D3: Statistical Desister Theory I

Consider a measurement x 603 that is either wlo] or s60] + w 60], where s 60] = 1 and w 60] ~ N (0,1). Green x 60], deciding weather we have s 60) = 1 or the other cook is a simple hypothesis testing problem.

Ho: x 20] = W 20]

M, = x [0] = 5 [0] + w [0]

In this example we have a simple "signal detection in raise" situation.

Miss: Deciding the when the is true.

Felse alora. Deciding H, when Ho is true.

Detection: Deciding H, when H, is true.

Let PFA = P(H; Ho), PD = P(H, ; H,). We have

 $P_{FA} = Pr \left\{ \times \left\{ 0\right\} > \delta; \mathcal{H}_{0} \right\} = \int_{8}^{\infty} \frac{1}{\sqrt{\pi u}} e^{-\frac{t^{2}}{2}} dt = Q(8)$

PD = Pr {x 60} > 8; Hi} = 5 = 1 = -(4-1)^2 at = Q(8-1)

In general a sequence $\{\chi \in \{0\}, \chi \in \{1\}, -, \chi \in \mathbb{N} - \{1\}\} \}$ is observed. Let $\chi = \{\chi \in \{0\}, -, \chi \in \mathbb{N} - \{1\}\} \}$ be the data vector. Then the contrad region (segren for χ where decision $m \in U$ be \mathcal{H}_{i}) is

R, = {x: decide H, or reject Ho?.

Here R, CRN and Rour, = Rn with Ro = Rn-R, denoting the regren in which we decide the Clearly,

 $P_{FA} = \int_{R_i} p(x; H_0) dx = d$ and $P_D = \int_{R_i} p(x; H_i) dx$ and d is called the significance level (or size) explest, (1-3) is called the power of the test.

Thun 3.1: (Neymon-Pearson)

To maximize P_D for a given $P_{FA} = \alpha$, decide \mathcal{H}_i ; if $L(x) = \frac{p(x; \mathcal{H}_i)}{p(x; \mathcal{H}_o)} > \delta$, where $x \in \mathcal{F}_o$ found from $P_{FA} = \int p(x; \mathcal{H}_o) dx = d$. $\begin{cases} x : L(x) > \delta \end{cases}$

Here, L(x) is called the likelihood ration and the decision process in the theorem is the likelihood ratio test (LPT).

Proof: $F = P_0 + \lambda (P_{FA} - \alpha) = \int_{R} p(x, H_0) dx + \lambda \left(\int_{R_0} p(x, H_0) dx - \alpha \right)$

regrenge = SR [p(x, Hi) + 2p(x, Ho)] dx - 20

To meximize f, we should include x in R, of the integrand is postave, i.e. if $p(x, H_1) + \lambda p(x, H_0) > 0$. This yields $\frac{p(x, H_1)}{p(x, H_0)} > \lambda$ should lead to deciding x, for x. The hapmange multiplier is found using the constraint (and by letting $x = -\lambda$ me get the formula in the teoren). We must have $\lambda \geq 0$ or equivalently x > 0.

EX DC Level in WGN

Ho: x En] = win]

n=0,1-, (~1)

Here, s En] = A for

Mi: xEn] = A+wEn]

n=0, 1, -, (N-1)

A> O and wEndrugar with versue or.

Specifically, we have Ho: x~N(0, oI) and Hi: xwW(41;0I).

Equivalently, Mo: M=0 and Mi: M=AI.

According to NP, we should decide if

(25102) N/2 = - 252 N (x En S-A)2

(25,02) P = in & x2(m)

o- eprivallety, taking the h of both sides.

-1 [-24 [xin] + NA2] > lis

(=> A I × En 3 > ln 8 + NA 102

(SINCASO) 1 Ex En) > 0 List + 2 = 8' (compare the sample mean)

By charging 8', we can control the trade off between PFA

and PD; as 8' increases PFA decreeses but PD also decresses.

Notice that the test statistic 76x) = 1 2 x En 3 13 fines Growssian under each hypotheois. Specifically, E[T(x); Hk] = ASk

and ver [T(x); Hh) = 07 for 1c=0,1. Here

T(x) ~ { w(o, or(w) under Ho w (A, or(w) under Ho

Then
$$P_{FA} = Pr \left\{ T(x) > 8'; M_o \right\} = Q\left(\frac{8'}{\sigma I \sqrt{\mu}}\right)$$

$$P_0 = Pr \left\{ T(x) > 6'; M_i \right\} = Q\left(\frac{8' - A}{\sigma I \sqrt{\mu}}\right)$$
Since Q is monotonically idecreasing, it is invertible.

