Глава 5. Малые колебания

Оглавление

§1. Свободные одномерные колебания	2
§2. Вынужденные колебания	6
П.2.1. Общие положения	6
П.2.2. Гармоническое внешнее воздействие	7
П.2.2. Резонанс	8
§3. Затухающие колебания	9
§ 4. Вынужденные колебания при наличии трения	12
85. Колебания систем со многими степенями своболы	15

§1. Свободные одномерные колебания

Очень распространенный тип движения механических систем представляют собой так называемые малые колебания, которые система совершает вблизи своего положения устойчивого равновесия.

ОПРЕДЕЛЕНИЕ Положением <u>устойчивого</u> равновесия называется такое положение системы, при котором малое отклонение от положения равновесия приводит к возникновению силы, стремящейся вернуть систему обратно.

Рассмотрение этих движений мы начнем с наиболее простого случая, когда система имеет всего одну степень свободы.

Устойчивому равновесию соответствует такое положение системы, в котором ее потенциальная энергия U(q) имеет минимум. Отклонение от такого положения приводит к возникновению силы -dU/dq, стремящейся вернуть систему обратно. Обозначим соответствующее минимуму значение обобщенной координаты через q_0 . При малых отклонениях от положения равновесия в разложении разности $U(q)-U(q_0)$ по степеням $q-q_0$ достаточно сохранить первый неисчезающий член. В общем случае таковым является член второго порядка 2 :

$$U(q) \approx U(q_0) + \underbrace{\frac{dU}{dq}}_{=0} \left| (q - q_0) + \frac{1}{2} \underbrace{\frac{d^2 U}{dq^2}}_{k} \right|_{q_0 = 0} (q - q_0)^2 + \dots \Rightarrow$$

$$U(q) - U(q_0) \approx \frac{k}{2} (q - q_0)^2, \qquad (1.1)$$

где k - положительный коэффициент, равный второй производной потенциальной энергии по координате в точке равновесия:

$$f(x) = f(a) + \frac{df}{dx}\bigg|_{x=a} \cdot (x-a) + \frac{1}{2} \frac{d^2 f}{dx^2}\bigg|_{x=a} \cdot (x-a)^2 + \dots + \frac{1}{n!} \frac{d^n f}{dx^n}\bigg|_{x=a} \cdot (x-a)^n + \dots$$

 $\left. \frac{dU}{dq} \right|_{q_0=0} = 0$, так как в точке $\, q = q_0 \,$ потенциальная энергия $\, U(q) \,$ имеет минимум.

2

¹ Разложение в ряд Тейлора в общем случае имеет следующий вид:

$$k = \frac{d^2U}{dq^2}\bigg|_{q_0=0}.$$

Перенормируем потенциальную энергию таким образом, чтобы потенциальная энергия в положении равновесия обращалась в ноль: $U(q_0) = 0$.

Введем новую координату $x = q - q_0$, представляющую отклонения координаты от ее равновесного значения. Перейдем в (1.1) к координате x. В результате получим:

$$U(q) = \frac{kx^2}{2} \,. \tag{1.2}$$

Кинетическую энергию системы с одной степенью свободы запишем в известном виде:

$$T = \frac{m\dot{x}^2}{2} \,. \tag{1.3}$$

где m — масса частицы.

С учетом (1.2) и (1.3) функция Лагранжа рассматриваемой системы, совершающей одномерные малые колебания, будет равна:

$$L = T - U \Longrightarrow \boxed{L = \frac{m\dot{x}^2}{2} - \frac{kx^2}{2}},\tag{1.4}$$

а соответствующее этой функции уравнение движения будет иметь вид:

$$\frac{d}{dt}\frac{\partial L}{\partial x} - \frac{\partial L}{\partial \dot{x}} = 0 \Rightarrow m\ddot{x} + kx = 0 \Rightarrow \ddot{x} + \frac{k}{m}x = 0 \Rightarrow \boxed{\ddot{x} + \omega^2 x = 0},$$
(1.5)

где введено обозначение

 $\omega = \sqrt{\frac{k}{m}} \,. \tag{1.6}$

ОПРЕДЕЛЕНИЕ Величина ω в (1.6) называется **циклической частотой** колебаний³.

3

³ В теоретической физике ее называют обычно просто частотой, что мы и будем делать в дальнейшем.

ВАЖНО Частота является основной характеристикой колебаний, независящей от начальных условий движения. Согласно формуле (1.6) она всецело определяется свойствами механической системы как таковой.

Подчеркнем, однако, что это свойство частоты связано с предполагаемой малостью колебаний и исчезает при переходе к более высоким приближениям. С математической точки зрения оно связано с квадратичной зависимостью потенциальной энергии от координаты.

Уравнение (1.5) представляет собой хорошо изученное линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Известно, что общее решение этого уравнения имеет следующий вид:

$$x = C_1 \cos \omega t + C_2 \sin \omega t, \qquad (1.7)$$

где C_1 и C_2 некоторые константы, определяемые из начальных условий. Общее решение уравнения (1.5) может быть записано в равносильном (1.7) виде:

$$x = a\cos(\omega t + \varphi), \tag{1.8}$$

где константы a и ϕ , определяются из начальных условий.

ОПРЕДЕЛЕНИЕ Коэффициент a при периодическом множителе в (1.8) называется **амплитудой** колебаний, а аргумент косинуса $(\omega t + \varphi)$ — их **фазой**; φ есть начальное значение фазы, зависящее, очевидно, от выбора начала отсчета времени.

Найдем связь между константами C_1 и C_2 из (1.7) и a и φ из (1.8). Преобразуем выражение (1.7):

$$x = C_1 \cos \omega t + C_2 \sin \omega t = \frac{\sqrt{C_1^2 + C_2^2}}{\sqrt{C_1^2 + C_2^2}} \left(C_1 \cos \omega t + C_2 \sin \omega t \right) =$$

$$= \sqrt{C_1^2 + C_2^2} \left(\frac{C_1}{\sqrt{C_1^2 + C_2^2}} \cos \omega t + \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \sin \omega t \right).$$

С другой стороны, согласно (1.8):

$$x = a\cos(\omega t + \varphi) = a\cos\omega t\cos\varphi - a\sin\omega t\sin\varphi$$
.

