Non-Parametric Analysis

27 Nov 2009 CPSY501 Dr. Sean Ho Trinity Western University

Please download:

- relationships.sav
- Field-Looks Charis.sav

Outline for today

- Non-Parametric Between-subjects Tests:
 - 2 groups: Mann-Whitney U
 - Many groups: Kruskall-Wallis H
 - Factorial variants
- Non-Parametric Within-subjects Tests:
 - 2 repetitions: Wilcoxon Signed-rank
 - Many repetitions: Friedman's ANOVA
- There exist other non-parametric options, too!

When To Use Non-Parametric

- Review: assumptions of ANOVA?
 - If met, parametric methods more power
 - ANOVA is pretty robust to non-normality
 - Try transforming data, or multi-level model
- Consider non-parametric alternatives if:
 - DV is ordinal, or
 - Violations are severe enough to affect result
- Non-parametric often use ranks, not raw scores
 - e.g., Spearman vs. Pearson correlation
- Comparing medians rather than means

Mann-Whitney U Test

- DV: ordinal or scale, but non-parametric
- IV: dichotomous, between-subjects (2 groups)
- RQ: Is there a median difference between the two groups?
 - Non-parametric alternative to t-test
- What research designs might need this test?
- Data entry format: 2 variables entered for each participant:
 - IV: group membership (0 or 1)
 - DV: outcome measure

Mann-Whitney U: SPSS

- Dataset: relationships.sav
- Analyze → Nonparametric → 2 Independent:
 - Test Variable: DV (quality of communication)
 - Grouping Variable: IV (having counselling)
 - Use "Define Groups" to choose two groups for comparison: 1= no counsel; 2 = had counsel
 - Test Type: "Mann-Whitney U"
- Optional SPSS module for Exact Tests: Computationally-expensive but more precise, especially for small / unbalanced designs

Mann-Whitney U: Output

"There was no significant effect of Having Counselling on Quality of Communication, U = 311.00, p = .059, $Mdn_H = 4.0$, $Mdn_N = 3.0$."

■ Use Analyze → Descriptives → Explore to get

group medians

	Quality of Commun
Mann Whitney II	cation
Mann-Whitney U	311.000
Wilcoxon W	1014.000

Asymp. Sig. (2-tailed)

Test Statistics

a. Grouping Variable: Had any counselling

-1.890

.059

Mann-Whitney U: Effect Size

- Effect size must be calculated manually, using the following formula:
 - \bullet r = Z / \sqrt{N}
 - e.g., $r = -1.89 / \sqrt{60} \approx -0.24499$
- Use existing research or Cohen's effect size "estimates":
 - "There is a small difference between the therapy and no therapy groups, r = -.24"

Practise: Mann-Whitney U

- You try it!
- Is there a significant difference between spouses who report communication problems and spouses who have not ("Com_prob"), in terms of the level of conflict they experience ("Conflict")?
- What is the size of the effect?

Kruskal-Wallis Test

- DV: ordinal or scale, but non-parametric
- IV: categorical, between-subjects (many groups)
- RQ: Is there a median difference amongst the groups?
 - Alternative to One-way ANOVA
- What research designs might need this test?
- Data entry format: 2 variables entered for each participant:
 - IV: group membership
 - DV: outcome measure

Kruskal-Wallis: SPSS

- Analyze → Nonparametric → K Independent:
 - Test Variable: DV (level of conflict)
 - Grouping Variable: IV (type of counselling)
 - Test Type: "Kruskal-Wallis H"
 - Define Groups: specify highest and lowest group numbers to be compared
- Optional SPSS module for Exact Tests: Computationally-expensive but more precise, especially for small / unbalanced designs

Kruskal-Wallis: Output

"Type of counselling has a significant effect on participants' level of conflict, $\chi^2(2) = 7.09$, p = .029."

Also report medians and post hoc results...

Test Statistics ^{a,b}	
	Level of Conflict
Chi-Square	7.094
df	2
Asymp. Sig.	.029

- a. Kruskal Wallis Test
- b. Grouping Variable: Type of Counselling

Kruskal-Wallis: Follow-up

- K-W test is omnibus: if significant, follow-up with Mann-Whitney tests on pairs of groups
 - Must do Bonferroni correction manually, or else Type 1 error inflates: lower the level of significance to 0.05 / (# comparisons)
- Try planned contrasts based on
 - Theory / literature,
 - Your research question; or
 - Ordering groups by mean ranks, and comparing each group to next highest group

Kruskal-Wallis: Effect Size

- Overall effect size not so useful; instead,
- Calculate effect size for each pair of groups that differs significantly (in Mann-Whitney follow-up)
 - \bullet r = Z / \sqrt{n}
 - Where the sample size n is the total number of participants in this pair of groups

Kruskal-Wallis: Reporting

- "Type of Counselling has a significant effect on participants' level of conflict, $\chi^2(2) = 7.09$, p = .029."
- "Specifically, the No Counselling group had higher conflict scores, $Mdn_N = 4.0$, than did the Couples Counselling group, $Mdn_C = 3.0$, Mann-Whitney U = 176.5, Z = -2.61, p = .009, r = -.37.
- Field uses "H" for the K-W: H(2) = 7.09
- Note: Bonferroni correction: $\alpha = .05 / 3 \approx .017$

Kruskal-Wallis: Non-signifcant

- If Kruskal-Wallis gives a non-significant result, but the research question behind the analysis is still "important":
- The problem might be with low power, so
- Descriptive follow-up analyses can be helpful.
- See the illustration for Friedman's ANOVA below for some clues.

