Why machine learning? Introduction to ML and Regression Majority of the modern combased on machine learning Statistical Natural Language Processing Tokenization
 Part of speech tagging Cağrı Cöltekin Parsing Speech recognition
 Named Entity recognitic
 Document classification
 Question answering
 Machine translation University of Tübingen Seminar für Sprachwissenschaft Summer Semester 2021 Machine learning is ... The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience. —Mitchell (1997) Machine Learning is the study of data-driven methods capable of mi understanding and aiding human and biological information processing to —Barber (2012)

—James et al. (2013)

Supervised or unsupervised

* Machine learning methods are often divided into two broad categories supervised and unsupervised · Supervised methods rely on labeled (or annotated) data

. Unsupervised methods try to find regularities in the data without any (direct) supervision . Some methods do not fit any (or fit both): Semi-supervised methods use a mixture of both
 Reinforcement learning refers to the methods wh
delayed

In this course, we will mostly discuss/use supervised methods

Unsupervised learning

In unsupervised learning we do not ha any labels

 The aim is discovering some 'latent' structure in the data

 Common examples include - Clustering - Density est

* The methods that do not require (ma annotation are sometimes called unsupervised

al linguistic tasks and applications are

Supervised learning

Statistical learning refers to a vast set of tools for understanding data.

Supervised learning

A supervised ML method is called regression if the outcome to be predicted is a numeric (continuous) variable classification if the outcome to be predicted is a categorical variable

Regression

Classification

* Classification (perceptron, logistic regression, ANNs) · Evaluating ML methods / algorithms

Unsupervised learning

+ (Linear) Regression (today) Sequence learning

ML topics we will cover in this course

Machine learning and statistics

- The methods largely overlap (it was even suggested that both should be collectively called 'data science')
- Aims differ - In statistics (used as in experimental sciences) aim is making infi
- the models

 In machine learning correct predictions are at the focus

A more diverse set of models/methods are used in ML

Machine learning and models

- * A machine learning method makes its predictions based on a model
- The models are often parametrized: a set of parameters defines a model
- Learning can be viewed as finding the 'best' model among a family of models (that differ based on their parameters)

The linear equation: the regression model

Notation differences for the regression equation

- $y_t = wx_t$ + Sometimes, Greek letters α and β are used for intercept and the slope respectively
- * Another common notation to use only b, β, θ or w, but use subscripts, θ
- indicating the intercept and 1 indicating the slope . In machine learning it is common to use w for all coefficients (sometimes you
- * Sometimes coefficients wear hats, to emphasize that they are estimates
- . Often, we use the vector notation for both input(s) and coefficients:
- $\mathbf{w} = (\mathbf{w}_0, \mathbf{w}_1)$ and $\mathbf{x}_1 = (1, \mathbf{x}_1)$

Parameter estimation

- . In ML, we are interested in finding the best model based on data
- Learning is selecting a model from a family of models that differ in their parameters
- Typically, we seek the parameters that reduce the prediction error on a
- training set
- Ultimately, we seek models that do not only do well on the training data, but

Estimating regression parameters

- · We view learning as a search for the
- regression equation with least erro The error terms are also called
- We want error to be low for the whole training set: average (or sum) of the error has to be reduced
- . Can we minimize the sum of the

Short digression: minimizing functions

In least squares regression, we want to find w_0 and w_1 values that mini

$$E(w) = \sum_{i} (y_i - (w_0 + w_1 x_i))^2$$

- Note that E(w) is a quadratic function of $w = (w_0, w_1)$
- As a result, E(w) is convex and have a single extreme val
 there is a unique solution for our minimization problem
- ${\boldsymbol *}$ In case of least squares regression, there is an analytic solution

- Even if we do not have an analytic solution, if the error function is con search procedure like gradient descent can still find the global minimum

Regression with multiple predictors

$$y_1 = w_0 + w_1 x_{1,1} + w_2 x_{1,2} + ... + w_k x_{1,k} + c_1 = w x_1 + c_1$$

- w_0 is the intercept (as before)
- $w_{1..k}$ are the coefficients of the respective predictors $\varepsilon_{}$ is the error term (residual)
 - + using the vector notation the equation becomes

 - where $\mathbf{w} = (w_0, w_1, \dots, w_k)$ and $\mathbf{x}_k = (1, x_{i,1}, \dots, x_{i,k})$

 (\dots, w_1, \dots, w_k) and $x_i = (1, x_{i,1}, \dots, x_{i,k})$ It is a generalization of simple regression with some additional power and complexity.

