Divide and Conquer

Design and analysis of Algorithm

Tutorial 1

Sorting Problem

- 29 13
- 70 | 26
- 85 29
- 40 40
- 47 | 47
- 26 59
- 13 70
- 59 85

- Main Problem
 - Input: An unsorted array A[1..n]
 - Output: An sorted array A'[1..n]
- Sub-problem
 - Input: An unsorted array A[i,j] 1≤i,j≤n
 - Output: An sorted array A'[i,j]
 - 47 | 13
 - 26 | 26
 - 13 | 47
 - 59 59

Divide

- Divide Process Concept
 - 1. Divide it recursively
- Problem:
 - Input: A[1..n]
 - Output: A[1.. \[\[\] n/2 \], A[\[\[\] n/2 \] +1 ..n]

Divide Process Concept

Divide it recursively until it is easy to conquer (base case)

Base Case

- Base Case Problem
 - Input: An unsorted array A[i]
 - Output: An sorted array A'[i]
- How to solve/conquer it?
 - It has been sorted → A'[i]=A[i] (easy) ☺

29

Combine

- Combine Problem:
 - Input: Given two sorted array B and C
 - Output: A sorted array of elements including B and C

Combine

Combine the array recursively

Calculating f(n)=aⁿ

- Main Problem:
 - Input: value a, value n
 - Output: an
- Sub-problem:
 - Input: value a, value x, $1 \le x \le n$
 - Output: a^x

$$a^{n} = \underbrace{a * a * * a}_{\text{x}} = \underbrace{(a * a^{n} * * a)}_{\text{x}} (a * a * * a)$$

Divide Process

Even Case

Example

Odd Case

Example

Divide Process

Divide until it is easy to conquer (Base Case)

Divide Process

- More sub-problems can increase time complexity
- The sub-problem are the same

 combine them to one

Base Case

- Base Case Problem:
 - Input: value a and n=1
 - Output: aⁿ
- How to solve it?
 - Directly return $a^1 = a$ (Easy \odot)

Combine

- Combine Problem:
 - Input: a^x
 - Output: a^{2x} if x is even a^{2x+1} if x is odd
- How to solve it?
 - Just do at most 2 multiplication

How to write Recurrence for D/C Algorithm?

$$T(n) = a T(n/b) + f(n)$$

- n: data input size
- a: number of sub-problems division
- n/b: the sub-problem sizes
- f(n): time to combine sub-problems

T(n) = 3 T(n/2) + c n

$$T(n) = 3 T(n/2) + c n$$

- Time at the **leaf** level: $c n^{\log_2 3}$
- Number of **non-leaf** levels L: $\log_2 n$
- \bullet Consider the level *i* (level 0 is the top level)
 - ⋄ Input size of a subproblem: $n/2^i$
 - \diamond Number of subproblems: 3^i
 - « Combine time of a subproblem: $c(n/2^i)$
 - ⋄ Total time at this level: $3^i c (n/2^i)$
- \bullet Total time T(n):

$$c n^{\log 23} + \sum_{i=0..L-1} 3^i c (n/2^i)$$

$$= c n^{\log 23} + c n (1.5^{L} - 1) / (1.5 - 1)$$

$$= O(c n^{\log_{23}} + c n n^{\log_{21.5}})$$

$$= O(n^{1.585})$$

geometric sum equation

log base equation

Method: Master Method

- Given the recurrence: T(n) = a T(n/b) + f(n)

• Given the recurrence:
$$T(n) = a T(n/b) + f(n)$$

- $f(n)$ must be ≥ 0

• Compare $f(n)$ and $n^{\log_b a}$

- ϵ v are some constants such that $\epsilon > 0$, $v < 1$

$$T(n) = \begin{cases} O(n^{\log_b a} \log n) & \text{if } f(n) = \Theta(n^{\log_b a}) \\ O(n^{\log_b a}) & \text{if } f(n) = \Omega(n^{\epsilon}) \end{cases}$$

polynomially larger if $f(n) / n^{\log_b a} = \Omega(n^{\epsilon})$

and $f(n/b) / f(n) \leq v$

regularity condition

regularity condition

$$T(n) = a T(n/b) + f(n)$$

Finally

- Practice makes perfect (Active learner)
- Reference Exercises:
 - 1. Introduction to Algorithm
 - 2. https://www.cs.berkeley.edu/~vazirani/algorith ms/chap2.pdf
- Divide and Conquer is the foundation concept for you to learn Dynamic Programming