Polar Equations and their Graphs

Equations of Circles:

- $r = \pm 2a\cos\theta$, $r = \pm 2a\sin\theta$: Circles with center along one of the coordinate axes and radius a.
- r = a: Circle with center at the origin and radius a.

NOTE: a is NOT equal to 0. The graphs of Circles are generated as the angle increases from 0 to 2π .

- ho r = 2cosθ: Equation of a Circle with center at (1, 0) and radius 1.
- ho $r = -2sin\theta$: Equation of a Circle with center at $(1, -\frac{\pi}{2})$ and radius 1.

Equations of Limacons: $r = a \pm bcos\theta$, $r = a \pm bsin\theta$, a and b are NOT equal to 0.

- the graph of the Limacon has an inner loop!
- If \$\left|\frac{a}{b}\right| < 1\$, the graph of the Limacon has an inner left.
 If \$1 < \left|\frac{a}{b}\right| < 2\$, the graph of the Limacon is "dimpled".
 If \$\left|\frac{a}{b}\right| ≥ 2\$, the graph of the Limacon is considered. the graph of the Limacon is considered "convex (oval)".

The graphs of Limacons are generated as the angle increases from 0 to 2π .

Limacon with inner loop: $r = 2 + 3\cos\theta$

Note that: a = 2, b = 3 and $\left| \frac{2}{3} \right| < 1$.

▶ Dimpled Limacon: $r = 3 + 2sin\theta$

Convex (Oval) Limacon: $r = 8 + 2\cos\theta$

Note that: a = 3, b = 2 and $\left| \frac{3}{2} \right| < 2$.

Note that: a = 8, b = 2 and $\left| \frac{8}{2} \right| \ge 2$.

Equations of Cardioids:

$$r = a \pm bcos\theta$$
, $r = a \pm bsin\theta$, where $\left|\frac{a}{b}\right| = 1$.

The graphs of Cardioids are generated as the angle increases from 0 to 2π .

$$r = 2 + 2\cos\theta$$
: Cardioid

ho $r = -1 - sin\theta$: Cardioid

Note that: a = 2, b = 2 and $\left| \frac{2}{2} \right| = 1$.

Equations of Rose Curves:

 $r = a\sin n\theta$, $r = a\cos n\theta$, where **a** and **n** are NOT equal to **0**.

- When n is odd, the entire curve is generated as θ increases from $\mathbf{0}$ to π . The curve has n petals.
- When n is even, the entire curve is generated as θ increases from 0 to 2π . The curve has 2n petals.

ho $r = 2 sin 3\theta$: Equation of a Rose Curve with 3 petals

Note that: n = 3 is odd, therefore the rose curve has 3 petals.

Note that: n = 4 is even, therefore the rose curve has 2(4) = 8 petals.

Equations of Lemniscates: $r^2 = a^2 sin 2\theta$, $r^2 = a^2 cos 2\theta$, where **a** is NOT equal to **0**.

The graphs of Lemniscates are generated as the angle increases from 0 to 2π .

 $r^2 = 4sin2\theta$: Equation of a Lemniscate

 $r^2 = cos2\theta$: Equation of a Lemniscate

