

Ativos de Rede

Professor Wagner Gadêa Lorenz

wagnerglorenz@gmail.com

Disciplina: Redes de Computadores II Curso de Sistemas de Informação

Placas de Rede

- Preparação dos quadros para que possam ser enviados pelos cabos. A placa de rede gera os bits de um quadro no sentido de enviá-lo para o meio físico, quando eles passam do computador para o cabo.
- Converte os bits de um quadro quando eles chegam do meio físico para a máquina.
- Endereçamento dos dados: cada placa de rede tem seu próprio e único endereço que ela fornece quando os quadros são postos na rede.
- Controle de fluxo: a placa dispõe de uma memória RAM para controlar os fluxo de dados.
- Conexão com outro computador: antes de enviar alguma informação, cada placa inicia primeiramente um diálogo com cada uma das outras placas. Algumas informações são trocadas sobre o protocolo da camada física.

Repetidores

- Em redes Ethernet que operavam com cabo coaxial, tínhamos a opção de utilizar um elemento de rede, chamado repetidor que atuava no nível físico para amplificar o sinal elétrico (restaurar o sinal atenuado) e estender o alcance do barramento da rede limitado a 185 metros.
- Com o advento do cabeamento com par trançado, esse tipo de equipamento deixou de ser utilizado, já que os hubs são capazes de realizar essa função.
- Existem hoje, hubs que possuem internamente, a função do repetidor, sendo esses hubs chamados de hubs ativos.
- Ligando segmento de rede em barramento.

- O termo Hub é um termo genérico usado para definir qualquer tipo de dispositivo concentrador.
- Um dispositivo concentrador de conexões, responsáveis por centralizar a distribuição dos quadros de dados em redes estrela.
- Todo Hub é um repetidor, mas nem todo repetidor é um Hub.
- Replica em todas as suas portas as mensagens recebidas das máquinas da rede.
- Se uma máquina envia um quadro de dados para outra, todas as demais máquinas recebem esse quadro ao mesmo tempo.

- Redes Ethernet ligadas em estrela não possuem qualquer diferença em termos de funcionamento de uma rede Ethernet ligada em barramento, do ponto de vista do tráfego de dados.
- Faz o papel de um barramento lógico.
- Ao receber uma mensagem numa porta, faz o Broadcasting para todas as portas, ou seja, transmite a mensagem para todas as portas, simulando o barramento compartilhado com cabo.
- O Hub fica ocupado enquanto duas máquinas estão se comunicando (uma enviando quadro de dados para outra).

- Por ser um repetidor um Hub opera na camada física.
- Não tem como interpretar os quadros de dados que recebe e envia e, por isso, não sabe os endereços das placas de rede das máquinas ligadas a ele.
- Um Hub não possui a capacidade de aumentar o desempenho da rede, como ocorre com o switches.

Facilidade de se identificar um defeito:

- isolar problemas que ocorrem nos
- equipamentos ou cabos de uma
- rede local, já que se a rede inteira
- continua funcionando, somente a máquina
- que está com o cabo defeituoso é que
- deixa de funcionar.

- Como cada equipamento de uma local é ligado numa forma de estrela, no caso de falha de um equipamento ou cabo, não ocorre interferência nos outros.
- Detecta-se e isola-se defeitos com mais segurança.
- Isto permite a visualização individual dos pontos da rede local, permitindo maior agilidade na solução de problemas, diferentemente da ligação por cabo contínuo ao longo das estações.

- Pode-se ter um gerenciamento sobre a rede, visualizando-se num painel, instantaneamente, os pontos com problemas.
- Concentradores de cabos que não possuem qualquer tipo de alimentação elétrica são chamados hubs passivos.
- Exemplo:Path Panels usados nos sistemas de cabeamento estruturado.

- Hubs ativos regeneram os sinais que recebem de suas portas, antes de enviá-lo para todas as portas.
- Hubs gerenciáveis são os que permitem qualquer tipo de monitoramento.
- O monitoramento é feito via software.
- Podem detectar falhas e fornecer relatórios estatísticos.

- Hubs empilháveis (stackable) permitem a ampliação do seu número de portas.
- Possuem uma porta especial que permite a conexão entre dois ou mais hubs.
- Essa conexão especial faz com que os hubs sejam considerados pela rede um só hub e não hubs separados.

