

Univ.-Prof. Dr. Radu Ioan Boţ

Nonlinear Optimization

Exercise session 6

35. (a) Let $M \in \mathbb{R}^{n \times n}$ with ||M|| < 1. Show that I - M is regular and

$$||(I-M)^{-1}|| \le \frac{1}{1-||M||}.$$

(b) Let $A, B \in \mathbb{R}^{n \times n}$ with ||I - BA|| < 1. Show that A and B are regular and that

$$||B^{-1}|| \le \frac{||A||}{1 - ||I - BA||} \text{ and } ||A^{-1}|| \le \frac{||B||}{1 - ||I - BA||}.$$

(3 points)

- 36. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^4 + 2x^2y^2 + y^4$. Show that the local Newton algorithm (Algorithm 9.9) converges to the unique global minimum of f for every starting point $(x^0, y^0) \in \mathbb{R}^2 \setminus \{(0,0)^T\}$.
- 37. The local Newton algorithm (Algorithm 9.9) is invariant with respect to affine-linear transformation. In other words: let $A \in \mathbb{R}^{n \times n}$ be regular and $c \in \mathbb{R}^n$, $\{x^k\}_{k \geq 0}$ be the sequence by the local Newton algorithm for minimizing a function f with start vector x^0 , and $\{y^k\}_{k \geq 0}$ be the sequence generated by the local Newton algorithm for minimizing the function g(y) := f(Ay + c) with start vector y^0 ; then it holds

$$x^0 = Ay^0 + c \Rightarrow x^k = Ay^k + c \quad \forall k \ge 0$$

(3 points)

- 38. Let $M \in \mathbb{R}^{n \times n}$ be a regular matrix and $\{M_k\}_{k \geq 0} \in \mathbb{R}^{n \times n}$ a sequence of matrices which converges to M as $k \to +\infty$. Show that there exists $k_0 \geq 0$ such that M_k is regular for all $k \geq k_0$, and that the sequence $\{M_k^{-1}\}_{k > k_0}$ converges to M^{-1} . (3 points)
- 39. Let $H \in \mathbb{R}^{n \times n}$ be a regular matrix and $u, v \in \mathbb{R}^n$. Prove that the matrix $H + uv^T$ is regular if and only if $1 + v^T H^{-1} u \neq 0$. Show that under these assumptions the so-called *Sherman-Morrison formula* holds:

$$(H + uv^T)^{-1} = \left(I - \frac{1}{1 + v^T H^{-1} u} H^{-1} uv^T\right) H^{-1}.$$

(3 points)

40. Consider the quadratic optimization problem

(P)
$$\min f(x) := \gamma + c^T x + \frac{1}{2} x^T Q x,$$

s.t. $h(x) := b^T x = 0$

with $Q \in \mathbb{R}^{n \times n}$ a symmetric and positive definite matrix, $b, c \in \mathbb{R}^n$, $b \neq 0$, and $\gamma \in \mathbb{R}$. For given $\alpha > 0$, find the minimum $x^*(\alpha)$ of the penalty function

$$P(x;\alpha) := f(x) + \frac{\alpha}{2}(h(x))^2,$$

determine $x^* := \lim_{\alpha \to +\infty} x^*(\alpha)$, and prove that x^* is the unique optimal solution of the optimization problem (P).

Hint. Use the Sherman-Morrison formula.

(3 points)

41. Implement the local Newton algorithm. Use as input data the starting vector x^0 , the parameter for the stopping criterion ε and the parameter for the maximal number of allowed iterations kmax. The sequence $x^0, x^1, x^2, ...$ containing the iteration history and the number of performed iterations should be returned.

The implemented algorithm should be tested for $\varepsilon = 10^{-6}$ and kmax = 200, and the following functions and starting values:

- (a) $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$ (Rosenbrock function) and $x^0 = (-1.2, 1)^T$.
- (b) $f(x_1, x_2, x_3, x_4) = \sum_{i=1}^4 \left(4 \sum_{j=1}^4 \cos x_j + i(1 \cos x_i) \sin x_i\right)^2$ (trigonometric function) and $x^0 = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^T$.
- (c) $f(x_1, x_2) = (x_1 10^6)^2 + (x_2 2 \cdot 10^6)^2 + (x_1 x_2 2)^2$ (Brown function) and $x^0 = (1, 1)^T$.
- (d) $f(x_1, x_2, x_3, x_4) = 100(x_2 x_1^2)^2 + (1 x_1)^2 + 90(x_4 x_3^2)^2 + (1 x_3)^2 + 10(x_2 + x_4 x_3^2)^2 + (1 x_3)^2 + (1$
- (e) $f(x) = \sqrt{1+x^2}$, $x^0 = 2$, $x^0 = 1$ and $x^0 = \frac{1}{2}$.

(4 points)

42. Implement the globalized Newton algorithm. Use as input data the starting vector x^0 , the parameter for the stopping criterion ε , the parameter for the maximal number of allowed iterations kmax, the parameters for the determination of the Armijo step size σ and β , and the parameters ρ and p. The sequence $x^0, x^1, x^2, ...$ containing the iteration history and the number of performed iterations should be returned.

The implemented algorithm should be tested for $\varepsilon=10^{-6}$, kmax=200, $\rho=10^{-8}$, p=2.1, $\sigma=10^{-4}$ and $\beta=0.5$, and the following functions and starting values:

- (a) $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$ (Rosenbrock function) and $x^0 = (-1.2, 1)^T$.
- (b) $f(x_1, x_2, x_3, x_4) = \sum_{i=1}^4 \left(4 \sum_{j=1}^4 \cos x_j + i(1 \cos x_i) \sin x_i\right)^2$ (trigonometric function) and $x^0 = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^T$.
- (c) $f(x_1, x_2) = (x_1 10^6)^2 + (x_2 2 \cdot 10^6)^2 + (x_1 x_2 2)^2$ (Brown function) and $x^0 = (1, 1)^T$.

- (d) $f(x_1, x_2, x_3, x_4) = 100(x_2 x_1^2)^2 + (1 x_1)^2 + 90(x_4 x_3^2)^2 + (1 x_3)^2 + 10(x_2 + x_4 2)^2 + \frac{1}{10}(x_2 x_4)^2$ (Wood function) and $x^0 = (-3, -1, -3, -1)^T$.
- (e) $f(x) = \sqrt{1+x^2}$, $x^0 = 2$, $x^0 = 1$ and $x^0 = \frac{1}{2}$.

(5 points)