Exploring Regular Structures in Strings

17. July 2018

PhD Defense of Dominik Köppl

Jury Members

- Prof. Dr. Thomas Schwentick
- Prof. Dr. Johannes Fischer
- Prof. Dr. Shunsuke Inenaga
- Prof. Dr. Sven Rahmann

managing massive text data

various types:

documents
the web

versioned source code

■ biological data DNA

range: gigabyte – terabyte

git

managing massive text data

various types:

- documents
- versioned source code
- biological data

range: gigabyte – terabyte

problems

I text indexing

Il text compression

III text analysis

the web

.

git

DNA

$$T =$$
 text

- word-RAM model
- T loaded into RAM (not measured)

$$T =$$

sort all suffixes lexicographically

T =			
. —			

sort all suffixes lexicographically

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- lacktriangle solved in $\mathcal{O}(n)$ time and words of space

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- lacktriangle solved in $\mathcal{O}(n)$ time and words of space
- \blacksquare sometimes need only suffixes starting at p_1, \ldots, p_m

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- lacktriangle solved in $\mathcal{O}(n)$ time and words of space
- \blacksquare sometimes need only suffixes starting at p_1, \ldots, p_m

- \blacksquare set of m text positions p_1, \ldots, p_m
- sort suffixes starting at these positions

given text in RAM and m = o(n), we want

- o(n) time
- \bigcirc $\mathcal{O}(m) = o(n)$ space

 $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order

- p_1, \ldots, p_m : online, arbitrary order
- compare two suffixes with LCE query

- compare two suffixes with LCE query

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query

- compare two suffixes with LCE query
- result:
 - $\supset \mathcal{O}(c(\sqrt{\lg \sigma} + \lg \lg n) + m \lg m \lg n \lg^* n)$ time
 - $\supset \mathcal{O}(m)$ space
 - □ if text is *overwriteable*

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query
- result:
 - $\supset \mathcal{O}(c(\sqrt{\lg \sigma} + \lg \lg n) + m \lg m \lg n \lg^* n)$ time
 - \Box $\mathcal{O}(m)$ space
 - □ if text is *overwriteable*
 - \circ o(n) time if c = o(n) and m = o(n)

time	words	authors
$\mathcal{O}(n)$	$n+\mathcal{O}(1)$	Goto'17, Li+'16
$\mathcal{O}(\frac{n^2}{m})$	$\mathcal{O}(m)$	$K\ddot{a}rkkainen+'06$
$\mathcal{O}(n)$ whp.	$\mathcal{O}(m)$	Prezza'18
$\mathcal{O}(n)$	$\mathcal{O}(m)$	open problem

our result 🖺

$$\mathcal{O}(c(\sqrt{\lg \sigma} + \lg \lg n) + m \lg m \lg n \lg^* n)$$
 time

$$\blacksquare$$
 $\mathcal{O}(m)$ space

Fischer, I, Köppl

Deterministic sparse suffix sorting on rewritable texts.

In Proc. LATIN, 2016

time bound

$$\mathcal{O}(\underbrace{c(\sqrt{\lg \sigma} + \lg \lg n)}_{\text{LCE construction}} + \underbrace{m \lg m}_{\text{LCE queries}} \underbrace{\lg n \lg^* n}_{\text{LCE queries}})$$

LCE data structure

- built on c
- is mergeable

Candidate: ESP-tree Cormode, Muthu.'07

Candidate: ESP-tree

Cormode, Muthu.'07

grammar tree

Candidate: ESP-tree

Cormode, Muthu.'07

- grammar tree
- same substrings have mostly same parsing

Candidate: ESP-tree

Cormode, Muthu.'07

- grammar tree
- same substrings have mostly same parsing
- LCE query: compare nodes instead of strings

Cormode, Muthu.'07

- grammar tree
- same substrings have mostly same parsing
- LCE query: compare nodes instead of strings

Cormode, Muthu.'07

- grammar tree
- same substrings have mostly same parsing
- LCE query: compare nodes instead of strings

Cormode, Muthu.'07

- grammar tree
- same substrings have mostly same parsing
- LCE query: compare nodes instead of strings

Cormode, Muthu. '07

- grammar tree
- same substrings have mostly same parsing
- LCE query: compare nodes instead of strings

special case: repetitions!

