

Amendment Under 37 C.F.R. U.S. Appln. No.: 10/606,965

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claim 1: (currently amended): An organically-functionalized carbon nanocapsule, comprising:

a hollow carbon nanocapsule having a purity of at least more than 50%; and at least one kind of organic functional groups bonded thereon,

wherein the organically-functionalized carbon nanocapsule is of the following formula:

F(-E)n, in which F is the carbon nanocapsule, E is the organic functional group, and n is the number of the organic functional group.

Claim 2: (original): The organically-functionalized carbon nanocapsule as claimed in claim 1, wherein the carbon nanocapsule is a polyhedral carbon cluster constituting multiple graphite layers having a balls-within-a ball structure, and the diameter of a carbon nanocapsule is 3-100 nm.

Claim 3-4: (canceled).

Claim 5: (original): The organically-functionalized carbon nanocapsule as claimed in claim 1, wherein n is 1-100,000.

SEP, 2 7 2005

Amendment Under 37 C.F. & 1.114(c)

U.S. Appln. No.: 10/606,965

Claim 6: (previously presented): The organically-functionalized carbon nanocapsule as claimed in claim 1, wherein each E is independently E₁, E₂, E₃, E₄ or E₅, in which each E₁, independently, is Y₁, Y₂-amino, (Y₁, Y₂-alkyl)amino, Y₁, Y₂-ethylenediamino, (dihydroxymethyl)alkylamino, $(X_1, X_3 - aryl)$ amino, or $X_1, X_3 - aryloxy$; each E_2 , independently, is Y₁, Y₂-alkoxy, (Y₁, Y₂-amino)alkoxy, (Y₁, Y₂, Y₃-aryl)oxy, (dihydroxyalkyl)aryloxy, (Y₁, Y₂, Y_3 -alkyl)amino, $(Y_1, Y_2, Y_3$ -aryl)amino, or dihydroxyalkylamino; each E_3 , independently, is Y_1 , Y₂, Y₃-alkoxy, (trihydroxyalkyl)alkoxy, (trihydroxyalkyl)alkylamino, (dicarboxyalkyl)amino, $(Y_1, Y_2, Y_3 - alkyl)$ thio, $(X_1, X_2 - aryl)$ thio, $(Y_1, Y_2 - alkyl)$ thio, (dihydroxyalkyl)thio, $(Y_1, Y_2 - alkyl)$ thio, $(Y_1, Y_2 - al$ dioxoalkyl; each E₄, independently, is ((glycosidyl)oxoheteroaryl)amino, ((glycosidyl)oxoaryl)amino, $(X_1, X_2, X_3$ -heteroaryl)amino, $(X_1$ -diarylketone)amino, $(X, X_1$ oxoaryl)amino, (X, X₁-dioxoaryl) amino, (Y₁-alkyl, Y₂-alkyldioxoheteroaryl)amino, (Y₁-alkyl, Y_2 -alkyldioxoaryl)amino, (di $(Y_1, Y_2$ -methyl)dioxoheteroaryl)amino, (di $(Y_1, Y_2$ methyl)dioxoaryl)amino, ((glycosidyl)heteroaryl)amino, ((glycosidyl)aryl)amino, ((carboxylacetylalkyl)oxoheteroaryl)amino, ((carboxylacetylalkyl)oxoaryl)amino, ((isopropylaminohydroxyalkoxy)aryl)amino, or $(X_1, X_2, X_3$ -alkylaryl)amino; each E_5 , independently, is (X₁, X₂, X₃-heteroaryl)oxy, (isopropylaminohydroxyalkyl)aryloxy, (X₁, X₂, X₃ -oxoheteroaryl)oxy, $(X_1, X_2, X_3$ -oxoaryl)oxy, $(X_1, Y_1$ -oxoheteroaryl)oxy, $(X_1$ -diarylketone)oxy, $(X, X_1$ -oxoaryl)oxy, $(X_1, X_2$ -dioxoaryl)oxy, $(Y_1, Y_2, di$ -aminodihydroxy)alkyl, $(X_1, X_2$ $heteroaryl) thio, ((tricarboxylalkyl) ethylenediamino) alkoxy, (X_1, X_2-oxoaryl) thio, (X_1,$ dioxoaryl)thio, (glycosidylheteroaryl)thio, (glycosidylaryl)thio, Y₁-alkyl(thiocarbonyl)thio, Y₁,

