Paper Review: New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes

Ying-Qi Zhao Donglin Zeng Eric B. Lader Michael R. Kosorok

April 13, 2016

Presentation by Hilda Ibriga

Overview

- Background and Motivation
- Mathematical Framework
 - General Methodology
 - Classical Approach to DTR
 - Alternative formulation
- New Approach to DTR
 - Backward Outcome Weighted Learning (BOWL)
 - Simultanous Outcome Weighted Learning (SOWL)
- Properties of BOWL and SOWL
 - Fisher Consistency
 - Asymptotic Convergence
 - Risk Bound
- Simulation
- Oata Analysis

Background What is DTR?

- A Dynamic Treatment Regime (DTR) is a sequence of decision rules, which at each step indicates what treatment to give a patient based on historical data collected from the patient up to that time point.
- At each decision point, **prognostic** variables and **treatment** histories of a patient are used as input for the decision rule, which outputs an individualized treatment recommendation for the patient.

Cancer Treatment

Two-stage Decision Process

- Decision point 1 : Introduce Chemotherapy $(C_1 \text{ or } C_2)$
- Decision point 2
 - Maintenance treatment $(M_1 \text{ or } M_2)$ for patients who respond.
 - Alternative treatment $(S_1 \text{ or } S_2)$ for patients who do not respond.
- Objective : Maximize survival time

Background Advantages of DTR

- More realistic and flexible treatment plan than a once-and-for-all strategy.
- Accounts for heterogeneity across patients and heterogeneity over time within each patient.
- Allows different aspect of treatment to vary over time according to patient specific information. Example: Treatment types, dosage levels, timing of delivery etc.
- " The right treatment for the right patient at the right time".

Background

Goal

 Identify an optimal DTR: the sequence of decision rules which will maximize expected long-term outcome in the patients.

- Outcome can be defined in a variety of ways:
 - For cancer patients, outcome could be time before relapse.
 - For smoking patients, outcome could be quitting.
 - Outcome could also be the reduced side effects of a treatment.

Data Collection Procedure (SMART)

The algorithms considered assume the data is collected from Sequential Multiple Assignment Clinical Trials (SMART).

Features of SMART data:

- Randomizations are done at multiple decision time points.
- Choice of treatments to randomize at each decision point can depend on success or failure of previously randomized treatments.
- Treatments are independent of potential future outcomes.

Consider a **multistage** decision problem where decisions are made in ${\cal T}$ stages.

Let

- A_j be the treatment assigned at the jth stage with domain $\mathcal{A}_j = \{-1,1\}.$
- X_j be the observation after treatment A_{j-1} but prior to the *jth* stage.
- R_j the observed outcome/reward in the patient following *jth* treatment. Each R_i is assumed to be bounded and positive.

Notice that $\sum_{j=1}^{T} R_j$ is the cumulative reward up to stage T. A **DTR** is a sequence of decision rules $d = (d_1, d_2, ..., d_T)$, with

$$d_j: \mathcal{O}_j \mapsto \mathcal{A}_j,$$

where \mathcal{O}_j is the space of history information $H_j = (X_1, A_1, R_1 ..., A_{j-1}, X_j)$.

-ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ 횰lㅌ 쒼٩@

The **Value function** V^d is defined to be:

$$V^d = E_d \left[\sum_{j=1}^T R_j \right].$$

- The expectation is with respect to the measure P_d generated by the random variables $(X_1, A_1, R_1..., A_T, X_T + 1, R_T)$ under $A_j = d_j(H_j)$.
- V^d can be interpreted as the expected long-term benefit if the population were to follow the regime d.

Let P be the measure generated by $(X_1, A_1, R_1..., A_T, X_{T+1}, R_T)$ and E the expectation with respect to that measure. Under some assumptions which are met when the data is collected in a SMART, P dominates P_d and,

$$\frac{dP_d}{dP} = \frac{\prod_{j=1}^T I(A_j = d_j(H_j))}{\prod_{j=1}^T \pi_j(A_j, H_j)},$$

where I(.) is the indicator function.

