

Visit www.DeepL.com/pro for more information.

HC32F460 Series 32-bit ARM® Cortex®-M4 microcontrollers

Data Sheet

Product Features

ARM Cortex-M4 32bit MCU+FPU, 250DMIPS, up to 512KB Flash, 192KB SRAM, USB FS (Device/Host), 14 Timers, 2 ADCs, 1 PGA, 3 CMPs, 20 communication interfaces

ARMv7-M architecture 32bit Cortex-M4 CPU with integrated FPU, MPU, DSP with SIMD instruction support, and CoreSight standard debug unit. Maximum operating frequency of 200MHz, Flash acceleration unit for 0-wait program execution, and 250DMIPS or 680Coremarks of computing performance

Built-in memory

- Maximum 512KByte Flash memory with security protection and data encryption*1
- Up to 192KByte of SRAM, including 32KByte of 200MHz single-cycle access high-speed RAM, 4KByte of Retention RAM

■ Power, clock, reset management

- System power supply (Vcc) 1.8-3.6V
- 6 independent clock sources: external master clock crystal (4-25MHz), external sub crystal (32.768kHz), internal high speed RC (16/20MHz), internal medium speed RC (8MHz), internal low speed RC (32kHz), internal WDT dedicated RC (10kHz)
- 14 reset sources including Power On Reset (POR), Low Voltage Detect Reset (LVDR), and Port Reset (PDR), each with individual flag bits

Low power operation

- Peripheral functions can be turned off or on independently
- Three low-power modes: Sleep, Stop, and Power down modes
- Run mode and Sleep mode support switching between super high speed mode, high speed mode and super low speed mode
- Standby power consumption: Stop mode typ.90uA@25°C, Power down mode down to 1.8uA@25°C
- Power down mode, supports 16 port wake-up, ultralow power RTC operation, 4KByte SRAM for data retention
- Standby fast wake-up, Stop mode wake-up as fast as 2us, Power down mode wake-up as fast as 20us

Peripheral operation support system significantly reduces CPU processing load

8-channel dual host DMAC

- DMAC for USBFS
- Data Computing Unit (DCU)
- Support peripheral event inter-triggering (AOS)

High Performance Simulation

- 2 independent 12bit 2MSPS ADCs
- 1 programmable gain amplifier (PGA)
- 3 independent voltage comparators (CMP), supporting 2 internal reference voltages
- 1 on-chip temperature sensor (OTS)

■ Timer www.xhsc.com.cn

- 3 multifunctional 16bit PWM timers
 (Timer6)
- 3 x 16bit Motor PWM Timer (Timer4)
- 6 x 16bit general purpose timers (TimerA)
- 216bit base timers (Timer0)

Maximum 83 GPIOs

- CPU single-cycle access, 100MHz maximum output
- Maximum 81 5V-tolerant 10

■ Up to 20 communication interfaces

- 3 I2C, SMBus protocol support
- 4 USARTs, supports ISO7816-3 protocol
- 4 SPI
- 4 I2S, built-in audio PLL supports audio-level sampling accuracy
- 2 SDIOs supporting SD/MMC/eMMC formats
- 1 QSPI with 200Mbps high-speed access (XIP)
- 1 CAN, supports ISO 11898-1 standard protocol
- 1 USB 2 .0 FS, built-in PHY, Device/Host support

Data encryption function

AES/HASH/TRNG

Package form:

LQFP100 (14×14mm) VFBGA100 (7×7mm) LQFP64 (10×10mm) QFN60 (7×7mm) LQFP48 (7×7mm)

Supported models:

HC32F460PETB-LQFP100	hc32f460pehb-vfbga100
HC32F460KETA-LQFP64	HC32F460KEUA-QFN60TR
HC32F460JETA-LQFP48	HC32F460JEUA-QFN48TR
HC32F460PCTB-LQFP100	HC32F460KCTA-LQFP64
HC32F460JCTA-LQFP48	

^{*1:} For specific specifications of Flash security protection and data encryption, please consult the sales window.

Sound Ming

- (**XHSC**) reserves the right to change, correct, enhance, or modify XHSC products and/or this document at any time without notice. XHSC products are sold under the terms and conditions of sale set forth in the basic purchase and sale contract.
- ★ Customer shall select the appropriate XHSC product for your application and design, validate and test your application to ensure that your application meets the appropriate standards and any safety, security or other requirements. The customer shall be solely responsible for this.
- ★ XHSC hereby acknowledges that no license to any intellectual property is granted, either expressly or impliedly.
- ★ Resale of XHSC products on terms different from those specified herein shall void any warranty commitment by XHSC with respect to such products.
- ★ Any graphic or word with the "®" or "™" logo is a trademark of XHSC. All other product or service names displayed on XHSC products are the property of their respective owners.
- ★ The information in this notice supersedes and replaces the information in the previous version.

©2022 Xiaohua Semiconductor Co. All rights reserved.

Table of Contents Table of Contents

Pr	oduct Featu	ıres	2
So	und		Explain 3
Га	ble of Conte	nts	Table of Contents 4
Га	ble Index	••••••	7
Fig	gure Index .		9
L	Introduct	ion (Overview)	10
	1.1 Mod	del naming rules	11
	1.2 Mod	del Function Comparison Table	12
	1.3 Fun	ctional Block Diagram	14
	1.4 Fun	ction Profile	15
	1.4.1	CPU	15
	1.4.2	Bus Architecture (BUS)	15
	1.4.3	Reset Control (RMU)	16
	1.4.4	Clock Control (CMU)	16
	1.4.5	Power Control (PWC)	17
	1.4.6	Initialization Configuration (ICG)	17
	1.4.7	Embedded FLASH Interface (EFM)	17
	1.4.8	Internal SRAM (SRAM)	18
	1.4.9	General Purpose 10 (GP10)	18
	1.4.1	0 Interrupt Control (INTC)	18
	1.4.1	1 Automatic Operating System (AOS)	19
	1.4.1	2 Keyboard scanning (KEYSCAN)	19
	1.4.1	3 Storage Protection Unit (MPU)	19
	1.4.1	4 DMA Controller (DMA)	19
	1.4.1	5 Voltage Comparator (CMP)	20
	1.4.1	6 Analog to Digital Converters (ADC)	20
	1.4.1	7 Temperature Sensor (OTS)	21
	1.4.1	8 Advanced Control Timer (Timer6)	21
	1.4.1	9 Universal control timer (Timer4)	21
	1.4.2	0 Emergency Brake Module (EMB)	22
	1.4.2	1 General purpose timer (TimerA)	22
	1.4.2	2 General purpose timer (Timer0)	22
	1.4.2	3 Real Time Clock (RTC)	22

	1.4.24	Watchdog Counter (WDT)	22
	1.4.25	Serial Communication Interface (USART)	23
	1.4.26	Integrated Circuit Bus (I2C)	23
	1.4.27	Serial Peripheral Interface (SPI)	23
	1.4.28	Quad Wire Serial Peripheral Interface (QSPI)	23
	1.4.29	Integrated circuitry with built-in audio bus (I2S)	24
	1.4.30	CAN communication interface (CAN)	24
	1.4.31	USB 2.0 Full Speed Module (USB FS)	24
	1.4.32	Cryptographic Coprocessing Module (CPM)	25
	1.4.33	Data Computing Unit (DCU)	25
	1.4.34	CRC Calculation Unit (CRC)	25
	1.4.35	SDIO Controller (SDIOC)	25
2	Pin Configu	uration and Function (Pinouts)	26
	2.1 Pin Co	onfiguration Diagram	26
	2.2 Pin Lis	stst	32
	2.3 Pin Fu	unction Description	38
	2.4 Pin Us	sage Instructions	41
3	Electrical C	haracteristics (ECs)	42
	3.1 Paran	neter Conditions	42
	3.1.1	Minimum and maximum values	42
	3.1.2	Typical value	42
	3.1.3	Typical Curve	42
	3.1.4	Load capacitance	42
	3.1.5	Pin input voltage	42
	3.1.6	Power Solutions	43
	3.1.7	Current consumption measurement	46
	3.2 Absol	ute maximum rating	47
	3.3 Worki	ing conditions	48
	3.3.1	General working conditions	48
	3.3.2	Operating conditions at power-up / power-down	49
	3.3.3	Reset and Power Control Module Features	49
	3.3.4	Supply current characteristics	51
	3.3.5	Electrical sensitivity	60
	3.3.6	Low Power Mode Wake-Up Timing	61

	3	3.3.8	USART Interface Features	66
	3	3.3.9	l2S Interface Features	. 67
	3	3.3.10	I2C Interface Features	. 69
	3	3.3.11	SPI Interface Features	70
	3	3.3.12	CAN2.0B Interface Features	72
	3	3.3.13	USB Interface Features	72
	3	3.3.14	PLL Features	74
	3	3.3.15	JTAG interface features	75
	3	3.3.16	External Clock Source Characteristics	76
	3	3.3.17	Internal Clock Source Characteristics	79
	3	3.3.18	12-bit ADC Features	80
	3	3.3.19	DAC Characteristics	88
	3	3.3.20	Comparator Features	88
	3	3.3.21	Gain Adjustable Amplifier Characteristics.	89
	3	3.3.22	Temperature sensor	90
	3	3.3.23	Memory Features	91
4	Pack	age Infor	mation	. 92
	4.1	Package	e Size	92
	4.2	Schema	tic diagram of the solder pads	98
	4.3	Silkscree	en instructions	104
	4.4	Package	e thermal resistance coefficient	105
5	Orde	ring Info	rmation	106
ام√	rsion r	ovision r	record	107

Table Index

Table 1-1 Model Function Comparison Table	12
Table 2-1	Pin
Function Table	32
Table 2-2	
Func32~63 Table	35
Table 2-3	Por
Configuration	36
Table 2-4	
General Function Specifications	37
Table 2-5	Pin
Function Description	38
Table 2-6	Pin
Usage Description	41
Table 3-1	
VCAP_1/VCAP_2 Operating Conditions	46
Table 3-2	
Voltage Characteristics	47
Table 3-3	
Current Characteristics	47
Table 3-4	
Thermal Characteristics	47
Table 3-5	
General working conditions	48
Table 3-6	
Operating conditions at power-up/power-down	49
Table 3-7 Reset and Power Control Module Characteristics	49
Table 3-8 Ultra High Speed Mode Current Consumption	52
Table 3-9 High-speed mode current consumption 1	53
Table 3-10 High-speed mode current consumption 2	54
Table 3-11 High-speed mode current consumption 3	55
Table 3-12 Ultra-low speed mode current consumption 1	56
Table 3-13 Ultra-low speed mode current consumption 2	57
Table 3-14 Low Power Mode Current Consumption	58
Table 3-15 Analog Module Current Consumption	59
Table 3-16ESD Characteristics	60

Table 3-17	
Static Latch-up Characteristics	60
Table 3-18 Low Power Mode Wake-up Time	61
Table 3-19	I/O
Static Characteristics	62
Table 3-20	
Output Voltage Characteristics	63
Table 3-21	I/O
AC Characteristics	64
Table 3-22	
USART AC Timing	66
Table 3-23	I2S
Electrical Characteristics	67
Table 3-24	I2C
Electrical Characteristics	69
Table 3-25	SPI
Electrical Characteristics	70
Table 3-26	USB
Full-Speed Electrical Characteristics	72

Table 3-2	7	USB Low-Speed Electrical Characteristics
Table 3-2	73 8	PLL Key Performance Indicators
	74	. ,
Table 3-2	29	JTAG Interface Features
	75	
Table 3-3	0 High-Speed External User Clock Characteristics	76
Table 3-3		XTAL 4-25 MHz Oscillator Characteristics
	77	
Table 3-3	32	XTAL32 Oscillator Characteristics
	78	
Table 3-33	3 HRC Oscillator Characteristics	79
Table 3-34	MRC Oscillator Characteristics	79
Table 3-3	5 LRC oscillator characteristics	79
Table 3-36	S SWDTLRC Oscillator Characteristics	79
Table	3-37ADC Characteristics	80
Table	3-38ADC Characteristics (continued)	81
Table 3-3	9 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann	el Accuracy @ f _{ADC} =60MHz 82
Table 3-4	0 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann	el Accuracy @ fADC=30MHz 82
Table 3-4	1 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann	el Accuracy @ fADC=30MHz82
Table 3-4	2 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann	el Accuracy @ fADC=8MHz82
Table 3-4	3 ADC1_IN12~15, ADC12_IN8~11 Input Char	nnel Accuracy @ fADC=60MHz83
Table 3-4	4 ADC1_IN12~15, ADC12_IN8~11 Input Char	nnel Accuracy @ fADC=30MHz83
Table 3-4	5 ADC1_IN12~15, ADC12_IN8~11 Input Char	nnel Accuracy @ fADC=30MHz83
Table 3-4	6 ADC1_IN12~15, ADC12_IN8~11 Input Char	nel Accuracy @ fADC=8MHz83
Table 3-4 fADC=60MH	7 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann z 84	el Input Channel Dynamic Accuracy @
Table 3-4 fADC=30MH	8 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann z 84	el Input Channel Dynamic Accuracy @
	9 ADC1_IN0~3, ADC12_IN4~IN7 Input Chann	
Table	3-50DAC Characteristics	
	51	
	88	,
Table 3-5	2 Gain Adjustable Amplifier Characteristics	89
Table 3-5	3 Temperature Sensor Characteristics	90
Table 3-5	54	Flash Memory Characteristics

$\overline{}$	4
L	7
,	

Table 3-55 Flash Programmed Erase Time	91
Table 3-56 Flash memory rewritable times and data retention period	91
Table 4-1 Table of thermal resistance coefficient of each package	105

Figure Index

Figure 1-1	
Function Block Diagram	14
Figure 2-1	Pin
Configuration Diagram	31
Figure 3-1	Pin
load condition (left) and input voltage measurement (right)	42
Figure 3-2	
Power supply scheme (HC32F460PETB-LQFP100, HC32F460PEHB-VFBGA100)	43
Figure 3-3	
Power supply scheme (HC32F460KETA-LQFP64)	44
Figure 3-4 Power supply scheme (HC32F460KEUA-	
QFN60TR/HC32F460JETA-LQFP48/HC32F460J	EUA-
(QFN48TR)	45
Figure 3-5	
Current consumption measurement scheme	46
Figure 3-6	AC
Characteristics Definition	65
Figure 3-7	
USART Clock Timing	66
Figure 3-8	
USART (CSI) Input and Output Timing	66
Figure 3-9	I2S
Slave Mode Timing (Philips Protocol)	68
Figure 3-10	I2S
Master Mode Timing (Philips Protocol)	
Figure 3-11	I2C
Bus Timing Definition	69
Figure 3-12	SCK
Clock Definition	70
Figure 3-13	SPI
Interface Timing Requirements	
Figure 3-14	USB
Rise/Fall Time and Cross Over Voltage Definition	73
Figure 3-15	JTAG
JTCK Clock	75
Figure 3-16	JTAG

www.xhsc.com.cn

input and output	76
Figure 3-17 Typical Applicationv	vith 8
MHz Crystal	77
Figure 3-18	
Typical Application with 32.768 kHz Crystal	78
Figure 3-19	ADC
Accuracy Characteristics	85
Figure 3-20	
Typical Connection Using ADC	86
Figure 3-21	
Example of decoupling power supply and reference power supply	87

1 Introduction (Overview)

The HC32F460 series is a high-performance MCU based on the ARM® Cortex®-M4 32-bit RISC CPU operating at up to 200 MHz. The Cortex-M4 core integrates a floating-point unit (FPU) and DSP for single-precision floating-point arithmetic operations, supports all ARM single-precision data processing instructions and data types, and supports the full DSP instruction set. The core integrates the MPU unit and overlays the DMAC dedicated MPU unit for secure system operation.

The HC32F460 series integrates high-speed on-chip memory, including up to 512KB of Flash and up to 192KB of SRAM, and integrates a Flash access acceleration unit to enable single-cycle program execution on Flash by the CPU. The polled bus matrix supports multiple bus hosts for simultaneous access to memory and peripherals to improve operational performance. Bus hosts include CPU, DMA, USB dedicated DMA, etc. In addition to the bus matrix, it supports inter-peripheral data transfer, basic arithmetic operations and event triggering, which can significantly reduce the CPU transaction processing load.

The HC32F460 series integrates a rich set of peripheral functions. It includes two independent 12bit 2MSPS ADCsone gain adjustable PGA, three voltage comparators (CMP) three multi-function 16bit PWM timers (Timer6) supporting 6 complementary PWM outputs, three motor PWM timers (Timer4) supporting 18 complementary PWM outputs, six 16bit general-purpose timers (TimerA) supports three 3-phase quadrature coded inputs and 48 Duty independent configurable PWM outputs, 11 serial communication interfaces

(I2C/UART/SPI)1 QSPI interface, 1 CAN, 4 128 support audio PLL, 2 SDIO, 1 USB FS Controller with on-chip FS PHY support Device/Host.

The HC32F460 series supports wide voltage range (1.8-3.6V) wide temperature range (-40-105°C) and various low power modes. Run mode and Sleep mode switchable for ultra-high speed mode (≤200MHz) high speed mode (≤168MHz) and ultra-low speed mode (≤8MHz) Supports fast wake-up in low-power mode, up to 2us for STOP mode and up to 20us for Power Down mode.

Typical Applications

The HC32F460 series is available in 48pin, 64pin, 100pin LQFP packages, 48pin, 60pin QFN packages, and 100pin VFBGA packages for high performance motor inverter control, smart hardware, loT connectivity modules, etc.

1.1 Model naming rules

B: -40-105°C, industrial grade A: -40-85°C, industrial grade

1.2 Model

Function

Table 1-1 Model Function Comparison Table

Comparison

Table

	Product Model									
F	uncti	HC32F4			HC32F4		HC32F4			
	on	60РЕНВ	60PETB	60РСТВ	60KETA	60KCTA	60JETA	60JCTA	60JEUA	60KEUA
Flash Memory (KB)		512	512	256	512	256	512	256	512	512
	lumber of pins	100	100	100	64	64	48	48	48	60
	lumber GPIOs	83	83	83	52	52	38	38	38	50
Number of GPIOs	f5V Tolerant	81	81	81	50	50	36	36	36	48
Pa	ackage	VFBGA			LQ	FP			QFN	
	emperat e range	_	40-105°(2			-40-8	85°C		
Pow	er supply voltage	1.8 ~ 3.6 V								
	(Byte)	960								
SRA	M (KB)	192								
	DMA	2unit * 4ch								
Exte	rnal port interrupts	EIRQ * 16vec + NMI * 1ch								
Communc	UART		4ch (2)							
ation	SPI		4ch (3)							
Interfa	I2C		3ch (2)							
ces	I2S		4ch (3)							
(The	CAN	1ch (2)								
minimum	QSPI					1ch (6)				
number of IOs	SDIO					2ch (3)				
required	USB-FS	1ch (2)								
per ch is										
in										
parenthes										
es)						0				
	Timer0					2unit				

VUC	小化半日	*					
XHS	TimerA	for 6unit	www.xhsc.com.cn				
Timers	Timer4	3unit					
	Timer6	3unit					
	WDT	1ch					
	SWDT	1ch					
	RTC	1ch					
Analog	12bit ADC	2unit, 16ch	2unit, 10ch 2unit.				
	PGA	1ch					
	CMP	3ch					

Functi on		Product Model								
		IC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4	HC32F4
		0РЕНВ	60PETB	60РСТВ	60KETA	60KCTA	60JETA	60JCTA	60JEUA	60KEUA
0	TS					\checkmark				
AES128		√								
HASH (SHA256)		√								
TRNG		√								
Frequency Monitoring		\checkmark								
Module (FCM)										
Programmable voltage		\checkmark								
detection function (PVD)										
						SWD				
Debuggin						JTAG				
g Interface										

1.3 Functional

1.4 Function Introduction

1.4.1 CPU

The HC32F460 series integrates the latest generation of embedded ARM® Cortex®-M4 with FPU 32bit lean instruction CPU, providing excellent computing performance and fast interrupt response with low pin count and low power consumption. The CPU supports DSP instructions for efficient signal processing operations and complex algorithms. The single point precision FPU unit avoids instruction saturation and accelerates software development.

