| 预习报告 |  | 实验 | 记录 | 分析 | 讨论 | 总原 | <b>戈</b> 绩 |
|------|--|----|----|----|----|----|------------|
| 25   |  | 30 |    | 25 |    | 80 |            |

| 专业: | 物理学       | 年级:   | 2022 级  |
|-----|-----------|-------|---------|
| 姓名: | 戴鹏辉       | 学号:   | 2344016 |
| 日期: | 2024/4/15 | 教师签名: |         |

# CB2 偏振光实验

#### 【实验报告注意事项】

- (1) 实验报告由三部分组成:
  - (1) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(第一循环实验已由教师提供模板,可以打印)。预习成绩低于 10 分(共 20 分)者不能做实验。
  - (2) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
  - (3) 分析讨论: 处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。

#### 实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

- (2) 每次完成实验后的一周内交**实验报告**(特殊情况不能超过两周)。
- (3) 实验报告注意事项
  - i. 实验中不要用手触摸镜片,以免弄脏镜片;
  - ii. 避免直视光源,注意光源表面高温;
  - iii. 注意用电安全。

# 目录

| 1 | CB2             | 2 偏振光实验                               | 预习报告                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3  |
|---|-----------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1             | 实验目的                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  |
|   | 1.2             | 仪器用具                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  |
|   | 1.3             | 原理概述                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  |
|   |                 | 1.3.1 偏振光的                            | 9产生                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  |
|   |                 | 1.3.2 介质的名                            | 各向异性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  |
|   | 1.4             | 实验前思考题                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  |
| _ |                 | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _  |
| 2 | CB <sub>2</sub> |                                       | 实验记录                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  |
|   | 2.1             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   |                 |                                       | 研究交叉线性偏振片                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   |                 | 2.1.2 实验二                             | 验证马吕斯定律                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   |                 | 2.1.3 实验三                             | 玻璃反射起偏和布儒斯特角的测量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   |                 | 2.1.4 实验四                             | 光的散射                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|   |                 | 2.1.5 实验五                             | 分析 λ/2 波片特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   |                 | 2.1.6 实验六                             | 分析 λ/4 波片特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   |                 | 2.1.7 实验七                             | 分析两个 $\lambda/4$ 波片特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   |                 |                                       | 研究椭圆偏振光和圆偏振光                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|   | 2.2             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 2.3             | 实验过程中遇到                               | 的问题记录                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9  |
| 3 | CB <sub>2</sub> | 2 偏振光实验                               | 分析与讨论                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 |
| • | 3.1             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 0.1             |                                       | 研究交叉线性偏振片                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   |                 |                                       | 验证马吕斯定律                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   |                 | 3.1.3 实验三                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   |                 |                                       | 光的散射                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|   |                 | 3.1.5 实验五                             | 分析 λ/2 波片特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   |                 | 3.1.6 实验六                             | 分析 λ/2 波片特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   |                 | 3.1.7 实验七                             | 分析两个 $\lambda/4$ 波片特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   |                 |                                       | 研究椭圆偏振光和圆偏振光                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|   | 3.2             | 实验后思考题                                | グロックログログ 1/10人グログリ 2/10人が 1/10人が 1/1 | 14 |
|   |                 | たっかい ルコールっくり ル火                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 |

# CB2 偏振光实验 预习报告

# 1.1 实验目的

- (1) 理解偏振光的基本概念,了解线偏振光、椭圆偏振光和圆偏振光。
- (2) 分析偏振光产生的三种方法: 吸收、反射和散射。
- (3) 了解在各向异性材料介质中光波的传播,学习偏振光通过各向异性介质后,产生的"相位延迟"( $\lambda/2$  波片和  $\lambda/4$  波片)。

# 1.2 仪器用具

| 编号 | 仪器用具名称 | 数量 | 主要参数(型号,测量范围,测量精度等) |
|----|--------|----|---------------------|
| 1  | 光功率计   | 1  |                     |
| 2  | 白光光源   |    |                     |
| 3  | 光学导轨   |    |                     |
| 4  | 光学测角台  |    |                     |
| 6  | 偏振片    | 3  |                     |
| 7  | 半波片    | 1  |                     |
| 8  | 1/4 波片 | 2  |                     |

