Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently amended) 2-Halofuryl/thienyl-3-carboxamides of the formula (I)

in which

A represents O (oxygen) or S (sulphur),

Hal represents halogen,

R represents hydrogen. C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, $(C_1-C_3-alkyl)$ carbonyl- $C_1-C_3-alkyl$, $(C_1-C_3$ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo- $(C_1-C_3$ alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine $(C_1-C_8-alkoxy)$ carbonyl, atoms; $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4$ alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, $(C_1-C_{6}$ haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, $(C_3-C_8$ halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or $-C(=O)C(=O)R^1$, $-CONR^2R^3$ or $-CH_2NR^4R^5$.

 R^1 represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl; C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine[[-]]and/or bromine atoms,

 R^2 and R^3 independently of one another each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine[[-]]and/or bromine atoms,

 R^2 and R^3 furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle <u>may contain optionally contains</u> one or two further non-adjacent heteroatoms <u>selected</u> from the group consisting of oxygen, sulphur and NR^6 ,

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle <u>may contain optionally contains</u> 1 or 2 further non-adjacent heteroatoms <u>selected</u> from the group consisting of oxygen, sulphur and NR⁶,

R⁶ represents hydrogen or C₁-C₆-alkyl,

M represents a phenyl, thiophene, pyridine, pyrimidine, pyridazine or pyrazine ring, each of which is monosubstituted by R⁷, or represents a thiazole ring substituted by R^{7A},

R⁷ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R^{7-A}—represents hydrogen, methyl, methylthio or trifluoromethyl,

Z represents Z^1 , Z^2 , Z^3 or Z^4 , in which

Z¹ represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents W¹,

W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl;

in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms;

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphinyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, dialkylaminocarbonyl, dialkylaminocarbonyl, dialkylaminocarbonyl, dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the

respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms or dioxyalkylene having 1 or 2 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl;

or the grouping -C(Q¹)=N-Q² in which

Q¹ represents hydrogen, hydroxyl or alkyl having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms or cycloalkyl having 1 to 6 carbon atoms and

Q² represents hydroxyl, amino, methylamino, phenyl, benzyl or represents in each case optionally cyano-, hydroxyl-, alkoxy-, alkylthio-, alkylamino-, dialkylamino- or phenyl-substituted alkyl or alkoxy having 1 to 4 carbon atoms, or represents alkenyloxy or alkynyloxy having in each case 2 to 4 carbon atoms,

and also phenyl, phenoxy, phenyllthio, benzoyl, benzoylethenyl, cinnamoyl, heterocyclyl or phenylalkyl, phenylalkyloxy, phenylalkylthio or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which radicals is optionally mono- to trisubstituted in the cyclic moiety by halogen and/or straight-chain or branched alkyl or alkoxy having 1 to 4 carbon atoms,

provided that when said Z¹ is phenyl that is mono-substituted by -CH=N-OCH₃, said phenyl is further substituted by at least one halogen atom,

Z² represents bicycloalkyl or cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents,

 Z^3 represents unsubstituted C_2 - C_{20} -alkyl or represents C_1 - C_{20} -alkyl which is mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR 8 R 9 R 10 and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety for its part may is optionally [[be]] mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen and C_1 - C_4 -alkyl,

represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halo-dialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may is optionally [[be]] mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen and C₁-C₄-alkyl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or C₁-C₆-haloalkyl,

 R^{10} represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, or represents in each case optionally substituted phenyl or phenylalkyl[[,]].

M and Z together represent 1H-2,3 dihydroinden 4-yl, 1,3-dihydro-2 benzofuran-4-yl or 1,3 dihydro-2 benzothien 4-yl, each of which is optionally mono to trisubstituted by methyl.

- 2. (Currently amended) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 in which
 - A represents O (oxygen) or S (sulphur),

Hal represents fluorine, chlorine, bromine or iodine,

R represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 alkylsulphonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -haloalkyl, haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine[[-]]and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo- $(C_1-C_3$ alkoxy)carbonyl-C1-C3-alkyl having in each case 1 to 13 fluorine, chlorine[[-]]and/or bromine atoms; (C₁-C₆-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃alkyl)carbonyl, (C₃-C₆-cycloalkyl)carbonyl; (C₁-C₄-haloalkyl)carbonyl, $(C_1-C_4$ haloalkoxy)carbonyl, (halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, $(C_3-C_6$ halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or $-C(=O)C(=O)R^1$, $-CONR^2R^3$ or $-CH_2NR^4R^5$,

R¹ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ independently of one another each represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally monot to tetrasubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle <u>may contain optionally contains</u> 1 or 2 further non-adjacent heteroatoms <u>selected</u> from the group consisting of oxygen, sulphur and NR⁶,

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain optionally contains 1 or 2 further non-adjacent heteroatoms <u>selected</u> from the group consisting of oxygen, sulphur and NR⁶,

- R⁶ represents hydrogen or C₁-C₄-alkyl,
- M represents one of the cycles below,

where the bond marked "*" is attached to the amide and the bond marked "#" is attached to the radical Z,

