

01076009

องค์ประกอบคอมพิวเตอร์และภาษาแอสเซมบลี Computer Organization and Assembly Language

- นอกจากการประมวลผลเลขจำนวนเต็มแล้ว การประมวลผลเลขทศนิยมหรือจำนวนจริง
 ก็มีความจำเป็นอย่างมาก ทุกภาษาก็มีการกำหนดตัวแปรเป็น float
- บิตด้านขวามีค่าเป็นกำลังสองของบิตด้านซ้ายเสมอ

$1/2 = 2^{-1} = 0.5$	$1/512 = 2^{-9} = 0.001953125$
$1/4 = 2^{-2} = 0.25$	$1/1024 = 2^{-10} = 0.0009765625$
$1/8 = 2^{-3} = 0.125$	$1/2048 = 2^{-11} = 0.00048828125$
$1/16 = 2^{-4} = 0.0625$	$1/4096 = 2^{-12} = 0.000244140625$
$1/32 = 2^{-5} = 0.03125$	$1/8192 = 2^{-13} = 0.0001220703125$
$1/64 = 2^{-6} = 0.015625$	$1/16384 = 2^{-14} = 0.00006103515625$
$1/128 = 2^{-7} = 0.0078125$	$1/32768 = 2^{-15} = 0.000030517578125$
$1/256 = 2^{-8} = 0.00390625$	1/65536 = 2-16 = 0.0000152587890625

Floating Point Example

Value Representation

5-3/4 101.11₂

2-7/8 10.111₂

63/64 0.111111₂

• ข้อสังเกตุ

- เมื่อ shifting right จะเท่ากับการหารด้วย 2
- เมื่อ shifting left จะเท่ากับการคูณด้วย 2
- ตัวเลขที่อยู่ในรูป 0.111111...₂ เมื่อเพิ่มจำนวนบิตไปเรื่อยๆ จะมีค่าเข้าใกล้ 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$

Exercise

• จงแปลง 1.0001₂ ให้เป็นเลขฐาน 10

$$= 1,.001 = 1 \times 2 - 3 = .125$$

- = 1.125
- จงแปลง 3.90625 ให้เป็นเลขฐาน 2

```
= 11, .90625 = 0.5 + 0.25 + 0.125 + 0.03125 = 0.11101
```

- = 11.11101
- จงแปลง 1.11111₂ ให้เป็นเลขฐาน 10

$$= 1, .11111=0.5+0.25+0.125+0.0625+0.03125$$

= 1.96875

- ข้อจำกัด
 - สามารถแทนค่าตัวเลขได้เฉพาะที่เขียนในรูป x/2^k ได้เท่านั้น
 - ตัวเลขบางค่าที่เป็นทศนิยมไม่รู้จบ ไม่สามารถแทนได้

Value	Representation
1/3	$0.01010101[01]{2}$
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011] ₂

Floating Point

• การแทนทศนิยมมีหลากหลายแบบ แต่เพื่อให้เป็นแบบเดียวกัน คอมพิวเตอร์จะใช้ การแทนที่เรียกว่า Normalized scientific notation ประกอบด้วย ตัวเลข 1 หลักหน้าจุด ที่เหลืออยู่หลังจุด และตามด้วยเลขยกกำลัง เช่น 3.5 x 10⁹

$$1.010001 \times 2^{5}_{\text{two}} = (1 + 0 \times 2^{-1} + 1 \times 2^{-2} + ... + 1 \times 2^{-6}) \times 2^{5}_{\text{ten}}$$

 การกำหนดรูปแบบที่เป็นมาตรฐาน จะทำให้การแลกเปลี่ยนข้อมูลระหว่างเครื่อง ทำได้ง่าย เครื่องคอมพิวเตอร์จึงมักใช้มาตรฐาน IEEE 754 ในการกำหนดว่าจะ เก็บเลขทศนิยมอย่างไร

