SSN College of Engineering, Chennai Department of Computer Science and Engineering

Reg. No: 3122237001049

Date: July 30, 2025

Academic Year: 2025–2026

Degree: M.Tech (5-Year Integrated) CSE

Course Code: ICS1512 Machine Learning Algorithms Laboratory

Experiment 1: Working with Python packages-Numpy, Scipy, Scikit-Learn, Matplotlib

AIM

To explore five machine learning datasets, select and justify the most suitable algorithms for each task, implement a workflow in Python, including data pre-processing, model training, and performance evaluation, and interpret the results using appropriate metrics.

Libraries Used and Key Concepts

This section highlights commonly used Python libraries in machine learning and explores key functions and concepts from each.

1. NumPy

Purpose: Numerical computing and array manipulation. Key Functions:

- np.array(): Create arrays
- np.mean(), np.std(), np.sum(): Statistical computations
- np.dot(), np.linalg.inv(): Linear algebra

2. Pandas

Purpose: Data manipulation and analysis.

Key Functions:

- pd.read_csv(): Load data from CSV
- df.head(), df.describe(), df.info(): Data inspection
- df.fillna(), df.drop(), df.groupby(): Data cleaning and transformation

3. SciPy

Purpose: Advanced scientific computing and mathematical functions. **Key Functions:**

- scipy.stats: Statistical functions and distributions
- scipy.optimize: Optimization routines
- scipy.spatial: Distance computations

4. Scikit-learn

Purpose: Machine learning tools for model training, evaluation, and preprocessing.

Key Functions:

- train_test_split(), cross_val_score(): Data splitting
- StandardScaler, LabelEncoder: Preprocessing tools
- LinearRegression, DecisionTreeClassifier, etc.: Models
- classification_report(), confusion_matrix(): Evaluation metrics

5. Matplotlib

Purpose: Visualization and plotting.

Key Functions:

- plt.plot(), plt.scatter(), plt.hist(): Basic plots
- plt.xlabel(), plt.ylabel(), plt.title(): Plot formatting
- plt.show(): Display figures

Dataset Analysis, Model Selection, and Performance Metrics

1. Loan Amount Prediction

Type: Supervised Learning

Task: Regression

Dataset: Kaggle Loan Prediction Dataset

Model Rationale: Linear Regression is used for continuous target prediction due to its interpretability and efficiency in modeling linear relationships.

```
15 categorical_cols = df.select_dtypes(include=['object']).
     columns
for col in categorical_cols:
      le = LabelEncoder()
      df[col] = le.fit_transform(df[col])
20 X = df.drop('LoanAmount', axis=1)
y = df['LoanAmount']
22 scaler = StandardScaler()
23 X_scaled = scaler.fit_transform(X)
24 X_train, X_test, y_train, y_test = train_test_split(X_scaled,
      y, test_size=0.2, random_state=42)
25 model = LinearRegression()
26 model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f"MSE: {mean_squared_error(y_test, y_pred):.2f}")
29 print(f"MAE: {mean_absolute_error(y_test, y_pred):.2f}")
30 print(f"R^2: {r2_score(y_test, y_pred):.2f}")
32 # Example Prediction
sample_input = X_test[0].reshape(1, -1)
34 sample_prediction = model.predict(sample_input)
35 actual_value = y_test.iloc[0]
36 print(f"\nSample Input Features (scaled): {np.round(X_test
     [0], 2)}")
37 print(f"Predicted Loan Amount: {sample_prediction[0]:.2f}")
38 print(f"Actual Loan Amount: {actual_value:.2f}")
```

2. Handwritten Character Recognition

Type: Supervised Learning
Task: Multiclass Classification

Dataset: MNIST

Model Rationale: CNNs exploit spatial hierarchies in images, automati-

cally learning features like edges and shapes, making them ideal for image classification.

Python Code:

```
1 from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
3 from keras.datasets import mnist
4 from keras.utils import to_categorical
5 from sklearn.metrics import classification_report,
     confusion_matrix
6 import numpy as np
8 (X_train, y_train), (X_test, y_test) = mnist.load_data()
X_{\text{train}} = X_{\text{train.reshape}}(-1, 28, 28, 1)/255.0
10 X_test = X_test.reshape(-1,28,28,1)/255.0
y_train_cat = to_categorical(y_train)
12 y_test_cat = to_categorical(y_test)
13 model = Sequential([
    Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)),
    MaxPooling2D(), Flatten(),
    Dense (128, activation='relu'), Dense (10, activation='softmax'
17 ])
18 model.compile('adam','categorical_crossentropy',metrics=['
     accuracy'])
19 # Using 1 epoch for faster demonstration
20 model.fit(X_train,y_train_cat,epochs=1,validation_data=(
     X_test,y_test_cat))
y_pred_probs = model.predict(X_test)
y_pred = np.argmax(y_pred_probs, axis=1)
print(classification_report(y_test,y_pred))
25 # Example Prediction
sample_input = X_test[0].reshape(1, 28, 28, 1)
27 sample_prediction = np.argmax(model.predict(sample_input),
     axis=1)
28 print(f"\nPredicted Digit: {sample_prediction[0]}")
29 print(f"Actual Digit: {y_test[0]}")
```

