Lecture 11: WiFi Security

Stephen Huang

UNIVERSITY of HOUSTON

1

1. Security Protocol • Communication Threats in Practice Client Wireless Access Point eavesdropping or tampering with wireless channel malicious (e.g., compromised) access point ? UNIVERSITY of HOUSTON

Content

- 1. Introduction to Security Protocol
- 2. IEEE 802.11 Standard
- 3. Wireless Security
- 4. WEP

IEEE 802.11 specifies technical standard for implementing Wireless LAN (WLAN) computer communication.

UNIVERSITY of HOUSTON

5 **Protocol Stack in Practice** oweb browser They are in between web server php the ISO layers. On top of TCP. Application Application (HTTP) (HTTP) SSL / TLS Transport Transport **IPSec** (TCP) (TCP) Network Network Network WEP/ (IP) (IP) (IP) WPA Physical & Physical & Data Link Data Link WiFi (IEEE 802.11)

access point / router

UNIVERSITY of HOUSTON

7

IEEE 802 Frame

Destination MAC Address Source MAC Address Header Header Data CRC

MAC Header MAC Trailer

Medium Access Control (MAC) frame format:

- Destination MAC address: destination's physical address on the LAN.
- Source MAC address: source's physical address on the LAN.
- MAC Service Data Unit: data from higher laye.
- CRC: cyclic redundancy check field for transmission error detection.

UNIVERSITY of HOUSTON

MAC

- A media access control (MAC) address is a computer's unique identification number used by the network.
- MAC addresses are hardcoded into the Network Interface Card (NIC) when it's manufactured.
- The MAC is globally unique, so two devices can't have the same MAC address.
- MAC is represented in a hexadecimal format like this: 00:0a:45:2e:52:28.
- Applications: MAC filtering (white-listing), MAC masking (black-listing).
- MAC Address Spoofing.
- MAC address randomization (iOS) can be used to prevent device tracking..

UNIVERSITY of HOUSTON

10

3. Wireless Security

Problem: no inherent physical protection

- Joining a network does not require physical access.
- Radio transmissions are broadcast → Anyone in range can eavesdrop.
- · Injecting new messages or replaying old messages is possible.
- · Jamming attacks against availability.
- · Jamming and injecting messages can be combined into tampering attacks.

UNIVERSITY of HOUSTON

13

Access Control: Hidden SSID

- SSID: Service Set Identifier, a network's name.
- The association request must contain the network's SSID. By default, the AP broadcasts it periodically in the beacon.
- AP may be configured to stop announcing the SSID. SSID may be used as a "password".
- However,
 - SSID must be hard to guess.
 - every authorized user must know the SSID.
 - SSID can be easily eavesdropped whenever an authorized station connects to the network. It does not provide any security.
 - Tools are available for eavesdropping.

AIRCRACK-NG

UNIVERSITY of HOUSTON

https://www.aircrack-ng.org/

Security Challenges unauthorized access impersonating Af eavesdropping, jamming, tampering, replaying, etc. UNIVERSITY of HOUSTON

14

Access Control: MAC Address-Based Filtering

- AP may be configured to allow only devices with certain MAC addresses to connect.
 - MAC addresses of all authorized devices must be registered in advance.
- However,
 - MAC address is sent in plaintext in every packet
 - Many WLAN devices allow their MAC addresses to be changed. An attacker can easily impersonate an authorized user.
- Example: changing MAC address of macOS

sudo ifconfig en0 ether 6c:40:aa:11:22:33

UNIVERSITY of HOUSTON

IEEE 802.11 Security Standards

- WEP (Wired Equivalent Privacy)
 - introduced in 1997 as part of the original 802.11 standard
 - shown to be insecure in 2001
- · WPA (WiFi Protected Access)
 - introduced in 2003, as a quick fix to WEP
 - subset of draft IEEE 802.11i
- WPA-2 (IEEE 802.11i)
 - standardized in 2004
- WPA-3
 - announced in 2018
 - very similar to WPA-2

UNIVERSITY of HOUSTON

17

Wired Equivalent Privacy (WEP)

- Goal: Making WiFi at least as secure as wired networks.
 - Not a very ambitious goal, but fell short of even this goal ...
- · Design overview
 - Security is based on a 40- or 104-bit secret key
 - · WiFi "password" shared by all users
 - Confidentiality: RC4 stream cipher
 - The key is extended by a 24-bit IV, which is changed for each message \rightarrow used as a nonce to prevent key reuse problems
 - Integrity: encrypted CRC32 (Cyclic Redundancy Check) checksum.
 - **Access control**: challenge-response between AP and station.

