

T.C.

BİLECİK ÜNİVERSİTESİ

Mühendislik Fakültesi

Bilgisayar Mühendisliği

General-purpose I/Os (GPIO)

Handan CESUR-Hilal ULUÇAY-Gül SÖZLÜ

Doç. Dr. Metin KESLER

Bilecik,2012

İçindekiler

1.GENERAL-PURPOSE I/Os (GPIO)	4
1.1 GPIO introduction	4
1.2 GPIO main features	4
1.3 GPIO functional description	4
1.3.1.General-purpose I/O (GPIO)	6
1.3.2.I/O pin multiplexer and mapping	7
1.3.3. I/O port control registers	8
1.3.4. I/O port data registers	8
1.3.5. I/O data bitwise handling	8
1.3.7.I/O alternate function input/output	8
1.3.8.External interrupt/wakeup lines	8
1.3.9.Input configuration	9
1.3.10.Output configuration	9
1.3.11.Alternate function configuration	9
1.3.12.Analog configuration	10
1.3.13.Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins	10
1.3.14.Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins	10
1.3.15.Selection of RTC_AF1 and RTC_AF2 alternate functions	10
1.4 GPIO REGİSTERLARI	11
1.4.1 GPIO port mode register (GPIOx_MODER) (x = AI)	11
1.4.2 GPIO port output type register (GPIOx_OTYPER) (x = AI)	12
1.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = AI)	12
1.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = AI)	13
1.4.5 GPIO port input data register (GPIOx_IDR) (x = AI)	13
1.4.6 GPIO port output data register (GPIOx_ODR) (x = AI)	14
1.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = AI)	14
1.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = AI)	14

1.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = AI)	
6.4.10 GPIO alternate function high register (GPIOx_AFRH)	

1.GENERAL-PURPOSE I/Os (GPIO)

1.1 GPIO introduction

Her GPIO portu 4 tane 32-bit register düzenine sahiptir(GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR).2 tane 32-bit veri registeri (GPIOx_IDR and GPIOx_ODR),1 tane 32-bit set/reset register (GPIOx_BSRR),1 tane 32-bit kilit registeri (GPIOx_LCKR) ve 2 tane 32-bit alternatif fonksiyon seçim registeri (GPIOx_AFRH ve GPIOx_AFRL) bulunur.

1.2 GPIO main features

- 16 I/O ve üzeri kontrol altında
- Çıkış durumları: push-pull veya open drain + pull-up/down
- Çıkış veri registerinden çıkış verisi (GPIOx_ODR) veya çevresel (alternatif fonksiyon çıkışı)
- Her I/O için hız seçimi
- Giriş durumları: floating, pull-up/down, analog
- Giriş veri registerina giriş verisi (GPIOx_IDR) veya çevresel (alternatif fonksiyon girişi)
- Bit set ve reset register (GPIOx BSRR) GPIOx ODR ye bit bit erişmek için kullanır.
- Kilitleme mekanizması (GPIOx LCKR) I/O düzenini dondurmayı sağlar.
- Analog fonksiyon
- Alternatif fonksiyon giriş/çıkış seçim registerları (at most 16 AFs per I/O)
- Her 2 clock çevrim değişiminde hızlı dönüşüm kapasitesi
- Pinler ya GPIO nun I/O olarak yada çevresel fonksiyonlardan biri olarak kullanılabilir.

1.3 GPIO functional description

Her port birçok modda konfigüre edilebilir.

- Giriş floating
- Giriş pull-up
- Giriş pull-down
- Analog
- Çıkış open-drain (pull-up veya pull-down kapasitesiyle)
- Cıkış push-pull (pull-up veya pull-down kapasitesiyle)

- Alternatif fonksiyon olarak çıkış push-pull (pull-up veya pull-down kapasitesiyle)
- Alternatif fonksiyon olarak çıkış open-drain (pull-up veya pull-down kapasitesiyle)
- Her I/O port biti özgür olarak programlanabilir.

