Solution 4.2019:

Problem 1:

At the interface: $P_1 = P_0 + \rho_{oil}gh_1$ (1) At the bottom: $P_2 = P_1 + \rho_{water}gh_2$ (2) (1) and (2) => $P_2 = P_1 + \rho_{water}gh_2 = P_0 + \rho_{oil}gh_1 + \rho_{water}gh_2$ => Gauge Pressure: $P_g = \rho_{oil}gh_1 + \rho_{water}gh_2$ $\rho_{oil} = 0.6\rho_{water} => P_g = (0.6h_1 + h_2) \cdot g \cdot \rho_{water}$ => $P_g = (0.6 \cdot 0.1 + 0.2) \cdot 9.8 \cdot 1000 = 2548 Pa$

Gauge pressure at the bottom is 2548Pa

Problem 2:

d: diameter

d' = d/3 => r' = r/3 =>
$$\pi(r')^2 = \pi(r/3)^2 => A' = A/9 => \frac{A}{A'} = 9$$

Av = const => A'v' = Av => v' = $\frac{A}{A'} \cdot v = 9v = 9.4 = 36 \text{ m/s}$

Flow speed at this section is 36 m/s

Problem 3:

Heat flow rate P =
$$\frac{kA\Delta T}{L}$$

Steady state =>
$$P_1$$
 = P_2 = P_3 = P_4 = P_5 => $\frac{k_1 A_1 \Delta T_1}{L_1}$ = $\frac{k_2 A_2 \Delta T_2}{L_2}$ = $\frac{k_3 A_3 \Delta T_3}{L_3}$ = $\frac{k_4 A_4 \Delta T_4}{L_4}$ = $\frac{k_5 A_5 \Delta T_5}{L_5}$

We have $L_1 = L_2 = L_3 = L_4 = L_5$ and $A_1 = A_2 = A_3 = A_4 = A_5$

=> $k_1 \Delta T_1 = k_2 \Delta T_2 = k_3 \Delta T_3 = k_4 \Delta T_4 = k_5 \Delta T_5 => 6k_1 = 5k_2 = 4k_3 = 7k_4 = 8k_5$

=> If we let k_1 = 1 => k_2 = 1.2 ; k_3 = 1.5 ; k_4 = 0.86 ; k_5 = 0.75 => k_5 is the smallest.

=> Slab 5 has the smallest thermal conductivity.

Problem 4:

Linear expansion from 7.10 m at $20^{\circ}C$ to 7.20 m at $90^{\circ}C$:

 $\Delta L = L_0 \alpha \Delta T \iff 7.20-7.10 = 7.10 \cdot \alpha \cdot (90-20)$

 $\Rightarrow a = 2 \times 10^{-4} / {}^{\circ}C$

Temperature at length 7.05 after linear expansion from 7.10 m at 20°C:

 $\Delta L = L_0 \alpha \Delta T \iff 7.05 - 7.10 = 7.10 \cdot 2 \times 10^{-4} \cdot (T - 20)$

=> T ≈ -15°C

Temperature at length 7.05 is about -15°C.

Problem 5:

(a) Cyclic process => There is no change in internal energy. => $\Delta U = 0 J$

(b) Work is the area within the cycle: $W = \frac{1}{2} \cdot (80 - 20) \cdot (4 - 2) = 60 \text{ J}$

From Figure 2:

Area under the line BC is smaller than area under the line AC => $W_{BC} < W_{CA}$

The gas expands from B to C then compresses from C to A (A to B is isobaric the volume is constant)

Therefore, the gas is compressed in one cycle.

- => Net work done by the gas is negative $=> W_{donebygas} = -60 J$
- (c) We have 2^{nd} law of thermal dynamics: $\Delta U = Q W$

Q here is heat transferred into the system, W is work done by the system.

From (a) we have $\Delta U = 0 J$

From (b) we have W done by gas is -60 J

- \Rightarrow Q = Δ U + W = 0 60 = -60 J.
- => Heat transferred into the gas is -60 J. Heat

Therefore, heat transferred out of the gas is 60 J.

Answer 4.2019:

- 1/ 2548 Pa
- 2/ 36 m/s
- 3/ slab 5. Explain: ...
- 4/ about -15°C
- 5/ (a) $\Delta U = 0 J$ (b) $W_{donebygas} = -60 J$ (c) $Q_{out} = 60 J$