ACH2002

Aula 3

Análise de Algoritmos: introdução

Aulas passadas

- Programação elegante (leiaute, documentação)
- Conceitos básicos de C (revisão para uso em aula e EPs)
- Análise de complexidade
- Técnicas de desenvolvimento de algoritmos: recursão, programação dinâmica, tentativa e erro (backtracking), algoritmos gulosos, heurísticas, ...
- Algoritmos de ordenação (comparação dos algoritmos e suas complexidades, de tempo e espaço)

Dica:

 Site com resumo dos principais pontos e exercícios com respostas!

http://www.cs.ecu.edu/karl/3300/spr16/Notes/C/

Aulas de hoje

- Programação elegante (leiaute, documentação)
- Conceitos básicos de C (revisão para uso em aula e EPs)
- Análise de complexidade
- Técnicas de desenvolvimento de algoritmos: recursão, divisão e conquista, programação dinâmica, tentativa e erro (backtracking), algoritmos gulosos, heurísticas, ...
- Algoritmos de ordenação (comparação dos algoritmos e suas complexidades, de tempo e espaço)

Informalmente (Cormen et al., 2002):

- Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores com saída.
- Sequência de passos computacionais que transformam a entrada na saída.

Informalmente (Cormen et al., 2002):

- PQualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores com saída.
- Sequência de passos computacionais que transformam a entrada na saída.

Pode existir mais de um algoritmo para resolver um mesmo problema?

Informalmente (Cormen et al., 2002):

- Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores com saída.
- Sequência de passos computacionais que transformam a entrada na saída.

Pode existir mais de um algoritmo para resolver um mesmo problema?

Problema da ordenação

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \le i \le n$.

Saída: Uma permutação da sequência de entrada a'_1, \ldots, a'_n tal que $a'_i \leq a'_j$ para todo $i \leq j$.

Para a instância 3, 42, 17, 2, -1 deste problema, a saída esperada é -1, 2, 3, 17, 42.

Problema:

Algoritmo:

Programa:

- Problema: O QUE queremos resolver
- Algoritmo: COMO iremos resolver
 - Descrição de um número finito de passos elementares, que vale para um amplo conjunto de entradas possíveis
 - Existe um algoritmo para todos os problemas?

 Programa: implementação de um algoritmo em uma determinada linguagem de programação

Profa. Ariane Machado Lima

- Problema: O QUE queremos resolver
- Algoritmo: COMO iremos resolver
 - Descrição de um número finito de passos elementares, que vale para um amplo conjunto de entradas possíveis
 - Existe um algoritmo para todos os problemas? Não!

 Programa: implementação de um algoritmo em uma determinada linguagem de programação

- Problema: O QUE queremos resolver
- Algoritmo: COMO iremos resolver
 - Descrição de um número finito de passos elementares, que vale para um amplo conjunto de entradas possíveis
 - Existe um algoritmo para todos os problemas? Não!
 - Nesta disciplina: foco nos algoritmos (Aula e provas)
- Programa: implementação de um algoritmo em uma determinada linguagem de programação

Algoritmos

Um algoritmo é correto se

Algoritmos

- Um algoritmo é correto se ele produz a saída esperada para todas as entradas possíveis
 - Dizemos que o algoritmo resolve o problema
- Três formas distintas para saber se um algoritmo está correto:
 - Prova de corretude (do algoritmo)
 Vamos ver um pouco nesta disciplina
 - Teste de software (do programa, não é prova de corretude, é teste empírico)
 - Verificação de software: problema de dada uma especificação e um programa, saber se o programa está correto (ex. de problema sem algoritmo para o caso geral)
- Mas além de ser correto, de quantos recursos ele precisa? (tempo, espaço em memória, número de acesso ao disco, etc...)
 - Análise (de complexidade) do algoritmo
 Foco desta disciplina

Análise de algoritmos

- Permite prever os recursos necessários
- Permite comparar diferentes algoritmos para o mesmo problema e decidir qual o melhor (em relação ao uso de recurso(s) mais importante(s) para você...)
 - Qual o mais eficiente

Problema da busca

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \leq i \leq n$ e $b \in \mathbb{Z}$.

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \perp caso contrário.

