MIS 637 B Final Exams Data Analytics & Machine Learning

December 12, 2019 School of Business Stevens Institute of Technology

Professor: M. Daneshmand

Student Name: <u>SRUJAN JADHAV</u> <u>CWID:</u> 10445782

1. Describe the differences between clustering and classifications

ANSWER:

SR.	Clustering	Classification	
No.			
1	It finds natural grouping of instances on given unlabeled data.	It learns a method to predict the instance class from pre labeled classified instances.	
2	An unsupervised learning technique.	A supervised learning technique.	
3	Works solely with unlabeled data.	Involves both labeled and unlabeled data.	
4	Has a single phase. (Grouping)	Involves two phases. (Training and Testing)	
5	Clustering does not poignantly employ training sets, which are groups of instances employed to generate the groupings.	Classification imperatively needs training sets to identify similar features.	
6	Clustering groups objects with the aim to narrow down relations as well as learn novel information from hidden patterns.	Classification seeks to determine which explicit group a certain object belongs to.	
7	Example of algorithms: K-Means, DBSCAN.	Example of algorithms: Decision trees, Random forest.	

2. We have the following two-dimensional data points:

Identify the cluster by applying the k-means algorithm, with k=2. Show that the ratio of the between-cluster variation to the within-cluster variation increases with each pass of the algorithm. Please show your work and how the algorithm works: **passes**, **steps**, **formulas**, **calculations**, **tables**, **plots**, **and final clusters**.

ANSWER:

FIRST PASS:

Given data: k = 2

a	b	с	d	e	f	g	h
(3,2)	(3,3)	(4,3)	(5,3)	(1,2)	(4,2)	(1,1)	(2,1)

Step 1: So, m1 = (4, 3) & m2 = (1, 1)

Calculate the distance of each point from m1 & m2 and divide them in to clusters C1 and C2.

Step 2:

Euclidean distance formula: $d_{Euclidean}(x, y) = \sqrt{(x^2-x^2)^2 + (y^2-y^2)^2}$ where two points are $(x^1, y^1)(x^2, y^2)$

Points	Distance from Centre1	Distance from Centre2	Cluster
	(4, 3)	(1, 1)	
a (3,2)	1.414	2.236	C1
a (3,2)	1.414	2.230	CI
b (3,3)	1	2.828	C1
c (4,3)	0	3.605	C1
d (5,3)	1	4.472	C1
e (1,2)	3.162	1	C2
f (4,2)	1	3.162	C1
g (1,1)	3.605	0	C2
h (2,1)	2.828	1	C2

Points in cluster C1 are (a, b, c, d, f) and that in C2 are (e, g, h)

$$SSE = \sum_{i=1}^{k} \sum_{p \in C_i} d(p, m_i)^2$$

$$SSE = 1.414^2 + 1^2 + 0^2 + 1^2 + 1^2 + 1^2 + 0^2 + 1^2$$
Hence, $SSE = 6.999$

$$d(m1, m2) = 3.605$$

$$\frac{BCV}{WCV} = \frac{d(m_1, m_2)}{SSE} = 3.605/6.999 = 0.515$$

New Centroid: C1 =
$$\left(\frac{3+3+4+5+4}{5}, \frac{2+3+3+3+2}{5}\right) = (3.8, 2.6)$$

New Centroid: C2 =
$$\left(\frac{1+1+2}{3}, \frac{2+1+1}{3}\right)$$
 = (1.33, 1.33)

SECOND PASS:

Points	Distance from Centre1	Distance from Centre2	Cluster
	(3.8, 2.6)	(1.33, 1.33)	
a (3,2)	1	1.799	C1
b (3,3)	0.894	2.361	C1
c (4,3)	0.447	3.149	C1
d (5,3)	1.264	4.032	C1
e (1,2)	2.863	0.746	C2
f (4,2)	0.632	2.752	C1
g (1,1)	3.224	0.466	C2
h (2,1)	2.408	0.746	C2

$$\begin{split} & \text{SSE} = \sum_{i=1}^{k} \sum_{p \in C_i} d(p, m_i)^2 \\ & \text{SSE} = 1^2 + 0.894^2 + 0.447^2 + 1.264^2 + 0.746^2 + 0.632^2 + 0.466^2 + 0.746^2 \\ & \text{SSE} = 5.326 \\ & \text{d(m1,m2)} = 2.777 \\ & \frac{BCV}{WCV} = \frac{d(m_1, m_2)}{SSE} = 2.777/5.326 = 0.521 \end{split}$$

New Centroid: C1 =
$$\left(\frac{3+3+4+5+4}{5}, \frac{2+3+3+3+2}{5}\right) = (3.8, 2.6)$$

New Centroid: C2 =
$$\left(\frac{1+1+2}{3}, \frac{2+1+1}{3}\right)$$
 = (1.33, 1.33)

When the value of the centroid of two clusters doesn't change then K-means algorithm terminates.

Final Clusters:

Cluster
$$1 = \{a, b, c, d, f\}$$

Cluster
$$2 = \{e, g, h\}$$

GRAPH PLOT:

