UNIVERSIDAD MAYOR DE SAN ANDRÉS

FACULTAD DE CIENCIAS PURAS Y NATURALES

CARRERA DE INFORMÁTICA

POBLACION DE BOLIVIA

ALUMNA: APAZA HINOJOSA VANEZA

DOCENTE: LIC. BRIGIDA CARVAJAL BLANCO

MATERIA: ANÁLISIS NUMÉRICO

LA PAZ – BOLIVIA II/ 2024

Introducción

La interpolación es una herramienta matemática clave utilizada para estimar valores desconocidos a partir de datos existentes. En demografía, esta técnica es esencial para proyectar tendencias de población, apoyando la toma de decisiones en áreas como planificación urbana, salud pública y desarrollo económico. Este informe se centra en la aplicación de la interpolación de Newton para analizar los datos poblacionales de Bolivia durante varias décadas.

El estudio utiliza datos históricos de población desde 1950 hasta 2019 con el objetivo de estimar la población para el año 2024. La interpolación de Newton, que construye un polinomio ajustado a puntos conocidos, es una de las metodologías más precisas para este tipo de análisis, y permite visualizar la evolución de la población de Bolivia de manera efectiva.

A lo largo del informe se presentan los resultados obtenidos y se discute la relevancia de estos datos para la planificación y las políticas públicas en Bolivia. Comprender las tendencias poblacionales es crucial para enfrentar desafíos en áreas como recursos, infraestructura y servicios.

Desarrollo

Se recopilaron datos de censos de población de Bolivia, y los datos son los siguientes:

	años	poblacion		
0	1950	2,704,165 4,613,419		
1	1976			
2	1992	6,420,792		
3	2001	8,274,325		
4	2012	10,059,856 10,694,075		
5	2019			

El análisis se realizó utilizando la interpolación de Newton en Excel, un programa en Python, y la interpolación de Lagrange en una calculadora online. Se incluyeron también los cálculos del error en el valor aproximado.

Excel:

	años	poblacion	1er	2do	3er	4to	5to
0	1950	2,704,165	73432.8462	941.142056	54.4774488	-3.52241741	0.08378795
1	1976	4,613,419	112960.813	3719.49194	-163.912431	2.25895088	
2	1992	6,420,792	205948.111	-2181.35556	-66.7775426		
3	2001	8,274,325	162321	-3984.34921			
4	2012	10,059,856	90602.7143				
5	2019	10,694,075					

Sol: x=?= 2024 11093233.5

Calculo de error del valor aproximado:

error%	error	aproximado	real
1.93930747	0.01939307	11093233.5	11312620

Grafico Python:

Conclusiones

Los resultados obtenidos mediante la interpolación de Newton estiman la población de Bolivia con un error porcentual aproximado de 1.94%, lo que indica que la aproximación es bastante precisa. El error absoluto es de 0.01939307, lo que representa una diferencia mínima entre la población estimada (11,093,233.5) y la real (11,312,620). Estos resultados muestran la eficacia de la metodología para hacer predicciones demográficas, fundamentales para la planificación y formulación de políticas públicas en Bolivia.

La precisión de la interpolación de Newton destaca la importancia de utilizar modelos matemáticos sólidos para proyectar tendencias poblacionales, permitiendo una gestión más eficiente de los recursos y servicios necesarios para la población del país.