

Лекция 15

Преобразование уравнения линии

Содержание лекции:

В данной лекции мы рассмотрим преобразование формы уравнений линии при аффинных преобразованиях. Несмотря на формальную эквивалентность полученных уравнений, для прикладных задач выбор "удобной" системы координат часто является ключевым для их решения.

Ключевые слова:

Уравнение прямой при аффинном преобразовании, уравнение кривой второго порядка при аффинном преобразовании, классификация кривых второго порядка, приведение уравнения кривой второго порядка к каноническому виду.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

15.1 Уравнение прямой

Рассмотрим прямую на плоскости, заданную общим уравнением

$$ax + by + c = 0.$$

Введем обозначения

$$X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad A = \begin{pmatrix} a & b \end{pmatrix}, \quad C = (c).$$

и перепишем уравнение прямой в матричную форму

$$AX + C = 0$$

После преобразования координат $X = V + T \cdot X'$ наше уравнение примет вид

$$A(V + T \cdot X') + C = ATX' + AV + C = A'X + C' = 0,$$

где

$$A' = AT$$
. $C' = AV + C$.

Форма уравнения прямой при аффинном преобразовании не изменилась.

Nota bene Заметим, что геометрическая интерпретация коэффициентов матрицы A - это координаты вектора \vec{n} нормали к прямой. Таким образом, мы видим, что при выбранном преобразовании координат вектор нормали **преобразуется** матрицей T.

Nota bene Геометрический смысл коэффициента c - скалярное произведение вектора нормали на радиус-вектор опорной точки прямой:

$$c = -(\vec{n}, \vec{r_0})$$

преобразование координат ведет к следующему преобразованию

$$C' = AV + C = -(\vec{n}, \vec{v}) - (\vec{n}, \vec{r_0}) = -(\vec{n}, \vec{r_0} + \vec{v}),$$

где вектор \vec{v} является вектором трансляции. Таким образом, преобразование коэффициента c сводится к изменению в скалярном произведении компонент радиусавектора $\vec{r_0}$ согласно переносу начала координат из точки O на вектор \vec{v} .

15.2 Уравнение кривой второго порядка

Nota bene Общее уравнение алгебраической кривой второго порядка на плоскости имеет вид:

$$Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$$

Ниже будут представлен способ приведения уравнения линии к каноническому виду в двух формах - в координатной (удобен для решения задач) и матричной (более общий, удобен для анализа). Итак...

15.2.1 Способ - I

Применим к представленному уравнению последовательно преобразования поворота и параллельного переноса. Начнем с поворота:

$$\begin{cases} x = x_1 \cos \theta + y_1 \sin \theta \\ y = -x_1 \sin \theta + y_1 \cos \theta. \end{cases}$$

Уравнение кривой тогда примет вид

$$x_1^2 \cdot (A\cos^2\theta - B\sin 2\theta + C\sin^2\theta) +$$

$$y_1^2 \cdot (A\sin^2\theta + B\sin 2\theta + C\cos^2\theta) +$$

$$x_1y_1 \cdot (A\sin 2\theta + 2B\cos 2\theta - C\sin 2\theta) +$$

$$x_1(D\cos\theta - E\sin\theta) + y_1(D\sin\theta + E\cos\theta) + F = 0$$

Найдем угол θ , при котором коэффициент перед x_1y_1 равен нулю:

$$(C-A)\sin 2\phi + B\cos 2\phi = 0 \Rightarrow \tan 2\theta = \frac{2B}{A-C}.$$

В новой системе координат, полученной поворотом старой на угол θ уравнение принимает вид

$$A_1x_1^2 + C_1y_1^2 + D_1x_1 + E_1y_1 + F = 0$$

Применим теперь трансляцию:

$$\begin{cases} x_1 = x_2 + \alpha, \\ y_1 = y_2 + \beta. \end{cases}$$

Уравнение примет вид:

$$A_1x_2^2 + C_1y_2^2 + x_2(2A_1\alpha + D_1) + y_2(2C_1\beta + E_1) + (\alpha^2 + \beta^2 + D_1\alpha + E_1\beta + F) = 0$$

Избавимся от линейной части, положим

$$2A_1x_0 + D_1 = 0$$
, $2C_1y_0 + E_1 = 0$.

