Линейни обикновени диференциални уравнения. Уравнения с постоянни коефициенти.

І. Уравнения с променливи коефициенти.

Разглеждаме линейното хомогенно обикновено диференциално уравнение (ОДУ) от n-ти ред

(1)
$$x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x = 0.$$

Коефициентите $a_i(t)$ са дефинирани и непрекъснати за $t \in \mathbb{R}$, а x = x(t) е неизвестната функция.

Ше изследваме решенията на уравнението (1), като го сведем към система от nлинейни ОДУ от първи ред. За целта полагаме

$$x_1 := x, \quad x_2 := \dot{x}, \dots, \quad x_n := x^{(n-1)}.$$

Новите променливи удовлетворяват линейната система

(2)
$$\begin{vmatrix} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \dots \\ \dot{x}_n = -\sum_{k=1}^n a_k x_{n+1-k} . \end{vmatrix}$$

Ако

$$A(t) := \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 \\ -a_n(t) & -a_{n-1}(t) & -a_{n-2}(t) & \dots & -a_1(t) \end{pmatrix}$$

(над диагонала стоят единици), то системата (2) приема вида

(3)
$$\dot{y} = A(t)y, \qquad y = (x_1, x_2, \dots, x_n)^t.$$

Уравнението (1) и системата (2) са еквивалентни: на всяко решение x=arphi(t) на уравнението (1), съответства решение $y = \psi(t) = (\varphi(t), \dot{\varphi}(t), \dots, \varphi^{(n-1)}(t))^t$ на системата (3). Обратно, на всяко решение $y=\psi(t)=\left(\psi_1(t),\ldots,\psi_n(t)\right)^t$ на системата (3) съответства решение $x = \psi_1(t)$ на уравнението (1).

Теорема 1. Нека елементите $a_{ij}(t)$ на матрицата A(t) са дефинирани и непрекоснати функции за $t \in \mathbb{R}$. Тогава, за произволни начални условия $(t_0, \xi) \in \mathbb{R} \times \mathbb{R}^n$, задачата на Коши за системата (3)

(4)
$$\dot{y} = A(t) y, \qquad y(t_0) = \xi$$

има единствено решение y(t), дефинирано за всяко $t \in \mathbb{R}$.

Без доказателство!

Да означим с Y множеството от решенията на системата (3). Основният резултат в теорията на линейните диференциални уравнения е следната теорема.

Теорема 2. Множеството Y от решенията на (3) е линейно пространство, изоморфно на линейното пространство \mathbb{R}^n .

Доказателство.

• Y е линейно пространство. Наистина, нека y_1 и y_2 са две решения на системата (3), а c_1 и c_2 са константи. Тогава

$$\frac{d}{dt}(c_1y_1+c_2y_2) = c_1\dot{y}_1+c_2\dot{y}_2 = c_1A(t)y_1+c_2A(t)y_2 = A(t)(c_1y_1+c_2y_2),$$

т.е. $c_1y_1 + c_2y_2$ също е решение.

- Дефинираме изображението $\rho: Y \to \mathbb{R}^n$, съпоставящо на всяко решение $y \in Y$ неговата стойност в момента $t = 0: \rho y = y(0)$. Всъщност, както се вижда от изложеното по-долу, на решение y можем да съпоставим неговата стойност $y(t_0)$ за произволно $t_0 \in \mathbb{R}$; важното е, че това решение е единствено.
 - Ще докажем, че ρ е изоморфизъм на линейни пространства.
 - ρ е линейно: ако $y_1,y_2\in Y$, а $\alpha,\beta\in\mathbb{R}$, то $\alpha y_1+\beta y_2$ също е от Y:

$$\rho(\alpha y_1 + \beta y_2) = (\alpha y_1 + \beta y_2)(0) = \alpha y_1(0) + \beta y_1(0) = \alpha \rho y_1 + \beta \rho y_2.$$

- ρ е сюрективно (върху), т.е. образът е цялото пространство \mathbb{R}^n : за всяко $\xi \in \mathbb{R}^n$ съществува решение $y \in Y$ с начално условие $y(0) = \xi$, дефинирано за всяко $t \in \mathbb{R}$ (теорема 1).
- ρ е инективно, т.е. $\operatorname{Ker} \rho = \{y(t) \equiv 0\}$: съгласно теорема 1, задачата на Коши (4) с нулево начално условие y(0) = 0 притежава единственото решение $y(t) \equiv 0$.

Следователно,
$$\rho$$
 е изоморфизъм и Y е крайномерно и изоморфно на \mathbb{R}^n .

Дефиниция. Фундаментална система от решения на (3) наричаме който и да е базис $\{Y_1(t), Y_2(t), \dots, Y_n(t)\}$ на линейното пространство от решения Y.

Такива базиси съществуват – вземаме която и да е линейно независима система от начални условия $Y_k(0) \in \mathbb{R}^n, k=1,\dots n$. Тогава съответните решения $Y_k(t):=y(t)$ на задачата на Коши (4) $\dot{y}=A(t)y$, $y(0)=Y_k(0)$ са линейно независими и образуват фундаментална система от решения.

II. Уравнения с постоянни коефициенти.

Разглеждаме уравнения от вида

(5)
$$x^{(n)} + a_1 x^{(n-1)} + \ldots + a_n x = 0.$$

Тук a_i са реални константи, а x=x(t) е неизвестната функция $(t \in \mathbb{R})$. Интересуваме се от реалните решения.

