Université de Carthage ECOLE SUPÉRIEURE DE LA STATISTIQUE ET DE L'ANALYSE DE L'INFORMATION À TUNIS

Année Universitaire 2012-2013 1ère Année

Méthodes d'estimation : Examen Final

mai 2013

Enseignants: Mme Mallek et M. Rammeh Durée: 1 heure 30mn

Exercice 1 Soit $(X_1,...,X_n)$ un n-échantillon de loi $\mathcal{N}(\theta,\theta)$, $\theta>0$.

- 1. Ecrire la fonction de vraisemblance associée à l'échantillon.
- 2. Déterminer $\widehat{\theta}_n^{M.M}$, l'estimateur de θ par la méthode des moments déterminé à partir $de E_{\theta}(X^2)$.
- 3. Donner sa distribution asymptotique (c-à-d: Etudier le comportement asymptotique de l'estimateur).

(Indication: $Var(X^2) = \theta^4 + 6\theta^3 + 4\theta^2 + \theta$).

- 4. Vérifier que le modèle appartient à la famille exponentielle.
- 5. Proposer une statistique exhaustive pour θ .
- 6. Démontrer que $\widehat{\theta_n}^{MV}$, l'estimateur du maximum de vraisemblance de θ , est identique à $\widehat{\theta_n}^{M.M}$.
- 7. Calculer l'information de Fisher du modèle.

Exercice 2 On dispose d'un n-échantillon issu d'une loi uniforme $\mathcal{U}_{[0,e^{\theta}]}$. On cherche à estimer $\theta \in \mathbb{R}$.

- 1. Proposer une statistique exhaustive pour le modèle. (Pour toute la suite, on supposera cette statistique complète).
- 2. Prouver que l'estimateur du maximum de vraisemblance de θ a pour expression $\widehat{\theta_n}^{MV} = \ln \max X_i.$
- 3. Déterminer sa densité et vérifier qu'il est biaisé.
- 4. Construire à partir de $\widehat{\theta_n}^{MV}$ un nouvel estimateur sans biais T_n dont on déterminera la variance.
- 5. On se propose maintenant de construire un intervalle de confiance pour θ . Montrer que $Z = n(\theta - \ln \max X_i)$ est une statistique pivotale (on utilisera la fonction de répartition de $\widehat{\theta_n}^{MV}$). En déduire un intervalle de confiance pour θ de niveau de confiance $1 - \alpha$.
- 6. Facultatif: Verifier que T_n est une statistique exhaustive pour θ .
- 7. Facultatif: Montrer que T_n est un estimateur sans biais de variance minimale. Est-il efficace? Justifier.

Correction Exercice 1:

1.
$$\mathcal{L}(\underline{x}, \theta) = \exp\left[-\frac{1}{2\theta} \sum_{i=1}^{n} (x_i - \theta)^2 - \frac{n}{2} \ln 2\pi\theta\right]$$
 $\theta > 0$.

2.
$$E_{\theta}(X^2) = \theta + \theta^2 \iff \theta^2 + \theta - \mu_2 = 0$$
.

$$\Delta = 1 + 4\mu_2$$
 $\theta_1 = \frac{-1 - \sqrt{1 + 4\mu_2}}{2} < 0$ rejetée

$$\theta_2 = \frac{-1 + \sqrt{1 + 4\mu_2}}{2} = -\frac{1}{2} + \sqrt{\frac{1}{4} + \mu_2}.$$

$$\underbrace{E_{\theta}[g(X)]}_{E_{\theta}\left(X^{2}\right)} = \underbrace{\theta + \theta^{2}}_{h(\theta)} \Longleftrightarrow \theta = h^{-1}\left(E_{\theta}\left(X^{2}\right)\right).$$

Donc
$$\widehat{\theta}^M = h^{-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 \right) = -\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{n} \sum_{i=1}^n X_i^2}.$$

3.
$$h: \theta \longmapsto \theta^2 + \theta$$
, h est de classe C^1 et $\frac{\partial h}{\partial \theta} = 2\theta + 1 > 0$.

$$Var\left[g\left(X
ight)
ight] = Var\left(X^{2}
ight) = \theta^{4} + 6\theta^{3} + 4\theta^{2} + \theta.$$

