berger HEATERS

EFFICIENT . . DEPENDABLE . . ACCESSIBLE

INSTANTANEOUS

FEED WATER HEATERS

STORAGE
HEATERS

HEAT
EXCHANGERS

VAPOR
CONDENSERS

SURFACE

HEATING SYSTEM
CONVERTERS

DOMESTIC WATER
HEATERS

SPECIAL PROCESS
WORK

SWIMMING POOL HEATERS

COOLERS

ALBERGER BUFFALO

metal tubes, Muntz metal tube

sheets and cast iron water boxes

impart long life.

INSTALLATIONS

earned for Alberger Equipment the reputation: Efficient, Dependable, Accessible.

While this Bulletin illustrates many different types of heat exchange equipment, its scope does not permit the display of all the varieties Alberger builds. The following pages outline in detail standard types of Alberger Heaters and furnish useful information for their proper selection. However, as it is impracticable to cover all possible applications, attention is directed to the fact that the Alberger Engineering Department is always available to assist in solving special heat transfer problems.

(Right)

Blowdown Exchangers installed in a large power generating plant for reclaiming heat from continuous blowdown.

(Lower)

Gasoline Vapor Condenser showing single pass floating head construction with packed stuffing box.

Alberger HEAT TRANSFER EQUIPMENT EFFICIENT... DEPENDABLE... ACCESSIBLE

A LBERGER Equipment is designed and built to meet the exacting requirements for heaters, coolers, economizers, vapor condensers, and heat exchangers for all industrial and commercial uses. Heaters for water, processing liquids, oils, gases, chemicals, feed water, heating systems and large scale domestic hot water service; condensers for various vapors; and coolers for air, brine, water, oils, chemicals and gases are included.

Satisfactory results . . . Efficient, low-cost operation . . . and Dependable year-in and year-out performance is the typical operating record of more than twenty thousand installations.

In those twenty-five years of all around experience, the Alberger Organization has originated and developed many practical features, advanced designs and improved constructional methods. Some of these features have been universally adopted throughout the industry. To-day, as throughout all those years, Alberger is still contributing new developments and is in the forefront

of advanced practical engineering.

Heating surfaces are scientifically arranged to increase heat transfer and compactly assembled to save space. Still, Alberger Equipment is exceptionally accessible . . . A time and money-saving feature which appeals strongly to maintenance engineers.

Long life with efficient, dependable performance is assured by combining such indispensable factors as correct design . . . Uncompromising material specifications . . . Sturdy construction . . . and Modern manufacturing methods.

APPLICATIONS

HEATERS FOR

Air Alcohol Chemicals Domestic Water Feed Water Fruit Juice Molasses Oil Process Water
Sprinkler Tanks
Sugar Juice
White Water

Coolers Convertors Heat Exchangers Vapor Condensers Reboilers Reclaimers

. Alberger-BUFFALO..

A TYPE and SIZE of HEATER for EVERY PURPOSE

To efficiently fulfill practically every industrial heater requirement with standard equipment, Alberger Heaters are built in a wide variety of types, materials and sizes. Described in this catalog are four kinds of instantaneous heaters; storage and oil heaters and condensate coolers.

Instantaneous Heaters are usually employed to furnish a constant supply of hot water where the demands are not widely fluctuating; however, they may be used where peak conditions are encountered, provided sufficient steam is available during periods of maximum demand. Standard instantaneous heaters, operated at a relatively high temperature range are built with floating heads or U-bend tubes to compensate for the resultant expansion and contraction.

For this general class of service, Alberger builds three types of Instantaneous Heaters. The Type FC equipped with corrugated tubes and the Type FP with plain tubes are of floating head design; each type can be furnished with either a water channel or bonnet depending upon the degree of tube accessibility desired. In the Type U Instantaneous Heater, the tubes are bent into the form of a U with both ends rolled into the same tube sheet at one end of the heater.

For operating conditions of low temperature ranges, such as prevail in swimming pool and humidifier service, Type AB Instantaneous Heaters are recommended. They are equipped with corrugated tubes rolled into fixed tube sheets. The corrugations in the tubes absorb the slight expansion and contraction.

When an intermittent demand for hot water exists, savings in steam and a more uniform heat consumption can be maintained by using Alberger Type S Storage Heaters. Water is heated constantly. During slack periods the surplus of hot water is stored for use during maximum demands, preventing peak loads on the boiler and avoiding waste of exhaust steam.

PLACES OF INSTALLATION

Apartment Buildings
Automobile Plants
Breweries
Chemical Plants
Clubs
Dairies
Department Stores

Distilleries
Dormitories
Hospitals

Hospitals Hotels

Industrial Plants

Large Residences
Laundries
Office Buildings
Oil Refineries
Paper Mills
Power Plants
Public Baths
Public Buildings
Schools
Sugar Mills
Steel Mills
Tanneries

Sugar Juice Heaters designed for quick cleaning.

Front view of the removable tube bundle for the heat exchangers in the lower illustration.

Notched floating head and cover of these exchangers.

The completely assembled exchangers are shown below.

Alberger Instantaneous Heater, Type FC, Water Channel Construction.

Alberger TYPE FC

INSTANTANEOUS HEATERS with CORRUGATED TUBES

THE Alberger Standard Type FC Instantaneous Heater has been designed with the object of securing the highest possible degree of heat transmission and to render long, dependable service at a minimum cost of operation. This heater is recommended for the heating of liquids having low viscosities and is particularly suited for operation where the available floor space is limited. It can be furnished for vertical or horizontal installation, performing with equal efficiency in either position.

Many design features incorporated in the Alberger Type FC Heater appeal particularly to the operating engineer especially the high efficiency obtained from the use of Alberger Corrugated Tubes, that allows a heater construction of minimum size with resultant low first cost.

The channel construction permits the opening of the heater for inspection or replacement of tubes without breaking piping connections. The channel is an ideal settling chamber; as, upon entrance of the water into the large areas of the channel, the high velocity through the tubes is suddenly reduced and the direction of flow reversed, suspended matter deposits where it can be blown off through blow off openings provided on the channel cover for this purpose. With the selection of bonnet construction, accessibility to the tubes can still be retained by breaking the water connections and removing the bonnet. The sectional drawing at the bottom of this page furnishes a basis of comparison between the channel and bonnet arrangement.

Floating head construction prevents severe strains due to thermal expansion and contraction. Guide pins secured to the floating tube sheet insure its proper position with reference to the shell diameter and help support the weight of the tubes.

A steam baffle mounted in the steam distributing dome diffuses the entering steam over the heating surface and guards against direct impingement on the tubes.

Where the length of tube necessitates, a tube support plate rigidly anchored at the center of the tube length and directly opposite the steam inlet eliminates vibration of the tubes. The importance of avoiding tube vibration is apparent when it is remembered that vibration will cause crystallization of the tube material with resultant failure of the tube wall.

To prolong the life of the packing, all gasket surfaces are accurately machined and recessed; gasket areas and bolt stresses are figured for proper pressure.

Alberger has derived a method and developed special tools to expand tube ends into tube sheets, which assure an absolute and permanent bond.

In addition to these unusual features, Alberger Type FC Heaters have the same ruggedness of construction and quality of workmanship and materials that have always distinguished Alberger Equipment.

The following tabulations apply to standard construction, however, Type FC Heaters can be designed to suit special corrosion or pressure conditions.

Alberger Instantaneous Heater, Type FC Bonnet Construction.

SPECIFICATIONS

SPECIFY: A Horizontal Vertical Instantaneous Heater of the closed water tube type. It shall be floating head construction and equipped with 34" O.D. Corrugated Copper tubes. The heater shall be furnished with water channel to permit inspection or removal of tubes without breaking steam or water piping connections. (If a bonnet is desired instead of the channel specify: The heater shall be furnished with the bonnet arrangement). The heater shall have ample capacity to heat.....GPH of water (or other liquid) from.....°

F. to.....° F., when supplied with sufficient steam at.....Lbs. Gage Pressure.

The pressure loss through the tubes shall not exceedLbs./sq. in. The liquid spaces shall be designed for a working pressure of....Lbs./sq. in., and the steam spaces for a working pressure of....Lbs./sq. in. The heater shall be Alberger Type FC or equal. Heater to be as described in the Alberger Heater Company Bulletin No. 200.

STANDARD MATERIALS

Shell	Cast Iron or Welded Steel
Channel or Bonnet	
Channel Cover	
Tube Sheets	. Forged Steel or Bronze

Shell Cover	
Floating Head Cover	
Saddles	
Tubes	34" O.D. Corrugated
	seamless drawn Copper

STANDARD PRESSURES

Working Pressure...Shell and tube spaces...125 Lbs./sq. in. Test Pressure....Shell and tube spaces...200 Lbs./sq. in.

HIGH CAPACITY from Alberger CORRUGATED TUBES

FOR heating water, Alberger Spirally corrugated copper tubes are highly and unreservedly recommended for their excellent efficiency. Many tests indicate an increase of as much as 65% in the amount of heat transfer as compared with plain tubes because the spiral corrugations impart a turbulent action to the water as it passes through the tubes, greatly increasing the heat transmission.

Alberger corrugated tubes have a natural tendency to stay clean, thereby maintaining efficient performance over a long operating period. The rotating motion of the water actuated by the tube corrugations produces a pronounced scouring effect that prevents an accumulation of silt on the tube walls. This tube construction has the added advantage of inducing sufficient flexing in the corrugations due to thermal expansion and contraction to break up hard scale deposits.

These tubes are corrugated with special machinery in our shops by a process developed by ourselves. After corrugation they are subjected to a severe hydrostatic test and rigid inspection.

Alberger Horizontal Instantaneous Heater, Type FC— Water Channel Construction.

Alberger Vertical Instantaneous Heater, Type FC—Channel and Bonnet Construction.

	*[II	IENS	SION	TAI	BLE-	-ALI	BERG	GER
Heater Size		C A	FC 6B	FC 6C	FC 8A	FC 8B	FC 8C	FC 10A	FC 10B
Horizontal									
SHELL Cast Iron Welded Steel	B C	7 ½ 6 ½ 6 ½	7½ 658	7½ 65/8	9 ¹ / ₄ 8 ⁵ / ₈	9 ½ 8 ½ 8 ½	9½ 85 8	11½ 10¾	11½ 10¾
Flanged Tapped	F G H K	3 \\\ 5 \\\ 3 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 6 \\\ 7 \\ 6 \\\ 6 \\\ 7 \\ 6 \\\ 7 \\ 6 \\\ 7 \\ 7	13 ¹ / ₄ 5 ³ / ₄ 6 3	13 ¹ / ₄ 5 ³ / ₄ 6 3 4 6 ¹ / ₂	15\frac{1}{4} 6\frac{1}{2} 6 3 7\frac{1}{2}	15\frac{1}{4} 6\frac{1}{2} 6 3 7\frac{1}{2}	15\frac{1}{4} 6\frac{1}{2} 6 7\frac{1}{2}	19 8 3 10	19 8 3 10
OPENINGS Condensate Steam Vent		1 \frac{1}{4} 3 \frac{1}{2} 2	1 \frac{1}{4} \\ 3 \\ \frac{1}{2} \\ 2	1 1/4 3 1/2 2	$egin{array}{c} 1 rac{1}{2} \\ 4 \\ 2 rac{1}{2} \\ 2 rac{1}{2} \end{array}$	$egin{array}{c} 1 rac{1}{2} \\ 4 \\ 2 rac{1}{2} \\ 2 rac{1}{2} \end{array}$	$egin{array}{c} 1 rac{1}{2} \\ 4 \\ 2 rac{1}{2} \\ 2 rac{1}{2} \end{array}$	2 5 3 3	2 5 3
	C :	1 ½ 5 ¾ 3 ¾ 1 ½ 3 ¾	$\begin{array}{c} 73\frac{1}{2} \\ 5\frac{3}{4} \\ 13\frac{3}{4} \\ 1\frac{1}{2} \\ \frac{3}{4} \end{array}$	85\\\ 5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	62 5 ³ / ₄ 13 ³ / ₄ 1 ³ / ₄	74 5 ³ / ₄ 13 ³ / ₄ 1 ³ / ₄	86 5 ³ / ₄ 38 ¹ / ₂ 1 ³ / ₄	66½ 8½ 15½ 1³¼ 1	78½ 8¼ 15½ 13¼ 1
BONNET TYPE	C :	$8\frac{1}{2}$ $2\frac{3}{4}$ $3\frac{1}{4}$	$\begin{array}{c} 70\frac{1}{2} \\ 2\frac{3}{4} \\ 13\frac{1}{4} \end{array}$	$82\frac{1}{2}$ $2\frac{3}{4}$ 38	$\begin{array}{c} 60 \\ 3\frac{1}{4} \\ 13\frac{3}{4} \end{array}$	72 $3\frac{1}{4}$ $13\frac{3}{4}$	$\begin{array}{c} \bf 84 \\ \bf 3\frac{1}{4} \\ \bf 38\frac{1}{2} \end{array}$	62½ 4½ 15	74½ 4½ 15
Vertical	***								
Welded Steel Flanged	D 1 K .	7 ½ 6 ½ 3 ½ 4	7 ¹ / ₂ 6 ⁵ / ₈ 13 ¹ / ₄	7½ 65/8 13¼ 4	9 ¹ / ₄ 8 ⁵ / ₈ 15 ¹ / ₄	9 ¹ / ₄ 8 ⁵ / ₈ 15 ¹ / ₄	9 ¹ / ₄ 8 ⁵ / ₈ 15 ¹ / ₄	11 ¹ / ₄ 10 ³ / ₄ 19 10	11 ¹ / ₄ 10 ³ / ₄ 19 10
OPENINGS Condensate Steam Vent Water	M R S V	$\frac{4}{6\frac{1}{2}}$ $\frac{1\frac{1}{4}}{3}$ $\frac{1}{2}$	6 ¹ / ₂ 1 ¹ / ₄ 3 2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	8 2 5 3	8 2 5 3
CHANNEL TYPE	A 6 C 1 F	8 1 2 3 4 8 7 3 4 1 2 3 4 1 2 3 4	80 \frac{1}{2} \\ 12 \frac{3}{4} \\ 8 \\ 7 \\ 13 \frac{3}{4} \\ 1 \frac{1}{2} \\ \frac{3}{4} \\	92½ 12¾ 8 7 38½ 1½ 3¾	71 14 ³ / ₄ 9 9 13 ³ / ₄ 1 ³ / ₄	83 14 ³ / ₄ 9 13 ³ / ₄ 1 ³ / ₄	95 14 ³ / ₄ 9 38 ¹ / ₂ 1 ³ / ₄	75½ 17¼ 10½ 9 15½ 1¾ 1	87½ 17¼ 10½ 9 15½ 1¾ 1
BONNET TYPE	C F H	2½ 6¾ 8½ 4 3¼	74½ 6¾ 8½ 4 13¼	86½ 6¾ 8½ 4 38	64 7 ¹ / ₄ 10 4 13 ³ / ₄	76 7 ¹ / ₄ 10 4 13 ³ / ₄	88 7 ¹ / ₄ 10 4 38 ¹ / ₂	68½ 10¼ 12 5¾ 15	80½ 10¼ 12 5¾ 15

^{*} All dimensions are in inches.

Alberger Horizontal Instantaneous Heater, Type FC— Bonnet Construction.

