die zeichen lesen die zeichen setzen

reading the signs

RFID Reader 881 Protocol & CMD

Reference Manual Rev. 1.1 (November 2016)

FCC ID: 2AJ4J-reader881 IC UPN: 22050-reader881

D-/8628 Rottweil Königsberger Straße 12 Tel. (++49) 741 / 2607-0 Fax (++49) 741 / 1 33 98 ddm@hopt-schuler.com www.hopt-schuler.com

The contents of this document are subject to revision without notice due to continued progress in methodology, design and manufacturing.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose, without the prior written permission of "ddm hopt+schuler".

ddm hopt+schuler shall have no liability for any errors or damages of any kind resulting from the use of this document.

History

Date	Rev	Note
07.07.2016	1.0	First revision
19.11.2016	1.1	Remarks and new chapter 8 because FFC

NOTICE:

This device complies with Part 15 of the FCC Rules and with Industry Canada licence-exempt RSS standard(s).

Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio

exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Table of Content

1	INT	RODUCTION	. 4
	1.1	Features	4
	1.2	Board-to-Board Interface Connector	5
	1.3	DC Characteristics	5
	1.4	Reset Monitor Circuit	5
	1.5	External Reset	5
	1.6	Reset Characteristics	5
	1.7	Transmission Format	6
	1.8	Possible Transmission Formats	6
	1.9	Frame Format	6
	1.10	Data Format	6
2	MEN	MORY CONFIG	. 7
	2.1	Main Configuration CONFIG0	7
	2.2	Communication Parameters CONFIG1	8
	2.3	Interface Configuration CONFIG2	8
	2.4	Function Select CONFIG3	8
	2.5	Behavior Select CONFIG4	8
	2.6	Behavior Select CONFIG5	9
3	CON	MMAND SET	10
	3.1	Reader Commands	10
	3.2	PCD Commands	11
	3.3	ISO14443-A Commands	12
	3.4	ISO14443-B Commands	13
	3.5	ISO14443-4 (T=CL) Commands	14
	3.6	ISO14443 mifare Commands	15
	3.7	ISO15693 Vicinity Commands (+Optional)	16
4	REA	DER RESPONSE MESSAGES	18
	4.1	Status Codes <0x30	18
	4.2	Event Codes >0x30	18
5	FLA	SH LAYOUT AND FIRMWARE UPDATE	20
	5.1	FLASH Commands	21
		FIRMWARE Commands	
	5.2	Bootloader	22
	5.2.1	Firmware Update Sequence	22
6	CON	MMUNICATION EXAMPLES	23
	6.1.1	Request Example	23
	6.1.2	Reading Example	23
7	APP	ENDIX	
	7.1	RS232 INTERFACE SCHEMATIC	25
	7.2	Module SMT Socket Header Datasheet	26
	7.3	Recommended Host Side SMT Header	27
8	Imp	ortant Remarks for using the device in U.S.A. and Canada	28

1 INTRODUCTION

35 x 35 mm

The NFC reader is a multiple protocol reader for contactless communication at 13.56 MHz. It is designed with the best full NFC frontend (PN5180) of the market.

It supports the following operating modes:

- Reader/Writer mode supporting ISO/IEC 14443-A up to 848 kBit/s, MIFARE
- Reader/Writer mode supporting ISO/IEC 14443-B up to 848 kBit/s
- Reader/Writer mode supporting JIS X 6319-4 (comparable with FeliCa scheme)
- Read/write mode supporting ISO/IEC 15693
- Read/write mode supporting ISO/IEC 18000-3 Mode 3
- ISO/IEC18092 (NFC-IP1)
- ISO/IEC21481 (NFC-IP-2)
- NFC-FORUM
- ISO14443-type A Card emulation up to 848 kBit/s

This document describes the common protocol and command set for the NFC Reader.

1.1 Features

- UART (3.3V) serial interface up to 230KBaud
- Full NFC support
- Integrated antenna
- 2MBit external flash memory
- Bootloader for firmware update
- Max. 150mA @ +3.3V current consumption
- 35 x 35 x 10 mm

1.2 Board-to-Board Interface Connector

A 20-pin 1.27mm SMT board-to-board connector is used to embed the module on a host board.

