Taking the pulse on single case neuropsychology

Single case neuropsychology: Validity and reliability in a power-wise pinioned field

¹ School of Philosophy, Psychology and Language Sciences, University of Edinburgh

Introduction

- Single case research in neuropsychology.
- Functional deficits or dissociations in brain damaged patients.
- Only valid way to map functions to brain areas?
- Inherently low power which gives rise to:
 - Low probability of finding an effect.
 - Decrease in positive predictive value.
 - The winner's curse.
 - This is an overestimation of effect sizes stemming from only the studies that by chance draws a sample with a large effect will be able to detect it.

Gaps in the literature

- Little work has been done on evaluating power for the statistical methods used in single case research.
- The extent of the winner's curse in single case research has not been evaluated.
- Multivariate methods are known for their higher power and reliability for explaining latent functions (e.g. intelligence).
 - No standard for such methods has been proposed.

Outline

Evaluate power of tests for discovering deficits and dissociations with regards to sample sizes, effect sizes and correlations between functions.

1

Evaluate the extent to which single case studies are affected by the winner's curse and possible ways to compensate for this overestimation.

.

Construct and evaluate single case multivariate approaches and compare power and usability to simpler but possibly less valid univariate methods.

`

Judge whether the confirmatory crown of single case neuropsychology can be retained.

Method and Results

- Power evaluation can be done in two ways:
 - Analytically (symbol manipulation), which is exact.
 - Numerically (e.g. simulations), which is approximate.
 - Simulations provide an intuition of how statistical issues will affect a field "in the long run".
 - Winner's curse especially suited for this approach.
 - See example code below and results in figure 1.

```
win sim <- function (nsim, deficit, ncon) {</pre>
# Matrix where each row represents observations
# on a variable from controls plus a patient
 ranmat <- matrix(rnorm((ncon + 1) * nsim),</pre>
                   nrow = nsim,
                   ncol = ncon + 1)
# Induce a deficit on the first obs of each row
# and compare to the other obs on that row.
# Save the median of all found deficits.
 med def <- median(</pre>
   apply(cl, ranmat, 1,
       function(x) {if (pt(
              ((x[1] - def) - mean(x[2:ncon+1]))
              / (sd(x[2:ncon+1])*sqrt(length(x))
                                      / (length(x) -
 1))),
             df = length(x) - 2) < 0.05) {
             (x[1] - def)
                     else { NA } }),
              na.rm = TRUE)
# Return the average overestimation
 return(- def -med def)
```


Figure 1: Median overestimation with Crawford and Howell (1998) method, 10⁶ simulations for every parameter combination.

Test construction

- The test used in the simulation above by **Crawford and Howell (1998)** can be seen in eq. (1).
- Building on this I successfully generalised it for multivariate use, as outlined below.

$$t_{n-1}=rac{X^*-\overline{X}}{s\sqrt{rac{n+1}{n}}}$$
 (1

Where X^* is the patient score, \overline{X} , s and n the mean, standard deviation and size of the control sample, i.e. a two sample t test with $n_1=1$. The multivariate generalisation of a two sample t test is the Hotelling's t^2 test:

$$t^2 = rac{n_x n_y}{n_x + n_y} (ar{oldsymbol{x}} - ar{oldsymbol{y}})' \hat{oldsymbol{\Sigma}}_p^{-1} (ar{oldsymbol{x}} - ar{oldsymbol{y}}) \hspace{1.5cm} (2)$$

 $ar{x}$ and $ar{y}$ being the mean vectors of the two groups and $\hat{\Sigma}_p$ the unbiased pooled covariance matrix and, if we let p=no. of variates, where

$$rac{n_x + n_y - p - 1}{(n_x + n_y - 2)p} t^2 \sim F(p, n_x + n_y - 1 - p) \quad (3)$$

It should be possible to generalise eq. (1) p number of variates as follows:

Where \boldsymbol{x}^* is a vector of observations on each variate from the individual of interest, $\bar{\boldsymbol{x}}$, $\hat{\boldsymbol{\Sigma}}$ and n the mean vector, covariance matrix and size of the control sample. Simulations for evaluation of Type I errors and power is seen in figure 2

Figure 2: Power for single case Hotellings t^2 over correlation, 10^5 simulations for every combination. Deficits in standard deviations. Type I errors when deficit X=0 and deficit Y=0

Next Steps

- Not only functional deficits but importantly *dissociations* are of interest
 - Evaluation of power and winner's curse
- Construction of multivariate methods.
- Compare reliability of the multivariate tests with univariate counterparts.
- Development of R package ("singcar").

Acknowledgements

Poster created with posterdown (Thorne 2019).

References

Crawford, J. R., and David C. Howell. 1998. "Comparing an Individual's Test Score Against Norms Derived from Small Samples." *The Clinical Neuropsychologist* 12 (4): 482–86. https://doi.org/10.1076/clin.12.4.482.7241.

Thorne, Brent. 2019. *Posterdown: Generate Pdf Conference Posters Using R Markdown*. https://CRAN.R-project.org/package=posterdown.

