Homework 9

Felipe Alves (NYU Stern)

Exercise 1

Prove that for every $\mathbf{A} \in \mathcal{M}$ we have $\|\mathbf{A}\| = \sqrt{\rho(\mathbf{A}'\mathbf{A})}$

Answer:

Before proving the result, let's introduce some notation. From FACT saw in class the spectral norm is equivalent to

$$||A|| = \sup \left\{ ||Ax|| : x \in B_{\mathbb{R}^n} \right\}$$
 (1.1)

where $B_{\mathbb{R}^n} := \Big\{ x \in \mathbb{R}^n : \|x\| = 1 \Big\}$. Since,

- $x \mapsto ||Ax||$ is continuous (composition of the norm, which is always continuous, with the linear map A that is always continuous in finite dimensional spaces)
- $B_{\mathbb{R}^n}$ is compact (closed and bounded on finite dimensional space)

we can rewrite (1.1) as alternative

$$||A|| = \max \left\{ ||Ax|| : x \in B_{\mathbb{R}^n} \right\}$$

$$= \max_{\|x\|=1} \left[(Ax)'(Ax) \right]^{0.5}$$

$$= \max_{\|x\|=1} \left[x'(A'A)x \right]^{0.5}$$

Consider the alternative problem, which has the same solution

$$\max_{\sum_{i=1}^{n} x_{i}^{2} = 1} \quad x'(A'A)x$$

Since this is a constrained optimization problem, we can solve it using the Lagrangian method, which states that any solution must satisfy the following foc

$$(A'A)x = \lambda x$$

Notice that any eigenvalue, eigenvector pair (λ_i, x_i) of A'A satisfy the foc. Pre-multiplying the last expression by x', we have

$$x'(A'A)x = \lambda x'x = \lambda ||x||^2 = \lambda$$

So the actual solution is given by eigenvector x^* associated with the largest eigenvalue λ^* of A'A.¹ Moreover, the objective evaluated at x^* gives the desired result

$$||A||^2 = (\lambda^*) \Rightarrow ||A|| = \sqrt{\rho(A'A)}$$

Exercise 2

Making use of Gelfand's formula, show that if $\rho(\mathbf{A}) < 1$, then $\sum_{k=0}^{\infty} ||\mathbf{A}^k|| < \infty$. In particular, show that under the stated condition there exists an r < 1 and $C \in \mathbb{N}$ such that $||\mathbf{A}^k|| \le r^k C \ \forall k \in \mathbb{N}$

Answer:

Gelfand's formula: $\|\mathbf{A}^k\|^{1/k} \to \rho(\mathbf{A})$

Let $0 < \epsilon < 0.5(1 - \rho(\mathbf{A}))$. From Gelfand's formula, we know that there exists $M \in \mathbb{N}$ such that

$$\|\mathbf{A}^k\|^{1/k} - \rho(\mathbf{A}) \le \epsilon$$
$$\|\mathbf{A}^k\|^{1/k} \le \underbrace{\epsilon + \rho(\mathbf{A})}_{\equiv r < 1} \text{ for any } k \ge M$$

From what we conclude $\|\mathbf{A}^k\| \leq r^k \ \forall k \in \mathbb{N}$ such that $k \geq M$. But that observation allow us to bound the entire sequence $(\|A^k\|)$ by

$$||A^n|| \le \frac{\max_{i \in \{1,\dots,M\}} ||A^i||}{r^M} r^n = \frac{||A^{i^*}||}{r^M} r^n$$

To check it, note that

• if n < M then

$$||A^n|| \le ||A^{i^*}|| \le ||A^{i^*}|| \frac{r^n}{r^M}$$

Here since all eigenvalues are real positive numbers - A'A is symmetric and positive semi-definite - $\rho(A'A) = \lambda^* := \max_{i \in \{1,...,n\}} \lambda_i = \rho(A'A)$