The Value function can therefore be written as

$$V^{d} = E \left[\frac{\left(\sum_{j=1}^{T} R_{j} \right) \prod_{j=1}^{T} I(A_{j} = d_{j}(H_{j}))}{\prod_{j=1}^{T} \pi_{j}(A_{j}, H_{j})} \right]$$
(1)

Interpretation: for T=1, the value function of assigning treatment $A_1=1$ to all patients is a *weighted average* of all outcomes R_j among those patients that received $A_1=1$ with weights $\pi_1(A_1,H_1)^{-1}$.

The **optimal value function** is defined as

$$V^* = \sup_{d \in \mathcal{D}} V^d,$$

where \mathcal{D} consists of all possible treatment regimes. The goal is to estimate the **optimal** d^* from the data.

$$d^* = argmax_{d \in \mathcal{D}} V_d$$

Classical Approach to DTR

Q-learning

Q-learning is a machine learning method for estimating the optimal DTR. It involves two steps:

• **Step 1.** Estimate the Q-function which in the case of T=1 is defined as :

$$Q(x, a) = E[R|X = x, A = x]$$

by regressing R on (X, A)

• **Step 2.** Maximize the estimated Q-function in order to infer the optimal DTR.

Limitations:

- The estimated Q-function often poorly fits the data in the case of high-dimensional covariate space.
- If the regression model is misspecified, Q-learning could generate an inconsistent estimator of the optimal DTR

-□▶ ◀圖▶ ◀불▶ ◀불▶ 볼|= 쒼٩♡

Reformulation as weighted classification problem

Advantages:

- Takes advantage of existing machine learning algorithm in order to estimate DTR.
- Directly estimates the optimal regime unlike other regression based methods such as Q-learning.
- Implementation involves easy-to-use algorithms similar to Support Vector Machine.

Reformulation as a Weighted Classification Problem

Let T=1.

Identifying the optimal treatment regime d^* is equivalent to finding d^* which minimizes the following weighted classification error

$$E\left[\frac{RI(A \neq d(X))}{\pi(A, X)}\right] \tag{2}$$

This is similar to minimizing a non convex and discontinuous 0-1 loss function.

One approach is to use a convex surrogate loss function instead of the 0-1 loss function to obtain an empirical analog to (2).

Based on data on n subjects, the empirical analog to (2) using the hinge loss function as surrogate function is

$$n^{-1} \sum_{i=1}^{n} \frac{R_{i}}{\pi(A_{i}, X_{i})} \phi(A_{i} f(X_{i})) + \lambda_{n} ||f||^{2},$$

where

- f(x) is the decision function
- d(x) = sign(f(x))
- The hinge loss function is $\phi(v) = \max(1 v, 0)$
- \bullet λ_n is the tuning parameter controlling the severity of the penalty
- ||f|| is the norm in a reproducing kernel Hilbert space (RKHS).

Example: ||f|| can be the Euclidean norm of β if f(x) is linear $f(x) = \langle \beta, x \rangle + \beta_0$

New Approach 1

Backward Outcome Weighted Learning (BOWL)

- Backward Outcome Weighted Learning known as BOWL is a statistical learning method for finding the optimal DTR.
- It uses a backward recursive procedure which estimates the optimal decision rule at future stage first, and then optimal decision rule at the current stage.
- At each stage, analysis is restricted to the subjects who have followed the estimated optimal decision rules thereafter.

Backward Outcome Weighted Learning

Let $(X_{i1}, A_{i1}, R_{i1}..., A_{iT}, X_{i,T+1}, R_{iT})$, i = 1, ..., n be n iid patients trajectories from a SMART. Suppose we already know the optimal regimes at stages t + 1, ..., T. The optimal decision rule at stage t, d^* is a map from \mathcal{O}_t to -1, 1 which minimizes

$$E\left[\frac{\left(\sum_{j=t}^{T} R_{j}\right) \prod_{j=t+1}^{T} I(A_{j} = d_{j}^{*}(H_{j}))}{\prod_{j=t+1}^{T} \pi_{j}(A_{j}, H_{j})} I(A_{t} \neq d_{t}(H_{t})) | H_{t} = h_{t}\right]$$
(3)

Backward Outcome Weighted Learning

Hinge loss function as a convex surrogate for the 0-1 loss is used to get the following counterpart of (3).

$$n^{-1} \sum_{i=1}^{n} \frac{\left(\sum_{j=t}^{T} R_{ij}\right) \prod_{j=t+1}^{T} I(A_{ij} = d_{j}^{*}(H_{ij}))}{\prod_{j=t+1}^{T} \pi_{j}(A_{ij}, H_{ij})} \phi(A_{it} f_{t}(H_{it})) + \lambda_{t,n} \|f_{t}\|^{2}$$
(4)

and $d(h_t) = sign(f_t(h_t))$

This is an empirical weighted average of the loss function ϕ with weights $(\sum_{j=t}^T R_j) \prod_{j=t+1}^T I(A_j = d_j^*(H_j)) / \prod_{j=t+1}^T \pi_j(A_j, H_j)$ for each individual.

Step 1. Minimize

Algorithm

$$n^{-1} \sum_{i=1}^{n} \frac{R_{iT} \phi(A_{iT} \operatorname{quad} f_{t}(H_{iT}))}{\pi_{j}(A_{iT}, H_{iT})} + \lambda_{T,n} \|f_{T}\|^{2}$$

with respect to f_T . Then let $\hat{d}_T(h_T) = sign(\hat{f}_T(h_T))$ **Step 2.** For t = T - 1, T - 2, ..., 1 minimize

$$n^{-1} \sum_{i=1}^{n} \frac{\left(\sum_{j=t}^{T} R_{ij}\right) \prod_{j=t+1}^{T} I(A_{ij} = \hat{d}_{j}(H_{ij}))}{\prod_{j=t+1}^{T} \pi_{j}(A_{ij}, H_{ij})} \phi(A_{it} f_{t}(H_{it})) + \lambda_{t,n} \|f_{t}\|^{2}$$

• The minimization at each step has a similar dual objective function to the usual **SVM**, and can be implemented via quadratic programming

- □ ▶ ◆ @ ▶ ◆ 분 ▶ · 분 | = · 이익()

Backward Outcome Weighted Learning Weakness

- The number of subjects used to learn the optimal decision rules decreases geometrically as t decreases.
- IOWL is an iterative version of BOWL which eventually uses the entire sample of patients to learn the optimal decision rule.

Iterative Outcome Weigthed Learning

(IOWL)Algorithm

Step 1. Estimate the optimal DTR $\tilde{d}=(\tilde{d}_1)(\tilde{d}_2)$ using BOWL. The corresponding decision functions are $(\tilde{f}_1,\tilde{f}_2)$. Set $\tilde{d}_1^{new}=\tilde{d}_1$.

Step 2. Given \tilde{d}_1^{new} , find an updated optimal stage 2 treatment decision by minimizing

$$n^{-1} \sum_{i=1}^{n} \frac{R_{i2}I(A_{i1} = \tilde{d}_{1}^{new}(H_{i1}))}{\pi_{2}(A_{i2}, H_{i2})} \phi(A_{i2}f_{2}(H_{i2})) + \lambda_{2,n} ||f_{2}||^{2}$$

to obtain \tilde{f}_2 . Set $\tilde{d}_2^{new} = \operatorname{sign}(\tilde{f}_2)$.

