README.md 2025-08-08

Steps

- 1. S Problem statement
- 2. In Data collection
- 3. **J Data cleaning**
- Check categorical values of columns if they have **error in names** using count.value(). If any, replace their names
- Check the **missing value** and separate them in dataset for easiness
 - Separete numerical columns and categorical columns in two dataframe
 - Check a column has <=25 unique value will be considered as discrete data, otherwise it will be numerical data
 - Replace missing value with mode for categorical & discrete data and median for numerical data.
- Describe general statistics
- Reducing Number of colulmn
 - Drop any unnecessary categorical column
 - Combine similar numerical columns if it is possible. And dorp their original columns

4. Model Training

• Train test splitting of data

- Separete input as X and output as y using drop function
- Split X into X_train & X_test and y_train & y_test using train_test_split function from sklearn.model_selection
 - mention test data will be 20% or you can adjust its amount based on test performance
- **Encoding** using ColumnTransfer
 - Separate Categorical and Numerical feature of X
 - Apply OneHotEncoder for categorical feature of X if not many features, Itherwise use LabelEncoding
 - Apply StandardScaler for numerical feature of X

Transformation and Dataframe

- Apply transformation on X_train usinf fit.transformer # reason to masking
- Convert X_train in Dataframe
- Apply transformer on X_test
- Conver X_test into DataFrame

Model Training Algorithms

- Run RandomForestClassifier on X_train & and y_train import from sklearn.ensemble
- GIve X_test and X_train data to make prediction using model.prediction # we already know their prediction/output

• Performance metrics for both training and testing data

- Then we check training performance by giving y_train & predict y_train data to performance metrics
- Then we check test performance by giving y_test & predict y_test data to performance metrics
- For Classification Algorithms

README.md 2025-08-08

- accuracy_score
- classification_report
- precision_score,
- recall_score
- f1_score
- roc_auc_score
- roc_curve

5. **\hat{\hat{hypertuning}}**

- Add parameters into algortthims using model list
- andomizedSearchCV
- Then run algorithms
- Plotting with the ROC AUC Curve