1.4.2 Bus Architecture (BUS)

The master system consists of a 32-bit multi-layer AHB bus matrix that

interconnects the following host and slave buses Host Bus

- Cortex-M4F Core CPU-I Bus, CPU-D Bus, CPU-S Bus
- System DMA_1 bus, System DMA_2 bus
- USBFS_DMA Bus

Slave Bus

- Flash ICODE Bus
- Flash DCODE Bus
- Flash MCODE bus (bus for hosts other than the CPU to access Flash)
- SRAMH bus (SRAMH 32kB)
- SRAMA bus (SRAM1 64KB)
- SRAMB bus (SRAM2 64KB, SRAM3 28KB, Ret_SRAM 4KB)
- APB1 Peripheral bus (AOS/EMB/Timers/SPI/USART/I2S)
- APB2 Peripheral Bus (Timers/SPI/USART/I2S)
- APB3 Peripheral Bus (ADC/PGA/TRNG)
- APB4 Peripheral Bus (FCM/WDT/CMP/OTS/RTC/WKTM/I2C)
- AHB1 Peripheral bus (KEYSCAN/INTC/DCU/GPIO/SYSC)
- AHB2 Peripheral Bus (CAN/SDIOC)
- AHB3 Peripheral Bus (AES/HASH/CRC/USB FS)
- AHB4 Peripheral Bus (SDIOC)
- AHB5 Peripheral Bus (QSPI)

With the help of the bus matrix, efficient concurrent access from the host bus to the slave bus is possible.

1.4.3 Reset control (RMU)

The chip is configured with 14 reset methods.

- Power-On Reset (POR)
- NRST Pin Reset (NRST)
- Undervoltage Reset (BOR)
- Programmable Voltage Detect 1 Reset (PVD1R)
- Programmable voltage detection 2 reset (PVD2R)
- Watchdog Reset (WDTR)
- Dedicated watchdog reset (SWDTR)
- Power-down wake-up reset (PDRST)
- Software Reset (SRST)
- MPU Error Reset (MPUR)
- RAM Parity Reset (RAMPR)
- RAMECC reset (RAMECCR)
- Clock abnormal reset (CKFER)
- External high-speed oscillator abnormal stop reset (XTALER)

1.4.4 Clock Control (CMU)

The clock control unit provides clocking functions for a range of frequencies, including: an external high-speed oscillator, an external low-speed oscillator, two PLL clocks, an internal high-speed oscillator, an internal low-speed oscillator, a SWDT dedicated internal low-speed oscillator, clock prescaler, clock multiplexing, and clock gating circuitry.

The Clock Control Unit also provides a clock frequency measurement function. The clock frequency measurement circuit (FCM) uses the measurement reference clock to monitor and measure the measurement object clock. An interrupt or reset occurs when the set range is exceeded.

The AHB, APB and Cortex-M4 clocks are all derived from the system clock, which can be sourced from a choice of six clock sources:

- 1) External high-speed oscillator (XTAL)
- 2) External low-speed oscillator (XTAL32)
- 3) MPLL Clock (MPLL)
- 4) Internal high-speed oscillator (HRC)
- 5) Internal medium speed oscillator (MRC)
- 6) Internal low speed oscillator (LRC)

The system clock can run at a maximum clock frequency of 200 MHz. the SWDT has a separate clock source: the SWDT dedicated internal low-speed oscillator (SWDTLRC) The Real Time Clock

(RTC) uses either an external low-speed oscillator or an internal low-speed oscillator as the clock source.

48MHz clock for USB-FS and I2S communication clock can choose system clock, MPLL, UPLL as the clock source.

For each clock source, it can be turned on and off individually. It is recommended to turn off unused clock sources to reduce power consumption.

1.4.5 Power Control (PWC)

The power controller is used to control the power supply, switching, and detection of multiple power domains of the chip in multiple operation modes and low power modes. The power controller consists of a power consumption control logic (PWCL) and a power supply voltage detection unit (PVD).

The chip operates from 1.8 V to 3.6 V. The voltage regulator (LDO) supplies power to the VDD and VDDR domains, and the VDDR voltage regulator (RLDO) supplies power to the VDDR domain during power-down mode. The chip provides three modes of operation: ultra-high-speed, high-speed, and ultra-low-speed, and three low-power modes: sleep, stop, and power-down through the power control logic (PWCL).

The power supply voltage detection unit (PVD) provides power-on reset (POR), power-down reset (PDR), under-voltage reset (BOR), programmable voltage detection 1 (PVD1), programmable voltage detection 2 (PVD2), etc. Among them, POR, PDR, BOR control the chip reset action by detecting the VCC voltage. PVD2 generates reset or interrupt by detecting VCC voltage or external input detection voltage, and generates reset or interrupt by register selection.

The VDDR area can maintain power through the RLDO after the chip goes into power-down mode, ensuring that the real-time clock module (RTC), wake-up timer (WKTM) can continue to operate and keep data in the 4KB low-power SRAM (Ret-SRAM). The analog module is equipped with dedicated power supply pins to improve analog performance.

1.4.6 Initialization Configuration (ICG)

After the chip is reset, the hardware circuit will read the FLASH address $0x0000_0400\sim0x0000_041F$ (where $0x0000_0408\sim0x0000_041F$ is the reserved function address, the 24byte address needs to be set by the user to ensure the chip action is normal) and load the data into the initialization configuration register, the user needs to program or erase the FLASH sector 0 to modify the initialization configuration register. The user needs to program or erase the FLASH sector 0 to modify the initialization configuration register.

1.4.7 Embedded FLASH Interface (EFM)

The FLASH interface provides access to FLASH through the ICODE, DCODE and MCODE buses, which allows programming, sector erase and full erase operations on FLASH; accelerates code execution through instruction prefetch and cache mechanisms.

Main features:

Maximum 512KByte FLASH space

- I-CODE Bus 16Byte Prefetch
- Shared 64 caches (1Kbyte) on the I-CODE and D-CODE buses
- Provides 960Bbyte One Time Programming Area (0TP)
- Supports low-power read operations
- Support guide exchange function
- Support security protection and data encryption*1

^{*1:} For specific specifications of Flash security protection and data encryption, please consult the sales window.

1.4.8 Internal SRAM (SRAM)

This product comes with 4KB power-down mode hold SRAM (Ret_SRAM) and 188KB system SRAM (SRAMH/SRAM1/SRAM2/SRAM3)

SRAM can be accessed by byte, half-word (16-bit), or full-word (32-bit). Read and write operations are performed at CPU speed, with the possibility of inserting wait cycles.

Ret_SRAM provides 4KB of data retention space in power down mode.

SRAM3 with ECC check (**Error** Checking and Correcting) ECC check is correcting one and checking two codes, that is, it can correct one error and check two errors; SRAMH/SRAM1/SRAM2/Ret_SRAM with **Even-** parity check, each byte of data has one check bit per byte of data.

1.4.9 General Purpose IO (GPIO)

GPIO Key Features:

- 16 I/O pins per port group, may be less than 16 depending on actual configuration
- Support pull-up
- Support push-pull, open-drain output mode
- Supports high, medium and low drive modes
- Inputs supporting external interrupts
- Support I/O pin peripheral function multiplexing, up to 16 selectable multiplexed functions per lpin, up to 64 selectable functions for some I/Os
- Each I/O pin can be programmed independently
- Each I/O pin can be selected to have 2 functions active at the same time (2 output functions active at the same time are not supported)

1.4.10 Interrupt Control (INTC)

The functions of the Interrupt Controller (INTC) are to select interrupt event requests as interrupt inputs to the NVIC to wake up the WFI, and as event inputs to wake up the WFE. select interrupt event requests as wake-up conditions for low-power modes (sleep mode and stop mode); interrupt control functions for the external pins NMI and EIRQ; and interrupt/event selection functions for software interrupts.

Main specifications:

1) NVIC interrupt vectors: Please refer to the user manual for the actual number of interrupt vectors used (excluding the 16 interrupt lines of the Cortex™-M4F), each interrupt vector can select the corresponding peripheral interrupt event request based on the interrupt select register. For more information on exceptions and NVIC programming, please refer to Chapter 5: Exceptions and Chapter 8: Nested Vector Interrupt Controllers in the ARM

Cortex[™]-M4F Technical Reference Manual.

- 2) Programmable priority: 16 programmable priority levels (4-bit interrupt priority used)
- 3) Non-maskable interrupts: In addition to the NMI pin as a non-maskable interrupt source, multiple system interrupt event requests can be independently selected

As non-maskable interrupts, and each interrupt event request is equipped with independent enable selection, hang, and clear hang registers.

- 4) Equipped with 16 external pin interrupts.
- 5) Configure multiple peripheral interrupt event requests, please refer to the interrupt event request sequence number list for details.
- 6) Equipped with 32 software interrupt event requests.
- 7) The interrupt can wake up the system in sleep mode and stop mode.

1.4.11 Automatic Operating System (AOS)

Automatic Operation System (AOS) is used to link peripheral hardware circuits without the help of CPU. Events generated by peripheral circuits are used as AOS Source, such as comparison match and timing overflow of timer, period signal of RTC, various states of sending and receiving data of communication module (idle, full receiving data, end of sending data, empty sending data) end of conversion of ADC, etc., to trigger other peripheral circuits to act. The action of the triggered peripheral circuit is called AOS Target.

1.4.12 Keyboard scanning (KEYSCAN)

This product is equipped with a keyboard control module (KEYSCAN) 1 unit. the KEYSCAN module supports keyboard array (row and column) scanning, the columns are driven by independent scan output KEYOUTm (m=0~7), while the row KEYINn (n=0~15) is detected as EIRQn (n=0~15) input. This module implements the key recognition function by the line scan query method.

1.4.13 Storage Protection Unit (MPU)

MPUs can provide protection for memory and can improve system security by

blocking unauthorized access. Four host-specific MPU units and one IP-specific

MPU unit are built into this product.

The ARM MPU provides CPU access control to the entire 4G address space.

The DMA MPU (DMPU) provides DMA_1/DMA_2/USB FS DMA control of read and write access to the full 4G address space. The MPU action can be set to ignore/bus error/non-maskable interrupt/reset when access to the prohibited space occurs.

The IP MPU provides access control to the system IP and security-related IPs when in unprivileged mode.

1.4.14 DMA Controller (DMA)

DMA is used to transfer data between memory and peripheral function modules, enabling data exchange between memory, between memory and peripheral function modules, and between peripheral function modules without CPU involvement.

- The DMA bus is independent of the CPU bus and is transmitted according to the AMBA ★HB-Lite bus protocol
- 8 independent channels (4 channels each for DMA_1 and DMA_2) allowing independent operation of different DMA transfer functions
- The start request source for each channel is configured via a separate trigger source selection register
- One block of data is transferred per request
- Data blocks can be as small as 1 data, up to 1024 data

- Each data can be configured as 8bit, 16bit or 32bit
- Up to 65535 transmissions can be configured
- Source and destination addresses can be independently configured as fixed, incremental, decremental, cyclic or jump with specified offsets
- Three types of interrupts can be generated, block transfer completion interrupt, transfer completion interrupt, and transfer error interrupt. Each of these interrupts can be configured to be masked or not. The block transfer completion and transfer completion can be used as event output and as trigger source input for other peripheral modules with hardware trigger function.
- Support chain transfer function, which can transfer multiple data blocks in one request
- Support external events to trigger channel reset
- Can be set to enter module stop state when not in use to reduce power consumption

1.4.15 Voltage Comparator (CMP)

The CMP is a peripheral module that compares two analog voltages, INP and INM, and outputs the result of the comparison. The CMP has 3 independent comparison channels, each with 4 input sources for the analog voltages INP and INM. It is possible to select an INP for a single comparison with an INM or to scan multiple INPs with the same INM. The comparison results can be read from registers, output to external pins, and generate interrupts and events.

1.4.16 Analog-to-digital converters (ADCs)

The 12-bit ADC is an analog-to-digital converter that uses successive approximation. It has a maximum of 16 analog input channels and can convert both external ports and internal analog signals. These channels can be combined in any sequence for successive scan conversion, and the sequence can be converted in a single, or continuous scan. The ADC module is equipped with an analog watchdog function that monitors the conversion results of any given channel and detects if the user-set threshold value is exceeded.

ADC Key Features:

- High Performance
 - Configurable for 12-, 10-, and 8-bit resolution
 - The frequency ratio between the peripheral clock PCLK4 and the A/D converter clock ADCLK can be selected as follows:
 - PCLK4: ADCLK = 1:1, 2:1, 4:1, 8:1, 1:2, 1:4
 -ADCLK can be selected as PLL asynchronous with the system clock HCLK, then the clock source of PCLK4 and ADCLK is fixed as PLL at the same time, and the frequency ratio is 1:1, and the original dividing frequency setting is invalid
 - 2MSPS (PCLK4=ADCLK=60MHz, 12-bit, sampling 17 cycles)

- Independent programming of sampling time for each channel
- Independent data register for each channel
- Data register configurable data alignment
- Continuous multiple conversion averaging function
- Analog watchdog to monitor conversion results

- The ADC module can be set to stop when not in use
- Analog input channels
 - Up to 16 external analog input channels
 - 1 internal reference voltage
- Conversion start conditions
 - Software Settings Conversion Start
 - Peripheral peripheral synchronization triggers the start of the transition
 - External pins trigger the start of conversion
- Conversion Mode
 - 2 scan sequences A and B, single or multiple channels can be specified at will
 - Sequence A Single Scan
 - Sequence A Continuous Scan
 - Double sequence scanning, sequence A, B independent selection of trigger source, sequence B priority than A
 - Synchronous mode (for devices with two or three ADCs)
- Interrupt and event signal output
 - Sequence A End of Scan Interrupt EOCA_INT and Event EOCA_EVENT
 - Sequence B End of Scan Interrupt EOCB_INT and Event EOCB_EVENT
 - Analog watchdog channel comparison interrupt CHCMP_INT and event CHCMP_EVENT, sequence comparison interrupt SEQCMP_INT and event SEQCMP_EVENT
 - Each of the above 4 events can initiate DMA

1.4.17 Temperature Sensor (OTS)

The OTS can acquire the temperature inside the chip to support reliable operation of the system. After temperature measurement is initiated using software or hardware triggers, the OTS provides a set of temperature-dependent digital quantities that can be calculated using a formula to obtain the temperature value.

1.4.18 Advanced Control Timer (Timer6)

Advanced Control Timer 6 (Timer6) is a 16-bit count width high performance timer that can be used to count different forms of clock waveforms and output for external use. The timer supports both triangle waveform and sawtooth waveform modes and can generate various PWM waveforms; software-synchronous counting and hardware-synchronous counting between units; cache function for each reference value register; 2-phase quadrature encoding and 3-phase quadrature encoding; and EMB control. Timer6 with 3 units is included in this series.

1.4.19 Universal control timer (Timer4)

The Universal Control Timer 4 (Timer4) is a timer module for three-phase motor control, providing a variety of three-phase motor control solutions for different applications. The timer supports both triangle waveform and sawtooth waveform modes, generates various PWM waveforms, supports cache function, and supports EMB control. This series is equipped with 3 units of Timer4.

1.4.20 Emergency Brake Module (EMB)

The emergency brake module is a functional module that notifies the timer when certain conditions are met so that the timer stops outputting PWM signals to the external motor, and the following events are used to generate the notification:

- External port input level change
- PWM output port level occurs in phase (same high or same low)
- Voltage comparator comparison results
- External oscillator stops oscillating
- Write register software control

1.4.21 General purpose timer (TimerA)

Universal Timer A (TimerA) is a timer with 16-bit count width and 8 PWM outputs. The timer supports two waveform modes, triangle waveform and sawtooth waveform, and can generate various PWM waveforms; it supports software synchronous start counting; the comparison reference value register supports cache function; it supports 2-phase quadrature coding counting and 3-phase quadrature coding counting. The series products are equipped with 6 units of TimerA, which can achieve a maximum of 48 PWM outputs.

1.4.22 General purpose timer (Timer0)

Universal Timer 0 (Timer0) is a basic timer that enables both synchronous and asynchronous counting. The timer contains 2 channels and can generate a compare match event during counting. This event can trigger an interrupt or be used as an event output to control other modules, etc. Timer0 with 2 units is installed in this series.

1.4.23 Real Time Clock (RTC)

The Real Time Clock (RTC) is a counter that stores time information in BCD code format. It records the specific calendar time from 00 to 99 years. Both 12/24 hour time systems are supported and the days 28, 29 (leap year) 30 and 31 are automatically calculated based on the month and year.

1.4.24 Watchdog counter (WDT)

There are two watchdog counters, one is a dedicated watchdog counter where the count clock source is a dedicated internal RC (WDTCLK:10KHz)

(SWDT) and the other is a general-purpose watchdog counter (WDT) to count clock source of PCLK3. The dedicated watchdog and general-purpose watchdog are 16-bit decrementing counters used to monitor software faults resulting from deviations from normal operation of the application due to external disturbances or unforeseen logic conditions.

Both watchdogs support the window function. The window interval can be preset before the count starts, and when the count value is in the window interval, the counter can be refreshed and the count starts again.

1.4.25 Serial communication interface (USART)

This product is equipped with 4 units of serial communication interface module (USART). The USART module allows flexible full-duplex data exchange with external devices; it supports universal asynchronous serial communication interface (UART), clock synchronous communication interface, and smart card interface (ISO/IEC7816-3). Supports modem operation (CTS/RTS operation), multi-processor operation.

1.4.26 Integrated Circuit Bus (I2C)

This product is equipped with 3 units of Integrated Circuit Bus (I2C), which is used as an interface between the microcontroller and the I2C serial bus. It provides multi-master mode function and can control all I2C bus protocols and arbitration. Standard mode and fast mode are supported.

1.4.27 Serial Peripheral Interface (SPI)

This product is equipped with a 4-channel serial peripheral interface SPI, which supports high-speed full-duplex serial synchronous transmission for easy data exchange with peripheral devices. Users can set 3-wire/4-wire, master/slave and baud rate range as required.

1.4.28 Four-wire serial peripheral interface (QSPI)

The Quad Wire Serial Peripheral Interface (QSPI) is a memory control module used to communicate with serial ROMs with SPI-compatible interfaces. The targets include serial Flash, serial EEPROM and serial FeRAM.

1.4.29 Integrated circuitry with built-in audio bus (I2S)

Enter_IC Sound Bus) the integrated circuit built-in audio bus, is dedicated to data transfer between audio devices. This product is equipped with 4 I2S and has the following features.

Fun	Main					
ctio	Feature					
n	S					
Communication	- Supports full-duplex and half-duplex communications					
method	- Supports master mode or slave mode operation					
Data Format	- Selectable channel length: 16/32 bit					
	- Optional transmission data length: 16/24/32 bits					
	- Data shift order: MSB start					
Baud rate	8-bit programmable linear prescaler for accurate audio sampling frequency					
	- Support sampling frequency 192k, 96k, 48k, 44.1k, 32k, 22.05k, 16k, 8k					
	- Output drive clock to drive external audio components at a fixed rate of 256*Fs (Fs is the					
	audio sampling frequency)					
I2S protocol support	- I2S Philips Standard					
	- MSB Alignment Standards					
	- LSB Alignment Standards					
	- PCM Standards					
Data buffering	Input and output FIFO buffers with 2 words deep and 32 bits wide					
Clock source	— Canuse internal I2SCLK					
	(UPLLR/UPLLQ/UPLLP/MPLLR/MPLLQ/MPLLP); also available from					
	The external clock on the I2S_EXCK pin provides					
Interruptions	 Generate an interrupt when the effective space in the transmit buffer reaches the alarm threshold 					
	 Generate an interrupt when the effective space in the receive buffer reaches the alarm threshold 					
	- The receive data area is full and there is still a write data request, receive overflow					
	- Sending data area is empty and there are still sending requests, send the next overflow					
	- Send data area is full and still has write data request, send overflow					

1.4.30 CAN communication interface (CAN)

This product is equipped with one unit of CAN communication interface module (CAN) and 512Byte of RAM for CAN to store transmit/receive messages. The CAN2.0B protocol according to ISO11898-1 and the TTCAN protocol according to ISO11898-4 are supported.

1.4.31 USB 2.0 Full Speed Module (USB FS)

The USB FS is a dual-role (DRD) controller that supports both slave and host functions. The USB FS

supports both full-speed and low-speed transceivers in master mode, while only full-speed transceivers are supported in slave mode.

The USB FS module on this product can generate SOF events when a SOF token is successfully sent in master mode or received in slave mode.

