圈論

omosan0627

July 16, 2023

とくに断らない限り、圏は locally small とする. (小圏とは違うよ)

1 圏論入門

1.1 圏論とは何か

http://alg-d.com/math/kan_extension/intro.pdf

Definition 1.1. 圏 C とは二つの集まり Ob(C), Mor(C) の組であって、以下の条件を満たすものをいう。なお元 $a \in Ob(C)$ を対象、 $f \in Mor(C)$ を射と呼ぶ。

- (1) 各 $f \in \operatorname{Mor}(C)$ に対して、ドメインと呼ばれる対象 $\operatorname{dom}(f) \in \operatorname{Ob}(C)$ とコドメインと呼ばれる対象 $\operatorname{cod}(f) \in \operatorname{Ob}(C)$ が定められている。 $\operatorname{dom}(f) = a$, $\operatorname{cod}(f) = b$ であることを $f: a \to b$ や $a \xrightarrow{f} b$ と書いて表す。 また対象 $a,b \in \operatorname{Ob}(C)$ に対して $\operatorname{Hom}_C(a,b) := \{f \in \operatorname{Mor}(C): a \xrightarrow{f} b\}$ と書く.
- (2) 2 つの射 $f,g \in \operatorname{Mor}(C)$ について $\operatorname{cod}(f) = \operatorname{dom}(g)$ であるとき、f と g の合成射 とよばれる射 $g \circ f \in \operatorname{Mor}(C)$ が定められていて、 $\operatorname{dom}(g \circ f) = \operatorname{dom}(f), \operatorname{cod}(g \circ f) = \operatorname{cod}(g)$ を満たす。
- (3) 射の合成は結合則を満たす. $(h \circ (g \circ f) = (h \circ g) \circ f)$
- (4) 各 $a\in \mathrm{Ob}(C)$ に対して、恒等射と呼ばれる射 $\mathrm{id}_a:a\to a$ が存在し、射の合成 に関する単位元となる。 すなわち $f:a\to b$ に対して、 $f\circ\mathrm{id}_a=f,\mathrm{id}_b\circ f=f$ である.

Remark 1.2. $C = (Ob(C), Mor(C), cod, dom, id, \circ)$ と書き表すことも。

- Ob(C), Mor(C) が集まり
- cod , cod が $\operatorname{Mor}(C) \to \operatorname{Ob}(C)$ の関数
- id が $\mathrm{Ob}(C) \to \mathrm{Mor}(C)$ の関数
- \circ が $\operatorname{Mor}(C) \times \operatorname{Mor}(C) \to \operatorname{Mor}(C)$ の関数

Example 1.3. Set, Grp, Top

Definition 1.4. C,D を圏とする. C から D への関手 $F:C\to D$ とは $a\in \mathrm{Ob}(C)$ に $F(a)\in \mathrm{Ob}(D)$ を, $f\in \mathrm{Mor}(C)$ に $F(f)\in \mathrm{Mor}(D)$ を対応させる関数であって, 以下を満たすものである.

(1) $f: a \to b$ のとき $F(f): F(a) \to F(b)$ である.

- $(2) \operatorname{cod}(f) = \operatorname{dom}(g)$ のとき, $F(g \circ f) = F(g) \circ F(f)$ である.
- (3) $a \in C$ に対して $F(\mathrm{id}_a) = \mathrm{id}_{F(a)}$ である.

Definition 1.5. C を圏, $a, b \in C$ を対象とする.

- (1) C の射 $f: a \to b$ が同型射 \iff ある射 $g: b \to a$ が存在して, $g \circ f = \mathrm{id}_a$, $f \circ g = \mathrm{id}_b$ となる
- (2) a と b が同型 $(a \cong b$ で表す) \iff ある同型射 $f: a \to b$ が存在する.

Theorem 1.6. f が同型射ならば F(f) も同型射

Definition 1.7. 圏 C と圏 D が同型 $(C \cong D$ と書く) とは、ある関手 $F: C \to D, G: D \to C$ が存在して $GF = \mathrm{id}_C, FG = \mathrm{id}_D$.

