IN310 - Mathématiques pour l'informatique 1^{er} contrôle continu

Durée: 1h.

Seuls les notes de cours sont autorisées. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Question 1

Effectuer les conversions suivantes :

- (a) $(8154)_9$ en base 3.
- **(b)** $(561)_{10}$ en base 4.

Question 2

Donner en base 7 la partie entière de la division

$$\frac{(23461)_7 + (4523)_7}{(7^2)_{10}}$$

Question 3

Un étudiant qui dit toujours la vérité énonce les deux affirmations suivantes : "Si je ne révise pas mes cours alors je ne réussirai pas mes examens" et "je révise mes cours ou je réussirai mes examens". Que peut-on conclure?

Question 4

Prouver que les deux formules suivantes sont équivalentes

$$(\exists x.(P(x) \lor \neg Q(x))) \lor (\exists x.(P(x) \Rightarrow \neg Q(x)))$$
 et $(\forall x.(\neg P(x) \land Q(x))) \Rightarrow (\neg \forall x.(P(x) \land Q(x)))$

Question 5

En utilisant exclusivement les constantes $0, 1, 2, \dots$ les symboles \leq et =, et le calcul des prédicats, écrire en langage logique l'affirmation "Les nombres impairs ne sont pas divisibles par quatre".

Question 6

On considère les deux prédicats suivants

$$\forall x. \neg \exists y. (x \times y = 0)$$
 et $\forall x. \exists y. (x + y = 1)$

Trouver un modèle qui vérifie les deux, et un modèle dans lequel un seul des deux est vrai. Justifier vos réponses.