Universidad Mayor de San Andrés Facultad de Ciencias Puras y Naturales

Carrera de Informática

PRACTICA#4 ALGEBRA

APELLIDO: MAMANI QUEA

NOMBRES: JHAMIL CALIXTO

CI: 9914119LP

PARALELO: "E"

DOCENTE: EUGENIO CASTAÑOS CALLE

LA PAZ - BOLIVIA 2023

1. Determina si cada una de las siguientes relaciones es una función con dominio $\{1,2,3,4\}$. Explicar la respuesta.

(a)
$$f = \{(1,1), (2,1), (3,1), (4,1), (3,3)\}$$

En este caso "f" no es une Función ya que por teoria un elemento del dominio es primer componente de un por y sale de uno y como podemos apreciar 3 del dominio esta en dos partes distintas (3,1) y (3,3) (b) $f = \{(1,2),(2,3),(4,2)\}$

En esta Funcion podemos decir que Va e Dominio tiene um unica imagen en el codominio entonces $f: \{1,2,3,43 \Rightarrow codominio$ (c) $f = \{(1,1),(2,1),(3,1),(4,1)\}$

En esta funcion podemos decis que $\forall a \in Dominio$ tiene una unica imagen es el codominio entonces $f: \{1,2,3,43 \Rightarrow codominio (d) f = \{(1,1),(1,2),(1,3),(1,4)\}$

Sucede lo mismo en el ejercicio "" 1 tenemos la imagen

(e)
$$f = \{(1,4), (2,3), (3,2), (4,1)\}$$

En este caso esta Función tiene un dominio en {1,2,3,43

4. Con el conjunto $S=\{1,2,3,4,5\}$ se define $f:S\to\mathbb{Z}$ por

$$f(x) = \begin{cases} x^2 + 1 & \text{, si } x \text{ es par,} \\ 2x - 5 & \text{, si } x \text{ es impar.} \end{cases}$$

Expresar f como un subconjunto de $S \times \mathbb{Z}$. ¿Será f uno-uno?

Es de $\Leftrightarrow \forall x' \forall x'' \in S: x' \neq x'' \Rightarrow f(x'') \neq f(x'')$ uno a uno

Pera X' = 2K; $X'' = 2K_2 + 1 = YK_1^2 + 1 = YK_2 + 2 - 5$

$$f(x') = f(x'')$$
 $4K_1^2 + 1 = 4K_2 - 3$

$$x^2 + 1 = 2x - 5$$
 $4K_1^2 + 1 \neq 4K_2 - 3$

14. Determinar sí cada una de las siguientes reglas de correspondencia define una función uno-uno y/o sobre. Dar una demostración o exhibir un contraejemplo para justificar su respuesta.
(a) $f(n,m)=2n+3m; f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}.$
Dem por contradicción:
Asumimos que hay dos pares distintos (na, ma) y (na, ma) en IN x IN que
tienen el mismo resultado.
Entonces: $2n_2 + 3m_3 = 2n_2 + 3m_2$
$2n_1 - 2n_2 + 3m_1 - 3m_2 = 0$
$m_2 = 2n_1 - 2n_2 + 3m_1$
Por tanto, se observa que no tendran el mismo resultado.
Asi, la Función es uno - uno.
Dem: Sobreyectiva
Dado un valor K en IN; n= K/2 y m=0
$\Rightarrow f(n,m) = 2n + 3m = 2(K/2) + 3(0) = K$
Asi se liene que, para cada valor de salir k en IN, exute al menos (n, m).
. Asi, la Función es sobreyectiva
(b) $f(n,m) = 2n + 3m; f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.
Sea (n1, m1), (m1, m2) en Z × Z entonces:
$2n_1 + 3m_1 = 2n_2 + 3m_2$
$2n_1 - 2n_2 = 3m_2 - 3m_1$
$2(n_1 - n_2) = 3(m_2 - m_1)$
2 no divide a 3
La Funcion es uno a uno n ₁ =n ₂ y m ₂ =m ₂
· Demostrer que es sobre:
para cede elemento $y \in \mathbb{Z}, \exists (n,m) \in \mathbb{Z} \times \mathbb{Z} \mid f(n,m) = y$
$y \in \mathbb{Z}, (n,m) = (y/2, (y-y/2)/3)$
f(n,m) = 2n + 3m
$= 2 \cdot \left(\frac{y}{2}\right) + 3 \cdot \left(\frac{y - y}{2}\right) = y$
16777 m m c 7 m 7 0 1 1 1 c c c c 1 1 1 1 1 1 1 1 1 1 1 1
y ∈ Z, ∃ (n, m) ∈ Z × Z, f (n, m) = y Le función es sobreyectiva

