사이의 이온화 정도를 계산하면 $1-\exp\left(-\frac{1}{4}|3.44-2.20|^2\right)=0.31로약 30%의 이온성을 띠고 있어 앞서 논의한 부분과 실험결과와 일치한다.$

B. 전기화학적 서열

Cu, Pb, Zn 각각의 표준 환원 전위는 아래와 같이 알려져 있다.[1] 아래 표에서 알 수 있듯 전기 화학적 서열은 Cu > Pb > Zn이며 실험 결과 또한 $(Pb, Cu(NO_3)_2), (Zn, Pb(NO_3)_2), (Zn, Cu(NO_3)_2)$ 의 쌍만 반응한 것을 통해 이론적인 예측과 일치함을 알 수 있다.

^{*} alexist@snu.ac.kr

 금속	Cu	Pb	Zn
표준 환원 전위 $[V]$	-0.763	-0.126	+0.337

TABLE IV. 표준 환원 전위

$$Pb(s) + Cu(NO_3)_2(aq) \leftrightarrow Cu(s) + Pb(NO_3)_2(aq) \quad (1)$$

$$Zn(s) + Cu(NO_3)_2(aq) \leftrightarrow Cu(s) + Zn(NO_3)_2(aq) \quad (2)$$

$$Zn(s) + Pb(NO_3)_2(aq) \leftrightarrow Pb(s) + Zn(NO_3)_2(aq)$$
 (3)

III. REFERENCE

각각의 화학반응은 아래와 같다.

[1] 김희준 화학실험