Computer Network

Me lol

August 4, 2025

Notes

- PYQs of BEX's CT657, BEI's CT613 and BCT's CT702 are combined.
- BEX's and BCT's are kept with normal font.
- BEI's are kept with this styling to differentiate.

Contents

1	1.1	oduction to Computer Network 4 Computer Network & Uses 4		
	1.2 1.3 1.4	Networking model: client/server, P2P, active network		
	1.5 1.6	Comparison of OSI and TCP/IP model		
	1.7	Example network: The Internet, X.25, Frame Relay, Ethernet, VoIP, NGN and MPLS, xDSL		
2	Physical Layer			
	2.1 2.2 2.3	Network monitoring: delay, latency, throughput		
	2.4	switching system (Networking of Telephone exchanges)		
3	Dat	a Link Layer		
	3.1 3.2	Framing		
	3.3	Error Detection and Corrections		
	$3.4 \\ 3.5$	Flow Control		
	3.6	The Medium Access Sub-layer		
	3.7 3.8	The channel allocation problem		
	3.9	Ethernet		
		Networks: FDDI, ALOHA, VLAN, CSMA/CD, IEEE 802.3(Ethernet), 802.4(Token Bus), 802.5(Token Ring), and 802.1(Wireless LAN)		
		Numericals		
4	Net 4.1	work Layer Internet working and devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway 10		
	4.2	Addressing: Internet address, classful address		
	4.3 4.4	Subnetting		
	4.5	Routing Protocols: RIP, OSPF, BGP, Unicast and multicast routing protocols 10		
	4.6	Routing algorithms: shortest path algorithm, flooding, distance vector routing, link state routing; Protocols: ARP, RARP, IP, ICMP		
5	Trai	Transport Layer 1		
	5.1	The transport service: Services provided to the upper layers		
	5.2 5.3	Transport protocols: UDP, TCP		
	5.4	Connection establishment, Connection release		
	5.5 5.6	Flow control and buffering		
	5.7	Congestion control algorithm: Token Bucket and Leaky Bucket Transport Layer		

6	Application Layer		
	6.1	Web: HTTP and HTTPS	12
	6.2	File Transfer: FTP, PuTTY, WinSCP	12
	6.3	Electronic Mail: SMTP, POP3, IMAP	12
	6.4	DNS	12
	6.5	P2PApplications	12
	6.6	Socket Programming	12
	6.7	Application server concept proxy caching, Web/Mail/DNS server optimization	12
	6.8	Concept of traffic analyzer: MRTG, PRTG, SNMP, Packet tracer, Wireshark	12
7	Intr	roduction to IPV6	13
	7.1	IPv6- Advantages	13
	7.2	Packet formats	13
	7.3	Extension headers	13
	7.4	Transition from IPv4 to IPv6: Dual stack, Tunneling, Header Translation	13
	7.5	Multicasting	13
8	Net	work Security	14
	8.1	Properties of secure communication	14
	8.2	Principles of cryptography: Symmetric Key and Public Key	14
	8.3	RSA Algorithm	14
	8.4	Digital Signatures	14
	8.5	Securing e-mail (PGP)	14
	8.6	Securing TCP connections (SSL)	14
	8.7	Network layer security (IPsec, VPN)	14
	8.8	Securing wireless LANs (WEP)	14
	8.9	Firewalls: Application Gateway and Packet Filtering, and IDS	14

1 Introduction to Computer Network

(5 Hours/8 Marks)

1.1 Computer Network & Uses

- 1. What are the applications of computer networks? [2] (76 Ba)
- 2. What is computer network? [1] (76 Ba) [2] (71 Shr)
- 3. What are the advantages of computer network? [3] (72 Ma)
- 4. Explain five instances of how networks are a part of your life today. [5] (72 Ch)

1.2 Networking model: client/server, P2P, active network

- 1. Discuss Client-Server model and Peer-to-Peer model. [4] (81 Ba)
- 2. How does client-server model work? [3] (73 Ma)
- 3. What are the features of Client/Server Architecture? [4] (70 Ch, 76 Ash)
- 4. Draw the architecture for Client/Server network model. [2] (75 Ch)
- 5. Explain briefly the architecture for peer-to-peer network model with example.
 | → How does P2P works? Explain.
 [3] (77 Ch)
 [6] (80 Bh)
 - \rightarrow Explain in details about P2P network model with supportive examples. [6] (75 Ch)
- 6. Distinguish between Client-Server network and Peer-Peer network. [3] (74 Ch) [5] (73 Ma)

