Проверка статистических гипотез

Малов Сергей Васильевич

Санкт-Петербургский государственный электротехнический университет

24октября $2020\ {\rm г}.$

План

1 Постановка задачи проверки статистических гипотез

2 Статистические критерии

3 Построение статистического критерия

Статистическая гипотеза

Пусть $(\mathfrak{X},\mathfrak{F},\mathcal{P}),\ \{P_{\theta}:\theta\in\Theta\}$ — статистический эксперимент

Определение

Статистической гипотезой называется утверждение о параметре вида

$$H: \theta \in \Theta^* \subseteq \Theta$$
.

- Одноточечная гипотеза $H_0: \theta = \theta^*$, определяющая точное значение параметра, называется простой
 - $\theta^* \in \Theta$ фиксированное значение параметра
- Другие гипотезы называются сложными

Постановка задачи

В классической постановке выдвигают:

- (i) основную (или нулевую) гипотезу $H_0:\theta\in\Theta_0$
- (ii) альтернативную гипотезу (альтернативу) $H_A: \theta \in \Theta_A$: $\Theta \cap \Theta_A = \emptyset$.

Задача исследователя – по результатам наблюдений сделать выбор между основной гипотезой и альтернативой.

- С точки зрения модели удобно предполагать, что $\Theta_0 \cup \Theta_A = \Theta$
- На практике довольно часто данное условие ослабляют, предполагая наличие расстояния между $\mathrm{dist}(\Theta_0,\Theta_A)>0$, чтобы обеспечить различимость H_0 и H_A .
- Основную гипотезу иногда называют нулевой
- Иногда выдвигают несколько взаимоисключающих гипотез, из которых требуется выбрать одну

Постановка задачи

Различные варианты истинного положения дел и решения исследователя:

	Принята <i>H</i> ₀	Отвергнута <i>H</i> ₀
H_0 верна	+	Ошибка I рода
<i>H</i> ₀ не верна	Ошибка II рода	+

- Ошибка I рода отвержение нулевой гипотезы при ее справедливости, т.е. принятие альтернативы
- Ошибка II рода принятие нулевой гипотезы при справедливости альтернативы
- Если $\Theta_0 \cup \Theta_A \neq \Theta$, то возможно иное положение дел, при котором обе гипотезы не верны

Задача проверки значимости отклонения от основной гипотезы заключается лишь в нахождении несоответствия имеющихся статистических данных и основной гипотезы

- значимым результатом считается обнаружение несоответствия
- проверка значимости не подразумевает рассмотрения ошибки II рода

Типы задач проверки статистических гипотез

Тип задачи определяется

- имеющимися статистическими данных
- моделью эксперимента
- целями исследования

І. Проверка согласия

- Данные представляют собой однородный набор наблюдений
 - типичной моделью является выборка
- Гипотеза согласия ставится в терминах распределения отдельных наблюдений
 - простая: о согласии с некоторым фиксированным распределением
 - сложная: о принадлежности некоторому множеству распределений
- Соответствующая гипотеза называется гипотезой однородности

Типы задач проверки статистических гипотез

II. Проверка однородности

- Данные представляют собой
 - два или несколько однородных наборов наблюдений
 - неоднородный набор наблюдений распределения которых определяет ковариата
- Гипотеза устанавливает равенство распределений всех наблюдений
 - иными словами, утверждается однородность исходного набора наблюдений
 - при наличии нескольких выборок формулируется в терминах сравнений параметров
 - при наличии ковариаты устанавливает независимость распределения наблюдения от ковариаты
- Соответствующая гипотеза называется гипотезой однородности

Типы задач проверки статистических гипотез

III. Проверка независимости

- Данные представляют собой однородный набор многомерных наблюдений
 - каждое наблюдение представляет собой набор значений d признаков вектор рамерности d
 - наиболее часто речь идет о выборке из *d*-мерного распределения, т.е. наблюдения независимы
- Гипотеза независимости утверждает независимость компонент **d**-мерного наблюдения

IV. Проверка случайности

- Данные представляют собой произвольный набор наблюдений одного типа
 - обычно наблюдения случайные величины
- Гипотеза случайности устанавливает независимость и одинаковую распределенность наблюдений
 - иными словами, устанавливается, что исходный набор наблюдений - выборка

План

🕕 Постановка задачи проверки статистических гипотез

2 Статистические критерии

Построение статистического критерия

Статистический критерий

Определение

Статистическим критерием (тестом) называется статистика $\phi:\mathfrak{X}\to[0,1]$, определяющая вероятность отвергнуть основную гипотезу по результатам наблюдений.

- Критерий правило, согласно которому принимается или отвергается основная гипотеза
 - доверительная область: $\{X \in \mathfrak{X} : \phi(X) = 0\}$ основная гипотеза принимается
 - критическая область: $\{X \in \mathfrak{X} : \phi(X) = 1\}$ основная гипотеза отвергается
 - область сомнений: $\{X \in \mathfrak{X} : \phi(X) = 1\}$ решение принимается в результате проведения испытания с вероятностью отвержения основная гипотезы $\phi(X)$ и вероятностью ее принятия $1 \phi(X)$.
- Критерий называется нерандомизованным, если результаты наблюдений однозначно определяют решение $\phi(\mathfrak{X}) = \{0,1\}$
 - в остальных случаях критерий рандомизованный

Статистический критерий

Характеристики статистического критерия

- Статистический критерий определяет вероятности ошибок I и II рода
 - P_{θ} (ош. I рода) = $\mathbb{E}_{\theta} \phi(X)$, $\theta \in \Theta_0$ вероятность ошибки I рода
 - P_{θ} (ош. II рода) = $1 \mathbb{E}_{\theta} \phi(X), \theta \in \Theta_{A}$ вероятность ошибки II рода
- Мощность статистического критерия ϕ
 - $b_{\phi}(\theta) = 1 P_{\theta}(\text{ош. II рода}) = \mathbb{E}_{\theta}\phi(X), \ \theta \in \Theta_{A}$
- ullet Уровень значимости статистического критерия ϕ
 - Классический подход Неймана–Пирсона заключается в том, чтобы ограничить ошибку I рода малым наперед заданным числом α
 - Значение α , ограничивающее вероятность ошибки I рода называется уровнем значимости критерия.
- Функция $b_{\phi}(\theta) = \mathbb{E}_{\theta}\phi(X)$ определяет
 - вероятность ошибки I рода при $\theta \in \Theta_0$
 - мощность критерия при $\theta \in \Theta_A$

Наилучшие статистические критерии

Свойства статистического критерия

- Пусть ϕ критерий уровня значимости α проверки основной гипотезы $H_0: \theta \in \Theta_0$ при альтернативе $H_A: \theta \in \Theta_A$.
- Критерий несмещенный, если $\sup_{\theta \in \Theta_0} b_{\phi}(\theta) \leq \inf_{\theta \in \Theta_A} b_{\phi}(\theta)$
 - мощность не должна быть меньше вероятности ошибки І рода
- Качество статистического критерия при фиксированном уровне значимости определяется его мощностью
 - критерий ϕ называется равномерно наиболее мощным, если $b_{\phi}(\theta) \geq b_{\phi^*}(\theta)$ для любого $\theta \in \Theta_A$
 - равномерно-наиболее мощный критерий максимизирует мощность на множестве всех критериев при каждом значении параметра при справедливости альтернативы
 - наиболее мощного критерия обычно не существует в случае двухсторонней альтернативы
- Класс допустимых статистических критериев довольно часто сужают до несмещенных

Асимптотический подход

В асимптотической модели статистического эксперимента $(\mathfrak{X}_n,\mathfrak{F}_n,\mathcal{P}_n),\,\mathcal{P}_n=\{P_{\theta,n},\theta\in\Theta\}$ статистическим критерием называется по сути совокупность критериев $\phi=\{\phi_n\}_{n\in\mathbb{N}}$.

