MEM155 - Métodos Matemáticos II

Mohit Karnani

Universidad de Chile

Otoño, 2016

Curso

Control 1

Control 2

Control 3

Control 4

Examen

Control 1

Control 1

Módulo 2

Módulo 3

Módulo 4

Módulo 5

Módulo 6

Módulo 7

Módulo 8

Módulo 9 Módulo 10

▶ Volver al Inicio

Módulo 2

▶ Volver al Inicio de la Sección

Definición de Incrementos

Definición 1

Sean x_1 y x_2 un primer y segundo valor de una variable x. Entonces el *incremento* de x es $\Delta x = x_2 - x_1$, esto es, el *cambio en el valor* de x.

Definición 2

Sea y una variable dependiente de x tal que y=f(x), donde f está definida para los valores de x entre x_1 y x_2 y además se cumple que $y_1=f(x_1)$ e $y_2=f(x_2)$. Entonces el incremento de y es $\Delta y=y_2-y_1=f(x_2)-f(x_1)$, esto es, el cambio en el valor de y=f(x).

Ejemplo: Cantidad Demandada

Ejemplo 1

Considere que la cantidad de cereal que demanda una familia a la semana depende del precio de venta de éste. Así, $q(p) = 1000p^{-1}$, donde q son los kilos de cereal demandados y p es el precio en pesos. Si el precio de venta pasa de 500 a 1000 pesos, ¿cuál es el incremento en la demanda?

Ejemplo: Cantidad Demandada

Ejemplo 1

Considere que la cantidad de cereal que demanda una familia a la semana depende del precio de venta de éste. Así, $q(p) = 1000p^{-1}$, donde q son los kilos de cereal demandados y p es el precio en pesos. Si el precio de venta pasa de 500 a 1000 pesos, ¿cuál es el incremento en la demanda?

Solución 1

Utilizando la Definición 2, tenemos que

$$\Delta q = q_2 - q_1$$

$$= 1000p_2^{-1} - 1000p_1^{-1}$$

$$= 1000 \cdot 1000^{-1} - 1000 \cdot 500^{-1}$$

$$= 1 - 2 = -1.$$

Por lo tanto, el incremento en la cantidad demandada es de -1 (se demanda un kilo menos).

Gráfico: Cantidad Demandada

Figura 1: Incremento en precio y cantidad demandada

Gráfico: Cantidad Demandada

Figura 1: Incremento en precio y cantidad demandada

Gráfico: Cantidad Demandada

Figura 1: Incremento en precio y cantidad demandada

Reordenando Términos

Notar que de la Definición 1 se desprende que $x_2 = x_1 + \Delta x$. Reemplazando esto en la Definición 2 y considerando que x_1 puede ser cualquier valor de x se obtiene

$$\Delta y = f(x + \Delta x) - f(x). \tag{1}$$

La ecuación (1) puede ser útil para determinar el cambio en una variable dependiente y cuando la variable independiente x sufre un incremento de Δx , estando inicialmente en una situación descrita por el par (x,y).

Propuesto 1

Considere la función $y = f(x) = x^3$. Determine Δy dado cualquier x inicial y cualquier incremento Δx .

Tasa de Cambio Promedio

Definición 3

La tasa (o razón) de cambio promedio de una función y = f(x) definida en el intervalo $[x, x + \Delta x]$ corresponde al incremento generado en y sobre el incremento en x, es decir,

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
 (2)

Esto equivale a cuánto cambia en promedio la función por cada una de las Δx unidades incrementadas. Esta tasa también es llamada cociente de la diferencia.

Notar que la ecuación (2) corresponde a la *pendiente de una recta* que pasa por los puntos (x,f(x)) y $(x + \Delta x, f(x + \Delta x))$, o bien, por los puntos (x,y) y $(x + \Delta x, y + \Delta y)$.

Figura 2: Tasa de cambio como pendiente de una secante

Figura 2: Tasa de cambio como pendiente de una secante

Figura 2: Tasa de cambio como pendiente de una secante

Figura 2: Tasa de cambio como pendiente de una secante

Tasa de una Función Cuadrática

Ejemplo 2

Obtenga la tasa de cambio promedio de la función $f(x) = x^2$ en el intervalo $[x, x + \Delta x]$.

Tasa de una Función Cuadrática

Ejemplo 2

Obtenga la tasa de cambio promedio de la función $f(x) = x^2$ en el intervalo $[x, x + \Delta x]$.

Solución 2

Utilizando la Definición 3 tenemos

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$
$$= \frac{2x\Delta x + (\Delta x)^2}{\Delta x} = 2x + \Delta x.$$

Notar que este resultado puede ser muy útil para dibujar funciones cuadráticas a mano alzada (de manera bastante precisa). (*Why?*)

Tasa de una Función Cuadrática

Ejemplo 2

Obtenga la tasa de cambio promedio de la función $f(x) = x^2$ en el intervalo $[x, x + \Delta x]$.

Solución 2

Utilizando la Definición 3 tenemos

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$
$$= \frac{2x\Delta x + (\Delta x)^2}{\Delta x} = 2x + \Delta x.$$

Notar que este resultado puede ser muy útil para dibujar funciones cuadráticas a mano alzada (de manera bastante precisa). (*Why?*)

Propuesto 2

La recta secante que representa la tasa de cambio anterior es y = x + 2. Determine el intervalo sobre el que se obtuvo la tasa.

Análisis Marginal Discreto

Por ahora no hemos impuesto restricciones sobre la magnitud (el tamaño) de Δx . Sin embargo, es interesante notar qué ocurre cuando esta magnitud es *arbitrariamente pequeña* (marginal).

Por ejemplo, si una función es creciente en un intervalo, es de esperar que su tasa de cambio promedio sea positiva en él.

Figura 3: Tasa de cambio en un intervalo

Análisis Marginal Discreto (cont.)

Sin embargo, si ampliamos Δx de modo que el intervalo no sea siempre creciente, la conclusión sobre el signo de la tasa de cambio promedio *no se mantiene necesariamente*.

Figura 4: Tasa de cambio en un intervalo

Acercamientos Arbitrarios

A pesar de que al rededor de \bar{x} la función f(x) es creciente, se necesita un Δx pequeño para poder capturar esto en la tasa de cambio promedio.

Ejemplo 3

Suponga que $f(x) = -x^2 + 6x + 7$ y que $\bar{x} = 1$. Obtenga las tasas de cambio promedio para $\Delta x \in \{2; 1; 0, 5; 0, 1; 0, 01; 0, 0001\}$.

Acercamientos Arbitrarios

A pesar de que al rededor de \bar{x} la función f(x) es creciente, se necesita un Δx pequeño para poder capturar esto en la tasa de cambio promedio.

Ejemplo 3

Suponga que $f(x) = -x^2 + 6x + 7$ y que $\bar{x} = 1$. Obtenga las tasas de cambio promedio para $\Delta x \in \{2; 1; 0,5; 0,1; 0,01; 0,0001\}$.

Solución 3

La tasa de cambio es
$$\frac{\Delta y}{\Delta x} = \frac{-2x\Delta x - \Delta x^2 + 6\Delta x}{\Delta x} = -2x - \Delta x + 6.$$

Evaluando los distintos valores de Δx con $x = \bar{x} = 1$ tenemos:

Cuadro 1: Tasa de cambio ante intervalos menores

Δx	2	1	0,5	0,1	0,01	0,0001
Tasa	2	3	3,5	3,9	3,99	3,9999

Así, vemos que la tasa de cambio promedio tiende a 4...

Μόρυιο 3

▶ Volver al Inicio de la Sección

Tender a Algo

Definición 4

Una variable x tiende a un valor k cuando x toma una sucesión de valores que se acercan de manera arbitraria a dicho valor, sin que x tome el valor k. Cuando x se aproxima de esta manera a k, entonces podemos denotar la situación por $x \rightarrow k$ (x tiende a k).

Definición 5

Si la (sub)sucesión de valores que toma x es mayor que el valor k, entonces diremos que x tiende por la derecha a k, y lo denotamos por $x \to k^+$. Si los valores están por debajo, diremos que x tiende por la izquierda a k y lo denotamos por $x \to k^-$.

Comentario: De manera similar, cuando una variable x tiende a un valor k, puede hacer que una función f(x) tienda a algún valor L. Una primera (y apresurada) intuición nos diría que si $x \to k$, entonces $f(x) \to f(k) = L$. ¡Esto no es necesariamente cierto!

Ejemplos de Sucesiones

Ejemplo 4

Suponga que x,y y z son tres variables que toman las siguientes sucesiones de valores $\forall n \in \mathbb{N}$:

$$x_n = \frac{(-1)^n}{n} + 1,$$

$$y_n = \frac{(-1)^{2n}}{2n} + 1 y$$

$$z_n = \frac{(-1)^{2n-1}}{2n-1} + 1.$$

Ejemplos de Sucesiones

Ejemplo 4

Suponga que x,y y z son tres variables que toman las siguientes sucesiones de valores $\forall n \in \mathbb{N}$:

$$x_n = \frac{(-1)^n}{n} + 1,$$

$$y_n = \frac{(-1)^{2n}}{2n} + 1 \text{ y}$$

$$z_n = \frac{(-1)^{2n-1}}{2n-1} + 1.$$

Dado lo anterior, $x_n \to 1$, $y_n \to 1^+$ y $z_n \to 1^-$. Comente.

Ejemplos de Sucesiones

Ejemplo 4

Suponga que x,y y z son tres variables que toman las siguientes sucesiones de valores $\forall n \in \mathbb{N}$:

$$x_n = \frac{(-1)^n}{n} + 1,$$

$$y_n = \frac{(-1)^{2n}}{2n} + 1 y$$

$$z_n = \frac{(-1)^{2n-1}}{2n-1} + 1.$$

Dado lo anterior, $x_n \to 1$, $y_n \to 1^+$ y $z_n \to 1^-$. Comente.

Solución 4

Verdadero. A medida que aumenta n, x_n se acerca arbitrariamente a 1, al igual que y_n y z_n . Sin embargo, la primera sucesión toma valores tanto por sobre como por debajo de 1, mientras que las últimas dos, que son subsucesiones de la primera, toman valores sólo por sobre 1 o sólo por debajo de 1, respectivamente.

Definición de Vecindad

Definición 6

Una vecindad o entorno de un punto $k \in \mathbb{R}$ es un intervalo en torno a k con semiamplitud δ , o bien, es el intervalo $(k-\delta,k+\delta)$, con $\delta > 0$. Así, cualquier x suficientemente cerca de k está en su vecindad si $|x-k| < \delta^1$.

¹Se habla de la vecindad o entorno reducido de k a la vecindad que no incorpora al elemento k, es decir, a todos los $x \neq k$ tal que $|x - k| < \delta$.

