WE-200SV

HORIZONTAL METAL CUTTING BAND SAW

*Study Carefully Before Operating

Specifications

Capacity:				Blade Size	20 x 0.9 x 2110	mm
				Blade Speed	50Hz 25 ~ 85	m/min
90°	165 mm	160 x 160 mm	200 x 85 mm	Motor	1.1kW (1.5HP)	DC Motor
45°	125 mm	120 x 120 mm		Packing Size (L xWx	(H) 1156 x 572 x 8	26 mm
60°	70 mm	60 x 60 mm		Weight	NW: 154 kgs	GW: 168 kgs

Contents

Chapter 1	Chapter 6
ACCIDENT PREVENTION AND SAFETY	ROUTINE AND SPECIAL MAINTENANCE
REGULATION	6.1 Daily Maintenance7
1.1 Advice for the Operator2	6.2 Weekly Maintenance7
1.2 The Electrical Equipment According to	6.3 Monthly Maintenance7
European Standard" CENELEC EN 60 204-1" (1992)	6.4 Six-monthly Maintenance7
2	6.5 Oils for Lubricating Coolant7
1.3 Emergencies According to European Standard	6.6 Oil Disposal7
"CENELEC EN 60 204-1 (1992)" 2	6.7 Coolant System7
Chapter 2	6.8 The Gearbox8
MACHINE DIMENSIONS TRANSPORT	6.9 Special Maintenance8
INSTALLATION DISMANTLING	Chapter 7
2.1 Machine Dimensions	TECHNICAL CHARACTERISTICS
2.2 Transportation of Your Machine 3	7.1 Table of Cutting Capacity and Technical Details
2.3 Minimum Requirements for Housing the	8
Machine3	Chapter 8
2.4 Anchoring the Machine3	MATERIAL CLASSIFICATION AND CHOICE OF
2.5 Instructions for Assembly of the Loose Parts	TOOL
and Accessories3	8.1 Definition of Materials9
2.6 Deactivation of Machine3	8.2 Selecting Blade9
2.7 Dismantling	8.3 Teeth Pitch9
Chapter 3	8.4 Cutting and Advance Speed9
THE MACHINE'S FUNCTIONAL PARTS	8.5 Blade Running-in9
3.1 The Saw Bow3	8.6 Blade Structure
3.2 Controls	8.7 Blade Type
3.3 Vise Adjustment	_
3.4 Cutting Angle Adjustment	Chapter 9
3.5 The Base	NOISE TESTS10
	Chapter 10
Chapter 4	WIRING DIAGRAM11
OPERATING AND ADVICE ON USING YOUR	Chapter 11
BANDSAW	TROUBLESHOOTING
_	11.1 Blade and Cut Diagnosis
4.1 The Operation Cycle4 4.2 Recommendations for Using the Machine 5	
	Chapter 12
Chapter 5	MACHINE COMPONETS
ADJUSTING YOUR MACHINE	12.1 Parts List
5.1 Blade Tension Assembly 5	12.2 Explosion Drawings
5.2 Aligning the Flywheel5	
5.3 Checking the Adjustment of the Blade	
5.4 Adjusting the Blade Guide6	
5.5 Changing the Blade7	

1 ACCIDENT PREVENTION AND SAFETY REGULATION

This machine has been designed to comply with national and community accident-prevention regulations. Improper use and/or tampering with the safety devices will relieve the manufacturer of all responsibility.

1.1 Advice for the Operator

- Check that the voltage indicated on machine motor is the same as the line voltage.
- Check the efficiency of your electric supply and grounding system; connect the power cable of the machine to the socket and the ground lead (yellow-green in color) to the grounding system.
- When the saw frame is in suspended mode (or raised) the blade must not move.
- Only the blade section used for cutting must be kept unprotected. To adjust the blade guards use on the blade guides.
- It is forbidden to use the machine without its shields
- Always disconnect the machine from the power socket before blade change or carrying out any maintenance job, even in the case of abnormal machine operation.
- Always wear suitable eyes protection.
- Never put your hands or arms into the cutting area while the machine is operating.
- Do not shift the machine while it is cutting.
- Do not wear loose clothing like: shirts with sleeves that are too long, gloves that are too big, bracelets, chains or any other object that could get caught in the machine during operation. Tie back long hair.
- Keep the area free of equipment, tools, or any other object.
- Perform only one operation at a time. Never have several objects in your hands at the same time. Keep your hands as clean as possible.
- All internal operations, maintenance or repairs, must be performed in a well-lit area or where there is sufficient light from extra sources so as to avoid the risk of even slight accidents

1.2 The electrical equipment according to European Standard" CENELEC EN 60 204-1" which assimilates, with some integrating modifications, the publication "IEC 204-1 (1992)"

- The electrical equipment ensures protection against electric shock as a result of direct or indirect contact. The active parts of this equipment are housed in a box to which access is limited by screws that can only be removed with a special tool; the parts are fed with alternating current as low voltage (24V). The equipment is protected against splashes of water and dust.
- Protection of the system against short circuits is ensured by means of rapid fuses and grounding; in the event of a motor overload, protection is provided by a thermal probe.
- In the event of a power cut, the specific start-up button must be reset.

