LEPTONS

$$J=\frac{1}{2}$$

Mass $m = (548.579909070 \pm 0.000000016) \times 10^{-6}$ u Mass $m = 0.5109989461 \pm 0.0000000031$ MeV $|m_{e^+} - m_{e^-}|/m < 8 \times 10^{-9}$, CL = 90% $|q_{e^+} + q_{e^-}|/e < 4 \times 10^{-8}$ Magnetic moment anomaly $(g-2)/2 = (1159.65218091 \pm 0.00000026) \times 10^{-6}$

$$\begin{array}{l} (g-2)/2 = (1159.65218091 \pm 0.00000026) \times 10^{-6} \\ (g_{e^+} - g_{e^-}) \ / \ g_{\rm average} = (-0.5 \pm 2.1) \times 10^{-12} \\ {\rm Electric\ dipole\ moment}\ d < 0.87 \times 10^{-28}\ e\,{\rm cm,\ CL} = 90\% \\ {\rm Mean\ life}\ \tau \ > \ 6.6 \times 10^{28}\ yr,\ {\rm CL} = 90\%\ [a] \end{array}$$

$$J=\frac{1}{2}$$

Mass $m = 0.1134289257 \pm 0.0000000025$ u Mass $m = 105.6583745 \pm 0.0000024$ MeV Mean life $au = (2.1969811 \pm 0.0000022) \times 10^{-6}$ s $\tau_{\,\mu^+}/\tau_{\,\mu^-} = 1.00002 \pm 0.00008$ $c\tau = 658.6384 \text{ m}$ Magnetic moment anomaly $(g-2)/2 = (11659209 \pm 6) \times 10^{-10}$ $(g_{\mu^+} - g_{\mu^-}) / g_{\text{average}} = (-0.11 \pm 0.12) \times 10^{-8}$ Electric dipole moment $d = (-0.1 \pm 0.9) \times 10^{-19}$ ecm

Decay parameters [b]

$$\begin{array}{l} \rho = 0.74979 \pm 0.00026 \\ \eta = 0.057 \pm 0.034 \\ \delta = 0.75047 \pm 0.00034 \\ \xi P_{\mu} = 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho = 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' = 1.00 \pm 0.04 \\ \xi'' = 0.98 \pm 0.04 \\ \alpha/A = (0 \pm 4) \times 10^{-3} \\ \alpha'/A = (4 \pm 6) \times 10^{-3} \\ \beta'/A = (2 \pm 7) \times 10^{-3} \\ \overline{\eta} = 0.02 \pm 0.08 \end{array}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ	$_{i}/\Gamma)$	Confidence level	(M eV/c)				
$e^{-}\overline{\nu}_{e}\nu_{\mu}$		$\approx 100\%$			53			
$e^- \overline{ u}_e^{\prime} u_{\mu} \gamma$		[d] (6.0 ± 0.5)	$5) \times 10^{-8}$		53			
$e^-\overline{ u}_e u_\mue^+e^-$		[e] (3.4±0.4	4) $\times 10^{-5}$		53			
Lepton Family number (LF) violating modes								
$e^- \nu_e \overline{\nu}_\mu$	LF	[f] < 1.2	%	90%	53			
$e^-\gamma$	LF	< 4.2	$\times 10^{-13}$	90%	53			
$e^-e^+e^-$	LF	< 1.0			53			
$e^- 2\gamma$	LF	< 7.2	$\times 10^{-11}$	90%	53			

$$J=\frac{1}{2}$$

Mass
$$m = 1776.86 \pm 0.12 \text{ MeV}$$

$$(m_{\tau^+} - m_{\tau^-})/m_{\text{average}} < 2.8 \times 10^{-4}, \text{ CL} = 90\%$$

Mean life
$$\tau = (290.3 \pm 0.5) \times 10^{-15}$$
 s

$$c au = 87.03~\mu\mathrm{m}$$

Magnetic moment anomaly > -0.052 and < 0.013, CL = 95%

$$\mathrm{Re}(d_{\tau}) = -0.220 \, \mathrm{to} \, 0.45 \times 10^{-16} \, e \, \mathrm{cm}, \, \mathrm{CL} = 95\%$$

$$\text{Im}(d_{\tau}) = -0.250 \text{ to } 0.0080 \times 10^{-16} \text{ e cm, CL} = 95\%$$

Weak dipole moment

$${\rm Re}(d_{\tau}^{w}) < 0.50 \times 10^{-17}~e\,{\rm cm},\,{\rm CL} = 95\% \ {\rm Im}(d_{\tau}^{w}) < 1.1 \times 10^{-17}~e\,{\rm cm},\,{\rm CL} = 95\%$$

Weak anomalous magnetic dipole moment

$$\begin{array}{l} {\rm Re}(\alpha_\tau^{\rm W}) < \ 1.1 \times 10^{-3}, \ {\rm CL} = 95\% \\ {\rm Im}(\alpha_\tau^{\rm W}) < \ 2.7 \times 10^{-3}, \ {\rm CL} = 95\% \\ \tau^{\pm} \rightarrow \ \pi^{\pm} K_S^0 \nu_{\tau} \ ({\rm RATE\ DIFFERENCE}) \ / \ ({\rm RATE\ SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$$

Decay parameters

See the au Particle Listings in the Full Review of Particle Physics for a note concerning au-decay parameters.

$$\rho(e \text{ or } \mu) = 0.745 \pm 0.008$$

$$\rho(e) = 0.747 \pm 0.010$$

$$\rho(\mu) = 0.763 \pm 0.020$$

$$\xi(e \text{ or } \mu) = 0.985 \pm 0.030$$

$$\xi(e) = 0.994 \pm 0.040$$

$$\xi(\mu) = 1.030 \pm 0.059$$

$$\eta(e \text{ or } \mu) = 0.013 \pm 0.020$$

$$\eta(\mu) = 0.094 \pm 0.073$$

$$(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021$$

$$(\delta \xi)(e) = 0.734 \pm 0.028$$

$$(\delta \xi)(\mu) = 0.778 \pm 0.037$$

$$\xi(\pi) = 0.993 \pm 0.022$$

$$\xi(\rho) = 0.994 \pm 0.008$$

$$\xi(a_1) = 1.001 \pm 0.027$$

$$\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$$

$$\overline{\eta}(\mu)$$
 PARAMETER = -1.3 ± 1.7

$$\xi_{\kappa}(e)$$
 PARAMETER = -0.4 ± 1.2
 $\xi_{\kappa}(\mu)$ PARAMETER = 0.8 ± 0.6

 au^+ modes are charge conjugates of the modes below. " $extit{h}^\pm$ " stands for $extit{\pi}^\pm$ or K^{\pm} . " ℓ " stands for ℓ or μ . "Neutrals" stands for γ 's and/or π^0 's.

DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ Confidence level (MeV/c)

Modes with one charged particle

particle $^->0$ neutrals $>0K^0\nu_{\tau}$ $(85.24 \pm 0.06)\%$ ("1-prong")

particle $^- \geq 0$ neutrals $\geq 0 K_I^0
u_ au$

 $(84.58 \pm 0.06)\%$

[g] (17.39 \pm 0.04)%

885

885

 $\mu^- \overline{\nu}_\mu \nu_\tau \gamma$ $e^- \overline{\nu}_e \nu_\tau$

 $\mu^- \overline{\nu}_{\mu} \nu_{\tau}$

[e] $(3.67 \pm 0.08) \times 10^{-3}$

888

[g] (17.82 \pm 0.04)%

$e^-\overline{ u}_e u_{\scriptscriptstyle T}\gamma$	[e]	(1.83 =	± 0.0	5)%		888
$h^- \geq 0 K_L^0 u_ au$		(12.03				883
$h^- u_ au$		(11.51	± 0.0	5)%		883
$\pi^- \nu_{ au}$	[g ⁻]				•	883
$K^- u_ au$	[g ⁻]			0)×10 ⁻	3	820
$h^- \geq 1$ neutrals $ u_ au$ $h^- \geq 1 \pi^0 u_ au$ (ex. K^0)		(37.00 =				_
$h^-\pi^0 u_{ au}$ (ex.K.)		(36.51 ± (25.93 ±				878
$\frac{\pi}{\pi}$ $\frac{\nu_{\tau}}{\pi^0}$ ν_{τ}	[g]					878
$\pi^-\pi^0$ non- $\rho(770)\nu_{ au}$	101)×10 ⁻	3	878
$\mathcal{K}^-\pi^0 u_ au$	[g [.]]			5)×10 [—]		814
$h^- \geq 2\pi^0 u_ au$		(10.81	± 0.0	9)%		_
$h^{-}2\pi^{0}\nu_{\tau}$		(9.48 =				862
$h^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$		(9.32 =				862
$\pi^{-} 2\pi^{0} \nu_{\tau} (ex.K^{0})$	[g]		± 0.1		3 61 050/	862
$\pi^- 2\pi^0 \nu_{\tau}$ (ex. K^0),		< 9		×10	³ CL=95%	862
π^- scalar $\pi^ 2\pi^0 u_ au$ (ex. K^0),		< 7		×10	³ CL=95%	862
$\stackrel{vector}{K^-} \overset{vector}{2\pi^0} u_{ au}(ex.K^0)$		/			.1	
$h^- \geq 3\pi^0 \nu_{ au} (ex.K^\circ)$	[g]	(6.5			7	796
$h^{-} \geq 3\pi^{0} \nu_{\tau}$ $h^{-} \geq 3\pi^{0} \nu_{\tau} (\text{ex. } K^{0})$		(1.34 =				_
$h = 3\pi^0 \nu_{\tau}$		(1.18 :				836
$\pi^{-} 3\pi^{0} \nu_{\tau} (\text{ex.} K^{0})$	[g ⁻]					836
$K^{-} 3\pi^{0} \nu_{\tau} (ex.K^{0}, \eta)$	[g]		± 2.1) × 10 ⁻	4	765
$h^{-}4\pi^{0}\nu_{\tau}({\rm ex}.K^{0})$) × 10		800
$h^- 4\pi^0 u_{ au} (\mathrm{ex}.K^0, \eta)$	[g ⁻]) × 10		800
$a_1(1260)\nu_{\tau} \rightarrow \pi^-\gamma\nu_{\tau}$) × 10 ⁻	4	_
$K^- \ge 0\pi^0 \ge 0K^0 \ge 0\gamma \ \nu_{ au}$ $K^- \ge 1 \ (\pi^0 \ \text{or} \ K^0 \ \text{or} \ \gamma) \ \nu_{ au}$		(1.552		29) % 8) × 10 [—]	3	820
			⊥ 0.2	5) × 10		
K_S^0 (particles) $^- u_ au$	S W	ith <i>K</i> ⁰ 's	⊥ n 2º	8)×10 ⁻	3	_
$h^-\overline{K}^0 u_ au$				4)×10 ⁻		812
$\pi^{-} \overline{K}^{0} \nu_{\tau}$	[g ⁻]			4)×10 ⁻		812
$\pi^-\overline{K}^0$ (non- $K^*(892)^-) u_ au$	101) × 10 ⁻		812
$K^-K^0 u_{ au}$	[g]			5) × 10		737
$K^-\underline{K^0} \geq 0\pi^0\nu_{\tau}$				B)×10 [—]		737
$h^{-}\overline{K}^{0}\pi^{\overline{0}}\nu_{\tau}$				3)×10		794
$\pi^- \overline{K}{}^0 \pi^{\dot{0}} \nu_{\tau}$	[g]			3)×10 ⁻		794
$\overline{K}^0 ho^- u_ au$ $K^-K^0\pi^0 u_ au$	[g]) × 10 ⁻ 7) × 10 ⁻		612 685
$\pi^{-} \frac{K^0}{K^0} \geq 1 \pi^0 \nu_{ au}$	[8]			5)×10	•	-
$\pi^{-\frac{K^{0}}{K^{0}}} \pi^{0} \pi^{0} \nu_{\tau} (ex.K^{0})$	[g ⁻]					763
$K^{-}K^{0}\pi^{0}\pi^{0}\nu_{\tau}$		< 1.6		×10 ⁻	4 CL=95%	619
$\pi^- K^0 \overline{K}{}^0 u_{ au}$				4)×10 ⁻		682
$\pi^- K^0_{S} K^0_{S} u_ au$	[g]	(2.33 =	± 0.0	7)×10	4	682
$\pi^-K^0_SK^0_L u_ au$	[g ⁻]			4)×10 ⁻		682
$\pi^- rac{ec{\mathcal{K}}_{L}^{ar{0}} ec{\mathcal{K}}_{L}^{ar{0}} u_{ au}}{\pi^- ec{\mathcal{K}}^0 \overline{\mathcal{K}}^0 \pi^0 u_{ au}}$				7)×10 [—]		682
$\pi^{-} K^{0} K^{0} \pi^{0} \nu_{\tau}$		(3.6 =	± 1.2) × 10 ⁻	5	614
π $\kappa_{\tilde{s}}\kappa_{\tilde{s}}\pi^{\tilde{s}}\nu_{\tau}$		1 1 92 -	+ n 2	10-	•	614
$\nu^* = \nu^0 = 0$	[g]			1)×10 ⁻		014
K^{*-} K^{0} π^{0} ν_{τ} \rightarrow π^{-} K^{0} K^{0} π^{0} π^{0}	[g]			1) × 10 ⁻		_
$ \pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau} K^{*-} K^{0} \pi^{0} \nu_{\tau} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau} $ f. (1285) $\pi^{-} \nu_{\tau} \rightarrow$	[g]	(1.08 =	± 0.2	1)×10 [—]	5	_
$K^{*} - K^{0} \pi^{0} \nu_{\tau} \rightarrow \pi^{-} K^{0}_{0} K^{0}_{0} \pi^{0} \nu_{\tau} \rightarrow \pi^{-} K^{0}_{0} K^{0}_{0} \pi^{0} \nu_{\tau}$ $f_{1}(1285)\pi^{-} \nu_{\tau} \rightarrow \pi^{-} K^{0}_{0} K^{0}_{0} \pi^{0} \nu_{\tau}$	[g]	(1.08 =	± 0.2		5	-

