The I²C Bus

Course Teacher:

Md. Obaidur Rahman, Ph.D.

Professor

Department of Computer Science and Engineering (CSE) Dhaka University of Engineering & Technology (DUET), Gazipur.

Course ID: CSE - 4619

Course Title: Peripherals, Interfacing and Embedded Systems

Department of Computer Science and Engineering (CSE),

Islamic University of Technology (IUT), Gazipur.

Lecture References:

- Book:
 - Embedded System Design, Author: P. Marwedel
 - Embedded System Design: An Introduction to Processes, Tools and Techniques, Author: Arnold Berger, Arnold S. Berger
- Lecture Materials:
 - Microprocessor Engineering, Sheffield Halam University.

The I²C Bus

- ▶ What is the I²C Bus and what is it used for?
- Bus characteristics
- ▶ I²C Bus Protocol
- Data Format
- ▶ Typical I²C devices
- Example device

What is I²C

- ▶ The name stands for "Inter Integrated Circuit Bus"
- A Small Area Network connecting ICs and other electronic components in an embedded systems
- Originally intended for operation on one single board / PCB having features like:
 - Synchronous Serial Signal
 - Two wires carry information between a number of devices
 - One wire use for the data
 - One wire used for the clock
- ▶ Today, a variety of devices are available with I²C Interfaces
 - Microcontroller, EEPROM, Real-Timer, interface chips, LCD driver, A/D converter

What is I²C used for?

Data transfer between ICs and systems at relatively low rates

- "Classic" I²C is rated to 100K bits/second
- "Fast Mode" devices support up to 400K bits/second
- "High Speed Mode" is defined for operation up to 3.4 Mbits/second

Reduces Board Space and Cost By:

- Allowing use of ICs with fewer pins and smaller packages
- Greatly reducing interconnect complexity
- Allowing digitally controlled components to be located close to their point of use

I²C Bus Characteristics

- Includes electrical and timing specifications, and an associated bus protocol
- Two wire serial data & control bus implemented with the serial data (SDA) and clock (SCL) lines
 - For reliable operation, a third line is required: Common ground
- Unique start and stop condition
- Slave selection protocol uses a 7-Bit slave address
 - ▶ The bus specification allows an extension to 10 bits
- Bi-directional data transfer
- Acknowledgement after each transferred byte
- No fixed length of transfer

I²C Bus Characteristics (cont'd)

- ▶ True multi-master capability
 - Clock synchronization
 - Arbitration procedure
- ▶ Transmission speeds up to 100Khz (classic I²C)
- Allows series resistor for IC protection
- Compatible with different IC technologies

I²C Bus Definitions

Master:

- Initiates a transfer by generating **start** and **stop** conditions
- Generates the clock pulses
- Transmits the slave address
- Determines data transfer direction

Slave:

- Responds only when addressed by master
- Timing is controlled by the clock line

I²C Bus Configuration Example

I²C Hardware Details

- Devices connected to the bus must have an open drain or open collector output for serial clock and data signal
- The device must also be able to sense the logic level on these pins
- All devices have a common ground reference
- The serial clock and data lines are connected to Vdd(typically +5V) through pull up resistors
- ▶ At any given moment the I²C bus is:
 - Quiescent (Idle), or
 - in Master transmit mode or
 - in Master receive mode.

T²C Electrical Aspects

- I²C devices are wire ANDed together.
- If any single node writes a zero, the entire line is zero

Bit Transfer on the I²C Bus

In normal data transfer, the data line only changes state when the clock is low

Start and Stop Conditions

- □ A transition of the data line while the clock line is **high** is defined as either a start or a stop condition.
- □ Both **start** and **stop** conditions are generated by the bus master
- □ The bus is considered busy after a **start** condition, until a **stop** condition occurs

I²C Addressing

- Each node has a unique 7 (or 10) bit address
- Peripherals often have fixed and programmable address portions
- Addresses starting with 0000 or IIII have special functions:-
 - 0000000 Is a General Call Address
 - → 0000001 Is a Null (CBUS) Address
 - IIIIXXX Address Extension
 - ► IIIIII Address Extension Next Bytes are the Actual Address

First Byte in Data Transfer on the I²C Bus

R/Wr

0 – Slave written to by Master

1 – Slave read by Master

ACK – Generated by the slave whose address has been output.

I²C Bus Connections

- Masters can be
 - Transmitter only
 - Transmitter and receiver
- Slaves can be
 - Receiver only
 - Receiver and transmitter

Acknowledgements

- Master/slave receivers pull data line low for one clock pulse after reception of a byte
- Master receiver leaves data line high after receipt of the last byte requested
- Slave receiver leaves data line high on the byte following the last byte it can accept

Acknowledgements

From Slave to Master Transmitter:

- After address received correctly
- After data byte received correctly

From Slave to Master Receiver:

Never (Master Receiver generates ACK)

From Master Transmitter to Slave:

Never (Slave generates ACK)

From Master Receiver to Slave:

After data byte received correctly

Negative Acknowledge

Receiver leaves data line high for one clock pulse after reception of a byte

Negative Acknowledge (Cont'd.)