#### 1.3 原理概述

#### 1.3.1 偏振光的产生

(1) 吸收法起偏: 偏振片

偏振片是一种光学元件,通过将普通光转换为偏振光来实现选择性透过。它由特殊材料制成,内部结构呈现有序排列的纤维状物质。当普通光进入偏振片时,它会沿着偏振片内部纤维状结构的方向进行振动。只有与这个方向相同的光才能透过偏振片,而与这个方向垂直的光则被吸收或转换成其他形式的能量。

与之相关的马吕斯定律是一条关于偏振光的重要定律。它描述了偏振光透过偏振片后的强度变化。

基本概念:马吕斯定律指出,强度为 $I_0$ 的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为:

$$I = I_0 \cos^2 \theta$$

其中, $\theta$  是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。



图 1: 马吕斯定律示意图

### (2) 玻璃反射起偏

- i. 当自然光从一个介质到另一个介质的分界面上反射或折射时,反射光和折射光的偏振性质与入射 光不同。
- ii. 反射光中垂直振动强于平行振动, 折射光中平行振动强于垂直振动。
- iii. 特别地,当入射角是 Brewster 角时,反射光只有垂直于入射面的振动,也就是线偏振光,无平行振动。振幅反射系数的平行分量为:  $r_{\parallel} = \frac{\tan(\theta_i \theta_t)}{\tan(\theta_i + \theta_t)}$ ,则当  $\theta_i + \theta_t = \pi/2$  时, $r_{\parallel} = 0$ ,由斯涅尔定律得  $n_i \sin \theta_1 = n_t \sin \theta_t = n_t \sin(\pi/2 \theta_i) \longrightarrow \tan \theta_b = \frac{n_t}{n_t}$



# (3) 散射起偏

- i. 物质微粒对光的反射和折射会产生散射现象。
- ii. 散射光也是横波,振动垂直于传播方向。
- iii. 自然光经过散射后,不同方向的散射光具有不同的偏振性,包括线偏振光和部分偏振光。
- iv. 当散射微粒的大小小于光波波长  $\lambda$  可被视为产生瑞利散射。瑞利散射的电磁辐射功率  $P_{Ray} \propto \frac{1}{\lambda^4}$ ,因此,"蓝"光散射比"红"光更强烈。

### 1.3.2 介质的各向异性

晶体介质的折射率与光波的偏振方向有关,是各向异性的。当晶体介质的折射率在两个方向上不同时,分别记作  $n_x$  和  $n_y$ ,且  $n_x > n_y$  时,可以定义两个方向上的相位速度  $c_x$  和  $c_y$ ,其中  $c_x < c_y$ 。晶体中的  $\mathbf{x}$ 

轴被称为慢轴, y 轴被称为快轴。在晶体中, 一条折射线总符合普通的折射定律, 称作寻常光(或 o 光), 而另一条折射线不遵守普通的折射定律, 称作非常光(或 e 光)。 o 光和 e 光都是偏振光, 且两光束的振动方向相互垂直。

因为通过该偏振片导致的光程差为:  $\delta = (n_x - n_y)d \cdot d$  为偏振片厚度。

(1)  $\lambda/2$  波片指,对于一个给定的波长  $\lambda$  平行光正入射波晶片时,o 光和 e 光的光程差  $\delta = \frac{\lambda}{2}$ 。另外, $\lambda/2$  波片是对特定的 波长的光通过,否则没有任何意义。

若线偏振光经过  $\lambda/2$  波片,出射光还是线偏振光,但相对于 o 轴或 e 轴对称。特别的,平行于 o 轴或 e 轴入射的偏振光,经过波片后方向保持不变。

若椭圆偏振光经过  $\lambda/2$  波片, 出射光仍是椭圆偏振光, 但旋转方向相反。

(2)  $\lambda/4$  波片指,对于一个给定的波长  $\lambda$  平行光正入射波晶片时,o 光和 e 光的光程差  $\delta = \frac{\lambda}{4}$ 。同样的, $\lambda/4$  波片是对特定的 波长的光通过,否则没有任何意义。

线偏振光通过  $\lambda/4$  波片后, 当入射角为  $0^{\circ}$ 、 $90^{\circ}$ 、 $180^{\circ}$ 、 $270^{\circ}$  时, 出射光仍然是线偏振光。

