Inverse Kinematics

EE366/CE366/CS380: Introduction to Robotics

Dr. Basit Memon

Electrical and Computer Engineering Habib University

February 14, 19, 26, 2024

Table of Contents

- General IK Problem
- Closed-form IK solution of 2R-planar manipulator
- 3 IK of 6 DOF robot manipulators
- Example: Inverse Position Kinematics of RRR arm with Spherical Wrist
- Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- Example 2: Inverse Position Kinematics of RRP Arm
- References

Table of Contents

- 1 General IK Problem
- 2 Closed-form IK solution of 2R-planar manipulato
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wris
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

Kinematics: Study of motion (position, velocity, acceleration, etc.) without regard to the forces, torques that cause it. Geometric description of motion.

Forward Kinematics: Calculation of position and orientation of end-effector from its joint coordinates.

Inverse Kinematics: Determine the values of the joint coordinates, given the end-effector's position and orientation.

Kinematics establishes link between joint and task coordinates.

5/53 Basit Memon Inverse Kinematics EE366

General Problem

Given desired position and orientation of end-effector,

$$T = \begin{bmatrix} R & p \\ \mathbf{0} & 1 \end{bmatrix}$$
 ,

find all possible joint variables, (q_1, \dots, q_n) , that satisfy the equation

$${}^{0}T_{n}(q_{1},\cdots,q_{n})=T.$$

■ 12 nonlinear transcendental equations in n unknowns.

Example: IK of Stanford manipulator


```
c_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] - s_1(s_4c_5c_6 + c_4s_6) = 0
s_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] + c_1(s_4c_5c_6 + c_4s_6) = 0
-s_2(c_4c_5c_6-s_4s_6)-c_2s_5c_6=1
c_1[-c_2(c_4c_5s_6+s_4c_6)+s_2s_5s_6]-s_1(-s_4c_5s_6+c_4c_6) = 1
  s_1[-c_2(c_4c_5s_6+s_4c_6)+s_2s_5s_6]+c_1(-s_4c_5s_6+c_4c_6)=0
                     s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6 = 0
                    c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5 = 0
           s_1(c_2c_4s_5+s_2c_5)+c_1s_4s_5=1
    -s_2c_4s_5+c_2c_5 \ = \ 0
       c_1s_2d_3 - s_1d_2 + d_6(c_1c_2c_4s_5 + c_1c_5s_2 - s_1s_4s_5) = -0.154
    s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2) = 0.763.
                            c_2d_3 + d_6(c_2c_5 - c_4s_2s_5) = 0
```

- Will there always be a solution?
- Will solution be unique?
- Is any solution admissible/realizable?

Table of Contents

- 1 General IK Probler
- 2 Closed-form IK solution of 2R-planar manipulator
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wris
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

Inverse Kinematics of 2R-planar chain using algebraic method

Figure: Source: Modern Robotics

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$

$$\phi = \theta_1 + \theta_2$$

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$

$$\phi = \theta_1 + \theta_2$$

$$x^2 + y^2 = L_1^2 + L_2^2 + 2L_1L_2\cos\theta_2$$

$$\cos \theta_2 = \frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2}$$

■ For solution to exist, RHS should be between -1 and 1.

- $\theta_2 = \arctan 2(\sin \theta_2, \cos \theta_2)$
 - Two possible solutions.

$$x = L_{1} \cos \theta_{1} + L_{2} \cos(\theta_{1} + \theta_{2})$$

$$= L_{1} \cos \theta_{1} + L_{2} \cos \theta_{1} \cos \theta_{2} - L_{2} \sin \theta_{1} \sin \theta_{2}$$

$$= (L_{1} + L_{2} \cos \theta_{2}) \cos \theta_{1} - L_{2} \sin \theta_{2} \sin \theta_{1}$$

$$= k_{1} \cos \theta_{1} - k_{2} \sin \theta_{1}$$

$$= k_{1} \sin \theta_{1} + L_{2} \sin(\theta_{1} + \theta_{2})$$

$$= L_{1} \sin \theta_{1} + L_{2} \sin \theta_{1} \cos \theta_{2} + L_{2} \cos \theta_{1} \sin \theta_{2}$$

