Chapter 1

随机游动: 马氏链的特例

1.1 一维随机游动

首先,我们假定存在一个概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$,并且这个空间足够大,可以在上面定义(可数)无穷多个相互独立的两点分布随机变量 $\{B_n : n = 1, 2, \ldots\}$,满足

$$\mathbb{P}(B_n = 1) = p, \quad \mathbb{P}(B_n = -1) = q = 1 - p.$$

(想一想:这个概率空间显然存在么?一般的 [0,1] 区间上的勒贝格测度是否满足要求?)

定义随机变量

$$X_0 = 0, \quad X_n = \sum_{m=1}^n B_m \quad (m = 1, 2, \dots).$$
 (1.1)

这样的一族随机变量 $\{X_n: n=0,1,\dots\}$ 一般称为 \mathbb{Z} 上的随机游动。下面这个等价定义更显示出,它是一个以 n 为离散时间的随机过程:

$$\mathbb{P}(X_0 = 0) = 1,\tag{1.2a}$$

$$\mathbb{P}(X_n - X_{n-1} = \varepsilon \mid X_0, X_1, \dots, X_{n-1}) = \begin{cases} p, & \varepsilon = 1, \\ q, & \varepsilon = -1. \end{cases}$$
 (1.2b)

(这里 $\mathbb{P}(X_n - X_{n-1} = \varepsilon \mid X_0, X_1, ..., X_{n-1})$ 的意思是 $X_n - X_{n-1}$ 这个随机 变量关于 $X_0, ..., X_{n-1}$ 这些随机变量的条件概率。一般来说,这样的条件 概率应该是依赖 $X_0, ..., X_{n-1}$ 的取值的。(1.2b)的右边不依赖于它们,是一个值得注意的性质。)

1.1.1 时间 n 时的分布

首先的问题: 当时间为 n 时, 随机变量 X_n 的分布。

显然, X_n 是取值为整数的离散随机变量。其次, X_n 的奇偶性总是和 n 的相同而且 $|X_n| \le n$ 。

首先,考虑(1.1)给出的第一种定义。 $B'_n = (B_n + 1)/2$ 是相互独立的 Bernoulli(p) 随机变量,因此

$$X'_{n} = \frac{X_{n} + n}{2} = \sum_{m=1}^{n} B'_{m}$$

是一个二项分布随机变量。对于与n 奇偶性相同并满足 $-n \le m \le n$ 的整数m,我们有

$$\mathbb{P}(X_n = m) = \mathbb{P}(X_n' = \frac{m+n}{2}) = \binom{n}{\frac{m+n}{2}} p^{\frac{n+m}{2}} q^{\frac{n-m}{2}}.$$
 (1.3)

也可以从第二种定义(1.2)出发。为了符号简洁,我们记 $\mathbb{P}(X_n = m)$ 为 $(P^n)_m$ 。(这个记号的意义会在以后得到解释。)考虑从时间 n-1 到时间 n 的 "转移",我们可知

$$(P^n)_m = \mathbb{P}(X_{n-1} = m - 1\&X_n = m) + \mathbb{P}(X_{n-1} = m + 1\&X_n = m)$$
$$= p\mathbb{P}(X_{n-1} = m - 1) + q\mathbb{P}(X_{n-1} = m + 1),$$

考虑到 n = 0 的初始条件 $\mathbb{P}(X_0 = 0) = 1$ 和对于所有非零整数 m, $\mathbb{P}(X_0 = m) = 0$, 我们得到

$$(P^0)_m = \delta_{0,m}, \quad (P^n)_m = p(P^{n-1})_{m-1} + q(P^{n-1})_{m+1}.$$

这个递推关系完整地决定了 $(P^n)_m$ 的值。当然,想得到(1.3)这样紧凑的公式,还需要一些组合技巧。

1.1.2 通过时间的第一种计算方法:反射原理

下一个问题: 固定某个整数点 a, 随机游动首次通过这个位置的时间的分布。这个首次通过时间的数学表达式是

$$\zeta_a = \inf\{n \ge 1 : X_n = a\}.$$

(我们允许 $\zeta_a = \infty$, 意思是, 对于所有的 $n = 1, 2, \ldots, X_n \neq a$ 。)

不失一般性,我们假定 a > 0 并且奇偶性与 n 相同。因为第 n 步首次通过 a 等价于(1)第 n-1 步走到 a-1,并且没碰过 a,再(2)第 n 步往右走:

$$\mathbb{P}(\zeta_a = n) = \mathbb{P}(\underbrace{X_n = a}_{\text{ n 步到了 } a} \& \underbrace{\zeta_a > n - 1}_{\text{ $\#$ 提前到}}) = p\mathbb{P}(\zeta_a > n - 1 \& X_{n-1} = a - 1).$$

