Mobile Robots, Position, and Orientation

Robert Stengel
Robotics and Intelligent Systems MAE 345,
Princeton University, 2015

- Math Review
- Ground Vehicles
 - Legged creatures
 - Wheeled and tracked robots
 - Other
- Frames of Reference and Pose
- Translation and Rotation
- Homogeneous Transformation

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Math Review

- Matrix and Transpose
- Sums and Multiplication
- Matrix Products
- Identity Matrix
- Matrix Inverse
- Transformations

Matrix and Transpose

- Matrix:
 - Usually bold capital or capital: F or F
 - Dimension = $(m \times n)$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \\ l & m & n \end{bmatrix}$$

Transpose:

Interchange rows and columns

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \\ l & m & n \end{bmatrix} \qquad \mathbf{A}^T = \begin{bmatrix} a & d & g & l \\ b & e & h & m \\ c & f & k & n \end{bmatrix}$$

3

Matrix Products

Matrix-vector product transforms one vector into another

$$\mathbf{y} = A\mathbf{x} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \\ l & m & n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 + cx_3 \\ dx_1 + ex_2 + fx_3 \\ gx_1 + hx_2 + kx_3 \\ lx_1 + mx_2 + nx_3 \end{bmatrix}$$

$$(n \times 1) = (n \times m)(m \times 1)$$

Matrix-matrix product produces a new matrix

$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}; \quad \mathbf{AB} = \begin{bmatrix} (a_1b_1 + a_2b_3) & (a_1b_2 + a_2b_4) \\ (a_3b_1 + a_4b_3) & (a_3b_2 + a_4b_4) \end{bmatrix}$$

$$(n \times m) = (n \times l)(l \times m)$$

Numerical Example 1

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & 6 \\ 3 & -5 & 7 \\ 4 & 1 & 8 \\ -9 & -6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$(n \times 1) = (n \times m)(m \times 1)$$

$$= \begin{bmatrix} (2x_1 + 4x_2 + 6x_3) \\ (3x_1 - 5x_2 + 7x_3) \\ (4x_1 + x_2 + 8x_3) \\ (-9x_1 - 6x_2 - 3x_3) \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

5

Numerical Example 2

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \; ; \quad \mathbf{B} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \quad \mathbf{AB} = \begin{bmatrix} (5+14) & (6+16) \\ (15+28) & (18+32) \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

$$\mathbf{x}_{A} = \mathbf{A}\mathbf{x}_{B} \quad ; \quad \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{B}$$

$$\mathbf{x}_{B} = \mathbf{B}\mathbf{x}_{o} \quad ; \quad \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{R} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{o}$$

$$\mathbf{x}_{A} = \mathbf{A}\mathbf{x}_{B} = \mathbf{A}\mathbf{B}\mathbf{x}_{o} \quad ; \quad \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{A} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{o}$$

Square Matrix Identity and Inverse

- Identity matrix: no change when it multiplies a conformable vector or matrix

A non-singular square matrix multiplied by its inverse forms an identity matrix

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

7

Matrix Inverse Example

Transformation $|\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1|$

$$\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{1}$$

Inverse Transformation $|\mathbf{x}_1 = \mathbf{A}^{-1}\mathbf{x}_2|$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{1} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2}$$

Consequently, ...

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

$$\mathbf{x}_{2} = \mathbf{A}\mathbf{x}_{1} = \mathbf{A}\mathbf{A}^{-1}\mathbf{x}_{2} = \mathbf{x}_{2}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Computation of (n x n) Matrix Inverse

$$\mathbf{y} = \mathbf{A}\mathbf{x}; \quad \mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$

 $\dim(\mathbf{x}) = \dim(\mathbf{y}) = (n \times 1); \quad \dim(\mathbf{A}) = (n \times n)$

$$[\mathbf{A}]^{-1} = \frac{\operatorname{Adj}(\mathbf{A})}{|\mathbf{A}|} = \frac{\operatorname{Adj}(\mathbf{A})}{\det \mathbf{A}} \quad \frac{(n \times n)}{(1 \times 1)}$$
$$= \frac{\mathbf{C}^{T}}{\det \mathbf{A}}; \quad \mathbf{C} = matrix \ of \ cofactors$$

