Thank you. Your test submitted.

You have cleared this assessment.

Obtained Percentage Obtained Marks

78.57 %

11 / 14

Best Attempt Score:78.57 % on 22-03-2025

Which of the following is/are correct way(s) of detecting outliers in a dataset? 1. Values that are 1.5 IQR times lesser than the 1st quartile 2. Values that are 1.5 IQR times greater than the 3rd quartile 3. Values that are 2 times greater or les Warning This operation is disabled. 1 and 2 Only 1 Only 2 Only 3 1, 2 and 3

Which of the following statement is true?

- Outliers should always be replaced by the m
- For a right skewed data mean is greater than
- A normalized vertical box plot has no outlier
- Outliers should always be replaced by the m

Warning

This operation is disabled.

Consider the below dataframes shopping_items_df_and shopping_prices_df respectively.

ic	i items		Idi	Prices
0 5801	Apparel	0	5001	1000
1 5002	Fruits	1	5002	50
2 5003	Household items	2	5003	300
3 5004	Kitchen dems	3	5004	200
4 5006	Vegetables	4	5005	100

Which of the following options give the below shown output between Prices and Items?

- new_df = pd.merge(shopping_items_df,shopping_prices_df, en="id")
 new_df.plot.bar(x="ltems",y="Prices")
- Z.new_df shopping_itoms_df.werge(shopping_prices_df, on="Id")
 new_df.barplot(s='Items',y="Prices")
- new_df = shopping_prices_df.merge(shopping_items_df, on="Id")
 new_df.plot (x='Items',y="Prices",kind="har")
- 4.new_df shopping_itoms_df.werge(shopping_prices_df, on="Id")
 new_df[["Id","Prices"]].plot()

Visit For

Consider the following iris_df dataframe from iris dataset:

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1,4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1,4	0.2	setosa
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica
7.1	3.0	5.9	2.1	virginica
6.3	2.9	5.6	1.8	virginica
6.5	3.0	5.8	2.2	virginica
7.0	3.2	4.7	1.4	versicolor
6,4	3.2	4.5	1.5	versicolor
6.9	3.1	4.9	1.5	versicolor
5.5	2.3	4.0	1.3	versicolor
6.5	2.8	4.6	1.5	versicolor

Warning

This operation is o

Which of the following commands will return the mean of all the numerical columns with resp.

- O iris_df["Species"].describe()
- iris_df["Species"].mean()
- map(mean,iris_df["Species"])
- iris_df.groupby("Species").mean()
- iris_df.iloc[:,:4].groupby("Species").mean()

Consider the below code. What will be dimensions of df?

```
CustomerID=np.arange(1,7)
Product=np.array(['Toaster', 'Toaster', 'Toaster', 'Radio', 'Radio', 'Radio'])
df1 = pd.DataFrame({'CustomerID':CustomerID, 'Product':Product})
CustomerID=np.array([2,4,6])
State=np.array(['Alabama', 'Alabama', 'Ohio'])
df2 = pd.DataFrame({'CustomerID':CustomerID, 'Sta
df = pd.merge(df1,df2)
df.shape
```

Warning

This operation is disa

- 3 Rows and 2 Columns
- 3 Rows and 3 Columns
- 6 Rows and 2 Columns
- 6 Rows and 3 Columns

Which of the following options best describes Exploratory Data Analysis?

- Increase the number of features
- Creating new data
- Finding patterns, Detect and remove anamo
- O Increase the number of datapoints

Warning

This operation is disabled.

Below is the data frame containing the data points about the applicants for a job. The data frame is named application_df. Which of the following option helps to sort the application_df by Marks_Secured?

	ApplicationId	Gender	Domicile	Mark_Secured	Percentage	
0	A1001	M	Yes	167.25	1	
1	A1002	F	No	201.67	Warning	
2	A1003	М	No	365.85	Warning	
3	A1004	M	Yes	307.50	This operation is disable	
4	A1005	F	Yes	223.75		
	application	_df.sort	by="Mark	(_Secured") (_Secured")	Ok	
0	application	1_at.sort	_values(b)	/="Mark_Secure	ed")	
() sorted(app	lication_	df)			

Which of the following is/are performed as part of data cleaning?

- Removing outliers
- Filling missing values
- Removing missing values
- O Changing column names
- All of the given options

Warning

This operation is disabled.

Which of the following options helps to convert categorical data to numerical data on the application_df dataframe given below? ApplicationId Gender Domicile Mark_Secured Percentage A1001 M Yes 167.25 p<=50 A1002 No 201.67 Warning A1003 365.85 A1004 Yes 307.50 This operation is disabled. 223.75 A1005 Yes pd.get dummies(application df) application_df.one_hot_encoding() application_df.get_dummies() application_df.to_numerical()

Consider the below dataframe application_df:

	ApplicationId	Gender	Domicile	Mark_Secured	Percentage
0	A1001	М	Yes	167.25	p<=50
1	A1002	F	No	201.67	
2	A1003	М	No	365.85	Warning
3	A1004	М	Yes	307.50	
4	A1005	F	Yes	223.75	This operation is disabled.
				lowing code ["Percentage"]	

- \bigcirc 1
- () 2
- \bigcirc 3
- Error