Таким образом:

$$\underbrace{\sqrt{C_1^2 + C_2^2}}_{a} \underbrace{\left(\frac{C_1}{\sqrt{C_1^2 + C_2^2}} \cos \omega t + \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \sin \omega t\right)}_{=\sin \varphi} = a \cos \omega t \cos \varphi - a \sin \omega t \sin \varphi.$$

Отсюда следует, что произвольные постоянные a и ϕ связаны с постоянными и C_1 и C_2 соотношениями

$$a = \sqrt{C_1^2 + C_2^2} , tg \varphi = -\frac{C_2}{C_1}.$$
 (1.9)

Таким образом, вблизи положения устойчивого равновесия система совершает гармоническое колебательное движение.

Найдем энергию системы, совершающей малые колебания:

$$E = T + U \Rightarrow E = \frac{m\dot{x}^2}{2} + \frac{kx^2}{2} \Rightarrow$$

$$\Rightarrow E = \frac{m}{2} \left(\dot{x}^2 + \frac{k}{m} x^2 \right) \Rightarrow E = \frac{m}{2} \left(\dot{x}^2 + \omega^2 x^2 \right) \Rightarrow$$

$$\Rightarrow E = \frac{m}{2} \left(\dot{x}^2 + \omega^2 x^2 \right) \Rightarrow E = \frac{m}{2} \left(\left[-a\omega \sin(\omega t + \varphi) \right]^2 + \omega^2 \left[a\cos(\omega t + \varphi) \right]^2 \right) \Rightarrow$$

$$\Rightarrow E = \frac{m}{2} \left(a^2 \omega^2 \left[\sin^2(\omega t + \varphi) + \cos^2(\omega t + \varphi) \right] \right) \Rightarrow$$

$$\Rightarrow E = \frac{m}{2} \left(a^2 \omega^2 \left[\sin^2(\omega t + \varphi) + \cos^2(\omega t + \varphi) \right] \right) \Rightarrow$$

$$\Rightarrow E = \frac{1}{2} ma^2 \omega^2 \right]. \tag{1.10}$$

ВАЖНО Согласно (1.10) энергия одномерного осциллятора пропорциональна квадрату амплитуды колебаний.

§2. Вынужденные колебания

П.2.1. Общие положения

Перейдем к рассмотрению колебаний в системе, на которую действует некоторое переменное внешнее поле; такие колебания называют **вынужденными** в отличие от рассмотренных в предыдущем параграфе так называемых **свободных** колебаний. Поскольку колебания предполагаются по-прежнему малыми, то тем самым подразумевается, что внешнее поле достаточно слабо, в противном случае оно могло бы вызвать слишком большое смещение *x*.

В этом случае наряду с собственной потенциальной энергией $\frac{kx^2}{2}$ система обладает еще потенциальной энергией $U_e(x,t)$, связанной с действием внешнего поля. Разлагая этот дополнительный член в ряд по степеням малой величины x, получим:

$$U_e(x,t) \approx U_e(0,t) + x \frac{\partial U_e}{\partial x} \bigg|_{x=0}$$
.

Первый член является функцией только от времени и потому может быть опущен в лагранжевой функции (как полная производная по t от некоторой другой функции времени). Во втором члене $-\frac{\partial U_e}{\partial x}$ есть внешняя «сила», действующая на систему в положении равновесия и являющаяся заданной функцией времени; обозначим ее как F(t). Таким образом, в потенциальной энергии появляется член -xF(t), так что потенциальная энергия рассматриваемой системы будет равна:

$$U(x,t) = \frac{kx^2}{2} + x \frac{\partial U_e}{\partial x}\bigg|_{x=0}$$

и, следовательно, функция Лагранжа примет следующий вид:

$$L = \frac{m\dot{x}^2}{2} - \frac{kx^2}{2} + xF(t). \tag{2.1}$$

Уравнение движения для лагранжевой функции (2.1) есть:

$$m\ddot{x} + kx = F(t) \Longrightarrow \left[\ddot{x} + \omega^2 x = \frac{1}{m} F(t) \right].$$
 (2.2)

где мы снова ввели частоту свободных колебаний ω .

Уравнение (2.1) представляет собой неоднородное линейное дифференциальное уравнение с постоянными коэффициентами, имеющее общее решение, равное сумме общего решения однородного и частного решения неоднородного:

$$x = x_{\text{общодн}} + x_{\text{част, неодн}}. (2.3)$$

Однородное уравнение (2.2) совпадает с уравнением (1.5), общее решение которого было рассмотрено в предыдущем параграфе. Частное решение неоднородного уравнения (2.2) зависит от вида F(t) и подбирается индивидуально для каждой конкретной задачи:

$$x = C_1 \cos \omega t + C_2 \sin \omega t + x_{uacm.neo\partial n} = a \cos(\omega t + \varphi) + x_{uacm.neo\partial n},$$
(2.4)

где константы C_1 и C_2 определяются из начальных условий.

П.2.2. Гармоническое внешнее воздействие

Рассмотрим имеющий особый интерес случай, когда вынуждающая сила тоже является простой периодической функцией времени с некоторой частотой γ , то есть рассмотрим F(t), которая имеет следующий вид:

$$F(t) = f \cdot \cos(\gamma t + \beta). \tag{2.5}$$

Подставим (2.5) в уравнение (2.2). В результате уравнение движения рассмтариваемой колебательной системы примет следующий вид:

$$\ddot{x} + \omega^2 x = \frac{1}{m} f \cdot \cos(\gamma t + \beta). \tag{2.6}$$

Частное решение уравнения (2.6) будем искать в виде:

$$x_{\text{\tiny vacm.neo}\partial h.} = C \cdot \cos(\gamma t + \beta),$$
 (2.7)

где C – некоторая неизвестная константа.

