Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I

Exercícios - Lista 7 - P2

Questão 1:

Encontre a aproximação linear L(x) das funções numa vizinhança do ponto pedido:

(a)
$$f(x) = (1-x)^3 \text{ em } x = 0.$$

(b)
$$f(k) = \frac{k^2}{\ln k} \text{ em } k = e^2.$$

Questão 2:

Seja f uma função derivável tal que $\lim_{x\to 2} \frac{f(x)-5}{x-2} = 10$. Calcule $\lim_{x\to 2} f(x)$, f(2) e f'(2)

Questão 3:

Quantas retas tangentes ao gráfico de $y = x^3 + 3x$ são paralelas à reta y = 6x + 1? Determine as equações dessas retas tangentes.

Questão 4:

Seja $f(x) = x + 5 + \ln(x^2 - 4)$. Esboce o gráfico de f(x) depois de

- (a) especificar o domínio da função
- (b) encontrar as assíntotas horizontais e verticais, se existirem.
- (c) achar os intervalos em que f(x) é crescente ou decrescente, indicando os pontos críticos
- (d) encontrar os máximos ou mínimos locais, se existirem
- (e) estudar a concavidade, apontando os pontos de inflexão

Questão 5:

Seja $f(x) = \frac{e^x}{r^3}$. Esboce o gráfico de f(x) depois de

- (a) especificar o domínio da função
- (b) encontrar as assíntotas horizontais e verticais, se existirem.
- (c) achar os intervalos em que f(x) é crescente ou decrescente, indicando os pontos críticos
- (d) encontrar os máximos ou mínimos locais, se existirem
- (e) estudar a concavidade, apontando os pontos de inflexão

Questão 6:

Seja $f(x) = x^4 - 4x^3 + 10$. Esboce o gráfico de f(x) depois de

- (a) especificar o domínio da função
- (b) encontrar as assíntotas horizontais e verticais, se existirem.
- (c) achar os intervalos em que f(x) é crescente ou decrescente, indicando os pontos críticos
- (d) encontrar os máximos ou mínimos locais, se existirem
- (e) estudar a concavidade, apontando os pontos de inflexão

Questão 7:

Verificou-se que o custo **por hora** para mover uma lancha é proporcional ao cubo da sua velocidade. Deseja-se fazer uma viagem de S Km em um rio contra a correnteza. As águas do rio fluem a uma velocidade de a Km/h. Considerando que a lancha usará uma velocidade constante no trajeto, qual é o valor dessa velocidade que minimiza o custo **total** da viagem?

Questão 8:

Considere a elipse descrita por $\frac{x^2}{4} + y^2 = 1$, que tem comprimento 2 para o semieixo na direção horizontal e 1 para o semieixo na direção vertical. Queremos construir um retângulo de lados paralelos aos eixos coordenados e que esteja inscrito nessa elipse. Quais são as dimensões do retângulo que maximizam sua área? Qual é o valor dessa área máxima?

Questão 9:

Em um rio de margens retas e paralelas, deseja-se levar energia elétrica a partir de um ponto A em uma das margens até um ponto C na outra margem. O fio a ser utilizado na água custa 5 reais por metro, e o o que será utilizado fora custa 3 reais por metro. O rio tem largura de 100 m. Em relação ao ponto A, é preciso seguir o rio por 1000 m para ficar na posição exatamente oposta a C. Como deve ser feita a ligação entre os pontos A e C de forma que o gasto com fios seja o menor possível?

Questão 10:

Seja $f(w) = w^2 - \ln(w+2)$.

- (a) Qual o domínio de f?
- (b) A função f possui alguma raiz no intervalo [0, 2]? Justifique.
- (c) Encontre os ponto de máximo e mínimo absolutos/globais de f no intervalo [0, 2]

Questão 11:

Para cada uma das questões abaixo, responda "sim" ou "não", justificando suas respostas.

