离散数学习题课

第六讲——代数系统

Operations

Definition:

For any nonempty set A, and any $n \in \mathbb{N}^+$, $f: A^n \to A$ is called an <u>n-ary operation</u> on A when n = 1, 2, f is called <u>unary</u> and <u>binary operation</u> respectively

Comments:

• The focus of "Abstract Algebra" is the properties (and interactions) of operations

Algebraic Systems

- An algebraic system has 3 components:
 - A nonempty set *A*, called the <u>carrier</u>
 - Operations
 - Axioms (declaring some properties of the system)
- Example
 - $A = \langle \mathbb{N}, + \rangle, B = \langle \mathbb{N}, +, 0 \rangle$ are different algebraic systems
 - $C = \langle \mathbb{N}^+, + \rangle$ is a sub-system of A but not B
 - The declaration of "algebraic constants" are the freedom of "users".

Semigroups

Definition:

A <u>semigroup</u> is an algebraic system $A = \langle S, * \rangle$ satisfying the following axiom:

• * is an associative binary operation on S

Comments:

- Associativity is the most fundamental property
- Semigroups are too unrestrictive to prove many important properties

Monoids

Definition:

A <u>monoid</u> is an algebraic system $A = \langle S, *, e \rangle$ satisfying the following axioms:

- \bullet * is an associative binary operation on S
- For all $x \in S, x * e = e * x = e$

Comments:

- According to this view, a sub-system of a monoid must have the same identity
- Example: P195. Ex.11.2

Groups

Definition:

A group is an algebraic system $A = \langle S, *, ^{-1}, e \rangle$ satisfying the following axioms:

- \bullet * is an associative binary operation on S
- For all $x \in S, x * e = e * x = e$
- $^{-1}$ is a unary operation on S, satisfying

$$\forall x (x \in S \to x * x^{-1} = x^{-1} * x = e)$$

Comments:

This is a "modern" definition of group

Problems

- 1. Let $V = \langle \{a, b\}, * \rangle$ be a semigroup, with a * a = b, show that
 - $(1) \ a * b = b * a$
 - (2) b * b = b
- 2. Let G be a group, show that, if there is an element $a \in G$ satisfying $G = \{a^k \mid k \in \mathbb{Z}\}$, then G is an abelian group.
- 3. Let G be a non-abelian group, show that

$$\exists a, b \in G - \{e\} (a \neq b \land ab = ba)$$

Problems (cont.)

4. Let $V = \langle S, \circ \rangle$ be a semigroup, satisfying

$$\forall a, b \in S, \ a \neq b \rightarrow a \circ b \neq b \circ a$$

Show that $(1) \ \forall a \in S, a \circ a = a$

$$(2) \ \forall a, b \in S, a \circ b \circ a = a$$

$$(3) \ \forall a, b, c \in S, a \circ b \circ c = a \circ c$$

5. Let G be a group, show that, for any $a, b \in G$

$$(ab)^2 = a^2b^2 \implies ab = ba$$

6. Show that, any infinite group must have infinitely many subgroups

Thank you

Any questions?