∨ CNN개념이해_MNIST

- 본 파일은 GPU 런타임으로 연결됩니다.
- 경우에 따라서는 GPU 연결이 원할하지 않을 수도 있습니다.

∨ 1.환경준비

∨ (1) 라이브러리 로딩

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import random as rd
import cv2, os # cv2 : OpenCV # 이미지 처리 라이브러리
from sklearn.model_selection import train_test_split
from sklearn.metrics import *
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D # CNN
from keras.backend import clear_session
from keras.optimizers import Adam
from keras.datasets import mnist, fashion_mnist
   • 함수 만들기
# 학습곡선 함수
def dl_history_plot(history):
    plt.figure(figsize=(10,6))
    plt.plot(history['loss'], label='train_err', marker = ',')
    plt.plot(history['val_loss'], label='val_err', marker = ',')
    plt.ylabel('Loss')
   plt.xlabel('Epoch')
   plt.legend()
   plt.grid()
    plt.show()
```

∨ (2) 데이터로딩

```
      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      0123456789

      # 別라스 데이터셋으로 부터 mnist 불러오기(x_train, y_train), (x_val, y_val) = mnist.load_data()
```

24. 4. 15. 오후 3:16

∨ 2 데이터 살펴보기

• 이미지 확인하기

```
# 아래 숫자를 바꿔가며 화면에 그려 봅시다.
n = 1

plt.imshow(x_train[n], cmap=plt.cm.binary)
plt.colorbar()
plt.show()
```


• 이미지를 픽셀 값(배열 값)으로 확인하기

numpy array 화면 출력시 문자열 길이 조정 np.set_printoptions(linewidth=500) x_train[n]

• 여러 이미지 확인하기

```
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.imshow(x_train[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[y_train[i]])
plt.tight_layout()
plt.show()
```


∨ 3.데이터 준비

• CNN은 3차원 구조의 이미지(데이터셋은 4차원)를 입력해야 합니다.(input_shape)

• reshape를 이용하여 다음과 같이 변환해 봅시다.

```
x_train.shape: (60000, 28, 28, 1)x_val.shape: (10000, 28, 28, 1)
```

```
x_train = x_train.reshape(60000,28,28,1)
x_val = x_val.reshape(10000,28,28,1)
```

• Scaling: Min-Max

- 0-255 값으로 되어 있는 데이터를 0-1사이 값으로 변환
- o x_train, x_val 그냥 255로 나누면 됨

```
x_train = x_train / 255.
x_val = x_val / 255.
```

4.CNN 기본 모델링

∨ (1) 모델 설계

• CNN 모델의 기본 구조

。 Conv2D: 지역적인 특징 도출

MaxPooling : 요약

∘ Flatten: 1차원으로 펼치기

o Dense: Output Layer

```
clear_session()
```

model.summary()

model.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy')

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 16)	160
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 14, 14, 16)	0
flatten (Flatten)	(None, 3136)	0
dense (Dense)	(None, 10)	31370
Total params: 31530 (123.16 Trainable params: 31530 (123 Non-trainable params: 0 (0.0	.16 KB)	

∨ (2) 학습

history = model.fit(x_train, y_train, epochs = 10, validation_split=0.2).history

```
Epoch 1/10
1500/1500 [===========] - 8s 3ms/step - loss: 0.2833 - val_loss: 0.1311
Epoch 2/10
1500/1500 Γ=
     Epoch 3/10
1500/1500 [=
     Epoch 4/10
Epoch 5/10
1500/1500 [=
     Epoch 6/10
Epoch 7/10
     1500/1500 [=
Epoch 8/10
Epoch 9/10
1500/1500 Г≕
     Epoch 10/10
```

1500/1500 [=========] - 4s 3ms/step - loss: 0.0324 - val_loss: 0.0747

∨ (3) 학습결과 그래프

dl_history_plot(history)

∨ (4) 예측 및 평가

0.9	979										
]]	969	0	3	2	0	4	2	0	0	0]	
[0	1128	1	2	1	0	1	2	0	0]	
[3	6	997	6	1	0	2	14	2	1]	
[0	0	2	988	0	14	0	3	3	0]	
[0	1	0	0	974	0	1	2	0	4]	
[2	0	0	4	0	884	2	0	0	0]	
[7	3	0	0	5	6	935	0	2	0]	
[0	3	6	3	0	0	0	1014	2	0]	
[5	1	6	1	2	6	1	8	938	6]	
[3	5	0	6	10	7	0	14	1	963]]	

	precision	recall	T1-Score	Support
0	0.98	0.99	0.98	980
1	0.98	0.99	0.99	1135
2	0.98	0.97	0.97	1032
3	0.98	0.98	0.98	1010
4	0.98	0.99	0.99	982
5	0.96	0.99	0.98	892
6	0.99	0.98	0.98	958
7	0.96	0.99	0.97	1028
8	0.99	0.96	0.98	974
9	0.99	0.95	0.97	1009

accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

∨ 5.실습

~ (1) 모델1

- 기본 모델링에서 다음을 조정해 봅시다.
 - ∘ Flatten 이후 Dense 레이어 추가(노드수 128)