Output and Prediction:

```
0.99
                            0.99
                                        0.99
                                                  980
5
                    0.99
                             1.00
                                        0.99
                                                 1135
            2
                    0.98
                              0.98
                                        0.98
                                                 1032
                    0.98
                              0.98
                                        0.98
                                                 1010
8
            3
                              0.98
9
            4
                    0.98
                                        0.98
                                                  982
            5
                    0.98
                             0.97
                                        0.98
                                                 892
10
            6
                    0.99
                              0.98
                                        0.98
                                                  958
11
            7
                    0.98
                              0.98
                                        0.98
                                                 1028
12
             8
                    0.97
                              0.97
                                        0.97
                                                  974
13
                    0.97
                              0.97
                                        0.97
                                                 1009
14
15
                                        0.98
                                                10000
16
     accuracy
                              0.98
                    0.98
                                        0.98
                                                 10000
    macro avg
17
18 weighted avg
                    0.98
                              0.98
                                        0.98
                                                 10000
20 1/1 [========== ] - 0s 18ms/step
21 Predicted Digit: 7
22 Actual Digit: 7
```

3. Email Spam Classification

Type: Supervised Learning Task: Binary Classification

Dataset: UCI Spambase (using a simplified CSV for demonstration)

Model Rationale: Multinomial Naive Bayes efficiently handles high-dimensional sparse text data by modeling word counts under conditional independence assumptions.

```
Accuracy: 1.00

precision recall f1-score support

ham 1.00 1.00 1.00 1

micro avg 1.00 1.00 1

macro avg 1.00 1.00 1

weighted avg 1.00 1.00 1

Input Text: 'click here for free cash'

Predicted Label: spam
```

4. Predicting Diabetes

Type: Supervised Learning
Task: Binary Classification
Dataset: Pima Indians Diabetes

Model Rationale: Random Forest reduces overfitting by averaging multiple decision trees, captures nonlinear interactions, and provides feature importance for interpretability.

```
6 df = pd . read_csv("diabetes.csv")
7 X=df.drop('Outcome',axis=1)
8 y=df['Outcome']
9 X_train, X_test, y_train, y_test=train_test_split(X,y,test_size
     =0.2, random_state=42)
nodel=RandomForestClassifier(random_state=42)
model.fit(X_train,y_train)
12 y_pred=model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test,y_pred):.2f}")
print(classification_report(y_test,y_pred))
16 # Example Prediction
17 sample_input = X_test.iloc[0].values.reshape(1, -1)
18 sample_prediction = model.predict(sample_input)
19 print(f"\nInput Features: {X_test.iloc[0].values}")
print(f"Predicted Outcome (1=Diabetic): {sample_prediction
     [0]}")
21 print(f"Actual Outcome: {y_test.iloc[0]}")
```

```
1 Accuracy: 0.72
              precision recall f1-score
                                              support
                  0.80
                             0.76
                                       0.78
4
            0
            1
                    0.59
                             0.65
                                       0.62
                                                  55
                                       0.72
                                                154
     accuracy
                    0.70
                             0.71
                                       0.70
                                                 154
    macro avg
                    0.73
                                       0.72
                                                  154
9 weighted avg
                              0.72
11 Input Features: [ 6. 148. 72.
                                    35.
                                                33.6
                                                       0.627 50.]
12 Predicted Outcome (1=Diabetic): 1
13 Actual Outcome: 1
```

5. Iris Dataset

Type: Supervised Learning
Task: Multiclass Classification

Dataset: UCI Iris

Model Rationale: Decision Trees are chosen for their interpretability, ability to handle multiclass problems, and nonparametric nature for nonlinear decision boundaries.

```
1 from sklearn.datasets import load_iris
2 from sklearn.model_selection import train_test_split
3 from sklearn.tree import DecisionTreeClassifier
4 from sklearn.metrics import accuracy_score,
     classification_report
6 iris=load_iris()
7 X,y=iris.data,iris.target
8 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size
     =0.2, random_state=42)
9 model=DecisionTreeClassifier()
no model.fit(X_train,y_train)
y_pred=model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test,y_pred):.2f}")
print(classification_report(y_test,y_pred,target_names=iris.
     target_names))
14
15 # Example Prediction
sample_input = X_test[0].reshape(1, -1)
17 sample_prediction_index = model.predict(sample_input)[0]
18 predicted_species = iris.target_names[sample_prediction_index
     ]
19 actual_species = iris.target_names[y_test[0]]
20 print(f"\nInput Features: {X_test[0]}")
21 print(f"Predicted Species: {predicted_species}")
22 print(f"Actual Species: {actual_species}")
```

```
1 Accuracy: 1.00
               precision recall f1-score
                                               support
                          1.00
1.00
1.00
       setosa 1.00 sicolor 1.00
                                        1.00
                                                    10
4
   versicolor
                                        1.00
                                                     9
                   1.00
                                        1.00
    virginica
                                                    11
               1.00
                                        1.00
                                                    30
     accuracy
                              1.00
    macro avg
                                        1.00
                                                    30
9
10 weighted avg
                    1.00
                              1.00
                                        1.00
                                                    30
12 Input Features: [6.1 2.8 4.7 1.2]
13 Predicted Species: versicolor
14 Actual Species: versicolor
```

Dataset	Type of ML task	Suitable ML Algorithm
Iris Dataset	Multiclass Classification	Decision Tree Classifier
Loan Amount Prediction	Regression	Linear Regression
Predicting Diabetes	Binary Classification	Random Forest Classifier
Email Spam Classification	Binary Classification	Multinomial Naive Bayes
Handwritten Character Recognition	Multiclass Classification	Convolutional Neural Network

Table 1: Overview of Datasets and Selected Algorithms

Summary of Tasks

Learning Outcomes

Learned data loading, preprocessing, selection of a suitable model, implementation, and evaluation for five datasets using five different models. Gained practical experience in interpreting performance metrics such as accuracy, MSE, and classification reports to assess model effectiveness.