Практикум 3. Комплексные числа (1).

Цель работы — изучение основных операций над комплексными числами, построение изображения комплексных чисел на плоскости, обучение использованию средств пакета MATLAB для иллюстраций вышеперечисленных понятий, изучение структуры М-файлов Script.

Продолжительность работы - 2 часа.

Оборудование, *приборы*, *инструментарий* – работа выполняется в компьютерном классе с использованием пакета MatLab.

Порядок выполнения

- 1. Упражнения выполняются параллельно с изучением теоретического материала.
- 2. После выполнения каждого упражнения результаты заносятся в отчёт.
- 3. При выполнении упражнений в случае появления сообщения об ошибке рекомендуется сначала самостоятельно выяснить, чем оно вызвано, и исправить команду; если многократные попытки устранить ошибку не привели к успеху, то проконсультироваться с преподавателем.
- 4. Дома доделать упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые Вы не успели выполнить во время аудиторного занятия.
- 5. После выполнения упражнений выполнить дополнительные упражнения для самостоятельной работы и ответить на контрольные вопросы и (см. ниже).
- 6. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения» и упражнения для самостоятельной работы. Отчёт представить в виде документа Microsoft Word, имя файла (пример): mp_10_Ivanov_P_01_s_1 (факультет_группа_Фамилия студента_Инициал_номер лабораторной, семестр). Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики; тексты М-сценариев и М-функций; выводы.

Краткие теоретические сведения

и практические упражнения

1. Действия с комплексными числами

Для ввода комплексного числа можно пользоваться встроенной функцией complex (a,b), где а - действительная, b — мнимая часть вводимого комплексного числа. Также можно использовать конструкции a+bi или a+bj, в которых мнимые части комплексных чисел сопровождаются буквой i или j.

Пример 1.

>> complex(3.5, -2)
ans =

$$3.5 - 2i$$

>> z1=3.5-2i
z1 =
 $3.5 - 2i$
>> z2=4+5j
z2 =
 $4 + 5i$

Следует учитывать, что всюду, за исключением конструкций a+bi или a+bj, MATLAB воспринимает символы i и j как имена переменных. По умолчанию этим переменным присваивается значение (0,1) (здесь (0,1) - комплексное число с действительной частью 0 и мнимой частью 1, т.е. мнимая единица).

Пример 2.

>> i
ans =
$$0 + 1i$$
>> j
ans =
 $0 + 1i$
>> 2+i*4
ans =
 $2 + 4i$

Однако этим переменным можно присваивать и любые другие значения.

Пример 3.

Чтобы вернуть переменным і и ј их исходное значение (0,1), достаточно набрать команды clear і и clear j.

Пример 4.

Сложение, вычитание, умножение и возведение в степень комплексных чисел в MATLAB осуществляется с помощью тех же встроенных функций и с использованием тех же символов, которые служат для аналогичных операций над действительными числами.

Пример 5

>>
$$i^2$$

ans =
-1
>> $z=(3-i)*(2+4i)$

$$z =$$
 $10 + 10i$
>>> $b=z/(2i)$
 $b =$
 $5 - 5i$
>>> format rational
>>> $z=(1-2i)^2/(5+6i)$
>>> z
 $z =$
 $-39/61 - 2/61i$
>>> format short
>>> z
 $z =$
 $-0.6393 - 0.0328i$
>>> format long
>>> z

-0.639344262295082 - 0.032786885245902i

Упражнение 1.

Вычислить:

- 1) (2+3i)(3-i);
- 2) $(1-i)^3 (1+i)^3$;
- 3) i^k , где k = 1, 2, 3, ..., 8 (использовать операцию поэлементного возведения массива в степень);
 - 4) $\frac{2-3i}{1+4i} + \frac{1}{4-i}$ (результаты вывести в различных форматах).

В таблице 1 приведены встроенные в систему MATLAB функции, с помощью которых можно находить для комплексных чисел действительную, мнимую части, модуль, аргумент, сопряженное число.

