AULA 8: SEMELHANÇA, TEOREMA DE PITÁGORAS E APLICAÇÕES

OBJETIVOS: Introduzir o conceito de *semelhança* de triângulos, o teorema fundamental da proporcionalidade – que relaciona semelhança de triângulos com paralelismo –, e o Teorema de Pitágoras. Ao final são apresentados outros pontos notáveis de triângulos: o *baricentro*, o *ortocentro* e o *incentro*.

8.1 Introdução

Nosso objetivo nesta aula é rever o conceito de semelhança, apresentado na aula 5 do texto de Resolução de Problemas Geométricos e estudar, de um outro ponto de vista, os teoremas de Pitágoras e de Tales, também vistos no texto citado, na aula 6. Terminamos a aula apresentando outros pontos notáveis de triângulos: o baricentro, o ortocentro e o incentro que, juntamente com o circuncentro – visto na aula 6 deste livro, completam o conjunto dos quatro principais pontos notáveis de triângulos.

Então, para começar o assunto, a primeira tarefa de vocês é reler as aulas 5 e 6 de [4].

8.2 Semelhança e o teorema fundamental da proporcionalidade

Em [4] vocês tomaram contato com o conceito de semelhança, na aula 5. Este conceito tem íntima ligação com o conceito de proporcionalidade, também visto naquele texto. Vamos ver agora como relacionamos esta história de proporção com o conceito de área, estudado na aula anterior.

Proposição 8.1. As áreas de dois paralelogramos com uma mesma altura são proporcionais às suas bases relativas à esta altura.

Figura 8.1

DEMONSTRAÇÃO. Sejam $\square ABCD$ e $\square EFGH$ dois paralelogramos tais que as alturas referente aos lados \overline{AB} e \overline{EF} sejam iguais (veja figura 8.1). Seja h a altura comum a ambos paralelogramos, e tomemos $AB = b_1$ e $EF = b_2$. Se designarmos

$$A_1 = A(\square ABCD) \in A_2 = A(\square EFGH),$$

queremos provar que

$$\frac{\mathcal{A}_1}{A_2} = \frac{b_1}{b_2}.$$

Mas, como se pode perceber, esta relação segue diretamente do cálculo das áreas dos paralelogramos. De fato, temos que

$$A_1 = b_1 h$$
 e $A_2 = b_2 h$,

donde, dividindo uma expressão pela outra, obtemos

$$\frac{\mathcal{A}_1}{\mathcal{A}_2} = \frac{b_1 h}{b_2 h} = \frac{b_1}{b_2}.$$

Problema 8.1. Prove o seguinte resultado: As áreas de dois triângulos com uma mesma altura são proporcionais às bases relativas a esta altura. Em outras palavras, considere dois triângulos $\triangle ABC$ e $\triangle DEF$ tais que a altura de ambos em relação aos lados \overline{AB} e \overline{DE} , respectivamente, seja h. Prove que

$$\frac{\mathcal{A}(\triangle ABC)}{\mathcal{A}(\triangle DEF)} = \frac{AB}{DE}.$$

Em [4], na página 69, vocês encontram a figura 5.3, semelhante à figura 8.2 apresentada aqui, onde $\overline{EF} \parallel \overline{BC}$, e a demonstração de que

$$\frac{AB}{AE} = \frac{AC}{AF}. ag{8.1}$$

Figura 8.2

A demonstração de (8.1) em [4] utiliza o *Teorema de Tales*. Como vocês viram em [4], a demonstração do Teorema de Tales não é simples, e usa fortemente a propriedade de aproximação de números reais por sequências de números racionais. Daremos abaixo uma outra demonstração para (8.1) utilizando técnicas envolvendo áreas de figuras planas.

Teorema 8.2. Sejam $\triangle ABC$ um triângulo e $E \in \overline{AB}$, $F \in \overline{AC}$ pontos tais que $\overline{EF} \parallel \overline{BC}$ (veja a figura 8.2). Então vale a relação (8.1).

