Contents

1	Mo	dule 02: Classification
	1.1	Types of classification models
	1.2	Definition of bad classification
	1.3	Examples
		1.3.1 Loan payment (Income vs credit score)
	1.4	Data terminology
	1.5	Data types
	1.6	Support vector machines
		1.6.1 When not possible to get full separation
1	Μ	Iodule 02: Classification
	• D	efinition: putting things into groups
1.	1 Т	Types of classification models
		•
	1. N	umber of groups
	2. N	umber of dimensions
		• Can 1 dimension be sufficient to classify?
	3. So	oft vs hard classifiers (is it 100% error free?)
1.	2 I	Definition of bad classification
	• C	ost: is one type of mistake worse than the other?
1.	3 E	Examples
1.:	3.1	Loan payment (Income vs credit score)
	• P	ot lines and find one that can separate default vs non-default.
	• H	ow do we know the right lines are drawn?
	• W	We want to be as conservative as possible (less error prone)

1.4 Data terminology

- 1. Row = data point
- 2. Column = dimension, attribute, feature, predictor, covariate
 - (a) Special column = response, outcome

1.5 Data types

- 1. Structured data
 - (a) Quantitative
 - Numbers with meaning
 - (b) Categorical
 - Numbers without meaning
 - (c) Binary data (subset of categorical)
 - (d) Unrelated data
 - (e) Time series data
- 2. Unstructured
 - (a) Text data

1.6 Support vector machines

- Supervised method (algorithm uses known results when training)
- Terminology
 - m = number of data points
 - n = number of attributes
 - $x_{ij} = j$ attribute of i data point
 - * e.g. $x_{51} = \text{credit score of person } 5$; $x_{52} = \text{income of person } 5$
 - $-y_i = response of data point i$
 - * e.g. 1 if data point is group 1
 - * -1 if data point is group 2
 - Line: $a_1x_1 + a_2x_2 + \ldots + a_nx_n + a_0 = 0$
 - Note the intercept a_0

- In general: $\sum_{j=1}^{n} a_j x_j + a_0 = 0$
- Separation problem: get max distance between lines
- $\bullet \ \frac{2}{\sqrt{(\sum_j (a_j)^2)}}$
- i.e. $\min_{\mathbf{a}_0 \dots \mathbf{a}_n} : \sum_{j=1}^n (a_j)^2$
- Subject to constraints

1.6.1 When not possible to get full separation

- Then we minimize error
- There's a trade-off between margin and error
- Error for data point is:

$$\max\{0, 1 - (\sum_{j=1}^{n} a_j x_{ij} + a_0) y_i\}$$

- We multiply margin by λ and assign its importance of **margin** vs error that way.
- \bullet Full equation is: #TODO