7- Paca v - 7
2: Para x = 7 5
$\left\lceil \frac{7}{5} \right\rceil = \left\{ Y \in \mathbb{R} \mid f_{CY} = LYJ = \frac{7}{5} \right\}$
= es 1, la clase de equivalencia seria numerou reales cuya parte entera es 1.
5
$3 = \rho_{378} \times = -\frac{3}{3}$
3. Para $x = -\frac{3}{4}$ $\left[-\frac{2}{4}\right] = \frac{3}{4}$, $-3/4 \sim x \ \forall x \in \mathbb{R} \ f_{(x)} = \frac{3}{4}$
$\frac{3}{4} \sim -\frac{3}{4}$
ų ų
La clase de equivalencie de _ 3 es el conjunto {-3/4, 3/4}
(c) Si $A = \{1, 2, 3, 4, 5, 6\}$ y $f = \{(1, 2), (2, 1), \dots \}$
$(3,1),(4,5),(5,6),(6,1)$ }. Encontrar todas las clases de equivalencia.
$X \sim Y \text{ si } f(x) = f(y), A = \{\{1,2,3,4,5,6\}\}$
examinando cada elemento de A.
1. Clase de equivalencia de 1:
[1] = {1,2,6,3} ya que f(1) = f(2) = f(6) = f(3)
2. Clase de equivalencia de 2:
[2] = {1,2,6,3} por que f(2) = f(1) = f(6) = f(3)
3. Clase de equivalencia de 3:
$[3] = \{1,2,6,3\}$ debido a que $\{(3) = \{(1) = \{(6) = \{(3)\}\}$
4. Clase de equivalencia de 4:
[4] = {4} ya que f (4) no coincide con f(x) pere ninguin otro y en A.
5. Clase de equivalencia de 5:
[5] = {5} ya que fcs) no coincide con fcx) para ningun otro y en A.
6. Clase de equivalencia de 6:
[6] = {1,2,6,3} ya que f(6) = f(1) = f(6) = f(3)

25. Mostrar que cada una de las siguientes funciones $f:A\to\mathbb{R}$ es uno-uno. Encontrar el rango de cada función y una adecuada inversa. (a) $A = \{x \in \mathbb{R} | x \neq 4\}, f(x) = 1 + \frac{1}{x - 4}$ uno a uno () Yx'e Ax'e A Yx" (A: f(x)) = f(x") =) x Rango $(-\infty, 4) \cup (4, +30)$ 1R-{43 $f(x_1) = f(x_2)$ Inversa y = 1 + 1 × -4 $1 + \frac{1}{x_1 - 4} = 1 + \frac{1}{x_2 - 4}$ x = 1 + 1 y - 4 $\frac{1}{\times 1 - 4} = \frac{1}{\times 2 - 4}$ X-1 = 1 V-4 $x_2 - 4 = x_1 - 4$ X2 = X1 (x-1)(y-4)=1Es uno a uno o es Xy-4x-7+4=1 inyectiva xy - 4x - x + 3 = 0(b) $A = \{x \in \mathbb{R} | x \neq -1\}, f(x) = 5 - \frac{1}{1+x}$ Rengo $(-\infty, -1) \cup (-1, +\infty) = 7 \mathbb{R} - \{-1\}$ uno a uno (> Yx' E Ax' E A Yx E A; f(x) = f(x2) => X $f(x_i) = f(x_i)$ Inversa $8 - \frac{1}{1+x} = 8 - \frac{1}{1+x}$ $f(x) = 5 - \frac{1}{1+x}$ $y = 5 - \frac{2}{1+x} \implies y - 5 = \frac{1}{1+x}$ $-(1+\times_2) = -(1+\times_1)$ -1-X2 = -1-X2 $\frac{1}{y-5} = 1+x \Rightarrow x = \frac{1}{y-5} - 1$ - X2 = - X1 //-1 $9(y) = \frac{1}{(y-5)} - 1 \wedge y \neq 5$ X2 = X2 · Es invectiva

(c)
$$A = \{x \in \mathbb{R} \mid x \neq -\frac{1}{2}\}, f(x) = \frac{3x}{2x+1}$$

Rango
 $C = \infty, -\frac{1}{2}\}$ U $\left(-\frac{1}{2}, +\infty\right) \Rightarrow \mathbb{R} - \left\{-\frac{1}{2}\right\}$

Inyectiva

Es inyectiva $\iff \forall x_1, 2x \in A$: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
 $f(x_2) = f(x_3)$
 $3x^1 = 3x_2$
 $2x_2 + 1$
 $2x_2 + 1$

