In [1]: import pandas as pd import numpy as np import seaborn as sns In [10]: #import dataset file_path = "C:/Users/kinyu/Documents/DataAnalysisProjects/Quantium/" #Read the transaction data into a pandas DataFrame transaction_data = pd.read_csv(file_path + "QVI_transaction_data.csv") In [11]: transaction_data.head() DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_NAME PROD_QTY TOT_SALES **0** 43390 1000 5 Natural Chip Compny SeaSalt175g 2 6.0 1 43599 348 1307 CCs Nacho Cheese 175g 3 6.3 2 43605 1343 383 Smiths Crinkle Cut Chips Chicken 170g 2 2.9 **3** 43329 974 69 Smiths Chip Thinly S/Cream&Onion 175g 2373 15.0 4 43330 2 2426 1038 108 Kettle Tortilla ChpsHny&Jlpno Chili 150g 3 13.8 In [12]: #Read the customer behaviour data into pandas DataFrame customer_data = pd.read_csv(file_path + "QVI_purchase_behaviour.csv") In [13]: customer_data.head() LYLTY_CARD_NBR LIFESTAGE PREMIUM_CUSTOMER 0 1000 YOUNG SINGLES/COUPLES Premium 1002 YOUNG SINGLES/COUPLES Mainstream 2 1003 YOUNG FAMILIES Budget 1004 OLDER SINGLES/COUPLES Mainstream 4 1005 MIDAGE SINGLES/COUPLES Mainstream SUMMARIZE THE DATASET In [14]: transaction_data.describe() Out[14]: DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_QTY TOT_SALES count 264836.000000 264836.00000 2.648360e+05 2.648360e+05 264836.000000 264836.000000 264836.000000 43464.036260 135.08011 56.583157 1.907309 7.304200 1.355495e+05 1.351583e+05 mean 105.389282 76.78418 8.057998e+04 7.813303e+04 32.826638 0.643654 3.083226 std 43282.000000 1.00000 1.000000e+03 1.000000e+00 1.000000 1.000000 1.500000 70.00000 2.000000 43373.000000 7.002100e+04 6.760150e+04 28.000000 5.400000 25% 43464.000000 130.00000 2.000000 7.400000 50% 1.303575e+05 1.351375e+05 56.000000 43555.000000 2.030942e+05 2.027012e+05 203.00000 85.000000 2.000000 9.200000 max 43646.000000 272.00000 114.000000 200.000000 2.373711e+06 2.415841e+06 650.000000 CHECK FOR NULL In [15]: transaction_data.isnull().sum() Out[15]: DATE 0 STORE_NBR 0 LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_NAME 0 0 PROD_QTY TOT_SALES 0 dtype: int64 CHECK THE DATA TYPE In [18]: data_types = transaction_data.dtypes print(data_types) DATE int64 STORE_NBR int64 LYLTY_CARD_NBR int64 TXN_ID int64 PROD_NBR int64 PROD_NAME object PROD_QTY int64 TOT_SALES float64 dtype: object EXAMINE THE OUTLIERS In [19]: import matplotlib.pyplot as plt import seaborn as sns In [20]: sns.displot(transaction_data.TOT_SALES, kde = True) Out[20]: <seaborn.axisgrid.FacetGrid at 0x13c6e6f0cd0> 20000 15000 · 10000 5000

In [21]: numericdata = transaction_data.select_dtypes (['float','int']) numericdata.head()

Out[21]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
	0	43390	1	1000	1	5	2	6.0
	1	43599	1	1307	348	66	3	6.3
	2	43605	1	1343	383	61	2	2.9
	3	43329	2	2373	974	69	5	15.0
	4	43330	2	2426	1038	108	3	13.8

In [22]: x = numericdata[numericdata['TOT_SALES']<8.000]</pre>

In [23]: sns.displot(x.TOT_SALES, kde = True) Out[23]: <seaborn.axisgrid.FacetGrid at 0x13c6f454650>

In [24]: sns.boxplot(x.TOT_SALES) Out[24]: <Axes: ylabel='TOT_SALES'>

