inline=symbol

Probability and Random Processes

Keivan Mallahi-Karai 21.09.2022

Jacobs University

Definition of conditional probability

Definition

Suppose that A, B are two events and that $\mathbb{P}(B) \neq 0$. The conditional probability $\mathbb{P}(A|B)$ (read as A given B) is defined by

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$

Definition of conditional probability

Definition

Suppose that A, B are two events and that $\mathbb{P}(B) \neq 0$. The conditional probability $\mathbb{P}(A|B)$ (read as A given B) is defined by

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$

Remark:

Note that for this definition to make sense, one needs to assume that $\mathbb{P}[B] \neq 0$.

Bayes' formula

Suppose
$$\Omega = B_1 \cup B_2$$
 is a partition of Ω .

$$B_1 \cup B_2 = \Omega$$
 $B_1 \cap B_2 = \emptyset$

$$\mathbb{P}\left[B_1|A\right] = \frac{\mathbb{P}\left[B_1 \cap A\right]}{\mathbb{P}\left[A\right]} = \frac{\mathbb{P}\left[A|B_1\right]\mathbb{P}\left[B_1\right]}{\mathbb{P}\left[A|B_1\right]\mathbb{P}\left[B_1\right] + \mathbb{P}\left[A|B_2\right]\mathbb{P}\left[B_2\right]}.$$

$$\mathbb{P}[B, A] = \frac{\mathbb{P}(B, A)}{\mathbb{P}(A)}$$

Bayes' formula

Suppose $\Omega = B_1 \cup B_2$ is a partition of Ω .

$$\mathbb{P}\left[B_1|A\right] = \frac{\mathbb{P}\left[B_1 \cap A\right]}{\mathbb{P}\left[A\right]} = \frac{\mathbb{P}\left[A|B_1\right]\mathbb{P}\left[B_1\right]}{\mathbb{P}\left[A|B_1\right]\mathbb{P}\left[B_1\right] + \mathbb{P}\left[A|B_2\right]\mathbb{P}\left[B_2\right]}.$$

More generally

Theorem (Bayes' Formula)

Let $\Omega = B_1 \cup B_2 \cup \cdots \cup B_n$ be a partitioning of the sample space Ω . Then we have

$$\mathbb{P}\left[B_i|A\right] = \frac{\mathbb{P}\left[A|B_i\right]\mathbb{P}\left[B_i\right]}{\sum_{i=1}^n \mathbb{P}\left[A|B_i\right]\mathbb{P}\left[B_i\right]}.$$

Communication in a noisy channel

Example

Through a transmission channel two types of messages can be sent: 0 and 1. We assume that 40% of the time a 1 is transmitted. The probability that 0 is correctly received is 0.80 and the probability that a transmitted 1 is correctly received is 0.90. Determine

- a) the probability of a 0 being received.
- b) given a 1 received, the probability that 1 was transmitted.

$$P(I_1|O_1) = \frac{P(O_1|I_1) P(I_1)}{P(O_1|I_1) P(I_1) + P(O_1|I_2) P(I_3)}$$

$$= \frac{\frac{9}{10} \cdot \frac{4}{10}}{\frac{36}{100} + \frac{12}{100}} = \frac{\frac{36}{100}}{\frac{36}{100} + \frac{12}{100}} = \frac{\frac{3}{100}}{\frac{3}{100}} = \frac$$

Consider three buckets B_1 , B_2 , B_3 such that B_1 contains 3 red and 1 blue ball, B_2 contains 2 balls of each color, and B_3 contains 3 blue and 1 red ball. A random bucket is chosen and a random ball is picked out of the bucket.

- 1. What is the probability that the chosen ball is blue?
- 2. Given that the chosen ball is blue, what is the probability that it is picked from each one of the buckets?

$$P(blue | S_1) P(S_1) + P(blue | S_2) P(S_2) + P(blue | S_3) P(S_2) = \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} + \frac{3}{4} \cdot \frac{1}{3} = \frac{1}{12} + \frac{2}{12} + \frac{3}{12} = \frac{6}{12} = \frac{1}{2}.$$

$$P(B_1 | blue) = \frac{P(blue | S_1) P(S_1)}{P(blue | S_1) P(S_1) + P(blue | S_2) P(S_1) + P(blue | S_2) P(S_1)}$$

$$= \frac{\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \cdot \frac{1}{\sqrt{3}}$$

$$\mathbb{P}(\mathbb{S}_{2} | \text{blue}) = \frac{\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} = \frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$$

$$\mathbb{P}(\mathbb{S}_{2} | \text{blue}) = \frac{\frac{3}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} = \frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$$

False positives

Suppose that a particular test for Corona is 90% sensitive, that is to 90% of people with Corona will test positive. Assume, further, that the test is also 80% specific, that is, it has 80% true negatives. Assume that currently 5 percent of the population is infected with Corona. Find the probability that a random person who tests positive is indeed infected.

andom person who tests positive is indeed infected.

$$I = \inf \{ \text{cele2} \} + \text{positive}$$

$$I = \inf \{ \text{cele3} + \text{positive}$$

Random variables: definition

Random variables: definition

Definition

Let (Ω, \mathbb{P}) be a probability space. A function

$$X:\Omega \to \mathbb{R}$$

is called a real valued *random variable*. Similarly, a function $X:\Omega\to\mathbb{R}^n$ is called a vector-valued random variable.

