Universidade Estadual de Campinas Instituto de Computação Algoritmos e Programação de Computadores - MC102QR

Laboratório em Casa 02

Prof. Arnaldo Moura e Prof. Lehilton Pedrosa

Prazo para entrega: 17/05/2016 às 22:00:00

VladMatics

A cidade de Brasov, na Romênia, é conhecida por abrigar o Castelo de Bran, ou "Castelo do Drácula", onde o icônico vampiro da obra de Bram Stoker teria vivido. Por esta razão a cidade sempre atraiu turistas, mas nos dias atuais, é preciso manter novidades para manter a atenção dos turistas. O que pouca gente sabe, é que Bram Stoker, além de escritor, formou-se com honrarias em matemática pura.

Pensando nisso, o novo prefeito de Brasov, que sempre achou matemática um pouco assustadora, resolveu criar uma exposição com vários artefatos relacionados a obras de terror e Matemática, a VladMatics. Por motivos de orçamento e para manter o clima de terror, o prefeito, ciente da Parascavedecatriafobia, decidiu que a exposição só será aberta às sextas-feiras 13, além do aniversário da cidade, começando a partir de 1º de janeiro desse ano, 2016.

Um dos artefatos em exposição é uma maquete de 50 cm de profundidade, com várias ilhas em um plano cartesiano, representando o triângulo das bermudas, outro local cercado de mistério e com nome matemático. Para manter o espírito, cada ilha é um polígono convexo. A maquete tem formato retangular, com as bordas paralelas aos eixos do plano e cerca as ilhas de modo que a ilha mais próxima de qualquer borda está a exatamente 50 cm de distância. Isso significa que cada borda está sempre a pelo menos 50 cm de qualquer ilha (e sempre há pelo menos uma ilha a exatamente essa distância). Importante notar que a distância da borda a ilha aqui se mede como a distância, perpendicular a borda, do ponto da ilha mais próximo da borda. A Figura 1.2 ilustra um exemplo.

O prefeito se encontra em um dilema: Ele precisa saber quanto será gasto com água para manter a maquete cheia durante os anos em que a exposição ficará aberta, pois a água é cara nessa região, e após um evento, a água sempre é esvaziada da maquete para não danificar as ilhas, a menos que haja exposição no dia seguinte (nesse caso a mesma água é utilizada), o que exige reposição à cada nova exposição.

A cidade contém vários fornecedores de água, cada um deles vendendo diferentes tipos de galões a diferentes preços. Pelo esquema de licitação, toda água será adquirida do mesmo fornecedor.

Mas é preciso descobrir em qual fornecedor o preço total será menor (note que **no dia de um evento**, **se sobra água**, **não faz sentido guardá-la** até a próxima exposição, pois isso pode levar muito tempo, portanto o excesso é perdido).

Sua tarefa

Dadas a configuração da maquete, o preço e a capacidade do galão de água em vários fornecedores, o aniversário da cidade e o último ano em que a exposição estará aberta, determinar quanto será gasto pela prefeitura com água, para manter a maquete sempre cheia.

Entrada

A entrada contém várias informações:

Na primeira linha, um inteiro não negativo K, com K < 100, o número de ilhas na maquete.

Cada uma das próximas K linhas da entrada contém os **vértices de uma ilha**: N+1 pares ordenados de **números reais** $(X_0, Y_0)(X_1, Y_1)...(X_{N-1}, Y_{N-1}), (X_N, Y_N)$ as coordenadas, **em metros**, dos vértices, **que podem estar no sentido horário ou anti-horário**. $-1000 < X_i, Y_i < 1000$, de modo que (X_i, Y_i) e (X_{i+1}, Y_{i+1}) são vértices consecutivos e (X_0, Y_0) é igual a (X_N, Y_N) .

Uma linha contendo a data de aniversário da cidade, no formato dia/mes.

O último ano ANO em que a exposição irá funcionar. $ANO \ge 2016$

Um inteiro positivo F, com F < 100, o número de fornecedores de água.

