Інтегрована інерціально-супутникова система навігації, що базується на принципах комплексної обробки інформації з використанням калманівської фільтрації

Доповідач: Микола Новік

8 лютого 2011 р.

Постановка задачі комплексування

Постановка задачі): дослідження можливостей комплексування навігаційної інформації двох систем, що є на борту сучасного літака: безплатформенної інерціальної навігаційної системи і супутникової високоточної навігаційної системи.

В результаті комплексування ІНС та СНС досягаються:

- підвищення точності визначення координат, висоти, швидкості і часу споживача;
- 2 уточнення кутів орієнтації (курсу, крену і тангажа);
- Оцінка й уточнення параметрів калібрування навігаційних датчиків, таких, як дрейфи гіроскопів, масштабні коефіцієнти, зсуви нуля акселерометрів тощо;
- Забезпечення на цій основі безперервності навігаційних визначень на всіх етапах руху, у тому числі і при тимчасовій непрацездатності приймача СНС у випадках впливу завад або енергійних маневрів ЛА.

Варіанти інтегрування ІСНС

Роздільна схема

Надмірність, обмеженість похибок оцінок місця розташування і швидкості, наявність інформації про орієнтацію і кутову швидкість, висока швидкість видачі інформації, мінімальні зміни в бортовій апаратурі

Слабко зв'язана схема

Усі перераховані особливості роздільних систем, плюс більш швидке відновлення слідкування за кодом і фазою сигналів СНС, виставлення та калібрування БІНС у польоті, як наслідок – підвищена точність під час відсутності сигналу СНС

Жорстко зв'язана схема

Подальше поліпшення точності і калібрування, підвищена стійкість слідкування за сигналами СНС при маневрах ЛА, підвищена завадостійкість, компактність, знижені вимоги з енергозабезпечення. Вектор стану містить до 40 компонентів, тому фільтр складно реалізувати; необхідність розробки спеціальних датчиків.

Схема ІСНС

Рис.: Слабко зв'язана схема

Фільтр Калмана

Рис.: Схема роботи фільтра Калмана

Рис.: Траєкторія руху ЛА та його кути орієнтації

```
 \begin{cases} & \varphi(t) = \varphi_0 + K_\varphi t + \Delta_\varphi \sin(\omega_\varphi t + \delta_\varphi); \\ & \lambda(t) = \lambda_0 + K_\lambda t + \Delta_\lambda \sin(\omega_\lambda t + \delta_\lambda); \\ & h(t) = h_0 - \Delta h \cos(\omega_h t + \delta_h); \end{cases} \\ & V_E(t) = \dot{\lambda}(t) [R_1(\varphi) + h(t)] \cos \varphi(t); \\ & V_N(t) = \dot{\varphi}(t) [R_2(\varphi) + h(t)]; \\ & V_h(t) = \dot{h}(t); \\ & R_1(\varphi) = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}; \\ & R_2(\varphi) = R_1(\varphi) \frac{1 - e^2}{1 - 2 \sin^2 \varphi}; \end{cases}
```

```
\begin{aligned} a_E(t) &= \dot{V}_E(t) - q(t) \sin \varphi(t) V_N(t) + q(t) \cos(t) V_h(t); \\ a_N(t) &= \dot{V}_N(t) + q(t) \sin \varphi(t) V_E(t) + \dot{\varphi}(t) V_h(t); \\ a_h(t) &= \dot{V}_h(t) - q(t) \cos \varphi(t) V_E(t) - \dot{\varphi}(t) V_N(t) + g(h,\varphi); \\ q(t) &= \dot{\lambda}(t) + 2\omega_3; \\ g(h,\varphi) &= g_e[1 - 2\frac{h(t)}{a} + \frac{3}{4}e^2 \sin^2 \varphi(t)]; \\ \vartheta(t) &= arctg^2[V_h(t)/V_r(t)]; \\ \psi(t) &= arctg^2[V_E(t)/V_N(t)]; \\ \gamma(t) &= K_\gamma \frac{V_N(t)\dot{V}_E(t) - V_E(t)\dot{V}_N(t)}{V_r(t)\cos v(t)}, \end{aligned}
```

