Aula 9: Sistema de Arquivos Parte I

Professor(a): Virgínia Fernandes Mota

OCS (TEORIA) - SETOR DE INFORMÁTICA

- Parte do Sistema Operacional mais visível ao usuário
- Os arquivos de um sistema computacional são manipulados por meio de chamadas (system calls) ao Sistema Operacional;

- Três importantes requisitos são considerados no armazenamento de informações:
 - Possibilidade de armazenar e recuperar uma grande quantidade de informação;
 - Informação gerada por um processo deve continuar a existir após a finalização desse processo
 - Múltiplos processos podem acessar informações de forma concorrente → Informações podem ser independentes de processos;

- Para atender a esses requisitos, informações são armazenadas em discos (ou alguma outra mídia de armazenamento) em unidades chamadas arquivos;
- Processos podem ler ou escrever em arquivos, ou ainda criar novos arquivos;
- Informações armazenadas em arquivos devem ser persistentes, ou seja, não podem ser afetadas pela criação ou finalização de um processo;

- Arquivos são manipulados pelo Sistema Operacional;
- Tarefas:
 - Estrutura de arquivos;
 - Nomes;
 - Acessos (uso);
 - Proteção;
 - Implementação;

- Usuário: Alto nível
 - Interface: como os arquivos aparecem;
 - Como arquivos são nomeados e protegidos;
 - Quais operações podem ser realizadas;
- SO: Baixo nível
 - Como arquivos são armazenados fisicamente;
 - Como arquivos são referenciados (links);

Sistema de Arquivos - Arquivos

- Nomes;
- Estrutura;
- Tipos;
- Acessos;
- Atributos;
- Operações;

- Quando arquivos são criados, nomes são atribuídos a esses arquivos, os quais passam a ser referenciados por meio desses nomes;
- Tamanho: até 255 caracteres;
- Letras, números, caracteres especiais podem compor nomes de arquivos:
 - Caracteres permitidos: A-Z, a-z, 0-9, \$, %, ?, @, {, }, , ', !, #, (,), &
 - Caracteres não permitidos: ?, *, /, \, ?, |, <, >, :

- Alguns Sistemas Operacionais são sensíveis a letras maiúsculas e minúsculas (case sensitive) e outros não;
 - UNIX (e consequentemente, Linux) é case sensitive. Ex.: exemplo.c é diferente de Exemplo.c;
 - MS-DOS não é case sensitive. Ex.: exemplo.c é o mesmo que Exemplo.c;
- Win95/Win98/WinNT/Win2000/WinXP/WinVista herdaram características do sistema de arquivos do MS-DOS;
- No entanto, WinNT/Win2000/WinXP/WinVista/Win7/Win8 possuem um sistema de arquivos próprio NTFS (New Technology File System);

- Alguns sistemas suportam uma extensão relacionada ao nome do arquivo:
- MS-DOS: 1-3 caracteres; suporta apenas uma extensão;
- UNIX:
 - Extensão pode conter mais de 3 caracteres;
 - Suporta mais de uma extensão: Ex.: exemplo.c.Z (arquivo com compressão);
 - Permite que arquivos sejam criados sem extensão;

- Uma extensão, geralmente, associa o arquivo a algum aplicativo (associação feita pelo aplicativo).
- SO pode ou não associar as extensões aos aplicativos:
 - Unix não associa;
 - Windows associa;

Sistema de Arquivos - Estrutura de Arquivos

- Arquivos podem ser estruturados de diferentes maneiras:
 - Sequência não estruturada de bytes
 - Sequência de registros de tamanho fixo
 - Árvores de registros (tamanho variado)

Sistema de Arquivos - Estrutura de Arquivos

- Sequência não estruturada de bytes
 - Para o SO arquivos são apenas conjuntos de bytes;
 - SO não se importa com o conteúdo do arquivo: Significado deve ser atribuído pelos programas em nível de usuário (aplicativos);
 - Vantagem → Flexibilidade: os usuários nomeiam seus arquivos como quiserem;
 - Ex.: UNIX e Windows;

Sistema de Arquivos - Estrutura de Arquivos

- Sequência de registros de tamanho fixo, cada qual com uma estrutura interna → leitura/escrita são realizadas em registros;
 - SOs mais antigos: mainframes e cartões perfurados (80 caracteres);
 - Nenhum sistema atual utiliza esse esquema;
- Árvores de registros (tamanho variado), cada qual com um campo chave em uma posição fixa:
 - SO decide onde colocar os arquivos;
 - Usado em mainframes atuais;

