Applied Mathematic

IV semester

Table of Contents

2/5/2021 IOE All Subject Notes https://notepulchowkcampus.blogspot.com/	"cowy
Table of Contents	
important Formulas	1
Complex analysis	2
To show function is analytical	2.1
C-R equation in polar form	2.2
Laplace in polar form	2.3
Harmonic function	3
Verify Harmonic function	3.1
Construct analytical function	
Mini Thomson method	
Conformal Mapping	4
Find Linear Transformation	4.1
Find fix points	4.2
Trick to identify Z & W	4.3
Cauchy's integral Theorem	5
Cauchy's integral Formula	6
Procedure to solve	6.1
Wave Equations	7
1- Dimensional wave equation	7.1
1-Dimensional Heat equation	7.2
2-Dimensional Heat equation	

Formula (1)

Some Useful formula required here:

1.
$$e^{i\theta} = \cos\theta + i\sin\theta$$

2.
$$e^{-i\theta} = \cos \theta - i\sin \theta$$

3.
$$cosh\theta = \frac{e^{\theta} + e^{-\theta}}{2}$$

4.
$$sinh\theta = \frac{e^{\theta} - e^{-\theta}}{2}$$

5.
$$\sin(i\theta) = i \sinh\theta$$

6.
$$\sinh(i\theta) = i\sin\theta$$

7.
$$\cos(i\theta) = \cosh\theta$$

8.
$$\cosh(i\theta) = \cos\theta$$

1.
$$e^{i\theta} = \cos \theta + i \sin \theta$$

2. $e^{-i\theta} = \cos \theta - i \sin \theta$
3. $\cosh \theta = \frac{e^{\theta} + e^{-\theta}}{2}$
4. $\sinh \theta = \frac{e^{\theta} - e^{-\theta}}{2}$
5. $\sin(i\theta) = i \sinh \theta$
6. $\sinh(i\theta) = i \sin \theta$
7. $\cos(i\theta) = \cosh \theta$
8. $\cosh(i\theta) = \cos \theta$
9. $\sin(A + B) \cdot \sin(A - B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$

$$10.\cos(A + B).\cos(A - B) = \cos^2 A - \sin^2 B = \sin^2 B - \sin^2 A$$

11.2
$$\sin A \cdot \sin B = \cos(A - B) - \cos(A + B)$$

12.2cosA. cosB =
$$cos(A - B) + cos(A + B)$$

13.2
$$\sin A \cdot \cos B = \sin(A + B) + \sin(A - B)$$

14.2cosA.
$$sinB = sin(A + B) - sin(A - B)$$

दिएको f(x) लाई solve गरेर यी formula को help ले x + iy को form मा separate गरेर u + iv संग compare गर्ने । You will get u and v

Complex Analysis:

Function of complex variable: Let z = x + iy and w = u + iv be two complex number. w is said to be function of z i.e. w = f(z). If each value of z there is corresponding value of w.

Analytical function: a complex function which is differential at a point and in its neighborhood (n b d) is said to be an analytic at the point.

Singular point: a point Zo in the complex plane is said to be a singular point or a singularity of a function f(z) if f(z) is not analytic at Z = Zo but it is analytic at every point in its (nbd).

Cauchy Riemann Equations ⊗[CR -equation]:-

(Necessary condition of function for analytic)

Theorem 1:- If a function w=f(z)=u+iv is analytical in a region D of the complex plane then $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$; $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

Proof:

Let δx and δy be incensement in x and y respectively. Corresponding incensement in u ,v and z be $\delta u, \delta v, \delta z$ respectively. so z = x + iy and w = f(z) = u + iv

$$f(z + \delta z) = (u + \delta u) + i(v + \delta v)$$

$$z + \delta z = x + \delta x + i(y + \delta y)$$

$$\delta z = \delta x + i \delta y$$

since f(z) is analytical in the region D so f'(z) exist at every point of region D

$$f'(z) = \lim_{z \to 0} \frac{f(z + \delta z) - f(z)}{z}$$

$$f'(z) = \lim_{\delta z \to 0} \frac{(u + \delta u) + i(v + \delta v) - u - iv}{\delta z}$$

$$f'(z) = \lim_{\delta z \to 0} \frac{\delta u + i \delta v}{\delta z}$$

$$f'(z) = \lim_{\delta z \to 0} \left(\frac{\delta u}{\delta z} + i \frac{\delta v}{\delta z} \right)$$