当入射角为 45°、135°、225°、315° 时, 出射光变为圆偏振光。

对于其他入射角度, 出射光为椭圆偏振光。

### 1.4 实验前思考题

#### 思考题 1.1: 解释什么是"瑞利散射"?

瑞利散射是指当光线与物质中的微小颗粒(比如气体、液滴或者固体微粒)相互作用时,由于颗粒尺寸远小于光波长,光波在颗粒表面的散射现象。这种散射是光波与颗粒表面的无规则碰撞结果,使得原本直行的光线方向发生改变,呈现出向各个方向均匀散射的特点。

瑞利散射的强度和波长的四次方成反比,因此瑞利散射对于较短波长(如紫外线和蓝光)的光更为显著。 这也是为什么蓝天看起来比较亮,因为大气中的气体分子对蓝色光的瑞利散射比对其他波长的光更有效。

### 思考题 1.2: 举例说明瑞利散射。

举例来说,太阳光穿过大气层时会发生瑞利散射,使得来自各个方向的光线在空气中散射并抵达地面。这就是为什么在白天天空是蓝色的原因,因为蓝光的波长较短,更容易被大气中的气体分子所散射,而其他波长的光则被散射得更少,因此天空呈现出蓝色调。

| 专业:   | 物理学       | 年级:   | 2022 级   |
|-------|-----------|-------|----------|
| 姓名:   | 戴鹏辉       | 学号:   | 22344016 |
| 室温:   | 26°C      | 实验地点: | A510     |
| 学生签名: |           | 评分:   |          |
| 实验时间: | 2024/4/18 | 教师签名: |          |

# CB2 偏振光实验 实验记录

## 2.1 实验内容和步骤

#### 2.1.1 实验一 研究交叉线性偏振片

实验器材:白光光源,凸透镜,可变光阑,两个线性偏振片,光学导轨,屏幕。实验步骤如下:

- (1) 用自准直等快速方法产生准直光束。(实验中使用 f = 150mm 的凸透镜获得平行光)
- (2) 放置第一个偏振片(称为  $P_1$ )并改变透振方向。观察屏幕上的光线强度。总结白光发出的自然光的性质。
- (3) 放置第二个偏振片(称为  $P_2$ ),旋转  $P_2$ ,改变透振方向,观察屏幕上光强的变化,发现光两次出现消失的现象,确定消光的位置。这时两个偏振片透振方向相垂直。同样的,旋转偏振片  $P_1$ ,能得到同样的结果。
- (4) 在消光的位置,将  $P_1$  轴旋转  $20^\circ$ ,证明  $P_2$  轴旋转同样的角度时,消光现象再次出现。
- (5) 在偏振片  $P_1$  和  $P_2$  之间放置第 3 个偏振片  $P_3$ 。先确定  $P_3$  的透振方向,再转 45°的角度,观察并说明现象。
- (6) 拿走偏振片  $P_3$ , 在  $P_1$  和  $P_2$  之间插入塑料板或三角尺等透明物体,观察现象;转动其中任何一个元件,观察现象;给塑料板加力,观察并说明这三个现象的变化。

#### 2.1.2 实验二 验证马吕斯定律

实验器材:白光光源,2个滤光片(绿色和红色),两个会聚透镜(其中一个小焦距的起聚光作用,f值很小),可变光阑,两个偏振片,光功率计。

具体实验步骤如下:

(1) 在准直平行光路上摆放偏振片  $P_1$  和  $P_2$ 。其中  $\theta$  为两个透振方向的夹角,I 为光功率计测量的光强值。 其中  $I_0$  为两个偏振器片透振方向平行时测得的光强度,即  $I_0 = I(\theta = 0)$ 

- (2) 改变不同的角度(测量大约 10 个值),并记录对应的光强值。通过绘制合理的曲线图,验证马吕斯定律。
- (3) 重新开始上述实验。放置红色的滤光片在可变光阑前,如果需要的话,可用一个小焦距的聚集透镜,将 光束聚焦在光功率计上(如果信号过弱)。
- (4) 放置绿色的滤光片在可变光阑前,重复上述实验内容,比较并解释结果。

