AIS 선박 데이터 메타데이터

1. 개요

이 문서는 2020년 3월부터 2021년 2월까지 대한민국에서 수집된 AIS(자동 식별 시스템) 데이터의 메타데이터로, 데이터는 한국 표준시(KST) 기준 1초 간격으로 기록돼 있음. 추가로, 데이터의 범위는 VTS(관제센터) 기준으로 한반도 전체의 선박을 포함함.

2. 데이터 스키마

AIS 데이터셋은 다음과 같은 속성들로 구성돼 있음.

칼럼명	데이터 타입	설명
mmsi	TEXT	선박의 고유 식별자(해상 이동 무선 식별번호)
timestamp	timestamp	AIS 신호 전송의 날짜와 시간(KST, 초 단위)
latitude	REAL	선박위 북위 좌표(WGS-84 기준)
longtitude	REAL	선박의 동경 좌표(WGS-84 기준)
sog	REAL	대지 속도(노트 단위)
cog	REAL	대지 방위각(0-360도)
heading	REAL	선박의 선수 방향(진북 기준, 0-360도)

3. 추가 메타데이터 고려 사항

가. 공간 범위 : 대한민국 영해

나. 시간 범위 : 2020년 3월 1일 - 2021년 2월 28일

다. 시간대 : 한국 표준시(UTC+9)

라. 데이터 빈도 : 최소 1초 간격, 동일 시간대의 다른 MMSI 데이터 존재 가능

마. 좌표 참조 시스템: WGS-84

바. 데이터 출처 : 대한민국 해역에서 운항하는 선박의 AIS 트랜스폰더

4. 데이터 품질 및 전처리

가. 데이터 정제 : 중복되거나 오류가 있는 기록 제거 (예: 유효하지 않은 위도, 경도)

나. 이상치 탐지 : 통계적 방법(예: 박스 플롯) 및 IQR을 활용한 비정상적인 SOG 및 COG 값 탐지

다. 데이터 저장 형식 : 효율적인 쿼리 및 분석을 위해 PostgresSQL RDBMS 사용

5. 적용 분야

가. 자동 경로 예측 : 실시간 경로 예측을 위한 딥러닝 모델 개발

나. AIS 데이터 마이닝 : 주기, 분기별로 선박 AIS 데이터의 패턴 발굴