我们只需要计算 $\mathbb{P}(\zeta_a > n-1\&X_{n-1} = a-1)$ 。回顾(1.1),我们有 $\mathbb{P}(X_{n-1} = a-1) = \binom{n-1}{(n-a)/2} p^{(n+a)/2-1} q^{(n-a)/2}$ 。(这里 $\binom{n-1}{(n-a)/2}$ 是所有 B_1, \ldots, B_{n-1} 取值 ±1 且其和为 a-1 的取值方法数目,而 $p^{(n+a)/2-1} q^{(n-a)/2}$ 是任意上述取值的概率权重(n-1 个 B_i ,(n+a)/2-1 个取 1,另外的 n-a 个为 -1。)同理,如果令 $\mathcal{N}(n,a)$ 为所有 B_1, \ldots, B_{n-1} 取值 ±1,其和为 a-1,并且对所有 $\ell=1,\ldots,n-1$, $B_1+\cdots+B_\ell \leq a-1$ 的取值方法数目,则

$$\mathbb{P}(\zeta_a > n - 1 \& X_{n-1} = a - 1) = \mathcal{N}(n, a) p^{\frac{n+a}{2} - 1} q^{\frac{n-a}{2}}.$$

直观上说, $\mathcal{N}(n,a)$ 就是在格点图上, 从 (0,0) 出发, 达到 (n-1,a-1), 且一直不越过 y=a-1 这道横线的所有折线数量 (见图1.1)。很显然,

图 1.1: $B_1 = 1$, $B_2 = -1$, $B_3 = 1$, ……对应的折线图。

如果我们定义 L(n,a) 为从 (0,0) 出发,达到 (n-1,a-1),且在至少一点越过 y=a-1 这道横线的折线的集合,而 $\mathcal{N}'(n,a)=|L(n,a)|$,则 $\mathcal{N}(n,a)=\binom{n-1}{(n+a)/2-1}-\mathcal{N}'(n,a)$ 。下面,我们介绍一个几何上看上去显然的结论: 如果定义 U(n,a) 为从 (0,0) 出发,到达 (n-1,a+1) 的折线的集合,则 L(n,a) 到 U(n,a) 有一个一一映射,见图1.2。这就是我们的反射原理! 于是, $\mathcal{N}'(n,a)=|U(n,a)|=\binom{n-1}{(n+a)/2}$,我们得到

$$\mathcal{N}(n,a) = \binom{n-1}{\frac{n+a}{2}-1} - \binom{n-1}{\frac{n+a}{2}},$$

图 1.2: 反射原理示意图 (a=1, n=7)。 灰实线图代表一个 L(n,a) 中元素,黑点线图代表一个 U(n,a) 中元素。这两个元素互相对偶:他们相互重合,直到在灰实线图最后一次走到 a 位置时,两个线路分开,并且对称于高度为 a 的横线。

以及

$$\mathbb{P}(\zeta_a = n) = \left[\binom{n-1}{\frac{n+a}{2} - 1} - \binom{n-1}{\frac{n+a}{2}} \right] p^{\frac{n+a}{2}} q^{\frac{n-a}{2}}. \tag{1.4}$$

对比(1.4)和(1.3),我们发现对于 a > 0 (并且满足一些显然的条件),

$$\mathbb{P}(\zeta_a = n) = \frac{a}{n} \binom{n-1}{\frac{n+a}{2}} p^{\frac{n+a}{2}} q^{\frac{n-a}{2}} = \frac{a}{n} \mathbb{P}(X_n = a). \tag{1.5}$$

对 a < 0 情况,可以得到极相似的公式 (练习)。

1.1.3 进一步推导

想知道:是不是随机游动几乎总是,不可避免地,走到 a 这个点? 我们把 ζ_a 视作 B_1, B_2, \ldots 的函数: $\zeta_a = f_a(B_1, B_2, \ldots)$ (这是一个无穷元函数),这里,对于整数值变量 $\varepsilon_1, \varepsilon_2, \ldots$),

$$f_a(\varepsilon_1, \varepsilon_2, \dots) = \inf\{n : \sum_{\ell=1}^n \varepsilon_\ell \ge a\}.$$

我们假定 $\inf \emptyset = +\infty$,所以 ζ_a 有可能是 $+\infty$ 。 我们有

$$\mathbb{P}(\zeta_{a+1} < \infty) = \sum_{m=1}^{\infty} \mathbb{P}(\zeta_a = m \& \zeta_{a+1} < \infty)$$

$$= \sum_{m=1}^{\infty} \underbrace{\mathbb{P}(\zeta_a = m) \mathbb{P}(f_1(B_{m+1}, B_{m+2}, \dots) < \infty)}_{\zeta_a = m \ \text{RK} \# \to B_1, \dots, B_m, \ \exists \ B_{m+1}, B_{m+2}, \dots \ \text{HEM2}}_{A}.$$