Definición de Vecindad

Definición 6

Una vecindad o entorno de un punto $k \in \mathbb{R}$ es un intervalo en torno a k con semiamplitud δ , o bien, es el intervalo $(k - \delta, k + \delta)$, con $\delta > 0$. Así, cualquier x suficientemente cerca de k está en su vecindad si $|x - k| < \delta^1$.

Figura 5: Vecindad de k

¹Se habla de la vecindad o entorno reducido de k a la vecindad que no incorpora al elemento k, es decir, a todos los $x \neq k$ tal que $|x-k| < \delta$.

Definición de Vecindad

Definición 6

Una vecindad o entorno de un punto $k \in \mathbb{R}$ es un intervalo en torno a k con semiamplitud δ , o bien, es el intervalo $(k-\delta,k+\delta)$, con $\delta > 0$. Así, cualquier x suficientemente cerca de k está en su vecindad si $|x-k| < \delta^1$.

Figura 5: Vecindad de k

Notar que, bajo la Definición 6, para que $x \to k$, es necesario que x tome valores en la vecindad de k para cualquier $\delta > 0$ (por pequeño que sea). Dicho de otro modo, si $x \to k$, entonces $|x_n - k| < \delta$ para una cantidad infinita de valores de n.

¹Se habla de la vecindad o entorno reducido de k a la vecindad que no incorpora al elemento k, es decir, a todos los $x \neq k$ tal que $|x-k| < \delta$.

Definición de Límite

Definición 7

(Épsilon-Delta) Sea f(x) una función definida para todos los x en la vecindad de k, excepto posiblemente k (esto es, en la vecindad reducida). El límite de f(x) cuando $x \to k$ es L si y sólo si

$$\forall \varepsilon > 0, \exists \delta > 0: |x - k| < \delta \implies |f(x) - L| < \varepsilon,$$

esto es, si la distancia entre f(x) y L se puede hacer tan pequeña como se desee dejando a x suficientemente cerca de k.

Definición de Límite

Definición 7

 $(\acute{E}psilon\text{-}Delta)$ Sea f(x) una función definida para todos los x en la vecindad de k, excepto posiblemente k (esto es, en la vecindad reducida). El límite de f(x) cuando $x \to k$ es L si y sólo si

$$\forall \varepsilon > 0, \exists \delta > 0: |x - k| < \delta \implies |f(x) - L| < \varepsilon,$$

esto es, si la distancia entre f(x) y L se puede hacer tan pequeña como se desee dejando a x suficientemente cerca de k. Esto se denota

$$\lim_{x \to k} f(x) = L,$$

o bien

$$f(x) \rightarrow L$$
 cuando $x \rightarrow k$.

Gráfico: Definición de Límite

Figura 6: Intuición Gráfica de la Definición Épsilon-Delta

Gráfico: Definición de Límite

Figura 6: Intuición Gráfica de la Definición Épsilon-Delta

Gráfico: Definición de Límite

Figura 6: Intuición Gráfica de la Definición Épsilon-Delta

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \to 1$ es 8.

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \to 1$ es 8.

Solución 5

Si $\lim_{x\to 1} 3x + 5 = 8$, entonces, por la Definición 7 se cumple que

$$\forall \varepsilon > 0, \exists \delta > 0: |x-1| < \delta \implies |3x+5-8| < \varepsilon.$$

Luego, basta encontrar un δ que satisfaga la Definición 7 ante cualquier ε (en efecto, δ será función de ε).

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \rightarrow 1$ es 8.

Solución 5

Si $\lim_{x\to 1} 3x + 5 = 8$, entonces, por la Definición 7 se cumple que

$$\forall \varepsilon > 0, \exists \delta > 0: |x-1| < \delta \implies |3x+5-8| < \varepsilon.$$

Luego, basta encontrar un δ que satisfaga la Definición 7 ante cualquier ε (en efecto, δ será función de ε).

Notamos que |3x + 5 - 8| = |3x - 3|

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \rightarrow 1$ es 8.

Solución 5

Si $\lim_{x\to 1} 3x + 5 = 8$, entonces, por la Definición 7 se cumple que

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - 1| < \delta \implies |3x + 5 - 8| < \varepsilon.$$

Luego, basta encontrar un δ que satisfaga la Definición 7 ante cualquier ε (en efecto, δ será función de ε).

Notamos que |3x+5-8| = |3x-3| = 3|x-1|

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \rightarrow 1$ es 8.

Solución 5

Si $\lim_{x\to 1} 3x + 5 = 8$, entonces, por la Definición 7 se cumple que

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - 1| < \delta \implies |3x + 5 - 8| < \varepsilon.$$

Luego, basta encontrar un δ que satisfaga la Definición 7 ante cualquier ε (en efecto, δ será función de ε).

Notamos que $|3x+5-8| = |3x-3| = 3|x-1| < \varepsilon$.

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \rightarrow 1$ es 8.

Solución 5

Si $\lim_{x\to 1} 3x + 5 = 8$, entonces, por la Definición 7 se cumple que

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - 1| < \delta \implies |3x + 5 - 8| < \varepsilon.$$

Luego, basta encontrar un δ que satisfaga la Definición 7 ante cualquier ε (en efecto, δ será función de ε).

Notamos que $|3x + 5 - 8| = |3x - 3| = 3|x - 1| < \varepsilon$.

Pero lo anterior equivale a indicar que $|x-1| < \frac{\varepsilon}{3}$. Es decir, ante

cualquier ε , podemos definir un $\delta=\frac{\varepsilon}{3}$ tal que se cumpla la definición para el límite indicado.

Ejemplo 5

Demuestre que el límite de f(x) = 3x + 5 cuando $x \rightarrow 1$ es 8.

Solución 5

Si $\lim_{x\to 1} 3x + 5 = 8$, entonces, por la Definición 7 se cumple que

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - 1| < \delta \implies |3x + 5 - 8| < \varepsilon.$$

Luego, basta encontrar un δ que satisfaga la Definición 7 ante cualquier ε (en efecto, δ será función de ε).

Notamos que $|3x + 5 - 8| = |3x - 3| = 3|x - 1| < \varepsilon$.

Pero lo anterior equivale a indicar que $|x-1| < \frac{\varepsilon}{3}$. Es decir, ante

cualquier ε , podemos definir un $\delta=\frac{\varepsilon}{3}$ tal que se cumpla la definición para el límite indicado.

Propuesto 3

Demuestre que el límite de $f(x) = x^2$ cuando $x \to 5$ es 25.

Existencia de un Límite

Definición 8

El límite de f(x) cuando $x \to k$ es L si y sólo si los límites por la derecha y por la izquierda (con $x \to k^+$ y $x \to k^-$, respectivamente) son ambos iguales a L^2 .

 $^{^2}$ Esta definición aplica sólo cuando es posible obtener los límites laterales, es decir, cuando se trabaja sobre el dominio de la función. Un ejemplo donde no aplica esta definición es $\lim_{x\to 0} \sqrt{x}$: si bien el límite por la derecha es 0, el límite por la izquierda no existe (x no puede ser negativo). A pesar de lo anterior, el límite es 0, pues sólo se considera el límite definido en el dominio de la función, es decir, el límite por la derecha.

Existencia de un Límite

Definición 8

El límite de f(x) cuando $x \to k$ es L si y sólo si los límites por la derecha y por la izquierda (con $x \to k^+$ y $x \to k^-$, respectivamente) son ambos iguales a L^2 .En símbolos:

$$\lim_{x \to k} f(x) = L \iff \lim_{x \to ^+ k} f(x) = \lim_{x \to k^-} f(x) = L.$$

22

 $^{^2}$ Esta definición aplica sólo cuando es posible obtener los límites laterales, es decir, cuando se trabaja sobre el dominio de la función. Un ejemplo donde no aplica esta definición es $\lim_{x\to 0} \sqrt{x}$: si bien el límite por la derecha es 0, el límite por la izquierda no existe (x no puede ser negativo). A pesar de lo anterior, el límite es 0, pues sólo se considera el límite definido en el dominio de la función, es decir, el límite por la derecha.

Existencia de un Límite

Definición 8

El límite de f(x) cuando $x \to k$ es L si y sólo si los límites por la derecha y por la izquierda (con $x \to k^+$ y $x \to k^-$, respectivamente) son ambos iguales a L^2 .En símbolos:

$$\lim_{x \to k} f(x) = L \iff \lim_{x \to ^+ k} f(x) = \lim_{x \to k^-} f(x) = L.$$

Lo anterior se cumple para todo polinomio y el límite corresponde a la función evaluada en x = k. Sin embargo, hay casos donde no se cumple...

22

 $^{^2}$ Esta definición aplica sólo cuando es posible obtener los límites laterales, es decir, cuando se trabaja sobre el dominio de la función. Un ejemplo donde no aplica esta definición es $\lim_{x\to 0} \sqrt{x}$: si bien el límite por la derecha es 0, el límite por la izquierda no existe (x no puede ser negativo). A pesar de lo anterior, el límite es 0, pues sólo se considera el límite definido en el dominio de la función, es decir, el límite por la derecha.

Ejemplo 6

Considere la función
$$f(x) = \frac{x^2 - 4}{x - 2}$$
. Encuentre $\lim_{x \to 2} f(x)$.

Ejemplo 6

Considere la función $f(x) = \frac{x^2 - 4}{x - 2}$. Encuentre $\lim_{x \to 2} f(x)$.

Solución 6

En este caso, no se puede evaluar directamente en x=2, pues tendríamos algo de la forma f(2)=0/0. Sin embargo, en este tipo de situaciones se puede realizar una simplificación conveniente:

$$\lim_{x\to 2}\frac{x^2-4}{x-2}=$$

Ejemplo 6

Considere la función $f(x) = \frac{x^2 - 4}{x - 2}$. Encuentre $\lim_{x \to 2} f(x)$.

Solución 6

En este caso, no se puede evaluar directamente en x=2, pues tendríamos algo de la forma f(2)=0/0. Sin embargo, en este tipo de situaciones se puede realizar una simplificación conveniente:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} =$$

Ejemplo 6

Considere la función $f(x) = \frac{x^2 - 4}{x - 2}$. Encuentre $\lim_{x \to 2} f(x)$.

Solución 6

En este caso, no se puede evaluar directamente en x=2, pues tendríamos algo de la forma f(2)=0/0. Sin embargo, en este tipo de situaciones se puede realizar una simplificación conveniente:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} x + 2.$$

Esta última simplificación se puede hacer porque, como bien dice la Definición 4, x no toma el valor 2 y por ende $x-2 \neq 0$. Como este término es no nulo, es legal simplificar.

