

FIG. 1D

LON #1: MASS 187 $\left[\text{CH}_{3} - (\text{CH}_{2})_{5} - \text{CH-O-Si-(CH}_{3})_{3} \right]^{+}$

LON #2: MASS 299

$$(CH_3)_3$$
-Si-O-CH-CH₂-CH=CH-(CH₂)₇- $(CH_3)_7$

LON #3: MASS 270 (CHARACTERISTIC REARRANGEMENT ION)

LON #4: MASS 185 (DESATURATED ANALOG OF LON #1)

$$\left[\text{CH}_3\text{-}(\text{CH}_2)_2\text{-CH=CH-CH}_2\text{-CH-O-Si-}(\text{CH}_3)_3\right]^+$$

LON #5: MASS 298 (ELONGATED ANALOG OF LON #3)

$$\begin{bmatrix} \text{CH}_2\text{-CH}=\text{CH}(\text{CH}_2)_9\text{-C-O-CH}_3 \end{bmatrix}^+ \\ \begin{matrix} \text{O} \\ \text{Si-}(\text{CH}_3)_3 \end{matrix}$$

LON #6: MASS 327 (ELONGATED ANALOG OF ION)

$$(CH_3)_3$$
-Si-O-CH-CH₂-CH=CH-(CH₂)₉-C-O-CH₃

FIG. 2

MASS SPECTRUM OF PEAK 10 FROM FIGURE 3B SCAN 485 (15.203 MIN): 1501001. D

60 AGTCTTTGTC 120	TCTTGGACGC 180	CIIIMI 240 TATCTTTAAG	300 CTGTTATGGT	360 CGGAGTACCG	420 TCATCCTTCA	480 480 7854455744	540	
50 AAAAAGATGA 110	TCAACAACCC 170	TGTATCIAGO 230 CTCATGCACC	15HUUUUUUU	058 058	410	16CAGCACAC 470	6AGC111969	CAGACACCCA
40 GGATCCCTAG	GTCAAATACC 160	GGGTGGCCTT 220	CALLICITO 280 280 KECOM	GATGCTGGLA 340	ACTGCTATGA	GTCACTTTCT 460	TGGATTAGAG 520	CACAACATAA
30 TTCCAACAAT	CANATGGTAT 150	GTTTATCCTC 210	TTTCGCTTCA 270	ATACATCTCA 330	ACAAGGATTG 390	CCTTGTCTTG	CGAGTGGGAA 510	CAAGGTGTTT
20 GGCGGCACCA	80 AAGCTGCAGT 140	TAACAGTTCA 200	CTTATGATGG 260	GTCTCCAGAT 320	ACGCTGCTTC 380	TGAACTTTTT 440	ATGATTCAAC	GAATCTTGAA
10 TATTGGCACC	70 CCACCTAAGA	ATTCTGGTGT 190	TCAGGTAGAC	GACCGTGAAC	CTTACCGTT	CTTTTGATAG	TTACCTCACT	490 AGAGACTATG 550

FIG. 5

CAC

60 AGTATTTGTC 120	TCCTGGTCGC 180	CTTCAACGTT 240	1AICIACAAO	CTGTTATGGT. 360	CGGAGTTCCG 420	TCACCCTGCG 480	TACTGTAGAC 540	CGTCGCACAC	
50 AAAGAGATGA 110	TCAACAACCC 170	TGTACTTAGC 230	CCAATGCTCC 290	TTCTAGCCGT 350		_	GAGCTTTAGC 530	CAGACACCCA	
40 GGATCCCTCG	GGCGAATACC 160	GGATGGCCCT 220	CATTTCTTCC 280	GATGCTG	GCCTCAA	ATCACTTACT 460	TGGCTTAGAG	CATAACATCA	
30 TTCCAACACA	90 CAAGTGGTAC 150	GTTCGTCCTC 210	TTTCGCTTCC	TTACATCTCT	ACAAGGACTA	CCTCGTCTTG	AGAGTGGGAT	SIO	
20 ggaggcacca	80 AATCCGCAAT	TAACTGTCCA	CCTACAATGG	Z 6 Z 6 Z 6 Z 6 Z 6 Z 6 Z 6 Z 6 Z 6 Z 6	320 ACGCTGTTGC	380 TTAACTTTT	440 ATGATTCATC	500 GAATCTTGAA	
10 TATAGGCACC	70 CCAAAGCAGA	130 ATCATGATGT	190 TCTGGCAGAC	250 GACCGTGAAC	310 CTTTACCGIT	370 CTTCTGATAG	430	490 AGAGACTATG	550

