Why RDBS Design Again?

Suppose we have a table *inst_dept which contain information for both instructor* and *department*.

Result is possible repetition of information

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Relational Design by Decomposition

Lossless-Join Decomposition

A Simple example of Lossy-Join (Non-Lossless Join):

Decomposition of R = (A, B) into $R_1 = (A)$ and $R_2 = (B)$

Α	В		
$\begin{array}{c} \alpha \\ \alpha \\ \beta \end{array}$	1 2 1		
r			

$$\begin{bmatrix} A \\ \beta \end{bmatrix}$$

$$\Pi_{A}(r)$$

$$\begin{array}{c|c}
A & B \\
\hline
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\beta & 2 \\
\end{array}$$

$$\prod_{A} (r) \bowtie \prod_{B} (r)$$

Lossless-Join decomposition:

For all possible relation instance r on schema R

$$r = \prod_{R1} (r) \bowtie \prod_{R2} (r)$$

Goal - Devise a Theory for what is Good

We want to do two things:

- 1. Decide whether a particular relation R is in "good" form.
- 2. If a relation R is not in "good" form, decompose it into a set of relations {R1, R2, ..., Rn} such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition

Our theory/properties are defined based on functional dependencies.

Attribute Values can be Related

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
22222	Einstein	95000	Biology	Watson	90000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

A functional dependency describes a **relation** between attributes

Whenever any two tuples t_1 and t_2 of r agree on one attribute α , they also agree on another attribute β .

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

This relation is denoted $\alpha \rightarrow \beta$.

 $ID \rightarrow Name, Depart_name \rightarrow Building$

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
22222	Einstein	95000	Biology	Watson	90000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Describes the semantics or meaning of the attributes

The functional dependency

$$X \rightarrow Y$$
 is true (holds)

if and only if

$$t_1[X] = t_2[Y] \implies t_1[X] = t_2[Y]$$

in relation R

ID	Name	Code	Grade
100	J	3550	Α
200	X	3550	В
100	J	4540	В
100	J	4550	Α

- Example: R = {ID, Name, Code, Grade}
 - ID → Name (OK)
 - \square ID \rightarrow Grade (not OK),
- ID → Code (not OK)
- □ ID, Name \rightarrow Grade (not OK), ID, Code \rightarrow Grade (OK)
- □ ID, Name → Name (trivial)

Let's see if you understand (Test1)

$$F: X \to Y$$

$$X \quad Y$$

$$a \quad b$$

Let's see if you understand (Test2)

$$F: X \to Y$$

- a b
- ? b

 $c \rightarrow b \text{ okay?}$

Let's see if you understand (Test3)

$$F: X \to Y$$

X Y

a b

c b?

Let's see if you understand (Test3)

```
    F: X → Y
    X Y
    a b
    c b ? possible
```

What does $X \to Y$ say about $Y \to X$?

Let's see if you understand (Test4,5)

$$X, Y \rightarrow X$$

$$X \to X$$

Note: Functional dependencies like these are trivial

Let's see if you understand (Test6)

Consider R (A, B) with the following instance r.

On this instance, $A \rightarrow B$ does NOT hold, but $B \rightarrow A$ does hold.

FD: relation between two sets

A functional dependency is a relation between two sets of attributes.

I.e., the value for a set of attributes determines the value for another set of attributes.

A functional dependency describes relation between two sets of attributes from are relation.

Examples:

$$XY \rightarrow WZ$$

$$XW \rightarrow Z$$

$$Z \rightarrow XQ$$

A functional dependency is a **constraint** between two sets of attributes for all its **relation instances**.

A constraint means a constraint across all it's relation instances (extensions), that it must hold for all relation instances.

F is a set of FD specified on relation R must hold on all relation instances.

Constraint on all Relations

Example: *course* → *course_code in* Students

		STUDENTS		
id	course	course_code	major	prof
1	Database	353	Comp Sci	Smith
2	Chem101	427	Chemistry	Turner
3	Database	353	Comp Sci	Clark

. . .

