

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Review

NMR spectroscopy applied to amine–CO₂–H₂O systems relevant for post-combustion CO₂ capture: A review

Cristina Perinu^a, Bjørnar Arstad^b, Klaus-Joachim Jens^{a,*}

- ^a Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3901 Porsgrunn, Norway
- ^b SINTEF Materials and Chemistry, Forskningsveien 1, 0314 Oslo, Norway

ARTICLE INFO

Article history: Received 16 May 2013 Received in revised form 8 October 2013 Accepted 25 October 2013 Available online 5 December 2013

Keywords: NMR CO₂ capture Quantitative Amine Review

ABSTRACT

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful non-invasive analytical technique for chemical analyses since direct measurements at a molecular level can be performed. In this work, a survey of NMR spectroscopy applied for studies of CO_2 absorption in aqueous amine solvents (amine- CO_2 - H_2O) relevant for post-combustion CO_2 capture is presented. Technical aspects of NMR experiments and the main applications with corresponding results are provided. The overview of the NMR literature in this field suggests that studies of amine- CO_2 - H_2O systems can benefit from a further consideration of this spectroscopic technique.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	
	1.1. Background	231
	1.2. Outline	
2.	Overview of amine-CO ₂ -H ₂ O system chemistry	232
3.	Experimental NMR methods	232
	3.1. NMR Experiments	232
	3.2. Quantitative measurements: parameters and error analysis	233
	3.3. Deuterated and reference solvents	235
	3.4. Quantification of fast-exchanging proton species	
	3.5. Variable temperature and high pressure NMR experiments	236
4.	Results and applications	236
	4.1. Speciation of amine–CO ₂ –H ₂ O systems in absorption experiments	236
	4.2. Speciation of blended amine-CO ₂ -H ₂ O systems in absorption experiments	
	4.3. Speciation of single and blended amines-CO ₂ -H ₂ O systems in absorption-desorption experiments	
	4.4. Determination of carbamate stability constants	238
	4.5. Kinetic studies	239
5.	Conclusions	239
	Acknowledgements	242
	Appendix A	242
	References	242

^{*} Corresponding author at: Faculty of Technology, Telemark University College, P.O. Box 203, 3901 Porsgrunn, Norway. Tel.: +47 35575193; fax: +47 35575001. E-mail address: Klaus, J.Jens@hit.no (K.-J. Jens).