

AD-A130 464

IGNITION DELAY TIMES OF PROPENE-OXYGEN-ARGON MIXTURES
(U) TECHNION - ISRAEL INST OF TECH HAIFA DEPT OF
AERONAUTICAL ENGINEERING A BURCAT ET AL. MAR 83

1/1

UNCLASSIFIED

TAE-503

F/G 7/3

NL

END

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

W. A. L. B. C. S. S. S.

2

**הטכניון מכון טכנולוגי לישראל
הפקולטה להנדסה אזרחית**

TECHNION Israel Institute of Technology
Department of Aeronautical Engineering

March 1983

TAE No. 503

Ignition Delay Times of Propene Oxygen Argon Mixtures

by

Alexander Burcat and Josef Levitas

Add 216

MARCH 1983

IGNITION DELAY TIMES OF PROPENE OXYGEN
ARGON MIXTURES

by

Alexander Burcic and Josef Levitas

Department of Aeronautical Engineering
Technion - Israel Institute of Technology
Haifa, Israel

TAE No. 503

Accession For	
PCIS	GRA&I
DATA TAB	<input type="checkbox"/>
TRANSMITTED	<input type="checkbox"/>
Distribution/ <i>Letter on file</i>	
Availability Codes	
AVAIL AND/OR PST	Special
A	

ABSTRACT

The ignition delay times of Propene Oxygen Argon mixtures were measured in a shock tube. The concentrations ranged from 0.6% to 1.6% C₃H₆ and 2.7% to 14.4% oxygen. The initial pressures were 50 to 133 torr, and the temperatures achieved were 1274 - 1848 K.

The overall ignition delay equation for Propene Oxygen Argon mixtures has a value of

$$\tau = 5.3 \times 10^{-14} \exp[(37.5 \times 10^3)/RT] [C_3H_6]^{0.23} [O_2]^{-1.12} [Ar]^0 \text{ sec}$$

A kinetic scheme for the oxidation of propene is proposed. \mathcal{E}

INTRODUCTION

Propene is an important raw material in the production of polypropylene plastics. It was also found to be an intermediate in the decomposition of propane [1], the first step to occur by spontaneous thermal dehydrogenation. The decomposition was also found to occur in considerable quantities before any oxidation starts in the ignition process of propane [2].

When measuring the ignition delay time of propane [2,3], it is completely unclear whether the correlation found is that of propane or that of propane + propene + propyne, the latter being a degradation product of propene itself [4].

Thus the ignition delay values of propene are very important in elucidating this question.

EXPERIMENTAL

The ignition experiments of propene were performed in a stainless steel shock tube whose diagram is given in Fig. 1. The tube is 50 mm in diameter (two inches) and 4 meters long. The driven section is 2.5 meters long. Mylar diaphragms of different gauges are used. They are burst by the driver's gas pressure. The driver gas used in this study was Airco pure grade helium. Two specially built valves divide the driven section. One of the valves is located in the middle of the tube thus permitting half of the tube to be filled with the reacting mixture while the other half is filled with a matched-impedance neutral mixture or argon.

The second valve allows separation of the end block of the shock tube from the main instrument in order to extract gas samples from the tube for analysis. The shock speed is measured near the end block over a distance of 200 mm by two piezoelectric gauges connected to a HP 3400 counter with a

resolution of ± 0.1 μ sec. The pressure is measured by a Kistler 603A piezoelectric gauge mounted into the end plate. A home made thin platinum heat transfer gauge is also mounted near the end plate of the shock tube.

The gases used were Matheson Propylene C.P. 99.0% pure, I.B. Miller Oxygen 99.5% pure and 99.9% pure argon.

Gas mixtures were prepared manometrically in stainless steel cylinders using a high pressure manifold. They were left overnight to mix before use. All mixtures used are listed in Table I.

The reflected shock temperatures were calculated using the standard conservation equations and the ideal gas equation of state, assuming frozen chemistry. The enthalpies of propylene were recalculated at the proper temperature range using statistical methods [5] and well determined spectroscopic data [6]. They were published elsewhere [7]. Oxygen and argon thermodynamic properties were taken from thermodynamic tables [8,9].