FC	FC	FC	FC	FC	FC			FC	FC		FC	FC		FC	FC	FC	FC	FC	FC	FC	FC
10C	10D	12A	12B	12C	12D			14C	and the second second	16A		16C		19A		19C		21A		21C	
11 ¹ / ₄ 10 ³ / ₄	111	131	131	131	131	15 ³ / ₈	15 ³ / ₈	15 ³ / ₈	15 ³ / ₈	17½	17½	17 1/2	17 1/2	20 3 4	20 ³ / ₄	20 ³ / ₄	20 ³ / ₄	22 ³ / ₄	223	22 ³ / ₄	22 ³ / ₄
10 3 19	10 ³ / ₄	$\frac{12\frac{3}{4}}{21\frac{1}{2}}$	$\frac{12\frac{3}{4}}{21\frac{1}{2}}$	$\frac{12\frac{3}{4}}{21\frac{1}{2}}$	$\frac{12\frac{3}{4}}{21\frac{1}{2}}$	$\frac{15}{23\frac{1}{2}}$	15 23½	$\frac{15}{23\frac{1}{2}}$	15 23½	17 26	17 26	17 26	17 26	20	29	29	20	$\frac{22}{32\frac{1}{2}}$	$\frac{22}{32\frac{1}{2}}$	$\frac{22}{32\frac{1}{2}}$	22 32½
8	8	10 10	10 10	10 10	10 10	11 12	11 12	11 12	11 12	12 12	12 12	12 12	12 12	$14\frac{1}{2}$ 14	$14\frac{1}{2}$ 14	$14\frac{1}{2}$ 14	$\frac{14\frac{1}{2}}{14}$	$15\frac{3}{4}$ 14	$15\frac{3}{4}$ 14	$15\frac{3}{4}$ 14	$15\frac{3}{4}$ 14
3 10	3 10	4 11	11	11	4 11	4 12 ¹ / ₂	$\frac{4}{12\frac{1}{2}}$	$\frac{4}{12\frac{1}{2}}$	$\frac{4}{12\frac{1}{2}}$	$\frac{5}{13\frac{3}{4}}$	$\frac{5}{13\frac{3}{4}}$	5 13 ³ / ₄	$\frac{5}{13\frac{3}{4}}$	$\frac{5}{15\frac{1}{2}}$	$\frac{5}{15\frac{1}{2}}$	$\begin{array}{c} 5 \\ 15\frac{1}{2} \end{array}$	$\begin{array}{c} 5 \\ 15 \\ \frac{1}{2} \end{array}$	5 17	5 17	5 17	5 17
8	8	9	9	9	9	101	101	101	101	12	12	12	12	131	$13\frac{1}{2}$	$13\frac{1}{2}$	131	141/2	$14\frac{1}{2}$	$14\frac{1}{2}$	141/2
2	2	$2\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{1}{2}$	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4
3 4	3 4	0 3 4	3 4	0 3 4	0 3 4	8 3 4	3 4	3 4	8 4	$\frac{10}{\frac{3}{4}}$	10	10	10	12	12	12	12	12	12	12	12
901	1021		78½	901	1021	661/2	78½	901	1021	671/2	79½ 03	91½ Q3	103 1 2 3	$71\frac{1}{2}$	831	95½	1071	71½ 10¹	83½ 101	95½ 101	1071
40	81 46	8 ¹ / ₄ 19 ³ / ₄ 2 ³ / ₈	$ \begin{array}{r} 8\frac{1}{4} \\ 19\frac{3}{4} \\ 2\frac{3}{6} \end{array} $	39 ³ / ₄	$\begin{array}{c} 8\frac{1}{4} \\ 45\frac{3}{4} \\ 2\frac{3}{8} \end{array}$	$ \begin{array}{r} 8\frac{1}{4} \\ 19\frac{3}{4} \\ 2\frac{3}{8} \end{array} $	$ \begin{array}{r} 8\frac{1}{4} \\ 19\frac{3}{4} \\ 2\frac{3}{8} \end{array} $	$ \begin{array}{r} 8\frac{1}{4} \\ 39\frac{3}{4} \\ 2\frac{3}{8} \end{array} $	$ \begin{array}{r} 8\frac{1}{4} \\ 45\frac{3}{4} \\ 2\frac{3}{8} \end{array} $	$ \begin{array}{r} 8\frac{3}{8} \\ 22 \\ 3\frac{3}{8} \end{array} $	8 3 8 22 3 3 8	$\frac{8\frac{3}{8}}{39}$ $\frac{3\frac{3}{8}}{8}$	83/8 45 33/8	$\frac{11}{22\frac{1}{2}}$ $3\frac{3}{8}$	$\begin{array}{c} 11 \\ 22\frac{1}{2} \\ 3\frac{3}{8} \end{array}$	38½ 333	$ \begin{array}{c} 11 \\ 44\frac{1}{2} \\ 3\frac{3}{8} \end{array} $	$10\frac{1}{4}$ 23 $4\frac{1}{2}$	10 ¹ / ₄ 23 4 ¹ / ₄	$10\frac{1}{4}$ $37\frac{1}{2}$ $4\frac{1}{4}$	$10\frac{1}{4}$ $43\frac{1}{2}$ $4\frac{1}{4}$
1	1	1	1	2 3/8 1	1	$1\frac{1}{4}$	$1\frac{1}{4}$	1 ¹ / ₄ 88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1\frac{1}{4}$	78½	$\frac{1\frac{1}{2}}{90\frac{1}{2}}$	$\frac{1\frac{1}{4}}{102\frac{1}{2}}$	1 ¹ / ₄ 68	1 ¹ / ₄	1 ¹ / ₄	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1\frac{1}{2}}{70}$	$\frac{1\frac{1}{2}}{82}$	1 ¹ / ₂ 94	$\frac{1\frac{1}{2}}{106}$
$\begin{array}{c} 86\frac{1}{2} \\ 4\frac{1}{2} \\ 39\frac{1}{2} \end{array}$	98½ 4½ 45½	5	76 5 20 ¹ / ₂	88 5 40 ¹ / ₂	100 5 46½	64 5 20½	76 5 20 ¹ / ₂	5 40½	5 46½	$\begin{array}{c} 66\frac{1}{2} \\ 5\frac{1}{2} \\ 23\frac{1}{2} \end{array}$	$ \begin{array}{c} 76\frac{1}{2} \\ 5\frac{1}{2} \\ 23\frac{1}{2} \end{array} $	$5\frac{1}{2}$ $40\frac{1}{2}$	$ \begin{array}{r} 102\frac{1}{2} \\ 5\frac{1}{2} \\ 46\frac{1}{2} \end{array} $	$ \begin{array}{c} 5\frac{1}{2} \\ 23\frac{1}{2} \end{array} $	$\frac{5\frac{1}{2}}{23\frac{1}{2}}$	$\frac{5\frac{1}{2}}{39\frac{1}{2}}$	$5\frac{1}{2}$ $45\frac{1}{2}$	6 ³ / ₄ 25	$\frac{6\frac{3}{4}}{25}$	$\frac{6\frac{3}{4}}{39\frac{1}{2}}$	$\begin{array}{c} 6\frac{3}{4} \\ 45\frac{1}{2} \end{array}$
	202	1 202		102		2															
111	1114	131	131/4	131/4	131	15 ³ / ₈	15 ³ / ₈	15 ³ / ₈ 15	15 ³ / ₈ 15	17½ 17	17½ 17	$17\frac{1}{2}$ 17	$17\frac{1}{2}$ 17	20 ³ / ₄ 20	20 ³ / ₄ 20	20 ³ / ₄ 20	20 ³ / ₄ 20	22 ³ / ₄ 22	22 ³ / ₄ 22	22 ³ / ₄ 22	22 ³ / ₄ 22
10 3 19	10 3 4	$12\frac{3}{4}$ $21\frac{1}{2}$	12 ³ / ₄ 21 ¹ / ₂	12 ³ / ₄ 21 ¹ / ₂	12 ³ / ₄ 21 ¹ / ₂	$\frac{15}{23\frac{1}{2}}$	$\frac{15}{23\frac{1}{2}}$	$23\frac{1}{2}$	$23\frac{1}{2}$	26	26 13 ³ / ₄	26	26 13 ³ / ₄	29	29 15½	29 15½	29 15½	$\frac{32\frac{1}{2}}{17}$	$\frac{32\frac{1}{2}}{17}$	32½ 17	$\frac{32\frac{1}{2}}{17}$
10	10	11	11	11	11	$12\frac{1}{2}$ $10\frac{1}{2}$	12½ 10½	12½ 10½	$12\frac{1}{2}$ $10\frac{1}{2}$	13 ³ / ₄	12	13 ³ / ₄	134	15½ 13½	13½ 13½	$13\frac{1}{2}$	13 1 1 3 1	141/2	14 1/2	14 1/2	141
2	2	21	21	21	21	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4
5 3	5 3	6 3	6 3	6 3	6 3	8	8	8	8	10 1	10	10	10	12	12	12	12	12	12	12	12
3° 99½	3 ¹	4 75½	4 87½	4 99½	4 111½	4 75½	4 87½	4 99½	4 111½	6 76½	6 88½	6 100½	6 112½	6 80½	92½	$\frac{6}{104\frac{1}{2}}$	$\frac{6}{116\frac{1}{2}}$	80½	92½	8 104½	8 116½
17 ¹ / ₄ 10 ¹ / ₂	17 ¹ / ₄ 10 ¹ / ₂	17 ¹ / ₄ 12	17 ¹ / ₄ 12	17 ¹ / ₄ 12	17 ¹ / ₄ 12	17 ¹ / ₄ 13 ¹ / ₂	$17\frac{1}{4}$ $13\frac{1}{2}$	$17\frac{1}{4}$ $13\frac{1}{2}$	$17\frac{1}{4}$ $13\frac{1}{2}$	$17\frac{1}{2}$ 15	$17\frac{1}{2}$ 15	$17\frac{1}{2}$ 15	$17\frac{1}{2}$ 15	$\frac{20}{16\frac{1}{2}}$	20 16½	20 16½	20 16 ¹ / ₂	$19\frac{1}{4}$ $17\frac{1}{2}$	$19\frac{1}{4}$ $17\frac{1}{2}$	$19\frac{1}{4}$ $17\frac{1}{2}$	$19\frac{1}{4}$ $17\frac{1}{2}$
9° 40	9° 46	9 19 ³	9 19 ³ / ₄	9 39 ³ / ₄	9 45 ³ / ₄	9 19 ³ / ₄	9 19 ³ / ₄	9 39 ³ / ₄	$\frac{9}{45\frac{3}{4}}$	9 22	22	39	9 45	$\frac{9}{22\frac{1}{2}}$	9 22½	$\frac{9}{38\frac{1}{2}}$	$\frac{9}{44\frac{1}{2}}$	23	23	$\frac{9}{37\frac{1}{2}}$	$\frac{9}{43\frac{1}{2}}$
1 ³ / ₄	1 ³ / ₄	2 3 8 1	2 ³ / ₈	2 3 8 1	2 ³ / ₈	$\frac{2\frac{3}{8}}{1\frac{1}{4}}$	$\frac{2\frac{3}{8}}{1\frac{1}{4}}$	$\frac{2\frac{3}{8}}{1\frac{1}{4}}$	2 3/8 1 1/4	3 3 8 1 1 4	3 3 8 1 1 1 4	3 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 8 1 1 4	3 3 8 1 1 1 4	3 3 8 1 1 1 4	3 3 8 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{4\frac{1}{2}}{1\frac{1}{2}}$	1 ½ 1 ½	$\frac{4\frac{1}{2}}{1\frac{1}{2}}$	$\frac{4\frac{1}{2}}{1\frac{1}{2}}$
$\begin{array}{c} 92\frac{1}{2} \\ 10\frac{1}{4} \end{array}$	$104\frac{1}{2} \\ 10\frac{1}{4}$		82 10 ³ / ₄	94 10 ³ / ₄	106 10 ³ / ₄	71½ 12	83½ 12	95½ 12	$107\frac{1}{2}$ 12	74 12 ³ / ₄	86 12 ³ / ₄	98 12 ³ / ₄	110 12 ³ / ₄	75½ 12¾	87½ 12¾	$99\frac{1}{2}$ $12\frac{3}{4}$	$111\frac{1}{2} \\ 12\frac{3}{4} \\ 10\frac{1}{2}$	77½ 14	89½ 14	101½ 14	113½ 14
12 5 ³ / ₄	12 5 ³ / ₄	14 ¹ / ₄ 5 ³ / ₄	14 ¹ / ₄ 5 ³ / ₄	$14\frac{1}{4}$ $5\frac{3}{4}$	$14\frac{1}{4}$ $5\frac{3}{4}$	$15\frac{3}{4}$ $7\frac{1}{4}$	$ \begin{array}{r} 15\frac{3}{4} \\ 7\frac{1}{4} \\ 20\frac{1}{2} \end{array} $	$ \begin{array}{r} 15\frac{3}{4} \\ 7\frac{1}{4} \\ 40\frac{1}{2} \end{array} $	$15\frac{3}{4}$ $7\frac{1}{4}$ $46\frac{1}{2}$	$ \begin{array}{c} 17\frac{1}{4} \\ 7\frac{1}{4} \\ 23\frac{1}{2} \end{array} $	$17\frac{1}{4}$ $7\frac{1}{4}$ $23\frac{1}{2}$	$17\frac{1}{4}$ $7\frac{1}{4}$ $40\frac{1}{2}$	$17\frac{1}{4}$ $7\frac{1}{4}$ $46\frac{1}{2}$	$ \begin{array}{c c} 19\frac{1}{2} \\ 7\frac{1}{4} \\ 23\frac{1}{2} \end{array} $	$ \begin{array}{r} 19\frac{1}{2} \\ 7\frac{1}{4} \\ 23\frac{1}{2} \end{array} $	$19\frac{1}{2} \\ 7\frac{1}{4} \\ 39\frac{1}{2}$	$19\frac{1}{2} \\ 7\frac{1}{4} \\ 45\frac{1}{2}$	$\frac{21}{7\frac{1}{4}}$ 25	$\frac{21}{7\frac{1}{4}}$ 25	$7\frac{1}{4}$ $39\frac{1}{2}$	$\frac{21}{7\frac{1}{4}}$ $39\frac{1}{2}$

Flanged openings are faced and drilled 125 lbs. American Standard.

	Cor	pacitio	e in	gallons	s ner	hour				Maxi	mum	friction	8 Lbs	s./sq. i	n.	1
		pacitie	3 111	ganon	, per	110 411	He	eater	Sizes						-	D.C.
Inlet emp.	Outlet Temp.	FC	FC	FC	FC	FC	FC	FC 10-B	FC 10-C	FC 10-D	FC 12-B	FC 12-C	FC 12-D	FC 14-B	FC 14-C	FC 14-D
°F.	° F.	6A	6B	6C	8A	8B	8C	10-D	10-0	10-10						
Ste	am at	0 Lbs	s. Ga	ge											21500	
40	140	1380	1950	2850	3060	4360	6200	6450	9400 5000	6900	10050	15200 8050	11000		21500 11400	15500
	160	1300 730	1040	1510	2930 1480	2300	3330	3920 3440	5000	3550	5500		5600	8000		
	180 200	390	615	625	760	1170	1340	1970	2000	2770	3020	3300	4450	17100	21000	6300
50	140	1430	2240	2900	3170	4950	6430 3660	7450 3920	9650 5550	7650	11700	15500 8800	12000	17100	21900 12600	17100
	160 180	1380 730	1120	1670	3060 1590	2460	3000	3700		3760	5850		6000	8500	4000	650
	200	410	615	635	790	1170	1400	1970	2100	2900	3020	3400	4650	20200	4800 21900	6500
60	140	1680	2650	2900	3750	5850	6430 4170	8800 4270	9650 6250	8600	13800	15500 10000	13700	20200	14200	19300
	160 180	1380 765	1180	1880	3060 1710	2620	4170	3920		4070	6300		6500	8900		9100
	200	430	615	665	830	1170	1470	1970	2200	3040	12000	3850	4870	18600	5050 21900	6900
100	160	1550	2580	2900	3480 2650	5400	6430 3030	8150 3920	9650 4570	6300	12800	15500 7300	10000	10000	10300	14000
	180 200	1180 560	615	1370 860	1070	1300	1900	1970	2840	3080		4600	4950		6500	7000
	= 517			н	T WA	TER CO	ONVER	TORS-	- FOR	CED CI	RCULAT	TION				
1/0	100	1270	2000	2900	3060	4400	6400	6600	9650		10400	15500			21900	
160	190	1270	2000	2700	5000	1100	0100									
Ste	am at	2 Lb	s. Ga	ige												
	4.74		2170	2900	3070	4800	6430	7200	9650		11300	15500		16400	21900	
40	140 160	1380 1270	2170	1710	3060	1000	3780	3920	5700	7800		9100	12500		12900	17600
	180	780	1180	020	1750	2620	1010	3920	2700	4150 3080	6300	4380	6620 4950	8900	6200	7000
=0	200	530	615	3000	1020 3550	1230 5550	1810 6430	1970 8350	2700 9650	3000	13100	15500	1700	19000	21900	
50	140 160	1600 1380	2500	2900 1900	3060	3330	4200		6330	8700		10100	13900		14300	19400
	180	840	1180		1890	2620	1010	3920	2050	4470	6300	4630	7150 4950	8900	6500	7000
(0	200	1970	2000	860	1070 4150	1300 6430	1910	9650	2850	3080	15300	15500	1750	21900		
60	140 160	1870 1380	2900 1470	2150	3060	3140	4750	4900	7180	9150		11400	14700		16300	20800
	180	920	1180	4444	2060	2620	2010	3920	2010	4880	6300	4900	7800	8900	6900	7000
100	200	590	625	910	1140	1380 6430	2010	9500	3010		3260 15000	15500		21900		
100	160 180	1870 1380	2900	1690	4150 3060	0430	3720	3920	5600	7700		9000	12300		****	17200
	200	730	830		1380	1830	2280	2740	3410		4350	5470		6300	7720	* * * * * *
				H	OT WA	TER C	ONVER	TORS	-FOR	CED CI	RCULA	ΓΙΟΝ				
160	190	1760	2780	2900	3920	6150	6430	9300	9650		14500	15500		21000	21900	
Ste	eam at	5 Lb	s. Ga	age												
40	140	1600	2500		3550	5550	6430	8350	9650	1111	13100	15500		19100	21900	2000
	160 180	1380 970	1180	2050	3060 2180	3150 2620	4520	4650 3920	6800	9150 5200	6300	10900	14700 8250	8900	15500	20800 11500
	200	730	780		1380	1720	2280	2580	3410	5200	4110	5470		5950	7720	****
	210	480	615	740	930	1170	1650	1970	2460	3080		4000	4950		5650	7000
50	140	1870	2900 1560		4150 3060	6430 3450	5050	9650 5200	7600	9150	15300	15500 12100	14700	21900	17200	20800
	160 180	1380 1050	1180		2380	2620	2710	3920	7000	5630	6300	6550	9000		9250	12500
	200	730	830	4000	1380	1820	2280	2730	3410	2000	4360	5470	4050	6300	7720 5950	700
60	210 140	2200	2900		970 4910	1180 6430	1720	1970 9650	2580	3080	15500	4180	4950	21900		
00	160	1380	1770		3060	3910	5720	5900	8650	9150	9250	13800	14700	21700	19600	2080
>	180	1160	000		2600	1050	2960	3920	2410	6150	6300	7150	9800	6750	10100	1370
	200 210	730 530	880 615		1380 1020	1950 1240	2280 1820	2930 1970	3410 2720	3080	4650	5470 4400	4950	6750	7720 6230	700
100		2280	2900		5100			9650			15500			21900	11165	****
1000	180	1380	1500		3060		4830	4900	7300	9150	(200	11600	14700	9000	16600	2080
	200 210	775 680	1180 720		1750 1310		2280	3920 2380	3410	4140	6300 3770	5470	6600	8900 5500	7720	9250
	357										IRCULA					
160	100	2640	2900	-			OIVE	le veec		CED C	12202			21000		
100	190	2640	2900		5900	6430	****	9650	****	* * * *	15500	* * * * *	****	21900	****	****

^{*} See footnote, page 11.