Parametric vs. Non-Parametric

- There's nothing wrong with running both parametric and non-parametric tests!
- Comparison of non-parametric tests with the corresponding ANOVA may be able to lend more confidence in the overall adequacy of the patterns reported.
- Nonparametric analyses tend to have less power for well-distributed DVs, but they can be more sensitive to effects when the DV is, for instance, truly bimodal!

Param vs. Non-Param: ex.

- If we do the same analysis parametrically:
 - DV: Level of Conflict
 - IV: Type of Counselling
 - One-way ANOVA, with Levene's test and Bonferroni post-hoc
- Results are similar: F(2, 57) = 4.05, p = .023
 - The No Counselling group shows more conflict than the Couples Counselling group, $M_N = 3.87$ and $M_C = 3.04$
- Confirms results with non-parametric analysis

Factorial Between-Subjects

- SPSS doesn't have factorial between-subjects non-parametric analyses built-in!
- Try creating one IV that encodes all cells: e.g., 2x3 factorial → 6-level one-way, use K-W
 - (-) Follow-up gets hard with lots of groups
 - (-) Moderation/interaction analysis is harder
 - (+) Flexibility in defining groups
 - (+) Target specific cells / interactions
- Or: Run separate K-W tests for each IV
- Or: Convert to ranks and use log-linear analysis

Factorial Analysis: Example

- Research question: How do Marital Status and Type of Counselling relate to Conflict Levels?
- Check cell sizes with Analyze → ... → Crosstabs:
 - The smallest cells (Individual Counselling)
 have 5-6 people per group, that is enough
- 2x3 factorial → convert to 1 IV with 6 levels:
 - Indiv. Counsel & Married; Indiv & Divorced;
 Couples Couns. & Marr; Couple & Div; etc.
 - Transform → Recode into Different, try the "If" conditions

Factorial Analysis: Output

- The Kruskall-Wallis test for the combined variable is not significant.
- This suggests that the significant effect for Counselling Type is masked when combined with Marital Status.

	Test Statistics(a,b)	
	Level of Conflict	
Chi-Square	8.753	
df	5	
Asymp. Sig.	.119	
a Kruskal Wallis Test b Grouping Variable: Counselling Type & Marital Status		

Factorial Analysis: Main effect

■ The idea of a "masking effect" of Marital Status shows as well when we test that main effect alone.

Test Statistics(a)	
	Level of Conflict
Mann-Whitney ∪	337.000
Wilcoxon W	802.000
Z	-1.752
Asymp. Sig. (2-tailed)	.080
a Grouping Variable: Marital Status	

Theory-Guided Interaction Test

- Divorced & No counselling group:
 - We might assume this group should have high conflict levels!
 - Compare with some of the other 5 groups using Mann-Whitney U tests
- This can be a "theoretically guided" replacement for interaction tests in non-parametric factorial analysis.
- The choice depends on conceptual relations between the IVs.

Kruskall-Wallis: Practise

Does number of children (range 0-3) have a significant effect on quality of marital communication?

Wilcoxon Signed-rank Test

- DV: ordinal or scale, but non-parametric
- IV: within-subjects, with 2 repetitions
- RQ: Is there a median change between times?
 - Parallel to paired-samples t-test
- What research designs might need this test?
- Data entry format:
 2 variables entered for each participant:
 - DV at first measurement
 - DV at second measurement

Wilcoxon Signed-rank: SPSS

- Analyze → Nonparametric → 2 Related Samples:
 - Test Pairs: DV before and DV after
 - Test Type: Wilcoxon
- Practise: does level of conflict decrease from pre-therapy (Pre-conf) to post-therapy (Conflict)?
- Multiple pairs may be specified in one analysis
 - But no built-in Bonferroni correction
- Exact tests also available with add-on module

Wilcoxon Signed-rank: Output

■ There was a significant reduction in level of conflict after therapy, T = 4.5, p = .002.

