```
3) (2,3), (1,1);
```

- 4) (1, 1, 1, 1), (1, 2, 1, 3);
- 5) (1,1,2,2);
- 6) (1, 1, 1, 1), (1, 1, 1, 3), (3, -5, 7, 2), (1, -7, 5, -2);
- 7) (1,1,1,1), (1,2,1,3), (1,1,2,2), (1,1,1,3);
- 8) (0,0,0,0).
- **1050.** Принадлежит ли число $\sqrt[6]{2}$ линейной оболочке чисел 1, $\sqrt{2}$ и $\sqrt[4]{2}$ над полем рациональных чисел?
- **1051.** В линейном пространстве $\mathbb{R}_8[t]$ многочленов степени не выше 8 заданы два подпространства $L_1=\{P\in\mathbb{R}_8[t]\;;\;P(1)=P'(1)=P''(1)=0\}$ и $L_2=\{P\in\mathbb{R}_8[t]\;;\;P(-1)=P''(-1)=P''(-1)=0\}$ соответственно. Найти базисы суммы и пересечения этих подпространств.
- **1052.** В пространстве матриц Mat_n порядка n заданы подпространство S_n симметричных матриц и подпространство T_n строго верхнетреугольных матриц. Доказать, что $\mathrm{Mat}_n = S_n \oplus T_n$. Найти проекцию произвольной матрицы A на каждое из этих подпространств параллельно другому подпространству.
- **1053.** В пространстве матриц Mat_n заданы подпространства S_n симметричных матриц и $V_{n,\,r}$ матриц, у которых последние n-r строк нулевые Найти размерности и базисы суммы и пересечения этих подпространств.
- **1054.** Найти размерности и базисы суммы и пересечения подпространств L_1 и L_2 :
- 1) $L_1 = \langle (4,2,1), (-3,2,0), (-1,4,0) \rangle$, $L_2 = \langle (-2,3,1), (5,3,13), (7,0,12) \rangle$,
- 2) $L_1 = \langle (1,2,3), (4,3,1), (2,-1,-5) \rangle$, $L_2 = \langle (1,1,1), (-3,2,0), (-2,3,1) \rangle$,
- 3) $L_1 = \langle (1,2,3), (0,1,1), (1,1,2) \rangle, L_2 = \langle (4,3,1), (1,1,0), (5,3,2) \rangle;$
- 4) $L_1 = \langle (1,1,1), (4,2,1), (2,0,-1) \rangle$, $L_2 = \langle (-2,3,1), (1,4,1), (5,-2,-1) \rangle$,
- 5) $L_1 = \langle (1,2,3), (1,-2,\imath), (2,0,3+\imath) \rangle, L_2 = \langle (1,0,3\imath), (1,4,3+2\imath), (-1,4,3-4\imath) \rangle;$
- 6) $L_1 = \langle (1, -\imath, 1 + \imath), (1, 0, 3\imath), (-1, 2\imath, -2 + \imath) \rangle, L_2 = \langle (1, -2, \imath), (2, 1 + \imath, -\imath), (0, 5 + \imath, -3\imath) \rangle;$
- 7) $L_1 = \langle (1,1,1,1), (1,2,1,3-i), (2,3,2,4-i), (1,1,1,1-i) \rangle, L_2 = \langle (0,1,0,3-i), (0,2,0,5-2i), (0,2+i,0,6+i), (1,4+i,5-i,-2-i) \rangle;$
- 8) $L_1 = \langle (1,2,3,1,1), (1,0,1,-2,-2), (2,0,1,-1,0), (0,1,1,0,0) \rangle, L_2 = \langle (1,2,0,0,2), (0,1,-2,3,-3), (-1,2,1,2,0), (1,1,-2,0,0) \rangle;$
- 9) $L_1: x_1 + x_2 x_3 + x_4 x_5 = 0$, $L_2 = \langle (1,1,1,1,1), (1,0,-1,1,-1), (0,1,-1,-1,1), (-2,1,0,1,-1) \rangle$,

10)
$$L_1: \begin{cases} x_1+x_3+x_4-x_5=0, \\ x_2-x_4=0, \end{cases}$$
 $L_2: \begin{cases} x_3+2x_4=0, \\ x_1-x_2-x_5=0; \end{cases}$

11)
$$L_1 = \langle (1, 1, -1, 1, 1), (0, 1, -1, 1, 0), (1, 2, -3, 2, 0) \rangle,$$

 $L_2 = \langle (1, 0, -2, 1, 1), (1, 1, -2, 1, 0), (2, 1, 0, 0, 1) \rangle;$

12)
$$L_1 = \langle (1, 2, -2, 2, 1), (2, 4, -5, 4, 1), (2, 3, -3, 3, 2) \rangle,$$

$$L_2 : \begin{cases} x_3 + 2x_4 = 0, \\ x_1 - x_2 + x_5 = 0; \end{cases}$$

13)
$$L_1 = \langle (1, 1, -1, -1), (0, 1, 3, 2), (2, 1, -1, 0) \rangle, L_2 = \langle (1, 1, 2, 0), (0, 1, 1, 0), (1, 3, 1, 3) \rangle.$$

§ 10.4. Линейные функции и отображения

Отображение $\mathbf{A}:U\to V$ двух линейных пространств над одним и тем же полем \Bbbk называется линейным, если для любых векторов $x,y\in U$ и любого числа $\lambda\in \Bbbk$ имеют место равенства

$$\mathbf{A}(u+v) = \mathbf{A}(u) + \mathbf{A}(v), \qquad \mathbf{A}(\lambda u) = \lambda \mathbf{A}(u). \tag{10.1}$$

Линейные отображения из U в \Bbbk называются линейными функциями на U.

Биективное линейное отображение векторных пространств называется *линейным изоморфизмом*. Два пространства, между которыми существует линейный изоморфизм, называются *изоморфизми*.

Если в пространствах U и V даны базисы e_1,\ldots,e_m и f_1,\ldots,f_n соответственно, то каждому линейному отображению $\mathbf{A}:U\to V$ сопоставляется матрица $A=(a_j^i)$ размера $n\times m$, называемая матрицей отображения \mathbf{A} в указанных базисах, по столбцам которой стоят координаты векторов $\mathbf{A}(e_1),\ldots \mathbf{A}(e_m)$ в базисе f_1,\ldots,f_n :

$$\mathbf{A}(e_i) = \sum_{j=1}^n a_i^j f_j. \tag{10.2}$$

Если $C=(c_j^i)$ — матрица перехода от базиса e_1 . , e_m к другому базису e_1',\dots,e_m' в пространстве U, а $D=(d_j^i)$ — матрица перехода от базиса f_1,\dots,f_n к другому базису f_1',\dots,f_n' в пространстве V, то отображение $\mathbf A$ имеет по отношению к паре базисов e_1',\dots,e_m' и f_1',\dots,f_n' матрицу

$$A' = D^{-1}AC.$$

В случае поля $k = \mathbb{C}$ рассматриваются также *антилинейные* (или *полулинейные*) отображения, которые определяются аналогично линейным, с той лишь разницей, что

$$\mathbf{A}(\lambda u) = \overline{\lambda} \mathbf{A}(u). \tag{10.3}$$