Final Project - Small Data Training for Medical Images

R07922018 資工所碩一 王柏翔 R07922059 資工所碩一 陳 毅 R07922135 資工所碩一 顔百謙

December 13, 2018

隊名及隊員

隊名:NTU_r07922018_雷姆包伯歐姆蛋

隊員

王柏翔: R07922018 資工所碩一
 陳 毅: R07922059 資工所碩一
 顔百謙: R07922135 資工所碩一

所選擇的題目

Small Data Training for Medical Images

Problem Study

問題描述

在現代醫療領域中,為了觀察病人的病徵,醫生們會借助各種精密儀器來拍攝大量醫學影像,來判斷病人的病徵,例如:X 光片、電腦斷層掃描(Computerized tomography, CT)、正子發射斷層掃描(PET, Positron emission tomography)等。

若能<mark>透過機器學習以及這些大量的醫學影像,建立專門用於判斷病徵的模型</mark>,就有機會可以節省醫生問診的時間(醫生不需要親自去解讀醫學影像,只需要知道病徵,然後給予處方即可)。

資料描述

1. Training data 共有78468筆資料,其格式如下表。

Image Index	Labels	Follow- up #	Patient ID	Patient Age		View Position
00001522_000.png	00010	0	1522	50	М	PA
00001522_001.png	10010	1	1522	50	М	PA
00001522_002.png	10000	2	1522	50	М	AP
00001523_000.png		0	1523	51	F	PA
00001523 001.png		1	1523	51	F	PA

Figure 1: Training data前7個欄位

共有9個欄位,分別為

- (a) Image Index:醫療影像的檔案名稱。
- (b) Labels:病徵的標示,共有14個0/1以空白相隔,分別代表是否罹患某病徵,0代表無病徵,1代表有病徵。若該醫療影像未經過人工標示,則此欄位為空欄位。

(c) Follow-up #:追蹤次數。(d) Patient ID:病人的編號。(e) Patient Age:病人的年齡。

(f) Patient Gender:病人的性別,M代表男性,F代表女性。

(g) View Position: 查看位置。

(h) OriginalImage[Width,Height]:原始影像的大小。

(i) OriginalImagePixelSpacing[x,y]:原始影像的像素間距。

2. Testing data

共有33652筆資料,每一筆資料都僅有一個欄位:醫療影像的檔案名稱。

3. Submission format

模型要根據輸入的醫療影像,預測該病人得到各種病徵的機率(共14種病徵)。

	aisease r	iame is ii	istea in <u>c</u> i	iassname.i	ΙΧτ
	Cardiom	Effusio	Infiltrati		
Atelectasis	egaly	n	on	Mass	•••
0.176	0.176	0.176	0.236	0.536	
0.262	0.126	0.266	0.116	0.226	
0.521	0.521	0.521	0.127	0.521	
0.313	0.723	0.319	0.223	0.363	
0.523	0.523	0.523	0.523	0.512	
		γ			
	The p	robabilit	ies of ha	ving the	
				U	
	0.176 0.262 0.521 0.313	Atelectasis egaly 0.176	Atelectasis egaly n 0.176	Atelectasis Cardiom egaly Effusio n Infiltration 0.176 0.176 0.176 0.236 0.262 0.126 0.266 0.116 0.521 0.521 0.521 0.127 0.313 0.723 0.319 0.223 0.523 0.523 0.523 0.523 The probabilities of ha	Atelectasis egaly n on Mass 0.176 0.176 0.176 0.236 0.536 0.262 0.126 0.266 0.116 0.226 0.521 0.521 0.521 0.127 0.521 0.313 0.723 0.319 0.223 0.363 0.523 0.523 0.523 0.523 0.512 The probabilities of having the diseases, these values should

Figure 2: Submission format

資料分析

1. Labels: 78468筆資料中, 共有68466筆未標籤的資料, 10002筆已標籤的資料。其所表示的病徵如下表

Label index	病徴 (英文)	病徴(中文)
0	Atelectasis	肺膨脹不全
1	Cardiomegaly	心臟肥大
2	Effusion	胸腔積液
3	Infiltration	肺浸潤
4	Mass	腫塊
5	Nodule	肺結節
6	Pneumonia	肺炎
7	Pneumothorax	氣胸
8	Consolidation	一處或多處的實變
9	Edema	水腫
10	Emphysema	肺氣腫
11	Fibrosis	纖維化
12	Pleural Thickening	胸膜增厚
13	Hernia	肺突出、肺疝氣

Table 1: 病徵對照表

Figure 3為他人製作的各病徵常見程度的統計表,其中,Infiltration、Effusion以及Atelectasis較為常見,而Hernia較為罕見。

Figure 3: 病徵常見程度統計表

- 2. Follow-up #:統計不同追縱次數的人數,結果如Table 2。約略一半的人,最多只會追蹤3次以下。
- 3. Patient Age: 平均值46.77,標準差16.93。
- 4. Patient Gender:男女比例約為14:11。

待做分析

- 1. 病徵間相關性:併發症的可能性。
- 2. 病徵與追蹤次數的關聯性:不同病徵需要追蹤的次數可能不同。
- 3. 病徵與年齡的關聯性:不同年齡的人,所會罹患的病徵可能不同。

Follow-up #	人數
0	21528
1	9317
2	6404
3	4955
4	4010
5	3363
6	2804
7	2377
8	2041
9	1766
10次以上	19903