DEMONSTRAÇÃO. Dado o triângulo $\triangle ABC$ construamos os paralelogramos $\square ABCD$ e $\square ACBD'$, como representados na figura 8.3. Observe que ambos possuem a mesma base \overline{BC} e mesma altura relativa a esta base (verifique!). Logo

$$\mathcal{A}(\Box ABCD) = \mathcal{A}(\Box ACBD'). \tag{8.2}$$

Analogamente os paralelogramos $\square EBCG$ e $\square FCBH$ compartilham da mesma base \overline{BC} e mesma altura relativa a esta base, donde

$$\mathcal{A}(\square EBCG) = \mathcal{A}(\square FCBH). \tag{8.3}$$

De (8.2) e (8.3) obtemos

$$\begin{array}{rcl} \mathcal{A}(\square AEGD) & = & \mathcal{A}(\square ABCD) - \mathcal{A}(\square EBCG) = \\ & = & \mathcal{A}(\square ACBD') - \mathcal{A}(\square FCBH) = \mathcal{A}(\square AFHD'), \end{array}$$

ou seja,

$$\mathcal{A}(\Box AEGD) = \mathcal{A}(\Box AFHD'). \tag{8.4}$$

Examinemos a situação de outro ponto de vista. Tomando como base de $\square AEGD$ e $\square ABCD$ os lados \overline{AE} e \overline{AB} , respectivamente, e aplicando a proposição 8.1 obtemos

$$\frac{\mathcal{A}(\square ABCD)}{\mathcal{A}(\square AEGD)} = \frac{AB}{AE}.$$
(8.5)

Analogamente, tomando como base de $\Box AFHD'$ e $\Box ACBD'$ os lados \overline{AF} e \overline{AC} , respectivamente, obtemos

$$\frac{\mathcal{A}(\square ACBD')}{\mathcal{A}(\square AFHD')} = \frac{AC}{AF}.$$
(8.6)

Logo, usando as igualdades (8.2) e (8.4), deduzimos de (8.5) e (8.6) que

$$\frac{AB}{AE} = \frac{\mathcal{A}(\Box ABCD)}{\mathcal{A}(\Box AEGD)} = \frac{\mathcal{A}(\Box ACBD')}{\mathcal{A}(\Box AFHD')} = \frac{AC}{AF}$$

ou seja,

$$\frac{AB}{AE} = \frac{AC}{AF}$$

provando (8.1).

Figura 8.4

Problema 8.2. Podemos também provar que, nas condições do enunciado do teorema acima,

$$\frac{AB}{AE} = \frac{BC}{EF}. ag{8.7}$$

Siga os seguintes passos:

(a) Trace por F uma reta paralela a \overline{AB} , encontrando \overline{BC} em um ponto T (veja a figura 8.4), e mostre, aplicando o teorema 8.2 aos pontos F e T, que

$$\frac{CB}{CT} = \frac{CA}{CF}. (*)$$

(b) Mostre que

$$\frac{CB}{TB} = \frac{CA}{FA}.\tag{**}$$

(Sugestão: Inverta os lados da igualdade (*) e faça as seguintes substituições: CT = CB - TB e CF = CA - AF.)

(c) Verifique que TB = EF e conclua que

$$\frac{BC}{EF} = \frac{AC}{AF}.$$

Finalmente, usando (8.1), obtenha (8.7).

A recíproca do teorema 8.2 também é verdadeira, ou seja,

Teorema 8.3. Sejam $\triangle ABC$ um triângulo $e \ E \in \overline{AB}, \ F \in \overline{AC}$ pontos tais que

$$\frac{AB}{AE} = \frac{AC}{AF}. ag{8.8}$$

 $Ent\~ao \ \overline{EF} \parallel \overline{BC}.$

Figura 8.5

DEMONSTRAÇÃO. A demonstração deste teorema é bem mais simples que a do anterior. Tomemos por E uma reta paralela a \overline{BC} e seja F' a interseção desta reta com \overline{AB} . Queremos provar que na verdade F = F' (veja a figura 8.5).

Pelo teorema anterior sabemos que

$$\frac{AB}{AE} = \frac{AC}{AF'}$$

donde, usando (8.8), obtemos

$$\frac{AC}{AF} = \frac{AC}{AF'}$$

ou seja, AF = AF'. Ora, isto quer dizer que F = F', como queríamos provar.

