$\operatorname{Mod}/\operatorname{Div}$ Turing Machine

Individual Coursework F29FB, Spring 2022

SUBMITTED BY

H00347035

1 Graph

2 Mathematical Notation

 $s_0 \equiv \land, s_1 \equiv 1, s_2 \equiv A, s_3 \equiv B, s_4 \equiv H$

```
M_g = \{
((q_0, s_0) \to (q_f, s_4, 0)),
((q_0, s_1) \to (q_{30}, s_1, R)),
((q_1, s_1) \to (q_1, s_1, R)),
((q_1, s_0) \to (q_2, s_0, L)),
((q_{30}, s_1) \rightarrow (q_{30}, s_1, R)),
((q_{30}, s_0) \to (q_1, s_0, R)),
((q_2, s_0) \to (q_7, s_0, L)),
((q_2, s_1) \to (q_3, s_0, L)),
((q_3, s_1) \to (q_3, s_1, L)),
((q_3, s_0) \to (q_4, s_0, L)),
((q_4, s_1) \to (q_4, s_1, L)),
((q_4, s_0) \to (q_5, s_0, L)),
((q_5, s_1) \to (q_5, s_1, L)),
((q_5, s_0) \to (q_6, s_1, R)),
((q_6, s_1) \to (q_6, s_1, R)),
((q_6, s_0) \to (q_{30}, s_0, R)),
((q_7, s_1) \to (q_7, s_1, L)),
((q_7, s_0) \to (q_8, s_0, L)),
((q_8, s_1) \to (q_8, s_1, L)),
((q_8, s_0) \to (q_9, s_0, R)),
((q_9, s_1) \to (q_{10}, s_1, 0)),
((q_9, s_0) \to (q_{10}, s_0, R)),
((q_{10}, s_1) \to (q_{11}, s_0, R)),
((q_{10}, s_0) \to (q_{18}, s_0, R)),
((q_{11}, s_1) \to (q_{11}, s_1, R)),
((q_{11}, s_0) \to (q_{12}, s_0, R)),
((q_{12}, s_1) \to (q_{12}, s_1, R)),
((q_{12}, s_2)) \rightarrow (q_{12}, s_2), R),
((q_{12}, s_3)) \rightarrow (q_{13}, s_3), L)),
((q_{12}, s_0) \to (q_{13}, s_0, L)),
((q_{13}, s_0) \to (q_{13}, s_0, L)),
((q_{13}, s_2)) \to (q_{13}, s_2), L)),
((q_{13}, s_1) \to (q_{14}, s_2), L)),
((q_{14}, s_0) \to (q_{15}, s_0, R)),
((q_{14}, s_1) \to (q_{16}, s_1, L)),
((q_{15}, s_2)) \rightarrow (q_{15}, s_1, R)),
((q_{15}, s_3)) \rightarrow (q_{15}, s_3), R)),
((q_{15}, s_0) \rightarrow (q_{16}, s_3), L)),
```

```
((q_{16}, s_1) \to (q_{16}, s_1, L)),
((q_{16}, s_3)) \rightarrow (q_{16}, s_3), L)),
((q_{16}, s_0) \to (q_{17}, s_0, L)),
((q_{17}, s_1) \to (q_{17}, s_1, L)),
((q_{17}, s_0) \to (q_{10}, s_0, R)),
((q_{18}, s_1) \to (q_{18}, s_0, R)),
((q_{18}, s_3)) \rightarrow (q_{18}, s_1, R)),
((q_{18}, s_2)) \rightarrow (q_{20}, s_1, R)),
((q_{18}, s_0) \to (q_{19}, s_0, L)),
((q_{19}, s_1) \to (q_{19}, s_1, L)),
((q_{19}, s_0) \to (q_f, s_0, 0)),
((q_{20}, s_2)) \to (q_{20}, s_1, R)),
((q_{20}, s_3)) \to (q_{21}, s_0, R)),
((q_{20}, s_0) \to (q_{23}, s_0, L)),
((q_{21}, s_3)) \to (q_{21}, s_1, R)),
((q_{21}, s_0) \to (q_{22}, s_1, L)),
((q_{22}, s_1) \to (q_{22}, s_1, L)),
((q_{22}, s_0) \to (q_{23}, s_0, L)),
((q_{23}, s_1) \to (q_{23}, s_1, L)),
((q_{23}, s_0) \to (q_f, s_0, R)),
```

