министерство высшего и среднего специального образования усср кинеский ордена ленина политехнический институт им. 50-иетия виликой октябрьской социалистической революции

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Ж. ТИПОВОМУ РАСЧЕТУ

ПО АНАЛИТИЧЕСКОЙ ТЕОМЕТРИИ

ДЕЯ СТУДЕНТОВ

ВСЕХ СНЕШВЕЛЬНОСТЕЙ

Утверждено
на заседании кафодри
вношей математики В I
Протокол В 7 от 09.12.87 г.

Методические указания к типовому расчету по аналитической гесметрии для студентов всех специальностей /Сост. Л.П.Пеклова, Т.Г.Стрижик, Г.Г.Барановская и др. — Киев: КПИ, 1988. — 94 с.

> Составители: Л.П. Пеклова, доцент Т.Г. Стрижак, профессор Г.Г. Барековокак, доцент Л.Б. Федорова, восмотент А.М. Шваданенко, доцент В.В. Дровд, восмотент В.В. Дровд, восмотент Н.Р. Коновалова, восмотент

Ответственный редактор В.Г.Лозовик, доцент

Рецензенти: Н.А.Вирченко, доцент Н.Г.Красношанка, доцент В методических указаниях приведены расчетные задания, предназначенные для самостоятельного (каждая задача содержит 30-31 вариянт) выполнения их студентами I курса, маучающими курс аналитической геометрии и элементов линейной алгеоры. Кроме расчетных заданий, какдый раздел содержит теоретические вспросы и теоретические задачи и упражнения, являющиеся общими для всех студентов.

В основу методических указаний положен "Сфорник заданий по вношей математике" [5].

В прия. І кратко изложены методы Гауоса — Кордана и Зейделя для приближенного решения окстемы линейных автебранческих уравнений.

ланы программы для макрокалькуляторов типа МК-54, МК-61 и решения контрольных примеров.

Защита наждой части типового расчета, выполняемого студентами по частям в процессе изучения курса, заключается в ответах на теоретических рпражнений и запач, представлении решения расчетной части задания в письмевной форме. Образец оформления титульного листа типового расчета приведен в прил.2.

- метод координат, полярные координаты, прямая на плоскости
 т. Теоретические вопросы
- Декартовы и полярные координаты.
- 2. Джина отрезка. Деление отрезка в данном отношении.

- Уравнение примой на плоскости (общего вида, с угловым коэфцаентом, в отрезках).
 - 4. Уравнение пучка прямых.
 - 5. Нормальное уравнение прямой. Ресстояние от точки до прямой.
- 6. Угол между прямыми. Условия параллельности в перпендикулярности прямых.

Теоретические задачи и упражнения

I. Вывести формулу расстояния между двуми точками в полирных коордичатых

$$d = \sqrt{\rho_i^2 + \rho_i^2 - 2\rho_i \rho_i \cos(\varphi - \varphi_i)}.$$

- Вывести форму лу для нахождения координат центра тяжести однородной треугольной пластинки.
- 3. Винести форму и для нахождения центра тижести системы, соотояшей из 1) двух; 2) трех; 3) 71 материальных точек.
- 4. Вывести формулу для вычисления площеди треугольника через ноординаты трех его вершин:

$$S = \pm \frac{1}{2} \left[x_i (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_4 - y_2) \right].$$

- Вывести формулу для вичисления угля между прямыми через угловие коэффициенты прямых.
- Составить уравнение оносектрие углов, образованих при нересечении двух данных прямых.
 - 7. Показать, что если в левой части уревнения окружности $(x-a)^2 + (y-b)^2 R = 0$

подставить координаты мобой точки, лежащей вне круга, то получится квадрат касательной, проведенной из этой точки к окружности.

- 8. Показать, что геометрическое место точек плоскости, резвость квидратов расстояний которых от двух данных точек постоянна, есть прямая.
- 9. Показать, что три точки $(x,y),(x_2y),(x_3;y_3)$ лажат на одной прямой тогда и только тогда, когда

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_1 & 1 \end{vmatrix} = 0.$$

10. Показать, что уравнение прамой в полярных координатах MMCOT BEIL

pcos (α-4)= P.

Какой геометрический смыся имеют эдесь ос и ho?

1.3. Расчетные задания

Задача I. Перейти от декартовых координат и полярным и построить кривие.

I.I.
$$(x^2+y^2)^2 = 2xy$$
.

1.3.
$$(x^2+y^2)^{3/2}=x+y$$

I.5.
$$(x^2+y^2)^{3/2}=y$$
.

1.7.
$$x^2 + y^2 = 2x + 5$$
.

1.9.
$$(x^2+y^2)^2=2(x^2-y^2)$$

I.II.
$$x^2 - y^2 = 1$$
.

1.13.
$$(x-a)^2 + y^2 = 0$$
.

$$1.15, x^2 + (y-a)^2 = a^2$$

I.2I.
$$x^2+y^3=2x+4y$$
.

1.23.
$$x^2 + y^2 = 4x$$
.

1.25.
$$x^2 - y^2 = 16$$
.

1.27.
$$x^2/4 - y^2/9 = 1$$
.

1.29.
$$4x^2 - 3y^2 = 1$$
.

1.2.
$$(x-1)^2 + (y-2)^2 = 4$$
.

1.4.
$$x^2 + y^2 - 2\sqrt{x^2 + y^2} - 2 = 0$$
.

1.6.
$$x^2 + y^2 = x + y$$

1.8.
$$x^2 + y^2 = 2y$$

1.10.
$$(x^2+y^2-2x)^2-6(x^2+y^2)=0$$

1.12.
$$x^2 + y^2 = x$$
.

I.14.
$$(x^2+y^2)^{3/2}=x^2-y^2$$

1.16.
$$3x - 2y = 8$$
.

I.18.
$$\sqrt{x^2+y^2} = arctg\frac{y}{x}$$

I.20.
$$xy = c/a$$
.

1,22.
$$(x^2+y^2)^{5/2}=2xy$$
.

1.30.
$$(x^2+y^2)^2=18xy$$

Задача 2. Найти координаты центра тажести однородной пластинки (размеры: a , b , c , d) или однородной линии (размеры: a , b , c , ∞). К рис. І

2.I.
$$a = 3$$
, $\ell = 4$, $c = 4$, $d = I$.

2.2.
$$\alpha = 4$$
, $\epsilon = 3$, $c = 3$, $d = 3$.

2.3.
$$a = 2$$
, $b = 5$, $c = 4$, $d = 3$.

2.4.
$$\alpha = 1$$
, $\beta = 5$, $c = 4$, $d = 2$.

2.5.
$$a = 5$$
, $e = 1$, $c = 4$, $d = 3$.

2.6.
$$a = 6$$
, $b = 1$, $c = 5$, $d = 1$.

2.7.
$$a = 2$$
, $b = 3$, $c = 2$, $a = 4$.

2.8.
$$a = 3$$
, $b = 3$, $c = 4$, $d = 1$.

2.9.
$$a = 4$$
, $b = 2$, $c = 3$, $a = 3$.

2.10.
$$a = 1$$
, $b = 3$, $c = 6$, $d = 2$.

Pmc.2

2.22. $\alpha = 5$, 6 = 4, c = 3, $d = \pi/4$ 2.23. $\alpha = 6$, 6 = 4, c = 4, $d = \pi/3$ 2.24. a = 6, 6 = 6, c = 4, $d = \pi/2$ 2.25. a = 8, a = 6, c = 4, $d = \pi/4$ 2.26. a = 8, a = 6, a = 6, $a = \pi/4$ 2.27. a = 4, a = 8, a = 6, $a = \pi/2$ 2.28. a = 4, a = 8, a = 6, $a = \pi/2$ 2.29. a = 6, a = 8, a = 6, $a = \pi/3$ 2.30. a = 10, a = 8, a = 8, $a = \pi/3$

2.21. Q = 5. $\theta = 4$. C = 3. $\alpha = \pi/2$

Запача З. В треугольнике АВС найти:

- а) уравнение медианы АЕ;
 - σ) уравнение опосектриси BF :
 - в) уравнение висоты СД :
 - г) центр тяжести однородной пластины АВС:
- д) площадь треугольника АВС;
- е) уравнения прямой, проходящей через точку А парадлельной прямой ВС.
 - 3.I. A (0; 3), B (0; 0), C (-8; 0).
 - B.2. A (I; 2), B (I;-2), C (-5;-2).
 - 3.3. A (-1;6). B (-1;1). C (-49;1).
 - 3.4. A (-I2; 2), B (0; 2), C (0; -8).
 - 3.5. A (-10; 2). B (-13; 0). C (-11; 3).
 - 3.6. A(0; 2), B(6; 0) C(0; -2).

8.7.	A (I; I),	B (I; -2).	C (-7; -2).
3.8.	A (-I; 5).	B (-I; I).	C (-I3; I).
3.9.	A (-5; 2),	B (0; 2).	C (0: -22).
			C (0; 3).
3.10.	A (-10; -9);	B (-10; 3),	
3.II.	A (0; I),	в (3; 3).	C (I; 0).
3.12.	A (I; 0),	B (7; -2),	' C(I; -4).
3.13.	A (-I; 4).	B (-I; I).	C (-I7; I).
3.14.	A (-4; 2),	B (0; 2).	C (0; -4).
3.15.	A (-IO; -2).	B (-IO; 3),	C (I4; 8).
3.16.	A (0: 12).	B (0; 0),	C (-IO; O).
3.17.	A (I: -I).	B (4: I).	C (2; -2).
3.18.	A (-I; 8),	B (II; I),	C (-1; -1).
3.19.	A (-3; 2).	B (0; 2).	C (0; -6).
3.20.	A (-IO; -I).	B (-10; 3).	C (-2; 3).
3.21.	A (0; 5).	B (0; 0),	C (-24; 0).
9.22.	A (I; IO).	B (I; -2).	C (-9; -2).
8.23.	A (-I; 2).	B (5; 4),	C (I; I).
8.24.	A (-2; 2).	B (0; 8).	C (2; 2).
3.25.	A (-IO: 0).	B (-IO; 3).	C (-2; 3).
3.26.	A (0: 4).	B (0; 0),	C (-6; 0).
3.27.	A (I; 3);	B (I; -2),	C (-23; -2).
3.28.	A (-I; IS),	B (-I, I).	C (-2I; I).
3.29.	A (-I. 2).	B (-3; 5).	C (O; 3).
3.30.	A (-IO; I),	B (-I6; 3).	C (-IO: 5).

Задача 4. Написать уравнение трасктории точки M(x;y), обмадаршей свойством; а — для вариантов I — 15, б — для вариантов
16 — 30. Построить линию.

а - В К раз блике к точке А, чем к точке В.

```
4.2. K = I. A (5; 7), B (3; -4).
       K = 2, A(2; 0),
                         B (-2; 0).
4.I.
       K = I, A(-4; 3), B(5; -8), A.4, K = 3, A(-2; 0), B(2; 0).
4.3.
       K = 2, A (0: 3).
                                     4.6. K = I, A (5;-2), B (-3; 0).
4.5.
                         B (0; -3).
                                     4.8. K=2, A (-3; 0),B (3; 0).
                         B (4;-2).
4.7.
       K = I. A (7:2).
                                     4.10, K=I, A (5;-2), B (4; 3).
4.9.
       K = 4, A(0; 4), B(0; -4),
                         B (2: -3).
                                     4.12, K=3/2, A (0:3), B (-1:0).
       K = 3, A (I; I),
4.II.
                                     4.14. K=4. A (I:0). B (-4:0).
       K = 2, A (-1;-4), B (2;8).
4.I3.
4.I5.
       K = I, A (7; 2), B (0; I).
```

б – В К раз блике к точке А, чем к прямой сс.

```
4.16.
          K = 2.
                   A (5; 0),
                               (a():
                                       x \approx 10.
         K = I/2
4.17.
                                        x = I.
                   A (-2, 0), ( oc. ):
4.18.
          K = 3
                   A (0, -2), ( oc ):
                                       y ≈ -6.
4.I9.
         K = I/3
                   A (0: 6).
                               (ac):
                                       y ≈ 2.
                               (at):
                                       X. = -3.
4.20.
          K = I
                   A (3: 0).
4.2I.
                               (d):
                                       y = I.
         K = 2
                   A (0: 4).
4.22.
                   A (0: -5), ( oc ):
                                       y = -10.
          K = I/2
                                       x = 2.
4.23.
          K = I
                   A (-2:0), (a():
                                       y = -4.
4.24.
                   A (0:4).
          K = I
                               ( d( ):
4.25.
          K = 3
                   A (3: 0).
                               (a():
                                       x = 9.
                                       y = -6.
4.26.
          K = I/3
                    A (0; I).
                               (a):
4.27.
          K = I
                    A (5: 0).
                               (a():
                                       x = 0.
                               ( oc ):
                                       y = -4.
4.28.
          K = 2
                   A (0: 2).
                               (d): x = 7.
4.29.
          K = 1/2
                    A (4: 0).
4.30.
          K = 4
                    A (0: -3), ( < ):
                                       y = 2.
```

<u>Задача 5.</u> При каких **ж** вокруг четырехугольника АВСД можно описать огружность?

```
I.
        A (-3, 0).
                         B (I; 6),
                                         C (7: 6).
                                                      \mathbb{I}(x:3).
                                                       \mathbb{A}(x:3).
        A (-I; 3),
                         B (-I: 6).
                                         C (5; 6).
2.
                         B (-I: 5).
                                                       I(x:3).
        A (-8; 8),
                                         C (3; 5),
 Э.
                                         C (I: 5).
                                                       且(エ:3).
 4.
        A (-5: 3).
                         B (-I: 5),
        A (-3: 3).
                         B (-3; 6),
                                         C (I, 7).
                                                       月(本:2).
 5.
                         B (-I: 6).
                                                       II(x:3).
        A (-9; 3).
                                         C (3: 6):
 6.
 7.
        A (3; 0).
                         B (I: 6).
                                         C (-2: 6).
                                                       \mathbb{I}(x:0).
                                         C (-I. 6).
                                                       月(エ:0).
                         B (2: 6).
 в.
        A (2, 0).
                                         C (0, 4).
                                                       \mathbf{H}(x;0).
        A (3; 0).
                         B (2: 4).
 9.
                                                       I(x:0).
to.
                         B (2; 4).
                                         C(I; 4).
        A (4; 0).
                                                       \mathbb{I}(\mathbf{x}:-2).
                                         C (I; 8).
II.
        A (3; 0).
                         B (3: 6).
                                         C (0: 6).
                                                       \mathbf{A}(\mathbf{x};0).
        A (8; 0).
                         B (2; 6).
13.
                         B (3: -3).
                                         0 (6:0).
                                                       且(x;5).
13.
        A (-2; -2).
                         B (2: -4).
                                                       I(x:2).
14.
        A (-I; -I).
                                         C(5; -I)
                                                       I (x;2).
                                         C (3: -I).
15.
        A (-2: -2).
                          B (I; -3).
                          B (Î; -3).
                                         C (2: -2).
                                                       I(x;2).
16.
        A (-3: -3).
                                                       I (x: I).
                          B (I: -5).
                                         C(4, -4),
17.
        A (-2; -2).
                                         (4:-2).
        A(-2, -2).
                                                       II(x:2).
18.
                          B (2: -4).
                          B (0: 3).
                                         C (3: 3).
                                                       \mathcal{A}(x:0).
19.
        A (-2:0).
                                                       H(x; 0).
                          B (-I; 3).
                                         c (2: 3).
20.
        A (-I : 0).
```

21.	A (-2; 0).	B (-I; 2),	0 (1; 2),	I (x; 0).
22.	A (-3; 0),	B (-I; 2).	C'(0; 2).	耳(本;0),
23.	A (-2; 0),	B (-2; 3),	C (0: 4).	具(エ; -I).
24.	A (-2; 0).	B (-I; 3).	C (I; 3),	耳(本:0).
25.	A (I; -3),	B (7; -I),	0 (7: 2).	$\Pi'(x:4)$.
26.	A (I; -2),	B (7: -2).	C (7: I)	其(本: 1).
27.	A (I; -3),	B (5; -2).	G (5; 0).	A(x;I).
28.	A (I; -4),	B (5; -2),	C (5; -I).	A(x; I).
29.	A (I; -3),	B (7; -3).	C (9; -I),	$\mathbb{I}(x;-I).$
30.	A (I; -3),	B(7; -2).	C (7; 0),	A(x; I).

2. KOMILIEKCHHE YUCJA

2.1. Теоретические вопросы

- Комплексное число. Алгебранческая форма. Модуль и аргумент комплексного числа. Комплексная плоскость.
 - 2. Тригонометрическая и показательная формы комплексного числа.
- Арифметические операции над комплексными числами в тригонометрической форме.
 - 4. Формула Муавра.
- Извлечение кория целой положительной степени. Изображение кориней на комплексной плоскости.
 - 6. Решение алгебранческих уравнений, имеющих комплексные корни.

2.2. Теоретические задачи и упражнения

- I. Используя геометрический смыол комплексного числа, доказать, что $|Z_i + Z_j| \le |Z_i| + |Z_j|$; $|Z_i Z_j| \ge ||Z_i| ||Z_j||$.
- 2. Применяя тригонометрическую форму комплексного числа, доказать, что $|\mathbf{Z}_1\cdot\mathbf{Z}_2|=|\mathbf{Z}_1|\cdot|\mathbf{Z}_2|$; $|\mathbf{Z}_1:\mathbf{Z}_2|=|\mathbf{Z}_1|\cdot|\mathbf{Z}_2|$.
 - В. Доказать, что

- 4. С помощью каких геометрических операций можно получить изображения чисел Z_1 , Z_2 я Z_4 ; Z_2 на комплексной плоскости?
- 5. Доказать, что если $Z_1 \cap Z_2 \cap Z_3 = O$ и $|Z_1| = |Z_2| = |Z_3| = f$, тоточки Z_1, Z_2, Z_3 является вершинами правильного треугольника, винсанного в единичную окружность.

$|z_1+z_2|^2+|z_1-z_2|^2=(|z_1|^2+|z_2|^2)$

$$\bar{Z} = Z^{n-1}$$
 $(n \neq 2, n \in N).$

2.3. Расчетные запания

Задача I. Найти Rez и Jmz при следующих условиях.

SAMANDE I. HAM'RE REZ IN JOTE IN THE COMPLY NOT REPORT I.I.,
$$\vec{z} = \frac{2}{-1} + i(1+i)$$
.

1.2. $\vec{z} = \frac{f}{f+2i} + \frac{i}{2-i}$.

1.3. $\vec{z} = (f+i)(f-5i)$.

1.4. $\vec{z} = (\frac{f+2}{i})^{\frac{1}{2}}$.

1.5. $\vec{z} = (f-2i)(2+i) \cdot \frac{f}{i}$.

1.6. $\vec{z} = \frac{5}{f+2i} + \frac{5}{2-i}$.

1.7. $\vec{z} = (\frac{f-i}{f+i})^{\frac{1}{2}}$.

1.8. $\vec{z} = \frac{f+2i}{(1-i)^3}$.

1.9. $\vec{z} = \frac{f-i}{(t+2i)^2}$.

1.10. $\vec{z} = \frac{f+i}{t} + \frac{i}{f+i}$.

1.11. $\vec{z} = 7: (\sqrt{3} + i\sqrt{2})$.

1.12. $\vec{z} = \frac{(f+i)(2+i)}{2-i}$.

1.14. $\vec{z} = \frac{3}{f+2i} + \frac{4}{2-i}$.

1.15. $\vec{z} = (2+3i)^2 - (2-3i)^2$.

1.16. $\vec{z} = (3+2\sqrt{2}i)(3-2\sqrt{2}i) + \frac{f}{t}$.

1.17. $\vec{z} = \frac{f^2}{5i} + \frac{i}{f+i}$.

1.18. $\vec{z} = \frac{\sqrt{3}+i}{2-i\sqrt{3}}$.

1.20. $\vec{z} = (f+i)\sqrt{3}$): $(f-i)\sqrt{3}$).

1.21. $\vec{z} = \frac{f}{f+i} + \frac{f}{f-i}$.

1.22. $\vec{z} = \frac{f}{\sqrt{2}-i\sqrt{3}} + \frac{i}{2}$.

1.23. $\vec{z} = \frac{f-i}{f+i} + \frac{f+i}{f-i}$.

1.26. $\vec{z} = \frac{5}{i} + i(f-i)$.

1.27. $\vec{z} = \frac{i}{2+i} + \frac{2+i}{4-i}$.

1.28. $\vec{z} = \frac{f}{f-i}$.

1.20. $\vec{z} = (f+i)^3$.

Задача 2. Применяя формулу Муавра, найти оледующее.

2.9.
$$(-\sqrt{2}^t + i\sqrt{2}^t)^{t0}$$
.

2.15.
$$(-1+i\sqrt{3})^{10}$$
.

2.17.
$$(1-i\sqrt{3})^4$$

2.19.
$$(-i+1)^{15}$$

2.21
$$(-\sqrt{2} + i\sqrt{2}')^6$$
.

2.25.
$$\left[\sin \frac{\pi}{4} + i \left(1 - \cos \frac{\pi}{4}\right)\right]$$

2.27.
$$(2-\iota\sqrt{2'})^{10}$$

2.8.
$$(-\sqrt{3}^{1}-i)^{10}$$

2.10.
$$(-\sqrt{3}+i)^{12}$$

2.12.
$$(2 + i\sqrt{12})^5$$
.

2.16.
$$(f+\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^4$$
.
2.18. $(-\sqrt{3} - \sqrt{-2})^6$.

2.30.
$$(2+2\sqrt{3}i)^{2}$$

Задача З. Найти все значения корней и построить иж.

3 20 - 37

Построять лении или области, заданные следующеми соотношениями.

4.13.
$$Jm \frac{Z-1}{Z+1} = 0$$
.

4.16.
$$Jm\frac{Z-i}{Z-1}=0$$
.

4.19. (Z-i) \$1, 0 < arg 2 & \$\frac{4}{2}\$.

4.20.
$$Re^{\frac{Z-i}{Z-1}=0}$$
.

4.21.
$$0 < arg \frac{i-z}{i+z} < \frac{x}{2}$$

4.23. |π-argz|<\frac{1}{4}, Jmz>2 4.24. Re(z(1-i))<\v2'.

4.24.
$$Re(z(1-i))<\sqrt{2}'$$
.

Задача 5. Решить уравнение. Корни уравнения изобразить на комплексной плоскости, представив их в тригонометрической форме.

1	5.2. $x^3 - 2x^2 + 2x - 1$.
5.1. $x^3 - 3x^2 + 6x - 4$.	5.2. £ -2.2. 12.2 1.
5.3. x3+2x2+6x-9.	5.4. $x^3 + x^2 - 2$.
5.5. $x^3 + 3x^2 + 12x - 16$.	5.6. $x^3 - 3x^2 + 4x + 8$.
5.7. $x^3 - x^2 + 2x + 4$.	5.8. x²-3x²+3x -2.
5.9. $x^3 + 4x^2 + 12x + 9$.	5.10. $x^3 + 3x^2 + 4x + 2$.
5.II. $x^3 + 5x^2 + 20x + 16$.	5.12. x5-6x2+16x-16.
5.13. $x^{5}-4x^{2}+8x-8$.	5.14. x^3+x^2-x+2 .
5.15. $x^3 + 5x^2 + 15x + 18$.	5.16. $x^3 - 2x - 4$.
5.17. $x^3 + 2x^2 + 8x - 32$.	5.18. $x^3 - 2x^2 + 16$.
5.19. $x^3 - 5x^2 + 10x - 12$.	5.20. x^3+2x^2-2x+3 .
5.21. $x^3 + x^2 + 3x - 18$.	$6.22. x^3 + 4x^2 + 6x + 4.$
5.23. x3+6x2+24x+32	$5.24. x^3 - 7x^2 + 34x - 18.$
5.25. $x^3 - 4x^2 + 4x - 3$.	5.26. x3+6x+18x+27.
5.27. $x^3 - x^2 - 4x - 6$.	5.28. $x^3-5x^2+12x-8$.
5.29. $x^3 - 5x^2 + 2x + 18$.	5.30. x3+5x2+8x+6

З. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАЕНЕНИЙ

З.І. Теоретические вопросы

- Виды матриц, операции над матрицами (умножение на число, сложение, умножение матриц, транспонирование).
- 2. Определители 2-го, 3-го, *п* -го порядков; их основные свойства.
 - 3. Ранг матрицы. Элементарные преобразования матриц.
 - 4. Обратная матрица.
- Системы линейных алгеораических уравнений. Теорема Кровекера – Капелли.
 - 6. Матричный способ решения системы.
 - 7. Решение системы с помощью формул Крамера.
 - 8. Meron Payoca.
 - 9. Решение однородных систем линейных алгебраических уравнений.

3,2. Теоретические задачи и упражнения

I. Входит им в определитель 5-го порядка произведение

I і a_{j_1} a_{j_2} a_{j_3} a_{j_4} a_{j_5} : 2) a_{j_1} a_{j_3} a_{j_4} a_{j_5} a_{j_5} a_{j_2} . Подобрать t в t так, чтобы произведение a_{j_1} a_{j_2} a_{j_4} a_{j_5} a_{j_5} входяло в определитель 5-го порядка оо знаком шлюс.

2. Доназать, что определитель нечетного порядка равен нуто, если все элементы его удовлетворяют условию $\alpha_{i,j} + \alpha_{i,j} = 0$.

3. Найти вое матрици 2-го порядка, квадрати которых равны I) зумевой матрице, 2) единичной матрице.

4. Выполнить действия:

I)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
; $\begin{pmatrix} \cos \psi & -\sin \varphi \\ \sin \psi & \cos \psi \end{pmatrix}$.

- 5. Составить квадратную матрицу 4-го порядка, ранг которой равен 1) 2; 2) 3; 3) 4.
- Доказать, что ранг матрицы не изменится, если ее строки заменить столбцами.
- 7. Доказать, что ранг матрицы не азменится, если переставить две строки (два столбца) матрицы.
- 8. Доказать, что ранг матрицы не изменится, если все элементи какой-нибудь строки (столбца) умножить на произвольное число, отличное от нуля.
 - 9. Cuctema

$$\begin{cases} ay + 6x = c, \\ cx + az = 6, \\ 6z + cy = a \end{cases}$$

имеет единотвенное решение. Доказать, что $abc \neq 0$ и найти решение.

10. Подобрать Л так, чтобы система

$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 = 1, \\ x_1 + 2x_2 - x_3 + 4x_4 = 2, \\ x_1 + 7x_2 - 4x_3 + 1/x_4 = \lambda \end{cases}$$

имела решение.

3.3. Расчетные задания

Задача I. Вычислить определитель.

The second secon	
I.I. 0 3 0 4 2 9 I I I 4 2 3 0 6 -I 8	1.2. 3 4 0 -I 2 0 I 2 0 I I 0 I 0 0 2
I.3. I 3 4 I I I 2 5 0 I I 6 0 0 0 2	I.4. 2 9 2 I I 8 2 I I 2 2 I I 0 I I
I.6. I I I I I I 3 8 8 8 3 9 10 10 I2 36 40 41	I.6. 2 -I 0 0 I 2 -I 0 0 -I 2 -I 0 0 -I 2
I.7. 3 5 7 2 I 2 3 4 -2 -3 3 2 I 3 5 4	I.8. I 2 3 0 0 0 1 2 3 3 0 I 2 2 3 0 I
I.9. I 7 3 0 0 10 2 3 3 7 I 2 2 6 0 I	I.IO. I -2 3 4 2 I -4 3 3 -4 -I -2 4 3 2 -I
I.II. I I I I I I I I I I I I I I I I I	1.12. 0 1 -3 4 1 0 -2 3 3 2 0 -5 4 3 -5 0
I.I3. I -3 5 -7 3 -5 7 -I 5 -7 I -3 7 -I 3 -5	I.I4. 2 3 -3 4 2 I -I 2 6 2 I 0 2 3 0 -5

1,15,	I 2 3 4	I I I	4 3 2 I	0 1		1.16.	1 2 3 4	2 2 3 4	3 3 4	4 4 4
1.17.	3 1 1	1 2 3 5	2 3 6 9	3 I 4 4		1.18.	3 2 5 4	-3 5 5 4	-2 4 8 5	-5 6 7 6
1.19.	3 1 1	-2 0 0	I 3 2 3,	I -2 2		1,20.	1 2 3 4	1 3 4 5	I -4 5 -6	1 5 -6 7
1.21.	2 3 4 -2	3 1 2 1	4 -I -3 3	5 3 1 2		1,22.	2 I 3 2	3 -2 -I	4 -6 2 2	2 2
1.23.	2 9 4	3 6 5 3	11 8 7 2	5 4 5 5	,	1,24.	1 2 3 4	2 3 4. I	3 4 1 2	4 I 2 3
1.25.	2 3 1 4	3 -2 4 3	1 4 -3 2	4 -I -2 I	y * * * *	1.26.	5 9 13	6 10 14	8 7 II I5	4 8 12 16
1.27.	I -I 0 I	-i	0 1 -I	I I -I I	-	1.28.				
1.29.	1 2 3 1	I I -I 2	-I 2 I 3	-I -3 -2 -3		1.30.	1 2 3 4	2 I -4 I	-2 3 I 3	I 2 -3 I

8адача 2. Вычислеть f(A).

2.I.
$$A = \begin{pmatrix} I & 2 & -I \\ 8 & I & I \\ 0 & I & 0 \end{pmatrix}$$

 $f(x) = 2x^2 + 5x + 1$

2.3.
$$A = \begin{pmatrix} 2 & I \\ 0 & -I \end{pmatrix}$$
 2.4. $A = \begin{pmatrix} I & -2 & 3 \\ 2 & -4 & I \\ 3 & -5 & 2 \end{pmatrix}$

$$A = \begin{pmatrix} \tilde{0} & \tilde{-1} \\ 0 & \tilde{-1} \end{pmatrix}$$
$$f(x) = x^3 + x^2 - 7x + 5.$$

2.5.
$$A = \begin{pmatrix} -2 & 2 & -1 \\ 1 & 0 & 5 \\ 4 & 3 & 0 \end{pmatrix}$$
$$f(x) = x^2 - 3x - 1$$

2.7.
$$A = \begin{pmatrix} -I & 3 & 0 \\ -2 & I & I \\ 3 & 0 & -2 \end{pmatrix}$$
$$f(x) = x^{2} - 2x + 1.$$

2.9.
$$A = \begin{pmatrix} -3 & I \\ 2 & I \end{pmatrix}$$
$$f(x) = x^3 - 4x.$$

2.II.
$$A = \begin{pmatrix} -4 & 8 & I \\ 0 & 2 & 3 \\ I & -3 & -I \end{pmatrix}$$

 $f(x)=x^2-5x+3$

2.13.
$$A = \begin{pmatrix} I & 2 \\ -2 & I \end{pmatrix}$$

$$f(x) = x^{3} - 4x^{2} + x - 1.$$
5* I

2.2.
$$A = \begin{pmatrix} 3 & 4 & 0 \\ I & 2 & 3 \\ -3 & I & -I \end{pmatrix}$$
$$f(x) = x^{2} + 5x + 2.$$

 $f(x) = 3x^2 - 2x + 8$

2.6.
$$A = \begin{pmatrix} 2 & I & I \\ 3 & I & 2 \\ I & -I & 0 \end{pmatrix}$$
$$f(x) = x^2 - x - 1.$$

2.8.
$$A = \begin{pmatrix} 2 & 1 & 3 \\ -3 & 0 & -1 \\ 4 & 2 & -1 \end{pmatrix}$$

$$f(x) = -2x^2 + 8x - 6$$

2.10.
$$A = \begin{pmatrix} 2 & I & 4 \\ -I & 3 & 0 \\ 0 & -2 & 3 \end{pmatrix}$$
$$f(x) = 2x^{2} + 6x - 3.$$
2.12.
$$A = \begin{pmatrix} I & -3 & -I \\ 2 & 2 & 3 \\ 3 & I & 2 \end{pmatrix}$$

$$\begin{cases}
3 & 1 & 2 \\
f(x) = 5x^2 + 2x - 8
\end{cases}$$

2.14.
$$A = \begin{pmatrix} 3 & -1 \\ 4 & 2 \end{pmatrix}$$

 $f(x) = 2x^3 - 3x + 6$.

2,15.
$$A = \begin{pmatrix} 0 & 3 & 1 \\ -2 & 1 & 0 \\ -1 & 5 & -4 \end{pmatrix}$$
 2.16. $A = \begin{pmatrix} 4 & 3 & 0 \\ 2 & -1 & 5 \\ 1 & 2 & -1 \end{pmatrix}$
 $f(x) = x^2 - 6x + 9$ $f(x) = 9x^2 - 4$

2.16.
$$A = \begin{pmatrix} 4 & 3 & 0 \\ 2 & -1 & 5 \\ 1 & 2 & -1 \end{pmatrix}$$

 $f(x) = 9x^2 - 4$.

2.17.
$$A = \begin{pmatrix} 5 & -2 & 1 \\ -1 & 3 & 6 \\ 0 & 4 & -5 \end{pmatrix}$$
 2.18. $A = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 3 & 0 \\ 1 & -1 & 2 \end{pmatrix}$

$$f(x) = 9 - x^{2}$$

$$f(x) = 2x^{2} + 8x + 8$$

2.18.
$$A = \begin{pmatrix} I & 0 & 4 \\ 2 & 3 & 0 \\ I & -I & 2 \end{pmatrix}$$

 $f(x) = 2x^2 + 8x + 8$.

2.19. A =
$$\begin{pmatrix} 1 & 3 & 2 \\ -4 & 0 & 5 \\ 2 & 4 & -7 \end{pmatrix}$$
$$f(x) = 5 - 4x - x^{2}.$$

2.19.
$$A = \begin{pmatrix} 1 & 3 & 2 \\ -4 & 0 & 5 \\ 2 & 4 & -7 \end{pmatrix}$$
 2.20. $A = \begin{pmatrix} 5 & 4 & 0 \\ I & 3 & I \\ -2 & I & -4 \end{pmatrix}$
 $f(x) = 5 - 4x - x^2$. $f(x) = 3x^2 - 7x + 5$.

2.21.
$$A = \begin{pmatrix} 6 & 2 & 5 \\ -1 & 3 & 1 \\ 0 & 4 & 2 \end{pmatrix}$$
 2.22. $A = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 1 & 2 \\ 1 & -5 & 3 \end{pmatrix}$
 $f(x) = (x+3)^2$ $f(x) = (x-2)(2x+3)$

2.22.
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 1 & 2 \\ 1 & -5 & 3 \end{pmatrix}$$

$$f(x) = (x-2)(2x+3)$$

2.23.
$$A = \begin{pmatrix} 8 & 0 & 2 \\ -3 & 2 & -3 \\ 1 & 1 & -1 \end{pmatrix}$$
 2.24. $A = \begin{pmatrix} 3 & -1 & 4 \\ 0 & 2 & 5 \\ 5 & -1 & 8 \end{pmatrix}$

$$f(x) = 4 - 2x - x^{2}.$$
 $f(x) = 5x^{2} - 8x + 6.$

2.24.
$$A = \begin{pmatrix} 3 & -1 & 4 \\ 0 & 2 & 5 \\ 5 & -1 & 8 \end{pmatrix}$$

$$f(x) = 5x^{4} - 8x + 6$$

2.25.
$$A = \begin{pmatrix} I & -5 \\ 6 & 2 \end{pmatrix}$$
 2.26. $A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$
 $f(x) = 3x^3 + 4x^2 - 2$ $f(x) = (x^2 - 2x)(x^2 - 2x$

2.26,
$$A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$$

 $f(x) = (x^2 - 2x)(2x - 1)$

2.27.
$$A = \begin{pmatrix} 0 & 3 & 5 \\ -I & 4 & -2 \\ 2 & I & 3 \end{pmatrix}$$
 2.28. $A = \begin{pmatrix} 7 & 3 & 2 \\ -I & 4 & 5 \\ 2 & I & I \end{pmatrix}$
 $f(x) = (4-2x)(x+6)$ $f(x) = 2x^2 - 6x + 7$.

2.28.
$$A = \begin{pmatrix} -I & 4 & 5 \\ 2 & I & I \end{pmatrix}$$

 $f(x) = 2x^2 - 6x + 7$.

2.29.
$$A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$$
 2.30. $A = \begin{pmatrix} I & 2 & 4 \\ I & 3 & -2 \\ -I & 0 & 5 \end{pmatrix}$

$$f(x) = (x^2 - 2x)(2x + 1).$$

$$f(x) = 5x^2 + 3x - 4.$$

Задача З. Найти обратную матрипу

3.1.
$$\begin{pmatrix} 2 & 2 & 3 \\ I & -I & 0 \\ -I & 2 & I \end{pmatrix}$$
 3.2. $\begin{pmatrix} I & 2 & -3 \\ I & I & 6 \\ I & 0 & 4 \end{pmatrix}$ 3.3. $\begin{pmatrix} 4 & -6 & -5 \\ -4 & 7 & -I \\ -3 & 5 & I \end{pmatrix}$

3.4.
$$\begin{pmatrix} I & -4 & -8 \\ I & -5 & -3 \\ -I & 6 & 4 \end{pmatrix}$$
 3.5. $\begin{pmatrix} 32 & I4 & -I \\ 2 & I & 0 \\ 25 & II & -I \end{pmatrix}$ 3.6. $\begin{pmatrix} I & 6 & 4 \\ I & -9 & I \\ I & 3 & -5 \end{pmatrix}$ 3.7. $\begin{pmatrix} -I2 & I7 & -43 \\ -7 & II & -24 \\ -I & -4 & 4 \end{pmatrix}$ 3.8. $\begin{pmatrix} 2 & -I & 0 \\ -I & -3 & 7 \\ 0 & 7 & -2I \end{pmatrix}$ 3.9. $\begin{pmatrix} I & 2 & I \\ 4 & 3 & -2 \\ -5 & -4 & -I \end{pmatrix}$

3.10.
$$\begin{pmatrix} -3 & 2 & 4 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 3.11. $\begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$ 3.12. $\begin{pmatrix} -2 & 3 & 1 \\ 3 & 6 & 2 \\ 1 & 2 & 1 \end{pmatrix}$

3.13.
$$\begin{pmatrix} I & -3 & -I \\ -2 & 7 & 2 \\ 3 & 2 & -4 \end{pmatrix}$$
 3.14. $\begin{pmatrix} -3 & 2 & 4 \\ 2 & I & 0 \\ I & 0 & I \end{pmatrix}$ 3.15. $\begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix}$

$$3.16. \begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 5 \\ 7 & 6 & 4 \end{pmatrix} \qquad 3.17. \begin{pmatrix} 1 & 8 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad 3.18. \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$$

$$3.19. \begin{pmatrix} 1 & 2 & 1 \\ 4 & 3 & -2 \\ -5 & -4 & -1 \end{pmatrix} \qquad 3.20. \begin{pmatrix} 4 & -8 & -5 \\ -4 & 7 & -1 \\ -3 & 5 & 1 \end{pmatrix} \quad 3.21. \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

3.22.
$$\begin{pmatrix} I & 2 & -3 \\ 0 & I & 2 \\ I & 0 & 4 \end{pmatrix}$$
 3.23. $\begin{pmatrix} I & -2 & -3 \\ 0 & I & 2 \\ 0 & 0 & 5 \end{pmatrix}$ 3.24. $\begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ I & 5 & 3 \end{pmatrix}$

3.25.
$$\begin{pmatrix} 2 & I & 0 \\ 3 & 0 & 5 \\ 7 & 6 & 4 \end{pmatrix}$$
 3.26. $\begin{pmatrix} 4 & -8 & -5 \\ -3 & 5 & I \\ -4 & 7 & -I \end{pmatrix}$ 3.27. $\begin{pmatrix} 5 & -2 & -3 \\ 2 & 5 & 7 \\ 6 & 3 & 4 \end{pmatrix}$

4.1.
$$AX = B$$
, $A = \begin{pmatrix} 8 & 2 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 7 \\ 0 & 4 & 8 \end{pmatrix}$.

4.2.
$$XA = B$$
,
$$A = \begin{pmatrix} 4 & 3 \\ I & I \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 8 \\ I & I \\ 0 & -I \end{pmatrix}.$$

4.3.
$$A \times B = C$$
, $A = \begin{pmatrix} \bar{2} & \bar{3} \\ \bar{5} & \bar{8} \end{pmatrix}$, $B = \begin{pmatrix} \bar{5} & 4 & \bar{I} \\ \bar{I} & \bar{I} & \bar{7} \\ \bar{6} & \bar{5} & 9 \end{pmatrix}$, $C = \begin{pmatrix} \bar{I} & \bar{I} & 0 \\ 0 & \bar{I} & \bar{I} \end{pmatrix}$.

$$A = \begin{pmatrix} 2 & I \\ I & I \end{pmatrix}, \qquad B = \begin{pmatrix} I & 0 & 7 \\ 8 & I & 2 \end{pmatrix}.$$

4.4.
$$A \land = 0$$
, $A = \begin{pmatrix} 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 7 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}$.

4.6. AXB = C,
$$A = \begin{pmatrix} 4 & 3 \\ 7 & 7 \end{pmatrix}$$
 $B = \begin{pmatrix} 6 & 8 \\ 2 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 5 & 4 \\ -2 & 0 \end{pmatrix}$

4.6. AXB = C,
$$A = \begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 6 & 8 \\ 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 5 & 4 \\ -2 & 0 \end{pmatrix}$.

4.7.
$$AX = B$$
, $A = \begin{pmatrix} I & 3 & 2 \\ 3 & 8 & 5 \\ 2 & 7 & 6 \end{pmatrix}$, $B = \begin{pmatrix} I & 0 \\ 3 & I \\ 3 & -4 \end{pmatrix}$.

4.8.
$$XA = B$$
, $A = \begin{pmatrix} 4 & 3 & 6 \\ 5 & 4 & 7 \\ 6 & 5 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 2 & I & 5 \\ 0 & 0 & -I \end{pmatrix}$.

4.9. AXB=C,
$$A = \begin{pmatrix} 5 & 4 \\ 9 & 7 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & 8 & 7 \\ 8 & 9 & 6 \\ 5 & 6 & 8 \end{pmatrix}$, $C = \begin{pmatrix} -I & -I & I \\ I & I & 0 \end{pmatrix}$.

4.10.
$$AX = B$$
, $A = \begin{pmatrix} I & I & 2 \\ 2 & -I & 2 \\ 4 & I & 2 \end{pmatrix}$, $B = \begin{pmatrix} I & 5 \\ 4 & -I \\ 2 & 7 \end{pmatrix}$.

4.II.
$$XA = B$$
, $A = \begin{pmatrix} 5 & 5 & 3 \\ 3 & 4 & 2 \\ 4 & 3 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 6 & 4 & 6 \\ 0 & 3 & -5 \end{pmatrix}$.

4.12.
$$AXB=C, A = \begin{pmatrix} 3 & 8 & 2 \\ 4 & 5 & 3 \\ 5 & 4 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ -3 & -4 \end{pmatrix}, C = \begin{pmatrix} I & 2 \\ 4 & 6 \\ 4 & 7 \end{pmatrix}.$$

4.18.
$$A X = B$$
, $A = \begin{pmatrix} I & 2 & -3 \\ 0 & I & 2 \\ I & 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} I & I & I \\ 2 & -3 & I \\ 4 & I & -5 \end{pmatrix}$.

4.14.
$$XA = B$$
, $A = \begin{pmatrix} 2 & I & 3 \\ 0 & 2 & 0 \\ I & 4 & 5 \end{pmatrix}$, $B = \begin{pmatrix} I - -I & 3 \\ 4 & 2 & 0 \\ I & 4 & 5 \end{pmatrix}$.

4.15.
$$A \times B = C$$
, $A = \begin{pmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -I & 2 \\ 3 & -5 \end{pmatrix}$, $C = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$.

4.76.
$$XAB=C$$
, $A=\begin{pmatrix} 3 & -2 \\ I & -I \end{pmatrix}$, $B=\begin{pmatrix} 3 & 2 \\ I & 4 \end{pmatrix}$, $C=\begin{pmatrix} 2 & I \\ 4 & -3 \end{pmatrix}$.

4.17.
$$A \times B = C$$
, $A = \begin{pmatrix} 4 & 5 \\ -5 & -6 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 8 \\ -2 & -3 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 4 \\ -3 & -4 \end{pmatrix}$.

4.18.
$$XA = B$$
, $A = \begin{pmatrix} 2 & 4 & 5 \\ 3 & -I & I \\ I & I & I \end{pmatrix}$, $B = \begin{pmatrix} I & 5 & I \\ -3 & -I & -I \\ 2 & 5 & 3 \end{pmatrix}$.

4.19.
$$A \times B = C$$
, $A = \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$, $C = \begin{pmatrix} 14 & 16 \\ 9 & 10 \end{pmatrix}$

4.20.
$$A \times = B$$
, $A = \begin{pmatrix} I & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -I & 0 \end{pmatrix}$, $B = \begin{pmatrix} I & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix}$.
4.21. $X = B$, $A = \begin{pmatrix} 5 & 3 & I \\ I & -3 & -2 \\ -5 & 2 & I \end{pmatrix}$, $B = \begin{pmatrix} -8 & 3 & 0 \\ -5 & 9 & 0 \\ -2 & I5 & 0 \end{pmatrix}$.

4.22.
$$A \times B = C$$
, $A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -5 & 9 & 0 \\ -2 & 15 & 0 \end{pmatrix}$.

4.28.
$$A \times = B$$
, $A = \begin{pmatrix} I & I & I \\ I & 2 & 3 \\ I & 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} I & I & 2 \\ I & I & 2 \\ I & I & 2 \end{pmatrix}$.

4.24.
$$X A = B$$
, $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 7 & 2 \\ 5 & 4 & 2 \end{pmatrix}$. $B = \begin{pmatrix} 10 & 3 & 3 \end{pmatrix}$.

4.25.
$$A \times B = C$$
, $A = \begin{pmatrix} I & 2 \\ -3 & -5 \end{pmatrix}$, $B = \begin{pmatrix} I & 3 \\ -I & -2 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 4 \\ -6 & -II \end{pmatrix}$.

4.26.
$$AX = B$$
, $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$ $B = \begin{pmatrix} I & 0 \\ 3 & I \\ -3 & -4 \end{pmatrix}$.

4.27.
$$XA = B$$
, $A = \begin{pmatrix} I & I & -I \\ 2 & I & 0 \\ I & -I & I \end{pmatrix}$, $B = \begin{pmatrix} I & -I & 3 \\ 4 & 3 & 2 \\ I & -2 & 5 \end{pmatrix}$

4.28.
$$X \land B = C$$
, $A = \begin{pmatrix} 2 & 2 \\ 3 & 1 \\ 4 & 1 \end{pmatrix}$ $B = \begin{pmatrix} -1 & 4 \\ 2 & -7 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -2 \end{pmatrix}$.

4.29.
$$AX = B$$
, $A = \begin{pmatrix} 5 & -6 & 4 \\ 3 & -8 & 2 \\ 4 & -5 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

4.30.
$$XA = B$$
, $A = \begin{pmatrix} 5 & 3 & 4 \\ -6 & -3 & -5 \\ 4 & 2 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$.

$$\begin{pmatrix}
1 & 5 & 4 & 2 \\
0 & 2 & 7 & 1 \\
3 & 4 & 1 & 2 \\
-1 & 1 & 2 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -3 & 5 & -7 \\
8 & -5 & 7 & -1 \\
5 & -7 & 1 & -3 \\
7 & -1 & 3 & -5
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 4 & 1 & 2 \\
-1 & 1 & 2 & 3
\end{pmatrix}
\begin{pmatrix}
3 & -7 & 1 & -3 \\
7 & -1 & 3 & -5
\end{pmatrix}$$
5.7.
$$\begin{pmatrix}
1 & 2 & 3 & 6 \\
2 & 3 & 1 & 6 \\
3 & 1 & 2 & 6
\end{pmatrix}
\begin{pmatrix}
5 .8. \begin{pmatrix}
1 & 2 & 1 & 3 & 4 \\
3 & 4 & 2 & 6 & 8 \\
1 & 2 & 1 & 3 & 4
\end{pmatrix}$$
7 - 753

5.9. $\begin{pmatrix} 1 & 3 & 5 & 7 & 9 \\ 1 & -2 & 3 & -4 & 5 \\ 2 & II & I2 & 25 & 22 \end{pmatrix}$	5.IO. $ \begin{pmatrix} 7 & -\mathbf{I} & 3 & 6 \\ \mathbf{I} & 3 & 5 & 7 \\ 4 & \mathbf{I} & 4 & 6 \\ 3 & -2 & -\mathbf{I} & -\mathbf{I} \end{pmatrix} $
$ \begin{pmatrix} \mathbf{I} & 2 & 3 & \mathbf{I} \\ 2 & 3 & \mathbf{I} & 3 \\ 3 & \mathbf{I} & 2 & 5 \\ 2 & 2 & 2 & 3 \end{pmatrix} $	$ \begin{pmatrix} I & I & I & I \\ I & 2 & I & 2 \\ 3 & I & 3 & I \\ 0 & I & I & 0 \end{pmatrix} $
5.I3. $ \begin{pmatrix} 2 & 2 & 2 & 3 \\ 2 & 1 & 4 & 5 \\ 1 & 0 & 1 & 2 \\ 1 & 2 & 4 & 0 \end{pmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5.15. $ \begin{pmatrix} 2 & 3 & 5 & -3 & -2 \\ 3 & 4 & 3 & -1 & -3 \\ 5 & 6 & -1 & 3 & -5 \end{pmatrix} $	5.16. 2 1 2 3 1 -1 0 2 1 5 4 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.18. $ \begin{pmatrix} I & 2 & 3 & 4 \\ 3 & -I & 2 & 5 \\ 4 & I & 5 & 9 \end{pmatrix} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} 4 & 1 & 2 & 5 \\ -1 & 1 & 3 & 8 \\ 2 & 0 & 1 & 3 \\ 5 & 2 & 6 & 16 \end{pmatrix} $
5.2I. (I 2 5 8 -I 3 -I 2 I I2 I3 I3 I 7 9 8)	5.22. (-I 0 I 2 2 I 0 3 0 2 4 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{pmatrix} 0 & 3 & -I & -I & 2 & 5 \\ I & 2 & 2 & -I & 0 & I \\ $	5.26. $ \begin{pmatrix} 23 & \text{II} & 2 & 3 \\ \text{I3} & \text{I5} & 9 & 7 \\ 2 & -4 & -7 & -4 \\ \text{I9} & 3 & -\text{I2} & -5 \end{pmatrix} $

$$\begin{pmatrix}
0 & 4 & \text{IO} & \text{I} \\
4 & 8 & \text{I8} & 7 \\
\text{IO} & \text{I8} & 40 & \text{I7} \\
\text{I} & 7 & \text{I7} & 8
\end{pmatrix}$$

$$\begin{pmatrix}
2 & \text{I} & \text{II} & 2 \\
\text{I} & 0 & 4 & -\text{I} \\
\text{II} & 4 & 56 & 5 \\
2 & -\text{I} & 5 & -6
\end{pmatrix}$$

5.29.
$$\begin{pmatrix} 1 & 2 & -1 & 4 & -3 \\ 5 & 1 & 2 & 4 & 8 \\ 7 & 5 & 0 & 12 & -3 \\ 2 & -5 & 5 & 8 & 12 \end{pmatrix}$$
 5.30.
$$\begin{pmatrix} -2 & 1 & 3 & -4 \\ 1 & 0 & -1 & 1 \\ 3 & 1 & 0 & -3 \\ -7 & 0 & 3 & 1 \end{pmatrix}$$

Задача 6. Решить систему а) - матричным методом;

6.I.
$$\begin{cases} x_1 + x_2 - x_3 = 0, \\ 2x_1 + x_2 + 2x_3 = 10, \\ x_1 - 3x_2 + x_3 = -2, \end{cases}$$
6.2.
$$\begin{cases} 2x_1 + x_2 + x_3 = 2, \\ x_1 + 2x_2 + x_3 = 3, \\ x_1 + 2x_2 + 2x_3 = 1, \end{cases}$$
6.3.
$$\begin{cases} x_1 + x_2 - x_3 = 0, \\ x_1 + 2x_2 - x_3 = 3, \\ x_2 + 2x_3 = -1, \end{cases}$$
6.4.
$$\begin{cases} 3x_1 + 4x_2 - x_3 = 2, \\ 3x_1 + 2x_2 - x_3 = 2, \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 10, \\ x_1 - 3x_2 + x_3 = -2. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 = -1, \\ 2x_1 + x_2 - 4x_3 = -3, \\ 3x_1 + 2x_2 + x_3 = 1. \end{cases}$$
6.4.
$$\begin{cases} 3x_1 + 4x_2 - x_3 = -2, \\ 5x_1 + 3x_2 - 4x_3 = -2, \\ 4x_1 + 2x_2 + 3x_3 = 5. \end{cases}$$
6.5.
$$\begin{cases} 2x_1 - x_2 + 3x_3 = -4, \\ x_1 + 2x_2 - 4x_3 = 19, \\ -3x_1 + 4x_2 + 2x_3 = 3. \end{cases}$$
6.6.
$$\begin{cases} 3x_1 - 2x_2 + 4x_3 = -17, \\ 4x_1 + 3x_2 - 2x_3 = 18, \\ 3x_1 + x_2 + 3x_3 = -7. \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 = -4, \\ x_1 + 2x_2 - 4x_3 = 19, \\ -3x_1 + 4x_2 + 2x_3 = 3. \end{cases}$$

$$\begin{cases} 4x_1 + 3x_2 - 2x_3 = 18, \\ 3x_1 + x_2 + 3x_3 = -1, \\ 6.8, \begin{cases} x_2 + 2x_3 - 2x_3 = -3, \\ x_3 + x_4 + 2x_3 = -3, \end{cases}$$

6.7.
$$\begin{cases} x_1 + x_2 - x_3 = 4, \\ 2x_1 + x_1 + 2x_2 = 2, \\ 3x_1 - x_2 + x_3 = 0. \end{cases}$$
6.8.
$$\begin{cases} x_1 + 2x_2 - 2x_3 = -3, \\ 2x_1 + x_2 + 3x_3 = 8, \\ 3x_1 - 4x_2 + x_3 = 5. \end{cases}$$

