Розділ 2. Диференціальне числення функцій однієї змінної

Основні поняття

1. Означення похідної. Її геометричний і механічний зміст.

Для заданої функції y = f(x), знайдемо приріст Δy , задавши приріст аргументу Δx в точці x.

$$\Delta y = f(x + \Delta x) - f(x).$$

 $\underline{\text{O.}}$ Якщо існує границя $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$, то ця границя називається похідною від функції f(x) в

точці x і позначається: y', y'_x , $\frac{dy}{dx}$.

Отже,
$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 (1).

<u>Геометрично</u>: $y' = tg\alpha$ – кутовий коефіцієнт дотичної, проведеної до графіка функції y = f(x) в точці A(x, f(x)).

Механічний зміст:

Вважаємо, що точка рухається прямолінійно, закон її руху S = S(t).

Тоді S' = V(t) – похідна S'(t) швидкість точки в момент часу t .

2. Односторонні похідні.

В формулі (1) означення похідної під границею розумілась двостороння границя, тобто $\Delta x \to 0$ і зліва і справа.

Односторонні похідні визначаються так:

$$\exists \lim_{\Delta x \to 0+0} \frac{\Delta y}{\Delta x} = f'(x+0)$$
 – права похідна,

$$\exists \lim_{\Delta x \to 0-0} \frac{\Delta y}{\Delta x} = f'(x-0)$$
 – ліва похідна,

$$\exists \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$$
 – двостороння похідна.

Існує двостороння похідна в т. x, коли f'(x+0) = f'(x-0) = f'(x).

Приклад.

Для функції y = |x| знайти односторонні похідні в т. x = 0.

$$\Delta y = f(x + \Delta x) - f(x) = |x + \Delta x| - |x|.$$

При x = 0

$$\Delta y = |0 + \Delta x| - |0| = |\Delta x| = \begin{cases} \Delta x, \ \Delta x > 0 \\ -\Delta x, \ \Delta x < 0 \end{cases}$$

$$\lim_{\Delta x \to 0+0} \frac{\Delta y}{|\Delta x|} = \lim_{\Delta x \to 0+0} \frac{\Delta x}{\Delta x} = 1; \quad \lim_{\Delta x \to 0-0} \frac{\Delta y}{|\Delta x|} = \lim_{\Delta x \to 0-0} \frac{\Delta x}{-\Delta x} = -1.$$

 $f'(0+0) \neq f'(0-0)$ – геометрично в т. x=0 існують односторонні дотичні, двосторонньої дотичної не існує.

Точка O(0,0) – кутова точка.

Односторонні похідні – дотичні збіглися з відповідними лініями.

3. Нескінченна похідна

Якщо $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty$, то кажуть, що в точці x існує нескінченна похідна.

Геометрично: \exists дотична, паралельна або збіжна з віссю Oy, бо $tg\alpha = \infty$, $\alpha = \pm \frac{\pi}{2}$.

Приклад. Функція $y = x^{\frac{1}{3}}$ в т. x = 0 має дотичну, збіжну з віссю Oy.

Дійсно,
$$y' = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3} \cdot \frac{1}{\sqrt[3]{x^2}}; \quad y' = \infty$$
 при $x = 0$.

- 4. 36'язок між існуванням скінченної похідної та неперервністю в точці x.
- <u>Т</u>. Якщо функція y = f(x) має скінченну похідну в т. x, то вона неперервна в цій точці.

Дано:
$$\exists \lim_{\Delta x} \frac{\Delta y}{\Delta x} = y'$$
 (1).

<u>Довести:</u> f(x) неперервна в т. x, тобто $\lim_{\Delta x \to o} \Delta y = 0$ (2).

$$3(1) \Rightarrow \frac{\Delta y}{\Delta x} = y' + \alpha(x)$$
, де $\alpha(x)$ – нескінченно мала при $\Delta x \to 0$.

$$\Delta y = \underbrace{y' \cdot \Delta x}_{0 \text{ npu}} + \underbrace{\alpha(x) \cdot \Delta x}_{0 \text{ npu} \Delta x \to 0}$$

 $\lim_{\Delta x \to a} \Delta y = 0$, функція неперервна в т. x.

Обернене не завжди вірно, неперервна функція в точці не завжди має скінченну похідну в цій точці. В наведених вище прикладах функції неперервні, але не мають скінченної

похідної (для y = |x| – односторонні похідні; для $y = x^{\frac{1}{3}}$ – нескінченна похідна).

Далі наведемо правила диференціювання та формули диференціювання, більшість з яких вивчались в школі, деякі з них будемо вивчати далі.

Правила диференціювання

Вважаємо c = const, u = u(x), v = v(x)

1.
$$c' = 0$$

$$2. (cu)' = cu'$$

3.
$$(u \pm v)' = u' \pm v'; \quad (u \pm c)' = u'$$

4.
$$(u \cdot v)' = u' \cdot v + u \cdot v'; \quad (u \cdot v \cdot w)' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot w'$$

5.
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}, \ v \neq 0$$

6.
$$\left(f\left(u\left(x\right)\right)\right)'_{x} = f'_{u} \cdot u'_{x}$$

7.
$$x'_{y} = \frac{1}{y'_{x}}$$
, $x = x(y)$ – обернена функція до $y = y(x)$.

