

SF1681 Linjär algebra, fk **HT20**

SF1681 LINJÄR ALGEBRA, FORTSÄTTNINGSKURS FÖRELÄSNING 7

DAVID RYDH

7. HILBERTRUM, REKURSION OCH DIFFERENTIALEKVATIONER

Målet för idag.

- Hilbertrum
- Duala rum

Hilbertrum.

Definition 7.1 (Cauchyföljd). En följd $\{\mathbf{x}_i\}_{i=0}^{\infty}$ i ett inre produktrum är en *Cauchyföljd* om $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ så att $|\mathbf{x}_i - \mathbf{x}_i| < \varepsilon$ då $i, j \ge N$.

Definition 7.2 (Hilbertrum). Ett *Hilbertrum* är ett *fullständigt* inre produktrum V, dvs ett inre produktrum V där alla *Cauchyföljder* konvergerar: givet en Cauchyföljd $\{\mathbf{x}_i\}_{i=0}^{\infty}$ så finns $\mathbf{x} \in V$ så att $\lim_{i \to \infty} |\mathbf{x} - \mathbf{x}_i| = 0$.

Anmärkning 7.3. Alla ändligdimensionella inre produktrum är Hilbertrum i och med att både $\mathbb R$ och $\mathbb C$ är fullständiga.

Vi kan skapa mening i oändliga summor, serier, om delsummorna är Cauchyföljder.

Vi har nu två mycket viktiga Hilbertrum som ungefär på samma sätt som \mathbb{R}^n och \mathbb{C}^n ger en modell för oändligtdimensionella Hilbertrum (med uppräknelig ortonormal bas).

Definition 7.4. Vi har följande två Hilbertrum:

- $\ell^2(\mathbb{R}) = \{\{x_i\}_{i \geq 0} \colon \sum_{i \geq 0} x_i^2 < \infty\} \subseteq \prod_{i \geq 0} \mathbb{R} \mod \langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i \geq 0} x_i y_i.$ $\ell^2(\mathbb{C}) = \{\{x_i\}_{i \geq 0} \colon \sum_{i \geq 0} |x_i|^2 < \infty\} \subseteq \prod_{i \geq 0} \mathbb{C} \mod \langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i \geq 0} \overline{x_i} y_i.$

Precis som med vektorer $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ i \mathbb{R}^n och \mathbb{C}^n så skriver vi $\mathbf{x}=(x_0,x_1,x_2,\ldots)=(x_i)_{i=0}^\infty$ för vektorer i $\ell^2(\mathbb{R})$ och $\ell^2(\mathbb{C})$.

Anmärkning 7.5. Det är några saker att verifiera här (Sadun, Thm 6.8). Låt $\mathbf{x}, \mathbf{y} \in \ell^2(\mathbb{R})$, dvs antag att serierna $\sum_{i\geq 0} x_i^2$ och $\sum_{i\geq 0} y_i^2$ är konvergenta. Då behöver vi visa:

- (1) att $\ell^2(\mathbb{R})$ är ett vektorrum: dvs att $\sum_{i\geq 0}(x_i+y_i)^2 = \sum_{i\geq 0}x_i^2 + 2x_iy_i + y_i^2$ är konvergent och att $\sum_{i\geq 0}(cx_i)^2$
- (2) att den inre produkten $\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i \geq 0} x_i y_i$ konvergerar.

Date: 2020-11-11.

Båda dessa påstående följer av att $|x_iy_i| \le \max\{x_i, y_i\}^2 \le x_i^2 + y_i^2$ eftersom $\sum_{i \ge 0} x_i^2$ och $\sum_{i \ge 0} y_i^2$ konvergerar. För $\ell^2(\mathbb{C})$ blir beräkningarna liknande: $|x_i + y_i|^2 = |x_i|^2 + 2\operatorname{Re}(\overline{x_i}y_i) + |y_i|^2 \le |x_i|^2 + 2|x_i| \cdot |y_i| + |y_i|^2$ och så vidare.

Vi har nu visat att $\ell^2(\mathbb{R})$ och $\ell^2(\mathbb{C})$ är inre produktrum. Man kan också visa att de är Hilbertrum, dvs fullständiga (se Sadun, 6.8, Exc. 4).

Baser i Hilbertrum.