8.3 Semelhança de Triângulos

Vamos recordar nesta seção a teoria de semelhança de triângulos que vocês viram em [4], nas aulas 5 e 6. Transcrevemos primeiro a definição 5.2 daquele livro:

Definição 8.4. Dois triângulos $\triangle ABC$ e $\triangle DEF$ são semelhantes se é possível estabelecer uma correspondência entre seus lados e ângulos de modo que:

 \mathbf{e}

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = k.$$

A relação de semelhança será denotada por "~". No caso da definição acima escrevemos

$$\triangle ABC \sim \triangle DEF$$
.

A razão entre os lados dos triângulos é chamada de razão de semelhança dos triângulos.

Em outras palavras, para verificar se dois triângulos são semelhantes, procura-se uma relação entre seus vértices de forma que os ângulos correspondentes sejam congruentes. Se esta primeira condição falha, os triângulos não são semelhantes. Se dá certo, testa-se se as razões entre os lados opostos aos pares de ângulos congruentes são iguais. Se isto acontece, os triângulos são semelhantes, caso contrário não o são.

Figura 8.6 - Triângulos semelhantes

Observação 8.1. Observe que dois triângulos congruentes são também semelhantes, pois as medidas de seus lados opostos aos ângulos congruentes são iguais. Neste caso a razão de semelhança é 1.

Problema 8.3. Seguindo as notações do teorema 8.2 e do problema 8.2 da seção anterior, verifique que $\triangle ABC \sim \triangle AEF$.

Na verdade não precisamos verificar integralmente as condições estabelecidas na definição 8.4 para garantir a semelhança de dois triângulos. Existem critérios, análogos aos critérios de congruência de triângulos, como vocês já viram em [4]. Vamos listá-los a seguir.

Teorema 8.5 (Caso AA de semelhança de triângulos). Dois triângulos que possuem dois pares de ângulos congruentes entre si são semelhantes.

Representamos na figura 8.7 o teorema 8.5, onde $\triangle ABC \sim \triangle DEF$, pois $\not\preceq A \equiv \not\preceq D$ e $\not\preceq B \equiv \not\preceq E$.

Figura 8.7 - Caso AA de semelhança de triângulos

Problema 8.4. Reveja a demonstração do teorema 8.5 em [4], na página 68.

Teorema 8.6 (Caso LAL de semelhança de triângulos). Se dois triângulos possuem um par de ângulos congruentes e os lados destes ângulos são proporcionais entre si, então são semelhantes.

FUNDAMENTOS DE GEOMETRIA PLANA

Figura 8.8 - Caso LAL de semelhança de triângulos

Representamos na figura 8.8 o teorema 8.6, onde $\triangle ABC \sim \triangle DEF$, pois $\not \leq A \equiv \not \leq D$ e

$$\frac{AB}{DE} = \frac{AC}{DF}.$$

Problema 8.5. Reveja a demonstração do teorema 8.6 apresentada em [4] na página 71.

Teorema 8.7 (Caso LLL de semelhança de triângulos). Se os lados de dois triângulos são proporcionais entre si tomados dois a dois, então os triângulos são semelhantes.

Figura 8.9 - Caso LLL de semelhança de triângulos

Representamos na figura 8.9 o teorema 8.7, onde $\triangle ABC \sim \triangle DEF$, pois

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}.$$

Problema 8.6. Reveja a demonstração do teorema 8.7 em [4], na página 72.

8.4 Teorema de Pitágoras

Em [4], página 78, vocês estudaram um dos teoremas mais conhecidos e importantes da história do conhecimento matemático, o famoso *Teorema de Pitágoras*, que enunciamos abaixo.

Teorema 8.8 (Teorema de Pitágoras). Em todo triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.

Figura 8.10 - Teorema de Pitágoras

Reescrevemos o enunciado do Teorema de Pitágoras nas notações da figura 8.10: se $\triangle ABC$ é um triângulo retângulo em A então a hipotenusa de $\triangle ABC$ é \overline{BC} , e os catetos são \overline{AB} e \overline{AC} . Colocando BC=a, AB=c e AC=b, então o teorema afirma que

$$a^2 = b^2 + c^2$$
.