得到实验数据如 section 2.1.2所示:

| $\theta$ | I/mW  | $\theta$ | I/mW  |
|----------|-------|----------|-------|
| 0        | 0.584 | 100      | 0.768 |
| 10       | 0.590 | 110      | 0.748 |
| 20       | 0.606 | 120      | 0.724 |
| 30       | 0.632 | 130      | 0.693 |
| 40       | 0.666 | 140      | 0.660 |
| 50       | 0.698 | 150      | 0.628 |
| 60       | 0.729 | 160      | 0.603 |
| 70       | 0.751 | 170      | 0.587 |
| 80       | 0.767 | 180      | 0.581 |
| 90       | 0.775 |          |       |

| $\theta$ | $I/\mu W$ |
|----------|-----------|
| 0        | 15.34     |
| 10       | 15.38     |
| 20       | 15.58     |
| 30       | 15.78     |
| 40       | 16.08     |
| 50       | 16.42     |
| 60       | 16.74     |
| 70       | 16.98     |
| 80       | 17.06     |
| 90       | 17.11     |
| 100      | 16.96     |

| $\theta$ | $I/\mu W$ |
|----------|-----------|
| 0        | 15.92     |
| 10       | 16.1      |
| 20       | 16.45     |
| 30       | 17.08     |
| 40       | 17.68     |
| 50       | 18.36     |
| 60       | 19.06     |
| 70       | 19.64     |
| 80       | 20.01     |
| 90       | 20.08     |
| 100      | 19.92     |
|          |           |

表 1: 白光光源实验数据

表 2: 绿光光源实验数据

表 3: 红光光源实验数据

#### 2.1.3 实验三 玻璃反射起偏和布儒斯特角的测量

具体实验步骤如下:

- (1) 通过旋转偏振片,观察教室的天花板的日光灯管光强的变化,说明日光灯是没有偏振的。
- (2) 通过旋转偏振片,观察日光灯管在桌子上玻璃的反射像,或者在地面瓷砖上的反射像,说明随着偏振片的旋转,反射光的强度变化。
- (3) 改变观察者的位置,也就是改变天花板上日光灯管的入射角度,使光通过偏振片的某方向光强为零时, 计算出日光灯管的入射角。验证玻璃的折射率 n= 1.5 时,布儒斯特角值大约为 56°。证实光的反射规 律为:
  - i. 产生部分偏振光。
  - ii. 必然产生线性偏振光, 因为通过偏振片能消光。
  - iii. 线偏振光垂直于入射面 (xOz)。

#### 2.1.4 实验四 光的散射

实验材料: 白光光源, 凸透镜, 可变光阑, 偏振片 P, 水槽, 奶粉。 具体实验步骤如下:

- (1) 在准直光束产生的平行光中放置水槽,水槽的面相平行。
- (2) 倒入少许奶粉 (不溢出)。
- (3) 用偏振片观察在 (Ox) 横向方向的散射光。通过水中倒入的少许粉末的作用,可观察到,在光传播垂直方向上,光(部分地)在垂直方向 (Oy) 是线性偏振光。



图 2: 光的散射示意图

# 2.1.5 实验五 分析 $\lambda/2$ 波片特性

实验器材: 氦氖激光器,短焦距透镜,偏振片  $P_1$ ,偏振片  $P_2$ , $\lambda/2$  波片,小屏幕。 具体实验步骤如下:

- (1) 将偏振片  $P_1$  和  $P_2$  放置约 20 厘米的距离,旋转偏振片找到消光位置。然后将  $\lambda/2$  波片放在两个偏振片之间:观看屏幕,旋转半波片,直到消光重新出现。证明这时有两个相互垂直方向出现消光现象。这时, $\lambda/2$  波片的 o 轴或 e 轴方向与偏振片  $P_1$  的偏振方向平行,确定对应的位置。
- (2) 旋转偏振片  $P_1$  20 度。通过旋转偏振片  $P_2$ ,重新出现消光现象。记录偏振片  $P_2$  的位置。证实通过  $\lambda/2$  半波片的作用,线性偏振光可产生对称 o 轴或 e 轴方向的线偏振光。

#### **2.1.6** 实验六 分析 $\lambda/4$ 波片特性

实验材料: 氦氖激光器,短焦镜头,偏光片  $P_1$ ,偏振片  $P_2$ ,四分之一波片  $\lambda/4$ ,小屏幕。 具体实验步骤如下:

