Robotics: Science and Systems

Optimization II

Zhibin Li
School of Informatics
University of Edinburgh

Content

- Constrained optimization
 - Constrained least square
 - ☐ Quadratic Optimization (QP)
- *Nonlinear optimization
 - Application for dynamic walking
 - ☐ Application for task space planning of a robot arm

Constrained linear least squares

Least squares with constraints

Simple least squares with equality constraints:

minimize $\|\mathbf{A}\mathbf{x}-\mathbf{b}\|^2$

subject to $C_{eq}x=d$

where $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ is the objective function, and $\mathbf{C}\mathbf{x} = \mathbf{d}$ is the equality constraint.

Additional constraints may also exist:

Inequality constraint, must satisfy $C_{ineq}x \le \alpha$

The vector \mathbf{x} must satisfy the vector inequalities $lb \le \mathbf{x} \le ub$, lb and ub are lower and upper bounds.

Matlab exercise

Function: Isqlin

Solve constrained linear least-squares problems with bounds or linear constraints.

Exercise with the examples <u>here</u>.

Comparison with Tikhonov regularisation

Constrained Least Squares explicitly specifies the constraints, while Tikhonov regularisation only minimize the deviation from a *nominal*.

When the range of solution is large, and boundary limits are far away to "hit", both may yield the same results. However, if constraints are *hard*, then explicit constraints are necessary.

QP is quadratic optimization problem that optimizes (minimizes or maximizes) a quadratic function of variables subject to linear constraints on these variables.

The objective of QP is to find vector $\mathbf{x} \in \mathbf{R}^n$, that will

min
$$1/2 \cdot \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

st $\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}$
 $\mathbf{A}_{eq} \cdot \mathbf{x} = \mathbf{b}_{eq}$
 $|\mathbf{b} \le \mathbf{x} \le u\mathbf{b}|$

where $\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}$ means that every element of the vector $\mathbf{A} \cdot \mathbf{x}$ is less than or equal to the corresponding element of vector \mathbf{b} . (All vectors are column vectors by default)

The objective of QP is to find vector $\mathbf{x} \in \mathbf{R}^n$, that will

minimize
$$1/2 \cdot \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}$
 $\mathbf{A}_{eq} \cdot \mathbf{x} = \mathbf{b}_{eq}$
 $lb \le \mathbf{x} \le ub$

c: m-dimensional real number column vector

H: n × n Hessian matrix, symmetric* and positive (semi-)definite

 \mathbf{A} , \mathbf{A}_{eq} : m × n real matrix A

b, **b**_{eq}: m-dimensional real number column vector

^{*} In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose, so $\mathbf{H} = \mathbf{H}^{\mathsf{T}}$.

Note that every equality constraint $\mathbf{A}_{eq} \cdot \mathbf{x} = \mathbf{b}_{eq}$ can be equivalently replaced by a pair of inequality constraints

$$\mathbf{A}_{eq} \cdot \mathbf{x} \le \mathbf{b}_{eq}$$
$$-\mathbf{A}_{eq} \cdot \mathbf{x} \le \mathbf{b}_{eq}$$

Therefore, equality constraints are somewhat redundant mathematically. However, the concept of equality constraints are useful when it maps the real world problems into mathematical formulations.

Common methods for QP solutions:

- 1. Interior-point
- 2. Active-set
- 3. Trust-region-reflective

Matlab: quadprog

C++: qpOASES

LS and QP

Non-negative least squares (NNLS) is a constrained version of the least squares problem. The NNLS problem is equivalent to a quadratic programming problem.

$$1/2\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

=?

An example how to transform a minimization problem (LS) into a QP form.

Quiz: whiteboard exercise: quadratic multiplication of vectors.