$$= (L_{1} + L_{2} \cos \theta_{2}) \sin \theta_{1} + L_{2} \sin \theta_{2} \cos \theta_{1}$$

$$= k_{1} \sin \theta_{1} + k_{2} \cos \theta_{1}$$

$$x = k_1 \cos \theta_1 - k_2 \sin \theta_1$$
$$y = k_1 \sin \theta_1 + k_2 \cos \theta_1$$

where,

$$k_1 = L_1 + L_2 \cos \theta_2$$

$$k_2 = L_2 \sin \theta_2$$

Let,

$$r = +\sqrt{k_1^2 + k_2^2}$$

$$\gamma = \arctan 2(k_2, k_1)$$

So that,

$$k_1 = r \cos \gamma$$
$$k_2 = r \sin \gamma$$

and,

$$x = r\cos\gamma\cos\theta_1 - r\sin\gamma\sin\theta_1$$
$$y = r\cos\gamma\sin\theta_1 + r\sin\gamma\cos\theta_1$$

$$x = r\cos\gamma\cos\theta_1 - r\sin\gamma\sin\theta_1$$

$$= r\cos(\gamma + \theta_1)$$

$$y = r\cos\gamma\sin\theta_1 + r\sin\gamma\cos\theta_1$$

$$= r\sin(\gamma + \theta_1)$$

$$r = +\sqrt{k_1^2 + k_2^2}$$

$$\gamma = \arctan 2(k_2, k_1)$$

$$k_1 = L_1 + L_2 \cos \theta_2$$

 $k_2 = L_2 \sin \theta_2$

$$\Rightarrow \frac{x}{r} = \cos(\gamma + \theta_1)$$
$$\frac{y}{r} = \sin(\gamma + \theta_1)$$

$$\Rightarrow \gamma + \theta_1 = \arctan 2\left(\frac{y}{r}, \frac{x}{r}\right)$$
$$= \arctan 2(y, x)$$

$$\Rightarrow \theta_1 = \arctan 2(y, x) - \gamma$$

$$r = +\sqrt{k_1^2 + k_2^2}$$

$$\gamma = \arctan 2(k_2, k_1)$$

$$k_1 = L_1 + L_2 \cos \theta_2$$

$$k_2 = L_2 \sin \theta_2$$

$$\theta_1 = \arctan 2(y, x) - \gamma$$

$$= \arctan 2(y, x) - \arctan 2(k_2, k_1)$$

$$= \arctan 2(y, x) - \arctan 2(L_2 \sin \theta_2, L_1 + L_2 \cos \theta_2)$$

Inverse Kinematics of 2R-planar chain using geometric method

Figure: Source: Modern Robotics

From the law of cosines,

$$x^2 + y^2 = L_1^2 + L_2^2 - 2L_1L_2\cos\beta$$

$$\blacksquare \beta = \arccos\left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1L_2}\right)$$

$$\theta_2 = 180^{\circ} - \beta$$
 $\theta_1 = \gamma - \alpha$

$$= \arctan 2(y, x) - \alpha$$

Inverse Kinematics of 2R-planar chain using geometric method

Figure: Source: Modern Robotics

■ Other solution is:

$$\theta_2 = -(180^\circ - \beta)$$
 $\theta_1 = \gamma + \alpha$

Existence of Solution

Figure: Source: Modern Robotics

- What does it mean for RHS of $\cos \theta_2$ equation to not be in [-1, 1]?
- The goal position and orientation of end-effector are not included in the workspace.
 - If point is included in reachable workspace then we can reach the point in at least one possible orientation.
 - If point is included in dexterous workspace then we can reach the point in any orientation.

Multiplicity and Admissibility of Solution

Figure: Source: Modern Robotics

- Workspace for $L_1 \neq L_2$
 - Outer radius: $L_1 + L_2$; Inner radius: $|L_1 L_2|$
- Two possible orientation. Only one possible at the boundary.
- Assumption: All joints can rotate 360°
 - Seldom true.
 - Otherwise, workspace is further constrained.
 - Same workspace with $\theta_1 \in [0^\circ, 360^\circ)$ and $\theta_2 \in [0^\circ, 180^\circ]$.