Cofactors are signed minors of A

ijth minor of **A** *is the*<u>determinant</u> of **A** *with the ith*row and *jth* column removed

MATLAB Code for Math Review Use of Symbolic Variables

```
% MAE 345 Lecture 2 Math Review
Rob Stengel

clear
disp(' ')
disp('======='')
disp('>>>MAE 345 Lecture 2 Math Review<<<')
disp('=======')
disp(' ')
disp(['Date and Time are ', num2str(datestr(now))]);
disp(' ')

% Matrix
syms A AT a b c d e f g h k l m n
A = [a b c;d e f;g h k;l m n] % Matrix
AT = A' % Matrix Transpose

% Matrix-Vector Product
syms x x1 x2 x3 y1 y2 y3 y4
x = [x1;x2;x3]
y = [y1;y2;y3;y4]
y = A * x</pre>
```

11

MATLAB Code for Math Review

```
% Matrix-Matrix Product
syms A a1 a2 a3 a4 B b1 b2 b3 b4 AB
A = [a1 a2;a3 a4]
B = [b1 b2;b3 b4]
AB = A * B

% Example 1
syms A
A = [2 4 6;3 -5 7;4 1 8;-9 -6 -3]
y = A * x

% Example 2
A = [1 2;3 4]
B = [5 6;7 8]
AB = A * B

syms xA xB x0
x0 = [x1;x2]
xA = A * xB
xB = B * x0
xA = A * B * x0
```

MATLAB Code for Math Review

```
Matrix Identity and Inverse
13
            eye(3)
        =
            I3 * x
Х
syms A Ainv
            [a b c;d e f;g h k]
            inv(A)
Ainv
        = simplify(A * Ainv)
I3
13
            simplify(Ainv * A)
Matrix Inverse Example
syms A Th cTh sTh Ainv
        = [cTh 0 sTh; 0 1 0; -sTh 0 cTh]
Ainv
             inv(A)
detA
             det(A)
cTh
            cos(Th)
        =
sTh
             sin(Th)
Th
             pi / 4
syms A Ainv
             [cos(Th) 0 sin(Th); 0 1 0; -sin(Th) 0 cos(Th)]
Ainv
Consequently, ...
I3 = A * Ainv
Computation of (n \times n) Inverse
      = det(A)
= Ainv * detA
detA
AdjA
```

MATLAB Command Window Output for Math Review

```
>>>MAE 345 Lecture 2 Math Review<<<pre>Date and Time are 03-Sep-2013 13:49:40

A =
    [ a, b, c]
    [ d, e, f]
    [ g, h, k]
    [ l, m, n]

AT =
    [ conj(a), conj(d), conj(g), conj(l)]
    [ conj(b), conj(e), conj(h), conj(m)]
    [ conj(c), conj(f), conj(k), conj(n)]

x =
    x1
    x2
    x3

y =
    y1
    y2
    y3
    y4

y =
    a*x1 + b*x2 + c*x3
    d*x1 + e*x2 + f*x3
    g*x1 + h*x2 + k*x3
    l*x1 + m*x2 + n*x3
```

```
x0 =
x1
x2

xA =
[ xB, 2*xB]
[ 3*xB, 4*xB]

xB =
5*x1 + 6*x2
7*x1 + 8*x2

xA =
19*x1 + 22*x2
43*x1 + 50*x2

I3 =
1 0 0
0 1 0
0 0 1

x =
x1
x2
x3
```

