Эконометрика. Домашняя работа № 11 Аверьянов Тимофей ПМ 3-1

Задача №1. Вывести формулу (*) и (**):

$$E\left(\triangle\widetilde{y}_0\right) = 0\tag{*}$$

$$Var\left(\triangle \widetilde{y}_{0}\right) = E\left(\triangle \widetilde{y}_{0}^{2}\right) = \sigma_{u}^{2} \cdot \overrightarrow{x}_{0}^{T} \cdot Q \cdot \overrightarrow{x}_{0} + \sigma_{u}^{2} = \sigma_{u}^{2}(1 + q_{0}) \tag{**}$$

Решение:

$$\begin{split} E\left(\bigtriangleup\widetilde{y}_{0}\right) &= \\ &= \left[\text{мы знаем, что: }\widetilde{y}_{0} = \widetilde{a}_{0} + \widetilde{a}_{1} \cdot x_{1,0} + \ldots + \widetilde{a}_{k} \cdot x_{k,0} = \overrightarrow{a}^{T} \cdot \overrightarrow{x}_{0}\right] = \\ &= E\left(\bigtriangleup\widetilde{y}_{0}\right) = E\left(\widetilde{y}_{0}\right) - E(y_{0}) = E\left(\widetilde{y}_{0}\right) - a_{0} - a_{1} \cdot x_{1,0} - \ldots - a_{k} \cdot x_{k,0} = \\ &= E\left(\widetilde{y}_{0}\right) - \overrightarrow{a}^{T} \cdot \overrightarrow{x}_{0} = \overrightarrow{a}^{T} \cdot \overrightarrow{x}_{0} - \overrightarrow{a}^{T} \cdot \overrightarrow{x}_{0} = \left(\widetilde{a} - \overrightarrow{a}\right)^{T} \cdot \overrightarrow{x}_{0} = \end{split}$$

[в силу свойства несмещенности оценок коэффициентов $E(\vec{a}^T) = \vec{a}$ математическое ожидание ошибки $E(\triangle \widetilde{y}_0) = 0$] =

$$\begin{split} & = \left(\overrightarrow{a} - \overrightarrow{a} \right)^T \cdot \overrightarrow{x}_0 = 0 \quad \blacksquare \quad (*') \\ & Var \left(\triangle \widetilde{y}_0 \right) = E \left\{ \left(\widetilde{y}_0 - y_0 \right)^2 \right\} = E \left\{ \left[\overrightarrow{a}^T \cdot \overrightarrow{x}_0 + u_t - \overrightarrow{a}^T \cdot \overrightarrow{x}_0 \right]^T \cdot \left[\overrightarrow{a}^T \cdot \overrightarrow{x}_0 + u_t - \overrightarrow{a}^T \cdot \overrightarrow{x}_0 \right] \right\} = \\ & = E \left\{ \left[\left(\overrightarrow{a} - \overrightarrow{a} \right)^T \cdot \overrightarrow{x}_0 + u_t \right]^T \cdot \left[\left(\overrightarrow{a} - \overrightarrow{a} \right)^T \cdot \overrightarrow{x}_0 + u_t \right] \right\} = \\ & = E \left\{ u_t^2 \right\} + \overrightarrow{x}_0^T \cdot E \left\{ \left(\overrightarrow{a} - \overrightarrow{a} \right)^T \cdot \left(\overrightarrow{a} - \overrightarrow{a} \right) \right\} \cdot \overrightarrow{x}_0 + 2 \cdot \overrightarrow{x}_0^T E \left\{ \left(\overrightarrow{a} - \overrightarrow{a} \right) \cdot u_t \right\} = \\ & = E \left\{ u_t^2 \right\} + \sigma_u^2 \cdot \overrightarrow{x}_0^T \left(X^T \cdot X \right)^{-1} \cdot \overrightarrow{x}_0 + 2 \cdot \overrightarrow{x}_0^T E \left\{ \overrightarrow{a} \cdot u_t \right\} = \\ & = \left[\sigma_u^2 = E \left\{ u_t^2 \right\} ; \overrightarrow{a} \text{ и } u_t \text{ некоррелированы} \right] = \\ & = \sigma_u^2 + \sigma_u^2 \cdot \overrightarrow{x}_0^T \left(X^T \cdot X \right)^{-1} \cdot \overrightarrow{x}_0 = \left[Q = \left(X^T \cdot X \right)^{-1} \right] = \sigma_u^2 \left(1 + \overrightarrow{x}_0^T Q \cdot \overrightarrow{x}_0 \right) \\ & = \left[q_0 = \overrightarrow{x}_0^T \cdot Q \cdot \overrightarrow{x}_0 \right] = \sigma_u^2 (1 + q_0) \, \blacksquare \quad (***) \end{split}$$

Задача №2. Вычислить прогнозы гос. расходов и инвестиций по моделе Самуэльсона-Хикса по контролирующей выборке.

