- (12) JP Document Kokai Tokkyo Koho 50-45740
- (43) Date of Publication: 1975.04.24.
- (51) Int. Cl.: C 23 F 7/26, C 23 F 17/00

Title of the Invention: Method for Surface Treatment of Metals

Inventor: Tadao KIMURA

Applicant: Nippon Kokan K.K.

Claims

ί_

A method for surface treatment of metals characterised in that a metal surface is subjected to chromate treatment in an aqueous solution containing

- a water-soluble pre-polymer obtained by solubilisation of an aromatic epoxy acrylate or methacylate prepared by the reaction of an aromatic epoxy resin and acrylic acid or methacrylic acid and
- a water-soluble vinyl monomer being a phosphoric acid ester of acrylic acid, methacrylic acid or their derivatives,

and the coated metal is dried and hardened on the surface layer by irradiation under an electron beam or an ultraviolet beam.

STN Karlsruhe

ANSWER 1 OF 1 WPIDS (C) 2002 THOMSON DERWENT L2

Full Text

1975-77644W [47] AN WPIDS

TI Electron beam or UV curing of coated metals - with aromatic epoxy resin meth(acrylate) and (meth) acrylic acid deriv. phosphate coating. DC

A21 A82 M13

PA (NIKN) NIPPON KOKAN KK

CYC I

₽I JP 50045740 A 19750424 (197547) * JP 53039896 B 19781024 (197846)

PRAI JP 1973-96493 19730828

C08F220-I0; C09D005-00; C23F017-00

JP 50045740 A UPAB: 19930831

Aq. soln. contg. arom. epoxy resin (meth) acrylate and a (meth) acrylic acid deriv. phosphate was coated on chromate-treated metal and cured by electron beam or uv irradn. In an example, DEN 438 was acrylated, maleated, and solubilised by neutralising with an amine. A 5% ag. soln. contg. the modified epoxy and 2-methacrylovioxyethyl phosphate in 70:30 ratio was coated on chromate-treated galvanised steel, dried, and irradiated with 3-9 Mrads electron beam to give coated steel with better corrosion resistance (salt water) than that without the irradn. .

FS CPI

127

FA AΒ

MC CPI: A10-E01; A11-C02; A12-B04; M13-H05

願(2)

統記号なし

48.8.28 g

(2,000円)

特許庁長官

1. 発明の名称

ソク t = ウ メン レ = リ * ウ 展 の 表 面 処 理 法

2. 発明者

神奈川県横浜市保土ヶ谷区峰岡町 2の294 村村 ** 火火

(ほか1名)

3. 特許出願人

東京都千代田区大手町1丁目1番8号 (412) 日本 鋼 管 株 式 会 社 代表者

4. 代 理 人

住所 東京都港区芝西久保佐川町 2番地 第17森ビル 産業 電話 03 (502) 3 1 8 1 (大代表) 〒 105

氏名 (5847) 弁理士

48, 8, 29 山脈如二時

彦EP記 (ほか 4名)

48 096493

明

細

1. 発明 の名 称

金属の表面処理法

2. 特許請求の範囲

芳香族系エポキシ歯脂とアクリル酸またはメ タアクリル酸を反応させた芳香族エポキシアク リレートまたは同メタアクリレートを水溶性化 した水溶性プレポリマーと、アクリル酸、メタ アクリル酸またはこれらの誘導体の燐酸エステ ルである水溶性ビニルモノマーとを含有する水 溶液をクロメート処理を行なつた金銭装面に塗り 布乾燥し、電子線または紫外線を照射するとと により皮膜を硬化形成せしめることを特徴とす る金属の表面処理法。

8. 発明の詳細な説明

本発明は鉄鋼、亜鉛、アルミニウムの表面あ るいは亜鉛、アルミニウムをメッキした鉄鋼の 表面に耐蝕性皮膜を施す場合に、二重結合を含 む水溶性プレポリマーと燐酸基を含む水溶性ビ ニルモノマーの組合せからなる水溶液で金餌袋 19 日本国特許庁

公開特許公報

①特開昭 50-45740

43公開日 昭 50. (1975) 4.24

②特願昭 48-96493

昭46 (1973) 6 28 22出願日

審査請求 未諳求 (全5頁)

庁内整理番号

7371 42

7178 42

⑤2日本分類

12 A41

12 A49

(51) Int. C1².

C23F 7/26 C23F 17/00

面を処理し乾燥後にさらに電子線または紫外線 を照射するととにより耐蝕性、強料密消性のす ぐれた皮膜を形成させる方法に関するものであ

無水クロム酸または水溶性クロム酸塩などと 水溶性高分子物質との混合水溶液を金属表面に **塗布し、加熱乾燥して耐蝕性皮膜を得る方法と** して特公昭 87-6116号、特公昭 87-6118 号、特公昭37-11507号、特公昭37-11508号、特公昭37-13326号左どが知 られている。しかし、これらの場合には愛布面 を十分に加熱乾燥しないと皮膜の不裕性化が不 完全となり、また加熱処理に時間を多く必要と するため工程の高速ライン化が困難である。

