Cuprins

1. Spații Banach de funcții	 2
2. Caracterizări echivalente ale uniform stabilității C_0 -semigrupurilor de operatori	 6
3. Spaţii Orlicz. Teorema Littman - Neerven	 17
4. Bibliografie	 39

1. Spații Banach de funcții

În această secțiune vom defini spațiile Banach de funcții peste \mathbf{R}_{+} și vom prezenta câteva exemple remarcabile de astfel de spații.

Fie $(\mathbf{R}_+, \mathcal{L}(m), m)$ spaţiul măsurabil \mathbf{R}_+ cu m-măsura Lebesgue. Cu \mathcal{M} vom nota spaţiul liniar al funcţiilor m-măsurabile $f: \mathbf{R}_+ \to \mathbf{C}$, identificând funcţiile egale a.p.t.

O normă Banach de funcții este o aplicație $N:\mathcal{M}\to [0,\infty]$ cu următoarele proprietăți:

- n_1) N(f) = 0 dacă și numai dacă f = 0 a.p.t.;
- n_2) dacă $|f| \leq |g|$ a.p.t. atunci $N(f) \leq N(g)$;
- n_3) $N(\alpha f) = |\alpha| N(f)$, pentru orice $\alpha \in \mathbb{C}$ și orice f cu $N(f) < \infty$;
- n_4) $N(f+g) \le N(f) + N(g)$, pentru orice $f, g \in \mathcal{M}$.

Fie $F = F_N$ mulțimea

$$F := \{ f \in \mathcal{M} : ||f||_F := N(f) < \infty \}$$

Se observă că $(F, ||\cdot||_F)$ este un spațiu vectorial normat. Dacă F este complet, atunci F se numește spațiu Banach de funcții peste \mathbf{R}_+ sau pe scurt spațiu Banach de funcții.

Remarca 1.1. F este un ideal în \mathcal{M} , adică dacă $|f| \leq |g|$ a.p.t. şi $g \in F$, atunci $f \in F$ şi $||f||_F \leq ||g||_F$.

Remarca 1.2. Dacă $f_n \to f$ în norma din F, atunci există un subșir (f_{k_n}) care converge la f a.p.t.

Dacă F este un spațiu Banach de funcții definim

$$\Psi_F: \mathbf{R}_+ \to [0, \infty], \quad \Psi_F(t) := \left\{ \begin{array}{ccc} ||\chi_{[0,t)}||_F &, & \operatorname{dacă} \chi_{[0,t)} \in F \\ \infty &, & \operatorname{dacă} \chi_{[0,t)} \not \in F \end{array} \right.$$

unde $\chi_{[0,t)}$ este funcția caracteristică a intervalului [0,t).

Funcția Ψ_F se numește funcția fundamentală a spațiului Banach de funcții F.

În continuare vom nota cu \mathcal{F} mulțimea spațiilor Banach de funcții cu proprietatea

$$\lim_{t\to\infty}\Psi_F(t)=\infty.$$

Remarca 1.3. Fie F un spațiu Banach de funcții. Deoarece $|f| \leq |g|$ a.p.t. implică $||f||_F \leq ||g||_F$ rezultă că funcția fundamentală este o funcție crescătoare.

În consecință $F \in \mathcal{F}$ dacă și numai dacă există un șir $t_n \to \infty$ pentru care $\Psi_F(t_n) \to \infty$ pentru $n \to \infty$.

Exemple triviale de spații Banach de funcții sunt spațiile $L^p(\mathbf{R}_+)$, cu $p \in [1, \infty]$. Din

$$\Psi_{L^p}(t) = \left\{ egin{array}{ll} t^{rac{1}{p}} &, & \mathrm{dacă} \ p \in [1, \infty) \\ \\ 1 &, & \mathrm{dacă} \ p = \infty \end{array}
ight.$$

deducem că $L^p \in \mathcal{F}$ pentru $p \in [1, \infty)$ și $L^{\infty} \notin \mathcal{F}$.

Exemplul 1.1. [Ne1] Fie $\alpha: \mathbf{R}_+ \to (0, \infty), \alpha \in L^1_{\text{loc}}(\mathbf{R}_+)$. Pentru $p \in [1, \infty]$ considerăm spațiul

$$L^p_\alpha({\bf R}_+):=\{f:{\bf R}_+\to {\bf C}\,,\,f$$
m
 mäsurabilă cu $\alpha f\in L^p({\bf R}_+)\}$

În raport cu norma:

$$||f||_{L^p_\alpha} := ||\alpha f||_{L^p}$$

 $L^p_{\alpha}(\mathbf{R}_+)$ este un spațiu Banach de funcții cu

$$\Psi_{L^p_\alpha}(t) = \begin{cases} \left(\int_0^t \alpha^p(s) \, ds \right)^{\frac{1}{p}} &, & \text{dacă } p \in [1, \infty) \\ \sup_{s \in [0, t)} \alpha(s) &, & \text{dacă } p = \infty \end{cases}$$

Exemplul 1.2. [MS1] Pentru $p \in [1, \infty)$, vom nota cu M^p spațiul funcțiilor măsurabile $f : \mathbf{R}_+ \to \mathbf{C}$ cu proprietatea că

$$|||f|||_p := \sup_{t>0} \left(\int_t^{t+1} |f(s)|^p ds \right)^{\frac{1}{p}} < \infty.$$

Se verifică fără dificultate că $(M^p, |||\cdot|||_p)$ este un spațiu Banach de funcții cu

$$\Psi_{M^p}(t) = \begin{cases} t & , & \text{dacă } t \in [0, 1) \\ 1 & , & \text{dacă } t \ge 1 \end{cases}$$

deci $M^p \notin \mathcal{F}$ oricare ar fi $1 \leq p < \infty$.

Exemplul 1.3. [MS1] Dacă $p \in [1, \infty)$ vom nota cu \mathcal{A}_p mulţimea funcţiilor local integrabile $\alpha : \mathbf{R}_+ \to (0, \infty)$ cu

$$\sup_{t>0} \int_t^{t+1} \alpha^p(s) ds = \infty.$$

Pentru $p \in [1, \infty)$ și $\alpha \in \mathcal{A}_p$ fie

$$M^p_\alpha := \{ f: \mathbf{R}_+ \to \mathbf{C} \, | \, f \text{ măsurabilă cu } \alpha f \in L^p \}$$

În raport cu norma:

$$|||f|||_{p,\alpha} = |||\alpha f|||_p.$$

 M^p_{α} este un spațiu Banach de funcții.

Remarca 1.4. [MS1] Cu notațiile de mai sus avem că $M_{\alpha}^{p} \in \mathcal{F}$ pentru orice $p \in [1, \infty)$ și $\alpha \in \mathcal{A}_{p}$.

Demonstrație: Fie $\varepsilon>0$. Din $\alpha\in\mathcal{A}_p$ rezultă că există $t_0\geq0$ astfel încât

$$\int_{t_0}^{t_0+1} \alpha^p(s) \, ds > \varepsilon^p.$$

Atunci pentru orice $t > t_0 + 1$ avem că:

$$\Psi_{M^p_\alpha}(t) = \sup_{s \ge 0} \left(\int_s^{s+1} \alpha^p(u) \, \chi_{[0,t)}(u) \, du \, \right)^{\frac{1}{p}} \ge \left(\int_{t_0}^{t_0+1} \alpha^p(u) \, du \, \right)^{\frac{1}{p}} > \varepsilon$$

Rezultă de aici că există $\lim_{t\to\infty}\Psi_{M^p_\alpha}(t)=\infty$ adică $M^p_\alpha\in\mathcal{F}.$

Exemplul 1.4. [MS1] Fie \mathcal{U} mulţimea funcţiilor măsurabile şi nemărginite $u: \mathbf{R}_+ \to (0, \infty)$. Pentru $u \in \mathcal{U}$ vom nota cu M_u mulţimea funcţiilor măsurabile $f: \mathbf{R}_+ \to \mathbf{C}$ cu proprietatea că:

$$|||f|||_u := \sup_{t \in \mathbf{R}_+} u(t)|f(t)| < \infty.$$

Se verifică uşor că $(M_u, |||\cdot|||_u)$ este un spațiu Banach de funcții pentru orice $u \in U$.

Deoarece

$$\Psi_{M_u}(t) = \sup_{s \ge 0} u(s) \chi_{[0,t)}(s) = \sup_{s \in [0,t)} u(s)$$

şi $u \in U$ rezultă că $M_u \in \mathcal{F}$.

Exemplul 1.5. [MS1] Fie Γ mulţimea funcţiilor $\gamma: \mathbf{R}_+ \to \mathbf{R}_+$ cu proprietăţile

- i) $\gamma(t) > t$ pentru orice $t \ge 0$;
- ii) $\overline{\lim}_{t \to \infty} (\gamma(t) t) = \infty$.

Pentru orice $p\in [1,\infty)$ și $\gamma\in \Gamma$ vom nota cu S^p_γ mulțimea funcțiilor măsurabile $f:\mathbf{R}_+\to\mathbf{C}$ cu proprietatea

$$||f||_{p,\gamma} := \sup_{t>0} \left(\int_t^{\gamma(t)} |f(s)|^p ds \right)^{\frac{1}{p}} < \infty.$$

Atunci $(S_{\gamma}^p, ||\cdot||_{p,\gamma})$ este un spațiu Banach de funcții. În plus, din $\gamma \in \Gamma$ rezultă că pentru orice $\varepsilon > 0$ există $t_0 > 0$ astfel încât

$$\gamma(t_0) > t_0 + \varepsilon^p$$

și deci

$$\Psi_{S_{\gamma}^{p}}(t) = \sup_{s \ge 0} \left(\int_{s}^{\gamma(s)} \chi_{[0,t)}(u) du \right)^{\frac{1}{p}} \ge \left(\int_{t_{0}}^{\gamma(t_{0})} \chi_{[0,t)}(u) du \right)^{\frac{1}{p}} =$$

$$= \left(\gamma(t_{0}) - t_{0} \right)^{\frac{1}{p}} > \varepsilon$$

pentru orice $t > \gamma(t_0)$. Rezultă de aici că

$$\lim_{t \to \infty} \Psi_{S^p_{\gamma}}(t) = \infty$$

deci $S^p_{\gamma} \in \mathcal{F}$ pentru orice $p \in [1, \infty)$ și $\gamma \in \Gamma.$

2. Caracterizări echivalente ale uniform stabilității C_0 -semigrupurilor de operatori

În cele ce urmează X este un spațiu Banach (real sau complex). Cu $\mathcal{B}(X)$ vom nota spațiul liniar al operatorilor liniari și mărginiți de la X în X. $\mathcal{B}(X)$ este un spațiu Banach în raport cu norma:

$$||T|| := \inf \{ M > 0 : ||T(x)|| \le M ||x||, \ \forall x \in X \}$$

Remarca 2.1. Pentru orice $T \in \mathcal{B}(X)$

$$||T|| = \sup_{||x|| \le 1} ||T(x)|| = \sup_{||x|| = 1} ||T(x)||.$$

Fie $\mathbf{T} = (T(t))_{t \geq 0}$ un C_0 -semigrup pe spaţiul Banach X.

