PV-Ada: Point-Voxel Adaptive Feature Abstraction for Robust Point Cloud Classification.

Lifa Zhu 2022/10/23

Team - DGPC

Lifa Zhu¹, Changwei Lin¹, Chen Zheng², and Ninghua Yang¹

¹ DeepGlint, Beijing, China

² China University of Mining and Technology, Beijing, China

Contents

- Ideas
- Network architecture
- Experiments
- Discussion and Conclusion

Ideas

• The rough contour may benefit point cloud classification under corruptions, instead of paying attention to detailed structures.

• Not all all points in point cloud are equal for individual feature representation, such as plane points and outlier points.

Architecture

Pyramid Feature Interaction

Inputted point cloud X, PV-Ada outputs \mathcal{C} scores Y for all the \mathcal{C} candidate categories.

Loss function: Cross entropy loss with label smoothing.

$$z_{1}(\mathbf{F}^{1}, \mathbf{F}^{2}) = \mathbf{F}^{2},$$

$$z_{2}(\mathbf{F}^{1}, \mathbf{F}^{2}) = h_{1}(\mathbf{F}^{1}) + \mathbf{F}^{2},$$

$$z_{3}(\mathbf{F}^{1}, \mathbf{F}^{2}) = h_{3}(\operatorname{cat}([h_{2}(\mathbf{F}^{1}), \mathbf{F}^{2}])),$$
(3)

$$\mathbf{S}_{\mathbf{X}}^{t} = g(\mathbf{F}_{\mathbf{X}}^{t}),$$

$$\mathbf{F}_{\mathbf{X}} = \text{MaxPooling}(\mathbf{S}_{\mathbf{X}}^{t} \cdot \mathbf{F}_{\mathbf{X}}^{t}),$$
(4)

Point-voxel encoder

- Local encoding groups k nearest neighbors for each point (voxel), then learns D dimensional point (voxel) feature $\mathbf{F}_{\mathbf{x}}^e \in \mathbb{R}^{N \times D}$.
- Transformer is based on offset-attention(PCT) and residual structure. It generates enhanced point feature $\mathbf{F}_{\mathbf{x}}^t \in \mathbb{R}^{N \times 4D}$.
- The input point cloud X is progressively voxelized twice with voxel size v and 2v, generating $\mathbf{X}' \in \mathbb{R}^{N' \times 3}$ and $\mathbf{X}'' \in \mathbb{R}^{N'' \times 3}$, respectively. Pyramid feature interaction is conducted as Equation (3).

Concatenation

• Adaptive feature abstraction (AFA) predicts point weight S_X^t and conducts feature abstraction as Equation (4).

Adaptive Feature Abstraction

Experiments

• Training set: ModelNet40 training set.

• Validation set: the public ModelNet-C dataset.

Testing set: the private ModelNet-C dataset.

Table 1. Full results for Overall Accuracy (OA) on testing set (ExtraOA), validation set (mOA) and clean ModelNet40 testing set. W.M. is short for WOLFMix and Tp is short for Tapering. Bold: best in column. Underline: second best in column.

	ExtraOA ↑	Clean ↑	mOA†	Scale	Jitter	Drop-G	Drop-L	Add-G	Add-L	Rotate
$ \begin{array}{c} \text{PointNet}[15] + \text{W.M.} \\ \text{PCT}[3] + \text{W.M.} \end{array} $	- -	0.884 0.934		1		0.857 0.906			$0.807 \\ 0.861$	
GDANet[26]+W.M. RPC[17]+W.M.	$0.797 \\ 0.739$	0.934 <u>0.933</u>	ı	1		$0.868 \\ 0.895$				$\frac{0.912}{0.897}$
PV-Ada+W.M. PV-Ada+W.M.+Tp	$\frac{0.860}{0.865}$	0.923	0.884 0.88		$\frac{0.796}{0.792}$	$\frac{0.9}{0.897}$	$0.88 \\ 0.874$	0.915 <u>0.914</u>	0.89 0.884	$0.896 \\ 0.892$

Table 2. Full results for mCE on validation set. Bold: best in column. Underline: second best in column.

	$ \mathbf{mCE}\downarrow$	Scale	Jitter	Drop-G	Drop-L	Add-G	Add-L	Rotate
$\overline{\mathrm{DGCNN[23]}+\mathrm{W.M.}}$	0.590	0.989	0.715	0.698	0.575	0.285	0.415	0.451
PCT[3]+W.M.	0.574	1.000	0.854	0.379	0.493	0.298	0.505	0.488
GDANet[26]+W.M.	0.571	0.904	0.883	0.532	0.551	0.305	0.415	0.409
RPC[17]+W.M.	0.601	1.011	0.968	0.423	0.512	0.332	0.480	0.479
PV-Ada+W.M.	0.538	0.947	0.652	0.403	0.58	0.292	0.4	0.493

Table 3. Ablation studies on the proposed modules and positive tricks on ModelNet-C.

Base	P-V	Best val	RSMix	AFA	Tapering	clean ↑	mOA ↑	ExtraOA ↑
√						0.928	0.862	_
✓	✓					0.927	0.879	0.843
✓	✓	✓				0.923	0.881	0.848
\checkmark	1	✓	\checkmark			0.921	0.882	0.855
\checkmark	1	✓	\checkmark	✓		0.923	0.884	0.860
✓	✓	\checkmark	\checkmark	✓	✓	0.911	0.88	0.865

Table 4. Ablation studies on the negative designed modules.

Model	clean ↑	mOA ↑
$Base + P-V (z_1)$ $Base + P-V (z_2)$ $Base + P-V (z_3)$	0.927 0.932 0.926	0.879 0.862 0.868
Base + P-V (share) Base + P-V (w.o. share)	0.927 0.929	$0.879 \\ 0.855$
Base + P-V (#2 voxel) Base + P-V (#3 voxel)	0.927 0.914	0.879 0.868

Table 5. Model size and inference time

Model	# parameters	inference time
PV-Ada	3.16 M	$15.7 \mathrm{\ ms}$

Discussion and Conclusion

- Equipped with a stronger backbone, better performance may be achieved in point cloud classification under corruptions.
- PV-Ada is proposed for robust point cloud classification under corruptions, which outperforms the state-of-the-art published models and achieves 0.884 and 0.865 OA on the public and private ModelNet-C test set.
- Point-voxel encoder and adaptive feature abstraction are two effective components for robust point cloud classification.
- Code is available at https://github.com/zhulf0804/PV-Ada.

Thank you.