

Power management

MCU Division Applications

Power schemes (1/3)

Voltage Regulator 46

- Two embedded linear voltage regulator supply all the digital circuitries except for the Standby circuitry and the Backup domain. The regulator output voltage (V_{CORF}) can be programmed by software to two different ranges within 1.0 - 1.2 V (typical). This method is called Dynamic Voltage Scaling.
 - Regulator Voltage Range 1: V_{CORF} = 1.2V
 - Regulator Voltage Range 2: V_{CORE} = 1.0V
- Depending on the application mode, the V_{CORE} is provided either by main regulator (MR) or by the low-power regulator (LPR)
 - Main voltage regulator mode (MVR) for Run and Sleep modes.
 - Low-power regulator for LP run, LP sleep, Stop 1 and Stop 2 modes.
 - Regulators OFF in Standby and Shutdown mode.
 - When SRAM2 content is preserved in Shutdown mode, the LPR remains ON and provides SRAM2 supply/

Power optimization versus frequency

 Thanks to voltage scaling and low power regulator RUN consumption can be optimized down to low frequencies

Power optimization versus frequency

 Flash has small dynamic consumption => benefits when the FW has a limited cache usage.

Current consumption (µA)

- Several options depending on required performance and consumption:
 - Range 1 for SYSCLK up to 80 MHz
 - Range 2 for SYSCLK up to 26 MHz
- Voltage scaling range selected with VOS[1:0] bits in PWR_CR1
- Clock source max frequency depending on voltage scaling range:

Voltage range	MSI	HSI	HSE	PLL
Range 1	48 MHz range	16 MHz	48 MHz	80 MHz VCO max = 344 MHz
Range 2	24 MHz range	16 MHz	26 MHz	26 MHz VCO max = 128 MHz

Dynamic voltage scaling in Run mode

Voltage scaling optimizes the product efficiency (Consumption vs Performance)

50

- Each peripheral clock can be configured to be ON or OFF in Run and Low-power run modes thanks to RCC_AHB1ENR, RCC_AHB2ENR, RCC_AHB3ENR, RCC_APB1ENR1, RCC_APB1ENR2, RCC APB2ENR
 - For the peripherals with independent clock: the bit controls both AHB/APB and kernel clock
 - By default all peripheral clocks are OFF, except Flash interface clock
 - SRAM1 and SRAM2 clocks are always ON in Run mode
- When running from SRAM1 or SRAM2 (in Run or Low-power run):
 - Flash can put in power-down mode by setting RUN_PD bit in FLASH_ACR
 - Flash clock can be switched off by clearing FLASHEN bit in RCC AHB1ENR
 - Flash MUST NOT be accessed when it is switched off (no hardware protection) => interrupt must be mapped in SRAM (using Vector Table Offset Register CortexM4 register)

GPIO DMA FSMC QUADSPI BOR PVD, PVM LCD **USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM ADC** DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens RNG**

AES

CRC

STM32L4 Power Mode 52 Run mode

Run Mode Range 1 Ex: execution from Flash

Cortex M4

SRAM 1 (96KB) Flash (1MB) SRAM 2

(32KB)

Main regulator (MR)

Range 1 (up to 80MHZ)

Range 2 (up to 26MHZ)

Low Power regulator (LPR) up to 2MHz

Range 1 127uA/MHz at 80 MHz (10.2mA)

Range 2 111uA/MHz at 26 MHz (2.9 mA)

Available Clock

HSI **HSE** LSI LSE MSI

Active cell

Frozen cell

Cell in power-down

Available Periph and clock

GPIO DMA FSMC QUADSPI BOR PVD, PVM **LCD USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM ADC** DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens RNG AES**

CRC

STM32L4 Power Mode 53 Run mode

Run Mode Range 2 Ex: execution from SRAM

Cortex M4

(96KB) Flash (1MB) SRAM 2

SRAM 1

(32KB)

Main regulator (MR)

Range 1 (up to 80MHZ)

Range 2 (up to 26MHZ)

Low Power regulator (LPR) up to 2MHz

Range 1 from SRAM1 127uA/MHz at 80 MHz (10,2 mA)

Range 2 from SRAM1 111uA/MHz at 26 MHz (2,9 mA)

