Percolation approaches to SIR disease spread

Joel C. Miller & Tom Hladish

20-22 July 2016

Percolation

We are going to explore a relationship between SIR disease and percolation.

This will lead to methods to

- predict epidemic probability from a single infection.
- predict final size of an epidemic.
- predict the dynamics of an epidemic.

Recall SIR behavior

Modified model

We have a network

► An edge represents a potential transmission path (unweighted, bidirectional).

Modified model

We have a network

- An edge represents a potential transmission path (unweighted, bidirectional).
- ▶ An infected node remains infected for a single time step.

Modified model

We have a network

- An edge represents a potential transmission path (unweighted, bidirectional).
- ▶ An infected node remains infected for a single time step.
- ▶ An infected node transmits to a neighbor with probability *p*.

At each step, if there is an edge to cross, it is crossed with probability *p*. No edge is ever crossed twice.

At each step, if there is an edge to cross, it is crossed with probability *p*. No edge is ever crossed twice.

▶ It is equivalent to decide in advance whether the edges will be crossed if encountered.

At each step, if there is an edge to cross, it is crossed with probability *p*. No edge is ever crossed twice.

It is equivalent to decide in advance whether the edges will be crossed if encountered.

$$(1-p)^3$$

$$p^2(1-p)$$

$$\begin{array}{ccc}
 & \bigcirc & \bigcirc & \bigcirc \\
 & p^2(1-p)
\end{array}$$

$$p^2(1-p)$$

$$p(1-p)^2$$

$$p(1-p)^2$$

$$\rho(1-p)^2$$

$$p^3$$

At each step, if there is an edge to cross, it is crossed with probability *p*. No edge is ever crossed twice.

It is equivalent to decide in advance whether the edges will be crossed if encountered.

$$(1-p)^3$$

$$p^2(1-p)$$

$$p^2(1-p)$$

$$p^2(1-p)$$

$$p(1-p)^2$$

$$p(1-p)^2$$

$$\bigcap_{p(1-p)^2}$$

Percolation in different size networks

Comparison of largest (red) and second largest (blue) components in different size networks below and above percolation threshold.

- Below threshold largest and second largest are about the same size as each other
- ► Below threshold largest and second largest are about the same size in both networks

Now return back to transmitting with rate β and recovering with rate $\gamma.$

More detailed comparison of network size

Transmission probability

▶ We'll want to know the probability an infected node *v* transmits to its neighbor *u* (assuming *v* is infected).

Transmission probability

- ▶ We'll want to know the probability an infected node *v* transmits to its neighbor *u* (assuming *v* is infected).
- ▶ Transmission is at rate β , and recovery is at rate γ . By "swimming pool analogy", probability of transmitting before recovering is $\beta/(\beta+\gamma)$.

Transmission probability

- ▶ We'll want to know the probability an infected node *v* transmits to its neighbor *u* (assuming *v* is infected).
- ▶ Transmission is at rate β , and recovery is at rate γ . By "swimming pool analogy", probability of transmitting before recovering is $\beta/(\beta+\gamma)$.
- ▶ Note: *v* transmitting to *u* and to *w* are correlated events (both depend on duration of *v*'s infection), but transmissions from different nodes to a single node are independent.

Given a network G, I want to simulate the spread of an SIR disease.

▶ I use Tom as a random number generator.

- I use Tom as a random number generator.
 - ▶ When a node *u* becomes infected, I ask Tom: "how long will its infection last?"
 - ► Then for each neighbor v I ask "will u transmit to v? When?"

- I use Tom as a random number generator.
 - ▶ When a node *u* becomes infected, I ask Tom: "how long will its infection last?"
 - ► Then for each neighbor v I ask "will u transmit to v? When?"
- ► Tom decides he doesn't like the rush to generate a random number on the fly. So he does it in advance.

