Network Design Principles

Content

- Design Goals
- Design Solutions

- Focus on a few topics
- Can't implement all goals at 100%

• Many small + cheap devices?

Costs

• A few big + expensive devices?

- License costs?
- Cabling?

• Expected growth?

Costs

• Amount of new servers?

• Amount of new clients?

Scaling

• Expected amout of ingress/egress traffic?

Costs

Scaling

Redundancy

- On which paths do I really need redundancy?
 - Costs of redundancy vs outage?
 - o Don't abuse redundant rings, stay under 50% utilization!
 - Logical redundancy? Physical Redundancy?
- Redundancy needs more configuration than a simple link
- Redundancy needs proper metrics and monitoring

Topology

Every cloud = One AS (Autonomous system)

- How to design the network edge?
- Design the core?
- Design the Datacenter/TOR?
 - o TOR Top of Rack switche

- Redundancy
- Control over routing
- More bandwidth

Why?

• Reach more clients all over the world

Why?

Topology

THE 7950 XRS FAMILY

MODEL	SYSTEM CAPACITY	I/F SLOTS	100 GE PORTS	40 GE PORTS	10 GE PORTS	FOOTPRINT STANDARD 19" RACKS	AVAILABILITY	SYSTEM Expansion
7950 XRS-40	32 Tb/s	40	160	400	1600	2 racks	1H 2013	Multi-chassis
7950 XRS-20	16 Tb/s	20	80	200	800	1 rack	In trials now Shipping 3Q 2012	XRS-40 and/or multi- chassis
7950 XRS-16c	6.4 Tb/s	16	32	80	320	1 rack	1H 2013	Standalone

□ average traffic in bits per second Current 4292.1 G Averaged 3464.6 G Graph Peak 5078.8 G DE-CIX All-Time Peak 5539.09 Created at 2016-11-27 13:01 UTC Copyright 2016 DE-CIX Management GmbH

Why?

Topology

Why?

Topology

Why?

Topology

Why?

Topology

Why?

Topology

- Always use two core routers for redundancy at a POP
 - POP Point of Presence
- Always use a seperate router for transit/peering
- BGP as EGP
 - o Border Gateway Protocol
 - Exterior Gateway Protocol

Why?

Topology

Edge

Why?

Topology

Edge

Why?

Topology

Edge

Why?

Topology

Edge

Why?

Topology

Edge

- Most important part of the network, don't make mistakes!
- Precisely monitor traffic amount + flow
- build many small and redundant rings
- Invest in huge capacities, upgrades are painful
- Automate it

Datacenter Cologne

Why?

Topology

Edge

Core

- Scales until the access router runs out of ports
- Router ports are expensive
- No redundant connection for TOR

Why?

Topology

Edge

Core

Why?

Topology

Edge

Core

- Redundant
- Scales for vertical traffic
- Big clusters require more and more horizontal traffic

Why?

Topology

Edge

Core

Topology of Cisco MSDC Design Evolution-Phase 1

Spine

Why?

Topology

Edge

Core

Topology of Cisco MSDC Design Evolution—Phase 2

DC

(Copyright by Cisco)

Why?

Topology

Edge

Core

- Scales in all directions
- A lot of redundancy + bandwidth
- Only one hop to each server
- Expensive
- Impossible without automation

Conclusion

- Many different solutions
- Everything is expensive
- Proper planning, think big, spare capacity
- Always use rings
- Monitor your stuff