Ejemplo 6

Considere la función $f(x) = \frac{x^2 - 4}{x - 2}$. Encuentre $\lim_{x \to 2} f(x)$.

Solución 6

En este caso, no se puede evaluar directamente en x=2, pues tendríamos algo de la forma f(2)=0/0. Sin embargo, en este tipo de situaciones se puede realizar una simplificación conveniente:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} x + 2.$$

Esta última simplificación se puede hacer porque, como bien dice la Definición 4, x no toma el valor 2 y por ende $x-2 \neq 0$. Como este término es no nulo, es legal simplificar.

Por último, como x + 2 es un polinomio de primer grado, su límite existe y corresponde a dicha función evaluada en x = 2.

Ejemplo 6

Considere la función $f(x) = \frac{x^2 - 4}{x - 2}$. Encuentre $\lim_{x \to 2} f(x)$.

Solución 6

En este caso, no se puede evaluar directamente en x=2, pues tendríamos algo de la forma f(2)=0/0. Sin embargo, en este tipo de situaciones se puede realizar una simplificación conveniente:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} x + 2.$$

Esta última simplificación se puede hacer porque, como bien dice la Definición 4, x no toma el valor 2 y por ende $x-2 \neq 0$. Como este término es no nulo, es legal simplificar.

Por último, como x+2 es un polinomio de primer grado, su límite existe y corresponde a dicha función evaluada en x=2.

Por lo tanto,
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = \lim_{x\to 2} x+2=4$$
.

¿Es cierto que las funciones $f(x) = \frac{x^2 - 4}{x - 2}$ y g(x) = x + 2 son equivalentes?

¿Es cierto que las funciones $f(x) = \frac{x^2 - 4}{x - 2}$ y g(x) = x + 2 son equivalentes? ¡NO!

¿Es cierto que las funciones $f(x) = \frac{x^2 - 4}{x - 2}$ y g(x) = x + 2 son equivalentes? ¡**NO!**

Las funciones tienen dominios diferentes, pues Dom $f(x) = \mathbb{R} - \{2\}$, mientras que Dom $g(x) = \mathbb{R}$. Luego, $\mathbb{E}f(2)$, a pesar de que g(2) = 4.

¿Es cierto que las funciones $f(x) = \frac{x^2 - 4}{x - 2}$ y g(x) = x + 2 son equivalentes? ¡**NO!**

Las funciones tienen dominios diferentes, pues Dom $f(x) = \mathbb{R} - \{2\}$, mientras que Dom $g(x) = \mathbb{R}$. Luego, $\mathbb{E}f(2)$, a pesar de que g(2) = 4.

Figura 7: Gráficos de
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 y $g(x) = x + 2$

Ejemplo 7

Encuentre, caso exista, el siguiente límite: $\lim_{x\to 0}\frac{|x|}{x}$. En caso de que no exista, justifique su respuesta.

Ejemplo 7

Encuentre, caso exista, el siguiente límite: $\lim_{x\to 0}\frac{|x|}{x}$. En caso de que no exista, justifique su respuesta.

Solución 7

Tal como en el Ejemplo 6, en este caso no podemos evaluar directamente la función en x=0, pues tendríamos algo de la forma 0/0. Sin embargo, en esta ocasión tampoco es trivial simplificar la expresión, pues el valor del numerador va a depender de si x es negativo o no negativo.

Ejemplo 7

Encuentre, caso exista, el siguiente límite: $\lim_{x\to 0}\frac{|x|}{x}$. En caso de que no exista, justifique su respuesta.

Solución 7

Tal como en el Ejemplo 6, en este caso no podemos evaluar directamente la función en x=0, pues tendríamos algo de la forma 0/0. Sin embargo, en esta ocasión tampoco es trivial simplificar la expresión, pues el valor del numerador va a depender de si x es negativo o no negativo.

Recordar que el valor absoluto se define como $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$.

Ejemplo 7

Encuentre, caso exista, el siguiente límite: $\lim_{x\to 0}\frac{|x|}{x}$. En caso de que no exista, justifique su respuesta.

Solución 7

Tal como en el Ejemplo 6, en este caso no podemos evaluar directamente la función en x=0, pues tendríamos algo de la forma 0/0. Sin embargo, en esta ocasión tampoco es trivial simplificar la expresión, pues el valor del numerador va a depender de si x es negativo o no negativo.

Recordar que el valor absoluto se define como $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$.

En efecto, el límite por la izquierda es $\lim_{x\to 0^-}\frac{-x}{x}=-1$, mientras que por la derecha es $\lim_{x\to 0^+}\frac{x}{x}=1$.

Ejemplo 7

Encuentre, caso exista, el siguiente límite: $\lim_{x\to 0}\frac{|x|}{x}$. En caso de que no exista, justifique su respuesta.

Solución 7

Tal como en el Ejemplo 6, en este caso no podemos evaluar directamente la función en x=0, pues tendríamos algo de la forma 0/0. Sin embargo, en esta ocasión tampoco es trivial simplificar la expresión, pues el valor del numerador va a depender de si x es negativo o no negativo.

Recordar que el valor absoluto se define como $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$.

En efecto, el límite por la izquierda es $\lim_{x\to 0^-}\frac{-x}{x}=-1$, mientras que por la derecha es $\lim_{x\to 0^+}\frac{x}{x}=1$.

Como los límites laterales son distintos, el límite no existe.

Gráfico: Límite que No Existe

Módulo 4

▶ Volver al Inicio de la Sección

Propiedades de los Límites

Proposición 1

Sea c una constante cualquiera. Entonces, el límite de dicha constante cuando x tiende a k es la misma constante:

$$\lim_{x \to k} c = c.$$

Propiedades de los Límites

Proposición 1

Sea c una constante cualquiera. Entonces, el límite de dicha constante cuando x tiende a k es la misma constante:

$$\lim_{x \to k} c = c.$$

Proposición 2

Sea b una constante cualquiera y f(x) una función cuyo límite existe cuando $x \rightarrow k$. Entonces, el límite de dicha función ponderada por b cuando x tiende a k es b por el límite de la función:

$$\lim_{x \to k} bf(x) = b \lim_{x \to k} f(x).$$

Propiedades de los Límites (cont.)

Proposición 3

Sea n un entero positivo. Entonces, el límite de x elevado a n cuando x tiende a k es k elevado a n:

$$\lim_{x \to k} x^n = k^n \qquad \forall n \in \mathbb{N}.$$

Propiedades de los Límites (cont.)

Proposición 3

Sea n un entero positivo. Entonces, el límite de x elevado a n cuando x tiende a k es k elevado a n:

$$\lim_{x \to k} x^n = k^n \qquad \forall n \in \mathbb{N}.$$

Proposición 4

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite de la suma (o resta) de ambas funciones cuando x tiende a k es la suma (o resta) de los límites individuales de las funciones:

$$\lim_{x \to k} f(x) \pm g(x) = \lim_{x \to k} f(x) \pm \lim_{x \to k} g(x).$$

Propiedades de los Límites (cont.)

Proposición 3

Sea n un entero positivo. Entonces, el límite de x elevado a n cuando x tiende a k es k elevado a n:

$$\lim_{r \to k} x^n = k^n \qquad \forall n \in \mathbb{N}.$$

Proposición 4

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite de la suma (o resta) de ambas funciones cuando x tiende a k es la suma (o resta) de los límites individuales de las funciones:

$$\lim_{x \to k} f(x) \pm g(x) = \lim_{x \to k} f(x) \pm \lim_{x \to k} g(x).$$

Propuesto 4

Utilizando las Proposiciones 1, 2, 3 y 4, demuestre que el límite de cualquier polinomio P(x) cuando $x \rightarrow k$ equivale a P(k).

Propiedades de los Límites (cont.')

Proposición 5

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite del producto de ambas funciones cuando x tiende a k es el producto de los límites individuales de las funciones:

$$\lim_{x \to k} f(x) \cdot g(x) = \lim_{x \to k} f(x) \cdot \lim_{x \to k} g(x).$$

Propiedades de los Límites (cont.')

Proposición 5

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite del producto de ambas funciones cuando x tiende a k es el producto de los límites individuales de las funciones:

$$\lim_{x \to k} f(x) \cdot g(x) = \lim_{x \to k} f(x) \cdot \lim_{x \to k} g(x).$$

Proposición 6

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite del cociente de ambas funciones cuando x tiende a k es el cociente de los límites individuales de las funciones, siempre y cuando el límite del denominador sea distinto de 0:

$$\lim_{x \to k} \frac{f(x)}{g(x)} = \frac{\lim_{x \to k} f(x)}{\lim_{x \to k} g(x)}, \quad si \quad \lim_{x \to k} g(x) \neq 0.$$

Propiedades de los Límites (cont.")

Proposición 7

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite de una función elevada a la otra cuando x tiende a k es el límite de la primera elevado al límite de la segunda, siempre y cuando la base sea positiva:

$$\lim_{x \to k} f(x)^{g(x)} = \lim_{x \to k} f(x)^{\lim_{x \to k} g(x)}, \qquad si \ f(x) > 0.$$

Propiedades de los Límites (cont.")

Proposición 7

Sean f(x) y g(x) dos funciones cuyos límites existen cuando $x \to k$. Entonces, el límite de una función elevada a la otra cuando x tiende a k es el límite de la primera elevado al límite de la segunda, siempre y cuando la base sea positiva:

$$\lim_{x\to k} f(x)^{g(x)} = \lim_{x\to k} f(x)^{\lim_{x\to k} g(x)}, \qquad si\ f(x)>0.$$

Notar que de lo anterior se obtiene $\lim_{x \to k} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to k} f(x)} \, \forall n \in \mathbb{N}.$

Proposición 8

Sea a una constante positiva y f(x) una función cuyo límite existe cuando $x \to k$. Entonces, el límite del logaritmo con base a de la función cuando x tiende a k es el logaritmo con base a del límite de la función, siempre y cuando la función sea positiva:

$$\lim_{x \to k} \log_a f(x) = \log_a \lim_{x \to k} f(x), \qquad si \ f(x) > 0.$$

Ejemplo

Ejemplo 8

Obtenga el límite de
$$f(x) = \frac{\sqrt{x+1}-1}{x}$$
 cuando $x \to 0$.

Ejemplo

Ejemplo 8

Obtenga el límite de
$$f(x) = \frac{\sqrt{x+1}-1}{x}$$
 cuando $x \to 0$.

Solución 8

En efecto, no podemos evaluar directamente x=0, pues tendríamos algo de la forma 0/0. Sin embargo, podemos utilizar un 1 conveniente...

Ejemplo

Ejemplo 8

Obtenga el límite de
$$f(x) = \frac{\sqrt{x+1}-1}{x}$$
 cuando $x \to 0$.