Алгоритми роботи БІНС

Матриця орієнтації:

$$B = \begin{bmatrix} \sin \psi \cos \vartheta & \cos \psi \sin \gamma - \sin \psi \cos \gamma \sin \vartheta \\ \cos \psi \cos \vartheta & -\sin \psi \sin \gamma - \cos \psi \cos \gamma \sin \vartheta \\ \sin \vartheta & \cos \gamma \cos \vartheta \end{bmatrix}$$

Швидкості
$$\dot{ar{V}} = Bar{a}_C - \Deltaar{n}\left(t\right) + ar{g}_T$$

$$\dot{B} = B\Omega_c - \Omega_{\Gamma}B$$

$$\cos \psi \cos \gamma + \sin \psi \sin \gamma \sin \vartheta
-\sin \psi \cos \gamma + \cos \psi \sin \gamma \sin \vartheta
-\sin \gamma \cos \vartheta$$

Рівняння похибок <u>БІНС</u>

BIHC

Похибка приведеної координати:

$$\begin{split} \Delta \dot{R}_E &= \Delta V_E(t) \cdot \frac{R_3}{R\cos\varphi(t)} + \Delta R_N(t) \frac{V_E(t)\sin\varphi(t)}{R_3R\cos^2\varphi(t)} - \Delta h(t) \frac{R_3V_E(t)}{R^2\cos\varphi(t)};\\ \Delta \dot{R}_N &= \Delta V_N(t) \cdot \frac{R_3}{R} - \Delta h(t) \frac{R_3V_N(t)}{R^2};\\ \Delta \dot{h} &= \Delta V_h(t); \end{split}$$

Похибка швидкості:

$$\frac{\Delta V_E}{AV_E} = a_N \alpha_h - a_h \alpha_N + \sum_{i=1}^{3} b_{1,i} \Delta a_i - \Delta V_h U(t) \cos \varphi + \Delta V_N U(t) \sin \varphi + \frac{\Delta R_N}{R_3} (U(t)(V_h \sin \varphi + V_N \cos \varphi)) - (\frac{\Delta V_E}{R \cos \varphi} + \frac{V_E \sin \varphi}{R \cos^2 \varphi} \frac{\Delta R_N}{R_3}) \times \times (V_h \cos \varphi - V_N \sin \varphi) + \frac{\Delta h V_E}{R \cos^2 \varphi} (V_h - V_N t g \varphi);$$

$$\begin{array}{l} \Delta\dot{V}_{N}=-a_{E}\alpha_{h}+a_{h}\alpha_{E}+\sum_{i=1}^{3}b_{2,i}\Delta a_{i}-\Delta V_{E}U(t)\sin\varphi-\Delta V_{h}\varphi(t)-\\ -\frac{\Delta R_{N}}{R_{3}}V_{E}U(t)\cos\varphi-\frac{\Delta V_{N}}{R}V_{h}-(\frac{\Delta V_{E}}{R\cos\varphi}+\frac{V_{E}\sin\varphi}{R\cos^{2}\varphi}\frac{\Delta R_{N}}{R_{3}})V_{E}\sin\varphi+\\ +\frac{\Delta h}{R^{2}}(V_{E}^{2}tg\varphi+V_{N}V_{h}); \end{array}$$

$$\begin{array}{l} \Delta\dot{V}_{h}=a_{E}\alpha_{N}-a_{N}\alpha_{E}+\sum_{i=1}^{3}b_{3,i}\Delta a_{i}+\Delta V_{E}U(t)\cos\varphi+\Delta V_{N}\dot{\varphi}(t)-\\ -\frac{\Delta R_{N}}{R_{3}}V_{E}U(t)\sin\varphi+\frac{\Delta V_{N}}{R}V_{N}+(\frac{\Delta V_{E}}{R\cos\varphi}+\frac{V_{E}\sin\varphi}{R\cos^{2}\varphi}\frac{\Delta R_{N}}{R_{3}})V_{E}\cos\varphi+\\ +g_{e}\left(-\frac{2\Delta a}{A}+\frac{3}{2}e^{2}\sin\varphi\cos\varphi\frac{\Delta R_{N}}{R_{3}}\right)-\frac{\Delta b}{R^{2}}\left(V_{E}^{2}+V_{N}^{2}\right), \end{array}$$