FIG. 6

CACT

FIG. 7

47	95	143	191	239	287	335	383	10	26 479	42 527
TNT	TTG	ACT	TTT	CAG	GTC	AAA	TTT	Thr ACC	Cys TGT	Gln CAG
AAT	$^{ m LGG}$	AAT	CCA	CAC	ATT	TCT	\mathtt{TAT}	Val GTT	Pro CCA	Pro CCA
AGA	GGA	CTA	CAC	ATT	ATC	ATA	TGA	Met ATG	Gly GGA	ILe ATC
CAG	CAA	ATA	၁၅၁	CCT	AGG	CIC	TTT	Ile ATA	Arg CGT	Ala GCA
TGA	CAA	CAA	CIC	CGT	CTG	CCA	TTC	Arg AGA	Lys AAA	Lys AAA
$^{ m LGG}$	GAA	CAT	TTC	TCT	GTT	TGA	TCC	Gly GGA	Leu CTA	Lys AAG
CIC	CAG	ATT	TAT	CTC	AAT	TTT	TGT	Gly GGT	Ala GCC	Leu CTG
TTT	CAA	GTT	TCC	ACC	GAG	TTT	GAC	Ala GCT	Glu GAA	Asp GAT
AGT	AAG	TGT	TTC	TAA	AGA	AGT	AAT	Gly GGT	Thr ACT	Lys AAA
GTT	TTG	TGA	TAC	ATT	GAG	GTA	ATT	Met ATG	Glu GAA	Val GTT
GAA	CAG	TGG	229	TCC	AGA	AAC	TAG	AAG	Ser TCA	Thr
TAA	TGA	ATG	GCT	CCT	GAG	ATT	CAA	TTC	Lys AAA	Phe
TTA	TAG	CIG	GTT	GAN	CAA	GTT	ATG	GAA	Lys AAG	Pro
GCT	TGG	ATG	CTT	CAC	AGC	ATC	TAC	CTT	Ser TCC	Pro CCA
GAA	AAT	NTG	TTA	ACC	AGA	TTC	TAG		Ser	Lys AAA
AT	GCT	GTG	ACA	TGG	AAG	TIC	ATC	5	Pro	Glu

FIG. 8A (CONT-1)

58 575	74	90	106 719	122 767	138 815	154 863	170	186 959	
Thr ACA	Phe TTC	Tyr TAT	His CAT	Thr ACT	Trp TGG	Lys AAA	Val GTT	Gln CAG	
Leu	$\mathtt{T}\mathtt{y}\mathtt{r}$	Leu	61y GGC	Asp GAC	Ser TCC	Glu GAG	Tyr TAT	Val GTT	
Leu	Asn AAT	Pro	Ile ATT	Asp GAT	Phe TTC	Leu	Trp TGG	Thr ACA	
Tyr TAC	Thr ACA	Trp TGG	Val GTC	Val GTA	Tyr TAC	Ser TCT	Lys AAA	Leu TTA	
Ser TCC	Ala GCC	Ala GCT	Trp TGG	Trp TGG	Pro	Gly GGA	Val GTC	> 0	(C)
Phe TTC	Val GTT	Leu CTA	Ile ATC	Gln CAA	Val GTC	Asn AAT	Ala GCA	Leu	FIX
Ser TCT	Tyr TAC	Tyr TAC	$_{\rm GGT}^{\rm G1y}$	Tyr TAT	Leu	Asn AAC	Ala GCT	Ile ATT	
Arg CGT	${ t TYr} { t TAC}$	Thr ACT	Thr	Asp GAC	Leu	Ser TCC	Lys AAA	Arg CGC	
Pro	Phe TTC	Ser TCT	Leu TTA	Ser AGT	Phe TTC	His CAT	Lys AAG	G1y GGA	
Ile ATC	Cys TGC	Leu	Val GTC	Phe TTC	Ser TCC	His	Pro CCG	Leu	
Ser TCT	Ser TCT	Pro	Cys TGT	Ala GCA	His	Arg CGT	Pro CCA	Pro	
Arg CGC	Val GTT	Gln CAG	Gly GGC	His CAT	Phe TTC	Arg CGT	Val GTC	Asn AAC	
Lys	Leu TTA	Pro CCT	Gln CAA	His CAC	Ile ATC	-H A	Phe TTT	Asn AAC	
Phe TTC	Thr ACT	Leu CTT	Cys TGT	Gly GGT	Phe	Ser	Val GTC	Leu	
Cys TGT	I I B	Leu	Val GTA	Cys TGT	61y 61y	TYR	Glu	Tyr	
His TA	c over	: O	Trp	Glu	Val	Lys	ASP CAT	Lys AAA	

FIG. 8A (CONT-2)

202	218 1055	234 1103	250 1151	266 1199	282 1247	298 1295	314	330	
Arg AGA	Phe TTT	Leu CTA	Thr ACT	Phe TTC	His CAT	Val GTA	Asp	Ala GCA	
${ t G1Y} { t GGT}$	Ile	Ile ATT	Leu TTG	Phe TTT	Pro CCT	Thr ACG	Thr ACA	Asn AAC	
Ser TCA	Pro CCT	Gly GGT	Gly GGA	Asn AAC	Leu TTA	Val GTT	Ile ATA	Tyr TAT	
Val GTA	Ala GCA	Ala GCT	Gln CAA	Val GTG	Ser TCG	Leu TTG	Asn AAC	His CAT	
Asn AAT	His CAT	Asp GAT	Ser TCA	Ile ATA	Pro	Ala GCT	His CAT	Pro CCG	7
Phe TTT	Pro CCT	Ser TCA	Ala GCT	Leu TTG	His	$^{ m G1y}_{ m GGA}$	Phe TTC	Ile ATA	F / 4
Ala GCC	Phe TTC	Ile ATC	Ala GCT	Leu	Thr	Arg AGA	Val GTG	Thr ACT	
Leu	Phe TTC	TYr TAC	Tyr TAC	Pro CCG	His CAC	Ile ATT	Lys AAG	Ala GCA	
TYr TAT	His CAT	Ile ATA	Arg CGT	Val GTA	Gln CAG	Trp TGG	Asn AAC	Phe TTT	(
Leu TTG	Ser TCA	Gln CAG	${ m TY}_{ m TAC}$	Gly GGA	Leu	Glu GAA	Leu TTG	Leu	
Pro	Ala GCT	Leu	Leu	${ t TYr} { t TAT}$	Phe TTC	Trp TGG	Ile ATA	His CAT	
Trp		Arg CGC	Gly GGT	Val GTC	Thr	Glu GAG	G1y GGA	His CAT	
61.y	Gly GGT	Glu GAA	${ t TYr} \\ { t TAT}$	Cys TGC	Val GTA	Thr ACC	TYr TAT	Ala GCT	
Leu	Asp GAT	Arg CGA	Cys TGT	Ile	ַ שַ בַּי	Ser	Asp	Val GTG	
Ile Te	→ △	S A	Val GTC	Met	Val GTC	Asp GAT	i HO	His	
Phe	Pro	Lys AAA	Ala GCT	Ala	L Cor		SO	Thr	

FIG. 8B (CONT-1)

346 1439	362 1487	378 1535	384 1583	1631	1679	1727	1775	1823	1855
His CAC	Glu GAG	Tyr TAC	ATT	TGC	TTT	CCT	ACG	CGA	
TYr TAC	Lys AAG	Val GTC	GCA	CTA	GCA	CCT	GGA	ATC	
Tyr TAC	Ala GCA	$_{\rm GGY}^{\rm GLy}$	AGT	AAG	GGT	CTT	CIC	CAT	
Asp GAT	Glu GAA	Lys AAA	AGA	AAG	TCT	CTG	ATA	TTC	
G1y	Arg AGG	Lys AAG	GAG	TTT	TGT	AAA	AAA	GAA	
Leu CTT	$\mathtt{T}\mathtt{Y}\mathtt{r}$	G1y GGG	299	TTG	TTG	TTC	TTT	JCC	AG
Ile ATA	Met ATG	Arg CGT	TAG	GTC	TAG	GTG	GTG	CTA	CTT
Pro CCA	Ala GCC	Glu GAA	TGA	GGT	ATN	TTA	TAC	990	GTA
Lys AAG	Val GTG	Thr ACG	299	\mathtt{TTA}	CC	AAG	GTT	AAC	AGA
Ile ATA	$\mathtt{T}\mathtt{y}\mathtt{r}$	Asp GAT	TGA	GTT	GAG	990	CAA	CAA	TCC
Ala GCG	Trp TGG	Pro CCG	Leu TTA	CAT	TCA	TGT	GAA	ATC	ATT
Glu GAG	Pro	Glu GAA	Lys AAG	TTC	ATC	TGG	GAA	NAT	CAA
Thr	Thr	Val GTA	Asn AAT	CAT	ATA	ATG	AGT	CAA	ATC
Ala GCT	Gly GGA	${ t TYr} { t TAT}$	Asn AAC	CTT	TCA	GTT	၁၁၁	CCA	GAT
Glu GAA	Asp GAT	Leu	TYr	AAT	GTT	CTA	CTG	TGA	900
Met ATG	Phe	Cys TGT	Tyr TAT	ATC	TTI	TGC	GTG	AAT	AAA

