

Exact Methods: Value and Policy Iteration

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

August 26, 2023

Overview

- Review
- 2 Value Iteration
- 3 Proof of Value Iteration Convergence
- 4 Policy Iteration
- 6 Possible Extensions
- 6 Few Remarks

Review

Optimal Policy

Define a partial ordering over policies

$$\pi \ge \pi'$$
, if $V^{\pi}(s) \ge V^{\pi'}(s)$, $\forall s \in \mathcal{S}$

Theorem

- ▶ There exists an optimal policy π_* that is better than or equal to all other policies.
- ▶ All optimal policies achieve the optimal value function, $V_*(s) = V^{\pi_*}(s)$
- ▶ All optimal policies achieve the optimal action-value function, $Q_*(s,a) = Q^{\pi_*}(s,a)$

Solution to an MDP

Solving an MDP means finding a policy π_* as follows

$$\pi_* = \operatorname*{arg\,max}_{\pi} \left[\mathbb{E}_{\pi} \left(\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right) \right]$$

is maximum

- ▶ Denote optimal value function $V_*(s) = V^{\pi_*}(s)$
- ▶ Denote optimal action value function $Q_*(s, a) = Q^{\pi_*}(s, a)$
- ▶ The main goal in RL or solving an MDP means finding an **optimal value function** V_* or **optimal action value function** Q_* or **optimal policy** π_*

Value Iteration

Value Iteration

Question: Is there a way to arrive at V_* starting from an arbitrary value function V_0 ?

Answer: Value Iteration

Bellman Evaluation Equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

▶ For a MDP with S = n, Bellman Evaluation Equation for $V^{\pi}(s)$ is a system of n = |S| (linear) equations with n variables and can be solved if the model is known Denote,

$$\mathcal{P}^{\pi}(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

$$\mathcal{R}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \mathcal{R}^{a}_{ss'} = \mathbb{E}(r_{t+1}|s_{t} = s)$$

$$V^{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} V^{\pi} \implies V^{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

Optimality Equation for State Value Function

Question: Can we have a recursive formulation for $V_*(s)$?

$$V_*(s) = \max_a Q_*(s, a) = \max_a \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

Question: These are also a system of equations with n = |S| with n variables. Can we solve them?

 $\underline{\mathbf{Answer}}$: Optimality equations are non-linear system of equations with n unknowns and n non-linear constraints (i.e., the max operator).

Solving the Bellman Optimality Equation

- ▶ Bellman optimality equations are non-linear
- ▶ In general, there are no closed form solutions
- ▶ Iterative methods are typically used

Bellman's Optimality Principle

Principle of Optimality

The tail of an optimal policy must be optimal

 \blacktriangleright Any optimal policy can be subdivided into two components; an optimal first action, followed by an optimal policy from successor state s'.

Solution Methodology: Dynamic Programming

Bellman optimality equation:

$$V_*(s) = \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Optimal Substructure : Optimal solution can be constructed from optimal solutions to subproblems

Overlapping Subproblems : Problem can be broken down into subproblems and can be reused several times

- ▶ Markov Decision Processes, generally, satisfy both these characteristics
- Dynamic Programming is a popular solution method for problems having such properties

Value Iteration : Idea

- ▶ Suppose we know the value $V_*(s')$
- ▶ Then the solution $V_*(s)$ can be found by one step look ahead

$$V_*(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

▶ Idea of value iteration is to perform the above updates iteratively

Algorithm Value Iteration

- 1: Start with an initial value function $V_1(\cdot)$;
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: for $s \in \mathcal{S}$ do
- 4: Calculate

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

- 5: end for
- 6: end for

Value Iteration : Example

No noise and discount factor $\gamma = 1$

Value Iteration : Example

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

 V_{Δ}

0	-1	-2	ą		
-1	-2	-3	4		
-2	-3	-4	-5		
-3	-4	-5	-5		
V-					

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

Value Iteration: Remarks

- ▶ The sequence of value functions $\{V_1, V_2, \cdots, \}$ converge
- ▶ It converges to V_*
- \blacktriangleright Convergence is independent of the choice of V_0 .
- ▶ Intermediate value functions need not correspond to a policy in the sense of satisfying the Bellman Evaluation Equation
- \blacktriangleright However, for any k, one can come up with a greedy policy as follows

$$\pi_{k+1}(s) \leftarrow \operatorname{greedy} V_k(s)$$

► The crux of proving the above statements lie in Banach Fixed Point Theorem / Contraction Mapping Theorem

Optimality Equation for Action-Value Function

There is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

One could similarly conceive an iterative algorithm to compute optimal Q_* using the above recursive formulation!!