Формули диференціювання

Вважаємо u = u(x). Якщо u(x) = x, то u'(x) = x' = 1

$$I \begin{cases} 1. (u^{\alpha})' = \alpha u^{\alpha - 1} \cdot u', \ \alpha \in R \\ 2. (\log_{a} u)' = \frac{1}{u \ln a} \cdot u' \end{cases}$$

$$III \begin{cases} 10. (\arcsin u)' = \frac{1}{\sqrt{1 - u^{2}}} \cdot u' \\ 11. (\arccos u)' = -\frac{1}{\sqrt{1 - u^{2}}} \cdot u' \end{cases}$$

$$III \begin{cases} 10. (\arcsin u)' = \frac{1}{\sqrt{1 - u^{2}}} \cdot u' \\ 11. (\arccos u)' = -\frac{1}{\sqrt{1 - u^{2}}} \cdot u' \end{cases}$$

$$11. (\arccos u)' = -\frac{1}{\sqrt{1 - u^{2}}} \cdot u'$$

$$12. (\arctan u)' = \frac{1}{1 + u^{2}} \cdot u'$$

$$13. (\arctan u)' = -\frac{1}{1 + u^{2}} \cdot u'$$

$$13. (\arctan u)' = -\frac{1}{1 + u^{2}} \cdot u'$$

$$14. (arc \cos u)' = -\frac{1}{1 + u^{2}} \cdot u'$$

$$15. (e^{u})' = e^{u} \cdot u'$$

$$16. (\sin u)' = \cos u \cdot u'$$

$$17. (\cos u)' = -\sin u \cdot u'$$

$$18. (thu)' = -\frac{1}{ch^{2}u} \cdot u'$$

$$19. (cthu)' = -\frac{1}{sh^{2}u} \cdot u'$$

Виділено блоки:

I – степенева, показникові, логарифмічна функції;

II – тригонометричні;

III – обернені тригонометричні;

IV – гіперболічні.

Деякі правила та формули диференціювання

1. Диференціювання гіперболічних функцій.

Скористаємось означенням гіперболічних функцій:

$$\left(\operatorname{ch} x \right)' = \left(\frac{e^x + e^{-x}}{2} \right) = \frac{1}{2} \left(e^x + e^{-x} \right)' = \frac{1}{2} \left(e^x - e^{-x} \right)' = \frac{e^x - e^{-x}}{2} = \operatorname{sh} x$$

$$\left(\operatorname{sh} x \right)' = \operatorname{ch} x \text{, аналогічно.}$$

$$\left(\operatorname{th} x \right)' = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x} \right)' = \frac{\operatorname{ch} x \cdot \operatorname{ch} x - \operatorname{sh} x \cdot \operatorname{sh} x}{\operatorname{ch}^2 x} = \frac{\operatorname{ch}^2 x - \operatorname{sh}^2 x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch}^2 x}$$

$$\left(\operatorname{cth} x \right)' = -\frac{1}{\operatorname{sh}^2 x} , \text{ аналогічно.}$$

2. Диференціювання обернених функцій.

 $\underline{\mathrm{T.\,1.}}$ Якщо функція $y=f\left(x\right)$ неперервна та зростаюча (спадна) на відрізку $\left[a,b\right]$, то існує обернена функція $x=\varphi\left(y\right)$, неперевна та зростаюча (спадна) на відрізку $\left[c,d\right]$, $c=\varphi\left(a\right),\ d=\varphi\left(b\right).$

Без доведення.

Т. 2. Якщо для функції y = f(x) існує обернена функція $x = \varphi(y)$, то $x'_y = \frac{1}{y'_x}$ або

$$y_x' = \frac{1}{x_y'}.$$

$$\underline{\underline{I}}. \ y'_{x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}} = \frac{1}{x'_{y}}.$$

поміняли $\Delta \mathcal{X}$ на

Δy,

бо для неперервної

функції

<u>Приклад 1.</u> $y = \arcsin x$. Знайти $y' = (\arcsin x)'$.

<u>Розв'язання.</u> $y = \arcsin x \Rightarrow x = \sin y$

$$y'_x = \frac{1}{x'_y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = |x = \sin y| = \frac{1}{\sqrt{1 - x^2}}; (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}.$$

Приклад 2. $y = \operatorname{arc} tgx$. Знайти $y' = (\operatorname{arc} tgx)'$.

<u>Розв'язання.</u> $y = \operatorname{arc} tgx \Rightarrow x = tgy$.

$$y'_{x} = \frac{1}{x'_{y}} = \frac{1}{\frac{1}{\cos^{2} y}} = \frac{1}{1 + tg^{2} y} = |tgy = x| = \frac{1}{1 + x^{2}}; (arc tgx)' = \frac{1}{1 + x^{2}}.$$

3. Логарифмічна похідна. Диференціювання складної показникової функції.

Відомо:
$$(\ln x)' = \frac{1}{x}$$
.

Тоді для y = f(x) $(\ln y)' = \frac{1}{y} \cdot y' = \frac{y'}{y}$ – логарифмічна похідна від функції y = f(x).

<u>О.</u> Складною показниковою функцією називається функція вигляду $y = u(x)^{v(x)}$, де u(x) > 0.

Знайдемо
$$y' = \left(u(x)^{v(x)}\right)'$$
.

 $y = u^{\nu}$ (тут x опущено).