Figure 13. Basic structure of a five-volt tolerant I/O port bit

Table 14. Port bit configuration table⁽¹⁾

MODER(i) [1:0]	OTYPER(I)	OSPEEDR(I) [B:A]	1	DR(i) :0]	I/O configuration			
	0		0	0	GP output PP			
	0		0	1	GP output	PP + PU		
	0		1	0	GP output	PP + PD		
01	0	SPEED	1	1	Reserved			
01	1	[B:A]	0	0	GP output	OD		
	1		0	1	GP output	OD + PU		
	1		1	0	GP output	OD + PD		
	1		1	1	Reserved (GP output OD)			

Table 14. Port bit configuration table⁽¹⁾ (continued)

MODER(i) [1:0]	OTYPER(i)	1	EEDR(i) B:A]		DR(i) :0]	I/O cor	figuration		
	0			0	0	AF	PP		
	0			0	1	AF	PP + PU		
	0			1	0	AF	PP + PD		
10	0	SP	EED	1	1	Reserved			
10	1	[E	3:A]	0	0	AF	OD		
	1			0	1	AF	OD + PU		
	1			1	0	AF	OD + PD		
	1			1	1	Reserved			
	Х	Х	х	0	0	Input	Floating		
00	Х	х	Х	0	1	Input	PU		
00	Х	Х	Х	1	0	Input	PD		
	Х	х	х	1	1	Reserved (input	t floating)		
	X	Х	X	0	0	Input/output	Analog		
11	Х	х	х	0	1				
''	X	Х	X	1	0	Reserved			
	Х	Х	X	1	1				

GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function.

1.3.1.General-purpose I/O (GPIO)

Reset boyunca ve resetten hemen sonra alternatif fonksiyon aktif değildir ve giriş çıkış portları giriş floating modunda konfigüre edilmiştir.

Resetten sonra giriş pull-up/pull-down modundaki JTAG lar:

• PA15: JTDI in pull-up

• PA14: JTCK in pull-down

• PA13: JTMS in pull-up

• PB4: NJTRST in pull-up

Pinler çıkış olarak konfigüre edildiği zaman, degeri I/O pini üzerinde çıkış olan output data register a yazdırılır(GPIOx_ODR).Çıkış pini push-pull modu veya open-drain modda kullanılabilir. (Sadece output 0 olduğu zaman NMOS aktif edilir.)

Input data register (GPIOx_IDR) her AHB1 saat çevriminde I/O pini üzerindeki veriyi yakalar.

Tüm GPIO pinleri zayıf pull-up ve pull-down dirençlerine sahiptir.

1.3.2.I/O pin multiplexer and mapping

The STM32F40x and STM32F41x I/O pinleri multiplexerslara sahiptirler.Her I/O pini 16 alternatif fonksiyon girişine(AF0 to AF15) ve multiplexera sahiptirler. GPIOx_AFRL (for pin 0 to 7) ve GPIOx AFRH (for pin 8 to 15) registerları ile konfigüre edilirler:

- Her resetleme sonrası sistemin alternatif fonksiyonuna bağlanılır.(afo)
- Cevresellerin alternatif fonksıyonları af1-af13e kadar haritalanmıştır.
- CortexTM-M4F EVENTOUT AF15 üzerinde haritalanır.

Dışarıdan bağlanarak kullanılan I/O, farklı I/O pinleri üzerinde haritlanmış alternatif fonksiyona sahiptir.

Table 15. F	Flexible SWJ-DP	pin assignment
-------------	-----------------	----------------

	SWJ I/O pin assigned									
Available debug ports	PA13 / JTMS/ SWDIO	PA14 / JTCK/ SWCLK	PA15 / JTDI	PB3 / JTDO	PB4/ NJTRST					
Full SWJ (JTAG-DP + SW-DP) - Reset state	X	X	X	X	X					
Full SWJ (JTAG-DP + SW-DP) but without NJTRST	х	х	Х	Х						
JTAG-DP Disabled and SW-DP Enabled	Х	X								
JTAG-DP Disabled and SW-DP Disabled	Released									

- GPIO: configure the desired I/O as output or input in the GPIOx_MODER register.
- Peripheral's alternate function:

GPIO moder registeri içinde ADC ve DAC için analog olarak I/O isteği düzenlenir.