Definiția 2.1. T este uniform exponențial stabil și notăm pe scurt u.e.s. dacă există $N, \nu > 0$ astfel încât

$$||T(t)|| \le N e^{-\nu t}, \quad \forall t \ge 0.$$

Pentru început vom demonstra următoarele leme:

Lema 2.1. [MS1] Fie $A \in \mathcal{B}(X)$ cu raza spectrală $r(A) \geq 1$. Atunci pentru orice $\varepsilon \in (0,1)$ și $n \in \mathbb{N}$ există $x \in X$ cu ||x|| = 1 și

$$||A^m x|| \ge \varepsilon, \quad \forall m \in \{0, \dots, n\}.$$

Demonstrație: Fie $\lambda \in \sigma(A)$ cu $|\lambda| = r(A)$. Atunci există $(x_n) \subset X$ cu $||x_n|| = 1$ pentru orice $n \in \mathbb{N}$ și $Ax_n - \lambda x_n \to 0$ pentru $n \to \infty$. Rezultă că $A^m x_n - \lambda^m x_n \to 0$, pentru orice $m \in \mathbb{N}$ (1).

Fie $\varepsilon \in (0,1)$ și $n \in \mathbb{N}$. Din (1) rezultă că există $n_0 \in \mathbb{N}$ astfel încât:

$$||A^m x_{n_0} - \lambda^m x_{n_0}|| < 1 - \varepsilon$$

pentru orice $m \in \{0, 1, ..., n\}$. Avem că:

$$|\lambda|^m = ||\lambda^m x_{n_0} - A^m x_{n_0}|| + ||A^m x_{n_0}|| < 1 - \varepsilon + ||A^m x_{n_0}||$$

iar de aici că:

$$||A^m x_{n_0}|| > |\lambda|^m - 1 + \varepsilon \ge \varepsilon, \quad \forall m \in \{0, \dots, n\}.$$

Lema 2.2. [MS1] Fie F un spațiu Banach de funcții și $S : \mathbf{R}_+ \to \mathcal{B}(X)$. Dacă pentru orice $x \in X$ aplicația

$$S_x: \mathbf{R}_+ \to \mathbf{R}_+, \quad S_x(t) = ||S(t)x||$$

este un element din F, atunci există M > 0 astfel încât:

$$||S_x||_F < M||x||, \quad \forall x \in X.$$

Demonstrație: Fie M_F mulțimea funcțiilor măsurabile $f: \mathbf{R}_+ \to X$ cu $||f|| \in F$. În M_F identificăm funcțiile egale a.p.t. M_F este un spațiu Banach în raport cu norma:

$$|f|_{M_F} = ||||f|||_F.$$

Considerăm aplicația $\tilde{S}: X \to M_F$ definită prin:

$$\tilde{S}(x)(t) = S(t)(x), \quad \forall t \ge 0.$$

Din teorema graficului închis e suficient să demonstrăm că operatorul liniar \tilde{S} este închis.

Fie $x_n \to x$ în X și $\tilde{S}(x_n) \to f$ în M_F . $\tilde{S}(x_n) \to f$ în M_F înseamnă:

$$|\tilde{S}(x_n) - f|_{M_F} = || || \tilde{S}(x_n) - f || ||_F \to 0$$

Din Remarca 1.2. rezultă că există un subșir $(x_{k_n}) \subset (x_n)$ cu proprietatea că:

$$\|\tilde{S}(x_{k_n}) - f\| \longrightarrow 0$$
, pt. $n \to \infty$, a.p.t.

deci:

$$\tilde{S}(x_{k_n}) \to f$$
 a.p.t. (1).

Deoarece pentru orice $t \geq 0$:

$$\tilde{S}_{x_{k_n}}(t) = S(t)x_{k_n} \to S(t)x = \tilde{S}_x(t)$$
 (2),

din relațiile (1) și (2) obținem că $\tilde{S}(x) = f$ a.p.t. adică $\tilde{S}(x) = f$ în M_F .

Aşadar \tilde{S} este un operator închis. Din teorema graficului închis rezultă că există M>0 astfel încât:

$$|\tilde{S}(x)|_{M_F} \le M||x||, \quad \forall x \in X.$$

Cum

$$|\tilde{S}(x)|_{M_F} = || ||\tilde{S}(x)|| ||_F = ||S_x||_F$$

rezultă că:

$$||S_x||_F \le M ||x||, \ \forall x \in X.$$

Lema 2.3.(Müller) Fie $A \in \mathcal{B}(X)$ cu raza spectrală $r(A) \geq 1$. Atunci pentru orice $\varepsilon \in (0,1)$ și orice șir descrescător de numere reale pozitive (α_n) cu $\alpha_n \to 0$ există $x \in X$ cu ||x|| = 1 astfel încât

$$||A^n x|| \ge \varepsilon \alpha_n, \quad \forall n \in \mathbf{N}.$$

Demonstrație: A se vedea [Mu] sau [Ne3].

Definiția 2.2. Fie F un spațiu Banach de funcții. Un C_0 -semigrup T pe spațiul Banach X se zice F-stabil dacă pentru orice $x \in X$ aplicația $t \mapsto ||T(t)x||$ este un element din F.

Are sens să ne punem problema dacă uniform exponențial stabilitatea C_0 semigrupului \mathbf{T} implică F-stabilitatea lui oricare ar fi F un spațiu Banach de funcții (sau oricare ar fi F un spațiu Banach de funcții din \mathcal{F}). Răspunsul este negativ după cum arată următorul exemplu:

Exemplul 2.1. [MS1] Fie \mathcal{M} spaţiul funcţiilor măsurabile Lebesgue $f: \mathbf{R}_+ \to \mathbf{C}$. Definim

$$N: \mathcal{M} \to [0, \infty], \quad N(f) = \int_0^\infty e^t |f(t)| dt$$

 $F=\{f\in\mathcal{M}:N(f)<\infty\}$ este un spațiu Banach de funcții din \mathcal{F} în raport cu norma:

$$||f||_F := \int_0^\infty e^t |f(t)| dt.$$

Pentru fiecare $t \geq 0$ definim

$$T(t): \mathbf{R} \to \mathbf{R}, \quad T(t)x = e^{-\frac{t}{2}}x.$$

 $\mathbf{T} = (T(t))_{t \geq 0}$ este un C_0 -semigrup uniform exponențial stabil pe $X = \mathbf{R}$. Să remarcăm că \mathbf{T} nu este F-stabil. Mai mult avem că aplicația:

$$f_x: \mathbf{R}_+ \to \mathbf{R}_+, \quad f_x(t) = ||T(t)x||$$

este în F dacă și numai dacă x=0. În particular avem că \mathbf{T} nu este F-stabil.

Legătura dintre uniform exponențial stabilitate și F-stabilitate este prezentată în următoarea teoremă care constituie rezultatul central al acestei secțiuni.

Teorema 2.1. Fie \mathbf{T} un C_0 -semigrup spațiul Banach X. Atunci \mathbf{T} este u.e.s. dacă și numai dacă există $F \in \mathcal{F}$ astfel încât \mathbf{T} să fie F-stabil.

Demonstrație: [MS1] Necesitatea. Dacă ${\bf T}$ este u.e.s. există $N,\nu>0$ astfel încât

$$||T(t)|| \le N e^{-\nu t}, \quad \forall t \ge 0$$

Dacă $p \in [1, \infty)$ și $x \in X$ din

$$\int_0^\infty ||T(t)x||^p \, dt \le N^p \, ||x||^p \, \int_0^\infty \, e^{-\nu pt} \, dt < \infty$$

rezultă că ${\bf T}$ este L^p -stabil.

Suficiența. Din ipoteză avem că pentru orice $x \in X$ aplicația

$$S_x: \mathbf{R}_+ \to \mathbf{R}_+, \quad S_x(t) = ||T(t)x||$$

este un element din F. Din Lema 2.2. rezultă că există M>0 astfel încât

$$||S_x||_F \le M ||x||, \quad \forall x \in X$$
 (1).

Să demonstrăm că \mathbf{T} este u.e.s. Pentru aceasta e suficient să arătăm că r(T(1)) < 1.

Presupunem prin absurd că $r(T(1)) \geq 1$. Pentru fiecare $p \in \mathbf{N}^*$ considerăm șirul

$$\alpha_n^p := \left\{ \begin{array}{ll} 1 & , & \operatorname{dacă} \ n \leq p \\ 0 & , & \operatorname{dacă} \ n \geq p+1 \end{array} \right.$$

Pentru fiecare $p \in \mathbf{N}^*$ din Lema 2.3. aplicată şirului (α_n^p) şi pentru $\varepsilon = \frac{1}{2}$ rezultă că există $x_p \in X$ cu $||x_p|| = 1$ şi

$$||T(n)x_p|| \ge \frac{1}{2}, \quad \forall n \in \mathbf{N}^* \text{ cu } n \le p \ (2).$$

Dacă notăm cu

$$N := \sup\{||T(t)|| : t \in [0, 1]\}$$

atunci pentru orice $n \in \mathbb{N}, x \in X$ și $t \in [n, n+1]$ avem că

$$||T(n+1)x|| < N||T(t)x||$$
 (3).

Din (2) şi (3) deducem că:

$$\chi_{[0,p)} \le 2N||T(\cdot)x_p|| = 2NS_{x_p}, \ \forall p \in \mathbf{N}^*.$$

De aici, ținând seama de relația (1) avem că:

$$\Psi_F(p) = \|\chi_{[0,t)}\| \le 2N \|S_{x_p}\|_F \le 2MN \|x_p\| = 2MN, \ \forall p \in \mathbf{N}^*$$

ceea ce contrazice ipoteza $F \in \mathcal{F}$.

În concluzie rezultă că T este u.e.s.

Remarca 2.2. Teorema precedentă a fost demonstrată pentru prima dată de J.M.A.M. van Neerven în [Ne2]. Demonstrația dată de Neerven folosește esențial faptul că X este spațiu Banach complex.

