

AON6448

80V N-Channel MOSFET SDMOS™

General Description

The AON6448 is fabricated with SDMOSTM trench technology that combines excellent $R_{\rm DS(ON)}$ with low gate charge. The result is outstanding efficiency with controlled switching behavior. This universal technology is well suited for PWM, load switching and general purpose applications.

Product Summary

 $\begin{array}{lll} V_{DS} & 80V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 65A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 9.6 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 7V) & < 12 m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

DFN5X6

Top View

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	80	V	
Gate-Source Voltage		V_{GS}	±25	V	
Continuous Drain	T _C =25℃		65		
Current ^G	T _C =100℃	'D	41	A	
Pulsed Drain Current C		I _{DM}	138		
Continuous Drain	T _A =25℃		11	^	
Current	T _A =70℃	IDSM	9.0	Α	
Avalanche Current ^C		I _{AS} , I _{AR}	50	A	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	125	mJ	
	T _C =25℃	P _D	83	W	
Power Dissipation ^B	T _C =100℃	- D	33	VV	
	T _A =25℃	P	2.5	w	
Power Dissipation ^A	T _A =70℃	P _{DSM}	1.6		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C.	

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s		14	17	℃/W			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	40	50	°C/W			
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	1	1.5	℃/W			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		80			V		
I _{DSS}	Zoro Coto Voltago Drain Current	V _{DS} =80V, V _{GS} =0V				10	^		
	Zero Gate Voltage Drain Current		T _J =55℃			50	μΑ		
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±25V				100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		2.7	3.2	3.7	V		
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V		140			Α		
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =10A			7.9	9.6	mΩ		
			T _J =125℃		13.3	16			
		V _{GS} =7V, I _D =10A			9.6	12	mΩ		
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=10A$		30		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.65	1	V			
Is	Maximum Body-Diode Continuous Current ^G					85	Α		
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =40V, f=1MHz		2100	2600	3100	pF		
C _{oss}	Output Capacitance			240	340	440	pF		
C_{rss}	Reverse Transfer Capacitance			70	120	170	pF		
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		0.4	0.8	1.2	Ω		
SWITCHI	NG PARAMETERS								
$Q_g(10V)$	Total Gate Charge	V _{GS} =10V, V _{DS} =40V, I _D =10A		35	44	53	nC		
Q_{gs}	Gate Source Charge			11	14	17	nC		
Q_{gd}	Gate Drain Charge			8	14	20	nC		
t _{D(on)}	Turn-On DelayTime				18		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =40V, R_L =4 Ω , R_{GEN} =3 Ω			10		ns		
t _{D(off)}	Turn-Off DelayTime				24.5		ns		
t _f	Turn-Off Fall Time				5.2		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=500A/μs		12	17	22	ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =10A, dI/dt=500A/ μ s		45	65	85	nC		

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse ratin g.
- G. The maximum current rating is limited by package.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev 3: April 2011 www.aosmd.com Page 2 of 7

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Figure 17: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current

Figure 18: Diode Reverse Recovery Time and Softness Factor vs. Conduction Current

Figure 19: Diode Reverse Recovery Charge and Peak Current vs. di/dt

Figure 20: Diode Reverse Recovery Time and Softness Factor vs. di/dt

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