Подберем константу C таким образом, чтобы решение вида (2.7) удовлетворяло неоднородному уравнению (2.6). Для этого подставим (2.7) в (2.5):

$$\frac{d^2C \cdot \cos(\gamma t + \beta)}{dt} + \omega^2 \cdot C \cdot \cos(\gamma t + \beta) = \frac{1}{m} f \cdot \cos(\gamma t + \beta) \Leftrightarrow$$

$$\Leftrightarrow -C\gamma^2 \cos(\gamma t + \beta) + \omega^2 \cdot C \cdot \cos(\gamma t + \beta) = \frac{1}{m} f \cdot \cos(\gamma t + \beta) \Rightarrow$$

$$\Rightarrow -C\gamma^2 + \omega^2 \cdot C = \frac{1}{m}f \Rightarrow C = \frac{f}{m(\omega^2 - \gamma^2)}.$$

Подставляя найденную константу в (2.7) получим искомое частное решение:

$$x_{\text{\tiny uacm.neo}\partial n.} = \frac{f}{m(\omega^2 - \gamma^2)} \cdot \cos(\gamma t + \beta)$$

и общее решение неоднородного:

$$x = a\cos(\omega t + \varphi) + \frac{f}{m(\omega^2 - \gamma^2)} \cdot \cos(\gamma t + \beta). \tag{2.8}$$

Таким образом, под действием периодической вынуждающей силы система совершает движение, представляющее собой совокупность двух колебаний — с собственной частотой системы ω и с частотой вынуждающей силы γ .

ВАЖНО Решение (2.8) неприменимо в случае так называемого резонанса, когда частота вынуждающей силы совпадает с собственной частотой системы.

П.2.2. Резонанс

Найдем общее решение (2.6) для случая резонанса, то есть для дифференциального уравнения, имеющее следующий вид:

$$\ddot{x} + \omega^2 x = \frac{1}{m} f \cdot \cos(\omega t + \beta). \tag{2.9}$$

Общее решение, будет тоже, а частное будем искать в виде:

$$x_{_{4acm,neo\partial n}} = C \cdot t \cdot \sin(\omega t + \beta), \tag{2.10}$$

где C некоторая константа, которую найдем, подставив (2.10) в (2.9):

$$\frac{d^{2}[C \cdot t \cdot \sin(\omega t + \beta)]}{dt^{2}} + \omega^{2}C \cdot t \cdot \sin(\omega t + \beta) = \frac{1}{m}f \cdot \cos(\omega t + \beta) \Leftrightarrow$$

$$\Leftrightarrow \frac{d[C \cdot \sin(\omega t + \beta) + C \cdot t \cdot \omega \cdot \cos(\omega t + \beta)]}{dt} + \omega^{2}C \cdot t \cdot \sin(\omega t + \beta) = \frac{1}{m}f \cdot \cos(\omega t + \beta) \Leftrightarrow$$

$$\Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) - C \cdot t \cdot \omega^2 \cdot \sin(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) + \omega^2 C \cdot t \cdot \sin(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) + C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Leftrightarrow C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) = \frac{1}$$

$$\Leftrightarrow 2C \cdot \omega \cdot \cos(\omega t + \beta) = \frac{1}{m} f \cdot \cos(\omega t + \beta) \Rightarrow$$

$$\Rightarrow 2C\omega = \frac{f}{m} \Rightarrow C = \frac{f}{2m\omega}$$

Подставляя последнее выражение в (2.10) получим закон движения с случае резонанса:

$$x = a \cdot \cos(\omega t + \varphi) + \frac{f \cdot t \cdot \sin(\omega t + \beta)}{2m\omega}.$$
 (2.11)

ВАЖНО В случае резонанса амплитуда колебаний растет линейно со временем (до тех пор, пока колебания не перестанут быть малыми и вся излагаемая теория перестанет быть применимой).

§3. Затухающие колебания

До сих пор мы всегда подразумевали, что движение тел происходит в пустоте или что влиянием среды на движение можно пренебречь. В действительности при движении тела в среде последняя оказывает сопротивление, стремящееся замедлить движение. Энергия движущегося тела при этом в конце концов переходит в тепло или, как говорят, диссипируется.

Процесс движения в этих условиях уже не является чисто механическим процессом, а его рассмотрение требует учета движения самой среды и внутреннего теплового состояния как среды, так и тела. В частности, уже нельзя утверждать в общем случае, что ускорение движущегося тела является функцией лишь от его координат и скорости в данный момент времени, т.е. не существует уравнений движения в том смысле, какой они имеют в механике. Таким образом, задача о движении тела в среде уже не является залачей механики.

Существует, однако, определенная категория случаев, когда движение в среде может быть приближенно описано с помощью механических уравнений движения путем внедрения в них определенных дополнительных членов. Сюда относятся колебания с частотами, малыми по сравнению с частотами, характерными для внутренних диссипативных процессов в среде. При выполнении этого условия можно считать, что на тело действует сила трения, зависящая (для заданной однородной среды) только от его скорости.

