Machine Learning: NJ Accidents

August 8, 2023

Anika Dinger, Lauren Golden, Justine Owsik, MJ Teng, Ricardo Uspango-Hormiga

Data Source

- 49 states of car accident data
- Collected from 2/2016 3/2023
- Contains 7.7M rows of accident data
- Pulls real time data with multiple Traffic
 APIs
- 140K rows for NJ specific accidents

Source: https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents

Analysis Goals

- Identify the most important features of the dataset
 - Environmental factors (weather conditions, temperature, humidity, etc)
 - Traffic controllers (stop signs, traffic signals, roundabouts)
- Determine accident severity accuracy through machine learning

Map of NJ accidents

Initial Findings:

- More accidents occurred on major highways and cities
- Dataset has more observations of "less severe" accidents
- No apparent correlation between severity of accidents and location

Traffic Controllers

- Traffic controllers include stop signs, junctions, traffic lights
- Drivers have to be more cautious
- Significantly fewer accidents wherever a traffic controller was present

Weather Condition Breakdown

Data Cleaning, Preprocessing

- Severity Levels originally 1,2,3,4
- $1,2 \rightarrow 0$, "Less Severe"
 - 113K rows of data
- $3,4 \rightarrow 1$, "More Severe"
 - 27K rows of data

- Dropped columns that could not be used by the model (e.g. coordinates, verbal descriptions, Airport Code, etc.)
- Filled NaNs with average values by month and year
- Binning similar values (e.g. "N" vs "North"

Create a summary table to use groupby to average all numerical columns for data imputation purposes
summary = nj_rows.groupby(["Month", "Year"]).mean()
summary

		Severity	Distance(mi)	Temperature(F)	Wind_Chill(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Speed(mph)	Precipitation(in)
Month	Year									
1	2017	0.321127	0.188084	36.757183	29.552778	70.605634	30.058554	8.468649	9.706264	0.47238
	2018	0.357886	0.352946	30.579791	17.532300	67.705694	30.127927	8.082095	11.292929	0.14154
	2019	0.308891	0.269234	32.157117	21.369162	63.343434	30.071899	8.860890	10.463382	0.05087
	2020	0.306701	0.295952	38.574266	35.004464	61.849957	30.090516	9.191101	6.542705	0.00187
	2021	0.093902	0.722234	34.477439	28.852349	64.620732	29.925543	9.045009	8.176327	0.00359
			377	100			***	5753	8775	
	2018	0.328583	0.312276	40.796815	31.058372	72.883487	30.070142	8.318182	9.377968	0.05432
	2019	0.353059	0.375054	37.707194	33.215805	72.076220	29.941647	7.933972	7.799197	0.00888
12	2020	0.094168	0.753235	37.625918	32.837733	68.512532	29.942147	8.792910	8.522285	0.00472
	2021	0.139908	0.924514	43.638379	41.258324	61.584480	29.970409	9.195340	6.436280	0.00113
	2022	0.026053	0.854321	39.661005	35.120583	66.204364	30.064433	8.467275	8.169784	0.007716

Data Preprocessing

- → Both temperature and wind chill have a strong positive correlation to each other
- → Using both would produce negligible results

Model Selection and Training

- Random Forest: high reliability, moderate interpretability
- Hot one encoding
- Undersampling with


```
In [6]: # Balance out two classes
    from collections import Counter
    from imblearn.under_sampling import RandomUnderSampler
    rus = RandomUnderSampler(random_state=0)
    X_resampled, y_resampled = rus.fit_resample(X, y)
    print(sorted(Counter(y_resampled).items()))

[(0, 26906), (1, 26906)]
```

Model Selection and Training

Hyperparameter Tuning (number of estimators, max depth and max number of leaves)

```
In [9]: # Establish function to create a model
def tune_random_forest(X_train, X_test, y_train, y_test, n_estimators_val, max_depth_val, min_samples_val):
    rf_model = RandomForestClassifier(n_estimators=n_estimators_val, max_depth = max_depth_val, min_samples_leaf = min_samples_va
    start_time = time.time()
    rf_model.fit(X_train, y_train)
    end_time = time.time()
    total_time = end_time - start_time
    predictions = rf_model.predict(X_train)
    accuracy_score_train = accuracy_score(y_train, predictions)
    predictions_test = rf_model.predict(X_test)
    accuracy_score_test = accuracy_score(y_test, predictions_test)
    return total_time, accuracy_score_train, accuracy_score_test
```

• Compile, fit and train the optimal model

Confusion Matrix Display

Findings

- Model predicts less severe accidents as less severe (0) and severe accidents as severe (1) more times correctly than incorrectly.
- → The train data and test data show similar accuracy with the trained model

Feature Importance

- → Significant features that influence an accident's severity and its impact on traffic were:
 - Year
 - Distance
 - Weather Conditions
 - Wind Chill
 - ♦ Traffic Signal
 - ◆ Traffic Crossing

Final Findings

- Confusion Matrix Results
 - 71% accuracy
- Top 3 features were year, distance and wind chill. Due to COVID, we noted year may hold importance due to the lack of drivers/accidents on the road during lockdown. This may hold higher importance in these years but may not have much importance in predicting accidents in future years
- Test Data Results

Accuracy Scor	e : 0.717386	456552441	8
Classification	n Report		

	ii iicpoi c			
	precision	recall	f1-score	support
0	0.77	0.62	0.69	6729
1	0.68	0.82	0.74	6724
асу			0.72	13453
avg	0.73	0.72	0.71	13453
avg	0.73	0.72	0.71	13453
	0 1 acy	precision 0 0.77 1 0.68 acy avg 0.73	precision recall 0 0.77 0.62 1 0.68 0.82 acy avg 0.73 0.72	precision recall f1-score 0 0.77 0.62 0.69 1 0.68 0.82 0.74 acy avg 0.73 0.72 0.71

Training Data Results

Accuracy Sc	ore : (0.715106	915433980	1	
Classificat	ion Rep	port			
	precisio		recall	f1-score	support
	0	0.77	0.61	0.68	20177
	1	0.68	0.82	0.74	20182
accurac	у			0.72	40359
macro av	g	0.72	0.72	0.71	40359
weighted av	g	0.72	0.72	0.71	40359