• if $n \ge M$ then

$$||A^n|| \le r^n \le \frac{||A^{i^*}||}{r^M} r^n$$

since $\frac{\|A^{i^*}\|}{r^M} \ge \frac{\|A^{i^*}\|}{r^{i^*}} > 1$, otherwise M = 1

Putting $C := \frac{\|A^{i^*}\|}{r^M}$, we have our desired result, namely

$$||A^k|| < Cr^k \quad \forall k \in \mathbb{N}$$

This implies that series resulting from the sequence $(\|A^k\|)$ converges, since $\sum_{i=1}^m \|A^k\|$ is a increasing sequence bounded above by

$$\sum_{k=0}^{\infty} \lVert \mathbf{A}^k \rVert \leq \sum_{k=0}^{\infty} C r^k = \frac{C}{1-r} < \infty$$

Exercise 3

Show that if $\rho(\mathbf{A}) < 1$, then $\|\mathbf{A}^k\| \to 0$ without using Gelfrand's formula. Assume that \mathbf{A} is diagonalizable.

Answer:

Suppose A is diagonalizable, i.e., it can be written on the form $P = P^{-1}\Lambda P$, where Λ is a diagonal $n \times n$ matrix with the eigenvalues of A as its entries and P is a nonsingular $n \times n$ matrix consisting of the eigenvectors corresponding to the eigenvalues in Λ .

From that decomposition, it is readily seen that $A^k = P^{-1}\Lambda^k P$. By submultiplicative property of the spectral norm we have $||A^k|| \le ||P^{-1}|| ||\Lambda^k|| ||P||$. So we are done if we can show that $||\Lambda^k|| \to 0$.

Applying the fact proved in Question 1 to the case of diagonal matrix, we have

$$\|\Lambda^k\| = \sqrt{\rho(\Lambda^{2k})}$$
$$= \sqrt{\rho(\Lambda)^{2k}}$$
$$= \rho(\Lambda)^k = \rho(A)^k \to 0$$

where second line uses the fact that eigenvalues of diagonal matrix are the entries itself, while the third comes from the diagonalization directly.

Exercise 4

Show that the set of nonnegative definite matrices is a closed subset of $\Big(\mathcal{M}(n\times n),\|\cdot\|\Big)$

Answer:

Let (M_k) be a seq. of nonnegative definite matrices in $(\mathcal{M}(n \times n), \|\cdot\|)$ such that $M_k \to M$. We want to show that M is also a nonnegative definite matrix.

Let $x \in \mathbb{R}^n$ be an arbitrary vector and define $T_x : \mathcal{M}(n \times n) \to \mathbb{R}$ by $T_x(A) := x'Ax$. Therefore, we have $T_x(M_n) \geq 0 \quad \forall k \in \mathbb{N}$. If we can show that T_x is continuous we can conclude that $T_x(M) \geq 0$. Since x is arbitrary, that suffices to conclude that M is a nonnegative definite matrix, completing our proof.

Let x be as before and let $A_k \to A \in \mathcal{M}(n \times n)$.

$$|T_x(A_k) - T_x(A)| = |T_x(A_k - A)|$$

$$= \langle x, (A_k - A)x \rangle$$

$$\leq ||x|| \times ||(A_k - A)x||$$

$$\leq ||x|| \times ||(A_k - A)|| ||x||$$

$$= ||x||^2 ||A_k - A|| \to 0$$

where first line follows for linearity, second from definition of T_x , third from Cauchy-Schwarz inequality, fourth from the definition of the spectral norm. Note that the norm $\|(A_k - A)x\|$ in third line is the usual euclidean norm, while $\|(A_k - A)\|$ in the fourth line is the spectral norm. The last line rearranges the terms and uses the fact that $A_k \to A$ with respect to the distance induced by spectral norm.

