

National
Semiconductor

LM330 3-Terminal Positive Regulator

General Description

The LM330 5V 3-terminal positive voltage regulator features an ability to source 150 mA of output current with an input-output differential of 0.6V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.

The low dropout voltage makes the LM330 useful for certain battery applications since this feature allows a longer battery discharge before the output falls out of regulation. For example, a battery supplying the regulator input voltage may discharge to 5.6V and still properly regulate the system and load voltage. Supporting this feature, the LM330 protects both itself and regulated systems from negative voltage inputs resulting from reverse installations of batteries.

Other protection features include line transient protection up to 26V, when the output actually shuts down to avoid damaging internal and external circuits. Also, the LM330 regulator cannot be harmed by a temporary mirror-image insertion.

Features

- Input-output differential less than 0.6V
- Output current of 150 mA
- Reverse battery protection
- Line transient protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- 100% electrical burn-in in the thermal limit

Voltage Range

LM330T-5.0 5V

Schematic and Connection Diagrams

(TO-220)
Plastic Package

Absolute Maximum Ratings

Input Voltage	
Operating Range	26V
Line Transient Protection (1000 ms)	40V
Internal Power Dissipation	Internally Limited
Operating Temperature Range	0°C to +70°C
Maximum Junction Temperature	+125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 seconds)	+300°C

Electrical Characteristics (Note 1)

Parameter		Conditions	Min	Typ	Max	Units
V_o	Output Voltage	$T_j = 25^\circ C$	4.8	5	5.2	V
	Output Voltage Over Temp	$5 < I_o < 150 \text{ mA}$ $6 < V_{IN} < 26 \text{ V}; 0^\circ C \leq T_j \leq 100^\circ C$	4.75		5.25	
ΔV_o	Line Regulation	$9 < V_{IN} < 16 \text{ V}, I_o = 5 \text{ mA}$ $6 < V_{IN} < 26 \text{ V}, I_o = 5 \text{ mA}$		7 30	25 60	mV
	Load Regulation	$5 < I_o < 150 \text{ mA}$		14	50	
I_Q	Quiescent Current	$I_o = 10 \text{ mA}$ $I_o = 50 \text{ mA}$ $I_o = 150 \text{ mA}$		3.5 5 18	7 11 40	mA
	Line Transient Reverse Polarity	$V_{IN} = 40 \text{ V}, R_L = 100\Omega, 1 \text{ sec}$ $V_{IN} = -6 \text{ V}, R_L = 100\Omega$		14 -80		
	Quiescent Current Change	$6 < V_{IN} < 26 \text{ V}$		10		
	V_{IN}		26	30		
V_{IN}	Overshoot Shutdown Voltage					V
	Max Line Transient	$100 \text{ ms } V_o \leq 5.5 \text{ V}$ $1 \text{ sec } V_o \leq 5.5 \text{ V}$		60 50		
	Reverse Polarity Input Voltage	$100 \text{ ms } V_o > -0.3 \text{ V } R_L = 100\Omega$ $\text{DC } V_o > -0.3 \text{ V } R_L = 100\Omega$		-30 -12		
Output Noise Voltage		10 Hz-100 kHz		50		µV
Output Impedance		$I_o = 100 \text{ mADC} + 10 \text{ mArms}$		200		mΩ
Ripple Rejection				56		dB
Current Limit			150	400	700	mA
Dropout Voltage		$I_o = 150 \text{ mA}$		0.32	0.6	V
Thermal Resistance		Junction to Case Junction to Ambient		4 50		°C/W

Note 1: Unless otherwise specified: $V_{IN} = 14 \text{ V}$, $I_o = 150 \text{ mA}$, $T_j = 25^\circ C$, $C_1 = 0.1 \mu F$, $C_2 = 10 \mu F$. All characteristics except noise voltage and ripple rejection are measured using pulse techniques ($t_w \leq 10 \text{ ms}$, duty cycle $\leq 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Dropout Voltage

Dropout Voltage

Low Voltage Behavior

High Voltage Behavior

Line Transient Response

Load Transient Response

Optical Performance Characteristics (Continued)

Peak Output Current

Quiescent Current

Quiescent Current

Quiescent Current

Ripple Rejection

Ripple Rejection

Typical Performance Characteristics (Continued)

Output at Reverse Supply

Output at Overvoltage

Output Voltage (Normal to 5V at $T_J = 25^\circ\text{C}$)

Typical Applications

The LM330 is designed specifically to operate at lower input to output voltages. The device is designed utilizing a power lateral PNP transistor which reduces dropout voltage from 2.0V to 0.3V when compared to IC regulators using NPN pass transistors. Since the LM330 can operate at a much lower input voltage, the device power dissipation is reduced, heat sinking can be simpler and device

reliability improved through lower chip operating temperature. Also, a cost savings can be utilized through the use of lower power/voltage components. In applications utilizing battery power, the LM330 allows the battery voltage to drop to within 0.3V of output voltage prior to the voltage regulator dropping out of regulation.

* Required if regulator is located far from power supply filter.

** C2 must be at least 10 μF to maintain stability. Value may be increased without bound. Locate as close as possible to regulator.

Note: Compared to IC regulator with 2.0V dropout voltage and $I_{Q\max} = 6.0\text{ mA}$.

5

**TO-220 Plastic Package (T)
Order Number LM330T-5.0
NS Package Number T03B**

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051
Tel: (408) 737-5000
TWX: (910) 339-9240

National Semiconductor GmbH
Eisenheimerstrasse 61/II
8000 Munchen 21
West Germany
Tel: (089) 576091
Telex: 05-22772

NS International Inc., Japan
Miya Building
1-9 Yotsuya, Shinjuku ku, 160
Tokyo, Japan
Tel: (03) 355-3711
Telex: 232-2015 NSCJ-J

National Semiconductor (Hong Kong) Ltd
8th Floor
Chun Hin Kong Electronic Bldg
4 Hing Yip Street
Kwun Tong
Kowloon, Hong Kong
Tel: 3-899235
Telex: 73866 NSHK HX
Cable: NATSEMI

NS Electronics Do Brasil
Avda Brigadier Faria Lima 844
11 Andar, Conjunto II/104
Jardim Paulistano
Sao Paulo, Brasil
Telex: 1121008 CABINE SAO PAULO

NS Electronics Pty. Ltd.
Cnr. Stud Rd & Min. Highway
Bayswater, Victoria 3153
Australia
Tel: 03-729 6333
Telex: 12096