În continuare cu ajutorul Teoremei 2.1. utilizând diverse spații Banach de funcții vom obține caracterizări echivalente ale u.e.s. C_0 -semigrupurilor de operatori.

Teorema 2.2. [Ne1] Fie X un spaţiu Banach şi $\mathbf{T} = (T(t)_{t\geq 0} \text{ un } C_0$ -semigrup pe X. Următoarele afirmaţii sunt echivalente:

- (i) **T** este u.e.s.;
- (ii) există $\beta \in L^1_{loc}(\mathbf{R}_+), \beta \geq 0$ cu:

$$\int_0^\infty \beta(t) \, dt = \infty \tag{1}$$

$$\int_0^\infty \beta(t) \|T(t)x\|^p dt < \infty, \forall x \in X$$
 (2)

Demonstrație: Necesitatea. Dacă T este u.e.s. atunci pentru $\beta \equiv 1$ și $p \in [1,\infty)$ avem că:

$$\int_0^\infty \|T(t)x\|^p dt < \infty, \quad \forall x \in X.$$

Suficiența. Dacă există $t_0 > 0$ cu $T(t_0) = 0$ atunci T(t) = 0 pentru orice $t \ge t_0$ deci ${\bf T}$ este u.e.s.

Presupunem că $T(t) \neq 0$ pentru orice $t_0 \geq 0$. Fie

$$\alpha: \mathbf{R}_+ \to (0, \infty), \quad \alpha(t) = \left\{ \begin{array}{cc} (\beta(t))^{1/p} &, & \operatorname{dac\check{a}} \, \beta(t) > 0 \\ \\ e^{-t} \, \|T(t)\|^{-1} &, & \operatorname{dac\check{a}} \, \beta(t) = 0 \end{array} \right.$$

Dacă L^p_α este spațiul Banach de funcții definit în Exemplul 1.1. atunci:

$$\Psi_{L^p_\alpha}(t) = \left(\int_0^t \alpha^p(s) \, ds\right)^{1/p} \ge \left(\int_0^t \beta(s) \, ds\right)^{1/p}.$$

Din ipoteza (1) deducem că $L^p_{\alpha} \in \mathcal{F}$. Pentru $x \in X$

$$||||T(\cdot)x|||_{L^{p}_{\alpha}} = \left(\int_{0}^{\infty} \alpha^{p}(t) ||T(t)x||^{p} dt\right)^{1/p} \le$$

$$\le \left(\int_{0}^{\infty} \left[(\beta(t))^{1/p} ||T(t)x|| + \frac{||T(t)x||}{e^{t} ||T(t)||} \right]^{p} dt \right)^{1/p} \le$$

$$\le \left(\int_{0}^{\infty} \beta(t) ||T(t)x||^{p} dt\right)^{1/p} + \left(\int_{0}^{\infty} \frac{||T(t)x||^{p}}{e^{tp} ||T(t)||} dt\right)^{1/p} =$$

$$= \int_{0}^{\infty} \beta(t) ||T(t)x||^{p} dt + ||x|| \left(\int_{0}^{\infty} e^{-tp} dt\right)^{1/p} < \infty.$$

Rezultă de aici că \mathbf{T} este L^p_{α} -stabil. Ținând seama că $L^p_{\alpha} \in \mathcal{F}$, din Teorema 1.2.1. obținem că \mathbf{T} este u.e.s.

Remarca 2.3. Suficiența este o generalizare a toremei Datko - Pazy:

Fie X un spațiu Banach, \mathbf{T} un C_0 -semigrup pe X. Dacă există $p \in [1, \infty)$ astfel încât

$$\int_0^\infty \|T(t)x\|^p dt < \infty \quad \forall x \in X$$

atunci T este u.e.s.

Corolarul 2.1. [MS1] Fie \mathbf{T} un C_0 -semigrup pe spaţiul Banach X. Atunci \mathbf{T} este u.e.s. dacă şi numai dacă există o funcţie nemărginită, măsurabilă Lebesgue $u: \mathbf{R}_+ \to (0, \infty)$ astfel încât:

$$\sup_{t \ge 0} u(t)||T(t)x|| < \infty, \quad \forall x \in X.$$

Demonstrație: Necesitatea. Dacă ${\bf T}$ este u.e.s. atunci există $N, \nu > 0$ astfel încât:

$$||T(t)|| \le N e^{-\nu t}, \quad \forall t \ge 0.$$

În particular, pentru $u(t)=e^{\nu t}$ se obține că:

$$\sup_{t \le 0} u(t) \|T(t)x\| < \infty, \quad \forall x \in X.$$

Suficiența. Rezultă din Teorema 2.1. pentru $F=M_u$, unde M_u este definit în Exemplul 1.4.

Corolarul 2.2. [MS1] Fie T un C_0 -semigrup pe spațiul Banach X. Următoarele afirmații sunt echivalente:

- i) **T** este u.e.s.;
- ii) există un şir nemărginit $(u_n) \subset (0, \infty)$ astfel încât:

$$\sup_{n \in \mathbf{N}} u_n ||T(n)x|| < \infty, \quad \forall x \in X.$$

Demonstrație: Necesitatea. Rezultă pentru $u_n = n$.

Suficiența. Fie

$$M := \sup\{||T(t)|| : t \in [0,1]\}$$

şi

$$u: \mathbf{R}_+ \to (0, \infty), \quad u(t) := \sum_{n=0}^{\infty} \frac{u_n}{M} \chi_{[n, n+1)}(t).$$

Atunci $u \in \mathcal{U}$ (definit în Exemplul 1.4.) şi

$$|u(t)||T(t)x|| \le \frac{u_n}{M}||T(t-n)||\,||T(n)x|| \le u_n||T(n)x||$$

pentru orice $t \in [n, n+1), n \in \mathbb{N}$ şi $x \in X$.

Rezultă de aici că:

$$\sup_{t \ge 0} u(t)||T(t)x|| < \infty, \quad \forall x \in X.$$

Ținând seama de Corolarul 2.1. se obține că \mathbf{T} este u.e.s.

Teorema 2.3. [MS1] Fie **T** un C_0 -semigrup pe spaţiul Banach X. Atunci **T** este u.e.s. dacă și numai dacă există $p \in [1, \infty)$ și o funcție local integrabilă $\beta: \mathbf{R}_+ \to \mathbf{R}_+$ astfel încât

$$i) \sup_{t \ge 0} \int_t^{t+1} \beta(s) ds = \infty$$

si

ii)
$$\sup_{t>0} \int_t^{t+1} \beta(s) ||T(s)x||^p ds < \infty, \quad \forall x \in X.$$

Demonstrație: Necesitatea. Este imediată pentru $\beta(t) = t$ și $p \in [1, \infty)$.

Suficiența. Dacă există $t_0 > 0$ astfel încât $||T(t_0)|| = 0$ atunci T(t) = 0 pentru orice $t \ge t_0$ și deci $\mathbf T$ este u.e.s.

Presupunem că ||T(t)|| > 0 pentru orice $t \ge 0$. În acest caz considerăm funcția:

$$\alpha: \mathbf{R}_+ \to (0, \infty), \ \alpha(t) = \left\{ \begin{array}{ll} (\beta(t))^{1/p} &, \quad \mathrm{dac} \ \ \beta(t) \neq 0 \\ \\ e^{-t} \, ||T(t)||^{-1} &, \quad \mathrm{dac} \ \ \beta(t) = 0 \end{array} \right.$$

Avem că α este local (Lebesgue) integrabilă pe \mathbf{R}_+ cu

$$\beta(t) < \alpha^p(t), \quad \forall t > 0.$$

De aici deducem că

$$\sup_{t>0} \int_t^{t+1} \alpha^p(s) \, ds = \infty$$

şi

$$\begin{split} &(\int_{t}^{t+1}\alpha^{p}(s)||T(s)x||^{p}ds)^{\frac{1}{p}} \leq [\int_{t}^{t+1}(\beta^{\frac{1}{p}}(s) + \frac{e^{-s}}{||T(s)||})^{p}||T(s)x||^{p}ds]^{\frac{1}{p}} \leq \\ &\leq (\int_{t}^{t+1}\beta(s)||T(s)x||^{p}ds)^{\frac{1}{p}} + (\int_{t}^{t+1}\frac{e^{-ps}}{||T(s)||^{p}}||T(s)x||^{p}ds)^{\frac{1}{p}} \leq \\ &\leq \sup_{t>0}(\int_{t}^{t+1}\beta(s)||T(s)x||^{p}ds)^{\frac{1}{p}} + ||x||, \end{split}$$

pentru orice $x \in X$ şi $t \ge 0$.

Rezultă că ${\bf T}$ este M^p_α -stabil, unde M^p_α este definit în Exemplul 1.3.

Din Teorema 2.1. rezultă că \mathbf{T} este u.e.s.

Corolarul 2.3. [MS1] Fie T un C_0 -semigrup pe spaţiul Banach X. Atunci T este u.e.s. dacă şi numai dacă există un şir nemărginit $(\alpha_n) \subset (0,\infty)$ şi $p \in [1,\infty)$ astfel încât

$$\sup_{n \in \mathbf{N}} \alpha_n \int_n^{n+1} ||T(s)x||^p ds < \infty$$

pentru orice $x \in X$.

Demonstrație: Necesitatea este imediată pentru $\alpha_n = n$ și $p \in [1, \infty)$.

Suficiența. Fie $\beta: \mathbf{R}_+ \to \mathbf{R}_+$ definită prin

$$\beta(t) = \sum_{n=0}^{\infty} \alpha_n \chi_{[n,n+1)}(t).$$

Atunci β este local integrabilă cu

$$\sup_{t>0} \int_t^{t+1} \beta(s) ds = \infty.$$

Mai mult avem că

$$\int_{t}^{t+1} \beta(s) ||T(s)x||^{p} ds \le \int_{n}^{n+2} \beta(s) ||T(s)x||^{p} ds =$$

$$=\alpha_n \int_n^{n+1} ||T(s)x||^p ds + \alpha_{n+1} \int_{n+1}^{n+2} ||T(s)x||^p ds \leq 2 \sup_{n \in \mathbf{N}} \alpha_n \int_n^{n+1} ||T(s)x||^p ds,$$

pentru orice $t \ge 0$ și n = [t].

De aici rezultă că

$$\sup_{t \ge 0} \int_t^{t+1} \beta(s) ||T(s)x||^p ds < \infty$$

pentru orice $x \in X$ iar din Teorema 2.3. că **T** este u.e.s.

