STANISLAS Exercices

Espaces vectoriels normés de dimension finie

PSI2021-2022

Chapitre VIII

I. Normes

Exercice 1. (\triangle) Pour tout (x,y) $\|(x,y)\| = \max\{|x+y|, |x-2y|\}$. Montrer que $\|\cdot\|$ est une norme sur \mathbb{R}^2 et dessiner sa boule unité fermée.

Exercice 2. [TPE] Pour tout $u = (x,y) \in \mathbb{R}^2$, on note $N(u) = \sup\{|x + ty|, t \in [0, 1]\}.$

- **1.** Montrer que $N(u) = \max\{|x|, |x+y|\}$, puis que N est une norme.
- 2. Soit B la boule unité de N. Trouver le plus petit disque euclidien centré en 0 contenant B et le plus grand disque euclidien centré en 0contenu dans B.

On pourra commencer par représenter graphiquement la boule unité.

Exercice 3. E désigne l'ensemble des fonctions $f:[0,1] \to \mathbb{R}$, lipschitziennes. Pour $f \in E$, on pose

$$N(f) = \sup_{x \in [0,1]} |f(x)| + \sup_{(x,y) \in [0,1]^2, x \neq y} \left| \frac{f(x) - f(y)}{x - y} \right|.$$

Montrer que N est une norme sur E.

Exercice 4. [IMT] On note E l'espace vectoriel des fonctions de classe \mathscr{C}^1

de [0, 1] dans \mathbb{R} . Pour $f \in E$, on note $N(f) = \sqrt{f(0)^2 + \int_0^1 f'^2(t) dt}$.

- 1. Montrer que N est une norme sur E
- **2.** Montrer que, pour tout $f \in E$, $||f||_{\infty} \leq \sqrt{2}N(f)$.
- 3. Montrer qu'il n'existe pas de réel a strictement positif tel que : $\forall f \in$ $E, N(f) \leqslant a \|f\|_{\infty}$

Exercice 5. Soit $n \ge 2$. Montrer qu'il n'existe pas de norme $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{C})$ telle que

$$\forall A \in \mathscr{M}_n(\mathbb{C}), \forall P \in \mathscr{G}\ell_n(\mathbb{C}), \|PAP^{-1}\| = \|A\|.$$

Exercice 6. (\Longrightarrow) Soit E un espace vectoriel de dimension finie muni d'une norme $\|\cdot\|$ et $f\in E^*$ non nulle. On note $H=\operatorname{Ker} f$ et $\|f\|=$ $\sup |f(a)|$. Soit $x \in E$.

- a $\in \overline{\mathcal{B}}(0,1)$ Montrer que pour tout $y \in H$, $|f(x)| \leq ||f|| ||x-y||$.
- **2.** Montrer que pour tout $\varepsilon > 0$, il existe $a \in \overline{\mathscr{B}}(0,1)$ tel que

$$||f|| - \varepsilon \leqslant |f(a)|$$
.

3. En déduire que $d(x, H) = \inf_{y \in H} ||x - y|| = \frac{|f(x)|}{||f||}$. Indication: On pourra poser $h = x - \frac{f(x)}{f(a)}a$.

II. Topologie générale

Exercice 7. Déterminer si les ensembles suivants sont des fermés.

1.
$$\{(-1)^n + \frac{1}{n}, n \in \mathbb{N}^*\}$$
.

3.
$$\left\{\frac{1}{m} + \frac{1}{n}, (m, n) \in (\mathbb{N}^{\star})^2\right\}$$
.

2.
$$\{(-1)^{n+1} + \frac{1}{n}, n \in \mathbb{N}^*\}$$
.

Exercice 8. Soient A et B deux parties de \mathbb{R}^n .

- **1.** Montrer que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Montrer que, en général, il n'y pas égalité.
- **2.** Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Exercice 9. (2) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices qui commutent. On suppose que (A^k) converge vers une matrice P et (B^k) converge vers une matrice Q. Montrer que P et Q commutent.

Exercice 10. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique telle que (A^k) converge vers une matrice B. Montrer que B est la matrice nulle.

Exercice 11. [CCP] Soit E l'ensemble des suites numériques réelles $(x_n)_{n\in\mathbb{N}}$ telles que $\sum_{n\in\mathbb{N}} x_n^2$ converge. **1.** Pour $(a,b)\in\mathbb{R}^2$, montrer que $2|ab|\leqslant a^2+b^2$.

Exercices VIII PSI

- **2.** Montrer que E est un sous-espace vectoriel de l'espaces des suites numériques réelles.
- **3.** Soit $\varphi: ((x_n), (y_n)) \in E^2 \mapsto \sum_{n=0}^{+\infty} x_n y_n \in \mathbb{R}$. Montrer que φ est un produit scalaire sur E; En déduire que $\sqrt{\sum_{n=0}^{+\infty} x_n^2}$ est l'expression d'une norme, notée N, sur E.
- **4.** Montrer que, pour (x_n) dans E, la suite $(x_n + x_{n+1})$ l'est aussi.
- **5.** Soit $g:(x_n) \in E \mapsto (x_n + x_{n+1}) \in E$. Montrer que g est lipschitzienne pour la norme N.

Exercice 12. (****, \heartsuit) [Mines] Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique. On note $G_f = \{T \in \mathbb{R} : \forall x \in \mathbb{R}, f(x+T) = f(x)\}.$

- 1. On suppose que f est continue. Montrer que G_f est un fermé.
- **2.** Donner un exemple de fonction pour laquelle $G_f = \mathbb{Q}$.
- **3.** Soit f une fonction 1 et $\sqrt{2}$ périodique. Montrer que f(x) = f(0) possède une infinité de solutions dans $]0, \pi/2[$.
- **Exercice 13.** [Mines] Soient E un espace vectoriel normé, $\|\cdot\|$ une norme sur E. Pour tout $A \subset E$ et $x \in E$, on définit $d(x,A) = \inf \{d(x,y), y \in A\}$.
- **1.** Soit F un fermé non vide de E. Montrer que x appartient à $E \setminus F$ si et seulement si d(x,F) > 0.
- **2.** Montrer que tout ouvert de E est réunion dénombrable de fermés.

III. Avec Python

Exercice 14. [Centrale 2] La matrice $M = (m_{i,j})$ est dite à diagonale strictement positive (abrégé en DSP) si

$$\forall i \in [1, n], |m_{i,i}| > \sum_{j=1, j \neq i}^{n} |m_{i,j}|.$$

1. Écrire un programme est_dsp(M) qui renvoie True si M est à DSP et False sinon.

- **2.** Trouver une matrice de $O_2(\mathbb{R})$ qui ne soit pas à DSP; tester le programme sur cette matrice.
- 3. Les matrices à DSP sont-elles stables par produit?
- **4.** Pour tout vecteur X, on note $||X||_{\infty} = \sup_{i \in [\![1,n]\!]} |x_i|$. Soit M à DSP. Montrer que si $X \neq 0$, alors $MX \neq 0$. Qu'en déduire sur M?
- 5. Écrire une fonction rmin déterminant

$$r_{min} = \inf \left\{ |m_{i,i}| - \sum_{j=1, j \neq i}^{n} |m_{i,j}|, i \in [1, n] \right\}.$$

6. Prouver que l'ensemble des matrices à DSP est une partie ouverte de $\mathcal{M}_n(\mathbb{R})$.