		STUDENTS		
id	course	course_code	major	prof
1	Database	353	Comp Sci	Yu
4	Agile Dev	821	Comp Sci	Turner
		•••		
5	Compiler	237	Comp Sci	Clark

Legal Extensions of R

Relation extensions r(R) that satisfy the functional dependency constraints are called **legal relation states** (or **legal extensions**) of R. Let $course \rightarrow course_code$ be the only FD for Students

		STUDENTS		
id	course	course_code	major	prof
1	Database	353	Comp Sci	Smith
2	Chem101	427	Chemistry	Turner
3	Database	353	Comp Sci	Clark

Legal

		STUDENTS		
id	course	course_code	major	prof
1	Database	353	Comp Sci	Yu
4	Agile Dev	821	Comp Sci	Turner
5	Compiler	237	Comp Sci	Clark

Also legal

Violations in FD

But in practice, it's possible to have FD violations.

		STUDENTS		
id	course	course_code	major	prof
1	Database	353	Comp Sci	Smith
2	Chem101	427	Chemistry	Turner
3	Database	353	Comp Sci	Clark

		STUDENTS		
id	course	course_code	major	prof
1	Database	353	Data Science	Smith
2	Chem101	427	Chemistry	Turner
3	Database	353	Comp Sci	Clark

where is it? Isn't it a constraint? How should it be enforced? how come I seen it yet?

Notation and Terminology

Let $X \rightarrow Y$ be a functional dependency on <u>relation R</u>

We say that

 \circ X \rightarrow Y holds on R

We say that

- X functionally determines Y
- Y is functionally dependent on X

We say that

- X is *determinant* of the dependency
- Y is dependent of the dependency

OR

- X is *left-hand side* of the dependency
- Y is *right-hand side* of the dependency

A WORKS_ON relation

- Ssn = social security number
- *Pnumber* = project number

Question:

What might be the FDs of *WORKS_ON?*

WORKS_ON

<u>Ssn</u>	<u>Pnumber</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	Null

A *EMPLOYEE* relation

- SSn =social security number
- *Bdate* = birthday
- *Dnumer* = department number

Question: What might be the FDs of *EMPLOYEE*?

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

Question: What about Students? which columns might be dependent functionally?

STUDENTS						
ID		Major	Prof	Grade		
1	237-4539	Comp Sci	Smith	А		
2	427-7390	Chemistry	Turner	В		
3	237-4539	Comp Sci	Clark	В		
4	388-5183	Physics	James	А		
5	371-6259	Decision Sci	Cook	С		
6	823-7293	Mathematics	Lamb	В		
7	823-7293	Mathematics	Bond	UN		
8	237- 4539	Comp Sci	Cross	UN		
9	839-0827	English	Broes	С		

Example: $R = \{ID, Name, Code, Grade\}$

r(R) Instance A

ID	Name	Code	Grade
100	J	3550	Α
200	X	3550	В
100	J	4540	В
100	J	4550	Α

- □ ID → Name (OK),
- □ ID → Grade (not OK),
- □ ID \rightarrow Code (not OK),
- □ ID, Name \rightarrow Grade (not OK),
- □ ID, Code → Grade (OK).

r(R) Instance B

ID	Name	Code	Grade
100	J	3550	Α
200	X	3550	В
100	J	4540	Α
100	J	4550	Α

- □ ID → Name (<mark>OK</mark>)
- □ $ID \rightarrow Grade (OK)$,
- □ ID → Code (not OK)
- □ ID, Name → Grade (not OK),
- □ ID, Code \rightarrow Grade (OK).

Example: $R = \{ID, Name, Code, Grade\}$

r(R) Instance A

ID	Name	Code	Grade
100	J	3550	Α
200	X	3550	В
100	J	4540	В
100	J	4550	Α

- \square ID \rightarrow Name (OK),
- □ ID → Grade (not OK),
- □ ID \rightarrow Code (not OK),
- □ ID, Name \rightarrow Grade (not OK),
- □ ID, Code \rightarrow Grade (OK).

r(R) Instance B

ID	Name	Code	Grade
100	J	3550	Α
200	X	3550	В
100	J	4540	Α
100	J	4550	Α

- □ ID → Name (OK)
- \square ID \rightarrow Grade (OK),
- □ ID → Code (not OK)
- □ ID, Name → Grade (not OK),
- □ ID, Code → Grade (OK).

