Radon-Nikodym - Statement and Proof

1 Statement

Theorem 1.1 (Radon-Nikodym Theorem). Suppose μ and ν are σ -finite measures on (X, \mathcal{A}) such that $\nu << \mu$. Then \exists a measurable function $f: X \to [0, +\infty)$ such that

$$\forall A \in \mathcal{A}, \quad \nu(A) = \int_A f \, d\mu$$

Moreover, for all such functions h, we have that $h = f \mu$ -almost everywhere. We call such function the Radon-Nikodym derivative which we denote $\frac{d\nu}{d\mu}$.

2 Existence

Proof. Suppose $\mu(x), \nu(X) < \infty$ then let

$$\mathcal{F} := \left\{ f: X \to [0, +\infty) \text{ measurable } \middle| \ \forall A \in \mathcal{A} \quad \int_A f \, d\mu \leq \nu(A) \right\}$$

Note $\mathcal{F} \neq \emptyset$ because it contains the 0-function.

Claim: Given $f_1, f_2 \in \mathcal{F}$ then $f_1 \vee f_2 \in \mathcal{F}$.

Choose a countable sequence $f_1, f_2, \dots \in \mathcal{F}$ such that

$$\lim_{n \to \infty} \int f_n \, d\mu = \sup \left\{ \int f \, \middle| \, f \in \mathcal{F} \right\}$$

By replacing f_i with $f_1 \vee \cdots \vee f_i$ we can assume that this sequence is increasing. Let $g := \lim_{n \to \infty} f_n$. Then for all measurable $A \in \mathcal{A}$ we have

$$\int_{A} g \, d\mu = \lim_{n \to \infty} \int_{A} f_n \, d\mu \le \nu(A)$$

by the monotone convergence theorem. Therefore we also have $g \in \mathcal{F}$. We're going to define a new measure ρ by

$$\rho(A) := \nu(A) - \int_A g \, d\mu \ge 0$$

We aim to show that this is the 0 measure. Suppose for contradiction that $\rho(X) > 0$ then we can find an $\epsilon > 0$ such that $\rho(X) > \epsilon \mu(X)$ because $\mu(X)$ is finite. Now we take a Hahn decomposition $X = P \sqcup N$ of the signed measure $\rho - \epsilon \mu$.

$$\forall A \in \mathcal{A} \qquad \nu(A) = \int_{A} g \, d\mu + \rho(A)$$

$$\geq \int_{A} g \, d\mu + \rho(A \cap P)$$

$$\geq \int_{A} g \, d\mu + \epsilon \mu(A \cap P)$$

$$\geq \int_{A} (g + \epsilon \chi_{P}) \, d\mu$$

$$\Rightarrow \sum_{A} (g + \epsilon \chi_{P}) \, d\mu$$

This is clearly a problem because we've found an integral larger than the largest integral however $g + \epsilon \chi_P$ is the same as g up to measure 0 if $\mu(P) = 0$. Therefore we split into two cases:

Case 1: If $\mu(P) = 0$ then $\rho(P) = \nu(P) - \int_P g \, d\mu = 0 - 0$ since $\nu \ll \mu$. Hence, $\rho(X) - \epsilon \mu(X) = \rho(N) - \epsilon \mu(N)$ since both measure vanish on P. But then N is a negative set so $\rho(X) - \epsilon \mu(X) \leq 0$ which contradicts our definition of ϵ .

Case 2: If $\mu(P) \neq 0$ then $g + \epsilon \chi_P \in \mathcal{F}$ but if we integrate over X we get

$$\int (g + \epsilon \chi_P) \, d\mu > \int g \, d\mu$$

which is a contradiction because g was chosen to maximise this integral subject to $\int_A g \, d\mu \leq \nu(A)$. This proves that $\rho(X) = 0$ and so $\rho \equiv 0$, i.e.

$$\forall A \in \mathcal{A} \quad \nu(A) = \int_A g \, d\mu$$

Problem: What if $g(x) = \infty$ for some $x \in X$?

Well we certainly have $\int g \, d\mu \le \nu(X) < +\infty$ and hence $\mu(\{g = +\infty\}) = 0$. We can just redefine g to be 0 on the set where it was previously infinity and this won't change any integrals.

2.1 General Case

Previously we assumed that μ and ν were finite, but actually we can do the proof when they are only σ -finite.

Proof. Decompose the space $X = \sqcup_n B_n$ where the B_n are some measurable sets such that $\mu(B_n), \nu(B_n) < \infty$. Then for each n we can define new finite measures by

$$\mu_n(A) = \mu(A \cap B_n)$$
 and $\nu_n(A) = \nu(A \cap B_n)$

Note that we still maintain absolute continuity $\nu_n \ll \mu_n$ for each n. We can now apply the first existence proof to each μ_n and ν_n to find Radon-Nikodym derivatives $g_n : X \to [0, +\infty)$. Moreover, we can choose these such that $g_n \equiv 0$ on B_n^c because this won't change anything with respect to μ_n and ν_n .

We now define our global derivative as

$$g = \sum_{n} g_n$$

which is measurable and non-negative because it is the sum of measurable and non-negative functions. Moreover, g is finite because the g_n are finite and only assume non-zero values on their respective B_n . Finally given any $A \in \mathcal{A}$ we have

$$\int_{A} g \, d\mu \underbrace{=}_{\text{Levi}} \sum_{n} \int g_{n} \, d\mu = \sum_{n} \nu_{n}(A) = \sum_{n} \nu(A \cap B_{n}) = \nu(A)$$

which is what we wanted. Woo hoo!

3 Uniqueness

Proof. Suppose $h,g:X\to [0,\infty)$ satisfy $\forall A\in \mathcal{A}\nu(A)=\int_A g\,d\mu=\int_A h\,d\mu$. Suppose that $\nu(X)<+\infty$. Then g-h is integrable with respect to μ and $\int_{\{g>f\}}g-h\,d\mu=0=\int_X(g-h)^+d\mu$. This implies that $(g-h)^+=0$ μ a.e. We have a similar argument for the negative part. Thus g=h a.e.

In the σ - finite case, write $X = \sqcup_n B_n$ with $\nu(B_n) < \infty$. So g = h on $B_n \mu$ - a.e. Thus $g = h \mu$ - a.e.