

N-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSon TYP	ID
30V	±20V	24mR@10V	9A
		36mR@4V5	9A

General Description

This device uses advanced trench technology to provide excellent RDS(ON) and low gate charge. This device is suitable for use as a load switch or in PWM applications.

Applications

- Load Switch
- ➢ PC/NB
- DCDC conversion

Pin Configuration

Package Information

Absolute Maximum Ratings @ T_A = 25°C unless otherwise specified

Parameter	Symbol	N-channel	Unit	
Drain-Source Voltage	V _{DSS}	30	V	
Gate-Source Voltage	V _{GSS}	±20	V	
Continuous Drain Current (Note 1)	I _D	9	Α	
Plused Drain Current (Note 2)	I _{DM}	50	A	
Total Power Dissipation (Note 1)	P _D	2	W	
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to +150	°C	

● Electrical Characteristics @ T_A = 25°C unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu \text{ A}$	30	34		V
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu$ A	1	1.5	2	V
Gate-Body Leakage Current	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 24 V, V _{GS} = 0 V			1	μА
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 5.8 A		24	28	- mR
Dialii-Source Oil-State Resistance		V _{GS} = 4.5 V, I _D = 5 A		36	43	
Forward Transconductance	G _{FS}	V _{DS} = 5 V, I _D = 5 A	10	15		S
Diode Forward Voltage	V _{SD}	V _{GS} = 0 V, I _S = 1 A		0.71	1	٧
Input Capacitance	C _{ISS}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$		697		pF
Output Capacitance	Coss			259		
Reverse Transfer Capacitance	C _{RSS}			308		
Turn-On Delay Time	$T_{D(ON)}$ $V_{DS} = 15 \text{ V}, R_L = 2.3 \text{R}$				18	ns
Turn-Off Delay Tim	$T_{D(OFF)}$	$V_{GS} = 10V, R_{GEN} = 3R$			70	113

Note:

- 1. DUT is mounted on a 1in ² FR-4 board with 2oz. Copper in a still air environment at 25°C, the current rating is based on the DC (<10s) test conditions.
- 2. Repetitive rating, pulse width limited by junction temperature.

Typical Performance Characteristics

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. On Resistance vs. Drain Current

50

Figure 6. On Resistance vs. Temperature

0.0

-25

0

25

2.5

Threshold Voltage (V) 2.0 1.0 2.0 2.0

SPIRIT Semiconductor

SSC8036GS1

DISCLAIMER

SPIRIT-SEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SPIRIT-SEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G,. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.