全宇宙最通俗易懂的通信课

必备知识内容

小区, 频点, 频段, 带宽

- 1.什么是载波聚合?
- 2. 载波聚合能聚几个载波?
- 3. 载波聚合频典型谱场景?
- 4. 频点中心频率间隔要求?
- 5. 传输带宽和信道带宽是什么意思?
- 6. 手机什么等级支持载波聚合?
- 7. 载波聚合的部署场景?
- 8.Pcell和Scell啥意思?
- 9.RRC连接啥意思?
- 10.频点优先级是啥意思?

什么是载波聚合

根据香农定理,我们的网速限制于带宽

3GPP R10版本引入CA

将多个载波聚合成一个更宽的频谱

40MHZ

为什么不直接上大带宽?

因为运营商的频谱比较<mark>碎</mark>,在低频段难以找到合适的大带宽(5G还是上了大带宽囧!)

CA能聚几个?

DL:

R10版本,定义,DL最大支持5载波聚合,最大支持100MHZ带宽

R13版本甚至定义了DL的32载波聚合,理论支持640MHZ带宽!

UL:

R12 版本 UL定义支持2载波聚合

载波聚合频典型谱场景

频段 (band) 内连续载波聚合

频段(band)内非连续续载波聚合

频段(band)间载波聚合

LTE R10 TDD频段

频段	双工方式	F _{DL_low/} F _{UL_low} (MHz)	F _{DL} high/F _{UL} high (MHz)	Noffs-DLNoffs-UL	$N_{DL/}N_{UL}$
33	TDD	1900	1920	36000	36000 – 36199
34	TDD	2010	2025	36200	36200 – 36349
35	TDD	1850	1910	36350	36350 – 36949
36	TDD	1930	1990	36950	36950 – 37549
37	TDD	1910	1930	37550	37550 – 37749
38	TDD	2570	2620	37750	37750 – 38249
39	TDD	1880	1920	38250	38250 - 38649
40	TDD	2300	2400	38650	38650 - 39649
41	TDD	2496	2690(非连续)	39650	39650 - 41589
42	TDD	3400	3600	41590	41590 – 43589
43	TDD	3600	3800	43590	43590 – 45589

举个例子

频率间隔

频段(band)内连续载波聚合

频点中心频率间隔需要满足300KHZ的整数倍, 连续的20+20M聚合,中心频率间隔19.8MHZ

一个问题

如果中心间隔是19.8MHZ, 那么这两个20MHZ必须有重叠为什么可以重叠?

传输带宽和信道带宽

我们一般提到的系统带宽,一般是指信道带宽 而实际系统使用的,是传输带宽 多余的部分是保护间隔

以20MHZ信道带宽为例子

上面问题的答案:

实际的传输带宽不重叠,不影响

是否所有手机都支持载波聚合?

Cat6级别以上支持载波聚合

	Max. data rate (DL/UL) (Mbps)	Downlink				Uplink		
UE category		Max. # DL-SCH TB bits/ TTI	Max. # DL-SCH bits/TB/ TTI	Total soft channel bits	Max. #. spatial layers	Max.# UL-SCH TB bits/TTI	Max. # UL-SCH bits/TB/ TTI	Support for 64 QAM
Category 1	10/5	10296	10296	250368	1	5160	5160	No
Category 2	50/25	51024	51024	1237248	2	25456	25456	No
Category 3	100/50	102048	75376	1237248	2	51024	51024	No
Category 4	150/50	150752	75376	1827072	2	51024	51024	No
Category 5	300/75	299552	149776	3667200	4	75376	75376	Yes
Category 6	300/50	[299552]	[TBD]	[3667200]	*	[51024]	[TBD]	No
Category 7	300/150	[299552]	[TBD]	[TBD]	×	[150752/102048 (Up to RAN4)]	[TBD]	Yes/No (Up to RAN4)
Category 8	1200/600	[1200000]	[TBD]	[TBD]	*	[600000]	[TBD]	Yes

部署场景

基本规定:不同载波属于同一个基站

五种典型场景

场景1:同站共覆盖

场景1和场景2是目前主要应用

五种典型场景

场景3: 共站补盲

场景4:共站不同覆盖RRH

五种典型场景

F1

F2

场景5:共站不同覆盖+直放站

基本参数

CC: Component Carrier 分支载波

Pcell主小区:当LTE-A的UE初次建立RRC连接时,只配置一个服务小区,即 Pcell。此服务小区中的载波称为主载波(PCC)

Scell辅小区:

参与载波聚合的其他小区,即Scell。此服务小区中的载波称为辅载波(SCC)

Serving Cell服务小区:

处于RRC_CONNECTED态的UE,如果没有配置CA,则只有一个Serving Cell,即PCell;如果配置了CA,则Serving Cell集合是由PCell和SCell组成

RRC连接

Radio Resource Control,无线资源控制

一个RRC连接,代表了UE和基站之间的信令链接建立起来了

从此以后,你跟老板 就建立起了一种控制关系 有了这层<mark>控制关系</mark>, 才有了后面的劳动产出(数据传输)

员工 (手机)

老板 (基站)

一个双载波的站, 谁是主载波?

LTE的频点有<mark>优先级</mark>的概念 0-7,数值越大,优先级越高

优先级高的,作为主载波优先级相同,随机

RRC连接建立在主载波上

假设A的频点优先级高于B

在A和B同优先级情况下

不同的UE可以有不同的Pcell和Scell

载波聚合是UE级特性

希望大家多多支持我的5G付费课程

腾讯课堂链接 https://ke.qq.com/course/3922159

电脑或者安卓手机打开链接,苹果不支持

如果下载不了PPT,请私信我下载

