Chapter 2: Acids and Bases

2.1 Brønsted-Lowry Definition of Acids and Bases

Acid – donates a hydrogen ion (H⁺ or proton)

Base – accepts the hydrogen ion

Conjugate Base – what the acid becomes after losing a proton

Conjugate Acid – what the base becomes after gaining a proton

$$NH_4^+$$
 + H_2O \rightarrow NH_3 + H_3O^+
acrel base conjugate conjugate
base acrel

2.1

 $CHEM\ 3013-Bolliger-\ OSU\ Stillwater$

Chapter 02: Acids and Bases

2.2 Properties of Acids and Bases

<u>Strong acids or bases completely ionize in H₂O</u> Dissolving HCl (g) in water leads to complete ionization:

$$H_2O_{(I)} + HCI_{(aq)} \rightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

Examples of strong acids: HCl, HBr, HI, HNO₃, H₂SO₄ Examples of strong bases: LiOH, NaOH, KOH, NaOEt, KO'Bu

Weak acids or bases partially ionize in H2O

 $NH_{3(aq)} + H_2O_{(l)} \rightarrow$

	Acid	Name	Conjugate Base	Name		
	HI	hydroiodic acid	I-	iodide ion		
Strong Acids	HCl	hydrochloric acid	CI ⁻	chloride ion	Wea Base	
Acids	H_2SO_4	sulfuric acid	HSO ₄ ⁻	hydrogen sulfate ion	Dase	
	HNO_3	nitric acid	NO ₃	nitrate ion		
	H_3O^+	hydronium ion	H_2O	water		
	HSO ₄	hydrogen sulfate ion	SO_4^{2-}	sulfate ion		
	H_3PO_4	phosphoric acid	$\mathrm{H_2PO_4}^-$	dihydrogen phosphate ion		
	CH₃COOH	acetic acid	CH₃COO ¯	acetate ion		
	H_2CO_3	carbonic acid	HCO ₃	bicarbonate ion		
	H_2S	hydrogen sulfide	HS ⁻	hydrogen sulfide ion		
	$\mathrm{H_2PO_4}^-$	dihydrogen phosphate ion	${\rm HPO_4}^{2-}$	hydrogen phosphate ion		
	NH ₄ ⁺	ammonium ion	NH_3	ammonia		
	HCN	hydrocyanic acid	CN-	cyanide ion		
	C_6H_5OH	phenol	$C_6H_5O^-$	phenoxide ion		
	HCO ₃ ⁻	bicarbonate ion	CO ₃ ²⁻	carbonate ion		
	HPO ₄ ²⁻	hydrogen phosphate ion	PO ₄ ³⁻	phosphate ion	7	
Weak	H_2O	water	OH-	hydroxide ion	Stron	
Acids	C ₂ H ₅ OH	ethanol	$C_2H_5O^-$	ethoxide ion	Base	

Copyright © John Wiley & Sons, Inc. All rights reserved.

2.3

CHEM 3013 – Bolliger- OSU Stillwater

Chapter 02: Acids and Bases

Acids can be (+), neutral or (-) Examples: H₃O⁺, H₂CO₃, H₂PO₄⁻

Depending on the number of acidic protons, acids can be classified as monoprotic, diprotic, or triprotic (HNO₃, H₂SO₄, H₃PO₄)

<u>Bases can be (-) or neutral</u> Examples: HO⁻, RO⁻, H₂O, NH₃

Amphoteric compounds can act as either acid or base

Water acts as either an acid or a base

2.3 The Strength of Brønsted-Lowry Acids and Bases: Ka and pKa

Acidity equilibrium constant - Ka or proton-donating ability

HA +
$$H_2O$$
 \longrightarrow A + H_3O^+
$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$pK_a = -logK_a$$

- The lower the pKa value, the stronger the acid (and the weaker its conjugate base)
- The higher the pK_a value, the weaker the acid (and the stronger its conjugate base)
- A strong acid will have a weak conjugate base (acid and base strength are inversely proportional)
- Equilibrium favors the formation of weak acids & bases (neutralization)

 pK_a values are tabulated and can be used to determine the position of the equilibrium in acid base reactions.