3 Input (3, 5)

(i) The TM starts by checking if the (ii) head starts atA∧ (blank) then the divisor is 0 and the ticket is invalidated and the TM halts. Otherwise the divisor isAnatural number and goes to the next state. Go to the rightmost of the unary until we reach Ablank.

```
q_0: \land \land \land @111 \land 111111 \land \land \land
```

(iii) Check if there is Aunary and go to (iv) the rightmost of the said unary.Otherwise (if blank, ∧) then go to DIV/MOD part of TM.

```
\begin{array}{l} q_1 \colon \land \land \land 111 \land @11111 \land \land \land \\ q_1 \colon \land \land \land 111 \land 1@1111 \land \land \land \\ q_1 \colon \land \land \land 111 \land 11@111 \land \land \land \\ q_1 \colon \land \land \land 111 \land 111@11 \land \land \land \\ q_1 \colon \land \land \land 111 \land 1111@1 \land \land \land \\ q_1 \colon \land \land \land 111 \land 1111@1 \land \land \land \end{array}
```

Once at the rightmost of the unary and check if there is Aunary number, move it to the leftmost of the divisor and go back to (ii). Otherwise (if blank) copying is done and go to the leftmost of the divisor then starts the mod/div operation.

```
\begin{array}{l} q_2 \colon \wedge \wedge \wedge 111 \wedge 1111 @ 1 \wedge \wedge \wedge \\ q_3 \colon \wedge \wedge \wedge 111 \wedge 111 @ 1 \wedge \wedge \wedge \\ q_3 \colon \wedge \wedge \wedge 111 \wedge 111 @ 11 \wedge \wedge \wedge \\ q_3 \colon \wedge \wedge \wedge 111 \wedge 11 @ 111 \wedge \wedge \wedge \\ q_3 \colon \wedge \wedge \wedge 111 \wedge 1 @ 111 \wedge \wedge \wedge \\ q_3 \colon \wedge \wedge \wedge 111 @ \wedge 111 \wedge \wedge \wedge \wedge \\ q_4 \colon \wedge \wedge \wedge 111 @ \wedge 111 \wedge \wedge \wedge \wedge \\ q_4 \colon \wedge \wedge \wedge 11 @ 1 \wedge 111 \wedge \wedge \wedge \wedge \\ q_4 \colon \wedge \wedge \wedge 1 @ 11 \wedge 111 \wedge \wedge \wedge \wedge \\ q_4 \colon \wedge \wedge \wedge @ \wedge 111 \wedge 111 \wedge \wedge \wedge \wedge \\ q_5 \colon \wedge @ \wedge \wedge 111 \wedge 111 \wedge \wedge \wedge \\ q_6 \colon \wedge 1 @ \wedge 111 \wedge 111 \wedge \wedge \wedge \\ \end{array}
```

(v) Once copying is done(determined (vi) by iv.), then go to the leftmost of the divisor and start mod/div operation.

```
q_2: \wedge \wedge 11111 \wedge 111@ \wedge \wedge \wedge
q_7: \wedge \wedge 11111 \wedge 1101 \wedge \wedge \wedge
q_7: \wedge \wedge 11111 \wedge 1011 \wedge \wedge \wedge
q_7: \wedge \wedge 11111 \wedge 0111 \wedge \wedge \wedge
q_7: \wedge \wedge 11111 \otimes 111 \wedge \wedge \wedge
q_8: \wedge \wedge 1111 \otimes 111 \wedge \wedge \wedge
q_8: \wedge \wedge 11101 \wedge 111 \wedge \wedge \wedge
q_8: \wedge \wedge 11011 \wedge 111 \wedge \wedge \wedge
q_8: \wedge \wedge 10111 \wedge 111 \wedge \wedge \wedge
q_8: \wedge \wedge 011111 \wedge 111 \wedge \wedge \wedge
q_8: \wedge \otimes 011111 \wedge 011 \wedge \wedge
q_8: \wedge \otimes 011111 \wedge 011 \wedge \wedge
```

