Haynes Mu Alpha Theta 2019

SET 1

Toss-up 1: If there are any, determine the inflection points of the following polynomial:

$$-\sin x + \frac{x^2}{2} + 7x + 2$$

Bonus 1: Find $\frac{d^2}{dx^2} \left[\frac{10}{3x^3} \right]$

Toss-up 2: Evaluate the following expression: $\pi + \frac{d}{dk}[e^{3\pi x}]$, where x is a constant.

Bonus 2: If $\int_{b}^{a} f(x)dx = -7$, what is the average value of f(x) on [a, b], where b > a and the interval length is 5.

Toss-up 3: Find the average rate of change of f(x) on the interval [4,7], given that $f^{-1}(x) = g(x)$, g(7) = 8, g(9) = 7, g(4) = 0, and g(3) = 4.

Bonus 3: Heath asks you to evaluate the following limit: $\lim_{x\to 5} \frac{x+5}{-x^2+3x+10}$

Toss-up 4: If $f(x) = \ln(x+4+e^{-3x})$, find f'(0).

Bonus 4: A bullet travels at an acceleration of 7 m/sec^2 . The function v(t) gives the bullet's velocity at any time $t \ge 0$. If v(5) = 55, what is the function v(t)?

Toss-up 5: Evaluate $\lim_{x\to 0} \frac{7e^{x+4}-7e^4}{x}$

Bonus 5: The graph below shows the rate at which Andrew mines diamonds over a 25 hour day. If Andrew collected 64 diamonds by the end of the 25 hour period, how many diamonds did Andrew collect from 6 to 25 hours?

Toss-up 6:

The following table lists the values of functions g and h, and of their derivatives, g' and h', for x=-2. Let H be defined as $H(x)=g(x) \cdot h(x)$. Find H'(2).

X	g(x)	g'(x)	h(x)	h'(x)
-2	2	-1	3	4

Bonus 6: The radius of our flat earth is decreasing at a rate of 1 meter per hour. At a certain instant, the radius is 40,000,000 meters. What is the rate of change of the area of our flat, circle Earth at that instant? Include units.

Toss-up 7: If H(x) = -x - 5 and h(x) = H'(x), find $\frac{d}{dx} \left[\int_0^t h(x) dx \right]$, where t is a constant.

Bonus 7: Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

Toss-up 8: Let $y = (14 + 5x - 3x^2)^{\frac{3}{4}}$. Evaluate $\frac{dy}{dx}$ at x = 1.

Bonus 8: If $x^2 + 2xy^2 = 420$, find $\frac{dy}{dx}$.

Toss-up 9: Let $f(x) = \frac{1}{2}x^4 - 4x^3$. For what x values does the graph of f have a point of inflection? **Bonus 9:** Evaluate area under curve from 0 to 6π of sinx.

Toss-up 10: Evaluate $\int_{-2}^{8} \pi x dx$

Bonus 10: Einstein pours water into a broken tank that initially had 2300 gallons. Water enters the tank at $f(t) = 300t^2$ gallons per hour. Water leaves the tank at 250 gallons per hour. How much water is there at t = 3 hours? Include units.

SET 2

Toss-up 1: Evaluate $\lim_{x\to\infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1}$

Bonus 1: Find $\int_{\pi/4}^{7\pi/6} (\sin^2 x + \cos^2 x) dx$

Toss-up 2: Find two positive numbers whose sum is 138 and whose product is a maximum.

Bonus 2: What is the equation (in slope intercept form) of the tangent line to the function $w(x) = e^x + 2$ at x = ln3.

Toss-up 3: On a roof, Hassan kicks a ball upward. The ball's height as a function of time is $h(t) = -t^2 + 2t + 8$ meters after t seconds. What is the ball's velocity at the moment of impact? **Bonus 3:** While Hassan climbs a 10 ft ladder, it starts to fall down the side of a house at a rate of 3 ft/s. The base of the ladder is 8 feet from the house. At what rate is the base moving away from the house?

Toss-up 4: Find the values of x that satisfy the Mean Value Theorem for derivatives for the function $f(x) = 4x^3 + 2$ on the interval [1, 4].

