### EE512 – Applied Biomedical Signal Processing

# Instantaneous Frequency Estimation

Adrian LUCA
Service of Cardiology, CHUV
adrian.luca@chuv.ch





#### **Specific learning outcomes:**

- Understand the theory, mathematical definition, and role of IF in signal processing.
- Distinguish and select appropriate method for IF estimation
- Assess and interpret IF estimates in real-world signal contexts.



- Many natural and man-made signals are non-stationary and exhibit time-varying frequency, amplitude or phase.
- Power spectral density (PSD) estimation is the main technique to analyze the frequency content.
- A very important requirement of all approaches for PSD estimation is that the signal has to be stationary.



**Example**: two sinusoids whose frequencies vary linearly over time, respectively from 3 to 10 Hz (signal #1) and from 10 to 3Hz (signal #2).







- ! Temporal information is lost in a PSD estimate
- ! PSD gives the false idea that there is power in range 3-10Hz for the whole duration of the signal



#### Applied example: frequency estimation in atrial fibrillation



Carto<sup>®</sup> Mapping System, Biosense Webster



Applied example: frequency estimation in atrial fibrillation



Carto<sup>®</sup> Mapping System, Biosense Webster







- The concept of the *period* is connected to the repetitiveness of phenomena or events.
- To determine the *frequency* of a periodic signal one needs to observe the signal over the whole period, that is the *frequency* is not a local feature of the signal.
- For non-stationary signals, one needs to introduce the concept of **instantaneous frequency (IF)** which accounts for the time-varying nature of the process.
- IF can be interpreted as the time evolution of the location of the spectral peak of the signal, i.e. the frequency of the sinusoid that locally fits the signal.



- As such, the underlying assumption for IF is that the signal is locally mono-component.
- This is rarely the case in practice (for instance if harmonics are present) and thus some frequency components separation (bandpass filtering) should be performed before retrieving their IFs.
- Note that this may cause problems: if indeed the frequency changes with time, how can one be sure that the filter passband always contains the IF?



- The concept of IF was firstly introduced with complex amplitude and frequency-modulated signals
- For amplitude and frequency-modulated sinusoids:

$$x(t) = a(t)\cos(\Phi(t))$$

where a(t) and  $\Phi(t)$  are time-varying amplitude and phase respectively.

• The IF was defined as the derivative of the phase with respect to time:

$$\omega(t) = \frac{d\Phi(t)}{dt}$$

• For a complex exponential  $Ae^{j2\pi ft}$ , the IF is just the frequency f. If one defines  $\Phi(t) = 2\pi f t$ , then

$$f = \Phi'(t)/2\pi$$

• Thus the instantaneous frequency of  $Ae^{j\Phi(t)}$ , with  $\phi(t)$  not necessarily a linear function of t, is defined in the same way:  $f(t) = \Phi'(t)/2\pi$ 



IF is a generalization of the definition of constant frequency, i.e. it is the rate of the change of phase angle at time *t* 



• Example on synthetic signal: sinusoid with amplitude and frequency modulation





## Approaches for instantaneous frequency estimation:

- Hilbert transform
- Teager-Kaiser operator
- Adaptive frequency tracking



- There is a need for a method for extracting the phase from any type of signals and not only sinusoids
- The analytic signal is defined as:

$$x_a(t) = x(t) + jH\{x(t)\}\$$

• HT is defined as:

$$x_h(t) = H\{x(t)\} = \frac{1}{\pi} p. v. \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\tau$$
Convolution of  $x(t)$  with  $\frac{1}{\pi t}$ 



• In the Fourier domain:

$$X_h(f) = \left(F\left\{\frac{1}{\pi t}\right\}\right) X(f)$$

•  $X_h(f)$  can be expressed as:

$$\frac{1}{t} \stackrel{F}{\leftrightarrow} - j \pi \operatorname{sgn}(f)$$

$$X_h(f) = \begin{cases} jX(f) & for f < 0 \\ 0 & for f = 0 \\ -jX(f) & for f > 0 \end{cases}$$

• The Fourier transform of the analytic signal:

$$X_a(f) = X(f) + jH(f)X(f) = \begin{cases} X(f) - j^2X(f) = 2X(f) & \text{for } f > 0 \\ X(f) + j^2X(f) = 0 & \text{for } f < 0 \end{cases}$$



Real signal with symmetric amplitude spectrum



Analytic (complex) signal with nonsymmetric amplitude spectrum



• Let us apply the Hilbert filter to the  $x(t) = A \cos(2\pi f_0 t)$  using its complex representation  $x(t) = A \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}$ 

$$F\{HT[x(t)]\} = A^{-j}_{2}\delta(f - f_{0}) + A^{+j}_{2}\delta(f + f_{0})$$

$$F^{-1}$$

$$HT[x(t)] = A \frac{-je^{2\pi f_0 t} + je^{-j2\pi f_0 t}}{2} = A \frac{e^{j2\pi f_0 t} - e^{-j2\pi f_0 t}}{2j}$$

 $= A \sin(2\pi f_0 t)$ 

Hilbert filtering is basically a phasing operation, transforming a cosine into a sine.



• The analytic signal is:

$$x_a(t) = A\cos(2\pi f_0 t) + A j\sin(2\pi f_0 t) = Ae^{j2\pi f_0 t}$$

 $|x_a(t)| = A$  is the signal envelope, and  $\angle x_a(t) = 2\pi f_0 t$  is the phase.

- For a signal  $x(t) = A(t)\cos(\phi(t))$  with slowly time-varying amplitude and frequency, the analytic signals is  $x_a(t) \approx A(t) e^{j\phi(t)}$
- One gets:  $|x_a(t)| = A(t)$  instantaneous envelope (amplitude)  $\angle x_a(t) = \phi(t)$  instantaneous phase



The instantaneous frequency  $f(t) = \frac{1}{2\pi} \frac{d\phi(t)}{dt}$ .



Similar development in discrete-time:

For 
$$x[n] = A[n]\cos(\Phi[n]) \rightarrow x_a[n] \approx A[n]e^{j\Phi[n]}$$

- $|x_a(n)| \approx A[n]$  instantaneous envelope
- $arg[x_a(n)] \approx \phi[n]$  instantaneous phase



- ! the phase must be unwrapped
- ! the estimation of IF (in Hz) must take into account the sampling frequency



- As mentioned, this development is directly applicable to discrete-time signals. In Matlab®, the function hilbert(x) directly computes the analytic signal.
- Exemple 1: pure sinusoid

Analytic signal  $x_a$ 





\*Animated illustrations using the homemade Matlab routine «sc\_hilbert» by courtesy of Jean-Marc Vesin, PhD



• Exemple 2: sinusoid with amplitude modulation

## Analytic signal $x_a$







• Exemple 3: weighted sum of two sinusoids (i.e. the signal is not narrowband)





• Problems! The envelope is visibly incorrect, and for  $x_a$  one has loops that do not encircle the origin, and would give a negative estimate of the frequency (decrease in the phase).



• IF estimation – highly dependent on SNR ratio



• In the case of real-time computation, an FIR filter of length 2L+1 should be used to approximate the Hilbert filter. This introduces a delay of L samples in the output.



#### **TEAGER-KAISER OPERATOR**

- The Teager-Kaiser measures instantaneous energy changes of signals composed of a single time-varying frequency.
- Basically, the operator can be used to estimate the energy required for generating a signal and then separate it into its amplitude and frequency components
- In continuous time, this operator is defined as:

$$\Psi_c[x(t)] = \left[\frac{dx}{dt}\right]^2 - x(t)\frac{d^2x}{dt^2}$$

• For  $x(t) = A\cos(2\pi f_0 t + \theta)$ , one checks easily that:

$$\Psi_{c}[x(t)] = (A2\pi f_0)^2$$
 and  $\Psi_{c}[x'(t)] = A^2(2\pi f_0)^4$ 



• For a signal x(t) with slowly time-varying amplitude and frequency, the operator can approximately estimate the squared product of the amplitude and frequency signals:

$$\Psi_{\rm c}\left[A(t)\cos(\phi(t)+\theta)\right]\approx [A(t)\phi'(t)]^2$$

- Applying TK to  $x'(t): \Psi_c[x'(t)]] \approx A^2(t)[\phi'(t)]^4$
- By manipulating these two eqs., the instantaneous frequency and the amplitude envelope are estimated as:

$$\phi'(t) \approx \sqrt{\frac{\Psi_c[x'(t)]}{\Psi_c[x(t)]}} \quad |A(t)| \approx \frac{\Psi_c[x(t)]}{\sqrt{\Psi_c[x'(t)]}}$$



• In the discrete time, the Teager-Kaiser operator becomes:

$$\Psi_{d}[x(n)] = [x(n)]^2 - x(n+1) x(n-1)$$

• When  $\Psi_d$  is applied to x[n] and its differences, backward y[n] = x[n] - x[n-1] and forward y[n+1] = x[n+1] - x[n]:

$$\phi'(n) \approx \arccos\left(1 - \frac{\Psi_{d}[y(n)] + \Psi_{d}[y(n+1)]}{4\Psi_{d}[x(n)]}\right)$$

$$|A(n)| \approx \sqrt{\frac{\Psi_{d}[x(n)]}{1 - \left(1 - \frac{\Psi_{d}[y(n)] + \Psi_{d}[y(n+1)]}{4\Psi_{d}[x(n)]}\right)^{2}}}$$



#### • IF estimation



• The Teager-Kaiser operator performs poorly on noisy signals. Why?



• The idea is to use a time-varying bandpass filter to extract (or enhance) the periodic component in the input signal and an adaptative mechanism for controlling the central frequency of the filter.





**Example 1**. Synthetic signal composed of fundamental component and 1<sup>st</sup> harmonic (HFT movie)





**Example 2.** Organized atrial fibrillation (AF\_LT\_tracking\_movie)





**Example 3.** Highly disorganized atrial fibrillation ablation (AF\_NLT\_tracking\_movie)





• For an input signal, the sinusoidal component x[n] should satisfy the oscillatory equation:

$$x[n] = 2\cos(2\pi f_0) x[n-1] - x[n-2] = 2\alpha_0 x[n-1] - x[n-2]$$
Using:  $\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b)$ , with  $a = 2\pi f(n-1)$  and  $b = 2\pi f$ 

• The bandpass filter is defined by the transfer function: 
$$H(z;n) = \frac{1-\beta}{2} \frac{1-z^{-2}}{1-\alpha[n](1+\beta)z^{-1}+\beta z^{-2}}$$

The adaptative coefficient  $\alpha[n]$  which tracks  $\alpha_0 = \cos(2\pi f_0)$  defines the central frequency f[n] of the filter:  $\alpha[n] = \cos(2\pi f[n])$ The parameter  $0 < \beta < 1$  controls the filter bandwidth.



- Frequency response (normalized frequency) for a central normalized frequency of 0.2.
  - ✓ larger the  $\beta$  (poles closer to the unit circle), the narrow the filter bandwidth.
  - ✓ The filter has unitary gain and zero phase shift at the central frequency.







The output signal  $y(\cdot)$  is the component of the input signal  $x(\cdot)$  at frequency  $f(\cdot)$ 



• The output output is:

$$y[n] = (1+\beta)\alpha[n] y[n-1] - \beta y[n-2] + \frac{1-\beta}{2}(x[n] - x[n-2])$$

• The filter output y(n) is intended to follow the discrete oscillator model, i.e. y(n) is locally as close as possible to a sinusoid:

$$y[n] = 2\cos(2\pi f_0) y[n-1] - y[n-2]$$

The goal is to determine  $\alpha[n+1] = \cos(2\pi f[n+1])$  that satisfies the discrete oscillator model.



