ECN 7060 Examen Intra 2021

2021-10-26

1. (20 points) Une variable aléatoire X suit une loi Cauchy $(X \sim \operatorname{Ca}(x_0, \gamma))$ avec paramètres x_0 et γ si elle a la fonction caractéristique

$$\phi_x(t) = e^{ix_0t - \gamma|t|}.$$

Soit X_n une suite de variables aléatoires indépendantes de loi $Ca(x_0, \gamma)$. Soit $S_n =$ $n^{-1} \sum_{i=1}^{n} (X_i - x_0).$

- a. Trouvez la fonction caractéristique de S_n .
- b. Trouvez la loi de S_n .
- c. Est-ce que la moyenne de X_n existe et si oui, quelle est sa valeur?
- 2. (15 points) Soit (Ω, \mathcal{F}, P) l'espace de probabilité où $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \ \mathcal{F} = 2^{\Omega}$ et P est la probabilité telle que $P(\{\omega\}) = 2^{-\omega}$. Soit $X_n : \Omega \to \mathbb{R}$ la suite de variables aléatoires sur (Ω, \mathcal{F}, P) définie par

$$X_n(\omega) = \begin{cases} 0 & \omega < n \\ 2^n & \omega \ge n. \end{cases}$$

- a. Démontrez que $X_n \stackrel{p.s.}{\to} 0$.
- b. Trouvez $E[X_n]$ et $\lim_{n\to\infty} E[X_n]$, si elles existe.
- c. Pourquoi le théorème de convergence monotone n'implique pas $E[X_n] \to E[X]$?
- d. Qu'est-ce que le théorème de convergence dominante permet de conclure sur la suite X_n ?
- 3. (15 points) Prouvez qu'une tribu est une algèbre et qu'une algèbre est une semi-algèbre.
- 4. (20 points) Une variable aléatoire X suit une loi géométrique, avec paramètre $p \in (0,1)$, \sin

$$\Pr[X = k] = (1 - p)^{k-1} p, \quad k = 1, 2, \dots$$

- a. Trouvez la fonction génératrice des moments.
- b. A partir de la fonction génératrice des moments, trouvez la moyenne et la variance d'une variable aléatoire ayant la loi géométrique avec parametrè $p \in (0,1)$.
- 5. (15 points) Trouvez $\sup_n A_n$, $\limsup_n A_n$, $\inf_n A_n$, et $\liminf_n A_n$ pour

 - a. $A_n = [1/n, 2/n),$ b. $A_n = \{(-1)^n\} \cup \{1\}.$
- 6. (15 points) Supposez que (Ω, \mathcal{F}, P) est un espace de probabilité où $\Omega = \mathbb{N}, \, \mathcal{F} = 2^{\Omega}$ et

1

a. Montrez que la séquence de variables aléatoires $X_n = 2^n 1_{\{n\}}(\omega)$ sur (Ω, \mathcal{F}, P) vérifie

$$E[\liminf_{n\to\infty} X_n] < \liminf_{n\to\infty} E[X_n].$$

b. Donnez une séquence de variables aléatoires $X_n \geq 0$ sur (Ω, \mathcal{F}, P) telle que

$$E[\liminf_{n\to\infty} X_n] = \liminf_{n\to\infty} E[X_n].$$

- c. Donnez une séquence de variables aléatoires $X_n \geq 0$ sur (Ω, \mathcal{F}, P) telle que
- $E[\liminf_{n\to\infty} X_n] < \infty$ et $\liminf_{n\to\infty} E[X_n] = \infty$. d. Donnez une séquence de variables aléatoires $X_n \geq 0$ sur (Ω, \mathcal{F}, P) telle que $E[\liminf_{n\to\infty}X_n]=\infty \text{ et } \liminf_{n\to\infty}E[X_n]=\infty.$