Definition 1.8. C を圏とする. このとき C^{op} を以下のように定める.

- 対象 $a\in C$ に対して新しい対象 a^{op} を用意し, $\mathrm{Ob}(C^{\mathrm{op}}):=\{a^{\mathrm{op}}:a\in \mathrm{Ob}(C)\}$ と定める.
- 射 $f \in C$ に対して新しい射 f^{op} を用意し, $\mathrm{Mor}(C^{\mathrm{op}}) := \{f^{\mathrm{op}}: f \in \mathrm{Ob}(C)\}$ と定める.
- $\operatorname{dom}(f^{\operatorname{op}}) := \operatorname{cod}(f)^{\operatorname{op}}, \operatorname{cod}(f^{\operatorname{op}}) := \operatorname{dom}(f)^{\operatorname{op}}$ と定める. 即ち $f : a \to b$ のとき $f^{\operatorname{op}} : b^{\operatorname{op}} \to a^{\operatorname{op}}$ である.
- $f^{\mathrm{op}}: a^{\mathrm{op}} \to b^{\mathrm{op}}, g^{\mathrm{op}}: b^{\mathrm{op}} \to c^{\mathrm{op}}$ に対して射の合成 $g^{\mathrm{op}} \circ f^{\mathrm{op}}: a^{\mathrm{op}} \to c^{\mathrm{op}}$ を $g^{\mathrm{op}} \circ f^{\mathrm{op}} = (f \circ g)^{\mathrm{op}}$ と定める.
- $id_{a^{op}} := id_a^{op}$ とする.

これを圏 C^{op} の反対圏と呼ぶ.

Remark 1.9. f^{op} のことを単に f と書く場合が多い、米田周りの話ではかなり 省略することが多いが、よくわからなくなったら op をつけて丁寧に計算すれば良い、「双対を考えると次の定理が導ける」と言った場合は、C に C^{op} を代入して、C の言葉で書き直すことで従うことを差す場合が多そう.

Definition 1.10. $F:C\to D$ を関手とするとき、関手 $F^{\mathrm{op}}:C^{\mathrm{op}}\to D^{\mathrm{op}}$ を以下のように定める.

- $a \in \mathrm{Ob}(C^{\mathrm{op}})$ に対して, $F^{\mathrm{op}}(a) := F(a)$
- $f^{op} \in \operatorname{Mor}(C^{\operatorname{op}})$ に対して, $F^{\operatorname{op}}(f^{\operatorname{op}}) := F(f)^{\operatorname{op}}$

Definition 1.11. 圏 C, D の直積 $C \times D$ を以下のように定義する.

- 対象は「Cの対象とDの対象の組」である。
- $\langle c,d \rangle$ から $\langle c',d' \rangle$ への射は成分ごとの射の組 $\langle f:c \to c',g:d \to d' \rangle$ である. つまり $\operatorname{Hom}_{C \times D}(\langle c,d \rangle,\langle c',d' \rangle) := \operatorname{Hom}_{C}(c,c') \times \operatorname{Hom}_{D}(d,d')$ となる.
- 射の合成は成分ごとに行う. 即ち $\langle g, g' \rangle \circ \langle f, f' \rangle := \langle g \circ f, g' \circ f' \rangle$ となる.
- ullet $\langle c,d \rangle$ の恒等射は $\mathrm{id}_{\langle c,d \rangle} := \langle \mathrm{id}_c,\mathrm{id}_d \rangle$ である.

1.2 自然変換・圏同値

http://alg-d.com/math/kan_extension/equivalence.pdf

Definition 1.12. C,D を圏, $F,G:C\to D$ を関手とする. F から G への自然変換とは, D の射の族 $\theta=\{\theta_a:Fa\to Fb\}_{a\in \mathrm{Ob}(C)}$ であって, $\forall (a\overset{f}{\to}b)\in \mathrm{Mor}(C)$. $\theta_b\circ Ff=Gf\circ\theta_a$ を満たすものをいう. (またこのとき θ_a は a について自然という言い方をする.) 絵で書けば以下のようになる.

