EHB 211E Basics of Electrical Circuits

Asst. Prof. Onur Kurt

State-Space Representation and Nonlinear Circuit Elements

Introduction

What is state-space representation?

- Mathematical model of a physical system as a set of input, output, and state variable related by 1st order differential equations.
- \Box In other words, a system by a series of 1st order differential equations. Highest order of derivative is 1st derivative.
- □ It is also known as state-space model.
- Why do we use state-space representation?
 - State-space representation allows us to understand complex systems.
 - □ As systems become more complex, representing them with transfer function becomes harder.
 - □ More useful way to solve complex systems as it can handle multiple inputs and outputs as opposed to transfer function.
- State-space representation of a system is given by

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

x: state vector

 \dot{x} : derivative of state vector

 $\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$ *u*: input vector

y: output vector

A, B, C, D: matrixes

Consider the circuit shown below. Represent the system in a state-space form (adapted from Assoc. Prof. Onur Ferhanoğlu).

Solution:

Apply KVL: $-u + V_R + V_L + V_C = 0$

Input, state variable, and output as function of time. Drop (t) for simplicity.

By definition, for inductor: $V_L = L \frac{di}{dt}$

By definition, for capacitor: $i_C = C \frac{dv}{dt}$

 $x_1(t)$: current and $x_2(t)$: voltage across capacitor.

$$V_R = x_1 \times 1 = x_1$$

$$V_L = L \frac{di}{dt} \implies V_L = 0.5 \frac{di}{dt} \implies \frac{di}{dt} = \frac{d}{dt}(x_1) \Rightarrow \frac{di}{dt} = \dot{x}_1 \implies V_L = 0.5 \dot{x}_1$$

$$i_C = C \frac{dv}{dt}$$
 \longrightarrow $i_C = 0.5 \frac{dv}{dt}$ \longrightarrow $\frac{dv}{dt} = \frac{d}{dt}(x_2) = \dot{x}_2$ $i_C = x_1$ $V_C = x_2$

$$x_1 = 0.5 \ \dot{x}_2 \implies \dot{x}_2 = 2 \ x_1$$

$$-u + x_1 + 0.5 \dot{x}_1 + x_2 = 0$$
 \Rightarrow $\dot{x}_1 = -2x_2 - 2x_1 + 2u$ $y = x_2$

$$\dot{x}_1 = -2x_1 - 2x_2 + 2u$$

$$\dot{x}_2 = 2 x_1$$
State equations

 $y = x_2$ } Output equations

$$\dot{x}_1 = -2x_1 - 2x_2 + 2u$$

$$\dot{x}_2 = 2x_1$$
State equations

$$y = x_2$$
 Output equations

Equations can be written as:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u(t) \longleftarrow \text{ Single output}$$

$$\dot{x} \qquad A \qquad x \qquad B \qquad u$$

State-space form of the output equation:

$$[y] = [0 \ 1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [0] u(t)$$

$$y \quad C \quad x \quad D \quad u$$

General equations

$$\overrightarrow{\dot{x}} = A\overrightarrow{x} + B\overrightarrow{u}$$

$$\overrightarrow{y} = C\overrightarrow{x} + D\overrightarrow{u}$$

Determine the state-space equations for the circuit shown below (adapted from Assoc. Prof. Onur Ferhanoğlu).

Solution:

Apply KVL to the left loop: $-u(t) + V_{L1} + V_C = 0$

$$V_{L} = L \frac{di}{dt} \implies \frac{di}{dt} = \frac{d}{dt}(x_{1}) \Rightarrow \frac{di}{dt} = \dot{x}_{1} \implies V_{L1} = L_{1}\dot{x}_{1}(t) \qquad V_{C} = x_{3}(t)$$

$$-u(t) + L_{1}\dot{x}_{1}(t) + x_{3}(t) = 0 \implies \dot{x}_{1}(t) = -\frac{1}{L_{1}}x_{3}(t) + \frac{1}{L_{1}}u(t)$$

Apply KVL to the right loop:
$$-V_C + V_{L2} + V_R = 0$$

$$V_C = x_3(t)$$

$$V_L = L \frac{di}{dt} \longrightarrow \frac{di}{dt} = \frac{d}{dt}(x_2) \Rightarrow \frac{di}{dt} = \dot{x}_2 \longrightarrow V_{L2} = L_2 \dot{x}_2(t)$$
 $V_R = x_2(t)R$

$$-x_3(t) + L_2\dot{x}_2(t) + x_2(t)R = 0 \implies \dot{x}_2(t) = -\frac{R}{L_2}x_2(t) + \frac{1}{L_2}x_3(t)$$

