Лекции 4-5. Векторы в пространстве.

Определение. Фиксированным вектором называется отрезок AB если указано, какая из точек A или B является его началом, а какая концом. Если A — начало, а B — конец, то фиксированный вектор обозначается \overrightarrow{AB} .

Определение. Длиной фиксированного вектора \overrightarrow{AB} называется длина отрезка AB.

Определение. Фиксированные векторы \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются сонаправленными, если $\overrightarrow{AB}||\overrightarrow{A_1B_1}|$ и лучи AB и A_1B_1 сонаправлены .

Определение. Два фиксированных вектора \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются равными, если они сонаправлены и имеют одинаковую длину. Пишем $\overrightarrow{AB} = \overrightarrow{A_1B_1}$. Очевидно, $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow$ они совмещаются параллельным переносом.

Для отношения "=" на множестве фиксированных векторов пространства верны следующие свойства:

- $\mathbf{1.}\overrightarrow{AB} = \overrightarrow{AB}$.
- 2. $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow \overrightarrow{A_1B_1} = \overrightarrow{AB}$,
- **3.** $(\overrightarrow{AB} = \overrightarrow{A_1B_1} \cap \overrightarrow{A_1B_1} = \overrightarrow{AB}) \Rightarrow \overrightarrow{AB} = \overrightarrow{A_2B_2}$.

Следовательно, отношение "=" является отношением эквивалентности, и множество фиксированных векторов пространства распадается на классы эквивалентных друг другу фиксированных векторов пространства, непересекающиеся между собой.

Определение. Вектором \vec{a} называется класс равных между собой фиксированных векторов пространства. Длина вектора \vec{a} обозначается $|\vec{a}|$.

Если вектор \vec{a} задается фиксированным вектором \vec{AB} , то пишем $\vec{a} = \vec{AB}$, и говорим, что \vec{AB} есть вектор \vec{a} , отложенный из точки A.

Предложение. Для вектороа \vec{a} и точки A существует и притом единственная точка B, такая , что $\vec{a} = \overrightarrow{AB}$.

Доказательство.

Определение. Вектор, имеющий нулевую длину, называется *нулевым* и обозначается $\vec{\mathbf{o}}$. Вектор, длина которого равна 1, называется *единичным*.

Определение. Векторы \vec{a} и \vec{b} называются *сонаправленными* (противоположно направленными), если задающие их фиксированные векторы сонаправлены (противоположно направлены). Пишем $\vec{a} \uparrow \uparrow \vec{b}$ ($\vec{a} \uparrow \downarrow \vec{b}$). Два вектора, направления которых совпадают или противоположны, называются коллинеарными. Пишем $\vec{a} \mid \vec{b}$. Считается, что \vec{o} коллинеарен

каждому вектору. Три и более векторов, параллельных одной плоскости называются компланарными.

Определение суммы двух векторов Определение. по правилу треугольника.

Теорема. Данное определение операции сложения корректно.

Доказательство.

Теорема.

 $\forall \vec{a}, \vec{b}, \vec{c}$ верно:

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
;

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
;

$$3. \overrightarrow{a} + \overrightarrow{o} = \overrightarrow{a}.$$

4. $\exists ! \ \vec{\mathbf{x}} : \vec{\mathbf{a}} + \vec{\mathbf{x}} = \vec{\mathbf{o}}$. Такой вектор называется *противоположным* к $\vec{\mathbf{a}}$ и обозначается $-\overrightarrow{\mathbf{a}}$.

Доказательство

Определение. Определение двух векторов по правилу параллелограмма.

Определение. Разностью двух векторов \vec{a} и \vec{b} называется такой вектор $\vec{\mathbf{d}}$, что $\vec{\mathbf{b}} + \vec{\mathbf{d}} = \vec{\mathbf{a}}$. Пишем $\vec{\mathbf{d}} = \vec{\mathbf{a}} - \vec{\mathbf{b}}$.

Теорема. Разность векторов существует и определяется однозначно.

Доказательство.

Определение. Произведением вектора \vec{a} на число λ называется такой вектор $\vec{\mathbf{b}}$, что

1. $\vec{a} \uparrow \uparrow \vec{b}$, если $\lambda > 0$, и $\vec{a} \uparrow \downarrow \vec{b}$, если $\lambda < 0$;

$$2. |\overrightarrow{\mathbf{b}}| = |\lambda| \cdot |\overrightarrow{\mathbf{a}}|.$$

Пишем $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Теорема.

1.
$$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$
; 3. $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;

3.
$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$

2.
$$\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$$
;

$$4. \ 1 \cdot \overrightarrow{a} = \overrightarrow{a}.$$

3. ненулевые векторы \vec{a} и \vec{b} коллинеарны \Leftrightarrow существует такое число λ , что $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Доказательство.

