CS 357 - 18 Singular Value Decompositions

Boyang Li (boyangl3)

Overview of SVD: A more general factorization for any $m \times n$ matrix, there exists a Singular Value Decompsition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$.

• **U** is composed of the eigenvectors of $\mathbf{A}\mathbf{A}^T$ as its columns, the vectors are called left singular vectors of **A**. **U** is an orthogonal basis of \mathbb{R}^m . **U** is an $m \times m$ orthogonal matrix.

$$\mathbf{A}\mathbf{A}^T = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T)(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T)^T$$
$$(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T)(\mathbf{V}^T)^T\boldsymbol{\Sigma}^T\mathbf{U}^T = \mathbf{U}\boldsymbol{\Sigma}(\mathbf{V}^T\mathbf{V})\boldsymbol{\Sigma}^T\mathbf{U}^T = \mathbf{U}(\boldsymbol{\Sigma}\boldsymbol{\Sigma}^T)\mathbf{U}^T$$

• **V** is composed of the eigenvectors of $\mathbf{A}^T \mathbf{A}$ as its columns, the vectors are called right singular vectors of \mathbf{A} . **V** is an orthogonal basis of \mathbb{R}^n . **V** is an $n \times n$ orthogonal matrix.

$$\mathbf{A}^{T}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T})^{T}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T})$$
$$= \mathbf{V}(\boldsymbol{\Sigma}^{T}\boldsymbol{\Sigma})\mathbf{V}^{T}$$
$$= \mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{T}$$

• Σ is a $m \times n$ diagonal matrix composed of square roots of the eigenvalues of $\mathbf{A}^T \mathbf{A}$, called singular values. The diagonal of Σ is ordered by non-increasing singular values and the columns of \mathbf{U} and \mathbf{V} are ordered respectively.

$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_s \\ 0 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & & 0 \end{bmatrix} \text{ when } m > n, \text{ and } \Sigma = \begin{bmatrix} \sigma_1 & & 0 & \dots & 0 \\ & \ddots & & & \ddots & \\ & & \sigma_s & 0 & \dots & 0 \end{bmatrix} \text{ when } m < n.$$

Note: $\sigma_1 \geq \sigma_2 \cdots \geq \sigma_s \geq 0$.

Time complexity: All of the computation cost of SVD, matrix-matrix production and LU decomposition is $\mathcal{O}(n^3)$. But the cost ranking is SVD > Matrix-Matrix Production > LU.

Reduced SVD: SVD of a non-square matrix **A** of size $m \times n$ can be represented in a reduced format:

- For $m \ge n$: U is $m \times n$, Σ is $n \times n$, and V is $n \times n$.
- For $m \leq n$: **U** is $m \times m$, Σ is $m \times m$, and **V** is $n \times m$. (**V**^T is $m \times n$)

In general we will represent the reduced SVD as: $\mathbf{A} = \mathbf{U}_R \mathbf{\Sigma}_R \mathbf{V}_R^T$, where \mathbf{U}_R is a $m \times k$ matrix, \mathbf{V}_R is a $n \times k$ matrix, $\mathbf{\Sigma}_R$ is a $k \times k$ matrix, $k = \min(m, n)$.

Important concepts about SVD: For a $m \times n$ matrix $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

- Rank of a matrix: Let $s = \min(m, n)$, if there are r non-zero singular singular values, rank(\mathbf{A}) = r, if r = s, the matrix is full rank, if r < s, the matrix is rank deficient.
- Nullspace: $\operatorname{null}(\mathbf{A}) = \operatorname{span}(\mathbf{v_{r+1}}, \mathbf{v_{r+2}}, \dots, \mathbf{v_n})$; solve space for \mathbf{A} when $\mathbf{A}\mathbf{x} = \vec{0}$.
- Range: range(A) = span($\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_r}$)
- Rank-nullity theorem: rank(A) + null(A) = n.
- Pseudoinverse: If the matrix Σ is rank deficient, we cannot get its inverse. We define instead the pseudoinverse: $(\Sigma^+)_{ii} = \begin{cases} 1/\sigma_i & \sigma_i \neq 0 \\ 0 & \sigma_i = 0 \end{cases}$. So the pseudoinverse of \mathbf{A} is defined as $\mathbf{A}^+ = \mathbf{V}\Sigma^+\mathbf{U}^T$. Here are some true concepts that might be useful for the quiz:
 - \checkmark If **A** is orthogonal, then \mathbf{A}^{-1} and \mathbf{A}^{+} exist and gre equal.
 - \checkmark If \mathbf{A}^{-1} exists, then \mathbf{A}^{+} also exists and they are equal.
 - $\checkmark\,$ It is possible for ${\bf A}^+$ to exist when ${\bf A}^{-1}$ does not exist.
 - \checkmark For any matrix, the pseudoinverse always exists.

• Euclidean Norm of a matrix / inverse:

- $-\|\mathbf{A}\|_2 = \sigma_1$ The largest singular value.
- If the matrix is full-rank, $\|\mathbf{A}^{-1}\|_2 = 1/\sigma_n$ Inverse of the smallest singular value.
- If the rank is rank-deficient, $\|\mathbf{A}^+\|_2 = 1/\sigma_r$ Inverse of the smallest non-zero singular value.
- For a zero matrix, $\|\mathbf{A}^+\|_2 = 0$
- For a full-rank matrix, the 2-norm condition number is $\sigma_{\rm max}/\sigma_{\rm min}$. If the matrix is rank-deficient, the 2-norm condition number if ∞ .
- Low-rank approximation: $\|\mathbf{A} \mathbf{A}_k\|_2 = \left\| \sum_{i=k+1}^n \sigma_i \mathbf{u_i} \mathbf{v_i^T} \right\|_2 = \sigma_{k+1}$
- Using SVD to solve system of equation: Cost to solve $\mathcal{O}(n^2)$
 - 1. $\Sigma \mathbf{y} = \mathbf{U}^T \mathbf{b}$
 - 2. $\mathbf{x} = \mathbf{V}\mathbf{y}$

```
import numpy as np
import numpy.linalg as la
U1, S1, VT1 = np.linalg.svd(A, full_matrices=True)  # Full SVD
U2, S2, VT2 = np.linalg.svd(B, full_matrices=False)  # Reduced SVD
```

Link to course textbook for more detailed information.