<u>.</u> [21

- stages capable of reconfiguration to operate in accordance with different data
 encoding standards; and
- wherein the tokens provide reconfiguration information to the standarddependent processing stages.
- 1 2. The multi-standard decoder of claim 1, wherein each of the tokens 2 includes an extension indicator that indicates whether additional words are present.
 - 3. The multi-standard decoder of claim 1, wherein one of the standard-dependent processing stages comprises an inverse quantizer.
 - 4. The multi-standard decoder of claim 3, wherein one of the tokens comprises a first QUANT TABLE token.
 - 5. The multi-standard decoder of claim 4, wherein the inverse quantizer recognizes the first QUANT_TABLE token and, responsive to a first state of the extension indicator in a first word of the first QUANT_TABLE token, generates a second QUANT_TABLE token to be conveyed to another of the processing stages.
- 1 6. The multi-standard decoder of claim 5, wherein the second 2 QUANT_TABLE token includes quantization table values.
- 7. The multi-standard decoder of claim 4, wherein responsive to a second state of the extension indicator of the first word of the QUANT_TABLE token, the inverse quantizer installs a quantization table of the first QUANT_TABLE token in a memory.

3	receiving tokens at a standard-dependent processor, the standard-dependent
4	processor capable of reconfiguration to operate in accordance with the different
5	standards; and
6	reconfiguring for standard-dependent processing in response to the received
7	tokens.
1	9. The method of claim 8, wherein each token includes an extension
2	indicator that indicates whether additional words are present and has a first and a
3	second state to indicate reconfiguration information.
美 1	10. The method of claim 8, wherein one of the conveyed tokens is a first
	QUANT_TABLE token, and further comprising:
= 3	recognizing the first QUANT_TABLE token; and
<u>4</u>	responsive to the first state of the extension indicator in a first word of
<u>"</u> 5	the first QUANT_TABLE token, generating a second QUANT_TABLE token to be
	conveyed to another processor.
116 	11. The method of claim 7, wherein the second QUANT_TABLE token
2	includes quantization table values to be used by the another processor.
1	12. The method of claim 9, further comprising:
2	responsive to a second state of the extension indicator of the first word of the
3	QUANT_TABLE token, installing a quantization table of the first QUANT_TABLE
4	token in memory.

A method of decoding a data stream of data encoded by different

8.

standards comprising:

1

2

1

13. A system comprising: