Университет ИТМО

Лабораторная работа №2 «Исследование систем массового обслуживания на марковских моделях»

по дисциплине: Моделирование

вариант: 24/14

Выполнил: Неграш Андрей, Р34301

Преподаватель: Алиев Тауфик Измайлович

Санкт-Петербург 2023

Содержание

1.	Пос	становка задачи и исходные данные	3
2.	Сис	стема 1	3
	2.1.	Описание	3
	2.2.	Перечень состояний	4
	2.3.	Граф переходов системы	5
	2.4.	Матрица интенсивностей переходов	5
	2.5.	Вычисление значений стационарных вероятностей	6
	2.6.	Характеристики системы	6
3.	Сис	стема 2	7
	3.1.	Описание	7
	3.2.	Перечень состояний	7
	3.3.	Граф переходов системы	8
	3.4.	Матрица интенсивностей переходов	9
	3.5.	Вычисление значений стационарных вероятностей	9
	3.6.	Характеристики системы	.10
4.	Про	оверка полученных результатов через фундаментальные зависимости	.11
5. за		основание выбора наилучшего варианта организации системы, в соответствии митерием эффективности	
6.	Вы	вол	.12

1. Постановка задачи и исходные данные

Задача данной лабораторной работы - изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Согласно выданному варианту (24/14), получаем данные для выполнения УИР:

Таблица 1. Вариант для первой части работы

Danwaya	СИСТ	EMA_1	СИСТ	Критерий	
Вариант	П	EH	П	EH	эффект.
24	2 (E ₂)	0/1	3	0/1/1	(r)

Таблица 2. Вариант для второй части работы

Номер	Интенс. Ср. длит. потока Обслуж.		Вероятность занятия прибора				
варианта	λ, 1/c	b, c	П1	П2	П3		
14	0,4	20	0,2	0,3	0,5		

В Системе 1 есть 2 обслуживающих прибора, в одном из которых длительность обслуживания распределена по закону Эрланга 2-го порядка, а ёмкости накопителей составляют 0 и 1 для каждого прибора соответственно. Вероятности попадания заявки в 1 и 2 прибор равны 0,5.

В Системе 2 есть 3 обслуживающих прибора, ёмкости накопителей перед которым равны соответственно 0, 1 и 1. Вероятности попадания заявки в 1, 2 и 3 приборы соответственно равны 0,2, 0,3 и 0,5.

Критерий эффективности по варианту – минимальное время пребывания в системе заявок.

Интенсивность входного потока $\lambda = 0.4^{-c}$

Средняя длительность обслуживания b = 20 с

2. Система 1

2.1. Описание

Интенсивность обслуживания прибора: $\mu = \frac{1}{20} = 0.05 \text{ c}^{-1}$

Интенсивность входного потока $\lambda = 0.4^{-c}$

Прибор 2, среднее время обслуживания в котором равно μ и распределено по закону Эрланга 2-го порядка, представим в виде двух последовательных приборов с временем обслуживания 2μ. Граф переходов составим с учётом того, что в прибор 2.1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на приборе 2.2.

Рисунок 1. Схематичное представление Системы 1

Классификация каждого из приборов по Кендаллу:

- 1) M/M/1/0
- 2) M/E₂/1/1

2.2. Перечень состояний

Обозначим состояние системы как n/m1/m2/q, где n — число заявок на первом приборе, m1 — число заявок на первом этапе второго прибора, m2 — число заявок на втором этапе второго прибора, q — число заявок в очереди на второй прибор.

