# Exercice 1 \*\*\*

# Equation fonctionnelle de l'exponentielle matricielle

Déterminer les applications M :  $\mathbb{R} \to \mathcal{M}_n(\mathbb{R})$  dérivables en 0 vérifiant :

$$\forall (s,t) \in \mathbb{R}^2, \ M(s+t) = M(s)M(t)$$

# Exercice 2 \*\*\*

# **Banque Mines-Ponts MP 2019**

Soit  $A \in \mathcal{M}_n(\mathbb{R})$  telle que  $\operatorname{tr}(A) > 0$ , et  $x : \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{R})$  de classe  $\mathcal{C}^1$ , telle que  $\forall t \in \mathbb{R}$ , x'(t) = Ax(t) et lim x(t) = 0.

Montrer qu'il existe une forme linéaire non nulle  $\ell$ , telle que  $\forall t \in \mathbb{R}, \ \ell(x(t)) = 0$ .

## Exercice 3 ★★

Soient I un intervalle de  $\mathbb{R}$  et  $f: \mathbb{I} \to \mathbb{R}^2$  une application continue. Soit D une droite de  $\mathbb{R}^2$  et  $P^+$  et  $P^-$  les demi-plans de  $\mathbb{R}^2$  délimités par D. On suppose qu'il existe  $(a,b) \in \mathbb{I}^2$  tel que  $f(a) \in P^+$  et  $f(b) \in P^-$ . Montrer qu'il existe  $c \in \mathbb{I}$  tel que  $f(c) \in \mathbb{D}$ .

#### Exercice 4 \*\*

Soit  $(a, b) \in \mathbb{R}^2$  tel que a < b. Soient f et g deux applications de [a, b] dans  $\mathbb{R}$  continues sur [a, b] et dérivables sur [a, b]. On pose pour  $x \in [a, b]$ :

$$\Delta(x) = \begin{vmatrix} f(a) & f(b) & f(x) \\ g(a) & g(b) & g(x) \\ 1 & 1 & 1 \end{vmatrix}$$

- **1.** Montrer que  $\Delta$  est continue sur [a,b], dérivable sur ]a,b[ et calculer  $\Delta'(x)$  pour  $x \in ]a,b[$ .
- **2.** En déduire qu'il existe  $c \in ]a, b[$  tel que

$$(g(b) - g(a)) f'(c) = (f(b) - f(a)) g'(c)$$

### Exercice 5 ★★

Soient E un espace vectoriel de dimension finie et  $f: \mathbb{R} \to E$  dérivable en 0 telle que

$$\forall x \in \mathbb{R}, \ f(2x) = 2f(x)$$

Montrer que f est linéaire.

#### Exercice 6 \*\*\*

On munit  $\mathcal{M}_n(\mathbb{C})$  d'une norme d'algèbre  $\|\cdot\|$ . On se donne  $A \in \mathcal{M}_n(\mathbb{C})$ .

- 1. On suppose dans cette question que ||A|| < 1. Montrer que  $I_n A$  est inversible et que  $(I_n A)^{-1} = \sum_{k=0}^{+\infty} A^k$ .
- 2. Soit  $z \in \mathbb{C}$  tel que |z| > ||A||. Montrer que  $zI_n A$  est inversible et exprimer son inverse sous la forme d'une somme de série.
- **3.** Soit  $r \in \mathbb{R}$  tel que r > ||A||. Justifier que

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (re^{i\theta})^{k+1} (re^{i\theta} I_n - A)^{-1} d\theta = A^k$$

**4.** Justifier que

$$\chi_{\mathbf{A}}(\mathbf{A}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} r e^{i\theta} \operatorname{com}(r e^{i\theta} - \mathbf{A})^{\mathsf{T}} d\theta$$

**5.** En déduire une démonstration du théorème de Cayley-Hamilton.

## Exercice 7 ★★

On considère deux matrices A et B de  $\mathcal{M}_n(\mathbb{K})$  qui commutent.

- **1.** Montrer que A commute avec exp(B).
- **2.** On considère l'application  $\varphi$ :  $t \in [0,1] \mapsto \exp(t(A+B))\exp(-tB)\exp(-tA)$ . Justifier que  $\varphi$  est dérivable et calculer sa dérivée.
- 3. En déduire que exp(A + B) = exp(A) exp(B).