Solución 8

En efecto, no podemos evaluar directamente x = 0, pues tendríamos algo de la forma 0/0. Sin embargo, podemos utilizar un 1 conveniente...

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} \cdot \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1}$$
$$= \lim_{x \to 0} \frac{x+1 - 1}{x(\sqrt{x+1} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} + 1}.$$

Finalmente, podemos simplemente evaluar en x=0 para obtener como resultado $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x} = \frac{1}{2}$.

Ejemplo 9

Obtenga
$$\lim_{x\to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x}$$
.

Ejemplo 9

Obtenga
$$\lim_{x\to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x}$$
.

Solución 9

$$\lim_{x \to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x} = \lim_{x \to 0} \frac{\frac{3 - x - 3}{3(x+3)}}{x} = \lim_{x \to 0} \frac{-1}{3(x+3)} = -\frac{1}{9}.$$

Ejemplo 9

Obtenga
$$\lim_{x\to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x}$$
.

Solución 9

$$\lim_{x \to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x} = \lim_{x \to 0} \frac{\frac{3-x-3}{3(x+3)}}{x} = \lim_{x \to 0} \frac{-1}{3(x+3)} = -\frac{1}{9}.$$

Ejemplo 10

Sea
$$f(x) = \begin{cases} ax^2 & \text{si } x < 2 \\ ax + b & \text{si } x \ge 2 \end{cases}$$
. ¿Qué relación deben satisfacer $a y b$ para que exista $\lim_{x \to 2} f(x)$?

Ejemplo 9

Obtenga
$$\lim_{x\to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x}$$
.

Solución 9

$$\lim_{x \to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x} = \lim_{x \to 0} \frac{\frac{3-x-3}{3(x+3)}}{x} = \lim_{x \to 0} \frac{-1}{3(x+3)} = -\frac{1}{9}.$$

Ejemplo 10

Sea
$$f(x) = \begin{cases} ax^2 & \text{si } x < 2 \\ ax + b & \text{si } x \ge 2 \end{cases}$$
. ¿Qué relación deben satisfacer a y b para que exista $\lim_{x \to 2} f(x)$?

Solución 10

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \iff 4a = 2a + b \iff a = \frac{b}{2}.$$

Módulo 5

▶ Volver al Inicio de la Sección

En la Definición 7 vimos que $\lim_{x\to k} f(x) = L$ es lo mismo que $f(x) \to L$ cuando $x \to k$.

En la Definición 7 vimos que $\lim_{x\to k} f(x) = L$ es lo mismo que $f(x) \to L$ cuando $x \to k$.

Ahora bien, podríamos considerar a f(x) como una variable de la cual depende la función g.

En la Definición 7 vimos que $\lim_{x\to k} f(x) = L$ es lo mismo que $f(x) \to L$ cuando $x \to k$.

Ahora bien, podríamos considerar a f(x) como una variable de la cual depende la función g.

Luego, podemos plantear la posible existencia de $\lim_{f(x) \to L} g(f(x)) = M$, o

bien, $g(f(x)) \rightarrow M$ cuando $f(x) \rightarrow L$.

En la Definición 7 vimos que $\lim_{x \to k} f(x) = L$ es lo mismo que $f(x) \to$

L cuando $x \rightarrow k$.

Ahora bien, podríamos considerar a f(x) como una variable de la cual depende la función g.

Luego, podemos plantear la posible existencia de $\lim_{f(x) \to L} g(f(x)) = M$, o

bien, $g(f(x)) \rightarrow M$ cuando $f(x) \rightarrow L$.

Combinando las ideas anteriores tenemos

$$\left[x \to k \implies f(x) \to L\right] \wedge \left[f(x) \to L \implies g\left(f(x)\right) \to M\right] \implies \left[x \to k \implies g\left(f(x)\right) \to M\right].$$

En la Definición 7 vimos que $\lim_{x \to k} f(x) = L$ es lo mismo que $f(x) \to \infty$

L cuando $x \to k$. Ahora bien, podríamos considerar a f(x) como una variable de la cual depende la función g.

Luego, podemos plantear la posible existencia de $\lim_{f(x)\to L} g(f(x)) = M$, o

bien, $g(f(x)) \rightarrow M$ cuando $f(x) \rightarrow L$.

Combinando las ideas anteriores tenemos

$$\left[x \to k \implies f(x) \to L\right] \wedge \left[f(x) \to L \implies g\left(f(x)\right) \to M\right] \implies \left[x \to k \implies g\left(f(x)\right) \to M\right].$$

Ejemplo 11

Obtenga
$$\lim_{x \to 0} \left(\frac{1}{\frac{\sqrt{x+1}-1}{x} + 2.5} - \frac{1}{3} \right) \div \left(\frac{\sqrt{x+1}-1}{x} - 0.5 \right).$$

En la Definición 7 vimos que $\lim_{x \to k} f(x) = L$ es lo mismo que $f(x) \to$

Ahora bien, podríamos considerar a f(x) como una variable de la cual depende la función g.

Luego, podemos plantear la posible existencia de $\lim_{f(x)\to L} g(f(x)) = M$, o

bien, $g(f(x)) \rightarrow M$ cuando $f(x) \rightarrow L$.

Combinando las ideas anteriores tenemos

$$\left[x \to k \implies f(x) \to L\right] \wedge \left[f(x) \to L \implies g\left(f(x)\right) \to M\right] \implies \left[x \to k \implies g\left(f(x)\right) \to M\right].$$

Ejemplo 11

L cuando $x \rightarrow k$.

Obtenga
$$\lim_{x\to 0} \left(\frac{1}{\frac{\sqrt{x+1}-1}{x} + 2.5} - \frac{1}{3} \right) \div \left(\frac{\sqrt{x+1}-1}{x} - 0.5 \right).$$

Solución 11

Usando las Soluciones 8 y 9 tenemos que el límite es $-\frac{1}{9}$.

Número e como Límite

Proposición 9

El número e ≈ 2,718281828459... (número de Euler o constante de Napier) se puede definir de la siguiente manera:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \qquad \left(= 3 \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right)$$

 $^{^3}$ Próximamente le daremos énfasis a los límites cuando x tiende al infinito.

⁴Hay otros límites especiales que no abarcaremos en este curso.

Número e como Límite

Proposición 9

El número e ≈ 2,718281828459... (número de Euler o constante de Napier) se puede definir de la siguiente manera:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \qquad \left(= \frac{3}{x} \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right)$$

A este límite, junto con los de las Proposiciones 10 y 11, los llamaremos límites especiales 4 .

36

 $^{^3}$ Próximamente le daremos énfasis a los límites cuando x tiende al infinito.

⁴Hay otros límites especiales que no abarcaremos en este curso.

Número e como Límite

Proposición 9

El número e ≈ 2,718281828459... (número de Euler o constante de Napier) se puede definir de la siguiente manera:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \qquad \left(= \frac{3}{x} \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right)$$

A este límite, junto con los de las Proposiciones 10 y 11, los llamaremos límites especiales 4 .

Propuesto 5

Verifique esto evaluando la función $f(x) = (1+x)^{\frac{1}{x}}$ para valores de x arbitrariamente cercanos a 0.

 $^{^3}$ Próximamente le daremos énfasis a los límites cuando x tiende al infinito.

⁴Hay otros límites especiales que no abarcaremos en este curso.

Límites Especiales

Proposición 10

$$\lim_{x\to 0}\,\frac{\ln(1+x)}{x}=1$$

Límites Especiales

Proposición 10

$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

Demostración.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \ln e = 1.$$

Límites Especiales (cont.)

Proposición 11

$$\lim_{x\to 0}\,\frac{\exp(x)-1}{x}=1$$

Límites Especiales (cont.)

Proposición 11

$$\lim_{x\to 0} \frac{\exp(x)-1}{x} = 1$$

Demostración.

Sea $\exp(x) - 1 = y$, de modo que $x \to 0 \Longrightarrow y \to 0$. A partir de esto podemos despejar $x = \ln(1+y)$. Por lo tanto, utilizando el cambio de variable, el límite es equivalente a

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = \lim_{y \to 0} \frac{y}{\ln(1 + y)} = \lim_{y \to 0} \frac{1}{\frac{\ln(1 + y)}{y}} = 1.$$

38

Ejercicios: Límites Especiales

Propuesto 6

Demuestre que, $\forall a > 0$,

$$\lim_{x\to 0}\frac{a^x-1}{x}=\ln a.$$

Hint: Proceda de manera análoga a la demostración de la Proposición 11.

Propuesto 7

Demuestre que, $\forall a > 0$,

$$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = \exp(a).$$

Hint: Utilice un 1 conveniente en el exponente y luego aplique la Proposición 9.

Ejercicios: Límites Especiales (cont.)

Propuesto 8

Demuestre que, $\forall a > 0$,

$$\lim_{x\to 0} \frac{\ln(1+ax)}{x} = a.$$

Hint: Proceda de manera análoga a la demostración de la Proposición 10 y utilice el resultado del Propuesto 7.

Propuesto 9

Demuestre que, $\forall a > 0$,

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a.$$

Hint: Utilice un 1 conveniente en el exponente y aplique la Proposición 9. Luego, utilice otro 1 conveniente sobre su resultado para finalmente aplicar la Proposición 11 con un cambio de variable.

Módulo 6

▶ Volver al Inicio de la Sección

Hasta ahora hemos revisado cómo se comporta una función f(x) a medida que x tiende a algún valor constante k.

Hasta ahora hemos revisado cómo se comporta una función f(x) a medida que x tiende a algún valor constante k.

Sin embargo, en ocasiones nos puede interesar qué ocurre con la función cuando x crece (o decrece) indeterminadamente, es decir, qué le pasa a f(x) cuando $x \to \infty$ (o $x \to -\infty$).

Hasta ahora hemos revisado cómo se comporta una función f(x) a medida que x tiende a algún valor constante k.

Sin embargo, en ocasiones nos puede interesar qué ocurre con la función cuando x crece (o decrece) indeterminadamente, es decir, qué le pasa a f(x) cuando $x \to \infty$ (o $x \to -\infty$).

Ejemplo 12

Grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x \to \infty} f(x)$.

Hasta ahora hemos revisado cómo se comporta una función f(x) a medida que x tiende a algún valor constante k.

Sin embargo, en ocasiones nos puede interesar qué ocurre con la función cuando x crece (o decrece) indeterminadamente, es decir, qué le pasa a f(x) cuando $x \to \infty$ (o $x \to -\infty$).

Ejemplo 12

Grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x \to \infty} f(x)$.

