Filled Ball

KAMIL DUTKIEWICZ
TEAM POLAND

The problem

A ping-pong ball that has been partially filled with some fluid or sand will bounce much lower than a filled one. Explain this phenomenon. How does the height of the bounce depend on the relevant parameters?

First impressions

- Bounce height h varies for different same-height throws
- Bounce height is not proportional to initial height h_0 (damping)
- Lowest h (for given h_0) is for balls filled around halfway
- The ball starts to roll

Origin of the problem

[1] – filled street hockey balls

[2] – bouncing sphere partially filled with water (a) and granular meterial (b)

[1]Street hockey ball, U.S. patent 6,645,098 (11 November 2003)

[2]T. W. Killian, R. A. Klaus, T. T. Truscott, Rebound and jet formation of a fluid-filled sphere

$$\left\langle \frac{h}{h_0} \right\rangle = 0.587 \pm 0.003$$

$$\alpha = \frac{E}{E_0} = \frac{h}{h_0}$$

60% of energy is conserved

Pacheco-Va'zquez, S. Dorbolo, Rebound of a confined granular material: combination of a bouncing [3] ball and a granular damper t = 0 ms

A ping-pong ball that has been partially filled will bounce much lower than a filled one.

Previous investigations

IYPT, 2014

Russian Team

Ivan Chaika Roman Doronin Vitaliy Matiunin Aleksandr Severinov Vladislav Tumanov

Measurements done from 80cm

- Motion of the ball established using a Python tracking code
- Ball is hanging on a string and is released by burning the string

Experimental setup

Tracker

Water

Maximum 30 grams

Measurements every 3 grams

Sand

Maximum 52 grams

Measurements every 6 grams

Ball mass around 2.5 g

`Filling mass

Results for water

Each data point is an average of three measurements.

Example

Notice how the ball doesn't rebound the second time Ball rebounds from 50 cm to 31 cm -> 0.6 15 ml water ball used

Results for sand

Each data point is an average of three measurements.

Energy losses

Inner ball analogy

Stiff ball inside the sphere – rotation

Stiff ball inside the sphere — 'jets'

Same initial velocities

Ping-pong ball rebound

Stiff ball rebound

Collision between the two balls

Numerical simulation

Filling mass and ball size

Simulation for water

Differences between water and sand

Ball	Retained Energy
Ping-pong	0.587
Water	0.587
Sand	0.2

Simulation for sand

Initial angle

Different angles - water

Different angles - sand

Sand

Water

Conclusions

- We proved that provided the right setup the height of the bounce can be the same for a half filled ball
- We measured how the height depends on the mass of the filling, the difference between liquid and a granular material
- •We proved that the damping is a <u>result of symmetry breakage</u> in initial conditions and <u>explained</u> the movement of filling during impact
- We provided a useful analogy with a stiff ball inside the ping-pong ball and checked how it corelates to the initial problem

References

- 1. Street hockey ball, U.S. patent 6,645,098 (11 November 2003)
- 2. T. W. Killian, R. A. Klaus, T. T. Truscott, Rebound and jet formation of a fluid-filled sphere
- 3. F. Pacheco-Va'zquez , S. Dorbolo, Rebound of a confined granular material: combination of a bouncing ball and a granular damper
- 4. https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opency/
- 5. L. Pauchard, S. Rica 1998, *Physics of a ,ping-pong' ball*

The Simulation

- The balls are in constant gravitational field
- Ping-pong ball feels k*(radius y) force (while y<radius and v<0), where k=15000 (to match dynamometer measurement), but feels 0.587*k*(radius-y) while v>0
- The inner balls bounce in one time step, loosing 0.587 (water) or 0.2 (sand) of its energy
- The balls collision is calculated as one of two bodies with some relative radial velocities, with masses
 2.5g for the ping-pong ball and volume*density for the inner ball
 and the CoR 0.75

The model is two dimensional, but mass scales with density times volume

Results in logarithmic scale

Exponential fit: 0.587*exp(-0.48M)

Tracing paper

Double rebound

Steel ball inside the sphere

First rebound Steel ball Same initial Second rebound Rotation around rebound velocities centre of mass

Trace diameter

Initial height

$$m = (2.55 \pm 0.01)g$$
—1m

$$\left\langle \frac{h}{h_0} \right\rangle = 0.587$$

$$\sigma = 0.0126$$

$$\delta h = \frac{\sigma}{\sqrt{n}} = \frac{0.0126}{\sqrt{21}} \approx 0.003$$

$$\alpha = \frac{E}{E_0} = \frac{h}{h_0} = (58.7 \pm 0.3) \cdot 10^{-2}$$

Limits of our simulation

