Curve fitting: Polynomial Interpolation

Two points (n = 2)

straight line:

$$y = a_0 + a_1 x$$

Three points (n = 3)

quadratic:

$$y = a_0 + a_1 x + a_2 x^2$$

Four points (n = 4)

cubic function:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Unique polynomial allows predictions of intermediate values

Curve fitting: Polynomial Interpolation

- Polynomial Interpolation:
 - Finding the unique nth-order polynomial for a set of (n+1) data-points
 - II) Using it to estimate new, intermediate points

- Must be careful when using high-order polynomial interpolations!
 - What is our other option?

Curve fitting: Polynomial Interpolation

- We can express the general form of the polynomial in multiple ways:
 - Newton Polynomials
 - Lagrange Polynomials

Simplest form of Newton's Polynomial – Straight Line

Simplest form of Newton's Polynomial – Straight Line

 We can use similar triangles (shaded) to get the following:

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Interpolation estimate at *x*

Re-arranging this relation:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

- $f_1(x)$ identifies that this is a 1st-order polynomial
- Slope term: Approximation of f'(x); it is called a finite-divided-difference (**fdd**) approximation
 - The size of the interval between points may affect our interpolation quality significantly!

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

	x	f(x)
P0	1.2	0.18
P1	6	1.79
P2	9	2.19

• Most of the error in the last example comes from approximating a **curve** with a line using **two** points (x_0, x_1)

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$
$$= b_0 + b_1 (x - x_0)$$

• If **three** data points are available (x_0, x_1, x_2) , we can introduce curvature via a 2nd-order term:

•
$$f_2(x) = b_0 + b_1 (x - x_0) + b_2 (x - x_0)(x - x_1)$$

- Where is x_2 in this formula?
 - \triangleright How to calculate b_0 , b_1 , b_2 ?

This form is different, but equivalent to the general polynomial form we saw earlier:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

= $b_0 + b_1x - b_1x_0 + b_2x^2 - b_2x_0x - b_2x_1x + b_2x_0x_1$

Group terms:

$$f_2(x) = (b_0 - b_1 x_0 + b_2 x_0 x_1) + (b_1 - b_2 x_0 - b_2 x_1) x + (b_2) x^2$$
$$= a_0 + a_1 x + a_2 x^2$$

• Still, how do we find b_0 , b_1 , b_2 ?

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

Step I) estimate b_0 directly from $f(x_0)$ – it is the function value at Point 0:

$$b_0 = f(x_0)$$

■ **Step II)** estimate b_1 as the <u>slope</u> of the line connecting Points 0 and 1:

•
$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Step III) estimate b₂ as the <u>curvature</u> from Points 0 to 2, through Point 1

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

 Similar to the finite-divided difference approximation of the 2nd derivative with uniform point spacing, h

• Step III) estimate b_2 as the <u>curvature</u> from Points 0 to 2, through Point 1

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

 Similar to the finite-divided difference approximation of the 2nd derivative with uniform point spacing, h

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{h} - \frac{f(x_1) - f(x_0)}{h}}{2h} = \frac{f(x_2) - 2f(x_1) + f(x_0)}{2h^2}$$

So b₂ is like an approximate f'' term...

Newton's Polynomial: Example

Find estimate of f(x) at x = 2

True function: f(x) = In(x)

Use interpolation to estimate f(2)

x	f(x)
1	0
4	1.386294
6	1.791759

- Use data calculated from true function to "test" interpolation fitting
- In real cases we <u>don't</u> <u>know</u> true function!

I) Estimate f(2) using 1st order polynomial:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

• Need 2 points: try x = 1 and x = 6 first

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

$$= 0 + \frac{1.791759 - 0}{6 - 1} (x - 1)$$

$$= 0 + 0.358352(x - 1)$$

• Substitute x = 2:

$$f_1(2) = 0.358352$$

$$x$$
 $f(x)$
 x_0 1 0
4 1.386294
 x_1 6 1.791759

$$\varepsilon_t = \frac{\ln(2) - f_1(2)}{\ln(2)}$$

$$= \frac{0.693147 - 0.358352}{0.693147}$$

$$= 48\%$$

I) Estimate f(2) using 1st order polynomial:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

x = f(x) $x_0 = 1 = 0$ $x_1 = 4 = 1.386294$

• Need 2 points: try x = 1 and x = 4 now

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

$$= 0 + \frac{1.386294 - 0}{4 - 1} (x - 1)$$

$$= 0 + 0.462098(x - 1)$$

• Substitute x = 2:

$$f_1(2) = 0.462098$$

$$\varepsilon_t = \frac{\ln(2) - f_1(2)}{\ln(2)}$$

$$= \frac{0.693147 - 0.462098}{0.693147}$$

$$= 33\% \text{ vs. } 48\%$$

Result I: Smaller interval gives a better estimate

II) Estimate f(2) using 2^{nd} order polynomial:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

x f(x) x_0 1 0 x_1 4 1.386294 x_2 6 1.791759

$$b_0 = f(x_0) = \mathbf{0}$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \mathbf{0.462098}$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{\frac{1.791759 - 1.386294}{6 - 4} - 0.462098}{6 - 1}$$
$$= \frac{0.202732 - 0.462098}{6 - 1}$$

II) Estimate f(2) using 2^{nd} order polynomial:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

x f(x) x_0 1 0 x_1 4 1.386294 x_2 6 1.791759

$$b_0 = f(x_0) = \mathbf{0}$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \mathbf{0.462098}$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{\frac{1.791759 - 1.386294}{6 - 4} - 0.462098}{6 - 1}$$
$$= \frac{\frac{0.202732 - 0.462098}{6 - 1} = -0.051873}{6 - 1}$$

Combining:

$$f_2(x) = 0.462098(x-1) - 0.051873(x-1)(x-4)$$

• Substitute x = 2:

$$f_2(2) = 0.462098(2 - 1) - 0.051873(2 - 1)(2 - 4)$$

= 0.462098 + 0.103746
= 0.565844

Calculate error

•
$$\varepsilon_t = \frac{\ln(2) - f_2(2)}{\ln(2)} = \frac{0.693147 - 0.565844}{0.693147} = 18\% \text{ vs. } 33\%$$

Result II: Curvature reduces the error further