1.4.32 Cryptographic Coprocessing Module (CPM)

The Cryptographic Co-Processing Module (CPM) consists of three sub-modules: AES Encryption and Decryption Algorithm Processor, HASH Secure Hash Algorithm, and TRNG True Random Number Generator.

The AES encryption and decryption algorithm processor follows standard data encryption and decryption standards and can perform encryption and decryption operations with 128-bit key length.

The HASH secure hash algorithm is the SHA-2 version of the SHA-256 (Secure Hash Algorithm) which complies with the national standard "FIPS PUB 180-3" published by the National Bureau of Standards and Technology, and can produce 256-bit message digest output for messages up to 2^64 bits in length. message digest output for messages up to 2^64 bits in length.

TRNG True Random Number Generator is a random number generator based on continuous analog noise, providing 64bit random numbers.

1.4.33 Data Computing Unit (DCU)

The Data Computing Unit (DCU) is a module that simply processes data without the help of a CPU. Each DCU unit has 3 data registers, and is capable of adding, subtracting, and comparing the size of 2 data, as well as window comparison functions. This product is equipped with 4 DCU units, each of which can perform its own function independently.

1.4.34 CRC Calculation Unit (CRC)

The CRC algorithm of this module follows the definition of ISO/IEC13239 and uses 32-bit and 16-bit CRC respectively. the polynomial generated by CRC32 is X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1. the polynomial generated by CRC16 is X16+X12+X5+1.

1.4.35 SDIO Controller (SDIOC)

The SDIO controller is the host in the SD/SDIO/MMC communication protocol. This product has 2 SDIO controllers, each providing a host interface for communication with SD cards supporting SD2.0 protocol, SDIO devices and MMC devices supporting eMMC4.51 protocol. SDIOC features are as follows:

- Support SDSC, SDHC, SDXC format SD cards and SDIO devices
- Supports one-wire (1bit) and four-wire (4bit) SD buses
- Supports one-wire (1bit), four-wire (4bit) and eight-wire (8bit) MMC buses
- With card recognition and hardware write protection

2 Pin Configuration and Function (Pinouts)

2.1 Pin Configuration Diagram

HC32F460PETB-LQFP100 /HC32F460PCTB-LQFP100

hc32f460pehb-vfbga100

(Top View)

Note: A1 is Pin 1.

HC32F460KETA-LQFP64/ HC32F460KCTA-LQFP64

HC32F460KEUA-QFN60TR

HC32F460JETA-LQFP48 / HC32F460JCTA-LQFP48

HC32F460JEUA-QFN48TR

Figure 2-1 Pin Configuration Diagram

2.2 Pin List

Table 2-1 Pin Function Table

				Pin			TRACE/JTAG/	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7 Fu	nc8 Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16~31	Func32~63
_QFP100 VF	BGA100 L	.QFP64 QI	N60 LQFP/QF	Name	Analog	EIRQ/WKUP	SWD	GPO	other	TIM4	тім6	TIMA	TIMA	EMB,TIMA	USART/SPI/QSPI KI	Y SDIO	USBFS/I2S	-	-	-	EVNTPT	EVENTOUT	-	Communication Funcs
1	B2	-		PE2		EIRQ2	TRACECK	GPO				TIMA_3_PWM5			USART3_CK							EVENTOUT		Func_Grp2
2	A1	-		PE3		EIRQ3	TRACED0	GPO				TIMA_3_PWM6			USART4_CK							EVENTOUT		Func_Grp2
3	B1	-		PE4		EIRQ4	TRACED1	GPO				TIMA_3_PWM7										EVENTOUT		Func_Grp2
4	C2	-		PE5		EIRQ5	TRACED2	GPO				TIMA_3_PWM8										EVENTOUT		Func_Grp2
5	D2	-		PE6		EIRQ6	TRACED3	GPO														EVENTOUT		Func_Grp2
6	E2	1	1 1	PH2		EIRQ2		GPO	FCMREF	TIM4_2_CLK		TIMA_4_PWM7		EMB_IN4		SDIO2_D4	I2S3_EXCK					EVENTOUT		Func_Grp2
7	C1	2	2 2	PC13		EIRQ13		GPO	RTC_OUT			TIMA_4_PWM8				SDIO2_C	12S3_MCK				EVNTP313			Func_Grp2
8	D1	3	3 3	PC14	XTAL32_OUT	EIRQ14		GPO				TIMA_4_PWM5									EVNTP314			
9	E1	4	4 4	PC15	XTAL32_IN	EIRQ15		GPO				TIMA_4_PWM6									EVNTP315			
10	F2			vss																				
11	G2	-		vcc																				
12	F1	5	5 5	PH0	XTAL_EXT/XTAL_OUT	EIRQ0		GPO					TIMA_5_PWM3											
13	G1	6	6 6	PH1	XTAL_IN	EIRQ1		GPO					TIMA_5_PWM4											
14	H2	7	7 7	NRST																				
15	H1	8	8 –	PC0	ADC12_IN10/CMP3_INP3	EIRQ0		GPO				TIMA_2_PWM5				SDIO2_D					EVNTP300	EVENTOUT		Func_Grp1
16	J2	9	9 –	PC1	ADC12_IN11	EIRQ1		GPO				TIMA_2_PWM6				SDIO2_D6					EVNTP301	EVENTOUT		Func_Grp1
17	J3	10	10 –	PC2	ADC1_IN12	EIRQ2		GPO				TIMA_2_PWM7		EMB_IN3		SDIO2_D7					EVNTP302	EVENTOUT		Func_Grp1
18	K2	11		PC3	ADC1_IN13/CMP1_INM2	EIRQ3		GPO				TIMA_2_PWM8				SDIO1_WF	,				EVNTP303	EVENTOUT		Func_Grp1
19	-	-		vcc																				
20	J1	12	11 8	AVSS																				
-	K1	-		VREFL																				
21	L1	-		VREFH																				
22	M1	13	12 9	AVCC																				
23	L2	14	13 10	PA0	ADC1_IN0/CMP1_INP1	EIRQ0/WKUP0_0		GPO		TIM4_2_OUH		TIMA_2_PWM1/TIMA_2_CLKA		TIMA_2_TRIG	SPI1_SS1	SDIO2_D4					EVNTP100	EVENTOUT		Func_Grp1
24	M2	15	14 11	PA1	ADC1_IN1/CMP1_INP2	EIRQ1		GPO		TIM4_2_OUL		TIMA_2_PWM2/TIMA_2_CLKB	TIMA_3_TRIG		SPI1_SS2	SDIO2_D	;				EVNTP101	EVENTOUT		Func_Grp1
25	К3	16	15 12	PA2	ADC1_IN2/CMP1_INP3	EIRQ2		GPO		TIM4_2_OVH		TIMA_2_PWM3	TIMA_5_PWM1/TIMA_5_CLKA		SPI1_SS3	SDIO2_D6					EVNTP102	EVENTOUT		Func_Grp1
26	L3		16 13	PA3	ADC1_IN3/PGAVSS/CMP1	EIRQ3		GPO		TIM4_2_OVL		TIMA_2_PWM4	TIMA_5_PWM2/TIMA_5_CLKB			SDIO2_D7					EVNTP103	EVENTOUT		Func_Grp1
			10 10		_INP4	Litte		0.0		TIWI4_Z_OVE		1100 <u>2</u> 2 7 VW	TIME COLORD			05102_51			<u> </u>			EVENTOOT		T dilo_Gip1
27		18		AVSS															<u> </u>					
	E3	-		NC																				
28				AVCC	ADC12_IN4/CMP2_INP1/																			
29	M3	20	17 14	PA4	CMP3_INP4	EIRQ4		GPO		TIM4_2_OWH			TIMA_3_PWM5		USART2_CK KE	YOUT0	I2S1_EXCK				EVNTP104	EVENTOUT		Func_Grp1
30	K4	21	18 15	PA5	ADC12_IN5/CMP2_INP2	EIRQ5		GPO		TIM4_2_OWL		TIMA_2_PWM1/TIMA_2_CLKA	TIMA_3_PWM6	TIMA_2_TRIG	KE	YOUT1	I2S1_MCK				EVNTP105	EVENTOUT		Func_Grp1
31	L4	22	19 16	PA6	ADC12_IN6/CMP2_INP3	EIRQ6		GPO					TIMA_3_PWM1/TIMA_3_CLKA	EMB_IN2	KE	YOUT2 SDIO1_CN	ID				EVNTP106	EVENTOUT		Func_Grp1
32	M4	23	20 17	PA7	ADC12_IN7/CMP1_INM1/ CMP2_INM1/CMP3_INM1	EIRQ7		GPO		TIM4_1_OUL	TIM6_1_PWM	B TIMA_1_PWM5	TIMA_3_PWM2/TIMA_3_CLKB	EMB_IN3	KE	YOUT3 SDIO2_WF	,				EVNTP107	EVENTOUT		Func_Grp1
33	K5	24	21 –	PC4	ADC1_IN14/CMP2_INM2			GPO		TIM4_2_OUH			TIMA_3_PWM7		USART1_CK	SDIO2_CI)				EVNTP304	EVENTOUT		Func_Grp1
34	L5		22 –	PC5	ADC1_IN15/CMP3_INM2			GPO		TIM4_2_OUL			TIMA_3_PWM8			SDIO2_CN			<u> </u>		EVNTP305	EVENTOUT		Func_Grp1
35	M5		23 18	PB0	ADC12_IN8/CMP3_INP1	EIRQ0		GPO		TIM4_1_OVL	TIM6 2 PWM	B TIMA_1_PWM6	TIMA_3_PWM3		USART4_CK KE	YOUT4 SDIO2_CN					EVNTP200	EVENTOUT		Func_Grp1
36	M6		24 19	PB1	ADC12_IN9/CMP3_INP2	EIRQ1/WKUP0_1		GPO		TIM4_1_OWL		B TIMA_1_PWM7	TIMA_3_PWM4			YOUT5 SDIO2_D3					EVNTP201	EVENTOUT		Func_Grp1
37	L6		25 20	PB2	PVD2EXINP	EIRQ2/WKUP0_2		GPO	VCOUT123		TIM6_TRIGB			EMB_IN1	QSPI_QSIO3	SDIO2_D2					EVNTP202	EVENTOUT		Func_Grp1
38	M7	·····		PE7		EIRQ7		GPO	ADTRG1		TIM6_TRIGA				USART1_CK							EVENTOUT		r
39	L7			PE8		EIRQ8		GPO	1 - 1 - 1 - 1	TIM4_1_OUL		B TIMA_1_PWM5										EVENTOUT		
40	M8			PE9		EIRQ9		GPO		TIM4_1_OUH		A TIMA_1_PWM1/TIMA_1_CLKA							<u> </u>	<u> </u>		EVENTOUT		
41	L8			PE10		EIRQ10		GPO		TIM4_1_OVL		B TIMA_1_PWM6							 	<u> </u>		EVENTOUT		
42	M9			PE11		EIRQ11		GPO		TIM4_1_OVH		A TIMA_1_PWM2/TIMA_1_CLKB										EVENTOUT		
43	L9			PE12		EIRQ11		GPO		TIM4_1_OWL		B TIMA_1_PWM7			SPI1_SS1							EVENTOUT		Func Grn2
····	M10			PE12		EIRQ12		GPO		TIM4_1_OWL		A TIMA_1_PWM3			SPI1_SS1					 		EVENTOUT		Func_Grp2 Func_Grp2

LOEDIOO N	EBGA100	LOEDS4 O	NENEO LO	OED/OEN48 Pin	Apples	EIRQ/WKUP TRACE/JTAG/	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16~31	Func32~63
LQFPIOU	PEGATOO	LQFP64 Q	PN60 LC	QFP/QFN48 Name	Analog	SWD	GPO	other	тім4	тім6	ТІМА	TIMA	ЕМВ,ТІМА	USART/SPI/QSPI	KEY	SDIO	USBFS/I2S	-	-	-	EVNTPT	EVENTOUT	-	Communication Funcs
45	M11	-	-	- PE14		EIRQ14	GPO		TIM4_1_CLK		TIMA_1_PWM4			SPI1_SS3		SDIO1_CD						EVENTOUT		Func_Grp2
46	M12	-	26	- PE15		EIRQ15	GPO				TIMA_1_PWM8	TIMA_5_TRIG	EMB_IN2	USART4_CK		SDIO1_WP						EVENTOUT		Func_Grp2
47	L10	29	27	21 PB10		EIRQ10	GPO	ADTRG2	TIM4_2_OVH		TIMA_2_PWM3	TIMA_5_PWM8		QSPI_QSIO2		SDIO1_D7	I2S3_EXCK				EVNTP210	EVENTOUT		Func_Grp2
48	L11	30	28	22 VCAP_																				
49	F12	31	29	23 VSS																				
50	G12	32	30	24 VCC																				
51	L12	33	31	25 PB12		EIRQ12	GPO	VCOUT1	TIM4_2_OVL	TIM6_TRIGB	TIMA_1_PWM8		EMB_IN2	QSPI_QSIO1		SDIO2_D1	12S3_MCK				EVNTP212	EVENTOUT		Func_Grp2
52	K12	34	32	26 PB13		EIRQ13	GPO	VCOUT2	TIM4_1_OUL	TIM6_1_PWMB	TIMA_1_PWM5			QSPI_QSIO0		SDIO2_D0					EVNTP213	EVENTOUT		Func_Grp2
53	K11	35	33	27 PB14		EIRQ14	GPO	VCOUT3	TIM4_1_OVL	TIM6_2_PWMB	TIMA_1_PWM6			QSPI_QSCK		SDIO1_D6					EVNTP214	EVENTOUT		Func_Grp2
54	K10	36	34	28 PB15		EIRQ15	GPO	RTC_OUT	TIM4_1_OWL	TIM6_3_PWMB	TIMA_1_PWM7	TIMA_6_TRIG	EMB_IN4	USART3_CK		SDIO1_CK					EVNTP215	EVENTOUT		Func_Grp2
55	K9	-	_	- PD8		EIRQ8	GPO		TIM4_3_OUL			TIMA_6_PWM1/TIMA_6_CLKA		QSPI_QSIO0	KEYOUT7						EVNTP408	EVENTOUT		Func_Grp2
56	K8	-	-	- PD9		EIRQ9	GPO		TIM4_3_OVL			TIMA_6_PWM2/TIMA_6_CLKB		QSPI_QSIO1	KEYOUT6						EVNTP409	EVENTOUT		Func_Grp2
57	J12	-	-	- PD10		EIRQ10	GPO		TIM4_3_OWL			TIMA_6_PWM3		QSPI_QSIO2	KEYOUT5						EVNTP410	EVENTOUT		Func_Grp2
58	J11	-	-	- PD11		EIRQ11	GPO		TIM4_3_CLK			TIMA_6_PWM4		QSPI_QSIO3	KEYOUT4						EVNTP411	EVENTOUT		Func_Grp2
59	J10	-	-	- PD12		EIRQ12	GPO				TIMA_4_PWM1/TIMA_4_CLKA	TIMA_5_PWM5									EVNTP412	EVENTOUT		
60	H12	-	-	- PD13		EIRQ13	GPO				TIMA_4_PWM2/TIMA_4_CLKB	TIMA_5_PWM6									EVNTP413	EVENTOUT		
61	H11	-	-	- PD14		EIRQ14	GPO				TIMA_4_PWM3	TIMA_5_PWM7									EVNTP414	EVENTOUT		
62	H10	-	-	- PD15		EIRQ15	GPO				TIMA_4_PWM4	TIMA_5_PWM8									EVNTP415	EVENTOUT		
63	E12	37	-	- PC6		EIRQ6	GPO				TIMA_3_PWM1/TIMA_3_CLKA	TIMA_5_PWM8		QSPI_QSCK	KEYOUT3	SDIO1_D6					EVNTP306	EVENTOUT		Func_Grp2
64	E11	38	35	- PC7		EIRQ7	GPO		TIM4_2_CLK		TIMA_3_PWM2/TIMA_3_CLKB	TIMA_5_PWM7		QSPI_QSSN	KEYOUT2	SDIO1_D7	I2S2_EXCK				EVNTP307	EVENTOUT		Func_Grp2
65	E10	39	36	- PC8		EIRQ8	GPO		TIM4_2_OWH		TIMA_3_PWM3	TIMA_5_PWM6		USART3_CK	KEYOUT1	SDIO1_D0	I2S2_MCK				EVNTP308	EVENTOUT		Func_Grp2
66	D12	40	37	- PC9		EIRQ9	GPO	MCO_2	TIM4_2_OWL		TIMA_3_PWM4	TIMA_5_PWM5			KEYOUT0	SDIO1_D1					EVNTP309	EVENTOUT		Func_Grp1
67	D11	41	38	29 PA8		EIRQ8/WKUP2_0	GPO	MCO_1	TIM4_1_OUH	TIM6_1_PWMA	TIMA_1_PWM1/TIMA_1_CLKA			USART1_CK		SDIO1_D1	USBFS_SOF				EVNTP108	EVENTOUT		Func_Grp1
68	D10	42	39	30 PA9		EIRQ9/WKUP2_1	GPO		TIM4_1_OVH	TIM6_2_PWMA	TIMA_1_PWM2/TIMA_1_CLKB					SDIO1_D2	USBFS_VBUS				EVNTP109	EVENTOUT		Func_Grp1
69	C12	43	40	31 PA10		EIRQ10/WKUP2_2	GPO		TIM4_1_OWH	TIM6_3_PWMA	TIMA_1_PWM3	TIMA_5_TRIG				SDIO1_CD	USBFS_ID				EVNTP110	EVENTOUT		Func_Grp1
70	B12	44	41	32 PA11		EIRQ11/WKUP2_3	GPO		TIM4_1_CLK		TIMA_1_PWM4		EMB_IN1			SDIO2_CD	USBFS_DM				EVNTP111	EVENTOUT		Func_Grp1
71	A12	45	42	33 PA12		EIRQ12/WKUP3_0	GPO		TIM4_3_OWL	TIM6_TRIGA	TIMA_1_TRIG	TIMA_6_PWM1/TIMA_6_CLKA				SDIO2_WP	USBFS_DP				EVNTP112	EVENTOUT		Func_Grp1
72	A11	46	43	34 PA13		EIRQ13/WKUP3_1 JTMS_SWDIO	GPO				TIMA_2_PWM5	TIMA_6_PWM2/TIMA_6_CLKB		SPI2_SS1		SDIO2_D3					EVNTP113	EVENTOUT		Func_Grp1
73	C11	-	-	- VCAP_2																				
74	F11	47	44	35 VSS																				
75	G11	48	45	36 VCC			1																	
76	A10	49	46	37 PA14		EIRQ14/WKUP3_2 JTCK_SWCLK	GPO				TIMA_2_PWM6	TIMA_6_PWM3	TIMA_4_TRIG	SPI2_SS2		SDIO2_D2	I2S1_EXCK				EVNTP114	EVENTOUT		Func_Grp1
77	A9	50	47	38 PA15		EIRQ15/WKUP3_3 JTDI	GPO				TIMA_2_PWM1/TIMA_2_CLKA	TIMA_6_PWM4	TIMA_2_TRIG	SPI2_SS3		SDIO2_D1	I2S1_MCK				EVNTP115	EVENTOUT		Func_Grp1
78	B11	51	48	- PC10		EIRQ10	GPO		TIM4_3_OUH		TIMA_2_PWM7	TIMA_5_PWM1/TIMA_5_CLKA				SDIO1_D2					EVNTP310	EVENTOUT		Func_Grp1
79	C10	52	49	- PC11		EIRQ11	GPO		TIM4_3_OVH		TIMA_2_PWM8	TIMA_5_PWM2/TIMA_5_CLKB				SDIO1_D3					EVNTP311	EVENTOUT		Func_Grp1
80	B10	53	50	- PC12		EIRQ12	GPO		TIM4_3_OWH		TIMA_4_TRIG	TIMA_5_PWM3				SDIO1_CK					EVNTP312	EVENTOUT		Func_Grp1
81	C9	-	-	- PD0		EIRQ0	GPO	VCOUT123				TIMA_5_PWM4									EVNTP400	EVENTOUT		Func_Grp1
82	B9	-	-	- PD1		EIRQ1	GPO				TIMA_3_TRIG	TIMA_6_PWM5									EVNTP401	EVENTOUT		Func_Grp1
83	C8	54	-	- PD2		EIRQ2	GPO				TIMA_2_PWM4	TIMA_6_PWM6				SDIO1_CMD			1		EVNTP402	EVENTOUT		Func_Grp1
84	B8	-	-	- PD3		EIRQ3	GPO	VCOUT1				TIMA_6_PWM7									EVNTP403	EVENTOUT		
85	B7	-	-	- PD4		EIRQ4	GPO	VCOUT2				TIMA_6_PWM8									EVNTP404	EVENTOUT		
86	A6	-	-	- PD5		EIRQ5	GPO	VCOUT3													EVNTP405	EVENTOUT		
87	B6	-	-	- PD6		EIRQ6	GPO							USART2_CK							EVNTP406	EVENTOUT		
88	A5	-	-	- PD7		EIRQ7	GPO							USART2_CK							EVNTP407	EVENTOUT		
89	A8	55	51	39 PB3	·····	EIRQ3/WKUP0_3 JTDO_TRACES WO	GPO	FCMREF	TIM4_3_CLK		TIMA_2_PWM2/TIMA_2_CLKB	TIMA_6_PWM5				SDIO2_D0					EVNTP203	EVENTOUT		Func_Grp2
90	A7	56	52	40 PB4		EIRQ4/WKUP1_0 NJTRST	GPO		TIM4_3_OWL		TIMA_3_PWM1/TIMA_3_CLKA	TIMA_6_PWM6				SDIO1_D0		<u> </u>	<u> </u>		EVNTP204	EVENTOUT		Func_Grp2
91	C5		53	41 PB5		EIRQ5/WKUP1_1	GPO		TIM4_3_OWH		TIMA_3_PWM2/TIMA_3_CLKB	TIMA_6_PWM7				SDIO1_D3	I2S4_EXCK		·		EVNTP205	EVENTOUT		Func_Grp2
92	B5		54	42 PB6		EIRQ6WKUP1_2	GPO	ADTRG2	TIM4_3_OVL		TIMA_4_PWM1/TIMA_4_CLKA	TIMA_6_PWM8				SDIO2_CK	I2S4_MCK		 		EVNTP206	EVENTOUT		Func_Grp2
93	B4		55	43 PB7		EIRQ7/WKUP1_3	GPO	ADTRG1	TIM4_3_OVH		TIMA_4_PWM2/TIMA_4_CLKB					SDIO1_D0			 		EVNTP207	EVENTOUT		Func_Grp2
94	A4		56	44 PB11/N	D	NMI															EVNTP211			
95	A3		57	45 PB8		EIRQ8	GPO		TIM4_3_OUL		TIMA_4_PWM3				KEYOUT7	SDIO1 D4	USBFS_DRVVBUS		1		EVNTP208	EVENTOUT		Func_Grp2

