Regularized Linear Models

Master's Degree in Bioinformatics and Computational Biology - Machine Learning

Carlos María Alaíz Gudín

Escuela Politécnica Superior Universidad Autónoma de Madrid

Academic Year 2024–25

Contents

Introduction

2 Regularization Functions

3 Regularized Linear Models

4 Summary

Exercise

Questionnaire

Please, fill in the questionnaire regarding your prior knowledge about this topic.

Introduction

Need of Regularization - Exercise

Given a 3-dimensional problem with the following data:

$x_{i,1}$			
1	0	1	2
1	1	1	3

- Define a linear model $\{b, w_1, w_2, w_3\}$ with the smaller possible Mean Squared Error (MSE). Is it possible to get a perfect training prediction?
- Are there more than one model that can solve perfectly the problem above? Is there anyway to determine which one should be preferred?

Need of Regularization - Example

Example ("Ill-Posed" Problem)

► Regression dataset E2006-log1p of the LIBSVM repository.

16 087 patterns for training, 3308 patterns for testing.

- 4 272 227 features.
- Even the simplest models (linear) will have 220 free parameters per pattern.
- The complexity of the model has to be controlled.
- Probably not all the features will be relevant.
 - A model based on a subset of the features seems a sensible option.

Bias-Variance and Regularization (I)

Assumption

x and y are related as $y = f^*(\mathbf{x}) + \epsilon$.

- $ightharpoonup f^*(\cdot)$ is the true underlying function.
- $ightharpoonup \epsilon$ is additive noise with zero mean and finite variance.
- ▶ The model should try to approximate the underlying function, $f \approx f^*$.

- The distance between f and f^* is formalised under the concept of bias.
- A small bias can be achieved with highly flexible models with many parameters.
- Nevertheless, the model depends on the particular training sample, so it can be denoted by $f_{\mathcal{D}}$.
- ▶ The model should be stable, in the sense that for different datasets \mathcal{D} and \mathcal{D}' , $f_{\mathcal{D}} \approx f_{\mathcal{D}'}$.

- This stability is formalised under the concept of variance.
- A small variance can be achieved with simple models with few parameters.
- A trade-off has to be found.

Bias-Variance and Regularization (II)

Bias-Variance Trade-off

- Error due to Bias: Difference between the expected prediction of the model and the correct value to be predicted.
- ► Error due to Variance: Variability of the model prediction for a given data point.

Definition (Regularization)

- Regularization usually denotes the set of techniques that attempt to improve the estimates by biasing them away from their sample-based values towards values that are deemed to be more "physically plausible".
- ► The variance of the model is reduced to the expense of a potentially higher bias.

Over-Fitting and Under-Fitting (I)

Over-Fitting

- ► The resultant model is overly complex to describe the data under study.

- Limited number of training data.Learning machine too complex (many free parameters).
- Large variance, small bias.

Under-Fitting

- ▶ The resultant model is overly simple to describe the data under study.
 - Learning machine too rigid.
- Large bias, small variance.

Over-Fitting and Under-Fitting (II)

UNDER-FITTING AND OVER-FITTING

Why Is Regularization Necessary?

- **1** There are more variables than observations $(d \gg N)$.
- 2 The optimum estimator is not unique.
- \bullet Numerical instabilities (e.g. if X^TX is close to singular): small changes in the data lead to large changes in the model.
- Over-fitting avoidance: obtain more robust models that generalize well.
- Separation Parsimony and interpretability: simpler models can help to understand better the relation between inputs and outputs.

Notebook

The Need of Regularization

Regularized Learning

Regularized learning consists in models trained by optimizing objective functions of the form:

$$\mathcal{S} = \mathcal{E}_{\mathcal{D}} + \gamma \mathcal{R}.$$

▶ The main term of the objective function is an error term $\mathcal{E}_{\mathcal{D}}$.

- It represents how well the model fits the training data \mathcal{D} .
- Examples: Mean Squared Error (regression) and minus (log)likelihood (classification).
- The additional term is a regularization term \mathcal{R} . It penalizes the complexity of the model, with several purposes:
 - Avoid over-fitting.
 - Introduce prior knowledge.
 - Enforce certain desirable properties.
- $ightharpoonup \gamma$ is a regularization parameter.
 - It is responsible for the balance between accuracy and complexity.

Regularization Functions

Regularization Functions

- lacktriangle There are different regularization functions $\mathcal{R}(m{\theta})$ that assign to each set of parameters $m{\theta}$ a measure of its complexity.
- **Depending on the chosen function, the effect over** θ **will change.**
- ► The influence of the regularization functions is particularly clear on linear models.
 - Each coefficient of w corresponds to an input feature.
 - If $w_i = 0$, then the *i*-th feature is ignored.
 - If $w_i = w_i$, then the *i*-th feature is somehow similar to the *j*-th feature.

Classical term, known as Tikhonov regularization, it corresponds to the sum of the squares of the entries:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_2^2 = \sum_{i=1}^d w_i^2.$$

- It controls the complexity of the model.
- It is differentiable, and hence easy to optimize.
- It pushes the entries towards zero.

ℓ_2 Norm - Exercise

Given the following 3-dimensional linear models, compute their squared ℓ_2 norm to check which one is simpler according to this criterion:

- $\{w_1 = 1, w_2 = 1, w_3 = 1\}.$
- $\{w_1=2, w_2=2, w_3=0\}.$

ℓ_1 Norm (I)

▶ It corresponds to the sum of the absolute values of the entries:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|.$$

- ▶ It controls the complexity of the model.
- ▶ The absolute value is non-differentiable around zero, and hence this term is more involved to optimize.
- ▶ It pushes the entries towards zero enforcing some of them to be identically zero.
 - It enforces sparsity.

ℓ_1 Norm (II)

ℓ_1 Norm - Exercise

Given the following 3-dimensional linear models, compute their ℓ_1 norm to check which one is simpler according to this criterion:

- $\{w_1 = 1, w_2 = 1, w_3 = 1\}.$
- $\{w_1=2, w_2=2, w_3=0\}.$

More regularizers in the appendix Additional Regularization Functions.

Regularized Linear Models

The Optimization Problem of a Regularized Model

The optimization problem to train a regularized model can be formulated as:

$$\min_{\boldsymbol{\theta}} \ \{ \mathcal{E}_{\mathcal{D}}(\boldsymbol{\theta}) + \gamma \mathcal{R}(\boldsymbol{\theta}) \}.$$

There exists an equivalence between this unconstrained model and the following constrained formulation:

$$\min_{\boldsymbol{\theta}} \ \{ \mathcal{E}_{\mathcal{D}}(\boldsymbol{\theta}) \} \ \text{s.t.} \ \mathcal{R}(\boldsymbol{\theta}) \leq c.$$

In the case of a regression linear model:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \gamma \mathcal{R}(\mathbf{w}) \right\} \equiv \min_{\mathbf{w} \in \mathbb{R}^d} \left\{ \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 \right\} \text{ s.t. } \mathcal{R}(\mathbf{w}) \le c.$$

In the case of a classification linear model:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \ \{ \mathrm{CE}(\mathbf{w}) + \gamma \mathcal{R}(\mathbf{w}) \} \equiv \min_{\mathbf{w} \in \mathbb{R}^d} \ \{ \mathrm{CE}(\mathbf{w}) \} \ \text{s.t.} \ \mathcal{R}(\mathbf{w}) \leq c.$$

C. M. Alaíz (EPS-UAM) Academic Year 2024-25 Linear Models - Regularization

Ridge Regression

This linear model uses the Tikhonov regularization:

$$\mathcal{R}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} = \frac{1}{2} \sum_{i=1}^{d} \mathbf{w}_{i}^{2}.$$

The objective function is:

$$S(\mathbf{w}) = MSE(\mathbf{w}) + \frac{\gamma}{2} ||\mathbf{w}||_2^2.$$

- The complexity of the model is controlled.
 - In the presence of noisy inputs:

$$\mathbf{w}^{\mathsf{T}}(\mathbf{x} + \boldsymbol{\epsilon}) \stackrel{?}{\approx} \mathbf{w}^{\mathsf{T}} \mathbf{x} \iff |\mathbf{w}^{\mathsf{T}}(\mathbf{x} + \boldsymbol{\epsilon}) - \mathbf{w}^{\mathsf{T}} \mathbf{x}| = |\mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{w}^{\mathsf{T}} \boldsymbol{\epsilon} - \mathbf{w}^{\mathsf{T}} \mathbf{x}| \le ||\mathbf{w}||_2 ||\boldsymbol{\epsilon}||_2 \approx 0.$$

- No structure is imposed (the resultant model typically depends on all the variables).
- The problem is convex and differentiable.