其中第二个等式是因为, 如果 $\zeta_a = m$, 则 $\zeta_{a+1} = m + f_1(B_{m+1}, B_{m+2}, \dots)$ 且 $\{\zeta_a = m\}$ 这个事件和 $\{f_1(B_{m+1}, B_{m+2}, \dots) < \infty\}$ 这个事件相互独立。下面,我们利用一个显然的性质 $f_1(B_{m+1}, B_{m+2}, \dots)$ 与 $f_1(B_1, B_2, \dots) = \zeta_1$ 同分布,(这两个随机变量可以认为相差一个时间平移,所以我们下面记 $f_1(B_{m+1}, B_{m+2}, \dots)$ 为 $\zeta_1 \circ \Sigma^m$ 。)得到

$$\mathbb{P}(\zeta_{a+1} < \infty) = \sum_{m=1}^{\infty} \mathbb{P}(\zeta_a = m) \mathbb{P}(\zeta_1 < \infty)$$
$$= \left(\sum_{m=1}^{\infty} \mathbb{P}(\zeta_a = m)\right) \mathbb{P}(\zeta_1 < \infty) = \mathbb{P}(\zeta_a < \infty) \mathbb{P}(\zeta_1 < \infty).$$

利用数学归纳法, 我们得到对所有 a = 1, 2, ...,

$$\mathbb{P}(\zeta_a < \infty) = \mathbb{P}(\zeta_1 < \infty)^a.$$

同理 (或者直接利用对称性), 对所有 $a = -1, -2, \ldots$,

$$\mathbb{P}(\zeta_a < \infty) = \mathbb{P}(\zeta_{-1} < \infty)^{-a}.$$

所以下面不失一般性,我们只考虑 $\mathbb{P}(\xi_1 < \infty)$ 。我们用单调收敛定理:

$$\mathbb{P}(\zeta_1 < \infty) = \sum_{n=1}^{\infty} \mathbb{P}(\zeta_1 = 2n - 1) = \lim_{s \nearrow 1} \sum_{n=1}^{\infty} s^{2n-1} \mathbb{P}(\zeta_1 = 2n - 1) = \lim_{s \nearrow 1} \mathbb{E}[s^{\zeta_1}].$$

(这里以及以后,我们发现考虑某离散随机变量 X 的概率母函数 $\mathbb{E}[s^X]$ 是很有用的手段。只是要注意概率母函数只有 $|s| \leq 1$ 时才有良好定义。)由(1.5),

$$\mathbb{P}(\zeta_1 = 2n - 1) = \frac{1}{2n - 1} \binom{2n - 1}{n} p^n q^{n - 1}.$$

因为下面的组合恒等式 (二项式展开验证)

$$\frac{1}{2n-1} \binom{2n-1}{n} = (-1)^{n-1} \frac{4^n}{2} \binom{1/2}{n},$$

我们可以得到

$$\sum_{n=1}^{\infty} s^{2n-1} \mathbb{P}(\zeta_1 = 2n - 1) = -\frac{1}{2qs} \sum_{n=1}^{\infty} {1/2 \choose n} (-4pqs^2)^n = \frac{1 - \sqrt{1 - 4pqs^2}}{2qs},$$

也即是

$$\mathbb{E}[s^{\zeta_1}] = \frac{1 - \sqrt{1 - 4pqs^2}}{2qs}, \quad 只要 \quad |s| < \frac{1}{\sqrt{4pq}}.$$
 (1.6)

注意到 $1/\sqrt{4pq} \ge 1$,我们总可以取 $s \nearrow 1$ 这个左极限。取此极限后,我们得到

$$\mathbb{P}(\zeta_1 < \infty) = \lim_{s \nearrow 1} \mathbb{E}[s^{\zeta_1}] = \frac{1 - |p - q|}{2q} = \frac{p \land q}{q} = \begin{cases} 1, & p \ge q, \\ p/q, & p < q. \end{cases}$$

通过相似步骤,或者利用对称性,我们可以推导 $\mathbb{P}(\zeta_{-1} < \infty)$ 的公式,并且最后得到

1.1.4 首次返回时间

我们没定义 ζ_0 (因为它就是 0),但是可以定义类似的首次返回到 0 的时刻

$$\rho_0 = \inf\{n \ge 1 : X_n = 0\}.$$

因为我们有

$$\mathbb{P}(X_1 = 1, \rho_0 < \infty) = p\mathbb{P}(\zeta_{-1} < \infty), \quad \mathbb{P}(X_1 = -1, \rho_0 < \infty) = q\mathbb{P}(\zeta_1 < \infty),$$

又知道第一步不是先到 1 就是先到 -1, 所以

$$\mathbb{P}(\rho_{0} < \infty) = \mathbb{P}(X_{1} = 1, \rho_{0} < \infty) + \mathbb{P}(X_{1} = -1, \rho_{0} < \infty)$$

$$= \begin{cases}
p \cdot \frac{q}{p} + q \cdot 1, & p > q, \\
p \cdot 1 + q \cdot \frac{p}{q}, & p < q, \\
p \cdot 1 + q \cdot 1, & p = 1 = \frac{1}{2}
\end{cases} = 2(p \wedge q). \tag{1.7}$$

