STAT 500

Model Diagnostics for Multiple Linear Regression Models

MLR Model and Assumptions

$$Y_i = \mu_{Y|X} + \epsilon_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i$$
 where ϵ_i i.i.d. $N(0, \sigma^2)$

- \bullet Observations Y_i are independent.
- Values of x are fixed.
- ullet $\mu_{Y|_{\mathbf{X}}}$ is a linear function of \mathbf{x}
- Homogeneous error variance: $Var(\epsilon_i) = \sigma^2$
- Normally distributed errors: ϵ_i i.i.d. $N(0, \sigma^2)$

Independence

- Check independence of observations through details of data collection.
- Beware of
 - Observations over time
 - Clustering of observations
 - Spatial elements to observations
- Crucial assumption must use other methods if violated.

Fixed Values of x

- Assume x is measured without error.
- Check through definition of variables and through details of data collection.
- ullet If violated for some x_j , model the error in those x_j using random effects.

Linearity

- ullet Scatterplot Plot of Y versus each x_j
 - Linear Patterns
- ullet Residual Plot Plot of residuals ${f e}$ versus each x_j
 - No patterns

Violations of Linearity

- ullet Transform Y values so that relationship with each x_j is linear.
- ullet Transform each of the x_j variables to have linear relationship with Y.
- Common transformations:
 - Power: Y^2 , Y^3 , \sqrt{Y} , etc.
 - Exponential: exp(Y), ln(Y)
- ullet Conduct analysis with transformed Y and/or ${f x}$ values.
- Undo transformation in drawing conclusions.

Homogeneous Variance

- \bullet Residual Plots scatterplots of residuals with predicted values \widehat{Y} and with each x_i
 - Look for changes in variability around the horizontal line at 0.
 - Megaphone shaped pattern: variability of e increases or decreases as either \widehat{Y} or specific x_j increases.
- Impact: Confidence Intervals for Conditional Mean and Prediction Intervals

Violations of Homogeneous Variance

- Transform Y or x_j
- Use Weighted Least Squares

Weighted Least Squares

- Assume $Var(\epsilon_i) = \sigma_i^2$ for i = 1, ..., n
- Define diagonal matrix W to have elements $w_{ii} = 1/\sigma_i^2$
- ullet Weighted least squares estimate of $oldsymbol{eta}$ is

$$(X^TWX)^{-1}X^TWY$$

Weighted Least Squares

- Observations with smaller σ_i^2 get a larger weight in the weighted least squares estimate than observations with larger σ_i^2 .
- Must know or be able to estimate values of w_{ii} .
 - If the *i*th observation is an average of n_i equally variable observations, then $Var(Y_i) = \sigma^2/n_i$ and $w_{ii} = n_i$.
 - If the *i*th observation is a total of n_i observations, then $Var(Y_i) = n_i \sigma^2$ and $w_{ii} = 1/n_i$.
 - If variance is proportional to some predictor x_j , then $Var(Y_i) = x_{ij}\sigma^2$ and $w_{ii} = 1/x_{ij}$.]
 - In some cases, the values of the weights may be based on theory or prior research.

Weighted Least Squares

- The difficulty in applying weighted least squares in practice is determining the weights (estimate of error variances).
- Estimation schemes exist for estimating weights based on other characteristics (megaphone shape or upward trend in residual plots)
- Least squares and weighted least squares estimates are usually similar in value.
- Differences occur with inference and prediction.

Normality

- Distribution of Residuals
 - Histogram of residuals
 - Normal probability plot of residuals
 - Tests for normality of residuals
- Affects inference, especially for smaller sample sizes

Violations of Normality

- Remedies
 - Check for outliers
 - Transform Y
 - Conduct robust regression

Model Selection Assessment

- Multiple Testing Problem
 - Adjust significance for all models considered?
 - Ignore the issue (most common practice) i.e.
 assume selected model is correct
 - Explore conclusions from several of the best models
 - Model averaging (using AIC or BIC)

Model Selection Assessment

- Stepwise procedures tend to overfit the sample data. Would the model perform as well in making predictions for new cases randomly selected from the population?
- Model validation: Split data into two parts
 - Training sample (perhaps 2/3 of the data)
 - Validation sample (the remainder of the data)
 - Use training sample to select model
 - Use validation sample to assess model performance and fit

Model Selection Assessment

Compute

$$MSE_{\text{Validation}} = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} (Y_i - \widehat{Y}_i)^2$$

- \bullet Should be approximately equal to $MSE_{\mbox{Training}}$ from selected model
- \bullet $MSE_{\mbox{Validation}}$ will be substantially larger if model is over fit to the training sample
- \bullet Use as model selection technique fit many models to the training sample and compute $MSE_{\mbox{Validation}}$ for the validation sample for each selected model
- PRESS is doing this over-and-over with the size of the test sample equal to one case