$$\mathbf{a}^{3k+0} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \\ \mathbf{a} \mathbf{a} \mathbf{a} & \cdots & \mathbf{a} \mathbf{a} \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \mathbf{B} \end{bmatrix}$$

$$\mathbf{a}^{3k+0} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{a} & \cdots & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix}$$
 $\mathbf{a}^{3k+1} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{A} \\ \mathbf{a} & \cdots & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix}$
 $\mathbf{a}^{3k+2} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{a} & \cdots & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix}$
 $\mathbf{a}^{3k+2} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{A} & \cdots & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix}$

$$\mathbf{a}^{3k+0} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{a} & \cdots & \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{a} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} \\ \mathbf{a} & \mathbf{A} & \mathbf{A} \end{bmatrix}$$
 $\mathbf{a}^{3k+1} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{a} & \cdots & \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix}$
 $\mathbf{a}^{3k+2} = \begin{bmatrix} \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \cdots & \mathbf{B$

Cormode, Muthu'07

Prepending a character changes $\overline{\mathcal{O}(\lg n \lg^* n)}$ nodes.

Cormode, Muthu'07

Prepending a character changes $O(\lg n \lg^* n)$ nodes.

a: can be $\Omega(\lg^2 n)$ but at most $\mathcal{O}(\lg^2 n \lg^* n)$

Fischer, I, Köppl

Deterministic sparse suffix sorting in the restore model.

Submitted to TALG, 2018

node changes

ESP-tree HSP-tree
$$\mathcal{O}(\lg^2 n \lg^* n)$$
 nodes $\mathcal{O}(\lg n \lg^* n)$ nodes

$$\mathcal{O}(\underbrace{c(\sqrt{\lg \sigma} + \lg \lg n)}_{\text{construction on } \mathcal{O}(c) \text{ characters}} + \underbrace{m \lg m}_{\text{search tree}} \underbrace{\lg n \lg^* n}_{\text{LCE queries}})$$

HSP-trees

 $\bigcirc \mathcal{O}(\lg n \lg^* n)$ time per query

$$\mathcal{O}(\underbrace{c(\sqrt{\lg \sigma} + \lg \lg n)}_{\text{construction on } \mathcal{O}(c) \text{ characters}} + \underbrace{m \lg m}_{\text{search tree}} \underbrace{\lg n \lg^* n}_{\text{LCE queries}})$$

HSP-trees

- \square $\mathcal{O}(\lg n \lg^* n)$ time per query
- \blacksquare is mergeable in $\mathcal{O}(\lg n \lg^* n)$ time

$$\mathcal{O}(\underbrace{c(\sqrt{\lg \sigma} + \lg \lg n)}_{\text{construction on } \mathcal{O}(c) \text{ characters}} + \underbrace{m \lg m}_{\text{search tree}} \underbrace{\lg n \lg^* n}_{\text{LCE queries}})$$

HSP-trees

- \square $\mathcal{O}(\lg n \lg^* n)$ time per query
- \blacksquare is mergeable in $\mathcal{O}(\lg n \lg^* n)$ time
- is storable in text space

aaa	aaa	aaa		aaa	aaa	aaa	
							

$$\mathcal{O}(\underbrace{c(\sqrt{\lg \sigma} + \lg \lg n)}_{\text{construction on } \mathcal{O}(c) \text{ characters}} + \underbrace{m \lg m}_{\text{search tree}} \underbrace{\lg n \lg^* n}_{\text{LCE queries}})$$

HSP-trees

- \square $\mathcal{O}(\lg n \lg^* n)$ time per query
- \blacksquare is mergeable in $\mathcal{O}(\lg n \lg^* n)$ time
- is storable in text space

II. Lempel-Ziv factorization

- 1. LZ77
- 2. LZ78

suffix tree

walk from leaf to root

- walk from leaf to root
- mark visited nodes

- walk from leaf to root
- mark visited nodes

- walk from leaf to root
- mark visited nodes

- walk from leaf to root
- mark visited nodes

- walk from leaf to root
- mark visited nodes
- select leaves in text order

- walk from leaf to root
- mark visited nodes
- select leaves in text order

- walk from leaf to root
- mark visited nodes
- select leaves in text order

- walk from leaf to root
- mark visited nodes
- select leaves in text order
- visited nodes witnesses reference

construction

Farach-Colton+'00

- $\mathcal{O}(n)$ time
- lacktriangledown $\mathcal{O}(n \lg n)$ bits working space

space-efficient $\mathcal{O}(n)$ time constructions:

$$\blacksquare$$
 $(1+\varepsilon)n\lg n+\mathcal{O}(n)$ bits with $0<\varepsilon<1$

succinct

$$lacksquare$$
 $\mathcal{O}(n \lg \sigma)$ bits due to Munro+'17

compressed

succinct suffix tree

total space: $(1+\varepsilon)n\lg n + \mathcal{O}(n)$ bits.

