Abstract

Two-photon interference due to the Hong-Ou-Mandel (HOM) experiment is analysed via the second-order correlation function. Photon representation is constructed with consideration to the Gaussian temporal mode function. The outputs of this experiment are represented using the second order correlation function $g^2(t)$. The $g^2(t)$ is graphed and the presence of the quantum beat is verified as the frequency difference between the two photons is varied. The $g^2(t)$ is then integrated over all possible detection times (t) and detection delays (τ) to determine the probability distribution of measuring two photons. Photon frequency is again varied to determine its effect on the presence of the HOM dip. HOM dip is seen to rise as the photon frequency difference increases. The presence of the quantum beat, along with a difference in the HOM dip due to change in frequency confirms that HOM experiment can be used to determine photon distinguishability.

Table of Contents

CHAPTER 1 Introduction	1
CHAPTER 2 Historical and Mathematical Context	3
2.1 Quantum Background	3
2.1.1 Quantum Information Processing	3
2.1.2 States and Measurement	6
2.1.3 Quantum Harmonic Oscillator	8
2.1.4 Quantum Optics	10
2.2 Hong-Ou-Mandel Experiment	16
2.2.1 Experimental Set Up	16
2.2.2 Results	18
2.3 Hanbury-Brown Twiss Experiment	19
2.3.1 Historical Context	19
2.3.2 The Experiment and the Correlation Function	20
CHAPTER 3 Methodology and Results	22
3.1 The Second-Order Correlation Function – HOM Edition	22
3.2 Probability Distribution and Detection of the Quantum Beat	24
3.3 The Gaussian Photon	25
CHAPTER 4 Conclusions and Future Considerations	27
ACKNOWLEDGEMENTS	30
BIBLIOGRAPHY	31

Table of Figures

Figure 1- Which Trajectory Do We Pick?	1
Figure 2 - The Beat Effect [12]	2
Figure 3- Particle on a Spring [9]	8
Figure 4 - The Possible Beam Splitter Outputs [5]	17
Figure 5 - Experimental Setup [11]	18
Figure 6 - The HOM Dip [6]	18
Figure 7 - Second Order Correlation Function	25
Figure 8 - Probability Distribution for Two Gaussian Photons with a Pulse Width of 2	26