MATEMÁTICA UNINOVE

Módulo - VI

Lei de formação de uma sequência

Objetivo: Determinar uma sequência a partir da sua lei de formação.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Introdução

Um conjunto de informações capazes de determinar todos os termos de uma sequência e a ordem em que se apresentam é chamado de lei de formação de sequência.

Observe alguns exemplos resolvidos:

Exemplo 1: Considere a sequência:

$$(a_n)_n \in N * onde$$

$$\begin{cases} a_1 = 5 \\ a_{n+1} = 2 + a_n \end{cases}$$

As informações dadas determinam todos os termos da sequência e a ordem em que se apresentam. Vejamos:

- O primeiro termo da sequência é cinco, isto é, a1 = 5.
- Na igualdade a_{n+1} = 2 + a_n, como n ∈ N*, atribuindo-se a n valores
 1, 2, 3, 4,..., obtemos os demais termos da sequência, isto é:

Para n = 1	Para n = 2	Para n = 3	Para n = 4
$a_{n+1} = 2 + a_n$			
$a_{1+1} = 2 + a_1$	$a_{2+1} = 2 + a_2$	$a_{3+1} = 2 + a_3$	$a_{4+1} = 2 + a_4$
$a_2 = 2 + 5$	$a_3 = 2 + 7$	$a_4 = 2 + 9$	$a_5 = 2 + 11$
$a_2 = 7$	a ₃ = 9	a ₄ = 11	a ₅ = 13

E assim sucessivamente. Logo, a sequência é (5, 7, 9, 11, 13, ...).

Exemplo 2: Considere a sequência (a_n) com $n \in N^*$, tal que $a_n = n^2 + 3$.

Para determinarmos os termos desta sequência, basta atribuirmos a \mathbf{n} osvalores 1, 2, 3,..., na igualdade $a_n = n^2 + 3$.

$$n = 1$$
 $n = 2$ $n = 3$ $n = 4$

$$a_n = n^2 + 3$$
 $a_n = n^2 + 3$ $a_n = n^2 +$

Portanto a sequência é (4, 7, 12, 19, ...).

Exemplo 3: Determinar o quinto termo da sequência.

$$(a_n)_n \in N * onde \begin{cases} a_1 = 0 \\ a_{n+1} = (a_n)^2 + 1 \end{cases}$$

O quinto termo da sequência é indicado por a_5 . Para determinálo, basta atribuirmos a **n** os valores 1, 2, 3, e 4 na igualdade $a_{n+1} = (a_n)^2 + 1$

n = 1
 n = 2
 n = 3
 n = 4

$$a_{n+1} = (a_n)^2 + 1$$
 $a_{n+1} = (a_n)^2 + 1$
 $a_{n+1} = (a_n)^2 + 1$
 $a_{n+1} = (a_n)^2 + 1$
 $a_{1+1} = (a_1)^2 + 1$
 $a_{2+1} = (a_2)^2 + 1$
 $a_{3+1} = (a_3)^2 + 1$
 $a_{4+1} = (a_4)^2 + 1$
 $a_2 = 0^2 + 1$
 $a_3 = 1^2 + 1$
 $a_4 = 2^2 + 1$
 $a_5 = 5^2 + 1$
 $a_2 = 1$
 $a_3 = 2$
 $a_4 = 5$
 $a_5 = 26$

Logo, o quinto termo da sequência é 26.

Exemplo 4: A soma S_n primeiros termos da sequência $(a_1, a_2, a_3,..., a_n)$ por: $S_n = 2n + 5$.

- **a.** Determinar a soma dos seis primeiros termos da sequência.
- **b.** Determinar o primeiro termo da sequência.
- c. Determinar o sétimo termo da sequência.

Resolução:

a) Para obter a soma dos seis primeiros termos da sequência, basta substituir avariável **n** por 6 na igualdade:

$$Sn = 2n + 5$$

 $S_6 = 2.6 + 5$
 $S_6 = 12 + 5$
 $S_6 = 17$

b) Note que a sentença $S_n = 2n + 5$ expressa a soma dos n primeiros termos dasequência, por exemplo:

$$S_4 = a_1 + a_2 + a_3 + a_4$$

$$S_3 = a_1 + a_2 + a_3$$

$$S_2 = a_1 + a_2$$

$$S_1 = a_1$$

Assim, S₁ é igual ao próprio a_{1.} Logo, temos para n = 1:

$$S_n = 2n + 5$$

$$S_1 = 2.1 + 5$$

$$S_1 = 2 + 5$$

$$S_1 = 7$$

c) Para determinar o termo a_7 , basta efetuarmos S_7 – S_6 ; observe por quê:

$$S_7 - S_6 = (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7) - (a_1 + a_2 + a_3 + a_4 + a_5 + a_6) = a_7$$

$$S_7 = 2.7 + 5$$
 $S_6 = 2.6 + 5$

$$S_7 = 14 + 5$$
 $S_6 = 12 + 5$

$$S_7 = 19$$
 $S_6 = 17$

Logo:

$$S_7 - S_6 = a_7$$

$$a_7 = 19 - 17 = 2$$

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

GIOVANNI, José Ruy; BONJORNO, José. *Matemática Completa* - Ensino Médio - 1º ano. 2. ed. São Paulo: Ática, 2005.

IEZZI, Gelson; DOLCE, Osvaldo. *Matemática Ciência e Aplicação* – Ensino Médio.6. ed. São Paulo: Saraiva, 2010.

SÃO PAULO. Secretaria da Educação. Caderno do professor - Ensino Médio, 2011.

XAVIER, Claudio da Silva; BARRETO, Benigno Filho. *Matemática Aula por Aula* – Ensino Médio – 1º ano. São Paulo: FTD, 2005.