第一章 统计量与抽样分布

- 1.1 基本概念
- 1.2 充分统计量与完备统计量
- 1.3 抽样分布
- 1.4 次序统计量及其分布

1.1 基本概念

- 一、总体和样本
- 二、统计量和样本矩
- 三、经验分布函数

一、总体与样本

1. 总体(Population)

一个统计问题总有它明确的研究对象.

研究对象的全体元素组成的集合称为总体(母体),总体中每个成员称为个体.

研究某批灯泡的质量

考察国产 轿车的质量

然而在统计研究中,人们关心总体仅仅是关心 其每个个体的一项(或几项)数量指标和该数量 指标在总体中的分布情况. 这时,每个个体具 有的数量指标的全体就是总体.

该批灯泡寿命的全体就是总体

所有国产轿车每公里耗油量的全体就是总体

而每个个体具有的数量指标的全体往往形成一定的概率分布.

考察某大学一年级 学生的年龄

某大学一年级全体 学生的年龄构成问 题的总体 设该大学一年级学生 的年龄分布如下表

年龄	18	19	20	21	22
比例	0.5	0.3	0.1	0.07	0.03

显然,上述分布是一个概率分布,记作X.

既然r.v. X的概率分布和总体的各个值的分布一样,即X的概率分布可以反映总体中各个值的分布情况。

自然,我们就用随机变量X或者随机变量X的 分布来表示所考察的总体.

又如:研究某批灯泡的寿命时,所有灯泡的寿命值形成一个总体,所有灯泡的寿命值也会形成一定的概率分布,此概率分布用某个随机变量X或用其分布函数F(x)描述.于是,这个寿命总体就可用随机变量X或用其F(x)刻画,记为X.

F(x)

结论 总体可以用一个随机变量及其分布来描述.

因此,常用随机变量的记号或用其分布函数表示总体. 比如说总体X或总体F(x).

比如说正态总体X,表示总体X的分布是正态分布。

2. 样本(Sample)

从总体X中,随机抽取n个个体:

$$X_1, X_2, \dots, X_n$$

称为总体X的一个样本,记为

$$(X_1, X_2, \dots, X_n)$$

n称为样本容量.

注 每一个个体 X_i ($i=1,2,\dots,n$)都是一个随机变量。 样本(X_1,X_2,\dots,X_n)是一个n维随机变量.

考察某大学一年级 学生的年龄

某大学一年级全体 学生的年龄构成问 题的总体 设该大学一年级学生的年龄 分布如下表(即总体X的分布 如下)

年龄	18	19	20	21	22
比例	0.5	0.3	0.1	0.07	0.03

若从该大学一年级学生中任意 抽查一个学生的年龄,记作X. 则 X_1 的概率分布是:

X_1	18	19	20	21	22	
p	0.5	0.3	0.1	0.07	0.03	

可见, X_1 是一个随机变量。同理, X_i (i=2,3,...,n)都是随机变量。

3. 样本值

每次抽取 X_1, X_2, \dots, X_n 所得到的n个确定的具体数值,记为 (x_1, x_2, \dots, x_n) 称为样本 (X_1, X_2, \dots, X_n) 的一个样本值(观察值).

4. 简单随机样本

若来自总体X的样本 (X_1, X_2, \dots, X_n) 具有下列两个特征:

- (1) 代表性: $X_1, X_2, ..., X_n$ 中每一个与所考察的总体有相同的分布.
- (2) <u>独立性</u>: $X_1, X_2, ..., X_n$ 是相互独立的随机变量.

则称 (X_1, X_2, \dots, X_n) 是来自总体X,容量为n的简单随机样本.

获得简单随机样本的抽样方法称为简单随机抽样.

5. 总体和样本的严格数学定义:

总体 一个随机变量X或其相应的分布函数F(x) 称为一个总体. F(x)

样本 设X是具有分布函数F(x)的随机变量,若 X_1, X_2, \dots, X_n 是具有同一分布函数F(x)、相互独立的随机变量,则称 X_1, X_2, \dots, X_n 为来自总体X的容量为n的简单随机样本,简称样本.

