Online Inference in High-Dimensional Models

Departament of Applied Mathematics, The Hong Kong Polytechnic University.

Luo Yuanhang

Supervisors: Han Ruijian, Huang Jian

Objective

In this research, we aim to develop online statistical inference approach in high-dimensional generalized linear models that sequentially updates both coefficient and variance estimates upon the arrival of a new data point, without retrieving historical raw data of space complexity. We propose an online debiasing procedure with space complexity $\mathcal{O}(p)$. This algorithm is built on top of the regularization annealed epoch dual averaging (RADAR) proposed by Agarwal et al. (2012).

Introduction

A sequence of *n* data points $\{(x_i, y_i)\}_{i=1}^n$ are independently and identically sampled from a generalized linear model:

$$\mathbb{P}\left(y\mid \mathsf{x};\beta^*\right)\propto \exp\left\{\frac{y(\mathsf{x}^\top\beta^*)-\Phi(\mathsf{x}^\top\beta^*)}{c(\sigma)}\right\}$$

- $\mathbf{x}_i \in \mathbb{R}^p$. High-dimensional case: $n \ll p$.
- Sparsity: $||\beta^*||_0 = s_0$. Offline approach:

$$\beta^{(n)} = \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \left\{ -y_i(\mathbf{x}_i^\top \beta) + \Phi(\mathbf{x}_i^\top \beta) \right\} + \lambda_n \|\beta\|_1,$$

However, retrieving historical raw data of space complexity $\mathcal{O}(np)$ or saving summary statistics of space complexity $\mathcal{O}(p^2)$. We can solve the problem in an online manner.

Method

We propose the Approximated Debiased Lasso (ADL) for online estimation and inference via a variant of online stochastic gradient descent.

Let $I_n(\beta) = \frac{1}{n} \sum_{i=1}^n \left\{ -y_i \left(\mathbf{x}_i^{\top} \beta \right) + \Phi \left(\mathbf{x}_i^{\top} \beta \right) \right\}.$

- Receive incoming data.
- Update estimates $\widetilde{\beta}_{i}^{(k)} \Leftarrow \mathsf{RADAR}(\widetilde{\beta}_{i}^{(k-1)}, \mathcal{D}_{k})$
- De-bias via one-step Newton correction

$$\widetilde{eta}_{j, ext{de}}^{(k)} = \widetilde{eta}_{j}^{(k)} - \left[\left\{ \nabla^{2} I_{k} \left(\widetilde{eta}^{(k)} \right) \right\}^{-1} \right]_{i} \nabla I_{k} \left(\widetilde{eta}^{(k)} \right),$$

- $[\{\nabla^2 I_n(\widetilde{\beta}^{(n)})\}^{-1}]_j \Leftarrow \mathsf{RADAR}(\widetilde{\gamma}_{:,i}^{(n)}, \mathcal{D}_n)$, the node-wise Lasso.
- $\nabla I_n(\widetilde{\beta}^{(n)}) \Leftarrow$ Taylor's expansion.
- Obtain some statistics $s^{(n)}$ and $\widetilde{\tau}_i^{(n)}$
- ullet The (1-lpha)-confidence interval for eta_i^* with 0<lpha<1 at time k is given as:

$$\left(\widetilde{\beta}_{j,\text{de}}^{(k)}-z_{\alpha/2}\widetilde{\tau}_{j}^{(k)},\widetilde{\beta}_{j,\text{de}}^{(k)}+z_{\alpha/2}\widetilde{\tau}_{j}^{(k)}\right),k\in[n].$$

• Recurse the variables $(\widetilde{\beta}_i^{(k)}, \widetilde{\gamma}_{\cdot,i}^{(k)}, s^{(k)}, \widetilde{\tau}_i^{(k)})$ and clear other variables in memory.

Figure 1: Approximated Debiased Lasso

For statistical inference of the j-th element in β^* , we only need to compute and store up to some p-dimensional vectors instead of some $p \times p$ matrix.

Theorem (Convergence rate)

Under some conditions, the following events

$$\|\widetilde{eta}^{(k)}-eta^*\|_1\lesssim \|\widetilde{eta}^{(0)}-eta^*\|_1c_1s_0\sqrt{rac{\log p}{k}}, \ \|\widetilde{eta}^{(k)}-eta^*\|_2^2\lesssim \|\widetilde{eta}^{(0)}-eta^*\|_2^2c_2s_0rac{\log p}{k}.$$

for $k \geq n_1$ hold uniformly for universal constants n_1, c_1 and c_2 with high probability.

Theorem (Asymptotic normality)

Under some Assumptions,

$$\left(\widetilde{eta}_{j,de}^{(n)}-eta_{j}^{*}
ight)/\widetilde{ au}_{j}^{(n)}
ightarrow\mathcal{N}(0,1)$$

in distribution as $n \to \infty$.

Numerical Results

Logistic regression with synthetic data:

Table 1: n=200, p=500, $s_0=6$, $\Sigma=0.1 imes \{0.5^{|i-j|}\}_{i,j=1,...,p}$. Simulation results are summarized over 200 replications.

•	β_k^{\star} deLasso LSW			ODL			ADL		
Sample size <i>n</i>		200	200	40	120	200	40	120	200
Coverage probability	0	0.95	0.98	0.97	0.96	0.95	0.97	0.96	0.95
	1	0.93	0.92	0.96	0.95	0.94	0.97	0.95	0.95
	-1	0.95	0.94	0.97	0.95	0.95	0.97	0.97	0.95
Absolute	0	0.41	0.36	0.06	0.04	0.03	0.73	0.46	0.36
	1	0.43	0.53	0.25	0.21	0.18	0.80	0.47	0.38
	-1	0.41	0.52	0.23	0.20	0.17	0.78	0.45	0.37
Coverage length	0	2.03	2.26	4.06	2.29	1.77	4.24	2.47	1.88
	1	2.03	2.26	4.05	2.29	1.76	4.23	2.47	1.87
	-1	2.04	2.28	4.09	2.30	1.77	4.26	2.48	1.89
Time (s)		7.21	20.22	1	0.54		1	0.32	

Figure 2: n = 1000, p = 20000, $s_0 = 20$, $\Sigma = \{0.5^{|i-j|}\}_{i,j=1,...,p}$. Simulation results are averaged over 200 replications (around 110.4s for each)

Real data application on logistic regression:

- x: 3,231,961 features containing lexical, host-based information...
- y: Binary, is this URL a phishing site or not?

Figure 3: Trace plots of impacts of three features on the detection of malicious websites.

Reference

Agarwal, A., Negahban, S., & Wainwright, M. J. (2012). Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions. Advances in Neural Information Processing Systems, 25.

Han, R., Luo, L., Luo, Y., Lin, Y., & Huang, J. (2023). Online Inference in High-dimensional Models. To submit.