# SMART FARMER-IOT ENABLED SMART FARMING APPLICATION

## IBM NALAIYA THIRAN

Submitted By

**TEAM ID: PNT2022TMID09732** 

MISHAL RAI : Team Leader-(730919104055)

**AMAN DARJEE**: Team Member-(730919104010)

**AMRIT RAI** : Team Member-(730919104011)

**KUSEN HANG SUBBA**: Team Member-(730919104047)

## TABLE OF CONTENTS

| CHAPTER<br>NO. | TITLE                                       | PAGE NO. |
|----------------|---------------------------------------------|----------|
| 1              | INTRODUCTION                                | 4        |
|                | 1.1 PROJECT OVERVIEW                        | 4        |
|                | 1.2 PURPOSE                                 | 5        |
| 2              | LITERATURE SURVEY                           | 6        |
|                | 2.1 EXISTING PROBLEM                        | 6        |
|                | 2.2 REFERENCES                              | 7        |
|                | 2.3 PROBLEM STATEMENT DEFINITION            | 8        |
| 3              | IDEATION AND PROPOSED SOLUTION              | 9        |
|                | 3.1 EMPATHY MAP CANVAS                      | 9        |
|                | 3.2 IDEATION AND BRAINSTORMING              | 10       |
|                | 3.3 PROPOSED SOLUTION                       | 13       |
|                | 3.4 PROBLEM-SOLUTION FIT                    | 14       |
| 4              | REQUIREMENT ANALYSIS                        | 15       |
|                | 4.1 FUNCTIONAL REQUIREMENT                  | 15       |
|                | 4.2 NON- FUNCTIONAL REQUIREMENT             | 15       |
| 5              | PROJECT DESIGN                              | 17       |
|                | 5.1 DATA FLOW DIAGRAM                       | 17       |
|                | 5.2 SOLUTION AND TECHNOLOGY<br>ARCHITECTURE | 18       |
|                | 5.3 USER STORIES                            | 20       |

| 6  | PROJECT PLANNING& SCHEDULING                                                      | 21 |
|----|-----------------------------------------------------------------------------------|----|
|    | 6.1 SPRINT PLANNING & ESTIMATION                                                  | 23 |
|    | 6.2 SPRINT DELIVERY SCHEDULE                                                      | 25 |
|    | 6.3 REPORTS FROM JIRA                                                             | 27 |
| 7  | CODING AND SOLUTIONING(Explain the features added in the project along with code) | 28 |
|    | 7.1 FEATURE 1                                                                     |    |
|    | 7.2 FEATURE 2                                                                     |    |
| 8  | TESTING                                                                           | 29 |
|    | 8.1 TEST CASES                                                                    |    |
|    | 8.2 USER ACCEPTANCE TESTING                                                       |    |
| 9  | RESULTS                                                                           | 32 |
|    | 9.1 PERFORMANCE METRICES                                                          | 32 |
| 10 | ADVANTAGES & DISADVANTAGES                                                        | 33 |
| 11 | CONCLUSION                                                                        | 34 |
| 12 | FUTURE SCOPE                                                                      | 35 |
| 13 | APPENDIX                                                                          | 36 |
|    | Source Code                                                                       |    |

| GitHub & Project Demo Link |  |
|----------------------------|--|
|                            |  |

#### INTRODUCTION

#### PROJECT OVERVIEW

Agriculture is the primary occupation in developing countries like India. 47% of the people are involved in the agriculture sector. 18% of the total GDP of India is contributed by agricultural sector in 2022. The main objective of the project is to monitor the field and control the irrigation from the remote location. In this project user can monitor and manage the system remotely with the help of a Mobile application. The IoT Based Smart Agriculture Monitoring System improves various features such as sensitivity to humidity, soil moisture and temperature.

In this project Smart Farming System will use concept of IOT, WSN, node red and MIT app inventor. IOT based smart Farming system can be very helpful for farmers to prevent from delayed irrigation of absence of farmer near the field. This project senses real time data from field. On the basis of Live Data Monitoring the farmers may access the updates of motor as per the requirements. The farmer can view every information about the field in mobile application at any time from any remote location. This system is accurate and efficient in fetching these live data. This system helps the farmers to increase the crop production by taking proper care on crops. This project can allow the farmers to irrigate in right time and prevent from excessive watering to the crops by automated irrigation system.

