BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 31 433.0

Anmeldetag:

8. Juli 1999

Anmelder/Inhaber:

BASF AG, Ludwigshafen/DE

Bezeichnung:

Corynebacterium Glutamicum Genes encoding

novel Proteins

IPC:

C 07 K 14/34

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. Juli 2002

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Agurks

CERTIFIED COPY OF PRIORITY DOCUMENT

A 9161

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING NOVEL PROTEINS

Abstract of the Disclosure

Isolated nucleic acid molecules, designated MCP nucleic acid molecules, which encode novel MCP proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MCP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated MCP proteins, mutated MCP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of MCP genes in this organism.

_ 1 _

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING NOVEL PROTEINS

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through the large-scale culture of bacteria developed to produce and secrete large quantities of one or more desired molecules. One-particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

Summary of the Invention

This invention provides novel nucleic acid molecules which may be used to identify or classify Corynehacterium glutamicum or related species of bacteria. C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The nucleic acid molecules therefore can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. While C glutamicum itself is nonpathogenic, it is related to other Corynebacterium species, such as Corynebacterium diphtheriae (the causative agent of diphtheria), which are important human pathogens. The ability to identify the presence of Corynebacterium species therefore also can have significant clinical relevance, e.g., diagnostic applications. Further, these nucleic acid molecules may serve as reference points for the mapping of the C. glutamicum genome, or of genomes of related organisms.

These novel nucleic acid molecules encode proteins, referred to herein as marker and fine chemical production (MCP) proteins. These MCP proteins may be involved, for example, in the direct or indirect production of one or more fine chemicals from C. glutamicum. The MCP proteins of the invention may also participate in the degradation of hydrocarbons or the oxidation of terpenoids. These proteins may also be utilized for

15

20

the identification of Corynebacterium glutamicum or organisms related to C. glutamicum: the presence of an MCP protein specific to C. glutamicum and related species in a mixture of proteins may indicate the presence of one of these bacteria in the sample. Further, these MCP proteins may have homologues in plants or animals which are involved in a disease state or condition: these proteins thus may serve as useful pharmaceutical targets for drug screening and the development of therapeutic compounds.

Given the availability of cloning vectors for use in Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4.649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al. J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al.. J. Gen Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to modulate the production of one or more fine chemicals. This modulation may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation. For example, by modifying the activity of a protein involved in the biosynthesis or degradation of a fine chemical (i.e., through mutagenesis of the corresponding gene). one may directly modulate the ability of the cell to synthesize or to degrade this compound, thereby modulating the yield and/or efficiency of production of the fine chemical. Similarly, by modulating the activity of a protein which regulates a fine chemical metabolic pathway, one may directly influence whether the production of the desired compound is up- or down-regulated, either of which will modulate the yield or efficiency of production of the fine chemical from the cell.

20

35

Indirect modulation of fine chemical production may also result by modifying the activity of a protein of the invention (i.e., by mutagenesis of the corresponding gene) such that the overall ability of the cell to grow and divide or to remain viable and productive is increased. The production of fine chemicals from C. glutamicum is generally accomplished by the large-scale fermentative culture of these microorganisms, conditions which are frequently suboptimal for growth and cell division. By engineering a protein of the invention (e.g., a stress response protein, a cell wall protein, or proteins involved in the metabolism of compounds necessary for cell growth and division to occur, such as nucleotides and amino acids) such that it is better able to survive, grow, and multiply in such conditions, it may be possible to increase the number and productivity of such engineered C. glutamicum cells in large-scale culture, which in turn should result in increased yields and/or efficiency of production of one or more desired fine chemicals. Further, the metabolic pathways of any cell are necessarily

interrelated and coregulated. By altering the activity or regulation of any one metabolic pathway in C. glutamicum (i.e., by altering the activity of one of the proteins of the invention which participates in such a pathway), it is possible to concomitantly alter the activity or regulation of other metabolic pathways in this microorganism, which may be directly involved in the synthesis or degradation of a fine chemical.

The invention provides novel nucleic acid molecules which encode proteins, referred to herein as MCP proteins, which are capable of, for example, modulating the production or efficiency of production of one or more fine chemicals from C. glutamicum, or of serving as identifying markers for C glutamicum or related organisms. Nucleic acid molecules encoding an MCP protein are referred to herein as MCP nucleic acid molecules. In a preferred embodiment, the MCP protein is capable of modulating the production or efficiency of production of one or more fine chemicals from C. glutamicum, or of serving as identifying markers for C glutamicum or related organisms. Examples of such proteins include those encoded by the genes set forth in Table 1.

15

20

30

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs) comprising a nucleotide sequence encoding an MCP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of MCP-encoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth in Appendix A or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%. 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth in Appendix A, or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth in Appendix B. The preferred MCP proteins of the present invention also preferably possess at least one of the MCP activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B, e.g., sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains an MCP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to modulate the production or efficiency of production of one or more fine chemicals from C glutamicum, or of

serving as an identifying marker for C. glutamicum or related organisms. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%. 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of Appendix B (e.g., an entire amino acid sequence selected from those sequences set forth in Appendix B). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

In another preferred embodiment, the isolated nucleic acid molecule is derived from C. glutamicum and encodes a protein (e.g., an MCP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C glutamicum or related organisms, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

10

15

20

25

30 -

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of Appendix A. Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum MCP protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an MCP protein by culturing the host cell in a suitable medium. The MCP protein can then be isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an MCP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated MCP sequence as a transgene. In another embodiment, an endogenous MCP gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered MCP gene. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with

Corynehacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

Still another aspect of the invention pertains to an isolated MCP protein or a portion. e.g.. a biologically active portion, thereof. In a preferred embodiment, the isolated MCP protein or portion thereof is capable of modulating the production or efficiency of production of one or more fine chemicals from C. glutamicum. or of serving as an identifying marker for C. glutamicum or related organisms. In another preferred embodiment, the isolated MCP protein or portion thereof is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to, for example, modulate the production or efficiency of production of one or more fine chemicals from C glutamicum, or to serve as identifying markers for C. glutamicum or related organisms.

10

The invention also provides an isolated preparation of an MCP protein. In preferred embodiments, the MCP protein comprises an amino acid sequence of Appendix B. In another preferred embodiment, the invention pertains to an isolated full 15 length protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame set forth in Appendix A). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of 20 Appendix B. In other embodiments, the isolated MCP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C. glutamicum or related organisms.

Alternatively, the isolated MCP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98.%, or 99% or more homologous, to a nucleotide sequence of Appendix B. It is also preferred that the preferred forms of MCP proteins also have one or more of the MCP bioactivities described herein.

The MCP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-MCP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the MCP

protein alone. In other preferred embodiments, this fusion protein is capable of modulating the yield, production and/or efficiency of production of one or more fine chemicals from C. glutamicum, or of serving as an identifying marker for C. glutamicum or related organisms. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates production of a desired compound from the cell.

Another aspect of the invention pertains to a method for producing a line chemical. This method involves the culturing of a cell containing a vector directing the expression of an MCP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an MCP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus Corynebacterium or Brevibacterium, or is selected from those strains set forth in Table 3.

15

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates MCP protein activity or MCP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more C. glutomicum MCP protein activities, such that the yield, production, and/or efficiency of production of a desired fine chemical by this microorganism is improved. The agent which modulates MCP protein activity can be an agent which stimulates MCP protein activity or MCP nucleic acid expression. Examples of agents which stimulate MCP protein activity or MCP nucleic acid expression include small molecules, active MCP proteins, and nucleic acids encoding MCP proteins that have been introduced into the cell. Examples of agents which inhibit MCP activity or expression include small molecules and antisense MCP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields.

production, and/or efficiency of production of a desired compound from a cell,

involving the introduction of a wild-type or mutant MCP gene into a cell, either
maintained on a separate plasmid or integrated into the genome of the host cell. If
integrated into the genome, such integration can be random, or it can take place by
homologous recombination such that the native gene is replaced by the introduced copy,
causing the production of the desired compound from the cell to be modulated. In a
preferred embodiment, said yields are increased. In another preferred embodiment, said
chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical
is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

Detailed Description of the Invention

The present invention provides MCP nucleic acid and protein molecules. These MCP nucleic acid molecules may be utilized in the identification of Corynebacterium glutomicum or related organisms, in the mapping of the C. glutamicum genome (or a 5. genome of a closely related organism), or in the identification of microorganisms which may be used to produce fine chemicals. e.g., by fermentation processes. The proteins encoded by these nucleic acids may be utilized in the direct or indirect modulation of the production or efficiency of production of one or more fine chemicals from C. glutamicum, as identifying markers for C. glutamicum or related organisms, in the oxidation of terpenoids or the degradation of hydrocarbons, or as targets for the development of therapeutic pharmaceutical compounds. Aspects of the invention are further explicated below.

Fine Chemicals

15

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid). diols (e.g., propane diol, and butane diol), carbohydrates (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition. Lipids, Health, and Disease Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research -30 Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press. (1995)). enzymes, and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is art-

recognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds. while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though Lamino acids are generally the only type found in naturally-occurring proteins. Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosynthesis, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, Lmethionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine. valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/Lmethionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids technical production and use, p. 466-502 in Rehm et al. (eds.) Biotechnology vol. 6. chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as Nacetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2. p. 57-97, VCH:

Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) Ann. Rev. amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) Ann. Rev. Biochem. 47: 533-606). Glutamate is synthesized by the reductive amination of a-

ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a threestep process beginning with 3-phosphoglycerate (an intermediate in glycolysis). and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain B-carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transbydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, 15 threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored. and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer. L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

B. Vitamin, Cofactor and Nutraceutical Metabolism and Uses

20

25

30

35

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although they are readily synthesized by other organisms such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of

metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong. A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press; Champaign, IL X, 374 S).

.15

20

30

35

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B₆' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit. 5-hydroxy-6-methylpyridine, Pantothenate (pantothenic acid, (R)-(+)-N-(2.4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β-alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β-alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of

panthothante, but also the production of (R)-pantoic acid. (R)-pantolacton, (R)-panthenol (provitamin B_5), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the \alpha-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin': Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin. Vitamin B₆, pantothenate, and biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

C. Purine, Pyrimidine. Nucleoside and Nucleotide Metabolism and Uses

30

35

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid

moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis: by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which may serve as energy stores (e.g., ADP, ATP) or as coenzymes (i.e., FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med Res Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and Related Compounds in Biotechnology vol. 6. Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

10

20

30

35

The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42. Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides". Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'-phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of utidine-5'-monophosphate (UMP)

from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

D. Trehalose Metaholism and Uses

75

Trehalose consists of two glucose molecules, bound in α , α -1.1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto et al., (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) Trends Biotech. 16: 460-467; Paiva. C.L.A. and Panek. A.D. (1996) Biosech. Ann. Rev. 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as MCP nucleic acid molecules. These MCP nucleic acid molecules are useful not only for the identification of C. glutamicum or related bacterial species, but also as markers for the mapping of the C. glutamicum genome and in the identification of bacteria useful for the production of fine chemicals by. e.g.. fermentative processes. The present invention is also based, at least in part, on the MCP protein molecules encoded by these MCP nucleic acid molecules. These MCP proteins are capable of modulating the yield. production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, of serving as identifying markers for C. glutamicum or related organisms, of degrading hydrocarbons, and of serving as targets for the development of therapeutic pharmaceutical compounds. In one embodiment, the MCP molecules of the invention directly or indirectly participate in one or more fine chemical metabolic pathways in C. glutamicum. In a preferred embodiment, the activity of the MCP molecules of the invention to indirectly or directly participate in such metabolic pathways has an impact on the production of a desired fine chemical by this microorganism. In a particularly preferred embodiment, the MCP molecules of the 35 invention are modulated in activity, such that the C. glutamicum metabolic pathways in which the MCP proteins of the invention participate are modulated in efficiency or

output, which either directly or indirectly modulates the production or efficiency of production of a desired fine chemical by C glutamicum.

10

20

30

The language. "MCP protein" or "MCP polypeptide" includes proteins which are able to modulate the yield, production, and/or efficiency of production of one or more 5 fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to scrve as a target protein for drug screening or design, or to serve as identifying markers for C glutamicum or related organisms. Examples of MCP proteins include those encoded by the MCP genes set forth in Table 1 and Appendix A. The terms "MCP gene" or "MCP nucleic acid sequence" include nucleic acid sequences encoding an MCP protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions. Examples of MCP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production 15 to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound. preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then. (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

In another embodiment, the MCP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microotganism such as C. glutamicum, either directly or indirectly. Using recombinant genetic techniques. one or more of the MCP proteins of the invention may be

manipulated such that its function is modulated. Such modulation of function may result in the modulation of the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutomicum.

For example, by modifying the activity of a protein involved in the biosynthesis or degradation of a fine chemical (i.e., through mutagenesis of the corresponding gene), one may directly modulate the ability of the cell to synthesize or to degrade this compound, thereby modulating the yield and/or efficiency of production of the fine chemical. Similarly, by modulating the activity of a protein which regulates a fine chemical metabolic pathway, one may directly influence whether the production of the desired compound is up- or down-regulated, either of which will modulate the yield or efficiency of production of the fine chemical from the cell.

Indirect modulation of fine chemical production may also result by modifying the activity of a protein of the invention (i.e., by mutagenesis of the corresponding gene) such that the overall ability of the cell to grow and divide or to remain viable and productive is increased. The production of fine chemicals from C. glutamicum is generally accomplished by the large-scale fermentative culture of these microorganisms. conditions which are frequently suboptimal for growth and cell division. By engineering a protein of the invention (e.g., a stress response protein, a cell wall protein, or proteins involved in the metabolism of compounds necessary for cell growth and division to occur, such as nucleotides and amino acids) such that it is better able to survive, grow, and multiply in such conditions, it may be possible to increase the number and productivity of such engineered C. glutamicum cells in large-scale culture. which in turn should result in increased yields and/or efficiency of production of one or more desired fine chemicals. Further, the metabolic pathways of any cell are necessarily interrelated and coregulated. By altering the activity or regulation of any one metabolic pathway in C. glutamicum (i.e., by altering the activity of one of the proteins of the invention which participates in such a pathway), it is possible to concomitantly alter the activity or regulation of other metabolic pathways in this microorganism, which may be directly involved in the synthesis or degradation of a fine chemical.

20

30

The isolated nucleic acid sequences of the invention are contained within the genome of a Corynebacterium glutamicum strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequences of the isolated C. glutamicum MCP nucleic acid molecules and the predicted amino acid sequences of the C. glutamicum MCP proteins are shown in Appendices A and B. respectively. Computational analyses were performed which classified and/or identified many of these nucleotide sequences as sequences having homology to E. coli or Bacillus subtilis genes.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of Appendix B. As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%. 80-90%. or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The MCP protein or a biologically active portion or fragment thereof of the invention is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C. glutamicum or related organisms.

Various aspects of the invention are described in further detail in the following subsections:

A. Isolated Nucleic Acid Molecules

10

15

20

One aspect of the invention pertains to isolated nucleic acid molecules that encode MCP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of MCP-encoding nucleic acid (e.g., MCP DNA). These nucleic acid molecules may be used to identify C. glutamicum or related organisms, to map the genome of C. glutamicum or closely related bacteria, or to identify microorganisms useful for the production of fine chemicals, e.g.. by fermentative processes. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5° end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of scquences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the

nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated MCP nucleic acid molecule can contain less than about 5 kb. 4kb. 3kb. 2kb. 1 kb. 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g. a C. glutamicum cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of Appendix A. or a portion thereof. can be isolated using 10 standard molecular biology techniques and the sequence information provided herein. For example, a C. glutamicum MCP cDNA can be isolated from a C. glutamicum library using all or portion of one of the sequences of Appendix A as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning. A Laboratory Manual. 2nd. ed., Cold Spring Harbor 15 Laboratory. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence of Appendix A). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; 25 or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL) and random polynucleotide primers or oligonucleotide primers based upon one of the nucleotide sequences shown in Appendix A. Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in Appendix A. A nucleic acid of the invention can be 30 amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an MCP nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in Appendix A. The sequences of Appendix A correspond to the Corynebacterium glutamicum MCP cDNAs of the invention. This cDNA comprises sequences encoding MCP proteins (i.e., "the coding region", indicated in each sequence in Appendix A), as well as 5' untranslated sequences and 3' untranslated sequences, also indicated in Appendix A. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the sequences in Appendix A.

For the purposes of this application, it will be understood that each of the sequences set forth in Appendix A has an identifying RXA number having the designation "RXA" followed by 5 digits (i.e., RXA00003). Each of these sequences comprises up to three parts: a 5° upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA designation to eliminate confusion. The recitation "one of the sequences in Appendix A", then, refers to any of the sequences in Appendix A. which may be distinguished by their differing RXA designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is set forth in Appendix B. The sequences of Appendix B are identified by the same RXA designations as Appendix A, such that they can be readily correlated. For example, the amino acid sequence in Appendix B designated RXA00003 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule RXA00003 in Appendix A.

15

20

.30

In one embodiment, the nucleic acid molecules of the present invention are not intended to include those compiled in Table 2.

In another preferred embodiment, an isolated nucleic acid molecule of the 25 invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in Appendix A, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in Appendix A is one which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A such that it can hybridize to one of the nucleotide sequences shown in Appendix A. thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, or 90-95%, and even more preferably at least about 95%. 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in Appendix A, or a portion thereof. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a

nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in Appendix A, or a portion thereof.

Morcover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in Appendix A. for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an MCP protein. The nucleotide sequences determined from the cloning of the MCP genes from C. glutamicum allows for the generation of probes and primers designed for use in identifying and/or cloning MCP homologues in other cell types and organisms, as well as MCP homologues from other Corynehacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12. preferably about 25. more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in Appendix A, an anti-sense sequence of one of the sequences set forth in Appendix A. or naturally occurring mutants thereof. Primers based on a nucleotide sequence of Appendix A can be used in PCR reactions to clone MCP homologues. Probes based on the MCP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an MCP protein, such as by measuring a level of an MCP-encoding nucleic acid in a sample of cells, e.g., detecting MCP mRNA levels or determining whether a genomic MCP gene has been mutated or deleted.

10

15

25`

35

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C. glutamicum or related organisms. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of Appendix B) amino acid residues to an amino acid sequence of Appendix B such that the protein or portion thereof is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C.

glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C glutamicum or related organisms. Examples of such activities are also described herein. Thus, "the function of an MCP protein" contributes to the overall regulation of one or more fine chemical metabolic pathways, or to the degradation of a hydrocarbon, or to the oxidation of a terpenoid.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of Appendix B.

Portions of proteins encoded by the MCP nucleic acid molecules of the invention are preferably biologically active portions of one of the MCP proteins. As used herein, the term "biologically active portion of an MCP protein" is intended to include a portion. e.g., a domain/motif, of an MCP protein that modulates the yield. production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, that degrades hydrocarbons, that oxidizes terpenoids, that may serve as a target for drug development, or that may serve as an identifying marker for C. glutamicum or related organisms. To determine whether an MCP protein or a biologically active portion thereof can modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, can degrade hydrocarbons, or can oxidize terpenoids, an assay of activity may be performed. Such assay methods are well known to those skilled in the art, as detailed in Example 8 of the Exemplification.

15

25

Additional nucleic acid fragments encoding biologically active portions of an MCP protein can be prepared by isolating a portion of one of the sequences in Appendix B. expressing the encoded portion of the MCP protein or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the MCP protein or peptide.

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Appendix A (and portions thereof) due to degeneracy of the genetic code and thus encode the same MCP protein as that encoded by the nucleotide sequences shown in Appendix A. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in Appendix B. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

In addition to the C. glutamicum MCP nucleotide sequences shown in Appendix A, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of MCP proteins may exist within a population (e.g., the C glutamicum population). Such genetic polymorphism in the MCP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an MCP protein, preferably a C. glutamicum MCP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the MCP gene. Any and all such nucleotide variations and 10 resulting amino acid polymorphisms in MCP that are the result of natural variation and that do not alter the functional activity of MCP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum MCP cDNA of the invention can be isolated based on 15 their homology to the C. glutamicum MCP nucleic acid disclosed herein using the C. glutamicum cDNA. or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of Appendix A. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein. the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology. John Wiley & Sons. N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C. followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of Appendix A corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an 35 RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutomicum MCP protein.

In addition to naturally-occurring variants of the MCP sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into a nucleotide sequence of Appendix A, thereby leading to changes in the amino acid sequence of the encoded MCP protein, without altering the functional ability of the MCP protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of Appendix A. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the MCP proteins (Appendix B) without altering the activity of said MCP protein, whereas an "essential" amino acid residue is required for MCP protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having MCP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering MCP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding MCP proteins that contain changes in amino acid residues that are not essential for MCP activity. Such MCP proteins differ in amino acid sequence from a sequence contained in Appendix B yet retain at least one of the MCP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of Appendix B and is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C. glutamicum or related organisms. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences in Appendix B, more preferably at least about 60-70% homologous to one of the sequences in Appendix B, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences in Appendix B, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences in Appendix B.

20

30

To determine the percent homology of two amino acid sequences (e.g., one of the sequences of Appendix B and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences of Appendix B) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of

the sequence selected from Appendix B), then the molecules are homologous at that position (i.c., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences 5 (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding an MCP protein homologous to a protein sequence of Appendix B can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of Appendix A such that one or more amino acid substitutions, additions or deletions are introduced into the 10 encoded protein. Mutations can be introduced into one of the sequences of Appendix A by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid. glutamic acid). uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an MCP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an MCP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an MCP activity described herein to identify mutants that retain MCP activity. Following mutagenesis of one of the sequences of Appendix A, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the Exemplification).

In addition to the nucleic acid molecules encoding MCP proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be

20

complementary to an entire MCP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an MCP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID RXA00003 comprises nucleotides 1 to 741). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding MCP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred

15

Given the coding strand sequences encoding MCP disclosed herein (e.g., the to as 5' and 3' untranslated regions). sequences set forth in Appendix A), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of MCP mRNA. but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of MCP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of MCP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed by chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nuclcic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil. 5-bromouracil. 5-chlorouracil. 5-iodouracil. hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil. 5carboxymethylaminomethyl-2-thiouridine. 5-carboxymethylaminomethyluracil. dihydrouracil, beta-D-galactosylqueosine, inosine. N6-isopentenyladenine. 1methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-30 methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-Dmannosylqueosine. 5'-methoxycarboxymethyluracil. 5-methoxyuracil. 2-methylthio-N6isopentenyladenine. uracil-5-oxyacetic acid (v). wybutoxosine. pseudouracil, queosine. 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-

amino-3-N-2-carboxypropyl) uracil. (acp3)w, and 2.6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an MCP protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a eubacterial, vural or eucaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Len. 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave MCP mRNA transcripts to thereby inhibit translation of MCP mRNA. A ribozyme having specificity for an MCP-encoding nucleic acid can be designed based upon the nucleotide sequence of an MCP cDNA disclosed herein (i.e., RXA00003 in Appendix A). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an MCP-encoding mRNA.

