\$Id: cmps104a-2016g2-exam1.mm,v 1.60 2016-04-19 14:12:25-07 - - \$

No books; No calculator; No computer; No email; No internet; No notes; No phone. Neatness counts! Do your scratch work elsewhere and enter only your final answer into the spaces provided.

1. Draw *deterministic* finite αὐτόματα for each of the following **flex** regular expressions. Use as few states as possible [5ν]

- 2. Given the nondeterministic finite αὐτόματον shown here:
 - (a) Write the regular expression that was used by Thompson's construction to create this NFA. [11]

- (b) Fill in the table of ε -closures for each state. [2 \checkmark]
- (c) Use the subset algorithm to construct the equivalent *deterministic* finite αὐτόματον. Inside each state of the DFA, write the numbers of the NFA states to which it corresponds. Do not minimize. Draw the DFA underneath the NFA. [2ν]

state s	ε-closure (s)	
1	1 245 7	ϵ ϵ ϵ ϵ
2	2	
3	32457	
4	457	E Z Z
5	5	7) 2 8
6	69	$x \sim x$
7	7	(1)
8	89	→(24) (37)Z
9	9	(57)
10	10	3, 9
		$\sqrt{2}$
		2 gh
		(8)
		9
•		(10)

3. Given the ETF grammar listed on the left, draw the abstract syntax trees (ASTs), not the parse trees, for each of the expressions. [4]

$E \rightarrow E + T$	a+b/c+d	a*b+c*d	
$\begin{array}{c} \mathtt{E} \to \mathtt{T} \\ \mathtt{T} \to \mathtt{T} \star \mathtt{F} \end{array}$	+		
$\begin{array}{c} \mathtt{T} \to \mathtt{F} \\ \mathtt{F} \to (\mathtt{E}) \end{array}$	7, 9	+	
$ ight extsf{F} ightarrow extsf{i}$	a /		
		* *	
	b c	a b e d	
	(a+b) *c*d	a/b*c+d	
	* ^ 4	* * * d	
	+ ^c	/ `c	
	ab	a b	

4. State the two things that are permitted for a nondeterministic finite αὐτόματον (NFA) that are prohibited in a deterministic finite αὐτόματον (DFA). Draw two *small* diagrams of NFAs that illustrate each of these things.

E-transitions more than one out trans with same label in any given state xx0

- 5. Write flex regular expressions for each of the following: [5✓]
 - a. A hexadecimal integer constant in C, C++, or Java. (They are the same in all three languages.)

b. A string constant in the FORTRAN language, which starts with a single quote (') and ends with a single quote, and which many contain any characters in between, except for a newline. But if a single quote appears in the string, it must be doubled, for example, 'Don''t', doubles the single quote.

c. A C++ decimal integer constant which begins with a decimal digit other than zero, and is followed by any number of decimal digits, including none. Between any pair of digits may occur a single quote (').

d. A C, C++, or Java comment of the double slash (//) kind, which includes all following characters up to but not including the next newline character.

e. An identifier in some language. It consists of any number of upper- or lower-case letters, digits, and underscores, but may not begin with a digit.

Multiple choice. To the *left* of each question, write the letter that indicates your answer. Write Z if you don't want to risk a wrong answer. Wrong answers are worth negative points. [12]

	T	T	Γ
number of		× 1 =	= a
correct answers			
number of		× ½ =	=b
wrong answers			
number of		× 0 =	0
missing answers			
column total	12		= c
$c = \max(a - b, 0)$			

- 1. Which of the following semantic actions in a flex grammar is obviously wrong?
 - (A) { return '+'; }
 - (B) { return *yytext; }
 - (C) { return PLUS; }
 - (D) { return "+"; }
- 2. If N is the set of languages that can be recognized by an NFA, and D is the set of languages that can be recognized by an DFA, then:
 - (A) $N \subset D$
 - (B) N = D
 - (C) $N \supset D$
 - (D) None of the above.
- 3. What is prohibited in a deterministic finite αὐτόματον?
 - (A) cycles in the graph
 - (B) epsilon transitions
 - (C) multiple final states
 - (D) reserved words
- 4. The parser generated by bison is a:
 - (A) finite-state machine
 - (B) linear-bounded automaton
 - (C) push-down automaton
 - (D) Turing machine
- 5. The scanner generated by flex is a:
 - (A) finite-state machine
 - (B) linear-bounded automaton
 - (C) push-down automaton
 - (D) Turing machine
- 6. For a context free grammar $G = \langle V_N, V_T, P, S \rangle$: P is a set containing productions of the form $A \rightarrow \beta$, where:
 - (A) $A \in V_N$ and $\beta \in (V_N \cap V_T)^*$
 - (B) $A \in V_N$ and $\beta \in (V_N \cup V_T)^+$
 - (C) $A \in V_N$ and $\beta \in (V_N \cup V_T)^*$ (D) $A \in V_T$ and $\beta \in (V_N \cup V_T)^*$

- 7. If an NFA constructed from a regular expression r, whose length is |r|, is used to scan a string s, whose length is |s|, then its memory requirements M and running time to scan the string T are:
- (A) $M = O(2^{|r|})$ and T = O(|r|)
 - (B) $M = O(2^{|r|})$ and $T = O(|r| \times |s|)$
 - (C) M = O(|r|) and $T = O(|r| \times |s|)$
 - (D) M = O(|r|) and T = O(|s|)
- 8. What flex regex describes an identifier in C?
 - (A) $[a-zA-Z_0-9]*[a-zA-Z_]$
 - (B) $[a-zA-Z_0-9]+$
 - (C) [a-zA-Z_]+
 - (D) $[a-zA-Z_{]}[a-zA-Z_{0-9}]*$
- 9. What is the same as the flex pattern . (dot)?
 - (A) [/n]
 - $(B) [\n]$
 - $(C) [^{n}]$
 - (D) $[^n]$
- 10. The subset algorithm:
 - (A) converts a regular expression into an NFA
 - (B) converts an NFA into a DFA
 - (C) converts an NFA into a regular expression
 - (D) minimizes a DFA
- 11. In a C compiler, removing comments from the source code is done by which phase?
 - (A) code generator
- (B) parser
 - (C) preprocessor
 - (D) scanner
- 12. Is half of two plus two equal to two or three?
 - (A) two
 - (B) three
 - (C) yes
 - (D) no

The Antikythera mechanism, built ca. 150-100 BCE, is the oldest known complex scientific calculator, and is sometimes called the first known analog computer, with operational instructions written in Greek. http://en.wikipedia.org/wiki/Antikythera_mechanism