Таблица 3. Перечень возможных состояний Системы 1

№ состояния	Обозначение	Описание
S0	0/0/0/0	В системе нет заявок
S1	1/0/0/0	В системе 1 заявка, обрабатываемая на приборе 1
S2	0/1/0/0	В системе 1 заявка, обрабатываемая на первом этапе прибора 2
S3	1/1/0/0	В системе 2 заявки, обрабатываемые на приборе 1 и на первом этапе прибора 2
S4	0/0/1/0	В системе 1 заявка, обрабатываемая на втором этапе прибора 2
S5	1/0/1/0	В системе 2 заявки, обрабатываемые на приборе 1 и на втором этапе прибора 2
S6	1/1/0/1	В системе 3 заявки: на приборе 1, на первом этапе прибора 2 и в очереди на прибор 2
S7	1/0/1/1	В системе 3 заявки: на приборе 1, на втором этапе прибора 2 и в очереди на прибор 2
S8	0/1/0/1	В системе 2 заявки: на первом этапе прибора 2 и в очереди на прибор 2
S9	0/0/1/1	В системе 2 заявки: на втором этапе прибора 2 и в очереди на прибор 2

2.3. Граф переходов системы

Рисунок 2. Граф переходов Системы 1

2.4. Матрица интенсивностей переходов

Таблица 4. Матрица интенсивностей переходов Системы 1

C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
S0	-0.4	0.2	0.2	0	0	0	0	0	0	0
S1	0.05	-0.25	0	0.2	0	0	0	0	0	0
S2	0	0	-0.5	0.2	0.1	0	0	0	0.2	0
S3	0	0	0.05	-0.35	0	0.1	0.2	0	0	0
S4	0.1	0	0	0	-0.5	0.2	0	0	0	0.2
S5	0	0.1	0	0	0.05	-0.35	0	0.2	0	0
S6	0	0	0	0	0	0	-0.15	0.1	0.05	0
S7	0	0	0	0.1	0	0	0	-0.16	0	0.05
S8	0	0	0	0	0	0	0.2	0	-0.3	0.1
S9	0	0	0.1	0	0	0	0	0.2	0	-0.3

2.5. Вычисление значений стационарных вероятностей

Таблица 5. Значения стационарных вероятностей Системы 1

Обозначение	Вероятность
S0	0,005405
S1	0,021622
S2	0,032432
S3	0,129730
S4	0,010811
S5	0,043243
S6	0,259459
S7	0,345946
S8	0,064865
S9	0,086487

2.6. Характеристики системы

Таблица 6. Характеристики Системы 1

Хар-ка	Прибор	Расчетная формула	СИСТ.1
	П1	$y_1 = \lambda_1 * b$	4
Нагрузка	П2	$y_2 = \lambda_2 * b$	4
	Сумм.	$Y = y_1 + y_2$	8
	П1	$\rho_1 = 1 - (p_0 + p_2 + p_4 + p_8 + p_9)$	0,8
Загрузка	П2	$\rho_2 = 1 - (p_0 + p_1)$	0,973
	Сумм.	$\rho = (\rho_1 + \rho_2)/2$	0,887
Donograpory	П1	$\pi_1 = p_1 + p_3 + p_5 + p_6 + p_7$	0,8
Вероятность	П2	$\pi_2 = p_6 + p_7 + p_8 + p_9$	0,757
потери	Сумм.	$\pi = \pi_1 * 0.5 + \pi_2 * 0.5$	0,778
Пиимо	П1	$l_1 = 0$	0
Длина	П2	$l_2 = p_6 + p_7 + p_8 + p_9$	0,757
очереди	Сумм.	$l = l_1 + l_2$	0,757
Число заявок,	П1	$m_1 = p_1 + p_3 + p_5 + p_6 + p_7$	0,8
находящихся	П2	$m_2 = p_2 + p_3 + p_4 + p_5 + (p_6 + p_7 + p_8 + p_9) * 2$	1,730
в системе	Сумм.	$m = m_1 + m_2$	2,530
	П1	$\lambda_1' = (1 - \pi_1) * \lambda_1$	0,04
Производит.	П2	$\lambda_2' = (1 - \pi_2) * \lambda_2$	0,049
	Сумм.	$\lambda' = \lambda_1' + \lambda_2'$	0,089
Коэффициент	П1	$\eta_1 = 1 - \rho_1$	0,2
простоя	П2	$\eta_2 = 1 - \rho_2$	0,027
системы	Сумм.	$\eta = 1 - \rho$	0,114
Descrip	П1	$w_1 = l_1/\lambda_1'$	0
Время	П2	$w_2 = l_2/\lambda_2'$	15,556
ожидания	Сумм.	$w = 1/\lambda'$	8,537
Dnove	П1	$u_1 = w_1 + b$	20
Время	П2	$u_2 = w_2 + b$	35,556
пребывания	Сумм.	u = w + b	28,537

3. Система 2

3.1. Описание

Интенсивность обслуживания прибора: $\mu = \frac{1}{20} = 0.05 \text{ c}^{-1}$

Интенсивность входного потока $\lambda = 0.4^{-c}$

Рисунок 3. Схематичное представление Системы 2

Классификация каждого из приборов по Кендаллу:

- 1) M/M/1/0
- 2) M/M/1/1
- 3) M/M/1/1

3.2. Перечень состояний

Обозначим состояние системы как n1/n2/q2/n3/q3, где n1 — число заявок на первом приборе, n2 — число заявок на втором приборе, q2 — число заявок в очереди на второй прибор, n3 — число заявок на третьем приборе, q3 — число заявок в очереди на третий прибор.

Таблица 7. Перечень возможных состояний Системы 2

№ состояния	Обозначение	Описание		
S0	0/0/0/0/0	В системе нет заявок		
S1	1/0/0/0/0	В системе 1 заявка, обрабатываемая на приборе 1		
S2	0/1/0/0/0	В системе 1 заявка, обрабатываемая на приборе 2		
S3 0/0/0/1/0		В системе 1 заявка, обрабатываемая на приборе 3		
S4	1/1/0/0/0	В системе 2 заявки, обрабатываемые на приборе 1 и 2		
S5	1/0/0/1/0	В системе 2 заявки, обрабатываемые на приборе 1 и 3		
S6	0/1/0/1/0	В системе 2 заявки, обрабатываемые на приборе 2 и 3		
S7	0/1/1/0/0	В системе 2 заявки, обрабатываемая на приборе 2 и в		
37	0/1/1/0/0	очереди на прибор 2		
S8	0/0/0/1/1	В системе 2 заявки, обрабатываемая на приборе 3 и в		
36	0/0/0/1/1	очереди на прибор 3		

S9	1/1/0/1/0	В системе 3 заявки: на приборах 1, 2 и 3
S10	1/1/1/0/0	В системе 3 заявки: на приборах 1 и 2 и в очереди на прибор 2
S11	1/0/0/1/1	В системе 3 заявки: на приборах 1 и 3 и в очереди на прибор 3
S12	0/1/1/1/0	В системе 3 заявки: на приборах 2 и 3 и в очереди на прибор 2
S13	0/1/0/1/1	В системе 3 заявки: на приборах 2 и 3 и в очереди на прибор 3
S14	1/1/1/1/0	В системе 4 заявки: на приборах 1, 2 и 3 и в очереди на прибор 2
S15	1/1/0/1/1	В системе 4 заявки: на приборах 1, 2 и 3 и в очереди на прибор 3
S16	0/1/1/1/1	В системе 4 заявки: на приборах 2 и 3 и в очередях на приборы 2 и 3
S17	1/1/1/1	В системе 5 заявок: на приборах 1,2 и 3 и в очередях на приборы 2 и 3

