AFRE 835: Introductory Econometrics

Chapter 10: Basic Time Series Regression Analysis

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 28

Introduction

- This chapter provides a basic introduction to regression analysis with time series data.
- The key distinction here is that there is now a temporal ordering to the data.
- In the cross-sectional setting, the order in which the data were listed was irrelevant, as long as they represented a random sample from the population of interest.
- The notion of randomness is more complex.
- We now have a sequence of random variables, known as a stochastic process (or a time series process).
- In many ways, what we observe is a single *thread* or realization of that process.

TABLE 10.1 Partial Listing of Data on U.S. Inflation and Unemployment Rates, 1948–2003						
Year	Inflation	Unemployment				
1948	8.1	3.8				
1949	-1.2	5.9				
1950	1.3	5.3				
1951	7.9	3.3				
•	•					
1998	1.6	4.5				
1999	2.2	4.2				
2000	3.4	4.0				
2001	2.8	4.7				
2002	1.6	5.8				
2003	2.3	6.0				

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

3 / 28

Outline

- Examples of Time Series Regression Models
- 2 Finite Sample Properties of OLS under Classical Assumptions
- 3 Functional Form and Dummy Variables
- 4 Trends and Seasonality

The Static Model

- The simplest of time series models is the **static model**.
- As the name suggests, the model is little different from the cross-sectional models we've considered thusfar;
 - The model does involve time series data, but makes no real use of it.
 - The relationship between our dependent variable and the explanatory variables is a *contemporaneous* one only.
 - Specifically, with a single independent variable, we have a population model

$$y_t = \beta_0 + \beta_1 z_t + u_t \quad t = 1, \dots, n$$
 (1)

- The interpretation of the coefficients follows the same pattern as in the cross-sectional setting.
- The static model is not frequently used or applicable.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 28

Examples of Time Series Regression Models

Finite Distributed Lag Models

- A more common specification is to allow one or more of our regressors to impact y with a lag.
- For example, a finite distributed lag (FDL) model of order two, would specify

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t \quad t = 1, \dots, n$$
 (2)

- Wooldridge gives the example of how a regressor pe_t (denoting the size of the personal exemption in federal taxes) takes time to impact gfr_t denoting the general fertility rate.
- One might also expect time delays in how
 - faculty hires impact the ranking of an economics department;
 - investments in expenditures per student impact high school graduation rates;
 - voting rights laws impact diversity in elected officials.

Finite Distributed Lag Models - Temporary Changes

- Interpreting finite distributed lag models is more difficult. The effect of a change at one point in time ripples through several time periods.
- With a temporary change in a regressor at time t, say from z=c to z=c+1, the impact will ripple through time with an effect dictated by the δ_i 's.

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$

$$y_t = \alpha_0 + \delta_0 (c+1) + \delta_1 c + \delta_2 c$$

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1 (c+1) + \delta_2 c$$

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 (c+1)$$

$$y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$

where we've set $u_t = 0$ to simplify the comparisons.

• The immediate impact of the change is measured by δ_0 , sometimes referred to as the **impact propensity** or **impact multiplier**.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 28

Examples of Time Series Regression Models

Finite Distributed Lag Models - Permanent Changes

 A permanent shift in a regressor to a new level takes time to accumulate, with

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$

$$y_t = \alpha_0 + \delta_0 (c+1) + \delta_1 c + \delta_2 c$$

$$y_{t+1} = \alpha_0 + \delta_0 (c+1) + \delta_1 (c+1) + \delta_2 c$$

$$y_{t+2} = \alpha_0 + \delta_0 (c+1) + \delta_1 (c+1) + \delta_2 (c+1)$$

• The implications of the permanent change (holding u unchanged) is given by

$$\frac{\Delta y_s}{\Delta z_t} = \begin{cases}
\delta_0 & s = t \\
\delta_0 + \delta_1 & s = t + 1 \\
\delta_0 + \delta_1 + \delta_2 & s \ge t + 2
\end{cases}$$
(3)

• More generally, in a FDL model of order q, the long-run propensity (LRP) or long-run multiplier is given by $\delta_0 + \delta_1 + \cdots + \delta_q$.

