一、	选择题:1~8	小题,	, 每小题 4分, 共 32分	. 下列每题给出的四个选项中,	,只有一个选项符合题目要求的.
----	---------	-----	-----------------	-----------------	-----------------

(1) 若函数
$$f(x) = \begin{cases} \frac{1-\cos\sqrt{x}}{ax}, & x>0 \\ b, & x\leq 0 \end{cases}$$
 在 $x=0$ 处连续,则() (B) $ab=-\frac{1}{2}$ (C) $ab=0$ (D) $ab=2$

(2) 二元函数
$$z = xy(3-x-y)$$
 的极值点是()

- (A) (0, 0)
- (B) (0, 3) (C) (3, 0) (D) (1, 1)

(3) 设函数
$$f(x)$$
 可导,且 $f(x)f'(x) > 0$,则()

- (A) f(1) > f(-1) (B) f(1) < f(-1) (C) |f(1)| > |f(-1)| (D) |f(1)| < |f(-1)|

(4) 若续数
$$\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln(1 - \frac{1}{n}) \right]$$
 收敛,则 $k = ($)

(5) 设
$$\alpha$$
为 n 维单位列向量, E 为 n 阶单位矩阵,则()

- (A) $E \alpha \alpha^{\mathrm{T}}$ 不可逆 (B) $E + \alpha \alpha^{\mathrm{T}}$ 不可逆
- (C) $E + 2\alpha\alpha^{\mathrm{T}}$ 不可逆
- (D) $E-2\alpha\alpha^{\mathrm{T}}$ 不可逆

(6) 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, 则()$$

- (A) $A \ni C$ 相似, $B \ni C$ 相似 (B) $A \ni C$ 相似, $B \ni C$ 不相似
- (C) $A \ni C$ 不相似, $B \ni C$ 相似
- (D) $A \ni C$ 不相似, $B \ni C$ 不相似

(7) 设A,B,C为三个随机事件,且A与C相互独立,B与C相互独立,则 $A \cup B$ 与C相互独立的充分必要条件 是

(A) A 与 B 相互独立

(B) A与B 互不相容

(C) *AB* 与 *C* 相互独立

(D) *AB* 与 *C* 互不相容

(8) 设
$$X_{1,}X_{2,}...X_{n}$$
 ($n \ge 2$) 为来自总体 $N(\mu,1)$ 的简单随机样本,记 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$ 则下列结论正确的是

)

(A)
$$\sum_{i=1}^{n} (x_i - \mu)^2$$
 服从 x^2 分布 (B) $2(x_n - x_1)^2$ 服从 x^2 分布

(B)
$$2(x_n - x_1)^2$$
 服从 x^2 分布

(C)
$$\sum_{i=1}^{n} (x_i - \overline{X})^2$$
 服从 x^2 分布 (D) $n(\overline{X} - \mu)^2$ 服从 x^2 分布

(D)
$$n(\overline{X} - \mu)^2$$
 服从 x^2 分布

(9)
$$\int_{-\pi}^{\pi} (\sin^3 x + \sqrt{\pi^2 - x^2}) dx = \underline{\qquad}.$$

- (10) 差分方程 $y_{t+1} 2y_t = 2^t$ 通解为 $y_t =$
- (11) 设生产某产品的平均成本 $\bar{C}(q)=1+e^{-q}$, 其中产量为 q ,则边际成本为
- (12) 设函数 f(x,y) 具有一阶连续偏导数,且 $df(x,y) = ye^y dx + x(1+y)e^y dy$, f(0,0) = 0,则 $f(x,y) = ye^y dx + x(1+y)e^y dy$, f(0,0) = 0,则 $f(x,y) = ye^y dx + x(1+y)e^y dy$,
- (13)设矩阵 $A=\begin{pmatrix}1&0&1\\1&1&2\\0&1&1\end{pmatrix}$, α_1 、 α_2 、 α_3 为线性无关的 3 维列向量组。则向量组 $A\alpha_1$ 、 $A\alpha_2$ 、 $A\alpha_3$ 的秩为
- (14) 设随机变量 X 的概率分布为 $P\{X=-2\}=\frac{1}{2}$, $P\{X=1\}=a$, $P\{X=3\}=b$,若 EX=0,则 DX= 三、解答题: 15~23 小题, 共 94 分. 解答应写出文字说明、证明过程或演算步骤.
- (15)(本题满分 10 分)

$$\Re \lim_{x \to 0^+} \frac{\int_0^x \sqrt{x - t} e^t dt}{\sqrt{x^3}}$$

(16)(本题满分 10 分)

计算积分
$$\iint_{D} \frac{y^3}{(1+x^2+y^4)^2} dxdy$$
, 其中 D 是第一象限中以曲线 $y = \sqrt{x}$ 与 x 轴为边界的无界区域.

(17)(本题满分 10 分)

$$\Re \lim_{n\to\infty} \sum_{k=1}^n \frac{k}{n^2} ln(1+\frac{k}{\lambda})$$

(18)(本题满分 10 分)

已知方程
$$\frac{1}{\ln(1+x)} - \frac{1}{x} = k$$
 在区间(0,1)内有实根,确定常数 k 的取值范围.

(19)(本题满分10分)

设
$$a_0 = 1$$
, $a_1 = 0$, $a_{n+1} = \frac{1}{n+1}(na_n + a_{n-1})(n = 1, 2, 3, \dots)$, $S(x)$ 为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数

(I)证幂
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径不小于 1.

(II)证
$$(1-X)S'(x)-xS(x)=0(x\in (-1,1))$$
, 并求 $S(x)$ 表达式.

(20)(本题满分11分)

设 3 阶矩阵
$$A = (\alpha_1, \alpha_2, \alpha_3)$$
有 3 个不同的特征值,且 $\alpha_3 = \alpha_1 + 2\alpha_2$.

(I)证明 r(A) = 2;

(II)若
$$\beta = a_1 + a_2, a_3$$
, 求方程组 $Ax = \beta$ 的通解.

(21)(本题满分11分)

设二次型 $f(x, x, x) = 2^2 x - 2^2 x + 2$

(22)(本题满分11分)

设随机变来那个为X, Y相互独立, 且X的概率分布为 $P(X=0)=P(X=2)=\frac{1}{2}$,Y的概率密度为

$$f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$

(I)求 $P(Y \leq EY)$;

(II)求 Z = X + Y 的概率密度.

(23)(本题满分11分)

某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的,设 n 次测量结果 $X_1, X_2, \ldots X_n$ 相互独立且均服从正态分布 $N\left(\mu, \sigma^2\right)$.该工程师记录的是 n 次测量的绝对误差 $Z_i = \left|X_i - \mu\right| \left(i = 1, 2, \cdots n\right), \ \,$ 利用 $Z_1, Z_2, \cdots Z_n$ 估计 σ .

(I)求 Z_1 的概率密度;

(II)利用一阶矩求 σ 的矩估计量;

(III)求 σ 的最大似然估计量.

一、选择题: 1-8 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上。

(1) 设函数 v = f(x) 在 $(-\infty, +\infty)$ 内连续,其导函数的图形如图所示,则()

A.函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 2 个拐点

B.函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 3 个拐点

C.函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 1 个拐点

D.函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 2 个拐点

(2) 已知函数 $f(x, y) = \frac{e^x}{x - y}$, 则 ()

A.
$$f'_{x} - f'_{y} = 0$$

B.
$$f'_{x} + f'_{y} = 0$$

C.
$$f_{x}'' - f_{y}'' = f_{y}$$

A.
$$f'_{x} - f'_{y} = 0$$
 B. $f'_{x} + f'_{y} = 0$ C. $f''_{x} - f''_{y} = f$ D. $f''_{x} - f''_{y} = f$

(3) $\forall J_k = \iint_D \sqrt[3]{x - y} dx dy (i = 1, 2, 3), \quad \text{A.e. } D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$

 $D_2 = \left\{ (x, y) \middle| 0 \le x \le 1, 0 \le y \le \sqrt{x} \right\} D_3 = \left\{ (x, y) \middle| 0 \le x \le 1, x^2 \le y \le 1 \right\}$ ()

A.
$$J_1 < J_2 < J_3$$

B.
$$J_3 < J_1 < J_2$$

D.
$$J_2 < J_1 < J_3$$

(4) 级数 $\sum_{k=1}^{\infty} (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}) \sin(n+k)$ (k 为常数) ()

A.绝对收敛

- B.条件收敛
- C.发散
- D.收敛性与k有关

(5) 设 A, B 是可逆矩阵,且 A 与 B 相似,则下列结论错误的是()

 $A. A^T 与 B^T$ 相似

C.
$$A + A^{T} = B + B^{T}$$
 相似 D. $A + A^{-1} = B + B^{-1}$ 相似

(6) 设二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ 的正负惯性指数分别为 1,2,则())

A. a > 1

- B. a < -2
- C.-2 < a < 1 D.a = 1 或 a = -2

(7) 设 A, B 为两个随机变量,且 0 < P(A) < 1, 0 < P(B) < 1,如果 P(A|B) = 1,则 ()

- A. $P(\overline{B}|\overline{A}) = 1$ B. $P(A|\overline{B}) = 0$ C. $P(A \cup B) = 1$ D. P(B|A) = 1

(8) 设随机变量 X 与 Y 相互独立,且 $X \sim N(1,2), Y \sim N(1,4)$,则 D(XY) = ()

A.6

- B.8
- C.14
- D.15

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上。

(9) 已知函数
$$f(x)$$
满足 $\lim_{x\to 0} \frac{\sqrt{1+f(x)\sin 2x}-1}{e^{3x}-1} = 2$,则 $\lim_{x\to 0} f(x) =$ _____.

