第7课:连续函数的性质

第2章 函数及其连续性

• 内容:

第2.7节 连续函数-反函数-间断点分类

第2.9节一致连续概念

第2.10节 连续函数的性质

连续函数 (续)

反函数的连续性: 令*I*是一个区间,设 $f \in C(I)$ 严格单调则反函数 f^{-1} 在J = f(I)上处处连续(且严格单调)

证: 首先, f 的连续性可以导出J是一个区间 (介值性质) 其次反函数严格单调容易验证,下面证明在J上处处连续 任取 $y_0 \in J$,则 $f^{-1}(y_0) = x_0 \in I$,也即 $y_0 = f(x_0)$

 $\forall \varepsilon > 0$, 要使 $|f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$, 也即

$$f^{-1}(y_0) - \varepsilon < f^{-1}(y) < f^{-1}(y_0) + \varepsilon$$

或写成 $x_0 - \varepsilon < f^{-1}(y) < x_0 + \varepsilon$

不妨令f严格增,则上式等价于 $f(x_0 - \varepsilon) < y < f(x_0 + \varepsilon)$

• 证 (续): 下面考虑y如何满足 $f(x_0 - \varepsilon) < y < f(x_0 + \varepsilon)$ 注意到f严格单调增: $f(x_0 - \varepsilon) < y_0 = f(x_0) < f(x_0 + \varepsilon)$ 可见只要y距离 y_0 不太远即可满足要求,取 $\delta > 0$,使得 $f(x_0 - \varepsilon) \le y_0 - \delta < y_0 + \delta \le f(x_0 + \varepsilon)$ 当 $|y - y_0| < \delta$ 时 $f(x_0 - \varepsilon) \le y_0 - \delta < y < y_0 + \delta \le f(x_0 + \varepsilon)$ 从而 $f^{-1}(y_0) - \varepsilon < f^{-1}(y) < f^{-1}(y_0) + \varepsilon$

这说明 $|y-y_0|$ < δ 时, $|f^{-1}(y)-f^{-1}(y_0)|$ < ε

推论: 反三角函数 $\arcsin x$, $\arccos x$, $\arctan x$, … 在定义域中都是连续函数

 \rightarrow 指数函数连续性: e^x 处处连续

证: 任取 \mathbf{x}_0 ,根据指数律 $e^x = e^{x_0}e^{x-x_0}$,由极限运算性质得

$$\lim_{x \to x_0} e^x = e^{x_0} \lim_{x \to x_0} e^{x - x_0} = e^{x_0} \lim_{t \to 0} e^t$$

回忆 $\lim_{n\to\infty} e^{1/n} = 1$, 为证 $\lim_{t\to 0} e^t = 1$, 注意 |t| < 1/n 时, $|e^t - 1| \le e^{-n} - 1$

由此 $\forall \varepsilon > 0$, 可取 $n_0 \in \mathbb{N}$, 使得 $\forall n > n_0$ 有 $|e^{1/n} - 1| < \varepsilon$

当 $|t| < 1/(n_0 + 1)$ 时,便有 $|e^t - 1| \le e^{1/(n_0 + 1)} - 1 < \varepsilon$

这说明
$$\lim_{x\to x_0} e^x = e^{x_0}$$
, e^x 在 $x = x_0$ 连续

- **推论1**: $\diamondsuit a > 0$ 且 $a \neq 1$,则 $a^x \in C(\mathbb{R})$, $\log_a x \in C(\mathbb{R}_+)$
- ightharpoonup 推论2: 对于任意 $a \in \mathbb{R}$, 一般幂函数 $x^a = e^{a \ln x} \in C(\mathbb{R}_+)$

- ▶ 推论3: 初等函数在其定义域内都是连续的 注: 初等函数在定义域的边界单侧连续
- 说明(通常习惯-不是严格定义)
- 初等函数:

基本初等函数经有限次四则运算和复合运算产生的函数

■ 基本初等函数:

常值函数 } — 多项式,有理函数 恒等函数 } — 多项式,有理函数 指数函数-对数函数 — ^{复合运算} — 般幂函数 三角函数(正弦-余弦)-反三角函数(反正弦-反余弦)

• 连续与间断 (不连续)

在 x_0 连续: $\lim_{x \to \infty} f(x) = f(x_0)$

在 x_0 间断: $\lim_{x \to \infty} f(x) \neq f(x_0)$ — 称 x_0 为f 的间断点

■ 间断点分类:

可去间断: $f(x_0-)=f(x_0+)\neq f(x_0)$ (包括 $f(x_0)$ 无定义)

跳跃间断: $f(x_0-)$ 与 $f(x_0+)$ 都存在但不相等

第二类间断: $f(x_0-)$ 与 $f(x_0+)$ 至少有一个不存在

上1: 可去间断与跳跃间断也统称为第一类间断

2: 可去间断常常被看作连续,只要重新定义 $f(x_0)$

3: 第二类间断中还有一些不太通用的分类

——无穷间断,振荡间断等等("顾名思义")

- ✓ **例1:** $f_1(x) = \frac{\sin x}{x}$, $x \neq 0$ x=0为可去间断点,补充定义 $f_1(0) = 1$, 则 f_1 在x = 0连续
- ✓ 例2: $f_2(x) = \text{sgn}(x)$, x=0为跳跃间断点: sgn(0-) = -1, sgn(0+) = 1, sgn(0) = 0
- ✓ **例3**: $f_3(x) = xD(x)$, 这里D(x)为Dirichlet函数 首先 $\lim_{x\to 0} f_3(x) = \lim_{x\to 0} xD(x) = 0 = f_3(0)$ —— f_3 在x=0连续 再注意 $x \neq 0$ 时, $D(x) = f_3(x)/x$, 但 $\lim_{x\to x_0} D(x)$ 处处不存在 所以 $x_0 \neq 0$ 是 f_3 的第二类间断点(由上可知 $\lim_{x\to x_0} f_3(x)$ 不存在) ✓ **例4**: $f_4(x) = \sin(1/x)$, $x \neq 0$
- Y **例4:** $f_4(x) = \sin(1/x), x \neq 0$ x=0是 f_4 的第二类间断点(振荡间断)

- 一致连续概念

令 $f: I \to \mathbb{R}$, I是一个区间(开-闭-半开半闭-有界-无界) 称 f 在I 上一致连续,如果 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 $\forall x', x'' \in I$ 只要满足 $|x'-x''| < \delta$ 都有 $|f(x')-f(x'')| < \varepsilon$

推论: 若f 在I 上一致连续,则 $\forall x_0 \in I$, f 在 x_0 连续进而 $f \in C(I)$

【观察】在1上一致连续与在1上处处连续的区别?

一 否定一致连续: 函数 f 在I 上不一致连续,如果 $\exists \varepsilon_0 > 0$,以及收敛于**0**的数列 $\{a_n\}$ 使得 $\forall n \in \mathbb{N}$,

 $\exists x'_n, x''_n \in I$ 满足 $|x'_n - x''_n| < a_n$,但 $|f(x'_n) - f(x''_n)| \ge \varepsilon_0$

✓ **例1**: 考察三角函数 $\sin x$, $\cos x$ 的一致连续性

解: 任取x₁, x₂, 由和差化积公式

$$\sin x_1 - \sin x_2 = 2\cos\frac{x_1 + x_2}{2}\sin\frac{x_1 - x_2}{2}$$

曲此得到 $|\sin x_1 - \sin x_2| \le 2 |\sin \frac{x_1 - x_2}{2}| \le |x_1 - x_2|$

同理可得 $|\cos x_1 - \cos x_2| \le 2 |\sin \frac{x_1 - x_2}{2}| \le |x_1 - x_2|$

可见 $\forall \varepsilon > 0$, 取 $\delta = \varepsilon$, 只要 $|x_1 - x_2| < \delta$ 便有

