PRINCIPLES OF MACHINE LEARNING

CLASSIFICATION I

ACADEMIC YEAR 2021/2022

QUEEN MARY UNIVERSITY OF LONDON

SOLUTIONS

EXERCISE #1 (SOL): The representation of a binary label is unimportant, in principle we could use any two symbols (o and o, A and B, 0 and 1, pear and apple, etc). We can however gain some computational advantages using the numerical values +1 and -1. Specifically, we can assign the value +1 to samples in the decision region defined by $\mathbf{w}^T \mathbf{x}_i > 0$ and the value -1 to samples in the decision region defined by $\mathbf{w}^T \mathbf{x}_i < 0$. A correctly classified sample will receive a label that has the same sign as the quantity $\mathbf{w}^T \mathbf{x}_i$, whereas misclassified samples will receive a label with the opposite sign. Therefore, the margin $m_i = y_i \left[\mathbf{w}^T \mathbf{x}_i \right]$ will be positive if \mathbf{x}_i is correctly classified, as the true label y_i and $\mathbf{w}^T \mathbf{x}_i$ have the same sign. If it is misclassified, the margin will be negative, as the true label y_i and the quantity $\mathbf{w}^T \mathbf{x}_i$ have opposite signs.

EXERCISE #2 (SOL): Figure ?? shows a dataset consisting of three samples belonging to class \bigcirc and three samples belonging to class \bigcirc in a 2D predictor space with attributes x_A and x_B and the linear boundary defining a classifier.

Figure 1: Simple dataset and linear boundary

- A linear boundary is defined by the equation $\mathbf{x}^T\mathbf{w} = 0$ or equivalently $w_0 + w_A x_A + w_B x_B = 0$. The linear boundary is defined by all the points in the attribute space such that $x_B = 5$, i.e. $x_B 5 = 0$. Therefore, $w_0 = -5$, $w_A = 0$ and $w_B = 1$, i.e. $\mathbf{w} = [-5, 0, 1]^T$. These coefficients are not unique: if they are multiplied by a constant k, they define the same boundary. For instance, $\mathbf{w} = [-10, 0, 2]^T$, $\mathbf{w} = [-50, 0, 10]^T$ and $\mathbf{w} = [25, 0, -5]^T$ define the same boundary.
- The sample \boldsymbol{x}_1 with predictors $x_A = 2$ and $x_B = 5$ lies on the boundary and $\boldsymbol{x}_1^T \boldsymbol{w} = [1,2,5][-5,0,1]^T = 1 \times (-5) + 2 \times 0 + 5 \times 1 = -5 + 0 + 5 = 0$. The sample \boldsymbol{x}_1 with predictors $x_A = 8$ and $x_B = 5$ also lies on the boundary and $\boldsymbol{x}_2^T \boldsymbol{w} = [1,8,5][-5,0,1]^T = 1 \times (-5) + 8 \times 0 + 5 \times 1 = -5 + 0 + 5 = 0$.
- Let's consider the samples belonging to class \bigcirc and compute the quantity $\boldsymbol{x}^T\boldsymbol{w}$ (from left to right): $[1,2,6][-5,0,1]^T=1\times(-5)+2\times0+6\times1=-5+0+6=1$, $[1,4,9][-5,0,1]^T=1\times(-5)+4\times0+9\times1=-5+0+9=4$ and $[1,8,6][-5,0,1]^T=1\times(-5)+8\times0+6\times1=-5+0+6=1$, which numerically are the same as the distances 1, 4 and 1 respectively.

- As for the samples belonging to class \bigcirc we obtain (from left to right): $[1,2,2][-5,0,1]^T=1\times (-5)+2\times 0+2\times 1=-5+0+2=-3, [1,3,6][-5,0,1]^T=1\times (-5)+6\times 0+3\times 1=-5+0+3=-2$ and $[1,8,1][-5,0,1]^T=1\times (-5)+8\times 0+1\times 1=-5+0+1=-4$, and the distances are 3, 2 and 4 respectively. They have the opposite sign.
- Samples such that $x^T w > 0$ should be labeled as \bigcirc , samples where $x^T w < 0$ should be labeled as \bigcirc .
- If k > 0, we would use the same rule, if k < 0 we would change change it as follows: samples such that $x^T w > 0$ should be labeled as \bigcirc , samples where $x^T w < 0$ should be labeled as \bigcirc .