Finite Sample Properties of OLS under Classical Assumptions

- This section describes the finite sample properties of OLS in a time series setting, much like we considered for the cross section setting.
- As we'll see, we need particularly strong assumptions in this setting for OLS to remain unbiased.
- The assumptions parallel many of those developed in the cross-section setting.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

9 / 28

Finite Sample Properties of OLS under Classical Assumptions

Assumptions TS.1 and TS.2

• Assumption TS.1 (Linear in Parameters): The stochastic process x_t, y_t): t = 1, ..., n follows the linear model:

$$y_t = \beta_0 + \beta_1 x_{t1} + \dots + \beta_k x_{tk} + u_t \tag{4}$$

where $\mathbf{x}_t = (x_{t1}, \dots, x_{tk})$ is a row vector of the regressors for time period t and $u_t : t = 1, \dots, n$ denotes a sequence of errors.

- ... This parallels assumptions MLR.1.
- Assumption TS.2 (No Perfect Collinearity): In the sample (and therefore the underlying time series process), no independent variable is constant nor a perfect linear combination of others.
 - ... This parallels assumptions MLR.3.

Zero Conditional Mean

• Assumption TS.3 (Zero Conditional Mean): For each t, the expected value of the error u_t , given the explanatory variables for all time periods, is zero; i.e.,

$$E(u_t|\mathbf{X}) = 0 \quad t = 1, \dots, n. \tag{5}$$

where $\mathbf{X} = (\mathbf{x}_1', \dots, \mathbf{x}_n')'$ is $n \times k$ matrix containing the regressors for all time periods.

- Assumption TS.3 is what is known as strict exogeneity.
- It implies that u_t is uncorrelated with any x_{si} in any time periods.
- This is a much stronger assumption than what is known as contemporaneous exogeneity: $E(u_t|x_t) = 0$.
- The distinction was not an issue in the cross-section setting due to the random sample assumption (MLR.2), which precluded correlations across observations.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

11 / 28

Finite Sample Properties of OLS under Classical Assumptions

Understanding Strict Exogeneity

- Strict exogeneity does not restrict correlation in the error terms over time.
- Nor does it restrict correlation patterns among the regressors.
- ullet It does, however, preclude any correlation between any u_t and any x_{sj} .
- As in the cross-sectional setting, TS.3 could be violated if we have omitted variables or measurement errors.
- TS.3 could be violated if there any temporal feedback.

Unbiasedness of OLS

• **Theorem 10.1** (Unbiasedness of OLS): Under Assumptions TS.1, TS.2, and TS.3, the OLS estimators are unbiased conditional on **X** and therefore unconditionally as well.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 28

Finite Sample Properties of OLS under Classical Assumptions

Additional Assumptions and Theorem for Time Series Data

- Assumption TS.4 (Homoskedasticity): Conditional on \boldsymbol{X} , $Var(u_t|\boldsymbol{X}) = Var(u_t) = \sigma^2$.
- Assumption TS.5 (No Serial Correlation): Conditional on \boldsymbol{X} , the errors across time are uncorrelated; i.e., $Corr(u_t, u_s | \boldsymbol{X}) = 0$.
 - ... Note: This was not an issue in the cross-sectional setting due to the random sampling assumption.
- Theorem 10.2 (OLS Sampling Variances): Under the Gauss-Markov Assumptions TS.1 through TS.5: $Var(\hat{\beta}|\mathbf{X}) = \sigma^2/\left[SST_j(1-R_j^2)\right]$, where SST_j denotes the total sum of squares for x_{tj} and R_j^2 is the R-squared from regressing x_j on all the other regressors.
- **Theorem 10.3** (Unbiased Estimation of σ^2): Under assumptions TS.1 through TS.5, the estimator $\hat{\sigma}^2 = SSR/(n-k-1)$ is an unbiased estimator of σ^2 .