$$|\sin x_1 - \sin x_2| \le |x_1 - x_2| < \delta = \varepsilon$$

$$|\cos x_1 - \cos x_2| \le |x_1 - x_2| < \delta = \varepsilon$$

所以 $\sin x$, $\cos x$ 在 \mathbb{R} 上一致连续

✓ **例2:** 验证 $f(x) = \frac{1}{x}$ 在区间I = (0,1)上不一致连续

解: 任取
$$x', x'' \in I$$
, 考虑

(#)
$$|f(x') - f(x'')| = |\frac{1}{x'} - \frac{1}{x''}| = \frac{|x' - x''|}{x'x''}$$

如果取
$$|x'_n - x''_n| = \frac{1}{2n}, x'_n x''_n = \frac{1}{2n^2}, n = 1, 2, \cdots$$

则
$$|f(x'_n) - f(x''_n)| = \frac{|x'_n - x''_n|}{|x'_n x''_n|} = n > 1$$

为此只要选取 $x'_n = \frac{1}{n}, x''_n = \frac{1}{2n}, n = 1, 2, \dots$

这说明f在I上不一致连续

几何说明: 见右图

✓ **例3**: 考察 $f(x) = \cos(x^2)$ 在ℝ上是否一致连续?

解: 观察
$$f(\pm \sqrt{k\pi}) = \cos(k\pi) = (-1)^k, k = 0,1,2,\cdots$$

$$\therefore |f(\pm\sqrt{2n\pi}) - f(\pm\sqrt{(2n-1)\pi})| = 1 - (-1) = 2$$

如果取
$$x'_n = \sqrt{2n\pi}, x''_n = \sqrt{(2n-1)\pi}, n = 1, 2, \dots$$

$$|x'_n - x''_n| = \frac{\pi}{\sqrt{2n\pi} + \sqrt{(2n-1)\pi}} \le \frac{\sqrt{\pi}}{2\sqrt{2n}} \to 0$$

但
$$|f(x_n') - f(x_n'')| = 2$$

这说明f在I上不一致连续

有界闭区间上连续函数的性质

- **目的**: 讨论C[a,b]中函数的性质(a < b都是有限实数)
- >一致连续性:
 - 设f ∈ C[a,b],则f 在[a,b]上一致连续
- **反证**: 若不然, $\exists \varepsilon_0 > 0$ 及收敛于0的数列 $\{a_n\}$,使得 $\forall n \in \mathbb{N}$, $\exists x'_n, x''_n \in [a,b]$ 虽满足 $|x'_n x''_n| < a_n$,但 $|f(x'_n) f(x''_n)| \ge \varepsilon_0$
- 由Bolzano-Weierstrass列紧原理,存在 $\{x'_n\}$ 的收敛子列 $\{x'_k\} \rightarrow x^* \in [a,b]$

注意到
$$|x_{k_n}'' - x^*| \le |x_{k_n}'' - x_{k_n}'| + |x_{k_n}' - x^*|$$

$$\le a_{k_n} + |x_{k_n}' - x^*| \to 0 \quad 也即 \{x_{k_n}''\} \to x^*$$

■ 证明一致连续性(续)

若C[a,b]中函数f不一致连续,前面得到[a,b]中两个子列都收敛于 x^* : $\{x'_{k_n}\} \to x^*$, $\{x''_{k_n}\} \to x^*$ $(n \to \infty)$

并且满足

$$(\$) \qquad |f(x'_{k_n}) - f(x''_{k_n})| \ge \varepsilon_0$$

由f的连续性 $\lim_{x \to x^*} f(x) = f(x^*)$ 因此

$$\lim_{n \to \infty} f(x'_{k_n}) = f(x^*), \ \lim_{n \to \infty} f(x''_{k_n}) = f(x^*)$$

这与上面(\$)式矛盾! 这说明 f 必在[a,b]上一致连续 \square

注:在有界闭区间上,处处连续等价于一致连续回忆前一节例2-例3,有界开区间或无界闭区间上不成立!

