EUF

Exame Unificado das Pós-graduações em Física

Para o segundo semestre de 2016 05 de abril de 2016 Parte 1

Instruções

- Não escreva seu nome na prova. Ela deverá ser identificada apenas através do código (EUFxxx).
- Esta prova contém problemas de: mecânica clássica, física moderna, mecânica quântica e termodinâmica. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
 O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Resolva cada questão na folha correspondente do caderno de respostas.

 As folhas serão reorganizadas para a correção. Se precisar de mais espaço, utilize as folhas extras do caderno de respostas. Não esqueça de escrever nas folhas extras o número da questão (Qx) e o seu código de identificação (EUFxxx). Folhas extras sem essas informações não serão corrigidas. Use uma folha extra diferente para cada questão. Não destaque a folha extra.
- Se precisar de rascunho, use as folhas identificadas como **rascunho**, que se encontram no fim do caderno de respostas. Não as destaque. As folhas de rascunho serão descartadas e questões nelas resolvidas não serão consideradas.
- Não escreva nada no formulário.

 Devolva tanto o caderno de questões quanto o formulário ao fim da prova. O formulário será utilizado novamente na prova de amanhã.

Q1. Uma esfera de bronze sólida de massa m e raio r rola sem deslizar ao longo de um plano inclinado após ser solta do repouso de uma altura h. O momento de inércia da esfera em relação a um eixo que passa pelo seu centro é $I=2mr^2/5$ e a aceleração da gravidade é g. O plano inclinado forma um ângulo θ com a horizontal, como mostra a figura.

- (a) Há atrito entre a esfera e o plano inclinado? Como você chegou a essa conclusão?
- (b) Há conservação de energia mecânica? Justifique sua resposta levando em consideração o respondido no item (a).
- (c) Utilizando considerações de energia, determine a velocidade com que a esfera atinge a base do plano inclinado.
- (d) Obtenha a velocidade na base do plano inclinado já calculada no item (c) utilizando agora considerações de dinâmica (ou seja, aplicando a segunda lei de Newton).
- Q2. Considere uma massa m presa à extremidade de uma haste inextensível de massa desprezível e comprimento l. A outra extremidade da haste está presa a um ponto fixo e o sistema hastemassa move-se em um plano vertical num local onde a aceleração da gravidade é q.
 - (a) Escreva a Lagrangiana do sistema.
 - (b) Obtenha a equação de movimento que descreve o sistema.
 - (c) Determine os pontos de equilíbrio do sistema e classifique-os quanto à estabilidade, justificando suas respostas.
 - (d) Encontre a frequência de pequenas oscilações em torno do ponto de equilíbrio estável.
- Q3. No processo Compton de espalhamento relativístico, um fóton de energia-momento $(E_0, \vec{p_0})$ incide sobre um elétron de massa m em repouso. É observado um fóton emergente em uma direção que forma um ângulo θ com a direção de incidência, com energia-momento (E, \vec{p}) .
 - (a) Denotando o momento do elétron espalhado por $\vec{p_e}$, escreva as equações para a conservação de energia-momento.
 - (b) Obtenha a relação

$$\frac{1}{E} - \frac{1}{E_0} = \frac{1}{mc^2} \left(1 - \cos \theta \right).$$

- (c) Supondo que o comprimento de onda do fóton incidente seja λ_0 , determine o comprimento de onda do fóton espalhado quando $\theta = \pi/2$.
- (d) Nas mesmas condições do item anterior, qual é a energia cinética do elétron espalhado? Expresse a resposta em termos de λ_0 , $\lambda_C \equiv h/(mc)$ e constantes universais.

1

Q4. Considere a dinâmica quântica unidimensional de uma partícula de massa m sob a ação de um potencial harmônico. Seu Hamiltoniano é dado por

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 = \hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right),\,$$

onde ω é a frequência angular do oscilador e

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}}\hat{x} + \frac{i}{\sqrt{2m\omega\hbar}}\hat{p}.$$

Os auto-estados $|n\rangle$ $(n=0,1,\ldots)$ do Hamiltoniano são não-degenerados, são auto-estados do operador número $\hat{N}=\hat{a}^{\dagger}\hat{a}$ e satisfazem as relações

$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$
, $\hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$.

- (a) Calcule os elementos de matriz dos operadores \hat{x} e \hat{p} na base dos auto-estados do Hamiltoniano.
- (b) Calcule o valor esperado do operador \hat{x}^2 para um auto-estado qualquer $|n\rangle$.
- (c) Calcule a razão entre a energia total média e a energia potencial média para um auto-estado qualquer $|n\rangle$.
- (d) Use a equação de movimento dos operadores na representação de Heisenberg

$$i\hbar \frac{d\hat{O}_H(t)}{dt} = \left[\hat{O}_H(t), \hat{H}\right] ,$$

onde $\hat{O}_{H}\left(t\right)=e^{i\hat{H}t/\hbar}\hat{O}e^{-i\hat{H}t/\hbar}$, para obter a evolução temporal do operador $\hat{a}_{H}\left(t\right)$.

