Quantifying Loss-Averse Tax Manipulation Alex Ress-Jones

Reviewd by Reio TANJI

Osaka University

Nov 13th, 2018

Abstract

Alex Rees-Jones (2018) "Quantifying Loss-Averse Tax Manipulation" Review of Economic Studies (2018) 85, 1251-1278

- Presents the effects of loss-aversion from the evidence of US taxpayers.
- Taxpayers are engaged to persue tax reduction activity especially when they have some positive due near the date of payment.
- Distribution of reported tax bill has excess mass around the border whether they must pay or not.

Institutional Background

- In the US, one's tax payment in each year is determined by the Internal Revenue Service (IRS), based on the difference between the reported taxable income and the her/his payment in advance: "balance due."
- If the balance due (denoted by b) is positive, the tax filer must that amount to the IRS, and if negative, then s/he can receive a refund.
- Balance due can be "manipulated," by reporting donation they did, or enrollment in charitable contribution.
 - ⇒ Loss-Averse affects the tax filers' behavior according to their initial balance due, resulting in the bunching of the reported (observed) payment.

contribution

This paper contributes in three ways:

- Illustrate robust and observable features of the presence of lossaversion with minimal assumptions.
- Estimate the impact of loss-aversion measured in dollers.
- Specify the way to apply similar settings: loss-averse individual is able to manipulate an observable outcome.

Procedure of the Manipulation

Every April, taxpayers go through the process below:

- Report their taxable income, such as wages, salaries, tips, business income, investment income, and so on.
- Report "adjustments," to claim for things such as donations or payments for alimony
 - ⇒ Adjusted Gross Income (AGI) is calculated: balance due before manipulation.
- Accept AGI or complete an additional form of reduction: Itemization -Report deductable activities such as charitable contributions, medical and dental expenses, home mortgage interest payments.
- Final balance due is confirmed: Claim credits for pursuing tax incentivised behaviour and report other taces paid, payments already made to IRS.

Sequential Manipulation

• Given b_{PM} : balance due prior to manipulation, taxpayers face a sequense of manipulation opportunities, each of which is characterized by the parameters : $\{m_i, c_i\}_{i=1}^J$ m_i denotes the tax reduction by the ith manipulation c; is the intrinsic cost

Cost by manipulation

Taxpayers consider their benefits and costs to decide whether to make efforts to tax manipulation.

- Blumenthel and Slemrod (1992) It spend on average 27 hours documenting and reporting for tax reduction
- Benzarti (2015) They dislike tasks for tax 4.2 times as that for working with same time length

Ordinary gain-loss function:

$$\Phi(x|r) = \begin{cases} x - r & \text{if } x \ge r \\ \lambda(x - r) & \text{if } x < r \end{cases}$$

 Applying this structure, loss-averse taxpayers' evaluattion of the benefit from each manipulation:

$$V(m_i|b,r) = \Phi(-b+m_i|r) - \Phi(-b|r)$$

$$= \begin{cases} m_i & \text{if } -b \ge r \\ \lambda(r+b) + (m_i-b-r) & \text{if } -b \in [r-m_i,r] \\ \lambda m_i & \text{if } -b \le r - m_i \end{cases}$$

• Taxpayers continue to manipulate iff $m_i < c_i$.

Gain-Loss Function

- If there remains tax due after reduction, then all the value of the manipulation is evaluated as loss.
- When, on the other hand, manipulation cancels out the due before, the margin to be refunded is evaluated as gain.
- If s/he does not have to pay more, then the reduction by the manipulation is fully counted as gain.

gain-loss function

Assumption

Assume tax filers consder the most efficient manipulation.

- For i < j, $m_i/c_i > m_i/c_i$.
 - : They considers each oppoturnity of manipulation, in the most efficient order.
- $m_1/c_1 > 1$.
 - : There exists at least one desirable manipulation opporturnity.
- As $n \to \infty$, $m_n/c_n \to 0$.
 - : The number of desirable opportunity is finite.

Taxpayers continue manipulating as long as $V(m_i|b,r) \geq c_i$, and stop when $V(m_i|b,r) < c_i$.

Thresholds

They define two thresholds of $i \in J$ that stop the manipulation depending on the gain-loss situation.

$$L = \max \left\{ i : \frac{m_i}{c_i} > 1 \right\}$$
 $H = \max \left\{ i : \frac{m_i}{c_i} > \frac{1}{\lambda} \right\}$

- L is the threshold for gain phase, while H is the one for loss phase.
- $L \leq H$, where equality holds if there is no i s.t. $m_i/c_i \in (1/\lambda, 1]$.