- (1) 确定两个偏振片的消光位置。
- (2) 将  $\lambda/4$  波片放置在两个偏振片之间,观察屏幕。旋转  $\lambda/4$  波片,直到消光重新出现,确定  $\lambda/4$  波片对应的位置。说明这时有两个相互垂直方向出现消光现象。证明此时  $\lambda/4$  波片的 o 轴或 e 轴方向与偏振片 P1 的偏振方向平行。

### 2.1.7 实验七 分析两个 $\lambda/4$ 波片特性

实验材料: 氦氖激光器,短焦距透镜,光阑,两个偏振片,两个  $\lambda/4$  波片。 具体实验步骤如下:

- (1) 确定两个偏振片的消光位置
- (2) 放置第一个 λ/4 波片, 重现消光现象。记录消光位置。
- (3) 再放入第二个  $\lambda/4$  波片, 出现消光时, 记录消光的位置。说明这时两个  $\lambda/4$  波片的 o 轴或 e 轴相平行。
- (4) 旋转  $P_1$  偏振片  $20^\circ$ ,标识旋转的方向。然后旋转偏振片  $P_2$  重新达到消光,记录偏振片  $P_2$  的位置。说明此时两个  $\lambda/4$  波片的关系(即是两个波片的快慢轴一致?还是一个波片的快轴与另一个波片的慢轴重合?)。
- (5) 旋转其中一个  $\lambda/4$  波片 90 度,再旋转偏振  $P_2$  重新达到消光,记录偏振片  $P_2$  的位置。说明此时两个  $\lambda/4$  波片的关系。

### 2.1.8 实验八 研究椭圆偏振光和圆偏振光

实验材料: 氦氖激光器,短焦距透镜,可变光阑,两个偏振片,四分之一波片  $\lambda/4$ 。 具体实验步骤如下:

- (1) 确定两个偏振片的消光位置
- (2) 放置 1 个  $\lambda/4$  波片,重现消光现象。旋转  $P_1$  偏振器片 45 度,标识旋转方向。旋转偏光片  $P_2$ ,观察 屏幕上的光强变化, 加以说明。
- (3) 再旋转  $P_1$  偏振片的角度 10 度,旋转  $P_2$  偏光片,观察屏幕上光强的变化。加以说明。

#### 2.2 原始数据记录

见图 3

#### 2.3 实验过程中遇到的问题记录

- (1) 由于实验室仪器设备等原因,某些实验无法观察到消光现象。这时,可使用光功率计,将光强最小的位置定为消光位置。
- (2) 由于光路简单,在没有要求元件之间距离的情况下,可以尽可能的将各元件靠近,以达到更好的观察效果。
- (3) 在使用光功率计时,一定要让光斑完全覆盖功率计的探头,防止出现误差。



| 2. 经注3数   | PAGE.      | Date of the last | E A KALA | -      |
|-----------|------------|------------------|----------|--------|
| # 1=1Som  | P. P. 1232 | <b>承</b> 失       |          |        |
| T         |            |                  |          |        |
|           | -          |                  |          |        |
| 图主 Opi=0° | . Or       | 7 /              |          | 1/     |
| 04-0      |            | Lo/mw            |          | lo/w   |
|           | 0*         | 0.584            | loo*     | 0.768  |
|           | 16.        | 0.590            | 110'     | 0.748  |
|           |            | 0.606            |          | 0.724  |
|           | 30*        | 0.632            | 1300     | b.693. |
|           | 40.        | 0.666            | 1400     | 0.660. |
|           | 50°        | 0.698            | (500     | 0.628. |
|           | 60°        | 0.729            | (br      | 0.6.3  |
|           | 70°        | 0.751.           | 170'     | v.587  |
|           | 80°        | 0.767            | 18.      | 0.58   |
|           | 900        | 0.775.           |          |        |
| 链值法       | Opi.       | 10 /ww.          | fit. Op. | lo.    |
|           | 0°         | 15.34            | 0.       | 15.92. |
|           | 600        | 15.38            | 10       | 16.10. |
|           | 20°        | 15.58.           | 20'      | (6.45. |
|           | 300        | 15.78.           | 30 30 m  |        |
|           | 40'        | 16.08.           | 40.      | 17.68. |
|           | 50°        | [6,42.           | 50.      | 18.36. |
|           | 600        | 16.74.           | 600.     | 19.06. |
|           | 7.0        | 16.98.           | 75°.     | 19.64. |
|           | 802        | 17.06            | 84°.     | 20.01. |
|           | %          | (7.][            | 900.     | 20.08  |
|           | 6.         | 7416.76          | ( to .   | 1292   |