- Arquivos regulares: são aqueles que contêm informações dos usuários;
- Diretórios: são arquivos responsáveis por manter a estrutura do Sistema de Arquivos;
- Arquivos especiais de caracteres: são aqueles relacionados com E/S e utilizados para modelar dispositivos seriais de E/S;
 - Ex.: impressora, interface de rede, terminais;
- Arquivos especiais de bloco: são aqueles utilizados para modelar discos;

- Arquivos regulares podem ser de dois tipos: ASCII e Binários
- ASCII
 - Consistem de linhas de texto;
 - Facilitam integração de arquivos;
 - Podem ser exibidos e impressos como são;
 - Podem ser editados em qualquer editor de texto;
 - Ex.: arquivos com extensão txt;
- Binários
 - Todo arquivo não ASCII;
 - Possuem uma estrutura interna conhecida pelos aplicativos que os usam;
 - Ex.: programa executável;

Sistema de Arquivos - Acesso em Arquivos

- SO's mais antigos ofereciam apenas acesso sequencial no disco
 → leitura em ordem byte a byte (registro a registro);
- SO's mais modernos fazem acesso aleatório aos arquivos, cujos bytes ou registros podem ser acessados em qualquer ordem;
 - Acesso feito por chave;
 - Métodos que podem ser usados para especificar onde iniciar leitura:
 - Operação Read: posição do arquivo em que se inicia a leitura;
 - Operação Seek: a operação seek estabelece a posição atual; depois de um seek, o arquivo pode ser lido sequencialmente a partir de sua posição atual. Usado no Linux e Windows.

Sistema de Arquivos - Atributos de Arquivos

- Além do nome e dos dados, todo arquivo tem outras informações associadas a ele: atributos
- A lista de atributos varia de SO para SO, mas com algumas categorias, como os de proteção, são comuns a todos;

Atributo	Significado
Proteção	Quem acesso o arquivo e de que maneira
Senha	Chave para acesso ao arquivo
Criador	Identificador da pessoa que criou o arquivo
Dono	Dono corrente
Flag de leitura	0 para leitura/escrita; 1 somente para leitura
Flag de oculto	0 para normal; 1 para não aparecer
Flag de sistema	0 para arquivos normais; 1 para arquivos do sistema
<i>Flag</i> de repositório	0 para arquivos com <i>backup</i> ; 1 para arquivos sem <i>backup</i>

Sistema de Arquivos - Atributos de Arquivos

Atributo	Significado
Flag ASCII/Binary	O para arquivo ASCII; 1 para arquivo binário
Flag de acesso aleatório	O para arquivo de acesso seqüencial; 1 para arquivo de acesso randômico
Flag de temporário	0 para normal; 1 para temporário
Flag de impedido	0 para arquivo desimpedido; diferente de 0 para arquivo impedido
Tamanho do registro	Número de bytes em um registro
Posição da chave	Deslocamento da chave em cada registro
Tamanho da chave	Número de bytes no campo chave (key)

Sistema de Arquivos - Atributos de Arquivos

Atributo	Significado
Momento da criação	Data e hora que o arquivo foi criado
Momento do último acesso	Data e hora do último acesso ao arquivo
Momento da última mudança	Data e hora da última modificação do arquivo
Tamanho	Número de bytes do arquivo
Tamanho Máximo	Número máximo de bytes que o arquivo pode ter

Sistema de Arquivos - Operações em Arquivos

- Diferentes sistemas provêm diferentes operações que permitem armazenar e recuperar arquivos;
- Operações mais comuns (realizadas através de system calls):
 - Create; Delete;
 - Open; Close;
 - Read; Write; Append;
 - Seek;
 - Get attributes; Set attributes;
 - Rename;

Sistema de Arquivos - Arquivos mapeados em memória

- Alguns SO's permitem que arquivos sejam mapeados diretamente no espaço de endereçamento (virtual) de um processo em execução → acesso mais rápido;
- System Calls: Map e unmap;
- Funciona melhor em sistemas que suportam segmentação;

Sistema de Arquivos - Arquivos mapeados em memória

- Problemas!!!!
- Difícil prever o tamanho de arquivos de saída;
- Compartilhamento de arquivos entre diferentes processos → SO não deve permitir acesso a arquivos com dados inconsistentes;
- Arquivo pode ser maior que um segmento ou maior que o espaço virtual utilizado → mapear pequenas partes do arquivo;

Sistema de Arquivos - Diretórios

- Diretórios: São arquivos responsáveis por manter a estrutura do Sistema de Arquivos;
- Organização pode ser feita das seguintes maneiras:
 - Nível único (Single-level);
 - Dois níveis (Two-level);
 - Hierárquica;