IEEE 754

Sign	Exponent	Fraction	
1 bit	8 bits	23 bits	
S	Е	F	

- ค่าที่เก็บ = $(-1)^S \times F \times 2^E$
- หากเพิ่มจำนวนบิตใน Exponent จะทำให้ขนาดของข้อมูลที่เก็บได้เพิ่มขึ้น (กรณี 8 บิต จะได้ 2⁻¹²⁷ - 2¹²⁸ (ประมาณ 10⁻³⁸ – 10³⁸)
- หากเพิ่มจำนวนบิตใน Fraction จะทำให้สามารถเก็บค่าได้ละเอียดมากขึ้น
- เนื่องจากเป็น Normalize Number ดังนั้นตัวเลขจะอยู่ในรูปแบบ 1.xxxx (ฐาน
 2) อย่างแน่นอน ดังนั้นใน IEEE 754 จึงละเลข 1 ออก ดังนั้นค่าที่เก็บจะได้จาก
 (-1)^S x (1+F) x 2^E

IEEE 754

Sign	Exponent	Fraction	
1 bit	8 bits	23 bits	
S	E	F	

- ค่าที่มากที่สุดที่สามารถแทนได้ คือ 2.0 x 2¹²⁸
- ค่าที่น้อยที่สุดที่สามารถแทนได้ คือ 1.0×2^{-127}
- Overflow คือ ตัวเลขที่มากกว่าค่ามากที่สุดที่เก็บได้
- Underflow คือ ตัวเลขที่น้อยกว่าค่าน้อยที่สุดที่เก็บได้
- มากกว่าและน้อยกว่า จะวัดจาก Exponent อย่างเดียว
- แต่จำนวนทศนิยมที่เก็บได้ จะวัดจาก Fraction

IEEE 754

Sign 1 bit		Fraction 52 bits	
S	E	F	

- Double Precision คือ การเก็บเลขทศนิยมโดยใช้พื้นที่ขนาด 64 บิต หรือ
 รีจิสเตอร์ 2 ตัว
- ullet ขอบเขตขนาดของข้อมูล คือ $1.0 imes 2^{-308}$ ถึง $2.0 imes 2^{308}$
- และเนื่องจากขนาดของ Exponent มีค่าเพิ่มขึ้น จึงเก็บเลขทศนิยมได้เพิ่มขึ้นไป ด้วย

Exponent Representation

- บิตแรก จะเป็นบิตเครื่องหมาย
- แต่ในส่วนของ exponent เนื่องจากต้องเก็บทั้งจำนวนบวกและจำนวนลบ แต่จะใช้ 2's Complement ไม่ได้ เนื่องจากไม่สามารถเปรียบเทียบมากกว่า/น้อยกว่าดังนั้นจึงใช้วิธี bias notation เพื่อให้ค่าที่น้อยที่สุดมีค่าเป็น 00...0 และค่าที่มากที่สุดเป็น 11...1
- Bias notation คือ การนำค่าที่เรียกว่า bias ไปลบออกจากค่าใน exponent เพื่อให้ได้ ค่า exponent ที่แท้จริง (ช่วงข้อมูลจะเปลี่ยนเป็น $2.0 \times 2^{127} 1.0 \times 2^{-126}$)
- IEEE 754 single-precision จะใช้ 127 เป็นค่า bias สำหรับ double precision จะ ใช้ค่า bias เป็น 1023

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

Example

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

- ให้แทน -0.75 ในรูปแบบ in single precision
 - Single (1 + 8 + 23)
 - Double (1+ 11 + 52)
- เปลี่ยน 0.75 เป็นฐาน 2 = 2⁻¹+2⁻² = 0.11₂
- Normalize = 1.1 x 2⁻¹ ดังนั้นส่วน fraction = 1000...000 และส่วน exponent = -1+127 = 126 = 0111 1110
- ดังนั้นจะได้ Single Precision ดังนี้
 1 0111 1110 1000...000

Example

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent – Bias)