Amendment Under 37 C.F.R. § 1.114(c) U.S. Appln. No.: 10/606,965

 Y_2 -alkyl(thiocarbonyl)thio, Y_1 , Y_2 , Y_3 -alkyl(thiocarbonyl)thio, $(Y_1, Y_2$ -aminothiocarbonyl)thio, (pyranosyl)thio, cysteinyl, tyrosinyl, (phenylalainyl)amino, (dicarboxyalkyl)thio, (aminoaryl)₁₋₂₀ amino, or (pyranosyl)amino;

each X, independently, is halide; each of X_1 and X_2 , independently, is --H, --Y₁, --O--Y₁, --S--Y₁, --NH--Y₁, --CO--O--Y₁, --CO--NH--Y₁, --CO--NY₁Y₂, --NH--CO--Y₁, --SO₂--Y₁, --CHY₁Y₂, or --NY₁Y₂; each X_3 , independently, is --Y₁, --O--Y₁, --S--Y₁, --NH--Y₁, --CO--O--Y₁, --CO--NH--Y₁, --CO--NY₁Y₂, --NH--CO--Y₁, --SO₂--Y₁, --CHY₁Y₂ or --NY₁Y₂;

each of Y₁, Y₂ and Y₃, independently, is --B--Z;

each B, independently, is $-R_a-O-[Si(CH_3)_2-O-]_{1-100}$, C_{1-2000} alkyl, C_{6-40} aryl, C_{7-60} alkylaryl, C_{7-60} arylalkyl, $(C_{1-30}$ alkyl ether) $_{1-100}$, $(C_{6-40}$ aryl ether) $_{1-100}$, $(C_{7-60}$ alkylaryl ether) $_{1-100}$, $(C_{7-60}$ arylalkyl ether) $_{1-100}$, $(C_{1-30}$ alkyl thioether) $_{1-100}$, $(C_{6-40}$ aryl thioether) $_{1-100}$, $(C_{7-60}$ arylalkyl ether) $_{1-100}$, $(C_{7-60}$ arylalkyl thioether) $_{1-100}$, $(C_{2-50}$ alkyl ester) $_{1-100}$, $(C_{7-60}$ arylalkyl ester) $_{1-100}$, $(C_{8-70}$ arylalkyl ester) $_{1-100}$, $(C_{8-70}$ arylalkyl ester) $_{1-100}$, $(C_{8-70}$ arylalkyl ester) $_{1-100}$, $(C_{1-30}$ alkyl ether) $_$

U.S. Appln. No.: 10/606,965

carbonate)₁₋₁₀₀, -- R_1 --O--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀, --R₁--O--CO--NH--(R₂ or Ar--R₂ --Ar)--NH--CO--O(C_{2-50} alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀, -- R_1 --C--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀, --CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--, -- R_1 --O--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--(C_{2-50} alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or C₈₋₇₀ arylalkyl ester)₁₋₁₀₀, --R₃--O--CO--NH--(R₂ or Ar--R₂--Ar)--NH--CO--O--, --R₁ --NH--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀, --R₁--NH--CO--NH--(R₂ or Ar--R₂--Ar)--NH--CO--O--(C_{2-50} alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀, --R₁--NH--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀, --CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--, -- R_1 --NH--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--O--(C_{2-50} alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀, --R₃--O--CO--NH--(R₂ or Ar--R₂--Ar)--NH--CO--O--, --R₁--O--CO--NH--(R_2 or Ar-- R_2 --Ar)--NH--CO--NH--(C_{2-50} alkyl amide, C_{7-60} aryl amide, C_{8-70} alkylaryl amide, or C₈₋₇₀ arylalkyl amide)₁₋₁₀₀, or --R₁--NH--CO--NH--(R₂ or Ar--R₂--Ar)NH--CO--NH--(C_{2-50} alkyl amide, C_{7-60} aryl amide, C_{8-70} alkylaryl amide, or C_{8-70} arylalkyl amide)₁₋₁₀₀;

each Z, independently, is--C--D, wherein each C, independently, is --R--, --R--Ar--, --Ar--R--, or --Ar--; and each D, independently, is --OH, --SH, --NH₂, --NHOH, --SO₃H, --OSO₃H, --COOH, --CONH₂, --CO--NH--NH₂, --CH(NH₂)--COOH, --P(OH)₃, --PO(OH)₂, --O--PO(OH)₂, --O