Important: You can't infer FD's from a relations instances

Functional dependencies exist to:

- specify the semantics between attributes
 - semantics of a relation should be kept across its extensions, yes?
- specify constraints on a relational schema
- this semantics is not captured by ER
 - hasn't mentioned anything about this kind of relationship about attributes

Designing FDs

FD cannot be inferred automatically from a given relation extension r. So given a relation, where do its FDs come from? Where do we find it?

Deciding the FDs of a table is part of a design decision.

• Defined explicitly by someone who knows the semantics of the attributes of R.

Designing FDs

Assume we need to define the FDs of this relation

STUDENTS						
ID	Course	Phone	Major	Prof	Grade	

What can we know about the columns?

Could each ID have a unique phone number and major?

Which Columns are Related?

STUDENTS						
ID	Course	Phone	Major	Prof	Grade	

Every ID has a unique phone number and major?

• We can say $\{ID\} \rightarrow \{Phone, Major\}$

Other relations between columns:

- Every course has a unique professor $\{Course\} \rightarrow \{Prof\}$
- Every ID and course has a unique grade $\{ID, Course\} \rightarrow \{Grade\}$

Whenever the semantics of two sets of attributes in R indicate that a functional dependency should hold, we specify the dependency as a constraint.

Final Notations

We may denote the attributes sets with/without curly brackets

- With curly brackets, attributes are comma separated
- \circ {X,Y} = XY

The order of the attribute sets doesn't matter

- \circ ZY = YZ
- ${}^{\circ}$ {Z,Y} = {Y, Z}

Test

- (Q1) What is a functional dependency?
- (Q2) What could decide the functional dependencies that hold among the attributes of a relation schema?
- (Q3) Why can we not infer a functional dependency automatically from a particular relation state?
- (Q4) Are there always functional dependencies in any relation?

Dependency Diagram

Each horizontal line represents a FD

- Left-hand side attr. connected by vertical lines to the line,
- Right-hand side attr. connected by vertical lines with arrows
 - Arrow pointing toward the attributes

Dependency diagram from previous example.

Dependency Diagram (Cont.)

Some more examples of dependency diagrams.

Infering other FD's

Infering other FDs

 $A \rightarrow B$ and $B \rightarrow C$, what do we know about $A \rightarrow C$?

Given $A \rightarrow B$ and $B \rightarrow C$ on relation R,

We know $A \rightarrow C$ holds on R, given A determines B, and B determines C.

There may be additionally functional dependencies that also hold on R!

Infering Other FDs

It's true that given a set F of functional dependencies, there are other functional dependencies that are logically implied by F.

$$F \models X \rightarrow Y$$

Denotes that set of FDs F infers $X \to Y$ if all relation instances satisfying F also satisfies $X \to Y$.

Example:

$$F = A \rightarrow B, B \rightarrow C,$$

 $F \models A \rightarrow C$

Usually, the schema designer will only specify the functional dependencies that are semantically obvious.

Inference Rules

These are the inference rules for functional dependencies

- Rule 1 (reflexivity)
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- Rule 2 (augmentation)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
- Rule 3 (transitivity)
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$
- Where α , β , γ are all (nonempty) sets of attributes

The above are the primary rules/axioms from Armstrong's Axioms

Practice

$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

These FDs can be inferred/ deduced.

$$A \rightarrow H$$

$$AG \rightarrow I$$

$$CG \rightarrow HI$$

Practice

$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

These FDs can be inferred/ deduced.

$$A \rightarrow H$$

$$AG \rightarrow I$$

$$CG \rightarrow HI$$

But are they part of F?

(Solutions)

```
R = (A, B, C, G, H, I)
F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}
 A \rightarrow H
    by transitivity from A \rightarrow B and B \rightarrow H
 AG \rightarrow I
    by augmenting A \rightarrow C to get AG \rightarrow CG
    then transitivity with given CG \rightarrow I
 CG \rightarrow HI
    by augmenting CG \rightarrow I to infer CG \rightarrow CGI,
    then augmenting CG \rightarrow H to infer CGI \rightarrow HI,
    followed up by a transitivity
```

Note: We denote by F the set of functional dependencies that are specified on relation schema R.

Functional dependencies logically implied other functional dependencies.

The set of all functional dependencies logically implied by F is the closure of F.

F+ denotes the **closure** of F

In general, given F, we can find F+ (the closure of F) by repeatedly applying Armstrong's Axioms.

F+ is a superset of F.