6. 样本的分布

定理1.1 设 (X_1, X_2, \dots, X_n) 为来自总体X的样本.

(1) 若总体 $X \sim F(x)$,则样本

$$(X_1X_2,\cdots,X_n)\sim\prod_{i=1}^n F(x_i)$$

(2)若总体 $X\sim p(x)$,则样本

$$(X_1, X_2, \dots, X_n) \sim \prod_{i=1}^n p(x_i)$$

(3)若总体 $X \sim P(X = x_i^*) = p(x_i^*)(i = 1, 2, \cdots)$

则样本 (X_1, X_2, \dots, X_n) ~ $\prod_{i=1}^n p(x_i)$.其中每一

个 x_1, x_2, \dots, x_n 都取 x_1^*, x_2^*, \dots 中的任意值.

熟同样合布形解的3种情本概的式决关种下联分体是题!

例1 设总体 X 服从参数为 $\lambda(\lambda > 0)$ 的指数分布, (X_1, X_2, \dots, X_n) 是来自总体的样本,求样本 (X_1, X_2, \dots, X_n) 的概率密度.

 (X_1, X_2, \dots, X_n) 的概率密度. 证 总体 X 的概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

所以 (X_1, X_2, \dots, X_n) 的概率密度为

$$f(x_{1}, x_{2}, \dots, x_{n}) = \prod_{i=1}^{n} f(x_{i}) = \begin{cases} \prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}, & x_{i} > 0 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$= \begin{cases} \lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}}, & x_{i} > 0 \ (i = 1, 2, \dots, n) \end{cases}$$

$$0, \quad \ \sharp \dot{\Xi}$$

例2 设总体X服从 $P(\lambda), (X_1, X_2, ..., X_n)$ 是来自于X的样本,求此样本的联合分布律.

证总体X的分布律为

$$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0,1,\cdots$$

因为 X_1, X_2, \dots, X_n 独立同分布,

所以, (X_1, X_2, \dots, X_n) 的联合了布律为

$$P(X_1 = k_1, \dots, X_n = k_n) = \prod_{i=1}^n P(X_i = k_i)$$

注意离散 型样本的 联合分表 律的表 形式。

$$P(X_{1} = k_{1}, \dots, X_{n} = k_{n}) = \prod_{i=1}^{n} P(X_{i} = k_{i})$$

$$= \prod_{i=1}^{n} \frac{\lambda^{k_{i}}}{k_{i}!} e^{-\lambda} = \frac{\lambda^{k_{1} + \dots + k_{n}}}{k_{1}! k_{2}! \dots k_{n}!} e^{-n\lambda}$$

$$k_{i} = 0, 1, 2, \dots, i = 1, 2, \dots, n$$

此即样本的联合分布律

二、统计量与样本矩

由样本推断总体情况,需要对样本值进行"加工",这就需要构造一些样本的函数,它把样本中所含的信息集中起来.

1. 统计量的定义

定义1.1 设 $(X_1, X_2, \dots, X_n)^T$ 是来自总体 X一个样本, $f(X_1, X_2, \dots, X_n)$ 是 X_1, X_2, \dots, X_n 的函数,若 f中不含任何关于总体 X的未知参数,则称 $f(X_1, X_2, \dots, X_n)$ 是一个统计量.

设 $(x_1, x_2, \dots, x_n)^T$ 是样本 $(X_1, X_2, \dots, X_n)^T$ 的样本值,

则称 $f(x_1,x_2,\dots,x_n)$ 是 $f(X_1,X_2,\dots,X_n)$ 的观察值.

用于估计分布中参数的统计量, 称为估计量.

- 注 1° 统计量 $f(X_1, X_2, \dots, X_n)$ 是随机变量;
- 2° 统计量用于统计推断,故不应含任何关于总体X的未知参数.

