1.数值计算的误差估计

绝对保室: e*= x*-x

读管理: le*1 的上帮 → 8* 即 le*1 ≤ 8*

相对版整: $e_r^* = \frac{e^*}{\pi}$ 其 $e_r^* = \frac{e^*}{\pi^*}$

相对接差限: 是* =|e*|的上界即 | * |e*| < 8.*

RJ XX更有 h 径有效数字。 E# = 1 x10 m-n+1

判这斤:在准确值不的基础上判这个任例值入中的最后形,符合图含五人则数位数,否则去标最后任效位数。这 若 Ex* = 2(ait) X10-(n-1) 只以 X*至少是有 ME有效致; 若X*是有 ME有效数; Ex* = 2ai X 10(-M+1)

族差估计: E(x,*± x,*)= E(x,*)+ E(x,*) E(X,*x,*) ~ |x,*| E(x,*)+|x,*| E(x,*)

 $\frac{\mathcal{E}(\chi^{*}/\chi^{*})}{\mathcal{E}(\chi^{*})} \approx \frac{|\chi^{*}| \mathcal{E}(\chi^{*}) + |\chi^{*}| \mathcal{E}(\chi^{*})}{|\chi^{*}|^{2}}$ $\mathcal{E}(\mathcal{F}(\chi^{*})) \approx |\mathcal{F}'(\chi^{*})| \mathcal{E}(\chi^{*}) / \mathcal{E}(\mathcal{F}^{*}) \approx \frac{1}{2} |\mathcal{F}_{\chi^{*}}|^{2}$ $\mathcal{E}(\mathcal{F}(\chi^{*})) \approx |\mathcal{F}'(\chi^{*})| \mathcal{E}(\chi^{*}) / \mathcal{E}(\mathcal{F}^{*}) \approx \frac{1}{2} |\mathcal{F}_{\chi^{*}}|^{2}$ $\mathcal{E}(\mathcal{F}(\chi^{*})) \approx |\mathcal{F}'(\chi^{*})| \mathcal{E}(\chi^{*}) / \mathcal{E}(\mathcal{F}^{*}) \approx \frac{1}{2} |\mathcal{F}_{\chi^{*}}|^{2}$

2. 杜格朗日插值、牛软插值、埃尔米特插值(包括差高) n+1作品有这个h次多次式

拉格朗的原注: P(X) = 至 YKLK(X)

W(x)=(x-x6)(x-x1)··(x-xh)

余坟: $R(x) = \frac{f(ht)(\xi)}{(ht)(\xi)} w(x)$. a<\$<b

华纳拉信外承式: $N_h(x) = a_0 t a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \cdots + a_h(x-x_0)(x-x_1) \cdot (x-x_0)$

ax=f[xo,xx,···,xx] →差角. 注流:f(xo,·xh](xx)(xx)-(x-xh) 关于差局: $f[X_0X_1, ..., X_m] = \frac{f[X_1, X_2, ..., X_m] - f[X_0, X_1, ..., X_m]}{X_m - X_0}$

 $f(x), x_1, \dots, x_n = \frac{1}{2} \frac{f(x_k)}{w'(x_k)} = \frac{f(n)(\xi)}{w(x)}$ $f(x) = f(x), x_1, \dots, x_n, x_n = \frac{f(n)(\xi)}{h!}$

埃尔米特括值: Znt2个体的左个 2nt/收的 Hint, (x) $R_{2n+1}(x) = f(x) - l^{-1} \operatorname{lent}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} w^{2}(x)$

 $\frac{\partial \alpha}{\partial \alpha_{k}} = 2\sum_{i=1}^{m} (y_{i} - \sum_{j=0}^{n} \alpha_{j} \chi_{i}^{j}) \chi_{i}^{k} = 0 \Rightarrow \sum_{i=1}^{m} \sum_{j=0}^{n} \alpha_{j} \chi_{i}^{j} \chi_{i}^{k}$

我代为关于QK的正规为性组得:

 $\leq \alpha_0 \chi_i^0 + \geq \alpha_i \chi_i^0 + \dots + \geq \alpha_i \chi_i^0 = \sum_{i=1}^m y_i \chi_i^0$ Eapxi' + Ea, xi2+...+ Eanxing = Eyixi Earxint Earxint ... + Earxint = = Syixin

②用一般曲彩松台: y*=p(n)=aopo(x)+ap(のf···+an×n(x) = このは(n). 同理 Q = $\frac{1}{14} (y_i^* - y_i)^2 \rightarrow \frac{20}{20} = 2 \frac{m}{14} (20) =$ 引以内似 (p:, ek)= 等 (xi) pk(xi) 以有 至的(Pi, Pk)=(生版)

可得Gran矩阵方程

当内(N),内(n),… 网(x)外推关的不在吃价有(a; (i=0, 1))