From Slave to Master Transmitter:

- After address not received correctly
- After data byte not received correctly
- Slave Is not connected to the bus

From Slave to Master Receiver:

Never (Master Receiver generates ACK)

From Master Transmitter to Slave:

Never (Slave generates ACK)

From Master Receiver to Slave:

After last data byte not received correctly

Data Transfer on the I²C Bus

- Start Condition
- Slave address + R/W
 - Slave acknowledges with ACK
- All data bytes
 - Each followed by ACK
- Stop Condition

Data Formats

Master writing to a Slave

Data Formats Cont'd.

Master reading from a Slave :

Master is Receiver of data and Slave is Transmitter of data.

Data Formats Cont'd.

Combined Format

 A repeated start avoids releasing the bus and therefore prevents another master from taking over the bus

Multi-master I²C Systems

 Multimaster situations require two additional features of the I²C protocol

Arbitration:

- Arbitration is the procedure by which competing masters decide final control of the bus
- I²C arbitration does not corrupt the data transmitted by the prevailing master
- Arbitration is performed bit by bit until it is uniquely resolved
- Arbitration is lost by a master when it attempts to assert a high on the data line and fails

Arbitration Between Two Masters

- As the data line is like a wired-AND, a ZERO address bit overwrites a ONE
- The node detecting that it has been overwritten stops transmitting and waits for the Stop Condition before it retries to arbitrate the bus

Error Checking

- ▶ I²C defines the basic protocol and timing
 - Protocol errors are typically flagged by the interface
 - Timing errors may be flagged, or in some cases could be interpreted as a different bus event
- Microprocessors communicating with each other can add a checksum or equivalent

Bus Recovery

- ▶ An I²C bus can be "locked" when:
 - A Master and a Slave get out of synch
 - A Stop is omitted or missed (possibly due to noise)
 - Any device on the bus holds one of the lines low improperly, for any reason
 - A shorted bus line
- If SCL can be driven, the Master may send extra clocks until SDA goes high, then send a Stop.
- If SCL is stuck low, only the device driving it can correct the problem.

Available I²C Devices

- Analog to Digital Converters (A/D, D/A): MMI functions, battery & converters, temperature monitoring, control systems
- **Bus Controller:** Telecom, consumer electronics, automotive, Hi-Fi systems, PCs, servers
- Bus Repeater, Hub & Expander: Telecom, consumer electronics, automotive, Hi-Fi systems, PCs, servers
- Real Time Clock (RTC)/Calendar: Telecom, EDP, consumer electronics, clocks, automotive, Hi-Fi systems, FAX, PCs, terminals
- ▶ **DIP Switch:** Telecom, automotive, servers, battery & converters, control systems
- LCD/LED Display Drivers: Telecom, automotive instrument driver clusters, metering systems, POS terminals, portable items, consumer electronics

Available I²C Devices

- General Purpose Input/Output (GPIO) Expanders and LED Display Control: Servers, keyboard interface, expanders, mouse track balls, remote transducers, LED drive, interrupt output, drive relays, switch input
- Multiplexer & Switch: Telecom, automotive instrument driver clusters, metering systems, POS terminals, portable items, consumer electronics
- ▶ Serial RAM/ EEPROM: Scratch pad/ parameter storage
- ▶ Temperature & Voltage Monitor: Telecom, metering systems, portable items, PC, servers
- Voltage Level Translator: Telecom, servers, PC, portable items, consumer electronics

End use

- ▶ **Telecom:** Mobile phones, Base stations, Switching, Routers
- Data processing: Laptop, Desktop, Workstation, Server
- Instrumentation: Portable instrumentation, Metering systems
- Automotive: Dashboard, Infotainment
- Consumer: Audio/video systems, Consumer electronics (DVD,TV etc.)

I²C designer benefits

- Functional blocks on the block diagram correspond with the actual ICs; designs proceed rapidly from block diagram to final schematic
- No need to design bus interfaces because the I²C-bus interface is already integrated on-chip
- Integrated addressing and data-transfer protocol allow systems to be completely software-defined
- The same IC types can often be used in many different applications

I2C designer benefits

- Design-time improves as designers quickly become familiar with the frequently used functional blocks represented by I²C-bus compatible ICs
- ICs can be added to or removed from a system without affecting any other circuits on the bus
- Fault diagnosis and debugging are simple; malfunctions can be immediately traced
- Software development time can be reduced by assembling a library of reusable software modules
- ▶ The simple 2-wire serial I²C-bus minimizes interconnections so ICs have fewer pins and there are fewer PCB tracks; resulting in smaller and less expensive PCBs

I²C Manufacturers benefits

- ▶ The completely integrated I²C-bus protocol eliminates the need for address decoders and other 'glue logic'
- ▶ The multi-master capability of the I²C-bus allows rapid testing/alignment of end-user equipment via external connections to an assembly-line
- Increases system design flexibility by allowing simple construction of equipment variants and easy upgrading to keep design up-to-date
- The I²C-bus is a de facto world standard that is implemented in over 1000 different ICs (Philips has > 400) and licensed to more than 70 companies

Thank You!!