Exercise 5

Let $\mathbf{M}, \mathbf{A} \in \mathcal{M}(n \times n)$ with $\rho(\mathbf{A}) < 1$. Let \mathbf{X}^* be the unique solution to the Lyapunov equation

$$X = AXA' + M$$

Show that

- 1. $M \ symmetric \Rightarrow X^* \ symmetric$
- 2. M nonnegative definite $\Rightarrow X^*$ nonnegative definite
- 3. M positive definite $\Rightarrow X^*$ positive definite

Answer:

To prove (2) and (3) we are going to make use of the following theorem presented in lecture notes.

Theorem. Let $\mathbf{A}, \mathbf{M} \in \mathcal{M}(n \times n)$. If $\rho(\mathbf{A}) < 1$ then the Lyapunov operator $L : \mathcal{M}(n \times n) \to \mathcal{M}(n \times n)$ defined by

$$LX := AXA' + M \tag{5.1}$$

has a unique globally attracting fixed point X^* .

1.

Let X^* be solution of Lyapunov equation. Simple matrix algebra and the assumption that M is symmetric gives us that $(X^*)'$ is also a solution

$$(X^*)' = (X^*A')'A' + M' = A(X^*)'A' + M$$

However, we know from class that under the conditions stated on A, there exists a unique solution to the equation. Therefore $X^* = (X^*)'$

For (2), (3) we will use on top of theorem the following corollary

Corollary. Let L satisfy the conditions of the theorem. If S is a closed subset of $\mathcal{M}(n \times n)$ and $L(S) \subseteq S$, then $X^* \in S$. Moreover, if $L(S) \subseteq S' \subset S$, then $X^* \in S'$.

Proof. Let $X_0 \in S$ and consider the sequence $(L^n X_0)$. Since S is invariant under L, we have $(L^n X_0) \in S^{\infty}$. The theorem gives us that $L^n X_0 \to X^*$, but being S close we have $X^* \in S$. If is also true that L maps S to S', we have $X^* = LX^* \in S'$.

So all we need to check for (2), (3) is that (i) the set of nonnegatives definite matrices - which I will denote by $\mathcal{M}^+(n \times n) := \{A \in \mathcal{M}(n \times n) : A \succeq 0\}$ - is closed and (ii) that the Lyapunov operator maps the set of nonnegatives definite matrices into nonnegative definite/positive definite matrices.

2.

First let show that $\mathcal{M}^+(n \times n)$ is closed. Let $x \in \mathbb{R}^n$ and consider the map $T_x : \mathcal{M}(n \times n) \to \mathbb{R}$ defined on question 4. Note that we can represent the set of nonneggative definite matrices as

$$\mathcal{M}^+(n \times n) = \cap_{x \in \mathbb{R}^n} T_x^{-1}([0, \infty))$$

which is closed. Why? $T_x^{-1}([0,\infty))$ is closed $\forall x \in \mathbb{R}^n$ by continuity of T_x and intersection of arbitrary number of closed sets is always closed.

So now we just need to show that $T_x(\mathcal{M}^+(n \times n)) \subseteq \mathcal{M}^+(n \times n)$ when $M \in \mathcal{M}^+(n \times n)$ and apply the corollary.

Let $X, M \in \mathcal{M}^+(n \times n)$ and consider and arbitrary $x \in \mathbb{R}^{\kappa}$. Then

$$T_x(LX) = x'(AXA' + M)x$$
$$= (A'x)'X(A'x) + x'Mx > 0$$

Since both X, x are arbitrary, we have $LX \in \mathcal{M}^+(n \times n)$ which concludes our proof.

3. For part (3), we only need to show that under the stronger assumption that $M \in \mathcal{M}^{++}(n \times n)$, our operator maps any nonneggative definite matrix to a positive definite matrix. Repeating the same step as in (2)

$$T_x(LX) = x'(AXA' + M)x$$

$$= \underbrace{(A'x)'X(A'x)}_{>0} + \underbrace{x'Mx}_{>0} > 0$$

Again, since x is arbitrary, we have our desired result.