- ให้แทน 32 ในรูปแบบ in single precision
- เปลี่ยน 32 ให้เป็นฐาน 2 = 100000₂
- เขียนในรูปแบบ Normalize = 1×2^5
- ดังนั้นส่วน Fraction จะเป็น 0000...000
- ส่วน Exponent = 5+127 = 132 = 10000100
- ดังนั้นจะได้ Single Precision ดังนี้ 0 1000 0100 0000...000

Exercise

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

- ให้แทน 0.0625_{10} ในรูปแบบ in single precision
- ให้แทน -26.625 ในรูปแบบ in single precision
 - -26 = 11010, 0.625 = 0.5 + 0.125 = 0.101 = 11010.101
 - 1.1010101 x 2⁴ ส่วน Fraction = 1010101 ส่วน Exponent = 4+127 = 131
 - **—** 1 10000011 1010101...000

Example

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

• ให้หาว่าเลขฐาน 2 ในแบบ Single Precision แทนค่าเลขใด

1 1000 0001 01000...0000

- Singed Bit เป็นลบ
- ส่วนของ Fraction คือ 1.01
- ส่วนของ Exponent = 129-127 = 2
- รวมกัน = $-1.01_2 \times 2^2 = -101_2 = -5$

Exercise

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

• จงแปลง IEEE 754 ต่อไปนี้ ให้เป็นเลขฐาน 10

-3.75

Exponent =
$$162 - 127 = 35$$

Fraction = 1.625

=55834574848

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

- ลองพิจารณาการบวกเลขฐาน 10 ในแบบ Normalize (กำหนดให้เก็บ ทศนิยมเพียง 4 ตำแหน่ง เพื่อให้ง่าย)
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
 - เริ่มต้นต้องปรับส่วนของเลขยกกำลัง (Exponent) ให้มี magnitude เดียวกัน โดย ยึดค่าของเลขยกกำลังที่มากกว่า
 - $-9.999 \times 10^1 + 0.016 \times 10^1$
 - จากนั้นก็บวกเลข 2 จำนวนเข้าด้วยกัน = 10.015×10^{1}
 - และ Normalize = 1.0015 × 10²
 - เนื่องจากกำหนดให้มีทศนิยมเพียง 4 ตำแหน่ง จึงปัดเศษ = 1.002×10^2

- กลับมาพิจารณาการบวกเลข FP ที่เป็นฐาน 2 วิธีการก็จะคล้ายกับฐาน 10
 - $-1.010 \times 2^1 + 1.100 \times 2^3$
 - ปรับส่วนของเลขยกกำลังให้มี magnitude เดียวกัน
 - $-0.0101 \times 2^3 + 1.1000 \times 2^3$
 - ทำการบวก ได้ 1.1101 $\times 2^3$
 - เนื่องจากอยู่ในรูปของ Normalize Form แล้ว จึงไม่ต้อง Normalize อีก
 - ตรวจสอบ Overflow / Underflow ซึ่งกรณีนี้ไม่เกิด
 - ทำการปัดเศษ (Round) ซึ่งกรณีนี้ไม่ต้องทำ
 - จากนั้นแปลงเป็น IEEE 754

0 10000010 11010000000000000000000

- สรุปขั้นตอนการบวกเลขทศนิยม
 - 1. เปรียบเทียบ Magnitude ของส่วนยกกำลัง ถ้าไม่เท่ากันก็ปรับให้ เท่ากัน โดยยึดค่าของเลขยกกำลังที่มากกว่า
 - 2. บวกตัวเลขส่วนที่ไม่ยกกำลังเข้าด้วยกัน
 - 3. ทำการ Normalize
 - 4. ตรวจสอบ Overflow, Underflow -> Exception
 - 5. ปัดเศษ
 - 6. ตรวจสอบว่ายังต้อง Normalize หรือไม่ ถ้าต้องกลับไปที่ข้อ 3

