Lecture 4: Visualization

Outline

- Basic plotting commands
- Types of plots
- Customizing plots graphically
- Specifying color
- Customizing plots programmatically
- Exporting figures

Why use Matlab for visualization?

- Matlab is flexible enough to let you quickly visualize data, and powerful enough to give you complete control over the final product
- Features:
 - Interactive plotting
 - simple 3D plotting
 - programmatic annotation

Basic Plots

- 2D Visualization
 - plot (line plots)
 - histogram
 - scatter (scatter plots)
 - image/imagesc (images)
- 3D Visualization
 - surf/mesh (surfaces)
 - plot3 (lines)
 - scatter3

Working with Figures

- Create a new figure : figure();
- Specify a figure number: figure(1)
- Hold onto a figure "handle"
 - figHandle1 = figure(1);
- Re-select a figure:
 - figure(figHandle1)
- Some useful functions:
 - clf: clear figure
 - close all: closes all figures
 - gcf: get handle to current figure

Demo: Figures

plot

- Syntax: plot(x,y) plots points in the vector y against points in the vector x

histogram/bar

- Syntax: histogram(y) plots a histogram of the values in y, bar(x,y) plots bars at the points given by (x,y)

scatter

- Syntax: scatter(x,y,s,c) lets you specify the size (s) and color (c) of each point given by (x,y)

image/imagesc

- Syntax: image(C) plots the values stored in the matrix C as an image

surf & mesh

- Syntax: surf(x,y,z) and mesh(x,y,z) are used to visualize a surface in three dimensions

plot3

- Syntax: plot3(x,y,z) plot points in 3D

Demo: Plot Types

http://www.mathworks.com/help/matlab/2-and-3d-plots.html

subplots

- the 'subplot' command let's you plot multiple plots on one figure
- syntax: subplot(nRows, nCols, index)

(Figure 1) subplot(1,3,3)subplot(1,3,1) subplot(1,3,2)

subplots

- the 'subplot' command let's you plot multiple plots on one figure
- syntax: subplot(nRows, nCols, index)

Demo: Subplots

Other functions

- gca

get handle to current axis

- panel

Panel()

- user-submitted function from Matlab File Exchange (FEX)
- http://www.mathworks.com/matlabcentral/fileexchange/20003-panel
- Provides **MUCH** more control over subplot positioning, layout, margins, etc.

Customizing Graphs Graphically

Demo: Customizing Graphically

The plot() function (again)

- Plot() plots along dimension 1 of an array.
- If there are multiple dimensions, plot creates a separate line for each column
- If your data isn't constructed this way, just transpose with the apostrophy character:
 - plot(data')

Demo: Plot()

The plot() function (again)

- For line plots, specify the line type using a format string:
 - plot(x,y,'b') % plots blue line (default)
 - plot(x,y,'b.') % plots blue dots
 - plot(x,y,'b:') % plots blue dotted line
 - plot(x,y,'k--') % plots black dashed line
 - plot(x,y,'ro') % plots red circles
- Chain together characters for full specification of color, marker, and line
 - plot(x,y,'ro-') % plots red circles with solid line
 - plot(x,y,'ro:') % plots red circles with dotted line

Plot Line Style

- For line plots, specify the line type using a format string:
 - plot(x,y,'b') % plots blue line (default)
 - plot(x,y,'b.') % plots blue dots
 - plot(x,y,'b:') % plots blue dotted line
 - plot(x,y,'k--') % plots black dashed line
 - plot(x,y,'ro') % plots red circles
- Chain together characters for full specification of color, marker, and line
 - plot(x,y,'ro-') % plots red circles with solid line
 - plot(x,y,'ro:') % plots red circles with dotted line

Plot Line Style

Line Style Specifiers

You indicate the line styles, marker types, and colors you want to display using *string* specifiers, detailed in the following tables:

Specifier	LineStyle
· ·	Solid line (default)
	Dashed line
':'	Dotted line
''	Dash-dot line

