- (1	\mathbf{OD}	
- 44	UKŁ	

b.	Find the number of integers between 1 and 500 both inclusive that are not	12	
	divisible by 7, 3 or 5.		

- 30. a.i. Without using truth tables, prove that $(\exists p \lor q) \land (p \land (p \land q)) \equiv p \land q$.
 - ii. Show that $(a \lor b)$ can be logically derived from the premises $(a \lor b)$ can be $(a \lor b)$ and $(a \lor b)$ and $(a \lor b)$.

(OR)

b. Using rules of inference show that the following set of premises is 12 inconsistent.

If Rama gets his degree, he will go for a job
If he goes for a job, he will get married soon
If he goes for higher study, he will not get married
Rama gets his degree and goes for higher study

- 31. a.i. Prove that the intersection of two sub groups of a group G is also a subgroup of G. Give an example to show that the union of two sub groups of G need not be a sub group of G.
 - ii. If R and C are additive groups of real and complex numbers respectively and if the mapping $f: C \to R$ is defined by f(x+iy) = x. Show that f is a homomorphism.

b. Find the code words generated by the encoding function $e: B^2 \to B^5$ with

respect to the parity check matrix $H = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

32. a. Find the minimum spanning tree for the weighted graph using Kruskal's 12 3 5 2 algorithm. Also determine the minimum total weight.

(OR)

b.i. Determine whether the following graphs are isomorphic

ii. Prove that an undirected graph is a tree, if and only if, there is a unique path 4 3 5 2 between every pair of vertices.

Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2023

Fifth Semester

18MAB302T - DISCRETE MATHEMATICS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

3 2 2

3 3 2

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3 hours

Max. Marks: 100

Marks BL CO PO

1 2 1 2

1 2 1 2

1 2 1 2

1 2 2 2

$PART - A (20 \times 1 = 20 Marks)$

Answer **ALL** Questions 1. $(A-C) \cap (C-B)$ is

1 2 1 1

(A) A

(B) $(A \cup B) \cap C$

(C) \(\varphi \)

- (D) C
- 2. If $A=\{1,2,3\}$ and R is a relation on A given by a+b=even then R is
 - (A) $\{(1,1)(1,3)(2,2)(3,1)\}$
- (B) $\{(1,3)(2,2)(3,1)\}$
- (C) $\{(1,1)(1,3)(2,2)(3,1)(3,3)\}$
- (D) $\{(1,1)(2,2)(3,3)\}$
- 3. If $S=\{1,2,3,4,5\}$ and if the functions $f,g:S\to S$ then fog is
 - (A) $\{(1,4)(2,3)(3,2)(4,1)(5,2)\}$ (B) $\{(1,4)(2,3)(3,2)(5,5)(4,2)\}$
 - (C) $\{(1,4)(3,2)(5,5)(2,4)(4,2)\}$
- (B) {(1,4) (2,3) (3,2) (5,5) (4,2)} (D) {(1,4) (2,3) (3,2) (4,1) (5,5)}
- 4. If $A=\{1,2,3\}$ such that $(a,b)\in R$ if a+b=even then $M_{R^{-1}}$

	(-).	-,- ,	20012 02200 (01,0)					R
(A)	$\lceil 1$	0	1		(B)	[1	1	1
	0					0	0	0
	1	0	1			0	0	1
(C)	$\lceil 1$	0	1]	(*)	(D)	[1	0	1.
	0	0	1	•		1	1	0

- 5. In how many ways can 6 boys and 4 girls sit if the girls are to sit together?
 - (A) 6! 4! Ways

1 0 1

(B) 7! 4! Ways

1 0 1

(C) $2\times6!$ Ways

- (D) 2×4! Ways
- 6. In the generalization of a pigeonhole principle if the n pigeons are 1 2 2 1 accommodated in 'm' holes then
- (A) n≤m

