

Dissipative Dynamical Systems

Andrea Brugnoli

28 June 2022

UNIVERSITY OF TWENTE.

Outline

Introduction

 $Definition \ and \ characterization \ of \ dissipativity$

Outline

Introduction

Definition and characterization of dissipativity

Why dissipative dynamical systems?

All engineering systems exhibit dissipation.

- ► Electrical networks with resistors;
- Mechanical systems (viscoelastic or Coulomb friction);
- Thermodynamic systems: dissipation leads to an increase in entropy.

The notion of dissipativity establishes a natural link between the properties of input-output and state-space models. Many modern computational tools for the analysis and synthesis of control systems are based on it.

Jan C. Willems. "Dissipative dynamical systems Part I: General theory". In: *Archive for Rational Mechanics and Analysis* 45.5 (1972), pp. 321–351

Jan C. Willems. "Dissipative dynamical systems Part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393

Arjan van der Schaft. L2-gain and passivity in nonlinear control. Springer-Verlag, 1999

Some mathematical notation

 $\mathbb{R}_+ = [0, \infty)$ denotes the set of positive reals.

Let V be a finite dimensional normed liner space with norm $||\cdot||_V$.

(If $V = \mathbb{R}^n$ then the Euclidean norm is denoted by $||x||_2 = \sqrt{x^{\top}x}$)

Definition (Local L^p_{loc} Banach spaces)

For each positive integer $p \in 1, 2, \ldots$, the set $L^p_{\mathsf{loc}}(\mathbb{R}, V)$ consists of all functions $f: \mathbb{R} \to V$, which are measurable and satisfy

$$\int_{a}^{b} ||f(t)||_{V}^{p} dt < \infty, \qquad \forall a, b \in \mathbb{R}.$$

The case $p=\infty$ consists of all bounded measurable functions on compact intervals, i.e. $\sup_{t\in[a,b]}f(t)<\infty.$

General setting

Consider the state-space system with inputs and outputs

$$\Sigma: \quad \begin{array}{ll} \dot{x} = f(x, u), & u(t) \in U, \\ y = h(x, u), & y(t) \in Y, \end{array}$$

where $x(t) \in \mathcal{X}$. In general \mathcal{X} is a manifold and U, Y vector spaces. For sake simplicity, assume $\mathcal{X} = \mathbb{R}^n, \ U = \mathbb{R}^m, \ Y = \mathbb{R}^p$.

Theorem

Suppose f,h to be Lipschitz continuous in x and u jointly. Then system Σ has a unique solution $\forall x(t_0) \in \mathbb{R}^n, \ u(\cdot) \in L^2_{loc}(\mathbb{R},U)$ with $x(\cdot) \in L^2_{loc}(\mathbb{R},\mathcal{X}), \ y(\cdot) \in L^2_{loc}(\mathbb{R},Y).$

Reachability and controllability

Notation: $\mathbb{R}^2_+ := \{(t_1, t_2) \in \mathbb{R}^2 | t_2 \ge t_1\}$ (causal triangular sector of \mathbb{R}^2).

Definition (State transition function)

Given the system Σ , the state transition function ϕ is the map

$$\phi(t_1, t_0, x(t_0), u(\cdot)) : \mathbb{R}^2_+ \times \mathcal{X} \times L^2_{loc}(\mathbb{R}, U) \to \mathbb{R}^n$$

such that $x(t_1) = \phi(t_1, t_0, x(t_0), u(\cdot))$.

Definition (Reachability and controllability)

The state space $\mathcal X$ of system Σ is said to be **reachable** from x_{-1} if

$$\forall x \in \mathcal{X}, \ \exists \, t_{-1} \leq 0, \ \exists \, u(\cdot) \in L^2_{\mathsf{loc}}(\mathbb{R}, U) \text{ such that } x = \phi(0, t_{-1}, x_{-1}, u(\cdot)).$$

It is said to be **controllable** to x_1 if

$$\forall x \in \mathcal{X}, \ \exists t_1 > 0, \ \exists u(\cdot) \in L^2_{\mathsf{loc}}(\mathbb{R}, U) \text{ such that } x_1 = \phi(t_1, 0, x, u(\cdot)).$$

Outline

Introduction

Definition and characterization of dissipativity

The mathematical definition of dissipativity

On the combined space $U \times Y$ consider the supply rate function $s: U \times Y \to \mathbb{R}$.

