

FIGURE 1

PANEL A

PANEL B

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

1 AAAACCCCAA AACCCAAAAA CCCCTTTAG AGCCCTGCAG TTGGAATAT
51 AACCTCAGTA TTAATAAGCT CAGATTTAA ATATTAATTA CAAAACCTAA
101 ATGGAGGTTG ATGTTGATAA TCAAGCTGAT AATCATGGCA TTCACTCAGC
151 TCTTAAGACT TGTGAAGAAA TTAAAGAAGC TAAAACGTTG TACTCTTGG
201 TCCAGAAAGT TATTAGATGA AGAAATCAAT CTCAAAGTCA TTATAAAGAT
251 TTAGAAGATA TTAAAATATT TGCGCAGACA AATATTGTTG CTACTCCACG
301 AGACTATAAT GAAGAAGATT TTAAAGTTAT TGCAAGAAAA GAAGTATTT
351 CAACTGGACT AATGATCGAA CTTATTGACA AATGCTTAGT TGAACCTCTT
401 TCATCAAGCG ATGTTTCAGA TAGACAAAAA CTTCAATGAT TTGGATTTC
451 ACTTAAGGGA AATCAATTAG CAAAGACCCA TTTATTAACA GCTCTTCAA
501 CTCAAAAGCA GTATTCTT CAAGACGAAT GGAACCAAGT TAGAGCAATG
551 ATTGGAAATG AGCTCTTCCG ACATCTCTAC ACTAAATATT TAATATTCCA
601 GCGAACTTCT GAAGGAACTC TTGTTCAATT TTGCGGGAAAT AACGTTTTG
651 ATCATTGAA AGTCAACGAT AAGTTGACA AAAAGAAAAA AGGTGGAGCA
701 GCAGACATGA ATGAACCTCG ATGTTGATCA ACCTGCAAAT ACAATGTCAA
751 GAATGAGAAA GATCACTTTC TCAACAAACAT CAACGTGCCG AATTGGAATA
801 ATATGAAATC AAGAACCGAG ATATTTATT GCACTCATTT TAATAGAAAT
851 AACCAATTCT TCAAAAAGCA TGAGTTGTG AGTAACAAAA ACAATATTTC
901 AGCGATGGAC AGAGCTCAGA CGATATTCAC GAATATATTAGATTTAATA
951 GAATTAGAAA GAAGCTAAAA GATAAGGTTA TCGAAAAAAAT TGCCTACATG
1001 CTTGAGAAAG TCAAAGATT TAACCTCAAC TACTATTAA CAAAATCTT
1051 TCCTCTTCCA GAAAATTGGC GGGAACGGAA ACAAAAAATC GAAAACCTGA
1101 TAAATAAAAC TAGAGAAGAA AAGTCGAAGT ACTATGAAGA GCTGTTAGC
1151 TACACAACTG ATAATAAATG CGTCACACAA TTTATTAATG AATTTTCTA
1201 CAATATACTC CCCAAAGACT TTTGACTGG AAGAAACCGT AAGAATTTC
1251 AAAAGAAAAGT TAAGAAATAT GTGGAACCAA ACAAGCATGA ACTCATTAC
1301 AAAAACTTAT TGCTTGAGAA GATCAATACA AGAGAAATAT CATGGATGCA
1351 GGTTGAGACC TCTGCAAAGC ATTTTATTAA TTTGATCAC GAAAACATCT
1401 ACGTCTTATG GAAATTGCTC CGATGGATAT TCGAGGATCT CGTCGTCTCG
1451 CTGATTAGAT GATTTTCTA TGTCACCGAG CAACAGAAAA GTTACTCCAA
1501 AACCTATTAC TACAGAAAGA ATATTGGGA CGTCATTATG AAAATGTCAA
1551 TCGCAGACTT AAAGAAGGAA ACGCTTGCTG AGGTCCAAGA AAAAGAGGTT
1601 GAAGAATGGA AAAAGTCGCT TGGATTGCA CCTGGAAAAC TCAGACTAAT
1651 ACCGAAGAAA ACTACTTCC GTCCAATTAT GACTTCAAT AAGAAGATTG
1701 TAAATTCAAGA CCGGAAGACT ACAAAATTAA CTACAAATAC GAAGTTATTG
1751 AACTCTCACT TAATGCTTAA GACATTGAAG AATAGAATGT TTAAAGATCC
1801 TTTGGATTG GCTGTTTTA ACTATGATGA TGTAATGAAA AAGTATGAGG
1851 AGTTTGTGTTG CAAATGGAAG CAAGTTGGAC AACCAAAACT CTTCTTGC
1901 ACTATGGATA TCGAAAAGTG ATATGATAGT GTAAACAGAG AAAAACTATC
1951 AACATTCTA AAAACTACTA AATTACTTTC TTCAGATTTC TGGATTATGA
2001 CTGCACAAAT TCTAAAGAGA AAGAATAACA TAGTTATCGA TTGAAAAAC
2051 TTAGAAAAGA AAGAAATGAA AGATTATTTT AGACAGAAAT TCCAGAAGAT
2101 TGCACTTGAA GGAGGACAAT ATCCAACCTT ATTCACTGTT CTTGAAAATG
2151 AACAAATGAA CTTAAATGCA AAGAAAACAT TAATTGTTGA AGCAAAGCAA
2201 AGAAATTATT TTAAGAAAGA TAACTTACTT CAACCAGTCA TTAATATTG
2251 CCAATATAAT TACATTAAC TTAATGGAA GTTTATAAAA CAAACAAAAG
2301 GAATTCCCTCA AGGTCTTGA GTTTCATCAA TTTGTCATC ATTTTATTAT

FIGURE 9 (cont.)

2351 GCAACATTAG AGGAAAGCTC CTTAGGATT CTTAGAGATG AATCAATGAA
2401 CCCTGAAAAT CCAAATGTTA ATCTTCTAAT GAGACTTACA GATGACTATC
2451 TTTGATTAC AACTCAAGAG AATAATGCAG TATTGTTAT TGAGAAACTT
2501 ATAAACGTAA GTCGTGAAAA TGGATTAAA TTCAATATGA AGAAACTACA
2551 GACTAGTTT CCATTAAGTC CAAGCAAATT TGCAAAATAC GGAATGGATA
2601 GTGTTGAGGA GCAAAATATT GTTCAAGATT ACTGCGATTG GATTGGCATC
2651 TCAATTGATA TGAAAACTCT TGCTTAAATG CCAAATATTA ACTTGAGAAT
2701 AGAAGGAATT CTGTTACAC TCAATCTAAA CATGCAAACA AAGAAAGCAT
2751 CAATGTGGCT CAAGAAGAAA CTAAAGTCGT TTTTAATGAA TAACATTACC
2801 CATTATTTA GAAAGACGAT TACAACCGAA GACTTGCAG ATAAAACCTCT
2851 CAACAAGTTA TTATATTCAG GCGGTTACAA ATACATGCAA TGAGCCAAAG
2901 AATACAAGGA CCACCTTAAG AAGAACTTAG CTATGAGCAG TATGATCGAC
2951 TTAGAGGTAT CTAAAATTAT ATACTCTGTA ACCAGAGCAT TCTTTAAATA
3001 CCTTGTGTGC AATATTAAGG ATACAATTT TGGAGAGGAG CATTATCCAG
3051 ACTTTTCCT TAGCACACTG AAGCACTTA TTGAAATATT CAGCACAAAAA
3101 AAGTACATT TCAACAGAGT TTGCATGATC CTCAAGGCAA AAGAAGCAAA
3151 GCTAAAAAGT GACCAATGTC AATCTCTAAT TCAATATGAT GCATAGTCGA
3201 CTATTCTAAC TTATTTGGA AAGTTAATT TCAATTGTTG TCTTATATAC
3251 TGGGGTTTG GGGTTTGGG GTTTGGGG

FIGURE 10

1 MEVDVDNQAD NHGIHSALKT CEEIKEAKTL YSWIQQVIRC RNQSQSHYKD
51 LEDIKIFAQT NIVATPRDYN EEDFKVIARK EVFSTGLMIE LIDKCLVELL
101 SSSDVSDRQK LQCFGQLKG NQLAKTHLLT ALSTQKQYFF QDEWNQVRAM
151 IGNELFRHLY TKYLIFQRTS EGTLVQFCGN NVFDHLKVND KFDKKQKGGA
201 ADMNEPRCCS TCKYNVKNEK DHFLNNINVP NWNNMKSRTTR IFYCTHFNRN
251 NQFFKKHEFV SNKNNISAMD RAQTIFTNIF RFNRIRKKLK DKVIEKIAYM
301 LEKVKDFNPN YYLTKSCPLP ENWRERKQKJ ENLINKTREE KSKYYEELFS
351 YTTDNKCVTQ FINEFFYNIL PKDFLTGRNR KNFQKKVKKY VELNKHELIH
401 KNLLLEKINT REISWMQVET SAKHFYYFDH ENIYVLWKLL RWIFEDLVVS
451 LIRCFFYVTE QQKSYSKTYY YRKNIWDVIM KMSIADLKKE TLAEVQEKEV
501 EEWKKSLGFA PGKLRLIPKK TTFRPIMTFN KKIVNSDRKT TKLTTNTKLL
551 NSHMLKTLK NRMFKDPFGF AVFNYDDVMK KYEEFVCKWK QVGQPKLFFA
601 TMDIEKCYDS VNREKLSTFL KTTKLLSSDF WIMTAQILKR KNNIVIDSKN
651 FRKKEMKDYF RQKFQKIALE GGQYPTLFSV LENEQNDLNA KKTLLIVEAKQ
701 RNYFKKDNLQ QPVNICQYN YINFNGKFYK QTKGIPQGLC VSSILSSFYY
751 ATLEESSLGF LRDESMNPEN PNVNLLMRLT DDYLLITTQE NNAVLFIEKL
801 INVSRENGFK FNMKKLQTSF PLSPSKFAKY GMDSVEEQNI VQDYCDWIGI
851 SIDMKTALM PNINLRIEGI LCTLNLMQTT KKASMWLKKK LKSFLMNNIT
901 HYFRKTITTE DFANKTLNKL FISGGYKYMQ CAKEYKDHFK KNLAMSSMID
951 LEVSKIISV TRAFFKYLVC NIKDTIFGEE HYPDFFLSTL KHFIEIFSTK
1001 KYIFNRVCMI LKAKEAKLKS DQCQSLIQYD A

FIGURE 11

1 CCCCAAAACC CCAAAACCCC AAAACCCCTA TAAAAAAAAGA AAAAATTGAG
51 GTAGTTAGA AATAAAATAT TATTCCCGCA CAAATGGAGA TGGATATTGA
101 TTTGGATGAT ATAGAAAATT TACTTCCTAA TACATTCAAC AAGTATAGCA
151 GCTCTTGTAG TGACAAAGAAA GGATGCAAAA CATTGAAATC TGGCTCGAAA
201 TCGCCTTCAT TGACTATTCC AAAGTTGCAA AAACAATTAG AGTTCTACTT
251 CTCGGATGCA AATCTTTATA ACGATTCTT CTTGAGAAAA TTGTTTTAA
301 AAAGCGGAGA GCAAAGAGTA GAAATTGAAA CATTACTAAT GTTTAAATAA
351 AATCAGGTAA TGAGGATTAT TCTATTTTT AGATCACTTC TTAAGGAGCA
401 TTATGGAGAA AATTACTTAA TACTAAAAGG TAAACAGTT GGATTATTTC
451 CCTAGCCAAC AATGATGAGT ATATTAATT CATATGAGAA TGAGTCAAAG
501 GATCTCGATA CATCAGACTT ACCAAAGACA AACTCGCTAT AAAACGCAAG
551 AAAAAGTTG ATAATCGAAC AGCAGAAGAA CTTATTGCAT TTACTATTG
601 TATGGGTTTT ATTACAATTG TTTAGGTAT CGACGGTGAA CTCCCGAGTC
651 TTGAGACAAT TGAAAAAGCT GTTACAAC GAAGGAATCG CAGTTCTGAA
701 AGTTCTGATG TGTATGCCAT TATTTGTGA ATTAATCTCA AATATCTTAT
751 CTCATTAA TGGATAGCTA TAGAAACAAA CCAAATAAAC CATGCAAGTT
801 TAATGGAATA TACGTTAAAT CCTTTGGGAC AAATGCACAC TGAATTATA
851 TTGGATTCTT AAAGCATAGA TACACAGAAAT GCTTAGAGA CTGATTAGC
901 TTACAACAGA TTACCTGTT TGATTACTCT TGCTCATCTC TTATATCTT
951 AAAAGAAGCA GGCGAAATGA AAAGAAGACT AAAGAAAGAG ATTCAAAAT
1001 TTGTTGATTTC TTCTGTAACC GGAATTAACA ACAAGAATAT TAGCAACGAA
1051 AAAGAAGAAG AGCTATCACA ATCCTGATTTC TTAAAGATT CAAAATTCC
1101 AGGTAAAGAGA GATACATTCA TTAAAATTCA TATATTATAG TTTTCATT
1151 CACAGCTGTT ATTTCTTTT ATCTTAACAA TATTTTTGA TTAGCTGGAA
1201 GTAAAAAGTA TCAAATAAGA GAAGCGCTAG ACTGAGGTAA CTTAGCTTAT
1251 TCACATTCA AGATCGACCT TCATATATCC AATACGATGA TAAGGAAACA
1301 GCAGTCATCC GTTTAAAAAA TAGTGTATG AGGACTAAAT TTTAGAGTC
1351 AAGAAATGGA GCCGAAATCT TAATCAAAAAA GAATTGCGTC GATATTGCAA
1401 AAGAATCGAA CTCTAAATCT TTGTTAATA AGTATTACCA ATCTTGATTG
1451 ATTGAAGAGA TTGACGAGGC AACTGCACAG AAGATCATT AAGAAATAAA
1501 GTAACTTTA TTAATTAGAG AATAAACTAA ATTACTAATA TAGAGATCAG
1551 CGATCTCAA TTGACGAAAT AAAAGCTGAA CTAAAGTTAG ACAATAAAAA
1601 ATACAAACCT TGGTCAAAAT ATTGAGGAAG GAAAAGAAGA CCAGTTAGCA
1651 AAAGAAAAAA TAAGGCAATA AATAAAATGA GTACAGAACT GAAGAAATAA
1701 AAGATTTATT TTTTCATA ATTATTGAA AAGAGGGTT TTGGGGTTT
1751 GGGGTTTGG GG

