(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顯公開番号

特開平11-50210

(43)公開日 平成11年(1999)2月23日

(51) Int.Cl. ⁶	識別記号	FΙ		
C 2 2 C 38/00	304	C 2 2 C 38/00	C 38/00 3 0 4	
B22F 3/24		B 2 2 F 3/24	В	
C 2 1 D 6/00	1	C 2 1 D 6/00 R		
C 2 2 C 33/02	:	C 2 2 C 33/02	C 2 2 C 33/02 A	
38/16		38/16	J/16	
		審查請求有	請求項の数9 OL (全8頁)	
(21)出願番号	特願平9-202873	(71)出顧人 000002	2130	
		住友電	吳工業株式会社	
(22)出顧日	平成9年(1997)7月29日	大阪府大阪市中央区北浜四丁目 5 番33号		
		(72)発明者 瀧川 貴稔		
		兵庫県	伊丹市昆陽北一丁目1番1号 住友	
		電気工	業株式会社伊丹製作所内	
		(72)発明者 ▲高▼ノ 由重		
		兵庫県	伊丹市昆陽北一丁目1番1号 住友	
	•	電気工	業株式会社伊丹製作所内	
		(72)発明者 明智	清明	
		兵庫県	伊丹市昆陽北一丁目1番1号 住友	
		電気工業株式会社伊丹製作所内		
		(74)代理人 弁理士	深見 久郎 (外2名)	
			最終頁に続く	

(54) 【発明の名称】 鉄系焼結合金部品およびその製造方法

(57)【要約】

【課題】 経済性、耐磨耗性および寸法精度に優れた鉄 系焼結合金部品およびその製造方法を提供する。

【解決手段】 重量比にして0.2%以上0.5%未満のCu、1.0%以上2.0%未満のMo、0.65%以上1.2%未満のC、および不可避な元素を含み、残部がFeよりなっている。この鉄系焼結合金部品は、圧縮成形工程と焼結工程を経た後、金型内で圧縮しながら焼入れされることで製造される。

【特許請求の範囲】

【請求項1】 重量比にして0.2%以上0.5%未満 のCu、1.0%以上2.0%未満のMo、0.65% 以上1.2%未満のC、および不可避な元素を含み、残 部がFeである、鉄系焼結合金部品。

【請求項2】 前記鉄系焼結合金部品は、カムシャフト を挿通可能な孔を有するカムロブ部品である、請求項1 に記載の鉄系焼結合金部品。

【請求項3】 密度が7.4g/cm³以上である、請 求項1に記載の鉄系焼結合金部品。

【請求項4】 体積比にして残留オーステナイト相が1 5%未満であり、ロックウェル硬さ(Aスケール:HR A) が75以上である、請求項1に記載の鉄系焼結合金 部品。

【請求項5】 重量比にして0.2%以上0.5%未満 のCu、1.0%以上2.0%未満のMo、0.65% 以上1.2%未満のC、および不可避な元素を含み、残 部がFeとなる焼結体を製造する鉄系焼結合金部品の製 造方法であって、

粉末を圧縮成形して成形体を形成する工程と、

前記成形体を焼結して焼結体を形成する工程と、

前記焼結体を金型内で圧縮しながら焼入れする工程とを 備えた、鉄系焼結合金部品の製造方法。

【請求項6】 前記焼結体をAe1点以上の温度から前 記金型内に入れて圧縮しながら焼入れする、請求項5に 記載の鉄系焼結合金部品の製造方法。

【請求項7】 前記粉末として前記C以外の添加元素成 分が予め固溶した鉄粉を用いる、請求項5 に記載の鉄系 焼結合金部品の製造方法。

【請求項8】 前記焼結体は7.2g/cm³以上の密 30 度を有している、請求項5に記載の鉄系焼結合金部品の 製造方法。

【請求項9】 前記金型内で圧縮しながら焼入れされた 後に140℃以上250℃以下の温度で大気中で加熱す る工程をさらに備える、請求項5 に記載の鉄系焼結合金 部品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、鉄系焼結合金部品 およびその製造方法に関し、より特定的には、粉末冶金 40 法により得られた高密度、高硬度および高寸法精度の鉄 系焼結合金部品およびその製造方法に関するものであ る。

