NAME: BINEY KWAKU EGYIR

INDEX NUMBER: 9312617

ELECTRICAL ENGINEERING: YEAR 3

ASSIGNMENT 2

ALGORITHM

DATAPATH

STATE DIAGRAM

OUTPUT TABLE

$Q_2Q_1Q_0$	instruction	jload	iload	IntA_load	IntB_load	Mux_sel	OUT
						(10)	
000	input J	1	0	0	0	XX	0
001	WAIT	0	0	0	0	XX	0
010	Int_a ++	0	0	1	0	01	0
011	Int_b ++	0	0	0	1	00	0
100	output	0	0	0	0	XX	1
101	++	0	1	0	0	10	0

NEXT STATE TABLE

Current	Next state (Implementation)											
state	$Q_{2\text{next}}Q_{1\text{next}}Q_{0\text{next}}$ (D ₃ D ₂ D ₁)											
$Q_3Q_2Q_1$												
	Enter , I ≠ 10, j even											
	000	001	010	011	100	101	110	111				
000	000	000	000	000	100	100	001	001				
001	011	010	011	010	001	001	001	001				
010	101	101	101	101	101	101	101	101				
011	101	101	101	101	101	101	101	101				
100	100	100	100	100	100	100	100	100				
101	000	000	000	000	000	000	000	000				

Using Quinn McCluskey, the following expressions were derived from the next state table,

$$D_3 = Q_3 'Q_2 + Q_3Q_2'Q_1' + Q_3'Q_1'(enter)(I \neq 10)'$$

$$D_2 = Q_3'Q_2'Q_1(enter')$$

$$D_1 = Q_3'(enter)(I \neq 10) + Q_3'Q_1Jeven' + Q_3'Q_1enter + Q_3'Q_2$$

Using the Karnaugh Map method, the following expressions were derived from the output table,

$$J_{load} = Q_3'Q_2'Q_1'$$

$$I_{load} = Q_3 Q_2' Q_1$$

$$Mux_sel_{(1)} = Q_2'$$

Mux_sel
$$_{(0)} = Q_1'Q_3'$$

Out =
$$Q_3Q_2'Q_1'$$

Figure 1, next state logic

Figure 2(output logic)

ASSIGNMENT 2

- 1)Choose suitable frequency(64Hz)
- 2) Restart the system, input your numbers using the Input J input when the wait LED is on
- 3)Hit enter after every number has been entered, and an extra enter after the tenth input
- 4)Output will be displayed afterwards

Figure 3(Abstracted circuits to form final circuit)