南京大学数学系试卷

共4页 第1页

20	05 / 2006	学年	₣第_二	学期	课	程	名	称		数	学分析	沂		
试卷类型_B卷_考试形式_闭卷_				使	用	班	级_	2005 级						
命	驷	λ.	梅加	器	去	泔	БĠ	间	2006	丘	6	E	19	1

题号	_	=	三	四	五	六	七	八	九	+	总分	阅卷人
得分				·								

说明:

- 1. 请将姓名、学号写清楚。
- 2. 本试卷前四道大题共 100 分; 最后一题为附加题。考试时间共 120 分钟。
- 一、 叙述题 (20分)
- 1. 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 为多元向量值函数, $x_0 \in \mathbb{R}^n$. 叙述 f 在 x_0 可微的定义. (10 分)

2. 叙述正项级数达朗贝尔判别法(也叫比值判别法)的条件及结论, 并举一个不能用达朗贝尔判别法判别收敛性的例子. (10分)

- 二、 判断题(20分)判断如下级数的敛散性并说明理由:
- 1. $\sum_{n=1}^{\infty} \sin n^2$. (5分)

新名

생 마

32

2.
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$
. (5分)

3.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
. (5 $\%$)

4.
$$\sum_{n=1}^{\infty} \ln[1 + \frac{(-1)^n}{2n}]$$
. (5分)

三、 计算题 (20分)

1. 方程 $x^2+2y^2+3z^3+2xy-z=7$ 在 (1,-2,1) 附近决定了隐函数 z=z(x,y). 求 $\frac{\partial^2 z}{\partial x \partial y}(1,-2)$ 的值. (10 分)

2. 求函数 $f(x,y,z)=x^3+y^3+z^3$ 在约束条件 $x+y+z=2,\ x^2+y^2+z^2=12$ 下的 极值. (10 分)

四、证明题(40分)

1. 设级数 $\sum_{n=1}^{\infty} \sqrt{n}a_n$ 收敛. 证明, 级数 $\sum_{n=1}^{\infty} a_n$ 也收敛. (提示: Abel 判别法.) (10分)

2. 设 $\lambda \in (0,1)$ 为固定的实数, $f=(f_1,f_2,\cdots,f_n):R^n\to R^n$ 为可微映射,且 $\sum_{i,j=1}^n(\frac{\partial f_i}{\partial x_j})^2 \leq \lambda.$ 证明

(i) $||f(x) - f(y)|| \le \sqrt{\lambda} ||x - y||$, $\forall x, y \in R^n$; (ii) 存在惟一的 $x \in R^n$, 使得 f(x) = x. (10分)

3. 设 $\alpha > 1$, $a_n > 0$, 记 $S_n = \sum_{i=1}^n a_i$, $n = 1, 2, \cdots$. 证明级数 $\sum_{n=1}^\infty \frac{a_n}{S_n^\alpha}$ 总是收敛的. (提示: 可用积分判别法的思想.)(10分)

- 4. 设 $A=(a_{ij})$ 为 n 阶实正定对称方阵, $b_i(i=1,2,\cdots,n)$ 为实数.考虑 R^n 上的函数 $f(x_1,x_2,\cdots,x_n)=\sum_{i,j=1}^n a_{ij}x_ix_j-\sum_{i=1}^n b_ix_i$. 证明
- (i) f 在 R^n 上有惟一的最小值点; (ii) f 的最小值为 $-\frac{1}{4}\sum_{i,j=1}^n a^{ij}b_ib_j$, 这里 a^{ij} 是 A 的逆矩阵在 ij 位置的元素. (10 分)

五、 附加题(10分)设 $f:R^n\to R$ 为任意次可微的多元函数,且 $f(0,\cdots,0)=0$. 证明,存在任意次可微的多元函数 $g_i:R^n\to R(i=1,2,\cdots,n)$,使得

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i \cdot g_i(x_1, x_2, \dots, x_n), \ \forall \ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$