B^{\pm}/B^0 ADMIXTURE

B DECAY MODES

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

Scale factor/
Mode Fraction (Γ_i/Γ) Confidence level

Semileptonic and leptonic modes

```
e^+ \nu_e anything
\Gamma_1
                                                                [a]
          \mu^+ \nu_\mu anything
                                                                [a]
\Gamma_3
          \ell^+ \nu_{\ell} anything
                                                              [a,b]
                                                                              10.86 \pm 0.16) %
            D^-\ell^+\nu_\ell anything
                                                                [b]
                                                                                       \pm 0.9 ) %
             \overline{D}{}^0 \ell^+ \nu_{\ell} anything
                                                                [b] (
                                                                                       \pm 1.5 ) %
             \overline{D}\ell^+\nu_\ell
\Gamma_6
                                                                               2.42 \pm 0.12)%
\Gamma_7
             D^{*-}\ell^+\nu_\ell anything
                                                                                       \pm 1.3 ) \times 10^{-3}
                                                                [c]
              D^{*0}\ell^+\nu_\ell anything
              D^*\ell^+\nu_\ell
                                                                [d]
                                                                               4.95 \pm 0.11)%
              \overline{D}^{**}\ell^+\nu_\ell
\Gamma_{10}
                                                              [b,e] (
                                                                                       \pm 0.7 ) %
                 \overline{D}_1(2420)\ell^+\nu_{\ell} anything
\Gamma_{11}
                                                                                       \pm 1.3 ) \times 10^{-3}
                                                                                                                      S = 2.4
                  D\pi\ell^+\nu_\ell anything +
\Gamma_{12}
                                                                                                                      S = 1.5
                                                                                       \pm 0.5
                                                                                                 ) %
                       D^*\pi\ell^+\nu_\ell anything
                  D\pi \ell^+ \nu_{\ell} anything
\Gamma_{13}
                                                                               1.5
                                                                                      \pm 0.6 ) %
                  D^*\pi\ell^+\nu_\ell anything
\Gamma_{14}
                                                                               1.9 \pm 0.4 ) %
                  \overline{D}_2^*(2460)\ell^+\nu_\ell anything
\Gamma_{15}
                                                                               4.4 \pm 1.6 \times 10^{-3}
                  D^{*-}\pi^+\ell^+\nu_\ell anything
\Gamma_{16}
                                                                               1.00 \pm 0.34)%
```

```
\overline{D}\pi^+\pi^-\ell^+\nu_\ell
\Gamma_{17}
                                                                        1.62 \pm 0.32 \times 10^{-3}
           \overline{D}^* \pi^+ \pi^- \ell^+ \nu_\ell
                                                                        9.4 \pm 3.2 ) \times 10<sup>-4</sup>
\Gamma_{18}
\Gamma_{19} D_s^-\ell^+\nu_\ell anything
                                                          [b] <
                                                                                          \times 10^{-3} CL=90%
           D_s^-\ell^+\nu_\ell K^+ anything
                                                                                          \times 10^{-3} CL=90%
                                                       [b] < 5
           D_s^-\ell^+\nu_\ell K^0 anything
\Gamma_{21}
                                                          [b] < 7
                                                                                            \times 10^{-3} CL=90%
           X_c \ell^+ \nu_\ell
\Gamma_{22}
                                                              (10.65 \pm 0.16)\%
            X_{\mu}\ell^{+}\nu_{\ell}
Γ<sub>23</sub>
                                                                    2.14 \pm 0.31 \times 10^{-3}
       K^+ \ell^+ 
u_\ell anything
                                                          [b] (
                                                                     6.3 \pm 0.6 ) %
       K^-\ell^+
u_\ell anything K^0/\overline{K}^0\ell^+
u_\ell anything
                                                                               \pm 4 ) \times 10<sup>-3</sup>
\Gamma_{25}
                                                          [b] (
                                                                       10
                                                        [b] (
\Gamma_{26}
                                                                        4.6 \pm 0.5 ) %
\Gamma_{27} \quad \overline{D} \tau^+ \nu_{\tau}
                                                                        9.8 \pm 1.3 ) \times 10<sup>-3</sup>
\Gamma_{28}
         D^* \tau^+ \nu_{\tau}
                                                                        1.58 \pm 0.12)%
                                          D, D^*, or D_s modes
       D^{\pm} anything
\Gamma_{29}
                                                                       24.1 \pm 1.4 ) %
\Gamma_{30} = D^0 / \overline{D}^0 anything
                                                                       62.4 \pm 2.9 ) %
                                                                                                            S = 1.3
\Gamma_{31} D^*(2010)^{\pm} anything
                                                                       22.5 \pm 1.5 ) %
      D^*(2007)^0 anything
\Gamma_{32}
                                                                       26.0 \pm 2.7 ) %
         D_{\epsilon}^{\pm} anything
                                                          [f] (
                                                                        8.3 \pm 0.8 ) %
         D_s^{*\pm} anything
\Gamma_{34}
                                                                        6.3 \pm 1.0 ) %
         D_s^{*\pm}\overline{D}^{(*)}
\Gamma_{35}
                                                                               \pm 0.6 ) %
                                                                        3.4
\Gamma_{36}
         \overline{D}D_{s0}(2317)
                                                                     seen
        DD_{s,I}(2457)
                                                                     seen
      D^{(*)}\overline{D}^{(*)}K^{0} + D^{(*)}\overline{D}^{(*)}K^{\pm}[f,g] (
\Gamma_{30} b \rightarrow c \overline{c} s
                                                                       22
                                                                               \pm 4 ) %
       D_s^{(*)}\overline{D}^{(*)}
\Gamma_{40}
                                                                        3.9 \pm 0.4) %
                                                        [f,g] (
       D^* D^* (2010)^{\pm}
                                                                        5.9
                                                                                          \times 10^{-3} CL=90%
                                                        [f]
       DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                                          \times 10^{-3} CL=90%
\Gamma_{42}
                                                          [f]
                                                                        5.5
         DD^{\pm}
                                                                                          \times 10^{-3} CL=90%
                                                          [f]
                                                                        3.1
                                                                               + 5
- 4 )%
\Gamma_{44} D_s^{(*)\pm} \overline{D}^{(*)} X(n\pi^{\pm})
                                                        [f,g] (
                                                                                       \times 10^{-3} CL=90%
\Gamma_{45} D^*(2010) \gamma
                                                               <
                                                                        1.1
\Gamma_{46} \quad D_{s}^{+}\pi^{-}, D_{s}^{*+}\pi^{-}, D_{s}^{+}\rho^{-}, \\ D_{s}^{*+}\rho^{-}, D_{s}^{+}\pi^{0}, D_{s}^{*+}\pi^{0}, \\ D_{s}^{+}\eta, D_{s}^{*+}\eta, D_{s}^{+}\rho^{0},
                                                                                          \times 10^{-4} CL=90%
                                                          [f] <
               D_{s}^{*+}\rho^{0}, D_{s}^{+}\omega, D_{s}^{*+}\omega
                                                                                            \times 10^{-3} CL=90%
\Gamma_{47} D_{s1}(2536)^{+} anything
                                                                        9.5
                                           Charmonium modes
\Gamma_{48}
      J/\psi(1S) anything
                                                                        1.094 \pm 0.032) \%
                                                                                                           S = 1.1
       J/\psi(1S) (direct) anything
\Gamma_{49}
                                                                        7.8 \pm 0.4 \times 10^{-3}
                                                                                                            S = 1.1
                                                                        3.07~\pm~0.21~)\times10^{-3}
\Gamma_{50} \psi(2S) anything
                                                                        3.55 \pm 0.27 \times 10^{-3}
         \chi_{c1}(1P) anything
                                                                                                            S=1.3
```

```
\Gamma_{52}
             \chi_{c1}(1P) (direct) anything
                                                                          3.09 \pm 0.19 \times 10^{-3}
         \chi_{c2}(1P) anything
\Gamma_{53}
                                                                        10.0 \pm 1.7 \times 10^{-4}
                                                                                                              S = 1.6
             \chi_{c2}(1P) (direct) anything
                                                                         7.5 \pm 1.1 \times 10^{-4}
\Gamma_{54}
         \eta_c(1S) anything
                                                                                               \times 10^{-3} CL=90%
\Gamma_{55}
                                                                          9
                                                                 <
         KX(3872), X \rightarrow D^0 \overline{D}{}^0 \pi^0
\Gamma_{56}
                                                                         1.2 \pm 0.4 \times 10^{-4}
                                                                  (
         KX(3872), X \rightarrow D^{*0}D^{0}
\Gamma_{57}
                                                                          8.0
                                                                                 \pm 2.2 ) \times 10^{-5}
         KX(3940), X \rightarrow D^{*0}D^{0}
                                                                                               \times 10^{-5} CL=90%
\Gamma_{58}
                                                                 <
                                                                          6.7
         KX(3915), X \rightarrow \omega J/\psi
                                                                                \pm 3.4 ) \times 10<sup>-5</sup>
\Gamma_{59}
                                                                          7.1
                                                            [h] (
                                               K or K^* modes
         K^{\pm} anything
\Gamma_{60}
                                                            [f]
                                                                                 \pm 2.5
                                                                                            ) %
                                                                 (
                                                                        78.9
          K<sup>+</sup> anything
\Gamma_{61}
                                                                                 \pm 5
                                                                                            ) %
                                                                        66
\Gamma_{62}
             K^- anything
                                                                                 \pm 4
                                                                                            ) %
                                                                        13
         K^0/\overline{K}^0 anything
\Gamma_{63}
                                                            [f] (
                                                                        64
                                                                                 \pm 4
                                                                                            ) %
         K^*(892)^{\pm} anything
\Gamma_{64}
                                                                        18
                                                                                 \pm 6
                                                                                            ) %
         K^*(892)^0 / \overline{K}^*(892)^0 anything
\Gamma_{65}
                                                            [f]
                                                                        14.6 \pm 2.6 ) %
         K^*(892)\gamma
                                                                                           ) \times 10^{-5}
\Gamma_{66}
                                                                          4.2 \pm 0.6
                                                                                 ^{+} 1.8 ^{-} 1.6
                                                                                            ) \times 10^{-6}
\Gamma_{67}
        \eta K \gamma
                                                                                              \times 10^{-4} CL=90%
\Gamma_{68}
      K_1(1400)\gamma
                                                                 <
                                                                          1.27
                                                                                 + 0.6
- 0.5
                                                                                           ) \times 10^{-5}
\Gamma_{69}
       K_2^*(1430)\gamma
                                                                  (
\Gamma_{70}
                                                                                              \times 10^{-3} CL=90%
        K_2(1770)\gamma
                                                                 <
                                                                          1.2
                                                                                              \times 10^{-5} CL=90%
\Gamma_{71}
         K_3^*(1780)\gamma
                                                                 <
                                                                          3.7
                                                                                              \times 10^{-3} CL=90%
\Gamma_{72}
      K_{4}^{*}(2045)\gamma
                                                                 <
                                                                          1.0
\Gamma_{73}
         K \eta'(958)
                                                                  (
                                                                          8.3 \pm 1.1 \times 10^{-5}
         K^*(892)\eta'(958)
                                                                                 \pm 1.1 ) \times 10^{-6}
\Gamma_{74}
                                                                          4.1
                                                                                               \times 10^{-6} CL=90%
\Gamma_{75}
         K\eta
                                                                          5.2
                                                                 <
\Gamma_{76}
         K^*(892)\eta
                                                                          1.8 \pm 0.5 \times 10^{-5}
         K\phi\phi
                                                                          2.3 \pm 0.9 \times 10^{-6}
\Gamma_{77}
                                                                  (
         b \rightarrow \overline{s}\gamma
                                                                          3.49 \pm 0.19 \times 10^{-4}
         \overline{b} \rightarrow \overline{d} \gamma
\Gamma_{79}
                                                                          9.2 \pm 3.0 \times 10^{-6}
        \overline{b} \rightarrow \overline{s} gluon
\Gamma_{80}
                                                                                               %
                                                                                                          CL=90%
                                                                 <
                                                                          6.8
                                                                                + 0.5
- 0.8
                                                                                           ) \times 10^{-4}
\Gamma_{81}
            \eta anything
                                                                          2.6
        \eta' anything
                                                                          4.2 \pm 0.9 \times 10^{-4}
\Gamma_{82}
          K^+ gluon (charmless)
                                                                                              \times 10^{-4} CL=90%
\Gamma_{83}
                                                                          1.87
                                                                 <
            K^0 gluon (charmless)
                                                                          1.9 \pm 0.7 \times 10^{-4}
\Gamma_{84}
                                   Light unflavored meson modes
                                                                          1.39 \pm 0.25 \times 10^{-6}
Γ<sub>85</sub>
                                                                                                              S=1.2
         \rho\gamma
                                                                          1.30 \pm 0.23 \times 10^{-6}
\Gamma_{86}
                                                                                                              S=1.2
         \rho/\omega\gamma
\Gamma_{87}
         \pi^{\pm} anything
                                                                                 ± 7
                                                                                            ) %
                                                          [f,i] (
                                                                      358
Γ<sub>88</sub>
         \pi^0 anything
                                                                       235
                                                                                 \pm 11
                                                                                            ) %
\Gamma_{89}
         \eta anything
                                                                                 \pm 1.6 ) %
                                                                        17.6
```

```
\rho^0 anything
                                                                                     21
                                                                                                \pm 5
                                                                                                             ) %
\Gamma_{91}
        \omega anything
                                                                                     81
                                                                                                                             CL=90%
\Gamma_{92} \phi anything
                                                                                       3.43~\pm~0.12 ) %
                                                                              (
\Gamma_{93} \qquad \phi \, K^*(892)
                                                                                                               \times 10^{-5} CL=90%
                                                                                       2.2
\Gamma_{94} \overline{b} \rightarrow \overline{d} gluon
         \pi^+ gluon (charmless)
                                                                                       3.7 \pm 0.8 \times 10^{-4}
\Gamma_{95}
                                                         Baryon modes
\Gamma_{96} \Lambda_c^+ / \overline{\Lambda}_c^- anything
                                                                                       3.5 \pm 0.4) %
\Gamma_{97}
\Lambda_c^+ anything
\Gamma_{98}
\Lambda_c^- anything
\Gamma_{99}
\Lambda_c^-\ell^+ anything
                                                                                       1.3
                                                                                                                             CL=90%
                                                                                                             %
                                                                                                                             CL=90%
                                                                            <
                                                                                                            \times 10^{-4} CL=90%
\Gamma_{100} \overline{\Lambda}_c^- e^+ anything \Gamma_{101} \overline{\Lambda}_c^- \mu^+ anything
                                                                            <
                                                                                                             \times 10^{-3} CL=90%
                                                                                       1.8
                                                                                                              \times 10^{-3} \, \text{CL} = 90\%
                                                                                      1.4
\Gamma_{102} \ \overline{\Lambda}_c^- p anything
                                                                                       2.02 \pm 0.33)%
\Gamma_{103}^{-} \overline{\Lambda}_c^- p e^+ \nu_e
                                                                                                \times 10^{-4} CL=90%
                                                                            <
\Gamma_{104} \overline{\Sigma}_{c}^{-} anything \Gamma_{105} \overline{\Sigma}_{c}^{-} anything \Gamma_{106} \overline{\Sigma}_{c}^{0} anything \Gamma_{107} \overline{\Sigma}_{c}^{0} N(N=p \text{ or } n) \Gamma_{108} \overline{\Xi}_{c}^{0} anything, \overline{\Xi}_{c}^{0} \to \overline{\Xi}_{c}^{-} \pi^{+}
                                                                                      3.3 \pm 1.7 \times 10^{-3}
                                                                            (
                                                                                                \times 10^{-3} CL=90%
                                                                            <
                                                                            (
                                                                                       3.6 \pm 1.7 \times 10^{-3}
                                                                                       1.2 \times 10^{-3} \text{ CL}=90\%
                                                                            <
                                                                              (
                                                                                      1.93 \pm 0.30 \times 10^{-4}
                                                                                      \Gamma_{109} \Xi_c^+, \Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+
\Gamma_{110} p/\overline{p} anything
                                                                                      8.0 \pm 0.4 ) %
                                                                      [f] (
\Gamma_{111} p/\overline{p} (direct) anything
                                                                      [f] (
                                                                                       5.5 \pm 0.5 ) %
\Gamma_{112} \ \overline{p} e^+ \nu_e anything
                                                                                                               \times 10^{-4} CL=90%
                                                                                       5.9
                                                                            <
\Gamma_{113} \Lambda/\Lambda anything
                                                                       [f] (
                                                                                       4.0 \pm 0.5) %
\Gamma_{114} \Lambda anything
\Gamma_{115} \overline{\Lambda} anything
                                                                                   seen
\Gamma_{116} \ \Xi^-/\overline{\Xi}^+ anything
                                                                                      2.7 \pm 0.6 \times 10^{-3}
                                                                       [f] (
\Gamma_{117} baryons anything
                                                                                       6.8 \pm 0.6 ) %
\Gamma_{118} p\overline{p} anything
                                                                                       2.47 \pm 0.23)%
\Gamma_{119} \Lambda \overline{p} / \overline{\Lambda} p anything
                                                                                       2.5 \pm 0.4 ) %
                                                                       [f] (
\Gamma_{120} \Lambda \overline{\Lambda} anything
                                                                                                             \times 10^{-3} CL=90%
```

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

				• ,		
Γ_{121}	se^+e^-	B1	(6.7 ± 1.7	$) \times 10^{-6}$	S=2.0
Γ_{122}	$s\mu^+\mu^-$	B1	(4.3 ± 1.0	$) \times 10^{-6}$	
	$s\ell^+\ell^-$	B1	[b] (5.8 ± 1.3	$) \times 10^{-6}$	S=1.8
Γ_{124}	$\pi \ell^+ \ell^-$	B1	<	5.9	$\times 10^{-8}$	CL=90%
Γ_{125}	πe^+e^-	B1	<	1.10	\times 10 ⁻⁷	CL=90%
	$\pi \mu^+ \mu^-$	B1	<	5.0	\times 10 ⁻⁸	CL=90%
Γ_{127}	Ke^+e^-	B1	(4.4 ± 0.6	$) \times 10^{-7}$	

HTTP://PDG.LBL.GOV

Page 4

```
\Gamma_{128} K^*(892) e^+ e^-
                                                                          1.19 \pm 0.20 \times 10^{-6}
                                                  В1
                                                                                                                 S = 1.2
\Gamma_{129} \ K \mu^{+} \mu^{-}
                                                                          4.4 \pm 0.4 \times 10^{-7}
                                                  B1
\Gamma_{130} K^*(892) \mu^+ \mu^-
                                                                          1.06 \pm 0.09 \times 10^{-6}
                                                  B1
\Gamma_{131} K\ell^+\ell^-
                                                                          4.8 \pm 0.4 \times 10^{-7}
                                                  B1
\Gamma_{132} K^*(892) \ell^+ \ell^-
                                                                          1.05 \pm 0.10 \times 10^{-6}
                                                  B1
                                                                                               \times 10^{-5} CL=90%
\Gamma_{133} K \nu \overline{\nu}
                                                  B1
                                                                 <
                                                                          1.7
\Gamma_{134} K^* \nu \overline{\nu}
                                                                                               \times 10^{-5}
                                                  B1
                                                                 <
                                                                          7.6
                                                                                                             CL=90%
\Gamma_{135} se<sup>\pm \mu^{\mp}</sup>
                                                                                               \times 10^{-5}
                                                  LF
                                                                                                             CL=90%
                                                            [f] <
                                                                          2.2
\Gamma_{136} \pi e^{\pm} \mu^{\mp}
                                                                                               \times 10^{-8} CL=90%
                                                  LF
                                                                          9.2
\Gamma_{137} \rho e^{\pm} \mu^{\mp}
                                                                                               \times 10^{-6}
                                                                                                             CL=90%
                                                  LF
                                                                          3.2
                                                                 <
\Gamma_{138} Ke^{\pm}\mu^{\mp}
                                                  LF
                                                                          3.8
                                                                                               \times 10^{-8}
                                                                                                             CL=90%
                                                                 <
\Gamma_{139} \quad K^*(892) e^{\pm} \mu^{\mp}
                                                  1 F
                                                                          5.1
                                                                                               \times 10^{-7} CL=90%
```

- [a] These values are model dependent.
- [b] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [c] Here "anything" means at least one particle observed.
- [d] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [e] D^{**} stands for the sum of the $D(1\,{}^{1}P_{1})$, $D(1\,{}^{3}P_{0})$, $D(1\,{}^{3}P_{1})$, $D(1\,{}^{3}P_{2})$, $D(2\,{}^{1}S_{0})$, and $D(2\,{}^{1}S_{1})$ resonances.
- [f] The value is for the sum of the charge states or particle/antiparticle states indicated.
- $[g] D^{(*)} \overline{D}^{(*)}$ stands for the sum of $D^* \overline{D}^*$, $D^* \overline{D}$, $D \overline{D}^*$, and $D \overline{D}$.
- [h] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [i] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

B^{\pm}/B^{0} ADMIXTURE BRANCHING RATIOS

$\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_3/Γ

Created: 5/30/2017 17:23

These branching fraction values are model dependent.

"OUR EVALUATION" assumes lepton universality and is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE DOCUMENT ID TECN COMMENT 0.1086 ± 0.0016 OUR EVALUATION **0.1044±0.0025 OUR AVERAGE** Error includes scale factor of 1.5. See the ideogram below. 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ URQUIJO $0.1028 \pm 0.0018 \pm 0.0024$ ² AUBERT,B 06Y BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.0996 \pm 0.0019 \pm 0.0032$ ³ MAHMOOD CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.1091 \pm 0.0009 \pm 0.0024$ 04 ⁴ ALBRECHT 93H ARG $e^+e^- \rightarrow \Upsilon(4S)$ $0.097 \pm 0.005 \pm 0.004$