(10) 极限
$$\lim_{n\to\infty} \frac{1}{n^2} (\sin\frac{1}{n} + 2\sin\frac{2}{n} + \dots + n\sin\frac{n}{n}) = \underline{\qquad}$$

(11) 设函数
$$f(u,v)$$
 可微, $z=z(x,y)$ 由方程 $(x+1)$ $z-y^2=x^2f(x-z,y)$ 确定,则 $dz|_{(0,1)}=$ ______.

(12)
$$\not to D = \{(x, y) \mid |x| \le y \le 1, -1 \le x \le 1\}, \quad \iint_D x^2 e^{-y^2} dxdy = \underline{\qquad}.$$

(13) 行列式
$$\begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{vmatrix} = \underline{\qquad}.$$

(14) 设袋中有红、白、黑球各 1 个,从中有放回地取球,每次取 1 个,直到三种颜色的球都取到时停止,则取球次数恰好为 4 的概率为______.

三、解答题: 15-23 小题, 共 94 分。请将解答写在答题纸指定位置上。解答应写出文字说明、证明过程或演算步骤。 (15) (本题满分 10 分)

求极限 $\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}}$ 。

(16) (本题满分10分)

设某商品的最大需求量为 1200 件,该商品的需求函数 Q=Q(p),需求弹性 $\eta=\frac{p}{120-p}(\eta>0)$, p 为单价 (万元)。

- (I) 求需求函数的表达式;
- (II) 求 p=100万元时的边际效益,并说明其经济意义。
- (17) 设函数 $f(x) = \int_0^1 |t^2 x^2| dt(x > 0)$, 求f'(x), 并求f(x)的最小值。
- (18) (本题满分 10 分)

设函数 f(x) 连续,且满足 $\int_0^x f(x-t) dt = \int_0^x (x-t) f(t) dt + e^{-x} - 1$,求 f(x)。

(19) (本题满分10分)

求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n-2}}{(n+1)(2n+1)}$ 的收敛域及和函数。

(20) (本题满分 11 分)

设矩形
$$A = \begin{pmatrix} 1 & 1 & 1-a \\ 1 & 0 & a \\ a+1 & 1 & a+1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 0 \\ 1 \\ 2a-2 \end{pmatrix}$, 且方程组 $Ax = \beta$ 无解,

求: (1) 求 a 的值

(2) 求方程组 $A^T A x = A^T \beta$ 的通解.

(21) (本题满分 11 分)

已知矩阵
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(I) 求A⁹⁹

(II) 设 3 阶矩阵 $B = (\alpha_1, \alpha_2, \alpha_3)$ 满足 $B^2 = BA$ 。记 $B^{100} = (\beta_1, \beta_2, \beta_3)$,将 $\beta_1, \beta_2, \beta_3$ 分别表示为 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合。

(22) (本题满分11分)

设二维随机变量
$$(X,Y)$$
 在区域 $D = \{(x,y) \mid 0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布, 令 $U = \begin{cases} 1, & X \le Y. \\ 0, & X > Y. \end{cases}$

(I) 写出(X,Y)的概率密度;

(II) 问U与X是否相互独立?并说明理由;

(III) 求 Z = U + X 的分布函数 F(z).

(23) (本题满分11分)

设总体
$$X$$
 的概率密度 $f(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3}, 0 < x < \theta, \\ 0, & 其他, \end{cases}$

其中 $\theta \in (0, +\infty)$ 为未知参数, X_1, X_2, X_3 为来自 X 的简单随机样本,令 $T = \max(X_1, X_2, X_3)$..

(1) 求T的概率密度;

(2) 确定 a, 使得 $E(aT) = \theta$.

一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所 选项前的字母填在答题纸指定位置上.

(1) 设^{ *_x } 是数列,下列命题中不正确的是:()

$$\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a \lim_{n\to\infty} x_n = a$$
(B) $H_{n\to\infty}$

$$\lim_{n\to\infty} x_n = a \lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a$$

$$\lim_{n\to\infty} x_n = a \quad \lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a \quad \lim_{n\to\infty} x_{3n+1} = a \quad \lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a \quad \lim_{n\to\infty} x_n =$$

(2) 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续,其二阶导函数 f''(x) 的图形如下图所示,则曲线 y=f(x) 的拐点个数为:

- (A) 0
- (B) 1(C) 2
- (D) 3

(3) 设 $D = \{(x,y) | x^2 + y^2 \le 2x, x^2 + y^2 \le 2y \}$,函数 f(x,y) 在 D 上连续则 f(x,y) dxdy = (x,y)

(A)
$$\int_0^{\frac{\pi}{4}} d\theta \int_0^{2\cos\theta} f\left(r\cos\theta, r\sin\theta\right) rdr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_0^{2\sin\theta} f\left(r\cos\theta, r\sin\theta\right) rdr$$

$$\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$$
(B)

(C)
$$2\int_{0}^{1} dx \int_{1-\sqrt{1-x^{2}}}^{x} f(x,y) dy$$

$$(D) 2 \int_0^1 dx \int_x^{\sqrt{2x-x^2}} f(x,y) dy$$

(4) 下列级数中发散的是:()

- (A) $\sum_{n=1}^{\infty} \frac{n}{3^n}$ (B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln(1 + \frac{1}{n})$ (C) $\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}$ (D) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{pmatrix}, \ \, \boldsymbol{b} = \begin{pmatrix} 1 \\ d \\ d^2 \end{pmatrix}.$$
 (5) 设矩阵
$$\boldsymbol{C} = \{1,2\} \quad \text{人 Model of the proof of th$$

- (A) $a \notin \Omega, d \notin \Omega$ (B) $a \notin \Omega, d \in \Omega$ (C) $a \in \Omega, d \notin \Omega$ (D) $a \in \Omega, d \in \Omega$

(6) 设二次型 $f(x_1, x_2, x_3)$ 在正交变换为x = Py下的标准形为 $2y_1^2 + y_2^2 - y_3^2$,其中

 $P = (e_1, e_2, e_3)$, 若 $Q = (e_1, -e_3, e_2)$, 则 $f(x_1, x_2, x_3)$ 在正交变换 x = Q 下的标准形为: ()

- (A) $2y_1^2 y_2^2 + y_3^2$ (B) $2y_1^2 + y_2^2 y_3^2$ (C) $2y_1^2 y_2^2 y_3^2$ (D) $2y_1^2 + y_2^2 + y_3^2$

(7) 若 A,B 为任意两个随机事件,则:()

- (A) $P(AB) \leq P(A)P(B)$
- (B) $P(AB) \ge P(A)P(B)$
- (C) $P(AB) \le \frac{P(A) + P(B)}{2}$
- (D) $P(AB) \ge \frac{P(A) + P(B)}{2}$

(8) 设总体 $X \sim B(m,\theta)$, X_1, X_2, \dots, X_n 为来自该总体的简单随机样本, \overline{X} 为样本均值,则 $B\left[\sum_{i=1}^n \left(X_i - \overline{X}\right)^2\right] = 0$

- $(A) {\binom{m-1}{n}\theta(1-\theta)} \qquad (B) {\binom{m(n-1)\theta(1-\theta)}{(C)}} \qquad (C) {\binom{m-1}{(n-1)\theta(1-\theta)}} \qquad (D) {\binom{mn\theta(1-\theta)}{(D)}}$

二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上。

$$\lim_{x \to 0} \frac{\ln(\cos x)}{x^2} = \underline{\hspace{1cm}}.$$

- (11) 若函数z = z(x,y) 由方程 $e^{x+2y+3z} + xyz = 1$ 确定,则 $dz \mid_{(0,0)} = -----$
- (12) 设函数y = y(x) 是微分方程y'' + y' 2y = 0 的解,且在x = 0 处 y(x) 取得极值 3,则y(x) = ------
- (13) 设³阶矩阵 A 的特征值为 2,-2,1 , $B = A^2 A + E$, 其中 E 为 3 阶单位矩阵 , 则行列式 |B| = _______
- (14) 设工维随机变量(X,Y) 服从正态分布N(1,0;1,1;0) 则 P(XY-Y<0)= ______.