Определение. Пусть \vec{a} и \vec{b} – два ненулевых вектора. Отложим их из одной точки $O: \vec{\mathbf{a}} = \overrightarrow{OA}, \vec{\mathbf{b}} = \overrightarrow{OB}$. Тогда углом между векторами $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ называется угол между лучами OA и OB, т.е. $\alpha = \angle AOB$. Пишем

$$\alpha = \angle (\vec{a}, \vec{b}).$$

Определение. Скалярным произведением двух векторов \vec{a} и \vec{b} называется \underline{uucno}

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}). \tag{1}$$

Число $\vec{a}^2 = \vec{a} \cdot \vec{a}$ называется скалярным квадратом вектора \vec{a} .

Теорема. Скалярный квадрат $\vec{a}^2 = \vec{a} \cdot \vec{a}$ вектора равен квадрату его длины $|\vec{a}|^2$.

2. Для того, чтобы ненулевые векторы \vec{a} и \vec{b} были перпендикулярны необходимо и достаточно, чтобы их скалярное произведение было равно нулю $(\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0)$.

Доказательство.

Теорема.

- 1. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$;
- 2. $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$;
- 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$;
- **4.** $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} \ge 0$, $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = 0 \Leftrightarrow \vec{\mathbf{a}} = \vec{\mathbf{o}}$

Доказательство.

Замечание.

$$\cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}) = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
 (2)

Скалярное произведение обозначается также, как: $(\vec{\mathbf{a}}, \vec{\mathbf{b}})$.

Теорема. Пусть $\vec{\bf a}$, $\vec{\bf b}$ и $\vec{\bf e}$ - некомпланарные векторы в пространстве. Для любого вектора $\vec{\bf c}$ существуют такие числа x_1, x_2, x_3 что

$$\vec{\mathbf{c}} = x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}} + x_3 \vec{\mathbf{e}}$$
 (3)

причём x_1, x_2, x_3 определены однозначно.

Доказательство.

Представление вектора $\vec{\mathbf{c}}$ в виде (3) называется разложением по базису, состоящему из векторов $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{e}}\}$. Числа x_1, x_2, x_3 называются координатами вектора. В этом случае записывают так $\vec{\mathbf{c}} = (x_1, x_2, x_3)$.

Определение. Базис $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{e}}\}$ называется ортонормированным, если $|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| = |\vec{\mathbf{e}}| = 1$ и все векторы попарно ортогональны.

Выберем произвольную точку O в пространстве, которую назовём началом координат. Прямые l_1 , l_2 , l_3 вместе с выбранными на них фиксированными векторами $\overrightarrow{OA} = \overrightarrow{\mathbf{a}}$, $\overrightarrow{OB} = \overrightarrow{\mathbf{b}}$, $\overrightarrow{OE} = \overrightarrow{\mathbf{e}}$ называются координатными осями. Координатные оси вместе с ортонормированным базисом $\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{e}}\}$ и точкой O называются декартовой системой координат. Векторы $\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{e}}\}$ в этом случае принято обозначать $\{\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \mathbf{k}\}$ и называть базисными ортами.

Пусть C - произвольная точка в пространстве . Вектор $\vec{\mathbf{c}} = \overrightarrow{OC}$ называется paduyc-вектором_точки C в данной системе координат. Координаты (x, y, z) вектора $\vec{\mathbf{c}}$, где $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ называются координатами точки C в данной системе координат и записываются в виде C(x, y, z).

Пусть произвольный вектор \vec{c} в декартовой СК имеет координаты (x, y, z), т.е. $\vec{c} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

Теорема.

$$\vec{\mathbf{c}} \cdot \mathbf{i} = |\vec{\mathbf{c}}| |\mathbf{i}| \cos \angle (\vec{\mathbf{c}}, \mathbf{i}) = |\vec{\mathbf{c}}| \cos \angle (\mathbf{i}, \vec{\mathbf{c}}) = x,$$

$$\vec{\mathbf{c}} \cdot \mathbf{j} = |\vec{\mathbf{c}}| |\mathbf{j}| \cos \angle (\vec{\mathbf{c}}, \mathbf{j}) = |\vec{\mathbf{c}}| \cos \angle (\mathbf{j}, \vec{\mathbf{c}}) = y,$$

$$\vec{\mathbf{c}} \cdot \mathbf{k} = |\vec{\mathbf{c}}| |\mathbf{k}| \cos \angle (\vec{\mathbf{c}}, \mathbf{k}) = |\vec{\mathbf{c}}| \cos \angle (\mathbf{k}, \vec{\mathbf{c}}) = z.$$

Пусть $\alpha = \angle(\mathbf{i}, \mathbf{c})$, $\beta = \angle(\mathbf{j}, \mathbf{c})$, $\gamma = \angle(\mathbf{k}, \mathbf{c})$ Тогда величины $\cos \alpha$, $\cos \beta$ и $\cos \gamma$ называются направляющими косинусами вектора \mathbf{c} .

Доказательство.

