네이버 커넥트원에서 UFO를 볼 수 있을까?

- 1. 양태양 (19930120)
- 2. tyyang@unist.ac.kr
- 3. 양태양 (19930120) / 김재훈 (19941213) / 김종수 (19941219)

"사람들의 발길이 잘 닿지 않는 숲 속, 밤 안개와 더불어 무척 스산한 분위기……"

사람들이 기억하는 영화 속 대부분의 UFO 목격 장면은 위와 같다고 할 수 있다. '어두운 밤', '숲 속', '안개' 등과 같은 조건들은 우리 눈에 잘 목격되지 않는 미확인 비행 물체를 보기위한 필수 조건일 것일까? 나아가서 어떤 환경조건을 만족시켜야 그들을 만나기 쉬워질까? 실제 사람들이 마주쳤었던 그 당시의 시간, 위치, 환경 정보들을 바탕으로 UFO를 마주칠 확률을 도출해 낼 수 있을지 궁금하여 분석을 시작하게 되었다.

과연 SF 영화 속 항상 등장하는 배경은 합리적인 것일까?

분석 데이터 설명

분석에는 'Kaggle'에 공개된 오픈데이터 중, "미국의 UFO 관측날의 대기 성분 데이터 (UFO Sightings + Air Quality)"와 "서울시 대기 성분 데이터 (Air pollutants measured in Seoul)"를 사용하였다. 각 데이터셋의 변수 이름과 설명은 아래와 같다.

1. 미국의 UFO 관측날의 대기 성분 데이터 (UFO Sightings + Air Quality)

- https://www.kaggle.com/infof422henni/ufo-air-quality
- UFO sightings 데이터 (https://www.kaggle.com/NUFORC/ufo-sightings) 중 미국 지역 데이터와 U.S. Pollution Data (https://www.kaggle.com/sogun3/uspollution) 를 결합한 데이터셋
- 63,173개의 데이터 샘플, 24개의 변수
- 1.1 State. Code: US EPA(미국 환경보호청)에 등록된 각 주의 인식 코드
- 1.2 City: 도시 명
- 1.3 State: 미국 총 50개의 주
- 1.4 Day: 당시 날짜
- 1.5 Month: 당시 월
- 1.6 Year: 당시 년도(2000~2008년)
- 1.7 Hour: 당시 시간
- 1.8 NO2. Mean(ppb): 주어진 날의 NO2 농도의 산술 평균. NO2는 공기중의 질소와 산소가 연료의 연소시에 반응하여 생성됨, 과거 LA스모그 사건 및 산성비의 한 원인물질로서 중요하게 취급됨.
- 1.9 NO2. 1st.Max. Value(ppb): 주어진 날의 NO2 농도 최대 값
- 1.10 NO2. 1st.Max. Hour: 주어진 날에 최대 NO2 농도가 기록 된 시간
- 1.11 NO2. AQI: 주어진 하루 동안의 NO2의 대기 성분 지수, AQI가 증가할수록 더 많은 수의 인구가 건강상의 악 영향을 받을 가능성이 높음
- 1.12 O3. Mean(ppm): 주어진 날의 O3 농도의 산술 평균. O3는 대기 중에 배출된 질소산화물과 휘발성 유기화합물(VOCs)등이 자외선과 광화학 반응을 일으켜 생성된 2차 오염물질임.
- 1.13 O3. 1st.Max. Value(ppm): 주어진 날의 O3 농도 최대 값
- 1.14 O3. 1st.Max. Hour: 주어진 날에 최대 O3 농도가 기록 된 시간
- 1.15 O3. AQI: 주어진 하루 동안의 O3의 대기 성분 지수
- 1.16 SO2. Mean(ppb): 주어진 날의 SO2 농도의 산술 평균. SO2(황산화물)은 1차적 오염 물이며 화석 원료의 연소에 의하여 방출됨. 대기오염물질 중 가스상태의 것으로서 가장 문제시됨
- 1.17 SO2. 1st. Max. Value(ppb): 주어진 날의 SO2 농도 최대 값