R⁷ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R^{7-A}—represents hydrogen, methyl or trifluoromethyl,

Z represents Z^1 , Z^2 , Z^3 or Z^4 , where

 Z^1 represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents, the substituents in each case being selected from the list W^1 ,

W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl;

in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms;

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphinyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms or dioxyalkylene having 1 or 2 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents <u>selected</u> from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl;

or the grouping $-C(Q^1)=N-Q^2$ in which

- Q¹ represents hydrogen, hydroxyl or alkyl having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms or cycloalkyl having 1 to 6 carbon atoms and
- Q² represents hydroxyl, amino, methylamino, phenyl, benzyl or represents in each case optionally cyano-, hydroxyl-, alkoxy-, alkylthio-, alkylamino-, dialkylamino-

or phenyl-substituted alkyl or alkoxy having 1 to 4 carbon atoms, or represents alkenyloxy or alkynyloxy having in each case 2 to 4 carbon atoms,

and also phenyl, phenoxy, phenyllthio, benzoyl, benzoylethenyl, cinnamoyl, heterocyclyl or phenylalkyl, phenylalkyloxy, phenylalkylthio or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which radicals is optionally mono- to trisubstituted in the cyclic moiety by halogen and/or straight-chain or branched alkyl or alkoxy having 1 to 4 carbon atoms,

 Z^2 represents cycloalkyl or bicycloalkyl having in each case 3 to 10 carbon atoms and being in each case optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and/or C_1 - C_4 -alkyl,

represents unsubstituted C_2 - C_{20} -alkyl or C_1 - C_{20} -alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkylsulphonyl, C_1 - C_6 -haloalkylsulphonyl, C_1 - C_6 -haloalkylamino, halo-di(C_1 - C_6 -alkyl)amino, -SiR 8 R 9 R 10 and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety for its part $\frac{1}{100}$ optionally be mono- to tetrasubstituted by identical or different substituents $\frac{1}{100}$ selected from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl,

represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents <u>selected</u> from the group consisting of fluorine, chlorine, bromine, iodine, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₆-alkylsulphinyl, C₁-C₆-haloalkylsulphonyl, C₁-C₆-haloalkylsulphonyl, C₁-C₆-haloalkoxy,

 C_1 - C_6 -haloalkylamino, halo-di(C_1 - C_6 -alkyl)amino, -SiR 8 R 9 R 10 and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety for its part may optionally be mno- to tetrasubstituted by identical or different substituents from the group consisiting of fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl,

 R^8 and R^9 independently of one another represent C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl or C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl,

 R^{10} represents C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl, phenyl or benzyl[[,]].

OF

M and Z together represent 1,1,3 trimethyl 1H-2,3 dihydroinden 4-yl, 1,3-dimethyl 1H-2,3 dihydroinden 4-yl, 1,1,3 trimethyl 1,3 dihydro 2 benzofuran 4-yl, 1,3-dimethyl 1,3 dihydro 2 benzofuran 4-yl, 1,1,3 trimethyl 1,3 dihydro 2 benzothien 4-yl or 1,3 dimethyl 1,3 dihydro 2 benzothien 4-yl.

- 3. (Withdrawn) Process for preparing the 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, characterized in that
 - a) carboxylic acid derivatives of the formula (II)

in which

A and Hal are as defined in Claim 1 and

X¹ represents halogen or hydroxyl
 are reacted with aniline derivatives of the formula (III)

$$\begin{array}{c|c}
 & M \\
HN \\
R \\
Z
\end{array} (III)$$

in which R, M and Z are as defined in Claim 1,

if appropriate in the presence of a catalyst, if appropriate in the presence of a condensing agent, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

b) halocarboxamides of the formula (IV)

$$\begin{array}{c|c} H & O & M \\ \hline Hall & R & X^2 \end{array} \hspace{1cm} (IV)$$

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate, are reacted with boronic acid derivatives of the formula (V)

$$G^{1}-O-B-O-G^{2}$$
 Z^{1} (V)

in which

Z¹ is as defined in Claim 1 and

G1 and G2 each represent hydrogen or together represent tetramethylethylene,

in the presence of a catalyst, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

c) boronic acid derivatives of the formula (VI)