- The machine has been tested in conformity with point 20 of EN 60204

1.3 Emergencies according to European Standard "CENELEC EN 60 204-1 (1992)"

- In the event of incorrect operation or of danger conditions, the machine may be stopped immediately by pressing the red mushroom button.
- The casual or voluntary removal of the protection shield of the flywheels causes the stepping-in of a micro-switch that automatically stops all machine functions.

NOTE: Resetting of machine operation after each emergency stop requires specific restart button.

2 MACHINE DIMENSIONS TRANSPORT INSTALLATION DISMANTLING

2.1 Machine Dimensions

2.2 Transportation of Your Machine

To move the machine, the machine needs to be moved in its own packing, use a forklift to move it.

2.3 Minimum Requirements for Housing the Machine

- Main voltage and frequency must comply with the machine's motor requirements.
- Environment temperature should fall within –10 °C to +50 °C.
- Relative humidity cannot be over 90%.

2.4 Anchoring the Machine

Position the machine on a firm cement floor, maintaining, at the rear, a minimum distance of 800 mm from the wall; anchor it to the ground as shown in the diagram, using screws and expansion plugs or tie rods sunk In cement, ensuring that it is sitting level.

2.5 Instructions for Assembly of the Loose Parts and Accessories

Fit the components supplied:

Detail 1 Mount bar-stop rod

Detail 2 Mount and align the roll-supporting arm as per the vise table.

2.6 Deactivation of Machine

- If the sawing machine is to be out of use for a long period, it is advisable to proceed as follows:
- 1) Detach the plug from the electric supply panel
- 2) Loosen blade
- 3) Release the saw bow's counter-balance spring
- 4) Empty the coolant tank
- 5) Carefully clean and grease the machine
- 6) If necessary, cover the machine.

2.7 Dismantling (due to deterioration and/or obsolescence)

General rules

If the machine is to be permanently demolished and/or scrapped, divide the material to be disposed of according to type and composition, as follows:

- 1) Non-composite cast iron or ferrous materials are recyclable raw materials, so they may be taken to an iron foundry for re-smelting after having removed the contents (classified in point 3).
- 2) Electrical components, including the cable and electronic material (magnetic cards, etc.), fall within the category of material classified as being assimilated to urban waste according to the laws of your local, state, or federal government, so they may be set aside for collection by the public waste disposal service;
- 3) Old mineral and synthetic and/or mixed oils, emulsified oils and greases are considered hazardous or special refuse, so they must be collected, transported and disposed of at a special waste disposal service.

NOTE: The standards and legislation concerning refuse is in a constant state of evolution, therefore is subject to changes. The user must keep informed of the regulations at the time of disposal as these may differ from those described above.

3 THE MACHINE'S FUNCTIONAL PARTS

3.1 The Saw Bow

The saw bow is a collection of machine parts consisting of a saw bow, drive members (gears transfer, motor, blade wheel), blade tension system, blade guides, and blade guards. The WE-200SV model equipped with adjustable counter-balance spring.

3.2 Controls

- A. Main power switch
- B. Emergency Push Button
- C. Variable Blade Speed Adjusting Knob
- D. Power Indicator Light
- E. ON/OFF Trigger switch and Cutting Handle

3.3 Vise Adjustment

Clamping the Work Piece

- Place the work piece between the vise jaws and have it rest next to the fixed vise jaw.
- Rotate the hand wheel (G) clockwise to close the free vise jaw near to the work piece.
- Rotate the hand wheel (G) counter-clockwise to release.
- Lever (H) can be used to rapidly lock and release the work piece by allowing a shallow gap between the vise and work piece. Then rotate lever (H) counter-clockwise to lock and clockwise to release.

3.4 Cutting Angle Adjustment

Cutting at angles

- Angle can be cut up to 60°.
- Unlock lever (I) by pushing it to the left side.
- Rotate the saw bow to the desired angle by following the index on the scale (J).
- Lock lever (I) by pushing to the right side.

3.5 The Base

The base is a structure supporting the saw bow, the vise, the bar stop, the work piece supporter, pump, swing arm, and the coolant return plate for the support of the material. The base houses the cooling liquid tank.

4 OPERATING AND ADVICE ON USING YOUR BANDSAW

4.1 The Operation Cycle

Before operating the machine, all the main parts of the machine must be set to the optimum conditions.

Operation Procedure:

- Raise the saw arm to the highest position.
- Load work piece and clamp it properly.
- According to the material to choose the blade speed and turn on the power switch (A) to the right position. Check to see that the indicator light (D) is lit.
- Press the trigger start switch (E). The coolant system should activate at the same time.
- Pull the manual operation handle (E) down to start cutting.
- After the cut is completed, release the trigger start switch (E) the machine will shut down. Manually raise the saw arm to the highest position for the next cut.

If occur an emergency situation.

- Press the emergency push button (B) down to shut off all functions. To release the emergency pushbutton rotate the mushroom shaped button in the clockwise direction. The button will pop up, then the cutting cycle can be restarted.

