FONDAMENTI DI INTELLIGENZA ARTIFICIALE 13 Febbraio 2024 - Tempo a disposizione: 2 h – Risultato: 32/32 punti

Esercizio 1 (6 punti)

Si formalizzino le seguenti frasi in logica dei predicati del I ordine:

- 1. Tutti i soci dell'associazione a1 sono ingegneri o artisti (or non esclusivo)
- 2. Tutti i soci dell'associazione a2 non sono ingegneri
- 3. Giovanni non è un artista
- 4. Giovanni è socio dell'associazione a2
- 5. Per ogni ingegnere esiste un artista che lo ammira.

Le si trasformi in clausole e si usi la risoluzione per dimostrare che (query):

Query: Giovanni non è un socio di a1.

Si usino i predicati:

socio_a1(X), X è socio dell'associazione a1
artista(X), X è un artista
ammira(X,Y), X ammira Y

socio_a2(X), X è socio dell'associazione a2
ingegnere(X), X è un ingegnere

e la costante: giovanni.

Esercizio 2 (5 punti)

Si consideri il seguente albero di gioco in cui il primo giocatore è MAX.

- a) Si indichi come l'algoritmo min-max risolve il problema indicando il valore con cui viene etichettato il nodo iniziale e la mossa selezionata dal primo giocatore (arco a sinistra o a destra).
- b) Si mostrino poi i tagli che l'algoritmo alfa-beta consente, indicando gli archi che verranno tagliati.

Esercizio 3 (5 punti)

Si scriva un predicato Prolog **selezMax(X,L,Lout)** che, dato un numero intero **X** e una lista di numeri interi **L**, ha successo con **Lout** lista che contiene tutte le occorrenze di numeri in **L** maggiori di **X**. Esempi:

- **?- selezMax(1, [1,4,5,4,1,1], L).** yes L=[4,5,4]
- ?- selezMax (2, [1,1,1], L). yes L=[]
- ?- selezMax(5, [4,1,1], [4]). no

Esercizio 4 (5 punti)

Dato il seguente programma Prolog lastLists(L1,L2):

lastLists([],[]).

lastLists([[]|T], T1):- !,lastLists(T,T1).

lastLists([X|T], [Z|T1]):-last(Z,X), lastLists(T,T1).

last(X,[X]):-!.

last(X,[_|T]):-last(X,T).

che, data una lista di liste di interi **L1**, restituisce in uscita una lista **L2** contenente tutti gli elementi in ultima posizione delle liste che compongono **L1** (se una lista in **L1** è vuota non verrà considerata), si mostri l'albero SLD generato dal goal:

?- lastLists([[3],[4,9]],[3,9]).

indicando eventuali rami di fallimento e quelli tagliati da cut.

Esercizio 5 (6 punti)

Si consideri il seguente grafo, dove A è il nodo iniziale e G il nodo goal, e il numero associato agli archi è il costo dell'operatore per andare dal nodo di partenza al nodo di arrivo dell'arco. Vicino ad ogni nodo, in un quadrato, è indicata inoltre la stima euristica della sua distanza dal nodo goal G:

Si applichi la ricerca **A*** su alberi (non tenendo quindi traccia dei nodi già visitati che non vengono automaticamente eliminati) **disegnando l'albero generato dinamicamente.** In caso di non determinismo si selezionino i nodi da espandere secondo l'ordine alfabetico. Si indichino:

- i nodi espansi nell'ordine di espansione;
- i nodi sulla strada della soluzione e il costo della soluzione;

Si indichi per la ricerca A^* la condizione sulla stima euristica h(n) che garantisce l'ottimalità di A^* su alberi e se è soddisfatta in questo caso.

Esercizio 6 (5 punti)

Dopo avere brevemente introdotto l'algoritmo di Arc-Consistency, si disegni il grafo per questo CSP e si faccia vedere l'applicazione di AC sul problema in esame.

A,B,C,D::[1, 2, 3, 4, 5, 6, 7]

A<B-3

A!=C

D=B+2

C<D-4

13 Febbraio 2024 - Soluzioni

Esercizio 1

Rappresentazione in FOL:

- 1. \forall X socio_a1(X) -> (ingegnere(X) or artista(X)).
- 2. ∀ X socio_a2(X) -> not ingegnere(X).
- 3. not artista(giovanni).
- 4. socio_a2(giovanni).
- 5. \forall X ingegnere(X) -> \exists Y artista(Y) and ammira(Y,X)

Query: not socio_a1(giovanni).

Clausole:

C1: not socio_a1(X) or ingegnere(X) or artista(X).

C2: not socio_a2(X) or not ingegnere(X).

C3: not artista(giovanni).

C4: socio_a2(giovanni).

C5: $\forall X \exists Y (not ingegnere(X) or (artista(Y) and ammira (Y,X)))$

C5a: not ingegnere(X) or artista(p(X)) funzione di SKOLEM
C5b: not ingegnere(X) or ammira(p(X), X) funzione di SKOLEM

QueryNeg: socio_a1(giovanni).

Risoluzione:

QueryNeg + C1 = C6: ingegnere(giovanni) or artista(giovanni).

C6 + C3 = C7: ingegnere(giovanni) C7 + C2 = C8: not socio a2(giovanni)

C8 + C4 = contraddizione! dimostrato

Esercizio 2

Min max:

Alfa Beta:

Esercizio 3

 $selezMax(_,[],[]):-!.\\ selezMax(X,[Y|T],[Y|L]):-Y>X,!,selezMax(X,T,L).\\ selezMax(X,[_|T],L):-selezMax(X,T,L).$

Esercizio 4

Esercizio 5 Con A*:

NODI ESPANSI: ABCDFEDEFEG

STRADA DELLA SOLUZIONE: ADFEG (costo 7)

La condizione sulla funzione euristica stimata h^* (n) che garantisce l'ottimalità della ricerca è la condizione di ammissibilità che deve valere per ogni nodo dell'albero e che è verificata se la h^* (n) è ottimista cioè h^* (n) <= h(n). Tale condizione è soddisfatta in questo caso.

Esercizio 6 Vedi slide del corso per spiegare Arc-Consistency.

	Α	В	С	D
1 iteraz.	[1, 2, 3, 4, 5, 6, 7]	[1, 2, 3, 4, 5, 6, 7]	[1, 2, 3, 4, 5, 6, 7]	[1, 2, 3, 4, 5, 6, 7]
A <b-3< td=""><td>[1,2,3]</td><td></td><td></td><td></td></b-3<>	[1,2,3]			
B>A+3		[5, 6, 7]		
A!=C				
C!=A				
D=B+2				[7]
B=D-2		[5]	[4 0]	
C <d-4< td=""><td></td><td></td><td>[1,2]</td><td></td></d-4<>			[1,2]	
D>C+4	[4 2 2]	(e)	[4 2]	[-1]
2 iteraz.	[1, 2, 3]	[5]	[1, 2]	[7]
A <b-3 B>A+3</b-3 	[1]			
A!=C				
C!=A			[2]	
D=B+2			[-]	
B=D-2				
C <d-4< td=""><td></td><td></td><td></td><td></td></d-4<>				
D>C+4				
3 iteraz.	[1]	[5]	[2]	[7]

Nessuna ulteriore cancellazione dai domini. L'assegnazione dell'unico valore a ogni variabile è la soluzione.