Листок 16

Тема 16 (4.3). Квадратичное поле и круговое поле

Упражнения и задачи

- 1. Пусть \mathcal{D} кольцо целых квадратичного поля $\mathbb{Q}(\sqrt{d})$. Докажите, что $\mathcal{D}=\mathbb{Z}[\sqrt{d}]$ при $d\equiv 2,3\,(4)$ и $\mathcal{D}=\mathbb{Z}\left[rac{-1+\sqrt{d}}{2}
 ight]$ при $d\equiv 1\,(4).$
- 2. Пусть ζ примитивные корень степени m из единицы. Докажите, что $\Delta(1,\zeta,\ldots,\zeta^{\varphi(m)-1})|m^{\varphi(m)}.$
- 3. Докажите, что числовое поле нечетной степени не может содержать примитивных корней из единицы степени n > 2
- 4. Пусть K вещественное квадратичное поле (т.е. $K \subset \mathbb{R}$). Докажите, что если $\exists \alpha \in K$: $N(\alpha) = -1$, то простые $p \equiv 3(4)$ не разветвляются.
- 5. Пусть K вещественное квадратичное поле такое что $\zeta_n \in K$ для некоторого $n \geqslant 3$. Докажите, что $\forall \alpha \in F^* \ N(\alpha) > 0$.
- 6. Докажите, что квадратичное поле K не может одновременно содержать \sqrt{p}, \sqrt{q} для двух различных простых p, q.
- 7. Пусть K вещественное квадратичное поле. Докажите, что $\forall M > 0 \; \exists \beta \in \mathcal{D}_K : |1 1|$ $|\beta| > M$, а также что $\forall \varepsilon > 0 \; \exists \alpha \in \mathcal{D}_K : |1 - \alpha| < \varepsilon$.
- 8. Пусть p > 2 простое, $\zeta = \zeta_p$, $K = \mathbb{Q}(\zeta_p)$. Докажите следующие свойства:
 - $N_{K/\mathbb{Q}}(1+\zeta) = 1;$

 - $A = \prod_{(s/p)=1} (1+\zeta^s) \in \mathbb{Q}(\sqrt{p});$ если $p \equiv 1$ (4), то $A = \frac{1}{2}(t+u\sqrt{p}),$ где $t \equiv u$ (2);
 - $\left(\frac{t^2 pu^2}{4}\right)^{\frac{p-1}{2}} = 1; t^2 pu^2 = \pm 4;$
- 9. Для каких d квадратичное поле $\mathbb{Q}(\sqrt{d})$ имеет базис вида α, α' ?
- 10. Пусть $\zeta = e^{2\pi i/5}$, $K = \mathbb{Q}(\zeta)$. Покажите, что $-(\zeta^3 + \zeta^2) \in \mathcal{U}_{\mathcal{D}_K}$.
- 11. Пусть $K = \mathbb{Q}(\zeta_p)$. Покажите, что $\frac{\sin(\pi j/p)}{\sin(\pi/p)} \in \mathcal{U}_{\mathcal{D}_K}$.
- 12. Пусть $p\equiv 1$ (4), $K=\mathbb{Q}(\zeta_p)$. Докажите, что группа единиц $\mathcal{U}_{\mathcal{D}_K}$ бесконечна
- 13. Докажите, что всякое квадратичное поле содержится в некотором круговом поле.

Темы для самостоятельного изучения

• Арифметика кольца целых кругового поля, приложения к доказательству квадратичного закона взаимности, [IR], §§13.2–13.3.

1

• Порядки числовых полей, [БШ]; [Cox].