[0002]

【従来の技術】粉末冶金法により得られる鉄系焼結合金 には、切削などの加工を極力抑えることができるニアネ ットシェイプの機械部品を製造できるという利点があ る。このため、最近では、従来の鉄系鋳造部品などに代 わって種々の分野でとの鉄系焼結合金が使用されるよう になってきた。さらなる高強度および高硬度を必要とす 50 収縮が液相焼結ほど大きくないため寸法精度を満足でき

る分野では、鉄系焼結合金に焼入れおよび焼戻しなどの 熱処理を行なうことができ、こうした処理により高強度 化および高硬度化した鉄系焼結合金はエンジンのオイル ボンブやギヤのような自動車部品などとして使用されて きた。

【0003】近年の自動車や産業機械の軽量化および高 性能化のニーズを受けて、これら鉄系焼結合金部品の一 層の高強度化の要求が増している。自動車エンジンのカ ムシャフトは、そうした要求のある部品の1つである。 【0004】従来、このカムシャフトには、(1)鋳造 による一体成形および追機械加工による寸法仕上げによ る、いわゆる鋳造カムシャフト、および(2)鋼製のシ ャフトに、溶製鋼の鍛造で作製あるいは液相粉末焼結法 で作製し上記同様、追機械加工による寸法仕上げによる カムロブを組合せて製造する、いわゆる組立カムシャフ トの2種類があった。

【0005】(1)の鋳造カムシャフトは比較的安価で あり最も多用されるが、カム部の髙精度な機械加工を要 する部分が多く、さらに経済的に作製するには限度があ 20 る。また等加速度カムあるいはコーンケーブカムと称さ れる複雑な曲面を有するカム形状には、機械加工そのも のが困難であり、また鋳造可能な材料に限られるという 制約があった。

【0006】一方、(2)の組立カムシャフトは、カム に要求される性能に応じて合金成分を選択でき、軸を中 空化しやすいために軽量化しやすいという長所を有す る。しかし、カムロブの作製方法が液相粉末焼結法、鍛 造方法であるため、寸法制御が困難であり、(1)の鋳 造カムシャフトと同じく機械加工が多く経済的ではない という問題点があった。

[0007]

【発明が解決しようとする課題】上記(1)の鋳造カム シャフトより優れた経済性および(2)の組立カムシャ フトの軽量、高性能化の両立を実現するためには、組立 カムシャフトにおいてカムロブの機械加工を極力少なく する必要がある。

【0008】とのカムロブに要求される特性として、

(a) バルブ開閉を正確に行なうための高い寸法精度、 および(b)駆動時に直接接触する部分の耐磨耗性が必 要である。

【0009】粉末の成形圧縮-潤滑剤除去-焼結の基本 的な粉末冶金方法によれば、液相焼結するような材料を 選択した場合、焼結中に液相現出-原子拡散の加速によ り、緻密で耐磨耗性の高い特性を期待できる。しかし、 液相焼結では急激な緻密化による寸法収縮が大きく、形 状に歪が生じやすいので要求される高い寸法精度を実現 するために追機械加工が必要となり、経済的に作製する ととができない。一方、固相焼結を用いた場合、緻密化 が進まず、体積率にして10%程度の空孔が残存する。

る可能性が高いが、そのままでは上記空孔のため耐磨耗 が満足できない。

【0010】との空孔による磨耗劣化を改善する目的で、焼入れによる熱処理を用いて硬度を増加させることが可能である。しかし、との方法を用いても、最近の高回転エンジンでは依然磨耗程度を改善できないばかりか、焼入れ時の冷却速度のばらつきや焼入れ組織への変態による結晶歪などにより高い寸法精度を維持することができなくなる。

【0011】また空孔を減少させるために焼結体をさら 10 に再加熱した後、室温で再圧縮する、いわゆる2回圧縮 2回焼結法がある。しかし、この方法でも、熱処理はやはり必要であるため、寸法精度を維持することができない。