4.最佳平方通近

Sa P(x) [5(x)-5*(x)] 2dx = min Sa P(x) [5(x)-5(x)]2dx = span {10, 10, -; 12h} 当やーしゃース・カースかは 设5*(n)= 至 0,*内, 共争数 0;* 月3 购以法推: Hn = spanll x - xn3

$$\begin{bmatrix} (p_0, p_0) & (p_0, p_1) & \cdots & (p_0, p_n) \\ (p_1, p_0) & (p_1, p_1) & \cdots & (p_1, p_n) \end{bmatrix} \begin{bmatrix} \alpha v^* \\ \alpha p_1 \end{bmatrix} = \begin{bmatrix} (f, p_1) \\ (f, p_n) \end{bmatrix}$$

$$\begin{bmatrix} (p_0, p_0) & (p_0, p_1) & \cdots & (p_1, p_n) \\ (p_n, p_0) & (p_0, p_1) & \cdots & (p_n, p_n) \end{bmatrix}$$

特的,用正交送数本最佳转运任的得到:

$$\begin{bmatrix} (P_0, P_0) \\ (P_1, P_1) \end{bmatrix} \begin{bmatrix} \alpha_0^{\dagger} \\ \alpha_1^{\dagger} \end{bmatrix} = \begin{bmatrix} (f, P_0) \\ (f, P_1) \end{bmatrix} \Rightarrow \alpha_k^{\dagger} = \frac{(f, P_0)}{(P_0, P_0)}$$

本·组政务晚出的方法: 中 965-1 P_{n+1} 次 P_{n+1} P_{n+1}

5. 机械学纸的代数精度和决差。

Safa) 对公园AKFK 安我教之的是AK=b-a(可用于整证科学) 当AK=Jak(X)dX科拉值并积公式,htl个热的拓位战至少是有水化数精变 若并依述文件于FOO=1,x,x3,···/xm是准确的。而对太州不准确,则是有mp.代支持度 插值本外自对全项为: P(+) = 5 [f(x)-4n(x)]dx = 5 (h+1)! W(x)dx.

(1)特形公式: [\$ 5(10 dx 2) - (1-a)[+(9)++(1) 中久(N公式: 5 15(10 dx 2 (1-a))+(2) | | (大人) = - (b-a) f"(れ) 村村村村 (2)字/生公式: 3. (b)= (b-a)[f(a)+4f(a+)+f(b)]
[72(4)= (b-a)5(4))=-(b-a)5(4)(1) (3) 哲华顿一柯特斯公武: Sa f (x) dx ≈ q (b-0) [7+(x0) +2+(x1)+p+(x2)+32+(x5)+7+(x4) $R_{4}(f) = -\frac{8}{945} \left(\frac{b-a}{4}\right)^{7} f^{(6)}(h)$ $ich: \frac{b-a}{2}[f(u)+f(b)] \left[-\frac{1}{12}(b-a)^{3}f''(h)\right]$ ba [+(0)+(+(atb)++(b)) - - (b-a)+(1) 1-a [5(8) f(x)) + (x) + (x) | - 8 (b-a) f(b) + (x) ()复化特种公式: (2)复代字性公式: (4年1年6年) 「Not stay oly 文 h [上 f(水) + 4 f(水)] 5x1 568 042 = [+(7x)++(7x4)] Sh=h/Lf(a) + & Sf(xk+1)+2 Sf(xk+1) $T_h B = \sum_{k=0}^{h+1} I_k = \int_a^b f(k) dk = \sum_{k=0}^{h+1} \int_{x_k}^{x_{k+1}} f(k) dk$ = 2 [f(a) + 2 = f(xk) + f(b)] BRSK= - go (2) f(h) 2880 (h) 7880 (h) R1 = 13 (1/4) Rs = = (- 1/2880) f(4)(NK)] $R_T = \sum_{k=0}^{K_T} R_{T_k} = \sum_{k=0}^{K_T} \left[-\frac{k^2}{12} f''(n_k) \right]$ $=-\frac{(b-a)}{12}h^2f''(h)$ = - (b-a) h45(4)(h) $\frac{40x}{C_{h}} - \frac{1}{90}\frac{41}{51}\frac{1}{100} + \frac{1}{72}\sum_{k=1}^{k-1}(7k+\frac{1}{4})+12\sum_{k=1}^{k-1}(7k+\frac{1}{4})+32\sum_{k=1}^{k-1}(7k+\frac{1}{4})+14\sum_{$ $i = +1 : \frac{h}{2} [f(x) + 2 \sum_{k=0}^{h-1} f(k) + f(k)]$ $= \frac{h}{6} [f(x) + 4 \sum_{k=0}^{h-1} f(k) + 2 \sum_{k=0}^{h-1} f(k) + f(k)]$ $= \frac{h}{90} [f(x) + 32 \sum_{k=0}^{h-1} f(k) + 2 \sum_{k=0}^{h-1} f(k) + 32 \sum_{k=0}^{h-1} f(k) + 32$

7. 送主文言数游文法, 矩阵的三角领华法.