20

Sec. e.g., Cech et al. U.S. Patent No. 4,987,071 and Cech et al. U.S. Patent No. 5.116.742. Alternatively, MCP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.

Alternatively, MCP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an MCP nucleotide sequence (e.g., an MCP promoter and/or enhancers) to form triple helical structures that prevent transcription of an MCP gene in target cells. See generally, Helene, C. (1991)

Anticancer Drug Des. 6(6):569-84: Helene, C. et al. (1992) Ann N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

5

10

15

20

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an MCP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid". which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of

interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, repressor binding sites, activator binding sites, enhancer regions and other expression control elements (e.g., terminators, other elements of mRNA secondary structure, or polyadenylation signals). Such regulatory sequences are described. for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185. Academic Press. San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides. 10 including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., MCP proteins, mutant forms of MCP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of MCP proteins in prokaryotic or eukaryotic cells. For example, MCP genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using baculovirus expression vectors). yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review". Yeast 8: 423-488: van den Hondel. C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi. J.W. Bennet & L.L. Lasure, eds.. p. 396-428: Academic Press: San Diego: and van den Hondel. C.A.M.J.J. & Punt. P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi. Peberdy. J.F. et al., eds., p. 1-28. Cambridge University Press: Cambridge). algae and multicellular plant cells (see Schmidt. R. and Willmitzer, L. (1988) High efficiency Agrobacterium tumefactions -mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185. Academic Press. San Diego. CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in virro, for example

using T7 promoter regulatory sequences and T7 polymerase. Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion 35

vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes. and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRJT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the MCP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant MCP protein unfused to GST can be recovered by cleavage of the fusion 15 protein with thrombin.

Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185. Academic Press, San Diego. California (1990) 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5

One strategy to maximize recombinant protein expression is to express the promoter. protein in a host bacteria with an impaired capacity to proteolytically cleave the 30 recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the MCP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S cerivisae* include pyepSec1 (Baldari, et al., (1987) *Embo J.* 6:229-234), pMFa (Kurjan and Herskowitz. (1982) *Cell* 30:933-943). pJRY88 (Schultz et al., (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge.

Alternatively, the MCP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

10

15

20

30

35

In another embodiment, the MCP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721.

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2. cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning. A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al.

(1987) Genes Dev 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol 43:235-275). in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748). neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916). and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4.873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to MCP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub. H. et al. (1986) "Antisense RNA as a molecular tool for genetic analysis", Reviews - Trends in Genetics, Vol. 1(1).

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an MCP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other

suitable host cells are known to those skilled in the art. Microorganisms related to Corynebacterium glutamicum which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via

conventional transformation or transfection techniques. As used herein, the terms

"transformation", "transfection", "conjugation" and "transduction" are intended to refer

to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g.,

DNA) into a host cell, including using natural competence, chemical mediated transfer,

DNA) into a host cell, including using natural competence, chemical mediated

calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated

calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated

transfection, lipofection, or electroporation. Suitable methods for transforming or

transfection host cells can be found in Sambrook, et al. (Molecular Cloning, A

transfecting host cells can be found in Sambrook, et al. (Molecular Cloning, A

Laboratory Manual, 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

15

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred generally introduced into the host cells along with the gene of uterest. Preferred selectable markers include those which confer resistance to drugs, such as G418, selectable markers include those which confer resistance to drugs, such as G418, selectable markers include those which confer resistance to drugs, such as G418, introduced into a host cell on the same vector as that encoding an MCP protein or can be introduced into a host cell on the same vector as that encoding an MCP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated acid can be identified by. for example, drug selection (e.g., cells that have incorporated which

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an MCP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the MCP gene. hut it can be a Preferably, this MCP gene is a Corynehacterium glutamicum MCP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source, homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous MCP gene is functionally disrupted (i.e., no longer recombination, the endogenous MCP gene is a "knock out" vector). Alternatively, encodes a functional protein: also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous MCP gene is mutated or otherwise altered but still encodes functional protein (e.g., the MCP gene is mutated or otherwise altered to thereby alter the expression of the upstream regulatory region can be altered to thereby alter the expression of the endogenous MCP protein). In the homologous recombination vector, the altered portion of the MCP gene is flanked at its 5" and 3" ends by additional nucleic acid of the MCP gene is flanked at its 5" and 3" ends by additional nucleic acid of the MCP

gene to allow for homologous recombination to occur between the exogenous MCP gene carried by the vector and an endogenous MCP gene in a microorganism. The additional flanking MCP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, less than one kilobase of flanking DNA (both at the 5' and 3' ends) is included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced MCP gene has homologously recombined with the endogenous MCP gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an MCP gene on a vector placing it under control of the lac operon permits expression of the MCP gene in the presence of IPTG. Such regulatory systems are well known in the art.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) an MCP protein. Accordingly, the invention further provides methods for producing MCP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an MCP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type 20 or altered MCP protein) in a suitable medium until MCP protein is produced. In another embodiment, the method further comprises isolating MCP proteins from the medium or the host cell.

C. Isolated MCP Proteins

10

15

Another aspect of the invention pertains to isolated MCP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when 30 chemically synthesized. The language "substantially free of cellular material" includes preparations of MCP protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of MCP protein baving less than about 30% (by dry weight) of non-MCP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-MCP protein. still more preferably less than about 10% of non-MCP protein, and most preferably less than about 5% non-MCP protein. When the MCP protein or biologically active portion

thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of MCP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of MCP protein having less than about 30% (by dry weight) of chemical precursors or non-MCP chemicals, more preferably less than about 20% chemical precursors or non-MCP chemicals. still more preferably less than about 10% chemical precursors or non-MCP chemicals, and most preferably less than about 5% chemical precursors or non-MCP chemicals. In preferred embodiments. isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the MCP protein is derived. Typically, such proteins are 15 produced by recombinant expression of, for example, a C. glutamicum MCP protein in a

An isolated MCP protein or a portion thereof of the invention is able to modulate microorganism such as C. glutamicum. the yield, production, and/or efficiency of production of one or more fine chemicals from C glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C glutamicum or related organisms. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to modulate the yield. production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to serve as a target for drug development, or to serve as an identifying marker for C. glutamicum or related organisms. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an MCP protein of the invention has an amino acid sequence shown in Appendix B. In yet another preferred embodiment, the MCP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes. e.g., hybridizes under stringent conditions. to a nucleotide sequence of Appendix A. In still another preferred embodiment, the MCP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, 90-95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid sequences of Appendix B. The preferred MCP proteins of the present invention also preferably possess at least one of the MCP 35

activities described herein. For example, a preferred MCP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes. e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A. and which is able to modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum, to degrade hydrocarbons, to oxidize terpenoids, to scrve as a target for drug development, or to serve as an identifying marker for C. glutamicum or related organisms.

5

20

25

In other embodiments, the MCP protein is substantially homologous to an amino acid sequence of Appendix B and retains the functional activity of the protein of one of the sequences of Appendix B yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the MCP protein is a protein which comprises an amino acid sequence which is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80, 80-90, 90-95%, and most preferably at least about 96%, 97%, 98%, 15 99% or more homologous to an entire amino acid sequence of Appendix B and which has at least one of the MCP activities described herein. In another embodiment, the invention pertains to a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of Appendix B.

Biologically active portions of an MCP protein include peptides comprising amino acid sequences derived from the amino acid sequence of an MCP protein, e.g., an amino acid sequence shown in Appendix B or the amino acid sequence of a protein homologous to an MCP protein, which include fewer amino acids than a full length MCP protein or the full length protein which is homologous to an MCP protein, and exhibit at least one activity of an MCP protein. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an MCP protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically 30 active portions of an MCP protein include one or more selected domains/motifs or portions thereof having biological activity.

MCP proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the MCP protein is expressed in the host cell. The MCP protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an MCP protein.

polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native MCP protein can be isolated from cells (e.g., endothelial cells, bacterial cells, fungal cells or other cells), for example using an anti-MCP antibody, which can be produced by standard techniques utilizing an MCP protein or fragment thereof of this invention.

5

10

20

30

The invention also provides MCP chimeric or fusion proteins. As used herein, an MCP "chimeric protein" or "fusion protein" comprises an MCP polypeptide operatively linked to a non-MCP polypeptide. An "MCP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an MCP protein. whereas a "non-MCP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the MCP protein. e.g., a protein which is different from the MCP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the MCP polypeptide and the non-MCP polypeptide are fused in-frame to each other. The non-MCP polypeptide can be fused to the N-terminus or Cterminus of the MCP polypeptide. For example, in one embodiment the fusion protein is a GST-MCP fusion protein in which the MCP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant MCP proteins. In another embodiment, the fusion protein is an MCP protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells, bacterial host cells, fungal host cells), expression and/or secretion of an MCP protein can be increased through use of a heterologous signal sequence.

Preferably, an MCP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An MCP-

encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the MCP protein.

Homologues of the MCP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MCP protein. As used herein, the term "homologue" refers to a variant form of the MCP protein which acts as an agonist or antagonist of the activity of the MCP protein. An agonist of the MCP protein can retain substantially the same, or a subset, of the biological activities of the MCP protein. An antagonist of the MCP protein can inhibit one or more of the activities of the naturally occurring form of the MCP protein, by, for example, competitively binding to a downstream or upstream member of a biochemical pathway which includes the MCP protein.

In an alternative embodiment, homologues of the MCP protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MCP protein for MCP protein agonist or antagonist activity. In one embodiment, a variegated library of MCP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MCP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MCP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MCP sequences therein. There are a variety of methods which can be used to produce libraries of potential MCP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MCP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3: Itakura et al. (1984) Annu. Rev. Biochem. 53:323: Itakura et al. (1984) Science 198:1056: Ike et al. (1983) Nucleic Acid Res. 11:477.

20

30

35

In addition, libraries of fragments of the MCP protein coding can be used to generate a variegated population of MCP fragments for screening and subsequent selection of homologues of an MCP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an MCP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression

vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the MCP protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of MCP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recrusive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify MCP homologues (Arkin and Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 15 6(3)-327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated MCP library, using methods well known in the art.

D. Uses and Methods of the Invention 20

5

10

30

35

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of C. glutamicum and related organisms; mapping of genomes of organisms related to C. glutamicum; identification and localization of C. glutamicum sequences of interest, evolutionary studies; determination of MCP protein regions required for function; modulation of an MCP protein activity; modulation of the activity of one or more metabolic pathways; and modulation of cellular production of a desired compound, such as a fine chemical.

The MCP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes, and probes based thereon; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is

nonpathogenic, it is related to pathogenic species, such as Corynehocterium diphtheriae. Detection of such organisms is of significant clinical relevance.

To detect the presence of C glutomicum in a sample, techniques well known in the art may be employed. Specifically, the cells in the sample may optionally first be cultured in a suitable liquid or on a suitable solid culture medium to increase the number of cells in the sample. These cells are lysed, and the total DNA content extracted and optionally purified to remove debris and protein material which may interfere with subsequent analysis. The polymerase chain reaction or a similar technique known in the art is performed (for general reference on methodologies commonly used for the amplification of nucleic acid sequences, see Mullis et al., U.S. Patent No. 4,683,195. Mullis et al., U.S. Patent No. 4,965,188, and Innis, M.A., and Gelfand, D. H., (1989) PCR Protocols. A guide to Methods and Applications, Academic Press, p. 3-12, and (1988) Biotechnology 6:1197, and International Patent Application No. WO89/01050) in which primers specific to an MCP nucleic acid molecule of the invention are incubated with the nucleic acid sample such that, if present in the sample, that particular MCP nucléic acid sequence will be amplified. The particular MCP nucleic acid to be amplified is selected based on its uniqueness to the C. glutamicum génome, or to the genomes of C. glutamicum and only a few closely related bacteria. The presence of the desired amplified product is thus indicative of the presence of C. glutamicum, or an organism closely related to C. glutamicum.

Further, the nucleic acid and protein molecules of the invention may serve as markers for specific regions of the genome. It is possible, using techniques well known in the art, to ascertain the physical location on the *C glutamicum* genome of the MCP nucleic acid molecules of the invention, which in turn provides markers on the genome which can be used to aid in the placement of other nucleic acid molecules and genes on the genome map. Also, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related bacterial species that these nucleic acid molecules may similarly permit the construction of a genomic map in such bacteria (e.g., Brevihacterium lactofermentum).

The nucleic acid molecules of the invention have utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed

30

multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds.

The MCP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

15

The MCP protein molecules of the invention may also be utilized as markers for the classification of an unknown bacterium as C. glutamicum, or for the identification of C glutamicum or closely related bacteria in a sample. For example, using techniques well known in the art, cells in a sample may optionally be amplified (e.g., by culturing in an appropriate medium) to increase the sample size, and then may be lysed to release proteins contained therein. This sample may optionally be purified to remove debris and nucleic acid molecules which may interfere with subsequent analysis. Antibodies specific for a selected MCP protein of the invention may be incubated with the protein sample in a typical Western assay format (see, e.g., Ausubel et al., (1988) Current Protocols in Molecular Biology, Wiley: New York) in which the antibody will bind to its target protein if this protein is present in the sample. An MCP protein is selected for this type of assay if it is unique or nearly unique to C. glutamicum or C. glutamicum and bacteria very closely related to C. glutamicum. Proteins in the sample are then separated by gel electrophoresis, and transferred to a suitable matrix, such as nitrocellulose. An appropriate secondary antibody having a detectable label (e.g., chemiluminescent or colorimetric) is incubated with this matrix, followed by stringent washing. The presence or absence of the label is indicative of the presence or absence of the target protein in the sample. If the protein is present, then this is indicative of the presence of C. glutamicum. A similar process enables the classification of an unknown bacterium as C. glutamicum; if a panel of proteins specific to C. glutamicum are not detected in protein samples prepared from the unknown bacterium, then that bacterium is not likely to be C. glutamicum. 35

Genetic manipulation of the MCP nucleic acid molecules of the invention may result in the production of MCP proteins having functional differences from the wild-

type MCP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

Such changes in activity may directly modulate the yield, production, and/or efficiency of production of one or more fine chemicals from C. glutamicum. For example, by modifying the activity of a protein involved in the biosynthesis or degradation of a fine chemical (i.e., through mutagenesis of the corresponding gene). one may directly modulate the ability of the cell to synthesize or to degrade this compound, thereby modulating the yield and/or efficiency of production of the fine chemical. Similarly, by modulating the activity of a protein which regulates a fine chemical metabolic pathway, one may directly influence whether the production of the desired compound is up- or down-regulated, either of which will modulate the yield or efficiency of production of the fine chemical from the cell.

Indirect modulation of fine chemical production may also result by modifying 15 the activity of a protein of the invention (i.e., by mutagenesis of the corresponding gene) such that the overall ability of the cell to grow and divide or to remain viable and productive is increased. The production of fine chemicals from C. glutamicum is generally accomplished by the large-scale fermentative culture of these microorganisms. conditions which are frequently suboptimal for growth and cell division. By engineering a protein of the invention (e.g., a stress response protein, a cell wall protein, or proteins involved in the metabolism of compounds necessary for cell growth and division to occur, such as nucleotides and amino acids) such that it is better able to survive, grow, and multiply in such conditions, it may be possible to increase the number and productivity of such engineered C. glutamicum cells in large-scale culture. which in turn should result in increased yields and/or efficiency of production of one or more desired fine chemicals. Further, the metabolic pathways of any cell are necessarily interrelated and coregulated. By altering the activity or regulation of any one metabolic pathway in C. glutamicum (i.e., by altering the activity of one of the proteins of the invention which participates in such a pathway). it is possible to concomitantly alter the activity or regulation of other metabolic pathways in this microorganism, which may be directly involved in the synthesis or degradation of a fine chemical.

20

25

The aforementioned mutagenesis strategies for MCP proteins to result in increased yields of a fine chemical from C. glutamicum are not meant to be limiting: variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid and protein molecules of the invention may be utilized to generate C. glutamicum or related strains of bacteria expressing mutated MCP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of C. glutamicum, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of C. glutamicum, but which are produced by a C. glutamicum strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, and published patent applications cited throughout this application are hereby incorporated by reference.

Exemplification

5

10

Example 1: Preparation of total genomic DNA of Corynebacterium glutamicum

A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight ATCC 13032 at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-1: 140.34 g/l sucrose. 2.46 g/l MgSO, \times 7H₂O. 10 ml/l KH₂PO, solution (100 g/l, adjusted to pH 6.7 with KOH). 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₁, 0.5 g/l yeast extract (Difco). 10 ml/l trace-elements-mix (200 mg/l FeSO₂ \times H₂O. 10 mg/l ZnSO. \times 7 H₂O. 3 mg/l MnCl₂ \times 4 H₂O. 30 mg/l H₃BO, 20 mg/l CoCl₂ \times 6 H₂O. 1 mg/l NiCl₂ x 6 H₂O. 3 mg/l Na₂MoO₄ x 2 H₂O. 500 mg/l complexing agent (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid. 20 mg/l riboflavin, 40 mg/l ca-panthothenate. 140 mg/l nicotinic acid. 40 mg/l pyridoxole hydrochloride. 200 mg/l myo-inositol). Lysozyme 20 was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C. the cell wall was degraded and the resulting protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml 25 NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 μ g/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol. phenol-chloroform-isoamylalcohol and chloroformisoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol. followed by a 30 min 30 incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20

µg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution. 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30 min incubation at -20°C, the DNA was collected by centrifugation (13.000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

Example 2: Construction of genomic libraries in Escherichia coli of Corynebacterium glutamicum ATCC13032.

Starting from DNA prepared as described in Example 1. cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press. or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) Proc. Natl. Acad. Sci. USA, 75:3737-3741): pACYC177 (Change & Cohen (1978) J. Bacteriol 134:1141-1156). plasmids of the pBS series (pBSSK+. pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Loristó (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) Gene 53:283-286.

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see e.g., Fleischman, R.D. et al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., Science, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis 30

20

In vivo mutagenesis of Corynebocterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: Escherichia coli and Salmonella, p. 2277-2294, ASM: Washington.) Such strains are well known to those skilled in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) Strategies 7: 32-34.

Example 5: DNA Transfer Between Escherichia coli and Corynebacterium glutamicum

Several Corynebacterium and Brevibacterium species contain endogenous plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynehacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology". John Wiley & Sons) to which a origin or replication for and a suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones -Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the 20 literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene, 25 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of Corynebacterium glutamicum. Transformation of C. glutamicum can be achieved by protoplast transformation (Kastsumata, R. et al. (1984) J. Bacteriol. 159306-311). protoplast transformation (Kastsumata, R. et al. (1984) J. Bacteriol. 159306-311). electroporation (Liebl, E. et al. (1989) FEMS Microbiol. Letters. 53:399-303) and in cases electroporation (Liebl, E. et al. (1989) FEMS Microbiol. Casteriol. 159306-311). where special vectors are used. also by conjugation (as described c.g. in Schäfer. A et al. (1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for

C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods well-known in the art) and transforming it into E. coli. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient E. coli strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is 15 extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from Corynebacterium glutamicum by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. (1992) Mol. Microbiol. 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA. standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

20

5

Example 7: Growth of Genetically Modified Corynehacterium glutamicum - Media and Culture Conditions

Genetically modified Corynebacteria are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and 5 readily available (Lieb et al. (1989) Appl. Microbiol. Biotechnol., 32:205-210; von der Osten et al. (1998) Biotechnology Letters. 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus Corynebacterium, in: The Procaryotes, Volume II. Balows, A. et al., eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources. inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, làctose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄. NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like com steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

15

20

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum. potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols. like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid. nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0

19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFC) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES. ACES and others can alternatively or simultaneously be used. It is also possible to maintain a constant culture pH through the addition of NaOH or NH₂OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

25

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD600 of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract. 5 g/l meat extract,

22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

5 Example 8 – In vitro Analysis of the Function of Mutant Proteins

20

30

35

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon, M., and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht. (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) EMBO J. 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis. R.B. (1989) "Pores. Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in C. glutamicum on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing

the medium and/or the collular component for increased production of the desired product (i.e., an amino acid). Such analysis techniques are well known to one skilled in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman. Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985): Fallon. A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials. John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations. in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow. F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129: 131-163: and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the C. glutamicum cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the C. glutamicum

13

20

30

cells, then the cells are removed from the culture by low-speed centrifugation. and the

supernate fraction is retained for further purification. The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One skilled in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical

Engineering Fundamentals, McGraw-Hill: New York (1986). 15

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC). spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons, Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Those skilled in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the Equivalents invention described herein. Such equivalents are intended to be encompassed by the following claims.

A GOLLA)
N THE APPLIC	. `
GENES IN 7	
TABLE	,

,	10.00		•	, ``		` m
Stop	6 1765 4729	1629 2720 3061 1144 2645	4858 635 783 1665 9980 3089 3724	33 2974 630 151 6018 15928	570 2444 638 1644 13423 2017 8071	6171 4085 4750 1877 15356 703 1011
Start	425 1259 4160	802 3709 3447 830 3742	4085 428 1 2555 10882 3422	497 1553 1 594 6497 15341	46 1548 1373 3023 14457 2 7943 5142 791	7097 3284 4409 1536 16813 47 47
Contig	GR00852 GR00248 GR00618	GR00481 GR00041 GR00007 GR00007	GR00023 GR00059 GR00169 GR00169 GR00253	GR00443 GR00474 GR00707 GR00739 GR00753	GR00787 GR00460 GR00118 GR00367 GR00403 GR00725 GR00725 GR00003	GR00037 GR00515 GR00639 OR00632 GR00641 GR00567 GR0092
Identification	RXA02223 RXA00911 RXA02032	RXA01707 RXA00271 RXA02427 RXA00399 RXA01166	RXA00150 RXA00318 RXA00338 RXA00555 RXA00657 RXA00930 RXA01198	RX401588 RX401693 RX402425 RX402613 RX400889	RXA02808 RXA01658 RXA02721 RXA01462 RXA01286 RXA01380 RXA01529 RXA0027	RXA00247 RXA01815 RXA02138 RXA02107 RXA02180 RXA01988 RXA01982

٠.

