Mid-Semester Exam: Maths-I (Linear Algebra)

Indraprastha Institute of Information Technology, Delhi

19th February, 2022

Duration: 60 minutes Maximum Marks: 50

Question 1.

(a) (5 marks) Let A and B be $m \times n$ matrices (where $m, n \in \mathbb{N}$) having columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and $\mathbf{b}_1, \ldots, \mathbf{b}_n$, respectively. Suppose $\mathbf{b}_j = j^2 \mathbf{a}_{j-1}$ for $j = 2, \ldots, n$ and $\mathbf{b}_1 = \mathbf{a}_n$. Find an $n \times n$ matrix E such that AE = B.

(b) (5 marks) Let
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 4 & 0 & 0 \\ 0 & 9 & 0 \end{bmatrix}$$
. Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$. Solve the equations $A\mathbf{x} = \mathbf{b}_1$ and $A\mathbf{x} = \mathbf{b}_2$ by row reducing exactly one matrix.

Question 2 ((10 marks)). All subparts of this question carry equal marks.

In each part of this question, V is a vector space and W is a subset of V. Decide whether W is a subspace of V. Justify your answer with a short proof or counterexample.

(a) $V = \mathbb{R}(t)$, the set of all polynomials in t which have real coefficients (please note that the degrees of the polynomials are not bounded).

$$W = \{p(t) = a_0 + \dots + a_n t^n \mid a_{2k} = 0, \text{ if } k \in \mathbb{N} \text{ and } 2k \in \{0, \dots, n\}\}\$$

(b)
$$V = \mathbb{R}^n$$

$$W = \{(x_1, \dots, x_n) \mid x_1 + \dots + x_n \ge 0\}$$

(c)
$$V = \mathbb{R}^n$$

 $W = \{(x_1, \dots, x_n) \mid x_1^2 + \dots + x_n^2 > 0\}$

(d) $V = \mathbb{R}^{\infty}$, the set of all sequences indexed by \mathbb{N} Fix $k \in \mathbb{N}$. $W = \{(a_n) \mid a_1 + \dots + a_k = 0\}$.

(e)
$$V = \mathbb{R}^{n \times n}$$
, the set of all $n \times n$ matrices having real entries (Note for Section A: $\mathbb{R}^{n \times n}$ is the same as $M_n(\mathbb{R})$) $W = \{A \mid A \text{ is in reduced row echelon form}\}$

Question 3. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, where $a, b, c, d \ge 0, a + c = b + d = 1$ and $A \ne I_2$.
Let $P = \begin{bmatrix} b & 1 \\ c & -1 \end{bmatrix}$.

- (a) (7 marks) Show that P is invertible. Find P^{-1} and $P^{-1}AP$.
- (b) (3 marks) Find a formula for A^n .

Question 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

(a) (4 marks) Show that: If $\exists c \in \mathbb{R} \setminus \{0\}$ such that $f(x) = cx, \forall x \in \mathbb{R}$, then the graph of f is a proper nontrivial subspace of \mathbb{R}^2 .

(The graph of a function $f: \mathbb{R} \to \mathbb{R}$ is defined as the set $\{(x,y) \mid y = f(x)\}$.)

- (b) (1 mark) What is the converse of the statement that is to be proved in part (a)?
- (c) (5 marks) Is the converse that you stated in part (b) true? Justify with a short proof or an appropriate connterexample.

(Note for Section B: You may assume the following statement without proof -

Any proper nontrivial subspace of \mathbb{R}^2 is of the form $\mathrm{Span}\{\bar{v}\}$ where \bar{v} is a non-zero vector in \mathbb{R}^2 .)

Question 5 (10 marks). Solve ONE of the following two problems (either part (a) or part (b)).

(a) Prove or disprove:

If $\{\bar{v}_1, \ldots, \bar{v}_n\}$ is a basis for a vector space V, then so is $\{\alpha_1 \bar{v}_1, \ldots, \alpha_n \bar{v}_n\}$ where the α_i are non-zero scalars.

(b) Prove or disprove:

If $\{\bar{v}_1,\ldots,\bar{v}_n\}$ is a basis for a vector space V, then so is $\{\bar{v}_1,\bar{v}_1+\bar{v}_2,\ldots,\bar{v}_1+\bar{v}_2+\ldots+\bar{v}_n\}$.