Solución 12

Figura 10: Límite hacia el infinito

Hasta ahora hemos revisado cómo se comporta una función f(x) a medida que x tiende a algún valor constante k.

Sin embargo, en ocasiones nos puede interesar qué ocurre con la función cuando x crece (o decrece) indeterminadamente, es decir, qué le pasa a f(x) cuando $x \to \infty$ (o $x \to -\infty$).

Ejemplo 12

Grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x \to \infty} f(x)$.

Solución 12

Figura 10: Límite hacia el infinito

A medida que *x* se vuelve arbitrariamente grande, la función se acerca cada vez más a 0...

Hasta ahora hemos revisado cómo se comporta una función f(x) a medida que x tiende a algún valor constante k.

Sin embargo, en ocasiones nos puede interesar qué ocurre con la función cuando x crece (o decrece) indeterminadamente, es decir, qué le pasa a f(x) cuando $x \to \infty$ (o $x \to -\infty$).

Ejemplo 12

Grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x \to \infty} f(x)$.

Solución 12

Figura 10: Límite hacia el infinito

A medida que *x* se vuelve arbitrariamente grande, la función se acerca cada vez más a 0...

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Ejemplo 13

Obtenga
$$\lim_{x \to -\infty} \frac{2x}{x+1}$$
.

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Ejemplo 13

Obtenga
$$\lim_{x \to -\infty} \frac{2x}{x+1}$$
.

Solución 13

Notamos que no tiene sentido hablar de "evaluar x en menos infinito", pues tendríamos un resultado de la forma ∞/∞ .

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Ejemplo 13

Obtenga
$$\lim_{x \to -\infty} \frac{2x}{x+1}$$
.

Solución 13

Notamos que no tiene sentido hablar de "evaluar x en menos infinito", pues tendríamos un resultado de la forma ∞/∞ . Sin embargo, podemos reescribir el límite como

$$\lim_{x \to -\infty} \frac{2x}{x+1} = \lim_{x \to -\infty} \frac{2x/x}{x/x + 1/x} = \lim_{x \to -\infty} \frac{2}{1 + 1/x},$$

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Ejemplo 13

Obtenga
$$\lim_{x \to -\infty} \frac{2x}{x+1}$$
.

Solución 13

Notamos que no tiene sentido hablar de "evaluar x en menos infinito", pues tendríamos un resultado de la forma ∞/∞ . Sin embargo, podemos reescribir el límite como

$$\lim_{x \to -\infty} \frac{2x}{x+1} = \lim_{x \to -\infty} \frac{2x/x}{x/x+1/x} = \lim_{x \to -\infty} \frac{2}{1+1/x},$$

donde esto lo podemos hacer porque "no evaluamos x en infinito".

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Ejemplo 13

Obtenga
$$\lim_{x \to -\infty} \frac{2x}{x+1}$$
.

Solución 13

Notamos que no tiene sentido hablar de "evaluar x en menos infinito", pues tendríamos un resultado de la forma ∞/∞ . Sin embargo, podemos reescribir el límite como

$$\lim_{x \to -\infty} \frac{2x}{x+1} = \lim_{x \to -\infty} \frac{2x/x}{x/x + 1/x} = \lim_{x \to -\infty} \frac{2}{1 + 1/x},$$

donde esto lo podemos hacer porque "no evaluamos x en infinito". Por último, notamos que el segundo término en el denominador tiende a 0 (al igual que en el Ejemplo 12).

Límites al Infinito (cont.)

Al igual que en los casos anteriores, es importante notar que no nos interesa "evaluar x en infinito" (de hecho, esto es conceptualmente imposible), sino que queremos saber cómo se comporta la función cuando x "se aproxima" al infinito, ya sea positivo o negativo.

Ejemplo 13

Obtenga
$$\lim_{x \to -\infty} \frac{2x}{x+1}$$
.

Solución 13

Notamos que no tiene sentido hablar de "evaluar x en menos infinito", pues tendríamos un resultado de la forma ∞/∞ . Sin embargo, podemos reescribir el límite como

$$\lim_{x \to -\infty} \frac{2x}{x+1} = \lim_{x \to -\infty} \frac{2x/x}{x/x+1/x} = \lim_{x \to -\infty} \frac{2}{1+1/x},$$

donde esto lo podemos hacer porque "no evaluamos x en infinito". Por último, notamos que el segundo término en el denominador tiende a 0 (al igual que en el Ejemplo 12). $\lim_{x \to -\infty} \frac{2x}{x+1} = 2$.

converger (Del lat. convergere):

- 1. intr. Dicho de dos o más líneas: Tender a unirse en un punto.
- 2. intr. Coincidir en la misma posición ante algo controvertido.
- 3. intr. Mat. Dicho de una sucesión: Aproximarse a un límite.
- 4. intr. Med. Confluir distintos impulsos sensoriales en una sola neurona, como en la actividad motora.

converger (Del lat. convergere):

- 1. intr. Dicho de dos o más líneas: Tender a unirse en un punto.
- 2. intr. Coincidir en la misma posición ante algo controvertido.
- 3. intr. Mat. Dicho de una sucesión: Aproximarse a un límite.
- 4. intr. Med. Confluir distintos impulsos sensoriales en una sola neurona, como en la actividad motora.

divergir (Del lat. divergĕre):

- 1. intr. Dicho de dos o más líneas o superficies: Irse apartando sucesivamente unas de otras.
- 2. intr. Discordar, discrepar.

converger (Del lat. convergere):

- 1. intr. Dicho de dos o más líneas: Tender a unirse en un punto.
- 2. intr. Coincidir en la misma posición ante algo controvertido.
- 3. intr. Mat. Dicho de una sucesión: Aproximarse a un límite.
- 4. intr. Med. Confluir distintos impulsos sensoriales en una sola neurona, como en la actividad motora.

divergir (Del lat. divergĕre):

- 1. intr. Dicho de dos o más líneas o superficies: Irse apartando sucesivamente unas de otras.
- 2. intr. Discordar, discrepar.

Real Academia Española © Todos los derechos reservados

converger (Del lat. convergere):

- 1. intr. Dicho de dos o más líneas: Tender a unirse en un punto.
- 2. intr. Coincidir en la misma posición ante algo controvertido.
- 3. intr. Mat. Dicho de una sucesión: Aproximarse a un límite.
- 4. intr. Med. Confluir distintos impulsos sensoriales en una sola neurona, como en la actividad motora.

divergir (Del lat. divergĕre):

- 1. intr. Dicho de dos o más líneas o superficies: Irse apartando sucesivamente unas de otras.
- 2. intr. Discordar, discrepar.

Real Academia Española © Todos los derechos reservados

Hasta ahora sólo hemos trabajado con límites convergentes, es decir, funciones que se acercan a un valor dado cuando la variable tiende a algún punto.

converger (Del lat. convergere):

- 1. intr. Dicho de dos o más líneas: Tender a unirse en un punto.
- 2. intr. Coincidir en la misma posición ante algo controvertido.
- 3. intr. Mat. Dicho de una sucesión: Aproximarse a un límite.
- 4. intr. Med. Confluir distintos impulsos sensoriales en una sola neurona, como en la actividad motora.

divergir (Del lat. divergĕre):

- 1. intr. Dicho de dos o más líneas o superficies: Irse apartando sucesivamente unas de otras.
- 2. intr. Discordar, discrepar.

Real Academia Española © Todos los derechos reservados

Hasta ahora sólo hemos trabajado con límites convergentes, es decir, funciones que se acercan a un valor dado cuando la variable tiende a algún punto. Sin embargo, esto no tiene por qué ser siempre así...

Ejemplo 14

Similar al Ejemplo 12, grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x\to 0^+} f(x)$.

Solución 14

Figura 11: Límite infinito

45

Ejemplo 14

Similar al Ejemplo 12, grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x\to 0^+} f(x)$.

Solución 14

Figura 11: Límite infinito

En efecto, a medida que x se acerca a 0 por la derecha, el valor de $\frac{1}{x}$ se vuelve arbitrariamente grande, esto es, tiende a infinito positivo...

45

Ejemplo 14

Similar al Ejemplo 12, grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x\to 0^+} f(x)$.

Solución 14

Figura 11: Límite infinito

En efecto, a medida que x se acerca a 0 por la derecha, el valor de $\frac{1}{x}$ se vuelve arbitrariamente grande, esto es, tiende a infinito positivo...

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

Ejemplo 14

Similar al Ejemplo 12, grafique $f(x) = \frac{1}{x}$ en el primer cuadrante y obtenga $\lim_{x\to 0^+} f(x)$.

Solución 14

Figura 11: Límite infinito

En efecto, a medida que x se acerca a 0 por la derecha, el valor de $\frac{1}{x}$ se vuelve arbitrariamente grande, esto es, tiende a infinito positivo...

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

En este caso se dice que f(x) diverge cuando $x \to 0^+$.

45

Además de divergir cuando x tiende a algún valor particular, puede darse que una función diverja cuando x tienda a $+\infty$ o $-\infty$.

Además de divergir cuando x tiende a algún valor particular, puede darse que una función diverja cuando x tienda a $+\infty$ o $-\infty$.

Ejemplo 15

Sea
$$f(x) = \frac{x^3 - 2x^2 + 3x - 4}{5x^2 - 6x + 7}$$
. Obtenga $\lim_{x \to \infty} f(x)$.

Además de divergir cuando x tiende a algún valor particular, puede darse que una función diverja cuando x tienda a $+\infty$ o $-\infty$.

Ejemplo 15

Sea
$$f(x) = \frac{x^3 - 2x^2 + 3x - 4}{5x^2 - 6x + 7}$$
. Obtenga $\lim_{x \to \infty} f(x)$.

Solución 15

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3/x^2 - 2x^2/x^2 + 3x/x^2 - 4/x^2}{5x^2/x^2 - 6x/x^2 + 7/x^2} = \lim_{x \to \infty} \frac{x - 2}{5} = \infty$$

Además de divergir cuando x tiende a algún valor particular, puede darse que una función diverja cuando x tienda a $+\infty$ o $-\infty$.

Ejemplo 15

Sea
$$f(x) = \frac{x^3 - 2x^2 + 3x - 4}{5x^2 - 6x + 7}$$
. Obtenga $\lim_{x \to \infty} f(x)$.

Solución 15

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3/x^2 - 2x^2/x^2 + 3x/x^2 - 4/x^2}{5x^2/x^2 - 6x/x^2 + 7/x^2} = \lim_{x \to \infty} \frac{x - 2}{5} = \infty$$

Propuesto 10

Grafique cualquier polinomio y observe qué ocurre cuando $x \to +\infty$ o cuando $x \to -\infty$.

Además de divergir cuando x tiende a algún valor particular, puede darse que una función diverja cuando x tienda a $+\infty$ o $-\infty$.