- Em princípio, os hubs só podem conectar máquinas que estejam se comunicando com ele, numa mesma velocidade.
- Existem Hubs de velocidade múltipla:
 - (100 Mbps / 10 Mbps)

- Devido ao grande número de mudanças de local de equipamento, que podem ocorrer numa rede, dentro de uma empresa, o uso de cabeamento estruturado com hubs se mostra bastante eficiente, rápido e econômico nas mudanças.
- Hubs distantes podem ser interligados com fibra ótica, desde que o hub seja apropriado a conectar essas fibras.
- Também podem ter portas apropriadas para ligações FDDI, ATM, Token-Ring e outras. Neste caso são considerados hubs de grande porte, chamados de hubs multiprotocolos.
- São instalados juntamente com um Path Panel, quando são utilizados em instalações com grande número de máquinas.

- Regras de Segmentação para Redes Ethernet:
 - 10 Mbps, 100 Mbps, 1000Mbps
- Limite de Conexões
 - Hubs operando a 10 Mbps.
 - Hubs operando a 100 Mbps
 - Hubs operando a 1000 Mbps

Pontes (Bridges)

- Com um repetidor, se ampliava a rede, resolvendo-se apenas o problema da atenuação do sinal.
- Diversos segmentos poderiam ser montados, mas a rede era considerada uma só.
- São equipamentos usados para interconectar duas redes redes (dois segmentos), mas isolando o tráfego de ambas.
- Supondo que tenhamos uma rede local com muitas estações ligadas a um mesmo barramento e desejamos dividi-la em duas partes para aliviar o tráfego no barramento.
- Neste caso, colocávamos uma ponte entre os dois segmentos.

Pontes (Bridges)

- Atualmente, se usa hubs para substituir logicamente a rede local física em barramento, assim a segmentação é melhor feita através de switches.
- A função da ponte é deixar passar para o outro segmento somente as mensagens endereçadas a ele.
- Com isto, temos o tráfego menor no barramento, pois as mensagens de ambos os segmentos não concorrem mais juntos no mesmo barramento.
- Isolam o tráfego de cada rede, evitando o compartilhamento total do barramento por ambas, evitando colisões e aumentando a performance.
- É mais simples que um roteador. Uma ponte trabalha na camada de enlace ao passo que um roteador trabalha na camada de rede.

Pontes (Bridges)

- Detectam automaticamente os endereços MAC das estações (que vem na placa de rede das mesmas) que existem nas duas redes.
- Esses endereços são colocados em uma tabela por meio de um algoritmo, chamado "spanning-tree" e é por meio dessa tabela que a ponte deixa passar para o outro segmento somente os quadros Ethernet que possuem endereços MAC das estações desse segmento.
- A ponte é independente de protocolo, pois lê apenas o endereço do quadro de enlace, sem ler o conteúdo desse quadro.
- Pode-se usar pontes para se interligar duas redes distantes por meio de modems.

- É um equipamento que tem por finalidade fazer a interligação de hubs.
- Se uma rede, antes composta de micros e hubs, cresceu, há a necessidade de um switch para segmentar a rede e melhorar a performance como um todo.
- Atua na camada de enlace.
- O switch toma a mensagem da camada de enlace, lê o endereço de destino, e envia a mensagem para a porta do segmento de rede no qual o endereço de destino, existente na mensagem, está alocado.

- O switch trabalha de forma diferente de um hub. O hub compartilha a velocidade entre todas as estações de forma idêntica (como o barramento é compartilhado de forma idêntica)
- O Switch dedica a mesma velocidade para todas as estações, mas a velocidade não é compartilhada, é dedicada.
- O switch funciona como uma matriz de comutação de alta velocidade, feita em nível de hardware (o que é mais rápido que por software).
- Essa comutação é baseada no endereço MAC (Medium Access Control – subcamada da camada de enlace, de acesso ao meio físico), e é controlada por meio de endereços das suas portas, por um algoritmo especializado.

- O desempenho interno de um switch ou tráfego de mensagens na matriz de comutação é na faixa de Gigabits/segundo.
- Normalmente, os dados carregados dentro de um frame Ethernet são de protocolos IP (TCP/IP) ou IPX (Netware).
- O switch é um equipamento que permite que vários segmentos de redes se comuniquem com outros segmentos, ao mesmo tempo, dois a dois.
- Como um switch possui várias portas conectadas de forma matricial, é possível ligarmos vários segmentos de redes Ethernet, permitindo que todos os segmentos se comuniquem entre si isoladamente.

Velocidade:

 São classificados de acordo com sua velocidade de operação: 10 Mbps, 100 Mbps e 1000 Mbps.

