NUMERICAL METHODS

POLYNOMIAL: A function is of the form $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n \ (a_0 \neq 0)$ and

 $a_0, a_1, a_2, \dots a_n$ are the constants is called n^{th} degree polynomial. Where n is Positive integer.

POLYNOMIAL EQUATION: If f(x) is polynomial, then f(x) = 0 is called polynomial equation.

 n^{th} Degree polynomial equation has 'n' roots.

ALGEBRAIC FUNCTION: A function obtained by applying finite number of algebraic operations on polynomials is called Algebraic function. All Polynomial functions are algebraic functions.

ALGEBRAIC EQUATION: If f(x) is Algebraic function, then then f(x) = 0 is called Algebraic Equation.

Every polynomial equation is algebraic equation but converse need not be true.

TRANSCENDENTAL EQUATION: An equation other than Algebraic equation is called transcendental equation. Transcendental equation may have no root or finite number of roots or infinite roots.

DESCARTES' RULE OF SIGN: If f(x) is polynomial, then

- No. of Positive real roots of $f(x) \le \text{No.}$ of changes of signs in f(x)
- No. of Negative real roots of $f(x) \leq No.$ of changes of signs in f(-x)

1101 011108441101411004	9 01) (10) = 1 (0) 01 01111111500 0	1 818118 111) (11)
No. of Roots		
Real Roots		Complex Roots
+ ve	- ve	

REAL ROOTS OF AN EQUATION: If ' α ' is a real root of an equation f(x) = 0, then the curve intersects real axis at $x = \alpha$.

INTERMEDIATE VALUE THEOREM: If f(x) is continuous on [a, b] and if f(a), f(b) have opposite signs, then \exists at least one real root lies between a & b.

ERRORS OF APPROXIMATION:

ABSOLUTE ERROR: $\varepsilon = |Exact\ value - approximate\ value|$

RELATIVE ERROR: $\varepsilon = |Exact\ value - approximate\ value|/|Exact\ value|$

PERCENTAGE ERROR: Relative Error \times 100

$\varepsilon_{n+1} \le C \varepsilon_n^p$	$arepsilon_i = \mathit{Error} \ in \ i^{th} \ \mathit{stage} \ \mathit{of} \ \mathit{series}$
C = Asymptotic Error Constant	p = Order of Convergence

Here, If p is large, convergence is fast. And If p is small, convergence is slow.

If p = 1, the convergence is called Liner convergence.

If p = 2, the convergence is called Quadratic convergence.

If p = 3, the convergence is called Cubic convergence.

TRUCATED ERROR: The error obtained by truncations of the infinite sum to approximate it to finite sum is called traction error.

BISECTION METHOD:

If f(x) = 0 has a real root in (a, b),

1st Approximation: $x_1 = (a + b)/2$

If $f(x_1) = 0$, x_1 is root, Else

CASE-I: If f(a), $f(x_1)$ have opposite signs root lies between a and x_1 .

CASE-II: If $f(x_1)$, f(b) have opposite signs root lies between x_1 and b.

 2^{nd} Approximation: $x_2 = (a + x_1)/2$ Or $(x_1 + b)/2$

Advantages and Disadvantages:

- Convergence is guaranteed.
- Method never fails.
- Convergence is very slow.
- Order of Convergence p = 1
- Nth Stage Interval length = $(b a)/2^N$
- Permissible error $\varepsilon \geq (b-a)/2^N$

REGULA-FALSI METHOD (METHOD OF FALSE POSITION):

If f(x) = 0 has a real root in (a, b),

1st Approximation:
$$x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

If $f(x_1) = 0$, x_1 is root, Else

CASE-I: If f(a), $f(x_1)$ have opposite signs root lies between a and x_1 . CASE-II: If $f(x_1)$, f(b) have opposite signs root lies between x_1 and b.

2nd Approximation:

$$x_{2} = \frac{af(x_{1}) - x_{1}f(a)}{f(x_{1}) - f(a)}$$

$$or \frac{x_{1}f(b) - bf(x_{1})}{f(b) - f(x_{1})}$$

Advantages and Disadvantages: Convergence is very slow And Order of Convergence p = 1.

NEWTON'S RAPHSON METHOD (METHOD OF TANGENT):

If f(x) = 0 has a real root in (a, b), $(n+1)^{th}$ iteration $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ with initial guess x_0 .

Advantages and Disadvantages:

- The method converges fast. Eg. if choose x_0 nearest to the roots, convergence is fast otherwise it's slow or sometimes it diverges also.
- Order of Convergence p = 2.
- It improves the results of previous methods.

NOTE:

If $f'(x_n) = 0$, in the neighbour hood of x_n then this method fails.

SECANT METHOD:

If f(x) = 0 has a real root in (a, b) and initial guess x_0 ,

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}$$
 (Same as Regula Falsi method)

Advantages and Disadvantages: Order of Convergence p = 1.62 (Super Liner Convergence).

