Probabilités conditionnelles : corrigé du devoir maison

Exercice 1 Partie A

On s'intéresse au nombre de dons de sang lors de collectes organisées au sein de l'Établissement Français du Sang (EFS) depuis 2010.

Année	2010	2011	2012	2013	2014
Nombre de dons de sang (en milliers)	2300	2450	2500	2600	2 650

1. Déterminer à 0,01 % près, le pourcentage d'augmentation de dons de sang entre 2010 et 2014.

On fait le calcul suivant :

$$\frac{2650 - 2300}{2300} \times 100 \approx 15.22\%$$

Il ya donc environ 15.22% d'augmentation.

2. En déduire l'augmentation annuelle moyenne entre 2010 et 2014 ,% arrondie à 0,01 %.

On fait le calcul suivant :

$$1.1522^{\frac{1}{4}} \approx 1.0361$$

Il y a donc une augmentation annuelle moyenne d'environ 3.61%.

3. En supposant que l'augmentation du nombre de dons suivra la même évolution, combien de dons de sang peut-on espérer collecter en 2017? On arrondira au millier.

On fait le calcul suivant :

$$2650 \times 1.0361^3 \approx 2947$$

On peut espérer collecter 2947 dons de sang en 2017.

Partie B

Dans une région, 56 % des donneurs sont des hommes.

Parmi eux, 38 % ont moins de 40 ans.

Parmi les femmes donnant leur sang, 45 % ont moins de 40 ans.

On interroge au hasard un donneur de sang dans cette région et on considère les événements suivants :

- H: « la personne interrogée est un homme »
- Q: « la personne interrogée a moins de 40 ans ».

 \overline{H} désigne l'évènement contraire de H et $P_H(Q)$ la probabilité de Q sachant H.

- 1. À l'aide de l'énoncé, donner P(H) et $P_H(Q)$. L'énoncé nous donne P(H) = 0.56 et $P_H(Q) = 0.38$.
- 2. Recopier et compléter l'arbre pondéré ci-contre.

TSTMG TSTMG

3. Calculer $P(H \cap Q)$. Interpréter le résultat obtenu.

Pour obtenir cette probabilité, on regarde sur quelle branche on retrouve les événements H et Q puis on multiplie les probabilités intervanant sur cette branche. On obtient :

$$P(H \cap Q) = P(H) \times P_H(Q) = 0.56 \times 0.38 = 0.2128$$

Cela signifie qu'il y a une probabilité de 0.2128 qu'une personne choisie au hasard soit un homme de moins de 40 ans.

4. Calculer la probabilité que la personne interrogée ait moins de 40 ans. On cherche P(Q), pour cela, on va chercher les branches où apparaît Q: il y en a deux. Sur chaque branche, on multiplie les probabilités puis on ajoute les résultats de ces produits:

$$\begin{split} P(Q) &= P(\overline{H} \cap Q) + P(H \cap Q) \\ &= P(\overline{H}) \times P_{\overline{H}}(Q) + P(H) \times P_{H}(Q) \\ &= 0.44 \times 0.45 + 0.56 \times 0.38 = 0.198 + 0.2128 \\ &= 0.4108 \end{split}$$

5. La personne interrogée a plus de 40 ans. Déterminer la probabilité que ce soit un homme.

On arrondira à 10^{-4} .

On cherche une probabilité conditionnelle, avec la condition \overline{Q} :

$$P_{\overline{Q}}(H) = \frac{P(\overline{Q} \cap H)}{P(\overline{Q})} = \frac{0.56 \times 0.62}{1 - 0.4108} \approx 0.5893$$

Exercice 2 En 2016 une étude réalisée dans une grande entreprise révèle que 55 % des employés peuvent venir travailler grâce aux transports en commun. Parmi ceux-ci, 80 % déclarent venir tout de même en voiture. Parmi ceux qui n'ont pas accès aux transports en commun, 95 % viennent travailler en voiture.

Partie A

On choisit au hasard un employé de cette entreprise et on considère les évènements suivants :

T : « L'employé peut utiliser les transports en commun »;

V : « l'employé vient travailler en voiture ».

On notera \overline{T} et \overline{V} les évènements contraires. Les résultats seront tous donnés à 0,001 près.

1. Recopier et compléter l'arbre pondéré donné ci-dessous.

2. Calculer la probabilité de l'évènement $T \cap V$.

On trouve:

$$P(T \cap V) = P(T) \times P_T(V) = 0.55 \times 0.8 = 0.44$$

TSTMG TSTMG

3. Déterminer la probabilité que l'employé ne puisse pas utiliser les transports en commun et ne vienne pas travailler en voiture.

On cherche $P(\overline{T} \cap \overline{V})$:

$$P(\overline{T} \cap \overline{V}) = P(\overline{T}) \times P_{\overline{T}}(\overline{V}) = 0.45 \times 0.05 = 0.0225$$

4. Calculer la probabilité de l'évènement V et justifier par une phrase ou une formule le calcul.

On a:

$$P(V) = P(T \cap V) + P(\overline{T} \cap V) = P(T) \times P_T(V) + P(\overline{T}) \times P_{\overline{T}}(V) = 0.55 \times 0.8 + 0.45 \times 0.95 = 0.8675$$

5. Sachant que l'employé vient en voiture, quelle est la probabilité qu'il ait accès aux transports en commun?

On cherche une probabilité conditionnelle, avec pour condition V:

$$P_V(T) = \frac{P(T \cap V)}{P(V)} = \frac{0.55 \times 0.8}{0.8675} \approx 0.5072$$

Partie B

L'entreprise souhaite, par diverses incitations, diminuer de 5 % par an le pourcentage de ceux qui viennent travailler en voiture.

On note U_0 le pourcentage de ces employés en 2016 et pour tout entier n, U_n le pourcentage espéré l'année (2016 + n). On a montré dans la partie A que U_0 = 86,75.

1. Calculer U_1 , puis U_2 .

Comme on a des baisses de 5%, cela revient à multiplier par 0.95 :

$$U_1 = 0.95 \times 86.75 = 82.4125$$

 $U_2 = 0.95 \times 82.4125 = 78.2919$

2. Déterminer la nature de cette suite puis exprimer U_n en fonction de n. Comme chaque année, il y a une baisse de 5%, cela revient à multiplier par 0.95 pour passer d'un terme à l'autre. Donc la suite est géométrique de raison 0.95 et de premier terme 86.75:

$$u_n = 86.75 \times 0.95^n$$

3. Calculer le pourcentage attendu d'employés venant en voiture en 2020. On cherche la valeur de u_n pour n = 3:

$$u_3 = 86.75 \times 0.95^3 = 74.3773$$

Donc, en 2020, on attend 74.3773% de personne venant en voiture.

4. D'après ce modèle, à partir de quelle année, y aura-t-il moins d'un employé sur deux qui viendra travailler en voiture? On trouve:

$$u_{10} = 86.75 \times 0.95^{10} = 51.9404$$

 $u_{11} = 86.75 \times 0.95^{11} = 49.3434$

C'est donc en 2027 qu'un employé sur deux viendra travailler en voiture.

TSTMG 3 Mars 2020