KLUE: Korean Language Understanding Evaluation

Sungjoon Park et al. (+30 people)

Upstage, KAIST, etc. (+10 organizers)

NeurlPS, 2021

Nayeon Kim

lilian1208@korea.ac.kr Korea University

Contents

- Introduction
 (Problem Statement, Background)
- Contributions
- KLUE

- 1. Topic Classification(TC)
- 2. Semantic Textual Similarity (STS)
- 3. Natural Language Inference (NLI)
- 4. Named Entity Recognition (NER)
- ✓ Q&A
- 5. Relation Extraction (RE)

- 6. Dependency Parsing (DP)
- 7. Machine Reading Comprehension(MRC)
- 8. Dialogue State Tracking (DST)
- Experiments
 (Pretrained LMs, fine-tuning LMs, leaderboard)
- Conclusion
- ✓ Q&A

Problem Statement

How can we evaluate Korean language understanding ability of language models?

Language model(LM)

2018

2019

Natural Language Understanding(NLU)

Benchmark Dataset

GLUE Leaderboard

Rank	Name	Model	URL S	Score	CoLAS	SST-2	MRPC	STS-B	QQP M	NLI-m M
1	JDExplore d-team	Vega v1		91.3	73.8	97.9	94.5/92.6	93.5/93.1	76.7/91.1	92.1
2	Microsoft Alexander v-team	Turing NLR v5		91.2	72.6	97.6	93.8/91.7	93.7/93.3	76.4/91.1	92.6
3	ERNIE Team - Baidu	ERNIE	ď	91.1	75.5	97.8	93.9/91.8	93.0/92.6	75.2/90.9	92.3
4	DIRL Team	DeBERTa + CLEVER		91.0	74.5	97.5	93.3/91.0	93.4/93.1	76.4/90.9	92.1
5	AliceMind & DIRL	StructBERT + CLEVER	ď	91.0	75.3	97.7	93.9/91.9	93.5/93.1	75.6/90.8	91.7
6	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4	♂	90.8	71.5	97.5	94.0/92.0	92.9/92.6	76.2/90.8	91.9
21	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0

Language models outperform human performance.

GLUE Leaderboard

Language models outperform human performance.

Language-specific benchmark

^[1] Liang et al., CLUE: A Chinese language understanding evaluation benchmark, ACL, 2020

^[2] Le et al., FlauBERT: Unsupervised language model pre-training for French, LREC, 2020

^[3] Wilie et al., IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding, ACL, 2020

^[4] Shavrina et al., RussianSuperGLUE: A Russian language understanding evaluation benchmark, EMNLP, 2020

Pretrained Language Models for Korean

KOBERT

KorBERT

KcBERT

HanBERT

KR-BERT

KOELECTRA

•

.

How can we compare them?

There is a lack of standard

benchmark in Korean.

Pretrained Language Models for Korean

KLUE

Korean Language Understanding Evaluation

KR-BERT

KoELECTRA

How can we compare them?

There is a lack of standard

Contributions

They build a new benchmark suite for evaluating NLU in Korean.

 They provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task.

They release large-scale pretrained language models for Korean.

KLUE

Design principles

Diversity

Accessible

Accurate and unambiguous

Ethical issues

Covering diverse tasks and corpora

Accessible to everyone without any restriction

For accurate performance evaluation

Al ethical issues

Building process

1. Collecting base corpora

4. Selecting qualified workers

2. Identifying a set of benchmark tasks

5. Collecting annotations

3. Designing annotation protocol

6. Validating collected annotation

Building process

4. Selecting qualified workers using crowdsourcing platform

- News Headlines from Yonhap News Agency
- Wikipedia
- Wikinews
- Wikitree
- Policy News
- ParaKQC
- Airbnb Reviews
- NAVER Sentiment Movie Corpus
- The Korean Economics Daily News
- Acrofan News

Building process

Source Corpora DeepNatural Al

4. Selecting qualified workers using crowdsourcing platform

- News Headlines from Yonhap News Agency
- Wikipedia
- Wikinews
- Wikitree
- Policy News
- ParaKQC
- Airbnb Reviews
- NAVER Sentiment Movie Corpus
- The Korean Economics Daily News
- Acrofan News

- **Derivative work**
- **✓** Redistribution
- ✓ Commercial use

Building process

 Collecting base corpora

2. Identifying a set of benchmark tasks

3. Designing appropriate annotation protocol

- 1. Topic Classification(TC)
- 2. Semantic Textual Similarity (STS)
- 3. Natural Language Inference (NLI)
- 4. Named Entity Recognition (NER)

- 5. Relation Extraction (RE)
- 6. Dependency Parsing (DP)
- 7. Machine Reading Comprehension(MRC)
- 8. Dialogue State Tracking (DST)

Building process

1. Collecting base corpora

2. Identifying a set of benchmark tasks

3. Designing appropriate annotation protocol

Why include TC?

- Inferring the topic of a text is a key capability that should be possessed by a language understanding system.
- For Korean, no dataset has been proposed for the task.

