Álgebra Linear Computacional

Professores: Fabricio Murai e Letícia Pereira Pinto

DCC033 - 2019_1 - ANALISE NUMERICA - TZ
DCC049 - 2019_1 - TOPICOS EM SISTEMAS DE INFORMACAO - TZ
DCC639 - 2019_1 - ÁLGEBRA LINEAR COMPUTACIONAL - TZ
DCC639 - 2019_1 - ÁLGEBRA LINEAR COMPUTACIONAL - TZ1

Índice

- O que é ALC?
- O que vamos estudar?
- Referências
- Avaliação
- Comunicação com os professores
- Aprendendo python

O que é Álgebra Linear Computacional?

O que é Álgebra Linear Computacional?

 Curso sobre a teoria, as aplicações e as considerações práticas de se implementar e executar operações matriciais em computadores usando dados reais.

Foco: Como realizar cálculos matriciais com velocidade e precisão aceitáveis?

- É o mesmo que "Análise Numérica", só mudou de nome?
 - Não, embora alguns tópicos da ementa sejam comuns.
- É uma Álgebra Linear avançada?
 - Não, embora alguns conceitos serão revisados ao longo do semestre.

O que é Álgebra Linear Computacional?

Objetivos:

- Revisar conceitos e fundamentos de álgebra linear;
- Fornecer ao aluno métodos necessários à resolução numérica de problemas que envolvam decomposição de matrizes;
- Familiarizar e motivar o aluno com aplicações práticas em computação dos métodos vistos ao longo do curso;
- Manipular dados em um ambiente científico.

O que vamos estudar?

Eliminação Gaussiana

- Implementação em ambiente científico (Python)
- Aritmética de ponto flutuante.
- Estudo de erro, estabilidade, convergência.

Decomposição LU

- Cálculo da inversa
- Refinamento de solução
- Posto de matriz

Decomposição espectral

- Espaços vetoriais e bases
- Cálculos de potências de matrizes
- Implementação prática escalável
- Aplicação ao PageRank

Decomposição SVD

- Matrizes ortogonais
- Aplicação a sistemas de recomendação, modelagem de tópicos e recomendação de background em imagens

Decomposição Cholesky e QR

- Método dos mínimos quadrados
- Cálculo de autovalores
- Exemplo de regressão linear

Fonte: Wikipedia

Condicionamento

- Número de condição
- Normas vetoriais e matriciais
- Exemplos de mal condicionamento

Fonte: CAMPOS filho, F. Algoritmos Numéricos.

Tópicos em Análise Numérica

Alguns tópicos dentre:

- Interpolação polinomial
- Integração numérica
- Resolução de equações

Interpolação polinomial

Como aproximar uma função que passa por n+1 pontos por um polinômio de grau n?

Polinômio de Lagrange Polinômio de Newton

Integração numérica

Como aproximar uma integral que não possui fórmula fechada?

$$\int_0^1 \frac{\sin x}{x} dx$$

Regra do trapézio
Regra do 1/3 de Simpson
Regra dos 3/8 de Simpson
Quadratura Gaussiana

Fonte: Wikipedia

Encontrar raízes de equações

Como encontrar raízes de polinômios de grau alto ou de equações transcedentais?

Função Lambert-W:

$$xe^x = C \implies W(C) = x$$

Bisseção Regula-Falsi Newton Secante

Minimizar $f(x) = x^2/4 - \sin(x) + \cos^2(x) + \log(x^2 + 1)$ encontrar os pontos críticos

$$f'(x) = 0$$

Referências

Material na página do curso

- URL da página do curso:
 - o bit.ly/ALC20191
- Calendário
- Slides
- Python notebooks
- Gabaritos das listas de exercícios entregues
- Lista de material suplementar

Livro-texto

TREFETHEN, L. N. & BAU III, D. Numerical Linear Algebra. Vol. 50. SIAM, 1997.

Q: Preciso acompanhar o conteúdo pelo livro?