Armstrong's Axioms:

Armstrong's Axioms are proven to be sound and complete

- Sound = generates only functional dependencies that hold
- Complete = generates all functional dependencies that hold

Armstrong's Axioms (Cont.)

Additional Rules we inferred from Armstrong's axioms.

- Rule 4 (additivity):
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds
- Rule 5 (projectivity):
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds
- Rule 6 (pseudo-transitivity):
 - If $\alpha \to \beta$ holds and $\gamma \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds

Other names:

Additivity aka Union Projectivity aka Decomposition

Proving Secondary Rules

Let's try prove rule 5: projectivity

$${X \rightarrow Y Z} \models X \rightarrow Y$$

Cheat Sheet

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

(Solution)

Let's try prove rule 5: projectivity

$${X \rightarrow Y Z} \models X \rightarrow Y$$

Step 1. $X \rightarrow Y Z$ (Given)

Step 2. $YZ \rightarrow Y$ (Reflexivity)

Step 3. $X \rightarrow Y$ (Transitivity of 1 and 2)

Cheat Sheet

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

Proving Secondary Rules

Let's prove rule 6: <u>Pseudo-transitivity</u>

$$\{X \rightarrow Y, YZ \rightarrow W\} \models XZ \rightarrow W$$

Cheat Sheet

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

(Solution)

Let's prove rule 6: <u>Pseudo-transitivity</u>

$$\{X \to Y, YZ \to W\} \models XZ \to W$$

Step 1. $X \rightarrow Y$ (Given)

Step 2. $XZ \rightarrow YZ$ (Augmentation of 1)

Step 3. $YZ \rightarrow W$ (Given)

Step 4. $XZ \rightarrow W$ (Transitivity, from 2 and 3)

Cheat Sheet

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

Proving Secondary Rules

Let's prove rule 4: Additivity

$${X \rightarrow Y, X \rightarrow Z} \models X \rightarrow Y Z$$

Cheat Sheet

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

(Solution)

Let's prove rule 4: Additivity

$${X \rightarrow Y, X \rightarrow Z} \models X \rightarrow YZ$$

Step 1. $X \rightarrow Y$ (Given)

Step 2 . XX \rightarrow XY (Augmentation of 1); that is, X \rightarrow XY

Step 3. $X \rightarrow Z$ (Given)

Step 4. $XY \rightarrow YZ$ (Augmentation of 2)

Step 5. $X \rightarrow YZ$ (Transitivity, from 2 and 4)

Cheat Sheet

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

Practice FD Inference

Cheat Sheet F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$. F2 (Augmentation) $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$. F3 (Transitivity) $\{X \rightarrow Y, Y \rightarrow Z\} \mid = X \rightarrow Z$. F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} \mid = X \rightarrow YZ$. F5 (Projectivity) $\{X \rightarrow YZ\} \mid = X \rightarrow Y$. F6 (Pseudo-transitivity) $\{X \rightarrow Y, YZ \rightarrow W\} \mid = XZ \rightarrow W$. Given $Y = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$. Prove $Y = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$.

(Solution)

```
Cheat Sheet
F1 (Reflexivity) If X \supseteq Y then X \rightarrow Y.
F2 (Augmentation) \{X \rightarrow Y\} = XZ \rightarrow YZ.
F3 (Transitivity) \{X \rightarrow Y, Y \rightarrow Z\} \mid = X \rightarrow Z.
F4 (Additivity) \{X \rightarrow Y, X \rightarrow Z\} \mid = X \rightarrow YZ.
F5 (Projectivity) \{X \rightarrow YZ\} \mid = X \rightarrow Y.
F6 (Pseudo-transitivity) \{X \rightarrow Y, YZ \rightarrow W\} \mid = XZ \rightarrow W.
Given F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}
Prove A \rightarrow D:
Step 1. A \rightarrow B (Given)
Step 2. A \rightarrow C (Given)
Step 3. A \rightarrow BC (Additivity, from 1 and 2)
Step 4. BC \rightarrow D (Given)
Step 5. A \rightarrow D (Transitivity, from 3 and 4)
```

Closure of F

Definition. the set of all dependencies that can be inferred from F is called the **closure** of F.

F+ denotes the closure of F.

F+ includes dependencies in F.

Note: We typically reserve F to denote the set of functional dependencies that are specified on relation schema R.