Ejemplo 15

Sea
$$f(x) = \frac{x^3 - 2x^2 + 3x - 4}{5x^2 - 6x + 7}$$
. Obtenga $\lim_{x \to \infty} f(x)$.

Solución 15

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3/x^2 - 2x^2/x^2 + 3x/x^2 - 4/x^2}{5x^2/x^2 - 6x/x^2 + 7/x^2} = \lim_{x \to \infty} \frac{x - 2}{5} = \infty$$

Propuesto 10

Grafique cualquier polinomio y observe qué ocurre cuando $x \to +\infty$ o cuando $x \to -\infty$.

Propuesto 11

Repita lo anterior con el logaritmo de cualquier polinomio positivo.

Además de divergir cuando x tiende a algún valor particular, puede darse que una función diverja cuando x tienda a $+\infty$ o $-\infty$.

Ejemplo 15

Sea
$$f(x) = \frac{x^3 - 2x^2 + 3x - 4}{5x^2 - 6x + 7}$$
. Obtenga $\lim_{x \to \infty} f(x)$.

Solución 15

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3/x^2 - 2x^2/x^2 + 3x/x^2 - 4/x^2}{5x^2/x^2 - 6x/x^2 + 7/x^2} = \lim_{x \to \infty} \frac{x - 2}{5} = \infty$$

Propuesto 10

Grafique cualquier polinomio y observe qué ocurre cuando $x \to +\infty$ o cuando $x \to -\infty$.

Propuesto 11

Repita lo anterior con el logaritmo de cualquier polinomio positivo.

Propuesto 12

Ahora con la raíz de cualquier polinomio positivo.

Tal como vimos en el Ejemplo 12, pueden existir distintas funciones que convergen cuando *x* tiende a infinito positivo o negativo.

 $^{^{5}\}mathrm{M}$ ás adelante veremos cómo calcular estas tasas de crecimiento.

Tal como vimos en el Ejemplo 12, pueden existir distintas funciones que convergen cuando x tiende a infinito positivo o negativo.

Ejemplo 16

En macroeconomía se habla de la idea de "convergencia en crecimiento" (crecimiento en el PIB), que básicamente indica que en el largo plazo, todos los países tienden a crecer a la misma tasa⁵ (y la brecha entre sus productos será menor). Suponga que el crecimiento de cualquier economía depende de su nivel de producto Y de la forma $f(Y) = \frac{1}{2\sqrt{Y}}$. ¿Por qué se justificaría esta

hipótesis de convergencia en crecimiento?

47

 $^{^{5}}$ Más adelante veremos cómo calcular estas tasas de crecimiento.

Tal como vimos en el Ejemplo 12, pueden existir distintas funciones que convergen cuando x tiende a infinito positivo o negativo.

Ejemplo 16

En macroeconomía se habla de la idea de "convergencia en crecimiento" (crecimiento en el PIB), que básicamente indica que en el largo plazo, todos los países tienden a crecer a la misma tasa⁵ (y la brecha entre sus productos será menor). Suponga que el crecimiento de cualquier economía depende de su nivel de

producto Y de la forma $f(Y) = \frac{1}{2\sqrt{V}}$. ¿Por qué se justificaría esta

hipótesis de convergencia en crecimiento?

Solución 16

Porque a medida que el nivel del producto crece, el crecimiento de este producto es cada vez menor. En el límite, un país con un PIB arbitrariamente grande simplemente no crecerá, de modo que los países más pequeños, que sí tienen crecimiento positivo, lo van a alcanzar, esto es, van a converger.

⁵Más adelante veremos cómo calcular estas tasas de crecimiento.

Utilizando límites infinitos y en el infinito se pueden hacer cambios de variables muy útiles.

Utilizando límites infinitos y en el infinito se pueden hacer cambios de variables muy útiles.

En la Proposición 9, indicamos que $\lim_{y\to 0} (1+y)^{\frac{1}{y}} = e$.

Utilizando límites infinitos y en el infinito se pueden hacer cambios de variables muy útiles.

En la Proposición 9, indicamos que $\lim_{y\to 0} (1+y)^{\frac{1}{y}} = e$. Con un cambio de variable se puede obtener una versión alternativa de este límite...

Utilizando límites infinitos y en el infinito se pueden hacer cambios de variables muy útiles.

En la Proposición 9, indicamos que $\lim_{y\to 0} (1+y)^{\frac{1}{y}} = e$. Con un cambio de variable se puede obtener una versión alternativa de este límite...

Proposición 12

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Utilizando límites infinitos y en el infinito se pueden hacer cambios de variables muy útiles.

En la Proposición 9, indicamos que $\lim_{y\to 0} (1+y)^{\frac{1}{y}} = e$. Con un cambio de variable se puede obtener una versión alternativa de este límite...

Proposición 12

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Demostración.

Sea
$$x = \frac{1}{y}$$
, de modo que $y \to 0^+ \Longrightarrow x \to \infty$.

Utilizando límites infinitos y en el infinito se pueden hacer cambios de variables muy útiles.

En la Proposición 9, indicamos que $\lim_{y\to 0} (1+y)^{\frac{1}{y}} = e$. Con un cambio de variable se puede obtener una versión alternativa de este límite...

Proposición 12

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Demostración.

Sea $x = \frac{1}{y}$, de modo que $y \to 0^+ \Longrightarrow x \to \infty$. Reemplazando esto en la

Proposición 9 se obtiene
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
.

Propuesto 13

Mostrar que lo anterior también se cumple cuando $x \to -\infty$.

Figura 13: Proposición 10

Figura 15: Proposición 12 $f(x) = \left(1 + \frac{1}{x}\right)^x$ -15 -10 -5 10 15

Aplicación: Interés Compuesto

Ejemplo 17

Suponga que se le ofrece un proyecto de inversión que paga una tasa anual igual a r. Se le permite capitalizar de manera compuesta esta inversión n veces (las que usted quiera), de modo que en cada uno de los n períodos se obtiene una rentabilidad de r/n. Uno podría pensar que al aumentar n indefinidamente se pueden obtener ganancias arbitrariamente grandes, pues el interés compuesto se capitalizaría de manera exponencial. Sin embargo, la institución que le ofrece esta inversión no está preocupada por que haga tender n a infinito. ¿Por qué?

Aplicación: Interés Compuesto

Ejemplo 17

Suponga que se le ofrece un proyecto de inversión que paga una tasa anual igual a r. Se le permite capitalizar de manera compuesta esta inversión n veces (las que usted quiera), de modo que en cada uno de los n períodos se obtiene una rentabilidad de r/n. Uno podría pensar que al aumentar n indefinidamente se pueden obtener ganancias arbitrariamente grandes, pues el interés compuesto se capitalizaría de manera exponencial. Sin embargo, la institución que le ofrece esta inversión no está preocupada por que haga tender n a infinito. ¿Por qué?

Solución 17

No le preocupa porque $\lim_{n\to\infty} \left(1+\frac{r}{n}\right)^n$ converge...

Aplicación: Interés Compuesto

Ejemplo 17

Suponga que se le ofrece un proyecto de inversión que paga una tasa anual igual a r. Se le permite capitalizar de manera compuesta esta inversión n veces (las que usted quiera), de modo que en cada uno de los n períodos se obtiene una rentabilidad de r/n. Uno podría pensar que al aumentar n indefinidamente se pueden obtener ganancias arbitrariamente grandes, pues el interés compuesto se capitalizaría de manera exponencial. Sin embargo, la institución que le ofrece esta inversión no está preocupada por que haga tender n a infinito. ¿Por qué?

Solución 17

No le preocupa porque $\lim_{n\to\infty} \left(1+\frac{r}{n}\right)^n$ converge...

$$\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^n = \lim_{n\to\infty} \left(1 + \frac{1}{n/r}\right)^{rn/r} = e^r.$$

Asíntotas Horizontales

Definición 9

y=L es una as intota horizontal de f(x) si se cumple que $\lim_{x\to\infty}f(x)=L$ o bien $\lim_{x\to-\infty}f(x)=L$.

Asíntotas Horizontales

Definición 9

y=L es una asíntota horizontal de f(x) si se cumple que $\lim_{x\to\infty}f(x)=L$ o bien $\lim_{x\to\infty}f(x)=L$.

Figura 16: Asíntota horizontal

Asíntotas Horizontales (cont.)

Estas asíntotas horizontales pueden ser múltiples (dos):

Asíntotas Horizontales (cont.)

Estas asíntotas horizontales pueden ser múltiples (dos):

Figura 17: Múltiples asíntotas horizontales

¿Por qué no pueden ser más de dos?

Ejemplo: Asíntotas Horizontales

Ejemplo 18

Obtenga las asíntotas horizontales de la función $f(x) = \frac{\sqrt{x^2 + 1}}{x}$. Grafique.

Ejemplo: Asíntotas Horizontales

Ejemplo 18

Obtenga las asíntotas horizontales de la función $f(x) = \frac{\sqrt{x^2 + 1}}{x}$. Grafique.

Solución 18

 $\lim_{x\to\infty} f(x) = 1$ y $\lim_{x\to-\infty} f(x) = -1$ (*por qué?*), por lo que las asíntotas son $y_1 = 1$ e $y_2 = -1$. El gráfico es equivalente al de la Figura 17.

Asíntotas Verticales

Definición 10

x=k es una $asintota\ vertical\ de\ f(x)$ si se cumple que $\lim_{x\to k}f(x)=\infty$ o bien $\lim_{x\to k}f(x)=-\infty$.

Asíntotas Verticales

Definición 10

x=k es una $asintota\ vertical\ de\ f(x)$ si se cumple que $\lim_{x\to k}f(x)=\infty$ o bien $\lim_{x\to k}f(x)=-\infty$.

Figura 18: Asíntota vertical

Asíntotas Verticales (cont.)

Estas asíntotas verticales también pueden ser múltiples (dos o más):

Asíntotas Verticales (cont.)

Estas asíntotas verticales también pueden ser múltiples (dos o más):

Figura 19: Múltiples asíntotas verticales

Ejemplo: Asíntotas Verticales

Ejemplo 19

Obtenga todas las asíntotas de la función $f(x) = \frac{x^2}{x^2 - 4}$. Grafique.

Ejemplo: Asíntotas Verticales

Ejemplo 19

Obtenga todas las asíntotas de la función $f(x) = \frac{x^2}{x^2 - 4}$. Grafique.

Solución 19

 $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = 1$, por lo que y=1 es la única asíntota horizontal. Por último, la función diverge cuando $x\to 2$ y cuando $x\to -2$, por lo que $x_1=2$ y $x_2=-2$ son ambas asíntotas verticales.