Table 2: 追蹤次數人數對照表

参考資料

- 1. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
 - Dataset: 有8種症狀,共108948張胸腔X光圖,其中84312張無症狀,剩下24636張至少有一個症狀。每一張圖都有標明症狀(如果有)或是無症狀。其中有983張圖帶有標示症狀特張位置的bounding box,但是不用做training資料之用,僅用來確認ground truth。
 - Model:使用multi-class DCNN,其結構如下:
 - (a) Pretrained model:使用ImageNet來pretrained過的model共四個,AlexNet、GoogLeNet、VGGNet-16以及 ResNet-50,移除各model中,Fully Connected層後的所有layers。其中,ResNet-50辨識率較高。
 - (b) Transition layer: 統合各種pretrain model的convolution層為統一shape的層, shape=(S, S, D), 其中S=8, 16, 32. D為各pretrain model最後的層數。
 - (c) Global pooling layer: 直接省略Fully-Connected, convlution的各層變為單一點,輸出shape=D. 使用LSE(Log-Sum-Exp), r=10時效果最佳。
 - (d) Prediction layer: 將D維轉為C (the number of classes) 維,預測各class的症狀機率多寡。Transition layer的輸出和這一層的權重相乘會得到一組表示各症狀在data中各病症的likelihood heatmap,有peak的地方代表有較高的機率有症狀。
 - (e) Loss layer: Cross Entropy Loss,但是由於資料的positive/negative不均,使用weighted CEL.

Pre-trained Models

Keras内建提供了許多由ImageNet資料集的pre-trained models,如下:

- Xception
- VGG16
- VGG19
- ResNet50
- InceptionV3
- InceptionResNetV2
- MobileNet
- DenseNet
- NASNet
- MobileNetV2

而關於使用胸部X光進行機器學習的論文,也提到一些可使用的網路架構,如:CheXNet、XNet等。

- CheXNet implementation in PvTorch
- X-Net: Classifying Chest X-Rays Using Deep Learning

Proposed Method

Preprocess

- 1. 年齡過高(大於145歲)或年齡過低(低於16歲)
- 2. 複診次數與年齡的關係不合常理,一個病患的複診次數在年齡增長後,反而變少

Model

- Supervised
- GAN Data Augmentation

以下為我們最初版實作的model,先將原始影像大小調整為224x224,再送進去四層的CNN model中,最後通過兩層NN,預測出14個病徵分別可能罹患的機率值。

conv2d_5 (Conv2D) (None, 111, 111, 64) 640 batch_normalization_4 (Batch (None, 111, 111, 64) 256 leaky_re_lu_4 (LeakyReLU) (None, 111, 111, 64) 0 max_pooling2d_4 (MaxPooling2 (None, 55, 55, 64) 0 dropout_4 (Dropout) (None, 55, 55, 64) 0 conv2d_6 (Conv2D) (None, 53, 53, 128) 73856 batch_normalization_5 (Batch (None, 53, 53, 128) 512 leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584 batch normalization 6 (Batch (None, 24, 24, 128) 512
leaky_re_lu_4 (LeakyReLU) (None, 111, 111, 64) 0 max_pooling2d_4 (MaxPooling2 (None, 55, 55, 64) 0 dropout_4 (Dropout) (None, 55, 55, 64) 0 conv2d_6 (Conv2D) (None, 53, 53, 128) 73856 batch_normalization_5 (Batch (None, 53, 53, 128) 512 leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
max_pooling2d_4 (MaxPooling2 (None, 55, 55, 64) 0 dropout_4 (Dropout) (None, 55, 55, 64) 0 conv2d_6 (Conv2D) (None, 53, 53, 128) 73856 batch_normalization_5 (Batch (None, 53, 53, 128) 512 leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
dropout_4 (Dropout) (None, 55, 55, 64) 0 conv2d_6 (Conv2D) (None, 53, 53, 128) 73856 batch_normalization_5 (Batch (None, 53, 53, 128) 512 leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
conv2d_6 (Conv2D) (None, 53, 53, 128) 73856 batch_normalization_5 (Batch (None, 53, 53, 128) 512 leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
batch_normalization_5 (Batch (None, 53, 53, 128) 512 leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
leaky_re_lu_5 (LeakyReLU) (None, 53, 53, 128) 0 max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
max_pooling2d_5 (MaxPooling2 (None, 26, 26, 128) 0 dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
dropout_5 (Dropout) (None, 26, 26, 128) 0 conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
conv2d_7 (Conv2D) (None, 24, 24, 128) 147584
batch normalization 6 (Batch (None. 24, 24, 128) 512
512
leaky_re_lu_6 (LeakyReLU) (None, 24, 24, 128) 0
max_pooling2d_6 (MaxPooling2 (None, 12, 12, 128) 0
dropout_6 (Dropout) (None, 12, 12, 128) 0
conv2d_8 (Conv2D) (None, 10, 10, 128) 147584
batch_normalization_7 (Batch (None, 10, 10, 128) 512
leaky_re_lu_7 (LeakyReLU) (None, 10, 10, 128) 0
max_pooling2d_7 (MaxPooling2 (None, 5, 5, 128) 0
dropout_7 (Dropout) (None, 5, 5, 128) 0
flatten_1 (Flatten) (None, 3200) 0
dense_1 (Dense) (None, 96) 307296
batch_normalization_8 (Batch (None, 96) 384
activation_1 (Activation) (None, 96) 0
dropout_8 (Dropout) (None, 96) 0
dense_2 (Dense) (None, 14) 1358

Total params: 680,494 Trainable params: 679,406 Non-trainable params: 1,088

Figure 4: 模型架構