Devoir NON Surveillé 03

Pour le 17 Octobre 2018

Exercice 1: Un peu comme au DS

 \mathbb{C}^* désigne l'ensemble des nombres complexes non nuls.

Par convention: $\forall z \in \mathbb{C}^* \quad z^0 = 1$.

On considère l'application $f: \mathbb{C}^* \to \mathbb{C}$ définie par

$$f(z) = z + \frac{1}{z}$$

- 1. Discuter, suivant la valeur du complexe u, le nombre d'antécédents de u.
- **2.** f est-elle surjective? f est-elle injective?
- 3. Soit

$$\mathcal{U} = \{z \in \mathbb{C} \text{ tel que } |z| = 1\}$$

et F l'intervalle réel [-2,2].

Montrer que : $f(\mathcal{U}) \subset F$ et que $f(z) \in F \Rightarrow z \in \mathcal{U}$.

4. Soit $\mathcal{D} = \{z \in \mathbb{C} \text{ tel que } 0 < |z| < 1\}.$

Montrer que

$$g: \mathscr{D} \to \mathbb{C} - F, z \mapsto f(z)$$

est une application bijective.

Exercice 2: Recollement de solution pour une EDL2

Question liminaire: 1

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \quad \text{et} \quad \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}$$

Quelle est la limite en 0 de

$$\frac{e^x - e^{-x} - 2x}{x^2}$$

Soit I un intervalle de $\mathbb R$ ne contenant pas 0. Soit y une fonction réelle de la variable x réelle définie sur I.

On donne l'équation différentielle

(E):
$$xy'' + 2y' - xy = 4xe^x$$

1. On pose $\forall x \in I$, $z(x) = x \cdot y(x)$.

Calculer z' et z'' en fonction de x, y, y' et y''.

Montrer que y est solution de (\mathcal{E}) si et seulement si z est solution de l'équation différentielle (\mathcal{F}) : $z''-z=4xe^x$.

- 2. Déterminer une solution particulière de (F).
- **3.** Résoudre (\mathcal{F}) sur I; en déduire les solutions de (\mathcal{E}) sur I.
- **4.** Une solution sur \mathbb{R} est une fonction continue sur \mathbb{R} , deux fois dérivable sur \mathbb{R} qui vérifie l'équation (E) sur \mathbb{R} . En calculant les limites en 0 de f, f' pour f solution de (E), trouver toutes les solutions de (E) sur \mathbb{R}
- 5. Déterminer l'unique solution y de (\mathscr{E}) sur \mathbb{R} qui vérifie y(0) = 0. \longrightarrow Pas sar qu'an prisse transforment y de (\mathscr{E}) sur \mathbb{R} qui vérifie y(0) = 0.

^{1.} Ce résultat sera utilisé dans la question 4.