一、矩阵的基本运算

1.
$$A + B = B + A$$

2.
$$(A+B)+C=A+(B+C)$$

3.
$$A+(-A)=O$$
 $A-B=A+(-B)$

4.
$$\lambda(A+B) = \lambda A + \lambda B$$
 $(\lambda + \mu)A = \lambda A + \mu A$

5.
$$\lambda(\mu A) = (\lambda \mu) A$$

6.
$$kA = 0 \Leftrightarrow k = 0$$
 或 $A = 0$

$$7.\left(A^{\mathsf{T}}\right)^{\mathsf{T}} = A \qquad \left(A \pm B\right)^{\mathsf{T}} = A^{\mathsf{T}} \pm B^{\mathsf{T}} \qquad \left(kA\right)^{\mathsf{T}} = k\left(A^{\mathsf{T}}\right) \qquad \left(AB\right)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$$

转置行列式不变
$$\left|A^{\mathsf{T}}\right| = \left|A\right|$$
 逆值变 $\left|A^{\mathsf{-1}}\right| = \frac{1}{|A|}$ $\left|\lambda A\right| = \lambda^{n} \left|A\right|$

$$8. \left| \alpha, \beta_1 + \beta_2, \gamma \right| = \left| \alpha, \beta_1, \gamma \right| + \left| \alpha, \beta_2, \gamma \right|$$

9.
$$A = (\alpha_1, \alpha_2, \alpha_3)$$
, $B = (\beta_1, \beta_2, \beta_3)$, 3 阶矩阵

$$|A+B| \neq |A|+|B|$$

$$A + B = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \alpha_3 + \beta_3)$$
 $|A + B| = |\alpha_1 + \beta_1, \alpha_2 + \beta_2, \alpha_3 + \beta_3|$

$$\begin{vmatrix} A & * \\ 0 & B \end{vmatrix} = \begin{vmatrix} A & 0 \\ * & B \end{vmatrix} = |A||B|$$

$$10. \left| E(i, j(c)) \right| = 1$$

二、有关矩阵乘法的基本运算

$$C = AB$$
, $\mathbb{H} c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$.

1.线性性质
$$(A_1 + A_2)B = A_1B + A_2B$$
 $A(B_1 + B_2) = AB_1 + AB_2$

$$(\lambda A)B = \lambda (AB) = A(\lambda B)$$

$$2.$$
结合律 $(AB)C = A(BC)$

$$3. (AB)^{\mathrm{T}} = B^{\mathrm{T}} A^{\mathrm{T}}$$

$$4.|AB| = |A||B|$$

$$5. A^k A^l = A^{k+l}$$
 $(A^k)^l = A^{kl}$ $(AB)^k = A^k B^k$ 不一定成立!

6.
$$AE = A$$
, $EA = A$, $A(kE) = kA$, $(kE)A = kA$, $AB = E \Leftrightarrow BA = E$

与数的乘法的不同之处: $(AB)^k = A^k B^k$ 不一定成立!

7.无交换律

因式分解的障碍是交换性,一个矩阵 A 的每个多项式可以因式分解,例如

$$A^{2}-2A-3E=(A-3E)(A+E)$$

8.无消去律 (矩阵和矩阵相乘)

 $\triangle AB = O \Rightarrow A = O \implies B = O$

由 $A \neq O$ 和 $AB = O \Rightarrow B = O$

由 $A \neq O$ 时 $AB = AC \Rightarrow B = C$ (无左消去律)

特别地 , 设 A 可逆, 则 A 有消去律.

左消去律: $AB = AC \Rightarrow B = C$

右消去律: $BA = CA \Rightarrow B = C$

如果 A 列满秩,则 A 有左消去律,即① $AB=0 \Rightarrow B=0$;② $AB=AC \Rightarrow B=C$

三、可逆矩阵的性质

1.当A可逆时,

(1)
$$A^{\mathsf{T}}$$
 也可逆,且 $\left(A^{\mathsf{T}}\right)^{-1} = \left(A^{-1}\right)^{\mathsf{T}}$;

(2)
$$A^k$$
 也可逆,且 $(A^k)^{-1} = (A^{-1})^k$;

(3)数
$$\lambda \neq 0$$
, λA 也可逆, $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$.

