Final Project in Python

z-tests

One proportion

- Compare one thing to a whole
 - One categorical component

Two proportion

- Compare ratio to a whole
 - Two categorical components

Code for z-tests

```
count = # or np.array([#, #])
nobs = # or np.array([#,#])
value = # (only for one proportion!)
stat, pval = proportions_ztest(count, nobs, value)
print(stat,pval)
```

Independent Chi-Square

- Both IV and DV are categorical
- Comparing frequencies by category

Making a Pivot Table

TableName = pd.pivot_table(dataFrame, index="column", columns="column", values="column")

	Location	PetType	NumberTherapyVisitRequests	Location	on	on 1	on 1 2
0	1	Gecko	29	PetType	,)	;
	1	Puppy	73	Cat		2	2 10
	1	Cat	2	Gecko		29	29 39
	1	Hamster	39	Hamster		39	39 66
	2	Gecko	39	Puppy		73	73 117

Using the Pivot Table in a Chi-Square

stats.chi2_contingency(pivotTable)

One Way ANOVAs

- One categorical IV
- One continuous DV

Comparing means of the categories

I'm melting...

Melt is a type of reshaping

```
NewDataFrame = pd.melt(dataFrame,
var_name="column1", value_name="column2")
```

Data Wrangling and Assumption Testing

Recode categories to numbers

Check normality and adjust

Check for homogeneity of variance