B.E. III - Semester Examination

BE-III/11 (A) 247199

101303021

COMPUTER ENGINEERING

Course No.: BSC - 302

(Numerical Methods)

Time Allowed- 3 Hours

Maximum Marks-75

Note: Attempt five questions in all, selecting at least two questions from each section. All carry equal marks, Use of calculator is allowed.

Section - A

1. Using regula falsi method, find a negative real root of $x^3 - 3x + 4 = 0$, correct to three decimal places.

Find the largest eigen value and the corresponding eigen vector of the matrix:

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 using the power method. (7,8)

Using secant method, find a real root of $5x^3 - 20x + 3 = 0$, correct to four decimal places.

b) Using Graeffe's root squaring method, find all the roots of
$$x^3 - 8x^2 + 17x - 10 = 0$$
 (7,8)

- 3. a) Using iteration method, find a real root of $\cos x = 3x 1$.
 - b) List at least four properties of eigen values of a matrix.

 Also verify them for the matrix:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{bmatrix}$$
 (7,8)

- a) Derive Newton Raphson iteration formula for finding the cube root of a positive number N. Also apply it to compute the cube root of 18.
 - b) Solve the system of equations. x+y+z=6, 3x+3y+4z=20, 2x+y+3z=13 by partition method. (7.8)

Section - B

5. a) Find the missing terms from the following data:

- Using Eular's method, find the approximate value of y at x=0.3 given that $\frac{dy}{dx} = x^2 + y^2$ with y(0)=1. Take h=0.1. (7,8)
- 6. a) Using Bessel's formula, find $\frac{dy}{dx}$ at x=7.5 using the following data:

x	7.47	7.48	7.49	7.5	7.51	7.52	7.53
У	0.193	0.195	0.198	0.201	0.203	0.206	0.208

b) Explain Lagrange's interpolation formula and use it to compute f (7) for the following data:

X	5	9	11	13	17 .
f(x	150	810	1452	2366	5202

(7,8)

- 7. Using Trapezoidal rule, evaluate $\int_{0}^{1} x^{3} dx$, taking h=0.1 Compare the result with actual value of the integral.
 - Compute y(0.2) in two steps of h=0.1 by using Runge Kutta method of 4th order, given that $\frac{dy}{dx} = 3x + y$ with y(0)=1. (7,8)
- 8. A) Using Taylor's series method, compute y(0.1) for the initial value problem: $\frac{dy}{dx} = x^2y 1$ with y(0) = 1.

[Turn Over

Tabulate the function $f(x) = 2x^3 - x$ at $x_0 = 2$, $x_1 = 4$, $x_2 = 5$ and $x_3 = 8$. Using Newton's divided difference formula, compute f(x) and f'(x) at x = 6. (7,8)