2.5

 $CHEM\ 3013-Bolliger-\ OSU\ Stillwater$

Chapter 02: Acids and Bases

 HCO_3^-

 $\mathrm{NH_{4}^{+}}$

 H_3O^+

C₆H₅OH

10.33 CO₃²⁻

9.95 C₆H₅O

9.24 NH₃

-1.74 H₂O

H₂CO₃ 6.36 HCO₃⁻ CH₃COOH 4.76 CH₃COO⁻

H₃PO₄ 2.1 H₂PO₄

C₆H₅COOH 4.19 C₆H₅COO

bicarbonate ion

carbonic acid

acetic acid

benzoic acid
phosphoric acid

hydronium ion

acid

phenol ammonium ion

pKa Values for Some Organic and Inorganic Acids

2.4 Determination of the Position of Equilibrium in an Acid-Base Reaction

How to Determine the Position of Equilibrium for Acid-Base Reaction

 $HA + H_2O A^- + H_3O^+$

- 1. Identify the two acids.
- 2. Determine the stronger and weaker acid using pKa values.
- 3. Identify the stronger and weaker base. Remember the stronger acid yields the weak conjugate base and vice versa
- 4. The position of the equilibrium lies towards the weaker acid and weaker base.

Examples: Complete the following acid-base reactions with the appropriate arrows.

2.7

CHEM 3013 – Bolliger- OSU Stillwater

Chapter 02: Acids and Bases

If you only have half of the equation, you will have to decide which molecule is the stronger acid.

2.5 Acids with Multiple Acidic Hydrogen Atoms: Amino Acids

Alanine, an amino acid

Changing the pH of a system, changes also the extent of protonation. When pH of the solution $> pK_a$ of the dissolved acid, a proton is lost.

$$H_{2}N - C - C - OH$$

$$CH_{3}$$

$$D = 0$$

$$neutral$$

$$pH = 7$$

$$basic$$

$$pH = 12$$

2.9

CHEM 3013 – Bolliger- OSU Stillwater

Chapter 02: Acids and Bases

b) Cysteine

What is the predominant structure of cysteine at pH = 1, 4, 7, 9, and 12?

$$\begin{array}{cccc} \mathsf{pK_a} \sim & \mathsf{10} & \mathsf{O} & \mathsf{pK_a} \sim & \mathsf{2} \\ & \mathsf{H_3N-CHC-OH} \\ & \mathsf{CH_2} \\ & \mathsf{SH} \\ & \mathsf{pK_a} \sim & \mathsf{8} \end{array}$$

2.6 Structural Factors that Influence Acidity

a) Periodic trends

1A	2A	H 2.1						3A	4A	5A	6A	7A				
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	3B	4B	5B	6B	7B		8B		1B	2B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Тс 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.7	Ba 0.9	La 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2

Electronegativity of A-H:
 Acidity of H-A in a row is determ

Acidity of H-A in a row is determined by the stability of A $^{-}$ (Greater electronegativity of A = greater stability of A $^{-}$ = stronger HA)

H₃C-H	H ₂ N-H	НО-Н	F-H		
pKa = 48	pKa = 38	pKa = 15,7	pKa = 3,2		

• Bond strength of X-H: Within a column, acidity increases due to weaker bonds

F-H	pK _a = 5,2
CI-H	pK _a = -7
Br-H	pK _a = _9
I-H	pK _a = →

2.11

CHEM 3013 – Bolliger- OSU Stillwater

Chapter 02: Acids and Bases

b) Hybridization

• The more s-character the C-H orbital has, the more acidic is the C-H bond.

c) Inductive Effects

- Works through σ-bonds (polarity of bonds)
- Removal of electron density from H-A bond by withdrawing groups

Example 1: Why is CCl₃CO₂H less acidic than CF₃CO₂H?

Example 2: Why is $CH_3CHCICO_2H$ more acidic than $CH_2CICH_2CO_2H$?

d) Resonance Effect / Delocalization of Charge

d) Resonance Effect / Delocalization of Charge

- Distributing the resulting charge over several atoms (by resonance) stabilizes the conjugate base and makes the acid stronger
- Works through π-bonds (and lone-pairs)

Example 2: Why is phenol more acidic than cyclohexanol?

Phenol

Cyclohexanol

2.13

CHEM 3013 – Bolliger- OSU Stillwater

Chapter 02: Acids and Bases

Example 3: Which is the most acidic hydrogen and why?

<u>2.7. Lewis Acids and Lewis Bases (Definition)</u>
Lewis Acid – accepts a lone pair of electrons into a vacant valence orbital Lewis Base - has an atom with a lone pair of electrons that is donated to the acid