HTTP://PDG.LBL.GOV

Page 5

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>5</sup> OKABE
0.1085 \pm 0.0021 \pm 0.0036
                                                               BELL Repl. by URQUIJO 07
                                     <sup>6</sup> AUBERT
                                                         04X BABR Repl. by AUBERT, B 06Y
0.1083 \pm 0.0016 \pm 0.0006
                                     <sup>7</sup> AUBERT,B
0.1036 \pm 0.0006 \pm 0.0023
                                                         04A BABR e^+e^- \rightarrow \Upsilon(4S)
                                     <sup>8</sup> AUBERT
                                                         03
                                                               BABR Repl. by AUBERT 04X
0.1087 \pm 0.0018 \pm 0.0030
                                     <sup>9</sup> ABE
                                                         02Y
                                                               BELL
                                                                         Repl. by OKABE 05
0.109 \pm 0.0012 \pm 0.0049
                                   <sup>10</sup> BARISH
                                                         96B
                                                               CLE2
                                                                         Repl. by MAHMOOD 04
0.1049 \pm 0.0017 \pm 0.0043
                                   <sup>11</sup> HENDERSON 92
                                                               CLEO e^+e^- \rightarrow \Upsilon(4S)
0.108 \pm 0.002 \pm 0.0056
                                                                CSB2 e^+e^- \rightarrow \Upsilon(4S)
                                   <sup>12</sup> YANAGISAWA 91
0.100 \pm 0.004 \pm 0.003
                                   <sup>13</sup> ALBRECHT
                                                         90H
                                                               ARG
                                                                         Direct e at \Upsilon(4S)
0.103 \pm 0.006 \pm 0.002
                                   <sup>14</sup> ALBRECHT
                                                         90H ARG
0.100 \pm 0.006 \pm 0.002
                                                                         Direct \mu at \Upsilon(4S)
                                   <sup>15</sup> WACHS
                                                         89
0.117 \pm 0.004 \pm 0.010
                                                               CBAL Direct e at \Upsilon(4S)
0.120 \pm 0.007 \pm 0.005
                                       CHEN
                                                         84
                                                               CLEO Direct e at \Upsilon(4S)
                                                               CLEO Direct \mu at \Upsilon(4S)
0.108 \pm 0.006 \pm 0.01
                                                         84
                                       CHEN
0.112 \pm 0.009 \pm 0.01
                                       LEVMAN
                                                         84
                                                               CUSB Direct \mu at \Upsilon(4S)
                                   <sup>16</sup> KLOPFEN...
                                                         83B CUSB Direct e at \Upsilon(4S)
0.132 \pm 0.008 \pm 0.014
```

- 1 URQUIJO 07 report a measurement of (10.07 \pm 0.18 \pm 0.21)% for the partial branching fraction of $B\to e\nu_e X_c$ decay with electron energy above 0.6 GeV. We converted the result to $B\to e\nu_e X$ branching fraction.
- ² The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of 1.0 GeV: B($B^+ \rightarrow e^+ \nu_e X$) / B($B^0 \rightarrow e^+ \nu_e X$) = 1.074 \pm 0.041 \pm 0.026.
- ³ Uses charge and angular correlations in $\Upsilon(4S)$ events with a high-momentum lepton and an additional electron.
- ⁴ ALBRECHT 93H analysis performed using tagged semileptonic decays of the *B*. This technique is almost model independent for the lepton branching ratio.
- ⁵ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame, and their ratio of B($B^+ \rightarrow e^+ \nu_e X$)/B($B^0 \rightarrow e^+ \nu_e X$) = 1.08 \pm 0.05 \pm 0.02.
- ⁶ The semileptonic branching ratio, $|V_{cb}|$ and other heavy-quark parameters are determined from a simultaneous fit to moments of the hadronic-mass and lepton-energy distribution.
- ⁷ Uses the high-momentum lepton tag method and requires the electron energy above 0.6 GeV.
- ⁸ Uses the high-momentum lepton tag method. They also report $|V_{cb}|=0.0423\pm0.0007(\exp)\pm0.0020(\text{theo.})$.
- ⁹ Uses the high-momentum lepton tag method. ABE 02Y also reports $|V_{c\,b}|=0.0408\pm0.0010({\rm exp})\pm0.0025({\rm theo.})$. The second error is due to uncertainties of theoretical inputs.
- ¹⁰ BARISH 96B analysis performed using tagged semileptonic decays of the *B*. This technique is almost model independent for the lepton branching ratio.
- 11 HENDERSON 92 measurement employs e and μ . The systematic error contains 0.004 in quadrature from model dependence. The authors average a variation of the Isgur, Scora, Grinstein, and Wise model with that of the Altarelli-Cabibbo-Corbò-Maiani-Martinelli model for semileptonic decays to correct the acceptance.
- 12 YANAGISAWA 91 also measures an average semileptonic branching ratio at the $\Upsilon(5S)$ of 9.6–10.5% depending on assumptions about the relative production of different B meson species.
- 13 ALBRECHT 90H uses the model of ALTARELLI 82 to correct over all lepton momenta. 0.099 \pm 0.006 is obtained using ISGUR 89B.
- 14 ALBRECHT 90H uses the model of ALTARELLI 82 to correct over all lepton momenta. 0.097 \pm 0.006 is obtained using ISGUR 89B.

¹⁶ Ratio $\sigma(b \rightarrow e \nu \text{up})/\sigma(b \rightarrow e \nu \text{charm}) < 0.055 \text{ at CL} = 90\%.$

 $\Gamma\!\left(\ell^+\nu_\ell\,\mathrm{anything}\right)\!/\Gamma_{\mathrm{total}}$

$\Gamma(D^-\ell^+ u_\ell$ anything)/ $\Gamma(\ell^+ u_\ell$ anything)

 Γ_4/Γ_3

 Γ_5/Γ_3

0.26±0.07±0.04	1 FULTON	91	CLEO	$e^+e^- ightarrow \gamma(4S)$	
VALUE	DOCUMENT ID		TECN	COMMENT	
$\iota = \epsilon$ or μ .					

¹ FULTON 91 uses B($D^+ \rightarrow K^- \pi^+ \pi^+$) = (9.1 ± 1.3 ± 0.4)% as measured by MARK III.

$\Gamma(\overline{D}^0\ell^+ u_\ell$ anything)/ $\Gamma(\ell^+ u_\ell$ anything)

 $\ell = e \text{ or } \mu.$

VALUE DOCUMENT ID TECN COMMENT $0.67\pm0.09\pm0.10$ 1 FULTON 91 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}\ell^+\nu_\ell)/\Gamma(\ell^+\nu_\ell$ anything)

 Γ_6/Γ_3

Created: 5/30/2017 17:23

VALUEDOCUMENT IDTECNCOMMENT0.223 \pm 0.006 \pm 0.0091 AUBERT10 BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹⁵ Using data above p(e)=2.4 GeV, WACHS 89 determine $\sigma(B\to e\nu \text{up})/\sigma(B\to e\nu \text{charm})<0.065$ at 90% CL.

 $^{^1\,\}text{FULTON}$ 91 uses B(D $^0\to~\text{K}^-\,\pi^+)=$ (4.2 \pm 0.4 \pm 0.4)% as measured by MARK III.

 $^{^{1}}$ Uses a fully reconstructed B meson as a tag on the recoil side.

$\Gamma(D^{*-}\ell^+\nu_{\ell} \text{ anything})/\Gamma_{\text{total}}$ Γ_7/Γ VALUE (units 10^{-2}) TECN COMMENT $0.67 \pm 0.08 \pm 0.10$ **ABDALLAH** 04D DIPH $e^+e^- \rightarrow 7^0$ • • • We do not use the following data for averages, fits, limits, etc. • ¹ BARISH 95 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ BARISH 95 use B($D^0 \to K^- \pi^+$) = (3.91 ± 0.08 ± 0.17)% and B($D^{*+} \to D^0 \pi^+$) $= (68.1 \pm 1.0 \pm 1.3)\%.$ $\Gamma(D^{*0}\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$ Γ_8/Γ VALUE (units 10^{-2}) DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BARISH 95 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.6 \pm 0.6 \pm 0.1$ ¹BARISH 95 use B($D^0 \to K^-\pi^+$) = (3.91 ± 0.08 ± 0.17)%, B($D^{*+} \to D^0\pi^+$) = $(68.1 \pm 1.0 \pm 1.3)\%$, B($D^{*0} \rightarrow D^0 \pi^0$) = $(63.6 \pm 2.3 \pm 3.3)\%$. $\Gamma(\overline{D}^{**}\ell^+\nu_\ell)/\Gamma_{\mathsf{total}}$ D^{**} stands for the sum of the $D(1^{1}P_{1})$, $D(1^{3}P_{0})$, $D(1^{3}P_{1})$, $D(1^{3}P_{2})$, $D(2^{1}S_{0})$, and $D(2^{1}S_{1})$ resonances. $\ell=e$ or μ , not sum over e and μ modes. CL% EVTS **DOCUMENT ID** ¹ ALBRECHT ARG $e^+e^- \rightarrow \Upsilon(4S)$ $0.027 \pm 0.005 \pm 0.005$ 63 93 • • We do not use the following data for averages, fits, limits, etc. • • ² BARISH 95 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 95 < 0.028 $^{ m 1}$ ALBRECHT 93 assumes the GISW model to correct for unseen modes. Using the BHKT model, the result becomes $0.023 \pm 0.006 \pm 0.004$. Assumes B($D^{*+} \rightarrow D^0 \pi^+$) = 68.1%, B($D^0 \rightarrow K^-\pi^+$) = 3.65%, B($D^0 \rightarrow K^-\pi^+\pi^-\pi^+$) = 7.5%. We have taken their average e and μ value. ²BARISH 95 use B($D^0 \rightarrow K^-\pi^+$) = (3.91 \pm 0.08 \pm 0.17)%, assume all nonresonant channels are zero, and use GISW model for relative abundances of D^{**} states. $\Gamma(\overline{D}_1(2420)\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$ Γ_{11}/Γ DOCUMENT ID 0.0038 ± 0.0013 OUR AVERAGE Error includes scale factor of 2.4. ¹ ABAZOV 0.0033 ± 0.0006 050 D0 $p\overline{p}$ at 1.96 TeV ² BUSKULIC 97B ALEP $e^+e^- \rightarrow Z$ 0.0074 ± 0.0016 • • • We do not use the following data for averages, fits, limits, etc. • • • ³ BUSKULIC 95B ALEP **BUSKULIC 97B** ¹ Assumes B($D_1 \to D^*\pi$) = 1, B($D_1 \to D^*\pi^{\pm}$) = 2/3, and B($b \to B$) =0.397.

a single B charge state.

and B($b \rightarrow B$) = 0.378 \pm 0.022.

Created: 5/30/2017 17:23

² BUSKULIC 97B assumes B($D_1(2420) \rightarrow D^*\pi$) = 1, B($D_1(2420) \rightarrow D^*\pi^{\pm}$) = 2/3,

³ BUSKULIC 95B reports $f_B \times B(B \to \overline{D}_1(2420)^0 \ell^+ \nu_\ell$ anything) $\times B(\overline{D}_1(2420)^0 \to \overline{D}^*(2010)^- \pi^+) = (2.04 \pm 0.58 \pm 0.34)10^{-3}$, where f_B is the production fraction for

$[\Gamma(D\pi\ell^+\nu_\ell)]$ anything $+\Gamma(D\ell)$, ,			Γ ₁₂ /Γ
VALUE	DOCUMENT ID				
0.026 ±0.005 OUR AVERAGE	Error includes so				
$0.0340 \pm 0.0052 \pm 0.0032$	¹ ABREU			$e^+e^- \rightarrow Z$	
$0.0226 \pm 0.0029 \pm 0.0033$				$e^+e^- o Z$	
Assumes no contribution from single pion $(D\pi \text{ and } D^*\pi)$ star					
π^0 and π^+ rates. 2 BUSKULIC 97B assumes B(b assuming that all observed D^0 A correction has been applied	π^{+} , $D^{*0}\pi^{+}$, D^{+}	π^- , a	and $D^{* \dashv}$	π^- are from D^*	riance by
$\Gamma(D\pi\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₁₃ /Γ
0.0154±0.0061	ABREU			$e^+e^- \rightarrow Z$	
0.020 . 2 0.0002	ABREO	OOK	DEITI	C C / Z	
$\Gamma(D^*\pi\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ_{14}/Γ
0.0186±0.0038	ABREU			$e^+e^- \rightarrow Z$	
0.0100±0.0030	ABILLO	OOK	DLIII	e e → Z	
$\Gamma(\overline{D}_2^*(2460)\ell^+\nu_\ell \text{ anything})/\Gamma$					Γ ₁₅ /Γ
VALUE CL%	DOCUMENT ID				
0.0044±0.0016	¹ ABAZOV			$p\overline{p}$ at 1.96 TeV	
• • • We do not use the following					
< 0.0065 95	² BUSKULIC				
not seen	³ BUSKULIC				
¹ Assumes B($D_2^* \rightarrow D^* \pi^{\pm}$) =	\pm 0.30 \pm 0.06 and	B(<i>b</i> -	\rightarrow B) =	=0.397.	
² A revised number based on Bl	JSKULIC 97B whi	ich ass	umes B	$(D_2^*(2460) \to D$	$*\pi^{\pm}) =$
0.20 and B($b \to B$) = 0.378					
3 BUSKULIC 95B reports f_B $ imes$	$B(B \rightarrow \overline{D}_2^*(246))$	$(0)^0 \ell^+$	$^{-} u_{ ho}$ anyt	hing) \times B($\overline{D}_{2}^{*}(24)$	460) ⁰ →
$\overline{D}^*(2010)^- \pi^+) \le 0.81 \times 10^{\circ}$ single <i>B</i> charge state.					
-	747445				
$\Gamma(B \to \overline{D}_2^*(2460)\ell^+\nu_\ell anything)$	$\times B(D_2^*(2460) \rightarrow$	$D^{*-}\pi$	+)		
$\Gamma(B \to \overline{D}_1(2420)\ell^+\nu_\ell anything)$	· - · ·		•		
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.39 \pm 0.09 \pm 0.12$	ABAZOV	050	D0	$p\overline{p}$ at 1.96 TeV	
$\Gamma(D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \text{ anything})/\Gamma_{t}$ Includes resonant and nonre	sonant contributi				Γ ₁₆ /Γ
VALUE (units 10^{-3})	DOCUMENT ID		TECN	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow Z}$	
$10.0\pm2.7\pm2.1$	$^{ m 1}$ BUSKULIC	95 B	ALEP	$e^+e^- o Z$	
1 BUSKULIC 95B reports $f_{B} imes 0.7)10^{-3}$. Above value assum			$^+\ell^+ u_\ell$ a	anything) = (3.7)	\pm 1.0 \pm

 $\Gamma(\overline{D}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell})/\Gamma(\overline{D}\ell^{+}\nu_{\ell})$

 Γ_{17}/Γ_{6}

VALUE (units 10^{-2})

 $6.7 \pm 1.0 \pm 0.8$

¹ Measurement used electrons and muons as leptons.

$\Gamma(\overline{D}^*\pi^+\pi^-\ell^+\nu_\ell)/\Gamma(D^*\ell^+\nu_\ell)$

 Γ_{18}/Γ_{9}

VALUE (units 10^{-2}) $1.9 \pm 0.5 \pm 0.4$

¹ Measurement used electrons and muons as leptons.

$\Gamma(D_s^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{10}/Γ

<u>VALUE</u>	CL%_
$< 7 \times 10^{-3}$	90

 $\frac{\textit{DOCUMENT ID}}{1}$ ALBRECHT 93E ARG $e^+e^-
ightarrow \varUpsilon(4S)$

¹ ALBRECHT 93E reports < 0.012 from a measurement of $[\Gamma(B \to D_s^- \ell^+ \nu_\ell)]$ anything)/ $\Gamma_{
m total}] imes [{
m B}(D_{\it s}^+ o \phi \pi^+)]$ assuming ${
m B}(D_{\it s}^+ o \phi \pi^+) = 0.027$, which we rescale to our best value B($D_c^+ \rightarrow \phi \pi^+$) = 4.5 \times 10⁻².

$\Gamma(D_s^-\ell^+\nu_\ell K^+ \text{ anything})/\Gamma_{\text{total}}$

VAL	JΕ	
<5	×	10-3

DOCUMENT ID TECN COMMENT

1 ALBRECHT 93E ARG $e^+e^ightarrow \varUpsilon(4S)$

reports < 0.008 from a measurement of $[\Gamma(B \to D_s^- \ell^+ \nu_\ell K^+ \text{ anything})/\Gamma_{\text{total}}] \times$ $[\mathsf{B}(D_s^+ \to \phi \pi^+)]$ assuming $\mathsf{B}(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = 4.5 × 10⁻².

$\Gamma(D_s^-\ell^+\nu_\ell K^0 \text{ anything})/\Gamma_{\text{total}}$

 Γ_{21}/Γ

VALUE CL%		DOCUMENT ID	TECIV	COMMENT		
$<7 \times 10^{-3}$	90	¹ ALBRECHT	93E	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ ALBRECHT	93E	reports	<		0.012	

a measurement of $[\Gamma(B \to D_s^- \ell^+ \nu_\ell K^0 \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming B($D_s^+ \to \phi \pi^+$) = 0.027, which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = 4.5 \times 10⁻².

$\Gamma(X_c \ell^+ \nu_\ell) / \Gamma_{\text{total}}$

 Γ_{22}/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

DOCUMENT ID 0.1065 ± 0.0016 OUR EVALUATION

0.1058 ± 0.0015 OUR AVERAGE $0.1064 \pm 0.0017 \pm 0.0006$

 $^{\mathrm{1}}$ AUBERT

10A BABR $e^+e^- \rightarrow \Upsilon(4S)$

TECN COMMENT

 $0.1044 \pm 0.0019 \pm 0.0022$

² URQUIJO

07 BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.1061 \pm 0.0016 \pm 0.0006$

³ AUBERT

04X BABR Repl. by AUBERT 10A

HTTP://PDG.LBL.GOV

Page 10

² Measured the independent B^+ and B^0 partial branching fractions with electron energy above 0.4 GeV

The semileptonic branching ratio, $|V_{cb}|$ and other heavy-quark parameters are determined from a simultaneous fit to moments of the hadronic-mass and lepton-energy distribution.

 $\Gamma(X_u\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_{23}/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

$VALUE$ (units 10^{-3})	DOCUMENT ID	DOCUMENT ID		COMMENT
2.14 ±0.31 OUR EVALUAT	ION			
$2.01\ \pm0.15\ \pm0.25$	¹ LEES	12R	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.27\ \pm0.26\ ^{+0.37}_{-0.33}$	² AUBERT	06н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.53 \pm 0.24 \pm 0.24$	³ AUBERT,B	05X	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.80 \pm 0.52 \pm 0.41$	⁴ LIMOSANI			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.77 \pm 0.29 \pm 0.38$	⁵ BORNHEIM	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	wing data for avera	ges, fi	ts, limits	s, etc. • • •
$1.963 \pm 0.173 \pm 0.159$	⁶ URQUIJO	10	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$
$1.18 \pm 0.09 \pm 0.07$	⁷ AUBERT	08AS	BABR	Repl. by LEES 12R
$2.24 \pm 0.27 \pm 0.47$	^{8,9} AUBERT	041	BABR	Repl. by AUBERT, B 05X

 $^{^1}$ Measures several partial branching fractions in different phase space regions. The most precise result on the full branching fraction is obtained in the region for lepton momentum in B rest frame p $_\ell^* > 1$ GeV/c, where the measured partial branching fraction is $\Delta B = (1.80 \pm 0.13 \pm 0.15) \times 10^{-3}$. The acceptance in that region is reported in a private communication by the Authors to be 0.894. The corresponding $|\mathsf{V}_{ub}|$ from the BLNP method is $(4.28 \pm 0.15 \pm 0.18 \pm 0.19) \times 10^{-3}$, where the last uncertainty comes from theoretical prediction.

¹Obtained from a combined fit to the moments of observed spectra in inclusive $B \to X_C \ell^+ \nu_\ell$ decay.

 $^{^2}$ Obtained from the partial rate $\Delta B = (0.572 \pm 0.041 \pm 0.065) \times 10^{-3}$ for the electron momentum interval of 2.0–2.6 GeV/c based on BLNP method.

 $^{^3}$ Determined from the partial rate $\Delta B = (4.41 \pm 0.42 \pm 0.42) \times 10^{-4}\,$ measured for electron energy > 2 GeV and hadronic mass squared $< 3.5~\text{GeV}^2$, and calculated acceptance 0.174 in that region. The V_{ub} is measured as $(4.41 \pm 0.30 {+0.65 \atop -0.47} \pm 0.28) \times 10^{-3}$.

 $^{^4}$ Uses electrons in the momentum interval 1.9–2.6 GeV/c in the center-of-mass frame. The V_{ub} is found to be (5.08 \pm 0.47 $^{+0.49}_{-0.48})\times 10^{-3}$.

 $^{^5}$ BORNHEIM 02 uses the observed yield of leptons from semileptonic B decays in the end-point momentum interval 2.2–2.6 GeV/c with recent CLEO-2 data on $B\to X_{\rm S}\gamma$. The V_{ub} is found to be (4.08 \pm 0.34 \pm 0.53) \times 10 $^{-3}$.

⁶ Uses a multivariate analysis method and requires lepton momentum in the B rest frame, $p_l^{*B} > 1.0 \; {\rm GeV/c}.$

⁷ Measures several partial branching fractions in different phase space regions. The most precise result is obtained in the region for hadronic mass $M_X < 1.55 \text{ GeV/c}^2$, and is $\Delta B = (1.18 \pm 0.09 \pm 0.07) \times 10^{-3}$. The corresponding $|V_{ub}|$ from the BLNP method is $(4.27 \pm 0.16 \pm 0.13 \pm 0.30) \times 10^{-3}$, where the last uncertainty comes from the theoretical prediction of the partial rate in the given phase-space region.

$\Gamma(X_{ii}\ell^{+}\nu_{\ell})/\Gamma(\ell^{+}\nu_{\ell})$ anything)

 Γ_{23}/Γ_3

 ℓ denotes e or μ , not the sum. These experiments measure this ratio in very limited momentum intervals.

VALUE (units 10^{-2}) CL% E		DOCUMENT ID	TECN	COMMENT	
$2.06 \pm 0.25 \pm 0.42$		¹ AUBERT 04I	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	

• • We do not use the following data for averages, fits, limits, etc.

			² ALBRECHT	94C	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
		107	³ BARTELT	93 B	CLE2	$e^+e^- \rightarrow \gamma(4S)$
		77	⁴ ALBRECHT	91 C	ARG	$e^+e^- \rightarrow \gamma(4S)$
		41	⁵ ALBRECHT	90	ARG	$e^+e^- \rightarrow \gamma(4S)$
		76	⁶ FULTON	90	CLEO	$e^+e^- ightarrow \gamma(4S)$
<4.0	90		⁷ BEHRENDS	87	CLEO	$e^+e^- ightarrow \gamma(4S)$
<4.0	90		CHEN	84	CLEO	Direct e at $\Upsilon(4S)$
< 5.5	90		KLOPFEN	83 B	CUSB	Direct e at $\Upsilon(4S)$

¹The third error includes the systematics and theoretical errors summed in quadrature.

$\Gamma(K^+\ell^+\nu_\ell$ anything) $/\Gamma(\ell^+\nu_\ell$ anything)

 Γ_{24}/Γ_{3}

Created: 5/30/2017 17:23

 ℓ denotes e or μ , not the sum.

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
0.58 ± 0.05 OUR AVERAGE			
$0.594 \pm 0.021 \pm 0.056$	ALBRECHT	94C ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.54 \pm 0.07 \pm 0.06$	1 ALAM	87B CLEC	$e^+e^- ightarrow~ \varUpsilon(4S)$

¹ ALAM 87B measurement relies on lepton-kaon correlations.

⁸ Used BaBar measurement of Semileptonic branching fraction B($B \to X \ell \nu_\ell$) = (10.87 \pm 0.18 \pm 0.30)% to convert the ratio of rates to branching fraction.

⁹ The third error includes the systematics and theoretical errors summed in quadrature.

² ALBRECHT 94c find $\Gamma(b \rightarrow c)/\Gamma(b \rightarrow all) = 0.99 \pm 0.02 \pm 0.04$.

 $^{^3}$ BARTELT 93B (CLEO II) measures an excess of $107\pm15\pm11$ leptons in the lepton momentum interval 2.3–2.6 GeV/c which is attributed to $b\to u\ell\nu_\ell$. This corresponds to a model-dependent partial branching ratio $\Delta B_{u\,b}$ between $(1.15\pm0.16\pm0.15)\times10^{-4}$, as evaluated using the KS model (KOERNER 88), and $(1.54\pm0.22\pm0.20)\times10^{-4}$ using the ACCMM model (ARTUSO 93). The corresponding values of $|V_{u\,b}|/|V_{c\,b}|$ are 0.056 ± 0.006 and 0.076 ± 0.008 , respectively.

⁴ ALBRECHT 91C result supersedes ALBRECHT 90. Two events are fully reconstructed providing evidence for the $b \to u$ transition. Using the model of ALTARELLI 82, they obtain $\left|V_{u\,b}/V_{c\,b}\right| = 0.11 \pm 0.012$ from 77 leptons in the 2.3–2.6 GeV momentum range.

 $^{^5}$ ALBRECHT 90 observes 41 \pm 10 excess e and μ (lepton) events in the momentum interval p=2.3–2.6 GeV signaling the presence of the $b\to u$ transition. The events correspond to a model-dependent measurement of $\left|V_{u\,b}/V_{c\,b}\right|=0.10\pm0.01$.

⁶ FULTON 90 observe 76 \pm 20 excess e and μ (lepton) events in the momentum interval p=2.4–2.6 GeV signaling the presence of the $b\to u$ transition. The average branching ratio, $(1.8\pm0.4\pm0.3)\times10^{-4}$, corresponds to a model-dependent measurement of approximately $|V_{\mu\,b}/V_{C\,b}|=0.1$ using B($b\to c\ell\nu$) = $10.2\pm0.2\pm0.7\%$.

⁷ The quoted possible limits range from 0.018 to 0.04 for the ratio, depending on which model or momentum range is chosen. We select the most conservative limit they have calculated. This corresponds to a limit on $|V_{u\,b}|/|V_{c\,b}| < 0.20$. While the endpoint technique employed is more robust than their previous results in CHEN 84, these results do not provide a numerical improvement in the limit.

$\Gamma(K^-\ell^+\nu_\ell \text{ anything})/\Gamma(\ell^+\nu_\ell \text{ anything})$ Γ_{25}/Γ_3 ℓ denotes e or μ , not the sum. DOCUMENT ID TECN COMMENT 0.092 ± 0.035 OUR AVERAGE 94c ARG **ALBRECHT** $0.086 \pm 0.011 \pm 0.044$ ¹ ALAM 87B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.10\ \pm0.05\ \pm0.02$ ¹ ALAM 87B measurement relies on lepton-kaon correlations. $\Gamma(K^0/\overline{K}^0\ell^+\nu_\ell \text{ anything})/\Gamma(\ell^+\nu_\ell \text{ anything})$ Γ_{26}/Γ_{3} ℓ denotes e or $\mu,$ not the sum. Sum over K^0 and $\overline{\mathit{K}}^0$ states. 0.42 ± 0.05 OUR AVERAGE ¹ ALBRECHT 94c ARG $0.452 \pm 0.038 \pm 0.056$ ² ALAM 87B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.39 \pm 0.06 \pm 0.04$ 1 ALBRECHT 94C assume a $\mathit{K}^0/\overline{\mathit{K}}^0$ multiplicity twice that of K^0_S . ² ALAM 87B measurement relies on lepton-kaon correlations. $\Gamma(\overline{D}\tau^+\nu_{\tau})/\Gamma(\overline{D}\ell^+\nu_{\ell})$ Γ_{27}/Γ_{6} VALUE (units 10^{-2}) TECN COMMENT ± 5 OUR AVERAGE ^{1,2} HUSCHLE BELL $e^+e^- \rightarrow \Upsilon(4S)$ $37.5 \pm 6.4 \pm 2.6$ 1,2 LEES 12D BABR $e^+e^- \rightarrow \Upsilon(4S)$ $44.0 \pm 5.8 \pm 4.2$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 08N BABR Repl. by LEES 12D $4.16\pm11.7\pm5.2$ 1 Uses a fully reconstructed B meson as a tag on the recoil side. ²Uses $\tau^+ \to e^+ \nu_e \overline{\nu}_\tau$ and $\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau$ and e^+ or μ^+ as ℓ^+ . Obtained from simultaneous fit to B+ and B0 assuming isospin symmetry. $\Gamma(D^*\tau^+\nu_{\tau})/\Gamma(D^*\ell^+\nu_{\ell})$ Γ_{28}/Γ_{9} VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT 31.8 ± 2.4 OUR AVERAGE ¹ HUSCHLE 15 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $29.3 \pm 3.8 \pm 1.5$ ¹ LEES $33.2 \pm 2.4 \pm 1.8$ 12D BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² AUBERT $29.7 \pm 5.6 \pm 1.8$ 08N BABR Repl. by LEES 12D $1\, {\rm Uses}\,\, \tau^+ \to \ \, e^+ \, \nu_e \overline{\nu}_\tau \,\, {\rm and} \,\, \tau^+ \to \ \, \mu^+ \, \nu_\mu \overline{\nu}_\tau \,\, {\rm and} \,\, e^+ \,\, {\rm or} \,\, \mu^+ \,\, {\rm as} \,\, \ell^+. \,\, {\rm Obtained} \,\, {\rm from} \,\, {\rm obs} \,\, \tau^+ \,\, {\rm o$ simultaneous fit to B+ and B0 assuming isospin symmetry. Uses a fully reconstructed B meson as a tag on the recoil side. 2 Uses a fully reconstructed B meson as a tag on the recoil side. The results are normalized to the B^+ decay rate. $\langle n_c \rangle$ **VALUE** TECN COMMENT ¹ GIBBONS 97B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • 87B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 2 ALAM $0.98 \pm 0.16 \pm 0.12$

```
<sup>1</sup> GIBBONS 97B from charm counting using B(D_s^+ \to \phi \pi) = 0.036 \pm 0.009 and B(\Lambda_c^+ \to p K^- \pi^+) = 0.044 \pm 0.006.
```

<u>TECN</u> <u>COMMENT</u>

DOCUMENT ID

$\Gamma(D^{\pm} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{29}/Γ

0.241±0.014 OUR AVERAGE							
$0.240\pm0.013\pm0.008$ 1 GIBBONS 97 B CLE2 e $^{+}$ e $^{-}$ \rightarrow $^{\sim}$ $(4S)$							
$0.25 \pm 0.04 \pm 0.01$ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$							
$0.23~\pm 0.05~\pm 0.01$ 3 ALBRECHT 91H ARG $e^+e^- ightarrow \varUpsilon(4S)$							
 • We do not use the following data for averages, fits, limits, etc. 							
$0.21 \pm 0.05 \pm 0.01$ 20k ⁴ BORTOLETTO87 CLEO Sup. by BORTOLETTO 92							
¹ GIBBONS 97B reports $[\Gamma(B \to D^{\pm} \text{ anything})/\Gamma_{\text{total}}] \times [B(D^{+} \to K^{-}2\pi^{+})] =$							
$0.0216\pm0.0008\pm0.00082$ which we divide by our best value B($D^+ o K^-2\pi^+$) =							
$(8.98 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is							
the systematic error from using our best value.							
² BORTOLETTO 92 reports $[\Gamma(B \rightarrow D^{\pm} \text{ anything})/\Gamma_{\text{total}}] \times [B(D^{+} \rightarrow K^{-} 2\pi^{+})] =$							
$0.0226 \pm 0.0030 \pm 0.0018$ which we divide by our best value B($D^+ \rightarrow K^- 2\pi^+$) =							

² BORTOLETTO 92 reports $[\Gamma(B \to D^{\pm} \text{ anything})/\Gamma_{\text{total}}] \times [B(D^{+} \to K^{-} 2\pi^{+})] = 0.0226 \pm 0.0030 \pm 0.0018$ which we divide by our best value $B(D^{+} \to K^{-} 2\pi^{+}) = (8.98 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ALBRECHT 91H reports $[\Gamma(B \to D^{\pm} \, \text{anything})/\Gamma_{\text{total}}] \times [B(D^{+} \to K^{-} \, 2\pi^{+})] = 0.0209 \pm 0.0027 \pm 0.0040$ which we divide by our best value $B(D^{+} \to K^{-} \, 2\pi^{+}) = (8.98 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ BORTOLETTO 87 reports $[\Gamma(B \to D^{\pm} \, \text{anything})/\Gamma_{\text{total}}] \times [B(D^{+} \to K^{-} \, 2\pi^{+})]$ = 0.019 \pm 0.004 \pm 0.002 which we divide by our best value $B(D^{+} \to K^{-} \, 2\pi^{+}) = (8.98 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^0/\overline{D}^0)$ anything $\Gamma(D^0/\overline{D}^0)$

 Γ_{30}/Γ

Created: 5/30/2017 17:23

VALUE	EVTS	DOCUMENT ID		TECN	<u>COMMENT</u>		
0.624±0.029 OUR AV	'ERAGE	Error includes	scale f	factor of	1.3. See th	e ideogram	below.
$0.645 \pm 0.025 \pm 0.006$		¹ GIBBONS					
$0.60\ \pm0.05\ \pm0.01$		² BORTOLET					
$0.50\ \pm0.07\ \pm0.01$		³ ALBRECHT	91H	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use t	the follow	wing data for av	erages,	fits, lim	its, etc. • •	•	
$0.54\ \pm0.07\ \pm0.01$	21k	⁴ BORTOLET					
$0.62 \ \pm 0.19 \ \pm 0.01$		⁵ GREEN	83	CLEO	Repl. by B	ORTOLET	TO 87
¹ GIBBONS 97B rep	orts [Γ($B \rightarrow D^0/\overline{D}^0$	anythin	$_{ig})/\Gamma_{tot}$	$_{\rm al}$] \times [B(D^0	$\rightarrow K^- \tau$	(τ^{+})] =
0.0251 ± 0.0006 =							
$(3.89 \pm 0.04) \times 10^{-6}$				eriment'	s error and	our second	error is
the systematic erro							
² BORTOLETTO 92 reports $[\Gamma(B \to D^0/\overline{D}^0 \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)]$							$-\pi^{+})]$
$= 0.0233 \pm 0.001$	2 ± 0.00	014 which we di	vide by	our bes	st value $B(D)$	0 $^{-}$ K^{-}	$\pi^{+}) =$
$(3.89 \pm 0.04) \times 10^{-2}$) ^{—2} . Ou	ır first error is th	neir exp	eriment'	s error and	our second	error is

the systematic error from using our best value.

² From the difference between K^- and K^+ widths. ALAM 87B measurement relies on lepton-kaon correlations. It does not consider the possibility of $B\overline{B}$ mixing. We have thus removed it from the average.

³ALBRECHT 91H reports $[\Gamma(B \to D^0/\overline{D}^0 \, \text{anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)] = 0.0194 \pm 0.0015 \pm 0.0025$ which we divide by our best value $B(D^0 \to K^-\pi^+) = (3.89 \pm 0.04) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ BORTOLETTO 87 reports $[\Gamma(B \to D^0/\overline{D}^0 \, \text{anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)] = 0.0210 \pm 0.0015 \pm 0.0021$ which we divide by our best value $B(D^0 \to K^-\pi^+) = (3.89 \pm 0.04) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ GREEN 83 reports $[\Gamma(B \to D^0/\overline{D}^0 \, \text{anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)] = 0.024 \pm 0.006 \pm 0.004$ which we divide by our best value $B(D^0 \to K^-\pi^+) = (3.89 \pm 0.04) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^*(2010)^{\pm}$ anyth	hing)/l	total				Γ_{31}/Γ
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.225 ± 0.015 OUR AV	/ERAGE					
$0.247\!\pm\!0.019\!\pm\!0.01$					$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.205\!\pm\!0.019\!\pm\!0.007$		² ALBRECHT	96 D	ARG	$e^+e^- \rightarrow \Upsilon(4S)$	
$0.230\!\pm\!0.028\!\pm\!0.009$		³ BORTOLETT	092	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$	
● ● We do not use	the follo	wing data for ave	rages,	fits, lim	its, etc. • • •	
$0.283\!\pm\!0.053\!\pm\!0.002$		⁴ ALBRECHT	91H	ARG	Sup. by ALBRECHT	96 D
$0.22 \ \pm 0.04 \ ^{+0.07}_{-0.04}$	5200	⁵ BORTOLETTO	O87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.27\ \pm0.06\ ^{+0.08}_{-0.06}$	510	⁶ CSORNA	85	CLEO	Repl. by BORTOLE	TTO 87

- ¹ GIBBONS 97B reports B($B \rightarrow D^*(2010)^+$ anything) = 0.239 \pm 0.015 \pm 0.014 \pm 0.009 using CLEO measured D and D^* branching fractions. We rescale to our PDG 96 values of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ²ALBRECHT 96D reports B($B \rightarrow D^*(2010)^+$ anything) 0.196 \pm 0.019 using CLEO measured B($D^*(2010)^+ \rightarrow D^0\pi^+$) = 0.681 \pm 0.01 \pm 0.013, B($D^0 \rightarrow K^-\pi^+$) = 0.0401 \pm 0.0014, B($D^0 \rightarrow K^-\pi^+\pi^+\pi^-$) = 0.081 \pm 0.005., We rescale to our PDG 96 values of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ BORTOLETTO 92 reports B($B \to D^*(2010)^+$ anything) = 0.25 \pm 0.03 \pm 0.04 using MARK II B($D^*(2010)^+ \to D^0\pi^+$) = 0.57 \pm 0.06 and B($D^0 \to K^-\pi^+$) = 0.042 \pm 0.008. We rescale to our PDG 96 values of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴ ALBRECHT 91H reports 0.348 \pm 0.060 \pm 0.035 from a measurement of [$\Gamma(B \to D^*(2010)^{\pm} \, \text{anything})/\Gamma_{\text{total}}$] \times [B($D^*(2010)^{+} \to D^0 \, \pi^{+}$)] assuming B($D^*(2010)^{+} \to D^0 \, \pi^{+}$) = 0.55 \pm 0.04, which we rescale to our best value B($D^*(2010)^{+} \to D^0 \, \pi^{+}$) = (67.7 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Uses the PDG 90 B($D^0 \to K^- \pi^+$) =0.0371 \pm 0.0025.
- ⁵ BORTOLETTO 87 uses old MARK III (BALTRUSAITIS 86E) branching ratios B($D^0 \rightarrow K^-\pi^+$) = 0.056 \pm 0.004 \pm 0.003 and also assumes B($D^*(2010)^+ \rightarrow D^0\pi^+$) = 0.60 $^{+0.08}_{-0.15}$. The product branching ratio for B($B \rightarrow D^*(2010)^+$) B($D^*(2010)^+ \rightarrow D^0\pi^+$) is 0.13 \pm 0.02 \pm 0.012. Superseded by BORTOLETTO 92.
- ⁶ V-A momentum spectrum used to extrapolate below p=1 GeV. We correct the value assuming B($D^0 \to K^-\pi^+$) = 0.042 \pm 0.006 and B($D^{*+} \to D^0\pi^+$) = 0.6 $^{+0.08}_{-0.15}$. The product branching fraction is B($B \to D^{*+}$ X)·B($D^{*+} \to \pi^+D^0$)·B($D^0 \to K^-\pi^+$) = (68 \pm 15 \pm 9) \times 10⁻⁴.

$\Gamma(D^*(2007)^0 \text{ anything})/\Gamma_{\text{total}}$

 Γ_{32}/Γ

Created: 5/30/2017 17:23

VALUE	DOCUMENT ID	TECN	COMMENT
$0.260 \pm 0.023 \pm 0.015$	¹ GIBBONS 97B	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 1 GIBBONS 97B reports B($B \to D^*(2007)^0$ anything) $0.247 \pm 0.012 \pm 0.018 \pm 0.018$ using CLEO measured D and D^* branching fractions. We rescale to our PDG 96 values of D and D^* branching ratios. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{33}/Γ VALUE TECN COMMENT 0.083 ± 0.008 OUR AVERAGE ¹ ARTUSO 05B CLE2 $0.089 \pm 0.010 \pm 0.008$ ² AUBERT 02G BABR $0.087 \pm 0.005 \pm 0.008$ ³ ALBRECHT 92G ARG $0.065 \pm 0.011 \pm 0.006$ $e^+e^- \rightarrow \Upsilon(4S)$ ⁴ BORTOLETTO90 $0.068 \pm 0.010 \pm 0.006$ 257 CLEO ⁵ HAAS CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.085 \pm 0.022 \pm 0.008$ • • We do not use the following data for averages, fits, limits, etc. • ⁶ GIBAUT $0.094 \pm 0.007 \pm 0.008$ CLE2 Repl. by ARTUSO 05B ⁷ ALBRECHT 87H ARG $e^+e^- \rightarrow \Upsilon(4S)$ $0.094 \pm 0.024 \pm 0.008$

- ¹ ARTUSO 05B reports 0.0905 \pm 0.0025 \pm 0.0140 from a measurement of $[\Gamma(B \to D_s^\pm \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = (4.4 \pm 0.5) \times 10^{-2}$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² AUBERT 02G reports $[\Gamma(B \to D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^{+} \to \phi \pi^{+})] = 0.00393 \pm 0.00007 \pm 0.00021$ which we divide by our best value $B(D_s^{+} \to \phi \pi^{+}) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ALBRECHT 92G reports $[\Gamma(B \to D_s^\pm \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] = 0.00292 \pm 0.00039 \pm 0.00031$ which we divide by our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴ BORTOLETTO 90 reports $[\Gamma(B \to D_s^{\pm} \, \text{anything})/\Gamma_{\text{total}}] \times [B(D_s^{+} \to \phi \pi^{+})] = 0.00306 \pm 0.00047$ which we divide by our best value $B(D_s^{+} \to \phi \pi^{+}) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ HAAS 86 reports $[\Gamma(B \to D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^{+} \to \phi \pi^{+})] = 0.0038 \pm 0.0010$ which we divide by our best value $B(D_s^{+} \to \phi \pi^{+}) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. 64 \pm 22% decays are 2-body.
- ⁶ GIBAUT 96 reports $0.1211 \pm 0.0039 \pm 0.0088$ from a measurement of $[\Gamma(B \to D_s^\pm \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁷ ALBRECHT 87H reports $[\Gamma(B \to D_s^\pm \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] = 0.0042 \pm 0.0009 \pm 0.0006$ which we divide by our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $46 \pm 16\%$ of $B \to D_s$ X decays are 2-body. Superseded by ALBRECHT 92G.

$\Gamma(D_s^{*\pm} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{34}/Γ

Created: 5/30/2017 17:23

VALUE	DOCUMENT ID	TECN	COMMENT
$0.063 \pm 0.009 \pm 0.006$	¹ AUBERT (02G BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ AUBERT 02G reports $[\Gamma(B \to D_s^{*\pm} \text{ anything})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] = 0.00284 \pm 0.00029 \pm 0.00025$ which we divide by our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_s^{*\pm}\overline{D}^{(*)})/\Gamma(D_s^{*\pm}$$
 anything)
Sum over modes

VALUEDOCUMENT IDTECNCOMMENT0.533 \pm 0.037 \pm 0.037AUBERT02GBABR $e^+e^- \rightarrow \Upsilon(4S)$

VALUE	DOCUMENT ID)	TECN	COMMENT	Γ ₃₆ /Γ
seen	$^{ m 1}$ KROKOVNY	03 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ The product branching rat is measured to be $(8.5^{+2}_{-1.9})$		_{s0} (2317	') ⁺)×B	$(D_{s0}(2317)^{-1})$	$^{+} \rightarrow D_{s} \pi^{0}$
$\Gamma(\overline{D}D_{sJ}(2457))/\Gamma_{ ext{total}}$	<u>DOCUMENT ID</u>)	TECN	<u>COMMENT</u>	Γ ₃₇ /Ι
seen	¹ KROKOVNY				Υ(4S)
1 The product branching	ratio for $B(B \rightarrow$	$\overline{D}D$	_{s.1} (2457	$)^+) \times B(D_{s,l})$	r(2457) ⁺ –
$D_s^{*+}\pi^0$, $D_s^+\gamma$) are measur 10^{-4} , respectively.		,	- 0		
$\left[\Gamma(D^{(*)}\overline{D}^{(*)}K^{0})+\Gamma(D^{(*)}K^{0})\right]$	*) \overline{D} (*) K^{\pm})]/ Γ_{tc}	otal			Γ ₃₈ /Γ
VALUE	DOCUMENT ID			COMMENT	
$0.071 {}^{+ 0.025}_{- 0.015} {}^{+ 0.010}_{- 0.009}$	$^{ m 1}$ BARATE	98Q	ALEP	$e^+e^- \rightarrow$	Z
¹ The systematic error includ	les the uncertainties	due to	the cha	rm branchin	g ratios.
$\Gamma(b \to c \overline{c} s) / \Gamma_{\text{total}}$	DOCUMENT IF	.	TECN	COMMENT	Γ ₃₉ /Γ
<i>∨∆LUE</i> 0.219±0.037	. <u>DOCUMENT ID</u> 1 COAN			$e^+e^- \rightarrow$	$\Upsilon(45)$
1 COAN 98 uses $\emph{D-}\ell$ correlat			0		(.0)
$\Gamma(D_s^{(*)}\overline{D}^{(*)})/\Gamma(D_s^{\pm}$ anyt					Γ_{40}/Γ_{33}
Sum over modes.	DOCUMENT ID	1	TECN	COMMENT	10, 00
0.469±0.017 OUR AVERAGE			TLCN	COMMENT	
$0.464 \pm 0.013 \pm 0.015$	AUBERT	02 G	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.56 \begin{array}{c} +0.21 & +0.09 \\ -0.15 & -0.08 \end{array}$	¹ BARATE	98Q	ALEP	$e^+e^- \rightarrow$	Ζ
$0.457 \pm 0.019 \pm 0.037$	GIBAUT	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.58 \pm 0.07 \pm 0.09$	ALBRECHT				
0.56 ± 0.10	BORTOLET				
¹ BARATE 98Q measures B(the third error results from	nty on B($D_{f s}^+ o \phi au$	$τ^+$). W	/e divide	$21+0.009+15-0.008-D$ branching $B(B ightarrow D_{S})$	0.019, where 0.011, where 0.011, ratios and i 0.011, where 0.0
dominated by the uncertain our best value of $B(B \rightarrow$	D_s anything)= 0.1 =	L 0.023			
dominated by the uncertain	D _s anything)= 0.1 <u>-</u>	L 0.023			Γ ₄₁ /Γ
dominated by the uncertain our best value of $B(B \rightarrow$)	<u>TECN</u>	<u>COMMENT</u>	Γ ₄₁ /Γ

90

<5.5 \times 10⁻³

BARATE

98Q ALEP $e^+e^- \rightarrow Z$

$\Gamma(DD^{\pm})/\Gamma_{ ext{total}}$						Γ_{43}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<3.1\times10^{-3}$	90	BARATE	98Q	ALEP	$e^+e^- ightarrow \bar{z}$	7
$\Gamma(D_s^{(*)\pm}\overline{D}^{(*)}X(n))$	$\pi^{\pm}))/\Gamma_{1}$	total				Γ ₄₄ /Γ
VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	
$0.094^{+0.040}_{-0.031}^{+0.034}_{-0.024}$		¹ BARATE	98Q	ALEP	$e^+e^- ightarrow 2$	7

¹ The systematic error includes the uncertainties due to the charm branching ratios.

Γ_{45}/Γ $\begin{array}{cccc} \underline{\textit{DOCUMENT ID}} & \underline{\textit{TECN}} & \underline{\textit{COMMENT}} \\ \text{LESIAK} & 92 & \text{CBAL} & e^+e^- \rightarrow & \varUpsilon(4S) \end{array}$

$$\Gamma(D_{s}^{+}\pi^{-}, D_{s}^{*+}\pi^{-}, D_{s}^{+}\rho^{-}, D_{s}^{*+}\rho^{-}, D_{s}^{+}\pi^{0}, D_{s}^{*+}\pi^{0}, D_{s}^{+}\eta, D_{s}^{*+}\rho^{0}, D_{s}^{+}\eta, D_{s}^{+}\rho^{0}, D_{s}^{+}\omega)/\Gamma_{\text{total}}$$

$$\Gamma_{46}/\Gamma$$
Sum over modes.
$$\frac{CL\%}{\sqrt{4}\times 10^{-4}} \qquad \frac{DOCUMENT\ ID}{\sqrt{4}\times 10^{-4}} \qquad \frac{TECN}{\sqrt{4}\times 10^{-4}} \qquad \frac{COMMENT}{\sqrt{4}\times 10^{-4}} \qquad \frac{COMMENT}{\sqrt{$$

VALUE CL% DOCUMENT ID TECN COMMENT

$$4 \times 10^{-4}$$
90 1 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(D_{s1}(2536)^+ \text{ anything})/\Gamma_{\text{total}}$

 $D_{s1}(2536)^+$ is the narrow *P*-wave D_s^+ meson with $J^P=1^+$.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<0.0095	90	¹ BISHAI	98	CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$

¹ Assuming factorization, the decay constant $f_{D_{-1}^{+}}$ is at least a factor of 2.5 times smaller than $f_{D_s^+}$.

$\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$

 Γ_{48}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.094±0.032 OUR AVE	RAGE	Error includes scale	facto	or of 1.1.		
$1.057 \pm 0.012 \pm 0.040$		$^{ m 1}$ AUBERT				
$1.121\!\pm\!0.013\!\pm\!0.042$		ANDERSON	02	CLE2	e^+e^-	$\Upsilon(4S)$
$1.29 \pm 0.45 \pm 0.01$	27	² MASCHMANN				
$1.24 \pm 0.27 \pm 0.01$	120	³ ALBRECHT				
$1.35 \pm 0.24 \pm 0.01$	52	⁴ ALAM	86	CLEO	$e^+e^ \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ LESIAK 92 set a limit on the inclusive process B(b $\rightarrow~s\,\gamma) < 2.8\times 10^{-3}$ at 90% CL for the range of masses of 892–2045 MeV, independent of assumptions about s-quark hadronization.

 $^{^1}$ ALEXANDER 93B reports < 4.8 imes 10 $^{-4}$ from a measurement of [$\Gamma(B
ightarrow \ D_S^+ \, \pi^-$, $D_s^{*+}\pi^-$, $D_s^{+}\rho^-$, $D_s^{*+}\rho^-$, $D_s^{+}\pi^0$, $D_s^{*+}\pi^0$, $D_s^{+}\eta$, $D_s^{*+}\eta$, $D_s^{*+}\rho^0$, $D_s^{*+}\rho^0$, $D_s^{*+}\omega$, $D_s^{*+}\omega$)/ Γ_{total}] \times [B($D_s^{+}\to\phi\pi^+$)] assuming B($D_s^{+}\to\phi\pi^+$) = 0.037, which we rescale to our best value B($D_s^{+}\to\phi\pi^+$) = 4.5 \times 10⁻². This branching ratio limit provides a model-dependent upper limit $|V_{ub}|/|V_{cb}| < 0.16$ at CL=90%.

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
1.12 \pm 0.06 \pm 0.01 1489 <sup>5</sup> BALEST 95B CLE2 e^+e^- \rightarrow \Upsilon(4S)
1.4 ^{+0.6}_{-0.5} 7 <sup>6</sup> ALBRECHT 85H ARG e^+e^- \rightarrow \Upsilon(4S)
1.1 \pm 0.21 \pm 0.23 46 <sup>7</sup> HAAS 85 CLEO Repl. by ALAM 86
```