Donc
$$\sqrt{n}\left(\widehat{\theta}^{M} - \theta\right) \xrightarrow{Loi} \mathcal{N}\left(0, \left(\frac{1}{h'(\theta)}\right)^{2} Var(g(X))\right)$$

Finalement,
$$\sqrt{n}\left(\widehat{\theta}^{M} - \theta\right) \xrightarrow{Loi} \mathcal{N}\left(0, \frac{\theta^{4} + 6\theta^{3} + 4\theta^{2} + \theta}{(2\theta + 1)^{2}}\right)$$

4.
$$\mathcal{L}(\underline{x}, \theta) = \exp\left[-\frac{1}{2\theta} \sum_{i=1}^{n} x_i^2 - \frac{n}{2} (\theta + \ln \theta) + \sum_{i=1}^{n} x_i - \frac{n}{2} \ln 2\pi\right]$$

Le modèle appartient à la famille exponentielle à un paramètre avec $c(\theta) = -\frac{1}{2\theta}$

$$d(\theta) = -\frac{n}{2} (\theta + \ln \theta), T(\underline{x}) = \sum_{i=1}^{n} x_i^2 \text{ et } S(\underline{x}) = \sum_{i=1}^{n} x_i - \frac{n}{2} \ln 2\pi. A^n = \mathbb{R}^{\times} \text{ indépendant}$$

$$de \theta.$$

5.
$$T(\underline{X}) = \sum_{i=1}^{n} X_i^2$$
 est la statistique exhaustive complète associée à la famille exponentielle. \mathcal{L}

6.
$$\mathcal{L}(\underline{x}, \theta) = \exp \left[-\frac{1}{2\theta} \sum_{i=1}^{n} (x_i - \theta)^2 - \frac{n}{2} \ln 2\pi \theta \right]$$

$$\mathcal{L}(\underline{x},\theta) = \exp\left[-\frac{1}{2\theta}\sum_{i=1}^{n}x_i^2 + \sum_{i=1}^{n}x_i - \frac{n\theta}{2} - \frac{n}{2}\ln\theta - \frac{n}{2}\ln2\pi\right] \qquad \lambda > 0.$$

Il s'agit d'une famille exponentielle où $\Theta = \mathbb{R}_+^*$ est un ouvert. De plus, $c: \theta \longmapsto -\frac{1}{2\theta}$ est injective et de classe C^2 et

 $d: \theta \longmapsto -\frac{n}{2}(\theta + \ln \theta)$ est de classe C^2 . Aussi, l'emv, s'il existe, est solution de l'équation $E_{\theta}(T(\underline{X})) = T(\underline{x})$.

$$E_{\theta}\left(T\left(\underline{X}\right)\right) = E_{\theta}\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE_{\theta}\left(X^{2}\right) = n\left(\theta + \theta^{2}\right) = n\theta\left(1 + \theta\right).$$

$$E_{\theta}\left(T\left(\underline{X}\right)\right) = T\left(\underline{x}\right) \iff \sum_{i=1}^{n} x_i^2 = n\theta\left(1 + \theta\right).$$

$$\begin{split} n\theta^2 + n\theta - \sum_{i=1}^n x_i^2 &= 0 \\ \Delta &= n^2 + 4n \sum_{i=1}^n x_i^2 = \left[2n \sqrt{\frac{1}{4} + \frac{1}{n} \sum_{i=1}^n x_i^2} \right]^2 > 0 \\ \theta_1 &= \frac{-n - 2n \sqrt{\frac{1}{4} + \frac{1}{n} \sum_{i=1}^n x_i^2}}{2n} < 0 \qquad rejet\'ee \\ \theta_2 &= \frac{-n + 2n \sqrt{\frac{1}{4} + \frac{1}{n} \sum_{i=1}^n x_i^2}}{2n} = -\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{n} \sum_{i=1}^n x_i^2} \\ Donc \; \hat{\theta}^{MV} &= \hat{\theta}^M \end{split}$$

