1	2	3	4	5	6	\sum
4	4	3	3	3	4	21

Фамилия

Группа

Сибирский федеральный университет

Институт математики и фундаментальной информатики

Экзаменационная работа по уравнениям математической физики

2016-2017. 4 сессия Вариант 0

Всюду ниже Ω — ограниченная область пространства E^n с гладкой границей $\partial\Omega$, $f(x)\in$ $L_2(\Omega)$.

- 1. Доказать теорему существования и единственности в классе $\overset{\circ}{H^1}$ (Ω) обобщенного решения задачи $-\Delta u + 2u = \sin x_1 \cdot \sin x_2$, $u|_{\partial\Omega}=0.$
- **2.** Дать определение обобщенного решения краевой задачи $-(x_1^2+x_2^2+1)\Delta u+u=f(x_1,x_2),$ $\frac{\partial u}{\partial n}|_{\partial\Omega}=0$, где Δ — двумерный оператор Лапласа. (3 балла) **3.** Дать определение квадратичного функционала. Доказать его ограниченность снизу.
- (3 балла)
- **4.** Вывести необходимое условие, которому удовлетворяет элемент u, реализующий минимум квадратичного функционала $\Phi(v)=||u||_{\stackrel{\circ}{H^1(\Omega)}}^2+(f,u)_{L_2(\Omega)}$ на $\stackrel{\circ}{H^1(\Omega)}$.
- **5.** Дать определение базиса в пространстве H^1 (Ω). Выписать схему построения решения первой краевой задачи для эллиптического уравнения с однородными граничными условиями методом Галёркина. (3 балла)
- 6. Доказать, что при $\varphi(x) \in H^1(\Omega)$, функционал $F(v) = \int\limits_{\Omega} \varphi(x) v(x) \, dx + \int\limits_{\partial \Omega} \sin^2(|s|) v(s) \, ds$ является непрерывным на $H^1(\Omega)$. (3 балла)
- 7. Дать определение обобщенного решения первой краевой задачи для параболического уравнения в пространстве $H_{S_T}^1(Q_T)$. (2 балла)

Фамилия группа

1	2	3	4	5	6	7	8	\sum
10	10	10	10	10	10	10	10	80

Сибирский федеральный университет Институт математики и фундаменальной информатики

Экзаменационная работа по уравнениям математической физики

2016-2017. Вариант 0

Всюду ниже Ω — ограниченная область с кусочно-гладкой границей; функция $f(x) \in L_2(\Omega)$.

- 1.. Определить тип уравнения $u_{xx} 4u_{xy} 21u_{yy} = 0$ и привести его к каноническому виду (10 баллов)
- 2.. Записать формулировку следующих задач:
- а) первая краевая задача для уравнения колебания мембраны с однородными краевыми условиями;
- б) третья краевая задача для уравнения Пуассона в двумерном случае;
- в) задача Коши для уравнения теплопроводности в стержне.

Дать определение классического решения одной (любой по вашему выбору) из данных задач. (10 баллов)

- **3.** Вывести формулу (формулу Даламбера) для решения задачи $u_{tt}=u_{xx},\quad x\in (-\infty,+\infty),\, u(0,x)=u_0(x),\, u_t(0,x)=0$ (10 баллов)
- **4.**. Доказать единственность классического решения задачи $u_t = a^2 u_{xx} + t \sin(tx^2), 0 < x < 2, 0 < t < 3 \quad u(0,x) = x^2, \quad u(t,0) = t^3, \quad u(t,2) = 4 + t^2.$ (10 баллов)
- **5.** Дать определение пространств $C^1(\overline{\Omega})$, $H^1(\Omega)$, $L_p(\Omega)$, $L_{p,loc}(\Omega)$, $\overset{\circ}{H^1}(\Omega)$. Выписать скалярные произведения и нормы, если они определены в данных пространствах. Являются ли данные пространства Банаховыми, Гильбертовыми? (10 баллов)
- **6.** Дать определение обобщенной (по Соболеву) производной функции f(x) в области Ω . Доказать по определению, что обобщенная производная от константы почти всюду в Ω равна нулю. (10 баллов)
- 7. Доказать существование и единственность решения класса $H^1(\Omega)$ задачи $-\Delta u+(\sin|x|+2)u=3,\quad \frac{\partial u}{\partial n}|_{\partial\Omega}=1$ (10 баллов)
- 8. Доказать, что последовательность галёркинских приближений решения первой краевой задачи для эллиптического уравнения с однородными граничными условиями является ограниченной в $\overset{\circ}{H^1}(\Omega)$. (10 баллов)