- ¹ AUBERT 03F also reports the momentum distribution and helicity of $J/\psi \to \ell^+\ell^-$ in the $\Upsilon(4S)$ center-of-mass frame.
- ² MASCHMANN 90 reports $(1.12 \pm 0.33 \pm 0.25) \times 10^{-2}$ from a measurement of $[\Gamma(B \rightarrow J/\psi(1S) \, \text{anything})/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow e^+e^-)]$ assuming $B(J/\psi(1S) \rightarrow e^+e^-) = 0.069 \pm 0.009$, which we rescale to our best value $B(J/\psi(1S) \rightarrow e^+e^-) = (5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- 3 ALBRECHT 87D reports $(1.07\pm0.16\pm0.22)\times10^{-2}$ from a measurement of $[\Gamma(B\to J/\psi(1S)\,{\rm anything})/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+\,e^-)]$ assuming $B(J/\psi(1S)\to e^+\,e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+\,e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ALBRECHT 87D find the branching ratio for J/ψ not from $\psi(2S)$ to be 0.0081 ± 0.0023 .
- ⁴ALAM 86 reports $(1.09 \pm 0.16 \pm 0.21) \times 10^{-2}$ from a measurement of $[\Gamma(B \to J/\psi(1S) \, \text{anything})/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to \mu^+\mu^-)]$ assuming $B(J/\psi(1S) \to \mu^+\mu^-) = 0.074 \pm 0.012$, which we rescale to our best value $B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ BALEST 95B reports $(1.12 \pm 0.04 \pm 0.06) \times 10^{-2}$ from a measurement of $[\Gamma(B \to J/\psi(1S) \, \text{anything})/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to e^+e^-)]$ assuming $B(J/\psi(1S) \to e^+e^-) = 0.0599 \pm 0.0025$, which we rescale to our best value $B(J/\psi(1S) \to e^+e^-) = (5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. They measure $J/\psi(1S) \to e^+e^-$ and $\mu^+\mu^-$ and use PDG 1994 values for the branching fractions. The rescaling is the same for either mode so we use e^+e^- .

 6 Statistical and systematic errors were added in quadrature. ALBRECHT 85H also report a CL = 90% limit of 0.007 for $B \to J/\psi(1S) + X$ where $m_X < 1$ GeV.

$\Gamma(J/\psi(1S)(\text{direct}) \text{ anything})/\Gamma_{\text{total}}$

 Γ_{49}/Γ

	-,,	
VALUE	DOCUMENT ID TECN COMMENT	
0.0078 ± 0.0004 OUR AVE	AGE Error includes scale factor of 1.1.	
$0.00740 \pm 0.00023 \pm 0.00043$	1 AUBERT 03F BABR $e^{+}e^{-} ightarrow$ γ	
$0.00813 \!\pm\! 0.00017 \!\pm\! 0.00037$	2 ANDERSON 02 CLE2 $e^+e^- ightarrow \gamma$	`(4 <i>S</i>)
• • • We do not use the following	wing data for averages, fits, limits, etc. • • •	
0.0080 ± 0.0008	3 BALEST 95B CLE2 $e^+e^- ightarrow \gamma$	`(4 <i>S</i>)

¹ AUBERT 03F also reports the helicity of $J/\psi \to \ell^+\ell^-$ produced directly in B decay.

⁷ Dimuon and dielectron events used.

² Also reports the measurement of $J/\psi \to \ell^+\ell^-$ polarization produced directly from B decay.

³ BALEST 95B assume PDG 1994 values for sub mode branching ratios. $J/\psi(1S)$ mesons are reconstructed in $J/\psi(1S) \to e^+e^-$ and $J/\psi(1S) \to \mu^+\mu^-$. The $B \to J/\psi(1S)$ X branching ratio contains $J/\psi(1S)$ mesons directly from B decays and also from feeddown through $\psi(2S) \to J/\psi(1S)$, $\chi_{c1}(1P) \to J/\psi(1S)$, or $\chi_{c2}(1P) \to J/\psi(1S)$. Using the measured inclusive rates, BALEST 95B corrects for the feeddown and finds the $B \to J/\psi(1S)$ (direct) X branching ratio.

$\Gamma(\psi(2S))$ anything Γ_{t}	otal					Γ ₅₀ /Γ
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
0.00307 ± 0.00021 OUR A	WERAGE					
$0.00297 \pm 0.00020 \pm 0.000$	20	AUBERT	03F	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.00316 \pm 0.00014 \pm 0.000$	28	$^{ m 1}$ ANDERSON	02	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.0046 \pm 0.0017 \pm 0.001$	1 8	ALBRECHT	87 D	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
ullet $ullet$ We do not use the	following da	ata for averages, fit	ts, lim	its, etc.	• • •	
$0.0034\ \pm0.0004\ \pm0.000$	3 240	² BALEST	95 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Also reports the meas B decay.	surement of	$\psi(2S) \rightarrow \ell^+\ell^-$	polari	zation p	roduced dire	ectly from

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c1}(1P))$

 Γ_{51}/Γ

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
3.55 ± 0.27 OUR AVERAGE	Error i	ncludes scale facto	or of 1	l.3. See	the ideogram below.
$3.33 \pm 0.05 \pm 0.24$		$^{ m 1}$ BHARDWAJ	16	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.67 \pm 0.35 \pm 0.44$		AUBERT	03F	BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$4.35 \pm 0.29 \pm 0.40$		ANDERSON	02	CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the foll	owing da	ta for averages, fit	s, lim	its, etc.	• • •
$3.63 \pm 0.22 \pm 0.34$		² ABE	02L	BELL	Repl. by BHARD- WAJ 16
$3.3 \pm 0.4 \pm 0.1$		³ CHEN	01	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
$4.0 \pm 0.6 \pm 0.4$	112	⁴ BALEST	95 B	CLE2	Repl. by CHEN 01
$10.5 \pm 3.5 \pm 2.5$		⁵ ALBRECHT	92E	ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$

WEIGHTED AVERAGE 3.55±0.27 (Error scaled by 1.3)

HTTP://PDG.LBL.GOV

Page 21

 $^{^2}$ BALEST 95B assume PDG 1994 values for sub mode branching ratios. They find B(B ightarrow $\psi(2S)$ X, $\psi(2S) \rightarrow \ell^{+}\ell^{-}) = 0.30 \pm 0.05 \pm 0.04$ and B(B $\rightarrow \psi(2S)$ X, $\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-}) = 0.37 \pm 0.05 \pm 0.05$. Weighted average is quoted for B(B $\rightarrow \psi(2S)$ X).

$\Gamma(\chi_{c1}(1P)(\text{direct}) \text{ anything})/\Gamma_{\text{total}}$

 Γ_{52}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT					
3.09 ± 0.19 OUR AVERAGE									
$3.03 \pm 0.05 \pm 0.24$	¹ BHARDWAJ	16	BELL	$e^+e^- o \ \varUpsilon(4S)$					
$3.41 \pm 0.35 \pm 0.42$	AUBERT	03F	BABR	$e^+e^- o \ \varUpsilon(4S)$					
$3.1 \pm 0.4 \pm 0.1$	² CHEN	01	CLE2	$e^+e^- o \ \varUpsilon(4S)$					
 ● We do not use the following data for averages, fits, limits, etc. 									
$3.32 \pm 0.22 \pm 0.34$	³ ABE	02L	BELL	Repl. by BHARDWAJ 16					
3.7 ± 0.7	⁴ BALEST	95 B	CLE2	Repl. by CHEN 01					

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c2}(1P))$

 Γ_{53}/Γ

$VALUE$ (units 10^{-4})	ALUE (units 10^{-4}) CL% DOCUMENT ID			TECN	COMMENT		
10.0±1.7 OUR A	Error includes sca	le fact	or of 1.6	5. See the ideogram below.			
$9.8\!\pm\!0.6\!\pm\!1.0$		¹ BHARDWAJ	16	BELL	$e^+e^- o \ \varUpsilon(4S)$		
$21.0\!\pm\!4.5\!\pm\!3.1$					$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$6.9\!\pm\!3.5\!\pm\!0.3$		² CHEN	01	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$		
• • • We do not use the following data for averages, fits, limits, etc. • •							
$18.0^{+2.3}_{-2.8}\pm 2.6$		³ ABE	02L	BELL	Repl. by BHARDWAJ 16		
<38	90	⁴ BALEST	95 B	CLE2	Repl. by CHEN 01		

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ABE 02L uses PDG 01 values for B $(J/\psi(1S) \rightarrow \ell^+\ell^-)$ and B $(\chi_{c1,c2} \rightarrow J/\psi(1S)\gamma)$.

³CHEN 01 reports $0.00414 \pm 0.00031 \pm 0.00040$ from a measurement of $[\Gamma(B \to \chi_{c1}(1P) \, \text{anything})/\Gamma_{\text{total}}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = 0.273 \pm 0.016$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (33.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁴BALEST 95B assume B($\chi_{c1}(1P) \to J/\psi(1S)\gamma$) = (27.3±1.6)×10⁻², the PDG 1994 value. Fit to ψ -photon invariant mass distribution allows for a $\chi_{c1}(1P)$ and a $\chi_{c2}(1P)$ component.

 $^{^5}$ ALBRECHT 92E assumes no $\chi_{c2}(1P)$ production.

 $^{^2}$ CHEN 01 reports $0.00383\pm0.00031\pm0.00040$ from a measurement of $[\Gamma(B\to\chi_{c1}(1P)({\rm direct})\ {\rm anything})/\Gamma_{\rm total}]\times [B(\chi_{c1}(1P)\to\gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=0.273\pm0.016,$ which we rescale to our best value $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(33.9\pm1.2)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ ABE 02L uses PDG 01 values for B $(J/\psi(1S) \rightarrow \ell^+\ell^-)$ and B $(\chi_{c1,c2} \rightarrow J/\psi(1S)\gamma)$.

⁴ BALEST 95B assume PDG 1994 values. $J/\psi(1S)$ mesons are reconstructed in the e^+e^- and $\mu^+\mu^-$ modes. The $B\to \chi_{c1}(1P)$ X branching ratio contains $\chi_{c1}(1P)$ mesons directly from B decays and also from feeddown through $\psi(2S)\to \chi_{c1}(1P)\gamma$. Using the measured inclusive rates, BALEST 95B corrects for the feeddown and finds the $B\to \chi_{c1}(1P)$ (direct) X branching ratio.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ ABE 02L uses PDG 01 values for B $(J/\psi(1S) \rightarrow \ell^+\ell^-)$ and B $(\chi_{c1,c2} \rightarrow J/\psi(1S)\gamma)$.

⁴ BALEST 95B assume B($\chi_{c2}(1P) \rightarrow J/\psi(1S)\gamma$) = $(13.5 \pm 1.1) \times 10^{-2}$, the PDG 1994 value. $J/\psi(1S)$ mesons are reconstructed in the e^+e^- and $\mu^+\mu^-$ modes, and PDG 1994 branching fractions are used. If interpreted as signal, the 35 \pm 13 events correspond to B($B \rightarrow \chi_{c2}(1P)$ X) =(0.25 \pm 0.10 \pm 0.03) \times 10⁻².

$\Gamma(\chi_{c2}(1P)({\sf direct}) \, {\sf anything})/\Gamma_{\sf total}$

 Γ_{54}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
0.75±0.11 OUR AVERAGE				
$0.70 \pm 0.06 \pm 0.10$	¹ BHARDWAJ	16	BELL	$e^+e^- o \ \varUpsilon(4S)$
$1.90 \pm 0.45 \pm 0.29$	AUBERT	03F	BABR	$e^+e^- o \ \varUpsilon(4S)$
• • • We do not use the following	owing data for avera	ges, fi	ts, limits	s, etc. • • •
$1.53^{+0.23}_{-0.28}\pm0.27$	² ABE	02L	BELL	Repl. by BHARDWAJ 16

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ CHEN 01 reports (9.8 \pm 4.8 \pm 1.5) \times 10^{-4} from a measurement of [$\Gamma(B \to \chi_{c2}(1P) \, {\rm anything})/\Gamma_{\rm total}$] \times [B($\chi_{c2}(1P) \to \gamma J/\psi(1S)$)] assuming B($\chi_{c2}(1P) \to \gamma J/\psi(1S)$) = 0.135 \pm 0.011, which we rescale to our best value B($\chi_{c2}(1P) \to \gamma J/\psi(1S)$) = (19.2 \pm 0.7) \times 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ABE 02L uses PDG 01 values for B($J/\psi(1S) \rightarrow \ell^+\ell^-$) and B($\chi_{c1,c2} \rightarrow J/\psi(1S)\gamma$).

$\Gamma(\eta_c(1S))$ anyth	$hing)/\Gamma_{total}$			
VALUE	C1 %	DOCUMENT ID	TECN	COMM

VALUE CL% DOCUMENT ID TECN COMMENT 0.009 90 1 BALEST 95B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(KX(3872), X \rightarrow D^0 \overline{D}{}^0 \pi^0) / \Gamma_{\text{total}}$

 Γ_{56}/Γ

VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT1.22 \pm 0.31 $^{+0.23}_{-0.30}$ 1 GOKHROO06BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(KX(3872), X \rightarrow D^{*0}D^0)/\Gamma_{\text{total}}$

 Γ_{57}/Γ

VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT $\mathbf{0.80 \pm 0.20 \pm 0.10}$ AUSHEV10BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(KX(3940), X \rightarrow D^{*0}D^0)/\Gamma_{total}$

Г₅₈/Г

VALUE (units 10^{-4})CL%DOCUMENT IDTECNCOMMENT<0.6790AUSHEV10BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(KX(3915), X \rightarrow \omega J/\psi)/\Gamma_{\text{total}}$

 Γ_{59}/Γ

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT7.1 \pm 1.3 \pm 3.11 CHOI05BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^{\pm}$ anything)/ Γ_{total}

 Γ_{60}/Γ

() 0// total					90,
VALUE	DOCUMENT ID		TECN	COMMENT	
0.789 ± 0.025 OUR AVERAGE					
$0.82 \pm 0.01 \pm 0.05$	ALBRECHT				
$0.775 \pm 0.015 \pm 0.025$	$^{ m 1}$ ALBRECHT	931	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.85 \pm 0.07 \pm 0.09$	ALAM	87 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following	ng data for average	s, fits,	limits, e	etc. • • •	
seen	² BRODY			$e^+e^- \rightarrow$	
seen	³ GIANNINI	82	CUSB	$e^+e^- ightarrow$	$\Upsilon(4S)$

¹ALBRECHT 93I value is not independent of the sum of $B \to K^+$ anything and $B \to K^-$ anything ALBRECHT 94C values.

 $^{^{1}}$ BALEST 95B assume PDG 1994 values for sub mode branching ratios. $J/\psi(1S)$ mesons are reconstructed in $J/\psi(1S) \rightarrow e^{+}e^{-}$ and $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$. Search region 2960 $<\!m_{\eta_{C}}(1S)$ $<\!3010$ MeV/ $\!c^{2}$.

 $^{^1}$ Measure the near-threshold enhancements in the $(D^0\overline{D}{}^0\pi^0)$ system at a mass 3875.2 \pm 0.7 $^{+0.3}_{-1.6}\pm$ 0.8 MeV/c².

¹ CHOI 05 reports the observation of a near-threshold enhancement in the ωJ/ψ mass spectrum in exclusive $B\to KωJ/ψ$. The new state, denoted as X(3915), is measured to have a mass of $3943\pm11\pm13~{\rm GeV/c^2}$ and a width $\Gamma=87\pm22\pm26~{\rm MeV}$.

² Assuming $\Upsilon(4S) \to B\overline{B}$, a total of $3.38 \pm 0.34 \pm 0.68$ kaons per $\Upsilon(4S)$ decay is found (the second error is systematic). In the context of the standard *B*-decay model, this leads to a value for $(b\text{-quark} \to c\text{-quark})/(b\text{-quark} \to all)$ of $1.09 \pm 0.33 \pm 0.13$.

³ GIANNINI 82 at CESR-CUSB observed $1.58 \pm 0.35~K^0$ per hadronic event much higher than 0.82 ± 0.10 below threshold. Consistent with predominant $b \rightarrow c X$ decay.

$\Gamma(K^+$ anything)/ Γ_{total}					Γ ₆₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.66 ±0.05	$^{ m 1}$ ALBRECHT	94 C	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the follow	ing data for average	es, fits,	limits, e	etc. • • •	
$0.620\pm0.013\pm0.038$	² ALBRECHT				
$0.66 \pm 0.05 \pm 0.07$	² ALAM	87 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Measurement relies on lento	n-kaon correlations	It is fo	r the we	aak decay ye	rtey and does

Measurement relies on lepton-kaon correlations. It is for the weak decay vertex and does not include mixing of the neutral B meson. Mixing effects were corrected for by assuming a mixing parameter r of (18.1 \pm 4.3)%.

² Measurement relies on lepton-kaon correlations. It includes production through mixing of the neutral B meson.

$\Gamma(K^-$ anything) $/\Gamma_{total}$					Γ ₆₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.13 ± 0.04	$^{ m 1}$ ALBRECHT	94C	ARG	$e^+e^- ightarrow$	$\Upsilon(4S)$
• • • We do not use the following	g data for average	s, fits,	limits,	etc. ● ● ●	
$0.165 \pm 0.011 \pm 0.036$	² ALBRECHT				
$0.19 \pm 0.05 \pm 0.02$	² ALAM	87 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^{}m 1}$ Measurement relies on lepton-kaon correlations. It is for the weak decay vertex and does not include mixing of the neutral B meson. Mixing effects were corrected for by assuming a mixing parameter r of $(18.1 \pm 4.3)\%$.

² Measurement relies on lepton-kaon correlations. It includes production through mixing

of the neutral B me	son.					
$\Gamma(K^0/\overline{K}^0)$ anything)	/Γ _{total}					Γ ₆₃ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
0.64 ±0.04 OUR AVE	RAGE					
$0.642 \pm 0.010 \pm 0.042$		$^{ m 1}$ ALBRECHT	94C	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.63 \pm 0.06 \pm 0.06$		ALAM	87 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ ALBRECHT 94C ass	sume a <i>K</i>	$(0/\overline{K}^0)$ multiplicity t	twice	that of <i>l</i>	κ_{S}^{0} .	
$\Gamma(K^*(892)^{\pm}$ anythin	g)/F _{tot}	al				Γ ₆₄ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.182 \pm 0.054 \pm 0.024$		ALBRECHT				$\Upsilon(4S)$
$\Gamma(K^*(892)^0/\overline{K}^*(892)^0$	2) ⁰ anyt	$\sinh(\pi)/\Gamma_{total}$				Γ ₆₅ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.146 \pm 0.016 \pm 0.020$		ALBRECHT	94J	ARG	e^+e^-	$\Upsilon(4S)$
$\Gamma(K^*(892)\gamma)/\Gamma_{\text{total}}$						Γ ₆₆ /Γ
<i>VALUE</i> (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
4.24±0.54±0.32						Υ(4S)
• • • We do not use th	e followii	ng data for averages	s, fits,	limits,	etc. • • •	
<150	90	² LESIAK	92	CBAL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 24		ALBRECHT				
¹ An average of $B(B^-)$		$^*(892)^+\gamma)$ and B(92) $^{f 0}\gamma$) mea	surements re-

ported in COAN 00 by assuming full correlated systematic errors.

²LESIAK 92 set a limit on the inclusive process $B(b \to s\gamma) < 2.8 \times 10^{-3}$ at 90% CL for the range of masses of 892-2045 MeV, independent of assumptions about s-quark hadronization.

$\Gamma(\eta K \gamma)/\Gamma_{\text{total}}$						Γ ₆₇ /Γ
VALUE (units 10^{-6})		DOCUMENT IL)	TECN	COMMENT	
$8.5 \pm 1.3^{+1.2}_{-0.9}$		¹ NISHIDA	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 m_{\etaK} $<$ 2.4 GeV/ $^{\circ}$	2					
$\Gamma(K_1(1400)\gamma)/\Gamma_{\text{total}}$	al					Γ ₆₈ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT II				
<12.7 × 10 ⁻⁵	90	¹ COAN			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the						
$< 1.6 \times 10^{-3}$	90	² LESIAK			$e^+e^- ightarrow$	` '
					1	
$<4.1 \times 10^{-4}$ Assumes equal proc 2 LESIAK 92 set a lii			he $\Upsilon(4.$	S).		
¹ Assumes equal proc ² LESIAK 92 set a ling for the range of man hadronization.	luction of mit on th asses of 8	$^{\circ}B^{+}$ and B^{0} at the inclusive process	he Υ (4. s B(b -	S). $\rightarrow s\gamma$) \leftarrow	< 2.8 × 10	³ at 90% CL about <i>s</i> -quark
¹ Assumes equal proc ² LESIAK 92 set a ling for the range of math hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{\text{tot}}$	luction of mit on th asses of 8	$^{\circ}B^{+}$ and B^{0} at the inclusive process $^{\circ}92-2045$ MeV, in	he $\Upsilon(4.5)$ s B($b=0$ 0	(s) . $\rightarrow s\gamma$	$< 2.8 imes 10^-$ ssumptions $_{6}$	³ at 90% CL
¹ Assumes equal proc ² LESIAK 92 set a ling for the range of machadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{tot}$ VALUE (units 10^{-5})	luction of the asses of 8	$^{\circ}B^{+}$ and B^{0} at the inclusive process $^{\circ}92-2045$ MeV, in $^{\circ}DOCUMENT$ IL	he $\Upsilon(4.8)$ B($b=0.00$	(S) . $\Rightarrow s\gamma \sim s\gamma$	$< 2.8 imes 10^{-1}$ ssumptions a	³ at 90% CL about <i>s</i> -quark
1 Assumes equal proof 2 LESIAK 92 set a line for the range of mathematical hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{\rm tot}$	luction of the asses of 8	$^{\circ}B^{+}$ and B^{0} at the inclusive process $^{\circ}92-2045$ MeV, in	he $\Upsilon(4.8)$ B($b=0.00$	(S) . $\Rightarrow s\gamma \sim s\gamma$	$< 2.8 imes 10^{-1}$ ssumptions a	³ at 90% CL about <i>s</i> -quark
1 Assumes equal proof 2 LESIAK 92 set a ling for the range of mathematical hadronization. $\Gamma(K_{2}^{*}(1430)\gamma)/\Gamma_{tot}$ $VALUE (units 10^{-5})$ $1.66_{-0.53}^{+0.59} \pm 0.13$	luction of the same of 8 al	$^{1}B^{+}$ and B^{0} at the inclusive process $^{1}92-2045$ MeV, in $^{1}DOCUMENT$ ID	he $\Upsilon(4.85 \mathrm{B})$ dependence	S). $\Rightarrow s\gamma$) sent of as $\frac{TECN}{CLE2}$	$< 2.8 \times 10^{-1}$ ssumptions a $\frac{COMMENT}{e^{+}e^{-} \rightarrow }$	³ at 90% CL about <i>s</i> -quark
1 Assumes equal proof 2 LESIAK 92 set a ling for the range of mathematical hadronization. $\Gamma(K_{2}^{*}(1430)\gamma)/\Gamma_{tot}$ $VALUE (units 10^{-5})$ $1.66_{-0.53}^{+0.59} \pm 0.13$	luction of the same of 8 al	$^{1}B^{+}$ and B^{0} at the inclusive process $^{1}92-2045$ MeV, in $^{1}DOCUMENT$ ID	he $\Upsilon(4.8)$ s B($b=0.00$) dependence 0.00	S). $\rightarrow s\gamma$) sent of as $\frac{TECN}{CLE2}$, limits, s	$< 2.8 \times 10^{-1}$ ssumptions a $\frac{COMMENT}{e^{+}e^{-}}$ etc. • •	3 at 90% CL about s -quark Γ_{69}/Γ Γ
¹ Assumes equal proc ² LESIAK 92 set a ling for the range of mach hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{tot}$ $VALUE \text{ (units } 10^{-5}\text{)}$ $1.66_{-0.53}^{+0.59} \pm 0.13$ • • • We do not use the <83	luction of mit on the asses of 8 al CL% ne following 90	e inclusive process 92–2045 MeV, inc DOCUMENT II 1 COAN ng data for averag	he $\Upsilon(4.8)$ s B($b=0.00$) dependence 0.00 0.00 ges, fits, 0.00	S). $\Rightarrow s\gamma$) sent of as $\frac{TECN}{CLE2}$, limits, α	$< 2.8 \times 10^{-1}$ ssumptions a $\frac{COMMENT}{e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	3 at 90% CL about s -quark Γ_{69}/Γ $\Upsilon(4S)$
¹ Assumes equal proc ² LESIAK 92 set a ling for the range of mach hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{tot}$ $VALUE \text{ (units } 10^{-5}\text{)}$ $1.66_{-0.53}^{+0.59} \pm 0.13$ • • • We do not use the	luction of mit on the asses of 8 al CL% ne following 90 fitted signification of the signi	$^{+}$ and 0 at the inclusive process 92–2045 MeV, including $^{-}$ COAN and data for average ALBRECHT and yield of $^{+}$ 15.9 $^{+}$	he $\Upsilon(4.85 \text{ B})$ be $\Upsilon(4.85 \text{ B})$ be dependently 0.000 ges, fits, 0.000 ges, fits, 0.000 ges, 0.0000 ges, 0.000 ges, 0.000 ges, 0.0000 ges, 0.0000 ges,	S). $\Rightarrow s\gamma$) ent of as $\frac{TECN}{CLE2}$, limits, α ARG	$< 2.8 \times 10^{-1}$ ssumptions a $\frac{COMMENT}{e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	3 at 90% CL about s -quark Γ_{69}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ tamination by
¹ Assumes equal process LESIAK 92 set a ling for the range of math hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{tot}$ $VALUE \text{ (units } 10^{-5}\text{)}$ $1.66_{-0.53}^{+0.59} \pm 0.13$ • • • We do not use the case of the company of the compan	luction of mit on the asses of 8 al CL% ne following 90 fitted significate consists.	$^{+}$ and 0 at the inclusive process 92–2045 MeV, including $^{-}$ COAN and data for average ALBRECHT and yield of $^{+}$ 15.9 $^{+}$	he $\Upsilon(4.85 \text{ B})$ be $\Upsilon(4.85 \text{ B})$ be dependently 0.000 ges, fits, 0.000 ges, fits, 0.000 ges, 0.0000 ges, 0.000 ges, 0.000 ges, 0.0000 ges, 0.0000 ges,	S). $\Rightarrow s\gamma$) ent of as $\frac{TECN}{CLE2}$, limits, α ARG	$< 2.8 \times 10^{-1}$ ssumptions a $\frac{COMMENT}{e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	3 at 90% CL about s -quark Γ_{69}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ tamination by
1 Assumes equal prod 2 LESIAK 92 set a lin for the range of mathematical hadronization. $\Gamma(K_2^*(1430)\gamma)/\Gamma_{tot}$ VALUE (units 10 ⁻⁵) 1.66 + 0.59 ± 0.13 • • • We do not use the companion of the companion o	luction of mit on the asses of 8 al CL% ne following 90 fitted significate consists.	$^{+}$ and 0 at the inclusive process 92–2045 MeV, including $^{-}$ COAN and data for average ALBRECHT and yield of $^{+}$ 15.9 $^{+}$	he $\Upsilon(4.85 \text{ B})$ be dependently of the second of the sec	S). $\rightarrow s\gamma$) sent of as $\frac{TECN}{S}$ CLE2 Ilimits, and ARG Ints. A second value and $\frac{TECN}{S}$	$< 2.8 \times 10^{-1}$ ssumptions a $\frac{COMMENT}{e^{+}e^{-}} \rightarrow \frac{e^{+}e^{-}}{e^{+}e^{-}} \rightarrow \frac{e^{+}e^{-}}{e^{-}e^{-}}$ earch for conssumes no conssumes no constant.	3 at 90% CL about s -quark Γ_{69}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ tamination by ontamination. Γ_{70}/Γ

 $^{^1}$ LESIAK 92 set a limit on the inclusive process B(b $\rightarrow s\gamma) < 2.8 \times 10^{-3}$ at 90% CL for the range of masses of 892–2045 MeV, independent of assumptions about s-quark hadronization.