✓ **例2:** 验证 $f(x) = \frac{1}{x}$ 在区间I = (0,1)上不一致连续

(#)
$$|f(x') - f(x'')| = |\frac{1}{x'} - \frac{1}{x''}| = \frac{|x' - x''|}{x'x''}$$

如果取
$$|x'_n - x''_n| = \frac{1}{2n}, \ x'_n x''_n = \frac{1}{2n^2}, \ n = 1, 2, \cdots$$

则
$$|f(x'_n) - f(x''_n)| = \frac{|x'_n - x''_n|}{x'_n x''_n} = n > 1$$

为此只要选取 $x'_n = \frac{1}{n}, x''_n = \frac{1}{2n}, n = 1, 2, \cdots$ 这说明 f 在I 上不一致连续

几何说明: 见右上图

• 注: 由(#)式可见,
$$f(x) = \frac{1}{x}$$
在区间 $I = [1, +\infty)$ 上一致连续

✓ **例3**: 考察 $f(x) = \cos(x^2)$ 在ℝ上是否一致连续?

解: 观察
$$f(\pm\sqrt{k\pi}) = \cos(k\pi) = (-1)^k, k = 0,1,2,\cdots$$

$$\therefore |f(\pm\sqrt{2n\pi}) - f(\pm\sqrt{(2n-1)\pi})| = 1 - (-1) = 2$$

如果取
$$x'_n = \sqrt{2n\pi}, x''_n = \sqrt{(2n-1)\pi}, n = 1, 2, \dots$$

$$|x'_n - x''_n| = \frac{\pi}{\sqrt{2n\pi} + \sqrt{(2n-1)\pi}} \le \frac{\sqrt{\pi}}{2\sqrt{2n}} \to 0$$

但
$$|f(x_n') - f(x_n'')| = 2$$

这说明f在I上不一致连续

几何说明:作图

> 有界性质

设 $f \in C[a,b]$,则f在[a,b]上有界

证: 再用反证法,假设f在[a,b]上无界,则 $\forall n \in \mathbb{N}, \exists x_n \in [a,b],$ 使得 $|f(x_n)| > n$

仍用Bolzano-Weierstrass列紧原理, $\{x_n\}$ 存在收敛子列

$$\{x_{k_n}\} \rightarrow x^* \in [a,b]$$

根据f的连续性 $\lim_{n\to\infty} f(x_{k_n}) = f(x^*)$

但由 $\{x_n\}$ 上面的性质 $|f(x_{k_n})| > k_n, n = 1, 2, \cdots$

这个矛盾说明 f 必在 [a,b] 上有界

▶ 最值性质: 设 $f \in C[a,b]$, 则 ∃ \underline{x} , $\overline{x} \in [a,b]$ 使得 $f(\underline{x}) \le f(x) \le f(\overline{x})$, $\forall x \in [a,b]$

证:已知f在[a,b]上有界,由确界原理,存在

$$M = \sup_{a \le x \le b} f(x), \quad m = \inf_{a \le x \le b} f(x)$$

根据上确界含义 $\forall n \in \mathbb{N}, \exists x_n \in [a,b],$ 使得

$$M - 1/n < f(x_n) \le M$$

取 $\{x_n\}$ 的收敛子列 $\{x_{k_n}\} \rightarrow \overline{x} \in [a,b]$,则

$$M - 1/k_n < f(x_{k_n}) \le M$$

再由夹逼原理和f的连续性得 $f(\bar{x}) = \lim_{n \to \infty} f(x_{k_n}) = M$

同理可证
$$\exists \underline{x} \in [a,b]$$
, 使得 $f(\underline{x}) = m$

ightharpoonup 介值性质: 设 $f \in C[a,b]$, 且 $f(a) \neq f(b)$,

若实数 λ 介于f(a)与f(b)之间,则 $\exists c \in (a,b)$,使得 $f(c) = \lambda$

证: 先考虑特例 f(a) < 0 < f(b), 要证 $\exists c \in (a,b), f(c) = 0$

记
$$a_1 = a, b_1 = b, c_1 = (a_1 + b_1)/2$$

这时 $f(a_1) < 0 < f(b_1)$, 检查 $f(c_1)$ 符号:

如果 $f(c_1) = 0$, 则 $c = c_1$, 证明完成

注意这时 $f(a_2) < 0 < f(b_2)$,继续检查 $f(c_2)$ 符号,类似论证…

除非 c_2 是f零点, 否则得到 $a_2 \le a_3 < b_3 \le b_2$, 且 $f(a_3) < 0 < f(b_3)$

• **介值性质证明**(续): 依照前面的论证,除非得到f的零点c,否则递推得到两个单调数列 $\{a_n\}$ 和 $\{b_n\}$,满足

$$a_n \le a_{n+1} < b_{n+1} \le b_n, \ b_{n+1} - a_{n+1} = (b-a)/2^n$$

 $f(a_n) < 0 < f(b_n), \ n = 1, 2, \dots$

由单调性原理 $\{a_n\}$ 和 $\{b_n\}$ 收敛于同一个 $c \in (a,b)$

由函数连续性 $\lim_{n\to\infty} f(a_n) = f(c) = \lim_{n\to\infty} f(b_n)$

由极限保序性 $\lim_{n\to\infty} f(a_n) \le 0 \le \lim_{n\to\infty} f(b_n)$, $\therefore f(c) = 0$

对于一般情况,不妨设 $f(a) < \lambda < f(b)$

引入函数 $F(x) = f(x) - \lambda \in C[a,b]$, 则

以及

$$F(a) < 0 < F(b)$$

由上面证明有 $c \in (a,b)$, 使得F(c) = 0, $\therefore f(c) = \lambda$

- ▶ 推论: 设 $f \in C[a,b]$, 则f([a,b])是一个闭区间证: 结合连续函数的最值性质和介值性质即得 □

【注】这个性质在反函数连续性证明中用到。

夕 例题: 设
$$f \in C[0,1]$$
 且 $f(0) = f(1)$, 求证 $\exists c \in (0,1)$, 使 $f(c) = f(c+\frac{1}{2})$ 证明: 考虑函数 $F(x) = f(x+\frac{1}{2}) - f(x) \in C[0,\frac{1}{2}]$, 则 $F(0) = f(\frac{1}{2}) - f(0)$, $F(\frac{1}{2}) = f(1) - f(\frac{1}{2}) = -F(0)$, 即 $F(0)F(\frac{1}{2}) \le 0$, \therefore ……

[例] 证明奇次多项式

$$P(x) = a_0 x^{2n+1} + a_1 x^{2n} + \dots + a_{2n+1}$$

至少存在一个实根

 $[\mathbb{E}] \quad P(x) \in C(-\infty, +\infty)$

$$P(x) = x^{2n+1}(a_0 + \frac{a_1}{x} + \dots + \frac{a_{2n+1}}{x^{2n+1}})$$

不妨设 $a_0 > 0$

$$\Rightarrow \lim_{x \to +\infty} P(x) = +\infty, \quad \lim_{x \to -\infty} P(x) = -\infty$$

$$\Rightarrow$$
 $\exists r > 0$, 使 $P(r) > 0$, $P(-r) < 0$

根据零点定理 $c \in (-r,r)$,使P(c) = 0

2022/9/16

[例] 若函数 $f \in C[a,b)$,且 $\lim_{x\to b^-} f(x) = +\infty$, 则f 在[a,b)能取到最小值

$$[\text{if}] \lim_{x \to b^{-}} f(x) = +\infty$$

⇒ 对于
$$M = \max\{f(a), 0\} \ge 0$$

 $\exists c: a < c < b, \forall x \in (c, b), f f(x) > M$

因为 $f(x) \in C[a, c]$,根据最大最小值定理

 $\exists x_0 \in [a, c], \notin f(x_0) \le f(x) \quad (\forall x \in [a, c]$

综上所述,f在[a,b)能取到最小值

2022/9/16

Ex. $f, g \in C[a,b], \{x_n\} \subset [a,b], g(x_n) = f(x_{n+1}), \forall n \in \mathbb{N},$ 且 $f(x_1) \leq g(x_1)$. 证明: $\exists \xi \in [a,b], s.t. f(\xi) = g(\xi).$

$$h(x_{n_0}) = f(x_{n_0}) - g(x_{n_0}) > 0,$$

由介值定理, $\exists \xi \in [a,b]$, $s.t.h(\xi) = 0$, 即 $f(\xi) = g(\xi)$.