Proof of Value Iteration Convergence

Notion of Convergence

Convergence

Let \mathcal{V} be a vector space. A sequence of vectors $\{v_n\} \in \mathcal{V}$ (with $n \in \mathbb{N}$) is said to converge to v if and only if

$$\lim_{n \to \infty} \|v_n - v\| = 0$$

Cauchy Sequence

Cauchy Sequence

A sequence of vectors $\{v_n\} \in \mathcal{V}$ (with $n \in \mathbb{N}$) is said to be a Cauchy sequence, if and only if, for each $\varepsilon > 0$, there exists an N_{ε} such that $||v_n - v_m|| \le \varepsilon$ for any $n, m > N_{\varepsilon}$

....

Notion of Completeness

Completeness

A normed vector space $(\mathcal{V}, \|\cdot\|)$ is complete, if and only if, every Cauchy sequence in \mathcal{V} converges to a point in \mathcal{V}

Contractions

Contractions

Let $(\mathcal{V}, \|\cdot\|)$ be a normed vector space and and let $L: \mathcal{V} \to \mathcal{V}$. We say that L is a contraction, or a contraction mapping, if there is a real number $\gamma \in [0, 1)$, such that

$$||L(v) - L(u)|| \le \gamma ||v - u||$$

for all v and u in \mathcal{V} , where the term γ is called a Lipschitz coefficient for L.

Notion of Fixed Point

Fixed Point

A vector $v \in \mathcal{V}$ is a fixed point of the map $L: \mathcal{V} \to \mathcal{V}$ if L(v) = v

Figure: Fixed Point : Illustration

Banach Fixed Point Theorem

Theorem

Let $< \mathcal{V}, \|\cdot\| > be$ a complete normed vector space and let $L: \mathcal{V} \to \mathcal{V}$ be a γ -contraction mapping. Then iterative application of L converges to a unique fixed point in \mathcal{V} independent of the starting point

Value Function Space

- \triangleright S is a discrete state space with |S| = n
- \blacktriangleright $A_s \subseteq A$ be the non-empty subset of actions allowed from state s
- \triangleright \mathcal{V} be a vector space of set of all bounded real valued functions from \mathcal{S} to \mathbb{R}
- ▶ Measure the distance between state value functions $u, v \in \mathcal{V}$ using the max-norm defined as follows

$$||u - v|| = ||u - v||_{\infty} = \max_{s \in S} |u(s) - v(s)| \quad s \in S; u, v \in V$$

- ★ Largest distance between state values
- \triangleright The space \mathcal{V} is complete

Bellman Evaluation Operator

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi}(s') \right]$$

Denote,

$$\mathcal{P}^{\pi}(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

$$\mathcal{R}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \mathcal{R}^{a}_{ss'} = \mathbb{E}(r_{t+1}|s_{t}=s)$$

Then, we can write,

$$V^{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} V^{\pi}$$
 (or) $V_{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} V_k$

Define Bellman Evaluation Operator $(\mathcal{L}^{\pi}: \mathcal{V} \to \mathcal{V})$ as,

$$L^{\pi}(v) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v$$

Bellman Optimality Operator

$$V_{k+1}(s) = \max_{a} \left[\sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

Denote,

$$\mathcal{P}^{a}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'}$$

$$\mathcal{R}^{a}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \mathcal{R}^{a}_{ss'}$$

Then, we can write,

$$V_{k+1} = \max_{a \in \mathcal{A}} \left[\mathcal{R}^a + \gamma \mathcal{P}^a V_k \right]$$

Definte Bellman Optimality Operator : $(\mathcal{L}: \mathcal{V} \to \mathcal{V})$ as

$$L(v) = \max_{a \in A} \left[\mathcal{R}^a + \gamma \mathcal{P}^a v \right]$$

<u>Remark</u>: Note that since value functions are a mapping from state space to real numbers one can also think of \mathcal{L}^{π} and \mathcal{L} as mappings from $\mathbb{R}^d \to \mathbb{R}^d$

28 of 49

Fixed Points of Maps \mathcal{L}^{π} and \mathcal{L}

We can see that V^{π} is a fixed point of function \mathcal{L}^{π}

$$\mathcal{L}^{\pi}V^{\pi} = V^{\pi}$$

and V_* is a fixed point of operator \mathcal{L}

$$\mathcal{L}V_* = V_*$$

Bellman Evaluation Operator is a Contraction

Recall that Bellman evaluation operator is given by $L^{\pi}: \mathcal{V} \to \mathcal{V}$

$$L^{\pi}(v) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v$$

This operator is γ contraction, i.e., it makes value functions closer by at least γ .