2.若 A , B 是两个n 阶可逆矩阵,则 AB 也可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$

推论: 设A, B是两个n阶矩阵,则 $AB = E \Leftrightarrow BA = E$

3.命题: 初等矩阵都可逆, 且
$$(E(i,j))^{-1} = E(i,j)$$
; $(E(i(c)))^{-1} = E(i(\frac{1}{c}))$;

$$(E(i, j(c)))^{-1} = E(i, j(-c)).$$

4. 命题: 准对角矩阵
$$A = \begin{vmatrix} A_{11} & 0 & 0 & 0 \\ 0 & A_{22} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & A_{kk} \end{vmatrix}$$
 可逆 \Leftrightarrow 每个 A_{ii} 都可逆,记

$$A^{-1} = \begin{vmatrix} A_{11}^{-1} & 0 & 0 & 0 \\ 0 & A_{22}^{-1} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & A_{bk}^{-1} \end{vmatrix}$$

5. **A** 是 **n** 阶可逆矩阵:

 \Rightarrow |A| ≠ 0 (是非奇异矩阵);

⇔ R(A) = n (是满秩矩阵)

A的行(列)向量组线性无关;

⇔ 齐次方程组 Ax = 0 没有非零解;

 $\Leftrightarrow \forall b \in \mathbb{R}^n$, Ax = b 总有唯一解:

⇔ A 与 E 等价;

 $\Leftrightarrow A$ 可表示成若干个初等矩阵的乘积:

 \Leftrightarrow **A** 的特征值全不为 0;

 $\Leftrightarrow \mathbf{A}^{\mathrm{T}}\mathbf{A}$ 是正定矩阵;

 \Rightarrow **A** 的行(列)向量组是**R**"的一组基;

 $\Leftrightarrow A \in \mathbb{R}^n$ 中某两组基的过渡矩阵.

6. 逆矩阵的求法

②
$$(A:E)$$
 $\xrightarrow{\text{初等行变换}} (E:A^{-1})$

四、伴随矩阵的基本性质:

1.
$$AA^* = A * A = |A|E$$

2.当
$$A$$
可逆时, $A\frac{A^*}{|A|}=E$,得 $A^{-1}=\frac{A^*}{|A|}$,(求逆矩阵的伴随矩阵法)

且得:
$$\boxed{ \left(A^*\right)^{-1} = \frac{A}{|A|} = \left(A^{-1}\right)^* } \quad \left(\left(A^{-1}\right)^* = \left|A^{-1}\right| \left(A^{-1}\right)^{-1} = \frac{A}{|A|} \right)$$

3.伴随矩阵的其他性质

$$(1) \overline{\left|A^*\right| = \left|A\right|^{n-1}},$$

$$A^* = |A|A^{-1}$$

$$(2)\left(A^{T}\right)^{*} = \left(A^{*}\right)^{T},$$

(3)
$$(cA)^* = c^{n-1}A^*$$

$$(4)(AB)^* = B * A^*,$$

$$(5)\left(A^{k}\right)^{*} = \left(A^{*}\right)^{k},$$

(6)
$$(A^*)^* = |A|^{n-2}A$$
 $n = 2 \text{ H}, (A^*)^* = A, A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

(7)伴随矩阵的特征值:
$$\frac{|A|}{\lambda}$$
 ($AX = \lambda X$, $A^* = |A|A^{-1} \Rightarrow A^*X = \frac{|A|}{\lambda}X$).

4.关于矩阵右上肩记号: T , k , -1 , *

(1)任何两个的次序可交换,

如
$$(A^T)^* = (A^*)^T$$
, $(A^{-1})^T = (A^T)^{-1}$, $(A^*)^{-1} = (A^{-1})^*$

$$(2)(AB)^T = B^T A^T, (AB)^{-1} = B^{-1} A^{-1}, (AB)^* = B * A *$$

但
$$(AB)^k = B^k A^k$$
不一定成立!