- 1.18 SO2. 1st. Max. Hour: 주어진 날에 최대 SO2 농도가 기록 된 시간
- 1.19 SO2, AOI: 주어진 하루 동안의 SO2 대기 성분 지수
- 1.20 CO. Mean(ppm): 주어진 날의 CO 농도의 산술 평균. 무색, 무취의 유독성 가스로서 탄소성분이 불완전 연소되었을 때 발생
- 1.21 CO. 1st. Max. Value(ppm): 주어진 날의 CO 농도 최대 값
- 1.22 CO. 1st. Max. Hour: 주어진 날에 최대 CO 농도가 기록 된 시간
- 1.23 CO. AQI: 주어진 하루 동안의 CO의 대기 성분 지수
- 1.24 ET: UFO(미확인 비행 물체)관찰이 이루어진 경우 1, 이루어지지 않은 경우를 0으로 본다

2. 서울시 대기 성분 데이터 (Air pollutants measured in Seoul)

- https://www.kaggle.com/jihyeseo/seoulairreport
- 2017년 11월 17일부터 11월 24일까지 1시간 간격으로 측정된 서울시 지역구별 공기 질 데이터셋
- 4,225개의 데이터 샘플, 8개의 변수
- 2.1 측정일시: 측정을 시작한 날짜와 시간
- 2.2 측정소명: 측정을 한 서울시 내의 위치
- 2.3 이산화질소 (NO2) 농도 (ppm): 1시간 동안 측정한 이산화질소의 평균 농도, 14년 경기의 연평균 농도가 0.034ppm으로 최고, 광주가 0.019ppm으로 최저
- 2.4 오존 (O3) 농도 (ppm): 1시간 동안 측정한 오존의 평균 농도, 14년 서울의 경우 0.023ppm 인천과 경기는 0.026, 0.025 ppm
- 2.5 일산화탄소 (CO) 농도 (ppm): 1시간 동안 측정한 일산화질소의 평균 농도, 수도권 평균 오염도는 0.5~0.6 ppm
- 2.6 아황산가스 (SO2) 농도 (ppm): 1시간 동안 측정한 아황산가스의 평균 농도
- 2.7 미세먼지 (ሥg/㎡): 1시간 동안 측정한 미세먼지의 평균 농도, 입자의 지름이 10㎞ 이하인 경우 미세먼지로 불리며 호흡시 폐포에 침투함
- 2.8 초미세먼지 (@/m): 1시간동안 측정한 초미세먼지의 평균 농도, 입자의 지름이 2.5@ 이하인 경우 초미세먼지 로 불리며 호흡시 폐포에 침투하다.

두 데이터셋간 동일한 데이터를 사용하기 위해 "UFO sightings + Air Quality" 데이터 중 *.1st.Max, *.1st.Max, *.AQI 변수와 "Air pollutants measured in Seoul" 데이터셋의 미세먼지, 초미세먼지 변수를 제거하였으며, 각 데이터셋의 변수 단위를 맞추는 작업을 진행했다.

"UFO sightings + Air Quality" 데이터 중 구체적인 위치가 제시되지 않은 데이터의 경우 ("Not in a city") 분석에 사용하지 않았다.

UFO가 잘 관측되는 조건은 무엇이 있을까?

위 질문에 답하기 위해 "UFO sightings + Air Quality" 데이터셋 중 UFO가 관측된 샘플 (ET=1)로부터 크게 다음과 같은 3가지 조건을 추출하여 분석하였다: 지역, 시간, 대기 성분

1 지역: 해안과 내륙 지방 중 어디에서 UFO가 많이 보일까?

1.1 어느 주 (state)에서 UFO가 많이 관측되었을까?

<u>Insight</u>: California 주가 압도적으로 많은 편이며, Texas, New York, Pennsylvania, Arizona 주가 그 뒤를 이었다.

1.2 UFO가 관측된 city 위치를 해안(coast)과 내륙(inland) 지역으로 나누어 보자

앞의 결과와 같이 state 별 분석이 가능하지만 UFO 운전수에게 인간의 행정구역은 크게 중요치 않을 것이다. 따라서 각 UFO가 관측된 도시(city)의 위치가 해안으로부터 20km 내에 있을 경우를 "coast", 그 외를 "inland"로 나누었다. 또한 아래와 같이 간단하게 해안 지역의 면적을 계산하였다.