¹Uses B(
$$K_3^*(1780) \rightarrow \eta K$$
) = $0.11^{+0.05}_{-0.04}$.

 $\Gamma(K_4^*(2045)\gamma)/\Gamma_{total}$ VALUE

21.0 × 10⁻³

22. CBAL $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ LESIAK 92 set a limit on the inclusive process B(b $\rightarrow s\gamma) < 2.8 \times 10^{-3}$ at 90% CL for the range of masses of 892–2045 MeV, independent of assumptions about s-quark hadronization.

$\Gamma(K\eta'(958))/\Gamma_{\text{tot}}$	al	DOCUME	NT ID		TECN	<u>COMMENT</u>	Γ ₇₃ /Γ
$(8.3^{+0.9}_{-0.8}\pm 0.7)\times 10^{-1}$						$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro							(10)
		una D	ut the	, (1.	<i>.</i>		г /г
$\Gamma(K^*(892)\eta'(958))$	•	DOCUME	NT ID		TECN	COMMENT	Γ ₇₄ /Γ
VALUE (units 10 ⁻⁶)						COMMENT	
$4.1^{+1.0}_{-0.9}\pm0.5$						$e^+e^- \rightarrow$	T(4S)
• • • We do not use							20(4.6)
<22						$e^+e^- \rightarrow$	1 (45)
¹ Assumes equal pro	oduction of B	and B°	at the	7 (43	5).		
$\Gamma(K\eta)/\Gamma_{total}$							Γ ₇₅ /Γ
VALUE 10=6	<u>CL%</u>	DOCUME	NT ID		TECN	<u>COMMENT</u> ⊥ _	20(1.5)
<5.2 × 10 ⁻⁶	90 1					$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	oduction of B^{\dagger}	and B°	at the	$\Upsilon(43)$	5).		
$\Gamma(K^*(892)\eta)/\Gamma_{tot}$	al						Γ ₇₆ /Γ
VALUE		<u>DOCUME</u>	NT ID		<u>TECN</u>	<u>COMMENT</u>	
$(1.80^{+0.49}_{-0.43}\pm0.18) \times$	10⁻⁵	RICHIC	HI	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	oduction of B^+	and B^0	at the	Υ(4S	S).		
$\Gamma(K\phi\phi)/\Gamma_{total}$							Γ ₇₇ /Γ
VALUE (units 10^{-6})		DOCUME	NT ID		TECN	COMMENT	• • • • • • • • • • • • • • • • • • • •
$2.3^{+0.9}_{-0.8}\pm0.3$						$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro							` ,
	oddetion or end	inged dire	neutru	<i>D</i>	icson pe	and 1505p	
$\Gamma(\overline{b} \to \overline{s}\gamma)/\Gamma_{\text{total}}$							Γ ₇₈ /Γ
<u>VALUE (units 10⁻⁴)</u> 3.49±0.19 OUR AVE	DOCUMENT RAGE	<u>ID</u>	TECN	COI	MMENT		
	^{1,2} SAITO	15	BELL	e^+	$e^- \rightarrow$	$\Upsilon(4S)$	
	^{1,3} LEES		BABR	e^+	$e^- o$	$\Upsilon(4S)$	
	^{1,4} LEES		BABR				
	^{1,5} LIMOSANI		BELL				
	^{1,6} AUBERT		BABR			` '	
	^{1,7} CHEN		CLE2			` '	
• • • We do not use							
$2.30\!\pm\!0.08\!\pm\!0.30$	⁸ DEL-AMO-					` '	
$4.3 \pm 0.3 \pm 0.7$	9 AUBERT						ANCHEZ 10M
	^{,10} AUBERT,B		BABR	Re	pl. by L	EES 12V	
-0.40	^{,11} AUBERT,B		BABR	Re	pl. by L	EES 12U	
	,12 KOPPENB	URG04	BELL	Rep	pl. by L	IMOSANI 09)
$3.36 \pm 0.53 ^{+0.65}_{-0.68}$	¹³ ABE	01F	BELL	Re	pl. by S	AITO 15	
$2.32\!\pm\!0.57\!\pm\!0.35$	ALAM	95	CLE2	Re	pl. by C	HEN 01C	
HTTP://PDG.LBI	L.GOV	Page	e 27		Crea	ted: 5/30/	2017 17:23

- 1 We extrapolate the measured value to $E_{\gamma}>1.6$ GeV using the method of BUCH-MUELLER 06 (average of three theoretical models).
- 2 SAITO 15 measured (3.51 \pm 0.17 \pm 0.33) \times 10 $^{-4}$ using a sum-of-exclusive approach in which 38 of the hadronic final states with $m_{\ensuremath{\chi_s}} < 2.8~\mbox{GeV/c}^2$ are reconstructed. The cut of minimum photon energy is $E_{\gamma} > 1.9~\mbox{GeV}.$
- 3 Reports (3.29 \pm 0.19 \pm 0.48) imes 10 $^{-4}$ for $E_{\gamma}~>$ 1.9 GeV.
- 4 Reports (3.21 \pm 0.15 \pm 0.29 \pm 0.08) \times 10 $^{-4}$ for 1.8 < E_{γ} < 2.8 GeV, where the last systematic uncertainty is for model dependency. Results with other cutoffs are also reported.
- 5 The measurement reported is (3.45 \pm 0.15 \pm 0.40) \times 10 $^{-4}$ for $E_{\gamma} >$ 1.7 GeV.
- ⁶ Uses a fully reconstructed *B* meson as a tag on the recoil side. The measurement reported is $(3.66 \pm 0.85 \pm 0.60) \times 10^{-4}$ for $E_{\gamma} > 1.9$ GeV.
- ⁷ The measurement reported is $(3.21 \pm 0.43 ^{+0.32}_{-0.29}) \times 10^{-4}$ for $E_{\gamma} > 2.0$ GeV.
- ⁸ Measured using sums of seven exclusive final states $B \to X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range 0.5–2.0 GeV/c².
- ⁹ Measured using sums of seven exclusive final states $B \to X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range 0.6–1.8 GeV/c².
- 10 The measurement reported is $(3.67\pm0.29\pm0.45) imes10^{-4}$ for $E_{\gamma}>1.9$ GeV.
- 11 The measurement reported is (3.27 \pm 0.18 $^{+0.55}_{-0.42})\times 10^{-4}\,$ for E $_{\gamma}^{'}>$ 1.9 GeV.
- 12 The measurement reported is (3.55 \pm 0.32 \pm 0.32) \times 10 $^{-4}$ for $E_{\gamma} >$ 1.8 GeV.
- 13 ABE 01F reports their systematic errors $(\pm 0.42 ^{+0.50}_{-0.54}) \times 10^{-4}$, where the second error is due to the theoretical uncertainty. We combine them in quadrature.

$\Gamma(\overline{b} ightarrow \overline{d} \gamma) / \Gamma_{\text{total}}$ Γ_{79} / Γ

VALUE (units 10⁻⁶) DOCUMENT ID T

TECN COMMENT

Created: 5/30/2017 17:23

9.2\pm2.0\pm2.3 1 DEL-AMO-SA...10M BABR $e^+e^- \rightarrow \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

14 ± 5 ± 4 2 AUBERT 090 BABR Repl. by DEL-AMO-SANCHEZ 10M

- ¹ Measured using sums of seven exclusive final states $B \to X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range 0.5–2.0 GeV/c².
- ² Measured using sums of seven exclusive final states $B \to X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range 0.6–1.8 GeV/c².

$\Gamma(\overline{b} o \overline{d}\gamma)/\Gamma(\overline{b} o \overline{s}\gamma)$ Γ_{79}/Γ_{78}

VALUE DOCUMENT ID TECN COMMENT

**0.040 \pm 0.009 \pm 0.010

1 DEL-AMO-SA..10M BABR e^+e^- \rightarrow \Upsilon(4S)**

• • • We do not use the following data for averages, fits, limits, etc. • • •

- ¹ Measured using sums of seven exclusive final states $B \to X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range 0.5–2.0 GeV/c².
- ² Measured using sums of seven exclusive final states $B \to X_{d(s)} \gamma$ where $X_{d(s)}$ is a nonstrange (strange) charmless hadronic system in mass range 0.6–1.8 GeV/c².

 $\Gamma(\overline{b} \to \overline{s} \text{gluon})/\Gamma_{\text{total}}$ VALUE CL% EVTS DOCUMENT ID TECN COMMENT < 0.068 90 1 COAN 98 CLE2 $e^+e^- \to \Upsilon$ 0

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.08 2 2 ALBRECHT 95D ARG $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\eta \text{ anything})/\Gamma_{\text{total}}$

 Γ_{81}/Γ

 Γ_{80}/Γ

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
$2.61\pm0.30^{+0.44}_{-0.74}$		¹ NISHIMURA	10	BELL	$e^+e^- \rightarrow \gamma(4S)$	5)

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.69\pm0.29^{+0.36}_{-0.62}$ 2 NISHIMURA 10 BELL $e^+e^-
ightarrow \varUpsilon(4S)$

<4.4 90 ³ BROWDER 98 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\eta' \text{ anything})/\Gamma_{\text{total}}$

 Γ_{82}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
4.2±0.9 OUR AVERAGE				
$3.9 \pm 0.8 \pm 0.9$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.6 \pm 1.1 \pm 0.6$	² BONVICINI	03	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	g data for averages	s, fits,	limits, e	etc. ● ●
$6.2\!\pm\!1.6^{igoplus 1.3}_{-2.0}$	³ BROWDER	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ AUBERT,B 04F reports branching ratio $B\to \eta' X_{\mathcal{S}}$ for high momentum η' between 2.0 and 2.7 GeV/c in the $\Upsilon(4S)$ center-of-mass frame. $X_{\mathcal{S}}$ represents a recoil system consisting of a kaon and zero to four pions.

$\Gamma(K^+ \text{gluon (charmless)})/\Gamma_{\text{total}}$

 Γ_{83}/Γ

Created: 5/30/2017 17:23

VALUE (units	10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
<1.87		90	¹ DEL-AMO-SA11	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
1 5	~± ~		2 6 14 / 2		

 1 $B \rightarrow K^{+}$ X with $m_{X} < 1.69$ GeV/c 2 .

¹ COAN 98 uses D- ℓ correlation.

²ALBRECHT 95D use full reconstruction of one B decay as tag. Two candidate events for charmless B decay can be interpreted as either $b \rightarrow s$ gluon or $b \rightarrow u$ transition. If interpreted as $b \rightarrow s$ gluon they find a branching ratio of ~ 0.026 or the upper limit quoted above. Result is highly model dependent.

 $^{^{1}\, \}mathrm{Uses} \; B \rightarrow \; \eta \, X_{\mathrm{S}} \; \mathrm{with} \; 0.4 < m_{\ensuremath{X_{\mathrm{S}}}} < 2.6 \; \mathrm{GeV/c^{2}}.$

²Uses $B \rightarrow \eta X_s$ with 1.8 < $m_{X_s} < 2.6 \text{ GeV/c}^2$.

 $^{^3}$ BROWDER 98 search for high momentum $B \to \eta X_{\mathcal{S}}$ between 2.1 and 2.7 GeV/c.

²BONVICINI 03 observed a signal of 61.2 \pm 13.9 events in $B \to \eta' X_{nc}$ production for high momentum η' between 2.0 and 2.7 GeV/c in the $\Upsilon(4S)$ center-of-mass frame. The X_{nc} denotes "charmless" hadronic states recoiling against η' . The second error combines systematic and background subtraction uncertainties in quadrature.

³BROWDER 98 observed a signal of 39.0 ± 11.6 events in high momentum $B \to \eta' X_S$ production between 2.0 and 2.7 GeV/c. The branching fraction is based on the interpretation of $b \to sg$, where the last error includes additional uncertainties due to the color-suppressed $b \to \text{backgrounds}$.

```
\Gamma(K^0 gluon (charmless))/\Gamma_{\text{total}}
                                                                                                             \Gamma_{84}/\Gamma
VALUE (units 10^{-4})
                                                DOCUMENT ID
1.95^{+0.51}_{-0.45}\pm0.50
                                              <sup>1</sup> DEL-AMO-SA..11 BABR e^+e^- \rightarrow \Upsilon(4S)
  \Gamma(\rho\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{85}/\Gamma
VALUE (units 10^{-6})
                                 CL%
                                               DOCUMENT ID
                                                                           TECN COMMENT
     1.39±0.25 OUR AVERAGE Error includes scale factor of 1.2.
    1.73^{+0.34}_{-0.32}\pm0.17
                                           1,2 AUBERT
                                                                   08BH BABR e^+e^- \rightarrow \Upsilon(4S)
    1.21^{+0.24}_{-0.22}\pm0.12
                                          <sup>1,2</sup> TANIGUCHI
                                                                           BELL e^+e^- \rightarrow \Upsilon(4S)
                                                                   80
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet
    1.36^{+0.29}_{-0.27}\pm0.10
                                          <sup>1,3</sup> AUBERT
                                                                   07L BABR Repl. by AUBERT 08BH
                                          <sup>1,3</sup> AUBERT
                                90
                                                                   04C BABR Repl. by AUBERT 07L
 < 1.9
                                90
                                          1,4 COAN
                                                                           CLE2 e^+e^- \rightarrow \Upsilon(4S)
 <14
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>2</sup> Assumes \Gamma(B \to \rho \gamma) = \Gamma(B^+ \to \rho^+ \gamma) = 2 \Gamma(B^0 \to \rho^0 \gamma) and uses lifetime ratio of
     \tau_{B^+}/\tau_{B^0} = 1.071 \pm 0.009.
   <sup>3</sup> Assumes \Gamma(B \to \rho \gamma) = \Gamma(B^+ \to \rho^+ \gamma) = 2 \Gamma(B^0 \to \rho^0 \gamma) and uses lifetime ratio of
     \tau_{B^+}/\tau_{B^0} = 1.083 \pm 0.017.
   ^4 COAN 00 reports B(B 
ightarrow \rho\gamma)/B(B 
ightarrow K^*(892)\gamma) < 0.32 at 90%CL and scaled by
     the central value of B(B \to K^*(892)\gamma)=(4.24 \pm 0.54 \pm 0.32) \times 10<sup>-5</sup>.
\Gamma(\rho\gamma)/\Gamma(K^*(892)\gamma)
                                                                                                          \Gamma_{85}/\Gamma_{66}
VALUE (units 10^{-2})
                                                DOCUMENT ID
                                                                            TECN COMMENT
3.02^{+0.60}_{-0.55}^{+0.26}_{-0.28}
                                                                            BELL e^+e^- \rightarrow \Upsilon(4S)
                                                TANIGUCHI
\Gamma(\rho/\omega\gamma)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{86}/\Gamma
VALUE (units 10^{-6})
                               CL%
                                              DOCUMENT ID
                                                                          TECN COMMENT
   1.30±0.23 OUR AVERAGE Error includes scale factor of 1.2.
   1.63^{+0.30}_{-0.28}\pm0.16
                                       1,2,3 AUBERT
                                                                   08BH BABR e^+e^- \rightarrow \Upsilon(4S)
   1.14\pm0.20^{\,+\,0.10}_{\,-\,0.12}
                                         <sup>1,3</sup> TANIGUCHI
                                                                  80
                                                                         BELL e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                            <sup>4</sup> AUBERT
                                                                  07L BABR Repl. by AUBERT 08BH
   1.32 ^{+\, 0.34\, +\, 0.10}_{-\, 0.31\, -\, 0.09}
                                            <sup>4</sup> MOHAPATRA 06
                                                                          BELL Repl. by TANIGUCHI 08
                                            <sup>4</sup> AUBERT
   0.6 \pm 0.3 \pm 0.1
                                                                   05
                                                                         BABR Repl. by AUBERT 07L
                                            <sup>4</sup> MOHAPATRA 05 BELL e^+e^- \rightarrow \Upsilon(4S)
 < 1.4
   <sup>1</sup> Assumes \Gamma(B \to \rho \gamma) = \Gamma(B^+ \to \rho^+ \gamma) = 2 \Gamma(B^0 \to \rho^0 \gamma) and uses lifetime ratio of
     \tau_{R^+}/\tau_{R^0} = 1.071 \pm 0.009
   <sup>2</sup> Also reports |V_{td}/V_{ts}| = 0.233^{+0.025}_{-0.024}^{+0.022}_{-0.021}
   <sup>3</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>4</sup> Assumes \Gamma(B \to \rho \gamma) = \Gamma(B^+ \to \rho^+ \gamma) = 2 \Gamma(B^0 \to \rho^0 \gamma) and uses lifetime ratio of
     \tau_{R^+}/\tau_{R^0} = 1.083 \pm 0.017.
```

Page 30

Created: 5/30/2017 17:23

HTTP://PDG.LBL.GOV

$\Gamma(ho/\omega\gamma)/\Gamma(K^*$ (892) \cdot	$\gamma)$					Γ_{86}/Γ_{66}
VALUE (units 10^{-2}) CI	<u> 1</u>	DOCUMENT ID		TECN	COMMENT	
$2.84 \pm 0.50 ^{+0.27}_{-0.29}$	1 -	ΓΑΝΙGUCHI	08 1	BELL	$e^+e^- \rightarrow 7$	r(4 <i>S</i>)
• • We do not use the	following c	lata for average	s, fits,	, limits,	etc. • • •	
< 3.5 90	1 (MOHAPATRA	05 I	BELL	Repl. by TA	NIGUCHI 08
1 Also reports $\left V_{\it td} \right. / V$	$_{ts} =0.195$	$5^{+0.020}_{-0.019}\pm 0.01$.5.			
$\Gamma(\pi^{\pm} \text{ anything})/\Gamma_{ ext{tota}})$		DOCUMENT ID		TECN	COMMENT	Γ ₈₇ /Γ
3.585 ± 0.025 ± 0.070		ALBRECHT				$\Upsilon(4S)$
1 ALBRECHT 93 exclusion 0.025 \pm 0.080.						
$\Gamma(\pi^0$ anything $)/\Gamma_{ m total}$						Γ ₈₈ /Γ
VALUE		DOCUMENT ID				2(- 2)
2.35±0.02±0.11					$e^+e \rightarrow 7$	` '
1 From fully inclusive π^0 $ (\eta \ anything) / \Gamma_{total} $		DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₈₉ /Γ
$0.176 \pm 0.011 \pm 0.012$		KUBOTA	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(ho^0$ anything)/ $\Gamma_{ ext{total}}$		DOCUMENT ID		TECN	COMMENT	Γ ₉₀ /Γ
0.208±0.042±0.032					$e^+e^- \rightarrow$	
$\Gamma(\omega \text{ anything})/\Gamma_{ ext{total}}$		-				Γ ₉₁ /Γ
/ALUE	CL%	DOCUMENT ID			· ·	
<0.81	90	ALBRECHT	94J	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$(\phi \text{ anything})/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₉₂ /Γ
0.0343±0.0012 OUR AVE	RAGE	<u> </u>			<u> </u>	
$0.0353 \pm 0.0005 \pm 0.0030$		HUANG				
$0.0341 \pm 0.0006 \pm 0.0012$		AUBERT				
$0.0390 \pm 0.0030 \pm 0.0035$ $0.023 \pm 0.006 \pm 0.005$		ALBRECHT BORTOLETT				
$\Gamma(\phi K^*(892))/\Gamma_{\text{total}}$						Γ ₉₃ /Γ
<i>∨ALUE</i> <2.2 × 10 ⁻⁵	<u>CL%</u>	DOCUMENT ID		TECN	-	
<2.2 x 10^{—5} ¹ Assumes equal produc						
			. / (-	<i>J</i>).		- /-
$\bar{x}(\pi^+)$ gluon (charmles	-					Γ ₉₅ /Γ
/ALUE (units 10 ⁻⁴)		DOCUMENT ID				
$3.72^{f +0.50}_{f -0.47}{\pm 0.59}$	1	L DEL-AMO-SA	11	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^1B \rightarrow \ \pi^+ X$ with m_X	< 1.71 G	${\rm eV/c^2}$.				

$\Gamma(\Lambda_c^+ / \overline{\Lambda}_c^- \text{ anything}) / \Gamma_{\text{total}}$ TECN COMMENT $3.54\pm0.32^{+0.19}_{-0.18}$ ¹ AUBERT 07C BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² CRAWFORD $6.4 \pm 0.8 \pm 0.8$ 14 ± 9 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ ⁴ ALAM <11.2 90 1 AUBERT 07C reports 0.045 \pm 0.003 \pm 0.012 from a measurement of [$\Gamma(B ightarrow$ Λ_c^+ / $\overline{\Lambda}_c^-$ anything)/ Γ_{total}] \times [B($\Lambda_c^+ \rightarrow pK^-\pi^+$)] assuming B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ²CRAWFORD 92 result derived from lepton baryon correlations. Assumes all charmed baryons in B^0 and B^{\pm} decay are Λ_c . ³ ALBRECHT 88E measured B($B \to \Lambda^+_{C} X$)·B($\Lambda^+_{C} \to p K^- \pi^+$) = (0.30 ± 0.12 ± 0.06)% and used B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (2.2±1.0)% from ABRAMS 80 to obtain above number. 4 Assuming all baryons result from charmed baryons, ALAM 86 conclude the branching fraction is $7.4 \pm 2.9\%$. The limit given above is model independent. $\Gamma(\Lambda_c^+ \text{ anything})/\Gamma(\overline{\Lambda}_c^- \text{ anything})$ $0.19 \pm 0.13 \pm 0.04$ ¹ AMMAR 97 uses a high-momentum lepton tag $(P_{\ell} > 1.4 \, \text{GeV}/c^2)$. $\Gamma(\overline{\Lambda}_{c}^{-}\mu^{+} \text{ anything})/\Gamma(\overline{\Lambda}_{c}^{-} \text{ anything})$ Γ_{101}/Γ_{98} DOCUMENT IDTECNCOMMENTLEES12BABR $e^+e^- \rightarrow \Upsilon(4S)$ VALUE (units 10^{-2}) $-2.0\pm2.0\pm1.9$ $\Gamma\big(\overline{\varLambda}_c^-\ell^+ \, {\rm anything}\big)/\Gamma\big(\varLambda_c^+ \, / \, \overline{\varLambda}_c^- \, {\rm anything}\big)$ DOCUMENT ID TECN COMMENT $< 2.5 \times 10^{-2}$ 12 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $\Lambda_c^+ \ / \ \overline{\Lambda}_c^- \text{ anything}) = (1.2 \pm 0.7 \pm 0.4) \times 10^{-2}.$ $\frac{\Gamma(\overline{\Lambda}_{c}^{-}e^{+} \text{ anything})/\Gamma(\Lambda_{c}^{+}/\overline{\Lambda}_{c}^{-} \text{ anything})}{\frac{VALUE}{<\mathbf{0.05}}} \frac{\Gamma_{100}}{1 \text{ BONVICINI}} \frac{\Gamma_{100}}{98} \frac{\Gamma_{100}}{\Gamma_{100}}$ Γ_{100}/Γ_{96}

 $^{\mathrm{I}}$ BONVICINI 98 uses the electron with momentum above 0.6 GeV/c.

 $\Gamma(\overline{\Lambda}_c^- e^+ \text{ anything})/\Gamma(\overline{\Lambda}_c^- \text{ anything})$ $VALUE \text{ (units } 10^{-2})$ 1 LEES $12 \text{ BABR } e^+ e^- \rightarrow \Upsilon(4S)$

 $^{^{1}}$ Uses the full reconstruction of the recoiling B in a hadronic decay as a tag.

$\Gamma(\overline{\Lambda}_c^-\ell^+ \text{ anything})/\Gamma(\overline{\Lambda}_c^- \text{ anything})$

 Γ_{99}/Γ_{98}

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$<3.5 \times 10^{-2}$	90	¹ LEES	12	BABR	$e^+e^- ightarrow \Upsilon(4S)$

¹ LEES 12 quotes also the measurement $\Gamma(B \to \overline{\Lambda}_c^- \ell^+ \text{ anything})/\Gamma(B \to \overline{\Lambda}_c^- \text{ anything})$ = $(1.7 \pm 1.0 \pm 0.6) \times 10^{-2}$.

$\Gamma(\overline{\Lambda}_c^- p \text{ anything})/\Gamma(\Lambda_c^+ / \overline{\Lambda}_c^- \text{ anything})$

 Γ_{102}/Γ_{96}

VALUE	DOCUMENT ID	TECN COMMENT
0.57±0.05±0.05	BONVICINI 98	$\overline{CLE2} \ \overline{e^+e^- \rightarrow \ \varUpsilon(4S)}$

$\Gamma(\overline{\Lambda}_c^- p e^+ \nu_e) / \Gamma(\overline{\Lambda}_c^- p \text{ anything})$

 $\Gamma_{103}/\Gamma_{102}$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.04	90	¹ BONVICINI	98	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹BONVICINI 98 uses the electron with momentum above 0.6 GeV/c.

$\Gamma(\overline{\Sigma}_c^{--} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{104}/Γ

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
$0.0033 \pm 0.0017 \pm 0.0002$	77	¹ PROCARIO	94	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ PROCARIO 94 reports $[\Gamma(B \to \overline{\Sigma}_c^{--} \text{ anything})/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^-\pi^+)] = 0.00021 \pm 0.00008 \pm 0.00007$ which we divide by our best value $B(\Lambda_c^+ \to pK^-\pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Sigma}_c^- \text{ anything})/\Gamma_{\text{total}}$

 Γ_{105}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<8 × 10 ⁻³	90	¹ PROCARIO	94	CLE2	$e^+e^- ightarrow \Upsilon(4S)$

¹ PROCARIO 94 reports $[\Gamma(B \to \overline{\Sigma}_c^- \text{ anything})/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^-\pi^+)] < 0.00048$ which we divide by our best value $B(\Lambda_c^+ \to pK^-\pi^+) = 6.35 \times 10^{-2}$.

$\Gamma(\overline{\Sigma}_c^0 \text{ anything})/\Gamma_{\text{total}}$

 Γ_{106}/Γ

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>
$0.0036\pm0.0017\pm0.0002$	76	¹ PROCARIO	94	CLE2	$e^+e^- ightarrow \Upsilon(4S)$

¹ PROCARIO 94 reports $[\Gamma(B \to \overline{\Sigma}_c^0 \text{ anything})/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^-\pi^+)] = 0.00023 \pm 0.00008 \pm 0.00007$ which we divide by our best value $B(\Lambda_c^+ \to pK^-\pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Sigma}_c^0 N(N = p \text{ or } n))/\Gamma_{\text{total}}$

 Γ_{107}/Γ

Created: 5/30/2017 17:23

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$<1.2 \times 10^{-3}$	90	¹ PROCARIO	94	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ PROCARIO 94 reports < 0.0017 from a measurement of $[\Gamma(B \to \overline{\Sigma}_c^0 N(N = p \text{ or } n))/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \to pK^-\pi^+) = 0.043$, which we rescale to our best value $B(\Lambda_c^+ \to pK^-\pi^+) = 6.35 \times 10^{-2}$.

$\Gamma(\Xi_{c}^{0})$ anything, $\Xi_{c}^{0} \to \Xi_{c}^{-}\pi^{+}/\Gamma_{total}$

 Γ_{108}/Γ

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	,		_	
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT	
0.193±0.030 OUR AVERAGE	Error includes scale fac	ctor of 1.1.		
$0.211\!\pm\!0.019\!\pm\!0.025$	¹ AUBERT,B 0	5м BABR	$e^+e^- ightarrow \Upsilon(4S)$	
$0.144 \pm 0.048 \pm 0.021$	² BARISH 9 ⁻	7 CLE2	$e^+e^- \rightarrow \Upsilon(4S)$	

 $^{^{1}}$ The yield is obtained by requiring the momentum P < 2.15 GeV/c.

$\Gamma(\Xi_c^+, \Xi_c^+ \to \Xi^- \pi^+ \pi^+)/\Gamma_{\text{total}}$

 Γ_{109}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
$0.453 \pm 0.096 ^{+0.085}_{-0.065}$	¹ BARISH	97	CLE2	$e^+e^- ightarrow \gamma(4S)$

 $^{^{1}}$ BARISH 97 find 125 \pm 28 Ξ_{c}^{+} events.

$\Gamma(p/\overline{p} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{110}/Γ

Includes p and \overline{p} from Λ and $\overline{\Lambda}$ decay.

		u / . u o o u j .				
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$0.080 \pm 0.004 \text{ OUR}$	AVERAGE					
$0.080 \pm 0.005 \pm 0.009$	5				$e^+e^- ightarrow~ \varUpsilon(4S)$	
$0.080 \pm 0.005 \pm 0.003$	3	CRAWFORD	92	CLEO	$e^+e^- ightarrow \Upsilon(4S)$	
$0.082 \pm 0.005 {+0.013 \atop -0.010}$	2163	¹ ALBRECHT	89K	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use t	he following	g data for average	s, fits,	limits,	etc. • • •	
>0.021		² ALAM	83 B	CLEO	$e^+e^- ightarrow ~ \gamma(4S)$	

¹ ALBRECHT 89K include direct and nondirect protons.