- I use Tom as a random number generator.
 - ▶ When a node u becomes infected, I ask Tom: "how long will its infection last?"
 - ► Then for each neighbor v I ask "will u transmit to v? When?"
- Tom decides he doesn't like the rush to generate a random number on the fly. So he does it in advance.
 - For each node Tom assigns the duration its infection will last if infected.
 - Once the duration is chosen, Tom decides which neighbors it will transmit to and how long it will take.
 - ▶ Then he reports those to me when I ask.

- I use Tom as a random number generator.
 - ▶ When a node *u* becomes infected, I ask Tom: "how long will its infection last?"
 - ► Then for each neighbor v I ask "will u transmit to v? When?"
- Tom decides he doesn't like the rush to generate a random number on the fly. So he does it in advance.
 - For each node Tom assigns the duration its infection will last if infected.
 - Once the duration is chosen, Tom decides which neighbors it will transmit to and how long it will take.
 - ▶ Then he reports those to me when I ask.
- ▶ Is it possible for me to know whether he is calculating in advance or not?

Every number that Tom gives me is a random number that is generated independently of every other number. It doesn't matter when he generates it.

Typical structure

The following processes produce Indistinguishable output:

Normal Epidemic Simulation:

- Normal Epidemic Simulation:
 - ► Take a network G.
 - Choose an initial infected individual.
 - Allow edges to transmit until the random time the individual recovers.

- Normal Epidemic Simulation:
 - ► Take a network G.
 - Choose an initial infected individual.
 - Allow edges to transmit until the random time the individual recovers.
- Percolation-based simulation:

- Normal Epidemic Simulation:
 - ► Take a network G.
 - Choose an initial infected individual.
 - Allow edges to transmit until the random time the individual recovers.
- Percolation-based simulation:
 - ► Take a network *G*.

- Normal Epidemic Simulation:
 - ► Take a network G.
 - Choose an initial infected individual.
 - Allow edges to transmit until the random time the individual recovers.
- Percolation-based simulation:
 - ► Take a network G.
 - Generate a new directed network H:

Directed Percolation Equivalence

The following processes produce Indistinguishable output:

- Normal Epidemic Simulation:
 - ► Take a network G.
 - Choose an initial infected individual.
 - Allow edges to transmit until the random time the individual recovers.
- Percolation-based simulation:
 - ► Take a network G.
 - Generate a new directed network H:
 - ightharpoonup For each individual u, assign a duration d of infection.
 - ▶ For each edge from u, determine delay τ until transmitting.
 - \blacktriangleright If $\tau < d$, place directed edge into network with associated time.

Directed Percolation Equivalence

The following processes produce Indistinguishable output:

- Normal Epidemic Simulation:
 - ► Take a network G.
 - Choose an initial infected individual.
 - Allow edges to transmit until the random time the individual recovers.
- Percolation-based simulation:
 - ► Take a network G.
 - Generate a new directed network H:
 - ightharpoonup For each individual u, assign a duration d of infection.
 - ▶ For each edge from u, determine delay τ until transmitting.
 - If $\tau < d$, place directed edge into network with associated time.
 - Choose an initial infected individual.
 - ► Trace the disease spread, transmitting after given time if an edge is in the new network.

Comments on directed percolation

- Directed percolation can be used more generally when there are other sources of heterogeneity in infectiousness and/or susceptibility.
- ▶ The eventually infected nodes are exactly those nodes in the out-component of the index case.
- ► The probability a random node is infected follows from the size of its in-component.

▶ We can understand the dynamics with a "bowtie" diagram.

- ▶ We can understand the dynamics with a "bowtie" diagram.
- ► Above a threshold there is a Giant Strongly Connected Component *H*_{SCC}

- ▶ We can understand the dynamics with a "bowtie" diagram.
- ▶ Above a threshold there is a Giant Strongly Connected Component H_{SCC}
- ▶ It has an in-component H_{IN} and an out-component H_{OUT} .

- ▶ We can understand the dynamics with a "bowtie" diagram.
- ► Above a threshold there is a Giant Strongly Connected Component *H*_{SCC}
- ▶ It has an in-component H_{IN} and an out-component H_{OUT} .
- ► If the index case is in H_{IN} or H_{SCC} then all of H_{SCC} and H_{OUT} are eventually infected.

