Page: 1 of 25

FCC TEST REPORT

FCC ID : ZTJ-VAM90

Applicant : Shenzhen Uniwisdom Technologies Co., Ltd.

Address : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an District,

Shenzhen, P.R.China

Equipment Under Test (EUT):

Product Name : Wireless Microphone System

Model No. : VAM-90; PV-1 V1 HH(RECEIVER); PV-1 V1 BL(RECEIVER); PV-1V1

BHS(RECEIVER); PV-1 V1 BG(RECEIVER)

Standards : FCC CFR47 Part 15 Section 15.109:2009

Date of Test : August $15 \sim \text{August } 17,2011$

Date of Issue : August 18, 2011

Test Engineer : Hunk yan

Reviewed By : Philo zhong Thelo 24 auf

Test Result : PASS

Prepared By:

Junt. you.

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488 Fax:+86-755-27553868

♦ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

FCC ID: ZTJ-VAM90

2 Test Summary

FCC Part 15 Subpart B Requirements						
Test Items	Test Requirement Test Method Re					
Radiated Emission (30MHz to 2GHz)	Part 15 Section 15.109	ANSI C63.4: 2003	PASS			
Conducted Emission (150KHz to 30MHz)	Part 15 Section 15.107	ANSI C63.4: 2003	PASS			

3 Contents

1	C	OVE	R PAGE	
2			SUMMARY	
3	C	ONT	ENTS	•••••••••••••••••••••••••••••••••••••••
4	G	ENEI	RAL INFORMATION	
	4.1		nt Information	
	4.2	GEN	ERAL DESCRIPTION OF E.U.T.	4
	4.3		AILS OF E.U.T	
	4.4		CRIPTION OF SUPPORT UNITS	
	4.5		NDARDS APPLICABLE FOR TESTING	
	4.6		FACILITY	
	4.7	TEST	LOCATION	
5	E	QUIP	MENT USED DURING TEST	
6	F	CC P	ART 15 SUBPART B REQUIREMENTS	
	6.1	Con	DUCTED EMISSION DATA	
	6.	1.1	E.U.T. Operation	
	6.	1.2	EUT Setup	
	6.	1.3	Conducted Emission Test Result	
		1.4	Photograph – Conducted Emission Test Setup	
			IATION EMISSION DATA	
		2.1	Measurement Uncertainty	
		2.2	EUT Setup	
		2.3	Spectrum Analyzer Setup	
		2.4	Test Procedure	
		2.5	Corrected Amplitude & Margin Calculation	
		2.6 2.7	Summary of Test Results	
			Photograph – Radiation Emission Test Setup	
7	Pl	НОТ	OGRAPHS - CONSTRUCTIONAL DETAILS	22
	7.1	Proi	DUCT VIEW	22
	7.2	EUT	- Front View	22
	7.3		-BACK VIEW	
	7.4		- OPEN VIEW	
	7.5		- Front View	
	7.6	PCB	- BACK VIEW	24
_	_			_

FCC ID: ZTJ-VAM90

4 General Information

4.1 Client Information

Applicant : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Applicant : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an

District, Shenzhen, P.R.China

Manufacturer : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Manufacturer: Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an

District, Shenzhen, P.R.China

4.2 General Description of E.U.T.

Product Name : Wireless Microphone System

Model No. : VAM-90; PV-1 V1 HH(RECEIVER); PV-1 V1 BL(RECEIVER); PV-

1V1 BHS(RECEIVER); PV-1 V1 BG(RECEIVER)

Differences describe : All the models are exactly the same except different model names.

Operation Frequency : $174.00 \text{MHz} \sim 216.00 \text{MHz}$

4.3 Details of E.U.T.

Technical Data: : 120VAC 60Hz

4.4 Description of Support Units

The EUT has been tested as an independent unit. All the test was performed in the condition of AC 120V/60Hz input.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Wireless Microphone System. The standards used were FCC Part 15 Subpart B:2009.