Teorema 2.4. [MS1] Fie **T** un C_0 -semigrup pe spaţiul Banach X şi fie Γ mulţimea definită în Exemplul 1.5. Atunci **T** este u.e.s. dacă şi numai dacă există $\gamma \in \Gamma$ şi $p \in [1, \infty)$ astfel încât

$$\sup_{t>0} \int_{t}^{\gamma(t)} ||T(s)x||^{p} ds < \infty, \quad \forall x \in X.$$

Demonstrație: Necesitatea. Se verifică fără dificultate pentru $\gamma(t)=2t$ și $p\in [1,\infty)$.

Suficiența. Rezultă din Teorema 2.1. pentru spațiul Banach de funcții $F = S_{\gamma}^p$ definit în Exemplul 1.5.

Corolarul 2.4. [MS1] Fie T un C_0 -semigrup pe spaţiul Banach X. Atunci T este u.e.s. dacă şi numai dacă există $p \in [1, \infty)$ şi un şir (γ_n) de numere reale pozitive cu proprietățile:

- $i) \gamma_n > n, \quad \forall n \in \mathbf{N},$
- $ii) \overline{\lim_{n\to\infty}} (\gamma_n n) = \infty,$
- $iii) \sup_{n \in \mathbb{N}} \int_{n}^{\gamma_n} ||T(s)x||^p ds < \infty, \quad \forall x \in X.$

Demonstrație: Necesitatea rezultă imediat pentru $\gamma_n = 2n$ și $p \in [1, \infty)$.

Suficiența. Fie $\gamma: \mathbf{R}_+ \to \mathbf{R}_+$ funcția definită prin

$$\gamma(t) = \sum_{n=0}^{\infty} \gamma_n \, \chi_{[n,n+1)}(t).$$

Condițiile (i) și (ii) arată că $\gamma \in \Gamma$, unde Γ este mulțimea definită în Exemplul 1.5.

Dacă $x \in X$, $t \in \mathbf{R}_+$ și n = [t] atunci

$$\int_{t}^{\gamma(t)} ||T(s)x||^{p} ds \le \int_{n}^{\gamma_{n}} ||T(s)x||^{p} ds \le \sup_{n \in \mathbb{N}} \int_{n}^{\gamma_{n}} ||T(s)x||^{p} ds < \infty.$$

Rezultă de aici că \mathbf{T} este S^p_{γ} -stabil, unde S^p_{γ} este spațiul Banach de funcții definit în Exemplul 1.5. Deoarece $S^p_{\gamma} \in \mathcal{F}$, din Teorema 2.1. obținem că \mathbf{T} este u.e.s.

3. Spaţii Orlicz. Teorema Littman - Neerven

Fie $\varphi: \mathbf{R}_+ \to [0, \infty]$ o funcție crescătoare, continuă la stânga și neidentic egală cu 0 sau ∞ pe $(0, \infty)$. Definim

$$\Phi(t) := \int_0^t \varphi(s) \, ds.$$

O funcție Φ de această formă se numește funcție Young.

Fie $f: \mathbf{R}_+ \to \mathbf{C}$ o funcție măsurabilă și Φ o funcție Young. Definim

$$M_{\varphi}(f) := \int_0^{\infty} \Phi(|f(s)|) ds.$$

Propoziția 3.1. Mulțimea

$$L_{\varphi} := \{ f : \mathbf{R}_+ \to \mathbf{C} \mid f \text{ măsurabilă şi } \exists k > 0 \text{ a.î. } M_{\varphi}(kf) < \infty \}$$

este un spațiu liniar. În raport cu norma:

$$N_{\varphi}(f) := \inf\{k > 0 : M_{\varphi}(\frac{1}{k}f) \le 1\}$$

 L_{φ} este un spațiu Banach de funcții.

Demonstrație: Fie $f, g \in L_{\varphi}$ și $k_1, k_2 > 0$ astfel încât $M_{\varphi}(k_1 f) < \infty$ respectiv $M_{\varphi}(k_2 g) < \infty$. Fie $k = \min\{k_1, k_2\}/2$.

Pentru orice $t \ge 0$ avem că:

$$k | (f+g)(t) | \le k |f(t)| + k |g(t)| \le \begin{cases} k_2 |g(t)| &, & \text{dacă} |f(t)| \le |g(t)| \\ k_1 |f(t)| &, & \text{dacă} |f(t)| > |g(t)| \end{cases}$$

Ținând seama că Φ este crescătoare obținem de aici că:

$$\Phi(k | (f+g)(t)|) \le \begin{cases} \Phi(k_2 | g(t)|) &, & \text{dacă } |f(t)| \le |g(t)| \\ \Phi(k_1 | f(t)|) &, & \text{dacă } |f(t)| > |g(t)| \end{cases}$$

deci în particular:

$$\Phi(k | (f+g)(t)|) \le \Phi(k_1 | f(t)|) + \Phi(k_2 | g(t)|), \quad \forall t \ge 0$$
 (1)

Integrând în relația (1) deducem că:

$$M_{\varphi}(k(f+g)) \leq M_{\varphi}(k_1 f) + M_{\varphi}(k_2 g) < \infty$$

 $\mathrm{deci}\ f + g \in L_{\varphi}.$

Fie acum $f \in L_{\varphi}$ şi $\lambda \in \mathbf{C}$.

- a) dacă $\lambda = 0$ atunci $\lambda f = 0$ și $M_{\varphi}(\lambda f) = 0$ deci $\lambda f \in L_{\varphi}$;
- b) dacă $\lambda \neq 0$ fie $q = k/|\lambda|$ unde k > 0 cu proprietatea că $M_{\varphi}(k f) < \infty$. Atunci:

$$M_{\varphi}(q(\lambda f)) = \int_{0}^{\infty} \Phi(q|\lambda f(s)|) ds = \int_{0}^{\infty} \Phi(k|f(s)|) ds = M_{\varphi}(kf) < \infty.$$

Rezultă că $\lambda f \in L_{\varphi}$, deci L_{φ} este spațiu liniar.

Fie $\mathcal{M} = \{ f : \mathbf{R}_+ \to \mathbf{C} \mid f \text{ măsurabilă } \}$. Pentru fiecare $f \in \mathcal{M}$ considerăm mulțimea

$$A_f = \{k > 0: M_{\varphi}(\frac{1}{k}f) \le 1\}$$

Se observă că dacă $A_f \neq \emptyset$ și $k \in A_f$ atunci $[k, \infty) \subset A_f$. Definim:

$$N: \mathcal{M} \to [0, \infty], \quad N(f) = \left\{ \begin{array}{ccc} \inf A_f &, & \operatorname{dacă} A_f \neq \emptyset \\ \infty &, & \operatorname{dacă} A_f = \emptyset \end{array} \right.$$

Să demonstrăm că N este o normă Banach de funcții.

 n_1) Fie f măsurabilă, f=0 a.p.t. Atunci pentru orice $k>0, \frac{1}{k}f=0$ a.p.t. Rezultă de aici că $\Phi(\frac{1}{k}|f|)=0$ a.p.t. deci $M_{\varphi}(\frac{1}{k}f)=0$.

Obţinem în acest mod că $A_f = (0, \infty)$, deci N(f) = 0.

Fie acum f măsurabilă cu N(f) = 0. Rezultă că $A_f = (0, \infty)$.

Presupunem prin absurd că $f \neq 0$ a.p.t. deci există $A \subset \mathbf{R}_+$ măsurabilă și c>0 astfel încât

$$|f(t)| \ge c$$
, $\forall t \in A$.

Pentru orice k > 0:

$$M_{\varphi}(\frac{1}{k}f) = \int_0^{\infty} \Phi(\frac{1}{k}|f(t)|) dt \ge \int_A \Phi(\frac{1}{k}|f(t)|) dt \ge$$
$$\ge m(A) \Phi(\frac{c}{k}) = m(A) \int_0^{\frac{c}{k}} \varphi(s) ds.$$

Din $A_f = (0, \infty)$ rezultă că:

$$\int_0^{\frac{c}{k}} \varphi(s) \, ds \le \frac{1}{m(A)}, \quad \forall k > 0.$$

Făcând $k \searrow 0$ obținem de aici că

$$\int_0^\infty \varphi(s) \, ds \le \frac{1}{m(A)} \quad (2).$$

Ţinând seama că $\varphi \geq 0$ și φ este crescătoare convergența integralei $\int_0^\infty \varphi(s)\,ds$ implică $\varphi\equiv 0$ (absurd).

Rezultă în acest mod că $f \equiv 0$ a.p.t.

 $n_2)$ Fie f,gmăsurabile cu $|f| \leq |g|$ a.p.t. Dacă $N(g) = \infty$ atunci (evident) $N(f) \leq N(g).$

Dacă $N(g) < \infty$ există k > 0 pentru care

$$M_{\varphi}(\frac{1}{k}\,g) \le 1.$$

Din $|f| \leq |g|$ a.p.t. rezultă că :

$$\Phi(\frac{1}{k}|f(t)|) \le \Phi(\frac{1}{k}|g(t)|) \quad \text{a.p.t.}$$

deci

$$M_{\varphi}(\frac{1}{k}f) \le M_{\varphi}(\frac{1}{k}g) \le 1.$$

Obţinem astfel că $A_f \neq \emptyset$. În plus, din raţionamentul precedent avem $A_g \subset A_f$. Rezultă de aici că:

$$N(f) = \inf A_f \le \inf A_g = N(g).$$

 n_3) Fie $f \in \mathcal{M}$ cu $N(f) < \infty$ și $\alpha \in \mathbb{C}$.

Dacă $\alpha = 0$ atunci $\alpha f = 0$ deci conform n_1) avem că

$$N(\alpha f) = 0 = \alpha N(f)$$

Dacă $\alpha \neq 0$ egalitatea $N(\alpha f) = |\alpha| N(f)$ revine la a demonstra că:

$$A_{\alpha f} = |\alpha| A_f$$

Fie $k \in A_f$. Atunci:

$$M_{\varphi}\left(\frac{1}{|\alpha| k} (\alpha f)\right) = \int_{0}^{\infty} \Phi\left(\frac{1}{|\alpha| k} |\alpha f(t)|\right) dt =$$
$$= \int_{0}^{\infty} \Phi\left(\frac{1}{k} |f(t)|\right) dt = M_{\varphi}\left(\frac{1}{k} f\right) \le 1.$$

Rezultă de aici că $|\alpha| k \in A_{\alpha f}$ deci $|\alpha| A_f \subset A_{\alpha f}$. Reciproc, fie $k \in A_{\alpha f}$. Din:

$$M_{\varphi}(\frac{|\alpha|}{k}f) = \int_{0}^{\infty} \Phi(\frac{|\alpha|}{k}|f(t)|) dt = M_{\varphi}(\frac{1}{k}\alpha f) \le 1$$

rezultă că $\frac{k}{|\alpha|} \in A_f$ deci $A_{\alpha f} \subset |\alpha| A_f$.