Amendment Under 37 C.F.R. § 1.114(c)

U.S. Appln. No.: 10/606,965

-O--PO(OH)--O--PO(OH)₂, --O--PO(O')--O--CH₂CH₂NH₃⁺, -glycoside, --OCH₃, --O--CH₂--(CHOH)₄--(CH₂)₄--CH, --O--CH₂--(CHOH)₂--CHOH, --C₆H₃(OH)₂, --NH₃⁺, --N⁺HR_bR_c, or N⁺HR_bR_cR_d; wherein each of R, R₁, R₂, R₃, R_a, R_b, R_c, and R_d independently, is C₁₋₃₀ alkyl, each Ar, independently, is aryl.

Claim 7: (original): The organically-functionalized carbon nanocapsule as claimed in claim 1, wherein the carbon nanocapsule is functionalized by a redox reaction.

Claim 8: (original) The organically-functionalized carbon nanocapsule as claimed in claim 1, wherein the carbon nanocapsule is functionalized by a cycloaddition reaction.

Claim 9: (original) The organically-functionalized carbon nanocapsule as claimed in claim 1, wherein the carbon nanocapsule is functionalized by a radical addition reaction.

Claim 10: (currently amended) An organically-functionalized carbon nanocapsule, comprising:

a hollow carbon nanocapsule <u>having a purity of at least more than 50%</u>; and at least one kind of organic functional groups bonded thereon, wherein the organically-functionalized carbon nanocapsule is of the following formula:

F(-E)n, in which F is the carbon nanocapsule, E is the organic functional group selected from -OH, -C=O, -CHO or -COOH, n is the number of the organic functional group, and the carbon nanocapsule F is functionalized by a redox reaction.

Claim 11: (original) The organically-functionalized carbon nanocapsule as claimed in claim 10, wherein the carbon nanocapsule is a polyhedral carbon cluster constituting multiple graphite layers having a balls-within-a ball structure, and the diameter of a carbon nanocapsule is 3-100 nm.

Claims 12-13: (cancelled).

Claim 14: (original) The organically-functionalized carbon nanocapsule as claimed in claim 10, wherein n is 1-100,000.

Claim 15: (currently amended) An organically-functionalized carbon nanocapsule, comprising:

a hollow carbon nanocapsule having a purity of at least more than 50%; and at least one kind of organic functional groups bonded thereon, wherein the organically-functionalized carbon nanocapsule is of the following formula: F(-E)n, in which F is the carbon nanocapsule, E is the organic functional group selected from -NHAr, -N⁺(CH₃)₂Ar, =CCl₂ or amino group, n is the number of the organic functional group, and the carbon nanocapsule F is functionalized by a cycloaddition reaction.

Claim 16: (original) The organically-functionalized carbon nanocapsule as claimed in claim 15, wherein the carbon nanocapsule is a polyhedral carbon cluster constituting multiple graphite layers having a balls-within-a ball structure, and the diameter of a carbon nanocapsule is 3-100 nm.

Claims 17-18: (cancelled).

Claim 19: (original) The organically-functionalized carbon nanocapsule as claimed in claim 15, wherein n is 1-100,000.

Claim 20: (currently amended) An organically-functionalized carbon nanocapsule, comprising:

a hollow carbon nanocapsule having a purity of at least more than 50%; and at least one kind of organic functional groups bonded thereon, wherein the organically-functionalized carbon nanocapsule is of the following formula:

Amendment Under 37 C.F.R. § 1.114(c)

U.S. Appln. No.: 10/606,965

F(-E)n, in which F is the carbon nanocapsule, E is the organic functional group selected

from -OH, -OSO₃, -C(CH₃)₂COOCH₃ or -C(CH₃)₂CN, n is the number of the organic functional

group, and the carbon nanocapsule F is functionalized by a radical addition reaction.

Claim 21: (original) The organically-functionalized carbon nanocapsule as claimed in

claim 20, wherein the carbon nanocapsule is a polyhedral carbon cluster constituting multiple

graphite layers having a balls-within-a ball structure, and the diameter of a carbon nanocapsule is

3-100 nm.

Claims 22-23: (cancelled).

Claim 24: (original) The organically-functionalized carbon nanocapsule as claimed in

claim 20, wherein n is 1-100,000.

10