685

```
(2.4 \pm 0.8) \times 10^{-6}
               f_1(1420)\pi^-\nu_{\tau} \to
                    \pi^{-} K_{S}^{0} K_{S}^{0'} \pi^{0} \nu_{\tau}
           \pi^{-}K_{S}^{0}K_{I}^{0}\pi^{0}\nu_{\tau}
                                                        [g] (3.2 \pm 1.2) \times 10^{-4}
                                                                                                                           614
           \pi^{-}K_{I}^{0}K_{I}^{0}\pi^{0}\nu_{\tau}
                                                                (1.82 \pm 0.21) \times 10^{-5}
                                                                                                                           614
       K^{-}K_{S}^{0}K_{S}^{0}\nu_{\tau}
                                                                                        \times 10^{-7}
                                                              < 6.3
                                                                                                     CL=90%
                                                                                                                           466
       K^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}
                                                                                        \times 10^{-7}
                                                                                                     CL=90%
                                                              < 4.0
                                                                                                                           337
K^0 h^+ h^- h^- > 0 neutrals \nu_{\tau}
                                                                                        \times 10^{-3}
                                                              < 1.7
                                                                                                     CL=95%
                                                                                                                           760
   K^0 h^+ h^- h^- \nu_{\tau}
                                                                          \pm 2.0 ) \times 10<sup>-4</sup>
                                                        [g]
                                                                (2.5
                                                                                                                           760
                                 Modes with three charged particles
h^-h^-h^+ \geq 0 neutrals \geq 0K_I^0\nu_{\tau}
                                                              (15.21 \pm 0.06)\%
                                                                                                                          861
   h^-\,h^-\,h^+>0 neutrals 
u_{	au}
                                                                (14.55 \pm 0.06)\%
                                                                                                                           861
         (ex. K_s^0 \rightarrow \pi^+\pi^-)
         ("3-prong")
   h^- h^- h^+ \nu_{\tau}
                                                                (9.80 \pm 0.05)\%
                                                                                                                          861
   h^- h^- h^+ \nu_{\tau} (ex.K^0)
                                                                (9.46 \pm 0.05)\%
                                                                                                                          861
   h^{-}h^{-}h^{+}\nu_{\tau}(ex.K^{0},\omega)
                                                                (9.43 \pm 0.05)\%
                                                                                                                           861
   \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}
                                                                (9.31 \pm 0.05)\%
                                                                                                                           861
   \pi^- \pi^+ \pi^- \nu_{	au} (\text{ex.} K^0)
                                                                (9.02 \pm 0.05)\%
                                                                                                                           861
   \pi^- \pi^+ \pi^- \nu_{\tau} (ex. K^0),
                                                             < 2.4
                                                                                                     CL=95%
                                                                                                                           861
         non-axial vector
   \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0},\omega)
                                                        [g] ( 8.99 \pm 0.05 )%
                                                                                                                           861
   h^- h^- h^+ \geq 1 neutrals \nu_{\tau}
                                                                (5.29 \pm 0.05)\%
   h^- h^- h^+ > 1 \pi^0 \nu_{\tau} (\text{ex. } K^0)
                                                                (5.09 \pm 0.05)\%
       h^- h^- h^+ \pi^0 \nu_{\tau}
                                                                (4.76 \pm 0.05)\%
                                                                                                                           834
       h^- h^- h^+ \pi^0 \nu_{\tau} (ex.K^0)
                                                                (4.57 \pm 0.05)\%
                                                                                                                           834
       h^- h^- h^+ \pi^0 \nu_{\tau} (ex. K^0, \omega)
                                                                (2.79 \pm 0.07)\%
                                                                                                                           834
       \pi^-\pi^+\pi^-\pi^0\nu_{\tau}
                                                                (4.62 \pm 0.05)\%
                                                                                                                          834
       \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau} (ex.K^0)
                                                                (4.49 \pm 0.05)\%
                                                                                                                          834
       \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(ex.K^{0},\omega)
                                                                (2.74 \pm 0.07)\%
                                                        [g]
                                                                                                                          834
       h^- h^- h^+ \ge 2\pi^0 \nu_{\tau} (\text{ex. } K^0)
                                                                (5.17 \pm 0.31) \times 10^{-3}
       h^- \, h^- \, h^+ \, 2 \pi^0 \, \nu_\tau
                                                                (5.05 \pm 0.31) \times 10^{-3}
                                                                                                                          797
       h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0)
                                                                (4.95 \pm 0.31) \times 10^{-3}
                                                                                                                           797
       h^- h^- h^+ 2\pi^0 \nu_{\tau} (ex. K^0, \omega, \eta)
                                                                (10 \pm 4) \times 10^{-4}
                                                                                                                           797
                                                        [g]
       h^- h^- h^+ 3\pi^0 \nu_{\pi}
                                                                (2.12 \pm 0.30) \times 10^{-4}
                                                                                                                           749
          2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}(ex.K^{0})
                                                                (1.94 \pm 0.30) \times 10^{-4}
                                                                                                                           749
           2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau} (ex. K^{0}, \eta,
                                                                (1.7 \pm 0.4) \times 10^{-4}
                f_1(1285)
           2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau} (ex.K^{0}, \eta,
                                                        [g] (1.4 \pm 2.7) \times 10^{-5}
                \omega, f_1(1285)
   K^- h^+ h^- \geq 0 neutrals \nu_{\tau}
                                                                (6.29 \pm 0.14) \times 10^{-3}
                                                                                                                           794
       K^- h^+ \pi^- \nu_{\tau} (\text{ex.} K^0)
                                                                ( 4.37 \pm 0.07 ) \times 10<sup>-3</sup>
                                                                                                                           794
       K^- h^+ \pi^- \pi^0 \nu_{\tau} (ex. K^0)
                                                                (8.6 \pm 1.2) \times 10^{-4}
                                                                                                                          763
       K^-\pi^+\pi^- \ge 0 neutrals \nu_{	au}

K^-\pi^+\pi^- \ge 0\pi^0\nu_{	au}(\mathrm{ex}.K^0)
                                                                (4.77 \pm 0.14) \times 10^{-3}
                                                                                                                           794
                                                                (3.73 \pm 0.13) \times 10^{-3}
                                                                                                                           794
           K^{-}\pi^{+}\pi^{-}\nu_{\tau}
                                                                (3.45 \pm 0.07) \times 10^{-3}
                                                                                                                           794
           K^-\pi^+\pi^-\nu_{\tau}(ex.K^0)
                                                                (2.93 \pm 0.07) \times 10^{-3}
                                                                                                                           794
           K^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0, \omega)
                                                                (2.93 \pm 0.07) \times 10^{-3}
                                                        [g]
                                                                                                                           794
           K^- \rho^0 \nu_{\tau} \rightarrow K^- \pi^+ \pi^- \nu_{\tau}
                                                                (1.4 \pm 0.5) \times 10^{-3}
           K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}
                                                                (1.31 \pm 0.12) \times 10^{-3}
                                                                                                                          763
           K^-\pi^+\pi^-\pi^0\nu_{\tau} (ex. K^0)
                                                                        \pm 1.2) \times 10^{-4}
                                                                (7.9
                                                                                                                          763
           K^-\pi^+\pi^-\pi^0\nu_{\tau} (ex. K^0, \eta)
                                                                (7.6
                                                                          \pm 1.2 ) \times 10^{-4}
                                                                                                                          763
           K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0},\omega)
                                                                (3.7 \pm 0.9) \times 10^{-4}
                                                                                                                           763
           K^-\pi^+\pi^-\pi^0\nu_{\tau} (ex. K^0,\omega,\eta) [g] (3.9 ± 1.4 )×10<sup>-4</sup>
                                                                                                                          763
       K^-\pi^+K^- \geq 0 neut. 
u_{	au}
                                                             < 9
                                                                                      \times 10^{-4} CL=95%
```