Если к тому же эта скорость достаточно мала, то можно разложить силу трения по ее степеням. Нулевой член разложения равен нулю, поскольку на неподвижное тело не действует никакой силы трения, и первый неисчезающий член пропорционален скорости. Таким образом, обобщенную силу трения f_{TP} , действующую на систему, совершающую одномерные малые колебания с обобщенной координатой x, можно написать в виде

$$f_{TP} = -\alpha \cdot \dot{x}$$

где α - положительный коэффициент, а знак минус показывает, что сила действует в сторону, противоположную скорости. Добавляя эту силу в правую часть уравнения движения (1.5), получим уравнение движения для механической системы, совершающей колебательные движения при наличии трения:

$$\boxed{m\ddot{x} + kx = -\alpha \cdot \dot{x}}.$$
 (3.1)

Разделим его на ти введем обозначения

$$\omega_0^2 = \frac{k}{m} \text{ If } 2\lambda = \frac{\alpha}{m}, \tag{3.2}$$

где ω_0 есть частота свободных колебаний системы в отсутствие трения, а λ - коэффициент затухания. Подставляя (3.2) в (3.1) получим:

$$\ddot{x} + \omega_0^2 x + 2\lambda \cdot \dot{x} = 0. \tag{3.3}$$

Следуя общим правилам решения однородных линейных дифференциальных уравнений с постоянными коэффициентами, ищем решение в виде $x = e^{rt}$. Записываем относительно r характеристическое уравнение⁴:

$$r^2 + 2\lambda r + \omega_0^2 = 0. {(3.4)}$$

Таким образом, общее решение уравнения (3.1) представляет собой линейную комбинацию двух экспонент:

-

⁴ Характеристическое уравнение можно получить, подставив $x = e^{rt}$ в (3.3), проведя дифференцирование и сократив e^{rt} .

$$x = C_1 e^{r_1 t} + C_2 e^{r_2 t}, \ r_{1,2} = -\lambda \pm \sqrt{\lambda^2 - \omega_0^2} \ . \tag{3.5}$$

Рассмотрим три случая.

Случай 1.

Если $\lambda < \omega_0$, то мы имеем два комплексно сопряженных решения характеристического уравнения (3.4), а общее решение рассматриваемого дифференциального уравнения может быть представлено в следующем виде:

$$\begin{split} x &= C_1 e^{\left(-\lambda + \sqrt{\lambda^2 - \omega_0^2}\right)t} + C_2 e^{\left(-\lambda - \sqrt{\lambda^2 - \omega_0^2}\right)t} \iff \\ \Leftrightarrow x &= C_1 e^{\left(-\lambda + i\sqrt{\omega_0^2 - \lambda^2}\right)t} + C_2 e^{\left(-\lambda - i\sqrt{\omega_0^2 - \lambda^2}\right)t} \iff] \\ \Leftrightarrow x &= C_1 e^{-\lambda t + i\sqrt{\omega_0^2 - \lambda^2} \cdot t} + C_2 e^{-\lambda t - i\sqrt{\omega_0^2 - \lambda^2} \cdot t} \iff \\ \Leftrightarrow x &= C_1 e^{-\lambda t} e^{i\sqrt{\omega_0^2 - \lambda^2} \cdot t} + C_2 e^{-\lambda t} e^{-i\sqrt{\omega_0^2 - \lambda^2} \cdot t} \iff \\ \Leftrightarrow x &= e^{-\lambda t} \left(C_1 e^{i\sqrt{\omega_0^2 - \lambda^2} \cdot t} + C_2 e^{-i\sqrt{\omega_0^2 - \lambda^2} \cdot t} \right) \iff \\ \Leftrightarrow x &= e^{-\lambda t} \left(C_1 e^{i\sqrt{\omega_0^2 - \lambda^2} \cdot t} + C_2 e^{-i\sqrt{\omega_0^2 - \lambda^2} \cdot t} \right) \end{split}$$

Взяв действительную часть от последнего равенства, перегруппировав слагаемые, получим решение в виде:

$$x = a \cdot e^{-\lambda t} \cos(\omega t + \varphi), \ \omega = \sqrt{\omega_0^2 - \lambda^2}, \tag{3.6}$$

где a и ϕ вещественные постоянные, определяемые начальными условиями.

ВАЖНО Выражаемое этими формулами движение представляет собой так называемые затухающие колебания.

Его можно рассматривать как гармонические колебания с экспоненциально убывающей амплитудой. Скорость убывания амплитуды определяется показателем λ , а «частота» ω колебаний меньше частоты свободных колебаний в отсутствие трения.

При $\lambda << \omega_0$ разница между ω и ω_0 второго порядка малости. Уменьшение частоты при трении следовало ожидать заранее, поскольку трение вообще задерживает движение.

Случай 2.

Пусть теперь $\lambda > \omega_0$. Тогда оба решения характеристического уравнения (3.4) вещественны, причем оба отрицательны. Общий вид решения рассматриваемого дифференциального уравнения (3.3) будет иметь вид:

$$x = C_1 \cdot e^{-\left(\lambda - \sqrt{\lambda^2 - \omega_0^2}\right)t} + C_2 \cdot e^{-\left(\lambda + \sqrt{\lambda^2 - \omega_0^2}\right)t}.$$
(3.7)

В этом случае, возникающем при достаточно большом трении, движение состоит в убывании |x|, т.е. в асимптотическом (при $t \to \infty$) приближении к положению равновесия. Этот тип движения называют **апериодическим затуханием**.

Случай 3.

Наконец, в особом случае, когда $\lambda = \omega_0$, характеристическое уравнение имеет всего один (двойной) корень $r = -\lambda$. Как известно, общее решение дифференциального уравнения имеет в этом случае вид:

$$x = (C_1 \cdot + C_2 \cdot t) \cdot e^{-\lambda t}. \tag{3.8}$$

Это — особый случай апериодического затухания. Оно тоже не имеет колебательного характера.

§ 4. Вынужденные колебания при наличии трения

Исследование вынужденных колебаний при наличии трения вполне аналогично произведенному в §2 рассмотрению колебаний без трения. Мы остановимся здесь подробно на представляющем самостоятельный интерес случае периодической вынуждающей силы.