				FLC													
	-2		ities i	n gall	ons p	er ho	ur				Maxir	num f	riction	8 Lbs	./sq. i	n.	
Inlet	Outlet		T.C.	DO	700			Hea	ter Si								
°F.	remp.	6A	FC 6B	6C	FC 8A	FC 8B	FC 8C	FC 10-A	FC 10-B	FC 10-C	FC 10-D	FC 12-B	FC 12-C	FC 12-D	FC 14-B	FC 14-C	FC 14-D
Ste	am at	10	Lbs.	Gage													
40	140	1920	2900	2520	4280	6430 3800			9650			15500			21900		
	180	1380 1260	1730	2520	3060	3800		* * * *		8400	9150		13400	14700		19100	20800
	200	730	1110	1460	2820 1580	2440	3210		3920	4850	6700	5000	7750	10600		11000	14900
	220	500	615	780	970	1175	1710		3660 1970	2560	3720 3080	5800	4160	4950	8450	5900	7000
50	140	2220	2900		5000	6430			9650			15500	1100	4730	21900	3900	7000
	160	1380	1940	2850	3060	4380	6250		6430	9450		10100	15100		21700	21400	
	180	1370	1100	1590	3060		3500		3920	5300	7300		8500	11600		12000	16300
	200 220	740 525	1180 615	820	1670 1020	2600	1000	* * * *	3900	2700	2000	6150	11111	6340	8900		
60	140	2660	2900	020	5950	1230	1800	* * * *	1970	2700	3080	45500	4360	4950		6200	7000
00	160	1400	2210	2900	3130	6430 4880	6430		9650 7350	9650		15500 11500	15500		21900	21000	
	180	1380		1740	3060		3850		3960	5800	8000	11300	9300	12700	16700	21900 13100	17800
	200	800	1180		1800	2620			3920		4270	6300	,,,,,	6810	8900	10100	9550
100	220	555	615	855	1060	1280	1890		1970	2820	3080		4580	4950	* * * * *	6500	7000
100	160	2900	2000	2000	6430	4420				* + * *		15500	1211	* * * * *	21900		
	180 200	1380 1150	2000 1180	2900 1340	3060 2580	4420 2620	6430	* * * *	9650 3920	4450	6100	10400	15500	0000	****	21900	
	220	700	740	1025	1350	1610	2280		2450	4450 3410	6100	6300 3880	7100 5470	9800	5630	10000 7720	13600
								VERTO			D CIR	CULATI		****	3030	1120	
160	190	2900			6430				9650			15500			21900		
Ste	am a	t 25	Lbs.	Gage													
40	140	2720	2900		6100	6430		0150	0650			15500			24222		
10	160	1610	2540	2900	3600	5600	6430	9150	9650 8450	9650	* * * *	15500 13200	15500		21900 19300	21900	****
	180	1380	1520	2300	3060	3460	5100		5220	7700	9150		12200	14700	17300	17400	20800
	200	1220	::::	1420	2760	1111	3140	4100	1111	4730	6500		7600	10400		10700	14500
	220	735	1160		1650	2550	4.4.4.4	******	3830	4.4.4.4	3900	6100	4.4.4.4.4	6250	8850		
50	140 160	2900 1830	2900		6430	6250	6420	9650	0(20		****	15500	15500		21900		
	180	1380	1730	2540	4100 3060	6350 3820	6430 5620		9620 5750	8450	9150	15100 9500	15500 13500	14700	21900	10200	20000
	200	1320		1540	2980		3400	4420		5100	7050	7300	8200	11200		19200 11600	20800 15700
	220	775	1220		1750	2620			3920		4120	6300		6600	8900		9200
60	140	2900	2333		6430	1525		9650				15500			21900		
	160	2120	2900	2000	4750	6430	5/00	7150	9650	0200		15500			21900		
	180 200	1380 1380	1920	2800 1660	3060 3060	4350	5600 3670	4580	6400	9380 5520	7600	10000	15000	12150		21200	17000
	220	825	1180		1850	2620			3920	3320	4400	6300	8900	12150 7000	8900	12500	17000 9800
100	160	2900			6430			9650				15500			21900	* * * * * *	
	180	2150	2900		4840	6430		7500	9650			15500			21900		*****
	200	1380	1720	2520	3060	3800	5550	2760	5700	8350	9150	(200	13400	14700		19000	20800
	240	1130 730	1180 860	1300 1025	2520 1380	2620 1880	2880 2280	3760	3920 2820	4350 3410	6000	6300 4500	6950 5470	9600	6600	9900 7720	13300
								VERTO				CULATI			0000	7720	
160	190	2900			6430			0.00		ORGE		15500	011		21900		
												20000			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4	

*The Capacity ratings of these tables are conservative and frequently are exceeded in actual operation.

In specifying a particular heater, the desired capacity and temperature range must be given in order to construct the heater with the necessary number of passes. Where no rating is given, a condition exists in which the preceding heater, by its proper pass construction has a greater capacity than the following larger one and therefore would not be economical. Such an occurrence is due to the fact that one

heater may have its highest capacity with a water velocity corresponding to the maximum allowable friction loss at a certain number of passes and the next larger heater must have in consequence a smaller number of passes which decreases the velocity and of necessity depresses the heat transfer rate correspondingly.

The given capacities are ONLY for water. Regarding capacities for other liquids than water and conditions not listed, consult the nearest Alberger representative or our Office.

ilet	(2)			4-11	000	nor h	Our					Maxir	num	trictio	on o	Lbs./s	y. 111.		_
let	Ou	paciti	es in	gan	ons	per 1	loui	1	Heat	er Si									
mp. F.	Outlet Temp.	FC 6A	FC 6B	FC 6C	FC 8A	FC 8B	FC 8C	FC 10-A	FC 10-B	FC 10-C	FC 10-D	FC 12-A	FC 12-B	FC 12-C	FC 12-D	FC 14-A	FC 14-B	FC 14-C	14-D
	am at			Gage															
40	140	2900			6430			9650			4 4 2 6	15500	15500		****	21900 18000			
10	160	2380	2900					8000	8000	9650		12000	12500	15500			18200	21900	20000
	180	10-0	2400 1560	2900 2300	3400 3060	5300 3450	6430 5050		5200	7650	9150				14700			17200	20800
	200 220	1380 1300	Marie Carlo Carlo		2900		3310	4320		5000	6900					21900	*****		10100
50	140	2900			6430	****			0/50							20500	21900		
	160		2900	2000	6100	6430	6430	9150	9650 8900	9650		14400	13000	15500		****		21900	20000
	180	1700 1380	2660 1660	2900 2430	3780 3060	5900 3670	5380		5550	8100	9150			12900				18400 12300	20800
	200 220	1380	-	1620	3060			4580		5400	7450					21900		12300	10000
60	140	2900			6430			9650				15500				21000			
00	160	2900			6430	A NOTE OF			0650			40000	15500				21900	11111	20004
	180	1920 1380	2900 1860	2730	4300 3060	6430 4110	6050		/200				9800	14500	14700			20000	
	200 220					===	2000	4500		5750	7950			9200	12600	21000			
100	160							0/20				15500				21900	*****		
100	180	2900			6430		****	9000	0/70	1111		10100	15500				21900		
	200	1920	2900	2480	3060	3720	5450		5650	8250	9150			13200	14700			18700	2080
	220 240	1230	1090	1430	2770	3720	3150	4100		4760	6580	6640	5600	7600	10400	*****	8200	10800	14000
	260	730	1080		1530	2360			3560			3000	3000		3000		0200		
					НОТ	r WA	TER (CONV	ERTO	RS—	FORC	15500	RCULA	TION		21900			
160	190	2900			6430			9050				10000							
Ste	eam at	100	Lbs	. Ga	ge														
40	140	2900			6430			9650				15500				21900			****
20	160	2900			6430		4 4 4 4	9000				10000					21900		
	180	2320	2900	2900	5200 3520		6430		8250	9650			13000	15500			19000	21900	
	200 220	1380	1700				5550		5700	8350		****	8950	13300					
50	140	2900			6430							45500		* * * * *	****	21900			****
00	160	2900			6430		***	9650	0650			15500 13700				19500	21900		
	180	2570	2900 2720	2000		6430 6000	2 2 20 10		0100	0650	1 A .		14200	15500			20600	21900	
	200 220	1380	1850	2710		4100			6150	9050			9650	14400	(a. (a. 4 4 4			20500	****
60	140	2900			6430			9650)			15500		* * * * *		21900			
00	160	2900						9650)			15500		8 9 9 9 9		21900			
	180	2900			6430	6430		9000	414 -1)		15500	4 = = 0.0				21900		
	200	1900 1380	2000	2900	3060	4430	6430)	670	0 9650)		10400	15500				21900	
100	160	2900			/ 120			065	0			15500				21900		****	
200	180	2900			6430			965	0		***	15500				21900			
	200	2900	0001		4260	6430)		116.5				1.33000						
	220	1900		2470	0 3060	4140	6050		6.11	0 915			7000	14000					1000
	300	730			5 1380				. 288	0 3410)	3570	4600	5470	* * * * * * *		0300	1120	

^{*}See footnote page 11.

Alberger Instantaneous Heater, Type FP.

Alberger TYPE FP INSTANTANEOUS HEATERS with PLAIN TUBES

THE Alberger Type FP Instantaneous Heater has its most useful application for heating raw water or viscous liquids, where only a low pressure loss through the heater is permissible, or where the condition of the liquid necessitates frequent cleaning of the tubes; it is also very suitable for extremely high pressure service where tubes of heavy wall thicknesses must be used.

Equipped with plain instead of corrugated tubes but otherwise of the same design and construction as the Type FC Heater previously described, the following outstanding features are retained in the Type FP Heater: accessibility for quick, easy inspection and cleaning of

tubes (if furnished with channel construction without breaking of pipe connections), multi-pass arrangement for high efficiency, floating head to compensate for thermo expansion, tube support plates to prevent vibration of tubes, recessed gaskets for tightness, steam baffle for proper steam distribution, guide pins to prevent sagging of tubes, movable saddles for easy installation, sturdy construction for long life, quality workmanship for accurate assembly.

The following tabulations apply to standard construction, however, Type FP Heaters can be designed to suit special corrosion or pressure conditions.

STANDARD MATERIALS

Shell	Cast Iron or Welded Steel
Channel or Bonnet	
Channel Cover	Cast Iron
Tube Sheets	Forged Steel or Bronze

Shell Cover	Cast Iron
Floating Head Cover	Cast Iron
Saddles	Cast Iron
Tubes	34" O.D. #18 B.W.G. Plain
	seamless drawn Copper

STANDARD PRESSURES

Working Pressure...Shell and tube spaces...125 Lbs./sq. in. Test Pressure....Shell and tube spaces...200 Lbs./sq. in.

SPECIFICATIONS

SPECIFY: A Horizontal Vertical Instantaneous Heater of the Vertical Vertical Closed water tube type. It shall be floating head construction and equipped with 34" O.D. Plain Copper Tubes. The Heater shall be furnished with water channel to permit inspection or removal of tubes without breaking steam or water piping connections. (If a bonnet is desired instead of the channel specify: The heater shall be furnished with the bonnet arrangement.) This heater shall have ample capacity to

heat.....GPH of water (or other liquid) from.....° F. to.....° F., when supplied with sufficient steam at.....Lbs. Gage pressure.

The pressure loss through the tubes shall not exceedLbs./sq. in. The liquid spaces shall be designed for a working pressure of.....Lbs./sq. in., and the steam spaces for a working pressure of.....Lbs./sq. in. The heater shall be Alberger Type FP or equal. Heater to be as described in the Alberger Heater Company Bulletin No. 200.

Sectional Drawing of an Instantaneous Heater, Type FP.

Alberger Horizontal Instantaneous Heater, Type FP— Water Channel Construction.

*DIM	ENS	IO	N T	ABL	E —	ALBI WITH	ERGI	ER T	PI	AIN	TUB	ES	IAN	EUU	5 пг	LAIL	INS			
	FP	,	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP 21	FP 21A
Heater Size	6		6Å	8	8A	8B	10	10A	12	12A	14	14A	14B	16	16A	16B	19	19A	21	210
Horizontal																				
SHELL Cast Iron Welded Steel B	7 6	5	$7\frac{1}{2}$ $6\frac{5}{8}$	9 ¹ / ₄ 8 ⁵ / ₈	9½ 85 85	$\frac{9\frac{1}{4}}{8\frac{5}{8}}$	$11\frac{1}{4}$ $10\frac{3}{4}$	$11\frac{1}{4}$ $10\frac{3}{4}$	$13\frac{1}{4}$ $12\frac{3}{4}$	$13\frac{1}{4}$ $12\frac{3}{4}$	15 ³ / ₅ 15	15\frac{3}{8} 15	15 ³ / ₈ 15	$17\frac{1}{2}$ 17	$17\frac{1}{2}$ 17	$17\frac{1}{2}$ 17	20 ³ / ₄ 20	$\frac{20\frac{3}{4}}{20}$	22 ³ / ₄ 22	22
D F G	13 5 6 3	1	13 ¹ / ₄ 5 ³ / ₄ 6 3	15½ 6½ 6	15 ¹ / ₄ 6 ¹ / ₂ 6	15 ¹ / ₄ 6 ¹ / ₂ 6	19 9 8 3 10	19 9 8 3 10	21½ 10 10 4 11	21½ 10 10 4 11	$23\frac{1}{2}$ 11 12 4 12 $\frac{1}{2}$	$23\frac{1}{2}$ 11 12 4 12 $\frac{1}{2}$	$23\frac{1}{2}$ 11 12 4 $12\frac{1}{2}$	26 12 12 5 13 ³ / ₄	26 12 12 5 13 ³ / ₄	26 12 12 5 13 ³ / ₄	29 14 ¹ / ₂ 14 5 15 ¹ / ₂	29 14 ¹ / ₂ 14 5 15 ¹ / ₂	32½ 15¾ 14 5 17	32 15 14 5 17
Flanged K Tapped K	1 4	$\frac{1}{2}$	$\frac{4}{6\frac{1}{2}}$	5 7½	5 7½	$\begin{array}{c} 5 \\ 7\frac{1}{2} \end{array}$	8	8	9	9	101	$10\frac{1}{2}$	$10\frac{1}{2}$	12	12	12	131/2	131	141/2	14
OPENINGS Condensate Steam Vent Water	3	1 1 2	1 ¹ / ₄ 3 1 ¹ / ₂ 2	$egin{array}{c} 1 rac{1}{2} \\ 4 \\ 2 rac{1}{2} \\ 2 rac{1}{2} \end{array}$	$egin{array}{c} 1 rac{1}{2} \ 4 \ 2 rac{1}{2} \ \end{array}$	$egin{array}{c} 1 rac{1}{2} \ 4 \ 2 rac{1}{2} \ \end{array}$	2 5 3	2 5 3	2 ¹ / ₂ 6 3 4	2½ 6 3/4 4	3 8 3 4	3 8 3 4	3 8 4	3 10 3 6	3 10 3 4	3 10 3 4	4 12 1 6	4 12 1 6	4 12 1 8	12 1 8 167
CHANNEL TYPE A C	61	12343412334	73\frac{1}{2} 5\frac{3}{4} 13\frac{3}{4} 1\frac{1}{2} \frac{3}{4}	62 5 ³ / ₄ 13 ³ / ₄ 1 ³ / ₄	86 5 ³ / ₄ 38 ¹ / ₂ 1 ³ / ₄	$ \begin{array}{r} 110 \\ 5\frac{3}{4} \\ 50\frac{1}{2} \\ 1\frac{3}{4} \\ \frac{3}{4} \end{array} $	90½ 8¼ 40 1¾ 1	114½ 8¼ 52 1¾ 1	90½ 8¼ 39¾ 2¾ 1	$114\frac{1}{2} \\ 8\frac{1}{4} \\ 51\frac{3}{4} \\ 2\frac{3}{8} \\ 1$	102½ 8¼ 45¾ 2¾ 1¼ 1¼	114½ 8¼ 51¾ 2¾ 1¼ 1¼	$138\frac{1}{2} \\ 8\frac{1}{4} \\ 63\frac{3}{4} \\ 2\frac{3}{8} \\ 1\frac{1}{4}$	$ \begin{array}{c} 115\frac{1}{2} \\ 8\frac{3}{8} \\ 51 \\ 3\frac{3}{8} \\ 1\frac{1}{4} \end{array} $	139½ 8¾ 63 3¾ 1¼	163½ 8¾ 75 3¾ 1¼	119½ 11 50½ 3¾ 1¼	143½ 11 62½ 338 1¼	143\frac{1}{2} 10\frac{1}{4} 61\frac{1}{2} 4\frac{1}{2} 1\frac{1}{2}	10 73 4 1
BONNET TYPE A		8 ½ 2 ¾ 3 ¼	$70\frac{1}{2}$ $2\frac{3}{4}$ $13\frac{1}{4}$	60 3 ¹ / ₄ 13 ³ / ₄	84 31/4 381/2	108 3½ 50½	$\begin{array}{r} 86\frac{1}{2} \\ 4\frac{1}{2} \\ 39\frac{1}{2} \end{array}$	$110\frac{1}{2} \\ 4\frac{1}{2} \\ 51\frac{1}{2}$	88 5 40 ¹ / ₂	112 5 52 ¹ / ₂	100 5 46½	$ \begin{array}{r} 112 \\ 5 \\ 52\frac{1}{2} \end{array} $	$136 \\ 5 \\ 64\frac{1}{2}$	$\begin{array}{c} 114\frac{1}{2} \\ 5\frac{1}{2} \\ 52\frac{1}{2} \end{array}$	$138\frac{1}{2} \\ 5\frac{1}{2} \\ 64\frac{1}{2}$	$\begin{array}{c} 162\frac{1}{2} \\ 5\frac{1}{2} \\ 76\frac{1}{2} \end{array}$	$5\frac{1}{2}$ $51\frac{1}{2}$	$\begin{array}{c} 140 \\ 5\frac{1}{2} \\ 63\frac{1}{2} \end{array}$	142 63 63 2	166 6 75

