练习七: 真空中的静电场

1. 点电荷 q 位于一个立方体的中心,通过立方体每个表面的电场强度通量为

(A) $\frac{q}{2\varepsilon_0}$ (B) $\frac{q}{4\varepsilon_0}$ (C) $\frac{q}{6\varepsilon_0}$ (D) $\frac{q}{8\varepsilon_0}$

 Γ C Γ

- 2. 下列说法正确的是:
- (A) 等势面上各点的电场强度的大小一定相等。
- (B) 电场强度小的地方电势不一定低,电势高的地方电场强度一定大。
- (C) 沿电场线方向移动负电荷,负电荷的电势能是增加的。
- (D) 初速度为零的点电荷在电场力的作用下运动,它总是从高电势处移向低电势处。

[C]

- 3. 关于高斯定理的理解有下面几种说法, 其中正确的是
- (A) 如果高斯面上 \vec{E} 处处为零,则该面内必无电荷。
- (B) 如果高斯面内无电荷,则高斯面上 \bar{E} 处处为零。
- (C) 如果高斯面上 \bar{E} 处处不为零,则高斯面内必有电荷。
- (D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。

Гр

4. 在真空中,半径分别为 R 和 2R 的同心球面,其上分别均匀的带有电量+q 和-2q,今 将一电量为+q的带电粒子从内球面处由静止释放,则粒子到达外球面时的动能为

(A) $\frac{q^2}{4\pi\varepsilon_0 R}$ (B) $\frac{q^2}{2\pi\varepsilon_0 R}$ (C) $\frac{q^2}{8\pi\varepsilon_0 R}$ (D) $\frac{q^2}{6\pi\varepsilon_0 R}$

- 5. 有 N 个电量均为 q 的点电荷,以两种方式分布在相同半径的圆周上: 一种是无规则 的分布;另一种是均匀分布。比较两种情况下在过圆心的轴线(即图中的 OZ 轴)上任一点 P的电场强度和电势,则有:
- (A) 场强相等, 电势相等。 (B) 场强不相等, 电势不相等。
- (C) 场强沿轴线(即 OZ 轴)的分量相等,电势相等。
- (D) 场强沿轴线(即 OZ 轴)的分量相等,电势不等。

 \mathbf{C} ٦

- 6. 一电场的电场线分布如图,一负电荷从 A 点移至 B 点,正确的说法是
- (A) 电场强度的大小 $E_{\scriptscriptstyle A} < E_{\scriptscriptstyle B}$ 。 (B) 电势的大小 $U_{\scriptscriptstyle A} < U_{\scriptscriptstyle B}$ 。
- (C) 电势能的大小 $W_A < W_B$ 。 (D) 电场力作功的大小A > 0。

[C

7. 两个均匀带电的同心球面,半径分别为 R_1 和 R_2 ,所带电量分别为 Q_1 和 Q_2 ,设无穷 远处为电势零点,则距球心为 r 的 P 点 ($R_1 < r < R_2$) 的电势为

$${\rm (A)} \quad \frac{Q_1}{4\pi\varepsilon_0 r} + \frac{Q_2}{4\pi\varepsilon_0 R_2}$$

(B)
$$\frac{Q_1}{4\pi\varepsilon_0 r} + \frac{Q_2}{4\pi\varepsilon_0 r}$$

(C)
$$\frac{Q_1}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 R_2}$$

(D)
$$\frac{Q_1}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 r}$$

[A

- 8. 地球表面附近的电场强度的大小为 100N/C, 地球的半径为 $6.4\times10^6 m$, 如果电荷只 分布在地球的表面,则地球表面的总电量 Q=_____。
- 9. 在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面 S_1 、 S_2 和 S_3 ,则通过这 些闭合曲面的电场强度通量为 φ_1 =______, φ_2 =______, φ_3 =______。

题(9)图

题(10)图

- 10. 真空中,点电荷 q_1 、 q_2 、 q_3 和 q_4 的分布如图。图中 S 为闭合曲面,则通过曲面 S 的电场强度通量 $\oint \vec{E} \cdot d\vec{s} =$ ______,式中 \vec{E} 是点电荷______在闭合曲面上任一点产生的电场强度。
- 12. 如图,AB=R,BCD 是以 O 为中心,R 为半径的半圆,A、O 处分别置有点电荷+q 和-q,
 - (1) 把单位正电荷从 B 点沿 BCD 移到 D 点, 电场力对它作的功为_____。
 - (2) 把单位负电荷从 D 点沿 BG 移到无穷远去, 电场力对它作的功为____。
- 13. 一点电荷 $q = 10^{-9}$ C,A、B、C 三点分别距离该点 5cm、10cm 和 15cm,若选 B 点的电势为零,则 A 点的电势为 。