Therefore, $8' = \int_{T}^{\infty} Q^{-1}(P_{FA})$ and
$$P_0 = Q\left(Q^{-1}(P_{FA}) - \frac{A}{\sigma I^{\mu}}\right)$$

In perend, if we have $T \sim \begin{cases} W(\mu_0, \sigma^2) \text{ order } \mathcal{H}_0 \\ W(\mu_1, \sigma^2) \text{ order } \mathcal{H}_1 \end{cases}$, we will have yor $d^2 = \left[E(T; \mathcal{H}_1) - E(T; \mathcal{H}_0) \right]^2 = \left(\mathcal{H}_1 - \mathcal{M}_0 \right)^2$ Vor $(T; \mathcal{H}_0)$ and PFA = Q(\(\frac{r'-p_0}{\sigma}\), PD = Q(Q'(PFA) - \(\sigma\). This is a mean-shifted howss-Gorss problem.

Ex) Charge in Verend.

We deserve x En] for n=q-, cn-1) which are sid with × En] ~ N (0, 502) under He and × En] ~ N (0, 5, 2) under H. Assume 5,250. Per the NP test to decide H, 13 (290,2) ~ 12 - 25,2 150 x26) (2900) -NIZ = - LZ Z x2En) >8 2 tekny h m)
both sides - 2 (1 - 1) E x 2 En) > le 8 + 2 le 52

(=) $\frac{1}{2} \sum_{k=1}^{N-1} \sum_$

In perest, essure that we observe $x = [x co3, -7 \times En-3]^T$ from a pdf powertersted by G; p(x,0). We wish to test for the value of 0 as $\mathcal{H}_0: \theta: \theta_0$ and $\mathcal{H}_1: \theta=\theta_1$.

of a sufficient statistic exists for 8, then by the Negnor-Fisher factorization theorem, we can express the poly or $p(x; \theta) = g(T(x), \theta) h(x)$, where T(x)is a sufficient statistic for a. Then the NP test is

 $\frac{P(x;\theta_0)}{P(x;\theta_0)} = \frac{S(\pi(x),\theta_0)}{S(\pi(x),\theta_0)} > \delta.$

:. The test will depend on the date only through T(x).

Peceiver Operating Charecteristics (1200)

Pecall that in the two examples above we had decision rules in the form T(x) > 8' => decide H, and PFA (8') and PD (8') presented a trade-off to choose 81.

The curve $P_D(8')$ is $P_{FA}(8')$ traced by taking 8'

from - so to so is called the ROC curve.

1 desired six-so We ment PFA(8') to be 0 and PB(8')

to be 1. We can only droose a solvtion on the ROC curve by setting

8'st 0 PFA

1 to a value.

brelevent Date: If we observe two date vectors x, and X2, then the LRT from the NP theorem is $L(x_1, x_2) = \frac{p(x_1, x_2; \mathcal{H}_1)}{p(x_1, x_2; \mathcal{H}_0)} = \frac{p(x_2|x_1; \mathcal{H}_1) p(x_1; \mathcal{H}_0)}{p(x_2|x_1; \mathcal{H}_0) p(x_1; \mathcal{H}_0)}$

Then, of p(x2(x, 1, 1, 1) = p(x2(x, 16), then - L(x,1, x2) = L(x1) and ×2 is irrelevent to the detector problem. The condition here means the distribution of x2 given x1 does not depend on the hypothesis (e.g. fer signal défection in roise, x, is for a segment with signal and ×2 is for a segment without; just noise } and noise is not correlated in time).

As a special case, of x, II xz under either hypothesis then p(x, H,)=p(x, Ho) makes the concellation above

Minimum Probability of Error

In some cases one can arright prior probabilities to each hypothesis. Then, in the Bayesran paradigm, we can define the probability of error as $Pe = P(\mathcal{H}_0|\mathcal{H}_1)P(\mathcal{H}_1) + P(\mathcal{H}_1|\mathcal{H}_0)P(\mathcal{H}_0)$ The Bayesian defector with winners Pe is given by $\frac{P(x|\mathcal{H}_1)P(\mathcal{H}_1)}{P(x|\mathcal{H}_0)P(\mathcal{H}_0)} > 1 \iff \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} > \frac{P(\mathcal{H}_0)}{P(\mathcal{H}_1)} = 8.$

Bayes Risk: Let Cij be the cost if we decide Mi but Mi is true. For example, we would probably went $C_{10} > Col$ in many applications (though not always), where too many folse alorms would render the detector "useless".

The expected cost (Bayes risk) is defined as $R = E(c) = \sum_{i=0}^{n} \frac{1}{2^{i}} c_{ij} p(Mi|M_{i}) p(M_{i})$.

while mostly we night choose $C_{ii} = O$ (no error => no cost), this magnet be the case always. For instance the boot of the appropriate action if M_i is detected (correctly) might be a consideration in our stretegy when deciding M_i or not.

Then, the aptimal decision rule is to choose H, when (C10-C00) P(H0) P(X/H0) 2 (C0,-C1) P(H1) P(X/H1)

Proof: Let $R_i = \{x : decide H_i\}$ and R_0 is its complement. Then $R = C_{00}P(H_0) \int_{R_0} p(x|H_0) dx + C_{01}P(H_1) \int_{R_0} p(x|H_1) dx$ $+ C_{10}P(H_0) \int_{R_0} p(x|H_0) dx + C_{11}P(H_1) \int_{R_1} p(x|H_1) dx$ Since $\int_{R_0} p(x|H_1) dx = 1 - \int_{R_1} p(x|H_1) dx$, we have $R = C_{01}P(H_1) + C_{00}P(H_0) + \int_{R_1} P(x|H_1) dx$, we have $R = C_{01}P(H_1) + C_{00}P(H_0) + \int_{R_1} P(x|H_1) dx$

We suchde x in R, only if the integrand is presente.

