Classifying Finite Simple Groups with Respect to the Number of Orbits Under the Action of the Automorphism Group

- Supplementary Tables, Updated 2019-12-23 -

Stefan Kohl

The values $\omega(G)$ in Table 1 have mostly been computed using GAP [4], all other data has been taken from the *Atlas of finite groups* [3]. Tables 2 and 4 have in parts been computed using GAP, and in parts using MAGMA [2] by Eamonn O'Brien in December 2019 – cf. Table 3. For Table 4, among various other information, also the bounds from [1] have been taken into account.

1 Orbit Numbers for Small Simple Groups

Table 1: Values $\omega(G)$ for simple groups G (sorted by group order, the enumeration of groups $G = \mathrm{PSL}(2,q)$ was stopped at $|G| = 10^6$).

G	$\omega(G)$	G	Prime factorization of $ G $	$\operatorname{Out}(G)$
$A_5 \cong PSL(2,4)$				
$\cong PSL(2,5)$	4	60	$2^2 \cdot 3 \cdot 5$	C_2
$PSL(3,2) \cong PSL(2,7)$	5	168	$2^3 \cdot 3 \cdot 7$	C_2
$A_6 \cong PSL(2,9)$	5	360	$2^3 \cdot 3^2 \cdot 5$	$ \begin{array}{c} C_2 \\ C_2^2 \end{array} $
PSL(2,8)	5	504	$2^3 \cdot 3^2 \cdot 7$	C_3
PSL(2,11)	7	660	$2^2 \cdot 3 \cdot 5 \cdot 11$	C_2
PSL(2,13)	8	1092	$2^2 \cdot 3 \cdot 7 \cdot 13$	C_2
PSL(2,17)	10	2448	$2^4 \cdot 3^2 \cdot 17$	C_2
A_7	8	2520	$2^3 \cdot 3^2 \cdot 5 \cdot 7$	C_2
PSL(2, 19)	11	3420	$2^2 \cdot 3^2 \cdot 5 \cdot 19$	C_2
PSL(2,16)	7	4080	$2^4 \cdot 3 \cdot 5 \cdot 17$	C_4
PSL(3,3)	9	5616	$2^4 \cdot 3^3 \cdot 13$	C_2
$PSU(3,3) \cong G_2(2)'$	10	6048	$2^5 \cdot 3^3 \cdot 7$	C_2
PSL(2,23)	13	6072	$2^3 \cdot 3 \cdot 11 \cdot 23$	C_2
PSL(2,25)	10	7800	$2^3 \cdot 3 \cdot 5^2 \cdot 13$	C_2^2
M_{11}	10	7920	$2^4 \cdot 3^2 \cdot 5 \cdot 11$	1
PSL(2,27)	7	9828	$2^2 \cdot 3^3 \cdot 7 \cdot 13$	C_6
PSL(2,29)	16	12180	$2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 29$	C_2
PSL(2,31)	17	14880	$2^5 \cdot 3 \cdot 5 \cdot 31$	C_2
			To be o	continued.