Proof.

For any two value functions u and v in the space \mathcal{V} , we have,

 $< \gamma \|u - v\|_{\infty}$

$$||L^{\pi}(u) - L^{\pi}(v)||_{\infty} = ||(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v)||_{\infty}$$

$$= ||\gamma \mathcal{P}^{\pi}(u - v)||_{\infty} (\leq \gamma ||\mathcal{P}^{\pi}||_{\infty} ||(u - v)||_{\infty} = \gamma ||(u - v)||_{\infty})$$

$$< ||\gamma \mathcal{P}^{\pi}||u - v||_{\infty} ||$$

(We used for every $x \in \mathbb{R}^n$, and A is a $m \times n$ matrix, $||Ax||_{\infty} < ||A||_{\infty} ||x||_{\infty}$)

Convergence of Bellman Updates

- ▶ Banach fixed-point theorem guarantees that iteratively applying evaluation operator \mathcal{L}^{π} to any function $V \in \mathcal{V}$ will converge to a unique function $V^{\pi} \in V$
- ▶ Similarly, the Bellman optimality operator $(\mathcal{L}: \mathcal{V} \to \mathcal{V})$

$$L(v) = \max_{a \in \mathcal{A}} [\mathcal{R}^a + \gamma \mathcal{P}^a v]$$
 (A similar argument as L^{π})

is also a γ contraction and hence iteratively applying optimality operator \mathcal{L} to any function $V \in \mathcal{V}$ will converge to a unique function $V_* \in V$

▶ Does $V_* = \max_{\pi} V^{\pi}(\cdot)$? (Yes, it does)

Policy Iteration

Policy Iteration

Question: Is there a way to arrive at π_* starting from an arbitrary policy π ?

Answer : Policy Iteration

- ightharpoonup Evaluate the policy π
 - \star Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$
- ▶ Improve the policy π

$$\pi'(s) = \operatorname{greedy}(V^{\pi}(s))$$

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*,$$

Policy Evaluation

- **Problem**: Evaluate a given policy π
- Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$
- ▶ Solution 1 : Solve a system of linear equations using any solver
- ▶ Solution 2 : Iterative application of Bellman Evaluation Equation
- ► Iterative update rule :

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi}(s') \right]$$

▶ The sequence of value functions $\{V_1^{\pi}, V_2^{\pi}, \cdots, \}$ converge to V^{π}

Policy Improvement

Suppose we know V^{π} . How to improve policy π ?

The answer lies in the definition of action value function $Q^{\pi}(s,a)$. Recall that,

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s, a_{t} = a \right)$$

$$= \mathbb{E}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_{t} = s, a_{t} = a)$$

$$= \sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

- ▶ If $Q^{\pi}(s, a) > V^{\pi}(s)$ \implies Better to select action a in state s and thereafter follow the policy π
- ► This is a special case of the policy improvement theorem

Policy Improvement Theorem

Theorem

Let π and π' be any pair of deterministic policies such that, for all $s \in \mathcal{S}$,

$$Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s).$$

Then $V^{\pi'}(s) > V^{\pi}(s)$ for all $s \in \mathcal{S}$

Proof.

