Devoir à la maison n°09

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1

$$\chi_{\mathbf{M}} = \det(\mathbf{X}\mathbf{I}_n - \mathbf{M}) = \det((\mathbf{X}\mathbf{I}_n - \mathbf{M})^{\mathsf{T}}) = \det(\mathbf{X}\mathbf{I}_n - \mathbf{M}^{\mathsf{T}}) = \chi_{\mathbf{M}^{\mathsf{T}}}$$

Comme le spectre d'une matrice est l'ensemble des racines du polynôme caractéristique, $Sp(M) = Sp(M^T)$.

2 Supposons que M est diagonalisable. Alors il existe une matrice diagonale $D \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$ telles que $M = PDP^{-1}$. Ainsi

$$\mathbf{M}^{\mathsf{T}} = (\mathbf{P}^{-1})^{\mathsf{T}} \mathbf{D}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} = (\mathbf{P}^{\mathsf{T}})^{-1} \mathbf{D} \mathbf{P}^{\mathsf{T}}$$

Ainsi M^T est diagonalisable. Par involuitivité de la transposition, la réciproque est également vraie. Par conséquent, M est diagonalisable si et seulement si M^T est diagonalisable.

3 On note L_0, \ldots, L_{n-1} les lignes des déterminants suivants.

$$\chi_{C_{Q}} = \begin{vmatrix} X & 0 & \cdots & \cdots & 0 & a_{0} \\ -1 & X & 0 & \cdots & 0 & a_{1} \\ 0 & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & -1 & X & a_{n-2} \\ 0 & \cdots & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & \cdots & \cdots & 0 & Q(X) \\ -1 & X & 0 & \cdots & 0 & a_{1} \\ 0 & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & -1 & X & a_{n-2} \\ 0 & \cdots & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

$$= (-1)^{n+1}Q(X) \begin{vmatrix} -1 & X & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & X \\ 0 & \cdots & 0 & -1 & X \\ 0 & \cdots & \cdots & 0 & -1 \end{vmatrix}$$

$$= (-1)^{n+1}(-1)^{n-1}Q(X) = Q(X) \qquad \text{car le déterminant est triangulaire}$$

- **4** Soit $X = (x_0, \dots, x_{n-1})^T \in \text{Ker}(C_Q^T \lambda I_n)$. Les coordonnées de X vérifient $x_{k+1} = \lambda x_k$ pour tout $k \in [0, n-2]$. On en déduit que $x_k = \lambda^k x_0$ pour tout $k \in [0, n-1]$. En posant $V_\lambda = (1, \lambda, \dots, \lambda^{n-1})^T$, on a donc $X \in \text{vect}(V_\lambda)$. Ainsi $E_\lambda(C_Q^T) \subset \text{vect}(V_\lambda)$. Comme λ est valeur propre de C_Q^T , dim $E_\lambda(C_Q^T) \ge 1$, $E_\lambda(C_Q^T) = \text{vect}(V_\lambda)$. Ainsi V_λ est un vecteur directeur de $E_\lambda(C_Q^T)$.
- 5 Supposons que f est cyclique. Il existe donc $x_0 \in E$ tel que $(x_0, \dots, f^{n-1}(x_0))$ est une base de E. Notamment, il existe $(a_0, \dots, a_{n-1}) \in \mathbb{K}^n$ tel que $f^n(x_0) = -\sum_{k=0}^{n-1} a_k f^{k-1}(x_0)$. Dans la base $(x_0, \dots, f^{n-1}(x_0))$, la matrice de f est C_Q .

1

Réciproquement, supposons que la matrice de f est de la forme C_Q dans une base (e_0, \dots, e_{n-1}) de E. On a donc $f(e_k) = e_{k+1}$ pour tout $k \in [0, n-2]$. On en déduit que $e_k = f^k(e_0)$ pour tout $k \in [0, n-1]$. Ainsi $(e_0, f(e_0), \dots, f^{n-1}(e_0))$ est une base de E. On en déduit que f est cyclique.

