## Ames, Iowa Home Price Modeling

#### Preeti Swaminathan & Patrick McDevitt

#### Homework 13

# Analysis Question 1

## Restatement of Problem:

Century 21 in Ames Iowa wants to build a model to predict sales price of 3 neighbourhood (BrkSide, NAmes, EdWard) in Iowa based on living area. They have provided with historical data of sales done in these neighborhood so far.

To-do: Build a model which uses (independent variables) living area in sq.ft and the neighborhood and predicts sales price (Dependent variable)

## Specify the model:

SalesPrice=  $\beta$ 0+ $\beta$ 1\*GrLivArea+  $\beta$ 2\* neighborhood

## Checking Assumptions





- 1. From scatter plot, QQ plot and histogram, data is normally distributed
- 2. Interactions: looking at analysis of covariance plot, High leverage mild departures:
- 3. Looking at scatter plot b/w Sales price and living area, there are a few outliers, skewness, we can consider doing log transformation on sales price.
- 4. Looking at the plots, data is clustered in one group with outliers. This data needs to be log transformed





# Categorical variable analysis: Data is concentrated around living area of < 30 sq foot and sales price for <

Edward neighborhood has a

300k.

# Model 1: Log transformed on Sales price and living area.



## Checking Assumptions

- 1. Normality: From QQ plot, scatter and histogram, we can assume normality. Although histogram shows a little skewness it's not very strong evidence against normality.
- 2. Linearity: Looking at the residual plots we can make an assumption of linearity.
- 3. Equal variance: After log transformation, since none of the plot looks too bad, we continue with our model.

4. CookDs shows couple of extrems. We will keep a check on it.



| Parameter                    | Estimate     |   | Standard<br>Error | t Value | Pr >  t |
|------------------------------|--------------|---|-------------------|---------|---------|
| Intercept                    | 8.492727641  | В | 0.32441709        | 26.18   | <.0001  |
| logGrLivArea                 | 0.473023602  | В | 0.04542895        | 10.41   | <.0001  |
| Neighborhood BrkSide         | -2.579806905 | В | 0.59988132        | -4.30   | <.0001  |
| Neighborhood Edwards         | -0.486220461 | В | 0.51750833        | -0.94   | 0.3481  |
| Neighborhood NAmes           | 0.000000000  | В |                   |         |         |
| logGrLivA*Neighborho BrkSide | 0.346624454  | В | 0.08482008        | 4.09    | <.0001  |
| logGrLivA*Neighborho Edwards | 0.046643642  | В | 0.07248011        | 0.64    | 0.5203  |
| logGrLivA*Neighborho NAmes   | 0.000000000  | В |                   |         |         |

#### T test and pValue

P value for Neighborhood BrkSide and logGrvLivA \* Edwards is > 0.05. We will make **BrkSide** as reference and recalculate the model

| Parameter                     | Estimate     |   | Standard<br>Error | t Value | Pr >  t |
|-------------------------------|--------------|---|-------------------|---------|---------|
| Intercept                     | 9.687539527  | В | 0.17591730        | 55.07   | <.0001  |
| logGrLivArea_ft               | 0.819648056  | В | 0.07162860        | 11.44   | <.0001  |
| Neighborhood Edwards          | 0.712123750  | В | 0.22730442        | 3.13    | 0.0019  |
| Neighborhood NAmes            | 0.983542304  | В | 0.21053746        | 4.67    | <.0001  |
| Neighborhood Brk Side         | 0.000000000  | В |                   |         |         |
| logGrLivA*Neighborho Edwards  | -0.299980812 | В | 0.09121531        | -3.29   | 0.0011  |
| logGrLivA*Neighborho NAmes    | -0.346624454 | В | 0.08482008        | -4.09   | <.0001  |
| logGrLivA*Neighborho Brk Side | 0.000000000  | В |                   |         |         |



Pvalue < 0.05 for all variables. Living Area and neighborhood are significant predictors of sales price.

