Теория очередей и основы моделирования систем массового обслуживания

# Время ожидания в пункте экстренной помощи



Общее время в системе=ожидание + обслуживание

## Странный процесс



 Среднее время ожидания оказания услуги 5 минут, среднее время обслуживания - 4 минуты. Что странного в этом процессе оказания услуги?

# Более реалистичный процесс

| Пациент | Время<br>прибытия | Время<br>между | Время<br>обслуживания |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | приовтия          | прибытиями     | оослуживания          | Тациент1 Пациент3 Пациент7 Пациент9 Пациент11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1       | 7:00              | 0              | 5                     | Пациент 2 Пациент 4 Пациент 6 Пациент 8 Пациент 10 Пациент 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2       | 7:07              | 7              | 6                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3       | 7:09              | 2              | 7                     | Время                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4       | 7:12              | 3              | 6                     | 7:00 7:40 7:00 7:20 7:40 7:50 0:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5       | 7:18              | 6              | 5                     | 7:00 7:10 7:20 7:30 7:40 7:50 8:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6       | 7:22              | 4              | 3                     | 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7       | 7:25              | 3              | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8       | 7:30              | 5              | 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9       | 7:36              | 6              | 4                     | Konuvees to the constant of th |
| 10      | 7:45              | 9              | 2                     | OJUNACO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11      | 7:51              | 6              | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12      | 7:55              | 4              | 2                     | 2 min. 3 min. 4 min. 5 min. 6 min. 7 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Среднее время ожидания услуги 5 минут, среднее время оказания услуги 4 минуты.
Будет ли производительность процесса такой же, как и в предыдущем случае?

#### Вариации ведут к ожиданию и промежуточным запасам

| Пациент | Время<br>прибытия | Время<br>между<br>прибытиями | Время<br>обслуживания |  |
|---------|-------------------|------------------------------|-----------------------|--|
| 1       | 7:00              | 0                            | 5                     |  |
| 2       | 7:07              | 7                            | 6                     |  |
| 3       | 7:09              | 2                            | 7                     |  |
| 4       | 7:12              | 3                            | 6                     |  |
| 5       | 7:18              | 6                            | 5                     |  |
| 6       | 7:22              | 4                            | 3                     |  |
| 7       | 7:25              | 3                            | 4                     |  |
| 8       | 7:30              | 5                            | 3                     |  |
| 9       | 7:36              | 6                            | 4                     |  |
| 10      | 7:45              | 9                            | 2                     |  |
| 11      | 7:51              | 6                            | 2                     |  |
| 12      | 7:55              | 4                            | 2                     |  |







# Вариации - откуда они берутся?



Вариации это норма, а не исключение!

- Вариативность направления
- Специальное оборудование

### От процесса к параметрам

#### Параметры:

- $\blacktriangleright$  Количество ресурсов: s
- Частота (средняя) прибытия клиентов:  $\lambda$
- Среднее время сервиса:  $\tau$  (скорость сервиса  $\mu = 1/\tau$ )
- ► Загруженность  $\rho = \lambda * \tau / s$
- Коэффициент вариации: КВ = стандартное отклонение / математическое ожидание (либо для периодов между прибытием клиентов либо для времени сервиса):

КВ Прибытия = 
$$KB_{\Pi} = \frac{\delta_{\Pi}}{\lambda_{\Pi}}$$

КВ Сервиса =  $KB_{C} = \frac{\delta_{C}}{\lambda_{C}}$ 

#### Усреднённые метрики эффективности:

- ightharpoonup Время ожидания:  $W_q$
- ightharpoonup Общее время в системе:  $W=t+W_q$
- ightharpoonup Число потребителей в очереди:  $L_q$
- ightharpoonup Число потребителей в системе L

## Каков смысл коэффициента вариации?

- Процесс с КВ = 0: Прибытия чётко по графику, например выход продуктов с механической производственной линии
- Процесс с КВ = 1: Прибытия клиентов абсолютно независимы. Например, звонки в телефонный центр. Время между звонками имеет экспоненциальное распределение. Другими словами, прибытия происходят в соответствии с распределением Пуассона
- Процесс с КВ >> 1: Групповые прибытия клиентов: например в обеденный перерыв



#### Формула ожидания (приближение для 1-го ресурса)





$$W_q = au * \left( rac{
ho}{1 - 
ho} 
ight) * \left( rac{ ext{KB}_\Pi^2 + ext{KB}_C^2}{2} 
ight)$$
 — Эффект вариативности Эффект загруженности Эффект шкалы