Não. Recomendo que obtenham uma cópia apenas aqueles que quiserem se aprofundar no conteúdo visto em sala.

Outros materiais

- BORNEMANN, F. Numerical Linear Algebra (A Concise Introduction with MATLAB and Julia). Springer, 2018.
- CAMPOS Filho, F. Algoritmos numéricos. LTC, 2007.
- Apostila escrita por Cláudio Asano e Eduardo Colli (USP)
- Franco, Neide Maria Bertoldi. Cálculo Numérico. Pearson Brasil.

Software

- Python 3
 - Anaconda
- Socrative App (se houver wifi)

Avaliação

Avaliação

- Três provas:
 - PI: vale 25 pts
 - P2: vale 25 pts
 - P3: vale 40 pts
- Listas de exercícios: valem 20 pts
 - N_I Listas Fabricio (10 pts total)
 - N₂ Listas Letícia (10 pts total)

Listas de Exercícios (Fabricio)

- Idealmente, uma lista por semana
 - A lista estará disponível no Moodle
 - As soluções devem ser submetidas pelo Moodle
- Lista conterá:
 - Parte teórica: soluções devem ser escaneadas
 - Parte prática: código submetido pelo aluno será avaliado pelo VPL

Presença e Exame Especial

Sejam:

M a média do aluno antes do exame especial $P \subseteq [0,100\%]$ a presença do aluno durante o semestre

- Se M ≥ 60:
 - APROVADO, presença lançada max(M, 75%)
 - O Pode fazer exame especial, sem risco de diminuir nota
- Se **40** ≤ **M** < **59**:
 - Se $P \ge 75\%$: exame especial, sob risco de diminuir nota
 - Se P < 75%: REPROVADO por falta
- Se M < 40:
 - Se $P \ge 75\%$: **REPROVADO** por nota
 - Se P < 75%: **REPROVADO** por falta

Comunicação com os professores

Regras do jogo

- Devido ao número de alunos inscritos, dúvidas, problemas com notas, etc, serão tratadas apenas pelos monitores
 - Questões de interesse geral, deverão ser postadas no fórum da Metaturma do Moodle
 - Questões de interesse de um único aluno, devem ser encaminhadas aos monitores; email deve incluir:
 - Código da disciplina e turma (e.g., DCC049 TZ)
 - Nome completo e matrícula
- Caso os monitores não consigam resolver, eles irão se comunicar com os professores

Regras do jogo

Aprendendo python

O que é python?

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together. Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance (...)

Source: Python executive summary

O que é python?

Aprendendo python

(Se você já sabe usar python+numpy, ignore os próximos n slides)

- Notícia ruim: você não vai aprender python assistindo esta disciplina.
- Notícia boa:

Você acaba de ganhar duas semanas para aprender python por conta própria!

O que eu preciso aprender?

- Instalar o Anaconda (Python 3.x)
- Se familiarizar com o jupyter notebook
- O básico da linguagem
 - Declarar variáveis
 - Definir funções
 - Tipos como list, tuple, dict, set
 - Condições (if/else)
 - Laços (for/while)
 - Imprimir
 - Leitura e escrita em arquivo
 - Importar bibliotecas

- Biblioteca numpy: declarar e manipular vetores e matrizes
- Biblioteca matplotlib.pyplot: gerar gráficos simples

Desafio: tente implementar a eliminação de Gauss.

Perguntas e respostas

Perguntas e respostas

Q: Será cobrada presença?

A: Não e sim.

 Se o aluno ficar com média ≥ 60 antes do exame especial, será aprovado, independentemente do número de faltas.
 Caso contrário, o número de faltas será considerado.

Perguntas e respostas

Q: Quem poderá fazer o exame especial?

- Alunos com nota entre 40 e 59 com presença ≥ 75%, sob o risco de diminuir a nota final.
- Alunos com nota \geq 60, sem o risco de diminuir a nota final.

Perguntas?