KCL:
$$x_1(t) = x_2(t) + i_C$$

$$i_C = C \frac{dv}{dt} \implies \frac{dv}{dt} = \frac{d}{dt}(x_3) = \dot{x}_3 \implies i_C = C \dot{x}_3(t)$$

$$x_1(t) = x_2(t) + C\dot{x}_3(t) \implies \dot{x}_3(t) = \frac{1}{C}x_1(t) - \frac{1}{C}x_2(t)$$

Equation for output: $y(t) = x_2(t)R$

All equations:

$$\dot{x}_{1}(t) = -\frac{1}{L_{1}}x_{3}(t) + \frac{1}{L_{1}}u(t)$$

$$\dot{x}_{2}(t) = -\frac{R}{L_{2}}x_{2}(t) + \frac{1}{L_{2}}x_{3}(t)$$
State equations
$$\dot{x}_{3}(t) = \frac{1}{C}x_{1}(t) - \frac{1}{C}x_{2}(t)$$

 $y(t) = x_2(t)R$ Output equations

Matrix form:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\frac{1}{L_1} \\ 0 & -\frac{R}{L_2} & \frac{1}{L_2} \\ \frac{1}{C} & -\frac{1}{C} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{L_1} \\ 0 \\ 0 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & R & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u(t)$$

Determine the state equations of the system shown below (adapted from C.T. Pan's note).

Solution:

Represent the system in terms of voltage v and current i since these are the state variables.

Apply KCL at node c:
$$i = \frac{v}{2} + C\frac{dv}{dt}$$
 \longrightarrow $C\frac{dv}{dt} = i - \frac{v}{2}$ \longrightarrow $\frac{dv}{dt} = -\frac{1}{2C}v + \frac{1}{C}i$

State equation

Apply KVL to the left loop: $-12 + 4i + L\frac{di}{dt} + v = 0$

$$V_L = L \frac{di}{dt}$$
 \longrightarrow $\frac{di}{dt} = \frac{d}{dt}(i) \Rightarrow \frac{di}{dt} = i$ $-12 + 4i + Li + v = 0$ Represent current as $\frac{d}{dt}$

$$-12 + 4i + L\frac{di}{dt} + v = 0 \implies \frac{di}{dt} = -\frac{1}{L}v - \frac{4}{L}i + \frac{1}{L}12$$

Note that no output equation since it is not stated in the circuit

State equation

$$\frac{d}{dt} \begin{bmatrix} v \\ i \end{bmatrix} = \begin{bmatrix} -1/2C & 1/C \\ -1/L & -4/L \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ 1/L \end{bmatrix} 12$$

or

$$\begin{bmatrix} \frac{dv}{dt} \\ \frac{di}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2C} & \frac{1}{C} \\ \frac{1}{L} & -\frac{4}{L} \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} 12$$

Write the state variable equations in the circuit shown below (adapted from Müştak E. Yalçın's note).

Solution:

Apply KCL:
$$i_L = i_R + i_C$$
 $i_R = V_C/R$ $G = \frac{1}{D}$ $i_R = GV_C$

$$i_R = V_C/R$$

$$G = \frac{1}{R}$$

$$i_R = GV_C$$

$$i_L = GV_C + C\frac{dV_C}{dt} \implies C\frac{dV_C}{dt} = -GV_C + i_L \implies \frac{dV_C}{dt} = -\frac{G}{C}V_C + \frac{1}{C}i_L$$

Apply KVL to the left loop:
$$-e + V_L + V_R = 0$$

$$V_R = V_C \text{ (since R||C)} \qquad V_L = L \frac{di_L}{dt}$$

$$-e + L\frac{di_L}{dt} + V_C = 0 \implies \frac{di_L}{dt} = -\frac{1}{L}V_C + \frac{1}{L}e$$
State equation

Output is not specified in the circuit

$$\begin{bmatrix} \frac{dV_C}{dt} \\ \frac{di_L}{dt} \end{bmatrix} = \begin{bmatrix} -G/C & 1/C \\ -1/L & 0 \end{bmatrix} \begin{bmatrix} V_C \\ i_L \end{bmatrix} + \begin{bmatrix} 0 \\ 1/L \end{bmatrix} e$$

Represent the system shown below using state-space model. $R_1=R_2=R_3=1~\Omega$ and $C_1=C_2=1~F$ (adapted from Eytan Modiano's note-MIT).