Логарифмуємо ліву та праву частини:

 $\ln y = \ln u^{v}; \ln y = v \ln u.$

Диференціюємо ліву та праву частини:

$$(\ln y)' = (v \ln u)'; \frac{y'}{y} = v' \ln u + v \frac{1}{u} \cdot u',$$
 але $y = u^v$
 $y' = u^v \left(v' \ln u + v \frac{u'}{u} \right).$

Приклад:

Дано: $y = (\sin x)^{\frac{1}{x}}$. Знайти: y'.

Розв'язання:

$$\ln y = \ln(\sin x)^{\frac{1}{x}}; (\ln y)' = \left(\frac{1}{x}\ln(\sin x)\right)'; \frac{y'}{y} = -\frac{1}{x^2} \cdot \ln(\sin x) + \frac{1}{x} \cdot \frac{1}{\sin x}\cos x$$
$$y' = (\sin x)^{\frac{1}{x}} \left(-\frac{1}{x^2}\ln\sin x + \frac{1}{x}\cot yx\right).$$

Диференційовність функцій

<u>О.</u> Функція y = f(x) називається *диференційовною* в т. x, якщо її приріст Δy в цій точці може бути представлений у вигляді:

 $\Delta y = A \cdot \Delta x + o(\Delta x)$, $\Delta x \to 0$ (1), де A – деяке число , $o(\Delta x)$ – нескінченно мала вищого порядку, ніж Δx .

 $\underline{\mathrm{T.}}$ Для того, щоб функція $y=f\left(x\right)$ була диференційовна в т. x, необхідно та достатньо, щоб ця функція мала скінченну похідну в т. x і в формулі приросту функції (1) A=f'(x).

Без доведення.

Отже, для диференційовної функції потрібно подання Δy у вигляді:

$$\Delta y = f'(x)\Delta x + o(\Delta x), \ \Delta x \rightarrow 0.$$
 (2)

Поняття: ,, функція має скінченну похідну в т. x" рівносильне ,, функція диференційовна в т. x".

Диференціал функції

Основні поняття

 \underline{O} . Диференціалом функції y = f(x) в т. x називається вираз вигляду

$$dy = f'(x) \cdot \Delta x$$
. (3)

Проаналізуємо вираз (3), порівнявши його з формулою (2).

1) $f'(x) \neq 0$. Тоді dy є головною частиною приросту функції (2), лінійною відносно Δx . Головна частина – у сенсі, що dy вносить головний вклад в Δy ; лінійна частина, бо Δx в

І степені.

2)
$$f'(x) = 0$$
. Тоді $dy = 0$.

Далі, нехай
$$y = x$$
. Тоді $dy = \underbrace{x_x'}_{} \triangle x = \triangle x$.

3 іншого боку, взявши диференціал від лівої та правої частини y=x, маємо dy=dx.

Отже,
$$dy = \Delta x$$
 $\Rightarrow \Delta x = dx$.

Тоді, dy = f'(x)dx (4) – інша форма запису для dy.

Правила обчислення диференціалів.

Маючи таблицю похідних, можна побудувати таблицю диференціалів

$$d(\cos x) = -\sin x dx; \ d(e^x) = e^x dx; \ d(tgx) = \frac{1}{\cos^2 x} dx$$
 і т.д.

Правила знаходження диференціалів такі:

1)
$$d(c \cdot u) = cdu$$
, $c = \text{const}$.

2)
$$d(u \pm v) = du \pm dv$$
.

3)
$$d(u \cdot v) = vdu + udv$$
.

4)
$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}, \ v \neq 0.$$

Інваріантність форми диференціала (незмінність)

а) Нехай y = f(u), u – незалежна змінна

$$dy = f'(u)du$$
, де $du = \Delta u$. (*)

б) Нехай y = f(u), $u = \varphi(x)$ – залежна змінна

$$dy = (f(u))'_{x} dx = f'_{u} \cdot \underline{u'_{x} \cdot dx} = f'(u) \cdot du$$
похідна склад-
ної функції

$$dy = f'(u)du$$
, $du = u'(x)dx$. (**)

Порівняємо (*) і (**): формула для dy одна й та ж, а зміст du різний. В цьому інваріантність форми диференціала.

Геометричний зміст диференціала

$$dy=f'(x)$$
 $\triangle x$ або $dy=y'$ $\triangle x$, де $y'=tg\alpha$ – кутовий коефіцієнт дотичної. Отже, $dy=tg\alpha\cdot\triangle x$

 $BC = \triangle x \cdot tg \alpha = dy$ — це приріст ординати дотичної, проведеної в т. A(x, f(x)). На рисунку $BD = \triangle y$. Тут $\triangle y > dy$ (функція вгнута). Може статись, що $\triangle y < dy$ (функція опукла), dy = dy — функція лінійна.

Застосування диференціала у наближених обчисленнях

$$dy = y' \triangle x$$

$$\triangle y = y' \triangle x + o(\triangle x), \ \triangle x \to 0$$

$$\triangle y \approx dy$$
and
$$\triangle y = f(x + \triangle x) - f(x), \ dy = f'(x) dx$$

$$f(x + \triangle x) - f(x) \approx f'(x) \triangle x$$

$$f(x + \triangle x) \approx f(x) + f'(x) \triangle x.$$

Покладемо $x = x_0$

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$
 (5) – формула для наближених обчислень.