- 6 Supposons que f est diagonalisable. On sait que sa matrice est de la forme C_Q dans une base adaptée. Il suffit donc de montrer que χ_f = χ_{C_Q} = χ_{C_Q} est scindé à racines simples. Comme f est diagonalisable, C_Q l'est aussi et donc C_Q^T l'est également d'après la question 2. Soit donc λ une racine de C_Q^T i.e. λ ∈ Sp(Q^T). D'après la question 4, dim E_λ(C_Q^T) = 1. Mais comme C_Q^T est diagonaliable, m_λ(C_Q^T) = dim E_λ(C_Q^T) = 1. Ainsi χ_{C_Q} = χ_f est scindé à racines simples. Réciproquement, si χ_f est scindé à racines simples, f est diagonalisable.
- 7 Supposons f cyclique. Il existe donc $x_0 \in E$ tel que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E. Soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ tel que $\sum_{k=0}^n \lambda_k f^k = 0$. En évaluant en x_0 et en utilisant la liberté de $(x_0, f(x_0), \dots, f^{n-1}(x_0))$, on obtient $\lambda_k = 0$ pour tout $k \in [0, n-1]$. Ainsi $(\operatorname{Id}_E, f, \dots, f^{n-1})$ est libre. Notons $d = \deg \pi_f$. On sait déjà que $d \le n$ car π_f divise χ_f . De plus, π_f annule f donc la famille $(\operatorname{Id}_E, f, \dots, f^d)$ est liée. On ne peut avoir d < n sinon cette famille serait une sous-famille de la famille libre $(\operatorname{Id}_E, f, \dots, f^{n-1})$ et serait donc libre. Ainsi $\deg \pi_f = d = n$.
- 8 On vérifie que $\{P \in \mathbb{K}[X], P(f)(x) = 0_E\}$ est un idéal de $\mathbb{K}[X]$. Comme tous les idéaux de $\mathbb{K}[X]$ sont principaux, cet idéal est engendré par un polynôme unitaire $\pi_{f,x}$. Notons $p = \deg \pi_{f,x}$. Par minimalité du degré de $\pi_{f,x}$, la famille $(x, f(x), \dots, f^{p-1}(x))$ est libre. De plus, en posant $\pi_{f,x} = X^p + \sum_{k=0}^{p-1} \alpha_k X^k$, on a bien $f^p(x) + \sum_{k=0}^{p-1} \alpha_k f^k(x) = 0_E$.
- 9 Posons F = vect $(x, f(x), \dots, f^{p-1}(x))$. Il est clair que $f(f^k(x)) = f^{k+1}(x) \in F$ pour tout $k \in [0, p-2]$ et d'après la question précédente, on a également $f(f^{p-1}(x)) = f^p(x) = -\sum_{k=0}^{p-1} \alpha_k f^k(x) \in F$. Ainsi, par linéarité de f,

$$f(\mathbf{F}) = f\left(\mathrm{vect}(x, f(x), \dots, f^{p-1}(x))\right) = \mathrm{vect}\left(f(x), f^2(x), \dots, f^p(x)\right) \subset \mathbf{F}$$

- 10 Notons f_F l'endomorphisme de F induit par f. La matrice de f_F dans la base $\text{vect}(x, f(x), \dots, f^{p-1}(x))$ est $C_{\pi_{f,x}}$. On en déduit que $\chi_{f_F} = \pi_{f,x}$ d'après la question 3. Or on sait que χ_{f_F} divise χ_f . Donc $\pi_{f,x} = X^p + \sum_{k=0}^{p-1} \alpha_k X^k$ divise χ_f .
- 11 D'après la question précédente, il existe $Q \in \mathbb{K}[X]$ tel que $\chi_f = Q\pi_{f,x}$. Ainsi $\chi_f(f)(x) = Q(f) \circ \pi_{f,x}(f)(x) = Q(f)(0_E) = 0_E$. Ceci est valable pour tout vecteur x non nul de E et aussi pour $x = 0_E$ donc $\chi_f(f) = 0$.
- 12 Remarquons déjà que $\pi_f = X^r$.