三、解答题:15~23 小题,共94分,请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步 骤.

(15) (本题满分 10 分)

设函数 $f(x) = x + a \ln(1+x) + bx \sin x$, $g(x) = kx^3$, 若 f(x) = g(x) 在 $x \to 0$ 是等价无穷小 , 求 a,b,k 的值.

(16) (本题满分 10 分)

$$\iint\limits_{D}x(x+y)\mathrm{d}x\mathrm{d}y$$
 计算二重积分 $\int\limits_{D}x(x+y)\mathrm{d}x\mathrm{d}y$, 其中 $\int\limits_{D}z(x,y)\left|x^{2}+y^{2}\leq2,y\geq x^{2}\right|$.

(17) (本题满分 10 分)

为了实现利润的最大化,厂商需要对某商品确定其定价模型,设 Q 为该商品的需求量, P 为价格, M C为边际 成本, $^{\eta}$ 为需求弹性 $^{(\eta > 0)}$.

$$P = \frac{MC}{1 - \frac{1}{\eta}} \label{eq:power}$$
 (I) 证明定价模型为 η ;

- (II) 若该商品的成本函数为 $C(Q)=1600+Q^2$,需求函数为 Q=40-P ,试由 (I) 中的定价模型确定此商品的 价格.

(18) (本题满分10分)

设函数 f(x) 在定义域 I 上的导数大于零,若对任意的 $x_0 \in I$,曲线 y=f(x) 在点 $(x_0,f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成区域的面积恒为 4, 且 f(0) = 2, 求 f(x) 的表达式.

(19) (本题满分 10 分)

- (I) 设函数 u(x), v(x) 可导,利用导数定义证明 [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)
- (II) 设函数 $u_1(x),u_2(x),\cdots,u_n(x)$ 可导, $f(x)=u_1(x)u_2(x)\cdots u_n(x)$,写出 f(x) 的求导公式。

(20) (本题满分 11 分)

$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}, \quad \mathbf{E}A^3 = \mathbf{O}.$$

(I) 求^a 的值;

(II)若矩阵X满足 $X-XA^2-AX+AXA^2=E$,其中E为 3 阶单位矩阵,求X.

(21) (本题满分 11 分)

$$\boldsymbol{A} = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix} \quad \boldsymbol{B} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}.$$
 设矩阵

(I)求^{a,b}的值;

(II)求可逆矩阵 P ,使 $^{P^{-1}AP}$ 为对角矩阵.

(22) (本题满分 11 分)

$$f(x) = \begin{cases} 2^{-x} \ln 2, x > 0, \\ 0, & x \le 0. \end{cases}$$

设随机变量X的概率密度为

对 X 进行独立重复的观测,直到 2 个大于 3 的观测值出现的停止。记 Y 为观测次数.

(I) 求^Y 的概率分布;

(II) 求 EY.

(23) (本题满分 11 分)

设总体 * 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, \theta \le x \le 1, \\ 0, 其他. \end{cases}$$

其中 $^{\theta}$ 为未知参数 , $^{X_1,\;X_2,\;\cdots\;,\;X_*}$ 为来自总体 X 的简单随机样本.

(I) 求⁹的矩估计量.

(II) 求 θ 的最大似然估计量.

一、选择题:1~8刂	、题,每小题 4 分,共 32	分.下列每题给出的四个	〉选项中,只有一个选项符合题目要求的,请将所
选项前的字母填在	答题纸指定位置上.		
(1) 设 $\lim_{n\to\infty} a_n = a$,	且ӓ≠҆҆҅, 则当ӥ充分	大时有:()	
(A) $\left \alpha_n\right > \frac{\left \alpha\right }{2}$	(B) $\left a_n\right < \frac{ a }{2}$	(C) $a_n > a - \frac{1}{n}$	(D) $a_n < \alpha + \frac{1}{n}$
(2) 下列曲线有渐迟	迁线的是:()		
$(A) \ \mathcal{Y} = x + \sin x$	$(B) y = x^2 + \sin x$	$(C) y = x + \sin \frac{1}{x}$	$y = x^2 + \sin\frac{1}{x}$
(3) 设 $P(x) = a + b$.	$x+cx^2+dx^3$, $\leq x \to 0$	时,若 ^{P(x)-tan x} 是比	x ³ 高阶的无穷小,则下列试题中错误的是:()
$(\mathbf{A})a = 0$	(B) $b = 1$	(C) <i>c</i> = 0	$d = \frac{1}{6}$
		f(0)(1-x)+f(1)x ,则	
(A)当 ^{ƒ′(x)≥0} 时,	$f(x) \ge g(x)$	(B)当 $f'(x) \ge 0$ 时, f	$(x) \le g(x)$
(C)当 ^{f"(x)≥0} 时,	$f(x) \ge g(x)$	(D)当 ^{f"(x)≥0} 时, ^j	$f(x) \le g(x)$
0 a a a a a a a a a a a a a a a a a a a			
		(C) $a^2d^2 - b^2c^2$	(D) $b^2c^2 - a^2d^2$
(6) 设 ^a 1, a2, a3均为]三维向量,则对任意第	常数 ^{k,l} ,向量组 ^a 1+ka3	$a_{1}, a_{2}+la_{3}$ 线性无关是向量组 a_{1}, a_{2}, a_{3} 线性无关
的:()			
(A) 必要非充分条件	‡ (B) 充分	F必要条件	
(C) 充分必要条件	(D) 既非3	充分也非必要条件	
(7) 设随机事件 A 与	5^B 相互独立,且 $^{P(B)}$	(1) = 0.5, $P(A - B) = 0.$	3 ,则 $^{P(B-A)}=$ ()

(D)0.4

(B)0.2 **(C)**0.3

(A) 0.1

)

$$S = \frac{X_1 - X_2}{\sqrt{2} |X_3|}$$
 (8) 设 X_1, X_2, X_3 为来自正态总体 X_1, X_2, X_3 的简单随机样本,则统计量 $X_2 = \frac{X_1 - X_2}{\sqrt{2} |X_3|}$ 服从的分布为(

(A)
$$F(1,1)$$

(A)
$$F(1,1)$$
 (B) $F(2,1)$ (C) $t(1)$

(C)
$$t(1)$$

(D)
$$t(2)$$

二、填空题: 9~14 小题,每小题 4分,共 24分.请将答案写在答题纸指定位置上.

- (9) 设某商品的需求函数为Q=40-2p (p 为商品的价格),则该商品的边际收益为____.
- (10) 设 D 是由曲线 $^{xy+1=0}$ 与直线 $^{y+x=0}$ 及 $^{y=2}$ 围成的有界区域,则 D 的面积为

(11) 设
$$\int_0^a xe^{2x} dx = \frac{1}{4}$$
 , 则 $a =$ _____.

(12) 二次积分
$$\int_0^1 dy \int_y^1 (\frac{e^{x^2}}{x} - e^{y^2}) dx =$$
______.

(13) 设二次型 $f(x_1, x_2, x_3) = x_1^2 - x_2^2 + 2ax_1x_3 + 4x_2x_3$ 的负惯性指数是 1 , 则a 的取值范围______

$$f\left(x,\theta\right) = \begin{cases} \frac{2x}{3\theta^2}, \theta < x < 2\theta, \\ 0, \qquad \text{其他}, \qquad \text{其中}\theta$$
是未知参数, X_1, X_2, \cdots, X_n 为来自总体 X 的简

$$E(c\sum_{i=1}^{n}X_{i}^{2})=\theta^{2}$$
 单样本,若 ,则 $c=$ ______.

三、解答题:15~23 小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步 骤.

(15) (本题满分10分)

$$\lim_{\substack{x \to +\infty \\ \mathbf{a}}} \frac{\int_{1}^{x} \left[t^{2} \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^{2} \ln \left(1 + \frac{1}{x} \right)}$$

(16) (本题满分 10 分)

设平面区域
$$D = \{(x,y) | 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$$
, 计算 $\frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dxdy$.

(17) (本题满分 10 分)

(18) (本题满分 10 分)

求幂级数 $_{n=0}^{\infty}$ $(n+1)(n+3)x^{n}$ 的收敛域及和函数.

(19) (本题满分 10 分)

设函数f(x),g(x) 在区间[a,b]上连续,且f(x) 单调增加, $0 \le g(x) \le 1$,证明:

(I)
$$0 \le \int_a^x g(t)dt \le x - a, x \in [a,b]$$
;

(II)
$$\int_{a}^{a+\int_{\sigma}^{b}g(\mathbf{t})d\mathbf{t}} f(x)dx \le \int_{a}^{b} f(x)g(x)dx.$$

(20) (本题满分 11 分)

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$
 , E 为三阶单位矩阵.