The simple linear model

$y_1 = a + bx_1$

- mre (or response, or dependent) variable. The index i repr each unit observation/measurement (sometimes called a 'case') x is the predictor (or explanatory, or independent) variable
- a is the intercept (called bias in the NN literature)
- b is the slope of the regression line.
- a and b are called coefficients or parameters
- a + bx is the model's prediction of $\psi(\hat{\psi})$, given x

Regression models with multiple predictors

- The equation defines a (hyper)plane · With 2 predictors

 - notation: y wx

Parameter estimation for regression

Least-squares regression

Find w₀ and w₁, that minimize the sum of the squared errors (SSE)

What is special about least-squares?

$$\begin{split} E(w) & - \sum_i c_i^2 - \sum_i (y_i - \hat{y}_i)^2 - \sum_i (y_i - (w_0 + w_1 x_i))^2 \\ \text{ninimize E}(w) & \text{analytically} \\ w_1 & - \frac{\sigma_{xy}}{\sigma_x^2} - r \frac{s d_y}{s d_x} \\ & w_0 - \bar{y} - w_1 \bar{x} \end{split}$$

* Minimizing MSE (or $SS_R)$ is equivalent to MLE estimate under the assumption $c \sim \mathcal{N}(0,\sigma^2)$ · Working with 'minus log likelihood' is more cor

$$E(w) = -\log \mathcal{L}(w) = -\log \prod_{i} \frac{e^{-\frac{(u_i-u_i)^2}{2\sigma^2}}}{\sigma \sqrt{2\pi}}$$

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} (-\log \mathcal{L}(\mathbf{w})) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{\mathbf{w}} (y_t - \hat{y}_t)^2$$

- · One can also estimate regression parameters using Bayesian estimation

Evaluating machine learning systems

- . Any (machine learning) system needs a way to measure its success
- For measuring success (or failure) in a machine learning system we need quantitative measures
 - Remember that we need to measure the success outside the training data

Measuring success in Regression

· Root-mean-square error (RMSE)

$$RMSE = \sqrt{\frac{1}{n}\sum_{i}^{n}(y_{i} - \hat{y}_{i})^{2}}$$

Another well-known measure is the coefficient of determination

 $R^2 = \frac{\sum_{i}^{n}(\hat{y}_i - \hat{y})^2}{\sum_{i}^{n}(y_i - \hat{y})^2} = 1 - \left(\frac{RMSE}{\sigma_u}\right)$

Explained variation

Overfitting

Regularized parameter estimation

- * Regularization is a general method for avoiding overfitting
 - The idea is to constrain the parameter values in addition to minimizing the training error
 - For example, the regression estimation be

For example, the regression estimation becomes:
$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i} (y_{i,i} - \hat{y}_{i,i})^2 + \lambda \sum_{i}^k \mathbf{w}_{i,i}^2$$

- + The new part is called the regularization term
- * λ is a hyperparameter that determines the strength of the regularization
- . In effect, we are preferring small values for the coefficients
- . Note that we do not include w., in the regularization term

L1 regularization

In L1 regularization we mis

$$J(w) + \lambda \sum_{j=1}^{k} |w_j|$$

- + The additional term is the L1-norm of the weight vector (excluding $w_{\text{\tiny D}})$
- In statistics literature the L1-regularized regression is called lasso

- . The main difference from L2 regularization is that L1 regularization forces some values to be 0 - the resulting model is said to be 'sparse'

We can express the variation explained by a regression model as

 $\frac{\text{Explained variation}}{\text{Total variation}} = \frac{\sum_{i}^{n} (\hat{y}_{i} - \hat{y})^{2}}{\sum_{i}^{n} (y_{i} - \hat{y})^{2}}$

- In simple regression, it is the square of the correlation coefficient between the outcome and the predictor
- . The range of R2 is [0, 1]
- * $100 \times R^2$ is interpreted as 'the percentage of variance explained by the model'
- R² shows how well the model fits to the data: closer the data points to the regression line, higher the value of R²

Dealing with non-linearity

Assessing the model fit: R2

- Least-squares estimation works because the regression equation is linear with respect to parameters w (error function is quadratic)
- Introducing non-linear combinations of inputs does not affect the estimation procedure. The following are still linear models
 - $y=w_0+w_1x^2+\varepsilon$ $y = w_0 + w_1 \log(x) + \epsilon$
- $y=w_0+w_1x_1+w_2x_2+w_3x_1x_2+\varepsilon$ * In general, we can replace input x by a function of the input(s) $\Phi(x).$ $\Phi()$ is
- called a hosis function Basis functions allow linear models to model non-linear relations by transforming the input variables

Overfitting

- Overfitting is an important problem in ML, happens when the m peculiarities/noise in the training data
- . An overfitted model will perform well on training data, but worse on
- new/unseen data · Typically 'more complex' models are more likely to overfit

Preventing overfitting

- A straightforward approach is to chose a simpler model (family), e.g., by reducing the number of predictors
 - . More training data helps: it is less likely to overfit if number of training instances are (much) larger than the paramters
 - There are other methods (one is coming on the next slide)
 - . We will return to this topic frequently during later lectures

L2 regularization

The form of regularization, where we minimize the regularized cost function $J(w) + \lambda ||w||_2$

is called L2 regularization.

- * Note that we are minimizing the L2-norm of the weight vector
- In statistic literature L2-regularized regression is called ridge regre-
- . The method is general: it can be applied to other ML methods as well
 - The choice of λ is important
 - . Note that the scale of the input also becomes important

Regularization as constrained optimization

I.1 and I.2 regularization can be viewed as minimization with constraints L2 regularization

 $\label{eq:minimize} Minimize \quad J(w) \quad with constraint \quad \|w\| < s$

L1 regularizat

Minimize J(w) with constraint $||w||_1 < s$

