Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich

Algorithmic Stability

Context: Stability vs PAC learnability

- Previously: Learnable classes (finite VC classes) have low generalisation error
 - Generalisation bounds mainly depend on VCdim(H)
 - ullet We can have different algorithms to learn from same ${\mathcal H}$
 - $\mathcal{H}_{lin} = \{ sign(w^{\top}x + b) : w \in \mathbb{R}^p, b \in \mathbb{R} \}$ can be learned using ERM over \mathcal{H}_{lin} / SVM / soft SVM / Linear Discriminant Analysis, ...
- This lecture: Stable learner generalises well (low generalisation error)
 - Stability is property of learner whereas learnability feature of hypothesis class
 - Stability based bounds take into account additional properties of data
 - margins for linear classification (will use for soft SVM)

Algorithmic stability

- Informal definition: Learning algorithm is stable if output does not change significantly if we change only one input (training example)
- Outline: Will cover few possible mathematical formulations
 - More types of stability: (don't have to read)
 O. Bousquet, A. Elisseeff. Stability and Generalization. Journal of Machine Learning Research 2, pp. 499-526, 2002
- Outline: Generalisation error bound for stable algorithms

On-average-replace-one stability

Notations

- \bullet S^i
 - Consider training sample $S \sim \mathcal{D}^m$
 - Replace (x_i, y_i) with an independent example $(x', y') \sim \mathcal{D}$
- $i \sim \text{Unif}(m)$
 - \bullet Pick one of the m examples in S uniformly at random
- β_m^{rep}
 - $\beta^{rep}: \mathbb{N} \to \mathbb{R}$, and $\beta^{rep}_m = \beta^{rep}(m)$

On-average-replace-one stability

- Given learner \mathcal{A} , loss function ℓ and $\beta^{rep}: \mathbb{N} \to \mathbb{R}$
- Learner \mathcal{A} is on-average-replace-one stable
 - with rate β^{rep} with respect to ℓ
 - if for every sample size m and every distribution \mathcal{D}

$$\mathbb{E}_{S \sim \mathcal{D}^m, (x', y') \sim \mathcal{D}, i \sim \text{Unif}(m)} \left[\ell \left(\mathcal{A}_{S^i}(x_i), y_i \right) - \ell \left(\mathcal{A}_{S}(x_i), y_i \right) \right] \leq \beta_m^{rep}$$

- Difference of two losses:
 - 2^{nd} term: Training set contains (x_i, y_i) and tested also using (x_i, y_i)
 - 1^{st} term: (x_i, y_i) not used for training, but for testing

Generalisation from on-average-replace-one stability

Lemma Stab.1 (Expected generalisation error)

For any learner A and loss ℓ ,

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(\mathcal{A}_S) - L_S(\mathcal{A}_S) \right] = \mathbb{E}_{S \sim \mathcal{D}^m, (x', y') \sim \mathcal{D}, i \sim \text{Unif}(m)} \left[\ell \left(\mathcal{A}_{S^i}(x_i), y_i \right) - \ell \left(\mathcal{A}_S(x_i), y_i \right) \right]$$

If A is an on-average-replace-one stable learner with rate β , then

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(\mathcal{A}_S) \right] \leq \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_S(\mathcal{A}_S) \right] + \beta_m$$

Proof

- $S,(x',y') \sim \mathcal{D}^{m+1}$ is an iid sequence of m+1 examples
- Use any m of them for training, and the other one for testing
- No effect on the expected true risk

$$\mathbb{E}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(\mathcal{A}_S)] = \mathbb{E}_{S,(x',y') \sim \mathcal{D}^{m+1}} [\ell(\mathcal{A}_S(x'), y')] \qquad \dots \text{ definition}$$

$$= \mathbb{E}_{S \sim \mathcal{D}^m,(x',y') \sim \mathcal{D},i \sim \text{Unif}(m)} [\ell(\mathcal{A}_{S^i}(x_i), y_i)] \qquad \dots \text{ above equivalence}$$