#### **PURPOSE**

The purpose of this project is to maintain the ideal environment for the growth of crops. This project enables to check the parameters of the field for the growth of the crops in field and with these project farmers are able to solve irrigation problems.

In automated irrigation system, the crops are irrigated whenever the moisture of the soil falls low but certain times the corps should not be irrigated but the automated irrigation system only follows the conditions given.

When this proposed solution is set to work, the problem in automated irrigation can be reduced. As the farmer, user can control the irrigation system, Irrigation can be kept within the control of the former with the help of IOT.

This solution can ultimately help the farmer and prevent from crops from dying due to Over-irrigation and Deficit irrigation.

## CHAPTER - 2 LITERATURE SURVEY

#### **EXISTING PROBLEM**

Smart farming describes an automated irrigation system that uses IoT. Internet of things and cloud computing together do a system that effectively regulates the agricultural sector. This program will hear all the environmental parameters and send data to user by cloud. The user will take control action depending on whether this will be done using an actuator. This property allows the farmer to develop the crop in the way that the crop needs and protects from over irrigation. It leads to higher, longer crop yields production time, better quality and less use of human labour.

**Table 2.1.** Literature survey

| Author             | Technique/  | Limitations/ | Advantages    | Applications   |
|--------------------|-------------|--------------|---------------|----------------|
| and                | Methodology | Drawback     |               |                |
| Year               |             |              |               |                |
| Doi Aryon          |             |              | Automation of |                |
| Raj Aryan,<br>2022 | IOT         | Costly       | Irrigation    | Farmer land    |
| 2022               |             |              | System        |                |
| Divy               |             | Need stable  | Live          | Farming, House |
| Mehta,             | IOT         | internet     | Monitoring    | plant          |
| 2020               |             |              |               |                |
| СН                 | IOT         | Need stable  | Data Ctaman   | Smart farming, |
| Nishanthi, 2021    | IOT         | internet     | Data Storage  | Nursery garden |
| Akshay             | IOT         | Coatly       | Weather       | Earmon land    |
| Atole, 2017        | 101         | Costly       | Monitoring    | Farmer land    |
| Adithya            | IOT         | Need stable  | Temperature   | C              |
| Vadapalli, 2020    | IOT         | internet     | Monitoring    | Smart farming  |

#### **REFERENCES**

- Raj Aryan, Ankur Mishra, Sachin Kumar, Ms. Sonia Kumari. A Smart Farming and "Crop Monitoring Technology" Using IOT in Agriculture. Volume 10 Issue V May 2022. DOI 10.22214/ijraset. 2022. 42409
- Divy Mehta Pooja Bhatt, Shivang Thakker, Gaurang Dalvadi, M.V. Patel. IoT Based Process Control which will assist the farmers in getting Live data from field by integrating different sensors. Volume 7, Issue 10, October 2020. DOI 10.17148/IARJSET.2020.71008
- 3. CH Nishanthi, Dekonda Naveen, Chiramdasu Sai Ram, Kommineni Divya, Rachuri Ajay Kumar.n IoT-based smart farming, a system Is built for monitoring the crop field with the help of Sensors.Volume 8,Issue 1, June 2022
- 4. Akshay Atole, Apurva Asmar, Amar Biradar, Nikhil Kothawade, Sambhaji Sarode, Rajendra G. IoT based smart farming system is used to generate decisions regarding irrigation using real time data. Volume 4, Issue 04, April 2017.
- 5. Adithya Vadapalli, Swapna Peravali, Venkata Rao Dadi. Smart Agriculture project incorporated with the Wireless sensor networks and IoT systems. Volume 09, Issue 09, April 2013.

#### PROBLEM STATEMENT DEFINITION

Creating a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love.

Our main aim is to make a Smart farming application for those farmers who wants to monitor the field regularly and wants to irrigate the field in right time from the remote locations.



Figure 2.1. Problem Statement

#### IDEATION AND PROPOSED SOLUTION

#### **EMPATHY MAP CANVAS**

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviors and attitudes. It is a useful tool to help teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.



Figure 3.1. Empathy Map

#### **IDEATION & BRAINSTORMING**

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem-solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich number of creative solutions.

## STEP-1 TEAM GATHERING, COLLABORATION AND SELECTING THE PROBLEM STATEMENT

This step includes the formation of a team, collaborating with the team by collecting the problems of the domain we have taken and consolidating the collected information into a single problem statement.



Figure 3.2. Ideation And Brainstorming

#### STEP 2 BRAINSTORM, IDEA LISTING AND GROUPING

This step of ideation includes the listing of individual ideas by teammates to help with the problem statement framed. All the individual ideas have been valued and made individual clusters.

Then discussed as a team and finally made an ideation using IOT, Cloud and concluded with the most voted ideas from all the clusters together and Cluster web Application with the needed ideas for application.



Figure 3.3. Brainstorm, Idea Listing and Grouping

#### **STEP 3 IDEA PRIORITIZATION**

This step includes the process of listing necessary components to come up with the working solution and making a hierarchy chart by prioritizing the components based on importance, say from the higher being backend and lower being the user interfacing components.



Figure 3.4. Idea Prioritization

#### PROPOSED SOLUTION

#### **Problem statement (problem to be solved)**

Our project's main aim is to make an application for the farmer to irrigate the field, for the farmers who need to irrigate the field but they are not available near the field.

#### **Idea / Solution description**

A Smart Farming Application which allows the farmers to control the irrigating motors through the mobile and web application easily. This Smart farming Application allows the farmers to monitor the field regularly from any remote locations.

## **Novelty / Uniqueness**

A user-friendly application which can be used easily to control the motors and monitor the field from anywhere.

#### **Social Impact / Customer Satisfaction**

farmers can get an alert when the field is dry and can control the water pump from remote location. For over irrigating issue of automated pump, the farmers can make a decision of irrigation before the automation process begins.

#### **PROBLEM-SOLUTION FIT**

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why



Figure 3.5. Solution Fit

#### **REQUIREMENT ANALYSIS**

## **Functional Requirements**

- Gardener Regular monitoring of field parameters
- Farmer Control of irrigating motors

## **Non-Functional Requirements**

## **Usability**

User-friendly Interface to facilitate the user with easy processing. Model provides visual representation of parameters and controls over the irrigating motors.

#### **Security**

Smart Farming Application, like other computer systems, can be vulnerable to security breaches, potentially impacting the safety and effectiveness of the device

#### Reliability

This application will allow farmers to monitor and control the irrigation system from remote location anytime.

#### **Performance**

The process of the usage is easy and simple which allows to monitor and control with application's stability and accuracy.

## Availability

The Application can used to control and monitor from anywhere at any time according to the comfortability of the farmer.

## **Scalability**

In future upgrade of the Smart farming Application allows to be used for various types of crops in field.

## **PROJECT DESIGN**

## **DATA FLOW DIAGRAMS**



Figure 5.1. Data flow Diagram

#### SOLUTION AND TECHNICAL ARCHITECTURE

The solution architecture includes the components and the flow we have designed to deliver the solution.

Here, the application is planned to be designed, where the farmers can monitor the parameters of the field and the irrigating motors can controlled the help of python and API calls. By monitoring the parameter information in the application, irrigation can be done in right time from remote locations.



Figure 5.2. Technology Architecture

## **USER STORIES**

Table 5.1. User Stories

| User Type      | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story /<br>Task                                                                     | Acceptance<br>criteria                                                   | Priority | Release  |
|----------------|-------------------------------------|-------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|----------|
| Farmer         | Sensor<br>interface                 | USN-1                   | As a user, I will receive the detected data from the field                               | Receiving the detected data(data generated using python random function) | Medium   | Sprint-1 |
| Nursery garden | Dashboard                           | USN-2                   | As a user, I could monitor the parameters data                                           | Monitoring the data of the parameters in dashboard                       | High     | Sprint-2 |
| Houseplant     | API call for controlling            | USN-3                   | As a user, I can give a permission for the activation of the automated irrigation system | Controlling<br>automated<br>irrigation<br>system                         | High     | Sprint-3 |

| Farmer | Mobile/web application | USN-4 | As a user, I can monitor and control the field from remote location | Monitoring and control of field | Medium | Sprint-4 |
|--------|------------------------|-------|---------------------------------------------------------------------|---------------------------------|--------|----------|
|--------|------------------------|-------|---------------------------------------------------------------------|---------------------------------|--------|----------|

#### PROJECT PLANNING AND SCHEDULING

#### **SPRINT PLANNING &**

#### **ESTIMATIONSPRINT 1**

The first sprint involves the setting up of IBM IoT Watson Platform to generate the sensor data in field (Internet of Things). After that a device must be created and registered in the Watson IoT Platform. Then the device is switched on and then the senor data is fetched.

Organization ID: hztfwg

Device Type: DeviceType1

Device ID: Deviceid1

Authentication Token: X4C\_j!VzrEFM3Qt43L

Figure 6.1.1. python random data

#### **SPRINT 2**

In this sprint, an organization is created and registered. Then an API key is generated for the registered device. In node-red, the IBM Watson IoT Platform is connected using the API key, Device Type and Device ID. Then a msg.payload node is connected to receive the sensor data. Then the function node (soil moisture, Temperature , humidity ) in Node-RED is connected with the IBM Watson platform and then the sent data is connected to the gauge in dashboard of Web UI and Mobile Application.



Figure 6.1.2 web dashboard



Figure 6.1.3 mobile dashboard

#### **SPRINT 3**

In Sprint 3, once the connection of gauge dashboard node is done with the function node, Then the control buttons are created to control the irrigation motors in the field.

Then the http function node and command function nodes are created and connected with cloud to get the command from the web UI and Mobile Application to control the irrigating motors.



Figure 6.1.4 web dashboard



Figure 6.1.5 mobile dashboard

#### **SPRINT 4**

In this Sprint a mobile application is created using the MITAPP Inventor. In the frontend designer block, the mobile screen in which able to view the data created. Labels are created as Temperature, Humidity, Moisture. The control buttons are created to control the motors. Web 1 and a clock is created for the backend process. In the backend process: web 1 is connected with the clock1 and a url is attached (https://node-red-zixas-2022-11-04.eugb.mybluemix.net/ui/#!/0?socketid=C8cNlCoGvWIE4cAuAAAB).

Then web1.GotText block is created and Set.textbox.Text to is connected with lookup in tab from the list. Then a empty text boxes were created for the parameters. To get the value from the Watson a Call web1.jsonText. Decode is connected. And a get responseContent is attached. Likewise for all parameters connections are established. Then a QR code is generated, by scanning the code user can download the apk of an mobile from Mobile Application. The status of the motors can also monitored through dashboard.



**Figure 6.1.6** web dashboard(Motor Off)



Figure 6.1.7 Web dashboard(Motor On)



Figure 6.1.8 Mobile dashboard

## SPRINT DELIVERY SCHEDULE

 Table 6.1. Sprint Delivery Schedule

| Sprint    | Functional<br>Requirement<br>(Epic)                   | Sprint<br>Start<br>Date | Sprint<br>End Date | Story<br>Points | Team<br>Members     |
|-----------|-------------------------------------------------------|-------------------------|--------------------|-----------------|---------------------|
| Sprint- 1 | Sensor data<br>generated<br>using Random<br>in python | 24 Oct<br>2022          | 29 Oct<br>2022     | 8               | Aman Darjee         |
| Sprint- 2 | Data interface with web UI and mobile app             | 31 Oct<br>2022          | 05 Nov<br>2022     | 8               | Mishal Rai          |
| Sprint- 3 | API for controlling                                   | 07 Nov<br>2022          | 12 Nov<br>2022     | 5               | Kusen Hang<br>Subba |
| Sprint- 4 | Mobile and web application development                | 14 Nov<br>2022          | 19 Nov<br>2022     | 5               | Amrit Rai           |

## **REPORTS FROM JIRA**

#### **Burndown chart**



Figure 6.1. Burndown Chart

## Road map



Figure 6.2. Road Map

#### **CODING AND SOLUTIONS**

#### FEATURE 1

Node-RED Supports browser-based flow editing making it user friendly, accessible and visual. It is built on Node.js, which is a none-blocking, lightweight I/O model, making it lightweight and efficient. Flows created in Node-RED are stored using JSON, and can imported and exported and shared with ease.

#### **Features of Node-RED**

Ability to run in cloud environments

Simple user interface creation

#### **FEATURE 2**

In the mobile application, the farmers shall able to monitor the parameters in the field such as Soil temperature, moisture and humidity from any locations at any time. By using this application, the farmers would be able to control the irrigation motors from anywhere so there won't be any delayed irrigation or Over-irrigation.

# CHAPTER - 8 TESTING

#### **TEST CASES**

A test case might be created as an automated script to verify the functionality per the original acceptance criteria. After doing manual exploratory testing, QA testers might suggest other functionality be added to the application as well as updated test cases be incorporated in the automated test suite.

Table 8.1. Test Case

| Test case ID    | Feature Type  | Component | Test Scenario             |
|-----------------|---------------|-----------|---------------------------|
| Watson IOT      | Random data   | Python    | Sensor data generated and |
| platform_TC_OO1 | to cloud      | 3.7.0     | sent to Watson IOT        |
|                 |               |           | platform                  |
|                 |               |           | The data should be sent   |
| Frontend_TC_OO2 | Dashboard UI  | Node.RED  | from cloud to NODE and    |
| Trontend_TC_002 |               |           | data needed to be         |
|                 |               |           | displayed                 |
|                 |               |           | When motor controls are   |
|                 | API for motor |           | clicked, the controls has |
| Backend_TC_OO3  | control       | Node.RED  | to be sent to cloud and   |
|                 | Control       |           | from cloud to python      |
|                 |               |           | code                      |

Table.8.2. Test Report

| Steps To Execute                                                                                                 | Test Data                                                                                                         | <b>Expected Result</b>                                                                  | Status | <b>Executed By</b>       |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|--------------------------|
| 1. write the python code foe connection 2. enter the credentials 3. Run the code to connect with Watson platform | https://hztfwg.internetofthings.ibmcloud.com/dashboard/                                                           | Watson IOT platform receives the data generated                                         | Pass   | MIshal Rai               |
| 1.cloud<br>configuration<br>2.Node-red<br>Configuration<br>3. APP Route                                          | https://node-redzixas-<br>2022-11-<br>04.eugb.mybluemix.net/<br>u<br>i/#!/0?socketid=C8c<br>NlCoGvWIE4cAuA<br>AAB | Data is received in<br>Node-red and<br>displayed in web<br>UI and Mobile<br>application | Pass   | Aman Darjee<br>Amrit Rai |
| 1.Login to the dashboard 2.Click the controls                                                                    | https://node-redzixas-<br>2022-11-<br>04.eugb.mybluemix.net/<br>u<br>i/#!/0?socketid=C8c<br>NlCoGvWIE4cAuA<br>AAB | User command has to be sent to the python from cloud by Node-RED                        | Pass   | Kusen Hang<br>Subba      |

## **USER ACCEPTANCE TESTING**

The purpose of this document is to briefly explain the test coverage and open issues of the irrigation reminder project at the time of the release to User Acceptance Testing (UAT).

## **Defect Analysis**

 Table 8.1. Defect Analysis

| Resolution | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Subtotal |
|------------|------------|------------|------------|------------|----------|
| By Design  | 9          | 3          | 4          | 1          | 16       |
| Duplicate  | 0          | 0          | 1          | 2          | 3        |
| External   | 3          | 3          | 0          | 1          | 7        |
| Fixed      | 7          | 1          | 4          | 14         | 26       |
| Not        | 0          | 0          | 1          | 0          | 1        |
| Reproduced |            |            |            |            |          |
| Skipped    | 0          | 0          | 0          | 1          | 1        |
| Won't Fix  | 0          | 0          | 0          | 1          | 1        |
| Totals     | 19         | 7          | 10         | 20         | 55       |

## **Test Case Analysis**

**Table 8.2.** Test Case Analysis

| Section                | <b>Total Cases</b> | Not<br>Tested | Fail | Pass |
|------------------------|--------------------|---------------|------|------|
| Sensor data generation | 3                  | 0             | 0    | 3    |
| Watson platform        | 4                  | 0             | 0    | 4    |
| connection             |                    |               |      |      |
| Node-RED               | 5                  | 0             | 0    | 5    |
| Sensor Interface       | 4                  | 0             | 0    | 4    |
| API for control        | 6                  | 0             | 0    | 6    |
| Motor status           | 6                  | 0             | 0    | 6    |

# CHAPTER - 9 RESULTS

## Performance

## **MetricsNFT** -

## **Detailed Test Plan**

Table 9.1. NFT - Detailed Test Plan

| S.No | Project<br>Overview                       | NFT<br>Test<br>approach | Assumptions/Dependencies/Risks               | Approvals/Sign<br>Off |
|------|-------------------------------------------|-------------------------|----------------------------------------------|-----------------------|
| 1    | Smart<br>farming<br>Web -UI               | Stress                  | App Crash/ Developer team/ Site Down         | Approved              |
| 2    | Smart<br>farming<br>mobile<br>application | Load                    | Server Crash/ Developer team/<br>Server Down | Approved              |

