BundesministeriumBildung, Wissenschaft und Forschung

Fässer

Fässer können modellhaft durch Rotation des Graphen einer quadratischen Funktion f im Intervall $\left[-\frac{h}{2};\frac{h}{2}\right]$ um die x-Achse beschrieben werden.

r, R, h ... Abmessungen in dm

- a) Für das Fass A mit den Abmessungen r_A , R_A und h_A wird die obere Begrenzungslinie durch die Funktion f_A mit $f_A(x) = a \cdot x^2 + b \cdot x + c$ beschrieben.
 - 1) Erklären Sie, warum b = 0 gilt.

[0/1 P.]

Es gilt: $r_A = 2.5$ dm, $R_A = 3.2$ dm, $h_A = 8$ dm.

2) Ermitteln Sie die Koeffizienten a und c.

[0/1 P.]

b) Für das Fass B mit den Abmessungen r_B , R_B und h_B wird die obere Begrenzungslinie durch die Funktion f_B beschrieben.

$$f_B(x) = -\frac{1}{16} \cdot x^2 + 3$$
 mit $-4 \le x \le 4$
 $x, f_B(x)$... Koordinaten in dm

Es gilt: $h_B = 8 \text{ dm}$.

1) Berechnen Sie das Volumen des Fasses B.

[0/1 P.]

Jemand behauptet: "Das Volumen des Fasses B lässt sich auch als Volumen eines Zylinders mit der Höhe $h_{\scriptscriptstyle B}$, dessen Radius das arithmetische Mittel aus $r_{\scriptscriptstyle B}$ und $R_{\scriptscriptstyle B}$ ist, berechnen."

2) Überprüfen Sie nachweislich, ob diese Behauptung richtig ist.

[0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

c) Um die Länge L des Graphen der Funktion f im Intervall $\left[-\frac{h}{2}; \frac{h}{2}\right]$ abzuschätzen, berechnet man die Gesamtlänge L_1 der zwei strichlierten Strecken (siehe nachstehende Abbildung).

1) Stellen Sie eine Formel zur Berechnung der Gesamtlänge L_1 auf. Verwenden Sie dabei r, R und h.

L	₁ =	[0/1 P.]

Folgende Berechnung wird für das Fass C durchgeführt:

$$\frac{L_1}{L} - 1 = -0,015$$

2) Beschreiben Sie die Bedeutung des Wertes –0,015 im gegebenen Sachzusammenhang. Beachten Sie dabei insbesondere das Vorzeichen. [0/1 P.]

Bundesministerium

Bildung, Wissenschaft und Forschung

Möglicher Lösungsweg

a1) Der Graph von f_A ist symmetrisch bezüglich der vertikalen Achse.

oder:

An der Stelle x = 0 gilt: $f_A'(0) = 0$.

a2)
$$f_A(0) = 3.2$$
 $C = 3.2$

$$f_A(4) = 2.5$$
 oder $16 \cdot a + 3.2 = 2.5$
 $a = -0.04375$

- a1) Ein Punkt für das richtige Erklären.
- a2) Ein Punkt für das richtige Ermitteln der Koeffizienten a und c.

b1)
$$V = \pi \cdot \int_{-4}^{4} (f_B(x))^2 dx = 180,95...$$

Das Volumen des Fasses B beträgt rund 181 dm³.

b2)
$$\left(\frac{f_B(0) + f_B(4)}{2}\right)^2 \cdot \pi \cdot 8 = \left(\frac{3+2}{2}\right)^2 \cdot \pi \cdot 8 = 157,07...$$

Da das Volumen des Zylinders rund 157 dm³ beträgt, ist die Behauptung falsch.

- b1) Ein Punkt für das richtige Berechnen des Volumens.
- b2) Ein Punkt für das richtige nachweisliche Überprüfen.

c1)
$$L_1 = 2 \cdot \sqrt{(R-r)^2 + \left(\frac{h}{2}\right)^2}$$

- c2) Der Wert -0.015 bedeutet, dass für das Fass C die Gesamtlänge L_1 um 1,5 % kleiner als die Länge L ist.
- c1) Ein Punkt für das richtige Aufstellen der Formel.
- c2) Ein Punkt für das richtige Beschreiben im gegebenen Sachzusammenhang unter Beachtung des Vorzeichens.