The column that has the highest inforemation gain, will be the regot of the deciraion true. In foremation Town Fathory of class YDOJE Altributes To calculate the entropy of class; 1. Find out how many levels (n) the class has. 2. calculate the probability of each level. From the given table/matrix, Buy Computere" is the class, which has two levels. Hes, No. .: P(BC = Yes) = \frac{12}{20} = 0.6 Date of Experiment: 15.07.2019 Date of Submission: 09.08.2019 P (BC = NO) = 0.4 Spilisted by: Solver 100 of the population of th Assistant Professor, Department of Computer 7807.6000 A Department of Computer of an attributed To calculate visionin illustra Engineering and Technology - Find out the number of levels (n) in that attribute - colonlate the probability of each level - calculate the preobability of class fore every level of the attribute - use these to find out entreopy

Entrepy of attribute "Ago" = number of linels = 4 Step-2: $P(Age 218) = \frac{3}{20} = 0.15$ P(Age: 18-35) = $\frac{4}{70}$ = 0.2 $P(Age: 36-55) = \frac{8}{20} = 0.4$ $P(Age)55) = \frac{5}{20} = 0.25$ Preobability of Buy Computer when "Age < 18" Step-3; = = (2/3 × 109, 2/3 + 1/3 × 109, 2/3) = 0.9183here, the we have 3 rows with Age <18. - 2 of them by's computere -1 does not when AJEL18, P(BC=Yes) = 23 when Age <18, P(BC = No) = { then, we have used the foremula of entropy of class. [why? Don't ask. I don't know.] Entropy of Attribute "Age" = Sprobability of each level X Probability of Buy Computer (class) fore that level - P(BC | Age: 18-35) = - (0xlog, + 1xlog21)

Scanned by CamScanner

Scanned by CamScanner

Income; P(In: High) = 10 = 0.5 P(In: Low) = 0.5 P(BC | In: High) = - (0.5x log 0.5+0.5x log 0.5) P(BC | In: Low) = - (70.7x (09,0.7+0.3x (09,0.3)) = 0.88129

H(Bc/Income) = 0.5x1 +0.5x0.88129

IG(Income) = 0.97095-0.94065

Marital Status;

P(MS1: Married) = \frac{8}{20} = 0.4 P(Ms; single) = 0.6

P(BC/M5; Marcried) = - (3×109,3+5×109,5)

P(BC)MS.: Single) = - (92×109, 92+ 32×109, 12)

20.8/128

- 0.95443

= 0.94065

= 0.0303

H(BC(MS) = 0.4x0.95443+0.6x0.81128

= 0.86854

JG (MS)=0.97095-0.86854=0.10241

Gain. So. Age will be the resot of the decision true.

A from pruvious calculation, we see that, when Age: 18-35, we are sure that nobody will buy computer. Alternatively, when Age>55, everybody will buy computer.

Now, fore the tremaining two levels, we do not enough inforcmation to expand make decision. So, we will have to expand the tree.

When Age < 18, oure dataset in:

Education	Income	marcita1 Status	computere
High School	LOW	Single	Yes
	High	Single	No
High School	Low	married	Ves
High School High School	High Low	single	

NOW, we will have to do the same process as before on this table.

$$\frac{1}{3} + \frac{1}{3} \times \log_2 \frac{2}{3} + \frac{1}{3} \times \log_2 \frac{1}{3}$$

Education

Income

marcital Status

so, the decision true now-

Fore Age: 36-55, the dataset is;

Education	Income	Marcital Status	Computer
36 55 Marteris Marteris	High Low	Single Single	Yes
Bachelonis masteris masteris High School High School	Low Low High Low Low High	Marcried Marcried Single Single Single Marcried	No No Ves Ves Vo
1100 / 5.100	1	3)= 0.954	ነ 4

H(BC) = - (\{ \frac{1}{8} \times 109 \frac{1

P(Ed: Manteris)= 5

P(Ed: Bachelorin) = 1

P(Ed: High School) = = 4

arcital Status;

P(MS; Marcried) =
$$\frac{3}{8}$$

P(MS; Single) = $\frac{5}{8}$
P(Bc| Ms; Marcried) = 0
P(Bc| Ms; Single) = -(1x log_1) = 0
BH(Bc| Ms) = $\frac{3}{8}$ xo + $\frac{5}{8}$ xo = 0

IG(MS) = 0.95443-0=0.95443

Hence, the decision true is,

