Generalization and Distributed Learning of GFlowNets

Tiago da Silva

August, 29, 2025

ICLR, 2025.

Approximate Discrete Bayesian Inference

Let $\mathcal{X} = \{x_1, ..., x_n\}$ be a finite and large space.

Let \mathcal{D} be the **data space** and $f: \mathcal{D} \times \mathcal{X} \to \mathbb{R}$ be a probabilistic model indexed by \mathcal{X} .

Let $\pi: \mathcal{X} \to \mathbb{R}$ be a prior over \mathcal{X} . Examples:

- 1. \mathcal{X} = phylogenetic trees, \mathcal{D} = nucleotide sequences.
- 2. \mathcal{X} = drugs, \mathcal{D} = pharmacological properties.
- 3. \mathcal{X} = sentences, \mathcal{D} = answers (for a given question).

Our objective is to estimate the **posterior** $\pi(\cdot \mid D)$ over \mathcal{X} given a subset $D \subset \mathcal{D}$.

$$\pi(x\mid D) = f(D\mid x)\pi(x) \left(\sum_{y\in\mathcal{X}} f(D\mid x)\pi(x)\right)^{-1}$$

Due to \mathcal{X} 's intractable size, the partition function

$$Z = \sum_{y \in \mathcal{X}} f(D \mid x) \pi(x)$$

cannot be directly computed.

In doing so, our goal is to both compute expectations over and estimate the modes of $\pi(x \mid D)$. That is,

$$\mathbb{E}_{x \sim \pi(\cdot \mid D)}[\kappa(x)]$$

for a decision function $\kappa:\mathcal{X}\to\mathbb{R}$, and

$$\max_{x \in \mathcal{X}} \pi(x \mid D).$$

Owing to \mathcal{X} 's lack of a differential structure, traditional approaches (e.g., HMC) often fail to properly approximate $\pi(\cdot \mid D)$. This is the problem we will address.

GFlowNets cast the problem of approximating $\pi(\cdot \mid D)$ as that of **learning** a stochastic inductive process on an **extended space** $\mathcal S$ of **sub-instances** of $\mathcal X$.

When perfectly learned, this process reaches each $x \in \mathcal{X}$ proportionally to $f(D \mid x)\pi(x)$. That is, it generates **exact** samples from the **posterior**. We refer to \mathcal{X} as the set of terminal states.

2-sized sentence-generation over the vocabulary $\{1,2\}$.

 \mathcal{X} = terminal states, $\mathcal{S} \setminus \mathcal{X}$ = extended states. We call this is a **state graph**, which is a **pointed directed acyclic graph**.

From a learning perspective, we define parametric models

- 1. for a forward policy, $p_F: \mathcal{S} \times \mathcal{S} \rightarrow [0, 1]$, and
- 2. for a backward policy, $p_B: \mathcal{S} \times \mathcal{S} \rightarrow [0, 1]$.
- $p_F(s_2 \mid s_1)$ measures the probability of going from s_1 to s_2 .
- $p_B(s_1 \mid s_2)$ measures the probability of reverting the above action (when traversing the state graph backwards).
- We parameterize both p_F and p_B with neural networks.

Recall that our objective is for p_F to satisfy

$$\sum_{\tau: s_o \rightsquigarrow x} \prod_{\underbrace{(s_i, s_{i+1}) \in \tau}} p_F(s_{i+1} \mid s_i) \propto f(D \mid x) \pi(x)$$

(s_o is the **source** of the state graph). This is satisfied when

$$\mathcal{V}_{p_E} \left(\frac{p_F(\tau \mid s_o)}{p_B(\tau \mid x) f(D \mid x) \pi(x)} \right) = 0$$

for a distribution p_E such that $p_E(\tau) > 0$ for every τ .

We remark on two facts from this setting.

- 1. p_B is an artifact that enables tractable learning of p_F .
- 2. Learning is based on adaptive stochastic gradient-based estimates of \mathcal{V}_{p_E} , i.e.,

$$p_F^{(t+1)} \leftarrow p_F^{(t)} - \gamma_t \nabla \mathcal{V}_{p_E}^K,$$

in which $\mathcal{V}_{p_E}^K$ is a Monte Carlo estimate of \mathcal{V}_{p_E} based on samples $\{\tau_1,...,\tau_K\}\sim p_E$ and a **learning rate** schedule $\{\gamma_t\}$.