Bonus 4: $\lim_{x\to 0} \frac{\sin 3x}{4x}$

Toss-up 5: Evaluate $\lim_{x \to -7} \frac{x^2-49}{x+7}$

Bonus 5: Find $\frac{d^2y}{dx^2}$ of the function y=3 $\cos^2(2x)$.

Toss-up 6: A cone has a height that is 3 times its radius and a radius that is increasing at a rate of 3 ft per minute. Find the rate of change of volume when the radius is 9 ft, given that the formula for the volume of a cone is $V = \frac{1}{3}\pi r^2 h$.

Bonus 6: A sphere was measured and the radius was found to be 15 inches with a possible error of no more than 0.02 inches. What is the maximum possible error in the volume? (Volume of a sphere is $V = \frac{4}{3}\pi r^3$)

Toss-up 7: Amie wants to enclose a rectangular field with fence to keep the normies inside. She only has 600 meters of fencing, and she also creates a fort on one side of the field so that side would not need any fencing. Determine the dimensions of the field that will enclose the largest area.

Bonus 7: The expression $\frac{1}{20}(\sqrt{\frac{1}{20}} + \sqrt{\frac{2}{20}} + \sqrt{\frac{3}{20}}... + \sqrt{\frac{20}{20}})$ is a Riemann Sum approximation for what integral?

Toss-up 8: How many values of k are there for which $\int_{2}^{k} x^{2} dx = 0$?

Bonus 8: If $\int_{a}^{b} f(x)dx = a + 2b$, then what does $\int_{a}^{b} (f(x) + 3)dx$ equal? Answer in terms of a and b.

Toss-up 9: The perimeter of a square is increasing at a constant rate of 12 meters/minute. What is the rate of change in the area of the square when the side length is 10 meters?

Bonus 9: If f is a linear function and 0 < a < b, then what is $\int_{a}^{b} f''(x)dx$?

Toss-up 10: $\int (e^{-x} tan(e^{-x})) dx$

Bonus 10: If you rotate a semi-circle with a diameter of 6 around the x-axis, what is the volume of the shape created?

Tiebreaker Toss-up: $\int (t(\sqrt[3]{t}))dt$

Tiebreaker Bonus: If Suraj Zaveri makes Taylor, Amie, Andrew, and Kha make all of the Calc AB Math Bowl questions and he admits to running an oligarchy of a club, what is his ACT score and where is planning on going to college?

Answer Key

SET 1

T1: No inflection points.

B1: $\frac{40}{x^5}$ (40 x^{-5} also acceptable)

T2: π

B2: 7/5

T3: 2

B3: DNE $(\lim_{x\to 5^+} f(x) \neq \lim_{x\to 5^-} f(x))$, therefore limit does not exist. ∞ or $-\infty$ are **not** acceptable

answers.)

T4: $\frac{-2}{5}$

B4: v(t) = 7t + 20

T5: $7e^4$

B5: 54 diamonds

T6: 5

B6: $-80,000,000 \pi$ meters^2/hour

T7: 0

B7: $\frac{1}{4}$

T8: $\frac{-3}{8}$

B8: $\frac{-x-y^2}{2xy}$,also acceptable: $\frac{-2x-2y^2}{4xy}$

T9: x = 0.4

B9: 12

T10: 30π

B10: 4250 gallons

Answer Key

SET 2

T1: $\frac{1}{4}$

B1: $11 \pi/12$

T2: 69 and 69

B2: $y=3x-3\ln 3+5$

T3: -6 meters per second

B3: 9/4 ft/s

T4: $\sqrt{7}$

B4: 3/4

T5: -14

B5: $-24\cos(4x)$ or $24-48\cos^2(2x)$ or $48\sin^2(2x)-24$ or $24\sin^2(2x)-24\cos^2(2x)$

T6: $729\pi \ ft^3/min$

B6: $\pm 18\pi$ in³ check dis

T7: 150 by 300

B7: $\int_{0}^{1} \sqrt{x} dx$

T8: 1

B8: 5b-2a

T9: $60 \ m^2/min$

B9: 0

T10: $\ln |\cos(e^{-x})| + C$

B10: 36π

TXX: $\frac{3}{7}t^{\frac{7}{3}} + C$

BXX: 36; LSU