Supplementary Figures

2019-12-27

Figure S1: Workflow for simulation of competing endogenous RNA regulations. Graph object in steps 2-6 is saved and updated continuously.

```
#install.packages("devtools")
#devtools::install_github("selcenari/ceRNAnetsim")
library(ceRNAnetsim)
```

minsamp dataset analysis in absence of interaction factors.

Minimal dataset in steady-state conditions

Figure S2: Minimal Dataset in Steady-state

Gene2 Upregulation without interaction factors

Figure S3: Gene2 Upregulation on Minimal Dataset

```
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression) %>%
  update_how("Gene2", 2) %>%
  simulate(cycle=1) %>%
  vis_graph(Competing_color = "navajowhite3",
           mirna_color = "ivory4",
           Upregulation = "red",
           Downregulation = "blue",
            title = "A")
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression)%>%
  update_how("Gene2", 2)%>%
  simulate(2)%>%
  vis_graph(Competing_color = "navajowhite3",
           mirna_color = "ivory4",
            Upregulation = "red",
           Downregulation = "blue",
            title = "B")
```


Figure S4: Sequential iteration of minsamp data. A) First response of system to Gene2 upregulation (2nd iteration). B) Spreading of perturbation on system (3th iteration)

minsamp dataset analysis with interaction factors.

Minimal dataset with interaction factors in steady-state conditions

Figure S5: Minimal Dataset with interaction factors in Steady-state

Gene2 Upregulation with interaction factors

Figure S6: When Gene2 is upregulated on Minimal Dataset with interaction factors

```
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression,
              aff_factor = c(energy, seed_type),
              deg_factor = region)%>%
  update_how("Gene2", 2)%>%
  simulate(cycle = 1)%>%
  vis_graph(Competing_color = "navajowhite3",
            mirna_color = "ivory4",
            Upregulation = "red",
            Downregulation = "blue",
            title = "A")
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression,
              aff_factor = c(energy, seed_type),
              deg_factor = region)%>%
  update_how("Gene2", 2)%>%
  simulate(cycle = 2)%>%
  vis_graph(Competing_color = "navajowhite3",
            mirna_color = "ivory4",
            Upregulation = "red",
            Downregulation = "blue",
            title = "B")
```


Figure S7: Sequential iteration of minsamp data with interaction factors A)First response of system to Gene2 upregulation (2nd iteration). B)Spreading of perturbation on system (3th iteration)

Common target perturbation in minsamp dataset.

```
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA count = miRNA expression,
              aff_factor = c(energy, seed_type),
              deg_factor = region)%>%
  vis_graph(Competing_color = "navajowhite3",
            mirna_color = "ivory4",
            Upregulation = "red",
            title = "A")
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression,
              aff_factor = c(energy, seed_type),
              deg_factor = region)%>%
  update_how("Gene4", 2)%>%
  vis_graph(Competing_color = "navajowhite3",
            mirna_color = "ivory4",
            Upregulation = "red",
            title = "B")
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression,
              aff_factor = c(energy, seed_type),
              deg_factor = region)%>%
  update_how("Gene4", 2)%>%
```

```
simulate(cycle=1)%>%
 vis_graph(Competing_color = "navajowhite3",
           mirna_color = "ivory4",
           Upregulation = "red",
           title = "C")
priming_graph(minsamp,
              competing_count = Competing_expression,
              miRNA_count = miRNA_expression,
              aff_factor = c(energy, seed_type),
              deg_factor = region)%>%
  update_how("Gene4", 2)%>%
  simulate(cycle=2)%>%
  vis_graph(Competing_color = "navajowhite3",
           mirna_color = "ivory4",
           Upregulation = "red",
           title = "D")
```


Figure S8: Perturbation of Gene4 on minsamp data with interaction factors. A) Network at steady-state. B) Upregulation of Gene4. C) Primary response of network to upregulation of Gene4. D) Re-regulation of whole nodes on system (3th iteration)

Determination of optimum iteration for Upregulation of SERPINE2 gene from Breast cancer patient dataset

```
E9GE_mirnagenenormal<-readRDS("data/E9GE_mirnagenenormal.RDS")
head(E9GE_mirnagenenormal)</pre>
```

A tibble: 6 x 7

```
##
     hgnc_symbol miRNA_name mirna_RPM GE_normal Energy seed_type_effect
##
     <chr>
                 <chr>
                                 <dbl>
                                           <dbl> <dbl>
                                                                    <dbl>
## 1 CCNG1
                                                                       0.05
                 hsa-let-7...
                                 111204.
                                              5245
                                                    -25.1
## 2 DICER1
                 hsa-let-7...
                                 111204.
                                                    -24.4
                                                                       0.43
                                              3285
## 3 SESN1
                 hsa-let-7...
                                 111204.
                                              1179
                                                    -22.2
                                                                       0.05
## 4 NIPBL
                 hsa-let-7...
                                 111204.
                                              4503
                                                    -22.1
                                                                       0.05
## 5 INTS12
                 hsa-let-7...
                                 111204.
                                               600
                                                    -21.9
                                                                       0.05
                 hsa-let-7...
                                              1248 -21.8
                                                                       0.43
## 6 FNIP1
                                 111204.
## # ... with 1 more variable: region_effect <dbl>
```

Warning in priming_graph(., competing_count = GE_normal, miRNA_count = mirna_RPM, : First column is

Figure S9: Percentage of affected nodes of each iteration for SERPINE2 Gene

Highly effective perturbing elements in network

Figure S10: Interactions of genes that have high perturbation efficiency. Critical gene, represents crucial genes for breast cancer, provided by eDGAR; TFs, transcription factors; Regulated by TFs, regulated genes with these transcription factors; Physical interaction with critical genes; shared genes in physical interactions between critical genes