1 Краткие теоретические сведения

 ${\rm K}$ дискретным источникам информации относят источники с конечным алфавитом ${\rm K}.$ Примерами таких источников могут служить тексты на различных языках, телеграммы, e-mail и sms-сообщения, любые файлы данных.

С точки зрения теории информации источник характеризуется степенью неопределённости относительно выдаваемого им сообщения. Количественно эта неопределённость измеряется через **информационные** характеристики данного источника.

1.1 Информационные характеристики дискретного источника

Основной информационной характеристикой дискретного источника является его **энтропия**: среднее количество информации, приходящееся на один символ источника.

$$H(A) = \overline{I(a_i)} = -\sum_{i=0}^{K-1} p(a_i) \log_2 p(a_i).$$

Здесь $I(a_i) = -\log_2 p(a_i)$ — **информация**, содержащаяся в символе a_i , $p(a_i)$ — вероятность его появления, A — множество символов a_i (алфавит источника).

Энтропия измеряется в битах на символ источника: [бит/симв].

Максимально возможное значение энтропии (максимально возможное среднее количество информации на символ) достигается при равновероятном выборе символов источником:

$$H_{\max}(A) = -\sum_{i=0}^{K-1} \frac{1}{K} \log_2 \frac{1}{K} = \log_2 K.$$

Для источника с **памятью** (соседние символы сообщения зависимы) вводится понятие **условной энтропии**:

$$H(A|A') = -\sum_{i=0}^{K-1} \sum_{j=0}^{K-1} p(a_i, a_j) \log_2 p(a_i|a_j).$$

Здесь $p(a_i,a_j)$ — вероятность совместного появления символов a_i и a_j , $p(a_i|a_j)$ — вероятность появления символа a_i при условии, что до него появился символ a_j (условная вероятность символа a_i), A' — множество символов источника на предыдущем шаге (a_j) , A — на текущем шаге (a_i) .

Условная энтропия не превышает безусловной

$$H(A|A') \leqslant H(A),$$

поскольку всякая дополнительная зависимость не увеличивает (а разве только уменьшает) количество информации.

Избыточность источника

$$\rho_{\text{\tiny M}} = 1 - \frac{H(A)}{H_{\text{max}}(A)} = 1 - \frac{n_0}{n}$$

характеризует относительное удлинение сообщения по сравнению с источником без избыточности (с максимальной энтропией). Здесь n — длина сообщения с энтропией H(A), n_0 — минимально возможная длина сообщения с энтропией $H_{\rm max}(A)$.

Среднее количество информации, выдаваемое источником в единицу времени, определяется его **производительностью**:

$$H'(A) = v_{\mathbf{H}}H(A),$$

где $v_{\rm u}$ — скорость выдачи символов.

Производительность измеряется в битах в секунду: [бит/с].

1.2 Определение энтропии языка

Все естественные языки характеризуются достаточно большой избыточностью, которая обуславливается как неравновероятностью отдельных символов, так и наличием глубоких информационных связей между соседними символами (а также словами и целыми фразами).

Существует два подхода к определению энтропии языка, в предельном случае приводящие к одному и тому же результату [4].

С одной стороны, энтропию языка можно оценить как энтропию группы из n символов A_n , поделённую на количество символов в группе:

$$H_n^+ = \frac{H(A_n)}{n}.$$

Группа из n символов называется n-граммой, а величина H_n^+ — удельной энтропией символа.

С другой стороны, энтропию языка также можно оценить как условную энтропию n-го символа a_n при известных n-1 предыдущих символах — $H(A|A'_{n-1})$:

$$H_n^- = H(A|A'_{n-1}) = H(A_n) - H(A_{n-1}).$$

В пределе, при $n \to \infty$, обе эти величины сходятся к одному и тому же значению

$$H_{\text{\tiny M3}} = H_{\infty} = \lim_{n \to \infty} H_n^+ = \lim_{n \to \infty} H_n^-,$$

являющемуся энтропией данного языка [4].

В [4] также доказывается, что H_n^+ является верхней, а H_n^- — нижней границей H_∞ .

1.3 Опыт IIIеннона

Оригинальный способ определения энтропии языка был предложен в 1951 г. Шенноном [3]. Он заключается в отгадывании n-й буквы текста при известных n-1 предыдущих. Мера степени неопределённости данного опыта является оценкой сверху условной энтропии.

Из осмысленного текста наугад выбираются n-1 символов и комулибо предлагается угадать n-й символ. Многократное повторение опыта даёт распределение частот правильного угадывания: частоты (вероятности) w_1, w_2, \ldots, w_K того, что символ будет правильно угадан с $1, 2, \ldots, K$ -й попытки (K — объём алфавита). Эти вероятности являются оценкой вероятностей символов алфавита, расположенных в порядке убывания частот [4]. Отсюда следует, что энтропия данного распределения будет являться оценкой (сверху) условной энтропии

$$H(A|A'_{n-1}) \leqslant H(W) = -\sum_{i=1}^{K} w_i \log w_i,$$

которая с увеличением n будет стремиться к энтропии языка.

