

An introduction to modelling natural systems

Shane Blowes

German Centre for Integrative Biodiversity Research,

Martin Luther University

shane.blowes@idiv.de

Outline

- Models and the Scientific Method
- What are models?
- Types and uses of models

Three types of descriptive models

Modelling and Science

- Science is a dialogue between
 - what's really out there (observations)
 - what we are looking for (e.g., framework to make sense of observations, accurate predictions)
- Requires good observations: experimental design
 - probability sampling (e.g., random sampling)
 - systematic measurements
- Being mindful of preconceptions: modelling
 - specify clearly what assumptions are being made
 - rigorously deriving predictions from assumptions
 - using data to evaluate predictions

What are models?

 A model is a set of assumptions about how something in the natural world works

- Kinds of models
 - Conceptual (e.g., verbal or graphical) models
 - Scale models
 - Mathematical models (including computer simulations)

What are models?

- All models abstract and idealise
- All models are wrong
- We don't 'test' models
 - test predictions
 - examine model assumptions
 - confrontation between empirical data and model predictions informs model development
 - Or, tells us what phenomena the model can and cannot help us understand

A modelling decision tree

Different kinds of models

- Process-based models
 - represents a set of ideas about how nature works
 - used in theoretical and statistical modelling
- Descriptive model
 - a mathematical formula proposed to 'fit' an observed pattern in nature
 - only used in statistical modelling

Examples

- Theoretical modelling
 - What are the consequences of altered biological processes (e.g., reduced connectivity, changed resource availability) for biodiversity? (June 19 with Zach)
- Descriptive modelling
 - Test hypothesis of diversity and habitat fragment size relationship?
 (Statistical)
 - Make accurate predictions based on data (Non-statistical)

The perfect model (what we want)

- General
 - applies in a wide range of contexts
- Realistic
 - incorporates all the important processes
- Precise
 - predicts what happens in nature closely
- Simple
 - interactions can be comprehensively understood

Imperfect models (what we work with)

- Generality, realism, precision and simplicity all involve trade-offs
 - because nature is complex and variable
- For important questions, use different models that make different trade-offs

"Our truth...is the intersection of independent lies." --Richard Levins (theoretical ecologist)

Break

Part II

Descriptive models

Three part exploration of descriptive models

- 1. Parametric statistical models
- 2. Nonparametric statistical models
- 3. Nonparametric, non-statistical models

Underfitting

Overfitting

Regularisation

What are they?
What are they used for?

How to fit them?

1. Parametric statistical models

Response ~ f(covariates),

- f defined in advance (functional form)
- Parametric: f expressed in terms of parameter(s)
- Statistical: include some kind of likelihood function, making model probabilistic (meaning e.g., estimates of uncertainty for predictions and parameter values can be made)
- Examples: Theoretical (process-based) models, Generalised Linear Models (GLMs), mixed effects models, time series models

1. Parametric statistical models

$$y \sim Normal(\mu, \sigma),$$

 $\mu = \alpha + \beta x$

Response ~ f(covariates),

- Nonparametric: f not defined in advance (functional form unspecified)
- Statistical: include some kind of likelihood function, making model probabilistic (meaning e.g., estimates of uncertainty for predictions and parameter values can be made)
- Examples: Splines, Generalised Additive Models (GAMs), Gaussian Process regression

$$y \sim Normal(\mu, \sigma),$$

 $\mu = f(x)$

Recall our first model of the scientific method

Response ~ f(covariates),

- Nonparametric: f not defined in advance (functional form unspecified)
- Non-statistical: not fully probabilistic (meaning e.g., that they can have many parameters with no estimates of uncertainty)
 - Uncertainty typically estimated using bootstrap
- Examples: decision trees, Random Forests, boosted regression trees, neural networks, support vector machines,

- Machine Learning
 - Response (Machine Learning [ML] equivalent: labels)
 - Predictors or covariates (ML: features)
 - Data (ML: instances)
- Differs from broader field of statistics
 - Less emphasis of estimating interpretable parameters
 - Predictions driven by data (not necessarily related to theory)
 - Focus on prediction, not understanding

Break

Afternoon: Computer exercises