GV300 - Quantitative Political Analysis

University of Essex - Department of Government

Lorenzo Crippa

Week 23 – 2 March, 2020

NSS survey

• Today we work on panel data. We use the dataset panelModelsData_rFile.dta that you find on Moodle.

- Today we work on panel data. We use the dataset panelModelsData_rFile.dta that you find on Moodle.
- Download the dataset and open it into R or Stata

- Today we work on panel data. We use the dataset panelModelsData_rFile.dta that you find on Moodle.
- Download the dataset and open it into R or Stata
- Data on 595 U.S. workers, measured at different points in time

- Today we work on panel data. We use the dataset panelModelsData_rFile.dta that you find on Moodle.
- Download the dataset and open it into R or Stata
- Data on 595 U.S. workers, measured at different points in time
- Consider only the first 100 workers, get rid of the rest of the data

1. Causal identification

- 1. Causal identification
 - (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)

- 1. Causal identification
 - (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
 - (b) What problem of identification do panel data help solving?

- 1. Causal identification
 - (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
 - (b) What problem of identification do panel data help solving?
- 2. Data description

- 1. Causal identification
 - (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
 - (b) What problem of identification do panel data help solving?
- 2. Data description
 - (a) Summary statistics and plots as usual

- 1. Causal identification
 - (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
 - (b) What problem of identification do panel data help solving?
- 2. Data description
 - (a) Summary statistics and plots as usual
 - (b) Today we have lots of information: we also want to summarize variation of data between units, within units and overall

- 1. Causal identification
 - (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
 - (b) What problem of identification do panel data help solving?
- 2. Data description
 - (a) Summary statistics and plots as usual
 - (b) Today we have lots of information: we also want to summarize variation of data between units, within units and overall
- 3. Data analysis

1. Causal identification

- (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
- (b) What problem of identification do panel data help solving?

2. Data description

- (a) Summary statistics and plots as usual
- (b) Today we have lots of information: we also want to summarize variation of data between units, within units and overall

3. Data analysis

(a) Run a pooled, a fixed-effect and a random-effect model

1. Causal identification

- (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
- (b) What problem of identification do panel data help solving?

2. Data description

- (a) Summary statistics and plots as usual
- (b) Today we have lots of information: we also want to summarize variation of data between units, within units and overall

3. Data analysis

- (a) Run a pooled, a fixed-effect and a random-effect model
- (b) Remember to use robust standard errors. Are robust standard errors enough or should we do something more?

1. Causal identification

- (a) We want to explain log(wage) (lwage) as a function of at least experience (exp) and education (ed)
- (b) What problem of identification do panel data help solving?

2. Data description

- (a) Summary statistics and plots as usual
- (b) Today we have lots of information: we also want to summarize variation of data between units, within units and overall

3. Data analysis

- (a) Run a pooled, a fixed-effect and a random-effect model
- (b) Remember to use robust standard errors. Are robust standard errors enough or should we do something more?
- (c) Compare the results and discuss which model best fits data based on point 2(b).

1. Causal identification

• Suppose *X* is a set of confounders that make each specific unit *idiosyncratic* both in treatment and outcome variables

- Suppose *X* is a set of confounders that make each specific unit *idiosyncratic* both in treatment and outcome variables
- Then panel data help us identify the causal effect of Edu on Wage because they allow us to include a fixed (random) effect and control for it.

- Suppose X is a set of confounders that make each specific unit idiosyncratic both in treatment and outcome variables
- Then panel data help us identify the causal effect of Edu on Wage because they allow us to include a fixed (random) effect and control for it.
- BUT fixed/random effects are no solution for all other types of confounders (non-idiosyncratic)!

