Programme de khôlle nº 19

Semaine du 17 Mars

Cours

• Chapitre 11 : Espaces vectoriels

- \mathbb{R} -espaces vectoriels, structure d'espace vectoriel de \mathbb{R}^n , de $\mathbb{R}_n[X]$, de $\mathcal{M}_{n,m}(\mathbb{R})$ et de l'ensemble des fonctions d'une partie de \mathbb{R} dans \mathbb{R} .
- Sous-espaces vectoriels, s-e.v. engendrés par une famille de vecteurs, l'ensemble des solutions d'un systèmes linéaires homogènes à p inconnues est un sous-espace vectoriel de \mathbb{R}^p . L'intersection de 2 s-e.v. est un s-e.v.. Droites vectorielles. Les sous-espaces vectoriels de \mathbb{R}^2 sont $\{0\}$, les droites vectorielles, et \mathbb{R}^2 .
- Famille génératrice, famille libre, base. Théorème de la base incomplète, dimension. Décomposition unique d'un vecteur dans une base. Une famille libre d'un e.v. de dimension n a au plus n éléments avec égalité ssi c'est une base, une famille génératrice d'un e.v. de dimension n a au moins n éléments avec égalité ssi c'est une base. Si $F \subset E$ alors $\dim(F) \leq \dim(E)$ avec égalité ssi F = E.
- Base et dimension de $\mathbb{R}_n[X]$ et de $\mathcal{M}_{n,m}(\mathbb{R})$. Une famille de polynômes échelonnées en degré est libre.
- Applications linéaires : somme, produit par un réel, composition. Noyau et image. Injection, surjections et bijections. Endomorphismes, notation f^p pour $f \in \mathcal{L}(E)$. Rang d'une application linéaire, théorème du rang.

Questions de cours et exercice

• Questions de cours

- Si $u_1, ..., u_p$ sont des vecteurs d'un \mathbb{R} -e.v. E alors $\operatorname{Vect}(u_1, ..., u_p) = \{\sum_{k=1}^p \lambda_k e_k \mid (\lambda_1, ..., \lambda_p) \in \mathbb{R}^p\}$ est un sous-espace vectoriel de E.
- L'ensemble des solutions d'un système homogène linéaire à coefficients réels à p inconnues est un sous-espace vectoriel de \mathbb{R}^p .
- Soit $(e_1,...,e_n)$ une base de E et $f \in \mathcal{L}(E,F)$. f est injective si et seulement si $(f(e_1),...,f(e_n))$ est libre
- Soit $(e_1, ..., e_n)$ une base de E et $f \in \mathcal{L}(E, F)$. f est surjective si et seulement si $(f(e_1), ..., f(e_n))$ est génératrice de F.