

Convolutional Neural Networks for Sentence Classification

고려대 산업경영공학과 박사과정 김동화

Introduction

- CNN은 Hyperparameter tuning이 거의 없음
- Static 벡터에 대해 뛰어난 성능을 가짐 (Pre-training)
- Fine-tuning을 통한 Task-specific 벡터는 더 좋은 성능을 보임
- 본 논문은 Model(Pre-training + Task-specific vectors) 제안

Hyperparameter tuning

Pre-training & fine-tuning

Images vs Texts

CNN for images

1,	1 _{×0}	1,	0	0
0,0	1,	1_×0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

CNN for texts

Keywords

- Word2Vec: 유사한 것은 낮은 차원에서도 가까운 거리에 존재함
- Convolution: 구문분석, 데이터 검색에서 많이 사용됨
- Pre-training: 이미 학습된 파라미터들을 가져와서 없는 부분들만 Training
 - 100 billion words of Google News

Word2Vec (CBOW)

Figure 3: Distributed Memory Model of Paragraph Vectors 14

Step1): Convert DTM or STM to Word2Vec

(*DTM: Document Term Matrix, *STM: Sentence Term Matrix)

- Step2): Decision of Window size (h)
 - Window size = Filter size
- Step3): Activation for window of words

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$$

- Step2): Decision of Window size (h)
 - Window size = Filter size
- Step3): Activation for window of words

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$$

Step4): Concatenate

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}]$$

Step5): Max Pooling

$$\hat{c} = \max\{\mathbf{c}\}\$$

- Step6): A fully connected softmax layer
 - Probability distribution over labels

Step4): Concatenate

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}]$$

Step5): Max Pooling

$$\hat{c} = \max\{\mathbf{c}\}$$

- Step6): A fully connected softmax layer
 - Probability distribution over labels

Step4): Concatenate

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}]$$

Step5): Max Pooling

$$\hat{c} = \max\{\mathbf{c}\}\$$

- Step6): A fully connected softmax layer
 - Probability distribution over labels

Characteristics

- Two channel: 1) Static Word2vec, 2) fine-tuned Word2Vec via backpropa
- Filter size = 단어문맥 순서의 길이
- Max Pooling = 가장 중요한 단어문맥 순서 추출 & 일정한 feature maps
- a filter = a feature

Characteristics

■ Zero padding: 각 문장의 길이는 서로 다르기 때문에 padding 적용

Improvement methods

Regularization

• 마지막 뒤에서 두번째 레이어의 features

$$\mathbf{z} = [\hat{c}_1, \dots, \hat{c}_m]$$
 (= the number of filters)

Fully connected layer

$$y = \mathbf{w} \cdot \mathbf{z} + b$$

Regularized Fully connected layer

$$y = \mathbf{w} \cdot (\mathbf{z} \circ \mathbf{r}) + b$$

Hadamard product

Masking (0 or 1) depended on a probability p

Ln norm (n=1, n=2)

Improvement methods

Regularization

- 켜져있는 히든 유닛만 backprop 적용
- 테스트할때 확률 p 사용하여 모든 히든유닛에 적용 $(\hat{w} = pw)$
- $||w||_2 \rangle s \rangle ||w||_2 = s$

$$r = \sqrt{w_1 + w_2}$$

Improvement methods

- Dropout
 - 2%~4%정도

(a) Standard Neural Net

(b) After applying dropout.

Optimization

Adadelta

• Adagrad의 epoch가 많은 버전

Experiments

- MR: 영화 리뷰 Positive/Negative
- SST-1: fine-grained labels (very positive, positive, neutral, negative, very negative)
- SST-2: positive/negative from SST-1
- Subj: subjective or objective
- TREC: 6 question types
- CR: products (positive/negative)

- CNN-rand: randomly initialized
- CNN-static: pre-trained vectors from word2vec
- CNN-non-static: Same as above but the pretrained vectors are fine-tuned for each task.
- CNN-multichannel: (CNN-static + CNN-non-static)

Result

- Pre-training을 활용한 CNN의 성능은 복잡한 알고리즘에 비해 탁월하다
 - 본 연구자는 다양한 필터 사이즈와 feature maps 때문에 성능이 좋은 것이라고 생각
- CNN-multichannel은 적은 데이터셋에 대한 과적합을 방지한다
- Fine-grained labels에 대한 문제는 제안된 방법론의 성능이 다소 낮음

Data	c	l	N	V	$ V_{pre} $	Test
MR	2	20	10662	18765	16448	CV
SST-1	5	18	11855	17836	16262	2210
SST-2	2	19	9613	16185	14838	1821
Subj	2	23	10000	21323	17913	CV
TREC	6	10	5952	9592	9125	500
CR	2	19	3775	5340	5046	CV
MPQA	2	3	10606	6246	6083	CV

Table 1: Summary statistics for the datasets after tokenization. c: Number of target classes. l: Average sentence length. N: Dataset size. |V|: Vocabulary size. $|V_{pre}|$: Number of words present in the set of pre-trained word vectors. *Test*: Test set size (CV means there was no standard train/test split and thus 10-fold CV was used).

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Result

구문론적인 결과해석

- Static channel: Best case(good -> great)// Worst case(good->bad)
- Non-static channel: Best case(good-) nice)// Worst case(good-) solid)

	Most Similar Words for			
	Static Channel	Non-static Channel		
	good	terrible		
bad	terrible	horrible		
	horrible	lousy		
	lousy	stupid		
	great	nice		
good	bad	decent		
goou	terrific	solid		
	decent	terrific		
	os	not		
n't	ca	never		
n ı	ireland	nothing		
	wo	neither		
	2,500	2,500		
!	entire	lush		
•	jez	beautiful		
	changer	terrific		
,	decasia	but		
	abysmally	dragon		
	demise	а		
	valiant	and		