【 0 0 1 2 】それゆえ、本発明の目的は、経済性、耐磨 耗性および寸法精度に優れた鉄系焼結合金部品およびそ の製造方法を提供するととである。

[0013]

【課題を解決するための手段】本発明の鉄系焼結合金部品は、重量比にして0.2%以上0.5%未満のCu、1.0%以上2.0%未満のMo、0.65%以上1.2%未満のC、および不可避な元素を含み、残部がFeである。

【0014】鉄系焼結合金を焼入れするためには、C (カーボン)が必須であり、耐磨耗を実現するには、 0 65 重量%以上必要である Mo (チリブデン)

0.65重量%以上必要である。Mo(モリブデン)は 焼入れ性と固溶硬化とを高める役割をなし、カーボンと の組合せにおいて十分な焼入れ硬化を得るには1.0重 量%以上必要である。また成形圧縮時に高い緻密性を実 現するには、Cは1.2重量%未満、Moは2重量%未 30 満でなければならない。特にCは比重が低く、脆いので これ以上添加すると著しく圧縮性を阻害する。

【0015】焼結時の寸法変化を抑制し、圧縮成形後の高い寸法精度を維持するためにCu(銅)が添加されている。つまりC、Moの双方には収縮作用があるので、焼結時に膨張作用するCuを添加することで、焼結時の寸法変化が抑制されるのである。上記添加量範囲のC、Moの収縮作用に対抗するには、0.2重量%以上のCuが必要である。一方、Cuの偏析を直接の原因とする焼結時の不均一収縮による寸法精度の劣化を防止するた 40めには、Cuは0.5重量%未満であることが必要である。

【0016】上記局面において好ましくは、鉄系焼結合 金部品は、カムシャフトを挿通可能な孔を有するカムロ ブ部品である。

【0017】上記組成を有する鉄系焼結合金部品は、高密度、高硬度および高寸法精度を有しているため、カムシャフト用の組立孔を有するカムロブ部品の材料として適している。

【0018】上記局面において好ましくは、鉄系焼結合 50 緻密化は進まず、したがって寸法変化もほとんどない。

金部品の密度が7.4g/cm'以上である。

【0019】また上記局面において好ましくは、体積比にして残留オーステナイト相が15%未満であり、ロックウェル硬さHRAが75以上である。

【0020】上記添加量範囲の粉末冶金で作製したカム の耐磨耗性を実現するためには、7.4g/cm゚以上 の密度と75以上の硬度HRAが必要である。特にこの 硬度HRAは、髙温相であるオーステナイト相から急冷 させて硬度の高い均質なマルテンサイト相を得ることで 実現できる。これより低い密度および硬度では、残存す る空孔から磨耗が発生し、成長する。焼入れ後は、ほと んど結晶相は、硬化相であるマルテンサイト相に変態す るが、変態せずに残留する変態前のオーステナイト相も 存在する。このオーステナイト相はマルテンサイト相に 比較すると硬度が著しく低く、用途によっては外部から の負荷応力に対して粘り、すなわち靭性を発現させて有 利に働くこともあるが、カムロブのような耐磨耗が主眼 となる構造部品においては15体積%未満に抑制される 必要がある。そのため焼入れ性を高めるために添加する 元素の種類、量に注意を払う必要がある。上記元素の添 加量範囲では、オーステナイト相が5体積%程度になる ことは不可避であるが、15体積%以上になることはな

【0021】本発明の鉄系焼結合金部品の製造方法は、 重量比にして0.2%以上0.5%未満のCu、1.0 %以上2.0%未満のMo、0.65%以上1.2%未 満のC、および不可避な元素を含み、残部がFeとなる 焼結体を製造する方法であって、粉末を圧縮成形して成 形体を形成する工程と、その成形体を焼結して焼結体を 形成する工程と、その焼結体を金型内で圧縮しながら焼 入れする工程とを備えている。