откуда будем иметь

$$\alpha = -\frac{D_1}{2A_1}, \quad \beta = -\frac{E_1}{2C_1}.$$

Вводя обозначение

$$F_1 = (x_0)^2 + (y_0)^2 + D_1 x_0 + E_1 x_0 + F,$$

получим окончательный вид канонического уравнения кривой второго порядка:

$$A_1 x_2^2 + C_1 y_2^2 + F_1 = 0.$$

15.2.2 Способ - II

Рассмотрим более общий случай преобразования координат и используем матричную форму. Пусть

$$P = \begin{pmatrix} A & B \\ B & C \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad Q = \begin{pmatrix} D & E \end{pmatrix}.$$

Nota bene Заметим, что

$$X^{T}PX = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} Ax + By \\ Bx + Cy \end{pmatrix} = Ax^{2} + 2Bxy + Cy^{2}$$

то есть мы получили квадратичную часть уравнения кривой.

Nota bene Полное уравнение кривой второго порядка имеет в этом случае вид:

$$X^T P X + Q X + F = 0.$$

Выполнив преобразование

$$X = V + T \cdot \tilde{X},$$

получим

$$(V + T\tilde{X})^T P(V + T\tilde{X}) + Q(V + T\tilde{X}) + F = 0.$$

или после раскрытия скобок

$$V^T P V + (T\tilde{X})^T P V + (T\tilde{X})^T P T \tilde{X} + V^T P T \tilde{X} + Q^T V + Q T \tilde{X} + F = 0.$$

Nota bene Заметим, что в силу свойств операции транспонирования имеет место

$$(T\tilde{X})^T P V = ((PV)^T T\tilde{X})^T = V^T P^T T\tilde{X},$$

и уравнение записывается в виде

$$\tilde{X}^T \tilde{P} \tilde{X} + \tilde{Q} \tilde{X} + \tilde{F} = 0,$$

где использованы обозначения

$$\tilde{P} = T^T P T, \quad \tilde{Q} = (2V^T P + Q) T, \quad \tilde{F} = V^T P V + Q V + F.$$

Распишем отдельно свободный член, линейную и квадратичную части.

 $\pmb{Nota\ bene}$ Матрицу \tilde{P} в квадратичной части всегдa можно диагонализовать невырожденным преобразованием вида

$$\tilde{P} = T^T P T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

что дает для квадратичной части

$$\begin{pmatrix} \tilde{x} & \tilde{y} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \lambda_1 \tilde{x}^2 + \lambda_2 \tilde{y}^2.$$

И при $\lambda_1 \cdot \lambda_2 > 0$ мы имеем эллиптичесий тип кривой, при $\lambda_1 \cdot \lambda_2 < 0$ - гиперболический тип, и при $\lambda_1 \cdot \lambda_2 = 0$ - параболический тип (если один из сомножителей отличен от нуля).

 $Nota\ bene$ Линейная часть уравнения описывается матрицей $ilde{Q}$:

$$\tilde{Q} = (2V^T P + Q)T.$$

В случаях эллиптического и гиперболического типа кривой, полученную матрицу можно обнулить, избавившись тем самым от линейной части:

$$\tilde{Q} = 0 \quad \Leftrightarrow \quad V^T = -\frac{1}{2}V^T P^{-1}.$$

Другие случаи соответсвуют вырожденной матрице \tilde{P} и дают или параболу (когда одна из λ не равна нулю), или прямую (если матрица P - нулевая).

Nota bene Таким образом, мы описали все возможные случаи геометрических мест, которые задает общее алгебраическое уравнение кривой второго порядка.

Nota bene Из (недоказанных. пока еще) свойств определителя следует, что

$$\det \tilde{P} = \det T^T \cdot \det P \cdot \det T = |\det T|^2 \cdot \det P.$$

Комбинируя данное равенство с $\lambda_1 \cdot \lambda_2 = \det \tilde{P}$, мы получаем быстрый способ определения типа кривой:

$$\det P = AC - B^2 > 0 \quad \Rightarrow \quad \text{эллипс,}$$

$$\det P = AC - B^2 < 0 \quad \Rightarrow \quad \text{гипербола,}$$

$$\det P = AC - B^2 = 0 \quad \Rightarrow \quad \text{парабола.}$$