${\it K}^-{\it K}^+\pi^- \geq$ 0 neut. $ u_{ au}$	$(1.496 \pm 0.033) \times 10^{-3}$	685						
$K - K + \pi - \nu_{\tau}$	[g] $(1.435 \pm 0.027) \times 10^{-3}$	685						
$\mathcal{K}^-\mathcal{K}^+\pi^-\pi^0 u_ au$	[g] $(6.1 \pm 1.8) \times 10^{-5}$	618						
$K^-K^+K^- u_ au$	$(2.2 \pm 0.8) \times 10^{-5}$ S=5.4	472						
$K^-K^+K^- u_{\tau}(\text{ex. }\phi)$	$< 2.5 \times 10^{-6} \text{CL} = 90\%$	412						
$K^-K^+K^-\pi^0 u_{ au}$	$< 4.8 \times 10^{-6} CL = 90\%$	345						
$\pi^ K^+$ $\pi^ \geq 0$ neut. $ u_{ au}$	2							
		794						
$e^-e^-e^+\overline{ u}_e u_ au$	$(2.8 \pm 1.5) \times 10^{-5}$	888						
$\mu^-e^-e^+\overline{ u}_\mu u_ au$	$< 3.6 \times 10^{-5} \text{ CL} = 90\%$	885						
Modes with	five charged particles							
$3h^-2h^+\geq 0$ neutrals $ u_{ au}$	$(9.9 \pm 0.4) \times 10^{-4}$	794						
(ex. $K_S^{\overline{0}} ightarrow \pi^- \pi^+$)	,							
("5-prong")								
$3h^{-}2h^{+}\nu_{\tau}(ex.K^{0})$	$(8.22 \pm 0.32) \times 10^{-4}$	794						
$3\pi^- 2\pi^+ \nu_\tau (ex.K^0, \omega)$	$(8.21 \pm 0.31) \times 10^{-4}$	794						
$3\pi^- 2\pi^+ \nu_{\tau} (\text{ex.} K^0, \omega)$	[g] $(7.69 \pm 0.30) \times 10^{-4}$	1 24						
	[g] (1.69 ± 0.30) × 10							
$f_1(1285)) \ K^- 2\pi^- 2\pi^+ u_ au (ext{ex.} K^0)$	f.1. (s							
$\kappa = 2\pi - 2\pi - \nu_{\tau} (ex.\kappa^{-1})$	[g] $(6 \pm 12) \times 10^{-7}$	716						
$K^{+} 3\pi^{-} \pi^{+} \nu_{\tau}$	$< 5.0 \times 10^{-6} CL = 90\%$	716						
$K^{+}K^{-}2\pi^{-}\pi^{+}\nu_{\tau}$	$< 4.5 \times 10^{-7} CL = 90\%$	528						
$3h^{-}2h^{+}\pi^{0}\nu_{\tau}(ex.K^{0})$	$(1.64 \pm 0.11) \times 10^{-4}$	746						
$3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	$(1.62 \pm 0.11) \times 10^{-4}$	746						
$3\pi^{-}2\pi^{+}\pi^{0} u_{ au}({ m ex.}K^{0}$, η ,	$(1.11 \pm 0.10) \times 10^{-4}$	-						
$f_1(1285)$								
$3\pi^- 2\pi^+ \pi^0 \nu_{ au}$ (ex. K^0 , η , ω ,	[g] (3.8 \pm 0.9) \times 10 ⁻⁵	-						
$f_1(1285))$								
$K^- 2\pi^- 2\pi^+ \pi^0 \nu_{\tau}$ (ex. K^0)	[g] $(1.1 \pm 0.6) \times 10^{-6}$	657						
$K^{+} 3\pi^{-} \pi^{+} \pi^{0} \nu_{\tau}$	$< 8 \times 10^{-7} \text{ CL} = 90\%$	657						
$3h^{-}2h^{+}2\pi^{0}\nu_{ au}$	$< 3.4 \times 10^{-6} \text{ CL} = 90\%$	687						
Missellaneaus	ather ellevied mades							
$(5\pi)^- u_{\tau}$	Miscellaneous other allowed modes							
$(\circ n) \circ \tau$		800						
$\Delta h^- 3h^+ > 0$ neutrals ν	$(7.8 \pm 0.5) \times 10^{-3}$	800 682						
$4h^-3h^+ \ge 0$ neutrals ν_{τ}	$(7.8 \pm 0.5) \times 10^{-7}$ CL=90%	800 682						
("7-prong")	$< 3.0 \times 10^{-7} CL = 90\%$	682						
("7-prong") $4h^-3h^+ u_ au$	$< 3.0 \times 10^{-7} CL=90\%$ $< 4.3 \times 10^{-7} CL=90\%$	682 682						
("7-prong") $4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau$	< 3.0 $\times 10^{-7}$ CL=90% < 4.3 $\times 10^{-7}$ CL=90% < 2.5 $\times 10^{-7}$ CL=90%	682						
$\begin{array}{l} \text{("7-prong")} \\ 4h^{-}3h^{+}\nu_{\tau} \\ 4h^{-}3h^{+}\pi^{0}\nu_{\tau} \\ X^{-}(S\!=\!-1)\nu_{\tau} \end{array}$	$< 3.0 \times 10^{-7} CL=90\%$ $< 4.3 \times 10^{-7} CL=90\%$ $< 2.5 \times 10^{-7} CL=90\%$ $(2.92 \pm 0.04) \%$	682 682 612						
$\begin{array}{l} \text{("7-prong")} \\ 4h^-3h^+\nu_\tau \\ 4h^-3h^+\pi^0\nu_\tau \\ X^-(S\!=\!-1)\nu_\tau \\ K^*(892)^-\geq0\text{neutrals}\geq \end{array}$	< 3.0 $\times 10^{-7}$ CL=90% < 4.3 $\times 10^{-7}$ CL=90% < 2.5 $\times 10^{-7}$ CL=90%	682 682						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \end{array}$	< 3.0 $\times 10^{-7}$ CL=90% < 4.3 $\times 10^{-7}$ CL=90% < 2.5 $\times 10^{-7}$ CL=90% (2.92 ± 0.04) % (1.42 ± 0.18) % S=1.4	682 682 612						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^* (892)^- \nu_\tau \end{array}$	< 3.0 $\times 10^{-7}$ CL=90% < 4.3 $\times 10^{-7}$ CL=90% < 2.5 $\times 10^{-7}$ CL=90% (2.92 ± 0.04) % (1.42 ± 0.18) % S=1.4	682 682 612						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^* (892)^- \nu_\tau \\ K^* (892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \end{array}$	< 3.0 $\times 10^{-7}$ CL=90% < 4.3 $\times 10^{-7}$ CL=90% < 2.5 $\times 10^{-7}$ CL=90% (2.92 ± 0.04) % (1.42 ± 0.18) % S=1.4 (1.20 ± 0.07) % S=1.8 (7.83 ± 0.26) $\times 10^{-3}$	682 682 612 — 665						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^* (892)^- \nu_\tau \\ K^* (892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \end{array}$	<pre>< 3.0</pre>	682 682 612 — 665						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!\!=\!\!-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^* (892)^- \nu_\tau \\ K^* (892)^- \nu_\tau \rightarrow \pi^- \overline{K}{}^0 \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^* (892)^0 K^- \nu_\tau \end{array}$	$ < 3.0 \times 10^{-7} \text{ CL} = 90\% $ $ < 4.3 \times 10^{-7} \text{ CL} = 90\% $ $ < 2.5 \times 10^{-7} \text{ CL} = 90\% $ $ (2.92 \pm 0.04)\% $ $ (1.42 \pm 0.18)\% \qquad 5 = 1.4 $ $ (1.20 \pm 0.07)\% \qquad 5 = 1.8 $ $ (7.83 \pm 0.26) \times 10^{-3} $ $ (3.2 \pm 1.4) \times 10^{-3} $ $ (2.1 \pm 0.4) \times 10^{-3} $	682 612 - 665						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^* (892)^- \nu_\tau \\ K^* (892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \end{array}$	<pre>< 3.0</pre>	682 612 - 665 665 - 542						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S=-1) \nu_\tau \\ K^*(892)^- \geq 0 \text{neutrals} \geq \\ 0 K_0^1 \nu_\tau \\ K^*(892)^- \nu_\tau \\ K^*(892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \\ K^*(892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^*(892)^0 K^- \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \nu_\tau \end{array}$	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \text{ S} = 1.4$ $(1.20 \pm 0.07)\% \text{ S} = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.7) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$	682 682 612 - 665 - 542 542						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S=-1) \nu_\tau \\ K^*(892)^- \geq 0 \text{neutrals} \geq \\ 0 K_0^1 \nu_\tau \\ K^*(892)^- \nu_\tau \\ K^*(892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \\ K^*(892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^*(892)^0 K^- \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \nu_\tau \end{array}$	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \text{ S} = 1.4$ $(1.20 \pm 0.07)\% \text{ S} = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.7) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$	682 682 612 - 665 - 542 542 655						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^*(892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^*(892)^- \nu_\tau \\ K^*(892)^- \nu_\tau \to \pi^- \overline{K}^0 \nu_\tau \\ K^*(892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^*(892)^0 K^- \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \nu_\tau \\ (\overline{K}^*(892)^0 \pi^- \nu_\tau \\ (\overline{K}^*(892)^0 \pi^- \nu_\tau \to \pi^- \overline{K}^0 \pi^0 \nu_\tau \\ \end{array}$	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \text{ S} = 1.4$ $(1.20 \pm 0.07)\% \text{ S} = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.7) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$ $(1.0 \pm 0.4) \times 10^{-3}$	682 682 612 - 665 - 542 542 655						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S\!=\!-1) \nu_\tau \\ K^*(892)^- \geq 0 \text{neutrals} \geq \\ 0 K_0^1 \nu_\tau \\ K^*(892)^- \nu_\tau \\ K^*(892)^- \nu_\tau \to \pi^- \overline{K}^0 \nu_\tau \\ K^*(892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^*(892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \nu_\tau \\ (\overline{K}^*(892)^0 \pi^- \nu_\tau \\ (\overline{K}^*(892)^0 \pi^- \nu_\tau \to \pi^- \overline{K}^0 \pi^0 \nu_\tau \\ K_1(1270)^- \nu_\tau \end{array}$	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \text{ S=1.4}$ $(1.20 \pm 0.07)\% \text{ S=1.8}$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(3.8 \pm 1.7) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$ $(1.0 \pm 0.4) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$	682 682 612 665 665 542 542 655 655 433						
$\begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S=-1) \nu_\tau \\ K^*(892)^- \geq 0 \text{neutrals} \geq \\ 0 K_L^0 \nu_\tau \\ K^*(892)^- \nu_\tau \\ K^*(892)^- \nu_\tau \to \pi^- \overline{K}^0 \nu_\tau \\ K^*(892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^*(892)^0 K^- \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^*(892)^0 \pi^- \nu_\tau \\ (\overline{K}^*(892)^0 \pi^- \nu_\tau \\ (\overline{K}^*(892)^0 \pi^- \nu_\tau \to \pi^- \overline{K}^0 \pi^0 \nu_\tau \\ K_1(1270)^- \nu_\tau \\ K_1(1400)^- \nu_\tau \end{array}$	< 3.0	682 682 612 — 665 665 — 542 542 655 655 — 433 335						
	< 3.0	682 682 612 665 665 542 542 655 655 433						
	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \text{ S} = 1.4$ $(1.20 \pm 0.07)\% \text{ S} = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$ $(1.0 \pm 0.4) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(1.7 \pm 2.6) \times 10^{-3} \text{ S} = 1.7$ $(1.5 + 1.4) \times 10^{-3}$ $<5 \times 10^{-4} \text{ CL} = 95\%$	682 682 612 — 665 665 — 542 542 655 655 — 433 335						
	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \qquad S = 1.4$ $(1.20 \pm 0.07)\% \qquad S = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$ $(1.0 \pm 0.4) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $<5 \times 10^{-4} \text{ CL} = 95\%$ $<3 \times 10^{-3} \text{ CL} = 95\%$	682 682 612 — 665 665 — 542 542 655 655 — 433 335 320						
$ \begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S=-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_0^L \nu_\tau \\ K^* (892)^- \nu_\tau \\ K^* (892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^* (892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^* (892)^0 \pi^- \nu_\tau \\ \overline{(K}^* (892) \pi)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \pi^0 \nu_\tau \\ K_1 (1270)^- \nu_\tau \\ K_1 (1400)^- \nu_\tau \\ K^* (1430)^- \nu_\tau \\ K^*_2 (1430)^- \nu_\tau \\ K^*_2 (1430)^- \nu_\tau \end{array} $	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \qquad S = 1.4$ $(1.20 \pm 0.07)\% \qquad S = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$ $(1.0 \pm 0.4) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $<5 \times 10^{-4} \text{ CL} = 95\%$ $<3 \times 10^{-3} \text{ CL} = 95\%$	682 682 612 — 665 665 — 542 542 655 655 — 433 335 320						
	$<3.0 \\ \times 10^{-7} \\ \text{CL} = 90\%$ $<4.3 \\ \times 10^{-7} \\ \text{CL} = 90\%$ $<2.5 \\ \times 10^{-7} \\ \text{CL} = 90\%$ $(2.92 \pm 0.04)\% \\ (1.42 \pm 0.18)\% \\ \text{S} = 1.4$ $(1.20 \pm 0.07)\% \\ \text{S} = 1.4$ $(1.20 \pm 0.07)\% \\ \text{S} = 1.4$ $(1.20 \pm 0.07)\% \\ \text{S} = 1.4$ $(2.12 \pm 0.4) \times 10^{-3} \\ \text{S} = 1.4 \times$	682 682 612 — 665 665 — 542 542 655 655 — 433 335 320 317 317 797						
$ \begin{array}{l} \text{("7-prong")} \\ 4h^- 3h^+ \nu_\tau \\ 4h^- 3h^+ \pi^0 \nu_\tau \\ X^- (S=-1) \nu_\tau \\ K^* (892)^- \geq 0 \text{neutrals} \geq \\ 0 K_0^L \nu_\tau \\ K^* (892)^- \nu_\tau \\ K^* (892)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ K^* (892)^0 K^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^* (892)^0 \pi^- \geq 0 \text{neutrals} \nu_\tau \\ \overline{K}^* (892)^0 \pi^- \nu_\tau \\ \overline{(K}^* (892) \pi)^- \nu_\tau \rightarrow \pi^- \overline{K}^0 \pi^0 \nu_\tau \\ K_1 (1270)^- \nu_\tau \\ K_1 (1400)^- \nu_\tau \\ K^* (1430)^- \nu_\tau \\ K^*_2 (1430)^- \nu_\tau \\ K^*_2 (1430)^- \nu_\tau \end{array} $	$<3.0 \times 10^{-7} \text{ CL} = 90\%$ $<4.3 \times 10^{-7} \text{ CL} = 90\%$ $<2.5 \times 10^{-7} \text{ CL} = 90\%$ $(2.92 \pm 0.04)\%$ $(1.42 \pm 0.18)\% \qquad S = 1.4$ $(1.20 \pm 0.07)\% \qquad S = 1.8$ $(7.83 \pm 0.26) \times 10^{-3}$ $(3.2 \pm 1.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.1 \pm 0.4) \times 10^{-3}$ $(2.2 \pm 0.5) \times 10^{-3}$ $(1.0 \pm 0.4) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(4.7 \pm 1.1) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $(1.5 \pm 1.4) \times 10^{-3}$ $<5 \times 10^{-4} \text{ CL} = 95\%$ $<3 \times 10^{-3} \text{ CL} = 95\%$	682 682 612 — 665 665 — 542 542 655 655 — 433 335 320 317 317						