LOFP1	00 VFBGA10	LOFP64	OFN60	LOFP/OFN4	8 Pin	Analog	EIRQ/WKUP	TRACE/JTAG/	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16~31	Func32~63
					Name			SWD	GPO	other	TIM4	ТІМ6	TIMA	ТІМА	EMB,TIMA	USART/SPI/QSPI	KEY	SDIO	USBFS/I2S	-	-	-	EVNTPT	EVENTOUT	-	Communication Funcs
96	В3	62	58	46	PB9		EIRQ9		GPO		TIM4_3_OUH		TIMA_4_PWM4	TIMA_6_TRIG		SPI2_SS1	KEYOUT6	SDIO1_D5					EVNTP209	EVENTOUT		Func_Grp2
97	СЗ	_	_	-	PE0		EIRQ0		GPO	MCO_1			TIMA_4_TRIG			SPI2_SS2								EVENTOUT		Func_Grp2
98	A2	_	_	-	PE1		EIRQ1		GPO	MCO_2	TIM4_3_CLK					SPI2_SS3								EVENTOUT		Func_Grp2
99	D3	63	59	47	VSS																					
100	C4	64	60	48	VCC																					
_	НЗ	_	_	_	NC																					

Notes:

-Func32~63 In the above table, there are 64 pins support Func32~63 function selection, Func32~63 mainly for serial communication function (including USART, SPI, I2C, I2S, CAN) divided into two groups Func_Grp1, Func_Grp2. Please refer to Table 2-2 for details.

Table 2-2 Func32~63 Table

	Func32	Func33	Func34	Func35	Func36	Func37	Func38	Func39	Func40	Func41	Func42	Func43	Func44	Func45	Func46	Func47
Func_Grp1	USART1_TX	USART1_RX	USART1_RTS	USART1_CTS	USART2_TX	USART2_RX	USART2_RTS	USART2_CTS	SPI1_	SPI1_MISO	SPI1_SS0	SPI1_SCK	SPI2_	SPI2_MISO	SPI2_SS0	SPI2_SCK
									MOSI				MOSI			1
Func_Grp2	USART3_TX	USART3_RX	USART3_RTS	USART3_CTS	USART4_TX	USART4_RX	USART4_RTS	USART4_CTS	SPI3_	SPI3_MISO	SPI3_SS0	SPI3_SCK	SPI4_	SPI4_MISO	SPI4_SS0	SPI4_SCK
									MOSI				MOSI			1

	Func48	Func49	Func50	Func51	Func52	Func53	Func54	Func55	Func56	Func57	Func58	Func59	Func60	Func61	Func62	Func63
Func_Grp1	I2C1_SDA	I2C1_SCL	I2C2_SDA	I2C2_SCL	I2S1_SD	I2S1_SDIN	I2S1_WS	I2S1_CK	12S2_SD	I2S2_SDIN	12S2_WS	12S2_CK				
Func_Grp2	I2C3_SDA	I2C3_SCL	CAN_TxD	CAN_RxD	12S3_SD	I2S3_SDIN	I2S3_WS	12S3_CK	I2S4_SD	I2S4_SDIN	12S4_WS	I2S4_CK				

Table 2-3 Port Configuration

D. d	Port								Bi	ts								Pin Count
Package	Group	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Total
LQFP100	PortA	0	o	o	o	o	o	o	o	o	o	o	o	o	o	o	o	16 83
VFBGA100	PortB	0	o	o	o	o	o	o	o	o	o	o	o	О	o	o	o	16
	PortC	0	o	o	o	o	o	o	o	o	o	o	o	o	o	o	o	16
	PortD	0	o	o	o	o	o	0	o	o	o	o	o	o	o	o	o	16
	PortE	0	o	o	o	0	o	0	o	0	o	0	o	o	o	o	o	16
	PortH	-	-	-	_	-	-	_	_	-	_	-	-	-	o	o	o	3
LQFP64	PortA	0	0	0	o	0	o	o	0	0	0	0	0	o	0	0	o	16 52
	PortB	0	o	o	o	o	o	o	o	o	o	o	o	o	o	0	o	16
	PortC	0	o	o	o	o	o	o	o	o	ο	o	o	ο	ο	0	o	16
	PortD	_	-	-	-	-	-	-	-	-	-	-	-	-	o	-	-	1
	PortH	-	-	-	-	-	-	_	-	-	-	-	-	-	o	o	o	3
QFN60	PortA	0	o	o	o	o	o	0	o	o	o	o	o	o	o	o	o	16 50
	PortB	0	o	o	o	o	o	o	o	o	o	o	o	o	o	o	o	16
	PortC	0	o	0	0	o	o	o	o	o	-	0	o	-	o	0	o	14
	PortE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	o	1
	PortH	-	-	-	_	-	-	_	_	-	_	-	-	-	o	o	o	3
LQFP48	PortA	0	o	0	o	0	o	o	0	o	0	0	0	0	0	0	o	16 38
QFN48	PortB	0	o	0	o	0	o	0	0	0	0	0	0	ο	0	0	o	16
	PortC	0	o	o	_	_	-	_	_	_	_	-	-	-	-	_	-	3
	PortH	-	-	-	_	_	-	_	_	_	_	-	-	-	o	o	o	3
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Table 2-4 General Function Specifications

Port		Pull up	Open Drain Output	Drive Capability	5V withstand voltage	Remarks
PortA	PA0~PA10 PA13~PA15	Support	Support	Low, Medium, High	Support *	
	PA11, PA12	Support	Support	Low, Medium, High	Not supported	
PortB	PB0~PB10, PB12~PB15	Support	Support	Low, Medium,	Support *	
	PB11	Support	_	_	Support	Input dedicated
PortC	PC0~PC15	Support	Support	Low, Medium, High	Support *	
PortD	PD0~PD15	Support	Support	Low, Medium, High	Support	
PortE	PE0~PE15	Support	Support	Low, Medium, High	Support	
PortH	PH0~PH2	Support	Support	Low, Medium, High	Support	

Notes:

-When used as an analog function, the input voltage must not be higher than VREFH/AVCC.

2.3 Pin

Function

Table 2-5 Pin Function Description

Description

Cat	Functi	I/O	Des
ego	on		crip
ry	Name		tion
Power	VCC	ı	Power supply
	VSS	ı	Power Ground
	VCAP_1~2	Ю	Kernel Voltage
	AVCC	ı	Analog Power
	AVSS	ı	Analog power ground
	VREFH	ı	Analog Reference Voltage
	VREFL	ı	Analog Reference Voltage
System	NRST	I	Reset Pin, Low Active
	MD	ı	Mode Pins
PVD	PVD2EXINP	ı	PVD2 External input comparison voltage
Clock	XTAL_IN	Ю	External master clock oscillator interface
	XTAL_EXT/XTAL_OUT	Ю	XTAL_EXT External clock input
	XTAL32_IN	ı	External sub-clock (32K) oscillator interface
	XTAL32_OUT	0	
	MCO_1~2	0	Internal clock output
CDIO	GPIOxy (x= A~E,H,	10	Consequences in such and autouts
GPIO	y=0~15)	Ю	General purpose inputs and outputs
EVENTOUT	EVENTOUT	0	Cortex-M4 CPU Event Output
EIRQ	EIRQx (x=0~15)	ı	Maskable external interrupts
	WKUPx_y (x,y=0~3)	ı	PowerDown mode external wake-up input
	NMI	I	Non-maskable external interrupts
Event	EVAITDray (v=1, 4, v=0, 15)	10	Event port input and output function
Port	EVNTPxy (x=1~4, y=0~15)	Ю	Event port input and output function
Key	KEYOUTx(x=0~7)	0	KEYSCAN scan output signal
JTAG/SWD	JTCK_SWCLK	ı	Online debugging interface
	JTMS_SWDIO	Ю	
	JTDO_TRACESWO	0	
	JTDI	ı	
	NJTRST	ı	
TRACE	TRACECK	0	Track and debug synchronized clock output
	TRACED0~3	0	Trace debug data output
FCM	FCMREF	I	External reference clock input for clock frequency meter measurement
RTC	RTCOUT	0	1Hz clock output

VUCO	1. 化 少 巳 伏			
XHSC:	^ + + → 	ı	Counting clock port input	www.xhsc.com.cn
(x=1~3)	TIM4_x_OUH	Ю	PWM Port U Phase Output	

Cat	Functi	I/O	Des
ego	on		crip
ry	Name		tion
	TIM4_x_OUL	Ю	PWM Port U Phase Output
	TIM4_x_OVH	Ю	PWM port V-phase output
	TIM4_x_OVL	Ю	PWM port V-phase output
	TIM4_x_OWH	Ю	PWM Port W Phase Output
	TIM4_x_OWL	Ю	PWM Port W Phase Output
Timer6	TIM6_TRIGA	ı	External event triggers A input
(x=1~3)	TIM6_TRIGB	I	External event triggers B input
	TIM6_x_PWMA	Ю	External event trigger input or PWM port output
	TIM6_x_PWMB	Ю	External event trigger input or PWM port output
TimerA	TIMA_x_TRIG	I	External event triggered input
(x=1~6)	TIMA_x_PWM1/TIMA_x_CLKA	Ю	External event trigger input or PWM port output or count clock port input
	TIMA_x_PWM2/TIMA_x_CLKB	Ю	External event trigger input or PWM port output or count clock port input
	TIMA_x_PWMy (y=3~8)	Ю	External event trigger input or PWM port output
EMB	EMB_INx (x=1~4)	I	Groupx (x=1~4) port input control signal
USARTx	USARTx_TX	Ю	Sending data
(x=1~4)	USARTx_RX	Ю	Receiving data
	USARTx_CK	Ю	Communication Clock
	USARTx_RTS	0	Request to send a signal
	USARTx_CTS	ı	Clear send signal
SPIx	SPIx_MISO	Ю	Master input/slave output data transfer pins
(x=1~4)	SPIx_MOSI	Ю	Master output/slave input data transfer pins
	SPIx_SCK	Ю	Transmission Clock
	SPIx_SS0	Ю	Slave select input and output pins
	SPIx_SS1~3	0	Slave select output pins
QSPI	QSPI_QSIO0~3	Ю	Data Cable
	QSPI_QSCK	0	Clock Output
	QSPI_QSSN	0	Slave Selection
I2Cx	I2Cx_SCL	Ю	Clock Lines
(x=1~3)	I2Cx_SDA	Ю	Data Cable
I2Sx	I2Sx_SD	Ю	Serial Data
(x=1~4)	I2Sx_SDIN	I	Full duplex serial data input
	I2Sx_WS	Ю	Word selection
	I2Sx_CK	Ю	Serial Clock
	I2Sx_EXCK	ı	External clock source
	I2Sx_MCK	0	Master Clock
CAN	CAN_TxD	0	Sending data
	CAN_RxD		Receiving data

SDIOx

SDIOx_Dy (y=0~7) IO SD data signal

Cat	Functi	I/O	Des
ego	on		crip
ry	Name		tion
	SDIOx_CK	0	SD clock output signal
	SDIOx_CMD	Ю	SD command and reply signals
	SDIOx_CD	ı	SD card recognition status signal
	SDIOx_WP	ı	SD card write protect status signal
USBFS	USBFS_DM	Ю	USBFS on-chip full-speed PHY D-signal
	USBFS_DP	Ю	USBFS on-chip full-speed PHY D+ signal
	USBFS_VBUS	ı	USBFS VBUS signal
	USBFS_ID	ı	USBFS ID signal
	USBFS_SOF	0	USBFS SOF pulse output signal
	USBFS_DRVVBUS	0	USBFS VBUS driver license signal
CMPx	VCOUT1	0	Analog comparison channel 1 result output
(x=1~3)	VCOUT2	0	Analog comparison channel 2 result output
	VCOUT3	0	Analog comparison channel 3 result output
	VCOUT123	0	Analog comparison channel 1~3 Result OR output
	CMPx_INPy	ı	Analog comparator channel x positive voltage y input
	CMPx_INMy	ı	Analog comparator channel x negative voltage y input
ADC	ADTRG1	I	ADC1 AD conversion external start source
	ADTRG2	I	ADC2 AD conversion external start-up source
	ADC1_INx (x=0~3,12~15)	I	ADC1 external analog input port
	ADC12_INx (x=4~11)	I	ADC1 and ADC2 share an external analog input port
	PGAVSS	ı	PGA Ground input

2.4 Pin Usage

Instructions

Table 2-6 Pin Usage Description

Pin Name	Instructions for use
VCC	Power supply, connect 1.8V~3.6V voltage and connect decoupling capacitor with VSS
	pin nearby (refer to electrical characteristics)
VSS	Power ground, connected to 0V
VCAP_1~2	Kernel voltage, connect capacitor to VSS pin nearby to stabilize kernel voltage (refer to electrical
	characteristics)
AVCC	Analog power supply for analog modules, connected to the same
	voltage as VCC (refer to electrical characteristics) Shorted to VCC
	when not using analog modules
AVSS/VREFL	Analog power ground/reference voltage, connected to the
	same voltage as AVSS (reference electrical characteristics)
	Shorted to VSS when not using the analog module
VREFH	ADC1, ADC2 analog reference voltage, connected to a
	voltage not higher than AVCC when not using the ADC,
	please short with AVCC
PB11/MD	Mode input, fixed to the input state. This pin must be fixed high when the reset pin (NRST) is
	released (changed from low to high). Recommended connection resistor (4.7KΩ) to VCC (pull-
	up)
NRST	Reset pin, active low. Connect resistor to VCC (pull-up) when not in use
Pxy, x=A~E,H,	General purpose pins. When used as input function, the input voltage should not
y=0~15	exceed 5V. when used as analog input, the analog voltage should not exceed
	VREFH/AVCC
	Suspend when not in use or connect resistor to VCC (pull-up)/VSS (pull-down)

3 Electrical Characteristics (ECs)

3.1 Parameter Conditions

All voltages are referenced to VSS if not otherwise specified.

3.1.1 Minimum and maximum values

Unless otherwise noted, all device minimum and maximum values are guaranteed by design or characterization testing under worst-case ambient temperature, supply voltage, and clock frequency conditions.

3.1.2 Typical values

Unless otherwise noted, typical data is obtained by design or characterization testing at $_{TA}$ = 25 $^{\circ}$ C and VCC = 3_3 V.

3.1.3 Typical Curve

Unless otherwise noted, all typical curves are untested and are for design reference only.

3.1.4 Load capacitance

The load conditions used to measure the pin parameters are shown in Figure 3-1 (left).

3.1.5 Pin Input Voltage

The measurement of the input voltage on the device pins is shown in Figure 3-1 (right).

Figure 3-1 Pin load condition (left) and input voltage measurement (right)

3.1.6 Power Solutions

Figure 3-3 Power Supply Solution (HC32F460KETA-LQFP64)

Figure 3-4 Power Supply Solution (HC32F460KEUA-QFN60TR/HC32F460JETA-LQFP48/HC32F460JEUA-QFN48TR)

- 1. The 4.7µF ceramic capacitor must be connected to one of the VCC pins.
- 2. AVSS = VSS.
- 3. Each power pair (e.g. VCC/VSS, AVCC/AVSS ...) must be decoupled using the filtering ceramic capacitors described above. These capacitors must be as close or as low as possible to the appropriate pins below the PCB to ensure proper device operation. Removing the filtering capacitors to reduce PCB size or cost is not recommended. This may cause the device to operate improperly.
- 4. The capacitors used in the VCAP_1/VCAP_2 pins of the chip are as follows: 1) For chips with both VCAP_1 and VCAP_2 pins, each pin can use 0.047uF or 0.1uF capacitors (total

capacity is 0.094uF or 0.2uF)

- (2) For chips with only VCAP_1 pin, 0.1uF or 0.22uF capacitor can be used. When waking up from power-down mode, VCAP_1/VCAP_2 needs to be charged during the core voltage build-up. On the one hand, a smaller total VCAP_1/VCAP_2 capacity reduces the charge time and brings fast response time to the application; on the other hand, a larger total VCAP_1/VCAP_2 capacity extends the charge time, but also provides better electromagnetic compatibility (EMC). The user can choose a larger or smaller capacitance value depending on the EMC and system response speed requirements. The total capacity of VCAP_1/VCAP_2 must match the assignment of PWC_PWRC3.PDTS bit. 0.2uF or 0.22uF for VCAP_1/VCAP_2, make sure the PWC_PWRC3.PDTS bit is cleared before entering power-down mode. If the total capacity of VCAP_1/VCAP_2 is 0.094uF or 0.1uF, you need to ensure the PWC_PWRC3.PDTS bit is cleared before entering power-down mode.
- 5. The stability of the main regulator is achieved by connecting an external capacitor to the VCAP_1 (or VCAP_1/VCAP_2) pin. The capacitance value CEXT is determined according to the stability requirements of the system. The capacitance value CEXT and ESR requirements are as follows:

Table 3-1 VCAP_1/VCAP_2 Operating Conditions

3.1.7 Current consumption measurement

Figure 3-5 Current consumption measurement scheme

3.2 Absolute maximum rating

If the loads applied to the device exceed the absolute maximum ratings listed in Table 3-2 Voltage Characteristics, Table 3-3 Current Characteristics, and Table 3-4 Thermal Characteristics, the device may be permanently damaged. These values are rated stresses only and do not imply that the device functions properly under these conditions. Prolonged operation at maximum rated conditions may affect the reliability of the device.