- ▶ We can understand the dynamics with a "bowtie" diagram.
- ► Above a threshold there is a Giant Strongly Connected Component *H*_{SCC}
- ▶ It has an in-component H_{IN} and an out-component H_{OUT} .
- ► If the index case is in H_{IN} or H_{SCC} then all of H_{SCC} and H_{OUT} are eventually infected.
- ▶ So Epidemic Probability $\mathcal{P} = \mathbb{E}(|H_{IN} \cup H_{SCC}|)/N$ and Attack rate $\mathcal{A} = \mathbb{E}(|H_{SCC} \cup H_{OUT}|)/N$.

SIR epidemic size

- ▶ Consider a Configuration Model network in which we infect a (probably small) fraction of the population ρ .
- Allow the SIR disease to spread.
- ▶ We assume ρN is large enough that stochastic die out does not play a major role.
- What proportion end up susceptible or recovered?

Changing the question

Instead of asking what proportion end up susceptible or recovered ask:

Changing the question

Instead of asking what proportion end up susceptible or recovered ask:

What is the probability a random node does not have a transmission path to it from one of the index nodes?

 $\Theta = P(v \text{ did not transmit to } u)$

 $\Theta = P(v \text{ did not transmit to } u)$

Probability a random degree k test individual is susceptible at the end is

$$(1-\rho)\Theta^k$$

 $\Theta = P(v \text{ did not transmit to } u)$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ test individual is susceptible at the end is

$$S = \sum_{k} P(k)(1 - \rho)\Theta^{k}$$

 $\Theta = P(v \text{ did not transmit to } u)$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ test individual is susceptible at the end is

$$S = \sum_{k} P(k)(1 - \rho)\Theta^{k} = \hat{\psi}(\Theta)$$

where

$$\hat{\psi}(x) = (1 - \rho) \sum_{k} P(k) x^{k}$$

Probability a random degree k partner never infected is

$$(1-\rho)\Theta^{k-1}$$

Finding Θ

Probability a random degree k partner never infected is

$$\phi_{S} = \sum_{k} P_{n}(k)(1-\rho)\Theta^{k-1}$$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ partner never infected is

$$\phi_{\mathcal{S}} = \sum_{k} \frac{kP(k)}{\langle \mathcal{K} \rangle} (1 - \rho) \Theta^{k-1}$$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ partner never infected is

$$\phi_{\mathcal{S}} = \sum_{k} \frac{kP(k)}{\langle K \rangle} (1 - \rho) \Theta^{k-1} = \frac{\hat{\psi}'(\Theta)}{\langle K \rangle}$$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ partner never infected is

$$\phi_{\mathcal{S}} = \sum_{k} \frac{kP(k)}{\langle K \rangle} (1 - \rho) \Theta^{k-1} = \frac{\hat{\psi}'(\Theta)}{\langle K \rangle}$$

Given β and γ probability partner does not transmit to \emph{u} is

$$\Theta = \phi_{\mathcal{S}} + \left(1 - \frac{\beta}{\beta + \gamma}\right) (1 - \phi_{\mathcal{S}})$$

Probability a random degree k partner never infected is

$$\phi_{\mathcal{S}} = \sum_{k} \frac{k P(k)}{\langle K \rangle} (1 - \rho) \Theta^{k-1} = \frac{\hat{\psi}'(\Theta)}{\langle K \rangle}$$

Given β and γ probability partner does not transmit to u is

$$\Theta = \phi_{S} + \left(1 - \frac{\beta}{\beta + \gamma}\right)(1 - \phi_{S}) = 1 - \frac{\beta}{\beta + \gamma} + \frac{\beta}{\beta + \gamma} \frac{\hat{\psi}'(\Theta)}{\langle K \rangle}$$

Final Size

So

$$R=1-\hat{\psi}(\Theta)$$

where

$$\Theta = \frac{\gamma}{\beta + \gamma} + \frac{\beta}{\beta + \gamma} \frac{\hat{\psi}'(\Theta)}{\langle K \rangle}$$

 $\theta(t) = P(v \text{ not } \text{yet transmitted to } u)$

 $\theta(t) = P(v \text{ not yet transmitted to } u)$

Probability a random degree k test individual still susceptible is

$$(1-\rho)\theta(t)^k$$

 $\theta(t) = P(v \text{ not yet transmitted to } u)$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ test individual still susceptible is

$$S(t) = \sum_{k} P(k)(1 - \rho)\theta(t)^{k}$$

 $\theta(t) = P(v \text{ not yet transmitted to } u)$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ test individual still susceptible is

$$S(t) = \sum_{k} P(k)(1-\rho)\theta(t)^{k} = \hat{\psi}(\theta(t))$$

where

$$\psi(x) = \sum_{k} P(k) x^{k}$$

$$\bullet \theta = \phi_{S} + \phi_{I} + \phi_{R}.$$

- $\theta = \phi_{S} + \phi_{I} + \phi_{R}.$ $\dot{\theta} = -\beta \phi_{I}.$

- $\bullet \ \theta = \phi_{S} + \phi_{I} + \phi_{R}.$
- $\dot{\theta} = -\beta \phi_I.$
- ▶ Our goal is to find ϕ_I in terms of θ .

Because derivatives are proportional (swimming pool analogy), $\phi_R = \frac{\gamma}{\beta}(1-\theta)$

Probability a random degree k partner still susceptible is

$$(1-\rho)\theta(t)^{k-1}$$

Probability a random degree k partner still susceptible is

$$\phi_{S}(t) = \sum_{k} P_{n}(k)(1-\rho)\theta(t)^{k-1}$$

Probability a random degree k partner still susceptible is

$$\phi_{\mathcal{S}}(t) = \sum_{k} \frac{kP(k)}{\langle K \rangle} (1 - \rho)\theta(t)^{k-1}$$

Probability a random $\frac{\text{degree } k}{\text{degree } k}$ partner still susceptible is

$$\phi_{\mathcal{S}}(t) = \sum_{k} \frac{k P(k)}{\langle K \rangle} (1 - \rho) \theta(t)^{k-1} = \frac{\hat{\psi}'(\theta)}{\langle K \rangle}$$

We have

$$\phi_I = \theta - \phi_S - \phi_R$$

$$\dot{\theta} = -\beta \phi_I$$

We have

$$\phi_{I} = \theta - \phi_{S} - \phi_{R} = \theta - \frac{\psi'(\theta)}{\psi'(1)} - \frac{\gamma}{\beta}(1 - \theta)$$

$$\dot{\theta} = -\beta\phi_{I}$$

We have

$$\phi_{I} = \theta - \phi_{S} - \phi_{R} = \theta - \frac{\psi'(\theta)}{\psi'(1)} - \frac{\gamma}{\beta}(1 - \theta)$$

$$\dot{\theta} = -\beta\phi_{I} = -\beta\theta + \beta\frac{\psi'(\theta)}{\psi'(1)} + \gamma(1 - \theta)$$

Final System

We finally have

$$\dot{\theta} = -\beta\theta + \beta \frac{\psi'(\theta)}{\psi'(1)} + \gamma(1 - \theta)$$

$$\dot{R} = \gamma I \qquad S = \psi(\theta) \qquad I = 1 - S - R$$

More details in [1, 2]

A good exercise

Repeat this derivation for a model in which infections last for one time step and transmission occurs with probability \mathcal{T} .

References

References I

- Joel C. Miller, Anja C. Slim, and Erik M. Volz.
 Edge-based compartmental modelling for infectious disease spread.
 Journal of the Royal Society Interface, 9(70):890–906, 2012.
- [2] Joel C. Miller.Epidemics on networks with large initial conditions or changing structure.PLoS ONE, 9(7):e101421, 2014.