2021

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-Free Languages
- Deterministic Pushdown Automata and Deterministic CFLs

$$L=\{a^nb^n:n\geq 0\}$$

- •Check all a's precede the first b
- •Count the number of a's
- Count without limit
- Stack

PushDown Automata (PDA)

Pushdown Automaton -- PDA

Initial Stack Symbol

Definition 7.1

Non-Deterministic Pushdown Automaton (NPDA)

Transition Function

Labels on the Edges of Transition Graphs

Pushing Strings

stack

stack

stack

A Possible Transition

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

No transition is allowed to be followed When the stack is empty

Empty stack

A Good Transition

Non-Determinism

These are allowed transitions in a Non-deterministic PDA (NPDA)

Example 7.1

$$\delta(q_1, a, b) = \{(q_2, cd), (q_3, \lambda)\},\$$

Example 7.2

$$L = \{a^n b^n : n \ge 0\} \cup \{a\}$$

$$Q = \{q_0, q_1, q_2, q_3\},\$$

$$\Sigma = \{a, b\},\$$

$$\Gamma = \{0,1\},\$$

$$z = 0$$
,

$$F = \{q_3\}$$

$$\delta(q_0, a, 0) = \{(q_1, 10), (q_3, \lambda)\}\$$

$$\delta(q_0, \lambda, 0) = \{(q_3, \lambda)\}$$

$$\mathcal{S}(q_1, a, 1) = \{(q_1, 11)\}$$

$$\delta(q_1, b, 1) = \{(q_2, \lambda)\}$$

$$\delta(q_2, b, 1) = \{(q_2, \lambda)\}$$

$$\delta(q_2, \lambda, 0) = \{(q_3, \lambda)\}$$

$$\delta(q_0, b, 0)$$
?

Nondeterministic

Example 7.3

$$L = \{a^{n}b^{n} : n \ge 0\} \cup \{a\}$$

$$q_{0} = \{a,0,10\} \quad \{a,1,11\} \quad \delta(q_{0}, a, 0) = \{(q_{1},10), (q_{3}, \lambda)\} \quad \delta(q_{0}, \lambda, 0) = \{(q_{3}, \lambda)\} \quad \{a,0,\lambda\} \quad \{b,1,\lambda\} \quad \delta(q_{1}, a, 1) = \{(q_{1},11)\} \quad \{a,0,\lambda\} \quad \{a,$$

Another Example

Example: $L = \{a^n b^n : n \ge 0\}$

Execution Example:

Time 0

Input

 \overline{z}

Stack

current a, λ, a b, a, λ state b, a, λ b, a, λ b, a, λ b, a, λ a, λ b, a, λ a, λ

Time 1

Time 2

z

Time 3

Time 4

Time 5

Time 6

Time 7

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

The input string *aaabbb* is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Instantaneous Description (ID)

Example:

Instantaneous Description

 $(q_1,bbb,aaaz)$

Example:

Instantaneous Description

$$(q_2,bb,aaz)$$

We write:

The symbol denotes a move from one ID to another

A computation:

$$(q_0, aaabbb, z) \vdash (q_1, aaabbb, z) \vdash$$

 $(q_1, aabbb, az) \vdash (q_1, abbb, aaz) \vdash (q_1, bbb, aaaz) \vdash$
 $(q_2, bb, aaz) \vdash (q_2, b, az) \vdash (q_2, \lambda, z) \vdash (q_3, \lambda, z)$

$$(q_0, aaabbb, z) \vdash (q_1, aaabbb, z) \vdash$$

 $(q_1, aabbb, az) \vdash (q_1, abbb, aaz) \vdash (q_1, bbb, aaaz) \vdash$
 $(q_2, bb, aaz) \vdash (q_2, b, az) \vdash (q_2, \lambda, z) \vdash (q_3, \lambda, z)$

For convenience we write:

$$(q_0, aaabbb, z) \stackrel{*}{\vdash} (q_3, \lambda, z)$$

Formal Definition

Language L(M) of NPDA M:

$$L(M) = \{w \colon \ (q_0, w, z) \ \vdash \ (q_f, \lambda, s)\}$$
 Initial state Final state

Example:

$$(q_0, aaabbb, z) \vdash (q_3, \lambda, z)$$

 $aaabbb \in L(M)$

NPDA M:

$$(q_0, a^n b^n, z) \vdash (q_3, \lambda, z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$a^n b^n \in L(M)$$

NPDA M:

Therefore:

$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M:

Example 7.4 NPDA M

$$L(M) = \{w: n_a = n_b\}$$

Stack
Order of a and b is don't care

How about more *b*'s than *a*'s in the prefix of *w*?