The Gauss-Markov Theorem for Time Series Data

- **Theorem 10.4** (Gauss-Markov Theorem): Under assumptions TS.1 through TS.5, the OLS estimators are best linear unbiased estimators conditional on **X**.
- Assumption TS.6 (Normality): The errors u_t are independent of X and are independent and identically distributed as $\mathcal{N}(0, \sigma^2)$.
- Theorem 10.5 (Normal Sampling Distributions): Under assumptions TS.1 through TS.6, the CLM assumptions for time series, the OLS estimators are normally distributed conditional on X. Further, under the null hypothesis, each t-statistic has a t distributions, and each F-statistic has an F distribution. The usual construction of confidence intervals is valid.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 28

Functional Form and Dummy Variables

Functional Form

- The lessons regarding function form (e.g., the use and interpretation of logged variables and quadratic terms) apply as well to time series data.
- Consider a static log-log model of consumption as a function of income (problem C7 using consump.dta); i.e.,

$$log(c_t) = \beta_0 + \delta_0 log(y_t) + u_t \tag{6}$$

- The parameter δ_0 measures the elasticity of per capita real consumption (c_t) with respect to per capita real income (y_t) .
- A Finite Distributed Lag model (of order 1) would allow for a delay in how consumption responds to changes in income, with

$$log(c_t) = \beta_0 + \delta_0 log(y_t) + \delta_1 log(y_{t-1}) + u_t$$
 (7)

• In this case, the short-run income elasticity of consumption would be δ_0 , whereas the long-run income elasticity would be $\delta_0 + \delta_1$.

$log(c_t)$						
	Static	FDL 1	FDL1 with real int.			
$log(y_t)$	0.944	0.637	0.5588			
	(0.009)**	(0.116)**	(0.1220)**			
$log(y_{t-1})$		0.303	0.3767			
		(0.113)*	(0.1185)**			
$realint_t$			0.0017			
			(0.0010)			
_cons	0.329	0.377	0.4146			
	(0.082)**	(0.085)**	(0.0851)**			
R^2	1.00	1.00	1.00			
Ν	37	36	36			
* p < 0.05; ** p < 0.01						

* p < 0.05; ** p < 0.01

The last column adds the real interest rate as a regressor.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

17 / 28

Functional Form and Dummy Variables

Computing the Long-Run Propensity

Recall that in a FDL of order q

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \dots + \delta_q z_{t-q} + u_t \quad t = 1, \dots, n$$
 (8)

the long-run propensity (LRP) is equal to:

$$\theta_0 = \delta_0 + \delta_1 + \dots + \delta_q \tag{9}$$

- The standard error associated with the LRP can be obtained by:
 - Using Stata's lincom command.
 - Using $\delta_0 = heta_0 \delta_1 \dots \delta_k$ to rewrite the model as

$$y_t = \alpha_0 + \theta_0 z_t + \delta_1(z_{t-1} - z_t) + \dots + \delta_q(z_{t-q} - z_t) + u_t$$
 $t = 1, \dots, n$ (10)

- Using bootstrapped draws from the joint distribution of the $\hat{\delta}_j$'s to simulate draws from $\hat{\theta}$.

Example Code: Log(Consumption)

```
lc ly;
reg
       using "`TableA'", bdec(3) se tex title(log(consumption))
outreg
        ctitle("", static) replace;
tsset
        year;
        lc ly l.ly;
reg
       using "`TableA'", bdec(3) se tex title(log(wages))
outreg
        ctitle("", FDL1) merge;
        lc ly l.ly r3;
reg
       using "`TableA'", bdec(4) se tex title(log(wages))
outreg
        ctitle("", FDL1 w/r) merge;
lincom ly+l.ly;
matrix M=e(b);
matrix V=e(V);
drawnorm d0 d1 b1 b0, n(1000) cov(V) means(M);
sum
       b0 d0 d1 b1;
       theta=d0+d1;
gen
        theta;
sum
```

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 28

Functional Form and Dummy Variables

Example Results: Log(Consumption)

- In our FDL1 model of log-consumption, using the lincom command, we get $\widehat{se}(\hat{\theta}) = 0.0088696$
- Using 1000 bootstraps, the simulation-based estimate of the standard error yields $\widehat{se}(\hat{\theta}) = 0.0090643$.
- Using 100000 bootstraps, the simulation-based estimate of the standard error yields $\widehat{se}(\hat{\theta}) = 0.008875$.

