Planche nº 34. Le groupe symétrique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice no 1: (**IT)

Soit σ l'élément de S_{12} : $\sigma = (3\ 10\ 7\ 1\ 2\ 6\ 4\ 5\ 12\ 8\ 9\ 11)$.

- 1) Combien σ possède-t-elle d'inversions? Que vaut sa signature?
- 2) Décomposer σ en produit de transpositions. Retrouvez sa signature.
- 3) Déterminer les orbites de σ .
- 4) Déterminer σ^{2023} .

Exercice nº 2: (**T)

Démontrer que S_n est engendré par $\tau_{1,2}, \tau_{1,3},...,\tau_{1,n}$ (c'est-à-dire montrer que toute permutation est la composée de transpositions du type $\tau_{1,i}, 2 \le i \le n$).

Exercice no 3: (***T)

Démontrer que A_n est engendré par les cycles de longueur 3 (pour $n \ge 3$).

Exercice n° 4: (***T)

Démontrer que S_n est engendré par $\tau_{1,2}$ et le cycle (2 3 ... n 1).

Exercice no 5: (***)

Définition: Soient (G,*) et (G',*') deux groupes. On dit que ces groupes sont isomorphes si et seulement si il existe une application bijective f de G sur G' telle que: $\forall (x,y) \in G^2$, f(x*y) = f(x)*'f(y) (f est alors un isomorphisme du groupe (G,*) sur le groupe (G',*').

Soit (G, \times) un groupe. Montrer que (G, \times) est isomorphe à un sous-groupe de $(S(G), \circ)$ et que, en particulier, tout groupe fini d'ordre $\mathfrak n$ est isomorphe à un sous-groupe de $S_{\mathfrak n}$ (théorème de CAYLEY). (Indication : montrer que pour chaque $\mathfrak x$ de G, l'application $\mathfrak y \mapsto \mathfrak x\mathfrak y$ est une permutation de G.)

Exercice nº 6: (***)

Soit σ une permutation de [1,n] et k le nombre d'orbites de σ . Montrer que $\varepsilon(\sigma)=(-1)^{n-k}$.

Exercice no 7: (***I)

 $\sigma \text{ \'etant une permutation de } \llbracket 1, n \rrbracket \text{ donn\'ee, on d\'efinit la matrice not\'ee } P_\sigma, \text{ carr\'ee d'ordre } n \text{ dont le terme ligne i colonne } j$ est $\delta_{i,\sigma(j)} \text{ (où } \delta_{i,j} \text{ est le symbole de Kronecker}). \text{ On note } G \text{ l'ensemble des } P_\sigma \text{ où } \sigma \text{ d\'ecrit } S_n.$

- 1) a) σ et σ' étant deux éléments de S_n , calculer $P_{\sigma} \times P_{\sigma'}$.
 - b) En déduire que (G, \times) est un sous-groupe de $(GL_n(\mathbb{R}), \times)$, isomorphe à (S_n, \circ) (la définition de deux groupes isomorphes a été donnée dans l'exercice $n^{\circ} 5$). Les matrices P_{σ} sont appelées « matrices de permutation ».
- 2) (Une utilisation des P_{σ}) A étant une matrice carrée donnée, calculer AP_{σ} et $P_{\sigma}A$. Que constate-t-on?

Exercice nº 8: (***I)

 $A_1, A_2,...,A_p$ sont p matrices carrées d'ordre n, deux à deux distinctes et inversibles. On suppose que $\{A_1,...,A_p\}$ est stable pour \times . Montrer que $\{A_1,...,A_p\}$ est un sous groupe de $(GL_n(\mathbb{R}),\times)$ (on utilisera le résultat suivant démontré dans le chapitre dénombrement : si f est une application injective d'un ensemble E dans un ensemble F et si E et F sont deux ensembles finis ayant le même nombre d'éléments, alors f est bijective).

Exercice no 9: (***)

Dans $E = \mathbb{R}^n$, on considère l'hyperplan H d'équation $x_1 + ... + x_n = 0$ dans la base canonique $(e_i)_{1 \leq i \leq n}$ de E. Pour $\sigma \in S_n$ donnée, on considère l'endomorphisme f_{σ} de E défini par : $\forall i \in E$, $f_{\sigma}(e_i) = e_{\sigma(i)}$.

On pose alors $p = \frac{1}{n!} \sum_{\sigma \in S_n} f_{\sigma}$. Montrer que p est une projection dont on déterminera l'image et la direction.