Khovanov homology via immersed curves

Geography and connection to HMS

Artem Kotelskiy Joint work with L. Watson and C. Zibrowius

Indiana University

Khovanov homology

$$\mathsf{Knot}\ \mathcal{K} \xrightarrow{[\mathsf{Khovanov'00}]} \overline{\mathsf{Kh}(\mathcal{K})}\ \mathbb{Z} \oplus \mathbb{Z}_q\text{-graded } \mathbf{k}\text{-vector space}$$

- Combinatorial construction
- Kh(K) categorifies Jones polynomial
- Kh(K) is the reduced version
- Examples: $\widetilde{Kh}(\bigcirc) = \mathbf{k}$, $\widetilde{Kh}(\bigcirc) = \mathbf{k}^3$, $\widetilde{Kh}(\bigcirc) = \mathbf{k}^5$
- Major application: integer-valued concordance invariant s(K), used to combinatorially prove $u(T(p,q)) = \frac{1}{2}(p-1)(q-1)$ [Rasmussen'04]

Bar-Natan homology

(aka S^1 -equivariant Khovanov homology)

Khovanov homology

Bar-Natan homology [Bar-Natan'05]

- working over k[H]
- differential is deformed

Remark: The two are connected via mapping cone:

$$\widetilde{\mathsf{Kh}}(K) = \mathsf{H}_*[\widetilde{\mathsf{BN}}(K) \xrightarrow{H} \widetilde{\mathsf{BN}}(K)]$$

Symplectic Khovanov homology

- Kh(K) defined combinatorially \implies Q. Are there geometric / topological viewpoints on Khovanov homology?
- Algebro-geometric interpretation [Cautis-Kamnitzer'08]
- Gauge-theoretic proposal [Witten'16]
- Floer-theoretic interpretation of $Kh(K; \mathbb{Q})$ [Seidel-Smith'06, Manolescu'06, Abouzaid-Smith'16'19]

Input: n-bridge decomposition of a knot

Output: $Kh(K) \cong HF(L(T_1), L(T_2))$

Shifting gears

0000

Natural question: what are the implications of symplectic Khovanov homology?

One answer: geometric approach towards equivariant Khovanov homology [Seidel-Smith'10, Hendricks-Lipshitz-Sarkar'15].

Difficulty: the moduli space $\mathcal{M}(\mathcal{S}_{2n})$ is complicated.

So let's change the perspective:

- Assume that n=2 in $K=T_1\cup_{S_{2n}}T_2$
- Do not require T_1 , T_2 to be trivial

Goal: interpret BN(K) and Kh(K) as wrapped Floer homology of immersed curves in S_4 .

Remark: dim(S_4) = 2 is lower than 8 or 4.

Reason: we work on the reduced S^1 -equivariant level.

Curve invariants

Khovanov homology

Input: pointed 4-ended tangle $T: I^* \sqcup I \hookrightarrow D^3$. E.g. (3)

Output: two tangle invariants $\gamma_{BN}(T)$, $\gamma_{Kh}(T)$, each a collection of bigraded oriented immersed curves with local systems on $\mathcal{S}_{A}^{*}=\partial(D^{3},T).$

Construction: later.

Examples:

Properties of curve invariants

Khovanov homology

- **1** $\gamma_{\text{RN}}(T)$ is of the form {one arc} \cup {compact curves}
- \circ $\gamma_{\kappa_h}(T)$ consists of only {compact curves}
- **1** MCG naturality in char. two: $\sigma(\gamma_{\text{RN}}(T; \mathbb{F}_2)) = \gamma_{\text{RN}}(\sigma(T); \mathbb{F}_2)$
 - ⇒ for rational tangles:
 - $\gamma_{\text{\tiny PN}}(R;\mathbb{F}_2)$ is obtained from the tangle $R:I^*\sqcup I\hookrightarrow D^3$ by pushing the unmarked component I into the boundary sphere
 - $\gamma_{\mathsf{Kh}}(R;\mathbb{F}_2)$ is obtained by substituting $\gamma_{\mathsf{Rh}}(R;\mathbb{F}_2)$ by a figure eight
- Curve invariants do depend on the field k

Main theorem

Theorem (K-Watson-Zibrowius'19)

