「ベイズ推論による機械学習入門」

P.145 ガウス混合モデルに対するギブスサンプリング

本書のサンプルコードを一部改変し、ガウス混合モデルに対するギブスサンプリング及びJuliaコードの書き方(コードを、情報を格納するオブジェクトのコンストラク タ、コンストラクタに格納した情報を渡し問題を解く関数の形式で整理して記述する)を理解する。

参考: https://github.com/sammy-suyama/BayesBook In [1]: using Distributions using PDMats using LinearAlgebra

using Plots

パラメータを格納するコンストラクタを作成

using StatsFuns

ガウス・ウィシャート分布 struct GW beta::Float64

In [2]:

m::Vector{Float64}

nu::Float64

W::Matrix{Float64}

end

ベイジアンガウス混合モデル

struct BGMM

D::Int

K::Int

alpha::Vector{Float64} cmp::Vector{GW}

end

ガウス分布 struct Gauss

Lambda = rand(Wishart(c.nu, PDMat(Symmetric(c.W))))

 $S_{tmp[n]} == k ? S[k,n] = 1 : S[k,n] = 0$

mu = rand(MvNormal(c.m, PDMat(Symmetric(inv(c.beta * Lambda)))))

X[:, n] = rand(MvNormal(gmm.cmp[k].mu, PDMat(Symmetric(inv(gmm.cmp[k].Lambda)))))

m = (1.0 / beta) * (vec(X * S[[k],:]') + bgmm.cmp[k].beta * bgmm.cmp[k].m)

+ bgmm.cmp[k].beta * bgmm.cmp[k].m * bgmm.cmp[k].m'

ガウス混合モデル struct GMM D::Int

観測データの生成

K::Int

mu::Vector{Float64}

phi::Vector{Float64} cmp::Vector{Gauss}

end

end

In [3]:

Out[3]:

In [4]:

Out[4]:

In [5]:

Out[5]:

In [6]:

Lambda::Matrix{Float64}

function sample_GMM(bgmm::BGMM) cmp = Vector{Gauss}() for c in bgmm.cmp

ガウス混合モデルの超パラメータをサンプル

push!(cmp, Gauss(mu, Lambda)) end phi = rand(Dirichlet(bgmm.alpha))

return GMM(bgmm.D, bgmm.K, phi, cmp) end

sample_GMM (generic function with 1 method)

ガウス混合モデルの潜在変数をサンプル

ガウス混合モデルからデータをサンプル

X = zeros(gmm.D, N)

for n in 1:N

return X, S

潜在変数8の初期化

 $K = bgmm \cdot K$

return S

N = size(X, 2)

パラメータ μ , Λ , π の初期化

 $sum_S = sum(S, dims=2)$

cmp = Vector{GW}()

 $D = bgmm \cdot D$ $K = bgmm \cdot K$

XS = X * S'for k in 1:K

function sample_data(gmm::GMM, N::Int)

k = argmax(S[:, n])

S = categorical_sample(gmm.phi, N)

sample_data (generic function with 1 method)

function init_S(X::Matrix{Float64}, bgmm::BGMM)

alpha = [bgmm.alpha[k] + sum_S[k] for k in 1:K]

- beta * m * m'

+ inv(bgmm.cmp[k].W))

categorical_sample(p::Vector{Float64}) = vec(categorical_sample(p, 1))

tmp_ln_phi = tmp_ln_phi .- logsumexp(tmp_ln_phi) S[:, n] = categorical_sample(exp.(tmp_ln_phi))

tmp = [0.5 * logdet(gmm.cmp[k].Lambda) + log.(gmm.phi[k]) for k in 1 : K]

 $tmp_ln_phi = [-0.5 * (X[:,n] - gmm.cmp[k].mu)' * gmm.cmp[k].Lambda * (X[:,n] - gmm.cmp[k].mu) + tmp[k] for k in 1:K]$

beta = bgmm.cmp[k].beta + sum_S[k]

nu = bgmm.cmp[k].nu + sum S[k]W = inv(X * diagm(S[k,:]) * X

push!(cmp, GW(beta, m, nu, W))

return BGMM(D, K, alpha, cmp)

add_stats (generic function with 1 method)

S = categorical sample(ones(K)/K, N)

function categorical_sample(p::Vector{Float64}, N::Int) K = length(p)S = zeros(K, N)

S_tmp = rand(Categorical(p), N) #@show S tmp for k in 1:K for n in 1:N

end

return S

categorical_sample (generic function with 1 method)

end

end

end

end

ギブスサンプリング 初期化

end

init_S (generic function with 1 method) In [7]:

function add_stats(bgmm::BGMM, X::Matrix{Float64}, S::Matrix{Float64})

end

end

Out[7]: 更新即

In [8]:

Out[8]:

In [9]:

categorical_sample (generic function with 2 methods)

function sample_S_GS(gmm::GMM, X::Matrix{Float64})

潜在変数sをサンプル

 $K = gmm \cdot K$

D, N = size(X)

S = zeros(K, N)

for n in 1:N

end

end

return S

end

sample_S_GS (generic function with 1 method) Out[9]:

In [10]: # ギブスサンプリング

function learn_GS(X::Matrix{Float64}, prior_bgmm::BGMM, max_iter::Int)

In [11]:

Out[12]:

In [13]:

パラメータの初期化 S = init_S(X, prior_bgmm) bgmm = add_stats(prior_bgmm, X, S)

推論 for i in 1 : max iter

bgmm = add stats(prior bgmm, X, S)

gmm = sample_GMM(bgmm) # 潜在変数をサンプル $S = sample_S_GS(gmm, X)$ # パラメータを更新

超パラメータをサンプル

return S, bgmm end learn GS (generic function with 1 method) Out[10]:

2次元データのクラスタリング

m = zeros(D)nu = D + 1.0W = Matrix(1.0I, D, D)

D = 2 # データの次元数 K = 4 # 混合成分の数 alpha = 100 * ones(K)

beta = 0.1

N = 300

cmp = [GW(beta, m, nu, W) for _ in 1:K] bgmm = BGMM(D, K, alpha, cmp)

データ生成

gmm = sample_GMM(bgmm) X, S = sample data(gmm, N)

推論 max iter = 100 S_est, post_bgmm = learn_GS(X, bgmm, max_iter);

In [12]: function visualize_2D(X::Matrix{Float64}, S::Matrix{Float64}, S_est::Matrix{Float64}) K1 = size(S, 1)

 $K2 = size(S_est, 1)$

for k **in** 1:K2

for k **in** 1:K1 scatter!(p1, X[1, S[k, :] .== 1], X[2, S[k, :] .== 1], label="cluster \$k", title="Truth")

p1 = plot(xlab="x1", ylab="x2") p2 = plot(xlab="x1", ylab="x2")

return p1, p2 end

visualize_2D (generic function with 1 method)

In [14]:

p1, p2 = visualize_2D(X, S, S_est);

Truth Out[14]: 4

2

x2

In []:

-23 6 9 0 12 **x**1 In [15]: Estimation Out[15]: cluster 1 cluster 2 cluster 3 cluster 4 2

3

0

6

x1

12 9

scatter!(p2, X[1, S_est[k, :] .== 1], X[2, S_est[k, :] .== 1], label="cluster \$k", title="Estimation")

cluster 1

cluster 2 cluster 3 cluster 4