

Génie Logiciel Elements of a software project

Sylvain Lobry

02/10/2023

Elements of a software project

Before we start...

Critical Path

- Critical path: the set of tasks that allow to obtain the shortest time to finish the project
- Consequence: if one of the tasks from the critical path takes longer to be performed, the project will take longer to finish
- Algorithm for critical path:
 - 1) Select the taks with the latest finish date
 - 2) Put the selected task in the critical path
 - 3) Select the predecessor(s) of the selected task with the latest finishing date
 - 4) Repeat 2-3 until reaching starting node(s)

PERT

- .) Select the taks with the latest finish date
- 2) Put the selected task in the critical path
- 3) Select the predecessor(s) of the selected task with the latest finishing date
- 4) Repeat 2-3 until reaching starting node(s)

Task name	Time allocated	Predecessor(s)
Α	8	
В	5	
С	6	В
D	7	А, В
Е	5	C, D
F	4	E
G	3	E
Н	7	G

Task name	Start date	End date	Critical path
Α	0	8	
В	0	5	
С	5	11	
D	8	15	
Е	15	20	
F	20	24	
G	20	23	
Н	23	30	

PERT

Task name	Time allocated	Predecessor(s)
Α	8	
В	5	
С	6	В
D	7	А, В
E	5	C, D
F	4	E
G	3	Е
Н	7	G

Task name	Start date	End date	Critical path
Α	0	8	X
В	0	5	
С	5	11	
D	8	15	X
E	15	20	Х
F	20	24	
G	20	23	X
Н	23	30	X

PERT

Task name	Start date	End date	Critical path
Α	0	8	X
В	0	5	
С	5	11	
D	8	15	Χ
E	15	20	Χ
F	20	24	
G	20	23	Χ
Н	23	30	Χ

Elements of a software project

Wooclap

https://www.wooclap.com/L3GL234

Gantt chart

PERT: statistical tool

• Gantt: Better vizualisation, better communication

Introduced by Henry Gantt around 1910

Gantt chart

- Basic principles:
 - y-axis: list of tasks
 - x-axis: time
 - Each task is represented by a rectangle

Task name	Start date	End date	Critical path
А	0	8	X
В	0	5	
С	5	11	
D	8	15	X
Е	15	20	х
F	20	24	
G	20	23	х
Н	23	30	Х

time

Estimating the costs

Cost estimation

- Gantt chart: good base for bottom-up estimation
- Method 1, by lines of codes (LOC): Cost = $\alpha \times KLOC^{\beta} + \gamma$ with
 - α : marginal cost per 1000 LOC (KLOC)
 - γ: fixed cost of a project
 - β : scale factor
- To be noted: parameters proposed by Boehm in the COCOMO (COnstructive COst MOdel) method (1981)
- Estimation of the number of LOC: beta distribution
- Method 2, by person hours

Risk

- Needs to be taken into account in a software project
- Risk: what is the probability that a negative event will happen AND what will be the impact of this negative event on the project
- Different from uncertainty

Types of risk

- Classification 1 : Human/Management/Technical
- Classification 2: Process/Quality/Viability
- Classification 3: Impact only a given project or all projects

Potential causes of risk

- Human risks
- Plan or budget misestimated
- Requirements not well estimated
- External causes
- Underwhelming performances

• Other risks?

Potential solutions?

Management risks

Technical risks

Cost of a risk

- Expected value = probability of a risk x cost
- Possibility to represent the risks as a decision tree
- Example: should I do a prototype?

If you do the prototype, it will cost you \$100,000; and, of course, if you don't pursue it, there will be no cost. If you do the prototype, there is 30 percent chance that the prototype might fail, and for that the cost impact will be \$50,000. However, if the prototype succeeds, the project will make \$500,000. If you do not do any prototype, you're already taking a risk, the chance of which is 80 percent with a failure impact of \$250,000. But, again, without a prototype, should you succeed, the project will make the same money as mentioned before. What should you do?

MPUG

Risk management

Cost of a risk

If you do the prototype, it will cost you \$100,000; and, of course, if you don't pursue it, there will be no cost. If you do the prototype, there is 30 percent chance that the prototype might fail, and for that the cost impact will be \$50,000. However, if the prototype succeeds, the project will make \$500,000. If you do not do any prototype, you're already taking a risk, the chance of which is 80 percent with a failure impact of \$250,000. But, again, without a prototype, should you succeed, the project will make the same money as mentioned before. What should you do?

Cost of a risk

1) Compute Net cost of each path

Cost of a risk

1) Compute Net cost of each path

Cost of a risk

- 1) Compute Net cost of each path
- 2) Compute expected value for each path

Cost of a risk

- 1) Compute Net cost of each path
- 2) Compute expected value for each path

Elements of a software project

Elements of a software project

- Numerous activities for a software project
- Planning should be one of the first things to do
- Should correspond to the scope of the project