RESULTS AND DISCUSSION

As shown in Table I 6 propylene - oxygen - argon mixtures were used for the seven series of experiments for a total of 118 shocks. The mixtures were prepared in such a way as to permit direct deliniation of the power dependencies of the reactants in the assumed ignition delay equation

$$\tau = 10^{-x} \exp(+E/RT) [C_3H_6]^a [O_2]^b [Ar]^c \text{ sec}$$

In each of the performed shocks, the exact mixture and initial pressure were known. The recorded post shock experimental properties were the reflected temperature T_5 , the density ratio ρ_1/ρ_5 and the ignition delay time τ . The experiments were spread over the temperature range in such a way as to permit maximum sensitivity to the determination of the so called "activation energy".

Figure 2 represents series A, B and C in a $\log \tau$ vs $1/T_5$ graph.

Mixtures B and C have a threefold difference in the argon concentration (normalized for density ratio differences). The experiments show a large scatter and a mixture of the data of the two series, suggesting negligible or very small argon power dependency.

Figure 3 represents the $\log \tau$ vs $1/T_5$ for series D and E. The distance among the two lines is very small, approximately 0.08 $\log \tau$ units.

Therefore, the propene power dependency should be:

$$\log \tau_E = a \log (0.8\% C_3H_6) + b \log (7.2\% O_2) + c \log A$$

$$\log \tau_D = a \log (4 \times 0.8\% C_3H_6) + b \log (7.2\% O_2) + c \log A$$

subtracting τ_E from τ_D and disregarding the small differences in argon concentration

$$\log (\tau_E - \tau_D) = a \log 4$$

$$a = \frac{\log (\tau_E - \tau_D)}{\log 4} = \frac{0.08}{0.6} = 0.138$$

Figure 4 represents groups F and G on a $\log \tau$ vs $1/T_5$ graph. As explained above the oxygen dependency can also be evaluated from the graph and it is found that $b = -1.33$.

Figure 5 represents the overall plot of $\log \tau$ vs $1/T$ for a maximum acceptable spread of 2σ . The correlation was found with a statistical "student-t" program

$$\tau = 5.3 \times 10^{-14} \exp(+ (37150 \pm 1860) / RT) [C_3H_6]^{0.15 \pm 0.08} [O_2]^{-1.12 \pm 0.09} [Ar]^{0.20 \pm 0.198} \text{ sec}$$

This correlation is found with 103 shocks. Using a 3σ correlation with 115 shocks the data found are

$$\tau = 1.9 \times 10^{-14} \exp(+ (37680 \pm 2326) / RT) [C_3H_6]^{0.23 \pm 0.1} [O_2]^{-1.11 \pm 0.12} [Ar]^{0.0} \text{ sec}$$

Table II contains a list of all shocks performed in this study and their pre and post shock parameters.

This investigation should be regarded in the proper perspective and compared with earlier studies on propane and propyne ignition. Burcat et al. [2] have reported the following equation for propane

$$\tau = 4.4 \times 10^{-14} \exp[(42.2 \times 10^3)/RT] [C_3H_8]^{0.57} [O_2]^{-1.22} [Ar]^0 \text{ sec}$$

The findings of this work on propene gives the following value

$$\tau = 5.3 \times 10^{-14} \exp[(37.5 \times 10^{-3})/RT] [C_3H_6]^{0.23} [O_2]^{-1.12} [Ar]^0 \text{ sec}$$

Unpublished results of propyne ignition [10] read approximately

$$\tau \approx 4 \times 10^{-12} \exp[(27.8 \times 10^{-3})/RT] [C_3H_4]^{-0.04} [O_2]^{-0.92} [Ar]^0 \text{ sec}$$

Therefore, the reasoning should be as follows: Earlier studies [1,2] have shown that propene is easily formed during the propane decomposition and that extensive decomposition occurs before oxidation steps start to influence.

The big similarity in ignition delay values of propane and propene suggest that the values measured for propane are really those of a mixture that contains mainly propylene and the propene influence is very great. However, propyne's influence on propane and propene is smaller.

The kinetic scheme of propene ignition should be calculated using earlier propane oxidation schemes [3] and eliminating from them the propane reactions such as the first 13 steps as proposed by Jachimowski [3]. In their place some of the elementary steps proposed recently by Kiefer [11] should be included.