Supposons que f est cyclique. D'après la question 7, $r = \deg \pi_f = n$.

Supposons que r = n. Par définition de l'indice de nilpotence, il existe $x \in E$ non nul tel que $f^{n-1}(x) \neq 0_E$. Montrons que la famille $(x, f(x), \dots, f^{n-1}(x))$ est une base de E. Comme dim E = n, il suffit de montrer qu'elle est libre. Soit donc $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ tel que $\sum_{k=0}^{n-1} \lambda_k f^k(x) = 0_E$. Supposons que les λ_k ne soient pas tous nuls et notons $j = \min\{k \in [0, n-1], \lambda_k \neq 0\}$. Alors $\sum_{k=j}^{n-1} \lambda_k f^k(x) = 0_E$ et en appliquant f^{n-1-j} , on trouve $\lambda_j f^{n-1}(x) = 0_E$ et donc $\lambda_j = 0$, ce qui est contradictoire. Les λ_k sont donc tous nuls. La famille $(x, f(x), \dots, f^{n-1}(x))$ est donc une base de E et f est cyclique.

La matrice de f dans cette base est alors C_{X^n} .

13 $(f - \lambda_k \operatorname{Id}_{\operatorname{E}})^{m_k} \in \mathbb{C}[f]$. Or $\mathbb{C}[f]$ est une algèbre commutative donc f et $(f - \lambda_k \operatorname{Id}_{\operatorname{E}})^{m_k}$ commutent. En particulier, $F_k = \operatorname{Ker}(f - \lambda_k \operatorname{Id}_{\operatorname{E}})^{m_k}$ est stable par f.

De plus, les λ_k sont distincts deux à deux donc les polynômes $P_k = (X - \lambda_k \operatorname{Id}_E)^{m_k}$ sont premiers entre eux deux à deux. D'après le lemme des noyaux,

$$\operatorname{Ker}\chi_f(f) = \bigoplus_{k=1}^p \operatorname{Ker}(f - \lambda_k \operatorname{Id}_{\operatorname{E}})^{m_k}$$

Or $\chi_f(f) = 0$ d'après le théorème de Cayley-Hamilton donc

$$E = \bigoplus_{k=1}^{p} F_k$$

- **14** Comme $F_k = \text{Ker}(f \lambda_k \operatorname{Id}_E)^{m_k}$, $\varphi_k^{m_k}(x) = (f \lambda_k \operatorname{Id}_E)^{m_k}(x) = 0$ pour tout $x \in F_k$. Ainsi $\varphi_k^{m_k} = 0$ et φ_k est nilpotent.
- 15 D'après le cours, l'indice de nilpotence de φ_k est inférieur ou égal à la dimension de F_k i.e. $\nu_k \le \dim(F_k)$.
- **16** Puisque ($\mathrm{Id}_{\mathrm{E}}, f, \dots, f^{n-1}$) est libre, $\deg \pi_f = n$. Posons $\mathrm{P} = \prod_{k=1}^p (\mathrm{X} \lambda_k)^{\nu_k}$ ainsi que $\mathrm{Q}_k = \prod_{j \neq k} (\mathrm{X} \lambda_j)^{\nu_j}$ pour $k \in [1, p]$. Soit $k \in [1, p]$.

$$\forall x \in F_k, \ P(f)(x) = Q_k(f) \circ (f - \lambda_k \operatorname{Id}_E)^{\nu_k}(x) = Q_k(f) \circ \varphi_k^{\nu_k}(x) = Q_k(f)(0_E) = 0_E$$

Comme E = $\bigoplus_{k=1}^p F_k$, P(f) = 0. Par conséquent, π_f divise p et donc $\deg \pi_f \leq \deg P$ i.e. $\sum_{k=1}^n \nu_k \geq n$. De plus, $\sum_{k=1}^n m_k = \deg \chi_f = n$ donc $\sum_{k=1}^p m_k - \nu_k = 0$. Enfin, $\varphi^{m_k} = 0$ donc, par définition de l'indice de nilpotence $\nu_k \leq m_k$. Les termes de la dernière somme sont positifs et donc nuls puisque cette somme est nulle. Ainsi $\nu_k = m_k$ pour tout $k \in [1, p]$.

