Definitions

- 1.) Given a set P, a partial order on P is a relation \leq on P that satisfies the following conditions:
 - 1. For all $p \in P$, $p \le p$. (Reflexivity)
 - 2. For all $p, q \in P$, $p \le q \land q \le p \implies p = q$. (Antisymmetry)
 - 3. For all $p, q, r \in P, p \leq q \land q \leq r \implies p \leq r$. (Transitivity)
- 2.) Given a relation R on a set P, R is transitive if for all $p, q, r \in P$, $p \sim q \land q \sim r \implies p \sim r$.
- 3.) The union of a collection of sets $\{S_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is defined as the set T where

$$T = \{s : \exists \alpha \in \mathcal{A} \text{ where } s \in S_{\alpha}\}\$$

4.) The intersection of a collection of sets $\{S_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is defined as the set T where

$$T = \{s : s \in S_{\alpha} \text{ for all } \alpha \in \mathcal{A}\}$$

Proofs

- a.) Since $\mathcal{P}([2]) = \{\{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}, \emptyset\}$, we can see that the only open subsets of [2] are $\{2\}, \{1,2\}, \{0,1,2\}$, and \emptyset .
- b.) Consider the elements of $\mathcal{P}(\{a,b\})$. Given an open subset $S \subset \mathcal{P}(\{a,b\})$, consider the implications of each element existing in S. Since $\varnothing \subset \{a\}$, $\varnothing \subset \{b\}$, and $\varnothing \subset \{a,b\}$, we can see that $\varnothing \in S \implies S = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$. Next, since $\{a\} \subset \{a,b\}$ and $\{b\} \subset \{a,b\}$, we can see that $\{a\} \in S \vee \{b\} \in S \implies \{a,b\} \in S$. Finally, $\{a,b\} \in S$ does not necessarily implicate the existance of any other element in S. From this, we find every open subset of $\mathcal{P}(\{a,b\})$ to be $\{\{a,b\}\}, \{\{a\}, \{a,b\}\}, \{\{b\}, \{a,b\}\}, \{\{a\}, \{b\}, \{a,b\}\}\}$, and \varnothing .
- c.) Let S be defined as follows:

$$S = \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} = \{x : \exists \alpha \in \mathcal{A} \text{ where } x \in U_{\alpha}\}$$

Let $p, q \in P$ where $p \leq q$ and $p \in S$. We can see that $p \in S \implies \exists \alpha \in \mathcal{A}$ where $p \in U_{\alpha}$. Since U_{α} is an open subset of P, and since $p \leq q$, we know that $q \in U_{\alpha}$, thus $q \in S$, thus $p \in S \land p \leq q \implies q \in S$, thus by definition, S is an open subset of P.

d.) Let S be defined as follows:

$$S = \bigcap_{\alpha \in \mathcal{A}} U_{\alpha} = \{x : x \in U_{\alpha} \text{ for all } \alpha \in \mathcal{A}\}$$

Let $p, q \in P$ where $p \leq q$ and $p \in S$. We can see that $p \in S \implies p \in U_{\alpha}$ for all $\alpha \in \mathcal{A}$. Since for all α , U_{α} is an open subset of P, and since $p \leq q$, we know that $q \in U_{\alpha}$ for all α , thus $q \in S$, thus $p \in S \land p \leq q \implies q \in S$, thus by definition, S is an open subset of P.

e.)