În concluzie avem că $A_{\alpha f} = |\alpha| A_f$ adică

$$N(\alpha f) = |\alpha| N(f).$$

 n_4) Fie $f,g \in \mathcal{M}$. Dacă $N(f) = \infty$ sau $N(g) = \infty$ atunci (evident)

$$N(f+g) \le N(f) + N(g).$$

Să presupunem că $N(f)<\infty$ și $N(g)<\infty$. Analog ca mai sus se arată că dacă $k_1\in A_f$ și $k_2\in A_g$ atunci $k_1+k_2\in A_{f+g}$. Rezultă de aici că $A_f+A_g\subset A_{f+g}$ deci

$$N_{\varphi}(f+g) \le N_{\varphi}(f) + N_{\varphi}(g).$$

Am arătat astfel că N este o normă Banach de funcții. Să demonstrăm în continuare că:

$$F_N = \{ f \in \mathcal{M} : N(f) < \infty \} = L_{\varphi}.$$

Incluziunea $F_N \subset L_{\varphi}$ este evidentă. Fie $f \in L_{\varphi}$. Există atunci k > 0 astfel încât $M_{\varphi}(k f) < \infty$.

Dacă $M_{\varphi}(kf)=0$ rezultă că $f\in F_N$. Dacă $M_{\varphi}(kf)>0$ fie $n_0\in \mathbf{N}^*$ cu $n_0\geq M_{\varphi}(kf)$. Din

$$\Phi(k|f(t)|) = \int_0^{k|f(t)|} \varphi(s) \, ds = \sum_{j=1}^{n_0} \int_{\frac{j-1}{n_0}}^{\frac{j}{n_0}} \frac{k|f(t)|}{k|f(t)|} \varphi(s) ds \ge$$

$$\ge n_0 \int_0^{\frac{k}{n_0}} \frac{|f(t)|}{\varphi(s)} \varphi(s) ds = n_0 \Phi(\frac{k}{n_0} |f(t)|), \quad \forall t \ge 0$$

obţinem că

$$M_{\varphi}(\frac{k}{n_0}f) = \int_0^{\infty} \Phi(\frac{k}{n_0}|f(t)|)dt \leq \frac{1}{n_0} \int_0^{\infty} \Phi(k|f(t)|)dt = \frac{1}{n_0} M_{\varphi}(kf) \leq 1.$$

Rezultă că $f \in F_N$.

Aşadar $F_N = L_{\varphi}$ şi pentru orice $f \in L_{\varphi}$

$$||f||_{L_{\varphi}} = \inf\{k > 0 : M_{\varphi}(\frac{1}{k}f) \le 1\} = N_{\varphi}(f)$$

deci $(L_{\varphi}, N_{\varphi})$ este un spațiu Banach de funcții.

Definiția 3.1. Spațiile Banach de funcții de forma $(L_{\varphi}, N_{\varphi})$ se numesc spații Orlicz.

Exemple triviale de spații Orlicz sunt spațiile $L^p(\mathbf{R}_+)$ cu $p \in [1, \infty]$. Ele se obțin pentru

$$\varphi(t) = p \, t^{p-1}$$

dacă $p \in [1, \infty)$, respectiv pentru

$$\varphi(t) = \begin{cases} 0 & , & \operatorname{dacă} t \in [0, 1] \\ \infty & , & \operatorname{dacă} t > 1 \end{cases}$$

 $\operatorname{dac\check{a}} p = \infty.$

Remarca 3.1. Pentru orice t>0 funcția caracteristică a intervalului $[0,t):\chi_{[0,t)}\in L_{\varphi}.$

Demonstrație: Fie t > 0. Pentru orice k > 0

$$M_{\varphi}(k\,\chi_{[0,t)}) = \int_0^\infty \Phi(k\,\chi_{[0,t)}(s))\,ds = \int_0^t \Phi(k)\,ds = t\,\Phi(k)\,\,(1).$$

Deoarece φ nu este identic egală cu ∞ pe $(0,\infty)$ rezultă că există c>0 pentru care

$$0 < \varphi(c) < \infty$$

Atunci

$$\Phi(c) = \int_0^c \varphi(s) \, ds \le c \, \varphi(c) < \infty \quad (2).$$

Din (1) și (2) rezultă că:

$$M_{\varphi}(c \chi_{[0,t)}) \le t c \varphi(c) < \infty, \quad \forall t \ge 0$$

deci $\chi_{[0,t)} \in L_{\varphi}$ pentru orice t > 0.

Propoziția 3.2. Dacă $0 < \varphi(t) < \infty$ pentru orice t > 0 atunci spațiul Orlicz L_{φ} are următoarele proprietăți:

- (i) funcția Young Φ este bijectivă;
- (ii) funcția fundamentală $\Psi_{L_{\varphi}}$ se exprimă în funcție de Φ^{-1} prin:

$$\Psi_{L_{\varphi}}(t) = \frac{1}{\Phi^{-1}(\frac{1}{t})}, \quad t > 0;$$

(iii)
$$\lim_{t\to\infty} \Psi_{L_{\varphi}}(t) = \infty$$
, $deci\ L_{\varphi} \in \mathcal{F}$.

Demonstrație: (i) Din $\varphi(t)\in(0,\infty)$ pentru orice $t\in(0,\infty)$ rezultă că funcția Young

$$\Phi(t) = \int_0^t \varphi(s) \, ds$$

este strict crescătoare. Din

$$\Phi(t) \ge \int_1^t \varphi(s) \, ds \ge (t-1) \, \varphi(1), \quad \forall t > 1$$

rezultă că $\lim_{t\to\infty}\Phi(t)=\infty$. Ținând seama că Φ este continuă pe \mathbf{R}_+ şi $\Phi(0)=0$ obținem că Φ este bijectivă.

(ii) Din Remarca 3.1. avem că pentru orice t>0 funcția $\chi_{[0,t)}\in L_{\varphi}$. Fie t>0.

$$\Psi_{L_{\varphi}}(t) = N_{\varphi}(\chi_{[0,t)}) = \{ k > 0 : M_{\varphi}(\frac{1}{k}\chi_{[0,t)}) \le 1 \}.$$

Din

$$M_{\varphi}(\frac{1}{k}\chi_{[0,t)}) = \int_{0}^{\infty} \Phi(\frac{1}{k}\chi_{[0,t)}(s)) ds = t \Phi(\frac{1}{k}), \quad \forall k > 0$$

rezultă că:

$$M_{\varphi}(\frac{1}{k}\chi_{[0,t)}) \le 1 \Longleftrightarrow t \Phi(\frac{1}{k}) \le 1 \Longleftrightarrow \Phi(\frac{1}{k}) \le \frac{1}{t}.$$

De
oarece Φ este strict crescătoare și Φ^{-1} are această proprietate deci:

$$M_{\varphi}(\frac{1}{k}\,\chi_{[0,t)}) \leq 1 \Longleftrightarrow \frac{1}{k} \leq \Phi^{-1}(\frac{1}{t}) \Longleftrightarrow \frac{1}{\Phi^{-1}(\frac{1}{t})} \leq k$$

De aici rezultă că:

$$\Psi_{L_{\varphi}}(t) = \inf\{k > 0 : M_{\varphi}(\frac{1}{k}\chi_{[0,t)}) \le 1\} = \frac{1}{\Phi^{-1}(\frac{1}{t})}, \ \forall t > 0.$$

iii) Φ continuă implică Φ^{-1} continuă. În plus din $\Phi(0)=0$ avem că $\Phi^{-1}(0)=0$. Rezultă atunci că:

$$\lim_{t \to \infty} \Psi_{L_{\varphi}}(t) = \lim_{t \to \infty} \frac{1}{\Phi^{-1}(\frac{1}{t})} = \lim_{y \searrow 0} \frac{1}{\Phi^{-1}(y)} = \infty$$

adică $L_{\varphi} \in \mathcal{F}$.

Teorema 3.1. (Littman - Neerven) Fie $\varphi: \mathbf{R}_+ \to \mathbf{R}_+$ o funcție crescătoare cu $\varphi(t) > 0$ pentru orice t > 0. Dacă \mathbf{T} este un C_0 semigrup pe spațiul Banach X cu proprietatea că:

$$\int_0^\infty \varphi(||T(t)x||)\,dt < \infty, \quad \forall x \in X$$

atunci T este u.e.s.

Demonstrație: În prima etapă vom demonstra că:

$$\lim_{t \to \infty} ||T(t)x|| = 0, \quad \forall x \in X.$$

Fie $x \in X$, cu ||x|| = 1. Presupunem prin absurd că $||T(t)x|| \not\to 0$ pentru $t \to \infty$. Există atunci $\varepsilon > 0$ și $t_n \to \infty$ astfel încât:

$$||T(t_n)x|| \ge \varepsilon, \quad \forall n \in \mathbf{N}.$$

Fără a restrânge generalitatea putem presupune că $t_0 \ge 1$ şi $t_{n+1} - t_n \ge 1$ pentru orice $n \in \mathbb{N}$.

Să notăm cu

$$N = \sup_{s \in [0,1]} ||T(s)||.$$

Dacă $n \in \mathbb{N}$ și $t \in [t_n - 1, t_n]$ din

$$||T(t_n)x|| \le ||T(t_n - t)|| \, ||T(t)x|| \le N \, ||T(t)x||$$

obținem că:

$$||T(t)x|| \ge \frac{\varepsilon}{N}, \quad \forall t \in [t_n - 1, t_n], \ \forall n \in \mathbf{N}.$$

De aici rezultă că:

$$\int_0^\infty \varphi(||T(t)x||) dt \ge \sum_{n=0}^\infty \int_{t_n-1}^{t_n} \varphi(||T(t)x||) dt \ge \sum_{n=0}^\infty \varphi(\frac{\varepsilon}{N}) = \infty$$

ceea ce contrazice ipoteza.

Înseamnă că presupunerea făcută a fost falsă deci

$$\lim_{t \to \infty} ||T(t)x|| = 0, \quad \forall x \in X.$$

Din principiul mărginirii uniforme rezultă că există M > 0 astfel încât

$$||T(t)x|| < M ||x||, \quad \forall x \in X, \ \forall t > 0.$$
 (1).