- Уровнем значимости асимптотического критерия называется число α : $\lim_{n\to\infty}\sup_{\theta\in\Theta_n}\mathbb{E}_{\theta}(\phi_n(X))\geq 1-\alpha$
- Мощность асимптотического критерия также вычисляется асимптотически

$$b_{\phi}(\theta) = \lim_{n \to \infty} \mathbb{E}_{\theta}(\phi_n(X)), \ \theta \in \Theta_A$$

- Асимптотический критерий несмещенный, если $\sup_{\theta \in \Theta_n} b_{\phi}(\theta) \le \inf_{\theta \in \Theta_A} b_{\phi}(\theta)$
- Асимптотический критерий ϕ равномерно наиболее мощный, если для любого асимптотического критерия ϕ^* , если $b_{\phi}(\theta) \ge b_{\phi^*}(\theta)$ при каждом значении $\theta \in \Theta_A$.

Параметрический и непараметрический подходы

Различают параметрические и непараметрические гипотезы

- Гипотеза параметрическая, если она допускает представление в виде $H: \theta \in \Theta^* \subseteq \mathbb{R}^d$
- В остальных случаях гипотеза непараметрическая
- Параметрическая гипотеза может быть сформулирована и в непараметрической модели
 - формально, непараметрическая модель искусственно адаптируется к семипараметрической
- Тип критерия определяется типом основной гипотезы и альтернативы
 - критерий параметрический, если основная и альтернативная гипотезы параметрические
 - критерий непараметрический, если хотя бы одна из гипотез непараметрическая

План

1 Постановка задачи проверки статистических гипотез

2 Статистические критерии

3 Построение статистического критерия

Построение статистического критерия

Обычно в основе статистичекого критерия лежит статистика критерия.

- Статистика критерия Т удовлетворяет следующим условиям
 - распределение T(X) при основной гипотезе не зависит от параметра: $P_{\theta}(T(X) \in A) = P_{0}(T(X) \in A)$, для любого $A, \theta \in \Theta_{0}$.
 - это распределение изучено (существуют таблицы)
 - распределение T(X) при альтернативе $\theta \in \Theta_A$ отличается от ее распределения при нулевой гипотезе
 - для асимптотического критерия все условия формулируют в терминах асимптотических распределений
- ullet Выбираем набор множеств ${\mathcal I}$ и находим

$$I_{\alpha} \in \mathcal{I}$$
: $P_0(T \in I_{\alpha}) \geq (=)1 - \alpha$

• Получаем нерандомизованный критерий

$$\phi(X) = \begin{cases} 0, & T \in I_{\alpha} \\ 1, & T \notin I_{\alpha} \end{cases}$$

• Уровень значимости построенного критерия равен α

Построение статистического критерия

Для статиститческого критерия на базе статистики T

- P-значение определяется как наименьшее α , такое что $T \notin I_{\alpha}$.
- При положительном распределении T наиболее часто используется $I_{\alpha} = [0, x_{\alpha}]$
 - $\mathbf{\textit{X}}_{\alpha}$ удовлетворяет условию $P_{\theta_0}(T>\mathbf{\textit{X}}_{\alpha})=1-F_T(\mathbf{\textit{X}}_{\alpha})=\alpha$
 - F_T функция распределения T при нулевой гипотезе
 - обычно такой критерий получается несмещенным
 - В этом случае Р-значение равно $PV = 1 F_T(T)$
 - \bullet если F_T непрерывная функция, то P-значение $PV \sim U(0,1)$ имеет равномерное распределение при нулевой гипотезе
 - преобразование Смирнова
- Аналогичное свойство выполнено и для других тестов, построенных с использованием статистик, имеющих при нулевой гипотезе непрерывное распределение.

Распределение *Р*-значения

Утверждение (обобщение преобразования Смирнова).

Пусть G статистика критерия для проверки статистической гипотезы H_0 , $\{I_{\alpha}\}_{\alpha\in[0,1]}$ — семейство вложеных замкнутых множеств $I_{\alpha}\subseteq I_{\alpha_1}$ при любых $\alpha>\alpha_1$ и

$$P(T \in I_{\alpha}) = 1 - \alpha$$
 при всех $\alpha \in [0,1]$,

$$P$$
-значение — PV = inf{ α : T ∉ I_{α} }. Тогда, PV ~ U (0,1).

Доказательство.