- ▶ 알래스카 주를 뺀 미국 본토 국토 총 면적: 8,080,510 km²
- ▶ 해안(coast) 지역 총 면적 = 해안 지역의 총 길이 (9,027km) * 20km = 180,540 km²
- 내륙(inland) 지역 총 면적 = 8,080,510 km² 180,540 km²
- ▶ 해안(coast): 내륙(inland) 면적 비 = 2.23:97.77

1.3 해안과 내륙 지방 중 어디에서 UFO가 많이 보일까?

Insight: 내륙 지역에서 관측된 경우가 좀 더 많은 편이다. 하지만 미국 전체 국토 중 우리가 정의한 Coast 지역의 면적이 압도적으로 적다는 점을 감안하면 해안 지역에서 UFO가 더 많이 관측되었다고 볼 수 있다. 따라서 "지역"은 UFO 관측 적합조건에 영향을 준다고 볼 수 있다.

1.4 미국 본토 지도 위에 관측위치 분포를 그려보자

Insight: 앞의 결과와 동일하게 대부분의 UFO 관측 보고가 해안과 가까운 지역 (예: 캘리포니아 주)에서 이루어짐을 알 수 있다.

2 시간: UFO가 많이 보이는 계절, 시간대가 있을까?

2.1 UFO가 많이 보이는 "계절"은 언제일까?

아래와 같이 month 변수를 season 변수로 나누어 UFO 관측 시 데이터 분포를 살펴보았다.

Insight: 월별로 조금씩 차이가 나기는 하지만, 계절단위로 보게 되면 큰 차이는 없다. 따라서 "계절"은 UFO 관측에 크게 중요한 요인이 아닌 것으로 보인다. 각 계절간 n수가 3개뿐 안되기 때문에 별도의 통계분석은 하지 않았다.

2.2 UFO가 많이 보이는 "시간"은 언제일까?

아래와 같이 hour 변수를 time 변수로로 나누어 UFO 관측 시 데이터 분포를 살펴보았다.

Insight: 오후, 아침처럼 날이 밝을 때 보다는 밤, 새벽에 UFO가 많이 관측되었다. UFO를 관측하기 위해서는 "시간" 조건이 중요하다는 것을 알 수 있다.

3 UFO가 많이 관측되는 대기 성분 조건이 있을까?

UFO가 관측되었을 때와 평상시로 나누어 각 성분의 농도를 확률밀도함수 (probability density function, pdf)로 계산하여 그려보았다

Insight: 대기 성분을 나타내는 4가지 지표 중 UFO가 관측될 때(UFO)와 관측되지 않았을 때(UFO X) 가장 차이가 두드러지게 나타나는 지표는 NO2 농도다. CO, SO2농도가 그 다음으로 눈에 띄며, O3 농도는 큰 분포차가 나타나지 않았다. 분포 사이의 유사도는 Mutual information 등을 계산하여 비교할 수 있겠으나 본 분석에서는 시행하지 않았다.

NO2, SO2, CO는 모두 자동차 배기가스의 주된 성분이자 광화학 스모그의 원인들이고, 그중 NO2가 가장 주된 스모그 원인임을 고려할 때 대기 오염으로 인한 가시거리 감소가 적은 날 밤하늘에 UFO를 볼 수 있다는 결론을 도출해볼 수 있다.

그러나 오존(O3)의 농도가 평소보다 높을 때 UFO가 자주 관측되는 현상도 발견되었다. 또한 일산화탄 소(CO)의 농도 또한 어느 정도 높을 때 UFO가 더 많이 발견되는 것을 볼 수 있었다.

과연 머신러닝의 결과도 같은 결과를 보여줄까?

우리 나라에서 UFO를 볼 수 있었을까?

위 질문에 답하기 위해 "UFO sightings + Air Quality" 데이터셋으로 예측 모델을 훈련시킨 후, "Air pollutants measured in Seoul" 데이터셋에서 UFO 관측 가능여부를 예측해보기로 했다.

1 "UFO sightings + Air Quality" 데이터셋의 문제점: Imbalanced dataset

"UFO sightings + Air Quality" 데이터셋은 UFO 관측 시의 샘플(ET=1)이 622개로 전체 데이터 63,174개의 1%가 채 되지 않는 imbalanced dataset (Imbalance Ratio, IR = 101.57)이다. Decision tree, Logistic regression 등 대부분의 분류 알고리즘은 imbalanced dataset을 훈련시킬 경우 샘플 수가 많은 쪽에 편향된다.