$\Gamma(p/\overline{p} \text{ (direct) anything)}/\Gamma_{\text{total}}$

 Γ_{111}/Γ

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.055 ± 0.005 OUR AVER	RAGE				
$0.055 \pm 0.005 \pm 0.0035$		ALBRECHT	931	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.056 \pm 0.006 \pm 0.005$		CRAWFORD	92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.055 \!\pm\! 0.016$	1220 ¹	^L ALBRECHT	89K	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ ALBRECHT 89K subtract contribution of Λ decay from the inclusive proton yield.

$\Gamma(\overline{p}e^+\nu_e \text{ anything})/\Gamma_{\text{total}}$

 Γ_{112}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.9 \times 10^{-4}$	90	¹ ADAM	03 B	CLE2	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the	following	data for averages	fite	limits a	atc • • •

• • We do not use the following data for averages, fits, limits, etc.

$$<$$
16 \times 10⁻⁴ 90 ALBRECHT 90H ARG $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^2}$ BARISH 97 find 79 \pm 27 Ξ_c^0 events.

 $^{^2}$ ALAM 83B reported their result as > 0.036 \pm 0.006 \pm 0.009. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, $B(B \to p + X) = 0.03$ not including protons from Λ decays.

¹Based on V-A model.

$\Gamma(\Lambda/\overline{\Lambda}$ anything)/ Γ_{total}		Γ ₁₁₃ /Γ						
VALUE EVTS	DOCUMENT ID	TECN COMMENT						
0.040±0.005 OUR AVERAGE	CDANIEODD 00	CL FO + - M(+C)						
$0.038 \pm 0.004 \pm 0.006$ 2998 $0.042 \pm 0.005 \pm 0.006$ 943		CLEO $e^+e^- ightarrow~\varUpsilon(4S)$ \prec ARG $e^+e^- ightarrow~\varUpsilon(4S)$						
$0.042\pm0.005\pm0.006$ 943 • • • We do not use the following		\						
$0.022 \pm 0.003 \pm 0.0022$		N OPAL $e^+e^- o Z$						
>0.022±0.003±0.0022 >0.011		B CLEO $e^+e^- o au(4S)$						
		041, <i>i.e.</i> , an admixture of B^0 , B^{\pm} ,						
and B_s .	$D \rightarrow D) = 0.000 \pm 0.0$	041, <i>i.e.</i> , an admixture of <i>B</i> , <i>B</i> ,						
² ALAM 83B reported their re	consistent with equal	0.007 ± 0.004 . Values are for yields of p and \overline{p} . Using assumed						
$\Gamma(\Lambda \text{ anything})/\Gamma(\overline{\Lambda} \text{ anything})$		$\Gamma_{114}/\Gamma_{115}$						
	DOCUMENT ID	CLE2 $e^+e^- ightarrow \Upsilon(4S)$						
0.43±0.09±0.07		_						
1 AMMAR 97 uses a high-momentum lepton tag ($P_{\ell}>1.4 ext{GeV}/c^{2}$).								
$\Gamma(\Xi^-/\overline{\Xi}^+$ anything)/ Γ_{total}		Γ ₁₁₆ /Γ						
VALUE EVTS	DOCUMENT ID	TECN COMMENT						
0.0027±0.0006 OUR AVERAGE	CDAWEODD	92 CLEO $e^+e^- ightarrow~ \varUpsilon(4S)$						
$0.0027 \pm 0.0005 \pm 0.0004$ 147 0.0028 ± 0.0014 54		89K ARG $e^+e^- ightarrow \gamma(4S)$						
	ALBRECHT	Γ_{117}/Γ						
Γ(baryons anything)/Γ _{total}	DOCUMENT ID	TECN COMMENT						
0.068±0.005±0.003	¹ ALBRECHT 920							
ullet $ullet$ We do not use the following	data for averages, fits	, limits, etc. ● ●						
0.076 ± 0.014	² ALBRECHT 89K	ARG $e^+e^- ightarrow \varUpsilon(4S)$						
¹ ALBRECHT 920 result is from simultaneous analysis of p and Λ yields, $p\overline{p}$ and $\Lambda\overline{p}$ correlations, and various lepton-baryon and lepton-baryon-antibaryon correlations. Supersedes								
ALBRECHT 89K.								
2 ALBRECHT 89K obtain this result by adding their their measurements (5.5 \pm 1.6)% for direct protons and (4.2 \pm 0.5 \pm 0.6)% for inclusive Λ production. They then assume								
		also. Since each B decay has two						
baryons, they divide by 2 to ob	tain (7.6 \pm 1.4)%.							
$\Gamma(p\overline{p} \text{ anything})/\Gamma_{\text{total}}$		Γ ₁₁₈ /Γ						
Includes p and \overline{p} from Λ and		TECH COMMENT						
<u>VALUE</u> <u>EVTS</u> 0.0247±0.0023 OUR AVERAGE	DOCUMENT ID	TECN COMMENT						
$0.024 \pm 0.001 \pm 0.004$	CRAWFORD 92	CLEO $e^+e^- ightarrow \varUpsilon(4S)$						
$0.025 \pm 0.002 \pm 0.002$ 918		ARG $e^+e^- \rightarrow \Upsilon(4S)$						
	:mar)	Γ/Γ						
$\Gamma(p\overline{p} \text{ anything})/\Gamma(p/\overline{p} \text{ anyth})$ Includes p and \overline{p} from Λ and	′	$\Gamma_{118}/\Gamma_{110}$						
VALUE		TECN COMMENT						
• • • We do not use the following								
$0.30 \pm 0.02 \pm 0.05$	¹ CRAWFORD 92	CLEO $e^+e^- ightarrow \varUpsilon(4S)$						
¹ CRAWFORD 92 value is not independent of their $\Gamma(p\overline{p}$ anything)/ Γ_{total} value.								
	, , , , , , , , , , , , , , , , , , , ,	. 5 on total						
HTTP://PDG.LBL.GOV	Page 35	Created: 5/30/2017 17:23						

$\Gamma(\Lambda \overline{p}/\overline{\Lambda}p \text{ anything})/$ Includes p and \overline{p} fr	_	√ decay				Γ ₁₁₉	/Г
VALUE		DOCUMENT ID		TECN	COMMENT		
0.025±0.004 OUR AVER							
$0.029 \pm 0.005 \pm 0.005$		CRAWFORD			$e^+e^- \rightarrow$		
$0.023\pm0.004\pm0.003$	165	ALBRECHT	89K	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$\Gamma(\Lambda \overline{p}/\overline{\Lambda} p \text{ anything})/$ Includes p and \overline{p} fr	•	_				Γ ₁₁₉ /Γ ₁	113
VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>		
• • • We do not use the							
$0.76 \pm 0.11 \pm 0.08$	1	^L CRAWFORD	92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
1 CRAWFORD 92 [Γ($\Lambda \overline{ ho}$ anything)+Γ($\overline{\Lambda}$	value panything)	e is no]]/Γ _{total} value.	ot	indep	endent	of tl	neir
$\Gamma(\Lambda \overline{\Lambda} \text{ anything})/\Gamma_{\text{total}}$						Γ ₁₂₀	/Г
VALUE CL%							
<0.005 90		CRAWFORD				$\Upsilon(4S)$	
• • • We do not use the							
<0.0088 90	12	ALBRECHT	89K	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$\Gamma(\Lambda\overline{\Lambda} \text{ anything})/\Gamma(\Lambda$	$/\overline{\Lambda}$ anythi	ng)				Γ_{120}/Γ_{1}	113
VALUE	-	DOCUMENT ID		TECN	COMMENT		
ullet $ullet$ We do not use the	following o	lata for averages	s, fits,	limits, e	etc. • • •		
< 0.13	90	L CRAWFORD	92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
¹ CRAWFORD 92 value	e is not ind	ependent of thei	ir Γ(<i>Λ</i>	$\overline{\Lambda}$ anythi	ng)/ $\Gamma_{ ext{total}}$ \	alue.	
$\Gamma(se^+e^-)/\Gamma_{total}$ Γ_{121}/Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.							
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		
$6.7 \pm 1.7 \text{ OUR}$		Error includes s	scale 1	factor of	2.0.		
$7.69 {+0.82 +0.71 \atop -0.77 -0.60}$	1	LEES	14 D	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$4.04\!\pm\!1.30 \!+\!0.87 \\ -0.83$	2	² IWASAKI	05	BELL	$e^+e^- \to$	$\Upsilon(4S)$	
ullet $ullet$ We do not use the	following o	lata for averages	s, fits,	limits, e	etc. • • •		
$6.0\ \pm 1.7\ \pm 1.3$	2	² AUBERT,B	041	BABR	Repl. by L	EES 14D	
$5.0 \pm 2.3 ^{+1.3}_{-1.1}$	2	² KANEKO	03	BELL	Repl. by IV	VASAKI 0	5
< 57	90	GLENN	98	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
< 50000	90	BEBEK			$e^+e^- \rightarrow$		
$^{1}_{K^{+}\pi^{-}\pi^{+},\ K^{0}_{S},\ K^{0}_{S}}$ served modes. $^{2}_{Requires}\ M_{\ell^{+}\ell^{-}} > 0$	$\frac{0}{5}\pi^{0}, K_{5}^{0}\pi$	$+, K_S^0 \pi^+ \pi^0, $	gh <i>K</i> ° and <i>P</i>	$^{+}, K^{+}, K^{+}, K^{+}, K^{0}, K^{+}, K$	π^0 , $K^+\pi^ \pi^-$ correct	, $K^+\pi^-$ ted for un	π^0 , ob-

 $\Gamma(s\mu^+\mu^-)/\Gamma_{\text{total}}$

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT

4.3 ±1.0 OUR AVERAGE

$$4.41 + 1.31 + 0.63 \\ -1.17 - 0.50$$

¹ LEES

14D BABR
$$e^+e^- \rightarrow \Upsilon(4S)$$

$$4.13\!\pm\!1.05\!+\!0.85\\-0.81$$

05 BELL
$$e^+e^-
ightarrow \gamma(4S)$$

• We do not use the following data for averages, fits, limits, etc.

$$5.0 \pm 2.8 \pm 1.2$$

AUBERT,B

7.9
$$\pm 2.1 \, {}^{+2.1}_{-1.5}$$

KANEKO

90 **GLENN**

98 CLEO
$$e^+e^- \rightarrow \Upsilon(4S)$$

<17000

81 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^0$, K^0S^π , $K^$

² Requires $M_{\ell^+\ell^-} > 0.2 \text{ GeV}/c^2$.

 $\left[\Gamma(se^+e^-) + \Gamma(s\mu^+\mu^-)\right]/\Gamma_{\text{total}}$

 $(\Gamma_{121} + \Gamma_{122})/\Gamma$

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interactions tions.

VALUE		CL%	DOCUMENT ID		TECN	COMMENT
<4.2	$\times 10^{-5}$	90	GLENN	98	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.0024 < 0.0062

¹ BEAN ² AVERY 90

87 CLEO Repl. by GLENN 98 84 CLEO Repl. by BEAN 87

 1 BEAN 87 reports $\lceil (\mu^{+}\mu^{-}) + (e^{+}e^{-}) \rceil / 2$ and we converted it.

$\Gamma(s\ell^+\ell^-)/\Gamma_{\text{total}}$

 Γ_{123}/Γ

Test for $\Delta B = 1$ weak neutral current.

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
5.8 ±1.3 OUR AVERAGE	Error includes scale factor o	f 1.8.	

$$6.73^{\,+\,0.70\,+\,0.60}_{\,-\,0.64\,-\,0.56}$$

1 LEES

14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

$$4.11\!\pm\!0.83\!+\!0.85\atop-0.81$$

² IWASAKI

BELL $e^+e^- \rightarrow \Upsilon(4S)$ 05

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$5.6 \pm 1.5 \pm 1.3$$

³ AUBERT.B

04I BABR Repl. by LEES 14D

$$6.1 \pm 1.4 \begin{array}{c} +1.4 \\ -1.1 \end{array}$$

³ KANEKO

BELL Repl. by IWASAKI 05 03

² Determine ratio of B^+ to B^0 semileptonic decays to be in the range 0.25–2.9.

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+$, K^0_S , $K^0_S\pi^0$, $K^0_S\pi^+$, $K^0_S\pi^+\pi^0$, and $K^0_S\pi^+$ π^- corrected for unobserved modes.

² Requires $M_{\ell + \ell^{-}} > 0.2 \text{ GeV}/c^{2}$.

³ Requires $M_{e^+e^-} > 0.2 \text{ GeV}/c^2$.

$\Gamma(\pi\ell^+\ell^-)/\Gamma_{ ext{total}}$						Γ ₁₂₄ /Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	
$< 5.9 \times 10^{-8}$	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$<6.2 \times 10^{-8}$	90	¹ WEI			$e^+e^- \rightarrow$	
$< 9.1 \times 10^{-8}$	90	¹ AUBERT	07AG	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produc	ction of B	$^{ m H}$ and $^{ m B}$ at the	Y(45	5).		

$\Gamma(\pi e^+ e^-)/\Gamma_{\text{total}}$						Γ ₁₂₅ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<11.0 × 10 ⁻⁸	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	Υ(4S)

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\pi\mu^+\mu^-)/\Gamma_{ m total}$						Γ ₁₂₆ /Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	
$<5.0 \times 10^{-8}$	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(Ke^+e^-)/\Gamma_{\rm total}$ Γ_{127}/Γ

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7}) CL%	DOCUMENT ID		TECN	COMMENT	
4.4±0.6 OUR AVERAG	E				
$3.9^{igoplus 0.9}_{-0.8} \!\pm\! 0.2$	¹ AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$4.8^{+0.8}_{-0.7}{\pm}0.3$	¹ WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the fo	ollowing data for avera	ages, fit	s, limits	s, etc. • • •	

 $^{3.3^{+0.9}}_{-0.8}\pm0.2$ ¹ AUBERT,B 06」 BABR Repl. by AUBERT 09Т $7.4^{+1.8}_{-1.6} \pm 0.5$ $^{
m 1}$ AUBERT 03U BABR Repl. by AUBERT, B 06J $4.8^{+1.5}_{-1.3}\pm0.3$ ^{1,2} ISHIKAWA 03 BELL Repl. by WEI 09A 90 ABE 02 BELL Repl. by ISHIKAWA 03 <13

 $\Gamma(K^*(892)e^+e^-)/\Gamma_{total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7})	L%	DOCUMENT ID		TECN	COMMENT		
11.9±2.0 OUR AVERA	GE	Error includes scal	e facto	r of 1.2.			
$9.9^{+2.3}_{-2.1}\pm0.6$		¹ AUBERT	09т	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$13.9^{+2.3}_{-2.0}\pm 1.2$		$^{ m 1}$ WEI	09A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the arangle (4S).

² The second error is a total of systematic uncertainties including model dependence.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$9.7^{+3.0}_{-2.7}\pm 1.4$$
 1 AUBERT,B 1 06J BABR Repl. by AUBERT 09T $9.8^{+5.0}_{-4.2}\pm 1.1$ 1 AUBERT 03U BABR Repl. by AUBERT,B 06J $14.9^{+5.2}_{-4.6}\pm 1.2$ 2 ISHIKAWA 03 BELL Repl. by WEI 09A 2 05 ABE 02 BELL Repl. by ISHIKAWA 03

$\Gamma(K\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_{129}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7})	DOCUMENT ID	DOCUMENT ID		COMMENT
4.4±0.4 OUR AVERAGE				
$4.2 \pm 0.4 \pm 0.2$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$4.1^{+1.3}_{-1.2} \pm 0.2$	$^{ m 1}$ AUBERT	09Т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.0 \pm 0.6 \pm 0.3$	¹ WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follo	wing data for avera	ges, fi	ts, limits	s, etc. • • •
$3.5^{+1.3}_{-1.1}\!\pm\!0.3$	¹ AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$4.5^{+2.3}_{-1.9}\pm0.4$	¹ AUBERT	03 U	BABR	Repl. by AUBERT,B 06J
$4.8^{+1.2}_{-1.1}\!\pm\!0.4$	^{1,2} ISHIKAWA	03	BELL	Repl. by WEI 09A
$9.9 {+4.0 + 1.3 \atop -3.2 - 1.0}$	ABE	02	BELL	Repl. by ISHIKAWA 03

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K\mu^+\mu^-)/\Gamma(Ke^+e^-)$ $\Gamma_{129}/\Gamma_{127}$ TECN COMMENT 1.01 ± 0.15 OUR AVERAGE $1.00^{\,+\,0.31}_{\,-\,0.25}\,{\pm}\,0.07$ 12S BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ LEES $0.96^{+0.44}_{-0.34}\pm0.05$ 09T BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT** 09A BELL $e^+e^- ightarrow \gamma(4S)$ $1.03\!\pm\!0.19\!\pm\!0.06$ WEI • • • We do not use the following data for averages, fits, limits, etc. • • • AUBERT,B 06J BABR Repl. by AUBERT 09T $^1\,\text{Measured}$ in the union of 0.10 < q^2 < 8.12 GeV^2/c^4 and q^2 > 10.11 GeV^2/c^4 LEES 12S reports also individual measurements $\Gamma(B \to K \mu^+ \mu^-)/\Gamma(B \to K e^+ e^-)$ $= 0.74^{+0.40}_{-0.31} \pm 0.06 \text{ for } 0.10 < q^2 < 8.12 \text{ GeV}^2/c^4 \text{ and } \Gamma(B \to K\mu^+\mu^-)/\Gamma(B \to Ke^+e^-) = 1.43^{+0.65}_{-0.44} \pm 0.12 \text{ for } q^2 > 10.11 \text{ GeV}^2/c^4.$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence.

² The second error is a total of systematic uncertainties including model dependence.

 $\Gamma(K^*(892)\mu^+\mu^-)/\Gamma_{total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT
10.6±0.9 OUR AV	ERAGE				
$10.1\!\pm\!1.0\!\pm\!0.5$		AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$13.5 {+3.5 \atop -3.3} \pm 1.0$		¹ AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$11.0^{+1.6}_{-1.4}{\pm}0.8$		¹ WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$8.8^{+3.5}_{-3.0}\!\pm\!1.2$		¹ AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$12.7^{+7.6}_{-6.1}\!\pm\!1.6$		¹ AUBERT	03 U	BABR	Repl. by AUBERT,B 06J
$11.7^{+3.6}_{-3.1}\!\pm\!1.0$		² ISHIKAWA	03	BELL	Repl. by WEI 09A
<31	90	ABE	02	BELL	Repl. by ISHIKAWA 03

$\Gamma(K^*(892)\mu^+\mu^-)/\Gamma(K^*(892)e^+e^-)$

 $\Gamma_{130}/\Gamma_{128}$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.98±0.15 OUR AVERAGE				
$1.13^{\displaystyle +0.34}_{\displaystyle -0.26} \pm 0.10$	¹ LEES	12 S	BABR	$\mathrm{e^{+}e^{-}} ightarrow$ $\varUpsilon(4S)$
$1.37 {+0.53\atop -0.40} \pm 0.09$	AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.83 \pm 0.17 \pm 0.08$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
$0.91 \pm 0.45 \pm 0.06$	AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$^{ m 1}$ Measured in the union of 0.1	$0 < q^2 < 8.12$	${\sf GeV}^2$	$/c^4$ and	$q^2 > 10.11 \text{ GeV}^2/c^4$.
LEES 12S reports also individ	lual measuremen	ts Γ(.	$B \rightarrow I$	$K^*(892)\mu^+\mu^-)/\Gamma(B \rightarrow$
$K^*(892)e^+e^-) = 1.06^{+0.48}_{-0.33}$	$rac{3}{3}\pm0.08$ for 0.10	0 < c	$1^2 < 8.1$	12 GeV $^2/c^4$ and $\Gamma(B \rightarrow$
$K^*(892)\mu^+\mu^-)/\Gamma(B \rightarrow K^*$	*(892) e ⁺ e ⁻) =	1.18	+0.55 -0.37	\pm 0.11 for q ² $>$ 10.11
${\sf GeV}^2/{\sf c}^4$.				

 Γ_{131}/Γ

Created: 5/30/2017 17:23

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interac-

0.00.						
VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT	
4.8±0.4 OUR AVER	RAGE					
$4.7\!\pm\!0.6\!\pm\!0.2$		LEES	12 S	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.8^{+0.5}_{-0.4}\pm0.3$		WEI	09A	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 Assumes equal production of B^0 and B^+ at $\varUpsilon(4S)$. The second error is a total of systematic uncertainties including model dependence.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$3.9\!\pm\!0.7\!\pm\!0.2$		¹ AUBERT			Repl. by LEES 12S
$3.4 \pm 0.7 \pm 0.2$		$^{ m 1}$ AUBERT,B	06 J	BABR	Repl. by AUBERT 09⊤
$6.5^{igoplus 1.4}_{-1.3} \!\pm\! 0.4$		² AUBERT	03 U	BABR	Repl. by AUBERT,B 06J
$4.8^{+1.0}_{-0.9}\pm0.3$		³ ISHIKAWA	03	BELL	Repl. by WEI 09A
$7.5^{+2.5}_{-2.1}\pm0.6$		⁴ ABE	02	BELL	Repl. by ISHIKAWA 03
< 5.1	90	$^{ m 1}$ AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
<17	90	⁵ ANDERSON	01 B	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)\ell^+\ell^-)/\Gamma_{\text{total}}$

 Γ_{132}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

$VALUE$ (units 10^{-7})	CL%	DOCUMENT	T ID	TECN	COMMENT		
10.5±1.0 OUR AVE	RAGE						
$10.2^{\begin{subarray}{c}+1.4\\-1.3\end{subarray}}\!\pm\!0.5$		LEES	12 S	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$10.7 {+} 1.1 {+} 1.0 {\pm} 0.9$		WEI	09A	BELL	e^+e^-	$\Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$11.1^{+1.9}_{-1.8}\pm 0.7$$
 1 AUBERT 09T BABR Repl. by LEES 12S $7.8^{+1.9}_{-1.7}\pm 1.1$ 1 AUBERT,B 06J BABR Repl. by AUBERT 09T $8.8^{+3.3}_{-2.9}\pm 1.0$ 2 AUBERT 03U BABR Repl. by AUBERT,B 06J $11.5^{+2.6}_{-2.4}\pm 0.8$ 3 ISHIKAWA 03 BELL Repl. by WEI 09A $<$ 31 90 1.4 AUBERT 02L BABR Repl. by AUBERT 03U $<$ 33 90 5 ANDERSON 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^2}$ Assumes all four $B \to ~K \ell^+ \ell^-$ modes having equal partial widths in the fit.

³ Assumes equal production rate for charge and neutral B meson pairs, isospin invariance, lepton universality for $B \to K \ell^+ \ell^-$, and B($B \to K^*(892) \mu^+ \mu^-$) = 1.33. The second error is total systematic uncertainties including model dependence.

⁴ Assumes lepton universality.

⁵ The result is for di-lepton masses above 0.5 GeV.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes the partial width ratio of electron and muon modes to be $\Gamma(B \to K^*(892)\,e^+\,e^-)/\Gamma(B \to K^*(892)\,\mu^+\,\mu^-) = 1.33$.

³ Assumes equal production rate for charge and neutral B meson pairs, isospin invariance, lepton universality for $B \to K \ell^+ \ell^-$, and B($B \to K^*(892) \mu^+ \mu^-$) = 1.33. The second error is total systematic uncertainties including model dependence.

⁴ For averaging $K^*(892)\mu^+\mu^-$ and $K^*(892)e^+e^-$ modes, AUBERT 02L assumed $B(B\to K^*(892)e^+e^-)/B(B\to K^*(892)\mu^+\mu^-)=1.2.$

⁵ The result is for di-lepton masses above 0.5 GeV.

 Γ_{133}/Γ $\Gamma(K\nu\overline{\nu})/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. TECN COMMENT $<1.7 \times 10^{-5}$ 1,2 LEES 131 BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • 90 ¹ DEL-AMO-SA..10Q BABR Repl. by LEES 13I ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Also reported a limit $< 3.2 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic B-tag evnets. $\Gamma(K^*\nu\overline{\nu})/\Gamma_{\text{total}}$ Γ_{134}/Γ Test for $\Delta B = 1$ weak neutral current. DOCUMENT ID TECN COMMENT $< 7.6 \times 10^{-5}$ 1,2 L F F S 131 BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • AUBERT 08BC BABR Repl. by LEES 13I ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Also reported a limit $< 7.9 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic *B*-tag evnets. $\Gamma(s e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$ Γ_{135}/Γ Test for lepton family number conservation. Allowed by higher-order electroweak interactions. TECN COMMENT CL% DOCUMENT ID $< 2.2 \times 10^{-5}$ 98 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 90 **GLENN** $\Gamma(\pi e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$ Γ_{136}/Γ Test of lepton family number conservation. <u>TECN</u> <u>COMMENT</u> CL% DOCUMENT ID $< 9.2 \times 10^{-8}$ 90 ¹ AUBERT 07AG BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • 90 ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\rho e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$ Γ_{137}/Γ Test of lepton family number conservation. DOCUMENT ID TECN COMMENT CL% $< 3.2 \times 10^{-6}$ 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ EDWARDS ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(Ke^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$ Γ_{138}/Γ Test of lepton family number conservation. VALUE (units 10^{-7}) CL% DOCUMENT ID TECN COMMENT ¹ AUBERT.B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 < 0.38 • • • We do not use the following data for averages, fits, limits, etc. • • • 90 ¹ EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)e^{\pm}\mu^{\mp})/\Gamma_{total}$ Test of lepton family number conservation.

 Γ_{139}/Γ

$VALUE$ (units 10^{-7})	CL%	DOCUMENT ID	TECN	COMMENT	
< 5.1	90	¹ AUBERT,B 06.	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the	e following	data for averages, fit	s, limits, e	etc. • • •	
<62	90	¹ EDWARDS 02E	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.					

CP VIOLATION

 A_{CP} is defined as

$$\frac{B(\overline{B} \to \overline{f}) - B(B \to f)}{B(\overline{B} \to \overline{f}) + B(B \to f)},$$

the *CP*-violation charge asymmetry of inclusive B^\pm and B^0 decay.

$A_{CP}(B \rightarrow K^*(892)\gamma)$

01 () ()				
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
-0.003 ± 0.017 OUR AVERAG	GE .			
$-0.003\!\pm\!0.017\!\pm\!0.007$	¹ AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.015\pm0.044\pm0.012$	² NAKAO			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$+0.08 \pm 0.13 \pm 0.03$	² COAN	00	CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the follo	wing data for ave	erages,	, fits, lin	nits, etc. • • •
$-0.013\pm0.036\pm0.010 \ -0.044\pm0.076\pm0.012$	³ AUBERT,BE ⁴ AUBERT	04A 02C	BABR BABR	Repl. by AUBERT 09A0 Repl. by AUBERT,BE 04A
$^{1}\!$ Corresponds to a 90% CL	interval -0.033	$< A_C$	P < 0.0	028.
² Assumes equal production				
3 Corresponds to a 90% CL	allowed region, -	- 0.074	$4 < A_C$	$_{CP}$ < 0.049.
4 A 90% CL range is -0.17	$0 < A_{CP} < 0.082$	<u>.</u>		

$A_{CP}(b \rightarrow s\gamma)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.015 ± 0.020 OUR AVERAGE				
$0.017\!\pm\!0.019\!\pm\!0.010$	¹ LEES			$e^+e^- ightarrow \gamma(4S)$
$0.002\pm0.050\pm0.030$	² NISHIDA	04	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$\begin{array}{c} -0.011 \pm 0.030 \pm 0.014 \\ 0.025 \pm 0.050 \pm 0.015 \end{array}$	³ AUBERT ⁴ AUBERT,B	08BJ 04E	BABR BABR	Repl. by LEES 14K Repl. by AUBERT 08BJ
1 Measured with 16 exclusively reconstructed $B ightarrow ~X_{ m S} \gamma$ decays with 0.6 $< m_{X_{ m S}} < 2.0$				
GeV/c ² (ten charged and six neutral self-tagging B modes). ² This measurement is performed inclusively for recoil mass X_s less than 2.1 GeV, which corresponds to $-0.093 < A_{CP} < 0.096$ at 90% CL.				
³ Uses a sum of exclusively reconstructed $B \rightarrow X_S$ decay modes, with X_S mass between				

0.6 and 2.8 GeV/c². 4 Corresponds to $-0.06 < A_{CP} <$ 0.11 at 90% CL.

$A_{CP}(b \rightarrow (s+d)\gamma)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.010 ± 0.031 OUR AVERAGE				
$0.022\!\pm\!0.039\!\pm\!0.009$	$^{ m 1}$ PESANTEZ	15	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.057 \!\pm\! 0.060 \!\pm\! 0.018$	LEES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.10~\pm0.18~\pm0.05$	² AUBERT			$e^+e^- ightarrow \gamma(4S)$
$-0.110\pm0.115\pm0.017$	AUBERT,BE	06 B	BABR	$e^+e^- ightarrow \gamma(4S)$
$-0.079 \pm 0.108 \pm 0.022$	³ COAN	01	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ Uses an opposite side lepton tag. Requires center-of-mass frame $E_{\gamma}~>2.1$ GeV.

$A_{CP}(B \rightarrow X_s \ell^+ \ell^-)$

VALUE	DOCUMENT ID	TECN	COMMENT
0.04+0.11+0.01	1 LEES 14	D BABR	$e^+e^- \rightarrow \gamma(45)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

Created: 5/30/2017 17:23

$A_{CP}(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.06\pm0.22\pm0.01$	¹ LEES 1	4D BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+$, $K^0_5\pi^+$, and $K^0_5\pi^+\pi^0$.

$A_{CP}(B \rightarrow X_s \ell^+ \ell^-)$ (10.1 < q² < 12.9 or q² > 14.2 GeV²/c⁴) NALUE DOCUMENT ID TECN COMMENT

0.19 $^{+0.18}_{-0.17}\pm$ 0.01 1 LEES 14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

$$A_{CP}(B \rightarrow K^* e^+ e^-)$$

VALUEDOCUMENT IDTECNCOMMENT $-0.18 \pm 0.15 \pm 0.01$ WEI09ABELL $e^+e^- \rightarrow \Upsilon(4S)$

$A_{CP}(B \rightarrow K^* \mu^+ \mu^-)$

VALUEDOCUMENT IDTECNCOMMENT $-0.03 \pm 0.13 \pm 0.02$ WEI09ABELL $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side. Requires $E_{\gamma}~>$ 2.2 GeV.

 $^{^3}$ Corresponds to $-0.27 < A_{CP} < 0.10$ at 90% CL.

 $^{-0.22\}pm0.26\pm0.02$

² AUBERT.B

⁰⁴I BABR Repl. by LEES 14D

 $^{^1}$ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+$, $K^0_S\pi^+$, and $K^0_S\pi^+\pi^0$.

² The final state flavor is determined by the kaon and pion charges where modes with $X_s = K_s^0$, $K_s^0 \pi^0$ or $K_s^0 \pi^+ \pi^-$ are not used.

 $^{^1}$ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+$, $K^0_S\pi^+$, and $K^0_S\pi$ + $(pi-)^0$.

$A_{CP}(B \rightarrow K^* \ell^+ \ell^-)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.04 ± 0.07 OUR AVERAGE				
$0.03\!\pm\!0.13\!\pm\!0.01$	¹ LEES	12 S	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$+0.01^{\displaystyle +0.16}_{\displaystyle -0.15}\pm 0.01$	AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.10\!\pm\!0.10\!\pm\!0.01$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Measured in the union of 0.10 < q² < 8.12 GeV²/c⁴ and q² > 10.11 GeV²/c⁴. LEES 12s reports also individual measurements $A_{CP}(B\to K^*\ell^+\ell^-) = -0.13^{+0.18}_{-0.19} \pm 0.01$ for 0.10 < q² < 8.12 GeV²/c⁴ and $A_{CP}(B\to K^*\ell^+\ell^-) = 0.16^{+0.18}_{-0.19} \pm 0.01$ for q² > 10.11 GeV²/c⁴.

$A_{CP}(B \rightarrow \eta \text{ anything})$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.13\pm0.04 {+0.02 \atop -0.03}$	¹ NISHIMURA 10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ Uses $B \rightarrow \eta X_{s}$ with 0.4 $< m_{X_{c}} <$ 2.6 GeV/c 2 .