さらに、これらの方法では使用する材料が安 定な高分子材料であるがため、皮膜形成時に新 たな重合または架橋反応などは殆ど期待できな いものである。

また、電子線を用いて金属表面へ盛布した金 料などを硬化させる技術も確々行なわれており、 例えば特公昭 4 5 - 15628号。同45-15629号、同45-15680号、同45-15681号など、また米国特許 M 8、455、801、M8、455、802、M8、470、079など多くのものが公知である。

これらは多くはビニルモノマーと樹脂を皮膜 成分とするものであり、モノマーまたは有機容 媒を用いたペイントの塗装に関するものである。

これらに対しフランス特許 M 2 、 0 2 8 、 7 5 9 の如く水エマルジョン樹脂を用い、さらに無機化合物を添加した組成物を用いるものも 知られている。

しかし、とれらには次のような多くの欠点がある。

例えば、多くの樹脂成分を用いるものは、高分子のもののみを用いる場合には皮膜形成時の重合、架橋反応は起りにくく皮膜の性状はよくない。

また一般に樹脂を用いる場合には有機裕媒を 使用するものが多く、従つて水に不裕性であり、

. 8

する水溶液をつくる。

ついて鉄鋼、亜鉛、アルミニウムまたは亜鉛、アルミニウムなどを鉄鋼表面にメッキした金属表面に上記水溶液を塗布し、ついで乾燥し、との表面にできた皮膜に電子線または紫外線を照射し重合架橋せしめ、その皮膜を硬化形成せしめる金属の表面処理法に與するものである。

本発明は、本発明者らが先に提案した特開昭 47-23432号(以下、先顧と称す)の改良 その有機溶媒の高価をための不経済性、引火の ための危険性、環境衛生上の欠点などがある。

これらの欠点を除くため水を溶媒とすることに着目したフランス特許 版2、023、759の方法においても、水溶性樹脂ではなく水性、マルションにすぎない。従つてこれらを塗布後にさらに付着した樹脂を溶融せしめるために高温長時間の加熱工程を必要としている。従って高速化ラインによる工業化に対して何れも欠点を持つものである。

本発明はとれら従来の方法の欠点に鑑み、と れら欠点のない方法を見出してことに提供する ものである。

本発明はすなわち芳香族系エポキン樹脂とアクリル酸またはメタアクリル酸を反応させたが 香族エポキンアクリレートまたは芳香族エポキンアクリレートをは芳香族エポヤンパックリレートを水浴性化した水浴性リルポリマーに対して、アクリル酸、メタアクリル酸またはこれらの誘導体の燐酸エステルで含有水浴性ビニルモノマーを添加し、これらを有

4

であり、樹脂とモノマーの組合せの選択的な電子線、紫外線効果を発展せしめたもので、耐蝕性はさらに飛躍的に増大している。

また下地のクロメート処理と本発明の樹脂中の燐酸基との相乗的結合による防錆力と、樹脂の二重結合による重合、架橋反応が十分に行なわれ極めて短時間に緻密不溶性皮膜の網状結合ができることにより密着性よく、耐蝕性に極めてすぐれている。

電磁性電子線の照射により重合反応やポリ

マー鎖間の架橋反応が起るととはよく知られているが、本発明はこれにより水溶性モノマー、プレポリマーからなる皮膜を配離性電子線、紫外線の照射により水および有機溶剤に不溶性の皮膜に変換することを主なる特性とするものである。

7

耐蝕性などの点から考えてモノマーの添加率は50%(重量%以下同様)以下がのぞましい。

以上のブレポリマーとモノマーからなる水溶性樹脂系はロール塗装またはスプレー塗装、浸漬法などによつてクロメート処理運鉛鍍鉄板などに塗装し、熱風乾燥後に電子線、紫外線による照射を行なり。

本発明に使用しうる電離性電子線としてはペータ線、ガンマー線、加速電子線、X線をどであるが、工業的規模にて実施するには特に加速電子線が選ましい。

紫外線によつて樹脂皮膜を硬化させる場合には硬化を促進させるために水溶性の増感剤、例えばベンソイン系、アゾビスイソプチルニトリル系の増感剤を樹脂固型分に対して2% 程度添加すれば、きわめて短時間に硬化させるととができる。

放射性電子線の照射は空気中、真空中もしくは不活性気体等囲気中の何れでもよいが被

特別 昭50-45740 (3) 製 D E R 5 4 2 (商品名)住友化学工業株式会社製 B R E N (商品名)]、ノボラック系エボキシ樹脂〔米国ダウ化学工業株式会社製 D E N 4 3 8 および 4 3 1 (商品名)] などがある。

本発明では、とれらのエポキシ樹脂のエポキシ基に電子線、紫外線に感受性を付与するためにアクリル酸、メタアクリル酸を反応させ、さらに水溶化するために無水マレイン酸、フタル酸、メチルテトラヒドロ無水フタル酸、イタコン酸などを反応させたのち、塩基性アミンで中和するととによつて水溶性化する。

架橋剤としての水溶性ビニルモノマーとしてはアクリル酸、メタアクリル酸、アクリル酸アミド、2ーヒドロキシメチルメタアクリレートなどが利用できるが、特に2ーヒドロキシメチルメタアクリレートの燐酸エステルなどは防錆効果が著るしい。