2. Data description

2(a) – Summary statistics

Variable	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
id	700	50.500	28.887	1	25.8	75.2	100
t	700	4.000	2.001	1	2	6	7
осс	700	0.486	0.500	0	0	1	1
lwage	700	6.704	0.492	5.165	6.397	7.003	8.049
ed	700	13.040	2.995	4	12	16	17
exp	700	21.280	10.788	1	12	30	51
exp2	700	569.060	508.066	1	144	900	2,601
south	700	0.327	0.470	0	0	1	1
smsa	700	0.627	0.484	0	0	1	1
fem	700	0.130	0.337	0	0	0	1
union	700	0.321	0.467	0	0	1	1

2(a) – Usual ways of describing data

We can use plots as usual to describe our data. For instance:

2(a) – Usual ways of describing data

We can use plots as usual to describe our data. For instance:

With ggplot2 you can do basically everything

With ggplot2 the limit is your imagination (sorry Stata users):

With ggplot2 you can do basically everything

With ggplot2 the limit is your imagination (sorry Stata users):

2(a) - Scatterplots

What does the following scatterplot tell you?

2(a) - Scatterplots

What does the following scatterplot tell you?

Our usual linear model doesn't really seem to fit this cloud. Why?

Take a look at this graph (only first 20 individuals). What does it suggest about the relationship we are studying?

Take a look at this graph (only first 20 individuals). What does it suggest about the relationship we are studying?

The slopes of the regression lines by individual seem similar, only between-units intercepts are different!

Now look at the following (all 100 individuals, plus pooled):

Now look at the following (all 100 individuals, plus pooled):

A typical example of a fixed effect: slopes and intercepts of lines by individuals are different from those of pooled line.

Fixed and random effect made intuitive

You can have both unit- and time-fixed (random) effect

Fixed and random effect made intuitive

- You can have both unit- and time-fixed (random) effect
- Use fixed effect when intercepts and slopes of reg lines by units (or time) ≠ intercept and slope of the pooled reg line

Fixed and random effect made intuitive

- You can have both unit- and time-fixed (random) effect
- Use fixed effect when intercepts and slopes of reg lines by units (or time) ≠ intercept and slope of the pooled reg line
- Use random effect when **only** intercepts of reg lines by units (or time) \neq intercept of the pooled reg line. Slopes \approx to the slope of the pooled reg (with some variation)

Fixed and random effect made intuitive

- You can have both unit- and time-fixed (random) effect
- Use fixed effect when intercepts and slopes of reg lines by units (or time) ≠ intercept and slope of the pooled reg line
- Use random effect when **only** intercepts of reg lines by units (or time) \neq intercept of the pooled reg line. Slopes \approx to the slope of the pooled reg (with some variation)
- **Both** fixed and random have different intercepts of the reg lines by units (or time)!

Fixed and random effect made intuitive

- You can have both unit- and time-fixed (random) effect
- Use fixed effect when intercepts and slopes of reg lines by units (or time) ≠ intercept and slope of the pooled reg line
- Use random effect when **only** intercepts of reg lines by units (or time) ≠ intercept of the pooled reg line. Slopes ≈ to the slope of the pooled reg (with some variation)
- **Both** fixed and random have different intercepts of the reg lines by units (or time)!
- Intuitively: you include a fixed effect in a pooled model → you have no clue of what's the difference between units, so you get rid of it.

Fixed and random effect made intuitive

- You can have both unit- and time-fixed (random) effect
- Use fixed effect when intercepts and slopes of reg lines by units (or time) ≠ intercept and slope of the pooled reg line
- Use random effect when **only** intercepts of reg lines by units (or time) \neq intercept of the pooled reg line. Slopes \approx to the slope of the pooled reg (with some variation)
- **Both** fixed and random have different intercepts of the reg lines by units (or time)!
- Intuitively: you include a fixed effect in a pooled model → you have no clue of what's the difference between units, so you get rid of it. Random effect → you can explain part of it.

2(b) – What about time?

Are the time-points we have absolutely different from each others?

2(b) – What about time?

Are the time-points we have absolutely different from each others?

In R we can even animate our graphs using gganimate!

2(b) - Time fixed effect?

Look at the following lines: is a time-fixed effect appropriate here?

