Розпізнавання людської руки на відео

студент 4-го курсу КА-21, Одобеску Владислав

Інститут прикладного системного аналізу керівник: доц. Дідковська Марина Віталіївна

Актуальність роботи

Сфери використання:

- Computer-human interaction systems;
- Робота з мовою жестів;
- Динамічні рухові додатки.

Актуальність роботи полягає у тому, що:

- Виводить взаємодію з ПК на новий рівень;
- У зв'язку з розвиненням сфери віртуальної да доповненої реальностей, з'являється потреба у винайдені оптимальних шляхів взаємодії користувача та системи;
- Використовується нова камера Intel Realsense F200.

Постановка задачі

Мета роботи

Розробка системи розпізнавання людської руки на відео

Об'єкт дослідження

Цифровий відеопотік з RGB чи depth камери

Предмет дослідження

Методи локалізації людської руки на відео

Постановка задачі

Поставлені задачі

- попередня обробка зображення:
 - видалення шумів
 - зглажування
- обробка RGB чи depth зображення та виділення об'єктів, що можна класифікувати як людська рука

Підходи

Видалення шумів

- морфологічні операції над зображенням (erode та dilate)
- зглажування (box filter , гаусівський фільтр)

Виділення людської руки

- Віднімання фону;
- Байесовський класифікатор;
- Обробка відеопотоку з depth камери;

Алгоритми

- Віднімання фону (медіана, Гауса)
- Байесовський класифікатор
 - Класична реалізація
 - Поправки ймовірностей
 - Удосконалений метод навчання
- Розпізнавання на основі сенсора глибини (Intel Realsense F200 camera)

Віднімання фону

Байесовський класифікатор

$$P(s|c) = \frac{P(c|s) * P(s)}{P(c)} \tag{1}$$

Відеопотік камери глибини

Результати роботи

Віднімання фону у спеціальних умовах дає стабільний результат в середньому 95% по першому критерію та не більше 1% по другому.

Байесовський класифікатор із використанням алгоритмів фільтрації ймовірностей досягає в середньому помітки у 80% по першому, та до 5% по другому. Низькі показники алгоритм компенсує простотою реалізації та можливістю подальшого удосконалення шляхом пристосування до характеру освітлення.

Використання камери глибини дає найкращий результат по першому критерію, що очікувано, та в середньому 1.5% по другому через неточності на границі руки.

Висновки

- Проаналізовано існуючі методи попередньої обробки зображення;
- Реалізовано та проведено порівняльний аналіз трьох підходів з урахуванням обмежень на середовище роботи камер;
- Розроблена система:
 - проводить попередню обробку зображення та видаляє випадкові шуми;
 - виділяє ділянки на яких ймовірно знаходиться людська рука та трансформує зображення у бінарне;
 - проводить обробку ціх ділянок.

Шляхи подальшого розвитку

- комбінування деяких підходів;
- реалізація адаптивності байесовського класифікатора до умов освітлення;
- досліждення колірних просторів та колірних характеристик людської шкіри;
- інтеграція цієї систими у систему по розпізнаванню статичних та динамічних жестів;
- оптимізація трудомістих обчислень з метою кращого пристосування системи для обробки real-time відеопотоку.

Дякую за увагу.

