Tema 14

4.29 Teorema. Una función monótona cuya imagen es un intervalo es continua.

Demostración. Sea $f: A \to \mathbb{R}$ una función creciente en un conjunto A cuya imagen J = f(A) es un intervalo. Queremos probar que f es continua. Sea $a \in A$ y supongamos que los conjuntos

$$A_a^- = \{x \in A : x < a\}, \quad A_a^+ = \{x \in A : x > a\}$$

no son vacíos. Para demostrar que f es continua en a, probaremos que

$$\sup f(A_a^-) = \sup \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x > a \} = \inf \{ f(x) : x \in A, x > a \} = \inf \{ f(A_a^+) = x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) : x \in A, x < a \} = \inf \{ f(x) :$$

Probemos que $f(a) = \sup f(A_a^-)$. Pongamos $\alpha = \sup f(A_a^-)$. Para todo $x \in A_a^-$ tenemos que x < a y, como f es creciente, $f(x) \leqslant f(a)$. Luego f(a) es un mayorante del conjunto $f(A_a^-)$ y, en consecuencia, debe ser $\alpha \leqslant f(a)$. Veamos que no puede ocurrir que $\alpha < f(a)$. Para ello supondremos que $\alpha < f(a)$ y llegaremos a una contradicción. Tomemos un elemento cualquiera $z \in]\alpha, f(a)[$. Sea $u \in A_a^-$. Entonces $f(u) \leqslant \alpha < z < f(a)$. Como f(u) y f(a) están en J = f(A) y J es, por hipótesis, un intervalo, deducimos que $z \in J$, esto es, z = f(s) para algún $s \in A$. No puede ser s = a y, como f es creciente y z < f(a), debe verificarse que s < a, esto es, $s \in A_a^-$ en cuyo caso debe ser $f(s) \leqslant \alpha$, es decir, $z \leqslant \alpha$ lo cual es claramente contradictorio pues $\alpha < z$.

Análogamente se prueba que $f(a) = \beta = \inf f(A_a^+)$.

Sea ahora $\varepsilon > 0$. Tiene que haber elementos $u \in A_a^-$ y $v \in A_a^+$ tales que $\alpha - \varepsilon < f(u)$ y $f(v) < \beta + \varepsilon$, es decir

$$f(a) - \varepsilon < f(u) \le f(v) < f(a) + \varepsilon$$
.

Definamos $\delta = \min\{a-u, v-a\} > 0$. Entonces para todo $x \in A$ verificando que $|x-a| < \delta$ se tiene que u < x < v y, por tanto, $f(u) \le f(x) \le f(v)$ lo que implica que $f(a) - \varepsilon < f(x) < f(a) + \varepsilon$, esto es, $|f(x) - f(a)| < \varepsilon$.

Los casos en que alguno de los conjuntos A_a^- o A_a^+ sea vacío se deducen de lo anterior. \Box

- **4.30 Corolario.** Una función monótona definida en un intervalo es continua si, y sólo si, su imagen es un intervalo.
- **4.31 Corolario.** La función inversa de una función estrictamente monótona definida en un intervalo es continua.

Demostración. Sea $f: I \to \mathbb{R}$ una función estrictamente monótona definida en un intervalo I. Como f es inyectiva en I su inversa, f^{-1} , está definida en el conjunto imagen J = f(I) y, claramente, $f^{-1}(J) = I$. Como la inversa de una función estrictamente monótona f es también estrictamente monótona (y del mismo tipo que f) e I es, por hipótesis, un intervalo, el teorema anterior, aplicado a f^{-1} , nos dice que f^{-1} es continua en J.

4.32 Teorema. Toda función invectiva y continua en un intervalo es estrictamente monótona.

Demostración. ² Sea $f: I \to \mathbb{R}$ continua e inyectiva en el intervalo I. Sean $a_0 < b_0$ dos puntos de I. Como f es inyectiva debe ser $f(a_0) \neq f(b_0)$. Por tanto, o bien $f(b_0) - f(a_0) > 0$, o bien $f(b_0) - f(a_0) < 0$. Supongamos que es $f(b_0) - f(a_0) > 0$ y demostremos que f es estrictamente creciente en $f(a_0) = f(a_0) = f(a_0$

$$x(t) = (1-t)a_0 + ta_1 y(t) = (1-t)b_0 + tb_1$$
 para $0 \le t \le 1$

Tenemos que $x(0) = a_0$, $x(1) = a_1$, $y(0) = b_0$, $y(1) = b_1$. Además, poniendo $\alpha = \min\{a_0, a_1\}$ y $\beta = \max\{a_0, a_1\}$, se tiene que:

$$\alpha = (1-t)\alpha + t\alpha \le x(t) \le (1-t)\beta + t\beta = \beta$$

Como I es un intervalo y $\alpha, \beta \in I$, se verifica que $[\alpha, \beta] \subset I$, por lo que $x(t) \in I$. Análogamente, se tiene que $y(t) \in I$. Además, como $a_0 < b_0$ y $a_1 < b_1$, se verifica que x(t) < y(t) para $0 \le t \le 1$. Consideremos la función:

$$g(t) = f(y(t)) - f(x(t)) \qquad 0 \le t \le 1$$

La función g es continua en [0,1] por ser composición y diferencia de funciones continuas. Como f es inyectiva y x(t) < y(t), se tiene que $g(t) \neq 0$ para todo $t \in [0,1]$. El teorema de Bolzano implica que g debe tener signo constante en [0,1] y, como g(0) > 0, concluimos que g(t) > 0 para todo $t \in [0,1]$. Por tanto $g(1) = f(b_1) - f(a_1) > 0$. Hemos probado así que f es estrictamente creciente.

Análogamente, si se supone que es $f(b_0) - f(a_0) < 0$ se demuestra que f es estrictamente decreciente en I.

4.33 Corolario. La función inversa de una función inyectiva y continua en un intervalo es continua.