(I)求方程组Ax = 0的一个基础解系;

(II)求满足AB = B 的所有矩阵B.

(21) (本题满分 11 分)

证明%阶矩阵
$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$$
相似.

(22) (本题满分 11 分)

 $P\{X=1\}=P\{X=2\}=rac{1}{2},$ 设随机变量X的概率分布为 U(0,i),(i=1,2).

(I)求 Y 的分布函数 $^{F_{Y}}(y)$;

(II)求*EY* .

(23) (本题满分 11分)

设随机变量 X , Y 的概率分布相同 , X 的概率分布为 $P\{X=0\}=\frac{1}{3},P\{X=1\}=\frac{2}{3},$ 且 X 与 Y 的相关系数 $\rho_{XY}=\frac{1}{2}.$

(I)求(X,Y)的概率分布:

(II)求
$$P\{X+Y\leq 1\}$$
.

一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求,请将 所选项前的字母填在<u>答题纸</u>指定位置上.

(1) 当 $x \to 0$ 时,用 "o(x)" 表示比x 高阶的无穷小,则下列式子中错误的是:()

(A) $x \cdot o(x^2) = o(x^3)$ (B) $o(x) \cdot o(x^2) = o(x^3)$ (C) $o(x^2) + o(x^2) = o(x^2)$ (D) $o(x) + o(x^2) = o(x^2)$

 $f(x) = \frac{|x|^{n} - 1}{x(x+1)\ln|x|}$ 的可去间断点的个数为:()

(A) 0 (B)1 (C) 2 (D) 3

(3) 设 D_k 是圆域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 位于第k 象限的部分,记 $D_k = D_k$ (k = 1, 2, 3, 4) ,则:()

(A) $I_1 > 0$ (B) $I_2 > 0$ (C) $I_3 > 0$ (D) $I_4 > 0$.

(4) 设 $\{\alpha_{\mathbf{x}}\}$ 为正项数列,下列选项正确的是:()

(A) 若 $a_n > a_{n+1}$, 则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛

(B) 若 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛 , 则 $a_n > a_{n+1}$

 $\sum_{n=1}^{\infty} a_n$ (C) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则存在常数 $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n$ 存在

(D) 若存在常数 $^{p>1}$,使 $^{\lim_{n\to\infty}n^pa_n}$ 存在,则 $^{\sum_{n=1}^{\infty}a_n}$ 收敛

(5) 设A,B,C均为n阶矩阵,若AB=C,且B可逆.则:()

(A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价

(B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价

(C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价

(D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价

(6) 矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为:()

- **(A)** $\alpha = 0, b = 2$
- (B)^{α= 0, b}为任意常数
- (C) a = 2, b = 0
- (D) a = 2,b 为任意常数

(7) 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1)$, $X_2 \sim N(0,2^2)$, $X_3 \sim N(5,3^2)$, $p_j = P\{-2 \le X_j \le 2\}$ (j=1,2,3) , \mathbb{Q} : ()

- (A) $p_1 > p_2 > p_3$ (B) $p_2 > p_1 > p_3$ (C) $p_3 > p_1 > p_2$ (D) $p_1 > p_3 > p_2$

(8) 设随机变量 X 和 Y 相互独立,则 X 和 Y 的概率分布分别为

X	0	1	2	3	Y	-1	0	1
P	1	1	1	1	P	1	1	1
	2	4	8	8		3	3	3

则P(X+Y=2)=: ()

填空题: 9~14 小题,每小题 4分,共24分.请将答案写在答题纸指定位置上.

(9) 设曲线y = f(x)与 $y = x^2 - x$ 在点(1,0)处有公共切线,则 $^{n \to \infty}$ n + 2 = _____.

(10) 设函数z = z(x,y) 由方程 $(z+y)^x = xy$ 确定,则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} =$ ______

(11) $\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx = \underline{\qquad}$

(12) 微分方程

$$y'' - y' + \frac{1}{4}y = 0$$
 的通解为 $y =$ _____.

(13) 设 $^{A=(a_{i})}$ 是 3 阶非零矩阵, $^{|A|}$ 为 A 的行列式, $^{A_{i}}$ 为 $^{a_{i}}$ 的代数余子式,

若
$$a_{ij} + A_{ij} = 0$$
 $(i, j = 1, 2, 3)$, 则 $|A| = _____.$

- (14) 设随机变量 X 服从标准正态分布 $N^{(0,1)}$, 则 $E(Xe^{2X}) =$ ______
- 三、解答题:15~23 小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分 10 分)

当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^{*} 为等价无穷小,求n与a的值.

(16) (本题满分 10 分)

设D是由曲线 $^{y=x^{\frac{1}{3}}}$,直线 $^{x=a(a>0)}$ 及 x 轴所围成的平面图形, $^{V_x,\,V_y}$ 分别是 D 绕 x 轴, y 轴旋转一周所得旋转体的体积,若 $^{V_y=10V_x}$,求 a 的值.

(17) (本题满分 10 分)

设平面区域D由直线x=3y,y=3x,及x+y=8 围成,计算 D .

(18) (本题满分 10 分)

设生产某产品的固定成本为60000 元,可变成本为20 元/件,价格函数为 $p=60-\frac{Q}{1000}$,(p=200 是单价,单位:元,q=200 是销量,单位:件),已知产销平衡,求:

- (I) 该商品的边际利润; (II) 当 $^{p=50}$ 时的边际利润,并解释其经济意义;
- (III) 使得利润最大的定价 p .

(19) (本题满分 10 分)

设函数f(x)在 $[0,+\infty)$ 上可导,f(0)=0,且 $\lim_{x\to+\infty}f(x)=2$.证明:

- (I) 存在a > 0 ,使得f(a) = 1 ;
- (II) 对(I)中的 α , 存在 $\xi \in (0,a)$, 使得 $f'(\xi) = \frac{1}{a}$.

(20) (本题满分 11 分)

 $A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$,当 a,b 为何值时,存在矩阵 C 使得 $^{AC-CA=B}$,并求所有矩阵 C .

(21) (本题满分 11 分)

设工次型 $f(x_1,x_2,x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$,记

$$\boldsymbol{\alpha} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

(I) 证明二次型 f 对应的矩阵为 $^2\alpha\alpha^T + \beta\beta^T$;

(II) 若 $^{\pmb{\alpha}, \pmb{\beta}}$ 正交且均为单位变量,证明 f 在正交变换下的标准形为 $^{2y_1^2+y_2^2}$.

(22) (本题满分 11 分)

 $f_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & \text{其他}, \end{cases}$ 设(X,Y)是二维随机变量,X 的边缘概率密度为 $\begin{cases} 0, & \text{其他}, & \text{在给定}^{X=x(0 < x < 1)} \text{的条件下Y 的} \end{cases}$ 条件概率密度为

$$f_{Y|X}(y|x) = \begin{cases} \frac{3y^2}{x^3}, & 0 < y < x, \\ 0, & 其他, \end{cases}$$

- (I) 求(X,Y) 的概率密度f(x,y);
- (II) 求 Y 的边缘概率密度 $^{f_{Y}(y)}$;
- (III) 求P(X > 2Y) .

(23) (本题满分 11 分)

设总体》的概率密度为

$$f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{\frac{-\theta}{x}}, & x > 0, \\ 0, & 其他, \end{cases}$$

其中 θ 为未知参数且大于零 , X_1, X_2, \cdots, X_n 为来自总体X 的简单随机样本.

(I) 求[∂]的矩估计量;

(II) 求 θ 的最大似然估计量.

一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求, 请将所选项前的字母填在答题纸指定位置上 .

$$y = \frac{x^2 + x}{x^2 - 1}$$
 新近线的条数为:()

- (A) ⁰. (B) ¹.
- (C) 2. (D) 3.

(2) 设函数
$$f^{(x)=(e^x-1)(e^{2x}-2)\cdots(e^{nx}-n)}$$
 , 其中 n 为正整数,则 $f'^{(0)}=:$ ()

- (A) $(-1)^{n-1}(n-1)!$. (B) $(-1)^{n}(n-1)!$. (C) $(-1)^{n-1}n!$. (D) $(-1)^{n}n!$.