F linhas, cada uma contendo 1 número inteiro c, a capacidade do galão daquele fornecedor, um caractere \$ e um número real p_i , o preço, em \$, do galão.

Saída

Uma única linha:

"A manutencao da maquete custara X aos cofres publicos."

onde X é o custo calculado da água, com 2 casas decimais.

Figura 0.1: Exemplo de polígono convexo e não convexo. As ilhas da maquete sempre serão polígonos convexos

DICAS

- Em um polígono convexo, qualquer segmento unindo 2 pontos internos ao polígono contém apenas pontos do polígono. A figura 1.1 ilustra polígonos convexos e não convexos.
- A entrada **sempre é válida**: as ilhas são sempre polígonos convexos (e ao menos 4 pontos na entrada, sem que haja 3 pontos consecutivos colineares), que não se intersectam em nenhum ponto.
- A área do triângulo de vértices (X_0, Y_0) , (X_1, Y_1) e (X_2, Y_2) é dada pelo valor absoluto de:

$$0.5 \times det \begin{vmatrix} X_0 & Y_0 & 1 \\ X_1 & Y_1 & 1 \\ X_2 & Y_2 & 1 \end{vmatrix}$$

- Um ano é bissexto se ele **é múltiplo** de 4 mas não **é múltiplo** de 100 **ou** se ele **é múltiplo** de 400.
- Um ano não bissexto tem 365 dias, e 365 mod 7 = 365%7 = 1.
- Por consequência, quando o ano é bissexto, possui 366 dias e 366 mod 7 = 366%7 = 2.
- Se a cidade faz aniversário no dia 29/02, a exposição do dia do aniversário da cidade só abre nos anos bissextos. Às sextas-feiras 13 a exposição abre normalmente em todos os anos.
- Os fornecedores nunca vendem galões que não estejam cheios.
- O calendário de 2016 pode ser visto na Figura 1.3.
- Em 5 dos testes a exposição deixará de funcionar antes de 2020.

Figura 0.2: Maquete do exemplo. Note que a borda da maquete, tracejada em vermelho, foi estimada a partir das ilhas.

EXEMPLO (EM AZUL A ENTRADA, EM VERMELHO A SAÍDA)

```
\begin{array}{c} 2 \\ (-1.0 \ , \ 0.0) \ (-2.0 \ , \ 0.0) \ (-1.0 \ , \ 1.0) \ (-1.0 \ , \ 0.0) \\ (0.0 \ , \ 0.0) \ (2.0 \ , \ 1.0) \ (2.0 \ , \ -2.0) \ (0.0 \ , \ -1.0) \ (0.0 \ , \ 0.0) \\ 02/02 \\ 2018 \\ 3 \\ 5 \ \$4.8 \\ 1 \ \$1.4 \\ 2 \ \$2.2 \end{array}
```

A manutencao da maquete custara \$59520.00 aos cofres publicos.

EXPLICAÇÃO DO EXEMPLO

A primeira linha diz que há 2 ilhas.

```
A linha seguinte descreve um triângulo, com vértices (-1,0), (-2,0) e (-1,1) A linha seguinte descreve um trapézio com vértices (0,0), (2,1), (2,-2) e (0,-1)
```

A partir desses dois polígonos podemos descobrir as bordas da maquete, para que ela fique o menor possível, mantendo a distância de mínima de 50 cm às ilhas.

Os polígonos e a borda encontrada da maquete podem ser vistos na Figura 1.2.

Desse modo, podemos calcular que o volume de água necessário é igual à área não preenchida por ilhas multiplicada pela profundidade (nesse caso $15.5m^2 \times 0.5m = 7.75m^3 = 7750$ litros).

A seguir, pegamos a data de aniversário e contamos quantas vezes o evento ocorrerá **até o final de 2018**:

No aniversário da cidade (02/02) dos anos 2016, 2017 e 2018 Nas sextas feiras 13:

13/05/2016 13/01/2017 13/10/2017 13/04/2018 13/07/2018

Ao todo 8 dias.

