

COMPLEX FUNCTION

ftp://10.220.20.26/academic/mce/maka

Complex Function

A complex function is a function f whose domain and range are subsets of the set *C* of complex numbers.

EXAMPLE:

The expression $z^2 - (2 + i)z$ can be evaluated at any complex number z and always yields a single complex number, and so $f(z) = z^2 - (2 + i)z$ defines a complex function. Values of f are found by using the arithmetic operations for complex numbers given in Section 1.1. For instance, at the points z = i and z = 1+i

we have:
$$f(i) = (i)^2 - (2+i)(i) = -1 - 2i + 1 = -2i$$

And $f(1+i) = (1+i)^2 - (2+i)(1+i) = 2i - 1 - 3i = -1 - i$.

Complex Function

A symbol such as *z*,which can stand for any one of a set of complex number is called as Complex Variable.

EXAMPLE:

The expression $z^2 - (2 + i)z$ can be evaluated at any complex number z and always yields a single complex number.

ELEMENTARY FUNCTIONS

1. Polynomial Functions are defined by

$$w = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = P(z)$$
(2.2)

where $a_0 \neq 0, a_1, \ldots, a_n$ are complex constants and n is a positive integer called the *degree* of the polynomial P(z).

The transformation w = az + b is called a *linear transformation*.

2. Rational Algebraic Functions are defined by

$$w = \frac{P(z)}{Q(z)} \tag{2.3}$$

where P(z) and Q(z) are polynomials. We sometimes call (2.3) a rational transformation. The special case w = (az + b)/(cz + d) where $ad - bc \neq 0$ is often called a bilinear or fractional linear transformation.

3. Exponential Functions are defined by

$$w = e^z = e^{x+iy} = e^x(\cos y + i\sin y)$$
 (2.4)

where e is the natural base of logarithms. If a is real and positive, we define

$$a^z = e^{z \ln a} \tag{2.5}$$

where $\ln a$ is the *natural logarithm of a*. This reduces to (4) if a = e.

ELEMENTARY FUNCTIONS

Complex exponential functions have properties similar to those of real exponential functions. For example, $e^{z_1} \cdot e^{z_2} = e^{z_1+z_2}$, $e^{z_1}/e^{z_2} = e^{z_1-z_2}$.

4. Trigonometric Functions. We define the trigonometric or circular functions $\sin z$, $\cos z$, etc., in terms of exponential functions as follows:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sec z = \frac{1}{\cos z} = \frac{2}{e^{iz} + e^{-iz}}, \qquad \csc z = \frac{1}{\sin z} = \frac{2i}{e^{iz} - e^{-iz}}$$

$$\tan z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}, \qquad \cot z = \frac{\cos z}{\sin z} = \frac{i(e^{iz} + e^{-iz})}{e^{iz} - e^{-iz}}$$

Many of the properties familiar in the case of real trigonometric functions also hold for the complex trigonometric functions. For example, we have:

$$\sin^{2} z + \cos^{2} z = 1, \qquad 1 + \tan^{2} z = \sec^{2} z, \qquad 1 + \cot^{2} z = \csc^{2} z$$

$$\sin(-z) = -\sin z, \qquad \cos(-z) = \cos z, \qquad \tan(-z) = -\tan z$$

$$\sin(z_{1} \pm z_{2}) = \sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2}$$

$$\cos(z_{1} \pm z_{2}) = \cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2}$$

$$\tan(z_{1} \pm z_{2}) = \frac{\tan z_{1} \pm \tan z_{2}}{1 \mp \tan z_{1} \tan z_{2}}$$

ELEMENTARY FUNCTIONS

5. Hyperbolic Functions are defined as follows:

$$\sinh z = \frac{e^{z} - e^{-z}}{2}, \qquad \cosh z = \frac{e^{z} + e^{-z}}{2}$$

$$\operatorname{sech} z = \frac{1}{\cosh z} = \frac{2}{e^{z} + e^{-z}}, \qquad \operatorname{csch} z = \frac{1}{\sinh z} = \frac{2}{e^{z} - e^{-z}}$$

$$\tanh z = \frac{\sinh z}{\cosh z} = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}, \qquad \coth z = \frac{\cosh z}{\sinh z} = \frac{e^{z} + e^{-z}}{e^{z} - e^{-z}}$$

