Université des Sciences et de la Technologie USTO-MB. 2022/2023 Faculté des Mathématiques - Informatique. 1ère Année Licence informatique et MI - Analyse1.

Examen final. Durée:1h30
Les calculatrices et téléphones portables sont interdits.

Exercice1.(5 points)

On considère la suite de nombres réels $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{5u_n+4}{u_n+2} \end{cases}$

- 1) Montrer que : $0 \le u_n < 4$, $\forall n \in \mathbb{N}$.
- 2) Etudier la monotonie de $(u_n)_{n\in\mathbb{N}}$
- 3) Déduire la convergence de $(u_n)_{n\in N}$ puis calculer sa limite.
- 4) On considère la suite $(V_n)_{n\in\mathbb{N}}$ définie par $V_{n+1}=\frac{u_n-4}{u_n+1}$
 - a. Montrer que est une suite géométrique, en calculant sa raison .
 - b. Donner l'expression de u_n en fonction de n, puis déduire sa limite.

Exercice2.(10 points)

On définit la fonction f de $]0,+\infty[$ dans \mathbb{R} par

$$f(x) = 1 - x. \left\lceil \frac{1}{x} \right\rceil$$

où [] désigne la partie entière.

- 1. Montrer que pour tout t dans \mathbb{R} , $t-1 < [t] \le t$.
- 2. En déduire que pour tout x > 0; on a $0 \le f(x) < x$.
- 3. Etudier le prolongement par continuité de f en x=0.
- 4. Montrer que pour tout x > 1; on a f(x) = 1.
- 5. Calculer f(1). La fonction f est-elle continue en x = 1?

Exercice 3. (10 points)

Soit deux réels a et b tels que 0 < a < b.

- 1. Montrer que : $a < \frac{b-a}{\ln b \ln a} < b$.
- 2. On définit $f: [0,1] \to \mathbb{R}$ par $f(t) = \ln[(1-t)a+tb] (1-t)\ln a t\ln b$. Montrer que f est dérivable sur [0,1] et calculer sa dérivée f'.
- 3. Montrer qu'il existe $t_0 \in]0,1[$ tel que $f'(t_0)=0.$
- 4. Calculer la dérivée seconde f'' de f sur $[0,1]\,,$ puis déduire la monotonie de f' sur $[0,1]\,.$
- 5. En déduire le signe de f' sur [0,1] puis le tableau de variation de f sur [0,1] .
- 6. Déduire de tout ce qui précède que $\forall t \in]0,1[:\ln[(1-t)a+tb] \geq (1-t)\ln a + t\ln b$.

Exercice4.(5 points)

En utilisant la règle de l'Hôpital, calculer la limite suivante

$$l = \lim_{x \to 0} \frac{\arctan x - \sin x}{\tan x - \arcsin x}$$