Learning & Generalization of GFlowNets

In conclusion, a GFlowNet learns a stochastic policy over a fixed state graph via stochastic gradient descent.

- 1. Learning is based on **partial observations** of the state graph. Does the learned policy **provably generalize** beyond the observed states?
- 2. Which algorithmic improvements can speed up the learning of a generalizable policy?

A review of PAC-Bayes bounds

Probably Approximately Correct (PAC) Bayes techniques provide a principled approach for obtaining non-vacuous statistical bounds on the generalization of a model.

1. Let $L: \Theta \times \mathcal{X} \to \mathbb{R}$ be a loss function and \hat{L} be its empirical estimate of $\mathbb{E}_x[L]$. The **generalization gap** is

$$g(\theta) = \mathbb{E}_x[L(\theta, x)] - \hat{L} \text{ for each } \theta \in \Theta.$$

2. PAC-Bayes bounds limit the expected gap,

 $\mathbb{E}_{\theta \sim Q}[g(\theta)] \leq \varphi(L, \Theta, P, Q)$ for a functional φ and distributions P, Q.

- 3. Assumptions: boundedness of L and stationarily distributed observations.
 - The former can be **relaxed** by redefining L as $L'(\theta, x) = \min(L(\theta, x), B)$ for a sufficiently large $B \in \mathbb{R}$.
 - Stationarity is a good first approximation when dealing with static datasets.

Important: our bound does not take into account the learning algorithm. This is the reason we bound $\mathbb{E}_{\theta}[g(\theta)]$ instead of $g(\hat{\theta})$ for the learned $\hat{\theta}$.

- As explained earlier, GFlowNet learning is based on a sequence $\left\{S_t\right\}_{t=1}^N$ of b-sized trajectory datasets, $S_t = \left\{ au_1^{(t)},..., au_b^{(t)}\right\}$. We assume $\left\{S_t\right\}_{t=1}^N$ is stationary.
- Based on the PAC-Bayes framework, our understanding of GFlowNet generalization should be grounded on:
 - 1. A bounded loss fuction, L.
 - 2. Distributions $P,Q:\Theta\to\mathbb{R}$ over the parameters Θ of the neural network parameterizing p_F .

- We adopt FCS as a performance metric for GFlowNets, which we have introduced in an earlier work.
- In a nutshell, for $S = \{\tau_1, ..., \tau_K\}$,

$$\text{FCS }(p_F,S) = \frac{1}{2} \sum_{\tau \in S} \mid p_T(x) - \hat{p}_T(x) \mid,$$

- 1. x is the terminal state associated with $\tau \in S$ and
- 2. p_T (resp. \hat{p}_T) is the true (resp. estimated) marginal distribution of $x \in S$.

• Both p_T and \hat{p}_T can be efficiently computed on S:

$$p_T(y) = \frac{f(y \mid D)\pi(y)}{\sum_{\tau \in S} f(D \mid x)\pi(x)} \text{ and } \hat{p}_T(y) = \mathbb{E}_{p_B} \left[\frac{p_F(\tau \mid s_o)}{p_B(\tau \mid y)} \right].$$

- FCS is clearly bounded by [0,1] (it is a total variation distance restricted to S).
- We define the generalization gap of a GFlowNet as

$$g(p_F) \coloneqq \mathbb{E}_{S \sim p_E}[\text{FCS } (p_F, S)] - \frac{1}{N} \sum_{1 \leq t \leq N} \text{FCS } (p_F, S_t).$$

• Building upon this, a PAC-Bayes bound for g is:

$$\mathbb{E}_P[g(p_F)] \leq \mathcal{O}\bigg(\frac{K}{N^{\frac{1}{2}}}\bigg) + \mathrm{KL}\ (P\|Q),$$

with KL $(P\|Q) = \mathbb{E}_P\left[\log \frac{dP}{dQ}\right]$ as the Kullback-Leibler divergence between P and Q.

(we will skip the technical details)

• When the right-hand side of the above formula is larger than 1, the bound is said to be **vacuous**.

• Building upon this, a PAC-Bayes bound for g is:

$$\mathbb{E}_{P}[g(p_F)] \leq \mathcal{O}\left(\sqrt{\frac{\mathrm{KL}\ (P\|Q)}{N}}\right),$$

with KL $(P\|Q) = \mathbb{E}_P\left[\log \frac{dP}{dQ}\right]$ as the Kullback-Leibler divergence between P and Q.

• When the right-hand side of the above formula is larger than 1, the bound is said to be **vacuous**.