例3 设 X_1, X_2, X_3 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,其中 μ 为已知, σ^2 为未知,判断下列各式哪些是统计量,哪些不是?

$$T_1 = X_1,$$
 $T_4 = \max(X_1, X_2, X_3),$ $T_2 = X_1 + X_2 e^{X_3},$ $T_5 = X_1 + X_2 - 2\mu,$ $T_3 = \frac{1}{3}(X_1 + X_2 + X_3),$

是

$$T_6 = \frac{1}{\sigma^2} (X_1^2 + X_2^2 + X_3^2)$$
. 不是

2. 三种常用统计量

(1) 样本矩

设 $X_1, X_2, ..., X_n$ 是来自总体的一个样本, $x_1, x_2, ..., x_n$ 是这一样本的观察值.

1) **样本均值**
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
;

2) 样本方差

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n} (\sum_{i=1}^n X_i^2 - \overline{X}^2)$$
$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2.$$

3) 样本标准差

$$S_n = \sqrt{S_n^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2};$$

4) 修正样本方差

$$S_n^{*2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 - n\overline{X}^2).$$

$$S_n^2$$
与 S_n^{*2} 的关系 $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{n-1}{n} S_n^{*2}$.

- 注 1° 当n较大时, S_n^{*2} 与 S_n^2 差别微小;
 - 2° 当n较小时, S_n^{*2} 比 S_n^2 有更好的统计性质

5) 样本 k 阶(原点)矩

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \dots;$$
 特例: $A_1 = \overline{X}$

6)样本 k 阶中心矩 特例: $B_2 = S_n^2$

$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 2, 3, \dots;$$

样本矩的意义

推断

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$EX = \mu$$

反映总 体均值 的信息

$$S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$S_n^{*2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$DX = \sigma^2$$

反映总体 方差 的信息

$$S_n = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2} \longrightarrow \sqrt{DX} = \sigma$$

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \qquad \qquad E(X^k) = \mu_k$$

$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k \longrightarrow E(X - EX)^k$$

3、样本矩的性质

定理1.2 设总体X具有2k阶矩,则来自总体X的样本k阶原点距 A_k 的数学期望和方差分别为:

$$E(A_k) = \alpha_k \qquad D(A_k) = \frac{\alpha_{2k} - \alpha_k^2}{n}$$

其中 $\alpha_k = E(X^k)(k=1,2,\dots,)$ 表示总体的k阶原点距.

$$iF E(A_k) = E(\frac{1}{n}\sum_{i=1}^n X_i^k) = \frac{1}{n}\sum_{i=1}^n E(X_i^k) = \frac{1}{n}\sum_{i=1}^n E(X^k) = \alpha_k$$

$$D(A_k) = D(\frac{1}{n} \sum_{i=1}^n X_i^k) = \frac{1}{n^2} \sum_{i=1}^n D(X_i^k) = \frac{1}{n^2} \sum_{i=1}^n D(X^k)$$
$$= \frac{1}{n} ((E(X^{2k}) - E^2 X^k)) = \frac{\alpha_{2k} - \alpha_k^2}{n}$$

推论 设总体X的期望 $EX = \mu$,方差 $DX = \sigma^2$,k阶 矩 EX^k 也存在, (X_1, X_2, \dots, X_n) 为来自总体X的样本,

则有

$$(1) \quad E(\overline{X}) = \mu$$

(2)
$$D(\overline{X}) = \frac{1}{n}\sigma^2;$$

(3)
$$E(S_n^2) = \frac{n-1}{n}\sigma^2$$
;

(4)
$$E(S_n^{*2}) = \sigma^2$$
.

