@ WPI / CERWENT

- AN 1985-319327 [51]
- Optical glass with good anti-devitrification characteristics includes mixt. of metal oxides partially substd. with fluoride
- AB J60221338 Glass comprises 1-50 wt.% B2O3, 0-45 wt.% SiO2, 20-60 wt.% B2O3 + SiO2, 1-52 wt.% La2O3, 0.1-20 wt.% ½2O3, 0-15 wt.% MgO, 0-30 wt.% CaO, 0-40 wt.% SrO, 0-50 wt.% BaO, 0-40 wt.% ZrO, 0-30 wt.% PbO, 1-60 wt.% MgO + CaO + SrO + BaO + ZrO + PbO, 0.5-15 wt.% Li2O, 0-10 wt.% ZrO, 0-30 wt.% Nb2O5, 0-20 wt.% WO3, 0-15 wt.% Al2O3, 0-20 wt.% GeO2, 0-20 wt.% HfO2, 0-30 wt.% Ta2O5, 0-35 wt.% Gd2O3, 0-20 wt.% Ga2O3, 0-20 wt.% In2O3, 0-15 wt.% P2O5, 0-20 wt.% TiO2, 0-10 wt.% Na2O + K2O + Cs2O, 0-2 wt.% As2O3 and/or Sb2O3, and 0-20 wt.% fluoride (as F) substitd. with a portion or all of the above metal oxide(s).
 - ADVANTAGE Glass has refractive index of 1.62-1.85, Abbe's number of 35-65, good antidevitrification characteristics, low transition temp. and improved hot shapability.(0/0)
- IW OPTICAL GLASS ANTI DEVITRIFY CHARACTERISTIC MIXTURE METAL SUBSTITUTE FLUORIDE
- AW OXIDE
- PN JP60221338 A 19851106 DW198551 007pp
- C03C3/06 :C03C4/00
- MC L01-A01B L01-A02 L01-A03A L01-A03C L01-A06A L01-A06B L01-A06C L01-A06D L01-A07A L01-A07B L01-L05
- DC L01
- PA (OHIR) OHARA GLASS SEIZOSH
- AP JP19840074559 19840412
- PR JP19840074559 19840412

⑲ 日本国特許庁(JP) ⑪ 特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭60-221338

@Int.Cl.4		識別記号	庁内整理番号		❸公開	昭和60年(198	35)11月6日
	3/068 3/072 3/095 3/097 3/108 3/115 3/15 3/19 3/23 4/00		6674-4G 6674-4G 6674-4G 6674-4G 6674-4G 6674-4G 6674-4G 6674-4G 6674-4G	審査請求	未請求		
	.,		OF 5100	伊且明小	不明水	発明の数 1	(全 7 頁)

❷発明の名称 光学ガラス

> ②特 願 昭59-74559

29出 願 昭59(1984)4月12日

70発明者 上 敏 相模原市上灣3125-13 ⑪出 願 人 株式会社 小原光学硝 相模原市小山1丁目15番30号 子製造所

HIT

1 . 発明の名称 光学ガラス

2 . 特許請求の範囲

(i) 重量%で、B2O3 1~ 50 %、SiO2 0~ 45 % ただし、B203+ Si02 20~60%、La203 1~52%、 Y_2O_3 0.1~20%, MgO 0~15%, CaO 0~30%. SrO 0~40%, BaO 0~50%, ZnO 0~40%, PbO 0~30%、ただし、MgO + CaO + SrO + BaO + ZnO + PbO 1 ~ 60%, Li2O 0.5 ~ 15%, ZrO2 0~10%, Nb2O5 0 ~30%, WO3 0~20%, Alz03 0 ~15%, GeOz 0~20%, HfOz 0~20%, Ta 20s 0 \sim 30%. Gd 203 0 \sim 35%. Ga 20s 0 \sim 20 %. In 203 0 ~ 20%. P205 0~ 15%. TiO2 0~ 20 %. Na₂O + K₂O + Cs₂O 0 ~ 10%, As₂O₃ および/または Sb203 0 ~2 %および上記各金 屈元素の1種または2種以上の酸化物の1部また は全部と置換した那化物のFとしての合計 0~20 %を含有することを特徴とする光学ガラス。

