Optimization Homework #4

1.Linear

Problem settings

Little Bill has a sweet-tooth, he decided to spend all his pocket money on candies in a candy store:

1. He ranked his top 10 favorite candies and want to have the maximum pleasure.

Maximize

$$f(\mathbf{x}) = x_0 + 2x_1 + 3x_2 + 4x_3 + 5x_4 + 6x_5 + 7x_6 + 8x_7 + 9x_8 + 10x_9$$

If we write in matrix form:

Maximize
$$f(\mathbf{x}) = \mathbf{A}\mathbf{x}^T$$

$$\mathbf{A} = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$$
 , $\mathbf{x} = [\mathbf{x_i}], i = 0, 1, 2...9$

 \mathbf{x}_i is how many pounds i-th ranked candies Bill should buy.

And we can convert the maximum problem into minimize problem by defining $f(\mathbf{x}) = -\mathbf{A}\mathbf{x}^T$

- 2. However, he has limited pocket money. The prices of his favorite candies per pound is listed as $\mathbf{P} = [3, 3, 3, 4, 4, 4, 4, 5, 5, 5]$, the constraint is $\mathbf{P}\mathbf{x}^T \leq 200$.
- 3. For every kind of candies, the store can only sell limited amount to one customer, and the amount can't be negative as we all know, thus $0 \le \mathbf{x}_i \le 20$.

To sum up, the abstract optimization problem is as follows:

Minimize
$$f(\mathbf{x})=-\mathbf{A}\mathbf{x}^T$$
, with $\mathbf{A}=[1,2,3,4,5,6,7,8,9,10]$, $\mathbf{x}=[\mathbf{x_i}], i=0,1,2...9$

Subject to:

1.
$$\mathbf{P}\mathbf{x}^T \leq 200$$
 with $\mathbf{P} = [3,3,3,4,4,4,4,5,5,5]$, $\mathbf{x} = [\mathbf{x_i}], i = 0,1,2,\ldots,9$
2. $0 \leq \mathbf{x}_i \leq 20, i = 0,1,2,\ldots,9$

For the assignment criterion:

- 1. Here we have 10 variables;
- 2. The objective function is non-trivial as it contains all variables;
- 3. There are 11 contraints in total, the price constraint is an inequality contriant including all variables.

Compare LP solving algorithms

Derive the penalty function for implicit constraint term:

We want

- 1. $\phi(t), t = g(x)$ to be continuous;
- 2. $\phi(t) \geq 0, \forall t$;
- 3. $\phi(t) = 0$ for $t \le 0$ and ϕ is strictly increasing when t > 0.

Thus we have $\phi(\lambda, t) = \lambda t^n$ while t = g(x) > 0; $\phi(\lambda, t) = 0$ while $g(x) \le 0$.

That means when the inequality constraint is statisfied: $g(x) \leq 0$, there's no penalty; once the constraint is voilated: g(x) > 0, the function result should be $f(x) + \phi(g(x))$.

Therefore, we can rewrite our function as $f(\mathbf{x}) = -\mathbf{A}\mathbf{x}^T + \lambda(\mathbf{P}\mathbf{x}^T - 200)^n$, here I choose $\lambda = 1, n = 4$. So the penalized function is $f_p(\mathbf{x}) = -\mathbf{A}\mathbf{x}^T + (\mathbf{P}\mathbf{x}^T - 200)^4$

Algorithms

I chose 3 algorithms from **Python scipy for penalized function with implicit constraint** and 2 algorithms from **Matlab fmincon with explicit constraint**.

For **scipy**, I chose L-BFGS-B, TNC, SLSQP to optimize the penalized function, the bound constraints of each variables are specified as an input parameter, instead of being in the function.

For Matlab **fmincon**, I chose interior point and sqp(sequential quadratic programming) algorithms. The bound and inequality constraints are all specified explicitly.

We all start from the same initial point $\mathbf{x} = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$.

The **function value error** was evaluated absolute value, the **x error** is evaluated by norm of the difference between result vector and optimum vector.