[0022] 鉄系焼結合金部品を実際のカムロブ部品として製造する場合、耐磨耗に必要な、上記のような密度、硬度、材料特性を満足させた上で、最終工程である焼入れー焼戻し後の形状歪むよびそれに伴う寸法精度劣化を抑制する必要がある。特に本部品を経済的に製造するためには、エンジンバルブを駆動する相手部品と直接接触する本部品の外側側面に追機械加工を行なわずに高い寸法精度を実現する必要がある。寸法精度の劣化は寸法変化に起因しており、粉末冶金法の各工程においては以下の寸法変化が生じる。

【0023】(i) 粉末の成形圧縮工程:圧粉後に、金型内から成形体を取出した際、金型内で拘束されたことによる弾性応力が解放され、金型より大きい寸法となる。

【0024】(ii) 潤滑剤除去-焼結工程: これらは同一加熱炉内で連続で行なうことが多いが、潤滑剤除去時は一般に600℃程度の温度で処理される。このため、この時点では隣接粉末間の原子拡散は進まないため 細変化は進まず したがって寸法変化をほよく どれい

しかし、次の焼結工程では、原子拡散が進む1100~ 1300℃で処理されることで緻密化して密度が高くな るため、寸法収縮量は大きい。

【0025】(iii) 焼入れ-焼戻し工程:後述する ように、本鉄合金では結晶格子中にC原子が過剰に侵入 した状態となり、焼結終了後より寸法は大きくなる。そ して焼戻しによりC原子の一部が炭化物として本鉄合金 の結晶格子中より放出されるので、再度寸法は収縮す る。

【0026】寸法ばらつきに影響する工程は、(ii)の 10 焼結工程および(iji)の焼入れ工程である。焼結工程 が影響する原因は他工程に比較して最も寸法変化が大き いからである。粉末圧縮成形工程の金型に対する平均寸 法変化率が0.1%未満、焼入れ工程での焼結体に対す る平均寸法変化率が0.1%未満、焼戻し工程での焼入 れ体に対する平均寸法変化率が-0.05%程度であ る。とれに対して、焼結工程での成形体に対する平均寸 法変化率は0.1~0.5%にもなる。寸法の変位が大 きければ、ばらつきも大きくなる。

【0027】次に、焼入れ工程が影響する原因は、部品 に対する熱履歴がばらつき、部品形状の歪が大きくなる ととによる。800~900℃以上の高温から、室温~ 100℃程度の低温に100~200℃/秒程度で急冷 されるので、部品表面と内部との温度差が大きく、質量 効果による熱膨張差によって歪が生じる。また表面と内 部とでオーステナイト相からマルテンサイト相への変態 時期が異なることも歪の生ずる要因の1つである。形状 が大きく歪むので寸法ばらつきは焼結工程で生じるそれ よりもさらに大きい。

【0028】焼結工程での寸法変位大による寸法ばらつ き大は、冒頭で説明したように少量のCu添加範囲によ り抑制できる。残る焼入れ工程での形状歪による寸法は らつきは、添加元素で対策することは不可能である。急 冷中に部品表面と内部との温度差が生じることは不可避 である。しかし、高剛性の固体物質で部品形状に拘束し ながら急冷できるならば、形状歪を抑え込みながら焼入 れできるはずである。

【0029】以上のことを鋭意検討した結果、通常の成 形圧縮-焼結後にオーステナイト相まで加熱し、金型内 で再圧縮中に焼入れし、マルテンサイト変態開始より低 い温度まで冷却してから金型から取出す方法が本カムロ ブ部品の製造上最も有効であることを見出した。それゆ え、本発明の鉄系焼結合金部品の製造方法は、上述した ように、焼結体を金型内で圧縮しながら焼入れする工程 を特徴的な構成要件として含んでいる。

【0030】焼入れ時の寸法精度のばらつきを極限まで 小さくできることを前提に、この発明の利点は、以下の (A)、(B)のとおりである。

【0031】(A)特殊なブレス機構および金型材質を 必要とせず経済的に製造するととができる。(B)オー 50 【0040】なお、Cは予め鉄粉に固溶させてはならな

ステナイト化して高温軟化した焼結体を再圧縮すること になるので変形抵抗が小さく、焼結体内部に分散してい る空孔を潰して密度を向上させる作用が大きく、カムロ ブに必要な硬度を容易に得ることができる。