7. Comme le modèle appartient à la famille exponentielle, les 3 hypothèses sont valides.

$$I_{n}(\theta) = -E\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathcal{L}\left(\underline{x}, \theta\right)\right]$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(\underline{x}, \theta\right) = \frac{1}{2\theta^{2}} \sum_{i=1}^{n} x_{i}^{2} - \frac{n}{2} \left(1 + \frac{1}{\theta}\right)$$

$$\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathcal{L}\left(\underline{x}, \theta\right) = -\frac{1}{\theta^{3}} \sum_{i=1}^{n} x_{i}^{2} + \frac{n}{2\theta^{2}}$$

$$I_{n}(\theta) = -E\left[-\frac{1}{\theta^{3}} \sum_{i=1}^{n} X_{i}^{2} + \frac{n}{2\theta^{2}}\right] = E\left[\frac{1}{\theta^{3}} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{2\theta^{2}}\right] = \frac{n}{\theta^{3}} E\left[X^{2}\right] - \frac{n}{2\theta^{2}}$$

$$I_{n}(\theta) = \frac{n}{\theta^{3}} \left(\theta + \theta^{2}\right) - \frac{n}{2\theta^{2}} = \frac{n}{2\theta^{2}} + \frac{n}{\theta} = \frac{n(1+2\theta)}{2\theta^{2}}.$$

$$BCR\left(\theta^{2}\right) = \frac{\left(\psi'\left(\theta\right)\right)^{2}}{I_{n}\left(\theta\right)} = \frac{\left(\frac{1}{2\sqrt{\theta}}\right)^{2}}{n\left(1+2\theta\right)} \left(2\theta\right)^{2} = \frac{\theta}{n\left(1+2\theta\right)}.$$

 $f_X(x,\theta) = \frac{1}{e^{\theta}} \mathbb{1}_{[0,e^{\theta}]}(x) = e^{-\theta} \mathbb{1}_{[0,e^{\theta}]}(x)$. Correction Exercice 2 $X \rightsquigarrow \mathcal{U}_{[0,e^{\theta}]}$

- 1. $\mathcal{L}(\underline{x}, \theta) = e^{-n\theta} 1_{\{\max x_i < e^{\theta}\}} 1_{\{\min x_i > 0\}} = e^{-n\theta} 1_{\{\ln \max x_i < \theta\}} 1_{\{\min x_i > 0\}}$ D'après le théorème de factorisation, $T(\underline{X}) = MaxX_i$ est exhaustive
- 2. $\mathcal{L}(\underline{x},\theta)$ est une fonction strictement décroissante en θ . Ainsi, sur l'intervalle $[\ln \max x_i, +\infty[$ elle atteint son maximum en $\widehat{\theta_n}^{MV} = \ln \max X_i$.

3.
$$\begin{split} F_{\widehat{\theta_n}^{MV}}\left(x\right) &= P_{\theta}\left[\widehat{\theta_n}^{MV} < x\right] = P_{\theta}\left[\max X_i < \exp x\right] = \left[F_X\left(\exp x\right)\right]^n \\ F_X\left(x\right) &= xe^{-\theta} \mathbbm{1}_{\left[0,e^{\theta}\right]}\left(x\right) + \mathbbm{1}_{\left]e^{\theta} + \infty\right[}\left(x\right) \\ F_{\widehat{\theta_n}^{MV}}\left(x\right) &= \left[\exp xe^{-\theta}\right]^n \mathbbm{1}_{\left[0,e^{\theta}\right]}\left(\exp x\right) + \mathbbm{1}_{\left]e^{\theta} + \infty\right[}\left(\exp x\right) \\ F_{\widehat{\theta_n}^{MV}}\left(x\right) &= \exp n\left(x-\theta\right) \mathbbm{1}_{\left]-\infty,\theta\right]}\left(x\right) + \mathbbm{1}_{\left]\theta + \infty\left[}\left(x\right) \\ f_{\widehat{\theta_n}^{MV}}\left(x\right) &= n\exp n\left(x-\theta\right) \mathbbm{1}_{\left]-\infty,\theta\right]}\left(x\right). \end{split}$$

$$E_{\theta} \left[\widehat{\theta_n}^{MV} \right] = \int_{-\infty}^{\theta} nx \exp n \left(x - \theta \right) dx = e^{-n\theta} \left[x \ e^{nx} \right]_{-\infty}^{\theta} - e^{-n\theta} \int_{-\infty}^{\theta} \exp nx \ dx$$

$$E_{\theta} \left[\widehat{\theta_n}^{MV} \right] = e^{-n\theta} \left(\theta e^{n\theta} \right) - e^{-n\theta} \frac{1}{n} e^{n\theta} = \theta - \frac{1}{n} \neq \theta$$

