Educado Herrera Juan Idarragalatro DIP modula de probabilidad? A rudiquira conjunto del O-Algober escopila i) P(A) = a, R(A) (emo P1 1 Pa son evendo de probabilidado P1(A) , PS(A) ≥0. a1, a2EB+ a1, a220 · El producto de 2 numeros positivos az. Pa(A) es positivo > az.Pa(A) > · La suma de 2 numeros positivos 9181(A) + 0282(A) es positiva Entonces P(A) 20 Y A & O-Algebora: O-algebra & SL (i) Il es el Conjuntos o Especio necestral P(r) = a_1 Rry + a_2 Pa(r) Cono Pa pla son medidas de prosabilha
Por) = a_1 + a_2 Por la definición dada y ant a= 1 3(2)=1 P(DE: 1 = Como son) P(E:) ar(0 E1) + 0 2 P2 (0 E;) = E a1 P1 (F1) + a P2 (E) Como Pa y Pa son medidos de prosoldidad (sotaras Pa(DE) = ZPa(E) Y Pa(DE) = ZPa(E) P2(DE)+P2(DE)= E P(E) 6(E;) PIDEN = EP(E)

Semana 10 Métodos Computacionales

2.

Para demostrar que \mathbb{P} es una medida de probabilidad, se deben verificar los axiomas de Kolmogorov:

Axioma 1: $\mathbb{P}(\Omega) = 1$

Según la definición de \mathbb{P} , $\mathbb{P}(A) = 1$ si $A = \{1, 2\}$. Como $\Omega = \{1, 2\}$, $\mathbb{P}(\Omega) = 1$.

Axioma 2: $\forall A \in \mathcal{F}, \mathbb{P}(A) \geq 0$

Según la definición de ℙ:

Si
$$A = \{\emptyset\}$$
, $\mathbb{P}(A) = 0$, entonces $\mathbb{P}(A) \ge 0$ y se cumple el axioma.

Si
$$A = \{A\}$$
, $\mathbb{P}(A) = 1/3$, entonces $\mathbb{P}(A) \ge 0$ y se cumple el axioma.

Si
$$A = \{2\}$$
, $\mathbb{P}(A) = 2/3$, entonces $\mathbb{P}(A) \ge 0$ y se cumple el axioma.

Si
$$A = \{1, 2\}$$
, $\mathbb{P}(A) = 1$, entonces $\mathbb{P}(A) \ge 0$ y se cumple el axioma.

El axioma se cumple para todo A.

Axioma 3: $\mathbb{P}(\bigcup A_i) = \sum \mathbb{P}(A_i)$ si $A_i \cap A_i = \emptyset$

En este caso los conjuntos mutuamente excluyentes son:

Caso 1:
$$A_1 = \{\emptyset\} \text{ y } A_2 = \{1\}$$

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_2) = 1/3$$

$$\mathbb{P}(A_1) + \mathbb{P}(A_2) = 0 + 1/3 = 1/3$$

Como $\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2)$, se cumple el axioma.

Caso 2:
$$A_1 = \{\emptyset\} \text{ y } A_3 = \{2\}$$

$$\mathbb{P}(A_1 \cup A_3) = \mathbb{P}(A_3) = 2/3$$

$$\mathbb{P}(A_1) + \mathbb{P}(A_3) = 0 + 2/3 = 2/3$$

Como $\mathbb{P}(A_1 \cup A_3) = \mathbb{P}(A_1) + \mathbb{P}(A_3)$, se cumple el axioma.

Caso 3:
$$A_1 = \{\emptyset\}$$
 y $A_4 = \{1, 2\}$

$$\mathbb{P}(A_1 \cup A_4) = \mathbb{P}(A_4) = 1$$

$$\mathbb{P}(A_1) + \mathbb{P}(A_4) = 0 + 1 = 1$$

Como $\mathbb{P}(A_1 \cup A_4) = \mathbb{P}(A_1) + \mathbb{P}(A_4)$, se cumple el axioma.

Caso 4:
$$A_1 = \{\emptyset\}, A_2 = \{1\}, A_3 = \{2\}$$

$$\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}(A_4) = 1$$

$$\mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) = 0 + 1/3 + 2/3 = 1$$

Como $\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3)$, se cumple el axioma.

Caso 5:
$$A_2 = \{1\}$$
 y $A_3 = \{2\}$

$$\mathbb{P}(A_2 \cup A_3) = \mathbb{P}(A_4) = 1$$

$$\mathbb{P}(A_2) + \mathbb{P}(A_3) = 1/3 + 2/3 = 1$$

Como $\mathbb{P}(A_2 \cup A_3) = \mathbb{P}(A_2) + \mathbb{P}(A_3)$, se cumple el axioma.