- Q5. Uma máquina térmica de um gás ideal monoatômico funciona de acordo com um ciclo que tem inicialmente uma expansão adiabática partindo de um estado A de volume V_0 até um estado B cujo volume é rV_0 (com r > 1). O processo é seguido por uma contração isotérmica de B até o estado C, que possui o mesmo volume de A. Finalmente, o ciclo se completa por uma compressão isovolumétrica de C até A.
 - (a) Represente no diagrama P-V o ciclo realizado por esta máquina térmica.
 - (b) Calcule (i) o trabalho total realizado pelo gás e (ii) o calor injetado no gás, ambos durante um ciclo completo. Deixe sua resposta em função de r, $\gamma \equiv c_P/c_V$ e das temperaturas extremas $T_{\rm max}$ e $T_{\rm min}$, que são, respectivamente, as temperaturas máxima e mínima entre as quais o ciclo opera. Lembre-se de que $c_P c_V = R$.
 - (c) Determine o rendimento do ciclo.
 - (d) Escreva o rendimento do ciclo apenas em função de $T_{\rm max}$ e $T_{\rm min}$ (caso já não o tenha feito no item (c)). Considere o caso em que $T_{\rm max}=2T_{\rm min}>0$. Determine a razão entre o rendimento desta máquina e o rendimento de um ciclo de Carnot. Qual tem o maior rendimento? Isso faz sentido com o que se espera da segunda lei da termodinâmica? Justifique sua resposta.

EUF

Exame Unificado das Pós-graduações em Física

Para o segundo semestre de 2016 06 de abril 2016

Parte 2

Instruções

- Não escreva seu nome na prova.
 Ela deverá ser identificada apenas através do código (EUFxxx).
- Esta prova contém problemas de: eletromagnetismo, mecânica quântica, física moderna e mecânica estatística. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
 O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Resolva cada questão na folha correspondente do caderno de respostas.

 As folhas serão reorganizadas para a correção. Se precisar de mais espaço, utilize as folhas extras do caderno de respostas. Não esqueça de escrever nas folhas extras o número da questão (Qx) e o seu código de identificação (EUFxxx). Folhas extras sem essas informações não serão corrigidas. Use uma folha extra diferente para cada questão. Não destaque a folha extra.
- Se precisar de rascunho, use as folhas identificadas como **rascunho**, que se encontram no fim do caderno de respostas. Não as destaque. As folhas de rascunho serão descartadas e questões nelas resolvidas não serão consideradas.
- Não escreva nada no formulário.
 Devolva tanto o caderno de questões quanto o formulário ao fim da prova.

Q6. Uma esfera isolante sólida de raio a tem densidade de carga uniforme ρ e carga total Q. Uma esfera oca condutora não carregada, cujos raios interno e externo são b e c, respectivamente, é concêntrica à esfera isolante, como mostra a figura abaixo.

- (a) Determine a magnitude do campo elétrico nas regiões:
 - (i) r < a; (ii) a < r < b; (iii) b < r < c e (iv) r > c.
- (b) Ache a carga induzida por unidade de área nas superfícies interna e externa do condutor.
- (c) Esboce o gráfico da magnitude do campo elétrico E versus r. Identifique em seu gráfico cada uma das regiões citadas no item (a).
- Q7. Considere as equações de Maxwell na forma diferencial e resolva cada item abaixo.
 - (a) Derive, mostrando todos os passos, as equações de onda no vácuo em sua forma vetorial para os campos elétrico e magnético. Lembre-se:

$$\nabla \times (\nabla \times \mathbf{V}) = \nabla (\nabla \cdot \mathbf{V}) - \nabla^2 \mathbf{V}$$
 e $\nabla \cdot (\nabla \times \mathbf{V}) = 0$

- (b) Escreva a equação de onda para uma função escalar qualquer $f(\vec{r},t)$ e, comparando com as expressões obtidas no item (a), determine a velocidade de propagação para ambos os campos.
- (c) Uma possível solução da equação obtida no item (a) é a solução do tipo onda plana linearmente polarizada. Suponha um campo eletromagnético do tipo onda plana linearmente polarizada que esteja se propagando na direção \hat{z} . Considerando que ω é a frequência angular, k o número de onda, E_0 e B_0 as amplitudes dos campos elétrico e magnético, respectivamente, escreva explicitamente qual é o módulo e a direção de \vec{E} e \vec{B} em função da posição e do tempo.
- (d) Partindo agora das equações de Maxwell na presença de cargas e correntes, derive a equação que relaciona as densidades de carga e de corrente elétrica (equação da continuidade). Que lei de conservação é expressa matematicamente por esta equação?
- Q8. Considere uma partícula de spin 1/2 sob a ação de um campo magnético uniforme $\vec{B} = B\hat{z}$. O Hamiltoniano para este problema é dado por

$$\hat{H} = -\gamma B \hat{S}_z,$$

onde γ é uma constante. Sejam os estados $|+\rangle$ e $|-\rangle$ tais que $\hat{S}_z |\pm\rangle = \pm (\hbar/2) |\pm\rangle$.