```
Layer (type)
                  Output Shape
                               Param #
  conv2d (Conv2D) (None, 28, 28, 16) 160
  max_pooling2d
                 (None, 14, 14, 16)
  flatten (Flatten)
                (None, 3136)
                                0
  dense (Dense)
                 (None, 128)
                                401536
  dense_1 (Dense) (None, 10)
                                1290
clear_session()
model2 = Sequential([Conv2D(16, kernel_size = 3, input_shape=(28, 28, 1), # kernel_size 3x3 크기의 지역에서 특징 도출
                          padding='same', activation='relu'), # strides = 1(기본값,1)
                    MaxPooling2D(pool_size = 2 ),
                                                          # 중요한 것만 요약
                                                                                 # strides = 2(기본값이 pool_size 동일)
                    Flatten(),
                                                             # 1차원으로 펼침
                    Dense(128, activation='relu'),
                    Dense(10, activation='softmax')
])
model2.summary()
model2.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy')
```

Model: "sequential"

Layer (type)	Output Shape	Param #							
conv2d (Conv2D)	(None, 28, 28, 16)	160							
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 14, 14, 16)	0							
flatten (Flatten)	(None, 3136)	0							
dense (Dense)	(None, 128)	401536							
dense_1 (Dense)	(None, 10)	1290							
Trainable params: 402986 (1.54 MB)									

Non-trainable params: 0 (0.00 Byte)

hist = model2.fit(x_train, y_train, epochs=10, validation_split=.2).history

```
Epoch 1/10
Epoch 2/10
1500/1500 [==
    Epoch 3/10
     1500/1500 Γ=
Epoch 4/10
       1500/1500 [=
Epoch 5/10
1500/1500 [=
      ========= ] - 6s 4ms/step - loss: 0.0460 - val_loss: 0.1088
Epoch 6/10
1500/1500 Γ=
      Epoch 7/10
1500/1500 [=
      Epoch 8/10
```

24. 4. 15. 오후 3:16

```
Epoch 9/10
1500/1500 [=======] - 8s 6ms/step - loss: 0.0189 - val_loss: 0.1253
Epoch 10/10
1500/1500 [======] - 9s 6ms/step - loss: 0.0174 - val_loss: 0.1321
```

• 학습결과 그래프

dl_history_plot(hist)

• 예측 및 평가

```
pred = model2.predict(x_val)
pred = np.argmax(pred, axis=1)
     313/313 [=======] - 2s 5ms/step
print(accuracy_score(y_val,pred))
print('-'*60)
print(confusion_matrix(y_val, pred))
print('-'*60)
print(classification_report(y_val, pred))
     0.9762
     [[ 968
          0 1119
                                            3
                                                3
                                                     0]
                                            7
               0 1016
                                  0
                                                6
                                                     0]
                        1
                             1
                                       0
          1
          0
               0
                   2
                      991
                             0
                                  8
                                       0
                                           2
                                                4
                                                     3]
          1
               0
                        1
                           960
                                  0
                                       8
                                            2
                                                0
                                                     9]
                                            0
                                                     2]
          2
               0
                   0
                       19
                                859
                                       2
                                                8
                             0
          4
               2
                   1
                        1
                             1
                                  1
                                     944
                                            0
                                                4
                                                     0]
          0
               1
                   6
                        2
                             2
                                  0
                                      1 1009
                                                4
                                                     3]
          5
               0
                                  6
                                           3
                                              938
                                                     4]
          3
               4
                   5
                        5
                            12
                                  3
                                       0 10
                                                9 958]]
                   precision
                               recall f1-score
                                                 support
                0
                       0.98
                                 0.99
                                           0.99
                                                     980
                       0.99
                                 0.99
                                           0.99
                                                    1135
                       0.98
                                 0.98
                                           0.98
                                                    1032
                3
                       0.97
                                 0.98
                                           0.97
                                                    1010
                                 0.98
                                           0.98
                                                     982
                4
                       0.97
                5
                       0.98
                                 0.96
                                           0.97
                                                     892
```

6

7

8

0.98

0.97

0.96

0.98

0.99

0.98

0.96

0.95

0.98

0.98

0.96

0.96

958

1028

974

1009

```
accuracy 0.98 10000
macro avg 0.98 0.98 0.98 10000
weighted avg 0.98 0.98 0.98 10000
```

코딩을 시작하거나 AI로 코드를 <u>생성</u>하세요.

∨ (2) 모델2

- 모델1에 이어서 다음을 조정해 봅시다.
 - 。 Convnet의 커널 수를 32로 늘려 봅시다.

