BASES DE DATOS OPERADORES DEL ÁLGEBRA RELACIONAL

Definición. Llamaremos dominios a los siguientes conjuntos:

- N^{null}, los numeros naturales y el elemento especial **null**
- \blacksquare \mathbb{R}^{null} , los numeros reales y el elemento especial **null**
- S^{null}, las cadenas y el elemento especial **null**
- y por extension a todos los posibles productos cartesianos entre ellos

Definición. Una **tupla** (t_1, \ldots, t_n) sera un elemento de un dominio $\mathcal{D} = \mathcal{D}_1 \times \cdots \times \mathcal{D}_n$.

Definición. Una **relacion** será un conjunto¹ de tuplas de un mismo dominio, que será considerado el dominio de la relacion.

Definición. Una relacion puede tener un **nombre**, y ademas un rotulo distinto para cada indice de sus tuplas. Estos rótulos seran llamados **atributos** de la relacion. La tupla ordenada de atributos de una relacion sera el **esquema de la relacion**. Si una relación no tiene esquema, diremos que tiene **esquema anónimo**. Dado un esquema $R = A_1, \ldots, A_n$ y una relacion r escribiremos r(R) para **declarar** que r tiene esquema R. Utilizaremos t[A] para referirnos al valor que la tupla t asocia al atributo A.

Dados dos esquemas de relacion $R = A_1, A_2, \dots, A_n$ y $S = B_1, B_2, \dots, B_m$ disjuntos, es decir, tal que $A_i \neq B_j$ para todo i, j, definimos la **concatenacion de esquemas** como $R, S = A_1, A_2, \dots, A_n, B_1, B_2, \dots, B_m$.

Dada r(R) donde $R=A_1,A_2,\ldots,A_n$, se define por r.R al esquema de relación cuyos atributos son $r.A_1,\ r.A_2,\ \ldots,\ y\ r.A_n$, es decir, $r.R=r.A_1,r.A_2,\ldots,r.A_n$.

Definición. Diremos que dos relaciones r y s tienen **esquemas compatibles** si estan incluidas en el mismo dominio \mathcal{D} .

Ahora definiremos las funciones que utilizaremos para construir nuevas relaciones:

Union, interseccion y diferencia. Dadas dos relaciones r y s con esquemas compatibles, $r \cap s$, $r \cup s$ y r - s son relaciones definidas con la nocion natural de estas operaciones de conjuntos y con esquema de relación compatible con R (y por ende, S), y anónimo.

¹Un conjunto matematico, sin repeticiones

Producto cartesiano. Dadas r(R) y s(S), $r \times s$ devuelve el producto cartesiano de las relaciones r y s con esquema r.R, s.S (la concatenacion de los esquemas dados). Por simplicidad notacional, suelen omitirse los prefijos "r." y "s." que no lleven a que dos atributos queden con el mismo rótulo. Para el caso particular $r \times r$, la relacion devuelta será de esquema anonimo.

Renombre. Dada r(R), y S un esquema compatible con R, $\rho_S(r)$ devuelve la relacion r, pero con esquema de relación S en vez de R. Como sintax sugar podemos cambiar el nombre de solo algunos atributos. Utilizaremos $\rho_{A\to B,C\to D}(r)$ como sintax sugar referirnos a $\rho_{R'}(r)$ con R' al esquema resultante de reemplazar en R el atributo R es por R y el R0 por R1.

Seleccion. Dada una condición booleana P sobre de los atributos de R formada por operaciones sobre los dominios (expresiones aritméticas, de cadenas de caracteres, de comparación de fechas, etc.), y dada una relacion r(R), $\sigma_P(r)$ devuelve la relación r filtrada por la condicion P manteniendo el esquema de relación R.

Proyeccion. Dada la relacion r(R) y un esquema de relación $S \subseteq R$. $\Pi_S(r)$ devuelve la relación con esquema de S y se obtiene descartando de cada tupla de r las componentes que no corresponden a atributos de S, y reordenando los restantes componentes de la tupla según el orden en que se listen los atributos en el esquema S.

Agregacion. Dada r(R), ${}_{A}\Upsilon_{F_1(B_1),F_2(B_2),\dots,F_m(B_m)}(r)$ donde $A=A_1,\dots,A_n$ y $B=B_1,\dots,B_m$ son subesquemas de r(R) y las F_j son funciones de agregación: avg (promedio), min (mínimo), max (máximo), sum (suma), count (contar) y cualquier otra funcion definida para el dominio del atributo en cuestion. Devuelve una relacion con esquema de tiene n+m elementos, con los dominios correspondientes a A_i y F_j pero anónimo.

La tupla $(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m) \in {}_{A}\Upsilon_{F_1(B_1), F_2(B_2), \ldots, F_m(B_m)}(r)$ si y sólo si, considerando el conjunto T_{x_1, \ldots, x_n} de tuplas de t tales que $t[A_i] = x_i$ para todo i, y_j se obtiene aplicando la función F_j a los atributos B_j de todas las tuplas del conjunto T_{x_1, \ldots, x_n} . Notar que cada tupla de la relacion resultante es la unica que comienza $\cos x_1, x_2, \ldots, x_n^2$

Las siguientes operaciones pueden definirse a partir de las anteriores como $sintax\ sugar$:

Proyección generalizada. Permite utilizar expresiones como subíndices de Π . Dada r(R) se define $\Pi_{F(A)}(r) = \Upsilon_{F(A)}(r)$. Por ejemplo $\Pi_{eId,eSalario*13}(empleados) = \Upsilon_{I(eId),(\lambda x.x*13)(eSalario)}(empleados)$, devuelve un esquema anónimo.

Reunion natural. Dadas r(R) y s(S) con A_1, \ldots, A_n atributos comunes entre R y S. Definimos $r \bowtie s = \prod_T (\sigma_{r,A_1=s,A_1 \land r,A_2=s,A_2 \land \ldots \land r,A_n=s,A_n}(r \times s))$ donde T es el esquema R,S' y S' es S sin los atributos A_1, \ldots, A_n . El esquema de $r \bowtie s$ es T.

²En otras palabras, A_1, A_2, \ldots, A_n es superclave de la relacion devuelta.

Reunion externa. Las filminas muestran cómo las reuniones externas pueden obtenerse a partir de la reunión natural y otros operadores.

División. Sean r(R) y s(S) con S tramo final de R. Sea T el tramo inicial de R sin los atributos de S. La **división** entre r y s se define por $r \div s = \Pi_T(r) - \Pi_T((\Pi_T(r) \times s) - r)$. Su esquema es T.