6.9.
$$\begin{cases} x_1 + 3x_2 - x_3 = 0, \\ 2x_1 - 4x_2 + 4x_3 = 6, \\ 3x_1 + 2x_2 + x_3 = 4. \end{cases}$$
6.10.
$$\begin{cases} 2x_1 + 3x_2 - 3x_3 = 2, \\ x_1 - 4x_2 + 5x_3 = 2, \\ 3x_1 + 4x_2 - 5x_3 = 4. \end{cases}$$

6.9.
$$\begin{cases} x_1 + 3x_2 - x_3 = 0, \\ 2x_1 - 4x_2 + 4x_3 = 6, \\ 3x_1 + 2x_2 + x_3 = 4. \end{cases}$$
6.10.
$$\begin{cases} 2x_1 + 3x_2 - 3x_3 = 2, \\ x_1 - 4x_2 + 5x_3 = 2, \\ 3x_1 + 4x_2 - 3x_3 = 4, \\ 4x_1 + 5x_2 - 3x_3 = 4, \\ 2x_1 + 5x_2 - 4x_3 = 2. \end{cases}$$
6.10.
$$\begin{cases} 2x_1 + 3x_2 - 3x_3 = 2, \\ x_1 - 4x_2 + 5x_3 = 2, \\ 3x_1 + 4x_2 - 5x_3 = 4, \\ 4x_1 + 5x_2 - 4x_3 = 2. \end{cases}$$
6.11.
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 2, \\ x_2 + 2x_3 = 2, \\ x_3 + 2x_3 = 2, \\ x_4 + 2x_3 = 2, \\ x_5 + 2x_5 = 2, \end{cases}$$
6.12.
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 2, \\ x_2 + 2x_3 = 2, \\ x_3 + 2x_3 = 2, \\ x_4 + 2x_3 = 2, \\ x_5 + 2x_5 = 2, \end{cases}$$

6.13.
$$\begin{cases} 3x_1 + x_2 + 2x_3 = -2, \\ x_1 + 3x_2 + 2x_3 = 2, \\ 2x_1 + x_2 - x_3 = -1. \end{cases}$$
6.14.
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0, \\ 7x_1 + x_2 + 4x_3 = 0, \\ x_2 + 5x_3 = 4. \end{cases}$$

6.15.
$$\begin{cases} x_{1} - x_{2} + x_{3} = 1, \\ 2x_{1} + 2x_{2} = 4, \\ 3x_{1} + 2x_{2} = 5. \end{cases}$$

6.16.
$$\begin{cases} 2x_1 + x_2 + x_3 = 2, \\ 5x_1 + 3x_2 + 2x_3 = 5, \\ x_1 - x_2 + x_3 = -3. \end{cases}$$

6.17.
$$\begin{cases} x_1 + 2x_2 + x_3 = 2, \\ 2x_1 + 3x_2 = -13, \\ 3x_1 - 3x_2 - 4x_3 = 0. \end{cases}$$

6.18.
$$\begin{cases} 3x_1 + x_2 + x_3 = 4, \\ x_1 + 3x_2 + x_3 = 6, \\ x_1 + x_2 + 3x_3 = 0. \end{cases}$$

$$\begin{cases} x_1 + 3x_2 & = 6, \\ x_1 - x_2 - x_3 = 0, \\ 2x_1 + 2x_2 + 3x_3 = -2. \end{cases}$$

$$\begin{cases} 3x_1 + 3x_2 + 4x_3 = 4, \\ 5x_1 - 7x_2 + 8x_3 = 20, \\ 4x_1 + 5x_2 - 7x_3 = -8. \end{cases}$$

6.21.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 4, \\ 2x_1 - x_2 + 2x_3 = 1, \\ x_1 + 3x_2 + x_3 = 4. \end{cases}$$

6.22.
$$\begin{cases} x_1 - 2x_2 + x_3 = 4, \\ 3x_1 + x_1 + 2x_3 = 3, \\ 3x_1 + 8x_2 - 3x_3 = 8. \end{cases}$$

6.23.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 8, \\ 3x_1 + x_2 - 2x_3 = 7, \\ 2x_1 + 5x_2 - 3x_3 = -12. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 7, \\ 5x_1 + x_2 - x_3 = 4, \\ 2x_1 - 7x_2 - 3x_3 = -11. \end{cases}$$

5.25.
$$\begin{cases} 3x_1 + x_2 - 2x_3 = -2, \\ x_1 + 2x_2 + 3x_3 = 7, \\ 2x_1 + 5x_2 + x_3 = 1. \end{cases}$$

6.26.
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 3, \\ 2x_1 + 3x_2 - x_3 = 13, \\ 3x_1 - x_2 - 2x_3 = 8. \end{cases}$$

6.27.
$$\begin{cases} x_1 + 2x_2 + x_3 = 4, \\ 3x_1 - x_2 + 4x_3 = 3, \\ 2x_1 + 5x_2 + 6x_3 = 6. \end{cases}$$

6.28.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 1, \\ 5x_1 - 2x_2 - 3x_3 = 5, \\ 3x_1 + x_2 + x_3 = 7. \end{cases}$$

6.29.
$$\begin{cases} x_1 + x_2 + x_3 = 2, \\ 2x_1 + x_2 - 2x_3 = -3, \\ 3x_1 - 2x_2 + x_3 = 7. \end{cases}$$

6.30.
$$\begin{cases} x_1 - 2x_2 + 2x_3 = -2, \\ 2x_1 + x_2 + 3x_3 = 10, \\ 3x_1 - 4x_2 + 6x_3 = 0. \end{cases}$$

Задача 7. Доказать разрешимость системы линейных алгебраических уравнений с данной расширенной матриней и найти общее решение системы.

7.3.
$$\begin{pmatrix} I & I & -3 & 0 & 2 \\ I & -I & I & 2 & -I \\ 3 & 3 & -9 & 0 & 6 \\ I & 2 & -5 & -I & 3 \end{pmatrix}$$
7.4.
$$\begin{pmatrix} I & -2 & 0 & I & -3 \\ 3 & -I & -2 & 0 & I \\ 2 & I & -2 & -I & 4 \\ I & 3 & -2 & -2 & 7 \end{pmatrix}$$

7.5.
$$\begin{pmatrix} \mathbf{I} & 2 & 3 & 4 & 0 \\ 7 & \mathbf{I4} & 20 & 27 & 0 \\ 5 & \mathbf{I0} & \mathbf{I6} & \mathbf{I9} & -2 \\ 3 & 5 & 6 & \mathbf{I3} & 5 \end{pmatrix} \qquad \begin{array}{c} 7.6. & \begin{pmatrix} \mathbf{I} & 2 & 3 & | \mathbf{I4} \\ 3 & 2 & \mathbf{I} & | \mathbf{I0} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & | 6 \\ \mathbf{I} & \mathbf{I} & 0 & | 3 \end{pmatrix}$$

7.9.
$$\begin{pmatrix} I & -I & I & -I & -2 \\ I & 2 & -2 & -I & -5 \\ 2 & -I & -3 & 2 & -I \\ I & 2 & 3 & -6 & -10 \end{pmatrix}$$
7.10.
$$\begin{pmatrix} 2 & 7 & 3 & I & 5 \\ I & 3 & 5 & -2 & 3 \\ I & 5 & -9 & 8 & I \\ 5 & I8 & 4 & 5 & I2 \end{pmatrix}$$

7.II.
$$\begin{pmatrix} 3 & 2 & 4 & 4 & 5 & 2 \\ 7 & 5 & 9 & 8 & 9 & 3 \\ 5 & 3 & 7 & 9 & 4 & 3 \\ 6 & 5 & 7 & 5 & -5 & -3 \end{pmatrix}$$
 7.I2.
$$\begin{pmatrix} 5 & I & -3 & -6 \\ 2 & -5 & 7 & 9 \\ 4 & 2 & -4 & -7 \\ 5 & -2 & 2 & I \end{pmatrix}$$

7.15.
$$\begin{pmatrix} 2 & 3 & 4 & 3 & 0 \\ 4 & 6 & 9 & 8 & | & -8 \\ 6 & 9 & 9 & 4 & | & 8 \end{pmatrix}$$
7.16.
$$\begin{pmatrix} 2 & -1 & 1 & -1 & | & 1 \\ 2 & -1 & 0 & -8 & | & 2 \\ 3 & 0 & -1 & 1 & | & -3 \\ 2 & 2 & -2 & 5 & | & -6 \end{pmatrix}$$
7.17.
$$\begin{pmatrix} 5 & 3 & 4 & -2 & 3 & | & 1 \\ 8 & 5 & 5 & -4 & 4 & | & 2 \\ 7 & 4 & 7 & -3 & 7 & | & -1 \\ 4 & 3 & -1 & -3 & -2 & | & 4 \end{pmatrix}$$
7.18.
$$\begin{pmatrix} 1 & -2 & 3 & -4 & | & 4 \\ 0 & 1 & -1 & 1 & | & -3 \\ 1 & 3 & 0 & -3 & | & 1 \\ 0 & -7 & 3 & 1 & | & -3 \end{pmatrix}$$
7.19.
$$\begin{pmatrix} 1 & 2 & 3 & -2 & | & 4 \\ 2 & -1 & 2 & -3 & | & 1 \\ 1 & 3 & 1 & 2 & | & 4 \\ 4 & 4 & 6 & -3 & | & 9 \end{pmatrix}$$
7.20.
$$\begin{pmatrix} 1 & -3 & 2 & -1 & | & III \\ 2 & 1 & -3 & 4 & | & -5 \\ 2 & -13 & 11 & -8 & | & 49 \\ 4 & 9 & -13 & 14 & | & -37 \end{pmatrix}$$
7.21.
$$\begin{pmatrix} 1 & 2 & -3 & 4 & -1 & | & 2 \\ 5 & 1 & 3 & 4 & 2 & | & 12 \\ 7 & 5 & -3 & 12 & 0 & | & 16 \\ 2 & -5 & 12 & 8 & 5 & | & 6 \end{pmatrix}$$
7.22.
$$\begin{pmatrix} 3 & 2 & 1 & 1 & | & 7 \\ 5 & 1 & -1 & 2 & | & 4 \\ 1 & -3 & -2 & -5 & | & 2 \\ 2 & -7 & -3 & -4 & | & -1II \end{pmatrix}$$
7.28.
$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 2 & 1 & -2 & -2 & 1 & | & 3 \\ 3 & -2 & 1 & -3 & | & 3 \end{pmatrix}$$
7.26.
$$\begin{pmatrix} 1 & -2 & 3 & 2 & | & -2 \\ 2 & 1 & -2 & 3 & | & 10 \\ 3 & -4 & 1 & 6 & 0 \\ 1 & 2 & 2 & 1 & | & 9 \end{pmatrix}$$
7.27.
$$\begin{pmatrix} 1 & 2 & 3 & -1 & | & 1 \\ 1 & -2 & 1 & -1 & | & 1 \\ 2 & 3 & 1 & 1 & | & 1 \\ 2 & 2 & 2 & -1 & | & 1 \end{pmatrix}$$
7.28.
$$\begin{pmatrix} 2 & 1 & -1 & 1 & | & 1 \\ 1 & -1 & 1 & 1 & -2 & | & 0 \\ 3 & 3 & -3 & -3 & 4 & | & 2 \\ 4 & 5 & -5 & -5 & 7 & | & 3 \end{pmatrix}$$
7.29.
$$\begin{pmatrix} 3 & 4 & -5 & 7 & | & 1 & \\ 2 & -3 & 3 & -2 & | & -1 \\ 4 & 1 & -13 & 16 & | & 2 \\ 7 & -3 & 1 & 3 & | & 3 \end{pmatrix}$$
7.30.
$$\begin{pmatrix} 3 & 1 & 1 & -2 & 3 & | & 4 \\ 2 & 3 & -2 & 1 & -4 \\ 4 & 5 & -5 & -5 & 7 & | & 3 \\ 1 & -2 & 3 & -3 & 7 & | & -1 \end{pmatrix}$$

Запача 8. Найти фундаментальную систему решений и общее реше-

$$\begin{pmatrix}
\mathbf{I} & \mathbf{I} & -\mathbf{3} & 0 \\
\mathbf{I} & -\mathbf{I} & \mathbf{I} & 2 \\
\mathbf{3} & \mathbf{3} & -\mathbf{9} & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{4.7} & 0 & 0 & \mathbf{I} \\
\mathbf{I} & -\mathbf{I} & -\mathbf{I} & -2 \\
\mathbf{5} & -\mathbf{I} & -\mathbf{3} & -2
\end{pmatrix}$$

8.3.
$$\begin{pmatrix} I & I & I \\ 2 & 3 & 8 \\ 3 & -I & -I \end{pmatrix}$$
 8.4. $\begin{pmatrix} I & I & -I & I \\ I & -I & I & -I \\ 3 & I & -I & I \\ 3 & -I & I & -I \end{pmatrix}$

8.5.
$$\begin{pmatrix} I & -2 & I \\ 2 & -I & -I \\ -2 & 4 & -2 \end{pmatrix}$$
8.6.
$$\begin{pmatrix} 3 & 4 & 3 & 2 \\ 5 & 7 & 4 & 3 \\ 4 & 5 & 5 & 3 \\ 5 & 6 & 7 & 4 \end{pmatrix}$$

8.7.
$$\begin{pmatrix} 3 & 5 & 2 & 4 \\ 5 & 4 & 3 & 5 \\ 9 & 2 & 5 & 7 \\ 5 & -9 & 2 & 0 \end{pmatrix}$$
8.8.
$$\begin{pmatrix} 2 & 3 & -I & 5 \\ 3 & -I & 2 & -7 \\ 4 & I & -3 & 6 \\ I & -2 & 4 & -7 \end{pmatrix}$$

8.9.
$$\begin{pmatrix} 3 & 4 & -5 & 7 \\ 2 & -3 & 3 & -2 \\ 4 & \text{II} & -\text{I3} & \text{I6} \\ 7 & -2 & \text{I} & 3 \end{pmatrix}$$
8.10.
$$\begin{pmatrix} \text{I} & -2 & \text{I} & -\text{I} & \text{I} \\ 2 & \text{I} & -\text{I} & 2 & -8 \\ 3 & -2 & -\text{I} & \text{I} & -2 \\ 2 & -5 & \text{I} & -2 & 2 \end{pmatrix}$$

8.II.
$$\begin{pmatrix} 3 & 2 & I & 0 \\ 0 & 3 & 2 & I \\ 3 & -4 & -3 & -2 \end{pmatrix}$$
 8.I2.
$$\begin{pmatrix} I & I & I & I \\ I & I & -I & -2 \\ I & I & -9 & -I4 \\ I & I & -7 & -II \end{pmatrix}$$

8.13.
$$\begin{pmatrix} I & -3 & 4 & -8 \\ I & 4 & -7 & I3 \\ 2 & I & -3 & 5 \end{pmatrix}$$
 8.14.
$$\begin{pmatrix} I & -2 & I & -I & I \\ I & 8 & -2 & 8 & -4 \\ 2 & -5 & I & -2 & 2 \\ 4 & -4 & 0 & 0 & I \end{pmatrix}$$

8.15.	3 I 1 -3 3 -2	-3 5 4 -8 I -3	8.16. $ \begin{pmatrix} 2 & -I & 5 & 7 \\ 4 & -2 & 7 & 5 \\ 2 & -I & I & -5 \end{pmatrix} $
8.17.	$ \begin{pmatrix} 2 & 3 \\ 3 & 4 \\ 3 & I \end{pmatrix} $	5 6 6 7 I 4	8.I8. $\begin{pmatrix} 8 & -5 & -6 & 3 \\ 4 & -I & -3 & 2 \\ I2 & -7 & -9 & 5 \end{pmatrix}$
8.19.	$\begin{pmatrix}\mathbf{I} & \mathbf{I} \\ \mathbf{I} & 5 \\ \mathbf{I} & 5 \\ \mathbf{I} & 5 \end{pmatrix}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{pmatrix} \mathbf{I} & 3 & 2 \\ 2 & -\mathbf{I} & 3 \\ 3 & -5 & 4 \\ \mathbf{I} & 17 & 4 \end{pmatrix} $
8.21.	I I I 4 -2 2 4 -	0 -3 -I 2 -I 0 6 3 -4 2 4 -7	$ \begin{pmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & 0 \\ 3 & 2 & \mathbf{I} & \mathbf{I} & -3 \\ 0 & \mathbf{I} & 2 & 2 & 6 \\ 5 & 4 & 3 & 3 & -\mathbf{I} \end{pmatrix} $
8.23.	$\begin{pmatrix} 0 & I \\ I & I \\ 2 & 2 \end{pmatrix}$	I I I 2 I 3 2)	$\begin{pmatrix} -I & I & I & I \\ I & 0 & I & I \\ I & I & I & I \\ 2 & 2 & 2 & 2 \end{pmatrix}$
8.25,	$\begin{pmatrix} 3 & 3 \\ 1 & \overline{1} \\ 1 & 3 \end{pmatrix}$	I I I 3 I 4 2	8.26. $\begin{pmatrix} 3 & -2 & 5 & 4 \\ 9 & -6 & 9 & 7 \\ 3 & -2 & -I & -I \end{pmatrix}$
8.27.	$\begin{pmatrix} \mathbf{I} & \mathbf{I} \\ 0 & \mathbf{I} \\ 3 & 3 \\ \mathbf{I} & \mathbf{I} \end{pmatrix}$	I I Z Z Z I I I I I I I I I I I I I I I	8.28. $ \begin{pmatrix} I & -I & 0 & -I & 2 \\ I & I & -I & -3 & 4 \\ 6 & 0 & -I & 0 & -2 \\ 4 & 0 & -I & -2 & 2 \end{pmatrix} $
8.29.	3 I 3 I	I -2 -2 3 5 2 2 -I 8 0 I 4	8.30. $ \begin{pmatrix} 2 & -4 & 5 & 3 \\ 3 & -6 & 4 & 2 \\ 4 & -8 & 17 & 11 \end{pmatrix} $

Запача 9. Составить программу решения системы линейных уравнений Ax = 6 итерационным методом Гаусса — Зейделя (см. прил. I). Для иннейной системы, заданной расширенной матрицей, проверить выполнение достаточного условия сходимости итерационного процесса. С помощью ЗЕМ найти решение системы методом Гаусса — Зейделя. Итерации продолжать до совпедения в двух последовательных приближениях трех десятичных знаков.

9.I.
$$\begin{pmatrix} 2 & -I & 2 & | & 2 \\ -I & 3 & 0 & | & I \\ 2 & 0 & 4 & | & -2 \end{pmatrix}$$
9.2.
$$\begin{pmatrix} 2 & -I & I & | & 5 \\ I & 3 & -2 & | & 7 \\ I & 2 & 3 & | & 10 \end{pmatrix}$$
9.3.
$$\begin{pmatrix} 10 & 0 & -7 & | & 7 \\ -3 & 6 & 2 & | & 4 \\ 2 & -I & -7 & | & 6 \end{pmatrix}$$
9.4.
$$\begin{pmatrix} 4 & 0.24 & -0.08 & | & 8 \\ 0.09 & 3 & -0.15 & | & 9 \\ 0.04 & -0.08 & 4 & | & 20 \end{pmatrix}$$
9.5.
$$\begin{pmatrix} 2 & -I & I & | & -3 \\ 3 & 5 & -2 & | & I \\ I & -4 & 10 & | & 0 \end{pmatrix}$$
9.6.
$$\begin{pmatrix} 10 & I & I & | & I2 \\ 2 & 10 & I & | & I3 \\ 2 & 2 & 10 & | & I4 \end{pmatrix}$$
9.7.
$$\begin{pmatrix} 5 & -I & I & | & 9.13 \\ -I & 4 & -I & | & 43 \\ 2 & -I & -5 & | & 25 \end{pmatrix}$$
9.8.
$$\begin{pmatrix} 36.47 & 5.28 & 6.34 & | & 12.26 \\ 7.33 & 28.74 & 5.86 & | & 15.15 \\ 4.63 & 6.31 & 26.17 & | & 25.22 \end{pmatrix}$$
9.9.
$$\begin{pmatrix} 10 & -2 & -2 & | & 6 \\ -I & 10 & -2 & | & 7 \\ -I & -I & 10 & | & 8 \end{pmatrix}$$
9.10
$$\begin{pmatrix} 3.2I & 0.7I & 0.34 & | & 6.12 \\ 0.43 & 4.1I & 0.22 & | & 5.7I \\ 0.17 & 0.16 & 4.73 & | & 7.06 \end{pmatrix}$$
9.11.
$$\begin{pmatrix} 4 & 0.24 & -0.08 & | & 8 \\ 0.09 & 3 & -0.15 & | & 9 \\ 0.04 & -0.08 & 4 & | & 20 \end{pmatrix}$$
9.12.
$$\begin{pmatrix} 8 & I & I & | & -3 \\ -I & 5 & 2 & | & 7 \\ 2 & -I & -7 & | & 10 \end{pmatrix}$$
9.13.
$$\begin{pmatrix} 6.2 & I.8 & -0.7 & | & 2.3 \\ 0.4 & 5.7 & I.3 & | & I.9 \\ 2.I & 0.7 & 3.4 & | & I.0 \end{pmatrix}$$
9.14.
$$\begin{pmatrix} 5.6 & 2.7 & -I.7 & | & 4.9 \\ 3.4 & -9.6 & -2.7 & -I4.5 \\ 0.8 & I.3 & 3.7 & | & -9.3 \end{pmatrix}$$
9.15.
$$\begin{pmatrix} 9.4 & -6.2 & -0.5 & | & 0.52 \\ 3.4 & 8.8 & 0.8 & | & -0.8 \\ 2.4 & -I.I & 3.8 & I.8 \end{pmatrix}$$
9.16.
$$\begin{pmatrix} I.02 & -0.05 & -0.10 & | & 0.795 \\ -0.II & -0.12 & I.04 & | & I.398 \end{pmatrix}$$

31

9 - 753

Запача 10. Построить полином третьен степени

$$P_{3}(X) = a_{0} + a_{1}X + a_{2}X^{2} + a_{3}X^{3},$$
 совпадающий в точках X_{i} ($i = 0,1,2,3$) со значениями функции $Y(X_{i})$:

•			P ₃ ()	$(,) = Y_i$	•			
Номер ва- риан- та	X.	X,	X ₂	X ₃	y	У,	y	У,
IO.I	0	Ī	2	3	I	3	2	-3
10.2	0	-I	2	4	4	-I	-3 7	5
10.3	. 0	-I	5	1	I	- 9	7	9
10.4	0	2	3	4	2	6	-2	8
10.5	0	5	6	7	7	-2	- 5	2
10.6	0	-5 -2	3	2	r'	4	2 -6	-3
10.7	0	2	3	4	I	2	-6	8 I
10.8	0	3	5	7,	4	-4	-3 -2	3
10.9	0	I	2	3	-I	2	-2	-I
10.10	0	-I ·	I	2	4	2 2 I	5 -I	
IO.II	0	2	3	4	2 6	7	-ī	8
10.12	0	· I	3	5	6 '	-5	Ī	3
10.13	0	1	2	4	1 2	3	_I	4 -2
10.14	0	-I	2 .	8	2 .	2	6	4
10,15	0	2	3	4	I	-2	3	I
10.16	0	_ <u>I</u>	4	5	<u>-I</u>		-	
10.17	0	-I -I	3	-4	5	IO	7	2 I I
10.18	. 0	-I	2	5 -	4	9	6 -1	7
10.19	0	I	3	4 .	-2 1	. 2	-1	<u> </u>
10.20	0	4	2	I.		. <u>2</u>	Contract of the last of the la	9
10.21	0	I	2	4	4	. 4	6 2	-8
10.22	٠ ٥	I 2	2	3	I 6	Ī	-2	- 3
10.23	0	2	2	5		Ī	9	3
IO.24	0	-I		8	4	0	2 6	. 3
10.25	0	2	3	I	4	I	7	6
10.26	0	-I	2	3	6	I	9	5
10.27	O	I	2	4	I	0	6	5
10,28	0	I	3 2 2 -2 2 2	·. 3	I	6	9	0
10.29	0	-I	2	-3	5	8	-8	0
10.30	0	I	2	3	Đ	0	-0	~
				33				

4. ВЕКТОРНАЯ АЛГЕБРА. ЗАГАЧИ НА ПРЯМУЮ И ГЛЮСКОСТЬ С ПРИМЕНЕНИЕМ ВЕКТОРНОЙ АЛГЕЕРН

4.1. Теоретические вопросы

- I. Векторя. Линейние операции нап векторами.
- 2. Скалярное произведение, его свойства. Длина вектора. Угол потлу двумя векторами.
 - З. Определители, их свойства.
 - 4. Векторное произведение. Свойства. Геометрический смысл.
- 5. Смещанное произведение, его свойства. Геометрический омысл. Необходимое и достаточное условие компланарности трех векторов.
 - 6. Плоскость. Уравнение плоскости.
 - 7. Расстониие от точки до плоскости.
- 8. Уравнения прякой в пространстве. Нахождение точки пересечения прямой и плоскости.

4.2. Теоретические задачи и упражнения

- I. Пусты векторы \bar{a} и \bar{b} не коллинеарни и $\bar{A}\bar{B} = \sqrt{\bar{a}/2}$; $\bar{B}\bar{C} = 4(\bar{B}\bar{a} \bar{b})$; $\bar{C}\bar{D} = -4\bar{B}\bar{b}$; $\bar{D}\bar{A} = \bar{a} + \Delta\bar{b}$. Найта α и β и доказать коллинеарность векторов \overrightarrow{BC} и \overrightarrow{DA}
- 2. Разложить вектор $S = \vec{a} + \vec{b} + \vec{c}$ по трем некомпланарным векто-DAM THE THE - 20; TET-6; P= 26+30.
- З. Найти угол между единичными векторами 🐔 и 🐔 . если известно, что вектори $\vec{a} = \vec{e} + 2\vec{e}$ и $\vec{e} = 5\vec{e} - 4\vec{e}$ взаимно перпендикулярей.
 - 4. Локазать компланарность векторов а, б и с , зная, что

$$[a\vec{e}] + [\vec{e}\vec{e}] + [\vec{e}\vec{a}] = 0.$$

5. Доказать, что уравнение плоскости, проходящей через точки (x, y, Z) и (x, y, Z) перпендикулярно к плоскости Ax + By + Cz + D = O, можно записать

$$\begin{vmatrix} x_{2} & y_{1} & y_{2} & y_{1} & y_{2} & y_{1} & y_{2} & y_{3} & y_$$

6. Доказать, что уравнение плоскости, проходящей через переескаримеся прямые

$$\frac{X - X_4}{e_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1} \qquad N \qquad \frac{X - X_2}{e_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$$

можно записать

$$\begin{vmatrix} x - X_1 & y - y_1 & \overline{z} - \overline{z}_1 \\ \ell_1 & m_1 & n_1 \\ \ell_2 & m_2 & n_2 \end{vmatrix} = 0.$$

7. Доказать, что уравнения прямой, проходящей через точку (X_1, Y_1, Z_1) параллельно плоскостям $A_1 x + B_1 y + D_1 Z + D_2 = 0$ к $A_2 x + B_2 y + C_2 Z + D_2 = 0$. можно записать

$$\frac{2}{X-X_1^2} = \frac{y-y_1}{\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}} = \frac{z-E_1}{\begin{vmatrix} A_1 & C_2 \\ A_2 & C_2 \end{vmatrix}} = \frac{z-E_1}{\begin{vmatrix} A_1 & B_2 \\ A_2 & B_2 \end{vmatrix}}$$

8. Показать, что необходимым и достаточным условием принациемности двух прямых

$$\frac{X - X_1}{e_1} = \frac{y - y_1}{m_1} = \frac{z - \overline{z}_1}{n_2} \quad \text{if} \quad \frac{X - X_2}{e_2} = \frac{y - y_2}{m_2} = \frac{\overline{z} - \overline{z}_2}{n_2}$$

одной плоскости является выполнение равенства
$$\begin{vmatrix} X_2 - X_1 & Y_1 - Y_1 & Z_2 - Z_1 \\ Z_2 - X_1 & Y_1 - Y_1 & Z_2 - Z_1 \\ Z_1 & M_1 & M_2 & M_2 \end{vmatrix} = 0.$$

9. Доказать, что расстояние от точки A до прямой, проходящей через точку B и имеющей направляющий вектор \overline{S} , определяется форму лой

d= |[\$, AB] | / |\$1.

10. Дани две скрещивающиеся прямие, проходящие соответственно черев точки $A(x_1, y_1; z_1)$ и $B(x_2, y_2; z_2)$. Их направияющие векторы S и S известны. Доказать, что расстояние между ними определяется формулой

 $d = |\vec{S}, \vec{S}_2 \vec{A} \vec{B}| / |[\vec{S}, \vec{S}]|$

 $\underline{3}$ адача I. Написать разложение вектора \overline{z} по векторам $\overline{\rho}$, \overline{q} , \overline{r} .

```
I.I. \vec{x} = \{-2,4,7\}, \vec{p} = \{0,1,2\}, \vec{q} = \{1,0,1\}, \vec{r} = \{-1,2,4\}.
I.2, \vec{X} = \{6; I2; -I\}, \vec{\rho} = \{I; 3; 0\}, \vec{\sigma} = \{2; -I; I\}, \vec{r} = \{0; -I; 2\}.
I.3. \vec{X} = \{I_{i-4}, 4\}, \vec{p} = \{2; I_{i-1}\}, \vec{q} = \{0; 3; 2\}, \vec{r} = \{I_{i-1}, I\}.
I.4. \vec{X} = \{-9;5;5\}, \vec{P} = \{4; I; I\}, \vec{Q} = \{2;0;-3\}, \vec{F} = \{-I;2;I\}.
\vec{I}.5. \vec{X} = \{-5; -5; 5\}, \vec{P} = \{-2; 0; I\}, \vec{Q} = \{I; 3; -I\}, \vec{r} = \{0; 4; I\}.
I.6. \vec{\lambda} = \{13; 2; 7\} \vec{\rho} = \{5; 1; 0\}, \vec{q} = \{2; -1; 3\} \vec{r} = \{1; 0; -1\}.
I.7. \vec{X} = \{-19; -1; 7\}, \vec{p} = \{0; 1; 1\}, \vec{q} = \{-2; 0; 1\}, \vec{r} = \{3; 1; 0\}.
I.8. X = \{3; -3; 4\}, \vec{p} = \{1; 0; 2\}, \vec{q} = \{0; 1; 1\}, \vec{r} = \{2; -1; 4\}.
1.9. \vec{x} = \{3; 3; -1\}, \vec{p} = \{3; 1; 0\}, \vec{q} = \{-2; 2; 1\}, \vec{r} = \{-1; 0; 2\}.
I.IO. \vec{x} = \{-1,7,-4\}, \vec{p} = \{-1,2,1\}, \vec{q} = \{2,0,3\}, \vec{r} = \{1,1,-1\}.
I.II. \vec{X} = \{6; 5; -14\}, \vec{p} = \{1; 1; 4\}, \vec{q} = \{0; -3; 2\}, \vec{r} = \{2; 1; -1\}.
I.I2. \vec{X} = \{6; -1; 7\}, \vec{p} = \{1; -2; 0\}, \vec{q} = \{-1; 1; 3\}, \vec{r} = \{1; 0; 4\}.
I.13. \vec{X} = \{5; 15; 0\}, \vec{\rho} = \{1; 0; 5\}, \vec{q} = \{-1; 3; 2\}, \vec{\rho} = \{0; -1; 1\}.
I.I4. \vec{X} = \{2; -1; II\}, \vec{p} = \{1; 1; 0\}, \vec{q} = \{0; 1; -2\}, \vec{F} = \{1; 0; 3\}.
I.I5. \vec{x} = \{II; 5; -3\}, \vec{p} = \{I; 0; 2\}, \vec{q} = \{-I; 0; I\}, \vec{r} = \{2; 5; -3\}.
I.16. \vec{X} = \{8; 0; 5\}, \vec{p} = \{2; 0; 1\}, \vec{q} = \{1; 1; 0\}, \vec{r} = \{4; 1; 2\}.
1.17. \vec{X} = \{3; 1; 8\}, \vec{\rho} = \{0; 1; 3\}, \vec{q} = \{1; 2; -1\}, \vec{r} = \{2; 0; -1\}.
I.18. \vec{X} = \{8; 1;12\}, \vec{\rho} = \{1; 2;-1\}, \vec{q} = \{3; 0; 2\}, \vec{r} = \{-1; 1;1\}.
I_{1,19} = \{-9; -8; -3\}, \vec{P} = \{I; 4; I\}, \vec{q} = \{-3; 2; 0\}, \vec{F} = \{I; -I; 2\}.
I.20. \vec{x} = \{-5; 9; -13\}, \vec{\rho} = \{0; 1; -2\}, \vec{q} = \{3; -1; 1\}, \vec{r} = \{4; 1; 0\}.
I.2I. \vec{X} = \{-15, 5, 6\}, \vec{p} = \{0, 5, 1\}, \vec{q} = \{3, 2, -1\}, \vec{r} = \{-1, 1, 0\}.
I.22. \vec{x} = \{8; 9; 4\}, \vec{p} = \{1, 0; 1\}, \vec{q} = \{0; -2; 1\}, \vec{r} = \{1; 3; 0\}.
I.23, \vec{x} = \{23; -14; -30\}, \vec{p} = \{2; 1; 0\}, \vec{q} = \{1; -1; 0\}, \vec{r} = \{-3; 2; 5\}.
\vec{1}.24. \vec{x} = \{3; 1; 3\}, \vec{p} = \{2; 1; 0\}, \vec{q} = \{1; 0; 1\}, \vec{r} = \{4; 2; 1\}.
1.25. \vec{X} = \{-1,7,0\}, \vec{\beta} = \{0,3,1\}, \vec{q} = \{1,-1,2\}, \vec{r} = \{2,-1,0\}.
I.26. \vec{x} = \{11; -1; 4\}, \vec{\rho} = \{1; -1; 2\}, \vec{q} = \{3; 2; 0\}, \vec{r} = \{-1; 1; 1\}.
1.27. \vec{X} = \{-13; 2; 18\}, \vec{p} = \{1; 1; 4\}, \vec{q} = \{-3; 0; 2\}, \vec{r} = \{1; 2; -1\},
I.28. X = \{0; -8; 9\}, \vec{p} = \{0; -2; I\}, \vec{q} = \{3; I; -I\}, \vec{r} = \{4; 0; I\}.
```

I.29. $\vec{X} = \{8; -7; -13\}, \vec{\rho} = \{0; 1; 5\}, \vec{q} = \{3; -1; 2\}, \vec{r} = \{-1; 0; 1\}.$ I.30. $\vec{X} = \{2; 7; 5\}, \vec{\rho} = \{1; 0; 1\}, \vec{q} = \{1; -2; 0\}, \vec{r} = \{0; 3; 1\}.$ I.31. $\vec{X} = \{15; -20; -1\}, \vec{\rho} = \{0; 2; 1\}, \vec{q} = \{0; 1; -1\}, \vec{r} = \{5; -3; 2\}.$

Задача 2. Колиинеарны ли вектори \vec{c} , и \vec{c} , поотроенные по векторам \vec{d} и \vec{c} ?

2.I. $\vec{a} = \{I; -2; 3\}, \vec{b} = \{3; 0; -I\}, \vec{c} = 2\vec{a} + 4\vec{b}, \vec{c} = 3\vec{b} - \vec{d}$. 2.2. $\vec{a} = \{I; 0; I\}, \vec{b} = \{-2; 3; 5\}, \vec{c} = \vec{a} + 2\vec{b}, \vec{c} = 3\vec{a} - \vec{b}$. 2.3. $\vec{a} = \{-2; 4; I\}, \vec{b} = \{I; -2; 7\}, \vec{c} = 5\vec{a} + 3\vec{b}, \vec{c} = 2\vec{a} - \vec{b}$. 2.4. $\vec{a} = \{I; 2; -3\}, \vec{b} = \{2; -I; -I\}, \vec{c} = 4\vec{a} + 3\vec{b}, \vec{c} = 8\vec{a} - \vec{b}$.

2.5. $\vec{a} = \{3; 5; 4\}$, $\vec{e} = \{5; 9; 7\}$, $\vec{c} = 2\vec{a} + \vec{e}$, $\vec{c} = 3\vec{a} - 2\vec{e}$. 2.6. $\vec{a} = \{1; 4; -2\}$, $\vec{e} = \{1, 1, -1\}$, $\vec{c} = \vec{a} + \vec{e}$, $\vec{c} = 4\vec{a} + 2\vec{e}$.

*2.7. $\vec{a} = \{1; -2; 5\}, \vec{e} = \{3; -1; 0\}, \vec{c} = 4\vec{a} - 2\vec{e}, \vec{c} = \vec{e} - 2\vec{a}$ 2.8. $\vec{a} = \{3; 4; -1\}, \vec{e} = \{2; -1; 1\}, \vec{c}, = 6\vec{a} - 3\vec{e}, \vec{c} = \vec{e} - 2\vec{a}$ 2.9. $\vec{a} = \{-2; -3; -2\}, \vec{e} = \{1; 0; 5\}, \vec{c}, = 3\vec{a} - 9\vec{e}, \vec{c} = -\vec{a} - 3\vec{e}$

2.10. $\vec{a} = \{-1;4;2\}$, $\vec{e} = \{3;-2;6\}$. $\vec{c}, = 2\vec{a} - \vec{e}$, $\vec{c} = 3\vec{e} - 6\vec{a}$. 2.11. $\vec{a} = \{5;0;-1\}$, $\vec{e} = \{7;2;3\}$, $\vec{c}, = 2\vec{a} - \vec{e}$, $\vec{c} = 3\vec{e} + 6\vec{a}$. 2.12. $\vec{a} = \{0;3;-2\}$, $\vec{e} = \{1;-2;1\}$, $\vec{c} = 5\vec{a} - 2\vec{e}$, $\vec{c} = 3\vec{a} + 5\vec{e}$. 2.13. $\vec{a} = \{-2;7;-1\}$, $\vec{e} = \{-3;5;2\}$, $\vec{c}, = 2\vec{a} + 3\vec{e}$, $\vec{c}, = 3\vec{a} + 2\vec{e}$.

2.13. $\vec{a} = \{-2, 7, -1\}$. $\vec{e} = \{-3, 5, 2\}$. $\vec{c}_1 = 2\vec{a} + 3\vec{e}_2$, $\vec{c}_2 = 3\vec{a} + 2\vec{e}_2$ 2.14. $\vec{a} = \{3, 7, 0\}$. $\vec{e} = \{1, -3, 4\}$. $\vec{c}_1 = 4\vec{a} - 2\vec{e}_2$, $\vec{c}_2 = \vec{e} - 2\vec{a}_2$ 2.15. $\vec{a} = \{-1, 2, -1\}$. $\vec{e} = \{2, -7, 1\}$. $\vec{c}_1 = 6\vec{a} - 2\vec{e}_2$, $\vec{c}_2 = \vec{e} - 3\vec{a}_2$ 2.16. $\vec{a} = \{7, 9, -2\}$. $\vec{e} = \{5, 4, 3\}$. $\vec{c}_1 = 4\vec{a} - \vec{e}_2$, $\vec{c}_2 = 4\vec{e} - \vec{a}_2$

2.17. $\vec{a} = \{5; 0; -2\}$. $\vec{e} = \{6; 4; 3\}$. $\vec{c}_1 = 5\vec{a} - 3\vec{e}_1$, $\vec{c}_2 = 6\vec{e} - 10\vec{a}_2$.

2.18. $\vec{a} = \{8; 3; -1\}$. $\vec{e} = \{4; 1; 3\}$. $\vec{c}_1 = 2\vec{a} - \vec{e}_2$, $\vec{c}_2 = 2\vec{e} - 4\vec{a}_2$.

2.19. $\vec{a} = \{3; -1; 6\}$. $\vec{e} = \{5; 7; 10\}$. $\vec{c}_2 = 4\vec{a} - 2\vec{e}_2$, $\vec{c}_3 = \vec{e}_3 - 2\vec{a}_4$.

2.20. $\vec{a} = \{1; -2; 4\}$. $\vec{e} = \{7; 3; 5\}$. $\vec{c}_4 = 6\vec{a} - 3\vec{e}_3$, $\vec{c}_5 = \vec{e}_3 - 2\vec{a}_4$.

2.20. $\vec{a} = \{1; -2; 4\}$. $\vec{b} = \{7; 3; 5\}$. $\vec{c} = 6\vec{a} - 3\vec{b}$. $\vec{c} = 6 - 2\vec{a}$. 2.21. $\vec{a} = \{3; 7; 0\}$. $\vec{b} = \{4; 6; -1\}$. $\vec{c} = 3\vec{a} + 2\vec{b}$. $\vec{c} = 5\vec{a} - 7\vec{b}$: 2.22. $\vec{a} = \{2; -1; 4\}$. $\vec{b} = \{3; -7; -6\}$. $\vec{c} = 2\vec{a} - 3\vec{b}$. $\vec{c} = 3\vec{a} - 2\vec{b}$.

2.23. $\vec{a} = \{5; -1; -2\}, \vec{e} = \{6; 0; 7\}, \vec{c}, = 3\vec{a} - 2\vec{e}, \vec{c} = 4\vec{e} - 6\vec{a}$ 2.24. $\vec{a} = \{-9; 5; 3\}, \vec{e} = \{7; 1; -2\}, \vec{c} = 2\vec{a} - \vec{e}, \vec{c} = 3\vec{a} + 5\vec{e}$ 2.25. $\vec{a} = \{4; 2; 9\}, \vec{e} = \{0; -1; 3\}, \vec{c} = 4\vec{e} - 5\vec{a}, \vec{c} = 4\vec{a} - 3\vec{e}$

-37-

TO 4

2.26. $\vec{a} = \{2; -1; 6\}, \vec{c} = \{-1; 3; 8\}, \vec{c}, = 5\vec{a} - 2\vec{c}, \vec{c} = 2\vec{a} - 5\vec{c}$ 2.27. \$\vec{a} = \{5; 0; 8\}. \$\vec{c} = \{-8; I; 7\}. \$\vec{c} = 3\vec{a} - 4\vec{c}, \$\vec{c} = 12\vec{c} - 9\vec{a}.\$ 2.28. $\vec{d} = \{-1; 3; 4\}, \vec{e} = \{2; -1; 0\}, \vec{c} = 6\vec{a} - 2\vec{e}, \vec{c} = \vec{e} - 3\vec{a}.$ 2.29. $\vec{a} = \{4; 2; -7\}, \vec{c} = \{5; 0; -3\}, \vec{c} = \vec{a} - 3\vec{c},$ t = 5a-28. 2.30. $\vec{d} = \{2; 0; -5\}, \vec{\epsilon} = \{1; -3; 4\}, \vec{c} = 2\vec{a} - 5\vec{\epsilon},$ €,=98-12ā. c = 4a-36. 2.31, \$\vec{a} = \{-1; 2; 8\}, \$\vec{e} = \{3; 7; -1\}.

<u>Вадала В.</u> Найти косинус угла между векторами \overrightarrow{AB} и \overrightarrow{AC} . B (0: -I: 2).

(1: -2: 3).

B.I.

C (3: -4: 5).

```
C(-9:-3:-6).
                           B (-I2:-3: -3).
           (0: -3: 6).
3.2.
         A
                           B (5; 5; -2).
                                            C (4; I; I).
3.3.
         A
            (3:3:-I),
                                            C (I: I: -I).
                           B (3: 4: -6).
         A (-1:2:-3).
3.4.
                            B (-I;-2; 4).
                                            C (3; -2; I).
         A (-4: -2:0).
3.5.
                                            C (6; 4; -I).
                            B (5: 2: 0).
            (6; 3; -I).
3.6.
                                            c (2: 3: 0).
                            B (0: -I; -2).
         A (-3: -7: -5).
3.7.
                                            C (6: -8; IO).
                            B (0: -2. 4).
3.8.
           (2; -4; 6),
                                            C (4; I; I).
            (0; I; -2).
                            B (3: I; 2) .
3:9.
                                            C (4: I: I).
                            B (I; 5; -2).
            (3; 3; -I).
3.10.
         A
                                            C (4: 2; I).
                            B (6: -I: -4),
         A (2: I; -I).
3.II.
                            B (-4: -2: 5).
                                            C (-8: -2: 2).
            (-I: -2:I).
3.I2.
                                             c (7: 3: -3).
            (6; 2; -3),
                            B (6; 3; -2),
3.13.
                                             C (-5: -IO: -I).
                            B (-3: -6: I).
            (0: 0: 4).
3.14.
         A
                                             C(-2; -5; -I).
                            B (4: -6:-0).
            (2: -8: -I).
3.15.
         A
                                             C (9: -I2; I5).
                            B (0; -3; 6).
3.16.
             (3: -6: 9).
         A
                                             C (6: 2: 4).
                            B (8: 2: 2).
3.17.
            \{0: 2: -4\}
         A
                                             C (4; I; I).
                            B (5: 1:-2).
3.18.
         A
            (3: 3: -I).
                                             £ (-2; 4; -2).
                            B (0: I: 3).
         A (-4; 3; 0),
3.19.
                                             C (8: -I: -I).
                            B (-2; -I; 4).
             (I; -I; 0),
3.20.
          A
                                             C (8: -I; 2).
                            B (7; I; 3),
            (7; 0; 2).
3.2I.
          A
                                             C(-3; -7; -3).
                            B(-1; -3; -1),
3.22.
          A (2; 3; 2).
                                             C (-2: 5: 7).
                            B (0: 0: 6).
3,23,
          A (2: 2: 7).
                            B (0; 1; -2).
                                             C (-3; 4; -5).
            (-I; 2; -3),
3.24.
          A
                                             C (I2; 3; 3).
                            B (9. 3: 6).
3.25.
             (0:3:-6).
          A
                            B (5; I; -2).
                                             C (4; I; -3).
             (3:3:-1).
3.26.
                                             C (0: 0: 3).
                            B (2: 3: -2),
3.27.
            (-2; I; I),
          A
                            B (-2; 4; -5),
                                             C (8; 4; 0).
            (I: 4: -I).
3.28.
          A
                                             C (1: 2; 0).
                            B (0; 2; 1),
             (0; I; 0).
 3,29.
          A
                                             C (I; IO; 9).
                            B (-Ī; 6; 7),
             (-i:0:4).
 3.30.
          ٨
                                             C (-6; 8; -IO).
                            B (0; 2; -4).
             (-2:4:-6),
 3.3I.
```

<u> Задача 4.</u> Внуислить площадь параллелограмма, построенного на векторах 2 и 6 .

4.I. \$\vec{a} = \vec{p} + 2\vec{q}\$, \$\vec{e} = 3\vec{p} - \vec{q}\$; \$\vec{p} | \vec{p} | = 1, | \vec{q} | = 2, (\vec{p}, \vec{q}) = \vec{x}/6. まー戸-2ず、1戸1=4、1ず1=1、(戸、す)=ボ/4、 4.2. a = 3\$+\$, $\vec{\xi} = \vec{p} + 2\vec{q}$; $|\vec{p}| = 1/5, |\vec{q}| = 1, (\vec{p}, \vec{q}) = \pi/2.$ 4.3. a = \$-34, を= 戸・5年; | 戸|=4, |す|=1/2, (戸,す)=5元/6 4.4. $\vec{a} = 3\vec{\rho} - 2\vec{q}$, 4.5. \$\vec{a} = \vec{p} - 2\vec{q}, \vec{b} = 2\vec{p} + \vec{q}; |\vec{p}| = 2, |\vec{q}| = 3, (\vec{p}, \vec{q}) = 3\vec{\pi}/4. $\vec{\xi} = \vec{p} - 2\vec{q}$; $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p}, \vec{q}) = \pi/3$. 4.6. $\vec{a} = \vec{p} + 3\vec{q}$, $(\vec{p},\vec{q}) = \pi/2$ €= \$+34; | \$| =3, |4|=2, 4.7. a = 2p-4, 4.8. $\vec{a} = 4\vec{p} + \vec{q}$, $\vec{b} = \vec{p} - \vec{q}$; $|\vec{p}| = 7$, $|\vec{q}| = 2$, $(\vec{p}, \vec{q}) = E/4$. 4.9. \$\vec{a} = \vec{p} - 4\vec{q}\$, \$\vec{e} = 3\vec{p} + \vec{q}\$, \$|\vec{p}| = 1, \$|\vec{q}| = 2, $(\vec{p},\vec{q}) = \pi/6$. ま・2声・す; (声)=7, 1年1=2, $(\overline{p}, \overline{q}) = \overline{x}/3.$ 4.10. $\vec{a} = \vec{p} + 4\vec{q}$, (p, t) = X/2. まますす; 1月=10,1引=1, 4.II. $\vec{a} = 3\vec{p} + 2\vec{q}$, 4.12. \$\vec{a} = 4\vec{p} - \vec{q}\$, \$\vec{b} = \vec{p} + 2\vec{q}\$; \$|\vec{p}| = 5\$, \$|\vec{q}| = 4\$, \$(\vec{p}, \vec{q}) = \vec{\vec{x}}/4\$. 4.18. $\vec{a} = 2\vec{p} + 3\vec{q}$, $\vec{b} = \vec{p} - 2\vec{q}$; $|\vec{p}| = 6$, $|\vec{q}| = 7$, $(\vec{p}, \vec{q}) = \pi/3$. 夏=声+2年、1月=3、1年=4、(戸、年)=五/3 4.14. a = 35-4, 4.15. $\vec{a} = 2\vec{p} + 3\vec{q}$, $\vec{b} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p}, \vec{q}) = \mathcal{I}/4$. 4.16. \$\vec{a} = 2\vec{p} - 3\vec{q}, \vec{c} - 5\vec{p} + \vec{q}; |\vec{p}| = 4, |\vec{q}| = 1, (\vec{p}, \vec{q}) = \vec{\pi}/6. (p,q)=X/3. 夏=戸-3年; |戸|=1, 1年|=2, 4.17. a = 5p+q, $\vec{\xi} = \vec{p} + 3\vec{q}$; $|\vec{p}| = 1/2$, $|\vec{q}| = 2$, $(\vec{p}, \vec{q}) = \pi/2$. 4.18. a = 15-29, $(\vec{p},\vec{q}) = \pi/4$. 4.19. \$\vec{a} = 6\vec{p} - \vec{q}\$, \$\vec{6} = \vec{p} + \vec{q}\$; |F1=3, 191=4, 4.20. \$\vec{a} = 10\vec{p} + \vec{q}\$, \$\vec{b} = 3\vec{p} - 2\vec{q}\$; \$|\vec{p}| = 4, \$|\vec{q}| = 1, $(\vec{\beta},\vec{q}) = \pi/6.$ 4.21. $\vec{a} = 6\vec{p} - \vec{q}, \vec{b} = \vec{p} + 2\vec{q}; |\vec{p}| = 8, |\vec{q}| = 1/2, (\vec{p}, \vec{q}) = \pi/3.$ 4.22. \$\vec{a} = 3\vec{p} + 4\vec{q}\$, \$\vec{b} = \vec{p} - 2\vec{q}\$; \$|\vec{p}| = 2,5, |\vec{q}| = 2, (\vec{p}, \vec{q}) = \vec{x}/2. 4.23, \$ = 7\$ + \$, \$ =\$ -3\$; |\$|=3, |\$|=1, (\$,\$)=3\$/4 4.24. \$\vec{a} = \vec{p} + 3\vec{q}, \vec{b} = 3\vec{p} - \vec{q}; \vec{p} = 3, \vec{q} = 5, \vec{p} = 5, \vec{p} = 2\vec{x}/3. 4.25. ま= 3声+な, ま= デ-3ず, アーフ, 「ずー2, (デキ)=ま/4. [\$]=5, |\$]=3, (\$,\$)=5\$/6. 4.26. a = 5p-q, 8-p+q; 4.27. a = 3p - 4q, = p + 3q; · こうず+す; 4,28. a = 6\$-\$,

4.29. $\vec{\alpha} = 2\vec{p} + 3\vec{q}$, $\vec{6} = \vec{p} - 2\vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 1$, $(\vec{p}, \vec{q}) = \mathbb{Z}/3$. 4.30. $\vec{\alpha} = 2\vec{p} - 3\vec{q}$, $\vec{6} = 5\vec{p} + \vec{q}$, $|\vec{p}| = 2$, $|\vec{q}| = 3$, $(\vec{p}, \vec{q}) = \mathbb{Z}/2$. 4.31. $\vec{\alpha} = 3\vec{p} + 2\vec{q}$, $\vec{6} = 2\vec{p} - \vec{q}$, $|\vec{p}| = 4$, $|\vec{q}| = 3$, $(\vec{p}, \vec{q}) = 3\pi/4$.

Задача 5. Компланарны ли векторы а . С ч с ?

