Ralph & Coop: patchy selection

les start with the more obvious:

in this case sin 6=0 and cos 0=1

$$= \left(\left(1 - \frac{r_0}{r} (\cos G)^2 + \frac{r_0^2}{r^2} \sin^2 G \right)^2 - 1 = 1 - \frac{r_0}{r} - 1 = -\frac{r_0}{r}$$

og 56 has an extre 2, which result from a wrong expansion of

· time in transil

One can obtain these results by a simple saddle point approximation

P(gelling to x in himse t) = P(diffusion to x in himse t) x P(surviving)

$$= \frac{1}{(2\pi\sigma^2)^{d_2}} e^{-\frac{\chi^2}{2\sigma^2}t} - st$$

the exponent is minimal when $\frac{x^2}{26^2t^2} = 5 \Rightarrow t^* = \frac{x}{6\sqrt{25}}$

this gives your eq 17

the variance is simply the inverse of the second derivative of the exponent

$$\frac{1}{\sqrt{2}} = \frac{\chi^2}{\sqrt{2}} = \frac{6}{\sqrt{2}} \times (2s)^{3/2}$$

o now to the thornier issues of dimension, geometry & fluxes

the basic setup:

magrahing family

source

R

P& r « R

it is worth noting that this reduces correctly to
Louis = Pe Solx gg(x) in the limit pe << 5
(the integral is dominated by a stripe of width I and
height Ver')
more importantly, Imis depends on the geometry
of the sink palel:
Anig for the lower is larger
sinail can absorb migrants from a much larger crosssection.
fluxes.
It might be worth noting that the flux of individual
If might be worth noting that the flux of individual is implicit in the equation for the average density:
$\partial_{\xi} q(r) = 0 = \frac{6^2}{2} \frac{\Im}{\Im} q(r) + \frac{\Im(d-1)}{\Im} \frac{\Im}{\Im} q(k) - \Im q(r)$
$= \frac{1}{1} \frac{1}{2} \left[\frac{1}{6^2 r^{d-1}} \frac{1}{2} q(r) \right] - sq(r)$
flux
divergençe of flux = local death.