Step 3. Given d_2^{new} , find an updated optimal stage 1 treatment decision by minimizing

$$n^{-1} \sum_{i=1}^{n} \frac{(R_{i1} + R_{i2})I(A_{i2} = \tilde{d}_{2}^{new}(H_{i2}))}{\prod_{j=1}^{2} \pi_{j}(A_{ij}, H_{ij})} \phi(A_{i1}f_{1}(H_{i1})) + \lambda_{1,n} ||f_{2}||^{2}$$

to obtain \tilde{f}_1 . Set $\tilde{d}_1^{\textit{new}} = \operatorname{sign}(\tilde{f}_1)$.

Step 4. Iterate between Steps 2 and 3 until the value function V^{d^*} does not increase significantly.

< □ > < @ > < 글 > < 글 > 글|= ♡Q♡

New Approach 2

Simultanous Outcome Weighted Learning (SOLW)

- The SOWL algorithm determines the optimal regimes at all stages simultaneously instead of sequentially using a classification method.
- SOWL aims at directly optimizing the empirical counterpart of (1) in one step.
- A concave surrogate function is used instead of the product of indicators.

SOWL optimal regime estimator maximizes

$$n^{-1} \sum_{i=1}^{n} \left[\frac{\left(\sum_{j=1}^{2} R_{ij}\right) \psi(A_{i1} f_{1}(H_{i1}), A_{i2} f_{2}(H_{i2}))}{\prod_{j=1}^{2} \pi_{j}(A_{ij}, H_{ij})} \right] - \lambda_{n} (\|f_{1}\|^{2} + \|f_{2}\|^{2})$$
(5)

where, $\psi(Z_1, Z_2) = min(Z_1 - 1, Z_2 - 1, 0) + 1$

ロ > 4回 > 4 差 > 4 差 > 差 | 重 | り < 0 </p>

Simultanous Outcome Weighted Learning

Concave surrogate function

Figure: **Left**: Non smooth indicator function $I(Z_1 > 0, Z_2 > 0)$; **Right**: Smooth concave surrogate $min(Z_1 - 1, Z_2 - 1, 0) + 1$

Simultanous Outcome Weighted Learning SOWL

If the decision functions f_j , j=1,...,T are restricted to linear functions of the form $f_j(H_j)=\langle \beta_j,H_j\rangle+\beta_{0j}$ for j=1,2.

Then the norm of f_1 and f_2 in (5) are the Euclidean norms of β_1 and β_2 respectively.

The optimization problem can be rewritten as:

$$\max \quad \gamma \sum_{i=1}^{n} W_i \xi_i - \|\beta_1\|^2 - \|\beta_2\|^2$$

subject to,
$$\xi_i \leq 0$$
, $\xi_i \leq A_{i1}(\langle \beta_1, H_{i1} \rangle + \beta_{01}) - 1$, $\xi_i \leq A_{i2}(\langle \beta_2, H_{i2} \rangle + \beta_{02}) - 1$, where α is a constant that depends on λ

where γ is a constant that depends on λ_n .

This is also a quadratic programming problem with quadratic objective function and linear constraints.

Simultanous Outcome Weighted Learning SOWL

The dual problem is given by

$$\max_{\alpha_1,\alpha_2} \sum_{i=1}^n (\alpha_{i1} + \alpha_{i2}) - \frac{1}{2} \sum_{i=1}^n \sum_{l=1}^n \sum_{j=1}^2 \alpha_{ij} \alpha_{lj} A_{ij} A_{lj} \langle H_{ij}, H_{lj} \rangle$$

subject to $quad\alpha_{i1}$, $\alpha_{i2} \geq 0$, $\sum_{i=1}^{n} \alpha_{i1} A_{i1} = 0$, $\sum_{i=1}^{n} \alpha_{i2} A_{i2} = 0$, $\alpha_{i1} + \alpha_{i2} \leq \gamma W_i$ for i = 1, ..., n.

