Problems

29. A tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers vertically aligned, both balls are released from rest at the same time, to fall through a distance of 1.20 m, as shown in Figure P9.29. (a) Find the magnitude of the downward velocity with which the

Figure P9.29

basketball reaches the ground. (b) Assume that an elastic collision with the ground instantaneously reverses the velocity of the basketball while the tennis ball is still moving down. Next, the two balls meet in an elastic collision. To what height does the tennis ball rebound?

30. As shown in Figure P9.30, a bullet of mass m and speed v passes completely through a pendulum bob of mass M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod (not a string) of length ℓ and negligible mass. What is the mini-

Figure P9.30

mum value of v such that the pendulum bob will barely swing through a complete vertical circle?

- 31. A 12.0-g wad of sticky clay is hurled horizontally at a AMT 100-g wooden block initially at rest on a horizontal sur-M face. The clay sticks to the block. After impact, the block slides 7.50 m before coming to rest. If the coefficient of friction between the block and the surface is 0.650, what was the speed of the clay immediately before impact?
- 33. Two blocks are free to slide along the frictionless, am wooden track shown in Figure P9.33. The block of w mass $m_1 = 5.00$ kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass $m_2 = 10.0$ kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m_1 rises after the elastic collision.

Figure P9.33

- **35.** A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200-kg puck has a speed of 1.00 m/s at an angle of $\theta = 53.0^{\circ}$ to the positive x axis (see Figure 9.11). (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy transferred away or transformed to other forms of energy in the collision.
- 41. A billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.33 m/s at an angle of 30.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity after the collision.