LS and QP

Non-negative least squares (NNLS) is a constrained version of the least squares problem. The NNLS problem is equivalent to a quadratic programming problem.

$$1/2\|\mathbf{A}\mathbf{x}-\mathbf{b}\|^{2}$$

$$=1/2(\mathbf{A}\mathbf{x}-\mathbf{b})^{\mathsf{T}}(\mathbf{A}\mathbf{x}-\mathbf{b})$$

$$=1/2(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}-\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{b}-\mathbf{b}^{\mathsf{T}}\mathbf{A}\mathbf{x}+\mathbf{b}^{\mathsf{T}}\mathbf{b})$$

$$=1/2(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}-2\mathbf{c}^{\mathsf{T}}\mathbf{A}\mathbf{x}+\mathbf{b}^{\mathsf{T}}\mathbf{b})$$

Note that $(\mathbf{A}\mathbf{x})^T\mathbf{b}=\mathbf{b}^T(\mathbf{A}\mathbf{x})$, since this is dot product of two vectors: multiply corresponding elements of each element, then add up the products. The result is a scalar value.

LS and QP

$$1/2\|\mathbf{A}\mathbf{x}-\mathbf{b}\|^{2}$$

$$=1/2(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}-2\mathbf{b}^{\mathsf{T}}\mathbf{A}\mathbf{x}+\mathbf{b}^{\mathsf{T}}\mathbf{b})$$

$$=1/2\cdot\mathbf{x}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}}\mathbf{A})\mathbf{x}-(\mathbf{b}^{\mathsf{T}}\mathbf{A})\cdot\mathbf{x}+1/2\cdot\mathbf{b}^{\mathsf{T}}\mathbf{b}$$

Since $\mathbf{b}^T \mathbf{b}$ is a non-negative quantity, so minimizing $1/2\|\mathbf{A}\mathbf{x}-\mathbf{b}\|^2$ is equal to minimizing $1/2 \cdot \mathbf{x}^T (\mathbf{A}^T \mathbf{A}) \mathbf{x} - (\mathbf{b}^T \mathbf{A}) \cdot \mathbf{x}$, treating $\mathbf{b}^T \mathbf{b}$ as a non-negative offset.

Hence, it is equivalent to a QP problem:

$$f(\mathbf{x}) = 1/2 \cdot \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \cdot \mathbf{x}$$

where $\mathbf{H} = (\mathbf{A}^T \mathbf{A})$ and $\mathbf{c}^T = -\mathbf{b}^T \mathbf{A}$.

Applications of QP

Using optimization to coordinate all joints (whole body control) of a humanoid robot. (Detailed formulation will be covered by Robot Learning and Sensorimotor Control, semester 2)

*Nonlinear optimization

*Nonlinear optimization

Often, there are problems that are nonlinear, thus require nonlinear optimizers.

Cost function **J** can be more complex, and are not necessarily the norm of vectors, eg forward kinematics.

- Matlab: optimization toolbox has solvers for linear, quadratic, integer, and nonlinear optimization problems. For example, fmincon is a very powerful tool, if the problem is well formulated, usually fmincon can find the solution.
- ☐ C++: NLopt

Matlab functions for unconstrained optimization

Functions

- fminsearch: Find minimum of unconstrained multivariable function using derivative-free method
- 2. fminunc: Find minimum of unconstrained multivariable function

Note: these are actually nonlinear programming solvers.

Matlab functions for constrained optimization

Functions

- 1. fminbnd: find minimum of single-variable function on fixed interval
- 2. fmincon: find minimum of constrained nonlinear multivariable function
- fseminf: find minimum of semi-infinitely constrained multivariable nonlinear function

Formulating constraints: QP case

Usually qpOASES expects QPs to be formulated in the following standard form:

$$\min_{x} \quad \frac{1}{2}x^{T}Hx + x^{T}g(w_{0})$$
s. t.
$$lbA(w_{0}) \leq Ax \leq ubA(w_{0}),$$

$$lb(w_{0}) \leq x \leq ub(w_{0}),$$

where we can express the equality constraint by setting **IbA** and **ubA** the same.