The proposed scheme should include a list of reactions from different sources [3, 10-14]. Table III lists all the proposed scheme and the rate constants found in the literature.

References

- 1) A. Lifshitz, K. Scheller and A. Burcat, "Decomposition of Propane behind Reflected Shock in a Single Pulse Shock Tube", in Recent Development in Shock-Tube Research, D. Bershad, W. Griffith eds. (9th International Shock Tube Symposium), Stanford University Press (1973), 690.
- 2) A. Burcat, A. Lifshitz, K. Scheller and G.B. Skinner, "Shock Tube Investigation of Ignition in Propane-Oxygen-Argon Mixtures", 13th Combustion Symposium (1971), 745.
- 3) A.C. McLain and C.J. Jachimowski, "Chemical Kinetic Modeling of Propane Oxidation Behind Shock Waves", NASA TN D-8501 (1977).
- 4) A. Burcat, "Cracking of Propylene in a Shock Tube", Fuel 54, (1975), 87.
- 5) B.J. McBride and S. Gordon, "Fortran IV Program for Calculation of Thermodynamic Data", NASA TN-D, 4097 (1967).
- 6) J. Chao and B.J. Zwolinski, "Ideal Gas Thermodynamic Properties of Ethylene and Propylene", J. Phys. Chem. Ref. Data 4 (1975, 251.
- 7) A. Burcat, "Thermochemical Data for Combustion Calculations", Technion Aeronautical Reports No. 448 (1982).
- 8) JANAF, "Thermochemical Tables", D.R. Stull and H. Prophet eds. NSRDS-NBS 37 (1971).
- 9) B.J. McBride, S. Heimel, J.G. Ehlers and S. Gordon, "Thermodynamic Properties to 6000 K for 210 Substances Involving the First 18 Elements", NASA SP-3001,(1963).
- 10) A. Burcat, "Kinetics of the Ignition of Fuels in Artificial Air Mixtures. II. The Oxidation of Propyne. Unpublished Results.
- 11) J.H. Kiefer, M.Z. Al-Alami and K.A. Budach, "A Shock Tube Laser-Schlieren Study of Propene Pyrolysis at High Temperatures", J. Phys. Chem. 86, (1982), 808.
- 12) A.G. McLain and C.S.R. Rao, "A Hybrid Computer Program for Rapidly Solving Flowing or Static Chemical Kinetic Problems Involving Many Chemical Species", NASA TM-X 3403 (1976).
- 13) A. Lifshitz, M. Frenklech and A. Burcat, "The Structural Isomerization $\text{CH}_2=\text{CH}_2 \rightarrow \text{CH}_3\text{--CH}$ ", J. Phys. Chem. 79, (1975) 1148.
- 14) G.S. Bahn, "Theoretical Nitric Oxide Production Incidental to Autoignition and Combustion of Several Fuels", NASA CR-2455 (1975).

Table I. Experimental conditions of propylene mixtures.

Series	C ₃ H ₆	Concentrations %	O ₂	Ar	P ₁ ~ torr	Number of experiments	Parameters detected
A	1.6		7.2	91.2	100	16	-
B	1.6		7.2	91.2	50	13	c
C	0.6		7.2	96.7	133	17	c
D	3.2		7.2	89.6	100	17	a
E	0.8		7.2	92.0	100	20	a
F	1.6		14.4	84.0	100	21	b
G	1.6		3.6	94.8	100	14	b

TABLIT II

INCIDENT AND REFLECTED SHOCK PARAMETERS FOR A MIXTURE OF 3 SUBSTANCES.

