CSC309 Programming on the Web

week 5: database

Amir H. Chinaei, Spring 2017

Office Hours: M 3:45-5:45 BA4222

ahchinaei@cs.toronto.edu http://www.cs.toronto.edu/~ahchinaei/

review

- * so far:
 - front-end
 - · structure & semantic, appearance, behavior
 - · many design tips
- next:
 - back-end
 - · we start with databases
 - structured & semi-structured data

databases 5-2

what is a database?

- it is a collection of data, typically describing the activities of one (or more related) application(s)
- the goal is to organize data in a way that facilitates efficient <u>retrieval</u> and <u>modification</u>
- note: the data maintained by a system are much more important/valuable than the system itself
- A database management system (DBMS) is a software program to assist in maintaining and utilizing large databases

databases 5-3

advantages of using a dbms

- data independence
- efficient data access
- * data integrity and security
- data administration
- concurrent access and crash recovery
- reduced application development time

databases 5-4

history

- 1962 IDS, first general purpose dbms by Charles Bachmann @ GE; Late 1960s IMS DBMS @ IBM
- 1971 Relational Data Model by Edgar Codd @ IBM
- 1973 Bachmann wins Turing award
- 1976 E-R Model by Peter Chen
- Late 1970s IBM's System R
- 1980s DB2 (SQL), Oracle, Informix, Sybase
- 1981 Codd wins Turing award
- Late 1980s O-O DBMSs
- 1990s SQL expansion, Internet development, XML
- Late 1990s, Relational DBMSs incorporate objects
- 1998 Jim Gray wins Turing award

databases 5-5

3-level schema architecture APPLICATION 1 APPLICATION 2 APPLICATION 3 D VIEW B B CONCEPTUAL LEVEL M S INTERNAL SCHEMA PHYSICAL DATABASE databases 5-6

more on data independence

- * Idea: application programs are isolated from changes in the way the data is structured & stored.
 - Indirect access supports:
 - · advanced data structures
 - · data restructuring
 - · distribution and load balancing,
 - all without changes to applications
 - Note: A very important advantage of using a DBMS!

databases 5-7

more on data independence

- Logical: applications immune from changes in the logical structure of the data.
 - Example
 - Student (name: string, major: string, DOB: integer)
 - : --
- Physical: applications immune from physical storage details.
 - Such as

the file structure and the choice of indexes

databases 5-8

more on relational model

Idea. All information is organized in flat relations.

- ❖ Features:
 - very simple and clean data model
 - often matches how we think about data
 - abstract model that underlies SQL, the most popular database language
 - powerful and declarative query/update languages
 - semantic integrity constraints

databases 5-9

transaction

A transaction is any one execution of a process in a DBMS, which is seen as a series of actions—such as reads and writes, followed by a commit or an abort.

- Properties of transactions: (ACID)
 - Atomic: either all actions or nothing are carried out.
 - Consistency: must preserve the DB constraints.
 - Isolation: understandable without considering other transactions.
 - Durability: once committed, the changes made are permanent.

databases 5-10

databases 5-14

summary

- * Using a database to manage data helps:
 - to remove common code from applications
 - to provide uniform access to data
 - to guarantee data integrity
 - to manage concurrent access
 - to protect against system failure
 - to set access policies to data
 - . . .

database 5-15