5.I. $\vec{a} = \{2; 3; I\}$, $\vec{6} = \{-I; 0; -I\}$. $\vec{c} = \{2; 2; 2\}$. 5.2. $\vec{\alpha} = \{3; 2; 1\}$, $\vec{\delta} = \{2; 3; 4\}$. $\vec{c} = \{3: 1: -1\}$. 5.3. $\vec{a} = \{1; 5; 2\}$. $\vec{b} = \{-1; 1; -1\}$. $\tilde{c} = \{I; I; I\}.$ 5.4. $\vec{a} = \{I; -I; -3\}, \vec{b} = \{3; 2; I\}, \vec{c} = \{2; 3; 4\}.$ 5.5. $\vec{a} = \{3; 3; 1\}$, $\vec{\delta} = \{1; -2, 1\}$. $\vec{c} = \{I; I; I\}$ 5.6. $\vec{a} = \{3; 1; -1\}$. $\vec{e} = \{-2; -1; 0\}$. $c = \{5; 2; -I\}$. 5.7. $\vec{a} = \{4; 3; I\}$ $\vec{b} = \{I; -2; I\}$ $\vec{c} = \{2; 2; 2\}$. 5.8. $\vec{a} = \{4; 3; 1\}$. $\vec{6} = \{6; 7; 4\}$. $\vec{c} = \{2: 0: -1\}.$ 5.9. $\vec{a} = \{3; 2; I\}$. $\vec{b} = \{I; -3; -7\}$. $\vec{c} = \{I; 2; 3\}$. 5.10. $\vec{a} = \{3, 7, 2\}$. $\vec{\ell} = \{-2, 0, -1\}$. $\vec{c} = \{2, 2, 1\}$. 5.II. $\vec{a} = \{1; -2; 6\}$. $\vec{6} = \{1; 0; 1\}$. $\vec{c} = \{2; -6; 17\}$. 5.12. $\vec{a} = \{6; 3; 4\}$, $\vec{b} = \{-1; -2; -1\}$, $\vec{c} = \{2; 1; 2\}$. 5.13. $\vec{a} = \{7; 3; 4\}$, $\vec{b} = \{-1; -2; -1\}$. $\vec{c} = \{4; 2; 4\}$. 5.4. $\vec{a} = \{2; 3; 2\}$. $\vec{8} = \{4, 7; 5\}$. $\overline{c} = \{2; 0; -1\}$. 5.15. $\vec{a} = \{5; 3; 4\}$. $\vec{b} = \{-1, 0; -1\}$. $\vec{c} = \{4: 2: 4\}$. 5.16. $\vec{a} = \{3; 10; 5\}$. $\vec{b} = \{-2; -2; -3\}$. $\vec{c} = \{2; 4; 3\}$. 5.17. $\vec{a} = \{-2, -4, -3\}$. $\vec{6} = \{4, 3, 1\}$. $\vec{c} = \{6, 7, 4\}$. 5.18. $\vec{a} = \{3; 1; -1\}$. $\vec{c} = \{1; 0; -1\}$. $\vec{C} = \{8; 3; -2\}$. 5.19. $\vec{a} = \{4; 2; 2\}$. $\vec{6} = \{-3; -3; -3\}$. $\vec{c} = \{2; 1; 2\}$. 5.20. $\vec{a} = \{4; 1; 2\}, \vec{6} = \{9; 2; 5\}$. $\vec{c} = \{I; I; -I\}.$ 5.21, $\vec{a} = \{5; 3; 4\}$, $\vec{6} = \{4; 3; 3\}$. $\vec{c} = \{9: 5: 8\}$. 5.22. $\vec{\alpha} = \{3; 4; 2\}$. $\vec{6} = \{1; 1; 0\}$. $\vec{c} = \{8: II: 6\}$. 5.23. $\alpha = \{4; -1; -6\}, \quad \mathcal{C} = \{1; -3; -7\}.$ $\vec{c} = \{2; -I; -4\}.$ 5.24. $\vec{a} = \{3; 1; 0\}$. $\vec{\epsilon} = \{-5; -4; -5\}$. $\vec{c} = \{4; 2; 4\}$. 5.25. $\vec{a} = \{3; 0; 3\}$, $\mathcal{E} = \{8; 1; -1\}$ $\vec{c} = \{I; I; -I\}.$

C = [1: -3; 8].

C = {2; I; 2}.

5.26. $\vec{a} = \{I; -I; 4\}$, $\vec{\epsilon} = \{I; 0; 3\}$.

5.27. $\vec{a} = \{6: 3: 4\}$. $\vec{\ell} = \{-I:-2:-I\}$.

5.28. $\vec{a} = \{4; 1; 1\}$ $\vec{b} = \{-9; -4; -9\}$.

A₂ (I; 2; -I), A_3 (2; -2; I), A₄ (2; I; 0). 6.22. A_T (I; 0; 2). 2 6.23. A_{T} (I; 2;-3). A_A (0; -5;-4). A₂ (I; 0; I), $A_3 (-2;-1;6).$ 6.24. A_I (3;I0;-I). A_2 (-2; 3;-5), An (-6:0: -3), A_A (I; -I;2). A_4 (7; -3;I). 6.25. A_T (-I;2; 4). Ap (-I;-2;-4). A_3 (3; 0;-I). A4 (3; I;-4). A2 (-4; I; 2), A_3 (2; -1;5), 6.26. A_T (0;-3; I), A3 (3:0:1). A4 (-4;3; 5). 6.27. A_T (1; 3; 0), A2 (4: -I; 2), Λ₃ (3; I;-4). A_A (-4;7; 3). 5.28. A_{r} (-2;-1;-1). A2 (0: 3: 2). 6.29. AT (-3:-6: 6). A2 (2; I; -4). $A_{2}(0:-3:-1)$ $A_A (-5;2;-8)$. A₁ (2;-4;-3), A_3 (-I; 3:-3). A, (-IO;-8;7). 6.30. A_2 (5:-6:0), A2 (I: I: 4). A_4 (6; -3:8). 6.31. A_f (I:-I: 2). A₂ (2; I; 2),

 M_3 (-5;-2; 0). M_0 (-I2;7;-I). 7.I. M_T (-3; 4;-7). $M_{2}(I; 5; -4)$. M₃ (2; I;-2). Mo (I: -6:-5). 7.2. M₇ (-I; 2;-3), Mo (4;-I; 0). M_0 (-7; 0:-I). 7.3. M_T (-3:-I: I). M₂ (-9:I:-2). M_3 (3;-5; 4). 7.4. M_T (I; -I; I), Ma (2; I;-I). Mo (-2; 4;2). M_2 (-2:0:3), 7.5. M_T (I; 2; 0), M_2 (I; -I;2), M_{Q} (0; I; -I), M₀ (2; -I; 4). $M_{9}(2;-2;I),$ My (-5;-9. I). 7.6. N. (I; 0; 2). 15 (I: 2:-I). " 7.71 N_T (I; 2;-3), M_3 (-2;-I;6). My (3:-2; -9). No. (1, 0; I). 7.8. M_T (3:I0:-I). M_3 (-6; 0;-3). $M_0 (-6:7;-10).$ M_2 (-2:3:-5). 7.9. M_T (-I;2; 4), M3 (3: 0: -I). M_{h} (-2;3; 5). $M_2(-1;-2;-4)$ 7.10. M_T (0;-3; I), M₂ (-4: I:2) . M_{2} (2:-I: 5). Mo (-3; 4;-5). 7.II. M_T (I; 3; 0), M_2 (4; -I; 2), Mg (3; 0; I), Mo (4: 3: 0). /.12. $M_T(-2;-1;-1)$. M₂ (0; 3; 2). M₃ (3; I;-4). 16 (-21:20:-16). 7.13. M_T (-3;-5; 6), M_2 (2; I; -4). $M_3 (0;-3;-1)$ Mo (3; 6; 68). 7.14. M_T (2;-4; -3), M2 (5;-6; 0), M_3 (-I;3;-3). M_0 (2:-10:8). 7.15. M_T (I; -I; 2), Mo (-3; 2; 7). M2 (2: I: 2). M_3 (I; I; 4). 7.16. M_T (1; 3; 6). M2 (2; 2; I). M₃ (-I; 0; I), 10 (5; -4; 5). 7.17. M_T (-4; 2;6), Mo (-I2;I: 8). M_2 (2;-3:0). M_3 (-I0;5;8), 10 (10; I:8). 7.18. M_T (7; 2; 4), M_2 (7; -1;-2). M_3 (-5:-2:-1),

1:)

```
M_{I} (2; I; 4), M_{2} (3; 5; -2), M_{3} (-7; -3; 2),
                                                           Mn (-3; I; 8)..
7.20. M_{I} (-I;-5; 2), M_{2} (-6; 0; -3), M_{3} (3; 6; -3),
                                                           14 (10;-8;-7).
7.21. M_T (0: -I:-I). M_2 (-2:3:5).
                                         Mg (I:-5: -9),
                                                           Mn (-4;-13;6).
7.22. M<sub>T</sub> (5; 2; 0), M<sub>2</sub> (2; 5; 0), M<sub>3</sub> (I; 2; 4),
                                                           Mn (-3:-6:-8).
7.23. M_T (2;-I;-2). M_2 (I;2; I).
                                         Ma (5; 0; -6).
                                                           Mn (14; -3;7).
7.24. M_{I} (-2;0;-4), M_{2} (-I; 7; I), M_{3} (4; -8;-4).
                                                           Mo (-6; 5; 5).
7.25. M_T (I4; 4; 5). M_2 (-5;-3; 2). M_3 (-2;-6;-3).
                                                           Mn (-I;-8; 7).
7.26. M_T (I; 2; 0), M_2 (3; 0; -3), M_3 (5; 2; 6).
                                                           Mn (-13:-8:16).
```

7.27. M_T (2;-I; 2). M_2 (I; 2; -I). M_3 (3; 2; I). Mo (-5; 3; 7).

7.28. M_T (I; I; 2). M_2 (-I; I; 3). M_3 (2; -2;4). Mn (2: 3: 8). 7.29. M_T (2; 3; I), M_2 (4; I; -2), M_3 (6; 3; 7), 14 (-5;-4:8).

7.30. M_T (I; I;-I). M₂ (2; 3; I). Mg (3; 2; I). Mg (-3;-7; 6). 7.3I. M_T (I:5:-7). M_2 (-3; 6;3). M_2 (-2; 7:3). Mn (I;-I; 2).

Задача 8. Написать уравнение плоскости, проходящей через точку А перпендикулярно к нектору ВС.

A (I; 0; -2).B (2; -I; 3). C (0: -3; 2). 8.2. A (-I;3; 4). B (-I: 5: 0). C (2; 6; I). 8.3. A (4: -2; 0). B (I: -I: -5). C. (-2; I; -3). 8.4. A (-8; 0; 7). B (-3; 2; 4). C=(-I; 4; 5). 8.5. A (7; -5; I). B (5; -I; -3) C_(3; 0; -4). 8.6. A (-3: 5: -2). B (-4; 0; 3). C (-5; 2; 5). 8.7. A (I: -I; 8). B (-4; -3; IO). C (-I; -I; 7). 8.8. A (-2; 0; -5). B (2: 7: -3). C (I; IO; -I). 8.9. A (I: 9: -4). B (5; 7; I). C (3; 5; 0). A (-7:0:3). .01.3 B(I: -5; -4). C (2; -3; 0). 8.II. A (0; -3; 5). B (-7: 2: 6). C (-3; 2; 4). . B.I2. A (5; -I; 2), B (2; -4; 3). C (4: -I: 3). A (-3; 7; 2), 8.I3. B (3; 5; I). C (4: 5; 3). 8.I4. A (0; -2; 8). B (4: 3: 2). C(I; 4; 3). 8.15. A (I; -I; 5),B (0: 7: 8). C (-I; 3; 8). 8.16. A (-IO:0: 9). B (I2;4;II), C (8: 5; I5). 8.17. A (3: -3;-6). B (I: 9:-5). C (6: 6: -4). 8.19. A (2; I; 7). B (9; 0; 2). C (9: 2: 3).

8.I.

8.19. A (-7:I; -4).

B (8: II:-3).

C (9; 9; -I).

8.20. A (I; 0;-6), B (-7; 2; I). C (-9: 6: I). 8.2I. A (-3: I: 0). B (6: 3: 3). C (9: 4: -2). 8.22. A (-4; -2;5), B (3; -3; -7), C(9:3:-7).8.23. A (0: -8:10). B (-5: 5: 7). C (-8: 0: 4). 8.24. A (I; -5;-2), B (6; -2; I), C (2: -2: -2). -8.25. A (0; 7; -9), B (-I; 8;-II), C (-4: 3:-I2). 8.26. A (-3; -1;7). B (0; 2; -6). C (2; 3; -5). 8.27. A (5; 3; -1), B (0; 0; -3), C (5; -1; 0). 8.28. A (-I; 2; -2). B (I3; I4; I). C (I4; I5; 2). 8.29. A (7: -5: 0). B (8: 3: -I). C (8: 5: I). 8.30. A (-3; 6; 4), B (8; -8; 5), C (IO; -3; 7). 8.3I. A (2; 5; -3). B (7; 8; -I). C (9: 7: 4).

Задача 9. Найти угол между плоскостями.

```
9.I. x -3y + 5 = 0, 2x - y + 52 - 16 = 0.
9.2. x - 3y + z - I = 0, x + z - I = 0.
9.3. 4x - 5y + 3z - I = 0, x - 4y - z + 9 = 0.
9.4. 3x - y + 2z + 15 = 0, 5x + 9y - 3z - 1 = 0.
9.5. 6x + 2y - 4z + 17 = 0, 9x + 3y - 6z - 4 = 0.
9.6. x - y\sqrt{2}' + z - I = 0, x + y\sqrt{2}' - z + 3 = 0.
9.7. 3y - z = 0, 2y + z = 0.
9.8. 6x + 3y - 2z = 0, x + 2y + 6z - 12 = 0.
9.9. x + 2y + 2z - 3 = 0, 16x + 12y - 15z - 1 = 0,
9.10. 2x - y + 5z + 16 = 0, x + 2y + 3z + 8 = 0.
9.II. 2x + 2y + z - I = 0.
                            x+z-I=0.
9.12. 3x + y + z - 4 = 0, y + z + 5 = 0.
9.18. 3x - 2y - 2z - 16 = 0, x + y - 3z - 7 = 0.
9.14.2x + 2y + z + 9 = 0.
                            x - y + 3 \neq - I = 0.
9.15. x + 2y + 2z - 3 = 0, 2x - y + 2z + 5 = 0.
9.16. 3x + 2y - 3z - 1 = 0, x + y + z - 7 = 0.
9.17. x - 3y - 2z - 8 = 0, x + y - z + 3 = 0.
                              y + z + 5 = 0.
9.18. 3x - 2y + 3 \neq + 23 = 0,
9.19. X + Y + 3Z - 7 = 0.
                                \mathbf{y} + \mathbf{z} - \mathbf{I} = \mathbf{0}.
9.20. \chi - 2y + 2z + 17 = 0,
                               x-2y-I=0.
9.21. X + 2y - I = 0,
                                x + y + 6 = 0.
9.22. 2x - 2 + 5 = 0.
                             2X + 3Y - 7 = 0.
```

9.23. 5x + 3y + z - 18 = 0. 2y + 2 - 9 = 0. 4x + 3y - 2 = 0. 9.24. X + 2Y + 2Z + 5 = 09.25. X + 4y - 2 + I = 02x + y + 4z = 3 = 0. 9.26. 2y + 2 - 9 = 0. x - y + 2z - I = 0. 2x - 6y + 14z - 1 = 05x - 15y + 35z - 3 = 0. 9.27. 9.28. 2x - 2y - 5 = 0. X - Y + 7 - I = 0. 3x - y - 5 = 0. $2x + \mathbf{Z} - 3 = 0.$ 9.29. $x - y + \mathbb{E}\sqrt{2} - I = 0.$ $x + y + z\sqrt{2} - 3 = 0;$ 9.30. x + 2y - 2z - 7 = 0. X + Y - 35 = 09.3I. Задача ІО. Найти координати точки А. равноудаленной от точек В m C. 10.I. A (0: 0: Z). B (5: I: 0). 0 (0: 2: 3). C (4; I; 2). 10.2. A (0:0: 2). B (3; 3; I). B (3; I; 3), C (I; 4; 2). 10.3. A (0; 0; Z). A (0: 0: Z). B (-I: -I: -6). IO.4. C (2: 3: 5). IO.5. B (-I3: 4: 6). C (IO:-9: 5). A (Ö: 0: 7). B (-5; -5; 6), 10.6. A (0: 0; Z). C.(-7: 6: 2). B (-I8, I; 0). IO.7. A (0; 0; Z). C (I5: -I0, 2). C (9; -2; I). IC.8. A (0:0: Z). B(10:0:-2).B (-6: 7: 5). C (8: -4: 3). IO.9. A (0:0: 2). 10.10. B (6; -7; I). C (-I: 2: 5). A (0: 0: Z). B (7: 0: -I5). C (2: IO: -I2). IO.II. A (0; 0; Z). B (3; 0; 3). 0 (0; 2; 4). IO.12. A (0:9:0). A (0; 9; 0), B (I: 6: 4). C (5: 7: I). IO.I3. C (6; II; -2). B (-2: 8: IO). IO.14. A (0: 4:0). B (-2: -4: 6). C (7; 2; 5). IO.I5. A (0: 9:0). B (2: 2: 4). C (0: 4; 2). IO.I6. A (0: 9:0). C(I; -3; 5). IO.17. B (0: -4: I). A (0; 4; 0). IO.I8. A (0: 9:0). B (0: 5: -9). C (-I: 0: 5). IO.19. A (0; y; 0). B (-2; 4; -6), C (8; 5; I). A (0; Y,; 0), B (7: 3: -4). C (I: 5: 7). 10.20. 10.21. A (0: 9:0), B (0: -2: 4). C (-4: 0: 4). C (2:0:4). IO.22. B (0; I; 4), î 🛦 (X; 0; 0), B (4; 0; 5), C (5; 4; 2), IO.23. A (X; 0: 0).

```
10.24. A (\chi: 0; 0).
                         B (8: I: -7).
                                         C (IO: -2: I).
IO.25. A (x:0;0).
                         B (3; 5; 6).
                                          C(I; 2; 3).
10.26. A(x:0:0).
                         B (4; 5; -2).
                                          C (2; 3; 4).
IO.27. A ( X ; O; O).
                                          C(0; -2; -4).
                         B (-2: 0: 6).
IO.28. A (X;0;0).
                         B(I; 5; 9),
                                        . C (3; 7; II).
IO.29. A (X; 0; 0).
                         B (4: 6; 8).
                                          C (2; 4; 6).
                                        C (2: 6: IO).
10,30. A ( X ; 0; 0),
                         B(I; 2; 3).
                                          C(-I; -2; -3).
10.31.
      A (X : 0: 0).
                         B(-2; -4; -6).
```

Задача II. Написать канонические уравнения прямой.

II.I.
$$2x + 2y + z - 2 = 0$$
, $2x - y - 3z + 6 = 0$
III.2. $x - 3y + 2z + 2 = 0$, $x + 3y + z + 14 = 0$.
II.3. $x - 2y + z - 4 = 0$, $2x + 2y - z - 8 = 0$.
II.4. $x + y + z - 2 = 0$, $x - y - 2z + 2 = 0$.
II.5. $2x + 3y + z + 6 = 0$, $x - 3y - 2z + 3 = 0$.
II.6. $3x + y - z - 6 = 0$, $3x - y + 2z = 0$.
II.7. $x + 5y + 2z + 11 = 0$, $x - y - z - 1 = 0$.
II.8. $3x + 4y - 2z + 1 = 0$, $2x - 4y + 3z + 4 = 0$.
II.9. $5x + y - 3z + 4 = 0$, $x - y + 2z + 2 = 0$.
II.10. $x - y - z - 2 = 0$, $x - 2y + z + 2 = 0$.
II.11. $4x + y - 3z + 2 = 0$, $x - 2y + z + 4 = 0$.
II.12. $3x + 3y - 2z - 1 = 0$, $2x - y + z - 8 = 0$.
II.13. $6x - 7y - 4z - 2 = 0$; $x + 7y - z - 5 = 0$.
II.14. $8x - y - 3z - 1 = 0$, $2x - 3y + z + 6 = 0$.
II.15. $6x - 5y - 4z + 8 = 0$, $6x + 5y + 3z + 4 = 0$.
II.16. $x + 5y - z - 5 = 0$, $x - 3y - 2z + 3 = 0$.
III.17. $2x - 3y + z + 6 = 0$, $x - 3y - 2z + 3 = 0$.
III.18. $5x + y + 2z + 4 = 0$, $x - y - 3z - 8 = 0$.
III.19. $4x + y + z + 2 = 0$, $2x - y - 3z - 8 = 0$.
III.20. $2x + y - 3z - 2 = 0$, $x - y + z + 6 = 0$.
III.21. $x + y - 2z - 2 = 0$, $x - y + z + 6 = 0$.
III.22. $x + 5y - z + 11 = 0$, $x - y + z + 6 = 0$.
III.23. $x - y + z - 2 = 0$, $x - y + z + 6 = 0$.
III.24. $6x - 7y - z - 2 = 0$, $x - y + z + 6 = 0$.

II.25.
$$X + 5y + 2z - 5 = 0$$
. $2x - 5y - z + 5 = 0$. II.26. $x - 3y + z + 2 = 0$. $x + 3y + 2z + 14 = 0$. II.27. $2x + 3y - 2z + 6 = 0$. $2x - 3y + z + 3 = 0$. II.28. $3x + 4y + 3z + 1 = 0$. $2x - 4y - 2z + 4 = 0$. II.29. $3x + 3y + z - 1 = 0$, $2x - 3y - 2z + 6 = 0$. II.30. $6x - 5y + 3z + 8 = 0$, $6x + 5y - 4z + 4 = 0$. II.31. $2x - 3y - 2z + 6 = 0$, $x - 3y + z + 3 = 0$.

Задача 12. Найти точку пересечения прямой и плоскости.

12.1.
$$\frac{x-2}{-1} = \frac{y-3}{-1} = \frac{z+t}{4}$$
, $x+2y+3z-14=0$.
12.2. $\frac{z+t}{3} = \frac{y-5}{-4} = \frac{z+t}{5}$, $x+2y-5z+20=0$.
12.3. $\frac{x-1}{-1} = \frac{y+5}{4} = \frac{z-1}{2}$, $x-3y+7z-24=0$.
12.4. $\frac{x-1}{1} = \frac{y}{0} = \frac{z+3}{2}$, $2x-y+4z=0$.
12.5. $\frac{x-5}{1} = \frac{y-5}{-1} = \frac{z-2}{0}$, $3x+y-5z-12=0$.
12.6. $\frac{x+t}{-3} = \frac{y+2}{2} = \frac{z-3}{-2}$, $x+3y-5z+9=0$.
12.7. $\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z+t}{-1}$, $x-2y+5z+17=0$.
12.8. $\frac{x-1}{2} = \frac{y-2}{0} = \frac{z+4}{1}$, $x-2y+4z-19=0$.
12.9. $\frac{x+2}{1} = \frac{y-1}{1} = \frac{z+4}{-1}$, $2x-y+3z+23=0$.
12.10. $\frac{x+2}{1} = \frac{y-1}{0} = \frac{z+3}{0}$, $2x-3y-5z-7=0$.
12.11. $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z+2}{3}$, $4x-2y-z-11=0$.
12.12. $\frac{x-1}{1} = \frac{y+1}{0} = \frac{z+1}{-1}$, $3x-2y-4z-8=0$.
12.13. $\frac{x+2}{1} = \frac{y-1}{0} = \frac{z+3}{2}$, $x+2y-z-2=0$.

12.14.
$$\frac{X+3}{1} = \frac{Y-2}{-5} = \frac{Z+2}{3}$$
, $5x-y+4Z+3=0$

12.15.
$$\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-4}{3}$$
, $x+3y+5z-42=0$

12.16.
$$\frac{x-3}{-4} = \frac{y-4}{5} = \frac{z-4}{9}$$
, $7x + y + 4z - 47 = 0$.

12.17.
$$\frac{X+3}{2} = \frac{y-1}{3} = \frac{Z-1}{5}$$
, $2X+3y+7Z-5Z=0$.

12.18.
$$\frac{X-3}{2} = \frac{y+1}{3} = \frac{Z+3}{2}$$
, $3X+4y+7Z-16=0$

12.19.
$$\frac{x-5}{-2} = \frac{y-2}{0} = \frac{z+4}{-1}$$
, $2x-5y+4z+24=0$

12.20.
$$\frac{x-1}{8} = \frac{y-8}{-5} = \frac{z+5}{12}$$
, $x-2y-3z+(8=0)$

12.21.
$$\frac{X-3}{1} = \frac{y-1}{-1} = \frac{z+5}{0}$$
, $X - 7y + 3z + 11 = 0$.

I2.22.
$$\frac{x-5}{5} = \frac{y+3}{5} = \frac{z-1}{2}$$
, $3x+7y-5z-11=0$

12.23.
$$\frac{x-1}{7} = \frac{y-2}{1} = \frac{z-6}{-1}$$
, $4x+y-6z-5=0$.

12.24.
$$\frac{x-3}{1} = \frac{y+2}{-1} = \frac{z-8}{0}$$
, $5x+9y+4z-25=0$

12.25.
$$\frac{X+1}{x^2} = \frac{y}{0} = \frac{Z+1}{3}$$
, $X+4y+13Z-23=0$

12.26.
$$\frac{x-1}{6} = \frac{y-3}{1} = \frac{z+5}{3}$$
, $3x-2y+5z-3=0$.

12.27.
$$\frac{x-2}{4} = \frac{y-1}{-3} = \frac{z+3}{-2}$$
, $3x-y+4z=0$.

12.28.
$$\frac{X-1}{2} = \frac{y+2}{-5} = \frac{Z-3}{-2}$$
, $X+2y-5z+16=0$.

12.29.
$$\frac{x-1}{4} = \frac{y-3}{0} = \frac{z+2}{-z}$$
, $3x - 7y - 2z + 7 = 0$.

12.30.
$$\frac{x+3}{0} = \frac{y-2}{-3} = \frac{z+5}{11}$$
, $5x+7y+9z-32=0$.

12.31.
$$\frac{x-7}{3} = \frac{y-3}{1} = \frac{z+1}{-2}$$
, $2x+y+7z-3=0$

Задача I3. Найти точку М', симметричную точке М относительно примой (для вариантов I - 15) или плоскости (для вариантов I6 - 3I).

13.1. M (0; -3; -2),
$$\frac{x-1}{1} = \frac{y+1.5}{-1} = \frac{z}{1}$$
.

I3.2. M (2; -I; I),
$$\frac{x-4,5}{1} = \frac{y+3}{-0.5} = \frac{z-2}{1}$$
.

13.3. M (I; I; I).
$$\frac{x-2}{t} = \frac{y+t,5}{-2} = \frac{z-t}{t}$$
.

13.4. M (I; 2; 3),
$$\frac{x-a.5}{o} = \frac{y+1.5}{-1} = \frac{z-1.5}{1}$$
.

13.5. M(I; 0; -I),
$$\frac{x-3.5}{2} = \frac{y-1.5}{2} = \frac{Z}{0}$$
.

13.6. M (2; 1; 0).
$$\frac{x-2}{0} = \frac{y+t,5}{-t} = \frac{z+0,5}{t}$$

13.7. M (-2; -3; 0),
$$\frac{X+0.5}{1} = \frac{y+1.5}{0} = \frac{Z-0.5}{1}$$

I3.8. M (-I; 0; -I).
$$\frac{X}{-1} = \frac{y-t, 5}{0} = \frac{z-2}{t}$$
.

13.9. M (0; 2; 1).
$$\frac{x-1.5}{2} = \frac{y}{-1} = \frac{z-2}{1}$$
.

13.10. M (3: -3: -1),
$$\frac{X-6}{5} = \frac{y-3.5}{4} = \frac{z+0.5}{0}$$
.

I3.II. M (3; 3; 3),
$$\frac{x-1}{-1} = \frac{y-1,5}{0} = \frac{z-3}{1}$$
.

13.12.
$$\widehat{M}$$
 (-1; 2; 0). $\frac{\chi+0.5}{1} = \frac{y+0.7}{-0.2} = \frac{\vec{z}-2}{2}$.

IS.IS. M (2; -2; -3).
$$\frac{X-1}{-1} = \frac{y+o.5}{o} = \frac{z+i.5}{o}$$
.

13.14. M(-I; 0; I),
$$\frac{x+0.5}{0} = \frac{y-1}{0} = \frac{\xi-4}{2}$$
.

I3.15. M (0; -3:-2),
$$\frac{x+o.5}{o} = \frac{y+i.5}{-1} = \frac{z-i.5}{1}$$
.