A, Hal, R and M are as defined in Claim 1,

G³ and G⁴ each represent hydrogen or together represent tetramethylethylene are reacted with phenyl derivatives of the formula (VII)

$$X^3 - Z^1$$
 (VII)

in which

Z¹ is as defined in Claim 1 and

X³ represents chlorine, bromine, iodine or trifluoromethylsulphonate,

if appropriate in the presence of a catalyst, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

d) halocarboxamides of the formula (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate, are reacted with phenyl derivatives of the formula (VII)

$$X^3-Z^1$$
 (VII)

in which

Z¹ is as defined in Claim 1 and

X³ represents chlorine, bromine, iodine or trifluoromethylsulphonate,

in the presence of a palladium or nickel catalyst and in the presence of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis-1,3,2-dioxaborolane, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

e) 2-halofuryl/thienyl-3-carboxamides of the formula (I-a)

$$\begin{array}{c|c} H & O & M \\ \hline & N & M \\ \hline & R & X^4 \end{array} \hspace{1cm} (I-a)$$

in which

A, Hal, R and M are as defined in Claim 1,

 X^4 represents C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl which are in each case optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR 8 R 9 R 10 and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C_1 - C_4 alkyl,

are hydrogenated, if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

f) hydroxyalkylcarboxamides of the formula (VIII)

in which

A, Hal, R and M are as defined in Claim 1,

X⁵ represents C₂-C₂₀-hydroxyalkyl which is optionally additionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

are dehydrated, if appropriate in the presence of a diluent and if appropriate in the presence of an acid, or

g) halocarboxamides of the formula(IV)

in which

A, Hal, R and M are as defined in Claim 1,

 X^2 represents bromine, iodine or trifluoromethylsulphonate, are reacted with an alkyne of the formula (IX)

$$HC = G^5$$
 (IX)

in which

G⁵ represents C₂-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylsulphinyl, haloalkylsulphonyl, haloalkylsulphonyl, haloalkylsulphonyl,

halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

or an alkene of the formula (X)

$$G_{\varrho}$$
 (X)

in which

G⁶, G⁷ and G⁸ independently of one another each represent hydrogen or alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkylamino, haloalkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl and the total number of carbon atoms of the open-chain molecular moiety (without substituents) does not exceed the number 20,

if appropriate in the presence of a diluent, if appropriate in the presence of an acid binder and if appropriate in the presence of one or more catalysts, or

h) ketones of the formula (XI)

in which

A, Hal, R and M are as defined in Claim 1,

G⁹ represents hydrogen or C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of

halogen, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, $-SiR^8R^9R^{10}$ and C_3-C_6 -cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C_1-C_4 -alkyl,

are reacted with a phosphorus compound of the general formula (XII)

$$G^{10}$$
—Px (XII)

in which

G¹⁰ represents C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkylsulphonyl, haloalkylamino, haloalkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

Px represents a grouping $-P^{+}(C_{6}H_{5})_{3}Cl^{-}$, $-P^{+}(C_{6}H_{5})_{3}Br^{-}$, $-P^{+}(C_{6}H_{5})_{3}\Gamma$, $-P(=O)(OCH_{3})_{3}$ or $-P(=O)(OC_{2}H_{5})_{3}$,

if appropriate in the presence of a diluent, or

i) 2-halofuryl/thienyl-3-carboxamides of the formula (I-b)

$$\begin{array}{c|c} H & O & M \\ \hline \\ A & Hal & Z \end{array}$$
 (I-b)

in which

A, Hal, R, M and Z are as defined in Claim 1 are reacted with halides of the formula (XIII)

$$R^a - X^6$$
 (XIII)

R^a represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R¹, -CONR²R³ or -CH₂NR⁴R⁵,

R¹, R², R³, R⁴ and R⁵ are as defined above,

X⁶ represents chlorine, bromine or iodine,in the presence of a base and in the presence of a diluent.

- 4. (Currently amended) Compositions A composition for controlling unwanted microorganisms, characterized in that they comprise comprising at least one 2-halofuryl/thienyl-3-carboxamide of the formula (I) according to Claim 1, in addition to and one or more extenders and/or surfactants.
- 5. (Withdrawn) Use of 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 for controlling unwanted microorganisms.

- 6. (Withdrawn) Method for controlling unwanted microorganisms, characterized in that 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their habitat.
- 7. (Withdrawn) Process for preparing compositions for controlling unwanted microorganisms, characterized in that 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
 - 8. (Withdrawn) Halocarboxamides of the formula (IV)

$$\begin{array}{c|c}
H & O \\
N & M \\
R & X^2
\end{array}$$
(IV)

A, Hal, R and M are as defined in Claim 1,

X² represents bromine or iodine.

9. (Withdrawn) Boronic acid derivatives of the formula (VI)

in which

A, Hal, R and M are as defined in Claim 1,

G³ and G⁴ each represent hydrogen or together represent tetramethylethylene.

10. (Withdrawn) Hydroxyalkylcarboxamides of the formula (VIII)

$$H \xrightarrow{\text{Hal}} N \xrightarrow{\text{M}} N \xrightarrow{\text{M}} N \xrightarrow{\text{W}} N$$

A, Hal, R and M are as defined in Claim 1,

 X^5 represents C_2 - C_{20} -hydroxyalkyl which is optionally additionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR 8 R 9 R 10 and/or C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C_1 - C_4 -alkyl.

11. (Withdrawn) Ketones of the formula (XI)

$$H \longrightarrow Hal \qquad M$$

$$Hal \qquad O \qquad G^9$$

$$(XI)$$

in which

A, Hal, R and M are as defined in Claim 1,

G⁹ represents hydrogen or represents C₁-C₁₈-alkyl which is optionally monoor polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl.