04 - Електромагнетска компатибилност

- 1. Коришћењем подлоге дебљине $h=0.4~{\rm mm}$, релативне пермитивности $\epsilon_{\rm r}=4.5~{\rm u}$ тангенса угла губитака $\tan\delta=0.01$ пројектовати вод карактеристичне импедансе $Z_{\rm c}=(50\pm0.5)\,\Omega$ у
- (1) микротракастој технологији (енглески: microstrip) и
- (2) симетричној тракастој технологији (енглески: stripline), при чему је растојање између доње и горње масе H = 2h.
- (3) Израчунати подужно слабљење ових водова на учестаности 2,45 GHz.
- (4) Израчунати дужине ових водова тако да њихово слабљење буде 1 dB, на учестаности 2,45 GHz.

Специфична проводност проводника је $\sigma = 56 \, \text{MS/m}$. Задатак решити коришћењем програма LINPAR уз Accuracy Parameter = 6.

2. На слици 2.1 је приказан попречни пресек копланарног таласовода (енглески: coplanar waveguide) са означеним карактеристичним димензијама. Уколико је w/h=1 и $s/w=10^{(k/3-2)}$, k=0,1,2,...9, помоћу програмског пакета LINPAR израчунати и скицирати карактеристичну импедансу копланарног таласовада за случајеве (1) $\varepsilon_{\rm r}=1$ и (2) $\varepsilon_{\rm r}=5$. За дебљину метализације узети да је t/w=1/1000. Резултате нацртати тако да је однос s/w у логаритамској размери. (3) На основу добијених резултати проценити доњу и горњу границу за карактеристичну импедансу компланарног таласовод.

Слика 2.1. Попречни пресек посматраног система.

- 3. Посматра се диелектрична подлога дебљине $h=2\,\mathrm{mm}$, релативне пермитивности $\epsilon_{\mathrm{r}}=4,5\,$ и тангенса угла губитака $\tan\delta=0,02$. Дебљина метализације је $t=36\,\mathrm{\mu m}$, а проводност метала је $\sigma=58\,\frac{\mathrm{MS}}{\mathrm{m}}$.
- (1) Израчунати ширине линија два микротракаста вода, w_1 и w_2 , тако да њихове карактеристичне импедансе буду $Z_{\rm c1}=75\Omega$, односно $Z_{\rm c2}=100\Omega$.
- (2) Израчунати подужна слабљења ових водова на учестаности 1 GHz.
- (3) Уколико су дужине ових водова 24 ст, израчунати укупно слабљење сваког вода на 1 GHz.
- 4. Симетричан тракасти вод и микротракасти вод израђени су од истог диелектрика, релативне пермитивности $\varepsilon_{\rm r}=4,6$ и тангенса угла губитака $\tan\delta=0,02$. Траке оба вода су удаљене од проводних равни за $h=2\,{\rm mm}$. Ширина траке микротракастог вода је $w_{\rm mikrotrakasti}=3,7\,{\rm mm}$, а ширина траке симетричног тракастог вода је $w_{\rm trakasti}=1,75\,{\rm mm}$. Дебљина трака је занемарљива.
- (1) Израчунати карактеристичне импедансе ових водова.
- (2) У опсегу учестаности $200\,\mathrm{MHz} \le f \le 2\,\mathrm{GHz}$, са кораком $300\,\mathrm{MHz}$, скицирати подужно слабљење ова два вода. Сматрати да су проводници вода направљени од бакра специфичне проводности $\sigma = 58\,\mathrm{MS/m}$, а да тангенс угла губитака диелектрика не зависи од учестаности.
- (3) Израчунати слабљење водова из тачке (2) дужине $l = 5 \,\mathrm{cm}$ на учестаности $2 \,\mathrm{GHz}$.

- 5. Микротракасти вод израђен је на подлози од диелектрика FR-4 дебљине $h=1\,\mathrm{mm}$ чија је релативна пермитивност $\varepsilon_\mathrm{r}=4,5$, а тангенса угла губитака $\tan\delta=0,02$. Проводници су направљени од бакра специфичне проводности $\sigma=58\,\mathrm{MS/m}$, док је дебљина метализације $t=36\,\mathrm{\mu m}$.
- (1) Одредити ширину траке тако да карактеристична импеданса овог вода буде $Z_{\rm c} = 50\,\Omega$. За овако пројектован микротракасти вод очитати подужно слабљење на учестаности 2,45 GHz.
- (2) За вод пројектован у тачки (1) утврдити како смањење ширине диелектрика (*shoulder width*) утиче на промену карактеристичне импедансе вода. Колика је карактеристична импеданса уколико се ширина диелектрика смањи на d = 1mm?
- (3) За вод пројектован у тачки (1) утврдити како повећање дебљине метализације утиче на промену карактеристичне импедансе вода. Колика је карактеристична импеданса уколико се дебљина метализације повећа два пута?
- (4) Колика је карактеристична импеданса вода пројектованог у тачки (1) уколико се на висини $h_1 = 1$ mm изнад диелектрика постави метална плоча, при чему је простор између диелектрика и металне плоче испуњен ваздухом?