 $\{f(x_n)\},\{g(x_n)\}$ 均为单增数列. 由闭区间上连续函数的有界性定理, $\{f(x_n)\},\{g(x_n)\}$ 均为有界列,从而均收敛.

 $\{x_n\}$ \subset [a,b] 为有界列,有收敛子列 x_{n_k} ,设 $\lim_{k\to+\infty}x_{n_k}=\xi$,

则 $\xi \in [a,b]$.由f,g的连续性得

$$f(\xi) = \lim_{k \to +\infty} f(x_{n_k}) = \lim_{n \to +\infty} f(x_n)$$
$$= \lim_{n \to +\infty} g(x_n) = \lim_{k \to +\infty} g(x_{n_k}) = g(\xi).\square$$

Ex.(a,b)上的单调函数的间断点都是跳跃间断点.

Proof. 设f(a,b)上单增, $x_0 \in (a,b)$ 为f的间断点.由于单调

函数在每一点处的左右极限都存在,必有

$$\lim_{x \to x_0^-} f(x) \neq f(x_0) \quad \vec{\boxtimes} \quad \lim_{x \to x_0^+} f(x) \neq f(x_0).$$

f单增,由函数极限的保序性,有

$$\lim_{x \to x_0^-} f(x) \le f(x_0), \quad \lim_{x \to x_0^+} f(x) \ge f(x_0).$$

因此,必有

$$\lim_{x \to x_0^-} f(x) < \lim_{x \to x_0^+} f(x).$$

故x₀为跳跃间断点.□

Ex. Riemann函数 $R(x) = \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ 1/q & x = p/q, p, q$ 互质, q > 0 lim $R(x) = 0, \forall x_0 \in \mathbb{R}.$ (无理点连续,有理点间断)

Proof. $\forall \varepsilon > 0, \exists N, s.t. 1/N < \varepsilon$. 在 $U(x_0, 1)$ 中仅存在有限个有理数p/q,满足:p,q互质, $0 < q \le N$. 记这有限个有理数到 x_0 的最小距离为 δ ,则 $\delta > 0$,且对 $U(x_0, \delta)$ 中任意有理数x,有 $R(x) < 1/N < \varepsilon$. 而对 $U(x_0, \delta)$ 中任意无理数x,有R(x) = 0. 故 $0 \le R(x) < \varepsilon$, $\forall x \in U(x_0, \delta)$. 从而有 $\lim R(x) = 0$.

Ex. $f \in C[0,1]$, f(0) = f(1), 则对任意正整数 $n, \exists \xi \in [0,1]$, s.t. $f(\xi) = f(\xi + 1/n)$.

Proof. $\Leftrightarrow g(x) = f(x) - f(x+1/n)$, 则g ∈ C[0,1-1/n].

$$0 = \frac{f(0) - f(1)}{n} = \frac{g(0) + g(1/n) + \dots + g((n-1)/n)}{n}$$
$$\in [\min_{0 \le x \le 1 - 1/n} g(x), \max_{0 \le x \le 1 - 1/n} g(x)].$$

由介值定理, $\exists \xi \in [0,(n-1)/n] \subset [0,1]$, s.t. $g(\xi) = 0$,即 $f(\xi) = f(\xi + 1/n)$.□

Thm.(Weirstrass第一逼近定理) $f \in C[a,b]$,则 $\forall \varepsilon > 0$, 存在多项式P(x),s.t.

$$|f(x)-P(x)| < \varepsilon, \forall x \in [a,b].$$

Proof. 不失一般性,设[a,b] = [0,1].