Color Specifiers

Specifier	Color
r	Red
g	Green
b	Blue
С	Cyan
m	Magenta
У	Yellow
k	Black
w	White

Marker Specifiers

Specifier	Marker Type
'+'	Plus sign
'o'	Circle
***	Asterisk
V.	Point
'x'	Cross
'square' or 's'	Square
'diamond' or 'd'	Diamond
141	Upward-pointing triangle
∨	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'pentagram' or 'p'	Five-pointed star (pentagram)
'hexagram' οΓ'h'	Six-pointed star (hexagram)

Demo: LineSpec

Customizing Programmatically

- Everything you can do graphically you can also do programmatically.
- DON'T do something by hand if you have to do it more than once!
- Examples
 - axes labels: xlabel('text'), ylabel('text')
 - plot/axis title: title('text')
 - Add text: text(x,y, 'text to add')

Customizing Programmatically

- Graphics parameters are usually specified as 'parameter', value pairs:
 - plot(x,y, 'linewidth', 1.4)
 - plot(x,y, 'bo-', 'linewidth', 2, 'markersize', 15)
 - plot(x,y, 'o-', 'MarkerFaceColor', [1 0 0], 'markerEdgeColor', [0 0 1])

Other useful functions

grid on

axis off

colorbar

colormap hot

adds grid lines

turns off the axes

adds a colorbar to image plot

switch colormap

Demoi Customizing Programmaticaly

Plot colors

Matlab has 8 built-in colors:

```
Black (k), Red (r), Blue (b), Green (g), Cyan (c), Magenta (m), Yellow (y), White (w)
```

We can specify other colors using RGB (red, green blue) notation:

```
red = [1 0 0]
blue = [0 0 1]
green = [0 1 0]
gray = [0.2 0.2 0.2]
black = [0 0 0]
```

All RGB colors are 1x3 arrays and all elements between 0-1.

Demo: Color

Colormaps

Colormaps are used to specify how data gets mapped onto different colors.

Matlab has a few built-in colormaps, but you can also specify your own!

Why are colormaps important?

Much better!

Avoid the default colormap (jet)

Manipulating Figures

Figures in Matlab are referenced using "handles", which are pointers to different parts of the figure.

```
Example:
```

myhandle = plot(x,y);

Will return a handle to the plot. Then you can run the following:

```
get(myhandle); % to see a list of properties
set(myhandle,'Name',Value); % to set the value of a property
```

Manipulating Figures

Different parts of the figure are organized hierarchically:


```
>> get(gca, 'Children')
```

```
>> get(gcf,'Children')
```

Demo: Annotating plots

Exporting Figures - Formats

Matlab saves figures using it's own .fig format.

To share figures or view outside matlab, export to other formats, including:

JPG, PNG, EPS, PDF, TIFF

Bitmap vs. Vector graphics

Two main classes of image formats: **bitmap** vs. **vector** graphics

Bitmap (jpg, png):

- Fixed image sizes
- Best for actual images (pictures of stuff)

Vector (eps, pdf):

- Variable image sizes
- Best for line / bar graphs, scatter plots, etc.

Exporting Figures

print(figHandle,filename,formattype)

e.g.: print(figure(1), 'MyPlot','-dpng')

formats: '-dpng', '-depsc2', '-dpdf', etc

add flag for resolution: '-r300', etc

Demo: Exporting Figures

Other Resources

2D and 3D visualization examples:

http://www.mathworks.com/help/matlab/2-and-3d-plots.html

Custom colormaps:

http://colorbrewer.org

Panel

http://www.mathworks.com/matlabcentral/fileexchange/20003-panel

Colors in figures (blog post)

http://figuredesign.blogspot.com/2012/04/meeting-recap-colors-

in-figures.html

Poor Graphs

Distribution of All TFBS Regions

Poor Graphs

Hematocrit Group (%)

Cotter et. al., Journal of Clinical Epidemiology 57 (2004)