Nom et prénom:

Géométrie et Arithmétique

Contrôle continu 1 - Corrigé 20/09/2016

Questions du cours

1) Donner la définition de deux vecteurs colinéaires dans \mathbb{R}^2 (ou \mathbb{R}^3).

Corrigé. Les définitions suivantes sont équivalentes :

- Deux vecteurs u, v dans \mathbb{R}^2 (ou dans \mathbb{R}^3) sont colinéaires s'il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda u$ ou $u = \lambda v$.
- Deux vecteurs u, v dans \mathbb{R}^2 (ou dans \mathbb{R}^3) sont colinéaires si $u = \overrightarrow{0}$ ou s'il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda u$.
- 2) Donner la définition de base de \mathbb{R}^2 .

Corrigé. Une base de \mathbb{R}^2 est un couple ordonné de vecteurs de \mathbb{R}^2 non colinéaires.

3) Soient $u, v, w \in \mathbb{R}^3$. Quand peut-on dire que w est combinaison linéaire de u et v?

Corrigé. Le vecteur w est combinaison linéaire de u, v s'il existe λ , $\mu \in \mathbb{R}$ tels que $w = \lambda u + \mu v$.

Exercice (Toutes les réponses doivent être justifiées)

4) Déterminer si les couples de vecteurs de \mathbb{R}^3 suivants sont colinéaires :

$$u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 et $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $u' = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ et $v' = \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$.

Corrigé

- Comme $u \neq \overrightarrow{0}$, il suffit de déterminer s'il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda u$. Cela est équivalent à résoudre le système d'inconnue λ :

$$\begin{cases} 0 = \lambda \\ 1 = 0 \\ 0 = \lambda \end{cases}$$

qui est clairement impossible. Donc les vecteurs u et v ne sont pas colinéaires.

- On a v' = -2u', d'où les vecteurs sont colinéaires.
- 5) Déterminer pour quelle(s) valeur(s) du paramètre $k \in \mathbb{R}$ les vecteurs suivants forment une base de \mathbb{R}^2 :

$$u = \begin{pmatrix} k \\ k-2 \end{pmatrix}$$
 et $v = \begin{pmatrix} 2 \\ k+1 \end{pmatrix}$.

Corrigé. La famille (u, v) est une base si et seulement si les vecteurs u et v ne sont pas colinéaires, si et seulement si $\det(u, v) \neq 0$. Or, on a:

$$\det(u, v) = k(k+1) - 2(k-2) = k^2 - k + 4.$$

Puisque le discriminant de l'équation de second degré en k :

$$k^2 - k + 4 = 0$$

est négatif ($\Delta = -15$), l'équation n'a pas de solutions réelles, d'où $\det(u,v) \neq 0 \, \forall \, k \in \mathbb{R}$. Il s'ensuit que (u,v) est une base de $\mathbb{R}^2 \, \forall \, k \in \mathbb{R}$.

6) Montrer que $w = \begin{pmatrix} 9 \\ 2 \\ -19 \end{pmatrix}$ est combinaison linéaire de $u = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$. La famille (u, v, w) est-elle une base de \mathbb{R}^3 ?

Corrigé. Le vecteur w est combinaison linéaire de u et v si et seulement si il existe λ , $\mu \in \mathbb{R}$ tels que $w = \lambda u + \mu v$. Soient donc $\lambda, \mu \in \mathbb{R}$ tels que $w = \lambda u + \mu v$:

$$\begin{pmatrix} 9 \\ 2 \\ -19 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \Leftrightarrow \begin{cases} 9 = \lambda + \mu \\ 2 = -2\lambda + 2\mu \\ -19 = -\lambda - 3\mu \end{cases}$$

Ce système d'inconnues λ et μ admet l'unique solution

$$\begin{cases} \lambda = 4 \\ \mu = 5 \end{cases}$$

On obtient donc

$$w = 4u + 5v,$$

et w est donc combinaison linéaire de u et v.

Il s'ensuit que

$$w \in P(u, v) := \{ \lambda u + \mu v \mid \lambda, \mu \in \mathbb{R} \},\$$

c'est à dire w appartient au plan vectoriel engendré par u et v. Les vecteurs u, v, w sont donc coplanaires, et, par conséquent, ils ne forment pas une base de \mathbb{R}^3 .