FIGURE 12

1 CCCCCAAAACCCAAAACCCAAAACCCCTATAAAAAAAGAAAAATTGAGGTAGTTAGA 60
 1 GGGGTTTGGGGTTTGGGTTTGGGATATTTTTCTTTTAACTCATCAAATCT
 a P Q N P K T P K P L * K K K K L R * F R -
 b P K T P K P Q N P Y K K R K N C G S L E -
 c P K P Q N P K T P I K K E K I E V V * K -
 61 AAAAAAATATTATTCGGCACAAATGGAGATGGATATTGATTTGGATGATAGAAAATT 120
 61 TTATTTATAATAAGGGCTGTTACCTCTACCTATAACTAACCTACTATATCTTTAA
 a N K I L F P H K W R W I L I W M I . * K I -
 b I K Y Y S R T N G D G Y C F G C Y R K F -
 c * N I I P A Q M E M D I D L D D I E N L -
 121 TACTTCCTAACATTCAACAAGTATAGCAGCTTGTAGTGCACAGAAAGGATGAAAA 180
 121 ATGAAGGATTATGTAAGTTGTTCATATCGTCGAGAACATCACTGTTCTTCCTACGTTT
 a Y F L I H S T S I A A L V V T R K D A K -
 b T S * Y I Q Q V * Q L L * * Q E R M Q N -
 c L P N T F N K Y S S S C S D K K G C K T -
 181 CATTGAAATCTGGCTCGAAATGCCCTCATGACTATTCAAAGTTGCAAAAACAATTAG 240
 181 GTAACCTTAGCCGAGCTTACGGGAAGTACTGATAAGGTTCAACGTTTGTAAATC
 a H C N L A R N R L H C L F Q S C K N N * -
 b I E I W L E I A F I D Y S K V A K T I R -
 c L K S G S K S P S L T I P R L Q K Q L E -
 241 AGTCTACTTCTGGATGCAAATCTTATAACGATTCTTCTTGAGAAAATTAGTTAA 300
 241 TCAAGATGAAGAGCCTACGTTAGAAATATTGCTAAGAAAGAACTCTTTAATCAAATT
 a S S T S R M Q I F I T I L S C E N * F -
 b V L L G C K S L * R F F L E K I S F K -
 c P Y F S D A N L Y N D S F L R K L V L K -
 301 AAAGCGGAGAGCAAAGAGTAAAGAAATTGAAACATTACTAATGTTAAATAAAATCAGGTA 360
 301 TTTCGCTCTGTTCTATCTTAACTTGTAAATGATTACAAATTATTTACTCCATT
 a K A E S K E * K L K H Y * C L N K I R - -
 b K R R A K S R N C N I T N V * I K S G N - -
 c S G E Q R V E I E T L L M F K * N Q V M - -
 361 TGAGGATTATTCTATTTTAGATCACTTCTTAAGGAGCATTATGGAGAAAATTACTTAA 420
 361 ACTCTAACAGATAAAAAATCTACTGAAGAATTCTCGTAATACCTCTTTAATGAATT
 a C G L F Y F L D H F L R S I M E K I T * -
 b E D Y S I F * I T S * G A L W R K L L N - -
 c R I I L F F R S L L K E H Y G E N Y L I - -
 421 TACTAAAACGAAACAGTTGATTATTCCTAGCCAACAATGATGACTATTTAAATT 480
 421 ATGATTTCCATTGTCAAACCTAACAAAGGGATCGTTGTTACTACTCATATAATTAA
 a Y * K V N S L D Y F P S Q Q C C V Y * I -
 b T K R * T V W I I S L A N N D E Y I K F - -
 c L K G K Q F G L F P * P T M M S I L N S - -

FIGURE 12 (cont.)

481 CATATGAGAATGAGTCAAAGGATCTCGATACATCAGACTTACCAAAGACAAACTCGCTAT 540
 CTATACTCTTACTCAGTTCTAGAGCTATGAGCTGATGGTTCTGTTGAGCGATA
 a H M R M S Q R I S I H Q T Y Q R Q T R Y -
 b I C E C V K G S R Y I R L T K D K L A I -
 c Y E N E S K D L D T S D L P K T N S L -
 541 AAAACCCAAGAAAAAGTTGATAATCGAACAGCAGAAGAACCTATTGCATTACTATTCG 600
 TTTTGCCTTTTCAAACATTAGCTTGTCTTCTGATAACGTAATGATAAGC
 a K T Q E K V C * S N S R R T Y C I Y Y S -
 b K R K K K F D N R T A E E L I A F T I R -
 c N A R K S L I I E Q Q K N L L H L L F V -
 601 TATGGGTTTATTACAATTGGTTAGGTATCGACGGTGAACCTCCCGAGTCTTGAGACAAAT 660
 ATACCCAAAATAATGTTAACAAATCCATAGCTGCCACTTGAGGGCTAGAACCTGTTA
 a Y G F Y Y N C F R Y R R C T P E S C D N -
 b M G F I T I V L G I D G E L P S L E T I -
 c W V L L Q L F * V S T V N S R V L R Q L -
 661 TCAAAAAGCTGTTACAACCTGAAGGAATCCGAGTTCTGAAAGTTCTGATGTTATGCCAT 720
 ACTTTTGCACAAATGTTGACTTCTTAGGCTCAAGACTTCAAGACTACACATAACGTA
 a C K S C L Q L K E S Q F C K F * C V C H -
 b E K A V Y N C R N R S S E S S D V Y A I -
 c K K L F T T E G I A V L K V L M C M P L -
 721 TATTTGTAATTAACTCAAATATCTTATCTCAATTAAATGGATAGCTATAGAAACAAA 780
 ATAAAACACTTAATTAGAGTTATAGAATAGAGTTAAATTACCTATCGATATCTTGT
 a Y F V N * S Q I S Y L N L M D S Y R N K -
 b I L C I N L K Y L I S I * W I A I E T N -
 c F C E L I S N I L S Q F N G * L * K Q T -
 781 CCAAATAAAACATCCAAGTTAATGGAATATACGTTAAATCCTTGGACAAATGCACAC 840
 CGTTTATTCGCTACGTTCAAATTACCTTATATGCAATTAGGAAACCCGTTACGTGTG
 a P N K P C K F N G I Y V K S F G T N A H -
 b Q I N H A S L M E Y T L N P L G Q M H T -
 c K * T Y Q V * W N I R * I L W D K C T L -
 841 TGAATTTATATGGATTCTAAAGCATAGATAACACAGAATGCTTAGAGACTGATTAGC 900
 ACTTAAATATAACCTAAGATTTCGCTATCTGCTTACGAAATCTGACTAAATCG
 a C : Y E G F - K H R Y T E C F R D C F S -
 b E F I - D S - S I D T Q N A L E T D L A -
 c N L Y A I L S A - I H R M L - R L I - L -
 901 TTACAACAGATTACCTGTTGATTACTCTGCTCATCTTATATCTTAAAGAAGCA 960
 AATGTTCTAATGACAAAACATAATGAGAACGAGTAGAGAAATATAGAAATTCTCGT
 a L Q O I T C F D Y S C S S L I S L K E A -
 b Y N R L P V L I T L A H L L Y L * K K Q -
 c T T D Y L F C L L L I S Y I F K R S R -
 961 GCGAAATGAAAAGAACACTAAAGAAAGAGATTCAAAATTGTTGATTCTCTGTAACC 1020
 CGCTTACTTTCTGATTTCTCTAAACATTAAACAACTAAGAACGACATTGG
 a G E M K R R L K K E I S K F V D S S V T -
 b A X C K E D * R K R F Q N L L I L L * P -
 c R N E R K T K E R D F K I C C C F F C N R -
 1021 GGAATTAAACAAAGAAATTAGCAACGAAAAAGAAGAGCTATCACAATCCTGATT 1080
 CCTTAATTGTTCTTATAATGCTTCTTCTGATAGTCTTAGGACTAAG
 a G I N N K N I S N E K E E E L S Q S C F -
 b E L T T R I - A T K K K K S Y H N P D S -
 c N * Q Q E Y * Q P K R R R A I T I L I L -

FIGURE 12 (cont.)

1081 T T A A G A T T C A A A A T T C C A G G T A A G A G A G A T A C T C A T T A A T T C A T A T T A T A G 1140
 A A T T T C T A A G T T M T A A G G T C C A T T C T C T C T A T G T A A G T A A T T T A A G T A T A T A T C
 a L K I S K I P G K R D T F I K I H I L -
 b R F Q K F Q V R E I H S L K F I Y Y S -
 c K D F K N S R E R Y I H N S Y I I V -
 T T T T C A T T C A C A G C T G T T A T T T C T T A C A A C A T A T T T T G A T T G C T G G A A 1200
 1141 A A A A G T A A G T G T C G A C A A T A A A G A A A T A G A T T G T T A T A A A A C T A A T C G A C C T T
 a F F I S Q L L F S F I L T I F F D L E -
 b F S F H S C Y F L L S Q Y F L I S W K -
 c F H F T A V I F F Y L N N I F C L A G S -
 G T A A A A G T A C A A T A A G A G A A G C G C T A G C T G A G G T A A C T T A G C T T A T T C A C A T T C A T 1260
 1201 C A T T T T C A T A G T T A T T C T C T C G C G A T C T G A C T C C A T T G A A T C G A A T A A G T G T A A G T A
 a V K S I K E K R T E V T L I H I H -
 b K V S N K R S A R L R L S L F T F I -
 c K K Y Q I R E A L D C G N L A Y S H S -
 A G A T C G A C C T T C A T A T A T C C A A T A C G A T G A T A A C G G A A C A C G C A G T C A T C C G T T T A A A A A 1320
 1261 T C T A G C T G G A A G T A T A T A G G T T A T G C T A C T A T T C C T T G C G T C A G T A G G C A A A A T T T T
 a R S T F I Y P I R C G N S S H P F K -
 b D R P S Y I Q Y D D K E T A V I R F K N -
 c I D L H I S N T M I R K Q Q S S V L K I -
 T A G T G C T A T G A G G A C T A A T T T A G A G T C A A G A A T G G A G C C G A A A T C T T A A T C A A A A A 1380
 1321 A T C A C G A T A C T C C T G A T T T A A A A T C T C A G T T C T T A C C T C G G C T T A G A A T T A G T T T T
 a C Y E D I F R V K K W S R N L N Q K -
 b S A M R T K F L E S R N G A E I L I K K -
 c V L C G L N F S Q E H E P K S S K R -
 G A A T T G C G T C G A T A T G C A A A A G A A T C G A A C T C T A A A T T T C G T T A A T A G T A T T A C C A 1440
 1381 C T T A A C G C A G C T A T A C G T T T C T T A G C T T G A G A T T T A G A A A G C A A T T A T C A T A A T G G T
 a E L R R Y C K R I E L I F R V L P -
 b N C V D I A K E S N S K S F V N K Y Y Q -
 c I A S I L Q K N R T L N L S L I S I T N -
 A T C T T G A T T G A A G A G A T T G A C C G A G G C A A C T G C A C A G A A G T C A T T A A G A A A T A A A A 1500
 1441 T A G A A C T A A C T T C T C A A C T G C T C C G T T G A C G T G T C T T C A G T A A T T C T T T A T T T
 a I L I D C R D R G N C T E D H R N K -
 b S C L I E E I D E A T A Q K I I K E I K -
 c L D C L K R L T R Q L H R R S L K K S -
 G T A A C T T T A T T A T T A G A G A A T A A C T A A T T A C T A A T A T A G A G A T C A G C G A T C T T C A A 1560
 1501 C A T T G A A A A T T A T C T C T T A T T G A T T A T G A T T A T C T C T A G T C G C T A G A A C T T
 a V T F E N R I N I T N I E I S D L Q -
 b L L L I R E T K L L I R S A I F N -
 c N F Y L E N K L N Y Y R D Q R S S I -
 T T G A C G A A A A A A G C T G A A C T A A A G T T A G A C A A T A A A A A T A C A A C C T T G G T C A A A A T 1620
 1561 A A C T G C T T T A T T T C G A C T T G A T T C A A T C T G T T A T T T T A T G T T G G A A C C A G T T T A
 a L T K K L N S T I K N T N L G Q N -
 b C R N K S C T K V R Q K I Q T L V K I -
 c D E I K A E L K L D N K K Y K P W S K Y -
 A T T C G A G G A A G G A A G A G C C A G T T A G C A A A A G A A A A A T A A G G C A A T A A A A A T G A 1680
 1621 T A A C T C C T C C T T T C T C G T C A A T C G T T T C T T T T A T T C C G T T A T T T A T T T A C T
 a I E E G K E D Q L A K E K I R O I K C -
 b L R K E K K T S Q K K K G N K N E -
 c C G R K R R P V S K R K N K A I N K M S -

FIGURE 12 (cont.)