Available Clock

HSI **HSE** LSI LSE **MSI**

Active cell

Frozen cell

Cell in power-down

Available Periph and clock

- Current consumption in Run mode depends on several parameters:
 - Executed binary code (program itself + compiler impact)
 - Program location in memory
 - Device software configuration
 - I/O pin loading and switching rate
 - Temperature
 - Execution from Flash or SRAM
 - When execution from Flash: ART accelerator configuration (Cache, Prefetch)
 - When execution from SRAM: SRAM1 or SRAM2

- When executing from Flash, the best configuration is:
 - I-CACHE ON, D-CACHE ON, PREFETCH OFF

		ART ON (Cache ON, Prefetch Off)	ART OFF
Range 1@80MHz	Consumption(mA/MHz)	0,136	0.117
(4 WS)	Performance (Coremark/MHz)	3.32	1,55
	Energy Efficiency (Coremark/mA)	24.4	13.2
Range 2@26MHz	Consumption(mA/MHz)	0,118	0,111
(3 WS)	Performance (Coremark/MHz)	3.35	1,85
	Energy Efficiency (Coremark/mA)	28,4	16,6

- When executing from SRAM, the best configuration is:
 - Execution from SRAM2

		Code & Data in SRAM1	Code in SRAM2, Data in SRAM1
Range 1@80MHz	Consumption(mA/MHz)	0,130	0.137
	Performance (Coremark/MHz)	2,37	3,42
	Energy Efficiency (Coremark/mA)	18,2	25,0

GPIO DMA FSMC QUADSPI BOR PVD, PVM **LCD USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM ADC** DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2 **IWDG**

WWDG

Systick Timer
Touch Sens

RNG

AES

CRC

STM32L4 Power Mode Low-power run mode

Low-power run mode Ex: execution from Flash

Cortex M4

SRAM 1

(96KB) (1MB) SRAM 2 (32KB) Main regulator (MR)

Range 1 (up to 80MHZ)

Range 2 (up to 26MHZ)

Low Power regulator (LPR) up to 2MHz

from Flash 136 µA/MHz at 2 MHz (272 µA)

From SRAM1
121 μA/MHz at 2 MHz
(242 μA)

Available Clock

HSI HSE LSI LSE MSI

Active cell

Frozen cell

Cell in power-down

Available Periph and clock

Sleep and Low-power sleep modes 58

- Sleep and Low-power sleep mode: Core stopped, peripherals kept running
 - Entered from by executing special instructions
 - WFI (Wait For Interrupt)
 - Exit: any peripheral interrupt acknowledged by the Nested Vectored Interrupt Controller (NVIC)
 - WFE (Wait For Event)
 - An event can be an interrupt enabled in the peripheral control register but NOT in the NVIC or an EXTI line configured in event mode
 - Exit: as soon as the event occurs → No time wasted in interrupt entry/exit
 - Two mechanisms to enter this mode
 - Sleep Now: MCU enters SLEEP mode as soon as WFI/WFE instruction are executed
 - Sleep on Exit: MCU enters SLEEP mode as soon as it exits the lowest priority ISR
 - The stack is not popped before entering the sleep, it will not be pushed when the next interrupt occurs, saving running time
 - Controlled by CortexM4 reg System Control Register[SLEEPONEXIT]

Sleep and Low-power sleep modes_

- Entered by executing WFI or WFE either when
 - Main regulator is ON => Sleep mode
 - Main regulator is OFF => Low-power sleep mode
- Each peripheral clock can be configured to be ON or OFF in Sleep or Lowpower sleep modes thanks to RCC_AHB1SMENR, RCC_AHB2SMENR, RCC_AHB3SMENR, RCC_APB1SMENR1, RCC_APB1SMENR2, RCC_APB2SMENR
 - For the peripherals with independent clock: the bit controls both AHB/APB and kernel clock
 - This bit controls also the kernel clock in Stop mode
- By default, FLASH, SRAM1 and SRAM2 clocks are ON in Sleep or Low-power sleep modes
 - They can be disabled during Sleep/Low-power sleep by clearing FLASHSMEN, SRAM1SMEN, SRAM2SMEN
 - Flash can be put in power-down during Sleep/Low-power sleep by setting SLEEP_PD in FLASH_ACR

GPIO DMA FSMC QUADSPI BOR PVD, PVM LCD **USB OTG USART LP UART** I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI**

SAI **DFSDM ADC** DAC **OPAMP** COMP **Temp Sensor**

> **Timers** LPTIM 1 LPTIM 2

> > **IWDG**

WWDG

Systick Timer Touch Sens

RNG

AES

CRC

STM32L4 Power Mode 60

Sleep mode

Sleep Mode Range 1 Ex: Flash ON, SRAMs ON (default)