Example

TABLE 1

An example sequential manipulation problem

(1)	(2)	(3)	(4)	(5)	(6)	(7)	
i	m_i	c_i	Takes opportunity if	Terminal opportunity if	Manipulated balance due range	Alt. cost sequence	
1	10	5	Always	Never	_	5	
2	10	8	Always	$b_{PM} < 22$	$(-\infty, 2]$	8	
3	10	12	$b_{PM} > 22$	$b_{PM} \in (22, 35]$	(-8,5]	16	
4	10	15	$b_{PM} > 35$	$b_{PM} \in (35, 48]$	(-5, 8]	25	
5	10	18	$b_{PM} > 48$	$b_{PM} > 48$	$(-2,\infty)$	34	
6	10	22	Never	Never		44	

$$\lambda = 2$$

When balance initial balance due $b_{PM} \le 22$, s/he continues to manipulate until i = 2, while one with $b_{PM} > 48$ goes till i = 5: L = 2, H = 5.

 Expected range of the balance due after manipulation is (-8,8), which generates excess mass or bunching.

FIGURE 1
Predictions of loss-averse tax manipulation.

Total Amount of Manipulation

Total manipulation is expressed as a function of the taxpayer's pre-manipulation balance due b_{PM} :

$$m^*(b_{PM}|r) = \begin{cases} \sum_{i=1}^{L} m_i & \text{if } b_{PM} \leq T_1 \\ \sum_{i=1}^{L+1} m_i & \text{if } b_{PM} \in (T_1, T_2] \\ \dots \\ \sum_{i=1}^{L+J-1} m_i & \text{if } b_{PM} \in (T_{J-1}, T_J] \\ \sum_{i=1}^{H} m_i & \text{if } b_{PM} > T_J \end{cases}$$

where T_j denotes

$$T_j = \max \left\{ b_{PM} : V\left(m_{L+j} | b_{PM} + \sum_{i=1}^{L+j-1} m_j, r
ight) \leq c_{L+j}
ight\}$$

Distribution after Manipulation

- $f^{PM}(b)$ denotes the ditribution of the pre-manipulation balance due, while f(b) is that of post-manipulation.
- All the taxpayers make manipulation of i = 1 to L, so the distribution at least shift to the left uniformly, denoted with g(b).
- Furthermore, those with positive balance due after the Lth manipulation continue to reduce tax, until H or when their balance due is in the stop range.

$$f(b) = f^{PM}(b + m^*) = \begin{cases} g(b) & \text{if } b \leq B_1 \\ g(b) + E_1(b) & \text{if } b \in (r - B_1, r] \\ g(b + \tilde{m}) + E_2(b) & \text{if } b \in (r, r + B_2) \\ g(b + \tilde{m}) & \text{if } b \geq r + B_2 \end{cases}$$

where $\tilde{m} = \sum_{i=L+1}^{H} m_i$, and

$$\begin{split} E_1(b) &= g(b+\tilde{m}) \times I\left(b + \sum_{i=1}^H m_i > T_J\right) \\ &+ \sum_{j=1}^{J-1} g\left(b + \sum_{i=1}^{L+j} m_i\right) \times I\left(\left(b + \sum_{i=L+1}^{L+j} m_i\right) \in (T_j, T_{j+1})\right) \\ E_2(b) &= g(b) \times I\left(b + \sum_{i=1}^L m_i \le T_1\right) \\ &+ \sum_{i=1}^{J-1} g\left(b + \sum_{i=1}^{L+j} m_i\right) \times I\left(\left(b + \sum_{i=L+1}^{L+j} m_i\right) \in (T_j, T_{j+1})\right) \end{split}$$

 E_1 , E_2 generates the excess mass.

)ata

- Satatistics of Income Panel of Individual Returns
 - Random sample of tax filers, according to the Social Security Numbers
 - contain many line items reported on the tax return allowing the direct observation of balance due and many steps of its calculation
 - Data years:1979-1990
 - 229,116 tax returns filed by 53,177 taxpayers: exculudeing those with zero-tax liability, in order to eliminate the excess mass owing to non-preference-based discontinuities.

Quantification

Fitting Distribution

$$\min_{(\tilde{m},B_1,B_2,\theta_g,\theta_e)} \sum_{k} \left(C_k - \hat{C}(k|\tilde{m}, -B_1, -B_2, \theta_e, \theta_g) \right)^2$$

where

$$\begin{split} \hat{C}(k|\tilde{m}, -B_1, -B_2, \theta_e, \theta_g) &= v_g \cdot g(k+\tilde{m} \cdot I(k>0)|\theta_g) \\ &+ v_E \cdot E(k|\theta_e, -B_1, B_2) \end{split}$$

$$v_{E} = \frac{N}{\sum_{k} E(k|\theta_{e}, -B_{1}, B_{2})} \cdot \int_{0}^{\tilde{m}} g(x|\theta_{g}) dx$$

$$v_{g} = \frac{N}{\sum_{k} g(k+\tilde{m} \cdot I(k>0)|\theta_{g})} \cdot \left(1 - \int_{0}^{\tilde{m}} g(x|\theta_{g}) dx\right)$$

Observed Distribution

Full-sample application

 Sharp spike ofserved near zero balance-due:

• Estimated value of $\tilde{m} = 33.8$:

When facing losses, they made approximately \$34 additional tax reduction, as opposed to facing gains.