O若维迎Ax=b的多数处件A为严格对角。统即 |Qii| > |Qij| ,则用高其所结选来的时 Q(k)全不为定。

通过方程式变量处在的交换使在对南风在墨上获省为对值尽可能大的多数作为 Qxx (*), 科这样的 消灭法为主元争法,可分列、行、全主元争法,一般避免计算主过大, 但用列主元季将去活即可。

②灰原件三角分解法:

$$A = L U \not\exists : \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1N} \\ \alpha_{21} & \alpha_{2L} & \cdots & \alpha_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{N1} & \alpha_{N2} & \cdots & \alpha_{NN} \end{bmatrix} = \begin{bmatrix} I_{21} & I_{21} & I_{22} & \cdots & I_{2N} \\ I_{N1} & I_{N2} & \cdots & I_{NN} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1N} \\ u_{21} & \cdots & u_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ u_{NN} & u_{NN} & \cdots & u_{NN} \end{bmatrix}$$

由无甲类法积烈: ali=Kii ail=LiKii ··· 这步本出 U与L的各定率。

设Ly=b得Y,再由UX=Y得X。(当Ukx=O时零进行行领点再分件)

8. 向星克数、新丹龙数和李件数

はない。
$$|+\lambda \chi \chi + |+\lambda \chi + |$$

章件数: and(A), = ||AV, · ||A+11, and (A) = ||A| = 1 | A -1 | 00 Cond (A) = 1/A1/2 1/A-1/2 = 1/Max (A)A) 9、雜意化送代沒和商斯-畫族尔思代法的思代格式和W的性· X(K+1) = Gx(K)+d 物致的剂更新是思代先的什么的指生维?(G)即max [ii] <]. Jaabi Leta: Xi (KH) = ai (bi - S ai) Xi(K) (松松随着大位人1) 秋時報: Ax = b. \Leftrightarrow (D-L-U)x = b. \Leftrightarrow $\chi = D^{-1}(L+U)x+D^{-1}b$. > X((+1) = D (L+V)X((x)+ p -1) = 0 a= D-1(L+V) 12P(a) <1. $A = \begin{bmatrix} \alpha_{11} & \alpha_{22} \\ a_{hh} \end{bmatrix} \begin{bmatrix} \alpha_{21} & \alpha_{22} \\ -\alpha_{31} - \alpha_{32} \\ -\alpha_{h1} - \alpha_{h2} \end{bmatrix} \begin{bmatrix} 0 - \alpha_{12} - \alpha_{32} \\ 0 - \alpha_{32} \\ -\alpha_{34} \\ 0 \end{bmatrix} \begin{bmatrix} 0 - \alpha_{12} - \alpha_{32} \\ -\alpha_{34} \\ 0 \end{bmatrix} \begin{bmatrix} -\alpha_{14} - \alpha_{15} \\ 0 \\ -\alpha_{14} \\ 0 \end{bmatrix}$ Gauss-Seidel 性化: 本义:(KH)用抗红 X(KH), X $\chi_i^{(kt)} = \frac{1}{\alpha_{ii}} \left(h_i - \sum_{j=1}^{i-1} \alpha_{ij} \chi_j^{(kt)} - \sum_{j \neq i} \alpha_{ij} \chi_j^{(k)} \right)$ 知時新: (D-L-V)X=b () $D_{X}(K+V)=L_{X}(K+V)+U_{X}(K)+b$ 1. | D| \$0.1. (D-4) = |D| \$6 .: (D-L) X (KY) = TX (K) +6

 $\Rightarrow \chi^{(K+1)} = (D-L)^{-1} U_{\chi}^{(K)} + D(D-L)^{-1} b.$ $G = (D-L)^{-1} U. \quad \text{if } \rho(G) < 1.$

11.非次性的华顿法.

f(x) = 0 for $f(x_k) + f'(x_k) (x - x_k) = 0$ $f(x_k)$ $f'(x_k)$ $f'(x_k)$

若有重用于(X)=(不X*) 19(X), 牛软的或为: XK+12 XK-M-扩(KK)

新 并版下山法: 为防止迷代度散更求: |f(xk) | < f(xk) | (0< />
/ (1))

入在1, 之, 立…中选取直到使15/m/1<15/m) 单纲性成型, 如果排列 需要为进初位不。主等。

12. 欧北法及其改进格式、局部截断快差分析、初发的效 5 y'=f(x,y)

Euler 法母等: 「生日 = 生日 h f (xi, yi) 可得一致上点 (xo, yo) (x, yo) (x,

改进的 欧红绒:

我及: yi+1 = Yi+ f(xi, yi). 教廷: yi+1 = Yi+ から(xi, yi)+ナ(xi+1, yi+)].

取起的局部截断换意: $y(\chi_{H})-y_{H}=\frac{h^2}{2!}y''(\xi)$ 即为 $0(h^2)$ 是 附 χ_{H} .