Quiz 13B: Mapping Reduction

CS 212 Nature of Computation

Habib University — Fall 2023

Iotal Marks: 10	Date: November 15, 2023
Duration: 15 minutes	Time: 830–845h
Student ID:	A Y
Student Name:	• • •

1. (10 points) Let us extend mapping reduction to arbitrary sets.

A set A is mapping reducible to a set B, written $A \leq_m B$, if there is a computable function f, where for every u,

$$u \in A \iff f(u) \in B$$
.

The function f is called the *reduction* from A to B.

Prove or disprove the following claim.

Claim 1. The following function, $f: P(\Sigma^*) \to P(\Sigma^*)$, is a reduction from the class of context-free languages to the class of recursively enumerable languages.

$$f(L) = L$$
.

Solution: We disprove the claim by showing that f does not meet the required condition for a reduction. For ease of description, we denote the class of context-free languages as CFL and the class of recursively enumerable languages as RE.

Proof. For f to be a reduction from CFL to RE, the following must hold.

$$\forall L \ (L \in CFL \iff f(L) \in RE).$$

This further reduces to 2 cases, one of which we show through a counterexample to not hold.

<u>Case</u>: $\forall L \ (L \notin CFL \implies f(L) \notin RE)$ That is, $\forall L \ (L \notin CFL \implies L \notin RE)$

We know that $CFL \subset RE$.

Consider a language, C, such that $C \in RE$ and $C \notin CFL$.

L=C is a counterexample to the claim.