Difference among the Groups

TABLE 3
Estimates of additional manipulation when facing a loss

Panel A: full sample estimate and heterogeneity by income

	Full sample	Income quartiles				
		1	2	3	4	
Extra manip. for loss (m)	33.8 (2.89)	20.8 (5.59)	20.5 (4.76)	33.4 (10.11)	45.0 (9.18)	
N	206,188	57,126	55,986	52,354	40,722	

Panel B: restricting sample by presence of tax reductions

	Itemized deductions		Adjustments to income		Credits	
	claimed	not claimed	claimed	not claimed	claimed	not claimed
Extra manip.	45.6	26.0	47.3	29.9	19.6	33.9
for loss (\tilde{m}) z-test p-value	(6.96)	(3.59)	(7.06)	0.029 (3.71)	(5.72)	(3.32)
N	70,278	135,910	39,611	166,577	65,433	140,755

Notes: This table presents parameter estimates of the extra manipulation pursued when facing a loss (\bar{m}) based on the estimation strategy described in Section 3. Estimation sample restricted to balance due values between the 5^{th} and 95^{th} percentile. Block-bootstrapped standard errors, resampling by taxpayer ID and based on 5,000 simulations, are presented in parentheses. Plots of the fitted distributions are presented in Figures 3 and 4. All monetary amounts are expressed in 2016 dollars. Assignment to income quartiles is evaluated according to filing-year-specific AGI distributions.

By income levels

- Loss-aversion pattern was more pronounced among higher income filers than those with lower ones: higher income tax filers have more options of manipulation.
- This supports the hypothesis that the observe behaviour is caused by the income distribution, not by the financial sophistication.
- By categories of reduction.
 - When itemized reduction or adjustment to income are present, the tendency of loss aversion is more pronounced.
 - Claiming credit, however, showed the opposite pattern: it may be relatively small component of overall tax manipulations, or it is likely a less suitable proxy for total manipulation.

"Residual" Tax Reductions Approach

- R = (credits) + (marginal tax rate) × (adjustments + deductions).
- Then, they regressed R on filing-year dummies and individual fixed effects, and estimate the remaining residual.
 - ⇒ Loss-averse tax reduction is strongly associated with "unusual" tax reduction activity, rather than the year/individual specific effect.

FIGURE 5
Association of manipulation measure with tax reduction and tax payment.

Earlier Tax Payments

- Individuals evaluate their balance due by that on the tax day, so the payment in advance can be interpreted as another opportunity of manipulation.
- They made another regression, using total tax prepayment instead of R.
 - \Rightarrow No association was observed(Figure 5).

Alternative Forms of Reference Dependence

Two additional forms of reference dependence:

- Notch
 - direct discontinuity in utility levels at the reference point, arise if there is a fixed psychological cost when making manipulation.
- Diminishing Sensitivity
 - utility function which is concave over gains and convex over losses, making individual more loss-averse.

Observed results did not support these two assumptins.

Financial Constraints

- Tax Evasion
 - A risky substitute for a loan, implicitly trading present income for future penalties.
- Tax filers with financial constraint may take such a loan, but low-income filers have low access to savings or credit.
- Restricted sample: Tax filers with positive interest income, 41 % of the whole sample
 - \Rightarrow The estimate of loss averse manipulation is \$30.4, indicating little influence on the patterns.

Tax Preparer

- Many taxpayers have paid tax preparer file their tax returns.
 - ⇒ Conditional sample on whether filed by tax preparer also shows loss-averse result ($\tilde{m}=22.6$), but the effect was weakened relative to self-filing sample ($\tilde{m} = 43.7$).
- Possible Interpretation
 - Tax preparers themselves are also loss-averse.
 - They believe the cliants are loss-averse and so incorporate them.
- Distribution of tax preparers-sample has more sharp spike around zero balance due: they have greater access to manipulation.

FIGURE 7
Distribution of balance due by use of tax preparer.

Underwithholding Penalty

- Underwithholding penarity is not imposed until substantial one has occurred:
 - Observed balance-due is interpreted as the manipulation is not observed at zero.
- Misunderstandings that any positive balance due leads to a penalty may lead the results
 - Manipulation still occurs for the tax preparers sample.
 - Restricted samples into those who previously have faced a loss show the same results.

Discussion

- The nature of the observed reaction to loss framing has important implications for tax policy and behavioral economics.
 - Facing losses pursues \$34 of additional manipulation, resulting in \$3.7 billion of additional reduction.
- Loss-aversion provide a quantification of effect sizes tie to more concrete policies and accounts for a significant portion of the costs or benefits to changing withholding policy:
 - Incentives for early payment
- Gain-loss framing can assist in controlling tax morale: Gain framing could reduce evasion motives in a more cost-effective manner.

Beyond Tax Policy

Techniques to identify loss-averse behavior from bunching.

Related Papers

- Pope and Simonsohn (2011) "round numbers as goals"
- Abeler et al (2011) "effort provision in the lab"
- Becker et al (2012) "price targets in mergers and acquisitions"
- Allen et al (2017) "goal-setting behavior of marathon runners"