五、线性表示

全课程的理论基础:线性表示→线性相关性→极大无关组和秩→矩阵的秩

1. (1)
$$0 \rightarrow \alpha_1, \alpha_2, \dots, \alpha_s$$

$$(2)\alpha_i \rightarrow \alpha_1, \alpha_2, \cdots, \alpha_s$$

(3)
$$\beta \rightarrow \alpha_1, \alpha_2, \dots, \alpha_s \Leftrightarrow x_1\alpha_1 + x_2\alpha_2 + \dots + x_s\alpha_s = \beta$$
 $\beta \neq \beta$

$$\Leftrightarrow (\alpha_1, \alpha_2, \dots, \alpha_s) x = \beta \text{ fix} \left(x = (x_1, \dots, x_s)^T \right)$$

 $Ax = \beta$ 有解, 即 β 可用 A 的列向量组表示

$$(4) AB = C = (r_1, r_2, \dots, r_s), \quad A = (\alpha_1, \alpha_2, \dots, \alpha_n), \quad \emptyset \mid r_1, r_2, \dots, r_s \rightarrow \alpha_1, \alpha_2, \dots, \alpha_n.$$

(5)
$$\beta_1, \beta_2, \dots, \beta_t \rightarrow \alpha_1, \alpha_2, \dots, \alpha_s$$
, 则存在矩阵 C , 使得

$$(\beta_1, \beta_2, \dots, \beta_t) = (\alpha_1, \alpha_2, \dots, \alpha_s)C$$

2.线性表示关系有传递性

3. 等价关系: 如果 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 与 $\beta_1,\beta_2,\cdots,\beta_t$ 互相可表示 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 之 $\beta_1,\beta_2,\cdots,\beta_t$, 记作 $\alpha_1,\alpha_2,\cdots,\alpha_s$ \cong $\beta_1,\beta_2,\cdots,\beta_t$.

4.线性相关

如果向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 中**有**向量可以用其它的 s-1 个向量线性表示,就说 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关.

如果向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 中**每个**向量**都不**可以用其它的 s-1 个向量线性表示,就说 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关.

- (1) s = 1, 单个向量 α , $x\alpha = 0$, α 相关 $\Leftrightarrow \alpha = 0$
- (2) s = 2, α_1, α_2 相关 \Leftrightarrow 对应分量成比例
- 即 α_1, α_2 相关 $\Leftrightarrow a_1 : b_1 = a_2 : b_2 = \cdots = a_n : b_n$
- (3)向量个数 s = 44 数 n ,则 $\alpha_1, \dots, \alpha_n$ 线性相 (无) 关 $\Leftrightarrow |\alpha_1, \dots, \alpha_n| = (\neq)0$
- ① $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, Ax = 0 有非零解 $\Leftrightarrow |A| = 0$
- ②如果s > n,则 $\alpha_1, \alpha_2, \dots, \alpha_s$ 一定相关,Ax = 0的方程个数n <未知数个数s
- ③如果 $\alpha_1,\alpha_2,\dots,\alpha_s$ 无关,则它的每一个部分组都无关
- ④如果 $\alpha_1, \alpha_2, \dots, \alpha_s$ 无关,而 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta$ 相关,则 $\beta \to \alpha_1, \alpha_2, \dots, \alpha_s$
- ⑤ 当 $\beta \to \alpha_1, \cdots, \alpha_s$ 时,表示方式唯一 $\Leftrightarrow \alpha_1 \cdots \alpha_s$ 无关(表示方式不唯一 $\Leftrightarrow \alpha_1 \cdots \alpha_s$ 相 关)
 - ⑥若 $\beta_1, \dots, \beta_t \rightarrow \alpha_1, \dots, \alpha_s$,并且t > s,则 β_1, \dots, β_t 一定线性相关
- ⑦ $\alpha_1,\alpha_2,\cdots,\alpha_s$ " 线性相关还是无关 " 就是向量方程 $\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_sx_s=0$ " 有 没有非零解 " .