Given a manipulator, how many IK solutions does it have?

a_{i}	Number of solutions		
$a_1 = a_3 = a_5 = 0$	≤ 4		
$a_3 = a_5 = 0$	≤ 8		
$a_3 = 0$	≤ 16		
All $a_i \neq 0$	≤ 16		

FIGURE 4.5: Number of solutions vs. nonzero a_i .

Figure: Source: Introduction to Robotics: Mechanics and Control

- Need to know all solutions, as the system has to be able to choose one.
- The more link parameters are non-zero, bigger the maximum number of possible solutions.
 - Upper bound on IK solutions for general 6 dof manipulator is 16 ^a.
- Infinite solutions at singularities or for kinematically redundant manipulators.

9/53 Basit Memon Inverse Kinematics EE366

^aManseur, Rachid, and Keith L. Doty. "A robot manipulator with 16 real inverse kinematic solution sets." The International Journal of Robotics Research 8.5 (1989): 75-79.

Table of Contents

- 1 General IK Probler
- 2 Closed-form IK solution of 2R-planar manipulato
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

IK for spatial manipulators is daunting - algebraic or geometric.


```
c_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] - s_1(s_4c_5c_6 + c_4s_6) = 0
s_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] + c_1(s_4c_5c_6 + c_4s_6) = 0
-s_2(c_4c_5c_6-s_4s_6)-c_2s_5c_6=1
c_1[-c_2(c_4c_5s_6+s_4c_6)+s_2s_5s_6]-s_1(-s_4c_5s_6+c_4c_6) = 1
  s_1[-c_2(c_4c_5s_6+s_4c_6)+s_2s_5s_6]+c_1(-s_4c_5s_6+c_4c_6) = 0
                         s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6 = 0
                        c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5 = 0
            s_1(c_2c_4s_5+s_2c_5)+c_1s_4s_5 = 1
    -s_2c_4s_5+c_2c_5=0
       c_1s_2d_3 - s_1d_2 + d_6(c_1c_2c_4s_5 + c_1c_5s_2 - s_1s_4s_5) = -0.154
       s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2) = 0.763
                           c_2d_3 + d_6(c_2c_5 - c_4s_2s_5) = 0
```


Closed-form solutions of 6 DOF manipulators

It is possible to find all solutions (not necessarily closed-form) of any single series chain of revolute and prismatic joints having a total of six degrees of freedom.

Sufficient conditions for existence of closed-form solution

- A 6-dof manipulator admits a closed-form inverse kinematics solution if ^a
 - Three consecutive revolute joint axes intersect at a common point
 - 2 Any three joints are prismatic
 - ^aKinematics of Manipulators under Computer Control, Pieper, 1968

We can kinematically decouple position from orientation [1]

- Under these conditions, we can decouple inverse kinematics problem into two problems:
 - Inverse position kinematics
 - Inverse orientation kinematics
- This is why manipulators with spherical wrist are popular → Three rotational axes intersect

23/53 Basit Memon Inverse Kinematics EE366

A spherical wrist satisfies conditions for kinematic decoupling.

Figure: Source: Robot Modeling and Control

- z_3 , z_4 , and z_5 intersect. Say at o_c .
- Motion of these joints will not affect o_c
- o_c is function of only first three joint variables.
- Plan: $o_6 \rightarrow o_c \rightarrow (q_1, q_2, q_3)$

Inverse Position Kinematics

Figure: Source: Robot Modeling and Control

$$o = {}^{0}o_{6} = {}^{0}o_{c} + d_{6} {}^{0}\hat{z}_{5}$$

 z_5 and z_6 are in same direction and z_6 in $\{0\}$ frame is third column of R. So,

$$o = {}^{0}o_{c} + d_{6}R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} = \begin{bmatrix} o_{x} - d_{6}r_{13} \\ o_{y} - d_{6}r_{23} \\ o_{z} - d_{6}r_{23} \end{bmatrix}$$

■ Solve equations to find values of first 3 joints.

Inverse Orientation Kinematics

Figure: Source: Robot Modeling and

$$R = {}^{0}R_3 {}^{3}R_6$$

where R is desired orientation.

$$\Rightarrow {}^{3}R_{6} = {}^{0}R_{3}^{-1}R = {}^{0}R_{3}^{T}R$$

- \bullet 0R_3 only depends on first three joint angles.
- Last three joint angles determined from the above equation.
- A set of Euler angles can be used to solve for them.