EXERCISE #3 (SOL): Figure ?? shows a simple dataset in a 2D predictor space with features x_A and x_B . The dataset consists of three samples belonging to class \bigcirc and three samples belonging to class \bigcirc . The straight line shown in Figure ?? is the boundary of our linear classifier.

Figure 2: Simple dataset and linear boundary

- The linear boundary is defined by the equation $x_B = x_A + 1$, or equivalently $x_B x_A 1 = 0$. Therefore, $w_0 = -1$, $w_A = -1$ and $w_B = 1$, i.e. $\mathbf{w} = [-1, -1, 1]^T$. These coefficients are not unique: if they are multiplied by a constant k, they define the same boundary.
- The sample x_1 with predictors $x_A = 1$ and $x_B = 2$ lies on the boundary and $x_1^T w = [1, 1, 2][-1, -1, 1]^T = 1 \times (-1) + 1 \times (-1) + 1 \times 2 = -1 1 + 2 = 0$. The sample x_1 with predictors $x_A = 6$ and $x_B = 7$ also lies on the boundary and $x_2^T w = [1, 6, 7][-1, -1, 1]^T = 1 \times (-1) + 6 \times (-1) + 7 \times 1 = -1 6 + 7 = 0$.
- Let's consider the samples belonging to class \bigcirc and compute the quantity $\boldsymbol{x}^T\boldsymbol{w}$ (from left to right): $[1,1,3][-1,-1,1]^T=1\times(-1)+1\times(-1)+3\times1=-1-1+3=1$, $[1,2,6][-1,-1,1]^T=1\times(-1)+2\times(-1)+6\times1=-1-2+6=3$ and $[1,4,9][-1,-1,1]^T=1\times(-1)+4\times(-1)+9\times1=-1-4+9=4$.
- As for the samples belonging to class \bigcirc we obtain (from left to right): $[1,4,2][-1,-1,1]^T=1\times(-1)+4\times(-1)+2\times 1=-1-4+2=-3$, $[1,6,3][-1,-1,1]^T=1\times(-1)+6\times(-1)+3\times 1=-1-6+3=-4$ and $[1,8,1][-1,-1,1]^T=1\times(-1)+8\times(-1)+1\times 1=-1-8+1=-8$.
- Samples such that $x^T w > 0$ should be labeled as \bigcirc , samples where $x^T w < 0$ should be labeled as \bigcirc .

• If k > 0, we would use the same rule, if k < 0 we would change change it as follows: samples such that $x^T w > 0$ should be labeled as \bigcirc , samples where $x^T w < 0$ should be labeled as \bigcirc .

EXERCISE #4 (SOL): Figure ?? shows four samples belonging to a dataset with predictors x_A , x_B and x_C . The plane represents a linear boundary in a 3D predictor space.