5.各性质的逆否形式

- (1)如果 $\alpha_1,\alpha_2,\dots,\alpha_s$ 无关,则 $s \le n$
- (2)如果 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 有相关的部分组,则它自己一定也相关

(3)如果 $\alpha_1 \cdots \alpha_s$ 无关,而 $\beta \rightarrow \alpha_1, \cdots, \alpha_s$,则 $\alpha_1, \cdots, \alpha_s, \beta$ 无关

(4)如果 $\beta_1 \cdots \beta_t \rightarrow \alpha_1 \cdots \alpha_s$, $\beta_1 \cdots \beta_t$ 无关,则 $t \leq s$

推论: 若两个无关向量组 $\alpha_1 \cdots \alpha_s$ 与 $\beta_1 \cdots \beta_t$ 等价,则s = t

6.极大无关组

设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是 n 维向量组, $\alpha_1, \alpha_2, \dots, \alpha_s$ 是它的一个部分组. 如果

① $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,② $\alpha_1, \alpha_2, \dots, \alpha_r$ 再扩大就线性相关.

批注[微软用户1]: 比课本通俗,易懂

就称 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 为 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的一个最大无关组. 称 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 中所包含向量的个数为 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的秩. 记作 $R(\alpha_1,\alpha_2,\cdots,\alpha_s)$.

(2)①
$$\alpha_1, \alpha_2, \dots, \alpha_s$$
 无关 $\Leftrightarrow R(\alpha_1, \alpha_2, \dots, \alpha_s) = s$

$$(2) \beta \rightarrow \alpha_1, \alpha_2, \cdots, \alpha_s \Leftrightarrow R(\alpha_1, \alpha_2, \cdots, \alpha_s, \beta) = R(\alpha_1, \cdots, \alpha_s)$$

另一种说法: 取 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的一个最大无关组(*),

(*)也是 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta$ 的最大无关组 \Leftrightarrow (*), β 相关.

③
$$\beta$$
 可用 $\alpha_1, \dots, \alpha_s$ 唯一表示 $\Leftrightarrow R(\alpha_1, \dots, \alpha_s, \beta) = R(\alpha_1, \dots, \alpha_s) = s$

$$(4)$$
 $\beta_1, \dots, \beta_t \to \alpha_1, \dots, \alpha_s \Leftrightarrow R(\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t) = R(\alpha_1, \dots, \alpha_s)$

$$\Rightarrow R(\beta_1, \dots, \beta_t) \leq R(\alpha_1, \dots, \alpha_s)$$

$$\textcircled{5}\alpha_1, \dots, \alpha_s \cong \beta_1, \dots, \beta_t \Leftrightarrow R(\alpha_1, \dots, \alpha_s) = R(\alpha_1 \dots \alpha_s, \beta_1 \dots \beta_t) = R(\beta_1, \dots, \beta_t)$$

(3)矩阵与向量组的对比

矩阵的秩 如果矩阵 A 存在不为零的 r 阶子式,且任意 r+1 阶子式均为零,则称矩阵 A 的秩为 r. 记作 R(A)=r

向量组的秩 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的最大无关组所含向量的个数,称为这个向量组的秩. 记作 $R(\alpha_1,\alpha_2,\cdots,\alpha_n)$

矩阵等价 A 经过有限次初等变换化为 B. 记作: $A \cong B$

向量组等价 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 和 $\beta_1,\beta_2,\cdots,\beta_n$ 可以相互线性表示. 记作

$$(\alpha_1, \alpha_2, \dots, \alpha_n) = (\beta_1, \beta_2, \dots, \beta_n)$$

7. 矩阵的秩的简单性质

- (1)①A 行满秩: R(A) = m, A 列满秩: R(A) = n
 - (2) $0 \le R(A) \le \min\{m, n\}, R(A) = 0 \Leftrightarrow A = 0$
 - ③n阶矩阵A满秩: R(A)=n

