

Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 11

(6)

Abgabedatum: 04.07.24, 12 Uhr

1. (NA) Minifragen

- (a) Nennen Sie eine nicht Riemann-integrierbare Funktion.
- (b) Ist jede stetige Funktion Riemann-integrierbar?
- (c) Ist jede monoton wachsende Funktion Riemann-integrierbar?
- (d) Ist jede Funktion mit endlich vielen Unstetigkeitsstellen Riemann-integrierbar?

2. (A) Partialbruchzerlegung

Bestimmen Sie die folgenden Stammfunktionen:

a)
$$\int \frac{1}{x^4 - 1} dx$$
 (1)

b)
$$\int \frac{x^3 + 2x^2 - 1}{x(x - 1)} dx$$
 (1)

c)
$$\int \frac{3x^2}{x^3+1} dx$$
 (1)

d)
$$\int \frac{\log(x)}{x(\log^2(x) + \log(x) - 2)} dx \tag{1.5}$$

e)
$$\int \frac{1}{\sqrt{5-4x-x^2}} dx$$
 (1,5)

3. (A) Höhere trigonometrische Integrale

Sei $f_n(x) := \sin^n(x)$ für $n \ge 2$. Bestimmen Sie eine rekursive Darstellung für

$$\int f_n(x) \, dx$$

der Form

$$\int f_n(x) dx = g_n(x) f_{n-1}(x) + \alpha_n \int f_{n-2} dx,$$

wobei $g_n : \mathbb{R} \to \mathbb{R}$ und $\alpha_n \in \mathbb{R}$.

4. (A) Zwischensummen

Es seien $a, b \in (0, +\infty)$, a < b, und $f: [a, b] \to \mathbb{R}$, $f(x) = \frac{1}{x}$.

a) Zeigen Sie, dass durch
$$x_j = a \left(\frac{b}{a}\right)^{\frac{j}{n}}$$
, $j = 0, \dots, n$, eine ausgezeichnete Partitionenfolge $(\pi_n)_{n \in \mathbb{N}}$ von $[a, b]$ gegeben ist. (2)

- b) Durch $\xi_j = x_j$ für j = 1, ..., n sind Zwischenstellen dieser Partition gegeben. Bestimmen Sie die zugehörige Riemannsche Zwischensumme. (2)
- c) Bestimmen Sie über die Zwischensumme aus b das Integral $\int_a^b \frac{1}{x} dx$. (2)

5. (A) Stetigkeit und Stammfunktionen

a) Sei $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

Zeigen Sie, dass f keine Stammfunktion besitzt.

b) Geben Sie (mit Beweis) eine in mindestens einem Punkt unstetige Funktion $f: \mathbb{R} \to \mathbb{R}$ an, welche dennoch eine Stammfunktion $F: \mathbb{R} \to \mathbb{R}$ besitzt. (3)

(3)

6. (T),(NA)

Bestimmen Sie die folgenden Stammfunktionen:

- a) $\int \frac{1}{x^3+x} dx$
- b) $\int \frac{x^5+1}{x^4+x^2} dx$
- c) $\int \frac{x+2}{x^3-3x^2-x+3} dx$

7. (T),(NA)

Berechnen Sie die Ober- und Untersumme von $f = \exp: [0, 1] \to \mathbb{R}$ für die Zerlegung $Z_n = \{x_i | i = 0, \dots, n\}$ mit $x_i = \frac{i}{n}$ und $n \in \mathbb{N}$. Zeigen Sie

$$\lim_{n \to \infty} \max_{i \in \{1, \dots, n\}} |x_i - x_{i-1}| = 0$$

und bestimmen Sie mit diesen Ergebnissen den Wert des Integrals $\int_0^1 e^x dx$.

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.