Por fim, escolhemos o fornecedor mais barato:

No fornecedor 1, são necessários 1550 galões **por dia de evento**. Assim, em 8 dias, \$59520.00 No fornecedor 2, são necessários 7750 galões **por dia de evento**. Assim, em 8 dias, \$86800.00 No fornecedor 3, são necessários 3875 galões **por dia de evento**. Assim, em 8 dias, \$68200.00

Portanto o custo final ótimo é de \$59520.00

OBSERVAÇÕES

- O número máximo de submissões é 10.
- Não é permitido o uso de vetores e matrizes, funções, estruturas e ponteiros.
- O único cabeçalho permitido é stdio.h.
- Para evitar problemas de precisão, utilize variáveis **double** no lugar de float, onde for necessário utilizar números reais.
- Seu código deve incluir um cabeçalho com seu nome, turma e uma **breve** descrição do problema e de sua solução.
- Todas as linhas da entrada terminam com o caractere fim-de-linha.
- Todas as linhas da saída devem terminar com o caractere fim-de-linha.
- O comando de compilação utilizado pelo Susy é gcc -std=c99 -pedantic -Wall labSemanal02.c -o labSemanal02

Calendário 2016

		Jan	eir	o 20	16				Fevereiro 2016								Março 2016								Abril 2016								
N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D		
53					1	2	3	5	1	2	3	4	5	6	7	9		1	2	3	4	5	6	13					1	2	3		
1	4	5	6	7	8	9	10	6	8	9	10	11	12	13	14	10	7	8	9	10	11	12	13	14	4	5	6	7	8	9	10		
2	11	12	13	14	15	16	17	7	15	16	17	18	19	20	21	11	14	15	16	17	18	19	20	15	11	12	13	14	15	16	17		
3	18	19	20	21	22	23	24	8	22	23	24	25	26	27	28	12	21	22	23	24	25	26	27	16	18	19	20	21	22	23	24		
4	25	26	27	28	29	30	31	9	29							13	28	29	30	31				17	25	26	27	28	29	30			
		М	aio	201	L 6				Junho 2016							Julho 2016								Agosto 2016									
N°	S	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D		
17							1	22			1	2	3	4	5	26					1	2	3	31	1	2	3	4	5	6	7		
18	2	3	4	5	6	7	8	23	6	7	8	9	10	11	12	27	4	5	6	7	8	9	10	32	8	9	10	11	12	13	14		
19	9	10	11	12	13	14	15	24	13	14	15	16	17	18	19	28	11	12	13	14	15	16	17	33	15	16	17	18	19	20	2		
20	16	17	18	19	20	21	22	25	20	21	22	23	24	25	26	29	18	19	20	21	22	23	24	34	22	23	24	25	26	27	28		
21	23	24	25	26	27	28	29	26	27	28	29	30				30	25	26	27	28	29	30	31	35	29	30	31						
22	30	31																															
	Setembro 2016									Outubro 2016							Novembro 2016								Dezembro 2016								
N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D	N°	s	Т	Q	Q	s	s	D		
35				1	2	3	4	39						1	2	44		1	2	3	4	5	6	48				1	2	3	4		
36	5	6	7	8	9	10	11	40	3	4	5	6	7	8	9	45	7	8	9	10	11	12	13	49	5	6	7	8	9	10	11		
37	12	13	14	15	16	17	18	41	10	11	12	13	14	15	16	46	14	15	16	17	18	19	20	50	12	13	14	15	16	17	18		
38	19	20	21	22	23	24	25	42	17	18	19	20	21	22	23	47	21	22	23	24	25	26	27	51	19	20	21	22	23	24	2		
	26	27	28	29	30			43	24	25	26	27	28	29	30	48	28	29	30					52	26	27	28	29	30	31			
39																																	

Figura 0.3: Calendário de 2016. Note que 2016 é bissexto e só possui uma sexta-feira 13, em maio