A满秩 ⇔ A的行 (列)向量组线性无关

$$\Leftrightarrow |A| \neq 0$$

- ⇔ A 可逆
- $\Leftrightarrow Ax = 0$ 只有零解, $Ax = \beta$ 唯一解
- (2) $R(\mathbf{A}^{\mathrm{T}}) = R(\mathbf{A})$
- $(3) c \neq 0$ 时,R(cA) = R(A)
- (4)若 $\mathbf{A} \cong \mathbf{B}$,则 $\mathbf{R}(\mathbf{A}) = \mathbf{R}(\mathbf{B})$
- (5)若 $P \cdot Q$ 可逆,则R(A) = R(PA) = R(AQ) = R(PAQ) (可逆矩阵不影响矩阵的秩)
- (6) $\max \{R(\boldsymbol{A}), R(\boldsymbol{B})\} \le R(\boldsymbol{A}, \boldsymbol{B}) \le R(\boldsymbol{A}) + R(\boldsymbol{B})$
- (7) $R(\mathbf{A} + \mathbf{B}) \le R(\mathbf{A}) + R(\mathbf{B})$
- (8) $R(AB) \le \min\{R(A), R(B)\}$, $R(kA) = \begin{cases} R(A) & \text{若}k \neq 0\\ 0 & \text{若}k = 0 \end{cases}$
- (9)如果 \mathbf{A} 是 $\mathbf{m} \times \mathbf{n}$ 矩阵, \mathbf{B} 是 $\mathbf{n} \times \mathbf{s}$ 矩阵,且 $\mathbf{A}\mathbf{B} = \mathbf{0}$,则:
 - ① B 的列向量全部是齐次方程组 Ax = 0 解(转置运算后的结论);
 - ② $R(A) + R(B) \le n$
 - (10)若 \boldsymbol{A} 、 \boldsymbol{B} 均为 \boldsymbol{n} 阶方阵,则 $R(\boldsymbol{A}\boldsymbol{B}) \geq R(\boldsymbol{A}) + R(\boldsymbol{B}) n$;
 - (11) 若A可逆,则R(AB) = R(B),若B可逆,则R(AB) = R(A)

六、线性方程组

1.解的性质

- (1) η_1, η_2 是Ax = 0的解, $\eta_1 + \eta_2$ 也是它的解
- (2) $\eta 是 Ax = 0$ 的解,对任意 $k,k\eta$ 也是它的解

(3) $\eta_1, \eta_2, \dots, \eta_k$ 是Ax = 0的解,对任意k个常数 $\lambda_1, \lambda_2, \dots, \lambda_k, \lambda_l \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 也是它的解

- (4) $\gamma \neq Ax = \beta$ 的解, $\eta \neq Ax = \beta$ 的解, $\eta \neq Ax = \beta$ 的解
- (5) η_1, η_2 是 $Ax = \beta$ 的两个解, $\eta_1 \eta_2$ 是其对应的其次线性方程组Ax = 0的解
- (6) η_2 是 $Ax = \beta$ 的解,则 η_1 也是它的解 $\Leftrightarrow \eta_1 \eta_2$ 是其对应的其次线性方程组Ax = 0的解
- (7) $\eta_1, \eta_2, \dots, \eta_k$ 是 $Ax = \beta$ 的解,则 $\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 也是 $Ax = \beta$ 的解 $\Leftrightarrow \lambda_1 + \lambda_2 + \lambda_k = 1$ $\lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_k \eta_k$ 是Ax = 0的解 $\Leftrightarrow \lambda_1 + \lambda_2 + \lambda_4 = 0$

2. 解的情况判别

方程: $Ax = \beta$, 即 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = \beta$,

有解
$$\Leftrightarrow \beta \to \alpha_1, \alpha_2, \cdots, \alpha_n$$

$$\Leftrightarrow R(A:\beta) = R(A) \Leftrightarrow R(\alpha_1, \alpha_2, \dots, \alpha_n, \beta) = R(\alpha_1, \alpha_2, \dots, \alpha_n)$$

无解
$$\Leftrightarrow R(A:\beta) > R(A)$$

唯一解
$$\Leftrightarrow R(A:\beta) = R(A) = n$$

无穷多解
$$\Leftrightarrow R(A:\beta) = R(A) < n$$

- 3. 对于方程个数m有 $R(A:\beta) \le m, R(A) \le m$,
 - ①当R(A) = m时, $R(A:\beta) = m$,方程组一定有解
 - ②当m < n时,R(A) < n,方程组不会是唯一解
- 4. 对于齐次线性方程组 Ax = 0,

只有零解 \Leftrightarrow R(A) = n (即 A 列满秩)

有非零解 $\Leftrightarrow R(A) < n$

- 5. 矩阵方程的解法($|A| \neq 0$): 设法化成(I)AX = B 或 (II)XA = B,
 - (I) 的解法:构造(A:B)— $\xrightarrow{\eta 等行变换}$ (E:X)
 - (II)的解法:将等式两边转置化为 $A^{T}X^{T} = B^{T}$,用(I)的方法求出 X^{T} ,再转置得X

七、特征值、特征向量

 λ 是 A 的特征值 ⇔ λ 是 A 的特征多项式 |xE - A| 的根.