于是我们得到一个有意思的结论: 随机游动 $\{X_n : n \ge 0\}$ 以概率 1 回到 0, 当且仅当它是对称的: p = q = 1/2。

更进一步,在 $\rho_0 < \infty$ 这个条件下,我们可以计算 ρ_0 的期望,也就是 $\mathbb{E}[\rho_0 \mid \rho_0 < \infty]$ 。我们有

$$\mathbb{P}(X_1 = 1, \rho_0 = 2n) = p\mathbb{P}(\zeta_{-1} = 2n - 1),$$

$$\mathbb{P}(X_1 = -1, \rho_0 = 2n) = q\mathbb{P}(\zeta_1 = 2n - 1).$$

所以 (对于 |s| < 1)

$$\begin{split} \mathbb{E}[s^{\rho_0}] &= \sum_{n=1}^{\infty} s^{2n} \mathbb{P}(\rho_0 = 2n) \\ &= s \sum_{n=1}^{\infty} s^{2n-1} \left(p \mathbb{P}(\zeta_{-1} = 2n-1) + q \mathbb{P}(\zeta_1 = 2n-1) \right) \\ &= s \left(p \sum_{n=1}^{\infty} s^{2n-1} \mathbb{P}(\zeta_{-1} = 2n-1) + q \sum_{n=1}^{\infty} s^{2n-1} \mathbb{P}(\zeta_1 = 2n-1) \right) \\ &= s (p \mathbb{E}[s^{\zeta_{-1}}] + q \mathbb{E}[s^{\zeta_1}]) = 1 - \sqrt{1 - 4pqs^2}. \end{split}$$

因为对所有 |s| < 1,

$$\mathbb{E}[\rho_0 s^{\rho_0}] = s \frac{d}{ds} \mathbb{E}[s^{\rho_0}] = \frac{4pqs^2}{\sqrt{1 - 4pqs^2}},$$

我们用单调收敛定理得到

$$\mathbb{E}[\rho_0, \rho_0 < \infty] = \mathbb{E}[\rho_0 1_{\rho_0 < \infty}] = \lim_{s \nearrow 1} \mathbb{E}[\rho_0 s^{\rho_0}] = \frac{4pq}{|p - q|}.$$

进而结合(1.7)我们可以计算如下条件概率

$$\mathbb{E}[\rho_0 \mid \rho_0 < \infty] = \frac{2p \land q}{|p - q|} = 1 + \frac{1}{|p - q|}.$$

直观上说,就是: 当 p = q = 1/2 是,平均返回 0 点的时间是无穷大,随然几乎总是能够返回; 当 $p \neq q$ 时,有可能永远不返回,但是如果返回的话,就会比较迅速地返回。

1.1.5 通过时间的第二种计算方法:函数方程

我们可以利用定义(1.2)同样推出(1.6)。

对于非零整数 a 和 $s \in (-1,1)$,我们记 $u_a(s) = \mathbb{E}[s^{\zeta_a}]$ 。这样,如果 a > 0,则因为首次到达 a + 1 之前,要先到达 a,然后从 a 出发,再首次到达右方邻位,我们有

$$u_{a+1}(s) = \sum_{m=1}^{\infty} s^m \mathbb{E} \left[\underbrace{s^{\zeta_1 \circ \Sigma^m}, \zeta_a = m}_{\zeta_a = m \text{ 这个事件和 } s^{\zeta_1 \circ \Sigma^m} \text{ 这个随机变量相互独立}} \right]$$

$$= \sum_{m=1}^{\infty} s^m \mathbb{P}(\zeta_a = m) \mathbb{E}[s^{\zeta_1 \circ \Sigma^m}]$$

$$= \underbrace{\sum_{m=1}^{\infty} s^m \mathbb{P}(\zeta_a = m) u_1(s) = u_a(s) u_1(s).}_{=u_a(s)}$$

对 a < 0 情况可以类似处理,最后得到对于所有 $a \in \mathbb{Z} \setminus \{0\}$ 和 $s \in (-1,1)$,

$$u_a(s) = u_{\operatorname{sgn}(a)}(s)^{|a|}.$$

(这里对所有非零实数, k, sgn(k) = k/|k|。)接着,

$$u_1(s)=\mathbb{E}[s^{\zeta_1},X_1=1]+\mathbb{E}[s^{\zeta_1},X_1=-1]$$

$$=ps+qs\mathbb{E}[\underbrace{s^{\zeta_2\circ\Sigma^1},X_1=-1}_{\text{把 }X_1\text{ 当作起点,要考虑首达右边 2 步处的时间}}]$$

