

measurable and real-valued measurable cardinals

 ${\bf Canonical\ name} \quad {\bf Measurable And Real valued Measurable Cardinals}$

Date of creation 2013-03-22 18:54:53 Last modified on 2013-03-22 18:54:53

Owner yesitis (13730) Last modified by yesitis (13730)

Numerical id 4

Author yesitis (13730) Entry type Definition Classification msc 03E55 Let κ be an uncountable cardinal. Then

- 1. κ is measurable if there exists a nonprincipal κ -complete ultrafilter U on κ ;
- 2. κ is real-valued measurable if there exists a nontrivial κ -additive measure μ on κ .

If κ is measurable, then it is real-valued measurable. This is so because the ultrafilter U and its dual ideal I induce a two-valued measure μ on κ where every member of U is mapped to 1 and every member of I is mapped to 0. Since U is κ -complete, I is also κ -complete. It can then be proved that if I_{μ} -the ideal of those sets whose measures are 0-is κ -complete, then I_{μ} is κ -additive.

On the converse side, if κ is not real-valued measurable, then $\kappa \leq 2^{\aleph_0}$. It can be shown that if κ is real-valued measurable, then it is regular; a further result is that κ is weakly inaccessible. Inaccessible cardinals are in some sense "large."