(3) 设函数
$$f(t)$$
 连续,则二次积分 $\int_0^{\frac{\pi}{2}}d\theta\int_{2\cos\theta}^2f(r^2)rdr=$: ()

(A)
$$\int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2+y^2} f(x^2+y^2) dy$$
 (B) $\int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x^2+y^2) dy$

(B)
$$\int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x^2 + y^2) dy$$

(C)
$$\int_{0}^{2} dy \int_{1+\sqrt{-y^{2}}}^{\sqrt{1-y^{2}}} \sqrt{x^{2}+y^{2}} f(x^{2}+y^{2}) dx$$
 (D) $\int_{0}^{2} dy \int_{1+\sqrt{-y^{2}}}^{\sqrt{1-y^{2}}} f(x^{2}+y^{2}) dx$

(D)
$$\int_0^1 dy \int_{1+\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x^2 + y^2) dx$$

(4) 已知级数
$$\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^a}$$
 绝对收敛,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-a}}$ 条件收敛,则:()

(A)
$$0 < \alpha \le \frac{1}{2}$$
. (B) $\frac{1}{2} < \alpha \le 1$. (C) $1 < \alpha \le \frac{3}{2}$. (D) $\frac{3}{2} < \alpha < 2$.

$$\boldsymbol{\alpha}_{1} = \begin{pmatrix} 0 \\ 0 \\ c_{1} \end{pmatrix}, \boldsymbol{\alpha}_{2} = \begin{pmatrix} 0 \\ 1 \\ c_{2} \end{pmatrix}, \boldsymbol{\alpha}_{3} = \begin{pmatrix} 1 \\ -1 \\ c_{3} \end{pmatrix}, \boldsymbol{\alpha}_{4} = \begin{pmatrix} -1 \\ 1 \\ c_{4} \end{pmatrix}, \boldsymbol{\mu}_{5} = \begin{pmatrix} 1 \\ 1 \\ c_{4} \end{pmatrix}, \boldsymbol{\mu}_{6} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{6} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol{\mu}_{7} = \begin{pmatrix} 1 \\ 1 \\ c_{5} \end{pmatrix}, \boldsymbol$$

- (A) $\alpha_1, \alpha_2, \alpha_3$. (B) $\alpha_1, \alpha_2, \alpha_4$. (C) $\alpha_1, \alpha_3, \alpha_4$. (D) $\alpha_2, \alpha_3, \alpha_4$.

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$
 (6) 设 A 为 3 阶矩阵, P 为 3 阶可逆矩阵,且

 $\mathbb{Q}^{-1}AQ = \pm (1)$

$$(A) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \qquad (B) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \qquad (C) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \qquad (D) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

(D)
$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(7) 设随机变量 X 与 Y 相互独立,且都服从区间 $\{0,1\}$ 上的均匀分布,则 $P^{\{X^2+Y^2\leq 1\}}=$: (

1	1	π	π
(A) $\frac{-}{4}$.	(B) $\frac{1}{2}$.	(C) 8.	(D) $\frac{4}{4}$

 $\frac{X_1-X_2}{\textbf{(8)}} \ \text{设}^{X_1,X_1,X_1,X_1}, \text{为来自总体}^{X\sim N(1,\sigma^2)} \textbf{(} \ \sigma>0 \textbf{)} \textbf{的简单随机样本 ,则统计量}^{|X_3+X_4-2|} \textbf{的分布为:(} \ \textbf{)}$

- (A) N(0,1). (B) t(1). (C) $\chi^2(1)$. (D) F(1,1).
- 二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{\cos x - \sin x}} =$$
(9)

$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1, \\ 2x - 1, & x < 1, \end{cases}, \quad y = f[f(x)], \quad \boxed{\frac{dy}{dx}} \Big|_{x = e} = \underline{\qquad}.$$

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$$
(11) 设连续函数 $z = f(x,y)$ 满足 $\frac{1}{y \to 1} = 0$, 则 $\frac{dz}{(0,1)} = 0$.

- (12) 由曲线 $y = \frac{4}{x}$ 和直线 y = x 及 y = 4x 在第一象限中围成的平面图形的面积为______.
- (13) 设 A 为 3 阶矩阵, $|^A|=3$, * 为 A 的伴随矩阵.若交换 A 的第 1 行与第 2 行得矩阵 B ,则 $|^{BA^*}|=$ _____

$$P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}, \mathbb{Q}^{P(AB|C)} =$$
 ______.

三、解答题:15~23 小题,共 94 分.请将解答写在<u>答题纸</u>指定的位置上.解答应写出文字说明、证明过程 或演算步骤.

(15) (本题满分 10 分)

求极限
$$x \to 0$$
 $\lim_{x \to 0} \frac{e^{x^2} - e^{2-2\cos x}}{x^4}$.

(16) (本题满分 10 分)

(17) (本题满分 10 分)

某企业为生产甲、乙两种型号的产品,投入的固定成本为10000 (万元),设该企业生产甲、乙两种产品的产量

分别为 x (件)和 y (件),且这两种产品的边际成本分别为 $^{20+\frac{x}{2}}$ (万元/件)与 $^{6+y}$ (万元/件).

- (I) 求生产甲、乙两种产品的总成本函数C(x,y)(万元);
- (II) 当总产量为50件时,甲、乙两种产品产量各为多少时可使总成本最小?求最小成本;
- (III) 求总产量为 50 件且总成本最小时甲产品的边际成本,并解释其经济意义.

(18) (本题满分 10 分)

证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}, (-1 < x < 1)$$
.

(19) (本题满分 10 分)

已知函数 f(x) 满足方程 f''(x) + f'(x) - 2f(x) = 0及 $f''(x) + f(x) = 2e^x$.

- (I) 求 f(x) 的表达式;
- (II) 求曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 的拐点.

(20) (本题满分 11 分)

$$\mathbf{A} = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, \mathbf{\beta} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}.$$

(I) 计算行列式|A|;

(II) 当实数 a 为何值时 , 方程组 $^{Ax=\beta}$ 有无穷多解 , 并求其通解 .

(21) (本题满分 11 分)

- (I) 求实数a 的值;
- (II) 求正交变换 $x = Q^r$ 将f 化为标准形.

(22) (本题满分 11 分)

X	0	1	2
0	1/4	0	<u>1</u> 4
1	0	1/3	0
2	1 12	0	1 12

设二维离散型随机变量 (X,Y) 的概率分布为

- (I) 求 $P\{X=2Y\}$;
- (II) 求 $^{\text{Cov}(X-Y,Y)}$.

(23) (本题满分 11 分)

设随机变量 X 与 Y 相互独立,且服从参数为 1 的指数分布.记 $U=\max\{X,Y\}$, $V=\min\{X,Y\}$.

- (I) 求^V 的概率密度 f_V(V);
- (II) 求 $^{E(U+V)}$.

— i	先择题:1~8 小题	毎小野4分 井32分	,下列每题给出的四个选项中,	只有一个选项符合题目要求。

(1) 已知当 $x \to 0$ 时,函数 $f(x) = 3\sin x - \sin 3x$ 与 cx^k 是等价无穷小,则:()

(A) k = 1, c = 4 . (B) k = 1, c = -4 . (C) k = 3, c = 4 . (D) k = 3, c = -4 .

(2) 设函数 f(x) 在 x = 0 处可导,且 f(0) = 0,则 $\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} = ($)

(A) $^{-2f'(0)}$. (B) $^{-f'(0)}$. (C) $^{f'(0)}$. (D) 0 .

(3) 设 $\{u_n\}$ 是数列,则下列命题正确的是:()

 $\text{(C)} \ \ \overset{\sum}{\underset{n-1}{\sum}} u_n \ \text{ 收敛} \ , \ \underset{n-1}{\overset{\infty}{\sum}} (u_{2n-1} - u_{2n}) \ \text{ 收敛}. \qquad \text{(D)} \ \ \overset{\sum}{\underset{n-1}{\sum}} (u_{2n-1} - u_{2n}) \ \text{ 收敛} \ , \ \underset{n-1}{\overset{\infty}{\sum}} u_n \ \text{ 收敛}.$

(4) $\partial_0^{I = \int_0^{\frac{\pi}{4}} \ln \sin x dx}$, $J = \int_0^{\frac{\pi}{4}} \ln \cot x dx$, $K = \int_0^{\frac{\pi}{4}} \ln \cos x dx$, $M = \int_0^{\frac{\pi}{4}} \ln \cos x dx$, $M = \int_0^{\frac{\pi}{4}} \ln \cos x dx$

(A) I < J < K . (B) I < K < J . (C) J < I < K . (D) K < J < I .

(5) 设 A 为 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B ,再交换 B 的第 2 行与第 3 行得单位矩阵,记

 $P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, MA = (

(A) $P_1 P_2$. (B) $P_1^{-1} P_2$. (C) $P_2 P_1$. (D) $P_2 P_1^{-1}$.

(6) 设 4 为 4 × 3 矩阵, $^{\eta_1,\eta_2,\eta_3}$ 是非齐次线性方程组 $^{Ax}=\beta$ 的 3 个线性无关的解, k_1,k_2 为任意常数,则 $^{Ax}=\beta$

的通解为:()

(A) $\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1)$. (B) $\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1)$.

(C) $\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$. (D) $\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$.

(7) 设 $f_1(x)$ 与 $f_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数,则必为概率密度的是:()

(A) $f_1(x)f_2(x)$. (B) $2f_2(x)F_1(x)$. (C) $f_1(x)F_2(x)$. (D) $f_1(x)F_2(x)+f_2(x)F_1(x)$.

