

Exploratory data Analysis & Feature Engineering

Prerequisite

Must have things

• Anaconda should be installed with python *.* version

 Basic understanding of Matrix Algebra

• Basic Understanding of Python

Machine Learning Classification

Steps in Building Machine Learning Models

Step 1 Step 2 Step 3 Step 4

Get the Data

- Creating Isolated Environment
- Importing data
- Quick look on Data Structure
- Creating a test set

Data Exploration and Visualization

- Data Exploration
- Data Visualization
- Looking for Correlations

Data Preparation for ML Algorithms

- Data Cleaning
- Handling Text Attributes
- Creating Pipelines

Train and Fine - tuning the model

- Training and Evaluation on training set
- Better Evaluation using Cross Validation
- Finalizing the model
- Prediction on test set

Let's get started...

Get the data

- Create Workspace / Virtual Environment
- Importing Data
- Quick look at the data structure
- Creating a test set

Create Workspace / Virtual Environment

• Also known as Isolated environment

• Allows us to work with different version of python and its packages for different projects

- Two ways to install packages:
 - o conda
 - o pip

• Local packages installation

Get the data

- Create Workspace / Virtual Environment
- Importing Data
- Quick look on the data structure
- Creating a test set

Get the data

- Create Workspace / Virtual Environment
- Importing Data
- Quick look on the data structure
- Creating a test set

Quick look on the data structure

- The data is related with direct marketing campaigns of a Portuguese Banking Institution.
- These marketing campaigns are based on phone calls

• Classification goal is to predict if the customer will subscribe a term deposit (variable y)

- Find the data on below link:
 - https://archive.ics.uci.edu/ml/datasets/bank+marketing

Information about data features -1

• Bank – Client Data

- 1. age (numeric)
- 2. job (categorical: 'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
- 3. marital : marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- 4. education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
- 5. default: has credit in default? (categorical: 'no', 'yes', 'unknown')
- 6. housing: has housing loan? (categorical: 'no', 'yes', 'unknown')
- 7. loan: has personal loan? (categorical: 'no', 'yes', 'unknown')

Information about data features – 2

• Contact of the current campaign:

- o contact: contact communication type (categorical: 'cellular', 'telephone')
- o month: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')
- day of week: last contact day of the week (categorical: 'mon', 'tue', 'wed', 'thu', 'fri')
- duration: last contact duration, in seconds (numeric).

Information about data features – 3

• other attributes:

- o campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- o pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- previous: number of contacts performed before this campaign and for this client (numeric)
- o poutcome: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success')

Information about data features -4

• social and economic context attributes

- emp.var.rate: employment variation rate quarterly indicator (numeric)
- o cons.price.idx: consumer price index monthly indicator (numeric)
- o cons.conf.idx: consumer confidence index monthly indicator (numeric)
- euribor3m: euribor 3 month rate daily indicator (numeric)
- o nr.employed: number of employees quarterly indicator (numeric)

• Output variable (desired target):

 \circ y - has the client subscribed a term deposit? (binary: 'yes', 'no')

Get the data

- Create Workspace / Virtual Environment
- Importing Data
- Quick look on the data structure
- Creating a test set

Creating a test set

- Ratio is dependent on the size of the data
- The following percentages (for Train:Validation:Test) are considered:
 - 0 70:20:10
 - 0 90:5:5
 - 0 97:2:1

Data Exploration and Visualization

• Data Exploration

Data Visualization

• Looking for Correlations

Data Exploration and Visualization

• Data Exploration

Data Visualization

• Looking for Correlations

Data Exploration and Visualization

• Data Exploration

• Data Visualization

• Looking for Correlations

Linear Correlation

- It reflects the degree of linear relationship between two variables
- It is symmetric
- Correlation between x and y is same as correlation between y and x
- It ranges from -1 to +1

$$r = \frac{\sum xy}{\sqrt{(\sum x^2)(\sum y^2)}}$$

r = 1

Preparing data for ML algorithms

- Data Cleaning / Missing Value
 Treatment
- Handling Text and Categorical Attributes
- Feature Scaling
- Transformation pipelines

