IN THE CLAIMS:

Amend the claims as follows:

Claims 1-28. (Cancelled)

29. (new) Compounds having an anti-parasitic, in particular antimalarial, activity characterized in that they correspond to general formula (I)

$$X-(NH)_n$$
 R_1
 $X-(NH)_n$
 R_2
 R_1
 R_1
 R_2

in which

either X represents a group of formula (II)

$$-Z-(NH)_{n}$$
 $-C-N-R'_{3}$ (II)
 R'_{2}

where Z is a $-(CH_2)_m$ group, with m = 8 to 21,

$$n = 0 \text{ or } 1$$

and
$$Y = R_3$$
,

R₁ and R'₁, identical to or different from one another, being chosen from H, alkyl, OH, O-alkyl, O-aryl, O-CO-alkyl, O-CO-aryl, OSO₂-alkyl, OSO₂-aryl, OSO₂- heterocycle, O-CO-O(or S or NH)-alkyl, O-CO-O(or S or NH)-aryl, PO(O-alkyl or O-aryl)₂, CO-O-CH₂-aryl, cycloalkyl,

R₂ and R'₂, identical to or different from one another, being chosen from H, alkyl, CO-O-CH₂-aryl, CO-O-alkyl, cycloalkyl,

R₃ and R'₃, identical to or different from one another, representing H, alkyl, CO-O-aryl, COO-CH(R)-O-CO-alkyl, PO(O-alkyl or O-aryl or ONa)₂, CO-O-CH(R)-aryl,

R being H or alkyl,

or

R₁ and R₂, and/or R'₁ and R'₂, or R₂ and R₃ and/or R'₂ and R'₃, together form a mono heterocycle with the nitrogen atom or atoms to which they are respectively attached, or also,

R₂ and R₃ and/or R'₂ and R'₃ can be the same substituent, double-bonded to the nitrogen, cyclized with, respectively, R₁ or R'₁ in order to form a heterocycle, if appropriate substituted by R_a, which is chosen from H, alkyl, alkyl substituted by 1, 2 or 3 halogen atoms, aryl, CO-O-alkyl (or aryl), -CO-OH, -CO-NH₂, -CN, -CO-NH-alkyl (or aryl), -CO-N-(alkyl)₂, nitrogenated and/or oxygenated -CO-heterocycle, NH(H or alkyl), N(alkyl)₂, nitrogenated and/or oxygenated heterocycle, -O-alkyl (or aryl), -O-CH₂-aryl,

CH₂N[H, (H, alkyl), (dialkyl), aryl], nitrogenated and/or oxygenated -CH₂-heterocycle, CH₂-CO-OH,

or $X = R_4$ and Y represents a group of formula (III)

$$R^{1}$$
 $-Z-N-C-(NH)_{n}-R^{2}$ (III)
 R^{2}

with n and Z as defined above,

R₁ and R'₁, identical to or different from one another, being chosen from H, alkyl, OH, O-alkyl, O-aryl, O-CO-alkyl, O-CO-aryl, OSO₂-alkyl, OSO₂-aryl, OSO₂- heterocyle, O-CO-O(or S or NH)-alkyl, O-CO-O(or S or NH)-aryl, PO(O-alkyl or O-aryl)₂, CO-O-CH₂-aryl, cycloalkyl,

R₄ and R'₄ represent an H, alkyl or aryl, which can be substituted by OH, O-alkyl, O-aryl, NH (H or alkyl), nitrogenated or oxygenated heterocycle, and

R₂ and R'₂, identical to or differenct from one another, being chosen from H, alkyl, CO-O-CH₂-aryl, CO-O-alkyl, cycloalkyl, or

 R_1 and R_4 and/or R_1 and R_4 together form a - (CH₂) $_p$ group, p being an integer from 1 to 5, one or several hydrogen atoms being optionally changed for a lower alkyl and R_2 and R_2 representing H, or R_4 and R_2 and/or R_4 and R_2 together from a - (CH2)p

group, one or several H being optionally changed for a lower alkyl, R₁ and R'₁ representing H, and the pharmacologically acceptable salts of these compounds.

30. (new) Compounds according to claim 29, characterized in that they correspond to formula (IV)

$$R'_{1-N}$$
 $||$
 $R'_{3}-N-C-(NH)_{n}-Z-(NH)_{n}-C-N-R_{3}$
 $||$
 R'_{2}
 $||$
 $||$
 $||$
 $||$

31. (new) Compounds according to claim 30, characterized in that they correspond to formula (V)

$$R'_{1-}N$$
 $N - R_{1}$
 $R'_{3}-N - C - Z - C - N - R_{3}$ (V)
 R'_{2}
 R'_{2}

- 32. (new) Compounds according to claim 31, characterized in that R_1 , R_1 , R_2 , R_2 , R_3 and R_3 are independent of one another.
- 33. (new) Compounds according to claim 32, characterized in that R₁ and(/or) R'₁ are as defined above, but do not represent a hydrogen atom, whilst R₃ and/or R'₃, R₂ and/or R'₂, represent a hydrogen atom, R₁, R₂ and R₃.

- 34. (new) Compounds according to claim 33, characterized in that R₁ and/or R'₁, and R₂ and/or R'₂ represent a hydrogen atom, whilst R₃ and/or R'₃ are as defined above, but different from a hydrogen atom.
 - 35. (new) Compounds according to claim 31, characterized in that
 - R₁ and R₂, and/or R'₁ and R'₂, or
 - R₂ and R₃, and/or R'₂ and R'₃, or
 - $-R_1$, R_2 and R_3 and/or R'_1 , R'_2 and R'_3 together form a heterocycle.
- 36. (new) Compounds according to claim 35, characterized in that R_1 and R_2 as well as R'_1 and R'_2 form a heterocycle and correspond to formula (VI)

37. (new) Compounds according to claim 35, characterized in that they correspond to formula (VII)

38. (new) Compounds according to claim 36, characterized in that formula (VI) R₁ and R₂ and/or R'₁ and R'₂ together form an –O-CO-, O-SO-, O-CS, S-CO or –S-CS group, and R₃ and/or R'₃ represent a hydrogen atom.

39. (new) Compounds according to claim 36, characterized in that R₁ and R₂, and/or R'₁ and R'₂ represent an optionally branched alkylene group and R₃ and/or R'₃ represent –CO-O-alkyl (or aryl), -CO-O-CH₂-aryl, CO-O-CH(alkyl)-O-CO-alkyl, PO(O-alkyl or -aryl)₂, alkyl or H.

40. (new) Compounds according to claim 37, characterized in that R_1 and/or R'_1 represent a hydrogen atom, and R_2 and R_3 , and/or R'_2 and/or R'_3 represent a $-(CH_2)_p$ -group.

41. (new) Compounds according to claim 30, characterized in that R_2 and R_3 and/or R'_2 and R'_3 form a same substituent and form together with R_1 or respectively R'_1 a bis-oxadiazole of formula (VIII.)

$$\begin{array}{c}
O^{-N} \\
R_{a}
\end{array}$$

$$Z \longrightarrow \begin{array}{c}
N \longrightarrow O \\
N \longrightarrow R_{a}$$

$$(VIII)$$

in which Ra is as defined above.

42. (new) Compounds according to claim 29, characterized in that they correspond to formula (IX)

43. (new) Compounds according to claim 42, characterized in that $Z = -(CH_2)_m$ and n = 0, the compounds corresponding to the formula (X)

$$R_{1}^{1}$$
 N
 N
 R_{1}^{1}
 R_{4}^{2}
 R_{2}^{2}
 R_{2}^{1}
 R_{1}^{2}
 R_{2}^{1}
 R_{2}^{1}
 R_{2}^{1}
 R_{2}^{1}
 R_{2}^{1}
 R_{3}^{1}
 R_{4}^{1}
 R_{5}^{2}
 R_{5}^{2}

44. (new) Compounds according to claim 43, characterized in that the substituents are independent of one another.

45. (new) Compounds according to claim 44, characterized in that R_1 and R_4 and/or R'_1 and R'_4 are as defined above and R_2 and R'_2 represent a hydrogen atom.

46. (new) Compounds according to claim 44, characterized in that R_1 and R_2 and /or R'_1 , and R'_2 together represent an oxycarbonyl – OCO – chain and R_4 and R'_4 are as defined above.

- 47. (new) Compounds according to claim 44, characterized in that R_1 and R_4 and/or R'_1 and R'_4 together represent a –(CH2)p- group where p is an integer from 3 to 5 and R_2 and R'_2 represent H.
- 48. (new) Compounds according to claim 44, characterized in that R_1 and R'_1 represent H and R_4 and R_2 and/or R'_4 and R'_2 together represent a –(CH2)p- group where p is an integer from 3 to 5, and one or more hydrogen atoms can be replaced by a lower alkyl.
- 49. (new) Compound according to claim 44, characterized in that it corresponds to formula (XI)

- 50. (new) Process for obtaining carbamates and of N-phosphorylated derivatives of general formula (V), characterized in that it comprises the reaction in a diphasic medium of the bisamidine compounds of general formula (V) in which R_3 and $R'_3 = H$ with a CI- R_3 (or R'_3) derivative where R_3 and R'_3 are as defined above and different from H.
- 51. (new) Process for obtaining amidoxime derivatives of general formula (X), characterized in that it comprises the reaction in a basic medium of the bisamidoximes of general formula (X) in which R_1 and R'_1 = OH and the appropriate reagent.

- 52. (new) Process according to claim 51, characterized in that in order to obtain compounds of general formula (VI) group a2 and (VIII) group a4 defined above, intramolecular cyclization of amidoxime or of amidoxime derivatives previously defined by general formula (V) group a1 is carried out in the presence of the appropriate reagent.
- 53. (new) Pharmaceutical compositions, characterized in that they contain an effective quantity of at least one compound as defined in claim 29 in association with an inert pharmaceutical vehicle.
- 54. (new) Pharmaceutical compositions according to claim 53, characterized in that they can be administered by oral route, by injectable route, or also by rectal route.
- 55. (new) Compositions according to claim 53 for the treatment of infectious diseases, in particular malaria.
- 56. (new) A method of treating anti-parasitic diseases comprising administering a compound of claim 29 to a person in need of said treatment.
- 57. (new) A method of treating an anti-parasitic disease selected from the group consisting of malaria and babesioses, said method comprising administering a compound of claim 29 to a person in need of said treatment.