Definition (Dissipative state space system)

A state space system Σ is said to be dissipative w.r.t. the supply rate s if there exists a function $S: \mathcal{X} \to \mathbb{R}_+$ (the storage function), such that $\forall \, x(t_0) \in \mathcal{X}$ at any time t_0 , and $\forall \, u(\cdot)$ and $\forall \, t_1 \geq t_0$ and the following inequality holds

$$S(x(t_1)) \leq S(x(t_0)) + \int_{t_0}^{t_1} s(u(t), y(t)) dt,$$
 Dissipation Inequality.

It equality holds then the system is called conservative (w.r.t. the supply rate s).

Corollary (Convexity of the storage functions set)

Given two storage functions S_1 and S_2 then any convex combination $\alpha S_1 + (1-\alpha)S_2, \ \alpha = [0,1]$ is also a storage function.

Passive systems and L^2 finite gain

Two important class of supply rate functions:

- ightharpoonup passive systems $s(u,y) = u^{\top}y$;
- ▶ finite L^2 gain $s(u,y) = \frac{1}{2}\gamma ||u||_2^2 \frac{1}{2}||y||_2^2, \quad \gamma \ge 0.$

Definition (Passive system)

 Σ with $U=Y=\mathbb{R}^m$ is **passive** if it is dissipative w.r.t.

$$s(u,y) = u^{\top}y.$$

 Σ is **input strictly passive** if $\exists \, \delta > 0$ such that Σ is dissipative w.r.t.

$$s(u,y) = u^{\mathsf{T}} y - \delta ||u||_2^2.$$

 Σ is **output strictly passive** if $\exists \varepsilon > 0$ such that Σ is dissipative w.r.t.

$$s(u,y) = u^{\top} y - \varepsilon ||y||_2^2$$

 Σ is **lossless** if it is conservative with respect to $s(u,y) = u^{\top}y$.

Passive systems and L^2 finite gain

Two important class of supply rate functions:

- ightharpoonup passive systems $s(u,y) = u^{\top}y$;
- ▶ finite L^2 gain $s(u,y) = \frac{1}{2}\gamma ||u||_2^2 \frac{1}{2}||y||_2^2, \quad \gamma \ge 0.$

Definition (L^2 finite gain)

A system Σ with $U=\mathbb{R}^m,\ Y=\mathbb{R}^p$ has L^2 -gain $\leq \gamma\ (\gamma\geq 0)$ if it is dissipative w.r.t.

$$s(u,y) = \frac{1}{2}\gamma||u||_2^2 - \frac{1}{2}||y||_2^2.$$

The L^2 -gain of Σ is defined as

$$\gamma(\Sigma) := \inf\{\gamma | \ \Sigma \ \ {\sf has} \ L^2{\sf -gain} \le \gamma\}.$$

 Σ is said to have L^2 -gain $<\gamma$ if $\exists\, \tilde{\gamma}\le \gamma$ such that Σ has L^2 -gain $\le \tilde{\gamma}$.

 Σ is called inner if it is conservative with respect to $s(u,y)=\frac{1}{2}||u||_2^2-\frac{1}{2}||y||_2^2$.

How to establish dissipativity? The available storage

Theorem (Necessary and sufficient conditions for dissipativity)

Consider system Σ and supply rate s(u,y). Σ is dissipative with respect to s iff

$$S_a(x) := \sup_{\substack{u(\cdot) \\ T \ge 0}} -\int_0^T s(u(t), y(t)) dt, \qquad x(0) = x,$$

is finite $\forall x \in \mathcal{X}$. Furthermore, if S_a is finite $\forall x \in \mathcal{X}$ then S_a is a storage function, called the **available storage**, and all other possible storage functions S satisfy

$$S_a(x) \le S(x) - \inf_x S(x), \quad \forall x \in \mathcal{X}$$

Moreover $\inf_x S_a(x) = 0$.

The available storage is the minimal storage function.