Subtract -1 from the leftmost side of the dividend, go to the rightmost side of the divisor and keep track of the subtraction using the character A.

```
\begin{array}{c} q_{10} \colon \land \land @11111 \land 111 \land \land \\ q_{11} \colon \land \land \land @1111 \land 1111 \land \land \\ q_{11} \colon \land \land \land 1@111 \land 1111 \land \land \\ q_{11} \colon \land \land \land 11@11 \land 1111 \land \land \\ q_{11} \colon \land \land \land 111@1 \land 1111 \land \land \\ q_{11} \colon \land \land \land 1111@ \land 1111 \land \land \\ q_{12} \colon \land \land \land 1111 \land @111 \land \land \\ q_{12} \colon \land \land \land 1111 \land 11@1 \land \land \\ q_{12} \colon \land \land \land 1111 \land 11@1 \land \land \\ q_{12} \colon \land \land \land 1111 \land 111@1 \land \land \\ q_{13} \colon \land \land \land 1111 \land 11@1 \land \land \\ q_{14} \colon \land \land \land 1111 \land 11@1 \land \land \\ \end{array}
```

(vii) Go to the leftmost of the dividend (viii) Once the divisor is replaced with and repeat to (vi) until the divisor A's we know it fits once in the is only A. dividend, therefore we replace it

```
\begin{array}{c} q_{16} \colon \wedge \wedge \wedge 1111 \wedge @11A \wedge \wedge \\ q_{16} \colon \wedge \wedge \wedge 1111@ \wedge 11A \wedge \wedge \\ q_{17} \colon \wedge \wedge \wedge 111@1 \wedge 11A \wedge \wedge \\ q_{17} \colon \wedge \wedge \wedge 11@11 \wedge 11A \wedge \wedge \\ q_{17} \colon \wedge \wedge \wedge 1@111 \wedge 11A \wedge \wedge \\ q_{17} \colon \wedge \wedge \wedge @1111 \wedge 11A \wedge \wedge \\ q_{17} \colon \wedge \wedge \otimes \wedge 1111 \wedge 11A \wedge \wedge \\ q_{17} \colon \wedge \wedge @ \wedge 1111 \wedge 11A \wedge \wedge \end{array}
```

Once the divisor is replaced with A's we know it fits once in the dividend, therefore we replace it with 1s again and add AB at the rightmost point of the divisor (indicates our quotient) then we go to the leftmost of the dividend and repeat the process (back to vi) until we can no longer subtract.

```
q_{14}: \wedge \wedge 11@ \wedge AAA \wedge \wedge

q_{15}: \wedge \wedge 11 \wedge @AAA \wedge \wedge

q_{15}: \wedge \wedge 11 \wedge 1@AA \wedge \wedge

q_{15}: \wedge \wedge 11 \wedge 11@A \wedge \wedge

q_{15}: \wedge \wedge 11 \wedge 111@A \wedge \wedge

q_{16}: \wedge \wedge 11 \wedge 111@1B \wedge \wedge

q_{16}: \wedge \wedge 11 \wedge 1@11B \wedge \wedge

q_{16}: \wedge \wedge 11 \wedge @111B \wedge \wedge

q_{16}: \wedge \wedge 11 \otimes 111B \wedge \wedge

q_{17}: \wedge \wedge 1@1 \wedge 111B \wedge \wedge

q_{17}: \wedge \wedge @11 \wedge 111B \wedge \wedge

q_{17}: \wedge \otimes 11 \wedge 111B \wedge \wedge

q_{17}: \wedge \otimes 11 \wedge 111B \wedge \wedge
```

(ix) We then discard of any left over (x) 1s, and convert any As to ones, then we take the leftmost B, turn it into a blank and move it to the rightmost as a 1, while moving to the rightmost we turn any B's to 1s.

We then move the leftmost of the reminder.

```
End result: q_f: \wedge @1 \ 1 \wedge 1
```