Похибка орієнтації координатного тригранника:

$$\begin{split} &\dot{\alpha}_E = -\omega_N \alpha_h + \omega_h \alpha_N - \frac{\Delta V_N}{\delta B} - \sum_{i=1}^3 b_{1,i} \varepsilon_i, \\ &\dot{\alpha}_N = -\omega_h \alpha_E + \omega_E \alpha_h + \frac{\Delta V_E}{R} - u \sin \varphi \frac{\Delta R_N}{R_3} - \sum_{i=1}^3 b_{2,i} \varepsilon_i, \\ &\dot{\alpha}_h = -\omega_E \alpha_N + \omega_N \alpha_E + \frac{\Delta V_E}{R} t g \varphi + (u \cos \varphi + \frac{V_E}{R \cos^2 \varphi}) \frac{\Delta R_N}{R_3} - \sum_{i=1}^3 b_{3,i} \varepsilon_i, \end{split}$$

Матриця динаміки БІНС

Помилка координати стаціонарно закріпленої БІНС

m Puc.: Еволюція похибки за умови, дрейфу гіроскопа 0.01deg/h; Еволюція похибки за умови, похибки координатного тригранника $10^{-3}rad$

Сумарна похибка стаціонарно закріпленої БІНС

Рис.: Еволюція сумарної похибки по координаті за умови, дрейфу гіроскопа 0.01deg/h, похибки координатного тригранника $10^{-3}rad$, та зміщенням акселерометра $10^{-4}m/s^2$

Рівняння похибок СНС та БВ

```
Помилки СНС:
   \Delta R_{Es,k} = \Delta R_{Ec,k} + \frac{\sigma_{Rs}}{\cos \varphi_k} \eta_{REs,k} + \frac{\sigma_{\delta Rs}}{\cos \varphi_k} \eta_{\delta RE,k};
   \Delta R_{Ns,k} = \Delta R_{Nc,k} + \sigma_{Rs} \eta_{RNs,k} + \sigma_{\delta Rs} \eta_{\delta RN,k};
   \Delta H_{s,k} = \Delta H_{c,k} + \sigma_{Hs} \eta_{Hs,k} + \sigma_{\delta Rs} \eta_{\delta H,k}
   \Delta V_{ls,k} = \Delta V_{lc,k} + \sigma_{Vs} \eta_{Vls,k} + \sigma_{\delta Vs} \eta_{\delta Vls,k}, при l = E, N, H;
 Корельовані помилки СНС:
   \Delta R_{Ec,k} = W_R \Delta R_{Ec,k-1} + q_R \frac{\sigma_{Rc}}{\cos \omega_L} \eta_{REc,k} + \frac{\sigma_{\delta RC}}{\cos \omega_L} \eta_{\delta REc,k};
   \Delta R_{Nc,k} = W_R \Delta R_{Nc,k-1} + q_R \sigma_{Rc} \eta_{RNc,k} + \sigma_{\delta RC} \eta_{\delta RNc,k};
   \Delta H_{c,k} = W_R \Delta H_{c,k-1} + q_R \sigma_{Hc} \eta_{Hc,k} + \sigma_{\delta Hc} \eta_{\delta Hc,k};
   \Delta V_{lc,k} = W_V \Delta V_{lc,k-1} + q_V \sigma_{Vc} \eta_{Vlc,k} + \sigma_{\delta Vc} \eta_{\delta Vlc,k}, при l=E,N,H,
         W_R = e^{-(\lambda_S V_{\text{III}} + \lambda_{St})\Delta t}; q_R = [1 - \exp(-2(\lambda_S V_{\text{III}} + \lambda_{St})\Delta t)]^{0.5};
          W_V = e^{-\lambda_V \Delta t} : q_V = [1 - \exp(-2\lambda_V \Delta t)]^{0.5}
 Матриця динаміки корельованих поихибок СНС:
```