Symbol Minimum Maxi Unit Proj value s ects mum value External mains supply voltage (including AVCC, -0.3 4.0 VCC-VSS VCC)(1) Input voltage on 5V withstand voltage pins⁽²⁾ VSS-0.3 VCC+4.0 (max. 5.8V) VIN On PA11/USBFS_DM and PA12/USBFS_DP VSS-0.3 4.0 pins The input voltage of Electrostatic discharge voltage (human model) Please refer to 3.3.5 Electrical VESD(HBM) Sensitivity

Table 3-2 Voltage Characteristics

- 1. All mains (VCC, AVCC) and ground (VSS, AVSS) pins must always be connected to an external power supply, within the allowed limits.
- 2. The maximum value of VIN must always be followed. See Table 3-3 for information on the maximum allowable injection current values.

Sym	Proj	Maxi	Unit
bols	ects	mum	
		value	
ΣΙVCC	Total current flowing into all vccx power lines (pull current)(1)	240	
ΣIVSS	Total current flowing out of all vssx grounding lines (potting current) (1)	-240	
IVCC	Maximum current (pull current) flowing into each vccx power line (1)	100	
IVSS	Maximum current flowing out of each vssx grounding line (potting current)	-100	mA
IIO	Output supply current for any I/O and control pins	40	
	Output pull current for arbitrary I/O and control pins	-40	
ΣΙΙΟ	Total output supply current on all I/O and control pins	120	
20	Total output pull current on all I/O and control pins	-120	

Table 3-3 Current Characteristics

 All mains (VCC, AVCC) and ground (VSS, AVSS) pins must always be connected to an external power supply, within the allowed limits.

Table 3-4 Thermal Characteristics

Sym	Proj	Nu	Unit
bols	ects	mer	
		ical	
		valu	
		е	
TSTG	Storage temperature range	-55 to +125	°C
TJ	Maximum junction temperature	125	°C

3.3 Working conditions

3.3.1 General working conditions

Table 3-5 General working conditions

Symbol	Par	Con	Minim	Typical	Maximu	Unit
s	ame	diti	um	values	m value	
	ters	ons	value			
		Ultra-high-speed mode [1] PWRC2.DVS=00 PWRC2.DDAS=1111	0	_	200	
fHCLK	Internal AHB clock frequency	High-speed mode [1] PWRC2.DVS=11 PWRC2.DDAS=1111	0	_	168	MHz
		Ultra low speed mode PWRC2.DVS=10 PWRC2.DDAS=1000	0	_	8	
VCC	Standard working voltage	-	1.8	_	3.6	
VAVCC ⁽²⁾	Analog operating voltage	_	1.8	_	3.6	
VIN	Input voltage on 5V withstand voltage pins	2 V ≤ VCC ≤ 3.6 V VCC ≤ 2 V	-0.3 -0.3	_	5.5 5.2	٧
	pa11/usbfs_dm pa12/usbfs_dp Input voltage of the pin		-0.3	_	VCC+0.3	
TJ	Junction temperature range		-40	_	125	°C

- 1. Mass production test guarantee.
- 2. If the VREFH pin is present, the following condition must be considered: $_{VAVCC}-_{VREFH}<1.2\ V.$
- 3. To keep the voltage above VCC+0.3, the internal pull-up/down resistors must be disabled.

3.3.2 Operating conditions at power-up / power-down

TA obeys general working conditions.

Table 3-6 Operating conditions at power-up/power-down

Sym bols	Parameters	Minim um value	Maximum value	Unit
tVCC	VCC Rise Time Rate	20	20000	
	VCC down time rate	20	20000	µs/V

3.3.3 Reset and power control module features

Table 3-7 Reset and Power Control Module Characteristics

Symbol	Parame		Con	Minim	Typic	Maxi	Unit
S	ters		diti	um	al	mum	
			ons	value	value	value	
					S		
		Super speed	ICG1.BOR_LEV[1:0]=00	1.88	1.99	2.09	V
VBOR	Monitorin	mode	ICG1.BOR_LEV [1:0]=01	1.99	2.09	2.20	V
	g voltage		ICG1.BOR_LEV [1:0]=10	2.09	2.20	2.30	V
	of the		ICG1.BOR_LEV [1:0]=11	2.30	2.40	2.51	V
	BOR	High speed	ICG1.BOR_LEV[1:0]=00	1.80	1.90	2.00	V
		mode ultra-	ICG1.BOR_LEV [1:0]=01	1.90	2.00	2.10	V
		low speed	ICG1.BOR_LEV [1:0]=10	2.00	2.10	2.20	V
		mode	ICG1.BOR_LEV [1:0]=11	2.20	2.30	2.40	V
		Super speed	PVD1LVL[2:0]=000	1.99	2.09	2.20	V
		mode	PVD1LVL[2:0]=001	2.09	2.20	2.30	V
			PVD1LVL[2:0]=010	2.30	2.40	2.51	V
VPVD1	PVD1		PVD1LVL[2:0]=011	2.54	2.67	2.79	V
	monitoring		PVD1LVL[2:0]=100	2.65	2.77	2.90	V
	voltage(3)		PVD1LVL[2:0]=101	2.75	2.88	3.00	V
			PVD1LVL[2:0]=110	2.85	2.98	3.11	V
			PVD1LVL[2:0]=111	2.96	3.08	3.21	V
		High speed	PVD1LVL[2:0]=000	1.90	2.00	2.10	V
		mode Ultra	PVD1LVL[2:0]=001	2.00	2.10	2.20	٧
		low speed	PVD1LVL[2:0]=010	2.20	2.30	2.40	٧
		mode	PVD1LVL[2:0]=011	2.43	2.55	2.67	٧
			PVD1LVL[2:0]=100	2.53	2.65	2.77	V
			PVD1LVL[2:0]=101	2.63	2.75	2.87	V
			PVD1LVL[2:0]=110	2.73	2.85	2.97	V
			PVD1LVL[2:0]=111	2.83	2.95	3.07	V
	D) /D2	Super speed	PVD2LVL[2:0]=000	2.09	2.20	2.30	V

	_		•	Minim	- •		
Symbol			Con		Typic	Maxi	Unit
S	meter		diti	um	al	mum	
	S		ons	value	value	value	
			PVD2LVL[2:0]=011	2.65	s 2.77	2.90	V
			PVD2LVL[2:0]=100	2.75	2.88	3.00	V
			PVD2LVL[2:0]=101	2.85	2.98	3.11	V
			PVD2LVL[2:0]=110	2.96	3.08	3.21	V
			PVD2LVL[2:0]=111 ⁽²⁾	1.05	1.15	1.25	V
		High speed	PVD2LVL[2:0]=000	2.00	2.10	2.20	V
		mode Ultra	PVD2LVL[2:0]=001	2.20	2.30	2.40	V
		low speed	PVD2LVL[2:0]=010	2.43	2.55	2.67	V
		mode	PVD2LVL[2:0]=011	2.53	2.65	2.77	V
			PVD2LVL[2:0]=100	2.63	2.75	2.87	V
			PVD2LVL[2:0]=101	2.73	2.85	2.97	V
			PVD2LVL[2:0]=110 (1)	2.83	2.95	3.07	V
			PVD2LVL[2:0]=111 ⁽²⁾	1.00	1.10	1.20	V
	PVD1,2						
Vpvdhys	of			_	100	_	mV
t	hysteresis (3)						
_{VPOR} (1)	Power-	Rise along VPOF	1.60	1.68	1.76	V	
VION	up/power-	Descent along th	1.56	1.64	1.72	V	
	down						
	reset						
	threshold						
VPORhy	POR			-	40	_	mV
st	Hysteresi s						
	Inrush						
	current						
IRUSH	when the			_	100	150	mA
	regulator is						
	powered						
	up (POR						
	or from						
	standby						
	call)						
	(wake up)						
TNRST	NRST			500	_	_	ns
	reset				_	_	115
	minimum						
	width						

TIPVD1	PVD1	300	380	460	μs
	reset		000	100	μο
	release				
	time				
TIPVD2	PVD2	300	380	460	
	reset	300	360	400	μs
	release				
	time				
TINRST	NRST	25	25	50	
	reset	25	35	50	μs
	release				
	time				
TRIPT	Internal	440	460	200	
	reset time	140	160	200	μs
TRSTBOR	BOR	4.40	500	0.10	
	reset	440	520	610	μs
	release				
	time				
TRSTPOR	Power-		0500	0000	
	on reset	_	2500	3000	μs
	release				
	time				

- 1. Mass production test guarantee.
- 2. When PVD2LVDL[2:0] = 111, the comparison voltage is the external input comparison voltage of the PVD2EXINP pin.
- 3. PVD1 monitoring voltage is the monitoring voltage when the VCC voltage drops; PVD2 monitoring voltage is the monitoring voltage when the PVDEXINP voltage drops when PVD2LVL[2:0] is set to 111, and PVD2 monitoring voltage is the monitoring voltage when the VCC voltage drops when PVD2LVD[2:0] is set to a value other than 111.
- 4. The hysteresis of PVD1,2 is the difference between the monitoring voltage when VCC is rising and the monitoring voltage when VCC is falling. PVD1 monitoring voltage when VCC is rising =

Vpvd1+Vpvdhyst.

PVD2 monitoring voltage when VCC rises = Vpvd2+Vpvdhyst.

3.3.4 Supply current characteristics

Current consumption is affected by several parameters and factors, including operating voltage, ambient temperature, 1/0 pin load, device software configuration, operating frequency, 1/0 pin switching rate, program location in memory, and the code being run.

The current consumption measurements are described in Figure 3-5 Current consumption measurement scheme. The current consumption measurements for the various modes of operation described in this section are derived from a set of test codes running in FLASH under laboratory conditions.

The specific conditions are as follows:

- 1) All 1/0 pins are in input mode with static values (no loadon VCC or VSS.
- 2) The clock frequency is selected from ultra-high speed mode fHCLK=200MHz, high speed mode fHCLK=168MHz/120MHz/24MHz and ultra-low speed mode fHCLK=8MHz/1MHz.
- 3) The power consumption modes are: normal operation mode ICC_RUN, sleep mode ICC_SLEEP, stop mode ICC_STP, power-down mode ICC_PD and Dhrystone operation mode ICC_DHRYSTONE.
- 4) Peripheral clock ON/OFF Please refer to the specific current test items.
- 5) PLL is on in Super High Speed mode fHCLK=200MHz, High Speed mode fHCLK=168MHz/120MHz.

Table 3-8 Ultra High Speed Mode Current Consumption

Mode	Parameter	Symbol	Con diti	Та		Product Specific ations		Uni t
			ons	(°C)	Min	Typ(1)	Max ⁽²⁾	
Sup er	fHCLK= 200MHz	ICC_RUN	while(1),Full module clock OFF	-40	_	16	I	mA
d mod			while(1),full module clock ON	-40	-	29	-	mA
e		IOO DUDVOTONE	CACHE OFF	-40	_	17	_	mA
		ICC_DHRYSTONE	CACHE ON	-40	_	19	1	mA
		ICC_SLEEP	Full module clock OFF	-40	-	11	-	mA
			Full modular clock ON	-40	-	24	-	mA
		ICC_RUN	while(1),Full module clock OFF	25	-	16	-	mA
			while(1),full mode Block clock ON	25	-	29	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	_	17	-	mA
			CACHE ON	25	_	19	_	mA
		ICC_SLEEP	Full module clock OFF	25	_	11	ı	mA
			Full modular clock ON	25	-	24	-	mA
		ICC_RUN	while(1),Full module clock OFF	85	-	_	22	mA
			while(1),full mode Block clock ON	85	_	_	35	mA
		100 DUDY07015	CACHE OFF	85	_	_	22	mA
		ICC_DHRYSTONE	CACHE ON	85	_	_	25	mA
		ICC_SLEEP	Full module clock OFF	85	_	_	17	mA
			Full modular clock ON	85	-	_	30	mA
		ICC_RUN	while(1),full mode Block clock OFF	105	-	_	25	mA

			while(1),full mode Block clock ON	105	i	ı	39	mA
		IOO DUDVOTONE	CACHE OFF	105	-	-	24	mA
	ICC_DHRYSTONE	CACHE ON	105	1	ı	29	mA	
	ICC_SLEEP	Full module clock OFF	105	1	. 1	21	mA	
			Full modular clock ON	105	-	_	34	mA

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V

Table 3-9 High-speed

Mode	Parameter	Symbol	Con diti	Та		Product Specific ations		Unit
			ons	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	
High	fHCLK=	IOO BUN	while(1),Full module clock OFF	-40	_	13	1	mA
spe ed	168MHz	ICC_RUN	while(1),full module clock ON	-40	_	23	-	mA
mod		100 51151/07015	CACHE OFF	-40	_	14	-	mA
е		ICC_DHRYSTONE	CACHE ON	-40	_	15	-	mA
			Full module clock OFF	-40	_	9	-	mA
		ICC_SLEEP	Full modular clock ON	-40	_	19	_	mA
		ICC_RUN -	while(1),Full module clock OFF	25	_	13	_	mA
		while(1),full module Clock ON	25	_	23	1	mA	
			CACHE OFF	25	_	14		mA
	ICO	ICC_DHRYSTONE	CACHE ON	25	_	15	_	mA
		ICC_SLEEP	Full module clock OFF	25	_	9	_	mA
			Full modular clock ON	25	_	19	_	mA
			while(1),Full module clock OFF	85	-	_	18	mA
		ICC_RUN	while(1),full module Clock ON	85	-	_	28	mA
			CACHE OFF	85	_	-	18	mA
		ICC_DHRYSTONE	CACHE ON	85	_	_	20	mA
		100 01 550	Full module clock OFF	85	_	_	14	mA
		ICC_SLEEP	Full modular clock ON	85	_	_	24	mA
		ICC_RUN	while(1),full module Clock OFF	105	-	_	20	mA
		IOO_IOON	while(1),full module Clock ON	105	-	-	31	mA
			CACHE OFF	105	_	_	19	mA
		ICC_DHRYSTONE	CACHE ON	105	_	_	23	mA
		100 0:	Full module clock OFF	105	_	_	17	mA
	ICC_SLEEP		Full modular clock ON	105	_	_	27	mA

- 1. Typ Voltage condition VCCT3.BYe 3-9 High-speed
- 2. Max Voltage Condition VCC=1.8~3.6V

Table 3-75 High-speed

Mod	Parameter	Symbol	Con	Та		Produc Specific		Unit
е			diti ons	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	
Hi gh	fHCLK=		while(1),Full module clock OFF	-40	-	9.5	1	mA
sp ee	120MHz	ICC_RUN	while(1),full module clock ON	-40	-	16.5	_	mA
d		IOO BUBYOTOUE	CACHE OFF	-40	_	10	_	mA
m		ICC_DHRYSTONE	CACHE ON	-40	_	11.5	-	mA
od		100 01 555	Full module clock OFF	-40	_	7	_	mA
е		ICC_SLEEP	Full modular clock ON	-40	_	14.5	_	mA
			while(1),Full module clock OFF	25	-	9.5	-	mA
		ICC_RUN	while(1),when full module ON Chung	25	-	16.5	_	mA
			CACHE OFF	25	_	10	_	mA
		ICC_DHRYSTONE	CACHE ON	25	_	11.5	_	mA
			Full module clock OFF	25	_	7	_	mA
		ICC_SLEEP	Full modular clock ON	25	_	14.5	_	mA
			while(1),Full module clock OFF	85	_	-	14	mA
		ICC_RUN	while(1),when full module ON Chung	85	-	-	22	mA
			CACHE OFF	85	_	_	14	mA
		ICC_DHRYSTONE	CACHE ON	85	_	_	17	mA
			Full module clock OFF	85	_	_	12	mA
		ICC_SLEEP	Full modular clock ON	85	_	_	20	mA
		ICC_RUN	while(1),when full module CHUNG OFF	105	-	-	16	mA
			while(1),when full module ON Chung	105	_	-	25	mA
			CACHE OFF	105	_	_	15	mA
		ICC_DHRYSTONE	CACHE ON	105	_	_	19	mA
			Full module clock OFF	105	_	_	15	mA
		ICC_SLEEP	Full modular clock ON	105	_	_	22	mA

- 1. Typ Voltage condition VCG=3b3Ve 3-76 High-speed
- 2. Max Voltage Condition VCC=1.8~3.6V

Table 3-77 High-speed

Mode	Parameter	Symbol	Con	Та		Produc Specific		Unit
			ditio ns	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	
High	fHCLK=	ICC DUN	while(1),Full module clock OFF	-40	_	3	_	mA
spe ed	24MHz	ICC_RUN	while(1),full module clock ON	-40	-	6	-	mA
mod		ICC_DHRYSTONE	CACHE OFF	-40	_	3.5	-	mA
е		ICC CLEED	Full module clock OFF	-40	-	2	_	mA
		ICC_SLEEP	Full modular clock ON	-40	_	5.5	_	mA
		ICC_RUN	while(1),full module Clock OFF	25	_	3	ı	mA
			while(1),full module Clock ON	25	_	6	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	_	3.5	_	mA
			Full module clock OFF	25	_	2	-	mA
		ICC_SLEEP	Full modular clock ON	25	_	5.5	_	mA
		ICC DUN	while(1),Full module clock OFF	85	_	_	8	mA
		ICC_RUN	while(1),full module	85	_	_	12	mA
			Clock ON					
		ICC_DHRYSTONE	CACHE OFF	85	_	_	7	mA
		ICC_SLEEP	Full module clock OFF	85	_	_	8	mA
			Full modular clock ON	85	_	-	11	mA
		ICC_RUN	while(1),Full module clock OFF	105	-	-	10	mA
		ICC_RUN	while(1),full module Clock ON	105	_	_	14	mA
		ICC_DHRYSTONE	CACHE OFF	105	_	_	8	mA
			Full module clock OFF	105	_	_	10	mA
		ICC_SLEEP	Full modular clock ON	105	_	_	14	mA

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V

Table 3-12 Ultra-low speed

Mode	Parameter	Symbol	Con diti	Та		Product Specific ations		Unit
			ons	(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	
Ultra	fHCLK= 8MHz	ICC_RUN	while(1),Full module clock OFF	-40	_	1	_	mA
spee d mod			while(1),full module clock ON	-40	_	3.5	_	mA
е		ICC_DHRYSTONE	CACHE OFF	-40	_	1.5	-	mA
		ICC_SLEEP	Full module clock OFF	-40		1.2	-	mA
			Full modular clock ON	-40	_	3.2	-	mA
		ICC_RUN m	while(1),Full module clock OFF	25	_	1	_	mA
			while(1),all Module Clock ON	25	_	3.5	_	mA
		ICC_DHRYSTONE	CACHE OFF	25	_	1.5	_	mA
		ICC_SLEEP	Full module clock OFF	25	-	1.2	-	mA
			Full modular clock ON	25	-	3.2	-	mA
		100 51111	while(1),all Module clock OFF	85	_	_	4	mA
		ICC_RUN	while(1),full module clock ON	85	_	_	6	mA
		ICC_DHRYSTONE	CACHE OFF	85	_	_	4	mA
		ICC_SLEEP	Full module clock OFF	85	_	_	3.5	mA
			Full modular clock ON	85	_	_	6	mA
		ICC_RUN	while(1),Full module clock OFF	105	_	_	6	mA
			while(1),all Module Clock ON	105	-	_	7	mA
		ICC_DHRYSTONE	CACHE OFF	105	_	_	4.5	mA

	ICC_SLEEP Table	3-15-Ultra-16w s clock OFF	peéd ⁰⁵	Ι	I	4	mA
		Full modular	105	_	_	6.5	mA
		clock ON					

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V

Table 3-13 Ultra-low speed

Mode	Parameter	Symbol	Conditions	Та		Produc		Unit
		-			_	Specific	ations	
				(°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	
l			while(1),Full	-40	_	0.7	_	mA
Ultra	fHCLK= 1MHz	ICC_RUN	module clock OFF					
low speed	TIVIMZ		while(1),full	-40				
mode			module clock ON	-40	_	2.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	_	0.9	_	mA
		ICC_SLEEP	Full module clock OFF	-40	-	0.9	_	mA
			Full modular clock ON	-40	-	2.4	_	mA
		ICC_RUN	while(1),Full module clock OFF	25	_	0.7	_	mA
			while(1),full mode	25	_	2.5	_	mA
		IOO DUDVOTONE	Block clock ON	05		0.0		•
		ICC_DHRYSTONE ICC_SLEEP	Full module clock OFF	25 25	-	0.9	_	mA mA
			Full modular clock ON	25	_	2.4	_	mA
		ICC_RUN	while(1),full mode Block clock OFF	85	-	-	4	mA
			while(1),full module clock ON	85	-	-	5	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	_	3.5	mA
		ICC_SLEEP	Full module clock OFF	85	-	-	3.5	mA
			Full modular clock ON	85	_	_	5	mA
		ICC_RUN	while(1),Full module clock OFF	105	_	_	5	mA
			while(1),full mode Block clock ON	105	-	-	5.5	mA
		ICC_DHRYSTONE	CACHE OFF	105	_	_	4	mA

