

ЭТИКЕТКА

 $\frac{\text{СЛКН.431272.007 ЭТ}}{\text{Микросхема интегральная 564 ЛС1Т1ЭП}}$ Функциональное назначение – Три логических элемента «ЗИ-ИЛИ»

Схема расположения выводов

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	A1	Вход А первого логического элемента	8	В3	Вход В третьего логического элемента
2	C1	Вход С первого логического элемента	9	Q3	Выход третьего логического элемента
3	B1	Вход В первого логического элемента	10	B2	Вход В второго логического элемента
4	Q2	Выход второго логического элемента	11	A2	Вход А второго логического элемента
5	A3	Вход А третьего логического элемента	12	C2	Вход С второго логического элемента
6	C3	Вход С третьего логического элемента	13	Q1	Выход первого логического элемента
7	0V	Общий	14	V _{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)^{\circ}$ C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
типменование наражегра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, В, при: $U_{\rm CC} = 5$ В, $U_{\rm IL} = 0$ В $U_{\rm CC} = 10$ В, $U_{\rm IL} = 0$ В	U _{OL}	-	0,05 0,05
2. Выходное напряжение высокого уровня, B, при: $U_{IH} = U_{CC} = 5B, U_{IL} = 0 B$ $U_{IH} = U_{CC} = 10B, U_{IL} = 0 B$	U _{ОН}	4,95 9,95	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm IL}$ = 1,5 B, $U_{\rm IH}$ = 3,5 B $U_{\rm CC}$ = 10 B, $U_{\rm IL}$ = 3,0 B, $U_{\rm IH}$ = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	$U_{ m OHmin}$	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = U_{IH} = 15 \; B, \; U_{IL} = 0 \; B$	${ m I}_{ m IL}$	-	/-0,1/

Продолжение таблицы 1				
1	2	3	4	
6. Входной ток высокого уровня, мкА, при: $U_{CC} = U_{IH} = 15 B, U_{IL} = 0 B$	I_{IH}	-	0,1	
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5$ В, $U_{IL} = 0$ В, $U_{O} = 0.4$ В $U_{CC} = 10$ В, $U_{IL} = 0$ В, $U_{O} = 0.5$ В	I _{OL}	0,51 1,3	-	
8 . Выходной ток высокого уровня, мА, при: $U_{IH} = U_{CC} = 5$ В, $U_{O} = 4,6$ В, $U_{IL} = 0$ В $U_{IH} = U_{CC} = 10$ В, $U_{O} = 9,5$ В, $U_{IL} = 0$ В	Іон	/-0,30/ /-0,60/	-	
9. Ток потребления, мкА, при: $U_{IH} = U_{CC} = 15 \; B, \; U_{IL} = 0 \; B$ $U_{IH} = U_{CC} = 10 \; B, \; U_{IL} = 0 \; B$	I _{CC}	-	4 2	
10. Время задержки распространения при включении и выключении, нс, при: $U_{IH}=U_{CC}=5~B,~U_{IL}=0~B, C_L=50~\pi\Phi$ $U_{IH}=U_{CC}=10~B,~U_{IL}=0~B, C_L=50~\pi\Phi$	t _{PHL} , t _{PLH}	-	360 180	
11. Входная емкость , п Φ , при: $U_{CC} = 10~B, U_I = 0~B$	C_{I}	-	7,5	

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г, серебро г, в том числе: золото г/мм на 14 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)°С не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10В)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T_{Cγ}) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-29ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛС1Т1ЭП соответствуют техническим условиям АЕЯР.431200.610-29ТУ и признаны годными для эксплуатации.

Приняты по _	(извещение, акт и др.)	от _	(дата)	_
Место для шта				Место для штампа ВП
Место для шта	ампа «Перепроверка г	іроизве,	дена	»
Приняты по _	(извещение, акт и др.)	от _	(дата)	_
Место для шта	ампа ОТК			Место для штампа ВП
Цена договори	ная			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