641

```
\eta K^- \nu_{\tau}
                                                              [g]
                                                                      (1.55 \pm 0.08) \times 10^{-4}
                                                                                                                                      719
\eta K^*(892)^- \nu_{\tau}
                                                                      (1.38 \pm 0.15) \times 10^{-4}
                                                                                                                                     511
\eta K^- \pi^0 \nu_{\tau}
                                                                      (4.8
                                                                                 \pm 1.2 \times 10^{-5}
                                                                                                                                      665
                                                              [g]
                                                                                                \times 10^{-5}
\eta K^- \pi^0 (\text{non-}K^*(892)) \nu_{\tau}
                                                                    < 3.5
                                                                                                              CL=90%
\eta \overline{K}^0 \pi^- \nu_{\tau}
                                                                                 \pm 1.5 ) \times 10<sup>-5</sup>
                                                                      (9.4
                                                              [g]
                                                                                                                                      661
n \overline{K}{}^{0} \pi^{-} \pi^{0} \nu_{\tau}
                                                                                                \times 10^{-5}
                                                                                                               CL=90%
                                                                    < 5.0
                                                                                                                                      590
\eta K^- K^0 \nu_{\tau}
                                                                    < 9.0
                                                                                                \times 10^{-6}
                                                                                                               CL=90%
                                                                                                                                      430
\eta \pi^+ \pi^- \pi^- \geq 0 neutrals \nu_{\tau}
                                                                                                \times 10^{-3}
                                                                                                               CL=90%
                                                                    < 3
                                                                                                                                      744
    n\pi^{-}\pi^{+}\pi^{-}\nu_{\pi}(ex.K^{0})
                                                                      (2.19 \pm 0.13) \times 10^{-4}
                                                              [g]
                                                                                                                                      7/1/
        \eta \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0, f_1 (1285))
                                                                                 + 1.6 ) \times 10^{-5}
                                                                      (9.9
                                                                                                \times 10^{-4}
    \eta a_1 (1260)^- \nu_{\tau} \rightarrow \eta \pi^- \rho^0 \nu_{\tau}
                                                                    < 3.9
                                                                                                               CL=90%
                                                                                                \times 10^{-6}
                                                                    < 74
                                                                                                              CI - 90\%
                                                                                                                                      637
\eta \eta \pi^- \nu_{\tau}
\eta\eta\pi^-\pi^0\nu_{\tau}
                                                                                                \times 10^{-4}
                                                                                                               CL=95%
                                                                                                                                      559
                                                                    < 2.0
\eta \eta K^- \nu_{\tau}
                                                                                                \times 10^{-6}
                                                                         3.0
                                                                                                               CL=90%
                                                                                                                                      382
                                                                                                \times 10^{-6}
\eta'(958)\pi^{-}\nu_{\tau}
                                                                                                               CL=90%
                                                                    < 4.0
                                                                                                                                      620
\eta'(958)\pi^-\pi^0\nu_{\tau}
                                                                                                \times 10^{-5}
                                                                    < 1.2
                                                                                                               CL=90%
                                                                                                                                      591
                                                                                                \times 10^{-6}
\eta'(958) K^- \nu_{\tau}
                                                                                                               CL=90%
                                                                                                                                      495
                                                                    < 2.4
\phi \pi^- \nu_{\tau}
                                                                      (3.4 \pm 0.6)
                                                                                           ) \times 10^{-5}
                                                                                                                                      585
                                                                                 \pm 1.6 ) \times 10^{-5}
\phi K^- \nu_{\tau}
                                                              [g] (4.4
                                                                                                                                      445
f_1(1285)\pi^-\nu_{\tau}
                                                                                 \pm 0.5 ) \times 10^{-4}
                                                                                                                  S=1.9
                                                                      (3.9
                                                                                                                                      408
    f_1 (1285) \pi^- \nu_{\tau} \rightarrow
                                                                      (1.18 \pm 0.07) \times 10^{-4}
                                                                                                                  S = 1.3
          \eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}
    f_1(1285)\pi^-\nu_{\tau} \rightarrow 3\pi^-2\pi^+\nu_{\tau}
                                                                                 \pm 0.4 ) \times 10^{-5}
                                                              [g] (5.2
\pi (1300)^- \nu_{\tau} \rightarrow (\rho \pi)^- \nu_{\tau} \rightarrow
                                                                                                \times 10^{-4}
                                                                    < 1.0
                                                                                                              CL=90%
      (3\pi)^{-}\nu_{\tau}
                                                                                                \times 10^{-4} CL=90%
\pi(1300)^-\nu_{\tau} \rightarrow
                                                                    < 1.9
      ((\pi\pi)_{S-\text{wave }}\pi)^-\nu_{\tau} \rightarrow
      (3\pi)^{-}\nu_{\tau}
h^-\omega > 0 neutrals \nu_{\tau}
                                                                      (2.40 \pm 0.08)\%
                                                                                                                                      708
    h^-\omega\nu_{\tau}
                                                                      (1.99 \pm 0.06)\%
                                                                                                                                      708
        \pi^- \omega \nu_{\tau}
                                                              [g]
                                                                      (1.95 \pm 0.06)\%
                                                                                                                                      708
        K^-\omega \nu_{\tau}
                                                                                 ± 0.9
                                                                                             ) \times 10^{-4}
                                                              [g]
                                                                      (4.1
                                                                                                                                     610
    h^-\omega\pi^0\nu_{\tau}
                                                                                           ) \times 10^{-3}
                                                              [g]
                                                                      (4.1
                                                                                 + 0.4
                                                                                                                                      684
    h^{-}\omega 2\pi^{0}\nu
                                                                                            ) \times 10^{-4}
                                                                      (1.4
                                                                               ± 0.5
                                                                                                                                      644
        \pi^-\omega 2\pi^0\nu_{\tau}
                                                                                            ) \times 10^{-5}
                                                              [g]
                                                                      (7.1
                                                                                 \pm 1.6
                                                                                                                                      644
    h^- 2\omega \nu_{\tau}
                                                                    < 5.4
                                                                                                \times 10^{-7}
                                                                                                              CL=90%
                                                                                                                                      250
2h^-h^+\omega\nu_{\tau}
                                                                      (1.20 \pm 0.22) \times 10^{-4}
                                                                                                                                      641
```

