Sushil Vemuri

About Me!

- Bachelors of Science (B.S) from Indian Institute of Science Education and Research, Bhopal
- Currently in Fourth Year
 - Major: Data Science and Engineering Department
- Minor: Electrical Engineering and Computer Science Department
- Interests: Perception and Motion Planning in Autonomous Vehicles, NLP

CONTENTS

O1
Binomial
Distribution

O2
Beta
Distribution

O3
Multinomial
Distribution

04
Dirichlet
Distribution

O1
Binomial
Distribution

Binomial Distribution

Discrete probability Distribution of the number of successes in a sequence of independent experiments, with a known probability of success for the experiment.

- Random Variable:
 X = Number of Successes
- Parameters:
 n = Number of experiments
 p = Probability of success of an experiment
- Probability Mass Function

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$
 if $x \ge 0$ otherwise

 \Rightarrow Probability of x successes in n experiments where the probability of success of each experiment is p.

Binomial Distribution

$$p = 0.75$$

02

Beta Distribution

Beta Distribution

Continuous probability Distribution over the probability of Success of a single experiment in a Binomial Distribution with a known amount of Successes and Failures.

- Random Variable:
 X = Probability of Success of a single experiment
- Parameters: α = Number of Successes + 1 β = Number of Failures + 1
- Probability Density Function $f(x) = x^{\alpha-1}(1-x)^{\beta-1}$

$$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$

if
$$0 \le x \le 1$$

otherwise \Rightarrow Probability of probability of success being x in a binomial distribution where there were $\alpha-1$ successful experiments and $\beta-1$ failed experiments.

Beta Distribution

O3

Multinomial
Distribution

Multinomial Distribution

Discrete probability Distribution of the number of successes of each class in a sequence of independent experiments, with a know probability of success for each class. It is a multivariate generalization of binomial distribution.

- Random Variable: $X = [X_1, X_2, ..., X_k]$, where X_i is the number of successes of class i.
- Parameters: n = Number of experiments k = Number of classes $p = [p_1, p_2, ..., p_k]$, where p_i is the probability of success of class i.
- Probability Mass Function $P(X = x) = \frac{n!}{x_1! \, x_2! \, ... \, x_k!} \, p_1^{x_1} \, p_2^{x_2} \, ... \, p_k^{x_k} \qquad \text{if } \sum_{i=1}^k x_i = n \\ 0 \qquad \qquad \text{otherwise}$ \Rightarrow Probability of x_i successes of class i with probability of success p_i for all
 - \Rightarrow Probability of x_i successes of class i with probability of success p_i for al i, in n experiments for k classes.

Multinomial Distribution

Continuous probability Distribution over the probability of Success of every class in a Multinomial Distribution with a known amount of Successes per class. It is a multivariate generalization of the beta distribution.

- Random Variable: $X = [X_1, X_2, ..., X_k]$, where X_i is the Probability of Success of class i.
- Parameters: $\alpha = [\alpha_1, \alpha_2, ..., \alpha_k]$, where $\alpha_i 1$ is the number of successes of class i.
- Probability Density Function

$$f(x) = \frac{1}{B(\alpha, \beta)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}$$
 if $0 \le x_i \le 1$ and $\sum_{i=1}^{k} x_i = 1$ otherwise

 \Rightarrow Probability of probability of success being x_i for class i in a multinomial distribution where there were class i had α_i successful experiments.

The PDF has a value only when $0 \le x_i \le 1$ and $\sum_{i=1}^k x_i = 1$. When k=3, this is a triangle in the first quadrant of the 3 graph.

Dirichlet Distribution for 3 classes.

The Dirichlet distribution is the conjugate prior for the categorical distribution and multinomial distributions in Bayesian inference.

For some likelihood functions, if you choose a certain prior, the posterior ends up being in the same distribution as the prior. Such a prior then is called a Conjugate Prior.

$$P(\theta|X) = \frac{P(X|\theta) \cdot P(\theta)}{\int P(X|\theta) \cdot P(\theta) d\theta} \rightarrow \text{Normalizing constant}$$
for every possible θ

Computing a posterior using a conjugate prior is very convenient, because you can avoid expensive numerical computation involved in Bayesian Inference.

Formally this can be expressed as follows, Given a model

$$oldsymbol{lpha} = (lpha_1, \dots, lpha_K) = ext{concentration hyperparameter}$$
 $oldsymbol{\mathbf{p}} \mid oldsymbol{lpha} = (p_1, \dots, p_K) \sim ext{Dir}(K, oldsymbol{lpha})$
 $\mathbb{X} \mid oldsymbol{\mathbf{p}} = (\mathbf{x}_1, \dots, \mathbf{x}_K) \sim ext{Cat}(K, oldsymbol{\mathbf{p}})$

Then the following holds

$$\mathbf{c} = (c_1, \dots, c_K) = \text{number of occurrences of category } i$$

 $\mathbf{p} \mid \mathbb{X}, \boldsymbol{\alpha} \sim \text{Dir}(K, \mathbf{c} + \boldsymbol{\alpha}) = \text{Dir}(K, c_1 + \alpha_1, \dots, c_K + \alpha_K)$

Let $X = (X_1, \ldots, X_K) \sim \text{Dir}(\alpha)$. Then,

$$\mathrm{E}[X_i] = rac{lpha_i}{lpha_0},$$

$$\mathrm{Var}[X_i] = rac{lpha_i(lpha_0-lpha_i)}{lpha_0^2(lpha_0+1)}.$$

$$\operatorname{Cov}[X_i,X_j] = rac{-lpha_ilpha_j}{lpha_0^2(lpha_0+1)}.$$

The mode of the distribution is [7] the vector $(x_1, ..., x_K)$ with

$$x_i = \frac{\alpha_i - 1}{\alpha_0 - K}, \qquad \alpha_i > 1.$$

$$\alpha_i > 1$$
.

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

