本节内容

散列函数 的构造

知识总览

设计散列函数时应该注意什么?

散列函数(哈希函数): Addr=H(key) 建立了"关键字"→"存储地址"的映射关系。

设计散列函数时应该注意什么:

- 1. 定义域必须涵盖所有可能出现的关键字。
- 2. 值域不能超出散列表的地址范围。
- 3. 尽可能减少冲突。散列函数计算出来的地址应尽可能均匀分布在整个地址空间。
- 4. 散列函数应尽量简单,能够快速计算出任意一个关键字对应的散列地址。

反例: $H(key) = \sqrt{key} \% 13$, 不支持关键字为负值

反例: H(key) = key % 15, 可能被映射到非法地址13、14

反例: $H(key) = (key \times 13) \% 13$ 任何关键字都会被映射到地址0

反例: H(key) = (key!) % 13,若 关键字值较大,计算阶乘耗时高

例: 散列表长度为

13, 关键字可能是

任一"整数"

除留余数法

除留余数法 —— H(key) = key % p

散列表表长为m, 取一个不大于m但最接近或等于m的质数p

注: 质数又称素数。指除了1和此整数自身外,不能被其他自然数整除的数

适用场景:较为通用,只要关键字是整数即可

例: 散列表表长 m=13。13是质数,因此可令散列函数 H(key)=key%13

	0	1	2	3	4	5	6	7	8	9	10	.11	12
								_C		,	_C	C	
· //	,0°			3				¹ 100	X AMOO	Ž		7.7.7.100°	

例:散列表表长 m=15。不大于15且最接近15的质数是13,因此可令散列函数 H(key)=key%13

1	2	3	4	5	6	7	8	9	10	11	12	13	14
		S		XI III XX II XX IIX XX IIX XX IIX XX IIX XX IIX XX IX XX IIX XX IIX XX IX XX IX XX IX XX IX XX IX XX								^	^

拓展: 为什么除留余数法要对质数取余?

除留余数法 —— H(key) = key % p

散列表表长为m,取一个不大于m但最接近或等于m的质数p。

原因: 对质数取余, 可以分布 更均匀,从而减少冲突

注: 质数又称素数。指除了1和此整数自身外,不能被其他自然数整除的数

设:可能出现的关键字={2,4,6,8,10,12,14}

散列表表长8,散列函数 H(key)=key%8

0	1	2	3	4	5	6	7
			V .				
	o c			,,o ^C		,00°	l,C

10

12

对合数取余,散 列地址分布不均 匀,易发生冲突

散列表表长8,散列函数 H(key)=key%7

14 8 2 10 4 12 6

对质数取余, 散列地址分布 均匀,不易发 生冲突

Why? ——取余运算会被"公因子"影响,参见《数论》

直接定址法

直接定址法 —— H(key) = key 或 H(key) = a*key + b

其中,a和b是常数。这种方法计算最简单,且不会产生冲突。若关键字分布不连续,空位较多,则会造成存储空间的浪费。

适用场景: 关键字分布基本连续

例:用散列表存储某班级的30个学生信息,班内学生学号为(1120112176~1120112205)可令 H(key) = key - 1120112176

0	1	2	3	4	5	 		26	27	28	29	
176	177	178	179	180	181		•••	202	203	204	205	

数字分析法

数字分析法 —— 选取数码分布较为均匀的若干位作为散列地址

设关键字是r进制数(如十进制数),而r个数码在各位上出现的频率不一定相同,可能在某些位上分布均匀一些,每种数码出现的机会均等;而在某些位上分布不均匀,只有某几种数码经常出现,此时可选取数码分布较为均匀的若干位作为散列地址。

适用场景:关键字集合已知,且关键字的某几个数码位分布均匀

例:要求将手机用户的信息存入长度为 10000 的散列表。以"手机号码"作为关键字设计散列函数

平方取中法

平方取中法——取关键字的平方值的中间几位作为散列地址。

具体取多少位要视实际情况而定。这种方法得到的散列地址与关键字的每位都有关系,因此使得散列地址分布比较均匀。

适用场景:关键字的每位取值都不够均匀。

例:某汽车品牌,以(底盘号、发动机号、外观号)作为一款汽车型号的标识。该品牌有100种车型,欲将这这些车型信息存入长度为100的散列表,如何设计散列函数?

底盘号有: 28、34、39、60...

发动机号有: 50、52、54...

外观号有: 20、25、30、35...

关键字的各个数码 位都分布不均匀

车型号	平方	取中	985
605030	\rightarrow	366061300900	×985
345220		119176848400	4925 7880
395225	→	15620 <mark>28</mark> 00625	8865
605435		366551539225	970225

中间几位的值受每个数码位影响

知识回顾与重要考点