Existem inumeráveis demonstrações do Teorema de Pitágoras. Uma das mais comuns, utilizando a teoria de semelhança de triângulos, vocês viram em [4]. Apresentamos a seguir uma outra, usando o conceito de área, provavelmente elaborada na antiga Índia.

Figura 8.11

Na figura 8.11 construímos sobre a hipotenusa \overline{BC} do triângulo retângulo $\triangle ABC$ um quadrado $\square BCHG$, e sobre cada lado deste quadrado construímos "cópias" de $\triangle ABC$, obtendo um outro quadrado $\square ADEF$. Tomando $\overline{BC} = a$, $\overline{AB} = c$ e $\overline{AC} = b$, então os lados de $\square BCHG$ medem a, e os lados de $\square ADEF$ medem b+c.

Das propriedades sobre áreas que aprendemos na aula anterior temos que:

$$\mathcal{A}(\Box ABC) = \frac{1}{2}bc \tag{8.9}$$

$$\mathcal{A}(\Box ADEF) = (b+c)^2 = b^2 + 2bc + c^2$$
 (8.10)

$$\mathcal{A}(\square BCHG) = a^2 \tag{8.11}$$

Além disso, como

$$\triangle ABC \equiv \triangle DGB \equiv \triangle EHG \equiv \triangle FCH$$

então a área de todos estes triângulos é a mesma.

Então temos que

$$\mathcal{A}(\Box ADEF) = \mathcal{A}(\Box BCHG) + 4\mathcal{A}(\triangle ABC)$$

donde, substituindo as relações (8.9), (8.10) e (8.11) na expressão acima, obtemos

$$b^2 + 2bc + c^2 = a^2 + 4 \cdot \frac{1}{2}bc = a^2 + 2bc,$$

ou seja,

$$a^2 = b^2 + c^2$$

como queríamos provar.

A recíproca do Teorema de Pitágoras também é verdadeira, ou seja,

Teorema 8.9. Se o quadrado da medida de um dos lados de um triângulo for igual à soma dos quadrados das medidas dos dois outros lados então o triângulo é retângulo, com o ângulo reto oposto ao primeiro lado.

Demonstração. Seja $\triangle ABC$ um triângulo satisfazendo as condições do teorema. Para fixar ideias, suporemos que

$$(BC)^2 = (AB)^2 + (AC)^2$$
.

Queremos provar que $\triangle ABC$ é reto em A.

Tomemos $\triangle DEF$ um triângulo retângulo em D com DE = AB e DF = AC (por que podemos dizer que existe um tal triângulo?). Do teorema de Pitágoras deduzimos que

$$(EF)^2 = (DE)^2 + (DF)^2 = (AB)^2 + (AC)^2,$$

ou seja,

$$(EF)^2 = (BC)^2.$$

Mas isto quer dizer que EF = BC. Assim provamos que todos os lados dos triângulos $\triangle ABC$ e $\triangle DEF$ são congruentes entre si donde, pelo caso LLL de congruência, $\triangle ABC \equiv \triangle DEF$. Em particular $\not \preceq A \equiv \not \preceq D$. Portanto $\triangle ABC$ é triângulo retângulo com ângulo reto em A.

8.5 Pontos Notáveis de Triângulos: Baricentro

Como já comentamos algumas vezes neste texto, existem muitos pontos relacionados a triângulos que satisfazem a propriedades especiais, chamados *pontos notáveis*. Já apresentamos um na aula 6, o *circuncentro*. Para finalizar nosso curso apresentaremos outros três. Começaremos com o *baricentro*. Vamos a uma definição.

Definição 8.10. Em um triângulo os segmentos que ligam um vértice ao ponto médio de seu lado oposto são chamados de *medianas* do triângulo.

Figura 8.12 - Medianas de um triângulo

Teorema 8.11. As medianas de um triângulo se encontram em um mesmo ponto cuja distância a cada vértice é dois terços do comprimento da mediana correspondente.

Demonstração. Se em um triângulo $\triangle ABC$ as medianas são, como apresentado na figura 8.12, os segmentos $\overline{AM}, \ \overline{BN}$ e $\overline{CP},$ queremos provar que estes três segmentos encontram-se em um ponto G e que

$$AG = \frac{2}{3}AM, \ BG = \frac{2}{3}BN \ e \ CG = \frac{2}{3}CP.$$

Figura 8.13

Começaremos com duas medianas, por exemplo, \overline{BN} e \overline{CP} . Seja G o ponto de encontro destes segmentos¹. Marquemos em \overline{PN} um ponto D tal que P-N-D e $\overline{PN} \equiv \overline{ND}$, formando o quadrilátero $\square BCDP$ (veja a figura 8.13).

Observe que $\triangle ANP \equiv \triangle CND$ pelo critério LAL, pois

$$\begin{array}{cccc} \overline{AN} & \equiv & \overline{CN} & \text{pois N \'e ponto m\'edio de AC;} \\ \not \preceq ANP & \equiv & \not \preceq CND & \text{\^angulos OPV;} \\ \overline{NP} & \equiv & \overline{ND} & \text{por construç\~ao.} \end{array} \right\} (LAL)$$

Em particular $\angle PAN \equiv \angle NCD$ e $\overline{PA} \equiv \overline{CD}$. Logo $\overline{AB} \parallel \overline{CD}$ e

$$\overline{BP} \equiv \overline{PA} \equiv \overline{CD} \Rightarrow \overline{BP} \equiv \overline{CD},$$

pois P é ponto médio de \overline{AB} . Provamos assim que $\square BCDP$ é um paralelogramo e portanto $\overline{PD} \parallel \overline{BC}$ e $\overline{PD} \equiv \overline{BC}$. Da primeira relação deduzimos que $\not \angle NPG \equiv \not \angle GBC$, donde

$$\triangle PNG \sim \triangle GBC$$
.

Da segunda relação tiramos que

$$PN = \frac{1}{2}BC,$$

ou seja, a razão de semelhança entre $\triangle PNG$ e $\triangle GBC$ é $\frac{1}{2}$, donde

$$\frac{PG}{GC} = \frac{NG}{GB} = \frac{1}{2}$$

e portanto $PG = \frac{1}{2}GC$ e $NG = \frac{1}{2}NB$. Como

$$PC = PG + GC$$
 e $NB = NG + GB$,

obtemos

$$GC = \frac{2}{3}CP \text{ e } GB = \frac{2}{3}BN.$$
 (8.12)

Repetimos agora o mesmo argumento com as medianas \overline{AM} e \overline{CP} , por exemplo (veja a figura 8.14), provando que o ponto G' comum a ambas satisfaz as proporções

$$G'C = \frac{2}{3}CP \text{ e } G'A = \frac{2}{3}AM.$$
 (8.13)

Ora, então

$$G'C = \frac{2}{3}CP = GC \Rightarrow G'C = GC,$$

ou seja, G' e G são na verdade o mesmo ponto.

Assim provamos que as três medianas de $\triangle ABC$ se encontram em um mesmo ponto G e que, de (8.12) e (8.13),

$$GC = \frac{2}{3}CP, \ GA = \frac{2}{3}AM \ e \ GB = \frac{2}{3}BN,$$

como queríamos.

 $^{^1}$ O leitor atento poderia perguntar: "como garantimos que o ponto G existe mesmo?" Bem, provar isto envolve uma argumentação cuidadosa utilizando o axioma II.6, que não achamos necessário fazer neste texto. Portanto, fica garantida aqui a existência de G.

Figura 8.14

Definição 8.12. O ponto de encontro das medianas de um triângulo é chamado de *baricentro* do triângulo.

O baricentro de um triângulo tem um significado físico: é o seu centro de gravidade.

8.6 Pontos Notáveis de Triângulos: Ortocentro

Vamos conhecer outro ponto notável de triângulos, que é uma espécie de "irmão" do circuncentro, já nosso conhecido. Primeiro demonstraremos a existência do nosso novo amigo, e depois lhe daremos um nome.

Teorema 8.13. As retas-suporte das alturas de um triângulo são concorrentes em um ponto.