Ex: Entrada: {3, 5, 16, 17, -1}, 5

Saída: 2

Problema da busca

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \leq i \leq n$ e $b \in \mathbb{Z}$.

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \perp caso contrário.

Algoritmo (pseudocódigo)

BuscaSequencial(A, b)

```
1 for i \leftarrow 1 até n
```

do if $a_i = b$

3 then return i

4 return \perp

Obs: vetor em pseudocódigo começa em 1

Problema da busca

```
Entrada: Uma sequência de n valores a_1, \ldots, a_n em que a_i \in \mathbb{Z}
para 1 \le i \le n e b \in \mathbb{Z}.
```

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \perp caso contrário.

```
1 for i \leftarrow 1 até n
   Algoritmo
(pseudocódigo)
```

```
do if a_i = b
               then return i
4 return \perp
```

BuscaSequencial(A, b)

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
 int i;
  for(i = 0; i < size; i++)
```

```
Programa
 (em C)
```

```
\mathbf{if}(\operatorname{array}[i] = n)
      return i;
return -1;
```

Problema da busca

```
Entrada: Uma sequência de n valores a_1, \ldots, a_n em que a_i \in \mathbb{Z} para 1 \le i \le n e b \in \mathbb{Z}.
```

```
Saída: i \in \mathbb{N} tal que a_i = b se existir ou \perp caso contrário.
BUSCASEQUENCIAL(A, b)
```

```
Algoritmo 1 for i \leftarrow 1 até n do if a_i = b 3 then return i 4 return \bot
```

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
  int i;
  for(i = 0; i < size; i++)
    if(array[i] == n)
    return i;
  return -1;
}</pre>
```

Programa

(em C)

Opção 1: teste empírico

O que fazer?

Problema da busca

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \le i \le n$ e $b \in \mathbb{Z}$.

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \perp caso contrário.

BuscaSequencial(A, b)

Programa (em C)

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
  int i;
  for(i = 0; i < size; i++)
    if(array[i] == n)
    return i;
  return -1;
}</pre>
```

Opção 1: teste empírico

O que fazer?

- Implementar
- Testar para várias entradas

Problema da busca

```
Entrada: Uma sequência de n valores a_1, \ldots, a_n em que a_i \in \mathbb{Z} para 1 \le i \le n e b \in \mathbb{Z}.
```

```
Saída: i \in \mathbb{N} tal que a_i = b se existir ou \perp caso contrário.
```

```
Algoritmo BuscaSequencial(A, b)

1 for i \leftarrow 1 até n

2 do if a_i = b

3 then return i
```

```
Programa (em C)
```

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
  int i;
  for(i = 0; i < size; i++)
    if(array[i] == n)
    return i;
}</pre>
```

Opção 1: teste empírico

O que fazer?

- Implementar
- Testar para várias entradas

Desvantagens:

Problema da busca

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \le i \le n$ e $b \in \mathbb{Z}$.

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \perp caso contrário.

BuscaSequencial(A, b)

Programa (em C)

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
  int i;
  for(i = 0; i < size; i++)
    if(array[i] == n)
    return i;
  return -1;
}</pre>
```

Opção 1: teste empírico

O que fazer?

- Implementar
- Testar para várias entradas

Desvantagens:

- Tem que implementar
- Normalmente não dá para testar todas as entradas possíveis

Problema da busca

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \le i \le n$ e $b \in \mathbb{Z}$.

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \perp caso contrário.

Algoritmo (pseudocódigo)

```
1 for i \leftarrow 1 até n
2 do if a_i = b
3 then return i
4 return \perp
```

BuscaSequencial(A, b)

Programa (em C)

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
  int i;
  for(i = 0; i < size; i++)
    if(array[i] == n)
     return i;
  return -1;</pre>
```


Opção 2: prova formal de corretude

Problema da busca

Entrada: Uma sequência de n valores a_1, \ldots, a_n em que $a_i \in \mathbb{Z}$ para $1 \le i \le n$ e $b \in \mathbb{Z}$.