Ejemplo: Asíntotas Verticales

Ejemplo 19

Obtenga todas las asíntotas de la función $f(x) = \frac{x^2}{x^2 - 4}$. Grafique.

Solución 19

 $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = 1$, por lo que y=1 es la única asíntota horizontal. Por último, la función diverge cuando $x\to 2$ y cuando $x\to -2$, por lo que $x_1=2$ y $x_2=-2$ son ambas asíntotas verticales.

Figura 20: Asíntotas verticales y horizontales

Módulo 7

Volver al Inicio de la Sección

Sin Levantar el Lápiz

Anteriormente comentamos la existencia de funciones que "se pueden dibujar sin levantar el lápiz".

Sin Levantar el Lápiz

Anteriormente comentamos la existencia de funciones que "se pueden dibujar sin levantar el lápiz".

Una de las ventajas de estas funciones es que el cálculo de cualquier límite en su dominio se podía obtener simplemente reemplazando el argumento de la función por el valor hacia el cual tiende la variable independiente en el límite que se desea calcular.

Sin Levantar el Lápiz

Anteriormente comentamos la existencia de funciones que "se pueden dibujar sin levantar el lápiz".

Una de las ventajas de estas funciones es que el cálculo de cualquier límite en su dominio se podía obtener simplemente reemplazando el argumento de la función por el valor hacia el cual tiende la variable independiente en el límite que se desea calcular.

Dicho de otro modo, en estas funciones se cumple que

$$\lim_{x \to k} f(x) = f(k).$$

Definición 11

Una función f(x) se dice continua en x = k si se cumple que $k \in \text{Dom } f$ (i.e. la función está definida en k) y además

$$\lim_{x \to k} f(x) = f(k).$$

Definición 11

Una función f(x) se dice continua en x = k si se cumple que $k \in \text{Dom } f$ (i.e. la función está definida en k) y además

$$\lim_{x \to k} f(x) = f(k).$$

Definición 12

Una función f(x) se dice continua en el intervalo [a,b] si es continua en cualquier $k \in [a,b]$.

Definición 11

Una función f(x) se dice continua en x = k si se cumple que $k \in Dom f$ (i.e. la función está definida en k) y además

$$\lim_{x \to k} f(x) = f(k).$$

Definición 12

Una función f(x) se dice continua en el intervalo [a,b] si es continua en cualquier $k \in [a,b]$.

Las funciones continuas son justamente aquellas que "se pueden dibujar sin levantar el lápiz", esto es, son funciones que no tienen "hoyos" ni "saltos".

Definición 11

Una función f(x) se dice continua en x = k si se cumple que $k \in Dom f$ (i.e. la función está definida en k) y además

$$\lim_{x \to k} f(x) = f(k).$$

Definición 12

Una función f(x) se dice continua en el intervalo [a,b] si es continua en cualquier $k \in [a,b]$.

Las funciones continuas son justamente aquellas que "se pueden dibujar sin levantar el lápiz", esto es, son funciones que no tienen "hoyos" ni "saltos".

Otra forma de interpretarlas es como funciones en las cuales pequeños cambios en el argumento generan pequeños cambios en el valor de la función.

Definición 11

Una función f(x) se dice continua en x = k si se cumple que $k \in Dom f$ (i.e. la función está definida en k) y además

$$\lim_{x \to k} f(x) = f(k).$$

Definición 12

Una función f(x) se dice continua en el intervalo [a,b] si es continua en cualquier $k \in [a,b]$.

Las funciones continuas son justamente aquellas que "se pueden dibujar sin levantar el lápiz", esto es, son funciones que no tienen "hoyos" ni "saltos".

Otra forma de interpretarlas es como funciones en las cuales pequeños cambios en el argumento generan pequeños cambios en el valor de la función.

Una función que no cumple esto se dice discontinua.

Figura 21: Funciones Continuas en $\mathbb R$

Figura 22: Funciones Discontinuas en $\mathbb R$

Propiedades de Funciones Continuas

Proposición 13

La suma o resta de dos funciones continuas es también una función continua. Esto es, si f y g son continuas, entonces $f \pm g$ también es continua.

Propiedades de Funciones Continuas

Proposición 13

La suma o resta de dos funciones continuas es también una función continua. Esto es, si f y g son continuas, entonces $f \pm g$ también es continua.

Proposición 14

El producto de dos funciones continuas es también una función continua. Esto es, si f y g son continuas, entonces $f \cdot g$ también es continua.

Propiedades de Funciones Continuas

Proposición 13

La suma o resta de dos funciones continuas es también una función continua. Esto es, si f y g son continuas, entonces $f \pm g$ también es continua.

Proposición 14

El producto de dos funciones continuas es también una función continua. Esto es, si f y g son continuas, entonces $f \cdot g$ también es continua.

Proposición 15

El cociente entre dos funciones continuas es también una función continua si la función divisora es no nula. Esto es, si f g son continuas, entonces $\frac{f}{g}$ también es continua si $g \neq 0$.

Hay funciones "típicas" que son contínuas en su dominio.

• Constantes: f(x) = c.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.
- Raíces: $f(x) = \sqrt[n]{x}$.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.
- Raíces: $f(x) = \sqrt[n]{x}$.
- Logaritmos: $f(x) = \log_{\alpha} x$.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.
- Raíces: $f(x) = \sqrt[n]{x}$.
- Logaritmos: $f(x) = \log_{\alpha} x$.
- Exponenciales: $f(x) = a^x$.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.
- Raíces: $f(x) = \sqrt[n]{x}$.
- Logaritmos: $f(x) = \log_{\alpha} x$.
- Exponenciales: $f(x) = a^x$.

Funciones Continuas

Hay funciones "típicas" que son contínuas en su dominio.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.
- Raíces: $f(x) = \sqrt[n]{x}$.
- Logaritmos: $f(x) = \log_{\alpha} x$.
- Exponenciales: $f(x) = a^x$.

Juntando esto con la Proposición 16 podemos determinar fácilmente cómo son la mayoría de las funciones continuas:

Proposición 16

Sean $f: X \mapsto Y \lor g: Y \mapsto Z$ dos funciones continuas. Entonces $g \circ f$ también es una función continua.

Funciones Continuas

Hay funciones "típicas" que son contínuas en su dominio.

- Constantes: f(x) = c.
- Polinomios: $f(x) = \sum_{j=0}^{n} a_j x^j$.
- Raíces: $f(x) = \sqrt[n]{x}$.
- Logaritmos: $f(x) = \log_a x$.
- Exponenciales: $f(x) = a^x$.

Juntando esto con la Proposición 16 podemos determinar fácilmente cómo son la mayoría de las funciones continuas:

Proposición 16

Sean $f: X \mapsto Y$ y $g: Y \mapsto Z$ dos funciones continuas. Entonces $g \circ f$ también es una función continua. Esto es, la composición de funciones continuas también es una función continua **siempre** y **cuando los dominios y codominios sean compatibles**.

Ejemplo 20

Sea f(x) un polinomio y sea $g(x) = \ln x$ una función logarítmica. Entonces f(g(x)) es continua en el dominio de g, pero g(f(x)) no es continua en el dominio de f. Comente.

Ejemplo 20

Sea f(x) un polinomio y sea $g(x) = \ln x$ una función logarítmica. Entonces f(g(x)) es continua en el dominio de g, pero g(f(x)) no es continua en el dominio de f. Comente.

Solución 20

Incierto.

Ejemplo 20

Sea f(x) un polinomio y sea $g(x) = \ln x$ una función logarítmica. Entonces f(g(x)) es continua en el dominio de g, pero g(f(x)) no es continua en el dominio de f. Comente.

Solución 20

Incierto. En efecto, tanto f como g son funciones continuas en sus dominios, donde el dominio de f es \mathbb{R} y el de g es \mathbb{R}_{++} .

Ejemplo 20

Sea f(x) un polinomio y sea $g(x) = \ln x$ una función logarítmica. Entonces f(g(x)) es continua en el dominio de g, pero g(f(x)) no es continua en el dominio de f. Comente.

Solución 20

Incierto. En efecto, tanto f como g son funciones continuas en sus dominios, donde el dominio de f es \mathbb{R} y el de g es \mathbb{R}_{++} . La primera afirmación del comente es verdadera, pues como g toma valores en los reales, siempre se puede componer g en f y obtener una función continua por la Proposición 16.

Ejemplo 20

Sea f(x) un polinomio y sea $g(x) = \ln x$ una función logarítmica. Entonces f(g(x)) es continua en el dominio de g, pero g(f(x)) no es continua en el dominio de f. Comente.

Solución 20

Incierto. En efecto, tanto f como g son funciones continuas en sus dominios, donde el dominio de f es \mathbb{R} y el de g es \mathbb{R}_{++} . La primera afirmación del comente es verdadera, pues como g toma valores en los reales, siempre se puede componer g en f y obtener una función continua por la Proposición 16. Sin embargo, la segunda afirmación se cumple si y sólo si el recorrido de f no es siempre positivo.

Ejemplo 20

Sea f(x) un polinomio y sea $g(x) = \ln x$ una función logarítmica. Entonces f(g(x)) es continua en el dominio de g, pero g(f(x)) no es continua en el dominio de f. Comente.

Solución 20

Incierto. En efecto, tanto f como g son funciones continuas en sus dominios, donde el dominio de f es \mathbb{R} y el de g es \mathbb{R}_{++} . La primera afirmación del comente es verdadera, pues como g toma valores en los reales, siempre se puede componer g en f y obtener una función continua por la Proposición 16. Sin embargo, la segunda afirmación se cumple si y sólo si el recorrido de f no es siempre positivo. En caso de que el recorrido de f sea siempre positivo (e.g. $f(x) = x^2 + x + 1$) no se cumple la afirmación, pues g(f(x)) sí sería continua en el dominio de f.

Figura 23: Composición Compatible de Funciones Continuas

Figura 24: Composición Incompatible de Funciones Continuas

En el Ejemplo 14 vimos que si $f(x) = \frac{1}{x}$, entonces $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to 0^-} f(x) = -\infty$ y comentamos que f(x) no estaba definida en x = 0. Luego, f(x) de ninguna manera puede ser continua en x = 0, pues sus límites laterales son distintos (i.e. $\nexists \lim_{x \to 0} f(x)$).

En el Ejemplo 14 vimos que si $f(x) = \frac{1}{x}$, entonces $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to 0^-} f(x) = -\infty$ y comentamos que f(x) no estaba definida en x = 0. Luego, f(x) de ninguna manera puede ser continua en x = 0, pues sus límites laterales son distintos (i.e. $\nexists \lim_{x \to 0} f(x)$).

Sin embargo, pueden existir funciones que tengan un límite bien definido en un punto y aun así no sean continuas.