2(b) – Within, between and overall variation

We can get statistics about within, between and overall variation of a selected number of variables (see R script):

2(b) - Within, between and overall variation

We can get statistics about within, between and overall variation of a selected number of variables (see R script):

within.variation					
t lwage ed exp exp2	wks				
2.00 0.235 0 2.00 95.2	3.85				
between.variation					
t lwage ed exp exp2	wks				
0 0.434 3.01 10.6 501.	3.24				
overall.variation					
t lwage ed exp exp2	wks				
2.00 0.492 3.00 10.8 508.	5.02				

3. Data analysis

Fixed effect: dummies

You introduce a fixed effect to perform a within-unit (or time) estimation.

Fixed effect: dummies

You introduce a fixed effect to perform a within-unit (or time) estimation. Suppose you have k different units. Mathematically:

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + a_1D_1 + a_2D_2 + \ldots + a_{k-1}D_{k-1} + e_{it}$$

$$\mathbf{D} = D_1, D_2, \dots, D_k = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Fixed effect: dummies

You introduce a fixed effect to perform a within-unit (or time) estimation. Suppose you have k different units. Mathematically:

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + a_1D_1 + a_2D_2 + \ldots + a_{k-1}D_{k-1} + e_{it}$$

$$\mathbf{D} = D_1, D_2, \dots, D_k = \left[egin{array}{cccc} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & 1 \end{array}
ight]$$

The matrix has size $N \times k$. Your software will exclude one dummy (thus k-1) or the intercept a_0 to avoid multicollinearity

Problems in estimating a fixed effect using dummies:

Problems in estimating a fixed effect using dummies:

1. You easily run out of degrees of freedom

Problems in estimating a fixed effect using dummies:

- 1. You easily run out of degrees of freedom
- 2. Computationally heavy

Problems in estimating a fixed effect using dummies:

- 1. You easily run out of degrees of freedom
- 2. Computationally heavy

Solution: entity-demeaned FE (what your softwares do)

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + u_{it}$$

Problems in estimating a fixed effect using dummies:

- 1. You easily run out of degrees of freedom
- 2. Computationally heavy

Solution: entity-demeaned FE (what your softwares do)

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + u_{it} \rightarrow Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + a_i + e_{it}$$

Problems in estimating a fixed effect using dummies:

- 1. You easily run out of degrees of freedom
- 2. Computationally heavy

Solution: entity-demeaned FE (what your softwares do)

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + u_{it} \to Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + a_i + e_{it}$$
$$\overline{Y}_i = a_0 + \overline{\mathbf{X}}'_i\mathbf{b} + a_i + \overline{e}_i$$

Problems in estimating a fixed effect using dummies:

- 1. You easily run out of degrees of freedom
- 2. Computationally heavy

Solution: entity-demeaned FE (what your softwares do)

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + u_{it} \rightarrow Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + a_i + e_{it}$$

 $\overline{Y}_i = a_0 + \overline{\mathbf{X}}'_{i}\mathbf{b} + a_i + \overline{e}_i$

We can now do the group demeaning:

$$(Y_{it} - \overline{Y}_i) = (\mathbf{X}'_{it} - \overline{\mathbf{X}}'_{i})\mathbf{b} + (a_i - a_i) + (e_{it} - \overline{e}_i)$$

Problems in estimating a fixed effect using dummies:

- 1. You easily run out of degrees of freedom
- 2. Computationally heavy

Solution: entity-demeaned FE (what your softwares do)

$$Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + u_{it} \rightarrow Y_{it} = a_0 + \mathbf{X}'_{it}\mathbf{b} + a_i + e_{it}$$

$$\overline{Y}_i = a_0 + \overline{\mathbf{X}}'_i\mathbf{b} + a_i + \overline{e}_i$$

We can now do the group demeaning:

$$(Y_{it} - \overline{Y}_i) = (\mathbf{X}'_{it} - \overline{\mathbf{X}}'_{i})\mathbf{b} + (a_i - a_i) + (e_{it} - \overline{e}_i)$$

Thus we get rid of between-unit variation $(a_i - a_i = 0)$

Random effect:

$$(Y_{it} - \hat{\theta}_i \overline{Y}_i) = (1 - \hat{\theta}_i)a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})'\mathbf{b} + [(1 - \hat{\theta}_i)a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)]$$