34

#### **ADAPTIVE FREQUENCY TRACKING**

• That is to minimize the cost defined as:

$$J = E\{|y[n] - 2\alpha[n+1]y[n-1] + y[n-2]|^2\}$$

• By setting  $\partial J/\partial \alpha [n+1] = 0$ , the optimal solution is:

$$\alpha[n+1] = \frac{E\{y[n-1](y[n]+y[n-2])\}}{E\{2y^2[n-1]\}} = \frac{Q[n]}{2P[n]}$$

Proof.

$$J = E\{y^2[n] + 4\alpha^2[n+1]y^2[n-1] + y^2[n-2]$$
$$-4\alpha[n+1]y[n]y[n-1] - 4\alpha[n+1]y[n-1]y[n-2] - 2y[n]y[n-2]\}$$

$$\frac{dJ}{d\alpha[n+1]} = E\{8\alpha[n+1]y^2[n-1] - 4y[n]y[n-1] - 4y[n-1]y[n-2]\}$$



• The numerator and denominator can be estimated recursively:

$$Q[n] = \delta Q[n-1] + (1-\delta)\{y[n-1](y[n]+y[n-2])\}$$

$$P[n] = \delta P[n-1] + (1-\delta) y^2[n-1]$$

- $\delta$  a forgetting parameter (0 <<  $\delta$  < 1) to control the estimation update rate.
- Q[n] and P[n] are lowpass-filtered versions of their instantaneous values.

• Finally, the estimate of the instantaneous frequency is computed as  $f[n+1] = \arccos(\alpha[n+1])/2\pi$ 



• IF estimation.  $f(0) = 0.1, \beta = \delta = 0.85$ 

$$SNR = 60 dB$$

SNR = 20 dB



- IF estimation is robust with respect to signal-to-noise ratio.
- Adaptation transient at the beginning of the signal (a delay of about 10 samples in this case)



## Extensions of the single adaptative frequency tracking algorithm:

- to estimate the instantaneous frequency of a periodic component present in several signals (e.g. frequency of fibrillatory activity presented in multiple surface ECG leads).
- to track multiple frequency components simultaneously, e.g. the instantaneous fundamental frequency and the harmonic components of a single signal.



An unique bandpass filter is used and its central frequency is updated based on the individual updates for each signal.



**Scheme of the weighted multi-signal approach**. Figure from Prudat Y. Adaptive frequency tracking and application to biomedical signals. EPFL. 2009



• For *M* signals the frequency update is given by:

$$\alpha(n+1) = \sum_{i=1}^{M} W_i(n) \frac{Q_i(n)}{2P_i(n)}$$

with:

$$W_i(n) = \frac{\sum_{j \neq i} [y_j(n) - x_j(n)]^2}{(M-1)\sum_{i=1}^M [y_i(n) - x_i(n)]^2}; \sum_{i=1}^M W_i(n) = 1$$

i.e. a larger weight should be given to the signals in which the oscillation (filter output) is closer to the original signal.



#### **MULTI-SIGNAL FREQUENCY TRACKING**



• Improved tracking performance in terms of frequency estimation variance (the estimation variance decreases with the number of input signals).



- 1. What are the practical benefits of applying bandpass filtering before estimating the IF?
- 2. Why does the Teager-Kaiser Operator perform poorly on IF estimation at lower frequencies when the signal-to-noise ratio (SNR) decreases?
- 3. Why, in discrete-time, one needs to multiply the derivative of the phase by the sampling frequency to obtain the IF in Hz?



#### **REFERENCES**

- B. Boashash, "Estimating and Interpreting the instantaneous frequency of a signal Part 1: Fundamentals," *Proceedings of IEEE*, vol. 80, No. 4, 1992.
- A. Potamianos and P. Maragos, "A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation," Signal Process., vol. 37, pp. 95–120, May 1994.
- H. Liao, "Two discrete oscillator based adaptive notch filters (OSC ANFs) for noisy sinusoids Signal Processing," *IEEE Trans on Signal Process*, vol. 53, pp. 528-538, 2005.
- Y. Prudat and J-M Vesin, "Multi-signal extension of adaptative tracking algorithms," *Signal Processing*, vol. 89, pp. 963-973, 2009.