Reader	Pinning	Description	
BOOT	1	ISP entry pin (leave it not connected)	
VCC	2	+3.3V (optional +5V)	
NC	3	Not connected	
GND	4	Ground	
SWDIO	5	SWDIO	
TX	6	UART-TX	
SWCLK	7	SWCLK	
RX	8	UART-RX	
CTS	9	UART-CTS	
RESET	10	Module reset (active LOW)	
CLK	11	SPI-CLK	
MISO	12	SPI-MISO	
MOSI	13	SPI-MOSI	
DTR	14	UART-DTR	
NC	15	Not connected	
NC	16	Not connected	
NC	17	Not connected	
NC	18	Not connected	
NC	19	Not connected	
NC	20	Not connected	

1.3 DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
Vcc	Supply Voltage	$V_{CC} = +5V$	4.5	5.0	5.5	V
		$V_{CC} = +3.3V$	3.0	3.3	3.6	
Ivcc	Supply Current	$V_{CC} = +5V$			150	mA
		$V_{CC} = +3.3V$			150	
Tamb	Operating ambient temperature		-20		+80	$^{\circ}$ C

1.4 Reset Monitor Circuit

A system supervisor circuit is monitoring the VCC and providing a reset signal to the host module when necessary. The reset is driven active within 10 µsec of VCC falling through the reset voltage *VTH* threshold.

1.5 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse width will generate a reset. Shorter pulses are not guaranteed to generate a reset.

1.6 Reset Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{TH}	Reset monitor threshold voltage		2.83	2.93	2.96	V
Vrst	RESET pin threshold voltage		0.3 Vcc		0.7 Vcc	V
trst	Minimum pulse width on RESET Pin		50ns			μs

1.7 Transmission Format

The default parameter settings are:

Format: 1 start bit, 8 data bits, 1 stop bit, no parity

Baud rate: 115200 bps (baud)

Handshaking: No DTR/CTS control

1.8 Possible Transmission Formats

Baud rate: Supported baud rates are; 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200 and 230400.

1.9 Frame Format

All frames are structured as followed:

SOH ADDR LEN	DATA	BCC
--------------	------	-----

SOH = 01h

ADDRESS (default 01h): The device address field is one byte.

LEN: This field is the DATA length and is encoded in two bytes (MSB first).

DATA: This is the command or the response message. The next section defines it.

BCC: Is the "Block Check Character". Its value is equal to the results of exclusive OR of all preceding bytes (SOH byte is included).

A maximum of 500ms is allowed between two consecutive characters.

1.10 Data Format

The DATA format is structured as followed:

Host-to-Reader (Command)

Command (1 Byte)	Message (may be 0 length)
Reader-to-Host (Answer)	
Status (1 Byte)	Message (may be 0 length)

2 MEMORY CONFIG

The reader stores the configuration data in the internal EEPROM memory.

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0	MEMSTAT	Memory	Memory status (Read only)								
1	NETADDR	Address	Address for network configuration								
2	SERIAL0	Serial Nu	Serial Number byte0								
3	SERIAL1	Serial Nu	Serial Number byte1								
4	SERIAL2	Serial Nu	Serial Number byte2								
5	SERIAL3	Serial Nu	ımber byt	æ3							
6	SERIAL4	Serial Nu	ımber byt	æ4							
7	SERIAL5	Serial Nu	ımber byt	æ5							
8	SERIAL6	Serial Nu	ımber byt	:e6							
9	SERIAL7	Serial Nu	ımber byt	æ7							
10	MODCON	Type B N	Type B Modulation Conductance								
11	ANT1PW			tter power							
12	ANT2PW	Antenna	2 transmi	tter power	level						
13	CONFIG0	DLED	CI	TYPEA	TYPEB	RM1	RM0	RFU	RFU		
14	CONFIG1	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU		
15	CONFIG2	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU		
16	CONFIG3	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU		
17	CONFIG4	RFU	RFU	RFU	TAG	RFU	RFU	RFU	RFU		
18	CONFIG5	RFU	RFU	RFU	RFU	RFU	RFU	RFU	POL		
19	RXTHA	Receiver									
20	RXTHB	Receiver	thresholo	l B							
21	\mathbf{RFU}	Reserved	l for futur	e use							
22	PDATE	Production									
23	PDATE	Production	on Date M	10NTH							
24	PDATE	Production	on Date Y	'EAR							

2.1 Main Configuration CONFIG0

Register: CONFIG0

Bit 3-2 – RM1, RM0: Running Mode

RM1	RM0	Running Mode	Description
0	0	Normal	Do nothing
0	1	Polling	Polling TypeA/B/C
1	0	Polling	Polling TypeA/B/C
1	1	Polling	Polling TypeA/B/C

To activate a running mode, use the SET_RUNNING_MODE command.

Normal: Do nothing.

Polling: In this mode, the reader polls for only TypeA/B/C PICCs.

TYPEB: If this bit is set, the reader polls for Type B/C cards **TYPEA:** If this bit is set, the reader polls for Type A cards

CI Card Interrupt: If this bit is set, card detection interrupt will be active.

DLED: A one disables the red LED blinking.

2.2 Communication Parameters CONFIG1

Register: CONFIG1

Bit	7	6	5	4	3	2	1	0	
	RFU	CONFIG1							
Read/Write	R/W								
Init Value	0	0	0	0	0	1	1	1	0x07

2.3 Interface Configuration CONFIG2

Register: CONFIG2

Bit	7	6	5	4	3	2	1	0	_
	RFU	CONFIG2							
Read/Write	R/W	•							
Init Value	0	0	0	0	0	0	0	1	0x01

2.4 Function Select CONFIG3

Register: CONFIG3

Bit	7	6	5	4	3	2	1	0	_
	RFU	RFU	RFU	TAG	RFU	RFU	RFU	RFU	CONFIG3
Read/Write	R/W	•							
Init Value	0	0	0	0	0	0	0	0	0x00

2.5 Behavior Select CONFIG4

Register: CONFIG4

Bit	7	6	5	4	3	2	1	0	_
	RFU	CONFIG4							
Read/Write	R/W	•							
Init Value	0	0	0	0	0	0	0	0	0x00

2.6 Behavior Select CONFIG5

Register: CONFIG5

Bit	7	6	5	4	3	2	1	0	_
	RFU	POL	CONFIG4						
Read/Write	R/W	•							
Init Value	0	0	0	0	0	0	0	0	0x00

Bit 0 - POL: Start polling after reset. If this bit is set; the reader starts automatically the polling mode DETECTION.

3 COMMAND SET

3.1 Reader Commands

READ_REGISTER	Send	Len	
	0x30	1	
Transmit	ADDR[0]-ADDR[1] (MSB first)	2	
	LEN[0]-LEN[1] (MSB first)	2	
Receive	0x00 (stat_OK) or error code	1	
Receive	DATA[0]-DATA[n]	n	
Description	Read the module configuration registers		

WRITE_REGISTER	Send	Len	
	0x31	1	
T.,	ADDR[0]-ADDR[1] (MSB first)	2	
Transmit	LEN[0]-LEN[1] (MSB first)	2	
	DATA[0]-DATA[n]	n	
Receive	0x00 (stat_OK) or error code	1	
Description	Description Update the module configuration registers		

MODULE_RESET	Send	Len
Transmit	0x33	1
Receive	0x00 (stat_OK) or error code	1
Description	Reader reset	

GET_INFO	Send	Len
	0x72	1
	INDEX	1
	0 : All Infos (92 Bytes)	
	1: Serial number (4 Bytes)	
Transmit	2: Firmware Version (6 Bytes)	
Transmu	3: Version & Copyright (58 Bytes)	
	4: Model (6 Bytes)	
	5: PCB (11 Bytes)	
	6: Cycle (4 Bytes)	
	7: Production date (3 Bytes DDMMYY)	
Danaina	0x00 (stat_OK) or error code	1
Receive	Info string	n
Description	Read reader information data.	
Description	The model information can be used to identify the	e hardware.

SET_RUNNING_MODE	Send	Len		
	0x5D	1		
77	MODE	1		
Transmit	0: Normal			
	1/2/3: Polling			
Receive	0x00 (stat_OK) or error code	1		
	Set polling mode			
	Normal: Do nothing.			
Description	Polling: In this mode, the reader polls only for Type A/B/C PICCs.			
Description				
	If the reader receives a contactless card command, it stops polling to			
	avoid collisions.			

3.2 PCD Commands

PCD_KILL	Send	Len
Transmit	0x1F	1
Receive	0x00 (stat_OK) or error code	1
Dagarintian	Hard power down of the PCD.	
Description	The RF part of the reader will be switched off.	

PCD_TYPEA_INIT	Send	Len
Transmit	0x20	1
Receive	0x00 (stat_OK) or error code	1
Description	Initialize the PCD with Type A configura	tion, set RF on

PCD_TYPEB_INIT	Send	Len
Transmit	0x50	1
Receive	0x00 (stat_OK) or error code	1
Description	Initialize the PCD with Type B configura	ation, set RF on

PCD_RESETPHASE	Send	Len		
Transmit	0x23	1		
Receive	0x00 (stat_OK) or error code	1		
	Run the reset and initialization phase as de	fined in EMVCo spec.		
Description	RF carrier is set off a while and the PCD is reinitialized and RF carrier			
	is set on again.			

PCD_RF_RESET	Send	Len
T	0x25	1
Transmit	X (milliseconds)	1
Receive	0x00 (stat_OK) or error code	1
Description	Reset the RF field	

PCD_RF_OFF	Send	Len
Transmit	0x26	1
Receive	0x00 (stat_OK) or error code	1
Description	Switch RF field off and keep it off.	

WRITERC	Send	Len
	0x57	1
Transmit	ADDR	1
	DATA	1
Receive	0x00 (stat_OK) or error code	1
Description	Write a byte to PCD's given register.	

READRC	Send	Len
T	0x58	1
Transmit	ADDR	1
Receive	0x00 (stat_OK) or error code	1
	DATA	1
Description	Read a byte from PCD's given register.	

PCD_SET_ATTRIB	Send	Len
	0x29	1
Transmit	DSI (Divisor Send Integer)	1
	DRI (Divisor Receive Integer)	1
Receive	0x00 (stat_OK) or error code	1
Description	Set RF communication baud rate	

PICC_EXCHANGE_BLOCK	Send	Len
	0x2A	1
T	TX_LEN	1
Transmit	RX_LEN	1
	TXDATA[0]-TXDATA[n]	n
Receive	0x00 (stat_OK) or error code	1
Receive	RX_DATA[0]-RX_DATA[n]	n
Description	Transparent communication with the PN5180	

3.3 ISO14443-A Commands

PICC_REQUEST	Send	Len
	0x10	1
Transmit	REQA: 0x26 (Request idle)	1
	WUPA: 0x52 (Request all)	
D	0x00 (stat_OK) or error code	1
Receive	ATQA[0]-ATQA[1] (Request code)	2
Description	Request for a Type A PICC.	·

PICC_ANTICOLL	Send	Len
	0x11	1
	SEL_CODE (Anti-collision level)	1
Transmit	Level1: 0x93	
Transmit	Level2: 0x95	
	Level3: 0x97	
	nbits (known bits)	1
D	0x00 (stat_OK) or error code	1
Receive	UID[0]-UID[3]	4
Description	Get UID from one of the PICCs	

PICC_SELECT	Send	Len
	0x12	1
	SEL_CODE (level)	1
Transmit	Level1: 0x93	
Transmu	Level2: 0x95	
	Level3: 0x97	
	UID[0]-UID[1]	4
Danima	0x00 (stat_OK) or error code	1
Receive	SAK (Select ACK)	1
Description	Activate a PICC by selecting the UID	

PICC_ANTICOLLSEL	Send	Len
	0x19	1
Transmit	BR (Baud rate)	1
	Default: 0	
	0x00 (stat_OK) or error code	1
Receive	UID_LEN	1
Receive	UID[0]-UID[n]	n
	SAK (Select ACK)	1
Description	Anti-collision and select performed together	

PICC_HALTA	Send	Len
Transmit	0x1C	1
Receive	0x00 (stat_OK) or error code	1
Description	Set PICC to Halt state	

PICC_DO_PPS	Send	Len
	0x2B	1
	DSI (Data Send Integer)	1
	0: 106 kbit/s	
	1: 212 kbit/s	
	2: 424 kbit/s	
Transmit	3: 848 kbit/s	
	DRI (Data Receive Integer)	1
	0: 106 kbit/s	
	1: 212 kbit/s	
	2: 424 kbit/s	
	3: 848 kbit/s	
Receive	0x00 (stat_OK) or error code	1
Description	Perform protocol parameter selection	

PICC_REQUEST_ATS	Send	Len
Transmit	0x3A	1
	0x00 (stat_OK) or error code	1
Receive	ATS_LEN	1
	ATS[0]-ATS[n]	n
Description	Activate an ISO14443-4 compliant PICC	•

3.4 ISO14443-B Commands

PICC_REQUESTB	Send	Len
	0x51	1
	iswup	1
T	0: Request	
Transmit	1: Wakeup	
	afi	1
	num_slots	1
Donatha	0x00 (stat_OK) or error code	1
Receive	ATQB[0]-ATQB[11] (Request code)	12
Description	Request for a Type B PICC.	

PICC_SLOTMARKER	Send	Len
Tugua	0x5F	1
Transmit	num_slots	1
Receive	0x00 (stat_OK) or error code	1
Keceive	ATQB[0]-ATQB[11] (Request code)	12
Description	Request for a Type B PICC with a defined slot.	

