ВТОРА ДОМАШНА ЗАДАЧА ПО ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА – ГРУПА 1 БАЕСОВИ МРЕЖИ И МАШИНСКО УЧЕЊЕ

1. БАЕСОВИ МРЕЖИ – Подем на вештачката интелигенција

- (а) Случајни променливи за моделирање на проблемот:
- ААІ индекс на развојот на областа на вештачката интелигенција
 - домен на вредности: 1 низок / 2 умерен / 3 висок
- PR број на публикувани истражувачки трудови, индикатор кој влијае врз индексот на развој на областа на вештачката интелигенција
 - домен на вредности: 1 низок / 2 среден / 3 висок
- P пораст на пријавени патенти од областа, индикатор кој влијае врз индексот на развој на областа на вештачката интелигенција
 - домен на вредности: 0 нема / 1 има
- GI пораст на иницијативи на владите ширум светот, влијае врз индикаторите за зголемениот број на публикувани истражувачки трудови и пораст на пријавени патенти од областа
 - домен на вредности: 0 нема / 1 има
- SAI интерес на студентите на техничките факултети за предметот Вештачка интелигенција, влијае врз зголемениот број на публикувани истражувачки трудови од областа
 - домен на вредности: 1 низок / 2 висок
- (б) Графички приказ на Баесовата мрежа:

(в) За да се дефинираат условните веројатносни распределби за оваа Баесова мрежа, потребни се вкупно 38 параметри. Овој резултат се добива како збир на маргиналните веројатности за SAI - 2 и GI - 2, како и условните веројатности за PR - 12, P - 4 и AAI - 18.

(г) Маргинални и условни веројатносни табели:

SAI	P (SAI)	
1	0.4	
2	0.6	

^{*} Веројатноста дека постои висок интерес на студентите за предметот Вештачка интелигенција (SAI = 2) е 0.60

GI	P (GI)
0	0.7
1	0.3

GI	P	P(P GI)
0	0	0.4
0	1	0.6
1	0	0.65
1	1	0.35

^{*} Високиот број на владини иницијативи (GI = 1) не се отсликува така брзо во порастот на бројот на приавени патенти (P = 1) – 35%

GI	SAI	PR	P (PR GI, SAI)
0	1	1	0.35
0	1	2	0.4
0	1	3	0.25
0	2	1	0.3
0	2	2	0.4
0	2	3	0.3
1	1	1	0.25
1	1	2	0.4
1	1	3	0.35
1	2	1	0.2
1	2	2	0.5
1	2	3	0.3

P	PR	AAI	P (AAI P, PR)
0	1	1	0.7
0	1	2	0.2
0	1	3	0.1
0	2	1	0.2
0	2	2	0.6
0	2	3	0.3
0	3	1	0.05
0	3	2	0.1
0	3	3	0.85
1	1	1	0.6
1	1	2	0.25
1	1	3	0.15
1	2	1	0.15
1	2	2	0.55
1	2	3	0.3
1	3	1	0.03
1	3	2	0.07
1	3	3	0.9

^{*} И покрај немање пораст на бројот во пријавени патенти (P = 1), во услови на висок број на публикации (PR = 3), се предвидува висок индекс во развојот на областа (P (AAI) од 85%

(д) Израз за тотална здружена веројатност:

Подреденост: GI, SAI, PR, P, AAI

P(GI, SAI, PR, P, AAI) =

- = P (GI) * P (SAI | GI) * P (PR | GI, SAI) * P (P | GI, SAI, PR) * P (AAI | GI, SAI, PR, P) =
- = P (GI) * P (SAI) * P (PR | GI, SAI) * P (P | GI) * P (AAI | PR, P)

(ѓ) Независности помеѓу променливите кои произлегуваат од структурата на Баесовата мрежа:

- GI 11 SAI заедничка последица
- GI 🏿 AAI | PR каузален синџир
- GI 🏿 AAI | Р каузален синџир
- SAI II AAI | PR каузален синџир
- PR ⊥ P | GI заедничка причина

(e) Израз за веројатност дека има пораст на бројот на владини иницијативи за развој на вештачката интелигенција (GI = 1) и пораст на бројот на пријавени патенти од областа (P = 1).

$$P(P|GI) = \frac{P(GI|P)}{P(GI)} * P(P) = \frac{\frac{P(GI, P)}{P(P)}}{\frac{P(GI)}{1}} * P(P) = \frac{P(GI, P)}{P(GI)}$$

$$P(GI=1, P=1)=P(P=1|GI=1)*P(GI=1)=0.35*0.35=0.1225$$

(ж) Израз за веројатност дека нема пораст на бројот на публикувани истражувачки трудови од областа (PR = 1) ако има пораст во бројот на запишани студенти на предметот Вештачка интелигенција (SAI = 2).