ICC_SLEEP Table	3F14 ORCHAROWSpec	ed ¹⁰⁵	-	_	5	mA
	Full modular clock	105	1	-	5.5	mA
	ON					

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage condition VCC=1.8~3.6V

Table 3-14 Low Power Mode Current Consumption

M 0	Parameter	Symbol	Conditions (VCC=3.3V)	Та		Product Specific ations		Unit
d e				(°C)	Min	Typ ⁽¹⁾	Max ⁽²	
St op M od	-	ICC_ST	PWC_PWRC1.STPDAS=00	-40	_	160	-	uA
е			PWC_PWRC1.STPDAS=11	-40	_	30	_	uA
			PWC_PWRC1.STPDAS=00	25	_	220	_	uA
			PWC_PWRC1.STPDAS=11	25	_	80	_	uA
			PWC_PWRC1.STPDAS=00	85	_	_	3600	uA
			PWC_PWRC1.STPDAS=11	85	_	_	3400	uA
			PWC_PWRC1.STPDAS=00	105	_	_	4800	uA
			PWC_PWRC1.STPDAS=11 ⁽³	105	-	-	4600	uA
P ow er do	-	ICC_PD	Power down mode 1	-40	-	10	-	uA
wn			Power down mode 2	-40	_	4	_	uA
m			Power down mode 3	-40	_	1.8	-	uA
od			Power down mode 4	-40	_	1.8	ı	uA
е			Power down mode 2+XTAL32+RTC	-40	-	6	-	uA
			Power down mode 2+LRC+RTC	-40	ı	9	ı	uA
			Power down mode 1	25	_	10	_	uA
			Power down mode 2	25	_	4	_	uA
			Power down mode 3	25	-	1.8	-	uA
			Power down mode 4	25	_	1.8	-	uA
			Power down mode 2+XTAL32+RTC	25	_	6	_	uA
			Power down mode 2+LRC+RTC	25	-	9	-	uA
			Power down mode 1	85	21		21	uA
			Power down mode 2	85 – – 19		19	uA	
			Power down mode 3	85	_	_	19	uA
			Power down mode 4	85	_	_	19	uA

YES	<u></u>	小	华	半	导	体
MO	V	XIAO	HUA S	EMIC	ONDU	CTOR

Power down mode 2+XTAL32+RTC	85	ı	_	21	uA
Power down mode 2+LRC+RTC	85	ı	-	21	uA
Power down mode 1	105	_	_	35	uA

M o d	Parameter	Symbol	Conditions (VCC=3.3V)	Та		Product Specific ations		Unit
e				(°C)	Min	Typ ⁽¹⁾	Max ⁽²	
			Power down mode 2	105	ı	ı	33	uA
			Power down mode 3	105	ı	ı	30	uA
			Power-down mode 4 [3]	105	ı	ı	30	uA
			Power down mode 2+XTAL32+RTC	105	ı	ı	35	uA
			Power down mode 105 – 35 2+LRC+RTC		35	uA		

- 1. Typ Voltage condition VCC=3.3V
- 2. Max Voltage Condition VCC=1.8~3.6V
- 3. Mass production test guarantee.

Table 3-15 Analog Module Current Consumption

Item	Parameter	Symbol	Conditions (VCC=AVCC=3.3V)	Та		Product Specific ations		Unit
				(°C)	Min	Тур	Max	
Mod	_	ICC_MODUL E	XTAL oscillation mode large drive	25	1	1.8	I	mA
ule			24MHz	25	-	1	_	mA
Curr ent			Drive 16MHz in oscillation mode					
			Oscillation mode small drive 10MHz	25	_	0.8	-	mA
			Oscillation mode ultra- small drive 8MHz	25	ı	0.6	-	mA
			XTAL 32K	25	-	0.5	-	mA
			HRC	25	_	0.35	_	mA
			PLL (@480MHz)	25	_	2.3	_	mA
			PLL (@240MHz)	25	_	1.4	_	mA
			ADC	25	_	1.2	_	mA
			DAC	25	_	70	_	uA
			CMP	25	_	0.11	_	mA
			PGA	25	_	1	_	mA
			USBFS ⁽¹⁾	25	_	6	_	mA

1. Contains the current when the control section is communicating with the USBPHY.

1000

3.3.5 Electrical sensitivity

Different tests (ESD, LU) be the chip using specific measurement methods to determine its performance in terms of electrical sensitivity.

3.3.5.1 Electrostatic Discharge (ESD)

An electrostatic discharge is applied to the pins of each sample according to each pin combination. This test complies with the JESD22-A114/C101 standard.

Symbol Par Con Maxi Unit diti s ame mum value ters ons Electrostatic discharge voltage TA = +25 °C according to JESD22-A114 4000 VESD(HBM) ٧ (human model)

TA = +25 °C according to JESD22-C101

Table 3-16 ESD Characteristics

3.3.5.2 Static Latch-up

VESD(CDM)

To evaluate static Latch-up performance, two complementary static Latch-up tests are performed on the chip:

- Apply overvoltage to each power and analog input pin
- Applying current injection to other inputs, outputs

and configurable I/O pins these tests comply with

the EIA/JESD 78A CLatch-up standard.

Electrostatic discharge voltage

(charging device model)

Table 3-17 Static Latch-up Characteristics

Sym	Par	Con	Maxi	Unit
bols	ame	diti	mum	
	ters	ons	value	
LU	Static Latch-up	TA = +105 °C, JESD78A compliant	200	mA

3.3.6 Low-power mode wake-up timings

The wake-up time is measured from the wake-up event trigger to the first instruction executed by the CPU:

- For stop or sleep mode: the wakeup event is WFE.
- The WKUP pin is used to wake up from standby, stop, or sleep mode. All timings are tested at ambient temperature and VCC=3.3V.

Table 3-18 Low-power mode wake-up time

Symb	Par	Con	Typical	Maxi	Unit
ols	ame	diti	values	mum	
	ters	ons		value	
TSTOP1	Wake up from stop	PWC_PWRC1.VHRCSD=1 and	2	5	
	mode	PWC_PWRC1.VPLLSD=1, system clock is MRC, program is executed on RAM	2	3	
TSTOP2	Wake up from stop mode	The system clock is MRC and the program is executed on Flash	8	15	
TPD1 ⁽¹⁾	Wake up from power	VCAP_1/VCAP_2 total capacity is 0.094uF or 0.1uF	15	25	us
	down mode 1	VCAP_1/VCAP_2 total capacity is 0.2uF or 0.22uF	20	30	
TPD2 ⁽¹⁾	Wake up from power	VCAP_1/VCAP_2 total capacity is 0.094uF or 0.1uF	40	50	
	down mode 2	VCAP_1/VCAP_2 total capacity is 0.2uF or 0.22uF	45	55	
TPD3 ⁽¹⁾	Wake up from power	VCAP_1/VCAP_2 total capacity is 0.094uF or 0.1uF	2500	3000	
	down mode 3	VCAP_1/VCAP_2 total capacity is 0.2uF or 0.22uF	2500	3000	
TPD4 ⁽¹⁾	Wake up from power	VCAP_1/VCAP_2 total capacity is 0.094uF or 0.1uF	65	75	
	down mode 4	VCAP_1/VCAP_2 total capacity is 0.2uF or 0.22uF	70	80	

1. The total capacity of VCAP_1/VCAP_2 must match the assignment of PWC_PWRC3.PDTS bit. If the total capacity of VCAP_1/VCAP_2 is 0.2uF or 0.22uF, make sure the PWC_PWRC3.PDTS bit is cleared before entering power down mode. If the total capacity of VCAP_1/VCAP_2 is 0.094uF or 0.1uF, make sure the PWC_PWRC3.PDTS bit is cleared before entering power down mode.

3.3.7 I/O Port Features

General input/output characteristics

Table 3-19 I/O Static Characteristics

Symbo		Para	Con	Minimu	Typical	Maxi	Unit
ls		mete	diti	m value	values	mum	0
		rs	ons	III vatae	rataes	value	
VIL ⁽¹⁾	Input low le	-	1.8≤VCC≤3.6	_	_	0. ₂ VCC	V
VIH ⁽¹⁾	Input high	level	1.8≤VCC≤3.6	0. _{8VCC}	_	_	V
VHYS	Input hyste	resis	1.8≤VCC≤3.6	-	0.2	-	V
_{ILKG} (1)			VSS≤VIN≤VCC	_	_	±1	uA
ILKG	I/O input I	eakage current	$VIN = 5.5V^{(2)}$	-	_	5	uA
	\A/ I	USBFS_DP, USBFS_DM		1	1.5	ı	ΚΩ
RPU ⁽¹⁾	Weak pull-up equivalen t resistanc e	Other input pins except USBFS_DP and USBFS_DM	VIN = VSS	-	30	-	ΚΩ
	I/O min	pa11/usbfs_dm pa12/usbfs_dp	_	_	10	-	рF
CIO	I/O pin capacita nce	In addition to the PA11/USBFS_DM and PA12/USBFS_DP other inputs In pin	-	-	5	-	pF

- 1. Mass production test guarantee.
- 2. To keep the voltage above VCC+0.3 V, the internal pull-up/down resistors must be disabled.

Output

Voltage

Table 3-20 Output Voltage Characteristics

Driver settings	Sym bols	Par ame	Con diti	Minim um	Typical values	Maxi mum	Unit
Jettings	2013	ters	ons	value	rataes	value	
	_{VOL} (1)(2)	Low level output	IIO=±1.5mA, 1.8≤VCC<2.7	-	-	0.4	
Low drive	_{VOH} (1)(3)	High level output		VCC- 0.4	_	-	
	_{VOL} (1)(2)	Low level output	IIO=±3mA, 2.7≤VCC≤3.6	-	_	0.4	
	_{VOH} (1)(3)	High level output		VCC- 0.4	_	_	
	_{VOL} (1)(2)	Low level output	IIO=±6mA, 2.7≤VCC≤3.6	ı	_	1.3	v
	_{VOH} (1)(3)	High level output		VCC- 1.3	-	_	
	_{VOL} (1)(2)	Low level output	IIO=±3mA, 1.8≤VCC<2.7	-	-	0.4	
Medium	_{VOH} (1)(3)	High level output		VCC- 0.4	_	_	
drive	_{VOL} (1)(2)	Low level output	IIO=±5mA, 2.7≤VCC≤3.6	ı	_	0.4	
	_{VOH} (1)(3)	High level output		VCC- 0.4	_	_	
	_{VOL} (1)(2)	Low level output	IIO=±12mA, 2.7≤VCC≤3.6	-	_	1.3	
	_{VOH} (1)(3)	High level output		VCC- 1.3	_	_	
	_{VOL} (1)(2)	Low level output	IIO=±6mA, 1.8≤VCC<2.7	ı	_	0.4	
High drive	_{VOH} (1)(3)	High level output		VCC- 0.4	_	_	
	_{VOL} (1)(2)	Low level output	IIO=±8mA, 2.7≤VCC≤3.6	_	_	0.4	
	_{VOH} (1)(3)	High level output		VCC- 0.4	_	_	
	_{VOL} (1)(2)	Low level output	IIO=±20mA, 2.7 ≤VCC≤3.6	-	_	1.3	
	_{VOH} (1)(3)	High level output		VCC- 1.3	_	-	

- 1. Mass production test guarantee.
- 2. The IIO supply current of the device must always take into account the absolute maximum rating specified in Table 3-3. The sum of IIO ports and control pins) must

3. The IIO pull current of the device must always follow the absolute maximum ratings listed in Table 3-3, and the sum of the IIOs (IIO ports and control pins) must not exceed IVCC.

Input/output AC characteristics

Table 3-21 I/O AC Characteristics

Driver settings	Sym bols	Par ame ters	Condi tions(Minim um value	Typic al value	Maxim um value	Unit
		ters	3)	value	S	value	
			CL=30 pF, VCC≥ 2.7V	_	_	20	
	_{fmax} (IO)out	Maximum fraguancy(1)	CL=30 pF, VCC≥1.8V	_	_	10	NAU→
	max(10)0ut	Maximum frequency ⁽¹⁾	CL=10pF, VCC≥2.7V	-	_	40	MHz
Low drive			CL=10pF, VCC≥1.8V	_	_	20	
Low drive			CL=30 pF, VCC≥2.7V	_	_	15	
	tf(IO)out	Output high to low	CL=30 pF, VCC≥1.8V	-	-	25	
	_{tr} (IO)out	level fall time and output low to high level	CL=10pF, VCC≥2.7V	-	-	7.5	ns
		rise time	CL=10pF, VCC≥1.8V	_	_	15	
	_{fmax} (IO)out	O)out Maximum frequency ⁽¹⁾	CL=30 pF, VCC≥ 2.7V	_	_	45	MHz
			CL=30 pF, VCC≥1.8V	_	_	22.5	
			CL=10pF, VCC≥2.7V	-	-	90	
Medium drive			CL=10pF, VCC≥1.8V	-	_	45	
I Wediam anve			CL=30 pF, VCC≥2.7V	_	_	7.5	
	tf(IO)out	Output high to low	CL=30 pF, VCC≥1.8V		-	12	ns
	tr(IO)out	level fall time and output low to high level	CL=10pF, VCC≥2.7V	-	1	4	115
		rise time	CL=10pF, VCC≥1.8V	_	-	7.5	
			CL=30 pF, VCC≥2.7V	_	_	100	
	_{fmax} (IO)out	Maximum frequency	CL=30 pF, VCC≥1.8V	-	_	50	MHz
	max(IO)OUT	(1)	CL=10pF, VCC≥2.7V	_	_	180	1411 12
High drive			CL=10pF, VCC≥1.8V	-	_	100	
		Output high to low	CL=30 pF, VCC≥2.7V	_	-	4	
	tf(IO)out	level fall time and	CL=30 pF, VCC≥1.8V	_	_	6	ns
	_{tr} (IO)out	output low to high level	CI =10pF, VCC≥2.7V	_	_	2.5	
		rise time	CL=10pF, VCC≥1.8V	_	_	4	

- 1. The maximum frequency is defined in Figure 3-6.
- 2. The load capacitance _{CL} must take into account the capacitance of the PCB and MCU pins (the pin-to-board capacitance can be roughly estimated at 10 pF)

Maximum frequency condition: ($\mathbf{t}_r + \mathbf{t}_f$) \leq (2/3)T and Duty cycle= $50\% \pm 5\%$

(Load capacitance C_L is indicated in the "Conditions" column of the "Input/Output AC Characteristics" table)

Figure 3-6 I/O AC Characteristics Definition

3.3.8 USART

Interface

Table 3-22 USART AC Timing

Features

Sym	Р	Minim	Махі	Unit	
bols	aı	me	um	mum	
	te	ers	value	value	
tcyc	North an efficient delegation relation	UART	4	-	tPCLK1
	Number of input clock cycles CSI	6	-	5=	
tCKw	Input Clock Width		0.4	0.6	tScyc
tCKr	Input Clock Rise Time		ı	5	ns
tCKf	Input clock down time		1	5	ns
tTD	Sending delay time	CSI	-	28	ns
tRDS	Receive data build time CSI		15	_	ns
tRDH	Receive data hold time	CSI	5	_	ns

Figure 3-7 USART Clock Timing

Figure 3-8 USART (CSI) Input and Output
Timing

3.3.9125

Interface

Table 3-23 I2S Electrical Characteristics

Features

Sym bols	Perform ance Indicato rs	Con diti ons	Min	Мах	Unit
fMCK	I2S main clock output	_	256*8K	256*Fs	MHz
INOX	120 Main Glock Catput	Master data: 32 bits	20	64*Fs	
fCK	I2S clock frequency	Slave data: 32 bits	_	64*Fs	MHz
DCK	I2S clock frequency duty cycle	Slave receiver	30	70	%
tv(WS)	WS valid time	Master mode	0	_	
th(WS)	WS hold time	Master mode	0	_	
tsu(WS)	WS setup time	Slave mode	1	_	
th(WS)	WS hold time	Slave mode	0	_	
tsu(SD_MR)		Master receiver	7.5	_	
tsu(SD_SR)	Data input setup time	Slave receiver	2	_	
th(SD_MR)		Master receiver	0	_	
th(SD_SR)	Data input hold time	Slave receiver	0	_	
tv(SD_ST) th(SD_ST)	Data output valid	Slave transmitter(after enable edge)	_	27	ns
tv(SD_MT)	time	Master transmitter(after enable edge)	-	20	
th(SD_MT)	Data output hold time	Master transmitter(after enable edge)	2.5	-	

1. Fs: I2S sampling frequency

Figure 3-9 I2S Slave Mode Timing (Philips Protocol)

Figure 3-10 I2S Master Mode Timing (Philips Protocol)

3.3.10 I2C Interface

Features

Table 3-24 I2C Electrical Characteristics

Symbol	Par	Standard	Mode (SM)	Fast Mod	de (FM)	Unit
Symbol s	ame ters	Min	Мах	Min	Мах	Onit
fSCL	SCL Frequency	0	100	0	400	KHz
tHD;STA	Start condition/restart condition Hold	4.0	_	0.6	-	us
tLOW	SCL low	4.7	_	1.3	_	us
tHIGH	SCL high level	4	-	0.6	_	us
tSU;STA	Restart conditionSetup	4.7	_	0.6	_	us
tHD;DAT	Data Hold	0	-	0	_	us
tSU;DAT	DataSetup	50+ tl2C reference clock period	_	50+ tl2C reference clock period	-	ns
tR	Rise time of SCL/SDA	-	1000	6.5	300	ns
tF	SCL/SDA drop time	-	300	6.5	300	ns
tSU;ST0	Stop conditionSetup	4	_	0.6	_	us
tBUF	BUS idle time between stop condition and start condition	4.7	-	1.3	_	us
Cb	Load capacitance	_	400	-	400	pF

Figure 3-11 I2C Bus Timing Definition

3.3.11 SPI

Interface

Table 3-25 SPI Electrical Characteristics

Features

Item		Symbol	Min	Max	Unit	Test conditions
SCK clock cycle	Master	tspcyc	2 (pclk ≤60MHz) 4 (pclk ≤60MHz)	4096	tpcyc	Figure 3-12 C=30pF
	Slave		6	4096		
SCK clock rise	Master	tsckr	_	5	ns	
and fall time	Slave	tsckf	_	1	us	
Data input	Master	tsu	4	_	ns	Figure 3-13
setup time	Slave		5	_		C=30pF
Data input	Master	th	tpcyc	_	ns	
hold time	Slave		20	_		
Data output	Master	tod	_	8	ns	
delay	Slave		_	20		
Data output	Master	toh	0	_	ns	
hold time	Slave		0	_		
MOSI/MISO rise	Master	tdr	_	5	ns	
and fall time	Slave	tdf	_	1	us	
SS rise and	Master	tssr	_	5	ns	
fall time	Slave	tssf	_	1	us	

Figure 3-12 SCK Clock Definition

Figure 3-13 SPI Interface Timing Requirements

3.3.12 CAN2.0B Interface Features

For the port characteristics of CANx_TX and CANx_RX, please refer to 3.3.7 I/O Port Characteristics.