How to deal with missing values

- <u>Method 1:</u> By removing the rows with missing value
- <u>Method 2:</u> By Imputation
 - For numerical variables, missing values will replace by median or mean value of the variable
 - For categorical variables, missing values will replace by mode
- <u>Method 3:</u> By considering as a separate class

Preparing data for ML algorithms

- Data Cleaning / Missing Value
 Treatment
- Handling Text and Categorical Attributes
- Feature Scaling
- Transformation pipelines

Label Encoding & One – Hot Encoding

• <u>Label Encoding</u>

- Give every class of a categorical variable a unique numerical ID
- It doesn't increase the dimension of the data

• One – Hot Encoding

- Transform a categorical variable of m classes into m binary features
- Also known as converting data into sparse format

platform		platform=desktop	platform=mobile	platform=tablet
desktop		1	0	0
mobile	1 -	0	1	0
tablet	1	0	0	1

Preparing data for ML algorithms

- Data Cleaning / Missing Value Treatment
- Handling Text and Categorical Attributes
- Feature Scaling
- Transformation pipelines

Different types of Scalers

• <u>MinMaxScaler</u>

- It squeezes all the values within the range of 0 and 1
- $\circ \quad \tilde{x} = \frac{x \min(x)}{\max(x) \min(x)}$

StandardScaler

- It shifts the distribution of each attribute to have a mean of 0 and a standard deviation of 1 (unit variance)
- $0 \quad \tilde{\chi} = \frac{x \text{mean}(x)}{\text{sd}(x)}$

Preparing data for ML algorithms

- Data Cleaning / Missing Value Treatment
- Handling Text and Categorical Attributes
- Feature Scaling
- Transformation pipelines

Scikit-Learn Design Principles

Consistency

- <u>Estimators</u> (any object that can estimate some parameters based on the dataset)
 - Estimation is performed by the *fit()* method and takes dataset as a parameter
- <u>Transformers</u> (Transformation of the dataset)
 - It is performed by *transform()* method with dataset as a parameter and returns the transformed dataset
- <u>Predictors</u> (Making predictions for given dataset)
 - It is performed by *predict()* method with dataset as a parameter

fit_transform()

F a s t e

Transformation Pipeline

- Pipeline is a chain of several steps
- Easy to reproduce and productise the data

Train and Fine-Tuning the model

- Training and evaluating on the training set
- Better evaluation using Cross-Validation
- Finalizing the model
- Predicting the test set

Confusion Matrix

		Predicted Class	
		0	1
Observed	0	TN	FP
Class	1	FN	TP

ТР	True Positive	
TN	True Negative	
FN	False Negative	
FP	False Positive	

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall (Sensitivity or TPR) = \frac{TP}{TP + FN}$$

$$f1 \ score = \frac{2 * Precision * Recall}{Precision + Recall}$$

$$FPR \ (1 - Specificity) = \frac{FP}{FP + TN}$$

$$Specificity \ (TNR) = \frac{TN}{FP + TN}$$

ROC Curve & AUC

ROC Curve

- Also known as Receiver Operating Curve
- Plot of test Sensitivity on the Y axis versus its False Positive Rate (FPR) on the X – axis
- Each discrete point on the graph called the Operating Point
- AUC (Area Under the Curve)
 - AUC provides the overall measure of test accuracy
 - Higher the AUC the better the overall performance of the test

Train and Fine-Tuning the model

- Training and evaluating on the training set
- Better evaluation using Cross-Validation
- Finalizing the model
- Predicting the test set

K - Fold Cross Validation

- Helps in identifying the overfitting and underfitting of data
- Helps in getting the best hyperparameter of the model

Train and Fine-Tuning the model

- Training and evaluating on the training set
- Better evaluation using Cross-Validation
- Finalizing the model
- Predicting the test set

Train and Fine-Tuning the model

- Training and evaluating on the training set
- Better evaluation using Cross-Validation
- Finalizing the model
- Predicting the test set

Questions?