14

13

MATLAB Command Window Output for Math Review

```
A = [ a, b, c] [ d, e, f] [ g, h, k]

Ainv = [ (f*h - e*k)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), -(c*h - b*k)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), -(b*f - c*e)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k)] [ -(f*g - d*k)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), (c*g - a*k)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), (a*f - c*d)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k)] [ -(d*h - e*g)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), (a*h - b*g)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), (a*h - b*g)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k), -(a*e - b*d)/(a*f*h - b*f*g - c*d*h + c*e*g - a*e*k + b*d*k)]

I3 = [ 1, 0, 0] [ 0, 1, 0] [ 0, 1, 0] [ 0, 1, 0] [ 0, 0, 1]
```

```
A = [ cTh, 0, sTh]
        [ 0, 1, 0]
        [ -sTh, 0, cTh]
Ainv =
AINV = [ cTh/(cTh^2 + sTh^2), 0, -sTh/(cTh^2 + sTh^2)] [ 0, 1, 0] [ sTh/(cTh^2 + sTh^2), 0, cTh/(cTh^2 + sTh^2)]
detA = cTh^2 + sTh^2
cTh = cos(Th)
sTh = sin(Th)
Th = 0.7854
A = 0.7071
                               0.7071
                  1.0000
                               0.7071
   -0.7071
Ainv = 0.7071
                             0 -0.7071
                     1.0000
                                  0.7071
        0.7071
I3 = 1
              0
      0
detA = 1
AdjA = 0.7071
                                  -0.7071
                      1.0000
                                                    15
         0.7071
                                  0.7071
```

Legged Creatures

Walking, Running, and Jumping

Human Walking https://www.youtube.com/watch?v=Fws-HYAQvq8

Spider Walking http://www.youtube.com/watch?v=dE2QPYKju04

Spider Walk Animation http://www.youtube.com/watch?v=MFx36uEPxV8&NR=1

FreeRunning http://www.youtube.com/watch?v=WEeqHj3Nj2c

17

Dynamic Effects Increase with Speed

- Horizontal foot motion ~ sinusoidal oscillation
- Increasing acceleration from walk to jog to run
- Increasing importance of forces and dynamics

- Biped
- Quadraped
- Hexaped
- Walking
 - Statically stable
 - Statically unstable
- Running

19

Locomotor **Primitives**

- Common across legged vertebrate species
- Brain command
- Spinal column central pattern generator
- Phases of motor-neuronal activity
 - "Toe-off"
 - Flexion
 - Extension
 - Limb alternation
- Muscle activation

Biped Robots

Passive Walking TU Delft

Passive Walking Robots
http://www.youtube.com/watch?
v=Njos0_r6TE4

Cytron Kit Robot

MIT Leglab Walking Robots

http://www.youtube.com/watch?

v=vHiVV7AWaGM

21

Hexapod Robots

Combined walking and rolling motion Alternating tripod gate

RHex (Boston Dynamics)
http://www.youtube.com/watch?v=a0NFrA-Nx4Y

Rigid body

iJus (Princeton '13 IW)
https://www.youtube.com/watch?
v=35owx65Ei6g&hd=1

Flexible spine (3 segments)

Big Dog and PETMAN

Boston Dynamics

http://www.youtube.com/ watch?v=xqMVg5ixhd0

http://www.youtube.com/watch?
feature=player_embedded&v=tFrjrgBV8K0

23

Robotic Exoskeleton (UC Berkeley)

BLEEX

http://www.youtube.com/watch?v=fRkg6H0ZP8A

Paraplegic student walks at 2011 UC Berkeley graduation

http://newscenter.berkeley.edu/2011/05/12/paraplegic-student-exoskeleton-graduation-walk/

Smart Knee and Robot Ankle

Stairs (Traditional Prosthetic)

Stairs (MIT Smart Knee)

Robotic Ankle http://www.youtube.com/watch?v=HhSVqsHzRl4

25

Hopping Robots

(Raibert, ~1990)

High inertia of "sprung" mass

2-D (Planar)

3-D

Kangeroo hopping http://www.youtube.com/watch?v=OpYRIW314sE

Sandia Robot

http://www.youtube.com/watch?v=SDSkqt2xpcc

Frames of Reference

27

Pose of an Object

Expression of an object's frame(s) of reference with respect to the original frame

Transformations Between Reference Frames

Rotation Translation

29

Cartesian Frames of Reference

- Reference frames of interest
 - I: Inertial frame (fixed to inertial space, unmoving)
 - B: Body frame (fixed to body, moving, non-inertial)

