Cinemática

Índice

- Qué es la cinemática?
- Por qué es útil la cinemática?
- Sistema de referencia
- Magnitudes físicas del movimiento
- Magnitudes del movimiento
- Tipos de movimiento

- Rama de la física que estudia el <u>movimiento</u> de los objetos
- No obstante, qué es el movimiento?
 - Cambio de posición de un objeto CON RESPECTO a un sistema de referencia

Investigadora trabajando

Rosa Parks sentada en un autobús

- ❖ Ejemplo 1: una persona que se mueve de un punto A, a un punto B
 - Cambio de posición con respecto a la tierra:
 - Posición inicial: A -
 - Posición final: B

La persona sigue una trayectoria para ir desde A a B

- ❖ Ejemplo 2: una persona que se mueve dentro de un tren de un punto A, a un punto B
 - ❖ La persona cambia de posición con respecto al tren:
 - ❖ Posición inicial: A ¬
 - Posición final: B

La persona sigue una <u>trayectoria</u> para ir desde A a B

El tren cambia de posición con respecto a la tierra

- Ejemplo 3: una persona (Juan) que se mueve dentro de un tren de un punto A, a un punto B y otras personas (Fran y María) que están quietas en el vagón
 - Juan: Cambio de posición con respecto al tren:
 - ❖ Posición inicial: A 🤈
 - Posición final: B

Juan sigue una <u>trayectoria</u> para ir desde A a B

- ❖ El tren: Cambio de posición con respecto a la tierra ⇒ la velocidad de Juan será diferente para Fran y María que para un observador fuera del tren
- Fran y María: cambio de posición con respecto a la tierra

- Reflexión: Qué ocurre si tenemos un coche moviéndose a velocidad constante y ponemos a volar un dron de manera que este esté suspendido en el aire (sin volar hacia delante ni hacia atrás, sólo hacia arriba)
 - a) El Dron se queda estático en el coche y se mueve con este
 - b) El dron se choca contra el cristal de atrás del coche

Por qué es útil la cinemática?

- Pero, por qué es útil la cinemática?
- Pongamos un ejemplo: un coche que se mueve de un punto A, a un punto B
 - ❖ A qué hora pasó por A'?
- La cinemática nos permite dar respuesta a esta pregunta (entre otras), no obstante, para ello hay que conocer una serie de **magnitudes físicas medibles**, tales como el desplazamiento del coche o el tiempo que ha tardado en realizar dicho desplazamiento

Por qué es útil la cinemática?

❖ Imaginemos que, de A a B hay 20 km, y que el coche ha tardado 10 minutos

Magnitudes físicas medibles $\Delta x_{A,B} = \left| x_f - x_0 \right| = 20 \ km$ $\Delta x_{A,A'} = \left| x_f - x_0 \right| = 5 \ km$ $\Delta t_{A,B} = \left| t_f - t_0 \right| = 10 \ min$

❖ Parece lógico pensar que si de A a B hay 20 km y se tardan 10 minutos, de A a A', habiendo 5 km, se tarde $\frac{5}{20}$ veces lo que se tarda de A a B. Vamos, la típica regla de 3:

$$\begin{array}{c}
20 \to 10 \\
5 \to t
\end{array}$$

$$t = \frac{5}{20} \cdot 10$$
ESTO ESTÁ MAL

Por qué es útil la cinemática?

- Pero, por qué está mal?
 - Porque existe otra magnitud física v, que relaciona x con t
 - \diamond Esta magnitud v, es la velocidad, y no tiene por qué ser constante
 - ❖ En el caso de que el coche hubiese ido de A a B con una velocidad constante, entonces, la deducción anterior sería correcta

- Entonces, para describir el movimiento del coche necesitamos:
 - Conocer el tipo de movimiento que lleva el coche, para lo que necesitamos:
 - Introducir las magnitudes físicas que describen el movimiento, para lo que necesitamos:
 - Introducir lo que es un sistema de referencia

- Sistema de referencia:
 - Conjunto de ejes gracias a los cuales un observador O situado en el origen del sistema de referencia puede medir la posición de un objeto
 - ❖ El observador se encuentra en el punto de referencia (donde se cruzan los ejes)
 - Habrá tantos ejes como dimensiones