 θ が F から G への自然変換であることを記号で $\theta: F\Rightarrow G$ と表す. また θ_a を θ の a 成分と呼ぶ.

Remark 1.13. 任意の f について Ff から Gf への変換則が成り立っていると思うと分かりやすい? また射、関手についてだが、基本的には \rightarrow しか記号として使わなくて、こういう圏の内部に言及するときだけ \mapsto を使うイメージ.

Definition 1.14. 各 θ_a が同型射となる自然変換 θ を自然同型という. また自然同型 $F\Rightarrow G$ が存在するとき, F と G は自然同型であるといい, 記号で $F\cong G$ と表す.

Example 1.15. 有限次元線形空間 V と V^{**} についての自然変換 $\theta: \mathrm{id}_c \Rightarrow F \circ F^{\mathrm{op}}, \theta_V(x)(\rho) \mapsto \rho(x)$. 線形代数の世界 $\mathrm{p}135$ も参照. V^* の場合と違って、基底を出さなくても自然変換が作れるところがポイント.

Definition 1.17. C, D を圏, $F: C \rightarrow D$ を関手とする.

- (1) F が忠実 $\iff \forall a, b \in \mathrm{Ob}(C)$. $F : \mathrm{Hom}_C(a, b) \to \mathrm{Hom}_C(Fa, Fb)$ が単射.
- (2) F が充満 $\iff \forall a, b \in \mathrm{Ob}(C)$. $F : \mathrm{Hom}_C(a, b) \to \mathrm{Hom}_C(Fa, Fb)$ が全射.
- (3) F が conservative $\iff \forall f \in \text{Mor}(C)$. Ff が同型ならば f も同型である.
- (4) F が本質的単射 $\iff \forall a,b \in \mathrm{Ob}(C)$. $Fa \cong Fb$ ならば $a \cong b$ $(\iff Fa \bowtie Fb$ に同型射が存在するならば, $a \bowtie b$ にも同型射が存在する。)
- (5) F が本質的全射 $\Longleftrightarrow \forall d \in \mathrm{Ob}(D)$. $\exists c \in \mathrm{Ob}(C)$. $Fc \cong d$

Proposition 1.18. 忠実充満 \Longrightarrow conservative, 忠実 \land conservative \Longrightarrow 本質的 単射

Theorem 1.19. F が圏同値を与える \iff F が忠実充満な本質的全射

 $Proof.\ F$ が圏同値を与えるという条件は, $G:D\to C$ と自然同型 $\theta:GF\Rightarrow \mathrm{id}_C,\epsilon:\Rightarrow\mathrm{id}_D$ を使って, 以下で表される.

 $\forall (c \xrightarrow{f} c') \in \text{Mor}(C), (d \xrightarrow{g} d') \in \text{Mor}(D).$

$$\begin{array}{ccc} GFc \xrightarrow{\theta_c} & c & FGd \xrightarrow{\epsilon_d} & d \\ \downarrow^{GFf} & \downarrow^{f} & \downarrow^{FGg} & \downarrow^{g} \\ GFc' \xrightarrow{\theta_{c'}} & c' & FGd \xrightarrow{\epsilon_{d'}} & d' \end{array}$$

 $(\Longrightarrow)\epsilon$ から本質的全射, θ から忠実充満が示せる. また主に θ_c が同型なので逆向きの θ_c^{-1} が存在することを使う.

 (\longleftarrow) 本質的全射 $Fc \to d$ から ϵ と G を作る. Gg の定義がすこしトリッキーだが忠実充満の定義に帰れば自然. 最後に θ が自然同型であることを言えばいいが、 $Fc \xrightarrow{Ff} Fc'$ について ϵ の自然変換の図式を利用することで示せる.

Theorem 1.20. F が同型 \iff F が忠実充満で、対象について全単射

Proof. (\iff) Theorem 1.19 と似ているが、ここでは本質的全射ではなく全単射.