Figure 3: Simple dataset and linear boundary

- A linear boundary is defined by the equation $x^T w = [1, x_A, x_B, x_C][w_0, w_A, w_B, w_C]^T = 0$ or equivalently $w_0 + w_A x_A + w_B x_B + w_C x_C = 0$. The linear boundary is defined by the equation $x_C = 2$, or equivalently $x_C 2 = 0$. Therefore, $w_0 = -2$, $w_A = 0$, $w_B = 0$ and $w_C = 1$, or $w = [-2, 0, 0, 1]^T$. These coefficients are not unique: if they are multiplied by a constant k, they define the same boundary.
- The sample x_1 with predictors $x_A = 1$, $x_B = 2$ and $x_C = 2$ lies on the boundary and $x_1^T w = [1, 1, 2, 2][-2, 0, 0, 1]^T = 1 \times (-2) + 1 \times 0 + 2 \times 0 + 2 \times 1 = -2 + 0 + 0 + 2 = 0$. The sample x_2 with predictors $x_A = 6$, $x_B = 7$ and $x_C = 2$ also lies on the boundary and $x_2^T w = [1, 6, 7, 2][-2, 0, 0, 1]^T = 1 \times (-2) + 6 \times 0 + 7 \times 0 + 2 \times 1 = -2 + 0 + 0 + 2 = 0$.
- Let's consider the samples belonging to class \bigcirc and compute the quantity x^Tw (from left to right): $[1, 8, 8, 3][-2, 0, 0, 1]^T = 1 \times (-2) + 8 \times 0 + 8 \times 0 + 3 \times 1 = -2 + 0 + 0 + 3 = 1$ and $[1, 4, 2, 3][-2, 0, 0, 1]^T = 1 \times (-2) + 4 \times 0 + 2 \times 0 + 2 \times 1 = -2 + 0 + 0 + 3 = 1$.
- As for the samples belonging to class \bigcirc we obtain (from left to right): $[1, 8, 2, 0][-2, 0, 0, 1]^T = 1 \times (-2) + 8 \times 0 + 2 \times 0 + 0 \times 1 = -2 + 0 + 0 + 0 = -2$ and $[1, 2, 6, 1][-2, 0, 0, 1]^T = 1 \times (-2) + 2 \times 0 + 6 \times 0 + 1 \times 1 = -2 + 0 + 0 + 1 = -1$.
- Samples such that $x^T w > 0$ should be labeled as \bigcirc , samples where $x^T w < 0$ should be labeled as \bigcirc .
- If k > 0, we would use the same rule, if k < 0 we would change change it as follows: samples such that $x^T w > 0$ should be labeled as \bigcirc , samples where $x^T w < 0$ should be labeled as \bigcirc .

EXERCISE #5 (SOL):

- If x_i lies on the boundary, by definition $x_i^T w = 0$ and therefore $e^{w^T x_i} = 1$. Hence, $p(x_i) = 1/(1+1) = 0.5$.
- As we move away from the boundary on the positive side, $\boldsymbol{x}_i^T\boldsymbol{w} \to \infty$ and $e^{\boldsymbol{w}^T\boldsymbol{x}_i} \to \infty$ and $p(\boldsymbol{x}_i) \to 1$. On the negative side, $\boldsymbol{x}_i^T\boldsymbol{w} \to -\infty$ and $e^{\boldsymbol{w}^T\boldsymbol{x}_i} \to 0$ and $p(\boldsymbol{x}_i) \to 0/(1+0) = 0$. The quantity $p(\boldsymbol{x}_i)$ can be seen as the certainty of the classifier that the sample belongs to the label associated with the positive region.
- The likelihood L(w) of the classifier defined in Exercise 2 on the dataset shown in Figure 1 is:

$$L(\boldsymbol{w}) = \frac{e^1}{1+e^1} \frac{e^4}{1+e^4} \frac{e^1}{1+e^1} \left(1 - \frac{e^{-3}}{1+e^{-3}}\right) \left(1 - \frac{e^{-2}}{1+e^{-2}}\right) \left(1 - \frac{e^{-4}}{1+e^{-4}}\right)$$
$$= 0.73 \times 0.98 \times 0.73 \times 0.95 \times 0.88 \times 0.98 = 0.43$$

• The distances to the boundary are now 2, 5 and 2 (class) and -2, -1 and -3 (class). The new likelihood is:

$$L(\boldsymbol{w'}) = \frac{e^2}{1 + e^2} \frac{e^5}{1 + e^5} \frac{e^2}{1 + e^2} \left(1 - \frac{e^{-2}}{1 + e^{-2}} \right) \left(1 - \frac{e^{-1}}{1 + e^{-1}} \right) \left(1 - \frac{e^{-3}}{1 + e^{-3}} \right)$$

$$= 0.88 \times 0.99 \times 0.88 \times 0.88 \times 0.73 \times 0.95 = 0.47$$

• If we use the likelihood as our metric to rank classifiers, the second classifier w' has a higher certainty and would be preferred..

EXERCISE #6 (SOL): Figure ?? shows a dataset consisting of samples belonging to classes • and • in a predictor space with attributes x_A and x_B .

Figure 4

- As k increases, the complexity of the boundary decreases. Since there are 53 samples, 30
 samples and 23 samples, for k = 53 kNN would label every samples as •.
- There would be many more locations in the predictor space where we cannot decide how
 to classify a sample, as 50% of the neighbours would belong to either class. In other
 words, the decision boundary would increase in size.