14. 如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上 距杆的一端距离为d的P点的电场强度和电势。

15. 一半径为R的带电球体, 其电荷体密度分布为 $\rho = Ar(r \le R)$, $\rho = 0 (r > R)$; 其中 A 为常量, 试求球体内外的场强分布。

16. 半径分别为 R_1 和 R_2 (R_1 < R_2) 的两个同心球面,小球面上带电量为 q_1 ,大球面 上带电量为 q_2 ,求(1)离球心分别为(a) $r < R_1$,(b) $R_1 < r < R_2$ 和(c) $r > R_2$ 各处 的电场强度;(2)球心处的电势 U。

17. 两个无限长同轴圆柱面,半径分别为 R_1 和 R_2 (R_1 < R_2),带有等值异号电荷,每 单位长度的电量为 λ ,试分别求出(1) $r < R_1$,(2) $R_1 < r < R_2$ 和(3) $r > R_2$ 时,离轴 线为r处的电场强度。

18. 一个细玻璃棒弯成半径为 R 的半圆形,其上均匀分布有电荷+Q,如图所示,求圆 心O处的电场强度。

练习八:静电场中的导体和电介质

- 1. 一平行板电容器,两极板之间的距离为d,对它充电后将电源断开;然后把电容器 两极板之间的距离增大到 2d,如果电容器的电场边缘效应可以忽略不计,则
- (A) 电容器的电容增大一倍:
- (B) 电容器所带的电量增大一倍:
- (C) 电容器两极板之间的电场强度增大一倍;
- (D) 储存在电容器中的电场能量增大一倍。

Γ 1

2. 一个孤立金属球, 带有电荷 9.0×10^{-9} C, 已知当电场强度的大小为 1.0×10^{6} V/m 时, 空气将被击穿。若要空气不被击穿,则金属球的半径至少大于

 $[1/(4\pi\varepsilon_0) = 9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2]$

- (A) 9.0×10^{-6} m; (B) 8.1×10^{-4} m; (C) 9.0×10^{-3} m; (D) 8.1×10^{-5} m.

- 3. 一带电量为 q,半径为 r_1 的金属球 A,放置在内、外半径分别为 r_2 和 r_3 的金属球壳 B内。A、B之间为真空,B外也为真空,若用导线把A、B连接后,则A球的电势(设无 限远处电势为0)为

- (A) $\frac{q}{4\pi\varepsilon_0 r_1}$ (B) $\frac{q}{4\pi\varepsilon_0 r_2}$ (C) $\frac{q}{4\pi\varepsilon_0 r_3}$ (D) $\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} \frac{1}{r_2}\right)$

- 4. 一"无限大"均匀带电平面 A, 其附近放一与它平行的有一定宽度的"无限大"平面 导体板 B, 如图所示。已知 A 上的电荷面密度为 $+\sigma$,则在导体 板 B 的两个表面 1 和 2 上的感应电荷面密度为:
- (A) $\sigma_1 = -\sigma$, $\sigma_2 = +\sigma$;
- (B) $\sigma_1 = -\frac{1}{2}\sigma$, $\sigma_2 = +\frac{1}{2}\sigma$;
- (C) $\sigma_1 = -\frac{1}{2}\sigma$, $\sigma_2 = -\frac{1}{2}\sigma$;
- (D) $\sigma_1 = -\sigma$, $\sigma_2 = 0$;

题(4)图

Γ ٦

	班级	学号	姓名	成绩	
--	----	----	----	----	--

- 5. 平行板电容器充电后与电源断开,然后在两极板间平行插入一导体平板,则电容 C. 极板间电压 U, 极板空间的电场强度 E 以及电场的能量 W 将
- (A) C 减小,U 增大,W 增大,E 增大。 (B) C 增大,U 减小,W 减小,E 不变。
- (C) C 增大, U 增大, W 增大, E 不变。 (D) C 减小, U 减小, W 减小, E 减小。

Γ

- 6. 一平行板电容器, 充电后断开电源, 然后使两极板间充满相对介电常数为 ε , 的各向 同性均匀电介质,此时两极板间的电场强度为原来的 倍,电场能量是原来的 倍。
- 7. 不带电的金属球壳的内外半径分别为 R_1 和 R_2 ,现在其中心放一点电荷 q,则球壳的 电势为。
- 8. 半径分别为 $R_1=1.0cm$ 和 $R_2=2.0cm$ 的两个球形导体,各带电量 $q=1.0\times10^{-8}C$,两球心 相距很远,若用细导线将两球连接起来,并设无限远处为电势零点,求:
 - (1) 两球分别带有的电量;
 - (2) 两个导体球的电势。