Таблица 1. Операции с комплексными числами			
Реализующая	Символ	Описание	
функция			

conj (z)	z'	Для комплексного числа z находит сопряженное
		число \overline{z} .
		Для матрицы комплексных чисел z находит
		матрицу, полученную путем замены элементов
		матрицы z на сопряженные числа и
		транспонирования полученной в результате
		замены матрицы.
real (z)		Для комплексного числа z находит
		действительную часть $Re(z)$.
		Для массива z комплексных чисел находит
		массив действительных частей элементов z
imag (z)		Для комплексного числа z находит мнимую
		часть $Im(z)$.
		Для массива z комплексных чисел находит
		массив мнимых частей элементов z .
abs(z)		Для комплексного числа z находит его модуль.
		Для массива z комплексных чисел возвращает
		массив модулей элементов z
angle(z)		Для массива комплексных чисел z возвращает
		массив аргументов элементов z. Значение
		аргумента измеряется в радианах и находится в
		пределах $[-\pi;\pi]$

Пример 6

$$\mathbf{z} =$$

$$3 + 7i$$

$$3 + 7i$$

$$>> z=[1+2i \ 3-4i]$$

$$z =$$

$$1 + 2i 3 - 4i$$

$$3 + 4i$$

ans =

Упражнение 2.

Вычислить
$$z_1\overline{z}_2$$
 и $\left(\frac{\overline{z}_1}{z_2}\right)^2$, если $z_1=1-i\sqrt{3}$, $z_2=\sqrt{3}+i$.

Упражнение 3. Найти действительную и мнимую части комплексного числа, его модуль, аргумент, найти сопряженное ему число:

1)
$$(4-5i)(5-6i^3)$$
; 2) $(1+i)^{15}$.

2. Изображение чисел на комплексной плоскости

Комплексное число можно изображать на комплексной плоскости точкой или радиус-вектором этой точки.

Пример 7. В одной системе координат изобразить точкой число z = 2 + 3i и вектором число z = 3 - 2i.

```
>> z=2+3i;
```

>> plot(real(z),imag(z),'go')

>> axis([-4 4 -4 4])

>> line([-4 4],[0 0],'Color','black')

>> line([0 0],[-4 4],'Color','black')

>> grid on

>> xlabel('Re(z)'),ylabel('Im(z)')

>> hold on

>> z=3-2i;

>> line([0 real(z)],[0 imag(z)],'Color','r')

>> plot(real(z),imag(z),'r*') % маркер * заменит нам стрелочку на конце вектора

>> title('Изображение чисел на комплексной плоскости')

Для отображения комплексного числа (или массива комплексных чисел) MATLAB также позволяет использовать более простую запись функции plot: конструкция plot(real(z),imag(z),...) может быть заменена записью plot(z, ...).

Пример 7 (продолжение).

$$>> z2=1+3i$$
:

 \rightarrow plot(z2, 'b+'); % тоже самое, что и plot(real(z2), imag(z2), 'b+');

Упражнение 4. В одной системе координат изобразить векторами разного цвета числа $z_1 = 1 + 3i$, $z_2 = 3 + 4i$, $z_3 = z_1 + z_2$, $z_4 = z_1 - z_2$. Нанести координатную сетку, отобразить оси линиями черного цвета, подписать их. Масштаб по осям сделать одинаковым. Подписать графическое окно. Прокомментировать геометрический смысл суммы и разности комплексных чисел.

