Multiple-Play Stochastic Bandits with Shareable Finite-Capacity Arms

Xuchuang Wang¹, Hong Xie², John C.S. Lui¹

The Chinese University of Hong Kong¹, Chongqing University²

June 27, 2022

Multiple-Play Multi-Armed Bandits

- \blacksquare K arms: each associated with a reward random variable X_k with mean μ_k .

- Assume $\mu_1 > \cdots > \mu_N > \cdots > \mu_K$.
- For t = 1, ..., T:
 - Pulls *N* arms among $\in \{1, 2, ..., K\}$.
 - Collects reward $X_{k,t}$ from N pulled arms.
- Denote action $a_t \in \mathbb{N}_+^K$: if arm k is pulled then $a_{k,t} = 1$; or otherwise $a_{k,t} = 0$.
 - \bullet e.g., $\boldsymbol{a}_t = (0, 1, 1, 0, \dots)$
 - $\sum_{k=1}^{K} a_{k,t} = N$
- Goal: maximize total reward; or minimize the regret

Multiple-Play Multi-Armed Bandits

 \blacksquare K arms: each associated with a reward random variable X_k with mean μ_k .

- Assume $\mu_1 > \cdots > \mu_N > \cdots > \mu_K$.
- For t = 1, ..., T:
 - Pulls *N* arms among $\in \{1, 2, ..., K\}$.
 - Collects reward $X_{k,t}$ from N pulled arms.
- Denote action $a_t \in \mathbb{N}_+^K$: if arm k is pulled then $a_{k,t} = 1$; or otherwise $a_{k,t} = 0$.
 - \bullet e.g., $\boldsymbol{a}_t = (0, 1, 1, 0, \dots)$
 - $\sum_{k=1}^{K} a_{k,t} = N$
- Goal: maximize total reward; or minimize the regret

$$\mathbb{E}[\mathsf{Reg}(T)] \coloneqq \underbrace{T\sum_{k=1}^N \mu_k}_{\mathsf{Optimal}} - \underbrace{\mathsf{Algorithm's}}$$

Multiple-Play Multi-Armed Bandits

- \blacksquare K arms: each associated with a reward random variable X_k with mean μ_k .

- Assume $\mu_1 > \cdots > \mu_N > \cdots > \mu_K$.
- For t = 1, ..., T:
 - Pulls *N* arms among $\in \{1, 2, ..., K\}$.
 - Collects reward $X_{k,t}$ from N pulled arms.
- Denote action $a_t \in \mathbb{N}_+^K$: if arm k is pulled then $a_{k,t} = 1$; or otherwise $a_{k,t} = 0$.
 - \bullet e.g., $\boldsymbol{a}_t = (0, 1, 1, 0, \dots)$
 - $\sum_{k=1}^{K} a_{k,t} = N$
- Goal: maximize total reward; or minimize the regret

$$\mathbb{E}[\mathsf{Reg}(T)] := \underbrace{T \sum_{k=1}^{N} \mu_k}_{\mathsf{Optimal}} - \underbrace{\sum_{t=1}^{T} \sum_{k: a_{k,t}=1} \mu_k}_{\mathsf{Algorithm's}}.$$

Shareable Finte-Capacity Arm

Each arm has two unknowns:

- (a) Edge Computing [2]
- "per-load" reward mean μ_k and integer reward capacity m_k .

(b) Wireless Network [1]

Shareable Finte-Capacity Arm

- Each arm has two unknowns:
 - "per-load" reward mean μ_k and integer reward capacity m_k .
- If $a_{k,t}$ plays pull the arm k with m_k capcity, then the reward from this arm

"per-load" reward mean
$$\mu_k$$
 and integer reward capacity m_k .

If $a_{k,t}$ plays pull the arm k with m_k capcity, then the reward fr $R_{k,t} := \min\{a_{k,t}, m_k\} X_{k,t} = \begin{cases} a_{k,t} X_{k,t}, & a_{k,t} \leq m_k \\ m_k X_{k,t}, & a_{k,t} > m_k \end{cases}$

If $a_{k,t}$ is the "per-load" reward random variable.

Shareable Finte-Capacity Arm

- Each arm has two unknowns:
 - "per-load" reward mean μ_k and integer reward capacity m_k .
- If $a_{k,t}$ plays pull the arm k with m_k capcity, then the reward from this arm

"per-load" reward mean
$$\mu_k$$
 and integer reward capacity m_k .

If $a_{k,t}$ plays pull the arm k with m_k capcity, then the reward from $R_{k,t} := \min\{a_{k,t}, m_k\} X_{k,t} = \begin{cases} a_{k,t} X_{k,t}, & a_{k,t} \leq m_k \\ m_k X_{k,t}, & a_{k,t} > m_k \end{cases}$

If $a_{k,t}$ plays pull the arm k with m_k capcity, then the reward from $R_{k,t}$ is the "per-load" reward random variable.

If $a_{k,t}$ is the "per-load" reward random variable.

Optimal allocation:

- Optimal allocation:

$$\pmb{a}^* := \left(m_1, \dots, m_{L-1}, N - \sum_{k=1}^{L-1} m_k, 0, \dots, 0\right)$$

plays $a_{k,t}$

where $L := \min \left\{ n : \sum_{k=1}^{n} m_k \geqslant N \right\}$, the smallest number of top arms covering N plays.

Learn Reward Capacity m_k

■ Sample Complexity Minimax Lower Bound (Gaussian): for any estimator \hat{m}_t

$$n \geqslant \frac{\sigma_k^2 m_k^2 \log \left(1/4\delta\right)}{\mu_k^2}.$$

Explorations can have any number of plays pulling the same arm.

Learn Reward Capacity m_k

■ Sample Complexity Minimax Lower Bound (Gaussian): for any estimator \hat{m}_t

$$n \geqslant \frac{\sigma_k^2 m_k^2 \log \left(1/4\delta\right)}{\mu_k^2}.$$

Explorations can have any number of plays pulling the same arm.

■ Estimator:
$$\hat{m}_t = \frac{\text{"full-load" } \hat{\nu}_{k,t}}{\text{"per-load" } \hat{\mu}_{k,t}} \left(\approx \frac{m_k \mu_k}{\mu_k} \right)$$

- Individual exploration (IE, $a_{k,t} < m_k$) \Longrightarrow "per-load" reward empirical mean $\hat{\mu}_{k,t}$
- United exploration (UE, $a_{k,t} \geqslant m_k$) \Longrightarrow "full-load" reward empirical mean $\hat{\nu}_{k,t}$

Learn Reward Capacity m_k

■ Sample Complexity Minimax Lower Bound (Gaussian): for any estimator \hat{m}_t

$$n \geqslant \frac{\sigma_k^2 m_k^2 \log \left(1/4\delta\right)}{\mu_k^2}.$$

Explorations can have any number of plays pulling the same arm.

- Estimator: $\hat{m}_t = \frac{\text{"full-load" } \hat{\nu}_{k,t}}{\text{"per-load" } \hat{\mu}_{k,t}} \left(\approx \frac{m_k \mu_k}{\mu_k} \right)$
 - Individual exploration (IE, $a_{k,t} < m_k$) \Longrightarrow "per-load" reward empirical mean $\hat{\mu}_{k,t}$
 - United exploration (UE, $a_{k,t} \geqslant m_k$) \Longrightarrow "full-load" reward empirical mean $\hat{\nu}_{k,t}$
- Estimator's Sample Complexity Upper Bound: $\tau_{k,t}$ IEs and $\iota_{k,t}$ UEs

$$\tau_{k,t}, \iota_{k,t} \leqslant \frac{49m_k^2 \log(2/\delta)}{\mu_k^2}.$$

Regret Minimization for MP-MAB with Shareable Arms

■ Regret Lower Bound

$$\liminf_{T \to \infty} \frac{\mathbb{E}[\mathsf{Reg}(T)]}{\log T} \geqslant \underbrace{\sum_{k=L+1}^K \frac{\Delta_{L,k}}{\mathsf{kl}(\mu_k,\mu_L)}}_{\text{estimate reward mean}} + \underbrace{\sum_{k=1}^{L-1} \frac{\Delta_{k,L} \sigma^2 m_k^2}{\mu_k^2} + \frac{\Delta_{L,L+1} \sigma^2 m_L^2}{(m_L - \bar{m}_L + 1)^2 \mu_L^2}}_{\text{estimate reward capacity}}$$

Regret Minimization for MP-MAB with Shareable Arms

■ Regret Lower Bound

$$\liminf_{T \to \infty} \frac{\mathbb{E}[\mathsf{Reg}(T)]}{\log T} \geqslant \underbrace{\sum_{k=L+1}^K \frac{\Delta_{L,k}}{\mathsf{kl}(\mu_k,\mu_L)}}_{\text{estimate reward mean}} + \underbrace{\sum_{k=1}^{L-1} \frac{\Delta_{k,L} \sigma^2 m_k^2}{\mu_k^2} + \frac{\Delta_{L,L+1} \sigma^2 m_L^2}{(m_L - \bar{m}_L + 1)^2 \mu_L^2}}_{\text{estimate reward capacity}}$$

- OrchExplore Algorithm: Parsimonious IEs + UEs
- Regret Upper Bound

$$\limsup_{T \to \infty} \frac{\mathbb{E}[\mathsf{Reg}(T)]}{\log T} \leqslant \sum_{k=L+1}^K \frac{\Delta_{L,k}}{\mathsf{kl}(\mu_k,\mu_L)} + \sum_{k=1}^{L-1} \frac{49w_k m_k^2}{\mu_k^2} + \frac{49w_L m_L^2}{(m_L - \bar{m}_L + 1)^2 \mu_L^2}.$$

Simulations

Thank you!

Full paper at arXiv:2206.08776

References I

5g base-station-sharing business in shibuya, 2019. URL https://www.sumitomocorp.com/en/africa/news/release/2019/group/12330.

[2] SPEC INDIA. What is edge computing? the quick overview explained with

[1] Tokyu Corporation and Sumitomo Corporation. Launch of pilot experiment on

[2] SPEC INDIA. What is edge computing? the quick overview explained with examples, 2019. URL https://www.spec-india.com/blog/what-is-edge-computing-the-quick-overview-explained-with-examples.