[0032]ところで本発明の必要要件は、圧縮前にマ ルテンサイト変態がほとんど開始されず、圧縮中にマル テンサイト変態が生ずることである。検討の結果得られ た本発明の添加合金組成では、マルテンサイト変態開始 温度は、概ね300~400℃の範囲にあり、加熱炉か **ら焼結体を取出して金型に挿入する場合、室温に対して** 十分に高温であり、圧縮前に焼結体内部のほとんどは変 態を開始しない。

【0033】また圧縮を開始してからは、金型に接触す ると同時に焼結体表面から冷却が開始される。次に圧縮 が進むにつれて金型との摩擦熱、焼結体内部の加工熱に より、50℃前後の若干の温度上昇が冷却途中で瞬間的 に生じるが、金型と焼結体とが強く押しつけられている ので、金型表面と焼結体表面との間の熱抵抗は極めて小 さく、大きく熱拡散できるため冷却速度全体に大きく影 響を与えることはない。したがって、焼入れ時のマルテ ンサイト変態に必要な、通常油焼入れに匹敵する150 ~200℃/秒程度の冷却速度を得ることが可能であ

【0034】一方、工業化可能な圧縮時間は長くても5 秒以内と短くする必要があり、変態はこの短時間に生じ させる必要があるが、マルテンサイト変態は原子拡散に よるものではなく、格子歪による無拡散変態なので十分 にこの時間内で終了させることができる。

【0035】上記局面において好ましくは、焼結体はA e 1点 (共析温度) 以上の温度から金型内に入れて圧縮 されながら焼入れされる。

【0036】また上記局面において好ましくは、焼結体 は7.2g/cm'以上の密度を有している。

【0037】高温に加熱した後、即時に金型内に充填す るほど焼結体の軟化が維持されるため、圧縮による高密 度が得られやすい。7.4g/cm³以上の高密度を必 要とするカムロブの場合、圧縮直前の温度をオーステナ イト化する平衡温度であるAe1点以上とし、圧縮前の 室温時の焼結体密度を7.2g/cm'とすることで上 記高密度を容易に得ることができる。

【0038】上記局面において好ましくは、粉末として C以外の添加元素成分が予め固溶した鉄粉が用いられ

【0039】上述したように、添加元素原子の偏析によ る焼結時の不均一収縮および材質の不均質を抑制するた めに、MoおよびCuは鉄粉末に予め固溶させておくの が望ましい。特にCuについては、単独粉末として配合 して偏析が生じた場合、粗大空孔の生成、寸法歪の懸念 が大きい。

い。それは、Cが粉末を著しく硬化させるため成形圧縮 時の密度が上がらず、甚だしい場合は成形体の一部が欠 落してしまうためである。

【0041】上記局面において好ましくは、焼結体を金型内で圧縮しながら焼入れした後に140℃以上250 で以下の温度で大気中で加熱する工程がさらに備えられている。

【0042】焼入れのままの状態では、鉄結晶格子中に Cが過剰に侵入状態で固溶するため格子が大きく歪んだ 状態となっている。これは、高い硬度が得られる理由に 10 なっていると同時に、高いエネルギを内在した不安定な 格子状態ゆえに部品使用中に変質、寸法変化を生じた り、甚だしい場合には割れを生ずる理由ともなってい る。

【0043】そこで再度加熱することによって、鉄合金の結晶格子中に過飽和に固溶しているC原子のうちの少量を炭化物として析出させ、安定な結晶格子状態にする必要がある。しかし逆に放出するC原子の量が多すぎると、鉄合金の結晶格子の歪緩和が必要以上に進み、カムロブ部品に必要な硬度が得られなくなってしまう。つま 20り、焼戻し温度が140℃未満ではC原子を炭化物として析出させる効果が得られず、250℃を超えるとC原子の放出量が多すぎて必要な硬度が得られなくなってしまう。