PICC_ATTRIB	Send	Len
Transmit	0x52	1
Transmit	UID[0]-UID[3]	4
Descina	0x00 (stat_OK) or error code	1
Receive	ATA	1
Description	Activate a Type B PICC	·

PICC_ATTRIB_HBR	Send	Len
	0x2C	1
	DSI (Data Send Integer)	
	0: 106 kbit/s	
Transmit	1: 212 kbit/s	
	2: 424 kbit/s	
	3: 848 kbit/s	
	DRI (Data Receive Integer)	1

	0: 106 kbit/s	
	1: 212 kbit/s	
	2: 424 kbit/s	
	3: 848 kbit/s	
	UID[0]-UID[3]	4
Receive	0x00 (stat_OK) or error code	1
Receive	ATA	1
Description	Activate a Type B PICC with higher bau	d rate

PICC_HALTB	Send	Len
Transmit	0x53	1
Receive	0x00 (stat_OK) or error code	1
Description	Set PICC to Halt state	

3.5 ISO14443-4 (T=CL) Commands

PICC_DETECT	Send	Len
Transmit	0x5B	1
	0x00 (stat_OK) or error code	1
	PICC_TYPE	1
	0x70: TypeA PICC	
Receive	0x71: TypeB PICC	
	0x72: TypeC VICC (ISO15693)	
	Type A: $ATQA[0]-ATQA[1] + SAK + UID[0]-UID[n] + ATS[0]-ATS[m]$	n+m+5
	Type B: ATQB[0]-ATQB[11] + ATTRIBRESPONSE	13
	Type C: UID[0]-UID[7]	8
Description	Detects and activates the PICC	

PICC_SEND_BLOCK	Send	Len
	0x54	1
Transmit	LEN[0]-LEN[1] (MSB first)	2
	DATA[0]-DATA[n]	n
Receive	0x00 (stat_OK) or error code	1
Receive	RCVDATA[0]-RCVDATA[n]	n
Description	Send and receive data (APDU exchange)	

PICC_SEND_ACK	Send	Len
	0x55	1
Transmit	ACK: 0x00	1
	NACK: 0x10	
Receive	0x00 (stat_OK) or error code	1
Degenintien	Send an ACK or a NAK NAK could be sent to check whether the PICC is in the field or	
Description		

PICC_SEND_REQ	Send	Len
	0x56	1
T	DESELECT: 0x00	1
Transmit	WTX: 0x30	
	WTXM	1
Receive	0x00 (stat_OK) or error code	1
Send T=CL request, the reader waits until the Pl		CC is removed.
Description	This command is obsolete.	

PICC_DESELECT	Send	Len
Transmit	0x86	1
Receive	0x00 (stat_OK) or error code	1
Description	T=CL deselect command	

PICC_REMOVE	Send	Len
Transmit	0x62	1
Receive	0x00 (stat_OK) or error code	1
Wait until the tag is out of the field		
Description	Description An event_PICC_REMOVED will be sent, after the tag exits the	

3.6 ISO14443 mifare Commands

PICC_AUTHENT	Send	Len
	0x13	1
	MODE	1
T.,	0x60: Auth. with Key A	
Transmit	0x61: Auth. with Key B	
	Key sector (0x00-0x0F	1
	Block number (0x00-0x3F)	1
Receive	0x00 (stat_OK) or error code	1
Description	Performs mifare authentication with stor	ed keys

PICC_AUTHENT_KEY	Send	Len
	0x14	1
	MODE	1
T.,	0x60: Auth. with Key A	
Transmit	0x61: Auth. with Key B	
	KEYS[0]-KEYS[5]	6
	Block number (0x00-0x3F)	1
Receive	0x00 (stat_OK) or error code	1
Description	Performs mifare authentication with given	n keys

PICC_READ	Send	Len
Transmit	0x15	1
	Block number (0x00-0x3F)	1
Receive	0x00 (stat_OK) or error code	1
	DATA[0]-DATA[15]	16
Description	Read 16 bytes from mifare block	·

PICC_WRITE	Send	Len
	0x16	1
Transmit	Block number (0x00-0x3F)	1
	DATA[0]-DATA[15]	16
Receive	0x00 (stat_OK) or error code	1
Description	Write 16 bytes to mifare block	

PICC_WRITE4	Send	Len
	0x17	1
Transmit	Block number	1
	DATA[0]-DATA[3]	4
Receive	0x00 (stat_OK) or error code	1
Description	Write 4 bytes to mifare ultralight block	

PICC_VALUE	Send	Len
	0x18	1
	MODE	1
Transmit	0xC0: Decrement	
	0xC1: Increment	
	0xC2: Restore	

	ADDRESS (0x00-0x3F)	1
	VALUE[0]-VALUE[3]	4
	TRANSFER_ADDR (0x00-0x3F)	1
Receive	0x00 (stat_OK) or error code	1
Description	Perform a value operation	

