# START OF QUIZ Student ID: 34447581,Ong,Claudia

Topic: Lecture 4 Source: Lecture 4

Why do you think that we pass the output of our classifier to an ILP solver instead of just incorporating the constraints into the model? (1)

Topic: Lecture 3 Source: Lecture 3

Imagine that we came across the word "extrambulate" in the following sentence: "Realizing that she was going to be late for the bus, Jane extrambulated to the stop." What verb class does this verb belong to? What are 2 features that distinguish it from the prototype of the class? (1)

Topic: Lecture 2 Source: Lecture 2

What are the steps necessary for normalizing temporal events? (1)

Topic: Lecture 1 Source: Lecture 1

Imagine that we were using the Viterbi algorithm to ensure that our sequence of NER tags is valid. What might the scores in the transition matrix look like? (2)

Topic: Lecture 4 Source: Lecture 4

We talked about a few other contraints for the ILP solver, such as making sure that "ARG0 must occur before ARG1". How would you implement this as an ILP constraint? (You don't need to write the pulp code - just explain how you would force the constraint.) (2)

Topic: Lecture 1 Source: Lecture 1

What lexical features might you use to identify the named entities in the following sentences? "Ronald Reagan? The actor? Then who's Vice-President, Jerry Lewis? I suppose Jane Wyman is the First Lady! And Jack Benny is Secretary of the Treasury!" (At least 2) (1)

Topic: Lecture 2 Source: Lecture 2

In the sentence: "I have not gone by the name of 'Obi-wan Kenobi' since before you were born.", how do we know that he has not gone back to using the name? (1)

Topic: Lecture 3 Source: Lecture 3

Roles like "Subject / Object" don't translate very well across some languages (most notably between Nominative-Accusative languages like English, and Ergative-Absolutive languages, like Basque). Do you think that semantic roles are more likely to be consistent? Briefly explain why or why not. (2)

Topic: Coding Source: Lecture 4

Assume that our fancy SR labeler has been run on the following sentence: "Do androids dream of electric sheep?" Imagine that we ran the sentence with 2 different predicates: "dream" and "do", and obtained the following scores. NP1 = (NP(NNs androids)) NP2 = (NP(JJ electric NNS sheep)) NP3 = (PP(of (NP2)) do: NP1: 0.5, 0.3 NP2: 0.3, 0.5 NP3: 0.2, 0.4 dream: NP1: 0.4, 0.6 NP2: 0.2, 0.3 NP3: 0.4, 0.7 Assuming the standard constraints we talked about in class, what is the most likely parse? Show your work! (3)

# END OF QUIZ