El axioma se cumple para todos los casos.

Como todos los axiomas de Kolmogorov se cumplen, se concluye que $\mathbb P$ es una medida de probabilidad.

a) Por propiedades de conjuntos, $\emptyset^c = \Omega$.

Por la demostración del literal b): $\mathbb{P}(\Omega) = 1 - \mathbb{P}(\emptyset)$.

Por el primer axioma de Kolmogorov: $1 = 1 - \mathbb{P}(\emptyset)$, entonces $\mathbb{P}(\emptyset) = 0$.

b) Por propiedades de conjuntos, $A \cup A^c = \Omega$ y $A \cap A^c = \emptyset$ (mutuamente excluyentes).

Por el tercer axioma de Kolmogorov: $\mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c)$, entonces

$$\mathbb{P}(\Omega) = \mathbb{P}(A) + \mathbb{P}(A^c).$$

Por el primer axioma de Kolmogorov: $1 = \mathbb{P}(A) + \mathbb{P}(A^c)$, entonces $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

c) Como A \cap (B-A) = \emptyset (son mutuamente excluyentes), entonces por el tercer axioma de Kolmogorov, $\mathbb{P}(A) + \mathbb{P}(B-A) = \mathbb{P}(A \cup (B-A))$.

Por propiedades de conjuntos, $\mathbb{P}(A) + \mathbb{P}(B-A) = \mathbb{P}(B)$.

d) Tomando la expresión del literal c):

$$\mathbb{P}(A) + \mathbb{P}(B-A) = \mathbb{P}(B).$$

Si $B = \Omega$, entonces por el primer axioma de Kolmogorov: $\mathbb{P}(A) = 1 - \mathbb{P}(B-A)$.

Supóngase que $\mathbb{P}(A) > 1$. En ese caso, $\mathbb{P}(B-A) < 0$, pero esto contradice el segundo axioma de Kolmogorov. Por reducción al absurdo, $\mathbb{P}(A) \le 1$.

e) Por la demostración del literal c): $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B-A)$, entonces $\mathbb{P}(B) - \mathbb{P}(A) = \mathbb{P}(B-A)$.

Por el segundo axioma de Kolmogorov: $P(B-A) \ge 0$, entonces $\mathbb{P}(B) - \mathbb{P}(A) \ge 0$, por lo que $\mathbb{P}(B) \ge \mathbb{P}(A)$.

f) El conjunto (A \cup B) se puede escribir como A \cup ($A^c \cap$ B), como ($A^c \cap$ B) y A son mutuamente excluyentes, por el tercer axioma de Kolmogorov:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A^c \cap B) + \mathbb{P}(A).$$

Por otro lado, el conjunto B se puede escribir como $(A \cap B) \cup (A^c \cap B)$. Como $(A \cap B)$ y $(A^c \cap B)$ son mutuamente excluyentes, por el tercer axioma:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B).$$

Substituyendo la segunda expresión en la primera:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

g) Sea D = A U B
$$[\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)]$$

Por f):
$$P(D) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

$$\mathbb{P}(A \cup B \cup C) = P(D \cup C)$$

Por f):
$$P(D \cup C) = \mathbb{P}(D) + \mathbb{P}(C) - \mathbb{P}(D \cap C)$$

$$P(D \cup C) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) + \mathbb{P}(C) - \mathbb{P}(D \cap C)$$

Sustituyendo D:

$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) + \mathbb{P}(C) - \mathbb{P}((A \cup B) \cap C)$$

Por la propiedad distributiva de la intersección sobre la unión de conjuntos:

$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) + \mathbb{P}(C) - \mathbb{P}((A \cap C) \cup (B \cap C))$$

Usando f:

$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) + \mathbb{P}(C) - [\mathbb{P}(A \cap C) + \mathbb{P}(B \cap C) - \mathbb{P}((A \cap C) \cap (B \cap C))]$$

$$= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

Por lo anterior, se concluye que $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$.

