FATTI DI EGA

NOTAZIONI ED INTRODUZIONE

Il corso da cui sono tratti gli enunciati è diviso in alcune parti: nella prima si cerca di dare un'introduzione più concreta alla geometria algebrica attraverso anche esempi di curve in \mathbb{P}^2 , nella seconda si fanno altre cose... bla bla bla...

PRIMA PARTE

Studio dell'irriducibilità dei polinomi "quadratici"

 $p(x,y)=y^2-f(x)\in \mathbb{K}[x][y]$. Se nella fattorizzazione di $f(x)=c\cdot p_1^{\alpha_1}\dots p_k^{\alpha_k}$ con p_i irriducibili e distinti, $\alpha_i>0$ esiste un i tale che α_i è dispari allora si ha p(x,y) irriducibile. Inoltre se \mathbb{K} è algebricamente chiuso questa condizione è anche necessaria.

STUDIO LOCALE DELLE IPERSUPERFICI AFFINI

 $f \in \mathbb{K}[x_1, \dots, x_n], p \in V(f) \subseteq \mathbb{A}^n$. Sia l retta di \mathbb{A}^n passante per p, ovvero $l = \{p+tv \mid t \in \mathbb{K}\}$ con $v \in \mathbb{K}^n \setminus \{0\}$.

Consideriamo il polinomio $g(t):=f(p+tv)\in\mathbb{K}[t]$ e distinguiamo due casi:

- $g \equiv 0$: Significa che la retta l è contenuta in V(f) e quindi diciamo che l interseca \mathcal{I}_f in p con molteplicità infinita.
- $g \not\equiv 0$, ma g(0) = 0 perché $p \in V(f)$. Quindi in t = 0 ha una radice con una certa molteplicità $g(t) = t^m h(t)$ con $h(0) \neq 0$. Allora dico che l interseca \mathcal{I}_f in p con molteplicità m.

Se m > 1 diciamo che l è tangente a \mathcal{I}_f in p.

Invece diciamo che p è un punto liscio o non singolare di \mathcal{I}_f se esiste almeno una retta l che passa per p e non è tangente.

Fissato un punto p vengono chiamate tangenti principali le rette tangenti che intersecano \mathcal{I}_f con molteplicità massima.

In generale, a meno di una traslazione possiamo supporre p=(0,0) e $p\in V(f)$. Allora considero una retta per l'origine $l=\{tv\mid t\in\mathbb{K}\}$ e g(t):=f(tv), con $v=(v_1,\ldots,v_n)\in\mathbb{K}^n\setminus\{0\}$. Allora l è tangente a f in $p\Leftrightarrow g'(0)=0$. $g'(t)\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(tv)\cdot v_i\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i$ quindi $g'(0)=0\Leftrightarrow \sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i=0$ e distinguiamo dunque due casi:

- $\frac{\partial f}{\partial x_i}(p) = 0$ $\forall i$ allora p è un punto singolare
- $\exists i$ t.c. $\frac{\partial f}{\partial x_i}(p) \neq 0$ allora p è liscio e l'insieme delle direazioni in \mathbb{K}^n tangenti a \mathcal{I}_f in p è un iperpiano di equazione $\sum_i \frac{\partial f}{\partial x_i}(p) \cdot v_i = 0$

Inoltre, se scriviamo $f(x_1,\ldots,x_n)=f_m(\boldsymbol{x})+h(\boldsymbol{x})$ dove f_m è omogeneo di grado $m\geq 1$ e tutti i monomi di h hanno grado maggiore di m allora abbiamo \mathcal{I}_f è liscia in $p\Leftrightarrow m=1$ e inoltre sappiamo che ogni retta interseca \mathcal{I}_f in p con molteplicità $\geq m$. E se il campo è infinito, per il principio di identità dei polinomi ho che m è il minimo della molteplicità d'intersezione di l con \mathcal{I}_f in p al variare di l tra le rette in p. Essa viene chiamata molteplicità del punto. Una retta si dice trasversale se molt (l)=1.

Si chiama cono tangente a \mathcal{I}_f in p l'insieme delle rette che intersecano \mathcal{I}_f in p con molteplicità maggiore del minimo m. è dato dall'equazione $f_m = 0$.

Inoltre la molteplicità di p per \mathcal{I}_f è uguale a $m \Leftrightarrow$ tutte le derivate parziali di f di ordine minore di m si annullano in p e c'è almeno una derivata parziale m-esima che non è nulla.

Diciamo che un punto è un nodo se è singolare di molteplicità due.

Omogenizzazione e Disomogeneizzazione

 $D: \mathbb{K}[x_0,\ldots,x_n] \to \mathbb{K}[x_1,\ldots,x_n]$ tale che $F(x_0,\ldots,x_n) \mapsto F(1,x_1,\ldots,x_n)$ che è ovviamente un omomorfismo di \mathbb{K} -algebre.

