SPECIFICATION

Graphic Type STN Dot Matrix LCD Module

JM12864A

SHENZHEN JINGHUA DISPLAYS CO.,LTD.

• GENERAL SPECIFICATION

128 X 64 dots display

SAM SUNG LCD driver: KS0107B and KS0108B

Interface with 8-bit MPU (directly connected to M6800 serial MPU)

Display Specification

Display dot: 128 X 64

Display type: STN and FSTN

Display color-Display background color: Black-Yellow Green, Blue-Gray, Black-White

Polarizer mode: Positive, Negative; Reflective, Transflective, Transmissive

Viewing angle: 6:00 and 12:00

Display duty: 1/64

Driving bias: 1/9

Display RAM: 8192 bits

Mechanical characteristics (Unit:mm)

External dimension: 78.0 X 70.0 X 10.0 (13.0 for Side LED Backlight;

15.0 for Bottom LED Backlight)

View area: 62.0 X 44.0

Dot size: 0.39 X 0.55

Dot pitch: 0.44 X 0.60

Weight: 56g (75g for Side LED backlight; 82g for Bottom LED Backlight)

POWER: negative power, +5V

• Optical Characteristics

(1) Definition of viewing Angle

(2) Definition of Contrast Ratio:

Contrast Ratio = Reflectance value of non-selected state brightness

Reflectance value of selected state brightness

Test condition: standard A light source

(3) Response Time

Response time is measured as the shortest period of time possible between the change in state of an LCD segment as demonstrated below

External Dimension

• Absolute Maximum Ratings For Side LED Backlight

Parameter	Symbol	Test condition	Min	Туре	Max	Unit
LED Forward Consumption Current	I_{f}	Ta=25 ℃	-	83	-	mA
LED Allowable Dissipation	P _d	Vf=4.1V	-	350	-	mW

• Absolute Maximum Ratings For Bottom LED Backlight

Parameter	Symbol	Test condition	Min	Туре	Max	Unit
LED Forward Consumption Current	$ m I_f$	Ta=25℃	-	192	-	mA
LED Allowable Dissipation	P _d	Vf=4.1 V	1	790	1	mW

• Absolute Maximum Ratings

Item	Symbol	Condition	Standar	d Value	Unit
Item	Symbol	Condition	Min	Max	Omt
Supply Voltage for logic	Vdd		-0.3	7.0	V
Supply Voltage for LCD	Vee	Ta=25℃	Vdd-19.0	Vdd+0.3	V
Input Voltage	Vi		-0.3	Vdd+0.3	V
Operating Temp(T)	Тор	-	0	50	${\mathbb C}$
Storage Temp(T)	Tstg	-	-20	70	${\mathbb C}$
Operating Temp(HT)	НТор	-	-20	70	${\mathbb C}$
Storage Temp(HT)	HTstg	-	-30	80	${\mathbb C}$
Operating Temp(EHT)	ЕНТор	-	-30	80	${\mathbb C}$
Storage Temp(EHT)	EHTstg	-	-40	80	$^{\circ}$

● Electrical Characteristics (Ta=25 °C, Vdd= 5.0V)

Item	Symbol	Condition	Sta	andard Val	lue	Unit
nem	Symbol	Condition	Min	Туре	Max	Oilit
Supply Voltage for logic	Vdd-Vss	-	4.5	5.0	5.5	V
Supply Current for logic	Idd	Vdd=5.0	-	4.0	-	mA
Driving Current for LCD	Iee	Vee=-7.8	-	2.8	-	mA
Driving Voltage for LCD	Vdd-Vee	25℃	-	12.8	-	V
Input Voltage"H" level	V _{IH}	Н	0.7Vdd	-	Vdd	V
Input Voltage "L" level	V _{IL}	L	0	-	0.8	V

• Block Diagram

• Pin assignment

Pin NO.	Symbol	Fı	unction	Remark
1	CS1	Chip Select Sig	gnal For IC3 When L	
2	CS2	Chip Select Sig	gnal For IC2 When L	
3	Vss		0V	
4	Vdd	Power Supply	+5V	
5	Vee		For LCD	Variable
6	RS	Register Select (H:Data L:Instruction)	
7	R/W	L:MPU to LC	M H:LCM to MPU	
8	Е			
9	DB0	Da		
10	DB1	Da	nta Bit 1	
11	DB2	Da	nta Bit 2	
12	DB3	Da	ata Bit 3	
13	DB4	Da	nta Bit 4	
14	DB5	Da	nta Bit 5	
15	DB6	Da	nta Bit 6	
16	DB7	Da	nta Bit 7	
	A	Anode	of LED Unit	
	K	Cathode	of LED Unit	