# Механика вычислений с одним ресурсом













#### Общий подход

- ► Каковы входные параметры?  $\lambda, \tau, \text{KB}_{\Pi}, \text{KB}_{\mathbb{C}}$
- ▶ Найти загруженность  $\rho = \lambda * \tau$
- Найти время ожидания  $W_q$  по формуле  $W_q = \tau(\frac{\rho}{1-\rho})\frac{1}{2}(KB_\Pi^2 + KB_C^2)$
- $L_q = \lambda W_q$
- $W = W_q + \tau$
- $L = \lambda W$

#### Пример (обслуживание в банке)

- Клиенты прибывают со скоростью  $\lambda = 0.3$  в минуту, скорость сервиса в среднем  $\mu = 0.33$  клиента в минуту, среднее время сервиса  $\tau = \frac{1}{0.33} = 3$  минуты,  $\mathrm{KB}_\Pi = \mathrm{KB}_\mathrm{C} = 1$
- $W_q = 3 * \left(\frac{0.9}{0.1}\right) * 0.5 * (1+1) = 27 \text{ MUH.}$
- ightharpoonup Клиентов в очереди  $L_q = 0.3*27 = 8.1$
- ightharpoonup Время в системе W = 27 + 3 = 30
- $\blacktriangleright$  Клиентов в системе L = 0.3 \* 30 = 9

## Имитационная модель







# Системы с одним или несколькими ресурсами

Один ресурс - одна очередь Два ресурса - две очереди  $\mathbf{q}_{TO}$ лучше? Два ресурса - одна очередь 📕 🧼 📔 🛕

## Более общая формула (приближение)

$$W_q = \left(\frac{\tau}{S}\right) * \left(\frac{\rho^{\sqrt{2(s+1)}-1}}{1-\rho}\right) * \left(\frac{\mathrm{KB}_\Pi^2 + \mathrm{KB}_C^2}{2}\right)$$
Эффект шкалы
Эффект загруженности

- ► Помните, что  $\rho = \lambda * \frac{\tau}{s}$
- Разберём пример:

# Механика вычислений с несколькими

### ресурсами



#### Общий подход

- ► Каковы входные параметры?  $\lambda, \tau, s, \text{KB}_{\Pi}, \text{KB}_{\text{C}}$
- ► Найти загруженность  $\rho = \frac{\lambda * \tau}{s}$
- ► Найти время ожидания  $W_q$  по формуле  $W_q =$

$$\left(\frac{\tau}{s}\right)\left(\frac{\rho^{\sqrt{2(s+1)}-1}}{1-\rho}\right)\frac{1}{2}\left(KB_{\Pi}^{2}+KB_{C}^{2}\right)$$

- $L_q = \lambda W_q$
- $W = W_q + \tau$
- $L = \lambda W$

#### Пример (обслуживание в банке)

- Клиенты прибывают со скоростью  $\lambda=0.6$  в минуту, скорость сервиса в среднем  $\mu=0.33$  клиента в минуту, среднее время сервиса  $\tau=\frac{1}{0.33}=3$  минуты, s=2 ресурса,  $\mathrm{KB}_\Pi=\mathrm{KB}_\mathrm{C}=1$
- $W_q = \frac{3}{2} * \frac{0.9^{\sqrt{2(2+1)}-1}}{1-0.9} = 12,88 \text{ M/H}.$
- ightharpoonup Клиентов в очереди  $L_q=12,88*0,6=7,73$
- ightharpoonup Время в системе W = 12,88 + 3 = 15,88
- $\blacktriangleright$  Клиентов в системе L = 0.6 \* 15.88 = 9.52

## Имитационная модель





# Сила объединения ресурсов

- Два ресурса две очереди
- Ожидание для клиента 27 минут



- Два ресурса одна очередь
- ▶ Ожидание для клиента 12,88 минут





## Обеспечиваем чистоту эксперимента



#### Управление системами с ожиданием

- > Закон Литтла фундаментален запасы, производительность и время цикла связаны. Этот закон помогает связать операционные решения с оборачиваемостью запасов, циклом конверсии наличности и прибылью.
- Вариативность ведёт к ожиданию и плохому сервису даже если загруженность ресурсов <100%!</p>
- ▶ Вариативность это норма, а не исключение! Необходимо понять откуда она берётся
- и минимизировать её источники
  - ▶ Расписание прибытия клиентов
  - Стимулы прибыть в незагруженные времена
  - Обучение и технологии
  - Чёткие процессы (неправильно, но единообразно)
  - Тренировка клиента
- Остаточной вариативностью нужно эффективно управлять, используя объединение ресурсов и добавочные ресурсы
- **Используйте имитационное моделирование**, чтобы:
  - получить качественное описание системы
  - проанализировать рекомендации/сценарии
- Помните: 100% загруженность ресурсов ведёт к бесконечной очереди, если присутствует вариативность в системе!

