IRIS DATASET

The data were collected from 3 Iris flower types (or 3 classes), 50 instances were chosen from each type.

Below is the description of dataset:

Column 1: sepal length in cm Column 2: sepal with in cm Column 3: petal length in cm Column 4: petal width in cm

Column 5: classes (setosa, versicolor and virginica)

EXPLORATION OF DATASET

head() method is used to return top 6 rows of a data frame or series.

The summary() function is used to print a statistical summary of a data set.

For extracting the structure of data set, str() function is used.

Code:

head(iris) summary(iris) str(iris)

Output:

```
> head(iris)
                                       #view top 6 rows of dataset
    sepal.length sepal.width petal.length petal.width
                                                                                                       0.2 Iris-setosa
                                                                        1.4
                                                   3.5
                          5.1
                          4.9
2
                                                        3.0
                                                                                       1.4
                                                                                                                     0.2 Iris-setosa
3
                                                                                                                   0.2 Iris-setosa
                          4.7
                                                        3.2
                                                                                       1.3
4
                          4.6
                                                                                       1.5
                                                        3.1
                                                                                                                   0.2 Iris-setosa
5
                          5.0
                                                        3.6
                                                                                        1.4
                                                                                                                   0.2 Iris-setosa
6
                          5.4
                                                       3.9
                                                                                                                   0.4 Iris-setosa
> View(iris)
> head(iris)
                                      #top 6 rows of dataset
    sepal.length sepal.width petal.length petal.width
                                                                                                        0.2 Iris-setosa
                          5.1
                                                    3.5
                                                                        1.4
                          4.9
2
                                                        3.0
                                                                                       1.4
                                                                                                                     0.2 Iris-setosa
3
                          4.7
                                                        3.2
                                                                                                                   0.2 Iris-setosa
                                                                                       1.3
4
                          4.6
                                                       3.1
                                                                                                                     0.2 Iris-setosa
                                                                                       1.5
5
                          5.0
                                                        3 6
                                                                                        1.4
                                                                                                                     0.2 Iris-setosa
6
                                                        3.9
                                                                                       1.7
                                                                                                                    0.4 Iris-setosa
> summary(iris) #statistical summary of dataset
                                     sepal.width
Min. :2.000
    sepal.length
                                                                                 petal.length
                                                                                                                          petal.width
                                                                                                                                                                      class
  Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
                                                                                                                       Min. :0.100
                                                                                                                                                              Length:150
                                                                                                                       1st Qu.:0.300
                                                                                                                                                              Class :character
  Median :5.800
                                        Median :3.000
                                                                              Median :4.350
                                                                                                                        Median :1.300
                                                                                                                                                               Mode :character
  Mean :5.843
                                        Mean :3.054
                                                                              Mean :3.759
                                                                                                                       Mean :1.199
  3rd Qu.:6.400
Max. :7.900
                                                                                                                        3rd Qu.:1.800
                                         3rd Qu.:3.300
                                                                                3rd Qu.:5.100
                                                                                                  :6.900
                                       Max. :4.400
                                                                                                                                        :2.500
                                                                               Max.
                                                                                                                       Max.
  Max.
> str(iris)
                                       #structure of dataset
  'data.framé':
                                      150 obs. of 5 variables:
   $ sepal.length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
   $ sepal.width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
   $ petal.length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
  $ petal.width : num     0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ class : chr "Iris-setosa" "Iris-setosa"
```

DATASET VISUALIZATION

To see how the model performed on the data, 'ggplot2' package was used to build graphs on data.

As the histograms, 'Iris -setosa' is well separated from the other two, and 'versicolor' and 'virginica' were overlapped each other at some points. It's clear under petal features.

DATA ANALYTIC TECHNIQUES

1. LINEAR REGRESSION

Linear regression is a statistical model used to predict the relationship between independent and dependent variables.

For applying linear regression, first convert the target values to numeric values. Then lm() is used to fit linear model.

Code:

```
Output:
     > summary(linear_iris)
     lm(formula = dataset$class ~ sepal.length + sepal.width + petal.length +
        petal.width, data = dataset)
     Residuals:
         Min
                   1Q Median
                                    3Q
     -0.59046 -0.15230 0.01338 0.10332 0.55061
     Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                  1.19208
                          0.20470 5.824 3.57e-08 ***
     (Intercept)
     sepal.length -0.10974
                             0.05776 -1.900 0.059418 .
     sepal.width -0.04424 0.05996 -0.738 0.461832
     petal.length 0.22700 0.05699 3.983 0.000107 ***
     petal.width 0.60989 0.09447 6.456 1.52e-09 ***
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
     Residual standard error: 0.2191 on 145 degrees of freedom
     Multiple R-squared: 0.9304,
                                   Adjusted R-squared: 0.9285
     F-statistic: 484.8 on 4 and 145 DF, p-value: < 2.2e-16
```

If the Pr(>|t|) is low, the coefficients are significant. If the Pr(>|t|) is high, the coefficients are not significant. It is clearer that more stars beside the Pr(>|t|) Value, the more significant the variable. Other variables can be eliminated for better result.

