МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Институт информационных наук и технологического образования Кафедра информационных технологий и электронного обучения

ЛАБОРАТОРНАЯ РАБОТА №6. «Численные методы решения дифференциальных уравнений»

Направление подготовки: «Информатика и вычислительная техника»

Руководители: Е.З. Власова С.В. Гончарова

Работу выполнили: студенты группы ИВТ 2.1:

Воложанин Владислав

Максимова Ангелина

Лабораторная работа № 1 Численные методы решения дифференциальных уравнений

Часть 1.

Тема: Численные методы решения дифференциальных уравнений.

Цель: Разработать программы решения дифференциальных уравнений с использованием численных методов Эйлера и Рунге-Кутта.

Оборудование: ПК, язык программирования (выбирает студент).

Постановка задачи: изучить численные методы Эйлера и Рунге-Кутта и предложенные варианты алгоритмов их реализации. Разработать программы решения дифференциальных уравнений, используя актуальный для студента язык программирования.

Контрольный пример 1.

Решить дифференциальное уравнение $y' = y^*(1 - x)$ на отрезке [0; 1] с начальными условиями x0=0, y0=1.

Код программы:

Результат:

Код программы:

```
def method_R(x0, y0, n):
    h = (x0 + y0) / n
    x = 0
    y = 1
    print('Metog Pyhre-Kytta:')
    print('----------')
    while x <= 1:
        k1 = h * f(x, y)
        k2 = h * f(x + h/2, y + k1/2)
        k3 = h * f(x + h/2, y + k2/2)
        k4 = h * f(x + h/2, y + k3)
        Fi = (k1 + 2 * k2 + 2 * k3 + k4)/6
        y = y + Fi
        print(f'| x = {round(x, 1)} | y = {round(y, 4)} |')
        x += h
    print('--------------')

def f(x, y):
    return y * (1 - x)</pre>
method R(0, 1, 10)
```

Результат:

```
Метод Рунге-Кутта:

| x = 0 | y = 1.1006 |
| x = 0.1 | y = 1.1992 |
| x = 0.2 | y = 1.2937 |
| x = 0.3 | y = 1.3817 |
| x = 0.4 | y = 1.4611 |
| x = 0.5 | y = 1.5296 |
| x = 0.6 | y = 1.5854 |
| x = 0.7 | y = 1.6269 |
| x = 0.8 | y = 1.6528 |
| x = 0.9 | y = 1.6556 |
| x = 1.0 | y = 1.6556 |
```

Таблица значений:

Метод Рунге-Кутта		Методом Эйлера	
x = 0.0	y = 1.1006	x = 0.0	y = 1.1000
x = 0.1	y = 1.1992	x = 0.1	y = 1.1990
x = 0.2	y = 1.2937	x = 0.2	y = 1.2949
x = 0.3	y = 1.3817	x = 0.3	y = 1.3856
x = 0.4	y = 1.4611	x = 0.4	y = 1.4687
x = 0.5	y = 1.5296	x = 0.5	y = 1.5421
x = 0.6	y = 1.5854	x = 0.6	y = 1.6038
x = 0.7	y = 1.6269	x = 0.7	y = 1.6519
x = 0.8	y = 1.6528	x = 0.8	y = 1.6850
x = 0.9	y = 1.6625	x = 0.9	y = 1.7018
x = 1.0	y = 1.6556	x = 1.0	y = 1.7018

Численные методы решения дифференциальных уравнений Часть 2.

Tema: Численные методы решения дифференциальных уравнений второго порядка и системы дифференциальных уравнений

Цель: Разработать программы решения дифференциальных уравнений второго порядка и системы дифференциальных уравнений с использованием численных методов Эйлера и Рунге-Кутта.

Оборудование: ПК, язык программирования (выбирает студент).

Постановка задачи: изучить алгоритмы решения дифференциальных уравнений высших порядков (второго порядка) и системы дифференциальных уравнений с использованием численных методов Эйлера и Рунге-Кутта. Разработать программы, используя актуальный для студента язык программирования.

Контрольный пример 2

Применяя метод Эйлера (Рунге-Кутта) составить на отрезке [1; 1,5] таблицу значений решения уравнения y'' + y'/x + y = 0 с начальными условиями:

```
y(1) = 0.77
y'(1) = -0.44.
Шаг вычисления h = 0.1.
```

Код программы:

```
def f1(y1, x, y):
    return (y1 / x + y)

def method_E1(a, b, n):
    h = (b - a) / n
    x = a
    y = 0.77
    z = -0.44
    print('Метод Эйлера:')
    print('-----')
    while x <= b:
        y = y + h * z
        z = z - h * f1(z, x, y)
        print(f'| {round(x, 2)} | {round(y, 4)} |')
        x += h
    print('-----')

method E1(1, 1.5, 10)
```

Результат:

```
| 1 | 0.748 |
| 1.05 | 0.7252 |
| 1.1 | 0.7017 |
| 1.15 | 0.6775 |
| 1.2 | 0.6527 |
| 1.25 | 0.6273 |
| 1.3 | 0.6013 |
| 1.35 | 0.5748 |
| 1.4 | 0.5479 |
| 1.45 | 0.5206 |
```

Таблица значений:

X	у	
1	0.748	
1.05	0.7252	
1.1	0.7017	
1.15	0.6775	
1.2	0.6527	
1.25	0.6273	
1.3	0.6013	
1.35	0.5748	
1.4	0.5479	
1.45	0.5206	

Контрольный пример 3.

```
dy/dt = -2x + 5z
dy/dt = \sin(t-1)x - y + 3z
dz/dt = -x + 2z
c начальными условиями x(0) = 2, y(0) = 1, z(0) = 1 составить таблицу значений функций x(t), y(t), z(t) на отрезке [0; 0.3] c шагом h = 0.003. Использовать метод Эйлера.
```

Код программы:

Результат:

```
Метод Эйлера:

|0|2.03|1.00875|0.9991|
|0.03|2.05807|1.01748|0.9973|
|0.06|2.08418|1.02622|0.99462|
|0.09|2.10832|1.03501|0.99104|
|0.12|2.13048|1.0439|0.98659|
|0.15|2.15064|1.0529|0.98127|
|0.18|2.16879|1.06206|0.97508|
|0.21|2.18492|1.07139|0.96804|
|0.24|2.19903|1.08092|0.96015|
|0.27|2.21111|1.09067|0.95143|
```

Вывод: Мы изучили численные методы Эйлера и Рунге-Кутта и их предложенные алгоритмы. Разработали программы для решения дифференциальных уравнений.

СкринКаст: https://drive.google.com/drive/folders/11jEyiBANL-www.auteori6NtM9fwv9GF