这些结论 对任何总 体都适用, 请熟记这 些结论 $(1)E(\overline{X})=\mu$

$$E(\overline{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$$

$$(2)D(\overline{X}) = \frac{1}{n}\sigma^2$$

$$(2)D(\overline{X}) = \frac{1}{n}\sigma^{2}$$

$$D(\overline{X}) = D(\frac{1}{n}\sum_{i=1}^{n}X_{i})$$

$$= \frac{1}{n^2} \sum_{i=1}^n D(X_i) = \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n} \sigma^2.$$

(3)
$$E(S_n^2) = \frac{n-1}{n} \sigma^2$$

$$E(S_n^2) = E\left[\frac{1}{n}\sum_{i=1}^n X_i^2 - \overline{X}^2\right] = \frac{1}{n}\sum_{i=1}^n E(X_i^2) - E(\overline{X}^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} [D(X_i) + (E(X_i))^2] - [D(\overline{X}) + (E(\overline{X}))^2]$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\sigma^2 + \mu^2) - (\frac{1}{n} \sigma^2 + \mu^2) = \frac{n-1}{n} \sigma^2.$$

(4)
$$E(S_n^{*2}) = E(\frac{n}{n-1}S_n^2) = \frac{n}{n-1}E(S_n^2) = \sigma^2$$

例4设总体 $X \sim B(1, p)$,

 (X_1, X_2, \dots, X_n) 是来自于总体的样本,

 \bar{X} 和 S_n^2 是样本均值与样本方差,试计算:

 $E\overline{X}$, $D\overline{X}$ 和 ES_n^2 .

证 由两点分布知 EX = p, DX = p(1-p)

利用样本矩的性质得

$$E\overline{X} = EX = p$$

$$D\overline{X} = \frac{1}{n}DX = \frac{p(1-p)}{n}$$

$$ES_n^2 = \frac{n-1}{n}DX = \frac{n-1}{n}p(1-p).$$

样本矩的极限性质

若总体X的k阶矩 $E(X^k) = \mu_k$ 存在,

则当
$$n \to \infty$$
时, $A_k \stackrel{P}{\to} \mu_k, k = 1, 2, \cdots$

证 因为 X_1, X_2, \dots, X_n 独立且与X 同分布,

所以 $X_1^k, X_2^k, \dots, X_n^k$ 独立且与 X^k 同分布,

故有
$$E(X_1^k) = E(X_2^k) = \cdots = E(X_n^k) = \mu_k$$
.

根据辛钦大数定律,可得

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\xrightarrow{P}\mu_{k}, \quad k=1,2,\cdots.$$

注 此性质是下一章矩估计法的理论根据.

结论
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k} \xrightarrow{P} \mu_{k}$$
, $k=1,2,\cdots$.

2个特例

(1)
$$k = 1$$
, $A_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P \to \infty} \mu = EX$,

(2)
$$k = 2$$
, $A_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P \to \infty} \mu_2 = EX^2$,

进而根据依概率收敛的序列的性质知

$$g(A_1, A_2, \dots, A_k) \xrightarrow{P \atop n \to \infty} g(\mu_1, \mu_2, \dots, \mu_k),$$

其中g是连续函数.

2个结论

(1)
$$A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = S_n^2$$

$$\xrightarrow{P \to \infty} \mu_2 - \mu^2 = EX^2 - (EX)^2 = DX = \sigma^2$$

(2)
$$S_n^{*2} = \frac{n}{n-1} S_n^2 \xrightarrow[n \to \infty]{P} DX = \sigma^2$$
.

三、经验分布函数

1、次序统计量

设 $(X_1, X_2, \dots, X_n)^T$ 是从总体X中抽取的一个样本, $(x_1, x_2, \dots, x_n)^T$ 是其一个观测值,将观测值按由小到大的次序重新排列为

$$\boldsymbol{x}_{(1)} \leq \boldsymbol{x}_{(2)} \leq \cdots \leq \boldsymbol{x}_{(n)}$$

当 $(X_1, X_2, \dots, X_n)^T$ 取值为 $(x_1, x_2, \dots x_n)^T$ 时,定义

 $X_{(k)}$ 取值为 $x_{(k)}(k=1,2,\cdots n)$,由此得到

$$(X_{(1)}, X_{(2)}, \dots, X_{(n)})^T$$

称为样本 $(X_1, X_2, \dots, X_n)^T$ 的次序统计量.