13.16. M (I; 0; I).
$$4x + 6y + 4z = 25 = 0$$
.

I3.47.
$$M(-I; 0; -I)$$
, $2x + 6y - 2z + II = 0$.

```
M (0; 2; I).
13.18.
                              2x + 4y - 3 = 0.
13.19.
          M (2: I: 0).
                              y + 2 + 2 = 0.
          M (-2: 2: 0).
                              4x - 5y - 2 - 7 = 0.
13,20.
                             X - Y + 2Z - 2 = 0.
          M (2; -I; I).
13,21.
          M (I: I: I).
                              X + 4 Y + 13 2 + 5 = 0.
13,22,
          M (I; 2; 3).
                              2 X + I0 Y + I0 Z - I = 0.
13.23.
                              2 \times + 10 \times + 10 \neq -1 = 0.
          M(0: -3: -2).
T3.24.
                              2 X + 4 Z - I = 0.
          M(I; 0; -I).
13.25.
13.26.
                              2x - 4y - 4z - I3 = 0.
          M(3; -3; -1).
          M(-2; -3; 0).
                              x + 5y + 4 = 0.
13.27.
13.28.
           M(2:-2:-3).
                               y + 2 + 2 = 0.
13.29.
          M(-I; 0; I)
                              2x + 4y - 3 = 0.
13.30.
          M (3; 3; 3).
                              8 \times + 6 y + 8 z - 25 = 0.
                              2X - 2Y + I0Z + I = 0.
13.31.
           M(-2:0:3).
```

Задача 14. Дани координаты точек Мо. Мг. Мг. Ма. Найти:

- а) канонические уравнения прямой $M_{\rm I}M_{\rm 2}$;
- б) уравнение плоскости M_TM₂M₃;
- в уравнение плоскости, проходящей через точку $\mathbf{M}_{\mathbf{O}}$ паравлельно плоскости $\mathbf{M}_{\mathbf{T}}\mathbf{M}_{\mathbf{O}}\mathbf{M}_{\mathbf{G}}$.
- г) уравнение плоскости, проходищей через точку $M_{\tilde{Q}}$ перпендикулярно- к вектору $M_{\tilde{1}}M_{\tilde{Q}}$;
- д) уравнения прямой, проходящей через точку M_0 перпендикулярно к плоскости $M_T M_2 M_3$;
- е) уравнение плоскости, делящей пополам двугранный угол, который образован плоскостями $M_0M_1M_2$ и $M_1M_2M_3$.
- 14.1. M_0 (0; -1; 1), M_1 (1; 0; 1), M_2 (4; 1; 6), M_3 (6;-1;0).
- 14.2. M_0 (0; I; I), M_T (-I3; 0; 6), M_2 (I0; I; -3), M_3 (-2; I; 3).
- 'I4.3. M_0 (0; -4;-I), M_T (6;-8;-2), M_2 (-4;I0;-I), M_3 (0;-2;-3).
- I4.4. M_0 (0; I; 2), M_1 (2; 0; 2), M_2 (8;-I; 7), M_3 (I2; I;I).
- 14.5. M_0 (0; I; -2), M_T (I; -I2; 8), M_2 (0; II; -I0), M_3 (0; -I;2).
- I4.6. M_0 (I; -I;0), M_1 (7; -5; -1), M_2 (-3; I3;0), M_3 (I;I; -2).

I4.7. M_T (0; -2; -1); M_2 (-3;-1;-6), $M_{o}(I; -3; -I),$ $M_{2}(-5;-3;0)$. I4.8. M_o (I; 2; 3). M_T (14; 3; -2), M_2 (-9;2; 7), Mg (3; 2; I), $M_T (-7; 0; 5)$ **I4.**9. M₀ (-3; I; -1), M₂ (II; I;-5), $M_{3}(-1;-1;-1).$ I4.IO. $M_{0}(2; -4; -2).$ M_T (4; -2;-2), M_2 (10: 0: 8), Mg (14;-4;-4). I4.II. M_T (-I2;-I;4). M₂ (II:0:-5), $M_{0}(I; 0; -I).$ $M_{2}(-1,0; 1).$ 14.12. M_T (4: -6:2). M_0 (-2;-2; 3), M_2 (-6:I2:3). M_3 (-2; 0;I). 14.13. M_T (2; -I;-I). M_2 (5; 0; 4). $M_{0}(I; -2; -I).$ M_3 (7;-2;-2). **I4.I4.** Ma (2; 0; 0). M_T (-24;I; 5), M_2 (22,0;-4). M_3 (-2:0:2). 14.15. M (3;-I; 2) My (7: 5: 0). Ma (-II:-5:2). Ma (I: -I:-2), Ì4.16. $M_{o}(2; I; 0).$ M_T (3; 2; 0). M₂ (6; 3; 5). M₃ (8;I;-I). I4.I7. M₀ (0;-2; I), M_T (13;-3;-4), $M_2 (-10; -2; 5),$ M_3 (2:-2:-1). I4.I8. M_T (-3; 9; 2). M_2 (7: -9:1). M_o (3; 5; I). Ma (3; 3; 3). M₂ (I; 6; 4), M_{T} (0; I; I), I4.I9. $M_{0}(-I;I;0).$ Ma (-I:0:6). 14.20. M_0 (4;-2;-6), M_T (-22;-4;4). M_2 (24;-2;-14). M_3 (0:-2:-2). I4.2I. M₀ (-I;-3; I), M_T (5;-7; 0). $M_2 (-5:II:I),$ $M_{3} (-I;-I;-I).$ I4.22. M_{T} (0; I; 3), M₂ (3; 2; 8), M_{2} (5:0:2). M_{o} (-I:0:3). 14.23. M_{T} (-II;-2;2), M_2 (I2:-I:-7). $M_{q} (0;-I;-I).$ Mo (2;-I;-3), I4.24. M_T (IO: 7; I). Mo (-2;3; 2), M_2 (-I0;-II;2), M_2 (-2; I;0). 14.25. M_{τ} (0; I; 2). M₂ (-I; 4; I2). M. (I; 0; 2). M_3 (I; 6; 0). I4.26, M_T (-IO; I;3). M_2 (13:2:-6). Ma (I; 2; 0). M_0 (3; 2; -2). M_{n} (2:-5:-1), Mr (-4:-9; 0). M_2 (6:9: -I). I4.27. Ma (2;-3;I). I4.28. M_T (I; 2; I), $M_2(-2;I;-4)$. M_o (2; 3; I). M_{q} (-4;3;2). 14.29. M_o (0;-I; I). M_T (-I;4; I2), M_2 (0;-5;II). $M_{2}(0:I:-I).$ I4.50. M_T (12:-16:-4), M_2 (-8:20:-2), M_0 (0;-8;-2), M_3 (0;-4;-6).

5. MHECHOE IIPOCTPANCTBO. MHECHIE OURPATOPH

5.1. Теоретические вопросы

- Спределение линейного пространства. Линейная зависимость и линейная независимость элементов. Базис линейного пространства.
 - 2. Динейный оператор. Матрица линейного оператора.
 - 3. Собствение числа и собствение вектори линейного оператора.
- Выклидово пространство. Неравенство Коши Бунлковского, ворма элемента.
- Преобразование координат вектора при переходе к новому оазмоу.
- 6. Преобразование матрицы линейного оператора к диагональному виду.
 - 7. Квадратичная форма и приведение ее к каноническому виду.

5.2. Теоретические запачи и упражнения

- Доказать, что система векторов является линейно зависимой, если она содержит I) нулевой вектор, 2) два равных вектора.
- 2. Доказать, что функции f, x, x^2, \dots, x^n линейно везависимы.
- Доказать, что любая система попарно ортоговальных векторов в пространстве R является линейно независимой.
- 4. Написать неравенство Коми Буняковского и неравенство треугольника для пространства ${\cal R}$.
- Доказать, что в евилидовом пространстве имеет место равенство (обобщенияя теорема Пифагора)

$$\|x_1 + x_2 + ... + x_n\|^2 + \|x_1\|^2 + \|x_2\|^2 + ... + \|x_n\|^2$$

- 6. Найти матрицу преобразования декартова базиса в пространства R_{\star} при повороте на угот φ .
- Показать, что оператор понорота не имеет собственных векторов в вещественном пространстве.
- 8. Как изменится матрица перехода от одного базиса к другому, осли в первом базисе поменять местами два вектора?
- 9. Найти координати многочлена $P_3(x) = a_1 x^3 + a_2 x^4 + a_3 x + a_3$ в базиов 1, (x-1), $(x-1)^3$, $(x-1)^3$.
 - 10. Holith matpuny nepexona or desiren $1, x, x^2$ is desired $1, (x-2), (x-2)^2$

5.3. Расчетные задания

<u>Задача I</u>. Проверять, является им данное множество инвойным пространством.

	Множество	Сложение элементов СГИ С	Умножение на число
	I	2	8
I.I.	Все трехмерные векторы с целыми координатами	Официи об	бразом
1.2.	Все трехмерные векторы, лежащие на одной оси	"	*
1.3.	Все двухмерные векторы, каждый из которых лежит на одной из координатных ссей	•	"
I.4.	Все трехмерные векторы	[a.6]	Образом Образом
1.5!	Все двухмерные векторы, лежещие на одной оси	образом -	a lal
I.6.	Все векторы, являющиеся линейными комбинациями трех заданных	, '	Обытним Обытним
I.7.	Все функции $a(t)$ такие, что		v
	t e [a, 6], a(t) > 0	$a(t) \cdot b(t)$	$a^{\alpha}(t)$
1.8.	Boe непрерывные функции $\alpha(t)$, $t \in [0,1]$		одразом Офидини
1. 9.	BOO WOTHHO DYNKHAM $a(t)$, $t \in [-1,1]$	a(t). b(t)	ооразом Оонавни
t.10.	Нечетные функции $a(t)$, $t \in [-1,1]$	ооразом Ооманим	,
t.II.	Все многочлени третьей степени		
1,12.	Все 11 -мерние векторы		**
617	Все 77 -мерние векторы	<i>ፙጜጟጟ_ጕጜጟ</i>	миярио мосверо
E.14.	Вое оходиниеся пооледователь- ности	почленное.	Ħ
f.I5.	Все многочлены степени $\leq n$	Обычным обра	жом

	· I	1 2 1	3
1.16.	Все многочлени степени = 72	Офичным оф	бразом
1.17.	Все квадратные диагональные матрицы порядка г	N	*
1.18.	Все квалратные матрицы порядка 72	*	#
1.19.	Все диагональные квадратные матрицы порядка 77	$\{a_{ij}, \delta_{ij}\}$	мингиф0 моєворо
1,20.	Все прямоугольные матрицы размера $m \times n$	Обычным	образом
1.21.	Все симметрические квадратные матрицы порядка n	*	H
1.22.	Вое целые числа	мингири Образом	[xa]
1.23.	Все действительные числа	#	Офичным образом
1.24.	Все положительные числа	a b	a ^a
1.25.	Все отридательные числа	-1a1·161	-1a1
1.26.	Все действительные числа	a.6	образом образом
1.27.	Все дифференцируемые функции	a(t)+b(t)	n
1.28.	Все дифференцируемые функции	$a(t) \cdot b(t)$	
1.29.	Все трехмерние векторы такие.	Обычным	образом
	$Y_1 + X_2 + X_3 = 0$	1	
1.30.	Все трехмерные векторы, такие,	l .	1
	$4TO X_1 + X_2 + X_3 = 1$		1

Задача 2. Установить, является ли данний набор элементов линейно зависимим; если да, то указать коэффициенти линейной комоннации.

2.4.
$$\sin x$$
, $\sin^2 x$, $\cos^2 x$, $x \in (-\infty, +\infty)$.

2.5. $\vec{a} = \{5; 4; 5\}, \vec{b} = \{5; 5; 2\}, \vec{c} = \{8, 1, 3\},$ 2.6. 1, x, sin x, . x & (- 00, +00). 2.7. \$= {1,1,1}, \$= {0,1,1}, \$\bullet = {0,0,1}. e^{x} , e^{x} , e^{2x} , e^{2x} , $x \in (-\infty, +\infty)$. 2.10. $x, x^2, (1+x)^2, x \in (-\infty, +\infty).$ 2.11. a = {1;2;3}, E={4;5;6}, E={7;8;9} 2.12. $1, x, x^2, (1+x)^2, x \in (-\infty, +\infty)$ 2.13. \$\vec{a} = \{1; 1; t\}. \$\vec{b} = \{1; 2; 3\}, \$\vec{c} = \{1; 3; 6\}. 2.14. cosx, sinx, sin 2x, x & (- \T/2 , + \T/2) 2.15. $\vec{a} = \{3,4,-5\}, \vec{b} = \{8,7,-2\}, \vec{c} = \{2,-1,8\}.$ 2.16. e^{x} , e^{2x} , e^{-x} , $x \in (-\infty, +\infty)$ 2.17. $\vec{a} = \{3; 2; -4\}$ $\vec{c} = \{4; 1; -2\}$, $\vec{c} = \{5; 2; -3\}$. 2.18. 1+x+x2, 1+2x+x2, 1+3x+x2, x \(\infty\) 2.19. $\vec{a} = \{0; 1; 1\}, \vec{c} = \{1; 0; 1\}, \vec{c} = \{1; 1; 0\}$ 2.20. 1, e^x , shx, $x \in (-\infty, +\infty)$. 2.21. $\vec{a} = \{5; -6; 1\}, \vec{b} = \{3; -5; -2\}, \vec{c} = \{2; -1; 3\}$ 2.22: 1/x, x, 1, $x \in (0,1)$. 2.28: $\overline{a} = \{2, 1, -3\}$, $\overline{b} = \{2, 2, -4\}$, $\overline{c} = \{3, -3, 5\}$. 2.24, 1, tgx, ctgx, x∈(0, T/2). 2.25. \$\vec{a} = \{1;2;3\}, \$\vec{b} = \{6;5;9\}, \$\vec{c} = \{7;8;9\} 2,26, $X_{*}(1+x), (1+x)^{2}, x \in (-\infty, +\infty)$ 2.27. \$\vec{a} = \{2;1;0\} \vec{c} = \{-5;0;3\} \vec{c} = \{3;4;3\} 2.28. e^{x} , xe^{x} , $x^{2}e^{x}$, $x \in (-\infty, +\infty)$. 2.29. $\vec{a} = \{2; 0; 2\}$, $\vec{b} = \{1; -1; 0\}$, $\vec{c} = \{0; -1; 2\}$ 2.50, ex. shx. chx. x ∈ (-∞, +∞). Валача В. Доказать линейность оператора, найти его матрипу. B_*I_* Проектирование на плоскость x+z=0. 3.2. Зеркальное' отражение относительно плоскости X + Z = O.

8.3. Проектирование на плоскость 9+Z=0. 8.4. Проектирование на плоскость OYZ.

-55-

- 3.5. Проектирование на плоскость y=0.
- 3.6. Проектирование на ось Ox.
- 3.7. Проектирование на плоскость $X \sqrt{3}Z = 0$.
- 3.8. Зеркальное отражение относительно плоскости X Z = 0.
- 3.9. Зеркальное отражение относительно плоскости X + Y = 0.
- 3.10. Поворот относительно оси Oz в положительном направлении на угол $\pi/2$
 - 3.II. Проектирование на плоскость $9 + \sqrt{3} \vec{z} = 0$.
 - 3.12. Зеркальное отражение относительно плоскости X Y = 0.
 - **3.13.** Проектирование на плоскость Z = O.
- . 3.14. Поворот относительно оси O в положительном направления на угол $\pi/4$
 - **3.15.** Зеркальное отражение относительно плоскости OXZ.
 - 3.16. Проектирование на плоскость X + Y = 0.
- 8.17. Поворот относительно оси $O \times$ на угол $\pi / 2$ в положительном наповрзении.
 - 3.18. Проектирование на плоскость -Z + Y = 0.
 - 3.19. Зеркальное отражение относительно плоскоств ОҮЕ.
 - 3.20. Проектирование на плоскость $y = \sqrt{3} X$.
 - 3.21. Зеркальное отражение относительно плоскости ОХҮ.
 - 3.22. Проектирование на плоскость $\sqrt{3} \mathcal{G} + \mathcal{F} = \mathcal{O}$.
- 3.23. Поворот в положительном направлении относительно оси $\mathcal{O}_{\mathcal{Y}}$ на угол $\mathcal{K}/2$.
 - 3.24. Зеркальное отражение относительно илоскости \mathcal{G} \mathcal{E} = \mathcal{O} .
 - 3.25. Проектирование на ось Оу,
 - 3.26. Зеркальное отражение относительно плоскости S+Z=O.
 - 3.27. Проектирование на ось Oz.
 - 3.28. Проектирование на плоскость X = Y.
 - 3.29. Проектирование на плоскость X = Z.
 - 3.30. Проектирование на плоскость $\sqrt{3} X + S = 0$.

Задача 4. Являются ли преобразования A, B, C линейными, воли $\overline{X} = \{X_1, X_2, X_3\}$; для линейных преобразований эказать матрицу.

8.1.
$$\mathbf{A}\vec{X} = (6x_1 - 5x_2 - 4x_3, -3x_1 - 2x_2 - x_3, x_2 + 2x_3),$$

 $\mathbf{B}\vec{\mathbf{x}} = (6 - 5x_2 - 4x_3, 3x_1 - 2x_2 - x_3, x_2 + 2),$
 $\mathbf{C}\vec{\mathbf{x}} = (x_3^4, 3x_1 - 2x_2 - x_3, x_2 + 2x_3).$

4.2.
$$A\vec{X} = (5x_1 - 4x_2 + 3x_3, 2x_1 - x_3, x_2 - 2),$$

 $B\vec{X} = (5x_1 + 4x_2 + 3x_3, 0, x_3^4 + 2x_2),$
 $C\vec{X} = (5x_1 + 4x_2 - 3x_3, 2x_2 - x_1, x_3 + 2x_2).$

4.8.
$$A\vec{x} = (X_3, X_2 - X_1, X_2 + X_3),$$

 $B\vec{x} = (2, X_3 - X_1, X_3 + X_2),$

$$A.4. \quad C\vec{x} = (X_3, X_1 - X_2, X_2 + X_3), \\ A\vec{x} = (4X_1 - X_2 - 1, 0, 2X_1 + X_2 + 3X_3), \\ B\vec{x} = (3X_1^2 - 2X_2 - X_3, 0, 0), \\ C\vec{x} = (3X_1 - 2X_1 - X_2, X_1 + 2X_2 + 3X_3, 0).$$

4.5.
$$A\vec{x} = (4x_1 - 2x_2 - 1, 2x_3 - x_4, x_4^3),$$

$$B\vec{x} = (4x_1 - 2x_3 - x_2, 2x_3 - x_1, 2),$$

$$C\vec{x} = (4x_1 - 2x_3 - x_2, 2x_3 - x_1, x_4).$$

4.6.
$$A\vec{x} = (5x_1 - 4x_2 - 1, 2x_1 - x_2, x_1 + 2x_2 + 3x_3),$$

 $B\vec{x} = (5x_1 - 4x_2 - x_3^2, 2x_1 - x_2, 3x_1 + 2x_2 - x_3),$
 $C\vec{x} = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, x_1 - x_2 + x_3).$

4.7.
$$A\vec{X} = (4x_1 - 3x_2 - 2x_3, x_4, x_1 + x_2 - 3),$$

$$B\vec{X} = (4x_1 - 3x_2 - 2x_3, x_4, x_4 + x_2^4 + x_3),$$

$$C\vec{X} = (4x_1 - 3x_2 - 2x_3, x_4, x_4 - x_2 - x_3).$$

4.8.
$$A\vec{x} = (2x_1 - X_2, x_2 - X_3, 3x_1 + 4x_2^2 + X_3),$$

 $B\vec{x} = (2x_1 - X_2, x_2 + X_3, 3x_1 - 4x_2 + 5x_3),$
 $C\vec{x} = (2x_1 - x_2, x_3 - 1, 3x_1 - 5).$

4.9.
$$A\vec{x} = (x_2 - 2x_1, x_3, 2x_1 + x_2 + x_3^2),$$

 $B\vec{x} = (x_2 - 2x_1, -x_3, x_1 + 2x_2 - x_3),$
 $C\vec{x} = (x_2 - 2x_1, 1, x_1 - x_2 - x_3).$

4.10.
$$A\vec{x} = (6x_1 + 5x_2 - 4, 3x_1 + 2x_2 - x_3, 0),$$

 $B\vec{x} = (6x_1 + 5x_2 + 4x_3, -3x_1 - x_2^2, 0),$
 $C\vec{x} = (6x_1 + 5x_2 - 4x_3, 3x_1 - 2x_2 + x_3, 0).$

4.II.
$$\overrightarrow{Ax} = (3x_1 + 2x_2 - 1, 0, x_1 + x_3),$$

 $\overrightarrow{Bx} = (3x_1 + 2x_2 + x_3, 0, 0),$
 $\overrightarrow{Cx} = (3x_1 + 2x_2 + x_3, 0, x_1 + x_2 + x_3).$

4.12.
$$A\vec{X} = (0, X_1 - 2X_2 + X_3, X_2 + X_3),$$

 $B\vec{X} = (0, X_1 - 2X_2 + X_3, X_2 + 1),$
 $C\vec{X} = (0, X_1^2 + 2X_2 + X_3, X_2 - X_3).$

4.18.
$$A\vec{x} = (5x_1 + 4x_2 - x_3, X_1 - 2x_2, X_1 + x_2 + x_3),$$

 $B\vec{x} = (5x_1 + 4x_2 - 2x_3, X_1 - 2x_2, X_1 + x_2 + x_3),$
 $C\vec{x} = (5x_1 + 4x_2 - 2, X_1 - 2x_2, X_1 + x_2 + x_3).$

4.14.
$$A\vec{x} = (3x_1 - x_2^3, 6x_1 + 8x_3, \hat{x}_1 + 9x_3),$$

 $B\vec{x} = (3x_1 - x_2, 6x_1 + 8, x_2 - 9x_3),$
 $C\vec{x} = (3x_1 + x_2, 6x_1 + 8x_2, x_1 + x_3).$

4.15.
$$\overrightarrow{Ax} = (X_1 + X_2 + X_3, X_2 + X_3, X_4 - X_2),$$

 $\overrightarrow{Bx} = (X_1^2 + X_2 - X_3, X_2 - X_3, 0),$
 $\overrightarrow{Cx} = (X_1 - X_2 - X_3, X_2 + 3, X_4 - X_2).$

4.16.
$$A\vec{x} = (2x_1 - x_2, x_1 + 2 + x_3, x_1 - x_3),$$

 $B\vec{x} = (2x_1 + x_2, x_1 + 2x_2 + x_3, 0),$

$$C\vec{X} = (2x_1 - x_2^2, x_1 + 2x_2 + x_3, x_2 + x_3).$$
4.17. $A\vec{X} = (x_2 - x_3, 3x_1 + x_3, 6x_1 - 7x_2 + x_3),$

$$B\vec{x} = (x_2^2 + x_3, 3x_4 - x_3, 6x_4 + 7x_2 - 2x_3),$$

$$CX = (-x_1 + 2, 3x_1 + x_2, 6x_1 - x_2 + 8x_3).$$

4.18.
$$A\vec{x} = (x_1^2 + 2x_2 + x_3, 0, 0),$$

 $B\vec{x} = (x_1 + x_2 + x_3, 0, x_1 + 1),$

$$C\vec{X} = (x_1 + x_2 + x_3), \quad 0, \quad x_1 - x_3),$$

4.19. $A\vec{X} = (x_1, x_2 - 2x_3, \quad 3x_1 + x_2 - x_3),$

$$BX = (-x_1, x_1 + 2, 3x_1 + x_2 - x_3),$$

$$C\bar{x} = (x_1, x_1 + x_2 + x_3, 3x_1 + x_2 - x_3).$$

4.20.
$$A\vec{x} = (4x_1 + x_2^8, x_1 - x_2 + x_3, x_1 + x_3),$$

 $B\vec{x} = (4x_1 + 4, 2x_2 - x_1, x_1 - x_3),$

$$C\bar{x} = (4x_1 + x_2 - x_3, x_1 - 2x_2 + x_3, x_2 + 3x_3),$$

4.21.
$$A\vec{x} = (x_3, 2x_1 + 3x_2 + 4x_3, 3x_2 - 3x_3),$$

$$B\vec{x} = (-x_3, 2x_1 + x_2^3 + 4, 2x_2 - 3x_3), \\
C\vec{x} = (x_3^2, 2x_1 + 3x_2, 3x_2 + 2x_3),$$

$$c_{\lambda} = (x_3, 2x_1 + 3x_2, 3x_2 + 2x_3),$$

22.
$$A\vec{x} = (3x_1 + 2x_2 + x_3, x_3, 2x_1 - 3x_2 - 4x_3),$$

 $B\vec{x} = (3x_1 + 2x_2 + x_3, 1, 2x_1 - 3x_2 - 4),$

$$CX = (3x_1 + 2x_2 + x_3, x_3, 2x_1^4 - 3x_2 - 4x_3).$$

1.28.
$$A\vec{x} = (x_1^3 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2),$$

 $B\vec{x} = (x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2),$

$$C\bar{x} = (x_1 + 2x_2 + 3, 4x_1 + 5x_2 + 6, 7x_1 + 8x_2).$$

4.24.
$$A\vec{x} = (3x_1 - 2x_2 - x_3, x_2 + 2x_3, 3x_1 + 4x_2 + 5x_3),$$

 $B\vec{x} = (3x_1 - 2x_2 - 1, x_2 + 2, 3x_1 + 4x_2 + 5x_3),$
 $C\vec{x} = (3x_1 - 2x_2 - x_3^2, x_2 + 2x_3, 0).$

4.25.
$$A\vec{x} = (2x_1 + 3x_2 + 4, 5x_1 + 6x_2 + 7, 8x_1 + x_3),$$

 $B\vec{x} = (2x_1 + 3x_2 + 4x_3^3, 5x_1 + 6x_2 + 7x_3, 0),$
 $C\vec{x} = (2x_1 + 3x_2 + 4x_3, 5x_1 + 6x_2 + 7x_3, 8x_1 + x_3).$

4.26.
$$A\bar{x} = (3x_1 - 3x_2^3 - 2x_3, x_1 + x_3, 0),$$

 $B\bar{x} = (4x_1 - 3x_2 - 2x_3, x_1 + x_3, 2x_1 + 3x_2 + 4x_3),$
 $C\bar{x} = (4x_1 - 3x_2 - 2, x_1 + x_3, 2x_1 + 3x_2 + 4x_3).$

4.27.
$$A\vec{x} = (6x_1 - 5x_2 - 4x_3, 3x_1 - 2x_2 - x_3, x_2),$$

 $B\vec{x} = (6x_1 + 5x_2 + 4, 3x_1 - 2x_2 - x_3, x_2),$
 $C\vec{x} = (6x_1 - 5x_2 - 4x_3^2, 3x_1 - 2x_2 - x_3, 0).$

4.28.
$$A\vec{x} = (X_1, X_2 + 2X_3, 3X_1 + 4X_2 + 5X_3),$$

 $B\vec{x} = (X_1, X_2 + 2X_3, 3X_1 + 4X_2 + 5),$
 $C\vec{x} = (X_1, X_2 + 2X_3, 3X_1 + 4X_2 + 5X_3).$

4.29.
$$A\vec{x} = (2x_1 + x_2, x_3, 2x_1 - 3x_2 + 4x_3),$$

 $B\vec{x} = (2x_1 + x_2, x_3, 2x_1 - 3x_2 + 4),$
 $C\vec{x} = (2x_1 + x_2, x_3, 2x_1 - 3x_2 + 4x_3).$

4.30.
$$A\vec{x} = (3x_1 - 2x_2 - x_3, 1, x_1 + 2x_2 + 3),$$

 $B\vec{x} = (3x_1 - 2x_2 - x_3, 0, x_1^3 + 2x_2 + 3x_3),$
 $C\vec{x} = (3x_1 - 2x_2 - x_3, x_3, x_1 + 2x_2 + 3x_3).$

Задача 5. Вектор X задан в базисе $(\vec{e}_{_{\Lambda}},\vec{e}_{_{2}},\vec{e}_{_{3}})$

Найти его координаты в базное (\vec{e}_1 , \vec{e}_2 , \vec{e}_3). Координаты векторов \vec{e}_1 , \vec{e}_2 , \vec{e}_3) указаны в таблице.

