Date: February 10, 2022 Name: _

MEGR 3122 Dynamics Systems II: Exam 1, Spring 2022

Multiple Choice Problems (Total 20 Points)

Directions: Circle the best answer. Each question is worth 2 points.

- 1. In this course, system dynamics are modeled as:
 - A partial differential equations
 - Bordinary differential equations
 - C. hyperbolic equations
 - D. asymptotic equations
- 2. If x(t) is a function of time (the state of a mechanical system), and a and b are constants, then $\ddot{x} + a\dot{x} + \sqrt{b}t = 1$ is which of the following?
 - A. linear, time-varying, second-order, homogeneous
 - B. linear, time-invariant, second-order, homogeneous
 - C linear, time-invariant, second-order, inhomogeneous
 - D. nonlinear

x(1) diverges to

- 3. Which case in Fig. 1 (below) could plausibly represent the response of a system $\dot{x} 2x = 0$? (Note: the initial condition is not necessary to answer this question.)
 - A. Case 1 B Case 2

 - C. Case 3
 - D. Both Case 1 and Case 2

Figure 1: System response

4. Consider the following initial value problem:

$$\dot{x} + 4x = 0 , \qquad \underline{x(0) = 5}$$

The solution is:

$$Ax(t) = 5e^{-4t}$$

B.
$$x(t) = 4e^{-5t}$$

$$Ax(t) = 5e^{-4t}$$
 B. $x(t) = 4e^{-5t}$ C. $x(t) = e^{-4t}\cos 5t$ D. $x(t) = e^{4t}\sin t$

D.
$$x(t) = e^{4t} \sin t$$

5. If $z_1 = -i$ and $z_2 = e^{i\pi/2}$, then what is the sum $z_1 + z_2$?

- $z_2 = i$ => $z_1 + z_2 = 0$ $z_1 = -i$

6. Consider the following system

$$\dot{x} + ax = 0$$

with initial condition of x(0) = 100. The state x(t) decays to a value of 36.8 after 3 seconds. That is, x(3) = 36.8. What is the value of a?

- A. a = 100/3
- (B) a = 1/3
- C. a = 3
- D. a = (100 36.8)/3

36.8% of 100 implies
1 time constant

$$T=3$$
, => $\alpha=\frac{1}{5}=\frac{1}{3}$

- 7. What is the Laplace transform of the function $x(t) = (\underline{t-2})H(t-2)$, where $H(\cdot)$ is the unit step or Heaviside function? $Z[t] = 1/s^2$ comp shifted by $\alpha = 2$ using translated LT theorem A. $\frac{1}{s^2}$ B. $\frac{1}{(s+1)^2}$ C. $\frac{e^{-2s}}{s^2}$ D. $\frac{2!}{(s-2)^2}$

- 8. Consider the second order system $6\ddot{x} + 3x = 0$ and define a new set of variables $z_1 = x$ and $z_2 = \dot{x}$. Which of the following first-order systems of two equations (in z_1 an z_2) is equivalent to the second $z_1 = x = z_1$ $z_2 = x = -\frac{3}{6}x = -\frac{1}{2}z_1$ $z_3 = x = -\frac{3}{6}x = -\frac{1}{2}z_1$ order system (in x)?
 - A.

- В.
- $z_2 = 6\dot{z}_1 + 3\dot{z}_2$
- $\dot{z}_1 = 3z_2$ $\dot{z}_2 = 6z_1$ $\dot{z}_2 = 6z_2 + 3z_1$
- $\dot{z}_2 = -(1/2)z_1$
- 9. Which case in Fig. 2 (below) could plausibly represent the response of a system $\ddot{x} + \dot{x} + x = 0$ with $\underline{x(0)} = 4$ and $\dot{x}(0) = -10$?
 - A. Case 1
 - B. Case 2
 - C. Case 3
- D slope should be downward
- D. None of the above

Figure 2: System response

10. What is the final value of x(t) as $t \to 0$ if the Laplace transform of x(t) is the following?

$$X(s) = \frac{s+10}{5s^2 + 2s + 1}$$

- A. $x(t) \rightarrow 10$ B. $x(t) \rightarrow 5$ C. $x(t) \rightarrow 2$ D. $x(t) \rightarrow 1$

Workout Problem Instructions

To receive full credit on the workout problems show all of your work.