- Remaining ingredients: P and Q.
- As per traditional work, we let both P and Q be isotropic Gaussian distributions with fixed variance.
- We also split $\left\{S_t\right\}_{t=1}^N$ into two datasets, \mathcal{S}_1 and \mathcal{S}_2 .
 - P is learned by minimizing the variance loss, \mathcal{V}_{p_E} , defined above (smooth proxy for FCS) on \mathcal{S}_1 .
 - Q is learned by minimizing the upper bound for the learned P on \mathcal{S}_2 .

This approach consistently produces non-vacuous bounds on consolidated benchmark tasks.

PAC-Bayes and Distributed Learning

• We show that, for an adequate loss function $L:\Theta \to \mathbb{R}$,

$$\mathbb{E}_P[L(p_F)] \lesssim \mathbb{E}_P\Big[\hat{L}(p_F)\Big] + \mathcal{O}\bigg(\frac{\mathrm{KL}\ (P \parallel Q) + \log M}{N}\bigg),$$

in which M is the maximum trajectory length within the state graph. Examples:

- 1. Phylogenetic inference: M is the tree size.
- 2. Sentence generation: M is the maximum sentence size.

PAC-Bayes and Distributed Learning

$$\mathbb{E}_P[L(p_F)] \lesssim \mathbb{E}_P\left[\hat{L}(p_F)\right] + \mathcal{O}\left(\frac{\mathrm{KL}\ (P \parallel Q) + \log M}{N}\right).$$

This formula provides two actionable solutions for improving generalization.

- 1. By reducing model size, we reduce $\mathrm{KL}\ (P\|Q)$ (larger for high-dimensional P,Q).
- 2. By shrinking the state graph, we reduce $\log M$.

PAC-Bayes and Distributed Learning

$$\mathbb{E}_P[L(p_F)] \lesssim \mathbb{E}_P\left[\hat{L}(p_F)\right] + \mathcal{O}\left(\frac{\mathrm{KL}\ (P \parallel Q) + \log M}{N}\right).$$

This formula provides two actionable solutions for improving generalization.

- 1. By reducing model size, we reduce $\mathrm{KL}\ (P\|Q)$ (larger for high-dimensional P,Q).
- 2. By shrinking the state graph, we reduce $\log M$.

Distributed Learning of GFlowNets

We propose a distributed algorithm that breaks up the state graph into pieces learned by smaller GFlowNets.

Each GFlowNet parallely addresses a simpler problem: $\downarrow \operatorname{KL}(P||Q)$ and $\downarrow M$.

The trained GFlowNets are then be efficiently aggregated.

Our algorithm, Subgraph Asynchronous Learning (SAL), can be easily implemented in **computer clusters**.

Subgraph Asynchronous Learning

State graph.

Frame 31

State graph divided into independent chunks. A GFlowNet is parallely learned for each chunk.

SAL: Intuition & Flow Assignment

Analogy: A GFlowNet learns a flow assignment in a flow network (this is the reason for the model's name).

SAL: Intuition & Flow Assignment

From this viewpoint, SAL learns a flow assignment for **subnetworks** in parallel.

When a subnetwork has **multiple initial states**, we learn an **amortized solution**.

SAL: Intuition & Flow Assignment

In a final step, a centralized model assings the appropriate amount of flow to each subnetwork.

SAL: Empirical Analysis

Recall our initial objectives:

- 1. Estimate posterior expectations.
- 2. Approximately find posterior modes.

When assessing the former, we evaluate the **goodness-of- fit** of the learned distribution to the posterior.

When assessing the latter, we evaluate the value of $\max_{x \in X} \pi(x) f(D \mid x)$ for a sampled set $X \subseteq \mathcal{X}$.

SAL performs best in both cases, as we illustrate next.

SAL finds a better approximation to the target distribution than a monolithic model.

SAL finds high-valued states faster than a monolithic model for benchmark tasks.

(A mode is defined as a terminal state $x \in \mathcal{X}$ with $\pi(x)f(D|x) > \rho$ for a prescribed ρ)

Take home message

GFlowNets are state-of-the-art models for approximate inference over discrete and compositional distributions.

Our PAC-Bayes bounds rigorously demonstrate that a GFlowNet learns a generalizable policy function.

Our distributed algorithm (SAL) improves generalization by reducing both the model and problem complexities.

SAL also leads to faster mode discovery and better posterior approximations than a centralized model.