Table of Contents

- 1 General IK Probler
- 2 Closed-form IK solution of 2R-planar manipulato
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wrist
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

How to solve inverse position kinematics problem?

Figure: Source: Robot Modeling and Control

- Mostly encounter common robot manipulator configurations.
- Simple configurations can be studied geometrically as most DH parameters are zero.
- **Geometric approach:** Solve for q_i by projecting manipulator onto $x_{i-1} y_{i-1}$ plane according to DH convention, and then solving a trigonometry problem.

Problem: IK of Articulated (RRR) arm with spherical wrist

Figure: Source: Robot Modeling and Control

- Find the wrist center, o_c , location of intersection point of last three joint axes, from the end-effector position o_6 .
- Find θ_1 , θ_2 , and θ_3 using o_c and either the geometrical approach or analytically.
- Say $o_c = (x_c, y_c, z_c)$.

■ The DH parameters for the arm are:

Link	ai	α_i	di	θ_i
1	0	90°	d_1	θ_1
2	a_2	0	0	θ_2
3	<i>a</i> ₃	0	d ₃	θ_3

■ Solve equations for θ_1 , θ_2 , and θ_3 :

$$d_3s_1 + a_2c_1c_2 + a_3c_1c_{23} = x_c$$
$$-d_3c_1 + a_2s_1c_2 + a_3s_1c_{23} = y_c$$
$$d_1 + a_2s_2 + a_3s_{23} = z_c$$

 \blacksquare Multiplying A_i ,

$${}^{0}T_{3} = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & d_{3}s_{1} + a_{2}c_{1}c_{2} + a_{3}c_{1}c_{23} \\ s_{1}c_{2}3 & -s_{1}s_{23} & -c_{1} & -d_{3}c_{1} + a_{2}s_{1}c_{2} + a_{3}s_{1}c_{23} \\ s_{23} & c_{23} & 0 & d_{1} + a_{2}s_{2} + a_{3}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure: Source: Robot Modeling and Control

- Project o_c onto $x_0 y_0$ plane.
- Another solution is:

$$\theta_1 = 180^\circ + \arctan 2(y_c, x_c)$$

■ Corresponding θ_2 and θ_3 will be different.

- To find θ_2 , θ_3 project onto plane formed by $x_1 y_1$ $(x_1 z_0)$.
- This is 2 link planar case.
- Using law of cosines:

$$\cos(180^{\circ} - \theta_3) = -\frac{r^2 + s^2 - a_2^2 - a_3^2}{2a_2 a_3}$$

$$D := \cos \theta_3 = \frac{r^2 + s^2 - a_2^2 - a_3^2}{2a_2 a_3}$$

$$r^2 = x_c^2 + y_c^2$$

$$s^2 = (z_c - d_1)^2$$

Figure: Source: Robot Modeling and Control

- $\bullet \theta_3 = \arctan 2 \left(\pm \sqrt{1 D^2}, D \right)$
- Two solutions for θ_3 Elbow down and Elbow up

$$\theta_2 = \arctan 2 (s, r)$$

$$-\arctan 2(a_3 \sin \theta_3, a_2 + a_3 \cos \theta_3)$$

■ Two solution pairs for (θ_2, θ_3)

■ In general, maximum of 4 possible solutions.

Figure: Example: PUMA

Inverse Position Kinematics of RRR arm: Singular Solutions

- Singular configuration $-x_c = y_c = 0$
- Infinite solutions for θ_1

Figure: Source: Robot Modeling and Control

■ With offset, wrist center cannot intersect *z*₀ configurations.

Figure: Source: Robot Modeling and Control

Inverse Position Kinematics of RRR arm: Shoulder Offset

■ Left Arm

$$\theta_1 = \phi - \alpha$$

$$\phi = \arctan 2(y_c, x_c)$$

$$\alpha = \arctan 2\left(\frac{d}{\sqrt{x_c^2 + y_c^2 - d^2}}\right)$$

Right Arm

$$\theta_{1} = \alpha + \beta$$

$$\alpha = \arctan 2(y_{c}, x_{c})$$

$$\beta = \gamma + 180^{\circ}$$

$$\gamma = \arctan 2\left(d, \sqrt{x_{c}^{2} + y_{c}^{2} - d^{2}}\right)$$

See book for solutions of θ_2 , θ_3 .