Definition 1.21. 部分圏 $C \subseteq D$ が充満部分圏であるとは、任意の $a,b \in C$ に対して $\operatorname{Hom}_C(a,b) = \operatorname{Hom}_D(a,b)$ となることをいう.

Definition 1.22. 圏 C が骨格的 \iff $a \cong b$ ならば a = b である

Definition 1.23. 圏 C の骨格とは、骨格的な充満部分圏 $S \subseteq C$ であって条件

任意の c に対して、ある $s \in S$ が存在して $c \cong s$ となる

を満たすものをいう.

Theorem 1.24. 任意の圏は骨格を持つ. また骨格は圏同型を除いて一意である.

Proof. 骨格を持つことを示す際に選択公理が必要. 一意性は F を同型射を利用して作って $Theorem\ 1.19$ を適用.

Theorem 1.25. C, D を圏, $S \subseteq C, T \subseteq D$ を骨格とする. このとき

$$C$$
 と D が圏同値 \iff S と T が圏同型

Proof. (\Longrightarrow) F を S に制限した関手 $F|_S$ が圏同型であることを使うとできる. 本質的単射を使う.

(⇐=) 包含関手が圏同値であることを利用する.

2 圏論

2.1 自然変換・関手圏

2.2 コンマ圏

Definition 2.1. C_0,C_1,D を圏, $K:C_0\to D,L:C_1\to D$ を関手とする. 以下のようにして定まる圏をコンマ圏といい, $K\downarrow L$ と書く.

- $K \downarrow L$ の対象は組 $\langle c_0, c_1, f \rangle$ であり以下を満たすものとする.
 - (1) c_0 は C の対象である.
 - (2) c_1 は C の対象である.
 - (3) $f: Kc_0 \rightarrow Lc_1$ は D の射である.
- $K\downarrow L$ の射 $\langle c_0,c_1,f
 angle o \langle c_0',c_1',f'
 angle$ とは組 $\langle g_0,g_1
 angle$ であり以下を満たすものである
 - (1) $g_0:c_0 o c_0'$ は C_0 の射である
 - (2) $g_1: c_1 \rightarrow c_1'$ は C_1 の射である
 - (3) $Lg_1 \circ f = f' \circ Kg_0$, 即ち次の図式を可換にする. 図図図図図図図図ですずず

Remark 2.2. 自然変換の一般化っぽくなっている. $C=C_0=C_1$ のとき, 自然変換 $\theta:K\Rightarrow L$ は要素が $\langle c,c,\theta_c\rangle$, 射が $\langle f,f\rangle$ である $K\downarrow L$ の部分圏と対応する.

Definition 2.3. Definition 2.1 の定義から、関手 $P_0: K \downarrow L \rightarrow C_0$ 、 $P_1: K \downarrow L \rightarrow C_1$ 、自然変換 $\theta: K \circ P_0 \Rightarrow L \circ P_1$ を以下のように定められる。

- $\langle c_0, c_1, f \rangle \in \mathrm{Ob}(K \downarrow L)$ に対して $P_0 \langle c_0, c_1, f \rangle := c_0, \langle g_0, g_1 \rangle \in \mathrm{Mor}(K \downarrow L)$ に対して $P_0 \langle g_0, g_1 \rangle := g_0$
- $\langle c_0, c_1, f \rangle \in \mathrm{Ob}(K \downarrow L)$ に対して $P_1 \langle c_0, c_1, f \rangle := c_1, \langle g_0, g_1 \rangle \in \mathrm{Mor}(K \downarrow L)$ に対して $P_1 \langle g_0, g_1 \rangle := g_1$
- $\langle c_0, c_1, f \rangle \in \mathrm{Ob}(K \downarrow L)$ に対して $\theta_{\langle c_0, c_1, f \rangle} := f$

Proposition 2.4. もし $\langle X,Q_0,Q_1,\rho\rangle$ が $\langle K\downarrow L,P_0,P_1,\theta\rangle$ と同じ条件を満たすならば、関手 $H:X\to K\downarrow L$ が一意に存在して以下を満たす.