In continuare considerăm funcția

$$\varphi_1(t) = \frac{1}{\varphi(1)} \left\{ \begin{array}{ll} \lim\limits_{s \nearrow t} \varphi(s) &, \quad \text{dacă } t \in (0, 1] \\ \varphi(1) &, \quad \text{dacă } t > 1 \end{array} \right.$$

Funcția φ_1 este crescătoare, continuă la stânga cu $\varphi_1(t) \in (0, \infty)$ pentru orice t > 0. În plus $\varphi_1(t) \in [0, 1]$ pentru orice $t \in [0, 1]$ și $\varphi_1(t) = 1$ pentru orice t > 1.

Dacă Φ_1 este funcția Young asociată funcției φ_1 atunci pentru orice $t \in (0,1]$ avem că:

$$\Phi_1(t) = \int_0^t \varphi_1(s) \, ds \le t \, \varphi_1(t) \le \varphi_1(t) \le \varphi(1) \, \varphi(t) \quad (2).$$

În continuare demonstrăm că semigrupul \mathbf{T} este L_{φ_1} -stabil unde L_{φ_1} este spațiul Orlicz asociat funcției φ_1 .

Fie $x \in X$ cu $||x|| \le 1/M$ şi

$$f_x: \mathbf{R}_+ \to \mathbf{R}_+, \quad f_x(t) = ||T(t)x||.$$

Din relația (1) avem că $f_x(t) \in [0,1]$ pentru orice $t \geq 0$, Ținând seama de relația (2) obținem că:

$$M_{\varphi_1}(f_x) = \int_0^\infty \Phi_1(f_x(s)) \, ds \le \varphi(1) \int_0^\infty \varphi(f_x(s)) \, ds =$$
$$= \varphi(1) \int_0^\infty \varphi(||T(s)x||) \, ds < \infty.$$

Rezultă că $f_x \in L_{\varphi_1}$ pentru orice x cu $||x|| \leq 1/M$. Deoarece L_{φ_1} este spațiu liniar deducem că $f_x \in L_{\varphi_1}$ pentru orice $x \in X$ adică \mathbf{T} este L_{φ_1} -stabil. (3)

Din $\varphi_1(t)\in(0,\infty)$ pentru orice t>0 și din Propoziția 3.2. rezultă că $L_{\varphi_1}\in\mathcal{F}.$ (4)

Din relațiile (3), (4) și din Teorema 2.1. obținem că \mathbf{T} este u.e.s.

Remarca 3.2. Teorema precedentă a fost demonstrată inițial de W. Littman în 1989 în [Li]. Demonstrația de mai sus îi aparține lui J. van Neerven și a fost publicată în [Ne1].

Remarca 3.3. În teorema Littman - Neerven pentru

$$\varphi(t) = t^p, \quad \forall t \leq 0$$

și $p \in [1, \infty)$ se obține teorema Datko - Pazy.

Se pune în mod natural problema dacă teorema precedentă nu poate fi formulată cu "dacă sî numai dacă" adică dacă este adevărată următoarea propoziție

P. Fie $\varphi: \mathbf{R}_+ \to \mathbf{R}_+$ o funcție crescătoare cu proprietatea că $\varphi(t) > 0$ pentru orice t > 0 și \mathbf{T} un C_0 semigrup pe spațiul Banach X.

Atunci T este u.e.s. dacă și numai dacă

$$\int_0^\infty \varphi(||T(t)x||) dt < \infty, \quad \forall x \in X.$$

Răspunsul este negativ, după cum arată următorul exemplu:

Exemplul 3.1. Fie $X=\mathbf{R}, T(t)x=e^{-t}x$ pentru orice $x\in X$ și $t\geq 0$ iar

$$\varphi: \mathbf{R}_+ \to \mathbf{R}_+, \quad \varphi(t) = \left\{ \begin{array}{ll} 0 & , & \mathrm{dacă} \ t = 0 \\ \\ -\frac{1}{\ln t} & , & \mathrm{dacă} \ t \in (0, \frac{1}{e}] \\ \\ e \cdot t & , & \mathrm{dacă} \ t > \frac{1}{e} \end{array} \right.$$

Dacă $x \neq 0$

$$\int_0^\infty \varphi(|T(t)x|) dt = \int_0^\infty \varphi(e^{-t}|x|) dt =$$

(prin schimbarea de variabilă $e^{-t}|x|=y$)

$$= \int_0^{|x|} \frac{\varphi(y)}{y} \, dy \ge \int_0^{\alpha_x} -\frac{1}{y \ln y} \, dy$$

unde $\alpha_x = \min\{|x|, \frac{1}{e}\}$. Dar, pentru orice $\varepsilon > 0$:

$$\int_{\varepsilon}^{\alpha_x} -\frac{1}{y \ln y} dy = -\ln(-\ln y) \mid_{\varepsilon}^{\alpha_x} = \ln(\ln \frac{1}{\varepsilon}) - \ln(-\ln \alpha_x) \to \infty \text{ pentru } \varepsilon \searrow 0.$$

În concluzie avem că deși T este u.e.s.

$$\int_0^\infty \varphi(|T(t)x|) dt = \infty, \quad \forall x \neq 0.$$

Corolarul 3.1. Fie \mathbf{T} un C_0 -semigrup pe spaţiul Banach X. Atunci \mathbf{T} este u.e.s. dacă şi numai dacă există $\varphi: \mathbf{R}_+ \to \mathbf{R}_+$ crescătoare cu $\varphi(t) > 0$ pentru orice t > 0 şi

$$\int_0^\infty \varphi(||T(t)x||) dt < \infty, \quad \forall x \in X.$$

Demonstrație: Pentru necesitate se poate lu
a $\varphi(t)=t.$ Suficiența este teorema Littman - Neerven.

În continuare vom prezenta două generalizări ale teoremei Littman - Neerven în care ipoteza:

$$\int_0^\infty \varphi(||T(t)x||) dt < \infty, \quad \forall x \in X$$

se înlocuiește cu

$$\int_0^\infty \varphi(\alpha(t)||T(t)x||)\,dt < \infty, \quad \forall x \in X$$

unde $\alpha: \mathbf{R}_+ \to (0, \infty)$ este o funcție măsurabilă Lebesgue.

Generalizările respective se obțin impunând o condiție suplimentară asupra funcției φ .

Definiția 3.2. Spunem că o funcție $\varphi : \mathbf{R}_+ \to \mathbf{R}_+$ satisface condiția Δ_2 dacă există K > 0 astfel încât:

$$\varphi(t) \le K \varphi(\frac{t}{2}), \quad \forall t \ge 0.$$

Următorul rezultat a fost demonstrat de Neerven în [Ne1].

Teorema 3.2. Fie T un C_0 -semigrup pe spaţiul Banach X şi $\varphi: \mathbf{R}_+ \to \mathbf{R}_+$ o funcţie crescătoare satisfăcând condiţia Δ_2 . Fie $\alpha: \mathbf{R}_+ \to (0, \infty)$ măsurabilă Lebesgue cu proprietatea că $\varphi \circ \alpha \in L^1_{loc}(\mathbf{R}_+)$ şi

$$\int_0^\infty \varphi(\alpha(t)) dt = \infty. \quad (1).$$

 $Dac\breve{a}$

$$\int_0^\infty \varphi(\alpha(t)||T(t)x||) dt < \infty, \quad \forall x \in X \ (2)$$

atunci T este u.e.s.

Pentru demonstrarea Teoremei 3.3. avem nevoie de:

Teorema 3.3. (Neerven) [Ne1] Fie \mathbf{T} un C_0 -semigrup pe spaţiul Banach X cu $\omega_0(\mathbf{T}) \geq 0$. Atunci pentru orice $\varepsilon \in (0,1)$ şi orice $\alpha : [0,\infty) \to [0,1]$ descrescătoare cu $\lim_{t\to\infty} \alpha(t) = 0$ există $x \in X$ cu ||x|| = 1 astfel încât:

$$||T(t)x|| \ge (1-\varepsilon)\alpha(t), \quad \forall t \ge 0.$$

Demonstrație: Fie $\alpha:[0,\infty)\to[0,1]$ descrescătoare cu $\lim_{t\to\infty}\alpha(t)=0$.

Etapa I. Considerăm funcția $\beta:[0,\infty)\to[0,1]$

$$\beta(t) = \left\{ \begin{array}{cc} \alpha(0) & , & \operatorname{dacă} \ t \in [0, 1) \\ \alpha(t - 1) & , & \operatorname{dacă} \ t \ge 1 \end{array} \right.$$

Funcția β este descrescătoare și $\lim_{t\to\infty}\beta(t)=0.$ Fie T=T(1). Din

$$r(T) = e^{t \omega_0(T)}, \quad \forall t \ge 0$$

rezultă că

$$r(T) = r(T(1)) = e^{\omega_0(T)} \ge 1.$$

Aplicând Lema 2.3. alegem un vector $x_0 \in X$ cu $||x_0|| = 1$ și

$$||T^k(x_0)|| \ge \frac{1}{2}\beta(k), \quad \forall k \in \mathbf{N}^*.$$

Dacă $M = \sup_{t \in [0,1]} ||T(t)||$ atunci pentru orice $t \ge 0$ avem:

$$||T(t)x_0|| \ge \frac{1}{M} ||T([t]+1)x_0|| \ge \frac{1}{2M} \beta([t]+1) \ge$$

= $\frac{1}{2M} \alpha([t]) \ge \frac{1}{2M} \alpha(t)$ (1).

Etapa a II-a. Fie $\varepsilon \in (0,1)$. Demonstrăm că în relația (1) putem înlocui 1/2M cu $1-\varepsilon$. Fie $\delta>o$ astfel încât

$$\frac{1-\delta}{1+\delta} \ge 1-\varepsilon.$$

Din $\alpha(t) \searrow 0$ rezultă că putem alege un şir $(M_n)_{n \in \mathbb{N}} \subset \mathbb{N}$ cu $0 = M_0 < M_1 < \dots$ astfel încât

$$0 \le \alpha(t) \le \frac{1}{(1+\delta)^n}, \quad \forall t \ge M_n, \ \forall n \in \mathbf{N}.$$

În continuare alegem un şir $(N_n)_{n \in \mathbb{N}} \subset \mathbb{N}$ astfel încât $0 = N_0 < N_1 < \dots$ şi:

$$\begin{cases} N_n \ge M_n &, \forall n \in \mathbf{N} \\ N_n + N_m \le N_{m+n} &, \forall m, n \in \mathbf{N} \end{cases}$$

Fie

$$\gamma: [0, \infty) \to [0, 1], \quad \gamma(t) = \sum_{n=0}^{\infty} \frac{1}{(1+\delta)^n} \chi_{[N_n, N_{n+1})}(t)$$

Să demonstrăm că

$$\gamma(t+s) \ge \frac{\gamma(t)\,\gamma(s)}{1+\delta}, \quad \forall t, s \ge 0.$$

Fie $t, s \geq 0$. Atunci există k_t respectiv k_s astfel încât $N_{k_t} \leq t \leq N_{k_t+1}$ respectiv $N_{k_s} \leq s < N_{k_s+1}$. Avem că:

$$\gamma(t) = \frac{1}{(1+\delta)^{k_t}}, \quad \gamma(s) = \frac{1}{(1+\delta)^{k_s}}$$
 (2).