Key Points on Closures

F denotes the set of FD's of a relation

F+ is the **closure** of F.

F+ is the *smallest set* of FD's that

- contains F, and
- is closed under Armstrong's axioms.

How do we check if a functional dependency can be inferred from FD's F (is a member of F+)?

The Procedure for Computing F+

To compute the closure of a set of functional dependencies F:

```
F^+ = F
\mathbf{repeat}
\mathbf{for\ each\ } \text{functional\ } \text{dependency\ } f \text{ in\ } F^+
\text{apply\ } \text{reflexivity\ and\ } \text{augmentation\ } \text{rules\ } \text{on\ } f
\text{add\ } \text{the\ } \text{resulting\ } \text{functional\ } \text{dependencies\ } to\ F^+
\mathbf{for\ each\ } \text{pair\ } \text{of\ } \text{functional\ } \text{dependencies\ } f_1 \text{ and\ } f_2 \text{ in\ } F^+
\mathbf{if\ } f_1 \text{ and\ } f_2 \text{ can\ } \text{be\ } \text{combined\ } \text{using\ } \text{transitivity}
\mathbf{then\ } \text{add\ } \text{the\ } \text{resulting\ } \text{functional\ } \text{dependency\ } \text{to\ } F^+
\mathbf{until\ } F^+ \text{ does\ } \text{not\ } \text{change\ } \text{any\ } \text{further\ }
```

The Procedure for Computing F+

$$\begin{split} F &= \{ \ X \rightarrow Y, \ Y \rightarrow Z \} \\ F &+= \{ XY \rightarrow X, \ XY \rightarrow Y, \ XY \rightarrow Z, \ XZ \rightarrow X, \ XZ \rightarrow Y, \\ XZ \rightarrow Z, \ XYZ \rightarrow X, \ XYZ \rightarrow Y, \ XYZ \rightarrow Z, \ XY \rightarrow XY, \\ XY \rightarrow YZ, \ XY \rightarrow XZ, \ \ldots \} \end{split}$$

Checking Membership by F+

Given $F = \{ X \rightarrow Y, Y \rightarrow Z \}$

Question: Can $X \rightarrow Z$ be inferred or derived from the FDs in F?

How to do it? Check $X \rightarrow Z$ by computing F+?

Checking Membership by F+

Given
$$F = \{ X \rightarrow Y, Y \rightarrow Z \}$$

Question: Can $X \rightarrow Z$ be inferred or derived from the FDs in F?

How to do it? Check $X \rightarrow Z$ by computing F+?

$$F+ = \{XY \rightarrow X, XY \rightarrow Y, XY \rightarrow Z, XZ \rightarrow X, XZ \rightarrow Y, \\ XZ \rightarrow Z, XYZ \rightarrow X, XYZ \rightarrow Y, XYZ \rightarrow Z, XY \rightarrow XY, \\ XY \rightarrow YZ, XY \rightarrow XZ, \dots, X \rightarrow Z, \dots \}$$

Oh yes... $X \rightarrow Z$ is in the closure of F.

Checking Membership by F+

Given
$$F = \{ X \rightarrow Y, Y \rightarrow Z \}$$

Question: Can $X \rightarrow Z$ be inferred or derived from the FDs in F?

How to do it? Check $X \rightarrow Z$ by computing F+?

$$F+ = \{XY \rightarrow X, XY \rightarrow Y, XY \rightarrow Z, XZ \rightarrow X, XZ \rightarrow Y, \\ XZ \rightarrow Z, XYZ \rightarrow X, XYZ \rightarrow Y, XYZ \rightarrow Z, XY \rightarrow XY, \\ XY \rightarrow YZ, XY \rightarrow XZ, \dots, X \rightarrow Z, \dots \}$$

Oh yes... $X \rightarrow Z$ is in the closure of F.

Problem: In real life, it is impossible to specify all possible functional dependencies for a given situation. The size of F+ is always exponential size w.r.t |F|.

Closure of Attributes

Given $F = \{ X \rightarrow Y, Y \rightarrow Z \}$

Question: How else to check if $X \rightarrow Z$ without computing F+?

Definition: Given a set of attributes α , define the *closure* of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F.

Realistically:

Narrow our attention to X, which is smaller than F.