PCD_LOADKEYE2	Send	Len
	0x1E	1
	KEY_TYPE	1
T	0x60: Key A	
Transmit	0x61: Key B	
	SECTOR (0x00-0x0F)	1
	DATA[0]-DATA[5]	6
Receive	0x00 (stat_OK) or error code	1
Description	Load given keys in PCD's secure eeprom	

3.7 ISO15693 Vicinity Commands (+Optional)

VCD_INIT	Send	Len
Transmit	0xD0	1
Receive	0x00 (stat_OK) or error code	1
Description	Initializes the vicinity interface	

VCD_KILL	Send	Len
Transmit	0xD1	1
Receive	0x00 (stat_OK) or error code	1
Description	Hard power down of the VCD.	
Description	The RF part of the reader will be switched off.	

VICC_INVENTORY	Send	Len
Transmit	0xD2	1
Receive	0x00 (stat_OK) or error code	1
Receive	UID[0]UID[7]	8
Description	This command is an inventory request. It returns the UID of the VICC.	

VCD_SELECT	Send	Len
Transmit	0xD3	1
Receive	0x00 (stat_OK) or error code	1
Description	Selects the last UID	

VICC_GET_SYSTEM_INFO	Send	Len	
Transmit	0xD4	1	
	0x00 (stat_OK) or error code	1	
	AFI	1	
Receive	DSFID	1	
Receive	BLOCKS	1	
	BYTES_PER_BLOCK	1	
	RFU	1	
Description	This command get the system information of the VICC.		

VICC_READ_BLOCK	Send	Len
T	0xD5	1
Transmit	BLOCK_NR	1
n ·	0x00 (stat_OK) or error code	1
Receive	DATA[0]DATA[n] (n: block size)	n
Description	Read a byte from PCD's given register.	

VICC_WRITE_BLOCK	Send	Len
	0xD6	1
Transmit	BLOCK_NR	1
	DATA[0]DATA[n] (n: block size)	n
Receive	0x00 (stat_OK) or error code	1
Description	Write a byte to PCD's given register.	

VICC_SEND_BLOCK	Send	Len	
Transmit	0xD7	1	
Transmu	DATA[0]-DATA[n]	n	
Receive	0x00 (stat_OK) or error code	1	
Receive	RCVDATA[0]-RCVDATA[n]	n	
	Transparent communication (ISO15693)		
Description	Read block example: 22200D55A32F500104E000 (FLAG+CMD+UID+BLOCK)		
	Answer: 0000000000 (STATUS+BLOCKDATA)		

4 READER RESPONSE MESSAGES

The reader sends in some cases automatic messages to inform the host. To distinguish the events from the response messages, the status bytes are divided into two areas. The status values from 0x00 to 0x2F are reserved to status codes for command responses. All other values greater than 0x30 are considered as event reports.

4.1 Status Codes <0x30

Codes which are returned as command status.

Status	Code	Description	
stat_OK	0x00	Command successfully performed	
stat_NO_TAG_ERR	0x01	No tag in the field or no response	
stat_COLL_ERR	0x02	There is more than one tag in the field. According to the EMVCo	
		specifications, an error during the activation is also considered as a	
		collision	
stat_AUTH_ERR	0x03	mifare sector authentication error	
stat_PROTOCOL_ERR	0x04	Protocol error will be reported when the coding of the frame is not compliant to the EMVCo specifications	
stat_TRANSMISSION_ERR	0x05	Transmission error will be reported when the received frame includes;	
		crc error, parity error, coding error, framing error or bit count error. This	
		error mostly happens when the tag enters the operating field. While	
		polling about every 10ms, the reader can catch the tag outside the safe	
		operating distance. In this case, an RF reset and a second activation	
		should be performed	
stat_TIMEOUT_ERR	0x06	Timeout error will be reported when the tag doesn't answer to the	
		APDU. In this case the tag should be reactivated	
stat_BUFFER_OVERFLOW_ERR	0x07	The received frame is too long	
stat_ADR_OVERFLOW_ERR	0x08	The given address + length overflows	
stat_UNKNOWN_CMD	0x09	This command is not supported	
stat_ERROR	0x0A	Non categorized error	
stat_COMM_TIMEOUT	0x0B	Communication timeout	
stat_BOOT_ERROR	0x0D	Non categorized boot command error	
stat_BOOT_OVERFLOW	0x0E	Boot command length or address overflows	
stat_BOOT_TIMEOUT	0x0F	Boot command timeout error	
stat_NO_USER_CODE	0x10	User firmware doesn't exists	
stat_INVALID	0x11	Invalid operation	
stat_NO_DATA	0x12	No magnetic data decoded	
stat_UNAVAILABLE	0x13	Cannot perform this command	
stat_PICC_ACK	0x14	Contactless tag is detected (Legacy support)	
stat_BCC_ERROR	0x16	Received frame has a wrong BCC	