DEMONSTRAÇÃO. Reduziremos esta afirmação ao caso do teorema 6.10 através de uma engenhosa construção auxiliar que o leitor pode acompanhar na figura 8.15. Seja $\triangle ABC$ o nosso triângulo. Tomemos no ponto A a reta paralela a \overline{BC} e marquemos nesta reta os pontos D e E tais que $\overline{DA} \equiv \overline{BC}$ e $\overline{AE} \equiv \overline{BC}$, formando os paralelogramos $\square DACB$ e $\square AECB$. Em particular temos que $\overline{DB} \equiv \overline{AC}$ e $\overline{EC} \equiv \overline{AB}$.

Seja agora F o ponto de encontro das retas \overrightarrow{DB} e \overrightarrow{EC} (como podemos garantir que estas retas são concorrentes?). Como $\overrightarrow{DA} \parallel \overrightarrow{BC}$ então $\not ADB \equiv \not ACBF$; analogamente temos $\not ADB \equiv \not ACF$. Assim concluímos que $\triangle DAB \equiv \triangle BCF$ pelo critério ALA. Logo $\overrightarrow{DB} \equiv \overrightarrow{BF}$. De maneira completamente análoga verificamos que $\triangle AEC \equiv \triangle BCF$, donde $\overrightarrow{EC} \equiv \overrightarrow{CF}$.

Juntando estas peças observamos que construímos o triângulo $\triangle DEF$ onde os pontos $A, C \in B$ são pontos médios dos lados $\overline{DE}, \overline{EF} \in \overline{FD}$, respectivamente. Tracemos agora por estes pontos as retas $\overrightarrow{AH}, \overrightarrow{CG} \in \overrightarrow{BJ}$ perpendiculares respectivamente aos lados listados, onde $H \in \overrightarrow{BC}, G \in \overrightarrow{AB} \in J \in \overrightarrow{AC}$. Estas retas são as mediatrizes dos lados de $\triangle DEF$ e, portanto, concorrem em um ponto I. Mas estas retas também são as retas-suporte das alturas de $\triangle ABC$ (confira!).

Provamos assim que as retas-suporte das alturas de um triângulo concorrem em um ponto. $\hfill\Box$

Figura 8.16

Definição 8.14. O ponto de encontro das alturas de um triângulo (ou de suas retassuporte, se for o caso) é chamado de *ortocentro*.

A mesma observação feita sobre o circuncentro vale aqui: o ortocentro pode estar no interior ou exterior, ou ser um vértice do triângulo. Esta última situação ocorre quando o triângulo for reto — neste caso o ortocentro coincide com o vértice correspondente ao ângulo reto. Veja na figura 8.16 as diversas posições possíveis do ortocentro I.

8.7 Pontos Notáveis de Triângulos: Incentro

Fundamentos de Geometria Plana indd 143

Nesta seção estudaremos o análogo do circuncentro para circunferências "dentro" de triângulos, isto é, da mesma forma que provamos na seção 6.5 que os vértices de um triângulo pertencem a uma circunferência, podemos provar que dentro do triângulo vive uma circunferência que é tangente a seus lados.

Definição 8.15. Dizemos que uma circunferência \mathcal{C} está *inscrita* num triângulo $\triangle ABC$ se \mathcal{C} for tangente a cada um dos lados do triângulo (veja figura 8.17).

O exercício então é encontrar um ponto equidistante dos lados do triângulo. Isto está intimamente relacionado com as bissetrizes dos ângulos do triângulo, como mostraremos a seguir.

AULA 8 - SEMELHANÇA, TEOREMA DE PITÁGORAS E APLICAÇÕES

25/09/2012 20:57:58

Figura 8.17

Teorema 8.16. A bissetriz de um $\hat{a}ngulo^2$ é o lugar geométrico dos pontos interiores ao $\hat{a}ngulo$ e equidistantes de seus lados.

Demonstração. Sejam $\not\preceq BAC$ um ângulo, e \overrightarrow{AD} sua bissetriz. Precisamos provar que:

- (i) se $P \in \overrightarrow{AD}$ então P é equidistante de \overrightarrow{AB} e \overrightarrow{AC} , e
- (ii) se P é um ponto no interior de $\angle BAC$ e equidistante de seus lados, então $P \in \overrightarrow{AD}$.