4.2 Recommendations for Using the Machine

The machine has been designed to cut metal building materials, with different shapes and profiles, used in workshops, turner's shops and general mechanical structural work.

Only one operator is needed to use the machine, that must stand as shown in the picture.

- Before starting each cutting operation, ensure that the part is firmly clamped in the vise and that the end is suitably supported.
- These figures below show examples of suitable clamping of different section bars, bearing in mind the cutting capacities of the machine in order to achieve a good efficiency and blade durability.

- Do not use blades of a different size from those stated in the machine specifications.
- If the blade gets stuck in the cut, release the

running trigger button immediately, switch off the machine, open the vise slowly, remove the part and check that the blade or its teeth are not broken. If they are broken, change the blade.

- Before performing any repairs on the machine, consult the dealer.

5 ADJUSTING YOUR MACHINE

5.1 Blade Tension Assembly

Blade tension is important to the proper operation of the saw. Proper blade tension is 700 to 900 kg/mm².

To set the blade tension

- Disconnect the machine from the power source.
- Install blade between wheel and insert blade between bearings on blade guides.
- Tension blade slightly to remove any sag in blade between blade wheels.
- Turn blade tension wheel (L) one and three quarter to two revolutions clockwise. To test press the flat side of the blade with your thumb, if moves with 2mm-3mm range then it is set correctly.
- After blade has been completely installed, close covers, connect the power source, and run saw for two to three sec so blade can seat properly.
- Disconnect machine from the power source.
 Open cover and loosen blade just until it begins to sag.
- Tighten blade until it becomes straight between blade wheel and all sag has been eliminated.
- Tighten blade by turning blade tension wheel two full revolutions. Blade is now property tensioned and ready for use.
- Close covers and connect machine to the power source.

5.2 Aligning the Flywheel

The flywheel's alignment may need adjustment to allow the saw blade to track correctly. Poor flywheel alignment can cause damage to the saw blade or to allow the blade to ride off the blade wheels.

- Raise the saw bow to a usable work height.
- Disconnect the power supply.
- Loosen the Hex nut screws A, B, and C.
- Use and Allen wrench on setscrew D to adjust the tilt of the flywheel.
- Turning the setscrew, D clockwise will tilt flywheel so that the blade will ride closer to the flange.
- Turning the setscrew, D counter-clockwise will tilt the flywheel so that the blade will ride away from the flange. If the blade rides too far then it will come off.
 - After the adjustment is finished, fasten the Hex nut screws in this order: A, B, and C.

5.3 Checking the Adjustment of the Blade

Use a strip of scrap paper and slide it between the blade and the flywheel while it is running.

- If the paper is cut then the blade is riding too close to the flange. Readjust.
- If the paper folds or creases then the blade is seated properly.
- If you notice that the blade is riding away from the flange, then readjust.

5.4 Adjusting the Blade Guide

- Disconnect the machine from the power source.
- Release the extension bar for the blade guide block. Loosen the bolt (N) to loosen the clamping block (O).
- Hold the revolving handle (M) and slide the blade guide block to be as close as possible to the material without interfering with the cut.
- Tighten the bolt (N).
- Reconnect the machine to power source.

Blade Guide Blocks

The blade is guided by means of roller bearings placed during inspection as per the thickness of the blade with a minimum amount of play.

In case the blade needs to be replaced, make sure to always install 0.9mm thick blades for which the blade guide bearing have been adjusted. In the case of toothed blades with different thickness adjustment should be carried out as follows:

- From the bottom of the guide blocks, use a wrench on the adjusting nut of the eccentric bearing.
- Turning the adjusting nut clockwise will move the eccentric bearing away from the blade.
- Turning the adjusting nut counter-clockwise will move the eccentric bearing closer to the blade.

BEFORE PERFORMING THE FOLLOWING OPERATIONS, THE ELECTRIC POWER SUPPLY AND THE POWER CABLE MUST BE COMPLETELY DISCONNECTED.

5.5 Changing the Blade

To change the blade:

- Lift the saw bow.
- Loosen the blade with the blade tension hand wheel, remove the mobile blade-guard cover (P), open the blade wheel guards (Q) by removing four tighten thumbscrew and remove the old blade from the blade wheels and the blade guide blocks.
- Assemble the new blade by placing it first between the pads and then on the race of the blade wheels, paying particular attention to the cutting direction of the teeth.
- Tension the blade and make sure it perfectly fits inside the seat of the flywheels.
- Assemble the mobile blade-guide end, the blade wheel guard, and fasten it with the relative knobs.

BLADE CUTTING DIRECTION

6 ROUTINE AND SPECIAL MAINTENANCE

THE MAINTENANCE JOBS ARE LISTED BELOW, DIVIDED INTO <u>DAILY</u>, <u>WEEKLY</u>, <u>MONTHLY</u> AND <u>SIX-MONTHLY</u> INTERVALS. IF THE FOLLOWING OPERATIONS ARE NEGLECTED, THE RESULT WILL BE PREMATURE WEAR OF THE MACHINE AND POOR PERFORMANCE.