$\Delta A_{CP}(X_s\gamma) = A_{CP}(B^{\pm} \to X_s\gamma) - A_{CP}(B^{0} \to X_s\gamma)$

This is the isospin difference of the CP asymmetries.

POLARIZATION IN B DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel (\parallel) or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases ϕ_\parallel and ϕ_\perp . See the definitions in the note on "Polarization in B Decays" review in the B^0 Particle Listings.

$$F_L(B \rightarrow K^*\ell^+\ell^-)$$
 (q² > 0.1 GeV²/c⁴)
 P_{ALUE} DOCUMENT ID TECN COMMENT
0.63 $^{+0.18}_{-0.19} \pm 0.05$ 1 AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$

$$F_L(B oup K^*\ell^+\ell^-) \ (m_{\ell\ell} oup Sequence Sequence$$

¹ Measured with 16 exclusively reconstructed $B \to X_s \gamma$ decays with 0.6 $< m_{X_s} < 2.0$ GeV/c² (ten charged and six neutral self-tagging B modes).

¹Results with different q² cuts are also reported.

$F_L(B o K^*\ell^+\ell^-)$ (0.10 <	q ² < 0.98 Ge	-	-	<u>COMMENT</u>
$0.263^{\begin{subarray}{c} +0.045 \\ -0.044 \end{subarray}} \pm 0.017$	AAIJ	16	3 LHCE	3 <i>pp</i> at 7, 8 TeV
$F_L(B \rightarrow K^* \ell^+ \ell^-) (1.1 < q)$	² < 2.5 GeV ²		<u>TECN</u>	<u>COMMENT</u>
$0.660^{f +0.083}_{f -0.077} \pm 0.022$	AAIJ	16	3 LHCE	3 <i>pp</i> at 7, 8 TeV
$F_L(B o K^*\ell^+\ell^-)$ (0.1 < q	² < 2.0 GeV ²		<u>TECN</u>	<u>COMMENT</u>
$0.34^{f +0.08}_{f -0.07}$ OUR AVERAGE				
$0.37^{+0.10}_{-0.09}^{+0.10}_{-0.03}^{+0.04}$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.30 \pm 0.16 \pm 0.02$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.29^{+0.21}_{-0.18} \pm 0.02$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the following	data for averag	es, fit	s, limits	, etc. • • •
$0.60^{+0.00}_{-0.28}\pm0.19$	CHATRCHYAN	13 BL	CMS	pp at 7 TeV
$0.00^{+0.13}_{-0.00}\!\pm\!0.02$	AAIJ	120	LHCB	Repl. by AAIJ 13Y
$0.53^{+0.32}_{-0.34}\pm0.07$	AALTONEN	11L	CDF	Repl. by AALTONEN 121
$^{\mathrm{1}}\mathrm{CHATRCHYAN}$ 13BL uses, for	this bin, $1.0 < 6$	$q^2 < 3$	2.0 GeV	$^{2}/c^{4}$.
$F_L(B \rightarrow K^* \ell^+ \ell^-)$ (2.0 < q	2 < 4.3 GeV 2	² /c ⁴)		
VALUE	DOCUMENT ID		TECN	COMMENT
0.77 ±0.05 OUR AVERAGE				
$0.876^{+0.109}_{-0.097}\pm0.017$	AAIJ			<i>pp</i> at 7, 8 TeV
$0.80 \pm 0.08 \pm 0.06$	KHACHATRY			· ·
$0.74 \begin{array}{c} +0.10 \\ -0.09 \end{array} \begin{array}{c} +0.02 \\ -0.03 \end{array}$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.65\ \pm0.17\ \pm0.03$	CHATRCHYAN	13 BL	CMS	pp at 7 TeV
$0.37 \ ^{+0.25}_{-0.24} \ \pm 0.10$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
0.71 \pm 0.24 \pm 0.05 • • • We do not use the following	WEI			$e^+e^- \rightarrow \Upsilon(4S)$
	AAIJ			Repl. by AAIJ 13Y
. 0.30				Repl. by AALTONEN 121
$^{-0.33}$ $^{-0.33}$ $^{-0.33}$ $^{-0.33}$ Measured in 2.5 $< q^2 < 4.0$ G				
$F_L(B \rightarrow K^* \ell^+ \ell^-)$ (4.0 < q		² /c ⁴)		
VALUE	DOCUMENT ID		TECN	COMMENT
$0.611^{+0.052}_{-0.053}\!\pm\!0.017$	AAIJ	16 E	3 LHCE	3 <i>pp</i> at 7, 8 TeV
$F_L(B \rightarrow K^* \ell^+ \ell^-)$ (6.0 < q				
<u>VALUE</u> 0.579±0.046±0.015	<u>DOCUMENT IL</u> AAIJ			<u>COMMENT</u> B pp at 7, 8 TeV
0.5/9±0.040±0.015	AAIJ	101	o LUCE	ρραιι, o lev
HTTP://PDG.LBL.GOV	Page 46		Crea	ated: 5/30/2017 17:23

$F_L(B \to K^* \ell^+ \ell^-)$ (4.3 < 6)	$q^2 < 8.6 \text{ GeV}^2$	² /c ⁴))	
VALUE	DOCUMENT ID		TECN	COMMENT
0.64±0.06 OUR AVERAGE 0.57±0.07±0.03	AAIJ	12∨	IHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.81^{+0.13}_{-0.12} \pm 0.05$	CHATRCHYAN			
0.12				
$0.68^{+0.15}_{-0.17} \pm 0.09$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.64^{+0.23}_{-0.24}\pm0.07$	WEI	09A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	g data for averag	es, fit	ts, limits	, etc. • • •
$0.60^{+0.06}_{-0.07}{\pm}0.01$	AAIJ	12 U	LHCB	Repl. by AAIJ 13Y
$0.82^{+0.19}_{-0.23}{\pm}0.07$	AALTONEN	11L	CDF	Repl. by AALTONEN 121
$F_L(B \rightarrow K^* \ell^+ \ell^-)$ (10.09	$< a^2 < 12.86$	GeV ²	² /c ⁴)	
VALUE	DOCUMENT ID			COMMENT
0.448±0.033 OUR AVERAGE				
$0.493^{+0.049}_{-0.047} \pm 0.013$	AAIJ	16 B	LHCB	<i>pp</i> at 7, 8 TeV
$0.39 \pm 0.05 \pm 0.04$	KHACHATRY.	16 D	CMS	pp at 8 TeV
$0.48 \ ^{+0.08}_{-0.09} \ \pm 0.03$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.45 \ ^{+0.10}_{-0.11} \ \pm 0.04$	CHATRCHYAN	I 13 BL	CMS	pp at 7 TeV
$0.47\ \pm0.14\ \pm0.03$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.17 {}^{+ 0.17}_{- 0.15} \pm 0.03$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	g data for averag	es, fit	ts, limits	, etc. • • •
$0.41\ \pm0.11\ \pm0.03$	AAIJ	12 U	LHCB	Repl. by AAIJ 13Y
$0.31 \ ^{+0.19}_{-0.18} \ \pm 0.02$	AALTONEN	11L	CDF	Repl. by AALTONEN 121
$^{1}\mathrm{Measured}$ in $11.0 < q^{2} < 12.9$	$5~{ m GeV}^2/{ m c}^4$.			
$F_L(B \to K^* \ell^+ \ell^-)$ (15.0 <	$q^2 < 17.0 \text{ Ge}$	V ² /c	c ⁴)	
VALUE				COMMENT
$0.349 \pm 0.039 \pm 0.009$	AAIJ	16	в LHC I	B <i>pp</i> at 7, 8 TeV
$F_L(B \to K^* \ell^+ \ell^-)$ (17.0 <	$q^2 < 19.0 \text{ Ge}$	V ² /c	c ⁴)	
VALUE	DOCUMENT IL)	TECN	COMMENT
$0.354^{+0.049}_{-0.048}\pm0.025$	AAIJ	16	в LHC I	B <i>pp</i> at 7, 8 TeV
$F_L(B \to K^* \ell^+ \ell^-)$ (14.18	$< q^2 < 16.0 G$	ieV ²	/c ⁴)	
VALUE	DOCUMENT ID	•	TECN	COMMENT
0.40±0.06 OUR AVERAGE E	rror includes scal	e fact	tor of 1.4	 See the ideogram below.
$0.48 {+0.05 \atop -0.06} \pm 0.04$	KHACHATRY.	16 D	CMS	pp at 8 TeV
$0.33 {}^{+ 0.08 + 0.02}_{- 0.07 - 0.03}$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.53 \pm 0.12 \pm 0.03$	CHATRCHYAN	13 BL	CMS	pp at 7 TeV

 $0.29^{\,+\,0.14}_{\,-\,0.13}\,{\pm}\,0.05$ **AALTONEN** $p\overline{p}$ at 1.96 TeV CDF $-0.15^{\displaystyle +0.27}_{\displaystyle -0.23}\!\pm\!0.07$ $e^+e^- \rightarrow \Upsilon(4S)$ WEI 09A BELL

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.37 \pm 0.09 \pm 0.05$ AAIJ 12U LHCB Repl. by AAIJ 13Y $0.55^{\,+\,0.17}_{\,-\,0.18}\!\pm\!0.02$ Repl. by AALTONEN 121 **AALTONEN** 11L CDF

 $F_L(B \to K^* \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

$F_L(B \to K^* \ell^+ \ell^-)$ (16.0 < q² < 19.0 GeV²/c⁴)

VALUE		DOCUMENT ID		TECN	COMMENT
0.353 ± 0.024 OUR	AVERAGE				
$0.344^{+0.028}_{-0.030}\pm0.00$	08 1	AAIJ	16 B	LHCB	<i>pp</i> at 7, 8 TeV
$0.38 \ ^{+0.05}_{-0.06} \ \pm 0.04$	1	KHACHATRY	. 16 D	CMS	pp at 8 TeV
$0.38 \ ^{+0.09}_{-0.07} \ \pm 0.03$	3	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.44 \pm 0.07 \pm 0.03$	3	CHATRCHYAN	13 BL	CMS	pp at 7 TeV
$0.20 \ ^{+0.19}_{-0.17} \ \pm 0.05$	5	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.12 \ ^{+0.15}_{-0.13} \ \pm 0.02$	2	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not u	se the following	data for averag	es, fit	s, limits	, etc. • • •
$0.26 \begin{array}{c} +0.10 \\ -0.08 \end{array} \pm 0.03$	3	AAIJ	120	LHCB	Repl. by AAIJ 13Y
$0.09 \ ^{+0.18}_{-0.14} \ \pm 0.03$	3	AALTONEN	11 L	CDF	Repl. by AALTONEN 121
$^{ m 1}$ Measured in 15	$0.0 < q^2 < 19.0$	${\rm GeV}^2/{\rm c}^4$.			

HTTP://PDG.LBL.GOV

Page 48

$F_L(B \to K^* \ell^+ \ell^-)$ (1.0 < q² < 6.0 GeV²/c⁴)

TECN **OUR AVERAGE** Error includes scale factor of 2.7. See the ideogram below. $0.690 ^{\,+\, 0.035}_{\,-\, 0.036} \pm 0.017$ ¹ AAIJ 16B LHCB pp at 7, 8 TeV 0.72 ± 0.06 KHACHATRY...16D CMS pp at 7, 8 TeV $0.24 \begin{array}{l} +0.09 \\ -0.08 \end{array}$ 16C BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² LEES ± 0.02 $0.65 \ \, ^{+0.08}_{-0.07}$ ± 0.03 13Y LHCB pp at 7 TeV, $K^{*0}\mu^+\mu^-$ AAIJ $0.69 \ \, ^{+\, 0.19}_{-\, 0.21}$ **AALTONEN** 121 CDF $p\overline{p}$ at 1.96 TeV $e^+e^- \rightarrow \Upsilon(4S)$ $0.67 \pm 0.23 \pm 0.05$ WEI 09A BELL • • We do not use the following data for averages, fits, limits, etc. $0.68 \pm 0.10 \pm 0.02$ CHATRCHYAN 13BL CMS Repl. by KHACHATRYAN 16D $0.55 \pm 0.10 \pm 0.03$ Repl. by AAIJ 13Y AAIJ 12U LHCB $0.50 \ \, ^{+\, 0.27}_{-\, 0.30} \ \, \pm 0.03$ **AALTONEN** 11L CDF Repl. by AALTONEN 121

WEIGHTED AVERAGE 0.65±0.08 (Error scaled by 2.7)

 $F_L(B \to K^* \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

$F_L(B \to K^* \ell^+ \ell^-) (0.0 < q^2 < 4.3 \text{ GeV}^2/c^4)$

VALUEDOCUMENT IDTECNCOMMENT $0.33^{+0.14}_{-0.13} \pm 0.03$ AALTONEN12ICDF $p\overline{p}$ at 1.96 TeV

● We do not use the following data for averages, fits, limits, etc.

 $0.47^{+0.23}_{-0.24}\pm0.03$ AALTONEN 11L CDF Repl. by AALTONEN 12L

¹ Measured in $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$.

² Measured by combining B^0 and B^+ with e and μ as leptons. Results are also provided separately for B^0 and B^+ .

PARTIAL BRANCHING FRACTIONS IN $B \rightarrow K^{(*)} \ell^+ \ell^-$

$B(B \to K^* \ell^+ \ell^-)$ (q² < 2.0 GeV²/c⁴)

$VALUE$ (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.68 ± 0.23 OUR AVERAGE					
$1.89^{+0.52}_{-0.46}{\pm}0.06$	¹ LEES	12 S	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$1.73 \pm 0.33 \pm 0.10$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV	
$1.46^{+0.40}_{-0.35}{\pm}0.11$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$	
 • • We do not use the following data for averages, fits, limits, etc. 					

 $0.98 \pm 0.40 \pm 0.09$

AALTONEN 11L CDF Repl. by AALTONEN 11AI

$B(B \to K^* \ell^+ \ell^-)$ (2.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT		
0.87±0.17 OUR AVERAGE						
$0.95^{+0.35}_{-0.30}{\pm}0.04$	LEES	12 S	BABR	$e^+e^- ightarrow \gamma(4S)$		
$0.82 \pm 0.26 \pm 0.06$	AALTONEN	11AI	CDF	$p\overline{p}$ at 1.96 TeV		
$0.86^{+0.31}_{-0.27}{\pm}0.07$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
 • • We do not use the following data for averages, fits, limits, etc. 						

 $1.00\pm0.38\pm0.09$

AALTONEN 11L CDF Repl. by AALTONEN 11AI

$B(B \to K^* \ell^+ \ell^-)$ (4.3 < q² < 8.68 GeV²/c⁴)

$VALUE$ (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.67±0.29 OUR AVERAGE					
$1.82^{+0.56}_{-0.52}{\pm}0.09$	¹ LEES	12 S	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.72\!\pm\!0.41\!\pm\!0.14$	AALTONEN	11AI	CDF	p p at 1.96	TeV
$1.37^{igoplus 0.47}_{-0.42}\!\pm\!0.39$	WEI	09A	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
\\/- d+ +b- f-		(_

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.69\pm0.57\pm0.15$ AALTONEN 11L CDF Repl. by AALTONEN 11AI

$B(B \to K^* \ell^+ \ell^-)$ (10.09 < q^2 < 12.86 GeV²/c⁴)

•	•		•	
$VALUE$ (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.93 ± 0.25 OUR AVERAGE				
$1.86^{igoplus 0.52}_{-0.48}\!\pm\!0.10$	¹ LEES	12s E	BABR	$e^+e^- ightarrow \gamma(4S)$
$1.77 \pm 0.34 \pm 0.11$	AALTONEN	11AI (CDF	$p\overline{p}$ at 1.96 TeV
$2.24^{igoplus 0.44}_{-0.40} \pm 0.19$	WEI	09A E	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the foll	owing data for aver	ages, fits	s, limit	s, etc. • • •
$1.97\!\pm\!0.47\!\pm\!0.17$	AALTONEN	11L (CDF	Repl. by AALTONEN 11AI

 $^{^{1}}$ The value reported here from LEES 12S refers to $0.1 < q^{2} < 2.0 \text{ GeV}^{2}/c^{2}$.

 $^{^{1}\,\}text{The value}$ reported here from LEES 12S refers to 4.3 < q 2 < 8.12 GeV $^{2}/c^{2}.$

 $^{^{1}}$ The value reported here from LEES 12S refers to $10.11 < q^{2} < 12.89 \text{ GeV}^{2}/c^{2}$.

$B(B \to K^* \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.21±0.17 OUR AVERAGE					_
$1.46^{+0.41}_{-0.36}{\pm0.06}$	¹ LEES	12 S	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.21\!\pm\!0.24\!\pm\!0.07$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96	TeV
$1.05 ^{+ 0.29}_{- 0.26} \!\pm\! 0.08$	WEI	09A	BELL	e^+e^-	$\Upsilon(4S)$
144 1 1 6 11		٠.			

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.51\!\pm\!0.36\!\pm\!0.13$

AALTONEN 11L CDF Repl. by AALTONEN 11AI

$B(B \to K^* \ell^+ \ell^-)$ (16.0 < q² GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.3 ±0.4 OUR AVERAGE	rror includes scal	e facto	or of 2.3.	See the ideogram below.	
$1.02^{igoplus 0.47}_{-0.42}\!\pm\!0.06$	LEES	12 S	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.88\!\pm\!0.22\!\pm\!0.05$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV	
$2.04^{+0.27}_{-0.24}{\pm}0.16$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					

 $1.35 \pm 0.37 \pm 0.12$

AALTONEN

11L CDF

Repl. by AALTONEN 11AI

 $^{^1\,\}text{The}$ value reported here from LEES 12S refers to 14.21 < q^2 < 16.0 GeV^2/c^2.

$B(B \to K^* \ell^+ \ell^-)$ (1.0 < q² < 6.0 GeV²/c⁴)

<i>VALUE</i> (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
1.64 ± 0.26 OUR AVERAGE					
$2.05^{+0.53}_{-0.48}\!\pm\!0.07$	LEES	12 S	BABR	$e^+e^- ightarrow \gamma(4S)$	
$1.48\!\pm\!0.39\!\pm\!0.12$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV	
$1.49^{+0.45}_{-0.40}{\pm}0.12$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the following data for averages, fits, limits, etc. • • •					
$1.60 \pm 0.54 \pm 0.14$	AALTONEN	11L	CDF	Repl. by AALTONEN 11AI	

$B(B \to K^* \ell^+ \ell^-)$ (0.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
2.53±0.43±0.15	AALTONEN 11AI	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following	g data for averages, f	its, limit	s, etc. • • •
1 08 + 0 55 + 0 18	AALTONEN 111	CDE	Repl. by AALTONEN 11AL

${\rm B}(B \to K \ell^+ \ell^-) \ ({\rm q}^2 < 2.0 \ {\rm GeV^2/c^4})$

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
0.51±0.16 OUR AVERAGE	Error includes scale	e facto	r of 1.9.	See the ideogram below.	
$0.71^{+0.20}_{-0.18}{\pm}0.02$	¹ LEES	12 S	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.33 \pm 0.10 \pm 0.02$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV	
$0.81^{+0.18}_{-0.16}{\pm}0.05$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • We do not use the following data for averages fits limits etc. • • •					

use the following data for averages, fits, limits, etc. ullet ullet

 $0.38 \pm 0.16 \pm 0.03$ AALTONEN 11L CDF Repl. by AALTONEN 11AI

 ${\sf B}(B \to K \ell^+ \ell^-) \, ({\sf q}^2 < 2.0 \; {\sf GeV}^2/{\sf c}^4) \, ({\sf units} \; 10^{-7})$

 1 The value reported here from LEES 12S refers to $0.1 < q^{2} < 2.0 \text{ GeV}^{2}/c^{2}$.

$B(B \to K \ell^+ \ell^-)$ (2.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT

$0.57^{+0.10}_{-0.09}$ OUR AVERAGE Error includes scale factor of 1.2.

$0.49^{+0.15}_{-0.13} \pm 0.01$	LEES	12S BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.77 \pm 0.14 \pm 0.05$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV
$0.46^{+0.14}_{-0.12}\pm0.03$	WEI	09A BELL	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.58 \!\pm\! 0.19 \!\pm\! 0.04$

AALTONEN 11L CDF Repl. by AALTONEN 11AI

$B(B \to K \ell^+ \ell^-)$ (4.3 < q² < 8.68 GeV²/c⁴)

VALUE (units 10 ⁻⁷)	DOCUMENT ID		TECN	COMMENT	
1.00 ± 0.11 OUR AVERAGE					
$0.94^{igoplus 0.20}_{-0.19}\!\pm\!0.02$	¹ LEES	125	BABR	$e^+e^-\to$	$\Upsilon(4S)$
$1.05 \pm 0.17 \pm 0.07$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96	TeV
$1.00^{igoplus 0.19}_{-0.18}\!\pm\!0.06$	WEI	09A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
a a M/a da nat usa tha fallau	wing data for aver	f	ita limit	s sts = = =	

• • We do not use the following data for averages, fits, limits, etc.

 $0.93 \pm 0.25 \pm 0.06$

AALTONEN

11L CDF

Repl. by AALTONEN 11AI

${\rm B}(B\to~K\ell^+\ell^-)~(10.09<{\rm q^2}<12.86~{\rm GeV^2/c^4})$

VALUE (units 10 ')	DOCUMENT ID	TECN	COMMENT
0.57±0.11 OUR AVERAGE	Error includes scale facto	or of 1.4.	See the ideogram below.

$0.90^{+0.20}_{-0.19}{\pm}0.04$	¹ LEES	12s BABR	$e^+e^- ightarrow \Upsilon(4S)$
$0.48\!\pm\!0.10\!\pm\!0.03$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV
$0.55^{+0.16}_{-0.14}\pm0.03$	WEI	09A BELL	$e^+e^- ightarrow ~ \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.72 \pm 0.17 \pm 0.05$

AALTONEN 11L CDF Repl. by AALTONEN 11AI

¹ The value reported here from LEES 12S refers to $4.3 < q^2 < 8.12 \text{ GeV}^2/c^2$.

 $^{^{1}}$ The value reported here from LEES 12S refers to $10.11 < q^{2} < 12.89 \; \text{GeV}^{2}/c^{2}$.

 $B(B \to K \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
0.49 ± 0.07 OUR AVERAGE				
$0.49^{\displaystyle +0.15}_{\displaystyle -0.14} \pm 0.02$	¹ LEES	12 S	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.52\!\pm\!0.09\!\pm\!0.03$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$0.38^{\displaystyle +0.19}_{\displaystyle -0.12} \pm 0.02$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the follow	ing data for avera	iges, fi	its, limit	s, etc. • • •
$0.38\!\pm\!0.12\!\pm\!0.03$	AALTONEN	11L	CDF	Repl. by AALTONEN 11AI

 $^{^1\,\}text{The}$ value reported here from LEES 12S refers to 14.21 < q^2 < 16.0 GeV^2/c^2.

${\rm B}(B \to K \ell^+ \ell^-) \ (16.0 < {\rm q}^2 \ {\rm GeV}^2/{\rm c}^4)$

VALUE (units 10^{-7})	DOCUMENT ID	TE	CN	COMMENT
0.52 ± 0.16 OUR AVERAGE	Error includes scal	e factor of	f 2.1.	See the ideogram below.
$0.67^{igoplus 0.23}_{igoplus 0.21} \pm 0.05$	LEES	12s BA	ABR	$e^+e^- ightarrow \Upsilon(4S)$
$0.38 \pm 0.09 \pm 0.02$	AALTONEN	11AI CE)F	$p\overline{p}$ at 1.96 TeV
$0.98^{+0.20}_{-0.18}{\pm}0.06$	WEI	09A BE	LL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follo	wing data for aver	ages, fits,	limits	s, etc. • • •
$0.35 \pm 0.13 \pm 0.02$	AALTONEN	11г СГ)F	Repl. by AALTONEN 11AL

 $\mathsf{B}(B\to~K\,\ell^+\,\ell^-)~(16.0<\mathsf{q}^2~\mathsf{GeV}^2/\mathsf{c}^4)~(\mathsf{units}~10^{-7})$

${\rm B}(B\to~K\ell^+\ell^-)~(1.0<{\rm q}^2<6.0~{\rm GeV}^2/c^4)$

$VALUE$ (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.33±0.13 OUR AVERAGE				
$1.36^{+0.27}_{-0.24}{\pm}0.03$	LEES	125	BABR	$e^+e^- ightarrow \gamma(4S)$
$1.29\!\pm\!0.18\!\pm\!0.08$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$1.36^{+0.23}_{-0.21}\pm0.08$	WEI	09A	BELL	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the following	ng data for avera	ges, fi	ts, limit	s, etc. • • •
$1.01 \pm 0.26 \pm 0.07$	AALTONEN	11L	CDF	Repl. by AALTONEN 11AI

$B(B \to K \ell^+ \ell^-) (0.0 < q^2 < 4.3 \text{ GeV}^2/c^4)$

VALUE (units 10 ⁻⁷)	DOCUMENT ID	TECN	COMMENT
$1.07 \pm 0.17 \pm 0.07$	AALTONEN 11	AI CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following	ng data for averages	, fits, limit	cs, etc. • • •
$0.96 \pm 0.25 \pm 0.06$	AALTONEN 11	L CDF	Repl. by AALTONEN 11AI

$B(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT	
$1.60^{+0.41}_{-0.39}^{+0.25}_{-0.22}$	¹ LEES	14 D	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^0$, $K^0_S\pi^0$, $K^0_S\pi^+$, $K^0_S\pi^+\pi^0$, and $K^0_S\pi^+\pi^-$ corrected for unobserved modes

$B(B \to X_s e^+ e^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

TECN COMMENT

 $1.93^{+0.47}_{-0.45}^{+0.28}_{-0.24}$

1 LEES

14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^0$, $K^0S^\pi^+$, $K^0S^\pi^+$, $K^0S^\pi^+\pi^0$, and $K^0S^\pi^+$, $K^0S^\pi^+\pi^0$, and $K^0S^\pi^+\pi^0$.

$B(B \to X_s \mu^+ \mu^-)$ (1.0 < q² < 6.0 GeV²/c⁴)

TECN COMMENT

 $0.66^{+0.82}_{-0.76}^{+0.82}_{-0.25}^{+0.31}$

¹LFFS

14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

$B(B \to X_s \ell^+ \ell^-)$ (14.2 < $q^2 \text{ GeV}^2/c^4$)

VALUE (units 10^{-6})

DOCUMENT ID TECN COMMENT

 $0.57^{igoplus 0.16}_{-0.15} {}^{+0.03}_{-0.02}$

14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

$B(B \to X_s e^+ e^-)$ (14.2 < q² GeV²/c⁴)

VALUE (units 10^{-6})

DOCUMENT ID TECN COMMENT

 $0.56^{+0.19}_{-0.18}^{+0.03}_{-0.03}$

14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

$B(B \to X_s \mu^+ \mu^-)$ (14.2 < q² GeV²/c⁴)

VALUE (units 10^{-6})

DOCUMENT ID TECN COMMENT

 $0.60^{+0.31}_{-0.29}^{+0.05}_{-0.04}$

1 LEES

14D BABR $e^+e^- \rightarrow \Upsilon(4S)$

Created: 5/30/2017 17:23

LEPTON (HADRON) FORWARD-BACKWARD ASYMMETRY IN $B \rightarrow K^{(*)}\ell^+\ell^-$ ($B \rightarrow K/\pi h^+h^-$) DECAY

The forward-backward angular asymmetry of the lepton pair in $B \rightarrow$ $K^{(*)}\ell^+\ell^-$ (B $\to K/\pi h^+h^-$) decay is defined as

$$A_{FB}(s) = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

where s=q^2/ m_B^2 , and θ is the angle of the ℓ^- (\hbar^-) with respect to the flight direction of the B meson, measured in the dilepton (dihadron)

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^0$, $K^0S^\pi^0$, $K^0S^\pi^+$, $K^0S^\pi^+\pi^0$, and $K^0S^\pi^+\pi^-$ corrected for unob-

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+$, K^0_S , $K^0_S\pi^0$, $K^0_S\pi^+$, $K^0_S\pi^+\pi^0$, and $K^0_S\pi^+$ π^- corrected for unob-

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^0$, $K^0S^\pi^0$, $K^0S^\pi^+$, $K^0S^\pi^+\pi^0$, and $K^0S^\pi^+\pi^-$ corrected for unob-

¹ Measured from sum of exclusive modes through K^+ , $K^+\pi^0$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+$, K^0_S , $K^0_S\pi^0$, $K^0_S\pi^+$, $K^0_S\pi^+\pi^0$, and $K^0_S\pi^+$ π^- corrected for unobserved modes.

rest frame. In addition, the fraction of longitudinal polarization F_L of the K^* and F_S , the relative contribution from scalar and pseudoscalar penguin amplitudes in $B \to K\ell^+\ell^-$, can be measured from the angular distribution of its decay products.

$A_{FB}(B \to K^* \ell^+ \ell^-) (q^2 > 0.1 \text{ GeV}^2/c^4)$

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$0.50 \pm 0.15 \pm 0.02$		1 ISHIKAWA	06	BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

² AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ >0.55

and $\cos\theta < 0$. Results with different q² cuts are also reported.

$A_{FB}(B \to K^* \ell^+ \ell^-) (0.1 < q^2 < 2.0 \text{ GeV}^2/c^4)$

VALUE	DOCUMENT ID		
-0.01 ± 0.14 OUR AVERAGE	Error includes sca	ale factor of 1.	4. See the ideogram below.
$-0.02\!\pm\!0.12\!\pm\!0.01$	AAIJ	13Y LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$-0.35 {+0.26\atop -0.23} \!\pm\! 0.10$	AALTONEN	12ı CDF	$p\overline{p}$ at 1.96 TeV
$0.47^{igoplus 0.26}_{-0.32}\!\pm\!0.03$	WEI	09A BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

We do not use the following data for averages, fits, limits, etc.

 $A_{FB}(B \to K^* \ell^+ \ell^-) (0.1 < q^2 < 2.0 \text{ GeV}^2/c^4)$

 $^{^{1}}$ Using an unbinned max. likelihood fits to the M_{bc} distribution in five q^{2} bins for $\cos\theta>0$

 $^1\,\text{CHATRCHYAN}$ 13BL uses, for this bin, 1.0 < q $^2<$ 2.0 $\text{GeV}^2/\text{c}^4.$

$A_{FB}(B \rightarrow K^* \ell^+ \ell^-) (m_{\ell \ell})$	√ < 2.5 GeV/c	²)	
VALUE		TECN	COMMENT
$0.24^{+0.18}_{-0.23}\pm0.05$	AUBERT	09N BABI	$R e^+e^- \rightarrow \Upsilon(4S)$
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-) (m_{\ell} \ell^-)$		2)	COMMENT
$0.76^{+0.52}_{-0.32}\pm0.07$	AUBERT	09N BABI	$R e^+e^- ightarrow \gamma(4S)$
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-) (0.16)$	$0 < q^2 < 0.98$		
VALUE	<u>DOCUMENT II</u>	D <u>TECN</u>	COMMENT
$-0.003^{+0.058}_{-0.057}\pm0.009$	AAIJ	16B LHC	3 <i>pp</i> at 7, 8 TeV
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ (1.1			
VALUE	<u>DOCUMENT II</u>	D <u>TECN</u>	COMMENT
$-0.191^{\displaystyle +0.068}_{\displaystyle -0.080}\pm 0.012$	AAIJ	16B LHC	3 <i>pp</i> at 7, 8 TeV
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-) (2.0$			
<u>VALUE</u> −0.14 ±0.05 OUR AVERAGE	DOCUMENT ID	<u>TECN</u>	COMMENT
$-0.118 ^{+0.082}_{-0.090} \pm 0.007$	¹ AAIJ	16B LHCB	<i>pp</i> at 7, 8 TeV
-0.090 $-0.12 \begin{array}{c} +0.15 \\ -0.17 \end{array} \pm 0.05$	KHACHATRY.		
-0.17 $-0.20 \pm 0.08 \pm 0.01$	AAIJ	13Y LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$-0.07 \pm 0.20 \pm 0.02$	CHATRCHYAN		
$0.29 \ ^{+ 0.32}_{- 0.35} \ \pm 0.15$	AALTONEN	12ı CDF	$p\overline{p}$ at 1.96 TeV
$0.11 \ ^{+ 0.31}_{- 0.36} \ \pm 0.07$	WEI	09A BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the followi	ng data for averag	ges, fits, limits	, etc. • • •
$0.05 \ ^{+0.16}_{-0.20} \ \pm 0.04$	AAIJ	12U LHCB	Repl. by AAIJ 13Y
$0.19 \ ^{+ 0.40}_{- 0.41} \ \pm 0.14$	AALTONEN	11L CDF	Repl. by AALTONEN 121
1 Measured in $2.5 < q^2 < 4.0$	${\rm GeV}^2/{\rm c}^4.$		
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-) (0.0$	$< q^2 < 4.3 Ge$	V^2/c^4)	
VALUE	DOCUMENT ID	TECN	COMMENT
-0.20	AALTONEN		•
• • • We do not use the followi	ng data for averag	ges, fits, limits	, etc. • • •
$0.21^{\begin{subarray}{c} +0.31 \\ -0.33 \end{subarray}} \pm 0.05$	AALTONEN	11L CDF	Repl. by AALTONEN 121
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ (4.0			<u>COMMENT</u>
$0.025^{+0.051}_{-0.052} \pm 0.004$	AAIJ		B pp at 7, 8 TeV
HTTP://PDG.LBL.GOV	Page 58	Cre	ated: 5/30/2017 17:2

$A_{FB}(B \to K^* \ell^+ \ell^-)$ (6.0 < q² < 8.0 GeV²/c⁴) TECN COMMENT $0.152^{\ +0.041}_{\ -0.040}\pm 0.008$ **AAIJ** 16B LHCB pp at 7, 8 TeV

$A_{FB}(B \to K^* \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

TECN COMMENT **−0.085±0.035 OUR AVERAGE** Error includes scale factor of 1.3. See the ideogram below.