1681 GTACAGAACTGAAGAAATAAAAGATTATTTTTCAATAATTATTGAAAAGAGGGGTT 1740
CATGTCTTCACTTCTTTCTAAATAAAAAAGTTATTAAATAACTTTCTCCCCAA

a V Q K C R N K R F I F F N N L L K R G V -
b Y R S E E I K D L F F S I I Y C K E G F -
c T E V K K * K I Y F F Q * F I E K R G F -

1741 TTGGGGTTTGGGGTTTGGGG 1762
AACCCAAAACCCAAAACCC

a L G F W G F G -
b W G F G V L G -
c G V L G F W -

FIGURE 13

2 EVDVONQADNHGIHSALKTCEEIKEAKTLYSWIQKVIRCRNQSOSHYKDL 51
 19 ELELEMQENQNDIQVRVK. .IDDPKQY..LVNVTAACLLQEGSYYQDK 62
 52 EDIKIFQAQTNIVATPRDYNEEDFKVIARKEVF. STGLMIELIDKCLVELL 100
 63 DERRYIITKALL .EVAESDPEFICQLAVYIRNELYIRTTTNYIVAF. 107
 101 SSSD'SDRQLQCFGQLKGNLAKTHLLTALSTQKQYFFQDEWNQVRAM 150
 108 CVVHKNTQPFIEKYFNKAVLLPNDLLEVCEFAQVLYI 144
 151 IGNELFRHLYTKYLIFQRTSEGLTVQFCGNNVFDHLKVNDKFDKKQKGGA 200
 145 FDATEFKNLY .LDRILSQDIRKELTFRKCLQRCVRSKF 181
 201 ADMNE PRCCSTCKYNVNEKDHFLLNNINVPNWNMMKSRTTRIFYCHF 247
 182 SEFNEYQLGKYCTES. QRKKTMFRLSVTNKQKWDQTKKK. 220
 248 NRNNQFFKKHEFVSNKNNISAMDRAQTIFTNIFRFNRIRKKLKDVIEKI 297
 221 RKENLLTKLQAIKESEDKSKEKG...DIMNVEDAIKALKPAVMKKI 264
 298 AYMLEKVKDFNFNYYLTKSCPLPENWRERKQKIEENLINKTREEKSYYEE 347
 265 AKRQNAMK. .KHMKAPKIPNSTLESKYLTTFKD 294
 348 LFSYTTDNKCVTQFINEFFYNILPKDFTGRNRKNFQKKVKKYVELNKHE 397
 295 LIKFCHISEP .KERVYKILGKKYPKTEEEYXAAGFDSASAPPN. PE 338
 398 LIHKNLLLEKINTREISWMQVETSAXHFYYFDHENIYVWLWKLRLWIFEDL 447
 339 LAGKRMKIEISKTWENELSAKGNTAEWDNLISSNQLPYMAMLRNLSN.. 386
 448 VVSLIRCFYVTEQQKSYSKTYYRKNIWDVIMKMSIADLKETLAEVQE 497
 187 .ILKAGVSD... 394
 498 KEVEEWKKSLGFAPGKLRLLIPKTTFRPIMTFNKKIVNSDRKTTKLTNT 547
 395 .TTHS 398
 548 KLLNSHMLKTLKNRMFKDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597
 399 IVINK .ICEPKAVENSKM 415
 598 FFATMDIEKYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKNMIVID 647
 416 F PLQFFSAIEAVN. EAVTKGFKAKK..RENMNLLKGQIEAVKE..VVE 457
 648 SKNFRKKEMKDYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKTLIVE 697
 458 KTDEEKKDM .ELEQTEEGEFVKVNEGIGKQYINSIELAIK 496
 698 AKQRNYFKKDNLLOPVINICQNYINFNGKFYKQTKGIPQGLCVSSILSS 747
 497 IAVNKNLDEIKCHTAIFSDVSGSMSTMSGGAKKYGSVRTCLECALVGL 546
 748 FYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFI 797
 547 MVKQRCEKSSFYIFSSPSSQCNKCYLEVDL. 576
 798 EKLINVSRENGFKFNMKK.LQTSFPLSPSKFAKYGMDSVEEQNIVQDYCD 846
 577 .PGDELRPSMQKLLQEKGKLG..TDFFPYECIDEWTKNKTHVD 617
 847 WIGISIDMKTALAMPNINLRIEGILCTLNLMQTKKASMWLKKKLKSFLM 896
 618 NIVILSDMMIAEGYSDINVRGSSIVNSI. .KKYKDEVN 653
 897 NNITHYFRKTITTEDFANKTLNKLFISSGGYKYMOCKEYKD.HFKKNLAM 945
 654 PNIKIF. .AVDLEGYG. .KCLNLGDEFNENNYIKIFGM 687
 946 SSMIDLEVSKIISVTRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHPIE 995
 688 SDSI. .LKFISAKQGGA. .NMVE 706
 996 IFSTKKYIFNRVC 1008
 707 VI..KNFALQKIG 717

FIGURE 14

132 LSTQKQYFFQDEWNQVRAMIGNEL. FRHLYTKYLIFQRTSE. GTLVQFC 178
 1 MSRRNQ. KKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQI 43
 179 GNNVFDHLKVNDKFDKKQKGGAADMNEPRCCSTCKYNVKNEKDHFLNNIN 228
 44 KEEDLKLKFKNQDQDGNSGNDDDEE. NNSNKQQELLRRVN 84
 229 VPKWNNMKSRTTRIFYCTHFNRNNQFFKKHEFVSNKNNISAMDRAOTIFTN 278
 85 QIKQVQLIKK. VGSKVEKDLNLNEDENKKN 114
 279 IFRFNRIRKKLKDVKIEKIAYMLEKVKDFFNYYLTKSCPLPENWRERKQ 328
 115 GLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGHRRRRRETQY 164
 329 KIENLINKTREEKSYYEELFSYTTDNKCVTQFINE. FFYNILPKDFLTG 377
 165 DTEKWFEISHDQK NYVSIYANQKTSYCWWLKDYFNK 200
 378 RNRKNFQKKVKKYVELNKHIELHKNLLKINTREISWMQVETSAKHFYY 427
 201 NNYDHLNVSINRLE. TEAEFYAFDDFSQTIKLTTNNSYQTVNID. 242
 428 FDHENIYVWLWKLRLWI. FEDLUVSLIRCFYVTEQQKSYSKTYYRKNI 475
 243 VNFDDNNLCILALLRFLLSLERFNILNIRSSY. TRNQYNFEKIGELLETI 290
 476 WDViMKMSIADLKKETLAEVQEKEVEEWKSLGFAPGKLRLLPKTTFRP 525
 291 FAVVFSHR HLQGIHLQVPCEAFQYLVNSSQISVKDSQLQ 330
 526 IMTFNKKIVNSDRKTTKLTNTKLLNSHLMKTLKNRMFKDPFGFAVFNY 575
 331 VYFSFTDLKLVD. TNKVQDYFKFLQEFPRLTHVSQQAIPVSATNAVENL 378
 576 DDVMKKYEEFVCKWKQVCQPKLF. FATMDIEKCYDS. VNREK 615
 379 NVLLKKVKH ANNLVLVIPTQFNFDYFVNQHLKLEFGLEPNILTQKQ 426
 516 LSTFL KTTKLLSSDFWIMTAQILKRKNNI VIDSKNFRKEMK 657
 427 LENLLLSIKQSKNLKFLRLNFYTYVAQETSRKQILQATTIKNLKNNKQ 476
 558 DYFRQKFQKIALEGGQYPTLFSVLEN EQNDLNAAKTLIVEAKQRFNYFK 705
 477 EETPETKDETPESTSGMKFFDHLSELTELEDFSVN LQATQEIQY 520
 706 KDNELQPVNICOQNYINFNGKFYKQTKGIPQGLCVSSILSSFYATLEE 755
 521 DSHKLLIRSTNLKKFKLSKYEMEKSMDTFIDLKNI. YETLNN 564
 756 SSLGFLRDESNNPENPNVNLLMRLTDDYLLITTQENNAVLFIEKLINVSR 805
 565 LKRCSYNISNPNGHNSYELTN KDSTFYKFKLTLNQE 600
 806 ENGFKNMKKLQTSFPLSPSKFAKYGMDSVEEQNIVQDYCWDIGISIDMK 855
 601 LQHAKYTFK QNEFQFNNVKSAKIESSSLESLEDIDSCKSIASCKNLQ 648
 856 TLALMPNINLRIEGILCTLNLNMQT KKASMWLKK. KLLKSFLMNNITH 901
 649 NVNI. IASLLYPPNIQKNPFNKPNLFFFQKFEQLKNLENVSINC 691
 902 YFRKTI TTEDFANKTLNLFIISGGYKYMQCAKEYKDHFKKNLAMSSM 948
 692 ILDOHILNSISEFLEKNKKIKAFILKRYYLQYYLDYTKLFKTLQQLPEL 741
 949 IDLEVKIIYSVT RAFFKYLVCNIKDT. IFGEEHY 982
 742 NQVYINQQLEELTVSEVHKQVWENHKQKAFYEPPLCEFIKESSQTLQLIDF 791
 983 PDFFLS TLEHFIIFSTKYY IFNRVCMLKAKEAKLKSDOQCQSLIQ 1028
 792 DQNTVSDDSIKKILESISSESKYHHYLRLNPSQSSSLIKSENEEIQELLK 840

FIGURE 15

```

 4 DIDLDDIENLLPNTFNKYSSSSCDKGCKTLKSGSKPSLTIPK..... 47
 617 NVKSAKIESSSLESLEDIDSCLCKSIASCKNLQVNIIASLLYPNNIQKNP 666

 48 LQKQLEFVFSDANLYNDSFLRKVLKLSGEORVE...IETLLM 86
 667 FNKPNNLLFFKQFQLKNLENVSINCILDQHILNSISEFLEKNKKIKAFIL 716

```

FIGURE 16

FIGURE 17

Motif A	Motif B	Motif C	Motif D
Consensus telomerase p123 Dong (LINE) al S. c. (groupII) HIV-RT L8543 . 12 Y ^{res}	h - - - h - - h - - - - - SP GQPRLFPAATDIEKCYDSYNTREKLSTFLKETKLL-100-KFVYQOTKGIPLGCVSSILSSFFYYATLEESSLGPL KNTNLHCTYIDYKKAFLDSIPHSVNLQVLEIYKIN- 28 -RQLAIKRGIVYQEDSIS? -WFCCLANPLSHQLHNDR FGGSNWRPFEVPLRKCFTDTISHDLLIKELRYISD- 26 -HVPVGPRVCVQCAPTSPLALCNNAVTLRLDRRLAGLA LKKKRSVTVLDVGDAYFSPVPLDEDFRKYTAFTI P- 7 -SIRYQYNNVLPGCCKGSPAIQFQSSMTXKILEPFRXQN VLPPELYPKKEEVKSCYDSIPRMECMRILKDALKN- 68 -RCYIREDGLFQESLSSA?IVDUVYDLDLFFYSEPK	h - - - - - SP h - - - - - K h - - - - - K h - - - - - K	h - h - - - K h - h - - - K h - h - - - K h - h - - - K
Consensus telomerase p123 Dong (LINE) al S. c. (groupII) HIV-RT L8543 . 12 Y ^{res}	-14 -LMRUTDDYLUITTQENN -0 -AVLFIEKLINVSRENCFKPTNMTRKLTQ -23 -QDVCDDWTCGTSI -16 -HLLIYMDIKLYAKNDKE -0 -MKELIDTTTFSNDISMQPGLIDCKT -25 -KC'YKYLGFQQ -55 -YVRAYDDILIGVLGSRN -2 -KIIKRDLNMFNS . [G]LTINEEERKTLI - 4 -ET?ARFLGYNI - 4 -IYQYMDLILYVGSHLEIG -1 -HRTKIEELRQHLLRV[G]LTTPDORKHQK - 0 -EP?FLWNGYEL - 8 -ILKLA[D]DFLIISTDQQ - VINTKKLAMC[G]QKYNAPANR - 41 -IRSKESSKGIFR	-14 -Yh DDDDDh -16 -HLLIYMDIKLYAKNDKE -0 -MKELIDTTTFSNDISMQPGLIDCKT -25 -KC'YKYLGFQQ -55 -YVRAYDDILIGVLGSRN -2 -KIIKRDLNMFNS . [G]LTINEEERKTLI - 4 -ET?ARFLGYNI - 4 -IYQYMDLILYVGSHLEIG -1 -HRTKIEELRQHLLRV[G]LTTPDORKHQK - 0 -EP?FLWNGYEL - 8 -ILKLA[D]DFLIISTDQQ - VINTKKLAMC[G]QKYNAPANR - 41 -IRSKESSKGIFR	

FIGURE 18

telomerase p43
human La
Xenopus LaA
Drosophila La
S. c. Lhp1p

LQK**Q**LE**F**Y**E**SDA**N**LY**N**DS**F**LRKLVL**K**SG**E**QR**V**E**I**ET**LL**M
ICH**Q**DE**Y****Y**EGDFNL**P**RD**K**EL**K**EQ**Q**I.KL**D**EG**W****V**PLE**I**MI**K**
ICE**Q**DE**Y****Y**EG**D**HN**L****P**RD**K**EL**K**QQ**Q**I.LL**D**D**G****W****V**PLE**T**MI**K**
ILR**Q**DE**Y****Y**EG**D**AN**L**NR**D**K**E**LR**Q**IG**K**NED**G****W**VPLSV**L**VT
CL**K**Q**M**E**F****E****Y****E**SE**F****N**F**P**Y**D**R**E****R**TTAE**K**.ND**G****W****V**PISTIAT

