

AGENDA

1

Marketing
Problem & Target
Audience

2

Data Acquisition & Preliminary Analysis 3

Data Preparation 4

Modeling & Analysis

Kristina

Mandy

Sally

MOTIVATION

Do movie critic reviews matter? Film criticism shapes the movie industry and how people view films. By highlighting the good and bad parts of a film, directors, writers, & actors can further better their skill sand learn from their mistakes.

Additionally, movie reviews have a significant effect on a consumer's thought process and a predictor on how well the film performs financially.

MARKETING-QUESTION

Movie critic reviews are an essential marketing tool for the film industry. They unlock the door to a consumer's mind on whether a movie is worth the price of admission because they are viewed as film connoisseurs.

With that being said, our team had a question: Can horror movies elicit certain feelings in movie critics to affect their film review and rate it higher on Rotten

Tomatoes?

TARGET AUDIENCE

- Film Production Companies
- Head of Production Teams oversees the making of the film
- Involved in scripting, casting, corporate promotions, commercials, and marketing the films

Blumhouse Productions & Platinum Dunes

Two notable production companies for producing horror & thriller films such as the Conjuring & The Purge series

DATA ACQUISITION δ PRELIMINARY ANALYSIS

2 Datasets - kaggle.com

Emotions Sensor Data Set

- Top 1100 English words classified statistically into 7 basic emotions: Disgust, Surprise, Neutral, Anger, Sad, Happy and Fear.
- The dataset contains 8 columns, and 1104 unique words.

Rotten Tomatoes Movies and Critic Reviews Dataset

- Movies dataset: movie title, description, genres, duration, director, actors, users' ratings, and critics' ratings, etc
- 8 columns, 17712 unique values

word	disgust	surprise	neutral	anger	sad	hanny	fear
		· ·		anger		happy	
ability	0.00446429	0.04783164	6.38E-04	0.02359694	0.01339286	0.01594388	0.04017858
able	1.73E-05	1.82E-04	4.09E-04	1.76E-04	2.19E-04	2.44E-04	1.86E-04
abuse	5.32E-04	1.77E-04	1.77E-04	0.13736264	0.00124069	0.00159518	0.00265863
academy	0.00714286	0.02142857	0.00714286	0.00714286	0.00714286	0.09285715	0.03571429
accept	0.00827068	0.00676692	7.52E-04	0.04887218	0.01879699	0.02481203	0.03834587
acceptance	0.00274725	0.00824176	0.00274725	0.01373627	0.02472528	0.09065934	0.01373627
accounting	0.01785714	0.01785714	0.01785714	0.01785714	0.05357143	0.08928572	0.01785714
accuracy	0.03571429	0.10714287	0.03571429	0.03571429	0.03571429	0.03571429	0.03571429
achieve	0.00138249	0.00414747	4.61E-04	0.00506912	0.00691244	0.12211982	0.00506912
acid	0.01785714	0.01785714	0.01785714	0.01785714	0.125	0.01785714	0.01785714
active	0.00238095	0.03571429	0.00238095	0.02619048	0.05	0.02619048	0.01190476
activities	3.15E-06	3.46E-05	0.0012618	4.72E-05	5.98E-05	2.20E-05	1.57E-05
adding	0.00324675	0.0487013	0.00324675	0.02272728	0.01623377	0.02922078	0.03571429
addresses	0.03571429	0.10714287	0.03571429	0.03571429	0.03571429	0.03571429	0.03571429
administrato	0.03571429	0.03571429	0.03571429	0.03571429	0.03571429	0.03571429	0.10714287
adobe	0.03571429	0.03571429	0.03571429	0.03571429	0.10714287	0.03571429	0.03571429
adult	0.0018797	0.05075188	0.0018797	0.02819549	0.02067669	0.01315789	0.03571429
adults	0.01428572	0.04285715	0.00476191	0.03333334	0.01428572	0.02380953	0.03333334
advanced	1.73E-05	3.45E-06	0.00138371	3.45E-06	1.73E-05	1.04E-05	