3.3.13 USB Interface Features

Table 3-26 USB Full-Speed Electrical Characteristics

Sy	mbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	VCC	Operating Voltage	-	3.0(2)	ı	3.6	V
	VIL	Input low level	_	_	-	0.8	V
Input	VIH	Input high level	_	2.0	_	_	V
	VDI	Differential input sensitivity	_	0.2	_	_	٧
	VCM	Differential common mode voltage	-	0.8	-	2.5	V
	VOL(3)	Static output low level	RL=1.5kΩ to 3.6V ⁽⁴⁾	_	-	0.3	V
	VOH(3)	Static output high level	RL=15k Ω to VSS ⁽⁴⁾	2.8	-	3.6	V
Output	VCRS	Cross-over voltage	CL=50pF	1.3	-	2.0	٧
	tR	Rise time	CL=50pF. 10%~90% of VOH- VOL	4	ı	20	ns
	tF	Descent time	CL=50pF. 10%~90% of VOH- VOL	4	1	20	ns
	tRFMA	Rise and fall time ratio traff	CL=50pF	90	_	111.1	%
_{RPD} (3)		Pull Down Resistors	VIN= vcc, in host mode	_	15	_	kΩ
			VIN= _{VSS} , idle state	0.900	1.2	1.575	kΩ
RPU ⁽³⁾		Pull-up resistors	VIN= _{VSS.} in device mode	1.425	2.3	3.090	kΩ

- 1. All voltages were measured based on local ground potential.
- Operating voltage drops to 2.7V still guarantees USB full-speed transceiver functionality, but not full USB full-speed electrical characteristics, which degrade over the vcc voltage range of 2.7 to 3.0V.
- 3. Mass production test guarantee.
- 4. RL is the load connected to the USB full-speed drive.

Sy	mbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
Input	VCC	Operating Voltage	-	3.0(2)	1	3.6	٧
	VIL	Input low level	-	_	-	0.8	V
	VIH	Input high level	-	2.0	ı	ı	٧
	VDI	Differential input sensitivity	-	0.2	ı	ı	V
	VCM	Differential common mode voltage	-	8.0	ı	2.5	V
Output	_{VOL} (3)	Static output low level	RL=1.5k Ω to 3.6V ⁽⁴⁾	_	ı	0.3	٧
	_{VOH} (3)	Static output high level	RL=15k Ω to VSS ⁽⁴⁾	2.8	-	3.6	٧
	VCRS ⁽³⁾	Cross-over voltage	CL=200pF~600pF	1.3	ı	2.0	٧
	_{tR} (3)	Rise time	CL=200pF~600pF,	75	ı	300	ns
			10%~90% of ∨○H-				
			VOLI				
	_{tF} (3)	Descent time	CL=200pF~600pF,	75	ı	300	ns
			10%~90% of ∨○H-				
			VOLI				
	tRFMA(3)	Rise and fall time ratio	CL=200pF~600pF	80	_	125	%
_{RPD} (3)		Pull Down Resistors	VIN= _{VCC} , in host mode	14.25	-	24.80	kΩ

- 1. All voltages were measured based on local ground potential.
- The USB low-speed transceiver function is still guaranteed when the operating voltage drops to 2.7V, but the full USB low-speed electrical characteristics are not guaranteed, which deteriorate over the 2.7 to 3.0V _{VCC} voltage range.
- 3. Mass production test guarantee.
- 4. RL is the load connected to the USB low-speed drive.

Figure 3-14 USB Rise/Fall Time and Cross Over Voltage Definition

3.3.14 PLL

Feature

Table 3-28 PLL Key Performance Indicators

S

Sym	Par	Con	Min	Тур	Max	Unit
bols	ame	diti				
	ters	ons				
	PLL PFD(Phase					
fPLL_IN	Frequency Detector)	_	1	_	25	MHz
	input clock ⁽¹⁾					
fPLL OUT	PLL multiplier		45		040	N 41 1-
	output clock	_	15	_	240	MHz
fVCO_OUT	PLL VCO output	_	240	_	480	MHz
		PLL PFD input	_	±100	_	
	Period Jitter	clock=8MHz.				
		System clock=120MHz.				
JitterPLL		Peak-to-Peak				ps
		PLL PFD input				ро
	Cycle-to-Cycle	clock=8MHz.		±150		
	Jitter	System clock=120MHz.	_	±130	_	
		Peak-to-Peak				
tLOCK	PLL lock time	-	_	80	120	μs

^{1.} It is recommended to use a higher input clock to obtain good Jitter characteristics.

3.3.15 JTAG

interface

Table 3-29 JTAG Interface Features

features

Synbol	Item	Min	Тур	Мах	Unit
tTCKcyc	JTCK clock cycle time	50	_	_	ns
tTCKH	JTCK clock high pulse width	20	_	_	ns
tTCKL	JTCK clock low pulse width	20	_	_	ns
tTCKr	JTCK clock rise time	_	_	5	ns
tTCKf	JTCK clock fall time	_	_	5	ns
tTMSs	JTMS setup time	8	_	_	ns
tTMSh	JTMS hold time	8	_	_	ns
tTDIs	JTDI setup time	8	_	_	ns
tTDlh	JTDI hold time	8	_	_	ns
tTDOd	JTDO data delay time	_	_	20	ns

Figure 3-15 JTAG JTCK clock

Figure 3-16 JTAG input and output

3.3.16 External clock source characteristics

3.3.16.1 High-speed external user clock generated by external sources

In bypass mode, the XTAL oscillator is off and the input pins are standard I/O. The external clock signal must take into account the static characteristics.

Sym Par Con **Minim Typic** Maxi Unit bols diti um al mum ame ters ons value value value User external clock source 25 MHz fXTAL_EXT 1 frequency XTAL_EXT input pin high 0.8*VCC VIH_XTAL VCC ٧ XTAL_EXT input pin low 0.2*VCCVIL_XTAL XTAL_EXT rise or fall time 5 ns tr(XTAL) tf(XTAL) 40 60 % $Duty_{(\mathsf{XTAL})}$ **Duty Cycle**

Table 3-30 High-speed external user clock characteristics

3.3.16.2 Crystal / Ceramic Resonator Generates High Speed External Clock

A high-speed external (XTAL) clock can be generated using a 4 to 25 MHz crystal/ceramic resonator oscillator. In applications, the resonator and load capacitor must be placed as close to the oscillator pins as possible to minimize output distortion and settling time. For more information on resonator characteristics (frequency, package, accuracy, etc.), please consult the crystal resonator manufacturer.

Sym bols	Par ame ters	Con diti ons	Minimum value	Typic al value	Maxi mum value	Unit
				S		
fXTAL_IN	Oscillator frequency		4	_	25	MHz
_{RF} (1)	Feedback Resistor		_	300	_	kΩ
AXTAL ⁽²⁾	XTAL Accuracy	_	-500	_	500	ppm
Gmmax	Oscillator _{Gm}	Vibration	4	_	_	mA/V
tSU(XTAL)(3)	Start-up time	VCC stable, crystal = 8MHz	_	2.0	-	ms
		VCC stable, crystal = 4MHz	_	4.0	_	ms

Table 3-31 XTAL 4-25 MHz Oscillator Characteristics

- 1. Mass production test guarantee.
- 2. This parameter depends on the resonator used in the application.
- 3. tsu(XTAL) is the start-up time, which is the time measured from the time the XTAL is enabled by software until a stable 8MHz oscillation frequency is obtained. This value is based on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

For $_{\text{CL1}}$ and $_{\text{CL2}}$, it is recommended to use high quality external ceramic capacitors designed for high frequency applications that can meet the requirements of a crystal or resonator (see figure below) $_{\text{CL1}}$ and $_{\text{CL2 a r e}}$ usually the same size, CL1=CL2=2*(CL-Cs) Cs is the PCB and MCU pins (XTAL_IN, XTAL_OUT) stray capacitance.

Resonators with integrated capacitors

Figure 3-17 Typical Application with 8 MHz Crystal

1. The value of $_{\mbox{\scriptsize REXT}}$ depends on the crystal characteristics.

3.3.16.3 Crystal / Ceramic Resonator Generated Low Speed External Clock

A low-speed external clock can be generated using an oscillator consisting of a 32.768 kHz crystal/ceramic resonator. In applications, the resonator and load capacitor must be placed as close to the oscillator pins as possible to minimize output distortion and start-up stability time. For more information on resonator characteristics (frequency, package, accuracy, etc.), please consult the crystal resonator manufacturer.

Sym bols	Par ame ters	Con diti ons	Spe cific atio n		Unit	
			Min	Тур	Max	
FXTAL32	Frequency	-	ı	32.768	ı	kHz
_{RF} (1)	Feedback Resistor	-	-	15	1	ΜΩ
IDD_XTAL32	Power consumption	XTAL32DRV[2:0]=000	_	0.8	_	μA
AXTAL32 ⁽²⁾	XTAL32 Accuracy	-	-500	_	500	ppm
Gmmax	Oscillator _{Gm}	-	5.6	_	_	uA/V
TSUXTAL32	Start-up time ⁽³⁾	VCC steady state	_	2	_	s

Table 3-32 XTAL32 Oscillator Characteristics

- 1. Mass production test guarantee.
- 2. This parameter depends on the resonator used in the application.
- 3. TSUXTAL32 is the start-up time, which is the time measured from the time XTAL32 is enabled by software until a stable 32.768 kHz oscillation frequency is obtained. This value is based on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

For _{CL1} and _{CL2}, it is recommended to use high quality external ceramic capacitors (see figure below) _{CL1} and _{CL2} are usually the same size, CL1=CL2=2*(CL-Cs). cs is the PCB and MCU pin (XTAL32_IN, XTAL32_OUT) stray capacitance. if _{CL1} and _{CL2} are larger than 18pF, it is recommended to set XTAL32DRV[2:0]=001 (large drive, power consumption Typical value increases by 0.2uA)

Resonators with integrated capacitors

Figure 3-18 Typical Application with 32.768 kHz Crystal

3.3.17 Internal clock

source

characteristics

Table 3-33 HRC oscillator characteristics

3.3.17.1 Internal high speed

(HRC) oscillator

Symbols	Par ame ters	Con diti ons	Minim um value	Typic al value	Maxi mum value	Unit
				S		
	Frequency ⁽¹⁾	Mode 1	_	16	_	
		Mode 2	-	20	1	MHz
fHRC	User adjustable scale	_	-	ı	0.2	%
	Frequency accuracy ⁽¹⁾	_{TA} = -40 to 105 °C	-2	_	2	%
		_{TA} = -20 to 105 °C	-1.5	_	1.5	%
		_{TA} = 25 °C	-0.5	ı	0.5	%
tst(HRC)	HRC oscillator oscillation stability time	_	_	_	15	μs

1. Mass production test guarantee.

3.3.17.2 Internal medium

Table 3-34 MRC Oscillator Characteristics

speed (MRC)

oscillator

Sym bols	Par ame ters	Minim um value	Typic al value	Maxi mum value	Unit
			S		
fMRC ⁽¹⁾	Frequency	7.2	8	8.8	MHz
tst(MRC)	MRC oscillator stabilization time	_	_	3	μs

1. Mass production test guarantee.

3.3.17.3 Internal low speed

Table 3-35 LRC oscillator characteristics

(LRC) oscillator

Sym bols	Par ame ters	Minim um value	Typic al value s	Maxi mum value	Unit
fLRC(1)	Frequency	27.853	32.768	37.683	kHz
tst(LRC)	LRC oscillator stabilization time	_	-	36	μs

3.3.17.4 SWDT dedicated internal low-speed (SWDTLRC) oscillator

Table 3-36 SWDTLRC Oscillator Characteristics

Sym bols	Par ame ters	Minim um value	Typic al values	Maxi mum value	Unit
fSWDTLRC ⁽¹⁾	Frequency	9	10	11	kHz
tst(SWDTLRC)	SWDTLRC oscillator stabilization time	_	-	57.1	μs

1. Mass production test guarantee.

3.3.18 12-bit ADC

Features

Table 3-37 ADC Characteristics

Symbo	Par	Con	Minim	Typic	Maxim	Unit
ls	ame	diti	um	al	um	
	ters	ons	value	value	value	
				S		
VAVCC	Power supply	_	1.8	-	3.6	V
_{VREFH} (1)	Positive reference voltage	_	1.8	I	VAVCC	V
fADC	ADC conversion clock	VAVCC=2.4 ~3.6V in ultra-high speed/high speed action mode	1	ı	60	MHz
	frequency	VAVCC=1.8 ~2.4V in ultra-high speed/high speed action mode	1	-	30	1711 12
		Ultra low speed action mode	1	_	8	
VAIN	Conversion voltage range	-	VAVSS	_	VREFH	V
RAIN	External Input Impedance	See Equation 1 for details	_	П	50	kΩ
RADC	Sampling switch resistance	_	_	-	6	kΩ
CADC	Internal sample and hold capacitors	_	_	4	7	pF
tD	Trigger transition delay	fADC = 60 MHz		-	0.3	μs

Table 3-38 ADC Characteristics (continued)

Symbol	Par	Con	Minim	Typic	Maxi	Unit
S	ame	diti	um	al	mum	
	ters	ons	value	value	value	
				S		
tS	Compling time	fADC=60MHz	0.183	_	4.266	μs
	Sampling time	IADC-00IVIHZ	11	_	255	1/ fADC
		fADC = 60 MHz				
		12-bit resolution	0.4	_	_	μs
		_{fADC} = 60 MHz		_	-	μs
tCONV	Total conversion	10-bit resolution	0.36			
	time per channel	_{fADC} = 60 MHz	0.33	_	-	
	(including	8-bit resolution				μs
	sampling time)					
		20 to 268 (sampling t	1/fADC			
		resolution + 1)			0.5	
fS	Sampling rate	12-bit resolution	_	_	2.5	
	fADC = 60 MHz	single ADC 12-bit resolution				Msps
			_	_	4.6	
		time-interpolated dual				
		ADC				
tST	Power-up time	_	_	1	2	μs

1. VAVCC-VREFH<1.2V

Formula 1: RAIN

maximum value
$$= \frac{k - 1}{\times C} \times \frac{\ln(2N+2)^{-}}{RADC}$$
 formula

The above equation (Equation 1) is used to determine the maximum external impedance to bring the error below 1/4 LSB. Where N = 12 (12-bit resolution) and k is the number of sampling periods defined in the ADC_SSTR register.

Table 3-39 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=60MHz

Symbo ls	Par ame ters	Con diti ons	Typic al value	Maxi mum value	Unit
			S		
ET	Absolute error		±4.5	±6	LSB
EO	Offset Error	Ultra-high speed/high	±3.5	±6	LSB
EG	Gain error	speed action mode	±3.5	±6	LSB
ED	Differential linear error	fADC=60MHz	±1	±2	LSB
EL	Integral linearity error	Input source impedance <1kΩ	±1.5	±3	LSB
		VAVCC=2.4 ~3.6V			

Table 3-40 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=30MHz

Symbo ls	Par ame ters	Con diti ons	Typic al value s	Maxi mum value	Unit
ET	Absolute error		±4.5	±6	LSB
EO	Offset Error	Ultra-high speed/high	±3.5	±6	LSB
EG	Gain error	speed action mode fADC=30MHz	±3.5	±6	LSB
_{ED} (1)	Differential linear error		±1	±2	LSB
EL ⁽¹⁾	Integral linearity error	Input source impedance <1kΩ VAVCC=2.4 ~3.6V	±1.5	±3	LSB

1. Mass production test guarantee.

Table 3-41 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=30MHz

Symbo ls	Par ame ters	Con diti ons	Typic al value s	Maxi mum value	Unit
ET	Absolute error	<u> </u>	±4.5	±6	LSB
EO	Offset Error	Ultra-high speed/high	±3.5	±6	LSB
EG	Gain error	speed action mode	±3.5	±6	LSB
ED	Differential linear error	fADC=30MHz	±1	±2	LSB
EL	Integral linearity error	Input source impedance <1kΩ VAVCC=1.8 ~2.4V	±2	±3	LSB

Table 3-42 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Accuracy @ fADC=8MHz

|--|

ls	ame ters	diti ons	al value	mum value	
			S		
ET	Absolute error		±4.5	±6	LSB
EO	Offset Error	Ultra-low speed	±3.5	±6	LSB
EG	Gain error	action mode	±3.5	±6	LSB
ED	Differential linear error	fADC=8MHz	±1	±2	LSB
EL	Integral linearity error	Input source impedance <1kΩ VAVCC=1.8 ~3.6V	±2	±3	LSB

Table 3-43 ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=60MHz

Symbo ls	Par ame	Con diti	Typical values	Maxi mum	Unit
	ters	ons		value	
ET	Absolute error		±5.5	±7	LSB
EO	Offset Error	Ultra-high speed/high	±4.5	±7	LSB
EG	Gain error	speed action mode	±4.5	±7	LSB
ED	Differential linear error	fADC=60MHz	±1.5	±2	LSB
EL	Integral linearity error	Input source impedance <1kΩ VAVCC=2.4 ~3.6V	±2.0	±3	LSB

Table 3-44 ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=30MHz

Symbo ls	Par ame ters	Con diti ons	Typical values	Maxi mum value	Unit
ET	Absolute error		±5.5	±7	LSB
EO	Offset Error	Ultra-high speed/high	±4.5	±7	LSB
EG	Gain error	speed action mode	±4.5	±7	LSB
ED(1)	Differential linear error	fADC=30MHz	±1.5	±2	LSB
EL ⁽¹⁾	Integral linearity error	Input source impedance <1kΩ VAVCC=2.4 ~3.6V	±2.0	±3	LSB

1. Mass production test guarantee.

Table 3-45 ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=30MHz

Symbo ls	Par ame ters	Con diti ons	Typical values	Maxi mum value	Unit
ET	Absolute error	C.I.C	±5.5	±7	LSB
EO	Offset Error	Ultra-high speed/high	±4.5	±7	LSB
EG	Gain error	speed action mode	±4.5	±7	LSB
ED	Differential linear error	fADC=30MHz	±1.5	±2	LSB
EL	Integral linearity error	Input source impedance <1kΩ VAVCC=1.8 ~2.4V	±2.5	±3	LSB

Table 3-46 ADC1_IN12~15, ADC12_IN8~11 Input Channel Accuracy @ fADC=8MHz

Symbo ls	Par ame	Con diti	Typical values	mum	Unit
	ters	ons		value	
ET	Absolute error		±5.5	±7	LSB

EO	Offset Error	action mode	±4.5	±7	LSB
EG	Gain error	fADC=8MHz	±4.5	±7	LSB
ED	Differential linear error	Input source	±1.5	±2	LSB
EL	Integral linearity error	impedance <1kΩ	±2.5	±3	LSB
		VAVCC=1.8 ~3.6V			

Table 3-47 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=60MHz

Symbo	Par	Con	Minim	Махі	Unit
ls	ame	diti	um	mum	
	ters	ons	value	value	
ENOB	Valid digits	Ultra-high speed/high	10.6	_	Bits
SINAD	Signal-to-noise harmonic ratio	speed action mode	64	_	dB
SNR	Signal-to-noise ratio	fADC=60MHz	66	_	dB
TUD	Tatal Hamania Biotantian	Input signal		70	-ID
THD	Total Harmonic Distortion	frequency = 2kHz	_	-70	dB
		Input source			
		impedance <1kΩ			
		VAVCC=2.4 ~3.6V			

Table 3-48 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=30MHz

Symbo	Par	Con	Minim	Махі	Unit
ls	ame	diti	um	mum	
	ters	ons	value	value	
ENOB	Valid digits	Ultra-high speed/high	10.4	-	Bits
SINAD	Signal-to-noise harmonic ratio	speed action mode	62	ı	dB
SNR	Signal-to-noise ratio	fADC=30MHz	64	_	dB
T. 10	T	Input signal		07	j
THD	Total Harmonic Distortion	frequency = 2kHz	_	-67	dB
		Input source			
		impedance <1kΩ			
		VAVCC=1.8~2.4V			

Table 3-49 ADC1_IN0~3, ADC12_IN4~IN7 Input Channel Input Channel Dynamic Accuracy @ fADC=8MHz

Symbo	Par	Con	Minim	Maxi	Unit
ls	ame	diti	um	mum	
	ters	ons	value	value	
ENOB	Valid digits	Ultra-low speed	10.4	_	Bits
SINAD	Signal-to-noise harmonic ratio	action mode	62	_	dB
SNR	Signal-to-noise ratio	fADC=8MHz	64	_	dB
		Input signal			
THD	Total Harmonic Distortion	frequency = 2kHz	_	-67	dB
		Input source			
		impedance <1kΩ			
		VAVCC=1.8~3.6V			

Figure 3-19 ADC Accuracy Characteristics

- 1. Please also see the table above.
- 2. Example of actual transmission curve.
- 3. Ideal transmission curve.
- 4. Endpoint correlation line.
- 5. ET = Total unadjusted error: the maximum deviation between the actual and ideal transfer curves. EO = Offset Error:
 The deviation between the first actual and first ideal conversion.
 - $_{\text{EG}}$ = Gain error: deviation between the last ideal conversion and the last actual conversion. $_{\text{ED}}$ = Differential linearity error: the maximum deviation between the actual step and the ideal value.
 - EL = Integral linearity error: the maximum deviation between any actual conversion and the endpoint correlation line.

