Lecture 24: Thermal Boundary Layer Equations

Objectives

In this class:

· Solution for thermal boundary layer equation is obtained

Thermal Boundary Layer Solution-1

• The 2D boundary layer energy equation assumptions is easily obtained . Assume wedge flow with constant wall temperature and $\beta T \approx 1$

$$\rho c_{p} \left[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right] = k \frac{\partial^{2} T}{\partial y^{2}} + \beta T u \frac{\partial p}{\partial x} + \mu \left(\frac{\partial u}{\partial y} \right)^{2}$$
(24.1)

Boundary layer flow over a wedge possesses a similarity solution and therefore:

$$\eta = y \sqrt{\frac{u_{\infty}}{u_{X}}}; \frac{u}{u_{\infty}} = F'; u_{\infty} = Ax^{m}$$

Thermal Boundary Layer Solution-2

• In addition, we define a non-dimensional temperature as:

$$\theta = \frac{T - T_{\varpi}}{T_{w} - T_{\varpi}} \tag{24.2}$$

 The attempt is once again to see if the energy equation can be transformed into one where the governing equation becomes an ordinary differential equation.

Thermal Boundary Layer Solution-3

Consider each term of equⁿ (24.1) separately.
 Consider the RHS first:

$$k \frac{\partial^{2} T}{\partial y^{2}} = k(T_{w} - T_{\varpi}) \frac{\partial}{\partial y} \left(\frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial y} \right) = k(T_{w} - T_{\varpi}) \frac{\partial}{\partial y} \left(\frac{\partial \theta}{\partial \eta} \sqrt{\frac{u_{\varpi}}{\upsilon_{x}}} \right)$$

$$= k(T_{w} - T_{\varpi}) \sqrt{\frac{u_{\varpi}}{\upsilon_{x}}} \frac{\partial}{\partial \eta} \left(\frac{\partial \theta}{\partial \eta} \right) \frac{\partial \eta}{\partial y} = \frac{ku_{\varpi}}{\upsilon_{x}} \frac{\partial^{2} \theta}{\partial \eta^{2}}$$
(24.3)

Thermal Boundary Layer Solution-4

• The next term on RHS is the viscous dissipation term:

$$\mu \left(\frac{du}{dy}\right)^{2} = \mu \left(\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y}\right)^{2} = \mu \frac{u_{\infty}}{\upsilon_{X}} (u_{\infty} F'')^{2}$$
(24.4)

• The next term is the compressibility term. Use the Bernoulli equation to convert pressure into velocity and simplify:

$$u\frac{\partial p}{\partial x} = uu_{\infty}\frac{du_{\infty}}{dx} = u_{\infty}F'u_{\infty}m\frac{Ax^{m}}{x} = \frac{mF'u_{\infty}^{3}}{x}$$
(24.5)

Thermal Boundary Layer Solution-5

• Now look at the LHS of equⁿ (24.1). The wall temperature is not a function of 'y'. In addition assume that the T_{∞} is also not a function of 'y' (varying the free stream temperature in the 'y' direction is physically very difficult). The first term is:

$$u\frac{\partial T}{\partial x} = u_{\infty}F \cdot \left[(T_{w} - T_{\infty})\frac{\partial \theta}{\partial x} + \theta \frac{d}{dx}(T_{w} - T_{\infty}) + \frac{dT_{\infty}}{dx} \right]$$
 (24.6)

It is hoped that a similarity solution will exist even when the energy equation is added.
 Derivatives must therefore be in terms of 'η'. Simplify equⁿ (24.6) using:

$$\eta = y \sqrt{\frac{u_{\infty}}{\upsilon x}} = y (A/\upsilon)^{1/2} x^{\frac{m-1}{2}}$$

· Therefore:

$$\frac{\partial \eta}{\partial x} = y \left(\frac{A}{\upsilon}\right)^{1/2} \frac{m-1}{2} x^{\frac{m-1}{2}-1} \frac{x}{x} = y \left(\frac{A}{\upsilon}\right)^{1/2} \frac{m-1}{2} x^{\frac{m+1}{2}} \frac{1}{x^2}$$
(24.7)

Thermal Boundary Layer Solution-7

• Simplify equⁿ (24.7) further to get:

$$\frac{\partial \theta}{\partial x} = \theta' y \left(\frac{A x^{\mathsf{m}} x}{\upsilon} \right)^{1/2} \frac{m-1}{2x^2} = \theta' y \left(\frac{u_{\varpi} x}{\upsilon x^2} \right)^{1/2} \frac{m-1}{2} \frac{1}{x}$$

$$\frac{\partial \theta}{\partial x} = \theta' \eta \frac{m-1}{2x}$$
(24.8)