Номер	Homep \vec{e}_i			ē,			€'		X				
варжанта	ė,	ė,	ē,	ē,	ē,	e,	ŧ,	ė,	ė,	ĉ,	ë,	$\vec{e_{i}}$	_
5.I	I	I	2	2	-I	0	_I	I	I	6	Ľ-	3	
5.2	I	I	3	3/2	-I	0	-I	I	I	I	. 2	4	
5.3	I	I	4	4/3	-I	0	-I	I	I	I	8	6	
5.4	I	I	3/2	3	-I	0	-ī	I	I	2	4 3	I	
5.5	I	I	4/8	4	-,I I	ò	-I -I	I	I	I	4		
5.6	I	I	5	5/4		1		•			-	8	
5.7	I	I	5/4	5	-I	0	-I	I	I	8	4	I	
5.8	I	I	6	6/5	-I	0	-I	I	I	2	5.	IO	
5.9	I	I	6/5	6	-I	0	-I	I	1	10	5	I	
5.10	1	I	7	7/6	-I	0	-I	I	I	I	- 6	12	
5.II	I	I	7/6	7	-I	0	-I	I	I	-12	6	I	
5.I2	I	I	8	8/7	-I	0	-I	I,	I	-I	7	14	
5.13	I	1	1-	1/2	-I	0	-I	I	I	-3	-2	4	
5,14	I	1	1/2	-I	-I	0	-I	I	I	2	4	3	
5.15	I	I	-2	2/3	-I	0	-I	I	I	2	6	-3	
5.1 6	I	I	2/3	-2	_I	0-	-I	I	I	12	3	-I	
5.17	I	I	-3	3/4	-I	0	-I	I	I	I	-4	8	
5. I8	1	1	-3	3/4	-I	0	_I	I	I	I	4	8	
5.19	I	1	-4	4/5	I-	0	-I	I	I	7	-5	10	
5.20	1	I	4/5	-4	-I	0	-I	I	I	5	-5	-4	
5.2I	1	I	-5	5/6	-I	0	-I	I	I	7	-5	TO	
5,22	I	I	5/6	-5	-I	0	-I	I	I	- 6	6	2	
5,28	I	I	-6	6/7	-I	0	-I	I	I	I	7	-7	
5.24	I	I	6/7	-6	-I	0	-I	I	I	7	7	2	
5.25	I	I	-7	7/8	_I	Ō.	-I	I	I	3	-8	8	
5.26	I	I	-8	8/9	-I	0	-I	. I	I	I	-9	9	
5.27	I	I	8/9	-8	-I	σ	-I	I	I	9	9	2	
5.28	I	I	-9	9/10	-I	0	-I	I	I	3	-10	10	
	1	1	•	•	' ct	•	•	٠,	•	•	•		

Номер	् हैं			\vec{e}_2			ē,			X		
варианта	Ů,	Ę	₹,	ē,	ě,	ē,	ē,	$\hat{e_z}$	$\vec{e_s}$	ē,	ē,	Ē,
5.29	I	I	9/10	- 9	-I	0	-I	I	1	10	10	7
5.30	I	1	10	10/9	-I	0	-I	I	I.	1	9	18

Задача 6. Найти собственные числа и собственные векторы линейных операторов, заданных данными матрицами.

6.I.
$$\begin{pmatrix} 4 & -2 & -I \\ -I & 3 & -I \\ I & -2 & 2 \end{pmatrix} \qquad 6.2. \begin{pmatrix} 2 & -I & 0 \\ -I & 2 & 0 \\ I & -I & I \end{pmatrix} \qquad 6.3. \begin{pmatrix} 3 & -I & I \\ 0 & 2 & -I \\ 0 & -I & 2 \end{pmatrix}$$
6.4.
$$\begin{pmatrix} 5 & -I & -I \\ 0 & 4 & -I \\ 0 & -I & 4 \end{pmatrix} \qquad 6.5. \begin{pmatrix} 6 & -2 & -I \\ -I & 5 & -I \\ I & -2 & 4 \end{pmatrix} \qquad 6.6. \begin{pmatrix} 3 & I & -I \\ 2 & 2 & -I \\ -2 & I & 4 \end{pmatrix}$$
6.7.
$$\begin{pmatrix} 2 & 0 & -I \\ 1 & I & -I \\ -I & 0 & 2 \end{pmatrix} \qquad 6.8. \begin{pmatrix} 2 & I & 0 \\ I & 2 & 0 \\ -I & I & 3 \end{pmatrix} \qquad 6.9. \begin{pmatrix} 4 & I & 0 \\ I & 4 & 0 \\ -I & I & 6 \end{pmatrix}$$
6.10.
$$\begin{pmatrix} 5 & I & -I \\ -2 & 4 & -I \\ -2 & I & 6 \end{pmatrix} \qquad 6.11. \begin{pmatrix} 5 & -4 & 4 \\ 2 & I & 2 \\ 2 & 0 & 3 \end{pmatrix} \qquad 6.12. \begin{pmatrix} 3 & -2 & 2 \\ 2 & -I & 2 \\ 2 & -2 & 3 \end{pmatrix}$$
6.13.
$$\begin{pmatrix} 3 & -2 & 2 \\ 0 & 3 & 0 \\ 0 & 2 & I \end{pmatrix} \qquad 6.14. \begin{pmatrix} 5 & -2 & 2 \\ 0 & 5 & 0 \\ 0 & 2 & 3 \end{pmatrix} \qquad 6.15. \begin{pmatrix} 7 & -4 & 4 \\ 2 & 3 & 2 \\ 2 & 0 & 5 \end{pmatrix}$$
6.16.
$$\begin{pmatrix} 7 & -6 & 6 \\ 4 & -I & 4 \\ 4 & -2 & 5 \end{pmatrix} \qquad 6.20. \begin{pmatrix} 3 & 0 & 0 \\ 2/3 & 7/3 & -4/3 \\ 0 & 0 & I \end{pmatrix} \qquad 6.2I. \begin{pmatrix} 5 & 0 & 0 \\ I/3 & I3/3 & -4/3 \\ 2/3 & -2/3 & II/3 \end{pmatrix}$$
6.19.
$$\begin{pmatrix} 7/3 & 2/3 & -2/3 \\ 4/3 & 5/3 & -2/3 \\ 0 & 0 & I \end{pmatrix} \qquad 6.20. \begin{pmatrix} 3 & 0 & 0 \\ 2/3 & 7/3 & -4/3 \\ 2/3 & -2/3 & II/3 \end{pmatrix}$$

6.25.
$$\begin{pmatrix} 3 & 0 & 0 \\ I & 2 & -I \\ I & -I & 2 \end{pmatrix}$$
 6.26. $\begin{pmatrix} 5 & 0 & 0 \\ I & 4 & -I \\ I & -I & 4 \end{pmatrix}$ 6.27. $\begin{pmatrix} 6 & I & -I \\ 2 & 5 & -2 \\ I & -I & 4 \end{pmatrix}$

$$\begin{pmatrix} 3 & -2 & -2 \\ -2/3 & 5/3 & -2/3 \\ -2/3 & 2/3 & -13/3 \end{pmatrix} \begin{pmatrix} 6.29. & 5/3 & -2/3 & -4/3 \\ 0 & I & 0 \\ -2/3 & 2/3 & 7/3 \end{pmatrix} \begin{pmatrix} 6.30. & 7 & -4 & -2 \\ -2 & 5 & -2 \\ 0 & 0 & 9 \end{pmatrix}$$

Вадача 7. Привести матрицу к диагональному виду (см. варианты валачи 6).

Задача 8. Привести квапратичную формук каноническому вилу.

8.7.
$$4x^2 + 4y^2 - 8z^2 - 10xy + 4yz + 4xz$$
.8.8. $7x^2 + 6y^2 + 5z^2 - 4xy - 4yz$.

8.9.
$$2x^2 + 2y^2 - 5z^2 + 2xy$$
. 8.10. $2x^2 - 7y^2 - 4z^2 + 4xy + 2Qyz - 16xz$.

$$8.9. 2x^2 + 2y^2 - 5z^2 + 2xy$$
.

8.II.
$$2x^2 + 2y^2 + 3z^2 + 4xy + 2yz + 2xz$$
, 8.I2. $4x^2 + y^2 + 4z^2 - 4xy + 4yz - 8xz$,
8.I3. $2x^2 + 5y^2 + 2z^2 - 2xy - 4xz + 2yz$, 8.I4. $x^2 + 5y^2 + z^2 + 2xy + 2yz + 6xz$

8.21.
$$x^2 + 2y^2 + 3z^2 - 4xy - 4yz$$
.

8.21.
$$x^2 + 2y^2 + 3z^2 - 4xy - 4yz$$
. 8.22. $3x^2 + 4y^2 + 5z^2 + 4xy - 4yz$.

$$8.25. 5x^2 + 6y^2 + 4z^2 - 4xz - 4xy$$

8.25.
$$5x^2 + 6y^2 + 4z^2 - 4xz - 4xy$$
. 8.26. $3x^2 + 6y^2 + 3z^2 - 4xy - 8xz - 4yz$.

```
Задача 9. Привести уравнение кривой к каноническому виду построить в новой системе координат.

9.1. -x^2-y^2+4xy+2x-4y+1=0.

9.2. 2x^2+2y^2-2xy-2x-2y+1=0.

9.3. 4xy+4x-4y=0.

9.4. -2x^2-2y^2+2xy-6x+6y+3=0.
```

9.5.
$$-3x^2 - 3y^2 + 4xy - 6x + 4y + 2 = 0$$

9.6. $-2xy - 2x - 2y + 1 = 0$

9.6.
$$-2xy - 2x - 2y$$

9.7. $-x^2 - y^2 - 4xy - 4x - 2y + 2 = 0$

9.7.
$$-x^2 - y^2 - 4x^2 + 10x - 10y + 1 = 0$$

9.8. $-4x^2 - 4y^2 + 2xy + 10x - 10y + 1 = 0$

9.9.
$$4xy + 4x - 4y - 2 = 0$$

9.9.
$$4xy + 4x - 4y = 0$$

9.10. $x^2 + y^2 + 2xy - 8x - 8y + 1 = 0$

9.10.
$$x^2 + y^2 + 4xy - 8x - 4y + 1 = 0$$

9.11. $x^2 + y^2 + 4xy - 8x - 4y + 1 = 0$

9.11.
$$x + y$$

9.12. $x^2 + y^2 - 2xy - 2x + 2y - 7 = 0$

9.19.
$$2 \times y + 2 \times + 2 \cdot y - 3 = 0$$

9.18.
$$2 \times y + 2 \times 7 = 9$$

9.14. $4 \times^2 + 4 y^2 + 2 \times y + 12 \times + 12 y + 1 = 0$

9.14.
$$4x^2 + 4y^2 + 2xy + 8x + 12y + 1 = 0$$
.
9.15. $3x^2 + 3y^2 + 4xy + 8x + 12y + 1 = 0$.

9.16.
$$x^2 + y^2 - 8xy - 20x + 20y + 1 = 0$$

9.17.
$$3x^2 + 3y^2 - 2xy - 6x + 2y + 1 = 0$$

9.18.
$$4xy + 4x + 4y + 1 = 0$$

9.18.
$$4xy + 3x^2 - 4xy + 6x - 4y - 7 = 0$$

9.19. $3x^2 + 3y^2 - 4xy + 6x - 4y - 7 = 0$

9.21.
$$5x^2 + 5y^2 - 2xy + 10x - 2y + 1 = 0$$

9.22.
$$2x^2 + 2y^2 + 4xy + 8x + 8y + 1 = 0$$

9.25.
$$3x^2 + 3y^2 + 2xy - 12x - 4y + 1 = 0$$

6. ПЛОСКИЕ КРИВЫЕ 2-го ПОРЯДКА. ПОВЕРХНОСТИ 2-го ПОРЯДКА

6.1. Теоретические вопросы

- Канонические уравнения окружности, эллипса, гиперосим и параболы.
- 2. Экоцентриситет эллинса и гиперболы. Асимптоты гиперболы.
- 3. Упрощение уравнений с помощью преобразований параллельного переноса и поворота осей координат.
 - 4. Уравнения оферы и эллипсоида.
- Уравнения гипероолондов и параболондов. Примодинейные образующие поверхноотей.
 - 6. Уравнения поверхностей вращения.
- 7. Уравнения цилиндрической поверхности с образующей, паралменьной одной из координатных осей.
- В. Уравнение конической поверхности с вершиной в начале координат.

6.2. Теоретические задачи и упражнения

І. Доказать, что уравнение касательной к эликпоу

$$\frac{\chi^2}{a^2} + \frac{y^2}{6^2} = 1$$

FOURS
$$M_{o}(X_{o}; Y_{o})$$
 emeet but $\frac{XX_{o}}{a^{2}} + \frac{YY_{o}}{b^{2}} = 1$.

2. Доказать, что уравнение касательной к гиперболе

$$\frac{x^2}{a^2} - \frac{y^2}{6^2} = 1$$

в точко M(X, Y) имеет вид

$$\frac{XX_0}{\alpha^2} - \frac{yy_0}{\beta^2} = 1$$

- 3. Доказать, что уравнение касательной к параболе $y^2 = 2\rho x$ в точке M(x, y) имеет вид $yy = \rho(x + x)$
- 4. Доказать, что произведение расстояний любой точки гиперболи от ее асимптот есть величина постоянная, равная $\frac{Q^2 G^2}{C^2}$, где Q, G, G соответственно полуоси и полуфокусное расстояние гиперсоли.
- 5. Доказать, что уравнение любой окружности, проходящей через точки пересечения окружности $x^2 \cdot y^2 + Ax + By + C = O$ с прямой Mx + Ny + Q = O , можно записать

$$tn(x^2+y^2+Ax+By+C)+\pi(Mx+Ny+Q)=0.$$

6. При каком условии прямая У=КХ + С касается элляпоа

$$\frac{\chi^2}{a^2} + \frac{y^2}{8^2} = 1.$$
?

- 7. Вывести уравнение поверхности, сумма квадратов расстояний от каждой точки которой до точки $f_1(-\alpha,0,0)$ и $f_2(\alpha,0,0)$ развив постоянному числу $4\alpha^2$.
 - 8. Написать уравнения прямолинейных образующих гиперболонда $\frac{\chi^2}{9} \frac{y^2}{4} \frac{z^2}{4} = -1$. проходящих через точку M (-6; 2; 4).

6.3. Расчетние задания

Задача I. Найти уравнение окружности, проходящей через точ-ки A, B, C (данные см. разд. I. задача 3).

Вадача 2. На вилиное $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$ найти точки, расстояния которых до одного фокуса в К-раз больше расстояния до второго doryoa.

2.I.
$$\alpha = I$$
, $6 = 2$, $K = 2$. 2.2 . $\alpha = 2$, $6 = I$, $K = 2$. 2.3 . $\alpha = 4$, $6 = 2$, $K = 2$. 2.4 . $\alpha = 2$. $6 = I$, $K = 3$. 2.5 . $\alpha = 2$, $6 = 4$, $K = 2$. 2.6 . $\alpha = 3$. $6 = I$. $K = 3$. 2.7 . $\alpha = 4$, $6 = 3$, $K = 2$. 2.8 . $\alpha = 2$. $6 = 8$. $K = 4$. 2.9 . $\alpha = 8$, $6 = 2$, $K = 2$. 2.10 , $\alpha = 6$, $6 = 4$, $K = 3$. 2.11 . $\alpha = 2$, $6 = 8$, $K = 2$. 2.12 . $\alpha = 7$, $6 = 5$, $K = 2$. 2.13 . $\alpha = 5$, $6 = 7$, $K = 3$. 2.14 . $\alpha = 2$. $6 = 7$. $K = 2$. 2.15 . $\alpha = I$. $6 = 2$. $6 = 5$. $6 = 1$. $6 = 6$.

Запача 3. Написать кановическое уравнение гиперболи, если в) угол между ее асимптотами равен с., расстояние между фокусами 2 с (варианти I - I5); б) эксцентрионтет равен & . расстояние между фокусами 2с (варианти 15 - 30).

3.1.
$$\alpha = \pi/4$$
 . $c = 4$. 3.2. $\alpha = \pi/2$. $c = 3$. 3.3. $\alpha = \pi/2$. $c = 8$. 3.4. $\alpha = \pi/8$. $c = 6$. 3.5. $\alpha = 2\pi/3$. $c = 4$. 3.6. $\alpha = 30^{\circ}$. $c = 1$. 3.7. $\alpha = \pi/8$. $c = 8$. 3.8. $\alpha = \pi/2$. $c = 4$. 3.9. $\alpha = 2\pi/3$. $c = 10$. 3.10. $\alpha = \pi/3$. $c = 3$. 3.11. $\alpha = \pi/4$. $\alpha = 1$. 3.12. $\alpha = 2\pi/3$. $\alpha = 1$. 3.13. $\alpha = \pi/3$. $\alpha = 1$. 3.14. $\alpha = \pi/3$. $\alpha = 1$. 3.15. $\alpha = \pi/4$. $\alpha = 1$. 3.16. $\alpha = \pi/4$. $\alpha = 1$. 3.17. $\alpha = 1$. 3.18. $\alpha = 1$. 3.18. $\alpha = 1$. 3.19. $\alpha = 1$. 3.19. $\alpha = 1$. 3.20. $\alpha = 1$. 4. $\alpha = 1$.

3.21.
$$\mathcal{E} = I.3$$
, $\mathcal{C} = I$.
 3.22. $\mathcal{E} = I.8$, $\mathcal{C} = 2$.

 3.23. $\mathcal{E} = I.5$, $\mathcal{C} = 6$.
 3.24. $\mathcal{E} = I.2$, $\mathcal{C} = I$.

 3.25. $\mathcal{E} = I.5$, $\mathcal{C} = 6$.
 3.26. $\mathcal{E} = I.4$.
 $\mathcal{C} = 2$.

 3.27. $\mathcal{E} = I.2$, $\mathcal{C} = 3$.
 3.28. $\mathcal{E} = I.5$.
 $\mathcal{C} = 6$.

 3.29. $\mathcal{E} = I.3$, $\mathcal{C} = 8$.
 3.30. $\mathcal{E} = I.8$.
 $\mathcal{C} = 5$.

Задача 4. Найти уравнение параболы и ее директрион, если парабола проходит через точки пересечения линий $y = KX + X^2 + y^4 + QX +$ + $69 \approx 0$ и симметрична относительно I) оси 0 (варианты I \sim I5); 2) OOM OY (BADWARTH I5 - 30).

4.I.
$$K = -I$$
. $\alpha = -A$. $\theta = 0$. 4.2. $K = I$. $\alpha = 2$. $\theta = 4$.
4.8. $K = -I/2$. $\alpha = 0$. $\theta = 4$.
4.4. $K = 2$. $\alpha = 4$. $\theta = 8$.
4.5. $K = -3$. $\alpha = -4$. $\theta = -2$.
4.6. $K = 3$. $\alpha = 6$. $\theta = 4$.
4.7. $K = -I$. $\alpha = -2$. $\theta = 0$.
4.8. $K = I$. $\alpha = 2$. $\theta = 6$.
4.9. $K = -2$. $\alpha = -I$. $\theta = 3$.
4.10. $K = 2$. $\alpha = 6$. $\theta = 8$.
4.11. $K = -3$. $\alpha = 0$. $\theta = 8$.
4.12. $K = I$. $\alpha = -I$. $\theta = -3$.
4.13. $K = -4$. $\alpha = 6$. $\theta = 61$.
4.14. $K = 4$. $\alpha = 4$. $\theta = -4$.
4.15. $K = -I$, $\alpha = 2$. $\theta = -6$.
4.16. $K = I$, $\alpha = 4$, $\theta = 3$.
4.17. $K = 2$, $\alpha = 4$, $\theta = 2$.
4.18. $K = 3$, $\alpha = I$. $\theta = 2$.
4.19. $K = 4$. $\alpha = I$. $\theta = 4$.
4.20. $K = 5$. $\alpha = 2$. $\theta = 6$.
4.21. $K = -I$. $\alpha = -6$. $\theta = 0$.
4.22. $K = -2$. $\alpha = 0$. $\theta = -4$.
4.23. $K = -3$. $\alpha = -4$, $\theta = 2$.
4.24. $K = -4$. $\alpha = 0$. $\theta = 4$.
4.25. $K = 0$,5 $K = 2$. $K = 1$.
4.26. $K = -0$.5, $K = -2$. $K = 1$.
4.27. $K = I$, $K = -I$, $K = -I$. $K = -I$.

Задача 5. Построить область, удовлетворяющую системе неравенств.

15.І.
$$\begin{cases} x^2 + (y-1)^2 \le 1, \\ x^2 > 2(y-1). \end{cases}$$

5.2. $\begin{cases} \frac{(x-1)^2}{4} + \frac{(y-1)^2}{9} > 1, \\ (y-1)^2 < 4(x-1). \end{cases}$

5.3.
$$\begin{cases} y^2 - 10x < 0, \\ 5x - 3y - 15 < 0, \\ y - 2 < 0. \end{cases}$$
 5.4.
$$\begin{cases} x^2 + 8y < 0, \\ 2x + 3y + 6 < 0, \\ x + 2 > 0. \end{cases}$$

$$5.5. \begin{cases} \frac{\chi^2}{4} - \frac{y^2}{9} \le 1, \\ 141 \le 2. \end{cases}$$

$$5.7. - \begin{cases} x^2 - y^2 > 1, \\ 1 \times 1 \ge 1. \end{cases}$$

$$\begin{cases} \chi^2 - y^2 > 1, \\ 1 \times 1 & \end{cases}$$

5.9.
$$\begin{cases} x^2 + y^2 - 4y \le 0, \\ |x| \ge 1. \end{cases}$$

5.II.
$$\begin{cases} (x-1)^2 + (y+2)^2 \le 9, & 5.12. \\ x^2 + y^2 - 2x + 4y \ge -4. & \begin{cases} (x-3)^2 + (y-3)^2 < 8, \\ x > y. \end{cases}$$

5.13:
$$\begin{cases} \chi^2 + y^2 + x + y > 0, & 5.14. \\ y > 2x. & 4|y| < 1. \end{cases}$$

5.15.
$$\begin{cases} \frac{\chi^2}{.4} + \frac{y^2}{25} \le 1, \\ \chi + y < 3. \end{cases}$$
 5.16.
$$\begin{cases} \chi^2 + y^2 < 25, \\ \frac{\chi^2}{4} + \frac{y^2}{25} \ge 1. \end{cases}$$

5.17.
$$\begin{cases} \chi^2 + y^2 - 2\chi + 4y > 0, & 5.18. \\ \chi > y. & \end{cases} \begin{cases} \frac{\chi^2}{25} + \frac{y^2}{16} < 1, \\ \chi^2 < 4. \end{cases}$$

5.19.
$$\begin{cases} \chi^2 + y^2 - 4x - 2y \ge -4, & 5.20. \\ (x-2)^2 + (y-1)^2 \le 16. \end{cases} \begin{cases} \chi^2 + y^2 \le 4, \\ \chi^2 - y^2 \ge 1. \end{cases}$$

5.21.
$$\begin{cases} \chi^2 - y^2 \ge 0, & 5.22. \\ \frac{\chi^2}{4} - y^2 < 1. & \begin{cases} \left(y - t\right)^2 < 2x, \\ \frac{\chi^2}{4} + y^2 \le 1. \end{cases}$$

5.23.
$$\begin{cases} y^2 - \frac{x^2}{4} \le 1, \\ x^2 + \frac{y^2}{4} > 1. \end{cases}$$

5.6.
$$\begin{cases} \frac{\chi^2}{4} - \frac{y^2}{9} < 1, \\ \frac{y^2}{9} - \frac{\chi^2}{4} < 1. \end{cases}$$

5.8.
$$\begin{cases} \frac{(X-1)^2}{4} + \frac{(Y+1)^2}{9} < 1, \\ 0 < X < 2. \end{cases}$$

$$5.10. \begin{cases} (x-1)^{2} + (y-2)^{2} \le 25, \\ (x-4)^{2} + (y-6)^{2} \le 9. \end{cases}$$

$$6.9, \quad 5.12. \begin{cases} (x-3)^{2} + (y-3)^{2} < 8, \\ (y-3)^{2} + (y-3)^{2} < 8. \end{cases}$$

5.14.
$$\begin{cases} x^2 + y^2 - 2x < 0, \\ 4|y| < 1. \end{cases}$$

$$\begin{cases} x + y < 25, \\ \frac{x^2}{4} + \frac{y^2}{25} > 1. \end{cases}$$

5.20.
$$\begin{cases} x^2 + y^2 \le 4, \\ x^2 - y^2 \ge 1. \end{cases}$$

$$\begin{cases} \frac{X^2}{4} + y^2 \le 1 \\ \frac{X^2}{4} + y^2 \le 1 \end{cases}$$
5.24.
$$\begin{cases} y^2 \ge 2(x-2) \\ \frac{X^2}{4} + y^2 \le 1 \end{cases}$$

5.24.
$$\begin{cases} y^2 \geqslant 2(x-2), \\ 0 < y < 2x, \\ x < 4 \end{cases}$$

5.25:
$$\begin{cases} xy < 1, \\ x^2 + y^2 < 4. \end{cases}$$

5.26.
$$\begin{cases} xy < 1, \\ |x| + |y| < 2. \end{cases}$$

5.27.
$$\begin{cases} y < |x-1|, \\ x^2 - 2x < y - 1. \end{cases}$$

5.28.
$$\begin{cases} 4x^2 + y^2 < 4, \\ 4|x| + |y| > 4. \end{cases}$$

5.29.
$$\begin{cases} x^2 - y^2 < 0, \\ 4y^2 < x^2. \end{cases}$$

5.30.
$$\begin{cases} y^2 < 2x + 2, \\ x + |y| > 0. \end{cases}$$

Задача 6. Упростить уравнение кривой и построить ее.

6.1.
$$5x^2 + 9y^2 + 30x - 18y + 9 = 0$$
.

6.2.
$$16x^2 - 25y^2 + 32x - 100y + 84 = 0$$
.

6.3.
$$5x^2 - 9y^2 - 30x + 18y - 9 = 0$$
.

6.4.
$$y^2 + 6x + 14y + 43 = 0$$
.

6.5.
$$9x^2 + 4y^2 - 18x - 16y - 11 = 0$$

6.6.
$$2x^{4} + 5y^{2} - 20y + 5 = 0$$

6.7.
$$3x^2 + 4y^2 + 6x - 9 = 0$$
.

6.8.
$$x^2 + 3y^2 + 4x - 9y + 2 = 0$$
.

6.9.
$$5x^2 + 9y^2 + 30x - 18y + 54 = 0$$
.