Remark: Non-linear decision functions can be used by selecting a nonlinear kernel function and the associated RKHS. In this case, $\langle H_{ij}, H_{lj} \rangle$ is replaced by the inner product in the RKHS.

Simultanous Outcome Weighted Learning SOWL

To generalize SOWL to a T-stage decision problem, with T>2, use the surrogate reward function

$$\phi(Z_1,...,Z_T) = \min(Z_1-1,...,Z_T-1,0) + 1$$

and an objective function analogous to the one in (5) when T=2.

Properties of BOWL and SOWL

- Fisher Consistency
- Asymptotic Consistency
- Risk bound (bound on both estimation error and approximation error)

Fisher Consistency

Fisher consistency states that the population optimizer in BOWL and SOWL is the optimal DTR.

Theorem (BOWL)

Assume $(\tilde{f}_1,..,\tilde{f}_T)$ is a sequence of decision functions obtained by taking the supremum over $\mathcal{F}_1 \times \mathcal{F}_2 \times ... \times \mathcal{F}_T$ of

$$E\left[\frac{\left(\sum_{j=1}^{T}R_{j}\right)\prod_{j=t+1}^{T}\mathrm{I}(A_{j}=sign(\tilde{f}_{j}(H_{j})))}{\prod_{j=t}^{T}\pi_{j}(A_{j},H_{j})}\phi(A_{t}f_{t}(H_{t}))\right]$$

backward through time for t = T, T - 1, ..., 1, then

$$d_j^*(h_j) = sign(\tilde{f}_j(h_j))$$

for all j = 1, ..., T

◆□ → ◆同 → ◆ □ → □ □ □ ● ○ ○ ○

Fisher Consistency

Theorem (SOWL)

If
$$(\tilde{f}_1,..,\tilde{f}_T) \in \mathcal{F}_1 \times \mathcal{F}_2 \times ... \times \mathcal{F}_T$$
 maximizes,

$$V_{\psi}(f_1,...,f_T) = E\left[\frac{\left(\sum_{j=1}^T R_j\right)\psi(A_1f_1(H_1),...,A_Tf_T(H_T))}{\prod_{j=1}^T \pi_j(A_j,H_j)}\right]$$

then for $h_j \in \mathcal{O}_j$,

$$d_j^*(h_j) = sign(\tilde{f}_j(h_j))$$

for j = 1, ..., T.

Relationship between Excess Values

The theorem below shows that the difference between the value function for any decision rules $(f_1,...,f_T)$ and the optimal value function $(f_1^*,...,f_T^*)$ with 0-1 reward function is no larger than under the surrogate reward function ψ times a constant.

Theorem (SOWL Excess Values)

$$V(f_1^*,...,f_T^*) - V(f_1,...,f_T) \le (1 + (T-1)c_0^{-1})[V_{\psi}(f_1^*,...,f_T^*) - V_{\psi}(f_1,...,f_T)]$$

where $(f_1^*,...,f_T^*)$ is the optima over $\mathcal{F}_1 \times \mathcal{F}_2 \times ... \times \mathcal{F}_T$

• This guarantees that if the V_{ψ} value of a given decision rule is fairly close to V_{ψ}^* , then the decision rule is also close to the optimal value under the 0-1 loss function.

Consistency BOWL

Theorem

Assume that at stage t, t=1,...,T, the sequence $\lambda_{j,n}$ satisfies $\lambda_{j,n} \to 0$ and $n\lambda_{j,n} \to \infty$ for j=1,...,T. Moreover, assume \hat{f}_j is obtained within an RKHS \mathcal{H}_{k_j} associated with a kernel function k_j and that f_j^* belongs to the closure of $\limsup_n \mathcal{H}_{k_j}$ where $d_j^* = \operatorname{sign}(f_j^*)$ and \mathcal{H}_{k_j} may depend on n. Then for all distributions P,

$$\lim_{n o \infty} V_t(\hat{f}_t,...,\hat{f}_T) = V_t^*$$
 in probability.