17 On a également $\sum_{k=1}^p \dim F_k = n$ puisque $E = \bigoplus_{k=1}^p F_k$. A nouveau, $\sum_{k=1}^p \dim(F_k) - \nu_k = 0$ et les termes de cette somme sont positifs. Ainsi $\dim(F_k) = \nu_k = m_k$ pour tout $k \in [1, p]$. D'après la question 12, les φ_k sont cycliques et il

existe une base \mathcal{B}_k de F_k dans laquelle la matrice de φ_k est $\begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$. L'endomorphisme f_k de F_k induit par

f est $\lambda_k \operatorname{Id}_E + \varphi_k$ et sa matrice dans la base \mathcal{B}_k est donc $\begin{pmatrix} \lambda_k & 0 & \cdots & \cdots & 0 \\ 1 & \lambda_k & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \lambda_k & 0 \\ 0 & \cdots & 0 & 1 & \lambda_k \end{pmatrix}$. La matrice de f dans la base \mathcal{B} obtenue

par concaténation des base $\mathcal{B}_1, \dots, \mathcal{B}_p$ est bien de la forme voulue

- 18 Posons $e_k = u_{1+\sum_{i=1}^{k-1} m_i}$ de sorte que $x_0 = \sum_{k=1}^p e_k$. On vérifie que $e_k \in F_k$ par définition de la base \mathcal{B} . Faisons alors quelques remarques préliminaires.
 - Pour tout $Q \in \mathbb{C}[X]$, $Q(f)(e_k) \in F_k$ car F_k est stable par f.
 - Par définition de $\mathcal{B}, (e_k, \varphi(e_k), \dots, \varphi_k^{m_k-1}(e_k))$ est une base de F_k .

$$Q(f)(x_0) = 0$$

$$\iff \sum_{k=1}^p Q(f_k)(e_k) = 0_E$$

$$\iff \forall k \in [\![1,p]\!], \ Q(f)(e_k) = 0_E \qquad \text{car les } F_k \text{ sont en somme directe}$$

$$\iff \forall k \in [\![1,p]\!], \ \forall j \in [\![0,m_k-1]\!], \ Q(f_k)(\varphi_k^j(e_k)) = 0_E \qquad \text{car } Q(f_k) \text{ et } \varphi_k = f_k - \lambda_k \operatorname{Id}_{F_k} \text{ commutent}$$

$$\iff \forall k \in [\![1,p]\!], \ Q(f_k) = 0 \qquad \operatorname{car}(e_k, \varphi(e_k), \dots, \varphi_k^{m_k-1}(e_k)) \text{ est une base de } F_k$$

$$\iff \forall k \in [\![1,p]\!], \ Q(\varphi_k + \lambda_k \operatorname{Id}_{F_k}) = 0$$