Приклад. Обчислити $\sqrt{1,2}$.

Розв'язання:

$$f(x) = \sqrt{x}; \ f'(x) = \frac{1}{2\sqrt{x}};$$

$$1, 2 = 1 + 0, 2 \Rightarrow x_0 = 1, \ \Delta x = 0, 2$$

$$f(1) = 1, \ f'(1) = \frac{1}{2}$$

$$(5) \Rightarrow \sqrt{1,2} \approx 1 + \frac{1}{2} \cdot 0, 2 = 1, 1.$$

Похідні вищих порядків

1.О. Нехай y = f(x). Тоді $y' = f'(x) = \varphi(x)$ – похідна є функцією від x. Похідна від похідної першого порядку – це друга похідна.

$$y' = \frac{dy}{dx}$$

$$(y')' = y'' = \frac{d^2y}{dx^2}$$

$$(y'')' = y''' = \frac{d^3y}{dx^3}$$

$$(y^{n-1})' = y^{(n)} = \frac{d^n y}{dx^n}.$$

Справа наведено інші позначення похідних.

1. Формули для похідних вищих порядків від деяких функцій.

1)
$$y = e^x$$
; $y^{(n)} - ?$ 2) $y = a^x$

$$y' = y'' = \dots y^{(n)} = e^x$$
. $y' = a^x \ln a$, $y'' = a^x \ln^2 a$,..., $y^{(n)} = a^x \ln^n a$.

3)
$$y = x^{m}$$
 $y^{(n)} - ?$ $m \in N$
 $y' = mx^{m-1}$
 $y'' = m(m-1)x^{m-2}$

$$y^{(n)} = m(m-1)...(m-(n-1))x^{m-n} (*)$$

m = n $y^{(n)} = n!$; m > n формула (*); m < n $y^{(n)} = 0$.

4)
$$y = \sin x \quad y^{(n)} - ?$$

$$y' = \cos x = \sin \left(x + 1 \cdot \frac{\pi}{2} \right)$$

$$y'' = -\sin x = \sin \left(x + 2 \cdot \frac{\pi}{2} \right)$$

$$y^{(n)} = \left(\sin x\right)^{(n)} = \sin\left(x + n \cdot \frac{\pi}{2}\right).$$

5)
$$y = \cos x \quad y^{(n)} - ?$$

$$y' = -\sin x = \cos\left(x + 1 \cdot \frac{\pi}{2}\right)$$

$$y'' = -\cos x = \cos\left(x + 2 \cdot \frac{\pi}{2}\right)$$

 $y^{(n)} = (\cos x)^{(n)} = \cos\left(x + n \cdot \frac{\pi}{2}\right).$

2. Правила знаходження похідних вищих порядків.

1)
$$y = c \cdot u$$
, $c = const$, $u = u(x)$; $(cu)^{(n)} = cu^{(n)}$

2)
$$y = u \pm v$$
; $y^{(n)} = u^{(n)} \pm v^{(n)}$

3) $y = u \cdot v$;

$$y^{(n)} = (u \cdot v)^{(n)} = \sum_{m=0}^{n} c_n^m u^{(n-m)} v^{(m)}$$
 (1) – формула Лейбніца,

де C_n^m – число комбінацій з n елементів по m;

$$u^{(0)} = u(x), \ v^{(0)} = v(x), \ u^{(n-m)}$$
 – похідна функції u порядку $(n-m), \ v^{(m)}$ m та похідна функції v .

Без доведення.

Формула (1) нагадує відому формулу бінома Ньютона

$$\left(a+b\right)^n = \sum_{m=0}^n c_n^m a^{n-m} b^m$$
 $a^0=1,\ b^0=1,\ a^{n-m}-a$ в степені $(n-m),\ b^m-b$ в степені m .

Похідні від функцій, заданих параметрично

Зауважимо, що коли
$$y = y(x)$$
, то $dy = y'dx$ $y = y(t)$, то $dy = y'_t dt$ $x = x(t)$, то $dx = x'_t dt$.

Нехай функція y = y(x) задана параметрично рівняннями:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \quad t - \text{параметр.}$$
Знайти y'_x , y''_x , y'''_x .
$$y'_x = \frac{dy}{dx} = \frac{d(y(t))}{d(x(t))} = \frac{y'_t dt}{x'_t dt} = \frac{y'_t}{x'_t}$$

$$y''_{xx} = \frac{d(y'_x)}{dx} = \frac{(y'_x)'_t}{x'_t dt} = \frac{(y'_x)'_t}{x'_t}$$

$$y_{xx}^{""} = \frac{d(y_{xx}^{"})}{dx} = \frac{(y_{xx}^{"})_{t}^{'}dt}{x_{t}^{'}dt} = \frac{(y_{xx}^{"})_{t}^{'}}{x_{t}^{'}}$$
 і т.д.

