

Lecture 01: A Quick Tutorial on MATLAB

ELEC 372 – Section UUA: Fundamentals of Control Systems

Course instructor: Prof. Walter Lucia

Tutorial TA: Mehran Attar¹

Contents

- Overview of MATLAB Environment
- Matrices in MATLAB
- Plotting in MATLAB
- Flow Control in MATLAB (if, else, for, while)
- Functions in MATLAB (create a function in MATLAB)
- MATLAB Simulink

Creating m-files (scripts) in MATLAB

Variables in MATLAB

- Variable names are case sensitive.
- Variable names must start with a letter and can be followed by letters, digits and underscores. (Error: Invalid expression)
- Variables will be saved in the workspace.

Examples:

```
>> X = 2;
>> y_1_2 = 0.001;
>> New_var = 12;
```

MATLAB Relational Operators

Operation	Operator	
Less than	<	
Less than or equal	<=	
Greater than	>	
Greater than or equal	>=	
Equal to	==	
Not equal to	~=	

MATLAB Logical Operators

Operation	Operator
Not	~
And	&
Or	

- MATLAB treats all variables as matrices.
- Vectors are special forms of matrices and contain only one row OR one column.
- Scalars are matrices with only one row AND one column

Generating matrices

Example 1:

$$x = 23$$

$$>> x = 23;$$

Example 2: (row vector)

$$y = [1 \ 2 \ -3]$$

$$>> y = [1, 2, -3];$$

Example 3: (column vector)

$$z = \begin{bmatrix} -10 \\ -0.5 \\ 2.5 \end{bmatrix}$$

$$>> x = [-10; -0.5; 2.5];$$

Example 4: (Matrix)

$$x = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$>> x = [1, 2, 3; 4, 5, 6; 7, 8, 9];$$

Matrix addition

Increment all the elements of a matrix by a single value

Adding to matrices

Matrix multiplication

Matrix multiplication

Element wise multiplication

```
>> a = [1,2;3,4];

>> b = [1,½;1/3,¼];

>> c = a.*b

c =

1 1

1 1
```

Matrix element wise operations

Element wise multiplication

Element wise power operation

Matrix manipulation functions

zeros matrix

ones matrix

>> ones(3, 4)

Identity matrix

Other functions

Function	Description		
det(A)	Determinant of matrix A		
inv(A)	Inverse of matrix A		
eig(A)	evaluates eigenvalues and eigenvectors of matrix A		
rank(A)	rank of matrix A		

Indexing in matrices

- In MATLAB, indexes start at 1.
- Arrays can be sliced by using another array as an index.
- An array slice makes a copy of the underlying array, which means that the data values are copied to a new location and subsequent updates do not change the original matrix.

1 2 3 4

1 10 20 30 40

Block_matrix = 2 110 120 130 140

3 210 220 230 240

Indexing and slicing

	1	2	3	4
1	10	20	30	40
2	110	120	130	140
3	210	220	230	240

	1	2	3	4
1	10	20	30	40
2	110	120	130	140
3	210	220	230	240

Block	matrix	(1:2,	2:3)
_			

	1	2	3	4
1	10	20	30	40
2	110	120	130	140
3	210	220	230	240

It is also possible to assign to slices

	1	2	3	4
1	10	20	30	40
2	110	-1	-1	140
3	210	220	230	240

$$Block_matrix(2, 2:3) = -1$$

Plotting in MATLAB

2D plotting

plot sin(x) and cos(x) over $[0, 2\pi]$, on the same figure with different colors and line styles

```
x = 0:0.01:2*pi;
y = cos(x);
z = sin(x);

figure;
plot(x, y, '-r')
hold on
plot(x, z, '--b')
hold off
grid on

legend('cos', 'sin')
xlabel('x')
ylabel('y and z')
title('sample plot')
```


Vector generation methods

- 1. Using colon operator
 - X = 0:0.01:2*pi;
- 2. Using linspace function
 X = linspace(0, 2*pi, 1000)

Plotting in MATLAB

Subplots in MATLAB

```
figure;
subplot (2, 2, 1)
plot(x, sin(2*x), '-r')
xlabel('x')
ylabel('y')
title('y = sin(2x)')
grid on
subplot(2, 2, 2)
plot(x, tanh(x), '-b')
xlabel('x')
ylabel('y')
title('y = tanh(x)')
grid on
subplot(2, 2, 3)
plot(x, cos(2*x), '--r')
xlabel('x')
ylabel('y')
title('y = cos(2x)')
grid on
subplot(2, 2, 4)
plot(x, sqrt(x), '--b')
xlabel('x')
ylabel('y')
title('y = x^{1/2}')
grid on
```


Flow Control in MATLAB

For loops

for loop to repeat specified number of times

Syntax

Example

Flow Control in MATLAB

If, elseif, else loops

Execute statements if condition is true

Syntax

```
if expression
    statements
elseif expression
    statements
else
    statements
end
```

Example

```
for i = 1:10
   if i >= 5
        disp('True')
   else
        disp('False')
   end
end
```

Example

```
for i = 1:10
   if i <= 2
        disp('i <= 2')
   elseif i>2 & i<=6
        disp('i>2 & i<=6')
   else
        disp('i>6')
   end
end
```

Flow Control in MATLAB

while loops

while loop to repeat when condition is true

Syntax

```
while expression statements
```

Example

```
n = 10;
while n > 2

n = n-1;
    disp('n is still greater than 2')
end
disp(n)
```

19/23

Functions in MATLAB

How to define a function in MATLAB

Syntax

```
function [y1,...,yN] = myfun(x1,...,xM)
statements
```

declares a function named myfun that accepts inputs x1,...,xM and returns outputs y1,...,yN.

Example

Define a function that accepts an input vector, calculates the average of the values, and returns a single result.

```
function ave = average(x)

ave = sum(x(:))/size(x,2);

end
```

MATLAB Simulink

Simulink environment (open/create Simulink file)

Simulink® is a block diagram environment for multi domain simulation and Model-Based Design. It supports system-level design, simulation, automatic code generation, and continuous test and verification of embedded systems.

MATLAB Simulink

Simulink environment

implement and simulate the behavior of a differential equation in response to a step function

References

https://www.mathworks.com/help/matlab/getting-started-with-matlab.html