$$\widehat{\theta_n}^{MV} \text{ est donc biaisé.}$$

4. Soit
$$T_{n} = \widehat{\theta_{n}}^{MV} + \frac{1}{n} = \ln \max X_{i} + \frac{1}{n}$$
 $E_{\theta}[T_{n}] = \theta$

$$Var[T_{n}] = Var\left[\widehat{\theta_{n}}^{MV}\right] = \int_{-\infty}^{\theta} nx^{2} \exp n\left(x - \theta\right) dx - \left(\theta - \frac{1}{n}\right)^{2}$$

$$Var[T_{n}] = e^{-n\theta} \left[x^{2}e^{nx}\right]_{-\infty}^{\theta} - e^{-n\theta} \int_{-\infty}^{\theta} 2x \exp nx \ dx - \left(\theta - \frac{1}{n}\right)^{2}$$

$$Var[T_{n}] = e^{-n\theta} \left(\theta^{2}e^{n\theta}\right) - 2e^{-n\theta} \left(\left[\frac{1}{n}x \ e^{nx}\right]_{-\infty}^{\theta} - \int_{-\infty}^{\theta} \frac{1}{n} \exp nx \ dx\right) - \left(\theta - \frac{1}{n}\right)^{2}$$

$$Var[T_{n}] = \theta^{2} - 2\left(\frac{1}{n}\theta - \frac{1}{n^{2}}\right) - \left(\theta - \frac{1}{n}\right)^{2} = \frac{1}{n^{2}}$$

5.
$$Z = n(\theta - \ln \max X_i)$$

$$F_Z(z) = P_{\theta} \left[n(\theta - \ln \max X_i) < z \right] = P_{\theta} \left[\ln \max X_i > \theta - \frac{1}{n}z \right]$$

$$F_Z(z) = 1 - F_{\widehat{\theta_n}^{MV}} \left(\theta - \frac{1}{n}z\right)$$

$$F_Z(z) = 1 - \exp(-z) \mathbb{1}_{\{z>0\}} \qquad Z \leadsto \mathcal{E}(1).$$

La loi de Z est indépendante de θ alors que cette statistique s'exprime en fonction de θ ; elle est donc pivotale.

La loi exponentielle étant unimodale, on suppose $0.05 < 2 \min (F_Z(x^*), 1 - F_Z(x^*))$. Ainsi, $\beta = \frac{\alpha}{2}$ correspond à l'intervalle de dispersion optimal.

$$P\left[F_Z^{-1}(0.025) < n(\theta - \ln \max X_i) < F_Z^{-1}(0.975)\right] = 0.95$$

$$P\left[\ln\max X_i + \frac{1}{n}F_Z^{-1}\left(0.025\right) < \theta < \ln\max X_i + \frac{1}{n}F_Z^{-1}\left(0.975\right)\right] = 0.95$$

$$IC_{0.95}\left(\theta\right) = \left[\ln\max X_i + \frac{1}{n}F_Z^{-1}\left(0.025\right) ; \ln\max X_i + \frac{1}{n}F_Z^{-1}\left(0.975\right)\right]$$

$$F_Z(z) = 1 - \exp(-z)$$
 $F_Z^{-1}(u) = -\ln(1 - u)$

$$IC_{0.95}(\theta) = \left[\ln \max X_i - \frac{1}{n} \ln (0.975) ; \ln \max X_i - \frac{1}{n} \ln (0.025)\right]$$

$$6. T_n = \ln \max X_i + \frac{1}{n}$$

Il s'agit d'une transformée strictement monotone d'une statistique exhaustive, elle est donc exhaustive.

7. $T_n = \ln \max X_i + \frac{1}{n}$; T_n est sans biais de θ avec θ finie. $T(\underline{X}) = \max X_i$ est exhaustive complète. D'après Lehman Scheffe, $E_{\theta}[T_n \setminus T(\underline{X})]$ est uvmb. Or $\widehat{\theta}_2 = \ln \max X_i + \frac{1}{n} = \ln T(\underline{X}) + \frac{1}{n}$.

Donc $T_n = E_\theta \left[T_n \backslash T \left(\underline{X} \right) \right]$ est $uvmb \ de \ \theta$.

Cet estimateur ne peut être efficace car il n'existe pas d'estimateur efficace, l'emv étant biaisé.