ETM 540 Group Project

Samira Akther Jordan Hilton Andey Nunes Aparna Raghuram Mohammed Sheikh March 12, 2019

Efficiency of Public Expenditure on Education

In this section, the paper aims to study the efficiency of the public expenditures on education of OECD (Organization for Economic Development) countries. DEA (Data Envelopement Analysis), which is a vastly used tool for measuring efficiency, has been used to measure the efficiency of the public expenditures on education by the countries. The analysis provides an efficient frontier which is a linear combination of the data point with efficiency scores of 1. The analysis also allows us to know possible reduction in the inputs to generate the output of the countries with scores less than 1.

Optimization Model Definition

In our paper, we used output oriented model. Here, only one input is considered and defined as $x_{i,j}$ to be the amount of the *i*'th input used by unit *j*. Here j is the country we are analysing. Two outputs have been considered and defined as $y_{r,j}$ to be the amount of the *r*'th output produced by unit *j*. n is the number of countries we analysed.

The following optimization model has been solved to obtain the efficiency score while minimizing the value of

 θ

.

Min
$$\theta$$

subject to
$$\sum_{j=1}^{n} x_{i,j} \lambda_{j} \leq x_{i,k} \forall i \quad i = 1, \dots, n$$
$$\sum_{j=1}^{N^{D}} y_{r,j} \lambda_{j} \geq y_{r,k} \forall r \quad j = 1, \dots, r$$
$$\lambda_{j} \geq 0 \ \forall \ j$$

Here, Theta provides the efficiency scores of the countries we analyzed. The country with score of 1 lies in the efficient frontier and shows that any input reduction is not possible for generating the output. The countries with scores less than 1 will be considered as inefficient within the efficient frontier. Vector Lambda he specific amount of a unit j used in setting the target for for performance for unit k.

Data Description

Data has been obtained from secondary sources. Data on PISA scores were obtained from OECD website. Data on public education expenditures as percentage of GDP were obtained from UNESCO website. We considered 36 countries of OECD. The input variable is the public education spending as percentage of GDP

of all 36 countries for the year of 2015. The output variables are the average PISA score of all 36 countries and the graduation rates for the year of 2015.

Here is a summary of the data.

```
## load our data, downloaded from the google sheet
data <- read.csv("OECDdata.csv", stringsAsFactors = F)</pre>
glimpse(data)
## Observations: 36
## Variables: 16
## $ Countries
                                    <chr> "Australia", "Austria", "Belgium...
## $ GDP
                                    <dbl> 1349.00, 382.10, 455.00, 1560.00...
## $ SciencePISA
                                    <int> 510, 495, 502, 528, 447, 493, 50...
                                    <int> 503, 485, 499, 527, 459, 487, 50...
## $ ReadingPISA
## $ MathematicsPISA
                                    <int> 494, 497, 507, 516, 423, 492, 51...
## $ AveragePISA
                                    <dbl> 502.33, 492.33, 502.67, 523.67, ...
## $ HDI
                                    <dbl> 0.936, 0.903, 0.913, 0.920, 0.84...
                                    <chr> "9,546", "11,689", "10,211", "9,...
## $ Primary.education
                                    <chr> "12,303", "15,477", "13,070", "1...
## $ Secondary.education
## $ Tertiary.education
                                    <chr> "20,344", "17,555", "17,320", "0...
                                    <chr> "42,193", "44,721", "40,601", "2...
## $ Total.Spending
## $ Tertiary.Graduation.Rate
                                    <dbl> NA, 86.079, 31.350, 93.005, 91.1...
## $ Bachelors.Graduation.rates
                                    <dbl> 59.767, 25.013, 43.903, 37.594, ...
## $ Masters
                                    <dbl> 20.531, 20.287, 26.758, 11.777, ...
## $ Doctorates
                                    <dbl> 2.618, 1.862, 0.639, 1.559, 0.26...
## $ Spending.as.percentage.of.GDP <chr> "5.32%", "5.45%", "6.55%", "", "...
We can see that there are three observations missing from several of the population education level fields and
three zero values for Total Spending. These countries (listed below) will be excluded from the analysis.
data$Total.Spending <- as.numeric(gsub(",", "", data$Total.Spending))</pre>
data$Spending.as.percentage.of.GDP <- as.numeric(gsub("%", "", data$Spending.as.percentage.of.GDP))
# remove O spending countries
DEAdata <- data %>%
   filter(Total.Spending > 0)
```

DEA Model

[1] "Denmark"

Part A: Single input, single output

"Lithuania"

setdiff(data[,1], DEAdata[,1])

For this first part, we will set up and solve a DEA model using the single GDP data point for the input and the aggregated test score average for the single output.