THE MOLE FRACTION OF C3H6TS IS 0.01600

A

THE MOLE FRACTION OF O2 IS 0.07200

THE MOLE FRACTION OF AR IS 0.91200

No	P1	URTOT TRSF	UREF	TAN	PF(ATM)
1	105.	6.78	1420.8	0.4172	517.0
2	87.	6.71	1402.0	0.4153	629.0
3	87.	6.62	1375.1	0.4125	842.0
4	94.	7.30	1592.2	0.4340	122.0
5	94.	7.61	1704.2	0.4450	70.0
6	94.	6.86	1446.2	0.4190	385.0
7	94.	7.50	1663.3	0.4410	61.0
8	94.	7.04	1505.9	0.4261	213.0
9	94.	7.58	1690.8	0.4466	61.0
10	94.	7.67	1724.5	0.4472	61.0
11	97.	7.28	1536.2	0.4342	77.0
12	97.	7.16	1545.2	0.4301	123.0
13	97.	7.12	1530.3	0.4286	115.0
14	97.	7.34	1605.8	0.4363	113.0
15	97.	7.00	1491.7	0.4246	307.0
16	92.	6.59	1366.0	0.4110	850.0

THE MOLE FRACTION OF C3H6TS IS 0.01600

B

THE MOLE FRACTION OF O2 IS 0.07200

THE MOLE FRACTION OF AR IS 0.91200

No	P1	URTOT TRSF	UREF	TAN	PF(ATM)
17	71.	7.54	1679.0	0.4435	66.6
20	77.	7.30	1522.2	0.4340	246.0
21	89.	7.20	1593.4	0.4350	215.0
23	70.	6.86	1452.4	0.4205	922.0
24	74.	6.63	1376.2	0.4127	1321.0
25	74.	7.53	1672.4	0.4428	122.0
26	49.	7.06	1518.0	0.4273	512.0
27	51.	7.00	1491.7	0.4246	532.5
28	51.	7.18	1540.8	0.4306	399.0
29	51.	7.05	1500.1	0.4261	896.3
30	54.	7.33	1603.1	0.4350	348.0

THE MOLE FRACTION OF C3H6TS IS 0.00600

C

THE MOLE FRACTION OF O2 IS 0.02700

THE MOLE FRACTION OF AR IS 0.96700

No	P1	URTOT TRSF	UREF	TAN	PF(ATM)
1221	140.	6.37	1626.5	0.4612	225.5
1222	123.	6.50	1761.7	0.4750	61.4
1223	133.	6.59	1728.3	0.4722	122.4
1224	131.	6.52	1695.0	0.4688	71.7
1225	134.	6.22	1519.2	0.4537	565.0
1226	136.	6.12	1518.3	0.4492	585.7
1227	136.	6.36	1593.5	0.4576	296.7
1228	138.	6.32	1601.9	0.4585	184.3
1229	135.	6.17	1574.7	0.4512	491.5
1230	135.	6.18	1543.1	0.4512	583.7
1231	130.	6.7	1583.1	0.4850	91.0
1232	130.	6.58	1725.6	0.4712	61.4
1233	129.	6.17	1530.7	0.4518	480.4
1234	133.	6.53	1692.0	0.4692	21.9
1235	128.	6.28	1583.0	0.4565	440.0
1236	138.	6.33	1508.0	0.4592	422.1
1237	135.	6.47	1670.0	0.4660	163.0

Copy available to DTCI does not
permit fully legible reproduction

THE MOLE FRACTION OF C₃H₆T₃ 0.03200

THE MOLE FRACTION OF O₂ TS 0.07200

THE MOLE FRACTION OF AR TS 0.89600

NO	P1	WPTOT	TREF	UPLF	TAB	PF(ATM)
302	04.	7.85	1443.7	0.4096	737.3	4.9237
303	07.	8.26	1547.1	0.4093	215.0	5.1347
304	09.	8.06	1495.6	0.4045	337.9	5.2341
305	09.	8.21	1533.4	0.4060	235.5	5.1632
306	100.	8.10	1522.1	0.4060	245.8	5.1400
307	09.	8.15	1510.9	0.4067	311.3	5.3611
308	100.	7.79	1428.4	0.3981	645.1	4.8622
309	100.	8.12	1511.0	0.4050	276.5	5.3807
310	09.	8.16	1521.0	0.4060	297.0	5.3876
311	100.	8.77	1687.0	0.4220	81.9	6.4601
312	100.	8.05	1493.3	0.4042	400.3	5.4251
313	100.	8.89	1722.8	0.4250	41.0	6.7145
314	100.	8.05	1712.0	0.4241	61.4	6.7760
315	101.	8.01	1750.0	0.4282	20.7	7.0185
316	09.	8.14	1515.4	0.4063	465.9	5.3539
317	100.	8.44	1526.7	0.4138	143.4	5.0088
318	09.	8.52	1618.8	0.4158	143.4	5.0695