# Fit the model

Log(SalesPrice)=  $\beta$ 0+ $\beta$ 1\*Log(GrLivArea)+ $\beta$ 2\* neighborhood BrkSide+ $\beta$ 3 neighborhood Edwards + $\beta$ 4 log(GrLivA) \* neighborhood BrkSide + $\beta$ 5 log(GrLivA) \* neighborhood Edwards

Log(SalesPrice) = 9.69 + 0.820\*Log(GrLivArea) + 0.712\* neighborhood Edwards +0.984 neighborhood NAmes - 0.30 log(GrLivA) \* neighborhood Edward- 0.347 log(GrLivA) \* neighborhood NAmes

## Parameter Interpretation:

Log(SalesPrice) = 9.69 + 0.820\*Log(GrLivArea) + 0.712\* neighborhood Edwards +0.984 neighborhood NAmes - 0.30 log(GrLivA) \* neighborhood Edward- 0.347 log(GrLivA) \* neighborhood NAmes

#### **Edward:**

Log(salesPrice) = 9.69 + 0.820\*Log(GrLivArea) + 0.712 - 0.30 log(GrLivArea)

Log(salesPrice) = 10. 402 + 0.52 \* Log(GrLivArea)

SalesPrice = e ^ 10. 402 + 0.52 \* Log(GrLivArea)

SalesPrice = e ^ 10.402 \* grLivArea ^ 0.52

## SalesPrice {EdWard} = 32925 \* grLivArea ^ 0.52

For a 1sqr.ft house salesPrice of EdWArd = 32925\$

Doubling it, GrLivingArea = 2, SalesPricec increases to 32926.43\$

#### **Names**

Log(SalesPrice) = 9.69 + 0.820\*Log(GrLivArea) + 0.984 - 0.347 log(GrLivArea)Log(SalesPrice) = 10.674 + 0.473\*Log(GrLivArea)

SalesPrice = e^10.674 \* GrLivArea ^ 0.473

## SalesPrice{NAmes } = 43217 \* GrLivArea ^ 0.473

For a 1sqr.ft house salesPrice of EdWArd = 32925\$ Doubling it, GrLivingArea = 2, SalesPricec increases to 32926.43\$

#### BrkSide

Log(SalesPrice) = 9.69 + 0.820\*Log(GrLivArea) SalesPrice = e^ 9.69 \* GrLivArea ^ 0.82

# SalesPrice {BrkSide} = 16155 \* GrLivArea ^ 0.82

# **R2 and Root MSE**

|          |         | ı   | The (<br>Dependent \ | GLM Prod<br>/ariable: |               |            |         |        |
|----------|---------|-----|----------------------|-----------------------|---------------|------------|---------|--------|
| Source   |         | DF  | Sum of S             | Squares               | Me            | ean Square | F Value | Pr > F |
| Model    |         | 5   | 14.62                | 857557                | - 2           | 2.92571511 | 79.14   | <.0001 |
| Error    |         | 377 | 13.93                | 775037                | (             | 0.03697016 |         |        |
| Correcte | d Total | 382 | 28.56                | 632594                |               |            |         |        |
|          |         |     |                      |                       |               |            |         |        |
|          | R-Squ   | are | Coeff Var            | Root MS               | SE logSalePri |            | ce Mean |        |
|          | 0.5120  | 192 | 1.629617             | 0.192276              |               | 11.79887   |         |        |

| Sum of Residuals                    | 0.00000000  |
|-------------------------------------|-------------|
| Sum of Squared Residuals            | 13.93775037 |
| Sum of Squared Residuals - Error SS | 0.00000000  |
| PRESS Statistic                     | 14.60907700 |
| First Order Autocorrelation         | -0.03661491 |
| Durbin-Watson D                     | 2.07059238  |

#### Summary of anlysis:

- 1) R2 = 0.512, 51.2 % of variation in salesprice is affected by living area and neighborhood.
- 2) It appears that higher squart ft the sales price increases for all 3 neighborhood.
- 3) BrkSide neighborhood increases salesprice significantly compared to NAmes and

EdWard for this dataset.
4) Model without interactions was also developed. It did not produce reasonable results hence was discarded.