- (1) $P_0 \circ H = Q_0, P_1 \circ H = Q_1$
- (2) $\theta_H = \rho$

2.3 極限

Definition 2.5. C,D を圏とする. 対角関手 $\Delta:D\to D^C$ とは

- $a \in D$ に対して Δa は以下で与えられる関手 $\Delta a : C \to D$ である.
 - $-c \in C$ に対して $\Delta a(c) = a$
 - $-f \in \operatorname{Mor}(C)$ に対して $\Delta a(f) = \operatorname{id}_a$
- $f: a \to b$ に対して、 Δf は「 $c \in C$ に対して、 $(\Delta f)_c = f$ 」で与えられる自然変換 $\Delta f: \Delta a \to \Delta b$ である.

Remark 2.6. 簡単に言えば、a から「全てを a に写す関手 Δa 」に写す関手.

Definition 2.7. C,D を圏, $c\in C$ を対象, $G:D\to C$ を関手とする. 以下を満たす組 $\langle d,f\rangle$ を c から G への普遍射という.

- (1) d は D の対象である.
- (2) f は C の射 $f: c \rightarrow Gd$ である.

(3) 組 $\langle d', f' \rangle$ が上 2 つの条件を満たすならば, D の射 $h: d \to d'$ が一意に存在して, $Gh \circ f = f'$ となる.

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Definition 2.8. J, C を圏として、 $\Delta: C \to C^J$ を対角関手とする.

- (1) 関手 $T: J \to C$ を図式という. また J を図式 T の添え字圏という.
- (2) Δ から $T \in C^J$ への普遍射 $\langle \lim T, \pi \rangle$ を図式 T の極限という.
- (3) $T \in C^J$ から Δ への普遍射 $\langle \operatorname{colim} T, \mu \rangle$ を図式 T の余極限という.

Definition 2.9. 関手 $F:C \to \mathbf{Set}$ が表現可能関手 \iff ある対象 $a \in C$ と自然 同型 $F \cong \mathrm{Hom}_C(a,-)$ が存在する

Theorem 2.10. 表現可能関手 F を表現する対象は同型を除いて一意である.

Theorem 2.11. $\alpha: \operatorname{Hom}_C(a,-) \Rightarrow F$ を自然変換として米田の補題で α に対応 する $x \in Fa$ を取る. (補足 $x = \alpha_a(\operatorname{id}_a) \in Fa$) このとき,

 α が同型 \Longleftrightarrow 任意の $b\in C, u\in Fb$ に対して、ある射 $h:a\to b$ が一意に存在して Fh(x)=u となる.

Theorem 2.12. $F: C \to D$ を関手として, $d \in D$ を取る. このとき

F から d への普遍射が存在する \iff $\operatorname{Hom}_C(F(-),d)$ が表現可能関手.

Remark 2.13. $\operatorname{Hom}_D(F(-),d) \cong \operatorname{Hom}_C(-,c)$ も成立する.

2.4 随伴関手

http://alg-d.com/math/kan_extension/adjoint.pdf

Definition 2.14. C, D を圏, $F: C \to D, G: D \to C$ を関手とする. $c \in C, d \in D$ について自然な全単射 $\phi_{cd}: \operatorname{Hom}_D(Fc, d) \to \operatorname{Hom}_C(c, Gd)$ が存在するとき、3 つ組 $\langle F, G, \phi \rangle$ のことを随伴という. このとき記号では $F \dashv G: C \to D$ もしくは単に $F \dashv G$ と書く. また F を G の左随伴写像、G を F の右随伴写像という.

Definition 2.15. 自然同型 ϕ により次のような二つの射が一対一に対応することになる.

$$f: Fc \to d, \ g: c \to Gd$$

 $\phi_{cd}(f)=g$ のとき, g を f の右随伴射, f を g の左随伴射と呼ぶ. 本 PDF では随伴射を \tilde{f} と表すことにする. つまり $f:Fc\to d, g:c\to Gd$ のとき, $\tilde{f}:c\to Gd, \tilde{g}:Fc\to d$ であり, $\phi_{cd}(f)=\tilde{f},\phi_{cd}(\tilde{g})=g$ である.