Translation

- <u>Linear position</u> of the body frame origin with respect to the inertial frame origin
- **Rotation**
 - Orientation of the body frame axes with respect to the inertial frame axes

Common convention (z up)

Aircraft convention (z down)

30

Human Anatomical Coordinates

31

Animal Anatomical Coordinates

Measurement of Position in Alternative Frames - 1

Differences in frame orientations must be taken into account in adding vector components

In ans Rotation Translation Translation X_{ii} axis X_{ij} axis X_{ij} axis

Measurement of Position in Alternative Frames - 2

Inertial-axis view

$$\mathbf{r}_{particle_I} = H_B^I \mathbf{r}_B + \mathbf{r}_{body\ origin_I}$$

 H_B^I : from Body-Axis Vector to Inertial-Axis Vector

Body-axis view

$$\mathbf{r}_{particle_B} = H_I^B \mathbf{r}_I + \mathbf{r}_{inertial\ origin_B}$$

 H_I^B : from Inertial-Axis Vector to Body-Axis Vector

Rotation + Translation

("Forward Kinematics")

Expression of a vector in a new coordinate frame

- Displaced from old frame
- Rotated w.r.t. old frame

$$\mathbf{r}_{new} = H_{old}^{new} \mathbf{r}_{old} + \mathbf{r}_{old_{new}}$$
Rotation matrix
$$\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• Augmented vector

- Concatenate a "1"

s =
$$\begin{bmatrix} \mathbf{r} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \equiv$$

Homogeneous coordinate

Rolling Vehicles

Wheeled and Tracked Ground Vehicles

- Vacuum cleaners (Roomba)
- Military/Emergency robots (*PackBot*)
- Exploration robots (Yeti)

PackBot in Action http://www.youtube.com/ watch?v=eaP0waiz43w

http://www.youtube.com/watch?v=CLIPLiQDIk0

Yeti in Greenland https://www.youtube.com/watch? v=9DhX02R3QSo

37

38

Autonomous Automobiles

20

Mars Science Laboratory (Curiosity)

Guidance, navigation, and control

Power supply

Support for deployable devices

• Size ~ Mini-Cooper

Landed, 8/6/12, and operational

Curiosity Trailer http://www.jpl.nasa.gov/video/details.php?id=1014

Sphero Ball and BB-8

https://www.youtube.com/watch?v=A_K10fX9DSY

41

Holonomic Robots

NonHolonomic Robots

Controllable # of degrees of freedom ≠ Total # of degrees of freedom

43

Rotational Orientation of a Rigid Body

Orientation of One Frame with Respect to Another **Euler Angles**

- Conventional sequence of rotations from inertial to body frame
 - Each rotation occurs about a single axis
 - Right-hand rule
 - Yaw, then pitch, then roll

Effects of Orientation on Vector Transformation

Yaw rotation (ψ) about z_i

$$\psi) \mid \mathbf{r}_1 = \mathbf{H}_I^1 \mathbf{r}_I$$

Pitch rotation (θ) about y_1

$$\mathbf{r}_2 = \mathbf{H}_1^2 \mathbf{r}_1 = \mathbf{H}_1^2 \mathbf{H}_I^1 \mathbf{r}_I = \mathbf{H}_I^2 \mathbf{r}_I$$

Roll rotation (ϕ) about x_2

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{2}$$

$$\mathbf{r}_{B} = \mathbf{H}_{2}^{B} \mathbf{r}_{2} = \mathbf{H}_{2}^{B} \mathbf{H}_{1}^{2} \mathbf{r}_{1}$$
$$= \mathbf{H}_{2}^{B} \mathbf{H}_{I}^{2} \mathbf{H}_{I}^{1} \mathbf{r}_{I} = \mathbf{H}_{I}^{B} \mathbf{r}_{I}$$