Random effect:

$$(Y_{it} - \hat{\theta}_i \overline{Y}_i) = (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)]$$

where $\hat{\theta}_i$ is an estimate of

$$\theta_i = 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}}$$

Random effect:

$$(Y_{it} - \hat{\theta}_i \overline{Y}_i) = (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)]$$

where $\hat{\theta}_i$ is an estimate of

$$\theta_i = 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}}$$

Assumption: $E(e_{it}|\mathbf{x}_{it}) = 0$

Random effect:

$$(Y_{it} - \hat{\theta}_i \overline{Y}_i) = (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)]$$

where $\hat{\theta}_i$ is an estimate of

$$\theta_i = 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}}$$

Assumption: $E(e_{it}|\mathbf{x}_{it}) = 0$

Notice that, for each covariate in \mathbf{X}_{it} , you have a (slightly) different slope for each unit i, depending on $\hat{\theta}_i$!

$$(Y_{it} - \hat{\theta}_i \overline{Y}_i) = (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)]$$

$$\theta_i = 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}}$$

Now, consider:

$$\begin{split} (Y_{it} - \hat{\theta}_i \overline{Y}_i) &= (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)] \\ \theta_i &= 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}} \end{split}$$

1. what if $\sigma_a^2 \gg \sigma_e^2$ (huge between-unit variation)?

Now, consider:

$$\begin{split} (Y_{it} - \hat{\theta}_i \overline{Y}_i) &= (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)] \\ \theta_i &= 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}} \end{split}$$

1. what if $\sigma_a^2 \gg \sigma_e^2$ (huge between-unit variation)? $\theta_i \to 1$: we are back to the entity-demeaned fixed effect!

$$\begin{split} (Y_{it} - \hat{\theta}_i \overline{Y}_i) &= (1 - \hat{\theta}_i) a_0 + (\mathbf{X}_{it} - \hat{\theta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{\theta}_i) a_i + (e_{it} - \hat{\theta}_i \overline{e}_i)] \\ \theta_i &= 1 - \sqrt{\frac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}} \end{split}$$

- 1. what if $\sigma_a^2 \gg \sigma_e^2$ (huge between-unit variation)? $\theta_i \to 1$: we are back to the entity-demeaned fixed effect!
- 2. what if $\sigma_a^2 \ll \sigma_e^2$ (minimal between-unit variation)?

$$egin{aligned} (Y_{it} - \hat{ heta}_i \overline{Y}_i) &= (1 - \hat{ heta}_i) a_0 + (\mathbf{X}_{it} - \hat{ heta}_i \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{ heta}_i) a_i + (e_{it} - \hat{ heta}_i \overline{e}_i)] \ \\ heta_i &= 1 - \sqrt{rac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}} \end{aligned}$$

- 1. what if $\sigma_a^2 \gg \sigma_e^2$ (huge between-unit variation)? $\theta_i \to 1$: we are back to the entity-demeaned fixed effect!
- 2. what if $\sigma_a^2 \ll \sigma_e^2$ (minimal between-unit variation)? $\theta_i \to 0$: we are back to the pooled model!

$$egin{aligned} (Y_{it} - \hat{ heta}_i \overline{\mathbf{Y}}_i) &= (1 - \hat{ heta}_i) a_0 + (\mathbf{X}_{it} - \hat{ heta}_i \overline{\mathbf{X}}_i)' \mathbf{b} + [(1 - \hat{ heta}_i) a_i + (e_{it} - \hat{ heta}_i \overline{e}_i)] \ \\ heta_i &= 1 - \sqrt{rac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}} \end{aligned}$$

- 1. what if $\sigma_a^2 \gg \sigma_e^2$ (huge between-unit variation)? $\theta_i \to 1$: we are back to the entity-demeaned fixed effect!
- 2. what if $\sigma_a^2 \ll \sigma_e^2$ (minimal between-unit variation)? $\theta_i \to 0$: we are back to the pooled model!
- 3. in-between these extremes: random effect

