Fall Real Analysis Willie Xie Fall 2021

CONTENTS

Contents

1	Day	1: The Real Number System
	1.1	Number Systems
	1.2	Real Number System
	1.3	Least Upper Bound Property
2	Dozz	9.
4	Day	2:
	2.1	Greatest Upper Bound Property
	2.2	Fields
	2.3	Ordered Fields

The Real Number System 1

1.1 Number Systems

Natural : $\mathbb{N} = \{1, 2, 3, ...\}$ Integer: $\mathbb{Z} = \{-2, -1, 0, 1, 2, ...\}$ Rational : $\mathbb{Q} = \frac{p}{q}$ where $p,q \in \mathbb{N}$

*** Q is countable, but fails to have the least upper bound property ***

Example 1.1

Let $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$. Then α cannot be rational.

<u>Proof</u>

Let $\alpha = \frac{p}{q}$ where p and q cannot both be even. Let set $A = \{x \in \mathbb{Q} \text{ for } x^2 < 2\}$ where $A \neq \emptyset$ and 2 is an upper bound for A. A has no least upper bound in Q, but A has a least upper bound in R.

1.2Real Number System

 \mathbb{R} is the unique ordered field with the least upper bound property. \mathbb{R} exists and unique.

Definition 1.5

Let S be a set. An order on S is a relation < satisfying two axioms:

- Trichotomy: For all $x,y \in S$, only one holds true:
 - -x < y
 - -x = y
 - -x > y
- Transitivity: If x < y and y < z, then x < z.

Definition 1.6

An ordered set is a set with an order.

Definition 1.7

Let S be an ordered set. Let $E \subset S$.

An upper bound of E is a $\beta \in S$ if $x \leq \beta$ for all $x \in E$.

If such a β exists, then E is bounded from above.

Definition 1.8

Let S be an ordered set. Let $E \subset S$ be bounded from above.

Then, there exists a least upper bound α where:

- α is an upper bound for E
- If $\gamma < \alpha$, then γ is not an upper bound for E.

Then $\alpha = \sup(E)$.

*** Lower Bound: $\inf(E)$ ***

Example 1.9

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with the order < from \mathbb{R} . For subsets E of S:

- E = (1,2) is bounded above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below inf(E) = 3 and sup(E) = DNE

Observations on the Least Upper Bound

If sup E exists, it may or may not exists at E.

If α exists, then α is unique. If $\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$.

1.3 Least Upper Bound Property

Definition 1.10

An ordered set of S has a least upper bound property if:

For every nonempty subset $E \subset S$ that is bounded from above: $\sup(E)$ exists in S.

Example 1.1

 \mathbb{Q} doesn't have a least upper bound property. For example, $z = \sqrt{2}$.

Proof

Let
$$z = y - \frac{y^2 - 2}{y + 2} = \frac{2y + 2}{y + 2}$$
, then take $z^2 - 2 = \frac{2(y^2 - 2)}{(y + 2)^2}$.
Let set $A = \{y > 0 \in \mathbb{Q} \text{ where } y^2 < 2\}$ and set $B = \{y > 0 \in \mathbb{Q} \text{ where } y^2 > 2\}$

- If $y^2 2 < 0$, then y is not an upper bound for E.
- If $y^2 2 > 0$, y is an upper bound for E, but not the sup(E).

Thus, E has no least upper bound in \mathbb{Q} .

However in \mathbb{R} , $\sqrt{2}$ is in E.

2 Day 2

2.1 Greatest Upper Bound Property

Theorem
If If an ordered set has the least upper bound property, then it has the greatest upper bound property.

Let S be a ordered set with the least upper bound property. Let non-empty B \subset Sand bounded below. Let L be the set of all lower bounds of B. Then α $= \sup(L)$ exists and $\alpha \in B$.

Proof

L is non-empty since B is bounded from below and $\gamma \in L$.

Thus, by the least upper bound property of S, $\alpha = \sup(L)$ exists.

We claim that $\alpha = \inf(B)$.

For any $x < \alpha$, then x is not an upper bound for L so $x \in L$.

For any $x > \alpha$, then x is an upper bound for L so x not in L and thus, $x \in B$.

2.2 Fields

Addition Axioms

- $x,y \in F$, then $x+y \in F$
- Addition is commutative
- Addition is associative
- x+0 = x

Multiplicative xioms

- xy
- xy = yx
- (xy)z = x(yx)
- 1/x

Distributive Law

x(y+z) = xy + xz hold for all $x,y,z \in F$.

*** Remember to insert all the propostitions

2.3 Ordered Fields

An ordered field F is a field F which is also an ordered set for all $x,y,z \in F$.

- If y < z, then y+x < z+x
- If x,y > 0, then xy > 0

2 DAY 2: 2.3 Ordered Fields

```
*** If x > 0, then x is positive ***
```

Definition 2.3.1

 \mathbb{Q},\mathbb{R} are ordered fields. \mathbb{C} is not a ordered field.

Definition 2.3.2

Let F be an ordered field. For all $x,y,z \in F$.

- If x > 0, -x < 0 and vice versa
- If x > 0 and y < z, then $xy \mid xz$
- If x < 0 and y < z, then xy > xz
- If $x \neq 0, x^2 > 0$
- If 0 < x < y, then 0 < 1/y < 1/x

Proof for A

If x > 0, then x+(-x) > 0+(-x) so $0 \not\in (-x)$

Theorem 2.3.3: R is a ordered field with <

There exists a ordered field \mathbb{R} with the least upper bound property.

Also, $\mathbb{Q} \subset \mathbb{R}$.

 \mathbb{R} is unique ordered field with least upper bound property.

Theorem 2.3.4

For all $x,y \in \mathbb{R}$:

• Archimedean Property: If x > 0, there is $n \in \mathbb{Z}$ such that nx > y.

Proof

Fix x > 0. Suppose there is a y such that the property fails.

Let
$$A = \{ nx: n = 1, 2, 3... \}.$$

Then, A is nonempty and bounded from above by y.

Then by the least upper bound property by $\mathbb R$, then $\alpha=\sup(A)$ exists in $\mathbb R$.

Since x > 0, then -x < 0 so $\alpha - x < \alpha - 0 = \alpha$.

So $\alpha - x$ is an upper bound of A. So there is a mx \in A such that mx $> \alpha - x$

But then $\alpha < (m+1)x$ so $(m+1)x \in A$ which contradicts α is an upper bound for A.

• \mathbb{Q} is dense in \mathbb{R} : If x < y, there is a $p \in \mathbb{Q}$ such that x .

Proof

$$n(y-x) > 1$$

$$ny > nx+1 > nx$$

1 > nx

By the well-ordering principle, there is a smallest m of positive integers such that m > nx

Then, $m>nx\geq m\text{-}1$ and $nx\text{+}1\geq m>nx$

By $ny > nx+1 \ge m > nx$.

SO y > m/n > x.

REFERENCES REFERENCES

References