UNIVERSITY of HOUSTON

19

4. WEP

- · How not to design a security protocol...
- WEP: Wired Equivalent Privacy (IEEE 802.11)

UNIVERSITY of HOUSTON

18

18

WEP Design Flaws

- Authentication
 - One-way authentication (only for the station to AP), AP can be impersonated.
- Integrity Protection
 - Based on error-detection code (CRC32) instead of cryptographic hash → forging authentication tags is trivial.
 - No message replay protection.
- · Key usage
 - No session key: long-term key used for all purposes (authentication, encryption, integrity protection).
 - Short nonce (i.e., 24-bit IV) → danger of key reuse for stream cipher
 - busy network with 1000 packets per second reuses in less than 5 hours.

UNIVERSITY of HOUSTON

20

Fluhrer-Mantin-Shamir Attack (2001)

- The attacker knows the first three bytes of RC4 key (i.e., the 24-bit IV).
- Due to RC4 weaknesses, attacker can guess the 4th key byte (i.e., 1st secret byte) correctly with a probability of ≈ 0.58% using a single ciphertext-plaintext pair.
 - random guess should be correct only with probability = $1/256 \approx 0.39\%$
- With enough ciphertext-plaintext pairs, an attacker can discover the 4th key byte (with probability ≈ 100%)
- Then, the attacker can discover the 5th, 6th, ... bytes using the same approach (i.e., 2nd, 3rd, ... secret bytes)
- In practice, WEP keys can be broken in a matter of minutes (or less) → WEP is not secure
 - easy to use tools for breaking WEP are available

UNIVERSITY of HOUSTON

21

21

IEEE 802.11 Security Standards

- WEP (Wired Equivalent Privacy)
 - introduced in 1997 as part of the original 802.11 standard
 - shown to be insecure in 2001
- WPA (WiFi Protected Access)
 - introduced in 2003, as a quick fix to WEP
 - subset of draft IEEE 802.11i
- WPA-2 (IEEE 802.11i)
 - standardized in 2004

UNIVERSITY of HOUSTON

23

Lessons Learned from WEP

- Aiming for mediocre security will likely result in no security.
- Follow design principles (or face the consequences)
 - do not use <u>error-detection codes</u> for message authentication.
 - use session keys for data encryption and authentication.
- ...
- Do not use WEP!
- Problem: WEP needed to be replaced very quickly in 2001
 - existing devices (e.g., access points, wireless interface cards) had hardware support only for WEP (e.g., for RC4)
 - many networking devices had low computational performance

UNIVERSITY of HOUSTON

22

22

WiFi Protected Access (WPA)

Standard: 802.11i TKIP (Temporal Key Integrity Protocol)

- Design goals: fix the flaws of WEP and be compatible with legacy hardware
- Overview
 - key usage: the session key is established during a secure two-way authentication
 - confidentiality: RC4 encryption, but with 48-bit IV, which is mixed thoroughly with the session key and source MAC address
 - · prevents key reuse and the Fluhrer-Mantin-Shamir attack
 - integrity: 64-bit message integrity codes computed using Michael, which is computationally very efficient but provides only ~20 bits of effective security
 - after the wrong code, the station is banned for a minute and needs to reauthenticate
- Deprecated in later revisions of the standard

UNIVERSITY of HOUSTON

Next Topic

- Protocol, WiFi Security
- WPA2 and IP Security
- Transportation Layer Security

UNIVERSITY of HOUSTON