Example Output: Log(Consumption)

Functional Form and Dummy Variables

Binary (Dummy) Variables

- Binary variables are often used in event studies, to isolate the impact of a particular event on outcomes of interest.
- Examples include
 - Financial events such as the Great Depression or Great Recession;
 - Political events such as elections or scandals;
 - Historical events, such as WW1 or WW2;
 - Regulatory events, such as passage of the Clean Air Act;
- Binary variables can be used to isolate subperiods before, after and during an event.

21 / 28

Trending in Time Series

- Many economic time series follow a general upward trend.
- These trends may be due to a variety of factors shared by both independent and dependent variables of interest, such as
 - Population growth;
 - Technological change;
 - Cyclical or trending weather patterns.
- Failing to control for these trends amounts to a form of omitted variables bias and will lead to spurious correlation between two variables.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 28

Trends and Seasonality

Linear and Exponential Time Trends

 One popular way to account for underlying trends is to introduce a linear time trend:

$$y_t = \alpha_0 + \alpha_1 t + e_t \quad t = 1, \dots, n. \tag{11}$$

where e_t is independent and identically distributed (i.i.d.).

- If $\alpha_1 > 0$, our dependent variable is growing over time.
- Many economic time series variables are better approximated by an exponential trend, with

$$log(y_t) = \beta_0 + \beta_1 t + e_t \quad t = 1, ..., n.$$
 (12)

... This is just a log-level model with time as the independent variable, so that (holding $\Delta e_t = 0$)

$$100 \cdot \beta_1 = 100 \cdot \frac{\partial E(y_t|t)}{\partial t} \approx \frac{\% \Delta E(y_t|t)}{\Delta t}$$
 (13)

Quadratic Trends

- One can, of course, also consider nonlinear trends.
- It is not uncommon to allow for a quadratic trend, with

$$y_t = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + e_t \quad t = 1, \dots, n.$$
 (14)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

25 / 28

Trends and Seasonality

Example: Housing Investment as a Function of Price

$log(invpc_t)$					
	static	FDL1	FDL1		
$log(price_t)$	1.241	-0.381	3.260		
	(0.382)**	(0.679)	(0.960)**		
t		0.010	0.013		
		(0.004)**	(0.003)**		
$log(\mathit{price}_{t-1})$			-4.487		
			(0.959)**		
_cons	-0.550	-0.913	-1.086		
	(0.043)**	(0.136)**	(0.115)**		
R^2	0.21	0.34	0.56		
N	42	42	41		
* p < 0.05: ** p < 0.01					

Some Notes on Time Series Models and Trending

- The OLS estimator in the case of a linear trend can be obtained in two steps:
 - Forming a detrended version of both the dependent and independent variable; e.g., $\ddot{y}_t = y_t \hat{y}_t$ where $\hat{y}_t = \hat{\alpha}_0 + \hat{\alpha}_1 t$.
 - 2 Regressing \ddot{y}_t on \ddot{x}_{t1} , \ddot{x}_{t2} , ..., \ddot{x}_{tk} .
 - ... Thus, the inclusion of a linear trend is (mathematically) equivalent to detrending all of the variables prior to OLS.
- The R^2 's from time series models will tend to be large due to underlying trends. Looking at the R^2 's from the second step above is more informative in terms of fit.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

27 / 28

Trends and Seasonality

Controlling for Seasonal, Weekly and Hourly Patterns

- In time series data, the underlying data may exhibit patterns that repeat over seasons, months, days of the week, and hours of the day.
- As we are often interested in departures from these routine patterns, it is often appropriate to include binary variables to reflect seasonality (e.g., month dummy variables, weekday dummy variables, etc.).
- Just like the linear time trend can be viewed as detrending the data, the inclusion of seasonal dummies effectively creates seasonally adjusted variables.