Проектно-образовательный практикум «Погружение в технологии искусственного интеллекта», тестовое задание

М1. Задача 1

При каком значении параметра a сумма ряда $\sum_{i=1}^{\infty} \frac{i^2}{a^i}$ равна 1.

Введите ответ (одно вещественное число, разделитель — точка), округлённый до четырех знаков после запятой.

Введенное вами число должно отличаться от правильного ответа не более чем на 10^{-3} .

М2. Задача 2

Дополните систему векторов до ортонормированного базиса в R_3 :

$$e_1=igg(rac{2}{3},rac{2}{3},-rac{1}{3}igg), e_2=igg(rac{2}{3},-rac{1}{3},rac{2}{3}igg).$$

Введите ответ (одно целое число) — количество различных векторов e_3 , которые с векторами e_1 и e_2 образуют ортонормированный базис

Если таких векторов бесконечно много, то введите число -1.

М3. Задача 3

Найти количество целочисленных матриц X, все элементы которых лежат в интервале $[-1\ 000\ 000, 1\ 000\ 000]$, и удовлетворяющих соотношению

$$\begin{bmatrix} 7 & 9 & 9 & 7 \\ 2 & 3 & 1 & 1 \\ 1 & 1 & 3 & 3 \end{bmatrix} X = \begin{bmatrix} 7 & 7 \\ 0 & 4 \\ 3 & -1 \end{bmatrix}.$$

Введите ответ (одно целое число) — количество различных матриц X.

М4. Задача 4

Из множества $\{1,2,3,\dots,n\}$ наудачу выбирается число x (равновероятно для всех вариантов). Найти предел при $n \to \infty$ вероятности того, что x^2-1 делится на 10.

Введите ответ (одно вещественное число, разделитель — точка), округлённый до четырех знаков после запятой. Введенное вами число должно отличаться от правильного ответа не более чем на 10^{-3} .

М5. Задача 5

Диаметр круга измерен приближенно. Считая, что его величина равномерно распределена на отрезке [101, 102], найти математическое ожидание площади круга.

Введите ответ (одно вещественное число, разделитель — точка), округлённый до шести знаков после запятой.

Введенное вами число должно отличаться от правильного ответа не более чем на 10^{-5} .

Р1. Разные цифры

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или different-digits.in
Вывод	стандартный вывод или different-digits.out

Костя очень не любит писать числа, но тренироваться нужно. Поэтому папа предложил ему упражнение. Нужно выписать все числа от 1 до n, в которых никакая цифра не встречается **более одного раза**.

Костя уже дописал до первого числа, которое можно было пропустить (это число 11), но сколько ему ещё нужно выписать, он не знает.

Помогите мальчику и скажите, сколько всего чисел ему нужно будет выписать.

Формат ввода

В единственной строке входных данных содержится одно целое число n ($1 \le n \le 10^6$).

Формат вывода

Выведите одно целое число, равное количеству чисел, которые Костя должен будет выписать.

Пример 1

Ввод	Вывод
23	21

Пример 2

Ввод	Вывод
123	100

Р2. Номера такси

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или taxi.in
Вывод	стандартный вывод или taxi.out

Автомобильные номера для такси в городе X имеют следующий формата:

- код региона (цифра от 1 до 7);
- три прописные латинские буквы. Для региона 7 (центральный) используются сочетания ТАХ, ТВХ, ТЕХ, для остальных регионов только ТАХ, ТВХ;
- пробел;
- четырёхзначное число от 1 до $9999\,\mathrm{c}$ ведущими нулями.

Камера слежения, установленная над автомагистралью, зафиксировала номера n проезжающих автомобилей. Определите, сколько из этих номеров соответствуют формату, принятому для номеров такси.

Формат ввода

В первой строке записано число n ($1 \le n \le 100\,000$). Далее следуют n строк с зафиксированными номерами. Длина одной строки — от 3 до 20 символов, в её состав могут входить цифры, прописные и строчные буквы латинского алфавита, а также дефисы и пробелы.

Формат вывода

Выведите единственное число — ответ на задачу.

Пример 1

Ввод	Вывод
9	2
7TAX 9215	
6TEX 9125	
a236ye 73	
21-14 BOT	
3412 0321 GR	
1TBX 0021-7	
2-TBX 0001	
1TBX 0000	
1TBX 0020	
Пример 2	
Ввод	Вывод

Ввод	Вывод
7	1
7TAX 7777	
1TAX 1111	
1TAX 1111	
1TAX-1111	
1TAX 0000	
7TEX 1234	
3TAX	

Примечания

Следите за пробельными символами! Во втором примере первый номер начинается с пробела, а третий — заканчивается на пробел.

P3. Base64-кодирование

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или base64.in
Вывод	стандартный вывод или base64.out

Ваѕе64 — стандарт кодирования двоичных данных при помощи только 64 символов ASCII. Алфавит кодирования содержит латинские символы A–Z, a-z и 0-9 (62 знака) и два дополнительных символа, зависящих от системы реализации. Каждые три исходных байта кодируются четырьмя символами (таким образом, количество байт увеличивается на 33%). В рамках данной задачи дополнительными символами являются + и /.