Definition 7.6. En ortogonal bas för ett Hilbertrum H är en ortogonal mängd $\{\mathbf{x}_i\}_{i\in I}$ så att

$$H = \left\{ \sum_{i \in I} a_i \mathbf{x}_i \colon \text{ serien konvergerar} \right\}$$

Exempel 7.7. En ortogonal bas för $\ell^2(\mathbb{R})$ ges av $\{\mathbf{e}_j\}_{j\geq 0}$ där $\mathbf{e}_j=(\delta_{ij})_{i=0}^{\infty}=(0,0,\ldots,0,1,0,\ldots)$ är följden där jte positionen är en etta.

Anmärkning 7.8. En ortogonal bas i ett Hilbertrum är inte en bas i vanlig mening eftersom vi tillåter oändliga linjärkombinationer för att spänna upp Hilbertrummet. Att mängden är ortogonal innebär dock att den är linjärt oberoende precis som en vanlig bas. I ett Hilbertrum brukar en bas i vanlig mening kallas för en Hamelbas eller en algebraisk bas. Hamelbaser i oändligtdimensionella Hilbertrum är alltid överuppräkneliga medan t ex $\ell^2(\mathbb{R})$ har en uppräknelig ortogonal bas.

Funktionsrum. För att hantera funktioner på intervall eller andra mångfalder behöver vi Hilbertrummen $L^2([0,1],\mathbb{R})$ och $L^2([0,1],\mathbb{C})$. Den inre produkten ges av

$$\langle f|g\rangle = \int_0^1 f(t)g(t) dt$$
 resp. $\langle f|g\rangle = \int_0^1 \overline{f(t)}g(t) dt$

- För att detta ska vara väldefinierat måste $|f|^2$ vara *integrerbar*.
- Det räcker inte att ta bara kontinuerliga funktioner, eftersom gränsvärden av Cauchyföljder i C([0,1]) inte alltid ligger i C([0,1]).
- När vi lägger till alla sådana gränsvärden finner vi funktioner där |f| = 0 men $f \neq 0$. Vi behöver ta kvoten med detta delrum.

Exempel 7.9. Funktionerna $f_1 = x$, $f_2 = x^2$, $f_3 = x^3$, ..., på intervallet [0,1] är en Cauchyföljd och konvergerar mot funktionen

$$f(x) = \begin{cases} 0 & \text{om } 0 \le x \le 1\\ 1 & \text{om } x = 1 \end{cases}$$

Denna funktion har normen $|f| = \int_0^1 f(t)^2 dt = 0$ men är inte 0.

På liknande sätt går det att definiera $L^2(U,\mathbb{R})$ för andra intervall $U\subseteq\mathbb{R}$ (både öppna och slutna), inklusive obegränsade intervall som t ex $U=\mathbb{R}$. Man börjar då istället med kontinuerliga funktioner med kompakt stöd $C_0(U)$: dvs kontinuerliga funktioner $f\colon U\longrightarrow\mathbb{R}$ som är 0 utanför något slutet begränsat intervall. Konstruktionen av $L^2(U,\mathbb{C})$ är analog.

Exempel 7.10 (Fourierserier, SF1683, Sadun Thm 8.5). En bas för $L^2([0,1],\mathbb{R})$ ges av funktionerna

$$\{1,\cos(2n\pi x),\sin(2n\pi x)\}_{n=1,2,...}$$

Detta ger även en bas för $L^2([0,1],\mathbb{C})$. En alternativ bas för $L^2([0,1],\mathbb{C})$ är

$$\{e^{2n\pi ix}\}_{n=0,\pm 1,\pm 2,...}$$

¹Olikheten mellan aritmetiskt och geometriskt medelvärde ger en starkare olikhet: $|x_iy_i| = \sqrt{x_i^2y_i^2} \le \frac{x_i^2+y_i^2}{2}$.

Duala rum.

Definition 7.11. En *linjär form* på ett vektorrum V över en kropp k är en linjär avbildning $V \longrightarrow k$.

Exempel 7.12. Om $\varphi: V \times V \to k$ är en bilinjär form över \mathbb{R} så är $\varphi(-,\mathbf{x})$ och $\varphi(\mathbf{x},-)$ linjära former. Över \mathbb{C} är endast den andra en linjär form. Om vi har en inre produkt $\langle \cdot | \cdot \rangle$ så är alltså $\langle \mathbf{x} | \cdot \rangle$ en linjär form och vi skriver denna som $\langle \mathbf{x} |$.

