CS 342 - Spring 2019 Project 2 Section: 1

Ayca Begum Tascioglu - 21600907 Erdem Ege Marasli - 21602156 Date: 30 March 2019

1) Number of threads will be analyzed on a single core machine when number of keys/operations, number of locks, and table size are constant.

Number of threads when W = 1000 K = 100 N = 100 (on single core machine)				
number of threads (T)	time			
1	real 0m0.042s user 0m0.004s sys 0m0.011s			
5	real 0m0.432s user 0m0.023s sys 0m0.080s			
10	real 0m0.874s user 0m0.047s sys 0m0.152s			
25	real 0m2.233s user 0m0.160s sys 0m0.373s			
100	real 0m8.804s user 0m0.461s sys 0m1.632s			

Thread Count vs. Time (on a single core machine)

2) Number of keys/operations when number of the threads, number of the locks and table size are constant.

Number of operations when T = 10 K = 100 N = 1000 (on single core machine)					
number of keys/operations (W)	time				
10	real 0m0.007s user 0m0.000s sys 0m0.004s				
100	real 0m0.086s user 0m0.004s sys 0m0.020s				
1000	real 0m0.793s user 0m0.031s sys 0m0.145s				
2000	real 0m1.527s user 0m0.058s sys 0m0.283s				

3) Number of locks when number of the threads, number of the keys/operations and table size are constant.

Number of locks when $T = 10 K = 100 N = 100$ (on single core machine)				
number of locks (K)	time			
1	real 0m0.834s user 0m0.080s sys 0m0.133s			
10	real 0m0.822s user 0m0.054s sys 0m0.156s			
100	real 0m0.802s user 0m0.049s sys 0m0.162s			

Discussion For Test Results

When we investigate table 1 and graph 1, we saw that all time variables' values are increasing while thread count is increasing and all other variables are constant. This is because even when thread count is getting larger, number of operations are constant, and same for every different thread. This yields to increase of time while thread count is increasing.

When we investigate table 2 and graph 2, we saw that all time variables' values are increasing while number of operations are increasing and all the variables are constant. Since we increase the number of operations we expect for a larger execution of time.

When we investigate table 3 and graph 3, we saw that all time variables' values are really similar with each other while number of locks are increasing and all other variables are constant. We were not expecting this results at the beginning, however, after we discussed we come up with a reason. Since our test machine is a single core machine, all threads need to wait for each other to run so lock number does not affect on timing. Also, since thread count can not get really large like 1 billion because of restrictions and lock number also can not be really large we calculated the result with really small values. Small values do not affect significantly on the timing since computers are really fast for small numbers.