Отметим, что для любого $\epsilon > 0$: $\alpha + \epsilon \le 1$,

$$P(PV \in [\alpha, \alpha + \epsilon)) = P(T \in I_{\alpha} \setminus I_{\alpha + \epsilon}) = P(T \in I_{\alpha}) - P(T \in I_{\alpha + \epsilon}) = \epsilon.$$

Следовательно, распределение PV – аюсолютно непрпрерывно и имеет U(0,1) распределение.

Распределение *Р*-значения

Утверждение (обобщение преобразования Смирнова).

Пусть G статистика критерия для проверки статистической гипотезы H_0 , $\{I_{\alpha}\}_{\alpha\in[0,1]}$ — семейство вложеных замкнутых множеств $I_{\alpha}\subseteq I_{\alpha_1}$ при любых $\alpha>\alpha_1$ и

$$P(T \in I_{\alpha}) = 1 - \alpha$$
 при всех $\alpha \in [0, 1]$,

P-значение — PV = $\inf\{\alpha: T \notin I_{\alpha}\}$. Тогда, $PV \sim U(0,1)$. Доказательство.

Отметим, что для любого $\epsilon > 0$: $\alpha + \epsilon \le 1$,

$$P(PV \in [\alpha, \alpha + \epsilon)) = P(T \in I_{\alpha} \setminus I_{\alpha + \epsilon}) = P(T \in I_{\alpha}) - P(T \in I_{\alpha + \epsilon}) = \epsilon.$$

Следовательно, распределение PV – аюсолютно непрпрерывно и имеет U(0,1) распределение.

Доверительные множества и критерии

Использование доверительных интервалов для построения статистических критериев

- Пусть
 - $H_0: \theta = \theta_0$ простая гипотеза
 - $G(X, \theta)$ генератор доверительного множества
 - $\hat{\Theta} = \{\theta : G(X, \theta) \in I_{\alpha}\}$ доверительное множество уровня доверия 1 α
- Дополнительно предположим, что распределение $G(X, \theta)$ отличается от распределения $G(X, \theta_0)$ при любом $\theta \in \Theta_A$.
- Статистический критерий для проверки H_0

$$\phi(X) = \begin{cases} 0, \ G(X, \theta_0) \in I_{\alpha} \\ 1, \ G(X, \theta_0) \notin I_{\alpha} \end{cases} \quad \text{или} \quad \phi(X) = \begin{cases} 0, \ \theta_0 \in \hat{\Theta} \\ 1, \ \theta_0 \notin \hat{\Theta} \end{cases}$$

- уровень значимости данного критерия равен α
- При построении критериев для сложной гипотезы $H_0: \theta \in \Theta_0$
 - требуется распределение статистики критерия при $\theta \in \Theta_0$
 - I_{α} находятся из условия, что наибольшее значение вероятности при $\theta \in \Theta_0$ не менее $1-\alpha$

Проверка значимости

Наиболее распространенным методом в медицинских исследованиях является проверка значимости отклонений от основной гипотезы.

- Существенным результатом является отвержение основной гипотезы – выявление значимых отклонений.
- Реальные значения отклонений от основной гипотезы не изучаются.
- Наличие богатой статистической информации позволяет выявлять даже несущественные с практической точки зрения различия.
- Если проверяется несколько статистических гипотез, то необходима поправка.

Проверка гипотез о параметрах нормального распределния

Задача

Пусть $X_1, ..., X_n$ – выборка из нормального распределения $\mathcal{N}(a,\sigma^2)$. Построить критерий значимости отклонений от гипотезы согласия $H_0: a = 0$ при альтернативе $H_A: a \neq 0$.

Решение. В качестве статистики критерия используем статистику Стьюдента

 $T(X) = \sqrt{n-1}\frac{X}{2}$ По лемме Фишера п. 4 статистика T имеет при H_0 распределение

Стьюдента с n-1 степенью свободы. Выбираем $I_{\alpha} = [-x_{\alpha}, x_{\alpha}]$: $S_{n-1}(x_{\alpha}) = 1 - \alpha/2$. Получаем нерандомизованный статистический критерий

$$\phi(X) = \begin{cases} 0, \ T(X, \theta_0) \in [-x_\alpha, x_\alpha] \\ 1, \ T(X, \theta_0) \notin [-x_\alpha, x_\alpha] \end{cases}$$

Вероятность ошибки I рода равна $\mathbb{E}_{(0,\sigma^2)}\phi(X) = P_{(0,\sigma^2)}(\phi(X) = 1) = \alpha$. Построенный критерий имеет уровень значимости α .

