MC3020: Probability & Statistics. Tutorial-1 Solution.

1) c be the event that the person has cancer. D be the event the doctor diagnoses cancer.

$$P(C) = 0.05$$
 $P(C') = 0.95$.
 $P(D|C) = 0.78$
 $P(D|C') = 0.06$.

a)
$$P(D) = P(D|c) \cdot P(c) + P(D|c!) \cdot P(c!)$$

= $0.78 \times 0.05 + 0.06 \times 0.95$
= 0.096

b)
$$P(c'|\mathfrak{B}) = P(\mathfrak{D}|c') \cdot R(c')$$

 $P(\mathfrak{D})$
 $= \frac{0.06 \times 0.95}{0.096}$
 $= 0.5938$

a: Consulting firm A

B: Consulting firm B.

C: Consulting firm C.

$$P(A) = 0.4$$
 $P(B) = 0.35$ $P(C) = 0.25$
 $P(O|A) = 0.05$ $P(O|B) = 0.03$ $P(O|C) = 0.15$.

a)
$$P(c|o) = P(o|c) \cdot P(c)$$

 $P(o|A) \cdot P(A) + P(o|B) \cdot P(B) + P(o|c) \cdot P(c)$

b)
$$P(A|o) = P(O|A) \cdot P(A)$$

 $P(O|A) \cdot P(A) + P(O|B) \cdot P(B) + P(O|C) \cdot P(C)$
 $= 0.05 \times 0.4$
 0.0680
 $= 0.2941$

AND THE REST OF STREET

$$P(D) = P(D|A) \cdot P(A) + P(D|B) \cdot P(B) + P(D|C) \cdot P(C)$$

$$= \frac{4}{5} \times \frac{1}{5} + \frac{1}{6} \times \frac{1}{5} + \frac{1}{8} \times \frac{1}{5}$$

$$= \frac{9}{15} + \frac{1}{18} + \frac{1}{8}$$

$$= 0.3139$$

A: Production of certain article from machine A
B:

Defective item.

$$P(A) = 0.1$$
 $P(B) = 0.9$
 $P(D|A) = 0.01$ $P(D|B) = 0.05$

$$P(D) = P(D|A) \cdot P(A) + P(D|B) \cdot P(B)$$

= 0.01×0.1 + 0.05×0:9
= 0.001+0.045
= 0.046

b)
$$P(A/D) = \frac{P(D/A) \cdot P(A)}{P(D)}$$

$$= \frac{0.01 \times 0.1}{0.046}$$

$$= 0.0217$$

OR

```
P(AMBN(CUD))

= P(A) · P(B) · P(CUD)

= P(A) · P(B) [ P(C) + P(D) - P(C) · P(D)]

= P(A) · P(B) [ P(C) + P(D) - P(C) · P(D)]

= 0 · 9 × 0 · 9 (0 · 9 + 0 · 9 - (0 · 9 × 0 · 9)]

= 0 · 8 · 1 (0 · 18 - 0 · 8 · )

= 0 · 8 · 8 · 9 · 9

= 0 · 8 · 9 · 9
```


$$P(x|z) = \frac{P(x \cap z)}{P(z)}$$

$$= \frac{P(R \times y)}{P(z)}$$

$$= \frac{4}{6} \times \frac{1}{6} \times \frac{1}{6}$$

$$= \frac{1}{6}$$

$$= 0.1667$$

	R	D	エ	
M	46	39	I	86
F	5	9	0	14
	51	48	1	

$$P(R/M) = P(R \cap M)$$
 $= \frac{46}{100}$
 $= \frac{83}{43}$
 $= 0.5349$

or,
$$P(R/M) = 46$$

= 0.5349

b)
$$P(M/R) = \frac{P(M \cap R)}{P(R)}$$

 $= \frac{46}{100}$
 $= \frac{46}{51}$
 $= 0.90196$
 $= 0.902$

No.

d) A: Selected senator is a female.
B: Selected Senator is a Republician.

PCANB) = 5/00 \$ 0

A & B are not mutually exclusive.

FURLY LESS

4 Women & 3 men \Rightarrow 3 are selected.

a) P(All 3 selected will be woman) $= \frac{4C_3 \times 3C_0}{7C_3}$ $= \frac{4!}{3! 1!} \times \frac{3!}{3! 0!}$ $= \frac{7!}{4! 3!}$

b) PCAII 3 selected will be men)
$$= \frac{3C_3 \times 4C_0}{7C_3}$$

$$= \frac{1}{35}$$
= 0.0286

c) P(
$$\approx$$
 M and $1w$)

= $\frac{3C_2 \times 4C_1}{7C_3}$

= $\frac{3!}{2! 1!} \times \frac{4!}{3! 1!}$

= $\frac{7!}{4'3!}$

= 0.3429

a) P(IM and RW)
$$= \frac{3C_{1} \times 4C_{2}}{7C_{3}}$$

$$= \frac{3\times6}{35}$$

$$= \frac{18}{35}$$

$$= 0.5143$$

A: Employee smoke. B: Giraduated from college.

b) A: Employee smoke.
H: Employee didnot graduate from high school.

$$= 0.3676$$