3.3. Граф переходов системы

Рисунок 4. Граф переходов Системы 2

3.4. Матрица интенсивностей переходов

Таблица 8. Матрица интенсивностей переходов Системы 2

C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17
SO	-0.4	0.08	0.12	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S1	0.05	-0.5	0	0	0.12	0.2	0	0	0	0	0	0	0	0	0	0	0	0
S2	0.05	0	-0.6	0	0.08	0	0.2	0.12	0	0	0	0	0	0	0	0	0	0
S3	0.05	0	0	-0.6	0	0.08	0.12	0	0.2	0	0	0	0	0	0	0	0	0
S4	0	0.05	0.05	0	-0.7	0	0	0	0	0.2	0.12	0	0	0	0	0	0	0
S5	0	0.05	0	0.05	0	-0.7	0	0	0	0.12	0	0.2	0	0	0	0	0	0
S6	0	0	0.05	0.05	0	0	-0.8	0	0	0.08	0	0	0.12	0.2	0	0	0	0
S7	0	0	0.05	0	0	0	0	-0.5	0	0	0.08	0	0.2	0	0	0	0	0
S8	0	0	0	0.05	0	0	0	0	-0.4	0	0	0.08	0	0.12	0	0	0	0
S9	0	0	0	0	0.05	0.05	0.05	0	0	-0.9	0	0	0	0	0.12	0.2	0	0
S10	0	0	0	0	0.05	0	0	0.05	0	0	-0.6	0	0	0	0.2	0	0	0
S11	0	0	0	0	0	0.05	0	0	0.05	0	0	-0.5	0	0	0	0.12	0	0
S12	0	0	0	0	0	0	0.05	0.05	0	0	0	0	-0.7	0	0.08	0	0.2	0
S13	0	0	0	0	0	0	0.05	0	0.05	0	0	0	0	-0.6	0	0.08	0.12	0
S14	0	0	0	0	0	0	0	0	0	0.05	0.05	0	0.05	0	-0.8	0	0	0.2
S15	0	0	0	0	0	0	0	0	0	0.05	0	0.05	0	0.05	0	-0.7	0	0.12
S16	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05	0.05	0	-0.5	0.08
S17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05	0.05	0.05	-0.4

3.5. Вычисление значений стационарных вероятностей

Таблица 9. Значения стационарных вероятностей Системы 2

Обозначение	Вероятность
S0	0.001873
S1	0.003326
S2	0.004132
S3	0.007522
S4	0.008344
S5	0.013272
S6	0.016181
S7	0.008172
S8	0.030755
S9	0.033725
S10	0.021772
S11	0.052423
S12	0.022244
S13	0.071263
S14	0.097531
S15	0.128363
S16	0.160676
S17	0.318426