# Теория ограничений Голдратта (синопсис книги «Цель»)

- Практический подход к оптимизации процессов:
  - ▶ Определить ограничивающие факторы (узкие места)
  - ▶ Подчинить всё остальное этой цели
  - ▶ Использовать ограничивающие факторы наилучшим образом.
  - Ликвидировать / уменьшить влияние ограничивающих факторов.
  - ▶ Вернуться к шагу 1 Не допускать инертности!
- Теория ограничений помогает увеличить производительность и наладить плавное протекание процессов

### От простого процесса к сложному

- А что если:
  - ► Единицы процесса разделяются на несколько потоков. Например, в банке в зависимости от сложности кредитной ситуации клиента, возможны разные пути обработки запросов на кредит с исключением разных стадий
  - Имеется несколько видов единиц процесса, которые представляют, например, разные типы клиентов. Например, жалобы от клиентов могут требовать технической, экономической или юридической экспертизы
- ► Наличие узкого места может зависеть от разнообразия клиентов/потоков: недостаточно знать, что операция занимает много времени, нужно также знать, насколько часто требуется эта операция.
- В этом случае критическое значение имеет правильный выбор *единицы процесса*! (начиная со стадии построения диаграммы).
- Напоминаю что:

Предполагаемая загрузка =  $\frac{\text{Мощность, необходимая для удовлетворения спроса}}{\text{Имеющаяся мощность}}$ 

# Пример: как работать с более сложными процессами?



- ▶ Спрос: 180 заявлений/день (10 часов в день). Из них:
  - > 30 заявлений/день консультанты
  - ▶ 110 заявлений/день штатные должности
  - ▶ 40 заявлений/день стажёры

### Подход №1: единица труда - это заявление

- ▶ В этом случае полагаем, что разные типы заявлений приходят случайным образом:
  - ▶ С вероятностью 3/18, заявление на должность консультанта
  - ▶ С вероятностью 11/18, заявление на штатную должность
  - ▶ С вероятностью 4/18, заявление на должность стажера
- ▶ По сути, мы отталкиваемся от спроса и определяем требуемую мощность каждого участка исходя из продуктового микса, получаемого от случайного прибытия разных продуктов
- > Затем сравниваем требуемую мощность с ресурсами

## Принимаем за единицу труда заявления

|                               | Длительность<br>операции<br>[мин/заявка] | Число<br>работников | Имеющаяся<br>мощность<br>[заявок/час] | Требуемая мощность<br>[заявлений/час] |      |         | Предпо-<br>лагаемая |              |
|-------------------------------|------------------------------------------|---------------------|---------------------------------------|---------------------------------------|------|---------|---------------------|--------------|
|                               |                                          |                     |                                       | Консультанты                          | Штат | Стажеры | Всего               | загрузка     |
| Оформление                    | 3                                        | 1                   | 60/3 = 20                             | 3                                     | 11   | 4       | 18                  | 18/20 = 90%  |
| Связаться с<br>людьми         | 20                                       | 2                   | 2*60/20 = 6                           | 3                                     | 0    | 0       | 3                   | 3/6 = 50%    |
| Связаться с<br>работодателями | 15                                       | 3                   | 3*60/15 = 12                          | 3                                     | 11   | 0       | 14                  | 14/12 = 117% |
| Анализ оценок /<br>школы      | 8                                        | 2                   | 3*60/15 = 12                          | 0                                     | 0    | 4       | 4                   | 4/15 = 27%   |
| Письмо-<br>подтверждение      | 2                                        | 1                   | 60/2 = 30                             | 3                                     | 11   | 4       | 18                  | 18/30 = 60%  |

# Подход №1: единица труда - это минута работы

- ▶ В этом случае мы сначала рассчитываем имеющуюся мощность на этапе как (число работников) × 60 [минут/час]
- Далее находим требуемую мощность: (сколько заявлений различного типа нужно обработать за час) × (сколько минут работы требует обработка заявления каждого из видов на данном участке процесса)
- ▶ Сравниваем с имеющейся мощностью чтобы найти узкое место