(a) 原始数据 1



(b) 原始数据 2



(c) 原始数据 3

(d) 原始数据 4

图 3: 原始数据

| 专业: | 物理学       | 年级: | 2022 级   |
|-----|-----------|-----|----------|
| 姓名: | 戴鹏辉       | 学号: | 22344016 |
| 日期: | 2024/4/22 | 评分: |          |

# CB2 偏振光实验 分析与讨论

# 3.1 实验数据分析

# 3.1.1 实验一 研究交叉线性偏振片

- (1) 只放置偏振片  $P_1$  在光路上时,旋转  $P_1$  方向,观察屏幕上光强的变化,**发现无明显变化**,说明白光光 源是**随机偏振**的。
- (2) 偏振片  $P_1$ 、 $P_2$  均放置在光路上时,首先将  $\theta_{P1}=0^\circ$ ,旋转  $P_2$ ,观察屏幕上光强的变化,发现光强由亮到暗呈现周期性变化,且在  $\theta_{P2}=22^\circ,201^\circ$  时出现消光现象,两个位置之间相差 180° 左右。同样的,若固定  $\theta_{p2}=0^\circ$ ,旋转  $P_1$ ,观察屏幕上光强的变化,同样能观察到光强由亮到暗呈现周期性变化,且在  $\theta_{P1}=156^\circ,344^\circ$  时出现消光现象,两个位置之间相差 180° 左右。说明当两个线偏振片的**光轴垂直**时,会出现消光现象。
- (3) 首先设置  $\theta_{P1}=344^{\circ}$ ,  $\theta_{p2}=0^{\circ}$ , 此时出现消光现象。 然后旋转  $P_120^{\circ}$  至  $\theta_{P1}=4^{\circ}$ , 此时可观察到屏幕上有亮斑。 再旋转  $P_220^{\circ}$  至  $\theta_{P2}=20^{\circ}$ , 可观察到消光现象。

(4)

### 3.1.2 实验二 验证马吕斯定律

由马吕斯定律出发,使用公式  $I(\theta) = I_0 \cos^2(\theta + \phi_0) + C$ ,对实验所测数据进行拟合,结果如图 4所示。由拟合数据可知,光强确实满足马吕斯定律  $I(\theta) = I_0 \cos^2(\theta + \phi_0) + C$ 。且红光光强大于绿光光强。

# 3.1.3 实验三 玻璃反射起偏和布儒斯特角的测量

- (1) 通过旋转偏振片,观察教室的天花板的日光灯管光强的变化,发现**亮度无明显变化**,说明日光灯是没有偏振的。
- (2) 用偏振片观察在地面瓷砖上的反射像,旋转偏振片会发现亮度会由亮到暗变化,说明经过反射后,反射光的平行分量和垂直分量的强度不相等。
- (3) 通过改变观察位置和偏振片角度,可找到一个完全消光的位置,这个位置对应的入射角即布儒斯特角。 利用红外线测距仪可测量观察点到地面像的距离 L 和观察点距离地面的高度 h,可计算出布儒斯特角。









图 4: 验证马吕斯定律图像



图 5: 布儒斯特角测量光路图

由85,只需测量 L 和 h 即可计算出地面瓷砖对应的布儒斯特角。

$$\theta_b = \arccos\left(\frac{h}{L}\right) = \frac{1.608m}{2.813m} = 55.14^{\circ}$$

若取地面瓷砖的折射率为 n=1.5,则理论值大约为  $56^{\circ}$ ,相对误差为  $\eta=\frac{56-55.14}{56}=1.536\%$ 。