对应的 $(x_{(1)},x_{(2)},\cdots x_{(n)})$ 称为其观测值.

经验分布函数

定义1.3设 X_1, X_2, \dots, X_n 是总体 X的一个样本, $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ 为总体 X的样本 (X_1, X_2, \dots, X_n) 的次序统计量. $(x_{(1)}, x_{(2)}, \dots x_{(n)})$ 为其观测值,设x是任一实数,

称函数

$$F_n(x) = \begin{cases} 0, & x < x_{(1)}, \\ \frac{k}{n}, & x_{(k)} \le x < x_{(k+1)}, \\ 1, & x \ge x_{(n)}. \end{cases}$$

为总体X的经验分布函数。

例5 设总体X具有一个样本值1, 2, 1.5, 3, 排序 1, 1.5, 2, 3

则经验分布函数
$$F_3(x)$$
的观察值为
$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{4}, & 1 \le x < 1.5, \\ \frac{2}{4}, & 1.5 \le x < 2, \\ \frac{3}{4}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

对于任意实数 $x,F_n(x)$ 可理解为为样本值中 不超过x的个数再除以n,亦即

$$F_n(x) = \frac{\upsilon_n(x)}{}$$

其中 $v_n(x)$ 表示 x_1^n, x_2, \dots, x_n 中不超过于x的个数.

注: $\upsilon_n(x)$ 可看做是n次重复独立试验中,

事件 $\{X \leq x\}$ 发生的次数.称为经验频数。 $F_n(x) = \frac{\upsilon_n(x)}{n}$

为 $\{X \leq x\}$ 的频率.

$$P\{\upsilon_n(x) = k\} = C_n^k (P\{X \le x\})^k (1 - P\{X \le x\})^{n-k}$$
$$= C_n^k F^k(x) (1 - F(x))^{n-k}$$

 $\upsilon_n(x) \sim B(n, F(x))$ 即

3、 经验分布函数的性质

- (1)对于给定的一组样本值 (x_1, x_2, \dots, x_n) , $F_n(x)$ 满足分布函数的特征,是一个分布函数.
- (2)由于 $F_n(x)$ 是样本的函数,故 $F_n(x)$ 是随机变量.

曲
$$\upsilon_n(x) \sim B(n, F(x))$$
 及 $F_n(x) = \frac{\upsilon_n(x)}{n}$

可得 $nF_n(x) \sim B(n,F(x))$,所以

$$E[F_n(x)] = F(x), \quad D[F_n(x)] = \frac{F(x)[1-F(x)]}{n}$$

 $(3)F_n(x)$ 依概率收敛于F(x). 即 $\lim_{n\to\infty} P\{|F_n(x)-F(x)|<\varepsilon\}=1 \qquad (\forall \varepsilon>0)$

(4) 格里汶科定理

对于任一实数 x, 当 $n \to \infty$ 时, $F_n(x)$ 以概率 1 一致收敛于分布函数 F(x), 即

$$P\left\{\lim_{n\to\infty}\sup_{-\infty< x<+\infty}\left|F_n(x)-F(x)\right|=0\right\}=1.$$

对于 $\forall x \in R$,当n充分大时, $F_n(x)$ 与总体分布函数F(x)只有微小的差别,从而实际中,当F(x)未知时,可通过样本构造一个 $F_n(x)$,近似当做F(x)来使用。

经验分布函数是统计量吗? [填空1]

正常使用填空题需3.0以上版本雨课堂

Thank You!

辛钦定理

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立,服从同一分布,且具有数学期望 $E(X_k) = \mu(k=1,2,\dots)$,

则对于任意正数
$$\varepsilon$$
,有 $\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{k=1}^n X_k - \mu\right| < \varepsilon\right\} = 1.$

格里汶科资料

Boris Vladimirovich Gnedenko

Born: 1 Jan 1912 in Simbirsk (now Ulyanovskaya), Russia Died: 27 Dec 1995 in

Moscow, Russia