# Sommes de Riemann

#### **Exercice 8**

Déterminer un équivalent de  $u_n = \sqrt{1}\sqrt{n-1} + \sqrt{2}\sqrt{n-2} + \dots + \sqrt{n-2}\sqrt{2} + \sqrt{n-1}\sqrt{1}$  quand n tend vers  $+\infty$ .

Exercice 9 X PC 2012

Montrer que

$$X^{2n} - 1 = (X^2 - 1) \prod_{k=1}^{n-1} \left( X^2 - 2X \cos \frac{k\pi}{n} + 1 \right)$$

En déduire pour r > 1

$$\int_{-\pi}^{\pi} \ln \left| 1 - re^{i\theta} \right| \, d\theta$$

#### Exercice 10

- 1. On pose  $S_n = \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right)$  pour  $n \in \mathbb{N}^*$ . Montrer que la suite  $(S_n)$  converge vers un réel à préciser.
- **2.** On pose  $u_n = \left(\frac{4^n n^n n!}{(2n)!}\right)^{\frac{1}{n}}$  pour  $n \in \mathbb{N}^*$ . Montrer que la suite  $(u_n)$  converge vers un réel à préciser.

# Exercice 11 ★★★

Soient  $f:[0,1]\to\mathbb{R}$  une fonction continue et  $g:[[0,1]\to\mathbb{R}$  une fonction de classe  $\mathcal{C}^1$ . Démontrer que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k+1}{n}\right) = \int_0^1 f(t)g(t) dt$$

# Formules de Taylor

#### Exercice 12

Soit f une fonction de classe  $\mathcal{C}^2$  sur [0,1] nulle en 0. On pose  $S_n = \sum_{k=0}^n f\left(\frac{k}{n^2}\right)$  pour  $n \ge 1$ . Etudier la limite de  $(S_n)$ . On pourra utiliser l'inégalité de Taylor-Lagrange.

## Exercice 13 ★★

Soit  $f: \mathbb{R}_+ \to \mathbb{R}$  de classe  $\mathcal{C}^{\infty}$  tel que f(0) = 1 et  $\forall x \ge \frac{1}{2}$ , f(x) = 0.

- 1. Montrer que  $\forall n \in \mathbb{N}$ ,  $\sup_{\mathbb{R}_+} |f^{(n)}| \ge 2^n n!$ .
- **2.** Montrer que pour  $n \ge 1$ ,  $\sup_{\mathbb{R}_+} |f^{(n)}| > 2^n n!$ .

#### Exercice 14 \*\*

Soit  $f: \mathbb{R} \to \mathbb{R}$  de classe  $\mathcal{C}^{\infty}$  telle que  $\forall n \in \mathbb{N}, f^{(n)}(0) = 0$ . On suppose de plus que :

$$\exists \lambda > 0, \forall n \in \mathbb{N}, \sup_{\mathbb{R}} |f^{(n)}| \le \lambda^n n!$$

Montrer que f est nulle sur  $\left] -\frac{1}{\lambda}; \frac{1}{\lambda} \right[$  puis sur  $\mathbb{R}$ .

## Exercice 15 ★★

Formule de Taylor-Lagrange

Soit f une fonction de classe  $C^n$  sur [a,b] et n+1 fois dérivable sur ]a,b[. Montrer qu'il existe  $c \in ]a,b[$  tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

On appliquera le théorème de Rolle à la fonction  $\phi$  définie par

$$\varphi(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b - x)^{k} + A \frac{(b - x)^{n+1}}{(n+1)!}$$

avec une constante A bien choisie.

#### Exercice 16 ★★

On pose  $u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$  pour  $n \ge 1$ .

- **1.** Soit  $f: x \mapsto \ln(1+x)$ . Déterminer par récurrence une expression de  $f^{(n)}$  pour tout  $n \in \mathbb{N}^*$ .
- 2. En appliquant l'inégalité de Taylor-Lagrange entre 0 et 1, montrer que  $|u_n \ln(2)| \le \frac{1}{n+1}$  pour tout  $n \in \mathbb{N}^*$ .
- 3. En déduire la convergence et la limite de  $(u_n)$ .

# Exercice 17 ★★

Inégalité de Hadamard

Soit f une fonction de classe  $\mathcal{C}^2$  sur  $\mathbb{R}$ . On suppose que f, f' et f'' sont bornées sur  $\mathbb{R}$  et on pose

$$\mathbf{M}_0 = \sup_{t \in \mathbb{R}} |f(t)| \qquad \qquad \mathbf{M}_1 = \sup_{t \in \mathbb{R}} |f'(t)| \qquad \qquad \mathbf{M}_2 = \sup_{t \in \mathbb{R}} |f''(t)|$$

On souhaite montrer que  $M_1 \le 2\sqrt{M_0 M_2}$ .

