1) Mediram-se as tensões superficiais a 300 K de soluções aquosas do ácido hexanóico ($C_5H_{11}COOH$), um ácido carboxílico pouco solúvel em água (s=0.09 M). Os resultados estão representados no gráfico ao lado, sob a forma de tensão superficial γ/mN m⁻¹ em função do logaritmo da concentração ln (c/M). A equação representa o melhor ajuste aos resultados experimentais.

Calcule a área ocupada por molécula de ácido hexanóico à superfície da solução de concentração 0.09 M – a solução com maior concentração representada no gráfico.

2) O gráfico ao lado acrescenta as tensões superficiais de soluções aquosas de ácido butanóico (C₃H₂COOH) às do hexanóico (representado na pergunta anterior). O ácido butanóico tem uma cadeia hidrocarboneto mais pequena e é muito mais solúvel em água que o hexanóico. Explique porque é que a evolução da tensão superficial com a concentração é muito diferente para os dois ácidos a concentrações baixas, mas se torna semelhante (curvas quase paralelas) a concentrações mais elevadas.

p/mbar	n/mmol
20,4	16,6
51,1	18,9
81,7	21,2
112,3	21,8
204,2	25,4
306,3	29,0
410.7	32.5

- 3) Na tabela apresentam-se valores de quantidades (mmol) de azoto adsorvidas numa massa de 3,258 g de silicagel a 77 K às pressões indicadas.
 - a) Calcule a área superficial da silicagel usada para adsorver o azoto, com base na isotérmica de Langmuir, admitindo que cada molécula de azoto ocupa a área de 16×10^{-20} m².
 - b) Explique porque é que a isotérmica de adsorção de Langmuir não é realmente o modelo adequado para calcular a área superficial de adsorventes a partir de valores de adsorção de azoto. Proponha um modelo (isotérmica de adsorção) alternativo.
- 4) A seguinte reação é uma reação bimolecular envolvendo as moléculas de NO e CO, catalisada heterogeneamente à superfície de vários metais:

$$NO(g) + CO(g) \rightarrow \frac{1}{2} N_2(g) + CO_2(g)$$

Quando a reação se processa sobre tungsténio, a velocidade é dada por: $v = k' \frac{p_{NO}p_{CO}}{(p_{N2})^2}$

Quando a reação se processa sobre níquel, a velocidade é dada por: $v = k'' \frac{p_{NO}p_{CO}}{p_{N2}}$

Quando a reação se processa sobre ródio, a velocidade é dada por: $v=k'''\frac{p_{NO}}{p_{CO}}$

Explique **detalhadamente** a razão destas observações, deduzindo as expressões, definindo k', k'' e k''' e avançando um mecanismo para cada caso.

1 a) O excesso superficial do ácido hexanóico é dado por

$$\Gamma_{2,1} = -\frac{c_2}{RT} \frac{d\gamma}{dc_2} = -\frac{1}{RT} \frac{d\gamma}{d \ln c_2}$$

A derivada d γ /d (In c) pode ser calculada a partir da expressão de γ em função de (In c): Para a concentração de 0.09 M, In c=-2.408, d γ /d (In c) = -2x1.2422 In c -19.928= -13.95 mN m-1= - 13.95x10⁻³ N m⁻¹.

O excesso superficial Γ = - 13.95x10⁻³ /(8.314x300) = 5.59x10⁻⁶ mol m⁻². A área superficial molecular é 1/(Γ x N_{Av}) =29.7x10⁻²⁰ m² (por molécula)

2) A muito baixas concentrações, as moléculas de ácido hexanoico migram para a superfície, enquanto as do butanoico se dissolvem em água. Assim, nestas concentrações, o ácido hexanoico tem um efeito de abaixamento da tensão superficial da solução muito maior que o butanoico. A concentrações mais altas, o ácido butanoico deixa de se dissolver em água e começa também a acumular-se à superfície.

O facto das curvas de tensão superficial em função do logaritmo da concentração serem paralelas perto da saturação significa que as derivadas dγ/dlnc são iguais, ou seja, que a área ocupada por molécula não depende do comprimento da cadeia hidrocarboneto. Estas cadeias estão disposta perpendicularmente à superfície da solução.

3) A equação da isotérmica de Langmuir ⊕=n/n_{max}=K p/(1+K p) pode rearranjar-se para dar

$$\frac{p}{n} = \frac{1}{Kn_{max}} + \frac{1}{n_{max}}p$$
 que é a equação duma reta. Representando p/n em função de p (ver gráfico),

podemos retirar o valor de n_{max} a partir da inclinação da reta:

nmax =1/0.0290= 34.5 mmol Multiplicando pela área por molécula e por N_{Av} , 34.5x10⁻³ x N_{Av} x16x10⁻²⁰= 3322.5 m² por 3,258 g de silicagel

3322.5 m² 3.258 g **1020** m²/g

b) A adsorção de azoto em sílica é do tipo adsorção física, que admite várias camadas de moléculas adsorvidas.
A isotérmica de Langmuir descreve melhor a adsorção química, em que as moléculas formam uma única camada fortemente ligada ao sólido (pode ver-se no gráfico que os pontos não se dispõem realmente de forma linear).
O modelo de BET é mais adequado a descrever a adsorção de azoto.