Algoritmi avansaţi

Seminar 2 (săpt. 3 și 4)

- 1. Fie mulţimea $\mathcal{P} = \{P_1, P_2, \dots, P_7\}$, unde $P_1 = (0,0), P_2 = (1,2), P_3 = (2,1), P_4 = (3,0), P_5 = (5,0), P_6 = (2,-3), P_7 = (5,-2)$. Indicaţi testele care trebuie făcute pentru a găsi succesorul lui P_1 atunci când aplicăm Jarvis' march pentru a determina marginea inferioară a acoperirii convexe a lui \mathcal{P} , parcursă în sens trigonometric (drept pivot inițial va fi considerat P_2).
- **2.** Aplicați metoda din demonstrația teoremei galeriei de artă, indicând o posibilă amplasare a camerelor de supraveghere în cazul poligonului $P_0P_1P_2\dots P_{12}$, unde $P_0=(0,-2), P_1=(5,-6), P_2=(7,-4), P_3=(5,-2), P_4=(5,2), P_5=(7,4), P_6=(7,6)$ iar punctele P_7,\dots,P_{12} sunt respectiv simetricele punctelor P_6,\dots,P_1 față de axa Oy.
- 3. Fie poligonul $\mathcal{P}=(P_1P_2P_3P_4P_5P_6)$, unde $P_1=(5,0)$, $P_2=(3,2)$, $P_3=(-1,2)$, $P_4=(-3,0)$, $P_5=(-1,-2)$, $P_6=(3,-2)$. Arătaţi că Teorema Galeriei de Artă poate fi aplicată în două moduri diferite, aşa încât, aplicând metoda din teoremă şi mecanismul de 3-colorare, în prima variantă să fie suficientă o singură cameră, iar în cea de-a doua variantă să fie necesare şi suficiente două camere pentru supravegeherea unei galerii având forma poligonului \mathcal{P} .
- **4.** Dați exemplu de poligon cu 6 vârfuri care să aibă atât vârfuri convexe, cât și concave și toate să fie principale.
- **5.** Fie $\mathcal{M} = \{A_i \mid i = 0, \dots, 50\} \cup \{B_i \mid i = 0, \dots, 40\} \cup \{C_i \mid i = 0, \dots, 30\}, \ dată$ de punctele $A_i = (i+10,0), \ i = 0,1,\dots,50, \ B_i = (0,i+30), \ i = 0,1,\dots,40, \ C_i = (-i,-i), \ i = 0,1,\dots,30.$ Determinați numărul de triunghiuri și numărul de muchii ale unei triangulări a lui \mathcal{M} .
- **6.** Dați un exemplu de mulțime din \mathbb{R}^2 care să admită o triangulare având 6 triunghiuri și 11 muchii.
- 7. În \mathbb{R}^2 fie punctele $P_1 = (1,7)$, $P_2 = (5,7)$, $P_3 = (7,5)$, $P_4 = (1,3)$, $P_5 = (5,3)$, $P_6 = (\alpha 1,5)$, cu $\alpha \in \mathbb{R}$. Discutați, în funcție de α , numărul de muchii ale unei triangulări asociate mulțimii $\{P_1, P_2, P_3, P_4, P_5, P_6\}$.
- 8. Fie $\mathcal G$ un graf planar conex, v numărul de noduri, m numărul de muchii, f numărul de fețe. Se presupune că fiecare vârf are gradul ≥ 3 . Demonstrați inegalitățile

$$v \le \frac{2}{3}m,$$
 $m \le 3v - 6$
 $m \le 3f - 6,$ $f \le \frac{2}{3}m$
 $v \le 2f - 4,$ $f \le 2v - 4$

1

Dați exemplu de grafuri în care au loc egalități în relațiile de mai sus.