Consistency SOWL

Theorem

Assume that the sequence λ_n satisfies $\lambda_n \to 0$ and $n\lambda_n \to \infty$. Moreover, assume $(\hat{f}_1,...,\hat{f}_T)$ is obtained my maximizing (5) within $\mathcal{H}_{k_j} \times ... \times \mathcal{H}_{k_T}$ and that $(f_1^*,...,f_T^*)$ belongs to the closure of $\limsup_n \mathcal{H}_{k_j} \times ... \times \mathcal{H}_{k_T}$ where $\mathcal{H}_{k_j},...,\mathcal{H}_{k_T}$ are associated with kernel functions $k_1,...,k_T$, respectively and may depend on n. Then for all distributions P, $\lim_{n\to\infty} V_t(\tilde{f}_t,...,\tilde{f}_T) = V_t^*$ in probability.

Risk Bound

Theorem (BOWL)

Let the distribution of (H_j,A_j,R_j) , j=1,...,T satisfy some regularity conditions, with noise exponent $q_j>0$. Then for any $\delta>0$, $0<\nu\leq 2$, there exists a constant K_j depending on ν , δ , p_j and π_j , such that for all $\tau\geq 1$, $\pi_j(a_j,h_j)>c_0$ and $\sigma_{j,n}=\lambda_{j,n}^{-1/(q_j+1)p_j}$, $j\geq t$,

$$P\left(V_t(\hat{f}_t,...,\hat{f}_T) \ge V_t^* - \sum_{j=t}^T (3^{-1}c_0)^{t-j}\epsilon_j\right) \ge 1 - \sum_{j=t}^T 2^{j-t}e^{-\tau}$$
 (6)

$$\epsilon_{j} = K_{j} \left[\lambda_{j,n_{j}}^{-\frac{2}{2+\nu} + \frac{(2-\nu)(1+\delta)}{(2+\nu)(1+q_{j})}} n_{j}^{-\frac{2}{2+\nu}} + \frac{\tau}{n_{j}\lambda_{j,n_{j}}} + \lambda_{j,n_{j}}^{\frac{q_{j}}{q_{j}+1}} \right]$$
(7)

where

- n_i is the available sample size at stage j.
- \bullet δ is a free parameter.
- q_j is the geometric noise condition which describes the behavior of the data near the true decision boundary at each stage.
- ullet u measures the order of complexity for the associated RKHS.

Risk Bound

Theorem (SOWL)

Let the distribution of (H_j,A_j,R_j) , j=1,...,T satisfy some regularity conditions, with noise exponent $q_j>0$. Then for any $\delta>0$, $0<\nu\leq 2$, there exists a constant K depending on ν , δ , p_j and π_j , such that for all $\tau\geq 1$, $\pi_j(a_j,h_j)>c_0$ and $\sigma_{j,n}=\lambda_{j,n}^{-1/(q_j+1)p_j}$,

$$P\left(V(\hat{f}_t,...,\hat{f}_T) \ge V^* - \epsilon\right) \ge 1 - e^{-\tau} \tag{8}$$

$$\epsilon = K \left[\lambda_n^{-\frac{2}{2+\nu}} \left(\sum_{j=1}^T \lambda_n^{\frac{(2-\nu)(1+\delta)}{2+2q_j}} \right)^{\operatorname{frac}22+\nu} n^{-\frac{2}{2+\nu}} + \frac{\tau}{n\lambda_n} + \sum_{j=1}^T \lambda_n^{\frac{q_j}{q_j+1}} \right]$$
(9)

Convergence Rate

Under the following assumptions in (7) and (9)

•
$$q_i = q$$
 for $j = 1, ..., T$,

•
$$\lambda_{j,n} = n_j^{-\frac{2(1+q)}{(4+\nu)q+2+(2-\nu)(1=\delta)}}$$

The optimal rate for the value of the estimated DTRs using both BOWL and SOWL is,

$$O_p(n_1^{-\frac{2q}{(4+\nu)q+2+(2-\nu)(1+\delta)}}) \tag{10}$$

Example: if there is no data near the true decision boundary across all stages, then $q=\infty$ and the rate is approximately $n_1^{2+\nu}$

Simulation Study 1

Time invariant covariates with non-linear stage 2 model

Consider the two-stage process with

- ullet Treatments: A_1 and $A_2 \sim unif\{1,-1\}$
- Covariates: $X_1 = (X_{1,1}, ..., X_{1,50})$ with $X_{1,j} \sim N(0,1)$.
- Outcomes: $R_1 \sim N(0.5X_1, 3A_1, 1)$ and $R_2 \sim N(((X_{1,1}^2 + X_{1,2}^2 0.2)(0.5 X_{1,1}^2 X_{1,2}^2) + R_1)A_2, 1)$

The covariates are the same across all stages and there is a nonlinear relationship between the covariates and stage 2 treatment A_2 .

Simulation Study 1

BOWL and SOWL model specifications

In order to determine the optimal DTRs for the simulated data,

- BOWL, IOWL and SOWL were applied using a linear kernel $f_j = \langle \beta_j, H_j \rangle + \beta_{0j}$ for j = 1, 2
- The weighted SVM procedure was implemented using LIBSVM.
- A five fold cross-validation was used in order to choose the tuning parameters $\lambda_{t,n}$ in each stage.
- The Q-learning algorithm was carried using the following linear model $Q_j(H_j, A_j; \alpha_j, \gamma_j) = \alpha_j H_j + \gamma_j H_j A_j, \quad j = 1, ... T.$

Simulation Study 1 results

Figure: Smooth histograms of the optimal values of estimated DTRs for Study 1. The optimal value $V^*=6.695$. DTRs were constructed using the different methods based on training sets of size n replicated 500 times. A validation dataset of size n=10,000 was used. For each training set the values were computed by averaging the 10,000 subjects' outcomes. The histograms above represent the empirical distribution of the 500 values.

Simulation Study 2

Time varying covariates with non-linear stage 2 model

Consider a two stage process with

- ullet Treatments: A_1 and $A_2 \sim unif\{1,-1\}$
- Covariates: $X_1 = (X_{1,1},...,X_{1,50})$ with $X_{1,j} \sim N(0,1)$.
- Outcomes: $R_1 \sim N((1+X_{1,3})A_1,1)$ and $R_2 \sim N((0.5+R_1+0.5A_1+0.5X_{2,1}-0.5X_{2,2})A_2,1)$

with
$$X_{2,1} \sim I\{N(-1.25X_{1,1}A_1,1)>0\}$$
 and $X_{2,2} \sim I\{N(-1.75X_{1,2}A_1,1)>0\}$

Simulation Study 2 results

Figure: Smoothed histograms of the values of estimated DTRs for study 2. The optimal value $V^* = 3.667$

Simulation

Mean and Standard Errors

Table 1. Mean values of the estimated DTR for Scenarios 1-2

	n	Q-learning	L_2Q -learning	A-learning	BOWL	IOWL	SOWL
Scenario 1	100	0.692(0.972)	2.831(0.972)	-0.298(0.984)	3.849(0.918)	4.166(0.921)	5.428(1.234)
	200	0.583(1.476)	1.928(1.533)	-0.650(0.991)	4.502(0.768)	4.210(0.840)	5.933(0.755)
	400	3.766(0.896)	3.859(0.897)	1.973(1.072)	5.811(0.331)	4.996(0.602)	6.189(0.388)
Scenario 2	100	1.462(0.361)	2.857(0.248)	0.369(0.318)	2.709(0.340)	2.777(0.314)	3.026(0.141)
	200	1.122(0.679)	2.650(0.547)	0.631(0.322)	2.847(0.269)	2.871(0.278)	3.119(0.084)
	400	3.435(0.041)	3.449(0.043)	2.549(0.394)	3.105(0.131)	3.049(0.197)	3.212(0.089)

Smoking Cessation Study

The data is from a two-stage randomized trial of the effectiveness of a web-based smoking intervention.