- 1 General IK Probler
- 2 Closed-form IK solution of 2R-planar manipulate
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

Inverse Orientation Kinematics for RRR arm with Spherical Wrist

Figure: Source: Robotics-Modeling, Planning and Control

$${}^{3}T_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

38/53 Basit Memon Inverse Kinematics EE366

Inverse Orientation Kinematics for RRR arm with Spherical Wrist

■ Solve the equation ${}^3R_6 = {}^0R_3^TR$ for θ_4 , θ_5 , and θ_6 , where R is desired orientation.

$$\begin{bmatrix} c_4c_5c_6 - s_4s_6 & -c_4c_5s_6 - s_4c_6 & c_4s_5 \\ s_4c_5c_6 + c_4s_6 & -s_4c_5s_6 + c_4c_6 & s_4s_5 \\ -s_5c_6 & s_5s_6 & c_5 \end{bmatrix} = \begin{bmatrix} c_1c_{23} & -c_1s_{23} & s_1 \\ s_1c_{23} & -s_1s_{23} & -c_1 \\ s_{23} & c_{23} & 0 \end{bmatrix}^T \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Notice the RHS is completely known as we have determined θ_1 , θ_2 , and θ_3 from inverse position kinematics.

$^{13}R_{6}$ is equivalent to ZYZ Euler rotation sequence.

$$R_{ZYZ} = R_{z}(\phi) R_{y}(\theta) R_{z}(\psi)$$

$$= \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

Compare with

$${}^{3}R_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} \end{bmatrix}$$

Use Euler inverse formulas to find orientation joint angles.

$$\theta_4 = \phi$$
; $\theta_5 = \theta$; $\theta_6 = \psi$

$$\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- Two cases:
 - Singular case: Middle angle, $\theta = 0$
 - Occurs when both t_{13} and t_{23} are zero.
 - Nonsingular case: $\theta \neq 0$

ZYZ Euler Inverse Formulas

Non-singular Case

■ Two possible solutions

$$\theta = \arctan 2 \left(\sqrt{1 - t_{33}^2}, t_{33} \right)$$

$$\phi = \arctan 2 \left(t_{23}, t_{13} \right)$$

$$\psi = \arctan 2 \left(t_{32}, -t_{31} \right)$$

OR

$$\theta = \arctan 2 \left(-\sqrt{1 - t_{33}^2}, t_{33} \right)$$

$$\phi = \arctan 2 \left(-t_{23}, -t_{13} \right)$$

$$\psi = \arctan 2 \left(-t_{32}, t_{31} \right) \text{ Inverse K}$$
set Memora 2 (-t₃₂, t₃₁) Inverse K

Singular Case

 Infinite possible solutions in each singular case

$$egin{aligned} heta &= 0 \ \phi &= 0 \ \psi &= \operatorname{arctan} 2 \left(t_{21}, \, t_{11}
ight) \end{aligned}$$

OR

$$heta=180^\circ \ \phi=0 \ \psi=-rctan2\left(t_{21},t_{22}
ight)$$

Applying inverse formulas to RRR arm with Spherical Wrist

$$\begin{bmatrix} c_4c_5c_6 - s_4s_6 & -c_4c_5s_6 - s_4c_6 & c_4s_5 \\ s_4c_5c_6 + c_4s_6 & -s_4c_5s_6 + c_4c_6 & s_4s_5 \\ -s_5c_6 & s_5s_6 & c_5 \end{bmatrix} = \begin{bmatrix} c_1c_{23} & -c_1s_{23} & s_1 \\ s_1c_{23} & -s_1s_{23} & -c_1 \\ s_{23} & c_{23} & 0 \end{bmatrix}^T \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Non-singular case - Solution 1:

$$\theta_{5} = \arctan 2 \left(\sqrt{1 - (r_{13}s_{1} - r_{23}c_{1})^{2}}, r_{13}s_{1} - r_{23}c_{1} \right)$$

$$\theta_{4} = \arctan 2 \left(-r_{13}c_{1}s_{23} - r_{23}s_{1}s_{23} + r_{33}c_{23}, r_{13}c_{1}c_{23} + r_{23}s_{1}c_{23} + r_{33}s_{23} \right)$$

$$\theta_{6} = \arctan 2 \left(r_{12}s_{1} - r_{22}c_{1}, -r_{11}s_{1} + r_{21}c_{1} \right)$$