Saída: $i \in \mathbb{N}$ tal que $a_i = b$ se existir ou \bot caso contrário. BUSCASEQUENCIAL(A, b)

Algoritmo 1 for $i \leftarrow 1$ até n do if $a_i = b$ 3 then return i

```
Programa (em C)
```

```
// devolve a posicao de n no arranjo ou -1 se nao encontrar
int buscasequencial(int* array, int n, int size){
  int i;
  for(i = 0; i < size; i++)
    if(array[i] == n)
    return i;
  return -1;
}</pre>
```

Prova de corretude de algoritmos

- Vamos aprender algumas técnicas durante a disciplina
- Por hora, vamos aprender a usar a noção de "invariantes" para algoritmos iterativos:
 - Algoritmos baseados em loops (iterações)
 - Usualmente usando for, while

Invariantes

- Invariante: relação entre os valores das variáveis envolvidas dentro do laço, que é sempre verdadeira no início de cada iteração
- Interessante explicitar na forma de comentário

```
• Ex:
```

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
        return x;
}</pre>
```

Invariantes

O que isso tem a ver com prova de corretude?

Ex:

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
        return x;
}</pre>
```


Invariantes

O que isso tem a ver com prova de corretude?

Podemos fazer uma **prova por indução** para mostrar que o x retornado SEMPRE será o valor máximo para TODA entrada v e n ;-)

```
x = v[0];
for (j = 1; j < n; j++)
    /* x é um elemento máximo de v[0..j-1] */
    if (x < v[j]) x = v[j];
    return x;
}</pre>
```


Prova por indução (fraca)

- Objetivo: prova que uma determinada propriedade (P) é válida para todos os elementos de um conjunto potencialmente infinito
- 3 partes:
 - Base da indução: prova/mostra que P é verdadeira para o primeiro elemento (0, ou 1, ou 2, ...) desse conjunto
 - Hipótese da indução: assume que P é verdadeira para o n-ésimo elemento desse conjunto (é na verdade o enunciado de P)
 - Passo da indução: usa a hipótese para provar que P é verdadeira para o (n+1)-ésimo elemento desse conjunto

EACH USP

Prova por indução (fraca)

- Objetivo: prova que uma determinada propriedade (P) é válida para todos os elementos de um conjunto potencialmente infinito
- 3 partes:
 - Base da indução: prova/mostra que P é verdadeira para o primeiro elemento (0, ou 1, ou 2, ...) desse conjunto
 - Hipótese da indução: assume que P é verdadeira para o n-ésimo elemento desse conjunto (é na verdade o enunciado de P)
 - Passo da indução: usa a hipótese para provar que P é verdadeira para o (n+1)-ésimo elemento desse conjunto

Prova por indução

Ex: prova por indução que
$$1+2+3+\cdots+n=\sum_{i=1}^n i=\frac{n(n+1)}{2}$$

Base: P é verdadeira para n = 1: $1 = \frac{1(1+1)}{2}$

Hipótese: P é verdadeira para um dado n qualquer: $1+2+3+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$

Passo: Dado que P vale para n, P é verdadeira para n+1:

$$1 + 2 + 3 + \dots + n + n + 1 = \frac{n(n+1)}{2} + n + 1$$

$$= \frac{n^2 + n + 2n + 2}{2}$$

$$= \frac{n^2 + 3n + 2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

Prova por indução

Ex: prova por indução que
$$1+2+3+\cdots+n=\sum_{i=1}^n i=\frac{n(n+1)}{2}$$

Base: P é verdadeira para n = 1: $1 = \frac{1(1+1)}{2}$

Hipótese: P é verdadeira para um dado n qualquer: $1+2+3+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$

Passo: Dado que P vale para n, P é verdadeira para n+1:

$$1 + 2 + 3 + \dots + n + n + 1 = \frac{n(n+1)}{2} + n + 1$$
$$= \frac{n^2 + n + 2n + 2}{2}$$
$$n^2 + 3n + 2$$

Prova de corretude por indução

```
int Max (int v[], int n) {
                                                    Base:
  int j, x;
  x = v[0]:
  for (j = 1; j < n; j++)
     /* x é um elemento máximo de v[0..j-1] */
                                                    Hipótese:
      if (x < v[j]) x = v[j];
  return x;
 x, o valor retornado, é o elemento máximo do vetor
```

Passo da indução:

Prova de corretude por indução

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
        return x;
}</pre>
```

Base: no início da primeira iteração (j = 1), x é o elemento máximo de v[0]

Hipótese:

x, o valor retornado, é o elemento máximo do vetor

Passo da indução:

Prova de corretude por indução

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
        return x;
}</pre>
```

Base: no início da primeira iteração (j = 1), x é o elemento máximo de v[0]

Hipótese: assuma que é verdadeiro para um j < n, que x é o elemento máximo de v[0..j-1]

x, o valor retornado, é o elemento máximo do vetor

Passo da indução:

Prova de corretude por indução

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
        return x;</pre>
```

Base: no início da primeira iteração (j = 1), x é o elemento máximo de v[0]

Hipótese: assuma que é verdadeiro para um j < n, que x é o elemento máximo de v[0..j-1]

x, o valor retornado, é o elemento máximo do vetor

Passo da indução: se x é o elemento máximo de v[0..j-1] no início da iteração para o valor j, então na próxima instrução (que é única no loop):

- se x < v[j], x será substituído por v[j], o que o torna o elemento máximo de v[0,j] no início da próxima iteração (valor j+1)
- se x >= v[j], x não mudará de valor, pois continua sendo o elemento máximo de v[0,j] no início da próxima iteração (valor j+1)

- Qual a invariante?
- O que você quer provar?

```
BuscaSequencial(A, b)

1 for i \leftarrow 1 até n

2 do if a_i = b

3 then return i

4 return \perp
```


Qual a invariante?

b não ocorre em a_1, \ldots, a_{i-1}

• O que você quer provar? Que o programa retorna i se b for o i-ésimo elemento, e nil c.c.

BuscaSequencial (A, b)1 for $i \leftarrow 1$ até n2 do if $a_i = b$ 3 then return i4 return \bot

Base:

Hipótese:

Passo:

Qual a invariante?

b não ocorre em a_1, \ldots, a_{i-1}

O que você quer provar? Que o programa retorna i se b for o i-ésimo elemento, e nil c.c.

Buscasequencial (A, b)1 for $i \leftarrow 1$ até n2 do if $a_i = b$ 3 then return i4 return \perp

Base: quando i = 1, não há elementos entre a_1 e a_0 , logo b não pode ocorrer lá.

Hipótese:

Passo:

Qual a invariante?

b não ocorre em a_1, \ldots, a_{i-1}

O que você quer provar? Que o programa retorna i se b for o i-ésimo elemento, e nil c.c.

```
BuscaSequencial (A, b)

1 for i \leftarrow 1 até n

2 do if a_i = b

3 then return i

4 return \perp
```

Base: quando i = 1, não há elementos entre a_1 e a_0 , logo b não pode ocorrer lá.

Hipótese: b não ocorre em a₁, ..., a_{i-1} (e o algoritmo dá a resposta correta)

Passo:

Qual a invariante?

$$b$$
 não ocorre em a_1, \ldots, a_{i-1}

O que você quer provar? Que o programa retorna i se b for o i-ésimo elemento, e nil c.c.

```
BuscaSequencial (A, b)

1 for i \leftarrow 1 até n

2 do if a_i = b

3 then return i

4 return \bot
```

Base: quando i = 1, não há elementos entre a_1 e a_0 , logo b não pode ocorrer lá.

Hipótese: b não ocorre em a₁, ..., a_{i-1} (e o algoritmo dá a resposta correta)

Passo: O que acontece com i+1? Pela hipótese, no passo i é verdade que b não ocorre em a₁, ..., a_{i-1}. A próxima instrução (ainda no passo i) é comparar b com ai.

- Se forem iguais, pela hipótese de indução, é a primeira vez que isso acontece, e a execução da linha 3 fará com que a linha 2 não volte a ser executada (invariante continuou válido, pois não há outra iteração) e o algoritmo dá a resposta correta
- se forem diferentes, a linha 3 não é executada, há uma nova iteração (se i <= n), e o invariante é válido (pois o b não foi achado em a1, ..., ai)

Por fim, se a linha 4 é executada, é porque a linha 3 não foi executada nenhuma vez, e na última iteração i = n. Logo, b não foi encontrado em a1, ..., an. Logo, aqui o algoritmo também dá a resposta correta.

Exercício

 Prove a corretude desse algoritmo, que assume o vetor A está ordenado crescentemente:

```
BuscaBinaria(A, b)
```

 $return \perp$

```
1 \quad i \leftarrow 1
2 \quad j \leftarrow |A|
3 while i \leq j
             do m \leftarrow \left| \frac{j+i}{2} \right|
                  if b < a_m
                      then j \leftarrow m-1
                       else if b > a_m
                                    then i \leftarrow m+1
                                    else return m
```

Solução no cap 3 da apostila do Prof. Márcio Moreto

Opção 1: testes empíricos – como fazer?

- Opção 1: testes empíricos como fazer?
 - Implementar o algoritmo
 - Testar com diferentes entradas
 - Diferentes tamanhos
 - Medir o recurso (como?)
 - Para cada tamanho de entrada deveríamos testar várias vezes (para diluir o efeito de outras variáveis, como uso compartilhado da CPU)
- EACH

- Analisar o uso do recurso em função do tamanho

Nosso exemplo

BuscaSequencial(A, b)

- 1 for $i \leftarrow 1$ até n
- 2 do if $a_i = b$
- 3 then return i
- 4 return \perp

tamanho do arranjo em milhões	tempo de 300 buscas em segundos
1	0,99
2	2,08
3	3,12
4	3,99
5	5,05
6	5,94
7	7,03
8	7,92
9	8,93
10	9,85

Busca Simples Fazendo uma regressão linear:

Figura 2.2: Gráfico ilustrando a hipótese de que o tempo de processamento da busca sequencial segue a função linear t(x) = 0,997x.

Prevendo o tempo para outros tamanhos... Que legal!!!

tamanho do arranjo em milhões	tempo previsto	tempo observado
11	10,97	10,87
12	11,97	11,81
13	12,97	12,78
14	13,96	14,00
15	14,96	14,74

E para busca binária?

```
\begin{array}{ccc} \text{Buscabinaria}(A,b) \\ 1 & i \leftarrow 1 \\ 2 & j \leftarrow |A| \\ 3 & \text{while } i \leq j \\ 4 & \text{do } m \leftarrow \left\lfloor \frac{j+i}{2} \right\rfloor \\ 5 & \text{if } b < a_m \\ 6 & \text{then } j \leftarrow m-1 \\ 7 & \text{else if } b > a_m \\ 8 & \text{then } i \leftarrow m+1 \\ 9 & \text{else return m} \\ 10 & \text{return } \bot \end{array}
```

tamanho do arranjo em milhões	tempo de 300 buscas em segundos
1	0,00
2	0,00
3	0,00
4	0,00
5	0,00
6	0,00
7	0,00
8	0,00
9	0,00
10	0,00

NADA????

E para busca binária?