				·,
ĸ	Stop	7401 1477 4460 33169 8864 7435 6583 459 5354 8195 2816 8152 5839 492 13490	2084 4 283 2775 2775 867 888 6898 1633 2138 2592 19187 6	12807 11469 5048 6382 1172 5842 1079 2687 12045 20163 7121 515 597 2555 1533 6183
Z	Start	6220 1980 1980 1681 4 166 8457 6902 5789 420 4893 7344 4001 6575 6379 13008	1907 2 2 3089 1817 2 5575 6328 392 322 328 5271 18663 1680	11296 8557 4746 5222 918 4220 1648 9418 9418 2419 3 3 3 4 428 817 6653
,	Contig.	GR00447 GR0035 GR00495 GR00639 GR00639 GR00036 GR00036 GR00024 GR00028 GR00028 GR00028 GR00043 GR00043 GR00043	GR0049 GR00849 GR00328 GR00454 GR00454 GR00454 GR00567 GR00567 GR00567 GR00641 GR00661	GR00089 GR00014 GR00019 GR00019 GR00024 GR00024 GR00032 GR00037 GR00037 GR00037 GR00037 GR00037 GR00059
Identification	Code	RXA01597 RXA01176 RXA01178 RXA02131 RXA00214 RXA00213 RXA00214 RXA00161 RXA00161 RXA00161 RXA00179 RXA00279 RXA00279	KXA02575 RXA02824 RXA02849 RXA01023 RXA01034 RXA01035 RXA01945 RXA01968 RXA02452 RXA02183	RXA01342 RXA00054 RXA00056 RXA00118 RXA00118 RXA00118 RXA00122 RXA00120 RXA00210 RXA00220 RXA00221 RXA00321 RXA00321 RXA00321 RXA00322 RXA00322 RXA00322

	•									•																											-										×.
K	Slop	2025	638	252	2269	718	1062	767	242	7101	2056	1200	2754	3278	4	1223	1033	3514	512	200	PQ	6389	2395.		616	792	14268	974	, G	=	657	1991	2280	2107	9/00	3326	2578	2881	27.2	2311	2462	4 (356	4665 28,7	757	4659	7
Z	Start	2657	1057	-	2027	7	742	<u> </u>	29	-264 -261	<u> </u>	1652	2002	2823	380	212	- i	3005		, פני	5280 5280	2956	2602	160	4	_ :	1354	57 V	£ 5	9/2	5083	2175	1759	281	250	148	1889	3333	126	2751	1824	303		5444 75.7	190	4357	}
	Config.	GR00098	_	_	_	_	_	GR00156	GRUOISE	GK00156		GR00162	OR00167	GR00169	CR00175	GR00181	GR00188	CR00188	CR00189	CKOOKO	CR00204	GROOTO	GR00206	GR00230	GR00234	CR00239	GR00242	GR00257	080000	GR40280	GR00288	GR00290	GR00291	CR00300	GR00300	43C03C	OR00343	GR00343	GR00347	GR00358	CR00360	GR00383	GR00365	GR00369		CROOJSZ	252020
Identification	Code	RXA00428	RXA00491	RXA00505	RXA00540	RXA00552	RXA00553	EXA00573	XXA003/4	PXA005/8	PXA00388	RXAGD613	RXA00637	PXA00649	RXA00668	RXA00691	EXA00713	RXA00716	RXA00722	KXA00/38	EXAMO787	DXA00768	RXA00781	RXA00846	RXA00859	RXA00869	RXA00887	RXA00940	DV A 00096	RXA00987	RXA01011	RXA01017	RXA01021	_		0 X X 0 100 A	: =	=	2	RXA01237	RXA01246	PXA01249	_	RXA01282	FXX01284	EXAULU48	TANUI 33/

	٠.	•																											,																			
K	Stop	1001	. 7	980	2225	591	9	6218	6475	4481	6268	6494	1330	1349	1179	7847	11815	10697	4785	071170	2412	416		4684	4712	5797	9186	1771	3759		202	# BPU1	280	2044	5566	1851	092	1001	, , ,	4308	2511	1529	7928	1168	13224	13615	23447	2989
Z	Slart		1869	1389	1875		928	6475	6894	5298	5651	5949	2493	2179	262	00.00	11318	27921	3756	0000	000	7.45	1287	3971	5671	8117	6515	1950	2797	5 5	5	2841	7	1034	4913	3528	507	7679	458	5327	2011	1056	6558	7956	13048	12683	21249	7227
	Config.	GROOTES	GROOM	GR00397	OR00398	GR000399	GR00402	CR00408		CR00410	GR00417	GR00418	GR00421	GR00423			GK00424	GR00424	740045 740045	740000	CROOKS2	GROOARS	GR00485	GR00493	GR00509	GR00509	GR00509	GR00522	GR00534	CK00538	CK0052	750000 750000	GR0054	CR00549	CR00555	CR00557	GROOSBI		GROODS	GR00631	GR00632	OR00636	GR00636	GR00636	GR00640	GR00641	GR00641	OR00648
Identification	Code	RXA01382	RXA01364	RXA01368	RXA01370	RXA01372	RXA01379	Ξ.	Ω.	RXA01409	Ξ.	₹:	EXA01463	¥ :	₹ !	_:	KX401505	CACIONA	EXACID93	3 4	RXA01682	•	_	RXA01738	PXA01803	_	RXA01805	RXA01844	RXA01871		KXAUI8//	9	2 2	RXA01916	RXA01931	RXA01942	EXA01992	PXA02023	RXA02071	RXA02104	RXA02108	PXA02117	EXA02123	RXA02124	RXA02188	RXA02177	- RXA02187	RXA02211

																																							'						
	. •						~;		٠						-							•										-			. •										
N	Stop	307	306	1565	2882	8652	3.5	3816	189	S.	92,		3 5	103	1885	835	7683	5075	6776	4076	9219	837	3874	4,166	1200	7246	1910	1344	13400	14326	5920	594	5782	8	969	C6101	11318	12225	11535	484	1375	22449	3 4	7247	ř.
K	Start	2	996	1289	27607	10710	939	2893	209	394	2	2 5	2 ~	1309	1580	1248	7498	474	3 5	344	10025	_	¥ 5	2924	12438	5258	1404	115	2303	14/24 11.	6393	986	5237	3	1348	O CA	10710	11815	12422	7	737	21769	282	7957	;
•	Conflg.	GR00651	GR00851	CR00651	CROCKS	GR00682	GR00864	CR00672	GR00677	CK00878		GROOP 7	GR00698	GR00698	GR00701	GR00702	GR00707	21/00/12	81700AD	_	GR00720	GR00723	GR00723	GK00/24	OR00728	GR00742	GR00745	GR00749	GR00753	0,400,38	GR00764	GR00770	GR00777	CR00778	CKIOOIS	0410040	GR00424	GR00424	GR00456	GR00508	GR00638	GR00654	GR00780	CR00008	
Identification	Code	RXA02216	RXA02217	RX 402218	RXA02255	RXA02298	RXA02308	PXA02337	RXA02347	0 v A 000 E 3	RX Am 187	PXA02393	RXA02395	RXA02396	RXA02407	KXA02409	EXA02430	RX402479	RXA02484		RXA02496	RXA02514	RXA02518	DY A02521	RXA02540	RXA02601	RXA02817	RXA02639	PXA02672	RXA02720	RXA02751	RXA02786	RXA02789	PXA02798	KXA02874	10870444	RXA01504	RXA01506	PXA01647	PXA01798	EXA02132	RXA02254 RXA02482	RXA02789	RXA00052	

				٠				,										٠,														•		,					3	
N	Stop	1795 2168	104	72047	4286	ç	6	1646	2428	10101	4	2741	2506	18931	284	327	265	817	619	22.188	1829	482	96	4155 2185	3 9 9	9	745	692	3254	2438	136	1639 1	80.5	1998	12861	3224	3564	271	£ 5	;
N	Start	2334	486	C/ 4 07	2842	298	<u>8</u>	2717	25.5	10514	546	1731	1970	19461	.		3473	518	2	25230	489	_	665	3540	797	755	2613	3 .	2184	2822 10018	1068	2580	2121	1608	12239	2514	3220	2001	1488	
	Coully.	GR00028 GR00204	GR00253		GR00778	CR00847	GR 10040	200000000000000000000000000000000000000	GR00014	GR00014	GR00015	GR00030	GR00049	GR00057	GR00063		GR00094	GR00108	GR00113	CK6013	GR00128	GR00131	GR00132	GR00159	GR00176		GR00195	GR00228	GR00298	GR00289	GR00310	GR00328	GR00335	CEC0020	GR00424	GR00452	GR00452	GR00465	GR00470	
Identification	Code	RXA00180 RXA00763	RXA00926 RXA01273		RXA02798	RXA02847	RXA02898	RXA00025	RXA00090	RXA00101	EXA00108	EXA00297	RXA00301	RXA00336	RXA00044	RXAUGA10	RXA00430	RXA00447	RXA00455	RXA00490	RXA00508	RXA00515	RXA00520	RXA00611	RXA00688	RXA00674	RXA00731 BXA00830	RXA00835	RXA01088	RXA01071	_	=	RXA01177	RXA01229	_	_			RXA01685	; ; ; ;

															•																		ı							
					•																			,	٠															
Ľ	Stop	6249	10211	6581	6063	832	2	369	986	19 E	18142	8575	1068	9 5	202 742	10875	❖	4742	6145	8478	2585	ۍ وروړ	42.19	5	352	2315	1489	669	20245	9000	6307	14277	20538	21297	6112	888	9619	. 143 143	2095	
ĸ	Start	4633	11011	6169	6842	1500	832	_ :	3/3	2405	16715	8925	9917	5027	7239	8800	1650	3507	4838	7213	2	1301	4982	277	1029	3616		_	19598	2279	5999	17142	19766	20583	8028	10383	7204 9557	2089	2499	
•	Contig	GR00495	GR00628	OR00841	GR00662	GR00695	GR00702	R007	GK00719	GR00725	GR00726	GR00741	GR00741	GR00742	GR00742	GR00742	GR00755	GR00757	GR00757	GR00169	GR00417	CR00740	GR00740	GR00216	GR00217	GR00382	GR00461	GR00757	GR00758	 GR00001	CR00002	CR00002	GR00002	GR00002	GR00003	GR00003	CK00004	CR00008	CR00008	•
Identification	Code	RXA01749 RXA01806	RXA02080	RXA02172	RXA02297	RXA02390	FX A02408	RXA02488	RXA02489	RXA02524	RXA02544	PXA02584	RXA02585	EXA02800	RXA02602	RXA02604	RXA02693	PX A02/00	FCX-02701	RXA00654	RXA01425	RXA02579	RXA02580	RXA00808	RXA00808	EXACT STR	RXA01658	PXA02697	RXA02719	RXA00003	KXA00015	RXA00020	RXA00021	RXA00022	PXA00028	RXA00031	RXA00038	RXA00039	RXA00040	
																																					•			

							•																																				
N	Slop	98	2956	/14 687:	8020	1374	4412	223	724	5589	6820	0353	0201	3092	3456		912	2908	7057		2416	9000	3658	3846	202	3332 7778	2362	5791	4584	3150	2001	384	795	8	2012	228	78.	7,5	8747	10782	19243	2218	<u>~</u>
Z	Start	514	2270	7194	8301	1659	4140	708	1305	4228	6283	910	77.	_		3163		1420			_	4709	_	~	9//8				•		9166	2 60	2079	2732	٤:	1714	•	3.2			18104	21073 2	. 48
•	Contra.	CRODDOB	GK00008	GROODS	GR00009	GR00010	GR00010	GR00011	GROOOF	~ :	GROOM	2 2	! ≏	5	<u>e</u>	T	GK00016	≥ 0	. 5	6	GR00020	_	7	· ~ •	2200020	٠ (:	_	*			0K00028		GR00027	~	GR00027	CH00028			. ~		~	25	GR00034 7
ldentification	Code	10047	8400	0028	000	C90D	20085	~ .	.	_ 0	_		_				23		20	2	127	128	2 :	<u> </u>	75	54	55	195	29	52	22	2	74	75	9.	* 6				_	80		
Ideni		RXA0004	RXADDAS	PXA00058	RXA00059	RXA00083	RXA0006:	HXA0006	KAAWOOSI	DAY A	RXADOR	PXA0008	PXA00083	RXA00086	RXA0008	KXAGGG	100XX	RXADD	RXA00	RXA00	RXA00	RXA00	888	2008	RXADO	RXA00	RXA00	PXA00	RXA00	KAG0	PXADO	PXA00	RXA001	RXAGDI	EXA S	NXAGO OXAGO	RXA00199	RXA00200	RXA0020	RXA0021	RXA002	RXA0022	PXA00230

						,									•																											
IN	Stop	60	2575	4045	5133		930	1565	1221	727	604	1/38 23.56	3890	10409	11265	2836	3825	1297	4165	4238	4675	5	697	3189	3416	4	88	537	1504	9	20	5464	510	2768	5189	196	→ ;	9.6 8.6	2	591	1841	3027
N	Slart	527	2300	3668	5142	7031	1585	3049	တ္	485	7	1760	3219	9234	11693	2429 2007	4091		1558	9699	5016	£ 3	2,5	2781	2595	\$	189	3 6	16762	530	2	- a	635	3724	4069	2	342	5 E	36.	- -	1437	3830
	Contig	GR00035	CR60036	CHOOOS	GROODJB	GR00036	GR00037	GR00037	GR00038	GR00038	CK00039	GR00039	CR00039	GR00039	CR00039		0800000 0800041	CR00042	GR00042	GR00042	GR00042	GK00044	GROOMS	GR00047	GR00049	GR00050	GR00052	GK0005/	GR00057	GR00058	GR00061	CK0001	GR00069	GR00070	GR00070	CR00073	CK00079	CROOMS CROOMS	GROOMS	CH00084	GR00086	GR00088
Identification	Code	RXA00232	RXA00236	RXA00238	RXA00240	RXA00242	RXA00244	RXA00245	KXA00250	PXA00252	RX400255	RXA00257	RXA00258	RXA00260	RXA00261	DYAMO204	RXA00272	RXA00273	RXA00274	RXA00275	EXA00278	DX A00282	RXA00286	RXA00294	RXA00302	PXA00303	RXA00308	RXAU0320	RXA00334	RXA00337	PXA00342	RXAGGS	RXA00355	RXA00357	RXA00358	RXA00062	KXA00373	RXA00369	RXA00384	RXA00387	RXA00380	RXA00192

ı		,					٠								•																											
Z	Slop	4990	2999	189	1088	220 5) (4	1657	2682	1970	325	3/2	464	472	4589	8163	9821	18220	328	2177	5252	244	₽ ;	2 4 4 4	575	1360		4732	287	069	1054	206	1255	1136	2738	4148	2246	3327	8924	11577	14582	332
N	Start	5322	. 0		842	<u>8</u> 8	3 25	(433	3063	448	816	1 2 2	1282	1647	*	8822	1961	969/1	ہے ۔	1778	2007	1098	3.6	<u></u>	, <u>=</u>	3123	3562	52/4	5155	_	64		938	1608	_	3744	2916	2980	9442	1894	14220	- 7
	Contig.	GROOOSE	CR00086	GR00087	GR00091	GR00091	78000AC	CR00097	GR00098	CR00100	GR00110	GK00114	Ξ	GR00119	GR00119	GR00119	= :	GR00119	CR00123	GR00123	GR00125	GR00127	GR00128	CK00128	GR00134	GR00136	CR00138	GR00136	GR00137	GR00142	GR00142	GR00143	GROOTAS	GR00145	GR00151	CR00151	_		GR00156	GR00156	GR00156	GR00139
Identification	Code	RXA00394	RXA00397	RXA00398	RXA00408	HXA00409	AXAUN423	RXA00425	RXA00429	RXA00433	KXA80451	RXAUGS/	RXA00468	RXA00469	RXA00412	EXA00475	RXA00476	KXA00481	RXA00493		RXA00504	RXA00507	RXA00509	PXA00310	EXA00522	RXA00527	RXA00528	HXA00529	RXA00535	PXA00546	RXA00547	EXA00548	RXA00550	RXA00554	RXA00583	RXA00564	RXA00576	RXA00577	RXA00582	RXA00585	RXA00589	KXA00595

				•	
N	Stop	1066 1787 3749 3918 5084 1626	1273 5997 6160 9235 1353 1403 1219 1393 303 3821	801 3484 1348 1348 1249 700 642 701	1088 2054 3088 6230 13341 14945 15554 16360 16360 16360 16360 16374 19374 19374 664 4372
Z	Slart	797 1070 3459 5489 3574 4002	641 6449 6924 6924 9485 864 2671 1037 1450 4303	427 2972 377 1048 1809 7865 537 537 611 458	1646 2986 2986 5517 6652 1374 13755 15917 17240 18937 20245 21847 3119 6624
	Contig	GR00159 GR00159 GR00159 GR00162 GR00162		GR00182 GR00183 GR00188 GR00188 GR00199 GR00191 GR00191	GR00202 GR00202 GR00202 GR00202 GR00202 GR00202 GR00202 GR00202 GR00202 GR00203
Identification	Code	RXA00597 RXA00598 RXA00601 RXA00604 RXA00616 RXA00617 RXA00631	RXA00647 RXA00652 RXA00661 RXA00661 RXA00664 RXA00676 RXA00678 RXA00692 RXA00692	RXA00701 RXA00704 RXA00707 RXA00712 RXA00720 RXA00721 RXA00724 RXA00726 RXA00726 RXA00726	RXA00739 RXA00740 RXA00741 RXA00745 RXA00746 RXA00748 RXA00748 RXA00748 RXA00751 RXA00751 RXA00751 RXA00751

																														•														
	헌	,		~ K		. 8	छ	9	€	وي					7	ć.	٠ 2			1 3	2 10	2	_	€	'			_	52		≘ :	2 5	: x	_	=	= :	₽,	_ :	> .			. 9	2.	
Z	Stop	98 ,		686	8	2198	3/6	3236	3808	48	37	268	247	1455	200	3173	4920	242	_ ;	7 6	9465	9642	193	1989	702	2168	o k	. 20	=	682	1890	7697	999	99	728	S.	5586	Anc C	1000	, ,	ر د ک	= =	191	
Z	Start	857	625	910 4228	25	1695	287	2463	3236	4382	567	7001	£ 5	742	1466	3775	4708	526	280	4208 805,7	8788	0900	789	2578	1457	= :	1/71	4 108	5534			00/4	. 8	7278	8546	5068	6047	, ?	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	704	; -	1421	2272	
	Contig.	GR00205	CH0020/	GR00211	GR00215	_	GR00219	OR00219	CR00219	CK00219	GK00223	OR00226	GR00227	GR00228	GR00228	GR00231	GR00231	GR00232	GR00236	GROOM	GR00242	GR00242	GR00244	GR00244	GR00246	GR00247	GR00230	GR00251	GR00251	GR00252	GR00252	GR00252	GR00252	GR00252	GR00252	GR00253	GR00253	CR00278	CK00639	C0700700	40200AC	CROUNT	GR00274	
Identification	Code	RXA00771	CXX00/83	RXA00785	PXA00804	RXA00811	RXA00812	RXA00814	RXA00815	KXA00816	RXAU0826	RXA00836	RXA00837	RXA00840	RXA00841	RXA00853	RXA00854	KXA00855	FXAWW862	RXAIDARI	RXA00882	RXA00883	RXA00893	RXA00895	RXA00904	RXA00908	PXA00914	RXA00916	RXA00917	RXA00919	EXA00920	RXA00921	RXA00923	RXA00924	- RXA00925	RXA00932	HXA00903	KXA0045	FXA00846	EXA00839	BXA00963	DX ACCOUNT	RXA00973	1
	. •																																					,						

				-	. 1			•																																		
N	Stop	.831	949	1365	988	6	628	1826	3847	4348	4096	6423	969	7527	8276	(081)	10932	12385	13346	15280	0221	19219	197 L/ 8248		8	1330		6cp7	4	. 463	981	200	14811	14912	15640	970	3136	5 g	280	312	1101	460
N	Start	217	1701	520	2/67	<u> </u>	0	5 8	3182	3974	2 2 2	5818	6513	2000	7530		10/80	11088	12774	14024	2407	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8588	490	828	805	908	1277	980	7	705 205	10316	13612	15582	16281	-	6/67	2000	2	1325	445	~
٠.	Config	GR00276	GR00280	GR00286	GR00287	GR00290	GR00295	CR00295	GR00295	CK00293	GR00295	GR00295	GR00296	CR00295	GR00295	GR00295	GR00295	CR00295	GR00295	CR00295	GR00295	GK00293	GR00298	GR00297	GR00297	GR00298	GR00299	GR00307	GR00303	GR00304	CR00305	GROOTOG	GR00306	GR00306	GR00308	GR00307		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GR00314	GR00314	GR00315	GR00317
Identification	Code	RXA00978	RXA00888	EXA01005		_	-	-	PXA01031			_			RXA01038		_	RXA01042			EXA01045	RXA01040		-	RXA01063	_	RXA01069	RXA01083	-	-	EXA01092	8XA01103	=	RXA01108	Ξ	EXA01112	EXAUTS!	RXA01123	=	RXA01128	RXA01131	RXA01134

							,																		•																	
	• •		•		٦								*							٠,								-								•						
Ϋ́	Stop	1480	4057	- C27 - T	P 000	တ	1388	3213	9	282	נאכא	567	1120	2408	4239	7533	? <u>-</u>	4208	85	8	282	200	7887	- 5 - 5 - 5	5385	11631	4	~	46.10	, ~	47.54	1589	4684	477	172			18/7	BCC	1024	502	3653
Z	Start	-	3272	1452 546	808	1370	1588	4187		(212)	ה ה	• –	638	1714	4853	4108	1489	3850	293	.	1508	1078	1384	424 633	2613	10720	5	28418	n ec	3764	5836	1991	2691	803	9111	ch i	1855	2286	3		3640	5085
•	Config.	GR00318	GR00318	GR00323	GR00326	GR00027	GR00327	GR00328	GROOM	250052	CROOM	CR00334	GR00334	GR00334	GR00334	250075	OR00338	GR00338	CR00346	CR00349	GR00351	GR00353	GK00358	CRIO157	GR00365	GR00367	CR00367	GR00367	2800389	OR00373	GR00373	GK(0375	GR00376	GR00380	GR00381	GR00382	GR00382	GR00382	GROOJES	CHOOSE	CROOTE	CR00389
Identification	Code	RXA01137	KXA01140	RXADITA	RXA01154	RXA01155	RXA01156	PXA01160	KXA01163	CXA01105	RXA01187	RXA01169	PXA01170	RXA01171	EXA01173	RX A01178	RXA01184	RXA01187	RXA01208	RXA01210	EXA01213	_	FXA01231		2 :	_	RXA01287	EXA01275	EXAULZIO BXA01281	RXA01295	2	exaction by April 104	2 =	_	RXA01313	RXA01315	RXA01316	RXA01317	KXA01326	EXA01330	RXADITE	RXA01337