Теорема. Пусть
$$\vec{\mathbf{c}} = (x_1, x_2, x_3)$$
, $\vec{\mathbf{d}} = (y_1, y_2, y_3)$. Тогда $\vec{\mathbf{c}} + \vec{\mathbf{d}} = (x_1\vec{\mathbf{a}} + x_2\vec{\mathbf{b}} + x_3\vec{\mathbf{e}}) + (y_1\vec{\mathbf{a}} + y_2\vec{\mathbf{b}} + y_3\vec{\mathbf{e}}) = (x_1 + y_1)\vec{\mathbf{a}} + (x_2 + y_2)\vec{\mathbf{b}} + (x_3 + y_3)\vec{\mathbf{e}}$. $\lambda \vec{\mathbf{c}} = \lambda(x_1\vec{\mathbf{a}} + x_2\vec{\mathbf{b}} + x_3\vec{\mathbf{e}}) = (\lambda x_1)\vec{\mathbf{a}} + (\lambda x_2)\vec{\mathbf{b}} + \lambda x_3\vec{\mathbf{e}}$.

Доказательство.

Пусть известны координаты точек $P(x_1, x_2, x_3), Q(y_1, y_2, y_3), \mathbf{d} = \overrightarrow{\mathbf{d}} = \overrightarrow{PQ}.$

Теорема. $\vec{\mathbf{d}} = \vec{\mathbf{q}} - \vec{\mathbf{p}}$, где $\vec{\mathbf{p}} = (x_1, x_2, x_3)$, $\vec{\mathbf{q}} = (y_1, y_2, y_3)$, Значит, $\vec{\mathbf{d}} = (y_1 - x_1, y_2 - x_2, y_3 - x_3)$.

Доказательство.

Теорема.

Расстояние между точками $P(x_1, x_2, x_3), Q(y_1, y_2, y_3)$ в пространстве равно $PQ = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2}$.

Доказательство.

Теорема. Пусть $\vec{\mathbf{c}} = (x_1, x_2, x_3)$, $\vec{\mathbf{d}} = (y_1, y_2, y_3)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$. Тогда

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{d}} = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Доказательство.

Следствие. Пусть $\vec{\mathbf{c}} = (x_1, x_2, x_3)$, $\vec{\mathbf{d}} = (y_1, y_2, y_3)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$.

Тогда

$$\cos \angle (\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}) = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \sqrt{y_1^2 + y_2^2 + y_3^2}}.$$
 (4)

Доказательство.

Векторное и смешанное произведение векторов.

Определение. <u>Векторным произведением двух векторов</u> \vec{a} и \vec{b} называется такой вектор \vec{c} , что

- 1. $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b};$
- 2. $(\vec{a}, \vec{b}, \vec{c})$ правая тройка;
- 3. $|\vec{\mathbf{c}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}})$.

Теорема (свойства векторного произведения.).

Свойства векторного произведения.

- 1. $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$,
- 2. $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}),$
- 3. $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

Доказательство.

Теорема. Векторное произведение двух векторов, заданных в декартовой *системе координат* своими координатами $\vec{\mathbf{a}}(a_1, a_2, a_3)$ и $\vec{\mathbf{b}}(b_1, b_2, b_3)$, вычисляется по формуле:

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} =$$

$$= (a_1b_2 - a_2b_1)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_2b_3 - a_3b_2)\mathbf{k} .$$
(5)

Доказательство.

Примеры.

Определение. Смешанным произведением трех векторов \vec{a} , \vec{b} , \vec{c} называется число $(\vec{a} \times \vec{b}) \cdot \vec{c}$. Оно обозначается $\vec{a} \cdot \vec{b} \cdot \vec{c}$, $\vec{a} \, \vec{b} \, \vec{c}$ или $(\vec{a}, \vec{b}, \vec{c})$.

Теорема. Модуль смешанного произведения трех векторов \vec{a} , \vec{b} , \vec{c}

численно равен объему параллелепипеда построенного на направленных отрезках \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , представляющих эти векторы, отложенные из одной точки.

Доказательство.

Теорема.

Свойства смешанного произведения.

1.
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c});$$

2.
$$\vec{a} \vec{b} \vec{c} = \vec{c} \vec{a} \vec{b} = \vec{b} \vec{c} \vec{a}$$
.

3.
$$\vec{a} \vec{b} \vec{c} = -\vec{b} \vec{a} \vec{c} = -\vec{a} \vec{c} \vec{b} = -\vec{c} \vec{b} \vec{a}$$
.

4.
$$(\lambda \vec{a})\vec{b}\vec{c} = \vec{a}(\lambda \vec{b})\vec{c} = \vec{a}\vec{b}(\lambda \vec{c}) = \lambda(\vec{a}\vec{b}\vec{c}).$$

5.
$$(\overrightarrow{a} + \overrightarrow{b})\overrightarrow{c}\overrightarrow{d} = \overrightarrow{a}\overrightarrow{c}\overrightarrow{d} + \overrightarrow{b}\overrightarrow{c}\overrightarrow{d}$$
.

Доказательство.

Примеры.