```
Output Shape
   Layer (type)
                              Param #
  conv2d (Conv2D) (None, 28, 28, 32) 320
                (None, 14, 14, 32) 0
  max_pooling2d
  flatten (Flatten)
                (None, 6272)
                              802944
  dense (Dense)
                (None, 128)
  dense_1 (Dense) (None, 10)
                              1290
clear_session()
model2 = Sequential([Conv2D(32, kernel_size = 3, input_shape=(28, 28, 1), # 필터 정류를 16개, 16개 합성곱 # kernel_size 3x3 크기
                                                                     # 28x28 크기에서 1step씩
                         padding='same', activation='relu'), # padding: input_shape와 같은 크기로 나오게(same) # strides = 1(기본값,1),
                                                                                                            # 가로,세로 1칸씩 이동
                   MaxPooling2D(pool_size = 2 ),
                                                          # 중요한 것만 요약 # strides = 2(기본값이 pool_size 동일)
                   Flatten(),
                                                      # 1차원으로 펼침
                   Dense(128, activation='relu'),
                   Dense(10, activation='softmax')
])
model2.summary()
model2.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy')
```

Model: "sequential"

Layer (type)	Output Shape	 Param #						
conv2d (Conv2D)	(None, 28, 28, 32)	320						
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 14, 14, 32)	0						
flatten (Flatten)	(None, 6272)	0						
dense (Dense)	(None, 128)	802944						
dense_1 (Dense)	(None, 10)	1290						
Total params: 804554 (3.07 MB) Trainable params: 804554 (3.07 MB) Non-trainable params: 0 (0.00 Byte)								

hist = model2.fit(x_train, y_train, epochs=10, validation_split=.2).history

```
Epoch 1/10
1500/1500 [===
      Epoch 2/10
1500/1500 [=
         Epoch 3/10
1500/1500 [=
         Epoch 4/10
1500/1500 Γ=
            ========] - 9s 6ms/step - loss: 0.0469 - val_loss: 0.1154
Epoch 5/10
1500/1500 [=
           ========] - 13s 8ms/step - loss: 0.0384 - val_loss: 0.1127
Epoch 6/10
     1500/1500 [=
Epoch 7/10
1500/1500 [====
        Epoch 8/10
```

24. 4. 15. 오후 3:16

• 학습결과 그래프

dl_history_plot(hist)

• 예측 및 평가

0.9768

]]	970	1	2	0	0	0	3	1	3	0]	
[0	1127	4	0	2	0	1	0	1	0]	
[0	0	1017	2	1	0	0	12	0	0]	
[0	0	2	998	0	4	0	4	1	1]	
Ε	0	0	1	0	973	0	3	2	0	3]	
[0	0	1	23	0	854	2	1	9	2]	
[0	2	1	2	6	2	943	0	2	0]	
Ε	0	3	11	4	5	0	0	1000	1	4]	
Ε	3	3	15	5	3	1	1	7	930	6]	
[1	3	3	7	18	9	0	7	5	956]]	

	precision	recall	f1-score	support
0	1.00	0.99	0.99	980
1	0.99	0.99	0.99	1135
2	0.96	0.99	0.97	1032
3	0.96	0.99	0.97	1010
4	0.97	0.99	0.98	982
5	0.98	0.96	0.97	892
6	0.99	0.98	0.99	958
7	0.97	0.97	0.97	1028
8	0.98	0.95	0.97	974

9	0.98	0.95	0.97	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

코딩을 시작하거나 AI로 코드를 생성하세요.

~ (3) 모델3

• 모델2에 이어서, 아래 그림을 보고, 빠진 부분을 추가하시오.

clear_session()

```
model3 = Sequential([Conv2D(32, kernel_size = 3, input_shape=(28, 28, 1), # 필터 정류를 16개, 16개 합성곱 # kernel_size 3x3 크기 # 28x28 크기에서 1step씩 padding='same', activation='relu'), # padding: input_shape와 같은 크기로 나오게(same) # strides = 1(기본값,1), # 가로,세로 1칸씩 이동 MaxPooling2D(pool_size = 2), # 중요한 것만 요약 # strides = 2(기본값이 pool_size 동일)

Conv2D(64, kernel_size = 3, input_shape=(14, 14, 1), padding='same', activation='relu'), MaxPooling2D(pool_size = 2),