succinct suffix tree

total space: $(1+\varepsilon)n\lg n + \mathcal{O}(n)$ bits.

goal: overwrite ISA with LZ77 factors.

succinct suffix tree

total space: $(1+\varepsilon)n\lg n + \mathcal{O}(n)$ bits.

goal: overwrite ISA with LZ77 factors.

problem: RMQ, LCP, and SA depend on ISA.

two approaches

- 1. suffix tree based
- 2. LZ trie based

1. suffix tree based

time	bits	authors
$\mathcal{O}(n)$	$\mathcal{O}(n \lg n)$	Nakashima+'15
$\mathcal{O}(n/arepsilon)$	$(1+arepsilon)n\lg n+\mathcal{O}(n)$	Ē
$\mathcal{O}(n)$	$\mathcal{O}(n \lg \sigma)$	

Fischer, I, Köppl, Sadakane

Lempel-Ziv factorization powered by space efficient suffix trees.

Algorithmica, 2018

mark root

- mark root
- move to highest unmarked ancestor

- mark root
- move to highest unmarked ancestor

- mark root
- move to highest unmarked ancestor

- mark root
- move to highest unmarked ancestor
- select leaves in text order

- mark root
- move to highest unmarked ancestor
- select leaves in text order

- mark root
- move to highest unmarked ancestor
- select leaves in text order
- last marked node is parent of new leaf

2. LZ trie based

time	bits	authors
$\mathcal{O}(n \lg \sigma)$	$\mathcal{O}(z \lg z)$	Lempel, Ziv'78
$\mathcal{O}\left(n+z\frac{\lg^2\lg\sigma}{\lg\lg\lg\sigma}\right)$	$\mathcal{O}(z \lg z)$	Fischer, Gawrychowski' 15
$\mathcal{O}(n)$ whp.	$\mathcal{O}(z\lg(\sigma z))$	6

Fischer, Köppl

Practical evaluation of Lempel-Ziv-78 and Lempel-Ziv-Welch tries.

In Proc. SPIRE, 2017

factors

LZ trie implementations

baseline:

- binary first-child-next-sibling
- ternary

Bentley, Sedgewick'97

new tries:

- hash: hash table representation
- compact hash: quotienting of hash
- rolling: store Karp-Rabin fingerprints in hash table

hash

LZ trie

hash table

key	val
(0,a)	1

hash

hash table

hash

hash table

III. regular structures

squares

- abab at 1
- baba at 2
- aa at 5
- aa at 6
- abab at 7
- baba at 8

squares

- abab at 1
- baba at 2
- aa at 5
- aa at 6
- abab at 7
- baba at 8

leftmost squares

- abab at 1
- baba at 2
- aa at 5
- aarat 6
- abab at I
- baba at 8

finding distinct squares

algorithms time bits authors
$$\mathcal{O}(n)$$
 $\mathcal{O}(n \lg n)$ Crochemore+'14 $\mathcal{O}(n \lg^{\varepsilon} n)$ $\mathcal{O}(n \lg \sigma)$ $\mathcal{O}(\frac{n}{\varepsilon})$ $(2 + \varepsilon) n \lg n + \mathcal{O}(n)$ online:

 $0<arepsilon\leq 1$

🖥 Bannai, Inenaga, Köppl

 $\mathcal{O}\left(\frac{n\lg^2\lg n}{\lg\lg\lg n}\right) \quad \mathcal{O}(n\lg n)$

Computing all distinct squares in linear time for integer alphabets.

In Proc. CPM, 2017

 \blacksquare gapped repeat (i_L, i_R, u)

- \blacksquare gapped repeat (i_L, i_R, u)
- maximal if it cannot be extended

- \blacksquare gapped repeat (i_L, i_R, u)
- maximal if it cannot be extended
 - □ to the left nor

- \blacksquare gapped repeat (i_L, i_R, u)
- maximal if it cannot be extended
 - □ to the left nor
 - to the right.

- \blacksquare gapped repeat (i_L, i_R, u)
- maximal if it cannot be extended
 - □ to the left nor
 - □ to the right.

α -gapped repeats

 \blacksquare maximal gapped repeat (i_L, i_R, u)

α -gapped repeats

- \blacksquare maximal gapped repeat (i_L, i_R, u)
- \blacksquare g := gap

α -gapped repeats

- \blacksquare maximal gapped repeat (i_L, i_R, u)
- \blacksquare g := gap

 (i_L, i_R, u) gapped palindrome

- (i_L, i_R, u) gapped palindrome
- is maximal if it cannot be extended
 - □ inwards nor

- (i_L, i_R, u) gapped palindrome
- is maximal if it cannot be extended
 - □ inwards nor

- (i_L, i_R, u) gapped palindrome
- is maximal if it cannot be extended
 - □ inwards nor
 - □ outwards.