1.两种特殊情形:

(1) A 是上(下)三角矩阵,对角矩阵时,特征值即对角线上的元素.

$$A = \begin{pmatrix} \lambda_{1} & * & * \\ 0 & \lambda_{2} & * \\ 0 & 0 & \lambda_{3} \end{pmatrix}$$

$$|xE - A| = \begin{vmatrix} x - \lambda_{1} & -* & -* \\ 0 & x - \lambda_{2} & -* \\ 0 & 0 & x - \lambda_{3} \end{vmatrix} = (x - \lambda_{1})(x - \lambda_{2})(x - \lambda_{3})$$

(2) R(A) = 1时: A 的特征值为 $0,0,\dots,0,\text{tr}(A)$

2.特征值的性质

(1)命题: n 阶矩阵 A 的特征值 λ 的重数 $\geq n - r(\lambda E - A)$

(2)命题:设A的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则

$$\bigcirc \lambda_1 \lambda_2 \cdots \lambda_n = |A|$$

(3)命题: 设 η 是 A 的特征向量,特征值为 λ ,即 $A\eta = \lambda \eta$,则

①对于
$$A$$
 的每个多项式 $f(A)$, $f(A)\eta = f(x)\eta$

②当
$$A$$
可逆时, $A^{-1}\eta = \frac{1}{\lambda}\eta$, $A*\eta = \frac{|A|}{\lambda}\eta$

(4)命题:设A的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, f(x)是多项式则

①
$$f(A)$$
的特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$

②
$$A$$
 可逆时, A^{-1} 的特征值为 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}$

$$A*$$
的特征值为 $\frac{|A|}{\lambda_1}$, $\frac{|A|}{\lambda_2}$,..., $\frac{|A|}{\lambda_n}$

③ \boldsymbol{A}^T 的特征值也是 $\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2, \cdots, \boldsymbol{\lambda}_n$

(5)
$$\lambda$$
是 A 的特征值,则: $egin{bmatrix} kA & k\lambda & a\lambda+bE & a\lambda+bE & a\lambda+b & \lambda^2 & \lambda^2 & \lambda^2 & \lambda^2 & \lambda^m & \lambda^$

3.计算特征值和特征向量的一般公式

- (1)① λ 是 A 的特征值 \Leftrightarrow $(A \lambda E)\eta = 0$, 即 $(A \lambda E)$ 不可逆.
- ② η 是属于 λ 的特征向量 $\Leftrightarrow \eta$ 是齐次方程组 $(A-\lambda E)x=0$ 的非零解

规定 A 的**特征多项式**为 $|\lambda E - A|$,则 A 的特征值就是它的特征多项式的根.

4.计算特征值和特征向量的具体步骤为:

计算 A 的特征多项式.

求出它的根,即A的特征值.

然后对每个特征值 λ_i ,求齐次方程组 $\left(A-\lambda_i E\right)x=0$ 的非零解,即属于 λ 的特征向量。

说明 n 阶矩阵的特征多项式是一个 n 次多项式,一般来说求它的根是困难的,因此上述计算步骤 并不总是可行的,只能用在少数特殊矩阵上.例如用于对角矩阵和三角矩阵,得出它们的特征值就是对角线上的元素.

$$A = \begin{pmatrix} \lambda_{1} & * & * \\ 0 & \lambda_{2} & * \\ 0 & 0 & \lambda_{3} \end{pmatrix}, \quad \mathbb{M} | \lambda E - A | = \begin{vmatrix} \lambda - \lambda_{1} & -* & -* \\ 0 & \lambda - \lambda_{2} & -* \\ 0 & 0 & \lambda - \lambda_{3} \end{vmatrix} = (\lambda - \lambda_{1})(\lambda - \lambda_{2})(\lambda - \lambda_{3}),$$

n 阶矩阵 A 的特征值共有 n 个(其中有的相同,有的是虚数) 规定特征值 λ 的**重数**: 即 λ 作为特征多项式的根的重数 A 的全体不同特征值的重数和等于 n.