INTERPOLATION AND CURVE FITTING:

LAGRANGE'S INTERPOLATION:

$$f(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_2 - x_0) \dots (x_n - x_0)} f(x_0) + \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_2 - x_1) \dots (x_n - x_1)} f(x_1) + \dots + \frac{(x - x_1)(x - x_2) \dots (x - x_{n-1})}{(x_1 - x_n)(x_2 - x_n) \dots (x_{n-1} - x_n)} f(x_n)$$

NEWTONS DIVIDED DIFFERENCE INTERPOLATION:

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$
x_0	y_0	$f[x_0, x_1] = \frac{y_1 - y_0}{x_1}$	
		$x_1 - x_0$	$f[x_1, x_2] - f[x_1, x_2] - f[x_0, x_1]$
x_1	y_1	$f[x_1, x_2] = \frac{y_2 - y_1}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$x_2 - x_1$	
x_2	y_2		

$$\overline{f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3] + \cdots}$$

NEWTONS FORMULA OF INTERPOLATION FOR EQUALLY SPACED POINTS:

x	у	Δy	$\Delta^2 y$	$\Delta^3 y$
x_0	y_0			
		$\Delta y_0 = y_1 - y_0$		
x_1	y_1		$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$	
		$\Delta y_1 = y_2 - y_1$		$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$
x_2	y_2		$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	
		$\Delta y_2 = y_3 - y_2$		
x_3	y_3			

Newtons Forward Difference Formula:

$P = \frac{x - x_0}{1 - x_0}$	$f(r) = v_0 + \frac{P}{\Lambda} \Lambda v_0 + \frac{P(P-1)}{\Lambda^2} \Lambda^2 v_0 + \frac{P(P-1)(P-2)}{\Lambda^3} \Lambda^3 v_0 + \cdots$
h	$f(x) = y_0 + 1! \Delta y_0 + 2! \Delta y_0 + 3! \Delta y_0 + 3!$

Newtons Backward Difference Formula:

$$P = \frac{x - x_n}{h}$$

$$f(x) = y_n + \frac{P}{1!} \Delta y_n + \frac{P(P+1)}{2!} \Delta^2 y_n + \frac{P(P+1)(P+2)}{3!} \Delta^3 y_n + \cdots$$

Where, h = Length of each equal sized sub-interval

CURVE FITTING (FITTING OF STRAIGHT LINE):

y = a + bx	$\sum y_i = na + b \sum x_i$	
a and b find by solving 2 Equations.	$\sum x_i y_i = a \sum x_i + b \sum x_i^2$	

Where, n = Number of points.

NUMERICAL INTEGRATION:

Using Newton's Forward interpolation Newton and Cote Derived Quadrature formula.

NEWTONS TRAPEZOIDAL RULE: n = 1 in Newton's Cote Quadrature formula.

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + y_3 \dots + y_{n-1})], where h = \frac{b - a}{n}$$

$$Truncation Error \le \frac{h^3}{12} n \left| \max_{a \le x \le b} f''(x) \right|$$

SIMPSON'S RULE: n = 2 in Newton's Cote Quadrature formula

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_3 + y_5 \dots) + 2(y_2 + y_4 + y_6 \dots)], where h = \frac{b - a}{n}$$

$$Truncation Error \leq \frac{h^5}{180} n \left| \underset{a \leq x \leq b}{\text{Max}} f''''(x) \right|$$

NUMERICAL DIFFERENTIATION:

If $\frac{dy}{dx} = f(x, y)$ and initial condition $f(x_0) = y_0$, then **TAYLOR SERIES METHOD:**

TAYLOR SERIES METHOD:
$$f(x_n) = y_{n-1} + hy'_{n-1} + \frac{h^2}{2!}y''_{n-1} + \frac{h^3}{3!}y'''_{n-1} + \frac{h^4}{4!}y''''_{n-1} + \frac{h^5}{5!}y'''''_{n-1} + \frac{h^6}{6!}y''''''_{n-1} + \cdots, Where \ h = x_n - x_{n-1}$$
RANGE-KUTTA METHOD:

RANGE-KUTTA METHOD:				
Euler's Method (1st Order R-K Method):				
$f(x_n) = y_{n-1} + hy'_{n-1} = y_{n-1} + h f(x_{n-1}, y_{n-1})$		$Truncation\ error = Order\ of\ h^2$		
Modified Euler's Method (2 nd Order R-K Method):				
$y_n = y_{n-1} + \frac{1}{2}(K_1 + K_2)$	$K_1 = hf(x_{n-1}, y_{n-1})$	$Truncation\ error = Order\ of\ h^3$		
$\frac{y_n - y_{n-1} + 2}{2}$	$K_2 = hf(x_{n-1} + h, y_{n-1} + K_1)$			
3 rd Order R-K Method:				
$y_n = y_{n-1} + \frac{1}{6}(K_1 + 4K_2 + K_3)$	$K_1 = hf(x_{n-1}, y_{n-1})$	$Truncation\ error = Order\ of\ h^4$		
6 (11 112 113)	$K_2 = hf\left(x_{n-1} + \frac{h}{2}, y_{n-1} + \frac{K_1}{2}\right)$			
	$K_3 = hf(x_{n-1} + h, y_{n-1} + K_2)$			
4 rd Order R-K Method:				
$y_n = y_{n-1} + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$	$K_1 = hf(x_{n-1}, y_{n-1})$	$Truncation\ error = Order\ of\ h^5$		
$\begin{bmatrix} y_n & y_{n-1} & 6 \\ 1 & 2n_2 & 2n_3 & n_4 \end{bmatrix}$	$K_2 = hf\left(x_{n-1} + \frac{h}{2}, y_{n-1} + \frac{K_1}{2}\right)$			
	$K_3 = hf\left(x_{n-1} + \frac{2}{1}, y_{n-1} + \frac{2}{1}\right)$			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	$K_4 = hf(x_{n-1} + h, y_{n-1} + K_3)$			