• MPU Interface

Characteristic	Symbol	Min	Тур	Max	Unit
E Cycle	$t_{\rm C}$	1000	-	-	ns
E High Level Width	$t_{ m WH}$	450	-	-	ns
E Low Level Width	$t_{ m WL}$	450	-	-	ns
E Rise Time	t_R	-	1	25	ns
E Fall Time	t_{F}	-	1	25	ns
Address Set-Up Time	t_{ASU}	140	1	1	ns
Address Hold Time	t_{AH}	10	1	1	ns
Data Set-Up Time	$t_{ m DSU}$	200	-	-	ns
Data Delay Time	t_{D}	-	-	320	ns
Data Hold Time(Write)	$t_{ m DHW}$	10	-	-	ns
Data Hold Time(Read)	t_{DHR}	20	-	-	ns

MPU read timing

Reflector of Screen and Display RAM

Correspondence with data bits and arrow direction

→ DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

• DISPLAY CONTROL INSTRUCTION

Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function
Display ON/OFF	L	L	L	L	Н	Н	Н	Н	Н	L/H	Controls the display on or off. Internal status and display RAM data is not affected. L:OFF, H:ON
Set address (Y address)	L	L	L	Н		Υa		Sets the Y address in the Y address counter.			
Set Page (X addres)	L	L	Н	L	Н	Н	Н	Pag	ge (0~	7)	Sets the X address at the X address register.
Display Start Line (Z addres)	L	L	Н	Н		Disp	lay star		Indicates the display data RAM displayed at the top of the screen.		
Status Read	L	Н	B U S Y	D O R D D D D D D D D D D D D D D D D D				L	BUSY L:Ready H:In operation ON/OFF L:Display ON H:Display OFF RESET L:Normal H:Reset		
Write Display Data	Н	L		Write Data							Writes data (DB0:7) into display data RAM,After writing instruction,Y address is increased by 1 automatically.
Read Display Data	Н	Н		Read Data							Reads data (DB0:7) from display data RAM to the data bus.

1.Display On/Off

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	1	1	D

The display data appears when D is 1 and disappears when D is 0.

Though the data is not on the screen with D=0,it remains in the display data RAM.

Therefore, you can make it appear by changing D=0 into D=1.

2.Set Address(Y Address)

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Y address (AC0-AC5) of the display data RAM is set in the Y address counter.

An address is set by instruction and increased by 1 automatically by read or write operations of display data.

3.Set Page(X Address)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	1	AC2	AC1	AC0

X address (AC0-AC2) of the display data RAM is set in the X address register.

Writing or reading to or from MPU is executed in this specified page until the next page is set.

4. Display Start Line(Z Address)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	AC5	AC4	AC3	AC2	AC1	AC0

Z address (AC0-AC5) of the display data RAM is set in the display start line register and displayed at the top of the screen.

When the display duty cycle is 1/64 or others(1/32-1/64), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.

JINGHUA JM24064A

5.Status Read

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	0	BUSY	0	ON/OFF	RESET	0	0	0	0	

BUSY

When BUSY is 1,the Chip is executing internal operation and no instructions are accepted.

When BUSY is 0,the Chip is ready to accept any instructions.

ON/OFF

When ON/OFF is 1,the display is on.
When ON/OFF is 0,the display is off.

RESET

When RESET is 1,the system is being initialized.

In this condition, no instructions except status read can be accepted.

When RESET is 0,initializing has finished and the system is in the usual operation condition.

6. Write Display Data

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	D7	D6	D5	D4	D3	D2	D1	D0

Writes data (D0-D7) into the display data RAM.

After writing instruction, Y address is increased by 1 automatically.

7. Read Display Data

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Reads data (D0-D7) from the display data RAM.

After reading instruction, Y address is increased by 1 automatically.