Пример 8. Найти и изобразить точками на комплексной плоскости все корни $\sqrt[6]{1+i}$.

```
>> z=1+i;

>> r=abs(z); phi=angle(z);

>> k=0:1:5;

>> zroot=r^(1/6)*(cos((phi+2*pi*k)/6)+i*sin((phi+2*pi*k)/6))

zroot =

1.0504 + 0.1383i  0.4054 + 0.9788i -0.6450 + 0.8405i -1.0504 - 0.1383i

-0.4054 - 0.9788i  0.6450 - 0.8405i
```

>> plot(real(zroot),imag(zroot),'or') % если указан тип маркера, но не задан стиль линии, то табличные строки маркером метятся, но друг с другом отрезками прямых не соединяются.

```
>> grid on
>> axis([-2 2 -2 2])
>> line([-2 2],[0 0],'Color','black')
>> line([0 0],[-2 2],'Color','black')
>> xlabel('Re'),ylabel('Im')
>> axis equal
>> title('Корни из комплексного числа')
% Добавим к рисунку окружность, на которой лежат все корни
>> hold on
>> t=0:pi/1000:2*pi;
>> x=r^(1/6)*cos(t);y=r^(1/6)*sin(t); % параметрические уравнения окружности
```

Упражнение 5. Найти и изобразить точками на комплексной плоскости все корни $\sqrt[4]{2\sqrt{3}-2i}$. Изобразить пунктиром окружность, на которой эти точки лежат.

>> plot(x,y,':b')

Построить штрих-пунктиром правильный многоугольник с вершинами в этих точках. Нанести сетку, отобразить оси линиями черного цвета, подписать их. Масштаб по осям сделать одинаковым. Подписать графическое окно.

3. Скрипты

Система МАТLAВ обычно работает в режиме интерпретации команд и операторов: во время работы они выводятся в командной строке, а система выполняет их немедленную обработку и выдает вычисленный результат. Однако в этом режиме нельзя без повторного набора всех операторов повторить предыдущие действия при новых значениях исходных данных; нельзя вернуться и повторить отдельные фрагменты действий или по некоторому условию перейти к другой последовательности операторов. Чтобы избежать этих проблем, часто применяемые последовательности операторов оформляют в виде программ, которые в языке МАТLAВ называют М-файлами.

Различают два типа М-файлов: скрипты (script) и функции (function).

Для начала рассмотрим скрипты. Скрипты довольно простой тип М-файлов. Они позволяют автоматизировать выполнение последовательности операторов, которые в ином случае должны были бы многократно вводиться из командной строки. В скрипте можно применять любые команды и функции языка МАТLAB. Скрипты не имеют входных и выходных аргументов. Они оперируют данными из рабочей области и могут создавать новые данные для последующей обработки в этом файле. Хотя скрипты не возвращают выходных аргументов, но все переменные сохраняются в рабочей области, так что после выполнения скрипта они могут быть использованы для продолжения вычислений в командном окне.

Создание нового скрипта начинается с последовательности команд **File** → **New** → **Script** в строке главного меню. В результате открывается окно редактора, в котором и набивается последовательность команд, аналогично тому, как мы делали это в командном окне. Строки, набираемые в окне редактора, автоматически нумеруются. Это позволяет идентифицировать сообщения об ошибках набора, выдаваемых в командное окно. После того, как программа набрана, нужно ее запомнить. Для запоминания программы, набранной в окне редактора, нужно воспользоваться последовательностью команд **File** → **Save as**, после чего набрать придуманное Вами имя файла. При этом к имени будет

автоматически добавлено расширение '.m'. Для того, чтобы программа была выполнена, нужно в командном окне набрать имя файла без расширения. Имена скриптов нельзя использовать в качестве операндов арифметических выражений и в качестве аргументов функций.

Обратите внимание, что название файла скрипта должно подчинятся тем же правилам, что и названия переменных. Название может содержать только латинские буквы (прописные или строчные) и цифры. Не допускается использовать в названии пробелы или специальные символы (кроме знака подчеркивания). При этом название файла всегда должно начинаться с буквы.

При вызове скрипта MATLAB различает регистр символов в названии файла. Например, для файла с названием "Example_1.m" MATLAB будет выдавать сообщение об ошибке при вызове >> example_1.

Также обратите внимание, что скрипт должен быть расположен в текущей папке. В противном случае, необходимо сменить текущий каталог на место расположения скрипта, либо указать путь (полный или относительный) к файлу скрипта в строке вызова.

Пример 9. Построить на комплексной плоскости множество точек, заданных условием |z| = 4.