h) Una expresión equivalente es:

$$\mathbb{P}(A-B) + \mathbb{P}(A \cap B) = \mathbb{P}(A)$$

Operando el lado izquierdo de esta expresión:

$$\mathbb{P}(A-B) + \mathbb{P}(A \cap B)$$

Como (A - B) = (A
$$\cap$$
 B^c):

$$= \mathbb{P}(A \cap B^c) + \mathbb{P}(A \cap B)$$

Como $(A \cap B^c)$ y $(A \cap B)$ son mutuamente excluyentes, por el tercer axioma de Kolmogorov:

$$= \mathbb{P}((A \cap B^c) \cup (A \cap B))$$

Por propiedades de conjuntos, $(A \cap B^c) \cup (A \cap B) = A$. Por lo que:

$$= \mathbb{P}(A)$$

Por lo anterior, se concluye que $\mathbb{P}(A-B) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$.

i) Tómese el lado izquierdo de la expresión:

$$\mathbb{P}((A \cap B^c) \cup (B \cap A^c))$$

Por propiedades de conjuntos, $(A \cap B^c) = (A - B)$ y $(B \cap A^c) = (B-A)$. Entonces,

$$= \mathbb{P}((A-B) \cup (B-A))$$

Como (A-B) y (B-A) son mutuamente excluyentes, por el tercer axioma de Kolmogorov:

$$= \mathbb{P}(A-B) + \mathbb{P}(B-A)$$

Usando el literal h):

$$= \mathbb{P}(A) - \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(B \cap A)$$

$$= \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B)$$

Por lo anterior, se concluye que $\mathbb{P}((A \cap B^c) \cup (B \cap A^c)) = \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B)$.

A: al menos un celular sea defectuoso

A^c: ningún celular es defectuoso

 $\mathbb{P}(A^c) = \mathbb{P}(\text{primer celular no sea defectuoso}) * \mathbb{P}(\text{segundo celular no sea defectuoso}) * \mathbb{P}(\text{primer celular no sea defectuoso}) * \mathbb{P}(\text{primer celular no sea defectuoso}) * \mathbb{P}(\text{primer celular no sea defectuoso})$

 $\mathbb{P}(\text{primer celular no sea defectuoso}) = 48/50 \text{ (hay dos defectuosos y aún no se ha probado ningún celular del total de 50)}$

 $\mathbb{P}(\text{segundo celular no sea defectuoso}) = 47/49 \text{ (hay dos defectuosos y ya se probó un celular del total de 50)}$

 $\mathbb{P}(\text{tercer celular no sea defectuoso}) = 46/48 \text{ (hay dos defectuosos y ya se probaron dos celulares del total de 50)}$

 $\mathbb{P}(\text{cuarto celular no sea defectuoso}) = 45/47 \text{ (hay dos defectuosos y ya se probaron tres celulares del total de 50)}$

 $\mathbb{P}(\text{quinto celular no sea defectuoso}) = 44/46 \text{ (hay dos defectuosos y ya se probaron cuatro celulares del total de 50)}$

$$\mathbb{P}(A^c) = \frac{48}{50} * \frac{47}{49} * \frac{46}{48} * \frac{45}{47} * \frac{44}{46} = \frac{198}{245}$$
$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c) = 1 - \frac{198}{245} = \frac{47}{245}$$

4. A + la suna de los resultados es menos o igual a Tres. B + El resultado del primer lonzoniento es impor P(A) = (1,1)(2,1)(1,2) = 36 = 12 $P(B) = \frac{\# B_{11} M_{12} B_{13}}{\# B_{21} M_{12} B_{13}} = \frac{(1, h)(3, n)(5, h)}{36} = \frac{18}{36} = \frac{18}{36} = \frac{1}{3}$ P(ANB) = P(A).P(B(A) = 1. 24 2) 18 = P(B). P(A(B) = 1. 14 P(AUB)= P(A) +P(B) - P(AhB) = 1/2 + 1/2 - 1/8 = 19/36 P(AG)= 1-P(A)= 1-12=12 (P(A) = P(Sc U Sd) = P(Sc) + P(Sd) - P(Sen Sd) P(A)= 6 + 8 - 5 - 10 = 90% 6) P(3) = P(Se VSB) - P(Se n Sd) = 1 - 5 = 4 = 40%. $8 P(A) = \frac{(3,6)(6,3)(4,4)(5,3)(3,5)}{36} = \frac{5}{36} P(A)B) = \frac{3}{36} = \frac{1}{18}$ $P(B) = (0,1)(10,3)(10,3) = \frac{3 \cdot 6}{36} = \frac{1}{3} P(A)P(B) = \frac{3}{45}$ $P(A) = \frac{3}{36} = \frac{1}{36} P(A)P(B) = \frac{3}{45} = \frac{1}{18}$ A co independiente de B - P(AOB) = PRAV-PB) Pero 18 = 5 - A y B no son independientes