- 9. 圆柱形电容器的内圆柱的半径为 R_1 ,外圆柱的半径为 R_2 ,长为L ($L>>(R_2-R_1)$), 两圆柱间充满相对电容率为 ε ,的各向同性均匀介质。设内外圆柱单位长度上带电量(即电 荷线密度) 分别为 λ 和 - λ, 求:
 - (1) 电容器的电容。
 - (2) 电容器储存的能量。

班级	学早	\perp i \vdash	-17. 7.士	
カルタルケ	'7' 7'	姓名	成绩	
1/1.5/1	子勺	9 <u>1</u> .4 <u>1</u>	カメンシン	

10. 如图所示,一空气平行板电容器,两极面积均为 S,两板间距离为 d(d 远小于极板线度),在两极板间平行的插入一面积也是 S、厚度为 t(t < d)、相对电容率为 $\varepsilon_{\rm r}$ 的各向同性的均匀电介质。略去边缘效应,试求其电容值。

11. 两个同心金属球壳,内球壳半径为 R_1 ,外球壳半径为 R_2 ,中间是空气,构成一个球形电容器。设内外球壳上分别带有电荷+Q 和-Q,求:

- (1) 电容器的电容。
- (2) 电容器储存的能量。

班级

练习九: 稳恒磁场

1. 如图,电流 I 由长直导线 1 经 A 点流入由相同的导线构成的正三角形线框,由 B 点流出到长直导线 2。若载流导线 1、2 和三角框中的电流在三角形线框中心 O 点产生的磁感强度分别用 \bar{B}_1 、 \bar{B}_2 和 \bar{B}_3 表示,则 O 点的磁感强度

- (A) $\vec{B} = 0$, 因为 $\vec{B}_1 = \vec{B}_2 = \vec{B}_3 = 0$ 。
- (B) $\vec{B} \neq 0$, 因为 $\vec{B}_1 + \vec{B}_2 \neq 0$, $\vec{B}_3 \neq 0$ 。
- (C) $\vec{B} \neq 0$,因为虽然 $\vec{B}_1 + \vec{B}_2 = 0$,但 $\vec{B}_3 \neq 0$ 。
- (D) $\vec{B} \neq 0$,因为虽然 $\vec{B}_3 = 0$,但 $\vec{B}_1 + \vec{B}_2 \neq 0$ 。

[]

- 2. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈 发生转动,其方向是
- (A) ab 边转入纸内, cd 边转出纸外。
- (B) ab 边转出纸外, cd 边转入纸内。
- (C) ad 边转入纸内, bc 边转出纸外。
- (D) ad 边转出纸外, bc 边转入纸内。

- 3. 有一半径为 R 的单匝圆线圈,通以电流 I,若将该导线弯成匝数 N=2 的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的
- (A) 4倍和 1/8。

(B) 4倍和1/2。

(C) 2倍和 1/4。

(D) 2 倍和 1/2。

[]

4. 如图,一半径为R的 1/4 载流圆弧导线,放在磁感应强度为 \bar{B} 的均匀磁场中,电流平面与磁场垂直,电流方向如图,则载流导线所受到的磁场力的大小和方向分别为:

- (A) BIR,沿Y轴方向。
- (B) BIR, 沿 X 轴方向。
- (C) $\sqrt{2}$ BIR, 沿 Y 轴方向。
- (B) $\sqrt{2}$ BIR,沿X轴方向。

题(4)图

[]

5. 如图,流出纸面的电流为 2I,流进纸面的电流为 I,则对于图中的四个回路 L_1 、 L_2 、 L_3 和 L_4 ,下述各式哪一个是正确的?

(A)
$$\oint_{L_1} \overrightarrow{B} \cdot d \overrightarrow{l} = 2\mu_0 I$$
;

(B)
$$\oint_{L_2} \overrightarrow{B} \cdot \overrightarrow{d} \overrightarrow{l} = \mu_0 I$$
;

(C)
$$\oint_{L_3} \overrightarrow{B} \cdot d \overrightarrow{l} = -\mu_0 I$$
;

(D)
$$\oint_{L_4} \overrightarrow{B} \cdot \overrightarrow{d} \overrightarrow{l} = -\mu_0 I$$
.

