	FDA & fPCA	SPM
Smallest analysis entity	1D Curve	1D Curve
Exploration and description	\checkmark	×
Requires temporal registration	?	\checkmark
Hypothesis testing	✓ Uses fPC scores	✓ Uses Random Field Theory
Hypothesis testing for "regions of interest"	×	✓
Programming needed?	Yes Matlab, R	Little / Some Matlab, Python
Availability of code	http://www.psych.mcgill.ca/misc/fda/index.html	✓ www.spm1d.org
Supporting documentation and examples	?	✓

Suitability based on the desired outcome

- For comparison of differences in ensemble curves (SPM or SPnM is very effective)
- Statistical comparisons of groups: either approach will work but SPM/SPnM may be easier
- For exploratory analysis and linking patterns to individual participants (FDA may be more effective)
- Sample size, especially small sample sizes can be challenging for all methods, but especially for permutation methods (FDA t test & SnPM), and perhaps even more difficult for fPCA

Limitations

fDA and fPCA

• SPM

Requires data registration

Requires "smooth" data – e.g. not raw EMG

• Both methods have the same limitations as other methods

Non-random sampling

Non-blind experimentation

Non-homologous data....

FDA and fPCA

- In FDA The smallest data entity is the curve (considers curve as a whole)
- Can be used for exploratory analysis or descriptive analysis (no specific hypothesis)
- The fPC scores describe the curves
 - The scores can be linked to individual curves
- FDA uses fPC scores for statistical analyses (e.g. hypotheses tests, discriminant analysis, effect sizes
- Code, some resources and links can be found at http://www.psych.mcgill.ca/misc/fda/index.html

SPM & SnPM

- In SPM the smallest data entity is the curve (considers curve as a whole)
- Tests specific hypotheses
- Requires temporal (or spatial) normalisation
- Code and supporting documentation available at www.spm1d.org
- Requires some programming ability but not extensive
- SPM can identify parts of curves that differ and limit hypotheses to "regions of interest" e.g. 0-25% stance

- Functional t-test can identify portions of curves that are different
- Similar outcome to SPM and SPnM t test
- FDA routines is not easily accessible to non-programmers
 - Steep learning curve to select apply routines
 - Need to invest considerable time to understand FDA concepts
- SPM/SPnM has better accessibility in Biomechanics applications than FDA
 - Availability of code
 - Accessibility of supporting documentation

fPC1 and mean force function for subject #4

fPC1: high scorers represented by +marks; low scorers by - marks

fPC scores relate to real subjects: Male subject #4 has highest fPC1 score

fPC scores and real subjects

	fPC1	£0.03	fp.c2
	IPCI	fPC2	fPC3
Male	2.134078	-28.8862	14.40326
	29.6124	1.449802	-3.05844
	8.108196	fPC scores	relate to real subject
	45.63799	-6.45741	-1.82911
	32.86823	• Male su	ubject #4 has highest
Female	-9.00321	fPC1 sc	2.72240
	-29.8595	-2.47577	-13.1602
	-35.9693	-20.343	-5.75385
	-15.4052	15.00169	4.344112
	-28.1237	13.72799	8.307957
t-test male v female	p=0.001	p=0.580	p= 0.524

fPC scores male vs female

	fPC1	fPC2	fPC3
Male	2.134078	-28.8862	14.40326
	29.6124	1.449802	-3.05844
	8.108196	17.53892	6.56476
	45.63799	-6.45741	-1.82911
	32.86823	1.898835	-7.09603
Female	-9.00321	8.545193	-2.72248
	-29.8595	-2.47577	-13.1602
	-35.9693	-20.343	-5.75385
	-15.4052	15.00169	4.344112
	-28.1237	13.72799	8.307957

fPC scores male vs female

	<u> </u>		
	fPC1	fPC2	fPC3
Male	2.134078	-28.8862	14.40326
	29.6124	1.449802	-3.05844
	8.108196	17.53892	fPC scores can be
	45.63799	-6.45741	compared by group
	32.86823	1.898835	using7.09603
Female	-9.00321	8.545193	t-tests or ANOVA etc
	-29.8595	-2.47577	-13.1602
	-35.9693	-20.343	-5-75385
	-15.4052	15.00169	4.344112
	-28.1237	13.72799	8.307957
t-test male v female	p=0.001	p=0.580	p= 0.524

Scatterplot of fPC1 vs fPC2

Subject	FPC 1	FPC 2	FPC 3
23	3.0502	-3.3871	-0.1296
17	7.6099	-0.9098	-0.0030
28	-13.2772	-1.1054	-0.4858
15	5.0255	2.1885	0.3120
21	4.5706	1.3409	-1.6725
19	-2.9107	0.4518	0.8848
24	-1.9652	1.6254	-0.0518
26	2.4018	-0.4971	0.5116
14	-0.9837	-2.1859	0.9669
6	-3.8834	2.5169	(1.2048)
27	-6.7618	0.1459	-1.2579
22	7.1241	-0.1842	-0.2795

Curve #6 Looks similar shape to high scorer in *f*PC3