KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

Intelektikos pagrindai (P176B101) Laboratorinių darbų ataskaita

Atliko:

IFF-1/4 gr. studentas Mildaras Karvelis 2024 m. kovo 21 d.

Priėmė:

lekt. Andrius Nečiūnas lekt. Aušra Gadeikytė

KAUNAS 2023

TURINYS

1.	Įvadas	3
2.	Duomenų rinkinys	4
3.	Duomenų rinkinio kokybės analizė	5
	3.1. Tolydinis tipas	
	3.2. Kategorinis tipas	
4.		
	4.1. Tolydinio tipo histogramos	
	4.2. Kategorinio tipo stulpelinės diagramos	
	4.3. Scatter plot ir SPLOM diagrama tolydiems atributams	
	4.4. Kategorinio tipo atributų priklausomybės bar-plot diagramo	s12
	4.5. Kategorinių ir tolydžiųjų atributų priklausomybės histogram	os ir box-plot diagramos .14
	4.6. Korealiacija ir kovariacija	16
5.	Duomenų normalizacija	
6.	Išvados	

1. Jvadas

Laboratorinio darbo tikslas yra surasti, apdoroti ir išanalizuoti tinkamą duomenų rinkinį. Darbo tikslo atlikimo eiga yra:

- 1. Pasirinkti tinkamą duomenų rinkinį;
- 2. Atlikti duomenų rinkinio kokybės analizę;
- 3. Nupaišyti ir aprašyti duomenų rinkinio atributų histogramas;
- 4. Nustatyti sąryšius tarp atributų;
- 5. Paskaičiuoti kovariacijos ir koreliacijos reikšmes tarp tolydinio tipo atributų ir grafiškai atvaizduoti koreliacijos matricą;
- 6. Atlikti duomenų normalizacija;
- 7. Kategorinio tipo kintamuosius paversti į tolydinio tipo kintamuosius.

2. Duomenų rinkinys

Duomenų rinkinį sudaro:

- "City" miesto pavadinimas;
- "Vehicle Type" transporto priemonės tipas;
- "Weather" oro sąlygos;
- "Economic Condition" ekonominė padėtis;
- "Day of Week" savaitės diena;
- "Hour of Day" valanda (1-24 h.);
- "Speed" greitis, km/h;
- "Is Peak Hour" ar tai piko valanda? (True arba false, 0 arba 1);
- "Random Event Occured" ar kažkas įvyko? (True arba false, 0 arba 1);
- "Energy Consumption" energijos suvartojimas;
- "Traffic Density" eismo tankumas.

3. Duomenų rinkinio kokybės analizė

3.1. Tolydinis tipas

Tolydiniam tipui kokybės analizei reikia apskaičiuoti:

- Bendrą reikšmių skaičių;
- Trūkstamų reikšmių procentą;
- Kardinaluma;
- Minimalią ir maksimalią reikšmes;
- 1-ają ir 3-ają kvartilius;
- Vidurki;
- Mediana;
- Standartinį nuokrypį.

Rezultatai matomi 1 lentelėje. Matome, jog nei vienas atributas neturi trūkstamų reikšmių, todėl šioje dalyje nieko taisyti nereikės. Taip pat, matome, kad kardinalumas ties "Speed" ir "Energy Consumption" yra vidutinis, tačiau prie "Traffic Density" jis yra gan žemas.

Atributo pavadinimas	Kiekis	Trūkstamos reikšmės, %	Kardinalu mas	Minimali reikšmė	Maksimali reikšmė	1-asis kvartilis	3-asis kvartilis	Vidurkis	Mediana	Standartinis nuokrypis
Speed	1219567	0.00%	670544	6.6934	163.0886	37.5331	80.5345	59.944	58.4711	26.632
Energy Consumptio	1219567	0.00%	665672	4.9296	189.9489	29.27395	65.9055	49.464	45.7826	25.280
Traffic Density	1219567	0.00%	14209	0.0059	3.3776	0.1059	0.396	0.277	0.2186	0.219

1 lentelė. Tolydinio tipo atributų kokybės analizės lentelė

3.2. Kategorinis tipas

Kategoriniam tipui kokybės analizei reikia apskaičiuoti:

- Bendrą reikšmių skaičių;
- Trūkstamų reikšmių procentą;
- Kardinalumą;
- Moda;
- Modos dažnumo reikšmę;
- Modos procentinę reikšmę;
- 2-aja moda;
- 2-osios modos dažnumo reikšmę;
- 2-osios modos procentinę reikšmę

Rezultatai matomi 2 lentelėje. Galima pastebėti, kad nei vienas atributas neturi trūkstamų reikšmių, todėl modos puikiai susideda į 100%.

