Topological sort

Kevin Woo

Someone who don't know how to count

Introduction

Topological sort is usually done to a directed acyclic graph (dag)/A topological sort of a dagG = (V, E) is a linear ordering of all its vertices that if G contains an edge (u, v), then u appears before v in the ordering. (I did this in Google in order to show a dependency graph for asynchronous workflows).

Algorithm

Topological sort is basically a complexity of O(V + E) given that we can do it within 1 pass of a DFS. As we "finish" a vertex (find u. f), we append to the front of a linked-list. It is basically the vertices sorted in descending order by u. f for every vertex u.

Exercises

22.4-1 Show the ordering of vertices produced by TOPOLOGICAL-SORT when it is run on the dag of Figure 22.8, under the assumption of Exercise 22.3-2.

vertex	discovered	finished
m	1	20
n	21	26
0	22	25
p	27	28
q	2	5
r	6	19
S	23	24
t	3	4
u	7	8
v	10	17
w	11	14
Х	15	16
у	9	18
Z	12	13