Re-sampling

Imbalanced dataset을 처리하는 가장 간단한 방법은, 다수 그룹(ET=0)의 데이터샘플을 under sampling하거나 소수 그룹(ET=1)의 데이터샘플을 over sampling하는 것이다. 이 외에도 두 방법을 모두 사용하는 hybrid sampling 방식과 k-Nearest Neighborhood 알고리즘을 이용한 SMOTE (Synthetic Minority Over-sampling Technique) 등의 방법들이 있다. Under sampling 과 over sampling은 각각 데이터에 있는 중요한 정보가 소실되거나, 훈련 데이터 중복으로 과적합(Overfitting)될 가능성이 존재한다. 각 Resampler마다 장단점이 존재하기에 이번 분석에서는 random under sampling, random over sampling 및 SMOTE resampling을 모두 시행하여 결과를 비교해보았다.

Class weight balancing

Imbalanced dataset을 처리하는 두번째 방법은 모델 훈련 시 각 class 분류에 weight를 주는 방법이다. 즉, 소수 그룹에 해당하는 샘플을 분류한 결과를 더 중요하게 여긴다. 우리가 사용한 데이터셋의 IR이 너무 높아 resampling 방법만으로는 imbalanced dataset 문제가 해결되기 어렵다고 판단하여 class weight balancing 또한 함께 사용하였다.

2 UFO 관측 적합조건 예측 모델

2.1 UFO 관측 적합조건 예측 모델 선택

UFO 관측 적합조건 예측을 위한 모델로 Support Vector Machine, Decision Tree Classifier, Random Forest Classifier를 선정하였다. 위 모델들은 Python 언어의 Scikit-learn package로 간단히 구현할 수 있으며, class weight balancing을 파라미터로 간단하게 설정할 수 있어 선정되었다.

2.2 UFO 관측 적합조건 예측 모델 훈련

[변수] 모델에 입력으로 들어가는 14개의 변수는 아래와 같다. 이 중 10개의 Categorical variables는 one-hot encoding 된 형태로 모델에 사용되었다.

- [Location] Categorical variables (2) Location, Coast
- > [Season] Categorical variables (4) Spring, Summer, Fall, Winter
- > [Time] Categorical variables (4) Dawn, Morning, Afternoon, Night
- [Air quality] Numerical variables (4) NO2, O3, SO2, CO

[Resampler 와 Classifier] 3개의 샘플링 방법과 3개의 분류 모델로 이루어진 파이프라인으로 모델을 훈련시켰다. 모델간 비교를 위해 트레이닝 데이터와 테스트 데이터를 7:3 비율로 나누어 평가지 표를 계산하였다 (hold-out). Cross-validation 방법을 이용하면 더 정교화된 모델 비교가 가능하겠지만, 모델 훈련에 소요되는 시간이 너무 오래 걸려 hold-out 방법을 사용하였다.

[모델 평가방법] 정확도 (Accuracy)는 accuracy paradox 문제로 Imbalanced dataset에 적합한 지표가 아니다. 따라서 모델을 평가하는 지표로 AUC (Area Under ROC Curve)와 F1 score를 함께 사용했다. 두 지표는 아래와 같은 Confusion matrix에서 계산될 수 있다. 우리 분석에서는 Scikit-learn package의 roc_auc_score, f1_score 함수를 이용하여 계산하였다.

	UFO 관측조건 O 예측	UFO 관측조건 X 예측		
실제 UFO 관측조건 O	True Positive (TP)	False Negative (FN)		
실제 UFO 관측조건 X	False Positive (FP)	True Negative (TN)		

> AUC

AUC는 특이도(Specificity)와 민감도(Sensitivity)의 산술평균으로 정의되며, 0.5에 가까울수록 모델의 성능이 없고 1에 가까울수록 최고의 성능을 내는 것을 의미한다.

$$AUC = \frac{Specificity + Sensitivity}{2}$$

$$Specificity = \frac{TN}{FP + TN}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

➤ F1 score

F1 score는 정밀도(Precision)와 재현율(Recall)의 조화평균으로 정의되며, 큰 값일수록 모델의 성능이 좋은 것으로 평가한다.

$$F1 \ score = \frac{2*Precision*Recall}{Precision + Recall}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

2.3 UFO 관측 적합조건 예측 모델 성능 비교 및 최종 모델 선정

Decision Tree, Random Forest 분류기에서 전체적인 성능이 좋게 나타났다.