Като частен случай на уравненията с променливи коефициенти знаем, че пространството от решения на (5) е n-мерно. За разлика от тях тук можем изпишем фундаменталната система от решения $\{\phi_1(t),\ldots,\phi_n(t)\}$ в явен вид (а следователно и общото решение), стига да можем да решим алгебричното уравнение

(6)
$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0,$$

наричано още характеристично уравнение на (5).

Фундаментална система решения на (5) намираме по следния алгоритъм.

Нека $\lambda_1, \ldots, \lambda_n$ са корените на характеристичното уравнение. Между тях може да има кратни, а ако λ е комплексен корен, то корен е и комплексно спрегнатият му $\overline{\lambda}$. На тези корени съответстват линейно независими решения на (5). Съответно:

- на прост реален корен λ на (6) съответства частното решение $e^{\lambda t}$.
- на s-кратен реален корен λ съответстват s частни решения

$$e^{\lambda t}$$
, $te^{\lambda t}$, ..., $t^{s-1}e^{\lambda t}$.

– на двойка комплексно спрегнати прости корени $\lambda=\alpha+i\beta$ и $\overline{\lambda}=\alpha-i\beta$ съответства двойка реални решения

$$e^{\alpha t}\cos\beta t$$
, $e^{\alpha t}\sin\beta t$,

– ако $\lambda=\alpha+i\beta$ е s–кратен корен, то и $\overline{\lambda}=\alpha-i\beta$ е s–кратен корен. На тези 2s корена съответстват 2s реални решения

$$e^{\alpha t}\cos \beta t$$
, $te^{\alpha t}\cos \beta t$, ..., $t^{s-1}e^{\alpha t}\cos \beta t$,
 $e^{\alpha t}\sin \beta t$, $te^{\alpha t}\sin \beta t$, ..., $t^{s-1}e^{\alpha t}\sin \beta t$.

Фундаменталната система от решения получаваме като запишем заедно получените общо n (линейно независими) реални решения $\{\phi_1(t),\ldots\}=\{e^{\lambda_1 t},\ldots\}$.

Общото решение на диференциалното уравнение (5) е

(7)
$$x(t) = C_1 \phi_1(t) + C_2 \phi_2(t) + \ldots + C_n \phi_n(t),$$

където C_i са произволни реални константи.

За пълнота привеждаме следното

Доказателство на теорема 1.

- (i) Ще докажем, че за всяко $T > t_0$, решението y(t) се продължава и е единствено за $t \in [t_0, T]$. По аналогичен начин следва и съществуване и единственост на y(t) за $t \in [T, t_0]$ при $T < t_0$. Тези две условия означават еднозначна продължимост на y(t) върху цялата права $t \in \mathbb{R}$.
- (ii) Тъй като теоремата за съществуване и единственост (TCE) изисква оценка на дясната част A(t)y в (3), то ще използваме неравенството

$$|Ay|^2 = \langle Ay, Ay \rangle = \sum_{i=1}^n (a_{i1}y_1 + \ldots + a_{in}y_n)^2 \le \sum_{i,j=1}^n a_{ij}^2 |y|^2,$$

изпълнено за всяка $(n \times n)$ -матрица A и за всеки n-мерен вектор y.

(iii) Фиксираме $T>t_0$ и дефинираме константа

$$L := \sup_{t_0 \le t \le T} \left(\sum_{i,j=1}^n a_{ij}^2(t) \right)^{\frac{1}{2}}.$$

Тъй като интервалът $[t_0,T]$ е компактен, а $a_{ij}(t)$ са непрекъснати, то L е коректно определена положителна константа и

$$|A(t)y| \le L|y| \qquad \forall t \in [t_0, T] \quad \forall y \in \mathbb{R}^n.$$

(iv) Ще докажем ТСЕ за (4) за $t \in [t_0, T]$, като на няколко стъпки приложим ТСЕ за подинтервалите

$$[t_0, t_0 + \frac{1}{2L}], [t_0 + \frac{1}{2L}, t_0 + \frac{2}{2L}], \dots, [t_0 + \frac{k}{2L}, T]$$

с дължина 1/2L, като последният интервал има евентуално по-малка дължина. По-конкретно, ще решим (k+1) задачи на Коши

$$\dot{y} = A(t)y, \qquad y\left(t_0 + \frac{l-1}{2L}\right) = \eta_l,$$

където $t_0+\frac{l-1}{2L}\leq t\leq t_0+\frac{l}{2L}$ (или T за последния интервал), а началното условие η_l е определено от (l-1)-вото решение на задачата на Коши; $l=1,\ldots,k+1$. а $\eta_1:=\xi$.

(v) За да осъществим l-тото продължение на y(t), прилагаме TCE за конуса

$$K_l := \left\{ (t, y) : t_0 + \frac{l-1}{2L} \le t \le t_0 + \frac{l}{2L}, \ |y - \eta_l| \le (t - t_0 - \frac{l-1}{2L}) M_l \right\},$$

като константата M_l е решение на уравнението

$$L\Big(|\eta_l|+rac{M_l}{2L}\Big)=M_l, \quad \text{r.e.} \quad M_l:=2L|\eta_l|.$$

От една страна, за $(t,y) \in K_l$ имаме ограничението

$$|A(t) y| \le L |y| \le |L|\eta_l| + L |y - \eta_l| \le |L|\eta_l| + L \frac{M_l}{2L} = |M_l|.$$

Съгласно (ii), функцията A(t)y е липшицова в K_l :

$$|A(t)y^* - A(t)y^{**}| = |A(t)(y^* - y^{**})| \le L|y^* - y^{**}|$$

Условията от ТСЕ за (C_l) са изпълнени. Оттук ТСЕ е в сила за интервала $[t_0, T]$, следователно и за целия интервал $t \in \mathbb{R}$.

Теоремата е доказана.