Workout Problem 1 (5 pts)

Consider the ODE

$$\ddot{x} + 4\dot{x} + 8x = 0$$

with initial conditions x(0) = 0 and $\dot{x}(0) = 10$.

- Find the eigenvalues of the system
- State the general solution of the ODE
- Determine the particular solution x(t) that satisfies the initial conditions

Eigenvalues

$$\lambda^{2} + 4\lambda + 8 = 0$$

$$(\lambda + 2)^{2} = \lambda^{2} + 4\lambda + 4 = -4$$

$$\lambda_{1,2} - 2 \pm 2i$$

I.(s

$$\chi(0) = 0 = A \cdot \cos(0) = A = 0$$

$$\chi(0) = 10 = -2e^{-2t} B \sin(2t) + e^{-2t} (B \cdot 2 \cdot \cos(2t))$$

$$= 0$$

$$x(t) = 5e^{-2t} \sin(2t)$$

Workout Problem 2 (5 pts)

Compute the Laplace transform $F(s) = \mathcal{L}[f(t)]$ of the following function:

$$f(t) = \frac{e^{-t}}{4} [2 + t^2 + \cos(3t)]$$

$$f(t) = \frac{e^{-t}}{4} \left(2 + t^2 + \cos(3t)\right)$$

$$= \frac{2}{4}e^{-t} + \frac{1}{2}\left(\frac{t}{2}e^{-t}\right) + \frac{1}{4}e^{-t}\cos 3t$$

$$F(s) = \frac{1}{2} \mathcal{Z}\left[e^{-t}\right] + \frac{1}{2}\mathcal{Z}\left[\frac{t^2e^{-t}}{2}\right] + \frac{1}{4}\mathcal{Z}\left[e^{-t}\cos 3t\right]$$

$$\begin{cases} \cos 6 & \sin 8 \\ \sin 8 & \sin 2t \end{cases}$$

$$= \frac{1}{2}\left[\frac{1}{s+1}\right] + \frac{1}{2}\left[\frac{1}{(s+1)^3}\right] + \frac{1}{4}\left[\frac{s+1}{(s+1)^2+9}\right]$$

Workout Problem 3 (5 pts)

Compute the inverse Laplace transform $f(t) = \mathcal{L}^{-1}[F(s)]$ of the following function:

$$F(s) = \frac{s+1}{s^2 + 6s + 9}$$

$$F(S) = \frac{(S+1)}{(S^2 + 6S + 9)} = \frac{(S+1)}{(S+3)^2} = \frac{C_1}{(S+3)} + \frac{C_2}{(S+3)^2}$$
capable

$$(5+1) = C_1(5+3) + C_2$$

$$5+1 = C_15 + (3C_1 + C_2)$$

$$\Rightarrow C_1 = 1$$

$$1 = 3 + C_2 \Rightarrow (C_2 = -2)$$

$$F(s) = \frac{1}{(s+3)} - \frac{2}{(s+3)^2}$$

$$f(t) = \mathcal{I}^{-1} \left[\frac{1}{s+3} \right] - 2 \mathcal{I}^{-1} \left[\frac{1}{(s+3)^2} \right]$$

$$= e^{-3t} - 2 t e^{-3t}$$

 Table 2.1
 Laplace transforms [2]