Diger çevreseller için:

- -GPIOx MODER registerı içinde bir alternatif fonksiyon olarak I/O isteği düzenlenir.
- GPIOx_OTYPER,GPIOx_PUPDR and GPIOx_OSPEEDER registerları yoluyla çıkış hızı ve pull-up/down tipi seçilir.
- GPIOx_AFRL or GPIOx_AFRH registerları içinde AFx isteği için I/O ya bağlanılır.

NOT: PC13, PC14, PC15, PH0, PH1 ve PI8 I/O pinleri üzerinde EVENTOUT haritalanamaz.

1.3.3. I/O port control registers

GPIO her dört 32-bit bellek eşlemeli kontrol kaydı (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) 16 I / O kadar yapılandırmak için. GPIOx_MODER kayıt I / O yönde (giriş, çıkış, AF, analog) seçmek için kullanılır. GPIOx_OTYPER ve GPIOx_OSPEEDR kayıt (pushpull çıktı türünü seçmek için kullanılır veya açık drenaj) ve hızı (I / O pinleri hızı doğrudan bağlı ilgili GPIOx_OSPEEDR kayıt bit ne olursa olsun I / O yönü).

1.3.4. I/O port data registers

Her GPIO iki 16-bit bellek eşlemli veri kayıtları vardır: giriş ve çıkış verileri kaydeder (GPIOx_IDR ve GPIOx_ODR). GPIOx_ODR veri çıkışı olarak saklar, bu okuma yazma olduğunu erişilebilir.I / O üzerinden veri girişi veri girişi kayıt içine saklanır (GPIOx_IDR), salt okunur bir kayıt.

1.3.5. I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) bir 32-bit register dır ve bit bit registera erişilir GPIOx_ODR bireysel bitlerin değerlerini değiştirmek için GPIOx_BSRR kayıt kullanarak bir GPIOx_ODR bit kilit yok "one-shot" etkisi.GPIOx_ODR bitler her zaman yapabilirsiniz doğrudan erişilebilir.GPIOx_BSRR kayıt atom yerine bir yol sağlar bitwise taşıma.GPIO locking mechanism

Bu belirli bir yazma sekansı uygulanarak GPIO kontrol kaydı dondurmak için mümkün olduğu GPIOx_LCKR kayıt olun. Dondurulmuş kayıtları GPIOx_MODER, GPIOx_OTYPER vardır. GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL ve GPIOx_AFRH.

1.3.7.I/O alternate function input/output

İki kayıt onaltı diğer işlevi giriş / çıkışların birini seçmek için sağlanan her I / O kullanılabilir.Bu kayıtlar sayesinde, bazı alternatif bir fonksiyonu bağlayabilirsiniz olarak uygulamanın diğer pin gereklidir.Bu muhtemel periferal fonksiyonları bir dizi her GPIO üzerine çoklanırlar demektir.GPIOx_AFRL ve GPIOx_AFRH diğer işlevi kayıtlar kullanılarak.Uygulama olabilir.Böylece her bir I / O. için mümkün olan işlevlerin herhangi birini seçmektir.

1.3.8.External interrupt/wakeup lines

Tüm bağlantı noktaları harici kesme yeteneğine sahip. Harici kesme hatları kullanmak için, liman olmalı giriş modunda yapılandırılmış, Bölüm 9.2 bakın: Harici kesme / olay denetleyicisi (exti) ve Bölüm 9.2.3: Wakeup etkinlik yönetimi.

