QSS20: Modern Statistical Computing

Session 04: Merging and basic regex

Goal for next few sessions

- ► Some course housekeeping
- Exact matching: types of joins
 - ► Inner joins
 - Outer joins
 - ► Left joins
 - ► Right joins
- Basic regex for two purposes:
 - 1. Clean join fields for exact matching/merges
 - 2. Clean join fields for fuzzy/probabilistic matching/merges
- ► Fuzzy/probabilistic matching and merges

Goal for next few sessions

- ► Some course housekeeping
- Exact matching: types of joins
 - Inner joins
 - Outer joins
 - ► Left joins
 - ► Right joins
- Basic regex for two purposes:
 - 1. Clean join fields for exact matching/merges
 - 2. Clean join fields for fuzzy/probabilistic matching/merges
- ► Fuzzy/probabilistic matching and merges

PSET 1 Submission

- ► **Group**: tonight 1159 PM EST (will give extra time during break for u guys to meet and coordinate submission)
- ► Individual: same deadline unless using some/all of four free late days. If using all four, due at Saturday 04.25 at 1159 PM EST
- ▶ I'll give an emoji reaction on issue when i've seen it so you know it worked; i'll also comment on issue if i'm having trouble running your code

4

Organization of activity-based practice code

https://github.com/rebeccajohnson88/qss20_slides_activities#readme

These are jupyter notebook-based activities to practice Python or other concepts: · 00 latex output examples solutions.ipvnb Data: DC crime reports in 2020 · Concepts covered: Writing a pandas dataframe or table to use in LaTeX · Row filtering Saving figures . Iterating and saving figures with informative names 01 pandas datacleaning examples.ipvnb Data: sample of Chicago health/hygiene inspection results Concepts covered: Cleaning column names (eg subbing out spaces and changing to lowercase) Checking datatypes within a pandas dataframe and recasting Creating new true/false variables using np.where Creating new categorical variables that involve recoding an existing categorical variable using map and a dictionary · 02_more_pandas_datacleaning.ipynb o Data: DC crime reports in 2020 Concepts covered: Aggregation using groupby and agg Lambda functions within aggregation Recoding variables using np.where Recoding variables using np. select Recoding variables using map and dictionary . Loop to find matches within a broader pool of data · Function to find matches within a broader pool of data

Updated course schedule

https://rebeccajohnson88.github.io/qss20/docs/course_schedule.html

Tuesday 04-20	Intro to merging		Problem set one
Thursday 04-22	Merging: probabilistic merge and more regex		
Tuesday 04-27	Merging (continued) and PSET 1 review	Regular expressions for pattern matching	Final project step 1
Thursday 04-29	SQL via Python		
Tuesday 05-04	Text as data part one		Final project step 2
Thursday 05-06	Text as data part two		
Tuesday 05-11	TBD		
Thursday 05-13	Python: spatial data using geopandas		Problem set two
Tuesday 05-18	Python: reading data from APIs and basic web scraping		
Thursday 05-20	High-performance computing		Final project step 3
Tuesday 05-25	TBD		
Thursday 05-27	Workflow: Beamer and Tikz graphics		

Slides for final

Steps towards final project

1. Make sure you can access this private repo and DM me if you need re-sent invite:

```
https://github.com/rebeccajohnson88/qss20_s21_proj
```

- 2. Join #sip_finalproject on Slack
- 3. Will post details on Canvas tomorrow for Final project Step 1, due Tuesday 04.27 alongside the DataCamp assignment, but broadly: (1) sign up for background reading, (2) copy over LaTeX/Overleaf template I'll share, and (3) write < 1 page memo outlining data used in the background reading, key takeaways, and interesting and feasible follow-up questions</p>

Mid-term evaluation of our course

► Will circulate anonymous feedback survey later this week covering course pace, clarity, and what's going more versus less well