• Use this in equⁿ (24.6)

$$u\frac{\partial T}{\partial x} = u_{\infty}F'\left[(T_{\mathbf{w}} - T_{\infty})\theta'\eta \frac{m-1}{2x} + \theta \frac{d}{dx}(T_{\mathbf{w}} - T_{\infty}) + \frac{dT_{\infty}}{dx} \right]$$
(24.9)

Thermal Boundary Layer Solution-8

• The next term is evaluated in parts. The first part is:

$$\frac{\partial T}{\partial y} = (T_{\mathbf{w}} - T_{\mathbf{w}}) \frac{\partial \theta}{\partial y} + \theta \frac{\partial}{\partial y} (T_{\mathbf{w}} - T_{\mathbf{w}}) + \frac{\partial}{\partial y} T_{\mathbf{w}}$$

$$\frac{\partial T}{\partial y} = (T_{\mathbf{w}} - T_{\mathbf{w}}) \frac{\partial \theta}{\partial y} = (T_{\mathbf{w}} - T_{\mathbf{w}}) \theta' \sqrt{\frac{u_{\mathbf{w}}}{v_{\mathbf{x}}}}$$
(24.10)

• The second part is the vertical component of the velocity 'v'

Thermal Boundary Layer Solution-9

• The 'v' component is evaluated as follows:

$$-v = \frac{\partial \psi}{\partial x} = \left[F \frac{\partial}{\partial x} \frac{u_{\infty}}{g} + \frac{u_{\infty}}{g} F \frac{\partial \eta}{\partial x} \right] \qquad g = \sqrt{\frac{u_{\infty}}{\upsilon x}}$$

$$= F \frac{\partial}{\partial x} \sqrt{u_{\infty}\upsilon x} + \frac{u_{\infty}}{g} F \frac{\partial}{\partial x} y \sqrt{\frac{u_{\infty}}{\upsilon x}}$$

$$= F \frac{\partial}{\partial x} \sqrt{Ax^{m+1}\upsilon} + \frac{u_{\infty}}{g} F \frac{\partial}{\partial x} y \sqrt{\frac{Ax^{m-1}}{\upsilon}}$$

$$= F \sqrt{A\upsilon} \frac{m+1}{2} x^{\frac{m-1}{2}} + \frac{u_{\infty}F}{g} \frac{y\sqrt{x}}{\sqrt{\upsilon}} \frac{m-1}{2} x^{\frac{m-3}{2}}$$
(24.11)

• Simplify the expression (24.11) further:

$$-v = \frac{m+1}{2} \frac{Ax^{\mathsf{m}}}{\sqrt{A}} \left[\sqrt{\upsilon} F x^{-\frac{\mathsf{m}-1}{2}} + \eta F^{\mathsf{m}} \frac{m-1}{m+1} \frac{u_{\varpi}}{g^{2}} x^{-\frac{\mathsf{m}-3}{2}} \right]$$

$$= \frac{m+1}{2} u_{\varpi} \frac{1}{\sqrt{A}} \left[\sqrt{\upsilon} F x^{-\frac{\mathsf{m}-1}{2}} + \eta F^{\mathsf{m}} \frac{m-1}{m+1} \frac{u_{\varpi}}{u_{\varpi}} \frac{\upsilon x}{\sqrt{\upsilon}} x^{-\frac{\mathsf{m}-3}{2}} \right]$$

$$= \frac{m+1}{2} u_{\varpi} \frac{1}{\sqrt{A}} \left[\sqrt{\upsilon} F x^{-\frac{\mathsf{m}-1}{2}} + \eta F^{\mathsf{m}} \frac{m-1}{m+1} \sqrt{\upsilon} x^{-\frac{\mathsf{m}+1}{2}} \right]$$

$$= \frac{m+1}{2} u_{\varpi} \sqrt{\frac{\upsilon}{Ax^{\mathsf{m}} x}} \left[F + \frac{m-1}{m+1} \eta F^{\mathsf{m}} \right]$$
(24.12)

Thermal Boundary Layer Solution-11

• Combine equⁿ (24.9) and (24.11) to get:

$$v\frac{\partial T}{\partial y} = -\left[\frac{m+1}{2}u_{\infty}\sqrt{\frac{\upsilon}{u_{\infty}x}}\left(F + \frac{m-1}{m+1}\eta F'\right)\right]\theta'(T_{\mathbf{w}} - T_{\infty})\sqrt{\frac{u_{\infty}}{\upsilon x}}$$
$$= -\frac{m+1}{2}\frac{u_{\infty}}{x}\left(F + \frac{m-1}{m+1}\eta F'\right)\theta'(T_{\mathbf{w}} - T_{\infty})$$
(24.13)

All differential terms of the governing equation are now converted in terms of the variable 'η'.