エポキシ樹脂系のブレポリマーと架橋剤としてのビニルモノマーの混合割合は硬化性、

8

素の存在しない窒素、 炭酸ガス、 へりウムなどの不活性気体中であることが 所 要線 量が少なくてすむ 利点が ある。

次に本発明をさらに契施例について説明する。

奥施例1

ノボラック型フェノールエボキシ樹脂(米国ダウ化学工業株式会社製DEN438(配品名))をアクリル酸でアクリル化基性マンで中和したもの70部、2ーヒドロッタナルメタアクリレートの隣破とはロールを固形分が5%になるように調整板にロールを固形分が5%になるた 亜鉛酸の熱風で10 を装し、熱風乾燥(80 で温酸の熱風で10 が別かから、常温下器 関係である 10 になった 第温下器 関係である 10 になった 200 KV 100 mAの電子線加速機で各々8 Mrad (メガラド)、6 Mrad、9 Mrad 照射した。

との亜鉛鍍鉄板をJISZ-2371(1955)

特別 昭50-45740(4)

による塩水噴霧試験を実施した結果、 3Mrad 照射したものでは 1 0 0 時間、 6 Mrad と 9 Mrad 照射したものでは 2 0 0 時間以上にわ たつて白錆の発生がなかつた。

これに対し上記と同じ条件で電子線照射を 行なわなかつたものは24時間に全面が白錆 に覆われた。

実施例2

15

11

出力をもつ紫外線発生機2本で5秒、10秒、30秒間照射した。

この照射効果は5秒間でも明確に認められ、 塩水噴移試験100時間の結果では5秒照射 のもので白錆発生率10%、10秒照射のも のでは白端発生率5%、30秒照射のもので は全く白錆発生がみられなかつた。

これに対し同様に処理して唯、紫外線照射 のみを行なわなかつたものは24時間で50 %の白錆発生をみた。

奥施例4

ノボラック型フェノールエポキシ樹脂に飲いてクリル化したのち無水マレイン酸をもの100部を樹脂分5%になるように水で一般で変をからいたなるように塗装し、熱風乾燥したのち窒素雰囲気中で電子線照射を行なった。とのものの塩水噴霧試験100時間の結果

実施例 1 と同様に塩水噴霧試験で一次防錆性能を評価した結果、 8 Mrad 照射したものでは 8 0 時間、 6 Mrad および 9 Mrad 照射したものでは 1 5 0 時間全く白錆の発生がみられなかった。

これに対して同様に処理して唯電子線照射 のみをしなかつたものは24時間で50%の 白錆発生をみた。

奥施例3

ノボラック型フェノールエボキシ樹脂(米 国、ダウ化学工業株式会社製DEN488(商 品名))をアクリル酸でアクリル化し、塩基の 後無水マレイン酸を付加させたのち、塩本ロートの は無水マレイン酸を付加させたのようによる サンプ・サールメタアクリレートの 機能によった では、カウンスでは、カウンスでの では、カウンスでは、カウンスでの では、カウンスでは、カウンスでの では、カウンスでは、カウンスでの では、カウンスでは、カウンスでの では、カウンスでは、カウン

12

では 8 Mrad 照射のもので白錆発生 率 8 0 %、 6 Mrad 照射のもので1 0 %、 9 Mrad 照射のも ので5 %であつた。

これに対し電子線照射のみしなかつた他は 同様に処理したものは24時間で全面に白錆が発生した。

实施例 5

- (A) アクリロニトリルーイタコン酸共重合樹脂7部、重クロム酸アンモニウム 0.5 部の混和水溶液。
- (B) 直鎖脂肪族型エポキシ樹脂(昭知電工株式会社製ショーダイン 7 1 0 (商品名)〕をアクリル酸でアクリル化しその後無水マレイン酸を付加したのち、塩基性 アミンマ中和したもの 7 0 部、 2 ーヒドロキシメチルメタアクリレートの燐酸エステル 3 0 部からなる組成物を固形分が 5 %になるように調製した水溶液。
- (C) 本発明の実施例1の水溶液 これら比較例(A)、(B)と実施例(C)の水溶液

を用い、いずれも実施例1と同様の条件で塗布、乾燥、電子線照射を行なつて比較した。

その塩水噴霧試験による200時間での防錆率(%)は次表の如くであつた。

烮

区分		電子線照射条件			
		未照射	8 Mr ad	6 Mr ad	9 Mrad
比較例	(A)	0	0	5	4 0
	(B)	0	2 0	8 0	98
実施例	(O)	0	8 0	100	100

このように本発明の方法のすぐれている ことが明瞭であつた。

出願人代理人 弁理士 鈴 江 武 彦

. 15

5. 添付審額の目録

 (1) 委任 状
 1 通

 (2) 明 細 也
 1 通

 (3) 图 面
 2 通

 (4) 照律 副本
 1 通

6. 前記以外の発明者、特許出願人または代理人

(1) 発明者

神奈川県横浜市南区蒔田伊勢山841の3の502

村尾篤彦

(2) 代理人