- **Stage 1**-(Project Quit): Find the best intervention out of two $A_1 \in \{1, -1\}$ which helps adult smokers quit smoking.
- Stage 2-(Forever Free) : After stage 1 is completed, find the best intervention out of two $A_2 \in \{1,-1\}$ to help those who quit in stage 1 stay quit and those who failed in stage 1 to quit.

Smoking Cessation Study

- Sample size: 479 patients went through both stages.
- Covariates:
 - Stage 1: 8 covariates $(X_{1,1},...,X_{1,8})$ Including Age, Gender, Education, Race, initial motivation to quit etc.
 - Stage 2: all covariates from stage 1 plus two additional covariates measured after stage 1 was completed.
- Outcome 1: $R_{Q1}(1 = quit, 0 = no \quad quit)$ and $R_{Q2}(1 = quit, 0 = no \quad quit)$
- Outcome 2: $R_{S1}(1 = \text{satisfied}, 0 = \text{otherwise})$ and $R_{S2}(1 = \text{satisfied}, 0 = \text{otherwise})$
- Model: $H_1 = (1, X_1)$ and $H_2 = (H_1, H_1A_1, X_{2,1}, X_{2,2}, R_1)$ $\hat{\pi}_j(a_j, H_j) = \sum_j I(A_j = a_j)/n_j$

Smoking Cessation Study

- BOWL, IOWL and SOWL were applied using a linear kernel $f_i = \langle \beta_i, H_i \rangle + \beta_{0i}$ for j = 1, 2.
- Cross validation was implemented using training and validation sets of equal size with 100 replications.
- For Q-learning $Q_j(H_j, A_j; \alpha_j, \gamma_j) = \alpha_j H_j + \gamma_j H_j A_j, \quad j = 1, ... T$.

Mean and Standard error

Table 2. Mean (s.e.) cross-validated values using different methods

Outcome	Mean (s.e.) cross-validated values								
	BOWL	IOWL	SOWL	Q-learning	L_2Q -learning	A-learning			
R_Q	0.747 (0.099)	0.768 (0.101)	0.751 (0.073)	0.692 (0.089)	0.696 (0.093)	0.709 (0.090)			
R_S	1.262 (0.093)	1.288 (0.114)	1.254 (0.091)	1.216 (0.087)	1.231 (0.094)	1.183 (0.084)			

Possible Extension

- Developing tools for statistical inference for DTRs
- Developing methods for estimating DTRs in the case of high dimensional predictor spaces.
- Estimating required sample size for multidecision problems.
- Determining DTR using purely observational data.
- Methods for dealing with missing data (non-compliance)
- Analysis on right censored data

Further Reading I

- Murphy SA, Lynch KG, Oslin D, McKay JR, Ten Have T. Developing adaptive treatment strategies in substance abuse research. Drug Alcohol Depend. 2007a; 88S:S24S30.
- Nahum-Shani I, Qian M, Almirall D, Pelham WE, Gnagy B, Fabiano G, Waxmonsky J, Yu J, Murphy SA. Q-Learning: A data analysis method for constructing adaptive interventions.
- Zhao YQ, Zeng D, Laber EB, Kosorok MR. Journal of the American Statistical Association. 2015/01/01 00:00; 110(510)583-598
- Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome weighted learning. J Amer. Statist. Assoc. 2012; 107:11061118.
- Schulte PJ, Tsiatis AA, Laber EB, Davidian M. Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes.
 Statistical science: a review journal of the Institute of Mathematical Statistics. 2014;29(4):640-661. doi:10.1214/13-STS450.