Definition 7.13. För ett vektorrum V över en kropp k är duala rummet, eller dualen²,

$$V^* = \operatorname{Hom}_k(V, k) = \{ \varphi \colon \varphi \text{ är en linjär form på } V \}.$$

Sats 7.14.

- (1) Om V är ett reellt inre produktrum ger $\mathbf{x} \mapsto \langle \mathbf{x} |$ en injektiv linjär avbildning $V \longrightarrow V^*$.
- (2) Om V är ett komplext inre produktrum ger $\mathbf{x} \mapsto \langle \mathbf{x} |$ en injektiv antilinjär avbildning $V \longrightarrow V^*$. Om dim $V < \infty$ är dessa (anti)isomorfier.

Bevis. Beviset är detsamma i båda fallen. Att avbildningen är (anti)linjär följer direkt av definitionen av inre produkt. Om $\langle \mathbf{x} |$ är nollfunktionen på V betyder det speciellt att $\langle \mathbf{x} | \mathbf{x} \rangle = 0$, vilket ger $\mathbf{x} = 0$.

Exempel 7.15. Om dim $V = \infty$ blir det inte en isomorfi. Till exempel är dualen till $V = \bigoplus_{i \geq 0} k$ lika med $V^* = \prod_{i \geq 0} k$.

Exempel 7.16. Om dim $V < \infty$ och $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ är en bas för V ges den *duala basen* av $\{\mathbf{b}_1^*, \mathbf{b}_2^*, \dots, \mathbf{b}_n^*\}$ där $\mathbf{b}_i^*(\mathbf{b}_j) = \delta_{ij}$. Observera att den linjära formen \mathbf{b}_i^* beror på hela basen och inte bara \mathbf{b}_i . Om V är ett inre produktrum så har vi också basen $\{\langle \mathbf{b}_1|, \langle \mathbf{b}_2|, \dots, \langle \mathbf{b}_n| \}$ för V^* . Om $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \}$ är en *ortonormal bas*, så är $\mathbf{b}_i^* = \langle \mathbf{b}_i|$ för alla i men i allmänhet så är $\mathbf{b}_i^* \neq \langle \mathbf{b}_i|$ (se nedan).

Linjära former som radvektorer. Låt $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ vara en bas för V. Detta ger en isomorfi $\mathbb{R}^n \longrightarrow V$: vi identifierar $\mathbf{v} \in V$ med koordinatvektorn $[\mathbf{v}]_{\mathscr{B}} \in \mathbb{R}^n$. Det duala rummet V^* kan vi då identifiera med linjära avbildningar $\mathbb{R}^n \longrightarrow \mathbb{R}^1$, dvs $(1 \times n)$ -matriser, dvs radvektorer. Om $\varphi \in V^*$ så låter vi $[\varphi]_{\mathscr{B}}$ beteckna motsvarande radvektor³. Om $\mathbf{v} \in V$ och $\varphi \in V^*$ så är $\varphi(\mathbf{v}) = [\varphi]_{\mathscr{B}}[\mathbf{v}]_{\mathscr{B}}$ (matrismultiplikation av en radvektor med en kolumnvektor). Den duala basvektorn \mathbf{b}_i^* svarar mot radvektorn $(\mathbf{e}_i)^T$.

Exempel 7.17. Om V är ett inre produktrum och G är metriken i basen \mathscr{B} så svarar den linjära formen $\langle \mathbf{v} |$ mot radvektorn

$$[\langle \mathbf{v}|]_{\mathscr{B}} = [\mathbf{v}]_{\mathscr{B}}^T G$$

ty $[\mathbf{v}]_{\mathscr{B}}^T G[\mathbf{w}]_{\mathscr{B}} = \langle \mathbf{v} | \mathbf{w} \rangle$. Speciallt är

$$[\langle \mathbf{b}_i |]_{\mathscr{B}} = (\mathbf{e}_i)^T G.$$

²Ibland används beteckningen V^{\vee} .

 $^{^3}$ I notationen för matrisen för linjära avbildningar hade vi skrivit $[\phi]_{\mathscr{E}\mathscr{B}}$ där $\mathscr{E}=\{\mathbf{e}_1\}$ är standardbasen för \mathbb{R} .