1. Kacper	Numer indeksu:	Rok i kierunek:
Połuszejko	1. 412183	MNB, 3 rok
Data wykonania:	Temat:	Data oddania:
04.12.2023	Laboratorium 4 - dyskretna transformata Fouriera	08.12.2023

1 Podstawy zastosowania DFT do analizy sygnału

Pierwszym celem ćwiczenia było znormalizowanie wartości w widmie amplitudowym tak, aby wysokość piku w widmie sygnału sinusoidalnego była identyczna jak wartość amplitudy dla dowolnej liczby próbek. W tym celu wprowadzono parametr *G=SamplesPerPeriod*N/2* przez który dzielono moduł z transformaty Fouriera przy rysowaniu wykresu. Rzeczywiste wartości (w Hz) na osiach wykresów amplitudy oraz fazy widma uzyskano przy pomocy paramatru *Hz=Fs/(SamplesPerPeriod*N)* przez który przemnożono parametr *Fbazowe* służący do rysowania odpowiednich wykresów.

Jak widać na **Rys. 1** wszystkie wykresy amplitudowe są parzyste względem połowy częstotliwośći próbkowania, natomiast charakterystyki fazowe są nieaprzyste. Jest to charakterystyczna cecha transformaty Fouriera wszystkich sygnałów rzeczywistych.

Rys. 1 – Wykresy trzech sygnałów oraz ich widmo amplitudowa i fazowe wygenerowane przy pomocy dyskretnej transformaty Fouriera.

2 Widmo sygnału prostokątnego

Transformata sygnału prostokątnego została znormalizowana w analogiczny sposób jak w punkcie poprzednim. Odpowiedzialne są za to zmienne: Hz=Fs/(N*Period) G=Period*N/2. Zgodnie z poleceniem należałoby teraz sprawdzić czy wysokość otrzymanych wykresów jest zgodna z teorią. Próbowano zatem korzystać ze wzoru z wykładu:

$$X(m) = \frac{\sin \pi m K/N}{\sin \pi m/N}$$

gdzie K jest szerokością, dla którego sygnał jest dodatni (czyli to jest połowa okresu jeśli dobrze rozumiem). Najwyższy pik powinien być zatem równy K (lub K/2, ponieważ amplituda naszego sygnału to 0.5), ale nie jest. Nie wiem czym jest to spowodowane, nie jestem pewny czy dobrze rozumiem ten wzór.

Rys. 2 – Sygnał prostokątny zrekonstruowany dla różnej liczby składowych.

3 Przeciekanie

Aby zobrazować efekt przeciekania przy zastosowaniu DFT, wygenerowano dwa przebiegi sinusoidalne o częstotliwościach 2000 Hz oraz 3052 Hz. Częstotliwość próbkowania wynosiła 40000 Hz, a liczba próbek - N=1000. Częstotliwość pierwszego sygnału była więc wielokrotnością częstotliwości fundamentalnej, natomiast drugi nie, przez co wystąpił efekt przeciekania widoczny na **Rys.3**.

Rys. 3 – Sygnał będący sumą dwóch przebiegów sinusoidalnych oraz jego widmo amplitudowe DFT.

4 Okna czasowe

Rys. 4 – Wykres tranformaty DFT w punkcie o częstotliwości 5000 Hz w zależności od różnicy między częstotliwością transformowanego sygnału, a 5000 Hz.

Na powyższym wykresie dosyć wyraźnie widać, które okno najlepiej niweluje zjawisko przeciekania. Oczywiście im niższe wartości dla poszczególnych Δf tym lepiej. Można zatem stwierdzić, że najepiej radzi sobie okno "blackman", trochę gorzej "hanning", a następnie "hamming". Warto zaznaczyć, że niezależnie od zastosowanego okna efekt przeciekania został ograniczony względem sygnału bez zastosowania okna. Ponieważ krzywe przedstawione na jednym wykresie zlewają się i mogą być trudne do odczytania na poniższym rysunku zostały one przedstawione osobno.

Rys. 5 – Wykres tranformaty DFT w punkcie o częstotliwości 5000 Hz w zależności od różnicy między częstotliwością transformowanego sygnału, a 5000 Hz. Każda krzywa na oddzielnym wykresie.