 $= ps + qsu_2(s) = ps + qsu_1(s)^2.$

所以,

$$u_1(s) = \frac{1 \pm \sqrt{1 - 4pqs^2}}{2qs}.$$

其中, ± 取 - 的是正确的 $u_1(s)$, 因为我们需要当 $s \in (-1,1)$ 时, 总有 $u_1(s) < 1$ 。 (验证: $s \in (0,1)$ 时, $\frac{1+\sqrt{1-4pqs^2}}{2qs} > 1$ 。) 同理我们可以计算 $u_{-1}(s)$ (练习)。最后的结果可以总结为: 对 $a \neq 0$ 和 |s| < 1,

$$\mathbb{E}[s^{\zeta_a}] = \begin{cases} \left(\frac{1 - \sqrt{1 - 4pqs^2}}{2qs}\right)^a, & a > 0, \\ \left(\frac{1 - \sqrt{1 - 4pqs^2}}{2ps}\right)^{-a}, & a < 0. \end{cases}$$

1.2 高维随机游动:常返性的引入

如果 $\mathbb{P}(\rho_0 < \infty) = 1$,我们称这个随机游动为常返的,否则称为瞬时的。如果一个随机游动是常返的,我们就可以把它看做多个从 0 到 0 的闭路径的叠加。和以为情况一样,随机游动只有在第偶数步才有可能走回 $\vec{0}$ 。

我们已经知道一维随机游动只有在对称情况下才是常返的。可以想见, 高维随机游动也只能在对称情况下常返。下面我们要证明:对称的二维随机 游动是常返的,但是三维或更高维情况却不是。

1.2.1 \mathbb{Z}^d 上随机游动的定义

首先, 我们考虑 2d 个 d 维向量

$$\vec{v}_i = \begin{cases} (0, \dots, \underbrace{1}_{i \uparrow}, \dots), & i = 1, \dots, d, \\ (0, \dots, \underbrace{-1}_{i - d \uparrow}, \dots), & i = d + 1, \dots, 2d, \end{cases}$$

以及 2d 个非负实数 p_1, \ldots, p_{2d} , 且令 $p_1+\cdots+p_{2d}=1$ 。定义取值 \mathbb{Z}^d 的相互独立的同分布的随机变量 $\vec{B}_1, \vec{B}_2, \ldots$,使得 $\mathbb{P}(\vec{B}_i = \vec{v}_m) = p_m \ (m=1, \ldots, 2d)$ 。这样, \mathbb{Z}^d 上的 (最近邻) 随机游动就是如下一族 \mathbb{Z}^d 值随机变量 $\{\vec{X}_n: n \geq 0\}$

$$\vec{X}_0 = \vec{0}, \quad \vec{X}_n = \sum_{m=1}^n \vec{B}_m, \quad (n \ge 1),$$

或等价地,

$$\mathbb{P}(\vec{X}_0 = \vec{0}) = 1, \quad \mathbb{P}(\vec{X}_n - \vec{X}_{n-1} = \vec{v}_m \mid \vec{X}_0, \vec{X}_1, \dots, \vec{X}_{n-1}) = p_m.$$

如果 $p_1 = \cdots = p_{2d} = 1/(2d)$,则我们称这个随机游动为对称的。

我们定义随机变量 $\rho_{\vec{0}}=\inf\{n\geq 1: \vec{X}_n=0\}$ 为高维随机游动的首次返回时刻,并且称这个随机游动为常返的如果 $\mathbb{P}(\rho_{\vec{0}}<\infty)=1$,或者瞬时的如果反之。

上面定义的随机游动是最简单最标准的,我们下面主要考虑它。但是,在高维情况,随机游动的定义可以更灵活些。比如:我们记 d 维向量 $\vec{u}=(u_1,\ldots,u_d)$,这里 $u_i=\pm 1$ 。然后,对这样的 $\vec{\epsilon}$,令 $N(\vec{u})=\sum_{m=1}^d(u_m+1)2^{d-2}$,也就是对于所有可能的 \vec{u} , $N(\cdot)$ 将其一一映射于 $\{0,1,\ldots,2^d-1\}$ 。接着令 $q_0,q_1,\ldots,q_{2^d-1}\in[0,1]$ 且 $\sum_{m=0}^{2^d-1}q_m=1$ 。定义取值 \mathbb{Z}^d 的相互独立的同分布的随机变量 B_1^d,B_2^d,\ldots ,使得 $\mathbb{P}(B_i^d=\vec{u})=q_{N(\vec{u})}$ 。这样, \mathbb{Z}^d 上的(最近邻)随机游动就是如下一族 \mathbb{Z}^d 值随机变量 $\{\vec{Y}_n:n\geq 0\}$

$$\vec{Y}_0 = \vec{0}, \quad \vec{Y}_n = \sum_{m=1}^n B_m^d, \quad (n \ge 1),$$
 (1.8)

或等价地,

$$\mathbb{P}(\vec{Y}_0 = \vec{0}) = 1, \quad \mathbb{P}(\vec{Y}_n - \vec{Y}_{n-1} = \vec{u} \mid \vec{Y}_0, \vec{Y}_1, \dots, \vec{Y}_{n-1}) = q_{N(\vec{\epsilon})}. \tag{1.9}$$