Random variables: definition

Definition

Let (Ω, \mathbb{P}) be a probability space. A function

$$X:\Omega \to \mathbb{R}$$

is called a real valued *random variable*. Similarly, a function $X:\Omega\to\mathbb{R}^n$ is called a vector-valued random variable.

P=1/2

Example

Experiment: n independent flipping of a coin can result in heads with probability p and in tails with probability 1-p,

Example

Experiment: n independent flipping of a coin can result in heads with probability p and in tails with probability 1-p,

Sample space:

$$\Omega = \{(x_1, x_2, \dots, x_n) \mid x_i = 0 \text{ or } 1\}.$$

Example

Experiment: n independent flipping of a coin can result in heads with probability p and in tails with probability 1-p,

Sample space:

$$\Omega = \{(x_1, x_2, \dots, x_n) \mid x_i = 0 \text{ or } 1\}.$$

Each outcome of this experiment corresponds to an element $\omega \in \Omega$. Let

$$X_1(\omega) = \{ \text{first head} \},$$

$$X_2(\omega) = \{ \text{first tail} \},$$

$$X_3(\omega) = \{\text{total number of heads}\},$$

$$u=3$$

Example

Experiment: *n* independent throws of a faire die

Example

Experiment: *n* independent throws of a faire die

Sample space:

$$\Omega = \{(x_1, x_2, \dots, x_n) : 1 \le x_i \le 6\}.$$

Example

Experiment: n independent throws of a faire die

Sample space:

$$\Omega = \{(x_1, x_2, \dots, x_n) : 1 \le x_i \le 6\}.$$

Each outcome of this experiment corresponds to an element $\omega \in \Omega$. Let

Example

Experiment: n independent throws of a faire die

Sample space:

$$\Omega = \{(x_1, x_2, \dots, x_n) : 1 \leq x_i \leq 6\}.$$

Each outcome of this experiment corresponds to an element $\omega \in \Omega$. Let

 $X_1 = \{\text{sum of the scores}\},\$

 $X_2 = \{\text{the smallest score}\},\$

 $X_3 = \{ \text{the second largest score} \},$

Discrete random variables

$$\int_{X} \int_{X} \int_{$$

Discrete random variables

Definition

The probability mass function of a random variable X with sets of values x_1, \ldots is defined by

$$p(x) = \mathbb{P}[X = x].$$

Note that for every i, we have $p(x_i) = p_i > 0$.

$$P_i = P[X = xi]$$

Values 0 |
$$P(x) = P(X = x)$$

 $|P(x)| = P(X = 0) = |P(X = 0)| = |P(X$

$$P(1) = P(X=1) = P$$
a die res one decembig
wise
$$P(X=1) = \frac{15}{36}$$

$$P = \frac{15}{36}$$

The simplest discrete random variables are Bernoulli random variables.

The simplest discrete random variables are Bernoulli random variables.

Definition

A random variable X is called the *Bernoulli* random variable with parameter p if it only takes values 0 and 1, and

$$\mathbb{P}[X = 1] = p, \qquad \mathbb{P}[X = 0] = 1 - p.$$

The simplest discrete random variables are Bernoulli random variables.

Definition

A random variable X is called the *Bernoulli* random variable with parameter p if it only takes values 0 and 1, and

$$\mathbb{P}[X = 1] = \rho, \qquad \mathbb{P}[X = 0] = 1 - \rho.$$

A Bernoulli random variable X tells us whether something happened or not. The probability of happening $\mathbb{P}[X=1]$ is called the parameter of X.

The simplest discrete random variables are Bernoulli random variables.

Definition

A random variable X is called the *Bernoulli* random variable with parameter p if it only takes values 0 and 1, and

$$\mathbb{P}[X = 1] = \rho, \qquad \mathbb{P}[X = 0] = 1 - \rho.$$

A Bernoulli random variable X tells us whether something happened or not. The probability of happening $\mathbb{P}[X=1]$ is called the parameter of X.

Example

A die is rolled. Let X be the random variable that tells us whether the outcome is larger than 4 or not.

Binomial distribution