Maria Plessia

https://www.linkedin.com/in/maria-plessia/ | Pittsburgh, PA 15219 | (585) 957-2873 | mplessia@andrew.cmu.edu

EDUCATION

Carnegie Mellon University

Pittsburgh, PA

Master of Science in Mechanical Engineering - Research in Deep Learning applications

University of Rochester

Rochester, NY

Bachelor of Science in Mechanical Engineering, Minor in Computer Science

Dean's List, Shelby Davis UWC Scholarship, University of Rochester Merit Scholarship

TECHNICAL SKILLS

- Programming: Python, C++, MATLAB, HTML, PHP, CSS, Java, Javascript
- ML: PyTorch, Keras, Tensorflow, OpenCV, PyG, DGL, Hugging Face
- Libraries/Tools: Numpy, matplotlib, seaborn, Pandas, scikit-learn, MySQL
- OS: Linux (Ubuntu, CentOS)
- Version Control: Git
- Cloud Platforms: GCP, AWS, Google Colab

RESEARCH

Carnegie Mellon University - AiPEX Lab

Pittsburgh, PA

Graduate Research Assistant

September 2022 – present

- Benchmarked GNNs for flow parameter estimation in coronary arteries using FEA meshes; utilized Diffusion generative models (EGNN) to compare performance; Utilized CUDA for GPU-accelerated training & GPU parallelism for accelerated convergence
- Researched standardizing methods for GNNs & employed metrics (Log of maximum evidence, 10-fold cross-validation, WL isomorphism) to rank and assess transferability and scalability for graph learning tasks

Technische Universität Dresden - Material Models Group

Dresden, Germany (remote)

May 2021 – July 2021

- Undergraduate Research Assistant DAAD RISE Fellow
- Optimized algorithm for segmentation on CT-data of fiber-reinforced plastics for airplane wings
- Implemented a CNN with 90% accuracy to determine the best reinforcement architecture from the fiber volume content

SELECTED PROJECTS (Link)

Differential Equation Calculator in C++

Pittsburgh, PA

CMU 2023

MvTorch

September – October 2023

- Wrote code to implement Runga-Kutta (4th order) numerical method to obtain solutions
- Adapted program to solve common engineering problems like simple & complex mass-spring-damp system

CMU 2022

Pittsburgh, PA

September – November 2022

- Implemented own deep learning library from scratch inspired by PyTorch
- Coded linear layers, activations (Sigmoid, Tanh, ReLU), loss functions (MSE Loss, CE Loss), optimization (SGD), and batch normalization, and created a Multi-Layer Perceptron (MLP) with 0, 1, and 4 hidden layers
- Coded convolutional, pooling, upsampling, and downsampling layers to implement a 1D and 2D CNN
- Wrote code to implement RNNs, GRUs, LSTMs, and Connectionist Temporal Classification (CTC)

Attention-Based End-to-End Speech-to-Text Deep Neural Network CMU 2022

Pittsburgh, PA

November - December 2022

- Set up an encoder (bidirectional pyramidal LSTM) to effectively extract features from a speech signal
- Implemented a decoder to sequentially produce the audio transcription and attention between the encoder and the decoder

Face Classification and Verification using CNNs CMU 2022

Pittsburgh, PA

October 2022

- Created a face classifier that extracts feature vectors from face images
- Coded a verification system that computes the similarity between feature vectors of two images

Fame Level Classification of Speech

Pittsburgh, PA September 2022

CMU 2022

Created a model to generate predictions of phoneme labels of each frame of audio recordings (spectrogram frames); Ran ablation studies to finetune the hyperparameters and achieved a 33% increase in accuracy

TEACHING EXPERIENCE

AWARDS

CSC 160 - Python DAAD RISE Fellowship ME 251 – Heat Power Applications

Grace Hopper Celebration Scholarship Discover Grant – University of Rochester ME 260 – MATLAB II

LEADERSHIP

UR Pittsburgh Alumni Network Students' Association Government

Pittsburgh, PA University of Rochester