如果对所有 ε 都有 $q_{N\vec{\varepsilon}}=2^{-d}$,则我们称这个随机游动为对称的。这个随机游动定义繁琐些,但是显然在 d=1 时和上面的定义一致。其实,当 d=2 时,这两个定义也是一致的,只是我们需要考虑不同的格点 \mathbb{Z}^2 ,见图1.3。随机游动 $\{\vec{Y}_n:n\geq 0\}$ 的第二个好处是:在对称情况下,它的 d 个坐标分量,等同于 d 个相互独立的 d 个一维对称随机游动。

图 1.3: 二维随机游动 $\{\vec{X}_n\}$ (在·格点阵上)等价于二维随机游动 $\{\vec{Y}_n\}$ (在 在纵横格子上)。

1.2.2 简单的常返条件

令 $\rho_{\vec{0}}^{(1)} = \rho_{\vec{0}}$,而且对于 n > 1,令随机变量

$$\rho_{\vec{0}}^{(n)} = \begin{cases} \infty, & \rho_{\vec{0}}^{(n-1)} = \infty, \\ \inf\{m > \rho_{\vec{0}}^{(n-1)} : \vec{X}_m = \vec{0}\}, & \rho_{\vec{0}}^{(n-1)} < \infty. \end{cases}$$

如果对于 $\vec{\epsilon}_1, \vec{\epsilon}_2, \ldots \in \mathbb{Z}^d$, 我们定义无穷个变元的函数

$$g(\vec{\varepsilon}_1, \vec{\varepsilon}_2, \dots) = \inf\{n \ge 1 : \sum_{m=1}^n \vec{\varepsilon}_m = \vec{0}\},$$

则 $\rho_{\vec{0}}^{(1)} = \rho_{\vec{0}} = g(\vec{B}_1, \vec{B}_2, \dots)$,而且,如果 $\rho_{\vec{0}}^{(n)} = m$,则 $\rho_{\vec{0}}^{(n+1)} = m + g(\vec{B}_{m+1}, \vec{B}_{m+2}, \dots)$ 。注意到 $g(\vec{B}_{m+1}, \vec{B}_{m+2}, \dots)$ 与 $g(\vec{B}_1, \vec{B}_2, \dots)$ 同分布,且只差一个时间平移,所以我们也把它记作 $\rho_{\vec{0}} \circ \Sigma^m$ 。我们有

$$\begin{split} \mathbb{P}(\rho_{\vec{0}}^{(n+1)} < \infty) &= \sum_{m=1}^{\infty} \mathbb{P}(\rho_{\vec{0}}^{(n)} = m \& \rho_{\vec{0}} \circ \Sigma^m < \infty) \\ &= \sum_{m=1}^{\infty} \mathbb{P}(\rho_{\vec{0}}^{(n)} = m) \mathbb{P}(\rho_{\vec{0}} \circ \Sigma^m < \infty) \\ &= \mathbb{P}(\rho_{\vec{0}}^{(n)} < \infty) \mathbb{P}(\rho_{\vec{0}} < \infty), \end{split}$$

这里我们用到了 $\rho_{\vec{0}}\circ \Sigma^m$ 这个随机变量与 $\rho_{\vec{0}}^{(n)}=m$ 这个事件相互独立。所以,对所有 $n\geq 1$,

$$\mathbb{P}(\rho_{\vec{0}}^{(n)} < \infty) = \mathbb{P}(\rho_{\vec{0}} < \infty)^n.$$

也就是说,如果 $\vec{0}$ 是常返的,则这个随机游动会回到 $\vec{0}$ 无数次。

定义随机游动在 0 的总停留时间

$$T_{\vec{0}} = \sum_{n=0}^{\infty} 1_{\vec{0}}(\vec{X}_n).$$

(这个随机变量很可能等于 ∞ 。)因为 $T_{\vec{0}}=n$ 意味着 $\rho_{\vec{0}}^{(n)}<\infty$ 而 $\rho_{\vec{0}}^{(n+1)}=\infty$,我们有

$$\begin{split} \mathbb{E}[T_{\vec{0}}] &= \sum_{n=0}^{\infty} \mathbb{P}(T_{\vec{0}} > n) = 1 + \sum_{n=1}^{\infty} \mathbb{P}(\rho_{\vec{0}}^{(n)} < \infty) = \sum_{n=1}^{\infty} \mathbb{P}(\rho_{\vec{0}} < \infty)^n \\ &= \frac{1}{1 - \mathbb{P}(\rho_{\vec{0}} < \infty)} = \frac{1}{\mathbb{P}(\rho_{\vec{0}} = \infty)}. \end{split}$$

(如果 $\mathbb{P}(\rho_{\vec{0}}<\infty)=0$,则几何级数收敛不成立,但是这时候显然其和为 $\infty=1/0$ 。)

