IT890 - Professional Practice / Seminar

Presented To:
Dr. Ram Mohana Reddy Guddeti

Presented By: Mohd Asif Khan Khaishagi(202IT013)

Abstract

Air is one the most important aspect of human life, but now a days due to smoke from vehicles, harmful gases from air-conditioners and refrigerator, burning of crops and forests have degraded air quality in our country as well as globally. Air pollution is among the most dangerous issues to human life. To monitor the quality of air in our surroundings is important in getting information about pollution and harmful it is to our health. In this project, I have made an indoor air quality monitor which will show what is the air quality in our surrounding as well as what is danger level associated with it.

Introduction

Air inside the house may seem harmless but there can be colorless and odourless substances in air like carbon monoxide etc. which can affect human health. So for this project, I made Indoor Air Quality Monitoring System which consists of hardware, IOT data aggregation and visualisation platform and an Android App which will show the Air quality status at real time.

HARDWARE COMPONENTS

- Arduino UNO
- MQ135 Gas Sensor
- MQ7 Carbon Monoxide Sensor
- ESP8266 Wifi Chip
- Breadboard
- Wires etc.

Fig 1 : Air Quality Sensor Connected And Running With Arduino

Arduino IDE

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Fig 2: Arduino IDE

ARDUINO CODING

Step 1: I have written the code such that on initialization, it connects to the wifi.

Step 2 : Once connected, it will read values from sensor and push them to thingspeak channel.

Repeat Step 2 after every 1.5 second.

```
File Edit Sketch Tools Help
  esp4
void loop() {
valSensor = getSensorData():
 valSensor2 = getSensorData2();
 String getData = "GET /update?api key="+ API +"&"+ field1 +"="+String(valSensor)+"&" + field2 + "=" + String(valSensor2);
sendCommand("AT+CIPMUX=1",5,"OK");
 sendCommand("AT+CIPSTART=0,\"TCP\",\""+ HOST +"\","+ PORT,15,"0K");
 sendCommand("AT+CIPSEND=0," +String(getData.length()+4),4,">");
 esp8266.println(getData); delay(1500); countTrueCommand++;
 sendCommand("AT+CIPCLOSE=0".5."OK");
double getSensorData(){
 // Replace with your own sensor code //MQ135
 float sensor volt; //Define variable for sensor voltage
  float RS gas; //Define variable for sensor resistance
  float ratio: //Define variable for ratio
  float sensorValue = analogRead(gas sensor); //Read analog values of sensor
  sensor volt = sensorValue*(5.0/1023.0); //Convert analog values to voltage
    RS gas = ((5.0*10.0)/\text{sensor volt})-10.0; //Get value of RS in a gas
  ratio = RS gas/R0; // Get ratio RS gas/RS air
 double ppm log = (log10(ratio)-b)/m; //Get ppm value in linear scale according to the the ratio value
 double ppm = pow(10, ppm log); //Convert ppm value to log scale
 Serial.print("Our desired PPM = ");
 Serial.println(ppm);
  return ppm;
double getSensorData2(){
// Replace with your own sensor code //MQ7
 float sensor volt1; //Define variable for sensor voltage
 float RS gas1; //Define variable for sensor resistance
 float ratiol; //Define variable for ratio
  float sensorValue1 = analogRead(CO sensor); //Read analog values of sensor
  sensor volt1 = sensorValue1*(5.0/1023.0); //Convert analog values to voltage
 RS gas\overline{1} = ((5.0*10.0)/\text{sensor volt1}) - 10.0; //Get value of RS in a gas
  ratio1 = RS gas1/R01; // Get ratio RS gas/RS air
 double ppm log1 = (log10(ratio1)-b1)/m1; //Get ppm value in linear scale according to the the ratio value
 double ppm1 = pow(10, ppm log1); //Convert ppm value to log scale
 Serial.print("CO PPM = ");
 Serial.println(ppm1);
Sketch uses 11322 bytes (35%) of program storage space. Maximum is 32256 bytes.
Global variables use 632 bytes (30%) of dynamic memory. Leaving 1416 bytes for local variables. Maximum is 2048 bytes.
```

Fig 3 : Code on Arduino IDE

ThingSpeak Channel

ThingSpeak is an IoT analytics platform service that allows you to aggregate, visualize, and analyze live data streams in the cloud. You can send data to ThingSpeak from your devices, create instant visualization of live data, and send alerts.

For data aggregation I have made a thingspeak channel where i am collecting gas sensor and carbon monoxide sensor values.

Fig 4 : ThingSpeak Channel Values

Android

I build the android app on Android Studio IDE using Java, XML. It basically shows the air quality in ppm. Based on air quality it shows status also whether air is good, moderate, unhealthy, very unhealthy and hazardous. You can also view current reading of gas sensor as well as Carbon Monoxide sensor as well as the previous trend graph of the data. I have also added text to speech feature in gas sensor pages. I have attached screenshots of all the screens.