6.1 Daily maintenance

- General cleaning of the machine to remove accumulated shavings.
- Clean the lubricating coolant drain hole to avoid excess fluid.
- Top off the level of lubricating coolant.
- Check blade for wear.
- Rise of saw frame to top position and partial slackening of the blade to avoid useless yield stress
- Check functionality of the shields and emergency stops.

6.2 Weekly Maintenance

- Thorough cleaning of the machine to remove shavings, especially from the lubricant fluid tank.

- Removal of pump from its housing, cleaning of the suction filter and suction zone.
- Clean the filter of the pump suction head and the suction area.
- Use compressed air to clean the blade guides (guide bearings and drain hole of the lubricating cooling).
- Cleaning flywheel housings and blade sliding surfaces on flywheels.

6.3 Monthly Maintenance

- Check the tightening of the motor flywheel screws.
- Check that the blade guide bearings on the heads are perfect running condition.
- Check the tightening of the screws of the gear motor, pump, and accident protection guarding.

6.4 Six-Monthly Maintenance

- Continuity test of the potential protection circuit.

6.5 Oils for Lubricating Coolant

Considering the vast range of products on the market, the user can choose the one most suited to their own requirements, using as reference the type SHELL LUTEM OIL ECO. THE MINIMUM PERCENTAGE OF OIL DILUTED IN WATER IS 8 - 10 %.

6.6 Oil Disposal

The disposal of these products is controlled by strict regulations. Please see the Chapter on "Machine dimensions Transport - Installation" in the section on *Dismantling*.

6.7 Coolant system

Cleaning the tank

- Use hex wrench to open the plug located on the base below the pump. Allow the coolant to drain-out.
- Remove the coolant return tray (S) by loosening the four setscrews.
- Remove the pump (T) by loosening the four setscrews.
- Use a vacuum cleaner to vacuum chips and debris from the tank.
- Replace the plug.
- Thoroughly clean the pump (T) and replace.
- Fill the tank with coolant to approximately 25mm below the grate (S).
- Replace the grate (S).

6.8 The Gearbox

The gearbox requires periodic changing of oil. The oil must be changed by the first 6 months of a new machine and every year thereafter.

To change the gear box oil

- Disconnect the machine from the power source.
- Raise the saw bow to vertical position.
- Release the drain hole (V) to draw off gear oil by loosening the oil fill bolt (U).
- Replace the drain plug bolt (V) after oil completely flows off.
- Place the saw bow back to horizontal position.
- Fill Gearbox with approximately .3 liter of gear oil through the hole of the oil fill bolt (U).

For reference, use SHELL type gear oil or Mobile gear oil # 90.

6.9 Special Maintenance

Special maintenance must be conducted by skilled personnel. We advise contacting your nearest dealer and/or importer. Also the reset of protective and safety equipment and devices (of the reducer), the motor, the motor pump, and other electrical components requires special maintenance.

7 TECHNICAL CHARACTERISTICS

7.1 Table of Cutting Capacity and Technical Details

CUTTING CAPACITY		Ш	μ
0°	165mm	160x160mm	200x85mm
45°	125mm	120x120mm	
60°	70mm	60x60mm	

DC ELECTRIC BLADE MOTOR	1.1kW
FLYWHEEL DIAMETER	240mm
BLADE DIMENSIONS	20 x 0.9 x 2110mm
BLADE SPEED CUTTING	25~85m/min
OPENING VICE	200mm
SAW FRAME TILTING HEIGHT	50°
WORKING TABLE HEIGHT	890mm
MACHINE WEIGHT	154kgs

		TYPES OF STEE	L				CHARACTERIS	STICS
USE	I UNI	D DIN	F AF NOR	GB SB	USA. AISI-SAE	Hardness BRINELL HB	Hardness ROCKWELL HRB	R=N/mm²
Construction steels	Fe360 Fe430 Fe510	St37 St44 St52	E24 E28 E36	43 50		116 148 180	67 80 88	360÷480 430÷560 510÷660
Carbon steels	C20 C40 C50 C60	CK20 CK40 CK50 CK60	XC20 XC42H1 XC55	060 A 20 060 A 40 060 A 62	1020 1040 1050 1060	198 198 202 202	93 93 94 94	540÷690 700÷840 760÷900 830÷980
Spring steels	50CrV4 60SiCr8	50CrV4 60SiCr7	50CV4	735 A 50	6150 9262	207 224	95 98	1140÷1330 1220÷1400
Alloyed steels for hardening and tempering and for nitriding	35CrMo4 39NiCrMo4 41CrAlMo7	34CrMo4 36CrNiMo4 41CrAlMo7	35CD4 39NCD4 40CADG12	708 A 37 905 M 39	4135 9840 	220 228 232	98 99 100	780÷930 880÷1080 930÷1130
Alloyed casehardening steels	18NiCrMo7 20NiCrMo2	21NiCrMo2	20NCD7 20NCD2	En 325 805 H 20	4320 4315	232 224	100 98	760÷1030 690÷980
Alloyed for bearings	100Cr6	100Cr6	100C6	534 A 99	52100	207	95	690÷980
Tool steel	52NiCrMoKU C100KU X210Cr13KU 58SiMo8KU	56NiCrMoV7C100K C100W1 X210Cr12	Z200C12 Y60SC7	BS 1 BD2-BD3	S-1 D6-D3 S5	244 212 252 244	102 96 103 102	800÷1030 710÷980 820÷1060 800÷1030
Stainless steels	X12Cr13 X5CrNi1810 X8CrNi1910 X8CrNiMo1713	4001 4301 4401	Z5CN18.09 Z6CDN17.12	304 C 12 316 S 16	410 304 316	202 202 202 202	94 94 94 94	670÷885 590÷685 540÷685 490÷685
Copper alloys Special brass Bronze	Copper alloys Special manganese /silicon brass G-CuZn36Si1Pb1 UNI5038 Manganese bronze SAE43 - SAE430					220 140 120 100	98 77 69 56,5	620÷685 375÷440 320÷410 265÷314
Cast iron	Gray pig iron G25					212 232 222	96 100 98	245 600 420