• From definition of empirical risk

$$\mathbb{E}_{S \sim \mathcal{D}^m} [L_S(\mathcal{A}_S)] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{S \sim \mathcal{D}^m} \left[\ell \left(\mathcal{A}_S(x_i), y_i \right) \right] \qquad \dots \text{from definition}$$

$$= \mathbb{E}_{S \sim \mathcal{D}^m, i \sim \text{Unif}(m)} \left[\ell \left(\mathcal{A}_S(x_i), y_i \right) \right] \qquad \dots \text{average} = \mathbb{E}_{i \sim \text{Unif}(m)} [\cdot]$$

Generalisation from on-average-replace-one stability

Theorem Stab.2 (Expected generalisation error for stable ERM)

Assume

- A = ERM for some hypothesis class H
- A is on-average-replace-one stable with rate β

Then

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(\mathcal{A}_S) \right] \leq L_{\mathcal{D}}(\mathcal{H}) + \beta_m$$

Above implies PAC learnability if $\beta_m \to 0$ as $m \to \infty$

Proof

We know

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(\mathcal{A}_S) \right] \leq \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_S(\mathcal{A}_S) \right] + \beta_m$$

Using fact that A = ERM

$$\implies L_{S}(\mathcal{A}_{S}) \leq L_{S}(h) \qquad \text{for all } h \in \mathcal{H}$$

$$\implies \mathbb{E}_{S \sim \mathcal{D}^{m}} \left[L_{S}(\mathcal{A}_{S}) \right] \leq \mathbb{E}_{S \sim \mathcal{D}^{m}} \left[L_{S}(h) \right] \qquad \text{for all } h \in \mathcal{H}$$

$$\implies \mathbb{E}_{S \sim \mathcal{D}^{m}} \left[L_{S}(\mathcal{A}_{S}) \right] \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$$

$$= L_{\mathcal{D}}(\mathcal{H})$$

Uniform stability: Yet another notion of stability

- Fix learner \mathcal{A} , loss function ℓ and $\beta^u : \mathbb{N} \to \mathbb{R}$
- Learner \mathcal{A} is uniformly stable
 - with rate β^u with respect to ℓ
 - if for every sample size m

$$\sup_{S \in (\mathcal{X} \times \mathcal{Y})^m} \sup_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \max_{i \in \{1,\dots,m\}} \left| \ell \left(\mathcal{A}_{S_{-i}}(x), y \right) - \ell \left(\mathcal{A}_{S}(x), y \right) \right| \le \beta_m^u$$

• On-average-replace-one stability can only give bound on $\mathbb{E}_S[L_{\mathcal{D}}(\mathcal{A}_S)]$ In contrast, uniform stability can give high probability bound on $L_{\mathcal{D}}(\mathcal{A}_S)$ (will see later) Validation: Estimating generalisation error

Context

• Generalisation bounds for ERM solution:

$$L_{\mathcal{D}}(\widehat{h}) \le L_{\mathcal{D}}(\mathcal{H}) + O\left(\sqrt{\frac{\operatorname{VCdim}(\mathcal{H})}{m}}\right)$$

- Validation: Estimate the true risk of \hat{h}
 - ullet Get better estimates of $L_{\mathcal{D}}(\widehat{h})$ than obtained from uniform convergence bounds
- Validation vs empirical risk:
 - Both estimates of $L_{\mathcal{D}}(\cdot)$
 - \bullet \hat{h} depends on empirical risk, but not on validation error

Hold out set

- \bullet We have assumed access to m labelled examples
- Split labelled examples into two parts
 - $S = \text{training set with } m_s \text{ examples}$
 - $V = \text{validation} / \text{hold out set with } m_v \text{ examples}$

$$m = m_s + m_v$$

$$\widehat{h} = \mathcal{A}(S)$$

$$L_V(\widehat{h}) = \frac{1}{m_v} \sum_{(x,y) \in V} \ell(\widehat{h}(x), y)$$

• \widehat{h} depends only on S, and $L_V(\widehat{h})$ is an "independent review" of \widehat{h}

Validation using hold out set

Theorem Valid.1 (Bound on generalisation error from validation error)

Assume

- $S \sim \mathcal{D}^m$ and $V \sim \mathcal{D}^{m_v}$ independent
- $\bullet \ \widehat{h} = \mathcal{A}(S)$
- Loss function $\ell(\cdot,\cdot)$ lies in [0,1]