Приклад.

$$\begin{cases} x = \cos t \\ y = \sin t \end{cases}, t - \text{параметр.}$$

Знайти y'_{r}, y''_{r} .

$$y_x' = \frac{dy}{dx} = \frac{d(\sin t)}{d(\cos t)} = \frac{\cos t dt}{-\sin t dt} = -ctgt$$

$$y_{xx}'' = \frac{d(y_x')}{dx} = \frac{d(-ctgt)}{d(\cos t)} = \frac{-\left(-\frac{1}{\sin^2 t}\right)dt}{-\sin tdt} = -\frac{1}{\sin^3 t}.$$

Похідні функцій, заданих неявно

Нехай функція y = y(x) задана неявно рівняннями:

$$F(x, y) = 0.(1)$$

Диференціюємо ліву та праву частини (1) по x, вважаючи, що y = y(x)

$$F_1(x, y, y') = 0.$$
 (2)

3(2) знаходимо y'.

Для знаходження y'' диференціюємо ліву та праву частини (2) по x, вважаючи, що y, y' функції від x

$$F_2(x, y, y', y'') = 0.$$
 (3)

і т.д.

<u>Приклад.</u> Функція y = y(x) задана неявно рівнянням:

$$x^2 + y^2 - a^2 = 0$$
 (1) $a = const$

Диференціюємо ліву та праву частини (1) по x:

$$2x + 2y \cdot y' = 0$$
; $x + y \cdot y' = 0$ (2) $\Rightarrow y' = -\frac{x}{y}$.

Диференціюємо ліву та праву частини (2) по x:

$$1 + y' \cdot y' + y \cdot y'' = 0 \Rightarrow y'' = -\frac{1 + y^{12}}{y}$$
 і т.д.

Диференціали вищих порядків

$$y = f(x)$$

$$dy = f'(x)dx, dx = \Delta x$$

$$dy = d(dy) = d(f'(x)dx) = dxd(f'(x)) = dx \cdot f''(x)dx = f''(x)(dx)^{2} = f''(x)(dx)^{2}$$

$$dx = const$$
KOHCTAHTY

(прийнято писати не $(dx)^2$, а dx^2)

$$d^{2}y = f''(x)dx^{2}$$
$$d^{3}y = d(d^{2}y) = f''(x)dx^{3}$$

$$d^{n} y = d\left(d^{n-1} y\right) = f^{(n)}(x) dx^{n}.$$

3 отриманих співвідношень маємо:

$$f'(x) = \frac{dy}{dx}, f''(x) = \frac{d^2y}{dx^2}, f'''(x) = \frac{d^3y}{dx^3}, ..., f^{(n)}(x) = \frac{d^ny}{dx^n}.$$

Це збігається з введеними раніше позначеннями похідних.

Деякі теореми про диференційовні функції

Теорема Ферма (фр. математик).

Якщо функція y = f(x)

- 1) неперервна на відрізку [a,b],
- 2) диференційовна на інтервалі (a,b),
- 3) на інтервалі (a,b) приймає найбільше або найменше значення, то існує така точка $c \in (a,b)$, що f'(c) = 0.

Без доведення.

Геометрично:

$$f'(c) = 0 \Longrightarrow$$
дотична, проведена в т. $D(c, f(c))$ до кривої, паралельна осі Ox .

Теорема Ролля (фр. математик).

Якщо функція f(x)

- 1) неперервна на відрізку [a,b],
- 2) диференційовна на інтервалі (a,b),

3)
$$f(a) = f(b)$$
,

то існує така точка $c \in (a,b)$, що f'(c) = 0.

Без доведення.

Геометрично:

За умов теореми $f'(c) = 0 \Rightarrow$ дотична, проведена в т. D(c, f(c)) до кривої, паралельна осі Ox .

Теорема Коші (фр. математик).

Якщо функції f(x) та g(x) задовольняють умови:

- 1) неперервні на відрізку [a,b],
- 2) диференційовні на інтервалі (a,b),
- 3) $g'(x) \neq 0$ на інтервалі (a,b),

то існує така точка $c \in (a,b)$, що виконується рівність:

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$$
(1) – формула Коші.

Без доведення. Без геометричної інтерпретації (дуже складна).

Теорема Лагранжа (фр. математик).

Якщо функція f(x) задовольняє умови:

- 1) неперервна на відрізку [a,b],
- 2) диференційовна на інтервалі (a,b),

то існує така точка $c \in (a,b)$, що виконується рівність:

$$f(b) - f(a) = f'(c)(b-a)$$
 (2) – формула Лагранжа.

Доведення. Випливає з формули (1)

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)},$$

в якій покладемо g(x) = x.

Тоді
$$g(a) = a; g(b) = b; g'(x) = 1 \Rightarrow g'(c) = 1.$$

Підставимо:

$$\frac{f(b)-f(a)}{b-a} = f'(c). \quad (*)$$

 \exists така т. $c \in (a,b)$, що дотична, проведена в т. D(c,f(c)) до кривої y=f(x), паралельна січній AB.

Розкриття невизначеностей (правило Лопіталя)

(Лопіталь – фр. математик.)

I. Невизначенність типу
$$\left\{ \frac{0}{0} \right\} - \left(\lim_{x \to a} \frac{f(x)}{g(x)} = \left\{ \frac{0}{0} \right\} \right).$$

<u>Т.1.</u> Нехай функції f(x) та g(x) задовольняють такі умови:

- 1) умови теореми Коші в деякому околі т. x = a,
- 2) $\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0,$

3) існує границя
$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$
, тоді існує границя $\lim_{x \to a} \frac{f(x)}{g(x)}$, при цьому $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Без доведення.

