Watching phage λ ejection: towards a single-molecule Hershey-Chase experiment

Paul Grayson
California Institute of Technology
March 14, 2007

Bacteriophages

- Most genomes are phage genomes (>10³⁰)
- Found from polar ice to Sahara sand
- Similar to human viruses, e.g. HSV-1
- Direct causes of diseases, e.g. Cholera
- Challenge to models of evolution
- Tools for biotechnology

INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE*

By A. D. HERSHEY AND MARTHA CHASE

(From the Department of Genetics, Carnegie Institution of Washington, Cold Spring Harbor, Long Island)

(Received for publication, April 9, 1952)

- http://www.mun.ca/
- Hershey & Chase demonstrated DNA ejection (1952)
 - ...Physics asks: how does ejection happen?

An inspiring experiment

Single-molecule measurements of phage packaging:

• Smith *et al.* (2001) – ϕ 29 can exert ~60 pN (At 65 pN, DNA is denatured!)

DNA packaged by a strong motor

Single-molecule measurements of phage packaging:

2007: The λ
 packaging motor
 can exert ~35 pN !

Can we do *ejection* at the single-molecule level?

Why so much force?

DNA density:

16 um of DNA in a 57 nm capsid

Genome density in viruses

Virus	Genome	Capsid size	Packing	g density
λ	48.5 kbp	57 nm	53.4%	
T7	40 kbp	55	49.0	
ϕ 29	19.3 kbp	44.1	45.9	A
λb	38 kbp	57	41.9	
polio	7.4 kb	27 nm	29.8%	
HIV	18.4 kb	70	4.3	
pox	186 kbp	220	3.6	

Force is needed for ejection

- >10 pN of force, used to get DNA into the host?
- See also Grayson and Molineux, Is phage DNA "injected" into cells biologists and physicists can agree. (Curr Opin Microbiology, 2007)

Theorizing about phages

Force depends on DNA density

- X-ray measurements on bulk DNA: pressure → force
- Bending stiffness relatively insignificant for the force

Theory for the ejection force with no fitting!

Purohit et al., Forces during bacteriophage DNA packaging... (Biophys J, 2005). Garcia et al., Biological consequences of tightly bent DNA... (Biopolymers, 2007).

Force as a function of...

Force depends on:

- Genome size (38/48 kbp)
- Ions (Mg²⁺ / Na⁺)

Mandar Inamdar

What about dynamics?

• Define **mobility** = v/F.

Testing theory with λ : static force

Osmotic force from PEG8000 balanced with internal force.

Alex Evilevitch

Chuck Knobler

Testing theory with λ : static force

Grayson et al., The effect of genome length on forces in bacteriophage λ (Virology, 2006).

Testing theory with λ : dynamics

Combines methods of Mangenot et al. (2005) and Novick & Baldeschwieler (1988).

(show movie)

λ ejection trajectories

Calibration with λ fragments

Lin Han

10mM NaCl, λ /EcoRl, 3530 bp

 $\lambda/BspHI,\,7860\;bp$

 $\lambda/BsrGI$, 16006 bp

10 um

 λ /KpnI, 29942 bp

1 s / 4 frames

Full λ DNA, 48501 bp

Trajectories

- All identical within exp. error
- Smooth motion
- Max velocity depends on ions
- Shorter phage slightly faster
- Long time at max. extension

Mobility = v/F depends on internal DNA

Hershey-Chase on single phages

Ejection in vivo

Label internally with SYBR Gold:

...ejection takes ~3s.

Label both DNA and protein:

Brightfield/Cy5 (Protein)

SYBR Gold (DNA)

...no ejection in ~2h. Work in progress!

Conclusions + questions

- Ejection powered by internal pressure in vitro.
- Friction caused by DNA-DNA interactions.
- How to quantitatively estimate friction?
- What motor completes ejection in vivo?

Acknowledgments

- Collaborators: Alex Evilevitch, Lin Han, Mandar Inamdar, Bill Gelbart, Chuck Knobler, Joey Koehler, Jané Kondev, Corinne Ladous, Catie Lichten, Ian Molineux, Kelsey Nelson-James, Rob Phillips, Prashant Purohit, Erdal Toprak, Zach Travis, and Tabita Winther.s
- Fraser, Jensen, Mayo, Rees, Selvin, and Quake labs. Keck Foundation, NIH, NSF.
- Lots of help from many others!! Thanks!!!

Is pressure enough?

E. coli internal osmotic pressure = ~3 atm.

Internal motor needed!

In phage T7: RNAP.

Effect of fluid flow on ejection

Icl60 (48.5 kbp), effect of flow in 10mM MgSO4

Bacteriophage λ

λ capsids(Dokland & Murialdo)

 λ receptor (LamB, maltoporin)

Bacteriophage DNA packing

 λ , Earnshaw & Harrison (1977)

X-ray diffraction pattern

T7, Cerritelli et al. (1997) averaging 10s of particles

 ϕ 29, Tao *et al.* (1998) averaging 100s of particles

 ε 15, Jiang et al. (2006) averaging 1000s of particles

Original rate measurements by Novick & Baldeschwieler, 1988

Calibration

Measure velocity vs. position