Comparison result

Package	Algorithm	f value	x value	f error	x error	runtime(ms)
Python scipy.optimize.min imize	L-BFGS-B	380.99638076	0. 0. 0. 0. 0. 0. 0. 0.18978704 0. 20.	0.99638076	0.18978704	143.8529
	TNC	366.26848389	0. 0. 0. 0. 0. 1.59310869 5.91718005 8.72515632 8.25618365 17.2014065	13.73151611	16.10679099	185.4999
	SLSQP	380.99638075	0. 0. 0. 0. 0. 0. 0. 0.18979545 0. 20.	0.99638075	0.18979545	41.3718
Matlab fmincon	interior-point	380.00	0. 0. 0. 0. 0. 0. 0. 20.	0.00	0.00	35.003
	sqp	380.00	0. 0. 0. 0. 0. 0. 0. 0. 20.	0.00	0.00	84.764

As we can see, the implicit constraint term added into the function is an approximation for the strict constraint. The smooth transition part around $g(x) \leq 0$ makes the optimum point drifting a little bit over the constraint, thus the result is also beyond the bound. Comparing to the explicit constraint used in Matlab, the result is strictly bounded.

2. Quadratic

Problem setting

Bill accidentally found out that the 8-th and 9-th kind of candies can be ressolved into water, that will quadratically expand the amount. Thus his pleasure function becomes like:

$$f(\mathbf{x}) = x_0 + 2x_1 + 3x_2 + 4x_3 + 5x_4 + 6x_5 + 7x_6 + 8x_7^2 + 9x_8^2 + 10x_9$$

As the pleasure value of 8-th and 9-th candies are quadratically enhanced, the optimal choice would buy these two as much as possible with his pocket money.

Leave all other setting unchanged except the initial point $\mathbf{x}_0 = [1,1,1,1,1,1,1,1,1]$

Comparison result

Package	Algorithm	f value	x value	f error	x error	runtime
Python scipy.optimize.min imize	L-BFGS-B	6801.05575089	0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.51871422e-03 2.89458775e-02 5.12218443e-02 2.00000000e+01 2.00000000e+01 8.89617132e-02	1.05575089	0.10699671	50.1680
	TNC	6800.98723621	0. 0. 0. 0. 0. 0. 0. 0.20236388 20. 20.	0.98723621	0.20236388	129.2822
	SLSQP	6801.19054827	5.23862197e-11 4.06813375e-11 2.99109836e-11 3.98187706e-11 2.90408808e-11 2.50137026e-10 2.14691419e-09 2.00000000e+01 2.00000000e+01 1.58780767e-01	1.19054827	0.15878076	21.6751
Matlab fmincon	interior-point	6800.00	0. 0. 0. 0. 0. 0. 0. 20. 20.	0.00	0.00	27.577
	sqp	6800.00	0. 0. 0. 0. 0. 0. 0. 20. 20.	0.00	0.00	33.411

The performances are almost the same as the linear conditions, the implicit constrained function has a loose bound thus the optimum value always not that exact. The explicit constrained ones has perfectly solved this problem.

Appendix

Linear Python:

```
from scipy.optimize import minimize, LinearConstraint
import numpy as np
import time
cons = [{"type": "ineq", "fun": lambda x: A @ x.T }]
init_x = np.matrix([0,0,0,0,0,0,0,0,0,0])
# func = lambda x: x[0] + 2*x[1] + 3*x[2] + 4*x[3] +
5*x[4] + 6*x[5] + 7*x[6] + 8*x[7] + 9*x[8] + 10*x[9]
def penalized_func(x,c=1,n=4, price_bound=200):
    A = np.matrix([1,2,3,4,5,6,7,8,9,10])
    prices = np.matrix([3,3,3,4,4,4,4,5,5,5])
    fx = -A@(x.T)
    # Price constraint
    if(prices@x.T > price_bound):
        return fx + c*(prices@x.T-price_bound)**4
    # Bound constraint
      for i in range(10):
          if(x.item(i)>20 or x.item(i)<0):</pre>
#
              return 1e10
    return -A@(x.T)
bnds = ((0,20), (0,20), (0,20), (0,20), (0,20), (0,20),
(0,20), (0,20), (0,20), (0,20))
# Algo with Bound constraints: L-BFGS-B, TNC, SLSQP and
trust-constr methods
methods = ['L-BFGS-B', 'TNC', 'SLSQP']
x_{opt} = [0,0,0,0,0,0,0,0,20,20]
f_{opt} = 380
for m in methods:
    print("\n%s:" %m)
    start = time.time()
```

```
ans = minimize(penalized_func,init_x, method=m,
bounds=bnds)
  end = time.time()

runtime = (end-start)*1000

f_res = -ans.fun
  x_res = np.array(ans['x'])

x_error = np.linalg.norm(x_opt - x_res)
  f_error = abs(f_res - f_opt)

print("Function value: {}\nf error: {}\nx value:
{}\nx error: {}\nruntime: {} ms".format(f_res, f_error, x_res, x_error, runtime))
```

