

DISSERTATION

Cool Science

ausgeführt am Atominstitut

der Technische Universität Wien Fakultät für Physik

unter der Anleitung von
Univ.Prof. Dipl.-Ing. Dr.techn. Gorge Hammond

Projektass. Dr.rer.nat Rodney MacKay MSc. Projektass. Dr.techn. Dr.techn. Dr.techn. Dipl.-Ing. Samantha Carter

durch

Daniel Jackson

Matrikelnummer: 9-18-27-15-21-36 Stadionallee 2 1020 Wien

Wien, am 03.04.2020

Contents

1	Cicero Word Generator				
	1.1	Installation of National Instruments drivers	1		
	1.2	Installation of National Instruments Cards	1		
	1.3	Configuring Atticus	1		
		1.3.1 Configure hardware timing / synchronization	2		
	1.4	Configuration and Basic Usage of Cicero	3		
	1.5	Saving of Settings and Sequences	3		
	1.6	Sequence length limit	3		
2	CRT	handling	4		
	2.1	Opening CRTs	4		
		2.1.1 Rotary tool	4		
		2.1.2 Wire cutting	5		
To	do li	st	7		
References					

1 Cicero Word Generator

This chapter describes the installation and initial setup of Cicero Word Generator[1] on a PC running Windows 10 with analog and digital cards from National Instruments (NI). The code is freely available on Github[2]. This chapter contains only differences, problems, and possible solutions encountered when Cicero was installed for the PC 'Fritz Fantom' which will be used for the QuaK experiment. It is therefore advised to use the technical and user manual[3] in conjunction. The titles in this chapter and font style with Courier and Boldface was mirrored to fit the manual.

1

8

9

11

12

13

14

16

18

19

20

21

1.1 Installation of National Instruments drivers

Before setting up the Cicero Word Generator, it is necessary to install the newest .NET Framework[4] from Microsoft. For the first installation of NI drivers, NI-DAQmx (version 9.3), NI-VISA (newest version), and NI-4888.2 (newest version) should be downloaded from the National Instruments website[5]. When installing the NI drivers it is possible to get an 'Runtime Error!'. In this case it is necessary to set the Regional format settings of Windows 10 to 'English (United States)'[6].

1.2 Installation of National Instruments Cards

After installation of the necessary drivers, the physical cards can be inserted into the PCIe slots on the motherboard. On 'Fritz Fantom' the digital card (NI PCIe-6537B) was installed in PCIe bus 3 while the analog cards (NI PCIe-6738) were installed in PCIe bus 4 and 5.

1.3 Configuring Atticus

After installation of the NI cards, Atticus should be launched for the first time and closed without changing any settings. After this, the NI-DAQmx drivers should be

- updated to the newest version. If version 9.3 was not used when launching Atticus
- in this step, it could result in an error. After this, "Configuring Atticus" on the
- user manual can be followed. The **Server Name** was set to 'Fritz_Phantom'. **Dev1**
- to Dev3 were set in the same ascending order as the physical installation on the
- 5 motherboard.

change server i in lab? Fanton Phantom

6 1.3.1 Configure hardware timing / synchronization

- ⁷ For synchronization, a **Shared Sample Clock** was used with **Dev1** being the master
- 8 card. The settings are summarized in table 1.1 and table 1.2. For Dev3 'SampleClock-
- 9 ExternalSource' should be set to '/Dev3/RTSI7'. The 'SampleClockRate' is set to
- 350 kHz since this is the fastest rate with all 32 analog channels active. It is possible
- to raise this to 1 MHz by only using 8 channels (1 channel per bank).

Table 1.1: Settings for **Dev1**.

Setting	Value
MasterTimebaseSource	
MySampleClockSource	DerivedFromMaster
SampleClockRate	350000
UsingVariabletimebase	False
SoftTriggerLast	True
StartTriggerType	SoftwareTrigger

Table 1.2: Settings for **Dev2**.

9	
Setting	Value
MasterTimebaseSource	
MySampleClockSource	External
SampleClockExternalSource	/Dev2/RTSI7
SampleClockRate	350000
UsingVariabletimebase	False
SoftTriggerLast	False
StartTriggerType	SoftwareTrigger

1

8

12

1.4 Configuration and Basic Usage of Cicero

After setting up the Atticus server, Cicero can be configured. In step 3.c. it is necessary to write the full IP address and not 'localhost'. Once step 6 is finished, Cicero should run without any problems.

1.5 Saving of Settings and Sequences

The 'SettingsData' of the Server Atticus are saved in C:\Users\confetti\Documents \Cicero_Atticus\Cicero\SettingsData while the 'SequenceData' of Cicero are saved in C:\Users\confetti\Documents\Cicero_Atticus\Cicero\SequenceData.

1.6 Sequence length limit

The duration of a sequence is limited to $2^{32}/(16*32*350\,\mathrm{kHz}) = 23.967\,\mathrm{s}$ coming from a 32-bit application, 16 bit per channel, 32 channels in a NI PCIe-6738 card, and 350 kHz clock rate.