Continued.				
G	$\omega(G)$	G	Prime factorization of $ G $	$\operatorname{Out}(G)$
$A_8 \cong PSL(4,2)$	12	20160	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	C_2
PSL(3,4)	6	20160	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	D_6
PSL(2,37)	20	25308	$2^2 \cdot 3^2 \cdot 19 \cdot 37$	C_2
$PSU(4,2) \cong O(5,3)$	15	25920	$2^6 \cdot 3^4 \cdot 5$	C_2
Sz(8)	7	29120	$2^6 \cdot 5 \cdot 7 \cdot 13$	C_3
PSL(2,32)	9	32736	$2^5 \cdot 3 \cdot 11 \cdot 31$	C_5
PSL(2,41)	22	34440	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 41$	C_2
PSL(2,43)	23	39732	$2^2 \cdot 3 \cdot 7 \cdot 11 \cdot 43$	C_2
PSL(2,47)	25	51888	$2^4 \cdot 3 \cdot 23 \cdot 47$	C_2
$ \operatorname{PSL}(2,49) $	17	58800	$2^4 \cdot 3 \cdot 5^2 \cdot 7^2$	C_2^2
PSU(3,4)	9	62400	$2^6 \cdot 3 \cdot 5^2 \cdot 13$	$\begin{array}{ c c }\hline C_4^2 \end{array}$
$ \operatorname{PSL}(2,53) $	28	74412	$2^2 \cdot 3^3 \cdot 13 \cdot 53$	C_2
M_{12}	12	95040	$2^6 \cdot 3^3 \cdot 5 \cdot 11$	C_2
PSL(2, 59)	31	102660	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
$\begin{array}{ c c c c } \hline PSL(2,63) \\ \hline PSL(2,61) \\ \hline \end{array}$	$\begin{vmatrix} 31 \\ 32 \end{vmatrix}$	113460	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
PSU(3,5)	10	126000	$2^4 \cdot 3^2 \cdot 5^3 \cdot 7$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \operatorname{PSL}(2,67) $	35	150348	$\begin{vmatrix} 2 & 3 & 7 \\ 2^2 \cdot 3 \cdot 11 \cdot 17 \cdot 67 \end{vmatrix}$	$\begin{array}{ c c }\hline C_3 \\ C_2 \end{array}$
J_1	15	175560	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \overset{31}{\text{PSL}}(2,71) $	$\begin{vmatrix} 15\\37 \end{vmatrix}$	178920	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c }\hline C_2 \end{array}$
A_9	16	181440	$\begin{bmatrix} 2^6 \cdot 3^4 \cdot 5 \cdot 7 \\ 2^6 \cdot 3^4 \cdot 5 \cdot 7 \end{bmatrix}$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
PSL(2,73)	38	194472	$\begin{bmatrix} 2 & 3 & 3 & 7 \\ 2^3 \cdot 3^2 \cdot 37 \cdot 73 & 7 \end{bmatrix}$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
$\begin{array}{ c c c c c } PSL(2,79) \\ \hline \end{array}$	41	246480	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
$\begin{array}{ c c c } PSL(2, 64) \\ \hline \end{array}$	15	262080	$2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$	$\begin{array}{ c c }\hline C_2 \\ C_6 \end{array}$
$\begin{array}{c c} PSL(2, 04) \\ PSL(2, 81) \end{array}$	15	265680	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c } C_6 \\ C_2 \times C_4 \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43	285852	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c }\hline C_2 & C_4 \\ C_2 \end{array}$
$\begin{array}{c c} PSL(2,89) \\ \hline \end{array}$	46	352440	$2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 89$	$egin{array}{c} \mathrm{C}_2 \ \mathrm{C}_2 \end{array}$
$\begin{array}{c c} PSL(2, 69) \\ PSL(3, 5) \end{array}$	19	372000	$2^{5} \cdot 3 \cdot 5^{3} \cdot 31$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
M_{22}	11	443520	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50		$2^{5} \cdot 3 \cdot 7^{2} \cdot 97$	$egin{array}{c} \mathrm{C}_2 \\ \mathrm{C}_2 \end{array}$
$\begin{array}{c c} PSL(2,97) \\ PSL(2,101) \end{array}$	52	515100	$2^{2} \cdot 3 \cdot 7 \cdot 97$ $2^{2} \cdot 3 \cdot 5^{2} \cdot 17 \cdot 101$	$egin{array}{c} \mathrm{C}_2 \ \mathrm{C}_2 \end{array}$
PSL(2, 101)	53	546312	$2^{3} \cdot 3 \cdot 13 \cdot 17 \cdot 101$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
J_2	16	604800	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$	$egin{array}{c} \mathrm{C}_2 \ \mathrm{C}_2 \end{array}$
PSL(2, 107)	55	612468	$\begin{vmatrix} 2 \cdot 3 \cdot 3 \cdot 7 \\ 2^2 \cdot 3^3 \cdot 53 \cdot 107 \end{vmatrix}$	$egin{array}{c} \mathrm{C}_2 \\ \mathrm{C}_2 \end{array}$
PSL(2, 109)	56	647460	$2^{2} \cdot 3^{3} \cdot 5 \cdot 10^{7}$ $2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \cdot 109$	$\begin{array}{ c c }\hline C_2 \\ C_2 \end{array}$
, , ,	58	721392	$2^{4} \cdot 3 \cdot 7 \cdot 19 \cdot 113$	
PSL(2, 113)		885720	$\begin{vmatrix} 2^3 \cdot 3 \cdot 7 \cdot 19 \cdot 113 \\ 2^3 \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \end{vmatrix}$	$ \begin{array}{c} C_2 \\ C_2^2 \end{array} $
PSL(2, 121)	37		$\begin{vmatrix} 2^3 \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \\ 2^2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 31 \end{vmatrix}$	
PSL(2, 125)	24	976500	$\begin{vmatrix} 2^2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 31 \\ 2^8 \cdot 3^2 \cdot 5^2 \cdot 17 \end{vmatrix}$	C_6
O(5,4)	12	979200	$\begin{bmatrix} 2^9 \cdot 3^2 \cdot 5^2 \cdot 17 \\ 2^9 \cdot 3^4 \cdot 5 \cdot 7 \end{bmatrix}$	C_4
PSp(6,2)	30	1451520		$\begin{vmatrix} 1 \\ C \end{vmatrix}$
A_{10}	22	1814400	$2^7 \cdot 3^4 \cdot 5^2 \cdot 7$	C_2
PSL(3,7)	16	1876896	$\begin{bmatrix} 2^5 \cdot 3^2 \cdot 7^3 \cdot 19 \\ 2^7 \cdot 3^6 \cdot 5 & 7 \end{bmatrix}$	S_3
PSU(4,3)	14	3265920	$2^7 \cdot 3^6 \cdot 5 \cdot 7$	D_4
$G_2(3)$	17	4245696	$2^6 \cdot 3^6 \cdot 7 \cdot 13$	C_2
O(5,5)	27	4680000	$2^6 \cdot 3^2 \cdot 5^4 \cdot 13$	C_2
PSU(3, 8)	10	5515776	$2^9 \cdot 3^4 \cdot 7 \cdot 19$	$C_3 \times S_3$
PSU(3,7)	34	5663616	$2^7 \cdot 3 \cdot 7^3 \cdot 43$	C_2
			To be o	continued.