Прибавив в правой части уравнения (3.1) внешнюю силу $F(t) = f \cdot \cos(\chi)$ и разделив на m, получим уравнение движения для рассматриваемой системы в виде:

$$\ddot{x} + \omega_0^2 x + 2\lambda \cdot \dot{x} = \frac{f}{m} \cdot \cos(\gamma t). \tag{4.1}$$

Решение этого уравнения удобно находить в комплексной форме, для чего запишем в правой части $e^{i\pi}$ вместо $\cos(\pi)$, и, после интегрирования, нужно будет просто взять действительную часть полученного решения⁵. Итак имеем неоднородное линейное дифференциальное уравнение второго порядка с постоянным коэффициентами:

$$\ddot{x} + \omega_0^2 x + 2\lambda \cdot \dot{x} = \frac{f}{m} \cdot e^{i\gamma t} \,. \tag{4.2}$$

Известно, что общее решение этого уравнение представляет собой сумму его частного решения и общего решения соответствующего ему однородного уравнения. Общее решение однородного было найдено в предыдущем параграфе. Найдем частное решение уравнения (4.2). Будем искать его в виде:

$$x = Be^{i\gamma t}, (4.3)$$

где B некоторая постоянная. Подберем B таким образом, чтобы решение (4.3) удовлетворяло уравнению (4.1). Для этого подставим (4.3) в (4.1), проведем операции дифференцирования и сократим экспоненты:

$$\frac{d^{2}Be^{i\eta}}{dt^{2}} + \omega_{0}^{2}Be^{i\eta} + 2\lambda \cdot \frac{dBe^{i\eta}}{dt} = \frac{f}{m} \cdot e^{i\eta} \Leftrightarrow
\Leftrightarrow (i\gamma)^{2}Be^{i\eta} + \omega_{0}^{2}Be^{i\eta} + 2\lambda \cdot (i\gamma)Be^{i\eta} = \frac{f}{m} \cdot e^{i\eta} \Leftrightarrow
\Leftrightarrow -\gamma^{2}B + \omega_{0}^{2}B + 2i\lambda\gamma \cdot B = \frac{f}{m} \Leftrightarrow
\Leftrightarrow B(-\gamma^{2} + \omega_{0}^{2}B + 2i\lambda\gamma) = \frac{f}{m} \Rightarrow
\Rightarrow B = \frac{f}{m(\omega_{0}^{2} - \gamma^{2} + 2i\lambda\gamma)}.$$
(4.4)

 $^{^{5}}$ Так как, согласно формуле Эйлера, $e^{i\gamma}=\cos(\gamma)+i\sin(\gamma)$

Для удобства представим B в виде $be^{i\delta}$, где b и δ - вещественные числа:

$$B = \frac{f}{m(\omega_0^2 - \gamma^2 + 2i\lambda\gamma)} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{(\omega_0^2 - \gamma^2 - 2i\lambda\gamma)}{(\omega_0^2 - \gamma^2 - 2i\lambda\gamma)} \cdot \frac{f}{m(\omega_0^2 - \gamma^2 + 2i\lambda\gamma)} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m} \cdot \frac{(\omega_0^2 - \gamma^2 - 2i\lambda\gamma)}{(\omega_0^2 - \gamma^2 - 2i\lambda\gamma)(\omega_0^2 - \gamma^2 + 2i\lambda\gamma)} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m} \cdot \frac{(\omega_0^2 - \gamma^2 - 2i\lambda\gamma)}{(\omega_0^2 - \gamma^2)^2 - (2i\lambda\gamma)^2} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m} \cdot \frac{(\omega_0^2 - \gamma^2 - 2i\lambda\gamma)}{(\omega_0^2 - \gamma^2)^2 - (2i\lambda\gamma)^2} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m} \cdot \frac{(\omega_0^2 - \gamma^2)^2 - (2i\lambda\gamma)^2}{(\omega_0^2 - \gamma^2)^2 + 4\lambda\gamma^2} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m\sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda\gamma^2}} \cdot \frac{(\omega_0^2 - \gamma^2)^2 + 4\lambda\gamma^2}{\sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda\gamma^2}} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m\sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda\gamma^2}} \cdot \frac{(\cos\delta + i\sin\delta)}{(\cos\delta + i\sin\delta)} \Leftrightarrow$$

$$\Leftrightarrow B = \frac{f}{m\sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda\gamma^2}} \cdot \frac{(\cos\delta + i\sin\delta)}{(\cos\delta + i\sin\delta)} \Leftrightarrow$$

$$\Leftrightarrow B = b \cdot e^{i\delta},$$

где

$$b = \frac{f}{m\sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda^2 \gamma^2}}, \ tg \, \delta = \frac{2\lambda\gamma}{\gamma^2 - \omega_0^2}.$$
 (4.5)

Наконец, отделив вещественную часть от выражения $x = Be^{i\pi} = be^{i(\pi+\delta)}$ получим частное решение уравнения (4.1), а прибавив к нему общее решение уравнения без правой части (3.6), которое мы напишем для определенности для случая $\omega_0 > \lambda$ и взяв действительную часть, получим окончательно общее решение уравнения (4.1):

$$x = a \cdot e^{-\lambda t} \cos(\omega t + \varphi) + b \cos(\gamma t + \delta). \tag{4.6}$$

Первое слагаемое экспоненциально убывает со временем, так что через достаточно большой промежуток времени остается только второй член:

$$x = b\cos(\gamma t + \delta). \tag{4.7}$$

ВАЖНО Выражение (4.6) для амплитуды b вынужденного колебания хотя и возрастает при приближении частоты λ у к ω_0 , но не обращается в бесконечность, как это было при резонансе в отсутствие трения.

При заданной амплитуде силы f амплитуда колебания максимальна при частоте $\gamma = \sqrt{\omega_0^2 - 2\lambda^2}$. При $\lambda << \omega_0$ это значение отличается от ω_0 лишь на величину второго порядка малости.

§5. Колебания систем со многими степенями свободы

Теория свободных колебаний систем с несколькими степенями свободы строится аналогично тому, как были рассмотрены в §1 одномерные колебания.

