Ring Signature

A ring singture allows users to sign oin behalf on a group without revealing the signer's identity.

Def. Ring signature consists of \$(\mathsf{KeyGen, Sign, Verify})\$:

- \$(vk_1, sk_1), \ldots, (vk_n, sk_n) \gets \mathsf{KeyGen}(1^\lambda, n)\$;
 - Input: a security parameter \$\lambda\$ and a number of ring users \$n\$
 - Output: a verification key \$vk_i\$ and a signing key \$sk_i\$ for each ring users
- \$\sigma \gets \mathsf{Sign}(m, vk_1, \ldots, vk_n, sk_i)\$ for some \$1 \le i \le n\$;
 - Input: a message \$m\$, all verification keys \$vk_1, \ldots, vk_n\$ and a signing key
 \$sk_i\$ for some user
 - Output: a signature \$\sigma\$ of \$m\$
- \$b \gets \mathsf{Verify}(m, \sigma, vk_1, \ldots, vk_n)\$;
 - Input: a message \$m\$, a signature \$\sigma\$ and all verification keys \$vk_1, \ldots, vk n\$
 - Output: a bit \$b=1\$ if \$\sigma\$ is a valid siganture of \$m\$ signed by \$sk_i\$ for \$1 \le i
 \le n\$

Before describing [RST01] ring signature scheme, I will introduce a combining function which is a main technique of the scheme.

Combining Function

Let \$E_k\$ be a symmetric encryption with a secret key \$k\$.

Let $C_{k, v}(y_1, \cdot y_r) = E_k(y_r \cdot y_{n-1} \cdot y_n) \cdot E_k(y_1 + v)) \cdot (y_1, \cdot y_r) = E_k(y_r \cdot y_n)$

Then,

- \$C_{k, v}\$ is a one-to-one mapping from \$y_s\$ to \$z\$ for \$1 \le s \le r\$ and fixed \$y_i, i \neq s\$.
- For \$1 \le s \le r\$ and y_i , i \neq s\$, it is possible to efficiently find y_s such that $C_{k, v}$ (y_1, \ldots, y_s, \ldots, y_r) = z\$
- Given k, z and v, it is hard to solve $C_{k, v}(g_1(x_1), \ldots, g_r(x_r))=z$ for x_1 , d, x_r if g_i is are one-way function.
 - Define $g_i(x) = x ^{e_i} \bmod n_i$ which is actually an encryption of RSA.
 - One can easily obtain \$m\$ if he/she has \$d_i\$ such that \$e_i d_i \equiv 1 \bmod n_i\$.
 - However, it is hard to obtain \$m\$ without such \$d_i\$.

[RST01] @ Asiacrypt'01

\$\mathsf{KeyGen}(1^\lambda, r)\$;

- Each member executes \$\mathsf{RSA.KeyGen}(1^\lambda)\$
- Output $vk_i = {n_i, e_i}$ and $sk_i = {p_i, q_i, d_i}$ for all i
- \$\mathsf{Sign}(m, vk_1, \ldots, vk_r, sk_s)\$ for a signer \$s\$;
 - Compute \$k := H(m)\$ where \$H\$ is a cryptographic hash function
 - Choose \$v \gets \{0, 1\}^b\$ and \$x_i \gets \{0, 1\}^b\$ for \$1 \le i \le r, i \neq s\$
 - Compute $y_i := g(x_i) = x_i^{e_i} \bmod n_i$
 - Solve the equation $C_{k, v}(y_1, \ldots, y_s, \ldots, y_r) = v$ for y_s
 - Compute $x_s := g_s^{-1}(y_s) = y_s ^{d_s} \bmod n_i$
 - Output $\sim (v, x_1, \cdot x_r)$
- \$\mathsf{Verify}(m, \sigma, vk_1, \ldots, vk_r)\$;
 - Compute \$y_i := g_i(x_i)\$ for all \$i\$
 - Compute \$k := H(m)\$
 - Compute \$\sigma' := C_{{k, v}(y_1, \ldots, y_r)\$
 - If \$\sigma = \sigma'\$, output 1.
 - Otherwise, output 0.

Remark

- In Monero (XMR), they use a *linkable* ring signatures
 - anyone can efficiently verify that the signature were generated by *the same* signer without learning who the signer is.

Group Signature

A group signature allows a member of a group to <u>anonymously sign a message</u> on behalf of the group.

There is a group manager who is in charge of adding group members and has ability to reveal the original signer.

Def. Group signature consists of \$(\mathsf{KeyGen, Sign, Verify, Open})\$:

- \$(vk, msk, sk_1, \ldots, sk_n) \gets \mathsf{KeyGen}(1^\lambda, n)\$;
 - Input: a security parameter \$\lambda\$ and a number of group users \$n\$
 - Output: a verification key \$vk\$, a master secret key \$msk\$, a signing key \$sk_i\$ for each group users
- \$\sigma \gets \mathsf{Sign}(m, sk_i)\$ for some \$1 \le i \le n\$;
 - Input: a message \$m\$ and a signing key \$sk_i\$
 - Output: a signature \$\sigma\$ of \$m\$
- \$b \gets \mathsf{Verify}(m, \sigma, vk)\$;
 - Input: a message \$m\$, a signature \$\sigma\$ and a verification key \$vk\$
 - Output: a bit \$b = 1\$ if \$\sigma\$ is a valid signature of \$m\$ signed by \$sk_i\$ for \$1 \le
 i \le n\$
- \$i \gets \mathsf{Open}(m, \sigma, msk)\$;

- Input: a message \$m\$, a signature \$\sigma\$ and a master secret key \$msk\$
- Output: a user \$i\$ or \$\perp\$

A construction of a group signature will be given after dealing with zero-knowledge proof.

Other Signatures

- Threshold Signature
- **Multisignature** is a scheme a certain number of signers signs a given message.
 - much shorter than than the set of individual signatures
- **Proxy Signature** allows a delegator to give partial signing rights to other parties called proxy signer.