Theorem 2.16. $f: Fc \to d, h: Fc' \to d', p: c \to c', q: d \to d'$ とする. この時次の左の図式が可換ならば右の図式も可換であり、右の図式が可換ならば、左の図も可換である.

$$Fc \xrightarrow{f} d \qquad Fc' \xrightarrow{\tilde{f}} d'$$

$$\downarrow^{Fp} \qquad \downarrow^{q} \qquad \downarrow^{p} \qquad \downarrow^{Gq}$$

$$c \xrightarrow{h} Gd \qquad c' \xrightarrow{\tilde{h}} Gd'$$

Proof. ϕ_{cd} の自然変換の可換図から. c,d それぞれ固定したときを考える. q,Gq の向きを入れ替えた図式についても成立する.

Remark 2.17. $Fc \to d$ の射がある図式だと広く成立するはず。可換である =2 つの合成方法があったとき、それが一致するなので、証明のように三角形に分割すれば従いそう。やっぱり向きが重要で、 $d \to Fc$ となっていたら、F は右随伴になる。

Definition 2.18. d = Fc とすると $\operatorname{Hom}_D(Fc, Fc) \cong \operatorname{Hom}_C(c, GFc)$ となる. 左 辺の id_{Fc} について、 $\eta_c := \operatorname{id}_{Fc}$ と定義する.

Remark 2.19. $\eta: id_C \Rightarrow GF$ の自然変換になっている。

Theorem 2.20. $\langle Fc, \eta_c \rangle$ は c から G への普遍射である.

Corollary 2.21. 全単射 $\operatorname{Hom}_D(Fc,d) \to \operatorname{Hom}_C(c,Gd)$ は $f \mapsto Gf \circ \eta_c$ で与えられる.

Theorem 2.22. $G:D\to C$ を関手として、各 $c\in C$ に対して普遍射 $\eta_c:c\to Gd_c$ が存在するとする.このとき対応 $c\mapsto d_c$ は関手 $F:C\to D$ を定め、 $F\dashv G$ となる.

Theorem 2.23. $G: D \to C$ の左随伴関手は、存在するならば (自然同型を除いて) 一意である.

Theorem 2.24. 左随伴関手は任意の余極限と交換する. 即ち関手 $T:J\to C$ の余極限 $\langle {
m colim}T,\mu \rangle$ が存在するとき, $\langle F({
m colim}T),F\mu \rangle$ は関手 $FT:J\to D$ の余極限である.

Theorem 2.25. $\epsilon_d:=\widehat{\mathrm{id}}_{Gd}:FGd\to d$ とすれば $\langle Gd,\epsilon_d\rangle$ は F から d への普遍射であり、全単射 $\mathrm{Hom}_C(c,Gd)\to\mathrm{Hom}_D(Fc,d)$ は $g\mapsto\epsilon_d\circ Fg$ により与えられる. また ϵ は自然変換 $FG\Rightarrow\mathrm{id}_D$ となる. 逆に $F:C\to D$ を関手として、各 $d\in D$ に対して普遍射 $\epsilon_c:Fc_d\to d$ が存在すれば、F は右随伴関手 G を持つ. また右随伴は一意的であり、さらに右随伴関手は任意の極限と交換する.

3 全ての概念は Kan 拡張である

3.1 Kan 拡張

3.2 随伴関手定理

Theorem 3.1. C,D を圏, C を余完備で関手 $F:C\to D$ は余連続であるとする. 更に、任意の $d\in D$ に対してある集合 $S\subset \mathrm{Ob}(F\to d)$ が存在して次を満たすとする. (この条件を解集合条件と呼ぶ)

任意の $\langle c,f \rangle \in F \to d$ に対してある $\langle s,k \rangle \in S$ と射 $\langle c,f \rangle \to \langle s,k \rangle$ が存在する. このとき F は右随伴を持つ.

Proof. 各点 Kan 拡張が存在することを示す.