# k-Rank-2-Nash

Linfeng Zhou and Amit Watve

### Problem

#### Bimatrix Game: played by two players ROW and COLUMN

Two payoff matrices A, B  $\in Q^{m \times n}$ 

Example: Rock, Paper, Scissors

| 0 | 1 | -2 |  |
|---|---|----|--|
| 0 | 2 | 2  |  |
| 1 | 2 | -1 |  |

| 0 | 2  | 0 |
|---|----|---|
| 0 | -2 | 2 |
| 1 | 1  | 1 |
|   |    |   |

| 1/3 | 0  | -1 | 1  |
|-----|----|----|----|
| 1/3 | 1  | 0  | -1 |
| 1/3 | -1 | 1  | 0  |

| 0  | 1  | -1 |
|----|----|----|
| -1 | 0  | 1  |
| 1  | -1 | 0  |

ROW chooses i

COLUMN chooses j

Pure Nash Equilibrium

Mixed Nash Equilibrium

Nash Equilibrium: no player can gain by a unilateral change of strategy

### Bounded Rank

Rank of matrix: # of linearly independent rows

Rank of Game: rank(A+B)



| 1 | 2 | 1 | $R_3 \longrightarrow -3r_1+r_3$ | 1 | 2  | 1 | $R_3$ |
|---|---|---|---------------------------------|---|----|---|-------|
| 0 | 1 | 3 |                                 | 0 | 1  | 3 |       |
| 3 | 5 | 0 |                                 | 0 | -1 |   |       |





Bound on rank ⇒ Constraints on # of independent payoff values

k-Rank-2-Nash

**Input**: A bimatrix game G(A,B) and an integer k s.t. rank(A), rank(B) are both at most k.

**Parameter**: *k* 

**Question**: Compute the Nash equilibrium of G(A,B).

## Significance

Different notion of hardness because solution is guaranteed to exist !!



Applications of Finding Nash Equilibrium:

- Political Elections.
- Stock Market Analysis.
- Cryptography, Secure Multiparty Computation.
- Social Interactions.

#### Related Work

2-Nash is proven to be PPAD-complete.

(polynomial parity argument on directed graphs).

k-rank 2-Nash is proven to be PPAD-hard.

Bounding the # of values is promising because:

- Sparse Matrix games
- Bounded treewidth games
- K-unbalanced games are already solved in FPT parameterized on # payoff values.