(2) La 203 が 1~45%であることを特徴とする

特許請求の範囲第1項記載の光学ガラス。

- (3) Li20 が 1.1~15%であることを特徴とする 特許請求の範囲第1項ないし第2項のいずれかに 記載の光学ガラス。
- (4) MgO + CaO + SrO + BaO + ZnO + PbO 35 5.1~60%であることを特徴とする特許請求の範 囲第1項ないし第3項のいずれかに記載の光学ガ ラス.

3 . 発明の詳細な説明

本発明は、屈折率 (Md) = 1.62 ~ 1.85 . アッベ数 (y'd) = 35 ~ 65 の範囲の光学恒数 と優れた耐失透性とを維持させつつ、低転移温度 特性を付与して熱間成形性を改省した新規な光学 ガラスに関する。

従来から、上記光学恒数を有する光学ガラスと しては、B203および La203を主成分とした種々の ガラスが知られている。たとえば、B203 - Si02-La203 - BaO - ZrOz A . B2O3 - La203 - Gd2O3 -R^{II}O および/または Al₂O₃系 (R^{II}O = 2 価金属酸 化物), B203 - SiO2 - La203 - Y203 - ZrO2 -

7a20s 系および BxOs - SiOz - LazOs - Y2Os-2r0z - 2n0系符のガラスが、それぞれ特開昭 51-34914 号、特開昭48-81517号、特公昭52-48608号 および特開昭55-11884! 号等の各公報において 提案されている。しかし、これらのガラスは、い ずれも、有害成分の排除や耐失透性の改善等に重 点がおかれているだけであり、熱閒成形性の改善 については、配慮がまったくなされていない。こ のため、この種のガラスは、全般に転移温度(以 下、Tgという)が高く、また高屈折低分散性の **優れたものはこの傾向が強くみられる。そのうえ、** これらのガラスのうち Gd2O3や Ta2Osを使用する 系のものは、原料コストが非常に高く不利である。 一般にTgの値は、ガラスの熱間成形性の難易度 を左右する大きな要因となっているが、軟化ガラ スをプレス成形する場合、プレス金型は、Tg近 镣の高温にさらされるため、ガラスのTgが高い ほどその表面が酸化や金属組織の変化等を生じて、 急速に劣化し、寿命が短かくなりやすい。上記問 題点の解決手段として、 企型の材料や構造等に関

する技術が知られているが、これらは、経済的不 利を伴ないやすい。

そこで、所望の光学特性および耐失透性等を 維持しつつ、低T8特性を付与して熱間成形性を 改善したガラスが要認されている。

本発明は、上記の実状にかんがみてなされたもので、その目的は、屈折率(nd)。1.62~1.85、ファベ数 (Vd)。35~65の範囲の光学恒数と大量生産し得るに十分な失透に対する安定性(耐失透性)とを維持させつつ、低Tg特性を付与した光学ガラスを提供することにある。

本発明者らは、上記目的を達成するため試験研究を重ねた結果、特定組成範囲の B203 - La203 - Y203 - R^{II}O - Li20 系において、上記所望の光学恒数と優れた耐失透性とを維持させつつ、一段と低いTgを付与し得るガラスが存在することを見出し、本発明をなすに至った。