The above limit must exist and unique for any path through which $\delta z \to 0$.

let $\delta z \to 0$ alone the line parallel to x-axis so that $\delta y = 0$ and $\delta z = \delta x$

let $\delta z \to 0$ alone the line parallel to y-axis so that $\delta x = 0$ and $\delta z = i \delta y$

Here eq(1) and eq(2) are same Thus,

$$\frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
on comparing we get,
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} & \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Note: - If f(z) = u + iv possess continuous first order partial derivative

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ satisfying C-R equation

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at every point of

D then f(z) is analytical in the region. (Sufficient condition)

C-R equation in polar form:-

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}; \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

To show a function is analytical:

Le. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ > satisfy C-R equation in Cartesian Also,

To show continuous f(z) function:

- $\lim_{x,y\to 0} u = \lim_{x,y\to 0} v$ सबै zero आउछ।
- $\lim_{z\to 0} f(z)$

> satisfy C-R equation in polar form $\left[\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}; \quad \frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta}\right]$

 $f(z) = (r\cos\theta + ir\sin\theta)^{-n}$ यहां imaginary र real part छुटयाउन

By using Demovre's Theorem

$$f(z) = r^{-n}(\cos n\theta - i\sin n\theta)$$
 अब सजिलो भो । \odot

Laplace equation मा

$$\Rightarrow$$
 Polar form : $-r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \hat{0}$$

Harmonic function

A function $\phi = \phi(x,y)$ is said to be harmonic function if it satisfy Laplace equation. i.e. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

Theorem 1:- If f(z) = u + iv is analytical then its components u and v are harmonics.

Note (1):- If u is harmonic of analytic function f(z) = u + iv then v is conjugate harmonic of u.

Note (2):- f(z) = u + iv is analytic *if* f(z) is conjugate harmonic of u.

Method to construct analytical function (Type-1)

To construct analytical function when $oldsymbol{u}$ is given

- \Rightarrow assign $\frac{\partial v}{\partial y}or\frac{\partial v}{\partial \theta} = value$ of $\frac{\partial u}{\partial x}$ obtained from eq(1) : from C-R equation
- integrating both side w.r. to. $\frac{y}{y}$ or $\frac{\theta}{\theta}$ [hence you will get $v = \cdots \dots + \phi(x) or f(r) - - - - (3)(\phi(x) or f(r))$ is integration constant)

 \Rightarrow find $\frac{\partial v}{\partial x}$ or $\frac{\partial v}{\partial r}$ & use C-R equation i.e. $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ or. $\frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta}$

After this step you will have some value of $\phi(x)$ or f(r); mainly $\phi(x)$ or f(r) = c

- \Rightarrow Now we put $\phi(x)$ or f(r) value in equation (3) and get v = ------- (proper value)
- \Rightarrow Now put all value of u and v in u + iv and separate real & imaginary part that will be required analytical function.

Method to construct analytical function (Type-2 Mini Thomson method

To construct analytical function when u-v is given

step1. Differentiate w.r.to x and eliminate the term containing v ($i.e.\frac{\partial v}{\partial x}$) with the help of **C-R equation** $\rightarrow --(1)$

step2. Differentiate w.r.to y and eliminate the term containing $v\left(i.e.\frac{\partial v}{\partial y}\right)$ with the help of **C-R equation** ---(2)

step3. Now perform following two task

Task1: <u>adding</u> eq(1) and eq(2) Hence you will get $\frac{\partial u}{\partial y}$

Task2: <u>Subtracting</u> eq(1) from eq(2) Hence you will get $\frac{\partial u}{\partial x}$

step4. Here we use mini Thomson method to construct analytical function

$$f(z) = u + iv$$

Differentiate w.r.to. x

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f'(z) = \phi_1(x, y) + i\phi_2(x, y)$$

By using mini Thomson method put x = z; y = 0 so dx = dz & dy = 0

$$f'(z) = \phi_1(z,0) + i\phi_2(z,0)$$

$$f(z) = \int \phi_1(z,0) + i \int \phi_2(z,0)$$

Do not forget to

Keep integration constant(c) in answer.

You can also verify harmonic function as you

have
$$\frac{\partial u}{\partial y} \otimes \frac{\partial u}{\partial x}$$
 i.e. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

kitos: Indepulcion kampus indespot com l

IOE Pulchowk All Subjects Note (notepulchowkcampus.blogspot.com)

Tribhuvan University Institute of engineering pulchowk campus