6.TO.
$$5x^2 + 6y^2 - 10x - 12y - 4 = 0$$

6.11.
$$3x^2 + 8y^2 + 12x - 16y - 4 = 0$$
.

6.12.
$$2x^2 - 3y^2 - 6y - 5 = 0$$

6.13.
$$4x^2 - 6y^2 + 8x - 12 = 0$$
.

6.14.
$$5x^2 - 4y^2 - 10x - 8y + 3 = 0$$

6.15.
$$9x^2 - 4y^2 + 18x - 12y + 36 = 0$$
.

6.16
$$x^2 - 5x - y^2 - 3y = 0$$

$$6.17 \cdot 5x^2 + 9y^2 + 30x - 18y + 60 = 0$$

6.18.
$$y^2 + 5x - 6y + 4 = 0$$
.

6.19.
$$x^2 + 4y^2 - 2x + 16y = 0$$
.

6.20.
$$4x^2 - y^2 + 16x + 4y = 0$$
.

6.21.
$$2x^2-y^2+8x+4y-10=0$$
.

6.22.
$$7x - 5y^2 + 10y - 19 = 0$$

6.29.
$$6x^2 + 6y^2 - 36x + 12y - 9 = 0$$
.

6.24.
$$3y^2 + x^2 + 4x - 9y - 4 = 0$$
.

6.25.
$$9x^2 - 18x + 3y + 11 = 0$$
.

6.26.
$$2x^2 - 5y^2 - 20y + 5 = 0$$
.

6.27.
$$9x^2 - 4y^2 - 18x - 16y - 10 = 0$$
.

6.28.
$$9x^2 + 5y^2 - 18x + 30y + 9 = 0$$
.

6.29.
$$4y^2 + 8x - 16y - 20 = 0$$
.

6.50.
$$8x^2 + 8y^2 - 4x - 4y + 3 = 0$$

Вадача 7. Упростить уравнение кривой и построить сс.

7.1.
$$x^2 + 2xy - y^2 - 8\sqrt{2} = 0$$
. 7.2. $4x^2 + 4\sqrt{3}xy + 5y^2 - 16 = 0$.

7.3.
$$3x^2 - 4\sqrt{6}xy + 5y^2 + 18 = 0$$
. 7.4. $9x^2 + 8\sqrt{3}xy + 6y^2 - 36 = 0$.

7.5.
$$7x^2 - 8xy + y^2 - 9 = 0$$
. 7.6. $2x^2 - 4\sqrt{2}xy + y^2 + 4 = 0$.

77.
$$2x^2 - 6\sqrt{2}xy - y^2 + 40 = 0$$
. 7.8. $6x^2 + 6\sqrt{10}xy - y^2 + 32 = 0$.

7.9.
$$2\sqrt{6}xy+5y^2+6=0$$
 7.10. $5x^2+4xy+2y^2-18=0$

7.11.
$$4x^2 + 2\sqrt{6}xy + 3y^2 - 24 = 0$$
. 7.12. $6x^2 + 2\sqrt{5}xy + 2y^2 - 21 = 0$.

7.18.
$$5x^2 + 4\sqrt{2}xy + 3y^2 - 14 = 0$$
. 7.14. $7x^2 + 6\sqrt{2}xy + 4y^2 - 15 = 0$.

7.15.
$$3x^2 + 2\sqrt{14}xy + 8y^2 - 10 = 0$$
. 7.16. $7x^2 + 2\sqrt{6}xy + 2y^2 - 24 = 0$.

7.17.
$$9x^2 + 4\sqrt{2}xy + 2y^2 - 20 = 0$$
. 7.18. $6x^2 + 2\sqrt{10}xy + 3y^2 - 16 = 0$.

7.19.
$$4x^2 + 4\sqrt{3}xy + 5y^2 - 40 = 0$$
. 7.20. $5x^2 + 4xy + 8y^2 + 20 = 0$

7.21.
$$9x^2 + 2ixy + 16y^2 - 40 = 0$$
 7.22. $5x^2 + 6xy + 5y^2 - 16 = 0$.

7.23.
$$7x^2 + 16xy - 23y^2 - 24 = 0$$
. 7.24. $x^2 + 2xy + y^2 + 14 = 0$

7.25.
$$4x^2 - 4xy + y^2 - 1 = 0$$
. 7.26. $5x^2 - 6xy + 5y^2 - 32 = 0$.

7.27.
$$x^2 - 2xy + y^2 + 25 = 0$$
. 7.28. $4x^2 - 4xy + y^2 - 1 = 0$.

7.29.
$$4xy+2x-2y-1=0$$
. 7.30. $xy+3x-3y-9=0$.

Задача 8. Найти координаты центра и радиуо сферы.

8.1.
$$x^2 + y^2 + z^2 + 2x - 6y + 8z + 10 = 0$$
.

8.2.
$$x^2+y^2+z^2-12x+6y+37=0$$
.

8.3.
$$x^2+y^2+z^2-2x+6y-8z+26=0$$

8.4.
$$x^2 + y^2 + z^2 + 4y - 10z + 10 = 0$$
.

8.5.
$$2x^2 + 2y^2 + 2z^2 - 10x - 12y + 8z + 1 = 0$$
.

8.6.
$$x^2 + y^2 + z^2 - x + 2y + 1 = 0$$
.

8.7.
$$x^2+y^2+z^2+2x+4y-20=0$$
.

$$8.8. x^2 + y^2 + z^2 - 4x + 6y + 2z - 2 = 0$$

8.9.
$$2x^2+2y^2+2z^2+4y-3z+2=0$$
.

8.10.
$$x^2 + y^2 + z^2 - 2x = 0$$

B.12.
$$x^2+y^2+z^2-x+y=0$$

8.19.
$$x^2 + y^2 + z^2 - 4x + y - 2z = 0$$
.

8.14.
$$x^2 + y^2 + Z^2 - 2x + 4y - 14 = 0$$
.

8.15.
$$x^2 + y^2 + z^2 - 4x + 8y - 2z - 4 = 0$$

8.16.
$$3x^2 + 3y^2 + 3z^2 - 6x + 8y - \frac{11}{3} = 0$$
.

8.18.
$$5x^2 + 5y^2 + 5z^2 + 9y - 10z + 9 = 0$$
.

8.19.
$$x^2 + y^2 + z^2 - 8x + 10y - 12z - 4 = 0$$
.

8.21:
$$x^2 + y^2 + z^2 - 6x + 2y - 10z + 36 = 0$$
.

8.25.
$$x^2 + y^2 + z^2 - 6x - 4y - 3 = 0$$
.

8.27.
$$x^2 + y^2 + z^2 - 2x - 10y - 4 = 0$$

8.28.
$$x^2 + y^2 + z^2 - 6x + 8z + 9 = 0$$

8.29.
$$x^2 + y^2 + z^2 - 6x + 2y - 14 = 0$$

8.80.
$$2x^2 + 2y^2 + 2z^2 - 4x + 5y - z + 4 = 0$$

<u>Задача 9.</u> Составить уравнение фигурн, полученной вращением кривой вокруг оси. Сделать чертеж.

9.1.
$$\begin{cases} x + 2y = 0, & \text{odb } Qx. \end{cases}$$
 9.2. $\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{6^2} = 1, & \text{odb } Qx. \\ \frac{x}{a^2} = 0, & \text{odb } Qx. \end{cases}$

9.5.
$$\begin{cases} \frac{X^2}{a^2} - \frac{y^2}{6^2} = 1, & \text{odd } Ox. & \text{9.4.} \\ z = 0 \end{cases} \begin{cases} y^2 = 2PX \\ z = 0 \end{cases}, & \text{odd } Ox. \end{cases}$$

9.5.
$$\begin{cases} y = sin X \\ \overline{z} = 0 \end{cases}$$
 onb OX . 9.6. $\begin{cases} x^2 + (y - 4)^2 = 1 \\ \overline{z} = 0 \end{cases}$ onb OX .

9.7.
$$\begin{cases} \chi^2 = 2py & \text{odd } Ox & 9.8. \\ \tilde{z} = O' & \\ \end{cases} \begin{cases} y = \frac{1}{\sqrt{\chi^2 - 1}} & \text{odd } Ox. \end{cases}$$

9.9.
$$\begin{cases} \vec{z} = \sqrt{1 - x^2} , & \text{oob } \vec{O} \vec{z} = 9.10. \\ y = 0 \end{cases} \begin{cases} \vec{z} = \frac{1}{\sqrt{y^2 \cdot i}} , & \text{oob } \vec{O} \vec{z} \end{cases}$$

9.II.
$$\begin{cases} \vec{z} = \sqrt{(x^2 + 1)(4 - x^4)}, \text{ och } O\vec{z}. \text{ 9.I2.} \\ \vec{y} = 0 \end{cases}$$
 $\begin{cases} \vec{z} = 4\vec{y}^2, \\ \vec{x} = 0 \end{cases}$

9.13.
$$\begin{cases} x-y \neq 0 \\ y = 0 \end{cases}$$
 och $0x$ 9.14.
$$\begin{cases} \frac{x}{a} - \frac{y}{4} = 0 \\ y = 0 \end{cases}$$
 och $0y$

9.16.
$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{e^2} = 1, & \text{odb } 0x. \\ z = 0 \end{cases}$$
 9.16.
$$\begin{cases} x^2 + y^2 = 25, & \text{odb } 0x. \\ z = 0 \end{cases}$$

9.17.
$$\begin{cases} \frac{\chi^2}{a^2} + \frac{z^2}{c^2} = 1, & \text{odd } Oz = 9.18. \\ y = 0 \end{cases} \begin{cases} \frac{\chi^2}{a^2} - \frac{z^2}{c^2} = 1, & \text{odd } Oz \\ y = 0 \end{cases}$$
9.19.
$$\begin{cases} -\frac{\chi^2}{a^2} + \frac{z^2}{c^2} = 1, & \text{odd } Oz = 9.20. \\ y = 0 \end{cases} \end{cases} \begin{cases} \chi^2 = 2z \\ y = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases}$$

9.28.
$$\begin{cases} \vec{z} = \vec{y} , & \text{odd } Ox = 9.24. \\ x = O \end{cases} \begin{cases} \vec{z} = \vec{y} , & \text{odd } O\vec{z} . \end{cases}$$

$$\begin{cases} x = 0 \end{cases} \qquad \begin{cases} x = 0 \end{cases}$$

9.25.
$$\begin{cases} x + 2y = 4 & \text{odd } Ox. \\ z = O \end{cases}$$
 9.26.
$$\begin{cases} 2y + z - 2 = 0 & \text{odd } Ox. \\ x = O \end{cases}$$
 9.27.
$$\begin{cases} z = y^2 & \text{odd } Oy. \\ x = O \end{cases}$$
 9.28.
$$\begin{cases} y = 4 - x^2 & \text{odd } Ox. \\ z = O \end{cases}$$

$$\begin{cases} x = 0 & \text{if } z = 0 \\ 9.29. & \text{if } (x-2)^2 + y^2 = 4, \text{ och } 0y. 9.30. & \text{if } y = a^2, \\ y = 0 & \text{if } z = 0 \end{cases}$$

9.30.
$$\begin{cases} Xy = a^{2}, & \text{odd } Ox \\ Z = O \end{cases}$$

Задача 10. Назвать и построить поверхности.

10.1. a)
$$\chi^2 - y^2 = 8\bar{z}$$
,

10.2. a)
$$\frac{x^2}{16} + \frac{y^2}{4} = Z$$
,

10.3. a)
$$\frac{\chi^2}{16} - \frac{y^2}{4} = Z$$
,

10.4. a)
$$y^2 + \frac{z^2}{4} = 2z$$
,

6)
$$x^2 + 4y^2 = z^2$$

10.5. a)
$$\frac{y^2}{4} + \frac{y^2}{9} + z^2 = 1$$
,

10.6. a)
$$x^2 + y^2 + z^2 = 2\alpha z$$
.

$$d) \left(Z - \alpha \right)^2 = XY.$$

10.7. a)
$$x^2 - y^2 + z^2 = 4$$
.

(d)
$$x^2 - y^2 = Z^2$$
.

6)
$$y^2 + z^2 = 4z$$

10.9. a)
$$z^2 - x^2 = 2y$$
,

6)
$$z = 4 - x^2$$

10.10. a)
$$\frac{\chi^2}{25} - z^2 - \frac{y^2}{9} = 1$$
,

10.11. a)
$$-x^2+4y^2+2^2=4$$
,

6)
$$(y-t)^2 = \vec{z}$$

10.12. a)
$$4x^2 - y^2 - z^2 = 4$$
,

6)
$$y^2 - x^2 = 0$$
.

10.13. a)
$$(x-1)^2 + y^2 - (z+1)^2 = 1$$
,

$$\text{d)} \quad x^2 + 2xy + y^2 = 0.$$

10.15. a)
$$x^2 + 2y^2 + 20y + z^2 + 34 = 0$$
,

$$0) \frac{x^2}{4} + y^2 = z^2.$$

10.16. a)
$$x^2 - 3y^2 + 6z^2 - 18 = 0$$
,

$$6) \frac{y^2}{4} + z^2 = 1.$$

10.17. a)
$$5x^2-3y^2+9z^4-30=0$$
,

$$0) \ z^2 + 4y^2 = 2z.$$

10.18. a)
$$4x^2 + 3y^2 - 24z = 0$$
,

6)
$$x^2 - 5x - y^2 + 3y = 0$$
.

10.19. a)
$$x^2 + 4z^2 - 8y = 0$$
,

10.20. a)
$$12x^2 + 3y^2 - 4z^2 + 24 = 0$$
.

6)
$$4x^2 - 6y^2 + 8x - 12 = 0$$
.
6) $x^2 + z^2 - 2x + 4z = 0$.

ID.2T. a)
$$2x^2 + 7y^2 + 4x^2 - 28 = 0$$
.

6)
$$4x^2 - 3y^2 + 9z^2 = 0$$

TO 22 a)
$$9x^2 - 4y^2 + 18x - 12y + 36 = 0$$
,

6)
$$x^2 + 9y^2 + 2x = 0$$
.

I0.22. a)
$$9x^2 - 4y^2 + 18x - 12y + 36 = 0$$

$$6) 4x^2 - 9y^2 - 4z^2 = 0.$$

10.23. a)
$$12x^2-2y-5z^2=0$$
,

a)
$$9z^2 - 6y = 0$$
.

10.24. a)
$$3x^2 + 5y^2 + 30z = 0$$
,

10.25. a)
$$9x^2 + 18y + 6z^2 = 0$$
,

d)
$$6x^2 - 3y^2 + 18 = 0$$
.

10.26. a)
$$3x^2 + 4y^2 + 4z^2 = 16$$
.

6)
$$x^2 + 4y^2 - 9z^2 = 0$$
.

10.27. a)
$$16x^2 - y^2 + 32z = 0$$
,

$$0) y^2 - 4yz + 4z^2 = 0.$$

TO 28. a)
$$3x^2 - 9y^2 + 4z^2 + 36 = 0$$
.

$$6) 4x^2 = y z.$$

10.29. a)
$$36x^2 - 9y^2 - 4z^2 - 36 = 0$$
,

6)
$$z^2 + 4z - y^2 = 0$$

10.30. a)
$$4x^2 - y^2 = Z$$
,

6)
$$z^2 - x^2 - 2x = 0$$
.

приложения

Приложение 1

Примеры численной реализации методов решения систем линейных алгебранческих уравнений на программируемых микрокалькуляторах "Электроника КЗ-34", "Электроника МК-61", "Электроника МК-61", "Электроника МК-61", "

I. Метод Гаусса — Гордана заключается в одновременном исключени какого-либо переменного из всех уравнений систем, кроме одного. На первом шаге выберем ведущий элемент $\mathcal{Q}_{_{\mathcal{H}}} \neq \mathcal{O}$. Разделим первое уравнение системы на $\mathcal{Q}_{_{\mathcal{H}}}$, во всех остальных — исключим $\mathcal{X}_{_{\mathcal{H}}}$:

$$\begin{pmatrix} 1 & a_{12}^{(t)} & a_{1n}^{(t)} & a_{1,n+1}^{(t)} \\ 0 & a_{22}^{(t)} & a_{2n}^{(t)} & a_{2,n+1}^{(t)} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n2}^{(t)} & a_{nn}^{(t)} & a_{n,n+t}^{(t)} \end{pmatrix}$$

$$a_{ij}^{(i)} = a_{ij}/a_{ii}$$
,
 $a_{ij}^{(i)} = a_{ij} - a_{ij}^{(i)} \cdot a_{ij}$,
 $j = 2, ..., n+1; \quad i = 2, ..., n$.

На втором шаге вноерем ведущий элемент $a_{22}^{(\prime\prime)} \neq 0$, разденим второз уравнение на $a_{22}^{(\prime\prime)}$ и исключим x_2 из всех уравнений, кроме вто-

$$\begin{pmatrix} 1 & 0 & a_{r3}^{(2)} & \dots & a_{rn}^{(2)} & a_{r,n+1}^{(2)} \\ 0 & 1 & a_{23}^{(2)} & \dots & a_{2n}^{(2)} & a_{2,n+1}^{(2)} \\ 0 & 0 & a_{35}^{(2)} & \dots & a_{3n}^{(2)} & \dots & a_{5,n+1}^{(2)} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & a_{n3}^{(2)} & \dots & a_{nn}^{(2)} & a_{n,n+1}^{(2)} \end{pmatrix},$$

$$a_{ij}^{(2)} = a_{ij}^{(r)} - a_{ij}^{(2)} & a_{i2}^{(r)},$$

$$a_{ij}^{(2)} = a_{ij}^{(r)} - a_{ij}^{(2)} & a_{i2}^{(r)},$$

$$\vdots = f, 3, \dots, n, \quad j = 3, \dots, n+f.$$

где

После 72 шагов матряца системы преобразуется в единичную, а в столоде свободных членов суть значения неизвестных.

<u>Программа I</u> решения окотемы трех линейных алгебраических ураввений методом Гауоса — Кордана:

Инструкция. Элементы расширенной матрицы системы засылаем в регистры по схеме

$$\begin{pmatrix}
1 & 4 & 7 & A \\
2 & 5 & 8 & B \\
3 & 6 & 9 & C
\end{pmatrix}$$

После вичислений (В/О С/П) значения x, x, x, x, хранится соотнетственно в регистрах: A и Y, A и X, A

Контрольный пример. Рашить методом Гаусса - Кордана систему

$$\begin{pmatrix} \mathbf{I}, \mathbf{5} & -0.2 & 0.1 & 0.4 \\ -0.1 & \mathbf{I}, \mathbf{5} & -0.1 & 0.8 \\ -0.3 & 0.2 & -0.5 & 0.2 \end{pmatrix}$$

В режиме программирования (F ПРГ) вводим программу. В режиме автоматической работы (F ABT) вводим элементы расширенной матрицы GEGTAMM

Накимаем клавили 80 с/п . После останова запишем результат: $x_{2} = 0.530$, (H/IA) $x_{2} = 0.364$, (H/I3) $x_{3} = -0.406$.

2. Итерационный метон Гаусса - Зейделя.

Приведем систему линейных уравнений $A = \epsilon$ наким-либо образом к x = Bx + C

В частности, всии $a_i \neq 0$ ($i=1,\ldots,n$), то можно записать

$$x_i = \sum_{\substack{j=1\\j \neq i}}^n \mathcal{B}_{ij} x_j + C_i, \quad i = 1, 2, \dots, n,$$

PAS

$$c_i = 6 / a_i$$
 $b_{i,z} = -a_{i,z} / a_{i,z}$

 $C_i = \theta_i / \alpha_{ii}$, $\theta_{ij} = -\alpha_{ij} / \alpha_{ij}$. В методе Геусса — Зейдемя втерационный процесс вичисления после довательных приближений и искомому решению осуществинется по формулам

$$\begin{cases} x_{i}^{(K+t)} = b_{i1} x_{i}^{(K)} + \dots + b_{in} x_{n}^{(K)} + C_{i}, \\ x_{i}^{(K+t)} = b_{i1} x_{i}^{(K+t)} + b_{i2} x_{i}^{(K)} + \dots + b_{in} x_{n}^{(K)} + C_{i}, \\ x_{i}^{(K+t)} = b_{i1} x_{i}^{(K+t)} + \dots + b_{in} x_{n}^{(K+t)} + b_{i1} x_{n}^{(K)} + C_{i1}, \\ x_{i2}^{(K+t)} = b_{i1} x_{i1}^{(K+t)} + \dots + b_{in} x_{n}^{(K+t)} + b_{i2} x_{n}^{(K)} + C_{i1}, \end{cases}$$

rae K = 0, 1, 2, ... - nomep wrepamen.

Всли при любом выборе начального прибливения $x^{(o)}$ выполнено усновие $\lim_{\kappa \to \infty} x^{(\kappa)} = x$, то итерационный процесс называется

оходимом к решению системы. Для сходимости итерационного метода

$$\sum_{j=1}^{n} |\mathcal{E}_{ij}| \leq \alpha < 1 \quad (i=1,...,n), \quad \text{ham} \quad \sum_{i=1}^{n} |\mathcal{E}_{ij}| \leq \beta < 1 \quad (J=1,...,n),$$

星刀短

$$|\mathbf{Q}_{ii}| > \sum_{j=1 \atop j \neq i}^{n} |\mathbf{Q}_{ij}| \quad (i=1,...,n).$$

Выполнение последнего условия говорит с наличии в матряце диатонального преобладания.

В практических вичислениях итерационный процесс прекращают, если компоненты двух последовательных приближений отличаются на величину, меньшую наперед заданного числа \mathcal{E} . Обично полегают $x^{(o)} = C$.

<u>Программа 2</u> решения итерационным методом Гаусса — Зейделя овотемы трех линейных алгеораических уравнений, сведенной к виду

$$\begin{aligned} x_1 &= b_{12} x_1 + b_{13} x_3 + C_1, \\ x_2 &= b_{21} x_1 + b_{23} x_3 + C_2, \\ x_3 &= b_{31} x_1 + b_{32} x_2 + C_3, \end{aligned} \qquad b_{ij} &= -\frac{a_{ij}}{a_{ik}}, \quad C_k = \frac{b_k}{a_{ik}}, \\ c_i &= \frac{b_k}{a_{ik}}, \quad c_k = \frac{b_k}{a_{ik}}, \end{aligned}$$

Элементы расширенной матрицы и приближения искомых переменных хранятся соответственно в регистрах

$$\begin{pmatrix} \mathbf{f}_{12} & \mathbf{f}_{13} & \mathbf{c}_{1} & \mathbf{x}_{1}^{(\kappa)} \\ \mathbf{f}_{21} & \mathbf{f}_{33} & \mathbf{c}_{2} & \mathbf{x}_{2}^{(\kappa)} \\ \mathbf{f}_{31} & \mathbf{f}_{52} & \mathbf{c}_{3} & \mathbf{x}_{3}^{(\kappa)} \end{pmatrix} \qquad \begin{pmatrix} \mathbf{I} & \mathbf{2} & \mathbf{3} & \mathbf{A} \\ \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{B} \\ \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{C} \end{pmatrix}$$

В программе предусмотрен автоматический ввод исходних данних:

ш	C/II	П2	C/II	пз	C/II	П4	C/II	П5	C/II
П6	C/II	117	C/II	П8	c/n	П9	C/II	ПА	C/II
TIB.	C/II	ПO	MIIB	MII	X	MIC	NIIS	, х	+ '
ицэ	+	ПА	ATIN	ИП4	X	MIC	MII5	X ·	+
ИП6	. +	ПВ	MILA	ип7	X	MIB	MII8	X	+

Н

Инструкция. Нажав клавиши F ПРТ, ввести программу. В режиме автоматической расоти (F ABT) ввести исходые данные; В/О

После останова записать в таблицу значения очередного прибливения: ИПА ($\boldsymbol{x}_{1}^{(r)}$), ИПВ ($\boldsymbol{x}_{2}^{(r)}$), ИПВ ($\boldsymbol{x}_{3}^{(r)}$). Для выполнения следующей втерации нажать клавищу С/П.

Контрольный пример. Решить метолом Гаусса — Зейделя систему $\begin{cases} 5x_1 + 0.12x_2 + 0.09x_3 = 10, \\ 0.08x_1 + 4x_2 - 0.15x_3 = 20, \\ 0.18x_1 - 0.06x_2 + 3x_3 = -4.5. \end{cases}$

Итерации продолжать до совпадения в двух последовательных приближениях трех десятичных знаков.

Преобразуем систему к виду:

$$\begin{cases} x_1 = -0.024 x_2 - 0.018 x_3 + 2, \\ x_2 = -0.02 x_1 + 0.038 x_3 + 5, \\ x_3 = -0.06 x_1 + 0.02 x_2 - 1.5. \end{cases}$$

Виберем начальное приближение: $x_1^{(o)}=2$, $x_2^{(o)}=5$, $x_3^{(o)}=-1.5$. Результати вичислений заносим в таблицу (K – номер итерации)

K	$x_{i}^{(\kappa)}$	$x_{i}^{(\kappa)}$	x, (k)
I	1,907	4,905	-1,516
2	1,909	4,904	-1,516
9	1,909	4,904	-1,516
			<u> </u>

- Ormer:
$$x_i = 1.909$$
; $x_2 = 4.904$; $x_3 = -1.516$.

Образец оформления титульного листа

менистерство высшего и среднего специального образования усср живрокий ордена ленина политехнический институт по., 50-летвя великой октисрыской социалистической реголюции

Кефедра вношей математики # I

THIOBON PACHET TP-I-AT

по теме "А	налитическая геометрия"
	Вармант Ж
Выполнил: I курса фа	отудент гр
(фамилия,	mma, orqectac)
g)	
Руководите	
* .	(долиность, фамилия, имя, отчество преподавателя)
Зачтено	(подинов)
	w 19

Киев КПИ (год)

Список литературы

- Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. - М.: Наука, 1980.
- 2. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М.: Наука, 1968.
- Э. Ильин В.А., Позняк Э.Г. Линейная алгебра. М.: Наука, 1974.
- Кфимов А.В., Демидович Б.П. и др. Сборник по математике для вузов. Линейная алтебра и основы математического анализа. – М.: Наука, 1981.
- Кузнецов И.А. Сборник заданий по высшей математике (типовне расчети). М.: Внош.шк., 1983.
- 6. Клетеник Д.В. Сборник задач по аналитической геометрии. M.: Неука, 1975.
- 7. Бурдун А.А., Мурашко Е.А., Феденко А.С. Сборник задач по алгебре й геометрии. Минок, изд.-во БГУ, 1979.
- 8. Фадеев Д.К., Соминский И.С. Сборник задач по внешей авгебре. - М.: Наука, 1968.
- 9. Барановская Г.Г., Любченко И.Н. Микрокалькуляторы в курсе вношей математики. Киев: Выща шк., 1987.
- 10. Гусятников П.Б. Векторная алгебра в примерах и задачах. - М.: Внош.шк., 1985.
- II. Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре. - М.: Наука, 1987.

ОГЛАВЛЕНИВ

T.	Метод координат. Полярные координати. Прямви на плоскоотк	3
2.	Комплексные числа	9
3.	Матрицы, определителя системы линейных алгебранческых уравнений	13
4.	Векторная алгебра. Задачи на примую и плоскость с применением векторной алгебры	34
5.	Линейное пространство. Динейные операторы	62
6.	Плоские кривые 2-го порядка. Поверхности 2-го порядка	65
	Приложения	
	Список литературы	82