1.3 Network Software, Protocols and Standards

- 1. Define protocol. [1] (**76 Ch,72 Ash**) [4] (bo79 Ch)
- 2. Explain about connection oriented and connection less service. [3] (71 Bh)

 3. Montion services primitives for implementing connection oriented services [2] (75 Ash)
- 3. Mention service primitives for implementing connection oriented service. [2] (75 Ash)
- 4. What do you mean by network architecture? [2] (71 Ch)
- 5. Why do you need layering? [2] (80 Bh)
- 6. Why do we need layered protocol architecture? [2] (72 Ash)
- 7. What are the reasons for using layered network architecture? [2] (**76** Ch) [3] (**73** Ch, 75 Ba) 8. Why layering is important? [2] (**79** Bh, 75 Ash) [4] (**73** Bh)
- 9. What are the layer design issues? [2] (79 bh, 75 Ash) [4] (73 bh)
- 10. Explain design issues for layers in detail. [4] (75 Ash)
- 11. Explain about the design issues of Computer Network software. [5] (74 Bh)

1.4 OSI model and TCP/IP model

- 1. Explain Open System Interconnection (OSI) model. [5] (74 Ch, 71 Ma)
 - \rightarrow Explain OSI reference model with suitable diagram. [6] (80 Ba)
- ⇒ Explain the different layers of OSI reference Model with appropriate figure. [5] (76 Bh)
- 2. What is the significance of OSI layer? [2] (74 Ash)
- \rightarrow What are the reasons for using layered protocol? [3] (75 Bh)
- 3. Explain in which level of OSI layer following tasks are done. [3] (72 Ch)
 - (i) Error detection and correction (ii) Encryption and Decryption of data
 - (iii) Logical identification of computer (iv) Point-to-point connection of socket
- (v) Dialogue control (vi) Physical identification of computer
 4. Explain each layer of TCP/IP protocols architecture in detail. [5] (72 Ash)
- 5. List out the functions of physical lapyer in TCP/IP reference model. [2] (72 Ka)

1.5 Comparison of OSI and TCP/IP model

- 1. Differentiate between TCP/IP and OSI Model.
 - [3] (76 Bh,71 Ch, 71 Ma) [4] (81 Ba) [5] (77 Ch,76 Ch,72 Ch, 76 Ba, 75 Ba, 73 Shr, 72 Ma) [6] (71 Shr) \rightarrow Explain OSI model and compare OSI with TCP/IP reference model. [6] (79 Bh)
- 2. How do you differentiate OSI's network and transport layer with TCP/IP's Network and transport layer? [4] (79 Ch)

1.6 Data Encapsulation

1. What is data encapsulation? [2] (80 Ba)

- 2. How the process of data encapsulation occurs in transmission mode described by seven layers of OSI model. [5] (75 Bh)
- 3. What are headers and trailers and how do they get added and removed?

[4] (76 Ash, 70 Ch) [5] (**73 Ch**)

1.7 Example network: The Internet, X.25, Frame Relay, Ethernet, VoIP, NGN and MPLS, xDSL

- 1. Explain X.25 Network with its key feature. [3] (71 Ch)
- 2. Define Frame Relay in detail. [3] (73 Shr)
- 3. What is Internet work? [2] (71 Bh)
- 4. Explain the function of following of following devices in brief: [6] (73 Bh)
 - (i) Hub (ii) Bridge (iii) Router
- 5. You are assigned to design a network infrastructure for a 3-start hotel. Recommend a network solution with hardwares and softwares in current trend that can be used in the hotel. Make necessary assumptions and justify your recommendation with logical arguments where possible.[8] (72 Ka)

2 Physical Layer

1.

2.

(5 Hours/8 Marks)

2.1 Network monitoring: delay, latency, throughput

Define:	
\rightarrow Delay	[1] (80 Bh , 80 Ba)
\rightarrow Bandwidth	[1] (80 Bh,76 Bh)
\rightarrow MAC address	[1] 80 Bh
\rightarrow Throughput	[1] (76 Bh , 80 Ba, 76 Ba)
\rightarrow Latency	[1] (76 Ba)
What are the causes of packet delay?	[2] (76 Bh)