$$\iff \forall k \in [\![1,p]\!], \ \pi_{\varphi_k} \mid Q(X + \lambda_k)$$

$$\iff \forall k \in [\![1,p]\!], \ X^{m_k} \mid Q(X + \lambda_k)$$

$$\iff \forall k \in [\![1,p]\!], \ X^{m_k} \mid Q(X + \lambda_k)$$

$$\iff \forall k \in [\![1,p]\!], \ (X - \lambda_k)^{m_k} \mid Q$$

$$\iff \prod_{k=1}^p (X - \lambda_k)^{m_k} \mid Q$$

$$\iff \chi_f \mid Q$$

- 19 Il suffit pour cela de montrer que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E et donc que cette famille est libre. Soit donc $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{C}^n$ tel que $\sum_{k=0}^{n-1} \lambda_k f^k(x_0)$. En posant $Q = \sum_{k=0}^{n-1} \lambda_k X^k$, on a donc $Q(f)(x_0) = 0$. D'après la question précédente, χ_f divise Q. Or $\deg \chi_f = n$ et $\deg Q < n$ donc Q = 0 puis $(\lambda_0, \dots, \lambda_{n-1}) = (0, \dots, 0)$. Ainsi $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est bien libre et c'est une base de E. f est bien cyclique.
- 20 C(f) est le noyau de l'endomorphisme $g \in \mathcal{L}(E) \mapsto f \circ g g \circ f$ donc c'est un sous-espace vectoriel de $\mathcal{L}(E)$. C(f) contient évidemment Id_E et on montre aisément qu'il est stable par \circ . C'est donc une sous-algèbre de $\mathcal{L}(E)$.
- 21 Question triviale : il suffit de dire que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.
- 22 Posons $P = \sum_{k=0}^{n-1} \lambda_k X^k$. La question précédente montre que $g(x_0) = P(f)(x_0)$. Comme g commute avec f, on montre par récurrence que g commute avec f^k pour tout $k \in \mathbb{N}$. Notamment, pour tout $k \in [0, n-1]$,

$$g(f^k(x_0)) = f^k(g(x_0)) = f^k \circ P(f)(x_0) = P(f) \circ f^k(x_0) = P(f)(f^k(x_0))$$

Les endomorphismes g est P(f) coïncident sur la base $(x_0, f(x_0), ..., f^{n-1}(x_0))$ de E donc ils sont égaux. Ainsi $g = P(f) \in \mathbb{K}[f]$.

23 Soit $g \in C(f)$. En reprenant la question précédente, il existe bien $R \in \mathbb{K}_{n-1}[X]$ tel que g = R(f). Réciproquement, s'il existe $R \in \mathbb{K}_{n-1}[X]$ tel que g = R(f), f commute avec g car l'algèbre $\mathbb{K}[f]$ est commutative.

- 24 On raisonne par l'absurde. Supposons qu'aucun des F_i ne contienne tous les autres. Alors pour tout $i \in [1, r]$, il existe $x_i \in F_i$ tel que $x_i \notin \bigcup_{i \neq i} F_i$.
- 25 On vérifie que pour tout $x \in E$, I_x est bien un idéal de $\mathbb{K}[X]$. Il est donc engendré par un unique polynôme unitaire $\pi_{f,x}$. De plus, en notant $I = \pi_f \mathbb{K}[X]$ l'idéal annulateur de f, on a clairement $I \subset I_x$ et donc $\pi_{f,x}$ divise π_f . Remarquons que l'ensemble des diviseurs unitaires de π_f est fini. Il existe donc x_1, \dots, x_r dans E tel que $\{\pi_{f,x}, x \in E\} = \{\pi_{f,x_1}, \dots, \pi_{f,x_r}\}$. De manière évidente, pour tout $x \in E$, $x \in \operatorname{Ker} \pi_{f,x}(f)$. Alors

$$E = \bigsqcup_{x \in E} \operatorname{Ker} \pi_{f,x}(f) = \bigsqcup_{i=1}^{r} \operatorname{Ker} \pi_{f,x_i}(f)$$

D'après la question précédente, E est égal à l'un des noyaux. Sans perte de généralité, on peut supposer que E = $\operatorname{Ker} \pi_{f,x_1}(f)$. Ainsi π_{f,x_1} est un polynôme annulateur de f de sorte que π_f divise π_{f,x_1} . Mais on a déjà vu que π_{f,x_1} divisait π_f donc $\pi_f = \pi_{f,x_1}$. Notamment $\operatorname{deg} \pi_{f,x_1} = d$. Soit alors $(\lambda_0,\dots,\lambda_{d-1}) \in \mathbb{K}^d$ tel que $\sum_{k=0}^{d-1} \lambda_k f^k(x_1) = 0_E$. Alors $\operatorname{P} = \sum_{k=0}^{d-1} \lambda_k X^k \in \operatorname{I}_{x_1}$ donc π_{f,x_1} divise P. Mais $\operatorname{deg} \pi_{f,x_1} = d$ et $\operatorname{deg} \operatorname{P} < d$ donc $\operatorname{P} = 0$ puis $(\lambda_0,\dots,\lambda_{d-1}) = (0,\dots,0)$. La famille $(x_1,f(x_1),\dots,f^{d-1}(x_1))$ est bien libre.

