Lecture 17 Logs and Data Mining

- Review:
 - PA7 out yesterday
 - (a day late; due date extended a day, too)
 - FINAL PROJECT now available online. Check it out!
 - Midterm #2 a week from Monday (March 29)

Web Logs and Data Mining

- Activity logs, often from web servers, are an absurdly rich source of information
- People have examined logs to learn all sorts of things
 - System failures
 - Security intrusions
 - Buying habits
 - Spelling habits
 - Web surfing behavior
 - Impending disease

Web Logs and Data Mining

- Many data mining projects are ethically and politically contentious
 - Credit card offers
 - Financial trades
 - The TIA project
- They also have terrifying and/or hilarious logos
- Many data-mining projects are ethically complicated because of the data used
 - Is the privacy-leaking AOL data OK?
 - "Phishing for the greater good"?

Data Mining in 60 Seconds

- Data mining (aka machine learning, aka statistical methods) predates the Web, works fine on non-Web data
- But the Web throws off lots of easilyprocessible human-activity data
 - A natural target for mining
 - Every successful Web company mines everything all the time
- What kinds of data do you throw off?
- How much have you already generated today?

Overview

- Data mining can easily take many, many classes
 - Totally absurd to teach it in one class
 - But data mining endemic in Web endeavors
- We'll give an overview of field, plus one technique in detail
 - Enough to know your known unknowns

Types of Learning

- Supervised learning
 - Training data that includes desired outputs
 - "Predict the opening price for GOOG"
 - "Predict likeliest next product purchase"
 - Recommender systems use a form of supervised learning
- Unsupervised learning
 - Training data doesn't have desired outputs
 - "Show the natural clusters in the data"

Supervised Learning

- Inductive learning, or "prediction"
 - Given examples of a fn (X, F(X)) predict F(X) for a novel value X
- Classification
 - F(X) is discrete; is page relevant or not?
- Regression
 - F(X) is continuous; value of GOOG?
- Probability estimation
 - F(X) is probability of X; will Obama win?

Bias

- Which hypotheses will be considered?
 - Lines?
 - Lines that are perpendicular to axes?
 - Circles?
 - Conic sections?
- Which hypotheses do you prefer?
 - Simple ones or correct ones or ...?

10

Classifiers

- Lots of classifier algorithms possible
- Decision Trees
 - Can express multiple decision regions, as long as they are parallel to axes

Classifiers

- Lots of classifier algorithms possible
- Rule Learners build a series of rules that are conjunctions of tests on input variables
 - Overcast => Yes
 - Sunny & Humid => Yes
 - Sunny & Normal => No
 - Rain & Strong-Rain => No
 - Rain & Weak-Rain => Yes
- Trees can always be converted to rules
- Vice-versa, as long as variables can appear multiple times in tree

Experimental Evaluation

- How do we estimate the performance of classifier on unseen data?
- Can't just look at accuracy on training data – this will yield an over optimistic estimate of performance
- Solution: Cross-validation
 - Sometimes called estimating how well the classifier will generalize

Cross-Validation (2)

- Leave-one-out
 - Use if < 100 examples (rough estimate)
 - Hold out one example, train on remaining examples
- 10-fold
 - If have 100-1000's of examples
- M-of-N-fold
 - Repeat M times
 - Divide data into N folds, do N fold crossvalidation

One Algorithm in Depth

- Association rules predict members of a set, given other members of set
 - Given i₀, i₁, ... in cart, what else is in cart?
 - E.g., {diapers} => {beer}
 - (Unfortunately, this data mining urban legend appears not to be true)
 - Very popular in Web scenarios
- Apriori algorithm is most famous technique

Apriori Overview

- Assume database that lists txs and
- sales info

is % of data
that contains X
 Supp(Beer)= 0.8

Tx	Apple	Beer	Chips	DCoke
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

- Supp(X=>Y) is the support of union of lhs and rhs
 - Supp(Apple,Beer=>Chips) = 0.2
- Support measures statistical significance in log data

3

Apriori Overview

- OK, easy, right?
- We might have 10ks of products, and millions of txs
- How to efficiently find all rules with at least minimum support in data?

19

Apriori Overview

- An itemset is a set of elts in txs
 - A large itemset is one with at least minimum support
 - Given a large itemset, we can fairly easily compute all the rules implied by it
- Problem is finding large itemsets
 - Apriori uses a breadth-first approach to limit the amount of necessary work
 - Critical observation: adding an elt to itemset can never increase support

0

Algorithm

- Apriori iterates repeatedly
- For each iteration, it has steps:
 - Pass: Going over data, builds up a set of candidate itemsets C. Each itemset adorned with "count"
 - Consolidate: Then adds some of those candidates to output set. Also, uses some to build next round of candidates.
- Terminates when consolidate step runs out of starting points for next round

7

Pass step

- **F** init'ed with empty set or prev round
 - $\begin{tabular}{ll} \hline \bullet & For all tuples t do \\ for all itemsets f in F do \\ C_f = sets which extensions of f & in t \\ for all c_f in C_f do \\ if $c_f \in C$ \\ c_f.count++; \\ else \\ c_f.count=0 \\ $C_f = C + c_f$ \\ \end{tabular}$
 - How do we decide what goes into C_f?

2

Consolidate step

- Clear contents of F
- Forall itemsets c in C do
 if count(c)/dbsize > minsupport then
 // Output itemset c
 if c should be in frontier set F then
 F = F + c
- How do we decide what goes into frontier?

Questions Remaining

- Pass: How do we decide what goes into C_f?
- **Consolidate**: How do we decide what goes into frontier F?

24

4

Adding to C_f

- For each database tuple t, we are adding possible itemsets that are present in the tuple
- Could test every possible subset of t
 - Requires 2^m counters, m is #items
 - But note: most of the 2^m will be small
 - Lots of wasted comparison work

25

Adding to C_f

- For each database tuple t, we are adding possible itemsets that are present in the tuple
- Another approach: kth pass, only consider sets that are of size k
 - Frontier set F is always the "large-enough" emitted itemsets
 - New itemsets are just 1-elt extensions to frontier set F
 - Some few large itemsets will get through; this approach leads to very many passes

26

Adding to C_f

- For each database tuple t, we are adding possible itemsets that are present in the tuple
- We want few passes, with few comparisons
- Solution: mixture of above
 - Consider all extensions of frontier itemsets (even multi-elt ones) that are "expected to be large"
 - Also, consider all extensions of frontier itemsets that are single-elt but considered to be small

7

Adding to C_f

- Consider frontier set {AB}, and tuple t=ABCDF
 - ABC, expected large; keep extending
 - ABCD, expected small; stop extending
 - ABCF, expected large; cannot extend further
 - ABD, expected small; stop extending
 - ABF, expected large; cannot extend further
- How do we estimate size?
 - Use 1-elt item frequencies and independence assumption
 - IA: joint prob is product of marginal probs
 - Freq of X+Y=f(I0) x f(I1) x ... (x-c)/dbsize

28

Adding to Frontier

- Only have to add itemsets that were expected to be small, but turned out to be large
 - If itemset was expected to be large, all its extensions have already been considered; no need to include
 - If itemset was genuinely small, then no extensions can enjoy > minsupport

29