Task 1
Insertion, Counting and Merge

Conclusion:

The Insersion sort grow so much faster than the other two sorting method, since the complexity of Insersion sort is $O(n^2)$ and the complexity of counting O(n) and merge sort is O(nlog(n)).

Task 2:

Run Time vs. Cutoff

The best cutoff is at 4.

Task 3:

Traditional QuickSort and Modified QuickSort

Task 4:

Insertion Sort and Bucket Sort

Since the complexity of insertion sort is $O(n^2)$ which is so much greater than bucket sort(O(n)). When n increases, the blue line increments so much more than the red line.

Task 5:

Size 50000, Quick Sort and Counting Sort

Size 200000, Quick Sort and Counting Sort

The range of data is completely uncorrelated to the running time of quick sort, since it treats every element as a byte. However, the running time of counting sort increases dramatically as the range of data increases. It is because the counting sort needs to create a new array with length of the maximum value of array.