1 Dimensión: eje x

2 Dimensiones: ejes xy

3 Dimensiones: ejes xyz

Movimiento en 1 Dimensión ⇒ Representación simplificada

Movimiento en 2 Dimensiones ⇒ **Representación simplificada**

Movimiento en 3 Dimensiones ⇒ Representación simplificada

- Construcción de un sistema de referencia:
 - Habrá tantos ejes como dimensiones
 - El observador se encuentra en el punto de referencia (donde se cruzan los ejes)
 - Los ejes se dividen en espacios regulares que representan una distancia en la dirección de ese eje

- Vector de posición \vec{r} :
 - Es la línea que una el origen (donde está el observador), con el punto P donde se encuentra el objeto

2 Dimensiones: ejes xy

Travectoria: Desplazamiento en el eje y: $\Delta y = (y_f - y_0) = 5$ distancia recorrida <u>Desplazamiento en el eje x</u>:

 $\Delta x = (x_f - x_0) = 6$

3 Dimensiones: ejes xyz

- Ejemplo:
 - Un objeto P se mueve:
 - 1. 30m hacia el este (sentido positivo del eje x)
 - 2. 15m al sur (sentido negativo del eje y)
 - 3. 40m al oeste (sentido negativo del eje x)
 - ❖ Determinar el desplazamiento de P relativo al origen de coordenadas

La magnitud del <u>desplazamiento</u> viene dada por:

$$OP = \sqrt{15^2 + 10^2} = 18 \text{ m}$$

Magnitudes físicas — Posición x

- Posición x:
 - Nos dice en que <u>punto del espacio</u> está situado un objeto
 - $\Delta x = (x_f x_0)$ es el desplazamiento, y NO depende de la <u>trayectoria</u>
 - La distancia recorrida SÍ que depende de la trayectoria
 - Para describir este punto del espacio se define un <u>sistema de referencia</u> (construcción matemática que simplifica la descripción del problema)

- Situamos un Origen de coordenadas:
 - Lo situamos en A por simplicidad
 - Fran y María se mueven con respecto a A
 - El observador con respecto al cual nos movemos siempre está en el origen

Fran recorre más distancia que María, aunque ambos se han desplazado lo mismo (desde A hasta B $\Rightarrow \Delta x = (x_f - x_0)$)

Magnitudes físicas — Tiempo t

- ❖ Tiempo t:
 - Instante en el que nos encontramos
 - $\Delta t = (t_f t_0)$ es la cantidad de tiempo que tarda un móvil en desplazarse un Δx
 - Las trayectorias cambian a lo largo del tiempo

Componente x de la trayectoria de Fran con respecto al tiempo Componente x de la trayectoria de María con respecto al tiempo

Componente y de la trayectoria de Fran con respecto al tiempo María no se mueve en la dirección y

Magnitudes físicas — Tiempo t

- Tiempo t:
 - Instante en el que nos encontramos
 - \diamond Δ t es la cantidad de tiempo que tarda un móvil en desplazarse un Δx
 - Las trayectorias cambian a lo largo del tiempo

Visto desde otra perspectiva no parece que Fran avance más en el tiempo y luego retroceda (eso sería imposible)

Magnitudes físicas — Tiempo t

- ❖ Tiempo *t* :
 - Instante en el que nos encontramos
 - \diamond Δ t es la cantidad de tiempo que tarda un móvil en desplazarse un Δx
 - Las trayectorias cambian a lo largo del tiempo

 \diamond Velocidad v:

- Velocidad media
- Cómo cambia la posición de un objeto con el tiempo: $v=rac{\Delta x}{\Delta t}=rac{x_f-x_0}{t_f-t_0}$
- Velocidad instantánea: velocidad que nos da el velocímetro del coche o velocidad a la que nos movemos en ese PRECISO momento
- ightharpoonup Para explicarlo de forma sencilla ightharpoonup Dirección de movimiento: eje x (Como María)

María siguiendo la trayectoria con velocidad no constante

- Velocidad v:
 - Cómo cambia la posición de un objeto con el tiempo: $v = \frac{\Delta x}{\Delta t} = \frac{x_f x_0}{t_f t_0}$
- ❖ Velocidad constante:
 - **\clubsuitUna misma** variación de tiempo Δt produce **una misma** variación en el espacio Δx

María siguiendo la trayectoria con velocidad constante

- ❖ Velocidad no constante:
 - **ilde{ }Una misma** variación de tiempo Δt produce **distinta** variación en el espacio Δx

María siguiendo la trayectoria con velocidad no constante

- Somo cambia la posición de un objeto con el tiempo: $v = \frac{\Delta x}{\Delta t} = \frac{x_f x_0}{t_f t_0}$
- Velocidad constante:
 - **Una misma** variación de tiempo Δt produce **una misma** variación en el espacio $\Delta x \Rightarrow \frac{\Delta x_1}{\Delta t_1} = \frac{\Delta x_2}{\Delta t_2}$

Entre $t_1 = 1s$ y $t_2 = 2s$ la velocidad es: $\Delta x_1 = 6'54 - 3'35$

$$v_1 = \frac{\Delta x_1}{\Delta t_1} = \frac{6'54 - 3'35}{1} = 3,19m/s$$

Entre $t_3 = 3s$ y $t_4 = 4s$ la velocidad es:

$$v_2 = \frac{\Delta x_2}{\Delta t_2} = \frac{12'75 - 9'56}{1} = 3,19m/$$

Hemos definido la velocidad media como la relación que existe entre espacio recorrido (desplazamiento) y tiempo, por lo tanto, si conocemos la velocidad, es posible obtener el espacio recorrido:

$$v_{\text{media}} = \frac{\Delta x}{\Delta t} \Rightarrow \Delta x = v\Delta t = 3.19 \left(\frac{m}{s}\right) (6.26 - 0)(s) = 20 \text{ m}$$

- Cómo cambia la posición de un objeto con el tiempo: $v = \frac{\Delta x}{\Delta t} = \frac{x_f x_0}{t_f t_0}$
- ❖ Velocidad no constante:
 - **�Una misma** variación de tiempo Δt produce **distinta** variación en el espacio $\Delta x \Rightarrow \frac{\Delta x_1}{\Delta t_1} \neq \frac{\Delta x_2}{\Delta t_2}$

Entre
$$t_1 = 1s$$
 y $t_2 = 2s$ la velocidad es:
$$v_1 = \frac{\Delta x_1}{\Delta t_1} = \frac{2,94-1,05}{2-1} = 1,89m/s$$

Entre $t_3=3s$ y $t_4=4s$ la velocidad es: $v_2=\frac{\Delta x_2}{\Delta t_2}=\frac{9,58-5,87}{4-3}=3,71m/s$

Hemos definido la velocidad media como la relación que existe entre espacio recorrido (desplazamiento) y tiempo, por lo tanto, si conocemos la velocidad, es posible obtener el espacio recorrido.

$$v_{media} = \frac{\Delta x}{\Delta t} = \frac{20m}{6.26s} = 3.19 \frac{m}{s} \Rightarrow \Delta x = v_{media} \cdot \Delta t = 3.19 \left(\frac{m}{s}\right) \cdot 6.26(s) = 19.96m \approx 20m$$

Magnitudes físicas — Velocidad v — Construcción de gráficas

Velocidad (cambio de posición con el tiempo):

- ❖Interpretamos la gráfica de posición para construir la de velocidad ⇒ analizamos como cambia la posición cada medio segundo:
 - ightharpoonup María empieza a moverse en t_0 a una velocidad de 4 m/s
 - ❖ Pasado medio segundo: $v = \frac{\Delta x}{\Delta t} = \frac{x(t_{0,5}) x(t_0)}{t_{0,5} t_0} = \frac{1,78 0}{0,5 0} = 3,11 m/s$ es la velocidad de maría en $t_{0.5}$
 - ❖Así sucesivamente

Magnitudes físicas — Velocidad v — Construcción de gráficas

Velocidad (cambio de posición con el tiempo):

- ❖ Ahora hacemos una interpretación gráfica:
 - ❖ Las líneas azules me dan la "velocidad instantánea" de María en ese medio segundo:
 - La línea azul que va desde t_0 hasta $t_{0,5}$ tiene por tanto una pendiente de 3,11 (m/s) (maría se ha movido 3,11 metros en ese medio segundo)
 - \clubsuit Si nos fijamos, hasta t_2 la pendiente de las líneas azules va disminuyendo, por eso en la gráfica de la velocidad entre t_0 y t_2 la velocidad va disminuyendo
 - \clubsuit A partir de t_2 las líneas azules de la gráfica de posición van aumentando su inclinación, por lo que aumenta la velocidad "instantánea" en ese medio segundo, y es por eso que en la gráfica de velocidad a partir de t_2 vemos como la velocidad aumenta

