R₅₀ Estimation and Comparison: Final Report

Choosing a Model for Estimating R_{50}

When first looking at this problem and the data I was given I knew that a logistic regression could be used to estimate R_{50} . I decided that a good estimate of R_{50} is the range where there is a 50% probability a target will be detected since R_{50} is the range where 50% of the targets will be detected. However, a prediction using a logistic model can't estimate R_{50} directly. Logistics output a probability given a continuous variable, whereas what I needed was the opposite. I looked to see if there was a way to create a model that would be able to do this "out-of-the-box" but I found nothing and decided to stick with the logistic. I chose to create a logistic regression using the R package parsnip since prediction output is in a dataframe and I could obtain confidence intervals easily from it as well.

Solving for R_{50} and Confidence Intervals

Since my model couldn't estimate R_{50} directly, I created a function solve_R50 that could use the model to solve for R_{50} and the confidence intervals under each condition.

In the function below the argument R50_mod is the parsnip logistic model and turbines is a binary vector indicating the condition to predict under. The argument type is one of "pred", "lower" or "upper". "pred" gives the predicted R_{50} value. "lower" or "upper" give the corresponding side of the confidence interval.

```
solve_R50 <- function(R50_mod, turbines, type) {</pre>
  # ... skipped logic for `type` argument
  # create a function that we will find the root of using `uniroot`
  R50_root <- function(range, turbines) {
   predict.model_fit(R50_mod,
                      tibble(range = range, turbines = turbines),
                      # pred_type variable determines if we are solving
                      # for R50 or a confidence interval
                      type = pred_type
   ) %>%
      # pick the column we need from predict.model_fit
      # subtracting .5 creates a root where we want it
      pull(pred_col) - .5
  }
  # solve for each `turbines` condition
  map dbl(turbines,
          ~ uniroot(R50_root,
                    interval = range(R50 mod$fit$data$range),
                    turbines = .x)$root)
}
```

This is how I used the solver to obtain R_{50} and the confidence intervals for each turbine condition. Below is the information presented in table form and graphically.

```
R50_dat <-
tibble(turbines = 0:1) %>%
mutate(R50 = solve_R50(R50_mod, turbines, "pred"),
    lower = solve_R50(R50_mod, turbines, "lower"),
    upper = solve_R50(R50_mod, turbines, "upper"))
```

 R_{50} Estimation and Confidence Intervals

Turbines	R_{50}	Lower	Upper
None	19.88	16.35	23.37
Present	14.68	10.59	18.09

Presence of Wind Turbines Reduces R₅₀

Identify the Impact of the Presence of Wind Turbines on R_{50}

We can determine whether the presence of wind turbines affects R_{50} by looking at the impact the turbines term has on the model. Below are the estimates of the model's terms. Since the turbines term is significant and it represents a horizontal shift in the two curves as shown above, the estimated R_{50} will be significantly different under the two conditions.

 R_{50} Model Terms

term	estimate	std.error	statistic	p.value
(Intercept) range turbines	5.64 -0.28 -1.47	1.29 0.06 0.69	4.38 -4.70 -2.12	$0.000012 \\ 0.000003 \\ \hline 0.033855$

Estimation of power

In order to calculate power I needed to estimate the standard deviation of R_{50} . Unfortunately, the confidence intervals were not symmetric after translating them to be in terms of range. To be conservative in the power calculations I choose the largest margin to determine the standard deviation.

 R_{50} Confidence Margins

Turbines	R_{50}	Lower	Upper	Lower Margin	Upper Margin
None	19.88	16.35	23.37	-3.53	3.50
Present	14.68	10.59	18.09	-4.09	3.41

If we assume there are two standard deviations from R_{50} to the interval bounds, then the largest the standard deviation could be is about 2. Since the difference in R_{50} is about 5 data miles less under conditions when there are wind turbines verses no turbines, then the R_{50s} are about 2.5 standard deviation from each other. In other words, the effect size is about 2.5 data miles. Using this information, I created the plot below.

Power of finding differences in R₅₀ under different turbine conditions