Figura 8.18

Começamos com (i). Seja $P \in \overrightarrow{AD}$. Tomemos $Q \in \overrightarrow{AB}$ e $R \in \overrightarrow{AC}$ pontos tais que $\overrightarrow{PQ} \perp \overrightarrow{AB}$ e $\overrightarrow{PR} \perp \overrightarrow{AC}$. Precisamos provar que PR = PQ (veja figura 8.18).

Os triângulos $\triangle AQP$ e $\triangle ARP$ são retos em Qe R, respectivamente. Além disso, como \overrightarrow{AD} é bissetriz de $\not \preceq A,$ então

$$\angle QAP \equiv \angle RAP$$
.

Assim $\angle APQ \equiv \angle APR$ e portanto $\triangle AQP \equiv \triangle ARP$ pelo critério ALA, já que \overline{AP} é lado comum (confira!). Logo $\overline{PQ} \equiv \overline{PR}$, ou seja, PQ = PR, como queríamos provar.

 $^{^2 {\}rm Sempre}$ é bom lembrar que quando usamos a palavra "ângulo" sem nenhum predicado, estamos nos referindo a ângulos não triviais.

Figura 8.19

Agora vejamos (ii). Seja P um ponto interior a $\angle BAC$ equidistante de \overrightarrow{AB} e \overrightarrow{AC} . Em outras palavras, se Q e R são os pés das perpendiculares por P a \overrightarrow{AB} e \overrightarrow{AC} , respectivamente, então PQ = PR (veja a figura 8.19).

Como $\angle PQA \equiv \angle PRA$ são ângulos retos e \overline{PA} é lado comum aos triângulos retângulos $\triangle AQP$ e $\triangle ARP$, pelo Teorema de Pitágoras temos que

$$(AQ)^2 + (QP)^2 = (PA)^2 = (PR)^2 + (AR)^2$$

donde $(AQ)^2 = (AR)^2$, ou seja, $\overline{AQ} \equiv \overline{AR}$. Assim temos que

$$\triangle AQP \equiv \triangle ARP$$

pelo critério LLL, donde

$$\angle QAP \equiv \angle RAP.$$

Logo
$$\overrightarrow{AP} = \overrightarrow{AD}$$
 é bissetriz de $\angle BAC$.

Podemos concluir deste resultado que o centro da circunferência inscrita em um triângulo é o ponto de encontro das bissetrizes de seus ângulos (se existir!).

Teorema 8.17. As bissetrizes dos ângulos internos de um triângulo concorrem em um mesmo ponto. Em particular todo triângulo é circunscritível.

DEMONSTRAÇÃO. Sejam $\triangle ABC$ um triângulo e \overrightarrow{AD} , \overrightarrow{BE} as bissetrizes de $\angle BAC$ e $\angle ABC$, respectivamente. Precisamos verificar, primeiro, que \overrightarrow{AD} e \overrightarrow{BE} são concorrentes. Acompanhe os argumentos na figura 8.20.

Observe que os pontos B e C estão em semiplanos opostos em relação a \overrightarrow{AD} e portanto, pelo axioma II.6, \overrightarrow{BC} encontra \overrightarrow{AD} em um ponto P interior ao segmento.

De forma análoga \overrightarrow{BE} separa P e A em semiplanos opostos. Então esta reta e o segmento \overline{AP} encontram-se em um ponto I, interior a \overline{AP} . Com isto provamos que \overline{AD} e \overline{BE} concorrem em um ponto I.

Seja agora \overrightarrow{CF} a bissetriz de $\angle ACB$. Para terminar a demonstração precisamos verificar que $I \in \overrightarrow{CF}$. Porém isto segue do teorema 8.16. De fato, como $I \in \overrightarrow{AD}$, então I é equidistante de \overrightarrow{AB} e \overrightarrow{AC} ; analogamente, como $I \in \overrightarrow{BE}$, I é equidistante de \overrightarrow{BA} e \overrightarrow{BC} . Assim I equidista de \overrightarrow{CA} e \overrightarrow{CB} , donde I pertence às três bissetrizes.