于是,我们有如下关系

$$\mathbb{P}(T_{\vec{0}} < \infty) > 0 \qquad \qquad \qquad \qquad \qquad \mathbb{E}[T_{\vec{0}}] < \infty,$$
 至少有个 n 使得 $\mathbb{P}(\rho_{\vec{0}}^{(n)} < \infty) < 1$
$$\mathbb{E}[T_{\vec{0}}] = \infty \qquad \qquad \qquad \qquad \qquad \qquad \qquad \mathbb{P}(T_{\vec{0}} = \infty) = 1.$$
 对所有 n , $\mathbb{P}(\rho_{\vec{0}}^{(n)} < \infty) = 1$

1.2.3 \mathbb{Z}^2 上对称随机游动的常返性

虽然我们关心的是 $\{\vec{X}_n:n\geq 0\}$ 的常返/瞬时性,我们首先考虑 $\{\vec{Y}_n:n\geq 0\}$ 。我们证明,当 d=2 时, $\{\vec{Y}_n\}$ 是常返的,反之它是瞬时的。这样,因为 d=2 时这两种随机游动是等价的,我们得到 $\{\vec{X}_n\}$ 的常返性。对于 $\{\vec{Y}_n\}$, $\rho_{\vec{0}}$, $\rho_{\vec{0}}^{(n)}$, $T_{\vec{0}}$ 等随机变量可以等价定义,这里我们直接使用。

要证明常返性,我们只要证明 $\mathbb{E}[T_{\vec{n}}] = \infty$ 。因为

$$\mathbb{E}[T_{\vec{0}}] = \mathbb{E}\left[\sum_{n=0}^{\infty} \mathbf{1}_{\vec{0}}(\vec{Y}_n)\right] = \sum_{n=0}^{\infty} [\mathbf{1}_{\vec{0}}(\vec{Y}_n)] = \sum_{n=0}^{\infty} \mathbb{P}(\vec{Y}_n = \vec{0}),$$

只要我们有 $\sum_{n=0}^{\infty} \mathbb{P}(\vec{Y}_n = \vec{0}) = \infty$, 就得到此随机游动的常返性; 反之, 如果我们知道随机游动是瞬时的,则 $\mathbb{E}[T_{\vec{0}}] = \infty$, 也就是 $\sum_{n=0}^{\infty} \mathbb{P}(\vec{Y}_n = \vec{0}) < \infty$.

由组合技术,我们知道,一维的对称随机游动在第 2n 步走回 0,也就是 $X_n=0$ 的概率是 $2^{-2n}\binom{2n}{n}$ 。对称的 d 维随机游动,可以视作在 d 个维度上各自独立的 d 个独立的一维随机游动。所以, $\vec{Y}_n=\vec{0}$,也就是 d 个一维

对称随机游动都返回 0 的概率,是 $2^{-2nd}\binom{2n}{n}^d$ 。我们需要计算(对于各个整数 d)

$$\sum_{n=0}^{\infty} 2^{-2nd} \binom{2n}{n}^d$$

是否等于 ∞。

因为 $\binom{2n}{n} = (2n)!/(n!)^2$, 我们可以用斯特林 (Stirling) 公式得到

$$\binom{2n}{n} = \frac{2^{2n}}{\sqrt{\pi n}} (1 + \mathcal{O}(n^{-1})).$$

然后, 我们知道求和

$$\sum_{n=1}^{\infty} 2^{-2nd} \binom{2n}{n}^d$$

的收敛与否, 取决于

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{\pi n}} \right)^d$$

是否收敛。现在容易看出,当 d=1,2 是,此级数发散,d>2 时,级数收敛。也就是说,d=1,2 时, $\mathbb{E}[T_{\vec{0}}]=\infty$,于是 $\{\vec{Y}_n\}$ 是常返的,而 d>2 时, $\mathbb{E}[T_{\vec{0}}]<\infty$,于是 $\{\vec{Y}_n\}$ 是瞬时的。如果我们关心 $\{\vec{X}_n\}$,则当 d=1,2 时, $\{\vec{X}_n\}$ 是常返的(其中 d=2 结论是新的),而 d>2 情况尚未知。

1.2.4 维数 $d \ge 3$ 时对称随机游动的瞬时性

既然我们已经知道 $\{\vec{Y}_n\}$ 的瞬时性,就试图把 $\{\vec{X}_n\}$ 和这个已经了解的随机游动联系起来。具体地说,我们试图在同一个概率空间,把 $\{\vec{X}_n\}$ 和 $\{\vec{Y}_n\}$ 同时放进去,并且用另一组随机变量把它们联系起来。这个技巧叫做耦合。

从 $\{\vec{X}_n\}$ 我们可以定义"计数"类型的随机变量 $\{N_{1,n},\ldots,N_{d,n}\}$,使得

- $N_{1,0} = \cdots = N_{d,0} = 0$; 并且.
- 对于 $n \in \mathbb{Z}_+$,如果 X_n 和 X_{n-1} 的差别在第 k 个坐标上,不论是增加 1 还是减小 1,则 $N_{k,n} = N_{k,n-1} + 1$,而对于其他的 $j \in \{1, \ldots, d\} \setminus \{k\}$, $N_{j,n} = N_{j,n-1}$ 。 对每个 $n \in \mathbb{Z}_+$,存在唯一的 $k_n \in \{1, \ldots, d\}$ 使得 $N_{k_n,n} N_{k_n,n-1} = 1$ 。