すなわち、本発明にかかる光学ガラスの組成の 特徴は、特許請求の範囲に記載のとおり、低量% で、 B20s 1 ~50%. SiO2 0~45%

ただし、B203 + Si02 20~60%、La 203 1 ~52%、Y203 0.1 ~20%、NgO 0~15%、CaO 0~30%、SrO 0~40%、BaO 0~50%、ZnO 0~40%、PbO 0~30%、ただし、MgO + CaO + SrO + BaO + ZnO + PbO 1~60%、Li20 0.5~15%、ZrO2 0~10%、Nb20s 0~30%、WO3 0~20%、Al 2O3 0~15%、GeO2 0~20%、HfO2 0~20%、In 2O3 0~20%、P2O5 0~15%、TiO2 0~20%、In 2O3 0~20%、P2O5 0~15%、TiO2 0~20%、Na2O + K2O + Cs2O 0~10%、As 2O3 および/または Sb2O3 0~2%および上記各金属元素の1 種または2種以上の酸化物の1部または全部と環境した那化物のFとしての合計 0~20%を含有することにある。

これを要するに、本発明による B_2O_3 - La_2O_3 - Y_2O_3 - R^1O - Li_2O 系ガラスは、上記目的達成に当り、 B_2O_3 - La_2O_3 - R^1O 系ガラスに、種々の成分中、とくに Y_2O_3 および Li_2O の2成分を組合せ非存させることがきわめて重要であるという 従来技術にない知見にもとづいて構成されている

点に特徴がある。

つぎに、上記のとおり、各成分の組成範囲を限 定した理由について述べる。

本発明の光学ガラスにおいて、B203と Si02 成分は、ガラス形成成分として働くが、そのうち、B203 成分の量が、1 %未満であるとガラスの失透傾向が増大し、また50%を超えると B203 成分の御発により均質なガラスを得難くなる。また、Si02成分の量が、45%を超えると Si02 原料のガラス中への溶解性が悪化し、均質なガラスを得難くなる。さらに、B203成分と Si02 成分の合計量は、ガラスの失透防止のため20%以上必要であり、このため B203 の量が20%未満の場合は、 Si02 成分が必要となる。また、これらの成分の合計量が80%を超えると目標の光学恒数を維持できなく

La 20s 成分は、所期の光学恒数をガラスに与えるのに有効な成分であるが、1%未満では目標の光学恒数を維持しがたくなる。また La 20s成分は、52%まで含有させることができるが、45%以下で

特開昭60-221338(3)

MgO、CaO、SrO、BaO、ZnO および PbOの各成分は、ガラスの耐失透性や均質性を向上させる効果があるが、これらの成分のうち、MgO および CaO は、それぞれ、15%および30%を超えるとガラスの失透傾向が増大し、また SrO、BaO、ZnO および PbOは、それぞれ40%、50%、40%および30%を超えるとガラスの化学的耐久性が悪化する。ただし、これら2価金属酸化物成分の上配諸効果を得るためには、これらの成分の1 種または2種以上を合計量で少なくとも1%、好ましくは、5.1 %以上合有させることが必要である。しかし、これらの成分の最が80%を超えるとガラスの化学

的耐久性が落しく悪化する。

Li20 成分は、前述のとおり、Y20g成分との共存下において、ガラス中に広範囲に安定して合有させることができ、また、Tgを嬉しく低下させることができるので、本発明のガラスにおいて重要な成分であるが、その量が 0.5%以上であると上記の効果が顕著となるが、より十分な効果を得るためには、1.1 %以上合有させることが好ましい。しかし、その量が 15 %を超えると失透傾向が増大する。

下記の成分は、本発明のガラスに不可欠ではないが、ガラスの光学恒数の調整、耐失透性または 化学的耐久性等の改容のため、必要に応じ添加す ることができる。

すなわち、ZrO2、Nb2Os、WO3 および Al2O3の 各成分は、ガラスの安定化や化学的耐久性向上の ために有効であるが、これらの量が、それぞれ 10%、30%、20%および15%を超えると、逆にガ ラスは失透しやすくなる。

GeO2, HfO2, Ta 20s, Gd2Os, Ga2O3 B & U

In203 の各成分は、ガラスを安定化させるのに有効であり、ガラスの諸特性を損なうことなく、それぞれ、20%、20%、30%、35%、20%および20%まで含有させることができる。