Din $t + s < N_{k_t+1} + N_{k_s+1} \le N_{k_t+k_s+2}$ rezultă că

$$\gamma(t+s) \ge \frac{1}{(1+\delta)^{k_t+k_s+1}} \quad (3)$$

Din (2) şi (3) obţinem că:

$$\gamma(t+s) \ge \frac{\gamma(t)\,\gamma(s)}{1+\delta} \quad \forall \, t,s \ge 0.$$

Conform celor demonstrate în prima etapă există $x_0 \in X$ cu proprietatea că:

$$||T(t)x_0|| \ge \frac{1}{2M}\gamma(t) \quad \forall t \ge 0.$$

Fie

$$\eta = \inf_{t \ge 0} \frac{||T(t)x_0||}{\gamma(t)}$$

Atunci $\eta \geq 1/2M$ și

$$||T(t)x_0|| \ge \eta \gamma(t), \quad t \ge 0.$$

Din

$$\sup_{t \ge 0} \frac{\eta \gamma(t)}{||T(t)x_0||} = 1$$

rezultă că există $t_0 \ge 0$ astfel încât

$$\frac{\eta \gamma(t_0)}{||T(t_0)x_0||} \ge 1 - \delta.$$

Fie $x = \frac{T(t_0)x_0}{||T(t_0)x_0||}$. Atunci pentru orice $t \geq 0$ avem succesiv că:

$$||T(t)x|| = \frac{||T(t+t_0)x_0||}{||T(t_0)x_0||} \ge \frac{\eta \gamma(t+t_0)}{||T(t_0)x_0||} \ge \frac{\eta}{1+\delta} \frac{\gamma(t)\gamma(t_0)}{||T(t_0)x_0||} \ge \frac{1-\delta}{1+\delta} \gamma(t) \ge (1-\varepsilon)\gamma(t) \ge (1-\varepsilon)\alpha(t).$$

Rezultă în final că:

$$||T(t)x|| \ge (1-\varepsilon) \alpha(t), \quad \forall t \ge 0.$$

Putem trece acum la demonstrația Teoremei 3.2.

Demonstrație: Din faptul că φ satisface condiția Δ_2 rezultă că există K>0astfel încât

$$\varphi(t) \le K \varphi(\frac{t}{2}), \quad t \ge 0.$$

Fie $t_0=0$. Din ipoteza (1) rezultă că există $t_1>0$ astfel încât:

$$\int_0^{t_1} \varphi(\alpha(t)) dt \ge 1.$$

Presupunem că am determinat $t_0 < t_1 < \ldots < t_{n-1}$ cu proprietatea că:

$$\int_{t_{k-1}}^{t_k} \varphi\left(\frac{\alpha(t)}{2^{k-1}}\right) dt \ge 1, \quad \forall k \in \{1, \dots, n-1\}.$$

Deoarece $\varphi \circ \alpha \in L^1_{loc}(\mathbf{R}_+)$ avem că

$$\int_{t_{n-1}}^{\infty} \varphi(\alpha(t)) dt = \infty.$$

Ţinând seama că φ satisface condiția Δ_2 avem că:

$$\varphi(\alpha(t)) \le K \varphi\left(\frac{\alpha(t)}{2}\right) \le \ldots \le K^{n-1} \varphi\left(\frac{\alpha(t)}{2^{n-1}}\right), \quad \forall t \ge 0.$$

Rezultă de aici că:

$$\int_{t_{n-1}}^{\infty} \varphi\left(\frac{\alpha(t)}{2^{n-1}}\right) \, dt \geq \frac{1}{K^{n-1}} \, \int_{t_{n-1}}^{\infty} \, \varphi(\alpha(t)) \, dt = \infty.$$

Există atunci $t_n > t_{n-1}$ astfel încât:

$$\int_{t_{n-1}}^{t_n} \varphi\left(\frac{\alpha(t)}{2^{n-1}}\right) dt \ge 1.$$

Prin inducție se obține un șir strict crescător $(t_n)_{n\geq 0}$ cu:

$$\int_{t_{n-1}}^{t_n} \varphi\left(\frac{\alpha(t)}{2^{n-1}}\right) dt \ge 1, \quad \forall n \in \mathbf{N}.$$

Presupunem prin absurd că $\omega_0(T) \geq 0$. Fie:

$$\gamma: \mathbf{R}_{+} \to [0, 1], \quad \gamma(t) = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \chi_{[t_{n-1}, t_n)}(t)$$

Din Teorema 3.3. rezultă că există $x \in X$ cu ||x|| = 1 și

$$||T(t)x|| \ge \frac{1}{2}\gamma(t), \quad \forall t \ge 0$$

Utilizând faptul că φ este crescătoare și faptul că φ satisface condiția Δ_2 obținem succesiv că:

$$\int_{0}^{\infty} \varphi(\alpha(t) ||T(t)x||) dt \ge \int_{0}^{\infty} \varphi\left(\alpha(t) \frac{\gamma(t)}{2}\right) dt \ge$$

$$\ge \frac{1}{K} \int_{0}^{\infty} \varphi(\alpha(t) \gamma(t)) dt = \frac{1}{K} \sum_{n=0}^{\infty} \int_{t_{n-1}}^{t_{n}} \varphi\left(\frac{\alpha(t)}{2^{n-1}}\right) dt = \infty$$

în contradicție cu ipoteza (2).

Obţinem astfel că T este u.e.s.

Pentru cea de-a doua generalizare a teoremei Littman - Neerven avem nevoie de următoarele considerații:

Exemplul 3.2. [MS2] Fie $\varphi : \mathbf{R}_+ \to \mathbf{R}_+$ crescătoare, continuă la stânga și L_{φ} spațiul Orlicz asociat.

Dacă $\alpha: \mathbf{R}_+ \to (0, \infty)$ este o funcție măsurabilă Lebesgue cu proprietatea că $\varphi \circ \alpha \in L^1_{\mathrm{loc}}(\mathbf{R}_+)$ considerăm spațiul:

$$L_{\varphi}^{\alpha} := \{\, f : \mathbf{R}_{+} \to \mathbf{C} \, | \, f \, \text{ măsurabilă cu } \, \alpha \, f \in L_{\varphi} \, \}.$$

In raport cu norma:

$$||f||_{L^{\alpha}_{\varphi}} := ||\alpha f||_{L_{\varphi}}$$

 L^{α}_{φ} este un spatiu Banach de funcții peste $\mathbf{R}_{+}.$

Definiția 3.3. Spunem că o funcție $\varphi : \mathbf{R}_+ \to \mathbf{R}_+$ satisface condiția Δ_2 în 0 dacă există $\varepsilon > 0$ și K > 0 astfel încât:

$$\varphi(t) \le K \varphi(\frac{t}{2}), \quad \forall t \in [0, \varepsilon]$$

Propoziția 3.3. [MS2] Cu notațiile din Exemplul 3.2. dacă φ satisface condiția Δ_2 în 0, α este descrescătoare la 0 și

$$\int_0^\infty \alpha(t) \, \varphi(\alpha(t)) \, dt = \infty$$

atunci $L^{\alpha}_{\varphi} \in \mathcal{F}$.

Demonstrație: Deoarece φ satisface condiția Δ_2 în 0 există $\varepsilon>0$ și K>0 astfel încât

$$\varphi(t) \leq K\,\varphi(\frac{t}{2}), \forall\, t \in [0,\varepsilon].$$

Presupunem prin absurd că $L^{\alpha}_{\varphi} \notin \mathcal{F}$. Atunci există M>0 astfel încât:

$$\Psi_{L^{\alpha}_{0}}(t) \leq M, \quad \forall t > 0$$

Din

$$\Psi_{L^{\alpha}_{\varphi}}(t) = ||\chi_{[0,t)}||_{L^{\alpha}_{\varphi}} = ||\alpha\chi_{[0,t)}||_{L_{\varphi}} = \inf\{k > 0 : M_{\varphi}\left(\frac{\alpha}{k}\chi_{[0,t)}\right) \le 1\}$$

rezultă în particular că:

$$M_{\varphi}(\frac{\alpha}{M}\chi_{[0,t)}) \le 1, \quad \forall t > 0$$

adică

$$\int_0^t \Phi\left(\frac{\alpha(s)}{M}\right) ds \le 1, \quad \forall t > 0.$$

Fie $n_0 \in \mathbb{N}^*$ cu $2^{n_0} > M$ şi $\alpha \in [0, \varepsilon]$. Ţinând seama că φ este crescătoare şi din condiția Δ_2 obținem succesiv că:

$$\Phi(\frac{\alpha}{M}) = \int_0^{\frac{\alpha}{M}} \varphi(u) \, du \ge \int_0^{\frac{\alpha}{2^{n_0}}} \varphi(u) \, du \ge$$

$$\ge \frac{1}{K} \int_0^{\frac{\alpha}{2^{n_0}}} \varphi(2u) \, du = \frac{1}{2K} \int_0^{\frac{\alpha}{2^{n_0} - 1}} \varphi(u) \, du \ge \dots$$

$$\geq \frac{1}{(2K)^{n_0+1}} \int_0^{2\alpha} \varphi(u) \, du \geq \frac{1}{(2K)^{n_0+1}} \int_{\alpha}^{2\alpha} \varphi(u) \, du \geq \frac{1}{(2K)^{n_0+1}} \, \alpha \, \varphi(\alpha)$$

Notând cu $K_1 = (2K)^{n_0+1}$ avem că:

$$\alpha \varphi(\alpha) \le K_1 \Phi(\frac{\alpha}{M}), \quad \forall \alpha \in [0, \varepsilon].$$

Din $\lim_{t\to\infty} \alpha(t) = 0$ rezultă că există $t_0 > 0$ astfel încât:

$$\alpha(t) \le \varepsilon, \quad \forall t \ge t_0$$

Atunci

$$\alpha(s) \varphi(\alpha(s)) \le K_1 \Phi(\frac{\alpha(s)}{M}), \quad \forall s \ge t_0.$$

Integrând pe $[t_0, t]$ obţinem că:

$$\int_{t_0}^t \alpha(s) \, \varphi(\alpha(s)) \, ds \le K_1 \, \int_{t_0}^t \Phi(\frac{\alpha(s)}{M}) \, ds \le K_1 \, \int_0^t \Phi(\frac{\alpha(s)}{M}) \, ds \le K_1, \quad \forall \, t > t_0.$$

Făcând $t \to \infty$ rezultă că:

$$\int_{t_0}^{\infty} \alpha(s) \, \varphi(\alpha(s)) \, ds \le K_1 \quad (1).$$

Cum $\alpha (\varphi \circ \alpha)$ este descrescătoare avem că:

$$\int_0^{t_0} \alpha(s) \, \varphi(\alpha(s)) \, ds \le \alpha(0) \, \varphi(\alpha(0)) \quad (2).$$

Din (1) şi (2) obţinem că

$$\int_0^\infty \alpha(s) \, \varphi(\alpha(s)) \, ds \le K_1 + \alpha(0) \, \varphi(\alpha(0)) < \infty$$

în contradicție cu ipoteza.

