	Avantika lingle CST SPL 1 RAV No.01. PAGE NO. DATE
	UTORIAL - 5
Q1 .	BFS Dfs: (Breadth First Learch) (Depth First Learch)
)	it is used to find one of 1) It finds the shortest path in a the possible paths from graph from source to distance.
LI)	It uses stack data structure. 11) It uses queue data etructure.
11)	In BFS, there is no concept 111) It is a recurding algorithm that uses y dracktracing. He idea of backtracking.
02.	BFS:- In this algorithm, we find the shortest path from source to destination for this, it uses queue data thurance i.e. fine Int. First Out, to pick up the adjacent node.
	DFS:- In this algorithm, we find one of the possible paths. We hatrieve it from host to the faithest node as much as possible, this is the same idea as LIFO. Hence, stock is used.
Co.	Dense Grapho: If the no of edges is close to the maximum number of edges in a graph, then the glaph is Dense Graph, In this, every pair of verses is connected by one edge. for sense graphs, Asjacency matrix is prepared.

4 Sparse Guaph;
It is completely opposite of Dense Graph. If graph has few edges it.

The no. of edges is close to minimal no. of edges. If discense his better representation of grace grapes.

In BFS, we maintain a "visited" nodes list, when howevering a level, if we encounter a node that was already in this list, we come across a cycle.

In DFS, while traversing, if we find a node that is already in the recursion stack, a cycle is detected.

Digaint Cet Data Structure:

of disjoint set data structure is also known as union-find data structure and merge-find set. It contains collection of dysint or non-overlapping sets:

Operations that can be performed on this data structure are;—

Intersection 1

union Delete an element

Q5.

DATE

N		DATE		
BCS.				
Start Node > G	Dex → B			
	,			
Queve	Action	Writed		
Tal	Invest D, F, H	બુ		
	Remove 61			
		Queve Action Tog I head D, F, H	BPS. Start Node→ Gy Denx → B Queue Action Witted TGJ Invest D, F, H G	BCS. Start Node G Dest B Queue Action Winted [G] Invest D, F, H G

DFIH ement C

Remove D

FHC Remove F

Remove H

C

E

A

Remove C Remove E enser A

Insect E

GID, F, H, C G, D, F, H, C, F

GI,D, FIH

61,D, F, H, C

GI, D, F, H, C, E G.D.F.H, GE, A

Path: G - D - F - H - C - E - A

Remove A Insert B

			PAGE Na DATE
4	DR:		
	Itack	Node	vicited.
	लि	Invent D	G

Insert C

C

D

D G

Inset E

A toune

(H,D)

6D, C

61,D,C,E

Insert B

GD.GE.A

Path > G -> D -> C -> F -> A -> B

			PAGE Ho. DATE
()7.	V-{a}{b} {c}{a} {e} {f} {g} {h} {i} {i} {j} {k} {i} {j} {k} {i} {j} {j} {k} {j} {j} {k} {j} {j} {j} {j} {j} {j} {j} {j} {j} {j		
	E- 50,61 [a,c] [b,c] [b at 50,41 [e,9]	Sh, is	<i>(i)</i>
			7,
	(a,b) [a,b] [c] [d] [e] [f + [g] [h) [i3 [j]		
	(a,c) [9,b, c) Ed3 fe} [4] [93 5h) {i3 {j3}		•
	(b,c) {a,b,c} sas sel 3f3 (99 5h) {i4 1,i3		
	(b,d) {9,b,c,d3 }e) {f } {9} {h} {is {is}}		
*	(e,f) [a,b,c,d] [e,f] [] [h] [i] [j]		
	(e,g) {a,b,c,d} {e,f,g} {h} {i} {j} {		,
	(e,g) \$a,b,c,d\$ {e,f,g} {h} {i} {j} {j} {h,i} {j}		
	No. of Connected Component -3.		
			1
(De-	(F)		•
	0 0		
	/(3)		-1
	Top-sort (0) (No neighbour)	5	
	Top jou (1) (No neighborn)	4	
	Top-sort (2)	8	
		3	
	Top-sov (3) (No neighbour)	1	
	Top real (4)	0	<u></u>
	Top-vard (5)	Stack	
	linear Order: 5, 4, 9, 3, 1, 0		
			11.
			Amer

ace no.

Of finary fleas is generally preferred over priority grew implementation decause great takes ((log n) for insertion, deletion etc. and heaps take constant time for peck () algorithm. Algorithm where we need to use Priority Duene: -1) Djirdio's Algorithm 11) Prim's Agontum In both the algorithms, we have to find the shortest path from course to destination. To ensure that we explore the vertex, one often another must have smaller weight (010. Difference b/w Min gleap of Max fleap. MIN HEAP 1) In min heap, key at hoot nodes. i) In max heap, key at parent node is >z child modes. 11) The min key element is present at the root. 11) The max. key element is present at the hoot. 11) It uses ascending property. 111) It uses descending property. (N) The smallest element was priority in min heap. in max heap,

Ante