LONG TIME BEHAVIOR FOR A SEMILINEAR HYPERBOLIC EQUATION WITH ASYMPTOTICALLY VANISHING DAMPING TERM AND CONVEX POTENTIAL

RAMZI MAY
University of Carthage Tunisia
and
King Faisal University KSA
rmay@kfu.edu.sa

Abstract Recently, A. Cabot and P. Frankel studied the long time behavior of solutions to the following semilinear hyperbolic equation:

(E)
$$\frac{d^2u}{dt^2}(t) + \gamma(t)\frac{du}{dt}(t) + Au(t) + f(u(t)) = 0, \quad t \ge 0,$$

where $\gamma: \mathbb{R}^+ \to \mathbb{R}^+$, the damping term, is a decreasing function, f is the gradient of a given convex function defined on an a real Hilbert space V, and $A: V \to V'$ is a linear and continuous operator assumed to be symmetric, monotone and semi-coercive. They proved that if the damping term $\gamma(t)$ behaves like $\frac{K}{t^{\alpha}}$ as $t \to +\infty$, for some K > 0 and $\alpha \in]0,1[$, then every bounded solution u to the equation (E) (i.e. $u \in L^{\infty}(0,+\infty;V)$) converges weakly in V as $t \to +\infty$ toward a solution to the stationary equation Av + f(v) = 0. They left open the question: Does convergence still hold without assuming the boundedness of the solution? In this paper, we give a positive answer to this question. Our approach relies on precise estimates on the decay rates for the energy function along trajectories of (E).

keywords: Dissipative hyperbolic equation, asymptotically small dissipation, asymptotic behavior, energy function, convex function.

AMS classification numbers: 34G10, 34G20, 35B40, 35L70.

1. Introduction and statement of results

Throughout this paper, we follow the same notations as in the paper [5]. Let H be a real Hilbert space with inner product and norm respectively denoted by $\langle .,. \rangle$ and |.|. Let V be a real Hilbert space such that $V \hookrightarrow H \hookrightarrow V'$ with continuous and dense injections, where V' is the dual space of V. Let $\gamma : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ be a decreasing function which belongs to the space $W_{loc}^{1,1}(\mathbb{R}^+;\mathbb{R}^+)$. Let $A: V \to V'$ be a linear and continuous operator such that the associated

bilinear form $a: V \times V \to \mathbb{R}$ $(u,v) \mapsto \langle Au, v \rangle_{V',V}$ is symmetric, positive and satisfies the following property:

(1.1)
$$\exists \lambda \ge 0, \mu > 0 : \forall v \in V, \ a(v, v) + \lambda |v|^2 \ge \mu ||v||_V^2.$$

Let $f: V \to V'$ be a continuous function deriving from a convex potential i.e, there exists a C^1 convex function $F: V \to \mathbb{R}$ such that:

$$\forall u, v \in V, F'(u)(v) = \langle f(u), v \rangle_{V', V}.$$

It is clear that the function $\phi: V \to \mathbb{R}$ defined by:

$$\phi(v) = \frac{1}{2}a(v,v) + F(v)$$

is C^1 , convex and satisfies the following property:

$$\forall u, v \in V, \phi'(u)(v) = \langle Au + f(u), v \rangle_{V', V}.$$

We assume moreover that the function ϕ is bounded from below and that the set

$$\arg\min\phi=\{v\in V:\phi(v)=\min\phi\}$$

is not empty. Notice that, since ϕ is convex, arg min ϕ coincides with the set $S = \{v \in V : Av + f(v) = 0\}$ of critical points of ϕ .

In this paper, our purpose is to investigate the asymptotic behavior of the semilinear hyperbolic equation:

(E)
$$\frac{d^2u}{dt^2}(t) + \gamma(t)\frac{du}{dt}(t) + Au(t) + f(u(t)) = 0, \quad t \ge 0.$$

This equation and its ODE version (called the heavy ball with friction) have been studied by many authors under various conditions on the damping and potential terms, see for instance, [1], [2], [3], [4], [5], [6], [7], [10], and references there in.

By a solution of (E) we mean a function $u: \mathbb{R}^+ \longrightarrow H$ which belongs to the class

$$W_{loc}^{1,1}(\mathbb{R}^+, V) \cap W_{loc}^{2,1}(\mathbb{R}^+, H)$$

and satisfies the equation (E) for almost every $t \ge 0$. A solution u to (E) is said to be bounded if it belongs moreover to the space $L^{\infty}(0, +\infty; H)$.