Найдем закон движения консервативной системы с s степенями свободы, обладающей в точке $q_i = q_{i0}$ положением устойчивого равновесия и совершающую малые колебания около этого положения. В этом положении потенциальная энергия системы, как функция обобщенных координат $U = U(q_1, q_2, ..., q_s)$ будет иметь минимум. Перенося начало системы отсчета в точку равновесия, введем новые координаты, представляющие собой отклонения или смещения от положения равновесия:

$$x_i = q_i - q_{i0}. (5.1)$$

Будем считать, что потенциальная энергия в положение равновесия равна нулю. Учитывая, что колебания малые, разложим потенциальную энергию системы в ряд Тейлора⁶ ограничившись первым неисчезающим порядком малости:

$$^{6} f(\vec{x}) - f(\vec{x}_{0}) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}} \right)_{\vec{x}_{0}} \cdot (x_{i} - x_{i0}) + \frac{1}{2!} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \left(\frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{2}}} \right)_{\vec{x}_{0}} \cdot (x_{i_{1}} - x_{i_{1}0}) (x_{i_{2}} - x_{i_{2}0}) + \dots$$

$$U \approx \underbrace{U_0}_{=0} + \sum_{i=1}^{n} \left(\underbrace{\frac{\partial U}{\partial x_i}}_{=0} \right)_{0} \cdot x_i + \frac{1}{2!} \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\underbrace{\frac{\partial^2 U}{\partial x_i \partial x_k}}_{=k_k} \right)_{0} \cdot x_i x_k \Longrightarrow$$

$$\Rightarrow U \approx \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} k_{ik} x_i x_k \equiv \frac{1}{2} \sum_{i,l} k_{ik} x_i x_k,$$
 (5.2)

где обобщенные силы $\partial U/\partial x_i$ в положении равновесия равны нулю⁷ и введены положительные величины⁸ $k_{ki}=k_{ik}\equiv\left(\frac{\partial^2 U}{\partial x_i\partial x_k}\right)_0$. Отметим, что выражение для потенциальной энергии (5.2) представляет собой положительно-определенную квадратичную форму.

Вспоминая результаты §12 главы 1, запишем кинетическую энергию в общем виде:

$$T = \frac{1}{2} \sum_{i,k} a_{ik} (q_1,...,q_s) \dot{q}_i \, \dot{q}_k .$$

Полагая в коэффициентах $q_i = q_{i0}$, и обозначая постоянные $a_{ik}(q_{10},..,q_{s0})$ через m_{ik} перепишем выражение для кинетической энергии в виде положительно-определнной формы:

$$T = \frac{1}{2} \sum_{i,k} m_{ik} \dot{x}_i \, \dot{x}_k \,, \tag{5.3}$$

$$\dots + \frac{1}{m!} \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_m=1}^n \left(\frac{\partial^m f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_m}} \right)_{\vec{x}_0} \cdot \left(x_{i_1} - x_{i_10} \right) \left(x_{i_2} - x_{i_20} \right) \cdot \dots \cdot \left(x_{i_m} - x_{i_m0} \right) + \dots, \text{ где } \vec{x} \equiv (x_1, \dots, x_n) \text{ , a}$$

$$\left(\frac{\partial^m f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_m}} \right)_{\vec{x}_0} \equiv \frac{\partial^m f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_m}} \bigg|_{\vec{x}_0} .$$

⁷ Так как в положение устойчивого равновесия потенциальная энергия имеет минимум, следовательно частные производные потенциальной энергии по координатам обращаются в ноль.

⁸ Так как в положении устойчивого равновесия вторые производные потенциальной энергии больше нуля. В противном случае, положение было бы неустойчивым (или безразличным).

причем коэффициенты m_{ik} тоже можно всегда считать симметричными по индексам: $m_{ik} = m_{ki}$. Таким образом, лагранжева функция рассматриваемой системы, совершающей свободные малые колебания, имеет вид:

$$L = T - U \Longrightarrow$$

$$\Rightarrow \boxed{L = \frac{1}{2} \sum_{i,k} m_{ik} \dot{x}_i \dot{x}_k - \frac{1}{2} \sum_{i,k} k_{ik} x_i x_k} \Leftrightarrow \boxed{L = \frac{1}{2} \sum_{i,k} \left(m_{ik} \dot{x}_i \dot{x}_k - k_{ik} x_i x_k \right)}. \tag{5.4}$$

Составим теперь уравнения движения. Для определения входящих в них производных напишем полный дифференциал функции Лагранжа (5.4):

$$dL = \frac{1}{2} \sum_{i,k} m_{ik} \dot{x}_i d\dot{x}_k + \frac{1}{2} \sum_{i,k} m_{ik} d\dot{x}_i \dot{x}_k - \frac{1}{2} \sum_{i,k} k_{ik} x_i dx_k - \frac{1}{2} \sum_{i,k} k_{ik} dx_i x_k.$$

Поскольку величина суммы не зависит, разумеется, от обозначения индексов суммирования, меняем в первом и третьем членах в скобках i на k, а k на i; учитывая при этом симметричность коэффициентов m_{ik} и k_{ik} ($m_{ik}=m_{ki}$ и $k_{ik}=k_{ki}$) получим:

$$dL = \frac{1}{2} \sum_{i,k} m_{ik} \dot{x}_{i} d\dot{x}_{k} + \frac{1}{2} \sum_{i,k} m_{ik} d\dot{x}_{i} \dot{x}_{k} - \frac{1}{2} \sum_{i,k} k_{ik} x_{i} dx_{k} - \frac{1}{2} \sum_{i,k} k_{ik} dx_{i} x_{k} \Leftrightarrow$$

$$\Leftrightarrow dL = \frac{1}{2} \sum_{k,i} m_{ki} \dot{x}_{k} d\dot{x}_{i} + \frac{1}{2} \sum_{i,k} m_{ik} d\dot{x}_{i} \dot{x}_{k} - \frac{1}{2} \sum_{k,i} k_{ki} x_{k} dx_{i} - \frac{1}{2} \sum_{i,k} k_{ik} dx_{i} x_{k} \Leftrightarrow$$

$$\Leftrightarrow dL = \frac{1}{2} \sum_{i,k} m_{ik} \dot{x}_{k} d\dot{x}_{i} + \frac{1}{2} \sum_{i,k} m_{ik} \dot{x}_{k} d\dot{x}_{i} - \frac{1}{2} \sum_{i,k} k_{ik} x_{k} dx_{i} - \frac{1}{2} \sum_{i,k} k_{ik} x_{k} dx_{i} \Leftrightarrow$$

$$\Leftrightarrow dL = \sum_{i,k} m_{ik} \dot{x}_{k} d\dot{x}_{i} - \sum_{i,k} k_{ik} x_{k} dx_{i} \Leftrightarrow$$

$$\Leftrightarrow dL = \sum_{i,k} m_{ik} \dot{x}_{k} d\dot{x}_{i} - \sum_{i,k} k_{ik} x_{k} dx_{i} \Leftrightarrow$$