Assuming that Co>Coo and Coi > Cii, me could express the optimal Begessen (minimum risk) decision who as

$$\frac{P(x|\mathcal{H}_i)}{p(x|\mathcal{H}_o)} > \frac{(C_{1o} - C_{oo}) P(\mathcal{H}_o)}{(C_{oi} - C_{ii}) P(\mathcal{H}_i)} = 8$$

Also note that if $C_{00} = C_{11} = 0$ and $C_{01} = C_{10} = 1$; then R = Pe; so probability of error is a special case.

Once egain, the conditional LRT is employed with a suitable threshold to make a decision.

Multiple Hypothesis Testing

Assure that we want to decide between M possible hypotheses $\frac{2}{5}$ Ho, -7 Mm-1 $\frac{2}{5}$ and C_{ij} is the cost of choosing Mi when $\frac{1}{5}$ is true. The expected cost $\frac{2}{5}$ Bayes r_{ij} $\frac{1}{5}$ $\frac{1}$

Note that $C_{ij} = S_{ij} = R = P_e$. We can write $R = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} C_{ij} \int_{R_i} P(x|\mathcal{H}_i) P(\mathcal{H}_i) dx$

= E S E Ci; P(x/H;) P(H;) dx

= \(\int \) \(\int \

= \(\int \) \(\tau_i \) \(\t

) $C_i(x) \stackrel{A}{=} \sum_{ij} C_{ij} P(\mathcal{H}_j|x)$ is the average cost

For x must be ensigned to one and only one R: partition. Asserting x to R_k when $C_k(x)$ is the minimum average cost among all $\{C_0(x), -, C_{mn}(x)\}$ ensures R is minimized.

:. We decide Hi for which \(\sum_{j=0}^{M-1} \) Cij P(H; \(\x)) is minimum

In the special case of the, $C_i(x) = \sum_{j=0}^{M-1} P(\mathcal{H}_j|x) - P(\mathcal{H}_i|x)$. Here minimizing $C_i(x)$ is equivalent to maximizing $P(\mathcal{H}_i|x)$. The minimum Pe decision rule is

Decide Hu where k = argmax P(Hi(x) which is enalogous to MAP estimation. If the prior probabilities are equal $(P(H_i) = \frac{1}{n})$, then we get $p(\mathcal{H}_i|x) = \frac{p(x|\mathcal{H}_i)p(\mathcal{H}_i)}{p(x)} = \frac{p(x|\mathcal{H}_i)}{p(x)}$

So k= orgnox p(x/Hi), which is moximum likelihood. An eprivalent MAP decision rule is: k = organiex lap(x/Hi) + lap(Hi).

EX Multiple DC levels in WAN

ve observe x En 3 for n=0,-, ani).

Mo: x En] = - A + w En] Mo: x En] = 0 + w En] A)o, wend wow with ver. o2.

12: x []= A+ w []

Assume that priors are equal (P(Hi)=1/3). Then the ML elecision rule is aptornal in terms of minimum expected cost. p(x14i) = (2502) -N/2 = -12 = (x En J-Ai)2

where Ao = -A, A. = O, Az = A. Marsinizing p(x(Hi) is equivalent to minimizing $D_i^2 = \sum_{n=0}^{N-1} (x E_n^2 - A_i)^2$.

Note that Di = E (x En 3-x)2 + N (x-Ai)2 efter some manipulations.

To minimize D_i , we choose \mathcal{H}_h for which A_k is closed to $\overline{\times}$. .: We decide \mathcal{H}_o if $\overline{\times} \sim A/2$; \mathcal{H}_i if $\overline{\div} \sim \times \sim 2$; and \mathcal{H}_z if $\overline{\times} > A/2$.

Let $P_{c} = 1$ - P_{e} be the probability of correct decision- $P_{c} = \sum_{i=0}^{2} P(\mathcal{H}_{i} | \mathcal{H}_{i}) P(\mathcal{H}_{i}) = \frac{1}{3} \sum_{i=0}^{2} P(\mathcal{H}_{i} | \mathcal{H}_{i})$

= = = [Pr {x < - = 1 Ho}+Pr }-= < = = = [H,]+Pr [x >= 1 Ho]

Since XNN (Ai) or/N) conditioned on Hi, we have

$$P_{c} = \frac{1}{3} \left[1 - Q \left(\frac{-\frac{A}{2} + A}{\sigma / \sqrt{N}} \right) + Q \left(\frac{-A/2}{\sigma / \sqrt{N}} \right) - Q \left(\frac{A/2}{\sigma / \sqrt{N}} \right) + Q \left(\frac{A/2}{\sigma / \sqrt{N}} \right) \right]$$