Resampler	Classifier	Accuracy	AUC	F1 score
Random under sampling	Support Vector Machine	0.731	0.782	0.538
Random under sampling	Decision Tree Classifier	0.768	0.700	0.544
Random under sampling	Random Forest Classifier	0.822	0.814	0.543
Random over sampling	Support Vector Machine	0.745	0.803	0.142
Random over sampling	Decision Tree Classifier	0.987	0.937	0.813
Random over sampling	Random Forest Classifier	0.994	0.956	0.899
SMOTE	Support Vector Machine	0.746	0.818	0.148
SMOTE	Decision Tree Classifier	0.967	0.704	0.453
SMOTE	Random Forest Classifier	0.976	0.883	0.429

Insight: Random over sampling-Decision Tree classifier 조합과 Random over sampling-Random Forest classifier 조합에서 AUC, F1 score 성능이 모두 좋게 나타났다. 편의를 위해 각각을 **DT, RF** 모델로 칭한다.

2.4 변수별 중요도 확인

앞의 분석을 통해 UFO 관측 적합조건 예측 모델 성능이 좋게 나타난 두 조합(DT, RF)을 찾을 수 있었다. Decision Tree와 Random Forest는 모델에서 사용된 각각의 변수들의 information gain 평균으로 어떤 변수가 중요한지 비교할 수 있다. 이 과정은 Scikit-learn package의 feature_importances_함수를 이용해 구현할 수 있다.

Insight: 두 모델에서 조금씩 차이가 있기는 했으나, 대기 성분조건이 UFO 관측 적합조건을 예측하는데 가장 중요한 역할을 하고 있음을 알 수 있다. "새벽/오전/오후/밤" 변수가 중위권에 계속해서 위치한 것을 볼 때, "시간" 조건 또한 중요한 변수로 여겨진다.

2.5 서울시의 UFO 관측 적합조건 예측

DT, RF 모델로 서울시의 UFO 관측 적합조건 여부를 예측해보았다.

Insight: DT 모델에서는 총 10건의 적합조건이 발견된 반면, RF 모델은 2건의 적합조건이 발견되었다. 따라서 우리는 각 모델이 각각 Liberal, Conservative한 특징을 갖는다고 할 수 있을 것이다.

네이버 커넥트원에서는 UFO를 볼 수 있을까?

우리가 오프라인 교육 대상자로 선발된다면 집중교육을 받게 될 커넥트원에서는 UFO를 볼 수 있을까?

1 데이터 수집

대기 성분 데이터를 한달 후까지 예측할 수 있다면 위 질문에 답할 수 있겠지만, 여기에는 너무 많은 Confounding factor가 존재하여 예측이 어렵다. 따라서 본 분석에서는 **과거 동일한 날짜 (8/27-29)에 UFO를 관측할 수 있었을 지 알아보았다**. 국내 각 지역의 시간별 대기 성분 데이터는 에어코리아 (http://www.airkorea.or.kr/realSearch)에서 찾을 수 있었지만 아쉽게도 이 사이트는 2017년에 개설되어, 이전 년도의 데이터는 구할 수 없었다.

2 예측

과연 2017년도 8월 27일-29일은 UFO를 볼 수 있는 시기였을까?

Insight: DT 모델에서는 총 2건의 적합조건이 발견된 반면, RF 모델은 1건의 적합조건이 발견되었다. 앞서 각 모델이 Liberal/Conservative한 특성을 갖는다고 했던 것과 일치하는 결과를 보인다. 아래 테이블은 두 모델이 예측한 두 시점의 변수 데이터들이다. 두 모델 모두 비슷한 시기가 UFO 관측에 적합한 조건이라고 예측하고 있다.

index	실제시간	location	season	time	NO2	О3	SO2	СО
25	8/29 01:00	inland	summer	dawn	0.004	0.029	0.003	0.4
27	8/28 23:00	Inland	summer	night	0.005	0.033	0.002	0.4
28	8/28 22:00	inland	summer	night	0.008	0.032	0.002	0.4

만약 올해 같은 시기에 비슷한 대기조건이 유지된다면, 8월 29일 자정 전후 시간대가 UFO를 보기 적합한 조건이라고 말할 수 있다. 다 함께 나가서 UFO를 찾아보는 건 어떨까?