4.2 Event Codes > 0x30

Event	Code	Description
event_REMOVED	0x30	Contactless tag is removed
event_PICC_ACK	0x31	Contactless tag is detected
event_PICC_PPSE	0x3F	Contactless card detected and activated
event_LOG_DATA	0x40	Log output

event_PICC_ACK	Send								Len
	0x14: PIC0	C_ACK (L	egacy supp	port)					1
	0x31: PIC0	C_ACK							
	0x30: PIC0	C_REMOV	/ED						
	TAG_INF	O							1
	SL3	SL2	SL1	SL0	COLL	ISO4	TYPE	AA	
	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
Sent by the Reader									
	AA: Activa	ated anteni	na. 0 for A	nt1 and 1 fe	or Ant2				
	TYPE: Detected PICC type. 0 for Type A PICC and 1 for Type B/C PICC								
	ISO4: ISO14443-4 compliant PICC								
	COLL: Collision detected, at least one more tag in the field								
	SL: UID length (default: 4, extended UID: 7 or 10)								
	UID[0]-UID[n]				n				
Description	PICC ackn	owledged	or PICC re	emoved					

5 FLASH LAYOUT AND FIRMWARE UPDATE

The internal flash memory of the microcontroller and the external flash memory are divided into several sections to store the required data and the firmware.

ROM Bootloader (On-Chip)	Address 0x7D000	Will be used only to program the bootloader
Application Firmware Flash Program Memory 48 KB	0x4000	Application firmware
Bootloader Flash Program Memory 16 KB	0x0000	Updates the application flash memory

The external flash memory will be used to store the firmware (to update).

Only sector or bulk erases are supported on the flash memories.

SECTOR 0	SECTOR 1	SECTOR2	SECTOR3
64KB	64KB	64KB	64KB
FIRMWARE	FREE	FREE	FREE

5.1 FLASH Commands

In contrast to the FRM and CFG flash commands; these commands can be applied for the entire flash memory.

MEMORY_READ	Send	Len
	0x47	1
	ADDR[0]-ADDR[2] (MSB first)	3
Transmit	Value between 0x00000-0x3FFFF	
	LEN[0]-LEN[1] (MSB first)	2
	Value between 0x0000-0x0400	
Receive	0x00 (stat_OK) or error code	1
Keceive	DATA[0]-DATA[n]	n
Description	Read the external flash.	

MEMORY_WRITE	Send	Len
	0x46	1
	ADDR[0]-ADDR[2] (MSB first)	3
T	Value between 0x00000-0x3FFFF	
Transmit	LEN[0]-LEN[1] (MSB first)	2
	Value between 0x0000-0x0400	
	DATA[0]-DATA[n]	n
Receive	0x00 (stat_OK) or error code	1
Description	Program the external flash.	

MEMORY_ERASE	Send	Len
	0x4D	1
	SECTOR	1
	0x00: Sector 0 (CONFIG1)	
Transmit	0x01: Sector 1 (CONFIG2)	
	0x02: Sector 2 (FIRMWARE)	
	0x03: Sector 3 (FIRMWARE)	
	0xA0: Bulk erase (Erase all)	
Receive	0x00 (stat_OK) or error code	1
Description	Erase the selected sector of the external flash.	

5.1.1 FIRMWARE Commands

These commands apply only to the firmware sectors.

FRM_MEM_READ	Send	Len
	0x35	1
	ADDR[0]-ADDR[2] (MSB first)	3
Transmit	Value between 0x00000-0x1FFFF	
	LEN[0]-LEN[1] (MSB first)	2
	Value between 0x0000-0x0400	
Receive	0x00 (stat_OK) or error code	1
	DATA[0]-DATA[n]	n
Description	Read the external flash, starting from the FIRMWARE offset.	

FRM_MEM_WRITE	Send	Len
Transmit	0x34	1
	ADDR[0]-ADDR[2] (MSB first)	3
	Value between 0x00000-0x1FFFF	
	LEN[0]-LEN[1] (MSB first)	2

	Value between 0x0000-0x0400	
	DATA[0]-DATA[n]	n
Receive	0x00 (stat_OK) or error code	1
Description	Program the external flash, starting from the FIRMWARE offset.	