Continued.				
G	$\omega(G)$	G	Prime factorization of $ G $	$\operatorname{Out}(G)$
PSL(4,3)	26	6065280	$2^7 \cdot 3^6 \cdot 5 \cdot 13$	C_2^2
$ \operatorname{PSL}(5,2) $	20	9999360	$2^{10} \cdot 3^2 \cdot 5 \cdot 7 \cdot 31$	C_2
$ m M_{23}$	17	10200960	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$	1
PSU(5,2)	30	13685760	$2^{10} \cdot 3^5 \cdot 5 \cdot 11$	C_2
PSL(3,8)	17	16482816	$2^9 \cdot 3^2 \cdot 7^2 \cdot 73$	C_6
${}^{2}F_{4}(2)'$ (Tits-G.)	17	17971200	$2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$	C_2
A_{11}	29	19958400	$2^7 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$	C_2
Sz(32)	11	32537600	$2^{10} \cdot 5^2 \cdot 31 \cdot 41$	C_5
PSL(3,9)	32	42456960	$2^7 \cdot 3^6 \cdot 5 \cdot 7 \cdot 13$	C_2^2
PSU(3,9)	29	42573600	$2^5 \cdot 3^6 \cdot 5^2 \cdot 73$	C_4
HS	21	44352000	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$	C_2
$\int J_3$	17	50232960	$2^7 \cdot 3^5 \cdot 5 \cdot 17 \cdot 19$	C_2
PSU(3, 11)	30	70915680	$2^5 \cdot 3^2 \cdot 5 \cdot 11^3 \cdot 37$	S_3
O(5,7)	43	138297600	$2^8 \cdot 3^2 \cdot 5^2 \cdot 7^4$	C_2
$O^{+}(8,2)$	27	174182400	$2^{12} \cdot 3^5 \cdot 5^2 \cdot 7$	S_3
$O^{-}(8,2)$	33	197406720	$2^{12} \cdot 3^4 \cdot 5 \cdot 7 \cdot 17$	C_2
$^{3}D_{4}(2)$	21	211341312	$2^{12} \cdot 3^4 \cdot 7^2 \cdot 13$	C_3
PSL(3,11)	73	212427600	$2^4 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11^3 \cdot 19$	C_2
A_{12}	40	239500800	$2^9 \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11$	C_2
M_{24}	26	244823040	$2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$	1
$G_2(4)$	24	251596800	$2^{12} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13$	C_2
PSL(3, 13)	39	270178272	$2^5 \cdot 3^2 \cdot 7 \cdot 13^3 \cdot 61$	S_3
PSU(3, 13)	100	811273008	$2^4 \cdot 3 \cdot 7^2 \cdot 13^3 \cdot 157$	C_2
McL	19	898128000	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	C_2
PSL(4,4)	36	987033600	$2^{12} \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 17$	C_2^2
PSU(4,4)	35	1018368000	$2^{12} \cdot 3^2 \cdot 5^3 \cdot 13 \cdot 17$	C_4
O(5,8)	21	1056706560	$2^{12} \cdot 3^4 \cdot 5 \cdot 7^2 \cdot 13$	C_6
PSL(3, 16)	20	1425715200	$2^{12} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17$	$C_4 \times S_3$
O(5,9)	41	1721606400	$2^8 \cdot 3^8 \cdot 5^2 \cdot 41$	C_2^2
PSU(3, 17)	62	2317678272	$2^6 \cdot 3^4 \cdot 7 \cdot 13 \cdot 17^3$	S_3
A_{13}	52	3113510400	$2^9 \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	C_2
He	26	4030387200	$2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$	C_2
PSU(3, 16)	40	4279234560	$2^{12} \cdot 3 \cdot 5 \cdot 17^2 \cdot 241$	C_8
PSp(6,3)	50	4585351680	$2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$	C_2
O(7,3)	52	4585351680	$2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$	C_2
PSL(3, 19)	75	5644682640	$2^4 \cdot 3^4 \cdot 5 \cdot 19^3 \cdot 127$	S_3
$G_2(5)$	44	5859000000	$2^6 \cdot 3^3 \cdot 5^6 \cdot 7 \cdot 31$	1
$ \operatorname{PSL}(3,17) $	163	6950204928	$2^9 \cdot 3^2 \cdot 17^3 \cdot 307$	C_2
PSL(4,5)	34	7254000000	$2^7 \cdot 3^2 \cdot 5^6 \cdot 13 \cdot 31$	D_4
PSU(6,2)	34	9196830720	$2^{15} \cdot 3^6 \cdot 5 \cdot 7 \cdot 11$	S_3

2 Simple Groups by Orbit Number

Table 2: Simple groups G for given $\omega(G)$; if several groups are generically isomorphic, only one of them is mentioned. The table is complete for $\omega(G) \leq 41$.

n	Simple groups G satisfying $\omega(G) = n$
$\frac{n}{4}$	PSL(2, 4) \cong PSL(2, 5) \cong A ₅
5	$PSL(2, 7) \cong PSL(3, 2), PSL(2, 9) \cong A_6, PSL(2, 8)$
6	PSL(3,4)
7	PSL(2,11), PSL(2,16), PSL(2,27), Sz(8)
8	$PSL(2, 13), A_7$
9	PSL(3,3), PSL(2,32), PSU(3,4)
10	$PSL(2, 17), PSU(3, 3), PSL(2, 25), M_{11}, PSU(3, 5), PSU(3, 8)$
11	$PSL(2, 19), M_{22}, Sz(32)$
12	$PSL(4,2) \cong A_8, M_{12}, O(5,4)$
13	PSL(2,23)
14	PSU(4,3)
15	$PSU(4,2) \cong O(5,3), J_1, PSL(2,64), PSL(2,81)$
16	$PSL(2,29), A_9, J_2, PSL(3,7)$
17	$PSL(2,31), PSL(2,49), G_2(3), M_{23}, PSL(3,8), {}^{2}F_4(2)', J_3$
18	
19	PSL(3,5), Mcl , $Ree(27)$
20	PSL(2,37), PSL(5,2), PSL(3,16)
21	$PSL(2, 128), HS, {}^{3}D_{4}(2), O(5, 8)$
22	$PSL(2,41), A_{10}$
23	PSL(2, 43), Sz(128)
24	$PSL(2, 125), G_2(4)$
25	PSL(2,47), O'N
26	$PSL(4,3), M_{24}, He$
27	$O(5,5), PSL(2,243), O^+(8,2)$
28	PSL(2,53)
29	$A_{11}, PSU(3,9)$
30	$O(7,2) \cong PSp(6,2), PSU(5,2), PSU(3,11)$
31	PSL(2, 59)
32	PSL(2,61), PSL(3,9)
33	$O^{-}(8,2)$
34	PSU(3,7), PSL(4,5), PSU(5,4), PSU(6,2)
35	PSL(2, 67), PSU(4, 4) PSL(4, 4), Ru
$\begin{array}{c c} 36 \\ 37 \end{array}$	PSL(4, 4), Ru PSL(2, 71), PSL(2, 121), PSL(2, 256), Suz
38	PSL(2,71), PSL(2,121), PSL(2,230), Suz $PSL(2,73), O^{+}(8,3)$
39	PSL(3, 13)
40	$A_{12}, PSU(3, 16)$
41	PSL(2,79), O(5,9)
42	$PSU(3, 32), Co_3$
43	PSL(2,83), O(5,7)
	To be continued.

```
Continued.
                 Simple groups G satisfying \omega(G) = n
n
     G_2(5), PSL(6,2), HN
44
45
     O(5, 16)
     PSL(2, 89)
46
47
     Th
48
49
50
     PSL(2, 97), PSL(2, 169), PSp(6, 3)
51
52
     PSL(2, 101), A_{13}, O(7, 3)
53
     PSL(2, 103), Ly
54
55
     PSL(2, 107)
     PSL(2, 109), {}^{3}D_{4}(3)
56
57
58
     PSL(2, 113)
59
     Fi_{22}
60
     Co_2
     PSL(2, 343), PSL(2, 512)
61
62
     PSU(3,17), F_4(2), J_4
63
64
     PSU(4,5)
65
     PSL(2, 127)
 66
67
     PSL(2, 131)
68
69
     PSL(2,729), A_{14}
70
     PSL(2, 137)
     PSL(2, 139)
71
     PSL(3,25), PSL(5,3), G_2(7)
72
73
     PSL(3, 11)
74
75
     PSL(3, 19), O(7, 4)
76
     PSL(2, 149), PSU(4, 7)
77
     PSL(2, 151), O^{-}(8, 3), PSL(7, 2)
78
     ^{3}D_{4}(4)
79
80
     PSL(2, 157)
81
     O(9,2), PSp(8,2)
82
     PSL(2, 289)
83
     PSL(2, 163)
84
     O^+(10,2), O^+(8,4)
85
     PSL(2, 167), PSL(4, 9)
86
87
     O(5, 11)
     PSL(2, 173), PSL(2, 625)
88
89
     PSU(5,3)
                                                    To be continued.
```