## **End Of Test Report**

Table 9.2. End Of Test Report

| Project<br>Overview              | NFT Test<br>approach | NFR - Met   | GO/NO-<br>GO<br>decision | Identified<br>Defects | Approvals/<br>Sign Off |
|----------------------------------|----------------------|-------------|--------------------------|-----------------------|------------------------|
| Smart<br>farming<br>Web -UI      | Stress               | Performance | GO                       | Closed                | Approved               |
| Smart farming mobile application | Load                 | Scalability | NO-GO                    | Closed                | Approved               |

#### ADVANTAGES AND DISADVANTAGES

#### **ADVANTAGES**

- 1. IOT makes it possible to avoid challenges and removes all issues that may arise during the farming process thus the quantity of the product is growing and customers get a good product of High quality.
- 2. IOT system helps to continuously monitor land so that precautions can be taken at an early stage it increases productivity, reduces manual work, and farming efficient.
- 3. By using IOT crop maintenance can be easily done to observe the growth of the crop.
- 4. Increase in agricultural productivity.
- 5. These sensors are equipped with wireless chips so that they can be controlled remotely.
- 6. They are easy to operate and use and easy to maintain.

#### **DISADVANTAGES**

- 7. IOT smart crop needs availability on the Internet continuously, the rural part of the developing countries did not fulfill these requirements and the Internet is slower.
- 8. 2. The IOT-based equipment required the farmer to understand and learn the use of technology. This is the main challenge in adopting smart agriculture framing at a large scale across the continues.

**CONCLUSION** 

With the incorporation of the WSN&IOT, we can upgrade the agriculture farm. These systems enable to check the quality of the soil and the growth of the crop in soil and with these system farmers are able to solve irrigation problems, temperature problems, humidity problems, etc. The availability of sensors for the agricultural parameters and micro-controllers can be easily interfaced with each other and with the help of Internet of Things, wireless sensor networks communication the challenges encountered by the farmers can also be reduced and a better communication path for the transfer of useful data can be achieved between various nodes. Farmers are able to control various equipment's related to agricultural and monitor their crop on Smartphone or on computers. These systems offer a high application area to the users to improve their skill and output of the crops in better way. Using these system helps to increase the Rice, wheat and maize and other agricultural production . IOT capable to control the condition of the yield and growth, it can also able to check soil, temperature, humidity, etc. with help of IoT.

#### **FUTURE SCOPE**

In the future, there will be a large scope for this system. Various sensors used to collect the information from field and transmitted it through GSM. This project can be further enhanced by a wireless sensor network.

We can use various type of sensors like finding the moisture, Humidity and Temperature of the soil. These sensors gather information that is useful to the farmers and can be conscious of the farmland from any place in the world.

This project can be enhanced by using data of individual crops to adopt the monitoring system based on the type of crop planted in field.

# CHAPTER - 13 APPENDIX

#### **SOURCE CODE**

```
import time
import os
import datetime
import wiotp.sdk.device
import random
organization = "hztfwg" deviceType =
"DeviceType1" deviceId =
"Deviceid1" authMethod = "token"
authToken = "12345678"
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
deviceCli.connect()
def myCommandCallback(cmd):
     print("Message received
                                 from Ibm IOT Platform:
                                                             %s" %
cmd.data['command'])
     m=cmd.data['command']
  if(m=="motor on"):
```

```
print("motor is Switched
      elif(m=="motor off"):
on")
while True:
     soil =random.randint(5,100)
     temp =random.randint(15,50)
     hum =random.randint(10,100)
     myData={'soil_moisture': soil,'temperature':
temp, 'humidity': hum}
def myOnPublishCallback():
     print ("Published Temperature = %s C" % temp, "Moisture= %s" % soil
"Humidity = %s %%" % hum, "to IBM Watson")
     success = deviceCli.publishEvent("event_1", "json", data=myData,
qos=0, on_publish=myOnPublishCallback)
     if not success:
           print("Not connected to IoTF")
           time.sleep(10)
           deviceCli.commandCallback = myCommandCallback
deviceCli.disconnect()
```

#### **SCREENSHOTS**



Figure.13.2.1. Node red



Figure.13.2.2. Dashboard UI (motor on)



Figure.13.2.3. Dashboard UI(motor off)



Figure.13.2.3. Mobile application's backend

## GITHUB AND PROJECT DEMO LINK

| 1. | GITHUB                     | " https://github.com/IBM-EPBL/IBM-Project-5699-1658813239" |
|----|----------------------------|------------------------------------------------------------|
| 2. | PROJECT DEMONSTRATION LINK | " https://youtu.be/z2diIoGIRm0"                            |