* All dimensions are in inches. Flanged openings are faced and drilled 125 lbs. American Standard.

Alberger Vertical Instantaneous Heater, Type FP—Channel Construction.

Alberger Vertical Instantaneous Heater, Type FP—Bonnet Construction.

	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FF
Heater Size	6	6A	8	8A	8B	10	10A	12	12A	14	14A	14B	16	16A	16B	19	19A	21	21 A
Vertical																0			
SHELL					0.1		441	4.01	401	4 = 2	4-2	4-2	451		451	203	203	223	22
Cast Iron Welded Steel	7½ 6½	$\frac{7\frac{1}{2}}{6\frac{5}{8}}$	9½ 85/8	$9\frac{1}{4}$ $8\frac{5}{8}$	9 ¹ / ₄ 8 ⁵ / ₈	$11\frac{1}{4}$ $10\frac{3}{4}$	$11\frac{1}{4}$ $10\frac{3}{4}$	$13\frac{1}{4}$ $12\frac{3}{4}$	$13\frac{1}{4}$ $12\frac{3}{4}$	$15\frac{3}{8}$ 15	15 ³ / ₈ 15	$15\frac{3}{8}$ 15	$17\frac{1}{2}$ 17	$\frac{17\frac{1}{2}}{17}$	$\frac{17\frac{1}{2}}{17}$	$\frac{20\frac{3}{4}}{20}$	$\frac{20\frac{3}{4}}{20}$	22 ³ / ₄ 22	22
D	131/2	$13\frac{1}{2}$	151	151	$15\frac{1}{4}$	19	19	$21\frac{1}{2}$	$21\frac{1}{2}$	$23\frac{1}{2}$	$23\frac{1}{2}$	$23\frac{1}{2}$	26	26	26	29	29	$32\frac{1}{2}$	32
Flanged						10	10	11	11	$12\frac{1}{2}$	$12\frac{1}{2}$	$12\frac{1}{2}$	$13\frac{3}{4}$	$13\frac{3}{4}$	$13\frac{3}{4}$	$15\frac{1}{2}$	$15\frac{1}{2}$	17	17
Tapped	71 4	4	5	5	5	0		0	9	101	101	$10\frac{1}{2}$	12	12	12	131	131	$14\frac{1}{2}$	14
ODENINGO	0 2	$6\frac{1}{2}$	$7\frac{1}{2}$	$7\frac{1}{2}$	$7\frac{1}{2}$	0	0	9	,	10½	$10\frac{1}{2}$	102	12	12	12	137	132	142	14
OPENINGS	11	11	11	11	$1\frac{1}{2}$	2	2	$2\frac{1}{2}$	$2\frac{1}{2}$	3	3	3	3	3	3	4	4	4	4
Condensate H Steam S	3	$\frac{1\frac{1}{4}}{3}$	4	4	4	5	5	6	6	8	8	8	10	10	10	12	12	12	12
Vent	1 1 2	1 2	1/2	1/2	1/2	3 4	$\frac{3}{4}$	34	3	34	$\frac{3}{4}$	3	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	1	1	1	1
Water	V 2	2	$2\frac{1}{2}$	$2\frac{1}{2}$	$2\frac{1}{2}$	3	3	4	4	4	4	4	6	6	6	6	6	8	8
CHANNEL TYPE A	$68\frac{1}{2}$	$80\frac{1}{2}$	71	95	119	$99\frac{1}{2}$	$123\frac{1}{2}$	$99\frac{1}{2}$	$123\frac{1}{2}$	$111\frac{1}{2}$	$123\frac{1}{2}$	$147\frac{1}{2}$	$124\frac{1}{2}$	$148\frac{1}{2}$	$172\frac{1}{2}$	$128\frac{1}{2}$	$152\frac{1}{2}$	$152\frac{1}{2}$	176
C	1234	$12\frac{3}{4}$	$14\frac{3}{4}$	$14\frac{3}{4}$	$14\frac{3}{4}$	$17\frac{1}{4}$	$17\frac{1}{4}$	$17\frac{1}{4}$	171	171	171	$17\frac{1}{4}$	$17\frac{1}{2}$	$17\frac{1}{2}$	$17\frac{1}{2}$	20	20	191	19
F	8	8	9	9	9	$10\frac{1}{2}$	$10\frac{1}{2}$	12	12	131	$13\frac{1}{2}$	$13\frac{1}{2}$	15	15	15	16½	$\frac{16\frac{1}{2}}{0}$	17½	17
	133	133	133	381	50½	40	52	393	51 ³ / ₄	453	51 ³ / ₄	$63\frac{3}{4}$	51	63	75	501	$62\frac{1}{2}$	$61\frac{1}{2}$	73
	134	134	13	13	13	13	13/4	2 3 8	23/8	238	238	23/8	3 3	3 3 8	3 3 8	3 3	3 3 8	41/2	4
P	3	3 3	3/4	3/4	34	1	1	1	1	$1\frac{1}{4}$	$1\frac{1}{4}$	$1\frac{1}{4}$	$1\frac{1}{4}$	11/4	$1\frac{1}{4}$	11	$1\frac{1}{4}$	$1\frac{1}{2}$	1
BONNET TYPE A	621	741/2	64	88	112	$92\frac{1}{2}$	$116\frac{1}{2}$	94	118	$107\frac{1}{2}$	$119\frac{1}{2}$	$143\frac{1}{2}$	122	146	170	$123\frac{1}{2}$	$147\frac{1}{2}$	$149\frac{1}{2}$	173
	$6\frac{3}{4}$	$6\frac{3}{4}$	64 7 ¹ / ₄	$\begin{array}{c} 88 \\ 7\frac{1}{4} \end{array}$	$7\frac{1}{4}$	$10\frac{1}{4}$	$10\frac{1}{4}$	$10\frac{3}{4}$	$10\frac{3}{4}$	12	12	12	$12\frac{3}{4}$	$12\frac{3}{4}$	$12\frac{3}{4}$	123	$12\frac{3}{4}$	14	14
F	$\begin{array}{c} 62\frac{1}{2} \\ 6\frac{3}{4} \\ 8\frac{1}{2} \end{array}$	$\begin{array}{c} 74\frac{1}{2} \\ 6\frac{3}{4} \\ 8\frac{1}{2} \end{array}$	10	10	10	12	12	144	$14\frac{1}{4}$ $5\frac{3}{4}$	15 ³ / ₄ 7 ¹ / ₄	154	12 $15\frac{3}{4}$ $7\frac{1}{4}$	174	174	174	195	195	14 21 7 ¹ / ₄	21
F	1 4 13 ¹ / ₄	4	4	$\begin{array}{c} 4 \\ 38\frac{1}{2} \end{array}$	4 50½	$\begin{array}{c} 5\frac{3}{4} \\ 39\frac{1}{2} \end{array}$	$ \begin{array}{r} 12 \\ 5\frac{3}{4} \\ 51\frac{1}{2} \end{array} $	$14\frac{1}{4} \\ 5\frac{3}{4} \\ 40\frac{1}{2}$	52½	46½	12^{1} $15\frac{3}{4}$ $7\frac{1}{4}$ $52\frac{1}{2}$	$64\frac{1}{2}$	$17\frac{1}{4}$ $7\frac{1}{4}$ $52\frac{1}{2}$	$17\frac{1}{4} \\ 7\frac{1}{4} \\ 64\frac{1}{2}$	$ \begin{array}{r} 17\frac{1}{4} \\ 76\frac{1}{2} \end{array} $	$ \begin{array}{r} 12\frac{3}{4} \\ 19\frac{1}{2} \\ 7\frac{1}{4} \\ 51\frac{1}{2} \end{array} $	12\frac{3}{4} 19\frac{1}{2} 7\frac{1}{4} 63\frac{1}{2}	631/2	75
	134	$13\frac{1}{4}$	133	38 2	3U2	392	312	402	342	102	342	042	322	042	102	312	002	002	13

^{*} All dimensions are in inches. Flanged openings are faced and drilled 125 lbs. American Standard.

								M	ovimu	m frict	ion lo	ss 5 Lt	s./sa.	in.	
	Cap	pacity	in ga	llons p	er hou	r	Hanto			III IIIC	1011 10	33 0 11	70.709.		
nlet emp. ° F.	Outlet Temp.	U-5	U-5A	FP-6 U-6	FP-6A U-6A	FP-8 U-8	Heate FP-8A U-8A	FP-8B U-8B	FP-10 U-10	FP-10A U-10A	FP-12 U-12	FP-12A U-12A	FP-14 U-14	FP-14A U-14A	
	am at	0 Lb	. Gag	e											
	220	1225	2125	3350	4780	8500			14850		23300		33500 13200		21000
40	80 140	375	415	920	1450	2330	3650	3120	6300 3390	5470	10000	8600	10600	12300	1150
	160	240	375	660 330	1180 760	1500 830	1930 1500	1780	2550	3200	4000	4950	6950	7100	1100
	180 200	120 48	225 90	135	310	330	800	1120	1380	1925	2150	3000	4400	4250	616
50	80	2000	2125	4780	1211	8500	27.50	2040	14850 6395	6920	23300 10000	10700	33500 13200	15200	2450
-	140	375	480	1060	1700 1200	2330 1500	3650 2170	3840 3120	3670	5470	6000	8600	11700	12300	1250
	160 180	265 128	375 240	725 350	760	880	1600	1910	2730	3420	4300	5300	6950	7600	1100 616
	200	50	92	135	325	340	830	1120	1400	2000	2250	3100	4500 13600	18000	2860
60	140	375	565	1260	2000	2330	3650	4525 3120	6390 4140	8200 5470	10000 6700	12700 8600	13200	10000	1400
7,71	160	295	375	810 385	1200 760	1510 950	2460 1744	2060	2950	3700	4650	5750	6950	8300	1100
	180 200	138 52	260 98	145	340	360	875	1165	1480	2100	2350	3250	4525	4650	616
100	160	375	525	1160	1840	2330	3650	4200	6390	7600	10000	11700 8600	13200 9650	16700 12300	2670 1100
100	180	215	375	590	1050	1475	1930 1140	3120 1500	3390 1920	5470 2700	5410 3050	4200	4550	6000	650
	200	68	125	185	440	465							2000		
				TOH V	VATER (ALC: COLUMN	ANGE -		ED CIRC	ULATI	OIN	13200	13500	2150
160	190	375	425	1070	1700	2330	3650	* * * *	6400	* * * *	10000		13200	13300	2100
64	eam at	9 11	e Ca	do											
	80	1300	2125	3570	4780	8500		-1111	14850		23300	:::::	33500	11500	2250
40	140	375	460	1015	1640	2330	3650	3720	6390	6650	10000	10500 8600	13200 12000	14700 12300	2350 1270
	160	270	375	740	1200	1500	2240 1780	3120 2110	3800 3000	5470 3770	6050 4800	5900	6950	8400	1100
	180	140	265 120	390 178	760 425	970 440	1080	1440	1830	2570	2900	4000	4525	5750	616
	200	2125		4780		8500			14850		23300	****	33500		
50	80 140	375	535	1200	1880	2330	3650	4250	6390	7700	10000	12000	13200	17000	2720 1400
	160	300	375	820	1200	1530	2480	3120 2280	4220 3250	5470 4080	6700 5150	8600 6350	13200 6950	9100	1100
	180	152	285 126	425 185	760 450	1050 465	1920 1180	1520	1930	2720	3060	4250	4525	6000	650
/0	200	375	630	1310	2220	2350	3650	5000	6390	9000	10000	14100	15200	20000	3050
60	140 160	335	375	830	1200	1730	2800	3120	4800	5470	7600	8600	13200 7500	9900	1600 1100
	180	166	310	460	820	1140	1930 1200	2480 1600	3390 2040	4420 2870	5410 3100	6900 4500	4800	6400	685
	200	71	135	200	2000	2330	3650	5000	6390		10000	14000	15000	20000	3050
100	160 180	375 265	625 375	1310 735	1200	1500	2240	3120	3750	2022	6000	8600	11900	12300	1260
	200	95	178	265	630	655	1225	1665	2140	2920	3370	4580	6400	6550	910
				HOT	WATER	CONVER	RTOR R			ED CIRC			11200	10000	3000
160	190	375	590	1310	2100	2330	3650	4750	6390	8500	10000	13400	14300	19000	3000
Si	team a	t 5 L	bs. Ga	age											
40	80	1500		4050	4780	8500			14850	2111	23300	21111	33500		2540
20	140	375	540	1200	1900	2330	3650	4300	6390		10000 7200	12000 8600	13200 13200	17000	2740 1530
	160	325	375	840 480	1200 880	1650 1200	2680 1930	3120 2625	4500 3390	00000	5410	7350	7900	10400	1100
	180 200	180	325 170	245	500	620	1230	1665	2140	2222	3370	4580	6000	6550	855
	210	60	110	160	385	400	980	1310	1650		2650	3650	4525	5200	616
50	80	2125	1323	4780	2200	8500	2450	5000	14850 6390	7.1(1)	23300 10000	14000	33500 15000	20000	3050
	140	375 360	630 375	1310 840	2200 1200	2350 1830	3650 3000	5000 3120	5050	2722	8000	8600	13200		1710
	160 180	195	360	520	960	1320	1930	2860	3390	5100	5410	in the law in	8600	11400	1100
	200	95	175	260	630	655	1230	1665	2140	121020	3370 2750		6400 4525	6550 5450	905
	210	60	740	165	335	420 2700	1030 3650	1360 5900	6390			16500	17800	23500	3050
60	140 160	400 375	740 380	1310 850	2250 1345	2080	3400	3900	5700		9100		13200		1930
	180	215	375	570	1050	1440	1930	3120	3390	5470	2420	8600	9400	12500	1100
	200	105	190	275	670	700	1250	1665 1430	2180 1820	2255	3430 2920		6800 4525	6550 5750	963 620
	210	- 65	770	175	2250	2800	1080 3650	6150	6390			17200	18400	24300	3050
100	160 180	420 350		1310 840		1750	2850	3125	4800		7750		13200	****	1620
	200	140	260	385	760	970	1770	2100	3000		4750		6950	8350	1100
	210	85	155			570	1225	1665	2140		3370		5550	6550	785
				HOT	WATER	CONVE	RTOR F		- FOR	CED CIR	CULATI	00000	20.00	42341	- 51-
	190	500	890	1320	2250	3250	4000	7150		12800	22222	20000	21500	28400	305

³ See footnote, page 17.