Cortex M4

SRAM 1 (96KB) Flash (1MB) SRAM 2 (32KB)

Main regulator (MR)

Range 1 (up to 80MHZ)

Range 2 (up to 26MHZ)

Low Power regulator (LPR) up to 2MHz

Range 1 37 µA/MHz at 80 MHz (2,96 mA)

Range 2 35 µA/MHz at 26 MHz (0,92 mA)

Clock

HSI **HSE** LSI LSE **MSI**

Active cell

Frozen cell

Cell in power-down

Available Periph and clock

Available

Zzz

GPIO DMA FSMC QUADSPI BOR

PVD. PVM **LCD**

USB OTG

USART LP UART

I2C 1 / I2C 2

I2C 3

SPI

CAN

SDMMC

SWPMI SAI

DFSDM

ADC

DAC

OPAMP COMP

Temp Sensor

Timers

LPTIM 1

LPTIM 2

IWDG WWDG

Systick Timer

Touch Sens

RNG AES

CRC

STM32L4 Power Mode

Low-power sleep mode

Low-power sleep mode Ex: Flash OFF, SRAM1 OFF

Zzz

Cortex M4

SRAM 1 (96KB) Flash

(1MB)

SRAM 2 (32KB)

Main regulator (MR)

Range 1 (up to 80MHZ)

Range 2 (up to 26MHZ)

Low Power regulator (LPR) up to 2MHz

Flash ON, SRAMs OFF 48 µA/MHz at 2 MHz $(96 \mu A)$

Flash OFF, SRAMs OFF 40,5 µA/MHz at 2 MHz (81 µA)

Available Clock

HSI **HSE** LSI LSE **MSI**

Active cell

Frozen cell

Cell in power-down

Available Periph and clock

Batch Acquisition mode (BAM) 62

Optimized mode for transferring data with communication peripherals, while the rest of the device is in low power.

- Only the needed communication peripheral + 1 DMA + 1 SRAM (SRAM1 or SRAM2) are configured with clock enable in Sleep mode
- 2. Flash is put in power-down mode and Flash clock is gated off during Sleep
- 3. Enter either Sleep or Low-power sleep mode
 - ➤ Note that I2C clock can be at 16 MHz even in low-power sleep mode, allowing 1 MHz Fast-mode Plus support. U(S)ART/LPUART clock can also be HSI.

Low-power modes 63

- Next low-power modes are selected with LPMS in PWR CR1
 - LPMS = 000 : Stop 1 mode selection with regulator in main mode
 - LPMS = 001 : Stop 1 mode selection with regulator in low-power mode
 - LPMS = 010 : Stop 2 mode selection
 - LPMS = 011 : Standby mode selection
 - LPMS = 1xx : Shutdown mode selection
- Before entering Stop 2 mode :
 - All the peripherals which cannot be enabled in Stop 2 mode must be either disabled by clearing the Enable bit in the peripheral itself, or put under reset state through control bit in the RCC

GPIO

DMA **FSMC**

QSPI **BOR** PVD, PVM

LCD **USB OTG**

USART LP UART

I2C 1 / I2C 2

I2C 3

SPI

CAN

SDMMC

SWPMI

SAI **DFSDM**

ADC

DAC

COMP

IWDG

RNG

AES

CRC

I/Os kept, and configurable

STM32L4 Power Mode 64 Stop 1 Mode

Stop 1 w/ RTC on LSE quartz

7,9 µA @3.0V 7.6 µA @1.8V

Cortex M4

Main regulator (MR)

Flash (1MB) SRAM 1 (96KB)

SRAM 2 (32KB)

Low Power regulator (LPR)

Available Clock

Backup domain

Backup Register (32x32-bits)

RTC

Wake-up event

NRST BOR PVD **PVM** RTC + Tamper LCD **USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3 SWPMI** COMP LPTIM 1 LPTIM 2 **IWDG GPIOs**

6us wake-up from Flash 4us wake-up from RAM

OPAMP Temp Sensor Timers LPTIM 1 LPTIM 2 **WWDG Systick Timer Touch Sens**

GPIO

DMA **FSMC**

QSPI **BOR** PVD, PVM

LCD

USB OTG

USART LP UART

I2C 1 / I2C 2

I2C 3

SPI

CAN

SDMMC

SWPMI

SAI **DFSDM**

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers

LPTIM 1 LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

RNG

AES

CRC

I/Os kept, and configurable

STM32L4 Power Mode 65 Stop 1 Mode

Stop 1 w/o RTC

7,5 µA @ 3.0V

7.3 µA @ 1.8V

Zzz

Cortex M4

Main regulator (MR)