Emotions Sensor Data Set

TOP 5 WORDS BY EMOTION

Movies Dataset

matter temperature in the				dina akama	a cutila a ma		aniainal mala												
	movie_info critics_conse						original_rele			_			omatomete audience_s						ritics_count
m/0814255 Percy Jacks	Always trou Though it ma	PG A	Action & Ad	Chris Columi	Craig Titley,	Logan Lerma	2/12/10	11/25/15	119	20th Centur	Rotten	49	149 Spilled	53	254421	43	73	76	
m/0878835 Please Give	Kate (Cather Nicole Holof	R C	Comedy	Nicole Holof	Nicole Holof	Catherine Ke	4/30/10	9/4/12	90	Sony Picture	Certified-Fre	87	142 Upright	64	11574	44	123	19	
m/10 10	A successful Blake Edwar	R C	Comedy, Ro	Blake Edwar	Blake Edwar	Dudley Moc	10/5/79	7/24/14	122	Waner Bros	Fresh	67	24 Spilled	53	14684	2	16	8	
m/1000013 12 Angry M	Following th Sidney Lume	NR C	Classics, Dra	Sidney Lume	Reginald Ros	Martin Balsa	4/13/57	1/13/17	95	Criterion Col	Certified-Fre	100	54 Upright	97	105386	6	54	0	
m/1000079 20,000 Leag	In 1866, Pro One of Disne	G A	Action & Ad	Richard Fleis	Earl Felton	James Masc	1/1/54	6/10/16	127	Disney	Fresh	89	27 Upright	74	68918	5	24	3	
m/10000_b 10,000 B.C.	Mammoth With attention	PG-13 A	Action & Ad	Roland Emm	Harald Klose	Steven Strai	3/7/08	6/22/13	109	Warner Bros	Rotten	8	149 Spilled	37	411140	37	12	137	
m/1000121 The 39 Step	While on va Packed with	NR A	Action & Ad	Alfred Hitch	Alma Reville	Robert Dona	8/1/35	1/12/17	80	Gaumont Br	Certified-Fre	96	51 Upright	86	23890	8	49	2	
m/1000123 3:10 to Yum	Dan Evans (Van Heflin), a	NR C	Classics, Dra	Delmer Dav	Halsted Wel	Glenn Ford,	8/7/57	4/16/12	92	Columbia Pi	Fresh	96	28 Upright	79	9243	6	27	1	
m/1000200 Charly (A Ho	Cultural differences, past	PG C	Comedy, Dra	Adam Thom	Jack Weylar	Heather Bee	9/27/02	5/22/17	103	Excel Entert	Rotten	20	10 Upright	87	4819	0	2	8	
m/1000204 Abraham Li	The 16th U.S. president (NR C	Classics, Dra	D.W. Griffith	Gerrit J. Lloy	Walter Hust	11/8/30	12/3/13	97	United Artis	Fresh	82	11 Spilled	40	457	4	9	2	
m/1000211 Dark Water	In this moody Japanese h	PG-13 A	Art House &	Hideo Nakat	Hideo Hakat	Hitomi Kurol	1/19/02	3/23/17	100	Toho Compa	Fresh	80	15 Upright	66	21475	3	12	3	
m/1000224 The Accuse	Out drinking one night af	R D	Drama, Mys	Jonathan Ka	Tom Topor	Jodie Foster,	10/14/88	10/4/16	110	Paramount	Fresh	91	22 Upright	79	20821	1	20	2	
m/1000251 The Lost Cit	Fico Fellove Its heart is ir	R D	Drama	Andy Garcia	G. Cabrera I	Andy Garcia	9/3/05	3/23/17	143	Magnolia Pi	Rotten	25	83 Upright	64	25944	37	21	62	
m/1000251 The Breakin	A charter-boat captain wi	NR D	Drama	Michael Cur	Ranald Mac	John Garfiek	10/6/50	8/25/16	97	Warner Hon	Fresh	100	10 Upright	86	335	1	10	0	
m/1000253 Adam's Rib	A courtroom Matched by	NR C	Classics, Con	George Cuke	Garson Kani	Spencer Tra	11/18/49	5/1/08	101	MGM Home	Fresh	96	28 Upright	86	10563	6	27	1	
m/1000263 The Bridge	During the S Despite an a	PG A	Art House &	Mary McGu	Mary McGu	Gabriel Byrn	6/10/05	7/24/14	124	Fine Line Fe	Rotten	4	24 Spilled	35	1935	13	1	23	
m/1000267 The Prowler	After being frightened by	PG D	Drama, Mys	Joseph Lose	Robert Thoe	Van Heflin, E	12/3/51	12/5/16	92	VCI Entertai	Fresh	100	18 Upright	86	286	6	18	0	
m/1000327 Criminal	Needing a nelf you saw N	R D	Drama, Mys	Greggory Ja	Gregory Jaco	John C. Reilly	9/24/04	4/27/16	87	Warner Bros	Fresh	69	124 Spilled	57	6711	35	85	39	
m/1000334 The Advent	In this claymation film, ce	G A	Action & Ad	Will Vinton	Susan Shadl	James White	3/1/85	2/4/17	86	Eureka Ente	Fresh	80	5 Upright	82	1046	1	4	1	
m/1000343 Deep Blue	This nature (Full of visual	G C	Oocumentar	Andy Byatt,	Alastair Foth	Pierce Brosn	6/17/05	12/7/16	90	Miramax Fli	Fresh	67	52 Upright	80	4692	18	35	17	
m/1000355 The Advent	When King F Errol Flynn t	PG A	Action & Ad	Michael Cur	Norman Reil	Errol Flynn, (5/14/38	1/23/14	102	Warner Bros	Certified-Fre	100	48 Upright	89	33946	8	48	0	
								- 4. 4								_			

- original_release_date
- streaming_release_date
- runtime
- production_company
- tomatometer_status
- tomatometer_rating
- tomatometer_count
- audience_status

- rotten_tomatoes_link
- movie_title
- movie_info
- critics_consensus
- content_rating
- genres
- directors

- audience_rating
- audience_count
- tomatometer_top_critics_count
- tomatometer_fresh_critics_count
- tomatometer_rotten_critics_count

0.54 out of 10

Horror genre

954

Horror movies

60.88

Average rating for Horror genre

HYPOTHESIS

DATA PREPARATION

TASK:

Give each movie's critic consensus a "score" for each of the seven emotions based on the words used in the review


```
creating a list of reviews
[15] reviews = []
     for r in tomatoes["critics_consensus"]:
         reviews.append(r)
creating a list of popular words and the emotional scores
     popular_words = []
     for w in words["word"]:
       w = w.strip()
       popular_words.append(w)
     disgust_scores = []
     for d in words["disgust"]:
       disgust_scores.append(d)
     surprise_scores = []
     for s in words["surprise"]:
       surprise_scores.append(s)
```

Step 1: Turn everything into lists

Step 2: Create dictionaries for each of the emotions

```
disgust_dict = {}
index0 = 0
for w in popular_words:
    disgust_dict[w] = disgust_scores[index0]
    index0 += 1
```


Step 3: Create a loop for each review

```
#a loop that splits review into words, then checks to see if each word in the review matches a popular word
    for x in reviews:
      #creating empty lists for each emotion
      disgust_list = []
      surprise_list = []
      neutral_list = []
      anger_list = []
      sad_list = []
     happy_list = []
      fear_list = []
      #splitting review into invidial lists
      review_words = x.split(' ')
      for y in review_words:
          #if it does, adds the score for that word to their list
          if y in popular_words:
           disgust_list.append(disgust_dict[y])
            surprise_list.append(surprise_dict[y])
            neutral_list.append(neutral_dict[y])
           anger_list.append(anger_dict[y])
            sad_list.append(sad_dict[y])
           happy_list.append(happy_dict[y])
            fear_list.append(fear_dict[y])
      #averages the scores for each emotion
      if len(disgust_list) == 0:
        avg_disgust = 0
      else:
        avg_disgust = avg_fun(disgust_list)
```