26 Pour tout $k \in [1, d-1]$, $f(e_k) = e_{k+1} \in E_1$. De plus, comme $\deg \pi_f = d$, $f^d \in \operatorname{vect}(\operatorname{Id}_E, f, \dots, f^{d-1})$ et donc $f(e_d) = f^d(x_1) \in \operatorname{vect}(x_1, f(x_1), \dots, f^{d-1}(x_1)) = E_1$. On en déduit que E_1 est stable par f. Comme $\deg \pi_f = d$, $\mathbb{K}[f] = \mathbb{K}_{d-1}[f]$. Ainsi

$$\begin{split} \{ \mathsf{P}(f)(x_1), \ \mathsf{P} \in \mathbb{K}[\mathsf{X}] \} &= \{ u(x_1), \ u \in \mathbb{K}[f] \} \\ &= \{ u(x_1), \ u \in \mathbb{K}_{d-1}[f] \} \\ &= \{ \mathsf{P}(f)(x_1), \ \mathsf{P} \in \mathbb{K}_{d-1}[\mathsf{X}] \} \\ &= \mathsf{vect}(x_1, f(x_1), \dots, f^{d-1}(x_1)) = \mathsf{E}_1 \end{split}$$

- **27** Une base de E_1 est $(x_1, f(x_1), \dots, f^{d-1}(x_1)) = (x_1, \psi_1(x_1), \dots, \psi_1^{d-1}(x_1))$ donc ψ_1 est cyclique.
- 28 Soit $x \in F$. Pour tout $i \in \mathbb{N}$, $\Phi(f^i(f(x))) = \Phi(f^{i+1}(x)) = 0$ donc $f(x) \in F$. Ainsi F est stable par f. Soit $x \in E_1 \cap F$. Comme $x \in E_1$, il existe $(\lambda_1, \dots, \lambda_d) \in \mathbb{K}^d$ tel que $x = \sum_{k=1}^d \lambda_k e_k$. Comme $x \in F$, $\lambda_d = 0$. Puis en appliquant successivement f, f^2 , ..., f^{d-1} à l'égalité précédente, on obtient $\lambda_{d-1} = 0$, $\lambda_{d-2} = 0$, ..., $\lambda_1 = 0$ (rédiger une récurrence). Ainsi $x = 0_E$ puis $E_1 \cap F = \{0_E\}$.
- 29 On va montrer que $\operatorname{Ker} \Psi = \operatorname{F.} L$ 'inclusion $\operatorname{F} \subset \operatorname{Ker} \Psi$ est évidente. Comme $\operatorname{deg} \pi_f = d$, $\operatorname{\mathbb{K}}[f] = \operatorname{\mathbb{K}}_{d-1}[f]$. On en déduit que $\operatorname{Ker} \Psi \subset \operatorname{F.}$ Ainsi E_1 est un supplémentaire de $\operatorname{Ker} \Psi$ dans $\operatorname{E.}$ On en déduit que $\operatorname{\Psi}$ induit un isomorphisme de E_1 sur $\operatorname{Im} \Psi$. Mais comme $\operatorname{dim} \operatorname{E}_1 = \operatorname{dim} \operatorname{\mathbb{K}}^d = d$, $\operatorname{Im} \Psi = \operatorname{\mathbb{K}}^d$. Finalement, $\operatorname{\Psi}$ induit un isomorphisme de E_1 sur $\operatorname{\mathbb{K}}^d$.
- **30** D'après le théorème du rang, dim $F = \dim \operatorname{Ker} \Psi = \dim E \operatorname{rg} \Psi = n d$. Ainsi dim $F + \dim E_1 = n$. Comme $E_1 \cap F = \{0_E\}, E = E_1 \oplus F$.

31

- Notons f_1, \ldots, f_r les endomorphismes de E_1, \ldots, E_r induits par f. L'application qui à $(g_1, \ldots, g_r) \in \prod_{i=1}^r C(f_i)$ associe l'unique $g \in \mathcal{L}(E)$ tel que $g_{|E_i} = g_i$ est bien définie, linéaire, injective et à valeurs dans C(f).