```
\begin{array}{ccc} \text{BUSCABINARIA}(A,b) \\ 1 & i \leftarrow 1 \\ 2 & j \leftarrow |A| \\ 3 & \textbf{while} \ i \leq j \\ 4 & \textbf{do} \ m \leftarrow \left\lfloor \frac{j+i}{2} \right\rfloor \\ 5 & \textbf{if} \ b < a_m \\ 6 & \textbf{then} \ j \leftarrow m-1 \\ 7 & \textbf{else} \ \textbf{if} \ b > a_m \\ 8 & \textbf{then} \ i \leftarrow m+1 \\ 9 & \textbf{else} \ \textbf{return} \ \textbf{m} \\ 10 & \textbf{return} \ \bot \end{array}
```

AL	
tamanho do arranjo em milhões	tempo de 10M buscas em segundos
1	0,66
2	0,64
3	0,60
4	0,59
5	0,62
6	0,63
7	0,63
8	0,63
9	0,66
10	0,65

E para busca binária?

ões	tempo de 10M buscas em segundos
	0,66
	0,64
	0,60
	0,59
	0,62
	0,63
	0,63
	0,63
	0,66
	0,65

Figura 2.3: Gráfico ilustrando a hipótese de que o tempo de processamento da busca binária segue a função constante t(x) = 0,63.

Tempo previsto... será?

tamanho do arranjo em milhões	tempo previsto	tempo observado
20	0,63	0,68
100	0,63	0,75
500	0,63	0,81
1000	0,63	0,89

Tabela 2.2: Tempo de processamento previsto e observado para tamanhos maiores de arranjos.

E se eu aumentar o tamanho exponencialmente?

tamanho do arranjo em milhões	tempo de 10M buscas em segundos
1	0,59
2	0,62
4	0,69
8	0,69
16	0,74
32	0,76
64	0,79
128	0,83
256	0,96
512	1,01

$$t(2^y) = a.y + b$$

$$t(x) = a.log_2(x) + b = 0,043.log_2(x) + 0,529$$

- Opção 1: testes empíricos desvantagens:
 - além do trabalho que dá (lembre do que precisa ser feito):
 - tem que ajustar uma curva
 - variabilidade devido à execução em diferentes máquinas, SO, linguagem de programação, memória disponível
 - pode ser demorado....

Opção 2:

Opção 2: análise formal, matemática!;-)

Análise assintótica (motivação)

 Primeiro: consciência que a complexidade (tempo, memória, etc) normalmente depende do tamanho da entrada

Figura 2.2: Gráfico ilustrando a hipótese de que o tempo de processamento da busca sequencial segue a função linear t(x) = 0,997x.

Complexidade em função do tamanho

- Tamanho de entrada (n):
 - depende do problema estudado
 - maioria dos problemas: número de itens de entrada
 - exemplo da busca (quantidade de elementos do arranjo)
- Tempo de execução:
 - quantidade de operações primitivas ou etapas executadas para uma determinada entrada
 - \succ vamos considerar que cada linha *i* leva um tempo constante c_i

Função de custo de um algoritmo

- engloba o custo de tempo de cada instrução e o número de vezes que cada instrução é executada
- Exemplo: insertion-sort(A) (entrada: array A que tem tamanho n)

Como você ordena as cartas do baralho, se pegá-las uma de cada vez?

- Percorre o array (do início) e, em cada passo:
 - Aumenta a parte ordenada do array em uma posição, inserindo um novo elemento na posição correta e deslocando os demais para a direita

3)


```
Subvetor já
                        ordenado
                          125
                      52
                                32
                                     55
                                              -78
                                                   200
                                          69
                                                             63
                                            125
                                                               -78
                                   -4
                                        52
                                                 32
                                                      55
                                                          69
                                                                   200
                                                                         0
                                                                             63
                                         DESLOCÁ
            Número a inserir
                                                 125
                                                      55
                                                               -78
                                                                   200
                                        32
                                            52
                                                          69
                                                                             63
1 para j = 2 até tamanho[A] faça
    chave = A[j] // "número a inserir"
```

$$4 \quad i = j - 1$$

3 // ordenando elementos à esquerda

$$A[i+1] = A[i]$$

$$i = i -1$$

$$A[i+1] = chave$$

Função de custo de um algoritmo

A[i+1] = chave

10 fim para

- engloba o custo de tempo de cada instrução e o número de vezes que cada instrução é executada
- Exemplo: insertion-sort(A) (entrada: array A que tem tamanho n)