【0044】また、焼戻し温度範囲の選定として、カムロブ部品として実使用上の温度以上であることが安定して使用できる要件であるが、上記温度範囲はこれに矛盾することはない。

[0045]

[実施例]

実施例1

自動車エンジン用の組立カムシャフトの部品として用いる鉄系焼結合金のカムロブ部品の製造を検討した。耐磨耗上必要な特性は、密度が $7.45g/cm^3$ 以上、ロックウェル硬度HRAは77以上であり、また規定外径寸法からの公差幅は 50μ mである。

【0046】粉末の成形圧縮性が高く、焼結時収縮による寸法劣化の小さい固相焼結が実現でき、焼入れ硬化性の高い合金として、Fe-Mo-Cを主合金とする種々の材料で予備検討を行なった。予備検討した粉末は、以 40下の(1)~(4)のものであった。またこれらの粉末には、成形圧縮時の金型との焼付を防止する目的で、重量比にして0.6%の固形潤滑剤を配合した。

[0047]

- (1) Fe-1.5%Mo-0.8%C
- (2) Fe-1. 5%Mo-0. 3%Cu-0. 8% C
- (3) Fe-1. 5%Mo-0. 3%Cu-2%Ni -0. 8%C
- (4) Fe-0.5%Mo-1.0%Cu-0.8% 50 った。ところが、0~0.2%Cuと0.5%以上のC

С

いずれも、C以外のすべての添加元素成分を予め合金化した粉末と各元素を単独の粉末として配合した粉末との2種類を用意した。それらの粉末の各々を、5×10×60(mm)の角形試験片を形成する金型を用いて、130℃、9 t/cm²の条件で成形圧縮した後、600℃×30分(水素雰囲気)の条件で潤滑剤を除去した。その後、850℃(窒素雰囲気)×1時間の条件で焼結をし、室温で10 t/cm²の条件で再圧縮をし、1300℃(窒素雰囲気)×1時間の条件で焼結を行なった。この後、940℃(真空)で1時間保持し、80℃の油焼入れを行なった。この後、150℃(大気)×2時間の条件で焼戻しを行ない、最終密度が7.45~7.55g/cm²の焼結体試験片を得た。

【0048】(1)~(3)の組成の焼結体試験片では、77以上の硬度HRAが得られたが、(4)の組成の焼結体試験片では焼入れ硬化性を高くする元素Mo量が不十分で硬度HRAは75未満であった。また(4)の組成の焼結体試験片では、他の試験片と比較して寸法のばらつきが最も大きく、特に予合金粉末を用いない配合合金粉末でその傾向は顕著であった。また腐食組織観察の結果、Cuの偏析が観察され、100μm以上の大きさの粗大な空孔が観察された。

【0049】(3)の組成の焼結体試験片では高硬度が得られるものの、X線回折評価の結果、体積比にして17%以上の軟相であるオーステナイト相が観察された。また腐食組織観察の結果、特に予合金粉末を用いない配合合金粉末で、Ni(ニッケル)が富化した軟相が分散して生じており、巨視的には硬度が高くても、微視的には磨耗劣化が促進される低硬度領域があることがわかった。

【0050】(1)、(2)の組成の焼結体試験片では、共に78以上の硬度HRAが得られ、残留オーステナイト相が体積比にして8~11%であった。また腐食組織観察の結果、(2)の予合金粉末を用いない配合合金粉末を用いた試験片でわずかに不均一な組織が観察された以外、均一な焼戻しマルテンサイト相が観察された。寸法ばらつきは、(2)の予合金粉末を用いた試験片が最小であった。(1)の予合金粉末を用いた試験片と配合合金粉末を用いた試験片との寸法ばらつきの比較ではほとんど差がなかった。

【0051】(2)の予合金粉末を用いた試験片が最も寸法ばらつきが小さかった理由を調べるため、1300 Cの焼結前後の寸法変化率を、Fe-1.5%Mo-X%Cu-0.8%C(X=0~2.0)の組成で系統的に調査した。