The following properties hold:

$$\cosh^{2} z - \sinh^{2} z = 1, \qquad 1 - \tanh^{2} z = \operatorname{sech}^{2} z, \qquad \coth^{2} z - 1 = \operatorname{csch}^{2} z \\
\sinh(-z) = -\sinh z, \qquad \cosh(-z) = \cosh z, \qquad \tanh(-z) = -\tanh z \\
\sinh(z_{1} \pm z_{2}) = \sinh z_{1} \cosh z_{2} \pm \cosh z_{1} \sinh z_{2} \\
\cosh(z_{1} \pm z_{2}) = \cosh z_{1} \cosh z_{2} \pm \sinh z_{1} \sinh z_{2} \\
\tanh(z_{1} \pm z_{2}) = \frac{\tanh z_{1} \pm \tanh z_{2}}{1 \pm \tanh z_{1} \tanh z_{2}}$$

ELEMENTARY FUNCTIONS

The following relations exist between the trigonometric or circular functions and the hyperbolic functions:

$$\sin iz = i \sinh z$$
, $\cos iz = \cosh z$, $\tan iz = i \tanh z$
 $\sinh iz = i \sin z$, $\cosh iz = \cos z$, $\tanh iz = i \tan z$

6. Logarithmic Functions. If $z = e^w$, then we write $w = \ln z$, called the *natural logarithm* of z. Thus the natural logarithmic function is the inverse of the exponential function and can be defined by

$$w = \ln z = \ln r + i(\theta + 2k\pi), \quad k = 0, \pm 1, \pm 2, \dots$$

where $z = re^{i\theta} = re^{i(\theta+2k\pi)}$. Note that $\ln z$ is a multiple-valued (in this case, infinitely-many-valued) function. The *principal-value* or *principal branch* of $\ln z$ is sometimes defined as $\ln r + i\theta$ where $0 \le \theta < 2\pi$. However, any other interval of length 2π can be used, e.g., $-\pi < \theta \le \pi$, etc.

The logarithmic function can be defined for real bases other than e. Thus, if $z = a^w$, then $w = \log_a z$ where a > 0 and $a \ne 0$, 1. In this case, $z = e^{w \ln a}$ and so, $w = (\ln z)/(\ln a)$.

ELEMENTARY FUNCTIONS

7. Inverse Trigonometric Functions. If $z = \sin w$, then $w = \sin^{-1} z$ is called the *inverse sine of z* or *arc sine of z*. Similarly, we define other inverse trigonometric or circular functions $\cos^{-1} z$, $\tan^{-1} z$, etc. These functions, which are multiple-valued, can be expressed in terms of natural logarithms as follows. In all cases, we omit an additive constant $2k\pi i$, $k = 0, \pm 1, \pm 2, \ldots$, in the logarithm:

$$\sin^{-1} z = \frac{1}{i} \ln \left(iz + \sqrt{1 - z^2} \right), \qquad \csc^{-1} z = \frac{1}{i} \ln \left(\frac{i + \sqrt{z^2 - 1}}{z} \right)$$

$$\cos^{-1} z = \frac{1}{i} \ln \left(z + \sqrt{z^2 - 1} \right), \qquad \sec^{-1} z = \frac{1}{i} \ln \left(\frac{1 + \sqrt{1 - z^2}}{z} \right)$$

$$\tan^{-1} z = \frac{1}{2i} \ln \left(\frac{1 + iz}{1 - iz} \right), \qquad \cot^{-1} z = \frac{1}{2i} \ln \left(\frac{z + i}{z - i} \right)$$

ELEMENTARY FUNCTIONS

8. Inverse Hyperbolic Functions. If $z = \sinh w$, then $w = \sinh^{-1} z$ is called the *inverse hyperbolic sine of z*. Similarly, we define other inverse hyperbolic functions $\cosh^{-1} z$, $\tanh^{-1} z$, etc. These functions, which are multiple-valued, can be expressed in terms of natural logarithms as follows. In all cases, we omit an additive constant $2k\pi i$, $k = 0, \pm 1, \pm 2, \ldots$, in the logarithm:

$$\sinh^{-1} z = \ln\left(z + \sqrt{z^2 + 1}\right), \qquad \operatorname{csch}^{-1} z = \ln\left(\frac{1 + \sqrt{z^2 + 1}}{z}\right)$$

$$\cosh^{-1} z = \ln\left(z + \sqrt{z^2 - 1}\right), \qquad \operatorname{sech}^{-1} z = \ln\left(\frac{1 + \sqrt{1 - z^2}}{z}\right)$$

$$\tanh^{-1} z = \frac{1}{2}\ln\left(\frac{1 + z}{1 - z}\right), \qquad \coth^{-1} z = \frac{1}{2}\ln\left(\frac{z + 1}{z - 1}\right)$$

BASIC DEFINATIONS

Distance: $|z - z_0|$ represents the distance between two points z and z_0 .

