Tabelle Fondamenti Logico Matematici

Deduzione Naturale Proposizionale Varie Logiche

connettivo/falso	introduzione	eliminazione
\wedge	$rac{A,B}{A\wedge B}i\wedge$	$\frac{A \wedge B}{A} e \wedge \frac{A \wedge B}{B} e \wedge$
V	$\frac{A}{A \lor B} i \lor \frac{B}{A \lor B} i \lor$	$\frac{A \lor B, \frac{A}{C}, \frac{B}{C'}}{C} e \lor$
\rightarrow	$rac{A}{\pi \over B}i ightarrow$	$\frac{A,A \rightarrow B}{B}e \rightarrow$
П	$\frac{\stackrel{\mathcal{A}}{\pi}}{\stackrel{\perp}{\lnot}A}i\lnot$	$\frac{A}{\frac{\pi}{A}}e$
<u></u>	$rac{A, eg A}{ot}iot$	$\frac{\pm}{B}e\pm$

- La regola dell'eliminazione del \perp non si può usare in logica minimale
- La regola dell'introduzione del \neg non si può usare in logica minimale
- La regola dell'eliminazione del \neg non si può usare in logica intuizionistica
- Le altre regole sono valide sia per la logica classica che per quella intuizionistica che per quella modale

Deduzione Naturale Predicativa Varie Logiche

quantificatore	introduzione	eliminazione
∃	$\frac{P(a)}{\exists x P(x)}i\exists$	$\frac{\exists x P(x), C}{C} e \exists$
\forall	$rac{P(a)}{orall xP(x)}iorall$	$\frac{\forall x P(x)}{P(a)} e \forall$

• Le regole valgono sia per logica classica che intuizionistica

Tableaux Logica Intuizionistica Proposizionale

connettivo	T-regola	F-regola
\land	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \wedge B)}{S,FA/S,FB}F \wedge$
V	$\frac{S,T(A\vee B)}{S,TA/S,TB}T\vee$	$\frac{S,F(A\vee B)}{S,FA,FB}F\vee$
\rightarrow	$\frac{S,T(A\to B)}{S,FA/S,TB}T\to$	$\frac{S,F(A\to B)}{S,TA,FB}F\to$
	$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S,TA}F\neg$

Tableaux Logica Intuizionistica Proposizionale Estesi con Ripetizioni

connettivo	T-regola con eventuale ripetizione
\rightarrow	$\frac{S,T(A \to B)}{S,FA,T(A \to B)/S,TB}T \to$
Г	$\frac{S,T(\neg A)}{S,FA,T(\neg A)}T eg$

Tableaux Ottimizzati Logica Intuizionistica Proposizionale

	T-regola	F-regola	F_C -regola
\wedge	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \land B)}{S,FA/S,FB}F \land$	$\frac{S,F_C(A \land B)}{S_C,F_CA/S_C,F_CB}F_C \land$
V	$\frac{S,T(A\vee B)}{S,TA/S,TB}T\vee$	$\frac{S,F(A\lor B)}{S,FA,FB}F\lor$	$\frac{S,F_C(A\lor B)}{S,F_CA,F_CB}F_C\lor$
\rightarrow	$\frac{S,T(A \to B)}{S,FA,T(A \to B)/S,TB}T \to$	$\frac{S,F(A\to B)}{S_C,TA,FB}F\to$	$\frac{S,F_C(A\to B)}{S_C,TA,F_CB}F_C\to$
	$\frac{S,T(\neg A)}{S,F_CA}T\neg$	$\frac{S,F(\neg A)}{S_C,TA}F\neg$	$\frac{S,F_C(\neg A)}{S_C,TA}F_C \neg$

• S_C è definito come l'insieme S meno l'insieme delle formule segnate con FOttimizzazioni Implicazione Logica Intuizionistica Proposizionale