- (a) Quais são os auto-valores do Hamiltoniano?
- (b) No instante t=0 a partícula se encontra no estado $|\psi(0)\rangle = [|+\rangle |-\rangle]/\sqrt{2}$. Calcule o estado da partícula em um instante t>0 qualquer.
- (c) Calcule a média dos operadores \hat{S}_x , \hat{S}_y e \hat{S}_z para qualquer instante $t \geq 0$. Lembre-se de que $\hat{S}_x |\pm\rangle = (\hbar/2) |\mp\rangle$ e $\hat{S}_y |\pm\rangle = \pm i(\hbar/2) |\mp\rangle$.
- (d) Qual é o menor valor de t > 0 para o qual o estado volta a ser igual ao estado inicial?

Q9. Se dois eventos no espaço-tempo são separados espacialmente pelo vetor $\Delta x \ \hat{x} + \Delta y \ \hat{y} + \Delta z \ \hat{z}$ e temporalmente por Δt , o intervalo invariante entre eles, cujo valor independe do referencial inercial, é definido como

$$\Delta s^2 \equiv \Delta x^2 + \Delta y^2 + \Delta z^2 - c^2 \Delta t^2.$$

- (a) Eventos (1) e (2) ocorrem em posições **distintas** (x_1,y_1,z_1) e (x_2,y_2,z_2) , respectivamente, de um dado referencial inercial (S) e são tais que o intervalo invariante é positivo. Existe um referencial inercial onde tais eventos ocorrem em um mesmo ponto do espaço? Justifique.
- (b) Nas mesmas condições do item (a), o evento (2) poderia ter sido causado pelo evento (1)? Justifique sua resposta considerando a propagação de um sinal de (1) para (2) com velocidade $\vec{V} = V_x \hat{x} + V_y \hat{y} + V_z \hat{z}$.
- (c) Um relógio está em repouso em um referencial (S') que se move com velocidade \vec{V} em relação a (S).
- (i) Qual é o sinal do intervalo invariante entre eventos que caracterizam duas posições sucessivas dos "ponteiros do relógio" (desconsidere as dimensões espaciais do relógio)?
- (ii) Obtenha a relação entre o intervalo de tempo próprio $\Delta t'$ (medido em S') e o intervalo de tempo Δt medido em (S).
- (d) A separação espacial entre uma fonte F e um detector D de partículas é $L\hat{x}$, no referencial do laboratório (referencial S). Considere os eventos E_F e E_D , de produção e detecção de uma partícula, respectivamente. Suponha que essa partícula se mova de F a D com velocidade constante $\vec{V} = V_0\hat{x}$ no referencial do laboratório.
- (i) Quais são as separações no espaço Δx e no tempo Δt entre E_F e E_D no referencial do laboratório?
- (ii) Seja L' a distância entre F e D no referencial da partícula. Quais são as separações no espaço $\Delta x'$ e no tempo $\Delta t'$ entre E_F e E_D no referencial da partícula?
 - (iii) Determine a relação entre L' e L.
- Q10. Num modelo para um cristal sólido podemos supor que os N átomos sejam equivalentes a 3N osciladores harmônicos clássicos, unidimensionais, independentes, de massa m, que oscilam com a mesma frequência angular ω em torno de sua posição de equilíbrio. A uma distância x desta posição a energia potencial é dada por $U = m\omega^2 x^2/2$. Conhecendo-se alguns dados experimentais, é possível estimar, em termos da distância inter-atômica a baixas temperaturas d, a raiz do deslocamento quadrático médio dos átomos quando ocorre a fusão. A resolução dos itens abaixo permite fazer esta estimativa. Suponha que o sólido se encontre em equilíbrio térmico a uma temperatura absoluta T.
 - (a) Considere que o número de estados numa célula do espaço de fase (x,p) seja dado por (dxdp)/h, onde h é a constante de Planck. Obtenha a função de partição para o oscilador harmônico, $Z(T,\omega)$.
 - (b) Calcule o número médio de osciladores cuja posição se encontra entre $x \in x + dx$.
 - (c) Obtenha uma expressão para a energia potencial média, $\langle U \rangle$ por oscilador unidimensional. Compare o resultado com o valor esperado pelo teorema da equipartição.
 - (d) Seja x_0^2 o deslocamento quadrático médio em torno do equilíbrio quando o sólido se funde e seja $f=x_0/d$. Usando $\langle U\rangle=m\omega^2x_0^2/2$, estime f para um dado elemento cuja massa atômica é $m=1.0\times 10^{-25}$ kg, a temperatura de fusão é $T_F=1400$ K, d=(10/3) Å = $(10/3)\times 10^{-10}$ m e a frequência é tal que $\hbar\omega/k_B=300$ K.