近世代数作业3

cycleke

November 23, 2020

Contents

1	· 课后习题														2												
	1.1	第一题																									2
	1.2	第二题																									2
	1.3	第三题																									2
	1.4	第四题																									
	1.5	第五题																									-
	1.6	第六题																									
	1.7	第七题																									
	1.8	第八题																									
	1.9	第九题																									
	1.10	第十题																									_

1 课后习题

1.1 第一题

证明 首先证明 (S, \circ) 是一个代数系,即 \circ 在 S 上封闭。

$$\forall (a, b), (c, d) \in S$$

$$(a, b) \circ (c, d) = (ac, ad + b)$$

$$\therefore a, c \neq 0, a, b, c, d \in R$$

$$\therefore ac \neq 0, ac, ad + b \in R$$

$$\therefore (ac, ad + b) \in S$$

再证明 (S, \circ) 是一个半群。

$$\forall (a,b), (c,d), (e,f) \in S$$
 $((a,b) \circ (c,d)) \circ (e,f) = (ac,ad+b) \circ (e,f)$
 $= (ace,acf+ad+b)$
 $(a,b) \circ ((c,d) \circ (e,f)) = (a,b) \circ (ce,cf+d)$
 $= (ace,acf+ad+b)$
 $\therefore ((a,b) \circ (c,d)) \circ (e,f) = (a,b) \circ ((c,d) \circ (e,f))$

又有

$$\forall (a,b) \in S, (1,0) \circ (a,b) = (a,b), (\frac{1}{a}, -\frac{b}{a}) \circ (a,b) = (1,0)$$
 所以 (S,o) 是群。

1.2 第二题

证明

$$(ab)^{2} = a^{2}b^{2}$$

$$\therefore abab = aabb$$

$$\Rightarrow a^{-1}abab = a^{-1}aabb \Rightarrow bab = abb$$

$$\Rightarrow babb^{-1} = abbb^{-1} \Rightarrow ba = ab$$

$$\therefore ab = ba$$

1.3 第三题

证明 因为 $\forall a \in G, a^2 = e$,又因为 G 是群,所以 $a^{-1} = a$ 。

$$\forall a, b \in G, ab = (ab)^{-1}$$

= $b^{-1}a^{-1}$

$$= (b^{-1})^{-1} (a^{-1})^{-1}$$
$$= ba$$

所以 G 是交换群。

1.4 第四题

证明 设 G 是四阶群,则设 $G = \{e, a, b, c\}$ 。若 G 不是交换群,不妨 $ab \neq ba$ 。显然 $ab \neq a, ab \neq b, ba \neq a, ba \neq b$,所以可以设 ab = c, ba = e。因为 G 是一个群,进而有 $b = a^{-1} \Rightarrow ab = e$,这与 ab = c 矛盾,所以 ab = ba。同理可以推出其它的交换成立,所以 G 是一个交换群。

1.5 第五题

证明 设该群为 G,若 $\exists a \in G, |a| \ge 3$,则 $a \ne a^{-1}$ (否则 $a^2 = e \Rightarrow |a| = 2$)。所以 $aa^{-1} = a^{-1}a = e$ 。

若 $\not\exists a \in G, |a| \ge 3$,即 $\forall a \in G, |a| \le 2 \Rightarrow \forall a \in G, a^2 = e$ 。由第三题的证明可知,可以证明 G 是一个交换群,这与题设矛盾。

综上所述, 命题得证。

1.6 第六题

证明 设 G 是一个有限群,对于所有的 $\forall a \in G, s.t. |a| = 2$ 有 $a^2 = e \iff a = a^{-1}$ 。 由于 a 与 a^{-1} 同阶,所以 $\forall a \in G, s.t. |2| > a$ 有 $|a| \neq |a^{-1}|, |a^{-1}| = |a| > 2$,所以有限群里阶大于 2 的元素的个数必为偶数。

1.7 第七题

证明 由第六题知,可以知在偶数阶群中,阶大于 2 的元素为偶数个,所以阶小于等于 2 的元素为偶数个。又有 |e|=1,所以偶数阶群里阶为 2 的元素的个数必为奇数。

1.8 第八题

证明 由第七题知,可以知在偶数阶群中,偶数阶群里阶为2的元素的个数必为奇数。有因为偶数阶群里阶为2的元素的个数非负,所以偶数阶群里至少有一个阶为2的元素。

1.9 第九题

证明 设 $b_0 = e, b_i = \prod_{j=1}^i a_j, i = 1, 2, ..., n$, 由抽屉原理有 $\exists i, j \in 0, 1, ..., n, i < j, b_i = b_j$ 。

$$e \circ a_1 \circ a_2 \circ \ldots \circ a_i = e \circ a_1 \circ a_2 \circ \ldots \circ a_j$$

 $a_1 \circ a_2 \circ \ldots \circ a_i = a_1 \circ a_2 \circ \ldots \circ a_j$

$$a_2 \circ \ldots \circ a_i = a_2 \circ \ldots \circ a_j$$

$$\vdots$$

$$e = a_{i+1} \circ a_{i+2} \circ \ldots \circ a_j$$

所以
$$\begin{cases} p = i+1 \\ q = j \end{cases}$$
 。

1.10 第十题

证明 设 l = [m, n], |ab| = k,则因为 ab = ba

$$(ab)^{l} = a^{l}b^{l}$$

$$= a^{m\frac{l}{m}}b^{n\frac{l}{n}}$$

$$= e$$

有因为 |ab|=k,所以 $k \leq l$,若 $k \nmid l$,则 $l=pk+q, p, q \in \mathcal{N}^+, 1 \leq q < k$ 。

$$(ab)^{l} = a^{l}b^{l}$$

$$= a^{pk}a^{q}b^{pk}b^{q}$$

$$= a^{q}b^{q}$$

$$= (ab)^{q} \neq e$$

发生矛盾,所以 $k \mid l$ 。

当 (n,m) = 1 时,ab 的阶为 mn。