

Eugenio Lomurno Giovanni Gianola Giacomo Fusetti



# **Descriptive analysis and interesting findings**









### **Feature Engineering**

- Data cleaning
  - Mostly empty columns (DataAllowanceOneShot, EstimatedDevicePrice) are dropped
  - Columns Region, Province, CustomerAge and Product are transformed from string to numerical values
  - The remaining missing values are filled with -999

|   | Raw_CustomerAge | CustomerAge |
|---|-----------------|-------------|
| 0 | (40, 50]        | 45          |
| 1 | (20, 30]        | 25          |
| 2 | (30, 40]        | 35          |
| 3 | (50, 60]        | 55          |
| 4 | (60, 70]        | 65          |

#### Features generation

IsModified: a binary column in which each row is set to
 1 if there are missing values in that row, to 0 otherwise

| IsModified | CustomerAge | Region | Province | Product |
|------------|-------------|--------|----------|---------|
| 0          | 55.0        | 12.0   | 7.0      | 0       |
| 0          | 45.0        | 2.0    | 26.0     | 0       |
| 0          | 45.0        | 2.0    | 26.0     | 0       |
| 1          | 55.0        | -999.0 | -999.0   | 2       |
| 0          | 35.0        | 8.0    | 25.0     | 0       |



### **Unsuccessful approaches**

- Drop all the rows with a missing value
- Fill all the NaN values of the dataset with the mean/mode/zero value of the corresponding column
- Grenerate the colums ConnectionsCount, ConnectionsDuration and RegionsCluster
- One hot encoding of categorical features
- Label ensembling (EasyEnsemble, SMOTE, SMOTEENN)







### **Scikit-learn models**

Model analysis to understand which family of models can better fit the problem





| Model                | F1_score | Margin   |
|----------------------|----------|----------|
| SupportVectorMachine | 0.549    | +/-0.011 |
| LDA                  | 0.588    | +/-0.015 |
| KNearestNeighbors    | 0.556    | +/-0.016 |
| RandomForest         | 0.587    | +/-0.014 |
| GaussianNB           | 0.569    | +/-0.020 |
| GradientBoosting     | 0.611    | +/-0.015 |
| AdaBoosting          | 0.590    | +/-0.015 |
| QDA                  | 0.578    | +/-0.016 |
| ExtraTrees           | 0.580    | +/-0.014 |
| LogisticRegression   | 0.585    | +/-0.019 |





### **Scikit-learn models**

- SelectKBest features with Chi-squared test to evaluate the best features for each model
- There are many features with a weak correlation with the label



| Model                | F1_score | N Feat |
|----------------------|----------|--------|
| SupportVectorMachine | 0.600    | 30     |
| LDA                  | 0.593    | 15     |
| KNearestNeighbors    | 0.568    | 6      |
| RandomForest         | 0.593    | 17     |
| GaussianNB           | 0.582    | 2      |
| GradientBoosting     | 0.612    | 29     |
| AdaBoosting          | 0.591    | 27     |
| QDA                  | 0.590    | 15     |
| ExtraTrees           | 0.588    | 30     |
| LogisticRegression   | 0.594    | 17     |





### **Neural Network**

- Neural network built with Keras and plotted with Tensorboard
- The following architecture lets us able to reach **F1 score = 0.5866**



| Output Sha | pe Param #                                             |
|------------|--------------------------------------------------------|
| (None, 64) | 1920                                                   |
| (None, 64) | 0                                                      |
| (None, 64) | 0                                                      |
| (None, 64) | 4160                                                   |
| (None, 64) | 0                                                      |
| (None, 4)  | 260                                                    |
|            | (None, 64) (None, 64) (None, 64) (None, 64) (None, 64) |

Non-trainable params: 0

|     | Name       | Smoothed | Value  | Step  |
|-----|------------|----------|--------|-------|
| 055 | training   | 0.6058   | 0.6050 | 199.0 |
|     | validation | 0.5865   | 0.5866 | 199.0 |





# **Gradient boosting**

 Gradient Boosting models are really powerful algorithms for this task, here we compare some of the most robust

Gradient Boosting Algorithms Comparison



| Model                  | F1_score | Margin   |
|------------------------|----------|----------|
| GradientBoosting       | 0.611    | +/-0.017 |
| ExtremeGradintBoosting | 0.610    | +/-0.017 |
| CatBoosting            | 0.614    | +/-0.012 |







# **Categorical Gradient Boosting Classifier (CatBoost)**

- Final tuned algorithm, evaluated with 10Fold on all the features
- F1 score with crossvalidation: 0.617
- F1 score on test set: 0.6316

```
final_model = CatBoostClassifier(
    learning_rate=0.03,
    iterations=1350,
    bootstrap_type='Bayesian',
    depth=6,
    leaf_estimation_method='Gradient',
    random_seed=seed,
    logging_level='Silent',
    loss_function='MultiClassOneVsAll',
    eval_metric='MultiClassOneVsAll',
    custom_metric='F1',
    od_type = 'Iter',
    od_wait=100
)
```











## **Summary**

#### Final considerations

- Even if missing values have negatively influenced the prediction's quality, gradient boosting algorithms still perform well
- The reason why the crossvalidation has a poor performance compared with the test score is due to this imbalance inside the fold's labels

#### Further implementations

- VotingClassifier between different gradient boosting algorithms may increase the results of prediction
- Because of the high label imbalance, it may be possible to split the problem in two subproblems: a binary classification between customer and non-customer labels, and than a multiclass classification to select the correct device for customes