Sistema de Arquivos - Diretórios - Nível Único

- Apenas um diretório contém todos os arquivos → diretório raiz (root directory);
- Computadores antigos utilizavam esse método, pois eram monousuários;
- Exceção: CDC 6600 supercomputador que utilizava-se desse método, apesar de ser multiusuário;
- Vantagens: Simplicidade e Eficiência.
- Desvantagens: Sistemas multiusuários: Diferentes usuários podem criar arquivos como mesmo nome;

Sistema de Arquivos - Diretórios - Dois níveis

- Cada usuário possui um diretório privado;
- Sem conflitos de nomes de arquivos;
- Procedimento de login: identificação;
- Compartilhamento de arquivos → programas executáveis do sistema;
- Desvantagem: Usuário com muitos arquivos;

Sistema de Arquivos - Diretórios - Hierárquico

- Hierarquia de diretórios → árvores de diretórios;
- Usuários podem querer agrupar seus arquivos de maneira lógica, criando diversos diretórios que agrupam arquivos;
- Sistemas operacionais modernos utilizam esse método;
- Flexibilidade;

- Normalmente, o sistema de arquivos é implementado com uma árvore;
- Mas quando se tem arquivos compartilhados, o sistema de arquivos passa a ser um grafo acíclico direcionado (directed acyclic graph - DAG);

- Compartilhar arquivos é sempre conveniente, no entanto, alguns problemas são introduzidos!
- Se os diretórios tiverem endereços de disco, então deverá ser feita um cópia dos endereços no diretório de B;
- Se B ou C adicionar blocos ao arquivo (append), os novos blocos serão relacionados somente no diretório do usuário que está fazendo a adição;
 - Mudanças não serão visíveis ao outro usuário, comprometendo o propósito do compartilhamento;
- Soluções???

- Primeira solução: os endereços de disco não estão relacionados nos diretórios, mas em uma estrutura de dados (i-node) associada ao próprio arquivo. Assim, os diretórios apontam para essa estrutura; (UNIX)
 - Ligação Estrita (hard link);
 - Problema com essa solução: o dono do arquivo que está sendo compartilhado apaga o arquivo;

- a) Antes da ligação;
- b) Depois da ligação;
- c) Depois de remover a entrada de C para o arquivo;

Ligação Estrita

- Segunda Solução: Ligação Simbólica → B se liga ao arquivo de C criando um arquivo do tipo link e inserindo esse arquivo em seu diretório;
 - Somente o dono do arquivo tem o ponteiro para o i-node;
 - O arquivo link contém apenas o caminho do arquivo ao qual ele está ligado: Assim, remoções não afetam o arquivo;
 - Problema: Sobrecarga → Geralmente um i-node extra para cada ligação simbólica;

Sistema de Arquivos - Diretórios - Caminho

- O método hierárquico requer métodos pelos quais os arquivos são acessados;
- Dois métodos diferentes:
 - Caminho absoluto (absolute path name): a partir da raiz;
 - Caminho relativo (relative path name): a partir do diretório determinado pelo usuário;

Sistema de Arquivos - Diretórios - Operações

- Create; Delete;
- Opendir; Closedir;
- Readdir;
- Rename;
- Link (para um arquivo aparecer em mais de um diretório);
- Unlink;

Implementando o Sistema de Arquivos

- Implementação do Sistema de Arquivos deve estabelecer as formas e operações para as seguintes operações:
 - Como arquivos e diretórios são armazenados;
 - Como o espaço em disco é gerenciado;
 - Como tornar o sistema eficiente e confiável:

Implementando o Sistema de Arquivos - Layout

- Arquivos são armazenados em discos;
- Discos podem ser divididos em uma ou mais partições, com sistemas de arquivos independentes;
- Setor 0 do disco é destinado ao MBR Master Boot Record; que é responsável pela a tarefa de boot do computador;
 - MBR possui a tabela de partição, com o endereço inicial e final de cada partição;
 - BIOS lê e executa o MBR;

Implementando o Sistema de Arquivos - Layout

- Tarefas básicas do MBR (pode variar dependendo do SO):
 - localizar a partição ativa;
 - ler o primeiro bloco dessa partição, chamado bloco de boot (boot block);
 - executar o bloco de boot;
- Layout de um Sistema de Arquivos pode variar... Mas como seria uma ideia geral?

Implementando o Sistema de Arquivos - Arquivos

- Armazenamento de arquivos: como os arquivos são alocados no disco;
- Diferentes técnicas são implementadas por diferentes Sistemas Operacionais:
 - Alocação contígua;
 - Alocação com lista encadeada;
 - Alocação com lista encadeada utilizando uma tabela na memória (FAT);
 - I-Nodes;
- Como são essas alocações?

Próxima aula

Sistema de Arquivos Parte II