Topology Notes

eyeS 2025-03-23

Basic Definitions

Given a statement of the form $P \to Q$, its **contrapositive** is defined to be the statement $\neg Q \to \neg P$. For example, the contrapositive of the statement:

$$x > 0 \longrightarrow \neg x^3 \neq 0$$

is the statement

$$x^3 = 0 \longrightarrow \neg x > 0$$

It's trivial to demonstrate the $P \to Q \leftrightarrow \neg P \to Q$. Another useful definition is the **converse** of some statement. Given $P \to Q$, the converse of this statement is $Q \to P$.

Definition 1.1 (1). A rule of assignment is a subset r of the cartesian product $C \times D$ of two sets, having the property that each element of C appears as the first coordinate of at most one ordered pair belonging to r. Thus, a subset r of $C \times D$ is a rule assignment if:

$$[(c,d) \in r \ and \ (c,d') \in r] \to [d=d'] \tag{1}$$

Definition 1.2. A function f is a rule of assignment r, together with a set B that contains the image of r. The domain of A of the rule r is also called the **domain** of the function f; the image set of r is also called the **image set** of f; and the set B is called the **range** of f. If f is a function having domain A and range B, we express the fact by writing

$$f: A \longrightarrow B$$

Formally, if r is the rule of the function f, then f(a) denotes the unique element of B such that $(a, f(a)) \in r$.

Definition 1.3. If $f: A \to B$ and if A_0 is a subset of A, we define the **restriction** of f to A_0 to be the function mapping A_0 into B whose rules is

$$\{(a, f(a)|a \in A_0)\}.$$
 (2)

It is denoted by $f|A_0$, which is read "f restricted to A_0 "

The book stats with a really useful definitions (but I'm lazy, so I'll do it quickly). A function $f: A \to B$ is said to be **injective** (or **one-to-one**) if:

$$[f(a) = f(a')] \rightarrow [a = a'] \tag{3}$$

It is said to be **surjective** (or f is a map **onto** B) if:

$$[b \in B] \to [\exists a \in A; b = f(a)] \tag{4}$$

If f is both injective and surjective, it is said to be **bijective** (or is called a **one-to-one correspondence**) Injectivty of f depends only on the rule of f; surjective depends on the range of f as well. It's valid that composition of functions with same "type" has the same "type" (injective, surjective) If f is bijective, there exists a function from B to A called the **inverse** of f. It is denoted by f^{-1} and is defined by letting $f^{-1}(b)$ be the unique element $a \in A$ for which f(a) = b. It's easy to see if f is bijective, then f^{-1} is also bijective.

Lemma 1.1. Let $f: A \to B$. If there are functions $g: B \to A$ and $h: B \to A$ such that g(f(a)) = a for every $a \in A$ and f(h(b)) = b for every $b \in B$, the f is bijective and $g = h = f^{-1}$

Proof. If we have a function g such that g(f(a)) = a, $\forall a \in A$, then f must to be injective. Suppose m, ninA which $g(f(m)) = m \land g(f(n)) = n$, if f(m) = f(n), then g(f(n)) = g(f(m)) which means m = n. Conversely, if m = n, then g(f(n)) = g(f(m)), which means f(m) = f(n). So $f(m) = f(n) \leftrightarrow m = n$, that proves that f is injective. If we have a function $f(n) = f(n) \land f(n) = f(n)$