1.3.9.Input configuration

I / O portu giriş olarak programlandığı zaman:

- çıktı tamponu devre dışı
- Schmitt tetikleme giriş aktif
- pull-up ve pull-down dirençleri de değerine bağlı olarak aktive edilir GPIOx PUPDR kayıt
- I / O pin mevcut veri giriş verileri her AHB1 kayıt içine numune saat çevrimi
- veri girişi kayıt için bir okuma erişimi I/O Devlet sağlar

1.3.10.Output configuration

I/ O portu çıkış olarak programlandığı zaman:

- çıktı tamponu etkindir:
- Açık drenaj modu: Çıkış defterine "0" "1" ise N-MOS aktive

Çıkış kayıt Hi-Z noktasına (P-MOS aktif asla) yapraklarında

- İtme-çekme modu: Çıkış siciline "0" "1" ise N-MOS aktive

Çıkış kayıt P-MOS aktive

- Schmitt tetikleme giriş aktif
- zayıf pull-up ve pull-down dirençleri aktif ya da değerine bağlı değildir GPIOx_PUPDR kayıt
- I / O pin mevcut veri giriş verileri her AHB1 kayıt içine numune saat çevrimi
- veri girişi kayıt için bir okuma erişimi I/O devlet alır
- çıkış veri kaydına bir okuma erişimi Push-pull modunda son yazılı değeri alır

1.3.11.Alternate function configuration

I / O portu diğer işlevi olduğu gibi programlandığında:

- çıktı tamponu açık drenaj açık veya itme-çekme yapılandırma
- çıktı tamponu periferik gelen sinyal ile tahrik edilir (diğer işlevi çıkışı)
- Schmitt tetikleme giriş aktif
- zayıf pull-up ve pull-down dirençleri aktif ya da değerine bağlı değildir GPIOx_PUPDR kayıt
- I / O pin mevcut veri giriş verileri her AHB1 kayıt içine numune

saat çevrimi

- veri girişi kayıt için bir okuma erişimi I/O devlet alır
- çıkış veri kaydına bir okuma erişimi push-pull modunda yazılmış son değeri alır

1.3.12.Analog configuration

I / O portu analog yapılandırma olarak programlandığı zaman:

- çıktı tamponu devre dışı
- Schmitt tetikleme girişi her analog sıfır enerji tüketimi sağlayan, devre dışı I / O pin değeri.Schmitt tetikleme çıkışı sabit bir değer (0) zorunda kalır.
- zayıf pull-up ve pull-down dirençlerinin devre dışı
- veri girişi kayıt için okuma erişimi alır değeri "0"

1.3.13.Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins

LSE osilatörün pimler OSC32_IN ve OSC32_OUT genel amaçlı olarak kullanılabilirler.PC14 ve PC15 I / O, sırasıyla, LSE osilatör kapalı olduğunda.PC14 ve PC15 I / O Sadece LSE osilatör pin OSC32_IN ve OSC32_OUT olarak yapılandırılmış olan LSE osilatör AÇIK. Bu RCC_BDCR kayıt LSEON bitini ayarlayarak yapılır.LSE GPIO fonksiyonu daha fazla önceliğe sahiptir.

1.3.14. Using the OSC_IN/OSC_OUT pins as GPIO PHO/PH1 port pins

HSE osilatörün pimler OSC_IN / OSC_OUT genel amaçlı bir PH0/PH1 olarak kullanılabilirler.I / SEÇ osilatör OFF sırasıyla Os,. (reset sonra SEÇ osilatör kapalı).PH0/PH1 I / O sadece OSC_IN / OSC_OUT SEÇ osilatör pin olarak yapılandırılmış olan SEÇ osilatör AÇIK. Bu RCC_CR kayıt HSEON bitini ayarlayarak yapılır.SEÇ GPIO fonksiyonu üzerinde önceliği vardır.