WALTEK SERVICES

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, August 3, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

WALTEK SERVICES

5 Equipment Used during Test

	1	ı			1		1	1
Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	Wws200 81596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	N/A	N/A	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	N/A	N/A	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931	-	9k-1GHz	Aug. 2, 2011	Aug. 1, 2012	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	Wws200 80941	±10%
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0- 300V Freq_range: 10-80Hz	Aug. 2, 2011	Aug. 1, 2012	Wwd200 81185	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0- 300V Power_freq: 10-80Hz				distinguish:0 .02Hz

WALTEK SERVICES

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Wws200 81890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range: 0.15-1000 MHz	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	-	-	Aug. 2, 2011	Aug. 1, 2012	Wws200 81597	-
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V- 4.4KV Pulse current: 100A-2.2KA	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/CDN 117	25627	W2008011	1.2/50μS	Aug. 2, 2011	Aug. 1, 2012	Wwc200 82399	-

FCC ID: ZTJ-VAM90

6 FCC Part 15 Subpart B Requirements

6.1 Conducted Emission Data

Test Requirement: FCC CFR 47 Part 15 Section 15.107

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dBµV between 0.15MHz & 0.5MHz

56 dBμV between 0.5MHz & 5MHz 60 dBμV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

Average Limit

6.1.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1012 mbar

EUT Operation:

The EUT was performance in standby and receive mode, at the same time, three frequency as low, middle and high was tested in each mode. The worst mode is low frequency receive mode, so the data show is that mode only.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

WALTEK SERVICES

6.1.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC CFR47 Part15 Section 15.107 limits.

The EUT was placed on the test table in shielding room

6.1.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

6.1.4 Photograph – Conducted Emission Test Setup

FCC ID: ZTJ-VAM90

6.2 Radiation Emission Data

Test Requirement: FCC CFR47 Part 15 Section 15.109

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 30MHz to 2GHz

Measurement Distance: 3m

Class B

Limit: $40.0 \text{ dB}\mu\text{V/m}$ between 30MHz & 88MHz

 $43.5 \text{ dB}\mu\text{V/m}$ between 88MHz & 216MHz $46.0 \text{ dB}\mu\text{V/m}$ between 216MHz & 960MHz

54.0 dBµV/m above 960MHz

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

EUT Operation:

The EUT was performance in standby and receive mode, at the same time, three frequency as low, middle and high was tested in each mode. The worst mode is low frequency receive mode, so the data show is that mode only.

6.2.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

WALTEK SERVICES

6.2.2 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

WALTEK SERVICES

6.2.3 Spectrum Analyzer Setup

According to FCC Part15 B Rules, the system was tested 30 to 2000MHz.

Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	2000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	1MHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

WALTEK SERVICES

6.2.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.
- 8. The EUT was pre-testrd in two mode:standby mode and receive mode.According to ANSI STANDARD C63.4-2003 12.1.1.2 OTHER TYPES OF RECEIVERS: In receive mode,a typical signal or an unmodulated CW signal at the operating frequency of the EUT shall be supplied to the EUT for all measurements. Such a signal may be supplied by either a signal generator and an antenna in close proximity to the EUT or directly conducted into the antenna terminals of the EUT. The signal level shall be sufficient to the local oscillator of the EUT. In this report, the antenna of the signal generator is under the turntable.

6.2.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Class B Limit

6.2.6 Summary of Test Results

According to the data in this section, the EUT complied with the FCC CFR 47 Part15 Section 15.109 standards.

WALTEK SERVICES

Frequency Range: 30MHz ~ 1000MHz

Antenna polarization: Vertical

Antenna polarization: Horizontal

Frequency Range: 1GHz ~ 2GHz Antenna polarization: Vertical

Antenna polarization: Horizontal

6.2.7 Photograph – Radiation Emission Test Setup

Below 1GHz

Above 1GHz

WALTEK SERVICES

7 Photographs - Constructional Details

7.1 Product View

7.2 EUT – Front View

WALTEK SERVICES

7.3 EUT – Back View

7.4 EUT – Open View

7.5 PCB – Front View

7.6 PCB – Back View

WALTEK SERVICES

8 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