Stop	755	4	5	1523	336	1489	3453	3981	3997	1389	- -	1463	2134	5	829	1221	9863	6489	1204	18733	1901	2641	6141	2173	4359	3122	1687	4 37	583	7223	7226	8188	12030	22281	23711	24471	25167	30580	2816	211	2825	7047
Start	1531	1881	147	3238	992	298	3193	3508	4410	<u>₹</u>	999	654	2197	. S	1215	2002	10228	7496	15087	17885	19796	2363	888	1489	4068	2091	4112	5243	9298	6878	1691	7847	20068	20230	23238	23725	24784	32301	5126 0	2	906	3 .
Config.	GR00392	GR00401	CR00408	CHOOAGE	CHUCAOB	GR00409	GR00409	GR00409	GR00409	GR00410	GR00411	GR00412	GR00412	GR00414	GR00416	GR00416	GR00417	GR60418	GR00418	GR00418	GR00418	GR00419	GR00420		OR00420	GR00422	GR00422	GR00422	GR00422	GR00422	GR00422	GR00422	GR00422	GR00422	GR00424	CR00424	GR00424	GR00424	GR00425	GR00428	GH00427	076WY0
Code			_ :			<u> </u>	RXA01401	_	_	RXA01405	XX401410	RXA01413	RXA01415	RXA01417	RXA01421	RXA01422	KXA01434	RXA01440	RXA01445	RXA01447	FXA01448	RXA01452	KXA01438	RXA0145/ RXA01459	RXA01460	RXA01469	RXA01470	PXA01471	RXA01473	RXA01474	RXA01475	6X4014/8	-RXA01484	RXA01485	RXA01518	_					PXA015J0	DOWN TO THE
	Config. Start	148 GR00392 1531	0de Contig Start 1349 GR00392 1531 CR00401 1281	148 GR00392 1531 378 GR00401 1281 383 GR00408 1147	148 GR00392 1531 378 GR00401 1281 183 GR00408 1147 194 GR00408 3238	148 GR00392 1531 378 GR00401 1281 183 GR00408 1147 194 GR00408 992 199 GR00408 992	146 CR00392 1531 376 GR00401 1281 183 GR00406 1147 184 GR00406 3238 199 GR00408 2078 400 GR00409 292	146 Conlig Start 1348 GR00392 1531 1370 GR00401 1281 1841 GR00406 1238 1390 GR00408 992 1391 GR00409 2986 1401 GR00409 3193	146 Conlig. Start 1349 GR00392 1531 376 GR00401 1281 183 GR00406 1147 184 GR00406 3238 189 GR00408 2078 400 GR00409 2988 401 GR00409 3193 402 GR00409 3508	146 Conlig. Start 349 GR00392 1531 370 GR00401 1281 384 GR00406 1147 384 GR00406 3238 390 GR00408 992 400 GR00409 2078 401 GR00409 3193 402 GR00409 3508 403 GR00409 4410	146 Conlig. Start 1349 GR00392 1531 376 GR00401 1281 183 GR00406 1147 184 GR00406 3238 189 GR00408 2078 400 GR00409 2078 401 GR00409 3193 402 GR00409 4410 403 GR00410 1844	146 Conlig. Start 1349 GR00392 1531 376 GR00401 1281 384 GR00408 1147 389 GR00408 3238 391 GR00409 2078 400 GR00409 298 401 GR00409 3193 402 GR00409 4410 403 GR00410 1844 410 GR00411 666	148 Config. Start 148 GR00392 1531 150 GR00401 1281 150 GR00408 1147 150 GR00408 1231 150 GR00408 1231 150 GR00409 1931 160 GR00409 1931 160 GR00409 1931 160 GR00409 1410 160 GR00401 1844 110 GR00401 1844 111 GR00401 1844 111 GR00401 1866 111 GR00401 1866 111 GR00401 1866 111 GR00401 1866 111 GR00401 1844 111 GR00401 1844 111 GR00401 1866 111 GR00401 18	146 Conlig. Start 134 GR00392 1531 376 GR00401 1281 384 GR00408 1147 384 GR00408 992 390 GR00408 992 400 GR00409 2078 401 GR00409 3193 402 GR00409 3410 403 GR00411 666 413 GR00412 654 414 GR00412 658 415 GR00412 1628	148 Conlig. Start 134 GR00392 1531 376 GR00401 1281 384 GR00408 1147 384 GR00408 3238 390 GR00408 2078 400 GR00409 2986 401 GR00409 3193 402 GR00409 4410 403 GR00410 1844 413 GR00412 854 414 GR00412 1628 415 GR00412 1628 417 GR00412 2192 417 GR00412 2192	148 Conlig. Start 1349 GR00392 1531 376 GR00401 1281 183 GR00406 1147 184 GR00406 3238 189 GR00408 992 190 GR00409 2948 401 GR00409 2988 402 GR00409 2988 403 GR00409 4410 405 GR00411 666 410 GR00412 654 411 GR00412 1628 415 GR00412 2192 417 GR00416 645 417 GR00416 645 421 GR00416 645	148 Conlig. Start 1349 GR00392 1531 376 GR00401 1281 384 GR00408 1147 384 GR00408 3238 399 GR00408 2078 400 GR00409 298 401 GR00409 298 402 GR00409 3193 403 GR00410 1844 405 GR00411 866 410 GR00412 1628 411 GR00412 1628 417 GR00416 1215 422 GR00416 1215 422 GR00416 1215	148 Config. Start 148 GR00392 1531 153 GR00401 1281 158 GR00402 1531 158 GR00402 1281 158 GR00403 1147 158 GR00403 1193 169 GR00403 1193 160 GR00403 1193 160 GR00411 1844 160 GR00412 1628 161 GR00412 1628 162 GR00412 1638 163 GR00414 1638 164 GR00415 1638 165 GR00416 1215 165 GR00416 12	148 Config. Start 148 GR00401 1281 183 GR00402 1531 184 GR00402 1531 185 GR00403 1147 186 GR00403 2078 197 GR00403 2086 402 GR00403 2086 403 GR00403 2086 410 GR00411 866 411 GR00412 1628 412 GR00412 1628 414 GR00412 1628 415 GR00414 10228 416 GR00416 1215 417 GR00416 1215 418 GR00416 1215 419 GR00416 1215 410 GR00416 12	148 Config. Start 148 GR00401 1781 183 GR00402 1531 184 GR00402 1531 185 GR00403 1147 186 GR00403 2546 195 GR00403 2546 403 GR00403 2546 403 GR00410 1844 403 GR00411 1866 414 GR00412 2192 415 GR00412 1528 421 GR00414 845 421 GR00416 1215 434 GR00416 1215 440 GR00416 1215 441 GR00416 1528 441 GR00416 1528 442 GR00416 1528 444 GR00418 15081 445 GR00818 15081 445 GR0	0de Conlig. Start 348 GR00392 1531 370 GR00401 1281 383 GR00406 1147 384 GR00408 3238 395 GR00408 2078 400 GR00409 296 401 GR00409 296 402 GR00409 296 403 GR00410 1844 403 GR00411 866 410 GR00412 1628 414 GR00412 2192 415 GR00412 2192 416 GR00412 2192 417 GR00412 2192 421 GR00416 1215 422 GR00416 1215 440 GR00416 1215 440 GR00416 8542 445 GR00418 15083 447 GR00418 15083	148 Conlig. Start 378 GR00392 1531 378 GR00401 1281 383 GR00406 1147 384 GR00408 3238 399 GR00408 2078 400 GR00409 2986 401 GR00409 2986 402 GR00409 2986 403 GR00410 1844 403 GR00411 866 413 GR00412 1628 414 GR00412 1628 415 GR00412 2192 416 GR00412 2192 417 GR00414 845 421 GR00416 1215 422 GR00416 1215 440 GR00416 8542 445 GR00418 17885 448 GR00418 17885 448 GR00418 19796	ode Conlig. Start 1348 GR00392 1531 1383 GR00401 1281 1384 GR00406 1147 1384 GR00406 3238 1391 GR00408 2078 1400 GR00409 2078 1401 GR00409 2078 1402 GR00409 2078 1403 GR00409 2078 1404 GR00410 1844 1416 GR00411 866 1416 GR00412 2192 1417 GR00412 2192 1416 GR00414 845 1417 GR00416 10228 1434 GR00418 15083 1446 GR00418 15083 1447 GR00418 17885 1448 GR00418 19796 1452 GR00419 19796 1448 GR00419 19796	1348 Config. Start 1348 GR00392 1531 1383 GR00401 1281 1384 GR00401 1281 1384 GR00408 2078 1401 GR00409 2988 1402 GR00409 3193 1402 GR00409 3193 1403 GR00409 3410 1414 GR00412 1628 1415 GR00412 1628 1416 GR00414 845 1417 GR00416 1215 1422 GR00418 1215 1434 GR00418 17885 1448 GR00418 17885 1448 GR00419 2363 1456 GR00419 19796 1456 GR00410 19796 1457 GR00410 19796 1457 GR00410 19796 1458 GR00410 19796	1348 Config. Start 1348 GR00392 1531 1370 GR00401 1281 1381 GR00406 1147 1381 GR00406 1147 1381 GR00408 1147 1401 GR00409 2988 1402 GR00409 3193 1403 GR00409 3193 1405 GR00410 1844 1410 GR00412 1628 1411 GR00412 1628 1414 GR00416 1215 1421 GR00416 1215 1422 GR00416 1215 1430 GR00416 1215 1441 GR00418 15083 1445 GR00418 15083 1446 GR00418 17885 1456 GR00419 13796 1456 GR00419 13796 1456 GR00410 1489 1456 GR00420 1489 1457 GR00420 1489 1458 GR00420 1489 1458 GR00420 1489 1450 GR00420 1450 GR0042	1348 Config. Start 1348 GR00401 1281 1370 GR00401 1281 1381 GR00402 1531 1381 GR00403 1147 1381 GR00403 1047 1401 GR00403 2988 1402 GR00403 3193 1403 GR00403 3193 1405 GR00412 1628 1413 GR00412 1628 1414 GR00412 1628 1421 GR00412 1628 1432 GR00416 1215 1440 GR00418 15083 1441 GR00418 15083 1445 GR00418 17885 1446 GR00418 17885 1447 GR00418 17885 1448 GR00418 17885 1448 GR00419 1319 1450 GR00420 1499 1450 GR00420 1311 1450 GR00420 1499 1450 GR00420 1490 1450 GR	ode Conlig. Start 1348 GR00392 1531 1370 GR00401 1281 1383 GR00408 1147 1394 GR00409 2038 1395 GR00409 2038 1400 GR00409 2092 1401 GR00409 2098 1402 GR00409 2098 1403 GR00409 2098 1404 GR00410 1844 1415 GR00411 1845 1417 GR00412 2192 1417 GR00412 2192 1417 GR00411 1628 1417 GR00411 1215 1421 GR00416 1215 1421 GR00416 1216 1435 GR00416 1216 1440 GR00416 1276 1445 GR00418 15083 1446 GR00418 19796 1447 GR00418 19796	1348 Config. Start 1348 GR00401 1281 1391 GR00402 1531 1391 GR00402 1281 1391 GR00403 1281 1402 GR00403 2078 1401 GR00403 2078 1402 GR00410 2086 1410 GR00412 2086 1411 GR00412 1628 1412 GR00412 1628 1414 GR00412 1628 1415 GR00414 845 1416 GR00416 1215 1421 GR00416 1215 1434 GR00418 15083 1445 GR00418 15083 1456 GR00419 2363 1456 GR00420 1489 1457 GR00422 2091 1459 GR00422 2091 1470 GR00422 5243 1471 GR00422 6676 1471 GR00422	1348 Config. Start 1348 GR00401 1281 1370 GR00401 1281 1391 GR00402 1531 1391 GR00403 1147 1391 GR00403 1147 1401 GR00403 2988 1402 GR00403 2988 1403 GR00410 1844 1410 GR00412 1628 1411 GR00412 1628 1412 GR00411 10228 1414 GR00412 1628 1415 GR00418 1215 1421 GR00418 1285 1432 GR00418 15083 1447 GR00418 15083 1452 GR00419 1388 1453 GR00420 1489 1454 GR00420 1489 1455 GR00420 1489 1470 GR00422 2091 1471 GR00422 2091 1474 GR00422 2091 1475 GR00422 2091 1476 GR00422 2091 1476 GR00422 2091 1476 GR00422 20230 1476 GR00422 20230 1477 GR00422 20230 1486 GR00422 20230 1486 GR00422 20230 1486 GR00422 20230 1518 GR00424 23238 1518 GR00422 23238 1518 GR00422	1348 Config. Start 1348 GR00401 1281 1391 GR00402 1531 1391 GR00403 1147 1391 GR00403 1281 1402 GR00403 2078 1401 GR00403 2078 1402 GR00403 2086 1403 GR00403 2078 1410 GR00412 1628 1411 GR00412 1628 1412 GR00412 1628 1414 GR00412 1628 1415 GR00413 17885 1416 GR00414 845 1417 GR00418 15083 1421 GR00418 15083 1434 GR00418 15083 1445 GR00419 2363 1456 GR00422 2091 1459 GR00422 2091 1470 GR00422 2091 1471 GR00422 2091 1471 GR00422 2091 1472 GR00422 2091 1473 GR00422 20230 1474 GR00422 20230 1475 GR00422 20230 1485 GR00422 20230 1486 GR00422 20230 1486 GR00422 20230 1486 GR00424 23725 1518 GR0042	1348 Config. Start 1348 GR00401 1281 1391 GR00402 1531 1391 GR00403 1147 1391 GR00403 1281 1402 GR00403 1393 1403 GR00403 1393 1403 GR00403 1393 1410 GR00412 1344 1410 GR00412 1344 1411 GR00412 1358 1412 GR00412 1358 1414 GR00413 17885 1415 GR00414 845 1416 GR00418 15083 1417 GR00418 15083 1421 GR00418 15083 1434 GR00419 1398 1455 GR00419 1398 1456 GR00422 1489 1457 GR00422 1489 1458 GR00422 1489 1459 GR00422 1311 1460 GR00422 1323 1471 GR00422 1323 1472 GR00422 1342 1478 GR00422 1342 1478 GR00422 1342 1478 GR00422 1342 1479 GR00422 1342 1479 GR00424 23725 1518 GR00424 23725 1525 GR00424 23725 1526 GR00424 23725 1526 GR00424 23736 15276 GR00424 23736 15276 GR00424 23736 15276 GR00424	1348 Config. Start 1348 GR00401 1281 1391 GR00402 1531 1391 GR00403 1147 1391 GR00403 1281 1402 GR00403 2078 1403 GR00403 2078 1404 GR00403 2078 1410 GR00403 2086 1411 GR00412 1844 1411 GR00412 1628 1412 GR00412 1628 1413 GR00412 1628 1414 GR00413 17885 1415 GR00414 845 1416 GR00418 17885 1417 GR00418 15083 1421 GR00418 17885 1430 GR00419 17885 1440 GR00419 17885 1450 GR00422 1112 1460 GR00422 1112 1471 GR00422 1112 1472 GR00422 11242 1473 GR00422 1242 1474 GR00422 1242 1475 GR00422 1242 1476 GR00422 1242 1476 GR00424 23725 1518 GR00424 23725 1526 GR00424 23736 1526 GR0042	1348 Config. Start 1348 GR00401 1281 1391 GR00402 1531 1391 GR00403 1147 1391 GR00403 1281 1402 GR00403 1358 1403 GR00403 1358 1403 GR00403 1358 1419 GR00412 1528 1410 GR00412 1528 1411 GR00412 1528 1412 GR00412 1528 1414 GR00412 1528 1415 GR00413 17885 1416 GR00414 845 1417 GR00418 15083 1421 GR00419 15083 1434 GR00419 17885 1448 GR00422 1112 1459 GR00422 1112 1469 GR00422 1112 1470 GR00422 112423 1471 GR00422 12423 1472 GR00422 12423 1485 GR00422 12423 1486 GR00424 12301 1486 GR00424 12301 1525 GR00424 12301 1525 GR00424 12301 1525 GR00424 12301 1526 GR00434 12301 1526 GR00434 12301 1526 GR00434 12301 1526 GR00434 12301 1527 GR00434 12301 1528 GR00434 12301 1528 GR00434 12301 1529 GR00434 12301 1520 GR00434 12301 1520 G	1348 Config. Start 1348 GR00401 1281 1391 GR00402 1531 1391 GR00402 1281 1402 GR00403 1281 1403 GR00403 1281 1404 GR00403 1303 1410 GR00403 1303 1411 GR00412 1628 1412 GR00412 1628 1413 GR00412 1628 1414 GR00412 1628 1414 GR00413 17885 1415 GR00414 845 1416 GR00414 845 1417 GR00418 17885 1421 GR00419 1215 1432 GR00419 17885 1445 GR00419 17885 1456 GR00422 1489 1457 GR00422 1489 1458 GR00422 1489 1459 GR00422 1531 1470 GR00422 1531 1471 GR00422 1542 1471 GR00422 1542 1472 GR00422 1542 1473 GR00422 1242 1474 GR00422 1242 1475 GR00422 1242 1476 GR00424 23725 1477 GR00424 23725 1478 GR00424 23725 1550 GR00424 23736 1550 GR00426 23786 1550 GR00426 23586 1550 GR00426 1550 GR0								

	-				٠																																				
Z	Slop	2382	5063	37	2097 3588	4889	5709	6425	7586	5145 1578	<u> </u>	438	80.	1202	5929	7005	1054	1229	2102	427 9178	12062	2474	3615	4476	1001	503	495	1979	1417	§ 5	168	6552	7798	£ 9	48	•	1433	310	3234		1586
Z	Start	. 3083	.	2802 7498	4838	5584	6371	74.32	6428	3719	829	191	1178	1666	6963	8024	129	1897	120	1710	13591	098	4343	4832	52.55 1.87	2407	_	998	341 4088	958	1334	5182	655/ 87.6	971		\$ 78	2152	7	4179	1981	2026
	Contig	CR00428	GR00429	GR00430	GR00430	CR00430	GR00430	OR00430		GRODAS	GR00433	GR00435	GR00437	GR00437	GR00438	GR00438	CR00439	GR00441	GR00442	GR00445	GR00447	GR00448	GR00449	GR00449	GROOMS	CR00451	GR00453	GR00453	GR00454	GR00456	GR00456	GR00458	GK00456	GR00458	GR00462	GR00463	GR00463	GR00467	GR00487	GR00467	CR00470
Identification	Code		RXA01542	RXA01544	RXA01545	PXA01546		EXA01548			RXA01557		HXA01565	RXA01567		5	-		RXA0158/	RXA01598	_	RXA01605		KXA01611	RXA01618		RXA01627	RXA01628	RXAUIBJU		PXA01639	RXA01641	RXA01642	2	RXA01659		RXA01665	PXA016/2	RXA01678	RXA01681	RXA01688

				`			j	•																												٠							
																			ζ,																								
Z	Slop	3032	- - - - - - - - - - - - - - - - - - -	528 1848	6 5	S	170	3154	807	701	87.78	3518	5830	9	557	7617	5484	4085	9	S	847	1370	185	14 16	7 5	2289	1111	4048	3664 806	6312	6779	7078	1304	رد د	1516	1231	2247	2582	3149	3427	15/0	1573	638
Ä	Slart	3931	<u>.</u>	5 - C	315	2007	38	2636	601	£ ;	7814	1878	5576	257	2095	4002	2002	4	34	827	1275		998	.		838	2319	2912	4240	6052	6384	6842	67 <i>/</i>	, E	875	1872	1885	2310	2916	3.54 1.54	377	2622	.
	Contig	GR00474	CK004/8	GR00479	CR00482	GR00484	GR00485	GR00489	CACCAGO	286040	GR00493	GR00496	GR00496	GR00497	GR00487	000000	0800499	GR00500	GR00501	GR00501	GR00501	GR00501	CR00502	GROOSO	GR00504	GR00504	GR00504	GR00504	CHOOSE	GR00504	OR00504	GR00504	CKOOSOS	GR00506	CR00506	CH00508	GR00506	CR00508	CR00506	GR00506	CH00509	5060000	CR00510
Identification	Code	RXA01694	RX A01701	-	~	RXA01711	RXA01714	EXA01729	PXANITA	RXA01741	RXA01742	RXA01750	RXA01751	RXA01752	HXA01753		: =	RXA01765	2	_	RXA01789	KX401//0	PXA0177	RXA01774	RXA01775	RXA01776	RXA01777	EXA01778	RXA01780	PXA01781	_	_:	RAAUI/85	: =		≥.	_	≥ !	`= :		_	-	FXAU1809

							•																		•																	
Z	Stop	1232		484	9733	2578	10413	123	480	1901	2326	4 2 2 2	5946	1838	770	1589	2797	2803	2659	7094	78 <u>-</u>	295	2788	3787	4512	937	1875	, c	1739	837	16/4 2867	1429	1270	850	1416	504	000	1591	2440	•	1375	5216
'n	Start	6	635	9210 4941	8360	2847	10874	2478	1397	878	6161 6161	- 20 20 20 20 20 20 20 20 20 20 20 20 20	5692	_	225	£ 4	2123	2556	1874	782	ا روز	1074	222	3176	4030	59	2020	943			38.7	998	ឨ	389	016	<u>2</u> 2	521	1022	1757	1329	935	
	Contig	GR00514	CROOSIS	GR00515	GR00515	GR00516	GR00516	GR00517	GR00522	GR00522	GR00522	GR00524	GR00525	GR00526	GR00527	CB00526	GR00534	GR00535	GR00544	CR00544	GK00545	GR00545	GR00545	GR00545	GR00545	OR00546	CR00345	CR00551	GR00552	GR00553	GROOSSS	GR00557	CR00563	GR00564	GR00564	GR00565	GR00585	GR00565	CR00565	GR00566	GR00566	/9c00x0
Identification	Code	RXA01812		RXA01817	_			_	_ :		RXACIBAS	_	_	-	EXA01856	_	_	_	_	EXA01902	RXA01904	_	_	_	_	EXACISOS EXACISOS	_ =	-		RXA01824		6	2		PXA01958		_	_	PXA01963	RXA01964	EXA01965	AORIONAN