1.3.15.Selection of RTC_AF1 and RTC_AF2 alternate functions

LSE osilatörün pimler OSC32_IN ve OSC32_OUT genel amaçlı olarak kullanılabilirler.PC14 ve PC15 I / O, sırasıyla, LSE osilatör kapalı olduğunda. PC14 ve PC15 I / O Sadece LSE osilatör pin OSC32_IN ve OSC32_OUT olarak yapılandırılmış olan LSE osilatör AÇIK. Bu RCC_BDCR kayıt LSEON bitini ayarlayarak yapılır. LSE GPIO fonksiyonu üzerinde önceliği vardır.

Not: PC14/PC15 GPIO işlevselliği 1,2 V alanı ile (kapalı iken kaybolur bekleme modunda) veya girerken cihaz yedek etki alanı VBAT (VDD yok tarafından verilir.Daha fazla) verilir. Bu durumda I / O Analog giriş modunda ayarlanır.

STM32F40x ve STM32F41x özelliği iki GPIO pin RTC AF1 ve RTC AF2

Bir tamper veya zaman pul olayın algılama, ya AFO_ALARM veya AFO_CALIB için kullanılacak.

RTC çıktılar.RTC AF1 (PC13) aşağıdaki amaçlar için kullanılabilir:

• RTC AFO ALARM çıkışı: Bu çıkış RTC Alarm A, RTC Alarm B veya RTC olabilir

RTC_CR kayıt OSEL [01:00] bit bağlı Wakeup

• RTC AFO_CALIB çıktı: Bu özellik RTC_CR yılında İstihkam [23] ayarlanarak etkinleştirilir

kaydetmek

- RTC AFI TAMPER1: sabotaj olay algılama
- RTC AFI_TIMESTAMP: Zaman damgası olay algılama

RTC AF2 (PI8) aşağıdaki amaçlar için kullanılabilir:

- RTC AFI_TAMPER1: sabotaj olay algılama
- RTC AFI TAMPER2: sabotaj olay algılama
- RTC AFI TIMESTAMP: Zaman damgası olay algılama

Karşılık gelen piminin seçimi RTC_TAFCR yazmacı aracılığıyla olarak gerçekleştirilir aşağıdaki gibidir:

- TAMP1INSEL AFI TAMPER1 müdahale girişi olarak hangi pin seçmek için kullanılır
- TSINSEL AFI_TIMESTAMP zaman damgası girdi olarak kullanıldığı pin seçmek için kullanılır
- ALARMOUTTYPE RTC AFO_ALARM pushpull çıkış olup olmadığını seçmek için kullanılır.

1.4 GPIO REGISTERLARI

Bu bölümde GPIO registerlarının tanım detayları verilmiştir. Register bitlerinin özeti, register offset adresleri ve reset değerleri için Tablo 18 e bakınız.

1.4.1 GPIO port mode register (GPIOx_MODER) (x = A..I)

Offset adresi: 0x00

Reset değerleri:

- A portu için 0xA800 0000
- B portu için 0x0000 0280
- Diğer portlar için 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
MODER	R15[1:0]	MODE	R14[1:0]	MODER	R13[1:0]	MODER	MODER12[1:0]		MODER11[1:0]		MODER11[1:0]		MODER11[1:0]		710[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	ΓW	rw	rw	rw	ΓW	rw	rw	ΓW	rw	rw	nw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
MODE	DDER7[1:0] MODER6[1:0] MODER5[1:0] MODE		R4[1:0]	MODE	H3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]								
rw	rw	rw	rw	rw	ΓW	rw	rw	rw	ΓW	rw	rw	ΓW	rw	rw	rw				

Bits 2y:2y+1 **MODERy[1:0]:** x portu konfigürasyon bitleri (y = 0..15)

Table 15. Flexible SWJ-DP pin assignment

	SWJ I/O pin assigned								
Available debug ports	PA13 / JTMS/ SWDIO	PA14 / JTCK/ SWCLK	PA15 / JTDI	PB3 / JTDO	PB4/ NJTRST				
Full SWJ (JTAG-DP + SW-DP) - Reset state	X	Х	X	X	X				
Full SWJ (JTAG-DP + SW-DP) but without NJTRST	X	х	Х	Х					
JTAG-DP Disabled and SW-DP Enabled	X	Х			•				
JTAG-DP Disabled and SW-DP Disabled	Released								

GPIO: configure the desired I/O as output or input in the GPIOx_MODER register.

