Gaussian Process Latent Variable Models in Finance

Rajbir-Singh Nirwan July 15, 2020

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.1</mark> 7
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	1421.1			

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.</mark> 17
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	14151-1			

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.</mark> 17
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	14151-1			

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.</mark> 17
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	14151-1			

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0.17
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	1412111			

	Day1	Day2
Bank1	-0.70	
Bank2	-0.44	
Bank3	-0.36	
Food1	0.75	
Food2	0.77	
Food3	0.86	
Tech1	0.19	
Tech2	0.08	
Tech3	-0.19	
Tech4	-0.55	

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.1</mark> 7
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	- <mark>0</mark> .30
F00D	AMZN			
BANK	1M31-1			

	Day1	Day2
Bank1	-0.70	
Bank2	-0.44	
Bank3	-0.36	
Food1	0.75	
Food2	0.77	
Food3	0.86	
Tech1	0.19	
Tech2	0.08	
Tech3	-0.19	
Tech4	-0.55	

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.1</mark> 7
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	1431-1			1

	Day1	Day2
Bank1	-0.70	0.08
Bank2	-0.44	0.16
Bank3	-0.36	0.01
Food1	0.75	-0.14
Food2	0.77	-0.27
Food3	0.86	-0.19
Tech1	0.19	0.03
Tech2	0.08	0.04
Tech3	-0.19	0.02
Tech4	-0.55	0.10

Outline

- Gaussian Processes
- Latent Variable Models
- Applications
 - Portfolio Allocation
 - Predicting missing Values
 - Structure Identification

- Non-Parametric Kernel based approach
- Utilize full power of Bayesian statistics
- Complexity increases with the number of data points

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

$$f(x) = \mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{\Phi}_1(x) \right)$$

Highly flexible but not interpretable

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

$$f(x) = \mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{\Phi}_1(x) \right)$$

Highly flexible but not interpretable

Function space view

$$k: x, x' \to k(x, x')$$

Flexibility increases with number of data points

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

$$f(x) = \mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{\Phi}_1(x) \right)$$

Highly flexible but not interpretable

Function space view

$$k: x, x' \to k(x, x')$$

Flexibility increases with number of data points

Mercers Theorem:

$$k(x, x') = \sum_{d} \lambda_{d} \phi_{d}(x) \phi_{d}(x')$$

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

$$f(x) = \mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{\Phi}_1(x) \right)$$

Highly flexible but not interpretable

$$\phi(x) = x$$

$$k(x, x') = xx'$$

$$\Phi(x) = (x, x^2)$$

$$k(x, x') = xx' + x^2x'^2$$

Function space view

$$k: x, x' \to k(x, x')$$

Flexibility increases with number of data points

Mercers Theorem:

$$k(x, x') = \sum_{d} \lambda_{d} \phi_{d}(x) \phi_{d}(x')$$

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

$$f(x) = \mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{\Phi}_1(x) \right)$$

Highly flexible but not interpretable

$$\phi(x) = x$$

$$k(x, x') = xx'$$

$$\Phi(x) = (x, x^2)$$

$$k(x, x') = xx' + x^2x'^2$$

Function space view

$$k: x, x' \rightarrow k(x, x')$$

Flexibility increases with number of data points

Mercers Theorem:

$$k(x, x') = \sum_{d} \lambda_{d} \phi_{d}(x) \phi_{d}(x')$$

$$k(x, x') = (xx' + c)^d$$

 $\Phi(x) = polynomials \ up \ to \ order \ d$

$$k(x, x') = \exp(-0.5 (x - x')^2 / \ell^2)$$

 $\Phi(x) = infinitly many basis functions$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K})$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell'}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell'}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Bayes Theorem

$$p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Bayes Theorem

$$p(f | \mathcal{D}) = \frac{p(\mathcal{D} | f)p(f)}{p(\mathcal{D})}$$

Prior

Bayes Theorem

$$p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Prior

Posterior

Bayes Theorem

$$p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Prior

Posterior

Bayes Theorem

$$p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Prior

Posterior

$$X \in \mathbb{R}^{N \times Q} \quad \xrightarrow{f} \quad Y \in \mathbb{R}^{N \times D}$$

$$\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \stackrel{f}{\to} \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \xrightarrow{f_1} \begin{pmatrix} a_1 \\ b_1 \\ c_1 \\ d_1 \end{pmatrix}$$

$$\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \stackrel{f}{\to} \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \xrightarrow{f_2} \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \\ d_1 & d_2 \end{pmatrix}$$

$$X \in \mathbb{R}^{N \times Q} \quad \xrightarrow{f} \quad Y \in \mathbb{R}^{N \times D}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \xrightarrow{f_3} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{pmatrix}$$

$$\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \stackrel{f}{\to} \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \xrightarrow{f_i} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{pmatrix}$$

- Can we infer the hidden state X only by looking at Y? Yes
- Inference using GPs also gives us the covariance K between different points

RETURNS	07.07.20	08.07.20	09.07.20	10.07.20
AAPL	-0.31	2.33	0.43	0 <mark>.17</mark>
G00GL	-0.64	0.92	1.00	1.34
AMZN	-1.86	2.70	3.29	0.55
MSFT	-1.16	2.20	0.70	-0.30
F00D	AMZN			
BANK	1421.1			

	Day1	Day2
Bank1	-0.70	0.08
Bank2	-0.44	0.16
Bank3	-0.36	0.01
Food1	0.75	-0.14
Food2	0.77	-0.27
Food3	0.86	-0.19
Tech1	0.19	0.03
Tech2	0.08	0.04
Tech3	-0.19	0.02
Tech4	-0.55	0.10

Experiments

Use Variational Bayes for the inference - data $Y \in \mathbb{R}^{N \times D}$ Approximate the true posterior $p(\theta, X | Y)$ with a simple distribution $q_{\phi}(\theta, X)$

 R^2 - Variance of the data captured by the model

Experiments

Use Variational Bayes for the inference - data $extbf{\emph{Y}} \in \mathbb{R}^{N \! imes D}$

Approximate the true posterior $p(\theta, X | Y)$ with a simple distribution $q_{\phi}(\theta, X)$

 R^2 - Variance of the data captured by the model

ELBO - Lower bound to the marginal likelihood

Given N stocks, how should I weight them to get an optimal portfolio?

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Backtesting on S&P500 from 2002 to 2018

Model	Linear	SE	EXP	M32	Sample Cov	Ledoit Wolf	Eq. Weighted
Mean	0.142	0.151	0.155	0.158	0.149	0.148	0.182
Std	0.158	0.156	0.154	0.153	0.159	0.159	0.232
Sharpe ratio	0.901	0.969	1.008	1.029	0.934	0.931	0.786

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & NaN \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{pmatrix}$$

Prediction of missing values for held out dataset

Visualization of Latent Space

Use of Gaussian Processes in Finance

- Use of Gaussian Processes in Finance
- Build Portfolio based on the Covariance between Stocks

- Use of Gaussian Processes in Finance
- Build Portfolio based on the Covariance between Stocks
- Better Predictor for Missing values

- Use of Gaussian Processes in Finance
- Build Portfolio based on the Covariance between Stocks
- Better Predictor for Missing values
- Latent Space Structure Identification

- Use of Gaussian Processes in Finance
- Build Portfolio based on the Covariance between Stocks
- Better Predictor for Missing values
- Latent Space Structure Identification

- Use of Gaussian Processes in Finance
- Build Portfolio based on the Covariance between Stocks
- Better Predictor for Missing values
- Latent Space Structure Identification