В выражении полного дифференциала функции нескольких переменных множитель при дифференциале какой-либо переменной равен частной производной функции по этой переменной. Следовательно, из (5.5):

 $\Leftrightarrow dL = \sum_{i} d\dot{x}_{i} \sum_{k} m_{ik} \dot{x}_{k} - \sum_{i} dx_{i} \sum_{k} k_{ik} x_{k}$

(5.5)

$$dL = \sum_{i} d\dot{x}_{i} \underbrace{\sum_{k} m_{ik} \dot{x}_{k}}_{\frac{\partial L}{\partial \dot{x}_{i}}} + \sum_{i} dx_{i} \underbrace{\left(-\sum_{k} k_{ik} x_{k}\right)}_{\frac{\partial L}{\partial x_{i}}} \Longrightarrow$$

$$\Rightarrow \frac{\partial L}{\partial \dot{x}_i} = \sum_k m_{ik} \dot{x}_k \ \ \text{и} \ \frac{\partial L}{\partial x_i} = -\sum_k k_{ik} x_k \ .$$

Подставляя полученные производные в общий вид уравнений Лагранжа⁹. Имеем:

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}_{i}} - \frac{\partial L}{\partial x_{i}} = 0, \quad i = 1, 2, ..., s \Rightarrow$$

$$\Rightarrow \frac{d}{dt} \sum_{k} m_{ik} \dot{x}_{k} + \sum_{k} k_{ik} x_{k} = 0, \quad i = 1, 2, ..., s \Rightarrow$$

$$\Rightarrow \sum_{k} m_{ik} \ddot{x}_{k} + \sum_{k} k_{ik} x_{k} = 0, \quad i = 1, 2, ..., s.$$
(5.6)

Мы получили систему s линейных однородных дифференциальных уравнений с постоянными коэффициентами. Используя правила решения таких систем уравнений ищем s неизвестных функций $x_k(t)$ в виде

$$x_k(t) = A_k e^{i\omega t}, (5.7)$$

где A_{κ} - некоторые комплексные постоянные, которые необходимо определить. Далее подставляем (5.7) в систему (5.6):

$$\sum_{k} m_{ik} \frac{d^{2} A_{k} e^{i\omega t}}{dt^{2}} + \sum_{k} k_{ik} A_{k} e^{i\omega t} = 0, \quad i = 1, 2, ..., s \Rightarrow$$

$$\Rightarrow \sum_{k} m_{ik} \left(-\omega^{2}\right) A_{k} e^{i\omega t} + \sum_{k} k_{ik} A_{k} e^{i\omega t} = 0, \quad i = 1, 2, ..., s \Rightarrow.$$

$$\Rightarrow \sum_{k} A_{k} e^{i\omega t} \left(k_{ik} - m_{ik} \omega^{2}\right) = 0, \quad i = 1, 2, ..., s.$$

Сократив все уравнения на $e^{i\omega t}$, получим систему линейных однородных алгебраических уравнений относительно $A_1,\ A_2,...,\ A_s$:

-

⁹ См. формулу (3.5) главы 1

$$\sum_{k} A_{k} (k_{ik} - m_{ik}\omega^{2}) = 0, i = 1, 2, ..., s \Leftrightarrow$$

$$\begin{cases} A_{1} (k_{11} - m_{11}\omega^{2}) + A_{2} (k_{12} - m_{12}\omega^{2}) + ... + A_{s} (k_{1s} - m_{1s}\omega^{2}) = 0 \\ A_{1} (k_{21} - m_{21}\omega^{2}) + A_{2} (k_{22} - m_{22}\omega^{2}) + ... + A_{s} (k_{2s} - m_{2s}\omega^{2}) = 0 \\ ... \\ A_{s} (k_{s1} - m_{s1}\omega^{2}) + A_{s} (k_{s2} - m_{s2}\omega^{2}) + ... + A_{s} (k_{ss} - m_{ss}\omega^{2}) = 0 \end{cases} \Leftrightarrow$$

$$\begin{cases} k_{11} - m_{11}\omega^{2} & k_{12} - m_{12}\omega^{2} & ... & k_{1s} - m_{1s}\omega^{2} \\ k_{21} - m_{21}\omega^{2} & k_{22} - m_{22}\omega^{2} & ... & k_{2s} - m_{2s}\omega^{2} \\ ... & ... & ... & ... \\ k_{s1} - m_{s1}\omega^{2} & k_{s2} - m_{s2}\omega^{2} & ... & k_{ss} - m_{ss}\omega^{2} \end{cases} \cdot \begin{pmatrix} A_{1} \\ A_{2} \\ ... \\ A_{s} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ ... \\ 0 \end{pmatrix}. \tag{5.8}$$

Для того чтобы эта система имела решение отличное от тривиального, необходимо и достаточно, чтобы обращался в нуль определитель, составленный из коэффициентов при неизвестных:

$$\begin{vmatrix} k_{11} - m_{11}\omega^{2} & k_{12} - m_{12}\omega^{2} & \dots & k_{1s} - m_{1s}\omega^{2} \\ k_{21} - m_{21}\omega^{2} & k_{22} - m_{22}\omega^{2} & \dots & k_{2s} - m_{2s}\omega^{2} \\ \dots & \dots & \dots & \dots \\ k_{s1} - m_{s1}\omega^{2} & k_{s2} - m_{s2}\omega^{2} & \dots & k_{ss} - m_{ss}\omega^{2} \end{vmatrix} = 0.$$

$$(5.9)$$

Уравнение (5.9) является так называемым характеристическим уравнением и представляет собой уравнение степени s относительно ω^2 . Оно имеет в общем случае s различных вещественных положительных корней ω_{α}^2 , $\alpha=1,2,...,s$ (в частных случаях некоторые из этих корней могут совпадать). Определенные таким образом величины ω_{α} называются собственными частотами системы.