2.2 Transmission media: Twisted pair, Coaxial, Fiber optic, Line-of-site, Satellite

1.	. What is transmission medium? [1] (76 Ch,71 Bh) [2] (71 Shr) [3	[3] (74 Ch)
2.		(72 Ash)
3.	. Explain different types of transmission media.	[6] (72 Ka)
	$ \rightarrow$ Explain about any three transmission media in detail.	6] (71 Shr)
4.	. What are the factors to be considered while selecting transmission media? [2] (79	Bh , 81 Ba)
5.	Explain twisted pair cable with its practical applications. [4	[4] (77 Ch)
6.	. Explain optical fiber cable in detail with its advantages and disadvantages.	[6] (81 Ba)
7.	Explain different transmission medium with their merits and demerits.	[6] (76 Ch)
8.	. Explain the characteristics of twisted pair, coaxial and optical fiber cable.	[6] (76 Ba)
9.	Explain about any two guided transmission media in detail. [6]	[6] (74 Ash)
10.	. List guided and unguided media used in computer network.	2] (73 Ma)
11.	Explain Ethernet cable standards.	6] (73 Ma)
12.	. Compare different types of guided transmission media with appropriate figures.	[6] (80 Ba)
13.	. Differentiate between wired and wireless media with their benefits and drawbacks.	[3] (75 Ba)
14.	. Compare among Twisted Pair, Coaxial cable and Fiber optic. [5	[6] (74 Ch)
15.	Why, now a day all communication media like twisted pair, co-axial pair even wireless media ar	
	replaced by optical fibre? Justify your answer with necessary diagram, working principle and	
	transmission mechanism. [7	7] (71 Bh)
16.	. Explain various cabling techniques used in IEEE 802.3 standard.	4] (71 Ma)

2.3 Multiplexing, Circuit switching, Packet switching, VC Switching, Telecommunication switching system (Networking of Telephone exchanges)

1.	What is switching?	[1] (75 Ch , 74 Ash) [2] (74 Bh ,	73 Shr)[3] (75 Bh)
2.	What are the various switching techniques?		[2] (75 Ch)
	$ \!\rightarrow\! \text{Explain}$ about various switchings with pr	actical implementation example.	[6] (70 Ch)
3.	What do you mean by data switching?		[2] (70 Ch)
4.	Define multiplexing.		[1] (74 Ash)
5.	Explain different types of multiplexing used	in communication system.	[4] (72 Ma)
6.	Compare switching with multiplexing.		[2] (73 Shr)
7.	Elaborate packet switching with a proper dia	agram.	[5] (75 Ch)

- 8. (Assumed) Discuss how data or packets goes through switch to switch in Frame Relay Virtual-circuit network. [5] (80 Bh)
- 9. Differentiate between datagram switching and virtual circuit switching approach.

[4] (72 Ma) [6] (**79 Bh**)

 \rightarrow with suitable diagram.

[6] (**74 Bh**)

- 10. Differentiate between circuit switching and packet switching.
 - [3] (**75** Bh, 75 Ash) [4] (**77** Ch, **76** Bh, **72** Ash)
 - \rightarrow Compare and which would you prefer and why?

[2+2] (71 Ma)

11. Discuss Packet and Circuit switching concepts with example.

[5] (75 Ba)

2.4 ISDN: Architecture, Interface, and Signaling

- 1. What is ISDN? [2] (**71 Ch**)
- 2. Explain about the ISDN architecture in detail with example. [6] (71 Ch)
- 3. Why the telephone companies developed ISDN? [2] (76 Ash)
- 4. Explain the working principle of ISDN with its interface and functional group. [6] (76 Ash)
- 5. Explain ISDN channels with architecture. [5] (75 Ash)
- 6. Explain the E1 Telephone hierarchy system. [4] (73 Shr)

3 Data Link Layer

(5 Hours/8 Marks)

3.1 Functions of Data link layer

- 1. How does data link apply flow control technique in network communication? Explain with example.
 - [6] (**79 Ch**)

- 2. What are the services provided by data link layer?
- [2] (80 Bh, 79 Bh) [3] (77 Ch)
- 3. What are the different sub-layers of data link layer?

[2] (76 Ba)

4. Explain the functions of each sub-layer.

[6] (76 Ba)

5. State the various design issues for the data link layer?

[3] (75 Ash)

3.2 Framing

1. What do you mean by Framing?

[2] (**79 Ch**)

2. Compare Flag byte with byte stuff and bit stuffing in Framing.

[2] (81 Ba)

- 3. Describe the various framing techniques at data link layer.
- [2] (**75 Ch**) [6] (**75 Ch**)

4. Explain any one method of framing with example.

[6] (**75** Ch)

3.3 Error Detection and Corrections

1. How can CRC be used to detect error?

- [6] (**80** Bh)
- 2. Detect the error if any using CRC, if received fram is 0101101101 and generator polynomial is 1001. [6] (81 Ba)
- 3. Explain Selective repeat and Go back N ARQ with example.