Quadratic Python:

```
cons = [{"type": "ineq", "fun": lambda x: A @ x.T }]
init_x = np.matrix([1,1,1,1,1,1,1,1,1,1])
# func = lambda x: x[0] + 2*x[1] + 3*x[2] + 4*x[3] +
5*x[4] + 6*x[5] + 7*x[6] + 8*x[7] + 9*x[8] + 10*x[9]
def penalized_quadfunc(x,c=1,n=4, price_bound=200):
   A = np.matrix([1,2,3,4,5,6,7,8,9,10])
    prices = np.matrix([3,3,3,4,4,4,4,5,5,5])
    fx = x[0] + 2*x[1] + 3*x[2] + 4*x[3] + 5*x[4] +
6*x[5] + 7*x[6] + 8*x[7]**2 + 9*x[8]**2 + 10*x[9]
   # Price constraint
   if(prices@x.T > price_bound):
        return -fx + c*(prices@x.T-price_bound)**4
    return -fx
bnds = ((0,20), (0,20), (0,20), (0,20), (0,20), (0,20),
(0,20), (0,20), (0,20), (0,20))
# Algo with Bound constraints: L-BFGS-B, TNC, SLSQP and
trust-constr methods
methods = ['L-BFGS-B', 'TNC', 'SLSQP']
x_{opt} = [0,0,0,0,0,0,0,20,20,0]
```

```
f_opt = 6800

for m in methods:
    print("\n%s:" %m)
    start = time.time()

    ans = minimize(penalized_quadfunc, init_x,
method=m, bounds=bnds)
    end = time.time()

    runtime = (end-start)*1000

    f_res = -ans.fun
    x_res = np.array(ans['x'])

    x_error = np.linalg.norm(x_opt - x_res)
    f_error = abs(f_res - f_opt)

    print("Function value: {}\nf error: {}\nx value:
{}\nx error: {}\nruntime: {}\nf error,
x_res, x_error, runtime))
```

Matlab

```
% x0 = [0,0,0,0,0,0,0,0,0];
x0 = zeros(1,10);
x1 = ones(1,10);
% Favorite rank
fun = @(x)(-x(1) - 2*x(2) - 3*x(3) - 4*x(4) - 5*x(5) -
6*x(6) - 7*x(7) - 8*x(8) - 9*x(9) - 10*x(10));
% pen_fun = @(x)(-x(1) - 2*x(2) - 3*x(3) - 4*x(4) -
5*x(5) - 6*x(6) - 7*x(7) - 8*x(8) - 9*x(9) -
10*x(10)...
     -(3*x(1) + 3*x(2) + 3*x(3) + 4*x(4) + 4*x(5) +
4*x(6) + 4*x(7) + 5*x(8) + 5*x(9) + 5*x(10))^4;
quad_fun = @(x)(-x(1) - 2*x(2) - 3*x(3) - 4*x(4) -
5*x(5) - 6*x(6) - 7*x(7) - 8*x(8)^2 - 9*x(9)^2 -
10*x(10));
% quad_fun1 = @(x)(-(x(1) + 2*x(2) + 3*x(3) + 4*x(4) +
5*x(5) + 6*x(6) + 7*x(7) + 8*x(8) + 9*x(9) +
100*x(10)^2);
% Prices
A = [3,3,3,4,4,4,4,5,5,5];
```

```
% Money Limit
b = 200;

lb = zeros(1,10);
ub = 20*ones(1,10);

%'interior-point' (default); 'trust-region-reflective';
'sqp';'sqp-legacy' (optimoptions only);'active-set'

options.Algorithm = 'sqp';
tic
[x,fval] = fmincon(quad_fun, x1, A, b, [], [], lb, ub,
[], options);
toc
disp(x)
disp(-fval)
```