Suppose a knot K is decomposed along a pointed 4-punctured sphere, that is $K = T_1 \cup_{\mathcal{S}_4^*} T_2$. Then its reduced Bar-Natan homology and reduced Khovanov homology (as bigraded \mathbf{k} -vector spaces) are isomorphic to wrapped Floer homology of the curves associated to the two tangles:

$$\widetilde{\mathsf{BN}}(K) \cong \mathsf{HF}\left(\gamma_{\mathsf{BN}}(T_1), \gamma_{\mathsf{BN}}(T_2)\right)$$
 $\widetilde{\mathsf{Kh}}(K) \cong \mathsf{HF}\left(\gamma_{\mathsf{Kh}}(T_1), \gamma_{\mathsf{BN}}(T_2)\right)$

Example:

More examples

Remark: third type of immersed curve \mapsto unreduced Kh(K) is obtained via Floer homology as well

Step 1. 4-ended tangle $T \xrightarrow{\left[\begin{array}{c} \mathsf{Bar-Natan'05,} \\ \mathsf{Khovanov'02,\ Manion'17} \end{array}\right]} \left[\!\!\left[T\right]\!\!\right]_{/\ell} \left(\begin{array}{c} \mathsf{considered} \\ \mathsf{up\ to\ homotopy} \end{array}\right)$ Proposition. $\left[\!\!\left[T\right]\!\!\right]_{/\ell}$ is a twisted complex over deformed reduced arc algebra, described by the quiver below:

$$\mathcal{B} = \mathbf{k} \Big[D_1 \Big] \Big/ (D_j S_i = 0 = S_i D_j)$$

$$\mathbf{Step 2.} \quad \underbrace{\mathsf{Key observation}}_{S_2} \Big] \Big/ (D_j S_i = 0 = S_i D_j)$$

$$\mathcal{B} \cong \mathsf{End}_{\mathcal{W}(S_4^*)} (\mathbf{a}^\circ \oplus \mathbf{a}^\bullet) = \bigoplus_{i,j \in \{\circ,\bullet\}} \mathsf{CF}(\mathbf{a}^i, \mathbf{a}^j)$$

$$\mathsf{Note: here we use the choice of } *.$$

Construction of $\gamma_{\scriptscriptstyle \mathsf{BN}}(T)$ + pairing theorem

Via immersed curves

0000000

Step 3.
$$A(T)^{\mathcal{B}} \longleftrightarrow \gamma[A(T)] = \gamma_{\mathsf{BN}}(T)$$

<u>Theorem.</u> (Haiden-Katzarkov-Kontsevich'14) Homotopy classes of twisted complexes over the wrapped Fukaya category of a surface are in 1-1 correspondence with immersed curves equipped with local systems.

- We reproved it geometrically, using the train-track approach from [Hanselman-Rasmussen-Watson'17]
- ⇒ curve invariants are computable [Zibrowius-Chhina'19]
- Further classified morphism spaces:
- $\mathsf{Mor}(\mathsf{N}_1^\mathcal{B},\mathsf{N}_2^\mathcal{B}) \simeq \mathsf{CF}(\gamma[\mathsf{N}_1],\gamma[\mathsf{N}_2]) \implies \mathsf{pairing} \ \mathsf{theorem}$

Applications

Construction of γ_{κ_h}

Define a central element $|H := D_1 + D_2 + S_1S_2 + S_2S_1|$ in

Via immersed curves

000000

Define a central element
$$H := D_1 + D_2 + S_1S_2 + S_2S_1$$
 in
$$\mathcal{B} = \mathbf{k} \left[D_1 \right] / (S_i D_j = 0)$$

$$D_2 = \mathbf{k} \left[D_1 \right] / (S_i D_j = 0)$$

 $\mathcal{B} = \mathbf{k} \Big[D_1 \Big] \Big/ (D_j S_i = 0)$

 $\xrightarrow{\text{cube of resolutions}} \|T\|_{/\ell} \xrightarrow{\text{$\langle \cdot \rangle } \mathbf{a}^{\circ} } \mathbb{Z} \leftrightarrow \mathbf{a}^{\bullet} \to \mathbb{Z}(T)^{\mathcal{B}} \xrightarrow{\text{[HKK]}}$ mapping cone↓ $\left[\mathcal{A}(T) \xrightarrow{H \cdot \mathsf{id}} \mathcal{A}(T) \right]^{\mathcal{B}} \xrightarrow{[\mathsf{HKK}]} \gamma_{\mathsf{Kh}}(T)$

$$\begin{bmatrix} \mathbf{a}^{\circ} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{a}^{\circ} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{a}^{\circ} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{a}^{\circ} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}^{\circ} \xrightarrow{D_2 + S_2 S_1} \\ \mathbf{a}^{\circ} \end{bmatrix}^{\mathcal{B}} \longrightarrow \begin{bmatrix} \mathbf{a}^{\circ} \end{bmatrix}$$

Tangle replacement questions

Goal: apply immersed curves to tangle replacement questions.