Solution:

Apply KCL (each node):

$$e_1$$
: $i_1 = \frac{e_3 - e_1}{R_1} = \frac{e_3 - e_1}{1}$

$$e_2$$
: $i_2 = \frac{e_3 - e_2}{R_2} = \frac{e_3 - e_2}{1}$

$$e_3$$
: $\frac{e_3}{R_2} = \frac{e_3}{1}$ $i_1 + i_2 + i_3 = 0$

$$\frac{e_3 - e_1}{1} + \frac{e_3 - e_2}{1} + \frac{e_3}{1} = 0 \Rightarrow 3e_3 - e_1 - e_2 = 0 \Rightarrow e_3 = \frac{e_1 + e_2}{3}$$

 e_1 , e_2 , and e_3 are node voltages and can be replaced by V_1 , V_2 , and V_3 , respectively.

Substitute e_3 into i_1 and i_2 equations

$$i_1 = \frac{e_3 - e_1}{1} = \frac{\frac{e_1 + e_2}{3} - e_1}{1} \Rightarrow i_1 = \frac{-2V_1 + V_2}{3}$$

$$i_2 = \frac{e_3 - e_2}{1} = \frac{\frac{e_1 + e_2}{3} - e_2}{1} \Rightarrow i_2 = \frac{V_1 - 2V_2}{3}$$

$$i_1 = C \frac{dV_1}{dt} = 1 \frac{dV_1}{dt} = \frac{dV_1}{dt}$$

$$i_2 = C \frac{dV_2}{dt} = 1 \frac{dV_2}{dt} = \frac{dV_2}{dt}$$

$$\frac{dV_1}{dt} = -\frac{2}{3}V_1 + \frac{1}{3}V_2$$
 State equations
$$\frac{dV_2}{dt} = \frac{1}{3}V_1 - \frac{2}{3}V_2$$

$$\frac{dV_2}{dt} = \frac{1}{3}V_1 - \frac{2}{3}V_2$$

$$\begin{bmatrix} \frac{dV_1}{dt} \\ \frac{dV_2}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u(t) \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ \dot{V}_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ \dot{V}_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ \dot{V}_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ \dot{V}_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \end{bmatrix} \quad \text{$$

$$\frac{d}{dt} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Write the state equations for the circuit given below (adapted from Müştak E. Yalçın's note).

Apply KCL at node a: $i + i_L + i_3 = 0$

$$i_c = i_3 + i_2 \Rightarrow i_3 = i_c - i_2$$

$$i + i_L + i_C - i_2 = 0$$

Apply KVL to the upper loop:

$$-V_C + V_1 + V_L - V_3 = 0$$

$$i_C = C \frac{dV_C}{dt}$$
 $V_L = L \frac{di_L}{dt}$

$$i + i_L + C \frac{dV_C}{dt} - i_2 = 0 \Rightarrow C \frac{dV_C}{dt} = -i_L + i_2 - i$$

$$-V_C + V_1 + L \frac{di_L}{dt} - V_3 = 0 \Rightarrow L \frac{di_L}{dt} = V_3 + V_C - V_1$$

Circuit has two inputs, voltage and current source.

Since variable are V_C and i_L , write equations in terms of V_C and i_L .

$$i_2 = \frac{-V_C - (-e)}{R_2} = \frac{e - V_C}{R_2}$$

$$V_1 = i_L R_1$$

$$V_3 = R_3 i_3$$
 where $i_3 = i_c - i_2$

$$V_3 = R_3(i_c - i_2)$$
 \longrightarrow $V_3 = R_3(C\frac{dV_C}{dt} - i_2)$

$$V_3 = R_3(-i_L + i_2 - i - i_2) \longrightarrow V_3 = R_3(-i_L - i)$$

$$C\frac{dV_C}{dt} = -i_L + i_2 - i \implies \frac{dV_C}{dt} = -\frac{1}{C}i_L + \frac{e - V_C}{R_2C} - \frac{1}{C}i \quad \text{or}$$

$$\frac{dV_C}{dt} = -\frac{1}{R_2C}V_C - \frac{1}{C}i_L + \frac{1}{R_2C}e - \frac{1}{C}i$$
 State equations

$$L\frac{di_L}{dt} = V_3 + V_C - V_1 \implies L\frac{di_L}{dt} = R_3(-i_L - i) + V_C - i_L R_1$$

$$\frac{di_L}{dt} = -\frac{R_3}{L}i_L - \frac{R_3}{L}i + \frac{1}{L}V_C - \frac{R_1}{L}i_L \quad \text{or} \quad$$