记X = C[0,1], Y为[0,1]上多项式构成的集合, 定义映射

$$B_n: X \to Y$$

$$g(t) \mapsto B_n(g)(x) = \sum_{k=0}^n g(\frac{k}{n}) C_n^k x^k (1-x)^{n-k},$$

 $B_n(g)$ 是 $g \in X$ 在映射 B_n 下的像, $B_n(g)(x)$ 是以x为自变量的n次多项式, 称为Bernstein多项式.

映射B,有如下性质:

- (1) B_n 是线性映射,即对任意 $g,h \in X, \forall \alpha, \beta \in \mathbb{R}$,有 $B_n(\alpha g + \beta h) = \alpha B_n(g) + \beta B_n(h);$
- (2) B_n 具有单调性,即 $g,h \in X, g \le h$,有 $B_n(g) \le B_n(h)$;

$$\mathbf{B}_{n}(t)(x) = \sum_{k=0}^{n} \frac{k}{n} C_{n}^{k} x^{k} (1-x)^{n-k} = x \sum_{k=1}^{n} \frac{k}{n} C_{n}^{k} x^{k-1} (1-x)^{n-k}$$
$$= x \sum_{k=1}^{n} C_{n-1}^{k-1} x^{k-1} (1-x)^{n-k} = x [(x+(1-x)]^{n-1} = x,$$

$$B_{n}(t^{2})(x) = \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} C_{n}^{k} x^{k} (1-x)^{n-k} = \sum_{k=1}^{n} \frac{k}{n} C_{n-1}^{k-1} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{k-1}{n} C_{n-1}^{k-1} x^{k} (1-x)^{n-k} + \sum_{k=1}^{n} \frac{1}{n} C_{n-1}^{k-1} x^{k} (1-x)^{n-k}$$

$$= \frac{n-1}{n} x^{2} \sum_{k=2}^{n} \frac{k-1}{n-1} C_{n-1}^{k-1} x^{k-2} (1-x)^{n-k} + \frac{x}{n} \sum_{k=1}^{n} C_{n-1}^{k-1} x^{k-1} (1-x)^{n-k}$$

$$= \frac{n-1}{n} x^{2} \sum_{k=2}^{n} C_{n-2}^{k-2} x^{k-2} (1-x)^{n-k} + \frac{x}{n}$$

$$= \frac{n-1}{n} x^{2} + \frac{x}{n} = x^{2} + \frac{x-x^{2}}{n}.$$

由 \mathbf{B}_n 的性质,给定 $\mathbf{s} \in [0,1]$,函数 $(t-s)^2$ 在 \mathbf{B}_n 映射下的像为

$$B_n((t-s)^2)(x) = B_n(t^2)(x) - 2sB_n(t)(x) + s^2B_n(1)(x)$$

$$= x^{2} + \frac{x - x^{2}}{n} - 2sx + s^{2} = \frac{x - x^{2}}{n} + (x - s)^{2}.$$

现在可以利用 \mathbf{B}_n 完成定理证明了. $f \in C[0,1]$,则 $\forall \varepsilon > 0$,

$$\exists \delta > 0, s.t.$$
 $|f(t) - f(s)| < \frac{\varepsilon}{2}, \quad \forall |t - s| < \delta, t, s \in [0, 1].$

$$f \in C[0,1]$$
, 则 $\exists M > 0, s.t. |f(t)| < M, \forall t \in [0,1].$ 从而

$$|f(t)-f(s)| < 2M \le \frac{2M}{\delta^2} (t-s)^2, \ \forall |t-s| \ge \delta, t, s \in [0,1].$$

因此 $\forall t, s \in [0,1]$,有

$$-\frac{\varepsilon}{2} - \frac{2M}{\delta^2} (t - s)^2 < f(t) - f(s) < \frac{\varepsilon}{2} + \frac{2M}{\delta^2} (t - s)^2.$$

