Colon Cancer

Jose Tamez

2023-04-28

Contents

```
library(survival)
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
     format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
     cov, smooth, var
#library(corrplot)
#source("~/GitHub/FRESA.CAD/R/RRPlot.R")
#source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)</pre>
pander::panderOptions('digits', 3)
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
data(cancer)
colon <- subset(colon,etype==1)</pre>
colon$etype <- NULL</pre>
rownames(colon) <- colon$id
colon$id <- NULL
```

```
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
data$study <- NULL
table(data$status)</pre>
```

```
dataColon <- as.data.frame(model.matrix(status~.*age,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\+","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]</pre>
```

222 200	0	1
322 299	322	299

pander::pander(table(dataColonTest\$status))

0	1
120	147

0.1 Modeling

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
nodes	0.024655	1.016	1.025	1.034	0.614
${f node 4}$	0.211991	1.154	1.236	1.325	0.618
${f age_nodes}$	0.000394	1.000	1.000	1.001	0.610
${f age_node4}$	0.002920	1.002	1.003	1.004	0.618
$rxLev_5FU_age$	-0.001931	0.997	0.998	0.999	0.554

	Estimate	lower	HR	upper	u.Accuracy
$rxLev_5FU$	-0.093619	0.860	0.911	0.964	0.554
\mathbf{age}	-0.002773	0.995	0.997	0.999	0.530
\mathbf{extent}	0.090985	1.024	1.095	1.172	0.536

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
nodes	0.496	0.614	0.608	0.512	0.609
${f node 4}$	0.578	0.622	0.610	0.581	0.614
${f age_nodes}$	0.481	0.610	0.604	0.500	0.604
${f age_node4}$	0.577	0.619	0.610	0.580	0.615
$rxLev_5FU_age$	0.617	0.622	0.560	0.609	0.614
${f rxLev_5FU}$	0.612	0.619	0.560	0.605	0.615
age	0.616	0.619	0.527	0.607	0.615
\mathbf{extent}	0.618	0.622	0.549	0.610	0.614

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
nodes	0.03209	0.393	6.10	5.24	0.09644	1
${f node 4}$	0.04435	0.439	6.02	6.34	0.03213	1
age_nodes	0.03197	0.417	5.81	5.61	0.10428	1
age_node4	0.03972	0.427	5.76	6.13	0.03522	1
$rxLev_5FU_age$	0.01576	0.242	3.58	3.25	0.00430	1
$rxLev_5FU$	0.01306	0.241	3.26	3.23	0.01005	1
age	0.00882	0.180	2.91	2.26	0.00808	1
extent	0.00889	0.198	2.64	3.57	0.00382	1

0.2 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

0.2.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

ROC: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

0.2.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 6: O/E Ratio

est	lower	upper
1.01	0.895	1.13

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 7: O/E Ratio

mean	50%	2.5%	97.5%
1.49	1.49	1.46	1.51

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 8: O/Acum Ratio

mean	50%	2.5%	97.5%
1.38	1.38	1.37	1.38

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.653	0.653	0.622	0.682

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 10: ROC AUC

est	lower	upper
0.681	0.639	0.723

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 11: Sensitivity

est	lower	upper
0.288	0.237	0.343

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 12: Specificity

est	lower	upper
0.898	0.859	0.928

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 13: Probability Thresholds

90%	
0.469	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 14: Risk Ratio

est	lower	upper
1.7	1.46	1.98

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 15: Logrank test Chisq = 64.815888 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
class=0	502	213	259.8	8.42	64.8
class=1	119	86	39.2	55.81	64.8

0.2.3 Cox Calibration

h0	Gain	DeltaTime
0.645	1.51	2.97

0.2.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

0.2.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 17: O/E Ratio

est	lower	upper
0.74	0.658	0.829

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 18: O/E Ratio

mean	50%	2.5%	97.5%
0.968	0.969	0.95	0.986

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Ratio")

Table 19: O/Acum Ratio

mean	50%	2.5%	97.5%
1.05	1.05	1.05	1.06

pander::pander(rrAnalysisTrain\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.653	0.653	0.622	0.685

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 21: ROC AUC

est	lower	upper
0.681	0.639	0.723

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 22: Sensitivity

est	lower	upper
0.288	0.237	0.343

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 23: Specificity

est	lower	upper
0.898	0.859	0.928

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 24: Probability Thresholds

90%	
0.616	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 25: Risk Ratio

est	lower	upper
1.7	1.46	1.98

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 26: Logrank test Chisq = 64.815888 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
class=0	502	213	259.8	8.42	64.8
class=1	119	86	39.2	55.81	64.8

0.2.6 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

0.2.7 Test Performance

pander::pander(t(rrAnalysisTest\$0ERatio),caption="0/E Ratio")

Table 27: O/E Ratio

est	lower	upper
0.89	0.752	1.05

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Ratio")

Table 28: O/E Ratio

mean	50%	2.5%	97.5%
1.16	1.16	1.13	1.19

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Ratio")

Table 29: O/Acum Ratio

mean	50%	2.5%	97.5%
1.17	1.17	1.16	1.17

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.656	0.656	0.611	0.699

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 31: ROC AUC

est	lower	upper
0.689	0.626	0.753

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 32: Sensitivity

est	lower	upper
0.333	0.258	0.416

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity),caption="Specificity")

Table 33: Specificity

est	lower	upper
0.908	0.842	0.953

pander::pander(t(rrAnalysisTest\$thr_atP),caption="Probability Thresholds")

Table 34: Probability Thresholds

90%	
0.616	

pander::pander(t(rrAnalysisTest\$RR_atP),caption="Risk Ratio")

Table 35: Risk Ratio

est	lower	upper
1.73	1.43	2.08

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 36: Logrank test Chisq = 35.640204 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	207	98	124.1	5.48	35.6
class=1	60	49	22.9	29.69	35.6

0.3 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

```
title="CV Test: Colon Cancer",
ysurvlim=c(0.00,1.0),
riskTimeInterval=timeinterval)
```

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

0.3.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$0ERatio),caption="0/E Ratio")

Table 37: O/E Ratio

est	lower	upper
0.771	0.701	0.846

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Ratio")

Table 38: O/E Ratio

mean	50%	2.5%	97.5%
0.979	0.979	0.965	0.992

pander::pander(t(rrAnalysisCVTest\$OAcum95ci), caption="0/Acum Ratio")

Table 39: O/Acum Ratio

mean	50%	2.5%	97.5%
1.04	1.04	1.04	1.04

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.645	0.645	0.62	0.67

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 41: ROC AUC

est	lower	upper
0.671	0.636	0.706

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 42: Sensitivity

est	lower	upper
0.312	0.269	0.357

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity),caption="Specificity")

Table 43: Specificity

est	lower	upper
0.891	0.859	0.919

pander::pander(t(rrAnalysisCVTest\$thr_atP), caption="Probability Thresholds")

Table 44: Probability Thresholds

90%	
0.616	

pander::pander(t(rrAnalysisCVTest\$RR_atP),caption="Risk Ratio")

Table 45: Risk Ratio

est	lower	upper
1.7	1.51	1.91

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 46: Logrank test Chisq = 98.948116 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	701	307	380.8	14.3	98.9
class=1	187	139	65.2	83.7	98.9