Multiple Regression

9 试题

1.

Which of the following is **NOT** a **linear** regression model. *Hint:* remember that a linear regression model is always linear in the parameters, but may use non-linear features.

- $y = w_0 + w_1 * x$
- O $y = w_0 + w_1 * (x^2)$
- $O = w_0 + w_1 * \log(x)$
- $y = w_0 * w_1 + \log(w_1) * x$

2.

Your estimated model for predicting house prices has a large positive weight on 'square feet living'. This implies that if we remove the feature 'square feet living' and refit the model, the new predictive performance will be **worse** than before.

- O True
- False

3.

Complete the following: Your estimated model for predicting house prices has a positive weight on 'square feet living'. You then add 'lot size' to the model and re-estimate the feature weights. The new weight on 'square feet living' [_____] be positive.

O will not

0	will definitely
0	might
featur coeffic	double the value of a given feature (i.e. a specific column of the e matrix), what happens to the least-squares estimated cients for every other feature? (assume you have no other e that depends on the doubled feature i.e. no interaction terms).
0	They double
0	They halve
0	They stay the same
0	It is impossible to tell from the information provided
5. Gradie	ent descent/ascent is A model for predicting a continuous variable
0	An algorithm for minimizing/maximizing a function
0	A theoretical statistical result
0	An approximation to simple linear regression
0	A modeling technique in machine learning
6. Gradie	ent descent/ascent allows us to
0	Predict a value based on a fitted function
0	Estimate model parameters from data
0	Assess performance of a model on test data

7. Which of the following statements about step-size in gradient descent is/are TRUE (select all that apply)		
	It's important to choose a very small step-size	
	The step-size doesn't matter	
	If the step-size is too large gradient descent may not converge	
	If the step size is too small (but not zero) gradient descent may take a very long time to converge	
8. Let's analyze how many computations are required to fit a multiple linear regression model <i>using the closed-form solution</i> based on a data set with 50 observations and 10 features. In the videos, we said that computing the inverse of the 10x10 matrix (H^T)H was on the order of D^3 operations. Let's focus on forming this matrix prior to inversion. How many multiplications are required to form the matrix (H^T)H? Please enter a number below.		
9. More generally, if you have D features and N observations what is the total complexity of computing ((H^T)H)^(-1)?		
0	O(D^3)	
0	O(ND^3)	
0	$O(ND^2 + D^3)$	
0	O(ND^2)	
0	O(N^2D + D^3)	
0	O(N^2D)	

提交测试