Task Format

- Single Sentence Classification

Evaluation Metric

- Marco F1

Source Corpora: Yonhap News Agency 2016.1 – 2020.12

7 sections → 70,000 headlines

10,000 articles from each section, except for the sports & IT/science.

9,000 11,000

What is TC?

To train a classifier to predict the topic of a given text snippet.

Annotation Protocol

Politics : Blue House, Ministry,

Defense / Society : Labor, Food

and drugs, Human rights...

Annotators	First	Second	Third	
А	Social	Х	Х	
В	IT/Science	Social	X	
С	IT/Science	Х	Χ	

- 1) They present *key terms* of each topic to annotators.
- 2) Three annotators label topics independently from each other.
- 3) They pick at most three topics among the seven categories.

Annotation Protocol

Annotators	e, Ministry, Headlines	First	Second	Third	Final Label
Defense A Society :		Economy	X	XScience	Social X
and drugs, Human B	"삼성전자 미성년 주주 35만명 1인당 41주 보유	P." Social	Economy	X	Economy
hev present ke		Economy	X _{3) They}	X _{ick at}	

- Annotation Process
 - √ 13 selected workers labeled topics for all 70,000 headlines.
 - ✓ Workers reported headlines: 412 12 12 13 Social Economy X
 toxic contents, PII(Personally identifiable information)s, unable-to-decides

Filtered final Datasets: 63,892 (Train: 45,678 / Dev: 9,107 / Test: 9,107)

YNAT (Yonhap News Agency datasets for Topic Classification)

Why include STS?

- It is essential to other NLP tasks such as machine translation, summarization, and QA.

Task Format

- Sentence-Pair Regression

Evaluation Metric

- Persons's r
- F1

What is STS?

Sentence 1 Sentence 2	"지하철을 타도 30분 안에는 이동이 가능합니다!" "지하철을 탄다고 해도, 30분이면 그곳에 도착할 수 있어요!"	Similarity: 4.0
Sentence 1 Sentence 2	"위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다." "시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다."	Similarity: 0.0

• To predict the semantic similarity of two input sentences as a real value from 0 to 5.

- Source Corpora
 - AIRBNB(colloquial review), POLICY(formal news), ParaKQC(smart home utterances)
 - Extract or generate similar sentences and non less similar sentences.

Most randomized sentences similarity -> zero

	Score distribution	AIRBNB	POLICY		ParaKQC
Similar Sentences	3~5	Round-trip	Translation	•	Same intent as similar pairs
Less Similar Sentences	0~3	Greedy Sente	nce matching	•	Different intent but, same topic sharing pairs

Round-trip Translation (similar sentence)

Sentence pair

"지도 교수님 수업은 정말 재밌어." "우리 과외선생님의 수업은 정말 재미있습니다."

Similarity: 3

Greedy Sentence matching (less similar sentence)

"지도 교수님 수업은 정말 재밌어."

"우리 과외 선생님 수업은 재미있습니다."

"아..수업 진짜 지루해 죽겠네."

"학교 가는 날에는 바빠서 못 봐."

"오늘 저녁 먹을 시간도 없이 바쁜데."

"수업 중인데 호박죽 먹고싶다고?"

Extract most similar sentences and remove them.

Similarity: 1

Annotation Protocol

- 5: Two sentences are equivalent in terms of *important* and *unimportant* content.
- 4: Two sentences are closely equivalent. Some *unimportant* content differ.
- 3: Two sentences are roughly equivalent. *Important* content are similar to each other, but difference between *unimportant* content is not ignorable.
- 2: Two sentences are not equivalent. *Important* content are not similar to each other, only sharing some *unimportant* contents.
- 1: Two sentences are not equivalent. *Important* and *unimportant* content are not similar to each other. Two sentences only share their topics.
- 0: Two sentences are not equivalent. They are not sharing any *important* and *unimportant* contents and even topics.

Average 7 labels

The scores are rounded to the first decimal place.

 $(e.g. 3.24 \rightarrow 3.2)$

Final Dataset

Source	Train	Dev	Test	Total
AIRBNB	5,371	255	510	6,136
POLICY	2,344	132	264	2,740
PARAKQC	3,953	132	263	4,348
Overall	11,668	519	1,037	13,224

It is important to collect sentence pairs rigorously.

Why include NLI?

- Understanding entailment and contradiction between sentences is fundamental to NLU.
- GLUE and superglue also include NLI.

Task Format

- Sentence-Pair Classification

Evaluation Metric

- Accuracy

Source Corpora (use 6 corpora)

Source Corpora (use 6 corpora)

Premise should satisfy three conditions.

- A proposition, A declarative sentence.
- Must include at least one predicate.
 (be, believe, play, smile, reach -> diverse types)
- Length should be from 20 to 90 characters.

What is NLI?

- → Given a premise, an NLI model determines if hypothesis is true, false or undetermined.
 - Entailment: The hypothesis is necessarily true given the premise is true.
 - Contradiction: The hypothesis is necessarily false given the premise is true.
 - Neutral: The hypothesis may or may not be true given the premise is true.