	Caj	pacity	in ga	lons	per ho	ur		M	aximu	m frict	tion lo	ss 5 Lb	s./sq.	in	
Inlet	Outlet					and to	Heate	er Sizes							
°F.	Temp.	U-5	U-5A	FP-6 U-6	FP-6A U-6A	FP-8 U-8	FP-8A U-8A	FP-8B U-8B		FP-10A U-10A	FP-12 U-12	FP-12A U-12A	FP-14 U-14	FP-14A U-14A	man have been a financial
Stea	ım at l	0 Lb	s. Ga	e											
40	80	1740	2125	4650	4780	8500		2.2.2.2	14850	A 1 A 1 A	23300		33500	* * * * * * *	
	140	375	645	1310	2250	2375	3650	5150	6390	9200	10000	14400	15500	20500	30500
	160	375	255	840	1200	2025	3300	::::	5600	5470	8900	0.00	13200	12200	19000
	180 200	230 130	375 235	620 345	1140 760	1500 875	1930 1600	3120 1900	3390 2700	5470 3390	4280	5300	6950	12300 7500	11000
	220	62	114	165	400	420	1000	1360	1700	2450	2750	3800	4525	5450	6160
50	80	2125		4780		8500			14850		23300		33500		
	140	410	750	1310	2250	2750	3650	6000	6390	10800	20000	16700	18000	23800	30500
	160	375	415	920	1470	2275	3650	* * * *	6300	5900	10000		13200		21000
	180	250	375	675	1200	1500	2100	3120	3390	5470	5600	8600	11200	12300	
	200	135	250	370	760	930	1700	2020	2880	3600	4550	5650	6950	8000	11000
	220	65	120	175	420	440	1070	1420	1800	2560	2900	4000	4525	5700	6160
60	140	490	900	1330	2250	3300	4000	7200	4200	12900	10000	20000 10500	21500 13200	27500 15000	30500 24200
	160 180	375 280	470 375	1050 745	1670 1200	2600 1500	3650 2300	3800 3120	6390 3870	6750 5470	10000 6200	8600	12300		13100
	200	150	270	400	760	1000	1830	2180	3100	3900	4900	6100	6950	8650	11000
	220	67	125	183	445	465	1120	1500	1880	2600	3050	4200	4525	6000	6450
100	160	540	985	1460	2250	3600	4400	7900		14000		22000	23600	31000	
	180	375	430	955	1520	2360	3650		6390		10000		13200	13600	22000
	200	210	375	570	1040	1430	1930	3120	3390	5550	5410	8600	9400	12300	0450
	220	85	160	230	560 WATED	580	1225	1665	2140 EOD CI	2920	3370	4580	5700	6550	8150
160	190	740	1060	2000	2300°	4250	6050	8500	10400	ED CIRC 14850	17200	23300	32000	33500	
Ste	am at	25 L	bs. Ga	ge											
40	80	2125		4780		8500			14850		23300		33500		
10	140	500	920	1360	2250	3350	4125	7350		13200		20500	22000	33500	
	160	375	540	1210	1930	2330	3650	4350	6390	7800	10000	12100	13200	17200	27500
	180	370	375	840	1200	1850	3025	3120	5100	5470	8150	8600	13200		17000
	200	230	375	600	1110	1500	1930	3120	3390	5470	4500	8600	10000	12300	11000
	220	135	250	360	760	910	1680	2000	2850	3550	4500	5550	6950	7900	11000
50	80	2125	1040	4780	2250	8500	1050	9500	14850	14850	23300	23300	33500 25700	33500	
	140 160	590 375	1060 615	1600 1310	2250 2200	3950 2330	4850 3650	8500 4950	6390	8900	10000	13800	14800	19600	30500
	180	375	375	840	1320	2050	3310		5600		9000		13200		18700
	200	245	375	650	1200	1500	2025	3120	3410	5470		8600	10800	12300	
	220	145	260	385	760	960	1770	2100	3000	3750	4750	5850	6950	8350	11000
60	140	710	1060	1930	2300	4250	5830	8500	10000	14850	16700	23300	31000	33500	
	160	390	715	1310	2250	2625	3650	5750	6390	10300	10000	16000	17200	22800	30500
	180	375	410	840	1475	2260	3650	2120	6250	5470	10000	8600	13200	12300	21000
	200	265	375	710 410	1200 760	1500 1025	2180 1880	3120 2230	3670 3190	5470 4000	5900 5050	8600 6250	11700 6950	8900	11000
100	160	154	1060			4250	7050	8500	12000	14850	20000	23300	33500	0700	ALL SEA COLO
100	160 180	860 400	1060 730	2320 1310	2770 2250	2680	3650	5850	6390	10500		16300	17500	23200	30500
	200	375		840	1300	2030	3300	3030	5550	10300	8900		13200		18600
	220	210	375	555	1020	1400	1930	3040	3390	5420		8500	9150	12100	
	240	100	180	265	650	670	1240	1665	2140	2920	3370	4585	6600	6550	9400
				HOT	WATER	CONVE	RTOR R	ANGE —	FORCE	ED CIRC	ULATIC	N			
						5300	8500		14850		23300		33500		

*The Capacity ratings of these tables are conservative and frequently are exceeded in actual operation.

In specifying a particular heater, the desired capacity and temperature range must be given in order to construct the heater with the necessary number of passes. Where no rating is given, a condition exists in which the preceding heater, by its proper pass construction has a greater capacity than the following larger one and therefore would not be economical. Such an occurrence is due to the fact that one

heater may have its highest capacity with a water velocity corresponding to the maximum allowable friction loss at a certain number of passes and the next larger heater must have in consequence a smaller number of passes which decreases the velocity and of necessity depresses the heat transfer rate correspondingly.

The given capacities are ONLY for water. Regarding capacities for other liquids than water and conditions not listed, consult the nearest Alberger representative or our Office.

_	Car	nacity	in øa	llons 1	per hou	r		M	aximu	m frict	ion lo	ss 5 Lb	s./sq.	in.	
		Jacity	111 54	iloilo j			Heate	r Sizes	3				DD 44	ED 144	PD 141
emp. ° F.	Outlet Temp.	U-5	U-5A	FP-6 U-6	FP-6A U-6A	FP-8 U-8	FP-8A U-8A	FP-8B U-8B		FP-10A U-10A	FP-12 U-12	FP-12A U-12A	U-14 U-14	U-14A U-14A	U-14B
Ste	am at	50 Lb	s. Ga	ge									22500		
40	80	2125		4780		8500		1555	14850		23300	22000	33500 31000	33500	****
40	140	710	1060	1930	2300	4250	5800	8500	10000	14850	16600	23000 18000	19300	25500	30500
	160	435	805	1310	2250	2950	3650	6450	6200	11500 7350	10000	11400	13200	16300	26200
	180	375	515	1140	1820	2330	3650	4100 3120	6390 5050	5470	8100	8600	13200		17000
	200	375	375	840	1200	1850 1500	3000 1980	3120	3390	5470		8600	10500	12300	
	220	240	375	640	1170		1700		14850		23300		33500		
50	80	2125	10.0	4780	2725	8500	6950	8500	11800	14850	19700	23300	33500		
	140	840	1060	2280	2725 2250	4250 3360	4125	7350		13200		20500	22000	28200	30500
	160	500	920 570	1370 1270	2000	2330	3650	4550	6390	8150	10000	12700	13700	18100	28800
	180 200	375 375	0.00	840	1260	1960	3200	4 4 4 4	5400	5470	8600		13200	12200	18000
	220	260	375	695	1200	1500	3130		3600	5470	5750	8600	11400	12300	12100
60	140	880	1060	2390	2850	4250	7250	8500	12400	14850	20500	23300	33500	22700	
60	160	575	1050	1670	2250	3860	4750	8450		14850		23300	25300	33500	30500
	180	375	650	1310	2250	2380	3650	5150	6390	9250	10000	14400	15500	20600	20200
	200	375	400	890	1410	2210	3600		6050	5700	9600		13200 12200	12300	12800
	220	275	375	780	1200	1500	2270	3120	3830	5470	6150	8600		12000	12000
100	160	1060	1210	2390	4250	4425	8500	11111	14850		23300	22200	33500 28200	33500	
23.5	180	640	1060	1740	2250	4250	5250	8500	9000	14850	15000	23300 14400	15500	20500	30500
	200	375	645	1310	2250	2370	3650	5150	6390	9250 5470	10000 8800	14400	13200		18300
	220	375	* 222	840	1280	2000	3250	2120	5450 3390	5470	100000000000000000000000000000000000000	8600	10000	12300	
	240	230	375	600	1120	1500	1930 1560	3120 1850	2650	3300	4150	5150	6950	7300	11000
	260	125	230	335	760	850				ED CIRC					
160	190	1410	2125	3800	WATER 4780	8500	KIOKK	ANGE -	14850		23300		33500	****	
100	170	1410	2120	0000	2.00										
St	eam at	100	Lbs.	Sage							22200		22500		
40	80	2125		4780		8500			14850		23300	****	33500	*****	
	140	1030	1060	2390	3325	4250	8500		14400	14050	23300	22000	33500 27800	33500	
	160	645	1060	1760	2250	4250	5350	8500	9100	14850 11300	15100	23000 17500	18400	25000	30500
	180	425	785	1310	2250	2860	3650	6300 4250	6390 6390		10000	11800	13200	16800	27000
	200	375	530	1180	1880 1200	2330 2020	3650 3280		5500		8850		13200		18600
	220	375	9.4.6.3	840	1200		3200		14850	*****	23300		33500		
50	80	2125	1150	4780	3950	8500 4250	8500		14850		23300		33500		
	140	1060 735	1150 1060	2390 2000	2400	4250	6100	8500	10400	14850	17300		31700	33500	
	160 180	475	870	1310	2250	3200	3800	7000		12500		19400	20300	27500	30500
	200	375	580	1300	200	2330	3650	4650	6390	8300	10000		13600	18500	29300
	220	375	400	885	1400	2180	3550		5900		9600	* * * * *	13200		20200
60	140	1060	1370	2390	4780	5000	8500		14850		23300		33500		
00	160	865	1060	2350	2222	4250	7150	8500	12100	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	20300	23300	33500	21400	
	180	535	1000	1460	2250	3620	4450	7900		14100	10000	22000	23000	31400	3050
	200	385	640	1310		2350	3650	5150	6390		10000		15000 13200	20400 13700	2200
	220	375	430	950	1520	2330	3650	1 4 4 4	6390		10000			200000000000000000000000000000000000000	2200
100	222	1060	1880	2750	4000	6800	8500		14800		23300		33500 33500		****
	180	1030	1060	2390		4250	8500	9500	14400	14850	23300	23300	24700	33500	
	200	575	1060	1570		3870 2350	4750 3650	8500 5150	6390		10000		15000	20400	3050
	220 240	375 375	400	1310 910		2260	3650		6200		9650		13200		2040
	300	100	185	275		690	1260	1665	2160		3400	2 400 00 00	6700		960
				нот	WATER	CONVE	RTOR I	RANGE -	-FORG	CED CIR	CULATI	ION			

^{*} See footnote page 17.

Alberger Instantaneous Heater, Type U.

INSTANTANEOUS HEATERS with U-BEND TUBES

THE foremost advantage of the Alberger Type U Instantaneous Heater lies in its simplicity of the design and low first cost. It is best suited for heating clean water or liquids which do not have a tendency to foul or scale the inside of the tubes. Where severe fouling or scaling conditions exist, Alberger Type FC or FP Heaters are more preferable because straight tubes can more readily be cleaned.

The heating element of the Type U Heater consists of a group of U-shaped tubes, expanded at each end into the tube sheet. Alberger U-bends are formed by drawing each tube over a mandrel while bending; a method that assures full wall thickness and area in the bend.

By proper baffle arrangement, the liquid can be multipassed through the heater to obtain high heat transfer. The tube bundle can be removed from the shell for inspection and cleaning the outside of the tubes.

Each single U-bend compensates independently from the others for thermal expansion and contraction. Tube support plates are provided to prevent vibration of the tubes and to support the element in the shell. All joints have recessed gasket surfaces for tightness and long life of the packing. A steam baffle properly distributes the entering steam and protects the tubes from direct impingement. The same quality of material and workmanship and the same sturdy construction eminent in Type FC and FP Heaters distinguish Alberger Type U Heaters. The following tabulations apply to standard construction only; as all Alberger equipment, Type U Heaters can be built to suit special corrosion or pressure conditions.

STANDARD MATERIALS

Shell	Cast Iron or Welded Steel
Bonnet	Cast Iron
Tube Sheet	Forged Steel or Bronze

Support Plates	Steel or Brass
Saddles	Cast Iron
Tubes	
	seamless drawn Copper

STANDARD PRESSURES

Working Pressure...Shell and tube spaces...125 Lbs./sq. in. Test Pressure....Shell and tube spaces...200 Lbs./sq. in.

SPECIFICATIONS

SPECIFY: A Horizontal Vertical Instantaneous Heater of the closed water tube type with a U-bend heating element made up from 34" O.D. #18 B.W.G. seamless drawn copper tubes. The heater shall have ample capacity to heat...... GPH of water (or other liquid) from.....° F. to.....° F. when supplied with sufficient steam at.....Lbs. Gage pressure.

The pressure loss through the tubes shall not exceedLbs./sq. in. The liquid spaces shall be designed for a working pressure of.....Lbs./sq. in., and the steam spaces for a working pressure of.....Lbs./sq. in. The heater shall be Alberger Type U or equal. Heater to be as described in the Alberger Heater Company Bulletin No. 200.

Sectional Drawing of an Alberger Instantaneous Heater, Type U.

Alberger Horizontal Instantaneous Heater, Type U.

