

25 CM. SPHERES
6 CM. SPACING
NEGATIVE POLARITY
MEASUREMENT DIVIDER
HIGH SIDE = 7-125 Ω CARDS
LOW SIDE = 4.07 Ω SHUNT

(161 is negative spark over of a
25 cm sphere gap at 6 cm spacing.)

Questions

1.) May I consider the Cigre Study Committee Curve (Fig. 2) as having a zero response time. ($\frac{U_{oc} - U_0}{s} = Tr = 0$)

2) If $U_0 = U_{oc}$ in Cigre Study Committee Curve, then I can consider that:

$$\frac{U_{oc} - 161}{s} = \text{ordinate axis scale}$$

3) I find some discrepancies in the equation:

$$\frac{(U_{oc} - a)^2}{s} = \text{constant}$$

$$\text{at } s = .15 \quad \frac{(U_{oc} - 161)^2}{.15} = 4,780$$

$$\text{at } s = 1.0 \quad \frac{(U_{oc} - 161)^2}{1.0} = 4,489$$

$$\text{at } s = 10 \quad \frac{(U_{oc} - 161)^2}{10} = 4000$$

4) How do I interpret the results of a breakdown in air across an insulator, using a measuring divider with a response time = 19.7 ns

? If: $U_0 = 302 \text{ kV}$ breakdown in air @ 74 ns ($\frac{\text{kV}}{\text{ns}} = 4$)
and: $U_{oc} - U_0 = s Tr$
then: $U_{oc} = s Tr + U_0$

$$\frac{3 \times 10^2}{1.74 \times 10^{-7}} = 4 \times 10^9$$

$\frac{U_0 - 161}{S}$ = ordinate axis scale

$\frac{(U_{oc} - 161)^2}{S}$ = constant

The measurement error is estimated at:

$$U_{oc} - U_0 = S \bar{T}_r$$

$$\frac{U_{oc} - U_0}{S} = \bar{T}_r$$

step function in
response wave out

$$T = T_1 - T_2 + T_3 - T_4$$

0.60

$$\frac{T_2}{T_0} \times 100\% = \% \text{ error}$$

1 ft/us speed of light

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Impulse Circuit.

Top View

Side View

of linearly increasing chopped front impulse voltages, the error of measurement is directly proportional to the response time T_r (see Fig. 1 and Ref. 3). For a fairly long time and in addition to the usual low voltage method, it has been proposed to determine the response time T_r of a measurement system, by a high voltage method based on the comparison of the measured spark-over characteristic with the actual spark-over characteristic.

FIG. 2.—Spark-over characteristic of a sphere-gap ($s = 60 \text{ mm}$, $D = 250 \text{ mm}$) for linearly increasing negative impulse voltages.

The points represent the results of tests with measurement systems having a response time of $T_r = 30 \text{ ns}$.

U_0 = spark-over voltage $760/20 \text{ (kV)}$;
 s = steepness (kV ns^{-1}).

In 1964 a working party of Cigre Study Committee No. 8 requested a certain number of laboratories to record the spark-over characteristics of 2 sphere gaps, with the object of determining on this basis, the actual characteristic with the greatest possible degree of accuracy. This present report deals only with the $S = 60 \text{ mm}$, $D = 250 \text{ mm}$ sphere gap. During the discussion held in Vienna, there were in all 13 series of tests [6]. For the interpretation of these test results, a physical hypothesis was used [5, 6] from which were obtained:

$$\frac{(U_{oc} - a_2)^2}{s} = \text{constant.} \quad (1)$$

If the hypothesis is true, for a measurement system having a response time $T_r = c_2$, the following equation is obtained:

$$\frac{U_0}{s} = a_2 \cdot \frac{1}{s} + b_2 \cdot \sqrt{\frac{1}{s}} + c_2. \quad (2)$$

$$\frac{U_0}{s} = 161 \times \frac{1}{s} + 62 \times \sqrt{\frac{1}{s}} + c_2$$

200

376

$$\frac{200}{376} \times 150 \text{ kV} \times 6$$

185

50

$$600 \times 10^3$$

$$6 \times 10^5$$

900