[g] Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

 $(8.4 \pm 0.6) \times 10^{-5}$

 $2\pi^{-}\pi^{+}\omega\nu_{\tau}$ (ex. K^{0})

L means lepton number violation (e.g. $\tau^- \rightarrow e^+ \pi^- \pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^- \pi^+ \pi^-$). B means baryon number violation.

	` ` `	,		,			
$e^-\gamma$	LI	<	3.3		$\times 10^{-8}$	CL=90%	888
$\mu^- \gamma$	LF	<	4.4		$\times 10^{-8}$	CL=90%	885
$e^-\pi^0$	LF	<	8.0		$\times 10^{-8}$	CL=90%	883
$\mu^-\pi^0$	LF	<	1.1		$\times 10^{-7}$	CL=90%	880
$e^-K^0_S$	LF	<	2.6		$\times 10^{-8}$	CL=90%	819
$\mu^- K_S^0$	LF	<	2.3		$\times 10^{-8}$	CL=90%	815
$e^-\eta$	LF	<	9.2		$\times 10^{-8}$	CL=90%	804
$\mu^- \eta$	LF	<	6.5		$\times 10^{-8}$	CL=90%	800
$e^-\rho^0$	LF	<	1.8		$\times 10^{-8}$	CL=90%	719
$\mu^- \rho^0$	LF	<	1.2		$\times 10^{-8}$	CL=90%	715
$e^-\omega$	LF	<	4.8		$\times 10^{-8}$	CL=90%	716