Atributo	Kiekis	Trūkstamos	Kardinalu	Moda	Modos	Moda, %	2-oji	2-osios	2-osios
pavadinimas		reikšmės, %	mas		dažnumas		Moda	Modos	Modos
								dažnum	dažnumas,
								as	%
City	1219567	0.00%	6	Ecoopolis	204179	16.74%	AquaCit	203405	16.68%
							у		
Vehicle	1219567	0.00%	4	Autonomo	757454	62.11%	Drone	304951	25.00%
Type				us Vehicle					
Weather	1219567	0.00%	5	Solar	244237	20.03%	Snowy	244195	20.02%
				Flare					
Economic	1219567	0.00%	3	Booming	406684	33.35%	Recessi	406571	33.34%
Condition							on		
Day of	1219567	0.00%	7	Tuesday	174783	14.33%	Wednes	174778	14.33%
Week				_			day		
Hour of Day	1219567	0.00%	24	11	51206	4.20%	15	51182	4.20%

Is Peak	1219567	0.00%	2	0	1030901	84.53%	1	188666	15.47%
Hour									
Random	1219567	0.00%	2	0	1158726	95.01%	1	60841	4.99%
Event									
Occured									

2 lentelė. Kategorinio tipo atributų kokybės analizės lentelė

4. Atributų grafikai

Grafikai buvo sukurti su programavimo kalba "Python" naudojant biblioteką "Python Pandas".

4.1. Tolydinio tipo histogramos

Matome, kad pirmoji (1 pav.) histograma yra nomaliąjame pasiskirstyme, o 2 ir 3 pav. yra ekponentiškame pasiskirstyme.

4.2. Kategorinio tipo stulpelinės diagramos

Matome, kad 4, 6, 7, 8 ir 9 pav. histogramos yra nomaliąjame pasiskirstyme, o 5, 10 ir 3 pav. yra ekponentiškame pasiskirstyme.

4.3. Scatter plot ir SPLOM diagrama tolydiems atributams

12 pav. Scatter plot ir SPLOM diagrama

4.4. Kategorinio tipo atributų priklausomybės bar-plot diagramos

13 pav. matome, kad visuose miestuose dominuoja Autonomous Vehicle tipas, tačiau oro sąlygos ir įvykiai yra vienodai pasiskirstę kiekviename mieste.

4.5. Kategorinių ir tolydžiųjų atributų priklausomybės histogramos ir box-plot diagramos

16 pav. matome, kad esant betkokioms oro sąlygoms, greitis labai mažai kinta, Clear ir Solar Flare oro sąlygomis greitis yra didžiausias. 18 pav. Matome panašius rezultatus.

Boxplot grouped by Weather Box plot of Speed by Weather

17 pav.

Boxplot grouped by Is Peak Hour Box plot of Speed by Is Peak Hour

19 pav.

4.6. Korealiacija ir kovariacija

Korealiacijos intervalas yra (-1, 1)

Su koreliacijos reikšmėmis įmanoma lengvai pastebėti, kurie atributai turi sąryšį tarpusavyje. Minimalios koreliacijos reikšmės yra ~-0,10 ir ~0,90. Galima pastebėti, kad nėra koreliacijų, kurios atitiktų minimumą.

Pagal gautas kovariacijos reikšmes įmanoma atspėti, kurios atributų poros ryšys yra stipresnis už kitus. Pavyzdžiui, įmanoma teigti, kad "Energy Consumpion–Speed" ryšys yra silpnesnis už "Energy Consumption – Traffic Density" ryšį, kadangi pirminio kovariacija yra mažesnė. Taip pat galima teigti, kad ryšys tarp "Traffic Density" su kitais atribtais yra labai prastas, kadangi dauguma kovariacijos reikšmių yra arti 0.

Kovariacijos matrica:

	Speed	Energy Consumption	Traffic Density
Speed	709.264923	565.621944	-0.164616
Energy Consumption	565.621944	639.085475	0.087184
Traffic Density	-0.164616	0.087184	0.048006

21 pav.

5. Duomenų normalizacija

Dažnai pasitaiko didelių reikšmių duomenys, kurių analizę ir supratimą gali palengvinti duomenų normalizacija. Savo duomenų rinkinio normalizavimui buvo naudojama formulė: $z = x - \min(X)/\max(X) - \min(X)$

Čia X – duomenų aibė, x – iš duomenų aibės X išrinkta reikšmė, z – normalizuota x reikšmė. Panaudojus formulę su kiekviena duomenų reikšme buvo sukurtas duomenų rinkinys, kurios reikšmės yra intervale [0;1]. 22 pav. matoma dalis normalizuoto duomenų rinkinio.

	Hour Of Day	Speed	Is Peak Hour	Random Event Occurred	Energy Consumption	Traffic Density
0	20	0.145359	0	0	0.052880	0.153691
1	2	0.716816	0	0	0.749320	0.093395
2	16	0.599104	0	0	0.466624	0.010558
3	8	0.448266	1	0	0.222386	0.051962
4	16	0.246326	0	0	0.190595	0.133019

22 pav.

6. Išvados

- Analizavus duomenų rinkinio kokybę buvo pastebėta, kad nei vienas atributas neturėjo trūkstamų duomenų, todėl jų keisti nereikėjo.
- Išanalizavę tolydžių ir kategorinių atributų priklausomybės histogramas galime teigti, kad atributai šiek tiek priklauso vienas nuo kito.