FIGURE 19

FIGURE 20

MEIENNQAQQPKAEKLWWELELEMQENQNDIQVRVKIDDPKQYL
VNVTAAACLQEGSYYQDKDERRYIITKALLEVAESDPEFICQLAVYIRNELYIRTTN
YIVAFCVVHKNTQPFIEKYFNKAVLLPNDLLEVCEFAQVLYIFDATEFKNLYLDRILS
QDIRKELTFRKCLQRCVRSKFSEFNEYQLGKYCTESQRKKTMFRLYSVTNKQKWDQTK
KKRKENLLTKLQAIKESEDKSRETGDIMNVEDAIAKALKPAVMKKIAKRQNAMKKHMK
APKIPNSTLESKYLTFKDLIKFCHISEPKERVYKILGKKYPKTEEEYKAAFGDSASAP
FNPELAGKRMKIEISKTWENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSNILKAGV
SDTTHSIVNKICEPKAVENSKMFPLQFFSAIEAVNEAVTKGFKA
KKRENMNLLKGQIE
AVKEVVEKTDEEKDMELEQTEEGEFVKVNEGIGKQYINSIELAIKIAVNKNLDEIKG
HTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVLGLMVQRCEKSSFYIFSSPSSQ
CNKCYLEVDLPGDELPSMQKLLQEKGKLGTTDFPYECIDEWTKNKTHVDNIVLSD
MMIAEGYSDINVRGSSIVNSIKKYKDEVNPNIKJFADLEGYGKCLNLGDEFNENNYI
KIFGMSDSILKFISAKQGGANMVEVIKNFALQKJGQK

FIGURE 21

FIGURE 22

MSRRNQKKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQIK
EEDLKLLKFKNQDQDGNSGNDDEENNSNKQQELLRRVNQIKQQVQLIKVGSKVEK
DLNLNEDENKKNGLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRR
ETDYDTEKWFEISHDQKNYVSIYANQKTSYCWNLKDYNKNNYDHLNVSINRLETEAE
FYAFDDFSQTIKLTNNSYQTVNIDVNFDNNLCILALLRFLLSLERFNILNIRSSYTRN
QYNFEKIGELLETIFAVVFSHRHLQGIHLQVPCEAFQYLVNSSSQISVKDSQLQVYSF
STDLKLVDTNKVQDYFKFLQEFPRLTHSVQQAIPVSATNAVENLNVLLKKVKHANLNL
VSIPTQFNFDYFVNLLQHLKLEFGLEPNILTQKLENLLSIKQSKNLKFLRLNFYTY
VAQETSRKQILKQATTIKNLKNNKNQEETPETKDETPSESTSGMKFFDHLSELTELED
FSVNLQATQEYDLSLHKLLIRSTNLKKFKLSYKYEMEKSMDTFIDLKNIYETLNNLK
RCSVNISNPHGNISYELTNKDSTFYKFKLTLNQELQHAKYTFKQNEFQFNNVKSAKIE
SSSLESLEDIDSCKSIASCKNLQNVNIIASLLYPNNIQKNPFNKPNNLFFKQFEQLK
NLENVSINCILDQHILNSISEFLEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPE
LNQVYINQQLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQLQLIDFDQNTVSD
DSIKKILESISESKYHHYRLNPSQSSLIKSENEEIQELLKACDEKGVLVKAYYKFP
LCLPTGTYYDYNNSDRW

FIGURE 23

MKILFEFIQDKLDIDLQTNSTYKENLKGCGHFNGLDEILTCFAL
PNSRKIALPCLPGDLSHKAVIDHCHIYLLTGEYNNVLTFGYKiarnedvnnslfchs
ANVNVTLLKGAAWKMFHSLVGTYAFVDLLNYTVIQFNGQFFTQIVGNRCNEPHLPPK
WVQRSSSSATAAQIKQLTEPVTKQFLHKLNNSSSSFPYSKILPSSSIKKLTDLR
EAIFPTNLVKIPQRLKVRJNLTQKLLKRHKRLNYVSILNSICPLEGTVLDLSHLSR
QSPKERVLKFIIVILQKLLPQEMFGSKKNKGKIIKJNLLNLLSLPLNGYLPFDSSLKKL
RLKDFRWLFISDIWFTKHNFEENLNQLAICFISWLFRQLIPKIIQTFYCTEISSTVTI
VYFRHDTWNKLITPFIVEYFKTYLVENNCRNHNSYTLSNFNHSKMRIIPKKSNEFR
IIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKJISPTQIADRIKE
FKQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKDALKNENGFFVRSQYFFN
TNTGVLKLFNVVNASRVPKYELYIDNVRTVHLSNQDVINVVEMEIFKTALWVEDKCY
IREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPSQDTLILKADDFLIISTDQQQV
INIKKLAMGGFQKYNAKANRDKJLAVSSQSDDTVIQFCAMHIFVKELEVWKHSSTMN
NFHIRSKSSKGIFRSILALFNTRISYKTIDTNLNSTNTVLMQIDHVVKNISECYKSAF
KDLSINVQTQNMQFHSFLQRIIEMTVSGCPITKCDPLIEYEVRFTILNGFLESLSSNTS
KFKDNHILLRKEIQHLQAYIYIYIHVN

FIGURE 24

Oxytricha
Euplotes

LCVSYILSSFYANLEENALQFLRKESMDPEKPETNLLMRLT
LCVSSILSSFYATLEESSLGFLRDESMNPENPNVNLLMRLT

FIGURE 25.

FIGURE 26

ATTTATACTCATGAAAATCTTATTCGAGTCATTCAAGACAAGCTTGACATTGATCTACA
GACCAACAGTACTTACAAAGAAAATTAAAATGTGGTCACTTCATGGCCTCGATGAAAT
TCTAACTACGTGTTCGCACTACCAATTCAAGAAAAATAGCATTACCATGCCTCCCTGG
TGACTTAAGCCACAAAGCAGTCATTGATCACTGCATCATTACCTGTTGACGGGCGAATT
ATACAACAACGTACTAACATTGGCTATAAAATAGCTAGAAATGAAGATGTCAACAATAG
TCTTTTTGCCATTCTGCAAATGTTAACGTTACGTTACTGAAAGGCGCTGCTTGAAAAT
GTTCCACAGTTGGTCGTCATACGCATTGTTGATTGATCAATTACAGTAAT
TCAATTAAATGGGCAGTTTCACTCAAATCGTGGTAACAGATGTAACGAACCTCATCT
GCCGCCAAATGGGTCCAACGATCATCCTCATCATCCGCAACTGCTGCGCAAATCAAACA
ACTTACAGAACCGAGTACAATAACAATTCTTACACAAGCTCAATATAAATTCTCTTC
TTTTTTCTTATAGCAAGATCCTTCCTTCATCATCTATCAAAGCTAACTGACTT
GAGAGAAGCTATTTTCCCACAAATTGGTTAAAATTCTCAGAGACTAAAGGTACGAAT
TAATTGACGCTGCAAAGCTATTAAAGAGACATAAGCCTTGAATTACGTTCTATTTT
GAATAGTATTGCCACCATTGGAAGGGACCGTATTGGACTTGTGCAATTGAGTAGGCA
ATCACCAAAGGAACGAGTCTGAAATTTCATTGTTATTTACAGAAAGTTATTACCCCA
AGAAATGTTGGCTCAAAGAAAATAAGAAAATTATCAAGAACTAAATCTTTATT
AAGTTACCCCTTAAATGGCTATTACCATTTGATAGTTGTTGAAAAGTTAAGATTAAA
GGATTTCGGTGGTTGTCATTTCTGATATTGGTTACCAAGCACAATTGAAAACCTT
GAATCAATTGGCGATTGTTCTTCTGGCTATTAGACAACATAATTCCAAAATTAT
ACAGACTTTTTTACTGCACCGAAATATCTCTACAGTGACAATTGTTACTTAGACA
TGATACTTGGAAATAACTTATCACCCCTTATCGTAGAATATTAAAGACGTACTTAGT
CGAAAACAACGTATGTAGAAACATAATAGTTACACGTTGTCATTCATAGCAA
AATGAGGATTATACCAAAAAAGTAATAATGAGTTCAAGGATTATTGCCATCCATGCAG
AGGGCAGACGAAGAAGAATTACAATTATAAGGAGAATCACAAAATGCTATCCAGCC
CACTCAAAAATTAGAATACCTAACGAAACAAAAGGCCGACTAGTTACTAAAATATA
TTCTCCAACGCAAATAGCTGACCGTATCAAAGAAATTAAAGCAGAGACTTTAAAGAAATT
TAATAATGTCTTACCAAGAGCTTATTCATGAAATTGATGTCAAATCTGCTATGATT
CATACCAAGGATGGAATGTATGAGGATACTCAAGGATGCGCTAAAAAATGAAAATGGGTT
TTTCGTTAGATCTCAATATTCTCAATACCAATACAGGTGATTGAAGTTATTAAATGT
TGTAAACGCTAGCAGAGTACCAAAACCTTATGAGCTACATAGATAATGTGAGGACGGT
TCATTATCAAATCAGGATGTTATAACGTTGAGAGATGAAATATTAAAACAGCTTT
GTGGGTTGAAGATAAGTGTACATTAGAGAAGATGGTCTTTTCAGGGCTCTAGTTATC
TGCTCCGATCGTTGATTGGTGTATGACGATCTCTGGAGTTTATAGCGAGTTAAAGC
CAGTCCTAGCCAGGACACATTAAATTAAAATGGCTGACGATTTCTTATAATATCAC
AGACCAACAGCAAGTGTCAATATCAAAGCTGCCATGGCGGATTCAAAAATATAA
TGCAGAAAGCCAATAGAGACAAAATTAGCCGTAAGCTCCAACTCAGATGATGATACGGT
TATTCAATTGTCATGCACATATTGTTAAAGAATTGGAAGTTGGAAACATTCAAG
CACAATGAATAATTCCATATCGGTCGAAATCTAGTAAAGGGATATTGAGTTAAT
AGCGCTGTTAACACTAGAATCTTATAAAACAATTGACACAATTAAATTCAACAAA
CACCGTTCTCATGCAAATTGATCATGTTGTTAAAGAACATTGCAATTGATCATT
TTTAAGGATCTATCAATTAAATGTTACGCAAATATGCAATTGCAATTGATCATT
CATCATTGAAATGACAGTCAGCGGTTGTCATTACGAAATGTGATCATTAAATCGAGTA
TGAGGTACGATTCAACCATATTGAATGGATTGGAAAGCCTATCTCAAACACATCAA
ATTAAAGATAATATCATTCTTGAGAAAGGAAATTCAACACTTGCAAGC

FIGURE 27

AKFLHWLMSVYVVELRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKR
VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKR
AERLTSRVKALFSVLNYERA

FIGURE 28

GCCAAGTTCTGCACGGCTGATGAGTGTACGTCGTCGAGCTGCTCAGGTC
TTCTTTATGTCACGGAGACCACGTTCAAAAGAACAGGCTCTTTCTACC
GGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTGAA
GAGGGTGCAGCTGCGGGACGTGTCGAAGCAGAGGTCAAGGCAGCATCGGG
AGCCAGGCCCGCCCTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACC
GGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGAGGCCAGAACGTTCCG
CAGAGAAAAGAGGGCCGAGCGTCTACCTCGAGGGTGAAGGCACTGTTCAGC
GTGCTCAACTACGAGCGGGCGCG

FIGURE 29

MTEHHTPKSRLRFLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLRSDVQTSFSIFLHSTVVGF
DSKPDEGVQFSSPKCSQSELIANVVQMFDESERRNLLMKGFSMNHEDFRAMHVNGVQNDLV
STFPNYLISILESKNWQLLIEIIGSDAMHYLLSKGSIFEALPNDNYLQISGIPFKNNVFEETVSKRK
RTIETSITQNKSARKEVSWNSISISRFSIFYRSSYKKFKQDLYFNLHSICDRNTVHMWLQWIFPRQFG
LINAQVKQLHKVPLVSQSTVVPKRLKVPYPLIEQTAKRLHRSLSKVYNHYCPYIDTHDDEKILS
YSLKPNQVFAFLRSILVRVFPKLIWGNQRIFEIILKDLTFLKLSRYESFSLHYLMSNIKISEIEWLVL
GKRSNAKMCLSDFEKRKQIFAEFIYWLYNNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCRPFIT
SMKMEAFEKINENNVRMDTQKTTLPPAVIRLLPKKNTFRLITNLRKRFLIKMGNSNKKMLVSTNQT
LRPVASILKHLINEESSGIPFNLEVYMKLLTFKKDLLKHRMFGRKKYFVRIDIKSCYDRIKQDLMFR
IVKKKLKDPEFVIRKYATIHATSDRATKNFVSEAFSYFDMVPFEKVQQLSMKTSDTLFVDFVDY
WTKSSSEIFKMLKEHLSGHIVKIGNSQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTKKGSVL
LRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENSNGIINNTFFNESKKRMPFFG
FSVNMRSLDTLLACP KIDEALFNSTSVELTKHMGKSFFYKILRSSLASFAQVFIDITHNSKFNSCCNI
YRLGYSMCMRAQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKKLAELGYTSRRFLSSAEVKWLFC
LGMRDGLKPSFKYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLFLHRRJAD

FIGURE 30

FIGURE 30 (cont.)