题(5)图

[]

6. 如图,两个半径分别为 R 和 r 的同心共面的圆线圈,分别通有稳恒电流 I_1 和 I_2 ,若 r<< R,则小线圈受到的磁力矩为:

(B)
$$\frac{\mu_0 I_1 I_2 r^2}{2R}$$
;

(C)
$$\frac{\mu_0\pi I_1I_2R^2}{2r}$$
;

(D) 0°

题(6)图

[]

7. 磁介质有三种,用相对磁导率 μ_r 表征它们各自的特性时,

- (A) 顺磁质 $\mu_r > 0$, 抗磁质 $\mu_r < 0$, 铁磁质 $\mu_r >> 1$;
- (B) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r = 1$, 铁磁质 $\mu_r >> 1$;
- (C) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r < 1$, 铁磁质 $\mu_r >> 1$;
- (D) 顺磁质 $\mu_r < 0$, 抗磁质 $\mu_r < 1$, 铁磁质 $\mu_r > 0$ 。

Γ]

8. 一根无限长直导线通有电流 I,在中间某点处被弯成一个半径为 R 的圆,如图,则 圆心O处的磁感强度大小为______,方向为___

题(8)图

题(9)图

- 9. 有一半径为R, 通有电流为I的 1/4 圆弧形载流导线 ab, 按图示方式置于均匀外磁 场 \vec{B} 中,则该载流导线所受的安培力大小为_____。
- 10. 试写出下列两种情况下的平面内的载流均匀导线在给定点 P 处所产生的磁感应强 度的大小。(1) 图 (a), B=______; (2) 图 (b), B=_____

题(11)图

- 11. 在一根通有电流 I 的长直导线旁, 与之共面地放着一个长为 a, 宽为 2b 的矩形线框, 线框的长边与载流长直导线平行,且二者相距为 b,如图所示。在此情形中,线框内的磁通
- 12. 一平面线圈由半径为 0.2m 的 1/4 圆弧和相互垂直的二直线组成,通以电流 2A,把 它放在磁感应强度为 2T 的均匀磁场中, 求:
 - (1) 线圈平面与磁场垂直时(如图),圆弧 AC 段所受的磁力。
 - (2) 线圈平面与磁场成 60°角时,线圈所受磁力矩。

13. 一根无限长导线弯成如图形状,设各段都在同一平面内,其中第二段是半径为 R 的四分之一圆弧,其余为直线,导线中通有电流 I,求图中 O 点处的磁感应强度。

14. 如图所示,在长直导线 AB 内通有电流 I_1 =20A,在矩形线圈 CDEF 中通有电流 I_2 =10A,AB 与线圈共面,且 CD,EF 都与 AB 平行,已知 a=9.0cm,b=20.0cm,d=1.0cm,求:(1)导线 AB 的磁场对矩形线圈每个边的作用力;(2)矩形线圈所受的合力与合力矩。

15. 一半圆形闭合导体线圈半径 R,通有电流 I,放在均匀磁场 \vec{B} 中,磁场方向与线圈 平面平行,如图所示。求:

- (1) 线圈的磁矩。
- (2) 线圈所受磁力矩的大小和方向。

练习十: 电磁感应和电磁场

姓名

1. 如图,直角三角形金属框架 abc 放在均匀磁场中,磁场 \vec{B} 平行于 ab 边,bc 边的长度为 l。当金属框架绕 ab 边以匀角速度 ω 转动时,abc 回路中的感应电动势 ε 和 a、c 两点间的电势差 $U_a^{\pm}U_c$ 为:

(题1图)

]

(A)
$$\varepsilon = 0$$
, $U_a - U_c = \frac{1}{2}B\omega l^2$;

(B)
$$\varepsilon = 0$$
, $U_a - U_c = -\frac{1}{2}B\omega l^2$;

(C)
$$\varepsilon = B\omega l^2$$
, $U_a - U_c = \frac{1}{2}B\omega l^2$;

(D)
$$\varepsilon = B\omega l^2$$
, $U_a - U_c = -\frac{1}{2}B\omega l^2$;

2. 一矩形线圈长为 a 宽为 b,置于均匀磁场 \vec{B} 中,线框绕 OO'轴以匀角速度 ω 旋转。设 t=0 时,线框平面处于纸面内,则任意时刻线框中感应电动势的大小为:

题(2)图

Г

]

(A)
$$2abB|\cos\omega t|$$
;

- (B) $abB\omega$:
- (C) $\frac{1}{2}abB\omega |\cos \omega t|$;
- (D) $\omega abB |\cos \omega t|$