₁ 2 CRT handling

2.1 Opening CRTs

- In order to use hit the ³⁹K cloud with an electron beam, it is necessary to cut open the
- 4 CRT. This section explains the different methods which were tried and which resulted
- 5 in clean and easy cuts. All slices were made in a glove box filled with nitrogen gas
- 6 (fig. 2.1) to avoid oxygen poisoning of the cathode.

Figure 2.1: Glovebox filled with nitrogen gas to open CRTs.

₇ 2.1.1 Rotary tool

- 8 First, a small hole was drilled in the center of the CRT pins to pressurize the CRT
- with nitrogen. Then a diamond wheel attached to a rotary tool was used to cut the
- glass. This method was tried twice, but did not work well the second time. (Why
- did it not work well? Did the diamond wheel break?) Another obstacle is the plastic
- box, since it is not fully transparent and therefore made more difficult to see inside.
- Furthermore, glass dust adhered on the plastic and made it even harder to see the
- 14 CRT from outside.

Ask Thomas

2.1.2 Wire cutting

Higher success was achieved by cutting the glass with a heated wire. Two wires were put through the glove box with each inside ending being a ring terminal. A small height adjustable gadget was built out of optical table parts (fig. 2.2) in which the CRT was put vertically and looped by a thin wire . When looping the wire it is important to keep a small gap to avoid an electrical short. Therefore two notches were made in which the wire was fixed.

wire dimension material

1

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

The assembly was put inside the glove box which was subsequently filled with nitrogen. A current of approximately 2 A to 2.5 A was used to heat the thin wire which will result in a breaking point inside the CRT glass. This method does not require a CRT pressurization before the cut. In order to not destroy a device by mistake, this procedure can be first tested on drinking glasses.

Figure 2.2: Gadget to cut CRT with wire.

Oxygen poisoning Versuchsreihe: Wie schnell degradet die Kathode 2019-12-11

tested helium content in drinking glass by having the bottom open for 30 s, 1 min, 3 min, 6 min, 10 min lighter goes off when putting it in glass

tested the same with nitrogen with plastic wrap put on opening with rubber band and opening at the top for 3 min, 6 min, 10 min which also works with a lighter (flame goes off)

tested nitrogen with CRT Dev 3 for 6 min, 10 min which also works

tested CRT Dev 3 with helium leak tester 1st test with 1 foil, 1 rubber band background: 8e-5 mbarl/s CRT foil/opening next to probe: 2e-4 mbarl/s to 4e-4 mbarl/s next to open He gas cylinder: 2e-3 mbarl/s and up to 1.3e-2 mbarl/s

2nd test with 1 foil, 1 rubber band background: 7e-5 mbarl/s CRT foil/opening next

2 CRT handling

- to probe: 2.8e-4 mbarl/s to 4e-4 mbarl/s CRT rubber/foil band next to probe: 4e-4
- 2 mbarl/s to 8e-4 mbarl/s
- 3rd test with 3 foils, 2 rubber bands background: 2.2e-4 mbarl/s CRT foil/opening
- 4 next to probe: 2.9e-4 mbarl/s CRT rubber band below foil: 7e-4 mbarl/s to 1.3e-3
- 5 mbarl/s
- 4th test with 1 aluminum foil hot glued to CRT background: 6.6e-5 mbarl/s on
- 7 glued spot: 7e-5 mbarl/s to 7e-4 mbarl/s mostly under 1e-4 mbarl/s on foil itself: 7
- 8 mbarl/s to 8.5 mbarl/s

Todo list

namechange?	2	:
Figure: Image of glove box	4	;
Dremel trademark	4	
Ask Thomas	4	į
wire dimensions, material	5	•
Figure: Image of gadget	5	

References

- ² [1] Aviv Keshet and Wolfgang Ketterle. "A Distributed, GUI-based, Computer Control System for Atomic Physics Experiments". In: *Review of Scientific Instruments* 84.1 (2013), p. 015105.
- 5 [2] Aviv Keshet. The Cicero Word Generator. URL: https://github.com/akeshet/ 6 Cicero-Word-Generator (visited on 02/20/2020).
- 7 [3] Aviv Keshet. Cicero Word Generator Technical and User Manual. URL: http: 8 //akeshet.github.io/Cicero-Word-Generator/Cicero%20Technical%20and% 9 20User%20Manual.pdf (visited on 02/24/2020).
- Microsoft. Download .NET (Linux, macOS, and Windows). URL: https://dotnet. microsoft.com/download (visited on 02/24/2020).
- National Instruments. NI Driver Downloads National Instruments. URL: https://www.ni.com/en-us/support/downloads/drivers.html (visited on 02/24/2020).
- National Instruments. NI Software Gives C++ Runtime Error "Terminated in an Unusual Way" National Instruments. URL: https://knowledge.ni.com/
 KnowledgeArticleDetails?id=kA00Z0000019YOnSAM&l=en-US (visited on 02/24/2020).