FIGURE 31

EST2 pep	FFYCTEISST	VITIVYFRHDT	WN	---	KLIT	P	----	FIVE	YFK-TYLVEN	40				
Euplotes pep	FFYVTEQQKS	YSKTYYYRKN	IWDVI	-MKMS	IAD	---	LKK	ETLA	--EVQE	43				
Trans of tetrahymen	-----	KHKE	GSQIFYYRK	P	IWKLVSKLT	I	VKVRQFSEK	NKQMKNNFYQ	44					
Consensus	FFY	.TE	.K	.S	.YYRK	IW	...-KL	..	----F..KV..				
EST2 pep	NVCRNHN	NSY	-	-----	TLSNFNHS	KM	R	U	TPKGSNNE	FRI	AIPCRG	79		
Euplotes pep	KEVEEWKK	SL	-	-----	GFAPCK	KE	R	U	TPKGSIT	FRI	IMTFNKK	78		
Trans of tetrahymen	KIQLE	EEEN	LE	KV	EENL	KLIPED	S	F	QKYPQCK	R	U	TPKGS	92	
Consensus	K	...	E	-	-----	...	F	..GK	R	U	TPKGS	100	
EST2 pep	ADEEEFTIYK	ENHKNAIQPT	W	QKILEY	F	RNK	R	P	TFSFTKIYS	P	IQIADRIKE	129		
Euplotes pep	IVNSDRK	ITK	L	TTNTKL	N	S	H	M	LK	T	RMFK	120		
Trans of tetrahymen	DKQ	KNIK	--	LNLNQ	I	LMD	S	Q	LVFRN	I	D	-----ML-G	130	
ConsensusK	..K	LN	N	..L	S	Q	L	L	RKN	-----	..IG..VF..	150
EST2 pep	FKQRLL	KK	N	V	L	-----	F	Y	FMKFD	V	KSCYD	157		
Euplotes pep	YD-DVM	K	RYE	E	V	F	C	K	FFATMD	I	EKCYD	155		
Trans of tetrahymen	NK	-Q	I	S	E	F	Q	I	EKWK	N	K	-----	158	
Consensus	.K	...	MF	..F	..K	W	K	..G	E	Y	F	.T.D	...CYD	186

FIGURE 32

S-1: FFY VTE TTF QKN RLF FYR KSV WSK

S-2: RQH LKR VQL RDV SEA EVR QHR EA

S-3: ART FRR EKR AER LTS RVK ALF SVL NYE

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q

A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS

A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIGURE 33

FIGURE 34

Poly 4

5' - t a a g c c t c g
c a g a c c a a a g g a a t t c c a t a a g g -3'
Q T K G I P Q G

4 (B')

5 (C')

3' - D D Y L L I T
c t g c t g a t g g a g g a g a t g a t g g -5'
a a a a a a a a
t t t t
c c
Poly 1

FIGURE 35

Motif B' (4)
QTKGIPQG

Motif C (5)
DDYLLIT

FIGURE 36

PCR Product M2 showed Reasonable Match
with Other Telomerase Proteins

Ot	LCVSYIILSSFYANLEENALQFLRKESMDPEKPETNLLMRLT
Ea_p123	KGIPQGLCVSSILSSFYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLIT
Sp_M2	SILSSFLCHFYMEDLIDEYLSFTKKK-----GSVLLRVV
Sc_p103	DGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS-----QDTLILKLADDFLIIS

Q K V G I P Q G
caa aaa gtt ggt atc cct cag gg..... <--Actual Genomic Sequence.

Poly 4
t t c
t a a g c c t c g
Cag acc aaa gga att cca taa gg ---->

ag acc aaa gga att cca tca ggc TCA ATT CTG TCA TCT TTT TTG TGT CAT TTC TAT ATG
tc tgg ttt cct taa ggt agt ccg AGT TAA GAC AGT AGA AAA AAC ACA GTA AAG ATA TAC

K G I P S G S I L S S F L C H F Y M

GAA GAT TTG ATT GAT GAA TAC CTA TCG TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA
CTT CTA AAC TAA CTA CTT ATG GAT AGC AAA TGC TTT TTC TTT CCT AGT CAC AAC AAT GCT

E D L I D E Y L S F T K K G S V L L R

GTA GTC gac gac tac ctc ctc atc acc
CAT CAG ctg ctg atg gag gag tag tgg

V V D D Y L L I T

<---- ctg ctg atg gag gag tag tgg
a a a a a a a a
t t t t
c c

Poly 1

.....gac gat ttc ctc ttt ata aca..... <--Actual Genomic Sequence.
D D F L F I T

FIGURE 37

3' RT PCR Strategy

1. Synthesis of cDNA with QT Primer.

2. First Round PCR Using Outside Primer and QO Primer.

3. Second Round PCR Using Inside Primer and QI Primer.

4. Sequence Second Round PCR Products Using Inside Primer or QI Primer.

FIGURE 38

A

-Size Selected Libraries from P. Nurese

3 ~ 4 kb

5 ~ 6 kb

7 ~ 8 kb

11 ~ 12 kb

-Libraries from J.A. Wise

Sau 3a Partial Digest

Hind III Partial Digest

cDNA Libraries

GAD (Gal Activation Domain) Library

REP Library from R. Allshire

REP81ES Library (old)

REP81ES Library (new)

REP41ES Library

B

Original PCR

3' RT-PCR

500 bp

C

D

FIGURE 39

FIGURE 40

5' RT PCR Strategy

1. Synthesis of cDNA with Specific Downstream Primer.

2. Ligate Oligo with 5'-P and blocked 3' to cDNA using T4 RNA Ligase.

3. First Round PCR

4. Second Round PCR

FIGURE 41

Alignment of RT Domains from Telomerase Catalytic Subunits.

Motif 0			
S.p. Tez1p (429).	WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIW	...	(35) ...
S.c. Est2p (366).	WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTW	...	(35) ...
E.a. p123 (441).	WIFEDLVVSLIRCFYVTEQQKSYSKTYYRKNIW	...	(35) ...
	* *** *** *	* * *	
Motif 1		Motif 2	K
	p hh h K	hR h	R
S.p. Tez1p	AVIRLLPKK--NTFRLITN-LRKRF	...	(61) ...
S.c. Est2p	SKMRIIPKKSNNNEFRIIAIPCRGAD	...	(62) ...
E.a. p123	GKLRLLPKK--TTFRPIMTFNKKIV	...	(61) ...
	* *** ***		
Motif 3 (A) AF			
	h hDh GY h		
S.p. Tez1p	KKYFVRIDIKSCYDRIKQDLMFRIVK	...	(89) ...
S.c. Est2p	EIYFMKFDVKSCYDSIPRMECMRILK	...	(75) ...
E.a. p123	KLFFATMDIEKCYDSVNREKLSTFLK	...	(107) ...
	* * ***	*	
Motif 4 (B')			
	hPQG pP hh h		
S.p. Tez1p	YLQKVGIPQGSILSSFLCHFYMEDLIDEYLSF	...	(6) ...
S.c. Est2p	YIREDGLFQGSSLsapIVDLVYDDLLEFYSEF	...	(8) ...
E.a. p123	YKQTKGIPQGLCVSSILSSFYATLEESSLGF	...	(14) ...
	* * *** * * *		
Y Motif 5 (C)		Motif 6 (D)	
	h F Dhh h	Gh h cK h	
S.p. Tez1p	VLLRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFTSTSLEKTVINFENS	.	(205)
S.c. Est2p	LILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDKILAVSSQS	.	(173)
E.a. p123	LLMRLTDDYLLITTOENNNAVLFIEKLINVSRENGFKFNMKKLQTSFPLS	.	(209)
	* * *	* * *	

FIGURE 42

A

6

FIGURE 43

Disruption strategy for the putative telomerase genes.

(These cells will show a senescence phenotype if the disrupted gene encodes a telomerase subunit.)

FIGURE 44

An Example of Confirmation of *tez1* disruption By PCR

FIGURE 45

Tez1 disruption causes progressive shortening of telomeres in *S. pombe*

FIGURE 46

1	ggtaccgatTTactttccTTtcataagctaattgttccctcgaacgctcctaaatctggaaatatTTtacaaga	80
81	actcaataacaataccaagtcaaattccaaatgtaaagggttattagtgtatcgataatattctatTTatcggtcgTTa	160
161	ccaagtataaggacaaaagaacaactccTCCCTTAAAGACTTTactttatTTatTTatTTcaatataatTTcg	240
241	ggttcgcttaactttatcggtactTTtagtgcTTacttgcTTtagccAAccgcgtTTCTACCCGTatTTggat	320
321	agctctggagttagctcacagaaatccTTacaaatTTCTgtatgagactatattagattcattacagtccgtgcattc	400
401	ttaacatggagcTTacacttttagatgagtcacgcgtcatgtggagtTTTggatcatccaaacgTTgcTTgaaaag	480
481	gttgataattatTTgcaaaatcatgtcTTtagtgggtatccgcgaaagtTTTgtatgcTTgcacacgtctagcat	560
561	attggagatattcaaaaatttctatccactacaactccTTaaCGCGTTTatTTCTatTTCTatTTcatgttGTT	640
641	ccaaatatgtatcatctcgTTtaggcTTTCCGTTTactcctggaaatcgTaccTTTcaTTTCCCTaatga	720
721	ataatctaaatttagTTcgTTataattgtatgtatgatTTaaagatTTgggtattctactcgTgtatgttattagTTaa	800
801	gatactttgcaaaacatttattagctatcattatataaaaaaaatccTataattataatattatcaatatttgcggTC	880
881	actatttatttaaaacgttatgtatcaggacacttgcataatataatgttacttgcTTacttgc	958
959	ATG ACC GAA CAC CAT ACC CCC AAA AGC AGG ATT CTT CGC TTT CTA GAG AAT CAA TAT GTA	1018
1	M T E H H T P K S R I L R F L E N Q Y V	20
1019	TAC CTA TGT ACC TTA AAT GAT TAT GTA CAA CTT GTT TTG AGA GGG TCG CCG GCA AGC TCG	1078
21	Y L C T L N D Y V Q L V L R G S P A S S	40
1079	TAT AGC AAT ATA TGC GAA CGC TTG AGA AGC GAT GTA CAA ACG TCC TTT TCT ATT TTT CTT	1138
41	Y S N I C E R L R S D V Q T S F S I F L	60
1139	CAT TCG ACT GTA GTC GGC TTC GAC AGT AAG CCA GAT GAA GGT GTT CAA TTT TCT TCT CCA	1198
61	H S T V V G F D S K P D E G V Q F S S P	80

FIGURE 46 (cont.)

1199 AAA TGC TCA CAG TCA GAG gatatatatattttgtttgatttttctattcggatagctaataatggcag 1272
 81 K C S Q S E 86

1273 CTA ATA GCG AAT GTT GTA AAA CAG ATG TTC GAT GAA AGT TTT GAG CGT CGA AGG AAT CTA 1332
 87 L I A N V V K Q M F D E S F E R R R N L 106

1333 CTG ATG AAA GGG TTT TCC ATG gtaaggtattctaattgtgaaatattacacctgcaattactgtttcaaagaga 1405
 107 L M K G F S M 113

1406 ttgtatttaaccataaaag AAT CAT GAA GAT TTT CGA GCC ATG CAT GTA AAC GGA GTA CAA AAT 1469
 114 N H E D F R A M H V N G V Q N 128

1470 GAT CTC GTT TCT ACT TTT CCT AAT TAC CTT ATA TCT ATA CTT GAG TCA AAA AAT TGG CAA 1529
 129 D L V S T F P N Y L I S I L E S K N W Q 148

1530 CTT TTG TTA GAA AT gtaataaccgttaagatgttgcgcactttgaacaagactgacaagtata T ATC GGC 1601
 149 L L L E I I G 155

1602 AGT GAT GCC ATG CAT TAC TTA TTA TCC AAA GGA AGT ATT TTT GAG GCT CTT CCA AAT GAC 1661
 156 S D A M H Y L L S K G S I F E A L P N D 175

1662 AAT TAC CTT CAG ATT TCT GGC ATA CCA CTT TTT AAA AAT AAT GTG TTT GAG GAA ACT GTG 1721
 176 N Y L Q I S G I P L F K N N V F E E T V 195

1722 TCA AAA AAA AGA AAG CGA ACC ATT GAA ACA TCC ATT ACT CAA AAT AAA AGC GCC CGC AAA 1781
 196 S K K R K R T I E T S I T Q N K S A R K 215

1782 GAA GTT TCC TGG AAT AGC ATT TCA ATT AGT AGG TTT AGC ATT TTT TAC AGG TCA TCC TAT 1841
 216 E V S W N S I S R F S I F Y R S S Y 235

1842 AAG AAG TTT AAG CAA G gtaactaataactgttatccttcataactaatttttag AT CTA TAT TTT AAC
 1907
 236 K K F K Q D L Y F N 245

1908 TTA CAC TCT ATT TGT GAT CGG AAC ACA GTA CAC ATG TGG CTT CAA TGG ATT TTT CCA AGG 1967
 246 L H S I C D R N T V H M W L Q W I F P R 265

1968 CAA TTT GGA CTT ATA AAC GCA TTT CAA GTG AAG CAA TTG CAC AAA GTG ATT CCA CTG GTA 2027
 266 Q F G L I N A F Q V K Q L H K V I P L V 285

2028 TCA CAG AGT ACA GTT GTG CCC AAA CGT CTC CTA AAG GTA TAC CCT TTA ATT GAA CAA ACA 2087
 286 S Q S T V V P K R L L K V Y P L I E Q T 305

2088 GCA AAG CGA CTC CAT CGT ATT TCT CTA TCA AAA GTT TAC AAC CAT TAT TGC CCA TAT ATT 2147
 306 A K R L H R I S L S K V Y N H Y C P Y I 325

2148 GAC ACC CAC GAT GAT GAA AAA ATC CTT AGT TAT TCC TTA AAG CCG AAC CAG GTG TTT GCG 2207
 326 D T H D D E K I L S Y S L K P N Q V F A 345

2208 TTT CTT CGA TCC ATT CTT GTT CGA GTG TTT CCT AAA TTA ATC TGG GGT AAC CAA AGG ATA 2267
 346 F L R S I L V R V F P K L I W G N Q R I 365

2268 TTT GAG ATA ATA TTA AAA G gtattgtataaaatttattaccactaacgatttaccag AC CTC GAA ACT 2336
 366 F E I I L K D L E T 375

FIGURE 46 (cont.)