Решение:

Вычислим прогноз для инвестиций в моделе Самуэльсона-Хикса. Нам потребуются значения объясняющих переменных:

		ΔΥ ₂₀₁₇	Cr ₂₀₁₇	San ₂₀₁₇
$\mathbf{x_0}^{T} =$	1	662.6057	0	1
I ^p ₂₀₁₈ =	7739.334			
I ₂₀₁₈ =	8393.411			

Шаг 1. Как мы видим наш прогноз отличается от реального значения, поэтому вычислим стандартную ошибку прогноза. Формируем матрицу X у которой 14 строк и 4 столбца:

Шаг №1				
X	1	1992.6	0	0
	1	2102.9	0	0
	1	2002.7	0	0
	1	2724.1	0	0
	1	3084.1	0	0
	1	2058.1	1	0
	1	-3228.2	0	0
	1	1713.6	0	0
	1	1695.6	0	0
	1	1515.7	0	0
	1	767.2041	0	0
	1	323.0933	0	1
	1	-1118.52	0	1
	1	-74.1368	0	1

И транспонированную к ней X^T .

\mathbf{X}^{T}													
1	1	1	1	1	1	1	1	1	1	1	1	1	1
1992.6	2102.9	2002.7	2724.1	3084.1	2058.1	-3228.2	1713.6	1695.6	1515.7	767.204111	323.0933	-1118.52	-74.1368
0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	1	1

Шаг 2. Вычислим матрицу $X^T \cdot X$.

Шаг №2				
X^TX	14	15558.84425	1	3
	15558.84425	54051292.44	2058.1	-869.559861
	1	2058.1	1	0
	3	-869.559861	0	3

Шаг 3. Рассчитаем матицу Q.

Шаг №3				
$Q = (X^{T}X)^{-1}$	0.171423338	-4.9702E-05	-0.06913158	-0.18582964
	-4.9702E-05	3.45866E-08	-2.1481E-05	5.9727E-05
	-0.069131577	-2.14807E-05	1.113341011	0.06290532
	-0.185829637	5.97271E-05	0.062905324	0.53647506

Шаг 4. Рассчитаем $q_0 = \overrightarrow{x}_0^T \cdot Q \cdot \overrightarrow{x}_0$

	Шаг №4					
x ₀	1	$x_0^{T} * Q$	-0.047339153	3.29423E-05	-0.020459489	0.390220934
	662.6057386					
	0					
	1	$q_0 = x_0^{T} * Q * x_0$	0.364709568			

Шаг 5. Рассчитаем значение стандартной ошибки.

Шаг №5	
SI ^p ₂₀₁₈	1633.223948

Вычислим прогноз для государственных расходов в моделе Самуэльсона-Хикса.

	G ₂₀₁₇	Cr ₂₀₁₇	San ₂₀₁₇
$\mathbf{x_0}^{T} =$	7264.272	0	1
G ^p ₂₀₁₈ =	7218.285		
G ₂₀₁₈ =	7326.382		

Шаг 1. Как мы видим наш прогноз отличается от реального значения, поэтому вычислим стандартную ошибку прогноза. Формируем матрицу X у которой 15 строк и 3 столбца:

Шаг №1			
Χ	6390	0	0
	6540.2	0	0
	6679	0	0
	6775.3	0	0
	6931.9	0	0
	7120.7	0	0
	7359.9	1	0
	7314.5	0	0
	7205.7	0	0
	7306.7	0	0
	7498.7	0	0
	7562.671	0	0
	7401.995	0	1
	7170.733	0	1
	7238.265	0	1

И транспонированную к ней X^T .

X^T														
6390	6540.2	6679	6775.3	6931.9	7120.7	7359.9	7314.5	7205.7	7306.7	7498.7	7562.671176	7401.99513	7170.733	7238.265
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Шаг 2. Вычислим матрицу $X^T \cdot X$.

Шаг №2			
X^TX	757881587.6	7359.9	21810.993
	7359.9	1	0
	21810.99298	0	3

Шаг 3. Рассчитаем матицу Q.

Шаг №3			
$Q = (X^{T}X)^{-1}$	1.83439E-09	-1.35009E-05	-1.33366E-05
	-1.35009E-05	1.099365477	0.098156212
	-1.33366E-05	0.098156212	0.430294997

Шаг 4. Рассчитаем $q_0 = \overrightarrow{x}_0^T \cdot Q \cdot \overrightarrow{x}_0$.

	Шаг №4				
x ₀	7264.272	$x_0^{T} * Q$	-1.11147E-08	8.1803E-05	0.333414141
	0				
	1	$q_0 = x_0^{T} * Q * x_0$	0.333333401		

Шаг 5. Рассчитаем значение стандартной ошибки.

Шаг №5	
SG ^p ₂₀₁₈	154.934121