R Notes

Menghan Yuan

2025-05-14

Contents

1 About		5
	1.1 Usage	5
	1.2 Render book	5
	1.3 Preview book	5
2	Rstudio	7
_	2.1 Dark Theme	
	2.2 Update R	
	2.3 Packages Management	
	2.4 Using Git with RStudio	
	2.5 Copilot	
	2.6 Save R Workspace	
	2.7 Pane Layout	
	2.8 Options	
	2.9 R Startup	
_	- -	
3	Rmd	27
	3.1 YAML metadata	
	3.2 Chunk Options	
	3.3 Print Verbatim R code chunks	
	3.5 Citations	
	3.6 Cross References	
	3.7 Equations	
	3.8 Theorems	
	3.9 Figures	
	3.10 Tables	
	3.11 Rmd GitHub Pages	
	J. Hand Girlab Lages	, ,
4	pookdown	87
	4.1 bookdown project structure	
	4.2 Rendering bookdown	
	4.3 Toggle Visibility of Solutions	95
5	Basic R	97
_	5.1 Data Input & Output	
6	Regression	103
		_00
7	Machine Learning	105
	7.1 Imbalanced datasets	
	7.2 Random Forest	
	/ S NEURAL NETWORK	(

4 CONTENTS

Chapter 1

About

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports; for example, a math equation $a^2 + b^2 = c^2$.

1.1 Usage

Each **bookdown** chapter is an .Rmd file, and each .Rmd file can contain one (and only one) chapter. A chapter *must* start with a first-level heading: # A good chapter, and can contain one (and only one) first-level heading.

Use second-level and higher headings within chapters like: ## A short section or ### An even shorter section.

The index. Rmd file is required, and is also your first book chapter. It will be the homepage when you render the book.

1.2 Render book

You can render the HTML version of this example book without changing anything:

- 1. Find the **Build** pane in the RStudio IDE, and
- 2. Click on **Build Book**, then select your output format, or select "All formats" if you'd like to use multiple formats from the same book source files.

Or build the book from the R console:

```
bookdown::render_book()
```

To render this example to PDF as a bookdown::pdf_book, you'll need to install XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.

1.3 Preview book

As you work, you may start a local server to live preview this HTML book. This preview will update as you edit the book when you save individual .Rmd files. You can start the server in a work session by using the RStudio add-in "Preview book", or from the R console:

bookdown::serve_book()

6 CHAPTER 1. ABOUT

Chapter 2

Rstudio

Rstudio shortcuts

Command Palette: shift+cmd+P, all shortcuts can be accessed via the Command Palette.

keyboard combination	function
opt +	insert assignment operator <-
ESC or ctrl + C	exit + prompt
shift + cmd + M	Add magrittr's pipe operator "%>%"After R4.1, you can set this too native pipe >
ctrl + [/]	indent or unindent
cmd + D	delete one row
cmd + 1	move cursor to console window
cmd + 2	move cursor to editor window
ctrl + shift + S	add 80 hyphens to signal a new chapter (Addin)
ctrl + shift + =	add 80 equals === to signal a new Chapter (Addin)
shift + cmd +N	new R script
$cmd + \uparrow / \downarrow$	in console, get a list of command history
shift $+\uparrow/\downarrow$	select one line up/down
fn + F2	view() an object, don't select the object
cmd + shift + 1	activate X11() window
ctrl (+ shift) + tab	next (last) tab in scriptor (this applies to all apps); hit ctrl first, then shift if necessary, last tab

Source

keyboard combination	function
cmd + return	Run current line/selection
opt + return	Run current line/selection (retain cursor position)

Rmd related

keyboard combination	function
cmd + shift + K cmd + opt + C cmd + opt + I	Knit rmd run current code chunk in Rmd insert code chunks in Rmd, i.e., ```{r} and ```

Q: How to print output in console rather than inline in Rmd?

A: Choose the gear ☐ in the editor toolbar and choose "Chunk Output in Console".

Q: How to insert Emojis in Rmd?

A: There are several options (only work for html output):

- You can type directly a lot of Emojis, such as □ and □. Try this first, if it doesn't show properly, then try the following solutions.
 - If the emoji can show in the script, then you can use it directly.
- Using a html tag, e.g., 2 will show like this

This seems to be the most straightforward solution to me. [

Note that the emoji won't disply correctly in your Rmd file, but when you render the Rmd and deploy to html pages, the emoji will show properly.

 Using Hexadecimal code. (You need to look up the code somewhere, which is a hassle. []) We can add emojis to an HTML document by using their hexadecimal code. These code starts with & #x and ends with; to specify browser that these are hexadecimal codes. For example,

```
Smily face <span>&#x1F600;</span> 
will give you
```

Smily face □

Go to this site: https://emojipedia.org/emoji/

Grab the **codepoint** for the emoji you want (e.g., U+1F600 for grinning face)

Replace U+ with &#x so it becomes 😀, and add a semicolon; at the end.

Finally, enclose that into an html tag, e.g., .

• With RStudio Visual mode. (You need to change mode back and forth. []) First change to the Visual mode. To insert an emoji, you can use either the Insert menu or the requisite markdown shortcut plus auto-complete:

I am personally NOT a fan of Visual Mode because it changes your source code silently ...

Set working directory

```
# get the dir name of the current script
dir folder <- dirname(rstudioapi::getSourceEditorContext()$path)</pre>
setwd(dir_folder) # set as working dir
```

RStudio projects are associated with R working directories. You can create an RStudio project:

- In a brand new directory
- In an existing directory where you already have R code and data
- By cloning a version control (Git or Subversion) repository

Why using R projects:

- 1. I don't need to use setwd at the start of each script, and if I move the base project folder it will still work.
- 2. I have a personal package with a custom project, which creates my folders just the way I like them. This makes it so that the basic locations for data, outputs and analysis is the same across my work.

Double-click on a .Rproj file to open a fresh instance of RStudio, with the working directory and file browser pointed at the project folder.

Q: What is an R session? And when do I use it?

A: Multiple concurrent sessions can be useful when you want to:

- Run multiple analyses in parallel
- Keep multiple sessions open indefinitely
- Participate in one or more shared projects

Launch a new project-less RStudio session

```
# run in console
rstudioapi::terminalExecute("open -n /Applications/RStudio.app", show = FALSE)
```

-n Open a new instance of the application(s) even if one is already running.

rstudioapi::terminalExecute(command, workingDir = NULL, env = character(), show = TRUE) tells R to run the system command in quotes.

- command System command to be invoked, as a character string.
- workingDir Working directory for command
- env Vector of name=value strings to set environment variables
- show If FALSE, terminal won't be brought to front

The rstudioapi package provides an interface for interacting with the RStudio IDE with R code. Usingrstudioapi, you can:

- Examine, manipulate, and save the contents of documents currently open in RStudio,
- Create, open, or re-open RStudio projects,
- Prompt the user with different kinds of dialogs (e.g. for selecting a file or folder, or requesting a password from the user),
- Interact with RStudio terminals,
- Interact with the R session associated with the current RStudio instance.

Set up Development Tools

https://cran.r-project.org/bin/macosx/tools/

• install Xcode command line tools

```
sudo xcode-select --install
```

install GNU Fortran compiler
 Using Apple silicon (aka arm64, aarch64, M1) Macs Fortran compiler

- Go to https://www.xquartz.org/, download the .dmg and run the installer.
- Verify that build tools are installed and available by opening an R console and running

```
install.packages("pkgbuild")
pkgbuild::check_build_tools()
```

Insert Code Session

To insert a new code section you can use the **Code** -> **Insert Section** command. Alternatively, any comment line which includes at least four trailing dashes (-), equal signs (=), or pound signs (#) automatically creates a code section.

Define your own shortcuts

https://www.statworx.com/ch/blog/defining-your-own-shortcut-in-rstudio/

https://www.r-bloggers.com/2020/03/defining-your-own-shortcut-in-rstudio/

Install the shortcut packages.

Add code session separators, --- or ===.

```
install.packages(
    # same path as above
"~/Downloads/shoRtcut_0.1.0.tar.gz",
# indicate it is a local file
repos = NULL)
install.packages(
    # same path as above
"~/Downloads/shoRtcut2_0.1.0.tar.gz",
# indicate it is a local file
repos = NULL)
```

Now go to Tools > Modify Keyboard Shortcuts and search for "dashes". Here you can define the keyboard combination by clicking inside the empty Shortcut field and pressing the desired key-combination on your keyboard. Click Apply, and that's it!

Tips and Tricks

In Rmd files, send the R code chunk output to the console.
 By default, RStudio enables inline output (Notebook mode) on all R Markdown documents.
 You can disable notebook mode by clicking the gear button in the editor toolbar, and choosing Chunk Output in Console.

To use the console by default for all your R Markdown documentsm: Tools -> Options -> R Markdown -> Uncheck Show output inline for all R Markdown documents.

• To add comments to a function, you can type "Roxygen comment" into the Command Palette (shift+cmd+P) while the cursor is in a function and it will automatically add a template structure for writing a comment about your function.

Keyboard shortcut: shift+opt+cmd+R

• Snippets are a way to make a shortcut for inserting text based on a "code".

To find the snippets and edit them, use the Palette (Cmd-Shift-P) and type "edit snippets". There you will find some predefined snippets. You can also create your own.

For instance, when in an R script (or code chunk), typing "fun" followed by pressing Tab, a template for a function will be inserted that looks like:

```
name <- function(variables) {
}</pre>
```

You can just fill in the name of the function, then press Tab to move to the variables, change the name, then press Tab again to move to the function code area and write your function without moving your fingers from the keyboard.

Show argument definitions as you type functions.
 When you type an existing R function such as round(, not only do

When you type an existing R function such as round(, not only does tab give you the options, but there's an explanation beneath each variable, telling you its role in the function:

2.1. DARK THEME

2.1 Dark Theme

https://community.rstudio.com/t/fvaleature-req-word-background-highlight-color-in-find-and-spellcheck/18578/3

https://rstudio.github.io/rstudio-extensions/rstudio-theme-creation.html

https://docs.posit.co/ide/user/ide/guide/ui/appearance.html#creating-custom-themes-for-rstudio

Theme repositories

- rstudiothemes: https://github.com/max-alletsee/rstudio-themes
- rsthemes: https://www.garrickadenbuie.com/project/rsthemes/

RStudio and Editor themes are two differnt things

• RStudio theme applies to the IDE's framework; including Modern (default), Classic, Sky, and Dark.

The Sky theme is similar to the Modern theme, except for the tab and toolbar headers. 淡 淡的蓝色

The dark theme is a superset to the Modern and Sky themes that is activated whenever the Editor theme uses a dark palette.

• Editor theme applies to the source pane.

A useful tool to customize your editor theme: https://tmtheme-editor.glitch.me/#!/edit or/theme/Monokai

Embeded themes can be found here: https://github.com/rstudio/rstudio/tree/87e12985 3121106a87e92df416363f39da95f82e/src/cpp/session/resources/themes

Useful elements:

.ace_marker-layer .ace_selection Changes the color and style of the highlighting for the currently selected line or block of lines.

.ace_marker-layer .ace_bracket Changes the color and style of the highlighting on matching brackets.

Recommended highlight color: rgba(255, 0, 0, 0.47)

If you really like one of the default themes RStudio provides, but you want to tweak some small things, you can go the theme directory and change the element's appearance.

RStudio's default editor theme directory on Mac:

Right click RStudio.app, "Show Package Contents" to navigate to the application folder.

/Applications/RStudio.app/Contents/Resources/resources/themes/ambiance.rstheme (deprecated)

New editor theme directory: /Applications/RStudio.app/Contents/Resources/app/resources/themes/ambiance

You may also find the default themes on GitHub repo: https://github.com/rstudio/rstudio/tree/master/src/cpp/session/resources/themes

If you want to install or create a completely new theme, use the **Custom theme (user-defined)** folder:

- ~/.config/rstudio/themes/idle_fingers_2.rstheme on mac
- · viridis-theme

```
/* yamL tag */
.ace_meta.ace_tag {
  color: #2499DA;
}
/* quoted by $...$ and code chunk options */
.ace_support.ace_function {
  color: #55C667;
}
```

See HERE for common selectors you can use.

A collection of screenshots of default RStudio themes: https://www.trifields.jp/list-of-rstudio-editor-themes-2520

Q: The margin line is too bright.

A: Change the .ace_print-margin element.

```
.ace_print-margin {
  width: 1px;
  background: #e8e8e8;
}
```

#e8e8e8 is the culprit here, and should be darkened. I changed it to #2F3941.

Source: https://github.com/rstudio/rstudio/issues/3420#issuecomment-453154475

Install custom themes

Using rstudiothemes pkg

Go to the repository to see which theme you want to use. Then install the theme. Themes can be applied to RStudio via "Tools" - "Global Options" - "Appearance" - "Add Theme".

```
# install the pseudo-package from this Github repository
devtools::install_github("max-alletsee/rstudio-themes")

library(rstudiothemes) # ... then load the library

# example 1: bulk-install all light themes
install_rstudio_themes(theme = "all_light")

# example 2: install two specific light themes
install_rstudio_themes(theme = c("Ayu Light", "Github {rsthemes}"))

# examplease 3: install one specific dark theme
install_rstudio_themes(theme = "49th Parallel")
```

• Using rstudioapi package's "addTheme" function

2.2. UPDATE R 13

2.2 Update R

Q: How to tell which version of R you are running? A: In the R terminal, type R. version.

The key thing to be aware of is that when you update R, if you just download the latest version from the website, you will lose all your packages! \square

On Windows use installr

The easiest way to update R and not cause yourself a huge headache is to use the installr package. When you use the updateR() function, a series of dialogue boxes will appear. These should be fairly self-explanatory but there is a full step-by-step guide available for how to use installr, simply select "Yes" when it asks if you would like to copy your packages from the older version of R.

```
# Install the installr package
install.packages("installr")

# Load installr
library(installr)

# Run the update function
updateR()
```

On Mac, can use updater

The package re-installs the packages and does not copy them from the previous R installation library. R packages for minor R releases (e.g. R 4.1 to R 4.2) may not be compatible, which is why its important to re-install the packages and not copy them.

Usage:

1. Find the current location of R by running

```
> .libPaths()
[1] "/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library"
```

- 2. Install R from https://cran.r-project.org/.
- 3. Install packages.
 - 3.1 Open your new version of R and install the updater package with install.packages("updater").

```
3.2 Run
```

```
updater::install_pkgs(lib.loc = c("<location(s) saved in Step 1>"))
```

2.3 Packages Management

2.3.1 Load packages

Q: What is the difference btw library(package) and require(package)? A:

- library(package) returns an error if the package doesn't exist.
- require(package) returns FALSE if the package is not found and TRUE if the packages is loaded. require is designed for use inside other functions, such as using the value it returns in some error checking loop, as it outputs a warning and continues if the package is not found.

Q: How to reload a package after updating?

A: Call detach(package:pkg, unload = TRUE) or unloadNamespace first, then use library(pkg) to reload. If you use library on a package whose namespace is loaded, it attaches the exports of the already loaded namespace. So detaching and re-attaching a package may not refresh some or all components of the package, and is inadvisable. The most reliable way to completely detach a package is to restart R.

For example, if we want to detach ggplot2 package, we can use

```
detach(package:ggplot2, unload=TRUE)
```

requireNamespace can be used to *test* if a package is installed and loadable because it comes back with either TRUE (if found the pkg) or FALSE (if failed to find the pkg).

```
> !requireNamespace("ggplot2")
[1] FALSE
> !requireNamespace("ggplot3")
Loading required namespace: ggplot3
Failed with error: 'there is no package called 'ggplot3''
[1] TRUE
```

To see whether need to install some packages:

```
# install the package if it is not available
if (!requireNamespace("devtools")) install.packages("devtools")
# or equivalently
if (!require("devtools")) install.packages("devtools")
```

You can also use require(devtools) to check whether the required package is available, but note that it will load the package as a side effect.

Alternatively,

```
# short command
"ggplot2" %in% installed.packages()
# full command
"ggplot2" %in% rownames(installed.packages())
```

installed.packages() Finds details of all packages installed in the specified library path
lib.loc. Returns a matrix of package names, library paths and version numbers.

```
> installed.packages() %>% class()
[1] "matrix" "array"
> installed.packages() %>% str()
chr [1:355, 1:16] "abind" "alphavantager" "anytime" "askpass" "assertthat" "backports" "ba-
attr(*, "dimnames")=List of 2
..$: chr [1:355] "abind" "alphavantager" "anytime" "askpass" ...
..$: chr [1:16] "Package" "LibPath" "Version" "Priority" ...
```

The following code can be used to load packages for your project and set up the working environment.

```
# Load the pkg, if not found, install then Load
require(dplyr) || {install.packages("dplyr"); require(dplyr)}
require(odbc) || {install.packages("odbc"); require(odbc)}
require(DBI) || {install.packages("DBI"); require(DBI)}
```

If using library(), will return error if some package is not installed and interrupt the program.

If it is a list of packages you want to check, use lapply to loop through all packages.

```
## First specify the packages of interest
packages = c("MASS", "nlme")

## Now Load or install&Load all
package.check <- lapply(
   packages,
   FUN = function(x) {
    if (!require(x, character.only = TRUE)) {
      install.packages(x, dependencies = TRUE)
      library(x, character.only = TRUE)
    }
}</pre>
```

You can then use search() to determine whether all the packages have loaded.

Q: dplyr has many conflicts with plyr.

A: Specify pkg using ::. Or set library priority by

• changing the order in which you load the packages.

```
# load dplyr last so that it has priority
library(plyr)
library(dplyr)
```

• with the {needs} package

```
library(needs)
# prioritize the functions in dplyr
prioritize(dplyr)
```

Q: How to unload a package without restarting R?

A: detach("package:ggplot2", unload=TRUE) or uncheck the checkbox button in Packages pane.

Q: How to remove a package?

A: Use remove.packages("dplyr") or you can use the package manager pane, click the X mark on the right side of the selected package.

2.3.2 Install packages

Install R packages from source

```
# From local tarball
install.packages(
    # indicate path of the package source file
    "~/Documents/R/UserPackages/shoRtcut2_0.1.0.tar.gz",
    # indicate it is a local file
    repos = NULL)

# From github
install.packages("Rcpp", repos="https://rcppcore.github.io/drat")
```

Install from GitHub

```
devtools::install_github(repo, ref="HEAD", subdir = NULL)
```

- repo repository address in the format username/repo[/subdir][@ref|#pull]. Alternatively, you can specify subdir and/or ref using the respective parameters. If both are specified, the values in repo take precedence.
- ref Desired git reference. Could be a commit, tag, or branch name, or a call to github_pull() or github_release(). Defaults to "HEAD", which means the default branch on GitHub and for git remotes.

Ex

```
# install version 3.5.1
install_github("tidyverse/ggplot2", ref="ggplot2 3.5.1")
```

Check installed packages

```
# print all installed packages
rownames(installed.packages())
# check if `ggplot2` is installed
"ggplot2" %in% rownames(installed.packages())
```

installed.packages(lib.loc=NULL, priority=NULL)

- lib.loc character vector describing the location of R library trees to search through
- priority used to select packages; "high" is equivalent to c("base", "recommended")

getOption("defaultPackages") is what R loads on startup although the basepackage is not counted.

Check package version

```
packageVersion("ggplot2") # check package version
```

Q: How do I know if I have the latest version?

A: You can go to GitHub repo to check release notes. You will find the latest version of packages

there.

2.3.3 Update packages

- · Update an individual package
 - Using install.packages

```
install.packages("ggplot2") # update one specific package
```

- Using update.packages

```
update.packages(oldPkgs = "ggplot2")
```

Note that you need to specify oldPkgs explicily as it is a named argument.

· Update ALL outdated packages

```
## update all installed packages in a stated library location, default to `.libPaths()`
update.packages(lib.loc = .libPaths(), ask = TRUE)
```

update.packages updates ALL outdated packages in a stated library location. That library location is given by the first argument (if not supplied it works on all known library locations for the current R session).

It will ask you for every package if you want to update.

To just say yes to everything, use ask = FAISE.

```
update.packages(ask = FALSE)
```

Unfortunately this won't update packages installed by devtools::install_github()

Troubleshooting

Q: I ran update.packages("ggplot2"), but nothing happened. No output on console, no error, nothing.

A: The first argument specifies the library location you want to search through (and update packages therein). update.packages("ggplot2") means you want to update the packages in library location ggplot2, which is most unlikely to exist on your R installation.

Q: I tried to update ggplot2 with install.packages("ggplot2"), but nothing happened. A: If ggplot2 is already loaded, then you can't install ggplot2 in the current session now. If you need to, save any objects you can't easily recreate, and quit out of R. Then start a new R session, immediately run install.packages("ggplot2"), then once finished, load the package and reload in any previously saved objects.