- (i_L, i_R, u) gapped palindrome
- is maximal if it cannot be extended
 - □ inwards nor
 - □ outwards.

- (i_L, i_R, u) gapped palindrome
- is maximal if it cannot be extended
 - □ inwards nor
 - □ outwards.
- \bullet (i_L, i_R, u) is α -gapped if $g + u \leq \alpha u$

Definition

$$\left. \begin{array}{l} \mathsf{occ}_{\mathcal{R}} \\ \mathsf{occ}_{\mathcal{P}} \end{array} \right\} := \# \ \mathsf{occurrences} \ \mathsf{of} \ \mathsf{max}. \ \alpha\text{-}\mathsf{gapped} \left\{ \begin{array}{l} \mathsf{repeats} \\ \mathsf{palindromes} \end{array} \right.$$

Problem

$$occ_{\mathcal{R}}, occ_{\mathcal{P}} \leq ?$$

$occ_{\mathcal{R}}$ - repeats

 $\mathcal{O}(\alpha^2 n)$ Kolpakov+'14 $\mathcal{O}(\alpha n)$ Crochemore+'15 $\leq 18\alpha n$ \blacksquare^1 $\leq 13\alpha n$ \blacksquare^2

Gawrychowski, I, Inenaga, Köppl, Manea

Tighter bounds and optimal algorithms for all maximal α -gapped repeats and palindromes.

TOCS, 2018

² I, Köppl

Improved upper bounds on all maximal α -gapped repeats and palindromes.

Accepted at TCS, 2018

$occ_{\mathcal{P}}$ - palindromes

$$\leq 28\alpha n + 7n \quad \blacksquare^1$$

$$\leq 16\alpha n - 3n \quad \blacksquare^2$$

Gawrychowski, I, Inenaga, Köppl, Manea Tighter bounds and optimal algorithms for all maximal α -gapped repeats and palindromes.

TOCS. 2018

² I, Köppl

Improved upper bounds on all maximal α -gapped repeats and palindromes.

Accepted at TCS, 2018

finding all maximal α -gapped repeats

previous results:

Tanimura+'15,Crochemore+'15

 $\mathcal{O}(\alpha n)$ time for constant σ .

finding all maximal α -gapped repeats

previous results:

Tanimura+'15,Crochemore+'15

 $\mathcal{O}(\alpha n)$ time for constant σ .

\bigsilon: same time with $\sigma = n^{\mathcal{O}(1)}$

Gawrychowski, I, Inenaga, Köppl, Manea Tighter bounds and optimal algorithms for all maximal α -gapped repeats and palindromes.

TOCS, 2018

the big picture

summary

sparse suffix sorting of *m* suffixes

- o(n) deterministic time if c = o(n) and m = o(n)
- \square $\mathcal{O}(m)$ space

- \blacksquare $(1+\varepsilon)n\lg n+\mathcal{O}(n)$ bits
- $\mathcal{O}(n \lg \sigma)$ bits

LZ78 in $\mathcal{O}(n)$ time whp. and $\mathcal{O}(z \lg(z\sigma))$ bits + practical!

<u>u</u> <u>u</u> finding all distinct squares

- lacksquare $\mathcal{O}(n)$ time and $(2+\varepsilon)n\lg n$ bits
- online near-linear time

 $u \not\in u$ all maximal α -gapped repeats / palindromes

- \blacksquare find in $\mathcal{O}(\alpha n)$ time
- \blacksquare # = $\mathcal{O}(\alpha n)$

thank you for your attention!

summary

sparse suffix sorting of *m* suffixes

- o(n) deterministic time if c = o(n) and m = o(n)
- $\mathcal{O}(m)$ space

- \blacksquare $(1+\varepsilon)n\lg n + \mathcal{O}(n)$ bits
- \bigcirc $\mathcal{O}(n \lg \sigma)$ bits

LZ78 in $\mathcal{O}(n)$ time whp. and $\mathcal{O}(z \lg(z\sigma))$ bits + practical!

<u>u</u> <u>u</u> finding all distinct squares

- \bigcirc $\mathcal{O}(n)$ time and $(2+\varepsilon)n\lg n$ bits
- online near-linear time

- \blacksquare find in $\mathcal{O}(\alpha n)$ time
- $\blacksquare \# = \mathcal{O}(\alpha n)$

string $T \in \Sigma^*$, n := |T|, $\sigma := |\Sigma| = n^{\mathcal{O}(1)}$, $0 < \varepsilon \le 1$, z : # factors