Вещественность и положительность корней уравнения (5.9) заранее очевидны уже из физических соображений. Действительно, наличие у ω мнимой части означало бы наличие во временной зависимости координат x_k (а с ними и скоростей \dot{x}_k) экспоненциально убывающего или экспоненциально возрастающего множителя. Но наличие такого множителя в данном случае недопустимо, так как оно привело бы к изменению со временем полной энергии E = U + T системы, что противоречит закону её сохранения.

Итак, решая характеристическое уравнение (5.9) мы найдем s собственных частот системы 10 : ω_1 , ω_2 , ..., ω_s . Подставляя поочередно ω_α^2 в систему уравнений (5.8) и решая эту систему, находим все A_k , отвечающие различным ω_α . Как известно, коэффициенты A_k будут пропорциональны минорам 11 определителя (5.9), в котором ω заменена соответствующим значением ω_α . Обозначим эти миноры через $\Delta_{k\alpha}$. Тогда искомые константы можно записать в виде:

$$A_k = C_{\alpha} \Delta_{k\alpha}$$
,

где C_{α} - произвольная комплексная постоянная. Подставляя полученные значения констант в (5.7) запишем общее решение системы дифференциальных уравнений (5.6), которое, как известно, представляет собой сумму всех частных решений вида (5.7), то есть:

$$x_k(t) = \sum_{\alpha=1}^{s} C_{\alpha} \Delta_{k\alpha} e^{i\omega_{\alpha}t} . {(5.10)}$$

Извлекая из (5.10) вещественную часть, получим искомый закон движения:

$$x_{k}(t) = \operatorname{Re} \sum_{\alpha=1}^{s} C_{\alpha} \Delta_{k\alpha} e^{i\omega_{\alpha}t} \Leftrightarrow x_{k}(t) = \sum_{\alpha=1}^{s} \Delta_{k\alpha} \operatorname{Re} \left(C_{\alpha} e^{i\omega_{\alpha}t} \right) \Rightarrow$$

$$\Rightarrow x_{k}(t) = \sum_{\alpha=1}^{s} \Delta_{k\alpha} a_{\alpha} \cos(\omega_{\alpha}t + \varphi_{\alpha}), k = 1, 2, ..., s,$$
(5.11)

где введены амплитуды a_{α} и начальный сдвиг по фазе φ_{α} , которые определяются из начальных условий 12 .

<u>ВАЖНО</u> Таким образом, изменение каждой из координат системы со временем, представляет собой наложение *s* простых гармонических колебаний, частоты которых равны собственным частотам системы.

_

¹⁰ Будем считать, что все корни характеристического уравнения не равны друг другу.

¹¹ Минор - это определитель матрицы составленный из элементов данной матрицы на пересечении строк и столбцов

¹² Похожую процедуру мы уже проделывали в §3 этой главы

Естественно возникает вопрос, нельзя ли выбрать обобщенные координаты таким образом, чтобы каждая из них совершала только одно простое колебание? Ответ - можно. Форма найденного закона движения (5.11) указывает путь к решению этой задачи. Введем обозначение: $\Psi_{\alpha} = a_{\alpha} \cos(\omega_{\alpha} t + \varphi_{\alpha})$. Тогда (5.11) можно переписать в виде:

$$x_k(t) = \sum_{\alpha=1}^{s} \Delta_{k\alpha} \Psi_{\alpha}, \ k = 1, 2, ..., s.$$
 (5.12)

Соотношения (5.12) представляет собой систему s линейных алгебраических уравнений с s неизвестными величинами Ψ_{α} . Решая эту систему, получим величины Ψ_{α} , $\Psi_2,...,\Psi_s$, выраженные через координаты $x_1,x_2,...,x_s$, Следовательно, Ψ_{α} можно рассматривать как новые обобщенные координаты. Эти координаты называют нормальными (или главными), а совершаемые ими простые периодические колебания нормальными колебаниями системы.

Нормальные координаты Ψ_{α} удовлетворяют, как это явствует из их определения, уравнениям:

$$\ddot{\Psi}_{\alpha} + \omega_{\alpha}^2 \Psi_{\alpha} = 0, \ \alpha = 1, 2, ...s.$$
 (5.13)

Это значит, что в нормальных координатах уравнения движения распадаются на *s* независимых друг от друга уравнений. Ускорение каждой нормальной координаты зависит только от значения этой координаты, и для полного определения ее временной зависимости надо знать начальные значения только ее же самой и соответствующей ей скорости. Другими словами, нормальные колебания системы полностью независимы.

Из сказанного очевидно, что функция Лагранжа, выраженная через нормальные координаты, распадается на сумму слагаемых, каждое из которых соответствует одномерному колебанию с одной из частот ω_{α} , т.е. имеет вид:

$$L = \sum_{\alpha} \frac{m_{\alpha}}{2} \left(\ddot{\Psi}_{\alpha} + \omega_{\alpha}^{2} \Psi_{\alpha} \right), \tag{5.14}$$

где m_{α} положительные постоянные. С математической точки зрения это означает, что преобразованием (5.12) обе квадратичные формы кинетическая энергия (5.2) и потенциальная (5.3) одновременно приводятся к диагональному виду.