Thermal Boundary Layer Solution-12

Now substitute equⁿs (24.9) and (24.13) in the LHS of governing equation (24.1)

$$u_{\infty}F'\left[\frac{(T_{\mathbf{w}}-T_{\infty})\theta'\eta\frac{m-1}{2x}}{+\theta\frac{d}{dx}}(T_{\mathbf{w}}-T_{\infty})+\frac{dT_{\infty}}{dx}\right]$$
$$-\frac{m+1}{2}\frac{u_{\infty}}{x}(F+\frac{m-1}{m+1}\eta F')\theta'(T_{\mathbf{w}}-T_{\infty})$$

· The terms marked yellow in the above expression cancel off

Thermal Boundary Layer Solution-13

• The LHS of governing equation (24.1) is thus:

$$\rho c_{\mathbf{p}} \left(u_{\mathbf{w}} F \left[\theta \frac{d}{dx} (T_{\mathbf{w}} - T_{\mathbf{w}}) + \frac{dT_{\mathbf{w}}}{dx} \right] - \frac{m+1}{2} u_{\mathbf{w}} F \theta' (T_{\mathbf{w}} - T_{\mathbf{w}}) \right)$$
(24.14)

• Substituting equⁿs (24.3)-(24.5), (24.14) in (24.1) gives:

$$\rho c_{p} \left(u_{\varpi} F' \left(\theta \frac{d}{dx} (T_{\mathbf{w}} - T_{\varpi}) + \frac{dT_{\varpi}}{dx} \right) - \frac{m+1}{2} \frac{u_{\varpi} F \theta'}{x} (T_{\mathbf{w}} - T_{\varpi}) \right)$$

$$= k (T_{\mathbf{w}} - T_{\varpi}) \frac{u_{\varpi} \theta''}{\upsilon x} + \frac{\mu u_{\varpi}}{\upsilon x} (u_{\varpi} F'')^{2} - \frac{m F' u_{\varpi}^{3}}{x} \tag{24.15}$$

Thermal Boundary Layer Solution-14

• Multiply the equⁿ (24.15) throughout by the term $\frac{\mathbb{X}}{u_{\varpi}(T_{\mathbf{w}}-T_{\varpi})\rho c_{\mathbf{p}}}$ to get:

$$F' \left[\frac{\theta \times \frac{d}{T_{w} - T_{\varpi}} \frac{d}{dx} (T_{w} - T_{\varpi}) + \frac{x}{(T_{w} - T_{\varpi})} \frac{dT_{\varpi}}{dx} \right] - \frac{m+1}{2} F \theta' = \frac{k\theta''}{v\rho c_{p}} + \frac{u_{\varpi}^{2} F''^{2}}{c_{p} (T_{w} - T_{\varpi})} - \frac{mF' u_{\varpi}^{2}}{c_{p} (T_{w} - T_{\varpi})}$$
(24.16)

Minor adjustment of the equⁿ (24.16) results in the final form of the energy equation:

$$\frac{\theta''}{\Pr} + \frac{m+1}{2}F\theta' = F' \left[\frac{\theta x}{T_{w} - T_{\varpi}} \frac{d}{dx} (T_{w} - T_{\varpi}) + \frac{x}{(T_{w} - T_{\varpi})} \frac{dT_{\varpi}}{dx} \right] - \frac{u_{\varpi}^{2}}{c_{v}(T_{w} - T_{\varpi})} (F''^{2} - mF')$$
(24.17)

• The term marked yellow will be assumed to be zero since varying T_{∞} in the 'x' direction is usually not possible.

Thermal Boundary Layer Solution-16

• For the equation (24.17) to be amenable to a similarity solution the following two conditions must be satisfied:

$$\frac{x}{T_{\mathbf{w}} - T_{\mathbf{m}}} \frac{d}{dx} (T_{\mathbf{w}} - T_{\mathbf{m}}) = \lambda = Const$$
 (24.18)

$$\frac{u_{\varpi}^{2}}{c_{p}(T_{w} - T_{m})} = Ec = const$$
 (24.19)

• λ and Ec are arbitrary constants. Ec is the Eckert number that has been seen earlier.

