External

Registers

TTBR0_EL3, Translation Table Base Register 0 (EL3)

The TTBR0 EL3 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL3 translation regime, and other information for this translation regime.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to TTBR0 EL3 are undefined.

Attributes

TTBR0 EL3 is a 64-bit register.

Field descriptions

When FEAT_D128 is implemented and TCR_EL3.D128 == 1:

63 62 61 60 59 58 57 56	55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40	39 38 3	37 36 35 34 3	33 32
RES0	BADDR			
BADDR			RES0 SK	L CnP
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6	5 4 3 2	1 0

Bits [63:56]

Reserved, res0.

BADDR, bits [55:5]

- Bits A[55:x] of the stage 1 translation table base address bits are in register bits[55:x].
- Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest permitted value of x is 5.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [4:3]

Reserved, res0.

SKL, bits [2:1]

Skip Level associated with translation table walks using TTBR0 EL3.

This determines the number of levels to be skipped from the regular start level of the Stage 1 EL3 translation table walks using TTBR0 EL3.

SKL	Meaning
0b00	Skip 0 level from the regular start
	level.
0b01	Skip 1 level from the regular start
	level.
0b10	Skip 2 levels from the regular
	start level.
0b11	Skip 3 levels from the regular
	start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that includes FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1.

CnP	Meaning	
0b0	The translation table entries	
	pointed to by VSTTBR_EL2 are	
	permitted to differ from the	
	entries for VSTTBR EL2 for other	
	PEs in the Inner Shareable	
	domain. This is not affected by the	
	value of the current VMID.	

The translation table entries pointed to by VSTTBR_EL2 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This bit is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those VSTTBR_EL2s do not point to the same translation table entries when using the current VMID, then the results of translations using VSTTBR_EL2 are constrained unpredictable, see 'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values'.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT D128 is not implemented or TCR EL3.D128 == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33				
RES0	BADDR			
BADDR				
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			

Bits [63:48]

Reserved, res0.

BADDR, bits [47:1]

- Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].
- Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL3. TOSZ, the translation stage, and the translation granule size.

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries, the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of the table.

If the value of <u>TCR EL3</u>.PS is not 0b110, then:

- Register bits[(x-1):1] are res0.
- If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1 translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of <u>TCR_EL3</u>.PS is 0b110, then:

- Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].
- Register bit[1] is res0.
- The smallest permitted value of x is 6.
- When x>6, register bits[(x-1):6] are res0.

Note

TCR_EL3.PS==0b110 is permitted when:

- FEAT_LPA is implemented and the 64KB translation granule is used.
- FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of

ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of TCR_EL3.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

When the value of ID AA64MMFR0 EL1.PARange indicates

that the implementation supports a 56 bit PA size, bits A[55:52] of the stage 1 translation table base address are zero.

If any register bit[47:1] that is defined as res0 has the value 1 when a translation table walk is done using TTBR0_EL3, then the translation table base address might be misaligned, with effects that are constrained unpredictable, and must be one of the following:

- Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

CnP, bit [0] When FEAT TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL3 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL3.CnP is 1.

CnP	Meaning	
0d0	The translation table entries	
	pointed to by TTBR0_EL3, for the	
	current translation regime, are	
	permitted to differ from	
	corresponding entries for	
	TTBR0_EL3 for other PEs in the	
	Inner Shareable domain. This is	
	not affected by the value of	
	TTBR0_EL3.CnP on those other	
	PEs.	
0b1	The translation table entries	
	pointed to by TTBR0_EL3 are the	
	same as the translation table	
	entries for every other PE in the	
	Inner Shareable domain for which	
	the value of TTBR0_EL3.CnP is 1	
	and the translation table entries	
	are pointed to by TTBR0_EL3.	

This bit is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR0_EL3s do not point to the same translation table entries the results of translations using TTBR0_EL3 are constrained unpredictable, see 'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Accessing TTBR0 EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b0010	0b0000	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TTBRO_EL3;
```

MSR TTBR0 EL3, <Xt>

op0 op1	CRn	CRm	op2
---------	-----	-----	-----

' C D C T T T T T T T T T T T T T T T T T
if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
UNDEFINED;
elsif PSTATE.EL == EL3 then
$TTBR0_EL3 = X[t, 64];$

0b0000

AArch32 Registers

0b11

AArch64 Registers

0b110

AArch32 Instructions

0b0010

AArch64 Instructions

0b000

Index by Encoding

External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.