Now, consider:

$$egin{aligned} ig(Y_{it} - \hat{ heta}_i \, \overline{Y}_iig) &= (1 - \hat{ heta}_i) a_0 + (\mathbf{X}_{it} - \hat{ heta}_i \, \overline{\mathbf{X}_i})' \mathbf{b} + [(1 - \hat{ heta}_i) a_i + (e_{it} - \hat{ heta}_i \, \overline{e}_i)] \ \\ & \theta_i = 1 - \sqrt{rac{\sigma_e^2}{T_i \sigma_a^2 + \sigma_e^2}} \end{aligned}$$

- 1. what if $\sigma_a^2 \gg \sigma_e^2$ (huge between-unit variation)? $\theta_i \to 1$: we are back to the entity-demeaned fixed effect!
- 2. what if $\sigma_a^2 \ll \sigma_e^2$ (minimal between-unit variation)? $\theta_i \to 0$: we are back to the pooled model!
- 3. in-between these extremes: random effect

Your software will usually provide to you an estimate of θ_i (or of the variance of slopes) and related tests. Check the output!

3(c) - Model comparison

	Pooled	Pooled	Fixed	Random
		(clustered SE)	Effect	Effect
(Intercept)	4.72***	4.72***		3.20***
	(0.15)	(0.24)		(0.33)
exp	0.06***	0.06***	0.11***	0.09***
	(0.01)	(0.01)	(0.01)	(0.01)
exp2	-0.00***	-0.00***	-0.00	-0.00*
	(0.00)	(0.00)	(0.00)	(0.00)
wks	-0.00	-0.00	0.00^{*}	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
ed	0.10***	0.10***		0.14***
	(0.01)	(0.01)		(0.02)
Adj. R ²	0.43	0.43	0.70	0.52
Num. obs.	700	700	700	700

^{***}p < 0.01, **p < 0.05, *p < 0.1

We can perform a Hausman test to decide between FE and RE

We can perform a Hausman test to decide between FE and RE

• H_0 : difference between coefficients estimated in a fixed and random effect is not systematic

We can perform a Hausman test to decide between FE and RE

- H₀: difference between coefficients estimated in a fixed and random effect is not systematic
- Under H_0 , RE will provide consistent and efficient estimates

We can perform a Hausman test to decide between FE and RE

- H₀: difference between coefficients estimated in a fixed and random effect is not systematic
- Under H_0 , RE will provide consistent and efficient estimates
- Under H_1 , RE will provide inconsistent estimates

We can perform a Hausman test to decide between FE and RE

- H₀: difference between coefficients estimated in a fixed and random effect is not systematic
- Under H_0 , RE will provide consistent and efficient estimates
- Under H_1 , RE will provide inconsistent estimates

In R (Stata is very similar, see script):

Remember:

 Heteroskedasticity-robust standard errors are not enough anymore with panel data

- Heteroskedasticity-robust standard errors are not enough anymore with panel data
- We should use clustered SEs (on our units) when we have panel data, otherwise we are not fixing serial correlation between units

- Heteroskedasticity-robust standard errors are not enough anymore with panel data
- We should use clustered SEs (on our units) when we have panel data, otherwise we are not fixing serial correlation between units
- These SEs will also be robust to heteroskedasticity

- Heteroskedasticity-robust standard errors are not enough anymore with panel data
- We should use clustered SEs (on our units) when we have panel data, otherwise we are not fixing serial correlation between units
- These SEs will also be robust to heteroskedasticity
- Look at the education variable. Why is it omitted from the fixed effect model?

- Heteroskedasticity-robust standard errors are not enough anymore with panel data
- We should use clustered SEs (on our units) when we have panel data, otherwise we are not fixing serial correlation between units
- These SEs will also be robust to heteroskedasticity
- Look at the education variable. Why is it omitted from the fixed effect model?
- Because for each respondent (within unit) education does not change! Thus there is no within-variation, and the within-variation is the only thing a fixed-effect looks at.

Conclusion

All clear? More questions? Thanks and see you next week!