(8) 设总体 X 服从参数为 $\lambda(\lambda>0)$ 的泊松分布 , $\lambda(\lambda>0)$ 的泊松分布 , $\lambda(\lambda>0)$ 为来自总体 $\lambda(\lambda>0)$ 为来自总体 $\lambda(\lambda>0)$

的统计量
$$T_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 , $\prod_{i=1}^{n-1} T_i = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n} X_n$,有: ()

- (A) $E(T_1) > E(T_2)$, $D(T_1) > D(T_2)$. (B) $E(T_1) > E(T_2)$, $D(T_1) < D(T_2)$.
- (C) $E(T_1) < E(T_2)$, $D(T_1) > D(T_2)$. (D) $E(T_1) < E(T_2)$, $D(T_1) < D(T_2)$.

二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

(9)
$$\mathfrak{P}^{f(x) = \lim_{t \to 0} x(1+3t)^{\frac{x}{t}}}$$
 , $\mathfrak{P}^{f'(x) = \underline{\qquad}}$.

$$z = \left(1 + \frac{x}{y}\right)^{\frac{x}{y}}$$
 , 则 $dz|_{(1,1)} =$ _____.

$$\tan\left(x+y+\frac{\pi}{4}\right)=e^{y}$$
 在点 $\left(0,0\right)$ 处的切线方程为______

- (12) 曲线 $y = \sqrt{x^2 1}$,直线x = 2 及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积为_____
- (13) 设二次型 $f(x_1,x_2,x_3)=x^TAx$ 的秩为1, A的各行元素之和为3,则f在正交变换x=Qy下的标准形为
- (14) 设二维随机变量(X,Y) 服从正态分布 $N(\mu,\mu,\sigma^2,\sigma^2,0)$, 则 $E(XY^2)$ =
- 三、解答题:15~23 小题, 共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程 或演算步骤 .
- (15) (本题满分 10 分)

求极限
$$\lim_{x\to 0} \frac{\sqrt{1+2\sin x}-x-1}{x\ln(1+x)}$$
.

(16) (本题满分 10 分)

已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f[x+y,f(x,y)],求 $\frac{\partial^2 z}{\partial x \partial y}|_{(1,1)}$

(17) (本题满分 10 分)

求
$$\int \frac{\arcsin\sqrt{x} + \ln x}{\sqrt{x}} dx.$$

(18) (本题满分 10 分)

$$4 \arctan x - x + \frac{4\pi}{3} - \sqrt{3} = 0$$
 证明方程 恰有两个实根.

(19) (本题满分 10 分)

设函数 $f(\mathbf{x})$ 在区间 [0,1] 上具有连续导数 , f(0)=1 , 且满足

$$\iint\limits_{D_t} f'(x+y) dx dy = \iint\limits_{D_t} f(t) dx dy \\ , \quad D_t = \Big\{ (x,y) \, \big| \, 0 \leq y \leq t-x, \, 0 \leq x \leq t \Big\} \, (0 < t \leq 1) \\ , \quad \Re f(x) \text{ in \mathbb{R} in \mathbb{R}.}$$

(20) (本题满分 11 分)

设向量组 $\boldsymbol{\alpha}_1 = (1,0,1)^T$, $\boldsymbol{\alpha}_2 = (0,1,1)^T$, $\boldsymbol{\alpha}_3 = (1,3,5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1,1,1)^T$, $\boldsymbol{\beta}_2 = (1,2,3)^T$, $\boldsymbol{\beta}_3 = (3,4,a)^T$ 线性表示.

- (I) 求^α的值;

(21) (本题满分 11 分)

$$A\begin{pmatrix}1&1\\0&0\\-1&1\end{pmatrix}=\begin{pmatrix}-1&1\\0&0\\1&1\end{pmatrix}.$$
设 A 为 3 阶实对称矩阵, A 的秩为 2 ,且

(I) 求 A 的所有特征值与特征向量; (II) 求矩阵 A.

(22) (本题满分 11 分)

设随机变量 ※ 与 》的概率分布分别为

X	0	1
P	1 3	$\frac{2}{3}$

Y	-1	0	1
Р	1 3	1 -3	1/3

$$\blacksquare^{P\left\{X^2=Y^2\right\}=1}$$

(I) 求二维随机变量(X,Y) 的概率分布;

(II) 求Z = XY的概率分布;

(III) 求X与Y的相关系数 ρ_{XY} .

(23) (本题满分 11 分)

设二维随机变量 $^{(X,Y)}$ 服从区域 G 上的均匀分布,其中 G 是由 $^{x-y=0,x+y=2}$ 与 $^{y=0}$ 所围成的三角形区域 .

- (I) 求边缘概率密度 $f_X(x)$;
- (II) 求条件概率密度 $f_{\mathrm{X}|\mathrm{Y}}(\mathrm{x}|\mathrm{y})$.

无水印版由【公众号:小盆考研】免费提供

更多考研数学视频文档资料, 【公众号: 小盆考研】, 回复【数学】免费获取

更多考研押题资料视频, 【公众号: 小盆考研】免费提供

更多考研数学预测卷,【公众号:小盆考研】,回复【数学预测】免费获取

无水印版由【公众号:小盆考研】免费提供

— ,	选择题(1~8 小题)	,每小题 4 分	共 32 分.下列	 每题给出的四个选	项中,只有一个	个选项符合题目要	求的,
请将	所选项前的字母填	在答题纸指定	位置上.)				

$\lim_{x\to 0} \left \frac{1}{x} - \left(\right) \right $	$\left[\frac{1}{x}-a\right]e^{x}$ = 1, $\mathbb{Q}a$ 等于()	
(A) ⁽⁾ .	(B) 1.	(C) 2.	(D) ³ .

(2) 设 y_1,y_2 是一阶线性非齐次微分方程 $^{y'+p(x)y=q(x)}$ 的两个特解,若常数 $^{\lambda,\mu}$ 使 $^{\lambda y_1+\mu y_2}$ 是该方程的解, $^{\lambda y_1-\mu y_2}$ 是该方程对应的齐次方程的解,则:()

(A)
$$\lambda = \frac{1}{2}, \mu = \frac{1}{2}$$
. (B) $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$. (C) $\lambda = \frac{2}{3}, \mu = \frac{1}{3}$. (D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$.

(3) 设函数 f(x),g(x) 具有二阶导数,且 g''(x) < 0,若 $g(x_0) = \alpha$ 是 g(x) 的极值,则 f[g(x)] 在 x_0 取极大值的一个充分条件是:()

(A)
$$f'(a) < 0$$
. (B) $f'(a) > 0$. (C) $f''(a) < 0$. (D) $f''(a) > 0$.

(4)设 $f(x) = \ln^{10} x, g(x) = x, h(x) = e^{\frac{x}{10}}$,则当x充分大时有:()

(A)
$$g(x) < h(x) < f(x)$$
. (B) $h(x) < g(x) < f(x)$.

(C)
$$f(x) < g(x) < h(x)$$
. (D) $g(x) < f(x) < h(x)$.

(5) 设向量组 $^{\text{I}: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r}$ 可由向量组 $^{\text{II}: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_r}$ 线性表示,下列命题正确的是:()

(A) 若向量组
$$\mathbb{I}$$
 线性无关,则 $^{r \leq s}$. (B) 若向量组 \mathbb{I} 线性相关,则 $^{r > s}$.

(C) 若向量组 \coprod 线性无关,则 $r \le s$. (D) 若向量组 \coprod 线性相关,则r > s.

(6) 设A为4阶实对称矩阵,且 $A^2+A=O$,若A的秩为3,则A相似于:()

(7) 设随机变量 X 的分布函数

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}, & 0 \le x < 1, \\ 1 - e^{-x}, & x \ge 1, \end{cases} \quad \text{for } P\{X = 1\} = ()$$

- (A) 0. (B) $\frac{1}{2}$. (C) $\frac{1}{2} e^{-1}$. (D) $1 e^{-1}$.

(8) 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 $\left[-1,3\right]$ 上均匀分布的概率密度,若

$$f(x) = \begin{cases} af_1(x), & x \le 0, \\ bf_2(x), & x > 0, (a > 0, b > 0) \end{cases}$$
 为概率密度,则^{a,b} **应满足:()**

- (A) 2a + 3b = 4. (B) 3a + 2b = 4. (C) a + b = 1. (D) a + b = 2.

二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.)

