Работа 4.2.3 Интерферометр Релея.

Содержание

1	Цель работы и приборы.			
2	В работе используются.	2		
3	Теоритическая часть. 3.1 Введение.	3		
4	Экспериментальная часть.			
5	Вывол.			

1 Цель работы и приборы.

Ознакомление с устройством и принципом действия интерферометра Релея и с его применением для измерения показателя преломления газов.

2 В работе используются.

Технический интерферометр ИТР-1, светофильтр, баллог с углекислым газом, сильфон, манометр, краны.

В работе используется диффракция Фраунгофера на двух щелях.

3 Теоритическая часть.

3.1 Введение.

В интерферометре Релея используется дифракция Фраунгофера на двух щелях. Используя принцип Гюйгенса-Френеля рассчитаем интенсивность световых колеба- ний в волне, направление распространения которой составляет угол ϕ с нормалью к экрану. Элемент щели dx посылает в направлении ϕ волну с амплитудой, пропорцио- нальной dx. Фаза волны, приходящей в точку наблюдения от элемента с координатой x, отстает от фазы волны, приходящей с x=0, на величину $kx\sin(\phi)$. Колебание dE в точка наблюдения, вызванное элементом dx, может быть записано в виде:

$$dE = a\cos(\omega t - kx\sin\phi)dx\tag{1}$$

Найдем результат суммарного действия всех элементов обоих щелей. Будем при этом считать, что в правой щели создана дополнительная разность хода, одинаковая для всех ее элементов. Интегрируя, получим:

$$E = \int_{0}^{b} a \cos(\omega t - kx\phi) dx + \int_{d}^{d+b} a \cos(\omega t - kx\phi - k \Delta) dx$$
 (2)

Получаем:

$$E = 2ab \frac{\sin\left(\frac{kb\varphi}{2}\right)}{\frac{kb\varphi}{2}}\cos\frac{k\Delta + kd\varphi}{2}\cos\left(\omega t - \frac{k\Delta + k(d+b)\varphi}{2}\right)$$
(3)

Отсюда интенсивность:

$$I = 2I_0 \left[\frac{\sin\left(\frac{kb\varphi}{2}\right)}{\frac{kb\varphi}{2}} \right]^2 (1 + \cos\left(k\Delta + kd\varphi\right)) \tag{4}$$

Интерференционные максимумы отстоят друг от друга на равные угловые расстояния:

$$\delta\varphi = \frac{\lambda}{d} \tag{5}$$

3.2 Описание установки.

Схема прибора представлена на рисунке 1 в вертикальной и горизонтальной проекциях. Лампа накаливания Π с помощью конденсора Π ярко освещает узкую входную щель Π ярко простоящий из щели и объектива Π посылает параллельный пучок на диафрагму Π с двумя вертикальными щелями. Свет, дифрагируя на двойной щели проходит кювету Π состоящую из двух одинаковых стеклянных камер, в которые вводятся исследуемые газы. Кювета занимает только верхнюю часть пространства между объективами. За кюветой расположены две стеклянных пластинки Π и пластинка Π .

Дифракционная картина, образующая в фокальной плоскости F объектива O_2 , рассматривается через окуляр O.

Рис. 1: Схема установки: а) вид сверху, б) вид сбоку

При заполнение камер газами с одинаковым показателем преломления системы полос совпадают. Разность хода $\Delta = \Delta$ n * l, возникает при прохождении

света через камеры с разными газами и ведет к смещению полос. Смещение на одну полосу соответствует дополнительной разности хода $\Delta = \lambda$. Просчитав число полос между центрами можно рассчитать:

$$\Delta n = \frac{\Delta}{l} = m\frac{\lambda}{l} \tag{6}$$

3.3 Зависимость показателя преломления газа от давления и температуры.

Известно простое соотношение между показателем преломления газа и его плот- ностью:

$$n = \sqrt{\varepsilon} = \sqrt{1 + 4\pi N\alpha} \simeq 1 + 2\pi N\alpha \tag{7}$$

Принимая во внимание p = NkT, получим:

$$n - 1 = 2\pi\alpha \frac{P}{kT} \tag{8}$$

Отсюда следует, что при постоянной температуре изменение показателя преломле- ния Δn пропорционально изменению давления ΔP .

$$\Delta n = \frac{2\pi\alpha}{kT} \Delta P \tag{9}$$

4 Экспериментальная часть.

Длина кюветы l=10 см, атмосферное давление $P=101.2\cdot 10^3\Pi a$, температура $T=21^{\circ}C$. Прокалибруем установку в единицах lambda. Для этого построим график смещения от номера полосы:

Рис. 2: Зависимость смещения от номера полосы

Будем использовать калибровочный график для расчета Δn . Таким образом построим график $\Delta n(\Delta P)$

Рис. 3: Зависимость показателя преломления от перепада давлений

Отсюда получаем показатель преломления воздуха. пересчитанный к нормальным условиям $n_0 = 1.0003 \pm 0.00005$, что сходится с табличным результатом в пределах погрешности ($n_0 t = 1.0002929$).

Теперь заполним кювету углекислым газом, и пронаблюдаем зависимость сме- щения компенсатора от времени:

Равновесие устанавливается очень долго, следовательно концентрация CO_2 в каждый момент времени не очень понятна. Поэтому будем заполнять кювету уг- лекислым газом медленно, во избежание изменения температуры при расширении газа и рассчитаем показатель преломления по одной начальной точке:

Таблица 1: Расчет показателя преломления

	d	Δn	n
1	10.55	0.000157	1.000457
2	10.46	0.000155	1.000455
3	10.48	0.000155	1.000455
4	10.46	0.000155	1.000455
5	10.53	0.000156	1.000456

Рис. 4: Зависимость смещения компенсатора от времени

Итого $n=1.00045\pm0.00002$. Табличный показатель преломления для CO_2 : $n_0=1.00045$, что также сходится с нашими измерениями.

5 Вывод.

Интерферометр Релея позволяет измерять разность показателей преломления в двух кюветах с высокой точностью. Для таких измерений нужно поддерживать давление в кюветах и концентрацию газа постоянной, в противном случае точность и простота измерений значительно ухудшаются.