FIGURE 46 (cont.)

4666 gctgaccccaaagcaagcatactataaggattctagtaaagtaaaattaatctcgatttagttgacttgtct 4745
4746 ttatccttatacttttaagaaagattgacagtgggtgctgactactgcccacatgcccattaaacgggagtggtaaaca 4825
4826 ttaaaagtaatacatgaggctaatacctttcatttagaataaggaaagtggtttctataatgaataatgcccgcacta 4905
4906 atgcaaaaagacgaagattatcttaaacaaggggattaagcatatccgaaggaaaagagagtaataccagtt 4985
4986 gttgaagaagcaaggataatttggacaagcttctgcagatgacaggctaaatttggtgaccgaatttggtaaagc 5065
5066 cccaggttatccatggtgccggccttgctactgagacgaaaactaaggatagttgaataactaatacgctat 5145
5146 atgtcttatataaggtttgttttcctgacttcaatttgcattgggtgaaaagaaaatagtgttaaggcattattggat 5225
5226 tccgaaatagccaaatttcttggttcctcaaagcggaaagtctaaagaacttattgaagcttatgaggctcaaaaactcc 5305
5306 tcctgatttaaaggaggaatcttccaccgatgagggaaatggatagcttacagctgctgaggagaagcctaattttgc 5385
5386 aaaaaagaaaatcatggagacatcttgcattttgtatggcctactgtcgctcacttctcgtagctctacgcagttaaatgtcaata 5465
5466 acttctattctgaaatgtatggcctactgtcgctcacttctcgtagctctacgcagttaaatgtgacccaaaggtaacc 5544

FIGURE 47

1
met ser val tyr val val glu leu leu
GCCAAGTTCTGCCTGGCTG ATG AGT GTG TAC GTC GTC GAG CTG CTC

10 20
arg ser phe phe tyr val thr glu thr thr phe gln lys asn arg
AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG

30
leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile
CTC TTT TTC TAC CCG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT

40 50
gly ile arg gln his leu lys arg val gln leu arg glu leu ser
GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG TCG

60
glu ala glu val arg gln his arg glu ala arg pro ala leu leu
GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG

70 80
thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro
ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG

90
ile val asn met asp tyr val val gly ala arg thr phe arg arg
ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA

100 110
glu lys ala glu arg leu thr ser arg val lys ala leu phe
GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC

120
ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly
AGC GTG CTC AAC TAC GAG CGG GCG CGG CCC GGC CTC CTG GGC

130 140
ala ser val leu gly leu asp asp ile his arg ala trp arg thr
GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC

150
phe val leu arg val arg ala gln asp pro pro pro glu leu tyr
TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG TAC

160 170
phe val lys val asp val thr gly ala tyr asp thr ile pro gln
TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG

180
asp arg leu thr glu val ile ala ser ile ile lys pro gln asn
GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC

FIGURE 47 (cont.)

190

200

thr tyr cys val arg arg tyr ala val val gln lys ala ala met
ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC ATG

210

gly thr ser ala arg pro ser arg ala thr ser tyr val gln cys
GGC ACG TCC GCA AGG CCT TCA AGA GCC ACG TCC TAC GTC CAG TGC

220

230

gln gly ile pro gln gly ser ile leu ser thr leu leu cys ser
CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC TGC AGC

240

leu cys tyr gly asp met glu asn lys leu phe ala gly ile arg
CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ATT CGG

250

260

arg asp gly leu leu leu arg leu val asp asp phe leu leu val
CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG TTG GTG

270

thr pro his leu thr his ala lys thr phe leu arg thr leu val
ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC CTG GTC

280

290

arg gly val pro glu tyr gly cys val val asn leu arg lys thr
CGA GGT GTC CCT GAG TAT GGC TGC GTG AAC TTG CGG AAG ACA

300

val val asn phe pro val glu asp glu ala leu gly gly thr ala
GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC ACG GCT

310

320

phe val gln met pro ala his gly leu phe pro trp cys gly leu
TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC GGC CTG

330

leu leu asp thr arg thr leu glu val gln ser asp tyr ser ser
CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC TCC AGC

340

350

tyr ala arg thr ser ile arg ala ser leu thr phe asp arg gly
TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC CGC GGC

360

phe lys ala gly arg asn met arg arg lys leu phe gly val leu
TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG GTC TTG

370

380

arg leu lys cys his ser leu phe leu asp leu gln val asn ser
CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG AAC AGC

FIGURE 47 (cont.)

390
leu gln thr val cys thr asn ile tyr lys ile leu leu leu gln
CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG

400 410
ala tyr arg phe his ala cys val leu gln leu pro phe his gln
GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

420
gln val trp lys asn pro his phe ser cys ala ser ser leu thr
CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA

430 440
arg leu pro leu leu leu his pro glu ser gln glu arg arg asp
CGG CTC CCT CTG CTA CTC CAT CCT GAA AGC CAA GAA CGC AGG GAT

450
val ala gly gly gln gly arg arg pro ser ala leu arg gly
GTC GCT GGG GGC CAA GGG CGC CGC CGG CCC TCT GCC CTC CGA GGC

460 470
arg ala val ala val pro pro ser ile pro ala gln ala asp ser
CGT GCA GTG GCT GTG CCA CCA AGC ATT CCT GCT CAA GCT GAC TCG

480
thr pro cys his leu arg ala thr pro gly val thr gln asp ser
ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC

490 500
pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys
CCA GAC GCA GCT GAG TCG GAA GCT CCC GGG GAC GAC GCT GAC TGC

510
pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp
CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC

520 530
his pro gly leu met ala thr arg pro gln pro gly arg glu gln
CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG

540
thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly
ACA CCA GCA GCC CTG TCA CGC CGG GCT TAT ACG TCC CAG GGA GGG

550 560
arg gly gly pro his pro gly leu his arg trp glu ser glu ala
AGG GGC GGC CCA CAC CCA GGC CTG CAC CGC TGG GAG TCT GAG GCC

564
OP
TGA GTGAGTGTGTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGC
CTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACACCTGCGTTTCACTTCCCCAC

FIGURE 47 (cont.)

AGGCTGGCGTTGGTCCACCCCAGGGCCAGCTTCCTCACCA
CCCCACATAGGAATAGTCATCCCCAGATTGCCATTGTTACCC
TTTGCCTTCCACCCCCACCATTCAAGGTGGAGACCCTGAGA
AAGGACCTGGGAGCTTGG
AATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGG
ACCTGCACCTGGATGGGG
GTCCCTGTGGGTCAAATTGGGGGAGGTGCTGTGGAGTAAA
ACTGAATATATGAGTT
TTTCAGTTTGGAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 48

Motif -1
 Ep p123 ...LVVSLIRCFYYVTEQQKSYSKT...
 Sp Tez1 ...FIIPILQSFFYITESSDLRNRT...
 Sc Est2 ...LIPKIIQTFYYCTEISSTVTIV...
 Hs TCP1 ...YVVELLRSFFYVTETTFQKNRL...
 consensus FFY TE

K
 Motif 0 p hhh K hR h R
 Ep p123 ...KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...
 Sp Tez1 ...QKTTLPPAVIRLLPKKN--TFRLLTNLRKRF...
 Sc Est2 ...TLSNFNHSKMRIPKKSNNFRIIAIPCRGAD...
 Hs TCP1 ...ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...
 consensus R PK R I

AF
 Motif A h hDh GY h
 Ep p123 ...PKLFFATMDIEKCYDSVNREKLSTFLK...
 Sp Tez1 ...RKKYFVRIDIKSCYDRIKQDLMFRIVK...
 Sc Est2 ...PELYFMKFDVKSCYDSIPRMECMRLK...
 Hs TCP1 ...PELYFVKVDVTGAYDTIPQDRLTEVIA...//...
 consensus F D YD

hPQG pS hh
 Motif B Ep p123 ...NGKFYKQTKGIPQGLCVSSILSSFYYA...
 Sp Tez1 ...GNSQYLQKVGIPQGSILSSFLCHFYME...
 Sc Est2 ...EDKCYIREDGLFQGSSLSAPIVDLVYD...
 Hs TCP1 ...RATSYVQCQGIPQGSILSTLLCSLCYG...
 consensus G QG S

Y
 Motif C h F DDhhh
 Ep p123 ...PNVNLLMRLTDDYLLITTQENN...
 Sp Tez1 ...KKGSVLLRVVDDFLFITVNKKD...
 Sc Est2 ...SQDTLILKLAADDFLIISTDQQQ...
 Hs TCP1 ...RRDGLLLRLVDDFLLVTPHLTH...
 consensus DD L

Gh h cK
 Motif D Ep p123 ...NVSRENGFKFNMKKL...
 Sp Tez1 ...LNLSLRGFEKHFST...
 Sc Est2 ...KKLAMGGFQKYNAKA...
 Hs TCP1 ...LRTLVRGVPEYGCVV...
 consensus G

FIGURE 49

FIGURE 50

1 GCAGCGCTGC GTCCTGCTGC GCACGTGGGA AGCCCTGGCC CCGGCCACCC
51 CCGCGATGCC GCGCGCTCCC CGCTGCCGAG CGTGCCTGCCTGC
101 AGCCACTACC GCGAGGTGCT GCCGCTGGCC ACGTTCTGTC GGCGCCTGGG
151 GCCCCAGGGC TGGCGCTGG TGCGAGCGG GGACCCGGCG GCTTCCGCG
201 CGNTGGTGGC CCANTGCNTG GTGTGCGTGC CCTGGGANGN ANGGCNGCCC
251 CCCGCCGCC CTCCTCCG CCAGGTGTCC TGCCTGAANG ANCTGGTGGC
301 CCGAGTGCTG CANANGCTGT GCGANCACGG CGCGAANAAC GTGCTGGCCT
351 TCGGCTTCGC GCTGCTGGAC GGGGCCCG GGGGCCCGG CGAGGCCCTC
401 ACCACCAGCG TGCGCAGCTA CCTGCCAAC ACGGTGACCG ACGCACTGCG
451 GGGGAGCGGG GCGTGGGGC TGCTGCTGCG CCGCGTGGC GACGACGTGC
501 TGGTTCACCT GCTGGCACGC TGCGCGNTNT TTGTGCTGGT GGNTCCCAGC
551 TCGCCTACC ANGTGTGCGG GCCGCCCTG TACCAGCTCG GCGCTGCNAC
601 TCAGGCCCGG CCCCCGCCAC ACGCTANTGG ACCCGAANGC GTCTGGGATC
651 CAACGGGCCT GGAACCATAG CGTCAGGGAG GCCGGGGTCC CCCTGGGCTG
701 CCAGCCCCGG GTGCGAGGGAG GCGCGGGGGC AGTGCCAGCC GAAGTCTGCC
751 GTTGCCCAAG AGGCCAGGC GTGGCGCTGC CCCTGAGCCG GAGCGGACGC
801 CCGTTGGGCA GGGTCCTGG GCCCACCCGG GCAGGACGCC TGGACCGAGT
851 GACCGTGGTT TCTGTGTGGT GTCACCTGCC AGACCCGCCG AAGAAGCCAC
901 CTCTTGAG GGTGCGCTCT CTGGCACGCC CCACTCCAC CCATCCGTGG
951 GCCGCCAGCA CCACGCCGGG CCCCCATCCA CATCGCGGCC ACCACGTCT
1001 GGGACACGCC TTGTCCCCCG GTGTACGCC AGACCAAGCA CTTCTCTAC
1051 TCCTCAGGCC ACAAGNACAC TGCGNCCCTC CTTCTACTC AATATATCTG
1101 AGGCCAGCC TGACTGGCGT TCGGGAGGTT CGTGGAGACA NTCTTCTGG
1151 TTCCAGGCCT TGGATGCCAG GATTCCCCGC AGGTTGCCCG GCCTGCCCA
1201 GCGNTACTGG CAAATGCCGC CCCTGTTCT GGAGCTGCTT GGGAAACCACG
1251 CGCAGTGCCCT ACAGGGGTG TTCCCTAAGA CGCACTGCC GCTGCGAGCT
1301 GCGGTACCC CAGCAGCCGG TGTCTGTGCC CGGGAGAAC CCCAGGGCTC
1351 TGTGGCGGCC CCCGAGGAGG AGGAACACAG ACCCCCCGTG CCGTGGCAG
1401 CTGCTCCGCC AGCACAGCAG CCCCTGCCAG GTGTACGGCT TCGTGCAGGGC
1451 CTGCCTGCC CGGCTGGTGC CCCCCAGGCCT CTGGGGCTCC AGGCACAAACG
1501 AACGCCGCTT CCTCAGGAAC ACCAAGAAAGT TCATCTCCCT GGGGAAGCAT
1551 GCCAAGCTCT CGCTGCAGGA GCTGACGTGG AAGATGAGCG TCGGGACTG
1601 CGCTTGGCTG CGCAGGAGCC CAGGGGTTGG CTGTGTTCCG GCCGCAGAGC
1651 ACCGTCTGCG TGAGGAGATC CTGGCCAAGT TCCTGCACTG GCTGATGAGT
1701 GTGTACGTGCG TCGAGCTGCT CAGGTCTTC TTTATGTCA CGGAGACCAC
1751 GTTTCAAAAG AACAGGCTCT TTTCTACCG GAAGAGTGTC TGGAGCAAGT
1801 TGCAAAGCAT TGAATCAGA CAGCACTGA AGAGGGTGCA GCTGCGGGAG
1851 CTGTCGGAAG CAGAGGTGAG GCAGCATCGG GAAGCCAGGC CCGCCCTGCT
1901 GACGTCCAGA CTCCGCTTCA TCCCCAAGCC TGACGGGCTG CGGCCGATTG
1951 TGAACATGGA CTACGTGCG GGAGCCAGAA CGTCCCGAG AGAAAAGAGG
2001 GCCGAGCGTC TCACCTCGAG GGTGAAGGCA CTGTTCAGCG TGCTCAACTA
2051 CGAGCGGGCG CGCGCCCCCG GCCTCCTGGG CGCCTCTGTG CTGGGGCTGG
2101 ACGATATCCA CAGGGCCTGG CGCACCTCG TGCTGCGTGT GCGGGCCCCAG
2151 GACCCGCCGC CTGAGCTGTA CTTGTCAAG GTGGATGTGA CGGGCGCGTA
2201 CGACACCACATC CCCCCAGGACA GGCTCACGGA GGTCACTGCC AGCATCATCA
2251 AACCCCCAGAA CACGTACTGC GTGCGTCGGT ATGCCGTGGT CCAGAAGGCC

FIGURE 50 (cont.)