Example 7.4 NPDA M

$$L(M) = \{w: n_a = n_b\}$$

Single loop

Use negative counter symbol (1)

$$a, z, 0z$$
 $b, z, 1z$

a, 0, 00 b, 1, 11

$$a, 1, \lambda$$
 $b, 0, \lambda$

$$\lambda, z, z$$
 q_2

Execution Example:

Time 0

Input

$$a, z, 0z$$
 $b, z, 1z$

current state

$$\lambda$$
, z, z

Time 4

Time 5

Time 7

Example 7.5

NPDA M

$$L(M) = \{ww^R\}$$

How do we know the middle of the string?

Execution Example:

Time 0

Input

$$a, \lambda, a$$

$$b, \lambda, b$$

$$\lambda, \lambda, \lambda$$
 q_1

$$\lambda, z, z$$
 q_2

Input

Stack

$$a, \lambda, a$$
 b, λ, b
 $\lambda, \lambda, \lambda$

 a, a, λ b, b, λ

 λ, z, z

Time 3

Input

$$a, \lambda, a$$
 a, α, λ b, λ, λ b, λ $\lambda, \lambda, \lambda$

Rejection Example:

Time 0

Input

$$a, \lambda, a$$

$$b, \lambda, b$$

$$b, b, \lambda$$

$$\lambda, \lambda, \lambda$$

$$\lambda, z, z$$

Input

$$a, a, \lambda$$

$$b, b, \lambda$$

$$b, \lambda, b$$

Input

$$a, \lambda, a$$
 b, λ, b
 $\lambda, \lambda, \lambda$

$$a, a, \lambda$$

 b, b, λ

$$b, b, \lambda$$

$$\lambda, z, z$$

Time 3

Input

$$a, \lambda, a$$
 b, λ, b

$$\lambda, \lambda, \lambda$$

$$\lambda, z, z$$

Time 5

Input

There is no possible transition.

Another computation on same string:

Input

Stack

 a, λ, a

 a, a, λ

$$a, a, \lambda$$

 b, λ, b

 b, b, λ

 λ, z, z

Time 2

Input

$$a, \lambda, a$$
 b, λ, b
 $\lambda, \lambda, \lambda$

$$a, a, \lambda$$

 b, b, λ

$$b, b, \lambda$$

$$\lambda, z, z$$

Time 3

Input

a

Z

$$a, \lambda, a$$
 b, λ, b

$$b, \lambda, b$$

$$a, a, \lambda$$

$$a, a, \lambda$$

 b, b, λ

Input

a

Z

$$a, \lambda, a$$
 b, λ, b

$$b, \lambda, b$$

$$a, a, \lambda$$

$$a, a, \lambda$$

 b, b, λ

$$\lambda, z, z$$

Time 5

Input

No final state is reached

$$a, \lambda, a$$

$$\lambda, z, z$$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

$$a, \lambda, a$$
 a, a, λ
 b, λ, b b, b, λ

$$\lambda, \lambda, \lambda \qquad q_1 \qquad \lambda, z, z \qquad q_2$$

77

A string is rejected if there is NO computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

In other words, a string is rejected if in every computation with this string:

The input cannot be consumed OR

The input is consumed and the last state is not a final state OR

The stack head moves below the bottom of the stack

$$L(M) = \{a^n b^m : n \ge m - 1\}$$

$$L(M) = \{a^n b^m : n \ge m - 1\}$$

$$n = m$$

$$n >= (m-1)$$
 is true

$$L(M) = \{a^n b^m : n \ge m - 1\}$$

$$n = m - 1$$

 $n >= (m - 1)$ is true

$$L(M) = \{a^n b^m : n \ge m - 1\}$$

$$n >= (m+1)$$

 $n >= (m-1)$ is true

Questions?

Quiz

- L={wcw^R: w ∈{a,b}*}
- L= $\{a^nb^mc^{n+m}: n\ge 0, m\ge 0\}$

