Jeeseop Kim

CONTACT INFORMATION Email: jeeseop@vt.edu Personal Website: jeeseop.com 310 Goodwin Hall, Virginia Tech Blacksburg, VA 24061, USA

RESEARCH **INTERESTS**

My primary academic interests span robotics, control theory, optimization, dynamical systems, and machine learning. My research goal is to establish a firm foundation that will extend the stateof-the-art methods for designing resilient and intelligent control algorithms for a wide range of collaborative work. This overview includes but is not limited to 1) autonomous robot control and planning for various applications, 2) collaborative multi-agent systems with decentralized and distributed control policies, 3) agile robots without compromising safety features.

My research has a clear blueprint from theoretical developments to experimental validations to achieve two specific objectives: 1) Creating algorithms to systematically design robust and intelligent controllers for high-dimensional and complex hybrid dynamical systems; and 2) Transferring the control framework into practice with a highly dynamic robot platform. These algorithms advance knowledge in the design of feedback controllers for dynamical models arising from various collaborative works that I target. The theoretical innovations also offer a unique opportunity to advance autonomous robot with safety features, human-robot interaction, robot locomotion.

ACADEMIC **HISTORY**

Ph.D. Candidate in Mechanical Engineering

Advisor: Prof. Kaveh Akbari Hamed Virginia Polytechnic Institute and State University, USA September 2017 -Expected in 2022

M.S. in Transdisciplinary Studies (Program in Intelligent Systems)

Advisor: Prof. Jaeheung Park

Seoul National University, South Korea

March, 2017

B.S. in Mechanical and Aerospace Engineering

Seoul National University, South Korea

March, 2014

Aug. 2019 - Present

PROFESSIONAL EXPERIENCE

Graduate Research Assistant

Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, USA

Advisor: Prof. Kaveh Akbari Hamed

Graduate Research Assistant Aug. 2017 - Jul. 2019

Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, USA

Advisor: Prof. Tomonari Furukawa

Graduate Research Assistant Jan. 2014 - Jul. 2017

Dept. of Transdisciplinary Studies, Seoul National University, South Korea

Advisor: Prof. Jaeheung Park

Undergraduate Research Assistant Jun. 2013 - Sep. 2013

Dynamic Robotic Systems Lab, Seoul National University, South Korea

Supervisor: Prof. Jaeheung Park

Undergraduate Research Assistant Mar. 2012 - Feb. 2013 Biorobotics Lab, Seoul National University, South Korea

Supervisor: Prof. Kyu-Jin Cho

TEACHING EXPERIENCE

Teaching Assistant

Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, USA

ME5524: Bayesian Robotics

ME5984: Advanced Experimental Robotics

Teaching Assistant

Dept. of Transdisciplinary Studies, Seoul National University, South Korea

493.601: Convergent Robotics Technology

493.611: Dynamics and Control of Robot-Environment Interaction

JOURNAL ARTICLES Accepted to appear

[**J5**] V. R. Kamidi, **J. Kim**, R. T. Fawcett, A. Ames and K. Akbari Hamed, Distributed Quadratic Programming-Based Nonlinear Controllers for Periodic Gaits on Legged Robots, IEEE Control Systems Letters, Accepted, April 2022.

Published

[J4] J. Kim, and K. Akbari Hamed, Cooperative locomotion via supervisory predictive control and distributed nonlinear controllers, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 144, Issue. 3, pp. 031005-1-031005-15, Mar, 2022.

[J3] R. T. Fawcett, A. Pandala, J. Kim, and K. Akbari Hamed, Real-time planning and nonlinear control for quadrupedal locomotion with articulated tails, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 143, Issue. 7, pp. 071004-1-071004-15, Jul, 2021.

[*J*2] K. A. Hamed, *J. Kim*, A. Pandala, Quadrupedal locomotion via event-based predictive control and QP-based virtual constraints, IEEE Robotics and Automation Letters, Vol. 5, Issue. 3, pp. 4463-4470, Jul, 2020.

[J1] J. Kim, Y. Omori, A. Sifat, and T. Furukawa, Adjustably designed torque controlled humanoid platform, International Journal of Mechanical and Production Engineering, Vol. 7, Issue. 2, pp. 52-57, May, 2019.

Conference Papers Published

[C4] J. Kim, Y. Omori, A. Sifat, and T. Furukawa, Adjustably designed torque controlled humanoid platform, International Conference on Control, Automation, Robotics and Vision Engineering, Washington DC, USA, 21-22 Nov, 2018.

[C3] J. Kim, M. Kim, and J. Park, Improvement of humanoid walking control by compensating actuator elasticity, International Conference on Humanoid Robots (ICHR), Cancun, Mexico, 15-17 Nov, 2016.

[**C2**] J. Jung, **J. Kim**, S. Kim, W. Kwon, S. Na, K. Kim, J. Lee, G. Suh, and J. Park, Application of robot manipulator for cardiopulmonary resuscitation, International Symposium on Experimental Robotics (ISER), Tokyo, Japan, 3-6 Oct, 2016.

[C1] J. Kim, M. Kim, and J. Park, Improvement of humanoid gait stability using reduction gear deformation model, The 31st Institute of Control, Robotics and Systems (ICROS), Seoul, Korea, 10-11 Mar, 2016.

PAT	ΕI	N	Т
-----	----	---	---

[P2-2] J. Kim, et al, Automatic cardiopulmonary resuscitation device and control method therefor, 2021. No. US11071686B2 (US Patent)

[P2-1] J. Kim, et al, Automatic cardiopulmonary resuscitation device and control method therefor, 2020. No. 108697572B (CN Patent), No. 3409258B1 (EU Patent)

[P1] J. Kim, et al, Apparatus for automatic cardiovascular pulmonary resuscitation, 2016. Korea Patent No.10-2016-0172286.

HONORS

Awards

The Best Presentation Award, Institute of Control, Robotics and Systems 2016	2016
Darpa Robotics Challenge DRC Finalist	2015
The Best Presentation Award from Bachelor Thesis Presentation, Seoul National University	2012

Graduate Fellowship

Research Assistant Scholarships, Virginia Tech, Blacksburg, USA	Jul. 2017 - present
Gwan-ak Scholarship, Seoul National University, Seoul, South Korea	Mar. 2014 - Feb. 2015

Undergraduate Fellowship

National Scholarship from Korea Student Aid Foundation, South Korea Mar. 2009 - Feb. 2010

ACADEMIC **SERVICES**

Reviewer

IEEE American Control Conference (ACC)	2022
IEEE International Conference on Robotics and Automation (ICRA)	2020 - 2022
IEEE Conference on Decision and Control (CDC)	2020 - 2022
IEEE International Conference on Intelligent Robots and Systems (IROS)	2021 - 2022

PROFESSIONAL SKILLS

- Robotics
- Control Theory
- Hybrid Dynamical Systems

- Cooperative Robotics
- Nonlinear Control Distributed Control
- Multiagent Systems

Optimization

- Robot Locomotion Autonomous Robots

TECHNICAL SKILLS

Operating Systems: Ubuntu(Linux), ROS

Programming Language: C/C++, Python, MATLAB

Design and Simulation Software: Solidworks, Unigraphics(NX)

References available upon request

last Updated on April 13, 2022