 λ 不是 A 的特征值 $\Leftrightarrow |A - \lambda E| \neq 0 \Leftrightarrow A - \lambda E$ 可逆.0不是 A 的特征值 \Leftrightarrow A 可逆.

5. 特征值的计算

设 A 是 n 阶矩阵,记 A 的全体特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$ 则

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix} = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$$

令
$$\lambda = 0$$
 , 左= $|-A| = (-1)^n |A|$, 右= $(-1)^n |\lambda_1 \lambda_2 \cdots \lambda_n|$.

比较两边 λ^{n-1} 的系数.

命题 2 设 $\lambda \in n$ 阶矩阵 **A** 的特征值,则它的重数 $\geq n - R(A - \lambda E)$.

应用:如果 n 阶矩阵 A 的秩 R(A)=1, (n>1)则 0 是 <math>A 的特征值,并且重数 $\geq n-R(A)=n-1$.于是 A 的特征值为 $0,0,\dots,0$, t A().

6.特征值的应用

- ①求行列式 $|A|=\lambda_1,\lambda_2,\dots,\lambda_n$
- ②判别可逆性

 λ 是 A 的特征值 \Leftrightarrow $|\lambda E - A| = 0 \Leftrightarrow A - \lambda E$ 不可逆

 $A - \lambda E$ 可逆 ⇔ λ 不是 A 的特征值

当
$$f(A) = 0$$
 时,如果 $f(c) \neq 0$,则 $A - cE$ 可逆

若 λ 是 A 的特征值,则 $f(\lambda)$ 是 f(A) 的特征值 $\Rightarrow f(\lambda) = 0$

 $f(c) \neq 0 \Rightarrow c$ 不是 A的特征值 $\Leftrightarrow AcE$ 可逆.

八、n 阶矩阵的相似关系

当AU = UA时,B = A,而 $AU \neq UA$ 时, $B \neq A$.

- 1.相似关系有 i) **对称性**: A ~ B ⇔ B ~ A
 - ii) 有传递性: $A \sim B$, $B \sim C$, 则 $A \sim C$
- 2.命题 当 $A \sim B$ 时, $A \cap B$ 有许多相同的性质

 - $\bigcirc R(A) = R(B)$
 - ③ A, B 的特征多项式相同,从而特征值完全一致
 - ④ A 与 B 的特征向量的关系: $\eta \in A$ 的属于 λ 的特征向量 $\Leftrightarrow U^{-1}\eta \in B$ 的属于 λ

的特征向量.

九、*n* 阶矩阵的对角化问题

1.如果一个 n 阶矩阵相似与一个对角矩阵,就说它可以**对角化**. 并不是每个矩阵都可以对角化的. 2. 判别法则 1 n 阶矩阵 A 可对角化⇔A 有 n 个线性无关的特征向量.

实现方法 1 以 A 的 n 个线性无关的特征向量 $\eta_1, \eta_2, \dots, \eta_n$ 为列向量,构造矩阵

 $P=(\eta_1,\eta_2,...,\eta_n)$ 则 $P^{-1}AP$ 是对角矩阵.

判别法则 2 A 可对角化 \Leftrightarrow 对于 A 的每个特征值 λ_i ,其重数 $k=n-r(A-\lambda_i E)$.

实现方法 2 对 A 的每个特征值 λ_i ,求($A - \lambda_i E$)X = 0 的基础解系 ,合在一起 ,就是 A 的 n 个 线性无关的特征向量 . 用它们构造矩阵 P .

注意:当 $k_{i=1}$ 时, $k_{i=n}$ - $r(A - \lambda_i E)$ 一定成立!

推论 如果 A 的特征值两两不相同 则 A 可以对角化.