(9) 设可导函数
$$y = y(x)$$
 由方程 $\int_0^{x+y} e^{-t^2} dt = \int_0^x x \sin t^2 dt$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ ______.

$$y = \frac{1}{\sqrt{x(1+\ln^2 x)}} (e \le x < +\infty)$$
(10) 设位于曲线
$$\sqrt{x(1+\ln^2 x)}$$
 下方, x 轴上方的无界区域为 G ,则 G 绕 x 轴旋转一周所得空

间区域的体积为____

(11) 设某商品的收益函数为R(p) ,收益弹性为 $1+p^3$,其中p 为价格,且R(1)=1 ,则R(p)=1

(12) 若曲线
$$y = x^3 + ax^2 + bx + 1$$
有拐点 $(-1,0)$, 则 $b = ____.$

(13) 设
A,B
 为3阶矩阵,且 $|A|=3,|B|=2,|A^{-1}+B|=2$,则 $|A+B^{-1}|=$ ______.

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$
 (14) 设 X_1, X_2, \dots, X_n 是来自总体 $X(\mu, \sigma^2)$ ($\sigma > 0$) 的简单随机样本,记统计量 , 则 $E(T) =$ ______

三、解答题(15~23 小题 , 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步

骤.)

(15) (本题满分 10 分)

求极限
$$\lim_{x\to +\infty} (x^{\frac{1}{x}}-1)^{\frac{1}{\ln x}}$$
.

(16) (本题满分 10 分)

计算二重积分
$$\int_{D}^{\int} (x+y)^3 dxdy$$
 , 其中 D 由曲线 $x=\sqrt{1+y^2}$ 与直线 $x+\sqrt{2}y=0$ 及 $x-\sqrt{2}y=0$ 围成.

(17) (本题满分 10 分)

求函数u = xy + 2yz 在约束条件 $x^2 + y^2 + z^2 = 10$ 下的最大值和最小值.

(18) (本题满分 10 分)

(I) 比较
$$\int_0^1 \ln t \left[\ln (1+t) \right]^n dt = \int_0^1 t^n \ln t dt \left(n = 1, 2, \cdots \right)$$
 的大小,说明理由;

(II) 记
$$u_n = \int_0^1 |\ln t| \left[\ln (1+t) \right]^n dt \ (n=1,2,\cdots)$$
 , 求极限 $\lim_{n \to \infty} u_n$.

(19) (本题满分 10 分)

设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 $2f(0)=\int_0^2 f(x)dx=f(2)+f(3)$

- (I) 证明存在 $\eta \in (0,2)$, 使 $f(\eta) = f(0)$;
- (II) 证明存在 $\xi \in (0,3)$, 使 $f''(\xi) = 0$.

(20) (本题满分 11 分)

$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, \quad b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
 ,已知线性方程组 $Ax = b$ 存在2 个不同的解.

(I) 求^λ, α;

(II) 求方程组Ax = b的通解.

(21) (本题满分 11 分)

$$A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$$
,正交矩阵 Q 使得 Q^TAQ 为对角矩阵,若 Q 的第 1 列为 $\sqrt{6}$ $(1,2,1)^T$,求 a,Q .

(22) (本题满分 11 分)

设二维随机变量(X,Y)的概率密度为 $f(x,y)=Ae^{-2x^2+2xy-y^2}$, $-\infty < x < +\infty$, $-\infty < y < +\infty$, x 常数 A 及条件概率密度 $f_{Y|X}(y\mid x)$.

(23) (本题满分 11 分)

箱中装有 6 个球,其中红、白、黑球的个数分别为 1,2,3 个,现从箱中随机地取出 2 个球,记 X 为取出的红球个数, Y 为取出的白球个数.

(I) 求随机变量(X,Y) 的概率分布;

(II) 求 $^{Cov(X,Y)}$.

一、选择题: $1 \sim 8$ 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求,把 所选项前的字母填在题后的括号内.

 $f(x) = \frac{x - x^3}{\sin \pi x}$ 的可去间断点的个数为:()

- (A) 1. (B) 2. (C) 3. (D) 无穷多个.

(2) 当 $x \to 0$ 时, $f(x) = x - \sin ax$ 与 $g(x) = x^2 \ln(1 - bx)$ 是等价无穷小:()

- (A) $a = 1, b = -\frac{1}{6}$ (B) $a = 1, b = \frac{1}{6}$.
- (C) $a = -1, b = -\frac{1}{6}$. (D) $a = -1, b = \frac{1}{6}$.

(3) 使不等式 $\int_{1}^{x} \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是: ()

- (A) (0,1). (B) $(1,\frac{\pi}{2})$. (C) $(\frac{\pi}{2},\pi)$.

(4)设函数y = f(x)在区间[-1,3]上的图形为:

则函数 $F(x) = \int_0^x f(t) dt$ 的图

形为:()

(5) 设 A,B 均为 2 阶矩阵, $^{A^{\bullet},B^{\bullet}}$ 分别为 A,B 的伴随矩阵,若 $^{|A|=2,|B|=3}$,则分块矩阵 $^{\begin{pmatrix}O&A\\B&O\end{pmatrix}}$ 的伴随矩 阵为:()

$$(A)$$
 $\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix}$.

$$\begin{pmatrix} \mathbf{O} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{O} \end{pmatrix}.$$

$$\begin{pmatrix} O & 3A^{\bullet} \\ 2B^{\bullet} & O \end{pmatrix}$$
.

$$(D)$$
 $\begin{pmatrix} O & 2A^{\bullet} \\ 3B^{\bullet} & O \end{pmatrix}$.

$$P^{T}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$
(6) 设 A, P 均为3阶矩阵, P^{T} 为 P 的转置矩阵,且

 $P = (\alpha_1, \alpha_2, \alpha_3), Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3)$, $Q^T A Q \Rightarrow : ()$

$$\begin{pmatrix}
2 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix}.$$
(B)
$$\begin{pmatrix}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}.$$
(C)
$$\begin{pmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix}.$$
(D)
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

(7) 设事件 A 与事件 B 互不相容 , 则 : ()

(A)
$$P(\overline{A}\overline{B}) = 0$$
.

(B)
$$P(AB) = P(A)P(B)$$
.

(C)
$$P(\overline{A}) = 1 - P(B)$$
. (D) $P(\overline{A} \cup \overline{B}) = 1$.

(D)
$$P(\overline{A} \cup \overline{B}) = 1$$
.

(8) 设随机变量 X 与 Y 相互独立,且 X 服从标准正态分布 $N^{\{0,1\}}$,Y 的概率分布为 $P\{Y=0\}=P\{Y=1\}=rac{1}{2}$.

记 $^{F_{\mathcal{I}}(z)}$ 为随机变量 $^{Z}=XY$ 的分布函数,则函数 $^{F_{\mathcal{I}}(z)}$ 的间断点个数为:()

- (A) 0 . (B) 1 . (C) 2 . (D) 3 .

二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.

$$\lim_{x \to 0} \frac{e - e^{\cos x}}{\sqrt[3]{1 + x^2} - 1} = \underline{\qquad}.$$

(10) 设
$$z = (x + e^y)^x$$
 , 则 $\frac{\partial z}{\partial x}\Big|_{(1,0)} =$ _____.

$$\sum_{n=1}^{\infty} \frac{e^{\frac{n}{n}} - (-1)^{\frac{n}{n}}}{n^2} x^{\frac{n}{n}}$$
 的收敛半径为______.

(12) 设某产品的需求函数为 $\mathcal{Q}=\mathcal{Q}(p)$,其对价格 p 的弹性 $\mathcal{E}_p=0.2$,则当需求量为10000件时,价格增加1元

会使产品收益增加 元.

(13) 设
$$\alpha = (1,1,1)^T$$
 , $\beta = (1,0,k)^T$.若矩阵 $\alpha \beta^T$ 相似于 $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $k =$ ______.

(14) 设 X_1,X_2,\cdots,X_m 为来自二项分布总体B(n,p) 的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差,记统计量 $T=\overline{X}-S^2$,则B(T)=______.

三、解答题:15~23 小题, 共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分9分)

求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

(16) (本题满分 10 分)

(17) (本题满分 10 分)

计算二重积分
$$D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$$
.

(18) (本题满分 11 分)

(I) 证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)可导,则存在 $\xi \in (a,b)$,使得 $f(b) - f(a) = f'(\xi)(b-a)$

(II) 证明 若函数f(x)在x=0处连续 在 $(0,\delta)(\delta>0)$ 内可导,且 $_{x\to 0^+}^{\lim}f'(x)=A$,则 $f_+'(0)$ 存在,且 $f_+'(0)=A$.

(19) (本题满分 10 分)

设曲线y = f(x), 其中f(x)是可导函数,且f(x) > 0.已知曲线y = f(x)与直线y = 0, x = 1及x = t(t > 1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的 πt 倍,求该曲线方程.

(20) (本题满分 11 分)

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \quad \boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$
设

- (I) 求满足 $A\xi_2 = \xi_1, A^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (II) 对(I)中的任意向量 $\frac{f_2}{f_3}$, $\frac{f_3}{f_3}$, 证明: $\frac{f_3}{f_3}$, $\frac{f_3}{f_3}$, 线性无关.