																									•			•											,			
Z	Stop	583	2108	3972	1187	2583	379	462		2854	152.	₩.	508	, T	223	'n	363	2	240	8 9	182	812	925	2173	4 (2833	3683	. 2909	3500	4184 6578	.88.	1694	13935	2576	1089	9862	13998	3555	3322	4905	2540	20
Z	Start	2	929	4547	_	2105	191	6/ /	928	2384	8	ଛ .	. 9	8 8	651	127	46	553	935	76C	345		1452	1913	2680	2462	3166	2484		45/8 6187	6733		12307	2920	2 2	10512	13282	184	4479	4510	087 E	615
	Conlig.	GR00570	0,40050 0,40050	GR00571	CR00572	GR00573	GR00576	GROUS/8	GR00581	OR00589	GR00590	CR00593	CK00594		GR00598	GR00601	GR00603	OR00607	GR00607	CRUCEIZ	GR00619	GR00821	CR00621	CR00823	GR00823	GR00824	GR00624	GR00824	GR00825	GR00626	GR00628	GR00627	GR00628	CK00629	0200000	GR00629	GR00629	GR00630	CR00631	CR00631	CR00632	GR00634
Identification	Code	RXA01973		RXA01977	-	_	KXA01987	RXA01990	<u>. 6</u>	RXA01999	RXA02001	RXA02003	RXA02004	RXA02008	RXA02007	RXA02009	FXA02011	RXA02013	EXA02014	RXA02021	RXA02036	RXA02039	FXA02040	RXA02045	EXAU2048	RXA02050	RXA02051	RXA02053	RXA02058	RXA02086	RXA02087	RXA02069	PXA02081	PXA02084	FXA02089	RXA02091	RXA02094	RXA02097		RXA02103	RXA02109	RXA02114

			,					•									-																							'.			
LN.	Slop	5109	1539	6139	21100	638	10824	12398	12999	- B	4017	14497	17845	20763	20995	3160	7092	10001	467	9081	4	1853	1620	4556	1185	181	5963	1404	532	2272	3833		3518 7466	10862	\$	12800	720	~		1445	192	7552	4
Z	Start	5813	602	5906	14/42	237	10072	10824	12388	2894	3172	13838	17168	20185	21213	2591	7469	1708		6720	1059	1236	4158	176	653	2053	5408	– (. ~	-24	3285	4071	2692	\$8111 1184	01611	12038	_ ;	1813 2613	565	508 808	, 40°	27.71	; ;
:	Config	GR00636	OR00637	GR00637	0.8008.39	GR00840	GR00640	CR00640	GR00640	GR00641	GR00641	GR00641	GR00841	GR00641	GR00641	CH00646	GK00646	000000	GROGE49	GR00651	GR00853	GR00653	GR00653	1000000	GR00855	GR00655	GR00655	CR00657	CR00660	GR00660	GROGEO	GR00860	GR00062	GR00662	GR00662	GR00862	GR00863	GR00663	CHOUSE	CKGGGG	2,000,000	CR00672	1
Identification	800	RXA02121	_	RXA02129	RXA02151	_	_	_	-		EXA02169		_		RXA02186	KXA02199	PXA02203	RXA02207	RXA02212	RXA02221	RXA02226	RXA02227	HXA02230	PXA02231	RXA02266	RXA02267	FXA02271	RXA02279	RXA02283	RXA02285	RXA02286	RXA02287	PXAU2234	RXA02300	RXA02301	RXA02302	RXA02303	RXA02304	RXA02307	HXA02325	PX40230	BXA02336	200

							•														•								•															
N	Slop	رن ر	492	576	3271	1579	6076	0189	10743	1281	. 2244	2246	25	4491	174	2522	170	2632	0750	3452	3580	_		815	2404	3336 5845	1613	1616	9	419	5924 8441	9	1001	11819	13558	18593	18603	B197	3000	2802	6339	7766	56001	18824
L N	Slart	. 2	_ :	1214	C1+	PL21	364	0919	7045	254	2918	1626	76/1	3391	1322	2043	655	4755	1627	4585	288	1991	7818	ر م	1295	30.5 83.53	107	2014	95	. 643	0504 0505	1245	C181	11018	13480		19484	1983		2222	9546 906	1060	9422	/7881
	Contra.	GR00673	OR00874	GR00674	CX00873	CR00684	OR00685	GR00685	CR00685	CR00687	CR00687	GR00688	1690090 CH00698	GR00689	GR00701	GR00703	GR00704	GR00705	GK00/03	GR00707	GR00708	GR00709	GR00709	GR00711	GR00712	GR00712	GR00713	GR00713	GR00714	GR00714	GK00715	OR00716	OR00718	GR00720	GR00720	CR00720	GR00720	GR00721	GR00724	GR00724	GR00728	07/00H5	GR00728	GR00726
Identification	Code	~	RXA02339	RXA02340	FXA02341	RXAUS330 RXAU3358	RXA02360	RXA02381	RXA02362	RXA02366	PXA02388	RXA02374	EXA02381	RXA02401	RXA02406	RXA02412	RXA02415	RXA02417	KXA02421	RXA02423	-	FXA02437	FXA02444	RXA02454	RXA02457	RXA02480	RXA02484	RXA02465	RXA02466	RXA02467	RXA02473	RXA02478	RXA02483	RXA02498	RXA02500	RXA02505	RXA02508	PXA02510	RXA02519	RXA02520	RXA02534	HXAU233	RXA02538	RXA02546

																			ı									-			•											
¥	Stop	130	1155		5	1478	43	1579	17609	₹	18754		17.178	1103	1845	4889	4616	283	3551	8330 1724	10780	13388	4775	5693	5109	- 0	9402	287	12273	13430	5376	2689	797	1000	2961	3930	2794	1322	473	968	13/2	7010
Z	Start	924	122	2543	1363	82	1569	2463	15780	18693	18077	13514		204	1192	5802	4155	1284	2973	9313	80	14030	Ŕ	5268	6392	7742	10058	742	13067	12047	6287	÷	ייט	26.10		4475	3552	.	د	¥:	1713	0706
	Config.	GR00730	GR00731	GR00732	GR00735	GR00736	GR00740	GR00740	GR00741	GR00741	GR00741	GR00742	GR00742	GR00746	GR00746	GR00746	GR00751	GR00752	CR00752	GR(00752	CR00753	GR00753	CR00754	CR00754	GR00754	CR00754	GR00754	CR00756	CR00758	CR00738	CR00760	CR00762	CR00763	CR00763	OR00788	CR00766	GR00769	GR00772	CR00773	GR00773	CK6073	CHOOKS
Identification	Code	RXA02552	RXA02555	RXA02564	RXA02568	RXA02569	RXA02576	RXA02577	RXA02591	RXA02593	RXA02594	RXA02606	RYANZEIN	RXA02619	RXA02620	RXA02624	RXA02647	RXA02649	RXA02652	EXA02655	RXA02670	RXA02673	RXA02678	RXA02679	RXA02680	RXA02681	RXA02685	RXA02696	RXA02712	PXA02/15	RXA02727	RXA02734	RXA02736	EXA02/44	- ~	RXA02757	RXA02765	RXA02770	RXA02774	ř 1	RXA02778	KXA02///

		^	-		."							-																									١				
¥	Stop	10319	10895	11280	155 875	1393	9061	808	8684	568	554	4 Y	. Ф	9	182	မှ	523	462	ر د ما	. 15 40s	616		211	282	2330	٠. د د د	7971	4	830	1067	759	124	754	2708	802	. 668	, S	:	7520	881	2645
Z	Slart	10095	106:17	3	20.45	3	1751	~	9385	~ ;	- •	۶.۷	9.1	275	585	428	289	_ :	22	326	š ~	578	459	1382	1695	910	107	, 6	398	405	z .	~ -	328	123	C .	121	256	477	8515	20.	3742
	Config.	GR00773	CR00773	GR00773	GR00775	GR00775	GR00775	GR00777	CR00777	CR00793	250000	GR00798	GR00799	GR00804	GR00806	CR00812	CR00824	GR00831	GKOUBAO	080084	GR00844	GR00845	GR 10003	-	2		52 150 100 100 100 100 100 100 100 100 100		_	CR10016	GR 10019	0200100		_	GR 10035	GR10035	GR10038	CR10044	GR00423	GR00305	GR00338
Identification	Code	RXA02778	RXA02779	HXA02780	RXA02782	RXA02783	RXA02784	RXA02786	RXA02793	RXA02812	0.00000	RXA02817	RXA02818	FXA02823	RXA02825	RXA02827	FXA02835	HXA02838	14401641 04401941	RXA02842	RXA02845	PXA02848	RXA02856	RXA02858	RXA02862	EXA02867	RXA02869	RXA02870	RXA02871	RXA02878	RXA02881	DX Angras	RXA02868	RXA02889	RXA02891	RXA02892	RXA02898	RXA02905	RXA01494	RXA01092	KXA01188

TABLE 2: GENES IDENTIFIED TO GENBANK

			Reference	
Georgank	Gene Name	Cacar Function	levine and the second s	
Accession No.	nng	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphioenorpy tuval	
			recombinant DNA and method for producing L-amining acids using said	
			Strains," Patent: EP 0358940-A 3 03/21/90	
00000		Thronine delivdiatase	Mocckel, B. et al. "Production of L. Isolcucine by literals of techniques."	
A45579,	-		micro-organisms with deregulated threonine deliyuratase, i are ii.	
A45361,	-		9519442.A 5 07/20/93	
A45383,	,			
A45587			1 11 11 11 11 11 11 11 11 11 11 11 11 1	•
AB003132	murC, fisQ; fis2.		Kobayashi, M. et al. "Cloning, sequencing, and change of community on convergence of Biochem Biophys. Res Commun.	
<u></u>			236(2).383.388 (1997)	
4 0015033	murc. flsO		Wachi, M. et al. "A mui C gene from Corynetion bacteria, Appr. Wiles of the control of the contr	
ABCINGA			Biotechnol, 51(2):223-226 (1979)	
AB018530	disR		detergent sensitivity of a mulant derived from Brevioacter unit	
			laciofermentum," Biosci Biotechnol Biochem, 60(10).1363-1310 (1770)	
AR018531	disR 1; disR2			
A R020624	murl	D-glutamate racemase		
VEC01177	<u> </u>	transketolase		
AB024708	gliB, gliD	Glutamine 2.0xoglutatate antinotransferasse large and small subunits		
7673000	600	aconitase		
AB023424	TED TO	Replication protein		
AB027715	rep; aad	Replication protein; aminoglycoside		
		Much the manual Comist dehydo		
AF005242	angc	dehydrogenasc		
36779000	Valo	Glutamine synthetase		
A1003033	Billy bisF	cyclase		
AF030630	Cone	Argininosuccinate synthetase		
AF030520	No.	Omithine carbamolytransferase		
AF031018	Goia	3.dehydroquinale dehydialase		
MOSOCO				

pyc dciAE; apt; rel phosphoribosyllasse argR argR Inositol monophosphate phosphatase argR Inositol monophosphate phosphatase argC; argH Arginine reptesson argD; argF; argR; argC; argH N-acetyglutamylphosphate reductase, argD; argF; argininosuccinate lyase arghyglutamate kinase, acetylomithme nansminase; omithin carbamoyltransferase; N- acetylglutamate kinase, acetylomithme has argininosuccinate symhase; argininosuccinate symhase; argininosuccinate symhase; argininosuccinate symhase; argininosuccinate symhase; argininosuccinate symhase; argininosyl-aryl carrier piotein reductase his ATP phosphoribosylforminino-3-amino-1- phosphoribosylforminino-5-amino-1- phosphoribosyl-a-imudazolecatosamide isomerase Dehydtoquinate symhetase Glutamine amudoiransferase Dehydtoquinate symhetase Symphosphotylokiciase Dehydtoquinate symhetase Symphosphotylokiciase Symphosphotylokiciase Symphosphotylokiciase Symphosphotylokiciase Symphosphotylokiciase Symphase Laspartate-alpha-decarboxylase piecuisor Laspartate-alpha-decarboxylase	GenBankin	Gene Name	Gene Function	Reference
pyc dciAE; apt; rel phosphoride-binding piotein; adenine dciAE; apt; rel phosphoride-binding piotein; adenine pyrophosphokinase argR Arginine reptessor argR Arginine reptessor argC; arg J; argR; argC; arg J; argR; argC; arg J; argR; argC; arg J; argR; argC; arg J; argininosuccinate lyase InhA ATP phosphoribosylfamisterase his ATP phosphoribosylfamisterase mctA Ilonosetine O acetyltransferase bis Bhosphoribosylfamisterase Ilonosetine O acetyltransferase Dehydtoquinate synthetase Ilonosetine O acetyltransferase Dehydtoquinate synthetase Arg phosphoribosylfamisterase phosphoribosylfamisterase Ilonosetine O acetyltransferase Dehydtoquinate synthetase Jenish Semolpyuvylshikimate 3-phosphate synthase Jenishase J	Accession No.			
dciAE; api; rel Dipeptide-binding pioten; adcline phosphoribosyltansferase; GTP phosphoribosyltansferase; GTP pyrophosphokinase. argR Arginine reptessor argC; argJ; argR; N-acetylglutamylphosphate reductase, argD; argH; N-acetylglutamylphosphate reductase, ormithine acetyltansferase; N-acetylglutamate kinase, acetylomithne transminase; ormithine acetyltansferase; N-acetylglutamate kinase, acetylomithne ransminase; ormithine carbamoyltransferase; argininosuccinate synthase; argininosuccinate tyase inhA Argphoribosylcarie photein reductase bisA hisA Argphosphoribosyllansferase inhA Erroyl-acyl Carriet photein reductase bhosphoribosyll-4-imidazolecatboxamide isomerase inchA Ilomosetine O-acetyltransferase Ilomosetine O-acetyltransferase Ilomosetine O-acetyltransferase Glutamine amudolransferase Johosphoribosyl-ATP- pyrophosphotydolase Johosphoribosyl-ATP- pyrophosphoribosyl-ATP- pyrophosphotydolase Johosphate Johosphoribosyl-ATP- pyrophosphotydolase Johosphate Johosphoribosyl-ATP- pyrophosphotydolase Johosphate Johosphate Johosphoribosyl-ATP- pyrophosphotydolase Johosphate Johosphoribosyl-ATP- pyrophosphotydolase Johosphate Johosphate Johosphoribosyl-Atp- pyrophosphotydolase Johosphate Johosphate Johosphoribosyl-Atp- pyrophosphotydolase Johosphate Johosphate Johosphate Johosphoribosyl-Atp- pyrophosphotydolase Johosphate Jo	8548	pyc	Pyrivate curboxy ibsc	Mithenesia, 1 at al "The role of the Corynebseterium glutamicum tel gene in
argR Arginine repiessoi argR Arginine repiessoi argC; argJ; argB; Nacetylglutanylphosphate reductase, argC; argJ; argB; Ornithine acetyltransferase; Nacetylglutamylphosphate reductase, argD; argF; argB; ornithine acetyltransferase; Nacetylglutamate kinase, acetylomithine carbamoyltransferase; arginine repiessor; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase bisA ATP phosphoribosylfransferase ThisC ATP phosphoribosylfransferase aroB ATP phosphoribosylfransferase Ilomosetine O acetyltransferase Ilomosetine O acetyltransferase Clutamine amudoltansferase B hisH Clutamine amudoltansferase Clutamine amudoltansferase S-enolpytuvylshikimate 3-phosphate synthase L-aspartate-alpha-decalboxylase precutsor L-aspartate-alpha-decalboxylase	8651	dciAE; apt; rel	Dipeplide binding piotein; adenine phosphoribosyltiansferase; GTP	(p)ppGpp metabolism." Microbiolngy, 144.1853-1862 (1998)
argR Arginine repiesson Innositol thonophosphate phosphatese argC; argJ; argR; argD; argR; argD; argR; argC; argJ argR; argininosuccinate lyase carbamoyltransferase; N- argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate lyase Enoyl-acyl carrier piotein reductase I phosphoribosylfransferase I phosphoribosyl-a imidazolec at boxanide isomerase I flomosetine O acetyltransferase Cilutamine amudotransferase A hisH Phosphoribosyl-A TTP- phosphoribo			pyrophosphokinase	
impA Argininosuccinate lyase argC; argH; Argininosuccinate lyase argD; argH; Argininosuccinate lyase argD; argH; Aracetylglutamate kinase, acetylomithme transminase; ornithine carbamoyltransferase; N- argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate lyase Inoyl-acyl carrier protein reductase argininosuccinate lyase Inosphoribosylfominino-5-amino-1- phosphoribosylfominino-5-amino-1- phosphoribosylfominino-5-amino-1- phosphoribosylfominino-5-amino-1- phosphoribosyl-4-imdazolecatboxanide isomerase Ilomosetine O-acetyltransferase Ilomosetine O-acetyltransferase A hist Phosphoribosyl-ATP A hist Phosphoribosyl-ATP A hist Phosphoribosyl-ATP A hist Laspartate-alpha-decarboxylase precursor Laspartate-alpha-decarboxylase precursor Laspartate-alpha-decarboxylase	1436	argR	Arginine repiessoi	
argC; argH; argB; N-acetylglutamylphosphate reductase, argD; argB; nomithine acetyltransferase; N-acetylglutamate kinase, acetylomithine ransminase; ornithine cardylomithine cardsmoyltransferase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate fyase Enoyl-acyl carrier protein reductase phosphoribosylfomimino-5-amino-1-phosphoribosylfomimino-1-phosphoribosylfomimino-1-phosp	8665	γ	Inositol monophosphate phospinatase	
argC; arg1, arg8, ormithine acetyltransferasc; N- argD, arg1, arg8, ormithine acetyltransferasc; N- acetylglutamate kinase, acetylornithine carbamoyltransferase; arguine repressor; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate lyase hisG ATP phosphoribosyltransferase hisA ATP phosphoribosyltransferase isomerase isomerase Ilomostetine O-acetyltransferase Ilomostetine O-acetyltransferase Dehydroquinate synthetase Glutamine amidotransferase A hisE Phosphoribosyl-ATP- pyrophosphotylosyl-ATP- pyrophosphotylosyl-ATP- pyrophosphotylosyl-ATP- pyrophosphotylosyl-ATP- pyrophosphotylosyl-ATP- pyrophosphotylosyl-ATP- synthase synthase Laspartate-alpha-decarboxylase precursor Laspartate-alpha-decarboxylase	8764	urgi-1	Argininosuccinale Iyasc	
algG; argH acetylglutamate kinase, acetylomithine ransminase; ornithine carbamoyltransferase; arguine repressor; argininosuccinate synthase; his ATP phosphoribosylfonminino-3-amino-1-phosphoribosylfonminino-3-amino-1-phosphoribosylfonminino-3-amino-1-phosphoribosylf-4-imidazolecaiboxanide isometrase ATP phosphoribosylfonminino-3-amino-1-phosphoribosylfonminino-3-amino-3-amino-1-phosphoribosylfonminino-3-amino-3-amino-3-amino-3-amino-3-amino-3-amino-3-amino-3-amino-3-amino-3-amino-3-amino-3-	19897	argC; argJ; argB;	N-acetylglutamylphosphate teduciase, ormithine acetyltiansferase; N-	
ransaminase; ormithine carbamoyltransferase; arginine repressor; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate synthase; argininosuccinate fyase his ATP phosphoribosyltransferase his ATP phosphoribosyltransferase phosphoribosyl-4-imidazolecatboxanide isomerase liomosetine O acetyltransferase bis his B his B his B Clittamine amidoltansferase pyrophosphoribosyl-ATP phosphoribosyl-ATP phosphoribosyl-ATP phosphoribosyl-ATP synthase synthase Laspartate-alpha-decarboxylase precursor		argu; argh, argn;	acetylglutamate kinase, acetylomithine	
randomoyltransferase; arginine repressor; argininosuccinate synthase; argininosuccinate lyase hisG hisA ATP phosphoribosyltanisterase hisA Phosphoribosyl4-imidazolecarboxanide isomerase lionnoserine O-acetyltransferase hisB Clutamine amidoltansferase hisB Apyophosphoribosyl-ATP phosphoribosyl-ATP phosphate synthase Laspartate-alpha-decarboxylase precursor			nansminase; omithine	
angininosuccinate synthase; angininosuccinate lyase InhA Enoyl-acyl carrier protein reductase hisG ATP phosphoribosyltansferase hisA Phosphoribosylformlmino-5-amino-1- phosphoribosyl-4-imidazolec arboxanide isomerase Ilomosetine O-acetyltransferase hisH Dehydroquinate synthelase A hisE Dehydroquinate synthelase A hisE Phosphoribosyl-ATP- pyrophosphorydrolase 3 aroA synthase synthase Laspartate-alpha-decarboxylase precursor A panD Laspartate-alpha-decarboxylase			carbanioyltranssciase; arginine repressor;	
aroth ATP phosphoribosyltransferase his ATP phosphoribosyltransferase his ATP phosphoribosyltransferase his his his I Iomosetine O acetyltransferase I Iomosetine O acetyltransferase B his I Dehydroquinale synthelase B his I Phosphoribosyl ATP Thosphoribosyl ATP Phosphoribosyl ATP pyrophosphohydrolase 5-enolpytuvylshikimate 3-phosphate synthase Laspartale-alpha-decarboxylase precutsor			argininosuccinate synthase;	
inh A ATP phosphoribosyltransferase his ATP phosphoribosyltransferase his ATP phosphoribosyltransferase his phosphoribosylt-imidazolec aiboxanide isomerase lisomerase lisomeras			argininosuccinate lyase	
hisG ATP phosphoribosyltansferase hisA phosphoribosylfomimino-5-amino-1- phosphoribosyl-4-imidazolecalboxanide isomerase Ilomosetine O-acetyltransferase B hisl Dehydroquinale synthelase Glutamine amidofransferase hisE Phosphoribosyl-ATP- pyrophosphohydrolase 3 aroA S-enolpytuvylshikimate 3-phosphate synthase Laspartate-alpha-decarboxylase precursor	80100	InhA	Enoyl acyl carrier protein reductase	
his A phosphoribosylformimno-5-amino-1- phosphoribosylf-4-imidazolecarboxanide isomerase Ilomoserine O-acetyltransferase Behydrogunate synthetase Glutamine amidolransferase his His Phosphoribosyl-ATP- phosphosphohobydrolase 3 aro A synthase 5-enolpytuvylshikimate 3-phosphate synthase Laspartate-alpha-decarboxylase precursor	50105	hisG	ATP phosphoribosylnansferase	
phosphoribosyl-4-imidazolec at boxantide isomerase I atoB Dehydroquinate synthetase B hish Clutamine amidotransferase A hisE phosphoribosyl-ATP- phosphoribosyl-ATP- pyrophosphohydrolase 3 aroA synthase synthase Laspartate-alpha-decarboxylase precursor	20100	hicA	Phosphoribosylformimno-5-amino-1-	
isomerase Ilomoserine O-acetyltransferase atoB Dehydroquinate synthetase his1 Ghtfamine amidofransferase his2 Phosphoribosyl-ATP- pyrophosphosphohydrolase aroA S-enolpytuvylshikimate 3-phosphate synthase panD Laspartate-alpha-decarboxylase precursor	0.501.01		phosphoribosyl-4-imidazolecarboxaniide	
meth Homosetine O acetyltransferase atoB Dehydroquinate synthetase hish Glutamine amidofransferase hisE pyrophosphotydrolase aroA S-enolpyruvylshikimate 3-phosphate synthase panD Laspartate-alpha-decarboxylase precursor			isomerase	is the state of any supplied of method in the biosynthetic gene
aroB Dehydroquinate synthetase his H his H his E hosphoribosyl-ATP- pyrophosphohydrolase s-enolpyruvylshikimate 3-phosphate synthase han Senolpyruvylshikimate precursor Laspartate-alpha-decarboxylase precursor	052652	metA	Homoserine O-acetyltransferase	encoding homose ine acetyltransferase in Colynebacterium glutamicum," Mol
aioB Dehydroquinale synihetase hisll Glutamine amidotransferase hisE Phosphoribosyl-ATP- pyrophosphohydrolase senolpyruvylshikimate 3-phosphate synthase tanD Laspartate-alpha-decarboxylase precursor		•		(VIII), 0(3), 2017-17-17-17-17-17-17-17-17-17-17-17-17-1
histi Glutaminc amudoltansterase hist Phosphoribosyl-ATP- pyrophosphohydiolase senolpyiuvylshikimate 3-phosphate synthase tynthase Laspartate-alpha-decarboxylase precursor	170530	aroB	Dehydroquinale syminelase	
hisE pyrophosphohydiolase serol strong sprophosphohydiolase serol strong synthase synthase synthase band Laspartate-alpha-decarboxylase precursor	060558	hisH	Glutamine amidolransferase	
synthuse panD Laspartate-upha-decarboxylase precursor	086704	hisE	Phosphoribosyl-ATV- pyrophosphohydiolasc	
panD Laspartate-alpha-decarboxylase precursor	:114233	агоЛ	5-enolpyruvylshikimate 3-phosphate	
	114184	nanD	Laspartaic-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynehacterium glutamicum pand gene
		<u>-</u>		overproduction in Escherichia coli," Appl. Environ Microbiol, 65(4)1530-1539 (1999)

