

CALCIUM CHANNEL BLOCKING DRUGS

Ilona Benkő M.D., Ph.D. associate professor

Inst. of Pharmacology and Pharmacotherapy
Univ. of Debrecen

Physiological regulatory role of CALCIUM at cellular level

Electrical excitability

Contraction of

- sceletal muscle
- smooth muscle
- and cardiac cells

Release of chemical mediators

Exocytosis

- Secretion in nerve endings
- Cell death apoptosis necrosis
- Second messenger especially in immune system

LIGAND-GATED Ca channels

NMDA glutamate receptors have high affinity to Ca,

too much stimulation may result in even EXCITOTOXICITY

P2 receptor mediated Ca entry in smooth muscle cells

STORE-OPERATED Ca channels (SOC)

sensitize ER Ca depletion

Туре	Channel Name	Where Found	Properties of the Calcium Current	Blocked By	
Ca _V 1.1-		Cardiac, skeletal, smooth muscle, neurons (Ca _V 1.4 is found in retina), endocrine cells, bone	Long, large, high threshold	Verapamil, DHPs, Cd ²⁺ , ω-aga-IIIA	
T	Ca _V 3.1- Ca _V 3.3	Heart, neurons	Short, small, low threshold	sFTX, flunarizine, Ni ²⁺ , mibefradil ¹ Ethosuccimide, valproic acid	
N	Ca _V 2.2	Neurons, sperm ²	Short high threshold	Ziconotide, ³ gabapentin, ⁴ ω-CTX- GVIA, ω-aga-IIIA, Cd ²⁺	
P/Q	Ca _V 2.1	Neurons	Long high threshold	ω-CTX-MVIIC, ω-aga-IVA	
R	Ca _V 2.3	Neurons, sperm ²	Pacemaking	SNX-482, ω-aga-IIIA	

- and the state of the state of

DHPs, dihydropyridines (eg, nifedipine); sFTX, synthetic funnel web spider toxin; ω-CTX, conotoxins extracted from several marine snails of the genus Conus; ω-aga-IIIA and ω-aga-IVA, toxins of the funnel web spider, Agelenopsis aperta; SNX-482, a toxin of the African tarantula, Hysterocrates gigas.

Antianginal drug withdrawn from market.

²Channel types associated with sperm flagellar activity may be of the Catsper1–4 variety.

³Synthetic snail peptide analgesic (see Chapter 31).

⁴Antiseizure agent (see Chapter 24).

Calcium channel blocking drugs

used in cardiovascular system

Groups

prototype

- Phenylalkilamines
- Benzothiazepines
- Dihydropiridines

verapamil

diltiazem

nifedipin

GURE 12–4 Chemical structures of several calcium channel-blocking drugs.

Use of Calcium channel blocking drugs in clinical practice

associated with cardiovascular system

Antiarrhythmic drugs (class IV)

Antianginal drugs

Antihypertensive drugs

Fig. 20.1 Cardiac contraction, the role of Ca²+ and noradrenaline (NA) and the action of drugs. The site of action of the calcium antagonists is shown, but these are not used for the treatment of heart failure. AC, adenylate cyclase; G, G-protein; PDE III, phosphodiesterase III; PKA, protein kinase A; →, acts on; →, moves to or is converted to.

Figure 14–6. Schematic diagram of the effects of class IV drugs in a calcium-dependent cardiac cell in the AV node (note that the AP upstroke in this figure is due mainly to calcium current). Class IV drugs reduce inward calcium current during the AP and during phase 4 (wavy lines). As a result, conduction velocity is slowed in the AV node and refractoriness is prolonged. Pacemaker depolarization during phase 4 is slowed as well if caused by excessive calcium current.

Effect of Ca channel blocking drugs on heart rate

fenylalkilamines

benzothiazepines

dihydropiridines

Verapamil

diltiazem

nifedipine

NO CHANGE

Pulse rate is slowing by their actions on conducting tissues

but this is offset of reflex tachycardia secondary to vasodilation

(Continued)

Table 31–2

ca2+ Channel Blockers: Chemical Structures and Same Bullion

Ca²⁺ Channel Blockers: Chemical Structures and Some Relative Cardiovascular Effects* VASODILATION SUPPRESSION SUPPRESSION OF SUPPRESSION OF CHEMICAL STRUCTURE (CORONARY OF CARDIAC AUTOMATICITY CONDUCTION (NONPROPRIETARY AND TRADE NAMES) FLOW) CONTRACTILITY (SA NODE) (AV NODE) 5 0 CH2-O-CH2-CH2-NH2 Amlodipine (NORVASC) 5 0 Felodipine (PLENDIL) NR NR NR NR Isradipine (DYNACIRC) 0 Nicardipine (CARDENE, others) COCH 0 -NO₂ Nifedipine (ADALAT, PROCARDIA) 5 CH₂CH₂N(CH₃)₂ Dittiazem (CARDIZEM, DILACOR-XR, others) 5 + Verapamil