3.6. Характеристики системы

Таблица 10. Характеристики Системы 2

Хар-ка	Прибор	Расчетная формула	СИСТ.2
	П1	$y_1 = \lambda_1 * b$	1,6
TT	П2	$y_2 = \lambda_2 * b$	2,4
Нагрузка	П3	$y_3 = \lambda_3 * b$	4
	Сумм.	$Y = y_1 + y_2 + y_3$	8
	П1	$\rho_1 = 1 - (p_0 + p_2 + p_3 + p_6 + p_7 + p_8 + p_{12} + p_{13} + p_{16})$	0,667
Загрузка	П2	$\rho_2 = 1 - (p_0 + p_1 + p_3 + p_5 + p_8 + p_{11})$	0,891
	П3	$\rho_3 = 1 - (p_0 + p_1 + p_2 + p_4 + p_7 + p_{10})$	0,952
	Сумм.	$\rho = (\rho_1 + \rho_2 + \rho_3)/3$	0,840
	П1	$\pi_1 = p_1 + p_4 + p_5 + p_9 + p_{10} + p_{11} + p_{14} + p_{15} + p_{17}$	0,677
Вероятность	П2	$\pi_2 = p_7 + p_{10} + p_{12} + p_{14} + p_{16} + p_{17}$	0,629
потери	П3	$\pi_3 = p_8 + p_{11} + p_{13} + p_{15} + p_{16} + p_{17}$	0,762
	Сумм.	$\pi = \pi_1 * 0.2 + \pi_2 * 0.3 + \pi_3 * 0.5$	0,705
	П1	$l_1 = 0$	0
Длина	П2	$l_2 = p_7 + p_{10} + p_{12} + p_{14} + p_{16} + p_{17}$	0,629
очереди	П3	$l_3 = p_8 + p_{11} + p_{13} + p_{15} + p_{16} + p_{17}$	0,762
1	Сумм.	$l = l_1 + l_2 + l_3$	1,391
	П1	0,677	
Число заявок, находящихся	П2		1,520
в системе	П3	$m_3 = p_3 + p_5 + p_6 + p_9 + p_{12} + p_{14} + (p_8 + p_{11} + p_{13} + p_{15} + p_{16} + p_{17}) $ * 2	1,714
	Сумм.	$m = m_1 + m_2 + m_3$	3,911
	П1	$\lambda_1' = (1 - \pi_1) * \lambda_1$	0,026
Песторонул	П2	$\lambda_2' = (1 - \pi_2) * \lambda_2$	0,045
Производит.	П3	$\lambda_3' = (1 - \pi_3) * \lambda_3$	0,048
	Сумм.	$\lambda' = \lambda_1' + \lambda_2' + \lambda_3'$	0,118
IC 1 1	П1	$\eta_1 = 1 - \rho_1$	0,323
Коэффициент	П2	$\eta_2 = 1 - \rho_2$	0,109
простоя	П3	$\eta_3 = 1 - \rho_3$	0,048
системы	Сумм.	$\eta = 1 - \rho$	0,160
	П1	$w_1 = l_1/\lambda_1'$	0
Время	П2	$w_2 = l_2/\lambda_2'$	14,118
ожидания	П3	$w_3 = l_3/\lambda_3'$	16
	Сумм.	$w = 1/\lambda'$	11,787
	П1	$u_1 = w_1 + b$	20
Время	П2	$u_2 = w_2 + b$	34,118
пребывания	П3	$u_3 = w_3 + b$	36
	Сумм.	u = w + b	31,787

4. Проверка полученных результатов через фундаментальные зависимости

 Таблица 11. Вычисленные характеристики Систем 1 и 2 через фундаментальные зависимости

Хар-ка	Прибор	Расчетная формула	СИСТ.1	СИСТ.2	Отклон. (СИСТ.1)	Отклон. (СИСТ.2)
Загрузка	Сумм.	$\rho = \frac{(1-\pi) * Y}{K}$	0,887	0,787	-0,00005%	7%
Число	П1	$m_1 = \lambda_1' * u_1$	0,8	0,517	0%	-31%
заявок в	П2	$m_2 = \lambda_2' * u_2$	1,730	1,520	-0,0001%	0,00004%
системе	П3	$m_3 = \lambda_3' * u_3$	1	1,714	-	-0,0003%
(Литтл)	Сумм.	$m = \lambda' * u$	2,530	3,750	-0,0001%	-4%

По полученным данным видно, что при подсчёте возникли некоторые проблемы с Прибором 1 в Системе 2, так как его отклонение достаточно большое, что влияет и на суммарное количество заявок в системе, и на загрузку системы. Однако при повторной проверке всех формул и вычислений ошибку найти не удалось, так что данную погрешность можно списать на человеческий фактор при работе не очень опытного студента с 18 состояниями системы.

5. Обоснование выбора наилучшего варианта организации системы, в соответствии с заданным критерием эффективности

Согласно заданному варианту, критерием эффективности для сравнения является время пребывания заявки в системе.

Рисунок 5. Гистограмма времени пребывания заявок в Системах 1 и 2

Как видно из гистограммы, по выбранному критерию эффективности лучше Система 1, так как у неё время пребывания заявки в системе меньше (на 3,25 с).

6. Вывод

Итак, в процессе выполнения данной учебно-исследовательской работы было рассмотрено две системы. Для каждой из систем был составлен перечень состояний, граф переходов между ними и матрица переходов, на основе которой были получены стационарные вероятности, с помощью которых были получены и проверены характеристики систем. Согласно заданному критерию эффективности (время пребывания заявки в системе) лучший результат получился у Системы 1.