GenBank 141	Gene Nanie	Gene Function	Keierence
Accession No.	,		
AF124518	aroD; aroE	3. deliydroquinasc; shikimale dehydiogenase	
AF124600	aroC; aroK; aroB;	Chorismate synthase; shikimate kinnse; 3-dehydroquinate synthase; putative	
		cytoplasmic peptidase	
AF145897	inhA		
AF145898	infiA		The state of the secondary of the secondary and the secondary
AJ001436	edP	Transpur of ectoine, glycine betaine,	Carriers for compatible solutes. Identification, sequencing, and characterization
		201110	of the proline/ectoine uptake system, Prop, and the ectoine/proline/glycine betaine carrier, Ectp." J. Bucteriol, 180(22):6005-6012 (1998)
			Webrmann A et al. Different modes of diaminopimelate syndiesis and their
AJ004934	dapD	Tetrahydrodipicolinate succinylase (incomplete')	role in cell wall integrity. A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; seeG; amt; ocd;	Phosphoenolpynivate carboxylase; ?; high	
	SoxA	omithine-cyclodecarboxylase; sarcosine	
		oxidase	11.2k. M. of al 'Nihonen tegulation in Corvnebacterium glutamicum;
AJ010319	fisy, glnB, glnD, srp; amtP	Involved in cell division; Pil protein; uridylyfransferase (uridylyl-temoving enzmye); signal recognition particle; fow	Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol, 173(2):303-310 (1999)
		affinity animonium uptake piolein	
A 11 2 3 0 6 8	Cal	Chloramphenicol aceteyl transferase	This is a series and wenefic characterization of the
A3224946	obıu	L malate: quinone oxidoreductase	Molenaai, D. et al. Molenemest and Edicinement membrane associated matate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur J Biochem, 254(2):395-403 (1998)
0300001	lpu l	NADII dehydrogenusc	1 Livelyneiral characterization of the cell
A1238703	Viod		vall porin of Corynebacterium glutamicum. The channel is formed by a low.
		100.000	Molecular mass por permac, organization of 1831831, a transposable
D17429		Transposable element 1531831	element from Corynebacterium glutamicum," Mol Microbiol, 11(4):739-746 (1994)

	*.	3.	
ConRankw	Gene Name	Gene Function	Reference
A coestion No.			the Corvnebacterium glutamicum
D84102	Vypo	2-oxoglutarate dehydiogenase	Usuda, Y. et al. "Molectual Clouing of the Conf." (Brevibacterium lactofermentum A112036) odhA gene encoding a novel type of 2-oxociutarate dehydrogenase," Atici obiology, 142,3347,3354 (1996)
E01358	hdh, hk	Homoscrine deliydrogenase; homoscrine	Kalsumata, R. et al. "Production of L-ther conine and L-Isoleucine," Patent: Jr. 1087373303. A 1 10/12/87
E01359		kinase Upstream of the start codon of homoserine	Kalsumala, R. et al. "Production of L-therconine and L-isoleucine," Patent JP 1987232392-A 2 10/12/87
		Trynlophan option	Vitagett Popus vision
E01375	tpL; tpE	Leader peptide; anthranifate synthase	Matsui, K. et al. "Tryptophan operon, peptide and protein course instacts utilization of tryptophan operon gene expression and production of most in 1027244382. A 1 10/24/87
E01377			Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of
,		ft yptophan operon	tryptophan," Patent: JP 1987244382.A 1 10/24/87 Hankevanta K, et al "DNA fragment containing gene capable of coding
E03937		Biolin-synthase	biotin synthelase and its utilization," Patent. JP 1992278088-A 1 10/02/92
E04040		Diamino pelaigonic acid aninotransferase	Kohama, K. el al. Uzir Couling Gianimorphia Patent: JP 1992330284-A 1 desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1
		Desthobiotinsynthetase	Kohania, K. et al. "Gene coding diaminopelargonic acid ammotransferase and
E04041 			desthiobiolin synthetase and its utilization, ratem 11/18/92
E04307		Flavum asparlase	Kurusu, Y. et al. "Grae DNA coding aspartase and utilization increase. JP 1993030977-A 1 02/09/93
E04376		Isocitric acid Iyasc	Kalsumafa, R. et al. Gene manifestation controlling 2177, 1993056782-A 3 03/09/93
E04377	,	Isocitric acid lyase N-terminal fragment	Kaisunnafa, R et al. "Gene maintestation condoming 2007; 1993056782-A 3 03/09/93
E04484		Prephenate dchydratase	Solouchi, N. et al. "Troduction of Lypnen June 1993076352-A 2 03/30/93
E05108		Aspartokinusc	Figuno, N et al. Gene Day Couring Asparential Page 1993184366-A 1 07/27/93
E05112		Diliydro-dipicharinate synthetase	Halakeyama, K. cl al

Zen Rank 14	Gene Name	Gene Function	Reference	
ccession No.			Kahawachi M et al "Gene DNA coding Diaminopimelic acid deliydrogenasc	
E05776		Diaminopume lie acid denyarogenase	and its use," Patent. JP 1993284970. A 1 11/02/93	
E05779		Threonine synthase	JP 1993284972.A 1 11/02/93	
E06110		Prephenaic dchydraiase	Kikuchi, T. et al. "Production of L. pricing ratarine by services." Patent, JP 1993344881-A 1 12/27/93	
E06111		Mutaicd Pephenaie deliydiafase	Kikuchi, T. et al. "Production of L-phenyialanine by territentation memory. Patent: JP 1993344881-A 1 12/27/93	
E06146		Acetohydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetonyuloxy actu 8)	•
E06825		Aspartokinasc	Sugimoto, M. et al "Mutani aspartokinase gene, parent 17 1094062866. A 1	•
E06826		Mulated aspartokinase alpha subunil	Sugimoto, M et al "Mutani aspariokinase gene, pracent si 1770 100 03/08/94	
E06827		Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene, patent of 1754002.000 13/08/94	
E07701	sccy		Honno, N. et al. "Gene DNA participating in megianism of membrane," Patent. JP 1994169780. A 1 06/21/94 protein to membrane," Patent. JP 1994169780. A 1 06/21/94	
E08177		Aspartokinasc	Sato, Y et al "Genetic DNA capable of Cours, April 1997/261766. A 1 09/20/94 feedback inhibition and its willization," Patent: JP 1994/261766. A 1 09/20/94	
E08178.		Feedback inhibition-released Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspanosinase receased for a cedang Aspanosinase 1 09/20/94 [feedback inhibition and its utilization," Patent: JP 1994261766.A 1 09/20/94	
E08179, E08180,				
E08181, E08182		0.000.1	Inni M et al. "Gene DNA coding acetohydroxy acid isomeroreductuse,"	
E08732	•	Acetohydroxy-acid isonictoreductore	Patent, JP 1994277067-A 1 10/04/94	
E08234	SUCE		Asai, Y. et al. 'Gene Diva coung for management patent: JP 1994277073-A 1 10/04/94	
E08643		FT aminotransferase and desthiobiotin synthetase promoter region	coryneform bacterium," Patent JP 1995031476-A 1 02/03/95	
E08646		Biolin synthetase	coryneform bacterium," Palent: JP 1995031476-A 1 02/03/95	_

H-	Gene Name	Gene Function	Reference
Accession No.			Kohama, K. et al "DNA fragment having promoter function in coryneform
E08649		-	bacterium," Patent. JP 1995031478-A 1 02/03/95
E08900		Dihydrodipicolinate reductase	Madon, M. et al. DNA Tragnical Containing Ecot. 2011.6 19370/95 acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95
E08901		Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene couning Dianning princing decarboxylase and utilization thereof," Patent. JP 1995075579. A 1 03/20/95
E12594		Serinc hydroxymethyltransferase	Hatakeyanıa, K. ci al. "Production of L. frypophani, Falcin 31 1777 22 27 1 02/04/97
E12760,		transposase	Motiva, M. et al. "Amplitication of gene using attribute to analysism, T. 1997070291-A 03/18/97.
E12758		Aminonimelase: diaminonimelie	Moriya, M. et al. "Amplissation of gene using artificial transposon," Patent.
E12764		acid decarboxylase	JP 1997070291-A 03/18/97
E12767	_	Dihydrodipicolinic acid synthetase	Moniya, M. et al. "Amplification of gene using artificial registrom." JP 1997070291-A 03/18/97
E12770		aspartokinasc	Moriya, M. et al. "Amplification of gene using artificial transposon, Patent. Jp 1997070291-A 03/18/97
E12773	-	Dihydrodipicolinic acid reductase	Muriya, M. et al. "Amplification of gene using artificial transposon, Falent JP 1997070291-A 03/18/97
E13655		Glucosc. 6. phosphate dehydi ogenase	Hatakeyama, K. et al. "Glucose-6 phosphate dehydrogenase and DNA capabit of coding the same." Patent: JP 1997224661-A 1 09/02/97
1.01508	llvA	Thiconine dehydralase	Morckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corymebacterium glutamicum," J. Bacter tol., 174,8065-8072
L07603	EC 4.2 1.15	3. deoxy-D. arabinohepiulosonate-7. phosphate synthase	(1992) Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy. D. arabinohephulosonate. 7-phosphate synthase gene," FEMS Microbiol Lett., 107-223-230 (1993)
L09232	IIVB; IIVN; IIVC	Acctohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acctohydroxy acid isomeroreduclase	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum. molecular analysis of the ItvB. ilvN-ilvC operon," J. Bacteriol, 175(17).5593-5603 (1993)

GeoBank nd	Gene Name	Gene Runction	Relevance
Accession in	DA. NA	Phosphaenolovmyate sugar	Fouel, A et al "Bacillus subtilis sucrose-specific enzyme 11 01 1115
L188/4	Media	phosphotrapsferase	phosphotrans(erase system: expression in Escherichia colt and nomotogy to
			enzyanes II from enteric bacteria," PNAS USA, 84(24) 81/3-8/11 (1987), 126,
			J.K. et al. "Nucleotide sequence of the gene encoding the Corynebaclettum
•	•	•	plutamicum mannose enzyme II and analyses of the deduced profetin
			sequence." FEMS Microbiol Lett., 119(1.2), 137-145 (1994)
	4	Molaisemihace	Lee. H. S. et al. "Molecular characterization of aceB, a gene encoding malate
L27123	awa	ואומותוכ אל זווויתאר	symthase in Corynebacterium glutamicum," J Microbiol. Biotechnol,
			4(4) 256-263 (1994)
70.00		Pyrivale kinase	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from
177170			Corynebacterium glinamitum, Appl Einiron Microbio, 500(1).2301-2301
			(1994)
092801	ace/	Isocitrate lyasc	TANIA monumente analysis and
1 25006	dtvi	Diphtheria toxin repressor	Oguiza, J.A. et al. "Molecular cloning, DNA acqueing analysis, and
סטאנניד			characterization of the Corymebacterium dipinitical actually main by the characteristics
			lacinfernientum," J. Bacteriol, 177(2):465-467 (1995)
AFFERN		Prephenate dehydratase	Follettie, M.T. et al. "Molecular cioning and nucleorius seductive of the
. EVICINA	•		Corynebacterium glutamicum phea gene, J Bucheron, 1913, 1914
M16175	SSIRNA		Park, V-H et al. "Phylogenetic analysis of the Colyncionic acrees." J Bacteriol, 169:1801-1806 (1987)
1416663	mE	Anthranilaic synthase, 5' end	Sano, K. et al "Shutture and function of the trp operor control regions of
6001			Sylvania (1987)
		Tonotonkon combon l'end	Sano, K. et al "Shutture and function of the trp operon control regions of
M16664	٧ <u>ل</u> ار	Trypioprian symmetry 5 and	Brevibacterium lactofermentum, a glutamic acid-producing bacterium, Ocue,
			52.191.200 (1987)
0.0303		Phosphocnolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the
M23817		•	Phosphoenolpyruvate carboxylase couning Edite of Carping Land
			Biutamichim A I Content and I activity harteria with a high DNA G+C content are
M85106		23S rRNA gene insertion sequence	characterized by a common insertion within their 235 IRNA genes," J. Gen
			Microbiol, 138.1167-1175 (1992)

GenBanktu	Gene Name	Gene Punction	Reference
Accession No.		- 1	Doller C et al "Cram navitive hacteria with a high DNA G+C content are
M85107, M85108		23S IKNA gene insertion sequence	characterized by a common insertion within their 23S IRNA genes," J. Gen. Microbiol, 138, 1167-1175 (1992)
M89931	aecD; bmQ, yhbw	Beta C-S lyase, branched chain amino acid uptake carrier, hypothetical protein yhbw	Rossol, I. et al. "The Corynebacterium glutamicum accD gene encodes a C.S. Iyase with atpha, beta-elmination activity that degrades aminoethyleysteine," J. Bacieriol, 174(9).2968.2977 (1992), Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the bmQ gene
S59299	цъ	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan- hyperproducing strain of Curynebacterium glutamicum: identification of a mutation in the trp leader sequence," Appl. Environ. Microbiol., 59(3).791-799 (1993)
U11545	ιφΩ	Anthranilate phosphor bosyltransferasc	O'Gara, J.P. and Dunican, L.K. (1994) Complex nucleonal Sequences. Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology. Department, University College Galway, Ireland.
U13922	cgilM; cgilR, clgilR	Putative type 11 5. cytosoine methyltransferase; putative type 11 restriction endonuclease; putative type 1 or type 111 restriction endonuclease	schaler, A. et al. Cloning and Characteristics. Schaler, A. et al. Cloning and characteristics. Strass-sensitive restriction system from Corynebacterium glutamicum A TCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli;" J. Bucieriol., 176(23):7309.7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cgllM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95-101 (1997)
U14965 U31224	lpx		Ankri, S. et al. "Mutations in the Cotynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step." J Bacteriol., 178(15):4412-4419 (1996)
U31225	proC	L proline: NADP + 5-0xidoreductase	Ankri, S. et al "Mutations in the Coryncbatterium gintamicumprimed biosynthetic pathway. A natural bypass of the proA step," J Bacteriol, 178(15):4412-4419 (1996)
<u>U31230</u>	obg.; proB, unkdh	Pigamma glutantyl kinase;sımilar to Disonier specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. Mulations in the Colympass of the proA step," J. Bacteriol. 178(15) 4412-4419 (1996)

10.0	Cana Name	Gene Function	Reference
Gentsank			
U31281	bioB	Biotin synthase	Sciebliskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glulamicum," Gene, 175·15-22 (1996)
<u> </u>	thtR, accBC	Thiosulfate sulfurfransferase; acyl CoA carboxylase	Jager, W. et al. "A Corynebacterium glulanucum gene encoding a two-nomining protein similar to biolin carboxylases and biolin-carboxyl-carriet proteins." Arch Microbiol, 166(2);76-82 (1996)
<u>U43535</u>	СШІ	Multidrug resistance protein	Jager, W. et al. "A Corynobacterium gutamicum gene comermy in resistance in the heterologous host Escherichia coli," J Bacteriol, 179(7) 2449-2451 (1997)
U43536	clpB	Heat shock ATP-binding protein	
1153587	aphA-3	3.5". aminoglycoside phosphotiansterase	
U89648		Corynebacterium glutanicum unidentified sequence involved in histidine biosynthesis, partial sequence	ti avvuentee Piese .
X04960	ւթA; tւթB; tւթC; tւրD; tւթE; tւրO; tւրL	Tryptophan operon	Matsui, K. et al. "Complete nucleotide and dediced attimo area sequenced the Brevibacterium lactofermentum tryptophan operon," Nucleic Acids Res. 14(24):10113-10114 (1986)
X07563	lys A	DAP decarboxylase (meso diaminopiniclate decarboxylase, EC 4.1.1.20)	Yeh, P. et al "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," Mol Gen Genet, 212(1):112-119 (1988)
X14234	EC 4 1.1.31	Phosphoenolpy1uvate carboxylase	Eikmanns, B. J. et al. "The Phosphoenolpyruvate Carboxylass gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," Mol Gen. Genet, 218(2):330-339 (1989), Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylass gene family: structure, function plant molecular evolution." Plant Mol. Biol., 21 (3):487-502 (1993)
X17313	Íða	Fructose-bisphosphate aidolase	Shorter Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine-snuctural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1, 6-biphosphate aldolase to class I and class II aldolases." Mol. Microbiol.
X53993	dapA	1,2, 3-dihydrodipicolinate synthetase (EC 4 2.1.52)	Bonnassic, S. et al. "Nucleic sequence of the dapA gene from Corynebacterium glutamicum," Nucleic Acids Res., 18(21):6421 (1990)

Cone Name Gene Function Reference		AttB-telated site Corynebacterium diphtheriae, Corynebacterium ulcerans. Corynebacterium diphtheriae, C	Arginyl-IRNA synthetase; Diaminopimelate Marcel, T. et al. "Nucleotide sequence and organization of the upstream region	decarboxylase	trpL; trpE synthase component 1 trpE gene," Nucleic Acids Res., 18(23):7138 (1990)		anti-related sile Attachment sile Corynebacterium diphtheriae, Corynebacterium ulcctans, Corynebacterium plutanise, Corynebacterium ulcctans, Corynebacterium plutanicum, and the attp site of lambdacorynephage," FEMS Microbiol.	lysC-alpha; lysC-bcta; Aspartokinase-beta subunit; aspartate beta Kalinowski, J et al "Aspartokinase genes lysC alpha and lysC bcta overlap sod semialdehyde dehydiogenase	~	chyde 3-phosphate; lycerate kinase, triosephosphate	Isometass Sacietion 19419 2010 19419 2010 19419 2010 19419 2010 19419 2010 19419 2010 19419 2010	gdh Glulamate dehydrogenase gdin gene encoding glutamate dehydrogenase," Mol Microbiol., 6(3):317-326	Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of the Corynebacterium" Seep-Feldhaus, A.11. et al. "Molecular analysis of	(1/21) COOC
Cone Name			ame. Inch		फार.; फार	thrC	anB related sile	 lysC-alpha; lysC	•	gap,pgk; 1pi		qpg	lyst	•
1. T. T.	Georgann Accession No.	X54223		X54740	X55994	X56037	X\$6075	X57226		X59403		X59404	X60312	

Blac C	Ē	Cone Name	Gene Function	Reference	
LIECA LICA LICA LICA LICA LICA LICA LICS ribosomal RNA LICS ribosomal RNA R R R R R R R R R R R R R	enBank'i			namic West at "Phylogenetic relationships of bacteria based on comparance	
16SrDNA 16Sribosomal RNA R R R BluC, Glutamate uptake system R BluD, Glutamate uptake system R BluDNA 16Sribosomal RNA R BluDNA 16Sribosomal RNA R BluDNA 16Sribosomal RNA 16Sribosomal RNA 16SribNA 16Sribosomal RNA 16Sribosomal RNA 16Sribosomal RNA 16SribNA 16Sribosomal RNA 16Sribosomal	77034	tuí		sequence analysis of clongation factor Tu and ATP-synthase beta-subunit	
16S rDNA 16S ribosomal RNA R R R R 16S ribosomal RNA R R R R R R R R R R R R R R R R R R				Billman Jacobe, H. "Nucleotide sequence of a reck gene from	. •
aceB Malaic synthase property of the system of the gluth; gluB; gluC, Glutamate uptake system of gluth gluB; gluC, Glutamate uptake system of gluth gluth of the system of the gluth of the system of the gluth of the system of t	77384	100 A		Corynebacterium glutamicum," DNA Seq. 4(0),403-404 (1777)	
16S rDNA 16S ribosomal RNA 16S ribosomal	78491	вжв	Malaic synthase	pla ack operon encoding phosphotransacetylase: sequence analysis," Anciobiology, 140:3099-3108 (1994)	
gluA; gluB; gluC; Glutamatc uptake system gluD dapE Succinyldiaminopimelate desuccinylase 1 16S 1DNA 16S 1ibosomal RNA 16S 1DNA 16S 1ibosomal RNA 16S 1DNA 16S 1ibusomal RNA	K80629	16S rDNA	16S ribosomal RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Kituducoccess". Norcardia and evidence for the evolutionary origin of the genus Norcardia 4.000 within the tadiation of Rhodococcus species," Microbiol., 141:523-528	
gluA; gluB; gluC; Glutamate uptake system gluD dapE Succinyldiaminopimelate desuccinylase C 1 16S iDNA 16S ribosomal RNA 29 proA 16S ribosomal RNA 16S r				(1995)	
dapE Succinyldiaminopimelate desuccinylase 16S ribosomal RNA asd; lysC Aspartate-semialdehyde dehydrogenase; ? proA Tels iDNA 16S ribosomal RNA Alomatic amino acid pernease; ? Alomatic amino acid pernease; ?	16118X	gluA; gluB; gluC,		Kronemeyer, W. et al. "Structure of the European Butamicum," J. Bacteriol, glutamate uptake system of Corymebacterium glutamicum," J. Bacteriol, 17743-1142-1158 (1993)	
16S i DNA 16S vibosomal RNA 8 asd; lysC Aspartate, semialdehyde dehydrogenase; 7 9 proA 16S ribosomal RNA 16S i DNA 16S ribosomal RNA 16S aroP; dapE Aromatic amino acid pernicase; 7 55	X81379	dapE	Succinyldiaminopimelate desuccinylase	Welimiani, A et al "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapts of Escherichia coli," Microhiology 40.3349.56 (1994)	
asd; lysC Aspartate-semialdehyde dehydrogenase; ? proA Gamma-glutanryl phosphate reductase 16S iDNA 16S ribosomal RNA aroP; dapE Aromatic amino acid permease; ?	X82061	16S i DNA	16S ribosonnal RNA	Ruimy, R. et al. "Phylogeny of the genus Chrymehacterium deduced from analyses of small-subunit ribosomal DNA sequences," Int. J. Syst. Bacteriol.	
proA Gamma-glutamyl phosphate reductase 16S 1DNA 16S ribosomal RNA a10P; dapE A10matic aunino acid pemicase; ?	X82928	asd; lysC	Aspartate-semialdehyde dehydrogenase: 9	45(4)·740·746 (1995) Serchijski, J. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. p. 171743 (1995)	
16S iDNA 16S ribusomal RNA aroP; dapE Atomatic amino acid permease; ?	X82929	proA		Screbijski, I. et al. "Multicopy suppression by asd gene and osmotic stress: dependent complementation by heterologous prod in prod mutants," J Rocteriol, 177(24):7255-7260 (1995)	·
aroP; dapE. Atomatic amino acid perniease; ?	X84257	165 DNA	16S ribusomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus Corynebacterium based on 16S 1RNA gene sequences," Int. J. Syst. Bacteriol., 45(4):724-728 (1995)	
5993 (1995)	X85965	aroP; dapE	Atomatic amino acid permease; ?	Wehrmann, A. et al. Functional analysis of Corynehacterium glucamicumproline reveals the presence of arop, which corynehacterium glucamino acid transporter," J Bucteriol, 177(20):5991-	
				5993 (1995)	٦ .

