Finding the closest pair

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Given an array of points in 2D, find the **closest** pair.

In terms of the Euclidian distance

Given an array of points in 2D, find the closest pair.

In terms of the Euclidian distance

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_{i} , p_{j}

• d = distance
$$(p_i, p_j)$$
 $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

if (d < mindist): mindist=d

- Analysis:
 - $O(n^2)$ pairs ==> $O(n^2)$ time

Divide-and-conquer refresher

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- · else

//divide input A into two halves, A1 and A2

- A1 = first half of A
- · A2 = second half of A

//sort recursively each half

- sorted_A1 = mergesort(array A1)
- sorted_A2 = mergesort(array A2)

//merge

- result = merge_sorted_arrays(sorted_A1, sorted_A2)
- · return result

Analysis: $T(n) = 2T(n/2) + O(n) => O(n \lg n)$

D&C, in general

```
DC(input P)
 if P is small, solve and return
 else
   //divide
   divide input P into two halves, P1 and P2
   //recurse
   result1 = DC(P1)
   result2 = DC(P2)
   //merge
    do_something_to_figure_out_result_for_P
    return result
```

Analysis: T(n) = 2T(n/2) + O(merge phase)

- if merge phase is O(n): T(n) = 2T(n/2) + O(n) = > O(n | g | n)
- if merge phase is $O(n \lg n)$: $T(n) = 2T(n/2) + O(n \lg n) => O(n \lg^2 n)$

• find vertical line that splits P in half

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2
- //..... NOW WHAT ???

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2
- find closest pair that straddles the line
- return the minimum of the three

FindClosestPair(P)

//basecase

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- · else
 - find vertical line that splits P in half
 - let P1, P2 = set of points to the left/right of line
 - d₁ = FindClosestPair(P1)
 - d₂ = FindClosestPair(P2)

//compute closest pair across

- mindist=infinity
- for each p in P₁, for each q in P₂
 - compute distance d(p,q)
 - mindist = min{mindist, d(p,q)}

//return smallest of the three

return min {d₁, d₂, mindist}

- 1. Is this correct?
- 2. Running time?

The closest pair in P falls in one of three cases:

- Both points are in P1: then it is found by the recursive call on P1
- Both points are in P2: then it is found by the recursive call on P2
- One point is in P1 and one in P2: then it is found in the merge phase, because the merge phase considers all such pairs

2. Running time

FindClosestPair(P)

//basecase

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- · else
 - find vertical line that splits P in half
 - let P1, P2 = set of points to the left/right of line
 - $d_1 = FindClosestPair(P1)$
 - d₂ = FindClosestPair(P2)

//compute closest pair across

- mindist=infinity
- for each p in P₁, for each q in P₂
 - compute distance d(p,q)
 - mindist = min{mindist, d(p,q)}

//return smallest of the three

return min {d₁, d₂, mindist}

 $T(n) = 2T(n/2) + O(n^2)$ solves to O(n²)

this merge is too slow

Can we do better?

Refining the merge

Do we need to examine all pairs p,q, with p in P_1 , q in P_2 ?

Which pairs {p,q} can be discarded?

Here's a simple observation

- Notation: $d = \min\{d_1, d_2\}$
- Observation: We are looking for points that are closer than d. If there is a pair of points p,q with d(p,q) < d, then both the horizontal and vertical distance between p and q must be smaller than d.

- Notation: $d = \min\{d_1, d_2\}$
- Furthermore, if there is a pair of points p,q with d(p,q) < d, then both p and q must be within distance d from line L.

Refining the merge

FindClosestPair(P)

//basecase

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
 - find vertical line that splits P in half
 - let P1, P2 = set of points to the left/right of line
 - d₁ = FindClosestPair(P1)
 - d₂ = FindClosestPair(P2)

//compute closest pair across

- mindist=infinity
- for each p in P₁, for each q in P₂
 - compute conce d(p,q)
 - $minust = min\{minust, d(p,q)\}$

//return smallest of the three

return min {d₁, d₂, mindist}

- traverse P1 and select all points P1' in the strip
- traverse P2 and select all points P2' in the strip
- for each p in P1', for each q in P2'
 - compute distance d(p,q)
 - $mindist = min\{mindist, d(p,q)\}$

Running time?

Running time

- How many points can there be in the strip?
- What does this imply for the running time?

Refining some more

• Using the points in the strip is not enough, there can still be $\Omega(n)$ of them

ullet Note that the strip contains candidate pairs that could be within distance d of each other horizontally

• We haven't used yet that candidate pairs have to be within distance d of each

other vertically

(p,q) not a candidate pair because their vertical distance > d

Refining some more

We are interested in the points q of P_2 ' whose distance to p is < d

These points are vertically above or below p by at most d

• For a point p in P_1 ': We only need to check the points on the other side that are vertically at most d above/below p

How many such points can there be?

Let P be a set of points such that any two points are at least d away from each other.

Claim: Then any square with side d contains at most $\ ___$ points of P.

Let P be a set of points such that any two points are at least d away from each other.

Claim: Then any square with side d contains at most $\ \ \ \, 4$ points of P.

The new merge

- Traverse the points in P₁' and P₂' in increasing order of their y-coordinate
- Mimic the process of merging P₁' and P₂' in y-order
- Consider the next point p in y-order and let's say it comes from P₁'
 - p will check only the points in P_2' above it (following it in y-order) that are within d //There can be at most 4 subsequent points in P_2 ' that are within d from p.

closestPair(P)

//divide

- find vertical line I that splits P in half
- let P_1 , P_2 = set of points to the left/right of line
- $d_1 = closestPair(P_1)$
- $d_2 = closestPair(P_2)$

//refined merge

- let $d = min\{d_1, d_2\}$
- for all p in $P_{1:}$ if $x_p > x_l$ d: add p to Strip1
- for all p in $P_{2:}$ if $x_p < x_1 + d$: add p to Strip2
- sort Strip1, Strip2 by y-coord
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
 - compute its distance to the 4 points that come after it on the other side of the strip
 - if any of these is smaller than mindist, update mindist
- return min{d1, d2, mindist}

Can we do better?

We'd love to get rid of the extra Ig n

Refining the refined merge

- Instead of sorting inside every merge, we'll pre-sort P once at the beginning
 - sort by x-coord: PX note: sorting by x is not necessary but practical
 - sort by y-coord: PY...

closestPair(PX, PY)

These sorted list will be maintained through the recursion

Refining the refined merge

closestPair(PX, PY)

//divide

- find vertical line L that splits P in half
- let P₁, P₂ = set of points to the left/right of line <— We need to get P1X, P1Y, P2X, P2Y
- $d_1 = closestPair(P_1)$ closestPair(P1X, P1Y)
- d₂ = closestPair(P₂) closestPair(P2X, P2Y)

//merge

• let $d = \min\{d_1, d_2\}$

- Traverse P1Y: if $x_p > x_L-d$: add p to Strip1
- for all p in P_1 : if $x_p \rightarrow x_l d$: add p to Strip1
- for all p in P₂: if x_p < x₁ + d: add p to Strip2
- sort Strip1, Strip2 by y-coord //Strip1, Strip2 are y-sorted!
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
 - compute its distance to the 5 points that come after it on the other side of the strip
 - if any of these is smaller than mindist, update mindist
- return min{d1, d2, mindist}

Analysis: $T(n) = 2T(n/2) + O(n) \Longrightarrow O(n \lg n)$

Hooray!

Almost there...

- A few more details to think about
 - We have PX, PY
 - We need to:
 - Find the vertical line that splits P in half.
 - Get P1X, P2X.
 - Get P1Y, P2Y.