3. 关于位移电流,有下面四种说法,正确的是

- (A) 位移电流是由变化电场产生的;
- (B) 位移电流是由线性变化电场产生的;
- (C) 位移电流的热效应服从焦耳—楞兹定律;
- (D) 位移电流的磁效应不服从安培环路定律。

[]

4. 有两个线圈 1 和 2, 1 对 2 的互感系数为 M_{21} , 2 对 1 的互感系数为 M_{12} 。若它们分 别流过 i_1 和 i_2 的变化电流,且 $\left| \frac{di_1}{dt} \right| > \left| \frac{di_2}{dt} \right|$,并设由 i_2 变化在 1 中产生的互感电动势为 ε_{12} ,

由 i_1 变化在2中产生的互感电动势为 ε_{21} ,则:

- (A) $M_{21}=M_{12}$, $\varepsilon_{21}=\varepsilon_{12}$; (B) $M_{21}\neq M_{12}$, $\varepsilon_{21}\neq \varepsilon_{12}$;
- (C) $M_{21}=M_{12}$, $|\mathcal{E}_{21}|>|\mathcal{E}_{12}|$;
- (D) $M_{21}=M_{12}, |\mathcal{E}_{21}|<|\mathcal{E}_{12}|$

٦ Γ

5. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r₁ 和 r₂。管内充满均匀 介质,其磁导率分别为 μ_1 和 μ_2 。设: r_1 : r_2 =1:2; μ_1 : μ_2 =2:1, 当将两只螺线管串联在电 路中通电稳定后,其自感系数之比 L_1 : L_2 与磁能之比 W_1 : W_2 分别为:

- (A) L_1 : L_2 =1:1, W_1 : W_2 =1:1;
- (B) L_1 : L_2 =1:2, W_1 : W_2 =1:1;
- (C) L_1 : L_2 =1:2, W_1 : W_2 =1:2 (D) L_1 : L_2 =2:1, W_1 : W_2 =2:1.

Γ

6. 自感为 0.25H 的线圈中, 当电流在(1/8)s 内由 2A 均匀减小到 0 时, 线圈中的自感 电动势的大小为:

(A) 4V;

(B) 6V;

(C) 8.0V;

(Ln3=1.099)

(D) 12.0V_o

] Γ

7. 自感系数 L=0.3H 的螺线管中通以 I=10A 的电流时,螺线管存储的磁场能量

8. 金属杆 AB 以匀速 ν=2m/s 平行于长直载流导线运 动,导线与AB共面且互相垂直,如图所示,已知导线载 有电流 I=20A,则此金属杆中的感应电动势

ε = ______,电动势较高端为_____。

题(8)图

9. 如图所示,一长直导线载有电流 I,旁边有一矩形线圈 ABCD(与此长直导线共面),长为 L_1 ,宽为 L_2 ,长边与长直导线平行,AD 边与导线相距为 a,线圈共 N 匝,令线圈以速度 v 垂直于长直导线向右运动,求线圈中的感应电动势。

10. 如图所示,两条平行长直导线和一个矩形导线框共面。导线框的一个边与长直导线平行,导线框到两条长直导线距离分别为 r_1 和 r_2 。已知两导线中电流都为 $I=I_0\sin\omega t$,其中 I_0 和 ω 为常数,t为时间。导线框长为t0。宽为t1。求导线框中的感应电动势。

11. 载有电流 I 的长直导线旁,放一导体半圆环 MeN 与长直导线共面,且端点 MN 的连线与长直导线垂直。半圆环的半径为 b,环心 O 与导线相距 a。设半圆环以速度 \vec{v} 平行导线平移,求半圆环内感应电动势的大小和方向及 MN 两端的电压。

12. 如图,一金属棒 AB 水平放在竖直向上大小为 B 的均匀磁场里,并以角速度 ω 绕 oo '轴旋转,求 AB 两端的电势差。

- 13. 如图,圆形线圈 C_1 的面积为 $S=4.0cm^2$,将此线圈放入另一半径为 R=20cm 的大线 圈 C₂的中心,两者同轴。求:
 - (1) 两线圈的互感 M;
 - (2) 设大线圈 C_2 中的电流以 50A/S 的变化率减小,求小线圈 C_1 中的互感电动势 ε 。

- 14. 在无限长直导线中通以电流 $I=I_0e^{-3t}$,和直导线在同一平面内有一矩形线圈,其 短边与长直导线平行,线框的尺寸及位置如图所示,且 b/c=3,求:
 - (1) 直导线和线框的互感系数。
 - (2) 线框中的互感电动势。