Зауваження:

- 1) число a, що присутнє в теоремі, може бути або скінченним, або $\pm \infty$,
- 2) під існування границі $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ розуміють скінченну границю, або

нескінченність з зазначеним знаком: +∞ чи -∞,

3) можливе повторне застосування вказаного в теоремі правила (правила Лопіталя).

Існують приклади, коли правило Лопіталя незастосовне.

Приклад.

$$\lim_{x \to 0} \frac{x^2 \cdot \sin \frac{1}{x} + x^5}{\sin x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{2x \cdot \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \cdot \left(-\frac{1}{x^2} \right)}{\cos x} = -\lim_{x \to 0} \cos \frac{1}{x}$$

- ця границя не існує.

3 цього робимо висновок, що треба застосувати звичайні методи, а саме:

$$\lim_{x\to 0} \frac{x^2 \cdot \sin\frac{1}{x}}{\sin x} = \left\{ \frac{0}{0} \right\} = \lim_{x\to 0} \frac{x^2 \cdot \sin\frac{1}{x}}{x} = \lim_{x\to 0} x \cdot \sin\frac{1}{x} = 0.$$
II. Невизначеність типу $\left\{ \frac{\infty}{\infty} \right\} - \left(\lim_{x\to a} \frac{f(x)}{\varphi(x)} = \left\{ \frac{\infty}{\infty} \right\} \right).$

Для такого типу невизначеності має місце теорема, аналогічно теоремі 1 в п. І і зауваження до неї.

Приклад.

Знайти $\lim_{x\to+\infty}\frac{x^2}{e^x}$;

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to +\infty} \frac{2x}{e^x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to +\infty} \frac{2}{e^x} = \left\{ \frac{2}{\infty} \right\} = 0.$$

Іноді правило Лопіталя застосовувати незручно (громіздко), а вивчені раніше методи дають результат швидко.

Приклад.

$$\lim_{x \to +\infty} \frac{x^4 - 2x + 1}{3x^4 + 5} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to +\infty} \frac{x^4}{3x^4} = \frac{1}{3}.$$

За правилом Лопіталя треба було 4 рази його застосовувати.

III. Невизначеність типу
$$\{0 \cdot \infty\} - \left(\lim_{x \to a} f(x) \cdot \varphi(x) = \{0 \cdot \infty\}\right)$$
.

Ця невизначеність зводиться до $\left\{ \frac{0}{0} \right\}$ або $\left\{ \frac{\infty}{\infty} \right\}$ шляхом перетворень.

Врахуємо, що $f \to 0$, $\varphi \to \infty$, $x \to a$

$$f \cdot \varphi = \frac{f}{\frac{1}{\varphi}} \Rightarrow \left\{ \frac{0}{0} \right\}, \ f \cdot \varphi = \frac{\varphi}{\frac{1}{f}} \Rightarrow \left\{ \frac{\infty}{\infty} \right\}.$$

Приклад.

$$\lim_{x \to \infty} x \cdot \sin \frac{1}{x} = \left\{ \infty \cdot 0 \right\} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \left\{ \frac{0}{0} \right\} = \lim_{x \to \infty} \frac{\cos \frac{1}{x} \cdot \left(-\frac{1}{x^2} \right)}{\left(-\frac{1}{x^2} \right)} = \lim_{x \to \infty} \cos \frac{1}{x} = 1.$$

IV. Невизначеність типу $\{\infty - \infty\} - \lim_{r \to a} [f - \varphi] = \{\infty - \infty\}.$

Виконаємо перетворення:

$$f - \varphi = \frac{1}{\frac{1}{f}} - \frac{1}{\frac{1}{\varphi}} = \frac{\frac{1}{\varphi} - \frac{1}{f}}{\frac{1}{\varphi} \cdot \frac{1}{f}} = \left\{ \frac{0}{0} \right\}.$$

Приклад.

$$\overline{\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{x}{\ln x} \right)} = \left\{ \infty - \infty \right\} = \lim_{x \to 1} \frac{1 - x}{\ln x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 1} \frac{-1}{\frac{1}{x}} = -\lim_{x \to 1} x = -1.$$

V. Степеневі невизначеності $\{1^{\infty}\}, \{\infty^0\}, \{0^0\} - (\lim_{x \to a} f^g).$

Кожна з цих невизначеностей зводиться до $\left\{0 \cdot \infty\right\}$, яка зводиться до $\left\{\frac{0}{0}\right\}$ або $\left\{\frac{\infty}{\infty}\right\}$.

Наприклад, для $\{1^{\infty}\}$:

$$f^g = e^{\ln f^g} = e^{g \ln f}; \quad \lim_{x \to a} g \cdot \ln f = \{\infty \cdot 0\} \text{ foo } g \to \infty, \ f \to 1, \ \ln 1 = 0.$$

Приклад.

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x}} = \{1^{\infty}\} = \lim_{x \to 0} e^{\frac{1}{x} \ln \cos x} = e^{\lim_{x \to 0} \frac{\ln \cos x}{x}} = e^{A};$$

$$A = \lim_{x \to 0} \frac{\ln \cos x}{x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{\frac{1}{\cos x} \cdot (-\sin x)}{1} = -\lim_{x \to 0} \frac{\sin x}{\cos x} = 0$$

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x}} = e^0 = 1.$$

Зауважимо, що правило Лопіталя застосовують в комбінації з використанням еквівалентних нескінченно малих.

