

APMF - Apr 2016

We are a world leader in the chemical industry

2014 figures

Limitation of the plant production capacity

Objective: Production increase

with limited Investments

- Modification of the current separation system
- → tests of different operating conditions and filtration medium: No success 🕾
- → A new liquid / solid separation technology has been found, but it is expensive and there are still some technical risks

Improvement of the feed quality

→ Work on the crystallization operation!

Controling Crystal's filter-ability

Multiscale approach

- 1. Experiments at lab scale
- 2. Cystallization modelling within gCRYSTAL Lab scale
- 3. Simulation of the industrial crystallizer
- 4. Input of the CFD / gCRYSTAL Multizonal
- 5. Optimization of the crystallizer design and operating parameters

Lab scale experiments

Pilote-scale MSMPR - continuously operated crystallizer

Parameters:

- I_{cryst.}
- $\mathsf{T}_{\mathsf{feed.}}$
- $\begin{matrix} \tau_{res} \\ C_{solid} \end{matrix}$
- ω

1. Experiments

2. Lab. model

3. Indus. model

Modelling continuous crystallization

Lab scale

Crystallizer geometry, impeller speed etc.

1. Experiments

2. Lab. model

3. Indus. model

Crystallization kinetics

2^{ndary} nucleation

1 - Activated secondary nucleation

$$J_{\text{sec}} = A_{t} \left[\exp\left(\ln k_{s}\right) \frac{D_{AB}}{d_{m}^{4}} \exp\left(-\pi \left(K \ln\left(\frac{c_{c}}{c^{*}}\right)\right)^{2} \frac{1}{\nu \ln S_{a}}\right) \right]$$

Periodic regime

2 - Attrition

$$J_{\sec ci} = \exp\left(\frac{\ln k_{n_ci}}{N_{_D}}\right) \sigma^{n_{ci}} \frac{N_{_Q}}{N_{_D}} k_{_V} \rho_c \varepsilon \int_{L_{\min_ci}}^{\infty} n \ L^3 dL$$

Stable regime

1. Experiments

2. Lab. model

3. Indus. model

4. CFD Input

Crystallization kinetics

Growth & Agglomeration

1 – Crystal growth

$$G = k_g \exp\left(\frac{-E_{A,g}}{RT}\right) \sigma^g$$

2 – Agglomeration

not in the initial model, because its effect can be difficult to distinguish from crystal growth

1. Experiments

2. Lab. model

3. Indus. model

Parameter estimation

set-up

Choosing the experiments

Error in each measurement

Kinetic parameters I.C. & boundaries

Parameter to be estimated	Initial guess	Fixed?	Lower bound	Upper bound
crystalliser_MSMPR001 → Agglomeration parameter (A50) ("AA_crystal")	0.0	V	0.0	0.0
crystalliser_MSMPR001 → Activation energy ("AA_crystal")	2500.0	V	2500.0	2500.0
crystalliser_MSMPR001 → Growth rate constant ("AA_crystal")	10.0		1.0	50.0
crystalliser_MSMPR001 → Order with respect to supersaturation ("AA_crystal")	1.0		0.0	2.0
crystalliser_MSMPR001 → Rate constant ("AA_crystal")	9.0	V	9.0	9.0
crystalliser_MSMPR001 → Slurry density order ("AA_crystal")	2.0	✓	2.0	2.0
crystalliser_MSMPR001 → Specific power input order ("AA_crystal")	1.0	✓	1.0	1.0
crystalliser_MSMPR001 → Supersaturation order ("AA_crystal")	2.0	√	2.0	2.0
Add new				

Running the optimization routine

1. Experiments

2. Lab. model

3. Indus. model

Simulations vs Experiments

Good Fit at lab scale

1. Experiments

2. Lab. model

3. Indus. model

Simulation of the industrial crystallizer

real operating conditions

- Real dimensions, operating conditions etc.
- Kinetics from lab data

Simulation with Lab kinetics

-Industrial data **Distribution Function** Simulation Size

Identification of industrial kinetics

Bad fit!

1. Experiments

2. Lab. model

3. Indus. model

Test of new operating conditions

Discrepency between simulation and industrial test

Modification of the temperature conditions

Test at industrial scale

Bad fit with the simulation and No real Improvement!

1. Experiments

2. Lab. model

3. Indus. model

Using CFD simulation in g-CRYSTAL

g-CRYSTAL Multizonal

CFD simulation

1 crystallization stage

Choosing the « Zones »

Extraction of CFD data

1. Experiments

2. Lab. model

3. Indus. model

MSMPR vs Multizonal

Small difference with the simple model

1. Experiments

2. Lab. model

3. Indus. model

Model improvement

Agglomeration mechanism

Mumtaz Agglomeration kernel

$$\beta_{agg} = \left(\sqrt{\frac{8\pi\varepsilon}{15\nu}} \cdot \overline{d}_{3.0}^{3}\right) \cdot \frac{\left(A_{50}G\right) / \left(\varepsilon\rho \overline{d}_{3.0}^{2}\right)}{1 + \left(A_{50}G\right) / \left(\varepsilon\rho \overline{d}_{3.0}^{2}\right)}$$

Non linear behaviour

1. Experiments

2. Lab. model

3. Indus. model

4. CFD Input

Effect of the hydrodynamic

Industrial scale

1. Experiments

2. Lab. model

3. Indus. model

4. CFD Input

Better fit with the Multizonal Crystallizer

Industrial Scale

1. Experiments

2. Lab. model

3. Indus. model

4. CFD Input

Designing Crystallizer Modifications DOE Approach

- Inlet position
- Impeller geometry
 - Average Power Input ε

2. Monophasic CFD Simulations

23 DOE

Multizonal Simulations

3. Analysis of the DOE

Best set of modifications

1. Experiments

2. Lab. model

3. Indus. model

4. CFD Input

Capacity increase after modifications

At low investment

2. Lab. model

3. Indus. model

4. CFD Input

Conclusions

- CFD + Population Balance Modeling is a very efficient tool for
 - Optimizing existing crystallizer → reduce experimental costs (time and money!)
 - Designing New equipments → Allow the implementation of breaktrough technologies

& Future Work

A purification model can be extracted from the population balance

$$C_i = f(r_{N2}, G, Agg)$$

optimization with the same model

Acknowledgments

Niall Mitchell Sean Bermingham Hassan Mumtaz David Slade

N. Perret

L. Scali

E. Chateigner

Thank You for your Attention!