Run a DEA with a single input (total education spending) and a single output (Average PISA score)

"Switzerland"

```
#this is single input and single output
x <- DEAdata %>% select(Total.Spending) ## input
#x2 <- data %>% select(Spending.as.percentage.of.GDP) ## ratio input used in next section
y <- DEAdata %>% select(AveragePISA) ## output
row.names(x) <- DEAdata$Countries #%>%
```

```
row.names(y) <- DEAdata$Countries

ressingle <- DeaMultiplierModel(x, y, rts = "vrs", orientation = "output")

efficiencyTable <- tibble(
    country = as.character(dimnames(ressingle$Efficiency)[[1]]),
    efficiency = as.numeric(ressingle$Efficiency)) %>%
    arrange(desc(efficiency))

pander(head(efficiencyTable), caption = "DEA Output Efficiency for Aggregate Scores")
```

Table 1: DEA Output Efficiency for Aggregate Scores

country	efficiency
Canada	1
Greece	1
Japan	1
Mexico	1
Estonia	0.9991
Finland	0.9898

2015 OECD data DEA plot

Part B:

Run a DEA with a single input, but multiple outputs:

```
#this is single input and multiple output
y <- DEAdata %>% select(SciencePISA, ReadingPISA, MathematicsPISA) ## output
row.names(y) <- DEAdata[,1]

resmult <- DeaMultiplierModel(x, y, rts = "vrs", orientation = "output")

multEfficiencyTable <- tibble(
    country = as.character(dimnames(resmult$Efficiency)[[1]]),
    efficiency = as.numeric(resmult$Efficiency)) %>%
    arrange(desc(efficiency))
```

pander(head(multEfficiencyTable, 10), caption = "DEA Output Efficency for Multiple Scores")

Table 2: DEA Output Efficency for Multiple Scores

country	efficiency
Mexico	1
Finland	1
Greece	1
Japan	1
Canada	1
Estonia	1

country	efficiency
South Korea	0.9955
New Zealand	0.9952
Ireland	0.9886
Slovenia	0.9791

2015 OECD data DEA plot

Part C: Results and discussion

Some quick analysis of the results:

```
max(ressingle$Efficiency) ## the maximum efficiency for one output
```

[1] 1

which.max(ressingle\$Efficiency) ## the row value of the maximum efficiency

[1] 4

data[33,] ## the row from the data matching the answers above

```
## Countries GDP SciencePISA ReadingPISA MathematicsPISA AveragePISA ## 33 Switzerland 679.3 506 492 521 506.33 ## HDI Primary.education Secondary.education Tertiary.education
```

```
## 33 0.942
     Total.Spending Tertiary.Graduation.Rate Bachelors.Graduation.rates
##
     Masters Doctorates Spending.as.percentage.of.GDP
## 33 18.201
                  3.345
min(ressingle$Efficiency) ##same for mins
## [1] 0.8806337
which.min(ressingle$Efficiency)
## [1] 27
data[22,]
      Countries
                 GDP SciencePISA ReadingPISA MathematicsPISA AveragePISA
## 22 Luxembourg 57.78
                              483
                                          481
                                                         486
                                                                  483.33
       HDI Primary.education Secondary.education Tertiary.education
## 22 0.899
                      20,892
                                          20,413
                                                            48,907
     Total.Spending Tertiary.Graduation.Rate Bachelors.Graduation.rates
## 22
              90212
                                      79.373
     Masters Doctorates Spending.as.percentage.of.GDP
## 22
        7.85
                  1.224
ressingle $Efficiency ["United States",] ## US efficiency
## [1] 0.9224469
max(resmult$Efficiency) ## the maximum efficiency for one output
## [1] 1
which.max(resmult$Efficiency) ## the row value of the maximum efficiency
## [1] 21
data[4,]
    Countries GDP SciencePISA ReadingPISA MathematicsPISA AveragePISA HDI
                    528 527
                                            516
## Primary.education Secondary.education Tertiary.education Total.Spending
                9,249
                                  12,900
## Tertiary.Graduation.Rate Bachelors.Graduation.rates Masters Doctorates
## 4
                      93.005
                                                37.594 11.777
## Spending.as.percentage.of.GDP
min(resmult$Efficiency) ##same for mins
## [1] 0.9082457
which.min(resmult$Efficiency)
## [1] 27
data[14,]
                 GDP SciencePISA ReadingPISA MathematicsPISA AveragePISA
     Countries
## 14
       Iceland 16.94
                             473
                                        482
##
       HDI Primary.education Secondary.education Tertiary.education
```

```
## 14 0.927 11,215 11,149 12,671
## Total.Spending Tertiary.Graduation.Rate Bachelors.Graduation.rates
## 14 35035 88.968 50.991
## Masters Doctorates Spending.as.percentage.of.GDP
## 14 29.324 1.611 7.71
```

Linear Program

For our linear program, we're going to pretend for a moment that all these countries have equal student populations, and that if we look at the current ratio of spending per student and test score achievement, that will tell us how efficient it is to spend additional money in each country.