THE MOLE FRACTION OF C₃H₆T₃ 0.00800

THE MOLE FRACTION OF O₂ TS 0.67200

THE MOLE FRACTION OF AR TS 0.92000

NO	P1	WPTOT	TREF	UPLF	TAB	PF(ATM)
401	100.	6.46	1453.3	0.4323	604.0	4.0805
405	105.	7.01	1688.3	0.4573	72.0	5.3432
406	100.	6.93	1657.6	0.4530	123.0	5.1310
408	100.	6.80	1602.1	0.4104	123.0	4.7003
409	100.	7.04	1703.0	0.4568	72.0	5.2584
410	101.	6.95	1664.7	0.4548	113.0	5.1250
413	07.	7.20	1772.8	0.4650	31.0	5.4274
414	102.	6.84	1620.3	0.4502	102.0	4.9506
415	100.	6.01	1646.8	0.4530	65.5	4.9860
416	09.	6.57	1515.7	0.4391	235.0	4.3257
417	09.	6.25	1400.0	0.4265	472.0	3.8623
418	102.	6.72	1571.2	0.4151	164.0	4.7254
419	100.	6.41	1456.5	0.4327	409.0	4.0948
420	100.	6.40	1454.4	0.4324	379.0	4.0852
422	101.	6.34	1432.8	0.4301	522.0	4.0259
423	100.	6.22	1392.2	0.4256	901.0	3.8009
425	09.	6.33	1420.8	0.4297	573.0	3.9326
426	100.	6.73	1574.3	0.4450	174.1	4.6439
427	101.	6.44	1465.9	0.4337	471.0	4.1797

COPY provided to DDCI does not
permit further visible reproduction

THE MOLE FRACTION OF C3H6TS 0.01600

THE MOLE FRACTION OF O2 TS 0.14400

THE MOLE FRACTION OF AR TS 0.84000

NO	P1	DRTOT TRFF	URLF	TAB	PF(ATM)
201	.95	7-83 1453-7	0.4120	117.0	4.5019
202	.99	7-51 1474-8	0.4150	136.5	4.8020
203	102	7-68 1525-5	0.4200	117.0	5.2437
204	100	7-45 1458-0	0.4130	273.0	4.7081
205	.99	7-40 1444-2	0.4120	253.5	4.6402
206	.92	7-35 1423-0	0.4105	370.5	4.2303
207	.94	7-62 1507-6	0.4182	136.5	4.0601
208	.98	7-35 1420-0	0.4105	321.5	4.5158
209	.99	7-16 1380-5	0.4055	409.0	4.2945
210	100	7-12 1440-5	0.4124	204.0	4.7159
211	101	7-48 1466-3	0.4142	189.4	4.8570
212	106	7-01 1341-1	0.4015	614.4	4.7732
213	103	7-83 1560-7	0.4244	76.8	5.5522
214	101	7-64 1512-1	0.4187	128.0	5.1153
215	102	8-00 1447-6	0.4218	36.9	5.0552
216	.97	8-03 1631-0	0.4302	71.7	5.5701
217	102	7-73 1530-2	0.4213	62.2	5.3226
218	100	7-38 1439-1	0.4114	225.3	4.6587
219	.99	7-06 1611-0	0.4263	61.4	5.4016
220	103	6-74 1272-0	0.3045	891.0	3.8765
221	100	6-28 1331-1	0.4004	524.0	4.0722