Selectivity of DHPs to vascular smooth muscle cells based on their high affinity to inactive Ca channels

Resting potential of smooth muscle cells is lower than in cardiac muscle cells

Drug	Oral Bioavailability (%)		Half-life (hours)	Indication				
Dihydropyridines								
Amlodipine	Norvasc	65-90	30-50	Angina, hypertension				
Felodipine	Felodipin Plendil	15–20	11–16	Hypertension, Raynaud's phe- nomenon				
Isradipine	Lomir	15-25	8	Hypertension				
Nicardipine		35	2-4	Angina, hypertension				
Nifedipine	Adalat Corinfar	45-70	4	Angina, hypertension, Raynaud's phenomenon				
Nimodipine	Nimotop	13	1-2	Subarachnoid hemorrhage				
Nisoldipine		< 10	6–12	Hypertension				
Nitrendipine	Baypress	10-30	5–12	Investigational				
Miscellaneous								
Diltiazem	Dilzem	40-65	3–4	Angina, hypertension, Raynaud's phenomenon				
Verapamil	Isoptin Chinopam	20–35 il	6	Angina, hypertension, arrhythmias, migraine				

Table 12-6. Vascular selectivity and clinical properties of some calcium channel-blocking drugs.

Drug	Vascular Selectivity	Indications	Usual Dosage	Toxicity	
Mydropyridines Amlodipine	++	Angina, hypertension	5–10 mg orally once daily	Headache, peripheral edema	
Felodipine	5.4	Hypertension, Ray- naud's phenomenon, congestive heart failure	5–10 mg orally once daily	Dizziness, headache	
Isradipine	7.4	Hypertension	2.5–10 mg orally every 12 hours	Headache, fatigue	
Nicardipine	17.0	Angina, hypertension, congestive heart failure	20–40 mg orally every 8 hours	Peripheral edema, dizziness, headache, flushing	
Nifedipine	3.1	Angina, hypertension, migraine, cardio- myopathy, Raynaud's phenomenon	3–10 μg/kg IV; 20–40 mg orally every 8 hours	Hypotension, dizziness, flushing, nausea, constipation, dependent edema	
Nimodipine	78 5 ++ · · · · · · · · · · · · · · · · ·	Subarachnoid hemorrhage, migraine	60 mg orally every 4 hours	Headache, diarrhea	
Nisoldipine	++	Hypertension	20–40 mg orally once daily	Probably similar to nifedipine	
Nitrendipine	14.4	Investigational for angina, hypertension	20 mg orally once or twice daily	Probably similar to nifedipine	

Bepridil – Angina 200–400 mg Arrhythmias, dizziness, orally once daily nausea

1. Short-acting DHPs: nifedipine, nimodipine

2. Medium – acting DHPs: isradipine, felodipine, nisoldipine

3. Long-acting DHPs: amlodipine, lacidipine

For hypertonia with artherosclerotic vessels:

Lacidipine long lasting effect controlled by cholesterine

Israpidine increases HDL

In cerebral ischemia

Nimodipine some selectivity for cerebral vessels

Side effects

Flush, dizziness
Ankle oedema
Fatigue
Constipation

Rarely: hepatitis, cataracta, cerebral ischemia, depression, gynecomastia

agranulocytosis

ABCD and FACET clinical studies showed increased cardiovascular mortality in the case of the short-acting DHPs

Acute toxicity in overdosage:

AV block Negative inotropic effect with reduced cardiac output Hypotension

Therapy: Ca iv. 2-10 g! But it has little effect on nodal block

glucagon, vasopressin, epinephrine

high dose insulin plus glucose supplementation

Mibefradil inhibits T type Ca channels

is a glycoprotein, which was used as antihypertensive and antianginal drug, withdrawn from te market because of severe drug interactions with:

digoxin
other Ca channel blockers
beta blocking drugs
simvastatin
cyclosporine
tacrolimus

Background:

inhibition of P glycoprotein transport/ expump systems, MDR

inhibition CYP3A

ANTIEPILEPTIC DRUGS

Target: T type Ca channels in thalamus

Valproic acid and ethosuccimide

Target: N type Ca channels

Gabapentin and pregabalin

ZICONOTIDE

Special N-type Ca channel blocker

Derivative of the snail omega-conotoxin

Poor bioavailability

Low therapeutic index

Administration only by intrathecally for relieving severe chronic pain