$-0.075 {+0.032\atop -0.034} \pm 0.007$	¹ AAIJ	16 B	LHCB	<i>pp</i> at 7, 8 TeV
-0.12 ± 0.08	KHACHATRY.	16 D	CMS	pp at 7, 8 TeV
$0.21 \begin{array}{c} +0.10 \\ -0.15 \end{array} \begin{array}{c} +0.07 \\ -0.09 \end{array}$	² LEES	16 C	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.17\ \pm0.06\ \pm0.01$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.29 \ {+0.20\atop -0.23} \ \pm 0.07$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.26 \ ^{+0.27}_{-0.30} \ \pm 0.07$	WEI	09A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

We do not use the following data for averages, fits, limits, etc.

0.55 ± 0.43	³ SATO	16 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.07 \pm 0.12 \pm 0.01$	CHATRCHYAI	N 13BL CMS	Repl. by KHACHA- TRYAN 16D
$-0.06 \ ^{+ 0.13}_{- 0.14} \ \pm 0.07$	AAIJ	120 LHCB	Repl. by AAIJ 13Y
$0.43 {}^{+0.36}_{-0.37} \pm 0.06$	AALTONEN	11L CDF	Repl. by AALTONEN 121

WEIGHTED AVERAGE -0.085±0.035 (Error scaled by 1.3)

 $A_{FB}(B \to K^* \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

$A_{FB}(B \to K^* \ell^+ \ell^-)$ (4.3 < q² < 8.6 GeV²/c⁴)

•	, ,	-	" "		
<u>VALUE</u>		DOCUMENT ID	TECN	COMMENT	

0.13^{+0.06}_{-0.05} **OUR AVERAGE** Error includes scale factor of 1.1.

$0.16^{igoplus 0.06}_{-0.05}\!\pm\!0.01$	AAIJ	13Y	LHCB	$ ho ho$ at 7 TeV, $K^{st 0} \mu^+ \mu^-$
$-0.01\!\pm\!0.11\!\pm\!0.03$	CHATRCHYAN	13 BL	CMS	pp at 7 TeV
$0.01 \pm 0.20 \pm 0.09$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.45^{+0.15}_{-0.21}\!\pm\!0.15$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$0.27^{+0.06}_{-0.08} \pm 0.02$$
 AAIJ 120 LHCB Repl. by AAIJ 13Y $-0.06^{+0.30}_{-0.28} \pm 0.05$ AALTONEN 11L CDF Repl. by AALTONEN 12I

$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ (10.09 < q² < 12.86 GeV²/c⁴)

VALUE		DOCUMENT ID	TECIV	COMMENT
0.02 ± 0.13	OUR AVERAGE	Error includes scale f	actor of 4	.5. See the ideogram
below.				

ŀ	pelow.				
-	$-0.318^{igoplus 0.044}_{-0.040}\!\pm\!0.009$	¹ AAIJ	16 B	LHCB	<i>pp</i> at 7, 8 TeV
	$0.16\ \pm0.06\ \pm0.01$	KHACHATRY.	16 D	CMS	pp at 8 TeV
	$0.28 \ {+0.07\atop -0.06} \ \pm 0.02$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
	$0.40\ \pm0.08\ \pm0.05$	CHATRCHYAI	V 13 BL	CMS	pp at 7 TeV
	$0.38 \ ^{+0.16}_{-0.19} \ \pm 0.09$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
	$0.43 \begin{array}{c} +0.18 \\ -0.20 \end{array} \pm 0.03$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• We do not use the following data for averages, fits, limits, etc.

$0.27 \ ^{+0.11}_{-0.13} \ \pm 0.02$	AAIJ	120 LHCB Repl. by AAIJ 13Y		
$0.66 \begin{array}{c} +0.23 \\ -0.20 \end{array} \pm 0.07$	AALTONEN	11L CDF Repl. by AALTONEN 12I		

 $^{^1\,\}text{Measured}$ in $11.0 < \text{q}^2 < 12.5~\text{GeV}^2/\text{c}^4$.

 $^{^1\,\}text{Measured}$ in $1.1 < \text{q}^2 < 6.0~\text{GeV}^2/\text{c}^4.$

 $^{^2\,\}mathrm{Measured}$ by combining B^0 and B^+ with e and μ as leptons. Results are also provided

separately for B^0 and B^+ . 3 Uses $K^* \to K^-\pi^+$, $K^-\pi^0$, $K^0_S\pi^-$ in the range $M(K\pi) < 1.1$ GeV/c². Uncertainty

 $A_{FB}(B \to K^* \ell^+ \ell^-)$ (10.09 < q² < 12.86 GeV²/c⁴)

$A_{FB}(B \to K^* \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

<u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

0.43+0.05 OUR AVERAGE Frror includes scale factor of 1.6. See the ideogram below.

0.45 _{-0.06} OUR AVERAGE	Error includes scale factor	01 1.0.	See the ideogram bei
$0.39^{+0.04}_{-0.06}\pm0.01$	KHACHATRY16D	CMS	pp at 8 TeV

$0.39 - 0.06 \pm 0.01$	KHACHATRY	. 16 D	CMS	pp at 8 TeV
$0.51^{\color{red}+0.07}_{\color{red}-0.05}\!\pm\!0.02$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.29 \pm 0.09 \pm 0.05$	CHATRCHYAN	13 BL	CMS	pp at 7 TeV
$0.44^{igoplus 0.18}_{-0.21}\!\pm\!0.10$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.70^{igoplus 0.16}_{-0.22}\!\pm\!0.10$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

$0.47^{+0.06}_{-0.08}\pm0.03$	AAIJ	120	LHCB	Repl. by AAIJ 13Y
$0.42 \pm 0.16 \pm 0.00$	AALTONEN	111	CDE	Popl by AALTONEN 121

 $A_{FB}(B \to K^* \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

$A_{FB}(B \to K^* \ell^+ \ell^-) (15.0 < q^2 < 17.0 \text{ GeV}^2/c^4)$

DOCUMENT ID TECN COMMENT $0.411^{+0.41}_{-0.037}\pm0.008$ 16B LHCB pp at 7, 8 TeV

 $A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ (17.0 < q² < 19.0 GeV²/c⁴)

VALUE DOCUMENT ID TECN COMMENT $0.305^{\displaystyle{+0.049}}_{\displaystyle{-0.048}}\!\pm\!0.013$ AAIJ 16B LHCB pp at 7, 8 TeV

$A_{FB}(B \to K^* \ell^+ \ell^-)$ (16.0 < q² < 19.0 GeV²/c⁴)

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.367±0.024 OUR AVERAGE	Error includes scale factor of 1.1.			
$0.355 \pm 0.027 \pm 0.009$	¹ AAIJ	16 B	LHCB	<i>pp</i> at 7, 8 TeV
$0.35 \pm 0.07 \pm 0.01$	KHACHATRY	16 D	CMS	pp at 8 TeV
$0.30\ \pm0.08\ ^{+0.01}_{-0.02}$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.41\ \pm0.05\ \pm0.03$	CHATRCHYAN	l 13 BL	CMS	pp at 7 TeV
$0.65 \ ^{+0.17}_{-0.18} \ \pm 0.16$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.66 \ ^{+ 0.11}_{- 0.16} \ \pm 0.04$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$

• • We do not use the following data for averages, fits, limits, etc.

 $^{^{1}}$ Measured in $15.0 < q^{2} < 19.0 \text{ GeV}^{2}/c^{4}$.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $A_{FB}(B \to K \ell^+ \ell^-) (q^2 > 0.1 \text{ GeV}^2/c^4)$ TECN COMMENT 0.11±0.12 OUR AVERAGE $0.15^{\,+\,0.21}_{\,-\,0.23}\,{\pm}\,0.08$ 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT,B ² ISHIKAWA 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $0.10 \pm 0.14 \pm 0.01$ ¹Results with different q² cuts are also reported. ² Using an unbinned max. likelihood fits to the M_{hc} distribution in five q² bins for cos $\theta > 0$ $A_{FB}(B \to K \ell^+ \ell^-) (q^2 < 2.0 \text{ GeV}^2/c^4)$ TECN COMMENT $0.00^{+0.06}_{-0.05}$ OUR AVERAGE $0.00 \, {}^{+\, 0.06}_{-\, 0.05} \, {}^{+\, 0.03}_{-\, 0.01}$ AAIJ 13H LHCB pp at 7 TeV $0.13^{+0.42}_{-0.43}\pm0.07$ 12ı CDF $p\overline{p}$ at 1.96 TeV AALTONEN $0.06^{+0.32}_{-0.35}\pm0.02$ WEI 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.15^{\,+\,0.46}_{\,-\,0.39}\,{\pm}\,0.08$ **AALTONEN** 11L CDF Repl. by AALTONEN 121 $A_{FB}(B \to K \ell^+ \ell^-)$ (2.0 < q² < 4.3 GeV²/c⁴) $0.09^{+0.10}_{-0.07}$ OUR AVERAGE Error includes scale factor of 1.4. $0.07 ^{\,+\, 0.08 \,+\, 0.02}_{\,-\, 0.05 \,-\, 0.01}$ **AAIJ** 13H LHCB pp at 7 TeV $0.32^{\displaystyle +0.15}_{\displaystyle -0.16} \pm 0.05$ **AALTONEN** 12ı CDF $p\overline{p}$ at 1.96 TeV $-0.43^{\,+\,0.38}_{\,-\,0.40}\!\pm\!0.09$ WEI 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. $0.72^{+0.40}_{-0.35}\pm0.07$ **AALTONEN** 11L CDF Repl. by AALTONEN 121 $A_{FB}(B \to K \ell^+ \ell^-) (0.0 < q^2 < 4.3 \text{ GeV}^2/c^4)$ $0.31\pm0.16\pm0.04$ AALTONEN 12ı CDF • • We do not use the following data for averages, fits, limits, etc. $0.36^{+0.24}_{-0.26}\pm0.06$ **AALTONEN** 11L CDF Repl. by AALTONEN 121 $A_{FR}(B \to K \ell^+ \ell^-)$ (1.0 < q² < 6.0 GeV²/c⁴)

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
$0.034^{f +0.040}_{f -0.029}$ OUR AVERAGE			

$0.02 \begin{array}{c} +0.05 \\ -0.03 \end{array}$	+0.02 -0.01	AAIJ	13H	LHCB	pp at 7 TeV
0.13 ± 0.09	± 0.02	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$-0.04 \begin{array}{l} +0.13 \\ -0.16 \end{array}$	± 0.05	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$

• We do not use the following data for averages, fits, limits, etc. • •

0.00 ±0.13	¹ SATO	16	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.08 \ ^{+0.27}_{-0.22} \ \pm 0.07$	AALTONEN	11L	CDF	Repl. by AALTONEN 121
$^{\mathrm{1}}$ Statistical uncertainty only.				
$A_{FB}(B \rightarrow K\ell^+\ell^-)$ (4.3	$< q^2 < 8.6 Ge$	eV ² /c	⁴)	
VALUE	DOCUMENT ID		TECN	COMMENT
$-0.04^{+0.04}_{-0.05}$ OUR AVERAGE				
$-0.02^{\color{red}+0.03}_{\color{red}-0.05}\!\pm\!0.03$	AAIJ	13H	LHCB	pp at 7 TeV
$0.01^{\displaystyle +0.13}_{\displaystyle -0.10}\!\pm\!0.01$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$-0.20^{\begin{subarray}{c} +0.12 \\ -0.14 \end{subarray}} \pm 0.03$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the follow	ing data for aver	ages, f	its, limit	cs, etc. • • •
$-0.20^{\displaystyle +0.17}_{\displaystyle -0.28}\!\pm\!0.03$	AALTONEN	11L	CDF	Repl. by AALTONEN 12I
$A_{FB}(B \rightarrow K\ell^+\ell^-)$ (10.0	$9 < a^2 < 12.8$	36 Ge	V ² /c ⁴)	
VALUE	DOCUMENT ID			
-0.05 ± 0.06 OUR AVERAGE $-0.03\pm0.07\pm0.01$	AAIJ	13H	LHCB	pp at 7 TeV
. 0 11				$p\overline{p}$ at 1.96 TeV
$-0.21^{+0.17}_{-0.15}\pm0.06$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use the follow	ing data for aver	ages, f	its, limit	cs, etc. • • •
$-0.10^{\begin{subarray}{c} +0.17 \\ -0.15 \end{subarray}} \pm 0.07$	AALTONEN	11L	CDF	Repl. by AALTONEN 121
$A_{FB}(B \rightarrow K\ell^+\ell^-)$ (14.1	8 < a ² < 16 () GeV	2/64)	
VALUE / N.C. C.) (14.1	DOCUMENT ID			COMMENT
$-0.02^{+0.07}_{-0.05}$ OUR AVERAGE				
$-0.01^{+0.12}_{-0.06}\pm0.01$	AAIJ	13H	LHCB	pp at 7 TeV
$-0.05^{+0.09}_{-0.11}\pm0.03$	AALTONEN	121	CDF	$p\overline{p}$ at 1.96 TeV
$0.04^{+0.32}_{-0.26} \pm 0.05$	WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use the follow	ing data for aver	ages, f	its, limit	cs, etc. • • •
$0.03^{+0.49}_{-0.16}{\pm}0.04$	AALTONEN	11L	CDF	Repl. by AALTONEN 121
$A_{FB}(B\to K\ell^+\ell^-) \ (16.0$	$< a^2 < 18.0$	GeV ²	/c ⁴)	
VALUE				N COMMENT
$-0.09^{+0.07}_{-0.09}^{+0.02}_{-0.01}$	AAIJ	1	3H LHC	CB pp at 7 TeV
$A_{FB}(B \rightarrow K\ell^+\ell^-)$ (18.0	$< q^2 < 22.0$	GeV ²	/c ⁴)	
VALUE	DOCUMENT	ID	TEC	N COMMENT
$0.02 \pm 0.11 \pm 0.01$	AAIJ	1	3H LHC	CB pp at 7 TeV
HTTP://PDG.LBL.GOV	Page 6	4	Cr	eated: 5/30/2017 17:23

$A_{FB}(B \rightarrow K\ell^+\ell^-) (q^2 > 16.0 \text{ GeV}^2/c^4)$ VALUE DOCUMENT ID

TECN COMMENT

$0.04^{+0.09}_{-0.07}$ OUR AVERAGE

 $0.09^{\,+\,0.17}_{\,-\,0.13}\,{\pm}\,0.03$ $p\overline{p}$ at 1.96 TeV AALTONEN 12ı CDF

 $0.02^{\,+\,0.11}_{\,-\,0.08}\,{\pm}\,0.02$ 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$ WEI

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $0.07^{\,+\,0.30}_{\,-\,0.23}\,{\pm}\,0.02$ **AALTONEN** 11L CDF Repl. by AALTONEN 121

$A_{FB}(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$

DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc.

16 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 0.74 ± 0.54

 1 Uses the sum of 10 exclusive $X_{\rm S}$ modes in the range ${
m M}(X_{\rm S})>1.1~{
m GeV/c^2}.$ Uncertainty is statistical only.

 $F_S(B \to K\ell^+\ell^-)$ (q² > 0.1 GeV²/c⁴)

NATURE

DOCUMENT ID

TECH COMMENT

 $0.81^{+0.58}_{-0.61}\pm0.46$ ¹ AUBERT.B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$

$A_{FB}(B \rightarrow K p \overline{p}) (m_{p \overline{p}} < 2.85 \text{ GeV/c}^2)$

 $0.495 \pm 0.012 \pm 0.007$

$A_{FB}(B \rightarrow \pi p \overline{p}) (m_{p \overline{p}} < 2.85 \text{ GeV/c}^2)$

DOCUMENT ID TECN COMMENT

1 AAIJ 14AF I HCR 77.7.7 14AF LHCB pp at 7.8 TeV $-0.409\pm0.033\pm0.006$

ISOSPIN ASYMMETRY

 Δ_{0-} is defined as

$$\frac{\Gamma(\overline{B}^0 \to f_d) - \Gamma(B^- \to f_u)}{\Gamma(\overline{B}^0 \to f_d) + \Gamma(B^- \to f_u)},$$

the isospin asymmetry of inclusive neutral and charged B decay.

$\Delta_{0}=(\mathsf{B}(B\to X_{\mathsf{s}}\gamma))$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
-0.01 ± 0.06 OUR AVERAGE				
$-0.06 \pm 0.15 \pm 0.07$	^{1,2} AUBERT	080	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.006\pm0.058\pm0.026$	AUBERT,B	05 R	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ The result is for $E_{\gamma} > 2.2$ GeV.

HTTP://PDG.LBL.GOV

Page 65

¹ Results with different g² cuts are also reported.

¹ Measured in $B^+ \rightarrow K^+ p \overline{p}$ decays.

¹ Measured in $B^+ \rightarrow \pi^+ p \overline{p}$ decays.

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

$\Delta_{0+}(B \rightarrow K^*(892)\gamma)$

 Δ_{0+} describes the isospin asymmetry between $\Gamma(B^0 \to K^*(892)^0 \gamma)$ and $\Gamma(B^+ \to K^*(892)^0 \gamma)$ $K^*(892)^+ \gamma$).

DOCUMENT ID <u>TECN</u> <u>COMMENT</u>

0.052 ± 0.026 OUR AVERAGE

 $0.066 \pm 0.021 \pm 0.022$ $0.012 \pm 0.044 \pm 0.026$

¹ AUBERT NAKAO

09AO BABR $e^+e^- \rightarrow \Upsilon(4S)$ BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.050 \pm 0.045 \pm 0.037$

 2 AUBERT,BE 04A BABR Repl. by AUBERT 09AO

$\Delta_{\rho\gamma} = \Gamma(B^+ \to \rho^+ \gamma) / (2 \cdot \Gamma(B^0 \to \rho^0 \gamma)) - 1$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
-0.46 ± 0.17 OUR AVERAGE					
$-0.43^{+0.25}_{-0.22}\!\pm\!0.10$	AUBERT	08 BH	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.48 {}^{+ 0.21 + 0.08}_{- 0.19 - 0.09}$	TANIGUCHI	80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$\Delta_{0-}(B(B \rightarrow K\ell^{+}\ell^{-}))$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.13±0.06 OUR AVERAGE	Error includes scale	factor	of 1.1.	
$-0.10^{+0.08}_{-0.09}{\pm}0.02$	¹ AAIJ	1 4M	LHCB	<i>pp</i> at 7, 8 TeV
$-0.09^{\begin{subarray}{c} +0.08 \\ -0.08 \end{subarray}} \pm 0.02$	² AAIJ	14M	LHCB	<i>pp</i> at 7, 8 TeV
$-0.58^{\displaystyle +0.29}_{\displaystyle -0.37}\!\pm\!0.02$	³ LEES	12 S	BABR	$e^+e^- ightarrow \gamma(4S)$
$-0.31^{+0.17}_{-0.14}{\pm}0.08$	⁴ WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$$-0.35^{+0.23}_{-0.27}$$

⁵ AAIJ

12AH LHCB Repl. by AAIJ 14M

$$-1.43^{+0.56}_{-0.85}\pm0.05$$

6,7 AUBERT

09T BABR Repl. by LEES 12S

 $^{^1}$ Uses the production ratio of charged and neutral B from $\varUpsilon(4S)$ decays and the lifetime ratio $au_{R^+}/ au_{R^0}=1.071\pm0.009$. The 90% CL interval is $0.017<~\Delta_{0+}<0.116$

 $^{^2}$ Uses the production ratio of charged and neutral B from $\, \varUpsilon(4S) \,$ decays ${\sf R}^{+/0} = 1.006 \pm$ 0.048 and the lifetime ratio of $ilde{ au}_{R^+}$ / au_{R^0} = 1.083 \pm 0.017. The 90% CL interval is $-0.046 < \Delta_{0+} < 0.146$

 $^{^{1}\,\}mathrm{For}~1.1 < \mathrm{q^{2}}~< 6.0~\mathrm{GeV^{2}/c^{4}}$ using $\mu^{+}\,\mu^{-}$ as a lepton pair and assuming isospin symmetry for the $B \to J/\psi(1S) K$. Measurements in other q^2 bins are also reported.

 $^{^2}$ For $15.0 < {
m q}^2$ $< 19.0~{
m GeV}^2/{
m c}^4$ using $\mu^+\mu^-$ as a lepton pair and assuming isospin symmetry for the $B \to J/\psi(1S) K$. Measurements in other q^2 bins are also reported.

 $^{^3}$ For $0.10 < q^2 < 8.12 \text{ GeV}^2/c^4$. Measurements in other q^2 bins are also reported.

 $^{^{4}}$ For $q^{2} < 8.68 \text{ GeV}^{2}/c^{4}$.

 $^{^{5}}$ For $1 < q^{2} < 6 \text{ GeV}^{2}/c^{4}$. 6 For $0.1 < m_{\ell^{+}\ell^{-}}^{2} < 7.02 \text{ GeV}^{2}/c^{4}$.

⁷ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

DOCUMENT ID

TFCN

COMMENT

$\Delta_{0-}(\mathsf{B}(B\to K^*\ell^+\ell^-))$

VALUE

-0.03 ^{+0.08} _{-0.07} OUR AVERAGE	Error includes s	cale factor of 1.2.	
$0.00^{+0.12}_{-0.10}{\pm}0.02$	¹ AAIJ	14M LHCB	<i>pp</i> at 7, 8 TeV
$0.06^{+0.10}_{-0.00}\pm0.02$	² AAIJ	14M LHCB	pp at 7, 8 TeV

$$-0.25^{+0.20}_{-0.17}\pm0.03$$
 3 LEES 12S BABR $e^+e^-\to \Upsilon(4S)$ $-0.29\pm0.16\pm0.09$ 4 WEI 09A BELL $e^+e^-\to \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$-0.15\pm0.16$$
 5 AAIJ 12AH LHCB Repl. by AAIJ 14M $-0.56^{+0.17}_{-0.15}\pm0.03$ 6,7 AUBERT 09T BABR Repl. by LEES 12s

$\Delta_{0-}(B(B \rightarrow K^{(*)}\ell^+\ell^-))$

0-11	•			
VALUE	DOCUMENT ID		TECN	COMMENT
-0.45 ± 0.17 OUR AVERAGE	Error includes scale	e factor o	of 1.7.	
$-0.64 {+0.15\atop -0.14} \pm 0.03$	1,2 AUBERT	09⊤ E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.30^{+0.12}_{-0.11}\!\pm\!0.08$	³ WEI	09A E	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 For $0.1 < m_{ ho+ ho-}^{2} < 7.02$ G	$\rm GeV^2/c^4$.			
² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.				
3 For q ² $< 8.68 \text{ GeV}^{2}/\text{c}^{2}$.		()		

$B \rightarrow X_c \ell \nu$ HADRONIC MASS MOMENTS

$\langle M_X^2 - \overline{M}_D^2 \rangle$ (First Moments)

VALUE (GeV ²)	DOCUMENT ID		TECN	COMMENT
0.36 ±0.08 OUR AVERAGE	Error includes scale	factor	of 1.8.	
$0.467\!\pm\!0.038\!\pm\!0.068$	$^{ m 1}$ ACOSTA	05F	CDF	$p\overline{p}$ at 1.96 TeV
$0.293\!\pm\!0.012\!\pm\!0.058$	² CSORNA	04	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	ng data for averages,	fits,	limits, e	tc. • • •
$0.251\!\pm\!0.023\!\pm\!0.062$	³ CRONIN-HEN	01 B	CLE2	$e^+e^- ightarrow \Upsilon(4S)$

 $^{^{1}}$ Moments are measured with a minimum lepton momentum of 0.7 GeV/c in the B rest

 $^{^{1}\,\}mathrm{For}\,\,1.1 < \mathrm{q^{2}}\,\,\,< 6.0\,\,\mathrm{GeV^{2}/c^{4}}$ using $\mu^{+}\,\mu^{-}$ as a lepton pair and assuming isospin symmetry for the B($B \to J/\psi(1S) K^*(892)$). Measurements in other q² bins are also

 $^{^2}$ For $15.0 < {
m q}^2$ $< 22.0~{
m GeV}^2/{
m c}^4$ using $\mu^+\mu^-$ as a lepton pair and assuming isospin symmetry for the B($B \to J/\psi(1S) \, K^*(892)$). Measurements in other q² bins are also

 $^{^3}$ For 0.10 < q 2 < 8.12 \mbox{GeV}^2/\mbox{c}^4 . Measurements in other q 2 bins are also reported.

 $^{^4}$ For $q^2 < 8.68 \text{ GeV}^2/c^4$. 5 For $1 < q^2 < 6 \text{ GeV}^2/c^4$. 6 For $0.1 < m_{\ell^+\ell^-}^2 < 7.02 \text{ GeV}^2/c^4$.

⁷ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

frame; 2 Uses minimum lepton energy of 1.5 GeV and also reports moments with E $_\ell~>1.0$ GeV.

³The leptons are required to have $P_{\ell} > 1.5 \text{ GeV}/c$.

$\langle M_X^2 \rangle$ (First Moments)

VALUE (GeV ²)	DOCUMENT ID		TECN	COMMENT	
4.156±0.029 OUR AVERAGE					
$4.144 \pm 0.028 \pm 0.022$				$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$4.18 \pm 0.04 \pm 0.03$	$^{ m 1}$ AUBERT,B	04	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
1 The leptons are required to have $E_\ell > 1.5$ GeV/ c .					

 $[\]langle (M_X^2 - \overline{M}_X^2)^2 \rangle$ (Second Moments)

<i>VALUE</i> (GeV ⁴)	DOCUMENT ID		TECN	COMMENT
0.55 ± 0.08 OUR AVERAGE				
$0.515 \pm 0.061 \pm 0.064$	¹ SCHWANDA	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.629 \pm 0.031 \pm 0.143$	² CSORNA	04	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	g data for averages	, fits,	limits, e	etc. • • •
$1.05 \pm 0.26 \pm 0.13$ $0.576 \pm 0.048 \pm 0.168$	³ ACOSTA ¹ CRONIN-HEN.	05F .01B	CDF CLE2	$p\overline{p}$ at 1.96 TeV $e^+e^- ightarrow \gamma$ (4S)

 $^{^{1}}$ The leptons are required to have $E_{\ell} > 1.5~{
m GeV}/c$.

$\langle (M_X^2 - \overline{M}_D^2)^2 \rangle$ (Second Moments)

VALUE (GeV ⁴)	 DOCUMENT ID	TECN	COMMENT
$0.639 \pm 0.056 \pm 0.178$	 ¹ CRONIN-HEN01B	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
1	 E . 156 \//		

¹ The leptons are required to have $E_\ell > 1.5~{
m GeV}/c$.

$B \rightarrow X_c \ell \nu$ LEPTON MOMENTUM MOMENTS

$R_0 \left(\Gamma_{E_l > 1.7 GeV} / \Gamma_{E_l > 1.5 GeV} \right)$

VALUE	DOCUMENT ID	TECN	COMMENT
$0.6187 \pm 0.0014 \pm 0.0016$	¹ MAHMOOD 03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ The leptons are required to have E $_{l}$ >1.5 GeV in the B rest frame.

$R_1 \left(\langle \mathsf{E}_l \rangle_{E_l > 1.5 GeV} \right)$

VALUE	DOCUMENT ID			COMMENT
1.7797 ± 0.0018 OUR AVERAGE	Error includes sca	ale fac	tor of 1.	8. See the ideogram
below.				
$1.7743 \pm 0.0019 \pm 0.0014$	¹ AUBERT,B	04A	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$1.7792 \pm 0.0021 \pm 0.0027$				$e^+e^- \rightarrow \Upsilon(4S)$
$1.7810 \pm 0.0007 \pm 0.0009$	³ MAHMOOD	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1\,\}rm The$ leptons are required to have E $_l>1.5$ GeV in the B rest frame. The result with E $_l>0.6$ GeV is also given.

 $^{^2}$ Uses minimum lepton energy of 1.5 GeV and also reports moments with $E_\ell >$ 1.0 GeV.

 $^{^3}$ Moments are measured with a minimum lepton momentum of 0.7 GeV/c in the B rest frame:

 $^{^2}$ Uses E $_e>1.5$ GeV and also reports moments with other minimum minimum E $_e$ conditions, as low as E $_e>0.6$ GeV.

 $^{^3}$ The leptons are required to have E $_l>$ 1.5 GeV in the B rest frame.

 $\mathsf{R}_1 \; (\left\langle \mathsf{E}_l \right\rangle_{E_l > 1.5 GeV})$

$\mathsf{R}_2\;(\big\langle\mathsf{E}_l^2-\overline{E}_l^2\big\rangle_{E_l>1.5GeV})$

$VALUE (10^{-3} \text{ GeV}^2)$	DOCUMENT ID		TECN	COMMENT	
30.8±0.8 OUR AVERAGE					
$30.3 \pm 0.9 \pm 0.5$	¹ AUBERT,B				
$31.6 \pm 0.8 \pm 1.0$	² MAHMOOD	04	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ The leptons are required to have E $_l > 1.5$ GeV in the B rest frame. The result with E $_l > 0.6$ GeV is also given.

$\mathsf{R}_3\;(\big\langle\mathsf{E}_l^3-\overline{E}_l^3\big\rangle_{E_l>1.5GeV})$

$VALUE (10^{-3} \text{ GeV}^3)$	DOCUMENT ID	TECN	COMMENT
2.12±0.47±0.20	1 AUBERT,B 04A	BABR	$e^+e^- \rightarrow \gamma(4S)$

 $^{^1}$ The leptons are required to have E $_l > 1.5$ GeV in the B rest frame. The result with E $_l > 0.6$ GeV is also given.

