

Superficie de Enneper

Elder Guzmán

Geometría Diferencial

31 de mayo de 2023

Universidad del Valle de Guatemala

Alfred Enneper

Alfred Enneper

Alfred Enneper fue un matemático alemán nacido en Barmen el 14 de Junio del año 1830. Enneper obtuvo su PhD bajo la supervisión de Dirichlet en *Georg August University of Göttingen* en 1856 por su trabajo sobre funciones con argumentos complejos. En 1863, Enneper trabajó junto a Karl Weierstrass estudiando las superficies mínimas y desarrollaron una clase de parametrización.

Enneper y **Weierstrass** mientras estudiaban las superficies mínimas desarrollaron esta parametrización.

Enneper y **Weierstrass** mientras estudiaban las superficies mínimas desarrollaron esta parametrización.

• f y g son funciones en todo el plano complejo o en el disco unitario.

Enneper y **Weierstrass** mientras estudiaban las superficies mínimas desarrollaron esta parametrización.

- f y g son funciones en todo el plano complejo o en el disco unitario.
- Las funciones f es meromorfa y g es analítica, de tal manera que fg^2 es holomorfa.

Enneper y **Weierstrass** mientras estudiaban las superficies mínimas desarrollaron esta parametrización.

- f y g son funciones en todo el plano complejo o en el disco unitario.
- Las funciones f es meromorfa y g es analítica, de tal manera que fg^2 es holomorfa.
- $x_k(\xi) = \mathcal{R}\left\{\int_0^{\xi} \phi_k(z)dz\right\} + c$, k = 1,2,3

Enneper y **Weierstrass** mientras estudiaban las superficies mínimas desarrollaron esta parametrización.

- f y g son funciones en todo el plano complejo o en el disco unitario.
- Las funciones f es meromorfa y g es analítica, de tal manera que fg^2 es holomorfa.

•
$$x_k(\xi) = \mathcal{R}\left\{\int_0^{\xi} \phi_k(z)dz\right\} + c$$
, $k = 1,2,3$

- $\phi_1 = f(1-g^2)/2$
- $\phi_2 = if(1+g^2)/2$
- $\phi_3 = fg$

La superficie (x_1, x_2, x_3) es mínima.

Superficie de Enneper

Superficie de Ennneper

Elder Guzmán (Universidad del Valle de Guatemala)

Usemos la parametrización de Enneper–Weierstrass con f=1 y g=z.

Usemos la parametrización de Enneper–Weierstrass con f=1 y g=z. Entonces los ϕ quedan de la siguiente forma:

$$\phi_1 = 1(1-z^2)/2 = \frac{1-z^2}{2}$$
 $\phi_2 = \mathbf{i}f(1+z^2)/2 = \frac{1+z^2}{2}\mathbf{i}$
 $\phi_3 = z$

$$x_1(z) = \mathcal{R}\left\{\int_0^z \frac{1-\xi^2}{2} d\xi\right\} = \mathcal{R}\left\{-\frac{1}{6}z(-3+z^2)\right\}$$

$$x_1(z) = \mathcal{R}\left\{\int_0^z \frac{1-\xi^2}{2} d\xi\right\} = \mathcal{R}\left\{-\frac{1}{6}z(-3+z^2)\right\}$$

$$x_2(z) = \mathcal{R}\left\{\int_0^z \frac{1+\xi^2}{2} \mathbf{i} d\xi\right\} = \mathcal{R}\left\{\frac{\mathbf{i}}{6}z(3+z^2)\right\}$$

$$x_1(z) = \mathcal{R}\left\{\int_0^z \frac{1-\xi^2}{2} d\xi\right\} = \mathcal{R}\left\{-\frac{1}{6}z(-3+z^2)\right\}$$
$$x_2(z) = \mathcal{R}\left\{\int_0^z \frac{1+\xi^2}{2} \mathbf{i} d\xi\right\} = \mathcal{R}\left\{\frac{\mathbf{i}}{6}z(3+z^2)\right\}$$
$$x_3(z) = \mathcal{R}\left\{\int_0^z \xi d\xi\right\} = \mathcal{R}\left\{\frac{1}{2}z^2\right\}$$

Ahora si z = u + vi, obtenemos que:

Ahora si z = u + vi, obtenemos que:

$$x_{1}(u,v) = \frac{-1}{6} \mathcal{R} \left\{ u^{3} + 3u^{2}v\mathbf{i} - 3uv^{2} - v^{3}\mathbf{i} - 3u - 3v\mathbf{i} \right\}$$

$$x_{2}(u,v) = \frac{1}{6} \mathcal{R} \left\{ \mathbf{i}u^{3} - 3u^{2}v - 3uv^{2}\mathbf{i} + v^{3} + 3u\mathbf{i} - 3v \right\}$$

$$x_{3}(u,v) = \frac{1}{2} \mathcal{R} \left\{ u^{2} + 2uv\mathbf{i} - v^{2} \right\}$$

Por lo que finalmente obtenemos:

Por lo que finalmente obtenemos:

$$x_1(u, v) = \frac{1}{6} (-u^3 + 3uv^2 + 3u)$$

$$x_2(u,v) = \frac{1}{6} (v^3 - 3vu^2 - 3v)$$

$$x_3(u,v) = \frac{1}{2}(u^2 - v^2)$$

Modificando un poco las parametrizaciones, obtenemos:

$$\mathbf{x}(u,v) = \left(u - \frac{u^3}{3} + uv^2, \frac{v^3}{3} - vu^2 - v, u^2 - v^2\right)$$

Modificando un poco las parametrizaciones, obtenemos:

$$\mathbf{x}(u,v) = \left(u - \frac{u^3}{3} + uv^2, \frac{v^3}{3} - vu^2 - v, u^2 - v^2\right)$$

Otra parametrización de esta superficie se da en polares, con lo que obtenemos:

$$\mathbf{x}(r,\theta) = \left(r\cos\theta - \frac{r^3}{3}\cos 3\theta, r\sin\theta + \frac{r^3}{3}\sin 3\theta, r^2\cos 2\theta\right)$$

Propiedades

• Es una superficie que se auto-intersecciona.

Propiedades

- Es una superficie que se auto-intersecciona.
- Se tiene que:
 - $J = (1 + u^2 + v^2)^4/81$
 - $K = \frac{-4}{9J}$
 - H = 0

Propiedades

- Es una superficie que se auto-intersecciona.
- Se tiene que:

•
$$J = (1 + u^2 + v^2)^4/81$$

- $K = \frac{-4}{9J}$
- H = 0
- Osserman probó que una superficie minimal en \mathbb{R}^3 con una curvatura total de -4π es el catenoide o la superficie de Enneper.