Формула Тейлора для многочлена

Відомо, що многочлен $P_n(x)$ може бути подано у двох формах:

$$P_n(x) = \sum_{k=0}^n a_k x^k$$
 – розкладання за степенями x

або

$$P_n(x) = \sum_{k=0}^n a_k (x-a)^k$$
 (1) – розкладання за степенями $(x-a)$.

Тут a_k , a – деякі числа.

Має місце формула:
$$P_n^{(k)}(a) = k! a_k$$
 (2) $\Rightarrow a_k = \frac{P_n^{(k)}(a)}{k!}$.

Підставимо a_{ν} в (1):

$$P_n(x) = \sum_{k=0}^n \frac{P_n^{(k)}(a)}{k!} (x-a)^k$$
 (3) – формула Тейлора для многочлена.

При a=0

$$P_n(x) = \sum_{k=0}^n \frac{P_n^{(k)}(0)}{k!} x^k$$
 (4) – формула Маклорена.

Доведення формули (2).

Запишемо
$$P_n(x), P'_n(x), P''_n(x), ..., P_n^{(n)}(x)$$

i
$$P_n(a), P'_n(a), P''_n(a), ..., P_n^{(n)}(a)$$

$$P_n(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + a_3(x-a)^3 + \dots + a_n(x-a)^n$$

$$P_n(a) = a_0$$

$$P_n'(x) = a_1 + 2a_2(x-a) + 3a_3(x-a)^2 + ... + na_n(x-a)^{n-1}$$

$$P_n'(a) = a_1$$

$$P_n''(x) = 2!a_2 + 3 \cdot 2a_3(x-a) + ... + n(n-1)a_n(x-a)^{n-2}$$

$$P_n''(a) = 2!a_2$$

$$P_n'''(a) = 3!a_3$$
.

$$P^{(n)}(a) = n! a_n \Rightarrow a_k = \frac{P_n^{(k)}(a)}{k!}.$$

Формула Тейлора для довільної функції

Запишемо формально многочлен $P_{n}\left(x\right)$ для довільної функції $f\left(x\right)$.

$$P_{n}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} . (5)$$

Можна перевірити аналогічно попередньому, що

$$P_n^{(k)}(a) = f^{(k)}(a), \ k = \overline{0,n}$$
. (6) Тоді в околі точки $x = a$ маємо:

$$f(x) \approx \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Тоді
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x),$$
 (7)

де $R_{n}(x)$ називається залишковим членом.

$$f(x) = P_n(x) + R_n(x)$$
; $f(a) = P_n(a)$, $R_n(a) = 0$, $R_n(x) = f(x) - P_n(x)$.

Геометрично:

 $R_{n}\left(x
ight)$ означає похибку в т. x , коли $f\left(x
ight)$ – замінена многочленом. В самій точці x=aпохибка дорівнює 0.

При a=0

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + R_{n}(x)$$
 (8) – формула Маклорена.

Залишковий член в формулі Тейлора може бути записаний у різних формах:

$$R_n(x) = o((x-a)^n), x \to a$$
 – у формі Пеано,

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$
 – у формі Лагранжа.

Розкладання деяких функцій по формулі Маклорена

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + R_{n}(x).$$
1. $y = e^{x}$

$$f'(x) = f''(x) = \dots = f^{(n)}(x) = e^{x}$$

$$f'(0) = f''(0) = \dots = f^{(n)}(0) = 1$$

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + R_{n}(x)$$

2.
$$y = \sin x$$

$$y^{(k)} = \sin\left(x + k \cdot \frac{\pi}{2}\right), \ y^{(k)}(0) = \sin\left(k \cdot \frac{\pi}{2}\right)$$

$$y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = -1, ...$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + ... + R_n(x)$$

$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + R_n(x).$$

3.
$$y = \cos x$$

$$y^{(k)} = \cos\left(x + k \cdot \frac{\pi}{2}\right), \quad y^{(k)}(0) = \cos\left(k \cdot \frac{\pi}{2}\right)$$

$$y(0) = 1, \quad y'(0) = 0, \quad y''(0) = -1, \quad y'''(0) = 0, \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + R_n(x)$$

$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + R_n(x).$$

Дослідження функцій та побудова графіків

- 1. Зростання та спадання функцій. f'(x) > 0 на $(a,b) \Rightarrow$ функція зростає на (a,b) , f'(x) < 0 на $(a,b) \Rightarrow$ функція спадає на (a,b) .
- 2. Екстремуми функцій.

Локальний максимум: $f(x) \le f(c)$, $\forall x \in O(c, \delta)$ – окіл точки c радіуса δ .

Локальний мінімум: $f(x) \ge f(c) \ \forall x \in O(c, \delta)$.

<u>Т.1.</u> Необхідна умова екстремуму: якщо функція f(x) диференційовна в т. x_0 і досягає в цій точці локального екстремуму, то $f'(x_0) = 0$.

Точки, в яких $f'(x_0) = 0$, називаються стаціонарними.

Точки, в яких $f'(x_0) = 0$, ∞ або не існує називаються критичними точками І роду.

<u>Т.2</u>. Достатня умова екстремуму: нехай x_0 – критична точка функції f(x).