	1 23	
	f(t)	F(s)
1	Unit impulse $\delta(t)$	1
2	Unit step $u(t)$	1
_	0 300F m(r)	$\frac{-}{s}$
3	t	1
		$\overline{s^2}$
4	t^{n-1}	1
	$\frac{r}{(n-1)!}$, $n=1, 2, 3,$	$\overline{s^n}$
5	$t^n, n=1, 2, 3, \dots$	n!
3	, , , , , , , , , , , , , , , , , , , ,	$\frac{S^{n+1}}{S^{n+1}}$
6	e^{-at}	1
		s+a
7	te ^{-at}	1
		$\left(\frac{(s+a)^2}{(s+a)^2}\right)$
8	<i>n</i> −1	$\frac{(s+a)^2}{1}$
O	$\frac{t^{n-1}}{(n-1)!}e^{-at}, n=1, 2, 3, \dots$	$\left \frac{1}{(s+a)^n}\right $
	(n-1)!	
9	$t^n e^{-at}, n = 1, 2, 3,$	$\frac{n!}{(s+a)^{n+1}}$
10	$\sin(\omega t)$	ω
		$\frac{\overline{s^2 + \omega^2}}{s}$
11	$\cos(\omega t)$	$\frac{s}{2+2}$
12	simb(cd)	$\frac{\overline{s^2 + \omega^2}}{\omega}$
12	$\sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$
13	$\cosh(\omega t)$	$\frac{\overline{s^2-\omega^2}}{s}$
	()	$\frac{\overline{s^2-\omega^2}}{1}$
14	$\left \frac{1}{2}(1-e^{-at})\right $	11
	$\frac{1}{a}(1-e^{-at})$	$\overline{s(s+a)}$
15	$1 \left(\frac{-at}{a} \right) \left(\frac{-bt}{a} \right)$	1
	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\overline{(s+a)(s+b)}$
16	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	S
	$\frac{1}{b-a}(be^{-a}-ae^{-a})$	$\overline{(s+a)(s+b)}$
17	$1 \begin{pmatrix} 1 & 1 & -at & -bt \end{pmatrix}$	1
	$\frac{1}{ab}\left(1+\frac{1}{a-b}\left(be^{-at}-ae^{-bt}\right)\right)$	$\overline{s(s+a)(s+b)}$
18	1	1
	$\frac{1}{a^2}(1 - e^{-at} - ate^{-at})$	$\overline{s(s+a)^2}$
19	1	1
1)	$\frac{1}{a^2}(at-1+e^{-at})$	$s^2(s+a)$
20	$e^{-at}\sin(\omega t)$	$\frac{3(3+a)}{\omega}$
20	$c \sin(\omega t)$	$\sqrt{(s+a)^2+\omega^2}$
21	$e^{-at}\cos(\omega t)$	(s+a)+w
∠1	c cos(wi)	$\frac{s+a}{(s+a)^2+2}$
		$(s+a)^2 + \omega^2$
22	$\left \frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2}t\right)\right $	$\frac{s+a}{(s+a)^2 + \omega^2}$ $\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
	$\sqrt{1-\zeta^2}$	$s^2 + 2\zeta\omega_n s + \omega_n^2$

(continued)

 Table 2.1 (continued)

	f(t)	F(s)
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\left(\omega_n\sqrt{1-\zeta^2}t-\phi\right)$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
	$\phi = \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$	
24	$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1-\zeta^2} t + \phi\right)$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
	$\phi = \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$	$S(S + 2\zeta \omega_n S + \omega_n)$
25	$1-\cos(\omega t)$	ω^2
		$\overline{s(s^2+\omega^2)}$
26	$\omega t - \sin(\omega t)$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
27	$\sin(\omega t) - \omega t \cos(\omega t)$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
		$\left(s^2+\omega^2\right)^2$
28	$\frac{1}{t\sin(\omega t)}$	<u>S</u>
	$\frac{1}{2\omega}t\sin(\omega t)$	$\overline{(s^2+\omega^2)^2}$
29	$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
		$\left(s^2+\omega^2\right)^2$
30	$\frac{1}{1-(\cos(\omega_t t)-\cos(\omega_t t))}\omega^2+\omega^2$	S
	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos(\omega_1 t) - \cos(\omega_2 t)), \omega_1^2 \neq \omega_2^2$	$(s^2 + \omega_1^2)(s^2 + \omega_2^2)$
31	$\frac{1}{2\omega}(\sin{(\omega t)} + \omega t \cos{(\omega t)})$	s^2
	$2\omega^{(\omega n)}(\omega r) + \omega r \cos(\omega r)$	$\left \frac{s}{(s^2+\omega^2)^2}\right $