Thermal Boundary Layer Solution-17

• Equⁿ (24.18) can be integrated to give:

$$T_{\mathbf{w}} - T_{\mathbf{m}} = Dx^{\lambda} \tag{24.20}$$

• Substitute (24.20) in (24.19) to get:

$$\frac{u_{\varpi}^{2}}{c_{p}(T_{\mathbf{w}} - T_{\varpi})} = \frac{A^{2}x^{2m}}{c_{p}Dx^{\lambda}} = \text{Eckert no.} = \text{constant}$$

$$\Rightarrow \lambda = 2m$$
(24.21)

ullet Even though λ was an 'arbitrary constant' to start with, it can now be seen that there are 'constraints' which it has to satisfy.

Thermal Boundary Layer Solution-18

- Now consider the special case of a flat plate. For this case m = 0 since $U_{\varpi} = Ax^{m} = {\rm constant}$
- The above condition gives $\lambda=2m=0$. This implies $T_{\rm w}-T_{\rm m}=Dx^{\lambda}=0$ i.e. $T_{\rm w}={\rm constant}$.
- The similarity solution therefore will exist only for the constant wall temperature case. While this is a very important case one would also like to get the solution for the equally important constant wall flux case.

Thermal Boundary Layer Solution-19

- For any other value of 'm', corresponding to other wedge flow situations, the similarity solution will exist only for a very restrictive variation of wall temperature.
- One option is to neglect the presence of the viscous dissipation and compressibility term. The
 last term of equⁿ (24.17) therefore drops out and the condition given by equⁿ (24.19) no longer

- Thus the $\lambda=2$ condition is no longer required. Now the only restriction is $T_{\mathbf{w}}=T_{\mathbf{w}}+D\mathbf{x}^{\lambda}$ and solutions can be obtained for more cases.
- The governing equation and BCs become:

$$\frac{\theta''}{\Pr} + \frac{m+1}{2} F \theta' - \lambda F' \theta = 0 \qquad \theta = \frac{T - T_{\varpi}}{T_{w} - T_{\varpi}}$$

$$\theta(0) = 1; \theta(\infty) = 0 \qquad \lambda \text{ satisfies } T_{w} - T_{\varpi} = Dx^{\lambda}$$
(24.22)

Thermal Boundary Layer Solution-21

• Now for T_W = constant λ = 0 but the surface need not be flat plate anymore since λ and 'm' are no longer related. The governing equation becomes:

$$\frac{\theta''}{\Pr} + \frac{m+1}{2} F \theta' = 0 \tag{24.23}$$

• The equation can be integrated to obtain the solution for the temperature distribution after incorporating the boundary conditions.

Thermal Boundary Layer Solution-22

• Equⁿ (24.23) is rewritten in the following manner:

$$(\theta')' = -\frac{m+1}{2} \operatorname{Pr} F \theta' \tag{24.24}$$

• This equation is now integrated to obtain:

$$\ln(\theta') = -\frac{m+1}{2} \Pr \int F \eta \ d\eta \quad \Rightarrow \theta = C_1 \int_0^{\eta} \left[e^{-\frac{m+1}{2} \Pr \int_0^{\eta} \int_0^{\pi} d\eta} \right] d\eta + C_2$$
 (24.25)

Thermal Boundary Layer Solution-23

· Now apply the boundary conditions and get solution

$$\theta_{\eta=0} = 1 \implies C_2 = 1$$

$$\theta_{\eta=\infty} = 0 \implies C_1 = \frac{-1}{\int_0^{\pi} \left[e^{-\frac{m+1}{2}} \operatorname{Pr} \int_0^{\bar{\eta}} F d\bar{\eta} \right] d\bar{\eta}}$$

$$\vdots \quad \theta = 1 - \int_0^{\bar{\eta}} \left[e^{-\frac{m+1}{2}} \operatorname{Pr} \int_0^{\bar{\eta}} F d\bar{\eta} \right] d\bar{\eta}$$

$$(24.26)$$

Thermal Boundary Layer Solution-24

- 'F' is known from the solution of the momentum equation and 'Pr' is a fluid property and therefore temperature profile can be obtained from equⁿ (24.26). Solutions would typically be numerical.
- Interest is typically more in the heat flux from the wall to the fluid which is evaluated as:

$$q = -k \frac{\partial T}{\partial y}\bigg|_{y=0} = -k(T_{\mathbf{w}} - T_{\mathbf{w}}) \sqrt{\frac{u_{\mathbf{w}}}{v_{\mathbf{x}}}} \frac{d\theta}{d\eta}\bigg|_{\eta=0}$$
(24.27)

