Predictive Control

Main Concepts

Model predictive control is the only advanced control technique that has see widespread impact on industrial process control. It's the only control technology that can deal with constraints.

Principles of Predictive Control

- Prediction
 - Why is prediction important: We care about the goal to be achieved more than what is currently happening within the system.
- Receding Horizon
 - What is receding horizon: Some fixed interval (period of time) over which we consider the future (Car headlight analogy).

Optimization Problems

An optimization problem is generally formulated as

$$inf_{z \in S \subset Z} f(z)$$

Where $inf(\cdot)$ resembles finding the optimal value within the subset.

Solving this problem means to compute the least possible cost f*.

$$f* = inf_{z \in S} f(z)$$

The number f* is the **optimal value** of $inf_{z \in S \subset Z} f(z)$, i.e.:

$$f(z) > f(z*) = f * \forall z \in S, with z* \in S$$

Continuous Problems

 $Nonlinear\ mathematical\ program$

$$\begin{array}{ll} inf_z & f(z) \\ subj. \ to & g_i(z) \leq 0 \quad for \ i=1,\cdots,m \\ h_j(z) = 0 & for \ j=1,\cdots,p \\ z \in Z \end{array}$$

A point $\bar{z} \in \mathbb{R}^s$ is **feasible** for the continuous optimization problems if:

- 1. it belongs to Z
- 2. It satisfies the inequality and equality constraints

Integer and Mixed-Integer Problems

If the optimization problem

$$inf_{z \in S \subset Z} f(z)$$

is finite, then the optimization problem is called *combinatorial* or *finite*. If $Z \subseteq 0, 1^s$, then the problem is said to be *integer*. If Z is a subset of the Cartesian product of an integer set and real Euclidean space, then the problem is said to be *mixed-integer*. The standard form of a mixed-integer nonlinear program is:

$$\begin{array}{ll} inf_{[z_c,z_b]} & f(z_c,z_b) \\ subj. \ to & g_i(z_c,z_b) \leq 0 \\ & h_j(z_c,z_b) = 0 \\ & z_c \in \mathbb{R}^{s_c}, \ z_b \in 0,1^{s_b} \end{array} \quad \begin{array}{ll} for \ i=1,\cdots,m \\ for \ j=1,\cdots,p \end{array}$$

Convexity

Theorem 1.1

Consider a convex optimization problem and let \bar{z} be a local optimizer. Then \bar{z} is a global optimizer.

Optimality Conditions

Optimality Conditions For Unconstrained Problems

Theorem 1.2 (Necessary Condition):

Suppose that $f: \mathbb{R}^s \to \mathbb{R}$ is differential at \bar{z} . If there exists a vector d such that $\nabla f(\bar{z})'d < 0$, then there exists a $\delta > 0$ such that $f(\bar{z} + \lambda d) < f(\bar{z})$ for a $\lambda \in (0, \delta)$.

Theorem 1.3 (Sufficient Condition):

Suppose that $f: \mathbb{R}^s \to \mathbb{R}$ is twice differentiable at \bar{z} . If $\nabla f(\bar{z}) = 0$ and the Hessian $(\nabla^2 f(\bar{z}))$ of f(z) at \bar{z} is positive definite, then \bar{z} is a local minimizer.

Theorem 1.4: (Necessary and Sufficient Condition):

Supposed that $f: \mathbb{R}^s \to \mathbb{R}$ is differentiable at \bar{z} . If f is convex, then \bar{z} is a global minimizer iff $\nabla f(\bar{z}) = 0$

Lagrange Duality Theory

Consider the optimality problem. Any feasible point \bar{z} provides an upper bound to the optimal value $f(\bar{z}) \ge f*$ (f* being the optimal value). The Lagrange Duality Theory generates a lower boundary for f*.

Starting from the same problem, we construct another problem with different variables and constrains. In other words, from the primal problem, we will develop the dual problem.

$$L(z, u, v) = f(z) + u_1 g_1(z) + \dots + u_m g_m(z) + v_1 h_1(z) + \dots + v_n h_n(z)$$

References

• Predictive Control - Borrelli, Bemporad, Marari