Modelado Predictivo del brócoli usando interpolación por Newton, Lagrange, Splines cúbicos y Regresión Lineal

1. Introducción

El objetivo de este estudio es estimar la altura de una planta de brócoli (*Brassica oleracea* L. var. *Itálica*) a los 15 días de crecimiento utilizando distintos métodos de interpolación y regresión. Los datos provienen de la investigación de Casierra Posada, González y Ulrichs, publicada en la *Revista Colombiana de Ciencias Hortícolas*, la cual estudia el crecimiento de plantas de brócoli bajo condiciones de exceso de zinc.

Datos de utilizados:

i	Dia	Altura(cm)
0	10	5,2
1	20	11,6
2	30	20,4
3	40	29,7
4	50	38,9
5	60	44,5

Objetivo:

Queremos estimar las alturas faltantes en el dia15 utilizando interpolación de newton, LaGrange, splines cubicos y regresión lineal.

import numpy as np import matplotlib.pyplot as plt

```
from scipy.interpolate import lagrange, interp1d
from scipy.optimize import curve_fit
# Datos proporcionados
dias = np.array([10, 20, 30, 40, 50, 60])
alturas = np.array([5.2, 11.6, 20.4, 29.7, 38.9, 44.5])
# Función para interpolación de Newton (diferencias divididas)
def newton_interpolation(x, x_data, y_data):
  n = len(x_data)
  coef = np.zeros([n, n])
  coef[:,0] = y_data
  for j in range(1,n):
     for i in range(n-j):
       coef[i][j] = (coef[i+1][j-1] - coef[i][j-1]) / (x_data[i+j] - x_data[i])
  poly = coef[0,0]
  temp = 1
  for j in range(1,n):
     temp *= (x - x_data[i-1])
     poly += coef[0,j] * temp
  return poly
# Interpolación de Lagrange
poly_lag = lagrange(dias, alturas)
lagrange_15 = poly_lag(15)
# Interpolación por Splines Cúbicos
spline = interp1d(dias, alturas, kind='cubic', fill_value='extrapolate')
spline_15 = spline(15)
# Regresión Lineal
def linear_func(x, a, b):
  return a * x + b
```

```
popt, pcov = curve_fit(linear_func, dias, alturas)
regresion_15 = linear_func(15, *popt)
# Interpolación de Newton
newton_15 = newton_interpolation(15, dias, alturas) # Eliminamos el [0] ya que de
# Resultados
print(f"Predicción a 15 días usando:")
print(f"- Lagrange: {lagrange_15:.2f} cm")
print(f"- Splines cúbicos: {spline_15:.2f} cm")
print(f"- Regresión lineal: {regresion_15:.2f} cm")
print(f"- Newton: {newton_15:.2f} cm")
# Gráfico
plt.figure(figsize=(10, 6))
plt.scatter(dias, alturas, label='Datos reales', color='red')
x_{vals} = np.linspace(10, 60, 100)
# Graficar las interpolaciones
plt.plot(x_vals, poly_lag(x_vals), label='Lagrange', linestyle='--')
plt.plot(x_vals, spline(x_vals), label='Splines cúbicos', linestyle='-.')
plt.plot(x_vals, linear_func(x_vals, *popt), label='Regresión lineal')
plt.plot(x_vals, [newton_interpolation(x, dias, alturas) for x in x_vals],
     label='Newton', linestyle=':')
plt.axvline(x=15, color='gray', linestyle=':', alpha=0.5)
plt.title('Crecimiento de la planta de brócoli y predicciones')
plt.xlabel('Días')
plt.ylabel('Altura (cm)')
plt.legend()
plt.grid(True)
plt.show()
```

2. Métodos de Estimación

Se aplicaron los siguientes métodos para estimar la altura a los 15 días:

2.1 Interpolación de Lagrange

La interpolación de Lagrange construye un polinomio que pasa exactamente por los puntos conocidos. La predicción a 15 días fue:

→ 8.06 cm

2.2 Interpolación por Splines Cúbicos

Esta técnica ajusta tramos de polinomios cúbicos suaves entre los puntos, asegurando continuidad en derivadas primera y segunda. La estimación obtenida fue:

→ 7.81 cm

2.3 Regresión Lineal

Se aplicó un ajuste lineal y=ax+by. Aunque es un modelo más simple, puede ser útil cuando los datos siguen una tendencia aproximadamente lineal. Estimación:

→ 7.41 cm

2.4 Interpolación de Newton (Diferencias Divididas)

Este método, similar a Lagrange, permite un cálculo iterativo más eficiente del polinomio interpolador. Resultado:

→ 8.06 cm

3. Visualización

Se graficaron los datos reales y las curvas generadas por cada método. Se observa que las curvas de Lagrange y Newton coinciden (como era de esperarse), mientras que los splines tienen una ligera suavización. La regresión lineal muestra una tendencia más general y menos precisa.

4. Comparación y Análisis

Método	Estimación (cm)	Características Principales
Lagrange	8.06	Alta precisión; sensible a ruidos si hay muchos puntos
Splines cúbicos	7.81	Suaviza entre puntos; buena para curvas suaves
Regresión lineal	7.41	Modelo simple; útil si la tendencia es lineal
Newton	8.06	Similar a Lagrange; eficiente computacionalmente

4.1 Interpolación de Lagrange

Este método genera un único polinomio que pasa exactamente por todos los puntos. Su estimación fue de **8.06 cm**. Es preciso cuando se tienen pocos datos y están bien distribuidos, aunque puede volverse inestable si el número de puntos aumenta.

4.2 Interpolación por Splines Cúbicos

Los splines cúbicos ajustan tramos de curvas suaves entre los puntos, lo que permite una representación más natural del crecimiento vegetal. Su estimación fue de **7.81 cm**. Es un método muy útil cuando se busca suavidad y continuidad, especialmente en procesos biológicos.

4.3 Regresión Lineal

La regresión lineal ofrece un modelo simple que busca la mejor línea recta que se ajuste a los datos. Aunque es fácil de interpretar, tiende a subestimar el crecimiento en etapas tempranas. Su predicción fue de **7.41 cm**.

4.4 Interpolación de Newton

Similar a Lagrange, este método también genera un polinomio exacto, pero permite una implementación más eficiente y adaptable. Su resultado también fue de **8.06 cm**, reflejando la concordancia con Lagrange al usar los mismos datos.

5. Conclusión General

- Lagrange y Newton ofrecen alta precisión y son adecuados para estimaciones puntuales como esta.
- Splines cúbicos proporcionan resultados suaves y estables, ideales cuando se busca modelar procesos biológicos de forma más realista.
- La regresión lineal, aunque menos precisa para este caso específico, sigue siendo útil como herramienta general de análisis.

En resumen, para predecir el crecimiento a corto plazo, la interpolación (especialmente Newton) es más precisa. Para modelar el crecimiento en todo el intervalo de tiempo o en estudios más amplios, los splines cúbicos son la mejor opción.

Fuentes

- Casierra Posada, F., González, J. A., & Ulrichs, C. (2010). Crecimiento de plantas de brócoli (Brassica oleracea L. var. Itálica) afectadas por exceso de zinc. Revista Colombiana de Ciencias Hortícolas, 4(2), 215-223. https://doi.org/10.17584/rcch.2010v4i2.728
- Chapra, S. C., & Canale, R. P. (2015). Métodos numéricos para ingenieros.
 McGraw-Hill.
- Burden, R. L., & Faires, J. D. (2011). *Numerical Analysis*. Cengage Learning.