Amendments to the Claims

This listing of claims replaces all prior versions, and listings, of claims in this application.

Listing of Claims:

- (Canceled)
- (Currently Amended) A method for avoiding interference during operation of a
 first RF device employing a first frequency hopping spread spectrum protocol, in conjunction
 with the operation of at least one other RF device employing a different communications
 protocol, comprising The method of claim 1;

identifying an interference from the at least one other RF device in the radio communication band; and

adjusting of the first device to avoid overlap with the at least one other device, wherein hopping frequencies employed by the first device cluster in one or more frequency ranges,

wherein the identifying an interference comprises:

selecting a plurality of test channels in accordance with a channel structure of the interferer;

selecting a frequency that is potentially occupied by an interferer that is the source of the interference in each selected channel;

measuring a received signal strength associated with each selected channel; and identifying the interferer in accordance with the measured received signal strength indicators

(Currently Amended) The method of <u>claim 2</u> elaim 1, wherein the identifying an
interference comprises determination <u>further comprising determining</u> of a bit error rate <u>or</u> of
frame error rate.

- (Original) The method of claim 2, wherein the at least one other RF device includes a fixed frequency duplex device.
- (Original) The method of claim 2, wherein the at least one other RF device includes a second device, wherein the second device operates according to the IEEE 802.11 protocol.
- (Original) The method of claim 2, wherein the at least one other RF device includes a third device, wherein the third device employs a second frequency hopping spread spectrum protocol.
- (Previously Presented) The method of claim 6, wherein the first device and the third device operate in the same time domain,

wherein the adjusting the frequency of operation comprises intelligent frequency hopping employed by the first device. Serial No.: 10/786,128 VTX0314-US Page 4

Art Unit: 2618

8. (Original). The method of claim 6, further comprising:

measuring a received signal strength indicator associated with the third device, by the

first device:

converting the received signal strength indicator into interfering signal transmit timing

associated with the third device to estimate transmit timing associated with the third device; and

adjusting transmit/receive timing of the first device to avoid interference between the first

device and the third device, whereby the first device and the third device do not operate in the

same time domain

9. (Previously Presented) The method of claim 6, wherein the at least one other RF

device further includes a second device, wherein the second device operates in a frequency band

according to the IEEE 802.11 protocol.

10 (Previously Presented) The method of claim 9, wherein the first device and the

third device operate in the same time domain, and wherein the first device selects the hopping

frequencies that cluster in the one or more frequency ranges, wherein the one or more frequency

ranges does not substantially overlap the frequency band employed by the second device.

11. (Previously Presented) The method of claim 10, wherein the third device includes intelligent frequency hopping capability, whereby the third device selects hop frequencies that cluster in a second frequency range, wherein the second frequency range does not substantially overlap the one or more frequency ranges or the frequency band employed by the second device.

12. (Original) The method of claim 9, further comprising:

measuring a received signal strength indicator associated with the third device, by the first device:

converting the received signal strength indicator into interfering signal transmit timing

associated with the third device to estimate transmit timing associated with the third device; and adjusting transmit/receive timing of the first device to avoid interference between the first device and the third device, wherein the adjusting the frequency of operation comprises intelligent frequency hopping employed by the first device, whereby the first device and the third device do not operate in the same time domain, and whereby the first and the third device do not substantially overlap the frequency band employed by the second device.

(Currently Amended) A system comprising:

a first RF module, wherein the first module employs a first frequency hopping spread spectrum protocol;

at least one additional RF module:

a first protocol stack and transcoder coupled to the first module; and

a system microcontroller in communication with the first module and the at least one additional module, wherein the microcontroller receives and sends instructions through the first module protocol stack and transcoder to adjust the operation frequencies employed by the first module to avoid interference identified from with the at least one other RF module, wherein hopping frequencies employed by the first RF module cluster in one or more frequency ranges, wherein the interference is identified by:

selecting a plurality of test channels in accordance with a channel structure of the interferer.

selecting a frequency that is potentially occupied by an interferer that is the source of the interference in each selected channel.

measuring a received signal strength associated with each selected channel, and identifying the interferer in accordance with the measured received signal strength indicators.

14. (Original) The system of claim 13, wherein the at least one additional RF module comprises a second module, and wherein the second module employs a second frequency hopping spread spectrum protocol.

- 15. (Currently Amended) The system of claim 14, wherein the wherein-the microcontroller receives and sends instructions through the second module protocol stack and transcoder to adjust the operation frequencies employed by the second module to avoid interference with the first RF module.
- 16. (Original) The system of claim 13, wherein the at least one additional RF module comprises a third module employing an 802.11 protocol, wherein the microcontroller receives and sends instructions through the first module protocol stack and transcoder to adjust the operation frequencies employed by the first module to avoid interference with the third RF module.
- 17. (Original) The system of claim 15, wherein the at least one additional RF module further comprises a third module employing an 802.11 protocol, wherein the microcontroller receives and sends instructions through the first module protocol stack and transcoder to adjust the operation frequencies employed by the first module to avoid interference with the frequency band associated with the third RF module.

18. (Original) The system of claim 17, wherein the microcontroller receives and sends instructions through the second module protocol stack and transcoder to adjust the operation frequencies employed by the second module to avoid interference with the frequency band associated with the third RF module.

- 19. (Previously Presented) The system of claim 18, wherein the microcontroller receives and sends instructions through the first module protocol stack and transcoder to adjust the operation frequencies employed by the first module, wherein the first module selects hop frequencies from one or more frequency ranges that does not substantially overlap the band employed by the third RF module.
- 20. (Previously Presented) The system of claim 19, wherein the microcontroller receives and sends instructions through the second module protocol stack and transcoder to adjust the operation frequencies employed by the second module, wherein the second module selects hop frequencies from a second frequency range that does not substantially overlap the one or more frequency ranges or the frequency band employed by the third RF module.
 - 21. (Currently Amended) An RF communications device comprising:
- a first RF transceiver employing a frequency hopping spread spectrum protocol, wherein the transceiver includes capability of detection of an interferer employing a different RF communications protocol;

a first frequency hopping spread spectrum protocol stack and transcoder coupled to the first RF transceiver:

and a microcontroller in communication with the protocol stack, wherein the microcontroller facilitates the clustering into one or more frequency ranges of a set of channels employed by the first transceiver, the one or more frequency ranges not overlapping a set of channels employed by at least one interferer employing a different RF communications protocol,

wherein the detection of an interferer comprises:

selecting a plurality of test channels in accordance with a channel structure of the interferer.

selecting a frequency that is potentially occupied by an interferer that is the source of the interference in each selected channel,

measuring a received signal strength associated with each selected channel, and identifying the interferer in accordance with the measured received signal strength indicators.

22. (Original) The device of claim 21, further including:

a second RF transceiver in communications with the microcontroller, wherein the second RF transceiver employs a communications protocol different from the first transceiver.