În concluzie rezultă că $L^{\alpha}_{\varphi} \in \mathcal{F}$.

Teorema 3.4. Fie T un C_0 - semigrup pe spațiul Banach $X, \varphi : \mathbf{R}_+ \to \mathbf{R}_+$ o funcție crescătoare cu $\varphi(t) > 0$, pentru orice t > 0 care satisface condiția Δ_2 în 0. Fie $\alpha : \mathbf{R}_+ \to (0, \infty)$ descrescătoare cu proprietatea că

$$\int_0^\infty \varphi(\alpha(t))dt = \infty.$$

 $Dac \breve{a}$

$$\int_0^\infty \varphi(\alpha(t)||T(t)x||)dt < \infty, \quad \forall x \in X$$

atunci T este u.e.s.

Proof: Funcția α fiind descrescătoare există

$$\lim_{t \to \infty} \alpha(t) = l.$$

Dacă l > 0 atunci pentru orice $x \in X$:

$$\int_0^\infty \varphi(||T(t)x||)dt \le \int_0^\infty \varphi(\frac{\alpha(t)}{l}||T(t)x||)dt =$$

$$= \int_0^\infty \varphi(\alpha(t)||T(t)\frac{x}{l}||)dt < \infty.$$

Din teorema Littman-Neerven rezultă că \mathbf{T} este u.e.s.

Să presupunem acum că l=0.

Demonstrăm într-o primă etapă că

$$\lim_{t \to \infty} \alpha(t)||T(t)x|| = 0.$$

Fie $x \in X$ cu ||x|| = 1. Presupunem prin reducere la absurd că limita de mai sus nu este nulă. Există atunci $\varepsilon > 0$ şi $t_n \to \infty$ astfel încât:

$$\alpha(t_n)||T(t_n)x|| \ge \varepsilon, \quad \forall n \in \mathbf{N}.$$

Fără a restrânge generalitatea putem presupune că $t_0 \geq 0$ și

$$t_{n+1} - t_n \ge 1, \quad \forall n \in \mathbf{N}.$$

Să notăm cu

$$N = \sup_{s \in [0,1]} ||T(s)||.$$

Dacă $n \in \mathbb{N}$ și $t \in [t_n - 1, t_n]$ din

$$||T(t_n)x|| \le ||T(t_n - t)|| ||T(t)x|| \le N||T(t)x||$$

obținem că

$$\alpha(t)||T(t)x|| \ge \alpha(t_n)||T(t)x|| \ge \frac{\alpha(t_n)||T(t_n)x||}{N} \ge \frac{\varepsilon}{N},$$

oricare ar fi $t \in [t_n - 1, t_n]$, și $n \in \mathbf{N}$.

De aici rezultă că:

$$\int_{0}^{\infty} \varphi(\alpha(t)||T(t)x||)dt \ge \sum_{n=0}^{\infty} \int_{t_{n-1}}^{t_{n}} \varphi(\alpha(t)||T(t)x||dt \ge \sum_{n=0}^{\infty} \varphi(\frac{\varepsilon}{N}) = \infty$$

ceea ce contrazice ipoteza.

Înseamnă că presupunerea făcută a fost falsă, deci

$$\lim_{t \to \infty} \alpha(t)||T(t)x|| = 0, \quad \forall x \in X.$$

Din Principiul mărginirii uniforme rezultă că există M > 0 astfel încât

$$\alpha(t)||T(t)x|| \le M||x||, \quad \forall x \in X, \forall t \ge 0.$$
 (1)

În continuare considerăm funcția:

$$\varphi_1(t) = \frac{1}{\varphi(1)} \begin{cases} \lim_{s \nearrow t} \varphi(s), & \text{dacă} \quad t \in (0, 1] \\ \varphi(1), & \text{dacă} \quad t > 1 \end{cases}$$

Funcția φ_1 este crescătoare și continuă la stânga.

Deoarece φ satisface condiția Δ_2 în zero rezultă că există $\varepsilon \in (0,1)$ și K > 0 încât:

$$\varphi(t) \le K\varphi(\frac{t}{2}), \quad \forall t \in [0, \varepsilon].$$

Fie $t \in [0, \varepsilon]$. Pentru orice s < t

$$\varphi(s) \le K\varphi(\frac{s}{2}) \le K \lim_{s \nearrow t} \varphi(\frac{s}{2}) = K\varphi(1)\varphi_1(\frac{t}{2}).$$

Trecând la limită pentru $s \nearrow t$ rezultă că

$$\varphi_1(t) \le K\varphi_1(\frac{t}{2}), \quad \forall t \in [0, \varepsilon],$$

deci f_1 satisface condiția Δ_2 în zero(cu aceleași constante: ε, K).

Dacă Φ_1 este funcția Young asociată funcției φ_1 atunci pentru orice $t \in (0,1]$ avem că

$$\Phi_1(t) = \int_0^t \varphi_1(s)ds \le t\varphi_1(t) \le \varphi_1(t) \le \varphi_1\varphi(t), \quad (2)$$

Demonstrăm în continuare că \mathbf{T} este $L^{\alpha}_{\varphi_1}$ - stabil, unde $L^{\alpha}_{\varphi_1}$ este spațiul definit în Exemplul 3.2. corespunzător funcțiilor φ_1 și α_1 .

Fie $x \in X$ cu $||x|| \le \frac{1}{M}$ şi

$$f_x: \mathbf{R}_+ \to \mathbf{R}_+, \quad f_x(t) = ||T(t)x||.$$

Faptul că $f_x \in L^{\alpha}_{\varphi_1}$ revine la a demonstra că $\alpha f_x \in L_{\varphi_1}$. Din relația (1) avem că

$$\alpha(t)f_x(t) \le 1, \quad \forall t \ge 0.$$

Ținând seama de (2) obținem că

$$M_{\varphi_1}(\alpha f_x) = \int_0^\infty \Phi(\alpha(s) f_x(s)) ds \le$$

$$\leq \varphi(1) \int_0^\infty \varphi(\alpha(s)||T(s)x||)ds < \infty,$$

deci $f_x \in L^{\alpha}_{\varphi_1}$. Cum L_{φ_1} este spațiu liniar rezultă că $f_x \in L^{\alpha}_{\varphi_1}$ pentru orice $x \in X.(3)$

Să demonstrăm că

$$\int_0^\infty \alpha(t)\varphi_1(\alpha(t))dt = \infty.$$

Din $\lim_{t\to\infty} \alpha(t) = 0$ rezultă că există c > 0 astfel încât

$$q(t) < 1, \qquad t \ge c.$$

Din

$$\int_0^\infty \alpha(t)\varphi(\alpha(t))dt = \int_0^c \alpha(t)\varphi(\alpha(t))dt + \int_c^\infty \alpha(t)\varphi(\alpha(t))dt$$

și din faptul că

$$\int_0^c \alpha(t)\varphi(\alpha(t))dt \le \alpha(0)\varphi(\alpha(0))$$

rezultă că

$$\int_{c}^{\infty} \alpha(t)\varphi(\alpha(t))dt = \infty.$$

Deoarece mulțimea discontinuităților unei funcții crescătoare este cel mult numărabilă rezultă că

$$\varphi(t) - \varphi(1)\varphi_1(t) = 0$$
, a.p.t. $t \in [0, 1]$.

În particular

$$\varphi(\alpha(t)) = \varphi(1)\varphi_1(\alpha(t))$$
 a.p.t. $t \in [0, \infty)$.

Rezultă de aici că

$$\int_{c}^{\infty} \alpha(t)\varphi_{1}(\alpha(t))dt = \frac{1}{\varphi(1)} \int_{c}^{\infty} \alpha(t)\varphi(\alpha(t))dt = \infty,$$

Deci

$$\int_0^\infty \alpha(t)\varphi_1(\alpha(t))dt = \infty.$$

Din Propoziția 3.3. obținem că $L^{\alpha}_{\varphi_1} \in \mathcal{F}$, (4). Din (3), (4) și Teorema 3.1. rezultă că \mathbf{T} este u.e.s.

Bibliografie

- [Ne1] J.van Neerven The Asymptotic Behavoiur of Semigroups of Linear Operators, Theory Advances and Applications, vol.88, Birkhauser 1996
- [Ne2] J.van Neerven Exponential Stability of Operators and Operator Semigroups, J.Funct.Anal.,130(1995), 293-309
- [Ne3] J.van Neerven On the orbits of an operator with spectral radius one, Czech.Math.J.45, (120), 1995, 405-502
- [MS1] M.Megan, B.Sasu, L.Sasu Banach Function Spaces and Stability of C_0 -Semigroups in Banach Spaces, preprint în Sem.An.Mat.Apl.în T.Contr., nr 90, (1998)
- [MS2] M.Megan, B.Sasu A generalization of a theorem of Littman(în curs de apariție)
- [Li] W.Littman A generalization of a theorem of Datko and Pazy, Lecture Notes in Contr. and Inform. Sci.,130, Springer-Verlag, Berlin(1989), 318-323
- [Mü] V.Müler Local spectral radius formula for operators on Banach spaces, Czech.Math.J. 38(1988)