$B \to X_s \gamma$ PHOTON ENERGY MOMENTS

$\langle E_{\gamma} \rangle$

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
2.314 ± 0.011 OUR AVERAGE				
$2.346 \pm 0.018 {}^{+ 0.027}_{- 0.022}$	$^{1,2}LEES$	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.304 \pm 0.014 \pm 0.017$	^{2,3} LEES	12V	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.311 \pm 0.009 \pm 0.015$	³ LIMOSANI	09	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
HTTP://PDG.LBL.GOV	Page 69		Creat	red: 5/30/2017 17:23

 $^{^2\, {\}rm Uses}~{\rm E}_e>1.5~{\rm GeV}$ and also reports moments with other minimum minimum ${\rm E}_e$ conditions, as low as ${\rm E}_e>0.6~{\rm GeV}.$

^{3,4} AUBERT 080 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.289 \pm 0.058 \pm 0.027$ 2,3 SCHWANDA 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $2.309 \pm 0.023 \pm 0.023$

• • • We do not use the following data for averages, fits, limits, etc. • • •

³ AUBERT,BE 06B BABR Repl. by LEES 12V $2.288 \pm 0.025 \pm 0.023$

$\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2$

$VALUE (10^{-2} \text{ GeV}^2)$	DOCUMENT ID		TECN	COMMENT
3.03 ± 0.25 OUR AVERAGE				
$2.11\!\pm\!0.57{+0.55\atop -0.69}$	^{1,2} LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.62 \pm 0.33 \pm 0.33$	^{2,3} LEES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.02 \pm 0.19 \pm 0.30$	³ LIMOSANI		BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.34 \pm 1.24 \pm 0.62$	^{3,4} AUBERT			$e^+e^- ightarrow \Upsilon(4S)$
$2.17 \pm 0.60 \pm 0.55$	^{2,3} SCHWANDA	80	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the followi	ng data for averages	s, fits,	limits, e	etc. • • •
$3.28 \pm 0.40 \pm 0.43$	³ AUBERT,BE	06 B	BABR	Repl. by LEES 12V

B^{\pm}/B^{0} ADMIXTURE REFERENCES

AAIJ	16B	JHEP 1602 104	R. Aaij et al.		Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj <i>et al.</i>		Collab.)
KHACHATRY	. 16D	PL B753 424	V. Khachatryan <i>et al.</i>		Collab.)
LEES	16	PRL 116 041801	J.P. Lees <i>et al.</i>		Collab.)
LEES	16C	PR D93 052015	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
SATO	16	PR D93 032008	Y. Sato et al.	(BELLE	Collab.)
Also		PR D93 059901 (errat.)	Y. Sato et al.	(BELLE	Collab.)
HUSCHLE	15	PR D92 072014	M. Huschle et al.	(BELLE	Collab.)
PESANTEZ	15	PRL 114 151601	L. Pesantez et al.	(BELLE	Collab.)
SAITO	15	PR D91 052004	T. Saito et al.	(BELLE	Collab.)
AAIJ	14AF	PRL 113 141801	R. Aaij <i>et al.</i>	(LHCb	Collab.)
AAIJ	14M	JHEP 1406 133	R. Aaij et al.	(LHCb	Collab.)
LEES	14D	PRL 112 211802	J.P. Lees et al.	(BABAR	Collab.)
LEES	14K	PR D90 092001	J.P. Lees et al.	(BABAR	Collab.)
AAIJ	13H	JHEP 1302 105	R. Aaij et al.	` (LHCb	Collab.)
AAIJ	13Y	JHEP 1308 131	R. Aaij <i>et al.</i>	(LHCb	Collab.)
CHATRCHYAN	13BL	PL B727 77	S. Chatrchyan et al.	(CMS	Collab.)
LEES	13I	PR D87 112005	J.P. Lees et al.	(BÀBAR	Collab.)
LEES	13M	PR D88 032012	J.P. Lees et al.	(BABAR	Collab.)
AAIJ	12AH	JHEP 1207 133	R. Aaij et al.	` (LHCb	Collab.)
AAIJ	12U	PRL 108 181806	R. Aaij <i>et al.</i>	(LHCb	Collab.)

HTTP://PDG.LBL.GOV

Page 70

 $^{^{1}}$ LEES 12U uses $E_{\gamma} >$ 1.897 GeV to calculate the moments; the moments are used to calculate the HQET parameters $m_b=4.579^{+0.032}_{-0.029}~{\rm GeV/c^2}$ and $\mu_\pi^2=0.257^{+0.034}_{-0.039}~{\rm GeV^2}$ in the shape function model. The same HQET parameters are also determined in the

 $^{^2}$ Results for different E_{γ} threshold values are also measured.

 $^{^3}$ The result is for $E_{\gamma} > 1.9$ GeV.

 $^{^4}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^1}$ LEES 120 uses $E_{\gamma}>1.897$ GeV to calculate the moments; the moments are used to calculate the HQET parameters $m_b=4.579^{+0.032}_{-0.029}~{\rm GeV/c^2}$ and $\mu_{\pi}^2=0.257^{+0.034}_{-0.039}~{\rm GeV^2}$ in the shape function model. The same HQET parameters are also determined in the

 $^{^2}$ Results for different E_{γ} threshold values are also measured.

³ The result is for $E_{\gamma} > 1.9$ GeV.

 $^{^4}$ Uses a fully reconstructed B meson as a tag on the recoil side.

		BB1 444 44444			- ·· · ·
AALTONEN	12I	PRL 108 081807	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
LEES	12	PR D85 011102	J.P. Lees et al.	(BABAR	
-				`	,
LEES	12D	PRL 109 101802	J.P. Lees <i>et al.</i>	(BABAR	
Also		PR D88 072012	J.P. Lees et al.	(BABAR	Collab.)
LEES	12R		J.P. Lees <i>et al.</i>	`	
		PR D86 032004		(BABAR	- :
LEES	12S	PR D86 032012	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
LEES	12U	PR D86 052012	J.P. Lees et al.	(BABAR	
				`	,
LEES	12V	PRL 109 191801	J.P. Lees	(BABAR	Collab.)
Also		PR D86 112008	J.P. Lees et al.	(BABAR	Collah Ì
				`	
AALTONEN	11Al	PRL 107 201802	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
AALTONEN	11L	PRL 106 161801	T. Aaltonen et al.	(CDF	Collab.)
				`	,
DEL-AMO-SA	. 11	PR D83 031103	P. del Amo Sanchez et al.	(BABAR	Collab.)
AUBERT	10	PRL 104 011802	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	10A	PR D81 032003	B. Aubert <i>et al.</i>	(BABAR	
AUSHEV	10	PR D81 031103	T. Aushev <i>et al.</i>	(BELLE	Collab.)
DEL-AMO-SA			P. del Amo Sanchez et al.	(BABAR	
DEL-AMO-SA	. 10Q	PR D82 112002	P. del Amo Sanchez et al.	(BABAR	Collab.)
NISHIMURA	10	PRL 105 191803	K. Nishimura et al.	`	Collab.)
				`	,
URQUIJO	10	PRL 104 021801	P. Urquijo <i>et al.</i>	(BELLE	Collab.)
AUBERT	0000	PRL 103 211802	B. Aubert <i>et al.</i>	(BABAR	Collab \
				(DADAD	Collab.)
AUBERT	09N	PR D79 031102	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	09T	PRL 102 091803	B. Aubert et al.	(BABAR	Collab)
	05.			`	,
Also		EPAPS Document No. E		(BABAR	
AUBERT	09U	PRL 102 161803	B. Aubert et al.	(BABAR	Collab.)
LIMOSANI	09	PRL 103 241801	A. Limosani <i>et al.</i>	(DELLE	Collab.)
WEI	09A	PRL 103 171801	JT. Wei <i>et al.</i>	(BELLE	Collab.)
Also		EPAPS Supplement EPAF			Collab.)
		• • •		`	,
AUBERT	08AS	PRL 100 171802	B. Aubert et al.	(BABAR	Collab.)
AUBERT	USBC	PR D78 072007	B. Aubert et al.	(BABAR	Collab \
AUBERT	08BH	PR D78 112001	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	08R I	PRL 101 171804	B. Aubert et al.	(BABAR	Collab)
AUBERT	08N	PRL 100 021801	B. Aubert et al.	(BABAR	Collab.)
Also		PR D79 092002	B. Aubert <i>et al.</i>	(BABAR	Collab)
AUBERT	080	PR D77 051103	B. Aubert <i>et al.</i>		
				(BABAR	
SCHWANDA	80	PR D78 032016	C. Schwanda et al.	(BELLE	Collab.)
TANIGUCHI	80	PRL 101 111801	N. Taniguchi et al.	(BELLE	
				`	,
WEI	08A	PR D78 011101	JT. Wei <i>et al.</i>	(BELLE	Collab.)
AUBERT	07AG	PRL 99 051801	B. Aubert et al.	(BABAR	Collab)
AUBERT	07C	PR D75 012003	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	07E	PRL 98 051802	B. Aubert <i>et al.</i>	(BABAR	Collab.)
	07L			`	,
AUBERT		PRL 98 151802	B. Aubert <i>et al.</i>	(BABAR	,
HUANG	07	PR D75 012002	G.S. Huang <i>et al.</i>	(CLEO	Collab.)
SCHWANDA	07	PR D75 032005	C. Schwanda et al.	. `	Collab.)
URQUIJO	07	PR D75 032001	P. Urquijo <i>et al.</i>	(BELLE	Collab.)
AUBERT	06H	PR D73 012006	B. Aubert et al.	(BABAR	Collab)
AUBERT,B	06J	PR D73 092001	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT,B	06Y	PR D74 091105			
,	06B		B. Aubert <i>et al</i> .	(BABAR	Collab.)
AUBERT,BE			B. Aubert et al.	(BABAR	
BUCHMUEL		PRL 97 171803	B. Aubert et al.	(BABAR (BABAR	Collab.)
GOKHROO	06	PRL 97 171803 PR D73 073008			Collab.)
		PR D73 073008	B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher	(BABAR	Collab.) (RHBL)
	06	PR D73 073008 PRL 97 162002	B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher G. Gokhroo <i>et al.</i>	(BABAR (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA		PR D73 073008	B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher	(BABAR	Collab.) (RHBL) Collab.)
ISHIKAWA	06 06	PR D73 073008 PRL 97 162002 PRL 96 251801	B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher G. Gokhroo <i>et al.</i> A. Ishikawa <i>et al.</i>	(BABAR (BELLE (BELLE	Collab.) (RHBL) Collab.) Collab.)
ISHIKAWA MOHAPATRA	06 06 06	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601	 B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher G. Gokhroo <i>et al.</i> A. Ishikawa <i>et al.</i> D. Mohapatra <i>et al.</i> 	(BABAR (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.) Collab.) Collab.)
ISHIKAWA	06 06	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803	B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher G. Gokhroo <i>et al.</i> A. Ishikawa <i>et al.</i>	(BELLE (BELLE (BELLE (D0	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV	06 06 06 05O	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803	B. Aubert <i>et al.</i> O.L. Buchmueller, H.U. Flacher G. Gokhroo <i>et al.</i> A. Ishikawa <i>et al.</i> D. Mohapatra <i>et al.</i> V.M. Abazov <i>et al.</i>	(BELLE (BELLE (BELLE (D0	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA	06 06 06 05O 05F	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al.	(BELLE (BELLE (BELLE (D0 (CDF	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO	06 06 06 05O 05F 05B	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al.	(BABAR (BELLE (BELLE (D0 (CDF (CLEO	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA	06 06 06 05O 05F	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al.	(BELLE (BELLE (BELLE (D0 (CDF	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT	06 06 06 05O 05F 05B 05	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al.	(BABAR (BELLE (BELLE (D0 (CDF (CLEO (BABAR	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B	06 06 05 05 05 05 05 05 05 05 M	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. B. Aubert et al.	(BABAR (BELLE (BELLE (D0 (CDF (CLEO (BABAR (BABAR	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT	06 06 06 05O 05F 05B 05	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BABAR (BELLE (BELLE (D0 (CDF (CLEO (BABAR	Collab.) (RHBL) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B	06 06 06 05O 05F 05B 05 05M 05R	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 271601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B	06 06 05 05 05 05 05 05 05 05 M	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO	06 06 05 05 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.)	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO) (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B	06 06 06 05O 05F 05B 05 05M 05R	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO CHOI	06 06 06 05O 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. SK. Choi et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BABAR (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO CHOI IWASAKI	06 06 05 05O 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. C. Acosta et al. B. Aubert et al. C. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. C. K. Choi et al. M. Iwasaki et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO CHOI	06 06 06 05O 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. SK. Choi et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AIso CHOI IWASAKI LIMOSANI	06 06 06 05O 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 97 092005 PL B621 28	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. C. K. Choi et al. M. Iwasaki et al. A. Limosani et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AUSERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA	06 06 06 05O 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al.	(BABAR (BELLE (BELLE (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA	06 06 06 05O 05F 05B 05 05M 05X 05 05 05 05 05	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al. S. Nishida et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AUSERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA	06 06 06 05O 05F 05B 05 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE	06 06 06 05O 05B 05B 05S 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. D. Mohapatra et al. S. Nishida et al. S. Nishida et al. T. Okabe et al.	(BABAR (BELLE (BELLE (D0 (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE ABDALLAH	06 06 06 05O 05F 05B 05 05M 05R 05X 05 05 05 05 05 05 05	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 271601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27 EPJ C33 213	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. A. Limosani et al. S. Nishida et al. S. Nishida et al. T. Okabe et al. J. Abdallah et al.	(BABAR (BELLE (DO) (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (DELPHI	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE	06 06 06 05O 05B 05B 05S 05M 05R 05X	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 96 221601 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. D. Mohapatra et al. S. Nishida et al. S. Nishida et al. T. Okabe et al.	(BABAR (BELLE (BELLE (D0 (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE ABDALLAH AUBERT	06 06 06 05O 05F 05B 05 05M 05R 05X 05 05 05 05 05 05 05 05 05 05 05 05 05	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27 EPJ C33 213 PRL 92 111801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al. S. Nishida et al. T. Okabe et al. J. Abdallah et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (BELLE (DELPHI (BABAR	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE ABDALLAH AUBERT AUBERT AUBERT	06 06 06 05O 05F 05B 05 05M 05R 05X 05 05 05 05 05 05 05 05 04D 04C 04I	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 1261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27 EPJ C33 213 PRL 92 111801 PRL 92 071802	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. C. K. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al. S. Nishida et al. T. Okabe et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BELLE	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE ABDALLAH AUBERT	06 06 06 05O 05F 05B 05 05M 05X 05 05 05 05 05 05 05 04D 04C 04I 04S	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 261801 PRL 94 011801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27 EPJ C33 213 PRL 92 111801	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. CK. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al. S. Nishida et al. T. Okabe et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al. B. Aubert et al.	(BABAR (BELLE (BELLE (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BELLE (BEL	Collab.) (RHBL) Collab.)
ISHIKAWA MOHAPATRA ABAZOV ACOSTA ARTUSO AUBERT AUBERT,B AUBERT,B AISO CHOI IWASAKI LIMOSANI MOHAPATRA NISHIDA OKABE ABDALLAH AUBERT AUBERT AUBERT	06 06 06 05O 05F 05B 05 05M 05R 05X 05 05 05 05 05 05 05 05 04D 04C 04I	PR D73 073008 PRL 97 162002 PRL 96 251801 PRL 95 171803 PR D71 051103 PRL 95 261801 PRL 95 1261801 PRL 95 142003 PR D72 052004 PRL 95 111801 PRL 97 019903 (errat.) PRL 94 182002 PR D72 092005 PL B621 28 PR D72 011101 PL B610 23 PL B614 27 EPJ C33 213 PRL 92 111801 PRL 92 071802	B. Aubert et al. O.L. Buchmueller, H.U. Flacher G. Gokhroo et al. A. Ishikawa et al. D. Mohapatra et al. V.M. Abazov et al. D. Acosta et al. M. Artuso et al. B. Aubert et al. C. K. Choi et al. M. Iwasaki et al. A. Limosani et al. D. Mohapatra et al. S. Nishida et al. T. Okabe et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al.	(BABAR (BELLE (BELLE (DO (CDF (CLEO (BABAR (BABAR (BABAR (BABAR (BELLE	Collab.) (RHBL) Collab.)

AUBERT,B	04	PR D69 111103	B. Aubert <i>et al.</i>	(BABAR Collab.)
	04A	PR D69 111104	B. Aubert et al.	(BABAR Collab.)
AUBERT,B				
AUBERT,B	04E	PRL 93 021804	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04F	PRL 93 061801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04I	PRL 93 081802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	04A	PR D70 112006	B. Aubert <i>et al.</i>	(BABAR Collab.)
	04			
CSORNA	-	PR D70 032002	S.E. Csorna <i>et al.</i>	(CLEO Collab.)
KOPPENBURG	G 04	PRL 93 061803	P. Koppenburg <i>et al.</i>	(BELLE Collab.)
MAHMOOD	04	PR D70 032003	A.H. Mahmodd <i>et al.</i>	`(CLEO Collab.)
NAKAO	04	PR D69 112001	M. Nakao <i>et al.</i>	(BELLE Collab.)
NISHIDA	04	PRL 93 031803	S. Nishida <i>et al.</i>	(BELLE Collab.)
				(SLEE CONO.)
ADAM	03B	PR D68 012004	N.E. Adam <i>et al.</i>	(CLEO Collab.)
AUBERT	03	PR D67 031101	B. Aubert <i>et al.</i>	(BABAR Collab.)
				,
AUBERT	03F	PR D67 032002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03U	PRL 91 221802	B. Aubert <i>et al.</i>	(BABAR Collab.)
BONVICINI	03	PR D68 011101	G. Bonvicini et al.	(CLEO Collab.)
HUANG	03	PRL 91 241802	HC. Huang et al.	(BELLE Collab.)
ISHIKAWA	03	PRL 91 261601	A. Ishikawa <i>et al.</i>	(BELLE Collab.)
KANEKO	03	PRL 90 021801	J. Kaneko <i>et al.</i>	(BELLE Collab.)
	03B			
KROKOVNY		PRL 91 262002	P. Krokovny <i>et al.</i>	(BELLE Collab.)
MAHMOOD	03	PR D67 072001	A.H. Mahmood <i>et al.</i>	(CLEO Collab.)
ABE	02	PRL 88 021801	K. Abe <i>et al.</i>	(BELLE Collab.)
	-			
ABE	02L	PRL 89 011803	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02Y	PL B547 181	K. Abe <i>et al.</i>	(BELLE Collab.)
	-			
ANDERSON	02	PRL 89 282001	S. Anderson <i>et al.</i>	(CLEO Collab.)
AUBERT	02C	PRL 88 101805	B. Aubert <i>et al.</i>	(BABAR Collab.)
				` '
AUBERT	02G	PR D65 091104	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02L	PRL 88 241801	B. Aubert <i>et al.</i>	(BABAR Collab.)
				`
BORNHEIM	02	PRL 88 231803	A. Bornheim <i>et al.</i>	(CLEO Collab.)
EDWARDS	02B	PR D65 111102	K.W. Edwards et al.	(CLEO Collab.)
				. `
ABE	01F	PL B511 151	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	01J	PR D64 072001	K. Abe <i>et al.</i>	(BELLE Collab.)
	01B		S. Anderson et al.	(CLEO Collab.)
ANDERSON		PRL 87 181803		
CHEN	01	PR D63 031102	S. Chen <i>et al.</i>	(CLEO Collab.)
CHEN	01C	PRL 87 251807	S. Chen et al.	(CLEO Collab.)
CITEIN	OIC	1 ILL 01 231001	J. Chen et al.	(CLLO Collab.)
CO 4 4 1	~ 4	DDI OC ECCA	T.F. 6	
COAN	01	PRL 86 5661	T.E. Coan <i>et al.</i>	(CLEO Collab.)
				(CLEO Collab.)
CRONIN-HEN.	01B	PRL 87 251808	D. Cronin-Hennessy et al.	
CRONIN-HEN PDG	01B 01	PRL 87 251808 Unofficial 2001 WWW e	D. Cronin-Hennessy <i>et al.</i> dition	(CLEO Collab.) (CLEO Collab.)
CRONIN-HEN.	01B	PRL 87 251808	D. Cronin-Hennessy et al.	(CLEO Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU	01B 01 00R	PRL 87 251808 Unofficial 2001 WWW e PL B475 407	D. Cronin-Hennessy <i>et al.</i> dition P. Abreu <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.)
CRONIN-HEN PDG ABREU COAN	01B 01 00R 00	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283	D. Cronin-Hennessy <i>et al.</i> dition P. Abreu <i>et al.</i> T.E. Coan <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU	01B 01 00R	PRL 87 251808 Unofficial 2001 WWW e PL B475 407	D. Cronin-Hennessy <i>et al.</i> dition P. Abreu <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI	01B 01 00R 00 00	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520	D. Cronin-Hennessy <i>et al.</i> dition P. Abreu <i>et al.</i> T.E. Coan <i>et al.</i> S.J. Richichi <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE	01B 01 00R 00 00 98Q	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387	D. Cronin-Hennessy <i>et al.</i> dition P. Abreu <i>et al.</i> T.E. Coan <i>et al.</i> S.J. Richichi <i>et al.</i> R. Barate <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI	01B 01 00R 00 00	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272	D. Cronin-Hennessy <i>et al.</i> dition P. Abreu <i>et al.</i> T.E. Coan <i>et al.</i> S.J. Richichi <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE	01B 01 00R 00 00 98Q 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI	01B 01 00R 00 00 98Q 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD	01B 01 00R 00 00 98Q 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI	01B 01 00R 00 00 98Q 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER	01B 01 00R 00 00 98Q 98 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN	01B 01 00R 00 00 98Q 98 98 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER	01B 01 00R 00 00 98Q 98 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN	01B 01 00R 00 00 98Q 98 98 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF	01B 01 00R 00 00 98Q 98 98 98 98 98 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN	01B 01 00R 00 00 98Q 98 98 98 98	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR	01B 01 00R 00 00 98Q 98 98 98 98 98 98 98 97N 97	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al.	(CLEO Collab.) (CLEO Collab.) (DELPHI Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH	01B 01 00R 00 00 98Q 98 98 98 98 98 97N 97	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC	01B 01 00R 00 00 98Q 98 98 98 98 98 97N 97 97B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH	01B 01 00R 00 00 98Q 98 98 98 98 98 97N 97	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS	01B 01 00R 00 00 98Q 98 98 98 98 98 97 97 97 97 97B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (ALEPH Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97N 97 97B 97B 96D	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. L. Gibbons et al. H. Albrecht et al.	(CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (ARGUS Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS	01B 01 00R 00 00 98Q 98 98 98 98 98 97 97 97 97 97B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (ALEPH Collab.) (ARGUS Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. L. Gibbons et al. H. Albrecht et al. B. C. Barish et al. B. C. Barish et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (ALEPH Collab.) (ARGUS Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT	01B 01 00R 00 98 98 98 98 98 97 97 97 97 97B 96D 96B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. H. Albrecht et al. B. C. Barish et al. D. Gibaut et al. D. Gibaut et al.	(CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA	01B 01 00R 00 00 98Q 98 98 98 98 97N 97 97 97B 97B 96D 96B 96	PRL 87 251808 Unofficial 2001 WWW e PL 8475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. V. Kubota et al. Y. Kubota et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (ALEPH Collab.) (ARGUS Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT	01B 01 00R 00 98 98 98 98 98 97 97 97 97 97B 96D 96B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. H. Albrecht et al. B. C. Barish et al. D. Gibaut et al. D. Gibaut et al.	(CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 97B 96D 96B 96	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D53 6033 PR D54 1	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al. R. M. Barnett et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 97B 96D 96B 96	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D53 6033 PR D54 1	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al. R. M. Barnett et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96 96 95	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. M.S. Alam et al. M.S. Alam et al. H. Albrecht et al. H. Albrecht et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96 96 95 95D	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. D. Gibaut et al. Y. Kubota et al. M.S. Alam et al. H. Albrecht et al. M.S. Alam et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97 97B 96D 96B 96 96 96 95 95D 95B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 4734 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al. M.S. Alam et al. H. Albrecht et al. R. Balest et al. R. Balest et al. R. Balest et al.	(CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96 96 95 95D	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 4734 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. D. Gibaut et al. Y. Kubota et al. M.S. Alam et al. H. Albrecht et al. M.S. Alam et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al.	(CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 96D 96B 96 96 95 95B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. N. Kubota et al. R. M. Barnett et al. M.S. Alam et al. H. Albrecht et al. R. M. Barnett et al. R. Balest et al. R. Balest et al. B.C. Barish et al. D. Gibaut et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT	01B 01 00R 00 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96 96 95 95B 95B 94C	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Coan et al. S. Glenn et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al. R. M. Barnett et al. B. C. Barish et al. C. Coansel et al. C. Barish et al. D. Buskulic et al. C. Barish et al. C. Barish et al. C. Barish et al. C. Barish et al.	(CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 96D 96B 96 96 95 95B	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. N. Kubota et al. R. M. Barnett et al. M.S. Alam et al. H. Albrecht et al. R. M. Barnett et al. R. Balest et al. R. Balest et al. B.C. Barish et al. D. Gibaut et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96 95 95B 95B 94C 94J	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B385 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. S. Glann et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al. R. M. Barnett et al. B.C. Barish et al. D. Gibaut et al. H. Albrecht et al. B.C. Barish et al. D. Buskulic et al. H. Albrecht et al. B.C. Barish et al. D. Buskulic et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT PROCARIO	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 97B 96D 96B 96 96 95 95B 95B 94C 94J	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. D. Gibaut et al. R. M. Barnett et al. R. M. Barnett et al. R. M. Barnett et al. R. M. Balest et al. B. C. Barish et al. H. Albrecht et al. R. Balest et al. R. Balest et al. B. Barish et al. H. Albrecht et al. B. Buskulic et al. H. Albrecht et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97B 96D 96B 96 96 95 95B 95B 94C 94J	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B385 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. S. Glann et al. H. Albrecht et al. B.C. Barish et al. D. Gibaut et al. Y. Kubota et al. R. M. Barnett et al. R. M. Barnett et al. B.C. Barish et al. D. Gibaut et al. H. Albrecht et al. B.C. Barish et al. D. Buskulic et al. H. Albrecht et al. B.C. Barish et al. D. Buskulic et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al.	(CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT ALBRECHT ALBRECHT PROCARIO ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 96D 96B 96 96 95 95D 95B 95B 94C 94J 94	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472 ZPHY C57 533	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. D. Gibaut et al. P. Kubota et al. R. M. Barnett et al. R. M. Barnett et al. R. M. Balest et al. B.C. Barish et al. H. Albrecht et al. H. Albrecht et al. B.C. Barish et al. H. Albrecht et al.	(CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 97B 96D 96B 96 96 95 95B 95B 95B 95B 94C 94J 94	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472 ZPHY C61 1 PRL 73 1472 ZPHY C60 11	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. P. Kubota et al. Y. Kubota et al. M.S. Alam et al. H. Albrecht et al. R. Balest et al. B.C. Barish et al. H. Albrecht et al.	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 97B 96D 96B 96 96 95 95B 95B 95B 94C 94J 94 93	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472 ZPHY C60 11 PL B318 397	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Coan et al. T.E. Growder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. Y. Kubota et al. Y. Kubota et al. H. Albrecht et al. B.C. Barish et al. D. Buskulic et al. H. Albrecht et al.	(CLEO Collab.) (ARGUS Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 97B 96D 96B 96 96 95 95B 95B 95B 95B 94C 94J 94	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472 ZPHY C61 1 PRL 73 1472 ZPHY C60 11	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Browder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. P. Kubota et al. Y. Kubota et al. M.S. Alam et al. H. Albrecht et al. R. Balest et al. B.C. Barish et al. H. Albrecht et al.	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (CLEO Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97 97 97B 96D 96B 96 96 95 95B 95B 95B 94C 94J 93 93E 93H 93I	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472 ZPHY C60 11 PL B318 397 ZPHY C60 11 PL B318 397 ZPHY C58 191	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Coan et al. T.E. Growder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. R. Ammar et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. R. M. Barnett et al. R. Balest et al. H. Albrecht et al. B.C. Barish et al. H. Albrecht et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (ARGUS Collab.)
CRONIN-HEN. PDG ABREU COAN RICHICHI BARATE BERGFELD BISHAI BONVICINI BROWDER COAN GLENN ACKERSTAFF AMMAR BARISH BUSKULIC GIBBONS ALBRECHT BARISH GIBAUT KUBOTA PDG ALAM ALBRECHT BALEST BARISH BUSKULIC ALBRECHT	01B 01 00R 00 98Q 98 98 98 98 97 97 97B 97B 96D 96B 96 96 95 95B 95B 95B 94C 94J 94 93	PRL 87 251808 Unofficial 2001 WWW e PL B475 407 PRL 84 5283 PRL 85 520 EPJ C4 387 PRL 81 272 PR D57 3847 PR D57 6604 PRL 81 1786 PRL 80 1150 PRL 80 2289 ZPHY C74 423 PR D55 13 PRL 79 3599 ZPHY C73 601 PR D56 3783 PL B374 256 PRL 76 1570 PR D53 4734 PR D53 6033 PR D54 1 PRL 74 2885 PL B353 554 PR D52 2661 PR D51 1014 PL B345 103 ZPHY C62 371 ZPHY C61 1 PRL 73 1472 ZPHY C60 11 PL B318 397	D. Cronin-Hennessy et al. dition P. Abreu et al. T.E. Coan et al. S.J. Richichi et al. R. Barate et al. T. Bergfeld et al. M. Bishai et al. G. Bonvicini et al. T.E. Coan et al. T.E. Growder et al. T.E. Coan et al. S. Glenn et al. K. Ackerstaff et al. B. Barish et al. D. Buskulic et al. L. Gibbons et al. H. Albrecht et al. B.C. Barish et al. Y. Kubota et al. Y. Kubota et al. H. Albrecht et al. B.C. Barish et al. D. Buskulic et al. H. Albrecht et al.	(CLEO Collab.) (ARGUS Collab.)

ARTUSO BARTELT ALBRECHT ALBRECHT BORTOLETTO CRAWFORD HENDERSON LESIAK ALBRECHT	92 92 92 91C	PL B311 307 PRL 71 4111 PL B277 209 ZPHY C54 1 ZPHY C56 1 PR D45 21 PR D45 752 PR D45 2212 ZPHY C55 33 PL B255 297	M. Artuso J.E. Bartelt et al. H. Albrecht et al. H. Albrecht et al. D. Bortoletto et al. G. Crawford et al. S. Henderson et al. T. Lesiak et al. H. Albrecht et al.	(SYRA) (CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (Crystal Ball Collab.) (ARGUS Collab.)
ALBRECHT FULTON YANAGISAWA ALBRECHT ALBRECHT	91H 91 91 90 90H	ZPHY C52 353 PR D43 651 PRL 66 2436 PL B234 409 PL B249 359	H. Albrecht <i>et al.</i> R. Fulton <i>et al.</i> C. Yanagisawa <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (CLEO Collab.) (CUSB II Collab.) (ARGUS Collab.) (ARGUS Collab.)
BORTOLETTO Also FULTON MASCHMANN	90 90	PRL 64 2117 PR D45 21 PRL 64 16 ZPHY C46 555	D. Bortoletto et al. D. Bortoletto et al. R. Fulton et al. W.S. Maschmann et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (Crystal Ball Collab.)
PDG ALBRECHT ISGUR WACHS	90 89K 89B 89	PL B239 1 ZPHY C42 519 PR D39 799 ZPHY C42 33	J.J. Hernandez et al. H. Albrecht et al. N. Isgur et al. K. Wachs et al.	(IFIC, BOST, CIT+) (ARGUS Collab.) (TNTO, CIT) (Crystal Ball Collab.)
ALBRECHT ALBRECHT KOERNER ALAM ALAM	88E 88H 88 87	PL B210 263 PL B210 258 ZPHY C38 511 PRL 59 22 PRL 58 1814	H. Albrecht et al. H. Albrecht et al. J.G. Korner, G.A. Schuler M.S. Alam et al. M.S. Alam et al.	(ARGUS Collab.) (ARGUS Collab.) (MANZ, DESY) (CLEO Collab.) (CLEO Collab.)
ALBRECHT ALBRECHT BEAN BEHRENDS	87D 87H 87 87	PL B199 451 PL B187 425 PR D35 3533 PRL 59 407	H. Albrecht et al.H. Albrecht et al.A. Bean et al.S. Behrends et al.	(ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.)
BORTOLETTO ALAM BALTRUSAIT BORTOLETTO HAAS	86 86E	PR D35 19 PR D34 3279 PRL 56 2140 PRL 56 800 PRL 56 2781	D. Bortoletto <i>et al.</i> M.S. Alam <i>et al.</i> R.M. Baltrusaitis <i>et al.</i> D. Bortoletto <i>et al.</i> J. Haas <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (Mark III Collab.) (CLEO Collab.) (CLEO Collab.)
ALBRECHT CSORNA HAAS AVERY CHEN	85H 85 85 84 84	PL 162B 395 PRL 54 1894 PRL 55 1248 PRL 53 1309 PRL 52 1084	H. Albrecht et al. S.E. Csorna et al. J. Haas et al. P. Avery et al. A. Chen et al.	(ÀRGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
LEVMAN ALAM GREEN KLOPFEN ALTARELLI BRODY	84 83B 83 83B 82 82	PL 141B 271 PRL 51 1143 PRL 51 347 PL 130B 444 NP B208 365 PRL 48 1070	G.M. Levman et al. M.S. Alam et al. J. Green et al. C. Klopfenstein et al. G. Altarelli et al. A.D. Brody et al.	(CUSB Collab.) (CLEO Collab.) (CLEO Collab.) (CUSB Collab.) (ROMA, INFN, FRAS) (CLEO Collab.)
GIANNINI BEBEK CHADWICK ABRAMS	82 81 81 80	NP B206 1 PRL 46 84 PRL 46 88 PRL 44 10	G. Giannini et al. C. Bebek et al. K. Chadwick et al. G.S. Abrams et al.	(CLEO Collab.) (CUSB Collab.) (CLEO Collab.) (SLAC, LBL)