En el Ejemplo 14 vimos que si $f(x) = \frac{1}{x}$, entonces $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to 0^-} f(x) = -\infty$ y comentamos que f(x) no estaba definida en x = 0.

Luego, f(x) de ninguna manera puede ser continua en x = 0, pues sus límites laterales son distintos (i.e. $\mathbb{Z}\lim_{x\to 0} f(x)$).

Sin embargo, pueden existir funciones que tengan un límite bien definido en un punto y aun así no sean continuas.

Este es el caso del Ejemplo 6, donde $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$.

En el Ejemplo 14 vimos que si $f(x) = \frac{1}{x}$, entonces $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to 0^-} f(x) = -\infty$ y comentamos que f(x) no estaba definida en x = 0.

Luego, f(x) de ninguna manera puede ser continua en x = 0, pues sus límites laterales son distintos (i.e. $\mathbb{Z}\lim_{x\to 0} f(x)$).

Sin embargo, pueden existir funciones que tengan un límite bien definido en un punto y aun así no sean continuas.

Este es el caso del Ejemplo 6, donde $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$. Sin embargo,

x = 2 no es parte del dominio de la función.

En el Ejemplo 14 vimos que si $f(x) = \frac{1}{x}$, entonces $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to 0^-} f(x) = -\infty$ y comentamos que f(x) no estaba definida en x = 0.

Luego, f(x) de ninguna manera puede ser continua en x = 0, pues sus límites laterales son distintos (i.e. $\mathbb{Z}\lim_{x\to 0} f(x)$).

Sin embargo, pueden existir funciones que tengan un límite bien definido en un punto y aun así no sean continuas.

Este es el caso del Ejemplo 6, donde $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$. Sin embargo,

x=2 no es parte del dominio de la función. Por lo tanto, $f(x)=\frac{x^2-4}{x-2}$ no es continua en x=2.

En el Ejemplo 14 vimos que si $f(x) = \frac{1}{x}$, entonces $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to 0^-} f(x) = -\infty$ y comentamos que f(x) no estaba definida en x = 0. Luego f(x) de ninguna manera puede ser continua en x = 0 pues

Luego, f(x) de ninguna manera puede ser continua en x = 0, pues sus límites laterales son distintos (i.e. $\mathbb{Z}\lim_{x\to 0} f(x)$).

Sin embargo, pueden existir funciones que tengan un límite bien definido en un punto y aun así no sean continuas.

Este es el caso del Ejemplo 6, donde $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$. Sin embargo,

x = 2 no es parte del dominio de la función. Por lo tanto, $f(x) = \frac{x^2 - 4}{x - 2}$ no es continua en x = 2. Esto también se aprecia en la Figura 7.

Ejemplo 21

Una firma tiene un stock de capital K_t en el periodo t. Si desea alcanzar un stock K_{t+1} en el periodo t+1, entonces debe invertir $I_t = K_{t+1} - K_t$. Sin embargo, si $K_{t+1} \neq K_t$, esto es, si $I_t \neq 0$, entonces debe pagar un costo fijo de ajuste de c unidades monetarias (por ejemplo, porque tiene que pagar un costo de transporte). Si $I_t = 0$, entonces el costo de ajustarse es cero. ¿Es la función de costos de ajuste continua en todo su dominio?

Ejemplo 21

Una firma tiene un stock de capital K_t en el periodo t. Si desea alcanzar un stock K_{t+1} en el periodo t+1, entonces debe invertir $I_t = K_{t+1} - K_t$. Sin embargo, si $K_{t+1} \neq K_t$, esto es, si $I_t \neq 0$, entonces debe pagar un costo fijo de ajuste de c unidades monetarias (por ejemplo, porque tiene que pagar un costo de transporte). Si $I_t = 0$, entonces el costo de ajustarse es cero. ¿Es la función de costos de ajuste continua en todo su dominio?

Solución 21

No lo es.

Ejemplo 21

Una firma tiene un stock de capital K_t en el periodo t. Si desea alcanzar un stock K_{t+1} en el periodo t+1, entonces debe invertir $I_t = K_{t+1} - K_t$. Sin embargo, si $K_{t+1} \neq K_t$, esto es, si $I_t \neq 0$, entonces debe pagar un costo fijo de ajuste de c unidades monetarias (por ejemplo, porque tiene que pagar un costo de transporte). Si $I_t = 0$, entonces el costo de ajustarse es cero. ¿Es la función de costos de ajuste continua en todo su dominio?

Solución 21

No lo es. Sea $f(I_t) = \begin{cases} 0 & \text{si } I_t = 0 \\ c & \text{si } I_t \neq 0 \end{cases}$ la función de costos de ajuste.

Ejemplo 21

Una firma tiene un stock de capital K_t en el periodo t. Si desea alcanzar un stock K_{t+1} en el periodo t+1, entonces debe invertir $I_t = K_{t+1} - K_t$. Sin embargo, si $K_{t+1} \neq K_t$, esto es, si $I_t \neq 0$, entonces debe pagar un costo fijo de ajuste de c unidades monetarias (por ejemplo, porque tiene que pagar un costo de transporte). Si $I_t = 0$, entonces el costo de ajustarse es cero. ¿Es la función de costos de ajuste continua en todo su dominio?

Solución 21

No lo es. Sea $f(I_t) = \begin{cases} 0 & \text{si } I_t = 0 \\ c & \text{si } I_t \neq 0 \end{cases}$ la función de costos de ajuste. A pesar de que $\lim_{I_t \to 0} f(I_t) = c$, $f(0) = 0 \neq c$, por lo que la función no es continua en $I_t = 0$.

Aplicación: Impuestos Continuos

Propuesto 14

Para calcular el Impuesto Global Complementario, se toma la renta anual (3) de cada individuo en UTA (unidades tributarias anuales), se pondera por el factor (4) que corresponde según su tramo de ingreso (2) y luego se rebaja (resta) el monto correspondiente (5). En el Cuadro 2 (extraído del SII) se muestra la escala, donde falta el factor que corresponde al tramo 3.

Cuadro 2: Escala de tasas del Impuesto Global Complementario

VIGENCIA	N° DE TRAMOS	RENTA IMPONIBLE ANUAL DESDE HASTA	FACTOR	CANTIDAD A REBAJAR (SIN CRÉDITO DEL 10% DE 1 UTA, DEROGADO)
-1	-2	-3	-4	-5
	1	0,0 UTA a 13,5 UTA	Exento	5,5
	2	13,5 " a 30 "	4%	0,54 UTA
	3	30 " a 50 "		1,74 "
RIGE A CONTAR DEL AÑO	4	50 " a 70 "	13,5%	4,49 "
TRIBUTARIO 2014	5	70 " a 90 "	23%	11,14 "
	6	90 " a 120 "	30,4%	17,80 "
	7	120 " a 150 "	35,5%	23,92 "
	8	150 " y MAS	40%	30,67 "
NOTA: Para convertir la tabla a pesos (\$) basta con multiplicar los valores anotados en las columnas (3) y (5) por				

NOTA: Para convertir la tabla a pesos (\$) basta con multiplicar los valores anotados en las columnas (3) y (5) po el valor de la UTA del mes respectivo.

Calcule el parámetro del tramo 3, para que la función sea continua (*why?*) con el tramo anterior (2) y el siguiente (4). Justifique.

Ejercicio Avanzado

Propuesto 15

Encuentre los valores de a y b para los cuales f(x) es continua en \mathbb{R} .

$$f(x) = \begin{cases} \frac{\exp(x) - 1}{\ln(1 + x)} & \sin x > 0\\ \frac{a}{b} & \sin x = 0\\ \frac{1}{-ax + b} & \sin x < 0 \end{cases}$$

¿Qué ocurre si la función se redefine de la siguiente manera?

$$f(x) = \begin{cases} \frac{\exp(x) - 1}{\ln(1 + x)} & \sin x > 0\\ \frac{a}{b} & \sin x = 0\\ \frac{1}{ax + b} & \sin x < 0 \end{cases}$$

Proposición 17

Sea f continua en un punto k con $f(k) \neq 0$. Entonces existe una vecindad de radio δ (ver Definición 6) en torno a k tal que $\forall x \in (k-\delta,k+\delta)$, el signo de f(x) es igual al de f(k), esto es, f(x)f(k) > 0.

⁶Este (potente) resultado lo utilizaremos más adelante.

Proposición 17

Sea f continua en un punto k con $f(k) \neq 0$. Entonces existe una vecindad de radio δ (ver Definición 6) en torno a k tal que $\forall x \in (k-\delta,k+\delta)$, el signo de f(x) es igual al de f(k), esto es, f(x)f(k) > 0.

La Proposición 17 se conoce como "Conservación Local del Signo".

⁶Este (potente) resultado lo utilizaremos más adelante.

Proposición 17

Sea f continua en un punto k con $f(k) \neq 0$. Entonces existe una vecindad de radio δ (ver Definición 6) en torno a k tal que $\forall x \in (k-\delta,k+\delta)$, el signo de f(x) es igual al de f(k), esto es, f(x)f(k) > 0.

La Proposición 17 se conoce como "Conservación Local del Signo".

Proposición 18

Sea f continua en el intervalo [a,b], con f(a)f(b) < 0, esto es, con signos contrarios al evaluar en ambos extremos. Entonces existe al menos un $c \in (a,b)$ tal que f(c) = 0.

⁶Este (potente) resultado lo utilizaremos más adelante.

Proposición 17

Sea f continua en un punto k con $f(k) \neq 0$. Entonces existe una vecindad de radio δ (ver Definición 6) en torno a k tal que $\forall x \in (k-\delta,k+\delta)$, el signo de f(x) es igual al de f(k), esto es, f(x)f(k) > 0.

La Proposición 17 se conoce como "Conservación Local del Signo".

Proposición 18

Sea f continua en el intervalo [a,b], con f(a)f(b) < 0, esto es, con signos contrarios al evaluar en ambos extremos. Entonces existe al menos un $c \in (a,b)$ tal que f(c) = 0.

La Proposición 18 se conoce como "Teorema de Bolzano"6.

⁶Este (potente) resultado lo utilizaremos más adelante.

Control 2

Control 2

Módulo 11

Módulo 12

Módulo 13

Módulo 14

Control 3

Control 3

Módulo 15

Módulo 16

Módulo 17

Módulo 18

Módulo 19

Control 4

Control 4

Módulo 20

Módulo 21

Módulo 22

Módulo 23

Módulo 24

Módulo 25

Examen

Examen

Módulo 26 Módulo 27 Módulo 28

MEM155 - Métodos Matemáticos II

Mohit Karnani

Universidad de Chile

Otoño, 2016