8 MATERIAL CLASSIFICATION AND CHOICE OF TOOL

Since the aim is to obtain excellent cutting quality, the various parameters such as hardness of the material, shape and thickness, transverse cutting section of the part to be cut, selection of the type of cutting blade, cutting speed and control of saw frame lowering. These specifications must therefore be harmoniously combined in a single operating condition according to practical considerations and common sense, so as to achieve an optimum condition that does not require countless operations to prepare the machine when there are many variations in the job to be performed. The various problems that crop up from time to time will be solved more easily if the operator has a good knowledge of these specifications.

8.1 Definition of materials

The table above lists the characteristics of the materials to be cut. So that the correct tools to use, can be chosen.

8.2 Selecting blade

First of all the pitch of the teeth must be chosen, in other words, the number of teeth per inch (25,4 mm) suitable for the material to be cut, according to these criteria:

- Parts with a thin and/or variable section such as profiles, pipes and plate, need close tooth pitch, so that the number of teeth used simultaneously in cutting is from 3 to 6;
- Parts with large transverse sections and solid sections need widely spaced tooth pitch to allow for the greater volume of the shavings and better tooth penetration;
- Parts made of soft material or plastic (light alloys, mild bronze, Teflon, wood, etc.) also require widely spaced tooth pitch.
- Pieces cut in bundles require combo tooth design.

8.3 Teeth pitch

As already stated, this depends on the following factors:

- Hardness of the material
- Dimensions of the section
- Wall thickness.

THICKNESS MM	Z CONTINUOUS TOOTH DESIGN	Z COMBO TOOTH DESIGN
TILL 1.5	14	10/14
FROM 1 TO 2	8	8/12
FROM 2 TO 3	6	6/10
FROM 3 TO 5	6	5/8
FROM 4 TO 6	6	4/6
MORE THAN 6	4	4/6

	TOOTH DESIGN	Z COMBO TOOTH DESIGN
TILL 30	8	5/8
FROM 30 TO 60	6	4/6
FROM 40 TO 80	4	4/6
MORE THAN 90	3	3/4

8.4 Cutting and advance speed

The cutting speed (m/min) and the advance speed (cm²/min = area traveled by the disk teeth when removing shavings) are limited by the development of heat close to the tips of the teeth.

- The cutting speed is subordinate to the resistance of the material (R = N/mm²⁾, to its hardness (HRC) and to the dimensions of the widest section.
- Too high an advance speed (= lowering of the saw frame) tends to cause the disk to deviate from the ideal cutting path, producing non rectilinear cuts on bath the vertical and the horizontal plane.

The best combination of these two parameters can be seen directly examining the chips.

Long spiral-shaped chips indicate ideal cutting.

Very fine or pulverized chips indicate lack of feed and/or cutting pressure.

Thick and/or blue chips indicate overload of the blade.

8.5 Blade running-in

When cutting for the first time, it is good practice to run in the tool making a series of cuts at a low advance speed (= 30-35 cm²/min on material of average dimensions with respect to the cutting capacity and solid section of normal steel with R = 410-510 Nimm²). Generously spraying the cutting area with lubricating coolant.

8.6 Blade structure

Bi-metal blades are the most commonly used. They consist of a silicon-steel blade backing by a laser welded high speed steel (HHS) cutting edge. The type of stocks are classified in M2, M42, M51 and differ from each other because of their major hardness due to the increasing percentage of Cobalt (Cc) and molybdenum (Mo) contained in the metal alloy

8.7 Blade type

They differ essentially in their constructive characteristics, such as:

- Shape and cutting angle of tooth
- Pitch
- Set

Shape and angle of tooth

REGULAR TOOTH: Oo rake and constant pitch.

Most common form for transversal or inclined cutting of solid small and average cross-sections or pipes, in laminated mild steel and gray iron or general metal.

POSITIVE RAKE TOOTH: 9° - 10° positive rake and constant pitch.

Particular use for crosswise or inclined cuts in solid sections or large pipes, but above all harder materials (highly alloyed and stainless steels, special bronze and forge pig iron).

COMBO TOOTH: pitch varies between teeth and consequently varying teeth size and varying gullet depths. Pitch varies between teeth, which ensures a smoother, quieter cut and longer blade life owing to the lack of vibration.

