Lectures on Random Matrices (Spring 2025) Lecture 14: Matching Random Matrices to Random Growth II

Leonid Petrov

Wednesday, April 16, 2025*

Contents

1 Recap

N Problems (due 2025-04-29)

4

1 Recap

In the previous Lecture 13, we established a remarkable correspondence between two a priori different objects:

- The *spiked Wishart ensemble*: an $n \times n$ Hermitian random-matrix process $\{M(t)\}_{t\geq 0}$ whose entries come from columns of independent Gaussian random vectors of suitably chosen covariance.
- An inhomogeneous last-passage percolation (LPP) model: an array $\{W_{i,j}\}$ of exponential (or geometric) random weights on a portion of the two-dimensional lattice, whose last-passage times L(t,n) relate closely to the largest eigenvalues of M(t).

Our goal was to demonstrate that under certain parameter choices $(\pi, \hat{\pi})$ determining both the Wishart covariances and the LPP rates, the *joint* distributions of $\{\lambda_1(1), \ldots, \lambda_1(t)\}$ (the largest eigenvalue of each M(s) for $s = 1, \ldots, t$) coincide exactly with those of $\{L(1, n), \ldots, L(t, n)\}$ (the last-passage times along the top row of the LPP model). This equivalence, originally demonstrated by Dieker-Warren (2009), can be fully understood by passing to a *discrete* version of LPP with geometric site-weights and then applying the *Robinson-Schensted-Knuth* (RSK) correspondence.

1. Spiked Wishart ensembles and the largest eigenvalue process.

We defined the generalized (or spiked) Wishart matrix M(t) of size $n \times n$ by setting

$$M(t) = \sum_{m=1}^{t} A^{(m)} (A^{(m)})^*$$

^{*}Course webpage • Live simulations • TeX Source • Updated at 10:21, Tuesday 15th April, 2025

where $\{A^{(m)}\}_{m=1}^{\infty}$ are i.i.d. complex Gaussian column vectors of length n, with

$$\operatorname{Var}(A_i^{(m)}) = \frac{1}{\pi_i + \hat{\pi}_m}.$$

Here, $\pi = (\pi_1, \dots, \pi_n)$ and $\hat{\pi} = (\hat{\pi}_1, \hat{\pi}_2, \dots)$ are positive and nonnegative parameters, respectively. Writing $\lambda_1(t) \geq \dots \geq \lambda_n(t) \geq 0$ for the eigenvalues of M(t), we then saw:

- 1. The vectors $\lambda(t) = (\lambda_1(t), \dots, \lambda_n(t))$ form a Markov chain in the Weyl chamber $\mathbb{W}^n = \{x_1 \geq \dots \geq x_n \geq 0\}$.
- 2. There is an *interlacing* property: each update $M(t-1) \mapsto M(t)$ via the rank-one matrix $A^{(t)}(A^{(t)})^*$ forces $\lambda(t)$ to interlace with $\lambda(t-1)$:

$$\lambda_1(t) \geq \lambda_1(t-1) \geq \lambda_2(t) \geq \cdots \geq \lambda_n(t-1) \geq \lambda_n(t).$$

By writing down the transition kernels and normalizing appropriately (see Theorem 13.6 in Lecture 13), one obtains explicit factorized forms for $Q_{t-1,t}^{\pi,\hat{\pi}}(\,\cdot\,,\,\cdot)$, the one-step law from $\lambda(t-1)$ to $\lambda(t)$. Notably, for $\pi_i = 1$ and $\hat{\pi}_j = 0$ (the *null* Wishart case), one recovers the classical Laguerre orthogonal polynomial ensemble at fixed times.

2. Inhomogeneous last-passage percolation with exponential (or geometric) weights.

On the combinatorial side, we considered an array of site-weights $\{W_{i,j}\}_{i,j\geq 1}$ such that each $W_{i,j}$ is exponentially distributed with rate $\pi_i + \hat{\pi}_j$. For every integer $t \geq 1$, we define L(t,n) to be the maximum total weight of all up-right paths from (1,1) to (t,n). Formally,

$$L(t,n) = \max_{\Gamma: (1,1) \to (t,n)} \sum_{(i,j) \in \Gamma} W_{i,j}.$$

One checks that $L(\cdot, n)$ satisfies a simple additive recursion, plus boundary conditions:

$$L(i,j) = W_{i,j} + \max\{L(i-1,j), L(i,j-1)\},\$$

with $L(1,j) = \sum_{k=1}^{j} W_{1,k}$ and $L(i,1) = \sum_{k=1}^{i} W_{k,1}$. As t grows, $\{L(t,n)\}_{t\geq 1}$ also forms a process in \mathbb{R} . The main claim, to be completed in subsequent arguments, is that

$$(L(1,n), L(2,n), \ldots, L(t,n)) \stackrel{d}{=} (\lambda_1(1), \lambda_1(2), \ldots, \lambda_1(t)),$$

i.e. they share the same joint law across all times. The proof route: discretize the exponential random variables to geometric ones, and then use the RSK insertion *bijection* to see how LPP times map into eigenvalue-like data.