Goal for next few sessions

- ► Some course housekeeping
- Exact matching: types of joins
 - Inner joins
 - Outer joins
 - ► Left joins
 - ► Right joins
- Basic regex for two purposes:
 - 1. Clean join fields for exact matching/merges
 - 2. Clean join fields for fuzzy/probabilistic matching/merges
- ► Fuzzy/probabilistic matching and merges

Working example: have dataset on Dartmouth students and want to merge in background information about their district

► Main or "left" dataset

Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

► Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

Possible join keys

- ► Unique identifier: used for "exact matching" or a Yes/No match on that basis
 - E.g., is the NCES ID of New Trier found in the dataset of demographics?
- ► Other identifiers: can be used for either "exact match" or for "probabilistic/fuzzy matching"
 - ► **Probabilistic:** what's the likelihood that "New Trier district" and "New Trier HS" are the same entity?

Conceptual overview of four types of joins

Source: Trifacta

Inner join in this context

In words: "drop all students whose districts don't appear in the demographics data; drop all districts that don't appear in the Dartmouth student data"

► Main or "left" dataset

	aacasci	•	
Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

► Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

Outer join in this context

In words: "keep all students from the student-level data; keep all schools from the school-level data; even if there's not an overlap"

Student	Year	District	NCES ID	% FRPL
Rebecca	2021	New Trier High School	1728200	X%
Jennifer	2022	Hanover High	3302670	Y%
Jason	2022	Homeschool	NA	NA
NA	NA	NA	4107380	Z%
:				
•				

14

Left join in this context

In words: "keep all students from the student-level data; drop any school from the school-level data that doesn't merge onto a student"

► Main or "left" dataset

Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

Right join in this context

In words: "drop students who don't have a school in the school-level data; keep all schools from the student-level data even those that don't merge onto any student"

Main or "left" dataset

Student	Year	District	NCES ID
Rebecca	2021	New Trier High School	1728200
Jennifer	2022	Hanover High	3302670
Jason	2022	Homeschool	NA
:			

Auxiliary or "right" dataset

District	NCES ID	% FRPL
New Trier HS	1728200	X%
Hanover HS	3302670	Y%
Lebanon HS	4107380	Z%
:		

How do we code these different types of joins in practice? Example with left join and join key has same colname in both

```
## perform a left join on the student data
## and schools data

stud_wschool = pd.merge(students,

schools,

how = "left",

on = "NCES ID",

indicator = "student_mergestatus")
```

- ► how: argument to tell it inner, left, right, outer, or cross; defaults to inner
- ▶ on: name of join key (in this case single key)
- indicator: optional arg to add a col to the resulting data (string is what to call it) that helps diagnose merge status; good for post-merge dx

Example with inner join and join key has different name

```
## perform a left join on the student data
## and schools data

stud_wschool = pd.merge(students,

schools,

how = "inner",

left_on = "NCES ID",

right_on = "ncesnumeric")
```

Example with left join and multiple join keys

```
## perform a left join on the student data
## and schools data

stud_wschool = pd.merge(students,
schools,
how = "left",
left_on = ["NCES ID",
"Dist name"],
right_on = ["ncesnumeric",
"distnamechar"],
indicator = "student_mergestatus")
```

Non-exhaustive checklist of merge diagnostics

- 1. How many rows were in each data before the merge? What about after?
- 2. If doing a left join, did we properly retain all left-hand side rows?
- 3. For strings as join keys: if a lot of rows were lost in a merge, could that be due to spelling/punctuation variations in a character join key?
- 4. For numeric identifiers as join keys: if a lot of rows were lost in a merge, could that be due to things like the id having leading zeros and those being stripped at some stage? (e.g., one dataset identifies an entity as 002548; another as 2548)

Next up: basic regex to improve match rates for strings as join keys

► In example below, what if we didn't have the NCES ID numeric identifier? Ways to improve match rates for spelling variations (sometimes called entity resolution)

Student	Year	District
Rebecca	2021	New Trier High School
Jennifer	2022	Hanover High
Jason	2022	Homeschool
:		
Jason		•

District	% FRPL
New Trier HS	X%
Hanover HS	Y%
Lebanon HS	Z%
:	