EE2023 Signals & Systems

AY2019/20-1

Midterm Quiz (Close Book)

Date. 5 October 2019	Tille Allowed. 1.3 Hours

INSTRUCTIONS TO CANDIDATES:

Data: 3 October 2010

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz. However, you are allowed to bring a help sheet comprising one single sheet of paper of A4 size.
- 3. Tables of formulas are given on Pages 15 & 16, which you may detach for easy reference. You need not hand in these two pages.
- 4. Programmable and/or graphic calculators are not allowed.
- 5. Write your **answers** in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, student number and seat number in the spaces indicated below.

Name	<u>:</u>
Student №	<u></u>
Seat №	:

Question №	Marks
Q.1	
Q.2	
Q.3	
Q.4	
Total Marks	

Time Allowed: 15 Hours

Q.1 The signal x(t) is shown in Figure Q1.

(a) Determine the Fourier transform, X(f), of x(t).

(5 marks)

(b) The periodic signal, $x_p(t)$, can be obtained by replicating x(t) at a period of 15 seconds. Obtain an expression for $x_p(t)$ in terms of x(t) and the Dirac δ -function.

(1 mark)

(c) Determine the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$. (4 marks)

Q.1 ANSWER

Q.1 ANSWER ~ continued

Q.1 ANSWER ~ continued

Q.2	The	periodic	signal	x(t)) is	given	by
× ·-		P	2-5		,	5	\sim $_{J}$

ignal
$$x(t)$$
 is given by
$$x(t) = 3\cos\left(8\pi t + \frac{\pi}{4}\right) + 5e^{j12\pi t} + 10.$$

- (a) What is the fundamental frequency and period of x(t)? (2 marks)
- (b) Determine the Fourier Series coefficients of x(t). (4 marks)
- (c) Determine the Fourier transform, X(f), of x(t). (2 marks)

(d) What is the average power of $x(t)$?	(2 marks)
Q.2 ANSWER	

Q.2 ANSWER ~ continued

Q.2 ANSWER ~ continued

Q.3 The spectrum, X(f), of a signal x(t) is shown in Figure Q3.

The signal x(t) is filtered to produce $y(t) = x(t) * [8 \operatorname{sinc}(8t)]$, where '*' denotes convolution. Let Y(f) be the spectrum of y(t).

- (a) Find an expression for Y(f) and sketch it. Label your sketch adequately. (4 marks)
- (b) The signal y(t) is sampled at Nyquist sampling frequency to form $y_s(t)$.
 - i. Sketch the spectrum, $Y_s(f)$, of $y_s(t)$. Label your sketch adequately. (3 marks)
 - ii. Specify the reconstruction filter for exact recovery of y(t) from $y_s(t)$. (3 marks)

Q.3 ANSWER

Q.3 ANSWER ~ continued

Q.3 ANSWER ~ continued

Q.4 An energy pulse $x(t) = A \operatorname{tri}\left(\frac{t}{\alpha}\right) + B \operatorname{rect}\left(\frac{t}{\beta}\right)$ is shown in Figure Q4.

- (a) Find the values of A, B, α and β . (2 mark)
- (b) Find the energy spectral density and the 1^{st} -null bandwidth of x(t). (5 marks)
- (c) Derive the total energy of x(t). (3 marks)

Q.4 ANSWER

Q.4 ANSWER ~ continued

Q.4 ANSWER ~ continued

This page is intentionally left blank. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} c_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} c_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Transform:	$\int X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt$
	$x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	sgn(t)	$\frac{1}{j\pi f}$
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha \pi^{0.5} \exp\left(-\alpha^2 \pi^2 f^2\right)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta } X \left(\frac{f}{\beta} \right)$
Duality	$X\left(t ight)$	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f-\zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

Trigonometric Identities	
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
$\cos(\theta) = 0.5 \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
$\sin(\theta) = -0.5j \left[\exp(j\theta) - \exp(-j\theta)\right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$
$\sin^2\left(\theta\right) + \cos^2\left(\theta\right) = 1$	$\tan(\alpha \pm \beta) - \frac{1}{1 \mp \tan(\alpha)\tan(\beta)}$
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$
$\sin^2(\theta) = 0.5 \left[1 - \cos(2\theta)\right]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha - \beta) + \sin(\alpha + \beta)\right]$
$\cos^2(\theta) = 0.5 [1 + \cos(2\theta)]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos[\theta + \tan^{-1}(S/C)]$

Definitions of Basic Functions

Rectangle:

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & \text{elsewhere} \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - |t|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin\left(\pi t/T\right)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ -1; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$