FRM_MEM_ERASE	Send	Len
Transmit	0x36	1
Receive	0x00 (stat_OK) or error code	1
Description	Erase the FIRMWARE sectors of the external flash.	

5.2 Bootloader

The bootloader is a piece of code which allows user's application code to be updated from the external flash memory. It must be pre-programmed via the ISP interface.

After each power on, the bootloader checks the external flash for a new firmware. If a new firmware is detected, it checks the length, ID and the checksum of the firmware and programs it into the flash. If no new firmware exists, the application firmware will be executed immediately.

In case of both internal and external firmware areas are bulk, the bootloader opens the USB interface to communicate with the host and to load a new firmware.

5.2.1 Firmware Update Sequence

Firmware update sequence:

- 1- Erase the firmware sectors with FRM_MEM_ERASE
- 2- Program the new firmware with FRM_MEM_WRITE
- 3- Execute a reset with MODULE_RESET
- 4- Wait 10 seconds

After reset, the bootloader programs the new firmware into the internal flash memory of the microcontroller and runs it.

6 COMMUNICATION EXAMPLES

Each byte is represented as a two character hexadecimal number.

6.1.1 Request Example

6.1.2 Reading Example

• **Initialise the contactless interface:** Send PCD_TYPEA_INIT command.

```
TX: 01 00 00 01 20 20  // SOH + Add + Len (2B) + DATA (1B) + BCC
RX: 01 00 00 01 00 00  // SOH + Add + Len (2B) + DATA (1B) + BCC
```

After a successful init, the 13.56 MHz carrier signal is switched on.

• **Request a card:** Send PICC_REQUEST command.

```
TX: 01 00 00 02 10 52 41

RX: 01 00 00 03 00 04 00 06// Status = 00, card is present or

RX: 01 00 00 03 FF 00 00 FD // Status = FF, no card
```

• **Get the serial number:** Send PICC_ANTICOL command.

```
TX: 01 00 00 03 11 93 00 80
RX: 01 00 00 05 00 D1 40 CE A2 F9 // Status = 00, card serial 0xA2CE40D1
```

• **Select the card:** Send PICC_SELECT command.

```
TX: 01 00 00 06 12 93 D1 40 CE A2 7B
RX: 01 00 00 02 00 88 2B // Status = 00, select code 0x88
```

• **Authenticate KeyA sector 0:** Send PICC_AUTHENTKEY command.

• **Read block 1:** Send PICC READ command.

TX: 01 00 00 02 **15 01** 17

• Close the contactless interface: Send PICC_RESET command.

TX: 01 00 00 01 1F 1F

RX: 01 00 00 01 **00** 00 // Status = 00

After this command, the 13.56 MHz carrier signal will be switched off and the reader will be kept in RESET state.

7 APPENDIX

7.1 RS232 INTERFACE SCHEMATIC

7.2 Module SMT Socket Header Datasheet

7.3 Recommended Host Side SMT Header

8. Important Remarks for using the device in U.S.A. and Canada

Changes or modifications made to the equipment not expressly approved by ddm hopt + schuler gmbh + co. KG may void the FCC / IC authorization to operate this equipment.

The use of the transceiver module is authorized in mobile or fixed host devices taking into account the conditions listed below:

- OEM Integrator must ensure that the end user manual may not contain any information about the way to install or remove the module from the final product.
- Depending on the final host device additional authorization requirements for the non-transmitter functions of the transmitter module may be required (i.e., Verification, or Declaration of Conformity) The OEM integrator is responsible for ensuring that after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.
- The information on the label and in the user manual is required to be incorporated in the user manual of the final host. see 47 CFR15 requirements for more details (e.g. 15.19 / 15.21 / 15.101 / 15.105 / RSS-GEN / ICES)
- Additional label with the words 'Contains FCC ID: 2AJ4J-reader881' and 'Contains IC: 22050-reader881' shall be applied and visible from the outside of the host product.
- The module must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the module.
- The end user manual for the final host product operating with this transmitter must include operating instructions to satisfy RF exposure compliance requirements.

Radiofrequency radiation exposure Information:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un

environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de

20 cm de distance entre la source de rayonnement et votre corps.

- The antenna of the module may not be removed, replaced nor modified. The antenna must not be co-located or operating in conjunction with any other antenna or transmitter. No additional antenna must be used.
- When the final host product operating with this transmitter deviate from above, installation of this module into specific final hosts may require the submission of a Class II permissive change application containing data pertinent to RF Exposure, spurious emissions, ERP/EIRP, and host/module authentication, or new application if appropriate.

Feel free to contact us if additional guidance is required.