Ridge Regression: Optimization

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2 \right\}.$$

$$\begin{split} \left. \nabla_w \mathcal{S}(w) \right|_{w = w^\star} &= 0 \implies -X^\intercal (y - X w^\star) + \gamma w^\star = 0 \\ &\implies -X^\intercal y + X^\intercal X w^\star + \gamma w^\star = 0 \\ &\implies (X^\intercal X + \gamma I) w^\star = X^\intercal y \\ &\implies \boxed{w^\star = (X^\intercal X + \gamma I)^{-1} X^\intercal y} \,. \end{split}$$

Notebook

Ridge Regression

Lasso

▶ This linear model uses as regularizer the ℓ_1 norm:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|.$$

► The objective function is:

$$S(\mathbf{w}) = MSE(\mathbf{w}) + \gamma ||\mathbf{w}||_1.$$

- ► This regularizer enforces some of the coefficients to be identically zero.
 - The model performs an implicit feature selection: the features with coefficient equal to zero can be discarded.
 - It also avoids over-fitting.
- The problem is convex but non-differentiable.

Notebook

Lasso

Elastic-Net

- This linear model combines the advantages of the ℓ_1 norm with those of the ℓ_2 norm.
- It is more stable than Lasso regarding feature selection.
- The regularizer is therefore a combination of both:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_1 + \frac{\gamma_2'}{2} \|\mathbf{w}\|_2^2.$$

Thus the objective function is:

$$\mathcal{S}(\mathbf{w}) = \text{MSE}(\mathbf{w}) + \gamma_1 \|\mathbf{w}\|_1 + \frac{\gamma_2}{2} \|\mathbf{w}\|_2^2.$$

The problem is convex but non-differentiable.

Notebook

Elastic-Net

Illustration

More models in the appendix
Additional Regularized Linear Models.

Summary

Regularized Linear Models: Summary

- Regularization is often needed in real problems to control the complexity or induce structure.
- Regularized models are trained by minimizing both an error term and a regularization term.
- ▶ There are different choices for the regularization functions, two of the most important are:
 - The ℓ_2 norm, which controls the complexity.
 - The ℓ_1 norm, which controls the complexity and induces sparsity.
- The resultant regularized linear models are:
 - Ridge Regression, based on the ℓ_2 norm.
 - Lasso, based on the ℓ_1 norm.
 - Elastic-Net, based on the combination of both regularizers.

Regularized Linear Models

Carlos María Alaíz Gudín

Introduction

Motivation

Regularization: Definition Over-fitting and Under-fitting

Need of Regularization

Regularized Learning

Regularization Functions

Introduction

 ℓ_2 Norm ℓ_1 Norm

Regularized Linear Models

Preliminaries

Ridge Regression

Lasso

Elastic–Net Illustration

Summary

Additional Material

Additional Material

Additional Regularization Functions Additional Regularized Linear Models

$\ell_{2,1}$ Norm: Framework

Each w is composed by d_g groups of $d_f = \frac{d}{d_g}$ features each group:

$$\mathbf{w} = \begin{pmatrix} w_{1,1} \\ \vdots \\ w_{1,d_f} \\ \vdots \\ w_{d_g,1} \\ \vdots \\ w_{d_g,d_f} \end{pmatrix},$$

where $w_{g,f}$ is the f-th entry of the g-th group.

- This framework can be easily extended to groups of different sizes.
- ▶ The variable **w** can be seen also as a matrix with d_f rows and d_g columns.
- ► The regularizers should respect this structure.

$\ell_{2,1}$ Norm (I)

▶ The regularizer is the $\ell_{2,1}$ norm:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_{2,1} = \sum_{g=1}^{d_g} \sqrt{\sum_{f=1}^{d_f} w_{g,f}^2},$$

which is just the ℓ_1 norm of the ℓ_2 norm of the different groups.

- ► It controls the complexity of the model.
- ▶ The ℓ_2 norm (not squared) is non-differentiable around zero, hence this term is more involved to optimize.
- ▶ It pushes the groups towards zero enforcing some of them to be identically zero.
 - It enforces sparsity at group level.

