

Our Project

Purpose

Understand what factors can influence a students performance on a standardized test

Target Audience

Parents and school representatives to provide better ed. programs

Data Source

Data set is used from Kaggle

Three Main Problems

- 1. Is there a correlation between test prep and a higher total score?
 - a. Total score = reading + math + writing
- 2. Which variable highly contributes to students exam performance?
- 3. Predict the overall test score from inputted variables

Exploratory Data Analysis

How we analyzed our data

Exploratory Data Analysis

- 1. Used Kaggle dataset and made questions on what to do with this data
- 2. Do we predict each score? Or do we aggregate?
- Decided to sum up all the scores so that we cover all the variables and see its effect across all the provided variables

A	А	В	С	D	E	F	G	н
1	gender	race/ethnicity	parental level of education	lunch	test preparation	math	reading	writing
2	female	group B	bachelor's degree	standard	none	72	72	74
3	female	group C	some college	standard	completed	69	90	88
4	female	group B	master's degree	standard	none	90	95	93
5	male	group A	associate's degree	free/reduced	none	47	57	44
6	male	group C	some college	standard	none	76	78	75

Original data file with categorical variables and 3 exam scores

Added overall score (math+ reading + writing)

Boxplot

Data Mining Methods

Which methods we chose

- 2. Regression Tree
- 3. Random Forest

Linear Regression

- Used 70% of the data for training and the 30% for testing
- Used the overallscore as the response variable for the linear model

```
call:
lm(formula = overallscore ~ ., data = student.train)
Residuals:
     Min
               10
                   Median
                                         Max
-146.013 -24.159
                    1.298
                             25.817
                                      82.352
Coefficients:
                                              Estimate Std. Error
(Intercept)
                                               197.683
                                                            6.491
gendermale
                                               -10.588
                                                            2.848
race.ethnicitygroup B
                                                 9.340
                                                            5.905
race.ethnicitygroup C
                                                12.811
                                                            5.552
race.ethnicitygroup D
                                                20.256
                                                            5.678
race.ethnicitygroup E
                                                23.553
                                                            6.197
parental.level.of.educationbachelor's degree
                                               10.088
                                                            5.121
parental.level.of.educationhigh school
                                               -16.984
                                                            4.357
parental.level.of.educationmaster's degree
                                                8.239
                                                            6.479
parental.level.of.educationsome college
                                               -1.704
                                                            4.287
parental.level.of.educationsome high school
                                               -13.429
                                                            4.510
lunchstandard
                                                26.226
                                                            2.952
                                               -24.052
                                                            2.980
test.preparation.coursenone
```

Stepwise Forward Selection

```
> step(fitstart, direction = "forward", scope = formula(M1))
Start: ATC=5262.93
overallscore ~ 1
                              Df Sum of Sq
                                                      AIC
+ lunch
                                     98514 1187037 5209.1
+ test.preparation.course
                                     95251 1190300 5211.0
+ parental.level.of.education
                                     75034 1210517 5230.8
+ race.ethnicity
                                     50528 1235023 5242.9
+ gender
                                     18207 1267344 5254.9
                                           1285551 5262.9
<none>
Step: AIC=5209.12
overallscore ~ lunch
                              Df Sum of Sq
                                               RSS
                                    102365 1084673 5148.0
+ test.preparation.course
+ parental.level.of.education
                                     78595 1108442 5171.2
+ race.ethnicity
                                     48484 1138553 5187.9
+ gender
                                     20568 1166470 5198.9
                                           1187037 5209.1
<none>
Step: AIC=5148
```

```
Call:
lm(formula = overallscore ~ lunch + test.preparation.course +
    parental.level.of.education + race.ethnicity + gender, data = student.train)
```

Linear Regression with Plot

The **MSE** is **1428**

Regression Tree

- 1000 records with 1 continuous response "overallscore" (the total score of Math, Reading and Writing
- 70% training and 30% testing
- Predict "overallscore" using Input 5 categorical variables

	gender	race.ethnicity	parental.level.of.education	lunch	test.preparation.course	overallscore
1	female	group B	bachelor's degree	standard	none	218
2	female	group C	some college	standard	completed	247
3	female	group B	master's degree	standard	none	278
4	male	group A	associate's degree	free/reduced	none	148
5	male	group C	some college	standard	none	229
6	female	group B	associate's degree	standard	none	232

Regression Tree

- Use **K-fold cross-validation** to determine the optimal subtree
- cv.tree() function reports the number of terminal nodes of each tree considered and the corresponding error rate.

```
$size
[1] 7 6 5 4 3 2 1
$dev
[1] 1153629 1196723 1184913 1181097 1187226 1218758 1297831
$k
\lceil 1 \rceil
        -Inf 18286.39 20924.49 22009.07 47050.62 55993.23 98513.72
$method
[1] "deviance"
attr(,"class")
    "prune"
                     "tree.sequence"
```

Regression Tree

MSE between True value and Predicted value is 1517.304

Two Ensemble Algorithms: Bagging

Bagging: improves the accuracy & stability of our Regression Tree model

• **Bootstrap Aggregating** - sample with replacement

Bagging uses all 5 predictors:

- Race
- Ethnicity
- Parental Level of Education
- Gender
- Lunch

Mean value: shows the performance of bagging

```
> bag.model=randomForest(overallscore~ gender+ lunch + race.ethn
icity+ parental.level.of.education+ test.preparation.course,data
=survey, subset=train, mtry=5, importance=TRUE)
> bag.model
call:
 randomForest(formula = overallscore ~ gender + lunch + race.eth
             parental.level.of.education + test.preparation.cou
rse, data = survey.
                        mtry = 5, importance = TRUE, subset = t
rain)
              Type of random forest: regression
                    Number of trees: 500
No. of variables tried at each split: 5
         Mean of squared residuals: 1826.7
                   % var explained: 0.53
> #performance of the bagging
> yhat.bag = predict(bag.model,newdata=survey[-train,]
> mean((yhat.bag-model.test)^2)
[1] 1669, 201
```

Two Ensemble Algorithms: Random Forest

Random Forest: Bagging + Decision Tree

 uses a random split with replacement at 2 predictors (5 / 3 = 2)

Mean value: shows the performance of Random Forest

Mean is lower for Random Forest => less errors

Random Forest: was used to help evaluate which variable was more important for the total test score

```
> #random forest
> set.seed(1)
> rf.model=randomForest(overallscore~ gender+ lunch +
  test.preparation.course,data=survey,subset=train,mtry
  mtry should be 3
> yhat.rf = predict(rf.model,newdata=survey[-train,])
> mean((yhat.rf-model.test)^2)
[1] 1484.04
>
```

Importance of Each Variable

The importance of each variable was evaluated using:

- importance() mean decrease of accuracy in predictions
- varImpPlot() total decrease in node impurity

Lunch, test prep, parental level of education give the best prediction and contribute most to the model

```
> importance(rf.model)
                               %IncMSE IncNodePurity
gender
                              6.778136
                                             38306.71
lunch
                             41.911091
                                           105822.48
race. ethnicity
                              2.037405
                                            96102.57
parental.level.of.education
                              9.508892
                                           118778.41
test.preparation.course
                             36.468568
                                            96367.22
```

rf.model

Final Model

Choosing the optimal model

Final Model & Results

Linear regression model is the better model with lowest MSE

Estimate	Std.	Error	t value	Pr(> t)	
197.683		6.491	30.455	< 2e-16	***
-10.588		2.848	-3.717	0.000218	***
9.340		5.905	1.582	0.114151	
12.811		5.552	2.308	0.021315	*
20.256		5.678	3.567	0.000386	***
23.553		6.197	3.801	0.000157	***
10.088		5.121	1.970	0.049257	*
-16.984		4.357	-3.898	0.000106	***
8.239		6.479	1.272	0.203903	
-1.704		4.287	-0.397	0.691206	
-13.429		4.510	-2.978	0.003006	**
26.226		2.952	8.886	< 2e-16	***
-24.052		2.980	-8.071	3.11e-15	***
	197.683 -10.588 9.340 12.811 20.256 23.553 10.088 -16.984 8.239 -1.704 -13.429 26.226	197.683 -10.588 9.340 12.811 20.256 23.553 10.088 -16.984 8.239 -1.704 -13.429 26.226	197.683 6.491 -10.588 2.848 9.340 5.905 12.811 5.552 20.256 5.678 23.553 6.197 10.088 5.121 -16.984 4.357 8.239 6.479 -1.704 4.287 -13.429 4.510 26.226 2.952	197.683 6.491 30.455 -10.588 2.848 -3.717 9.340 5.905 1.582 12.811 5.552 2.308 20.256 5.678 3.567 23.553 6.197 3.801 10.088 5.121 1.389 8.239 6.479 1.272 -1.704 4.287 -0.397 -13.429 4.510 -2.978 26.226 2.952 8.886	-10.588 2.848 -3.717 0.000218 9.340 5.905 1.582 0.114151 12.811 5.552 2.308 0.021315 20.256 5.678 3.567 0.000386 23.553 6.197 3.801 0.000157 10.088 5.121 1.970 0.049257 -16.984 4.357 -3.898 0.000106 8.239 6.479 1.272 0.203903 -1.704 4.287 -0.397 0.691206 -13.429 4.510 -2.978 0.003006 26.226 2.952 8.886 < 2e-16

Increase	Decrease
race.ethnicity groupB	gender male
race.ethnicity groupC	parental.level.of.education high school
race.ethnicity groupD	parental.level.of.education some college
race.ethnicity groupE	parental.level.of.education some high school
parental.level.of.education bachelor's degree	test.preparation.course none
parental.level.of.education master's degree	
lunch standard	

- 1. Is there a correlation between test prep and a higher total score? Yes
- 2. Which variable highly contributes to students exam performance? Multiple variables
- 3. Predict the overall test score from inputted variables. With all other predictors held fixed, an increase to a predictor in the increase column or a decrease to a predictor in decrease column would result to an increase to the student's overall score.

