V354: Gedämpfte und erzwungene Schwingungen

Stichworte

Analogie: Schwingfähige Systeme in Mechanik und Elektrik.

Komplexe Amplitude, Phasenwinkel ϕ , Güte q, Resonanzbreite

Zielsetzung

Gedämpfte und erzwungene Schwingungen und deren Verhalten studieren. Hierfür werden elektrische Schaltungen in Analogie gebaut und Spannungen gemessen.

Theorie

Dämpfung

Anstelle von mechanischen Systemen werden elektrische Schaltungen betrachtet. Mit einem Serienschwingkreis, bestehend aus Widerstand R, Kondensator C und Spule L, wird ein gedämpftes System simuliert.

$$U_{\rm R}(t) + U_{\rm C}(t) - U_{\rm L}(t) = 0 \tag{1}$$

$$U_{\rm R}(t) = R \cdot I(t) \qquad U_{\rm C}(t) = \frac{Q(t)}{C} \qquad U_{\rm L}(t) = -L \frac{\mathrm{d}I(t)}{\mathrm{d}t}, \tag{2}$$

Es gilt die Systemgleichung

$$\frac{\mathrm{d}^2 I(t)}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}I(t)}{\mathrm{d}t} + \frac{1}{LC} I(t) = 0, \tag{3}$$

ihre allgmeinen Lösung

$$I(t) = A_1 \cdot e^{\omega_1 t} + A_2 \cdot e^{\omega_2 t} \tag{4}$$

mit der Abkürzung

$$\omega_{1,2} = -\frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}}.$$
 (5)

Durch die Diskriminante sind folgende Fälle bestimmbar

Schwingfall

$$I(t) = e^{-\frac{R}{2L} t} \left(A_1 \sin \left(\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} t \right) + A_2 \cos \left(\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} t \right) \right). \tag{6}$$

ap. Grenzfall

$$I(t) = A_1 e^{-\frac{R}{2L}t} + A_2 t e^{-\frac{R}{2L}t}. (7)$$

Kriechfall

$$I(t) = A_1 e^{\omega_1 t} + A_2 e^{\omega_2 t}. (8)$$

Für die Schwingperiode gilt die Thomsonsche Schwingungsgleichung und die Abklingdauer

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC}; \qquad T_{\rm ex} = \frac{2L}{R}. \tag{9}$$

Zwang

Betrachtet wird die am Kondensator anliegende Spannung $U_{\rm C}$. Zusätzlich zur Systemgleichung (1) kommt die äußere Zwangsspannung $U_{\rm Zwang}(t)$

$$LC\frac{d^2U_{\rm C}}{dt^2} + RC\frac{dU_{\rm C}}{dt} + U_{\rm C} = U_{\rm Zwang}(t) = U_0 \cdot \exp i\omega t.$$
 (10)

Die Lösung setzt sich aus homogener und inhomogener Lösung zusammen, die homogene Lösung klingt in kurzer Zeit ab und wird vernachlässigt. Bei dem nun gewählten komplexe Amplitude-Ansatz $U_C(\omega,t) = \tilde{U}_\omega(\omega) \cdot e^{i\omega t}$, $\tilde{U}_\omega(\omega) \in \mathbb{C}$, ist der Phasenwinkel $\arg(\tilde{U}_\omega) = \phi$ und Betrag $|\tilde{U}_\omega| \in \mathbb{R}$. Dies führt nach Einsatz und Kürzen der Exponentialfunktion zu

$$U_0 = -LC\omega^2 \tilde{U}_{\omega}(\omega) + i\omega RC\tilde{U}_{\omega}(\omega) + \tilde{U}_{\omega}(\omega). \tag{11}$$

und damit schließlich zu

$$|\tilde{U}_{\omega}(\omega)| = \frac{U_0}{\left(\sqrt{(1 - LC\omega^2)^2 + \omega^2 R^2 C^2}\right)}$$
(12a)

$$\tan(\phi) = \frac{\operatorname{Im}(\tilde{U}_{\omega})}{\operatorname{Re}(\tilde{U}_{\omega})} = \frac{\omega RC}{LC\omega^2 - 1}$$
(12b)

Sonderfälle:

$$\lim_{\omega \to \infty} \tilde{U}_{\omega} = 0, \qquad \lim_{\omega \to 0} \tilde{U}_{\omega} = U_0 \tag{13}$$

auf.

Es existiert eine Resonanzfrequenz $\omega_0 = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$, die durch Dämpfung und Eigenfrequenz gegeben ist. Sie ist die neue Schwingfrequenz des Systems. Bei Erregung des Systems mit $\omega \approx \omega_0$ kommt es zur Resonanz; das System schwingt mit einer Spannungsamplitude $U_{\rm C,max}$ größer als die Erregeramplitude U_0 ,

$$U_{\text{C,max}} = \frac{1}{\underbrace{\omega_0 RC}_{\text{Güte } q}} U_0. \tag{14}$$

Zur Charakterisierung des Resonanzverhaltens (nur im Schwingfall) werden die Grenzwerte ω_{\pm} betrachtet, bei welchen die Spannung $U_{\rm C}$ auf den $^1/\sqrt{2}$ -Teil des Maximalwertes $U_{\rm C,max}$ abfallen. Für die so beschriebene Resonanzbreite gilt

$$2\pi\Delta f = \omega_{+} - \omega_{-} \approx \frac{R}{L}.\tag{15}$$

Ausgehend von der Erregerspannung U_0 fällt der Betrag der Spannung $U_{\rm C}$ mit $\frac{1}{\omega^2}$ ab.

Der Phasenwinkel ϕ zwischen der Kondensatorspannung $U_{\rm C}(t)$ und der Erregerspannung U(t). Für die Frequenz $\omega^2 = \frac{1}{LC}$ besteht zwischen der Kondensatorspannung $U_{\rm C}$ und der Erregerspannung U ein Winkel von $\phi = -\frac{\pi}{2}$. Für große Frequenzen nähert sich die Phasenwinkel ϕ dem stationären Wert π an

Durchführung

Es wird auf einem Oszilloskop die am Kondensator anliegende Spannung angezeigt.

Dämpfung: Es wird an den Kondensator ein Generator angeschlossen, der mit einer so geringer Frequenz eine Rechteckspannung liefert, dass der Schwingkreis frei schwingen kann.

Zwang: Es wird an den Kondensator ein Generator für vers. Frequenzen angeschlossen. Gemessen wird die Abhängigkeit der Kondensatorspannung $U_{\rm C}(t)$ und des Phasenwinkels ϕ von der Frequenz der Erregerspannung. Hierzu wird mit einer Reihe von vers. Generatorfrequenzen der Betrag $U_{\rm C}(t)$ direkt gemessen und der Phasenwinkel ϕ durch den Zeitversatz der Nulldurchgänge von Generator und Kondensator bestimmt.

Auswertung

- Im Fall der gedämpften Schwingung fällt die Amplitude (sehr genau) exponentiell mit der Zeit ab.
- Der ap. Grenzfall lässt sich durch Bisektion finden.
- Die Bilder für Schwingfall, ap. Grenzfall und Kriechfall sind im Appendix zu finden.
- Die experimentell ermittelten Widerstände sind geringer als die theoretisch benötigten Werte.
- Die Resonanzkurve ist im Appendix zu finden.
- Die Versatzkurve ist im Appendix zu finden.

Diskussion

- Große Messunsicherheiten: viele, fehlerbehafteten Größen
- Analogie zwischen Mechanik und Elektrik ist sicher.

Merke

Unbedingt die Resonanz- und Versatzkurve einprägen.

Appendix