$\ell_{2,1}$ Norm (II)

Transformed Norms

- ► The regularization is applied over a linear transformation **Tw**.
- ► The transformation allows for more involved structures.

Generalized ℓ_2 Norm

- ► The regularizer is $\mathcal{R}(\mathbf{w}) = \|\mathbf{T}\mathbf{w}\|_2^2$.
- ▶ It pushes the transformed vector towards zero.

Generalized Lasso

- ► The regularizer is $\mathcal{R}(\mathbf{w}) = \|\mathbf{T}\mathbf{w}\|_1$.
- ▶ It pushes the transformed vector towards zero enforcing some of the elements to be identically zero.
 - It enforces sparsity over the transformed vector.

Transformed Norms: Total Variation (I)

- ▶ The Total Variation is a family of regularizers that penalize the differences between adjacent entries.
 - It assumes some spatial location.
- ► It transforms the variable through a differentiating matrix:

$$\mathbf{D} = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{pmatrix}.$$

▶ The TV regularizer penalizes the ℓ_1 norm of the differences:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{D}\mathbf{w}\|_1 = \sum_{i=2}^{d} |w_i - w_{i-1}|.$$

- The ℓ_1 norm enforces sparsity.
- Some of the terms $w_i w_{i-1}$ are zero, and hence $w_i = w_{i-1}$.
- The vector **w** is piece-wise constant.

C. M. Alaíz (EPS-UAM) Linear Models - Regularization Academic Year 2024-25 5/

Transformed Norms: Total Variation (II)

Transformed Norms: Others

Graph-Based Total Variation

- ► An extension of the Total Variation regularizer.
- ▶ The differences between any pair of entries connected according to a graph are penalized.
- ▶ The classical Total Variation is recovered when the graph is a chain.
- ▶ When the graph is a lattice, it becomes a two-dimensional Total Variation.

Trend Filtering

- Similar idea than Total Variation but for higher degrees.
- ► Instead of penalizing the first differences, higher orders are penalized.

Combinations

▶ The previous regularizers can be combined to enforce several structures at the same time.

ℓ_1 and $\ell_{2,1}$

▶ Sparsity both at group level and at coefficient level.

ℓ_1 and Total Variation

- ► Some of the entries are identically zero.
- ► The remaining entries tend to be piece-wise constant.

Group Variants: Framework

- ▶ In certain circumstances, some features are grouped as corresponding to the same source.
 - E.g., different meteorological variables (wind speed, temperature) corresponding to the same geographical point.
- ► A grouping effect in the features is thus desirable.
 - All the features of a group should be active, or inactive, at the same time.
 - But they are different features, and they can have different coefficients.
- In this way, relevant groups can be detected.

Group Lasso and Group Elastic-Net

Group Lasso Model

- This linear model uses as regularizer the $\ell_{2,1}$ norm, $\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_{2,1}$.
- ► The objective function is:

$$\mathcal{S}(\mathbf{w}) = MSE(\mathbf{w}) + \gamma ||\mathbf{w}||_{2,1}.$$

Group Elastic-Net Model

- ▶ The regularizer is a combination of the $\ell_{2,1}$ norm and the ℓ_2 norm.
- ► The objective function is:

$$\mathcal{S}(\mathbf{w}) = \text{MSE}(\mathbf{w}) + \gamma_1 \|\mathbf{w}\|_{2,1} + \frac{\gamma_2}{2} \|\mathbf{w}\|_2^2.$$

Fused Lasso

▶ This linear model uses as regularizer the ℓ_1 norm and the TV regularizer:

$$\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|_1 + \gamma_2' \operatorname{TV}(\mathbf{w}).$$

- It assumes that the features have some spatial location, and that they are ordered according to it.
- A sensible model should assign similar coefficients to adjacent features.
- ► There are, therefore, sparse and piece-wise constant coefficients.
- ► The objective function is:

$$S(\mathbf{w}) = MSE(\mathbf{w}) + \gamma_1 ||\mathbf{w}||_1 + \gamma_2 TV(\mathbf{w}).$$

Illustration (I)

30

Group

35

40

45

50

55

REAL WEIGHTS

0

5

10

15

20

25

60

Illustration (II)

Illustration (III)

LASSO RECOVERED WEIGHTS

Illustration (IV)

GROUP LASSO RECOVERED WEIGHTS

Illustration (V)

FUSED LASSO RECOVERED WEIGHTS