In [5], Cabot and Frankel proved the following interesting convergence result:

Theorem 1.1 (A. Cabot and P. Frankel). Assume that there exist $\alpha \in]0,1[$ and $K_1,K_2>0$ such that for every $t\geq 0$, $\frac{K_1}{(1+t)^{\alpha}}\leq \gamma(t)\leq \frac{K_2}{(1+t)^{\alpha}}$. Let u be a <u>bounded</u> solution to (E). Then there exists $u_{\infty}\in \arg\min\phi$ such that u(t) converges weakly in V to u_{∞} as $t\to +\infty$.

An open question left in the paper [5] was whether the condition $u \in L^{\infty}(0, +\infty; H)$ is really necessary in the previous theorem (see Remark 3.15 in [5]). In the present paper, we will show, without assuming the boundedness of the solution, that the weak convergence result still holds in the case $\alpha \in [0, \frac{1}{2}]$ and in the case $\alpha \in [1, \frac{1}{2}]$ and in the

Theorem 1.2. Assume that there exist $\alpha \in [0, \frac{1}{2}]$ and K > 0 such that for every $t \geq 0$, $\gamma(t) \geq \frac{K}{(1+t)^{\alpha}}$. Then for every solution u to (E) there exists $u_{\infty} \in \arg\min \phi$ such that u(t) converges weakly in V to u_{∞} as $t \to +\infty$. Moreover,

$$\frac{1}{2} \left| \frac{du}{dt}(t) \right|^2 + \phi(u(t)) - \min \phi = o(\frac{1}{t}) \text{ as } t \to +\infty.$$

Theorem 1.3. Assume that there exist $\alpha \in [0,1[, K > 0 \text{ and } t_0 \ge 0 \text{ such that } \gamma(t) \ge \frac{K}{(1+t)^{\alpha}}$ for every $t \ge 0$ and $\gamma'(t) \le -\alpha \frac{\gamma(t)}{1+t}$ for almost every $t \ge t_0$. Let u be a solution to (E), then u(t) converges weakly in V as $t \to +\infty$ toward some $u_{\infty} \in \arg \min \phi$. Moreover, for every $\bar{\alpha} < \alpha$,

$$\frac{1}{2} \left| \frac{du}{dt}(t) \right|^2 + \phi(u(t)) - \min \phi = o(\frac{1}{t^{1+\bar{\alpha}}}) \text{ as } t \to +\infty.$$

2. Proof of Theorem 1.2 and Theorem 1.3

We will first prove some preliminary results under the following general hypothesis on the damping term γ :

(2.1)
$$\exists K > 0 \text{ and } \alpha \in [0, 1[: \forall t \ge 0, \ \gamma(t) \ge \frac{K}{(1+t)^{\alpha}}.$$

These results will be useful in the proofs of Theorem 1.2 and Theorem 1.3. Let u be a solution to the equation (E). Define the energy function

(2.2)
$$\mathcal{E}(t) = \frac{1}{2} \left| \frac{du}{dt}(t) \right|^2 + \phi(u(t)) - \min \phi, \ t \ge 0.$$

A simple computation yields

$$\frac{d\mathcal{E}}{dt}(t) = -\gamma(t) \left| \frac{du}{dt}(t) \right|^2, \ a.e. \ t \ge 0.$$

Thus the function \mathcal{E} is decreasing and converges as $t \to +\infty$ to some real number \mathcal{E}_{∞} which will be identified later. Moreover

(2.3)
$$\int_{0}^{+\infty} \gamma(t) \left| \frac{du}{dt}(t) \right|^{2} dt < \infty$$

and

(2.4)
$$\forall t \ge 0, \ \mathcal{E}(t) - \mathcal{E}_{\infty} = \int_{t}^{+\infty} \gamma(s) \left| \frac{du}{dt}(s) \right|^{2} ds.$$

Let v be a fixed point in $\arg\min\phi$ and define the function $p(t) = \frac{1}{2}|u(t) - v|^2$, $t \ge 0$. Proceeding as in the proof of Proposition 3.5 in [5], one can easily prove that for almost every t in \mathbb{R}^+ we have

$$\ddot{p}(t) + \gamma(t)\dot{p}(t) \le \frac{3}{2} \left| \frac{du}{dt}(t) \right|^2 - \mathcal{E}(t).$$

Multiplying the last inequality by $\lambda_r(t) = (1+t)^r$, $r \in \mathbb{R}$, and integrating by parts over the interval [0,T], T>0, we easily obtain after simplification

$$\int_{0}^{T} \lambda_{r}(t)\mathcal{E}(t)dt \leq \frac{3}{2} \int_{0}^{T} \lambda_{r}(t) \left| \frac{du}{dt}(t) \right|^{2} dt - \lambda_{r}(T)\dot{p}(T) + \left[\lambda'_{r} - (\gamma \lambda_{r}) \right] (T)p(T) + \int_{0}^{T} \left[(\lambda_{r}\gamma)' - \lambda''_{r} \right] (t)p(t)dt + C_{r}$$
(2.5)

where $C_r = \dot{p}(0) + (\gamma(0) - r)p(0)$.

Since γ satisfies (2.1), $\lambda'_r(T) = \circ [(\gamma \lambda_r)(T)]$ as $T \to +\infty$. Thus, there exits $T_r \ge 0$ such

(2.6)
$$\forall t \geq T_r, \ \lambda'_r(T) - (\gamma \lambda_r)(T) \leq -\frac{1}{2} (\gamma \lambda_r)(T).$$

On the other hand, thanks to Cauchy-Schwarz inequality, we have

$$|\dot{p}(T)| \leq \left| \frac{du}{dt}(t) \right| |u(t) - v|$$

$$\leq 2\sqrt{\mathcal{E}(T)}\sqrt{p(T)}$$

Inserting estimates (2.6)-(2.7) into (2.5) and using hypothesis (2.1) and the following elementary inequality

$$\forall a > 0 \ \forall \ x, b \in \mathbb{R}, \ bx - ax^2 \le \frac{b^2}{4a}$$

with $x = \sqrt{p(T)}$, we deduce that for every $T \geq T_r$ we have

(2.8)
$$\int_{0}^{T} \lambda_{r}(t)\mathcal{E}(t)dt \leq \frac{3}{2} \int_{0}^{T} \lambda_{r}(t) \left| \frac{du}{dt}(t) \right|^{2} dt + \frac{2}{K} \lambda_{r+\alpha}(T)\mathcal{E}(T) + \int_{0}^{T} \left[(\lambda_{r}\gamma)'(t) - \lambda_{r}''(t) \right] p(t)dt + C_{r}.$$

Let us notice that if $r \leq 0$, $(\lambda_r \gamma)'(t) - \lambda_r''(t) \leq 0$ a.e. on \mathbb{R}^+ (since the function $\lambda_r \gamma$ is decreasing and the function λ_r is convex); then, in the case where $r \leq 0$, (2.8) becomes

(2.9)
$$\forall T \ge T_r, \ \int_0^T \lambda_r(t) \mathcal{E}(t) dt \le \frac{3}{2} \int_0^T \lambda_r(t) \left| \frac{du}{dt}(t) \right|^2 dt + \frac{2}{K} \lambda_{r+\alpha}(T) \mathcal{E}(T) + C_r.$$

Letting $r = -\alpha$ in the last inequality and using (2.3) and the fact that is \mathcal{E} a decreasing function, we get

$$\forall T \geq T_{-\alpha}, \int_0^T \lambda_{-\alpha}(t)\mathcal{E}(t)dt \leq \frac{3}{2K} \int_0^{+\infty} \gamma(t) \left| \frac{du}{dt}(t) \right|^2 dt + \frac{2}{K}\mathcal{E}(0) + C_{-\alpha},$$

which implies that

(2.10)
$$\int_{0}^{+\infty} \lambda_{-\alpha}(t)\mathcal{E}(t)dt < \infty.$$

Recalling that $\alpha < 1$, we then deduce that the limit \mathcal{E}_{∞} of $\mathcal{E}(t)$ as $t \to +\infty$ is equal to zero. Let us now prove the following crucial lemma:

Lemma 2.1. Let $r \in \mathbb{R} \setminus \{-1\}$. If $\int_0^{+\infty} \lambda_r(t) \mathcal{E}(t) dt < \infty$ then $\mathcal{E}(t) = \circ (1/t^{1+r})$ as $t \to +\infty$ and $\int_0^{+\infty} \lambda_{r+1-\alpha}(t) \left| \frac{du}{dt}(t) \right|^2 dt < \infty$.

Proof. Since the energy function \mathcal{E} is decreasing, we have

(2.11)
$$\mathcal{E}(t) \int_{\frac{t}{2}}^{t} (1+s)^r ds \le \int_{\frac{t}{2}}^{+\infty} \lambda_r(s) \mathcal{E}(s) ds.$$

A simple computation yields $\int_{\frac{t}{2}}^{t} (1+s)^r ds \simeq M_r t^{r+1}$ for t large enough where M_r is a nonnegative constant depending only on r. Inserting this last estimate into (2.11), we get $\lim_{t\to+\infty} t^{1+r} \mathcal{E}(t) = 0$. On the other hand, by using equality (2.4), the fact that $\mathcal{E}_{\infty} = 0$, and Fubini Theorem, we obtain

$$\int_0^{+\infty} \lambda_r(t) \mathcal{E}(t) dt = \frac{1}{1+r} \int_0^{+\infty} \gamma(s) \left[(1+s)^{r+1} - 1 \right] \left| \frac{du}{dt}(s) \right|^2 ds,$$

which clearly implies that $\int_0^{+\infty} \lambda_{r+1-\alpha}(t) \left| \frac{du}{dt}(t) \right|^2 dt < \infty$ since $\int_0^{+\infty} \gamma(s) \left| \frac{du}{dt}(s) \right|^2 ds < \infty$ and $\gamma(s) \ge \frac{K}{(1+s)^{\alpha}}$.

Now we are in position to complete the proof of our first main theorem.

Proof of Theorem 1.2: In view of (2.10), Lemma 2.1 implies $\mathcal{E}(t) = \circ(t^{\alpha-1})$ as $t \to +\infty$ and $\int_0^{+\infty} \lambda_{1-2\alpha}(t) \left|\frac{du}{dt}(t)\right|^2 dt < \infty$. Hence by letting r = 0 in (2.9), we get, for T large enough,

$$\int_0^T \mathcal{E}(t)dt \le \frac{3}{2} \int_0^T \left| \frac{du}{dt}(t) \right|^2 dt + o(T^{2\alpha - 1}) + C_0.$$

Therefore, by letting $T \to +\infty$ and using the assumption $\alpha \leq \frac{1}{2}$, we get

$$\int_0^\infty \mathcal{E}(t)dt \le \frac{3}{2} \int_0^\infty \lambda_{1-2\alpha}(t) \left| \frac{du}{dt}(t) \right|^2 dt + C_0,$$

Hence, by using once again Lemma 2.1, we deduce that $\mathcal{E}(t) = \circ(1/t)$ as $t \to +\infty$ and that $\int_0^{+\infty} \lambda_{1-\alpha}(t) \left| \frac{du}{dt}(t) \right|^2 dt < \infty$ which implies, since $\alpha \leq \frac{1}{2}$, that $\int_0^{+\infty} (1+t)^{\alpha} \left| \frac{du}{dt}(t) \right|^2 dt < \infty$. Therefore we deduce the weak convergence of u(t) in V as $t \to +\infty$ from the following lemma which is implicitly proved in [5] (see the proofs of Theorem 3.7 and Theorem 3.13) by adapting a classical arguments originated by F. Alvarez [1] based on the famous Opial's lemma [9].

Lemma 2.2. Assume (2.1). Let u be a solution to (E). If $\int_0^\infty (1+t)^\alpha \left| \frac{du}{dt}(t) \right|^2 dt < \infty$ then u(t) converges weakly in V as $t \to +\infty$ to some $u_\infty \in \arg \min \phi$.

Now we are going to prove our second main theorem. Hence, hereafter, we assume that the function γ satisfies (2.1) and the hypothesis on its derivative given in Theorem 1.3. First we will prove the following key lemma:

Lemma 2.3. If
$$\nu < 2\alpha - 1$$
 and $\int_0^{+\infty} \lambda_{\nu}(t)\mathcal{E}(t)dt < +\infty$ then $\int_0^{+\infty} \lambda_{\nu+1-\alpha}(t)\mathcal{E}(t)dt < +\infty$.

Proof of Lemma 2.3: Let $\nu < 2\alpha - 1$ such that $\int_0^{+\infty} \lambda_{\nu}(t) \mathcal{E}(t) dt < +\infty$. According to Lemma 2.1, we have:

(2.12)
$$\mathcal{E}(t) = o(1/t^{1+\nu}) \text{ as } t \to +\infty$$

and

(2.13)
$$\int_0^{+\infty} \lambda_{1+\nu-\alpha}(t) \left| \frac{du}{dt}(t) \right|^2 dt < \infty.$$

Let $\rho = 1 + \nu - \alpha$. Using the hypothesis on the damping term γ and the fact that $\rho < \alpha$, we find that for almost every $t \geq t_0$ we have

$$\begin{split} \left[(\lambda_{\rho} \gamma)' - \lambda_{\rho}'' \right](t) & \leq (\rho - \alpha) \, \lambda_{\rho - 1}(t) \gamma(t) - \rho(\rho - 1) \lambda_{\rho - 2}(t) \\ & \leq (\rho - \alpha) \, K \, \lambda_{\rho - \alpha - 1}(t) - \rho(\rho - 1) \lambda_{\rho - 2}(t) \\ & \simeq (\rho - \alpha) \, K \, \lambda_{\rho - \alpha - 1}(t) \text{ as } t \to +\infty. \end{split}$$

The last inequality implies that there exists $\tau_0 \ge \max(T_0, t_0)$ such that for almost every $t \ge \tau_0$ we have $\left[(\lambda_\rho \gamma)' - \lambda_\rho'' \right](t) \le 0$. Inserting this last inequality into (2.8) with $r = \rho$, we obtain

(2.14)
$$\int_0^T \lambda_{\rho}(t)\mathcal{E}(t)dt \leq \frac{3}{2} \int_0^T \lambda_{\rho}(t) \left| \frac{du}{dt}(t) \right|^2 dt + \frac{2}{K} \lambda_{1+\nu}(T)\mathcal{E}(T) + A_{\rho} \text{ for a.e. } T \geq \tau_0,$$

where $A_{\rho} = C_{\rho} + \int_{0}^{\tau_{0}} \left[(\lambda_{r} \gamma)'(t) - \lambda_{r}''(t) \right] p(t) dt$. Hence, by using estimates (2.12)-(2.13) and by letting $T \to +\infty$ in (2.14), we deduce that $\int_{0}^{+\infty} \lambda_{\rho}(t) \mathcal{E}(t) dt < \infty$.

Now we are in position to prove our second main theorem.

Proof of Theorem 1.3: We will proceed as in the proof of Theorem 1.3 in [8]. Let $A = \{\nu \in \mathbb{R} : \int_0^{+\infty} \lambda_{\nu}(t)\mathcal{E}(t)dt < +\infty\}$. From (2.8), $-\alpha \in A$, thus A is a non empty interval of \mathbb{R} which is on the forme $A =]-\infty, \alpha_0[$ or $A =]-\infty, \alpha_0[$ where $\alpha_0 = \sup A$. The previous lemma asserts that: if $\nu < \alpha_0$ and $\nu < 2\alpha - 1$ then $\nu + 1 - \alpha \le \alpha_0$ which means that $\min(\alpha_0, 2\alpha - 1) \le \alpha_0 + \alpha - 1$. Now since $\alpha - 1 < 0$, the last inequality reads as $2\alpha - 1 \le \alpha_0 + \alpha - 1$, thus $\alpha \le \alpha_0$. Therefore, by using the defintion of α_0 and Lemma 2.1 we infer that for all $\bar{\alpha} < \alpha$, $\mathcal{E}(t) = \circ(1/t^{1+\bar{\alpha}})$ as $t \to +\infty$ and $\int_0^{+\infty} (1+t)^{1+\bar{\alpha}-\alpha} \left|\frac{du}{dt}(t)\right|^2 dt < \infty$. Hence, by taking $\bar{\alpha}$ closed enough to α and using the fact that $\alpha < 1$, we deduce that $\int_0^{+\infty} (1+t)^{\alpha} \left|\frac{du}{dt}(t)\right|^2 dt < \infty$ which completes the proof thanks to Lemma 2.2.

Acknowledgement: The author wish to thank Prof. Mohamed Ali Jendoubi for his comments, remarks and suggestions which were very useful to improve the results and the representation of the paper.

References

- [1] F. Alvarez, On the minimizing properties of a second order dissipative system in Hilbert spaces. SIAM J. Cont. Optim. 38 (4) (2000) 1102-1119.
- [2] F. Alvarez and H. Attouch, Convergence and asymptotic stabilization for some damped hyperbolic equation with non-isolated equilibria. *ESAIM* 6 (2000) 1-34.
- [3] A. Cabot, H. Engler, and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation. *Trans. Amer. Math. Soc.* 361 (11) (2009) 5983-6017.
- [4] A. Cabot, H. Engler, and S. Gadat, Second order differntial equations with asymptotically small dissipation and piecewise flat potentials. *Electron. J. Differential Equations* 17 (2009) 33-38.
- [5] A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping. J. Differential Equations 252 (2012) 294-322.
- [6] A. Haraux and M.A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. *J. Differential Equations* 144 (1998) 313-320.
- [7] A. Haraux and M.A. Jendoubi, Asymptotics for a second order differential equation with a linear slowly time-decaying damping term. *Evolution Equations and Control Theory* 2 (3) (2013) 461-470.
- [8] M.A. Jendoubi and R. May, Asymptotics for a second-order differential equation with non-autonomous damping and an integrable source term. *Applicable Analysis* (2014) DOI: 10.1080/00036811.2014.
- [9] Z. Opial, Weak convergence of the sequence of successive aproximation for nonexpansive mapping, *Bull. Amer. Math. Soc.* 73 (1967) 591-597.
- [10] E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems. *Asymptotic Anal.* 1 (1998) 161-185.