Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

Лабораторная работа № 6 **Изучение алгоритмов хэширования**

Студент:	Чернякова Валерия, группа 1304	
Руководитель:	Племянников А.К., доцент каф. ИБ	

Цель работы

Повысить компетенции в работе с алгоритмами хэширования.

Задачи:

- Оценить лавинный эффект хэш-функций;
- Изучить алгоритм работы функции перестановок Keccak;
- Изучить алгоритм работы функции диверсификации ключа;
- Изучить алгоритм вычисления кода аутентификации сообщения;
- Провести атаку дополнительной коллизии на хэш-функцию MD-5.

Задание

- 1. Открыть текст не менее 1000 знаков. Добавить ваши ФИО последней строкой.
- 2. Задать хеш-функцию, подлежащую исследованию: MD5, SHA-1, SHA-256, SHA-512.
- 3. Для каждой хеш-функции повторить следующие действия:
- а)изменить (добавлением, заменой, удалением символа) исходный файл;
- б)зафиксировать количество измененных битов в дайджесте модифицированного сообщения;
- в)вернуть сообщение в исходное состояние.
- 4. Выполнить процедуру 3 раза (добавлением, заменой, удалением символа) и подсчитать среднее количество измененных бит дайджеста. Зафиксировать результаты в таблице.

Измерение лавинного эффекта

Исследование лавинного эффекта

Хэш-функция	№ измерения	Удаление	Вставка	Замена
MD5	1	44.3%	47.1%	48.4%
	2	43.8%	44.5%	57%
	3	50.2%	49.6%	51.6%
	Среднее	48.93%	48.67%	52.33%
SHA-1	1	51.1%	49.2%	48.4%
	2	50.8%	50%	50.5%
	3	45.1%	49.5%	45%
	Среднее	49.67%	49.57%	49.97%
SHA-256	1	50.3%	50.2%	46.8%
	2	47%	47.4%	49.8%
	3	45.4%	51.8%	49.2%
	Среднее	48.23%	49.47%	48.6%
SHA-512	1	49%	47.7%	46.8%
	2	47.6%	44.8%	49%
	3	48.6%	53.8%	47.6%
	Среднее	48.07%	48.1%	48.47%

Алгоритм работы функции перестановок Keccak

Исследование лавинного эффекта. SHA-3

Хэш-функция	№ измерения	Удаление	Вставка	Замена
SHA-3	1	55%	54.6%	59.4%
	2	55.7%	56%	55,4%
	3	57.4%	55.2%	56.7%
	Среднее	56.7%	55.9%	57.17%

Задание

- 1. Изучить алгоритм работы функции диверсификации ключа с помощью шаблонной схемы PBKDF-1 в CrypTool 2. Получить симметричный ключ из персонального пароля, содержащего Фамилию, Имя, Отчество и дату рождения. Сохранить ключ для использования в 4 этого задания.
- 2. Выбрать текст на английском языке (не менее 1000 знаков), добавить ваши ФИО и сохранить в файле формата .txt.
- 3. Придумать пароль и сгенерировать секретный ключ утилитой Indiv.Procedures —> Hash —> Key Generation из CrypTool 1. Сохранить ключ в файле формата .txt. Прочитать Help к этой утилите.
- 4. Сгенерировать HMAC для имеющегося текста и ключа с помощью утилиты Indiv.Procedures —> Hash —> Generation of HMACs. Сохранить HMAC в файле формата .txt. Прочитать Help к этой утилите.
- 5. Передать пароль, HMAC (и его характеристики), исходный и модифицированный тексты коллеге, не раскрывая, какой текст корректен. Попросить коллегу определить это самостоятельно.

Алгоритм работы функции диверсификации ключа PBKDF-1

Сгенерированный ключ:

FF C6 3F 56 A7 CB 42 21 9E FE C5 94 2B D3 2A 5E 76 4A 51 C0

Алгоритм вычисления код аутентификации сообщения НМАС

Вычисление кода аутентификации сообщения НМАС

Задание

- Сформировать два текста на английском языке истинный и фальсифицированный. Сохранить тексты в файлах формата .txt.
- 2. Утилитой Analysis —> Attack on the hash value... модифицировать сообщения для получения одинакового дайджеста. В качестве метода модификации выбрать Attach characters —> Printable characters.
- 3. Проверить, что дайджесты сообщений действительно совпадают с заданной точностью.
- 4. Сохранить исходные тексты, итоговые тексты и статистику атаки для отчета.
- 5. Зафиксировать временную сложность атаки для 8, 16, 32, 40, 48, ... бит совпадающих частей дайджестов.

Атака дополнительной коллизии на хэш-функцию MD5

Кол-во бит совпадающих частей	Время	Кол-во бит совпадающих частей	Время
8	0 c	56	1 ч 35 м
16	0 c	64	1.1 дня
24	0.09 c	72	17 дней
32	1.06 c	80	272 дня
40	17.07 c	88	12 лет
48	4 m 33.2 c	96	200 лет

Заключение

- Исследован лавинный эффект в результате операций преобразования исходного текста для хэш-функций MD5, SHA-1, SHA-256, SHA-512. В среднем значение лавинного эффекта для всех функций составило 50%, то есть при изменении одного бита во входных данных примерно половина битов в выходном хэше изменится.
- Изучен алгоритм работы функции перестановок Кессаk(SHA-3) и исследован лавинный эффект. Среднее значение лавинного эффекта составило 55% (наивысший показатель).
- Изучен алгоритм работы функции диверсификации ключа PBKDF-1. Основное свойство алгоритма PBKDF1 заключается в использовании пароля и случайной соли для генерации ключа. Был получен симметричный ключ из персонального пароля ФИО и дата рождения: ChernyakovaValeriaAlekseevna_27082003 и FF C6 3F 56 A7 CB 42 21 9E FE C5 94 2B D3 2A 5E 76 4A 51 CO.
- Изучен алгоритм вычисления код аутентификации сообщения НМАС. Основное свойство алгоритма это использование хэш-функции в сочетании с секретным ключом для проверки целостности и аутентичности данных.
- Провести атаку дополнительной коллизии на хэш-функцию MD5. С увеличением количества совпадающих битов в дайджестах хэш-функции MD5 время выполнения атаки возрастает, так как требуется больше вычислений для нахождения подходящих входных данных.