Circle: $|z - z_0| = r$ represents a circle with centre at the point z_0 and radius r.

Interior of a circle: $|z - z_0| < r$ represents the interior of the circle.

Exterior of a circle: $|z - z_0| > r$ represents the exterior of the circle.

Annulus: The region between two concentric circles of radii r_1 and r_2 ($r_2 > r_1$) and centre at z_0 is known as the annulus region and is represented as

$$r_1 < |z - z_0| < r_2$$

Neighbourhood: The set of all points for which $|z - z_0| < r$ is known as the neighbourhood of z_0 .

Boundary point: A point which does not lie in the interior or exterior of a region is known as a boundary point.

Open set: A set that does not contain its boundary points is known as an open set.

BASIC DEFINATIONS

Closed set: A set that contains all its boundary points is known as a closed set.

Connected set: If any two points of the set can be joined by a polygonal line such that all the points of the line also belong to the set then the set is known as a connected set.

Domain: A set which is open and connected is known as a domain.

Bounded region: A region which can be enclosed in a circle of finite radius is known as a bounded region.

Compact region: A region that is closed and bounded is known as a compact region.

LIMIT OF FUNCTION OF COMPLEX VARIABLE

Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 . Then f(z) is said to have the limit l as z approaches z_0 along any path if given an arbitrary real number $\epsilon > 0$, however small there exists a real number $\delta > 0$, such that

$$|f(z)-l| \le \text{ whenever } 0 \le |z-z_0| \le \delta$$

i.e. for every $z \neq z_0$ in δ -disc (dotted) of z-plane, f(z) has a value lying in the \in -disc of w-plane In symbolic form, $\lim_{z \to z_0} f(z) = l$

LIMIT OF FUNCTION OF COMPLEX VARIABLE

Note: (I) δ usually depends upon \in .

(II) $z \to z_0$ implies that z approaches z_0 along any path. The limits must be independent of the manner in which z approaches z_0

If we get two different limits as $z \to z_0$ along two different paths then limits does not exist.

Example:

(1) Find Following Limit, $\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1}$

As
$$z \rightarrow i, z^2 \rightarrow -1$$

$$\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1} = \lim_{z \to i} \frac{z^2 + 1}{(z^2 + 1)(z^4 - z^2 + 1)}$$
$$= \lim_{z^2 \to -1} \frac{1}{(z^4 - z^2 + 1)} = \frac{1}{3}$$

LIMIT OF FUNCTION OF COMPLEX VARIABLE

Example (2): Show that $\lim_{z\to 0} \frac{z}{|z|}$ does not exist.

Solution.
$$\lim_{z \to 0} \frac{z}{|z|} = \lim_{\substack{x \to 0 \ y \to 0}} \frac{x + iy}{\sqrt{x^2 + y^2}}$$

Let y = mx,

$$= \lim_{x \to 0} \frac{x + imx}{\sqrt{x^2 + m^2 x}} = \lim_{x \to 0} \frac{1 + im}{\sqrt{1 + m^2}} = \frac{1 + mi}{\sqrt{1 + m^2}}$$

The value of $\frac{1+mi}{\sqrt{1+m^2}}$ are different for different values of m.

Hence, limit of the function does not exist.

An Epsilon-Delta Proof of a Limit

EXAMPLE 3: Prove that $\lim_{z \to 1+i} (2+i)z = 1+3i$.

Solution According to Definition 2.8, $\lim_{z\to 1+i}(2+i)z=1+3i$, if, for every $\varepsilon>0$, there is a $\delta>0$ such that $|(2+i)z-(1+3i)|<\varepsilon$ whenever $0<|z-(1+i)|<\delta$. Proving that the limit exists requires that we find an appropriate value of δ for a given value of ε . In other words, for a given value of ε we must find a positive number δ with the property that if $0<|z-(1+i)|<\delta$, then $|(2+i)z-(1+3i)|<\varepsilon$. One way of finding δ is to "work backwards." The idea is to start with the inequality:

$$|(2+i)z - (1+3i)| < \varepsilon \tag{4}$$

An Epsilon-Delta Proof of a Limit

EXAMPLE 3: Prove that $\lim_{z \to 1+i} (2+i)z = 1+3i$.