Ligação:

 Os switches, por causa de seu alto custo, quase não são usados sozinhos. Em geral são usados ligados a Hubs.

- · Os Hubs possuem limitação quanto à quantidade de ligações.
- Os switches, no entanto, podem ser ligados a qualquer uma das portas do hub, já que os switches são considerados pelo Hub como se fosse um microcomputador.
- É possível que um segmento de rede de 10 Mbps, se comunique com um servidor ligado ao switch. No caso, o servidor que pode atender a diversos segmentos de 10 Mbps, pode estar ligado a 100 Mbps ao switch, permitindo assim, atender a vários segmentos, com alta performance, porém atendendo os segmentos com seus tráfegos de rede isolados.

Tipos de Switches

Frame Switch

 Faz as conexões (estabelecimento de links entre dois pontos) em arquiteturas de transmissão por frame (quadro da camada de enlace) com velocidades de 10 Mbps e 100 Mbps. Opera com frames padronizados de tamanhos variáveis tipo Ethernet ou Token-Ring.

Cell Switches

- Vimos switches que tratam exclusivamente de redes locais.
- Existem os Cell Switches que funcionam com base na tecnologia ATM, que operam no conceito de células e podem ser utilizados no ambiente de LANs.

- São pontes que atuam na camada de rede.
- É um equipamento que trabalha com um protocolo da camada de rede, convertendo o protocolo de uma rede para outra de protocolo distinto.
- A diferença entre uma ponte e um roteador é que o endereçamento que a ponte utiliza é o da camada de enlace (MAC) das placas de rede, que é um endereçamento físico.
- O roteador, por operar na camada de rede, usa o endereçamento dessa camada, que é um endereçamento lógico.
- No caso TCP/IP, esse endereçamento é o endereço IP.

- Impossibilidade de endereços MAC na Internet.
- A conversão do endereço lógico (IP) para o endereço físico (MAC) é feita somente quando o pacote chega à rede de destino.
- Endereços lógicos são mais fáceis de serem organizados.
- São capazes de fragmentar os pacotes recebidos, e isto faz com que possa interligar duas redes com arquiteturas distintas.
- Ao receber um frame de dados que vai ser transmitido, verifica o seu endereçamento em nível de rede, fazendo a conversão de protocolo, se necessário. Um pacote de dados é transmitido para o endereço de destino, escolhendo o melhor caminho (rota na WAN).

- Interfaces LAN:
 - Ethernet, Token-Ring, FDDI
- Roteando protocolos:
 - IP, IPX

- Consegue separar topologias diferentes, tratando protocolos diferentes, roteando ou escolhendo o melhor caminho para o tráfego de pacotes de um ponto ao outro, ao longo de uma rede com diversos nodos (roteadores).
- Mais apropriados para redes WAN.
- Retransmite os pacotes para as redes e não para as estações finais.
- Uma estação remetente de pacote deve conhecer, obrigatoriamente, o endereço do primeiro roteador ao qual deve enviar o pacote.
- Operam com tabelas de rotas, as quais são atualizadas por um método apropriado, ou seja, um protocolo da camada de rede que contém a informação de roteamento.

- Dependem do protocolo utilizado para poderem interpretar as informações e poder roteá-las na rede.
- A diferença entre um roteador e outro, é a quantidade de protocolos que um ou outro opera. Um roteador trata diversos protocolos e consegue interligar várias redes diferentes.

Roteadores - características

- Três usos:
 - Conexão Internet
 - Conexão de LANs
 - Conexões de WANs
- Equipamento que interliga duas ou mais redes.

- Interligação de uma rede local com a Internet.
- O roteador típico para esse usos deve possuir basicamente duas portas:
 - uma porta WAN
 - uma porta LAN

- A porta WAN recebe o cabo que vem do backbone da Internet.
- Normalmente, essa conexão é feita por um conector V.35 (34 pinos).
- A porta LAN é conectada à rede local (saída Ethernet), já que a maioria das redes locais usa essa arquitetura.
- Interligação de duas redes locais: dividir uma rede grande em segmentos menores.
- Aplicação: Redes locais pertencentes a uma mesma empresa.
- Não resolve o problema de empresas com filiais em vários estados.

- Interligação de duas redes locais: dividir uma rede grande em segmentos menores.
- Aplicação: Redes locais pertencentes a uma mesma empresa.
- Não resolve o problema de empresas com filiais em vários estados.
- A solução para isso é fazer uso de uma rede pública com as oferecidas pelas companhias de telecomunicações (Embratel, Telemar, Brasil Telecom, ...), que irá interligar duas cidades distantes através de uma conexão WAN.