Antecedente Ant	$\mathbf{T} \rightarrow$
$Ant = A \ o \ Ant = \neg A$	$\frac{S,TA \to B}{S,FA/S,TB}T \to AN$
$Ant = A \wedge B$	$\frac{S,T(A \land B) \rightarrow C}{S,T(A \rightarrow (B \rightarrow C))}T \rightarrow \land$
$Ant = A \vee B$	$\frac{S,T(A\vee B)\to C}{S,TA\to C,TB\to C}T\to\vee$
$Ant = A \to B$	$\frac{S,T(A\to B)\to C}{S,FA\to B,TB\to C/S,TC}T\to \to$

Implicazione segnata (versione corretta ma non completa di $T \rightarrow$)

$$\frac{S,TA\to B}{S,F_CA/S_C,TB}\overline{T\to}$$

Traduzione da Logica Classica Predicativa a Intuizionistica

Si ha
$$\vdash_{CL} A \iff \vdash_{INT} \tau(A)$$
 con:

- $\tau(A) = \neg \neg A$, con A atomica
- $\tau(A \wedge B) = \tau(A) \wedge \tau(B)$
- $\tau(A \to B) = \tau(A) \to \tau(B)$
- $\tau(A \vee B) = \neg(\neg \tau(A) \wedge \neg \tau(B))$
- $\tau(\neg A) = \neg \tau(A)$
- $\tau(\forall x A(x)) = \forall x \tau(A(x))$
- $\tau(\exists x A(x)) = \neg \forall x \neg \tau(A(x))$

Tableaux Logica Intuizionistica Predicativa

quantificatore	T-regola	F-regola
\exists	$\frac{S,T \exists x A(x)}{S,TA(a)} \text{(con a nuovo)}$	$\frac{S,F \exists x A(x)}{S,FA(a)}$
\forall	$\frac{S,T \forall x A(x)}{S,TA(a)}$	$\frac{S,F \forall x A(x)}{S_T,FA(a)} \text{(con a nuovo)}$

Tableaux Logica Intuizionistica Predicativa Estesi con Ripetizioni

quantificatore	T-regola	F-regola
\exists	$\frac{S,T \exists x A(x)}{S,T A(a)} (\text{con a nuovo})$	$\frac{S,F \exists x A(x)}{S,FA(a)}$
\forall	$\frac{S,T \forall x A(x)}{S,TA(a),T \forall x A(x)}$	$\frac{S,F \forall x A(x)}{S_C,FA(a)} \text{(con a nuovo)}$

Tableaux Ottimizzati Logica Intuizionistica Predicativa

quantificatore	F_{C} -regola
\exists	$\frac{S,F_C \exists x A(x)}{S,F_C A(a),F_C \exists x A(x)}$
\forall	$\frac{S,F_C \forall x A(x)}{S_C,FA(a),F_C \forall x A(x)} (\text{con a nuovo})$

Ottimizzazioni Implicazione Logica Intuizionistica Predicativa

quantificatore Ant	$T \rightarrow$
∃	$\frac{S,T \exists x A(x) \to B}{S,T(\forall x (A(x) \to B))}$
\forall	$\frac{S,T \forall x A(x) \to B}{S,F \forall x A(x),T \forall x A(x) \to B/S,TB}$

Logica di Kuroda

Si usano le regole dei tableaux Intuizionistici predicativi tranne le seguenti regole:

$$\frac{S, F_C \,\forall x A(x)}{S_C, F_C A(a)} \overline{F_C \forall} \text{ (con a nuovo)}$$

$$\frac{S, T \forall x A(x) \to B}{S, F \forall x A(x), F_C \neg \exists x (A(x) \to B)/S, TB} \overline{T \to \forall}$$

$$\frac{S_C, TA \to B}{S_C, F_C A/S_C, TB} CL\text{-}T \to$$

 $\frac{S}{S_C}AT$ (se S contiene formule segnate F solo atomiche, più le T e F_C qualsiasi)