信息技术学院本科生

《电路基础》课程期末考试试卷(A卷)

年级:		*	业:	姓名	, i:	_ 学号:	
平时成绩: 卷			绘面折合成绩:			_ 总成绩:	
(期末考试成绩和平时成绩比例: 80: 20)							
题目	_	<u> </u>	Ξ	四	五.	卷面总成绩	

- 一. 简单计算(将答案填写在横线处。共12小题,每小题4分,共48分。)
- 1、图示一端口网络的电压电流关系(VCR)为____。

2. 电路如图。已知 $u_s = 27e^{-t}\sin 2t$ V ,则 2k 电阻两端电压为_____。

3、图示电路,10V 电压源产生的功率 $P_S = _____$ 。

4. 电路如图所示, $R = ____$ 时获得最大功率,最大功率为 $_____$ 。

5、图示电路,已知节点电压方程 $\{ \begin{array}{ll} 5U_{n1}-3U_{n2}=2 \\ -U_{n1}+5U_{n2}=0 \end{array} \} , \ \ \mathbb{M} \ \ \mathrm{VCCS} \ \ \mathrm{M}$

控制系数为。

6. 已知图示正弦电流电路中电流表的读数分别为 A_1 : 5A、 A_2 : 20A、 A_3 : 25A。如果维持 A_1 的读数不变,把电源频率提高一倍,则电流表 A 的读数为_____。

- 7、相量 \dot{U} = -5 j5 V 对应的正弦电压时域表达式为(设角频率为 10rad/s)。
- **8、**图示含理想变压器电阻电路中输出电压 u_2 与激励电流 i_8 的关

10. 图示电路中, 当开关打开后, 电路的时间常数为____s。

11. 电路如图所示,在t=1s时,i=______A。

12、图示电路, 当电路为零初始状态, $u_s(t) = 4\varepsilon(t)V$ 时,

$$u_C(t) = (2 - 2e^{-t})V$$
 。 若 $u_S(t) = 8\varepsilon(t)V$, 且 $u_C(0) = 3V$, 求 $t \ge 0$ 时 的 $u_C(t) =$ _______。

二. (14分)如图所示电路,求电阻 R_L 的功率。

三. (14 分) 图示电路,开关 S 闭合前已处于稳态,t=0 时将开关闭合,求 $u_c(t)$ 和u(t)。

四. (14分) 电路如图所示,已知 ω =1000rad/s,C=1 μ F,R=1 Ω ,L₁=1H,L₂=1/3H, $u_S(t)$ =12+15 $\sqrt{2}\cos(\omega t)$ +16 $\sqrt{2}\cos(2\omega t)$ V求:

- (1) us(t)的有效值;
- (2) 电阻电压 $u_R(t)$;
- (3) 电源发出的平均功率。

五. (10 分)图示为具有端接电阻的复合二端口网络,试求负载电压 U_R 。已知两个二端口 T_1 、 T_2 的传输参数矩阵为:

$$T_1 = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix}, \quad T_2 = \begin{bmatrix} 1 & 0 \\ 0.05 & 1 \end{bmatrix}.$$

参考答案

一、简单计算:

$$1, U = -25 - I$$

$$2 \cdot e^{-t} \sin 2t V$$

$$4 \sqrt{2 \Omega/8W}$$

6.
$$\sqrt{1625}A = 5\sqrt{65} = 40.3A$$

7、
$$u(t) = 10\cos(10t - 135^{\circ})V$$
 或 $u(t) = 10\sin(10t - 135^{\circ})V$

$$u_2 = \frac{2}{5}Ri_s$$

$$9, 2\Omega$$

$$10, 1/14 = 0.071 \text{sec}$$

11.
$$i(1s) = 0.5 - 0.5e^{-\frac{2}{9}}A$$

12.
$$u_C(t) = (4 - e^{-t})V$$

$$u_C(t) = 2.5(1 + e^{-t})V$$

$$u(t) = 1.25 + 0.5e^{-t}V$$

四(14分)、

(1)25V

(2)
$$u_R(t) = 12 + 16\sqrt{2}\cos 2\omega tV$$

(3)400W

五(10分)、

10V