3. RSK via toggles: definitions and weight preservation.

The Robinson-Schensted-Knuth correspondence (RSK) was the main new mechanism in Lecture 13. In our setup, we adopt a toggle-based viewpoint: we encode arrays by diagonals and successively toggle the diagonals to achieve a fully ordered array R. Concretely:

Definition 1.1 (Nonnegative and ordered arrays). For integers $t, n \ge 1$:

- A nonnegative array W is a collection of integers $W_{i,j} \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq t, 1 \leq j \leq n$.
- An ordered array R (of the same size) satisfies $R_{i,j} \leq R_{i,j+1}$ and $R_{i,j} \leq R_{i+1,j}$ for all valid i, j.

Definition 1.2 (Toggle operation). Let $w \in \mathbb{Z}_{\geq 0}$ and let (λ, κ, μ) be three interlacing sequences of nonnegative integers, symbolically written as $\lambda \succ \kappa \prec \mu$. Then

$$T(w; \lambda, \kappa, \mu) = (\lambda, \nu, \mu)$$

is defined by leaving λ, μ unchanged and setting

$$\nu_1 = w + \max(\lambda_1, \mu_1), \quad \nu_i = \max(\lambda_i, \mu_i) + \min(\lambda_{i-1}, \mu_{i-1}) - \kappa_{i-1}, \quad i \ge 2.$$

From a straightforward check (Problem 13.7), toggling preserves total weights in a precise sense, and we always end up with $\lambda \prec \nu \succ \mu$.

Theorem 1.3 (RSK is a bijection, cf. Lecture 13). Given a nonnegative array W of size $t \times n$, the RSK map outputs an ordered array R = RSK(W) by the following procedure:

- Process the cells (i, j) of W in an arbitrary order (e.g. row by row from bottom to top).
- For each cell (i, j), toggle the diagonal containing that cell in the partial R, inserting weight $w = W_{i,j}$.

All toggles commute on different diagonals, so the final ordered array R does not depend on the insertion order. Moreover, $W \mapsto R$ is a bijection between nonnegative arrays and ordered arrays.

The key to how RSK links LPP and random matrices is its weight preservation property, which we restate in a concise form here:

Theorem 1.4 (Weight preservation, cf. Proposition 13.25). Let $W = \{W_{i,j}\}$ be a nonnegative integer array, and R = RSK(W). Denote

$$row_i = \sum_{j=1}^{n} W_{i,j}, \quad col_j = \sum_{i=1}^{t} W_{i,j},$$

and for R define the diagonal sums

$$\operatorname{diag}_{i,j} = \sum_{k=0}^{\min(i,j)-1} R_{i-k,j-k}.$$

Then for each $1 \le j \le n$ and $1 \le i \le t$, we have

$$\operatorname{diag}_{t,j} = \sum_{m=1}^{j} \operatorname{col}_{m}, \quad \operatorname{diag}_{i,n} = \sum_{m=1}^{i} \operatorname{row}_{m}, \quad (1.1)$$

ensuring that the total sum of W over all cells equals the total sum of R over all cells.

Proof (sketch). One inductively builds R by adding the sites (i, j) one at a time. Each toggle modifies exactly one diagonal and preserves an inclusion–exclusion count on neighboring diagonals. Concretely, after adding a box (i, j), the diagonal-sum identity

$$diag_{i,j} = diag_{i-1,j} + diag_{i,j-1} - diag_{i-1,j-1} + W_{i,j}$$

holds, expressing that R captures the discrete "second difference" of W. Since toggles commute on disjoint diagonals, the partial sums assemble to match the row and column sums of W regardless of the order of addition.

Thus, applying RSK to random arrays W (in particular, to a geometric LPP environment) yields an ordered array R whose interlacing diagonals reflect precisely the combinatorial structure of the LPP. By interpreting each diagonal as encoding eigenvalue increments, one connects R to the same interlacing patterns arising in Hermitian random matrices of $\beta = 2$ type. This observation is what ultimately shows the distributional identity between $(L(1, n), \ldots, L(t, n))$ and $(\lambda_1(1), \ldots, \lambda_1(t))$ under appropriate limiting and deformation parameters.

Outline of Next Steps

In the upcoming lecture, we will:

- Translate the RSK interlacing arrays directly into a form resembling eigenvalue distributions.
- Show how the parameter choices $(\pi, \hat{\pi})$ in the geometric version correspond to the spiked Wishart setup.
- Conclude the proof of Theorem 13.10 (the exact matching of the largest eigenvalues of spiked Wishart and the last-passage times in the exponential LPP).

These steps will complete our new perspective on why matrix spectra in the Wishart class align so precisely with the maximum-weight growth in an LPP model.

N Problems (due 2025-04-29)

References

L. Petrov, University of Virginia, Department of Mathematics, 141 Cabell Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA

E-mail: lenia.petrov@gmail.com