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}(r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, \pi'(s_{t+1}))|s_{t} = s)$$

$$= \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} V^{\pi}(s_{t+2})|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \cdots |s_{t} = s) = V^{\pi'}(s)$$

Policy Improvement

- Now consider the greedy policy $\pi' = \operatorname{greedy}(V^{\pi})$.
- ▶ Then, $\pi' \geq \pi$. That is, $V^{\pi'}(s) \geq V^{\pi}(s)$ for all $s \in \mathcal{S}$.
 - \star By defintion of π' , at state s, the action chosen by policy π' is given by the greedy operator

$$\pi'(s) = \operatorname*{arg\,max}_{a} Q^{\pi}(s, a)$$

 \star This improves the value from any state s over one step

$$Q^{\pi}(s, \pi'(s)) = \max_{s} Q^{\pi}(s, a) \ge Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

- \bigstar It therefore improves the value function, $V^{\pi'}(s) \geq V^{\pi}(s)$
- ▶ Policy π' is at least as good as policy π

Policy Improvement

► If improvements stop,

$$Q^{\pi}(s, \pi'(s)) = \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

▶ Bellman optimality equation is satisfied as,

$$V^{\pi}(s) = \max_{a} Q^{\pi}(s, a)$$

 \blacktriangleright The policy π for which the improvement stops is the optimal policy.

$$V^{\pi}(s) = V_*(s) \quad \forall s \in \mathcal{S}$$

Policy Iteration: Algorithm

Algorithm Policy Iteration

- 1: Start with an initial policy π_1
- 2: **for** $i = 1, 2, \dots, N$ **do**
- 3: Evaluate $V^{\pi_i}(s) \quad \forall s \in \mathcal{S}$. That is,
- 4: **for** $k = 1, 2, \dots, K$ **do**
- 5: For all $s \in \mathcal{S}$ calculate

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_k^{\pi_i}(s') \right]$$

- 6: end for
- 7: Perform policy Improvement

$$\pi_{i+1} = \operatorname{greedy}(V^{\pi_i})$$

8: end for

Policy Iteration: Example

Update Rule:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^a \left[\mathcal{R}_{ss'}^a + \gamma V_k^{\pi_i}(s') \right]$$

random policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 k = 00.0 0.0 0.0 0.0

 v_k for the

0.0 0.0 0.0 0.0

-1.0 -1.0 -1.0 0.0

$$k = 2$$

$$\begin{array}{c}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{array}$$

k = 1

greedy policy

w.r.t. vi

random

policy

Figure Source: David Silver's UCL

course

Policy Iteration: Example

course

Policy Iteration: Schematic Representation

- ► The sequence $\{\pi_1, \pi_2, \cdots, \}$ is guaranteed to converge.
- ▶ At convergence, both current policy and the value function associated with the policy are optimal.

Modified Policy Iteration

Can we computationally simplify policy iteration process?

- ▶ We need not wait for policy evaluation to converge to V^{π}
- ▶ We can have a stopping criterion like ϵ -convergence of value function evaluation or K iterations of policy evaluation
- \blacktriangleright Extreme case of K=1 is value iteration. We update the policy every iteration

Possible Extensions

Asynchronous Dynamic Programming

- ▶ Updates to states are done individually, in any order
- ▶ For each selected state, apply the appropriate backup
- ► Can significantly reduce computation
- ▶ Convergence guarantees exist, if all states are selected sufficient number of times

Real Time Dynamic Programming

- ▶ Idea : update only states that are relevant to agent
- \blacktriangleright After each time step, we get s_t, a_t, r_{t+1}
- ► Perform the following update

$$V(s_t) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{s_t s'} \left(\mathcal{R}^a_{s_t s'} + \gamma V(s') \right) \right]$$

Few Remarks

MDP and RL setting

- ▶ MDP Setting: The agent has knowledge of the state transition matrices $\mathcal{P}^a_{ss'}$ and the reward function \mathcal{R} .
- ▶ RL Setting: The agent <u>does not</u> have knowledge of the state transition matrices $\mathcal{P}_{ss'}^a$ and the reward function \mathcal{R}
 - ★ The goal in both cases are same; Determine optimal sequence of actions such that the total discounted future reward is maximum.
 - ★ Although, this course would assume Markovian structure to state transitions, in many (sequential) decision making problems we may have to consider the history as well.

Prediction and Control using Dynamic Programming

- ▶ Dynamic Programming assumes full knowledge of MDP
- ▶ Used for both **prediction** and **control** in an MDP
- ▶ Prediction
 - ★ Input MDP $(\langle S, A, P, R, \gamma \rangle)$ and policy π
 - \star Output : $V^{\pi}(\cdot)$
- ► Control
 - ★ Input MDP $(\langle S, A, P, R, \gamma \rangle)$
 - \star Output: Optimal value function $V_*(\cdot)$ or optimal policy π_*

course