For every $\delta \in (0,1)$,

$$\mathbb{P}_{V \sim \mathcal{D}^{m_v}} \left(\left| L_{\mathcal{D}}(\widehat{h}) - L_V(\widehat{h}) \right| > \sqrt{\frac{\ln(\frac{2}{\delta})}{2m_v}} \right) \le \delta$$

Proof hints

- \bullet Probability only over V
- Can treat $\hat{h} = \mathcal{A}(S)$ as a fixed function
- Apply Hoeffding's inequality to derive the bound
- Why did not we need union bound over \mathcal{H} ?
 - We derive bound only for a fixed \hat{h}
 - Contrast to uniform convergence:
 - Probability over $S \implies \widehat{h} = \mathcal{A}(S)$ is not fixed, but random
 - Needed to show $|L_S(\cdot) L_D(\cdot)|$ small for all $h \in \mathcal{H}$

Validation vs uniform convergence

• Consequence of uniform convergence: With probability $1-\delta$

$$L_S(\widehat{h}) - C\sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) \ln m_s + \ln(\frac{1}{\delta})}{m_s}} \le L_{\mathcal{D}}(\widehat{h}) \le L_S(\widehat{h}) + C\sqrt{\frac{\operatorname{VCdim}(\mathcal{H}) \ln m_s + \ln(\frac{1}{\delta})}{m_s}}$$

• Validation using hold out set: With probability $1 - \delta$,

$$L_V(\widehat{h}) - \sqrt{\frac{\ln(\frac{2}{\delta})}{2m_v}} \le L_D(\widehat{h}) \le L_V(\widehat{h}) + \sqrt{\frac{\ln(\frac{2}{\delta})}{2m_v}}$$

No dependence on \mathcal{H}

• Validation provides tighter bounds for large m_v (practical choice: $m_v = 10\text{-}30\%$ of m)

k-Fold cross validation

- Hold out set significantly reduces the number of training samples
- \bullet k-fold cross validation: another estimator for generalisation error
 - Split labelled data S into k partitions S_1, \ldots, S_k
 - Let $S_{-i} = S \setminus S_i$
 - For every i = 1, ..., k: train on S_{-i} and validate using S_i
 - Average k validation errors

$$L_{k-cv}(\mathcal{A}_S) = \frac{1}{k} \sum_{i=1}^k L_{S_i}(\mathcal{A}_{S_{-i}})$$
 notation: $\mathcal{A}_S = \mathcal{A}(S)$

Leave one out

• k-fold cross validation with k=m

•
$$S_i = (x_i, y_i)$$
 and $S_{-i} = S \setminus (x_i, y_i)$

$$L_{loo}(\mathcal{A}_S) = \frac{1}{m} \sum_{i=1}^{m} \ell\left(\mathcal{A}_{S_{-i}}(x_i), y_i\right)$$

Generalisation error from cross validation / loo error

- How can we bound $L_{\mathcal{D}}(\mathcal{A}_S)$ based on $L_{k-cv}(\mathcal{A}_S)$ or $L_{loo}(\mathcal{A}_S)$?
- $L_{k-cv}(A_S)$ or $L_{loo}(A_S)$ likely to over-estimate $L_{\mathcal{D}}(A_S)$. Why?
 - Hint: Compute expectation of $L_{k-cv}(A_S)$ or $L_{loo}(A_S)$

Lemma Valid.2

In expectation, loo error with m samples equals true risk with m-1 samples

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{loo}(\mathcal{A}_S) \right] = \mathbb{E}_{S' \sim \mathcal{D}^{m-1}} \left[L_{\mathcal{D}}(\mathcal{A}_{S'}) \right]$$

• $L_{\mathcal{D}}(\mathcal{A}_{S'}) = generalisation \ error \ of \ predictor \ trained \ using \ m-1 \ iid \ samples$

