Interview & Cognitive Ability Cheat Sheet

github.com/mpettersson/InterviewReview/CognitiveAbilityCheatSheet.pdf

Numbers Letters **Primes**

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Α	В	С	D	Е	F	G	Н	_	J	K	٦	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97	101

Exponents

$$\frac{x^0}{x^0} = 1$$

$$\chi^{-n} = \frac{1}{r^n}$$

$$x^m \times x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(ab)^m = a^m b^m$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

$$(a^m)^n = a^{mn}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Logarithms

$$log_b k = c \equiv b^c = k$$

$$log_b x = \frac{log_a x}{log_a b}$$

$$log_h(xy) = log_h x + log_h y$$

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

Percent & Fractions

$$x\% \times y \equiv y\% \times x$$

$$p\% = \frac{x^{end} - x^{start}}{x^{start}} \times 100$$

$$x^{start} = \frac{x^{end}}{(100 \pm p)\%}$$

Given $\frac{a}{b}$ and $\frac{c}{d}$ if ad > cb then $\frac{a}{b} > \frac{c}{d}$.

Graph Equations

Slope = m, Y-Intercept = b

$$y = mx + b$$

$$m = \frac{y^2 - y^1}{x^2 - x^1}$$

Miscellaneous

$$\frac{und.}{n! = \begin{cases} und. & n < 0 \\ 1 & n = 0 \\ n(n-1)! & n > 0 \end{cases}}$$

$$abs(x) = (x^2)^{.5}$$

ceiling
$$\left(\frac{a}{b}\right) = \left|\frac{a+b+1}{b}\right|$$

$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases} = \left[\frac{x^2}{x^2 + 1} \right]$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad ax^2 + bx + x$$

With Repetition

Without Repetition

-	-
n^r	$P(n,r) = {}^{n}P_{r} = {}_{n}P_{r} = \frac{n!}{(n-r)!}$
$\frac{(n+r-1)!}{r!(n-1)!}$	$C(n,r) = {}^{n}C_{r} = {}_{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$

Number of Possible Items = n. Number of Chosen Items = r.

Sets

Permutations

Order Matters

Combinations Order Does Not Matter

A set of size n has 2^n subsets.

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

If
$$A \cap B = \emptyset$$
, then $n(A \cup B) = n(A) + n(B)$.

$$n(A \cup B) = n(A - B) + n(A \cap B) + n(B - A)$$

Probability (P)

Num. of Possible Results = n.

Total Num. of Possible Results = t.

Events = \boldsymbol{A} , \boldsymbol{B} .

Independent Events = C, D.

$$P(A) = \frac{n}{t}$$

$$0 \le P(A) \le 1$$

$$P(\neg A) = 1 - P(A)$$

$$P(A \cap B) = P(A) \times P(B \text{ given } A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(C \ given \ D) = P(C)$$

$$P(C \cup D) = P(C) + P(D)$$

$$P(C \cap D) = P(C) \times P(D)$$

Fraction Decimal Percent

	- coa.	
1/2	0.500	0.50%
1/3	0.333	0.33%
1/4	0.250	0.25%
1/5	0.200	0.20%
1/6	0.167	0.17%
1/7	0.143	0.14%
1/8	0.125	0.13%
1/9	0.111	0.11%
1/10	0.100	0.10%

Binary

Intl. System of Units (SI)

	Power of 2	Value	Power of 10	Value				
Bit (b)	2^1	2						
Nibble	2^2	4						
Byte (B)	2^3	8	N/A					
Word (w)	24 16			A				
Doubleword (d)	2^{5}	32						
Quadword (q)	2^{6}	64						
Kilobyte (kB)	2^{10}	1,024	10^{3}	1 Thousand				
Megabyte (MB)	2^{20}	1,048,576	10^{6}	1 Million				
Gigabyte (GB)	2^{30}	1,073,741,824	10 ⁹	1 Billion				
Terabyte (TB)	2^{40}	1024 GB	10^{12}	1 Trillion				
Petabyte (PB)	2^{50}	1024 TB	10^{15}	1 Quadrillion				
Exabyte (EB)	2^{60}	1024 PB	10 ¹⁸	1 Quintillion				
Zettabyte (ZB)	2 ⁷⁰	1024 EB	10^{21}	1 Sextillion				
Yottabyte (YB)	2 ⁸⁰	1024 ZB	10^{24}	1 Septillion				