Non Contact Vital Signs Monitoring System

Alec Adamski, Rohan Iyengar, Kedar Manishankar, Sai Sathiesh Rajan

Georgia School of Electrical and Tech Computer Engineering

Georgia Institute of Technology

Introduction

Our team builds upon an existing practical, low-noise detection system that detects vital signs, in order to create a commercial product that is user friendly, can be accessed via a computer user interface (UI) and accurately displays heartbeat and respiration in real-time.

- A microcontroller unit (MCU) samples the signal, and converts the incoming analog signal to digital for transmission to a computer
- The raw digital data is processed to deconstruct the original signal into two separate signals
- The computer UI provides necessary functionality to control the duration of recorded signal and display the incoming raw signal in real-time

Background

Noncontact vital sign monitoring systems utilize radar signals to determine the frequency and transient features of chest movements.

- The current system setup uses a Doppler radar because of its better system complexity and high distance resolution, and has the capability to extract the frequency and transient vital sign signals
- The most notable difference in design process is the noise suppression scheme to reduce the phase noise of the Doppler radar that has already been implemented

Experiment

• Serial Peripheral Interface (SPI) is used to communicate between the MCU and the external ADC, and Universal Asynchronous receiver/transmitter (UART) is used to transmit the digital signal to the computer.

- The two incoming signals are analyzed in the frequency domain for spikes representing respiration and heart rate
- Using a peak detection algorithm, the respiration and heart rates can be determined
- Precautions are taken to distinguish between the heart rate and the harmonics of the much stronger respiration signal
- Two filters are generated based on the expected respiration and heart rates to clearly visualize each component

User Interface

- The Graphical User Interface (GUI) system is built in Python to run as a Windows application without network connectivity
- The PC listens through UART communication to the experiment setup that is constantly transmitting data.
- Through the first screen, the user can specify how long to measure their vitals signal for
- Graphs of the user's raw signal, heart rate signal, heart rate transient, respiration rate signal, and respiration rate transient are displayed

Future Work

- Extract both channels containing the quadrature signals from the Data Output register of the external ADC
- Implement a commercial mobile application that accurately displays heartbeat and respiration in real-time
- Improve the existing UI by using a web application without network connectivity or more professional C# framework.

References

Z. Xia and Y. Zhang, "Dual-Carrier Noncontact Vital Sign Detection With a Noise Suppression Scheme Based on Phase-Locked Loop," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, November 2016.

Silicon Labs, "EFM8 Busy Bee Family EFM8BB1 Data Sheet," in www.silabs.com. [Online].

Acknowledgements

Dr. Ying Zhang, Zongyang Xia