Flash (1MB) SRAM 1 (96KB)

SRAM 2 (32KB)

Low Power regulator (LPR)

Available Clock

HSI **HSE** LSI LSE **Backup domain**

Backup Register (32x32-bits)

RTC

Wake-up event

NRST BOR PVD **PVM** RTC + Tamper LCD **USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3 SWPMI** COMP LPTIM 1

LPTIM 2

IWDG

GPIOs

6us wake-up from Flash 4us wake-up from RAM

FSMC

QSPI **BOR** PVD, PVM

LCD **USB OTG**

USART LP UART

I2C 1 / I2C 2

I2C 3

SPI

CAN

SDMMC

SWPMI

SAI **DFSDM**

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers LPTIM 1 LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

RNG

AES

CRC

GPIO I/Os kept, and configurable DMA

STM32L4 Power Mode 66 Stop 2 Mode

Stop 2 w/ RTC on LSE quartz

1.66 µA @3.0V 1.43 µA @1.8V

Cortex M4

Main regulator (MR)

Wake-up event

NRST BOR PVD **PVM** RTC + Tamper LCD

Flash (1MB) SRAM 1 (96KB)

SRAM 2 (32KB)

Low Power regulator (LPR)

LP UART

I2C 3

COMP LPTIM 1

IWDG GPIOs

7us wake-up from Flash **5us wake-up from RAM**

Available Clock

HSI **HSE** LSI LSE **Backup domain**

Backup Register (32x32-bits)

RTC

QSPI **BOR** PVD, PVM

LCD

USB OTG

USART LP UART

I2C 1 / I2C 2

I2C 3

SPI

CAN

SDMMC

SWPMI

SAI

DFSDM

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers LPTIM 1 LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

RNG

AES

CRC

GPIO I/Os kept, and configurable DMA **FSMC**

STM32L4 Power Mode 67 Stop 2 Mode

Stop 2 w/o RTC

1.25 µA @3.0V 1.19 µA @1.8V

Zzz

Cortex M4

Main regulator (MR)

NRST BOR PVD **PVM** RTC + Tamper

LCD

Wake-up

event

Flash (1MB) SRAM 1 (96KB)

SRAM 2 (32KB)

LP UART

I2C 3

COMP LPTIM 1

IWDG GPIOs

7us wake-up from Flash **5us wake-up from RAM**

Available Clock

HSI **HSE** LSI LSE

Low Power regulator (LPR)

Backup domain

Backup Register (32x32-bits)

RTC

Design: Stop 2 Retention Registers

 With retention registers. One ultra low leakage latch saves information in each flip flop. Everything else can be shutoff (including 2/3rd of each flip flop)

Design: Stop 2 power domains

> I/Os can be configured w/ or w/o pull-up w/ or w/o pull-down

> > LSI

LSE

STM32L4 Power Mode 70

Standby Mode

GPIO DMA FSMC BOR PVD, PVM LCD **USB OTG USART** LP UART 12C 1 / 12C 2 **12C 3** CAN **SDMMC SWPMI** SAI **DFSDM ADC** DAC **OPAMP** COMP Temp Sensor **Timers** LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens RNG AES** CRC

Standby 405 nA @ 3.0V w/ SRAM2 363 nA @1.8V w/o RTC Zzz Main regulator (MR) Cortex M4 SRAM 1 (96KB) Flash (1MB) **Low Power** SRAM 2 regulator (LPR) (32KB) **Available Backup domain** Clock **Backup Register** HSI (32x32-bits) **HSE RTC**

Wake-up event **NRST BOR** RTC + Tamper **IWDG 5 WKUP pins**

14 us wake-up

GPIO

DMA

FSMC

BOR PVD, PVM

LCD

USB OTG

USART

LP UART 12C 1 / 12C 2

12C 3

CAN

SDMMC

SWPMI SAI **DFSDM**

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers

LPTIM 1

LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

RNG

AES CRC I/Os can be configured w/ or w/o pull-up w/ or w/o pull-down

STM32L4 Power Mode

Standby Mode

Standby w/ RTC on LSE quartz

674 nA @ 3.0V 433 nA@ 1.8V

Cortex M4

Main regulator (MR)

SRAM 1 (96KB) Flash (1MB) SRAM 2 (32KB)

Low Power regulator (LPR)

Backup domain

Backup Register (32x32-bits)

RTC

Wake-up event

NRST BOR RTC + Tamper **IWDG 5 WKUP pins**

14 us wake-up

Available Clock

GPIO

DMA

FSMC

BOR PVD, PVM

LCD

USB OTG

USART LP UART 12C 1 / 12C 2

12C 3

CAN

SDMMC

SWPMI SAI **DFSDM**

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers

LPTIM 1 LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

I/Os can be configured w/ or w/o pull-up w/ or w/o pull-down

STM32L4 Power Mode Standby Mode

Standby

169 nA @ 3.0V 128 nA @ 1.8V

Zzz

Cortex M4

Main regulator (MR)

Flash (1MB) SRAM 1 (96KB)

SRAM 2 (32KB)

Low Power regulator (LPR)

Backup domain

(32x32-bits)

RTC

Wake-up event

NRST BOR RTC + Tamper **IWDG 5 WKUP pins**

14 us wake-up

Available Clock

HSI **HSE** LSI LSE **Backup Register**

RNG AES CRC

Standby mode

- Ultra Low Power BOR always ON (V_{BOR0})
 - Higher thresholds brings additional consumption
- Configurable pull-up or pull-down on all I/Os
 - PWR_PUCRx registers (x = A,B,...H)
 - PWR_PDCRx registers (x = A,B,...H)
 - Configuration applied when **APC** is set in PWR_CR3 register.
- Possibility to backup 32kbytes SRAM2
 - Set RRS bit in PWR_CR3 register
- 128 bytes backup registers
- The polarity of each of the 5 wakeup pins is configurable
- Wakeup clock is MSI configurable from 1 to 8MHz.

Shutdown mode: NEW!

- Similar to standby mode but
 - NO power monitoring: no BOR, no switch to VBAT
 - NO LSI, no IWDG
 - BOR reset is generated when exiting Shutdown mode
 - => all registers except those in Backup domain are reset.
 - => reset generated on the pad
- 128 bytes backup registers
- Wakeup sources: 5 wakeup pins, RTC
- Wakeup clock is MSI 4 MHz.

GPIO

DMA

FSMC

QSPI BOR PVD, PVM

LCD **USB OTG**

USART LP UART 12C 1 / 12C 2

12C 3

CAN

SWPMI SAI **DFSDM**

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers

LPTIM 1 LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

RNG

AES CRC I/Os can be configured w/ or w/o pull-up w/ or w/o pull-down But floating when exit from Shutdown

STM32L4 Power Mode

Shutdown Mode

Shutdown w/ RTC on LSE quartz

476 nA @ 3.0V 265 nA @ 1.8V

Cortex M4

Main regulator (MR)

SRAM 1 (96KB) Flash (1MB) SRAM 2 (32KB)

Wake-up event

NRST

RTC + Tamper

5 WKUP pins

250 us wake-up

Available Clock

Low Power regulator (LPR)

Backup domain

Backup Register (32x32-bits)

RTC

GPIO

DMA

FSMC

QSPI BOR PVD, PVM

LCD

USB OTG

USART LP UART 12C 1 / 12C 2

12C 3

CAN

SDMMC

SWPMI

DFSDM

ADC

DAC

OPAMP

COMP

Temp Sensor

Timers

LPTIM 1 LPTIM 2

IWDG

WWDG

Systick Timer

Touch Sens

RNG

AES CRC I/Os can be configured w/ or w/o pull-up w/ or w/o pull-down But floating when exit from Shutdown

STM32L4 Power Mode 76

Shutdown Mode

Shutdown

77 nA @ 3.0V 43 nA @ 1.8V

Zzz

Cortex M4

Main regulator (MR)

Flash (1MB) SRAM 1 (96KB)

SRAM 2 (32KB)