and then use properties of complex numbers and the modulus to manipulate this inequality until it involves the expression |z - (1+i)|. Thus, a natural first step is to factor (2+i) out of the left-hand side of (4):

$$|2+i| \cdot \left| z - \frac{1+3i}{2+i} \right| < \varepsilon. \tag{5}$$

Because
$$|2+i| = \sqrt{5}$$
 and $\frac{1+3i}{2+i} = 1+i$, (5) is equivalent to:

$$\sqrt{5} \cdot |z - (1+i)| < \varepsilon \quad \text{or} \quad |z - (1+i)| < \frac{\varepsilon}{\sqrt{5}}.$$
 (6)

An Epsilon-Delta Proof of a Limit

EXAMPLE 3: Prove that $\lim_{z \to 1+i} (2+i)z = 1+3i$.

Thus, (6) indicates that we should take $\delta = \varepsilon/\sqrt{5}$. Keep in mind that the choice of δ is not unique. Our choice of $\delta = \varepsilon/\sqrt{5}$ is a result of the particular algebraic manipulations that we employed to obtain (6). Having found δ we now present the formal proof that $\lim_{z\to 1+i} (2+i)z = 1+3i$ that does not indicate how the choice of δ was made:

Given $\varepsilon > 0$, let $\delta = \varepsilon/\sqrt{5}$. If $0 < |z - (1+i)| < \delta$, then we have $|z - (1+i)| < \varepsilon/\sqrt{5}$. Multiplying both sides of the last inequality by $|2+i| = \sqrt{5}$ we obtain:

 $|2+i|\cdot|z-(1+i)|<\sqrt{5}\cdot\frac{\varepsilon}{\sqrt{5}}\quad\text{or}\quad |(2+i)z-(1+3i)|<\varepsilon.$

Therefore, $|(2+i)z - (1+3i)| < \varepsilon$ whenever $0 < |z - (1+i)| < \delta$. So, according to Definition 2.8, we have proven that $\lim_{z \to 1+i} (2+i)z = 1+3i$.

CONTINUITY

The function f(z) of a complex variable z is said to be continuous at the point z_0 if for any given positive number \in , we can find a number δ such that $|f(z) - f(z_0)| < \epsilon$ for all points z of the domain satisfying

$$|z - z_0| < \delta$$

 $f(z)$ is said to be continuous at $z = z_0$ if
$$\lim_{z \to z_0} f(z) = f(z_0)$$

CONTINUITY IN TERMS OF REAL & IMAGINARY NUMBER :-

If w = f(z) = u(x, y) + iv(x, y) is continuous function at $z = z_0$ then u(x, y) and v(x, y) are separately continuous functions of x, y at (x_0, y_0) where $z_0 = x_0 + i y_0$.

Conversely, if u(x, y) and v(x, y) are continuous functions of x, y at (x_0, y_0) then f(z) is continuous at $z = z_0$.

CONTINUITY

Example 1

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{\text{Re}(z)}{z} &, z \neq 0 \\ 0 &, z = 0 \end{cases}$$
 is not continuous at $z = 0$

Solution. Here
$$f(z) = \frac{\text{Re}(z)}{z}$$
 when $z \neq 0$

$$\lim_{z \to 0} \frac{\operatorname{Re}(z)}{z} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{x + iy} = \lim_{x \to 0} \left[\lim_{\substack{y \to 0}} \frac{x}{x + iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

$$\lim_{z \to 0} \frac{\operatorname{Re}(z)}{z} = \lim_{y \to 0} \left[\lim_{x \to 0} \frac{x}{x + iy} \right] = 0$$

Again

As $z \to 0$, for two different paths limit have two different values. So, limit does not exist. Hence f(z) is not continuous at z = 0 **Proved.**

CONTINUITY

Example 2

Discuss the continuity of f(z) at the origin.

$$f(z) = \frac{\overline{z}}{z}, \quad z \neq 0$$
$$= 0, \quad z = 0$$

Solution

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\overline{z}}{z}$$
$$= \lim_{z \to 0} \frac{x - iy}{x + iy}$$

Let $z \to 0$ along the line y = mx.

$$\lim_{z \to 0} f(z) = \lim_{x \to 0} \frac{x - i mx}{x + i mx}$$

$$= \lim_{x \to 0} \frac{1 - i m}{1 + i m}$$

$$= \frac{1 - i m}{1 + i m}$$

Since the limit depends on m, it takes different values along different paths. Thus, the limit does not exist. Hence, f(z) is not continuous at the origin.

