1.Multiple Linear Regression(R²-value)=0.7894790349867009

2.Support vector Machine(R²-value)

S.NO	HYPER PARAMETER VALUE(C)	LINEAR VALUE (R) VALUE	RBF(non-linear value R)	POLY (R)	SIGMOID(R)
1	C=10	0.4624684	-0.0322732	0.0387162	0.0393071
2	C=100	0.6288792	0.3200317	0.6179569	0.5276103
3	C=500	0.7631057	0.6642984	0.8263683	0.444606
4	C=1000	0.7649311	0.8102064	0.8566487	0.287471
5	C=1500	0.7440487	0.8427494	0.8580889	-0.06744

Support vector Machine R²[poly and Hyperparameter(1500)]=0.8580889

DECESION TREE (R ² -value)				
S.NO	CRITIERION	MAX FEATUREAS	SPLITTERS	R VALUE
1	Mse	Auto	Best	0.7000521
2	Mse	Auto	Random	0.6919682
3	Mse	Sqrt	Best	0.6110177
4	Mse	Sqrt	Random	0.7157955
5	Mse	log2	Best	0.7229416
6	Mse	log2	Random	0.7215323
7	Mae	auto	Best	0.6573389
8	Mae	auto	Random	0.7507558
9	Mae	Sqrt	Best	0.6848415
10	Mae	Sqrt	Random	0.7031684
11	Mae	log2	Best	0.6977008
12	Mae	log2	Random	0.676316
13	friedman_mse	auto	Best	0.7033522
14	friedman_mse	auto	Random	0.6861428
15	friedman_mse	Sqrt	Best	0.7519077
16	friedman_mse	Sqrt	Random	0.7088883
17	friedman_mse	log2	Best	0.76619222
18	friedman_mse	log2	Random	0.6962025

DECESION TREE (R²-value)[friedman_mse,log2,best]=0.76619222

RANDOM FORESET (R²-value)				
S.NO	CRITIERION	MAX FEATUREAS	N_ESTIMATORS	R VALUE
1	Mse	Auto	10	0.8326454
2	Mse	Auto	100	0.8560729
3	Mse	Sqrt	10	0.8405621
4	Mse	Sqrt	100	0.8713959
5	Mse	log2	10	0.8460456
6	Mse	log2	100	0.8753207
7	Mae	auto	10	0.8388896
8	Mae	auto	100	0.8527284
9	Mae	Sqrt	10	0.8559707
10	Mae	Sqrt	100	0.8723463
11	Mae	log2	10	0.8504588
12	Mae	log2	100	0.8723241
13	friedman_mse	auto	10	0.8247351
14	friedman_mse	auto	100	0.8545791
	friedman_mse	Sqrt	10	0.8542056
16	friedman_mse	Sqrt	100	0.8691738
17	friedman_mse	log2	10	0.8612186
18	friedman_mse	log2	100	0.870177

RANDOM FORESET(R²-value)[friedman_mse,log2,100]=0.8753207

S.NO	N_ESTIMATERS	LOSS-LINEAR(R VALUE)	LOSS-SQUARE(R VALUE)	LOSS-EXPONENTIAL(R)
1	10	0.8566564	0.7101662	0.8254744
2	50	0.8512062	0.521828	0.6066836
3	100	0.8501721	0.4654836	0.537644
4	500	0.8687976	0.4531099	0.4751371
5	1000	0.8507999	0.4447981	0.4593156

ADA BOOST REGRESSOR(R²-value)[N-EST=500,LOSS-LINEAR]=0.8687976

XGBOOSTINGREGRESSOR[GradientBoostingRegressor]((R ² -value)					
S.NO		CRITIERION	LOSS	N_ESTIMATORS	R VALUE
	1	Mse	HUBER	100	0.8913481
	2	Mse	QUANTILE	100	0.6310518
	3	FRIEDMAN_MSE	HUBER	100	0.8914659
	4	FRIEDMAN_MSE	QUANTILE	100	0.6309441

XGBOOSTINGREGRESSOR[GradientBoostingRegressor]((R²-value)=0.8914659