soru 1-) A= xzyzzyx " B= zxyyzxz" katorlarindakt en uzun ortak alt katarin uzunlugunu bulmak iciin LCS algoritmasini uygulayiniz. Bu ortak uzunluk kactir ? iki örnek kator yazınız.

cozum:	A = x + y + y + y + y = 7									
	B= txyytxt -> m=7									
			7 2	×	9	4	7	X	7	
B →		0	1	2	3	4	5	6	7	
7	0 '	0	0	0	0	0	0	0	0	
×	1	0,	10	1-	>1 -	1	1	T	71	
2	2	0	1	11	11 ~	1	2	> 2	2	
4	3	0	1	1	2	2	2	2	3	
7	4	0	1	4	2	2	3.	3	3	
7	5	0	1	1	Ó	2	3	3	4	
y	6	0	1	T	2	3	3.	3	4	
X	7	0	1	12	2	3	3	4	4	
							1000			

soru 3-) Asagida veriler "buyume hizlarını" sıralayınız. log (log·n), 210g·n, (V2)10gn, n2, n1 (logn)! $(\frac{3}{2})^n$, n^3 , log^2n , log(n!)2², nign, to(ton), logen, n.2ⁿ, n'09·1091 , 1 , 2'0gn, (10gn) 10gn, en, 4'0gn, (n+1)! Viagn, log (logn), 2 12, 10gn, 2 , n. logn, 22+1 Gozüm! $n! = \Theta(n^{\frac{n+1}{2}} \cdot e^{-n})$ log(n!) = 0 (n. logn) (logn)! = & (logn) 100n+1 = -logn) 2211 > 227 > (0+1)! > 0!) e) 0.27) (3)) nog (logn) ve (logn) logn > (logn)! > n3 > n2 ve 4'0gn > nilogn ve log (n!) > n ve 2 109) (\(\sqrt{2} \) \(\sqrt{2} \) \(\sqrt{2} \) \(\sqrt{2} \) \(\sqrt{2} \)

In n > Trogn > In (Inn) > 2'09° ~ > 109° (logn) ve 109° n)

10g (10g · n)) 1 ve ntogn

soru 4-) Asoğidaki algoritmenin analizini "yinelene yaplarını saymak"
yolunu securek yapınız.

(n: positive integer) $1 \quad a \leftarrow 0$ $2 \quad for \quad i \leftarrow 1 \quad to \quad n-1$ $3 \quad for \quad j \leftarrow i+1 \quad to \quad n$ $4 \quad for \quad k \leftarrow 1 \quad to \quad j$ $5 \quad a \leftarrow a+1$ $6 \quad return \quad a$

$$\frac{40200001}{2} = \frac{1}{12} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{n-1} \frac{1}{2} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{2}$$

$$= \frac{1}{12} \left(\frac{\sum_{j=1}^{n} j - \sum_{j=1}^{i} j}{j} \right) = \sum_{i=1}^{n-1} \left(\frac{n(n+1)}{2} - \frac{(i)(i+1)}{2} \right)$$

$$= \frac{1}{12} \frac{(n+1)(n-1)}{2} - \frac{1}{2} \left[\frac{n(n-1)(n-2)}{6} - \frac{1}{2} \left(\frac{(n-1)(n)}{2} \right) \right]$$

$$= \frac{1}{12} \frac{n(n-1)(n+1)}{n+1} - \frac{(2n-1)}{6} - \frac{1}{2}$$

$$= \frac{1}{12} \frac{n(n-1)(n+1)}{n+1} = \frac{1}{3} \frac{n(n-1)(n+1)}{n+1}$$

$$= \frac{1}{3} \frac{n(n-1)(n+1)}{n+1}$$

Soru 5-) Asagidaki algoritma cialisma zamoni tanimina gore "rekursif cagrimlori sayma" yolunu secerek T(n) calisma zamonini asimptotik olorak bulunuz.

$$T(n) = 2T\left(\frac{n}{2}\right) + n^2$$

$$(n^2)$$
 $(n/2)^2$ $(n/2)^2$ $(n/2)^2$ $(n/4)^2$ $(n/4)^2$ $(n/4)^2$ $(n/4)^2$

$$T(n) = n^{2} + (n/2)^{2} + (n/4)^{2} + --- + \log n$$

$$T(n) = \sum_{i=0}^{\infty} (\frac{1}{2^{i}})$$

$$T(n) \leq n^{2} (1/1 - (1/2)) \leq 2n^{2}$$

$$T(n) = Q(n^{2})$$

Soru 6-) Asogidaki tanımları verilen algoritmaların calışma zaman asimptotik birgilerini Moster teoremi ile hesoplayınız.

2) Eger
$$a = b^{\chi} \rightarrow y - 1 \rightarrow \tau(n) = \theta(n^{\log b^{\alpha}} \cdot \log^{y+1} \cdot n)$$

 $y = -1 \rightarrow \tau(n) = \theta(n^{\log b^{\alpha}} \cdot \log \log n)$
 $y(-1 \rightarrow \tau(n)) = \theta(n^{\log b^{\alpha}} \cdot \log \log n)$

3-) Eger
$$a \land b^{\chi} \rightarrow y / 0 \rightarrow \tau (n) = \Theta(n^{\chi} \cdot \log^{4} n)$$

 $y (0 \rightarrow \tau (n)) = \Theta(n^{\chi})$

Gozúm:
$$a = 1$$

$$b = \frac{3}{2}$$

$$x = 0$$

$$y = 0$$

$$-(n) = 0$$

$$(2. durum) \Rightarrow y = 0 > -1$$

$$(n) = 0$$

$$(n^{\log_3/2} \cdot \log_3 \cdot n)$$

$$\frac{6.2^{-})}{a=3} T(n) = 3T(\frac{1}{4}) + n. log n$$

$$b=4 \qquad 3 < 4^{1} \rightarrow (3. durum) \rightarrow y=1 > 0$$

$$x=1$$

$$y=1 > 0$$

$$a_{i} = a_{i} = a_{i} = a_{i} = a_{i}$$

$$\frac{6.3-)}{0=4} T(n) = 4.T(\frac{\pi}{2}) + n$$

$$0=4$$

$$0=2$$

$$x=1$$

$$y=0$$

$$T(n) = \theta(n^{\log_2 2^2}) = \theta(n^2)$$