• Or: Z = -3.09, p = .002 (& calc. effect size)

Ranks

		Ν	Mean Rank	Sum of Ranks
Pre-therapy level of	Negative Ranks	1 ^a	4.50	4.50
Conflict - Level of Conflict	Positive Ranks	13 ^b	7.73	100.50
	Ties	46°		
	Total	60		

a. Pre-therapy level of Conflict < Level of Conflict

b. Pre-therapy level of Conflict > Level of Conflict

C. Pre-therapy level of Conflict = Level of Conflict

	Pre-therapy
	level of
	Conflict -
	Level of
	Conflict
Z	-3.094 ^a
Asymp. Sig. (2-tailed)	.002

a. Based on negative ranks.

b. Wilcoxon Signed Ranks Test

Wilcoxon Signed: Effect Size

Effect size must be calculated manually, using the following formula:

```
\bullet r = Z / \sqrt{N}
```

- e.g., $r = -3.09 / \sqrt{120} \approx -0.28$
- N is total number of observations, not participants! (60 participants) * (2 observation)
- Use existing research or Cohen's effect size "estimates":
 - "The reduction in level of conflict after therapy was significant but small, r = -.28"

Wilcoxon Signed-rank: Practise

- Do levels of conflict change significantly between pre-therapy (Pre_conf) and 1 year after therapy (Follow_conf)?
- If so, calculate the size of the effect.
 - Participant attrition at time 3 (Follow_conf) affects the total number of observations!
- **Example** reporting: "There was a significant reduction in level of conflict after therapy, T = 4.5 [or: Z = -3.09], p = .002, r = -.28."

Friedman's ANOVA

- DV: ordinal or scale, but non-parametric
- IV: within-subjects, several repetitions
- RQ: Is there a median change over time?
 - Parallel to repeated-measures ANOVA
- What research designs might need this test?
- Data entry format: one variable for each repetition of the measure
 - DV at first measurement
 - DV at second measurement
 - DV at third measurement, etc.

Friedman's ANOVA: SPSS

- Analyze → Nonparametric → K Related Samples:
 - Test Variables: each repetition of DV
 - Test Type: "Friedman"
- No easy way in SPSS to do non-parametric mixed-design analysis
- Optional SPSS module for Exact Tests: Computationally-expensive but more precise, especially for small / unbalanced designs

Friedman's ANOVA: Output

- "Levels of conflict changed significantly over time, $\chi^2(2, N = 57) = 9.07$, p = .011."
- "Specifically..." [report post hoc results...]

	Test Statistics ^a		
	N	57	
	Chi-Square	9.065	
	df	2	
	Asymp. Sig.	.011	
a. Friedman Test			

Friedman's ANOVA: Follow-up

- If Friedman's is significant, follow-up with a series of Wilcoxon Signed-ranks tests:
- Either do all pairs of levels of the RM (post-hoc):
 - Remember manual Bonferroni correction: $\alpha = .05 / (\# comparisons)$
 - But Bonferroni is often too conservative
- Or target specific planned comparisons (better):
 - e.g., (time1 vs. time2), (time2 vs. time3), ...
 k-levels of IV → only k-1 comparisons
 - Useful if power is low, e.g. many cells: control Type II error

Friedman's ANOVA: Example

- IV: Time (3 cells)
- Targeted follow-up analyses:
 - Run 3 Wilcoxon's signed-rank tests
 - Bonferroni correction: $\alpha = .05 / 3 \approx .017$
- Pre vs. Post: Z = -3.09, p = .002, r = -.28
- Pre vs. 1yr: Z = -2.44, p = .015, r = -.22
- Post vs. 1yr: not significant
- Conclusion: improvement after therapy is maintained at the follow-up assessment.

Friedman's ANOVA: Reporting

- "Levels of conflict significantly changed over time, χ^2 (2, N=57) = 9.07, p=.011.
- "Specifically, conflict decreased from pre-therapy levels at post-therapy observations, Z = -3.09, p = .002, r = -.28,
- "and levels remained below pre-therapy conflict levels one year later,

$$Z = -2.44$$
, $p = .015$, $r = -.22$."

Friedman's: Non-significance

- If Friedman's is not significant:
 - Is it because of low power (Type II error)?
- Run a series of Wilcoxon Signed-ranks tests, but
 - Focus on effect sizes, not significance levels
- If the effect sizes are "moderate", say > .25, then the results could be worth reporting.
- Enough detail should be reported to be useful for future meta-analyses.
- This could be true of any analysis; we just use Friedman's to illustrate

Friedman's ANOVA: Practise

- Dataset: Field-Looks_Charis.sav
 - "Looks or Personality" (Field text)
 - Two RM IVs in the dataset
- RQ: Is there a significant difference between participants' judgements of people who are of average physical appearance, but present as dull ("ave_none"); somewhat charismatic ("ave_some"), or as having high charisma ("ave_high")?
- If so, conduct follow-up tests to identify where the specific differences lie.

Summary: Between-Subjects

<u>Parametric</u>

- t-test between groups (1 IV, dichotomous)
- One-way ANOVA (1 IV, many levels)
 - Post-hoc: t-tests
- Factorial ANOVA (several IVs)
 - Post-hoc: t-tests

Non-Parametric

- Mann-Whitney *U* test
- Kruskal-Wallis *H* test
 - Post-hoc: M-W
- K-W with encoding of cells in one IV
 - Post-hoc: M-W

Summary: Within-Subjects

<u>Parametric</u>

- Paired/related t-test (1 RM IV w/2 levels)
- Repeated-ms ANOVA (1 RM IV with many levels)
 - Post-hoc:
 paired t-tests
 between levels of RM

Non-Parametric

- Wilcoxon Signed-Rank
- Friedman's ANOVA

Post-hoc:
 Wilcoxon Signed rank between
 levels of the RM