P20s成分は、ガラスに低分散特性を与える効果があるが、その量が15%を超えると失透傾向が著しく増大する。

TiOz成分は、ガラスの化学的耐久性を向上させるのに有効であり、20%まで含有させることができる。しかし、その最が多くなるとガラスが着色するので、光線透過性能の良好なガラスを得るためには9%以下が好ましい。

Na₂O、K₂O および Cs₂O の各成分は、いずれもガラスの均質化を促進する効果があるが、これらの成分の1 種または2種以上の合計量が 10 %を超えると失透傾向が増大する。

As 203 および/または Sb 203成分は、ガラスの 脱泡剤として用いるが、これらの1種または2種 以上の合計量が2%を超えると失透傾向が増大する。 F成分は、ガラスの液相温度を低下させ、耐失 透性を向上させる効果があるが、上記金属元素の 1 種または2種以上の酸化物の一部または全部と 置換した那化物のFとしての合計量が20%を超え ると、ガラス溶融の際、F成分の揮発が多くなり 均質なガラスを得難くなる。

つぎに、本発明にかかる B203- La203 - Y203-R¹O - Li20 系の光学ガラスの実施組成例(No.1 ~ No.40)とこれとほぼ同等の光学恒数を有する公知の B203 - La203 - R¹O 系のガラスの比較組成例(No. I ~ No. VI)とを要-1に、またこれらのガラスの光学恒数(介d、 yd)、転移温度(Tg) および失透試験結果を表-2に示す。また、衷-1に示した本発明の実施例No.17、No.21 およびNo.25 とこれらの実施例に近似しており B203 - La203 - R¹O 系ガラスに Li2O のみを添加した比較例No.A、No.BおよびNo.Cのガラスについて、それぞれ、失透試験結果を組成とともに表-3に示す。

表 - 2 および表 - 3 における失透試験結果は、

白金製の50ccポットにガラス試料80gを入れて、電気が中で各ガラスの溶融性の難易度に応じ、1100~1350℃の温度で2時間溶融した技、降温して、各試料を1000℃および 850℃でそれぞれ2時間保温した技、炉外に取り出して失透の有無を顕微鏡により観察したもので、その結果、失透が認められないガラスは○印で、また失透が認められたガラスは×印で示した。

(以下余白)

表-1

(単位: 重量%)

			· · · · · ·						_			(证)
М	B ₂ O ₃	· SiO2	La 203	Y 203	KgO	Ca0	SrO	BaO	ZnO	РЬО	Li ₂ 0	その他の成分
1	30	21	11	6		12		14			1.7	No ₂ O 2 X ₂ O 1.3 Cs ₂ O 1
2	47	3	10	2	8	11	16.8				2.2	
3	14	16	1	1		12	4.5	20	10	†	7.5	P ₂ O ₅ 10 Al ₂ O ₃ 4
4	40	14	9	0.3	2	24		1		 	2.7	A1203 8
5	23	28	15	2		6	 	20		-	8	
6	35				1	4	3	2	 	 	3	LaF3 38 YF3 10 (F=15.2)
7	14	21	2	2	-	10	5	20	10		5	P2O5 7 A12O3 4
8	25	21	13	2		13	13	 			13	11203 \$
9	24	22	10	8		12		14			10	
10	41		15	13		<u> </u>		 ``		 	 	
11	35	15	15	3	· · ·	15	li .	 	ļ	 		Lof3 15 Cof2 12 (F-10.2)
1	11.6	33.0	15.8				-"		ļ		6	·
								38.6				Zr02 3.0
12	38	13	. 53	11		10			3		4	
13	25	22	9	3	2	2	14		8		3.5	TazOs 11.5
14	ı	36	ı	2		. 3	16	22	.8	7	1.5	ZrO2 4 As2O3 0.5

特開昭60-221338(5)