 $H: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[x_0,\ldots,x_n]$ che omogeneizza i polinomi, ovvero dato $f \neq 0$, $f \in \mathbb{K}[x_1,\ldots,x_n]$ sia $d=\deg f$. Allora $H(f):=x_0^d\cdot f(\frac{x_1}{x_0},\frac{x_2}{x_0},\ldots,\frac{x_n}{x_0})$. Notiamo che H NON è un omomorfismo però è moltiplicativo.

Allora valgono:

- H è moltiplicativo: H(fg) = H(f)H(g)
- $D \circ H = id$
- $H \circ D \mid_{\text{Polinomi Omogenei}} (F) = F_1 \text{ con } F \in \mathbb{K}[x_0, \dots, x_n]_d$ e vale $F = x_0^m F_1$ e $x_0 \nmid F_1$. Ovvero se $x_0 \mid F$ perdiamo le potenze di x_0 nel polinomio, altrimenti otteniamo la stessa cosa.
- $f \in \mathbb{K}[x_1, \dots, x_n]$ irriducibile $\Longrightarrow F = H(f)$ irriducibile.
- $F \in \mathbb{K}[x_0, \dots, x_n]$ irriducibile $e \neq x_0 \implies f = D(F)$ irriducibile.

FATTORIZZAZIONE DEI POLINOMI OMOGENEI

Sia F omogeneo, allora scrivo $F=x_0^mG$, con G omogeneo e $x_0 \nmid G$. Considero allora $g:=D(G)=D(F) \in \mathbb{K}[x_1,\ldots,x_n]$ e $g=c\cdot p_1^{\alpha_1}\ldots p_k^{\alpha_k}$ con i p_i irriducibili distinti e $\alpha_i>0$, $c\in \mathbb{K}^*$. Allora $P_i:=H(p_i)$ che è ancora irriducibile e $F=x_0^mG=x_0^mH(g)=cx_0^mP_1^{\alpha_1}\ldots P_k^{\alpha_k}$. Quindi la fattorizzazione dei polinomi omogenei avviene in una variabile in meno ed i fattori di un polinomio omogeneo sono omogenei.

STUDIO LOCALE DELLE IPERSUPERFICI PROIETTIVE

Lo facciamo passando alle carte affini: supponiamo di avere [f] di \mathbb{A}^n e ci associamo [F] ipersuperficie proiettiva (detta chiusura proiettiva) F = H(f) e inoltre data [F] di \mathbb{P}^n associamo [D(F)] chiamato parte affine.

DEFINIZIONE ASSIOMATICA DI MOLTEPLICITÀ D'INTERSEZIONE TRA DUE CURVE PIANE

 $\mathcal{C}=[f], \mathcal{D}=[g]\subseteq \mathbb{A}^2, p\in \mathbb{A}^2$. Vorremmo definire la molteplicità dell'intersezione di f e g in p $I(f\cap g,p)$ in modo che valgano:

- 1. $I(f \cap g, p) = +\infty \Leftrightarrow f, g$ hanno una componente in comune a cui p appartiene
- 2. $I(f \cap g, p) \in \mathbb{N}$ e $I(f \cap g, p) = 0 \Leftrightarrow p \notin V(f) \cap V(g)$
- 3. $I(f \cap g, p) = I(g \cap f, p)$
- 4. f, g rette distinte e $p \in V(f) \cap V(g)$ allora $I(g \cap f, p) = 1$
- 5. $I(f \cap g, p)$ è invariante per affinità
- 6. Dato $a \in K[x, y]$ si ha $I(f \cap g, p) = I(f \cap (g + af), p)$
- 7. Se $f = \prod_i f_i$ e $g = \prod_j g_j$ allora deve valere che $I(f \cap g, p) = \sum_{i,j} I(f_i \cap g_j, p)$

Queste proprietà determinano univocamente i numeri di intersezione. L'idea è, data una curva in x e y di abbassare il grado in x, supponendo che fino al grado n-1 i numeri di intersezione siano ben definiti e dimostrare che lo sono anche per n.

Prima definizione di molteplicità d'intersezione

p=(a,b) e si scompongano $f=f_1a_1$, $g=g_1b_1$ tali che $a_1(p)\neq 0$, $b_1(p)\neq 0$. Allora si ha $I(f\cap g,p):=$ molteplicità di x=a come radice del risultante Ris $_{q}(f_1,g_1)$ in un sistema di coordinate generico

SECONDA DEFINIZIONE DI MOLTEPLICITÀ D'INTERSEZIONE

p=(a,b), $\mathcal{M}_p=(x-a,y-b)\subseteq K[x,y]$. \mathcal{M}_p è il nucleo della $V_p:K[x,y]\to K$ definita da $f\mapsto f(p)$ mappa di valutazione. \mathcal{M}_p è un ideale massimale. Allora localizziamo $\mathcal{O}_p:=K[x,y]_{\mathcal{M}_p}$. Ora presi $f,g\in K[x,y]$ consideriamo la K-algebra $\frac{\mathcal{O}_p}{(f,g)}$. Definiamo la molteplicità dell'intersezione come $I(f\cap g,p)=\dim_K \frac{\mathcal{O}_p}{(f,g)}$