$$\frac{di_L}{dt} = \frac{1}{L}V_C + \left(-\left(\frac{R_1 + R_3}{L}\right)\right)i_L - \frac{R_3}{L}i$$
 State equations

$$\frac{d}{dt} \begin{bmatrix} V_C \\ i_L \end{bmatrix} = \begin{bmatrix} \frac{-1}{R_2C} & \frac{-1}{C} \\ \frac{1}{L} & \frac{-(R_3+R_1)}{L} \end{bmatrix} \begin{bmatrix} V_C \\ i_L \end{bmatrix} + \begin{bmatrix} \frac{1}{R_2C} \\ 0 \end{bmatrix} e(t) + \begin{bmatrix} \frac{-1}{C} \\ -\frac{R_3}{L} \end{bmatrix} i$$

Write the state equations for the circuit shown below (adapted from Müştak E. Yalçın's note).

Apply KCL at node a: $i_1 + i_L + i = 0$

$$i_{C1} = i_1 + i_{C2} \Rightarrow i_1 = i_{C1} - i_{C2}$$

$$i_{C1} - i_{C2} + i_L + i = 0$$

Apply KVL to the upper loop:

$$-V_{C1} + V_L - V_1 = 0$$

$$i_{C1} = C_1 \frac{dV_{C1}}{dt} \qquad V_L = L \frac{di_L}{dt}$$

$$C_1 \frac{dV_{C1}}{dt} - i_{C2} + i_L + i = 0 \implies C_1 \frac{dV_{C1}}{dt} = -i_L - i + i_{C2} \longrightarrow 1^{\text{st}} \text{ equation}$$

$$-V_{C1} + L\frac{di_L}{dt} - V_1 = 0$$
 \longrightarrow $L\frac{di_L}{dt} = V_1 + V_{C1}$ \longrightarrow 2nd equation

$$i_{C2} = C_2 \frac{dV_{C2}}{dt}$$

Apply KVL to the lower left loop:

$$V_{C2} = e - V_{C1}$$
 Take the derivative of both sides

$$\frac{dV_{C2}}{dt} = \frac{de}{dt} - \frac{dV_{C1}}{dt}$$
 Multiply both sides with C_2

$$C_2 \frac{dV_{C2}}{dt} = C_2 \frac{de}{dt} - C_2 \frac{dV_{C1}}{dt} \implies \text{Substitute into equation 1}$$

$$C_1 \frac{dV_{C1}}{dt} = -i_L - i + C_2 \frac{de}{dt} - C_2 \frac{dV_{C1}}{dt} \implies C_1 \frac{dV_{C1}}{dt} + C_2 \frac{dV_{C1}}{dt} = -i_L - i + C_2 \frac{de}{dt}$$

$$C_1 \frac{dV_{C1}}{dt} + C_2 \frac{dV_{C1}}{dt} = -i_L - i + C_2 \frac{de}{dt} \implies \frac{dV_{C1}}{dt} (C_1 + C_2) = -i_L - i + C_2 \frac{de}{dt}$$

$$\frac{dV_{C1}}{dt} = -\frac{1}{C_1 + C_2}i_L - \frac{1}{C_1 + C_2}i + \frac{C_2}{C_1 + C_2}\frac{de}{dt} \longrightarrow 1^{\text{st}} \text{ state equ.}$$

$$L\frac{di_L}{dt} = V_1 + V_{C1}$$
 $V_1 = i_1 R_1$ $i_1 + i_L + i = 0 \Rightarrow i_1 = -(i_L + i)$

$$V_1 = -R_1(i_L + i)$$

$$L\frac{di_L}{dt} = -R_1(i_L + i) + V_{C1} \quad \Longrightarrow \quad \frac{di_L}{dt} = -\frac{R_1}{L}i_L - \frac{R_1}{L}i + \frac{1}{L}V_{C1} \quad \Longrightarrow \quad 2^{\text{nd}} \text{ state equ.}$$

$$\frac{dV_{C1}}{dt} = -\frac{1}{C_1 + C_2}i_L + \frac{C_2}{C_1 + C_2}\frac{de}{dt} - \frac{1}{C_1 + C_2}i$$

$$\frac{di_L}{dt} = \frac{1}{L} V_{C1} - \frac{R_1}{L} i_L - \frac{R_1}{L} i$$

State equations

$$\frac{d}{dt} \begin{bmatrix} V_{C1} \\ i_L \end{bmatrix} = \begin{bmatrix} 0 & \frac{-1}{C_2 + C_1} \\ \frac{1}{L} & \frac{-R}{L} \end{bmatrix} \begin{bmatrix} V_{C1} \\ i_L \end{bmatrix} + \begin{bmatrix} \frac{C_2}{C_1 + C_2} \\ 0 \end{bmatrix} \frac{de}{dt} + \begin{bmatrix} \frac{-1}{C_1 + C_2} \\ \frac{-R}{L} \end{bmatrix} i$$