CONTINUITY

Theorems on Continuity

- **THEOREM 2.2.** Given f(z) and g(z) are continuous at $z = z_0$. Then so are the functions f(z) + g(z), f(z) g(z), f(z)g(z) and f(z)/g(z), the last if $g(z_0) \neq 0$. Similar results hold for continuity in a region.
- **THEOREM 2.3.** Among the functions continuous in every finite region are (a) all polynomials, (b) e^z , (c) $\sin z$ and $\cos z$.
- THEOREM 2.4. Suppose w = f(z) is continuous at $z = z_0$ and $z = g(\zeta)$ is continuous at $\zeta = \zeta_0$. If $z_0 = g(\zeta_0)$, then the function $w = f[g(\zeta)]$, called a *function of a function* or *composite function*, is continuous at $\zeta = \zeta_0$. This is sometimes briefly stated as: A continuous function of a continuous function is continuous.
- **THEOREM 2.5.** Suppose f(z) is continuous in a closed and bounded region. Then it is bounded in the region; i.e., there exists a constant M such that |f(z)| < M for all points z of the region.
- **THEOREM 2.6.** If f(z) is continuous in a region, then the real and imaginary parts of f(z) are also continuous in the region.

Problems on Limit and Continuity

- **EXAMPLE 4:** (a) Prove that $f(z) = z^2$ is continuous at $z = z_0$.
 - (b) Prove that $f(z) = \begin{cases} z^2 & z \neq z_0 \\ 0 & z = z_0 \end{cases}$, where $z_0 \neq 0$, is discontinuous at $z = z_0$.

Solution

- By Problem 2.23(a), $\lim_{z\to z_0} f(z) = f(z_0) = z_0^2$ and so f(z) is continuous at $z=z_0$.
 - **Another Method.** We must show that given any $\epsilon > 0$, we can find $\delta > 0$ (depending on ϵ) such that $|f(z) - f(z_0)| = |z^2 - z_0^2| < \epsilon$ when $|z - z_0| < \delta$. The proof patterns that given in Problem 2.23(a).
- By Problem 2.23(b), $\lim_{z\to z_0} f(z) = z_0^2$, but $f(z_0) = 0$. Hence, $\lim_{z\to z_0} f(z) \neq f(z_0)$ and so f(z) is discontinuous at $z = z_0$ if $z_0 \neq 0$.
 - If $z_0 = 0$, then f(z) = 0; and since $\lim_{z \to z_0} f(z) = 0 = f(0)$, we see that the function is continuous.

Problems on Limit and Continuity

EXAMPLE 5: Is the function $f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$ continuous at z = i?

Solution

f(i) does not exist, i.e., f(x) is not defined at z = i. Thus f(z) is not continuous at z = i. By redefining f(z) so that $f(i) = \lim_{z \to i} f(z) = 4 + 4i$ (see Problem 2.25), it becomes continuous at z = i. In such a case, we call z = i a removable discontinuity.

EXAMPLE 6:

Prove that $f(z) = z^2$ is continuous in the region $|z| \le 1$.

Solution

Let z_0 be any point in the region $|z| \le 1$. By Problem 2.23(a), f(z) is continuous at z_0 . Thus, f(z) is continuous in the region since it is continuous at any point of the region.

Mappings A useful tool for the study of real functions in elementary calculus is the graph of the function. Recall that if y =f(x) is a real-valued function of a real variable x, then the graph of f is defined to be the set of all points (x, f(x)) in the two-dimensional Cartesian plane. An analogous definition can be made for a complex function. However, if w = f(z) is a complex function, then both z and w lie in a complex plane. It follows that the set of all points (z, f(z)) lies in four-dimensional space (two dimensions from the input z and two dimensions from the output w). Of course, a subset of four-dimensional space cannot be easily illustrated.

Mappings A useful tool for the study of real functions in elementary calculus is the graph of the function. Recall that if y =f(x) is a real-valued function of a real variable x, then the graph of f is defined to be the set of all points (x, f(x)) in the two-dimensional Cartesian plane. An analogous definition can be made for a complex function. However, if w = f(z) is a complex function, then both z and w lie in a complex plane. It follows that the set of all points (z, f(z)) lies in four-dimensional space (two dimensions from the input z and two dimensions from the output w). Of course, a subset of four-dimensional space cannot be easily illustrated.