Cont	inued.
n	Simple groups G satisfying $\omega(G) = n$
90	A_{15}
91	PSL(2, 179)
92	PSL(2, 181)
93	$O^-(10,2)$
94	
95	
96	
97	$PSL(2, 191), Fi'_{24}$
98	$PSL(2, 193), Fi_{23}$
99	
100	PSL(2, 197), PSU(3, 13)

Table 3: Values $\omega(G)$ computed by Eamonn O'Brien with MAGMA in December 2019.

G	$\omega(G)$
O(5,8)	21
PSU(6,2)	34
PSU(5,4)	34
PSU(4,4)	35
$O^{+}(8,3)$	38
PSU(3, 16)	40
O(5,9)	41
PSU(3,32)	42
O(5, 16)	45
$^{3}D_{4}(3)$	56
PSU(3,17)	62
$F_4(2)$	62
PSU(4,5)	64
PSL(3,25)	72
PSL(3,11)	73
PSL(3, 19)	75
O(7,4)	75
PSU(4,7)	76
PSL(7,2)	77
$O^{-}(8,3)$	77
$^{3}D_{4}(4)$	78
$O^{+}(8,4)$	84
$O^+(10,2)$	84
PSL(4,9)	85
O(5,11)	87
PSU(5,3)	89
$O^-(10,2)$	93
PSU(3, 13)	100
PSU(3,23)	106
PSL(5,4)	110
To be continued.	

Continued.	
n	$\omega(G)$
O(5, 13)	115
$O^{+}(8,5)$	116
PSL(4,8)	119
PSL(6,3)	122
$E_6(2)$	132
PSp(6,5)	133
$O^{-}(8,4)$	133
O(7,5)	136
PSL(4,7)	137
PSU(4,9)	142
$O^{-}(10,3)$	151
O(5, 27)	151
PSU(6,3)	156
PSU(3,29)	162
PSL(6,4)	169
O(5, 25)	203
PSU(4, 11)	232
PSU(9,2)	240
$O^+(10,3)$	268
O(7,9)	307
PSU(3,41)	310

3 Remaining 'Candidates'

Table 4: Bounds on orbit numbers for all remaining simple groups G which possibly satisfy $\omega(G) \leq 100$. We give the best lower bound computed so far.

n	Simple groups G satisfying $\omega(G) \geq n$
	Ree(8)
64	PSU(6,5)
77	PSU(5,9)
89	$^{2}\mathrm{E}_{6}(2)$

References

- [1] Alexander Bors, Michael Giudici, and Cheryl E. Praeger. *Documentation for the GAP code file OrbOrd.txt*, 2019. (https://arxiv.org/abs/1910.12570).
- [2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
- [3] John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker, and Robert A. Wilson. *Atlas of finite groups*. Oxford University Press, 1985.

[4] The GAP Group, Aachen, St Andrews. GAP – Groups, Algorithms, and Programming, Version 4.10.2, 2019. (http://www.gap-system.org).