- Cada uma das portas do roteador deve receber um endereço lógico.
- No caso do TCP/IP, um número IP, que esteja em uma rede diferente dos endereços colocados nas outras portas.
- Na hora de escolher um roteador, devemos levar em consideração algumas características básicas:
- Número de portas WAN.
- Número de portas LAN

- Velocidade das portas WAN
- Velocidade das portas LAN
- Tolerância a Falhas
- Redundância
- Balanceamento de Carga

- Alguns roteadores possuem um recurso chamado de redundância de call-up.
- Esse recurso permite ligar um roteador a um modem através de um cabo serial, e no caso do link WAN falhar, o modem pode discar para um provedor e se conectar (normalmente a 33.600 bps), mantendo a conexão da rede local com a Internet no ar.

- Tolerância a Falhas: através deste recurso, o roteador continua operando mesmo quando ele se danifica.
- Redundância: significa que o roteador tem na realidade dois roteadores dentro dele. Caso o primeiro falhe, o segundo entra em ação.
- Balanceamento de Carga: existem roteadores que podem gerenciar duas ou mais conexões entre ele e outros roteadores, otimizando as conexões. Essa característica é utilizada em conexões entre filiais de empresas.

- Configuração de Roteamento
 - default gateway: porta de saída
 - usada quando o roteador não conhece o endereço de destino de um pacote.
 - cada roteador poderá usar um default gateway.

- Na rede 1 o gateway deve ser configurado para 192.168.0.1, que é a porta LAN do roteador 1. Esse roteador usa como gateway o endereço 10.0.0.1, que é o provedor no qual ele está ligado.
- Já a rede 2 tem como gateway o endereço 173.23.1.1, que é a porta LAN do roteador 2. Este, por sua vez, usa como default gateway o endereço 192.168.0.1, que é a porta LAN do roteador 1.

- Quando uma máquina da rede 2 enviar um pacote, o roteador 2 irá analisá-lo para enviá-lo ao destino. Se o pacote é destinado à própria rede 2, esse pacote não sai dessa rede e é encaminhado para a máquina de destino.
- Caso o pacote possua um endereço de destino desconhecido, o roteador irá encaminhá-lo para o seu default gateway, que é a porta LAN do roteador 1.

- O roteador 1 analisará o pacote. Se esse pacote possui endereço conhecido, isto é, é um pacote destinado à rede 1, então o roteador 1 o entrega.
- Caso contrário, o roteador 1 enviará o pacote para o seu default gateway (o provedor).
- Esse procedimento continua até o pacote ser entregue ao destino.

- Se a rede n\u00e3o usa protocolo de roteamento, teremos que configurar manualmente a tabela de roteamento de cada roteador.
- A tabela é simples: possui uma coluna informando a rede de destino. E outra coluna informando qual é o gateway para acessá-la.

Tabela do Roteador 1

DESTINO	GATEWAY
0.0.0.0	10.0.0.1
127.0.0.1	127.0.0.1
192.168.0.0	192.168.0.1
172.23.1.0	172.23.1.1

Tabela do Roteador 2

DESTINO	GATEWAY
0.0.0.0	192.168.0.1
127.0.0.1	127.0.0.1
172.23.1.0	172.23.1.1

- O endereço 0.0.0.0 é usado para representar o default gateway.
- O endereço 127.0.0.1 é um endereço de loopback, usado em situações de teste, e que deve ser configurado.
- O endereço IP, onde o último byte é seja 0, são usados para endereçar uma rede.

- Na figura o endereço da rede 1 é 192.168.0.0 e a rede 2 é 172.23.1.0.
- Não é necessário, no roteador 2, configurar um gateway para o endereço 192.168.0.0. O roteador 2 já está configurado para enviar qualquer pacote desconhecido para o endereço 192.168.0.1. Isso inclui endereços pertencentes à rede 192.168.0.0.

Dúvidas

- Conteúdo
 - Classroom
 - https://classroom.google.com/h
- Dúvidas
 - wagnerglorenz@gmail.com

Referências Bibliográficas

- Tanembaum, A. S. Redes de Computadores, Tradução da 4ª Edição. Rio de Janeiro: Campus, 2003.
- Tanembaum, A. S. Redes de Computadores, Tradução da 5^a Edição. Rio de Janeiro: Pearson, 2011. http://ulbra.bv3.digitalpages.com.br/users/publications/9788576059240/pages/-18