THE MOLE FRACTION OF C3H6TS 0.01600

THE MOLE FRACTION OF O2 TS 0.07600

THE MOLE FRACTION OF AR TS 0.94800

NO	P1	DRTOT TRFF	URLF	TAB	PF(ATM)
502	100	7-29 1700-7	0.4505	174.0	5.4599
503	100	7-53 1790-6	0.4602	22.2	5.0461
504	100	7-63 1862-5	0.4663	45.1	6.2729
505	.99	7-85 1936-0	0.4732	77.9	6.5987
506	.99	7-12 1632-6	0.4837	287.0	5.0403
507	.99	6-27 1578-0	0.4382	309.0	4.7791
508	103	6-21 1554-5	0.4252	123.0	5.3687
509	.97	6-92 1523-6	0.4350	553.0	4.9500
510	103	7-06 1611-4	0.4415	307.0	4.4187
511	104	7-66 1853-7	0.4654	87.0	6.2849
512	.99	7-12 1634-0	0.4430	184.0	5.0553
513	.99	7-29 1698-0	0.4562	177.0	5.3170

Table III. Kinetic Scheme for Propene Oxidation

		A	12	$E \frac{\text{kcal}}{\text{mole}}$	Ref
1)	$\text{C}_3\text{H}_6 + M \rightleftharpoons \text{CH}_3 + \text{C}_2\text{H}_3 + M$	5.4×10^{75}	-15.71	120	11
2)	$\text{C}_3\text{H}_6 + H \rightleftharpoons \text{C}_3\text{H}_4 + \text{H}_2 + H$	1.6×10^{13}		0	11
3)	$\text{C}_3\text{H}_6 + \text{CH}_3 \rightleftharpoons \text{CH}_4 + \text{C}_3\text{H}_4 + H$	2×10^{13}		14.0	13
4)	$i\text{C}_3\text{H}_7 \rightleftharpoons \text{C}_3\text{H}_6 + H$	2×10^{14}		41.3	11
5)	$i\text{C}_3\text{H}_7 \rightleftharpoons \text{C}_2\text{H}_4 + \text{CH}_3$	2×10^7		0.0	11
6)	$\text{C}_3\text{H}_4 + M \rightleftharpoons \text{C}_3\text{H}_3 + H + M$	2×10^{17}		65	11
7)	$\text{C}_3\text{H}_4 + H \rightleftharpoons \text{C}_3\text{H}_3 + \text{H}_2$	5×10^{12}		1.5	11
8)	$\text{C}_3\text{H}_4 + \text{CH}_3 \rightleftharpoons \text{C}_3\text{H}_3 + \text{CH}_4$	2×10^{12}		7.7	11
9)	$\text{C}_3\text{H}_6 + O_2 \rightleftharpoons \text{CH}_3\text{CHO} + \text{CH}_2\text{O}$	9.8×10^{10}	0.5	0.0	12
10)	$\text{C}_3\text{H}_6 + OH \rightleftharpoons \text{CH}_3\text{CHO} + \text{CH}_3$	8.1×10^{10}	0.5	1.0	12
11)	$\text{C}_3\text{H}_6 + O \rightleftharpoons \text{C}_3\text{H}_4 + \text{H}_2\text{O}$	8.1×10^{11}	0.5	0.0	12
12)	$O + \text{C}_3\text{H}_6 \rightleftharpoons \text{CH}_2\text{O} + \text{C}_2\text{H}_4$	1×10^{13}		0.0	3
13)	$\text{C}_3\text{H}_4 + O_2 \rightleftharpoons \text{CH}_3\text{CO} + \text{HCO}$	1.0×10^{11}	0.5	0.0	12
14)	$\text{C}_3\text{H}_3 + \text{H}_2\text{O} \rightleftharpoons OH + \text{C}_3\text{H}_4$	2.2×10^{10}	0.5	40	14
15)	$\text{C}_3\text{H}_3 + OH \rightleftharpoons O + \text{C}_3\text{H}_4$	2.8×10^9	0.5	27.9	14
16)	$\text{C}_3\text{H}_2 + OH \rightleftharpoons \text{C}_3\text{H}_3 + O$	7.8×10^9	0.5	26.5	14
17)	$\text{C}_3\text{H}_2 + \text{H}_2\text{O} \rightleftharpoons \text{C}_3\text{H}_3 + OH$	2.6×10^{10}	0.5	38.7	14
18)	$\text{C}_3\text{H}_2 + O \rightleftharpoons \text{C}_2\text{H}_2 + CO$	3×10^{13}		est 10	
19)	$\text{C}_3\text{H}_3 + OH \rightleftharpoons \text{C}_2\text{HO} + \text{CH}_3$	2.6×10^{10}	0.5	15.5	14
20)	$\text{C}_3\text{H}_2 + OH \rightleftharpoons \text{C}_2\text{H} + \text{CH}_2\text{O}$	3×10^{13}		est 10	

