

Problem 6.7

Consider an *npn* transistor whose base-emitter drop is 0.76 V at a collector current of 5 mA. What current will it conduct at $v_{BE} = 0.70$ V? What is its base-emitter voltage for $I_C = 5 \mu A$?

$$V_{BE} = 0.76 \text{ V}$$
 $V_{T} = 0.025 \text{ V}$ $I_{C} = 5 \text{ mA} = I_{S} e^{V_{BE}/V_{T}}$

$$I_{S} = \frac{5 \text{ mA}}{e^{V_{BE}/V_{T}}} = 3.137 \times 10^{-16} \text{A}$$

$$V_{BE} = 0.7 \text{ V}$$

$$I_C = I_S e^{V_{BE}/V_T} = 3.137 \times 10^{-16} e^{700/25} = 453.59 \text{ } \mu\text{A}$$

$$I_C = 5 \,\mu\text{A}$$

$$V_{BE} = V_T \ln\left(\frac{I_C}{I_S}\right) = .025 \ln\left(\frac{10 \times 10^{-6}}{3.137 \times 10^{-16}}\right) = 0.587 \text{V}$$

Problem 6.8

In a particular BJT, the base current is 10 μ A, and the collector current is 800 μ A. Find β and α for this device.

$$\beta \equiv \frac{i_C}{i_B}$$

 β is the common-emitter current gain

$$\alpha \equiv \frac{i_C}{i_F}$$

 α is the common-base current gain

$$i_B = \frac{i_C}{\beta}$$

$$\beta = \frac{i_C}{i_B} = \frac{800 \,\mu\text{A}}{10 \,\mu\text{A}} = 80$$

$$\alpha = \frac{\beta}{\beta + 1} = \frac{80}{80 + 1} = 0.9877$$

$$\alpha \equiv \frac{i_C}{i_E} = \frac{i_C}{i_C + i_B} = \frac{800 \mu A}{810 \mu A} = 0.9877$$

Problem 6.28

For the circuits in Fig. P6.28, assume that the transistors have very large β . Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

Figure P6.28

Problem 6.28a

For the circuits in Fig. P6.28, assume that the transistors have very large β . Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

Figure P6.28

$$\beta \equiv \frac{i_C}{i_B} \Rightarrow i_B = \frac{i_C}{\beta}$$

$$I_1 = I_E = \frac{10.7 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = 2 \text{ mA}$$

$$V_2 = V_C = -10.7 \text{ V} + 5 \text{ k}\Omega \times 2 \text{ mA} = -0.7 \text{ V}$$

Problem 6.28b

For the circuits in Fig. P6.28, assume that the transistors have very large β . Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

Figure P6.28

$$I_E = I_C = \frac{-4 \text{ V} - -10 \text{ V}}{2.4 \text{ k}\Omega} = 2.5 \text{ mA}$$

$$V_3 = V_E = 12 \text{ V} - 5.6 \text{ k}\Omega \times 2.5 \text{ mA} = -2 \text{ V}$$

Problem 6.28c

For the circuits in Fig. P6.28, assume that the transistors have very large β . Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

Figure P6.28

$$I_5 = I_E = \frac{10 \text{ V}}{20 \text{ k}\Omega} = 0.5 \text{ mA}$$

$$V_4 = V_B = 2 \text{ V}$$

Problem 6.28d

For the circuits in Fig. P6.28, assume that the transistors have very large β . Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

Figure P6.28

$$I_6 = I_E = I_C = \frac{V_B - 0.7V + 10 \text{ V}}{3 \text{ k}\Omega} = \frac{10 \text{ V} - V_C}{9.1 \text{ k}\Omega}$$

$$9.1 \text{ k}\Omega(V_B + 9.3 \text{ V}) = 3 \text{ k}\Omega(10 \text{ V} - V_C)$$

$$9.1V_B + 84.63 = 30 - 3V_C$$
 $V_7 = V_C = V_B$
 $12.1V_7 = -54.63$

$$V_7 = -4.515V$$

$$I_6 = I_E = I_C = \frac{10 \text{ V} + 4.515}{9.1 \text{ k}\Omega} = 1.595 \text{ mA}$$

Problem 6.29a,b

Measurements on the circuits of Fig. P6.29 produce labeled voltages as indicated. Find the value of β for each transistor.