[6] (80 Ba)

3.4 Flow Control

- 1. (Assumed) Differentiate between datagram switching and virtual circuit switching approach.
 - [6] (**79 Bh**)

2. What is piggybacking?

[3] (75 Ash)

3.5 Examples of Data Link Protocol, HDLC, PPP

3.6 The Medium Access Sub-layer

1. (Assumed) Through we have MAC address, why do we use IP address to represent the host in networks? Explain your answer. [3] (72 Ch)

3.7 The channel allocation problem

1. Why do you think that static channel assignment is not efficient?

[2] (**73** Ch)

3.8 Multiple Access Protocols

1. What are multiple access protocols?

[2] (**76** Bh,**75** Ch)

3.9 Ethernet

1. Explain Ethernet frame with function of each field.

[5] (**77** Ch)

3.10 Networks: FDDI, ALOHA, VLAN, CSMA/CD, IEEE 802.3(Ethernet), 802.4(Token Bus), 802.5(Token Ring), and 802.1(Wireless LAN)

1. What is ALOHA system? [2] (**79** Ch) \rightarrow Explain different types of ALOHA. [4] (75 Ba) 2. How does CSMA-CD works? Explain. [4] (**76** Ch) [6] (**79** Ch) \rightarrow with figure. [8] (76 Ash)3. Why is CSMA-CD not suitable for wireless medium? Explain. [2] (**76 Ch**) 4. Explain about operation of Carrier Sense Multiple Access with Collision Detection. [6] (**73** Ch) 5. What is collission? How is it occurred? [1+1] (**76** Ch) 6. How the possibility of collision is reduced in IEEE 802.3 and IEEE 802.11? Explain. [6] (76 Ch) 7. Differentiate between Token Bus and Token Ring networks. [4] (75 Ba)

3.11 Numericals

1. A frame having size of 1000 bits is transmitted through a channel having capacity of 200 KB/Sec. Calculate the percentage of idleness of the channel assuming the round trip time of the channel to be 20ms. Is the channel efficient? What is your recommendation further?

[5+1+4] (73 Bh)

- 3. A bit string 01111011111101111110 needs to be transmitted at the data link layer. What is the string actually transmitted after bit stuffing? [2] (75 Ash)

4 Network Layer

(9 Hours/16 Marks)

- 4.1 Internet working and devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway
- 4.2 Addressing: Internet address, classful address
 - 1. What are IPv4 address classes?

[2] (**79 Ch**)

4.3 Subnetting

- 1. How do you subnetwork a class C network block to following subnets of 41,14,102, and 21 computers respectively? Explain with example. [8] (79 Ch)
- 4.4 Routing: techniques, static vs. dynamic routing, routing table for classful address
- 4.5 Routing Protocols: RIP, OSPF, BGP, Unicast and multicast routing protocols
- 4.6 Routing algorithms: shortest path algorithm, flooding, distance vector routing, link state routing; Protocols: ARP, RARP, IP, ICMP

5 Transport Layer

(5 Hours/8 Marks)

- 5.1 The transport service: Services provided to the upper layers
- 5.2 Transport protocols: UDP, TCP
- 5.3 Port and Socket
- 5.4 Connection establishment, Connection release
- 5.5 Flow control and buffering
- 5.6 Multiplexing and de-multiplexing
- 5.7 Congestion control algorithm: Token Bucket and Leaky Bucket Transport Layer

6 Application Layer

(5 Hours/8 Marks)

- 6.1 Web: HTTP and HTTPS
- 6.2 File Transfer: FTP, PuTTY, WinSCP
- 6.3 Electronic Mail: SMTP, POP3, IMAP
- 6.4 DNS
- 6.5 P2PApplications
- 6.6 Socket Programming
- 6.7 Application server concept proxy caching, Web/Mail/DNS server optimization
- 6.8 Concept of traffic analyzer: MRTG, PRTG, SNMP, Packet tracer, Wireshark.

7 Introduction to IPV6

(4 Hours/8 Marks)

- 7.1 IPv6- Advantages
- 7.2 Packet formats
- 7.3 Extension headers
- 7.4 Transition from IPv4 to IPv6: Dual stack, Tunneling, Header Translation
- 7.5 Multicasting

8 Network Security

(7 Hours/16 Marks)

- 8.1 Properties of secure communication
- 8.2 Principles of cryptography: Symmetric Key and Public Key
- 8.3 RSA Algorithm
- 8.4 Digital Signatures
- 8.5 Securing e-mail (PGP)
- 8.6 Securing TCP connections (SSL)
- 8.7 Network layer security (IPsec, VPN)
- 8.8 Securing wireless LANs (WEP)
- 8.9 Firewalls: Application Gateway and Packet Filtering, and IDS