For the circuit given below, write state equations (adapted from Müştak E. Yalçın's note). R_2

Solution:

Apply KCL at node 2: $i_1 = i_2 + i_3 + i_{C1}$

Let voltages at each node as follows:

Node 1:
$$V_{d1}$$

$$i_1 = \frac{V_{d1} - V_{d2}}{R_1} \qquad i_2 = \frac{V_{d2} - V_{d4}}{R_2}$$

Node 2:
$$V_{d2}$$

Node 3:
$$V_{d3}$$

Node 4:
$$V_{d4}$$

$$i_3 = \frac{V_{d2} - V_{d3}}{R_3} \qquad i_{C1} = C1 \frac{dV_{C1}}{dt}$$

$$\frac{V_{d1} - V_{d2}}{R_1} = \frac{V_{d2} - V_{d4}}{R_2} + \frac{V_{d2} - V_{d3}}{R_3} + C1 \frac{dV_{C1}}{dt}$$

$$C1\frac{dV_{C1}}{dt} = \frac{V_{d1} - V_{d2}}{R_1} - \frac{V_{d2} - V_{d4}}{R_2} - \frac{V_{d2} - V_{d3}}{R_3}$$

Apply KCL at node 3:
$$i_3 = i_{C2}$$

$$i_3 = \frac{V_{d2} - V_{d3}}{R_3}$$
 $i_{C2} = C2 \frac{dV_{C2}}{dt}$

$$i_{C2} = C2 \frac{dV_{C2}}{dt}$$

$$C2\frac{dV_{C2}}{dt} = \frac{V_{d2} - V_{d3}}{R_3}$$

Redefine node voltages as: $V_{d1} = e$, $V_{d2} = V_{C1}$, $V_{d3} = 0$, and $V_{d4} = -V_{C2}$

Recall:
$$G = \frac{1}{R}$$

$$C1\frac{dV_{C1}}{dt} = G_1(e - V_{C1}) - G_2(V_{C1} - V_{C2}) - G_3(V_{C1} - 0)$$

$$\frac{dV_{C1}}{dt} = \frac{G_1}{C1}(e - V_{C1}) - \frac{G_2}{C1}(V_{C1} - V_{C2}) - \frac{G_3}{C1}V_{C1}$$

$$\frac{dV_{C1}}{dt} = -\left(\frac{G_1 + G_2 + G_3}{C1}\right)V_{C1} - \frac{G_2}{C1}V_{C2} - \frac{G_1}{C1}e \longrightarrow 1^{\text{st}} \text{ eq.}$$

$$C2\frac{dV_{C2}}{dt} = G_3 (V_{C1} - 0) \implies \frac{dV_{C2}}{dt} = \frac{G_3}{C2} V_{C1} \implies 2^{\text{nd}} \text{ eq.}$$

$$\frac{dV_{C1}}{dt} = -\left(\frac{G_1 + G_2 + G_3}{C1}\right)V_{C1} - \frac{G_2}{C1}V_{C2} - \frac{G_1}{C1}e$$
State equations
$$\frac{dV_{C2}}{dt} = \frac{G_3}{C2}V_{C1}$$

$$\frac{dV_{C2}}{dt} = \frac{G_3}{C2}V_{C1}$$

$$\frac{d}{dt} \begin{bmatrix} V_{C1} \\ V_{C2} \end{bmatrix} = \begin{bmatrix} -\frac{G_1 + G_2 + G_3}{C_1} & -\frac{G_2}{C_1} \\ -\frac{G_3}{C_2} & 0 \end{bmatrix} \begin{bmatrix} V_{C1} \\ V_{C2} \end{bmatrix} + \begin{bmatrix} \frac{G_1}{C_1} 0 \end{bmatrix} e$$

Two terminal Linear and Nonlinear Circuit Elements

• Two types of resistors:

- □ Linear resistor
- Nonlinear resistor

Linear resistor:

- □ Two terminal circuit element whose resistance value does not change or vary with the flow of current through it.
- □ Current through the resistance is always proportional to the voltage applied across it.

