EECS150 - Digital Design

<u>Lecture 22 – Carry Look Ahead</u> <u>Adders+ Multipliers</u>

Nov. 12, 2013
Prof. Ronald Fearing
Electrical Engineering and Computer
Sciences
University of California, Berkeley

(slides courtesy of Prof. John Wawrzynek)

http://www-inst.eecs.berkeley.edu/~cs150

Fall 2013 EECS150 - Lec22-CLAdder-mult Page 1

Figure 2-3: Simplified DLL Circuit

Outline

- Carry Look-ahead Adder- Can we speed up addition by being clever with carry?
- · How can we multiply quickly?

3

Carry Select Adder

· Extending Carry-select to multiple blocks

- · What is the optimal # of blocks and # of bits/block?
 - If blocks too small delay dominated by total mux delay
 - If blocks too large delay dominated by adder delay

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page 4

Carry Select Adder

Compare to ripple adder delay:

$$T_{total} = 2 \text{ sqrt}(N) T_{FA} - T_{FA}$$
, assuming $T_{FA} = T_{MUX}$
For ripple adder $T_{total} = N T_{FA}$

"cross-over" at N=3, Carry select faster for any value of N>3.

- Is sqrt(N) really the optimum?
 - From right to left increase size of each block to better match delays
 - Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7]

Fall 2013 EECS150 - Lec22-CLAdder-mult Page 5

Carry Look-ahead Adders

In general, for n-bit addition best we can achieve is

 $delay \sim log(n)$

- · How do we arrange this? (think trees)
- · First, reformulate basic adder stage:

-,			
a b $c_{i \mid}$	C _{i+1}	Si	
000	0	0	carry "kill"
001	0	1	$k_i = a_i' b_i'$
010	0	1	
011	1	0	carry "propagate"
100	0	1	$p_i = a_i XOR b_i$
101	1	0	corry "goporato"
110	1	0	carry "generate"
111	1	1	g _i = a _i b _i

 $c_{i+1} = g_i + p_i c_i$ $s_i = p_i XOR c_i$

Fall 2013 EECS150 - Lec22-CLAdder-mult Page 6

Carry Look-ahead Adders

Ripple adder using p and g signals:

- So far, no advantage over ripple adder: $\,\, T \sim N \,$

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page 7

Carry Look-ahead Adders

· Expand carries:

$$\begin{split} c_0 \\ c_1 &= g_0 + p_0 \ c_0 \\ c_2 &= g_1 + p_1 c_1 = g_1 + p_1 g_0 + p_1 p_0 c_0 \\ c_3 &= g_2 + p_2 c_2 = g_2 + p_2 g_1 + p_1 p_2 g_0 + p_2 p_1 p_0 c_0 \\ c_4 &= g_3 + p_3 c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + \dots \\ & . \end{split}$$

 $\begin{aligned} p_i &= a_i \text{ XOR } b_i \\ g_i &= a_i b_i \end{aligned}$

 $c_{i+1} = g_i + p_i c_i$ $s_i = p_i XOR c_i$

- Why not implement these equations directly to avoid ripple delay?
 - Lots of gates. Redundancies (full tree for each).
 - Gate with high # of inputs.
- · Let's reorganize the equations.

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page 8

Page 9

Carry Look-ahead Adders

· "Group" propagate and generate signals:

- P true if the group as a whole propagates a carry to c_{out}
- G true if the group as a whole generates a carry $c_{out} = G + Pc_{in}$
- Group P and G can be generated hierarchically.

 Fall 2013 EECS150 Lec22-CLAdder-mult

Carry look-ahead Wrap-up

- Adder delay O(logN) (up then down the tree).
- Cost? got here
- Can be applied with other techniques. Group P & G signals can be generated for sub-adders, but another carry propagation technique (for instance ripple) used within the group.
 - For instance on FPGA. Ripple carry up to 32 bits is fast (1.25ns), CLA used to extend to large adders. CLA tree quickly generates carry-in for upper blocks.
- Other more complex techniques exist that can bring the delay down below O(logN), but are only efficient for very wide adders.

Fall 2013 EECS150 - Lec22-CLAdder-mult Page₁₃

Adders on the Xilinx Virtex-5

- Dedicated carry logic provides fast arithmetic carry capability for highspeed arithmetic functions.
- Cin to Cout (per bit) delay = 40ps, versus 900ps for F to X delay.
- 64-bit add delay = 2.5ns.

Fall 2013

Virtex 5 Vertical Logic

We can map ripple-carry addition onto carry-chain block.

The carry-chain block also useful for speeding up other adder structures and counters.

 $c_{i+1} = g_i + p_i c_i$ $s_i = p_i XOR c_i$

Bit-serial Adder

- · Addition of 2 n-bit numbers:
 - takes n clock cycles,
 - uses 1 FF, 1 FA cell, plus registers
 - the bit streams may come from or go to other circuits, therefore the registers might not be needed.

