Agglomerative Hierarchical Clustering

Saramanati Minetelalle Beile.

Approved by MCII New Delhi & Govt. of Maharashtra. Affiliated to University of Mumbain (Religious Jain Minority)

G. Assume the dalaset D is given tog. Use single link technique to find the clusters in D. Use Euclidean Distance Measure.

$$D = P_1 \quad 0.40 \quad 0.53$$

$$P_2 \quad 0.22 \quad 0.38$$

$$P_3 \quad 0.35 \quad 0.32$$

$$P_4 \quad 0.26 \quad 0.19$$

$$P_5 \quad 0.08 \quad 0.41$$

$$P_6 \quad 0.45 \quad 0.30$$

Step 1: Calculate the distance from each data object to all other points & create a distance Moutrix.

Euclidean Distance between points (X, Y) is given as follows.

calculating ED between point P, & P2 as follows. $d(P_1, P_2) = \sqrt{(0.4 - 0.22)^2 + (0.53 - 0.38)^2}$

calculate the distance to the remaining points

We can note that points P3 & P6 are close, as the distance is minimum.

so we will form a cluster with these two points.

P3 P6

Step 2

Recalculating the distance Matrix.

[]	P2.	(P3,P6	1P4	ſ ₅	P6
0					
0.24	0				
0.22	0.15	6		17 8	
0.37	0.20	0.15	0		
0.34	0.14	0:28	0.29	0	
	1111	ttill		ttt	
	0.24	0 0.24 0 0.15 0.37 0.20	0 0.24 0 0 0.22 0.15 0 0.37 0.20 0.15	0 0.24 0 0 0.22 0.15 0 0.37 0.20 0.15 0	0.24 0 0.22 0.15 0 0.37 0.20 0.15 0

To calculate the distance of P, from (P3, P6)

dist ((P3,P6),P1) = =MIH (dist (P3,P1), dist (P6,P1))

= MIN (6,22, 0,23)

Similarly Calculate distance for all the remaining points.

Santiagon (in gingere litte themas)

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Step 3: Find the next closest point & merge the same We can see from the distance matrix that points P2 & P5 are close to each other.

Merging the points to form a cluster.

	P1	P2, P5	r3, r6	P4
Pı	3	ho.		
P2, P5	0.24	6	k.	
P3, P6	0,22	0.15	0	
P4	0.37	0.20	0,15	0

The distance between (P3,P6) & (P2, P5) is calculated as given.

dist (CP3,P6), (P2,P5))=

MIN (dist (P3, P2), dis (P3, P0) dist (P6, P2) dist (P6, P3)

= MIN (0.15; 0.25, 0.28, 0.39) = 0.15 As can be seen from the distance matrixe, (P2, P5) (P3, P6); can be merged as they have minimum distance. ie 0.15

Recalculating

P1

P2, P5, P3, P6

P4

Pistance between (P2, P3, P3, P6) & P4 is least, hence we will combine/Merge these points to form the cluster.

Various Gigaticale (Court

is alteriation or macifications.

(Approved by AICTE New Delhi & Govt. of Maharashtra. Affiliated to University of Mumbai)
(Religious Jain Minority)

