Figure 1A Nucleotide sequence of inserted environmental DNA (mHKcel cellulase)

		m = cmc > cmc c	7 C C C C C C C C C C C C C C C C C C C	ሽ ክ ር ጠሙ አ ሽ ሽ ሽ ር	EΛ
		TAGTCAGTGG		GTTTATTTTG	50 100
		CGGACCCGCA	CTGGCCTTGG		
ATGGGGGATT		ACACAACGAT		GTGTGTGATT	150
***** ****	AAAATGACAC		GTGAGAAAAA		200
00044		ACCAAGCAGA		TTGCATTTAG	250
0	AACTTGAAGG	GATCGGGCGC	ATCATCTGCC	TATCACCATT	300
TACGGTGATT	CTCAAGTTGT	GATCAATCAG		AATGGGCCGT	350
GTATGGAGGA	GGTGTTAAAT	AAATGGGCTG		ATCAAGCATT	400
TAGCTAAATT	AGGCATGACC		AGTTAATCCC	CCGTAAAGAA	450
AACCGCGAAG	CCGATCAACT		GCGTTAAACG	GGCAAGAAAT	500
TATAAGTCAA	CGTGATATCA	GTGAGCGTGG	TGCAGATTAG	GCTGCACCGC	550
GCAAAAAAAG	TCAACGTGTT	TAGGAATGGA		AGCAACATAA	600
TTCTCTCTAA	GCAAACGTTG	,		ATAAGGTTTT	650
TCTGAGTTAG	TCTATTTATA	CCAATGTCCA		AAACCTCTCA	700
TCAAAGTGGA	TTTTTTGATT	AATTCACTTC	CACTCCTACC	TTTATCTATA	750
TAAATTAGTT	CCTTTTTTGT	TAATAATCAC	TAATTTTGGC	GGTATTTTT	800
AATAGAAATA	TATGCTAGAT	TATAAACTAG	TAGCCGTATA	GAAGGTGGTG	850
ATTGCCCCTA	TAAGAGACGT	CTGGCAAACA	TAAAAGCATC	GCATTATTAT	900
AATCGAAAGG	TGGAGATGAG	ACATGGGTTA	TACCCAAGCT	AAGTGTATGG	950
TGAAAAAAAC	GGTCTTGTTT	GGTTTAATTC	TCTGTTTAGG	TGTGTCAATG	1000
TTTGTACCAG	TTACATCAGC	TGAAGATAGG	GTCTCTTCGT	CACAGGTGGA	1050
TATCCAATCA	TATGTAGCAG	ATATGCAACC	TGGCTGGAAT	TTAGGTAATA	1100
CATTTGATGC	GATAGGAGAT	GATGAAACAG	CATGGGGAAA	CCCTCGTGTA	1150
ACGAGAGAAT	TAATAGAAAT	GATTGCTGAT	GAAGGGTATA	AAAGTATTCG	1200
TATCCCAGTC	ACATGGCAAA	ATCAAATGGG	TGGTTCTCCA	GATTATACAA	1250
TTAATGAAGA	TTATATCAAG	CGGGTAGAGC	AAGTGATAGA	TTGGGCGTTG	1300
GAGGAAGACT	TGTATGTGAT	GTTAAATGTG	CATCATGACT	CATGGCTGTG	1350
GATGTATGAT	ATGGAACATA	ACTATGATGA	GGTGATGGCA	AGATATACAG	1400
CTATTTGGGA	ACAATTGTCG	GAAAAATTCA	AAAACCACTC	CCATAAGTTG	1450
ATGTTTGAGA	GTGTCAATGA	GCCTAGGTTT	ACGCAGGAGT	GGGGAGAGAT	1500
TCAAGAAAAT	CATCATGCTT	ACTTAGAAGA	TTTAAATAAG	ACGTTCTATT	1550
ATATTGTCAG	AGAGTCAGGA	GGCAATAATG	TGGAGCGCCC	TTTAGTATTG	1600
CCTACGATAG	AAACAGCCAC	GTCTCAGGAT	TTACTAGATC	GCTTGTATCA	1650
AACAATGGAA	GACTTGGATG	ACCCTCATTT	AATTGCCACG	GTTCATTATT	1700
ATGGCTTTTG	GCCCTTTAGT	GTCAATATAG	CAGGGTACAC	CCGTTTTGAA	1750
CAGGAGACAC	AACAAGATAT	TATAGACACG	TTTGACCGTG	TTCATAACAC	1800
ATTTACAGCG	AATGGGATCC	CAGTTGTATT	AGGTGAATTT	GGTTTGTTAG	1850
GCTTTGATAA	AAGTACGGAC	GTCATTCAGC	AAGGTGAGAA	ATTAAAATTT	1900
TTTGAGTTTC	TCATCCATCA	TCTCAATGAA	CGTGATATAA	CCCATATGTT	1950
		TAAAGCGAGA			2000
		AAAGCGAGTT			2050
		TGTGAAGGAC			2100
		ACGGAAATGA			2150
		GGAGAGGATT			2200
		CCTCACAAGA	TTAATTACCC		2250
	GCGGTCATCA		TAATTCTGGA		2300
		GACGTGCCAA			2350
	ATTTTGCGAT		TTTAATGGTG		2400
. 0.11.27.1.000					

Figure 1B

GACGATGGAA	GCTGTTTATG	CAAACGGAGA	ATATGCTGGC	CCGCAAGATT	2450
GGACGTCATT	TAAAGAATTT	GGCGAGGCGT	TTTCCCCTAA	TTACGCCACA	2500
GGGGAAATTA	TTATAACAGA	AGCCTTCTTT	AACGCGGTAC	GGGATGATGA	2550
TATCCATTTA	ACATTTCATT	ATTGGAGCGG	AGAGACGGTG	GAATATACAT	2600
TACGTAAAAA	TGGAAATTAT	GTTCAAGGTA	GACGGTAACA	TGATTTTAAT	2650
TAATAGATAA	AACAGCCTAC	CTATCGTTTT	TGGAAGAAGG	CAAACGAATC	2700
TCATCTTACC	AACACCGTGC	TTTAGAACTT	TAGAAGTGAC	GGTGTTTTTT	2750
AAGACATGAG	GAGAGACAAT	CCTCTATCAA	CAGTCACCAA	TTTTTATTCA	2800
GGAGGTGTCA	AGTTATCTAA	CGTTCTATGA	ATGCATATAG	TTTCTGACGA	2850
ATAAACATAG	TTAAAAAGAA	GTGAGCCTAG	TTCCCGAGGG	GAAGGGGATA	2900
ATGCCAACGT	ATTGGATTAA	AGTACCTTCT	TGATAAAAAG	AAAGGGTTTT	2950
CAAGAGGTGG	AAATGGGCTC	GTTTGTTATA	CTTTAATTAC	ACCTTGGAAC	3000
GTCATTTTGG	CGGTGCTACT	TAGTAAGATG	ACTGACATCA	TAAAAGAGGA	3050
GTGGGTTCGA	TGGCTTTAAT	TCAATTAAGC	TTTAAATCAC	GAGCATTAAT	3100
GTTGCAAACC	TCTGTCAATG	TTTTATTACC	GGTGGGAATG	AATGCGGTAG	3150
ATTTTACACC	AAGTGATGAT	TTTTCTTATG	TTACTGACCC	TTTTCCTGTC	3200
CTATATCTTT	TGCATGGTGC	AACTGATGAT	TATTCAGCAT	GGCTACGTCT	3250
GTCCTCCATT	GAACGATATG	CTGAAGAAAA	AAAATTGGCG	GTCGTCATGC	3300
CAAATGCTGA	TATGAGTGCG	TATACGGATA	TGGTACATGG	ACATCGTTAC	3350
TGGACGTATA	TTAGTAAGGA	GCTGCCTGAG	TTTATCAAAG	CGACTTTTCC	3400
TATTTCTCAG	CACCGTGAAG	ACACCTTTGC	GGCTGGTCTG	TCTATGGGAG	3450
GATACGGGGC	TTTTAAATTA	GCGTTGCGGC	AACCGGAACG	CTTCGCTGCA	3500
GNTGTGTCAT	TATCAGGTGC	AGTTGATATG	AGAGAAGCAA	GTCAACCAGA	3550
CTCCCTATTT	GTGAACGCAT	TTGGTGAAGG	GACGAAAATC	GCAGGGACAG	3600
ATCTTGATCT	TTTTCATTTA	ATTAAAAAGT	TGGGGGTATA	TGAAGGGGCT	3650
AAACCAGCCC	TTTTTCAAGC	GTGTGGGACA	GAGGACTTTT	TATATGAAGA	3700
TAATGTGAGA	TTTAGAGATT	ATGCACGACA	AGTGAATGCC	GATTTAACTT	3750
ATGAAGAAGG	TCCTGGTGGT	CATGAATGGG	CTTATTGGGA	TAGAAT	3796

Figure 2 ORF Nucleotide sequence of mHKcel cellulase gene

ATGGGTTATA	CCCAAGCTAA	GTGTATGGTG	AAAAAAACGG	TCTTGTTTGG	50
TTTAATTCTC	TGTTTAGGTG	TGTCAATGTT	TGTACCAGTT		100
AAGATAGGGT	CTCTTCGTCA	CAGGTGGATA	TCCAATCATA		150
ATGCAACCTG	GCTGGAATTT	AGGTAATACA	TTTGATGCGA		200
TGAAACAGCA	TGGGGAAACC	CTCGTGTAAC	GAGAGAATTA	ATAGAAATGA	250
TTGCTGATGA	AGGGTATAAA	AGTATTCGTA	TCCCAGTCAC	ATGGCAAAAT	300
CAAATGGGTG	GTTCTCCAGA	TTATACAATT	AATGAAGATT	ATATCAAGCG	350
GGTAGAGCAA	GTGATAGATT	GGGCGTTGGA	GGAAGACTTG	TATGTGATGT	400
TAAATGTGCA	TCATGACTCA	TGGCTGTGGA	TGTATGATAT	GGAACATAAC	450
TATGATGAGG	TGATGGCAAG	ATATACAGCT	ATTTGGGAAC	AATTGTCGGA	500
AAAATTCAAA	AACCACTCCC	ATAAGTTGAT	GTTTGAGAGT	GTCAATGAGC	550
CTAGGTTTAC	GCAGGAGTGG	GGAGAGATTC	AAGAAAATCA	TCATGCTTAC	600
TTAGAAGATT	TAAATAAGAC	GTTCTATTAT	ATTGTCAGAG	AGTCAGGAGG	650
CAATAATGTG	GAGCGCCCTT	TAGTATTGCC	TACGATAGAA	ACAGCCACGT	700
CTCAGGATTT	ACTAGATCGC	TTGTATCAAA	CAATGGAAGA	CTTGGATGAC	750
CCTCATTTAA	TTGCCACGGT	TCATTATTAT	GGCTTTTGGC	CCTTTAGTGT	800
CAATATAGCA	GGGTACACCC	GTTTTGAACA	GGAGACACAA	CAAGATATTA	850
TAGACACGTT	TGACCGTGTT	CATAACACAT	TTACAGCGAA	TGGGATCCCA	900
GTTGTATTAG	GTGAATTTGG	TTTGTTAGGC	TTTGATAAAA	GTACGGACGT	950
CATTCAGCAA	GGTGAGAAAT	TAAAATTTTT	TGAGTTTCTC	ATCCATCATC	1000
TCAATGAACG	TGATATAACC	CATATGTTAT	GGGATAACGG	TCAGCATTTA	1050
AAGCGAGAAA	CTTATTCATG	GTATGATCAG	GAATTTCATG	ACATATTAAA	1100
AGCGAGTTGG	GAGGGGCGTT	CTGCTACAGC	TGAGTCTAAT	TTCATTCATG	1150
TGAAGGACGG	AGAGCCAATT	AGAGATCAAC	ATATACAGCT	TTACTTAAAC	1200
GGAAATGAGC	TAACTGCCCT	ACAGGCAGGG	GACGAATCGC	TTGTACTAGG	1250
AGAGGATTAT	GAGCTAGCAG	GAGACGTATT	AACGCTAAAA	GCGGGCATCC	1300
TCACAAGATT	AATTACCCCT	GGCCAATTAG	GAACGAATGC	GGTCATCACA	1350
GCTCAATTTA	ATTCTGGAGC	AGACTGGCGT	TTTCAATTAC	AGAATGTGGA	1400
CGTGCCAACA	GTCGAAAATA		AATATGGCAT	TTTGCGATCC	1450
CTACCCATTT	TAATGGTGAT	AGTCTTGCGA		TGTTTATGCA	1500
AACGGAGAAT	ATGCTGGCCC	GCAAGATTGG	ACGTCATTTA	AAGAATTTGG	1550
CGAGGCGTTT	TCCCCTAATT		GGAAATTATT	ATAACAGAAG	1600
CCTTCTTTAA		GATGATGATA		ATTTCATTAT	1650
		ATATACATTA	CGTAAAAATG	GAAATTATGT	1700
TCAAGGTAGA	CGGTAA				1715

Figure 3 Amino acid sequence of cellulase mHKcel

MGYTQAKCMV KKTVLFGLIL CLGVSMFVPV TSAEDRVSSS QVDIQSYVAD	50
MOPGWNLGNT FDAIGDDETA WGNPRVTREL IEMIADEGYK SIRIPVTWQN	100
QMGGSPDYTI NEDYIKRVEQ VIDWALEEDL YVMLNVHHDS WLWMYDMEHN	150
YDEVMARYTA IWEQLSEKFK NHSHKLMFES VNEPRFTQEW GEIQENHHAY	200
LEDLNKTFYY IVRESGGNNV ERPLVLPTIE TATSQDLLDR LYQTMEDLDD	250
PHLIATVHYY GFWPFSVNIA GYTRFEQETQ QDIIDTFDRV HNTFTANGIP	300
VVLGEFGLLG FDKSTDVIQQ GEKLKFFEFL IHHLNERDIT HMLWDNGQHL	350
KRETYSWYDQ EFHDILKASW EGRSATAESN FIHVKDGEPI RDQHIQLYLN	400
GNELTALQAG DESLVLGEDY ELAGDVLTLK AGILTRLITP GQLGTNAVIT	450
AQFNSGADWR FQLQNVDVPT VENTDGSIWH FAIPTHFNGD SLATMEAVYA	500
NGEYAGPQDW TSFKEFGEAF SPNYATGEII ITEAFFNAVR DDDIHLTFHY	550
WSGETVEYTL RKNGNYVQGR R	571

Figure 4 . Enzyme Activity with Increasing NaCl Concentration

Figure 5. Influence of pH on mHKcel Cellulase Activity

