Integrali indefiniti

immediati	immediati generalizzati
$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad n \neq -1$	$\int [f(x)]^n \cdot f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c \qquad n \neq -1$
$\int \frac{1}{x} dx = \ln x + c$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$
$\int a^x dx = a^x lg_a e + c$	$\int a^{f(x)} \cdot f'(x) dx = a^{f(x)} \lg_a e + c$
$\int e^x dx = e^x + c$	$\int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + c$
$\int senx dx = -cosx + c$	$\int senf(x) \cdot f'(x) dx = -\cos f(x) + c$
$\int \cos x dx = \sin x + c$	$\int \cos f(x) \cdot f'(x) dx = \operatorname{sen} f(x) + c$
$\int \frac{1}{\cos^2 x} dx = tgx + c$	$\int \frac{f'(x)}{\cos^2 f(x)} dx = tg f(x) + c$
$\int \frac{1}{sen^2x} dx = -cotgx + c$	$\int \frac{f'(x)}{sen^2 f(x)} dx = -cotg f(x) + c$
$\int \frac{1}{\sqrt{1-x^2}} dx = arc senx + c$	$\int \frac{f'(x)}{\sqrt{1 - f(x)^2}} dx = \arcsin f(x) + c$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{ a } + c$	$\int \frac{f'(x)}{\sqrt{a^2 - f(x)^2}} dx = \arcsin \frac{f(x)}{ a } + c$
$\int \frac{1}{1+x^2} dx = arctgx + c$	$\int \frac{f'(x)}{1 + f(x)^2} dx = \operatorname{arctg} f(x) + c$

in generale
$$\int f[g(x)] \cdot g'(x) dx = F[g(x)] + c$$

regole di integrazione	
$\int k \cdot f(x) dx = k \cdot \int f(x) dx$	prodotto di una costante k per una funzione
$\int f(x) \pm g(x) \pm h(x) dx = \int f(x) dx \pm \int g(x) dx \pm \int h(x) dx$	somma di due o più funzioni
$\int f(x) \cdot g(x) dx = F(x)g(x) - \int F(x) \cdot g'(x) dx$	integrazione per parti

altri metodi di integrazione

- integrazione per sostituzione
- integrazione delle funzioni razionali fratte
- integrazione per serie