

# LAZY SHADOWING: A SCALABLE, ENERGY-AWARE RESILIENCE FRAMEWORK FOR EXTREME-SCALE SYSTEMS



XIAOLONG CUI, RAMI MELHEM, AND TAIEB ZNATI

### PROBLEM

As the demand for computing capability continues to increase, there will be a multifold increase in the number of computing, storage and communication components in large scale systems, such as HPC supercomputers and cloud data centers. This increase has two direct implications:

- 1. Increased failure rate
- 2. Increased energy consumption

| Number of nodes | Projected System MTBF |
|-----------------|-----------------------|
| 1               | 5 years               |
| 10              | 6 months              |
| 100             | 20 days               |
| 1000            | 2 days                |
| 10000           | 4 hours               |
| 100000          | 25 minutes            |

Failure



Energy

#### IMPLEMENTATION

Collocation is used to achieve the desired execution rates of the shadow processes.



An example of collocation.

Leaping Shadows is an optimization for tightly-coupled parallel applications.



Leaping shadows.

# METHOD

The basic tenet of Lazy Shadowing is to associate with each main process a suite of shadow processes, whose size depends on the criticality of the application and the reliability of the underlying system. The shadows execute simultaneously with the mains, but at a slower speed to save energy.







# EVALUATION

Compared to existing fault tolerance methods, Lazy Shadowing can achieve 20% energy saving with reduced solution time at scale.





## FUTURE WORK

There are two directions:

- Build a simulator to validate the model
- 2. Implement a prototype for Lazy Shadowing and evaluate the performance

## CONCLUSION

Understanding the interplay between faulttolerance and energy consumption is critical for the viability of future large scale systems. To this end, we propose Lazy Shadowing as a scalable, energy-aware fault-tolerance approach. The beauty of Lazy Shadowing is its ability to explore a parameterized tradeoff between hardware and time redundancy to tolerate failures and balance between response time and energy consumption.

#### ACKNOWLEDGMENT

This research is based in part upon work supported by the National Science Foundation under Grant Number CNS12-53218 and CNS12-52306.