Épreuve : Math1-Analyse Session de rattrapage

Date : **08/07/2021**Durée : **02 heures**Nombres de pages : **02**

Université de Sousse

Institut des Hautes Études Commerciales de Sousse Niveau : 1ère Année

Filière: Licence Gestion

Chargés de cours :

Boubaker Heni

Hamrita Mohamed Essaied

Nefzi Hana

Exercice 1 (4 points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \sqrt{1 + x + x^2}$.

- 1) Déterminer le développement limité de f, à l'ordre 2 au voisinage de 0.
- 2) En déduire l'équation de la tangente au point d'abscisse x = 0 et la position de la tangente par rapport à la courbe de f.
- 3) Déterminer une équation de l'asymptote en $+\infty$ ainsi que la position de cette asymptote par rapport à la courbe de f.

Exercice 2 (5 points)

- 1) Énoncer le théorème des accroissements finis.
- 2) En appliquant ce dernier théorème sur l'intervalle [x, x+1] pour tout x>0, montrer que : $\forall x>0$, $\frac{1}{x+1}<\ln(x+1)-\ln(x)<\frac{1}{x}$.
- 3) En déduire que les fonctions f et g définies sur \mathbb{R}_+^* par

$$f(x) = \left(1 + \frac{1}{x}\right)^x$$
 et $g(x) = \left(1 + \frac{1}{x}\right)^{x+1}$

1

sont monotones.

4) Déterminer les limites en l'infini de $\ln f$ et $\ln g$, puis de f et g.

Exercice 3 (5 points)

Soit f la fonction de deux variables x et y définie par : $f(x,y) = 2x\sqrt{y}$.

- 1) Déterminer et représenter graphiquement le domaine de définition de f.
- 2) Déterminer la différentielle de f.
- 3) Montrer que f est homogène et déterminer son degré d'homogénéité.
- 4) En déduire que $e_{f/x} + e_{f/y} = \frac{3}{2}$.

Exercice 4 (6 points)

Soit f la fonction définie par $f(x, y) = y(x^2 + (\ln y)^2)$.

- 1) Déterminer et représenter graphiquement le domaine de définition de f.
- 2) Calculer les dérivées partielles premières et déterminer les points critiques.
- 3) Étudier la nature de ces points critiques.

Bon Travail