Napredni algoritmi i strukture podataka – ljetni ispitni rok

06. srpnja 2016.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

1. (7) Poznati su Vam elementi crveno-crnog stabla (navedeni slučajnim redoslijedom):

Nacrtajte crveno-crno stablo ako je poznato da ima maksimalni mogući broj crnih čvorova.

- 2. (10) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 3x5x2. Aktivacijska funkcija svih neurona u mreži je opći sigmoid.
 - a) (1) Skicirati tu mrežu.
 - b) (8) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

	ulaz 1	ulaz 2	ulaz3	izlaz 1	izlaz 2
	-1.5	3.4	0.2	1.2	4.5
ĺ	2.7	1	0.9	4	-3
	-1.1	-6.7	-2	-2.5	-1.5
	3.6	-0.4	3	5	-1

Početne vrijednosti svih parametara mreže postavite na <u>jedan</u>, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

- c) (1) Objasniti nastavak postupka, tj. kako bi započeo sljedeći korak uvježbavanja mreže. Uputa: dovoljna je i samo jedna dobro sročena rečenica. Naravno, svako podrobnije objašnjenje je dobrodošlo i smanjit će mogućnost zabune prilikom ocjenjivanja.
- 3. (12) Linearni program:

$$\label{eq:maxz} \begin{array}{ll} \text{max z} &= 3x_1 + 9x_2 - 2x_3 + 4x_4 \\ \\ \text{uz} & 8x_1 - 2x_2 + 3x_3 - 3x_4 \geq 4 \\ \\ 2x_1 + 6x_2 - x_3 - x_4 \leq 9 \\ \\ x_4 \leq 3 \\ \\ x_1, x_2, x_3 \, x_4 \geq 0 \end{array}$$

- a) (7) riješite simpleks metodom
- b) (5) riješite grafički za slučaj da vrijedi x3=0, x4=0.

4. (13) Na raspolaganju imate 2000 EUR-a i trebate odlučiti kako ih alocirati na opcije dane u tablici ispod da biste osigurali najveću korisnost. Opcije su raspoređene u grupe i unutar svake grupe se smije odabrati maksimalno jedna opcija za alociranje sredstava. Također, nealocirani novac ima dodijeljenu korisnost, pa očito ne mora a priori nužno biti slučaj da je u optimalnom rješenju potrošen sav novac. Moguće je posuditi dodatni novac koji se odmah može koristiti za alokacije, no dizanje kredita ima intrinzičan negativan efekt na korisnost.

	Korisnost alokacija na "Opcija,#grupa" (ili novac)								
Alokacija [EUR]	A,#1	B,#2	C,#2		D,#3	E,#3	F,#4	Kredit	novac
0	0	0	0		0	0	0	0	0
200	1	0	0		2	0	0	-5	1
400	2	0	0		4	0	0	-9	3
600	3	7	0		4	0	13	-12	6
800	4	7	0		4	9	13	nemoguće	7
1000	5	7	0		4	9	13	nemoguće	9
1200	6	12	0		4	9	13	nemoguće	9
1400	7	12	14		4	9	13	nemoguće	9
1600	8	12	14		4	9	13	nemoguće	9
1800	13	12	14		4	9	13	nemoguće	9
2000	16	12	14		4	9	13	nemoguće	9

5. (8) Pronađite minimalno razapinjuće stablo Primovim algoritmom na neusmjerenom grafu zadanom sljedećom matricom udaljenosti (slova u tablici su oznake vrhova, dane samo vrijednosti u gornjoj trokutastoj matrici, kako je matrica simetrična).

	Α	В	С	D	Ε	F	G	Н
Α		7			8	5	1	
В			8					9
С				7		3	5	4
D						1		
Ε						4		3
F								
G								
Н								