2301 GCCCATGGGC ACGTCCGCAA GGCTTCAAG AGCCACGTCT CTACCTTGAC
2351 AGACCTCCAG CCGTACATGC GACAGTCGT GGCTCACCTG CAGGANAACA
2401 GCCCGCTGAG GGATGCCGTC GTCATCGAGC AGAGCTCCTC CCTGAATGAG
2451 GCCAGCAGTG GCCTCTTCGA CGTCTTCCTA CGCTTCATGT GCCACCAACGC
2501 CGTGCGCATC AGGGGCAAGT CCTACGTCCA GTGCCAGGGG ATCCCGCAGG
2551 GCTCCATCCT CTCCACGCTG CTCTGCAGCC TGTGCTACGG CGACATGGAG
2601 AACAAAGCTGT TTGCGGGGAT TCGCGGGAC GGGCTGCTCC TGCCTTGGT
2651 GGATGATTTC TTGTTGGTGA CACCTCACCT CACCCACGCG AAAACCTTCC
2701 TCAGGACCCCT GGTCCGAGGT GTCCCTGAGT ATGGCTGCGT GGTGAACTTG
2751 CGGAAGACAG TGGTGAACCT CCCTGTAGAA GACGAGGCC TGGGTGGCAC
2801 GGCTTTGTT CAGATGCCGG CCCACGGCCT ATTCCCTG TGCGGCCTGC
2851 TGCTGGATAC CCGGACCCCTG GAGGTGCAGA GCGACTACTC CAGCTATGCC
2901 CGGACCTCCA TCAGAGCCAG TCTCACCTTC AACCGCGGCT TCAAGGCTGG
2951 GAGGAACATG CGTCGCAAAC TCTTGGGGT CTTGCGGCTG AAGTGTACA
3001 GCCTGTTCT GGATTGCAAG GTGAACAGCC TCCAGACGGT GTGCACCAAC
3051 ATCTACAAGA TCCTCCTGCT GCAGGCGTAC AGGTTCACG CATGTGTGCT
3101 GCAGCTCCA TTTCATCAGC AAGTTGGAA GAACCCCACA TTTTCCCTGC
3151 GCGTCATCTC TGACACGGCC TCCCTCTGCT ACTCCATCCT GAAAGCCAAG
3201 AACGCAGGGGA TGTCGCTGGG GGCCAAGGGC GCCGCCGGCC CTCTGCCCTC
3251 CGAGGCCGTG CAGTGGCTGT GCCACCAAGC ATTCCCTGCTC AAGCTGACTC
3301 GACACCGTGT CACCTACGTG CCACTCCTGG GGTCACTCAG GACAGCCCAG
3351 ACGCAGCTGA GTCGGAAGCT CCCGGGGACG ACGCTGACTG CCCTGGAGGC
3401 CGCAGCCAAC CCGGCACTGC CCTCAGACTT CAAGACCATC CTGGACTGAT
3451 GGCCACCCGC CCACAGCCAG GCCGAGAGCA GACACCAGCA GCCCTGTCAC
3501 GCCGGGCTCT ACGTCCCAGG GAGGGAGGGG CGGCCACAC CCAGGCCCGC
3551 ACCGCTGGGA GTCTGAGGCC TGAGTGAGTG TTTGGCCAG GCCTGCATGT
3601 CGGGCTGAAG GCTGAGTGTC CGGCTGAGGC CTGAGCGAGT GTCCAGCCAA
3651 GGGCTGAGTG TCCAGCACAC CTGCCGTCTT CACTTCCCCA CAGGCTGGCG
3701 CTCGGCTCCA CCCCAGGGCC AGCTTTCTT CACCAGGAGC CCGGCTTCCA
3751 CTCCCCACAT AGGAATAGTC CATCCCCAGA TTCGCCATTG TTCACCCCTC
3801 GCCCTGCCCT CTTTGCCTT CCACCCCCAC CATCCAGGTG GAGACCCTGA
3851 GAAGGACCCCT GGGAGCTCTG GGAATTGGGA GTGACCAAAG GTGTGCCCTG
3901 TACACAGGGCG AGGACCCCTGC ACCTGGATGG GGGTCCCTGT GGGTCAAATT
3951 GGGGGGAGGT GCTGTGGGAG TAAAATACTG AATATATGAG TTTTCAGTT
4001 TTGAAAAAAA AAAAAAAA AAAAAAAA

FIGURE 51

1 GCAAGCGCTGCGTCTCTGCGCACCGTGGGAAGCCCCTGGCCCCGGCACCCCCCGCGATGCC
 60
 1 CCGTCCCGACGCAGGACGACGCGTGCACCCCTTGGGACCGGGGGCGGTGGGGGGCGTACCG

 a A A I R P A A H V G S P C F G H P R D A -
 b Q R C V L L R T W E A L A P A T P A M P -
 c S A A S C C A R G K P W F E P P P F R C R -

 61 CCGCGCTCCCGCTGGCGAGCGTGGCGCTCCCTGGCGAGCCACTACCGCGAGGTGCT
 120
 CCGCGAGGCGCGAGCGCTGGCGAGCGAGCGAGCGTGGCGATGGCGCTCCACCGA

 a A R S P L T S R A L P A A Q P L P R G A -
 b R A P R C K A V R S L L R S H Y R E V L -
 c A L P A A E P C A P C C A A T T A R C C -

 121 CCGCGCTGGCCACGTTGGTGGCGCGCTGGGGCCCGAGGGCTGGCGGCCTGGCGAGCGCG
 180
 CGCGCACCGGTGCAAGCACGCGCGAGCCCGGGTCCCGACCGCGACACGTGCGCG

 a A A G H V R A A P G A P G I A A G A A R -
 b P L A T F V R R L G P Q G W R L V Q R G -
 c R W P R S C G A W G P R A C G W C S A G -

 181 GGACACGGCGGCTTCCCGCGGNTGGTGGCCGANTGCGTGGTGGCGCCCTGGGAGN
 240
 CCTGGGCGCGGAAGGCGCGNACCCACGGGTNAACGNAACACGCGACCGGACCGCTN

 a G P G G F P R ? G G P ? C G V R A L G ? -
 b D P A A F R A ? V A ? C ? V C V P W ? ? -
 c T R R L S A R W W P ? A W C A C T G ? ? -

 241 ANGGCNGCCCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG
 300
 TNCCGNCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG

 a ? A A F R R P L L P P C V L P E ? ? G G -
 b ? ? P P A A P S F R G V S C L ? ? L V A -
 c G ? P P P P S A R C P A ? ? ? W W P -

 301 CGAGGTGCTGCANANGCTGCGANCCCGCGCGAANACCGTGTGGCGTGGCGTGGCG
 360
 GGCTCACGACGCTNTNTGACACGCTTGGCGCGGCTTNTGACCCACCGAAGCCGAAGCG

 a P S A A ? A V R ? R R E ? R A G L R L R -
 b R V L ? ? L C ? R G A ? N V L A F G P A -
 c E C C ? ? C A ? A A R ? T C W P S A S R -

 361 GCTGCTGGACGGGCGCGGGGGCGGCGGCGGCGGCGGCGGCG
 420
 CGAGGACCTGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG

 a A A G R G P R G F P R G L H H Q R A Q L -
 b L L D G A R G G F P E A F T T S V R S Y -
 c C W T G P A G A F F R F S P P A C A A T -

FIGURE 51 (cont.)

FIGURE 51 (cont.)

FIGURE 51 (cont.)

1361 C T A C G R G R T G T T C T C A A G A C C A C T G C C C G C T C C G A G C T G C G G T C A C C C C A G C A G C G C S
 1370
 1371 C A T G L U C C A C A A G G A G T T C T G C G T G A O G G G G C G A C G C T G A O G C C A G T G G G G T G T G G G C C
 a L R G V P Q D A L F A A S C G H F S S R -
 b Y G V F L K T H C P L R A A V T P A A G -
 c T G C S S R R T A R C E L R S P Q Q P V -
 1380
 1381 T G T C T G G C C G G A G A A G C C C A G G G C T C T G T G G G G C C C C G G G A G G G A G G G A C A C A G S
 1380
 A C A G A C A C G G G C C T C T T C G G G T C C C G A G A C A C C C C C G G G G C T C C T C T T G T G T C
 a C L C P G F A P G I C G G P R G G G T Q -
 b V C A R E K P O G S V A A P E E E E H R -
 c S V P G R S P R A L W R P F R R T N T D -
 1440
 1441 A C C C C C G T C C C T G G T G C A G C T G C T C C C G C A C C A G C C A C C A G C C C T G G C A G G T T A C G G C T
 T G G G G G C A G G G A C C A C G T C G A C G A G G G G T C G T G T G T C G G G G A C C G T C C A C A T G C C G A
 a T F V A W C S C S A S T A A P G R C T A -
 b P P S P G A A A P P A Q Q P L A G V R L -
 c P R R L V Q L L R Q H S S P W Q V Y G F -
 1500
 1501 T C G T G C G G G C T G C T G G C G G G C T G T G G G C C C C A G G C C T C T G G G C T C C A G G C A C A A C G
 A B C A O G C C C G G A C G G A O G C G G C O G A C C A C G G G G G T C C G A C A C C C C G A G G G T C C G T G C
 a E C G P A C A G W C P Q A S G A F G T T -
 b R A G L P A P A G A P R P L G I Q A Q R -
 c V R A C L R R L V P P G L W G S R H N E -
 1560
 1561 A A C G C U G G T T C C T C A G G A A C C A A G A A G I T C A T C T C C T G G G G A A C T A C T C A A G C T C T
 T T G G G G C A A G G A G T C C T T G T G G T T C T C A A C T A G A G G G A C C C C T C G T A C G G T T C G G A G A
 a N A A S S G T P R S S S P W G S M P S S
 b T P I P Q E H Q E V H L P G E A C Q A L
 c R R F L R N T K K F I S L G K H A E L S -
 1620
 1621 C G C T T C A G G A G C T G A C T G G G A A G A T G A G C G T G C G G G A C T G C G C T T G T G C C U C A G G A G C C
 G C G A O G T C C T C A C T G C A C C T T C T A C T C G C A C G C C T G A C G G G A A C C G A C G C C T C T G G G
 a R C R S * R G R * A C G T A L C C A G A -
 b A A G A D V E D E R A G L R L A A Q E P
 c L Q E L T W K M S V R D C A W L R R S P -
 1680
 1681 C A G G G T T G G C T T G G T T C G G G C C G C A T G C A C C G T C T C C T T A G G A G A T C C T G G C C A A G T
 G T C C C C C A A C G A C A A G G C O G G G G T T C G T G G C C A G G C C A C T C C T C T A G G A C C G G G T C A
 a Q G L A V F R P Q S T V C V R R S W F S -
 b R G W L C S C R R A T S A * G D P G O V -
 c G V G C V P A A E H R I R E E I L A K F

FIGURE 51 (cont.)

3361 CTCGAGGCTCGGGGAGGAGCTGACTGCGCTGAGGCGGCGAGCGACAGGCGACAC
 CAGCTTGGAGGGCGCTGCTGGACTGACGGACCTCCGGCGCTGGCTGGCGGAGCG
 V G F S R G R R * I F W P P Q F T R H C -
 S E A F G D D A D C P G G R E Q P G T A -
 R K L F G T T L T A L E A A A N P A L F -
 CCTGAGCTICAAGGACATTCGGACTGAGGGCCACCGCCACAGCTAGGCGAGAGCA
 3421 GGAGTCTGAAGTCTGGTACGGACTGACTACGGTGCGCGGTGTCGCTCGGCTGCTGCT
 P Q T S P P S W T D G H P P T A R P R A -
 L S L Q D H P G L M A T R P Q P G R E Q -
 S D F K T I L D * W P F A H S Q A E L R -
 GACACCAGCAAGCCCTCTCAAGCCGGGCTCTACGTCCAGGGAGGGAGGGCGGCCACAC
 3481 CTGTAGTCGCGGGACACTCGGCGGGAGATGAGGGTCCCTCCCTCCCGGGGGTCTG
 D T S S P V T P G S T S Q G G R G G P H -
 T P A A L S R R A L R P R E G G A A H T -
 H Q Q P C H A G L Y V P G R E G R P T P -
 CGAGKCCGCAAGGCGGACTCTACGGCTGAGTGAGTGTGAGGCGAGGCTGCGATGT
 3541 GTCGCGGGCGTGGCGACCTGACACTCGGACTCACTCACAAACCGCTCGGAGCTACA
 P G P H R W E S E A * V S V W P R P A C -
 Q A R T A G S L R P E * V F C R G L H V -
 K P A P L G V * G L S E C L A E A C M S -
 CGCGCTGAAGCTGAGTGTGGCTGAGGCCCTGGCGAGTCTCCACCCAAGGGCTGAGTC
 3601 CGCGGACTCTGGACCTCACAGGGGACTCGGACTGCTACAGGTGCGTCCCGACTGAC
 P A E G * V S G * G L S E C P A K C * V -
 R L F A E C P A E A * A S V Q P R A E C -
 G * P L S V R L R P E R V S S Q G L S V -
 TCCAGAACACCTGGGCTTCACTTCCACACGGCTGGCTGAGGCG
 3661 AGGTGCTGTCGACGGCAGAAGTGAACCGCTGTCGGACCGCGAGGGTGGAGGTTGAGG
 S S T P A V F T S P Q A G A R I H P R A -
 P A H L P S S L P H R L A L G S T P G P -
 Q H T C R L H F P T G W R S A P F Q G Q -
 AGCTTTCTCACCAAGAGCCGGCTGACTCCCAATAGAATAGTCCAGGCGAGA
 3721 TCGAAGGGAGTGGTCTCGGGCGAAGCTGAGGGGAGGATCCCTATCACGCTAACGGCT
 S F S S P G A R L P L P T * E * S T P P -
 A P P H Q E F G F H S P H R N S P S P D -
 L F L T H S P A S T P H I G I V H E Q T -

FIGURE 51 (cont.)