FIG. 8B (CONT-2)

000000000000000000000000000000000000	100 100 100 100 100 100	150 150 150 150 150
50 DLKKAIPQHC DLKKAIPPHC DLKKAIPPHC QLKKAIPPHC QIKKAIPPHC QIKKAIPPHC		150 YESWKYSHRR YESWKYSHRR YESWKYSHRR YESWKISHRR YESWKYSHRR YFSWKYSHRR
40 PCEKPPFTVK PHTKPPFTLG PCETPPFTVG PCETPPFTVG PNTKPPFTVG PFEKPQFSLS PVEKPPFTLG	SLLPQPLSTY PYISSPLS-Y SLLPQPLS-Y PLLPNPLS-Y HLLPQPFS-L HLLPGPLS-F PALPSPLR-Y	140 EIFHSFLLVP LIVHSALLVP LIFHSFLLVP LIFHSFLLVP LILHSTLLVP LILHSALLVP LVLHSSLMVP LILHSSLMVP
		130 DYQWVDDTVG EYQLADDIVG DYQWLDDTVG DYQWLDDTVG KYQWVDDVVG DYQLLDDIVG DYQLLDDIVG DYQLLDDVVG
20 VTPSSKKS ITSNNSEKKG VPTSSKKS VSPPSKKS GGRGRVAKVE TDVPPANRKS EREKQEQLAR	YLLTDITLVS YVAYDVCLSF YLISDIIIAS HLIWDIIIAS YVVYDLSFAF YVVYDLSFAF YVVYDLVIAA	120 GHECGHHAFS GHECGHHAFS AHECGHAAFS AHECGHHAFS AHECGHHAFS AHECGHHAFS AHECGHHAFS
10 MGAGGRIM MGGGGRMSTV MGAGGRMP MGAGGRMQ MGLA-KETTM MGAGGR MGAGGR	FKRSIPRSFS FERSFVRSFS FKRSIPRSFS FVRSIPRSFS FQRSLLTSFS FQRSVLRSFS FERSVLKSFS	CVLTGIW CCLTGIW CCLTGVW CCLTGVW
	511 51 51 51 51 51 51 51 51 51 51 51 51	
LFFAH12 FAH12 ATFAD2 BNFAD2 GMFAD2-1 GMFAD2-2 ZMFAD2	LFFAH12 FAH12 ATFAD2 BNFAD2 GMFAD2-1 GMFAD2-2 ZMFAD2-2	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIG. 9A (CONT-1)

			7	100	190	200	
		09T	O / T	001		10110 110011	
LFFAH12	2	HHSNNGSLEK	DEVFVPPKKA	AVKWYVKYL-	NNPLGKILVL	TAMPT TOMET	007
F2H12	ک	HHSNIGSLER	DEVFVPKSKS	KISWYSKYS-	NNPPGRVLTL	AATLLLGWPL	200
L MILE ATFAN2) L	HHSNTGSLER	DEVEVPKOKS	AIKWYGKYL-	NNPLGRIMML	TVQFVLGWPL	200
\cap) 5	HHSNTGSLER	DEVEVPR-RS	OTSSGTAST-	STTFGRTVML	TVQFTLGWPL	200
CMFAD2-1	151	HHSNTGSLDR	DEVEVPKPKS	KVAWFSKYL-	NNPLGRAVSL	LVTLTIGWPM	200
GMFAD2-2) L	HHSNTGSLER	DEVFVPKOKS	CIKWYSKYL-	NNPPGRVLTL	AVTLTLGWPL	200
7MFAD2 2	٦ (HHSNTGSLER	DEVFVPKKKE	ALPWYTPYVY	NNPVGRVVHI	VVQLTLGWPL	200
BCFAD2) IC	HHSNTGSLER	DEVEVPKKKS	SIRWYSKYL-	NNPPGRIMTI	AVTLSLGWPL	200
1011101)	210	220	230	240	250	
T 557 H 1 2	201	VI.AFNVSGRP	G-FAS	PHAPIFKDRE	RLQIYISDAG	ILAVCYGLYR	250
LF F 711 L C	201	VIAFNVSCRD	YDR-FACHYD	PYGPIFSERE	RLOIYIADLG	IFATTFVLYQ	250
r Anız	201	VI A PNIZODD	VDC-FACHFF	PNAPTYNDRE	RLOIYLSDAG	ILAVCFGLYR	250
ATFAD2	707	ILAFINOSGNE	IDG FROILE	TOUNTAINE	DIOTVICAGE	TIAVCYCIIP	250
BNFAD2	201	YLAFNVSGRP	YDGGFACHFH	FNAFIINDRE			1 C
CMFAD7-1	201	YI,AFNVSGRP	YDS-FASHYH	PYAPIYSNRE	RLLIYVSDVA	LFSVTISLIK	007
כ כחיים	100	VIATNIVERP	YDR-FACHYD	PYGPIYSDRE	RLQIYISDAG	VLAVVYGLFR	250
GMF AD2 = 2	7 C C		しょう	DVCDTVNDRF	RAOTFVSDAG	VVAVAFGLYK	250
ZMFAD2	707	YLATINASGRE	IFRIFACIIED			TI ATTECT VO	りろり
RCFAD2	201	YLAFNVSGRP	YPR-FACHYD	PYGPIYNDKE	KIEIFISDAG		7