Результат опыта зависит от «литературного чутья» и добросовестности отгадывающего. Для уменьшения влияния этих факторов, Шеннон предложил задавать вопросы ряду лиц и остановиться на том из них, ответы которого окажутся наиболее удачными.

1.4 Определение средней длины слова

Зная вероятность (частость) появления символа «пробел» (\sqcup), можно определить среднюю длину слова:

$$\overline{n}_{\text{\tiny CJI}} = \lim_{N \to \infty} \frac{N - n_{\text{\tiny L}}}{n_{\text{\tiny CJI}}} = \lim_{N \to \infty} \frac{N - NP(\text{\tiny L})}{NP(\text{\tiny L}) + 1} = \frac{1 - P(\text{\tiny L})}{P(\text{\tiny L})}.$$

Здесь N — длина текста (устремлённая к бесконечности), n_{\sqcup} — число пробелов в тексте, $n_{\rm cл}$ — число слов в тексте, $P({\sqcup})$ — вероятность появления пробела.

Число слов в тексте на 1 больше числа пробелов: $n_{\rm cr} = n_{\rm l} + 1$ (если считать, что текст начинается и заканчивается буквой и все слова разделены пробелами). Число пробелов связано с длиной текста через вероятность появления пробела: $n_{\rm l} = NP(_{\rm l})$. Вычитая число пробелов из общего числа символов, получим суммарную длину всех слов в тексте. Разделив эту величину на число слов в тексте, получим среднюю выборочную длину слова. Устремляя размер выборки (длину текста) к бесконечности, получим искомое значение $\overline{n}_{\rm cr}$ для произвольного текста.

Для текста на русском языке (32-символьной модели) средняя длина слова примерно равна 5 символам.

2 Домашнее задание

- 1. Засеките время (от 1 до нескольких минут) и наберите на компьютере произвольный текст, используя только русские буквы в нижнем регистре и пробел (без знаков препинания). Можно переписать текст из книги, учебника, лекции, набрать любой текст по памяти и т.п., главное, чтобы текст был осмысленным. Набранный текст включается в текст домашнего задания!
- Подсчитайте количество символов в набранном тексте. Если текст набирался в обычном текстовом редакторе в кодировке WIN или DOS, то количество символов будет равняться размеру полученного файла в байтах. Если текст набирался в визуальном редакторе (Open Office, MS Word и т.п.), то количество символов можно найти в меню статистики файла: Файл → Свойства → Статистика.
- 3. Полагая энтропию русского языка равной $H_{\rm pyc}=1{,}37$ [бит/симв] (из [4]), вычислите количество информации I, содержащееся в набранном отрезке текста.
- 4. Зная количество информации, число символов и время, потраченное на набор текста, вычислите производительность источника H'.
- 5. Вычислите избыточность набранного текста, полагая, что объём алфавита источника K=32 (на самом деле 34, если вы использовали «ё» и «ъ», но для 32-символьной модели их не учитывают, заменяя «ё» на «е» и «ъ» на «ь»).

Если возможности набирать текст на компьютере нет, можно писать текст от руки.

3 Указания к выполнению работы

Перед началом работы ознакомьтесь с интерфейсом пользователя: нажмите F1 или выберите в главном меню «Помощь \to Руководство пользователя».

3.1 Цель работы

Целью работы является анализ информационных характеристик дискретных источников.

3.2 Общие замечания

Для получения достоверных результатов, особенно при больших длинах *п*-грамм, требуется большой объём статистики. Кроме того, энтропия может существенно отличаться для текстов различных стилей: стихи, как правило, имеют меньшую энтропию, чем проза, энтропия делового текста меньше энтропии литературного и т.п.

Если расчёт идёт слишком медленно, ограничьте размер исходного текста 20—30 тысячами символов: отметьте пункт «Ограничить размер» и укажите размер текста в окошке «Макс. длина». Однако, в этом случае достоверность получаемых результатов снизится. Степень достоверности результатов можно контролировать с помощью кнопки «Статистика», отображающей таблицу распределения n-грамм. Если большая часть n-грамм встречается в тексте менее 10 раз, получаемое значение энтропии будет далеко от реального.

Объём алфавита K текста на русском языке в расчётах полагается равным 32, на английском, немецком и французском — 27 (пробел и строчные буквы без акцентов).

Имена файлов для исследований задаются преподавателем!

3.3 Снятие гистограмм распределения

Зарисуйте (сохраните в файл) гистограммы однобуквенного распределения для различных языков:

- 1. Откройте исходный текстовый файл на русском языке.
- 2. Нажмите кнопку «Гистограмма».
- 3. Зарисуйте (сохраните) полученную гистограмму.
- 4. Запишите (скопируйте) значения числа встречаемости для всех символов алфавита.

Проделайте всё то же самое для текстов на английском, немецком и французском языках.

Проанализируйте полученные распределения. Сделайте выводы.

Рассчитайте вероятность (частость) символа «пробел» $P(\sqcup)$ как отношение числа пробелов к общему числу символов в тексте и найдите среднюю длину слова $\overline{n}_{\rm cл}$ для всех четырёх языков.