#### 3.1.4 实验四 光的散射

- (1) 从侧面用偏振片观察水箱,发现亮度降低,旋转偏光片后,发现亮度会由亮到暗的变化。说明经过水 箱中的奶粉散射到**侧面**后,**原来的随机偏振光变成了线偏振光**。
- (2) 从正面用偏振片观察水箱,旋转偏光片发现亮度无明显变化,说明正面的出射光仍然是随机偏振光。

# 3.1.5 实验五 分析 $\lambda/2$ 波片特性

- (1) 不放置  $\lambda/2$  波片,只放置两个偏振片时,可以在  $\theta_{P1}=0^{\circ}, \theta_{P2}=17^{\circ}, 197^{\circ}$  观察到消光现象。 在  $P_1, P_2$  之间插入  $\lambda/2$  波片,保持两个偏振片角度不变,旋转  $\lambda/2$  波片,可以在  $\theta_{\lambda/2}=83^{\circ}, 174^{\circ}, 263^{\circ}, 354^{\circ}$  观察到消光现象,四个角度间隔  $90^{\circ}$ 。
- (2) 旋转  $P_120^\circ$  度后,保持  $\lambda/2$  波片角度不变,旋转  $P_2$ ,在  $\theta_{\lambda/2}=358^\circ,178^\circ$  观察到消光现象。即  $P_1,P_2$  二者**反向转动**,说明线偏振光经过  $\lambda/2$  波片后,**相对 0 轴或 e 轴对称了**。

# 3.1.6 实验六 分析 $\lambda/4$ 波片特性

(1) 不放置  $\lambda/4$  波片,只放置两个偏振片时,可以在  $\theta_{P1} = 0^{\circ}, \theta_{P2} = 17^{\circ}, 197^{\circ}$  观察到消光现象。

在  $P_1$ ,  $P_2$  之间插入  $\lambda/4$  波片,保持两个偏振片角度不变,旋转  $\lambda/4$  波片,可以在  $\theta_{\lambda/2}=359^\circ,270^\circ,180^\circ,90^\circ$  观察到消光现象,四个角度间隔  $90^\circ$ 。说明  $\lambda/4$  波片存在两个**互相垂直**的方向出现消光现象,且在消光现象时  $\lambda/4$  波片的 **o** 轴或 **e** 轴方向与偏振片  $P_1$  的偏振方向平行。

# 3.1.7 实验七 分析两个 $\lambda/4$ 波片特性

(1) 单独放置两个偏振片时,可以在  $\theta_{P1}=0^{\circ}, \theta_{P2}=17^{\circ}$  观察到消光现象。此时在两个偏振片之间 加入一个  $\lambda/4$  波片,在  $\theta_{\lambda/4}=270^{\circ}$  是可观察到消光现象;加入第二个  $\lambda/4$  波片,并旋转,可在  $\theta_{\lambda/4}^2=100^{\circ},190^{\circ},281^{\circ},11^{\circ}$  观察到消光现象。

经过上面的操作后,两个  $\lambda/4$  波片的位置关系,**有可能是两个快轴重合,或者一个快轴和另一个慢轴 重**合。

- (2) 正向旋转偏振片  $P_120^\circ$ ,再旋转  $P_2$ ,可在  $\theta_{P2}=218^\circ,38^\circ$  观察到消光现象,且两个偏振片是同向转动的。说明此时的两个  $\lambda/4$  波片的位置关系为 "一个快轴和另一个慢轴重合",两个  $\lambda/4$  波片的相移抵消了。
- (3) 先旋转其中一个  $\lambda/4$  波片 90° 后,反向旋转偏振片  $P_120$ °,再旋转  $P_2$ ,可在  $\theta_{P2}=214$ °, 34° 观察到 消光现象,且两个偏振片是反向转动的。说明此时的两个  $\lambda/4$  波片的位置关系为 "**两个快轴重合**",两个  $\lambda/4$  波片的相移叠加后,等效为一个  $\lambda/2$  波片。