(単位:重量%) ·

No	B ₂ O ₃	SiO2	Lo ₂ O ₃	Y 203	KgO	Ca0	SrŌ	BaO	ZeO	Рь0	Li 20	その他の成分	
15	34		37	8					2		3	SrF2 12 ZnF2 4 KF 2 (F=5.8)	
16	3	35	•	2			10	16	15	5.	1.5	ZrO2 5 A1203 2 Na ₂ 0 I As203 0.5	
17	30	13	28	10		9		2	2		•	ZrO ₂ _1.3 As ₂ O ₃ 0.7	
18	37	8	27	5.5		8		4	3		4	ZrO2 3 Gd2O3 4.5	
11	(3.5	1.0	(3.4			7.2						ZrQ2 1.9	
19	9	27	14	6		3	10	20	2		3	Zr02 5 TiO2 1	
20	31	6	24.5	13		5.5				·	3	ZrO2 4 Ga2O3 10	
21	38	7	30	5		6		4	4		3	Zr02 5	
22	30		30	8					5.8		1.2	HfO2 11 GeO2 14	
23	33	6	22	16		12		2	2		3	ZrO2 4	
24	10	25	12	1.4	2	2	5	18	8	2	. 2	ZrO2 5 Te2O5 2 TiO2 1.5 Al2O3 1 K2O 0.5	
25	17	18	25	7		8		13			2.2	ZrOz 6 WO3 3 AlzO3 0.8	
26	34.5		30	15			4.3				2.2	2rOz 2.5 LaF3 9 ZnF2 2.5 (F-2.5)	
ш	31.0	9.5	45.0			4.5			3.0			ZrOz 6.0 Te2O5 1.9 As2O3 0.1	
27	35	3	. 22	18		8					1.2	ZrOz 7 Te2O5 7.8	

(単位: 魚量%)

No	8 203	SiO ₂	La 203	Y 203	NgO	CaO	Sr0	BaO	ZnO	PbO	Li ₂ 0	その他の成分		
28	9	24	11	2	2	3	2	20	2 .	13	2.5	ZrO2 6 Ta2O 5 1.5 TiO2 1.4 Sb2O3 0.6		
29	15	18	. 50	4.7		3	5	20			2.5	ZrO ₂ 8 Ta ₂ O ₅ 3 TiO ₂ 2.8		
IA	15	20	25			8		20				ZrO2 6 Ta2O 5 2 TiO2 4		
30	2	30	2	1		7		20	2	27	2.5	ZrO2 8 Sb 203 0.5		
31	30		16	4					35		2 .	Ta 205 13		
32	30	4	45	10			ı		4.6		1.8	Nb20 5 4		
33	30	3	44	9			ι		4.9		2.1	Ta ₂ O ₅ 2 Nb ₂ O ₅ 4		
v	10	20	26			3		30				TiO2 4 Ta 205 2		
34	20	8.5	30	4				3	21		1.5	Ta2Os 8 Nb2Os 4		
35	37		25	5					5.3		1.2	HIO2 1.5 ln2O3 15 Nb2O5 10		
36	20	3	20	7					27.8		2.1	Te 20 5 20 .		
37	30		40	2				1	2		1.1	ZrOz 5.9 WO3 2 Ta 20s 7 NbzOs 8		
38	20	5	: 33	1				4	20		1.2	2:02 3.8 WO3 8 Nb2Os 4		
٧ı	27	3	41					5				ZrO 2 8 WO 3 5 Nb 20 8 Ta 20 5 4		
39	30		· 35	3					5.2		1.3	ZrO 2 3.5 WO3 5 Nb2Os 17		
40	18	5.5	30	7					5	3.5	1.2	ZrOz 5 WO3 4 Nb-20s 13.8 Ta 20s 7		