$$P(PR=1|SAI=2) = \frac{P(PR=1,SAI=2)}{P(SAI=2)} = ...$$

$$... = \frac{P(PR = 1 | SAI = 2, GI = 0) * P(SAI = 2) * P(GI = 0) + P(PR = 1 | SAI = 2, GI = 1) * P(SAI = 2) * P(GI = 1)}{P(SAI = 2)} = ...$$

$$\dots = \frac{0.3 * 0.6 * 0.7 + 0.4 * 0.6 * 0.3}{0.6} = 0.33$$

2. МАШИНСКО УЧЕЊЕ

А. НАИВЕН БАЕСОВ КЛАСИФИКАТОР

(а) Параметри:

G – дипломирани студенти

Р – програмски јазик

I – интервју

А – положиле Вештачка интелигенција

I	P (I)
HE	1/2
ДА	1/2

G	I	P (G I)
HE	HE	3/5
ДА	HE	2/5
HE	ДА	2/5
ДА	ДА	3/5

P	I	P (P I)
Java	HE	3/5
Python	HE	2/5
Java	ДА	2/5
Python	ДА	3/5

Со Лапласово порамнување со k = 2:

I	P (I)
HE	1/2
ДА	1/2

G	I	P (G I)
HE	HE	5/9
ДА	HE	4/9
HE	ДА	4/9
ДА	ДА	4/9

A	I	P (A I)
HE	HE	5/9
ДА	HE	4/9
HE	ДА	3/9
ДА	ДА	6/9

P	I	P (P I)
Java	HE	5/9
Python	HE	4/9
Java	ДА	4/9
Python	ДА	5/9

(б) Кандидат кој е дипломиран ($G = \mathcal{A}A$), но никогаш не полагал ВИ (A = HE), и програмскиот јазик кој го користи најмногу е Java (P = Java):

$$P(I=HE,G=ДA,A=HE,P=Java)=...$$
...= $P(I=HE)*P(G=ДA|I=HE)*P(A=HE|I=HE)*P(P=Java|I=He)=...$
...= $\frac{1}{2}*\frac{4}{9}*\frac{5}{9}*\frac{5}{9}=\frac{100}{1458}=0.0686$

$$P(I=ДA,G=ДA,A=HE,P=Java)=...$$
...= $P(I=ДA)*P(G=ДA|I=ДA)*P(A=HE|I=ДA)*P(P=Java|I=ДA)=...$
...= $\frac{1}{2}*\frac{4}{9}*\frac{3}{9}*\frac{4}{9}=\frac{48}{1458}=0.0329$

Кандидатот ќе се класифицира за интервју (I = ДА).

(г) Веројатноста кандидат кој не е дипломиран (G = HE) и најмногу користи Java (P = Java) да биде повикан на интервју ($I = \mathcal{I}A$):

$$P(I = ДA, G = HE, A = HE, P = Java) + P(I = ДA, G = HE, A = ДA, P = Java) = P(I = ДA) * P(G = HE | I = ДA) * P(A = HE | I = ДA) * P(P = Java | I = ДA) + P(I = ДA) * P(G = HE | I = ДA) * P(A = ДA | I = ДA) * P(P = Java | I = ДA) = = \frac{1}{2} * \frac{4}{9} * \frac{3}{9} * \frac{4}{9} + \frac{1}{2} * \frac{4}{9} * \frac{6}{9} * \frac{4}{9} = \frac{48}{1458} + \frac{96}{1458} = 0.0988$$

Б. ДРВО НА ОДЛУЧУВАЊЕ

(а) Постапка за избор за најдобар атрибут за поделба во коренот на дрвото на одлучување: За пресметка на сите ентропии ја искористив формулата:

$$H(S) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

и ги добив следните резултати:

За information gain ја искористив формулата:

IG = Entropy(Parent) – WeightedAverage(Entropy(Children)), по што добив дека најполезен атрибут за корен би бил A (Положле ВИ).

(б) Целосно дрво на одлучување:

В.ПЕРЦЕПТРОН

(а) Модел на перцептрон:

Дипломирани (G):
$$HE - 0$$
, $ДA - 1$ Положиле BU (A): $HE - 0$, $ДA - 1$ Програмски јазик (P): $Java - 0$, $Python - 1$ Интервју (I): $HE - 0$, $ДA - 1$

$$w = [w_{bias}, w_G, w_A, w_P] = [1, 1, 2, 1]$$

 $f(x) = [BIAS, G, A, P]$
 $y^* = +1$, if $I = 1$
 $y^* = -1$, if $I = 0$
 $y^* = +1$, if $w^* f(x) >= 0$
 $y^* = -1$, if $w^* f(x) < 0$

#	G	A	P	I
6	0	0	1	0
7	0	0	1	1
8	0	0	0	0
9	1	0	1	0
10	1	1	1	1

(б) Една епоха со зададените параметри на перцептронот:

в) За алгоритамот за учење на овој перцептрон немаме гаранција дека ќе конвергира, бидејќи самиот тренинг не е сепарабилен.