Теортест-1 (Вариант 25)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. Гладкая кривая это кривая, все параметризации которой гладкие;
- 2. Спрямляемы только кусочно-гладкие кривые;
- 3. Длина кривой зависит от параметризации;
- 4. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 5. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a,b] и f((a+b)/2)=1;
- 2. f > 0 на [a, b];
- 3. f непрерывна в точке a и f(a) = 1;
- 4. f(a) = f(b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f интегрируема на [a,b], то она ограничена на [a,b];
- 2. Если f монотонна на [a, b], то она интегрируема на [a, b];
- 3. Если f непрерывна на [a,b], то она интегрируема на [a,b];
- 4. Если f интегрируема на [a,b], то она непрерывна на [a,b];

Задача 4

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 2. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;
- 3. $\int f(x)dx = \int f(1/t) \frac{dt}{t^2}$;
- 4. $\int f(x)dx = \int f(\ln t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 2. первообразная дробно-рациональной функции выражается через элементарные функции;
- 3. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 4. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u = u(x) – первообразная для функции v = v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. udt = dv;
- 2. v = u';
- 3. u = v' + C;
- 4. vdt = du:

Задача 7

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\forall \varepsilon > 0 \ \exists \delta > 0$: $\forall \tau : |\tau| < \delta \Rightarrow S_{\tau} s_{\tau} < \varepsilon$;
- 2. $\forall \tau, \forall \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta, \ \forall \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 4. $\forall \varepsilon > 0 \ \exists \delta > 0$: $\forall \tau : |\tau| < \delta \ \exists \xi : S_{\tau} \sigma_{\tau}(\xi) < \varepsilon$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F имеет разрывы в точках разрыва функции f;
- 2. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 3. F непрерывна на [a, b];
- 4. Если f непрерывна на [a,b], то F первообразная для f на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь $A \cup B$ равна сумме площадей A и B;
- 2. площадь A всегда неотрицательна;
- 3. при движении площадь не меняется;
- 4. площадь графика интегрируемой функции равна нулю;

Задача 10

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [0, 10];
- 2. [-1, 20];
- 3. [-10, 20];
- 4. [-2, 20];