大学行政 保存程度 失意以験結果 T g (で) 1000で 1000で 1 1.6220 58.8 565 ○ ○ ○ ○ ○ ○ ○ ○ ○					•
1 1.6220 58.8 565 O 2 1.6278 80.0 583 O 3 1.6202 55.7 444 O 4 1.6310 59.0 565 O 5 1.6309 57.4 504 O 6 1.6352 62.2 490 O O 7 1.6342 56.2 495 O O 8 1.6358 56.2 426 O O O 9 1.6395 56.4 462 O <th>No</th> <th></th> <th></th> <th>4</th> <th>失近試験結果</th>	No			4	失近試験結果
1 1.6220 58.8 565 O 2 1.6278 80.0 583 O 3 1.6302 55.7 444 O 4 1.6310 59.0 565 O 5 1.6309 57.4 504 O 6 1.6352 62.2 490 O O 7 1.6342 56.2 495. O 8 1.6358 56.2 426 O 9 1.6395 58.4 462 O 10 1.6454 61.5 508 O 11 1.6450 58.3 523 O 1 1.6601 56.3 564 O 13 1.6658 53.2 552 O		Na	γd	Tg (°C)	10000
3 1.6302 55.7 444 O 4 1.6310 59.0 565 O 5 1.6308 57.4 504 O 6 1.6352 62.2 490 O O 7 1.6342 56.2 495. O 8 1.6358 56.2 426 O 9 1.5395 58.4 462 O 10 1.6454 61.5 508 O 11 1.6450 58.3 523 O 1 1.650 55.0 683 O 12 1.6601 58.3 564 O 13 1.6658 53.2 552 O	1	1.6220	58.8	565	. 0
4 1.6310 59.0 565 O 5 1.6309 57.4 504 O 6 1.6352 62.2 490 O O 7 1.6342 56.2 495. O 8 1.8358 56.2 426 O 9 1.6395 58.4 462 O 10 1.8454 81.5 508 O 11 1.6450 58.3 523 O 1 1.850 55.0 883 O 12 1.6601 58.3 564 O 13 1.6656 53.2 552 O	2	1.6278	60.0	563	0
5 1.6309 57.4 504 O 6 1.6352 62.2 490 O O 7 1.6342 56.2 495. O 8 1.6358 56.2 426 O 9 1.6395 58.4 462 O 10 1.6454 61.5 508 O 11 1.6450 58.3 523 O 1 1.650 55.0 683 O 12 1.6601 56.3 564 O 13 1.6658 53.2 552 O	3	1.6302	55.7	444	0
6 1.6352 62.2 430 O 7 1.6342 56.2 435. O 8 1.8358 56.2 426 O 9 1.6395 58.4 462 O 10 1.6454 61.5 508 O 11 1.6450 58.3 523 O 1 1.650 55.0 683 O 12 1.6601 58.3 564 O	4	1.6310	59.0	565	0
7 1.6342 56.2 495. O 8 1.6358 56.2 426 O 9 1.6395 58.4 462 O 10 1.6454 61.5 508 O 11 1.6450 58.3 523 O 1 1.650 55.0 683 O 12 1.6601 56.3 564 O	5	1.6309	57.4	504	. 0
8 1.8358 56.2 426 O 9 1.8395 58.4 482 O 10 1.8454 81.5 508 O 11 1.8450 58.3 523 O 1 1.850 55.0 683 O 12 1.6801 58.3 564 O 13 1.6656 53.2 552 O	6	1.6352	62.2	490	0 .
9 1.6395 56.4 462 O 10 1.6454 61.5 508 O 11 1.6450 58.3 523 O 1 1.650 55.0 683 O 12 1.6601 56.3 564 O 13 1.6656 53.2 552 O	7	1.6342	56.2	495,	0
10 1.8454 61.5 508 O 11 1.6450 58.3 523 O 1 1.850 55.0 683 O 12 1.6601 58.3 564 O 13 1.6658 53.2 552 O	8	1.6358	56.2	426	0
11 1.6450 58.3 523 O 1 1.850 55.0 683 O 12 1.6601 58.3 564 O 13 1.6656 53.2 552 O	9	1.6395	58.4	462	0
1 1.650 55.0 683 O 12 1.6601 56.3 564 O 13 1.6658 53.2 552 O	10	1.6454	81.5	508	0
12 1.6601 56.3 564 O 13 1.6656 53.2 552 O	11	1.6450	58.3	523	0
13 1.6656 53.2 552 0	1	1.650	55.0	683	0
	12	1.6601	56.3	564	. 0
14 1.6675 47.8 575 0	13	1.6656	53.2	552	. 0
	14	1.6675	47.8	575	٥ .

