NOTAÇÕES

 \mathbb{N} : conjunto dos números naturais; $\mathbb{N} = \{1, 2, 3, \ldots\}$

Z: conjunto dos números inteiros

 $\mathbb Q$: conjunto dos números racionais

 \mathbb{R} : conjunto dos números reais

C : conjunto dos números complexos

i: unidade imaginária: $i^2 = -1$

|z|: módulo do número $z \in \mathbb{C}$

 \overline{z} : conjugado do número $z \in \mathbb{C}$

 $\operatorname{Re}(z)$: parte real do número $z \in \mathbb{C}$

 $\det A$: determinante da matriz A

 A^t : transposta da matriz A

 $\mathcal{P}(A)$: conjunto de todos os subconjuntos do conjunto A

n(A): número de elementos do conjunto finito A

P(A): probabilidade de ocorrência do evento A

 $f\circ g~$: função composta das funções fe g

$$[a,b] = \{x \in \mathbb{R}; \ a \le x \le b\}$$

$$[a, b] = \{x \in \mathbb{R}; \ a \le x < b\}$$

$$[a,b] = \{x \in \mathbb{R}; \ a < x \le b\}$$

$$]a,b[= \{x \in \mathbb{R}; \ a < x < b\}]$$

$$A \backslash B = \{x; \ x \in A \ e \ x \notin B\}$$

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + \dots + a_k, \ k \in \mathbb{N}$$

Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

Questão 1. Das afirmações:

- I. Se $x, y \in \mathbb{R} \setminus \mathbb{Q}$, com $y \neq -x$, então $x + y \in \mathbb{R} \setminus \mathbb{Q}$;
- II. Se $x \in \mathbb{Q}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, então $xy \in \mathbb{R} \setminus \mathbb{Q}$;
- III. Sejam $a,b,c \in \mathbb{R}$, com a < b < c. Se $f:[a,c] \to [a,b]$ é sobrejetora, então f não é injetora,

é (são) verdadeira(s)

A () apenas I e III. B () apenas I e III. C () apenas II e III.

D () apenas III. $\rm E$ () nenhuma. **Questão 2.** Considere as funções $f, g: \mathbb{Z} \to \mathbb{R}, f(x) = ax + m, g(x) = bx + n, \text{ em que } a, b, m \in n \text{ são}$ constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:

I. Se
$$A = B$$
, então $a = b$ e $m = n$;

II. Se
$$A = \mathbb{Z}$$
, então $a = 1$;

III. Se
$$a, b, m, n \in \mathbb{Z}$$
, com $a = b$ e $m = -n$, então $A = B$,

é (são) verdadeira(s)

Questão 3. A soma $\sum_{n=1}^{4} \frac{\log_{1/2} \sqrt[n]{32}}{\log_{1/2} 8^{n+2}}$ é igual a

A ()
$$\frac{8}{9}$$
.

A ()
$$\frac{8}{9}$$
. B () $\frac{14}{15}$. C () $\frac{15}{16}$. D () $\frac{17}{18}$.

C ()
$$\frac{15}{16}$$
.

D ()
$$\frac{17}{18}$$

Questão 4. Se $z \in \mathbb{C}$, então $z^6 - 3|z|^4(z^2 - \overline{z}^2) - \overline{z}^6$ é igual a

A ()
$$(z^2 - \overline{z}^2)^3$$
.

B ()
$$z^6 - \overline{z}^6$$
.

C ()
$$(z^3 - \overline{z}^3)^2$$
.

D ()
$$(z-\overline{z})^6$$
.

E ()
$$(z - \overline{z})^2 (z^4 - \overline{z}^4)$$
.

Questão 5. Sejam $z, w \in \mathbb{C}$. Das afirmações:

I.
$$|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$$
;

II.
$$(z + \overline{w})^2 - (z - \overline{w})^2 = 4z\overline{w};$$

III.
$$|z + w|^2 - |z - w|^2 = 4 \operatorname{Re}(z \overline{w}),$$

é (são) verdadeira(s)

C () apenas I e III.

Questão 6. Considere os polinômios em $x \in \mathbb{R}$ da forma $p(x) = x^5 + a_3x^3 + a_2x^2 + a_1x$. As raízes de p(x) = 0 constituem uma progressão aritmética de razão $\frac{1}{2}$ quando (a_1, a_2, a_3) é igual a

A ()
$$\left(\frac{1}{4}, 0, \frac{5}{4}\right)$$
.

B ()
$$\left(\frac{1}{4}, 1, \frac{5}{4}\right)$$
.

B ()
$$\left(\frac{1}{4}, 1, \frac{5}{4}\right)$$
. C () $\left(\frac{1}{4}, 0, -\frac{5}{4}\right)$.

D ()
$$\left(\frac{5}{4}, 0, \frac{1}{4}\right)$$
.

E ()
$$\left(\frac{1}{4}, -1, -\frac{1}{4}\right)$$
.

Questão 7. Para os inteiros positivos $k \in n$, com $k \le n$, sabe-se que $\frac{n+1}{k+1} \binom{n}{k} = \binom{n+1}{k+1}$.

Então, o valor de $\binom{n}{0} + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \dots + \frac{1}{n+1} \binom{n}{n}$ é igual a

A ()
$$2^n + 1$$
.

B ()
$$2^{n+1} + 1$$
.

C ()
$$\frac{2^{n+1}+1}{x}$$
.

A ()
$$2^{n} + 1$$
. B () $2^{n+1} + 1$. C () $\frac{2^{n+1} + 1}{n}$. D () $\frac{2^{n+1} - 1}{n+1}$. E () $\frac{2^{n} - 1}{n}$.

E ()
$$\frac{2^n-1}{n}$$

Questão 8 . Considere as seguintes afirmações sobre as matrizes quadradas A e B de ordem n , com A inversível e B antissimétrica:	
I.	Se o produto AB for inversível, então n é par;
II.	Se o produto AB não for inversível, então n é impar;
III.	Se B for inversível, então n é par.

Destas afirmações, é (são) verdadeira(s)

A () apenas I.

- B () apenas I e II.
- C () apenas I e III.

- D () apenas II e III.
- E () todas.

Questão 9. Sejam $A = \begin{bmatrix} 1 & -1 & 1 \\ y & -x & 1 \end{bmatrix}$ e $B = \begin{bmatrix} x+1 & x \\ y-2 & y \\ z+3 & z \end{bmatrix}$ matrizes reais tais que o produto AB é uma matriz antissimétrica. Das afirmações abaix

- I. BA é antissimétrica;
- II. BA não é inversível;
- O sistema (BA)X = 0, com $X^t = [x_1 \ x_2 \ x_3]$, admite infinitas soluções,

é (são) verdadeira(s)

- A () apenas I e II.
- B () apenas II e III.
- C () apenas I.

D () apenas II.

E () apenas III.

Questão 10. Seja M uma matriz quadrada de ordem 3, inversível, que satisfaz a igualdade

$$\det(2M^2) - \det(\sqrt[3]{2}M^3) = \frac{2}{9}\det(3M).$$

Então, um valor possível para o determinante da inversa de M é

- A () $\frac{1}{2}$. B () $\frac{1}{2}$. C () $\frac{2}{2}$. D () $\frac{4}{5}$. E () $\frac{5}{4}$.

Questão 11. Considere a equação $A(t)X = B(t), t \in \mathbb{R}$, em que $A(t) = \begin{bmatrix} 2e^{-2t} & -e^{2t} & -1 \\ -1 & 1 & 1 \\ -3 & 1 & 2 \end{bmatrix}$,

 $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e $B(t) = \begin{bmatrix} e^t \\ -\sqrt{2} \\ 0 \end{bmatrix}$. Sabendo que $\det A(t) = 1$ e $t \neq 0$, os valores de x, y e z são, respectivamente,

- A () $2\sqrt{2}$, 0, $-3\sqrt{2}$. B () $-2\sqrt{2}$, 0, $-3\sqrt{2}$. C () 0, $3\sqrt{2}$, $2\sqrt{2}$. D () 0, $2\sqrt{3}$, $\sqrt{3}$. E () $2\sqrt{3}$, $-\sqrt{3}$, 0.

Questão 12. Considere o polinômio complexo $p(z) = z^4 + a z^3 + 5 z^2 - i z - 6$, em que a é uma constante complexa. Sabendo que 2i é uma das raízes de p(z) = 0, as outras três raízes são

A ()
$$-3i$$
, -1 , 1. B () $-i$, i , 1.

B ()
$$-i$$
, i , 1

$$C() - i, i, -1.$$

D ()
$$-2i$$
, -1 , 1. E () $-2i$, $-i$, i .

$$\Xi() -2i, -i, i.$$

Questão 13. Sabendo que sen $x = \frac{2ab}{a^2 + b^2}$, $a \neq 0$ e $b \neq 0$, um possível valor para cossec $2x - \frac{1}{2} \operatorname{tg} x$ é

A ()
$$\frac{a-b}{ab}$$

B ()
$$\frac{a+b}{2ab}$$
.

A ()
$$\frac{a-b}{ab}$$
. B () $\frac{a+b}{2ab}$. C () $\frac{a^2-b^2}{ab}$. D () $\frac{a^2+b^2}{4ab}$. E () $\frac{a^2-b^2}{4ab}$.

D ()
$$\frac{a^2 + b^2}{4ab}$$
.

$$E() \frac{a^2 - b^2}{4ab}$$

Questão 14. Considere o triângulo ABC retângulo em A. Sejam \overline{AE} e \overline{AD} a altura e a mediana relativa à hipotenusa \overline{BC} , respectivamente. Se a medida de \overline{BE} é $(\sqrt{2}-1)$ cm e a medida de \overline{AD} é 1 cm, então \overline{AC} mede, em cm,

A ()
$$4\sqrt{2} - 5$$
.

B ()
$$3 - \sqrt{2}$$
.

C ()
$$\sqrt{6-2\sqrt{2}}$$

A ()
$$4\sqrt{2} - 5$$
. B () $3 - \sqrt{2}$. C () $\sqrt{6 - 2\sqrt{2}}$. D () $3(\sqrt{2} - 1)$. E () $3\sqrt{4\sqrt{2} - 5}$.

Questão 15. Seja ABC um triângulo de vértices A = (1,4), B = (5,1) e C = (5,5). O raio da circunferência circunscrita ao triângulo mede, em unidades de comprimento,

A ()
$$\frac{15}{8}$$
.

B()
$$\frac{5\sqrt{17}}{4}$$
. C() $\frac{3\sqrt{17}}{5}$. D() $\frac{5\sqrt{17}}{8}$. E() $\frac{17\sqrt{5}}{8}$.

C ()
$$\frac{3\sqrt{17}}{5}$$

D ()
$$\frac{5\sqrt{17}}{8}$$
.

E ()
$$\frac{17\sqrt{5}}{8}$$

Questão 16. Em um triângulo isósceles ABC, cuja área mede 48 cm^2 , a razão entre as medidas da altura \overline{AP} e da base \overline{BC} é igual a $\frac{2}{3}$. Das afirmações abaixo:

- As medianas relativas aos lados \overline{AB} e \overline{AC} medem $\sqrt{97}$ cm; I.
- O baricentro dista 4 cm do vértice A; II.
- Se α é o ângulo formado pela base \overline{BC} com a mediana \overline{BM} , relativa ao lado \overline{AC} , então $\cos \alpha = \frac{3}{\sqrt{97}},$

é (são) verdadeira(s)

Questão 17. Considere o trapézio ABCD de bases \overline{AB} e \overline{CD} . Sejam M e N os pontos médios das diagonais \overline{AC} e \overline{BD} , respectivamente. Então, se \overline{AB} tem comprimento x e \overline{CD} tem comprimento y < x, o comprimento de \overline{MN} é igual a

$$A () x - y.$$

B ()
$$\frac{1}{2}(x-y)$$
.

C ()
$$\frac{1}{3}(x-y)$$
.

A ()
$$x - y$$
. B () $\frac{1}{2}(x - y)$. C () $\frac{1}{3}(x - y)$. D () $\frac{1}{3}(x + y)$. E () $\frac{1}{4}(x + y)$.

$$E() \frac{1}{4}(x+y)$$

Questão 18. Uma pirâmide de altura h=1 cm e volume V=50 cm³ tem como base um polígono convexo de n lados. A partir de um dos vértices do polígono traçam-se n-3 diagonais que o decompõem em n-2 triângulos cujas áreas S_i , i=1,2,...,n-2, constituem uma progressão aritmética na qual $S_3 = \frac{3}{2} cm^2$ e $S_6 = 3 cm^2$. Então n é igual a

Questão 19. A equação do círculo localizado no 1^{ϱ} quadrante que tem área igual a 4π (unidades de área) e é tangente, simultaneamente, às retas r: 2x - 2y + 5 = 0 e s: x + y - 4 = 0 é

A ()
$$(x - \frac{3}{4})^2 + (y - \frac{10}{4})^2 = 4$$
.

B ()
$$(x - \frac{3}{4})^2 + (y - (2\sqrt{2} + \frac{3}{4}))^2 = 4$$
.

C ()
$$(x - (2\sqrt{2} + \frac{3}{4}))^2 + (y - \frac{10}{4})^2 = 4$$
.

D ()
$$(x - (2\sqrt{2} + \frac{3}{4}))^2 + (y - \frac{13}{4})^2 = 4$$
.

E ()
$$(x - (2\sqrt{2} + \frac{3}{4}))^2 + (y - \frac{11}{4})^2 = 4$$
.

Questão 20. Considere o sólido de revolução obtido pela rotação de um triângulo isósceles ABC em torno de uma reta paralela à base \overline{BC} que dista 0,25~cm do vértice A e 0,75~cm da base \overline{BC} . Se o lado \overline{AB} mede $\frac{\sqrt{\pi^2+1}}{2\pi}$ cm, o volume desse sólido, em cm³, é igual a

A ()
$$\frac{9}{16}$$
. B () $\frac{13}{96}$. C () $\frac{7}{24}$. D () $\frac{9}{24}$. E () $\frac{11}{96}$.

B ()
$$\frac{13}{96}$$
.

C ()
$$\frac{7}{24}$$
.

D ()
$$\frac{9}{24}$$
.

E ()
$$\frac{11}{96}$$

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESOLVIDAS E RESPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Considere as funções $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^{\alpha x}$, em que α é uma constante real positiva, e $g:[0, \infty[\to \mathbb{R}, g(x)=\sqrt{x}]$. Determine o conjunto-solução da inequação $(g \circ f)(x) > (f \circ g)(x).$

Questão 22. Determine as soluções reais da equação em x, $(\log_4 x)^3 - \log_4(x^4) - 3\frac{\log_{10} 16 x}{\log_{10} 16} = 0$.

Questão 23.

- a) Determine o valor máximo de |z+i|, sabendo que $|z-2|=1, z\in\mathbb{C}$.
- b) Se $z_o \in \mathbb{C}$ satisfaz (a), determine z_o .

Questão 24. Seja Ω o espaço amostral que representa todos os resultados possíveis do lançamento simultâneo de três dados. Se $A \subset \Omega$ é o evento para o qual a soma dos resultados dos três dados é igual a 9 e $B \subset \Omega$ o evento cuja soma dos resultados é igual a 10, calcule:

- a) $n(\Omega)$;
- b) $n(A) \in n(B)$;
- c) $P(A) \in P(B)$.

Questão 25. Determine quantos paralelepípedos retângulos diferentes podem ser construídos de tal maneira que a medida de cada uma de suas arestas seja um número inteiro positivo que não exceda 10.

Questão 26. Considere o sistema linear nas incógnitas $x, y \in z$

$$\begin{cases} x + y + 2z = 0 \\ -x + (\sin \theta) y + 4z = 0 \\ 2x + (1 - \cos 2\theta) y + 16z = 0 \end{cases}, \quad \theta \in [0, 2\pi].$$

- a) Determine θ tal que o sistema tenha infinitas soluções.
- b) Para θ encontrado em (a), determine o conjunto-solução do sistema.

Questão 27. Determine o conjunto de todos os valores de $x \in [0, 2\pi]$ que satisfazem, simultaneamente, a

$$\frac{2 \sin^2 x + \sin x - 1}{\cos x - 1} < 0 \qquad \text{e} \qquad \tan x + \sqrt{3} < (1 + \sqrt{3} \cos x) \cot x.$$

Questão 28. Seis esferas de mesmo raio R são colocadas sobre uma superfície horizontal de tal forma que seus centros definam os vértices de um hexágono regular de aresta 2R. Sobre estas esferas é colocada uma sétima esfera de raio 2R que tangencia todas as demais. Determine a distância do centro da sétima esfera à superfície horizontal.

Questão 29. Três circunferências C_1 , C_2 e C_3 são tangentes entre si, duas a duas, externamente. Os raios r_1 , r_2 e r_3 destas circunferências constituem, nesta ordem, uma progressão geométrica de razão $\frac{1}{3}$. A soma dos comprimentos de C_1 , C_2 e C_3 é igual a 26π cm. Determine:

- a) a área do triângulo cujos vértices são os centros de C_1 , C_2 e C_3 .
- b) o volume do sólido de revolução obtido pela rotação do triângulo em torno da reta que contém o maior lado.

Questão 30. Um cilindro reto de altura h=1 cm tem sua base no plano xy definida por

$$x^2 + y^2 - 2x - 4y + 4 \le 0.$$

Um plano, contendo a reta y - x = 0 e paralelo ao eixo do cilindro, o secciona em dois sólidos. Calcule a área total da superfície do menor sólido.