 Ainsi dim $C(f) \geq \sum_{i=1}^r \dim C(f_i)$. Mais comme les f_i sont cycliques, dim $C(f_i) = \dim E_i$. Finalement, dim $C(f) \geq \sum_{i=1}^r \dim E_i = \dim E = n$.
- 33 Si on note $d = \deg \pi_f$. Alors $d = \dim \mathbb{K}[f] = \dim \mathbb{C}(f) \ge n$. Mais $d \le n$ donc d = n. Notamment, $(\mathrm{Id}_{\mathbb{E}}, f, \dots, f^{n-1})$ est libre. On en déduit d'après la partie II.B que f est cyclique.
- 34 Posons $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ pour $\theta \in \mathbb{R}$.

D'après le théorème de réduction des isométries vectorielles, il existe une base orthonormale \mathcal{B} de E dans laquelle la matrice de f est diagonale par blocs, avec pour blocs diagonaux I_p , $-I_q$ et r blocs diagonaux $R(\theta_i)$ ($\theta_i \in]0, \pi[$). On a alors $\chi_f = (X-1)^p(X+1)^q \prod_{i=1}^r (X-2X\cos\theta_i+1)$.

De la même manière, il existe une base \mathcal{B}' de E dans laquelle la matrice de f est diagonale par blocs, avec pour blocs diagonaux $I_{p'}$, $-I_{q'}$ et r' blocs diagonaux $R(\theta_i')$ ($\theta_i' \in]0, \pi[$). On a alors $\chi_f = (X-1)^{p'}(X+1)^{q'}\prod_{i=1}^{r'}(X-2X\cos\theta_i'+1)$. Comme $\chi_f = \chi_{f'}$, l'unicité de la décomposition en facteurs irréductibles de $\mathbb{R}[X]$ nous apprend que p = p', q = q', r = r' et, quitte à réordonner les θ_i' (i.e. réordonner les vecteurs de la base \mathcal{B}'), $\cos\theta_i = \cos\theta_i'$ i.e. $\theta_i = \theta_i'$ (puisque $\theta_i, \theta_i' \in]0, \pi[$). Ainsi f et f' ont la même matrice dans les bases respectives \mathcal{B} et \mathcal{B}' .

35 Supposons que f est orthocyclique. Il existe donc une base orthonormale \mathcal{B} de E dans laquelle la matrice de f est de la forme C_Q . Mais comme $f \in \mathcal{O}(E)$ et \mathcal{B} est orthonormale, C_Q est orthogonale. Posons $Q = X^n + \sum_{k=0}^{n-1} a_k X^k$. La dernière colonne de C_Q est orthogonale aux précédentes, ce qui donne $a_1 = a_2 = \cdots = a_{n-1} = 0$. La dernière colonne de C_Q est unitaire, ce qui donne $\sum_{k=0}^{n-1} a_k^2 = 1$ i.e. $a_0^2 = 1$ i.e. $a_0 = \pm 1$. On en déduit que $\chi_f = Q = X^n + a_0 = X^n \pm 1$. Réciproquement supposons que $\chi_f = X^n \pm 1$. Soit \mathcal{B}_0 une base orthonormale de E. Soit $f' \in \mathcal{L}(E)$ dont la matrice dans cette base est C_Q avec $Q = X^n \pm 1$. On vérifie que C_Q est bien orthogonale : la famille des colonnes de C_Q est bien orthonormale. Comme \mathcal{B}_0 est une base orthonormale, $f' \in O(E)$. Par ailleurs, $\chi_{f'} = X^n \pm 1 = \chi_f$. D'après la question précédente, il existe des bases orthonormales \mathcal{B} et \mathcal{B}' de E dans lesquelles f et f' ont même matrice. Notons $A = \max_{\mathcal{B}'}(f') = \max_{\mathcal{B}}(f)$. Comme \mathcal{B} et \mathcal{B}' sont deux bases orthormées, la formule de changement de base donne l'existence de $P \in O_n(\mathbb{R})$ telle que $A = P^T C_Q P$. Par conséquent, $\max_{\mathcal{B}}(f) = P^T C_Q P$. En notant \mathcal{B}_1 la famille de vecteurs de E dont la matrice dans la base \mathcal{B} est P^T . Comme P^T est orthogonale, \mathcal{B}_1 est une base orthonormale et, par formule de changement de base, $\max_{\mathcal{B}_1}(f) = C_Q$. Ceci prouve que f est orthocyclique.