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page₁₆

Adder Final Words

Туре	Cost	Delay
Ripple	O(N)	O(N)
Carry-select	O(N)	O(sqrt(N))
Carry-lookahead	O(N)	O(log(N))

- Dynamic energy per addition for all of these is O(n).
- "O" notation hides the constants. Watch out for this!
- The "real" cost of the carry-select is at least 2X the "real" cost of the ripple. "Real" cost of the CLA is probably at least 2X the "real" cost of the carry-select.
- The actual multiplicative constants depend on the implementation details and technology.
- FPGA and ASIC synthesis tools will try to choose the best adder architecture automatically - assuming you specify addition using the "+" operator, as in "assign A = B + C"

Fall 2013 EECS150 – Lec21-timing-adder Page₁₇

Multiplication

Many different circuits exist for multiplication. Each one has a different balance between speed (performance) and amount of logic (cost).

Fall 2013 EECS150 - Lec22-CLAdder-mult Page₁₈

"Shift and Add" Multiplier

"Shift and Add" Multiplier

Signed Multiplication:

Remember for 2's complement numbers MSB has negative weight:

$$X = \sum_{i=0}^{N-2} x_i 2^i - x_{n-1} 2^{n-1}$$

ex:
$$-6 = 11010_2 = 0.2^0 + 1.2^1 + 0.2^2 + 1.2^3 - 1.2^4$$

= 0 + 2 + 0 + 8 - 16 = -6

- Therefore for multiplication:
 - a) subtract final partial product
 - b) sign-extend partial products
- Modifications to shift & add circuit:
 - a) adder/subtractor
 - b) sign-extender on P shifter register

Fall 2013 EECS150 - Lec22-CLAdder-mult Page₂₀

Page₂₁

Bit-serial Multiplier

• Bit-serial multiplier (n² cycles, one bit of result per n cycles):

Control Algorithm:

Fall 2013

EECS150 - Lec22-CLAdder-mult

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

Carry-Save Addition

- Speeding up multiplication is a matter of speeding up the summing of the partial products.
- · "Carry-save" addition can help.
- Carry-save addition passes (saves) the carries to the output, rather than propagating them.

Example: sum three numbers,

 $3_{10} = 0011, 2_{10} = 0010, 3_{10} = 0011$

- In general, carry-save addition takes in 3 numbers and produces 2.
- Whereas, carry-propagate takes 2 and produces 1.
- With this technique, we can avoid carry propagation until final addition
 Fall 2013
 EECS150 Lec22-CLAdder-mult
 Page₂₃

Carry-save Circuits

Fall 2013 EECS150 - Lec22-CLAdder-mult Page₂₄

Array Multiplier using Carry-save Addition

Carry-save Addition

CSA is associative and commutative. For example:

Page₂₆

Constant Multiplication

- Our discussion so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- · What if one of the two is a constant?

$$Y = C * X$$

 "Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

$$y_i = \alpha y_{i-1} + x_i$$
 $x_i \longrightarrow y$

where $\,\alpha$ is an application dependent constant that is hard-wired into the circuit.

 How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

Fall 2013 EECS150 - Lec22-CLAdder-mult Page₂₇

Multiplication by a Constant

- If the constant C in C*X is a power of 2, then the multiplication is simply a shift of X.
- Ex: 4*X

- · What about division?
- What about multiplication by non- powers of 2?

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page₂₈

Multiplication by a Constant

- In general, a combination of fixed shifts and addition:
 - $Ex: 6*X = 0110 * X = (2^2 + 2^1)*X$

- Details:

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page₂₉

Multiplication by a Constant

Another example: C = 23₁₀ = 010111

- In general, the number of additions equals the number of 1's in the constant minus one.
- Using carry-save adders (for all but one of these) helps reduce the delay and cost, but the number of adders is still the number of 1's in C minus 2.
- Is there a way to further reduce the number of adders (and thus the cost and delay)?

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page₃₀

Multiplication using Subtraction

- Subtraction is ~ the same cost and delay as addition.
- Consider C*X where C is the constant value 15₁₀ = 01111.
 C*X requires 3 additions.
- We can "recode" 15

from
$$01111 = (2^3 + 2^2 + 2^1 + 2^0)$$

to $1000\overline{1} = (2^4 - 2^0)$

where 1 means negative weight.

 Therefore, 15*X can be implemented with only one subtractor.

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page₃₁

Canonic Signed Digit Representation

- CSD represents numbers using 1, $\overline{1}$, & 0 with the least possible number of non-zero digits.
 - Strings of 2 or more non-zero digits are replaced.
 - Leads to a unique representation.
- To form CSD representation might take 2 passes:
 - First pass: replace all occurrences of 2 or more 1's:

- Second pass: same as a above, plus replace 0110 by 0010
- Examples:

$$011101 = 29$$
 $0010111 = 23$ $0110110 = 54$ 1011010

Can we further simplify the multiplier circuits?

Fall 2013 EECS150 - Lec22-CLAdder-mult

Page₃₂

"Constant Coefficient Multiplication" (KCM)

Binary multiplier: $Y = 231*X = (2^7 + 2^6 + 2^5 + 2^2 + 2^1 + 2^0)*X$

- CSD helps, but the multipliers are limited to shifts followed by adds.
 - CSD multiplier: Y = 231*X = (28 25 + 23 20)*X

- How about shift/add/shift/add ...?
 - KCM multiplier: $Y = 231*X = 7*33*X = (2^3 2^0)*(2^5 + 2^0)*X$

- No simple algorithm exists to determine the optimal KCM representation.
- · Most use exhaustive search method.

Fall 2013

EECS150 - Lec22-CLAdder-mult

Page33

Summary

· Carry Look-ahead Adder

Carry save adder