En el mismo tiempo, el morado recorrió un poco más de distancia: la velocidad media no es la misma

Conclusiones:

- ❖ Hasta $t_1 v_c < v_{nc}$
 - La pendiente de la línea azul 1 es menor a la de la naranja
- **\Leftrightarrow** Entre t_1 y t_2 v_c y v_{nc} se igualan:
 - ❖La pendiente de la línea azul 2 es igual a la de la naranja
 - ❖O lo que es lo mismo, línea azul 2 y línea naranja son paralelas
- ❖A partir de t_2 $v_c > v_{nc}$
 - La pendiente de la línea azul 1 es mayor a la de la naranja

A pesar de que v_{nc} no es constante y v_c si, en el mismo tiempo (t_6) x_{nc} y x_c recorren la misma distancia \Rightarrow la velocidad media es la misma para ambos

Conclusiones:

- ❖ Hasta $t_1 v_c < v_{nc}$
- ❖ Entre t_1 y t_2 $v_c > v_{nc}$ y x_{nc} está decelerando
- \Leftrightarrow En t_2 x_c alcanza a x_{nc}
- ❖ Entre t_2 y t_3 x_{nc} sigue decelerando
- **\Leftrightarrow** Entre t_3 y t_4 x_{nc} empieza a acelerar y $v_c > v_{nc}$
- **\Leftrightarrow** Entre t_4 y t_5 x_{nc} sigue acelerando y $v_c \approx v_{nc}$
- \clubsuit A partir de $t_5 v_c < v_{nc}$
- ❖ En t_6 x_{nc} alcanza a x_c

Magnitudes físicas – Aceleración a

Aceleración a:

Aceleración media

- Cómo cambia la velocidad de un objeto con el tiempo: $a=rac{\Delta v}{\Delta t}=rac{v_f-v_0}{t_f-t_0}$
- ❖ Aceleración instantánea: aceleración a la que nos movemos en ese PRECISO momento
- \diamond Para explicarlo de forma sencilla \Rightarrow **Dirección de movimiento: eje** x (Como María)
- ♣ 1. Cuando la velocidad es constante NO hay cambio en la velocidad con el tiempo ⇒ NO hay aceleración

Magnitudes físicas – Aceleración a

- Aceleración a:
 - ❖ Cómo cambia la velocidad de un objeto con el tiempo:

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_0}{t_f - t_0} = \frac{\Delta x^2}{\Delta t^2} = \frac{\left(x_f - x_0\right)^2}{\left(t_f - t_0\right)^2} = \frac{x_f^2 + x_0^2 - 2x_f x_0}{t_f^2 + t_0^2 - 2t_f t_0}$$

- * Aceleración instantánea: aceleración a la que nos movemos en ese PRECISO momento
- \diamond Para explicarlo de forma sencilla \Rightarrow **Dirección de movimiento: eje** x (Como María)

Magnitudes físicas — Aceleración a

- ❖ Aceleración a:
 - Cómo cambia la velocidad de un objeto con el tiempo: $a = \frac{\Delta v}{\Delta t} = \frac{\Delta (\frac{\Delta x^2}{\Delta t})}{\Delta t} = \frac{\Delta x^2}{\Delta t^2}$
- ❖ 2. Cuando la velocidad NO es constante hay cambio en la velocidad con el tiempo ⇒ HAY aceleración

Magnitudes físicas — Aceleración a

- ❖ Aceleración a:
 - Cómo cambia la velocidad de un objeto con el tiempo: $a = \frac{\Delta v}{\Delta t} = \frac{\Delta (\overline{\Delta t})}{\Delta t} = \frac{\Delta x^2}{\Delta t^2}$
- ❖ 2. Cuando la velocidad NO es constante hay cambio en la velocidad con el tiempo ⇒ HAY aceleración

La aceleración NO es constante porque el cambio de velocidad con el tiempo NO es constante:

$$\frac{\Delta v_1}{\Delta t_1} \neq \frac{\dot{\Delta} v_2}{\Delta t_2}$$

GRACIAS POR SU ATENCIÓN