Euler Angles (with *z* **Axis down)**

47

The Rotation Matrix*

$$\mathbf{H}_{I}^{B}(\boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\psi}) = \mathbf{H}_{2}^{B}(\boldsymbol{\phi})\mathbf{H}_{1}^{2}(\boldsymbol{\theta})\mathbf{H}_{I}^{1}(\boldsymbol{\psi})$$

$$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

	$\cos\theta\cos\psi$	$\cos\theta\sin\psi$	$-\sin\theta$
=	$-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$	$\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$	$\sin\phi\cos\theta$
	$\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi$	$-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$	$\cos\phi\cos\theta$

* also called *Direction Cosine Matrix (see supplement)*

Properties of the Rotation Matrix

The three-Euler-angle rotation matrix from I to B is the product of 3 single-angle rotation matrices

$$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) = \mathbf{H}_{2}^{B}(\phi)\mathbf{H}_{1}^{2}(\theta)\mathbf{H}_{I}^{1}(\psi)$$

- The rotation matrix produces an orthonormal transformation
 - Angles are preserved
 - Lengths are preserved

$$\begin{vmatrix} \mathbf{r}_I | = |\mathbf{r}_B| & ; & |\mathbf{s}_I| = |\mathbf{s}_B| \\ \angle(\mathbf{r}_I, \mathbf{s}_I) = \angle(\mathbf{r}_B, \mathbf{s}_B) \end{vmatrix}$$

With same origins, r_o = 0

$$\mathbf{r}_{B} = \mathbf{H}_{I}^{B} \mathbf{r}_{I}$$

Orthonormal Transformation of Vector Coordinates

Same vector, different points of view

From inertial frame to body frame

Γ	X_B] [$\cos \theta \cos \psi$	$\cos \theta \sin \psi$	$-\sin\theta$	$\begin{bmatrix} x_I \end{bmatrix}$
	y_B	=	$-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$	$\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$	$\sin\phi\cos\theta$	$ y_I $
L	Z_B		$\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi$	$-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$	$\cos\phi\cos\theta$	$\begin{bmatrix} z_I \end{bmatrix}$

From body frame to inertial frame

ſ	x_I] [$\cos\theta\cos\psi$	$-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$	$\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi$	$\begin{bmatrix} x_B \end{bmatrix}$
	y_I	=	$\cos\theta\sin\psi$	$\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$	$-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$	y_B
	z_I		$-\sin\theta$	$\sin\phi\cos\theta$	$\cos\phi\cos\theta$	$\int z_B$

Orthonormal Rotation

Inverse relationship: Transformation from B to I

$$\mathbf{r}_{B} = \mathbf{H}_{I}^{B} \mathbf{r}_{I} \quad ; \quad \mathbf{r}_{I} = \left(\mathbf{H}_{I}^{B}\right)^{-1} \mathbf{r}_{B} = \mathbf{H}_{B}^{I} \mathbf{r}_{B}$$

- Because rotation transformation is orthonormal,
 - Inverse = transpose
 - Rotation matrix is always non-singular

$$\mathbf{H}_{B}^{I} = \left(\mathbf{H}_{I}^{B}\right)^{-1} = \left(\mathbf{H}_{I}^{B}\right)^{T} = \left(\mathbf{H}_{1}^{I}\mathbf{H}_{2}^{1}\mathbf{H}_{B}^{2}\right)$$

$$\mathbf{H}_{B}^{I}\,\mathbf{H}_{I}^{B}=\mathbf{H}_{I}^{B}\mathbf{H}_{B}^{I}=\mathbf{I}$$

51

Homogeneous Transformation Matrix

Express rotation and translation in a single transformation

$$\mathbf{s}_{new} = \begin{bmatrix} \begin{pmatrix} \text{Rotation} \\ \text{Matrix} \end{pmatrix}_{old}^{new} & \begin{pmatrix} \text{Location} \\ \text{of Old} \\ \text{Origin} \end{pmatrix}_{new} \\ \hline \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} & 1 \end{bmatrix} \mathbf{s}_{old} = \mathbf{A}_{old}^{new} \mathbf{s}_{old}$$

$$(4 \times 1)_{new} = \begin{bmatrix} (3 \times 3) & (3 \times 1) \\ \hline (1 \times 3) & (1 \times 1) \end{bmatrix} (4 \times 1)_{old} = [(4 \times 4)](4 \times 1)_{old}$$