任意固定 $s \in [0,1]$,由B_n的性质,有

$$-\frac{\varepsilon}{2} - \frac{2M}{\delta^2} \left[\frac{x - x^2}{n} + (x - s)^2 \right] < B_n(f)(x) - f(s)$$

$$< \frac{\varepsilon}{2} + \frac{2M}{\delta^2} \left[\frac{x - x^2}{n} + (x - s)^2 \right].$$

令s = x,得

$$\left|\mathbf{B}_{n}(f)(x) - f(x)\right| \leq \frac{\varepsilon}{2} + \frac{2M}{n\delta^{2}}(x - x^{2}) \leq \frac{\varepsilon}{2} + \frac{M}{2n\delta^{2}}, \forall x \in [0, 1].$$

任意取定 $n > \frac{M}{\delta^2 \varepsilon}$,有

$$\left| \sum_{k=0}^{n} f(\frac{k}{n}) C_n^k x^k (1-x)^{n-k} - f(x) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall x \in [0,1]. \square$$

说明:

- 1. 函数f 在 x_0 连续也等价于 $f(x) = f(x_0) + \alpha$, 其中 α 满足 $\lim_{x \to x_0} \alpha = 0$
- 2. 函数f在E上一致连续等价于:对E中任何两个数列 $\{x_n\}$, $\{y_n\}$,只要 $\{x_n-y_n\}$ →0,就有 $f(x_n)$ - $f(y_n)$ →0.
- 3.单调函数只可能有第一类间断点
- 4.如果函数单调,则f连续当且仅当f([a, b])是一个以f(a)和f(b)维端点的区间。
- 5. 单调函数的间断的集合至多可数

练习:

 $1.f \in c[a,b]$ 且 $\forall x \in [a,b]$, $\exists y \in [a,b]$ 满足 $|f(y)| \le \frac{1}{2} |f(x)|$. 证明: f在[a,b]中有零点。

- 2. f在(a, b)连续,且在端点左右极限存在,则f一致连续。
- 3. f在无限区间(a, +∞)连续且在∞处极限存在,则f一致连续。
- 4. 设f(x)在[a,b]上连续且严格单调,若 $\lim_{n\to\infty} f(x_n) = f(a)(a \le x_n \le b)$,求证 $\lim_{n\to\infty} x_n = a$

1.提示: (1) 取 $X_0 \in [a, b]$,由已知得到

$$\{x_n\} \subset [a, b], f(x_n) \le \frac{1}{2} f(x_{n-1}) \le ... \le \frac{1}{2^n} f(x_0)$$

存在子列 $X_{n_b} \rightarrow \xi \in [a, b]$ 且由连续性Zhenie定理

$$\lim_{k\to\infty} | f(x_{n_k}) | = | f(\xi) | = 0_\circ$$

- (2) 用反证法。否则 | f(x) | 也没有零点。由于 | f(x) | 也连续于是 | f(x) |> 0。从而有最小值, | $f(\xi)$ |= $\min | f(x) |$. 且 $\xi \in [a, b]$,于是由已知存在y,使得
- $| f(y) | \le \frac{1}{2} | f(\xi) | < | f(\xi) |$.矛盾。

4.提示:

反证法: 假设 $x_n \neq a$.不妨设f(x)严格单调增。 设由子列 $x_{n_k} \rightarrow c > a(\neq a)$,由连续性加Henion定理 $f(x_{n_k}) \rightarrow f(c) > f(a)$.与已知矛盾。

2022/9/16

第7课:连续函数的性质

■ 预习 (下次课内容):

第3.1节 导数概念 第3.2节 导数计算初步

■ 作业 (本次课):

练习题2.7:8-9.

问题2.7:5*.

练习题2.8: 1[自己练习], 2(1,3), 3(2,4,6,8), 4*.

练习题2.9: 1(2,4), 2, 4*. 问题2.9: 2*.

练习题2.10: 1, 3, 4, 6.