Model Selection: PRESS Criterion

- PRESS (predicted residual error sum of squares)
 - Predict each response using the other n-1 cases to estimate the model parameters

$$-PRESS = \sum_{i} (Y_i - \hat{Y}_{i(-i)})^2$$

nice idea, not used very often

Case Diagnostics

- Leverage
- Outliers
- Influential Points

- ullet Extreme values in x's are called high leverage cases because they exert a large "pull" on the fitted regression model
- Measured using the projection matrix P_X (also called the hat matrix = H)

$$\hat{\mathbf{Y}} = H\mathbf{Y} = P_X\mathbf{Y} = X(X^TX)^{-1}X^TY$$

For an observation i, can write

$$\hat{Y}_i = \sum_{j=1}^n h_{ij} Y_j = h_{ii} Y_i + \sum_{j \neq i} h_{ij} Y_j$$

- h_{ii} is the (i,i) element of P_X and it is called the *leverage* of the i-th case.
- The leverage measures the extent to which ith observation dictates its own fitted value

- ullet Properties of h_{ii}
 - $0 \le h_{ii} \le 1$
 - $-\sum_{i=1}^{n} h_{ii} = k+1$
 - Measures the "distance" between the vector of values for the explanatory variables for the ith observations and the average vector of values of explanatory variables

- Often use 2(k+1)/n or 3(k+1)/n as a guide for determining large h_{ii}
- ullet In addition to an absolute cutoff, look for large h_{ii} by examining the distribution of h_{ii} values across cases

Case Diagnostics - Outliers

- ullet Extreme Y_i value for a given ${f x}$
- Three assessment methods
 - Residuals
 - Internally studentized residuals
 - Externally studentized residuals

Case Diagnostics - Residuals

Residuals

$$e_i = Y_i - \hat{Y}_i$$

- $Var(e_i) = \sigma^2(1 h_{ii})$
- Observations with higher leverage will have residuals with smaller variance.

Case Diagnostics - Residuals

• Internally studentized residuals

$$r_i = \frac{e_i}{\sqrt{MSE(1 - h_{ii})}}$$

- ullet r_i will have mean zero and approximately equal variance
- Outliers will inflate MSE
- ullet r_i is called STUDENT in SAS

Case Diagnostics - Residuals

Externally studentized residuals

$$t_i = \frac{e_i}{\sqrt{MSE_{(-i)}(1 - h_{ii})}}$$

where $\mathsf{MSE}_{(-i)}$ is MSE without the ith observation

- \bullet t_i will have mean zero and approximately equal variance
- ullet t_i is called RSTUDENT in SAS

Case Diagnostics - Outliers

Residual values with absolute value

- Less than 2 are fine
- Between 2 and 3 indicate potential outliers
- Greater than 3 indicate outliers

Case Diagnostics - Outliers

- Outliers inflate value of $\hat{\sigma}^2$
- Will lower values of t and F test statistics
- Will inflate widths of confidence intervals for parameters and prediction intervals

- Concerned about unusual cases that have a big influence on both:
 - \hat{Y}_i for some \mathbf{x}_i
 - regression coefficient \widehat{eta}_j
- Could delete the case, refit model and examine the change

 COOK'S D - effect deleting the i-th case on the entire set of fitted values

$$D_{i} = \frac{\sum_{j} (\hat{Y}_{j} - \hat{Y}_{j(-i)})^{2}}{(k+1)MSE} = \left(\frac{r_{i}^{2}}{k+1}\right) \left(\frac{h_{ii}}{1 - h_{ii}}\right)$$

- ullet D_i is large when r_i is large and h_{ii} is large
- There is no gold-standard for the cutoff of Cook's D.
 - SAS uses 4/n.
 - $-D_i > 2 * \sqrt{2/n}$ indicates substantial influence.
 - $-D_i > F_{k+1,n-k-1,0.5}$ indicates substantial influence.
 - Can also judge D_i relative to other D_j 's.

ullet DFFITS $_i$ - effect of ith case on fitted value for Y_i

DFFITS_i =
$$\frac{\hat{Y}_i - \hat{Y}_{i(-i)}}{\sqrt{MSE_{(-i)}h_{ii}}} = t_i \sqrt{\frac{h_{ii}}{1 - h_{ii}}}$$

- ullet |DFFITS $_i|>2$ is considered large in small or medium sized samples
- $|\mathsf{DFFITS}_i| > 2\sqrt{\frac{k+1}{n}}$ is considered large in big samples

 DFBETAS - effect of deleting the i-th case on the estimate of a single coefficient

DFBETA_{k,i} =
$$\frac{b_k - b_{k(-i)}}{\sqrt{MSE_{(-i)}c_{kk}}}$$

- k = 0 for population intercept β_0
- k = j for population slope β_j
- c_{kk} is (k,k) element of $(X^TX)^{-1}$
- \bullet DFBETA larger than 2 (small or medium size samples) or larger than $2n^{-1/2}$ (large samples) may be worthy of attention

Case Diagnostics - SAS

```
/* case diagnostics*/
proc reg data=set1 plots=(diagnostics);
  model y = x1-x5/ vif influence;
  run;
```