- 36 Comme f est nilpotent, il existe une base (e_1, \dots, e_n) de E dans laquelle f est triangulaire supérieure stricte. En notant $F_i = \text{vect}(e_1, \dots, e_i)$, on a donc $f(F_i) \subset F_{i-1}$ pour tout $i \in [\![1,n]\!]$ (on peut convenir que $F_0 = \{0\}$). On applique l'algorithme de Gram-Schmidt à cette base (e_1, \dots, e_n) et on obtient une base orthonormale (u_1, \dots, u_n) de E telle que $\text{vect}(u_1, \dots, u_i) = \text{vect}(e_1, \dots, e_i) = F_i$ pour tout $i \in [\![1,n]\!]$. Ainsi $f(u_i) \in f(F_i) \subset F_{i-1} = \text{vect}(u_1, \dots, u_{i-1})$ pour tout $i \in [\![1,n]\!]$. La matrice de f dans la base (u_n, \dots, u_1) est donc encore triangulaire inférieure stricte.
- 37 Supposons que f est orthocyclique. Il existe donc une base orthonormale (e_1, \dots, e_n) de E dans laquelle la matrice de f est de la forme C_Q . Comme f est nilpotent, $\chi_f = X^n = Q$. La dernièr colonne de C_Q est donc nulle de sorte que $\operatorname{rg} f = \operatorname{rg} C_Q = n 1$. Par ailleurs, $\operatorname{Ker} f = \operatorname{vect}(e_n)$ et comme (e_1, \dots, e_n) est orthonormale, $(\operatorname{Ker} f)^{\perp} = \operatorname{vect}(e_1, \dots, e_{n-1})$. Ainsi (e_1, \dots, e_{n-1}) est une base orthonormée de f. Soit $(x, y) \in ((\operatorname{Ker} f)^{\perp})^2$. Alors

$$x = \sum_{i=1}^{n-1} \langle x, e_i \rangle e_i$$

$$y = \sum_{i=1}^{n-1} \langle y, e_i \rangle e_i$$

puis

$$f(x) = \sum_{i=1}^{n-1} \langle x, e_i \rangle f(e_i) = \sum_{i=1}^{n-1} \langle x, e_i \rangle e_{i+1}$$

$$f(y) = \sum_{i=1}^{n-1} \langle y, e_i \rangle f(e_i) = \sum_{i=1}^{n-1} \langle y, e_i \rangle e_{i+1}$$

Comme (e_1, \dots, e_{n-1}) et (e_2, \dots, e_n) sont toutes deux orthonormées

$$\langle x, y \rangle = \sum_{i=1}^{n-1} \langle x, e_i \rangle \langle y, e_i \rangle = \langle f(x), f(y) \rangle$$

Inversement, supposons que f est de rang n-1 et que $\forall (x,y) \in ((\operatorname{Ker} f)^{\perp})^2$, $\langle x,y \rangle = \langle f(x),f(y) \rangle$. D'après la question précédente, il existe une base orthonormale (e_1,\ldots,e_n) de E dans laquelle la matrice de f est triangulaire inférieure stricte. On a notamment $f(e_n) = 0_E$ et comme $\operatorname{rg}(f) = n-1$, $\operatorname{Ker} f = \operatorname{vect}(e_n)$ en vertu du théorème du rang. Comme (e_1,\ldots,e_n) est orthonormale, $(\operatorname{Ker} f)^{\perp} = \operatorname{vect}(e_1,\ldots,e_{n-1})$.