Flatten(), # 1차원으로 펼침 Dense(128, activation='relu'), Dense(10, activation='softmax')

])
```

model3.summary()

model3.compile(optimizer=Adam(learning_rate=0.001), loss='sparse_categorical_crossentropy')

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 32)	320
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 14, 14, 32)	0
conv2d_1 (Conv2D)	(None, 14, 14, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 7, 7, 64)	0
flatten (Flatten)	(None, 3136)	0
dense (Dense)	(None, 128)	401536
dense_1 (Dense)	(None, 10)	1290

```
Total params: 421642 (1.61 MB)
Trainable params: 421642 (1.61 MB)
Non-trainable params: 0 (0.00 Byte)
```

hist = model3.fit(x_train, y_train, epochs=10, validation_split=.2).history

```
Epoch 1/10
Epoch 2/10
        1500/1500 [=
Epoch 3/10
1500/1500 [=
    Epoch 4/10
1500/1500 [=
        Epoch 5/10
1500/1500 Γ=
       Epoch 6/10
1500/1500 [=
         =======] - 10s 6ms/step - loss: 0.0273 - val_loss: 0.0678
Epoch 7/10
1500/1500 [=
         ========] - 9s 6ms/step - loss: 0.0244 - val_loss: 0.0781
Epoch 8/10
1500/1500 [======
      Epoch 9/10
       1500/1500 [=
Epoch 10/10
```

• 학습결과 그래프

dl_history_plot(hist)

• 예측 및 평가

0.9	9865										
[[979	0	0	0	0	0	1	0	0	0]	
[6	1120	0	1	0	3	1	4	0	0]	
[2	2	1010	3	1	0	1	10	3	0]	
[1	0	1	997	0	10	0	0	1	0]	
[0	0	0	0	953	2	2	2	2	21]	
[1	0	0	4	0	884	0	0	2	1]	
[10	2	0	0	2	5	936	0	3	0]	
[0	1	3	1	2	0	0	1021	0	0]	
[0	1	0	1	0	1	0	0	967	_	
[1	0	1	0	2	2	0	3	2	998]]	
			pre	cisio	n	recal	l f	1-scor	e s	support	
		(9	0.9	8	1.0	0	0.9	99	980	
		:	1	0.9	9	0.9	9	0.9	99	1135	
		7	2	1.0	0	0.9	8	0.9	99	1032	
		3	3	0.9	9	0.9	9	0.9	99	1010	
			4	0.9	9	0.9	7	0.9	98	982	
		į	5	0.9	7	0.9	9	0.9	98	892	
			5	0.9	9	0.9	8	0.9	99	958	
			7	0.9	8	0.9	9	0.9	99	1028	
			3	0.9	9	0.9	9	0.9	99	974	
		Ġ	9	0.9	7	0.9	9	0.9	98	1009	
	aco	curacy	/					0.9	99	10000	
		ro avo		0.9	9	0.9	9	0.9		10000	
we:		ed av	-	0.9		0.9		0.9		10000	

코딩을 시작하거나 AI로 코드를 생성하세요.

∨ 6.틀린그림 찾아보기

- 모델3의 결과에서 틀린 그림을 살펴 봅시다.
- 아래코드는 이해하기보다는 그냥 사용하기 바랍니다.

```
idx = (y_val != pred)
x_val_wr = x_val[idx]
y_val_wr = y_val[idx]
pred_wr = pred[idx]
x_val_wr = x_val_wr.reshape(-1,28,28)
print(x_val_wr.shape)
     (135, 28, 28)
idx = rd.sample(range(x_val_wr.shape[0]),25)
x_temp = x_val_wr[idx]
y_temp = y_val_wr[idx]
p_temp = pred_wr[idx]
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
   plt.yticks([])
    plt.imshow(x_temp[i], cmap=plt.cm.binary)
    plt.xlabel(f'actual : {y_temp[i]}, predict : {p_temp[i]}')
plt.tight_layout()
plt.show()
```


∨ 7.진짜 손글씨로 예측해 봅시다.

• 이미지 처리를 위한 라이브러리와 함수 불러오기

import cv2
from google.colab.patches import cv2_imshow

• 그림판에서 그린 손글씨를 업로드 합니다.

파일 열기 img = cv2.imread('33.png', cv2.IMREAD_GRAYSCALE) cv2_imshow(img) print(img.shape)

(140, 140)

• 이미지 크기를 28, 28, 1 로 맞추기

크기 조절하기 img = cv2.resize(255-img, (28, 28)) print(img.shape) cv2_imshow(img)

(28, 28)

• 예측하기

입력데이터 형식을 갖추기 test_num = img.reshape(1,28,28,1)

예측하기