因为 $\{\vec{X}_n\}$ 是对称的,每个 k_n 都在 $\{1,\ldots,d\}$ 上均匀分布,且这些 $\{k_n\}$ 互相独立。很显然,当 $n\to\infty$ 时,以概率 1,对于所有 $k=1,\ldots,d$, $N_{k,n}$ 趋近于 ∞ 。

接着,从 $\{\vec{X}_n\}$ 我们可以定义 $\{\vec{Y}_n\}$,或者等价地,d 个相互独立的一维随机变量序列 $\{Y_{1,n}\},\ldots,\{Y_{d,n}\}$,使得 $X_{k,n}=Y_{k,N_{k,n}}$ 。(以概率 1,所有的 $Y_{k,n}$ 都有定义)。因为 $\{\vec{X}_n\}$ 是对称的,不难看出, $\{\vec{Y}_n\}$ 与 $\{N_{k,n}\}$ 互相独立,而且 $\{\vec{Y}_n\}$ 是(1.8)和(1.9)定义的对称随机游动,或者等价地, $\{Y_{k,n}:n\geq 0\}$ 是各自相互独立的一维对称随机游动。

下面我们对充分大的 n 估计 $\mathbb{P}(\vec{X}_{2n} = \vec{0})$ 。我们证明一下几点:

1.
$$\mathbb{P}(\min_{k=1,\dots,d} \{N_{k,2n}\} < n/d) = \mathcal{O}(n^{-d/2})$$
.

2.
$$\mathbb{P}(\vec{X}_{2n} = \vec{0} \& \min_{k=1,\dots,d} \{N_{k,2n}\} \ge n/d) = \mathcal{O}(n^{-d/2}).$$

有了这两个结论,我们便有(当 $d \geq 3$ 时) $\sum_{n=1}^{\infty} \mathbb{P}(\vec{X}_{2n} = \vec{0})$ 收敛,得到所要的瞬时性结论。

要证明第1部分,我们只需要初等概率。因为 $N_{1,2n},\ldots,N_{d,2n}$ 各自同分布 (但不一定相互独立), $\mathbb{P}(\min_{k=1,\ldots,d}\{N_{k,2n}\}< n/d) \leq d\mathbb{P}(\{N_{1,2n}\}< n/d)$ 。然后, $N_{1,2n}=1_{k_1=1}+1_{k_2=1}+\cdots+1_{k_{2n}=1}$,而每个 k_{2n} 都各自独立地有 1/d 的概率等于 1,所以 $N_{1,2n}$ 服从二项式分布。具体计算可以得到想要的估计(其实比需要的估计还要强得多),这里略过。

要证明第2部分,我们利用 $\{N_{k,2n}\}$ 与 $\{Y_{k,m}: k=1,\ldots,d,m\geq 0\}$ 的独立性,以及 $\{Y_{1,n}\},\ldots,\{Y_{d,n}\}$ 这 d 个对称一维随机游动的相互独立性,有

$$\mathbb{P}\left(\vec{X}_{2n} = \vec{0} \& \min_{k=1,\dots,d} \{N_{k,2n}\} \ge \frac{n}{d}\right) \\
= \sum_{m_1,\dots,m_d = \lceil \frac{n}{d} \rceil} \mathbb{P}(N_{1,2n} = m_1,\dots,N_{d,2n} = m_d, Y_{1,m_1} = 0,\dots,Y_{d,m_d} = 0) \\
= \sum_{m_1,\dots,m_d = \lceil \frac{n}{d} \rceil}^{\infty} \mathbb{P}(N_{1,2n} = m_1,\dots,N_{d,2n} = m_d) \mathbb{P}(Y_{1,m_1} = 0) \cdots \mathbb{P}(Y_{d,m_d} = 0) \\
\le \sum_{m_1,\dots,m_d = \lceil \frac{n}{d} \rceil}^{\infty} \mathbb{P}(N_{1,2n} = m_1,\dots,N_{d,2n} = m_d) \left(\max_{m = \lceil \frac{n}{d} \rceil}^{\infty} \mathbb{P}(Y_{1,m} = 0) \right)^d \\
\le \left(\max_{m = \lceil \frac{n}{d} \rceil}^{\infty} \mathbb{P}(Y_{1,m} = 0) \right)^d.$$

显然如果令 m' 为最小的不小于 n/d 的偶数,则 $\max_{m=\lceil \frac{n}{d} \rceil}^{\infty} \mathbb{P}(Y_{1,m}=0) = \mathbb{P}(Y_{1,m'}=0)$ 。用类似第1.2.3节后半部分的计算可以得到我们想要的估计。