

San Francisco Bay University

CS483 - Fundamentals of Artificial Intelligence **Homework Assignment #4**

Instruction: Due day: 7/21/2022

- A. Push the source code to Github
- B. Overdue homework submission could not be accepted.
- C. Take academic honesty and integrity seriously (Zero Tolerance of Cheating & Plagiarism)
- 1. Re-calculate the entropy for the feature selection in the example of file "Gini Impurity Cal in Decision Tree" rather than Gini impurity method. And then, compare the results from two different criteria

Hint: taking the reference at the following link for your calculation

https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon

Diameter Entropy (Ed) Calculation:

$$E (Parent) = -P(A) \log_2 P(A) - P(G) \log_2 P(G) - P(L) \log_2 P(L)$$

$$= -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{1}{5}\log_2\left(\frac{1}{5}\right) = 1.52$$

E (d>= 3) =
$$-\frac{2}{3}\log_2\left(\frac{2}{3}\right) - 0 - \frac{1}{3}\log_2\left(\frac{1}{3}\right) = 0.98$$

$$E(d < 3) = 0 - \frac{2}{2}log_2(\frac{2}{2}) - 0 = 0$$

Weighted average of entropies

E(diameter) =
$$\frac{3}{5} * 0.98 + \frac{2}{5} * 0 = 0.588$$

Information Gain = E(Parent) - E(diameter) = 1.52-0.588 = 0.932

Feature 2: color

Color Entropy (Ed) Calculation:

$$E(C = green) = -P(A) \log_2 P(A) - P(G) \log_2 P(G) - P(L) \log_2 P(L)$$

= 0

E (C = yellow) =
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) - 0 = 1$$

E (C = red) = 0

ColorDiameterLabelGreen3AppleYellow3AppleRed1GrapeRed1GrapeYellow3Lemon

For color=green

$$P(A) = 1/1$$

$$P(L) = 0$$

$$P(G) = 0$$

For color=yellow

$$P(A) = 1/2$$

$$P(L) = 1/2$$

$$P(G) = 0$$

For color=red

$$P(A) = 0$$

$$P(L) = 0$$

$$P(G) = 2/2$$

Weighted average of entropies

E(Color) =
$$\frac{1}{5} * 0 + \frac{2}{5} * 1 + \frac{2}{5} * 0 = 0.4$$

Information Gain = E(Parent) - E(color) = 1.52-0.4 = 1.12

Conclusion:

The information gain from color feature is higher than the one from diameter, hence the first choice for classification is **color.** Comparing the Gini index and Entropy, Gini index requires less mathematical computation compared to entropy, but entropy is more accurate as shown in this example (Entropy achieved the same classification accuracy as Gini impurity in the first level)

2. Given a dataset as follows, please buildup a decision tree with max information gain comparing the different condition checking features by hand calculation **Gini impurity and information gain.** And predict "Profit" in the new data. After that, write Python program to verify your design through calling existing functions from the library

Age	Competition	Type	Profit
Old	Yes	Software	Down
Old	No	Software	Down
Old	No	Hardware	Down
Mid	Yes	Software	Down
Mid	Yes	Hardware	Down
Mid	No	Hardware	Up
Mid	No	Software	Up
New	Yes	Software	Up
New	No	Hardware	Up
New	No	Software	Up
Mid	No	Hardware	?

Solution:

Level 1: Impurity of root

$$imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))$$

= 5/10*(1-5/10) + 5/10*(1-5/10)
= 0.5

Ave. Imp =
$$10/10 * 0.5 =$$
0.5

Level 2; Impurity of Age

Old	Down	Up
3	3	0

Mid	down	up
4	2	2

New	down	up
3	0	3

$$Imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))$$

Imp=
$$3/3*(1-3/3) + 0/3*(1-0/3)$$

= 0 Imp = $2/4*(1-2/4) + 2/4*(1-2/4)$
= 0.5

Imp =
$$0/3*(1-0/3) + 3/3*(1-3/3)$$

= 0

Ave. Imp =
$$3/10*0$$

= 0

Ave.Imp =
$$4/10*0.5$$
 = 0.2

Ave. Imp =
$$3/10*0$$

= 0

Tot. Ave. Imp. = 0 + 0.2 + 0 = 0.2

Info. Gain = 0.5 (from Ave.Imp of level 1) - 0.2(from Tot. Ave. Imp) = 0.3

Impurity of Competition:

Yes	Down	Up
4	3	1

No	down	up
6	2	4

$$Imp = P(Down)^*(1-P(Down)) + P(up)^*(1-P(up))$$

Imp =
$$2/6*(1-2/6) + 4/6*(1-4/6)$$

= 0.44

Ave. Imp =
$$4/10*0.375$$

= 0.15

Tot. Ave. Imp. = 0.15 + 0.264 = 0.414

Info. Gain = 0.5 (from Ave.Imp of level 1) - 0.414(from Tot. Ave. Imp) = 0.086

Impurity of Type:

Software	Down	Up
6	3	3

hardware	down	up
4	2	2

$$Imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))$$

Imp =
$$3/6*(1-3/6) + 3/6*(1-3/6)$$

= 0.5

Imp =
$$2/4*(1-2/4) + 2/4*(1-2/4)$$

= 0.5

Ave. Imp =
$$6/10*0.5$$
 = 0.3

Ave. Imp =
$$4/10*0.5$$

= 0.2

Tot. Ave. Imp. = 0.3 + 0.2 = 0.5

Info. Gain = 0.5 (from Ave.Imp of level 1) - 0.5(from Tot. Ave. Imp) = 0

Comparing Info Gains

Age	Competition	Type
0.3	0.086	0.0

→ Taking "Age" will get highest info gain

Level 3:

Age	Competition	Type	Profit
Old	Yes	Software	Down
Old	No	Software	Down
Old	No	Hardware	Down

Age	Competition	Type	Profit
Mid	Yes	Software	Down
Mid	Yes	Hardware	Down
Mid	No	Hardware	Up
Mid	No	Software	Up

Impurity of Competition in old

Avg.imp = $\frac{0}{0}$ Information gain = $0.3-0 = \frac{0.3}{0.3}$

Impurity of type in old

Avg.imp = $\frac{0}{0}$ Information gain = $0.3-0 = \frac{0.3}{0.3}$

Comparing Info Gains in old

Comparing and Camp in C			
Competition	Type		
0.3	0.3		

Both get the same info gain

Impurity of Competition in Mid

Yes	Down	Up
2	2	0

No	down	up
2	0	2

Impurity of yes in Competition

Imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))Imp = 2/2*(1-2/2) + 0/2*(1-0/2) = 0

Impurity of No in Competition

Imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))

Imp = 0/2*(1-0/2) + 2/2*(1-2/2) = 0

Tot. Ave. Imp. = 0 + 0 = 0

Information gain = 0.3-0 = 0.3

Impurity of **Type** in **Mid**

Software	Down	Up
2	1	1

Hardware	down	up
2	1	1

Impurity of New

Age	Competition	Type	Profit
New	Yes	Software	Up
New	No	Hardware	Up
New	No	Software	Up

Impurity of software in type

Imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))

Imp = 1/2*(1-1/2) + 1/2*(1-1/2) = 0.5

Impurity of hardware in type

Imp = P(Down)*(1-P(Down)) + P(up)*(1-P(up))

Type

-0.7

Imp = 1/2*(1-1/2) + 1/2*(1-1/2) = 0.5

Tot. Ave. Imp. = 0.5 + 0.5 = 1

Information gain = 0.3-1 = -0.7

Comparing Info Gains in mid

Avg.imp = 0	
Information gain = $0.3-0 = 0.3$	3

Impurity of **Competition** in **new**

Impurity of type in new

Avg.imp = 0

Information gain = 0.3-0 = 0.3

Comparing Info Gains in mid			
Competition	Type		
0.3	0.3		

Competition has higher info gain

Competition

0.3

Both features have the same info gain

Python Code Verification:

```
#!/usr/bin/env python
# coding: utf-8
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
11 11 11
   Loading Data
col names = ['Age', 'Competition', 'Type', 'Profit']
# load dataset
df = pd.read csv("/content/fruits.csv")
df.head()
df=df.split('\n')
dat=[]
for data in df:
   word=data.split(' ')
   dat.append(word)
ndf=pd.DataFrame(dat,columns=['Age','Competition','Type','profit'])
x train=ndf.iloc[:,0:3]
y train=ndf.iloc[:,3]
print(x_train)
clf tree=DecisionTreeClassifier(random state=0, max depth=3)
clf fit=clf tree.fit(x train,y train)
x test=np.array([1,1,1])
x test=x test.reshape(1,-1)
predicted=clf fit.predict(x test)
```