• APPLICATION EXAMPLE

Application Circuit

Application Flowchart

Program Example

```
4
                    6
                        7 8
         3
                 5
; 1
; CS1 CS2
        Vss
            Vdd Vee
                    RS
                       R/W
                           Е
                               DB0--DB7
; P3.4 P3.5
                    P3.0 P3.1 P3.2
.****************
     RS
         EQU P3.0
        EQU P3.1
     R/W
         EQU P3.2
     Е
     CS1
         EQU P3.4
         EQU P3.5
     CS2
.****************
ORG
     0000H
RESET: MOV R7, #04H
     LCALL DELAYXMS
     CLR E
     SETB RS
     SETB CS1
     CLR CS2
     CLR RS
     MOV P1, #3FH ;DISPLAY ON
     LCALL WRITE
     MOV R7, #01H
     SETB CS2
     CLR CS1
     CLR RS
     MOV P1, #3FH ;DISPLAY ON
     LCALL WRITE
MAIN:
     MOV R7, #0FH
     MOV DPTR, #TAB5
     LCALL ZXL
     MOV R7,#0FH
     LCALL DELAYXMS
     MOV DPTR,#TAB6
     LCALL ZXL
     MOV R7,#0FH
     LCALL DELAYXMS
```

```
LJMP MAIN
ZXL:
     CLR
          CS1
     SETB CS2
     LCALL PAGE
     LCALL COM
        CS2
     CLR
     SETB
          CS1
     LCALL PAGE
     LCALL COM
     RET
CLR E
ZXL0:
     CLR
          CS1
     SETB CS2
     CLR RS
     SETB R/W
     SETB E
     MOV A, P1
     LCALL PAGE
     LCALL COM0
     CLR CS2
     SETB CS1
     LCALL PAGE
     LCALL COM0
     CLR CS1
     CLR
          RS
     MOV P1, #3FH
     LCALL WRITE
     RET
  ****************
     CLR E
PAGE:
     CLR RS
     MOV P1, #0C0H
     LCALL WRITE
     MOV P1, #40H
     LCALL WRITE
     MOV R0, #08H
```

```
MOV R2, #0B8H
      MOV P1, #0B8H
      LCALL WRITE
.*****************
 COM: MOV R1, #40H
      SETB RS
 J4:
     CLR A
      MOVC A, @A+DPTR
      MOV P1, A
      LCALL WRITE
      INC DPTR
      DJNZ R1, J4
      CLR RS
      INC R2
      MOV P1, R2
      LCALL WRITE
      MOV P1, #40H
      LCALL WRITE
      DJNZ R0, COM
      RET
  ************
.***********
COM0: MOV R1, #41H
J40:
     DEC R1
      CLR A
      ORL A, R1
      JZ J50
      SETB RS
      CLR A
      MOVC A, @A+DPTR
      CPL A
      MOV P1, A
      LCALL WRITE
      INC DPTR
      SJMP J40
     DEC R0
 J50:
      CLR A
```

```
ORL A, R0
     JZ J60
     CLR RS
     INC R2
     MOV P1, R2
     LCALL WRITE
     MOV P1, #40H
     LCALL WRITE
     SJMP COM0
 J60:
     RET
.*****************
WRITE:
     CLR
          R/W
     CLR
          E
     SETB E
     LCALL DELAY2MS
     CLR
          Е
     RET
.***********
DELAY2MS: MOV
              R6, #02H
 DELAY0:
         MOV
               R5, #0FH
 DELAY1:
               R5, DELAY1
         DJNZ
               R6, DELAY0
         DJNZ
         RET
DELAYXMS: MOV
               R5, #40H
     D1: MOV
              R6,
                  #0FFH
     D2: DJNZ
               R6, D2
         DJNZ
               R5, D1
         DJNZ
               R7, DELAYXMS
         RET
TAB5: DB 55H,0AAH,55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
    DB 55H,0AAH,55H,0AAH,55H,0AAH
```

DB 55H,0AAH,55H,0AAH,55H,0AAH DB 55H,0AAH,55H,0AAH,55H,0AAH

DB 55H,0AAH,55H,0AAH,55H,0AAH DB 55H,0AAH,55H,0AAH,55H,0AAH

DB 55H,0AAH,55H,0AAH,55H,0AAH DB 55H,0AAH,55H,0AAH,55H,0AAH

DB 55H,0AAH,55H,0AAH,55H,0AAH

DB 55H,0AAH,55H,0AAH,55H,0AAH

DB 55H,0AAH,55H,0AAH,55H,0AAH

TAB6: DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H

DB 08H,18H,78H,70H,00H,00H,0E0H,78H

DB 10H,10H,90H,10H,10H,10H,90H,10H

DB 10H,10H,0D0H,78H,30H,20H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,0F8H,0F0H,20H,00H,00H,00H

DB 00H,00H,0F8H,0F0H,20H,00H,0E0H,0C0H

DB 80H,00H,00H,00H,0F8H,0F0H,20H,00H,00H,00H,00H

DB 00H,00H,01H,02H,0EH

DB 1CH,08H,00H,00H,00H,0C0H,0A0H,98H

DB 8CH,87H,83H,81H,0F8H,0F0H,0A0H,81H

DB 83H,86H,8EH,9CH,0C0H,80H,00H,00H

DB 00H,00H,00H, 00H,00H,00H,00H,08H

DB 08H,08H,0FFH,0FFH,08H,08H,0CH,0EH

DB 08H,00H,0FFH,0FFH,00H,00H,0FFH,0FFH

DB 00H,00H,04H,04H,04H

DB 0FCH,0FEH,01H,00H,00H,80H,0C0H,60H

DB 30H,1CH,0FH,03H,0FFH,0FFH,03H,1CH

DB 38H,60H,0E0H,0C0H,80H,80H,00H,00H

DB 00H,00H,00H,00H,00H,20H,60H

DB 60H,30H,3FH,1FH,18H,08H,08H,84H

DB 60H,38H,1FH,07H,00H,00H,0FFH,7FH

DB 00H,00H,00H,00H,00H,01H

DB 03H,07H,00H,01H,01H,00H,00H,00H

DB 00H,00H,00H,00H,0FH,07H,00H,00H

DB 00H,00H,00H,01H,01H,01H,01H,00H

DB 00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,04H,04H,02H,01H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,0FH,07H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,66H

DB 89H,89H,92H,67H,00H,00H,0FFH,10H

DB 10H,0FFH,00H,00H,0FFH,89H,9DH,81H

DB 0E3H,00H,0FFH,02H,1CH,20H,0FFH,00H

DB 0C7H,0A1H,91H,8DH,83H,0E1H,00H,0FFH

DB 08H,08H,0FFH,00H,00H,0FFH,89H,9DH,81H,0E3H

DB 00H,0FFH,02H,1CH,20H,0FFH,00H,00H

DB 00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,0F8H,0F0H,10H,10H

DB 10H,10H,10H,10H,10H,10H,0F0H,0F8H

DB 10H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,80H,0C0H,0F0H,0BCH,18H

DB 00H,00H,00H,00H,0FCH,0FCH,08H,00H

DB 80H,80H,0C0H,60H,70H,60H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,0C0H

DB 80H,00H,00H,00H,3FH,1FH,91H,0D1H

DB 91H,11H,11H,0D1H,91H,91H,0BFH,9FH

DB 80H,80H,80H,0C0H,0C0H,80H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,08H

DB 08H,04H,03H,01H,0FFH,0FFH,01H,10H

DB 08H,08H,08H,84H,7FH,0FFH,0C2H,0C3H

DB 0C1H,0C1H,0C0H,0C0H,0C0H,0E0H,0FFH,60H

DB 00H,00H,00H

DB 00H,00H,00H,00H,0FFH

DB 0FFH,11H,11H,11H,11H,11H,0FFH,0FFH

DB 00H,00H,00H,0FFH,0FFH,10H,10H,10H

DB 10H,10H,10H,0FFH,0FFH,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 10H,10H,10H,10H,11H,10H,10H,10H

DB 10H,10H,10H,0FFH,0FFH,12H,10H,10H

DB 10H,10H,10H,10H,10H,18H,1CH,18H,00H,00H,00H

DB 00H,00H,00H,00H,0FH

DB 07H,02H,02H,02H,02H,02H,07H,03H

DB 00H,00H,00H,07H,03H,01H,01H,01H

DB 01H,01H,01H,07H,03H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,60H,80H,81H

DB 81H,7FH,01H,00H,00H,81H,0FFH,81H

DB 00H,00H,0FFH,02H,1CH,20H,0FFH,00H

DB 3CH,42H,81H,0A1H,62H,0E7H,00H,00H

DB 0FFH,08H,08H,0FFH,00H,00H,7FH,80H

DB 80H,7FH,00H,0E0H,1CH,13H,13H,1CH

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

DB 00H,00H,00H,00H,00H,00H,00H,00H

END

;***** THE END OF PROGRAM (128*64) ******

• Application Circuit 1

• Application Circuit 2