Con Ronk In	Gene Name	Gene Function	Kelerence
Accession No.			Cakanyan V et al "Genes and enzymes of the accipi cycle of arginine
X86157	aigB, aigC; aigD; aigF; aig)	Acciviglutaniate kinase; N. accivirganina- glutamyl. phosphate reductase;	biosynthesis in Corynchacterium glutamicum: enzyme evolution in the entry biosynthesis in Corynchacterium glutamicum: 142.99-108 (1996) steps of the argunine pathway." Atre obiology, 142.99-108 (1996)
*.		carbamoyltransferase; glutamate N.	
-		actylnansfcase	n in it. I of al "Cloning sequence analysis, expression and inactivation
X89084	pta; ackA	Phosphate acetyltransferase, acclate kinase	of the Corynchaeterium glutamicum planack operon encoding
			phosphotransacetylase and acetale kinase, natchonings, phosphotransacetylase and acetale kinase, natchoning site specific integration
X89850	attB	Attachment site	Le Marrec, C. el al. Geneile Character Marie C70," J. Bacieriol.
-			178(7):1996-2004 (1996)
700156		Promoter fragment F1	Palek, M. et al. Proniders from Cofficers motif," Microbiology, molecular analysis and scarch for a consensus motif," Microbiology.
2000	,		142:1297-1309 (1996)
		Promoter fragment F2	Palek, M. et al. "Homoteis from Corynean molif," Microbiology,
1 X90337			142:1297-1309 (1996)
		Promoter fraginent F10	Patek, M. et al. "Promoters from Corynebacterium ginitalincum" commercial
X90358			molecular analysis and scarcin for a conscisus
			Patek. M et al. "Promotors from Corynchacterium glutanicum: cloning,
X90359		Promoter tragment 1.13	molecular analysis and search for a consensus night, microconses.
	-		142-1297-1309 (1996)
X90360		Promolet fragment F22	molecular analysis and search for a consensus motif," Afterobiology,
			142:1297-1309 (1996)
191000		Promoter fragment F34	Paick, M. et al. "Homoters from Chipmonics." Ancrobiology, molecular analysis and search for a consensus motif." Ancrobiology.
			142: 1297-1309 (1996)
X90362		Promoter fragment F37	Patek, M et al "Piomoters from Corynepation" Brandif," Microbiology, molecular analysis and search for a consensus motif," Microbiology.
			142:1297-1309 (1996)

	Cone Nome	Gene Punction	Reference
	שנות אמוווע		opino dopino
Accession No.		Promoter fragment F45	Patek, M et al "Promoters from Corynchader uni glutamicum. Commis.
Xyusos			molecular analysis and scaleir for a construct.
776400		Promoter fragment 1:64	Patek, M. et al. Promuters from Corynebacter ium glutamicum. Cloning,
F0506V			142:1297-1309 (1996)
X90365		Promoter fragment F75	Patek, M. et al. "Promoters from Corymebacterium giutamicum. et al." Promoters from Corymebacterium giutamicum. et al." promoteria analysis and search for a consensus motif," After obtology:
			142:1297-1309 (1996)
X90366		Promoter fragment PF101	Patek, M. et al. "Promoters from Corynepacterium English." Ancrobiology, molecular analysis and search for a consensus motif," Ancrobiology,
			142:1297-1309 (1996)
X90367		Promoter fragment PF104	Paiek, M. et al. "Promoters from Corynephan Eloname Paiek, M. et al. "Promoters motecular analysis and search for a consensus motif," Affer obsology,
			142,1297-1309 (1996)
X90368	7	Promoter fragment PF 109	palek, M. et al. "170moters from Co.) reconstruction moter objoings. molecular analysis and search for a consensus motif," After objoings.
			142:1297-1309 (1996)
X93513	amt	Ammonium transport system	Siewe, R. M. et al. "I unctional and general general general glutamicum," J Biol Chem, aminonium uptake carrier of Conynebacterium glutamicum," J Biol Chem,
	(-	271(10): 5398-5403 (1996)
X93514	belp	Glycine betaine fransport system	Corynebacterium glulanicum bei P gene, encoding the transport system for the
			compatible solute give literation. Source of the daptity ORF2.
X95649	orf4		daph. ORF4 operon of Corynchacterium glutamicum, encoding two enzymes
			involved in Lysing synthesis, Brotherman 1211
X96471	lysE, lysG	Lysine exporter protein, Lysine export regulator protein	function: L. lysine export from Cotymebacterium glutamicum," Mol Microbiol. 22(5):815-826 (1996)
٠.			

			Deference
GenBank	Gene Name	Gene Punction	
Accession No.	2	2 mothyl 2 ovolutlandale	Sahm, II et al. "D pantothenate synthesis in Corynebacterium glulamicum and
085963	panB, panC; xy113	J-Interry 1-2-0x00mm. hydroxymcihylfransferase, pantoate-bela- alanine ligase; xylulokinase	use of panBC and genes encoding L valine synnesis for L parions. overproduction," Appl Environ Microbiol, 65(5), 1973, 1979 (1999)
		Insertion sequence 151207 and transposase	grant and expression of the gene encoding
X96962		Elongalion factor P	Ramos, A. et al. "Cloning, sequenting and expression."
X97789		· · · · · · · · · · · · · · · · · · ·	clongation lactor 1 titlic attitudes 25.0 Gene, 198.217.222 (1997) (Corynebacter ium gludamicum ATOC 13869)," Gene, 198.217.222 (1997)
	4.19	Homoserine kinasc	Malcos, L.M. et al. "Nucleotide sequence of the homostrine (1987)
Y00140			of the Brevioactetium lactolemental, viewer of the meto-diaminopiniclate D.
Y00151	ddh	Meso-diaminopimelale D dehydiogenase	dehydrogenase gene from Cotynebacterium glutamicum," Nucleic Acids Res.
			15(9):3917 (1987)
Y00476	thιΛ	Homoserine deliydiogenase	(thi A) gene of the Brevibacterium factofermentum," Nucleic Acids Res.
			15(24):10598 (1987)
Y00546	hom; thrB	Homoscrine dehydrogenase; homoscrine	Corynebacterium glutamicum from third operon," Mal Microbial, 2(1):63-72
		Kindsk	(1988) Characterization, and chromosomal
Y08964	murc, fisQ/divD; fisZ	UPD-N-acetylmuramate-alanine ligase,	Hontinbla, M. F. et al. Juliant Mark Berging and Julian Section 18ct of emicutum," Mal Gen organization of the field gene from Brevibacterium lact of emicutum," Mal Gen
		protein; cell division protein	Gener, 259(1):97-104 (1998) Defer 14 et al. "Isolation of the pulp gene of Corymehacterium
109163	pulP	High affinity profine fransport system	glutanicumproline and characterization of a low-affinity uptake system for
			Companiole sources, Mendisch, P.G. et al. "Pyruvale carboxylase from Corynchacterium"
Y09548	pyc	Pyruvate carboxylase	glutamicum: characterization, expression and inactivation of the pyc gene,
			Microbiology, 144,915-977 (1998)
Y09578	leuB	3. isopiopylmalate deliydiogenase	Patek, M. et al. Analysis of the Jens E. glutamicum, Appl Microbiol, Biolechinol, 50(1), 42-47 (1998)
V12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corying ping." Construction of an integration vector," Microbiol., 145:539-548 (1999)

,			
CanBanLin	Gene Name	Gene Function.	Kelerence
Accession No.		a franche suctem mofein	Peter, 11. ct al. "Corymbacterium glutamicum is equipped with four secondary
Y12537	Prop	lyoline/ectoline upage 5) stem process	carriers for compatible solutes. Identification, sequencing, and characteristics of the proline/ground uptake system, Prop. and the ectome/proline/glycine
			betaine carrier, EctP," J. Bacieriol, 180(22) bours (1775)
Y13221	ginA	Glutamine synthetase l	Jakoby, M. et al. 130 and 150 cm, "FEMS Microbiol Lett., 154(1):81-88 (1997) encoding glutamine synthetase 1," FEMS Microbiol Lett., 154(1):81-88 (1997)
V 16647	pdi	Dihydrolipoamide dehydrogenase	Moreau S. et al "Analysis of the integration functions of & phi;3041 An
Y18059		Attachinent site Corynephage Juan	integrase module among corynephages," Virology, 255(1) 150-159 (1999)
221501	argS; lysA	Arginyl-IRNA synthetase; diaminopimelate decarboxylase (partial)	Oguiza, J. A. et al. A gene en Bievibacterium Inctofermentum. upstream region of the lysA gene in Bievibacterium Inctofermentum. Regulation of argS-lysA cluster expression by arginine," J
			Bucieriol, 175(22) 7356-7362 (1993)
Z21502	dapA; dapB	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Pisabano, A et al. A chaster of mice better displayed by decipie of inate reductase, and a Bievibacterium factofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol, 175(9):2743-2749
			(1993) Mahumbree M et al "Analysis and expression of the three gene of the encoded
229563	IlirC	Threonine synthase	threonine synthase," Appl Environ Microbiol, 60(7)2209-2219 (1994)
	ANCI 188	Gene for 16S ribusonial RNA	A - 1 A - 1 al "Mulfiple signia factor genes in Breviliacle num
246133	sigA	SigA sigma factor	Jactofermentum. Characterization of sigh and sigh," J Bucteriol, 178(1).550
	·		553 (1996)
249823	galE; dtxR	Catalytic activity UDP-galactore 4-	Oguiza, J A. et al. 11st gain bourse and Representationally to the duidh Brevibacterium lactofermentum is coupled transcriptionally to the duidh
		protein	Gene, Gene, 117, 103-107 (1774) Geniza, J A. et al "Multiple sigms factor genes in Brevibacterium
249824	orf1; sigB	7; SigB signa factor	Incredermentum: Characterization of sigh and sigh, J. bacterior, 110(1)
	-		553 (1996) Correia, A. et al. "Clowing and characterization of an IS-like element present in
266534		Transposase	the genome of Brevibacterium lactofermentum A I CC 13805, Come.
		in the indicated reference However, the seque	tive of the indicated reference However, the sequence obtained by the inventors of the present application is significantly longer man
	ALL AND MARK BUILDINGS		

LA sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present appreaing the sequence for this gene was published in the published version relied on an incorrect start codon, and thus represents only a fragment of the actual published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual published version relied on an incorrect start codon, and thus represents only a fragment of the actual published version.

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Brevibacterium ammoniagenes 1935 Brevibacterium ammoniagenes 2153 Brevibacterium ammoniagenes 2153 Brevibacterium ammoniagenes 2153 Brevibacterium ammoniagenes 2158 Brevibacterium ammoniagenes 21179 Brevibacterium ammoniagenes 21179 Brevibacterium ammoniagenes 21170 Brevibacterium ammoniagenes 21170 Brevibacterium ammoniagenes 21171 Brevibacterium ammoniagenes B	沙子产是否是别的 [1]	AN WEST 1945年 1948 1948 1948 1948 1948 1948 1948 1948	Amod	PERRI	NAME .	TO RE	NOWIE	CIIS	NCIC	DAME.
ammoniagenes 19350 ammoniagenes 19351 ammoniagenes 19353 anmoniagenes 19353 anmoniagenes 19354 ammoniagenes 19356 ammoniagenes 21057 ammoniagenes 21057 ammoniagenes 21057 ammoniagenes 21533 ammoniagenes 21580 ammoniagenes 21583 ammoniagenes 21588 ammoniagenes 21588 ammoniagenes 21588 ammoniagenes 21588 ammoniagenes 21528	Resultanterium	ammoniaecnes	21054							
ammoniagenes 19351 ammoniagenes 19353 ammoniagenes 19353 anmoniagenes 19354 anmoniagenes 19355 ammoniagenes 21055 ammoniagenes 21057 ammoniagenes 21057 ammoniagenes 21077 ammoniagenes 21583 ammoniagenes 21588 ammoniagenes 21529 ammoniagenes 21528	Destribecterium	ammonianence	19350							
ammoniagenes 1935 ammoniagenes 1935 ammoniagenes 19354 animoniagenes 19354 ammoniagenes 19356 ammoniagenes 21055 ammoniagenes 21077 ammoniagenes 21583 ammoniagenes 21580 ammoniagenes 21588 ammoniagenes 21588 ammoniagenes 21527 ammoniagenes 21588 ammoniagenes 21528	Dicyloacicalum	all lines	1001	T						
ammoniagenes 19352 ammoniagenes 19353 animoniagenes 19354 animoniagenes 19356 ammoniagenes 21055 ammoniagenes 21077 ammoniagenes 21077 ammoniagenes 21583 ammoniagenes 21580 ammoniagenes 21588 ammoniagenes 21528	Brevibacterum	ammoniagenes	15551							
ammoniagenes 19353 ammoniagenes 19354 ammoniagenes 19356 ammoniagenes 19356 ammoniagenes 21057 ammoniagenes 21077 ammoniagenes 21533 ammoniagenes 21580 ammoniagenes 21588 ammoniagenes 21528 ammoniagenes 21529 ammoniagenes 21529 ammoniagenes 21529	Brevibacterium	aminoniagenes	19352							
ammoniagenes 19354 ammoniagenes 19355 ammoniagenes 21055 ammoniagenes 21077 ammoniagenes 21077 ammoniagenes 21533 ammoniagenes 21580 ammoniagenes 2158 ammoniagenes 2158 ammoniagenes 2158 ammoniagenes 21674 ammoniagenes 21678 ammoniagenes 21677 ammoniagenes 21677 ammoniagenes 21677 ammoniagenes 21678 ammoniagenes 21677	Brevibacterium	ammoniagenes	19353							
ammoniagenes 19355 ammoniagenes 21055 ammoniagenes 21077 ammoniagenes 21077 ammoniagenes 21077 ammoniagenes 21580 ammoniagenes 21580 ammoniagenes 39101 butanicum 21196 alivaricatum 21129 affavum 21129 affavum 21127 affavum 21127 affavum 21127 affavum 21127 affavum 21127 affavum 21128 affavum 21127 affavum 21128	Brevibacterium	anımoniagenes	19354							
ammoniagenes 19356 ammioniagenes 21055 ammioniagenes 21077 ammioniagenes 21533 ammoniagenes 21580 ammoniagenes 39101 ammoniagenes 39101 ammoniagenes 39101 ammoniagenes 21580 ammoniagenes 21580 ammoniagenes 2158 ammoniagenes 2157 ammoniagenes 2157 ammoniagenes 2157 ammoniagenes 2158	Brevibacterium	anınıoniagenes	19355							
amnioniagenes 21055 amnioniagenes 21077 amnioniagenes 21533 ammoniagenes 21580 ammoniagenes 39101 butanication 21792 F928 i flavum 21474 i flavum 21129 i flavum 21127 i flavum 21128 ii flavum 21128 ii flavum 21528	Brevibacterium	ammoniagenes	19356							
ammoniagenes 21077 ammoniagenes 21583 ammoniagenes 21580 ammoniagenes 39101 butanteum 21196 divatication 21792 flavum 21674 flavum 2167 flavum 2168 flavum 2168 flavum 2168 flavum 2168	Brevibacterium	anınıonıagenes	21055							
ammoniagenes 21553	Brevibacterium	ammoniagenes	21077			`.				
ammoniagenes 21580 butanicum 21196 divarication 21792 flavium 21474 flavium 21528 flavium 21127 flavium 21127 flavium 21127 flavium 21427 flavium 21427 flavium 21528 flavium 21528 flavium 21528 flavium 21528	Bicvibacterium	ammoniagenes	21553							
ammoniagenes 39101 butantcum 21196 divarication 21792 P928 flavum 21474 flavum 21129 flavum 21127 flavum 21427 flavum 21475 flavum 21518 flavum 21528 flavum 21528 flavum 21529 flavum 61850 flavum	Brevibacterium	ammoniagenes	21580				·			
butanicum 21196 divarication 21792 F928 flavium 21129 flavium 21127 flavium 21127 flavium 21127 flavium 21127 flavium 21127 flavium 21427 flavium 21526 flavium 21528	Brevibacterium	ammoniagenes	39101	,						
divarication 21792 P928 flavium 21518 flavium 21518 flavium 21127 flavium 21127 flavium 21427 flavium 21427 flavium 21528 flavium 21528 flavium 21528 flavium 21529 flavium 61529 flavium 61	Brevibacterium	butanicum	21196							
Mavum 21474	Brevibacterium	divarication	21792	P928						
flavum 21129 flavum 21518 flavum 21127 flavum 21128 flavum 21427 flavum 21515 flavum 21526 flavum 21526 flavum 21529 flavum flavum 21529 flavum flavum 21529 flavum	Brevibacterium	Navum	21474						_	
Havum 21518	Bievibacierium	Navum	21129							
Пачин 21127 1128 1128 1128 1128 1128 1128 1128 1128 1129 1129 1129 11528 11529	Bievibacterium	flavum	21518						1	
flavum 21127 flavum 21128 flavum 21427 flavum 21475 flavum 21517 flavum 21526 flavum 21526 flavum 21529 flavum 21529	Bicvibacterium	์ กิลงาเท			B11474					1
Navum 21127	Brevibacterum	Navum			B11472			_	1	
flavum 21128 flavum 21427 flavum 21475 flavum 21517 flavum 21528 flavum 21529	Brevibacterium	Navum	21127						_	
flavum 21427	Brevibacterium	flavum	21128			.				
Navum 21475 Navum 21517 Navum 21526 Navum 21529 Navum 21529 Navum Navu	Brevibacterium	Navum	21427						1	
Navum 21517	Brevibacterium	Navum	21475						_	-
flavini	Brevibacterium	Navum	21517				`			-
Mavum 21529	Brevibacterium	กิลงแก	21528			\downarrow		1	_	1
flavum	Brevibacternum	กิลงบก	21529						1	
	Brevibacterum	flavun			B11477				-	

Brevibacterium fla Brevibacterium fla Brevibacterium her Brevibacterium kei		_	_	1					
	Navum	21127							
	Navum		B11474						
	hcalii	15527							
	ketoglutamicum	21004							
Brevibacterium ke	ketoglutamicum	21089							
	ketosoreductum	21914							١.
	actofermentum	. ,		· 0 <i>L</i>					
	actofermentum			14		. /			
Brevibacterium lac	lactofermentum			11					
	actofermentum	21798		·					
	actofermentum	21799							_
Bievibacterium la	actofermentum	21800							
Brevibacterium	lactofermentum	21801							
	lacioferniculum		B11470						
	actofermentum		B11471						
	lactofernichtum	21086							
Brevibacterium	ясtofermentum	21420							
	Actolermentum	21086							
	actofermentum	31269							
	linens	9174					1		
	linens	16261							
	linens	8377							
	paraffinolyticum			-	091	1		1	
Bievibacterium	spcc.					717.73			
Bicvibacterium	spec.					27.77			
	spec.	14604			•			-	
	spec.	21860	^						
	spec.	21864		_					_
	spec.	21865			-			1	-
	spec.	21866							-
	spec	19240							_

	-																		-							, T		; - -		-	٦	
																			~										1			
		1	1		1	1		2599																								
		1	1		1					1																						
			-				1		1	+	+	1				1																
	1	-	-	-				-		-		_					1	-						\dashv				\dashv		1	7	
		473	475				173		-													-	-							+	\dashv	
		B11473	B11475				B3671																	-							\dashv	
									,																						Н	
21476	13870	,		15806	21491	31270		6872	15511	21496	14067	39137	21254	21255	31830	13032	14305	15455	13058	13059	13060	21492	21513	21526	21543	13287	21851	21253	21514	21516	21299	
l m	Ė	E	Ē	٤	٤	Ē		,	//					-									·									İ
acetoncidophilum	acetoacidophilum	acetoglutamicum	acetoghilamicum	acetoglutamicum	acetoglutamicum	acetoglutamicum	hilum	ammoniagenes	ammoniagenes	ensc	icum	nicum	ncom	ıcum ıcum	nicom	nicum	glutamicum	glutamicum	glutamicum	glutamicum	glutanicum	glutanicum	glutamicum	glutamicum	glutamicum	glutanucum	glutamicum	glutamicum	glulamicum	micum	glutamicum	
acctone	accload	acetog	Becelog	acelog	acelog	acetog	acctophilun	вшшо	ammo	fujiokense	glutamicum	glutamicum	glutanicum	glutamicum	glutamicum	glutamicum	glutar	glutar	glufa ₁	glular	glitta	gluta	gluta	gluta	gluta	glula	Bluta	Elula Blula	Blula	Eluta	1	1
rium	rium	.iiu	zinn.	erium	ciium	erium	erium	erinm	erium	erium	criumi	crium	erium	lenium	lerium	Lerium	lerium	terium	terium	terium	Acrium	lerium	Herium	terium	rterium	clerium	clerium	clerium	cterium	clerium	clerium	
Corymebacterium	Conymebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynchacterium	Corynebacterium	Corynebacterium	Coryncbacterium	Corynchacterium	Colymebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Conymebacterium	Corynchacterium	Corynebacterium	Corynebacterium	Carmebacterium	Connebacterium	Corynebacterium	Corynebacterium	Coryncbacterium	Corynchacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corvnebacierium	Corynebacterium	Connehacterium	Connebacterium	Corynebacterium	
Š	उ	Ö	Ü	3	ঠ	3	Ö	<u> </u>	<u> </u> 3	S	S	ی	පි	3	၂၀	10	၂ီ	<u> </u>	<u> </u> ර	<u> </u>	ا <u>ٽ</u>	<u> </u> 2	JO	<u>J</u>	ت	<u> [C</u>	10	<u>, 10</u>	<u>ان</u>	<u>ان</u>	10	L