Compute X+ instead of F+

Then check if Z is covered by X+

X+ is the largest set of attributes functionally determined by X.

Closure of Attribute Sets

Pseudocode to the closure of α under F

```
result := a; while (changes to result) do for each \beta \to \gamma in F do begin if \beta \subseteq result then result := result \cup \gamma end
```

When no additional changes to result is possible, the final value of variable result is α +

Example of Attribute Set Closure

```
R = (A, B, C, G, H, I)
F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}
```

Compute the closure of AG (AG+)

```
Cheat Sheet:

result := a;

while (changes to result) do

for each \beta \to \gamma in F do

begin

if \beta \subseteq result

then

result := result \cup \gamma

end
```

Algorithm to Compute X+

An algorithm for you to follow step by step

```
X := X;
change := true;
while change do
        begin
        change := false;
        for each FD W \rightarrow Z in F do
                   begin
                   if (W \subseteq X+) and (Z \not\subseteq X+) then do
                              begin
                              X+ := X+ \cup Z;
                              change := true;
                              end
                   end
        end
```

Exercise

```
Cheat Sheet:
F = \{ A \rightarrow B, BC \rightarrow D, A \rightarrow C \}
                                                     X+:=X;
Practice: Compute A+
                                                     change := true;
                                                     while change do
                                                                begin
                                                                change := false;
                                                                for each FD W \rightarrow Z in F do
                                                                  begin
                                                                  if (W \subseteq X+) and (Z \not\subseteq X+)
                                                                   then do
                                                                            begin
                                                                            X+ := X+ \cup Z;
                                                                            change := true;
                                                                            end
                                                                   end
```

end

(Solution)

```
F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}
Task: Compute {A}+
1st scan of F:
X + := \{A\}
X+ := \{A, B\}
X+ := \{A, B, C\}
2nd scan of F:
X+ := \{A, B, C, D\}
3rd scan of F: no change,
therefore, the algorithm terminates.
{A} + := {A, B, C, D}
```

```
Cheat Sheet:
X+:=X;
change := true;
while change do
         begin
         change := false;
         for each FD W \rightarrow Z in F do
            begin
            if (W \subseteq X+) and (Z X+)
            then do
                    begin
                    X + := X + \cup Z;
                    change := true;
                    end
            end
         end
```

FDs and Keys

Recall Exp. of Attribute Set Closure

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

$$We know (AG) + = ABCGHI$$

Observation: could AG a candidate key?

Is AG a super key?

Does AG
$$\rightarrow$$
 R? == Is (AG) $^+ \supseteq$ R

Is any subset of AG a super key?

Does
$$A \rightarrow R? == Is (A) + \supseteq R$$

Does
$$G \rightarrow R? == Is (G)^+ \supseteq R$$

Functional Dependencies (Cont.)

K is a super key for relation schema R if and only if $K \rightarrow R$

K is a candidate key for R if and only if

- \circ K \rightarrow R, and
- for no $\alpha \subset K$, $\alpha \to R$

Example

Consider schema STUDENT(zid, name, address)

Where $zid \rightarrow name$, address

zid functionally determines all tuples in the table STUDENT

Notes:

Although key of a relation will always functionally determine every attributes in the relation.

The left-hand side of a dependency does not imply uniqueness.

Notes: functionally dependencies are a generalization of a concept of a key

Functional Dependencies (Cont.)

Functional dependencies allow us to express constraints that cannot be expressed using superkeys.

Consider the schema:

```
inst_dept (ID, dept_name, name, salary, building, budget).
```

We can also express functional dependencies to hold:

$$dept_name \rightarrow building$$

$$ID \rightarrow building$$

Procedurally Determine Keys

Motivation: use FDs to procedurally determine the keys of a relation.

Procedurally Determine Keys

How to compute a candidate key of a relation R based on the FD's belonging to R

Algorithm:

- Step 1 : Assign a super-key of R in F to X.
- Step 2: Iteratively remove attributes from X while retaining the property X+ = R till no reduction on X is possible.
- The remaining X is a key.

Let's try an example

Practice

Step 1 : Assign a super-key of R in F to X.

Step 2: Iteratively remove attributes from X while retaining the property X+

= R till no reduction on X is possible.

The remaining X is a key.