Proof

 $lackbox{lack} (\Longrightarrow)$ Suppose S_a is finite. Then $S_a \geq 0$ (supremum of a set that contains 0). Compare $S(x(t_0))$ and $S(x(t_1)) - \int_{t_0}^{t_1} s(u(t),y(t)) \; \mathrm{d}t$ with s(u,y) evaluated on a trajectory generated by $u:[t_0,t_1] \to \mathbb{R}^m$ that drives $x(t_0)$ at t_0 to $x(t_1)$ at t_1 . Since S_a is the supremum over all $u(\cdot)$ it follows

$$S_a(x(t_0)) \ge S_a(x(t_1)) - \int_{t_0}^{t_1} s(u(t), y(t)) dt \implies S_a$$
 is a storage function.

 \blacktriangleright (\longleftarrow) Suppose Σ dissipative. Then $\exists\,S\geq 0$ such that $\forall\,u(\cdot)$

$$S(x(t)) + \int_0^T s(u(t), y(t)) dt \ge S(x(T)) \ge 0.$$

This implies that

$$S(x(0)) \ge \sup_{\substack{u(\cdot) \\ T>0}} -\int_0^T s(u(t), y(t)) dt = S_a(x(0)) \implies S_a(x(0)) < \infty$$

Reachability and Storage functions

If the system is reachable from x^* , the finiteness of S_a needs to be checked only in x^*

Theorem

Assume that Σ is reachable from $x^* \in \mathcal{X}$. Then Σ is dissipative iff $S_a(x^*) < \infty$.

Proof

(\iff) By contradiction. Suppose there exists $x \in \mathcal{X}$ such that $S_a(x) = \infty$. Since by reachability x can be reached from x^* in finite time, this would imply (by time invariance) that also $S_a(x^*) = \infty$.

The maximal storage: the required supply

If Σ is reachable from x^* , there exists another canonically defined storage function.

Theorem

Assume that Σ is reachable from $x^* \in \mathcal{X}$. Define the required supply (from x^*) $S_r : \mathcal{X} \to \mathbb{R} \cup \{-\infty\}$ as

$$S_r(x) := \inf_{\substack{u(\cdot) \\ T \ge 0}} \int_{-T}^0 s(u(t), y(t)) dt, \qquad x(-T) = x^*, \quad x(0) = x.$$

Then S_r satisfies the dissipation inequality. Furthermore, Σ is dissipative iff $\exists K > -\infty$ such that $S_r(x) \geq K, \ \forall x \in \mathcal{X}$. Moreover, if S is a storage function for Σ , then

$$S(x) \le S_r(x) + S(x^*), \qquad x \in \mathcal{X},$$

and $S_r(x) + S(x^*)$ is itself a storage function (and in particular $S_r(x) + S_a(x^*)$).

Proof

To steer the system from x^* at -T to $x(t_1)$ consider $u(\cdot):[-T,t_1]\to U$ which first take x^* to $x(t_0)$ at time $t_0\le t_1$, and then equal to a given input $u(\cdot):[t_0,t_1]\to U$ transferring $x(t_0)$ to $x(t_1)$. This is a suboptimal control policy, whence

$$S_r(x(t_0)) + \int_{t_0}^{t_1} s(u(t), y(t)) dt \ge S_r(x(t_1)).$$

For the second claim, note that by definition of S_a and S_r

$$S_a(x^*) = \sup_{x} -S_r(x),$$

By the previous theorem, Σ is dissipative iff $\exists K>-\infty$ such that $S_r(x)\geq -K,\ \forall x.$ Finally, let S satisfy the dissipation inequality. Then for any $u(\cdot):[-T,0]\to U$ transferring $x(-T)=x^*$ to x(0)=x we have by the dissipation inequality

$$S(x) - S(x^*) \le \int_{-T}^{0} s(u(t), y(t)) dt.$$

Taking the infimum on the right-hand side over all $u(\cdot)$ proves the claim. If $S \ge 0$, then $S_r + S(x^*) \ge 0$, and also $S_r + S(x^*)$ satisfies the dissipation inequality.

Bibliography

Schaft, Arjan van der. L2-gain and passivity in nonlinear control. Springer-Verlag, 1999.

Willems, Jan C. "Dissipative dynamical systems Part I: General theory". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 321–351.

- "Dissipative dynamical systems Part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393.