Step 4: Split up review into individual words, then check to see if that word is one of the popular words

Step 5: If it is, adds the word's score for each emotion to empty lists

```
#a loop that splits review into words, then checks to see if each word in the review matches a popular word
 for x in reviews:
  #creating empty lists for each emotion
  disgust_list = []
  surprise_list = []
  neutral_list = []
  anger_list = []
  sad_list = []
  happy_list = []
  fear_list = []
  #splitting review into invidial lists
  review_words = x.split(' ')
  for y in review_words:
      #if it does, adds the score for that word to their list
      if y in popular_words:
        disgust_list.append(disgust_dict[y])
        surprise_list.append(surprise_dict[y])
        neutral_list.append(neutral_dict[y])
        anger_list.append(anger_dict[y])
        sad_list.append(sad_dict[y])
        happy_list.append(happy_dict[y])
        fear_list.append(fear_dict[y])
  #averages the scores for each emotion
  if len(disgust_list) == 0:
    avg_disgust = 0
  else:
    avg_disgust = avg_fun(disgust_list)
```

Step 6: After running through each word in the review, calculates the average emotional score per emotion

```
#averages the scores for each emotion
if len(disgust_list) == 0:
   avg_disgust = 0
else:
   avg_disgust = avg_fun(disgust_list)
```

END RESULT:

An output file with the average score per emotion based on the critic consensus for each horror movie

			,			200 of 954 entries
disgust	surprise	neutral	anger	sad	happy	fear
0 0			0	0	0	0
0.007692308 0.010	010889112	9.99000000000002e-05	0.06883117	0.027072929	0.015084916	0.013686314
0.00027173333333333333 0.028	2897814866666665	0.0006995783333333333	0.0009151506666666667	0.00090471733333333334	0.016168389000000002	0.00090046733333333
0.002407705 0.012	012038523999999998	0.000802999999999999	0.010433386999999999	0.01845907	0.098715894	0.004012841
0.000978 0.030	03033268	0.000978	0.014677105	0.034246575	0.036203522	0.03033268
0.008365508 0.022	022522522000000003	0.000644	0.027670529	0.01866152	0.045688547	0.02252252200000000
0.0156233285 0.029	0291064755	0.0027824525	0.0226859295	0.0355270205	0.0148207605	0.03622258100000000
0.0037440935 0.056	056706653999999995	0.0026534525000000003	0.0150490735	0.031661216	0.0278444215	0.01846601250000000
0.01084562025 0.024	0249609315	0.0015061299999999998	0.0175935025	0.020786613	0.024399588	0.05020576625
0.0024874556666666667 0.046	046304453999999995	0.00055454233333333333	0.02649584266666666	0.024415062666666664	0.031145225666666665	3333333

MODELING & ANALYSIS

After calculating a score for each emotion, we split our data in half by randomly assigning each movie either a 1 or a 2.

Response Variable = Rating

L	U	Ł	F	G	Н	ı	J	K	L
genres	tomatometer_rating	disgust	surprise	neutral	anger	sad	happy	fear	
Action & Adventure, Drama, Horror, Science									
Fiction & Fantasy	8	0	0	0	0	0	0	0	
Horror, Mystery & Suspense	21	0	0	0	0	0	0	0	
Action & Adventure, Horror, Science Fiction &	97	1.62E-05	0 275 05	0.001296057	3.23E-06	1.62E-05	9.70E-06	9.70E-06	
Fantasy	37	1.02E-03	9.37E-03	0.001290037	3.23E-00	1.02E-03	9.70E-00	9.70E-00	
Horror, Mystery & Suspense	10	0	0	0	0	0	0	0	
Art House & International, Drama, Horror, Mystery & Suspense	86	0	0	0	0	0	0	0	
Drama, Horror, Mystery & Suspense	21	0	0	0	0	0	0	0	
Drama, Horror, Mystery & Suspense	73	0.000562	0.01631046	0.000562	0.007311587	0.008436446	0.10179978	0.010686165	
Drama, Horror, Mystery & Suspense	16	0	0	0	0	0	0	0	
Art House & International, Horror, Special Interest	89	0.006932221	0.034807061	0.003505049	0.01873233	0.013088237	0.0274696	0.018829615	
Horror, Mystery & Suspense, Science Fiction & Fantasy	44	1.62E-05	9.37E-05	0.001296057	3.23E-06	1.62E-05	9.70E-06	9.70E-06	
Horror, Mystery & Suspense	9	0.000202	0.000137	0.000818	7.14E-05	3.88E-05	9.18E-05	7.96E-05	
Action & Adventure, Horror, Mystery & Suspense, Science Fiction & Fantasy, Western	15	0	0	0	0	0	0	0	