Example

- ให้บวก 0.5₁₀ กับ -0.4375₁₀
- $0.5_{10} = 0.1_2 = 0.1_2 \times 2^0 = 1.000_2 \times 2^{-1}$
- $-0.4375_{10} = -0.0111_2 = -1.110 \times 2^{-2}$
- ขั้นที่ 1 เปลี่ยนให้ magnitude เท่ากัน

$$-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

- ขั้นที่ 2 บวกเข้าด้วยกัน = 0.001×2^{-1}
- ขั้นที่ 3 Normalize และตรวจสอบ Overflow, Underflow = 1.000 x 10⁻⁴
- ขั้นที่ 4 ปัดเศษ (ได้เท่าเดิม)
- $1.000 \times 10^{-4} = 0.0001_2 = 1/2^4 = 1/16 = 0.0625 = 0.5 0.4375$

Exercise

- ให้บวก 5.66015625 และ 8.59375
 - $-5.66015625 = 101.10101001 = 1.0110101001 \times 2^2$
 - $-8.59375 = 1000.10011 = 1.00010011 \times 2^3$
 - เริ่มจากปรับส่วน magnitude โดยปรับมาที่ 2^3
 - ─ = 1.00010011 + 0.10110101 × 2³ (ปัดเศษ)
 - = 1.11001 × 2³
 - เป็นตัวเลขที่ Normalize แล้ว และไม่ Overflow, Underflow
 - **—** 14.25

FP Multiplication

- สำหรับการคูณแล้ว ขั้นตอนจะเป็นดังนี้
 - คำนวณส่วนของเลขยกกำลัง (Exponent)
 - คูณส่วนที่ไม่ยกกำลัง (Significand)
 - Normalize
 - - ปัดเศษ
 - กำหนดเครื่องหมาย

Example

- หาผลคูณของ $1.110_{10} \times 10^{10} \times 9.200_{10} \times 10^{-5}$
- เริ่มจากส่วน exponent : 10+(-5) = 5
- แต่เนื่องจากส่วน exponent เก็บแบบ biased notation ซึ่ง 10+127=137 และ 5+127 = 122 ดังนั้น 137+122 จะได้ 259 ซึ่งไม่สามารถเก็บใน 8 บิตได้ ดังนั้นให้ลบ ออกด้วย 127 = 259-127 = 132 (5+127)
- ต่อไปเป็นการคูณส่วน significand โดย 1.110 x 9.200 = 10.212000
- ดังนั้นผลลัพธ์ = 10.212×10^5 เมื่อ Normalize จะได้ 1.0212×10^6
- เมื่อปัดเศษให้เหลือ 3 หลัก จะได้ 1.021×10^6
- สุดท้ายใส่เครื่องหมายจะได้ +1.021 x 10⁶

Example

- หาผลคูณของ 0.5₁₀ x -0.4375₁₀
- 0.5 = 1.000₂ × 2⁻¹ และ -0.4375₂ = -1.110 × 2⁻²
- เริ่มจากบวกส่วน exponent = -1+ (-2) = -3
- เมื่อเขียนในแบบ biased notation = (-1+127) + (-2+127) 127 =
 (-1-2) + (127 + 127 127) = -3 + 127 = 124
- คูณส่วน significand 1.000x1.110 คูณแบบจำนวนเต็ม = 1110000 จากนั้น ค่อยนำทศนิยมมาใส่ = $1.110000_2 \times 2^{-3}$
- ปัดเศษให้เหลือ 3 บิต = $1.110_2 \times 2^{-3}$
- ตัวเลขข้างต้น Normalize แล้ว และไม่ Overflow หรือ Underflow และไม่จำเป็นต้องปัดเศษอีก จึงได้คำตอบเท่ากับ 1.110₂ x 2⁻³ (-0.21875)

Exercise

- ให้คูณ 5.66015625 และ 8.59375
 - $-5.66015625 = 101.10101001 = 1.0110101001 \times 2^{2}$
 - $-8.59375 = 1000.10011 = 1.00010011 \times 2^3$
 - เริ่มจากบวกส่วน exponent = 2 + 3 = 5
 - เขียนในแบบ biased notation 5+127 = 132
 - ─ คูณส่วน significand 1.0110101 x 1.00010011 = 1.100001001101111
 - ปัดเศษให้เหลือ 3 บิต $1.100001001101111 imes 2^3$
 - ตัวเลขข้างต้น Normalize แล้ว และไม่ Overflow หรือ Underflow
 - จึงได้คำตอบเท่ากับ 1.100001001101111₂ x 2³ = 48.6084