$\mu^-\omega$	LF	< 4.7	$\times 10^{-8}$ CL=90%	711
e-K*(892) ⁰	LF	< 3.2	$\times 10^{-8}$ CL=90%	665
$\mu^{-}K^{*}(892)^{0}$	LF	< 5.9	$\times 10^{-8}$ CL=90%	659
$e^{-}\overline{K}^{*}(892)^{0}$	LF	< 3.4	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	< 7.0	$\times 10^{-8}$ CL=90%	659
$e^{-}\eta'(958)$	LF	< 1.6	$\times 10^{-7}$ CL=90%	630
$\mu - \eta'(958)$	LF	< 1.3	$\times 10^{-7}$ CL=90%	625
$e^{-}f_{0}(980) \rightarrow e^{-}\pi^{+}\pi^{-}$	LF	< 3.2	$\times 10^{-8}$ CL=90%	_
$\mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-$	LF	< 3.4	×10 ⁻⁸ CL=90%	_
$e^-\phi$	LF	< 3.1	×10 ⁻⁸ CL=90%	596
$\mu^{-}\phi$	LF	< 8.4	×10 ⁻⁸ CL=90%	590
$e^-e^+e^-$	LF	< 2.7	$\times 10^{-8}$ CL=90%	888
$e^{-}\mu^{+}\mu^{-}$	LF	< 2.7	×10 ⁻⁸ CL=90%	882
$e^+\mu^-\mu^-$	LF	< 1.7	×10 ⁻⁸ CL=90%	882
$\mu^-e^+e^-$	LF	< 1.8	$\times 10^{-8}$ CL=90%	885
$\mu^{+}e^{-}e^{-}$	LF	< 1.5	$\times 10^{-8}$ CL=90%	885
$\mu^{-}\mu^{+}\mu^{-}$	LF	< 2.1	$\times 10^{-8}$ CL=90%	873
$e^{-}\frac{\mu}{\pi} + \frac{\mu}{\pi}$	LF	< 2.3	$\times 10^{-8}$ CL=90%	877
$e^+\pi^-\pi^-$	L.	< 2.0	$\times 10^{-8}$ CL=90%	877
$\mu^-\pi^+\pi^-$	LF	< 2.1	$\times 10^{-8}$ CL=90%	866
$\mu + \pi - \pi - \pi$	L,	< 3.9	$\times 10^{-8}$ CL=90%	866
$e^-\pi^+K^-$	LF	< 3.7	$\times 10^{-8}$ CL=90%	813
$e^-\pi^-K^+$	LF	< 3.1	$\times 10^{-8}$ CL=90%	813
$e^+\pi^-K^-$	L	< 3.1	$\times 10^{-8}$ CL=90%	813
$e^{-K_S^0K_S^0}$	LF	< 7.1	$\times 10^{-8}$ CL=90%	736
e-K+K-				
e+ K- K-	LF ,	< 3.4	×10 ⁻⁸ CL=90%	738
$\mu^-\pi^+K^-$	L	< 3.3	×10 ⁻⁸ CL=90%	738
$\mu - \pi - \kappa$ $\mu - \pi - \kappa^+$	LF	< 8.6	×10 ⁻⁸ CL=90%	800
	LF	< 4.5	×10 ⁻⁸ CL=90%	800
$\mu^{+}\pi^{-}K^{-}$	L	< 4.8	×10 ⁻⁸ CL=90%	800
$\mu^{-}K_{S}^{0}K_{S}^{0}$	LF	< 8.0	$\times 10^{-8}$ CL=90%	696
$\mu^- K^+ K^-$	LF	< 4.4	$\times 10^{-8}$ CL=90%	699
$\mu^{+} K^{-} K^{-}$	L	< 4.7	$\times 10^{-8}$ CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	< 6.5	$\times 10^{-6}$ CL=90%	878
$\mu^- \pi^0 \pi^0$	LF	< 1.4	$\times 10^{-5}$ CL=90%	867
$e^- \eta \eta$	LF	< 3.5	$\times 10^{-5}$ CL=90%	699
$\mu^- \eta \eta$	LF	< 6.0	$\times 10^{-5}$ CL=90%	653
$e^-\pi^0\eta$	LF	< 2.4	$\times 10^{-5}$ CL=90%	798
$\mu^-\pi^0\eta$	LF	< 2.2	$\times 10^{-5}$ CL=90%	784
$\rho\mu^-\mu^-$	L,B	< 4.4	$\times 10^{-7}$ CL=90%	618
$\overline{\rho}\mu^+\mu^-$	L,B	< 3.3	$\times 10^{-7}$ CL=90%	618
$\overline{p}\gamma$	L,B	< 3.5	$\times 10^{-6}$ CL=90%	641
$\frac{1}{p}\pi^0$	L,B	< 1.5	$\times 10^{-5}$ CL=90%	632
$\overline{p} 2\pi^0$	L,B	< 3.3	$\times 10^{-5}$ CL=90%	604
$\overline{p}\eta_{\hat{Q}}$	L,B	< 8.9	$\times 10^{-6}$ CL=90%	475
$\overline{p}\pi^0\eta$	L,B	< 2.7	$\times 10^{-5}$ CL=90%	360
$\Lambda \pi^-$	L,B	< 7.2	$\times 10^{-8}$ CL=90%	525
$\Lambda\pi^-$	L,B	< 1.4	$\times 10^{-7}$ CL=90%	525
e−light boson	LF	< 2.7	$\times 10^{-3}$ CL=95%	-
μ^- light boson	LF	< 5	$\times 10^{-3}$ CL=95%	-

Heavy Charged Lepton Searches

L^{\pm} – charged lepton

Mass m > 100.8 GeV, CL = 95% [h] Decay to νW .

L[±] - stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

```
Mass m<2 eV (tritium decay)

Mean life/mass, \tau/m>300 s/eV, CL = 90% (reactor)

Mean life/mass, \tau/m>7\times10^9 s/eV (solar)

Mean life/mass, \tau/m>15.4 s/eV, CL = 90% (accelerator)

Magnetic moment \mu<0.29\times10^{-10} \mu_B, CL = 90% (reactor)
```

Number of Neutrino Types

```
Number N=2.984\pm0.008 (Standard Model fits to LEP-SLC data)
Number N=2.92\pm0.05 (S = 1.2) (Direct measurement of invisible Z width)
```

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this *Review*.

```
\begin{array}{l} \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) = 0.421^{+0.033}_{-0.025} \text{ (S} = 1.3) & (\text{Inverted order, quad. I}) \\ \sin^2(\theta_{23}) = 0.592^{+0.023}_{-0.030} \text{ (S} = 1.1) & (\text{Inverted order, quad. II}) \\ \sin^2(\theta_{23}) = 0.417^{+0.025}_{-0.028} \text{ (S} = 1.2) & (\text{Normal order, quad. II}) \\ \sin^2(\theta_{23}) = 0.597^{+0.024}_{-0.030} \text{ (S} = 1.2) & (\text{Normal order, quad. II}) \\ \sin^2(\theta_{23}) = 0.597^{+0.024}_{-0.030} \text{ (S} = 1.2) & (\text{Normal order, quad. II}) \\ \Delta m_{32}^2 = (-2.56 \pm 0.04) \times 10^{-3} \text{ eV}^2 & (\text{Inverted order}) \\ \Delta m_{32}^2 = (2.51 \pm 0.05) \times 10^{-3} \text{ eV}^2 & (\text{S} = 1.1) & (\text{Normal order}) \\ \sin^2(\theta_{13}) = (2.12 \pm 0.08) \times 10^{-2} & (\text{S} = 1.1) & (\text{Normal order}) \end{array}
```

Stable Neutral Heavy Lepton Mass Limits

```
Mass m > 45.0 GeV, CL = 95\% (Dirac)
Mass m > 39.5 GeV, CL = 95\% (Majorana)
```

Neutral Heavy Lepton Mass Limits

```
Mass m>90.3 GeV, CL = 95% (Dirac \nu_L coupling to e, \mu, \tau; conservative case(\tau)) Mass m>80.5 GeV, CL = 95% (Majorana \nu_L coupling to e, \mu, \tau; conservative case(\tau))
```

NOTES

In this Summary Table:

When a quantity has "(S = ...)" to its right, the error on the quantity has been enlarged by the "scale factor" S, defined as $S = \sqrt{\chi^2/(N-1)}$, where N is the number of measurements used in calculating the quantity.

A decay momentum p is given for each decay mode. For a 2-body decay, p is the momentum of each decay product in the rest frame of the decaying particle. For a 3-or-more-body decay, p is the largest momentum any of the products can have in this frame.

- [a] This is the best limit for the mode $e^- \to \nu \gamma$. The best limit for "electron disappearance" is 6.4×10^{24} yr.
- [b] See the "Note on Muon Decay Parameters" in the μ Particle Listings in the Full Review of Particle Physics for definitions and details.
- [c] P_μ is the longitudinal polarization of the muon from pion decay. In standard V-A theory, $P_\mu=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with energy of e>45 MeV and energy of $\gamma>40$ MeV. Since the $e^-\overline{\nu}_e\,\nu_\mu$ and $e^-\overline{\nu}_e\,\nu_\mu\,\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings in the Full Review of Particle Physics for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.