FIGURE 52

FIGURE 53

1
met
GCAGCGCTGCGTCCTGCTGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCG ATG

10
pro arg ala pro arg cys arg ala val arg ser leu leu arg ser
CCG CGC GCT CCC CGC TGC CGA GCC GTG CGC TCC CTG CTG CGC AGC

20 30
his tyr arg glu val leu pro leu ala thr phe val arg arg leu
CAC TAC CGC GAG GTG CTG CCG CTG GCC ACG TTC GTG CGG CGC CTG

40
gly pro gln gly trp arg leu val gln arg gly asp pro ala ala
GGG CCC CAG GCC TGG CGG CTG GTG CAG CGC GGG GAC CCG GCG GCT

50 60
phe arg ala leu val ala gln cys leu val cys val pro trp asp
TTC CGC GCG CTG GTG GCC CAG TGC CTG GTG TGC GTG CCC TGG GAC

70
ala arg pro pro pro ala ala pro ser phe arg gln val ser cys
GCA CGG CCG CCC GCC CCC TCC TTC CGC CAG GTG TCC TGC

80 90
leu lys glu leu val ala arg val leu gln arg leu cys glu arg
CTG AAG GAG CTG GTG GCC CGA GTG CTG CAG AGG CTG TGC GAG CGC

100
gly ala lys asn val leu ala phe gly phe ala leu leu asp gly
GGC GCG AAG AAC GTG CTG GCC TTC GGC TTC GCG CTG GAC GGG

110 120
ala arg gly gly pro pro glu ala phe thr thr ser val arg ser
GCC CGC GGG GGC CCC CCC GAG GCC TTC ACC ACC AGC GTG CGC AGC
^

130
tyr leu pro asn thr val thr asp ala leu arg gly ser gly ala
TAC CTG CCC AAC ACG GTG ACC GAC GCA CTG CGG GGG AGC GGG GCG

FIGURE 53 (cont.)

140 150
trp gly leu leu leu arg arg val gly asp asp val leu val his
TGG GGG CTG CTG CTG CGC CGC GTG GGC GAC GAC GTG CTG GTT CAC

160
leu leu ala arg cys ala leu phe val leu val ala pro ser cys
CTG CTG GCA CGC TGC GCG CTC TTT GTG CTG GTG GCT CCC AGC TGC

170 180
ala tyr gln val cys gly pro pro leu tyr gln leu gly ala ala
GCC TAC CAG GTG TGC GGG CCG CCG CTG TAC CAG CTC GGC GCT GCC

190
thr gln ala arg pro pro pro his ala ser gly pro arg arg arg
ACT CAG GCC CGG CCC CCG CCA CAC GCT AGT GGA CCC CGA AGG CGT

200 210
leu gly cys glu arg ala trp asn his ser val arg glu ala gly
CTG GGA TGC GAA CGG GCC TGG AAC CAT AGC GTC AGG GAG GCC GGG

220
val pro leu gly leu pro ala pro gly ala arg arg arg gly gly
GTC CCC CTG GGC CTG CCA GCC CCG GGT CCG AGG AGG CGC GGG GGC

230 240
ser ala ser arg ser leu pro leu pro lys arg pro arg arg gly
AGT GCC AGC CGA AGT CTG CCG TTG CCC AAG AGG CCC AGG CGT GGC

250
ala ala pro glu pro glu arg thr pro val gly gln gly ser trp
GCT GCC CCT GAG CCG GAG CGG ACG CCC GTT GGG CAG GGG TCC TGG

260 270
ala his pro gly arg thr arg gly pro ser asp arg gly phe cys
GCC CAC CCG GGC AGG ACG CGT GGA CCG AGT GAC CGT GGT TTC TGT

280
val val ser pro ala arg pro ala glu glu ala thr ser leu glu
GTG GTG TCA CCT GCC AGA CCC GCC GAA GAC GCC ACC TCT TTG GAG

FIGURE 53 (cont.)

290 300
gly ala leu ser gly thr arg his ser his pro ser val gly arg
GGT GCG CTC TCT GGC ACG CGC CAC TCC CAC CCA TCC GTG GGC CGC

310
gln his his ala gly pro pro ser thr ser arg pro pro arg pro
CAG CAC CAC GCG GGC CCC CCA TCC ACA TCG CGG CCA CCA CGT CCC

320 330
trp asp thr pro cys pro pro val tyr ala glu thr lys his phe
TGG GAC CCT TGT CCC CCG GTG TAC GCC GAG ACC AAG CAC TTC

340
leu tyr ser ser gly asp lys glu gln leu arg pro ser phe leu
CTC TAC TCC TCA GGC GAC AAG GAG CAG CTG CGG CCC TCC TTC CTA

350 360
leu ser ser leu arg pro ser leu thr gly ala arg arg leu val
CTC AGC TCT CTG AGG CCC AGC CTG ACT GGC GCT CGG AGG CTC GTG

370
glu thr ile phe leu gly ser arg pro trp met pro gly thr pro
GAG ACC ATC TTT CTG GGT TCC AGG CCC TGG ATG CCA GGG ACT CCC

380 390
arg arg leu pro arg leu pro gln arg tyr trp gln met arg pro
CGC AGG TTG CCC CGC CTG CCC CAG CGC TAC TGG CAA ATG CGG CCC

400
leu phe leu glu leu leu gly asn his ala gln cys pro tyr gly
CTG TTT CTG GAG CTG CTT GGG AAC CAC GCG CAG TGC CCC TAC GGG

410 420
val leu leu lys thr his cys pro leu arg ala ala val thr pro
GTG CTC CTC AAG ACG CAC TGC CCG CTG CGA GCT GCG GTC ACC CCA

430
ala ala gly val cys ala arg glu lys pro gln gly ser val ala
GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG

FIGURE 53 (cont.)

440 450
ala pro glu glu glu asp thr asp pro arg arg leu val gln leu
GCC CCC GAG GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG

460
leu arg gln his ser ser pro trp gln val tyr gly phe val arg
CTC CGC CAG CAC AGC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG

470 480
ala cys leu arg arg leu val pro pro gly leu trp gly ser arg
GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG

490
his asn glu arg arg phe leu arg asn thr lys lys phe ile ser
CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC

500 510
leu gly lys his ala lys leu ser leu gln glu leu thr trp lys
CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG

520
met ser val arg asp cys ala trp leu arg arg ser pro gly val
ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT

530 540
gly cys val pro ala ala glu his arg leu arg glu glu ile leu
GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG

550
ala lys phe leu his trp leu met ser val tyr val val glu leu
GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG

560 570
leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn
CTC AGG TCT TTC TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC

580
arg leu phe phe tyr arg pro ser val trp ser lys leu gln ser
AGG CTC TTT TTC TAC CGG CCG AGT GTC TGG AGC AAG TTG CAA AGC

590 600
ile gly ile arg gln his leu lys arg val gln leu arg glu leu
ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG

FIGURE 53 (cont.)

610
ser glu ala glu val arg gln his arg glu ala arg pro ala leu
TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG

620 630
leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg
CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG

640
pro ile val asn met asp tyr val val gly ala arg thr phe arg
CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC

650 660
arg glu lys arg ala glu arg leu thr ser arg val lys ala leu
AGA GAA AAG AGG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG

670
phe ser val leu asn tyr glu arg ala arg arg pro gly leu leu
TTC AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG

680 690
gly ala ser val leu gly leu asp asp ile his arg ala trp arg
GGC GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC

700
thr phe val leu arg val arg ala gln asp pro pro pro glu leu
ACC TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCG CCT GAG CTG

710 720
tyr phe val lys val asp val thr gly ala tyr asp thr ile pro
TAC TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC

730
gln asp arg leu thr glu val ile ala ser ile ile lys pro gln
CAG GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG

740 750
asn thr tyr cys val arg arg tyr ala val val gln lys ala ala
AAC ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC

760
his gly his val arg lys ala phe lys ser his val ser thr leu
CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC TCT ACC TTG

FIGURE 53 (cont.)

770 780
thr asp leu gln pro tyr met arg gln phe val ala his leu gln
ACA GAC CTC CAG CCG TAC ATG CGA CAG TTC GTG GCT CAC CTG CAG

790
glu thr ser pro leu arg asp ala val val ile glu gln ser ser
GAG ACC AGC CCG CTG AGG GAT GCC GTC GTC ATC GAG CAG AGC TCC

800 810
ser leu asn glu ala ser ser gly leu phe asp val phe leu arg
TCC CTG AAT GAG GCC AGC AGT GGC CTC TTC GAC GTC TTC CTA CGC

820
phe met cys his his ala val arg ile arg gly lys ser tyr val
TTC ATG TGC CAC CAC GCC GTG CGC ATC AGG GGC AAG TCC TAC GTC

830 840
gln cys gln gly ile pro gln gly ser ile leu ser thr leu leu
CAG TGC CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC

850
cys ser leu cys tyr gly asp met glu asn lys leu phe ala gly
TGC AGC CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG

860 870
ile arg arg asp gly leu leu leu arg leu val asp asp phe leu
ATT CCG CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG

880
leu val thr pro his leu thr his ala lys thr phe leu arg thr
TTG GTG ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC

890 900
leu val arg gly val pro glu tyr gly cys val val asn leu arg
CTG GTC CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG

910
lys thr val val asn phe pro val glu asp glu ala leu gly gly
AAG ACA GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC

920 930
thr ala phe val gln met pro ala his gly leu phe pro trp cys
ACG GCT TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC

FIGURE 53 (cont.)

940
gly leu leu leu asp thr arg thr leu glu val gln ser asp tyr
GGC CTG CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC

950 960
ser ser tyr ala arg thr ser ile arg ala ser val thr phe asn
TCC AGC TAT GCC CGG ACC TCC ATC AGA GCC AGT GTC ACC TTC AAC

970
arg gly phe lys ala gly arg asn met arg arg lys leu phe gly
CGC GGC TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG

980 990
val leu arg leu lys cys his ser leu phe leu asp leu gln val
GTC TTG CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG

1000
asn ser leu gln thr val cys thr asn ile tyr lys ile leu leu
AAC AGC CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG

1010 1020
leu gln ala tyr arg phe his ala cys val leu gln leu pro phe
CTG CAG GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT

1030
his gln gln val trp lys asn pro thr phe phe leu arg val ile
CAT CAG CAA GTT TGG AAG AAC CCC ACA TTT TTC CTG CGC GTC ATC

1040 1050
ser asp thr ala ser leu cys tyr ser ile leu lys ala lys asn
TCT GAC ACG GCC TCC CTC TGC TAC TCC ATC CTG AAA GCC AAG AAC

1060
ala gly met ser leu gly ala lys gly ala ala gly pro leu pro
GCA GGG ATG TCG CTG GGG GCC AAG GGC GCC GGC CCT CTG CCC

1070 1080
ser glu ala val gln trp leu cys his gln ala phe leu leu lys
TCC GAG GCC GTG CAG TGG CTG TGC CAC CAA GCA TTC CTG CTC AAG

1090
leu thr arg his arg val thr tyr val pro leu leu gly ser leu
CTG ACT CGA CAC CGT GTC ACC TAC GTG CCA CTC CTG GGG TCA CTC

FIGURE 53 (cont.)

1100 1110
arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr
AGG ACA GCC CAG ACG CAG CTG AGT CGG AAG CTC CCG GGG ACG ACG

1120
leu thr ala leu glu ala ala asn pro ala leu pro ser asp
CTG ACT GCC CTG GAG GCC GCA AAC CCG GCA CTG CCC TCA GAC

1130 1132
phe lys thr ile leu asp OP
TTC AAG ACC ATC CTG GAC TGA TGGCCACCCGCCACAGCCAGGCCAGAGCAGA
CACCAAGCAGCCCTGTCACGCCGGCTCTACGTCCCAGGGAGGGAGGGCGGCCACACCC
AGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGAGTGTGTTGCCAGGCCCTGCATGTCC
GGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTC
CAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCCTCGCTCCACCCCCAGGCCAG
CTTTTCYTCACCAGGAGCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGATT
CGCCATTGTTCACCCYTCGCCCTGCCYTCCTTGCCTTCCACCCCCACCATCCAGGTGGA
GACCCTGAGAAGGACCCCTGGGAGCTCTGGGAATTGGAGTGACCAAAGGTGTGCCCTGTA
CACAGGCGAGGACCCCTGCACCTGGATGGGGTCCCTGTGGGTCAAATTGGGGGAGGTGC
TGTGGGACTAAAATCTGAATATGAGTTTCAGTTGAAAAA
AAAAAAAAAA

FIGURE 54

