PART 7 Creative Problem Solving in School Mathematics

Kerjakan soal-soal berikut.

1. Hitunglah luas segi lima ABCDE, jika AB = AE = CD = 1, BC + DE = 1, dan $\angle ABC = \angle AED = 90^{\circ}$.

2. Pada diagram PQRS adalah persegi panjang dan T adalah titik tengah RS. Lingkaran dalam ΔPTS dan ΔRTQ masing-masing mempunyai jari-jari 3 cm. Lingkaran dalam ΔPQT mempunyai jari-jari 4 cm. Hitunglah luas persegi panjang PQRS.

- 3. Jika a adalah bilangan bulat positif, maka a! adalah hasil perkalian $1 \times 2 \times 3 \times ... \times (a-1) \times a$. Sebagai contoh $3!=1 \times 2 \times 3=6$. Jika n adalah bilangan bulat positif, maka jumlah $1+1 \times 1!+2 \times 2!+3 \times 3!+...+n \times n!$ adalah
- 4. Berapa banyak persegi panjang yang mempunyai sisi bilangan bulat positif yang mempunyai nilai numerik keliling dan luasnya sama?
- 5. Tentukan akar kuadrat dari 111...111222...2225 .
- 6. Tentukan konstanta a, b, p, dan q dari $(2x-1)^{20} (ax+b)^{20} = (x^2 + px + q)^{10}$ untuk semua bilangan real x.
- 7. Jika a dan b adalah akar-akar dari $x^2 + px + 1 = 0$ sedangkan c dan d adalah akar-akar dari $x^2 + qx + 1 = 0$. Nyatakan ekspresi (a-c)(b-c)(a+d)(b+d) dalam p dan q.
- 8. Didefinisikan fungsi f dengan $f(x) = \frac{4x + \sqrt{4x^2 1}}{\sqrt{2x + 1} + \sqrt{2x 1}}$ untuk $x \ge 1$. Hitung jumlah f(1) + f(2) + f(3) + ... + f(40)

9. Dua titik A dan B terletak di luar garis l. f(X) untuk titik X sembarang pada l yang menyatakan jumlah jarak dari A ke titik X dan dari B ke titik X. Tentukan jarak terpendek yang mungkin dari f(X), jika jarak dari A ke l adalah 1, dari B ke l adalah 2 dan dari A' ke B' adalah 4.

- 10. Jika a adalah bilangan dua digit dan \overline{a} adalah bilangan dua digit tetapi susunannya dibalik dari bilangan a. Sebagai contoh $\overline{35} = 53$. Berapa banyak bilangan dua digit yang memenuhi bahwa $a + \overline{a}$ adalah bilangan kuadrat sempurna.
- 11. Jika a dan b adalah bilangan real, hitunglah jumlah koefisien suku banyak $P(x) = \left(1 ax + ax^2\right)^{237} \left(1 + bx bx^2\right)^{739}.$
- 12. Tentukan bilangan bulat terbesar yang kurang dari atau sama dengan $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{10000}}$. (Petunjuk: Gunakan ketidaksamaan $\sqrt{10001} \sqrt{2} > 98,5$).
- 13. Suatu fungsi didefinisikan untuk semua bilangan bulat positif dan f(1) = 2014dan $f(1) + f(2) + f(3) + ... + f(n) = n^2 f(n)$ untuk semua $n \ge 1$. Hitunglah f(2008).
- 14. Jika x + y = 5 dan xy = 6, hitunglah $\frac{1}{x} + \frac{1}{y}$.
- 15. Jika *x* dan *y* adalah bilangan real yang memenuhi sistem persamaan $\begin{cases} 2^x 2^y = 1 \\ 4^x 4^y = \frac{5}{3} \end{cases}$
- 16. Diberikan $\triangle ABC$, dengan BC=3. Pilihlah titik D pada BC sedemikian, sehingga BD=2. Tentukan nilai $AB^2+2AC^2-3AD^2$.
- 17. Jika x dan y adalah bilangan bulat positif 19x + 97y = 1997, maka nilai terkecil x + y adalah
- 18. Jika f adalah fungsi yang memenuhi $f(xy) = \frac{f(x)}{y}$ untuk setiap bilangan real positif x dan y. Jika f(30) = 20, maka nilai f(40) adalah
- 19. Jika x + y + z = 6, xy + xz + yz = 11, dan xyz = 6, maka $\frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy}$ sama dengan
- 20. Berapa banyak pasangan bilangan bulat positif (a,b), dengan $a \le b$ dan $\frac{1}{a} + \frac{1}{b} = \frac{1}{6}$?