Low Power regulator (LPR) event

NRST

Wake-up

RTC + Tamper

5 WKUP pins

256 us wake-up

Available Clock

HSI **HSE** LSI LSE **Backup Register** (32x32-bits) **RTC**

Backup domain

Low-power modes summary

								77
Mode	Regulator	CPU	Flash	SRAM	Clocks	Peripherals In Bold : wakeup source	Consumption @ 1.8V	Wakeup time
	R1					All	127 μA/MHz	
Run	R2	Yes	ON ⁽¹)	ON	Any	All except OTG, SDMMC, RNG	111 μA/MHz	N/A
LPRun	LPR	Yes	ON ⁽¹)	ON	Any except PLL	All except OTG, SDMMC, RNG	136 μA/MHz	TBD
	R1		ON (4)	ON(2)		All	37 µA/MHz	
Sleep	R2	No	ON ⁽¹)	ON ⁽²)	Any	Any IT or event	35 μA/MHz	6 cycles
LPSleep	LPR	No	ON ⁽¹)	ON ⁽²)	Any except PLL	All except OTG, SDMMC, RNG Any IT or event	40 μA/MHz	6 cycles
Stop 1	LPR	No	OFF	ON	LSE/LSI	Reset pin, all I/Os BOR,PVD,PVM,RTC,LCD,IWDG, COMPx,DACx,OPAMPx,USARTx, LPUART,I2Cx,LPTIMx,OTG_FS, SWPMI	7.3μA w/o RTC 7.6 μA w/RTC	4 μA RAM 6 μA Flash
Stop 2	LPR	No	OFF	ON	LSE/LSI	Reset pin, all I/Os BOR,PVD,PVM,RTC,LCD,IWDG, COMPx,LPUART,I2C3,LPTIM1	1.2 μA w/o RTC 1.4 μA w/RTC	5 μs RAM 7 μs Flash
	LPR			SRAM2 ON		Reset pin, 5 WKUPx pins	+ 235 nA	
Standby	OFF	DOWN	OFF	DOWN	LSE/LSI	BOR, RTC, IWDG	128 nA w/o RTC 433 nA w/RTC	14 µs
Shutdown	OFF	DOWN	OFF	DOWN	LSE	Reset pin, 5 WKUPx pins RTC	43 nA w/o RTC 265 nA w/RTC	256 µs

- 1. Can be put in power-down and clock can be gated off
- 2. SRAM1 and SRAM2 can be gated off independently

Low-power modes transitions 78

Wakeup from Stop 79

Wakeup time	Wakeup clock	Flash/SRAM	Тур	Unit
		Flash	6.2	
From Stop 1	MSI = 48 MHz	SRAM	4.5	110
	UCI 16 MU-	Flash	6.3	μs
	HSI = 16 MHz	SRAM	5.5	

Wakeup time	Wakeup clock	Flash/SRAM	Тур	Unit
		Flash	8	
From Stop 2	MSI = 48 MHz	SRAM	5.1	
	HSI = 16 MHz	Flash	7.3	μs
		SRAM	5.7	

Wakeup from Stop mode (Flash)

Flash Vref		
Regulator	Flash recovery	system
Clock (HSI/MSI)	Margin read until	Digital
Analog delay	flash ready	cycles

Stop1 Wake Up (in Flash)

Flash Vref		
Regulator	Flash recovery	system
Clock (HSI/MSI)	Margin read until	Digital
Analog delay	flash ready	cycles

Stop2 Wake Up (in Flash)

Wakeup from Stop mode (RAM)

Stop1 or 2 Wake Up (in RAM or CACHE RAM)

- When the wakeup is done in Flash: the wakeup time can be shorter if the wakeup code is located in the instruction Cache, the prefetch buffer or the Cortex pipeline.
- The temporization to wait for the flash recovery occurs only when the flash access is done.

Wakeup from Standby mode

STANDBY Wake Up (FLASH)

	Flash Vref			
Regulator	Clock (MSI)	Flash recovery	Options read	system
		Margin read	Digital	Digital
Analog	delay	untill flash ready	cycles	cycles

Wakeup from Shutdown mode

Debug capability in LP modes 84

- Depends on DBGMCU_CR configuration
- DBG_STANDBY, DBG_STOP, DBG_SLEEP =0: No clock, no debug
- DBG_STANDBY=1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and HCLK are provided by the internal RC oscillator which remains active. This bit also allows debug in Shutdown mode.
- DBG_STOP= 1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are provided by the internal RC oscillator which remains active in Stop 1 or Stop 2 mode.
- **DBG_SLEEP**: 1: (FCLK=On, HCLK=On) In this case, when entering Sleep or Low-power sleep mode, HCLK is fed by the same clock that is provided to FCLK (system clock as previously configured by the **s**oftware