Premise	 고려대학교는 성북구에 위치하고 있다. (Korea University is located in Seongbuk-gu.) 		
	 고려대학교는 서울에 위치하고 있다 (Korea University is located in Seoul.) 	Entailment	→ Seongbuk-gu is in Seoul.
hypotheses	• 고려대학교는 서울 동대문구에 위치하고 있다. (Korea University is located in Dongdaemun-gu.)	 Contradict	→ Dongdaemun-gu ≠ Seongbuk-gu
	• 고려대학교는 서울 성북구 안암동에 위치하고 있다. (Korea University is located in Anam-dong.)	Neutral	→ We don't know 'dong' from premise.

Annotation Protocol

Initial Annotator
Write three hypotheses.

Four annotators Label hypotheses.

5 labels are yielded

Gold labels

→ Majority vote (more than 3)

Annotation Protocol for Label Validation

Statistics	SNLI	MNLI	KLUE-NLI
Unanimous Gold Label	58.30%	58.20%	76.29%
Individual Label = Gold Label	89.00%	88.70%	92.63%
Individual Label = Author's Label	85.80%	85.20%	90.92%
Gold Label = Author's Label Gold Label ≠ Author's Label No Gold Label (No 3 Labels Match)	91.20%	92.60%	96.76%
	6.80%	5.60%	2.71%
	2.00%	1.80%	0.53%

KLUE-NLI shows much higher inter-annotator agreement than SNLI and MNLI

Initial Annotator

4 annotators

majority vote (more than 3)

^[1] Bowman et al., 2015, A large annotated corpus for learning natural language inference, ACL

^[2] Williams et al., 2018, A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference, NAACL-HLT

3. Natural Language Inference (NLI)

Human performance

Statistics	KorNLI	KLUE-NLI
Unanimous Gold Label (4 Agree)	38.00%	71.00%
3 Agree with Gold Label	18.00%	24.00%
2 Agree with Gold Label	18.00%	3.00%
1 Agrees with Gold Label	16.00%	2.00%
0 Agrees with Gold Label	10.00%	0.00%
Individual Label = Gold Label	64.50%	91.00%
No Gold Label (No 3 Labels Match)	4.00%	0.00%
Majority Vote \neq Gold Label	26.00%	$\boldsymbol{0.00\%}$

- KorNLI: translation-based Korean dataset
- Human performance gap provides evidence that KLUE-NLI is currently the optimal Korean NLI dataset.

3. Natural Language Inference (NLI)

Final Dataset

Source	Train	Dev	Test	Total	Avg Len Prem	Avg Len Hyp
WIKITREE	3,838	450	450	4,738	52.81	26.86
POLICY	3,833	450	450	4,733	56.73	32.93
WIKINEWS	3,824	450	450	4,724	64.17	29.11
WIKIPEDIA	3,780	450	450	4,680	57.45	23.70
NSMC	4,899	600	600	6,099	27.48	21.49
AIRBNB	4,824	600	600	6,024	24.28	18.65
Overall	24,998	3,000	3,000	30,998	47.15	25.46

• 60% formal(wikitree/policy/wikinews/wikipedia) and 40% colloquial(NSMC/AIRBNB) sentences.

Why include NER?

- NER is an important for application fields like syntax analysis, goal-oriented dialog system, question and answering chatbot and information extraction.
- There are few existing Korean NER datasets.

Task Format

- Sequence Tagging — Tagging all sequential data.

Evaluation Metric

- Entity-level and Character-level Macro F1
- Micro F1 score

Source Corpora (36,515 sentences)

- WIKITREE (News article corpus, formal sentences with many entity types, suitable for NER)
- NSMC (Colloquial reviews, noisy dataset, broaden the application field of NER models)

What is NER?

To detect the boundaries of named entities in unstructured text and classify the types.

##NER-1-004485 <씨엔블루:PS> 짱짱 ♥!!!!<담주:DT>가 마지막이래 ㅠ. ㅠ

B -PS	I -PS	I -PS	I -PS	0	0	0	0	0	0	0	0	0	B -DT	I-DT	0	0	0	0	0	0	0	0	0	0
씨	엔	卫 卫	루		짱	짱	•	!	!	!	!		담	주	가		마	지	막	ो	래	π	•	П

(† An example of BIO scheme for NER tagging)

- What is NER?
 - They are tagged via character-level BIO(Begin-Inside-Outside) tagging scheme.

- What is NER?
 - They are tagged via Character-leve BIO(Begin-Inside-Outside) tagging scheme.

functional words (다음주 + -가)

- + Many compounds words in Korean contain whitespace.
 - e.g. "치과 의사" (dentist) → 치과의사 X

Entity types for KLUE-NER annotation

- PS(Person): Name of individual or a group
- LC(Location): Name of a district/province or a geographical location
- OG(Organization): Name of an organization or an enterprise
- DT(Date): Expressions related to date/period/era/age
- TI(Time): Expressions related to time
- QT(Quantity): Expressions related to quantity or number including units

They follow TTA NER guidelines and MUC-7

Annotation Process

Pilot Test and selecting workers

51 qualified workers annotate NER

2 linguists check the annotations

6 NLP researchers manually correct the annotation errors.

Annotation Protocol

"I bought a Cine21 from a bookstore and read it page by page."

the name of a magazine or publisher of the magazine

• In the case of entities with multiple possible entity types, they determine their tags based on the context.