									ı	,								_				₹						· ·		- -	_
			T	T						T																					
	+	\dagger	\dagger	\dashv	+	1	\dashv	1	\dagger		+	+	1	1		1			1	1						1					
	1	+	\dashv	+	\dashv	+	1	+	1	$\frac{1}{1}$	+		+	\dagger	+	1	+				1			+	1		1			1	
	1	-	-	-	_	\dashv	-	\dashv	-	+	\dashv	\dashv	+	+	+	\dashv	\dashv	\dashv	\dashv	+	+	\dashv	+	\dagger	\dashv	+	1	+	\dagger	+	1
		٠,	-														۲												\downarrow	3	_
	1																						,								
			·																			,									
														-		,											`				
21300	39684	21488	21649	21650	19223	13869	21157	21158	21159	21355	31808	21674	21562	21563	21564	21565	21566	21567	21568	21569	21570	21571	21572	21573	21579	19049	19050	19051	19052	19053	19054
	3	2	7	2	-		2	2	2	2	_	7	7													_	<u> </u>	-			
glutamicum	glutamicum	glutamicum	glutanicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutaniicum	glutamicum	glutamicum	glutamicum	glulamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutanicum	glitamicum
				T	Τ	Т	\top	T		Τ.	Π	Γ		Π	Γ	Τ	Τ	T	1_	T	Π			Τ	Π	1	Ī	Τ		T	Γ
Coryncbacterium	Corynebacterium	Cornehacterium	Corynehacterium	Cormebacterium	Corynebacterium	Corynebacicrium	Corynebacienum	Corymebacterium	Corynebacterium	Corymebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Cormebacterium	Corynebacterium	Corynebacterium	Carynebacterium	Correbacterium	Colynchacterium	Corynebacterium	Conmebacterum	Coryncbacterium	Corynebacterium	Corynebackrium	Corymebacterium	Corynehacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium
Cor	ပ်	3	Ŝ	3	ق	ق	3	উ	Ŝ	Ö	ပြီ	පි	3	ြပိ	ပိ	عَالِ	ن ات	0	10	ان	اِن	ان	<u>10</u>	ΙO) C	بان	، ار	<u>, 10</u>	<u>'1</u>	<u>. 10</u>	<u>. 10</u>

																_						· - T	——	–	_		<u> </u>	<u></u>	<u> </u>	· T	Τ-	٦
T	T	T	1			1									ŀ				1									20145				ľ
+	+	+	+	+	+	+	-	+	\dagger	+	+	\dagger	\dagger	\dagger	\dagger	+	+	+	1	+	1							T	T			-
	1	\downarrow	\downarrow	\downarrow	1	1	1	4	+	+	-	$\frac{1}{1}$	+	+	+	+	+	+	\dashv	\dashv	+	+	+	-		\vdash	+	+	+	\dagger	\dagger	1
							1							1												_	\perp	\downarrow	\perp	1	\downarrow	
H	\dagger	+	1	1	7	†	十	1	1	1	1	1								11594												
			_	4		-	_	-	\dashv	\dashv	4	+	4	4	-	-		_				·		_		-	+	+	\dagger	+	+	1
$ \cdot $																				_				_	_	\downarrow	\downarrow	\downarrow	\dashv	4	1	-
												B8183	B8182	1312416	B12417	B12418	B11476			1											-	
. -		,							_		-	m	<u>@</u>	2	8	B	8	-	5	-	45	46	┝	\vdash	\dagger	ŧ	\dagger	\dagger	+	1	\dashv	\dashv
	1																		P973	_	P4445	P4446	-	_	-	1	-	_	1		-	\dashv
2	99	53	88	59	09	88	98	21515	21527	21544	21492							21608		21419			31088	31089	3100		31090	31090	15954	21857	21862	21863
19055	19056	19057	19058	19059	19060	19185	13286	215	215	215	216			L				7		2	_	\downarrow	1	1	, [1				2	7	
							T-						:																			
E	١	E	E	E	En	Ē	E	E P	E	E	E S	H7.	un.	E I	E 23	183	5	100		Pilis												
glutamicum	glutamicum	Plutamicum	glutamicum	Plutamicum	elutanicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutanicum	glufamicum	glutanicum	elutamicum	elulamicum	plutamicum	olutamicum	ohitamicin	9	mitrilonhulus	200		3 2		Spec.	Se	spec.	spec	spec.	spec.	spcc.	spec.
Blu	클	급		를	를	기를		Т	Т	Т	1		T	Ī	Т	T	Т	T	T	\top	Т	T		Т	\neg			Г	Τ	Π		T
ı jırım	rium	Uni.	rinm	E	eium	ei ium	erium	erium	erium	crium	criim	le ium	1cı iun	lering	friin	100				Creriu			n la	1 P	200	CCCIN	scleriu	ceriu	acciii	aclerin	Beteri	actern
Corynebacterium	Corvnebacterium	Corynehacterium	Corynchacterium	Correctant	Cornichacterium	Corynebacterium	Corynchacterium	Connebacterium	Conmehacterium	Cormehacterium	Corynebackerium	Corvnebacterium	Corynebacterium	Cormehacterium	Connebacterium		Completed	1	Coryllicoacierium	Corymeducterium	Corynchacterium	Coryllebacterium	Corynepacerium	Corynepacientin	Corynchacterium	Coryacbacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Connebacterium	Colynebacterium
UVIO.	ָבָּן י עלי					2	٤			غ اخ		ع ا		٤			3 6	3 6	3	ق ر		<u>פֿן</u> נ	<u> </u>	3	ق	ථ	පි	<u> පි</u>	<u> 18</u>	ے ا	<u> </u> <u> </u>	<u> </u> 3

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Femientation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacterra Ltd., Aberdeen, UK

CBS: Cennaalbuteau voor Schimmelcullutes, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSM2: Deutsche Sammlung von Mikrooiganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawaia, H. et al. (1993) World directory of collections of cultures of microorganisms. Bacteria, fungi and yeasts (4th edn.), World federation

for culture collections world data center on microorganisms, Saimata, Japen.

BASF Aktiengesellschoft. 990742 ... b.z. 0050/50249

>>RXA01366-amino acid sequence

(1-390, translated) 130 residues

VSQFRRCSRP GCGKPAVATL TYAYSDSTAV VGPLAPAAEP HSWDLCEHHA ERITAPLGWE MLRVNDIKVD DDEDLTALAQ AVREAGRTVS GLVPEDEVGG NHFVNRSARI AEQKVHRRGH LYVVPDQDES

>RXA01366-nucleotide sequence A: upstream

ATGCATGAAAACAAATTCTATGTGTGTGAGCTGCCAAAAGGGGTTGGCGCGCCGATGATGACTGTCCAAACCTAAACCAAAGGTCTAAACTTTGGCTTC

>RXA01366-nucleotide sequence B: coding region

GTGAGTCAGTTTCGTCGTTGTTCCCGCCCTGGTTGTGGCAAGCCTGCCGTCGCAACCCTCACCTACGCATATTCGGA
TTCCACTGCGGTGGTTGGTCCTTTGGCGCCCTGCAGCAGAGCCCCATAGTTGGGATCTGTGTGAGCATCATGCCGAGC
GTATTACTGCGCCCCCTTGGTTGGGAGATGCTGCGGGTGAACGACATCAAAGTCGATGACGATGAGGATCTGACGGCT
CTTGCTCAGGCTGTTCGTGAGGCTGGACGCACTGTGAGTGGTCTCTGAAGACGAAGTGGGCGGCAACCATCC
GGTGAACCGGAGTGCGCGGATCGCGGAACAGAAGGTTCACCGCAGGGGTCATCTCTATGTTGTGCCTGATCAGGACG
AATCA

>RXA01366-nucleotide sequence C: downstream TAAGGTTTGCTATTCGGATTGGA

>>RXA01364-amino acid sequence (1-1866, translated) 622 residues

TGTHLYDSLQ LLFTLVDKGH HPTDAKAVAF DAEAGEEGLH FRNLSADLFL PAATELIDRV GLSNEALNKV LENLLSRVQ SGKDRGFISY ATLGVTELGQ VYEGLMSYTG FIAQEDLFEV APHGKADKGS WMLPVSKADE VPADSFIEVD QEAPGGGVIK VRKRHPRGSF VFRQSSRDRE RSASFYTPQV LTSFTVTQAI EELQASKRIT TANDVLSLTI CEPAMGSGAF AVEAVRQLAE LYLELRQEEL EQQIPAEDRA KELQKVKAHI ALHQVYGVDL NSTAVELAEI SLWLDTMNAE MDAPWYGLHL RNGNSLVGAT RSLYAPSLLN KKAWLTATPT RYRLDDIAQA IDENKAEPLF NHGIHHFLLP STGWGATADA KDLKDLMATE IKELKSWRTS IRASLSKTQI KQLNNLALRV ETLWRFVLMR IRIAESQISR STTLWGQEPA EVSEVVTREQ IEQDLFGNID GAYNRLRLVM DAWCALWFWP LDAVATAEHP ERPALPDLDE WLATLTEILG IDLPLKSKNE NQIVLGPDTN WLAINDAEAT DLGFSGALSF ERVSANHPWI NVARQVAKQQ SFFHWDLDFA HVFAKGGFDL QVGNPPWVRP DVNFEDLLAE HD

>RXA01364-nucleotide sequence B: coding region ACGGGCACCCACCTTTATGATTCCCTGCAGCTGCTGTTCACTCTGGTGGATAAAGGCCACCACCCAACAGATGCTAA GGCTGTAGCTTTTGATGCCGAGGCTGGAGAAGAAGGCCTGCACTTCCGCAACCTTTCAGCGGATCTCTTCCTCCTG CAGCCACAGAACTTATTGATCGAGTTGGTCTTTCCAATGAAGCCCTAAACAAGGTCTTGGAAAAACCTCCTGCTCTCC CGGGTGCAATCCGGTAAAGACCGCGGCTTTATCTCCTATGCCACCTTGGGTGTTACCGAGCTTGGCCAAGTTTATGA GGGTCTGATGTCCTATACCGGCTTTATCGCCCAGGAAGATCTTTTTGAGGTTGCACCACATGGCAAAGCCGATAAAG GTTCCTGGATGCTCCCGGTCTCAAAGGCTGATGAAGTCCCTGCCGATAGCTTTATCGAAGTTGATCAAGAAGCCCCT GGTGGCGCGTAATCAAGGTGCGTAAACGCCACCCGCGGATCATTTGTGTTCCGTCAGTCCTCTCGTGACCGCGA ACGCTCAGCGTCCTTCTACACCCCACAAGTACTCACCAGCTTTACTGTCACCCAGGCTATTGAAGAACTCCAGGCAT CAAAGCGCATCACCACAGCCAATGATGTTCTCAGCCTCACCATCTGTGAACCTGCCATGGGTTCCGGCGCCTTCGCT GTGGAAGCAGTACGCCAATTAGCAGAGCTTTATTTGGAATTGCGCCAAGAAGAACTAGAGCAGCAGATTCCAGCGGA AGACCGTGCCAAGGAACTCCAAAAGGTCAAAGCGCACATTGCGCTGCACCAGGTTTATGGTGTGGACCTTAACAGCA CTGCTGTGGAGTTGGCGGAAATCTCGCTGTGGCTAGACACCATGAATGCAGAAATGGACGCACCTTGGTATGGCCTG CACCTGCGTAATGGTAACTCCCTCGTTGGTGCCACCCGTTCGCTGTATGCACCTAGTCTGCTTAATAAAAAAGCCTG GTTAACTGCTACTCCAACCCGCTATCGGCTTGATGATATCGCGCAGGCTATTGATGAAAACAAAGCAGAACCCCTCT $\tt CTTATGGCTACTGAAATCAAGGAGCTTAAATCTTGGCGTACTTCCATCCGTGCGTCTTTGAGTAAAACTCAGATTAA$ GCAGCTCAATAACCTTGCCCTACGCGTGGAAACACTATGGCGATTTGTGCTGATGCGTATTCGCATTGCAGAATCCC AGATCTCACGTAGCACTACTCTCTGGGGTCAAGAGCCAGCTGAGGTTTCGGAGGTTGTCACACGTGAGCAAATTGAA CTGGCCTTTGGATGCTGTTGCTACCGCTGAGCATCCGGAGCGTCCAGCCCTTCCAGATCTTGATGAGTGGCTAGCCA CCCTGACGGAGATTCTGGGTATTGATCTCCCTCTGAAGTCCAAAAACGAAAATCAGATTGTCTTAGGTCCAGATACC AATTGGCTAGCCATTAATGATGCCGAGGCTACTGATCTTGGTTTTTCTGGGGCATTGAGCTTTGAGCGTTTAGCGC GAATCACCCGTGGATCAATGTTGCCCGCCAAGTGGCTAAACAACAGAGCTTCTTCCACTGGGATCTAGACTTCGCCC ACGTTTTTGCCAAGGGTGGATTTGATCTGCAGGTTGGTAATCCACCATGGGTGCGACCAGATGTGAACTTTGAGGAT CTGCTTGCTGAACATGAT

... Appendix A & B

>>RXA01362-amino acid sequence

(1-1395, translated) 465 residues

INELILFDVH DLVKYGVHVY GAPQESINFL SAASLYHPQT VLDSFDHDGS GNLPGLKDDN GNWDRRPHKD RIQLVNADTL TVWKSILEDE QTPYLDTRMV YTVNTEAAAA LEKLASAPRI KELGLQFSSG WNETTDKKKG YFDVGWGYPA SWSDAILQGP HLGVATPMIK QPNPTMKHNQ DWSEIDFEAI PANFIPATAY QPDRQTKPTY DADYGTWTFG DKQVPVADTF RIAWREMAAT TGFRTVYPSV IPPGANHVHT VNSAASRSNL KTILVGAOLG AILSDYFARS SGSSHIFNDI VRKIPLPNFT SLEKQFARTY LRLNCLTSAY APLWEEITGE PWDVQVPLRN AEQRRAAQND IDAMVALSLG ISADELCMIY RTQFPVMRRY DQEDHFDANG RKVPKEIIKL QQKLKDGQEL SVEKRTWVHP QSEVSYTFEY PFRVLDREAD LRAAYAKFEN QLKEP

>RXA01362-nucleotide sequence B: coding region

ATTAATGAGTTGATTCTTTTTGACGTACACGACTTGGTTAAATATGGCGTACATGTCTATGGCGCTCCGCAGGAATC TATTAACTTTTTAAGTGCTGCGTCGCTTTATCACCCACAAACAGTGCTTGATTCATTTGATCATGACGGTTCAGGTA ATCTCCCTGGTCTTAAAGACGACAATGGCAACTGGGACCGTCGCCCACACAAGGACCGTATCCAACTGGTCAATGCC GATACTTTGACGGTGTGGAAGTCCATCCTGGAGGATGAACAAACGCCATACTTGGATACCCGCATGGTTTATACCGT CAACACGGAAGCAGCAGCAGCGTTGGAAAAGTTGGCTTCTGCACCTCGTATCAAAGAACTCGGGCTGCAGTTCTCCA GCCATTTTGCAGGGGCCGCACCTGGGTGTTGCTACACCAATGATCAAGCAGCCCAATCCGACAATGAAGCATAATCA AGATTGGTCTGAAATTGATTTCGAGGCCATTCCTGCAAACTTCATACCTGCAACGGCGTACCAGCCCGATCGCCAAA CAAAGCCCACTTATGATGCTGACTACGGCACCTGGACTTTCGGGGACAAGCAGGTACCAGTTGCAGACACTTTCCGA ATTGCATGGAGGGAGATGGCTGCCACCACGGGATTTAGGACTGTCTACCCATCAGTAATTCCACCGGGAGCCAACCA TGTGCACACAGTTAATAGCGCTGCATCACGTTCAAACTTAAAAACCATTCTCGTTGGAGCACAGCTTGGTGCAATTC TAAGTGACTATTTTGCTCGGTCCTCGGGTTCAAGCCACATATTTAACGACATTGTTCGCAAGATTCCACTTCCAAAT TTCACATCCTTGGAAAAGCAGTTCGCCCGCACATACCTCCGCCTCAACTGCCTGACCTCAGCTTATGCCCCATTGTG GGAAGAGATCACCGGTGAGCCGTGGGATGTTCAGGTGCCTTTGCGCAATGCCGAGCAACGTCGAGCAGCGCAAAACG ATATTGATGCCATGGTGGCATTGTCTTTGGGTATTAGTGCTGATGAGCTGTGCATGATTTATCGCACTCAATTCCCA GTGATGCGTAGATATGATCAAGAAGATCATTTTGATGCCAATGGCCGTAAAGTTCCTAAAGAGATCATCAAGCTGCA GCAGAAACTTAAAGATGGCCAAGAGCTCAGCGTGGAAAAGCGCACCTGGGTGCATCCCCAATCAGAAGTGTCCTATA CCTTTGAATATCCTTTCCGGGTGTTGGATCGTGAAGCTGATCTGCGTGCTGCATATGCAAAATTTGAAAACCAGCTT **AAGGAGCCA**

>RXA01362-nucleotide sequence C: downstream TAGAGCGCTTATGTCCTCACTCA

BASF Aktiengesellschaft... 990742 0.Z. 0050/50249

>>RXA01357-amino acid sequence

(1-303, translated) 101 residues

MSAEELDNYE AEVELSLYRE YRDVVSQFSY VVETERRFYL ANAVQLIPHN SGNDVYYEVR MSDAWVWDMY RSARFVRYVR VITYKDVNIE ELDKPDIIMP E

>RXA01357-nucleotide sequence A: upstream

 ${\tt ACGGCGCAAGTCCCGAGCACAGATATGTTATGCAAATGTGGCCAAGGCACACCAAGAATGGCTACACGCTGCAGATATGACACGACGCAGGAGGTGGAGC}$

>RXA01357-nucleotide sequence B: coding region

Appendix A & B

>>RXA01348-amino acid sequence

(1-492, translated) 164 residues

VGFVWSGSDS QIYPELRKME AEELLVGSDV PWGSKGATKT EYALSEKGWE ALRKAWYEPV TYGPTRDPAR LKAAYFEVGT NGDARRHLRA HIAHFEQQKI QSESMIDELK AKTHPTLARR LERSPKKEHE RIVAFKVLAY EGQIARAQAE IEWAEKGLKL LDTL

>RXA01348-nucleotide sequence A: upstream

ATGGGACAATGAGCACGTGACTCTACGATCTGCATTAĆTTGCGCTACTAAGTTCCGGACCATTGACTGGGTATGACG CCTCCCAGCGATTTGGGGCCTCG

>RXA01348-nucleotide sequence B: coding region

GTGGGCTTTGTGTGGAGTGGTTCCGATTCGCAGATTTATCCCGAACTTCGAAAAATGGAAGCCGAAGAACTCCTCGT GGGATCCGATGTTCCCTGGGGCTCCAAAGGCGCCACCAAAACCGAATACGCCTTGAGTGAAAAAAGGCTGGGAAGCGC TAAGAAAAGCGTGGTACGAGCCAGTAACCTACGGTCCCACCAGAGATCCTGCCAGGCTTAAAGCCGCCTATTTTGAG GTCGGTACAAATGGCGATGCACGCCGACATTTAAGGGCGCACATCGCTCATTTTGAACAGCAGAAAATTCAATCAGA ATCAATGATTGATGAGCTGAAAGCAAAAACTCATCCAACCTTGGCACGGCGACTTGAGCGCTCCCCGAAAAAGGAGC ACGAGCGAATAGTCGCGTTTAAAGTGCTTGCCTATGAGGGGCAGATTGCACGCGCTCAGGCAGAGATTGAATGGGCG GAAAAGGGCTTGAAACTACTCGATACCCTT

>RXA01348-nucleotide sequence C: downstream TAGTTTTCGAACACGTCCGTATC

Claims

- 1. An isolated nucleic acid molecule from Corynebacterium glutamicum encoding an MCP protein. or a portion thereof.
- 2. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule encodes an MCP protein involved in fine chemical production.
- 3. An isolated Corynebacterium glutamicum nucleic acid molecule selected from the group consisting of those sequences set forth in Appendix A, or a portion thereof.
 - 4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth in Appendix B.
- 15 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth in Appendix B.
- 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth in Appendix A, or a portion thereof.
 - 7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth in Appendix A.
 - 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
- An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
 - 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
 - 11. The vector of claim 10, which is an expression vector.

25

- 12. A host cell transfected with the expression vector of claim 11.
- 40 13. The host cell of claim 12, wherein said cell is a microorganism.
 - 14. The host cell of claim 13, wherein said cell belongs to the genus Corynehacterium or Brevihacterium.
- 45 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.

16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, and enzymes.

- 17. A method of producing a polypeptide comprising culturing the host cell of claim 12 in an appropriate culture medium to, thereby, produce the polypeptide.
- 18. An isolated MCP polypeptide from Corynebacterium glutamicum, or a portion thereof.

5

15

-25

- 19. The polypeptide of claim 18, wherein said polypeptide is involved in fine chemical production.
- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B.
- 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B, or a portion thereof.
 - 22. The isolated polypeptide of any of claims 18-21. further comprising heterologous amino acid sequences.
 - 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth in Appendix A.
- 30 24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B.
- 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.
 - 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.
- 40 27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
- 28. The method of claim 25, wherein said cell belongs to the genus Corynebocterium or Brevihocterium.
 - 29. The method of claim 25, wherein said cell is selected from the group consisting of: Corynchacterium glutamicum, Corynehacterium herculis. Corynehacterium, lilium, Corynehacterium acetoacidophilum. Corynehacterium acetoglutamicum,

Corynebacterium acetophilum, Corynebacterium ammoniogenes, Corynebacterium fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes, Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum, Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens, Brevibacterium paraffinolyticum, and those strains set forth in Table 3.

- 30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.
- 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, and enzymes.
- 32. The method of claim 25, wherein said fine chemical is an amino acid.
- 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 34. A method for producing a fine chemical, comprising culturing a cell whose genomic DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.

5

10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.