Conjecture 1.

 $\mathsf{Kh}(K;\mathbb{Q})$ is preserved by mutation.

Conjecture 2. (Generalized Cosmetic Crossing Conjecture)

Assuming the equator on the right is not compressible, all the knots in the family $K_n = T(2n+1)$ are different.

The key is to study **the geography question**:

Which immersed curves can be components of $\gamma_{Kh}(T)$?

Geography of curve invariants

- $\bullet \text{ Consider the cover } (\mathbb{R}^2 \smallsetminus \mathbb{Z}^2) \to (\mathcal{T}^2 \smallsetminus \mathsf{4pt}) \xrightarrow{\text{elliptic involution}} \mathcal{S}_4^*$
- ullet Will study immersed curves $\gamma \hookrightarrow \mathcal{S}_4^*$ via their lifts $\widetilde{\gamma} \hookrightarrow \mathbb{R}^2 \smallsetminus \mathbb{Z}^2$

• γ is called <u>linear</u> if $\tilde{\gamma}$ can be isotoped so that $\tilde{\gamma}'(t)$ is arbitrarily close to constant for all t

Theorem (K-Watson-Zibrowius'20; in progress)

If γ is a component of $\gamma_{\mathsf{Kh}}(T; \mathbb{F}_2)$, then γ is linear.

In other words, curves organize themselves along lines.

Examples + Proof via fishtails

Example: Curves in $\gamma_{\rm Kh}$ are linear; $\gamma_{\rm BN}$ is not.

Proof:

- ullet Linearity \iff No $> 360^\circ$ wrapping \iff (\star) Fishtails cancel
- ullet The proof of (\star) is algebraic. Translating to symplectic geometry:
- $\gamma_{\text{Kh}} = [\gamma_{\text{BN}} \xrightarrow{H} \gamma_{\text{BN}}] \implies \gamma_{\text{Kh}}$ is unobstructed in $S \setminus * = S_4^* \cup \bullet \stackrel{\bullet}{\bullet}$, i.e. fishtails enclosing three punctures $\bullet \stackrel{\bullet}{\bullet}$ cancel.

Unobstructedness in S_3 via extension property

(proof continued)

We have: $\gamma_{\rm Kh}$ is unobstructed in $\mathcal{S}_4^* \cup \bullet \bullet$ (Not true for $\gamma_{\rm BN}$)

Goal: both $\gamma_{\scriptscriptstyle{\mathsf{BN}}}, \gamma_{\scriptscriptstyle{\mathsf{Kh}}}$ are unobstructed in $\mathcal{S}_3 = \mathcal{S}_4^* \cup *$

Idea: to prove that γ_{BN} is an object of $\mathcal{W}_{\text{def}}(\mathcal{S}_3)$ deformed by the divisor $*=U^2$, i.e. to construct an extension

$$\boxed{ \exists (T)^{\mathcal{B}^*[U]} \middle| \xrightarrow{U=0} \exists (T)^{\mathcal{B}} \xrightarrow{[\mathsf{HKK}]} \gamma_{\mathsf{BN}}, \quad \mathsf{where}}$$

- $ullet \ \mathcal{B} \coloneqq \mathsf{End}_{\mathcal{W}(\mathcal{S}_4^*)}(\mathbf{a}^\circ \oplus \mathbf{a}^ullet)$
- $\mathcal{B}^*[U] := \operatorname{End}_{\mathcal{W}_{\operatorname{def}}(\mathcal{S}_3)}(\mathbf{a}^\circ \oplus \mathbf{a}^\bullet)$ is the deformed A_∞ algebra, e.g. $\mu_4(D_2, S_1, D_1, S_2) = U^2$ since the rectangle covers * once.

[Haiden-Katzarkov-Kontsevich'14]

Connection to HMS

$$\underbrace{M(T)^{\mathcal{A}} \xrightarrow{(\mathsf{HMS})} \boxed{ \mathcal{I}(T)^{\mathcal{B}^*[U]}} \xrightarrow{U=0} \mathcal{I}(T)^{\mathcal{B}} \xrightarrow{[\mathsf{HKK}]} \gamma_{\mathsf{BN}}}$$

Question: How to construct $\coprod(T)^{\mathcal{B}^*[U]}$? Two steps:

(1) using matrix factorization framework [Khovanov-Rozansky'08], construct a twisted complex $M(T)^A$, where

$$\mathcal{A} = \mathsf{End} \left(\begin{array}{ccc} \mathbb{F}_2[\mathsf{x}, \mathsf{y}, \mathsf{z}] & \xrightarrow{\mathsf{x}} & \mathbb{F}_2[\mathsf{x}, \mathsf{y}, \mathsf{z}] & \oplus & \mathbb{F}_2[\mathsf{x}, \mathsf{y}, \mathsf{z}] \end{array} \right)$$

is a dg-enhancement of ${\cal B}$ (thanks to W. Ballinger)

(2) obtain $\mathcal{A}(T)^{\mathcal{B}^*[U]}$ via the HMS $(\mathbb{A}^3, xyz) \longleftrightarrow \mathcal{S}_3$:

$$MF(\mathbb{A}^3, xyz) \overset{[Orlov'04]}{\simeq} D_{sg}(xyz=0) \overset{[adouzaid-Auroux-Griov'13]}{\simeq} \mathcal{W}(\mathcal{S}_3)$$
 $\Longrightarrow \mathcal{A} \simeq \mathcal{B}^*[U]/(U=1) \text{ (thanks to Y. Lekili)}$

Remark: Method from (1) provides a natural A_{∞} structure on all arc algebras \mathcal{H}_n

Mutation questions

Conjecture 1.

 $\mathsf{Kh}(K;\mathbb{Q})$ is preserved by mutation.

Theorem. (K-Watson-Zibrowius'19) Suppose a 4-ended tangle T has horizontal connectivity Then, mutating tangle T preserves the underlying curves $\gamma_{\rm BN}(T), \gamma_{\rm Kh}(T)$, but changes the local system for each component γ by multiplying $\times (-1)^{\#\gamma \cap c}$.

Corollaries.

- ullet In characteristic two, Bar-Natan homology $\mathsf{BN}(K;\mathbb{F}_2)$ is preserved by mutation. (Known for $\mathsf{Kh}(K,\mathbb{F}_2)$ [Wehrli'10, Bloom'10])
- Rasmussen's invariant $s^{\mathbf{k}}(K)$ is preserved by mutation for any \mathbf{k} .

What is left to prove Conjecture 1:

- Pinning down signs in MCG naturality and geography results
- \bullet Proving that all components of $\gamma_{\mathsf{Kh}}(\mathcal{T})$ look as follows: (up to

The GCCC holds asymptotically

Khovanov homology

Family $\{K_n\}_{n\in\mathbb{Z}}$

Horizontally split.

Conjecture 2. (Generalized Cosmetic Crossing Conjecture) Assuming T is not horizontally split, all the knots in the family $\{K_n\}$ are different.

Question. What happens for $n \gg 0$? (J. Wang)

Theorem. (K-Lidman-Moore-Watson-Zibrowius'20; in progress) If T is not horizontally split, then there exists N such that the knots $\{K_n\}_{|n|\geqslant N}$ are all different.

Main ingridients:

- (1) comparing $\operatorname{rk} Kh(K_n)$ using immersed curves
- (2) split-tangle detection result:

Split-tangle detection

Horizontally split.

Theorem. (K-Lidman-Moore-Watson-Zibrowius'20; in progress) 4-ended tangle T is horizontally split $\iff \gamma_{Kh}(T)$ can be homotoped into the red neighborhood indicated above.

The proof is based on a spectral sequence between annular Khovanov and annular instanton Floer homologies [Xie'18].

Remark: Asymptotic GCCC cannot be proved using knot Floer homology.

Plan: Use gradings on $\widetilde{\mathsf{Kh}}$ to obtain stronger results towards GCCC.

Khovanov homology

Geography and connection to HMS