HOJA DE EJERCICIOS 8 Análisis Matemático (Grupo 130)

CURSO 2021–2022.

Problema 1. Considérense las subvariedades unidimensionales $C_1, C_2 \subset \mathbb{R}^3$ dadas por

$$C_1$$

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$$
 y C_2
$$\begin{cases} x^2 + y^2 = z^2 \\ x + y + z = 1 \end{cases}$$

- a) Representar gráficamente ambas curvas.
- b) Probar que, efectivamente, son subvariedades de dimensión 1.
- c) Hallar la recta tangente a C_1 en el punto $(1, 2, -3)/\sqrt{14}$.
- d) Hallar la ecuación del plano normal a C_2 en el punto (2, 3/2, -5/2).

Problema 2. Representar gráficamente el conjunto

$$C = \{ (\cos t, \sin t, t^2 (2\pi - t)^2) : 0 \le t \le 2\pi \} \subset \mathbb{R}^3,$$

y probar que es una subvariedad de dimensión 1 en \mathbb{R}^3 . Hallar los espacios tangente y normal a C en el punto (1,0,0).

Problema 3. a) Hallar el hiperplano tangente a la gráfica $G \subset \mathbb{R}^4$ de la función

$$f(x, y, z) \equiv e^y \cos z + e^z \cos x + e^x \cos y$$

en el punto de G correspondiente a x = y = z = 0.

b) Estudiar si

$$M = \{ (x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 3 \}$$

define, cerca del punto p = (0, 0, 0), una superficie regular en \mathbb{R}^3 . Hallar el plano tangente a M en p. Explicar la relación que guarda éste con el calculado en el apartado anterior.

Problema 4. Sea $X \subset \mathbb{R}^N$ una subvariedad de dimensión n. Dado cualquier abierto $W \subseteq \mathbb{R}^N$, demuestra que $X \cap W$ es o vacío o una subvariedad de dimensión n.

Si $W' \subseteq \mathbb{R}^N$ es otro abierto y $\sigma: W \to W'$ es un difeomorfismo, demuestra que $\sigma(X \cap W)$ también es o vacío o una subvariedad de dimensión n.

<u>Problema</u> 5. Sean $X,Y \subset \mathbb{R}^N$ dos hipersuperficies, es decir dos subvariedades de dimensión N-1, con intersección $X \cap Y$ no vacía.

Demuestra que si en todo $p \in X \cap Y$ se tiene $T_pX \neq T_pY$ entonces $X \cap Y$ es una subvariedad de dimensión N-2.

Problema 6. (a) Halla el máximo y el mínimo de $f(x, y, z) \equiv x - 2y + 2z$ en la esfera $\{x^2 + y^2 + z^2 = 1\}$.

(b) Determina los extremos absolutos de la función $f(x,y,z) \equiv 2x^2 + y^2 + z^2 - xy$ sobre el conjunto

$$K = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{8} \le 1 \right\}.$$

Problema 7. Sea $X = C_1 \cap C_2 \subset \mathbb{R}^3$ la subvariedad del ejercicio 2 de la hoja 7. Halla los valores máximo y mínimo de x + z en X, así como los puntos donde se alcanzan.

Indicaciones: (1) Demuestra que en tales puntos $y \notin \{0,1\}$. (2) Demuestra que en tales puntos x/y y z/(1-y) son iguales a una misma cantidad u. (3) Reescribe las ecuaciones de C_1 y C_2 en términos de (u,y).

Problema 8. Demuestra la desigualdad aritmético-geométrica:

para
$$a_1, a_2, \ldots, a_n \ge 0$$
, se tiene $\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}$

Indicación: Escribe $a_i = x_i^2$ y considera sólo lo que ocurre en la esfera unidad n-dimensional.

Problema 9. Hallar el valor máximo de $\log x + \log y + 3 \log z$ en la porción de la esfera $\{x^2 + y^2 + z^2 = 5 r^2\}$ en la que x > 0, y > 0 y z > 0. Aplicar el resultado para demostrar que para cualesquiera números reales positivos a, b, c se cumple

$$abc^3 \le 27\left(\frac{a+b+c}{5}\right)^5.$$

Problema 10. Calcula los extremos absolutos de la función $f(x,y) \equiv 2x + y^2$ sobre el conjunto

$$K = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, y^2 \ge x\}.$$

Problema 11. Sea la función

$$f_{\alpha}(x,y) \equiv x^4 + y^4 + \alpha(x^2 + y^2)$$
 , $\alpha \in \mathbb{R}$.

- a) Calcular los valores de α para los que f_{α} sólo tiene un máximo relativo, indicando el valor del mismo.
- b) Determinar el valor del parámetro α_0 de forma que (5,5) sea un punto crítico para f_{α} .
- c) Para el valor calculado en el apartado anterior, determinar el máximo y mínimo absolutos de f_{α} en

$$\{x^2 + y^2 = 36\} .$$