52

Homogeneous Transformation

- Rotation and translation can be expressed in terms of homogeneous coordinates
 - Single matrix-vector product produces rotation and transformation

$$\mathbf{s}_{new} = \begin{bmatrix} H_{old}^{new} & \mathbf{r}_{old_{new}} \\ (0 & 0 & 0) & 1 \end{bmatrix} \mathbf{s}_{old} = \mathbf{A} \mathbf{s}_{old}$$

or
$$\begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix}_{new} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & x_o \\ h_{21} & h_{22} & h_{23} & y_o \\ h_{31} & h_{32} & h_{33} & z_o \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{old}$$

Equivalent Scalar Equations for Homogeneous Transformation

$$\mathbf{s}_{new} = \mathbf{A}_{old}^{new} \; \mathbf{s}_{old}$$

$$\begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix}_{new} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & x_o \\ h_{21} & h_{22} & h_{23} & y_o \\ h_{31} & h_{32} & h_{33} & z_o \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{old}$$

Individual **Operations**

$$\begin{aligned} x_{new} &= h_{11} x_{old} + h_{12} y_{old} + h_{13} z_{old} + x_o \\ y_{new} &= h_{21} x_{old} + h_{22} y_{old} + h_{23} z_{old} + y_o \\ z_{new} &= h_{31} x_{old} + h_{32} y_{old} + h_{33} z_{old} + z_o \\ ---- \\ 1 &= 1 \end{aligned}$$

54

Next Time: Flying Robots, Motion, and Dynamics

55

Supplemental Material

Direction Cosine Matrix

Angles between each I axis and each B axis

$$\mathbf{H}_{I}^{B} = \begin{bmatrix} \cos \delta_{11} & \cos \delta_{21} & \cos \delta_{31} \\ \cos \delta_{12} & \cos \delta_{22} & \cos \delta_{32} \\ \cos \delta_{13} & \cos \delta_{23} & \cos \delta_{33} \end{bmatrix}$$

Projection of inertial components of a vector onto body axes

$$\begin{bmatrix} x_B \\ y_B \\ z_B \end{bmatrix} = \begin{bmatrix} \cos \delta_{11} & \cos \delta_{21} & \cos \delta_{31} \\ \cos \delta_{12} & \cos \delta_{22} & \cos \delta_{32} \\ \cos \delta_{13} & \cos \delta_{23} & \cos \delta_{33} \end{bmatrix} \begin{bmatrix} x_I \\ y_I \\ z_I \end{bmatrix}$$

57

LM Ascent Stage from CSM

Quadraped Gaits

Feet on the Ground

59

American Android All-Terrain Biped

(David Handelman, *89)

http://www.youtube.com/watch?v=UX0P11wNkcM

Mantis Hexapod Vehicle

http://www.youtube.com/watch?v=1sRIFQLwg3w

61

Mars Exploration Rovers

Personal Assistance

63

Surveillance Robots

SECOM Robot X

http://www.youtube.com/watch?v=0b6izpxj61o

Oculus Robot

http://www.youtube.com/watch?v=Q4L3UjscInk

Telepresence Robots

VGo Telepresence Robot

http://www.youtube.com/watch?v=8fdXStgdhEg

65

Personal Assistance Robots

Autonomous Wheelchairs

IEEE Robotics & Automation Magazine, March 2001

Robotic Friends for Young and Old

Hierarchical Model of Wheelchair Control Information Logical Rules emantical Description of the Environment Global Level Path Planning Freespace Detection Localization Obstacle Avoidance Wall Following Command Interpretation Local Primitives 2-D Local Environment Local Level Aquisition / Transmission Engines Sensor Information Physical Level

Other

72

The Blob

(MIT Leg Laboratory, 1995-97)

73

Meshworm Robot

(Seoul, MIT, Harvard)

Mesh of shape-memory alloy activated by differential heating

Snake Robots

Games and Toys

Games

Toys

Toys and A.I.

79

The Uncanny Valley