【0052】その結果、図1に示すように、60mm長の寸法に関して、Cu添加量が増加するにつれて、この組成範囲内では一律に焼結収縮量が減少することがわかった。ところが、0~0~2%Cuと0~5%以上のC

u との組成範囲では、寸法分布が30μm以上と高く、 すなわち寸法精度が低くなってしまうことが判明した。 【0053】0~0.2%Cuの組成範囲で寸法精度が 低くなるのは、焼結による収縮量が大きすぎるためと考 えられる。また0.5%以上のCuの組成範囲で寸法精 度が低くなるのは、Cuの含有量が多すぎるためにCu 偏析による局部的な膨張効果によって形状が歪んだため と考えられる。との結果より、焼結後の寸法分布を高く 維持するためには、0.2%以上0.5%未満の組成範 囲となるようにCuを添加することが適正であることが 10 判明した。

【0054】なお、最も良好な結果を示した(2)の予 合金粉末を用いた試験片で、カーボンのみ重量比1.5 %まで増加させた材料を評価した結果、圧縮性が劣化 し、最終密度が7.4g/cm3未満であったので除外 した。またMoの添加量に関して、1.5%で十分な焼 入れ硬化性を示したのでそれ以上の添加量に関する予備 検討は行なわなかった。

【0055】実施例2

実際のカムロブ部品を作製するための粉末圧縮成形用、 および再圧縮用の金型を準備して、実施例1の予備検討 結果中、最良の硬度、組織均一性および寸法制御性を示 した(2)の予合金粉末、すなわちFe-1.5%Mo -0.3%Cu-0.8%Cを用いて試作検討を行なっ た。

【0056】最終形状は、図2に示すように、外形長径 50×同短径40×高さ10(mm)とし、リフト部先 端の曲率半径を4.6mmとし、組立孔の直径を25m mとした。

【0057】その製造方法は、図3を参照して、130 ℃、9 t / c m² の条件で成形圧縮(ステップS1) し た後、600℃×30分(水素雰囲気)の条件で潤滑剤 を除去した(ステップS2)。そして1300℃(窒素 雰囲気)×1時間の条件での焼結(ステップS3)を経 て、密度が7.3~7.4g/cm³の範囲となるよう にした後、窒素雰囲気中でAe1点(770℃)以上で ある800℃に加熱してオーステナイト化した。この 後、大気中に取出し、即座に油性潤滑剤で表面を濡らし た金型内にセットし、この金型内にて9 t / c m2 の圧 4).

【0058】との圧縮条件により、圧縮直後の焼結体温 度の平均は180℃であった。事前にHeで急冷可能な 機械式熱膨張測定器で調査しておいたとの材料のマルテ ンサイト変態開始温度は295℃であったため、金型内 で焼入れができたことは確認できた。この再圧縮までの 工程を200個の試料について行ない、その後、熱風循 環大気炉で、150℃、200℃、250℃、300℃ の各温度で50個ずつ焼戻し処理(ステップS5)をし て、各試料の密度および硬度調査を行なった。

【0059】密度は、いずれの試料についても7.50 ~7.60g/cm²の範囲内であり、各試料とも十分 な緻密性を有していた。各試料の硬度HRAの下限値 は、150℃、200℃、250℃、300℃の各焼戻 し温度の順番に、78、76、75、73であり、適正 な焼戻し温度範囲は250℃までであることが明らかに なった。最も硬度の高い150℃で焼戻した材料につい て寸法測定を行なった結果、標準偏差の6倍の数値は3 0μπ未満であり、規格に対して十分な工程能力を有し ているとともに、追機械加工による寸法出しが不要であ る経済的な粉末冶金工法であることを確認できた。

10

【0060】また、再圧縮時に加熱状態で大気に一時的 に晒されるにもかかわらず、各試料中の酸素量は0.0 05%未満であり、再圧縮前の酸素量と有意差がなかっ た。このため、焼入れ性を阻害する酸化が生じなかった ので、腐食組織観察を行なったところ、予備検討時と同 様な均一な焼戻しマルテンサイト相の生成していること が確認できた。