#### Принимаем за единицу труда минуту работы

|                               | Длительность<br>операции<br>[мин/заявка] | Число<br>работников | Имеющаяся<br>мощность<br>[минут/час] | Требуемая мощность<br>[минут/час] |               |            | Предпо-<br>лагаемая |                   |
|-------------------------------|------------------------------------------|---------------------|--------------------------------------|-----------------------------------|---------------|------------|---------------------|-------------------|
|                               |                                          |                     |                                      | Консультанты                      | Штат          | Стажеры    | Всего               | загрузка          |
| Оформление                    | 3                                        | 1                   | 60                                   | 3 * 3 = 9                         | 11 * 3 = 33   | 4 * 3 = 12 | 54                  | 54/60 = 90%       |
| Связаться с<br>людьми         | 20                                       | 2                   | 120                                  | 3 * 20 = 60                       | 0             | 0          | 60                  | 60/120 = 50%      |
| Связаться с<br>работодателями | 15                                       | 3                   | 180                                  | 3 * 15 = 45                       | 11 * 15 = 165 | 0          | 210                 | 210/180 =<br>117% |
| Анализ оценок /<br>школы      | 8                                        | 2                   | 120                                  | 0                                 | 0             | 4 * 8 = 32 | 32                  | 32/120 = 27%      |
| Письмо-<br>подтверждение      | 2                                        | 1                   | 60                                   | 3 * 2 = 6                         | 11 * 2 = 22   | 4 * 2 = 8  | 36                  | 36/60 = 60%       |

## Замечания по поводу двух подходов

- Обе процедуры нахождения узкого места в случае ассортимента продукции эквивалентны. Ни один из двух подходов не превосходит другой
- Следует помнить, что:
  - Мощность каждого участка можно выразить в терминах этой единицы процесса
  - Каждый вид спроса можно выразить в терминах требуемого числа единиц процесса
- Например, если за единицу процесса взять «одно заявление», то мы можем оценить мощность каждого участка в терминах числа обрабатываемых заявлений в единицу времени
- ► Если единицей процесса является «одна минута работы», то мы выражаем мощность каждого участка в количестве «минут работы» в единицу времени, и аналогично каждый вид спроса может быть выражен в количестве «минут работы», которое требуется на данном участке

#### Имитационная модель





#### Что дальше?

- Мы нашли узкое место или определили обладает ли процесс достаточной мощностью
- Значит ли это, что мы знаем, какова будет реальная скорость протекания процесса и где добавить ресурсы (если такая возможность имеется)? Не всегда! Разберём другой пример: международный аэропорт



#### Вычисления

| Этап                           | Спрос со стороны местных граждан [пассажиров / минуту] | Спрос со<br>стороны<br>Приезжих<br>[пассажиров /<br>минуту] | Мощность<br>[пассажиров /<br>минуту] | Предполагаемая<br>загрузка<br>[пассажиров /<br>минуту] |
|--------------------------------|--------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|
| Эскалатор                      | 10                                                     | 5                                                           | 100                                  | 15/100 = 15%                                           |
| Паспортный контроль - местные  | 10                                                     | -                                                           | 10                                   | 10/10 = 100%                                           |
| Паспортный контроль - приезжие | -                                                      | 5                                                           | 3                                    | 5/3 = 167%                                             |
| Выдача багажа                  | 10                                                     | 5                                                           | 10                                   | 15/10 = 150%                                           |
| Таможенный<br>контроль         | 10                                                     | 5                                                           | 20                                   | 15/20 = 75%                                            |

#### Что мы получаем

- Узким местом является участок паспортного контроля приезжих.
- Три приезжих в минуту покидают зону паспортного контроля и направляются в зону выдачи багажа.
- ▶ Вместе с 10 местными пассажирами в минуту, это создает поток из 13 пассажиров в минуту на этапе выдачи багажа, который имеет мощность всего 10 пассажиров в минуту
- Таким образом, очередь создается на этапах паспортного контроля приезжих и на этапе выдачи багажа. Предположим, нашей задачей является максимизация количества обслуженных пассажиров:
  - Максимум {Местных + Приезжих}
  - ▶ Местные =< 10, Приезжие =<5 (ограничения по спросу)</p>
  - ▶ Местные =< 10, Приезжие =<3 (паспортный контроль)</p>
  - Местные + Приезжие =<10 (выдача багажа)</p>
- Можно обслуживать 7 местных и 3 приезжих в минуту, либо 10 местных и 0 приезжих, либо любую комбинацию из 10 человек в минуту. Следует определить, какие задачи стоят перед системой! (после этого задача решается используя AnyLogic)

#### Заключение по узким местам



- ▶ Главный шаг при определении узких мест сложных процессов это определение единицы процесса и потом произведение подсчетов с этой единицей
- Определение узкого места не самая сложная задача в процессах с несколькими типами продуктов: зачастую, чтобы понять, как себя поведет система, требуется поставить перед ней четкие задачи.

# А что ещё дальше? Добавляем вариативность

- Подсчет пропускной способности системы, который мы производили сегодня, игнорирует вариативность
- ► Теория очередей моделирует вариативность, но очень быстро углубляется в математические дебри трудно проанализировать что-то по-настоящему сложное
- ▶ Если есть нужда смоделировать сложную систему, то предпочтительный подход это имитационное моделирование!