Программу оформим в виде скрипта.

```
% Построение множества точек |z|=const на комплексной плоскости r=const;
phi=-pi:pi/200:pi;
z=r*(cos(phi)+i*sin(phi));
x=real(z);
y=imag(z);
plot(x,y,'.r')
grid on
axis equal
axis([-6 6 -6 6])
line ([-6 6],[0 0],'Color','black'),line ([0 0],[-6 6],'Color','black')
xlabel('Re(z)'),ylabel('Im(z)')
title('|z|=const')
```

Запоминаем скрипт под именем Example_1. Набираем в командном окне >> const=4;

>> Example_1

Иногда в процессе отладки scripta, хочется запустить для проверки отдельный фрагмент программы. Это можно сделать следующим образом: выделить фрагмент, затем дать команду **Run** (Запуск) в меню **Debug** (Отладка) или нажать клавишу **F5**>. Результат выполнения фрагмента программы появится в командном окне.

Упражнение 6. Написать программу, строящую на комплексной плоскости множество точек, заданных условием Arg(z) = const. Программу оформить в виде скрипта. Используя написанную программу, построить на комплексной плоскости множество точек, заданных условием:

1)
$$Arg(z) = \frac{\pi}{4}$$
; 2) $Arg(z) = \frac{5\pi}{6}$.

Рисунки сделать либо в одной системе координат, либо в одном графическом окне, разделенном на 4 подобласти.

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
 - 2. Ответить на контрольные вопросы:

- 1) Каким образом можно ввести комплексное число?
- 2) Что такое вещественная и мнимая часть комплексного числа?
- 3) Как осуществляются арифметические действия над комплексными числами?
- 4) Что такое модуль и аргумент комплексного числа?
- 5) Чему равны модуль и аргумент произведения и частного комплексных чисел?
- 6) Сколько существует корней n-ой степени из комплексного числа? Как они расположены на комплексной плоскости?
- 3. Самостоятельно выполнить упражнения:

Упражнение С1.

Вычислить:

- 1) $(1+2i)^2(1-i)$;
- 2) $(1-i)^4 (1+i)^4$;
- 3) i^k , где k = 20, 21, ..., 40 (использовать операцию поэлементного возведения массива в степень);
 - 4) $\frac{2+5i}{1-3i} + \frac{1}{1-i}$ (результаты вывести в различных форматах).

Упражнение С2.

Вычислить
$$z_1\overline{z}_2$$
 и $\left(\frac{\overline{z}_1}{z_2}\right)^2$, если $z_1 = \sqrt{3} - i$, $z_2 = 1 + i\sqrt{3}$.

Упражнение С3. Найти действительную и мнимую части комплексного числа, его модуль, аргумент, найти сопряженное ему число:

1)
$$(5+4i)(3-2i^3)$$
; 2) $(1-i)^{13}$.

Упражнение С4. Найти и изобразить точками на комплексной плоскости все корни $\sqrt[6]{-1-\sqrt{3}i}$. Изобразить пунктиром окружность, на которой эти точки лежат. Построить штрих-пунктиром правильный многоугольник с вершинами в этих точках. Нанести сетку, отобразить оси линиями черного цвета, подписать их. Масштаб по осям сделать одинаковым. Подписать графическое окно.

Упражнение С5. Используя написанную программу, построить на комплексной плоскости множество точек, заданных условием:

1)
$$\operatorname{Arg}(z) = -\frac{3\pi}{4}$$
; 2) $\operatorname{Arg}(z) = -\frac{\pi}{3}$.

Рисунки сделать либо в одной системе координат, либо в одном графическом окне, разделенном на 4 подобласти.

Список рекомендуемой литературы

- **1.** В.Г.Потемкин "Введение в Matlab" (v 5.3), http://matlab.exponenta.ru/ml/book1/index.php 3.1
- **2.** Сборник задач по математике для втузов под ред. А.В.Ефимова и А.С.Поспелова, часть 2, М.2002, 5.5.