【0061】次に、試作した部品から試験片を切出し て、磨耗試験を行なった。磨耗現象は、材質だけでな く、表面性状も影響を受けるため、図4に示すようにリ フト部先端の表面をそのまま磨耗試験に供するように試 験片を作製した。試験片として、上記に示した試作条件 中、150℃および250℃で焼戻した硬度HRA7 8、75の部品から加工したもの(試作部品1、2)を 準備し、また比較材料として、再圧縮圧力を7 t/cm ² に下げ、焼戻し温度を200℃として作製した硬度H RA73のもの(試作部品3)を準備した。またこれら 試作部品1~3と同一寸法、同一形状を有し、従来製法 30 である鋳造鉄合金の一体型カム部品から加工したもの (鋳造部品)も比較材料として準備した。そして、これ らの各材料に磨耗試験を行なった。

【0062】なお、この鋳造部品の材料は、重量比にし てCr、Moを各々約1%、カーボンを重量比にして約 3%含んでいる。また鋳造材料であるため空孔はなく、 密度は7.82g/cm, 硬度はロックウェル硬度H RAで58である。

【0063】図5にその磨耗試験の概要を示す。図5を 参照して、実際の使用状態では、カム側が回転し、バル 力を3秒間かけることで再圧縮を行なった(ステップS 40 ブを直接駆動する相手部品側が固定であるが、本試験で は、カム側の磨耗加速評価を行なうために逆の関係にな っている。つまり試験片が治具に固定された上で相手部 品側へ90kgfの荷重で押しつけられた状態で、相手 部品を1000грmで22時間回転させた。との磨耗 試験中、試験片と相手部品との摺動面に、100℃の温 度のエンジンオイルを250cc/分の量で供給した。 なお、相手部品には、φ35の寸法のSCM420の浸 炭材を用いた。

> 【0064】との磨耗試験の評価結果を表1に示す。 50 [0065]

12

【表1】

	試作部品1	試作部品 2	試作部品3	鋳造部品
密度(g/cm ³)	7. 53	7. 57	7. 42	7. 82
硬度 HRA	78	75	73	58
摩耗量(μm)	18. 5	20. 1	34. D	19. 8

【0066】この結果より、試作部品3は、密度および硬度がやや不十分で、鋳造部品の1.5倍以上の磨耗量を示した。一方、試作部品1および2は、鋳造部品とほぼ同等、もしくはそれ以上の良好な耐磨耗特性を示した。

11

【0067】以上より、本発明の組成範囲内にある鉄系 焼結合金部品を本発明の方法で製造することにより、高 硬度、高寸法精度および良好な耐磨耗性を有する材料の 得られることが判明した。

【0068】なお、実施例1、2では本発明をカムロブ に適用した場合について説明したが、本発明はカムロブ 以外でも高硬度および高寸法精度の求められる部品であ れば適用されうる。

【0069】今回開示された実施例はすべての点で例示 20 であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図され *

***る。**

[0070]

【発明の効果】本発明によれば、成形圧縮性が高く、焼 10 入れ硬化性が高く、かつ各工程前後で寸法ばらつきが小 さく、追機械加工を極力抑えた経済的な耐磨耗材料を作 製できるため、自動車エンジン用組立カムシャフト用の カムロブに最適な耐磨耗材料を得ることができる。

【図面の簡単な説明】

【図1】Fe-1.5%Mo-X%Cu-0.8%Cの 組成においてCu含有量Xを変化させた場合の収縮量と 寸法分布とを測定した結果を示すグラフである。

【図2】本発明の実施例2において作製する試料の形状を示す図である。

20 【図3】本発明の鉄系焼結合金部品の製造方法を示す工程図である。

【図4】本発明の実施例2において耐磨耗試験を行なう ための試料の形状を示す図である。

【図5】耐磨耗試験の概要を説明するための図である。

フロントページの続き

(72)発明者 伊藤 嘉朗

兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹製作所内

(72)発明者 伊藤 耕三

兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内