(B) n≥m

(C) n<m

(D) n>m

3 5 2

7.	If no distinction is made between clothen the number of different circular (A) $(n-1)!$ (C) $(n+1)!$	ekwise and counter clockwise direction, arrangements is (B) $\frac{1}{2}(n-1)!$ (D) $(n-2)!$	1	2	2	2		18.	A circuit of a graph G is called circuit if it includes each edge of G exactly once (A) Hamiltonian (B) Eulerian (C) Simple graph (D) Tree	2	2 5	5
8.	If n>1 is a composite number and p in (A) $p \le \sqrt{n}$		1	2	2	2		19.	A tree with 'n' vertices hasedges (B) nP_2 (C) $n-1$ (D) $n!$	2	2 5	5
	(C) $p \ge \sqrt{n}$	(D) $p \ge n$									_	_
9.	$(p \rightarrow q) \lor (p \rightarrow r)$ is equivalent to		1	2	3	2		20.	The chromatic number of a cycle with even length is (A) 1 (B) 2		2 5)
	(A) $p \rightarrow (q \land r)$	(B) $q \rightarrow p$							(C) 3 (D) 4			
	(C) $p \rightarrow q$	(D) $p \rightarrow (q \lor r)$							$PART - B (5 \times 4 = 20 Marks)$			
10.	$p \rightarrow q$ is logically equivalent to		1	2	3	2	3	21	Answer ANY FIVE Questions Market	ks B	EL C	.O F
10.	(A) $\exists p \to \exists q$	(B) $\neg q \rightarrow p$						21.	If f,g,h:R \rightarrow R are defined by $f(x)=x^2-4x$, $g(x)=\frac{1}{x^2+1}$ and $h(x)=x^4$, ,	1
	(C) $\neg p \land q$	(D) $\neg p \lor q$							find $(fo(goh))x$ and $((fog)oh)x$.			
11.	The of a proposition is ger "if, then" at the place.	erally formed by introducing the word	1	2	3	1		22.	How many positive integers n can be formed using the digits 3, 4, 4, 5, 5, 6,	3	3 :	2
	(A) Conjunction	(B) Disjunction							7 if n has to exceed 50,00,000.		50	
	(C) Negation	(D) Conditional				€.		23.	Construct truth table to determine the following compound proposition ⁴	3	3 3	3 :
12.	What is the contrapositive the follow (A) I stay if you go.	ing assertion? I stay only if you go. (B) If you do not go then I do not	1	2	3	2			$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$			
	(C) If I stay then you go	stay (D) If you do not stay then I go						24.	Prove that every cyclic group is abelian.	3	3 4	Ŧ
	(C) If I stay then you go	(D) If you do not stay then I go						25.	Show that in an undirected graph with 'e' edges, $\sum \deg(v_i) = 2e$.	3	3 5	5
13.	In a group $G=\{1, -1, i, -i\}$ under mu		1	2	4	2			i			
	(A) 4							26			,	
1.4	(C) 2	(D) 1	·*	2	4	2		26.	Draw Hasse diagram for the partial ordering " $x \le y \Leftrightarrow x$ divides y " on $s = \{1, 2, 3, 4, 6, 8, 12\}$,	3	3 1	1
14.	In the cyclic group $G=\{1,-1, i, -i\}$ us (A) $\{1, i\}$		1	2	4	2						
	(A) $\{1, 1\}$ (C) $\{-1, i\}$	(B) $\{1, -i\}$ (D) $\{i, -i\}$						27.	If we select 10 points in the interior of an equilateral triangle of side 1, show that there must be at least 2 points whose distance is less than 1/3.	3	3 2	Ž
15.	Every finite integral domain is	(D) A C 11	1	2	4	2			$PART - C (5 \times 12 = 60 \text{ Marks})$			
	(A) A ring(C) A commutative ring	(B) A field (D) A monoid							Answer ALL Questions Marks	s B	L C	CO P
	(C) It commutative img	(D) A monoid						28. a.	If $A = \{1,2,3,4,5\}$ and R is the relation on A defined by $R\{(1,2),(2,1),(2,3)\}$	3	3 1	1
16.	group homomorphism if for all a, b		1	2.	4	2			(3,4) (4,2) (4,4) (5,1) (5,5)}. Find the transitive closure of R using Warshall's algorithm.			
	(A) $f(a*b) = f(a) + f(b)$	(B) $f(a*b) = f(a)$							(OR)			
t	(C) $f(a*b)=f(b)$	(D) $f(a*b) = f(a)\Delta f(b)$						b.	If $f: A \to B$ and $g: B \to C$ are invertible functions, then $g \circ f: A \to C$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.	3	3 1	1
17.	A graph in which parallel edges are a	llowed is called	1	2	5	1			(80)) 50			
	(A) Pseudo graph(C) Simple graph	(B) Multi graph(D) Null graph						29. a.	Use the Euclidean algorithm to find gcd(512,320) and express the gcd as a linear combination of m, n of the given numbers and also find m and n.	3	3 2	2