Code:

```
#lm() produces a few statistics on the residuals
linear_iris_model <- lm(class~ petal.length + petal.width, data = dataset)
#R-squared shows the accuracy
summary(linear_iris_model)</pre>
```

Output:

```
> summary(linear_iris_model)
lm(formula = class ~ petal.length + petal.width, data = dataset)
Residuals:
                                 3Q
    Min
               1Q Median
                                          Max
-0.56418 -0.13943 0.01386 0.09458 0.58840
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
             0.57394 0.05428 10.573 < 2e-16 ***
0.17912 0.03861 4.639 7.66e-06 ***
(Intercept)
petal.length 0.17912
                       0.08926 7.036 6.98e-11 ***
petal.width 0.62803
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.2248 on 147 degrees of freedom
Multiple R-squared: 0.9257,
                               Adjusted R-squared: 0.9247
F-statistic: 915.8 on 2 and 147 DF, p-value: < 2.2e-16
```

As the summary from the table, the multiple R-squared value is 0.9257 which is closer to 1 indicating that the model is better at explaining the data. So, the accuracy of Linear regression model was 92.57% which was good to predict type of Iris plant with petal features.

CONFIDENCE AND PREDICTION INTERVAL:

Code:

```
#Confidence interval
confint(linear iris model,level = .95)
```

Ouput:

Here, the 95% confidence interval for petal length is (0.10, 0.25) and petal width is (0.45,0.80).

Code:

```
# new input variables
```

```
petal.length <- 1.3 petal.width <- 0.3
```

new values <- data.frame(petal.length+petal.width)</pre>

#the predict() function provides a 95%confidence interval.

confidence_interval <- predict(linear_iris_model, new_values, level=.95, interval="confidence") confidence interval

Output:

```
> confidence_interval
fit lwr upr
1 0.9952073 0.9290565 1.061358
```

Here, the 95% confidence interval is (0.92,1.06). The expected class of Iris is 1(that is Setosa).

Code:

```
#Compute 95% prediction interval
```

prediction_interval <- predict(linear_iris_model, new_values, level=.95, interval="prediction") prediction_interval

Output:

```
> prediction_interval
fit lwr upr
1 0.9952073 0.5460186 1.444396
```

Here, the 95% prediction interval is (0.54, 1.44). The fit value is 0.99 ($^{\sim}$ 1) resembles Iris-setosa class.

2. RIDGE REGRESSION

For ridge regression, first define matrix of predictor variables. Then 'glmnet()' package is used to fit ridge regression. In that alpha = 0 represents ridge regression and alpha =1 represents Lasso regression

Code:

```
iris_matrix <- data.matrix(dataset[, c('sepal.length', 'sepal.width', 'petal.length', 'petal.width')])
iris_model <- glmnet(iris_matrix, dataset$class, alpha = 0)
#View summary of model
summary(iris_model)</pre>
```

Output:

```
> summary(iris_model)
            Length Class
                                  Mode
a0
                                  numeric
            100
                      -none-
beta
df
            400
100
                     dgCMatrix
                                   54
                                  numeric
                     -none-
dim
lambda
            100
                                  numeric
numeric
                     -none-
dev.ratio
nulldev
                     -none-
                                  numeric
numeric
            100
npasses
                      -none-
                                   numeric
jerr
offset
call
               1
                                   numeric
                      -none-
                                  logical
call
                      -none-
                      -none-
nobs
                      -none-
                                  numeric
```

Then perform k-fold cross-validation to find optimal lambda value that minimizes error.

Code:

```
iris_cv <- cv.glmnet(iris_matrix, dataset$class, alpha = 0)
iris_lambda <- iris_cv$lambda.min
iris_lambda</pre>
```

Output:

```
> iris_lambda
[1] 0.07809494
```

Plot the graph of Mean squared error by lambda value to visualize it clearly.

Code:

```
plot(iris_cv)
```

Output:

Rebuild the model and check the coefficient.

Code:

```
iris_coef <- glmnet(iris_matrix, dataset$class, alpha = 0, lambda = iris_lambda)
coef(iris_coef)</pre>
```

Output:

The next step is to predict with best fitted model to compute accuracy.

0

```
Code:
```

-2

2

Log Lambda

6

The r squared value is 0.9235, So, the accuracy of Ridge regression model was 92% which was good to predict type of Iris plant.

CONCLUSION

Overall, with accuracy over 92.57%, Linear regression model performed well on Iris data that distinguished 3 classes separately. In other words, this model can be used to predict 3 types of Iris plant.