(21) (本题满分 11 分)

设工次型
$$f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 - 2x_2x_3$$
.

- (I) 求二次型 f 的矩阵的所有特征值;
- (II) 若二次型 f 的规范形为 $y_1^2 + y_2^2$, 求 a 的值.

(22) (本题满分 11 分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x, \\ 0, & 其他. \end{cases}$$

- (I) 求条件概率密度 $f_{Y|X}(y|x)$;
- (II) 求条件概率 $P\{X \le 1 | Y \le 1\}$.

(23) (本题满分 11 分)

袋中有 1 个红球, 2 个黑球与 3 个白球.现有放回地从袋中取两次,每次取一个球,以 X,Y,Z 分别表示两次取球所取得的红球、黑球与白球的个数.

(I) 求
$$P\{X=1|Z=0\}$$
;

(II) 求二维随机变量(X,Y)的概率分布.

一、选择题: $1 \sim 8$ 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求,把 所选项前的字母填在题后的括号内.

- (1) 设函数f(x)在区间[-1,1]上连续,则x=0是函数 $g(x)=\frac{\int_0^x f(t)dt}{}$ 的:()
- (A) 跳跃间断点
- (B) 可去间断点 (C) 无穷间断点
- (D) 振荡间断点.
- (2) 如图 , 曲线段方程为 y=f(x) , 函数 f(x) 在区间 [0,a] 上有连续的导数 , 则定积分 $\int_a^a x f'(x) dx$ 等于: ()
- (A) 曲边梯形 *ABOD* 面积 (B) 梯形 *ABOD* 面积
- (C) 曲边三角形 ACD 面积 (D) 三角形 ACD 面积.
- (3) 设 $f(x,y) = e^{\sqrt{x^2 + y^4}}$,则: ()
- (A) $f_{\mathbf{x}}'(0,0)$ 存在 , $f_{\mathbf{y}}'(0,0)$ 存在 (B) $f_{\mathbf{x}}'(0,0)$ 不存在 , $f_{\mathbf{y}}'(0,0)$ 存在
- (C) $f'_x(0,0)$ 存在, $f'_y(0,0)$ 不存在 (D) $f'_x(0,0)$, $f'_y(0,0)$ 都不存在.

- (4) 设函数 f 连续.若 $F\left(u,v\right)=\iint\limits_{\mathcal{D}_{uv}}\frac{f\left(x^2+y^2\right)}{\sqrt{x^2+y^2}}dxdy$, 其中区域 \mathcal{D}_{uv} 为图中阴影部分 , 则 $\frac{\partial F}{\partial u}=$ ()
- (A) $vf(u^2)$ (B) $\frac{v}{u}f(u^2)$
- (C)vf(u) (D) $\frac{v}{u}f(u)$

(5) 设 A 为 n 阶非零矩阵, E 为 n 阶单位	立矩阵,若 $A^3=O$,则:()
(A) $E-A$ 不可逆, $E+A$ 不可逆	(B) $E-A$ 不可逆, $E+A$ 可逆
(C) E – A 可逆, E + A 可逆	(D) $E-A$ 可逆, $E+A$ 不可逆.
(6) 设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,则在实数域上与 A	合同的矩阵为:()
(A) $\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$ (B) $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$	(C) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$
(7) 随机变量 X,Y 独立同分布,且 X 的	G 分布函数为 $F(x)$,则 $Z=\max\{X,Y\}$ 分布函数为:()
(A) $F^{2}(x)$	(B) $F(x)F(y)$
(C) $1 - [1 - F(x)]^2$	$(D)\big[1-F(x)\big]\big[1-F(y)\big]$
(8) 设随机变量 $X \sim N(0,1)$, $Y \sim N(1,0)$.4) 且相关系数 Ø xy = 1 , 则: ()
(A) $P\{Y = -2X - 1\} = 1$	(B) $P\{Y=2X-1\}=1$
(C) <u>జనగ తెలిగికి గ్రామం</u>	(D) $P\{Y=2X+1\}=1$
二、填空题:9~14 小题,每小题 4 分	,共 24 分,请将答案写在答题纸指定位置上.
(9) 设函数 $f(x) = \begin{cases} x^2 + 1, & x \le c, \\ \frac{2}{ x }, & x > c \end{cases}$ 在(-	-∞, +∞) 内连续,则
(10) 设函数 $f\left(x+\frac{1}{x}\right) = \frac{x+x^3}{1+x^4}$,则 $\int_{2}^{2\sqrt{x}}$	$\int_{0}^{\pi} f(x) dx = \underline{\qquad}.$

(11) 设 $D = \{(x,y) \mid x^2 + y^2 \le 1\}$, 则 $\iint_D (x^2 - y) dx dy = _____.$

(12) 微分方程 xy'+y=0 满足条件y(1)=1 的解是y=_____

算步骤.

(13) 3 阶矩阵 A 的特征值为 1,2,2 , E 为三阶单位矩阵 , 则 $\left|^{4A^{-1}-E}\right|=$ ______.

三、解答题:15~23 小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演

(14) 设随机变量 X 服从参数为1的泊松分布,则 $P\left\{X=EX^2\right\}=$ ______.

无水印版由【公众号:小盆考研】免费提供

更多考研数学视频文档资料, 【公众号: 小盆考研】, 回复【数学】免费获取

更多考研押题资料视频, 【公众号: 小盆考研】免费提供

更多考研数学预测卷,【公众号:小盆考研】,回复【数学预测】免费获取

无水印版由【公众号:小盆考研】免费提供

(15) (本题满分9分)

求极限
$$\lim_{x\to 0}\frac{1}{x^2}\ln\frac{\sin x}{x}$$
.

(16) (本题满分 10 分)

设z = z(x,y) 是由方程 $x^2 + y^2 - z = \varphi(x + y + z)$ 所确定的函数,其中 φ 具有2阶导数且 $\varphi' \neq -1$.

(I) 求dz;

(II) 记
$$u(x,y) = \frac{1}{x-y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right)$$
, 求 $\frac{\partial u}{\partial x}$.

(17) (本题满分 11 分)

计算
$$\int_{D} \max \{xy,1\} dxdy$$
,其中 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 2\}$.

(18) (本题满分 10 分)

设f(x)是周期为2的连续函数,

(I) 证明对任意的实数t ,都有 $\int_{t}^{t+2} f(x) dx = \int_{0}^{2} f(x) dx$;

(II) 证明
$$G(x) = \int_0^x \left[2f(t) - \int_t^{t+2} f(s) ds \right] dt$$
 是周期为2的周期函数.

(19) (本题满分 10 分)

设银行存款的年利率为r=0.05,并依年复利计算.某基金会希望通过存款 A 万元实现第一年提取 19 万元,第二年提取 28 万元,",第n 年取出 (10+9n) 万元,并能按此规律一直提取下去,问 A 至少应为多少万元?

(20) (本题满分 12分)

设n 元线性方程组Ax = b, 其中

$$\mathbf{A} = \begin{pmatrix} 2a & 1 & & \\ a^2 & 2a & \ddots & \\ & \ddots & \ddots & 1 \\ & & a^2 & 2a \end{pmatrix}_{\mathbf{x} \times \mathbf{x}} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

- (I) 证明行列式 $|A| = (n+1)a^n$;
- (II) 当 α 为何值时,该方程组有唯一解,并求 x_1 ;
- (III) 当 a 为何值时,该方程组有无穷多解,并求通解.

(21) (本题满分 10 分)

设A为3阶矩阵, α_1 , α_2 为A的分别属于特征值-1,1特征向量,向量 α_3 满足 $A\alpha_3$ = α_2 + α_3 .

- (I) 证明 \(\alpha_1, \alpha_2, \alpha_3\) 线性无关;
- (II) $\diamondsuit P = (\alpha_1, \alpha_2, \alpha_3)$, 求 $P^{-1}AP$.

(22) (本题满分 11 分)

设随机变量X与Y相互独立,X概率分布为 $P\{X=i\}=\frac{1}{3}(i=-1,0,1)$,Y的概率密度为

$$f_Y(y) = \begin{cases} 1, & 0 \le y < 1, \\ 0, & 其他, \end{cases}$$
记 $Z = X + Y.$

求: (I)
$$P\left\{Z \le \frac{1}{2} \middle| X = 0\right\}$$
;

(II) 求Z的概率密度 $f_Z(z)$.

(23) (本题满分 11分)

设 X_1, X_2, \cdots, X_n 是总体 $N(\mu, \sigma^2)$ 的简单随机样本.记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$, $T = \overline{X}^2 - \frac{1}{n} S^2$

(I) 证明T是 μ^2 的无偏估计量;

(II) 当
$$\mu = 0, \sigma = 1$$
时,求 $D(T)$.