```
1 para j = 2 até tamanho[A] faça
                                                    n
    chave = A[j] // "número a inserir"
                                                n-1
                                             C_2
3 // ordenando elementos à esquerda
                                                    n-1
                                                    n-1
   i = j - 1
                                             C_{4}
                                                                t<sub>i</sub> – número de vezes
    enquanto i > 0 e A[i] > chave faça
                                             C_5
                                                                que a linha é
      A[i+1] = A[i]
6
                                                                executada para um
                                                                dado i (depende do i)
      i = i - 1
                                             C_7
     fim enquanto
```

Cg

n-1

EACH

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

T(n)=
$$c_1$$
n + c_2 (n-1) + c_4 (n-1) + $c_5\sum_{j=2}^{n}t_j$ + $c_6\sum_{j=2}^{n}(t_j-1)$ + $c_7\sum_{j=2}^{n}(t_j-1)$ + c_8 (n-1)

custo vezes

1 para j = 2 até tamanho[A] faça

2 chave = A[j]

custo vezes

c₁ n

c₂ n-1

n-1i = j - 1 C_{Λ} t_i – número de vezes enquanto i > 0 e A[i] > chave faça C_5 que a linha é A[i+1] = A[i]6 executada para um dado j (depende do j) i = i - 1

Cg

n-1

// ordenando elementos à esquerda n-1

A[i+1] = chave10 fim para

fim enquanto

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

T(n)=c₁n + c₂(n-1) + c₄(n-1) + c₅
$$\sum_{j=2}^{n} t_j$$
 + c₆ $\sum_{j=2}^{n} (t_j-1)$ + c₇ $\sum_{j=2}^{n} (t_j-1)$ + c₈ (n-1)

$$\frac{1}{j=2} \quad \frac{1}{j=2} \quad \frac{1$$

para
$$j = 2$$
 até tamanho[A] faça c_1 n

chave $= A[j]$ c_2 $n-1$

// ordenando elementos à esquerda c_1 $n-1$
 $i = j - 1$

Canada Melhor caso?

Melhor caso?

 $n-1$
 $n-1$
 $n-1$

DESLOCA

Melhor caso?

 $n-1$
 $n-1$
 $n-1$
 $n-1$
 $n-1$
 $n-1$

DESLOCA

n-1i = j - 1 C_{4} Número a inserir -4 32 52 125 55 69 -78 200 0 63 enquanto i > 0 e A[i] > chave faça C_5

n-1

A[i+1] = A[i]

i = i -1

10 fim para

fim enquanto

A[i+1] = chave

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução T(n)= c_1 n + c_2 (n-1) + c_4 (n-1) + $c_5\sum_{j=2}^{n}t_j$ + $c_6\sum_{j=2}^{n}(t_j-1)$ + $c_7\sum_{j=2}^{n}(t_j-1)$ + c_8 (n-1)

$$\frac{\sum_{j=2}^{n} t^{j}}{\sum_{j=2}^{n} t^{j}} = \frac{\sum_{j=2}^{n} t^{j}}{\sum_{j=2}^{n} t^{j}}$$

$$\frac{\text{Custo vezes}}{\text{chave na linha 5}} = \frac{\text{Melhor caso: vetor já ordenado (A[i])}}{\text{susto vezes}}$$

1 para j = 2 até tamanho[A] faça chave = A[j] C_2 3 // ordenando elementos à esquerda

i = i -1

fim enquanto

10 fim para

A[i+1] = chave

 C_{A}

n-1n-1 $\sum_{j=2}^{n} t_{j}$ $\sum_{j=2}^{n} (t_{j} - 1)$ $\sum_{j=2}^{n} (t_{j} - 1)$

n-1

n

n-1

 $+ c_{\circ}(n-1) =$ C^8

j=2,3,...,n

 $(C_1 + C_2 + C_4 + C_5 + C_8)n - (C_2 + C_4 + C_5 +$

Tempo de execução, neste caso, pode ser expresso como an + b para constantes **a** e **b** que dependem dos custos de instrução c. -> função linear de *n*

i = j - 1enquanto i > 0 e A[i] > chave faça A[i+1] = A[i]

- $T(n)=c_1n + c_2(n-1) + c_4(n-1) + c_5(n-1)$

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

1 para
$$j=2$$
 até tamanho[A] faça c_1 n
2 chave = A[j] c_2 $n-1$
3 // ordenando elementos à esquerda c_4 $n-1$
 c_4 $n-1$
 c_4 $n-1$
Número a inserir

Número a inserir

-4 32 52 125 55 69 -78 200 0 63

enquanto i > 0 e A[i] > chave faça C_5

n-1

A[i+1] = A[i]

i = i -1

10 fim para

fim enquanto

A[i+1] = chave

T(n)=c₁n + c₂(n-1) + c₄(n-1) + c₅ $\sum_{j=2}^{n} t_j$ + c₆ $\sum_{j=2}^{n} (t_j-1)$ + c₇ $\sum_{j=2}^{n} (t_j-1)$ + c₈ (n-1)

