Heat Transfer: Conduction

Introduction to the topic of heat conduction

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning Goals

Introduction to heat conduction

- Steady state and transient heat conduction
- Heat conduction with heat source and sink

Fourier's law

- Calculation of heat flow inside an object
- ► Temperature distribution inside an object

Fundamentals

Heat:

Thermal energy:

- Kinetic energy of random and undirected molecular motion
- The higher the thermal energy, the higher the molecular motion

Heat flow: Energy transferred between two systems due to different temperatures

Temperature:

A technical measurement of the potential of thermal energy in a body

Heat conduction:

Transfer of thermal energy within a material as a result of a temperature difference through

- Molecular collisions for gas/liquid forms
- Lattice vibrations for solids
- Conduction by electron movement (e.g. for metals)

without thermal energy, molecules have no motion

Heat conduction in solids by vibration of atoms

https://www.tec-science.com/de/thermodynamik-waermelehre/waerme/warmeleitung-in-feststoffen/

Heat conduction: Classification

Steady state heat conduction:

Time independent

Time constant temperature distribution within the object

Unsteady heat conduction:

Time dependent

Temporal temperature change at any fixed location in the body

Heat conduction with source or sink:

Inconstant temperature distribution within the object

Questions:

- What amount of heat flows through the metal rod from the hot flame to the cold side?
- ▶ How does the temperature change in the metal rod between the hot and cold sides?

Analogy:

Electrical current \iff heat flow

$$Current = \frac{Potential \ difference}{Resistance}$$

$$Heat Flow = \frac{Temperature difference}{Heat resistance}$$

Parameters influencing the heat flow:

- Temperature difference ΔT [K]
- Material property
 (Thermal conductivity λ [W/mK])
- Cross-sectional area through which the heat flow passes (Area A [m²])
- The distance between heat source and heat sink $(\Delta x \text{ [m]})$

How is the heat flow influenced?		Q
► Temperature difference <i>ΔT</i> [K]	1	1
 Material property (Thermal conductivity λ [W/mK]) 	1	1
Cross-sectional area through which the heat flow passes (Area A [m²])	1	1
The distance between heat source and heat sink (Δx [m])	1	↓

How is the heat flow influenced?

Q

Temperature difference ΔT [K]

- Material property
 (Thermal conductivity λ [W/mK])
- 1

- Cross-sectional area through which the heat flow passes (Area A [m²])
- The distance between heat source and heat sink $(\Delta x \text{ [m]})$

Heat flow and temperature:

 \dot{Q}_x : Heat flow in 1-D [W]

 $\frac{\Delta T}{\Delta T}$: Temperature gradient [K/m]

Fourier's law:

$$\dot{Q}_x =$$

How is the heat flow influenced?

Q

Temperature difference ΔT [K]

- 1
- Material property
 (Thermal conductivity λ [W/mK])

- Cross-sectional area through which the heat flow passes (Area A [m²])
- The distance between heat source and heat sink $(\Delta x \text{ [m]})$
- J

Heat flow and temperature:

 \dot{Q}_x : Heat flow in 1-D [W]

 $\frac{\Delta T}{\Delta x}$: Temperature gradient [K/m]

Fourier's law:

$$\dot{Q}_{x} = -A \lambda \frac{\Delta T}{\Delta x}$$

Fourier's law:

$$\dot{Q}_x = -A \lambda \frac{\Delta T}{\Delta x}$$

Explanation:

 \dot{Q}_x : Heat flow in 1-D [W]

A: Area $[m^2]$

 λ : Thermal conductivity [W/mK]

 $\frac{\Delta T}{\Delta x}$: Temperature gradient [K/m]

Fourier's law:

$$\dot{Q}_x = \bigcap A \lambda \left(\frac{\Delta T}{\Delta x} \right)$$

Explanation:

 \dot{Q}_x : Heat flow in 1-D [W]

A: Area $[m^2]$

 λ : Thermal conductivity [W/mK]

 $\frac{\Delta T}{\Delta T}$: Temperature gradient [K/m]

Example: Heat conduction during cooking

Fourier's law:

Heat flow = - Area * Thermal conductivity * Temperature gradient

$$\dot{\mathbf{Q}}_{x} = -A \lambda \frac{\Delta T}{\Delta x}$$

Influence of material properties

Copper:

Very high thermal conductivity

$$\lambda_{\text{Cu}} = 350 \frac{W}{m \, K}$$

Aluminium:

Good thermal conductivity

$$\lambda_{\text{Al}} = 236 \frac{W}{m \, K}$$

Stainless steel:

Low thermal conductivity

$$\lambda_{\text{Steel}} \approx 15 \frac{W}{m \, K}$$

Transient processes: When should I put the milk in the coffee?

Add milk before drinking?

Add milk immediately after brewing?

Transient processes: When to add milk?

Transient processes: When to add milk?

Transient processes: When to add milk?

Human perception of temperature and heat flow

Heat flow

Humans do not feel temperatures, people feel heat flows

$$\dot{Q} = -A \lambda \frac{dT}{dx}$$

Cold tap water feels warmer when washing hands after a winter walk

Perception of temperatur

Why does metal feel warmer or colder than wood?

 $\lambda_{\text{Wood}} \ll \lambda_{\text{Metal}}$

At room temperature the door handle feels colder than the wood door

Comprehension questions

What is the driving potential of heat conduction?

Which three influencing variables determine a heat flow transferred by heat conduction according to Fourier's law?

Why must the temperature gradient in a positive coordinate system have a negative sign?

Which material property is decisive for heat conduction?

Transient heat conduction with source

Heating of a solid body