More about update.packages:

- update.packages(lib.loc = NULL, repos = getOption("repos"), ask = TRUE): First a list of all packages found in lib.loc is created and compared with those available at the repositories. If ask = TRUE (the default) packages with a newer version are reported and for each one the user can specify if it should be updated. If so the packages are downloaded from the repositories and installed in the respective library path (or instlib if specified).
- You can specify one specific package to update using update.packages(oldPkgs = "gg-plot2"). It will check updates only for that package and ask you if you want to update. The easiest way to update an individual package is just to use install.packages. It is a one step command, compared to update.packages, which first checks and then asks.

- update.packages returns NULL invisibly.
- Be aware that some package updates may cause your previous code to stop working. For this reason, we recommend updating all your packages once at the beginning of each academic year (or semester) don't do it before an assessment or deadline just in case!

Reinstall all Packages after R update

R packages are missing after updating. So you have to save the installed packages and re-install them after updating.

• Alternatively, updater automatically reinsatll R pakages. □

Here is how to do it manually.

```
## get packages installed
packs <- as.data.frame(installed.packages(.libPaths()[1]), stringsAsFactors = F)
# Save to local
f_name <- "~/Documents/R/packages.csv"
rownames(packs)
write.csv(packs, f_name, row.names = FALSE)
packs <- read_csv(f_name)
packs
## Re-install packages using install.packages() after updating R
install.packages(packs$Package)</pre>
```

R library path /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library

- use find.package("ggplot2") to find the location to where the given package is found.
- alternatively, you can run .libPaths()
 - .libPaths() without an argument will return a list of all the places R will currently look for loading a package when requested.
 - .libPaths("a/b/c") with an argument will add that new directory ("a/b/c") to the
 ones R was already using. If you use that directory often enough, you may wish to
 add that call to .libPaths("a/b/c") in your .Rprofile startup file in your home
 directory.

2.3.4 Put your R package on GitHub

Reference: https://jennybc.github.io/2014-05-12-ubc/ubc-r/session2.4 github.html

- Change to the package directory
- Initialize the repository with git init
- · Add and commit everything with
 - 1. git add . stage changes;
 - 2. git status optional check staged changes, but yet to submit;
 - 3. and git commit submit staged changes.
- Create a new repository on GitHub
- · Connect your local repository to the GitHub one

```
# add repo name "origin" to the remote repo at the URL
git remote add origin https://github.com/username/reponame
```

Push everything to github

```
# rename the current local branch to "main"
git branch -M main
# creates a remote branch "origin" and sets it upstream of the "main" branch
git push -u origin main
```

FAQ

Q: What are package vignettes?

A: It's important to write good and clear documentation, but users don't often read it; at best they'll look at the examples, so be sure to include informative examples. In my experience, what users really want are instructive tutorials demonstrating practical uses of the software with discussion of the interpretation of the results. In R packages, such tutorials are called "vignettes."

2.4 Using Git with RStudio

Before you start coding, make sure that you are on the correct branch. You may check

- from the Git tab on the Environment, History, Connections, ... pane
- you can also see from the status bar on the very top of the window. The words are formatted as "Projection Name Branch RStudio".

Choose a License for your repo

Q: Which open source license is appropriate for my project?

A: See https://opensource.guide/legal/#which-open-source-license-is-appropriate-for-my-project.

Q: How to add a license to my repo?

A: Follow the instructions here.

2.5 Copilot

Copilot offers autocomplete-style suggestions as you code as "ghost text".

GitHub Copilot primarily relies on the context in the file you are actively editing. Any comments, code, or other context provided within the active document will be used as a "prompt" that Copilot will then use to provide a suggested completion.

- To expand the scope of the context used by Copilot beyond just the active document, there is a setting to also index and read from other R, Python, or SQL files in the current project. This setting can be toggled on or off in the Tools > Global Options > Copilot > "Index project files with GitHub Copilot" setting.
- At times, normal autocomplete and Copilot may seem to conflict with each other. In these
 cases, it is best to review the Copilot suggestion and determine if it is appropriate for the
 current context. If it is, you can accept the suggestion by pressing Tab. If it is not, you can
 ignore the suggestion and continue typing or force the normal autocomplete to show by
 pressing Ctrl+Space.

Issue: Ctrl+Space crash with spotlight shortcut. □

• Only show Copilot suggestions when evoke mannually using Ctrl + Backslash (\). The Copilot suggestions can be very distracting and clutter your script.

For general advice on how to use Copilot, please see:

- RStudio Copilot User Guide
- How to use GitHub Copilot: Prompts, tips, and use cases

2.6 Save R Workspace

If you want to saves all objects in your work space, use save.image(). It will creates an image of your current variables and functions, and saves them to a file called .RData. When R next loads, objects stored in this image are by default restored.

This sounds convenient, however, you do NOT want to do this because this corrupt reproducibility of your project. \Box

You want to start from a clean slate very time. [

It is suggested change RStudio Global Options to

- not "restore .RData into workspace at startup", and
- never "save workspace to .RData on exit".

In case you do feel the need to save the workspace, use the following cmd.

```
save.image(file = ".RData", version = NULL, ascii = FALSE, compress = !ascii,
safe = TRUE)
```

```
## save current workspace ##
f_name <- "RImage/TCR_2023-05-09.RData"
f_name
save.image(f_name)
# Load(f_name)</pre>
```

Q: Can I save the loaded packages in the current session/workspace?

A: The workspace is for *objects* like data and functions. Starting R with particular packages loaded is what your .Rprofile file is for, and you can have a different one in each directory. But I'd recommend not saving anything between r sessions and instead recreate it all using code. This is much more likely to lead to reproducible results.

2.7. PANE LAYOUT 21

History

When you quit a project, .Rhistory is automatically written to the project directory unless you opt out to. It contains a history of all of the commands that you have sent to the R console in this session.

2.7 Pane Layout

Pop out an editor

Click the Show in New Window button in any source editor tab.

To return a document to the main window, click the Return to Main Window button on the editor toolbar.

Environment Pane

By default, the Environment pane is located in the top-right and includes the Environment, History, Connections, Build, and Version Control System (VCS) tabs.

Version Control System (VCS)

The VCS tab will change based on the version control system you have enabled for that session. For example, using Git will change the tab name to Git and provide some common commands for viewing diffs, committing changes, pull and push ... Output pane

The Output pane displays various outputs such as plots, HTML content, or on-disk files. It contains the Files, Plots, R Packages, Help, Viewer, and Presentation tabs.

Ref: RStudio Pane Layout

Global Options that make coding easier

- Syntax highlight and matched parentheses.

 Under "Tools -> Global Options -> Code -> Display", under **Syntax section**, check the boxes for **highlight R function calls** and **use rainbow parentheses**. The second is especially useful to mark matching opening and closing brackets.
- Show whitespace characters.
 In "Tools -> Global Options -> Code -> Display", check "Show whitespace characters".
 This will let you see spaces and newlines in the editor.

Q: How to show Toolbar? A: View > Show Toolbar.

References:

https://coding-club.rostools.org/posts/tips-and-tricks/

2.8 Options

getOption(x) Allow the user to set and examine a variety of global *options* which affect the way in which **R computes and displays its results.** Use **getOption** to check default values of global options.

- x a character string holding an option name, must be quoted in quotes
- Can only query one option at a time. If multiple options are given, will return the value of the first option.

options(...) query and modify global options.

- ... any options can be defined, using name = value.
 Note that you do NOT need to quote your option name here!
- options() with no arguments returns a list with the current values of the options.
- options("name") can be used to examine options' current value too; return a *list*, whereas getOption("name") returns the value only.
 - Note that you need to quote the option name when you do queries.
 - You can query more than one options at a time.

```
> options("width", "digits")
$width
[1] 90

$digits
[1] 7

> getOption("width", "digits")
[1] 90
```

?options to get the help page of global options. To check which options are available and their definitions.

Use examples

```
## Two ways checking default option values
> options("width")
$width
[1] 81
> getOption("width")
[1] 81

## Change option values
# use name=value
> options(width=80, digits=15) # set print width, digits to print for numeric values using
# use a named list
> options(list(width=80, digits=15))
```

Commonly used global options:

Option	Description
width	Controls the maximum number of columns on a line used in printing vectors, matrices and arrays, and when filling by cat. Defaults to 80.Don't change this if you want to print more columns. Use options(tibble.width=400) instead.

2.9. R STARTUP 23

Option	Description
pillar.sigfig	Tibbles print numbers with three significant digits by default, switching to scientific notation if the available space is too small.options(pillar.sigfig = 4) to increase the number of digits printed out.

2.9 R Startup

Sys.getenv(x) get the values of the environment variables. Returns a vector of the same length as x.

· x a character vector

Environment Variables examples:

Rstudio doesnn't load Rprofile or Renviron

I store my Rprofile and Renviron in non-default places (i.e. ~/.config/R). When opening R in a normal shell, my environment is loaded perfectly fine. When opening Rstudio, it doesn't load my options, settings or paths.

 Have to wrap your option settings in rstudio.sessionInit https://damien-datasci-blog.netlify.app/post/2020-12-31-pimp-your-r-startup-message/

```
- Open .Rprofile
```

```
usethis::edit_r_profile()
```

- wrap up your options in the following snippet

```
setHook("rstudio.sessionInit", function(newSession) {
    # any code included here will be run at the start of each RStudio session
    options(buildtools.check = function(action) TRUE )
}, action = "append")
```

• Understanding R's startup

https://rviews.rstudio.com/2017/04/19/r-for-enterprise-understanding-r-s-startup/https://docs.posit.co/ide/user/ide/guide/environments/r/managing-r.html

usethis is a workflow package: it automates repetitive tasks that arise during project setup and development, both for R packages and non-package projects.

2.9.1 .Rprofile

What is .Rprofile?

.Rprofile is a startup file to set **options** and **environment variables**. .Rprofile files can be either at the user or project level.

- User-level .Rprofile files live in the base of the user's home directory, and
- project-level .Rprofile files live in the base of the project directory.

R will source only one .Rprofile file. If there is a project-level .Rprofile, the user-level file will NOT be sourced, i.e., the project-level config file take priority.

So if you have both a project-specific .Rprofile file and a user .Rprofile file that you want to use, you explicitly source the user-level .Rprofile at the top of your project-level .Rprofile with source("~/.Rprofile").

.Rprofile files are sourced as regular R code, so setting environment variables must be done inside a Sys.setenv(key = "value") call.

Quitting R will erase the default theme setting. If you load ggplot2 in a future session it will revert to the default gray theme. If you'd like for ggplot2 to always use a different theme (either yours or one of the built-in ones), you can set a load hook and put it in your .Rprofile file. For example, the following hook sets the default theme to be theme_minimal() every time the ggplot2 package is loaded.

Of course, you can always override this default theme by adding a theme object to any of your plots that you construct in ggplot2.

2.9.2 .Renviron

.Renviron is a user-controllable file that can be used to create **environment variables**. This is especially useful to avoid including credentials like API keys inside R scripts. This file is written in a key-value format, so environment variables are created in the format:

```
Key1=value1
Key2=value2
...additional key=value pairs
```

And then Sys.getenv("Key1") will return "value1" in an R session.

Like with the .Rprofile file, .Renviron files can be at either the user or project level. If there is a project-level .Renviron, the user-level file will not be sourced. The usethis package includes a helper function for editing .Renviron files from an R session with usethis::edit_r_environ().

The .Renviron file is most useful for defining sensitive information such as API keys (such as GitHub, Twitter, or Posit Connect) as well as R specific environment variables like the history size (R_HISTSIZE=100000) and default library locations R_LIBS_USER.

Rcpp compilation breaks in R 4.1.0

```
devtools::build("my_package")
Error: Could not find tools necessary to compile a package
Call `pkgbuild::check_build_tools(debug = TRUE)` to diagnose the problem.
```

- In RStudio, I am continually prompted to install additional build tools and I can't install
 the build tool. → Bypass the option options(buildtools.check = function(action)
 TRUE).
- Turns out R was pointing to an old clang version in my Makevars.
 I just deleted it using [in Terminal]

```
sudo rm ~/.R/Makevars
```

2.9. R STARTUP 25

 $Download\ from\ developer.apple.com.\ Software\ development\ kit.$

https://developer.apple.com/download/all/

R compiler tools for cpp on MacOS

• https://thecoatlessprofessor.com/programming/cpp/r-compiler-tools-for-rcpp-on-macos/

• install OpenMP enabled clang from the terminal https://rpubs.com/Kibalnikov/776164

Chapter 3

Rmd

R Markdown is a powerful tool for combining analysis and reporting into the same document. R Markdown has grown substantially from a package that supports a few output formats, to an extensive and diverse ecosystem that supports the creation of books, blogs, scientific articles, websites, and even resumes.

Nice documentations

- rmarkdown package CRAN
 - Package CRAN page
 - Reference manual
- bookdown package CRAN
 - Package CRAN page
 - Reference manual
- R markdown: The definitive guide. provides detailed references; GitHub repo HERE.
- R markdown cookbook: concise and covers essential functions, with examples.
- Authoring Books with R Markdown: with a focus on bookdown.

Q: What is the difference between Rmd and R script?

A:

- An R script (.R) is used for developing and troubleshooting code; a place where you can store reusable code fragments.
- An R Markdown file (.Rmd) is used to integrate R commands with explanatory text and output, making it useful for creating reports.

Quick takeaways:

- Can still use horizontal separator ctrl + shift + S for dashed lines and ctrl + shift
 + = for equals
- · Headers must have one empty line above and below to separate it from other text

3.1 YAMI, metadata

Q: What is YAML?

A: YAML is a human-friendly data serialization language for all programming languages. YAML stands for "Yet Another Markup Language."

28 CHAPTER 3. RMD

O: What does YAML do?

A: It is placed at the very beginning of the document and is read by each of Pandoc, **rmarkdown**, and **knitr**.

- · Provide metadata of the document.
- Located at the top of the file.
- Adheres to the YAML format and is delimited by lines containing three three dashes (---).

YAML are also called header or front matter.

See *R Markdown YAML metadata (header) tutorial with examples* by hao203 HERE for commonly used YAML metadata (header) in different R Markdown output formats.

There is NO official documentation for R Markdown YAML frontmatter because the YAML frontmatter is a collection of metadata and each individual piece of data might or not be used by a piece of software from your tool chain. That is, the behavior of YAML depends on your user platform.

For instance, the following metadata

```
editor_options:
   chunk_output_type: console
```

is used *exclusively* by RStudio to have the code block output "be shown in the R console instead of inside the source editor". This option might be ignored by VSCode or Emacs.

YAML can set values of the template variables, such as title, author, and date of the document.

• The output field is used by rmarkdown to apply the **output format function** rmarkdown::html_document() in the rendering process.

There are two types of output formats in the **rmarkdown** package: documents (e.g., pdf_document), and presentations (e.g., beamer_presentation).

Supported output format examples: html document, pdf document.

R Markdown documents (html_documents) and R Notebook documents (html_notebook) are very similar; in fact, an R Notebook document is a special type of R Markdown document. The main difference is using R Markdown document (html_documents) you have to knit (render) the entire document each time you want to preview the document, even if you have made a minor change. However, using an R Notebook document (html_notebook) you can view a preview of the final document without rendering the entire document.

Troubleshooting

Issue: bookdown always output html, even if specified to pdf.

Cause: If it produces HTML, the output format must have been provided somewhere. Fix: Check if you have a _output.yml under the root directory of your book project. If you do, you may delete it. Then bookdown will use the output field that you specified in the YAML frontmatter of your Rmd document.

If there are two output formats, rmarkdown::render() defaults to use the first output type. If you want another, specify the type, e.g., rmarkdown::render("0100-RStudio.Rmd", 'pdf_document').

bookdown wrappers of base markdown format

bookdown output formats allow numbering and cross-referencing figures/tables/equations. It takes the format html_document2, in general, markdown_document2 is a wrapper for the base format markdown_document. With the bookdown output format, you can cross-reference sections by their ID's using the same syntax when sections are numbered.

Other bookdown output format examples for single documents: pdf_document2, beamer_presentation2, tufte_html2, word_document2. See Page 12 of the reference manual for a complete list of

3.1. YAML METADATA 29

supported formats by bookdown.

What bookdown is very powerful for is that it compiles books. Book formats:

- HTML:
 - gitbook
 - html_book
 - tufte_html_book
- PDF:
 - pdf_book
- e-book:
 - epub_book
- Many aspects of the LaTeX template used to create PDF documents can be customized using
 top-level YAML metadata (note that these options do NOT appear underneath the output
 section, but rather appear at the top level along with title, author, and so on). For
 example:

```
title: "Crop Analysis Q3 2013"
output: pdf_document
fontsize: 11pt
geometry: margin=1in
---
```

A few available metadata variables are displayed in the following (consult the Pandoc manual for the full list):

Top-level YAML Variable	Description
lang	Document language code
fontsize	Font size (e.g., 10pt, 11pt, or 12pt)
papersize	Defines the paper size (e.g., a4paper,
	letterpaper)
documentclass	LaTeX document class (e.g., article, book, and report)
classoption	A list of options to be passed to the document class, e.g., you can create a two-column
	document with the twocolumn option.
geometry	Options for geometry package (e.g., margin=1in set all margins to be 1 inch)
mainfont, sansfont, monofont,	Document fonts (works only with xelatex and
mathfont	lualatex)
linkcolor, urlcolor, citecolor	Color for internal links (cross references), external links (link to websites), and citation links (bibliography)
linestretch	Options for line spacing (e.g. 1, 1.5, 3).

Pandoc User's Guide: https://www.uv.es/wiki/pandoc_manual_2.7.3.wiki?21 classoption

- onecolumn, twocolumn Instructs LaTeX to typeset the document in one column or two columns.
- twoside, oneside: Specifies whether double or single sided output should be generated. The classes' article and report are single sided and the book class is double sided by default.

30 CHAPTER 3. RMD

Note that this option concerns the style of the document only. The option two side does *NOT* tell the printer you use that it should actually make a two-sided printout. The difference between single-sided and double-sided documents in LaTeX lies in the layout of the page margins and the orientation of the text on the page.

- * Single-sided documents are printed on only one side of the page, with the text and images aligned to the right-hand side of the page. This type of layout is often used for brochures, flyers, and other types of promotional materials.
- * Double-sided documents are printed on both sides of the page, with the text and images alternating between right-hand and left-hand margins. This type of layout is often used for **books**, reports, and other types of long-form documents.

A twoside document has different margins and headers/footers for odd and even pages.

The layout of a twoside book

Q: Why Inner margin is narrow?

A: The reason for this is that with two pages side by side, you actually have only THREE margins - the left, right and middle. The middle margin is made up from the inside margins of both pages, and so these are smaller because they add together to make the middle margin. If they were bigger, then you would end up with too much whitespace in the middle.

- landscape Changes the layout of the document to print in landscape mode.
- openright, openany Makes chapters begin either only on right hand pages or on
 the next page available. This does not work with the article class, as it does not know
 about chapters. The report class by default starts chapters on the next page available
 and the book class starts them on right hand pages.
- In PDFs, you can use code, typesetting commands (e.g., \vspace{12pt}), and specific
 packages from LaTeX.
 - 1. The header-includes option loads LaTeX packages.

 Note that header-includes is a top-level option that align with output.

```
output: pdf_document
header-includes:
```

3.1. YAML METADATA 31

```
- \usepackage{fancyhdr}
---
\pagestyle{fancy}
\fancyhead[LE,RO]{Holly Zaharchuk}
\fancyhead[LO,RE]{PSY 508}
# Problem Set 12
```

Common header-includes:

- Chinese/Japanese support

```
output: pdf_document
header-includes:
   - \usepackage{ctex}
---
```

2. Alternatively, use extra_dependencies to list a character vector of LaTeX packages. This is useful if you need to load multiple packages:

```
title: "Untitled"
output:
  pdf_document:
    extra_dependencies: ["bbm", "threeparttable"]
---
```

If you need to specify options when loading the package, you can add a second-level to the list and provide the options as a list:

```
title: "Untitled"
output:
   pdf_document:
     extra_dependencies:
        caption: ["labelfont={bf}"]
        hyperref: ["unicode=true", "breaklinks=true"]
        lmodern: null
```

Here are some examples of LaTeX packages you could consider using within your report:

- pdfpages: Include full PDF pages from an external PDF document within your document.
- caption: Change the appearance of caption subtitles. For example, you can make the figure title italic or bold.
- fancyhdr: Change the style of running headers of all pages.
- Some output options are passed to Pandoc, such as toc, toc_depth, and number_sections. You should consult the Pandoc documentation when in doubt.

```
output:
  pdf_document:
    toc: true
    keep_tex: true
```

 keep_tex: true if you want to keep intermediate TeX. Easy to debug. Defaults to false.

To learn which arguments a format takes, read the format's help page in R, e.g. ?html_document.

32 CHAPTER 3. RMD

Parameters

We can include variables and R expressions in this header that can be referenced throughout our R Markdown document. For example, the following header defines start_date and end_date parameters, which will be reflected in a list called params later in the R Markdown document.

```
title: My RMarkdown
author: Yihui Xie
output: html_document
params:
   start_date: '2020-01-01'
   end_date: '2020-06-01'
```

To access a parameter in our R code, call params\$<parameter name>, e.g., params\$start_date and params\$end_date.

Should I use quotes to surround the values?

- Whenever applicable use the unquoted style since it is the most readable.
- Use quotes when the value can be misinterpreted as a data type or the value contains a :.

```
# values need quotes
foo: '{{ bar }}' # need quotes to avoid interpreting as `dict` object
foo: '123'  # need quote to avoid interpreting as `int` object
foo: 'yes'  # avoid interpreting as `boolean` object
foo: "bar:baz:bam" # has colon, can be misinterpreted as key

# values need not quotes
foo: bar1baz234
bar: 123baz
```

ref:

- R Markdown anatomy, R Markdown Cookbook
- https://rmarkdown.rstudio.com/lesson-6.html

File options

Some aspects of markdown output can be customized via global, project, or file-level options, including:

- How to wrap / break lines (fixed column, sentence-per-line, etc.).
- Where to write footnotes (below the current paragraph or section, or at the end of the document).
- Whether to use the visual mode markdown writer when saving markdown from source mode (to ensure consistency between documents saved from either mode).

Global and project options that affect the way markdown is written can also be customized on a per-file basis. These *file specific options* can be set using YAML. For instance, you want to set lines wrapping after 72 characters:

```
editor_options:

markdown:

wrap: 72
```

3.1. YAML METADATA 33

3.1.1 Render Rmd

When you click the Knit button ($\square \square K$) in RStudio, generally two processes happen:

- 1. The .Rmd file is fed to knitr, which executes all of the R code chunks and creates a new markdown (.md) document which includes the R code and its output.
- 2. The .md file is then processed by pandoc which is responsible for creating the finished format, e.g., HTML, PDF, MS Word.
 - .md files can be directly converted to html, but
 - .md to pdf is time-consuming. It first generates .tex, then call the LaTeX engine to convert to pdf.

There is one function that can do the processes mentioned above: rmarkdown::render.

rmarkdown::render(input, output_format = NULL, output_file = NULL, output_options = NULL, output_yaml = NULL)

Arguments	Definition
output_format	- "all" will render all formats define within the file- Name of a format, e.g., html_document, will render to that single format- An output format object, e.g., html_document(toc = TRUE, toc_depth = 2, includes = includes(before_body = "header.htm")), where you can pass on the argument
output_options	- List of output options that can override the options specified in metadata (e.g could be used to force self_contained or mathjax = "local") Note that this is only valid when the output format is read from metadata (i.e. not a custom format object passed to output_format) output_options cannot work together with xxx document().
output_yaml	Paths to YAML files specifying output formats and their configurations. The first existing one is used. If none are found, then the function searches YAML files specified to the output_yaml top-level parameter in the YAML front matter, _output.yml or _output.yaml, and then uses the first existing one.

Use examples of render, using output format objects

))

```
rmarkdown::render("0208-Rmd-GHpage.Rmd",
    bookdown::pdf_document2(
        latex_engine = "xelatex",
        template = "latex/template.tex",
        includes = includes(
            in_header = "latex/preamble.tex",
            before body = "latex/before body.tex")
        ))
# This does NOT work as `output_options` is only valid when the format is not an output format ob
rmarkdown::render("0208-Rmd-GHpage.Rmd",
    bookdown::pdf_document2(
        latex_engine = "xelatex",
       template = "latex/template.tex"),
    output_options = list(
        includes = includes(
            in_header = "latex/preamble.tex",
            before_body = "latex/before_body.tex")
```

34 CHAPTER 3. RMD

```
# render to html
rmarkdown::render("AR_application.Rmd", bookdown::html_document2())
```

Note that sometimes the bookdown cross references in Rmd are not rendered when using the Knit button. The rendered html shows Fig. \@ref(fig:ar-res) (without the backslash). In this case, using rmarkdown::render() with output_format = bookdown::html_document2() might help.

You can have more than one output formats for your Rmd. For example, you want both the html and pdf output.

When you render the Rmd with rmarkdown::render(), it will use the **first output format you specify in the YAML metadata** (if it is missing, the default is html_document).

If you do not want to use the first one, you can specify the one you want in the second argument, e.g., for an Rmd document input.Rmd with the metadata:

```
output:
   html_document:
    toc: true
pdf_document:
   keep_tex: true
```

You can render it to PDF via:

```
# Render to pdf
rmarkdown::render('input.Rmd', 'pdf_document')

# Render multiple formats
render("input.Rmd", c("html_document", "pdf_document"))

# Render all formats defined
rmarkdown::render('input.Rmd', 'all')
```

• RStudio calls the function rmarkdown::render() to render the document in a new R session

RStudio does this to ensure **reproducibility**.

rmarkdown::render_site(input = ".", output_format = "all",) Render all of the R
Markdown documents within a directory as a website. There are two requirements for a directory
to be rendered as a website:

- It must contain either an index.Rmd or index.md file.
- It must contain a site configuration file (_site.yml).

Note that the "Knit" button in RStudio uses rmarkdown::render_site to knit the file in presence of an index.Rmd file in the working directory.

3.1.2 Document dependency

By default, R Markdown produces standalone HTML files with no external dependencies, using data:URIs to incorporate the contents of linked scripts, stylesheets, images, and videos. This means you can share or publish the file just like you share Office documents or PDFs. If you would rather keep dependencies in external files, you can specify self_contained: false.

Note that even for self-contained documents, MathJax is still loaded externally (this is necessary because of its big size). If you want to serve MathJax locally, you should specify mathjax: local

3.1. YAML METADATA 35

```
and self contained: false.
```

One common reason to keep dependencies external is for serving R Markdown documents from a website (external dependencies can be cached separately by browsers, leading to faster page load times). In the case of serving multiple R Markdown documents you may also want to consolidate dependent library files (e.g. Bootstrap, and MathJax, etc.) into a single directory shared by multiple documents. You can use the lib_dir option to do this. For example:

```
title: "Habits"
output:
  html_document:
    self_contained: false
    lib_dir: libs
---
```

Loading LaTeX packages

We can load additional LaTeX packages using the extra_dependencies option within the pdf_document YAML settings.

This allows us to provide a list of LaTeX packages to be loaded in the intermediate LaTeX output document, e.g.,

```
title: "Using more LaTeX packages"
output:
   pdf_document:
     extra_dependencies: ["bbm", "threeparttable"]
---
```

If you need to **specify options** when loading the package, you can add a sub-level to the list and provide the options as a list, e.g.,

```
output:
   pdf_document:
      extra_dependencies:
      caption: ["labelfont={bf}"]
      hyperref: ["unicode=true", "breaklinks=true"]
      lmodern: null
```

For those familiar with LaTeX, this is equivalent to the following LaTeX code:

```
\usepackage[labelfont={bf}]{caption}
\usepackage[unicode=true, breaklinks=true]{hyperref}
\usepackage{lmodern}
```

The advantage of using the extra_dependencies argument over the includes argument introduced in Section 6.1 is that you do not need to include an external file, so your Rmd document can be self-contained.

Includes

HTML Output

You can do more advanced customization of output by including additional HTML content or by replacing the core Pandoc template entirely. To include content in the document header or before/after the document body, you use the includes option as follows:

36 CHAPTER 3. RMD

```
title: "Habits"
output:
   html_document:
      includes:
      in_header: header.html # inject CSS and JavaScript code into the <head> tag
      before_body: doc_prefix.html # include a header that shows a banner or logo.
      after_body: doc_suffix.html # include a footer
   template: template.html # custom templates
---
```

An example header.html to load a MathJax extension textmacros.

```
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
   loader: {load: ['[tex]/textmacros']},
   tex: {packages: {'[+]': ['textmacros']}}
});
</script>
```

PDF Output

For example, to support Chinese characters.

You can use includes and preamble.tex (can be any name, contains any pre-loaded latex code you want to run before your main text code, for setting up environment, loading pkgs, define new commands ... Very flexible.)

In the main Rmd:

```
output:
  pdf_document:
    includes:
    in_header: latex/preamble.tex
    before_body: latex/before_body.tex
    after_body: latex/after_body.tex
```

If you want to add anything to the preamble, you have to use the includes option of pdf_document. This option has three sub-options:

- in_header: loading necessary packages
- before_body:
 - Styling that has the highest priority (as it will be loaded latest; if you put in in_header, it might be overridden by default settings)
 - Dedication page like "The books is dedicated to ..." (此书献给...)

An example of before_body.tex:

```
% Styling that has the highest priority
\let\tightlist\relax % disable `\tightlist`
\setlength{\abovedisplayskip}{-5pt}
\setlength{\abovedisplayshortskip}{-5pt}

% book dedication page
\thispagestyle{empty}

\begin{center}
```

3.1. YAML METADATA 37

```
献给……
呃,爱谁谁吧
\end{center}
```

The default bookdown uses **\tightlist** for all bullet lists, setting itemsep=0pt and parskip=0pt, aim for "compact lists." See the following definition:

```
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
```

I personally don't like the compact list setting, so I disable it with \let\tightlist\relax. To prevent it from being overridden, I put it in before_body.tex instead of preamble.tex.

• after_body.

Each of them takes one or multiple file paths. The file(s) specified in in_header will be added to the preamble. The files specified in before_body and after_body are added before and after the document body, respectively.

```
\documentclass{article}
% preamble
\begin{document}
% before_body
% body
% after_body
\end{document}
```

In preamble.tex:

```
\usepackage{xeCJK}
\setCJKmainfont{Noto Sans CJK SC}
```

Alternatively, you can use header-includes but with less flexibility to change options:

```
output: pdf_document
header-includes:
   - \usepackage{ctex}
---
```

Q: includes vs. header-includes, which one is better to use for loading LaTeX packages?

A: Another way to add code to the preamble is to pass it directly to the header-includes field in the YAML frontmatter. The advantage of using header-includes is that you can keep everything in one R Markdown document.

However, if your report is to be generated in *multiple output formats*, we still recommend that you **use the includes method**, because the header-includes field is unconditional, and will be included in non-LaTeX output documents, too. By comparison, the includes option is only applied to the pdf_document format.

Ref:

 $https://github.com/hao203/rmarkdown-YAML?tab=readme-ov-file\#chinesejapanese-support \\ https://bookdown.org/yihui/rmarkdown-cookbook/latex-preamble.html$

header-includes

Tex style and package loading can also put in header-includes.

Ex.1

Ex.2

```
title: Adding a Logo to LaTeX Title
author: Michael Harper
date: December 7th, 2018
output: pdf_document
header-includes:
   - \usepackage{titling}
   - \pretitle{\begin{center}
    \includegraphics[width=2in,height=2in]{logo.jpg}\LARGE\\}
   - \posttitle{\end{center}}
```

Ex.3

To override or extend some CSS for just one document, include for example:

Change Font

The default font is \usepackage{lmodern} in bookdown.

Can specify alternative fonts in preamble.tex as follows:

```
\usepackage{fontspec}
\setmainfont{Charter}
```

Fonts known to LuaTeX or XeTEX may be loaded by their standard names as you'd speak them out loud, such as Times New Roman or Adobe Garamond. 'Known to' in this case generally means

3.2. CHUNK OPTIONS 39

'exists in a standard fonts location' such as ~/Library/Fonts on macOS, or C:\Windows\Fonts on Windows. In LuaTEX, fonts found in the TEXMF tree can also be loaded by name. In XeTEX, fonts found in the TEXMF tree can be loaded in Windows and Linux, but not on macOS.

3.2 Chunk Options

If you want to set chunk options globally, call knitr::opts_chunk\$set() in a code chunk (usually the first one in the document), e.g.,

```
```{r, label="setup", include=FALSE}
knitr::opts_chunk$set(
 comment = "#>", echo = FALSE, fig.width = 6
)
```
```

Full list of chunk options: https://yihui.org/knitr/options/

Chunk options can customize nearly all components of code chunks, such as the source code, text output, plots, and the language of the chunk.

Other languages are supported in Rmd

You can list the names of all available engines via:

```
names(knitr::knit_engines$get())
## [1] "awk"
                      "bash"
                                      "coffee"
## [4] "gawk"
                      "aroovv"
                                      "haskell"
## [7] "Lein"
                     "mysql"
                                      "node"
## [10] "octave"
                       "perl"
                                      "php"
## [13] "psql"
                       "Rscript"
                                      "ruby"
## [16] "sas"
                       "scala"
                                      "sed"
## [19] "sh"
                      "stata"
                                      "zsh"
## [22] "asis"
                      "asy"
                                      "block"
## [25] "block2"
                      "bslib"
                                      "c"
## [28] "cat"
                      "cc"
                                      "comment"
## [31] "css"
                       "ditaa"
                                      "dot"
## [34] "embed"
                       "eviews"
                                      "exec"
## [37] "fortran"
                       "fortran95"
                                      "qo"
## [40] "highlight"
                       "js"
                                      "julia"
                      "R"
## [43] "python"
                                      "Rcpp"
## [46] "sass"
                      "scss"
                                     "sql"
## [49] "stan"
                      "targets"
                                     "tikz"
## [52] "verbatim"
                      "theorem"
                                      "Lemma"
## [55] "corollary"
                       "proposition" "conjecture"
## [58] "definition"
                       "example"
                                      "exercise"
## [61] "hypothesis"
                                      "remark"
                       "proof"
## [64] "solution"
                       "marginfigure"
```

The engines from theorem to solution are only available when you use the **bookdown** package, and the rest are shipped with the **knitr** package.

To use a different language engine, you can change the language name in the chunk header from r to the engine name, e.g.,

```
```python
x = 'hello, python world!'
print(x.split(' '))
```

For engines that rely on external interpreters such as python, perl, and ruby, the default interpreters are obtained from Sys.which(), i.e., using the interpreter found via the environment variable PATH of the system. If you want to use an alternative interpreter, you may specify its path in the chunk option engine.path.

For example, you may want to use Python 3 instead of the default Python 2, and we assume Python 3 is at /usr/bin/python3

```
```{python, engine.path = '/usr/bin/python3'}
import sys
print(sys.version)
```

- All outputs support markdown syntax.
- If the output is html, you can write in html syntax.

The **chunk label** for each chunk is assumed to be unique within the document. This is especially important for cache and plot filenames, because these filenames are based on chunk labels. Chunks without labels will be assigned labels like unnamed-chunk-i, where i is an incremental number.

- Chunk label doesn't need a tag, i.e., you only provide the value.
- If you prefer the form tag=value, you could also use the chunk option label explicitly, e.g.,

```
"`{r, Label='my-chunk'}
# one code chunk example
```

You may use knitr::opts_chunk\$set() to change the default values of chunk options in a document.

Commonly used chunk options

• Complete list here. Or ?opts_chunk to get the help page.

Options	Definitions
echo=TRUE	Whether to display the source code in the output document. Use this when you want to show the output but not the code itself.
eval=TRUE	Whether to evaluate the code chunk.
include=TRUE	Whether to include the chunk output in the output document. If FALSE, nothing will be written into the output document, but the code is still evaluated and plot files are generated if there are any plots in the chunk, so you can manually insert figures later.
message=TRUE	Whether to preserve messages emitted by message()
warning=TRUE	Whether to show warnings in the output produced by warning().
results='markup'	Controls how to display the text results. When results='markup' that is to write text output as-is, i.e., write the raw text results directly into the output document without any markups. Useful when priting stargazer tables.
comment='##'	The prefix to be added before each line of the text output. Set comment = '' remove the default ##.
collapse=FALSE	Whether to, if possible, collapse all the source and output blocks from one code chunk into a single block (by default, they are written to separate blocks). This option only applies to Markdown documents.

Options	Definitions
fig.keep='high'	How plots in chunks should be kept. high: Only keep high-level plots (merge low-level changes into high-level plots). none: Discard all plots. all: Keep all plots (low-level plot changes may produce new plots). first: Only keep the first plot. last: Only keep the last plot. If set to a numeric vector, the values are indices of (low-level) plots to keep. If you want to choose the second to the fourth plots, you could use fig.keep = 2:4 (or remove the first plot via fig.keep = -1).
fig.align="center"	Figure alignment.
fig.pos="H"	A character string for the figure position arrangement to be used in \begin{figure}[].
fig.cap	Figure caption.

results='markup' note plural form for results.

markup: Default. Mark up text output with the appropriate environments depending on the output format. For example, for R Markdown, if the text output is a character string "[1] 1 2 3", the actual output that knitr produces will be:

```
[1] 1 2 3
```

In this case, results='markup' means to put the text output in fenced code blocks (").

• asis: Write text output as-is, i.e., write the raw text results directly into the output document without any markups.

```
```{r, results='asis'}
cat("I'm raw **Markdown** content.\n")
```
```

Sometime, you encounter the following error messages when you have R codes within enumerate environment.

You can't use macro parameter character # in horizontal mode.

By default, knitr prefixes R output with ##, which can't be present in your TeX file. Solution:

- specify results="asis" in code chunks.
- hold: Hold all pieces of text output in a chunk and flush them to the end of the chunk.
- hide (or FALSE): Hide text output.

collapse = FALSE Whether to merge text output and source code into a single code block in the output. The default FALSE means R expressions and their text output are separated into different blocks.

collapse = TRUE makes the output more compact, since the R source code and its text output are displayed in a single output block. The default collapse = FALSE means R expressions and their text output are separated into different blocks.

Hooks

The object knit_hooks in the **knitr** package is used to set hooks; the basic usage is knitr::knit_hooks\$set(name = FUN) (see objects for details) where name is the name of a chunk option (can be arbitrary), and FUN is a function.

There are two types of hooks:

· chunk hooks and

A chunk hook is a function that is triggered by a chunk option when the value of this chunk option is not NULL.

output hooks
 Output hooks control over output from your code chunks, such as source code, text output, messages, and plots.

Hook functions may have different forms, depending what they are designed to do.

Chunk hooks

For example, we define a **custom chunk hook** function for the small mar option

```
knitr::knit_hooks$set(small_mar = function(before, ...) {
  if (before)
    par(mar = c(4, 4, .1, .1)) # smaller top/right margin
})
```

Then this function will be called for a chunk option like the following (small_mar doesn't have to be TRUE; it can be any non-NULL value):

```
'``{r, myplot, small_mar=TRUE}
hist(rnorm(100), main = '')
```

Output hooks

With the **knitr** package, you have control over every piece of output from your code chunks, such as source code, text output, messages, and plots. The control is achieved through "output hooks."

Available output hook names:

Note that these names of output hooks are reserved by **knitr**, so you must NOT use these names for your custom chunk hooks.

- source: processing the source code.
- output: processing text output.

You may obtain the actual hooks from the object knit_hooks via the get() method, e.g.,

```
# for meaningful output, the code below should be
# executed *inside* a code chunk of a knitr document
knitr::knit_hooks$get("source")
knitr::knit_hooks$get("output")
# or knitr::knit_hooks$get(c('source', 'output'))
```

A custom output hook is registered through the set() method of knit_hooks. Because this method will override the existing default hook, we recommend that you save a copy of an existing hook, process the output elements in your own way, and pass the results to the default hook.

When the text output from a code chunk is lengthy, you may want to only show the first few lines. For example, when printing a data frame of a few thousand rows, it may not be helpful to show the full data, and the first few lines may be enough. Below we redefine the output hook so that we can control the maximum number of lines via a custom chunk option out.lines:

```
# save the built-in output hook
hook_output <- knitr::knit_hooks$get("output")

# set a new output hook to truncate text output
knitr::knit_hooks$set(output = function(x, options) {
   if (!is.null(n <- options$out.lines)) {</pre>
```

3.2. CHUNK OPTIONS 43

```
x <- xfun::split_lines(x)
if (length(x) > n) {
    # truncate the output
    x <- c(head(x, n), "....\n")
}
x <- paste(x, collapse = "\n")
}
hook_output(x, options)
})</pre>
```

The basic idea of the above hook function is that if the number of lines of the text output is greater than the threshold set in the chunk option out.lines (stored in the variable n in the function body), we only keep the first n lines and add an ellipsis (....) to indicate the output is truncated.

Now we can test the new output hook by setting the chunk option out.lines = 4 on the chunk below:

And you see four lines of output as expected.

```
print(head(cars, 10))
```

```
##
      speed dist
## 1
          4
                2
           4
## 2
               10
## 3
          7
                4
## 4
          7
               22
## 5
          8
               16
## 6
          9
               10
## 7
         10
               18
## 8
         10
               26
## 9
         10
               34
## 10
```

Since we have stored the original output hook in hook_output, we can restore it by calling the set() method again:

```
knitr::knit_hooks$set(output = hook_output)
```

Now we print the data frame again. The default behavior is to print the whole data frame.

```
print(head(cars, 10))
```

```
##
      speed dist
## 1
           4
                2
## 2
           4
               10
           7
## 3
                4
## 4
           7
               22
## 5
           8
               16
## 6
           9
               10
## 7
          10
               18
## 8
          10
               26
```

```
## 9 10 34
## 10 11 17
```

References:

 $\bullet \ \ Output \ hooks: \ https://bookdown.org/yihui/rmarkdown-cookbook/output-hooks.html$

Chunk hooks: https://bookdown.org/yihui/rmarkdown-cookbook/chunk-hooks.html

3.3 Print Verbatim R code chunks

verbatim in line code

• use knitr::inline expr.

```
title: "Test inline expr"
output: html_document
---
```

To use `chunk_reveal("walrus", title = "## Walrus operator")` inline, you can wrap it in R :

Including verbatim R code chunks inside R Markdown

One solution for including verbatim R code chunks (see below for more) is to insert hidden inline R code (`r ''`) immediately before or after your R code chunk.

 The hidden inline R code will be evaluated as an inline expression to an empty string by knitr.

Then wrap the whole block within a markdown code block. The rendered output will display the verbatim R code chunk — including backticks.

R code generating the four backticks block:

```
output_code <-
"````markdown

```{r}
plot(cars)

```\n````"
cat(output_code)</pre>
```

Write this code in your R Markdown document:

```
````markdown
`r ''````{r}
plot(cars)

or

````markdown
```{r}`r ''`
plot(cars)
````
```

Knit the document and the code will render like this in your output:

```
'``{r}
plot(cars)
'``
```

This method makes use of Markdown Syntax for code.

Q: What is the Markdown Syntax for code? A:

- Inline code use a pair of backticks, e.g., `code`. To use n literal backticks, use at least n+1 backticks outside. Note that use a space to separate your outside backticks from your literal backtick(s). For example, to generate `code`, you use `` \mathbb{D} ` code` \mathbb{D} `` (i.e., two backticks + space + one backtick + code + one backtick + space + two backticks). Note that you need to write sequentially.
- Plain code blocks can be written either
 - After three or more backticks (fenced code blocks), or Can also use tildes (~)
 - Indent the blocks by four spaces (indented code blocks)
 Special characters do not trigger special formatting, and all spaces and line breaks are preserved. Blank lines in the verbatim text need not begin with four spaces.
- Note that code blocks must be separated from surrounding text by blank lines.

If the code itself contains a row of tildes or backticks, just use a longer row of tildes or backticks at the start and end:

```
code including tildes
```

These begin with a row of three or more tildes (~) and end with a row of tildes that must be at least as long as the starting row.

A trick if you don't want to type more than three tildes or backticks is that you just use different inner and outer symbols.

```
~~~markdown
```r
print ("hello world")
~~~
```

Will be rendered as:

```
print ("hello world")
```

A shortcut form (without braces) can also be used for specifying the language of the code block:

haskell is the language class.

You can add more classes, such as numberLines for adding line numbers.

This shortcut form may be combined with attributes:

If highlighting is supported for your output format and language, then the code block above will appear highlighted, with numbered lines starting with 100, 101, and go on.

## Code chunks within enumerate

• Mind the indentation. Rstudio does not automatically adjust indentation for codes.

• specify results="asis" if encounter

You can't use 'macro parameter character #' in horizontal mode.

- cross references using bookdown (\@ref{fig:scatter-plot}) might not work.
   Use latex references \ref{fig:scatter-plot} (base latex) or \autoref{fig:scatter-plot} (from hyperref package)
- markdown language does not work well inside latex environments. A possible workaround is use 1 and indent four spaces for contents that follow.

If it is still a pain in the ass, use this solution.

Basically, just copy the output from R condole and paste in Rmd.

#### References:

https://yihui.org/en/2017/11/knitr-verbatim-code-chunk/

https://support.posit.co/hc/en-us/articles/360018181633-Including-verbatim-R-code-chunks-inside-R-Markdown

https://themockup.blog/posts/2021-08-27-displaying-verbatim-code-chunks-in-xaringan-presentations/

Pandoc's Markdown: https://pandoc.org/MANUAL.html#fenced-code-blocks

## 3.4 Rmd Basics

To name a chunk, add the name after r, it's not necessary to add label='chunk-name', but it is possible to do so if you prefer the form tag=value.

#### The chunk label

3.4. RMD BASICS 47

 Must be unique within the document. This is especially important for cache and plot filenames, because these filenames are based on chunk labels. Chunks without labels will be assigned labels like unnamed-chunk-i, where i is an incremental number.

• Avoid spaces (2), periods ( .), and underscores (\_) in chunk labels and paths. If you need separators, you are recommended to use hyphens (-) instead.

knitr::opts\_chunk\$set() changes the default values of chunk options in a document.

#### **Unnumbered sections**

Add {-} at the end of the section title.

```
# Question 1: Variance and Covariance properties {-}
<!-- equivalently, you can use {.unnumbered} -->
# Question 1: Variance and Covariance properties {.unnumbered}
```

Note that the section won't be numbered but will show in the TOC.

If you want to further exclude it from the TOC:

```
# Question 1: Variance and Covariance properties {.unlisted .unnumbered}
```

Headings with # will appear in the file outline, which is a convenient feature. So use this method whenever possible.

One exception is level 2 headings in Bookdown:

By default Bookdown starts a new page for each level 2 heading. If you want to keep the
style wihtout starting a new page, use an html tag. The heading won't be numbered or
included in TOC. However, a downside is that the heading won't show up in the file outline
either, making them harder to locate.

```
<h2>YAML metadata</h2>
```

#### Knitting in the global environment

rmarkdown::render("/Users/menghan/Library/CloudStorage/OneDrive-Norduniversitet/EK369E/Seminars/within the control of the

Advantages: fast; load and output results in the global environment; easy to inspect afterwards.

Rmd built-in themes for html output: https://rstudio4edu.github.io/rstudio4edu-book/rmd-themes.html

.Rmd documents can be edited in either source or visual mode. To switch into visual mode for a given document, use the Source or Visual button at the top-left of the document toolbar (or alternatively the Cmd+Shift+F4 keyboard shortcut).

#### Visual mode

- Visual mode allows you to preview the effect after having compiled the markdown file.
   ☐ But it modifies your code silently, be cautions with visual mode.
- More user-friendly in terms of providing drop down menus for editing.
- Visual mode supports both traditional keyboard shortcuts (e.g. Cmd + B for bold) as well
  as markdown shortcuts (using markdown syntax directly). For example, enclose \*\*bold\*\*
  text in asterisks or type ## and press space to create a second level heading.
- One bug for Visual mode is that inside **bullet points**, \$ is automatically escaped as \\$. In this case, use cmd+/ and choose inline math to insert an eqn.
- When type inline equations, first type \$ then the equation, then \$ at last. Do not type \$\$ at one time. Otherwise, they will be escaped as regular text.

Comments in Rmd

• In both html and pdf outputs, use the following to write true comments you don't want to show in the rendered file.

```
<!-- regular html comment -->
```

## Link to an external javascript

```
<SCRIPT language="JavaScript" SRC="my_jxscript.js"></SCRIPT>
```

## Tips:

In general, you'd better leave at least one empty line between adjacent but different elements, e.g., a header and a paragraph. This is to avoid ambiguity to the Markdown renderer

For example, the - in the list below cannot be recognized as a bullet point. You need to add a black line before the bullet list.

```
The result of 5
- 3 is 2.
```

**Different flavors of Markdown** may produce different results if there are no blank lines.  $\square\square$ 

## 3.5 Citations

For an overview of including bibliographies in your output document, you may see Section 2.8 of Xie (2016).

The basic usage requires us to specify a bibliography file using the bibliography metadata field in YAML. For example:

```
output: html_document
bibliography: references.bib
---
```

where the BibTeX database is a plain-text file with the \*.bib extension that consists of bibliography entries.

#### How to cite in text:

- Use @citationkey to cite references in text.
- To put citations in parentheses, use [@citationkey].
- To cite multiple entries, separate the keys by semicolons, e.g., [@key-1; @key-2; @key-3].
- To suppress the mention of the author, add a minus sign before @, e.g., [-@citationkey].

Syntax	Result
@adams1975 concludes that @adams1975[p.33] concludes that end of sentence [@adams1975]. [see @adams1975,p.33]. delineate multiple authors with colon:	Adams (1975) concludes that Adams (1975, p. 33) concludes that end of sentence (Adams, 1975) end of sentence (see Adams, 1975, p. 33). delineate multiple authors with colon:
[@adams1975; @aberdeen1958]	(Aberdeen, 1958; Adams, 1975)

3.5. CITATIONS 49

Syntax	Result
Check Lo and MacKinlay [-@Lo-Mackinlay1988; -@Lo1989] for example.	Check Lo and MacKinlay (1988, 1989) for example.

#### Add an item to bibliography without using it

By default, the bibliography will only display items that are directly referenced in the document.

If you want to include items in the bibliography without actually citing them in the body text, you can define a dummy nocite metadata field and put the citations there.

```
nocite: |
@item1, @item2
```

## 3.5.1 Bibliographies

Users may also choose to use either natbib (based on bibtex) or biblatex as a "citation package". In this case, the bibliographic data files need to be in the bibtex or biblatex format, and the document output format is **limited to PDF**.

```
output:
  pdf_document:
    citation_package: natbib
  bookdown::pdf_book:
    citation_package: biblatex
```

If you use matching styles (e.g., biblio-style: apa for biblatex along with csl: apa.csl for pandoc-citeproc), output to PDF and to non-PDF formats will be very similar, though not necessarily identical.

Once you have one or multiple .bib files, you may use the field bibliography in the YAML metadata of your first R Markdown document (which is typically index.Rmd), and you can also specify the bibliography style via biblio-style (this only applies to PDF output), e.g.,

```
bibliography: ["one.bib", "another.bib", "yet-another.bib"]
biblio-style: "apalike"
link-citations: true
```

The field link-citations can be used to add hyperlinks from the citations to the bibliography entries. Defaults to false.

For any non-PDF output format, pandoc-citeproc is the only available option. If consistency across PDF and non-PDF output formats is important, use pandoc-citeproc throughout.

To change the bibliography style, you will need to specify a CSL (Citation Style Language) file in the csl metadata field, e.g.,

```
output: html_document
bibliography: references.bib
csl: biomed-central.csl
---
```

## 3.5.2 Bibliography placement

By default, the bibliography will be placed at the end of the document. So, you will want a final header titled # References or # Bibliography at the end your document.

If you want to place the bibliography somewhere else, for instance before the appendices, you can insert a <div id="refs"></div> html tag in source mode:

```
# References

<div id="refs"></div>
# Appendix
```

If you use the bookdown::gitbook output format, by default, the bibliography is split and all citation items that are cited on a given html page are put at the end of that page, so that readers do not have to navigate to a different bibliography page to see the details of citations.

This feature can be disabled by setting the split\_bib YAML field to false, in which case all citations cited in the entire report or book are put on a separate bibliography page. To do this, you can add specific keys in the YAML header:

```
author: Research Institute for Nature and Forest
date: '2025-05-14'
site: bookdown::bookdown_site
output:
  bookdown::gitbook:
    split_by: chapter
    split_bib: false
---
```

## 3.6 Cross References

## 3.6.1 Using bookdown

You can number and refer to an equation by adding \begin{equation} along with a label, provided with (\#eq:label).

- The position of the label matters.
  - For single-lined equations: First write your equation, then append your label (\#eq:label). Otherwise, your equation won't be rendered.
  - For multi-lined equations: append (\#eq:label) after \end{split}, \end{aligned}
    ...
- Note that \begin{equation} must NOT be quoted in \$\$...\$\$ for the equation to be rendered.

Otherwise, will cause "Bad math delimiter" error at the time of tex compilation for pdf output. Might be alright for html output though.

Unexpected consequence: Without the \$\$...\$\$, RStudio won't provide previews for equations.

- For temporary preview in RStudio at the composing stage, you can enclose the whole math environment in \$\$...\$\$. But remember to delete them when you are done editing the equation.
- See this post by Kenji Sato for a more efficient workaround.
- You can then refer to the equation in text using \@ref(eq:CJ). Remember to put the label in parentheses ().

General syntax for other environments: \@ref(type:label) where type is the environment being referenced, and label is the chunk label.

```
This is an equation redered using bookdown
```

```
\begin{equation} (\#eq:CJ)
y=\beta_0 + \beta_1x + e_t
\end{equation}
```

will render as

$$y = \beta_0 + \beta_1 x + e_t \tag{3.1}$$

You may refer to it using eqn \@ref(eq:CJ), e.g., see eqn (3.1).

```
Multilined equations.

\begin{equation}
\begin{aligned}
y_i &= f(x_{1i}, x_{2i}, \ldots, x_{Ki}) + \varepsilon_i \\
&= x_{1i} \beta_1 + x_{2i} \beta_2 + \cdots + x_{Ki} \beta_K + \varepsilon_i \\
end{aligned}(\#eq:scalar-form)
\end{equation}
```

will render as

$$\begin{aligned} y_{i} &= f(x_{1i}, x_{2i}, \dots, x_{Ki}) + \varepsilon_{i} \\ &= x_{1i}\beta_{1} + x_{2i}\beta_{2} + \dots + x_{Ki}\beta_{K} + \varepsilon_{i} \end{aligned} \tag{3.2}$$

You may refer to it using eqn \@ref(eq:scalar-form), e.g., see eqn (3.2).

Note that

For HTML output, bookdown can only number the equations with labels.
 Please make sure equations without labels are not numbered by either using the equation\* environment or adding \nonumber or \notag to your equations.

## **Troubleshooting**

Issue: Bad math environment delimiter on conversion to pdf when using equation or align.

Cause: The error happens because I enclosed \begin{equation} environment in \$\$. I did this as the dollar sings enable equation rendering and preview in file.

Fix: remove the double signs.

```
The following equation causes error. Need to remove the dollar signs.

$$
\begin{equation}
y=x+2
\end{equation}
$$
```

## More examples:

Headers

```
# Introduction {#intro}

This is Chapter \@ref(intro)
```

Figures

```
See Figure \@ref(fig:cars-plot)

```{r cars-plot, fig.cap="A plot caption"}
plot(cars) # a scatterplot
```
```

Tables

```
See Table \@ref(tab:mtcars)

```{r mtcars}
knitr::kable(mtcars[1:5, 1:5], caption = "A caption")
```

Theorems

```
See Theorem \@ref(thm:boring)

```{theorem, boring}
Here is my theorem.
```

Equations

```
See equation \@ref(eq:linear)
\begin{equation}
a + bx = c (\#eq:linear)
\end{equation}
```

## 3.6.2 Using the LaTeX Way

The **LaTeX** way allows you to assign your own labels by \tag. One drawback is that this does not allow preview of equations.

1. Add the following script at the beginning of your document body:

```
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
   TeX: { equationNumbers: { autoNumber: "AMS" } });
</script>
```

It configures MathJax to automatically number equations. Source.

- 2. In the text, use label{eq:label}. If you want to provide a specific number to the equation, you can use \tag{XX.XX}.
  - Note that \begin{equation} is NOT inside \$\$ ...\$\$!
- 3. Cite using \$\ref{eq:label}\$ (no parenthesis) or \$\eqref{eq:label}\$ (with parenthesis). The dollar sign \$ here around \ref and \eqref is not essential. Commands work with or without \$.

3.7. EQUATIONS 53

```
Without using the bookdown package.

\begin{equation} \label{eq:test} \tag{my custom label}
    Y_i = \beta_0 + \beta_1 x_i + \epsilon_i
\end{equation}

Cite Equation $\eqref{eq:test}$ like this.
```

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{my label}$$

Refer to the eq (my label)

#### Reference:

https://bookdown.org/yihui/bookdown/markdown-extensions-by-bookdown.html#equations

## 3.7 Equations

Can use  $\dots$  (\$\$...\$\$ for blocks) or  $(\dots)$  (\[...\] for blocks) to enclose equations. Difference:

- \$...\$ provides rendered equation previews in RStudio.
- \(...\) does not have previews.

Rstudio equation previews do NOT work well with indented equations.  $\rightarrow$  reduce indentation 如果公式缩进,Rstudio 公式预览功能可能不识别。在不影响理解的前提下,减少不必要的缩进以便预览公式。

Multi-case functions using \begin{cases}

```
\begin{align*}
I_t =
\begin{cases}
1 & \text{if } r_t>0 \\
0 & \text{if } r_t\leq0
\end{cases}
\end{align*}
```

will render as

$$I_t = \begin{cases} 1 & \text{if } r_t > 0 \\ 0 & \text{if } r_t \leq 0 \end{cases}$$

For equation numbering support in bookdown you need to assign labels.

You may refer to an equation using Eq. \@ref(eq:eq01).

```
\begin{align} (\#eq:eq01)
\frac{p(x)}{1-p(x)} = \exp (\beta_0+\beta_1 x) \,.
\end{align}
```

If you want to provide a specific number to the equation, you can use \tag{XX.XX}.

 With LaTeX LaTex allows custom labels.

$$\frac{p(x)}{1-p(x)} = \exp(\beta_0 + \beta_1 x) \,. \tag{my label latex} \label{eq:my label latex}$$

My specific label here, see eq (my label latex) (\eqref{eq:my-label-latex}).

 With bookdown bookdown does NOT support custom tag though.

$$\frac{p(x)}{1-p(x)}=\exp(\beta_0+\beta_1 x)\,. \tag{3.3}$$

My specific label here, see eq (3.3)

**Color eqns** using \color{#00CC66}{...}.

But sometime everything follows gets colored. You may want to use  ${\color{#00CC66} ...}$  instead.

```
$$ \color{#008B45}{Y_t} = I_tI_{t-1} + (1-I_t)(1-I_{t-1})
$$
```

$$Y_t = I_t I_{t-1} + (1 - I_t)(1 - I_{t-1})$$

- This only works for color names, not hex codes starting with #, because html requires the # followed by 6 characters to define a color, but LaTeX package xcolor specifically excludes # in color specifications.
- Here is an inline colored example for LaTeX output (only works for LaTeX).

A workaround: We can write a custom R function to insert the correct syntax depending on the output format using the is\_latex\_output() and is\_html\_output() functions in knitr as follows:

We can then use the code in an inline R expression `r colorize("some words in red", "red")`, which will create some words in red, which works for both html and.

## Mathjax

https://bookdown.org/yihui/rmarkdown/html-document.html#mathjax-equations

3.7. EQUATIONS 55

Default configuration used by the rmarkdown package is given by rmarkdown:::mathjax\_config(). As of rmarkdown v2.1, the function returns "MathJax.js?config=TeX-AMS-MML\_HTMLorMML". This configures Mathjax to HTML-CSS.

Change Mathjax configuration to CommonHTML using the following codes.

```
title: "Trouble with MathJax"
output:
  html_document:
    mathjax: "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS_CHTM.
    self_contained: false
---
```

By default, MathJax scripts are included in HTML documents for rendering LaTeX and MathML equations. You can use the mathjax option to control how MathJax is included:

- Specify "default" to use an HTTPS URL from a CDN host (currently provided by RStudio).
- Specify "local" to use a local version of MathJax (which is copied into the output directory). Note that when using "local" you also need to set the self\_contained option to false.
- Specify an alternate URL to load MathJax from another location. To use a self-hosted copy of MathJax.
- Specify null to exclude MathJax entirely.

Q: Why my eqns are not rendered?

A: MathJax is unlikely to work offline. Check internet connection.

You load MathJax into a web page by including its main JavaScript file into the page. That is done via a <script>tag that links to the MathJax.js file. To do that, place the following line in the <head> section of your document.

For example, if you are using the MathJax distributed network service, the tag might be

```
<script type="text/javascript"
    src="http://cdn.mathjax.org/mathjax/latest/MathJax.js">
</script>
```

MathJax is available as a web service from cdn.mathjax.org, so you can obtain MathJax from there without needing to install it on your own server. The CDN is part of a distributed "cloud" network, so it is handled by servers around the world. That means that you should get access to a server geographically near you, for a fast, reliable connection.

The CDN hosts the most current version of MathJax, as well as older versions, so you can either link to a version that stays up-to-date as MathJax is improved, or you can stay with one of the release versions so that your pages always use the same version of MathJax.

For equation numbering support in bookdown::pdf\_document2 you need to assign labels. Defualt behavior is not adding numbering.

<sup>•</sup> Use \begin{equation}...\end{equations} or \begin{align}...\end{align} environments.

<sup>-</sup> Use (\#eq:eq1) or \label{eq:eq1} to add labels.

<sup>-</sup> Automatically add numbering.

<sup>-</sup> Drawback is that rmd does not have preview of equations.

• Do NOT enclose the environments in double dollar signs \$\$. Otherwise, no label is added, but cross-references still show up.

- \$\$ do not add numbering automatically.
- But in bookdown::html\_document2, it is ok to use

Then reference with \@ref(eq:simple-lm).

• Use \@ref(eq:eq1) (note this use parentheses) or the Latex command \eqref{eq:eq1} (this uses curly braces) to cite the equation.

## 3.8 Theorems

https://stackoverflow.com/questions/50379923/bookdown-remark-environment

Language internationalization: https://bookdown.org/yihui/bookdown/internationalization.html

Theorem environments in the bookdown package.

Environment	Printed Name	Label Prefix
theorem	Theorem	thm
lemma	Lemma	lem
corollary	Corollary	cor
proposition	Proposition	prp
conjecture	Conjecture	cnj
definition	Definition	def
example	Example	exm
exercise	Exercise	exr
hypothesis	Hypothesis	hyp

- Definition: an explanation of the mathematical meaning of a word.
- Theorem: A statement that has been proven to be true.
- Proposition: A less important but nonetheless interesting true statement.
- Lemma: A true statement used in proving other true statements (that is, a less important theorem that is helpful in the proof of other results).
  - Lemmas are considered to be less important than propositions. But the distinction between categories is rather *blurred*.

3.8. THEOREMS 57

- There is no formal distinction among a lemma, a proposition, and a theorem.
- Corollary: A true statment that is a simple deduction from a theorem or proposition.
- Proof: The explanation of why a statement is true.
- Conjecture: A statement believed to be true, but for which we have no proof. (a statement that is being proposed to be a true statement).
- Axiom: A basic assumption about a mathematical situation. (a statement we assume to be true).

## Usage

**Theorems and proofs** provide environments that are commonly used within articles and books in mathematics. To write a theorem, you can use the syntax below:

```
```{theorem, label, name="Theorem name"}
Here is my first theorem.
```

will be rendered as:

**Theorem 3.1** (Theorem name). Here is my first theorem.

Refer to the theorem using \@ref(thm:label), e.g., see theorem 3.1.

Another example

```
```{theorem, thm-py, name="Pythagorean theorem"}
For a right triangle, if $c$ denotes the length of the hypotenuse and $a$ and $b$ denote the length
\begin{align*}
c^2 = a^2+b^2
\end{align*}
```

will be rendered as:

**Theorem 3.2** (Pythagorean theorem). For a right triangle, if c denotes the length of the hypotenuse and a and b denote the lengths of the other two sides, we have

$$c^2 = a^2 + b^2$$

- Variants of the theorem environments include: lemma, corollary, proposition, conjecture, definition, example, and exercise. The syntax for these environments is similar to the theorem environment, e.g., "{lemma}.
- The proof environment behaves similarly to theorem environments but is unnumbered. Variants of the proof environments include remark and solution.

The proofenvironment behaves similarly to theorem environments but is unnumbered.

#### Customize math environment labels

You need to create a file \_bookdown.yml in the same directory as your .Rmd.

In the configuration file \_bookdown.yml

For example, if you want FIGURE x.x instead of Figure x.x, you can change fig to "FIGURE".

```
language:
  label:
  fig: "FIGURE "
```

If you want to number proof,

- 1. choose one of the predefined theorem like environments that you are not using otherwise, e.g. example or exercise.
- 2. Redefine the printed name for that environment in \_bookdown.yml (c.f. https://bookdown.org/yihui/bookdown/internationalization.html) via:

```
language:
  label:
    exr: 'Proof '
```

Here I changed the exercise environment leading word to "Proof".

3. In your Rmd files use {exercise, mylabel} environment.

```
```{exercise, mylabel}
my comment
```
In Remark \@ref(exr:mylabel) we discussed...
```

Note that you have to use exercise and the corresponding label prefix exr.

Can specify environment style in style.css

```
.exercise {
    margin: 10px 5px 20px 5px;
/* define a boxed environment */
.boxed {
    border: 1px solid #535353;
    padding-bottom: 20px;
}
<div class = "boxed">
```{exercise, proof2}
Show $\pi=\Phi \left(\frac{\mu}{\sigma}\right)$.
\begin{aligned}[b]
P(r_t>0) &= P(\mathbf{u}+e_t>0) \
\&= P(e_t)-\mu  \quad\quad\quad (\sigma>0, \text{dividing by a pos. number, inequality uncha
&= P\left( \frac{e_t}{\sigma} > -\frac{\mu}{\sigma}\right) \quad\;\; e_t\sim N(0, \sigma^2)
&= P \left( \frac{e_t}{\sigma} < \frac{\mu}{\sigma} \right) \\</pre>
&= \Phi \left(\frac{\mu}{\sigma} \right)
\end{aligned} \square
$$
</div>
```

# 3.9 Figures

The idea is to generate the figure, output to local, then reload using the following code.

3.9. FIGURES 59

```
```{r car-plot, eval=TRUE, fig.asp = 0.62, echo=FALSE, out.width="80%", fig.cap="Caption here." } knitr::include_graphics(img1_path)
```

Use code chunk label to cross reference, e.g., Fig. \@ref(fig:car-plot).

- Note that you must specify fig.cap to enable labeling and cross references. Otherwise, the cross reference will show Fig. ??.
- knitr::include\_graphics supports web url for html output, but NOT for latex output.
- You can let the code output to document directly, i.e., not generating a file and reload. But in this case, scale the figure will change the plot text too. The text might be scaled unexpectedly too small/large. Just be careful with it.

## **Output directly to document**

```
```{r out.width="50%", fig.asp = 0.62, fig.cap="`out.width=\"50%\"`, fig.asp set to 0.62."}
# plot text is scaled too
plot(aapl$AAPL.Close)
```



\begin\{figure\} \begin\{\text{figure}\} \begin\{\text{olid} \begin\{\text{Feb 01} \ 2014 \begin\{\text{olid} \begin\{\text{ol

```
'``{r fig.width=6, fig.asp=0.6}
# Text font does NOT scale, but figure title got cropped
plot(aapl$AAPL.Close)
```

```
```{r out.width="100%", fig.asp = 0.6, fig.cap="`out.width=\"100%\"`."}
plot(aapl$AAPL.Close)
```



Figure 3.1: Set fig.width. Note that text font does NOT scale with figure, BUT the figure title got cropped.



\caption{out.width="100%", fig.asp set to 0.6. Note that the plot text got zoomed too, can be too large.} \end{figure}

## Save and reload

This approach preserves your preference better, maintains the relative size of your figure and the text.

No cropping, no fuss.

```
f_name <- "images/aapl.png"
png(f_name, width=2594, height=1600, res=300)
plot(aapl$AAPL.Close)
invisible(dev.off())</pre>
```

3.9. FIGURES 61

```
```{r out.width="50%", fig.cap="include_graphics with `out.width=\"50%\"`." } knitr::include_graphics(f_name)
```



\begin{figure} & Aug 01 & Aug 03 & Aug 01 & Aug

 $\verb|\caption{include\_graphics with}|$ 

```
```{r out.width="100%", fig.cap="include_graphics with `out.width=\"100%\"`." }
knitr::include_graphics(f_name)
```



\begin{figure}

\caption{include\_graphics with out.width="100%".} \end{figure}

Q: How to suppress the following dev.off() messages generated by code chunks in Rmd?

```
## quartz_off_screen
## 2
```

A: Enclose dev.off() within invisible(), or dump the result of dev.off() to a garbage variable.

```
invisible(dev.off()) # opt1
whatever <- dev.off() # opt2</pre>
```

Specify code chunk options fig.width and fig.height for R-generated figures only.

• Default is fig.width = 7 and fig.height = 5 (in inches, though actual width will depend on screen resolution). Remember that these settings will default to rmarkdown values, not knitr values.

• If don't know what size is suitable, can right-click the Plots Viewer and choose "Copy Image Address". Scale by /100 (in inches) and fill the values to chunk options.

out.width and out.height apply to both existing images and R-generated figures.

- note that the percentage need to be put in quotes.
- fig.width do not scale font, it shows the original font size.
- out.width scales the whole figure. Better to use this one. If you want to fix aspect ratio, use fig.asp=0.6 to set height:width = 6:10.
  - out.width keeps the original aspect ratio of the figure and scale the text in the figure too.

But what most people want is to scale the figure but not the text. For instance, you want to scale your figure to 70% width of page, but you want to keep the original size of text so it is readable.

 A caveat with out.widthis that the axis labels and ticks will be so small and hard to read.

Other chunk options related to figures:

fig.cap=NULL specify figure captions. Must provide fig.cap if you need to cross reference the
figure.

See Fig. \@ref(fig:car-plot) use code chunk label to cross reference. The chunk label (car-plot) provides the identifier for referencing the figure generated by the chunk.

• Fig. \@ref(fig:logit-regression) use to insert a non-breaking space.

fig.align="center" to set figure alignment.

fig.pos="H" fix placement.

fig.asp=0.6 aspect ratio height:width=6:10.

**Suggested practice** so that you have correct aspect ratio and automatically scaled text and labels in figures.  $\Box$ 

1. Generate the figure and save to local

The benefit is that you have full control to adjust the figure as needed, such as font size, and could reuse it later.

3.9. FIGURES 63

Specify chunk options include=FALSE (Do not include code output) to suppress the graphic window information like the following.

```
## quartz_off_screen
## 2
```

2. Add the figure using

```
```{r scatter-plot, echo=FALSE, fig.cap="Scatter plot of avearge wage against experience.", ou include_graphics(f_name)
```

#### 3. Cross reference

• pdf\_document: using \autoref{fig:scatter-plot} from hyperref package or Fig. \ref{fig:scatter-plot} from base latex.

hyperref uses Figure, could be changed to Fig. by putting the following cmd at the begin of the Rmd.

\renewcommand\figureautorefname{Fig.}

• bookdown::html\_document2: using \@ref(fig:scatter-plot).

## Latex symbols in Fig. caption

The R code block approach.

- \\Phi works. You need to escape the \ in \Phi .
- If there are quotation marks (") in the figure caption, need to escape them using \"...\" to distinguish from the outer quotes of the caption parameter.
- You can use regular Markdown syntax in Fig captions, such as using \*\*Bold\*\* to make text bold.
- Better to use R code blocks to include figures.

Note that include\_graphics("https://link-to-Google-drive") does NOT work for pdf output. Works for html output though.

If using html tag <figure>, the numbering will be messed up. There is only automatic numbering with R code figures.

Use example:

```
```{r fig.cap="The $\\Phi$ and $\\phi$ ($f_Z(.)$) functions (CDF and pdf of standard normal).' include_graphics("images/Phi_b.png")
```

Will generate the following Fig 3.2.



Figure 3.2: The  $\Phi$  and  $\phi$  ( $f_Z(.)$ ) functions (CDF and pdf of standard normal).

Alternatively, use the HTML approach, and enclose the caption inside <figcaption>.

• Benefit: You can type equations as you normally do. Don't need to escape backslashes as using the R code blocks in the example above.

• Drawback: You need to manually add figure numbering.

☐ That means, when you change the order of sections or figures in your webpage, the numbering will be a mess. You need to change all capitals manually.

```
<figure>
<img src="https://drive.google.com/thumbnail?id=1nxfdIKXgZvOqXVSeA3h_hf0yxmsM361l&sz=w1000'
<figcaption>Fig.1 The $\Phi$ and $\phi$ ($f_Z(.)$) functions (CDF and pdf of standard normation)
</figure>
```

Fig.1 The  $\Phi$  and  $\phi$  ( $f_Z(.)$ ) functions (CDF and pdf of standard normal).

## Refer to another figure in figure caption

Just need to use double backslash \\@ref(fig:xxx) in the figure caption.

Use example:

We first generate the figure to be referenced.

```
```{r firstplot, out.width="60%", fig.cap="Source Figure to be referred to."}
library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
plot_A <- p + geom_point()
plot_A</pre>
```



\begin{figure} wt \caption{Source Figure to be referenced. Note that when specifying out.width="60%", the text in the figure is scaled too small.} \end{figure}

Now a second plot with a reference to Fig.: 3.9.

```
```{r secondplot, fig.cap = "This is the same as Fig.: \\@ref(fig:firstplot) but now with a plot_A + geom_line(alpha = .75,col = "red")
```

## 3.10 Tables

#### Cross reference tables

Using bookdown cmd: \@ref(tab:chunk-label).

3.10. TABLES 65



Figure 3.3: This is the same as Fig.: 3.9 but now with a red line and out.width="100%".

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160	110	3.90
Mazda RX4 Wag	21.0	6	160	110	3.90
Datsun 710	22.8	4	108	93	3.85
Hornet 4 Drive	21.4	6	258	110	3.08
Hornet Sportabout	18.7	8	360	175	3.15

Table 3.6: The mtcars data.

Note that you must provide caption option in knitr::kable(). Otherwise the table won't be numbered.

```
And see Table \@ref(tab:mtcars).

```{r mtcars, echo=FALSE}
knitr::kable(mtcars[1:5, 1:5], caption = "The mtcars data.")
```

Refer to the Table 3.6.

knitr::kable(x, format="pipe") is useful when you want to copy-and-paste R output from console to other document, e.g., markdown.

```
knitr::kable(mtcars[1:5, 1:5], format = "pipe")
                  mpg cyl disp hp drat
                ----:|---:|----:|---:|
Mazda RX4
               21.0
                        6
                          160 110 3.90
Mazda RX4 Wag
               21.0
                        6
                           160 110 3.90
Datsun 710
               22.8
                        4
                           108 93 3.85
Hornet 4 Drive
               21.4
                        6
                           258 110 3.08
                       8 360 175 3.15
|Hornet Sportabout | 18.7
```

#### 3.10.1 knitr::kable

knitr::kable(x, digits, caption=NULL, escape=TRUE) Create tables in LaTeX, HTML,
Markdown and reStructuredText.

- caption The table caption. In order to number the table, mut specify the caption argument.
- format Possible values are latex, html, pipe (Pandoc's pipe tables), simple (Pandoc's simple tables), rst, and jira.
  - The value of this argument will be automatically determined if the function is called within a **knitr** document.
- digits Maximum number of digits for numeric columns, passed to round().
- col.names Rename columns.
- escape=TRUE Whether to escape special characters when producing HTML or LaTeX tables. Default is TRUE, special characters will either be escaped or substituted. For example, \$ is escaped as \\$, \_ is escaped as \\_, and \ is substituted with \textbackslash{}
  - When set to FALSE, you have to make sure **yourself** that special characters will not trigger syntax errors in LaTeX or HTML.
  - Common special LaTeX characters include #, %, &, {, and }. Common special HTML characters include &, <, >, and ". You need to be cautious when generating tables with escape = FALSE, and make sure you are using the special characters in the right way. It is a very common mistake to use escape = FALSE and include % or \_ in column names or the caption of a LaTeX table without realizing that they are special.
- align Column alignment: a character **vector** consisting of 'l' (left), 'c' (center) and/or 'r' (right).
  - By default or if align = NULL, numeric columns are right-aligned, and other columns are left-aligned.
  - If only one character is provided, that will apply to all columns.
  - If a vector is provided, will map to each individual column specifically.
- Missing values (NA) in the table are displayed as NA by default. If you want to display them with other characters, you can set the option knitr.kable.NA, e.g. options(knitr.kable.NA = '') in the YAML to hide NA values.
- booktabs = TRUE use the booktabs package
  - linesep = "" remove the extra space after every five rows in kable output (with booktabs option)

```
# For Markdown tables, use `pipe` format
> knitr::kable(head(mtcars[, 1:4]), format = "pipe")
                    mpg cyl disp hp
                   ---:|---:|---:|---:|
                               160 110
Mazda RX4
                  21.0
                           61
                  21.0
Mazda RX4 Wag
                           6
                               160 110
Datsun 710
                   22.8
                           4
                               108
                                     93
                                   110
Hornet 4 Drive
                   21.4
                           6
                               258
Hornet Sportabout | 18.7
                           8
                               360 175
                           6 225 105
Valiant
                  18.1
# For Plain tables in txt, `simple` is useful
> knitr::kable(head(mtcars[, 1:4]), format = "simple")
                     mpg cyl disp
```

3.10. TABLES 67

21.0	6	160	110
21.0	6	160	110
22.8	4	108	93
21.4	6	258	110
18.7	8	360	175
18.1	6	225	105
	21.0 22.8 21.4 18.7	21.0 6 22.8 4 21.4 6 18.7 8	21.0       6       160         22.8       4       108         21.4       6       258         18.7       8       360

## 3.10.2 Data frame printing

To show the tibble information (number of row/columns, and group information) along with paged output, we can write a custom function by modifying the print.paged\_df function (which is used internally by rmarkdown for the df\_print feature) and use CSS to nicely format the output.

https://stackoverflow.com/a/76014674/10108921

## Paged df

- https://bookdown.org/yihui/rmarkdown/html-document.html#tab:paged
- https://github.com/rstudio/rmarkdown/issues/1403

```
title: "Use caption with df_print set to page"
date: "2025-05-14"
output:
  bookdown::html_document2:
    df_print: paged
---
```

When the df\_print option is set to paged, tables are printed as HTML tables with support for pagination over rows and columns.

The possible values of the df\_print option for the html\_document format.

Option	Description
default	Call the print.data.frame generic method; console output prefixed by ##;
kable	Use the knitr::kable function; looks nice but with no navigation for rows and columns, neither column
tibble	types. Use the tibble::print.tbl_df function, this provides groups and counts of rows and columns info as if printing a tibble.
paged	Use rmarkdown::paged_table to create a pageable table; paged looks best but slows down compilation significantly;
A custom function	Use the function to create the table

The possible values of the df\_print option for the pdf\_document format: default, kable, tibble, paged, or a custom function.

```
paged print

'``{r echo=TRUE, paged.print=TRUE}
ggplot2::diamonds
```

```
default output

```{r echo=TRUE, paged.print=FALSE}
ggplot2::diamonds

kable output

```{r echo=TRUE}
knitr::kable(ggplot2::diamonds[1:10, ])
```

Note that kable output doesn't provide tibble information.

Available options for paged tables:

Option	Description	
max.print	The number of rows to print.	
rows.print	The number of rows to display.	
cols.print	The number of columns to display.	
cols.min.print	The minimum number of columns to display.	
pages.print	The number of pages to display under page navigation.	
paged.print	When set to FALSE turns off paged tables.	
rownames.print	When set to FALSE turns off row names.	

These options are specified in each chunk like below:

```
```{r cols.print=3, rows.print=3}
mtcars
```

For **pdf\_document**, it is possible to write LaTex code directly.

```
\\ \{ = \latex \}
\\ \begin{\tabular} {\ll}
A & B \\
A & B \\
\\ \end{\tabular}
\\ \end{\tabular}
\]
```

Do not forget the equal sign before latex, i.e., it is =latex instead of latex.

## 3.10.3 Stargazer

stargazer print nice tables in Rmd documents and R scripts:

- Passing a data frame to stargazer package creates a summary statistic table.
- Passing a regression object creates a nice **regression table**.
- Support tables output in multiple formats: text, latex, and html.
  - In R scripts, use type = "text" for a quick view of results.
- stargaer does NOT work with anova table, use pander::pander instead.

## Text table

```
Specify stargazer(type = "text")
```

3.10. TABLES 69

```
```{r descrptive-analysis-text, comment = ''}
apply(data[,-1], 2, get_stat) %>%
    stargazer(type = "text", digits=2)
```
```

The text output looks like the following.

```
_____
             Dependent variable:
            -----
                delta infl
unemp
                  -0.091
                  (0.126)
Constant
                   0.518
                  (0.743)
Observations
                   203
                  0.003
Adjusted R2
                  -0.002
Residual Std. Error 2.833 (df = 201)
F Statistic 0.517 (df = 1; 201)
_____
Note: *p<0.1; **p<0.05; ***p<0.01
```

There is one empty line after each coefficient, to remove the empty lines, specify no.space = TRUE.

The regression table with all empty lines removed:

```
_____
               Dependent variable:
                  delta_infl
-----
unemp
                    -0.091
                    (0.126)
Constant
                    0.518
                    (0.743)
Observations
                     203
R2
                    0.003
                   -0.002
Adjusted R2
Residual Std. Error 2.833 (df = 201)
F Statistic 0.517 (df = 1; 201)
_____
            *p<0.1; **p<0.05; ***p<0.01
```

#### HTML table

Note that you need to specify results="asis" in the chunk options. This option tells knitr to treat verbatim code blocks "as is." Otherwise, instead of your table, you will see the raw html or latex code.

• Note that \*'s do not show properly in html output, see Fig. 3.4, need to specify in the footnote (notes) manually.

Use the following code to display the correct significance symbols. See Fig. 3.5 for the expected output.

# **Phillips Curve Regression**

|                         | Dependent variable:                          |
|-------------------------|----------------------------------------------|
|                         | delta_infl                                   |
| unemp                   | -0.091                                       |
|                         | (0.126)                                      |
| Constant                | 0.518                                        |
|                         | (0.743)                                      |
| Observations            | 203                                          |
| $R^2$                   | 0.003                                        |
| Adjusted R <sup>2</sup> | -0.002                                       |
| Residual Std. Error     | 2.833 (df = 201)                             |
| F Statistic             | 0.517 (df = 1; 201)                          |
| Note:                   | <i>p&lt;0.1; <b>p&lt;0.05</b>; p&lt;0.01</i> |
|                         | Standard errors in parentheses.              |
|                         |                                              |

Figure 3.4: Failed to show significance codes.

3.10. TABLES 71

# Phillips Curve Regression

|                         | Dependent variable:                          |
|-------------------------|----------------------------------------------|
|                         | delta_infl                                   |
| unemp                   | -0.091                                       |
|                         | (0.126)                                      |
| Constant                | 0.518                                        |
|                         | (0.743)                                      |
| Observations            | 203                                          |
| $R^2$                   | 0.003                                        |
| Adjusted R <sup>2</sup> | -0.002                                       |
| Residual Std. Error     | 2.833 (df = 201)                             |
| F Statistic             | 0.517 (df = 1; 201)                          |
| Note:                   | <i>p&lt;0.1; <b>p&lt;0.05;</b> p&lt;0.01</i> |
|                         | Standard errors in parentheses.              |

Figure 3.5: Correct significance codes.

## Common arguments:

- type specify output table format. Possible values: latex (default for latex code), html, and text. Need to specify to html in html outputs.
- digits an integer that indicates how many decimal places should be used. A value of NULL indicates that no rounding should be done at all, and that all available decimal places should be reported. Defaults to 3 digits.
- notes a character vector containing notes to be included below the table.
- notes.append = FALSE a logical value that indicates whether notes should be appended
  to the existing standard note(s) associated with the table's style (typically an explanation
  of significance cutoffs).
  - Defaults to TRUE.
  - If the argument's value is set to FALSE, the character strings provided in notes will replace any existing/default notes.
- notes.align "1" for left alignment, "r" for right alignment, and "c" for centering. This argument is not case-sensitive.

- single.row = TRUE to put coefficients and standard errors on same line
- no.space = TRUE to remove the spaces after each line of coefficients
- font.size = "small" to make font size smaller
- column.labels a character vector of labels for columns in regression tables.
   This is useful to denote different regressions, informing the name/nature of the model, instead of using numers to identify them.
- column.separate a numeric vector that specifies how column.labels should be laid out across regression table columns. A value of c(2, 1, 3), for instance, will apply the first label to the two first columns, the second label to the third column, and the third label will apply to the following three columns (i.e., columns number four, five and six).
- dep.var.labels labels for dependent variables
- covariate.labels labels for covariates in the regression tables.
   Can provide latex symbols in the labels, need to escape special symbols though.

• add.lines add a row(s), such as reporting fixed effects.

Add a blank line under the stargazer table: with a blank line above and below.

## Cross reference stargazer tables.

In pdf output, use Table \@ref(tab:reg-table) or Table \ref{tab:reg-table}.

- header=FALSE is to suppress the % Table created by stargazer header. This applies to only latex tables.
- label="tab:reg-table" is to specify the cross reference label for the table.
- table.placement = "H" set float to H to fix positions. Places the float at precisely
  the location in the code. This requires the float LaTeX package. Remember to load
  it in the YAML.
  - \* Defaults to "!htbp".

The htbp controls where the table or figure is placed. Tables and figures do not need to go where you put them in the text. LATEX moves them around to prevent large areas of white space from appearing in your paper. h (Here): Place the float here, i.e., *approximately* at the same point it occurs in the source text (however,

3.10. TABLES 73

*not exactly* at the spot) t (Top): Place the table at the top of the *current* page b (Bottom): Place the table at the *bottom* of the current page. p (Page): Place the table at the top of the *next* page. !: Override internal parameters LaTeX uses for determining "good" float positions.

- align = FALSE a logical value indicating whether numeric values in the same column should be aligned at the decimal mark in LaTeX output.
- In html output, cross references to stargazer tables are not so straightforward.

label option in stargazer does not work. Cannot use chunk labels either.

```
```{r fit-age, echo=FALSE, results='asis', fig.cap="Logistic regression of CHD on age."}
# Use title caption from fig.cap
tit <- knitr::opts_current$get("fig.cap")</pre>
# Adding caption for html output
tit_html <- paste0('<span id="tab:',</pre>
                   knitr::opts_current$get("label"),
                    '">(#tab:',
                   knitr::opts_current$get("label"),
                    ')</span>',
                   tit)
stargazer::stargazer(fit.age,
          label = paste0("tab:", knitr::opts_current$get("label")),
          title = ifelse(knitr::is_latex_output(), tit, tit_html),
          type = ifelse(knitr::is_latex_output(), "latex", "html"),
          notes = "<span>&#42;</span>: p<0.1; <span>&#42;&#42;</span>: <strong>p<0.05</strong>
          notes.append = F,
          header = F
          )
. . .
Here is another reference to stargazer Table \@ref(tab:fit-age).
```

Don't change things unless it is absolutely necessary. Run the code chunk before compiling the whole website. It gets slowly as the website gets larger.

stargazer::stargazer() the :: is necessary, and header=F is necessary and should be place at the end, otherwise will have errors as follows.

```
Error in `.stargazer.wrap()`:
! argument is missing, with no default
Backtrace:
1. stargazer::stargazer(...)
2. stargazer::.stargazer.wrap(...)
Execution halted

Exited with status 1.
```

Another example if you don't need to add footnotes.

74 CHAPTER 3. RMD

### **Alignment of Stargazer Tables**

- In PDF, the tables will be in the center by default.
- However, when working with HTML output, you need to add CSS styling to adjust the table.

### References:

• https://libguides.princeton.edu/c.php?g=1326286&p=9763596#s-lg-box-wrapper-36305037

### 3.10.4 kableExtra

The **kableExtra** package is designed to extend the basic functionality of tables produced using knitr::kable().

kableExtra::kable\_styling(bootstrap\_options = c("striped", "hover"), full\_width
= FALSE)

- bootstrap\_options A character vector for bootstrap table options. Please see package vignette or visit the w3schools' Bootstrap Page for more information. Possible options include basic, striped, bordered, hover, condensed, responsive and none.
  - striped alternating row colors
  - hover Use the :hover selector on tr (table row) to highlight table rows on mouse over.
- full\_width A TRUE or FALSE variable controlling whether the HTML table should have 100% the preferable format for full\_width. If not specified,
  - TRUE for a HTML table, will have full width by default but
  - this option will be set to FALSE for a LaTeX table.
- latex\_options A character vector for LaTeX table options, i.e., won't have effecs on html tables.

Possible options:

Arguments	Meanings
striped	Add alternative row colors to the table. It will imports LaTeX package xcolor if enabled.
scale_down	useful for super <b>wide</b> table. It will automatically adjust the table to fit the page width.
repeat_header	only meaningful in a <b>long</b> table environment. It will let the header row repeat on every page in that long table.
hold_position	"hold" the floating table to the exact position. It is useful when the LaTeX table is contained in a table environment after you specified captions in kable(). It will force the table to stay in the position where it was created in the document.

3.10. TABLES 75

Arguments	Meanings
HOLD_position	A stronger version of hold_position. Requires the float package and specifies [H].

Rows and columns can be grouped via the functions pack\_rows() and add\_header\_above(), respectively.

scroll\_box(width = "100%", height = "500px") let you create a fixed height table while
making it scrollable. This function only works for html long tables.

```
# commonly used settings
table %>%
    knitr::kable(digits = 5) %>%
    kable_styling(bootstrap_options = c("striped", "hover"), full_width = FALSE, latex_options="so
    scroll_box(width = "100%", height = "500px")
# escape=TRUE, this makes your life easier, will output the table exactly as it is
result <- read_csv("~/Documents/GDP/data/reg_result/IFE_result.csv")</pre>
result %>%
  knitr::kable(digits = 5, escape=T) %>%
 kable_styling(bootstrap_options = c("striped", "hover"), full_width = FALSE, latex_options="scale")
# escape=FALSE, have to specify escape by replace `*` to `\\\\*`
result <- read_csv("~/Documents/GDP/data/reg_result/IFE_result.csv")</pre>
result <- result %>%
  mutate(pval.symbol = gsub("[*]", "\\\\*", pval.symbol) )
result %>%
  knitr::kable(digits = 5, escape=FALSE) %>%
  kable styling(bootstrap options = c("striped", "hover"), full width = FALSE, latex options="scale")
```

### tables in pdf output

```
reg_data %>%
    select(Date, adjusted, eRi, rmrf) %>%
    head(10) %>%
    knitr::kable(digits = c(0,2,4,4), escape=T, format = "latex", booktabs = TRUE, linesep = "" )
    kable_styling(latex_options = c("striped"), full_width = FALSE, stripe_color = "gray!15")
```

knitr::kable() arguments

- format = "latex" specifies the output format.
- align = "1" specifies column alignment.
- booktabs = TRUE is generally recommended for formatting LaTeX tables.
- linesep = "" prevents default behavior of extra space every five rows.

kableExtra::kable\_styling() arguments

- position = "left" places table on left hand side of page.
- latex\_options = c("striped", "repeat\_header") implements table striping with repeated headers for tables that span multiple pages.
- stripe\_color = "gray!15" species the stripe color using LaTeX color specification from the xcolor package this specifies a mix of 15% gray and 85% white.

76 CHAPTER 3. RMD

linebreak(x, align = "l", double\_escape = F, linebreaker = "\n") Make linebreak
in LaTeX Table cells.

• align="1" Choose from "l", "c" or "r". Defaults to "l".

### Customize the looks for columns/rows

kableExtra::column\_spec(kable\_input) this function allows users to select a column and then specify its look.

row\_spec() works similar with column\_spec() but defines specifications for rows.

- For the position of the target row, you don't need to count in header rows or the group labeling rows.
- row\_spec(row = 0, align='c') specify format of the header row. Here I want to center align headers.

### Add header rows to group columns

add\_header\_above(). The header variable is supposed to be a named character with the names as new column names and values as column span. For your convenience, if column span equals to 1, you can ignore the =1 part so the function below can be written as add\_header\_above(c("", "Group 1" = 2, "Group 2" = 2, "Group 3" = 2)).

```
kbl(dt) %>%
  kable_classic() %>%
  add_header_above(c(" " = 1, "Group 1" = 2, "Group 2" = 2, "Group 3" = 2))
```

You can add another row of header on top.

### **Group rows**

collapse\_rows will put repeating cells in columns into multi-row cells. The vertical alignment of the cell is controlled by valign with default as "top".

Not working for html output.

Empty string as column name in tibble: use setNames or attr

footnote() add footnotes to tables. There are four notation systems in footnote, namely general (no prefix for footnotes), number, alphabet and symbol.

\_\_\_\_\_

### Math in rmd tables

knitr::kable(x, escape=TRUE)

- escape=TRUE whether to escape special characters when producing HTML or LaTeX tables.
  - Defaults to TRUE.
  - When escape = FALSE, you have to make sure that special characters will not trigger syntax errors in LaTeX or HTML.

You need to escape \ passed into R code.

It is possible to edit Latex table directly in Rmd.

- Don't enclose in \$\$.
- Use \begin{table} and start your table data.

# 3.11 Rmd GitHub Pages

The **rmarkdown** package had provided a simple site generator that did not rely on a third-party site generator like Hugo. If you feel Hugo is too complex for you, and you only want to build a few Rmd documents into a website, this built-in site generator may be a good choice.

\_\_\_\_

### Stage-commit-push many files

- 1. Use the Terminal  $\mathtt{git}$  add . to "stage" all the files that I want to commit as that's quicker than clicking on all the files often that I want to commit.
- 2. Go to RStudio Commit Pending changes icon (the white docs icon with a tick in a Git pane) to write the commit as I find git commit -m "Write your message here" a bit too long!
- 3. Use the Push and Pull buttons in RStudio as that's easier than typing git push or git pull in the terminal.

### **Project structure**

Note that the **minimum requirement for any R Markdown website** is that it have an index.Rmd file and a site.yml file.

- \_site.yml provides the global YAML header for the site
- index.Rmd provides the content for the home page of your website.

If you execute the rmarkdown::render\_site() ("Knit" button behavior) function from within the directory containing the website, the following will occur:

78 CHAPTER 3. RMD



Figure 3.6: Minimal example of a R Markdown website.

- 1. All of the \*.Rmd and \*.md files in the root website directory will be rendered into HTML. Note, however, that Markdown files beginning with \_ are not rendered (this is a convention to designate files that are to be included by top level Rmd documents as child documents).
  - index.Rmd controls the content on your main page.
- 2. The generated HTML files and any supporting files (e.g., CSS and JavaScript) are copied into an output directory ( site by default, on Github Pages the output folder is docs).

The HTML files within the output directory are now ready to deploy as a standalone static website.

## \_site.yml config

\_site.yml is a site configuration file. It provides the global YAML header for the site.

It contains various common elements you want to apply to all pages (e.g., output options, CSS styles, header and footer elements, etc.).

\_site.yml is equivalent to the combination of \_output.yml and \_bookdown.yml in bookdown.

A \_site.yml example:

```
name: "my-website"
output_dir: "docs"
include: ["import.R"]
exclude: ["docs.txt", "*.csv"]
output:
   html_document:
    theme: cosmo
```

```
highlight: textmate
include:
   after_body: footer.html
css: styles.css
```

- name provides a suggested URL path for your website when it is published (by default this is just the name of the directory containing the site).
- output\_dir field indicates which directory to copy site content into.
  - "\_site" is the default if none is specified.
  - It can be "." to keep all content within the root website directory alongside the source code.
- The include and exclude fields enable you to override the default behavior vis-à-vis what files are copied into the output directory.

By default, all files within the website directory are copied into the output directory (e.g. \_site) except for the following:

- 1. Files beginning with "." (hidden files).
- 2. Files beginning with " "
- 3. Files known to contain R source code (e.g. ".R", ".s", ".Rmd"), R data (e.g. ".RData", ".rds"), or configuration data (e.g. "rsconnect" ,"packrat", "renv")).

The include and exclude fields of \_site.yml can be used to override this default behavior (wildcards can be used to specify groups of files to be included or excluded). Note that the include and exclude fields target only top-level files and directories (i.e. a directory is either included or not, you can't exclude a subset of files within a directory).

Note also that include and exclude are *not* used to determine which Rmd files are rendered (all of them in the root directory save for those named with the \_ prefix will be rendered).

• output defines shared output options for all R Markdown documents within a site.

Note that individual documents can also include their own output options, which will be merged with the common options at render time.

```
- include:
    after-body: footer.html
An example of footer.thml:
    Copyright © 2016 Skynet, Inc. All rights reserved.
- style.css is a CSS stylesheet.
blockquote {
    font-style: italic
}
```

## R scripts

If you have R code that you would like to share across multiple R Markdown documents within your site, you can create an R script (e.g., utils.R) and source it within your Rmd files. For example:

```
'``{r}
source("utils.R")
'``
```

80 CHAPTER 3. RMD

You may have common fragments of R Markdown that you want to share across pages within your site. To share Rmd fragments, you should name them with a leading underscore (\_), and then include them within their parent Rmd document using the child chunk option. For example:

• about.Rmd:

```
title: "About This Website"

...

More about this website.

?r, child="_session-info.Rmd"}
```

• \_session-info.Rmd:

```
Session information:

```{r}
sessionInfo()
```

The leading underscore (\_) is an indicator to the site generation engine that the Rmd is a partial document to be included in other documents, so it is not compiled as a standalone document during site rendering.

### index.Rmd

index.Rmd provides the content for the home page of your website.

A parsimonious example of index.Rmd which only includes the website title. This is useful if your home page only includes simple text.

```
title: "Lab Scripts for Course Example Demonstration"
```

A full example of index.Rmd. You may use this when you want to write complex content in your home page.

```
title: "R Notes"
author: "Menghan Yuan"
date: "2025-05-14"
site: rmarkdown::default_site
documentclass: book
bibliography: [book.bib, packages.bib]
biblio-style: apalike
link-citations: yes
description: "This is a minimal example of using
the rmarkdown to write a book."
```

rmarkdown::default\_site() is the default site generation function. It is also possible to define
a custom site generator that has alternate behaviors, e.g., bookdown::bookdown\_site.

Note that index. Rmd in the rmarkdown build-in site generator is different than that of bookdown.

In bookdown sites, you can specify global YAML that will apply to all pages in the website, but in the rmarkdown built-in site generator, each page has its own YAML.

	rmakrdown	bookdown
Site generator function	rmarkdown::default_site()	bookdown::bookdown_site
index.Rmd	home page	First Chapter and YAML that will apply to all pages
Rmd files	More independent; contains YAML of their own;	Start with first-level heading (e.g., # Introduction); do NOT have any YAML;

### References:

https://bookdown.org/yihui/rmarkdown/rmarkdown-site.html#site-generator-function

### Workflow

**Workflow**: Edit your site, **build** it, then push and commit to GitHub to publish your changes online.

To render all of the pages in the website, you use the Build pane, which calls rmark-down::render\_site() to build and then preview the entire site.

As you work on the **individual pages** of your website, you can render them just as you do with conventional standalone R Markdown documents. This is useful when you want to preview a specific page without rendering the whole site, which can be time-consuming.

Two options to render individual pages:

- Using the Knit button just as you do with conventional standalone R Markdown documents.
  - Note that the Knit button will call rmarkdown::render\_site(input = "0100-RStudio.Rmd", output\_format = "all").
  - It will generate the html output in the docs/ directory as specified in site.yml.
  - Knitting an individual page will only render and preview that page, not the other pages in the website.
- Or using the command line rmarkdown::render("0100-RStudio.Rmd").
  - It will generate the html output RStudio.html in the current working directory. You can see it in the Output pane > Files tab. Click the file and choose View in Web Browser.

```
# render the entire site
rmarkdown::render_site()

# render a single file only
rmarkdown::render_site("about.Rmd")
```

To clean up all of the files generated via render\_site(), you can call the clean\_site() function, which will remove all files generated by rendering your site's Markdown documents, including knitr's \*\_cache directories. You can specify the preview = TRUE option to just list the files to be removed rather than actually removing them:

```
# list which files will be removed
rmarkdown::clean_site(preview = TRUE)

# actually remove the files
rmarkdown::clean_site()
```

References:

82 CHAPTER 3. RMD



Figure 3.7: Build an entire website in RStudio.



Figure 3.8: Knit a single page of a website.

https://bookdown.org/yihui/rmarkdown/rmarkdown-site.html#rstudio

# Customize the Knit button

It is possible to control the behavior of the Knit button by providing the knit field within the YAML frontmatter of your document.

The field takes a function with the main argument input (the path to the input Rmd document) and other arguments that are currently ignored. You can either write the source code of the function directly in the knit field, or put the function elsewhere (e.g., in an R package) and call the function in the knit field.

```
knit: |
  (function(input, ...) {
    rmarkdown::render(
        input,
        output_file = paste0(
            xfun::sans_ext(input), '-', Sys.Date(), '.html'
        ),
        envir = globalenv()
      )
})
---
```

### Further readings:

 $\bullet \ https://forum.posit.co/t/changing-default-behavior-of-knit-button/133874$ 

84 CHAPTER 3. RMD

If you want to have the pdf output, you add pdf\_document to your document's YAML after html\_document. This way, your Rmd will supports multiple output format.

- When you click the Knit button of run rmarkdown::render("0100-RStudio.Rmd"), it will use the first output format. You need to specify the output format you want in the second argument, call rmarkdown::render("0100-RStudio.Rmd", 'pdf\_document')
- More options can be passed by:

```
render("0207-Rmd-Table.Rmd",
bookdown::pdf_document2(
    latex_engine = "xelatex",
    keep_tex = TRUE,
    includes = includes(
        in_header = "latex/preamble.tex",
        before_body= "latex/before_body.tex"))
    )
# `output_options` is not compatible with output format function object
```

#### Note:

- Each time you run rmarkdown::render\_site(), the docs/ folder will be overwritten with updated HTML versions of your .Rmds. This means DON'T EVER EDIT FILES IN THE docs/ FOLDER! Nothing catastrophic will happen if you do, but you will overwrite and lose all your changes the next time you knit or render\_site().
- Don't forget to update
  - index.Rmd (home page) and
  - \_site.yml (cross references files include: ["w1.rmd", "w2.rmd"])
    - \* This will copy files into docs so that you can put a downloadable link to them.

### **CSS Style**

```
output:
    html_document:
        theme: cosmo
    # css: style.css # link to external CSS
---

<style type = "text/css">
h2 {
    color: red; /* internal CSS */
}
</style>
## R Markdown
```

When you want to change the style of certain element but don't know where to start, open the html in Chrome, and go to View > Developer > Inspect Element to identify the corresponding elements.

### Refer to your posts using relative links

If you have a Markdown file in your repository at docs/project1.html, and you want to link from that file to docs/another-page.md, you can do so with the following markup:

```
[a relative link](project1.html)
```

When you view the source file on GitHub.com, the relative link will continue to work, but now, when you publish that file using GitHub Pages, the link will be silently translated to docs/another-page.html to match the target page's published URL.

Link to another file

```
[download](w1.rmd)
<a href="w1.rmd">Download File</a>
```

TOC on home page:

- source code: https://github.com/lmullen/rmd-notebook/blob/master/index.Rmd
- webpage: https://lmullen.github.io/rmd-notebook/

### Project website:

- rmarkdown's site generator, *R Markdown: The Definitive Guide*, https://bookdown.org/yihui/rmarkdown/rmarkdown-site.html
- Structure: https://www.storybench.org/convert-google-doc-rmarkdown-publish-github-pages/
- Multi-page website: https://phuston.github.io/patrickandfrantonarethebestninjas/howto
- Blogdown: https://github.com/liuyanguu/Blogdown?tab=readme-ov-file
- Distill: https://rstudio.github.io/distill/website.html
- Bookdown Notes for One Course: https://github.com/bcallaway11/econ\_4750\_notes https://bcallaway11.github.io/econ\_4750\_notes/law-of-iterated-expectations.html#

86 CHAPTER 3. RMD

# **Chapter 4**

# bookdown

**Bookdown** is an extra package for R Markdown that is particularly useful for long documents.

- In HTML format, produces a full website of interlinked pages, one page per chapter
- Other HTML features: contents bar, search, colour schemes, font size adjustment, etc
- Adds LaTeX-like theorem/definition/proof environments

"Plain" R Markdown	R Markdown with Bookdown	
Good for short documents, single HTML page PDF or accessible HTML LaTeX equations	Good for long documents, multi-page website PDF or accessible HTML LaTeX equations	
No theorem environments	Theorem environments	

We can reference chunks (tables and figures), sections, and equations in bookdown output formats

- bookdown extends Pandoc
- Examples of bookdown formats are bookdown::pdf\_document2 or bookdown::html\_document2.
- Refer to
  - Figure \@ref(fig:chunk-name)
  - Table \@ref(tab:chunk-name)
  - Section \@ref(my-section)

## Examples of chunks:

```
fr chunk-name}
plot(cars)

See Figure \@ref{fig:chunk-name}.

# Section {#my-section}

Refer to Section \@ref{my-section}
```

## Create a bookdown project:

File  $\square$  New Project  $\square$  New Directory  $\square$  Book project using bookdown  $\square$  Create Project Bookdown cookbook: https://rstudio4edu.github.io/rstudio4edu-book/book-dress.html

### Deployment and Hosting bookdown on GitHub Pages

Ref: Authoring Books with R Markdown, https://bookdown.org/yihui/bookdown/github.html

- 1. Initialize your local git repository and link to the remote GitHub repo.
- 2. Go to your \_bookdown.yml file and add output\_dir: "docs" on a line by itself
- 3. Serve/preview your book locally

Now the website output files should be in /docs.

Create a .nojekyll in /docs that tells GitHub that your website is not to be built via Jekyll.

touch .nojekyll

- 4. Push your changes to GitHub remote
- 5. Configure publishing source for GH pages as main branch /docs folder

Go to your GH remote repo, click Settings [] click Pages in the left column [] under GitHub Pages, change the "Source" to be "main branch /docs folder".

# 4.1 bookdown project structure

Below shows the basic structure of a default bookdown project:

```
directory/
— index.Rmd
— 01-intro.Rmd
— 02-literature.Rmd
— 03-method.Rmd
— 04-application.Rmd
— 05-summary.Rmd
— 06-references.Rmd
— _bookdown.yml
— _output.yml
— book.bib
— preamble.tex
— README.md
_ style.css
```

As a summary of these files:

- index.Rmd: This is the only Rmd document to contain a YAML frontmatter, and is the first book chapter.
- Rmd files: A typical bookdown book contains multiple chapters, and each chapter lives in one separate Rmd file.
- \_bookdown.yml: A configuration file for bookdown.
- \_output.yml: It specifies the formatting of the HTML, LaTeX/PDF, and e-books.
- preamble.tex and style.css: They can be used to adjust the appearance and styles of the book output document(s). Knowledge of LaTeX and/or CSS is required.

These files are explained in greater detail in the following subsections.

### \_output.yml

**\_output.yml** Output formats can be specified either in the YAML metadata of the first Rmd file of the book, or in a separate YAML file named \_output.yml under the root directory of the book. See Section 12.4 in *R Markdown: The Definitive Guide* for a complete list of bookdown output formats. A quick takeaway is that bookdown supports both book types and single documents.

### Common uses of \_output.yml:

- Add an edit link, e.g., https://github.com/my1396/R-Notes/edit/main/%s
   This will configure which remote repo to link to and hence allow the page to be downloadable as an .Rmd. Also need to specify download: ["rmd"].
- Link to your GitHub in the toolbar (also need index.Rmd)
- · Add other sharing links
- Header and footer of your TOC
- · Collapse the TOC by (sub)section
- Code highlighting

Here is a brief example of \_output.yml:

```
bookdown::gitbook:
  css: style.css
 highlight: tango
 split_by: section
  includes:
    in_header: head.html
  config:
    fontsettings:
     theme: sky
    toc:
      collapse: section+number
     before:
        <a href="./">R Notes</a>
        <a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown
   toc_depth: 3
    edit:
        link: https://github.com/my1396/R-Notes/edit/main/%s
    sharing:
        github: yes
    download: ["pdf", "epub", "rmd"]
    enableEmoji: true
bookdown::pdf_book:
 includes:
    in_header: preamble.tex
  latex_engine: xelatex
 citation_package: natbib
  keep_tex: yes
bookdown::epub_book: default
```

You do NOT need the three dashes --- in \_output.yml. In this case, all formats should be at the top level, instead of under an output field in individual Rmds.

- split\_by= c("chapter", "chapter+number", "section", "section+number", "rmd", "none") defaults to chapter, which splits the file by the first-level headers.
  - section splits the file by the second-level headers.
  - chapter+number and section+number: the chapter/section numbers will be

prepended to the HTML filenames. For example: if using chapter or section, the HTML file names will be introduction.html, literature.html, etc.; but with the numbering setting, the HTML file names will be 1-introduction.html, 2-literature.html, etc.

- I prefer section+number as it orders all html in the book's section order.
- The includes option allows you to insert arbitrary custom content before and/or after the body of the output.

It has three sub-options: in\_header, before\_body, and after\_body. You need to know the basic structure of an HTML or LaTeX document to understand these options.

- The source of an HTML document looks like this:

```
<html>
<head>
<!-- head content here, e.g. CSS and JS -->
</head>

<body>
<!-- body content here -->
</body>
</html>
```

The in\_header option takes a file path and inserts it into the <head> tag. The before\_body file will be inserted right below the opening <body> tag, and after\_body is inserted before the closing tag </body>.

- A LaTeX source document has a similar structure:

```
\documentclass{book}

% LaTeX preamble
% insert in_header here

\begin{document}
% insert before_body here

% body content here

% insert after_body here
\end{document}
```

- You can add a \*\*table of contents\* using the toc option and specify the depth of headers that it applies to using the toc\_depth option.
  - If the TOC depth defaults to 3 in html document.
  - For pdf\_document, if the TOC depth is not explicitly specified, it defaults to 2 (meaning that all level 1 and 2 headers will be included in the TOC).

```
bookdown::gitbook:
    toc:
        collapse: subsection
    toc_depth: 3
```

collapse specifies a level to expand to by default, aka at #, ##, or ###.

I suggest ollapsing at level 2. This way, you get a good overview of what each major topic (level 1 heading) includes, without showing the most detailed items.

- collapse: subsection: At startup, the toc will collapse at the level 2 headings. As

you go to one specific subsection, the content inside will expand. You can see level 3 headings.  $\square$ 

 collapse: section: At startup, the toc will collapse at the level 1 headings, which keeps the appearance concise. However, a side effect is that level 3 headings will never be displaied when navigating to a specific level 2 heading.

bookdown 中文书籍 \_output.yml 范例: https://github.com/yihui/bookdown-chinese/blob/96d526572f0c6648d06c2d4bebf57c5fb4eafce3/ output.yml

• You can set up a tex template.

Yihui sets up the Chinese support in the template file (latex/template.tex).

```
bookdown::pdf_book:
   includes:
    in_header: latex/preamble.tex
    before_body: latex/before_body.tex
    after_body: latex/after_body.tex
keep_tex: yes
dev: "cairo_pdf"
latex_engine: xelatex
citation_package: natbib
template: latex/template.tex
```

The base format for bookdown::pdf\_book is rmarkdown::pdf\_document.

dev: Graphics device to use for figure output, defaults to pdf.

## \_bookdown.yml

**bookdown.yml** allows you to specify optional settings to build the book. For example:

- Change themes
- Change the chapter name
- · Change chapter order
- Set new\_session: yes
- Set output\_dir: docs

```
delete_merged_file: true
output_dir: "docs"
new_session: yes
language:
    ui:
        chapter_name: "Chapter "
```

Note that you don't need to manually create the docs folder, bookdown will create one if it doesn't exists.

- delete\_merged\_file: whether to delete the main Rmd file after the book is successfully rendered. An Rmd file that is merged from all chapters; by default, it is named \_main.Rmd.
- before\_chapter\_script: one or multiple R scripts to be executed before each chapter.
- After you serve your site locally, all supporting files will be output to docs. Be sure to add one .nojekyll file in docs to tell GitHub that your website is not to be built via Jekyll.
- Because bookdown only overwrites existing files and does not delete unused ones, you can simply delete the docs folder so that bookdown will recreate everything necessary without any redundancy.

Remember to recreate .nojekyll too after bookdown has created the new docs.

### index.Rmd

**index.Rmd** homepage of your website. Contains the first chapter and the YAML metadata which will be applied to all other Rmd pages. See Chapter 2.2 in *R Markdown: The Definitive Guide* for YAML details.

Note that index.Rmd is the only Rmd document to contain a YAML frontmatter.

Common uses of index.Rmd's YAML frontmatter:

- Book cover, title, author, date, and description
- · Add bibliography
- Link to your GitHub in the toolbar (also need \_output.yml)
- · Add a favicon

Add the following line to index.Rmd YAML:

```
favicon: "images/r-project-favicon.ico"
```

Issue: Favicon shows ok on Chrome but couldn't display on Safari. Same issue reported in Stack Overflow.

Fix: There is a delay for Safari to show Favicon. Wait for two hours and the issue resolves itself...

### An example of index.Rmd

```
title: "A Minimal bookdown Project"
site: bookdown::bookdown site
documentclass: book
bibliography: [book.bib, packages.bib]
csl: chicago-fullnote-bibliography.csl
github-repo: my1396/R-Notes
favicon: "images/r-project-favicon.ico"
# typesetting for LaTeX output
papersize: a4 # The printed size of the thesis
geometry:
  - top=25.4mm
  - bottom=25.4mm
  - Left=25.4mm
  - right=38.1mm
 # - bindingoffset=6.4mm # removes a specified space from the inner-side for twoside.
 # - asymmetric # disable alternating margins on odd/even pages
classoption:

    twoside

  - openright
# Preface
Some content
```

• site: bookdown::bookdown\_site tells rmarkdown to use bookdown to build all Rmd files, instead of rendering a single Rmd file.

### .Rmd files

- Chapters (also sections) are based on separate Rmd files.
- Besides index.Rmd, other R Markdown files will make up the chapters of your book. By default, bookdown merges all Rmd files by the order of filenames, e.g., 01-intro.Rmd will appear before 02-literature.Rmd.
- The Rmd files must start immediately with the chapter title using the first-level heading, e.g., # Chapter Title. Note that YAML metadata should NOT be included in these Rmd files, as it is inherited from the index.Rmd file.

#### 01-intro.Rmd

### # Introduction

This chapter is an overview of the methods that we propose to solve an \*\*important problem\*\*.

02-literature.Rmd

## # Literature

Here is a review of existing methods.

# 4.2 Rendering bookdown

Two approaches:

- "Merge and Knit" (M-K): default; runs *all* code chunks in all chapters; the state of the R session from previous chapters is carried over to later chapters (e.g., objects created in previous chapters are available to later chapters, unless you deliberately deleted them)
- "Knit and Merge" (K-M): separate R sessions for individual chapters; all chapters are isolated from each other.

### Other differences:

- Because knitr does not allow duplicate chunk labels in a source document, you need to
  make sure there are no duplicate labels in your book chapters when you use the M-K approach, otherwise knitr will signal an error when knitting the merged Rmd file. Note that
  this means there must not be duplicate labels throughout the whole book.
  - The K-M approach only requires no duplicate labels within any single Rmd file.
- K-M does not allow Rmd files to be in subdirectories, but M-K does.

To switch to K-M, you either use the argument new\_session = TRUE when calling render\_book(), or set new\_session: yes in the configuration file \_bookdown.yml.

Everytime you make changes to individual Rmd files or to CSS style files, you can knit the single page using rmarkdown::render("0100-RStudio.Rmd") or the Knit button in the source editor. The change will be reflected to your website.

• This is faster than Build the website.

**Creating Websites with R Markdown**: https://bookdown.org/yihui/blogdown/global-options.html

Q: What's the difference between Bookdown and Blogdown?

A: Bookdown is for books, grouped in chapters; Blogdown is for blogs, ordered by dates.

### Control long outputs by using hooks

- 1. Put the following functions to the set up code chunk.
- 2. Then you could use the option max.lines = 10 whenever you want to set a limit to the maximum output length to print.

```
## control long outputs by using eg `max.lines = 10`
hook output default <- knitr::knit hooks$get('output')
truncate to lines <- function(x, n) {
   if (!is.null(n)) {
      x = unlist(stringr::str_split(x, '\n'))
      if (length(x) > n) {
         # truncate the output
         x = c(head(x, n), '... \setminus n')
      x = paste(x, collapse = '\n') # paste first n lines together
   }
   Х
knitr::knit_hooks$set(output = function(x, options) {
   max.lines <- options$max.lines</pre>
   x <- truncate_to_lines(x, max.lines)</pre>
   hook_output_default(x, options)
})
```

**Issue**: In RStudio dark mode, kableExtra tables are invisible in the code block output preview because both the font and background are white, making the content unreadable.

Fix: Force the font color to be black.

First run this edited version of kableExtra:::print.kableExtra():

```
print.kableExtra <- function (x, ...) {</pre>
  view_html <- getOption("kableExtra_view_html", TRUE)</pre>
  if (view_html & interactive()) {
    dep <- list(</pre>
      rmarkdown::html_dependency_jquery(),
      rmarkdown::html_dependency_bootstrap(theme = "cosmo"),
      kableExtra::html_dependency_kePrint(),
      kableExtra::html_dependency_lightable()
    )
    x <- sub('style="', 'style="color: black; ', as.character(x), fixed = TRUE)
    html_kable <- htmltools::browsable(</pre>
      htmltools::HTML(
        as.character(x),
        "<script type=\"text/x-mathjax-config\">MathJax.Hub.Config({tex2jax: {inlineMath: [
      )
    htmltools::htmlDependencies(html_kable) <- dep</pre>
    class(html_kable) <- "shiny.tag.list"</pre>
    print(html_kable)
  }
  else {
    cat(as.character(x))
  }
}
```

The changes consisted of adding the  $x \leftarrow sub('style="', 'style="color: black; ', as.character(x), fixed = TRUE) line and also adding full references to some of the functions.$ 

Then you can print the table as before, the table font color will be forced to be black, and hence visible.

```
library(tidyverse)
head(iris) %>%
  knitr::kable(caption = "**Table 1.** Iris data. ", digits = 2) %>%
  kableExtra::kable_styling()
```

# 4.3 Toggle Visibility of Solutions

When the bookdown file loads, you would like all the solutions to be hidden. You would like a button for each solution to toggle its visibility.

Easy solution: this works but cannot show math equations properly.  $\square$ 

• Advantage is that it does not need to define any java function.

### **Ultimate solution!**

Able to show math equations properly □

1. Put the following codes in the Rmd header. This defines the button action myFunction.

```
    function myFunction(id) {
       var x = document.getElementById(id);
       if (x.style.display === "none") {
            x.style.display = "block";
       } else {
            x.style.display = "none";
       }
    }
    </script>
```

In case of bookdown, put the JavaScript in script.hhml, which will be loaded into the header of all your html files via \_output.yml.

```
bookdown::gitbook:
    css: assets/styling/style.css
    includes:
        in_header: assets/styling/head.html
        after_body: assets/styling/scripts.html
# ...
```

- 2. When you want to create a solution division, use the following codes.
  - Change the function argument myDIV, which is the id of the element. id must be unique in one file.
  - Change the text shown on the button (Solution1) if you need.
  - Put your solution inside the <div id=myDIV> tag, where id is what you specified in the function argument.

```
```{example, ex1}
Let Y=g(X)=\mu x where \sin x where \sin x. Representing the CDF of x using F_X(x).
<button onclick="myFunction('myDIV')">Solution1</button>
<div id="myDIV" style="display: none; color: blue;">
 p(\text{A wins or B wins}) = p \leq {\text{A wins}} \ \
 solution1
</div>
```{example, ex2}
Let X\times N(0,1) and Y=\mu\times X. Calculate \mathcal Y=\mu\times X.
<button onclick="myFunction('myDIV2')">Solution2</button>
<div id="myDIV2" style="display: none; color: blue;">
 p(\text{A wins or B wins}) = p \leq {\text{A wins}}  \cos {\text{A wins}}  \cos {\text{A wins}} 
 solution2
</div>
blabla ...
blabla ...
```

**Example 4.1.** Let  $Y = g(X) = \mu + \sigma X$  where  $\sigma > 0$ . Representing the CDF of Y using  $F_X(x)$ .

Solution

Note that g(x) is strictly increasing in x. The inverse function is

$$X=g^{-1}(Y)=\frac{Y-\mu}{\sigma}$$

and so

$$F_Y(y) = F_X\left(g^{-1}(y)\right) = F_X\left(\frac{y-\mu}{\sigma}\right)$$

### References:

- https://stackoverflow.com/questions/62549757/toggle-show-hide-element-where-default-on-refresh-is-hide
- https://naras.su.domains/post/toggle-visibility-of-solutions-in-bookdown/

# Chapter 5

# Basic R

### Get help

• CRAN: https://cran.r-project.org

Save & Load R objects

```
save(..., f_name) and saveRDS()
```

save() When loaded the named object is restored to the current environment (in general use this is the global environment — the workspace) with the same name it had when saved.

save writes an external representation of R objects to the specified file. The objects can be read back from the file at a later date by using the function load or attach (or data in some cases).

- ... The names of the objects to be saved (as symbols or character strings).
- list A character vector containing the names of objects to be saved.
  - The names of the objects specified **either** as symbols (or character strings) in ... or as a character **vector** in list are used to look up the objects from environment **envir**.
- file the name of the file where the data will be saved.

saveRDS() doesn't save the both the object and its name it just saves a representation of the object. As a result, the saved object can be loaded into a named object within R that is different from the name it had when originally serialized.

Serialization is the process of converting a data structure or object state into a format that can be stored (for example, in a file or memory buffer, or transmitted across a network connection link) and "resurrected" later in the same or another computer environment.

saveRDS works only for saving a single R object, save() can save multiple R objects in one file. A workaround for saveRDS is to save all target objects in a single R object (e.g., in a **list**), and then use saveRDS() to save it at once.

```
datalist = list(mtcars = mtcars, pressure=pressure)
saveRDS(datalist, "twodatasets.RDS")
rm(list=ls())

datalist = readRDS("twodatasets.RDS")
datalist
```

98 CHAPTER 5. BASIC R

### Load R objects

load(f\_name) to load .rda file.
readRDS(f\_name) to load .rds file.

Naming conventions:

- rda and rds for selected objects
- .RData for all objectes in your workspace
- The file extensions are up to you; you can use whatever file extensions you want.

An example

```
> require(mgcv)
Loading required package: mgcv
This is mgcv 1.7-13. For overview type 'help("mgcv-package")'.
> mod <- gam(Ozone ~ s(Wind), data = airquality, method = "REML")</pre>
> mod
Family: gaussian
Link function: identity
Formula:
Ozone ~ s(Wind)
Estimated degrees of freedom:
3.529 \text{ total} = 4.529002
REML score: 529.4881
> save(mod, file = "mymodel.rda")
> 1s()
[1] "mod"
> load(file = "mymodel.rda")
> 1s()
[1] "mod"
> 1s()
[1] "mod"
> saveRDS(mod, "mymodel.rds")
> mod2 <- readRDS("mymodel.rds")</pre>
> 1s()
[1] "mod" "mod2"
> identical(mod, mod2, ignore.environment = TRUE)
[1] TRUE
```

### Save figures in a list

```
p_list <- list(p_ano=p_ano, p_tr=p_tr)
# p_list[[name]] <- p_obj
p_list[[1]]

f_name <- paste0(fig_dir, sprintf("trend_analysis/image_list_%s.rds", con_name))
# saveRDS(p_list, f_name)</pre>
```

```
# plot in a panel grid
p_allCON <- plot_grid(plotlist=p_list, align="vh", labels=sprintf("(%s)", letters[1:length(p_list)
p_allCON</pre>
```

# 5.1 Data Input & Output

### 5.1.1 Read Data

### **Read Fortran**

```
read.fortran(file, format, ..., as.is = TRUE, colClasses = NA)
```

• format Character vector or list of vectors.

### Read dta

haven::read dta() read Stata data file.

### Read fixed width text files

```
read.fwf(file, widths)
```

• widths integer vector, giving the widths of the fixed-width fields (of one line), or list of integer vectors giving widths for multiline records.

read.table(f\_name, header=FALSE, row.names, col.names, sep="", na.strings =
"NA") a very versatile function. Can be used to read .csv or .txt files.

- f\_name path to data.
- header=FALSE defaults to FALSE, assumes there is no header row in the file unless specified otherwise.
  - If there is a header in the first row, should specify header=TRUE.
- row.names a vector of row names. This can be
  - a vector giving the actual row names, or
  - a single number giving the column of the table which contains the row names, or
  - *character string* giving the name of the table column containing the row names.
- col.names a vector of optional names for the variables. The default is to use "V" followed by the column number.
- sep use white space as delimiter.
  - if it is a csv file, use sep=',' to specify comma as delimiter
- na.strings = "NA" a character vector of strings which are to be interpreted as NA values.

```
- A useful setting: na.strings = c("", "NA", "NULL")
```

```
read.csv(f_name, header = TRUE, sep = ",", na.strings = "..", dec=".")
```

100 CHAPTER 5. BASIC R

- header = TRUE whether the file contains the names of the variables as its first line.
- sep the field separator string. Values within each row of x are separated by this string.
- na the string to use for missing values in the data.
- dec the string to use for decimal points in numeric or complex columns: must be a single character.
- fileEncoding UTF-8

When reading data from github, you need to pass in the raw version of the data in read.csv(), R cannot read the display version.

You can get the URL for the raw version by clicking on the Raw button displayed above the data.

read.table(filename, header=FALSE, sep="") is more versatile than read.csv. Useful when you have a data file saved as txt. Default separator is "white space" for read.table, i.e., one or more spaces, tabs, newlines or carriage returns.

```
# read.table can be used to read txt and csv. Need to specify sep=',' when reading csv.
data <- read.table("https://raw.githubusercontent.com/my1396/course_dataset/refs/heads/mair
data

data <- read.table("https://raw.githubusercontent.com/my1396/course_dataset/refs/heads/mair
# Alternatively, can use read_csv or read.csv directly
data <- read_csv("https://raw.githubusercontent.com/my1396/course_dataset/refs/heads/main/bdata</pre>
```

read\_delim(f\_name, delim=";") allows you to specify the delimeter as ;.

readr::read\_csv(f\_name, na = c("..", NA, ""), locale = locale(encoding = "UTF8"), col\_types = cols(Date = col\_date(format = "%m/%d/%y")) ) read comma separated
values.

- col\_types specify column types. Could be created by list() or cols().
   read\_csv will automatically guess, if you don't explicitly specify column types. You can override column types by providing the argument col\_types. You don't need to provide all column types, just the ones you want to override.
- By default, reading a file without a column specification will print a message showing what readr guessed they were. To remove this message,
  - set show\_col\_types = FALSE for one time setting, or
  - set options(readr.show\_col\_types = FALSE) for the current sessions' global
     options setting. If want to change permanently everytime when R starts, put
     options(readr.show\_col\_types = FALSE) in .Rprofile as global options.

read\_tsv() read tab separated values.

 $read_csv2(f_name, na = c("..", NA, ""))$  use semicolon; to separate values; and use comma, for the decimal point. This is common in some European countries.

- locale The locale controls defaults that vary from place to place. The default locale is UScentric (like R), but you can use locale() to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.
- locale(date\_names = "en", date\_format = "%AD", time\_format = "%AT", decimal\_mark = ".", grouping\_mark = ",", tz = "UTC", encoding = "UTF-8", asciify = FALSE)
  - decimal mark indicate the decimal place, can only be, or.
  - encoding This only affects how the file is read readr always converts the output to UTF-8.

\_\_\_\_

### 5.1.2 Write Data

Save data in uft8 encoding with special language characters

write\_excel\_csv() include a UTF-8 Byte order mark which indicates to Excel the csv is UTF-8
encoded.

```
write.csv(x, f_name, row.names=TRUE, fileEncoding ="UTF-8")
```

• x a matrix or data frame. If not one of the types, it is attempted to coerce x to a data frame.

- write csv(x) x can only be data frame or tibble. Doesn't support matrix.

```
mat %>% as_tibble(rownames = "rowname") %>% write_csv("mat.csv")
mat %>% write.csv("mat.csv")
```

• row.names whether to write row names of x. Defaults to TRUE.

### 5.1.2.1 flextable

flextable package create tables for reporting and publications.

The main function is flextable which takes a data.frame as argument and returns a flextable. If you are using RStudio or another R GUI, the table will be displayed in the Viewer panel or in your default browser.

The package provides a set of functions to easily create some tables from others objects.

The as\_flextable() function is used to transform specific objects into flextable objects. For example, you can transform a crosstab produced with the 'tables' package into a flextable which can then be formatted, annotated or augmented with footnotes.

102 CHAPTER 5. BASIC R

# Chapter 6

# Regression

```
library(tidyverse)
reg_data <- read_csv("https://raw.githubusercontent.com/my1396/course_dataset/refs/heads/main/MET/
reg_data <- reg_data %>%
    mutate(return = adjusted/lag(adjusted)-1,
          eRi = return-RF)
## CAPM
capm_ml <- lm(eRi~rmrf, data=reg_data)</pre>
summary(capm_ml)
##
## Call:
## lm(formula = eRi ~ rmrf, data = reg data)
## Residuals:
##
                 1Q
                     Median
      Min
                                   3Q
                                           Max
## -0.40895 -0.03482 0.00141 0.03767 0.20600
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.009747 0.007645 1.275
                                            0.205
                                   6.411 2.8e-09 ***
## rmrf
             1.066640
                         0.166384
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.08343 on 123 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.2504, Adjusted R-squared: 0.2444
## F-statistic: 41.1 on 1 and 123 DF, p-value: 2.801e-09
Get the coefficient table with broom::tidy.
library(broom)
tidy(capm_ml)
## # A tibble: 2 x 5
##
                              std.error statistic
   term
                   estimate
                                                      p.value
                      <dbl>
                               <dbl>
                                         <dbl>
                                                        <dbl>
## 1 (Intercept) 0.009746761 0.007644518 1.275000 2.047124e-1
## 2 rmrf
                1.066640
                            0.1663838 6.410718 2.801085e-9
```

Get the variance-covariance matrix with vcov.

```
vcov(capm_ml)
                  (Intercept)
                                        rmrf
## (Intercept) 5.843866e-05 -0.0002760605
## rmrf
               -2.760605e-04 0.0276835643
# verify using coef table
capm ml %>%
    tidy() %>%
    mutate(variance=std.error^2)
## # A tibble: 2 x 6
##
     term
                                 std.error statistic
                                                                         variance
                     estimate
                                                           p.value
##
     <chr>>
                        <dbl>
                                     <dbl>
                                              <dbl>
                                                             <dbl>
                                                                            <dbl>
## 1 (Intercept) 0.009746761 0.007644518 1.275000 2.047124e-1 0.00005843866
                              0.1663838 6.410718 2.801085e-9 0.02768356
## 2 rmrf
                  1.066640
We can manually calculate as
df <- (nrow(capm ml$model)-2) # degree of freedom</pre>
sigma2 <- sum(capm_ml$residuals^2)/df # residual variance</pre>
# 1st column of lm$model is the depend. var.
X <- capm_ml$model[, 2, drop=FALSE] %>% as.matrix()
X <- cbind(1, X) # add intercept</pre>
V <- solve(t(X) %*% X) * sigma2</pre>
٧
##
                                 rmrf
         5.843866e-05 -0.0002760605
##
## rmrf -2.760605e-04 0.0276835643
Note that cov.unscaled returns the unscaled covariance matrix, (X'X)^{-1}.

    To get estimated covariance matrix for the coefficients, you need to multiply cov.unscaled
```

by the estimate of the error variance.

```
solve(t(X) %*% X)
##
                            rmrf
##
         0.008395487 -0.03965975
## rmrf -0.039659745 3.97711043
summary(capm_ml)$cov.unscaled
##
                                   rmrf
                (Intercept)
## (Intercept) 0.008395487 -0.03965975
## rmrf
               -0.039659745 3.97711043
all.equal(solve(t(X) %*% X),
          summary(capm_ml)$cov.unscaled,
          check.attributes = FALSE)
```

# ## [1] TRUE **References:**

- https://github.com/SurajGupta/r-source/blob/master/src/library/stats/R/vcov.R
- stats package: https://docs.tibco.com/pub/enterprise-runtime-for-R/6.0.1/doc/html/Lan guage Reference/stats/summary.lm.html

# Chapter 7

# **Machine Learning**

Parametric models such as generalized linear regression and logistic regression has advantages and disadvantages.

### Strength:

- The effects of individual predictors on the outcome are easily understood
- Statistical inference, such as hypothesis testing or interval estimation, is straightforward
- Methods and procedures for selecting, comparing, and summarizing these models are wellestablished and extensively studied

## **Disadvantages** in the following scenarios:

- · Complex, non-linear relationships between predictors and the outcome
- High degrees of interaction between predictors
- · Nominal outcome variables with several categories

In these situations, non-parametric or algorithmic modeling approaches have the potential to better capture the underlying trends in the data.

Here we introduce three models: classification and regression trees (CART), random forests, knearest neighbors.

- Classification and regression trees (CART) are "trained" by recursively partitioning the 
   ☐
   dimensional space (defined by the explanatory variables) until an acceptable level of homogeneity or "purity" is achieved within each partition.
- A major issue with tree-based models is that they tend to be high variance (leading to a high propensity towards over-fitting). Random forests are a non-parametric, tree-based modeling algorithm that is built upon the idea that averaging a set of independent elements yields an outcome with lower variability than any of the individual elements in the set. This general concept should seem familiar. Thinking back to your introductory statistics course, you should remember that the sample mean,  $\overline{x}$ , of a dataset has substantially less variability  $(\frac{\sigma}{\sqrt{n}})$  than the individual data-points themselves  $(\sigma)$ .

Q: What is Bias-Variance Trade-Off in Machine Learning? A:

- Bias refers to error caused by a model for solving complex problems that is over simplified, makes significant assumptions, and misses important relationships in your data.
- Variance error is variability of a target function's form with respect to different training sets. Models with small variance error will not change much if you replace couple of samples in training set. Models with high variance might be affected even with small changes in

training set. High variance models fit the data too well, and learns the noise in addition to the inherent patterns in the data.

# 7.1 Imbalanced datasets

The following table provides generally accepted names and ranges for different degrees of imbalance:

Percentage of data belonging to minority class	Degree of imbalance
20-40% of the dataset	Mild
1-20% of the dataset	Moderate
<1% of the dataset	Extreme

For example, consider a virus detection dataset in which the minority class represents 0.5% of the dataset and the majority class represents 99.5%. Extremely imbalanced datasets like this one are common in medicine since most subjects won't have the virus.

Imbalanced datasets sometimes don't contain enough minority class examples to train a model properly. That is, with so few positive labels, the model trains almost exclusively on negative labels and can't learn enough about positive labels. For example, if the batch size is 50, many batches would contain no positive labels.

Often, especially for mildly imbalanced and some moderately imbalanced datasets, imbalance isn't a problem. So, you should **first try training on the original dataset**. If the model works well, you're done. If not, at least the suboptimal model provides a good baseline for future experiments. Afterwards, you can try the following techniques to overcome problems caused by imbalanced datasets.

# 7.1.1 Downsampling and Upweighting

Downsampling (in this context) means training on a disproportionately low subset of the majority class examples.

Upweighting means adding an example weight to the downsampled class equal to the factor by which you downsampled.

Reference: Imbalanced datasets, Google for Developers.

## 7.2 Random Forest

## Averaging of independent trees

The goal of bagging is to produce B separate training datasets that are independent of each other (typically  $\square$  is in the hundreds). The model of interest (in this case classification and regression trees) is trained separately on each of these datasets, resulting in B different estimated "models". These are then averaged to produce a single, low-variance estimate.

Bagging is a general approach, but its most well-known application is in the random forest algorithm:

- 1. Construct B bootstrap samples by sampling cases from the original dataset with replacement (this results in B unique datasets that are similar to the original)
- 2. Fit a classification and regression tree to each sample, but randomly choose a subset of m variables that can be used in the construction of that tree (this results in B unique trees that are fit to similar datasets using different sets of predictors)

7.2. RANDOM FOREST 107

3. For a given data-point, each of the B trees in the forest contributes a prediction or "vote", with the majority (or average) of these votes forming the random forest's final prediction,  $\hat{y}_i$ 

knitr::include\_graphics("images/rf.png")



A downside of both the CART and random forest algorithms (as well as many other algorithmic modeling approaches) is an inability to clearly quantify the roles played by individual variables in making predictions. However, the importance of individual variables in a random forest can still be expressed using a measure known as variable importance.

The random forest algorithm requires the following tuning parameters be specified in order to run:

- ntree the number of bagged samples, B, onto which trees will be grown
- mtry the number of variables that are randomly chosen to be candidates at each split
- Some sort of stopping criteria for individual trees, this can be:
  - nodesize, which sets the minimum size of terminal nodes
    - \* larger nodesize leads to shallower trees
    - \* smaller node size allows for deeper, more complex trees
  - maxnodes, which sets the maximum number of terminal nodes an individual tree can have.

### **Applications of Random Forest**

Some of the applications of Random Forest Algorithm are listed below:

- Banking: It predicts a loan applicant's solvency. This helps lending institutions make a good decision on whether to give the customer loan or not. They are also being used to detect fraudsters.
- Health Care: Health professionals use random forest systems to diagnose patients. Patients are diagnosed by assessing their previous medical history. Past medical records are reviewed to establish the proper dosage for the patients.
- Stock Market: Financial analysts use it to identify potential markets for stocks. It also enables them to remember the behaviour of stocks.
- E-Commerce: Through this system, e-commerce vendors can predict the preference of customers based on past consumption behaviour.

### When to Avoid Using Random Forests?

Random Forests Algorithms are not ideal in the following situations:

• Extrapolation: Random Forest regression is not ideal in the extrapolation of data. Unlike

linear regression, which uses existing observations to estimate values beyond the observation range.

• Sparse Data: Random Forest does not produce good results when the data is sparse. In this case, the subject of features and bootstrapped sample will have an invariant space. This will lead to unproductive spills, which will affect the outcome.

### FAQ

O: Is RF a linear or non-linear model?

A: RF can capture complex, non-linear relationships.

O: Is RF sensitive to Imbalanced Data?

A: Yes. It may perform poorly if the dataset is highly imbalanced like one class is significantly more frequent than another.

O: What is the loss function?

A: Entropy/gini or any other loss function you want.

O: Difference btw RF and a linear model?

A: A major difference is that a decision tree does not have "parameters", whereas the linear models need to create a functional form and find the optimal parameters.

Q: Is RF regression a "true" regression?

A: Random forests discretize continuous variables since they are based on decision trees, which function through recursive binary partitioning. But with sufficient data and sufficient splits, a step function with many small steps can approximate a smooth function. As for whether it is a "true" regression, this is somewhat semantic. After all, piecewise regression is regression too, but is also not smooth. As is any regression with a categorical predictor. Source.

# Implementation in R

ranger package offers a computation efficient function for RF.

Parameters controlling the general process of RF:

• probability=FALSE: Whether to forecast a probability forest.

The hyperparameters mtry, min.node.size and sample.fraction determine the degree of randomness, and should be tuned.

- mtry=500: Number of variables to possibly split at in each node in one tree. In plain language, it indicates how many predictor variables should be used in each tree.
  - Default is the (rounded down) square root of the number variables. Alternatively, a single argument function returning an integer, given the number of independent variables.
  - Range btw 1 to the number of predictors.
  - If all predictors are used, then this corresponds in fact to bagging.
- min.node.size: The number of observations a terminal node should at least have.

7.2. RANDOM FOREST 109

 Default 1 for classification, 5 for regression, 3 for survival, and 10 for probability. For classification, this can be a vector of class-specific values.

- Range between 1 and 10
- sample.fraction: Fraction of observations to be used in each tree. Default is 1 for sampling with replacement and 0.632 for sampling without replacement. For classification, this can be a vector of class-specific values.
  - Smaller fractions lead to greater diversity, and thus less correlated trees which often is desirable.
  - Range between 0.2 and 0.9

Parameters controlling what and how intermediate results are saved:

- keep.inbag = FALSE: Whether to save how often observations are in-bag in each tree. Set to TRUE if you want to check sample composition in each tree.
- importance = 'none'|'impurity'|'impurity\_corrected'|'permutation': Variable importance mode.
- scale.permutation.importance = FALSE: Whether to scale permutation importance by standard error as in (Breiman 2001). Only applicable if 'permutation' variable importance mode selected.
- write.forest = TRUE: Whether to save ranger.forest object, required for prediction. Set to FALSE to reduce memory usage if no prediction intended.
  - Set to FALSE when you do parameter tuning.

Q: How to tune hyperparameters?

A: Check out mlr3 package. Here is an example.

\_\_\_\_

### **Imbalance Classification**

You can balance your random forests using case weights. Here's a simple example:

```
library(ranger)
# Make a dataste
set.seed(43)
nrow <- 1000
ncol <- 10
X <- matrix(rnorm(nrow * ncol), ncol=ncol)</pre>
CF <- rnorm(ncol)</pre>
Y <- (X %*% CF + rnorm(nrow))[,1]
Y <- as.integer(Y > quantile(Y, 0.90))
table(Y)
# Compute weights to balance the RF
w <- 1/table(Y)
W \leftarrow w/sum(w)
weights <- rep(0, nrow)
weights[Y == 0] <- w['0']
weights[Y == 1] \leftarrow w['1']
table(weights, Y)
# Fit the RF
data <- data.frame(Y=factor(ifelse(Y==0, 'no', 'yes')), X)</pre>
model <- ranger(Y~., data, case.weights=weights)</pre>
print(model)
```

Code Source: https://stats.stackexchange.com/a/287849

Fixed proportion sampling: https://github.com/imbs-hl/ranger/issues/167

### References:

https://remiller1450.github.io/m257s21/Lab10 Other Models.html

# 7.3 Neural Network

Neural networks are made up objects called "layers" and "neurons" and these things connect to each other in a specific way. Each layer has some number of neurons. For example, the first layer might have 10 neurons, the second might have 15, and so on. The number of layers and the number of neurons in each layer is a "hyperparameter", the user picks how many of each. Let's take a look at a single neuron.

$$v_3^{(1)} = g(w_3^{(1)}x + b_3^{(1)})$$

 $\bullet$  The LHS,  $v_3^{(1)},$  will be the output. The superscript (1) refers to the layer number; the subscript 3 refers to the neuron.

An output here means just a single number. If we have say 15 neurons (subscript) for this first layer (superscript), then we will have 15 numbers come out of this first layer:  $v^{(1)} = \{v_1^{(1)}, v_1^{(1)}, ..., v_{15}^{(1)}\}$  where the bolded v means a vector.

- *x* is our input vector.
- w is the weight/coefficient vector.
- b is a bias or the intercept term, shifting the value of  $w \cdot x$  up or down.
- *g* refers to a "non-linear" function, often called as the "activation function".