

自然语言处理句法分析

吴震

南京大学人工智能学院 南京大学自然语言处理研究组

2023年6月

自然语言处理中典型的任务形式

目录

- 背景知识
- 成分句法分析
- 依存句法分析
- 评价方法

010

背景知识

BACKGROUND

语言

- 语言的定义
 - 一种由三部分组成的符号交流系统:记号、意义和两者间的对应关系
 - 由组合语法规则制约、旨在传达语义的记号形式系统。
- 语言背后存在一些固定的结构搭配
 - 动宾结构
 - 主谓结构
 - 介宾短语
 -


```
1 #include <stdio.h>
2
3 int main(int argc, char **argv) {
4    printf("hello world !!!");
5    return 0;
6 }
```

句法 (SYNTAX)

句法:一门语言里支配句子结构,决定词、短语、从句等句子成分如何组成其上 级成分,直到组成句子的规则或过程。

句法分析 (PARSING)

为京大学 NANJING UNIVERSITY

- 确定句子的组成
 - 词、短语以及它们之间的关系
- 句法分析类型
 - 成分句法分析(Constituency Parsing)
 - 研究词如何构成短语、短语如何构成句子
 - 依存句法分析(Dependency Parsing)
 - ▶ 研究词之间的依赖(或支配)关系

成分句法分析

- 研究词如何构成短语、短语如何构成句子
- "John ate the apple"
 - 限定词 the 和名词 apple 构成名词短语NP
 - 动词 ate 和名词短语NP构成动词短语VP

• 名词短语NP和动词短语VP构成句子S

词性	含义
S	sentence
VP	verb phrase
NP	noun phrase
Det	determiner
V	verb
Ν	noun

依存句法分析

- 识别词之间的依赖(或支配)关系
 - 依存是有向的:词与词之间的依赖关系是二元不对称的("箭头"), "箭头"头部指向的词 依赖"箭头"尾部指向的词(称为依存头)
 - 依存边是有类型的:表明两个词之间的依赖关系类型,如主语(sub)、宾语(obj)等
 - 每个词只有一个依存头:没有环,依存关系是树结构
- "John ate the apple"
 - John依赖于ate,是ate的主语
 - ate依赖于虚拟根节点 (ROOT)
 - the依赖于apple,是apple的修饰词
 - apple依赖于ate,是ate的宾语

句法分析的应用

- 语法检查
- 信息抽取
- 问答系统
- 机器翻译

•

语法检查

Grammarly: Grammar Checker and Writing App

020

成分句法分析

CONSTITUENCY PARSING

成分句法分析

- 研究词如何构成短语、短语如何构成句子
- "John ate the apple"
 - 限定词 the 和名词 apple 构成名词短语NP
 - 动词 ate 和名词短语NP构成动词短语VP

• 名词短语NP和动词短语VP构成句子S

词性	含义
S	sentence
VP	verb phrase
NP	noun phrase
Det	determiner
V	verb
Ν	noun

上下文无关文法

- Context-free Grammar (CFG)
 - CFG定义语言中的有效结构,它通过形式化方法定义句子中有意义的成分,以及一个成分是如何由其他成分(单词或短语)构成的。

上下文无关文法

• CFG—般由四元组构成*G=(N, T, S, R)*

N: 非终结符集合

T: 终结符集合

S:开始符号

• R:产生式规则集合

• 形式一般为 $X \rightarrow Y_1 Y_2 ... Y_n$, n > 0, $X \in N$, $Y_i \in (N \cup T)$

上下文无关文法示例

- N = {S, NP, VP, PP, Det, N, V, P}
- $T = \{\text{mom, caviar, spoon, ate, the, a, with}\}$

		$S \rightarrow NP VP$
\mathcal{D}	<i>D</i> –	$NP \rightarrow Det N$
	• <i>R</i> =	$NP \rightarrow NP PP$
		VP → V NP
		VP → VP PP
		PP → P NP

$N \rightarrow mom$
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

$$X \rightarrow Y_1 Y_2 ... Y_n$$

CFG中产生式右侧项数不定,不利于进行句法分析

乔姆斯基范式

- 一种特殊的上下文无关文法
- 乔姆斯基范式 (Chomsky Normal Form, CNF)中的产生式满足以下两种形式:
 - $X \rightarrow Y_1 Y_2$, for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \rightarrow Y$, for $X \in N$, and $Y \in T$

• 目的:使句法分析的分析算法变得简单

乔姆斯基范式

- 如何将普通的上下文无关文法转化为乔姆斯基范式?
 - 将多叉树转化为多层二叉树

如何得到文法中的句法产生式规则?

树库 (TREEBANK)

- 带用句法结构注释的句子集合
 - 人工对句子进行句法标注,将标注结果收集起来形成树库
 - Brown corpus (1967)
 - Lancaster-IBM Treebank (1980s)
 - The Penn Treebank (1993)
- 构建树库的好处
 - 构建句法分析器,可重复使用
 - 用于评价句法分析器的性能

树库 (TREEBANK)

The Penn Treebank样例

树库 (TREEBANK)

• 从树库中抽取句法规则

如何根据句法规则(文法G)对句子进行句法分析?

句法分析-自顶向下

• 输入:待分析的句子,文法G

• 输出:句子对应的句法树

- 算法流程:
 - 1. 取((S)1)作为当前状态(初始状态),后备状态为空。
 - 2. 若当前状态为空,则失败,算法结束,
 - 3. 否则,若当前状态的符号表为空,
 - ① 位置计数器值处于句子末尾,则成功,算法结束
 - ② 位置计数器值处于句子中间,转5
 - 4. 否则,进行状态转换,若转换成功,则转2
 - 5. 否则,回溯,转2。

$S \rightarrow NP VP$	N → cat
NP → Det N	N → house
NP → Det ADJ N	V → caught
$VP \rightarrow V$	Det → the
$VP \rightarrow VP NP$	Det → a

句法分析-自顶向下

"1 The 2 cat 3 caught 4 a 5 mouse 6" 的分析过程

1. $S \rightarrow NP \ VP$ 2. $NP \rightarrow Det \ N$ 3. $NP \rightarrow Det \ ADJ \ N$ 4. $VP \rightarrow V$ 5. $VP \rightarrow V \ NP$

步骤	当前状态	后备状态	备注
1	((S) 1)		初始状态
2	((NP VP) 1)		规则1改写
3	((Det N VP) 1)	((Det ADJ N VP) 1)	规则2、3改写
4	((N VP) 2)	((Det ADJ N VP) 1)	Det匹配the
5	((VP) 3)	((Det ADJ N VP) 1)	N匹配cat
6	((V) 3)	((V NP) 3) ((Det ADJ N VP) 1)	规则4、5改写
7	(() 4)	((V NP) 3) ((Det ADJ N VP) 1)	V匹配caught

句法分析-自顶向下

- "1 The 2 cat 3 caught 4 a 5 mouse 6" 的分析过程(续)
 - 1. $S \rightarrow NP \ VP$ 2. $NP \rightarrow Det \ N$ 3. $NP \rightarrow Det \ ADJ \ N$ 4. $VP \rightarrow V$ 5. $VP \rightarrow V \ NP$

步骤	当前状态	后备状态	备注
8	((V NP) 3)	((Det ADJ N VP) 1)	回溯
9	((NP) 4)	((Det ADJ N VP) 1)	V匹配caught
10	((Det N) 4)	((Det ADJ N) 4) ((Det ADJ N VP) 1)	规则2、3改写
11	((N) 5)	((Det ADJ N) 4) ((Det ADJ N VP) 1)	Det匹配a
12	(() 6)	((Det ADJ N) 4) ((Det ADJ N VP) 1)	N匹配mouse
13			结束

自顶向下分析方法的问题

- 需要搜索的树数量达到指数级别
- 许多子树是相同的,存在重复解析

自底向上 对已分析的子树进行存储 (记忆化),避免重复解析

CKY算法

- Cocke-Kasami-Younger Algorithm
- 自底向上的动态规划算法

Mom ate the caviar with a spoon N V Det N P Det N

待分析句子

 $S \rightarrow N VP$ $S \rightarrow NP VP$ $NP \rightarrow Det N$ $NP \rightarrow NP PP$ $VP \rightarrow V NP$ $VP \rightarrow VP PP$ $PP \rightarrow P NP$ $N \rightarrow mom$ $N \rightarrow caviar$ $N \rightarrow spoon$ $V \rightarrow ate$ $Det \rightarrow the$ $Det \rightarrow a$ $P \rightarrow with$

句法规则

CKY算法流程

k

- 输入:待分析的句子,文法G
- 输出:句子对应的句法树
- 算法流程
 - for i := 1 to n
 - add to [i-1, i] all POS tags for the ith word 设置主对角线词性
 - for width := 2 to n 枚举成分覆盖的长度范围
 - for i := 0 to n-width 枚举开始位置
 - j:= start + width 计算结束位置
 - for k := i+1 to j 枚举左右分割节点的位置
 - for every rule X →Y Z in the CNF G 枚举CNF中的句法规则
 - if Y in [i, k] and Z in [k, j] 判断[i,k]和[k,j]两个区域的成分是否分别存在Y和Z
 - then add X to [i, j]

	0	-	1	2	3	4	5	6	7
		Mom	ate	the	caviar	with	a	spoon	
i		Ν	V	Det	Ν	Р	Det	t N	

	1	2	3	4	5	6	7
0	N						
1		V					
2			Det				
3				N			
4					Р		
5						Det	
6							N

$S \rightarrow N VP$ $S \rightarrow NP VP$ $NP \rightarrow Det N$ $NP \rightarrow NP PP$ $VP \rightarrow V NP$ $VP \rightarrow VP PP$ $PP \rightarrow P NP$	
$NP \rightarrow Det N$ $NP \rightarrow NP PP$ $VP \rightarrow V NP$ $VP \rightarrow VP PP$	S → N VP
$ \begin{array}{c} NP \rightarrow NP PP \\ VP \rightarrow V NP \\ VP \rightarrow VP PP \end{array} $	$S \rightarrow NP VP$
$VP \rightarrow V NP$ $VP \rightarrow VP PP$	NP → Det N
VP → VP PP	$NP \rightarrow NP PP$
	VP → V NP
PP → P NP	$VP \rightarrow VP PP$
	PP → P NP

N → mom
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

	0	1		2	3	4	5	5	7
		Mom	ate	the	caviar	with	a	spoon	
位置 i		Ν	V	Det	Ν	Р	Det	N	

	1	2	3	4	5	6	7
0	N -	→					
1		V —	•				
2			Det	→NP			
3				N	*		
4					Р	*	
5						Det	NP
6							N

$S \rightarrow N VP$
$S \rightarrow NP VP$
NP → Det N
$NP \rightarrow NP PP$
VP → V NP
$VP \rightarrow VP PP$
PP → P NP

N → mom
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

0		1	2	2	3		4		5		6	7
	Mom		ate	the		caviar		with		a	spoon	
	Ν		V	Det		Ν		Р		Det	: N	

	1	2	3	4	5	6	7
0	N						
1		V —		→ VP			
2			Det	NP			
3				N			
4					P —		→PP
5						Det	NP
6							N

$S \rightarrow N VP$
$S \rightarrow NP VP$
$NP \rightarrow Det N$
$NP \rightarrow NP PP$
VP → V NP
$VP \rightarrow VP PP$
PP → P NP
$VP \rightarrow V NP$ $VP \rightarrow VP PP$

N → mom
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

0		1	2	3	4	5	,	7
	Mom	ate	the	caviar	with	a	spoon	
	Ν	V	Det	Ν	Р	Det	Ν	

	1	2	3	4	5	6	7
0	N—			Ş			
1		V		VP			
2			Det	NP			
3				N			
4					P —		→PP
5						Det	NP
6							N

$S \rightarrow N VP$
$S \rightarrow NP VP$
$NP \rightarrow Det N$
$NP \rightarrow NP PP$
$VP \rightarrow V NP$
$VP \rightarrow VP PP$
PP → P NP

$N \rightarrow mom$
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

	0	1		2	3	4	5	6	7
		Mom	ate	the	caviar	with	a	spoon	
か署 i		Ν	V	Det	Ν	Р	Det	Ν	

	1	2	3	4	5	6	7
0	N			S			
1		V		VP			
2			Det	NP -			• NP
3				Ν			
4					Р		PP
5						Det	NP
6							N

N → mom				
N → caviar				
N → spoon				
V → ate				
Det → the				
Det → a				
P → with				

0		1		2	3		4		5	6		7
	Mom		ate	the		caviar		with	a		spoon	
	Ν		V	Det		Ν		Р	De	t	Ν	

	1	2	3	4	5	6	7
0	N			S			
1		V—		VP			VP VP
2			Det	NP			NP
3				N			
4					Р		PP
5						Det	NP
6							N

S → N VP
$S \rightarrow NP VP$
$NP \rightarrow Det N$
$NP \rightarrow NP PP$
$VP \rightarrow V NP$
$VP \rightarrow VP PP$
PP → P NP

N → mom					
N → caviar					
N → spoon					
V → ate					
Det → the					
Det → a					
P → with					

开始位置

0 1 2 3 4 5 6 7

Mom ate the caviar with a spoon

N V Det N P Det N

	1	2	3	4	5	6	7
0	N —			S			Ş
1		V		VP			VP
2			Det	NP			NP
3				Z			
4					Р		PP
5						Det	NP
6							N

$S \rightarrow N VP$
$S \rightarrow NP VP$
$NP \rightarrow Det N$
$NP \rightarrow NP PP$
$VP \rightarrow V NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

N → mom
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

CKY算法总结

- 动态规划
 - 将分析中间结果存放在表中,减少重复计算
- 复杂度: $O(n^3|G|)$
 - n:句子长度
 - |G|: 文法中规则的数量
- 算法前提:上下文无关文法CFG转换为乔姆斯基范式CNF

CKY的问题

0		1	2	3	4	5	5	7
	Mom	ate	the	caviar	with	a	spoon	
	Ν	V	Det	Ν	Р	Det	Ν	

	1	2	3	4	5	6	7
0	N			S			
1		V—		VP			VP.
2			Det	NP			NP
3				Ν			
4					Р		PP /
5						Det	NP
6							N

$S \rightarrow N VP$
$S \rightarrow NP VP$
$NP \rightarrow Det N$
$NP \rightarrow NP PP$
$VP \rightarrow V NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

N → mom
N → caviar
N → spoon
V → ate
Det → the
Det → a
P → with

CKY的问题

歧义

 $S \rightarrow N VP$ $S \rightarrow NP VP$ $NP \rightarrow Det N$ $NP \rightarrow NP PP$ $VP \rightarrow V NP$ $VP \rightarrow VP PP$ $PP \rightarrow P NP$ $N \rightarrow mom$ $N \rightarrow caviar$ $N \rightarrow spoon$ $V \rightarrow ate$ $Det \rightarrow the$ $Det \rightarrow a$ $P \rightarrow with$

概率上下文无关文法PCFG

PCFG—般由五元组构成 G=(N, T, S, R, P)

N: 非终结符集合

T: 终结符集合

• S:开始符号

• R:产生式规则集合

● 形式一般为 $X \rightarrow Y_1 Y_2 ... Y_n$, for $n \ge 0$, $X \in N$, $Y_i \in (N \cup T)$

• $P(X \rightarrow Y_1 Y_2 ... Y_n)$: 产生式对应的概率

概率上下文无关文法PCFG

- PCFG由五元组构成 *G=(N, T, S, R, P)*
- 利用PCFG计算一棵句法树 t 的概率
 - 句法树 t 通过以下产生式得到:

$$\triangleright \alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \dots, \alpha_n \rightarrow \beta_n$$

句法树 t 的概率为:

$$ightharpoonup p(t) = \prod_{i=1}^n p(\alpha_i \to \beta_i)$$

Rules	р
$S \rightarrow N VP$	0.2
$S \rightarrow NP VP$	0.8
NP → Det N	0.3
NP → NP PP	0.7
VP → V NP	0.5
VP → VP PP	0.5
PP → P NP	1.0

Rules	р
N → Mom	0.4
$N \rightarrow caviar$	0.2
$N \rightarrow spoon$	0.2
V → ate	1.0
Det → the	0.5
Det → a	0.5
P → with	1.0

概率上下文无关文法PCFG

• PCFG由五元组构成*G=(N, T, S, R, P)*

Rules	р
S → N VP	0.2
$S \rightarrow NP VP$	0.8
$NP \rightarrow Det N$	0.3
$NP \rightarrow NP PP$	0.7
VP → V NP	0.5
$VP \rightarrow VP PP$	0.5
PP → P NP	1.0

Rules	р
N → Mom	0.4
N → caviar	0.2
N → spoon	0.2
V → ate	1.0
Det → the	0.5
Det → a	0.5
P → with	1.0

概率CKY算法

- 輸入:待分析的句子s, 文法PCFG G
- 输出:句子s对应的概率最大的句法树以及最大概率bestscore(s)
- 算法流程
 - for i := 1 to n
 - for X := tags[s[i-1]]
 - $score[X][i-1][i] = score(X \rightarrow s[i-1])$
 - for width := 2 to n
 - for i := 0 to n-width
 - j := start + width
 - for k := i+1 to j
 - for every rule X →YZ in the CNF G

PCFG中的概率估计

- 利用树库中的统计频率估计产生式概率
- 产生式A → α对应的概率为:

$$p(A \to \alpha) = \frac{Number(A \to \alpha)}{\sum_{\gamma} Number(A \to \gamma)}$$

$$p(VP \to V) = \frac{Number(VP \to V)}{Number(VP \to V) + Number(VP \to VT NP) + Number(VP \to VP PP)}$$

PCFG中的概率估计

• 利用树库中的统计频率估计产生式概率

Number
3
2
6
1
3
1
2

PCFG中的概率估计

• 利用树库中的统计频率估计产生式概率

Rules	Probability
$S \rightarrow N VP$	3/3=1.0
NP → Pro	2/9=0.22
$NP \rightarrow Det N$	6/9=0.67
$NP \rightarrow NP PP$	1/9=0.11
VP → V NP	3/4=0.75
$VP \rightarrow VP PP$	1/4=0.25
PP → P NP	2/2=1.0

依存句法分析

DEPENDENCY PARSING

依存句法分析

- 识别词之间的依赖(或支配)关系
 - 依存是有向的:词与词之间的依赖关系是二元不对称的("箭头"), "箭头"头部指向的词依赖 "箭头"尾部指向的词(称为依存头)
 - 依存边是有类型的:表明两个词之间的依赖关系类型,如主语(sub)、宾语(obj)等
 - 每个词只有一个依存头:没有环,依存关系是树结构
- "John ate the apple"
 - John依赖于ate,是ate的主语
 - ate依赖于虚拟根节点 (ROOT),根据点一般是动词
 - the依赖于apple,是apple的修饰词
 - Apple依赖于ate,是ate的宾语

依存句法分析算法

- 移进规约算法:分析过程是一个自底向上的动作序列生成过程
- 类似于shift-reduce分析,只是在归约时,增加左归约/右归约,表示两个节点的依赖方向
- 分析器维护三个数据结构
 - 一个栈 σ
 - 一个输入缓冲区 β
 - 一个依存边集合 A

SHIFT-REDUCE PARSING

- 输入:待分析的句子s
- 输出:句子s对应的句法树
- 算法流程
 - Start: $\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$
 - 1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$
 - 2. Left-Arc $\sigma | w_i | w_j, \beta, A \rightarrow \sigma | w_j, \beta, A \cup \{r(w_j, w_i)\}$
 - 3. Right-Arc $\sigma | w_i | w_j, \beta, A \rightarrow \sigma | w_i, \beta, A \cup \{r(w_i, w_j)\}$
 - Finish: $\sigma = [ROOT], \beta = \emptyset$

SHIFT-REDUCE PARSING示例

" Book me the morning flight"

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	Shift	
1	[root, book]	[me, the, morning, flight]	Shift	
2	[root, book, me]	[the, morning, flight]	Right-Arc	(book → me)
3	[root, book]	[the, morning, flight]	Shift	
4	[root, book, the]	[morning, flight]	Shift	
5	[root, book, the, morning] [flight]		Shift	
6	[root, book, the, morning, flight]	5	Left-Arc	(morning ← flight)
7	[root, book, the, flight] []		Left-Arc	(the \leftarrow flight)
8	[root, book_flight] []		Right-Arc	$(book \rightarrow flight)$
9	[root, book] []		Right-Arc	$(root \rightarrow flight)$
10	[root]	I)	Done	

SHIFT-REDUCE PARSING

- 如何决定每一步的动作?
 - Shift
 - LeftArc
 - RightArc
- 机器学习
 - 统计学习
 - 深度学习

统计学习特征

为京大学 NANJING UNIVERSITY

- 词性、栈/缓冲区的单词
- 语言的形态学特征
- 已解析的关系
- 连词
- •

特征含义

$$s1.w = \operatorname{good} \wedge s1.t = \operatorname{JJ}$$
 $s2.w = \operatorname{has} \wedge s2.t = \operatorname{VBZ} \wedge s1.w = \operatorname{good}$ $lc(s_2).t = \operatorname{PRP} \wedge s_2.t = \operatorname{VBZ} \wedge s_1.t = \operatorname{JJ}$ $lc(s_2).w = \operatorname{He} \wedge lc(s_2).l = \operatorname{nsubj} \wedge s_2.w = \operatorname{has}$

高维: 106-107

费时:特征计算时

间占比95%

深度学习

Chen & Manning 2014

特征表示维度低:约1000维

• 特征为连续值:不稀疏

深度学习

• Chen & Manning 2014:性能

89.8	87.2	469
		403
91.4	88.1	10
92.3	89.6	8
92.0	89.7	654
	92.3	92.3 89.6

错误传递: 之前的某一步错误, 会影响后续整个解析结果

评价方法 EVALUATION

评价方法

- 完全匹配
 - 将句法分析器得到的树结构与人工标注(树库)的树结构进行完成匹配
 - 指标很低:一棵树只要一条边不正确,整棵树会被判断预测错误
 - 关键的边预测正确即可
- 部分匹配
 - 预测正确的边数相对于标注边数的占比
 - UAS: unlabeled attachment score(不考虑边类型)
 - LAS: labeled attachment score (考虑边类型)

评价指标

- UAS : unlabeled attachment score
 - 预测正确的边数相对于标注边数的占比(不考虑边类型)

$$UAS = \frac{\# \ correct \ deps}{\# \ deps} = \frac{4}{5} = 80\%$$

Gc	old		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

Parsed			
1	2	She	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

评价指标

- LAS: labeled attachment score
 - 预测正确的边数相对于标注边数的占比(考虑边类型)

$$LAS = \frac{\# \ correct \ deps \ with \ type}{\# \ deps} = \frac{2}{5} = 40\%$$

Gc	old			
1	2	She	nsubj	
2	0	saw	root	
3	5	the	det	
4	5	video	nn	
5	2	lecture	obj	

Pa <u>rse</u> d				
1	2	She	nsubj	
2	0	saw	root	
3	4	the	det	
4	5	video	nsubj	
5	2	lecture	ccomp	

REFERENCE

- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture04-dep-parsing.pdf
- https://www.cc.gatech.edu/classes/AY2020/cs7650_spring/
- 《Speech and Language Processing》, Chapter 8. Daniel Jurafsky & James H. Martin.

Thank you! Q&A