Bu bitler I/O yön modu yapılandırmak için yazılım tarafından yazılmıştır.

00: Giriş (reset state)

01: Genel amaçlı çıkış modu

10: Alternatif fonksiyon modu

11: Analog mod

1.4.2 GPIO port output type register ($GPIOx_OTYPER$) (x = A..I)

Offset adresi: 0x04

Reset değeri : 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	OT9	OT8	OT7	OT6	OT5	OT4	OT3	OT2	OT1	OT0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Reserve edilmiş 31:16 Bitleri, reset değerinde tutulmalıdır.

Bits 15:0 **OTy[1:0]:** x portu konfigürasyon bitleri (y = 0..15)

Bu bit I / O portu çıkış türünü yapılandırmak için yazılım tarafından yazılmıştır.

0: Output push-pull (reset state)

1: Output open-drain

1.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..I)

Offset adresi: 0x08 Reset değerleri :

- B portu için 0x0000 00C0
- Diğer portlar için 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OSPEE	DR15[1:0]	OSPEED)R14[1:0]	OSPEED	R13[1:0]	OSPEED)R12[1:0]	OSPEED	DR11[1:0]	OSPEED)R10[1:0]	OSPEE	DR9[1:0]	OSPEE	DR8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	PEEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0]		OSPEE	OSPEEDR4[1:0]		OSPEEDR3[1:0]		DR2[1:0]	OSPEEDR1[1:0]		OSPEE	DR0[1:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **OSPEEDRy**[1:0]: x portu konfigürasyon bitleri (y = 0..15)

Bu bit I / O çıkış hızı yapılandırmak için yazılım tarafından yazılmıştır.

00: 2 MHz düşük hız

01: 25 MHz orta hız

10: 50 MHz hızlı

11: 100 MHz 30 pF üzerindeki hız (max çıkış hızı 15 pF üzerindeki 80 MHz)

1.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..I)

Ofset adresi: 0x0C Reset değerleri:

- 0x6400 0000 for port A
- 0x0000 0100 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDE	PUPDR13[1:0]		13[1:0]	PUPDR12[1:0]		PUPDR11[1:0]		PUPDR10[1:0]		PUPDR9[1:0]		PUPDR8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPD	R6[1:0]	PUPDI	R5[1:0]	PUPDI	PUPDR4[1:0]		R3[1:0]	PUPD	R2[1:0]	PUPD	R1[1:0]	PUPD	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

I/O nun Pull-down veya pull-up olarak yapılandırılması için bu bit yazılım tarafından yazılır.

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

1.4.5 GPIO port input data register (GPIOx_IDR) (x = A..I)

Ofset adresi: 0x10

Reset değeri: 0x0000 XXXX (where Xmeans undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Reserve edilmis 31:16 Bitleri, reset değerinde tutulmalıdır.

Bits 15:0 **IDRy[15:0]:** veri giriş portu (y = 0..15)

Bu bit sadece salt okunurdur ve bu bite sadece kelime modunda erişilebilir. Bunlar I/O portlarına karşılık gelen giriş değerlerini içerir.

1.4.6 GPIO port output data register (GPIOx_ODR) (x = A..I)

Ofset adresi: 0x14

Reset değeri: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Reserve edilmiş 31:16 Bitleri , reset değerinde tutulmalıdır.

Bits 15:0 **ODRy[15:0]:** Veri çıkış portu (y = 0..15) Bu bitler yazılım tarafından yazılabilir ve okunabilir.

1.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..I)

Ofset adresleri: 0x18 Reset değeri: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	W	W	w	w	w	W	w	w	w	w	w	W	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
W	W	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits 31:16 **BRy:** x portu reset bitleri y (y = 0..15)

Bu bitlere sadece yazma ve kelime, yarım kelime veya byte modunda erişilebilir.

