Logistic Regression

Finding the Parameters

Finding the Parameters

- Like linear regression, this is done by optimizing a cost function.
- By minimizing a cost function.
- Cost function sometimes called an objective function.

Finding the Parameters

- n number of factors
- m number of training instances
- yⁱ y values for the training set
- \hat{y}^i predicted y values for the training set
- parameters a, b_1 , b_2 , ...

Cost Function for Logistic Regression

$$cost(\hat{y}, y) = -\log \hat{y} \text{ if } y = 1$$

$$cost(\hat{y}, y) = -\log(1 - \hat{y}) \text{ if } y = 0$$

Recall ŷ is between 0 and 1

Cost function

Cost function

Cost function

- If y = 1 and we predict a value close to 0, then there is a heavy cost (penalty)
- If y = 0 and we predict a value close to 1, then there is also a heavy cost (penalty)

Gradient Descent

- Gradiant Descent
- If dy/dx is negative move right
- If positive move left.
- Finds a local minimum.
- It turns out that the cost function defined above is convex, so gradient descent finds a absolute minimum.

Gradient Descent

Convex Cost Function

Gradient Descent

- Gradient Descent is used to find the values of the parameters a and b's that minimize the value of the cost function for the training data.
- This is implemeted in R.

Logistic Regression - Summary

 Find the equation of the line that best seperates the classes.

$$z = a_1 * x_1 + a_2 * x_2 + a_n * x_n + b$$

- This is done by minimising the cost function defined above.
- To predict the class of a new instance:-
 - Calculate the values of z given above
 - Find g(z) where g is the logistic function.
 - This gives the probability (of a positive).