FIGURE 1

	*DII	MENS	SION	J TA	BLE	— A	LBI H 3	ERG	ER .D.	TYI U-B	PE I	J INS	STA BES	NTA	NEC	US	HEA	TEF	RS			
Heater Size		U 5	U 5A	U 6	U 6A	U 8	U 8A	U 8B	U 10	U 10A	U 12	U 12A	U 14	U 14A	U 14B	U 16	U 16A	U 16B	U 19	U 19A	U 21	21A
Horizontal			-																			
FIGURE NO.		1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	A	41½	$53\frac{1}{2}$	$48\frac{1}{2}$	$66\frac{1}{2}$	$48\frac{1}{2}$	$72\frac{1}{2}$	$96\frac{1}{2}$	$78\frac{3}{4}$	$102\frac{3}{4}$	$81\frac{1}{4}$	$105\frac{1}{4}$	$92\frac{1}{4}$	$104\frac{1}{4}$	$128\frac{1}{4}$	$104\frac{3}{4}$	$116\frac{3}{4}$	$128\frac{3}{4}$	$115\frac{3}{4}$	$127\frac{3}{4}$	$117\frac{3}{4}$	$129\frac{3}{4}$
SHELL Cast Iron Welded Steel	B B	6 \frac{1}{8} \frac{5}{8}	6 ½ 5 ½	7½ 6½ 658	7½ 65/8	9½ 858	$9\frac{1}{4}$ $8\frac{5}{8}$	9½ 858	$11\frac{1}{4} \\ 10\frac{3}{4}$	$11\frac{1}{4}$ $10\frac{3}{4}$	$13\frac{1}{4} \\ 12\frac{3}{4}$	$13\frac{1}{4}$ $12\frac{3}{4}$	15 ³ / ₈ 15	15 ³ / ₈ 15	15 ³ / ₈ 15	17½ 17	$17\frac{1}{2}$ 17	17½ 17	20	20 ³ / ₄ 20	22 ³ / ₄ 22	22 ³ / ₄ 22
	C D F G H K L M	2 ¹ / ₄ 9 5 2 ¹ / ₂ 3 ¹ / ₂ 13 ¹ / ₄ 4	2 ¹ / ₄ 9 5 2 ¹ / ₂ 3 ¹ / ₂ 13 ¹ / ₄ 4	$ \begin{array}{r} 2\frac{3}{4} \\ 10\frac{1}{2} \\ 5\frac{3}{4} \\ 6 \\ 3 \\ 4\frac{1}{4} \\ 6\frac{1}{2} \end{array} $	2 ³ / ₄ 10 ¹ / ₂ 5 ³ / ₄ 6 3 4 ¹ / ₄ 13 ¹ / ₄ 6 ¹ / ₂	$ \begin{array}{c} 3\frac{1}{4} \\ 12 \\ 6\frac{1}{2} \\ 6 \\ 3 \\ 5 \\ 13\frac{3}{4} \\ 7\frac{1}{2} \end{array} $	$ \begin{array}{r} 3\frac{1}{4} \\ 12 \\ 6\frac{1}{2} \\ 6 \\ 3 \\ \hline 13\frac{3}{4} \\ 7\frac{1}{2} \end{array} $	3 ¹ / ₄ 12 6 ¹ / ₂ 6 3 5 13 ³ / ₄ 7 ¹ / ₂	4 15 9 8 3 10 15 8	4 15 9 8 3 10 15 8	5 18 10 10 4 11 20 ¹ / ₂ 9	5 18 10 10 4 11 20 ¹ / ₂ 9	$\begin{array}{c} 5 \\ 20\frac{1}{2} \\ 11 \\ 12 \\ 4 \\ 12\frac{1}{2} \\ 20\frac{1}{2} \\ 10\frac{1}{2} \end{array}$	$\begin{array}{c} 5 \\ 20\frac{1}{2} \\ 11 \\ 12 \\ 4 \\ 12\frac{1}{2} \\ 20\frac{1}{2} \\ 10\frac{1}{2} \end{array}$	$\begin{array}{c} 5 \\ 20\frac{1}{2} \\ 11 \\ 12 \\ 4 \\ 12\frac{1}{2} \\ 20\frac{1}{2} \\ 10\frac{1}{2} \end{array}$	$ \begin{array}{r} 5\frac{1}{2} \\ 23 \\ 12 \\ 12 \\ 5 \\ 13\frac{3}{4} \\ 23\frac{1}{2} \\ 12 \end{array} $	5 \\\ 23 \\ 12 \\ 13 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 \\\ 23 \\ 12 \\ 13 \\\\ 23 \\ 23 \\ 12 \\ 13 \\\\ 23 \\\\ 23 \\\\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \\\\\ 12 \\ 13 \\\\\\\\ 12 \\ 13 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\begin{array}{c} 5\frac{1}{2} \\ 26 \\ 14\frac{1}{2} \\ 14 \\ 5 \\ 15\frac{1}{2} \\ 23\frac{1}{2} \\ 13\frac{1}{2} \\ \end{array}$	$\begin{array}{c} 5\frac{1}{2} \\ 26 \\ 14\frac{1}{2} \\ 14 \\ 5 \\ 15\frac{1}{2} \\ 23\frac{1}{2} \\ 13\frac{1}{2} \end{array}$	6 ³ / ₄ 28 15 ³ / ₄ 14 5 17 25 14 ¹ / ₂	15 ³ / ₄ 15 ³ / ₄ 14 5 17 25 14 ¹ / ₂
OPENINGS Condensate Steam Vent Water	R S V W	$egin{array}{c} 1 \\ 2 rac{1}{2} \\ 2 \\ 2 \end{array}$	$\frac{1}{2^{\frac{1}{2}}}$	$1\frac{1}{4}$ 3 $2\frac{1}{2}$	$1\frac{1}{4}$ $3^{\frac{1}{2}}$ $2\frac{1}{2}$	$egin{array}{c} {f 1} rac{1}{2} \\ {f 4} \\ {f 2} rac{1}{2} \\ {f 2} rac{1}{2} \end{array}$	$egin{array}{c} 1 rac{1}{2} \\ 4 \\ 2 rac{1}{2} \\ \end{array}$	$1\frac{1}{2}$ 4 $2\frac{1}{2}$	2 5 3	2 5 3	2½ 6 34 4	2 ¹ / ₂ 6 3/4	3 8 3 4	3 8 3 4	3 8 3 4	3 10 3 4	3 10 3 4	3 10 3 4	4 12 1 6	4 12 1 6	4 12 1 8	12 1 8

^{*} All dimensions are in inches. Flanged openings are faced and drilled 125 Lbs. American Standard.

FIGURE 2

Alberger Horizontal Instantaneous Heater, Type U.

FIGURE 3
Alberger Vertical Instantaneous Heater, Type U

									-	-												
	*DIM	ENS	ION	TAI				RGE							NEO	US I	HEA'	TER	S			
						4411	11 9	4 0	.D.	O-D1	שונט	10	DES		**	**	*1	**	1 77	TT	1 77	T
Heater Size		U 5	U 5A	U 6	6A	8	8A	8B	10	10A	12	12A	14	14A	14B	16	16A	16B	19	19A	21	21A
Vertical																						
FIGURE NO.		3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	A	$45\frac{1}{2}$	$57\frac{1}{2}$	$52\frac{1}{2}$	$70\frac{1}{2}$	$52\frac{1}{2}$	$76\frac{1}{2}$	$100\frac{1}{2}$	$84\frac{1}{2}$	$108\frac{1}{2}$	87	111	$99\frac{1}{2}$	$111\frac{1}{2}$	$135\frac{1}{2}$	112	124	136	123	135	125	137
SHELL Cast Iron Welded Steel	B B	6 \frac{1}{8} \\ 5 \frac{5}{8}	6 ½ 5 ½ 5 ½	7½ 658	$\frac{7\frac{1}{2}}{6\frac{5}{8}}$	$\frac{9\frac{1}{4}}{8\frac{5}{8}}$	$9\frac{1}{4}$ $8\frac{5}{8}$	9 ¹ / ₄ 8 ⁵ / ₈	$11\frac{1}{4} \\ 10\frac{3}{4}$	$11\frac{1}{4} \\ 10\frac{3}{4}$	$13\frac{1}{4} \\ 12\frac{3}{4}$	$13\frac{1}{4} \\ 12\frac{3}{4}$	15 ³ / ₈ 15	15 ³ / ₈ 15	$15\frac{3}{8}$ 15	$17\frac{1}{2}$ 17	$17\frac{1}{2}$ 17	$17\frac{1}{2}$ 17	$\frac{20\frac{3}{4}}{20}$	$\frac{20\frac{3}{4}}{20}$	22 ³ / ₄ 22	22
	C D E	6 ¹ / ₄ 9 4	6 ¹ / ₄ 9 4	$\begin{array}{c} 6\frac{3}{4} \\ 10\frac{1}{2} \\ 4 \end{array}$	$\begin{array}{c} 6\frac{3}{4} \\ 10\frac{1}{2} \\ 4 \end{array}$	7½ 12 4	7½ 12 4	7 ¹ / ₄ 12 4	$10\frac{1}{4}$ 15 $5\frac{3}{4}$	$ \begin{array}{c} 10\frac{1}{4} \\ 15 \\ 5\frac{3}{4} \end{array} $	$10\frac{3}{4}$ 18 $5\frac{3}{4}$	$ \begin{array}{c} 10\frac{3}{4} \\ 18 \\ 5\frac{3}{4} \end{array} $	$12 \\ 20\frac{1}{2} \\ 7\frac{1}{4}$	12 $20\frac{1}{2}$ $7\frac{1}{4}$	12 $20\frac{1}{2}$ $7\frac{1}{4}$	$12\frac{3}{4}$ 23 $7\frac{1}{4}$	$12\frac{3}{4}$ 23 $7\frac{1}{4}$	$12\frac{3}{4}$ 23 $7\frac{1}{4}$	$12\frac{3}{4}$ 26 $7\frac{1}{4}$	$ \begin{array}{r} 12\frac{3}{4} \\ 26 \\ 7\frac{1}{4} \end{array} $	14 28 71/4	14 28 7
	Ĝ H	10 2	10 2	12 2	12	$\begin{array}{c} 14 \\ 2 \\ 1 \end{array}$	14 2½	$\begin{array}{c} 14 \\ 2 \\ 1 \end{array}$	17 3	17	20	20	22	3	3	24½ 3	24½ 3	24½ 3	$\frac{26\frac{1}{2}}{3\frac{1}{2}}$	26½ 3½	$\begin{array}{c} 29\frac{3}{4} \\ 3\frac{1}{2} \end{array}$	29 3
	K L M	$13\frac{1}{4}$ 4	$ \begin{array}{c} 3\frac{1}{2} \\ 13\frac{1}{4} \\ 4 \end{array} $	$ \begin{array}{c} 4\frac{1}{4} \\ 13\frac{1}{4} \\ 6\frac{1}{2} \end{array} $	$13\frac{1}{4}$ $6\frac{1}{2}$	$\begin{array}{c} 5 \\ 13\frac{3}{4} \\ 7\frac{1}{2} \end{array}$	$\begin{array}{c} 5 \\ 13 \frac{3}{4} \\ 7 \frac{1}{2} \end{array}$	$\begin{array}{c} 5 \\ 13\frac{3}{4} \\ 7\frac{1}{2} \end{array}$	10 15 8	10 15 8	11 20½ 9	11 20½ 9	$12\frac{1}{2} \\ 20\frac{1}{2} \\ 10\frac{1}{2}$	$\begin{array}{c} 12\frac{1}{2} \\ 20\frac{1}{2} \\ 10\frac{1}{2} \end{array}$	$\begin{array}{c} 12\frac{1}{2} \\ 20\frac{1}{2} \\ 10\frac{1}{2} \end{array}$	$13\frac{3}{4} \\ 23\frac{1}{2} \\ 12$	$13\frac{3}{4} \\ 23\frac{1}{2} \\ 12$	$13\frac{3}{4}$ $23\frac{1}{2}$ 12	$\begin{array}{c} 15\frac{1}{2} \\ 23\frac{1}{2} \\ 13\frac{1}{2} \end{array}$	$15\frac{1}{2} \\ 23\frac{1}{2} \\ 13\frac{1}{2}$	$\frac{17}{25}$ $14\frac{1}{2}$	25 14
OPENINGS Condensate Steam Vent Water	R S V W	$egin{array}{c} {\bf 1} \\ {\bf 2} rac{1}{2} \\ {\bf 2} \end{array}$	${f 1} \\ {f 2}^{rac{1}{2}} \\ {f 2}^{rac{1}{2}} \\ {f 2}^{rac{1}{2}}$	$1\frac{1}{4}$ 3 $2\frac{1}{2}$	$1\frac{1}{1}$ 3 $2\frac{1}{2}$	1½ 4 2½ 2½	$1\frac{1}{2}$ 4 $2\frac{1}{2}$	$1\frac{1}{2}$ 4 $2\frac{1}{2}$ $2\frac{1}{2}$	2 5 3 4	2 5 3	2½ 6 34 4	2½ 6 3/4	3 8 3 4	3 8 3 4	3 8 3 4	3 10 3 4	3 10 3 4	3 10 3 4	4 12 1 6	4 12 1 6	12 1 8	12 1 8

^{*}All dimensions are in inches. Flanged openings are faced and drilled 125 lbs. American Standard.

HOT WATER CONVERTERS for HEATING SYSTEMS FORCED CIRCULATION TYPE

FOR many years leading engineers have specified Alberger Heating System Heaters because of the high efficiency obtained from the use of corrugated copper tubes and correct design.

All the features of Alberger design and construction as covered under the different types of Instantaneous Heaters in the forepart of this Bulletin are embodied in the construction of Alberger Heating System Heaters or Hot Water Converters, in fact all Alberger Instantaneous Heaters are suited for this service.

The most common range through which water shall be heated in Converters is from 160°-190° F., and therefore the capacity tables of all Instantaneous Heaters show this range and give capacities in gallons per hour.

In many instances architects and engineers specify the required capacity in square feet of E.D.R. (Equivalent Direct Radiation). To find the necessary gallons of water per hour to circulate through the system at the above temperature range, use the following simple formula:

Sq. Ft. of E.D.R. x.68 = Gallons per hour When thus the GPH of water has been found, turn to the capacity table of the type of Instantaneous heater desired and locate under the proper steam pressure and the 160° - 190° temperature range the correct size of heater.

Example: 22,800 Sq. Ft. of E.D.R. required with Steam available at 5 Lbs. Gage

 $22,800 \times .68 = 15,500$ GPH of water required

It has been decided to use a Type FC Heater with corrugated copper tubes, so it is only necessary to consult the Type FC capacity table for steam at 5 Lbs. Gage.

Follow across the page along the hot water converter range (160°-190° F.) until a 15,500 GPH capacity is reached, which will show that an FC-12-B Heater should be selected.

The maximum friction with this amount of water flowing through the heater will not exceed 8 Lbs.

If a Type FP or Type U Heater has been decided on, select the proper size heater in the same manner from the Type FP or Type U capacity tables.

For Heating System Heaters with lower friction loss or for gravity circulation, consult the nearest Alberger Representative or our Home Office.

CLOSED FEED WATER HEATERS

Feed Water Heater because if cold water is fed into a boiler, additional fuel must be burned to raise its temperature to the boiling point representing a costly waste of fuel inasmuch as in practically every plant exhaust steam is available. Further, the life of the boiler is materially lengthened by injecting hot instead of cold water, as cold water upon striking the hot boiler plates will set up excessive strains due to unequal expansion of the shell.

An Alberger Closed Feed Water Heater can be selected from the Type FC, Type FP or Type U Instantaneous Heater capacity tables.

To ascertain the gallons per hour of water required for the maximum rated boiler horsepower use the following formula:

 $GPH = B.H.P. \times 3.6$

Next, determine the minimum temperature of the mixture of make up water and returns which will be the inlet water temperature at the heater. For economical heater size the water outlet temperature should be kept approximately 15° to 20° below the temperature of the available steam.

Example:

Required a Feed Water Heater for a boiler with a maximum rating of 1200 B.H.P.

Exhaust steam is available at 2 Lbs. Gage pressure (=218° F.)

The winter temperature of returns and make up water is 100° F., and the mixture should reach the boiler at 200° F.

Amount of Feed water required

1200 x 3.6 = 4330 GPH

If a Type FC Heater is desired, turn to the Type FC capacity table for 2 Lb. steam pressure and follow across the page at a temperature range 100°-200° until a figure is reached corresponding to the required capacity. The nearest to this amount would be 4350 GPH; therefore, an FC-12-B Heater should be selected.

Alberger TYPE AB INSTANTANEOUS HEATERS for HUMIDIFIER and SWIMMING POOL SERVICE

Alberger Instantaneous Heater, Type AB.

To meet the requirements involved in air conditioning, Alberger designed the Type AB Heater, a compact unit of simple design, to heat large quantities of water through small temperature ranges. Proven ideal for such conditions, it is used as standard by virtually all the leading manufacturers of air conditioning equipment.

The Alberger Type AB Heater gained equal popularity in swimming pool service which also requires the moderate heating of large quantities of water. Single pass construction to permit the handling of large quantities with minimum frictional resistance, corrugated copper tubes to obtain the highest possible heat transmission and to absorb the small amount of thermal expansion and contraction, cast iron shell and water bonnets to minimize corrosion are the principal design features that have earned for the Alberger Type AB Heater its outstanding position.

STANDARD MATERIALS

Shell	. Cast Iron
Bonnets	. Cast Iron
Tube Sheets	
Saddles or Legs	. Cast Iron
Tubes	.34" O.D. Seamless Drawn Corrugated Copper

STANDARD PRESSURES

Working Pressure	Shell and	tube spaces	.100	Lbs./Sq. In.
Test Pressure	Shell and	tube spaces	.150	Lbs./Sq. In.

SPECIFICATION

SPECIFY: A Horizontal Vertical Instantaneous Heater of the closed water-tube type. It shall be single pass construction and equipped with 3/4" O.D. seamless drawn corrugated copper tubes. The heater shall have ample capacity to heat ... G.P.H. of water from ... F. to ... F., when supplied with sufficient steam at ... Lbs. gage pressure.

The pressure loss through the tubes shall not exceed ... Lbs./Sq. In. The water spaces shall be designed for a working pressure of ... Lbs./Sq. In., and the steam spaces for a working pressure of ... Lbs./Sq. In. The Heater shall be Alberger Type AB or equal. Heater to be as described in the Alberger Heater Company Bulletin No. 200.

24000

	TANEOUS HEATERS re Range 40° to 80°F.		
	STI	EAM PRESSURES	
G.P.H. Water	0 to 2 Lbs. Gage	5 to 8 Lbs. Gage	10 to 15 Lbs. Gage
	HEATI	ER SIZES	
1800	4½-6	41/2-6	41/2-6
2000	$4\frac{1}{2}$ 8	41/2-6	41/2-6
2500	41/2-10	41/2-8	41/2 10
3200	6 —12	4 1/2 10	41/2-10
3800	6 —14	6 —12	6 -14
5000	6 —18	$\begin{array}{ccc} 6 & -16 \\ 6 & -18 \end{array}$	6 —16
6000	$\begin{array}{ccc} 6 & -20 \\ 6 & -22 \end{array}$	6 —20	6 —18
6500	8 —24	6 —22	6 —20
7000 8000	8 —27	8 —24	6 —22
9000	8 —30	8 —27	8 —24
10000	8 —33	8 —30	8 —27
11000	8 —37	8 —33	8 —30
12000	10 —40	8 —37	8 —33
13000	10 —43	10 —39	8 —37
14000	10 —48	10 —43	10 —39
15000	10 —50	10 —45	10 -40
16000	10 —53	10 —48	10 —43
17000	10 —57	10 —51	10 —46 10 —48
18000	10 —60	10 —54 10 —60	10 —40
20000	$ \begin{array}{cccc} 10 &67 \\ 10 &74 \end{array} $	10 —60 10 —66	10 —59
22000	10 -74	10 72	10 -64

The first figure in the heater size indicates the diameter of the shell in inches and the second figure the number of tubes. Dimensions for the various shell diameters are listed in the dimension table below.