Якщо при переході через цю точку зліва направо f'(x) змінює знак з «+» на «-», то в точці $x=x_0$ функція досягає максимуму; якщо ж f'(x) змінює знак з «-» на «+», то в точці $x=x_0$ функція досягає мінімуму.

<u>Т.3.</u> Достатні умови екстремуму: нехай $f'(x_0) = 0$, $f''(x_0) \neq 0$. Тоді,

1) якщо
$$f''(x_0) > 0$$
, то т. x_0 – т. локального мінімуму;

2) якщо $f''(x_0) < 0$, то т. x_0 – т. локального максимуму.

<u>Д.</u> Використовується формула Тейлора, в якій обмежуються похідними 2-го порядку. Залишковий член береться в формі Лагранжа

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(c)}{2!} (x - x_0)^2$$

=0, бо т. x_0 - стаціонарна

$$f(x)-f(x_0) = \frac{f''(c)}{2!}(x-x_0)^2, (x-x_0)^2 > 0$$
 (*).

1)
$$f''(x) > 0 \Rightarrow f''(c) > 0$$
, права частина в (*) ≥ 0

$$f(x) - f(x_0) \ge 0$$
, $f(x) \ge f(x_0)$ – т. x_0 – т. лок. min

2)
$$f''(x) < 0 \Rightarrow f''(c) < 0$$

$$f(x) - f(x_0) \le 0$$
, $f(x) \le f(x_0)$ – т. x_0 – т. лок. max.

3. Опуклість, вгнутість, точки перегину.

Вважаємо, що на інтервалі (a,b) графік функції y = f(x) не має дотичної, паралельної осі Oy.

Рівняння дотичної $Y = \varphi(x)$. Проведемо до графіка функції дотичні:

Графік функції опуклий, якщо він розташований нижче будь-якої своєї дотичної.

Графік функції вгнутий, якщо він розташований вище будь-якої своєї дотичної.

 $\underline{\mathrm{T}}$. Якщо f''(x) < 0 на (a,b), то графік функції f(x) опуклий на (a,b). Якщо f''(x) > 0 на (a,b), то графік функції f(x) вгнутий на (a,b).

Доведення. Нехай $x_0 \in (a,b)$.

Скористаємось формулою Тейлора, обмежившись похідними 2-го порядку

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(c)}{2!} (x - x_0)^2, \ c \in (a, b).$$

Рівняння дотичної:

$$Y = f(x_0) + f'(x_0)(x - x_0)$$
 – відомо

$$f(x)-Y = \frac{f''(c)}{2!}(x-x_0)^2, (x-x_0)^2 > 0.$$

1)
$$f''(x) < 0$$
; тоді $f(x) - Y < 0 \Rightarrow$ графік опуклий на (a,b) ,

- 2) f''(x) > 0; тоді $f(x) Y > 0 \Rightarrow$ графік вгнутий на (a,b).
- \underline{O} . Точка, яка з'єднує опуклу і вгнуту частину графіка, називається <u>точкою перегину</u> («перегиба» рос.).

Точку перегину слід шукати серед тих точок, де f''(x) = 0, ∞ або не існує. Ці точки називаються критичними точками ІІ роду.

Приклад. $y = x^3$

 $y'=x^3$ $y''=3x^2$ y''=6x=0, x=0 – критична точка II роду. y''>0, коли x>0 – вгнутість, x>0, y''<0, коли x<0 – опуклість, x<0. Точка $O\left(0,0\right)$ – точка перегину.

- 4. Асимптоти графіка функції.
- $\underline{\mathrm{O}}$. Пряма l називається асимптотою графіка функції $y=f\left(x\right)$, якщо, коли $M\to\infty$, $M\in$ графіку функції $f\left(x\right)$, відстань $\rho(M,l)\to 0$.

x

Розрізняють вертикальні, горизонтальні та похилі асимптоти.

x = a – вертикальна асимптота

y = b –горизонтальна асимптота

оти. y M(x, y) M(x, y) y = f(x) y = kx + b – похила асимптота

1) x = a – вертикальна асимптота, якщо $\lim_{x \to a} f(x) = \infty$.

2) Пряма y = kx + b є *похилою* асимптотою для функції f(x), якщо при $x \to \pm \infty$ функція f(x) подається у вигляді $f(x) = kx + b + \alpha(x)$, де $\alpha(x) \to 0$ при $x \to \pm \infty$. <u>Т.</u> Для того, щоб функція f(x) мала похилу асимптоту y = kx + b, необхідно та достатньо, щоб існували скінченні границі:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k \quad (1), \quad \lim_{x \to \pm \infty} \left[f(x) - kx \right] = b \quad (2).$$

Без доведення.

Отже, для знаходження похилої асимптоти, знаходимо границі (1), (2). Якщо вони обидві скінченні записуємо

$$y = kx + b$$
.

3) Горизонтальна асимптота ϵ частинним випадком похилої, при k=0 , тобто $\mathbf{v}=b$.

Загальна схема дослідження функцій

- 1. Вказати область визначення.
- 2. Дослідити на парність, непарність, періодичність.
- 3. Знайти точки перетину графіка з осями координат.
- 4. Знайти асимптоти графіка.
- 5. Знайти інтервали зростання, спадання, екстремуми.
- 6. Знайти інтервали опуклості та вгнутості, точки перегину.

На основі досліджень будуємо графік.