FP Instruction in ARM

- ใน Raspberry Pi จะมี Coprocessor ที่ทำหน้าที่คำนวณ Floating Point มีชื่อว่า
 VFPv3
- คำสั่ง FP จะไม่ได้ใช้ register ชุดเดียวกับการคำนวณแบบจำนวนเต็ม โดยจะมีการ สร้าง register ขึ้นมาอีกชุด คือ s0-s31 สำหรับใช้กับ single precision และ d0-d15 สำหรับ double precision
- ดังนั้นก่อนที่จะคำนวณจะต้องโหลดข้อมูลมาใส่ Sx เสียก่อน

LDR r6, =fvalue

VLDR s0, [r6] ; ตัวตั้ง

VLDR s1, [r6, #4] ; ตัวคูณ

VMUL.f32 s0, s0, s1

VMOV r0, s0 ; เก็บผลลัพธ์

FP Instruction in ARM

Addressing Mode จะใช้บาง Addressing Mode ไม่ได้

VLDR	s16, [r6, #4]	; ได้
VLDR	s16, [r6, #4]!	; ไม่ได้
VLDR	s16, [r6] #4	; ไม่ได้

• กรณีต้องการคำนวณแบบ Double Pricision

LDR	r6, =fvalue	
VLDM	r6!, {D0, D1}	; ตัวตั้ง และ ตัวคูณ
VMUL.f64	d0, d1	
VCVT.f32.f64	s0, d0	; แปลง 64 -> 32
VMOV	r0, s0	

FP Instruction in ARM

• คำสั่งที่ใช้ได้

VADD.f32	s0, s1, s2	; s0 = s1+s2
VSUB.f32	s0, s2, s4	; s0 = s2 - s4
VDIV.f64	d4, d5, d1	; $d4 = d5/d1$
VMUL.f32	s2, s4, s1	; $s2 = s4 * s1$
VNMUL.f64	d4, d3, d2	; $d4 = -(d3*d2)$
VMAL.f64	d4, d3, d2	; $d4 = d4+(d3*d2)$
VABS.f32	s0, s1	; $s0 = abs(s1)$
VNEG.f32	s2, s3	; s2 = - s3
VSQRT.f64	d0, d1	; $d0 = sqrt(d1)$
VCMP.f32	s0, s1	
VMRS	APSR_nzcv, FF	PSCR; copy status

Fixed Point

- การคำนวณแบบเลขทศนิยมนั้น จะช้ากว่าการคำนวณแบบจำนวนเต็มมาก
- ดังนั้นในกรณีที่ทำงานกับเลขทศนิยมน้อยๆ อาจใช้วิธีที่เรียกว่า Fixed Point
- เช่น 0.5 x 0.9 ก็ทำการคูณ 0.5 ด้วย 10 และคูณ 0.9 ด้วย 10 จะได้เป็น 5 กับ 9 จากนั้นก็คำนวณแบบปกติ เมื่อได้ผลลัพธ์ออกมาแล้ว จึงค่อยหารกลับไปเป็น ทศนิยมอีกครั้ง
- การทำงานแบบนี้ จะทำให้การคำนวณทำได้เร็วขึ้นมาก

- กำหนดตัวเลข 2 จำนวน 6.18×10^2 และ 5.796875×10^1
- ให้แสดงการบวกเลข 2 จำนวนตามแบบ IEEE 754 ตามขั้นตอน
- ให้แสดงการคูณเลข 2 จำนวนตามขั้นตอน
- ให้บอกด้วยว่าผลการทำงาน เกิด Overflow หรือ Underflow หรือไม่

For your attention