Here's our question for analysis: let's say we have a grant of size \$5,000 student, and that we can't spend more than \$1,000 per student in any single country. How should we spend our grant to most efficiently improve test scores?

We have 36 countries in the sample, so we have 36 decision variables x_i ; how much money to spend in each country. We should not spend less than \$0 in any country.

For this formulation let's define the decison variable as x_i and the spending efficiency as E_i :

Maximize
$$\sum_{i=1}^{\#countries} E_i * x_i$$
 subject to
$$\sum_{i=1}^{\#countries} x_i \leq 5000$$

$$x_i \leq 1000,$$

$$x_i \geq 0 \ \forall \ i$$

Here's some code to adapt the data values from our multiple-output DEA for use in our linear program:

```
# eddata <- eddata[-c(7,21,33),] ##drop rows missing data
countrynames <- DEAdata[,1]
countrycount <- length(countrynames) #the total number of countries
spendingefficiency <- resmult$Efficiency</pre>
```

Now let's implement our program in OMPR, implicitly since we don't want to write out more than 60 constraints::

```
educationLP <- MIPModel() %>%
   add_variable(country[i], i = 1:countrycount, type = "continuous", lb = 0) %>%
   set_objective(sum_expr(spendingefficiency[i] * country[i], i = 1:countrycount), "max") %>% #maximize
   add_constraint(sum_expr(country[i], i = 1:countrycount) <= 5000) %>% # total spending constraint
   add_constraint(country[i] <= 1000, i = 1:countrycount) %>% # per country spending restraint
   solve_model(with_ROI(solver = "glpk"))

educationLP

## Status: optimal
## Objective value: 5000

Let's take a look at our solution:
edLPsolution <- educationLP$solution
names(edLPsolution) <- countrynames
table<-cbind(edLPsolution, DEAdata$AveragePISA, DEAdata$Total.Spending)</pre>
```

colnames(table)<-c("Grant", "AveragePISA", "Current Spending") kable(table)</pre>

	Grant	AveragePISA	Current Spending
Australia	0	502.33	42193
Austria	0	492.33	44721
Belgium	0	502.67	40601
Canada	1000	523.67	22149
Chile	0	443.00	18400
Czech Republic	0	490.67	24574
Estonia	0	524.33	26055
Finland	1000	522.67	37378
France	0	499.00	35287
Germany	0	508.00	37446
Greece	1000	458.67	16691
Hungary	0	474.67	19720
Iceland	0	481.00	35035
Ireland	0	509.33	31628
Israel	0	472.00	26961
Italy	0	485.33	28762
Japan	1000	528.67	39541
South Korea	0	519.00	33358
Latvia	0	486.67	23739
Luxembourg	0	483.33	90212
Mexico	1000	415.67	14173
Netherlands	0	508.00	40614
New Zealand	0	515.33	33398
Norway	0	504.33	49649
Poland	0	503.67	23250
Portugal	0	497.00	28664
Slovakia	0	463.00	29411
Slovenia	0	509.33	27040
Spain	0	491.67	28945
Sweden	0	495.67	46672
Turkey	0	424.33	16546
United Kingdom	0	499.67	48519
United States	0	487.67	54814

Shadow Prices Row Duals

In this study the row duals indicate how much benefit we could obtain from additional grant money given our current constraints, which could be used in a request for further grant money.

```
shadow_prices <- educationLP$solution_row_duals()
names(shadow_prices) <- countrynames
shadow_prices</pre>
```

##	Australia	Austria	Belgium	Canada	Chile
##	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
##	Czech Republic	Estonia	Finland	France	Germany
##	0.000000e+00	0.000000e+00	0.000000e+00	2.273737e-16	0.000000e+00
##	Greece	Hungary	Iceland	Ireland	Israel
##	0.000000e+00	2.273737e-16	0.000000e+00	0.000000e+00	0.000000e+00

##	Italy	Japan	South Korea	Latvia	Luxembourg
##	0.000000e+00	0.000000e+00	2.273737e-16	0.000000e+00	0.000000e+00
##	Mexico	Netherlands	New Zealand	Norway	Poland
##	0.000000e+00	4.547474e-16	0.000000e+00	0.000000e+00	0.000000e+00
##	Portugal	Slovakia	Slovenia	Spain	Sweden
##	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
##	Turkey	United Kingdom	United States	<na></na>	
##	0.000000e+00	0.00000e+00	0.000000e+00	0.000000e+00	

References

Data Sources

All data sourced from https://data.oecd.org/

Anderson, T. R. (2019) Operations Research in R

Anderson, T. R. (2019) Data Envelope Analysis in R

Bogetoft, P., Otto, L. (2011) Benchmarking with DEA, SFS, and R. Springer.

Appendix