Formulating constraints: fmincon case

However, fmincon has different interface or formalization of the constraints, as shown below: fmincon R2017b

Find minimum of constrained nonlinear multivariable function

collapse all in page

Nonlinear programming solver.

Finds the minimum of a problem specified by

$$\min_{x} f(x) \text{ such that} \begin{cases} c(x) \le 0\\ ceq(x) = 0\\ A \cdot x \le b\\ Aeq \cdot x = beq\\ lb \le x \le ub, \end{cases}$$

Quiz: how to formulate inequality constraints $lbA \le A \cdot x \le ubA$ in the form $A \cdot x \le b$?

Task space control using optimization

Question: how to formulate inverse kinematics problem considering the constraints, eg joint angle limit?

Problem Formulation?

Fmincon example: task space control, eg inverse kinematics, using optimization

Problem Formulation

Recall Tikhonov regularization:

$$f(x) = || A x - b ||_{P}^{2} + || x - x_{0}||_{Q}^{2},$$

Our problem formulation of inverse kinematics problem considering the constraints is somewhat similar.

Problem Formulation

$$f(x)=||F(q)-y^{d}||_{Qp}^{2}+||O(q)-vec^{d}||_{Qr}^{2}+||q-q_{0}||_{Qj}^{2},$$

$$q_{min} \leq q \leq q_{max}$$

q: joint configuration

 \mathbf{q}_0 , \mathbf{q}_{\min} , \mathbf{q}_{\max} : initial, minimum, maximum joint configurations

F(q), **O(q)**: forward kinematics, returns end effector position and orientation

y^d, vec^d: desired task space or workspace position, orientation

 $\mathbf{Q_p}$, $\mathbf{Q_r}$, $\mathbf{Q_j}$ are the weighting matrices for workspace position, rotation, and joint/configuration space respectively.

Optimization only over end-effector position and minimum change of joint angles.

$$f(x) = || F(q) - y^d ||_{Qp}^2 + || q - q_0 ||_{Qi}^2$$

$$Q_{p} = 1;$$

 $\mathbf{Q}_{r} = 0$; (orientation is NOT controlled)

$$Q_{i} = 1e-6;$$

 q_{max} : pi/2

Optimization only over end-effector position and minimum change of joint angles.

$$f(x) = || F(q) - y^d ||_{Qp}^2 + || q - q_0 ||_{Qi}^2$$

$$Q_{p} = 1;$$

 $\mathbf{Q}_{\mathbf{r}}$ = 0; (orientation is NOT controlled)

 $\mathbf{Q}_{\mathbf{j}}$ = 5e-3; \Leftarrow Increase weight for \mathbf{q}_{0}

q_{min}: -pi/2

 q_{max} : pi/2

Optimization of all terms:

$$f(x)=||F(q) - y^{d}||_{Qp}^{2} + ||O(q) - vec^{d}||_{Qr}^{2} + ||q - q_{0}||_{Qi}^{2},$$

 $Q_p = 1;$

 $\mathbf{Q}_{\mathbf{r}}$ = 1; (note: orientation is controlled)

 $Q_{j} = 1e-6;$

q_{min}: -pi/2

What is the problem here?

q_{max}: pi/2

Optimization of all terms:

$$f(x)=||F(q) - y^{d}||_{Qp}^{2} + ||O(q) - vec^{d}||_{Qr}^{2} + ||q - q_{0}||_{Qj}^{2},$$

$$Q_{p} = 1;$$

 \mathbf{Q}_{r} = 1; (note: orientation is controlled)

$$Q_{j} = 1e-6;$$

q_{min}: [-150; -90; -90; 0; -90; -150]/180*pi

q_{max}: [150; 90; 90; 150; 90; 150]/180*pi

Same setting for optimization, only change the task space **V** trajectory to be *within* workspace.

The optimization scheme works nicely, considering the minimum deviation from its home position, minimum error of pose (position & orientation), as well as the joint limits!