Linear resistance: Obey Ohm's law

$$v(t) = i(t)R$$
 or $i(t) = Gv(t)$

- It has a constant resistance (slope)
- Linearity: Its i-v graph is a straight line passing through the origin

Linear Resistor

• Resistance value for open and short circuit:

$$v = iR$$
 or $i = Gv$

- When $R = \infty$, i = 0
- When R = 0, v = 0

Characteristics of open circuit

Characteristics of short circuit

Nonlinear Resistor

- What is nonlinear resistor?
 - □ Circuit element whose voltage and current relation vary nonlinearly as opposed to linear resistor.
 - □ Current through nonlinear resistor is not proportional to the voltage applied across it.
- Diode: nonlinear resistor.

Circuit symbol of diode

Two terminals: Anode (+) and Cathode (-)

Current flows in the direction of arrowhead

i - v characteristics of ideal diode

Nonlinear Resistor: pn-Junction Diode

- pn-junction diode is a two terminal semiconductor devices
- Current increases exponentially in the forward bias region.
- pn-Junction diode: nonlinear elements as i v relationship is not linear.

$$i = I_S \left(e^{\frac{v}{V_T}} - 1 \right)$$

Forward

 V_{ZK}
 V_{ZK}

Analysis of Nonlinear Resistive Circuit

- Reason to analyze nonlinear circuits:
 - □ Electrical devices such as computer or amplifier are constructed based upon mostly nonlinear circuit.
 - Understanding nonlinear circuit: design superior devices.

Nonlinear resistance: Does not Obey Ohm's law

Its resistance (slope) varies with current

Analysis of Nonlinear Resistive Circuit

- Nonlinear resistor in a circuit can be analyzed using linear approximation.
- Linear approximation is called linearization.
- Nonlinear graph: i and v are not directly proportional
- Point Q: operation point
- Linearized based on the slope at the operation point Q. Resistance is obtained from slope.

$$R_Q = \frac{dv_Q}{dI_Q} \bigg|_Q$$

- DC operating point is obtained from the dc component of the input signal when ac components are set to zero.
- For ac analysis, determine the slope (R_Q) at operating point Q when dc components are set to zero.

$$R_Q = \frac{df(i)}{di_N} \bigg|_{Q}$$

For the circuit shown below, $R=3.5~\Omega, e_S=9~V, e_t(t)=0.1\sin(10t)$. The nonlinear resistance is characterized by

$$v_R = i_R^3 - 6i_R^2 + 9i_R$$

Determine the solution for v_R (adapted from Müştak E. Yalçın's note).

Solution:

Circuit has both ac and dc components:

$$e_s = 9 V \longrightarrow dc$$

 $e_t(t) = 0.1\sin(10t) \longrightarrow ac$

In order to find complete solution for v_R , determine both ac & dc components of v_R .

DC analysis: Ignore ac component and find dc operating point based on dc component of the input signal.

Apply KVL:
$$-e_S + i_R R + V_R = 0 \Rightarrow e_S = i_R R + V_R$$

$$v_R = i_R^3 - 6i_R^2 + 9i_R$$
 $e_S = 9 V$ $R = 3.5 \Omega$

$$9 = 3.5i_R + i_R^3 - 6i_R^2 + 9i_R$$

$$3.5i_R + i_R^3 - 6i_R^2 + 9i_R - 9 = 0 \implies i_R^3 - 6i_R^2 + 12.5i_R - 9 = 0$$

Solving the cubic equation: $i_R = 2 A$

$$v_R = i_R^3 - 6i_R^2 + 9i_R$$
 \longrightarrow $v_R = 2^3 - 6(2)^2 + 9(2) \Rightarrow v_R = 2V$

$$I_R = 2 A$$
 $V_R = 2 V$
DC operating point

AC analysis: Ignore dc component and determine R_Q at operating point Q.

$$R_Q = \frac{dv_Q}{dI_Q} \bigg|_Q$$
 Linearizing the nonlinear resistor around $i_R = 2 A$

$$R_Q = \frac{d}{dI_Q} (i_R^3 - 6i_R^2 + 9i_R) \implies R_Q = 3i_R^2 - 12i_R + 9 \Big|_{i_R = 2A}$$

$$R_Q = 3(2)^2 - 12(2) + 9 \Rightarrow R_Q = -3 \Omega$$

Find the ac component of v_R

Voltage division:
$$v_R = \frac{R_Q}{R_O + R} e_t(t)$$

$$v_R = \frac{-3}{-3 + 3.5} 0.1 \sin(10t) \Rightarrow v_R = -0.6 \sin(10t)$$

Resistive One-Port Network

- What is port?
 - □ A pair of terminals connecting an electrical network or circuit to an external circuit.
- Port network: useful to analyze large and complex circuit.
- Port condition:
 - Current enters through one terminal of the port is equal to the current leaving through second terminal of the port
- Example of one-port network: Resistor, capacitor, inductor.