# 3.1.8 实验八 研究椭圆偏振光和圆偏振光

- (1) 单独放置两个偏振片时,可以在  $\theta_{P1} = 0^{\circ}, \theta_{P2} = 197^{\circ}$  观察到消光现象。此时在两个偏振片中间加入一个  $\lambda/4$  波片,在  $\theta_{\lambda/4} = 280^{\circ}$  是可观察到消光现象。
- (2) 此时旋转  $\lambda/4$  波片 45° 后,旋转  $P_2$  偏振片,再次观察屏幕上的光强,发现无明显变化。因为线偏振光以 45° 通过  $\lambda/4$  波片会变成**圆偏振光**,而圆偏振光对于线偏振片是各向同性的,所以经过  $P_2$  偏振片后的光强与  $P_2$  的角度无关,保持不变。
- (3) 此时在旋转  $P_110^\circ$ ,旋转  $P_2$  偏振片,再次观察屏幕上的光强,发现光强由亮到暗呈现周期性变化,但不会出现消光现象。因为此时经过  $P_1$  的线偏振光与  $\lambda/4$  波片的光轴不是 45° 而是 55°,经过  $\lambda/4$  波片的光为**椭圆偏振光**,再次经过线偏振片后的光强与角度有关。

#### 3.2 实验后思考题

思考题 3.1: 通过实验现象,证实光的反射规律为:

- (1) 产生部分偏振光。
- (2) 必然产生线性偏振光。

在实验三"**玻璃反射起偏和布儒斯特角的测量**"中,用偏振片观察在地面瓷砖上的反射像,发现亮度变暗,旋转偏振片,未完全消光,说明此时产生的是**部分偏振光**。

在测量布儒斯特角时,可以通过改变观察位置和偏振片角度,找到一个完全消光的位置,说明产生的一 定是**线性偏振光**。

思考题 3.2: 说明用偏振片观察透过水中倒入的少许粉末后的现象产生的原因。

在白光光源照射的水箱中导入了少许粉末后,水中的粉末会导致散射。散射是光与物质相互作用后改变方向的过程。粉末颗粒的尺寸与光的波长相近时,散射会更加明显。在这种情况下,观察到的现象可能是:

(1) 散射光的偏振现象:偏振片可以使特定偏振状态的光通过,因此如果散射光的偏振状态与偏振片的方向相匹配,那么这些散射光就能通过偏振片而观察到。

(2) 偏振光强度的变化:如果粉末引起的散射光的偏振状态与偏振片的方向不匹配,那么这些散射光将被偏振片吸收或减弱,观察到的散射光强度可能会减弱或消失。因此,通过观察散射光在偏振片上的表现,可以了解到水箱中的粉末对光的散射特性,以及散射光的偏振状态。

#### 思考题 3.3: 请说明 3D 眼镜和 3D 电影的原理。

3D 眼镜和 3D 电影的原理是基于人类双眼视觉和光的偏振特性。从光学角度来看,3D 电影通过模拟人眼观察真实世界时的立体视觉来产生深度感和立体效果。

首先,人类的立体视觉是因为我们有两只眼睛,它们从略微不同的角度观察物体,每只眼睛接收到的图像都有细微的差异。大脑将这两个图像合成,使我们能够感知深度和立体空间。为了在电影中重现这种效果,3D 电影使用了两台摄像机从两个略微不同的角度同时拍摄场景,模拟人的左眼和右眼所看到的画面。

在放映时,这两个角度的画面会同时投射到银幕上。如果没有适当的设备,观众会看到两个重叠的图像,这会导致画面模糊和视觉混乱。为了解决这个问题,3D 眼镜被引入到观影过程中。

3D 眼镜通常使用偏振光技术。自然光包含多个方向上的振动,而偏振光则只在一个特定方向上振动。 3D 眼镜的每片镜片都是偏振片,它们以特定的方向过滤光线。例如,左眼镜片可能只允许水平方向的偏振 光通过,而右眼镜片则只允许垂直方向的偏振光通过。这样,左眼只能看到为左眼设计的画面,右眼只能看 到为右眼设计的画面。

在电影院中,放映机通过偏振滤光片投射两个不同角度的画面,这些画面经过偏振处理,以确保每只眼睛只接收到为其设计的画面。当观众戴上 3D 眼镜时,由于偏振片的过滤作用,左眼和右眼分别接收到两个不同的图像,从而在大脑中合成为一个立体的场景。

这就是 3D 眼镜和 3D 电影的基本原理。通过这种方式,3D 电影能够提供一种沉浸式的观影体验,让观众感觉到物体仿佛从屏幕中跳出来,进入到现实空间中。



图 6: 实验桌整理后照片