6/1/24, 1:47 PM IS NPC

Il problema IS è NP-completo

Dato un grafo non orientato G=(V,E), un sottoinsieme di nodi tale che nessuna coppia di nodi in quel sottoinsieme è collegata da un arco è un insieme indipendente per G.

Dati un grafo non orientato G=(V,E) ed un intero $k\in\mathbb{N}$, esiste un insieme indipendente per G di almeno k nodi?

- $\mathcal{I}_{IS} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \text{ un intero positivo } \}.$
- $S_{IS}(G,k) = \{I \subset V\}.$
- $\pi_{VC}(G, k, \mathcal{S}_{IS}(G, k)) = \exists I \in \mathcal{S}_{IS}(G, k) : |I| \geq k \land \forall (u, v) \in I[(u, v) \notin E].$

Il primo passo, per dimostrare la \mathbf{NP} -completezza di IS, è dimostrare che $IS \in \mathbf{NP}$.

Dimostriamo che $IS \in \mathbf{NP}$ mostrando un certificato che sia verificabile in tempo polinomiale:

- ullet Un certificato è un sottoinsieme $I\ di\ V$
- per verificare che I è effettivamente un insieme indipendente per G, ossia che I soddisfa $\pi_{VC}(G,k,\mathcal{S}_{IS}(G,k))$, dobbiamo esaminare ciascuna coppia di nodi $u,v\in I$ e verificare che $(u,v)\notin E$. Perciò, verifichiamo un certificato in tempo O(|V|2|E|)

Dimostriamo che IS è completo per \mathbf{NP} riducendo polinomialmente VC a IS, ossia, dimostriamo che $VC \leq IS$. Questa volta, la riduzione è poco più che una osservazione, perché è sufficiente osservare che

un sottoinsieme $\mathbf{I} \subseteq \mathbf{V}$ è un insieme indipendente per \mathbf{G} se e soltanto se $\mathbf{V'} = \mathbf{V} - \mathbf{I}$ è un vertex cover per \mathbf{G}

Dato un grafo G=(V,E), un sottoinsieme $I\subseteq V$ è un insieme indipendente per G se e soltanto se V'=V-I è un vertex cover per G

- se $I\subseteq V$ è un insieme indipendente per G allora, per ogni arco $(u,v)\in E$ accade che $u\notin I$ oppure $v\notin I$ ossia, $u\in V'$ oppure $v\in V'$, cioè V' è un vertex cover per G
- Se $V' \subseteq V$ è un vertex cover per G allora, per ogni arco $(u,v) \in E$ accade che $u \in V'$ oppure $v \in V'$ ossia, $u \notin I$ oppure $v \notin I$, cioè I è un insieme indipendente per G

Dimostriamo che IS è completo per \mathbf{NP} riducendo polinomialmente VC a IS, attraverso l'osservazione precedente:

Trasformiamo una istanza $\langle G=(V,E),k\rangle$ di VC nell'istanza $\langle G=(V,E),|V|-k\rangle$ di IS, in cui il grafo rimane invariato! G ha un vertex cover V' $di \leq k$ nodi se e soltanto se G ha un insieme indipendente I=V-V' $di \geq |V|-k$ nodi e calcolare $\langle G=(V,E),|V|-k\rangle$ richiede tempo polinomiale in $|\langle G=(V,E),k\rangle|$.

6/1/24, 1:47 PM IS_NPC