OSPF · PART 1

Link State Advertisements

Router Link (Type 1)

Lists neighboring routers and the cost to each; flooded within an area

Network Link (Type 2)

Generated by a DR; lists all routers on an adjacent segment; flooded within an area

Network Summary (Type 3)

Generated by an ABR and advertised among areas

ASBR Summary (Type 4)

Injected by an ABR into the backbone to advertise the presence of an ASBR within an area

External Link (Type 5)

Generated by an ASBR and flooded throughout the AS to advertise a route external to OSPF

NSSA External Link (Type 7)

Generated by an ASBR in a not-so-stubby area; converted into a type 5 LSA by the ABR when leaving the area

Router Types

Internal Router

All interfaces reside within the same area

Backbone Router

A router with an interface in area 0 (the backbone)

Area Border Router (ABR)

Connects two or more areas

AS Boundary Router (ASBR)

Connects to additional routing domains; typically located in the backbone

Area Types

Standard Area

Default OSPF area type

Stub Area

External link (type 5) LSAs are replaced with a default route

Totally Stubby Area

Type 3, 4, and 5 LSAs are replaced with a default route

Not So Stubby Area (NSSA)

A stub area containing an ASBR; type 5 LSAs are converted to type 7 within the area

External Route Types

E1 · Cost to the advertising ASBR plus the external cost of the route

E2 (Default) · Cost of the route as seen by the ASBR

Troubleshooting

show ip [route protocols]	show ip ospf border-routers
show ip ospf interface	show ip ospf virtual-links
show ip ospf neighbor	debug ip ospf […]

Attributes

Type Link-State

Algorithm Dijkstra

Metric Cost (Bandwidth)

AD 110

Standard RFC 2328, 2740

Protocols IP

Transport IP/89

Authentication Plaintext, MD5

AllSPF Address 224.0.0.5

AllDR Address 224.0.0.6

Metric Formula

 $cost = \frac{100,000 \text{ Kbps*}}{\text{link speed}}$

* modifiable with ospf auto-cost reference-bandwidth

Adjacency States

1 Down **5** Exstart

2 Attempt 6 Exchange

3 Init **7** Loading

4 2-Way **8** Full

DR/BDR Election

- The DR serves as a common point for all adjacencies on a multiaccess segment
- \cdot The BDR also maintains adjacencies with all routers in case the DR fails
- · Election does not occur on point-topoint or multipoint links
- Default priority (0-255) is 1; highest priority wins; 0 cannot be elected
- · DR preemption will not occur unless the current DR is reset

Virtual Links

- · Tunnel formed to join two areas across an intermediate
- · Both end routers must share a common area
- · At least one end must reside in area 0
- · Cannot traverse stub areas

by Jeremy Stretch v2.1

OSPF · PART 2

Nonbroadcast (NBMA) DR/BDR Elected Yes No No No No No No No No No N	Network Types			
	Point			
Neighber Discovery, No. Yes No. Yes Yes				
Neighbor Discovery No Yes No Yes Yes				
Hello/Dead Timers 30/120 30/120 30/120 10/40 10/40				
Defined By RFC 2328 RFC 2328 Cisco Cisco Cisco				
Supported Topology Full Mesh Any Any Full Mesh Point-to-	Point			

Configuration Example

Router A interface Serial0/0 description WAN Link ip address 172.16.34.2 255.255.255.252 interface FastEthernet0/0 description Area 0 ip address 192.168.0.1 255.255.255.0 interface Loopback0 ! Used as router ID ip address 10.0.34.1 255.255.255.0 router ospf 100 ! Advertising the WAN cloud to OSPF redistribute static subnets network 192.168.0.0 0.0.0.255 area 0 ! Static route to the WAN cloud ip route 172.16.0.0 255.255.192.0 172.16.34.1

```
Router B
interface Ethernet0/0
description Area 0
ip address 192.168.0.2 255.255.255.0
ip ospf 100 area 0
interface Ethernet0/1
description Area 2
ip address 192.168.2.1 255.255.255.0
ip ospf 100 area 2
  Optional MD5 authentication configured
ip ospf authentication message-digest
ip ospf message-digest-key 1 md5 FooBar
  Give B priority in DR election
ip ospf priority 100
interface Ethernet0/2
description Area 1
ip address 192.168.1.1 255.255.255.0
ip ospf 100 area 1
interface Loopback0
ip address 10.0.34.2 255.255.255.0
router ospf 100
! Define area 1 as a stub area
area 1 stub
 Virtual link from area 0 to area 9
area 2 virtual-link 10.0.34.3
```

```
Router C
interface Ethernet0/0
description Area 9
ip address 192.168.9.1 255.255.255.0
ip ospf 100 area 9
interface Ethernet0/1
description Area 2
ip address 192.168.2.2 255.255.255.0
ip ospf 100 area 2
  Optional MD5 authentication configured
ip ospf authentication message-digest
ip ospf message-digest-key 1 md5 FooBar
  Give C second priority (BDR) in election
ip ospf priority 50
interface Loopback0
ip address 10.0.34.3 255.255.255.0
router ospf 100
! Define area 9 as a totally stubby area
area 9 stub no-summary
! Virtual link from area 9 to area 0
area 2 virtual-link 10.0.34.2
```

by Jeremy Stretch v2.1