3.内积, 正交矩阵和实对称矩阵的对角化

内积的性质:

正定性:
$$(\alpha,\alpha) \ge 0$$
 ,并且 $(\alpha,\alpha) = 0 \Leftrightarrow \alpha = 0$. $(\alpha,\alpha) = a_1^2 + a_2^2 + \cdots + a_n^2$.

对称性: $(\alpha, \beta) = (\beta, \alpha)$.

线性性质:
$$(\alpha, \beta_1 + \beta_2) = (\alpha, \beta_1) + (\alpha, \beta_2)$$
; $(\alpha_1 + \alpha_2, \beta) = (\alpha_1, \beta) + (\alpha_2, \beta)$.

$$(c\alpha, \beta) = c(\alpha, \beta) = (\alpha, c\beta)$$
. (c为任意实数)

正交矩阵

n 阶矩阵 A 称为**正交矩阵** 如果它是实矩阵 并且 $AA^{T} = E$ (即 $A^{-1} = A^{T}$).

Q 是正交矩阵 $\Leftrightarrow Q$ 的列向量组是单位正交向量组 $\Leftrightarrow Q$ 的行向量组是单位正交向量组.

正交矩阵的性质: (i)
$$A^T = A^{-1}$$
; (ii) $AA^T = A^T A = E$;

- (iii) A 是正交阵,则 A^T (或 A^{-1}) 也是正交阵;
- (iv)两个正交阵之积仍是正交阵; (v)正交阵的行列式等于1或-1.

施密特正交化

这是把线性无关向量组改造为单位正交向量组的方法.

以 3 个线性无关向量 α_1 , α_2 , α_3 为例.

此时 β_1 , β_2 , β_3 是和 α_1 , α_2 , α_3 等价的正交非零向量组.

() 单位化: 作
$$\eta_1 = \frac{\beta_1}{\|\beta_1\|}$$
 , $\eta_2 = \frac{\beta_2}{\|\beta_2\|}$, $\eta_3 = \frac{\beta_3}{\|\beta_3\|}$,则 η_1 , η_2 , η_3 是和 α_1 , α_2 , α_3 等

价的单位正交向量组.

实对称矩阵的对角化

如果A是实对称矩阵,A的特征值和特征向量有以下特点:

- ①特征值都是实数.
- ②对每个特征值 λ ,其重数=n-r(A- λE).即实对称矩阵可对角化,
- ③属于不同特征值的特征向量互相正交.

可以用正交矩阵将实对称矩阵 A 对角化,构造正交矩阵 Q(使得 Q^1AQ 是对角矩阵)的步骤:

- ①求出 A 的特征值:
- ②对每个特征 λ , 求(A- λE) X=0 的单位正交基础解系, 合在一起得到 A 的 n 个单位正交的特征向量:
 - ③用它们为列向量构造正交矩阵 Q.

十、正定二次型与正定矩阵性质与判别

1.可逆线性变换替换保持正定性, $f(x_1, x_2, \dots, x_n)$ 变为 $g(y_1, y_2, \dots, y_n)$,则它们同时正定或同时不正定.

 $2.A \simeq B$,则A,B同时正定,同时不正定.

3.实对称矩阵 A 正定

- \Leftrightarrow 正惯性指数为n;
- $\Leftrightarrow A$ 的特征值全大于0:
- $\Leftrightarrow A$ 的所有顺序主子式全大于0;
- \Leftrightarrow A 合同于 E, 即存在可逆矩阵 Q 使 $Q^T A Q = E$;
- \Leftrightarrow 存在可逆矩阵 P ,使 $A = P^T P$ (从而 |A| > 0);

会存在正交矩阵,使
$$C^TAC = C^{-1}AC = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
 $(\lambda_i$ 大于 0 $)$ $.$

⇒成为正定矩阵的必要条件: $a_{ii} > 0$; |A| > 0.

4.判断 A 正定的三种方法:

- ①顺序主子式法。
- ②特征值法。
- ③定义法。

5. 用正交变换法化二次型为标准形:

① 求出 A 的特征值、特征向量;

- ② 对 n 个特征向量单位化、正交化;
- ③ 构造C (正交矩阵), $C^{-1}AC = \Lambda$;