Proof (try by yourself before seeing this slide)

$$\mathbb{E}_{S \sim \mathcal{D}^{m}} \left[L_{loo}(\mathcal{A}_{S}) \right] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S \sim \mathcal{D}^{m}} \left[\ell \left(\mathcal{A}_{S_{-i}}(x_{i}), y_{i} \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S_{-i} \sim \mathcal{D}^{m-1}} \left[\mathbb{E}_{(x_{i}, y_{i}) \sim \mathcal{D}} \left[\ell \left(\mathcal{A}_{S_{-i}}(x_{i}), y_{i} \right) \right] \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S_{-i} \sim \mathcal{D}^{m-1}} \left[L_{\mathcal{D}}(\mathcal{A}_{S_{-i}}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S' \sim \mathcal{D}^{m-1}} \left[L_{\mathcal{D}}(\mathcal{A}_{S'}) \right] \qquad \text{replace } S_{-i} \text{ by any } S' \sim \mathcal{D}^{m-1}$$

Derive corresponding result for $L_{k-cv}(A_S)$ assuming all k parts of equal size

Confidence interval for $L_{\mathcal{D}}(\mathcal{A}_S)$

- Previous statement is only about expectation
- We are interested in following types of bounds: With probability $1-\delta$

$$|L_{\mathcal{D}}(\mathcal{A}_S) - L_{loo}(\mathcal{A}_S)| \le \epsilon$$
 or $L_{\mathcal{D}}(\mathcal{A}_S) \le L_{loo}(\mathcal{A}_S) + \epsilon$

- Can we use Hoeffding's inequality to bound $|L_{loo}(A_S) \mathbb{E}_S[L_{loo}(A_S)]|$?
 - No. L_{loo} is mean of dependent terms
- Need tools based on algorithmic stability

Uniform stability: Yet another notion of stability

- Fix learner \mathcal{A} , loss function ℓ and $\beta^u : \mathbb{N} \to \mathbb{R}$
- Learner \mathcal{A} is uniformly stable
 - with rate β^u with respect to ℓ
 - if for every sample size m

$$\sup_{S \in (\mathcal{X} \times \mathcal{Y})^m} \sup_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \max_{i \in \{1,\dots,m\}} \left| \ell \left(\mathcal{A}_{S_{-i}}(x), y \right) - \ell \left(\mathcal{A}_{S}(x), y \right) \right| \le \beta_m^u$$

• On-average-replace-one stability can only give bound on $\mathbb{E}_S[L_{\mathcal{D}}(\mathcal{A}_S)]$ In contrast, uniform stability can give high probability bound on $L_{\mathcal{D}}(\mathcal{A}_S)$

Generalisation from uniform stability

• $L_{\mathcal{D}}^{0-1}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\mathbf{1}\{h(x)\neq y\}]$

... risk with respect to 0-1 loss

- Ramp loss:
 - Allow h(x) to be any real value

$$\ell^{ramp}(h(x), y) = \begin{cases} 0 & \text{if } y \cdot h(x) \ge 1\\ 1 & \text{if } y \cdot h(x) \le 0\\ 1 - y \cdot h(x) & \text{if } 0 < y \cdot h(x) < 1 \end{cases}$$

• $L_{\mathcal{D}}^{ramp} = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell^{ramp}(h(x),y)\right]$

... risk with respect to ramp loss

• Later: $L_{\mathcal{D}}^{0-1}(h) \leq L_{\mathcal{D}}^{ramp}(h)$

Generalisation from uniform stability (Bousquet-Elisseeff, Thm 17)

Theorem Valid.3 (Generalisation error bound from loo and training error)

Assume A has uniform stability rate β with respect to ramp loss

For $\delta \in (0,1)$, training sample $S \sim \mathcal{D}^m$, with probability $1 - \delta$,

$$L_{\mathcal{D}}^{0-1}(A_S) \leq L_{\mathcal{D}}^{ramp}(\mathcal{A}_S) < L_S^{ramp}(\mathcal{A}_S) + 2\beta + (4m\beta + 1)\sqrt{\frac{\ln(\frac{1}{\delta})}{2m}}$$
$$L_{\mathcal{D}}^{0-1}(A_S) \leq L_{\mathcal{D}}^{ramp}(\mathcal{A}_S) < L_{loo}^{ramp}(\mathcal{A}_S) + \beta + (4m\beta + 1)\sqrt{\frac{\ln(\frac{1}{\delta})}{2m}}$$

Proof skipped

Meaningful only if $\beta_m \ll \frac{1}{\sqrt{m}}$. For soft SVM, $\beta_m = O(\frac{1}{m})$