

A simplified summary of Differentiation and Integration (with basic rules and examples)

Prepared by:Mahmoud Ayman
Faculty of Artificial Intelligence – Robotics and
Artificial Intelligence Major
Kafr El-Sheikh University

CONTENTS

Basics

1.1 Core or Concepts Overview

Linear Algebra

2.1 Fundamentals of Linear Algebra **Trigonometry**

3.1 Essential Trigonometric Identities

Limits & Continuity

4.1 Key Limit Laws

4.2 Continuity & Differentiability

Differentiation

5.1 Differentiation Rules

5.2 Geometric Applications

Integration

6.1 Essential Calculus Formulas

﴿وَقُل رَّبِّ زِدْنِي عِلْمًا﴾

14

DATE	SUBJECT: Partal
9	+4
9	"Calculus for Kachine learning"
-	Cradient and
0	Differentiation Jolis palice
-	verivative 1
	ال العالق القانون العام
-	Rise over Run
-	(A(x) (in) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
10	م (١) و منار التي ير ف (١) ١
-	(: GradienT: AY/Ax)
-	M. Tan Q giein d' bil dea
2	ع في المثلث القائم الزاوية التي تستهدا السفيم المثلثية
	عادة للاشارة إلى المقابل والمجاوروالوتر الالام ١٩٩٥ - ١٥ ١٩٨٥
	Ton Q- opp/Ads ads lit A in in (Adjacent) (opplad)
201	
	اعلاقاته بین النسب المثلثیة: عدم المثلثیة: CScB = 1 / Sin 9
	Plail and and shill rolle (- Tan 0 = 5in 8/ coso
	The are and The Jb rade a - COTB = COSB / SinB
	- Lie l'és noitres cos 20 + sin 20 = 1
	اعلا قامت المشتمات من فيناء ورث [
1	$\theta = \sec^2 \theta = \tan^2 \theta + 1$
1	0 10 CSC20 = COT 20 + 1
1	

قانون الله الله الله الله الله الله الله الل							
F(x+ax) 5 F(x+ax) - F(x)							
Sin 2 Gradient.							
-3 4 5- 2- 1 1 2 3 4 5							
الما افترنية الله الما الما الما الما الما الما الما							
CINI 100 CIRLARI PINI							
$\frac{1}{4x+0} \frac{1}{(\Delta x)}$							
ع الدالة الخاطية هذم الدرتمة الاولى الناتع نباءة ثابت عن الدرتمة الاولى الناتع نباءة ثابت عن عدد الدرتمة الاولى							
$f(n)$ $\lim_{n \to \infty} f(n+4n) - f(n)$							
$F(r) = \lim_{n \to \infty} \frac{3(R+4x)+2-3x-2}{3(R+4x)+2-3x-2} = \sum_{n=0}^{\infty} 2n$							
1 1 1							
: f(x) - lim 3 dx -3 0120 dx							
01-10 120							
: 18m 3 = 3) CL Spodie							
Top Women to the trade of the second							
الم العير فرية							
F(r) = 18m P(r+ax) - F(r)							
11-10 -100 -100 : 50x + 10 x0x							
: 0x (5+10x)							
:, f(x) = lim 5(x+0xf-5x2) Zero 5:0x is if se							
الناتع ها و ١٥٥٠ الناتع ها و ١٥٠٠ الناتع ها و ١٥٠ الناتع ها و ١٥٠٠ الناتع ها و ١٥٠ الناتع ها و ١٥٠٠ الناتع ها و ١٥٠٠ الناتع ها و ١٥٠٠ الناتع ها و ١٥٠ الناتع ها و ١٥٠ الناتع ها و ١٥٠ الناتع ها و ١٥٠ الناتع ها و							
: p(d) = 18m 5600 (ax)2+ 200xx)-5x2 : 500 + 100 = 100							
Ad I I I I I I I I I I I I I I I I I I I							
: P(X) 1Pm = 5x2+5(0x)2+10x0x-5x2							
91							

" فواء د التفاجل الدساسية " d/dx (C) = 0 d/dx(x) = 1 لوعندى دالتن مخروس في عن d/dx (5x) = 5. الاولى لاتفاعل التأنية + التأنية في تفاعل الادلى $d/dx (x^n) = n x^{n-1}$ > d/dx (f.9) = f. 1/x(9) + 9. 1/x(F) d/dx (x5) = 5x4 طيب لومسمة d/dx (Tr) = 1/2 xx $\frac{1}{2} \int dx (f) = 9. \int_{3x} (f) - f. \int_{3x} (g)$ d/dx (ex) = ex d/dx (Inx) = 1/2 العقا X مشتق البسط - البسط في عشته الما (Mr. - (Mr. + 10) - 2(Mr. - 2/10) - 2/10) (الدوال المثلثة) der (Sink) = cosp dux (secx) = secx Tank dida (cosx) = - Sina dida (csca) = cscx coTx JIdx (CUTX) =-CSC2 d/dx (Tank) - sec2x " لهم الرسومات لما أهم الدوال " y = 1x1

Elzahraa

DATE: / / SUBJECT: -1 axis > o d'axis Y= 1/22 y-axis y= lnx y = sind Y= Cos X y = cot a Elzahraa

Kicrosoft learn Name: Mahmoud Ayman	-
student Ambassadors Task: T-1	
5215	
01: LAt A = 4 1 1 1 and B = 0 1	
3 1 0 1 5 -1	
calculate (if Possible)? 7 6	
C Solution 5)	
(a) A.B . A34 . B412	-
عدد الدعمدة في الممنوفة A يُساوع عدد الممنوف في الممنوفة في	
يتحقق شرط العرب والمعفوف الجديدة على النظم 2.2	
r 45 41 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30-00
A.B: 16 14 (b) B.A	
بردی بغیر محت ا	
5 41-3 700	
21-7 -257	
(c) AT = 1 1 0 (d) 13T =	
5 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6
- 45 16 10	
(e) $(A,B)^T = -41 + 14 + 11$	6
48 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	
ب مقان و هنداون المعقوم الـ BT. FT = 41 74 74 (4)	
2.3 pail de à	
(9) (AT) = A null place of all (9)	
р Б 2 1 g 1	•
4 1 1 1	•
3 .1 6 .1 .	
Elzahraa)—	
CIZATIFA)	

SUBJECT: > = solve the following systems of linear equations: (a) R + y = 5) III cult is whited in a x + 2y = 7 x + 2y = 7 x + 2 - 5 x + 2 - 5 x + 2 - 52 +24 = 7 بعوب المعادلة الدولي في سالم والجمع لآلو 1= 4- x (6) 3R-9 - 13 - (2) .. 2 P = 12 .. Q = 12/2 = 6 .. x = 6 .. y = -1 12-9-13 ... -9-13-12 ... 9-1 (c) 2x +39 = 1 > D 5 x = 57 = -10 - 10 (elle x 2 101 + 154 = 5 : 254 = 25 | : 9 = 1 : - 10 x + 10 y = 20 : 2x + 3 = 1 : 2x = 2 | : x=-1 | (e) 2+4=10 + 1.28=10 circum god. $\mathcal{Q}-\mathcal{Y}=0 \qquad (: \mathcal{Q}=5) \qquad (: \mathcal{Y}=5)$: 112 = 0 1: 2=d : 0+9=4 : 9=4 (f) 8144 = 5 (Ex d) What was 8x+3y=5 -8x+329=-40 1 2914 = 35 V = 5-44 8 (5-44) +34:5 -30 -129 = 13

1:1.749 - - 35 (3-1)

3200 + 129 - 18 - 324 + 39 = 5

.. L = 5-y ... 40 - 354 = 5

(2=3)

Table of Laplace Transforms

Table of Laplace Transforms										
	$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$					
1	T .	1	2.	e ^{at}	1					
1.0		S	- aZo	· ·	s-a					
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p \ge -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$					
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$					
7.	sin (at)	$\frac{a}{s^2 + a^2}$	8.	cos(at)	$\frac{s}{s^2 + a^2}$					
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$					
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$					
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$					
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	cos(at+b)	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$					
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$					
19.	$e^{\omega} \sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{st}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$					
21.	$e^{\sigma} \sinh(bt)$	$\frac{b}{(s-a)^2-b^2}$	22.	e" cosh(ht)	$\frac{s-a}{\left(s-a\right)^2-b^2}$					
23.	$t^n e^{at}$, $n = 1, 2, 3,$	$\frac{n!}{(s-a)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$					
25.	$u_{\varepsilon}(t) = u(t-c)$ Heaviside Function	<u>e</u> -"	26.	$\delta(t-c)$ Dirac Delta Function	e-13					
27.	$u_{c}(t)f(t-c)$	$e^{-cr}F(s)$	28.	$u_{c}(t)g(t)$	$e^{-c} \mathcal{L}\{g(t+c)\}$					
	$e^{ct}f(t)$	F(s-c)		$t^n f(t), n = 1, 2, 3,$	$(-1)^n F^{(n)}(s)$					
31.	$\frac{1}{t}f(t)$	$\int_{u}^{\infty} F(u) du$	32.	$\int_0^t f(v) dv$	$\frac{F(s)}{s}$					
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\int_0^T \mathbf{e}^{-st} f(t) dt$					
35.	f'(t)	sF(s)-f(0)	36	f''(t)	$1 - e^{-iT}$					
	$f^{(n)}(t)$) #=2 \$1(\$)	$s^2F(s)-sf(0)-f'(0)$					
$s^{n} f^{*}(s) - s^{n-1} f(0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}(0) - f^{(n-1)}(0)$										