Given:

$$R = \{A, B, C, D\}$$

$$F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$$

Given:

$$R = \{A, B, C, D\}$$

$$F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$$

Let
$$X = \{A, B, C\}$$

($\{A, B, C, D\}$ is also a super key)

A cannot be removed because
$$\{BC\}+=\{B, C, D\} \neq R$$

B can be removed
because
$$\{AC\}$$
+ = $\{A, B, C, D\}$ = R

We remove B from X and update X to be { A, C}

C can be further removed because $\{A\}$ + = $\{A, B, C, D\}$

We remove C from X and update X to be { A}

Step 1 : Assign a super-key of R in F to X.

Step 2: Iteratively remove attributes from X while retaining the property X⁺ = R till no reduction on X is possible.

The remaining X is a key.

Given a relational schema R and a set of functional dependencies F on R, find all the possible ways we can identify a row.

Note: we know how to compute one candidate key already.

The algorithm to compute all the candidate keys is as follows:

```
\begin{array}{l} T := \emptyset \\ \text{Main:} \\ X := S \\ \text{remove} := \text{true} \\ \text{While remove do} \\ \text{For each attribute } A \in X \\ \text{Compute } \{X\text{-}A\}\text{+ with respect to F} \\ \text{If } \{X\text{-}A\}\text{+ contains all attributes of R then} \\ \text{$X := X - \{A\}$} \\ \text{Else} \\ \text{remove} := \text{false} \\ \text{$T := T \cup X$} \end{array}
```

Repeat until no available S can be found. Finally, T contains all the candidate keys.

Given relation R(A, B, C, D, E) with set of FDs $\{A \rightarrow B, BC \rightarrow A, D \rightarrow E\}$

Find all the candidate keys for relation R

```
T := \emptyset
Main:
      X := S
      remove := true
      While remove do
             For each attribute A \in X
             Compute {X-A}+ with respect to F
             If {X-A}+ contains all attributes of R then
                    X := X - \{A\}
             Else
                    remove := false
      T := T \cup X
Relation R(A, B, C, D, E)
with set of FDs \{A \rightarrow B, BC \rightarrow A, D \rightarrow E\}
```

```
T := \emptyset
Main:
      X := S
      remove := true
      While remove do
             For each attribute A \in X
             Compute {X-A}+ with respect to F
             If {X-A}+ contains all attributes of R then
                    X := X - \{A\}
             Else
                    remove := false
      T := T \cup X
Relation R(A, B, C, D, E)
with set of FDs \{A \rightarrow B, BC \rightarrow A, D \rightarrow E\}
```

```
T := \emptyset
Main:
      X := S
      remove := true
      While remove do
             For each attribute A \in X
             Compute {X-A}+ with respect to F
             If {X-A}+ contains all attributes of R then
                    X := X - \{A\}
             Else
                    remove := false
      T := T \cup X
Relation R(A, B, C, D, E)
with set of FDs \{A \rightarrow B, BC \rightarrow A, D \rightarrow E\}
```

```
Step 1:
Let X := \{A, B, C, D\}
Step 2:
Try to remove A
{B, C, D} + = {A, B, C, D, E}
Thus X := \{B, C, D\}
Steps 3,4,5:
Attempts to remove B, C, D separately
\{C, D\} + = \{C, D, E\}
\{B, D\} + = \{B, D, E\}
\{B, C\} + = \{A, B, C\}
None can be removed
So \{B, C, D\} is a candidate key and add to T
```

Step 6:

Find another super key

Let
$$X := \{A, C, D\}$$

Step 7,8,9:

Attempts to remove A, C, D separately

$$\{C, D\} + = \{C, D, E\}$$

$${A, D} + = {A, B, D, E}$$

$${A, C} + = {A, B, C}$$

None cannot be removed

So, {A, C, D} is another candidate key and add to T

Step 10:

Cannot find any other super keys,

Conclusion: candidate keys are $\{B, C, D\}$ and $\{A, C, D\}$

Lecture Learning Outcomes

Take aways

- Functional Dependencies
- Armstrong's axioms
- Given a FD, check if the FD can be derived from a given set of FD
- How to compute one candidate key
- How to compute all candidate keys

Next Lecture

Normal Forms

Acknowledgement: Several slides in this lecture were inspired by the textbook slides made by Siberschatz, Korth and Sudarshan from Database System Concepts. 6th Ed.