3.4 Исследование энтропии различных языков

Снимите зависимость энтропии от длины *n*-граммы:

- 1. Откройте исходный текстовый файл на русском языке.
- 2. Установите параметр n равным 1.
- 3. Нажмите кнопку «Рассчитать энтропию».
- 4. Занесите в табл. 1 значения длины n-граммы, рассчитанные значения энтропии n-граммы $H(A_n)$ и удельной энтропии $H(A_n)/n$.
- 5. Повторите п. 3–4 для значений $n=2\dots 5$.
- 6. Рассчитайте условную энтропию $H(A|A'_{n-1})$ для $n=2\dots 5$ как разность текущего $H(A_n)$ и предыдущего $H(A_{n-1})$ значений энтропии n-граммы.

Таблица 1

Длина <i>n</i> -	Энтропия	Удельная	Условная
граммы,	n-граммы,	энтропия,	энтропия,
n [симв]	$H(A_n)$	$H(A_n)/n$	$H(A A'_{n-1})$
	[бит/симв]	[бит/симв]	[бит/симв]
1			_
5			

Снимите аналогичную зависимость для текстов на английском, немецком и французском языках. Сделайте вывод о зависимости удельной и условной энтропии от длины n-граммы.

Примите за энтропию языка соответствующие значения удельной энтропии, полученные для n=2. Рассчитайте избыточность для каждого языка. Сделайте выводы.

3.5 Генератор случайных текстов

Пронаблюдайте за работой генератора случайных текстов для русского языка:

- 1. Откройте исходный текстовый файл на русском языке.
- 2. Установите параметр n (длина n-граммы) равным 1.
- 3. Нажмите кнопку «Случайный текст». Программа сгенерирует некоторое количество символов случайного текста.
- 4. Увеличивая значение n до 5 с шагом 1 пронаблюдайте за изменением генерируемого текста.
- 5. Запишите (скопируйте) несколько «слов» случайного текста при различных значениях n.
- 6. Сделайте выводы.

3.6 Опыт Шеннона

Определите энтропию русского языка методом Шеннона.

- 1. Откройте исходный текстовый файл на русском языке.
- 2. Установите параметр n (длина n-граммы) равным 6.
- 3. Нажмите кнопку «Опыт Шеннона».
- 4. Попытайтесь угадать последнюю букву случайной *п*-граммы. Не сводите угадывание к простому перебору всех символов алфавита, используйте свои знания структуры русского языка. В трудных случаях (например, в начале слова) используйте хотя бы известное вам из п. 3.3 распределение вероятностей одиночных символов.
- 5. Повторите эксперимент как можно большее число раз (хотя бы 20–30, лучше 100 и больше).
- 6. Нажмите кнопку «Энтропия».
- 7. Зарисуйте (сохраните) полученную гистограмму распределения и запишите соответствующее ей значение энтропии языка.

4 Содержание отчёта

- 1. Название и цель работы.
- 2. Выполненное домашнее задание.
- 3. Графики, таблицы, расчётные значения и выводы по всем пунктам работы.
- 4. Общий вывод по результатам лабораторной работы.

Примечание: общий вывод не должен быть перефразировкой целей работы, а должен содержать обобщение (но не копию!) всех выводов, сделанных по каждому пункту в отдельности.

5 Контрольные вопросы

- 1. Какие источники называют дискретными? Что называется алфавитом источника?
- Что такое «информация»? Как определяется количество информапии?
- 3. Дайте определение энтропии дискретного источника. Как рассчитывается энтропия источника без памяти?
- 4. Какие источники называются источниками с памятью? Как рассчитывается энтропия источника с памятью?
- 5. В каком случае энтропия будет максимальной? Как определить максимальное значение энтропии?
- 6. Дайте определение избыточности источника. Какие источники называют безызбыточными?
- 7. Какую величину называют производительностью источника? В каком случае производительность будет максимальной?
- 8. Какую величину называют энтропией языка? Отличаются ли энтропии различных языков? Почему?
- 9. Как экспериментально определить энтропию языка через удельную и условную энтропию?
- 10. Опишите суть опыта Шеннона для определения энтропии языка.

- 11. Как определить среднюю длину слова для текста на заданном языке?
- 12. Пользуясь результатами лабораторной работы, изобразите гистограмму однобуквенного распределения для русского языка. Поясните, как по этой гистограмме определить энтропию и избыточность.
- 13. Пользуясь результатами лабораторной работы, изобразите зависимость условной энтропии от длины n-граммы. Поясните характер этой зависимости.

Литература

- 1. Кловский Д. Д. Теория электрической связи. М.: Радиотехника, 2009. 648 с.
- 2. Теория электрической связи: учебник для вузов / А. Г. Зюко, Д. Д. Кловский, В. И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. М.: Радио и связь, 1998.—432 с.
- 3. Шеннон К. Работы по теории информации и кибернетике. М,: Издательство иностранной литературы, 1963.
- 4. Яглом И. М., Яглом А. М. Вероятность и информация. М.: Наука, 1973.