Figura 8.20

Para terminar, seja $G \in \overline{AB}$ um ponto tal que $\overrightarrow{IG} \perp \overline{AB}$ e tracemos a circunferência $\mathcal{C} = \mathcal{C}(I,d)$ com d = IG, a distância de I aos lados do triângulo (veja a figura 8.21). É claro que \mathcal{C} é tangente a \overrightarrow{AB} no ponto G. Sejam $F \in \overline{CB}$ e $H \in \overline{AC}$ os pés das perpendiculares por I a \overline{CB} e \overline{AC} , respectivamente. Então IG = IH = IF e portanto \mathcal{C} também é tangente aos outros lados do triângulo nos pontos F e H, Provamos assim que \mathcal{C} está inscrito em $\triangle ABC$.

Definição 8.18. O ponto de encontro das bissetrizes dos ângulos internos de um triângulo é chamado de *incentro* do triângulo.

Figura 8.21

O leitor pode observar que, ao contrário do circuncentro e do ortocentro, o incentro é sempre um ponto interior ao triângulo.

8.8 Exercícios

8.1. Prove que a relação de semelhança é uma relação de equivalência, isto é, que se $\triangle ABC \sim \triangle DEF \in \triangle DEF \sim \triangle A'B'C'$, então $\triangle ABC \sim \triangle A'B'C'$.

8.2. Na figura $8.22 \triangle ABC \sim \triangle DFE$ e os comprimentos conhecidos dos lados são dados. Calcule x e y.

Figura 8.23 - Exercício 8.3

8.3. Na figura 8.23 tem-se que $\triangle PMK \sim \triangle KLR$. Prove que

$$\not \Delta Q \equiv \not \Delta MKL$$
.

Figura 8.24 - Exercício 8.4

8.4. Em relação à figura 8.24 pergunta-se se \overline{PQ} é ou não paralelo a \overline{AB} nas seguintes situações:

(a) Na figura 8.24a com AC = 20, BC = 30, PC = 16 e QC = 25.

(b) Na figura 8.24b com AC = 9, BC = 18, AP = 7 e CQ = 4.

Figura 8.25 - Exercícios 8.5 e 8.6

8.5. Na figura 8.25
a $\square DEFG$ é um quadrado e $\not\preceq C$ é reto. Demonstre que

- (a) $\triangle ADG \sim \triangle GCF$.
- (b) $\triangle ADG \sim \triangle FEB$.
- (c) AD.EB = DG.FE.
- (d) $DE = \sqrt{AD.EB}$.

8.6. Na figura 8.25b $\triangle QRP$ é reto em R e \overline{RT} é a altura do triângulo em relação a sua hipotenusa \overline{PQ} . Se QR=5 e PR=12, determine o comprimento h de \overline{RT} .

Figura 8.26 - Exercício 8.7

8.7. Na figura 8.26 representamos um trapézio $\square ABCD$. Alguns segmentos têm as medidas indicadas na figura, e h=ED é a medida da altura do trapézio. Com os dados indicados calcule h e a área de $\square ABCD$.

Fundamentos de Geometria Plana.indd 149 25/09/2012 20:58:02

Fundamentos de Geometria Plana.indd 150 25/09/2012 20:58:02

REFERÊNCIAS

- [1] J. L. M. Barbosa, Geometria Euclidiana Plana, SBM, Rio de Janeiro, 1985.
- [2] O. Dolce & J. N. Pompeo, Fundamentos de Matemática Elementar, vol 9: Geometria Plana, 6^a ed., Atual Editora, São Paulo, 1990.
- [3] F. L. DOWNS, JR. & E. E. MOISE, Geometria Moderna, 2 volumes, Editora Edgar Blucher, São Paulo, 1971.
- [4] M.C. DE FARIAS. Resolução de Problemas Geométricos, Editora UFMG, Belo Horizonte, 2009.
- [5] GEOGEBRA. Software gratuito para o ensino e aprendizagem da matemática, em http://www.geogebra.org/cms/pt_BR.
- [6] A. V. POGORELOV, Geometría elemental, tradução para o espanhol por Carlos Vega, Editora Mir, Moscou, 1974.
- [7] M. L. B. DE QUEIROZ & E. Q. F. REZENDE, Geometria Euclidiana Plana e Construções Geométricas, 2^a ed., Editora da Unicamp, Campinas, 2008.