Domain Adaptation

常琬星 2023/04/26

Overview

- Domain Adaptation Foundation
- Domain Adaptation Method
 - Discrepancy-based methods
 - Adversarial-based methods
- Multi-source Domain Adaptation Methods
- Universal Domain Adaptation Methods

A caveat in naive ML

- ★ The common assumption in ML is:
 - 1. Annotated training data is available.
 - Training and testing data is drawn from same feature space with same distribution.

Not enough training data, No labels for training data...

Why Domain Adaptation?

Transfer learning vs Domain Adaptation

Intuitive Definition of Domain

Domain D

Domain Adaptation: Train on Source Test on Target

Overview

- Domain Adaptation Foundation
- Domain Adaptation Method
 - Discrepancy-based methods
 - Adversarial-based methods
- Multi-source Domain Adaptation Methods
- Universal Domain Adaptation Methods

Discrepancy-based methods

Slide credit: Judy Hoffman

Deep Domain Confusion

[CoRR 2014] Deep Domain Confusion- Maximizing for Domain Invariance

MMD: Max Mean Discrepancy

Other Discrepancy-based methods

Overview

- Domain Adaptation Foundation
- Domain Adaptation Method
 - Discrepancy-based methods
 - Adversarial-based methods
- Multi-source Domain Adaptation Methods
- Universal Domain Adaptation Methods

Generative Model: Pixel-level GANs

[CVPR 2017] Unsupervised pixel-level domain adaptation with generative adversarial networks

Discriminative Model

Slide credit: Judy Hoffman

DANN: Domain Adversarial Training of Neural Networks

[JMLR 2016] Domain Adversarial Training of Neural Networks

$$G_d(G_f(\mathbf{x}); \mathbf{u}, z) = \operatorname{sigm}(\mathbf{u}^{\top} G_f(\mathbf{x}) + z)$$

$$\mathcal{L}_d(G_d(G_f(\mathbf{x}_i)), d_i) = d_i \log \frac{1}{G_d(G_f(\mathbf{x}_i))} + (1 - d_i) \log \frac{1}{1 - G_d(G_f(\mathbf{x}_i))}$$

RevGrad

Loss of domain classifier

DANN: Domain Adversarial Training of Neural Networks

[JMLR 2016] Domain Adversarial Training of Neural Networks

ADDA: Adversarial Discriminative Domain Adaptation

[CVPR 2017] Adversarial Discriminative Domain Adaptation

Overview

- Domain Adaptation Foundation
- Domain Adaptation Method
 - Discrepancy-based methods
 - Adversarial-based methods
- Multi-source Domain Adaptation Methods
- Universal Domain Adaptation Methods

Multi-source Domain Adaptation

Multi-source Domain Adaptation

[arXiv 2020] Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey

M3SDA: Moment Matching for Multi-Source Domain Adaptation

minimizes the moment-related distance

cross-entropy loss

$$\min_{G,\mathcal{C}} \sum_{i=1}^{N} \mathcal{L}_{\mathcal{D}_i} + \lambda \min_{G} MD^2(\mathcal{D}_S, \mathcal{D}_T)$$

Feature alignment

$$MD^{2}(\mathcal{D}_{S}, \mathcal{D}_{T}) = \sum_{k=1}^{2} \left(\frac{1}{N} \sum_{i=1}^{N} \|\mathbb{E}(\mathbf{X}_{i}^{k}) - \mathbb{E}(\mathbf{X}_{T}^{k})\|_{2} + \binom{N}{2}^{-1} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \|\mathbb{E}(\mathbf{X}_{i}^{k}) - \mathbb{E}(\mathbf{X}_{j}^{k})\|_{2} \right).$$

[ICCV 2019] Moment Matching for Multi-Source Domain Adaptation

MDDA: Multi-source Distilling Domain Adaptation

[AAAI 2020] Multi-source Distilling Domain Adaptation

CMSS: Curriculum Manager for Source Selection

[ECCV 2020] Curriculum Manager for Source Selection in Multi-Source Domain Adaptation

Overview

- Domain Adaptation Foundation
- Domain Adaptation Method
 - Discrepancy-based methods
 - Adversarial-based methods
- Multi-source Domain Adaptation Methods
- Universal Domain Adaptation Methods

What is Universal Domain Adaptation?

Conventional DA

- Source domain
- Target domain
- (?) Universal Target Domain

What is Universal Domain Adaptation?

Conventional DA

(?) Universal Target Domain

What is Universal Domain Adaptation?

- Source domain
- Target domain
- (?) Universal Target Domain

UAN: Universal Adaptation Network

 $-\mathbb{E}_{\mathbf{x}\sim a}w^{t}(\mathbf{x})\log\left(1-D\left(F\left(\mathbf{x}\right)\right)\right)$

[CVPR 2019] Universal Domain Adaptation

Existing Methods

Existing Methods

Ours

- Target-private
- samples

ignore the intrinsic structure of target domain

deteriorate target representation and model performance

learn a not well-generalized model to target domain

Existing Methods

Source-private classes set

Common classes set

diverse ratios of common categories

Unified OT Framework for UniDA

Private Class Discovery

$$\mathcal{L}_{overall} = \mathcal{L}_{cls} + \lambda(\mathcal{L}_{CCD} + \mathcal{L}_{PCD})$$

【【VALSE论文速览-109期】基于统一最优运输框架的通用域适应方法】 https://www.bilibili.com/video/BV1NM411L7BB

Questions?