Explanatory Variable = Emotions

Next, we ran a log-linear regression on movies assigned to group 1.

The log-linear model fit our data better than log-log and linear models.

Out of the seven emotions we tested, anger, sad, and happy were the only statistically significant ones.

Source	Value	Standard error	Vald Chi-Squar	Pr > Chi ²	Lower bound	Upper bound (9	95%)
Intercept	4.034	0.009	200969.032	< 0.0001	4.016	4.052	
anger	-4.916	0.495	98.784	< 0.0001	-5.886	-3.947	
sad	-2.513	0.560	20.170	< 0.0001	-3.610	-1.416	
happy	3.692	0.305	146.690	< 0.0001	3.094	4.289	

Anger and sad both impacted rating negatively while happy impacted rating positively.

We applied our equation from the log-linear model to our holdout data (group 2).

Ratings for group 2 movies were predicted based on how angry, sad and happy they were.

CONCLUSION

Reject our hypothesis

Movie reviews with words that evoke the emotion "fear" did not cause higher ratings for the movies.

Predictive emotions

Although counterintuitive in a horror film, happy emotions contribute to higher ratings and anger & sad emotions lower the ratings.

Further Analysis

Our model contributes to a better review and predicts what will increase & decrease the rating. This model does not capture other variables that can contribute to a high review such as production value, acting quality, and editing techniques.

Limitations

We have to take into consideration movie reviews with high ratings tend to praise the film, thus using happier emotional verbiage.

RESOURCE PAGE

- https://www.kaggle.com/iwilldoi t/emotions-sensor-data-set
- https://www.kaggle.com/stefano leone992/rotten-tomatoesmovies-and-critic-reviewsdataset
- https://drive.google.com/file/u/0/ d/1axF77q2HJXWFr0n0ZSLQ1n Qaixw02OGi/edit

APPENDIX

• Emotional P-values & their significance

Model parameters for the components (Variable tomatometer_rating):										
Source	Value	Standard error	Vald Chi-Squar	Pr > Chi²	Lower bound	Upper bound	(95%)			
Intercept	4.031	0.009	194246.314	< 0.0001	4.014	4.049				
disgust	0.466	1.327	0.124	0.725	-2.134	3.067				
surprise	0.455	0.471	0.931	0.335	-0.469	1.379				
neutral	2.125	1.741	1.490	0.222	-1.287	5.538				
anger	-5.054	0.512	97.417	< 0.0001	-6.057	-4.050				
sad	-2.992	0.631	22.489	< 0.0001	-4.228	-1.755				
happy	3.559	0.316	127.223	< 0.0001	2.941	4.178				

Code for wordcloud *text.txt includes all the reviews for horror movies

```
!pip install wordcloud
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
import pandas as pd
Requirement already satisfied: wordcloud in /usr/local/lib/python3.7/dist-packages (1.5.0)
Requirement already satisfied: numpy>=1.6.1 in /usr/local/lib/python3.7/dist-packages (from wordcloud) (1.19.5)
Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from wordcloud) (7.1.2)
text = open('text.txt', mode='r', encoding = 'utf-8').read()
stopwords = STOPWORDS
wc = WordCloud(
    font path = 'OpenSans-Regular.ttf',
    background color = 'white',
    stopwords=stopwords,
    height=700,
    width=1300
wc.generate(text)
<wordcloud.wordcloud.WordCloud at 0x7f1681778050>
wc.to file('wordcloud3.png')
```