Figure 3-20 Typical Connection Using ADC

- 1. See Table 3-37 for information on $_{\mbox{\scriptsize RAIN, RADC}},$ and $_{\mbox{\scriptsize CADC}}$ values.
- 2. Cparasitic indicates PCB capacitance (depending on soldering and PCB wiring quality) and pad capacitance (~5 pF). higher Cparasitic values result in lower conversion accuracy. To solve this problem, the fADC should be reduced.

General PCB Design Guidelines

The power supply should be decoupled as shown in the following diagram, depending on VREFH is connected to AVCC and the number of

AVCC pins. The $0.1\mu\text{F}$ capacitors should be (high quality) ceramic capacitors. These capacitors should be as close to the chip as possible.

Figure 3-21 Example of decoupling power supply and reference power supply

3.3.19 DAC

Characte

Table 3-50 DAC Characteristics

ristics

Symbol s	Par ame ters	Con diti ons	Minim um value	Typic al value	Maxi mum value	Unit
VAVCC	Analog supply voltage	_	1.8	s 3.3	3.6	V
DNL	Differential nonlinear error (deviation between two consecutive codes - 1LSB)	-	_	_	±2	LSB
Offset	Offset error (difference between the measured value at code (0x80) and the ideal value VAVCC/2)	-	_	_	±2	LSB
TSETTLING	Build-up time (full scale: applies to the 8-bit input between the lowest input code and the highest input code by the time DA0/DA1 reaches its final value of ±4LSB)	-	-	-	8	μs
	(into the code conversion)					

3.3.20 Comparat

or

Table 3-51 Comparator Characteristics

Features

Symbol s	Par ame ters	Con diti ons	Minim um value	Typic al value	Maxi mum value	Unit
				S		
VAVCC	Analog supply voltage	_	1.8	3.3	3.6	V
VI ✓I	Input Voltage Range	_	О	_	VAVCC	V
Тстр	Compare times	Comparator resolution voltage = 100mV	_	50	100	ns
Tset	Input channel switching stability time	-	_	100	200	ns

3.3.21 Gain Adjustable

Amplifier

Table 3-52 Gain Adjustable Amplifier Characteristics

Features

Symb ols	ar	ar ne ers	Con diti ons	Minim um value	Typic al value s	Maxi mum value	Unit
VAVCC	Analog sup	ply voltage	_	1.8	3.3	3.6	V
_{VOS} (1)	Input derat	ing voltage	_	-8	_	8	mV
VI	Input Volta	ge Range	_	0.1*VAVCC/G ain	_	0.9*VAVCC/G ain	V
			Gain=2 ⁽¹⁾	-1	_	1	%
			Gain=2.133	-1	_	1	%
			Gain=2.286	-1	_	1	%
			Gain=2.667	-1	_	1	%
			Gain=2.909	-1	_	1	%
		Using external	Gain=3.2	-1.5	_	1.5	%
		Port	Gain=3.556	-1.5	_	1.5	%
		PGAVSS	Gain=4.0	-1.5	_	1.5	%
		As PGA	Gain=4.571	-2	_	2	%
		Negative phase input	Gain=5.333	-2	_	2	%
			Gain=6.4	-3.0	_	3.0	%
			Gain=8	-3.0	_	3.0	%
			Gain=10.667	-4.0	_	4.0	%
			Gain=16	-4.0	_	4.0	%
GE			Gain=32 ⁽¹⁾	-7.0	_	7.0	%
32	Gain error		Gain=2 ⁽¹⁾	-2	_	2	%
			Gain=2.133	-2	_	2	%
			Gain=2.286	-2	_	2	%
			Gain=2.667	-2	_	2	%
			Gain=2.909	-2	_	2	%
		Use internal	Gain=3.2	-2.5	_	2.5	%
		The simulated ground	Gain=3.556	-2.5	_	2.5	%
		AVSS as	Gain=4.0	-2.5	_	2.5	%
		Negative for PGA	Gain=4.571	-3.0	_	3.0	%

VUC	小水化	业 已 体					
XAS	XIAOHUA S	半导体 MPhase®	Gain=5.333	-3.0	_	www.gkhsc.co	om‰n
		input					
			Gain=6.4	-4.0	_	4.0	%
			Gain=8	-4.0	-	4.0	%
			Gain=10.667	-5.0	-	5.0	%
			Gain=16	-5.0	-	5.0	%
			Gain=32 ⁽¹⁾	-8.0	-	8.0	%

^{1.} Mass production test guarantee.

3.3.22 Temperat

ure

Table 3-53 Temperature Sensor Characteristics

Sensor

Symbol s	Par ame ters	Con diti ons	Minimu m value		Maxi mum value	Unit
TL	Relative Accuracy	Each chip is individually calibrated according to the user manual	-	1	±5	℃

3.3.23 Memory Features

3.3.23.1 Flash Memory

The flash memory is erased when the device is delivered to the customer.

Table 3-54 Flash Memory Characteristics

Sym bols	Par ame ters	Con diti ons	Minim um value	Typic al value s	Maxi mum value	Unit
		Read mode, VCC=1.8 V~3.6V	_	_	5	
IVCC	Supply ourrent	Programming mode, VCC=1.8 V~3.6 V	_	_	10	mA
	Supply current	Block erase mode, VCC=1.8 V~3.6V	_	_	10	IIIA
		Full erase mode, VCC=1.8 V~3.6V	_	_	10	

Table 3-55 Flash Memory Programming Erase Time

Symbol s	Par ame	Con diti	Minim um	Typic al	Maxi mum	Unit
	ters	ons	value	values	value	
Tprog ⁽¹⁾	Word programmi ng time	Single Programming Mode	43+2* Thclk ⁽²⁾	48+4* _{Thclk} ⁽²⁾	53+6* Tholk ⁽²⁾	μs
	Word programmi ng time	Continuous programming mode	12+2* Thclk ⁽²⁾	14+4* _{Thclk} ⁽²⁾	16+6* Thclk ⁽²⁾	μs
Terase ⁽¹⁾	Block Erase Time	-	16+2* Thclk ⁽²⁾	18+4* Thclk ⁽²⁾	20+6* Thclk ⁽²⁾	ms
Tmas ⁽¹⁾	Full Erase Time	_	16+2* _{Thclk} ⁽²⁾	18+4* _{Thclk} ⁽²⁾	20+6* Thclk ⁽²⁾	ms

- 1. Mass production test guarantee.
- 2. Tholk is 1 cycle of the CPU clock.

Table 3-56 Flash memory rewritable times and data retention period

Sym bols	Par ame ters	Con diti ons	Nume rical value Minim um value	Unit
Nend	Programming, block erase times	та = 85°C	10	kcycles

Nend	Number of full erasures	_{TA} = 85°C	10	kcycles
Tret	Data retention period	_{TA} = 85°C, after 10 kcycles	10	Years

4 Package Information

4.1 Package Size

LQFP100 package

Symbol	14x	14 Millimet	er	
Symbol	Min	Nom	Мах	
Α			1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.18		0.27	
b1	0.17	0.20	0.23	
С	0.13		0.17	
c1	0.12	0.13	0.14	
D	15.80	16.00	16.20	
D1	13.90	14.00	14.10	
E	15.80	16.00	16.20	
E1	13.90	14.00	14.10	
е		0.50BSC		
L	0.45		0.75	
L1	1.00REF			
θ	0		7°	

NOTE.

- Dimensions "D1" and "E1" do not include mold flash.

VFBGA100

Symbol	7x7 Millimeter								
	Min	Мах							
А	0.67	0.74	0.81						
A1	0.11	0.16	0.21						
A2	0.54	0.58	0.62						
А3		0.45REF							
A4		0.13REF							
b	0.20	0.20 0.25 0.30							
D	6.90	7.00	7.10						
D1		5.5							
E	6.90	7.00	7.10						
E1		5.5							
е		0.5							
F		0.75REF							
ddd		0.10							
eee		0.15							
fff		0.05							

								△ ddd Z
F	-		— Е	1 —		-		
	-	- е						A1 BALL PAD CORNER
а	0 0	, 0 0	000	00	00	0 0	₹	
bc d	00		000	00		0 0	-	Ī
e f	00					00		
h j k l						00		2
m	00					00		
b(100x) ee ZYX	9219	989	Q ₃₂₁		00			
ff Z	•	000	000	00	00	0 0	+	
_/		ГТС	M V	IΕ\Λ/	,			7
	<u></u>		VIVI V	_ V V	-			•

LQFP64

HC32F460 Series Data

SECTION B-B

- Dimensions "D1" and "E1" do

not include mold flash.

LQFP48 package

Symbol	7x7 Millimeter								
	Min	Min Nom							
Α			1.60						
A1	0.05		0.15						
A2	1.35	1.40	1.45						
A3	0.59	0.64	0.69						
b	0.18		0.27						
b1	0.17	0.20	0.23						
С	0.13		0.17						
c1	0.12	0.13	0.14						
D	8.80	9.00	9.20						
D1	6.90	7.00	7.10						
E	8.80	9.00	9.20						
E1	6.90	7.00	7.10						
е		0.50BSC							
L	0.40		0.65						
L1		1.00REF							
θ	0 7°								

NOTE.

- Dimensions "D1" and "E1" do not include mold flash.

QFN60 Package

Symbol	7x7 Millimeter							
	Min	Мах						
Α	0.70	0.75	0.80					
A1	0.00	0.02	0.05					
A2		0.547REF						
b	0.15	0.20	0.25					
b1		0.14REF						
С		0.20REF						
c1	0.255REF							
c2	0.18REF							
D	6.90	7.00	7.10					
D2	5.50	5.60	5.70					
Nd		5.60BSC						
е		0.40BSC						
E	6.90	7.00	7.10					
E2	5.50	5.60	5.70					
Ne	5.60BSC							
L	0.35	0.35 0.40 0.45						
K	0.25	0.25 0.30 0.35						
h	0.30	0.30 0.35 0.40						

QFN48 Package

Symbol	5x5 Millimeter								
-	Min	Nom	Мах						
Α	0.50	0.55	0.60						
A1	0.00	0.02	0.05						
A2		0.40REF							
b	0.13	0.18	0.23						
b1		0.12REF							
С	0.10	0.15	0.20						
c1		0.145REF							
c2	0.140REF								
D	4.90	4.90 5.00 5.1							
D2	3.60	3.70	3.80						
е		0.35BSC							
Ne		3.85BSC							
Nd		3.85BSC							
E	4.90	5.00	5.10						
E2	3.60	3.70	3.80						
L	0.30	0.35	0.40						
L1	0.13	0.18	0.23						
h	0.25	0.30	0.35						
L/F Carrier		154 x 154							

4.2 Schematic diagram of solder pads

LQFP100 package (14mm x 14mm)

NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

LQFP64 package (10mm x 10mm)

NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

LQFP48 package (7mm x 7mm)

NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

QFN60 package (7mm x 7mm)

NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

VFBGA100 package (7mm x 7mm)

	1	2	3	4	5	6	7	9	10	11	
А											
В											
С											
D											
E											
F											
G											
н											
ı											Dsm
J											
К											↑ ↑
L											
									→ 0.	← 50	

NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

VBGA100 recommended PCB design rules(0.5mm pitch)

Dimension	Recommended values
Pitch	0.5mm
Dpad	0.240mm
Dsm	O_340mm typ_(depends) on the
	soldermask registration tolerance)
Stencil	0.240mm
opening	
Stencil	Between 0.100mm and 0.125mm
thickness	

QFN48 package (5mm x 5mm)

NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

4.3 Silkscreen instructions

The location and information of Pin 1 on the front side of each package is given below.

LQFP100 package (14mm x 14mm) / LQFP64 package (10mm x 10mm) LQFP48 package (7mm x 7mm)

QFN60 package (7mm x 7 m m) / VFBGA100 package (7mm x 7mm)

QFN48 package (5mm x 5mm)

Caution:

- The blank boxes above indicate optional production-related markers that are not described in this section.

4.4 Package thermal resistance coefficient

The junction temperature τ_j (°C) on the chip surface when t h e packaged chip is operated at the specified operating ambient temperature can be calculated according to the following equation:

$$T_i = T_{amb} + (PD \times \theta JA)$$

- Tamb is the operating ambient temperature in °C at which the package chip operates;
- BUA is the thermal resistance coefficient of the package to the operating environment in °C/W;
- PD is equal to the sum of the chip's internal power consumption and I/O power consumption in W. The chip's internal power consumption is the product's IDD × VDD, and the I/O power consumption refers to the power consumption generated by the I/O pins when the chip is operating, which is usually very small and can be ignored.

The junction temperature T_j on the chip surface when the chip is operating at the specified operating ambient temperature must not exceed the maximum junction temperature $T_{J \text{ that the}}$ chip can tolerate.

Table 4-1 Thermal resistance coefficient of each package

Package Type and Size	Thermal Resistance Junction- ambient Value (8JA)	Unit
LQFP100 14mm x 14mm / 0.5mm pitch	50 +/- 10%	°C/W
LQFP64 10mm x 10mm / 0.5mm pitch	65 +/- 10%	°C/W
LQFP48 7mm x 7mm / 0.5mm pitch	75 +/- 10%	°C/W
QFN60 7mm x 7mm / 0.4mm pitch	30 +/- 10%	°C/W
QFN48 5mm x 5mm / 0.35mm pitch	42 +/- 10%	°C/W

5 Ordering

Information

Product Model	HC32F460JEUA-QFN48TR	HC32F460JETA-LQFP48	HC32F460KEUA-QFN60TR	HC32F460KETA-LQFP64	HC32F460PETB-LQFP100	hc32f460pehb-vfbga100	HC32F460JCTA-LQFP48	HC32F460KCTA-LQFP64	HC32F460PCTB-LQFP100
Main Frequency (MHz)	200	200	200	200	200	200	200	200	200
Kernel	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4	ARM Cortex-M4
Flash (KB)	512	512	512	512	512	512	256	256	256
RAM (KB)	192	192	192	192	192	192	192	192	192
OTP (B)	960	960	960	960	960	960	960	960	960
Package (mm*mm)	QFN48 (5*5) e=0.35	LQFP48 (7*7) e=0.5	QFN60 (7*7) e=0.4	LQFP64 (10*10) e=0.5	LQFP100 (14*14) e=0.5	VFBGA100 (7*7) e=0.5	LQFP48 (7*7) e=0.5	LQFP64 (10*10) e=0.5	LQFP100 (14*14) e=0.5
General IO	38	38	50	52	83	83	38	52	83
Minimum operating voltage	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Maximum working voltage	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
16-bit timer	11	11	11	11	11	11	11	11	11
Motor control timer	3	3	3	3	3	3	3	3	3
12-bit ADC conversion unit	2	2	2	2	2	2	2	2	2
Number of 12-bit ADC channels	10	10	15	16	16	16	10	16	16
Comparator	3	3	3	3	3	3	3	3	3
Amplifier PGA	1	1	1	1	1	1	1	1	1
SPI	4	4	4	4	4	4	4	4	4
QUADSPI	1	1	1	1	1	1	1	1	1
I S²	4	4	4	4	4	4	4	4	4
I C ²	3	3	3	3	3	3	3	3	3
U(S)ART	4	4	4	4	4	4	4	4	4
CAN	1	1	1	1	1	1	1	1	1
SDIO	2	2	2	2	2	2	2	2	2
Full-speed USB OTG	1	1	1	1	1	1	1	1	1
DMA	8	8	8	8	8	8	8	8	8
DCU	4	4	4	4	4	4	4	4	4
PVD	√	~	√	√	√	√	√	√	√
AES128	√	~	√	√	√	√	√	√	√
SHA256	√	~	√	√	√	√	√	√	√
TRNG	√	√	√	√	√	√	√	√	√
CRC	√	~	√	~	√	√	√	√	√
KEYSCAN	√	√	√	√	√	√	√	√	√
RTC	√	~	√	√	√	√	√	√	√
FLASH Physical Encryption	~	~	√	~	~	√	√	~	√
Shipping method	Tape and Reel	Tray loading	Tape and Reel	Tray loading	Tray loading	Tray loading	Tray loading	Tray loading	Tray loading

HC32F460 Series Data 106/108

Before ordering, please contact the sales window for the latest mass production information.

HC32F460 Series Data 106/108

Version

revision

record

Version	Revision	Revised content				
number	Date					
Rev1.0	2019/11/12	Initial Release				
Rev1.1	2020/01/10	 Add 256KB of product descriptions to the full text; Addition of VFBGA package descriptions throughout the text; Modification of the current max value for 105°C in power-down mode in the electrical characteristics; 				
		4) Update the silkscreen instructions.				
Rev1.2	2020/08/26	 Add ultra-high speed operation mode description, update CoreMark/DMIPS, ultra-high speed mode description. Updating functional block diagrams; Pin configuration diagram to add 256KB models; Adding pad schematics and package thermal resistance factors; Addition of BOR/PVD characteristics in ultra-high speed mode, current characteristics; Updating the JTAG/SWJ debug port pins; 				
Rev1.3	2021/12/10	 Modification of the declaration, addition of A2/c1/c2 size of QFN48/60 to the package size, modification of the data retention period in the flash memory; External master clock crystal: (4-24MHz) to (4-25MHz); Functional block diagram modification: USB_DMA -> USBFS_DMA; I2S_1 -> I2S_2; addition of AOS; 1.4.6 Addresses 0 x 0 0 0 0 4 0 0 H ~ 0 x 0 0 0 0 0 4 1 F H -> 0x0000_0400~0x0000_041F 0 x00000_0408~0x0000041F -> 0x0000_0408~0x0000_041F Adding the description of "Automatic Operating System (AOS)" profile and updating the description of "Keyboard Scan (KEYSCAN)**; Name correction and description optimization; The recommended configuration of the analog power supply pin bypass capacitor is modified in the power supply scheme diagram by removing the 10nF capacitor and modifying the 10uF capacitor to 1uF; Additional parameters in the reset and power control module characteristics table: TIPVD1/TIPVD2/TINRST/TRSTBOR TRSTTAO->TRSTPOR; 3.3.12 Adding a description of the CAN2.0B interface characteristics; The Max value of FPLL_IN in PLL characteristics is changed from 24MHz to 25MHz, and the Jitter characteristic is added; 3.3.16.1 The maximum value of DATAL_EXT is changed to 25 MHz; 3.3.16.2 Addition of an external high-speed oscillator XTAL accuracy indicator 				

HC32F460 Series Data 107/108

		and modification of _{CL1} and _{CL2} related descriptions; 13) 3.3.16.3 Add external low-speed oscillator XTAL32 accuracy indicator and modify _{CL1} and _{CL2} related descriptions.
Rev1.4	2022/03/09	Company logo updated.
Rev1.41	2022/03/29	 3.3.13 USB interface characteristics _{RPD} Delete MAX, MIN values and add Typ value 15kΩ; 3.3.16 _{ISU(XTAL)} start time delete maximum value, add typical value 4.1 LQFP100/LQFP64/LQFP48 b MAX value modified to 0.27
Rev1.42	2022/09/14	1) 2.1 PH0/XTAL_IN" is changed to "PH0/XTAL_EXT/XTAL_OUT" and "PH1/XTAL_OUT" in each package pin layout diagram. " Modify change to "PH1/XTAL_IN", QFN60 pin configuration diagram style modification, new QFN48 pin configuration diagram;

HC32F460 Series Data 107/108

Version	Revision	Revised content
number	Date	
		2.2 "PH0/XTAL_IN" is modified to
		"PH0/XTAL_EXT/XTAL_OUT" and "PH1/XTAL_OUT" is modified to
		"PH1/XTAL_IN";
		2.3 "XTAL_OUT" is modified to "XTAL_EXT/XTAL_OUT" with the
		addition of the description "XTAL_EXT external clock input";
		2) 3 .3.16.1 "XTAL_IN" is modified to "XTAL_EXT";
		3.3.16.2 Switching the names of the "XTAL_IN" and "XTAL_OUT"
		pins in Figure 3-17;
		3.3.18 The 10uF capacitance value in Figure 3-21 is modified to 1uF.

If you have any comments or suggestions in the process of purchase and use, please feel free to contact us.

E-mail:

support@xhsc.com.cn电话:

HC32F460 Series Data Sheet_Rev1.42

108/108