10 —80

10 —72

SHELL SIZES	41/2	6	8	10	12	14
A B C D E F G H K	621/2 85/8 6 207/8 387/8 111/8 31/4 61/8	623/4 10 51/2 207/8 393/8 115/8	68 12 8 23 ⁷ /8 39 ⁷ /8 15 ¹ / ₂ 3 ³ / ₄ 7 ⁷ / ₈	71 15 83/4 26 41 ¹ / ₄ 17 ¹ / ₂ 5	713/4 18 81/2 257/8 413/8 181/8 4	763/4 201/2 91/2 277/8 423/8 201/8 3 12 153/8
TAPPED OPENINGS Condensate Drain Blowoff and Vent N Steam Water W	5½ 1 3½ 2½ 2	1 3/4 41/4 3 21/2	2	111/4	13½ 2½ 1	21/2
FLANGED OPENINGS Steam Water W			7 5 3	87/8 6 4	11½ 8 5	13 8 6

^{*} All dimensions are in inches. Flanged openings F. & D. 125 Lbs. American Standard.

Alberger Horizontal Storage Heater, Type S. Welded Construction.

Alberger TYPE S STORAGE HEATERS

Alberger Vertical Storage Heater, Welded Construction.

HERE large quantities of hot water are withdrawn at irregular intervals, hot water storage heaters render the most economical and satisfactory service. Water is heated at a uniform rate and stored during periods of low demand for use at peak requirements, thereby preventing overloads on the steam supply. The constant flow of steam into the heating element assures maximum heat recovery from exhaust steam which, if used for instantaneous heating, would be partially wasted by discharge into the atmosphere during periods of low demand.

Meeting the most exacting demands in construction and quality of workmanship and materials, Alberger Storage Heaters have gained a wide acceptance among architects, engineers and owners. Some of the original Alberger Storage Heaters still perform efficiently in continuous service.

The Alberger Standard Type S Storage Heater consists of a welded or riveted steel plate tank and a removable U-bend heating element. All tanks are carefully designed for maximum strength with suitable plate thicknesses for various working pressures as shown in the table on page 29. Capable and qualified welders who periodically submit test plates for A.S.M.E. approval fabricate Alberger welded storage tanks. Riveted tanks are built in accordance with the best boiler making practice with rivets of proper size and spacing. Longitudinal seams are either double or triple riveted and designed for proper joint efficiency. Tanks 24" in diameter and larger are provided with manholes, smaller tanks with handholes.

The heating element is composed of a group of 1¼" O.D. No. 17 B.W.G. seamless drawn copper tubes formed into U-bends and each end expanded into a forged steel tube sheet. Alberger U-bends are formed by drawing each tube over a mandrel while bending; a method that assures full wall thickness and area in the bend. A rigid support plate holds them firmly in position and prevents vibration. The steam bonnet of cast iron construction is bolted to the tube sheet and tank nozzle.

Steam and water spaces are subjected to a hydrostatic test pressure 50% in excess of their respective working pressure.

The following data and tables permit quick and accurate selections of Alberger Standard Type S Storage Heaters. They are also essentially applicable for special construction.

Alberger Horizontal Storage Heater with Floating Head Type Heating Element. Riveted Construction.

THE Alberger Standard Type S Storage Heater is ideally suited for the great majority of applications, however, various special conditions such as local code requirements, extremely high pressures, local water conditions and corrosive liquids often require special construction.

Alberger builds storage type heaters to suit any such conditions and has the experience and facilities not only to manufacture to the rigid specifications of the ASME Code for Unfired Pressure Vessels, but also to build storage heaters with tanks and other parts fabricated of such corrosion resisting materials as: COPPER-SILI-CON ALLOY, MONEL METAL, STAINLESS STEEL, NICKEL-CLAD STEEL, STAINLESS-CLAD STEEL, COPPER BEARING STEEL, GALVANIZED STEEL, ETC.

STANDARD MATERIAL

Tank	Welded or riveted steel
	plate construction
Steam Bonnet	Cast Iron
Saddles	Cast Iron
Tube Sheet	Forged Steel
Tube Support Plate	Forged Steel
Tubes	
	Seamless drawn Copper

STANDARD PRESSURES

Element-100 Lbs./Sq. In. Working Pressure....150 Lbs./Sq. In. Test Pressure.

Tank—For working pressure, see table page 29.

Test Pressure—50% in excess of working pressure.

Alberger also builds floating head type heating elements with straight tubes arranged in two passes. The first pass comprising two thirds of the total number of tubes presents a large area for the flow of the full volume of steam, the second pass carries a smaller volume and returns the condensate.

Where it is necessary to heat the water with two separate heating mediums, two elements can be installed to operate independently without the danger of contaminating one medium with the other.

Vertical Storage Heaters with specially designed heating elements can be furnished where available floor space for installation is limited.

SPECIFICATIONS

SPECIFY: A Horizontal Storage Heater having a welded riveted steel Tank...." diameter x...." long with a storage capacity of.....gallons and designed for a working pressure of....Lbs. per square inch.

The heating element shall have ample capacity to heat GPH of water from° F. to° F., when supplied with sufficient steam at Lbs. gage pressure. The element shall be built for a working pressure of Lbs. per square inch and shall contain square feet heating surface made up from $1\frac{1}{4}$ " O.D. No. 17 B.W.G. seamless drawn copper tubes in the form of U-bends.

The heater shall be Alberger Type S or equal. Heater to be as described in the Alberger Heater Company Bulletin No. 200.

Sectional Drawing of Alberger Horizontal Storage Heater, Type S.

4

HOT WATER REQUIREMENTS FOR VARIOUS BUILDINGS

MA	XIMUN	I GAL	LONS	OF H	OT W	ATER	PER FI	XTUI	RE PE	R HOU	R		
FIXTURES	Apartment House	Club	Gymnasium	Hospital	Hotel	Industrial Plant	Laundry	Office Bldg.	Public Bath	Private Residence	School	Y. M. C. A.	Department
Wash Basin (Private)	3	3	3	3	3	3	3	3	3	3	3	3	3
Wash Basin (Public)	5	8	10	8	10	15	10	8	15	i i	18	10	8
Bath Tubs	15	15	30	15	20	30			45	15		30	
Foot Basins	3	3	12	3	3	12		* *		3	3	12	
Kitchen Sink	10	20		20	20	20				10	10	20	
Laundry Stat. Tubs	25	35		35	35		42			25		35	
Laundry Revol. Tubs	75	75	* :* *	100	150		100 to		100	75	****	100	* . *
Pantry Sinks	10	20	\$1.00 to	20	20					10	20	20	
Showers	75	200	200	100	100	200		* * .	200	75	200	200	100
Slop Sinks	20	20		20	30	20	10	15	15	15	20	20	20
Heating cap. in % of maximum demand	30%	50%	80%	50%	50%	50%	100%	20%	100%	50%	25%	75%	50%
Storage cap. in % of maximum demand	100%	75%	50%	60%	60%	75%	50%	100%	50%	70%	80%	50%	75%

The quantities shown in the above table are gallons per hour of hot water at 180° F., for which a possible maximum demand may exist for various fixtures and the last two lines indicate the percentage of the total possible maximum demand for which heating and tank storage capacities should be provided for particular buildings.

TYPICAL EXAMPLE outlining the method to arrive at the correct size Alberger Type S Storage Heater. Assume that a Hospital has the following fixtures:

```
100 Wash Basing (private) \times 3 GPH = 300
                             \times 8 GPH = 80
 10 Wash Basins (public)
                             \times 15 GPH = 300
 20 Bath Tubs
                             \times 3 GPH = 30
 10 Foot Basins
                             \times 20 GPH = 40
  2 Kitchen Sinks
                             \times 100 \text{ GPH} = 400
  4 Revol. Laundry Tubs
  4 Pantry Sinks
                             \times 20 GPH = 80
                             \times 100 \text{ GPH} = 400
  4 Showers
                             \times 20 GPH = 200
 10 Slop Sinks
```

1830 Gal.-Maximum hourly demand

SUMMARY: The tank should have a storage capacity of 1100 Gallons and the heating element a capacity to heat 915 GPH of water from 40° to 180° F. Assume that exhaust steam is available at atmospheric pressure (212° F.)

From conversion table page 28, the conversion factor is 20.

$$\frac{915 \text{ GPH}}{20} = 45.7 \text{ Sq. Ft. of heating surface}$$

The table at the bottom of page 28 shows the nearest shell size to 1100 Gallons is No. 19 (48" x 144") with 1140 Gallons storage. Continue across the Horizontal line (pages 28 and 29) for this size of tank until the required heating surface is met. The "B" element with 6 tubes has 46 Sq. Ft. of surface.

Select a No. 19 tank with a No. B-6 element.

See table at top of page 29 for proper shell and head thicknesses.

CONVERSION TABLE — FOR TYPE S STORAGE HEATERS

Gallons Water Heated Per Hour Per Sq. Ft. Heating Surface

Temp.	***				Steam	n Pressur	e—Lbs. G	age			
Range ° F.	Atmos. 212° F.	1	2	5	10	15	20	25	30	40	50
		39.7	40.8	44	51.5	55	58.3	61.5	64.3	68.9	72.9
40-140	38.5		35	37.8	44.5	48.1	51	53.9	56.6	60.7	64.3
150	33	34 29	30	32.8	39	42.1	44.8	47.3	50.2	53.9	57.2
160	28		25.7	28.3	34	37	39.5	42	44.4	48	51.1
170	24	24.8	21.8	24.4	29.6	32.5	35	42 37.2	39.5	42.8	45.6
180	20	20.9			55.5	60	63.2	66.7	70.2	75	79.5
50-140	41.5	42.6	43.9	47.5	47.8	51.5	54.8	57.9	60.7	65.4	69.4
150	35	36	37.2	40.3		45.5	47.7	50.5	53.3	57.5	61.2
160	29.5	30.5	31.6	34.6	41.2	38.9	41.7	44.4	46.9	50.6	54.1
170	25	25.9	26.8	29.7	35.7	34	36.7	39.1	41.5	44.9	48.2
180	20.7	21.7	22.6	25.4	31						
60-140	45	46.2	47.7	51.5	60.5	65	69.5	73.3	76.5	82.2	87.4
	37.5	38.8	39.8	43.4	51.5	55.5	59.3	62.8	65.7	70.8	75.5
160	31.4	32.4	33.4	36.8	44	47.5	51.3	54.2	57.1	61.5	65.7
150 160 170	26.2	27.2	28.2	31.3	37.6	41.3	44.4	47.2	49.9	54	57.8
180	21.6	22.6	23.6	26.6	32.4	35.7	38.5	41.3	43.7	47.5	51.1
70-140	49.5	51	52.4	57	66.8	72.1	77	81.2	85.5	91.8	97.5
	40.5	41.9	43.1	47.2	56	60.5	65	68.5	72.3	77.6	82.6
150 160	33.4	34.6	35.9	39.4	47.2	51.5	55	58.5	61.8	66.8	71 61.8
170	27.6	28.8	29.9	33.2	40	44	47.2	50.5	53.5	57.9	
180	22.5	23.6	24.7	27.9	34.2	37.6	40.8	43.7	46.5	50.5	54.3

The figures in the above conversion table represent gallons of water per hour heated by one square foot surface through a desired temperature range at different steam pressures. The necessary square feet of heating surface can be found by dividing the desired gallons per hour of hot water by the

conversion factor. This method represents an easy way to quickly determine the correct amount of heating surface in storage heaters. See example on page 27. The Table below shows the heating surface in various sizes of heaters.

	Tank														ING							
			-										S	QUAR	E FEI	ET OF	SUR	FACE	AND	NUM	BER	
Size in	Code	Gallons		'A'	Elem	ent			'B'	Elem	ent		'C' E	lem.			,	D, El	ement	t		
Inches	Size	Storage	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
24 x 60	1	118	3	6	10	12	16	19	22	25	27	30	34	36	40	43	46	49	51	53	56	58
24 x 72	2	141	4	8	11	15	19	23	27	30	33	37	41	44	49	52	56	59	63	65	68	71
30 x 72	3	220	4	8	11	15	19	23	27	30	33	37	41	44	49	52	56	59	63	65	68	71
30 x 84	4	255	5	9	13	18	22	27	31	35	39	43	48	52	57	61	65	70	73	76	81	84
30 x 96	5	290	6	10	15	20	25	31	36	41	45	50	55	60	66	70	75	80	85	88	93	97
36 x 72	6	315	4	8	11	15	19	23	27	30	33	37	41	44	49	52	56	59	63	65	68	71
36 x 84	7	365	5	9	13	18	22	27	31	35	39	43	48	52	57	61	65	70	73	76	81	84
36 x 96	8	420	6	10	15	20	25	31	36	41	45	50	55	60	66	70	75	80	85	88	93	97
36 x 108	9	475	7	12	17	23	29	35	40	46	50	56	62	68	74	80	85	90	96	100	105	110
36 x 120	10	525	7	13	19	26	32	38	45	51	56	63	70	76	83	89	95	101	107	111	118	123
42 x 84	11	500	5	9	13	18	22	27	31	35	39	43	48	52	57	61	65	70	73	76	81	84
42 x 96	12	575	6	10	15	20	25	31	36	41	45	50	55	60	66	70	75	80	85	88	93	97
42 x 108	13	650	7	12	17	23	29	35	40	46	50	56	62	68	74	80	85	90	96	100	105	110
42 x 120	14	720	7	13	19	26	32	38	4.5	51	56	63	70	76	83	89	95	101	107	111	118	123
42 x 144	15	860	8	16	23	31	38	46	54	62	68	76	84	91	100	107	114	122	129	135	143	150
48 x 96	16	750	6	10	15	20	25	31	36	41	45	50	55	60	66	70	75	80	85	88	93	97
48 x 108	17	845	7	12	17	23	29	35	40	46	50	56	62	68	74	80	85	90	96	100	105	110
48 x 120	18	950	7	13	19	26	32	38	45	51	56	63	70	76	83	89	95	101	107	111	118	123
48 x 144	19	1140	8	16	23	31	38	46	54	62	68	76	84	91	100	107	114	122	129	135	143	150
48 x 168	20	1310	8	16	25	31	38	46	54	62	68	76	84	91	100	107	114	122	777	222		132
54 x 120	21	1190	7	13	19	26	32	38	45	51	56	63	70	76	83	89	95	101	107	111	118	150
54 x 144	22	1430	8	16	23	31	38	46	54	62	68	76	84	91	100	107	114	122	129	135	143	150
60 x 120	23	1420	7	13	19	26	32	38	45	51	56	63	70	76	83	89	95	101	107	111	118	123
60 x 144	24	1710	8	16	23	31	38	46	54	62	68	76	84	91	100	107	114	122	129	135	143	150
60 x 168	25	2000	18	16	23	31	38	46	54	62	68	76	84	91	100	107	114	122	129	135	143	150

*TANK THICKNESSES RECOMMENDED FOR VARIOUS WORKING PRESSURES

	100 Lbs.					125	Lbs.			150	Lbs.	
Tank	Welded		Riveted		We	lded	Riveted		We	lded	Riveted	
Dia.	Shell	Heads	Shell	Heads	Shell	Heads	Shell	Heads	Shell	Heads	Shell	Heads
24"	3/16"	1/4"	3/16"	1/4"	3/16"	1/4"	3/16"	1/4"	1/4"	5/16"	1/4"	5/16"
30"	1/4"	5/16"	1/4"	5/16"	1/4"	5/16"	1/4"	5/16"	1/4"	3/8"	5/16"	3/8"
36"	1/4"	5/16"	1/4"	5/16"	1/4"	3/8"	5/16"	3/8"	5/16"	7/16"	3/8"	7/16"
42"	1/4"	5/16"	1/4"	5/16"	5/16"	7/16"	38"	7/16"	3/8"	1/2"	3.8"	1/2"
48"	5/16"	3/8"	5/16"	3/8"	3/8"	1/2"	3/8"	1/2"	7/16"	9/16"	7/16"	9/16"
54"	5/16"	7/16"	5/16"	7/16"	7/16"	9/16"	7/16"	9/16"	1/2"	5/8"	7/16"	9/16" 5/8"
60"	3/8"	1/2"	3/8"	1/2"	7/16"	9/16"	1/2"	9/16"	9/16"	11/16"	1/2"	11/16"
72"	7/16"	9/16"	7/16"	9/16"	9/16"	11/16"	9/16"	11/16"	5/8"	13/16"	5/8"	13/16"

^{*} The above thicknesses are for steel plate construction only.