Table III (continued)

(21)	$C_2H + O_2 \rightleftharpoons CO + CHO$	1×10^{13}		3.5	3
(22)	$CH_3CHO + OH \rightleftharpoons CH_3CO + H_2O$	6.5×10^{10}	0.5	4.0	12
(23)	$CH_3CHO + H \rightleftharpoons CH_3CO + H_2$	2.4×10^{12}	0.5	11.0	12
(24)	$CH_3CO + O \rightleftharpoons CH_3 + CO_2$	6.1×10^{11}	0.5	-	12
(25)	$CH_3CO + O_2 \rightleftharpoons CH_2OH + CO_2$	7.8×10^{10}	0.5	1.5	12
(26)	$CH_3CO + H \rightleftharpoons CH_3 + HCO$	2.2×10^{12}	0.5	5.4	12
(27)	$CH_2OH + H \rightleftharpoons CH_3 + OH$	2.2×10^{12}	0.5	10.7	12
(28)	$C_2H_4 + O \rightleftharpoons CH_3 + HCO$	3×10^{13}	-	-	12
(29)	$C_2H_4 + O \rightleftharpoons C_2H_2 + H_2O$	3×10^{13}	-	-	12
(30)	$C_2H_4 + OH \rightleftharpoons CH_3 + CH_2O$	1×10^{11}	0.5	7.1	12
(31)	$C_2H + O_2 \rightleftharpoons CH + CO_2$	1×10^{14}	-	23	12
(32)	$CH + O_2 \rightleftharpoons CO + OH$	8.1×10^{10}	0.5	-	12
(33)	$C_2H_2 + OH \rightleftharpoons C_2H + H_2O$	2.2×10^{14}	-	7	12
(34)	$C_2H_2 + O \rightleftharpoons C_2H + OH$	3.4×10^{15}	-0.64	18.7	12
(35)	$CH_2O + M \rightleftharpoons H_2 + CO$	2.1×10^{16}	-	35	12
(36)	$CH_2O + OH \rightleftharpoons HCO + H_2O$	2×10^{13}	-	-	12
(37)	$HCO + M \rightleftharpoons H + CO$	2×10^{12}	0.5	28.6	12
(38)	$O_2 + M \rightleftharpoons 2O$	2.6×10^{18}	-1.0	118	12
(39)	$CO + O_2 \rightleftharpoons O + CO_2$	1.6×10^{13}	-	41.1	12
(40)	$O + H_2 \rightleftharpoons OH + H$	1.8×10^{10}	1.0	8.9	12
(41)	$H_2 + O_2 \rightleftharpoons 2OH$	1.7×10^{13}	-	42.2	12

List of Figures

Fig. 1: Diagram of the Shock Tube.

Fig. 2: A plot of $\log \tau$ vs $1/T_5$ for mixtures A, B and C. Mixtures B and C show the argon power dependence over a concentration difference of 3. The spread shows a zero dependence.

Fig. 3: A plot of $\log \tau$ vs $1/T_5$ for mixtures D and E. The difference shows a negligible power dependence on the fuel.

Fig. 4: A plot of $\log \tau$ vs $1/T_5$ for mixtures F and G. The difference shows the power dependence of oxygen.

Fig. 5: A plot of $\log \beta$ vs $1/T_5$ for all the seven mixtures A to G. The maximum statistical spread allowed was 2σ .

Fig. 1: Eiguren of the Shock Tube.

Fig. 2: A plot of $\log \tau$ vs $1/T_5$ for mixtures A, B and C. Mixtures B and C show the argon power dependence over a concentration difference of $\bar{\beta}$. The spread shows a zero dependence.

Fig. 3: A plot of $\log \tau$ vs $1/T_5$ for mixtures D and E. The difference shows a negligible power dependence on the fuel.

Fig. 5: A plot of $\log \beta$ vs $1/T_5$ for all the seven mixtures A to G. The maximum statistical spread allowed was 2σ .

END

FILMED

8-83

DTIC