Для того чтобы преобразовать данные в base64, первый байт помещается в самые старшие восемь бит 24-битного буфера, следующий — в средние восемь и третий — в младшие значащие восемь бит. Если кодируется менее чем три байта, то соответствующие биты буфера устанавливаются в ноль. Далее каждые шесть бит буфера, начиная с самых старших, используются как индексы строки ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/ (индексация начинается с нуля), и её символы, на которые указывают индексы, помещаются в выходную строку. Если кодируются только один или два байта, в результате получаются только первые два или три символа строки, а выходная строка дополняется двумя или одним символом =. Процесс повторяется над оставшимися входными данными.

В таблице показан результат кодирования строки Cat:

Исходные символы	C		a		t		
ASCII-коды (десятичные)	67		Ĉ)7	116		
ASCII-коды (двоичные)	0 1 0 0 0 0	1 1	0 1 1 0	0 0 0 1	0 1	1 1 0 1 0 0	
Новые десятичные значения	16		54	5		52	
Символы base64	Q		2	F		0	

Напишите программу, выполняющую кодирование последовательности байт по стандарту base64.

Формат ввода

Первая строка входных данных содержит десятичное представление длины кодируемой последовательности (целое число от 1 до 50,000)

Вторая строка содержит значения каждого байта этой последовательности, записанные в виде двух шестнадцатеричных цифр (шестнадцатеричные цифры выбираются из строки 0123456789ABCDEF). Эти значения разделяются одиночными пробелами. В начале и в конце строки пробелов нет.

Формат вывода			
Выведите исходную последовательность, закодированную по стан	Выведите исходную последовательность, закодированную по стандарту base64.		
Пример 1			
Ввод	Вывод		
3 43 61 74	Q2F0		
Пример 2			
Ввод	Вывод		
4 0F DD A4 12	D92kEg==		
Пример 3			
Ввод	Вывод		
8 0F DD A4 12 EE 7A 51 BC	D92kEu56Ubw=		
Пример 4			
Ввод	Вывод		
15 78 50 EB 37 04 8B 05 78 FE 25 71 E9 47 C8 AE	eFDrNwSLBXj+JXHpR8iu		
Примечания Первый пример соответствует таблице из условия.			

Р4. Лошадью ходи, лошадью...

Ограничение времени	2 секунды
Ограничение памяти	256Mb
Ввод	стандартный ввод или knight.in
Вывод	стандартный вывод или knight.out

На шахматной доске, состоящей из M строк и N столбцов, размещены два шахматных коня — белый и чёрный. Каждый конь располагается в одной клетке, но возможна ситуация, когда в одной и той же клетке находятся оба коня. Кони делают ходы по очереди в соответствии с правилами движения шахматного коня (первым ходит белый конь). Целью игры является как можно более быстрое размещение обоих коней в одной клетке.

Сможете ли вы рассчитать количество ходов, необходимое для завершения игры, исходя из начального расположения фигур?

Формат ввода

Первая строка файла содержит величины M и N ($2 \le M, N \le 1000$). Во второй и третьей строке записаны координаты клеток, в которых находится соответственно белый и чёрный конь. Первая координата находится в границах от 1 до M, вторая — в границах от 1 до N.

Формат вывода

Выведите единственное число — количество ходов, необходимое для завершения игры. Если кони никогда не смогут быть помещены в одну клетку, выведите -1.

Пример

Ввод	Вывод
8 10	4
2 4	
7 9	

Примечания

Конь может пойти на любую клетку доски, если она располагается на другом конце русской буквы Г (то есть вначале конь перемещается на две клетки по горизонтали или по вертикали, а затем на одну клетку перпендикулярно первоначальному направлению). Выходить за границы доски нельзя.

Р5. Подмассив

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или subarray.in
Вывод	стандартный вывод или subarray.out

Дан массив из N целых чисел и некоторое число X.

Найдите в массиве непустой подмассив (часть массива между нек элементов не менее X .	оторыми индексами l и r) минимальной длины такой, что сумма его
Формат ввода	
В первой строке заданы два целых числа N ($1 \le N \le 100~000$) и X ($-10^9 \le X \le 10^9$). Во второй строке записаны через пробел N целых чисел — элементы массива. Эти числа лежат в диапазоне от -10^9 до 10^9 включительно.	
Формат вывода	
Выведите одно число — минимальную длину искомого непустого подмассива. Если нужного подмассива не существует, выведите -1 .	
Пример 1	
Ввод	Вывод
5 4 1 2 1 2 1	3
Пример 2	
Ввод	Вывод
6 -2	-1

Пример 3

-5 -6 -7 -8 -9 -10

Ввод	Вывод
5 3	3
-1 1 1 1 -1	