CUBICA LISCIA IN FORMA DI WEIERSTRASS

 $\mathcal{C}=[F]$ cubica liscia, Char $K\neq 2,3$ e sia $O\in\mathcal{C}$ flesso. Allora \exists un sistema di coordinate omogenee [z,x,y] su \mathbb{P}^2 tale che O=[0,0,1] e \mathcal{C} ha equazione affine $y^2=x^3+ax+b$ con $\Delta=4a^3+27b^2\neq 0$ (Non stiamo supponendo K algebricamente chiuso)

CUBICA LISCIA IN FORMA DI LEGENDRE

Se $p(x) = x^3 + ax + b$ in forma di Weierstrass ha tutte le radici in K, allora $\mathcal C$ può essere messa in forma di Legendre: $y^2 = x(x-1)(x-\lambda)$ con $\lambda \neq 0, 1$

FLESSI DI UNA CUBICA LISCIA SU UN CAMPO ALGEBRICAMENTE CHIUSO

 $\mathcal C$ cubica liscia e K algebricamente chiuso. Scegliamo un flesso $\mathcal O$ e mettiamo $\mathcal C$ in forma di Weierstrass $y^2=x^3+ax+b=p(x)$ rispetto ad $\mathcal O$. Cerco i punti di $\mathbb A^2$ in cui $\mathcal C$ interseca $\mathcal H(\mathcal C)$: otteniamo $\mathcal O$ flessi che sono tali che se $p_1,p_2\in\mathcal C$ sono flessi, allora la retta che passa per p_1,p_2 interseca $\mathcal C$ in un terzo flesso. Inoltre il gruppo delle proiettività g di $\mathbb P^2$ tali che $g\mathcal C=\mathcal C$ agiscono transitivamente sui punti di flesso. Abbiamo inoltre 12 rette che passano per i punti di flesso e ogni retta passa per 3 punti di flesso. I 9 flessi e le 12 rette che li congiungono formano una configurazione isomorfa al piano affine su $\mathbb F_3$.

BIRAPPORTO, PROIETTIVITÀ E J-INVARIANTE

Ci chiediamo quando esiste una proiettività di \mathbb{P}^1 che porta una quaterna ordinata di punti in un'altra. Risposta: solo se hanno lo stesso birapporto. Siano $p_1,p_2,p_3,p_4\in\mathbb{P}^1$ punti distinti e le $z_i=\frac{x_1}{x_0}$ le loro coordinate affini $\in K\cup\{+\infty\}$. Dico che il birapporto è la coordinata affine di z_4 nel sistema di coordinate su \mathbb{P}^1 in cui $z_1=0,z_2=+\infty,z_3=1$. Quindi Bir $(p_1,\ldots,p_4)=\frac{z_4-z_1}{z_4-z_2}\cdot\frac{z_3-z_2}{z_3-z_1}$ Vogliamo ora la condizione per quaterne non ordinate, quindi notiamo che permutando i punti si ottengono sei valori collegati del birapporto: $\{\beta,\frac{1}{\beta},1-\beta,\frac{1}{1-\beta},\frac{\beta}{1-\beta},\frac{\beta-1}{\beta}\}$ ovvero se e solo se hanno uguale j-invariante. $j:K\setminus\{0,1\}\to K$ definita da $j(t)=\frac{(t^2-t+1)^3}{t^2(t-1)^2}$, dove il j-invariante viene calcolato sul birapporto delle quaterne.

SECONDA PARTE: VARIETÀ

Topologia di Zariski su \mathbb{A}^n

Topologia di Zariski su \mathbb{P}^n

IRRIDUCIBILITÀ

- $X \subseteq \mathbb{A}^n$ chiuso. Allora X è irriducibile $\Leftrightarrow I(X) \subseteq K[x_1, \dots, x_n]$ è un ideale primo \Leftrightarrow dati $U, V \subseteq X$ aperti non vuoti di X si ha $U \cap V \neq \emptyset$
- $Y \subseteq X$. Y irriducibile $\implies \bar{Y}$ irriducibile
- $Y \subseteq \mathbb{P}^n$ chiuso. Allora Y è irriducibile $\Leftrightarrow \mathcal{C}Y$ (il cono) è irriducibile in \mathbb{A}^{n+1}

TERZA PARTE: DIMENSIONE

VARIE ED EVENTUALI

LA CUBICA GOBBA

Fonte inesauribile di patologie e di controesempi. $\mathcal{C}=\{y-x^2=z-xy=0\}\subseteq \mathbb{A}^3$ che è anche il grafico di $f:\mathbb{A}^1\to\mathbb{A}^2$ definita da $x\mapsto (x^2,x^3)$.