Questionario

Domanda n. 1: La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da: f(n) = (n, n+1), è invertibile.

Risp: (A) Falso (B) Vero

Domanda n. 2: Il numero 8 è invertibile modulo 16.

Risp: (A) Falso (B) Vero

Domanda n. 3: Se due numeri sono congruenti modulo 6 allora sono congruenti modulo 2.

Risp: (A) Falso (B) Vero

Domanda n. 4: $25^{11} \equiv_{13} 1$.

Risp: (A) Vero (B) Falso

Domanda n. 5: L'insieme $A = \{5, 6, 7, 8, 9\}$ è un insieme di rappresentanti per le classi d'equivalenza della congruenza modulo 5 sugli interi.

Risp: (A) Falso (B) Vero

Domanda n. 6: Nella congruenza modulo 5, tutti i numeri della forma 5k-3 appartengono alla classe d'equivalenza del numero 2.

Risp: (A) Falso (B) Vero

Domanda n. 7: Se $f: A \to B$, $b \in B$ e $a \in f^{-1}(b)$ allora vale sempre che:

- 1. f(a) = b; (A) Falso (B) Vero
- 2. $f(a) \in b$; (A) Falso (B) Vero
- 3. f(b) = a; (A) Falso (B) Vero
- 4. f(a) = f(b) (A) Falso (B) Vero

Domanda n. 8: La funzione $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$ definita da: f(n, m) = (n, -m), è suriettiva. **Risp:** (A) Falso (B) Vero

Domanda n. 9: Quale fra le seguenti formule è equivalente alla traduzione formale della frase tutti i qatti odiano almeno un cane

dove g(x) sta per " $x \in un$ gatto", c(x) sta per " $x \in un$ cane" e o(x,y) sta per " $x \in un$ gatto", c(x) sta per " $x \in un$

- 1. $\forall x \ \forall y \ (g(x) \land c(y) \land o(x,y));$ (A) Falso (B) Vero
- 2. $\forall x \; \exists y \; (g(x) \land c(y) \land o(x,y));$ (A) Falso (B) Vero
- 3. $\forall x \ (g(x) \to \exists y \ (c(y) \land o(x,y)));$ (A) Falso (B) Vero
- 4. $\forall x \ (g(x) \land \exists y \ (c(y) \rightarrow o(x,y)))$. (A) Falso (B) Vero

Domanda n. 10: La formula proposizionale $\neg P \rightarrow Q$ è equivalente alla formula $P \lor Q$.

Risp: (A) Falso (B) Vero

ESERCIZI

1. INDUZIONE

(a) Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$\frac{1}{1(1+1)} + \frac{1}{2(2+1)} + \frac{1}{3(3+1)} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$$

(b) Dimostrare per induzione che per ogni $n \ge 1$ il numero $5^n - 1$ è divisibile per 4.

2. FUNZIONI

- (a) Sia $f: \mathbb{Z} \to \mathbb{N}$ la funzione definita da $f(x) = x^2 + 1$.
 - i. Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,3\})$.
 - ii. Determinare se f è iniettiva o suriettiva.
- (b) Sia \mathbb{N}^* l'insieme dei numeri naturali non nulli e $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (0, n). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

3. RELAZIONI

(a) Considerare la relazione d'equivalenza R sui numeri naturali non nulli \mathbb{N}^* definita da

 $aRb \Leftrightarrow \text{massima potenza di 5 che divide } a = \text{massima potenza di 5 che divide } b$

(ad esempio 50 R 75 (perché $50 = 2 \cdot 5^2$ e $75 = 3 \cdot 5^2$ quindi la massima potenza di 5 che divide 50 è 2 e lo stesso vale per 75) mentre 30 R 7 (perché $30 = 2 \cdot 3 \cdot 5$ quindi la massima potenza di 5 che divide 30 è 1 mentre è 0 per 7)

- i. Determinare se 15 appartiene alla classe d'equivalenza di 30.
- ii. Descrivere la classe di equivalenza del numero 5.
- iii. Determinare se R ha un numero finito o un numero infinito di classi d'equivalenza.
- iv. Determinare quale fra i seguenti insiemi è un insieme di rappresentanti per le classi d'equivalenza di R su \mathbb{N} :
 - A. $\{1, 2, 3, 4, 5\}$;
 - B. $\{10^n : n \in \mathbb{N}\};$
 - C. $\{5^n : n \in \mathbb{N}\};$
 - D. \mathbb{N} .

4. ARITMETICA

- (a) Trova due interi h, k tali che MCD(14, 60) = h14 + k60. Il numero 14 è invertibile modulo 60?
- (b) Se $a, m \in \mathbb{N}$ sono tali che MCD(a, m) = 1, dimostrare che l'inverso di a modulo m è una potenza di a. (suggerimento: il teorema di Eulero ci dice che $a^{\phi(m)} \equiv_m 1$).
- (c) Trovare l'inverso di 7 modulo 60 in due modi: usando l'algoritmo di Euclide, o usando il punto precedente.

(SOLUZIONE risultato usando il punto precedente: $\phi(60) = \phi(2^2 \cdot 3 \cdot 5) = \phi(2^2) \cdot \phi(3) \cdot \phi(5) = 16$. Per il Teorema di Eulero, $7^{16-1} = 7^{15} = 7^{12}7^3 = (7^4)^37^3 = (2401)^3 \cdot 343 \equiv_{60} 1 \cdot 43 = 43$. SOLUZIONE usando Euclide: $1 = 2 \cdot 60 - 17 \cdot 7$, $-17 \equiv_{60} 43$).