For the selection of the proper size storage heater, see typical example page 27.

The table below on page 28 and 29 outlines storage and capacity data for Alberger Standard Storage Heaters. At the left are shown standard tank sizes with their code numbers and storage capacities. To the right of each tank size are listed the square feet of heating surfaces which can be furnished for that particular size of tank. The headings above the heating surface figures represent the element sizes and

number of tubes. For example, an Alberger Type S Storage Heater, size 15-F-30 has a tank 42" diameter x 144" long with a storage capacity of 860 gallons and is equipped with a size F Element, containing 30 tubes totaling 228 Sq. Ft. of heating surface. See page 30 for dimensions of Alberger Type S Storage Heaters.

TYPE	5 — U	TUBE	STORAGE	HEATERS

•	E' Ele	ment				·F'	Eleme	ent								G' El	emen	t				
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
***						4 7 4			4.00				Louis.	A.O.A.					****			
76	80	84	87							4.2.2										4 6 4		
90	94	99	103																			
104	109	114	119																			
76	80	84	87					111		* * *									222	1 2 2		
90	94	99	103																			
104	109	114	119	4 4 4-			* * *	4 + 4		4 + 4									* * *			
118	123	129	134				444				* * *											
132	138	144	150	14/4.4					9.404	9 - 6 , 95	2017					4.4.4			2.0.2	4-4-6		2.0
90	94	99	103	107	111	116	120	125	130	134					1.4.		1 6 4				* * *	4.4.2
104	109	114	119	124	128	133	139	144	149	155	4.4.4		* * *									
118	123	129	134	140	145	151	157	163	169	175	100			4.4.4				1.4.4	100	11.		* 1 *
132	138	144	150	156	162	169	175	182	189	195	* * *	4.4.4	999	111				1.00	1.1.1	7.1.2	1.00	1.1.4
159	166	174	181	189	196	204	212	220	228	236					1.1.1		4140.00	- X - X - X - X			-	-
104	109	114	119	124	128	133	139	144	149	155	158	163	167	168	172	177	183	187	193	198	204	209
118	123	129	134	140	145	151	157	163	169	175	179	184	189	190	196	202	207	213	219	225	231	237
159	138 166	144	150 181	156 189	162 196	169 204	175 212	182 220	189 228	195 236	200 242	206 249	212 256	213 259	219 267	226 274	232 282	239 289	245 298	252 306	259 314	265 322
159	166	174	181	189	196	204	212	220	228	236	242	249	256	259	267	274	282	289	298	306	314	322
132	138		2.2.2					182	189	195	200	206	212	213	219	226	232	239	245	252	259	265
159	166	144	150 181	156 189	162 196	169 204	175 212	220	228	236	242	249	256	259	267	274	282	289	298	306	314	322
132	138	144			163				4	195	200			213	219	226	232	239	245	252	259	265
159	166	174	150 181	156 189	196	169 204	175 212	182 220	189 228	236	242	206 249	212 256	259	267	274		289	298	306	314	322
159	166	174	181	189	196	204		220	228	236	1.30 1.75	249	256	259	267	274	282	289	298	306	314	322

Alberger Horizontal Storage Heater, Type S.

DIMENSION TABLE Alberger TYPE S STORAGE HEATERS

Ta	nk					Water
Code	AxB	C	D	E	F	Open'gs G
1 2	24 x 60 24 x 72	12 12	13 ³ / ₄ 13 ³ / ₄	$\begin{array}{c} {\bf 10}\frac{1}{2} \\ {\bf 10}\frac{1}{2} \end{array}$	$1\frac{1}{2}$ $1\frac{1}{2}$	$1\frac{1}{2}$ $1\frac{1}{2}$
3 4 5	30 x 72 30 x 84 30 x 96	14 14 14	17 17 17	$13\frac{1}{2}$ $13\frac{1}{2}$ $13\frac{1}{2}$	2 2 2	2 2 2
6 7 8 9	36 x 72 36 x 84 36 x 96 36 x 108 36 x 120	15 15 15 15	20 20 20 20 20	15½ 15½ 15½ 15½ 15½	21 21 21 21 21 21	2½ 2½ 2½ 2½ 2½ 2½
11 12 13 14 15	42 x 84 42 x 96 42 x 108 42 x 120 42 x 144	16 16 16 16 16	23 23 23 23 23	18 18 18 18	23 23 23 23 23 23	3 3 3 3
16 17 18 19 20	48 x 108 48 x 120 48 x 144 48 x 168	18 18 18 18	26 ½ 26 ½ 26 ½ 26 ½ 26 ½	20 20 20 20 20	3 3 3 3	4 4 4 4
21	54 x 120 54 x 144	20 20	29 J 29 J	23 23	31	4
23 24 25	60 x 120 60 x 144 60 x 168	21 21 21	321 321 321	25 25 25	31	5 5 5

*All dimensions are in inches.

Size of Element	H	Steam Inlet	Cond. Outlet	L
A	71	11/2	1	81
B	91	11/2	1	91
C	10	21/2	11	10%
D	11	4	11/2	12
E	123	6	11/2	13
F	14	6	2	14
G	143	6	2	151

*All dimensions are in inches.

For Shell and Head Thickness see page 29.

For Storage Capacity of Tank see page 28.

For Selection of proper Size of Heating Element and Tank see Typical Example on page 27.

Steam inlet openings 4" and larger are faced and drilled 125 Lbs. American Standard.

The dimensions given in the above tables are for welded or riveted steel tanks and are also applicable for welded tanks of any other material.

Alberger Heating Element for Storage Tanks.

Alberger U TUBE HEATING ELEMENTS for STORAGE TANKS

		Heating													N	I	Min.
Code No.	Surface Sq. Ft.	Capacity G.P.H.	Á	В	C	D	E	F	G	Н	J	K	L	M	No. & Size of Bolts	Bolt Circle	Tank Lengt
AE-I	3.75	75	34	121/2	5/16	8	7/8	14	8	$4\frac{1}{2}$	11/2	1	81/4	$3\frac{1}{2}$	8-5/8	111/4	36
AE-2	5	100	46	121/2	5/16 5/16 5/16 5/16	8	7/8	14	8	41/2	11/2	1	81/4	31/2	8-5/8	111/4	48
AE-3	7.5	150	46	121/2	216	8	7/8 7/8 7/8	14	8	41/2	11/2	1	81/4	31/2	8-5/8	111/4	48
AE-4	11.25	225	70	121/2	216	8	28	14	8	4/2	1/2	1	81/4	31/2	8-5/8	111/4	72
AE-5	13.7	300	70	121/2		8	1/8	14	8	41/2	11/2	1	81/4	31/2	8-5/8	111/4	72
AE-6	18.8	375	70	121/2	5/16	8	7/8	14	8	41/2	1/2	1	81/4	31/2	8-5/8	111/4	72'
BE-1	22.5	450	58	15	5/16	101/8	7/8	14	10	41/2	11/2	1	91/4	43/4	8-3/4	133/8	60'
BE-2	30	600	70	15	5/16	101/8	7/8	14	10	41/2	11/2	1	91/4	43/4	8-3/4	133/8	72'
BE-3	36.5	730	70	15	216	101/8	78	14	10	41/2	11/2	1	91/4	43/4	8-3/4	1338	72'
BE-4	43	860	811/4	15	216	101/8	/8	14	10	4/2	1/2	1	91/4	4%	8-3/4	133/8	84'
CE-1	44.25	885	70	161/2	5/16	111/2	1/8	14	12	$5\frac{1}{4}$	21/2	11/4	10 1/8	43/4	8-3/4	15	72'
DE-1	51	1020	561/2	18	3/8	131/4	7/8	14	12	51/2	4	11/2	121/8	51/4	12-3/4	161/2	60"
DE-2	62.5	1250	681/2	18	3/8	131/4	7/8	14	12	51/2	4	11/2	121/8	51/4	12-3/4	161/2	72"
DE-3	76	1520	801/2	18	3/8	131/4	7/8	14	18	51/2	4	11/2	121/8	51/4	12-3/4	161/2	84"
DE-4	84	1680	801/2	18	3/8	131/4	1/8	14	18	5/2	4	11/2	121/8	51/4	12-3/4	161/2	84"
DE-5	100	2000	921/2	18	3/8	131/4	1/8	14	18	5/2	4	1/2	121/8	$5\frac{1}{4}$	12-3/4	161/2	96"
EE-I	120	2400	921/2	201/2	3/8	151/4	7/8	14	20	$5\frac{3}{4}$	6	2	133/8	63/4	12-7/8	183/4	96"
FE-1	130	2600	791/2	23	3/8	17	1	14	20	6	6	2	14	8	16-7/8	21	84"
FE-2	150	3000	911/2	23	3/8	17	1	14	20	6	6	2	14	8	16-7/8	21	96"
GE-1	180	3600	73	25	3/8	191/4	11/8	14	20	63/4	6	2	153/8	8	16-7/8	23	84"
GE-2	210	4200	91	25	3/8	191/4	11/8	14	20	63/4	6	2	153/8	8	16-7/8	23	96"

*Heating capacities are for a temperature rise from 40° to 180° F. with steam at 0 Lbs. gage.
All dimensions are in inches. Flanged openings are faced and drilled 125 Lbs. American Standard.

Standard Storage Tank Heating Elements for use with steel tanks are designed for a maximum working pressure of 100 Lbs. and Hydrostatically tested to 200 Lbs. before shipment. They are constructed as follows: welded steel tank nozzle, rolled steel tube sheet and support plate, cast iron steam header and $1\frac{1}{4}$ " O.D.

No. 17 B.W.G. seamless drawn copper tubes. For use with non-corrosive tanks, elements can be built of other material and tube gages to suit conditions. Additional capacities can be interpreted from the conversion table on page 28.

Elements can also be furnished without tank nozzle.

Dimensional Drawing for Alberger Heating Elements completely assembled and ready for installation into existing or new tanks at the proper location as shown on drawing. Note minimum length of tank in which elements can be inserted.

Alberger Horizontal Condensate Cooler (Economizer), Type E.

Alberger TYPE E

CONDENSATE COOLERS (ECONOMIZERS) with CORRUGATED TUBES

*DIMENSION AND CAPACITY TABLE

Condensate cooled from 200° to 100° F., with cooling water entering at 50° and leaving at 100° F. Maximum friction in cooling water spaces — 2 Lbs./sq. in., and in the condensate spaces — 1 Ft. Head

COOLER SIZE	E-6A	E-6B	E-6C	E-8A	E-8B	E-8C	E-10B	E-10C	E-12B	E-12C	E-14C	E-14E
Cooling Water (G. P. H.	265	350	415	595	790	910	1290	1480	1785	2180	2880	3750
Condensate Lbs. per Hr.	1100	1450	1740	2480	3310	3800	5370	6190	7430	9080	12000	15700
A B D	53 65/8 11	65 65/8 11	77 65/8 11	53½ 85/8 12½	65½ 85/8 12½	$77\frac{1}{2}$ $8\frac{5}{8}$ $12\frac{1}{2}$	68 10 ³ / ₄ 15	80 10 ³ ⁄ ₄ 15	68 12 ³ / ₄ 18	80 12 ³ / ₄ 18	80½ 14¾ 20½	104½ 14¾ 20½
F G H	5 ³ / ₄ 6 3	5 ³ / ₄ 6 3	5 ³ / ₄ 6 3	6 ½ 6 3	6 3	6 1/2	9 8 3	9 8 3	10 10 4	10 10 4	11 12 4	11 12 4
TAPPED R CONNECTIONS W	1½ 1	11/4 1	1½ 1	2 1½	2 1½	2 1½	2½ 2	2½ 2	3 2½	3 2½	3	3

^{*}All dimensions are in inches.

Purchasers of steam from a central station desire to get steam at lowest cost. Cooling condensate before its return to the central station or its discharge into the sewer constitutes a definite saving as all heat extracted is transferred to some other liquid that must be heated. This saving quickly returns the small outlay involved in the installation of an Alberger Type E Condensate Cooler.

Being of fixed tube sheet construction, the Type E Condensate Cooler is equipped with corrugated copper tubes to absorb the slight expansion and contraction due to thermal differences.

Sturdy construction and quality materials assure uninterrupted service and long life.

STANDARD MATERIALS

Shell	. Welded Steel
Bonnets	. Cast Iron
Saddles	. Cast Iron
Tube Sheets	. Forged Steel
Tubes	.34" O.D. Seamless drawn corrugated Copper

STANDARD PRESSURES

Working Pressure...Shell and tube spaces...125 Lbs./sq. in. Test Pressure....Shell and tube spaces...200 Lbs./sq. in.

Alberger Tank Suction Heater

Alberger FUEL OIL and TANK SUCTION HEATERS

FUEL Oil Heaters are for the purpose of preheating heavy oils to a temperature necessary for thorough atomization.

In Alberger Fuel Oil Heaters, oil multi-passed through the tubes is heated by steam induced into the shell. Alberger offers two types, the floating head and U-bend construction. Each design eliminates severe expansion or contraction strains due to high temperature differences. The floating head type facilitates quick cleaning of the tubes.

Alberger Fuel Oil Heaters are furnished with welded steel shells, seamless drawn steel tubes expanded into forged steel tube sheets and cast iron or steel covers. For special requirements Admiralty tubes and brass tube sheets can be supplied.

Capacities and dimensions upon application.

TANK Suction Heaters are installed in storage tanks for the purpose of heating the viscous liquid withdrawn to a temperature at which it can be easily pumped through a pipe line.

The shell of the Alberger Tank Suction Heater is inserted into the storage tank, near the bottom, and welded to the tank wall with the liquid nozzle outside the tank. This nozzle is connected to a pump which pulls the heavy liquid through the heater shell while steam inside the tubes supplies the heat.

The method of heating only the liquid withdrawn effects a large saving in steam compared to the old practice of heating the entire volume in the tank.

Capacities and dimensions upon application.

Alberger Fuel Oil Heater U-Bend Type

Alberger Fuel Oil Heater Floating Head Type

(Right)
High Vacuum Vapor
Condenser.

SPECIALLY DESIGNED EQUIPMENT

THE Alberger Heater Company specializes in the design and construction of heat interchange equipment for unusual conditions as found in the chemical, petroleum and allied industries.

(Left) Heating System Heater

(Right)
Laundry Pit Type
Waste Heat Reclaimer.

(Below) Sugar Liquor Coolers.

INDEX

Page	Page
CONDENSATE COOLERS	Type E (Condensate Coolers with corrugated tubes)
CONVERSION TABLES, STORAGE HEATERS	Capacity Tables 32
	Differsion rables
CONVERTORS, HOT WATER	Specifications
FEED WATER HEATERS	Type FC—with corrugated tubes 6-12
FUEL OIL HEATERS	Capacity Tables
HEATING ELEMENTS	Dimension Tables 8-9
Conversion Tables—Heating Capacity 28	~ 10 1
Dimension and Capacity Tables 3:	
HOT WATER REQUIREMENTS	Capacity Tables
For Buildings 2	D:
	Specifications
ILLUSTRATIONS	Type U—with U-bend tubes
Blowdown Exchangers	0 1. 7 1.
Corrugated Tubes	
Heat Exchangers	
Heating System Heater	4
High Pressure Feed Water Heater	STORAGE HEATERS (Type S) 25-30
High Vacuum Condenser	4 Conversion Tables—Heating Capacity 28
Laundry Reclaimer	Dimension Tables
Removable Tube Elements	Hot Water Requirements for Buildings 27
Sugar Juice Heaters	
Sugar Liquor Coolers	
Surface Condenser	Tank and Element Sizes
Vapor Condenser	Tank Thicknesses
INSTANTANEOUS HEATERS	
Type AB (Swimming Pool Heaters) . 23-2	SWIMMING POOL HEATERS 23-24
Capacity Tables	
Dimension Tables	4 IANA SUCTION HEATEN
Specifications	^^

O 1938

ALBERGER HEATER COMPANY

281-289 CHICAGO STREET BUFFALO, N. Y.

We are affiliated with the Howard Iron Works, Buffalo, N. Y., Manufacturers of Slip Type Expansion Joints for pipe line service.

Representatives in all Principal Cities

Alberger HEATERS

EFFICIENT . . DEPENDABLE . . ACCESSIBLE

INSTANTANEOUS
HEATERS

FEED WATER
HEATERS

STORAGE
HEATERS

HEAT
EXCHANGERS

VAPOR
CONDENSERS

SURFACE
CONDENSERS

HEATING SYSTEM
CONVERTERS

DOMESTIC WATER
HEATERS

SPECIAL PROCESS
WORK

SWIMMING POOL HEATERS

COOLERS

ALBERGER HEATER COMPANY
281-289 CHICAGO STREET
BUFFALO, N. Y.