- 1 General IK Probler
- 2 Closed-form IK solution of 2R-planar manipulato
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

Derivation of ZYZ Euler Inverse Formulas: Non-singular case

$$\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

- Both of t_{13} and t_{23} are not zero. $\Rightarrow t_{13}^2 + t_{23}^2 = \sin^2 \theta \neq 0 \Rightarrow \theta \neq 0$
- So,

$$\theta = \arctan 2 \left(\sqrt{1 - t_{33}^2}, t_{33} \right)$$

or

$$\theta = \arctan 2 \left(-\sqrt{1 - t_{33}^2}, t_{33} \right)$$

Derivation of ZYZ Euler Inverse Formulas: Non-singular case

$$\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & c_{\theta} \end{bmatrix} =$$

$$\begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix}$$

■ If θ is given by the first equation, then $\sin \theta > 0$, and

$$\phi = \arctan 2 (t_{23}, t_{13})$$
 $\psi = \arctan 2 (t_{32}, -t_{31})$

■ If θ is given by the second equation, then $\sin \theta < 0$, and

$$\phi = \arctan 2 (-t_{23}, -t_{13})$$

 $\psi = \arctan 2 (-t_{32}, t_{31})$

Derivation of ZYZ Euler Inverse Formulas: Singular case

$$R_{ZYZ} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

If $\theta = n\pi$, then

$$R_{ZYZ} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & 0 \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$

$$\blacksquare \text{Sum } \phi + \psi \text{ is unique}$$

$$\blacksquare \text{But, infinitely many solutions for}$$

If $t_{33} = 1$, then $\theta = 0$ and

$$R_{ZYZ} = egin{bmatrix} c_{\phi\psi} & -s_{\phi\psi} & 0 \ s_{\phi\psi} & c_{\phi\psi} & 0 \ 0 & 0 & \pm 1 \ \end{pmatrix}$$

- $\Phi + \psi = \arctan 2(t_{21}, t_{11})$
- Sum $\phi + \psi$ is unique
- (ϕ, ψ) .
- As convention, might as well let $\phi = 0$

Derivation of ZYZ Euler Inverse Formulas: Singular case

■ If $t_{33} = -1$, then $\theta = 180^{\circ}$ and

$$R_{ZYZ} = egin{bmatrix} -\cos(\phi-\psi) & -\sin(\phi-\psi) & 0 \ \sin(\phi-\psi) & \cos(\phi-\psi) & 0 \ 0 & 0 & \pm-1 \end{bmatrix}$$

- $\phi \psi = \arctan 2(t_{21}, t_{22})$
- Infinitely many solutions for (ϕ, ψ) .

- 1 General IK Probler
- 2 Closed-form IK solution of 2R-planar manipulato
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arm
- 8 References

Problem: Inverse Position Kinematics of Spherical (RRP) arm

Figure: Source: Robot Modeling and Control

- $\theta_1 = ?$ $\theta_1 = \arctan 2(y_c, x_c)$
- Another solution?
 - $\theta_1 = \arctan 2(x_c, y_c) + 180^\circ$
- Singularity?
 - Yes

Problem: Inverse Position Kinematics of Spherical (RRP) arm

Figure: Source: Robot Modeling and Control

- $\theta_2=?$ $\theta_2 = \arctan 2(s, r) + 90^{\circ}$
- $d_3 = ?$ $d_3 = \sqrt{r^2 + s^2}$
- We have two solutions.
- Can revise solution for the offset case.

- 1 General IK Problen
- 2 Closed-form IK solution of 2R-planar manipulato
- 3 IK of 6 DOF robot manipulators
- 4 Example: Inverse Position Kinematics of RRR arm with Spherical Wris
- 5 Example: Inverse Orientation Kinematics of RRR arm with Spherical Wrist
- 6 Derivation of ZYZ Euler Inverse Formulas
- 7 Example 2: Inverse Position Kinematics of RRP Arn
- 8 References

1] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling and control. John Wiley & Sons, 2020.