EXAMPLE 7: Let $w = f(z) = z^2$. Find the values of w that correspond to (a) z = -2 + i and (b) z = 1 - 3i, and show how the correspondence can be represented graphically.

Solution

(a)
$$w = f(-2+i) = (-2+i)^2 = 4-4i+i^2 = 3-4i$$

(b)
$$w = f(1-3i) = (1-3i)^2 = 1-6i+9i^2 = -8-6i$$

EXAMPLE 8:

A point P moves in a counterclockwise direction around a circle in the z plane having center at the origin and radius 1. If the mapping function is $w = z^3$, show that when P makes one complete revolution, the image P' of P in the w plane makes three complete revolutions in a counterclockwise direction on a circle having center at the origin and radius 1.

Solution

Let $z = re^{i\theta}$. Then, on the circle |z| = 1 [Fig. 2-8], r = 1 and $z = e^{i\theta}$. Hence, $w = z^3 = (e^{i\theta})^3 = e^{3i\theta}$. Letting (ρ, ϕ) denote polar coordinates in the w plane, we have $w = \rho e^{i\phi} = e^{3i\theta}$ so that $\rho = 1$, $\phi = 3\theta$.

EXAMPLE 8:

A point P moves in a counterclockwise direction around a circle in the z plane having center at the origin and radius 1. If the mapping function is $w = z^3$, show that when P makes one complete revolution, the image P' of P in the w plane makes three complete revolutions in a counterclockwise direction on a circle having center at the origin and radius 1.

Solution

Let $z = re^{i\theta}$. Then, on the circle |z| = 1 [Fig. 2-8], r = 1 and $z = e^{i\theta}$. Hence, $w = z^3 = (e^{i\theta})^3 = e^{3i\theta}$. Letting (ρ, ϕ) denote polar coordinates in the w plane, we have $w = \rho e^{i\phi} = e^{3i\theta}$ so that $\rho = 1$, $\phi = 3\theta$.

Since $\rho = 1$, it follows that the image point P' moves on a circle in the w plane of radius 1 and center at the origin [Fig. 2-9]. Also, when P moves counterclockwise through an angle θ , P' moves counterclockwise through an angle 3θ . Thus, when P makes one complete revolution, P' makes three complete revolutions. In terms of vectors, it means that vector O'P' is rotating three times as fast as vector OP.

EXAMPLE 9: Find the image of the vertical line x = 1 under the complex mapping w = z2 and represent the mapping graphically.

Solution Let C be the set of points on the vertical line x=1 or, equivalently, the set of points z=1+iy with $-\infty < y < \infty$. We proceed as in Example 1. From (1) of Section 2.1, the real and imaginary parts of $w=z^2$ are $u(x, y) = x^2 - y^2$ and v(x, y) = 2xy, respectively. For a point z=1+iy in C, we have $u(1, y) = 1 - y^2$ and v(1, y) = 2y. This implies that the image of S is the set of points w=u+iv satisfying the simultaneous equations:

$$u = 1 - y^2 \tag{3}$$

$$v = 2y \tag{4}$$

and

EXAMPLE 9: Find the image of the vertical line x = 1 under the complex mapping w = z2 and represent the mapping graphically.

for $-\infty < y < \infty$. Equations (3) and (4) are parametric equations in the real parameter y, and they define a curve in the w-plane. We can find a Cartesian equation in u and v for this curve by eliminating the parameter y. In order to do so, we solve (4) for y and then substitute this expression into (3):

$$u = 1 - \left(\frac{v}{2}\right)^2 = 1 - \frac{v^2}{4}.\tag{5}$$

Since y can take on any real value and since v=2y, it follows that v can take on any real value in (5). Consequently, C'—the image of C—is a parabola in the w-plane with vertex at (1,0) and u-intercepts at $(0,\pm 2)$. See Figure 2.3(b). In conclusion, we have shown that the vertical line x=1 shown in color in Figure 2.3(a) is mapped onto the parabola $u=1-\frac{1}{4}v^2$ shown in black in Figure 2.3(b) by the complex mapping $w=z^2$.

EXAMPLE 9: Find the image of the vertical line x = 1 under the complex mapping w = z2 and represent the mapping

graphically.

(b) The image of *C* is the parabola $u = 1 - \frac{1}{4}v^2$

Thanks a lot ...