Introdução ao Cálculo Numérico

Iteração do Ponto-Fixo

•Considere o problema de determinação de uma raiz de uma função, f(x) = 0, onde

$$f: \quad \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x)$$

•Considere, ainda, que a equação f(x) = 0 foi reescrita numa forma equivalente,

$$x = g(x)$$

•Em qualquer processo iterativo da forma

$$x_{i+1} = g(x_i), i = 0,1,2,...$$

podemos perguntar:

Será que g é tal que a iteração acima converge para um valor x, denominado pontofixo de g, i.e.

$$x = g(x)$$
?

Os teoremas a seguir elucidam essa questão:

Teorema da Existência e Unicidade do Ponto-Fixo:

- a) (Existência): Se g(x) é contínua no intervalo [a;b] e se $g(x) \in [a;b]$ $\forall x \in [a;b]$, então g tem um ponto-fixo em [a;b]
- b) (Unicidade): Se, além disso, g'(x) existe e é contínua em [a;b] e existe uma constante positiva k<1 tal que

$$|g'(x)| \le k, \forall x \in [a; b]$$

então existe apenas um ponto-fixo de g(x) em [a; b].

Teorema da Existência e Unicidade do Ponto-Fixo:

Prova:

- a) Existência:
- Se g(a) = a ou g(b) = b, então um dos extremos do intervalo é um ponto-fixo de g;
- Caso contrário, g(a) > a e g(b) < b:

Defina uma função h(x) = g(x) - x.

Então, h(a) = g(a) - a > 0 e h(b) = g(b) - b < 0 (observe que se g é contínua, h também o é)

Pelo **Teorema do Valor Intermediário**, existe então um $p \in [a;b]$ tal que h(p) = p. Logo, g(p) = p, e p é um ponto-fixo de g em [a;b]

 Teorema da Existência e Unicidade do Ponto-Fixo:

Prova:

- b) Unicidade:
- Suponha que existam dois pontos-fixos, p e q em [a;b]. Por hipótese, $|g'(x)| \le k < 1$, $\forall x \in [a;b]$. Pelo **Teorema do Valor Médio**, existe um valor $p < \xi < q$ tal que

$$g'(\xi) = \frac{g(p) - g(q)}{p - q}.$$

Logo,

$$|p-q|=|g(p)-g(q)|=|g'(\xi)||p-q|\leq k|p-q|<|p-q|,$$
 o que é uma contradição, de onde se conclui que existe apenas um ponto-fixo.

Teorema do Ponto-Fixo:

Seja g(x) contínua no intervalo [a; b] tal que $g(x) \in [a; b] \ \forall x \in [a; b]$. Suponha, ainda, que g'(x) existe e é contínua em [a; b] e existe uma constante positiva 0 < k < 1 tal que

$$|g'(x)| \le k, \forall x \in [a; b]$$

Então, para qualquer $x_0 \in [a; b]$, a sequência definida por

$$x_{i+1} = g(x_i), i = 0,1,2,...$$

converge para o ponto-fixo único de g em [a; b].

- •Note, no entanto, que para a equação f(x) = 0, diferentes equações na forma x = g(x) podem ser obtidas; talvez nem todas gerem uma sequência convergente!
- •Por exemplo, considere o problema de se localizar uma das raízes da função $f(x) = x^4 x 10$, no intervalo [0; 2], a qual é 1,855584529.

•A partir de f(x) = 0, podemos escrever:

$$\bullet \quad \chi = \frac{10}{x^3 - 1}$$

•
$$x = \sqrt[4]{x + 10}$$

•
$$x = \frac{\sqrt{x+10}}{x}$$

•Repetindo a aplicação da equação $x_{i+1} = g(x_i)$ a partir de $x_0 = 2$, até que a separação entre dois valores consecutivos x_i e x_{i+1} seja suficientemente pequena, i.e.

$$|x_{i+1} - x_i| < 10^{-12}$$

para cada uma das três equações anteriores, obtemos os seguintes resultados:

$\boldsymbol{g_1}(\boldsymbol{x}) = \frac{10}{x^3 - 1}$	
x_i	$g_1(x_i)$
2,00000	1,42857
1,42857	5,22070
5,22070	0,07077
0,07077	-10,00350
-10,00350	-0,00998
-0,00998	-9,99999
-9,99999	-0,00999
-0,00999	-9,99999
-9,99999	-0,00999
-0,00999	-9,99999
-9,99999	-0,00999
-0,00999	-9,99999
-9,99999	-0,00999
-0,00999	-9,99999
-9,99999	-0,00999
-0,00999	-9,99999
-9,99999	-0,00999
-0,00999	-9,99999
-9,99999	-0,00999

Diverge!

$\boldsymbol{g_2(x)} = \sqrt[4]{x+10}$	
x_i	$g_2(x_i)$
2,00000	1,86121
1,86121	1,85580
1,85580	1,85559
1,85559	1,85558
1,85558	1,85558
1,85558	1,85558

Converge rapidamente!

Depende da função g(x)!

a (w) -	$\sqrt{x+10}$
$g_3(x) =$	<u> </u>
x_i	$g_3(x_i)$
2,00000	1,73205
1,73205	1,97754
1,97754	1,75008
1,75008	1,95868
1,95868	1,76554
1,76554	1,94280
1,94280	1,77879
1,77879	1,92941
1,92941	1,79013
1,79013	1,91811
1,91811	1,79982
1,79982	1,90857
1,90857	1,80810
1,80810	1,90050
1,90050	1,81516
1,81516	1,89368
1,89368	1,82118
1,82118	1,88790
1,88790	1,82631

Converge lentamente!

Iteração do Ponto-Fixo

