HUMBOLDT UNIVERSITY OF BERLIN

EINFÜHRUNG IN DAS WISSENSCHAFTLICHE RECHNEN

XXX

 $Christian\ Parpart\ \mathcal{C}\ Kei\ Thoma$

$\frac{C}{C}$	ontents	Contents
C	Contents	
1	Worked Example 1	3
2	Worked Example 2	3

1 Worked Example 1

									, ,						
7	1	5	4	9	2	8	3	0	6	(1) find the pivot					
1	7	5	4	9	2	8	3	0	6	(2) swap 7 and 1					
1	5	7	4	9	2	8	3	0	6	(3) swap 7 and 5					
1	5	4	7	9	2	8	3	0	6	(4) swap 7 and 4					
1	5	4	2	9	7	8	3	0	6	(5) swap 7 and 2					
1	5	4	2	3	7	8	9	0	6	(6) swap 9 and 3					
1	5	4	2	3	0	8	9	7	6	(7) swap 7 and 0					
1	5	4	2	3	0	6	9	7	8	(8) swap 8 and the pivot					
1	5	4	2	3	0	6	9	7	8	(9) 6 is in the correct place					
	partition the sequence into $(1, 5, 4, 2, 3, 0)$ and $(9, 7, 8)$														
1	5	4	2	3	0	6	9	7	8	sort left side					
1	5	4	2	3	0	6	9	7	8	find the pivot					
0	5	4	2	3	1	6	9	7	8	swap 1 and the pivot					
0	5	4	2	3	1	6	9	7	8	0 is in the correct place					
			pa	rtiti	ion 1	the	sequ	ienc	e in	to () and $(5,4,2,3,1)$					
0	5	4	2	3	1	6	9	7	8	nothing to sort on the left side					
0	5	4	2	3	1	6	9	7	8	sort right side					
0	5	4	2	3	1	6	9	7	8	find the pivot					
0	1	4	2	3	5	6	9	7	8	swap 5 and the pivot					
0	1	4	2	3	5	6	9	7	8	1 is in the correct place					
0	1	4	2	3	5	6	9	7	8	find the pivot					
0	1	4	2	3	5	6	9	7	8	5 is in the correct place					
0	1	4	2	3	5	6	9	7	8	find the pivot					
0	1	2	4	3	5	6	9	7	8	swap 4 and 2					
0	1	2	3	4	5	6	9	7	8	swap 4 and the pivot					
0	1	2	3	4	5	6	9	7	8	3 is in the correct place					
_															

2 Worked Example 2

7	1	5	4	9	2	8	3	0	6	find the pivot		
1	7	5	4	9	2	8	3	0	6	swap 7 and 1		
1	5	7	4	9	2	8	3	0	6	swap 7 and 5		
1	5	4	7	9	2	8	3	0	6	swap 7 and 4		
1	5	4	2	9	7	8	3	0	6	swap 7 and 2		
1	5	4	2	3	7	8	9	0	6	swap 9 and 3		
1	5	4	2	3	0	8	9	7	6	swap 7 and 0		
1	5	4	2	3	0	6	9	7	8	swap 8 and the pivot		

Now, the pivot 6 is on the right place and every element on the left side is smaller and every element on the right side is larger than the pivot.

1	5	4	2	3	0	6	9	7	8

We partition the sequence into two smaller ones and apply the algorithm on each.

1	5	4	2	3	0	find the pivot
0	5	4	2	3	1	swap 1 and the pivot

The pivot 0 is correctly placed.

Since there is no left side of the pivot, we proceed with the right side.

5	4	2	3	1	find the pivot
1	4	2	3	5	swap 5 and the pivot

Again, 1 is placed correctly in the far left. The following sequence is left.

Now we have

since the pivot 5 is already correctly placed, there is no swapping to do. We continue with

4	2	3	find the pivot
2	4	3	swap 4 and 2
2	3	4	swap 4 and the pivot

After this, the left side of the inital partition is correctly sorted.

0	1	2	3	4	5	6	9	7	8
---	---	---	---	---	---	---	---	---	---

We continue with the right side.

9	7	8	find the pivot
7	9	8	swap 9 and 7
7	8	9	swap 9 and the pivot

At the end of the algorithm we have the correctly sorted list.

0	1	2	3	4	5	6	7	8	9