Annotation Protocol

"통화 상대는 트와이스 나연(임나연·20)씨와 쯔위 양이었다."

"'느린먹거리 by 부각마을'대표 노지현 씨가 등장한다."

Annotation Protocol

임나연 Search person name

In NER task often requires the specific information of proper nouns such as person name, they cannot simply drop or pseudonymize the information.

Final dataset

Source	Train	Dev	Test	Total
WIKITREE NSMC	11,435 9,573	2,534 2,466	2,685 2,315	16,664 14,354
Total	21,008	5,000	5,000	31,008

• 5,507 sentences are dropped in the inspection process.

Data Intelligence Lab, Korea University

Q&A

Why include RE?

- RE is a task suitable for evaluating whether a model correctly understands the relationships between entities.
- In order to ensure KLUE-RE captures this aspect of language understanding.

Task Format

- Single Sentence Classification

Evaluation Metric

- Micro F1
- AUPRC (Area Under the Precision-Recall Curve)

- What is RE?
 - RE identifies semantic relations between entity pairs in text.
 - The relation is defined between an entity pair consisting of subject entity and object entity.

〈키르케고르: Subject〉는 덴마크의 수도 〈코펜하겐: Object〉의 부유한 집안에서 태어났다.

(Kierkegaard was born to an affluent family in Copenhagen.)

- What is RE?
 - RE identifies semantic relations between entity pairs in text.
 - The relation is defined between an entity pair consisting of subject entity and object entity.

Subject entityesubjObject entityeobj〈키르케고르: Subject〉는 덴마크의 수도 〈코펜하겐: Object〉의 부유한 집안에서 태어났다.

(Kierkegaard was born to an affluent family in Copenhagen.)

What is RE?

Relation triplet
$$\rightarrow (e_{subj}, r, e_{obj})$$

Relation Schema

Relation Class	Description
no_relation	No relation in between $(e_{\mathrm{subj}}, e_{\mathrm{obj}})$
org:dissolved	The date when the specified organization was dissolved
org:founded	The date when the specified organization was founded
org:place_of_headquarters	The place which the headquarters of the specified organization are located in
org:alternate_names	Alternative names called instead of the official name to refer to the specified organizatio
org:member_of	Organizations to which the specified organization belongs
org:members	Organizations which belong to the specified organization
org:political/religious_affiliation	Political/religious groups which the specified organization is affiliated in
org:product	Products or merchandise produced by the specified organization
org:founded_by	The person or organization that founded the specified organization
org:top_members/employees	The representative(s) or members of the specified organization
org:number_of_employees/members	The total number of members that are affiliated in the specified organization
per:date_of_birth	The date when the specified person was born
per:date_of_death	The date when the specified person died
per:place_of_birth	The place where the specified person was born
per:place_of_death	The place where the specified person died
per:place_of_residence	The place where the specified person lives
per:origin	The origins or the nationality of the specified person
per:employee_of	The organization where the specified person works
per:schools_attended	A school where the specified person attended
per:alternate_names	Alternative names called instead of the official name to refer to the specified person
per:parents	The parents of the specified person
per:children	The children of the specified person
per:siblings	The brothers and sisters of the specified person
per:spouse	The spouse(s) of the specified person
per:other_family	Family members of the specified person other than parents, children, siblings, an spouse(s)
per:colleagues	People who work together with the specified person
per:product	Products or artworks produced by the specified person
per:religion	The religion in which the specified person believes
per:title	Official or unofficial names that represent the occupational position of the specifie
	person

Total 30 relation classes

- 18 person-related relations
- 11 organization-related relations
- no relation

Building Process

Based on TAC-KBP^[1]

 $oldsymbol{e_{subj}}$ PER(Person) or ORG(Organization)

PER, ORG, LOC(Location), DAT(Date and time), POH(Other proper nouns), NOH(Other numerals)

1. Sample candidate sentences

2. Define Relation Schema

3. Detect Entities

	Tr	Train		Dev	Test		
Relation Class	Count	Ratio	Count	Ratio	Count	Ratio	
Total	32,470	100.00%	7,765	100.00%	7,766	100.00%	

Proportions of entity types:

PER(38.1%), ORG(36.3%), LOC(6.2%).

DAT(6.2%), POH(11.9%), NOH(1.3%)

DeepNatural AI

• 163 qualified workers annotate each entity pair (e_{subj}, e_{obj})

5. Annotate Relations

Two approaches

- ① KB-based sampling [4]
- 2 Uniform sampling (e_{subj}, e_{obj})
- 4. Select Entity Pairs

^{6.} Final Dataset

^[1] Paul and Hoa., Overview of the TAC 2009 knowledge base population track, TAC, 2009

^[2] https://github.com/monologg/koELECTRA

^[3] provided by National Institute of Korean Language and Korea Maritime & Ocean University

^[4] https://aihub.or.kr/aidata/84

Final dataset

	T	rain]	Dev	Test		
Relation Class	Count	Ratio	Count	Ratio	Count	Ratio	
Total	32,470	100.00%	7,765	100.00%	7,766	100.00%	

<Proportions of entity types>

PER(38.1%), ORG(36.3%), LOC(6.2%).

DAT(6.2%), POH(11.9%), NOH(1.3%)

Why include DP?

- DP has been an important component in NLP systems, because of its ability of capture the syntactic feature of a sentence.

Task Format

- Word-level sequence tagging task

Evaluation Metric

- Unlabeled attachment score (UAS)
- Labeled attachment score (LAS)

Source Corpora

- WIKITREE
- AIRBNB

What is DP?

DP aims at finding relational information among words.

A demonstration of the output format

##DP-ex-000000 철수가 사과를 먹었다. (Chul-Soo ate an apple.)

6. Dependency Parsing (DP) **DEPREL**(DP relation labels) What is DP? root obj 철수가 먹었다. root an apple Chul-Soo

NP

ROOT

DP aims at finding relational information among words.

NP

VP

- Annotation Protocol and Process
 - 1. POS(part-of-speech) annotation

To utilize POS information as an additional syntactic feature.

2. Dependency Relation annotation

 They modify the original TTA DP guideline for dependency relation annotation. (add guides for spoken and web data)

Annotation Protocol and Process

Label Type	Description
Syntax	
NP	Noun Phrase
VP	Verb Phrase
AP	Adverb Phrase
VNP	Copula Phrase
DP	Adnoun Phrase
IP	Interjection Phrase
X	Pseudo Phrase
L	Left Parenthesis and Quotation Mark
R	Right Parenthesis and Quotation Mark
Function	
SBJ	Subject
OBJ	Object
MOD	Noun Modifier
AJT	Predicate Modifier
CMP	Complement
CNJ	Conjunction

2. Dependency Relation annotation

 They modify the original TTA DP guideline for dependency relation annotation. (add guides for spoken and web data)

Annotator

10 PhD students in Korean linguistics

Final Dataset

Source	Train	 Dev 	Test	Total
WIKITREE AIRBNB	5,000 5,000	1,000 1,000	1,250 1,250	7,250 7,250
Total	10,000	2,000	2,500	14,500

Why include MRC?

- In Korean, an appropriate MRC benchmark is not available.
- To construct challenging Korean MRC dataset.
- Task Format: Answer span prediction (Span is a slice from the document.)
 - Q: 오바마는 언제부터 대통령 임기를 시작했어? (When did Obama start his presidency?)
 - P:... 오바마는 하와이 출신으로 대통령에 당선 되었으며, 2009년 1월 20일부터 임기를 시작하였다... (.... Obama was elected president from Hawaii and began his term on January 20, 2009.....)
 - A: 2009년 1월 20일. (January 20, 2009)

Evaluation Metric

- ROUGE-W(Longest common consecutive subsequence based)
- Exact Match(EM)

Source Corpora

- WIKIPEDIA
- The Korea Economy Daily
- ACROFAN

Contributions

- Providing multiple question types.
- Preventing reasoning shortcuts.
- Multiple passage domains accessible to everyone. (To guarantee CC BY-SA license)

What is MRC?

"올여름 장마가 17일 제주도에서 시작됐다. 서울 등 중부지방은 예년보다 사나흘 정도 늦은 이달 말께 장마가 시작될 전망이다. 17일 기상청에 따르면 제주도 남쪽 면바다에 있는 장마전선의 영향으로 이날 제주도 산간 및 내륙지역에 호우주의보가 내려지면서 곳곳에 100mm에 육박하는 많은 비가 내렸다. 제주의 장마는 평년보다 2~3일, 지난해보다는 하루 일찍 시작됐다. 장마는 고온다습한 북태평양 기단과 한랭 습윤한 오호츠크해 기단이 만나 형성되는 장마전선에서 내리는 비를 뜻한다. 장마전선은 18일 제주도 먼 남쪽 해상으로 내려갔다가 20일께 다시 북상해 전남 남해안까지 영향을 줄 것으로 보인다. 이에 따라 20~21일 남부지방에도 예년보다. 사흘 정도 장마가 일찍 찾아올 전망이다. 그러나 장마전선을 밀어올리는 북태평양 고기압 세력이 약해 서울 등 중부지방은 평년보다 사나흘가량 늦은 이달 말부터 장마가 시작될 것이라는 게 기상청의 설명이다. 장마전선은 이후 한 달가량 한반도 중남부를 오르내리며 곳곳에 비를 뿌릴 전망이다. 최근 30년간 평균치에 따르면 중부지방의 장마 시작일은 6월24~25일이었으며 장마기간은 32일, 강수일수는 17.2일이었다.기상청은 올해 장마기간의 평균 강수량이 350~400mm로 평년과 비슷하거나 적을 것으로 내다봤다. 브라질 월드컵 한국과 러시아의 경기가 열리는 18일 오전 서울은 대체로 구름이 많이 끼지만 비는 오지 않을 것으로 예상돼 거리 응원에는 지장이 없을 전망이다.",

Question	"북태평양 기단과 오호츠크해 기단이 만나 국내에 머무는 기간은?"
Answer	"한 달가량", "한 달"

Annotation Protocol

··· 오바마는 하와이 출신으로 대통령에 당선 되었으며, 2009년 1월 20일부터 임 기를 시작하였다···

- Q. 오바마는 언제부터 대통령 임기를 시작했어?
- A. 2009년 1월 20일.

Question types

- **Type1** Question Paraphrasing
- Type2 Multiple-Sentence Reasoning
- **Type3** Unanswerable Questions

Workers generate questions and label answers spans

- Annotation Process
 - > Crowd workers

	Annotator	Inspector
Type 1	28	3
Type 2	19	3
Type 3	13	2

- ✓ If the generated question is rejected by the inspectors, it it regenerated.
- ✓ Through the filtering process, they remove 173 examples in total.
 - → manually re-check all examples at the end of the annotation process

Final Dataset

- 12,207 paraphrasing-based questions.
- 7,895 multi-sentence reasoning questions.
- 9,211 unanswerable questions.

Total 29,313 examples

22,343 documents and 23,717 passages

	Train	Dev	Test	Total
# Documents	12,174	5,075	5,094	22,343
# Passages	13,072	5,310	5,335	23,717
# Questions	17,554	5,841	5,918	29,313
Avg Length of Passage	1,004.62	1,014.64	1,010.13	1,008.10
Avg Length of Question	29.00	29.05	29.01	29.01
Avg Length of Answer	6.03	6.03	5.82	5.99

6:2:2

(train/dev/test split ratio)

8. Dialogue State Tracking (DST, Wizard-of-Seoul)

Why include DST?

- Building a human-computer conversation system has been increasingly attracting attention.
- DST is a core module of task-oriented dialogue systems.

Task Format

- Slot-value Prediction

Evaluation Metric

- JGA : Joint goal accuracy.
- Slot micro F1 score.

Source Corpora

- Construct via Self-Dialog

8. Dialogue State Tracking (DST, Wizard-of-Seoul)

DST is predicting the dialogue states from a given dialogue context.

user 안녕하세요.

DS :[]

Dialogue states

sys 네. 안녕하세요. 무엇을 도와드릴까요?

user 서울 중앙에 위치한 호텔을 찾고 있습니다. 외국인 친구도 함께 갈 예정이라서 원활하게 인터넷을 사용할 수 있는 곳이었으면 좋겠어요.

DS : [(숙소-지역, 서울 중앙), (숙소-종류, 호텔), (숙소-인터넷 가능, yes)] → Slot and value pair

sys 네. 확인해보겠습니다. 혹시 추가로 필요하신 사항이 있으실까요?

user 음.. 예약 인원은 총 8명 이고요. 아. 가격대는 크게 상관 없습니다.

DS : [(숙소-지역, 서울 중앙), (숙소-종류, 호텔), (숙소-인터넷 가능, yes), (숙소-예약 명수, 8), (숙소-가격대, dontcare)]

sys 네. 확인 감사합니다. 숙박을 원하시는 요일과 기간 같이 확인 부탁드립니다.

user 아. 중요한 걸 깜빡했네요. 일요일에 2일간 예약하고 싶습니다.

DS : [(숙소-지역, 서울 중앙), (숙소-종류, 호텔), (숙소-인터넷 가능, yes), (숙소-예약 명수, 8), (숙소-가격대, dontcare), (숙소-예약 요일, 일요일), (숙소-예약기간, 2)]

8. Dialogue State Tracking (DST, Wizard-of-Seoul)

Building Wizard-of-Seoul (WoS)

1. Define task schema

Domains	Informable Slots	Requestable Slots				
Hotel	name, type*, area*, price range*, book day¹, book stay¹, book people¹, walkability*, parking*, internet*, breakfast*, smoking*, fitness*, swimming pool*, spa*	rating, nearby station, minutes walk from station, address, phone number, business hour, reference number [‡]				
Restaurant	name, type*, area*, price range*, book day¹, book time¹, book people¹, alcohol*, walkability*, parking*, internet*, smoking*, outdoor table*	rating, nearby station, minutes walk from station, address, phone number, business hour, last order time, representative menu, reference number				
Attraction	name, type*, area*, walkability*, parking*, heritage*, educational*, scenic*, cultural*	rating, nearby station, minutes walk from station, address, phone number, business hour, entrance fee				
Taxi	leave at*, departure*, arrive by, destination*, type	phone number, cost, duration				
Metro	leave at, departure*, destination*	departure line, destination line, arrive by, cost, duration, transfer, optimal path				

2. Create Knowledge base

Domain	# Instances	# Slots
Hotel	101	19
Restaurant	56	20
Attraction	100	17
Taxi	-	8
Metro	3,306	10

3. Design an annotation system

당신은 오늘 22:41에 서울 중앙에서 식사할 계획을 가지고 있습니다. 아참 오늘은 수요일 입니다. 그런 곳을 찾았다면 먼저 대표 메뉴를 확인하세요. 그리고 나선 1명으로 예약 거세요. 예약 이후엔 영업시간을 문의하시구요. 그리고 나선 식당 근처에서 잘 곳을 찾아야 합니다. 그 곳은 반드시 흡연이 불가해야 합니다. 찾았다면 같은 요일에 예약하세요. 같은 인원으로 4일간 머물러야 합니다. 예약에 성공했다면 예약 번호를 묻고, 흡연 가능 유무를 더블체크하세요. 그런 다음 마지막으로 택시를 하나부르세요. 식당에서 숙소로 향해야 합니다. 찾았다면

소요 시간을 무의하세요.

4. Collect and annotate a dataset

Domains, informable slots, requestable slots

Construct a KB based on task schema of each domains

Provide a goal instruction

They adapt 'Self-dialog' scheme(less costive

8. Dialogue State Tracking (DST, Wizard-of-Seoul)

Final Dataset

	Train	Dev	Test	Total
# Dialogues	8,000	1,000	1,000	10,000
# Single Domain Dialogues	1,806	263	226	2,295
# Multi Domain Dialogues	6,194	737	774	7,705
# Counterfactual Dialogues	0	294	361	655
# Total Turns	117,584	14,448	14,660	146,692
# Total Tokens	899,450	114,169	114,914	1,128,533
Avg Turns per Dialogue	14.70	14.45	14.66	14.67
Avg Tokens per Turn	7.65	7.90	7.84	7.69

One dialogue -> 14.67 turns

WoS contains overall 10,000 dialogues with 146,692 turns across 5 domains.

Data Intelligence Lab, Korea University

Experiments

They pretrain and release large-scale LMs for Korean.

Pretrainig Corpora

	MODU	CC-100-Kor	NAMUWIKI	NEWSCRAWL	PETITION	Total
# Sentences # Words	167M 1,892,814,395	103M 1,593,887,022	14M 265,203,602	183M 2,716,968,038	5.2M 50,631,183	473M 6,519,504,240
size (GB)	18.27	15.46	2.52	25.87	0.53	62.65

Tokenization

Tokenization	Tokenized Sequence
Raw Text	조경현은 인공지능 분야의 저명한 연구자이다.
BPE (Multilingual)	조/##경/##현/##은/인/##공/##지/##능/분/##야/##의/저/##명한/연구/##자/##이다/.
BPE Morpheme Morpheme-based Subword	조경 / ##현은 / 인공지능 / 분야의 / 저 / ##명한 / 연구 / ##자이 / ##다 / . 조경현 / 은 / 인공지능 / 분야 / 의 / 저명 / 한 / 연구자 / 이 / 다 / . 조경 / ##현 / ##은 / 인공지능 / 분야 / ##의 / 저명 / ##한 / 연구자 / ##이다 / .

^[1] corpus.Korean.go.kr

^[2] Data.statmt.org/cc-100/

^[3] dump.thewiki.kr

^[4] www1.president.go.kr/petitions

Pretrained LMs Experiment Settings

Model	# Parameter	Masking	Training Steps	Batch Size	Learning Rate	Device
KLUE-BERT _{BASE}	110M	Static, WWM	1 M	256	10^{-4}	TPU v3-8
KLUE-RoBERTa _{SMALL} KLUE-RoBERTa _{BASE} KLUE-RoBERTa _{LARGE}	68M 110M 337M	Dynamic, WWM Dynamic, WWM Dynamic, WWM	1M 1M 500k	2048 2048 2048	$ \begin{array}{r} 10^{-4} \\ 10^{-4} \\ 10^{-4} \end{array} $	8× V100 GPUs 8× V100 GPUs 8× V100 GPUs

Baseline models

- mBERT(multilingual BERT)
- XLM-R (multilingual RoBERTa)
- KR-BERT (Korean BERT)
- KoELECTRA (Korean ELECTRA)

Pseudonymization

Private Information	Pseudonymization	Pseudonymised Example				
Telephone Number	Faker	055-604-8764				
Social Security Number	Faker	600408-2764759				
Foreign Registration Number	Faker	110527-1815659				
Email Address	Faker	agweon@example.org				
IP Address	Faker	166.186.169.69				
MAC Address	Faker	c5:d7:14:84:f8:cf				
Mention(@)	Faker	@gildong				
Address	Random Number Generation	경상북도 성남시 서초대64가				
Bank Account Number	Random Number Generation	110-245-124678				
Passport Number	Random Generation	M123A4567				
Driver's License	Random Number Generation	11-17-174133-01				
Business Registration Number	Random Number Generation	123-45-67890				
Health Insurance Information	Random Number Generation	1-2345678901				
Credit or Debit Card Number	Random Number Generation	1234-5678-9012-3456				
Vehicle Registration Place	Random Generation	557 1601				
Homepage URL	Random Generation	www.example.com				

✓ They pseudonymize PII(personally identifiable information) to avoid ethical issue.

- ✓ They detect 16 personal data types.
- ✓ 1.2% of the pretraining corpora.

[1] https://faker.readthedocs.ip

Fine-tuning Language Models

Task-Specific Architectures

→ 8 tasks can be categorized into 4 types based on the fine-tuning strategy.

Fine-tuning Language Models

	YNAT	KLUI	E-STS	KLUE-NLI	KLUE-NER		KLUE-RE		KLUE-DP		KLUE-MRC		WoS	
Model	F1	R^P	F1	ACC	$F1^E$	$F1^C$	$\overline{F1^{mic}}$	AUC	UAS	LAS	EM	ROUGE	JGA	$F1^S$
mBERT _{BASE} XLM-R _{BASE} XLM-R _{LARGE}	81.55	84.66	76.00	73.20	76.50	89.23	57.88	53.82	90.30	86.66	44.66	55.92	35.46	88.63
	83.52	89.16	82.01	77.33	80.37	92.12	57.46	54.98	89.20	87.69	27.48	53.93	39.82	89.61
	86.06	92.97	85.86	85.93	82.27	93.22	58.39	61.15	92.71	88.70	35.99	66.77	41.20	89.80
KR -BERT _{BASE} $KoELECTRA_{BASE}$	84.58	88.61	81.07	77.17	74.58	90.13	62.74	60.94	89.92	87.48	48.28	58.54	45.33	90.70
	84.59	<u>92.46</u>	84.84	85.63	86.11	<u>92.56</u>	62.85	58.94	92.90	87.77	59.82	66.05	41.58	89.60
KLUE-BERT _{BASE} KLUE-RoBERTa _{SMALL} KLUE-RoBERTa _{BASE} KLUE-RoBERTa _{LARGE}	85.73	90.85	82.84	81.63	83.97	91.39	66.44	66.17	89.96	88.05	62.32	68.51	46.64	91.61
	84.98	91.54	85.16	79.33	83.65	91.14	60.89	58.96	90.04	88.14	57.32	62.70	46.62	91.44
	85.07	92.50	85.40	84.83	84.60	91.44	67.65	68.55	93.04	88.32	68.67	73.98	47.49	91.64
	85.69	93.35	86.63	89.17	85.00	91.86	71.13	72.98	93.48	88.36	75.58	80.59	50.22	92.23

KLUE-RoBERTa LARGE model performs best on several tasks.

Fine-tuning Language Models

	YNAT	KLUI	E-STS	KLUE-NLI	KLUE-NER		KLUE-RE		KLUE-DP		KLUE-MRC		WoS	
Tokenization	F1	R^P	F1	ACC	$F1^E$	$F1^C$	$\overline{F1^{mic}}$	AUC	UAS	LAS	EM	ROUGE	JGA	$F1^S$
BPE	83.40	91.91	85.19	82.07	68.75	89.47	64.39	65.04	89.89	89.47	51.12	65.79	21.38	77.68
Morpheme-based Subword	83.40	92.06	84.70	81.60	84.84	91.03	65.25	64.79	92.17	88.34	62.13	67.46	47.14	91.60

KLUE Leaderboard

Unlike other benchmarks, klue benchmarks do not provide total scores and leaderboards for the entire task. On the leaderboard, you can check each score for one model and sort by each evaluation metric.

All	Small Size	Base Size	Large Size

#	Team	Model	Description	YNAT	KLUE	KLUE-STS F		KLUE-NLI KLUE-NER		KLUE-RE		KLUE-DP		KLUE-MRC		wos	
				F1 💠	$R^P \ \ \stackrel{\triangle}{=}$	F1 *	ACC \$	F1 ^E ♣	F1 ^C ♣	F1 ^{mic} ♣	AUC \$	UAS \$	LAS ⊕	ЕМ ≑	ROUGE \$	JGA ♣	F1 ^S ♣
1	KLUE- team	KLUE- BERT- base	More	85.73	90.85	82.84	81.63	83.97	91.39	66.44	66.17	89.96	88.05	62.32	68.51	46.64	91.61
2	KLUE- team	KLUE- RoBERTa- large	More	85.69	93.35	86.63	89.17	85	91.86	71.13	72.98	93.48	88.36	75.58	80.59	50.22	92.23
3	KLUE- team	KLUE- RoBERTa- base	More	85.07	92.5	85.4	84.83	84.6	91.44	67.65	68.55	93.04	88.32	68.67	73.98	47.49	91.64
4	KLUE- team	KLUE- RoBERTa- small	More	84.98	91.54	85.16	79.33	83.65	91.14	60.89	58.96	90.04	88.14	57.32	62.7	46.62	91.44
5	KLUE- tester		More	79.63	88.51	81.22	67.03	81.07	89.39	44.86	31.99	89.58	88.03	40.74	45.86	2.44	48.04

Rows per page: 5 T-5 of 5

Conclusion

 They present KLUE, a suite of Korean NLU benchmark that includes diverse tasks.

They provide pretrained large-scale language models for Korean.

• Their benchmark KLUE will facilitate future Korean NLP research.

Data Intelligence Lab, Korea University

Q&A