Exos AL3 - Réduction des endomorphismes

Exercice 1

Déterminer les éléments propres des matrices suivantes, et les diagonaliser ou les trigonaliser, lorsque cela est possible :

$$A = \begin{pmatrix} 5 & 3 & 3 \\ -6 & -4 & -6 \\ 0 & 0 & 2 \end{pmatrix}; \qquad B = \begin{pmatrix} 3 & -6 & -2 \\ 0 & 1 & 0 \\ 4 & -12 & -3 \end{pmatrix}; \qquad C = \begin{pmatrix} 2 & -1 & -3 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 2 & 2 \\ 3 & 3 & 4 \\ -2 & -1 & -2 \end{pmatrix}; \qquad E = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}; \qquad F = \begin{pmatrix} 8 & 2 & -2 \\ -2 & 3 & 1 \\ 6 & 3 & 1 \end{pmatrix}$$

Exercice 2

Montrer que les matrices M et T sont semblables dans les cas suivants :

$$\mathbf{1.} \quad M = \begin{pmatrix} 3 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{ et } \quad T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{2.} \quad M = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 3 & 4 \\ -3 & -1 & -2 \end{pmatrix} \quad \text{ et } \quad T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 3

Donner une forme explicite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1; u_1 = 0; u_2 = 2$$
 et $(\mathcal{R}): \forall n \in \mathbb{N}, u_{n+3} = 6u_{n+2} - 11u_{n+1} + 6u_n.$

Exercice 4

On considère les suites $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}, (w_n)_{n\in\mathbb{N}}$ telles que :

$$u_0 = v_0 = w_0 = 1,$$
 et $\forall n \in \mathbb{N} : \begin{cases} u_{n+1} = -v_n + w_n \\ v_{n+1} = -u_n + w_n \\ w_{n+1} = u_n + v_n \end{cases}$.

Donner une forme explicite pour chacune de ces suites.

Exercice 5

Dans chaque cas suivants, vérifier que l'application donnée est un endomorphisme, puis en déterminer les éléments propres.

1.
$$\Delta: \left| \begin{array}{cc} \mathbb{K}^{\mathbb{N}} & \to \mathbb{K}^{\mathbb{N}} \\ (u_n) & \mapsto (u_{n+1}) \end{array} \right|$$

2.
$$D: \left| \begin{array}{cc} C^{\infty}(\mathbb{R}) & \to C^{\infty}(\mathbb{R}) \\ f & \mapsto f'' \end{array} \right|$$

3.
$$f: \left| \begin{array}{cc} \mathbb{R}[X] & \to \mathbb{R}[X] \\ P & \mapsto (X^3 + X)P' - (3X^2 - 1)P \end{array} \right|$$

Exercice 6

Soient $E = \mathbb{C}^{\mathbb{N}}$ et $f: E \to E$ qui transforme une suite $u = (u_n)$ de E en $v = (v_n)$ telle que :

$$v_0 = u_0,$$
 et $\forall n \in \mathbb{N}^*, v_n = \frac{u_n + u_{n-1}}{2}.$

Déterminer les valeurs propres de f.

Exercice 7

Soit $E = C^0([0; +\infty[, \mathbb{R}). \text{ Pour tout fonction } f \in E, \text{ on definit } T(f) : [0; +\infty[\to \mathbb{R} \text{ par } :$

$$T(f)(0) = f(0)$$
 et $\forall x > 0, T(f)(x) = \frac{1}{x} \int_{0}^{x} f(t) dt$

Montrer que $T \in \mathcal{L}(E)$, et en déterminer les éléments propres.

Exercice 8

On considère la matrice :

$$M = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}), n \ge 2$$

- 1. Déterminer les valeurs propres de M.
- **2.** M est-elle diagonalisable?

Exercice 9

Pour quelle(s) valeur(s) de a la matrice suivante est-elle diagonalisable?

$$M = \begin{pmatrix} a - 2 & 5 - a & -a \\ -a & a - 2 & a \\ -5 & 5 & 3 \end{pmatrix}$$

Exercice 10

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\operatorname{rg}(A)=1$. Montrer que

A est diagonalisable $\Leftrightarrow \operatorname{tr}(A) \neq 0$

Exercice 11

Déterminer les endomorphismes $u \in \mathcal{L}(\mathbb{R}^3)$ tel que $u^3 = u$ et $\mathrm{tr}(u) = 3$.

Exercice 12

Trouver une matrice $A \in \mathcal{M}_3(\mathbb{C})$ telle que $A^2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Exercice 13

Trouver toutes les matrices $A \in \mathcal{M}_3(\mathbb{R})$ diagonalisables dans $\mathcal{M}_3(\mathbb{R})$ telles que :

$$A^3 + 2A = 3I_n$$