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

3 // ordenando elementos à esquerda 0 n-1
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

4 $i = j - 1$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

4
$$i = j - 1$$

5 enquanto $i > 0$ e $A[i] > chave faça$

6 $A[i+1] = A[i]$

C₄

$$C_4$$

$$C_5$$

$$C_6$$

$$A[i+1] = A[i]$$

C₆

C₇

$$C_6$$

$$C_6$$

$$C_6$$

$$C_6$$

$$C_6$$

$$C_7$$

$$C_8$$

$$C_9$$

$$C$$

-4 32 52 125 55 69 -78 200 0 63 i = i - 1

elemento A[i] com cada elemento

do subarranjo ordenado A[0... j-1] fim enquanto

 \rightarrow t_i=j para j=2,3,...,n)

n-1A[i+1] = chave

10 fim para

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

T(n)=
$$c_1$$
n + c_2 (n-1) + c_4 (n-1) + $c_5 \sum_{j=2}^{n} t_j$ + $c_6 \sum_{j=2}^{n} (t_j - 1)$ + $c_7 \sum_{j=2}^{n} (t_j - 1)$ + c_8 (n-1)

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

 $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) =$ $\begin{pmatrix} c_5 + c_6 + c_7 \\ c_7 + c_8 \end{pmatrix} + \begin{pmatrix} c_5 + c_6 + c_7 \\ c_7 + c_8 \end{pmatrix} + \begin{pmatrix} c_7 + c_8 \\$

 $\left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - (c_2 + c_4 + c_5 + c_8)$ Tempo de execução, neste caso, node ser expresso como $an^2 + bn + c$ para

Tempo de execução, neste caso, pode ser expresso como *an*² + *bn* + *c* para constantes **a**, **b** e **c** que dependem dos custos de instrução c_i → **função quadrática** de *n*

Análise de algorimos

- Em geral:
 - tempo de execução de um algoritmo é fixo para uma determinada entrada
 - analisamos apenas o **pior caso** dos algoritmos:
 - é um limite superior sobre o tempo de execução de qualquer entrada;
 - pior caso ocorre com muita frequência para alguns algoritmos.
 Exemplo: busca de registro inexistente em um banco de dados;
 - muitas vezes, o *caso médio* é quase tão ruim quanto o pior caso

EACH

- Nas análises anteriores, foram feitas algumas simplificações em relação às constantes, chegando à função linear e à função quadrática
- Taxa de crescimento ou ordem de crescimento:
 - considera apenas o termo inicial de uma fórmula (exemplo: an²), pois os termos de mais baixa ordem são relativamente insignificantes para grandes valores de n;
 - ignora o coeficiente constante do termo inicial também por ser menos significativo para grandes entradas;
 - Portanto, dizemos que: a ordenação por inserção, por exemplo, tem um tempo de execução do pior caso igual a $\Theta(n^2)$ (*lê-se* "theta de n ao quadrado");
 - Em geral, consideramos um algoritmo mais eficiente que outro se o tempo de execução do seu pior caso apresenta uma ordem de crescimento mais baixa.

Exercícios (Indução matemática)

- 1. Prove que $1^2 + 2^2 + 3^2 + ... + n^2 = (2n^3 + 3n^2 + n)/6$, $\forall n \ge 1$
- 2. Prove que $1 + 3 + 5 + ... + 2n 1 = n^2$, $\forall n \ge 1$
- 3. Prove que $1^3 + 2^3 + 3^3 + ... + n^3 = (n^4 + 2n^3 + n^2)/4$, $\forall n \ge 1$
- 4. Prove que $1^3 + 3^3 + 5^3 + ... + (2n 1)^3 = 2n^4 n^2$, $\forall n \ge 1$
- 5. Prove que $1 + 2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} 1$, $\forall n \ge 0$
- 6. Prove que $2^n \ge n^2$; $\forall n \ge 4$
- 7. Prove que $\frac{1}{1} \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{2n-1} \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$
- 8. Prove que a soma dos cubos de três números naturais positivos sucessivos é divisível por 9.
- 9. Prove que todo número natural n > 1 pode ser escrito como o produto de primos (indução forte).
- 10. Prove que todo número natural positivo pode ser escrito como a soma de diferentes potências de 2 (indução forte).

Referências

- Apostila do Prof Márcio Moretto Cap 1, 2, 3
- Paulo Feofiloff. Algoritmos em C. Cap 1.2 (tem exercícios!!!) https://www.ime.usp.br/~pf/algoritmos-livro/

