Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_st-nat*

Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = i(1+i)^2 = 2i^2 =$	2 p
	=-2, deci partea reală a numărului complex z este egală cu -2	3 p
2.	$-\frac{m^2-4}{4} = -1 \Leftrightarrow m^2 - 8 = 0$	3 p
	$m = -2\sqrt{2} \text{ sau } m = 2\sqrt{2}$	2 p
3.	$2^{2x} + 3 \cdot 2^x - 4 = 0 \Leftrightarrow (2^x - 1)(2^x + 4) = 0$	3 p
	Deoarece $2^x > 0$, soluția ecuației este $x = 0$	2 p
4.	$5, 15, 25, \dots, 2005$ și 2015 sunt numerele din mulțimea M care sunt divizibile cu 5 și nu sunt divizibile cu 10	2p
	În mulțimea M sunt 202 numere care sunt divizibile cu 5 și nu sunt divizibile cu 10	3 p
5.	Punctul B este mijlocul segmentului MC	2p
	$\overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{AM} + \overrightarrow{AC} \right) \Rightarrow \overrightarrow{AM} = 2\overrightarrow{AB} - \overrightarrow{AC}$	3 p
6.	$2\sin x \cos x = \sin x \Leftrightarrow \sin x (2\cos x - 1) = 0$	2p
	Cum $x \in [0, \pi]$, obținem $x = 0$, $x = \frac{\pi}{3}$ sau $x = \pi$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2016) = \begin{pmatrix} 1 & 1 & 1 \\ 2015 & 2016 & 2016 \\ 2015^2 & 2016^2 & 2016^2 \end{pmatrix} \Rightarrow \det(A(2016)) = \begin{vmatrix} 1 & 1 & 1 \\ 2015 & 2016 & 2016 \\ 2015^2 & 2016^2 & 2016^2 \end{vmatrix} =$	2p
	=0	3 p
b)	$\det(A(x)) = \begin{vmatrix} 1 & 1 & 1 \\ 2015 & 2016 & x \\ 2015^2 & 2016^2 & x^2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 2015 - x & 2016 - x & x \\ 2015^2 - x^2 & 2016^2 - x^2 & x^2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 2015 - x & 2016 - x & x \\ 2015^2 - x^2 & 2016^2 - x^2 & x^2 \end{vmatrix}$	2 p
	$= (2015 - x)(2016 - x) \begin{vmatrix} 1 & 1 \\ 2015 + x & 2016 + x \end{vmatrix} = (2015 - x)(2016 - x), \text{ pentru orice număr real } x$	3 p
c)	$\det(A(x)) = x^2 - (2015 + 2016)x + 2015 \cdot 2016$	2p
	$\det(A(x))$ are valoarea minimă pentru $x = \frac{4031}{2}$	3 p

2.a)	$A \cdot A = \begin{pmatrix} (-1) \cdot (-1) + (-1) \cdot 1 & (-1) \cdot (-1) + (-1) \cdot 1 \\ 1 \cdot (-1) + 1 \cdot 1 & 1 \cdot (-1) + 1 \cdot 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	2p
b)	$X(a) \cdot X(b) = (I_2 + aA)(I_2 + bA) = I_2 + (a+b)A + abA \cdot A =$	3p
	$X(a) \cdot X(b) = (I_2 + aA)(I_2 + bA) = I_2 + (a+b)A + abA \cdot A =$ $= I_2 + (a+b)A = X(a+b), \text{ pentru orice numere reale } a \text{ si } b$	2p
c)	M = X((-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4) = X(4)	2p
	Cum $X(4) \cdot X(-4) = X(0) = I_2$, inversa matricei M este matricea $X(-4) = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix}$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 1} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{mx^2 + 4x - m}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \left(m(x+1) + \frac{4x}{x - 1} \right) =$	3p
	$=+\infty$, deci dreapta de ecuație $x=1$ este asimptotă verticală la graficul funcției f , pentru	2 p
	orice număr real <i>m</i>	1
b)	$y = 3$ este asimptotă orizontală la graficul funcției $g \Rightarrow \lim_{x \to +\infty} g(x) = 3$	2p
	Cum $\lim_{x \to +\infty} \frac{mx^2 + 4x - m}{x(x-1)} = m$, obţinem $m = 3$	3 p
c)	$\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = \lim_{x \to 2} \frac{\frac{-x^2 + 4x + 1}{x - 1} - 5}{x - 2} = \lim_{x \to 2} \frac{-x^2 - x + 6}{(x - 1)(x - 2)} =$	2 p
	$= \lim_{x \to 2} \frac{-x - 3}{x - 1} = -5$	3 p
2.a)	$f\left(-1\right) = -\frac{1}{2}$	2p
	$f(4) = 2 \Rightarrow f(-1) \cdot f(4) = -1$	3 p
b)	$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = \lim_{\substack{x \to 2 \\ x < 2}} \left(\frac{x}{2} + 2a\right) = 1 + 2a, \lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (ax + \log_2 x) = 2a + 1 \text{ și } f(2) = 2a + 1,$ deci funcția f este continuă în $x = 2$, pentru orice număr real a	3p
	Cum, pentru orice număr real a , funcția f este continuă pe $(-\infty,2)$ și pe $(2,+\infty)$, obținem că f este continuă pe $\mathbb R$	2p
c)	$f(-1)\cdot f(4) = \left(-\frac{1}{2} + 2a\right)(4a+2) = (4a-1)(2a+1)$	2p
	Deoarece f este continuă și pentru orice $a \in \left(-\frac{1}{2}, \frac{1}{4}\right)$ avem $f(-1) \cdot f(4) < 0$, ecuația $f(x) = 0$ are cel puțin o soluție în intervalul $(-1,4)$	3 p