Fig 5 : Home Page

AIR QUALITY INDEX			
RANGE(PPM)	STATUS		
0-50	GOOD		
51-100	MODERATE		
100-150	UNHEALTHY FOR SENSITIVE GROUPS		
151-200	UNHEALTHY		
201-300	VERY UNHEALTHY		
301-500	HAZARDOUS		

Fig 6: Info Page

Fig 7: Gas Sensor Page

Fig 8 : Carbon Monoxide Sensor Page

ANALYSIS FROM DATA

,		entry_id	GAS_SENSOR	CO_SENSOR
	count	500.000000	500.000000	500.000000
	mean	287.500000	5.190940	0.274000
	std	144.481833	3.939452	0.129026
	min	38.000000	1.490000	0.150000
	25%	162.750000	2.750000	0.200000
	50%	287.500000	4.250000	0.240000
	75%	412.250000	6.020000	0.280000
	max	537.000000	26.280000	0.930000

ANALYSIS FROM DATA

GAS SENSOR READINGS IN DIFFERENT ENVIRONMENT

Fig 9 : GAS SENSOR DATA

ANALYSIS FROM DATA

CO SENSOR READINGS IN DIFFERENT ENVIRONMENT

Fig 9 : CO SENSOR DATA

Results

Property	Base Paper	This Project
Sensors Cost	48\$ Alphasense brand sensors	5\$
Power Supply	0.5 Watt for AQ device	2.5 Watt for Arduino
Sensor Used	O3,NO2	Gas Sensor, CO
Microcontroller	Raspberry pi	Arduino UNO
Cloud Service	Kairos DB, Graphana	ThingSpeak
Total Cost of Setup	500\$	50\$
Android App	NO	YES

Market Analysis

Device Name	Price	Mobile App	URL
Kaiterra Laser Egg 2 Air Quality Monitor	9,990	No	tinyurl.com/34wdpsr6
Prana Air Quality Monitor	6,490	Yes	tinyurl.com/vtvptew7
Xuuxu Air Quality Monitor	3599	No	tinyurl.com/mae6442 6
SMILEDRIVE® Portable Air Quality Pollution Meter	7299	No	tinyurl.com/wsp5wsd m
AIRATOM Air Quality Monitor	8,999	No	tinyurl.com/kfz6nkvs

Market Analysis

Device Name	Price	Mobile App	URL
HealthInnovative G7015	5,149	No	tinyurl.com/34wdpsr6
Crusaders AQI	4999	No	tinyurl.com/vtvptew7
IQAir Air Visual Air Quality Monitor	25,300	Yes	tinyurl.com/mae6442 6
Airveda Air Quality	9,499	Yes	tinyurl.com/wsp5wsd m
Airveda Air Quality With humidity	19,008	Yes	tinyurl.com/kfz6nkvs
Our Air Quality Monitoring System	3000	Yes	

Conclusion

I have made an end to end air quality monitoring system. Now a days, there is a need of this kind of sensors because pollution is increasing day by day. Also the cost of the sensors should be reduced to as minimum as possible. Here the cost of overall system is very less as compared to any other air monitoring system in the market. And none of the commercial air quality monitoring devices gives you monitoring via an android app. I have tried to keep the hardware expenses at minimum but it can be further reduced by using cheaper hardware or different programmable boards. Now a days, There is age of smart systems and with the advancement of IOT we want everything at our fingertips so an Android App is ideal choice for monitoring purpose. Also I used thingspeak as data aggregation platform. This platform is easy to use, but it is little bit slow. Also i used the free version of thingspeak which has a daily limit of fixed messages.

Applications

- Smart monitoring of house in case of gas leak which can cause fire.
- Smart notifications for people who are sensitive of bad air quality can be notified.
- Smoke detection from crop burning in nearby areas.
- Connect with smart devices to close your windows automatically if smoke is coming from outside.
- Air Quality monitoring at large scale in case of smart cities along with humidity and temperature.

Limitation And Future Work

Cost of hardware can be reduced further by using cheaper hardware or other NodeMCU based devices which can bring down cost further.

For Monitoring of multiple sensors situated at multiple locations the current thingspeak channel will not scale. A Database for handling data from all the different air quality sensor monitor units can be created.

References

- Rashmi Ballamajalu, Srijith Nair, Shayal Chhabra, Sumit K. Monga, Anand SVR, Malati Hegde, Yogesh Simmhan, Anamika Sharma, Chandan M. Choudhary, Ronak Sutaria, Rajesh Zele, Sachchida N. Tripathi. (2018) Toward SATVAM: An IoT Network for Air Quality Monitoring. .CoRR, abs/1811.07847.,
- Y. Simmhan (2019) SATVAM: Toward an IoT Cyber-Infrastructure for Low Cost Urban Air Quality Monitoring .doi: 10.1109/eScience.2019.00014
- Kinnera, Bharath Kumar Sai Subbareddy, Somula & Luhach, Ashish (2019). Scalable Computing: Practice and Experience. IOT based Air Quality Monitoring System Using MQ135 and MQ7 with Machine Learning Analysis . 20. 599-606. 10.12694/scpe.v20i4.1561
- Cho, R. (2018, June 26). What you should know about air quality alerts.Retrieved from https://phys.org/news/2018-06-air-quality.html