No	光学	恒数	伝移程度	失近試験結果		
	Nd	Vα	Tg (*0)	10000		
15	1.6723	57.9	483	0		
16	1.8720	45.4	558	0		
17	1.6869	54.7	558	0		
18	1.6887	55.2	548	0		
11	1.888	55.9	878	0		
19	1.6914	49.8	567	0		
20	1.6839	53.8	598	0		
21	1.6953	54.5	567	0		
22	1.7001	55.0				
23	1.7051	53.5	550	0		
24	1.7038	45.8	554	0		
25	1.7175	49.8	579	0		
26	1.7287	54.7	585	0		
ш	1.7300	51.7	870	0		
27	1.7336	19.7	633	0		

No	光学	恒数	転移温度	失近就發結果
	Nd	Vd	Tg (°C)	1 0 0 0 °C
28	1.7341	41.3	539	0
29	1.7355	45.7	580	0
IA	1.7333	45.5	885	0
30	1.7326	36.8	510	0
31	1.7438	45.4	513	0
32	1.7558	48.2		1
33	1.7585	47.9	595	0
V	1.7835	40.6	680	0
34	1.7767	41.4	547	0
35	1.7820	35.5		
36	1.7931	42.5	512	0
37	1.8004	4314	618	0
38	1.8052	60.2	545	0
VI	1.8084	40.7	870	0
38	1.8187	38.5	595	0
40	1.8450	35.3	588	

(原位: 重量%)

		No . 17	No . A	No . 21	No . B	No . 25	No.C
	B ₂ O ₃ .	30	30	36	38	. 17	17
	Si02	13	13	7	7	18	18
	L 5 2 0 3	28	38	30.	35	25	32
	Y2 O3	10		5		7	
	C.O	9	9	8	6	8	8
	BaO	2	2		4	13	13
	ZnO	2	2	4	4		
	Li20	4	4	3	. 3	2.2	2.2
	2102	1.3	1.3	. 5	5	8 .	6
	W03					3	3
	A 1 2 0 3		•			0.8	0.8
	E025 A	0.7	0.7				
	.U a	1.8883	1.6899	1.6953	1.6968.	1.7175	1.7198
	γd	54.7	54.5	54.5	54.4	49.8	49.7
失透試験	1000 °C	. 0	×	: O	× .	o	×
結果	950 °C	0	×	0	×	0	×

表 - 2 にみられるとおり、本発明の実施例のガラスは、所期の光学恒数と良好な耐失透性とを有し、しかも、Tgが従来公知の比較例のガラスよりも低く、その改善効果が著しい。これに対し、比較例のガラスは、耐失透性が良好であるものの、Tgの値が非常に高い。

本発明の上記実施例の光学ガラスは、いずれも、 酸化物、皮酸塩、硝酸塩および弗化物等の原料を 適宜選択混合して、これを約 1100 ~ 1350 ℃で 溶融し、十分な攪拌と和切れを行なった後、適当 な温度に下げて、プレス成形または6人込み成形す ることにより容易に製造することができる。

上述のとおり、本発明のガラスは、特定組成域の 8203 - La203 - Y203 - R⁰0 - Li20 系の組成であるため、屈折率(Nd) = 1.62 ~ 1.85、

アッベ数 (Vd) = 35 ~ 65 の広範囲に及ぶ光学恒数と優れた耐失透性とを有し、しかも、従来のガラスと比較してTgが著しく低く、そのうえ、原料経済性にも優れている。したがって、本発明のガラスは、大量生産が可能であるのみならず、プレス成形において、企型の寿命を飛躍的に向上させることができるので、きわめて有用である。

特酢出额人 株式会社 小原光学硝子製造所