$$I_C \coloneqq \frac{2V}{2k\Omega} = 1 \, mA$$

$$I_B := \frac{4.3 \, V}{200 \, k\Omega} = 21.5 \, \mu A$$

$$\beta := \frac{I_C}{I_B} = 46.512$$

$$I_B := \frac{4.3 V - 3.0 V}{27 k\Omega} = 48.148 \ \mu A$$

$$I_R := \frac{3V}{750\Omega} = 4mA$$

$$I_C := I_R - I_B = 3.952 \ mA$$

$$\beta := \frac{I_C}{I_B} = 82.077$$

Problem 6.29c

Measurements on the circuits of Fig. P6.29 produce labeled voltages as indicated. Find the value of β for each transistor.

$$I_E = \frac{10 \text{ V} - 7 \text{ V}}{1 \text{ k}\Omega} = 3 \text{ mA}$$

$$I_E = I_C + I_B$$

$$I_E = I_C + I_B$$

$$V_C = (I_C + I_B)1.5 \text{k}\Omega = 3 \text{ mA} \times 1.5 \text{ k}\Omega = 4.5 \text{ V}$$

$$I_B = \frac{6.3 \text{ V} - 4.5 \text{ V}}{45 \text{ k}\Omega} = 40 \text{ }\mu\text{A}$$

$$I_C = 3 \text{ mA} - 40 \mu \text{A} = 2.96 \text{ mA}$$

$$\beta = \frac{i_C}{i_B} = \frac{2.96 \text{ mA}}{40 \text{ \mu A}} = 74$$

Problem 6.32a

Design the circuit in Fig. P6.32 to establish a current of 0.5 mA in the emitter and $R_{C} \text{ be increased whil}$ $\beta := 100 \qquad \alpha := \frac{\beta}{\beta + 1} = 0.9901 \qquad V_{EB} := \frac{-V_{EB}}{V_{T}}$ $I_{C} := \alpha I_{E} = 0.099 \text{ mA} \qquad I_{S} := I_{C} \cdot e^{-V_{EB}} = 0.755 \text{ fA}$ $I_{E} := 0.5 \text{ mA} \qquad I_{C} := \alpha I_{E} = 0.495 \text{ mA}$ Method 2 $I_{C} := \alpha I_{C} = 0.495 \text{ mA}$ a voltage of -0.5 V at the collector. The transistor $v_{EB} = 0.64$ V at $I_E = 0.1$ mA, and $\beta = 100$. To what value can R_C be increased while the collector current

$$\beta := 100$$

$$\alpha := \frac{\beta}{\beta + 1} = 0.9901$$

$$V_{EB} := 0.64 V$$
 $I_E := 0.1 \, mA$

$$I_E = 0.1 \, mA$$

$$I_C := \alpha I_E = 0.099 \ mA$$

$$I_{S} := I_{C} \cdot e^{\frac{-V_{EB}}{V_{T}}} = 0.755 \, fA$$

$$I_E := 0.5 \, mA$$

$$I_C := \alpha I_E = 0.495 \text{ mA}$$

$$I_E := 0.5 \, \text{mA}$$
 $I_C := \alpha \, I_E = 0.495 \, \text{mA}$ $V_{EB} := V_T \cdot ln \left(\frac{I_C}{I_S} \right) = 0.68 \, V$

Method 2

$$\frac{I_{E2}}{I_{E1}} = \frac{\alpha I_{S} e^{V_{EB2}/V_{T}}}{\alpha I_{S} e^{V_{EB1}/V_{T}}} = e^{(V_{EB2} - V_{EB1})/V_{T}} \implies V_{EB2} = V_{T} \ln \left(\frac{I_{E2}}{I_{E1}}\right) + V_{EB1}$$

$$V_{EB} := 25 \, mV \cdot ln \left(\frac{0.5 \, mA}{0.1 \, mA} \right) + 0.64 \, V = 0.68 \, V$$

Problem 6.32b

Design the circuit in Fig. P6.32 to establish a current of 0.5 mA in the emitter and a voltage of -0.5 V at the collector. The transistor $v_{EB} = 0.64$ V at $I_E = 0.1$ mA, and $\beta = 100$. To what value can R_C be increased while the collector current remains unchanged?

$$V_{EB} = 0.68 \text{ V}$$

$$R_E = \frac{2.5 \text{ V} - 0.68 \text{ V}}{0.5 \text{ mA}} = 3.64 \text{ k}\Omega$$

$$R_C = \frac{-0.5V - -2.5 \text{ V}}{0.495 \text{ mA}} = 4.04 \text{ k}\Omega$$

The voltage at the collector can be increased to 0.4 V and remain in the active mode. Therefore, R_C can increase to $\approx 5.9 \text{ k}\Omega$ and the collector current will remain unchanged.

$$R_{Cmax} = \frac{0.4V - -2.5 \text{ V}}{0.495 \text{ mA}} = 5.86 \text{k}\Omega$$

Figure P6.32