One-port network

Resistive Two-Port Network

NICAL INSUES

- Electrical circuit or network has two pairs of terminals, it is called two port network.
- Example of two-port network: transformer, filter, transmission line
- Two port network has four variables: V_1 , V_2 , i_1 , i_2
- Port voltages and port currents can be represented as:

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \qquad \qquad i = \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

Note that more than two-port network is called multiport network.

Figure below shows a T-circuit which is placed into a black box to create a network. Two independent current sources are connected to the input and output ports. Represent input and output voltages in matrix from. Network variables are V_1 , i_1 , V_2 , i_2

Solution:

Apply KCL:

$$i_{S1} = i_1$$
 $i_{S2} = i_2$ $i_3 = i_1 + i_2$

Apply KVL:
$$-V_1 + R_1 i_1 + R_3 i_3 = 0$$

Write i_3 in terms of i_1 and i_2 as they are circuit variables.

$$-V_1 + R_1 i_1 + R_3 (i_1 + i_2) = 0 \implies V_1 = R_1 i_1 + R_3 i_1 + R_3 i_2$$

$$V_1 = (R_1 + R_3)i_1 + R_3i_2 \longrightarrow 1^{st}$$
 equation

Apply KVL:
$$-V_2 + R_2 i_2 + R_3 i_3 = 0$$

$$V_2 = R_2 i_2 + R_3 (i_1 + i_2) = 0$$

$$V_2 = R_3 i_1 + (R_2 + R_3) i_2 = 0 \longrightarrow 2^{\text{nd}} \text{ equ.}$$

$$i_{S1}
\downarrow V_1
\downarrow V_1
\downarrow V_2
\downarrow V_3
\downarrow V_2
\downarrow V_3
\downarrow V_2
\downarrow V_3
\downarrow V_2
\downarrow V_3
\downarrow V_4
\downarrow V_5
\downarrow V_5$$

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = Ri = \begin{bmatrix} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \qquad \text{Current controlled}$$
 representation

$$R = \begin{bmatrix} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{bmatrix} \longrightarrow \begin{array}{l} \text{Resistance matrix of the} \\ \text{linear resistive two port} \end{array}$$

Two currents are sources and two voltages are responses. Thus, i_1 and i_2 are independent variables and V_1 and V_2 are dependent variables (voltages are function of currents).

• i_1 and i_2 can be solved in terms of V_1 and V_2

$$G = \frac{1}{R} \qquad i = GV$$

G is conductance which is inverse of resistance matrix R

$$G = R^{-1} = \frac{1}{R_1 R_2 + R_1 R_3 + R_2 R_3} \begin{bmatrix} R_2 + R_3 & -R_3 \\ -R_3 & R_1 + R_3 \end{bmatrix} \longrightarrow \begin{array}{l} \text{Conductance matrix of the} \\ \text{linear resistive two port} \end{array}$$

• Current equations:

$$i_1 = \frac{R_2 + R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3} V_1 - \frac{R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3} V_2$$

$$i_2 = \frac{-R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3} V_1 + \frac{R_1 + R_2}{R_1 R_2 + R_1 R_3 + R_2 R_3} V_2$$

$$i = \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = GV = [G] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Voltage controlled representation

Six Representations

TO THE LAND TO THE PARTY OF THE

- For a resistive two-port network, there exists six different representations
- All possible representations are shown in the table below:

Representations	Independent variables	Dependent variables		
Current-controlled	i_1, i_2	v_1, v_2		
Voltage-controlled	v_1, v_2	i_1, i_2		
Hybrid I	i_1, v_2	v_1, i_2		
Hybrid 2	v_1, i_2	i_1, v_2		
Transmission 1	v_2, i_2	$oldsymbol{v}_1$, $oldsymbol{i}_1$		
Transmission 2	v_1 , i_1	v_2, i_2		

Six Representations

• Equations for six different representations of a resistive two-port:

Representations	Scalar equations	Vector equations
Current- controlled	$v_1 = r_{11}i_1 + r_{12}i_2$ $v_2 = r_{21}i_1 + r_{22}i_2$	v = Ri
Voltage- controlled	$i_1 = g_{11}v_1 + g_{12}v_2$ $i_2 = g_{21}v_1 + g_{22}v_2$	i = Gv
Hybrid 1	$v_1 = h_{11}i_1 + h_{12}v_2$ $i_2 = h_{21}i_1 + h_{22}v_2$	$\left[\begin{array}{c} v_1 \\ i_2 \end{array}\right] = \mathbf{H} \left[\begin{array}{c} i_1 \\ v_2 \end{array}\right]$
Hybrid 2	$i_1 = h'_{11}v_1 + h'_{12}i_2$ $v_2 = h'_{21}v_1 + h'_{22}i_2$	$\left[\begin{array}{c}i_1\\v_2\end{array}\right] = \mathbf{H}'\left[\begin{array}{c}v_1\\i_2\end{array}\right]$
Transmission 1†	$v_1 = t_{11}v_2 - t_{12}i_2$ $i_1 = t_{21}v_2 - t_{22}i_2$	$\left[\begin{array}{c} v_1 \\ i_1 \end{array}\right] = \mathbf{T} \left[\begin{array}{c} v_2 \\ -i_2 \end{array}\right]$
Transmission 2†	$v_2 = t'_{11}v_1 + t'_{12}i_1$ $-i_2 = t'_{21}v_1 + t'_{22}i_1$	$\begin{bmatrix} v_2 \\ -i_2 \end{bmatrix} = \mathbf{T}' \begin{bmatrix} v_1 \\ i_1 \end{bmatrix}$

Linear Controlled Sources

- Controlled sources are resistive two-port elements consisting of two branches:
 - Primary branch: open circuit or short circuit
 - Secondary branch: voltage source or current source

Constant:

- r_m : transresistance
- g_m : transconductance
- α : current transfer ratio
- μ : voltage transfer ratio

 Each linear controlled source is characterized by two linear equations

$$i_1 = 0 \qquad i_2 = g_m v_1$$

$$v_1 = 0 \qquad i_2 = \alpha i_1$$

$$i_1 = 0 \qquad v_2 = \mu v_1$$

 $v_1 = ()$

 $v_2 = r_m i_1$

Linear Controlled Sources

• Linear equation for four controlled sources can also be represented in matrix form as:

			CCVS:		$\left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ r_m \end{array}\right]$	${0\atop 0}\Big]\Big[{i_1\atop i_2}\Big]$
CCVS:	$v_1 = 0$	$v_2 = r_m i_1$	NOOS	120	$\begin{bmatrix} i_1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	$0 \rceil \lceil v_1 \rceil$
VCCS:	$i_1 = 0$	$i_2 = g_m v_1$	VCCS:		$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 0 \\ g_m \end{bmatrix}$	$0 \rfloor \lfloor v_2 \rfloor$
CCCS:	$v_1 = 0$	$i_2 = \alpha i_1$	CCCC		$\begin{bmatrix} v_1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$	$0 \rceil [i_1]$
VCVS:	$i_1 = 0$	$v_2 = \mu v_1$	CCCS:		$\left[\begin{array}{c}v_1\\i_2\end{array}\right] = \left[\begin{array}{c}0\\\alpha\end{array}\right]$	$0 \rfloor \lfloor v_2 \rfloor$
			VCVS:		$\left[\begin{array}{c}i_1\\v_2\end{array}\right]=\left[\begin{array}{c}0\\\mu\end{array}\right]$	${0 \atop 0} \bigg] \bigg[{v_1 \atop i_2} \bigg]$

Linear Controlled Sources

Ideal transformer: ideal two-port resistive circuit element characterizing by

$$v_1 = nv_2 \qquad i_2 = -ni_1$$

 $v_1 = nv_2$ $i_2 = -ni_1$ n: real number called turn ratio

Symbol of transformer

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = H \begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & n \\ -n & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$

Ideal transformer neither dissipate nor stores energy (non-energetic elements)

$$p = v_1 i_1 + v_2 i_2 = 0$$

Gyrator

• Gyrator: an ideal two-port element defined by the following equations:

$$i_1 = Gv_2$$
 $i_2 = -Gv_1$ Constant G is called the gyration conductance

• In vector form, the voltage controlled representation:

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 0 & G \\ -G & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$i = \begin{bmatrix} 0 & G \\ -G & 0 \end{bmatrix} v$$

Symbol of gyrator

• Just like Ideal transformer, gyrator is non-energetic elements (power delivered to the two-port is zero).