Another advantage offered in the use of this type of blade in the fact that with an only blade it is possible to cut a wide range of different materials in size and type.

COMBO TOOTH: 9° - 10° positive rake.

This type of blade is the most suitable for the cutting of section bars and large and thick pipes as well as for the cutting of solid bars at maximum machine capacity. Available pitches: 3-4/4-6.

SETS

Saw teeth bent out of the plane of the saw body, resulting in a wide cut in the workpiece.

REGULAR OR RAKER SET: Cutting teeth right and left, alternated by a straight tooth.

Of general use for materials with dimensions superior to 5 mm. Used for the cutting of steel, castings and hard nonferrous materials.

WAVE SET: Set in smooth waves.

This set is associated with very fine teeth and it is mainly used for the cutting of pipes and thin section bars (from 1 to 3 mm).

ALTERNATE SET (IN GROUPS): Groups of cutting teeth right and left, alternated by a straight tooth.

This set is associated with very fine teeth and it is used for extremely thin materials (less than 1mm).

ALTERNATE SET (INDIVIDUAL TEETH): Cutting teeth right and left.

This set is used for the cutting of nonferrous soft materials, plastics and wood.

9 NOISE TESTS

The test was held under environmental noise levels of 65db. Noise measurements with the machine operating unload was 71db. Noise level during the cutting of mild carbon steel was 73db. NOTE: with the machine operating, the noise level will vary according to the different materials being processed. The user must therefore assess the intensity and if necessary provide the operators with the necessary personal protection, as required by Law 277/1991.

10 WIRING DIAGRAMS

11 TROUBLESHOOTING

This chapter lists the probable faults and malfunctions that could occur while the machine is being used and suggests possible remedies for solving them.

11.1 Blade and cut diagnosis FAULT

TOOTH BREAKAGE

PROBABLE CAUSE

Too fast advance

Wrong cutting speed

Wrong tooth pitch

Chips sticking onto teeth and in the gullets or material that gums

Defects on the material or material too hard

Ineffective gripping of the part in the vise

The blade gets stuck in the material

Starting cut on sharp or irregular section bars

Poor quality blade

Previously broken tooth left in the cut

Cutting resumed on a groove made previously

Vibrations

Wrong tooth pitch or shape

Insufficient lubricating, refrigerant, or wrong emulsion

Teeth positioned in the direction opposite the cutting direction

REMEDY

Decrease advance, exerting less cutting pressure. Adjust the braking device.

Change speed and/or type of blade. See chapter on "Material classification and blade selection", in the section Blade selection table according to cutting and feed speed.

Choose a suitable blade. See Chapter "Material classification and blade selection".

Check for clogging of coolant drain holes on the blade-guide blocks and that flow is plentiful in order to facilitate the removal of chips from the blade.

Material surfaces can be oxidized or covered with impurities making them, at the beginning of the cut, harder that the blade itself, or have hardened areas or inclusions inside the section due to productive agents used such as casting sand, welding wastes, etc. Avoid cutting these materials or in a situation a cut has to be made use extreme care, cleaning and remove any such impurities as quickly as possible.

Check the gripping of the part.

Reduce feed and exert less cutting pressure.

Pay more attention when you start cutting.

Use a superior quality blade.

Accurately remove all the parts left in.

Make the cut elsewhere, turning the part.

Check gripping of the part.

Replace blade with a more suitable one. See "Material classification and blade selection" in the *Blade Types* section. Adjust blade guide pads.

Check level of liquid in the tank.
Increase the flow of lubricating
refrigerant, checking that the hole and
the liquid outlet pipe are not blocked.
Check the emulsion percentage.

Turn teeth to correct direction.

FAULT

PROBABLE CAUSE

REMEDY

PREMATURE BLADE WEAR

Faulty running-in of blade

Teeth positioned in the direction opposite the cutting direction

Poor quality blade

Too fast advance

Wrong cutting speed

Defects on the material or material too hard

Insufficient lubricating refrigerant or wrong emulsion

See "Material classification and blade selection" in the *Blade running-in* section.

Turn teeth in correct direction.

Use a superior quality blade.

Decrease advance, exerting less cutting pressure. Adjust the braking device.

Change speed and/or type of blade. See chapter on "Material classification and blade selection," in the section Blade selection table according to cutting and feed speed.

Material surfaces can be oxidized or covered with impurities making them, at the beginning of the cut, harder that the blade itself, or have hardened areas or inclusions inside the section due to productive agents used such as casting sand, welding wastes, etc. Avoid cutting these materials or perform cutting with extreme care, cleaning and remove such impurities as quickly as possible.

Check level of liquid in the tank. Increase the flow of lubricating coolant, checking that the coolant nozzle and pipe are not blocked. Check the emulsion percentage.

BLADE BREAKAGE

Faulty welding of blade

Too fast advance

Wrong cutting speed

Wrong tooth pitch

Ineffective gripping of the part in the vice

Blade touching material at beginning of cut

Remedy

The welding of the blade is of utmost importance. The meeting surfaces must perfectly match and once they are welded they must have no inclusions or bubbles; the welded part must be perfectly smooth and even. They must be evenly thick and have no bulges that can cause dents or instant breakage when sliding between the blade guide pads.

Decrease advance, exerting less cutting pressure. Adjust the braking device.

Change speed and/or type of blade.

See chapter on "Material classification and blade selection", in the section Blade selection table according to cutting and feed speed.

Choose a suitable blade. See Chapter "Material classification and blade selection."

Check the gripping of the part.

At the beginning of the cutting process, never lower the saw bow before starting the blade motor.

FAULT

PROBABLE CAUSE

REMEDY

Blade guide pads not regulated or dirty because of lack of maintenance

Blade guide block too far from material to be cut

Improper position of blade on flywheels

Insufficient lubricating coolant or wrong emulsion

Check distance between pads (see "Machine adjustments" in the *Blade Guide Blocks* section): extremely accurate guiding may cause cracks and breakage of the tooth. Use extreme care when cleaning.

Approach head as near as possible to material to be cut so that only the blade section employed in the cut is free, this will prevent deflections that would excessively stress the blade.

The back of blade rubs against the support due to deformed or poorly welded bands (tapered), causing cracks and swelling of the back contour.

Check level of liquid in the tank. Increase the flow of lubricating refrigerant, checking that the hole and the liquid outlet pipe are not blocked. Check the emulsion percentage.

STEAKED OR ETCHED BANDS

Damaged or chipped blade guide pads

Tight or slackened blade guide bearings.

Replace them.

Adjust them (see Chapter "Machine adjustments" in *Blade guide* section).

CUTS OFF THE STRAIGHT

Blade not parallel as to the counter service

Blade not perpendicular due to the excessive play between the guide pads and maladjustment of the blocks

Too fast advance

Worn out blade

Wrong tooth pitch

Check fastenings of the blade guide blocks as to the counter-vice so that they are not too loose and adjust blocks vertically; bring into line the position of the degrees and if necessary adjust the stop screws of the degree cuts.

Check and vertically re-adjust the blade guide blocks; reset proper side guide play (see Chapter "Machine adjustments" In *Blade guide* section).

Decrease advance, exerting less cutting pressure. Adjust the braking device.

Approach it as near as possible to material to be cut so that only the blade section employed in the cut is free, this will prevent deflections that would excessively stress the blade.

Replace it. Blade with major density of teeth is being used, try using one with less teeth (see Chapter "Material classification and blade selection" in the *Blade Types* section).

FAULT

PROBABLE CAUSE

REMEDY

Broken teeth

Insufficient lubricating refrigerant or wrong emulsion

Irregular work of the blade due to the lack of teeth can cause deflection in the cut; check blade and if necessary replace it.

Check level of liquid in the tank. Increase the flow of lubricating coolant, checking that the hole and the liquid outlet pipe are not blocked. Check the emulsion *percentage*.

FAULTY CUT

Worn out flywheels Flywheel housing full of chips The support and guide flange of the band are so worn out that they cannot ensure the alignment of the blade, causing faulty cutting; blade rolling and drawing tracks can have become tapered. Replace them. Clean with compressed air.

STREAKED CUTTING SURFACE

Too fast advance

Poor quality blade

Worn out blade or with chipped and/or broken teeth

Wrong tooth pitch

Blade guide block too far from material to be cut

Insufficient lubricating coolant or wrong emulsion

Decrease advance, exerting less cutting pressure. Adjust the braking device.

Use a superior quality blade.

Replace it.

Blade used probably has too large teeth, use one with more teeth (see "Material classification and blade selection" in the Blade Types section).

Approach it as near as possible to material to be cut so that only the blade section employed in the cut is free, this will prevent deflections that would excessively stress the blade.

Check level of liquid in the tank. Increase the flow of lubricating coolant, checking that the hole and the liquid outlet pipe are not blocked. Check the emulsion percentage.

NOISE ON GUIDE BLOCKS

Chipped bearings Worn out or damaged pads Dirt and/or chips between blade and guide bearings. Replace them. Replace them.

PART LIST

	PARI LISI								
Part No.	Description	Size No.	Q'ty	Part No.	Description	Size No.	Q'ty		
1	Hand Wheel		1	41	Base Cover Plate		2		
2	Lead Screw		1	42	Base (Left Part)		1		
3	Key	5x5x10	1	43	Flat Washer	M8	16		
4	Nut		1	44	Spring Washer	M8	8		
5	Set Screw	M5x5	1	45	Hex. Cap Bolt	M8x16	8		
6	Bearing Bushing		1	46	Nut	M8	8		
7	Ball Bearing	51104	1	47	Hex. Cap Bolt	M12x40	2		
8	Bushing		1	48	Nut		2		
9	Lock Handle		1	49	Control Box Bracket		2		
10	Hex. Socket Cap Screw	M6x100	2	50	Hex. Cap Bolt	M6x12	4		
11	Set Screw	M8x10	1	51	Control Box		1		
12	Compress Spring		1	52	Transformer		1		
13	Movable Vise		1	53	DC Driver PCB		1		
14	Vise Table		1	54	Fuse	10A	1		
15	Hex. Socket Cap Screw	M10x70	4	55	Fuse	1A	2		
16	Hex. Socket Cap Screw	M10x50	2	56	Magnetic Connector		1		
17	Flat Head Machine Screw	M6x15	4	57	Power ON/OFF Switch		1		
18	Table Plate		1	58	Front Ball Bearing Bracket		1		
19	Scale		1	59	Plastic Handle		1		
20	Rivet	2x4	2	60	Hex. Socket Cap Screw	M6x8	1		
21	Nut	M16	1	61	Handle	M10x35	1		
22	Bar-Stop-Rod		1	62	Setting Bracket		1		
23	Rod		1	63	Hex. Socket Cap Screw	M8x30	2		
24	Butterfly Screw	5/16x3/4	1	64	Set Screw	M6x12	4		
25	Hex. Socket Cap Screw	M8x16	2	65	Set Screw	M8x16	2		
26	Eccentric Washer		2	66	Front Blade Guard		1		
27	Pump		1	67	Hex. Socket Cap Screw	M6x8	1		
28	Hex. Socket Cap Screw	M6x25	2	68	Front Ball Bearing Seat		1		
29	Flat Washer	M6	2	69	Pipe Fitting	1/4x5/16	2		
30	Round Head Screw	M5x10	4	70	Nut	M8	4		
31	Filter Net		1	71	Spring Washer	M8	6		
32	Plug	PT3/8	1	72	Hex. Socket Cap Screw	M8x16	2		
33	Support Plate		1	73	Centric Shaft		2		
34	Flat Washer	M10	4	74	Ball Bearing	608	10		
35	Spring Washer	M10	4	75	E Ring	C7	4		
36	Hex. Cap Bolt	M10x20	4	76	Eccentric Shaft		2		
37	Coolant and Chip Tray		1	77	Rear Ball Bearing Seat		1		
38	Hex. Socket Cap Screw	M6x8	2	78	Rear Blade Guard		1		
39	Front Coolant Tray		1	79	Hex. Socket Cap Screw	M6x8	2		
40	Base (Right Part)		1	80	Swivel Arm		1		

980528

PART LIST

	PARI LISI								
Part No.	Description	Size No.	Q'ty	Part No.	Description	Size No.	Q'ty		
81	Shaft		1	117	Hex. Socket Cap Screw	M10x40	3		
82	Handle	M10x50	1	118	Set Screw	M10x25	1		
83	Flat Washer		1	119	Cover Plate		1		
84	Scale Point		1	120	Hex. Socket Cap Screw	M6x8	2		
85	Hex. Socket Cap Screw	M5x8	1	121	Saw Arm		1		
86	Nut	M12	1	122	Ball Bearing	6006	2		
87	Spring Hook		1	123	Idle Flywheel		1		
88	Hex. Socket Cap Screw	M8x40	1	124	Washer		2		
89	Nut	M8	1	125	Spring Washer	M10	2		
90	Hex. Cap Bolt	M10x35	1	126	Hex. Cap Bolt	M10x20	2		
90-1	Nut	M10	1	127	Blade		1		
91	Set Screw	M6x12	4	128	Blade Cover		1		
92	Hex. Socket Cap Screw	M8x30	1	129	Hex. Socket Cap Screw	M6x12	4		
93	Shaft		1	130	Flat Washer		4		
94	Hex. Socket Cap Screw	M8x25	2	131	Drive Flywheel		1		
95	Hex. Socket Cap Screw	M8x16	2	132	Hex. Cap Bolt	M8x35	4		
95-1	Spring Washer	M8	4	133	Spring Washer	M8	4		
96	Pivot		1	134	Hose	5/16x72.5cm	1		
97	Anti-Dust Cover	ψ30	2	135	Pipe Fitting	1/4x5/16	2		
98	Ball Bearing	32006	2	136	Pipe Fitting Seat		1		
99	Star Washer	M30	1	137	Coolant Switch		1		
100	Nut	AN06	1	138	Hose Clamp	M13	1		
101	Spring Shaft		1	139	Hose	5/16x116cm	1		
102	Setting Plate		1	140	Hose	5/16x34cm	1		
102-1	Set Screw	M8x10	3	141	DC Motor		1		
103	Spring		1	142	Key	5x5x25	1		
104	Adjustable Shaft		1	143	Hex. Cap Bolt	M8x25	4		
105	Bushing		1	144	Spring Washer	M8	4		
106	Handle		1	145	Gear Box		1		
106-1	Nut	M6	2	146	Key	7x7x25	1		
107	Handle		2	147	Control Box		1		
108	Handle Wheel		1	148	Flat Washer	M6	2		
109	Thrust Spring Washer		8	149	Hex. Cap Bolt	M6x10	2		
110	Tension Shaft		1	150	Control Box Panel		1		
111	Trigger Switch		1	151	Emergency Push Button		1		
112	Nut	M16	1	152	Power Indicator Light		1		
113	Rod		1	153	Blade Speed Knob		1		
114	Shaft		1	154	Round Head Screw	M5x8	4		
115	Slide		1						
116	Spring Washer	M10	3						

980528