- 1. Démontrer l'inégalité demandée dans le cas où  $M_0 = 0$  ou  $M_2 = 0$ . Dans la suite de l'énoncé on supposera  $M_0$  et  $M_2$  strictement positifs.
- **2.** Soient  $x \in \mathbb{R}$  et h > 0. Justifier que

$$|f(x+h) - f(x) - f'(x)h| \le \frac{M_2 h^2}{2}$$

3. En déduire que

$$|f'(x)| \le \frac{2M_0}{h} + \frac{M_2h}{2}$$

- **4.** Soient a et b deux réels strictement positifs. On pose  $g: t \in \mathbb{R}_+^* \mapsto \frac{a}{t} + bt$ . Étudier les variations de g sur  $\mathbb{R}_+^*$ . En déduire que g admet un minimum sur  $\mathbb{R}_+^*$  et calculer celui-ci en fonction de a et b.
- 5. Conclure.

#### Exercice 18 \*\*\*

**Fonctions absolument monotones** 

Soient R > 0 et  $f: I \to \mathbb{R}$  de classe  $\mathcal{C}^{\infty}$  avec I = ] – R, R[. On suppose que

$$\forall n \in \mathbb{N}, \forall x \in I, f^{(n)}(x) \ge 0$$

Pour  $n \in \mathbb{N}$  et  $x \in I$ , on pose  $S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$  et  $R_n(x) = f(x) - S_n(x)$ .

- **1.** Soit  $r \in ]0, \mathbb{R}[$  et  $x \in ]-r, r[$ . Montrer que  $|\mathbb{R}_n(x)| \le \frac{|x|^{n+1}}{r^{n+1}} \mathbb{R}_n(r)$  pour tout  $n \in \mathbb{N}$ .
- **2.** En déduire que pour tout  $x \in I$ ,  $(S_n(x))_{n \in \mathbb{N}}$  converge vers f(x).

#### Exercice 19 \*\*\*

Soit f une fonction de classe  $\mathcal{C}^2$  sur [0,1] nulle en 0. On pose  $S_n = \sum_{k=0}^n f\left(\frac{k}{n^2}\right)$  pour  $n \ge 1$ . Etudier la limite de  $(S_n)$ . On pourra utiliser l'inégalité de Taylor-Lagrange.

# Exercice 20

On considère la fonction  $g: x \in ]0,1] \mapsto x \ln(x)$ .

- **1.** Montrer que g est prolongeable par continuité en 0. On note encore g ce prolongement.
- **2.** Etudier brièvement les variations de g sur [0, 1].
- **3.** On définit la suite  $(t_n)_{n\in\mathbb{N}}$  par  $t_0\in \left]\frac{e^{-1}}{3}, e^{-1}\right[$  et  $t_{n+1}=-g(t_n)$  pour tout  $n\in\mathbb{N}$ . Montrer que pour tout  $n\in\mathbb{N}$ ,  $t_0\leq t_n\leq e^{-1}$ .
- **4.** Montrer que pour tout  $x \in [t_0, e^{-1}]$ ,

$$|g(x) - g(e^{-1})| \le \frac{|x - e^{-1}|^2}{2t_0}$$

**5.** En déduire que pour tout  $n \in \mathbb{N}^*$ ,

$$|t_n - e^{-1}| \le 2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^n}$$

**6.** En déduire la limite de la suite  $(t_n)$ .

# Courbes paramétrées

## Exercice 21 ★★

Etudier la courbe paramétrée par

$$\begin{cases} x(t) = \frac{t}{t^2 - 1} \\ y(t) = \frac{t^2}{t - 1} \end{cases}$$

puis montrer qu'elle admet un point double en lequel ses tangentes sont orthogonales.

# Exercice 22 ★

Soit  $\mathcal{C}$  la courbe paramétrée par  $\begin{cases} x(t) = t \ln t \\ y(t) = \frac{\ln t}{t} \end{cases}, t \in \mathbb{R}_+^*.$ 

- 1. Comparer M(t) et  $M(\frac{1}{t})$ . En déduire le domaine d'étude.
- **2.** Achever l'étude et représenter  $\mathcal{C}$ .