БВ

Дискретна модель похибок БВ:

$$\Delta h_{c,k} = \Delta h_{c,k-1} + \sigma_{\varepsilon A} \xi_{k-1}$$

Система в просторі станів

Вектор стану системи

```
\Delta R_E
                     Пом. координ. Е
\Delta R_N
                     Пом. координ. N
\Delta h
                     Пом. по висоті
\Delta V_E
                     Пом. по швидкості Е
\Delta V_N
                     Пом. по швидкості N
\Delta V_h
                     Пом. по швидкості Н
                     Пом. тригранника Е
\alpha_E
                     Пом. тригранника N
\alpha N
                     Пом. тригранника Н
\alpha_h
                     Дрейф гіроскопа Е
€01
                     Дрейф гіроскопа N
\varepsilon_{c2}
\varepsilon_{c3}
                     Дрейф гіроскопа Н
\Delta a_{c1}
                     Дрейф акселерометра Е
\Delta a_{c2}
                     Дрейф акселерометра N
\Delta a_{c3}
                     Дрейф акселерометра Н
\Delta h_{\mathrm{BB}}
                     Пом. баровисотоміра
\Delta R_{Ec}
                     Кор. пом. коорд. СНС Е
\Delta R_{Nc}
                     Кор. пом. коорд. СНС N
\Delta h_c
                     Кор. пом. коорд. СНС Н
\Delta V_{Ec}
                     Кор. пом. швид. СНС Е
                     Кор. пом. швид. СНС N
                     Кор. пом. швид. СНС Н
```

Моедель системи в просторі станів.

Навігаційний фільтр Калмана

Фільтр Калмана

 Π рогноз:

$$\begin{split} \hat{\bar{X}}_{p,k}(-) &= \Phi_{p,k-1} \hat{\bar{X}}_{p,k-1}(+), \\ P_k(-) &= \Phi_{p,k-1} P_{k-1}(+) \Phi_{p,k-1}^T + G_{p,k-1} G_{p,k-1}^T; \end{split}$$

Корекція:

$$\hat{X}_{p,k}(+) = \hat{X}_{p,k}(-) + K_k(\bar{Y}_k - H\hat{X}_{p,k}) P_k(+) = (E - K_k H)P_k(-) (E - K_k H)^T + K_k Q_{p,k} Q_{p,k}^T K_k^T$$

Коефіцієнт Калмана:

$$K_k = P_k(-)H^T(HP_k(-)H^T + Q_{p,k}Q_{p,k}^T)^{-1}$$

Виправлення координат:

$$h(+)_{i} = h(-)_{i} - \Delta \hat{h}_{i};$$

$$\varphi_{i}(+) = \varphi(-)_{i} - \frac{\Delta \hat{R}_{Ni}}{R_{3}};$$

$$\lambda_{i}(+) = \lambda(-)_{i} - \frac{\Delta \hat{R}_{Ei}}{R_{2}};$$

Виправлення швидкостей:

$$V(+)_E = V(-)_E - \Delta \hat{V}_E;$$

$$V(+)_N = V(-)_N - \Delta \hat{V}_N;$$

$$V(+)_h = V(-)_h - \Delta \hat{V}_h.$$

Виправлення орієнтації географічної СК:

$$\hat{B}(+)_i = \Delta B_i \hat{B}(-)_i$$

$$\Delta B_i = \begin{bmatrix} 1 & -\hat{\alpha}_{h,i} & \hat{\alpha}_{N,i} \\ \hat{\alpha}_{h,i} & 1 & -\hat{\alpha}_{E,i} \\ -\hat{\alpha}_{N,i} & \hat{\alpha}_{E,i} & 1 \end{bmatrix}.$$

Інтерфейс програми

Похибка оцінки по координаті

Похибка оцінки по швидкості

Похибка оцінки по орієнтації

Постановка задачі Модель системи Моделювання Програмне забезпечення Похибка оцінки по коорд

Похибка оцінки дрейфів гіроскопів

Похибка оцінки зміщення акселерометрів

Похибка оцінки курсу, крена, тангажа

Постановка задачі Модель системи Моделювання Програмне забезпечення Похибка оцінки по коорд

Радіомовчання з 400-600с

Середньоквадратичні відхилення

СКВ похибок оцінювання

Nºº	East	North	Height
Координати, м	5.8792050244	4.6476224404	4.8677711489
Швидкості, м/с	0.0236254078	0.0235478062	0.0231813797
Орієнтація, рад	8.42E-005	0.000133569	0.0004735418
Дрейф ДКШ,	2.50E-007	1.28E-006	3.80E-007
рад/с			
Акселером, м/с ²	0.0005007264	0.000344999	0.0004686141

sudo rm -rf /

Дякую за увагу!