- (a) Existe função contínua no intervalo fechado [a, b] que não atinge nem máximo nem mínimo?
- (b) Existe função contínua em [a, b] sem pontos críticos em (a, b)?
- (c) É verdade que uma função contínua em [a,b] com mínimo local em $c \in (a,b)$ necessariamente tem pontos críticos em (a,b)? A derivada precisa existir em x=c?
- (d) Existe função contínua em [a, b] com máximo absoluto em x = a e mínimo absoluto em x = b?
- (e) Existe função f(x) definida em [a, b] com mínimo absoluto em x = a e máximo absoluto em x = b com f'(x) = 0 para qualquer $x \in (a, b)$?
- (f) Existe função contínua em [a,b] com mínimo absoluto em x_1 e máximo absoluto em x_2 , sendo $x_1=x_2$?

Cálculo Diferencial e Integral I Exercícios - Lista 7 - P2 (continuação)

(g)	É verdadeiro	que uma	função	f(x)	contínua	em	[a, b]	com	$m\acute{a}ximo$	local	em	$c \in$	(a,b)
	necessariamen	nte satisfa	az $f'(c)$:	= 0?									

(h)	Existe função j	f(x) derivável er	n(a,b)) sem pontos extremos no intervalo aberto (a	(,b)) [
-----	-----------------	-------------------	--------	---	------	-----

Gabarito

1. (a)
$$L(x) = 1 - 3x$$
 (b) $L(k) = \frac{e^4}{2} + \frac{3}{4}e^2(k - e^2)$

2.
$$\lim_{x\to 2} f(x) = 5$$
, $f(2) = 5$ e $f'(x) = 10$

3. Duas retas,
$$y = 6(x-1) + 4$$
 e $y = 6(x+1) - 4$

- 4. (a) $Dom(f) = (-\infty, -2) \cup (2, \infty)$
 - (b) f não possui assíntotas horizontais. Assíntotas verticais: x = -2 e x = 2.
 - (c) f é crescente em $(-\infty, -1 \sqrt{5}) \cup (2, \infty)$, decrescente em $(-1 \sqrt{5}, -2)$ e tem ponto crítico em $x = -1 \sqrt{5}$.
 - (d) f tem máximo local em $x = -1 \sqrt{5}$. Seu valor é $f(-1 \sqrt{5}) = -1 \sqrt{5} + 5 + \ln((-1 \sqrt{5})^2 4)$
 - (e) f é côncava para baixo em $(-\infty, -2) \cup (2, \infty)$ e não possui pontos de inflexão.
- 5. (a) $Dom(f) = \mathbb{R} \setminus \{0\}$
 - (b) Assíntota horizontal: y = 0Assíntota vertical: x = 0.
 - (c) f é crescente em $(3, \infty)$, decrescente em $(-\infty, 3)$ e tem ponto crítico em x = 0 e x = 3
 - (d) f tem mínimo local em x=3. Seu valor é $f(3)=e^3/27$
 - (e) f é côncava para baixo em $(-\infty,0)$ e côncava para cima em $(0,\infty)$. f não possui pontos de inflexão.
- 6. (a) $Dom(f) = \mathbb{R}$
 - (b) f não possui assíntotas horizontais nem verticais.
 - (c) f é crescente em $(3, \infty)$, decrescente em $(-\infty, 3)$ e tem pontos críticos em x = 0 e x = 3.
 - (d) f tem mínimo local em x=3. Seu valor é f(3)=-17
 - (e) f é côncava para baixo em (0,2) e côncava para cima em $(-\infty,0)\cup(2,\infty)$. f tem pontos de inflexão em x=0 e em x=2.
- 7. $V = \frac{3a}{2}$
- 8. As dimensões do retângulo que maximizam sua área são $L=2\sqrt{2}$ e $H=\sqrt{2}$. Logo, a área máxima é A=4.
- 9. O custo é minimizado se forem usados um fio de $\sqrt{75^2+100^2}$ metros pela água e um fio de 925 metros pela terra.
- 10. (a) $D_f = \{x \in \mathbb{R} | x > -2\}$. (b) Sim. Dica: use o TVI. (c) $w_c = \frac{-4 + \sqrt{24}}{4} = -1 + \frac{\sqrt{6}}{2}$ é ponto de mínimo absoluto/global no intervalo [0,2]. E w = 2 é ponto de máximo absoluto/global no intervalo [0,2].
- 11. (a) Não (b) Sim (c) Sim e não (d) Sim
 - (e) Sim (f) Sim (g) Não (h) Sim