• При односторонней альтернативе $H_A: \theta > 0$ следует использовать ту же статистику T с $I_{\alpha} = (-\infty, x_{\alpha}), x_{\alpha} : \Phi(x_{\alpha}) = 1 - \alpha$.

24 октября 2020 г.

Проверка гипотез о параметрах нормального распределния

Задача

Пусть X_1, \ldots, X_n и Y_1, \ldots, Y_k — независимые выборки из нормальных распределений $\mathcal{N}(a, \sigma^2)$ и $\mathcal{N}(b, \sigma^2)$. Построить критерий значимости отклонений от гипотезы однородности $H_0: a = b$ при альтернативе $H_A: a \neq b$.

Решение. В качестве статистики критерия используем статистику Стьюдента для двух выборок

$$T(X) = \sqrt{\frac{nk(n+k-2)}{k+n}} \frac{\overline{X} + \overline{Y}}{\sqrt{ns_x^2 + ms_y^2}}$$

Ранее было показано (см. лекцию «доверительное оценивание»), что при основной гипотезе $T \sim S_{n+k-2}$. Выбираем $I_{\alpha} = [-x_{\alpha}, x_{\alpha}]$: $S_{n-1}(x_{\alpha}) = 1 - \alpha/2$. Тогда статистический критерий

$$\phi(X) = \begin{cases} 0, \ T(X) \in [-x_{\alpha}, x_{\alpha}] \\ 1, \ T(X) \notin [-x_{\alpha}, x_{\alpha}] \end{cases}$$

имеет уровень значимости α. ■

• Предположение о равенстве дисперсий достаточно ограничительно и может требовать проверки.

Проверка гипотез о параметрах нормального распределния

Задача

Пусть X_1,\ldots,X_n и Y_1,\ldots,Y_k — независимые выборки из нормальных распределений $\mathcal{N}(a,\sigma_1^2)$ и $\mathcal{N}(b,\sigma_2^2)$. Построить критерий значимости отклонений от гипотезы равенства дисперсий $H_0:\sigma_1^2=\sigma_2^2$ при альтернативе $H_A:\sigma_1^2\neq\sigma_2^2$.

Решение. Используем статистику критерия

$$V(X) = \frac{ns_x^2}{ks_y^2}$$

Известно (следствие к лемме Фишера), что при основной гипотезе $S \sim F_{n-1,k-1}$ (распределение Фишера–Снедекора). Выбираем $I_{\alpha} = [x_{1,\alpha}, x_{2,\alpha}] \colon F_{n-1,k-1}(x_{2,\alpha}) = 1 - \alpha/2, \ F_{n-1,k-1}(x_{1,\alpha}) = \alpha/2$ и получаем статистический критерий

$$\phi(X) = \begin{cases} 0, \ V(X) \in [-X_{\alpha}, X_{\alpha}] \\ 1, \ V(X) \notin [-X_{\alpha}, X_{\alpha}] \end{cases}$$

уровеня значимости α .

• Предположение о равенстве дисперсий достаточно ограничительно и может требовать проверки.

Вычисление Р-значений

Вычисление P-значений для двухсторонних критериев Стьюдента проверки согласия и однородности производится аналогично

- $PV = \alpha^* = 2(1 S_m(T)) = 1 F_{1,m}(T)$
 - m = n 1 для критерия согласия Стьюдента
 - m = n + k 2 для критерия однородности Стьюдента
 - $F_{1,m}$ функция распределения Фишера–Снедекора с параметрами 1 и m

Вычисление Р-значений

Вычисление P-значений критерия проверки равенства дисперсий

- $PV = \alpha^* = 2 \min(1 F_{n-1,m-1}(T), F_{n-1,m-1}(T))$
 - m = n 1 для критерия согласия Стьюдента
 - m = n + k 2 для критерия однородности Стьюдента
 - $F_{1,m}$ функция распределения Фишера–Снедекора с параметрами 1 и m