Visão Computacional

YOLO - You Only Look Once (Você Só Olha Uma Vez)

Detector e Classificador de objetos

- Usa Convolutional Neural Network CNN, que é um ótimo classificador de imagens
- · Criado em Darknet, o framework criado por seus desenvolvedores
- É capaz de detectar e classificar objetos em tempo real

YOLO divide a imagem numa grid de 13 por 13 células:

Cada uma dessas células são resposáveis por fazer a predição de 5 caixas delimitadoras. Uma caixa delimitadora descreve um retângulo que engloba um objeto.

YOLO também exibe um score de confiança que informa o quão certo ele está de que dentro da caixa delimitadora existe um objeto.

Para cada caixa delimitadora, a célula também prever uma Classe. Essa parte funciona exatamente como qualquer outro Classificador: gera a probabilidade de que seja uma Classe do universo de classes que ele conhece.

Classes como:

- bicicleta
- barco
- carro
- gato
- cachorro
- pessoa
- e assim por diante...

O score de confiança para uma caixa delimitadora e a predição da classe são combinados num único score final que nos diz a probabilidade de que uma caixa delimitadora contém um objeto de um tipo específico, por exemplo "cachorro":

Uma vez que existe uma grid de 13x13 = 169 células, e cada uma das céluas fazem a predição de 5 caixas delimitadoras, obtém-se 845 caixas delimitadoras no total. E naturalmente a grande maioria dessas caixas terão um score de confiança muito pequeno, de forma que as únicas caixas que permanecem são as que possuem 30% ou mais de score de confiança (é possível modificar esse limite dependendo de quão acurado você deseja que o detector seja).

A predição final é:

YOLO usa uma tecnica de normalização chamada de *batch normalization* depois das camadas do modelo Convolucional. A figura a seguir é um exemplo real onde a primeira imagem é da primeira camada convolucional sem *batch normalization* e a segunda com:

Downloads:

- http://bit.ly/yolov3weights)
- http://bit.ly/yolov3_projeto (http://bit.ly/yolov3_projeto)

Fontes:

- https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opency/ (https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opency/)
- https://pjreddie.com/darknet/yolo/ (https://pjreddie.com/darknet/yolo/)
- http://machinethink.net/blog/object-detection-with-yolo/ (http://machinethink.net/blog/object-detect
- https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection (https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection)
- https://medium.com/@xslittlegrass/almost-real-time-vehicle-detection-using-yolo-da0f016b43de
 https://medium.com/@xslittlegrass/almost-real-time-vehicle-detection-using-yolo-da0f016b43de
 https://medium.com/@xslittlegrass/almost-real-time-vehicle-detection-using-yolo-da0f016b43de
- https://github.com/KleinYuan/easy-yolo (https://github.com/KleinYuan/easy-yolo (https://github.com/KleinYuan/easy-yolo)
- https://medium.com/diaryofawannapreneur/yolo-you-only-look-once-for-object-detection-explained-6f80ea7aaa1e)
- https://www.youtube.com/watch?v=TgeX-AF7 DE (https://www.youtube.com/watch?v=TgeX-AF7 DE)
- https://www.youtube.com/watch?v=HbD9e6-qzko (https://www.youtube.com/watch?v=HbD9e6-qzko (https://www.youtube.com/watch?v=HbD9e6-qzko)
- https://www.youtube.com/watch?v=SO4tjl43Ob4 (https://www.youtube.com/watch?v=SO4tjl43Ob4)