13.4 - Curvature and Normal Vectors of a Curve

As a particle moves along a smooth curve, $T = \frac{dr}{dt}$ turns as the curve bends The rate at which T turns is the curvature, where s is arc length, which is given by:

$$\kappa = \left| rac{dT}{ds}
ight|
onumber \ \kappa = rac{1}{|v|} \left| rac{dT}{dt}
ight|$$

A straight line has a curvature of 0.

Principal Unit Normal

The unit vector N orthogonal to T is the principal unit normal. Because |T|=1, it's derivative is orthogonal to T. Dividing $\frac{dT}{ds}$ by its length κ gives N

$$N = rac{1}{\kappa} rac{dT}{ds} \ N = rac{dT/ds}{|dT/ds|}$$

Circle of Curvature

The circle of curvature at point P on a plane curve where $\kappa \neq 0$ is the circle in the plane of the curve that:

- 1. is tangent to the curve at P
- 2. has the same curvature that the curve has at *P*
- has center that lies on the concave side of the curveThe radius of curvature of the curve is the radius of the circle of curvature

Radius of curvature
$$= \rho = \frac{1}{\kappa}$$

The center of curvature is at the center of the circle of curvature