FIG. 9A (CONT-2)

300 300 300 300 300 300	3350 3350 3350 350 4444 400 400
300 YDSTEWEWIR YGSSEWDWLR YDSSEWDWLR YDSSEWDWLK YTSSEWDWLK YTSSEWDWLR YDSSEWDWLR	E ATEAIKPILG ATKAIKPILG E ATKAIKPILG E ATKAIKPILG E ATKAIKPILG E ATKAIKPILG C ATKAI
290 LQHTHPSLPH LQHTHPSLPH LQHTHPSLPH LQHTHFALPH LQHTHPALPH LQHTHPSLPH LQHTHPSLPH	340 ATIPHYNAME ATVPHYHAME STMPHYHAME STMPHYHAME STMPHYHAME STMPHYHAME A 390 GKKGVYYYNN PTQGVFWYNN EKKGVFWYNN EKKGVFWYNN EKKGVFWYNN EKKGVFWYNN EKKGVFWYNN DKKGVFWYNN EKKGVFWYNN
280 VNFFLVLVTF VNCFLVMITY VNAFLVLITY VNGFLVTITY VNGFLVTITY VNGFLVTITY VNGFLVTITY VNGFLVLITY	330 TDTHVAHHLE ADTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTHVAHHLE TDTVEPDTER CLYVEPDEGA CLYVEPDREG CLYVEPDREG CLYVEPDREG CLYVEPDREG CLYVEPDREG CLYVEPDREG CLYVEPDREG CLYVEPDREG
270 ICVYGVPLLI MRIYGVPLLI ICLYGVPLLI VCFLRVPLLI LCVYGVPLLI VCVYGVPLLI VRVYAVPLLI	320 GILNKVFHNI GVLNKVFHNI GILNKVFHNI GILNKVFHNI GILNKVFHNI GILNKVFHNI GILNKVFHNI GILNKVFHNI GILNKVFHNI YVAMYREAKE YKALWREAKE YKALWREAKE YKALWREAKE YKALWREAKE YKALWREAKE
260 YAASQGLTAM ATMAKGLAWV YAAQGWASM YAAVQGVASM VATLKGLVWL LAMAKGLAWV LAAAFGVWWV	310 GALVTVDRDY GAMVTVDRDY GALATVDRDY GALATVDRDY GALATVDRDY GALATVDRDY GALATVDRDY GALATVDRDY GALATVDRDY GALATVDRDY EYYRYDGTPW EYYRYDGTPW EYYQFDGTPW EYYQFDGTPW EYYQFDGTPW
251 251 251 251 251 251	33333333333333333333333333333333333333
LFFAH12 FAH12 ATFAD2 BNFAD2 GMFAD2-1 GMFAD2-2 ZMFAD2 RCFAD2	LFFAH12 FAH12 ATFAD2 BNFAD2 GMFAD2-1 GMFAD2-2 ZMFAD2 ZMFAD2 RCFAD2 RCFAD2 RCFAD2 GMFAD2 GMFAD2 ATFAD2 ATFAD2 ATFAD2 GMFAD2-1 GMFAD2-1 GMFAD2-2 ZMFAD2-2

FIG. 9B

FIG. 10

FIG. 11