

Loan Approval Forecasting

01 Business Overview

......

........

Business Goal and Dataset

- KESUS seeks to automate the loan qualifying procedure based on the information provided by the customers.
- KESUS is expecting that the development of the Machine Learning Model will help the company predict loan approval.
- The Machine Learning Model will analyze customer data provided in the dataset.

Data Summary

- The dataset consists of 12 variables
- Eight categorical variables
- Four continuous variables

	Variable Name	Description
	Gender	Applicant's Gender (Male or Female)
	Married	Applicant's Marital Status (Married or Not Married)
	Dependents	Number of people dependent on Applicant
	Education	Applicant's education (Graduate or Not Graduate)
	Self_Employed	Employment Status (Self Employed-Y or Employed by Others - N)
	ApplicantIncome	Applicant's monthly salary/income
	CoapplicantIncome	Additional applicant's salary or income
	LoanAmount	Loan Amount approved for the applicant
	LoanTerm_Month	Loan repayment period (in days)
	Credit_History	Record for credit history (0 for bad credit history, 1 for good history)
	Property_Area	Location of property (Rural/Semi-Urban/Urban
	Loan_Status	Status of Loan Approval (Y for Approved and N for not accepted)

Analyse the correlation among variables and their dependency on evaluating Loan Amount

SOLUTION

Predict Loan Amount for the Applicant

O2Data Exploration

.

·

........

Data Preparation

- Tidy data
 - Each variable has its own column
 - Each observation has its own row
 - Each value has its own cell
- Remove rows with Null Values
- Convert categorical data to numeric values

03Data Visualisation

.........

·

........

Analysis based on Region

Analysis based on Education and Employment

 Majority of graduates as well as non graduates are not self employed.

Analysis based on marital status

Analysis based on Income

Majority of applicants have income less than 100000

 Majority of co-applicants have low income

- Histogram for loan amount an applicant can get.
- Very few people got loan amount higher than 30000.

Loan Amount Analysis based on Gender

- Loan amount for an applicant based on the gender male or female.
- As per this dataset, male can get higher loan amounts.

Loan Status Analysis based on Amount

 Loan Approval rate with respect to the loan amount.

Analysis based on Loan Amount and Credit history

 People with credit history can get high loan amounts.

Analysis based on Credit History vs. Loan Approval

- Loan Application is rejected if applicant doesn't have credit history
- Higher chances of loan approval if applicant has credit history

Heat Map

Plotting heatmap to analyse correlation among the variables.

1 depicts high correlation and 0 interprets no relation at all.

Correlation

0.5 ApplicantIncome

Greater the Applicant income, higher the loan amount

CoapplicantIncome

Greater the co-applicant income, higher the loan amount

0.5 LoanTerm_Month

If loan amount is high, loan repayment period is longer

Loan Status

0.8 Credit_History

Applicant needs to have credit history to get loan approval

	Gender	Married D	pependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	LoanTerm_Month	Credit_History	Property_Area	Loan_Status
Gender	1.0	0.4	0.2	-0.1	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
Married	0.4	1.0	0.4	0.0	0.0	0.0	0.2	0.1	0.2	0.1	0.0	0.1
Dependents	0.2	0.4	1.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.1
Education	-0.1	0.0	0.0	1.0	0.0	0.1	0.1	0.2	0.1	0.1	0.1	0.1
Self_Employed	0.0	0.0	0.0	0.0	1.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0
ApplicantIncome	0.0	0.0	0.1	0.1	0.1	1.0	-0.1	0.5	0.4	0.0	0.0	-0.1
CoapplicantIncome	0.2	0.2	0.0	0.1	0.0	-0.1	1.0	0.2	0.2	0.1	0.0	0.1
LoanAmount	0.1	0.1	0.1	0.2	0.1	0.5	0.2	1.0	0.7	0.1	-0.1	0.0
LoanTerm_Month	0.1	0.2	0.1	0.1	0.1	0.4	0.2	0.7	1.0	0.1	-0.2	0.0
Credit_History	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.1	0.1	1.0	0.0	0.8
Property_Area	0.0	0.0	0.0	0.1	0.0	0.0	0.0	-0.1	-0.2	0.0	1.0	0.0
Loan_Status	0.0	0.1	0.1	0.1	0.0	-0.1	0.1	0.0	0.0	0.8	0.0	1.0
>												

O4 Predicting the Loan Amount

..............

Multiple Regression

- Dataset split into Training(80%) & Testing (20%)
- Performed Multiple Regression to predict Loan Amount (Ŷ) using:

	Coefficients
Intercept	-1.35E+04
ApplicantIncome (x1)	7.84E-02
CoapplicantIncome (x2)	4.95E-02
LoanTerm_Month (x3)	1.03E+03

Loan amount $(\hat{Y}) = a0 + a1^*$ Applicant Income + a2* Co-applicant Income + a3* Loan Term

Conclusion

- Analysis on Testing data (20% of the dataset)
 - MAPE = 31%
 - KPI Prediction = 69% Accuracy

Thus we observe that families having higher income are granted higher loan amounts and higher loan amounts are observed to have longer terms of repayment.

Thank You!

References

- 1. https://www.kaggle.com/datasets/burak3ergun/loan-data-set
- 2. https://www.statmethods.net/stats/regression.html
- 3. http://www.sthda.com/english/articles/40-regression-analysis/168-multiple-linear-regression-in-r/