• The similarity solution dictates that the free stream velocity and the wall temperature must follow the relations given by:

$$(T_w - T_m) = Dx^{\lambda}; \quad U_m = Ax^m$$

• Equⁿ (24.27) is therefore further simplified as:

$$q = -k(T_{\mathbf{w}} - T_{\mathbf{w}}) \left[\frac{Ax^{\mathbf{m}-1}}{\upsilon} \right]^{1/2} \theta'(0)$$

$$\therefore \quad q \propto x^{\frac{2\lambda + \mathbf{m}-1}{2}}$$
(24.28)

Thermal Boundary Layer Solution-26

• Consider the constant wall heat flux case. The equⁿ (24.28) suggests:

$$\frac{2\lambda + m - 1}{2} = 0$$

• For a flat plate m=0 and therefore $\lambda=1/2$ The wall temperature variation for a constant wall flux case for boundary layer is given by:

$$T_{\mathbf{w}} - T_{\mathbf{w}} = Dx^{1/2}$$

Thermal Boundary Layer Solution-27

• Often the heat transfer coefficient is of interest which is

$$h = \frac{q}{T_{w} - T_{\varpi}} = k \left(\frac{Ax^{m-1}}{\upsilon}\right)^{1/2} (-\theta'(0))$$

θ'(0) can be numerically obtained

Reynolds Analogy-1

• The equations for the 2D thermal and momentum boundary layer are:

$$\rho \left[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial y^2} \right]$$
 (24.29)

$$\rho c_{p} \left[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right] = k \frac{\partial^{2} T}{\partial y^{2}}$$
(24.30)

 For a = v and zero pressure gradient flows the equations are identical. The velocity and temperature profiles are therefore identical. Assume that the momentum equation solution is known

Reynolds Analogy-2

• The following quantities of interest are known:

$$\tau = \mu \left[\frac{\partial u}{\partial y} \right] \qquad \qquad \tau_{w} = \mu \left[\frac{\partial u}{\partial y} \right]_{w} \tag{24.31}$$

• The thermal quantities of interest are :

$$q = -k \left[\frac{\partial T}{\partial y} \right] \qquad q_{w} = -k \left[\frac{\partial T}{\partial y} \right]_{w}$$
 (24.32)

• Equⁿs (24.31) and (24.32) are combined to give:

Reynolds Analogy-3

· Since the profiles are identical, momentum information is used to get the thermal information

$$u_1 = \int_{0}^{y} \frac{\tau}{\nu} dy \tag{24.34}$$

$$T - T_1 = \int_0^y \frac{q}{\rho C \alpha} dy = \int_0^y \frac{\tau q_w}{\tau_w \rho C \alpha} dy = \frac{u_1 q_w}{\tau_w \rho C}$$
(24.35)

• Use equn (24.34) to get 'u' as a function of 'y' and equn (24.35) to get 'T' as a function of 'y' by using $\alpha = \nu$

Reynolds Analogy-4

• Use equⁿ (24.35) to get:

$$T_{\mathbf{w}} - T_{\mathbf{w}} = \frac{u_{\mathbf{w}} q_{\mathbf{w}}}{\tau_{\mathbf{w}} \rho C} \Rightarrow \frac{\tau_{\mathbf{w}}}{\rho u_{\mathbf{w}}^2} = \frac{q_{\mathbf{w}}}{(T_{\mathbf{w}} - T_{\mathbf{w}}) \rho C u_{\mathbf{w}}}$$
(24.35)

- · The above equation is one form of the Reynolds analogy
- · By definition:

$$\frac{\tau_{\rm w}}{\rho u_{\rm w}^2/2} \equiv C_f = \text{Friction coefficient}$$

Reynolds Analogy-5

• Therefore, the Reynolds analogy as derived in equⁿ (24.25) is often expressed as:

$$\frac{C_f}{2} = St$$

- The result is significant in the sense that one can get heat transfer data from shear stress data.
- The usefulness of the analogy is often limited due to the restrictions on pressure gradient and Prandtl number imposed

Recap

In this class:

· Solution for thermal boundary layer equation is obtained