0: ODRx e karşılık gelen bitte işlem yok

1: ODRx e karşılık gelen bit resetlenir.

Note: Eğer hem BSx hem de BRx set edilirse, BSx önceliklidir.

Bits 15:0 **BSy:** Port x set bit y (y=0..15)

Bu bitlere sadece yazma ve kelime, yarım kelime veya byte modunda erişilebilir. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

1.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..I)

Bu register port bitlerinin yapılandırmasını kilitlemek için kullanıldığı zaman doğru bir yazma sırası 16 bit (LCKK) uygulanır. [0-15]bitlerinin değeri GPIO nun yapılandırmasını kilitlemek için kullanılır. Yazma sırasında, LCKR [15:00] değerini değiştirmek gerekir. Kilit uygulama sonrası porttaki bit bir dahaki resetleme anına kadar değiştirilemez.

Ofset adresi: 0x1C

Reset değeri: 0x0000 0000

Access: sadece 32 bitlik kelime ,yazılabilir/okunabilir register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved												LCKK		
	Heserved													rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:17: Reserve edilmiştir. Resetleme değerinde tutulmalıdır.

Bit 16 LCKK[16]: Lock key

Bu bit her zaman okunabilir. Sadece lock keyi yazma sırasında değitirilebilir.

0: Port konfigürasyonu lock key aktif değil

1: Port konfigürasyonu lock key aktif. GPIOx_LCKR register 1 MCU resetlemesine kadar kilitlidir

LOCK key yazma sırası:

WR LCKR[16] = '1' + LCKR[15:0]

WR LCKR[16] = '0' + LCKR[15:0]

WR LCKR[16] = '1' + LCKR[15:0]

RD LCKR

RD LCKR[16] = '1' (bu okuma işlemi isteğe bağlıdır ama kilidin aktif olduğunu doğrular.)

Not: Lock key yazma sırası boyunca, LCK[15:0] değeri değiştirilemez.

Kilit sırasındaki herhengi bir hata kilidi iptal edilir.

Bits 15:0 **LCKy:** Port x lock bit y (y=0..15)

Bu bitler yazılabilir/okunabilir ama LCKK bit is '0' olduğu zaman sadece yazılabilir.

0: Port yapılandırması kilitli değil

1: Port yapılandırması kilitli

1.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..I)

Address offset: 0x20 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	AFRL	.7[3:0]			AFRL	.6[3:0] AFRL5[3:0]						AFRL4[3:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	AFRL	.3[3:0]			AFRL	2[3:0]			AFRL	1[3:0]		AFRL0[3:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

31:0 **AFRLy:** x portunun y biti için Alternatif fonksiyon seçimi (y = 0..7)

Bu bitler giriş çıkışların alternatif fonksiyon olrak yapılandırılması için yazılır.

AFRLy seçimi:

0000: AF0

0001: AF1

0010: AF2

0011: AF3

0100: AF4

0101: AF5

0110: AF6

0111: AF7

1000: AF8

1001: AF9

1010: AF10

1011: AF11

1100: AF12

1101: AF13

1110: AF14

1111: AF15

6.4.10 GPIO alternate function high register (GPIOx_AFRH)

Address offset: 0x24 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRH	15[3:0]			AFRH1	14[3:0]			AFRH	13[3:0]		AFRH12[3:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFRH	11[3:0]			AFRH	10[3:0]			AFRH	19[3:0]			AFRH	18[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFRHy:** x portunun y biti için Alternatif fonksiyon seçimi (y = 8..15) Bu bitler giriş çıkışların alternatif fonksiyon olarak yapılandırılması için yazılır. AFRHy seçimi:

0000: AF0

0001: AF1

0010: AF2

0011: AF3

0100: AF4

0101: AF5

0110: AF6

0111: AF7

1000: AF8

1001: AF9

1010: AF10

1011: AF11

1100: AF12

1101: AF13

1110: AF14

1111: AF15