Back to basics: Benchmarking Canonical Evolution Strategies for Playing Atari

Patryk Chrabaszcz, Ilya Loshchilov, Frank Hutter

MU5IN259 - Intelligence Artificielle pour la Robotique

Réalisé par : Wissam AKRETCHE et Madina TRAORÉ

Encadré par : Monsieur Olivier SIGAUD

Sommaire

- 1. Introduction
- 2. Algorithmes étudiés dans l'article
- 3. Présentation des résultats obtenus par les auteurs
- 4. Présentation de nos premiers résultats et comparaison avec ceux obtenus par les auteurs
- 5. Extensions
- 6. Présentation de nos résultats finaux

Introduction

Introduction

Méthodes d'apprentissage par renforcement et stratégies évolutionnaires utilisées pour entraîner l'agent sur le jeu Pong :

- · OpenAl ES
- · Canonical ES
- · CEM
- · CMA-ES
- · DQN

Algorithmes étudiés dans l'article

Algorithme Canonical ES

- · Algorithme évolutionnaire basique
- · La démarche est la suivante:
 - \cdot Tirer aléatoirement un vecteur de paramètres heta
 - · Générer λ nouveaux candidats en ajoutant du bruit gaussien à θ
 - Évaluer chaque candidat
 - Mettre à jour θ en lui affectant la moyenne pondérée des μ meilleurs candidats

Algorithme OpenAI ES

- Algorithme évolutionnaire appartenant à la classe NES "Natural Evolution Strategies"
- · La démarche est similaire à celle de l'algorithme précédent
- \cdot À la dernière étape, les coefficients de θ sont mis à jour en suivant le gradient naturel vers une "fitness" plus élevée

obtenus par les auteurs

Présentation des résultats

Présentation des résultats obtenus par les auteurs

Figure 1: Courbes d'apprentissage obtenues pour les 8 jeux Atari testés par les auteurs : évolution du score en fonction du temps

Présentation des résultats obtenus par les auteurs

	OpenAI ES	OpenAI ES (our)	Canonical ES	OpenAI ES (our)	Canonical ES
	1 hour	1 hour	1 hour	5 hours	5 hours
Alien		3040 ± 276.8	2679.3 ± 1477.3	4940 ± 0	5878.7 ± 1724.7
Alien	994	1733.7 ± 493.2	965.3 ± 229.8	3843.3 ± 228.7	5331.3 ± 990.1
Alien		1522.3 ± 790.3	885 ± 469.1	2253 ± 769.4	4581.3 ± 299.1
BeamRider		792.3 ± 146.6	774.5 ± 202.7	4617.1 ± 1173.3	1591.3 ± 575.5
BeamRider	744	708.3 ± 194.7	746.9 ± 197.8	1305.9 ± 450.4	965.3 ± 441.4
BeamRider		690.7 ± 87.7	719.6 ± 197.4	714.3 ± 189.9	703.5 ± 159.8
Breakout		14.3 ± 6.5	17.5 ± 19.4	26.1 ± 5.8	105.7 ± 158
Breakout	9.5	11.8 ± 3.3	13 ± 17.1	19.4 ± 6.6	80 ± 143.4
Breakout		11.4 ± 3.6	10.7 ± 15.1	14.2 ± 2.7	12.7 ± 17.7
Enduro		70.6 ± 17.2	84.9 ± 22.3	115.4 ± 16.6	86.6 ± 19.1
Enduro	95	36.4 ± 12.4	50.5 ± 15.3	79.9 ± 18	76.5 ± 17.7
Enduro		25.3 ± 9.6	7.6 ± 5.1	58.2 ± 10.5	69.4 ± 32.8
Pong		21.0 ± 0.0	12.2 ± 16.6	21.0 ± 0.0	21.0 ± 0.0
Pong	21	21.0 ± 0.0	5.6 ± 20.2	21 ± 0	11.2 ± 17.8
Pong		21.0 ± 0.0	0.3 ± 20.7	21 ± 0	-9.8 ± 18.6
Qbert		8275 ± 0	8000 ± 0	12775 ± 0	263242 ± 433050
Qbert	147.5	1400 ± 0	6625 ± 0	5075 ± 0	16673.3 ± 6.2
Qbert		1250 ± 0	5850 ± 0	4300 ± 0	5136.7 ± 4093.9
Seaquest		1006 ± 20.1	1306.7 ± 262.7	1424 ± 26.5	2849.7 ± 599.4
Seaguest	1390	898 ± 31.6	1188 ± 24	1040 ± 0	1202.7 ± 27.2
Seaquest		887.3 ± 20.3	1170.7 ± 23.5	960 ± 0	946.7 ± 275.1
SpaceInvaders		1191.3 ± 84.6	896.7 ± 123	2326.5 ± 547.6	2186 ± 1278.8
SpaceInvaders	678.5	983.7 ± 158.5	721.5 ± 115	1889.3 ± 294.3	1685 ± 648.6
SpaceInvaders		845.3 ± 69.7	571.3 ± 98.8	1706.5 ± 118.3	1648.3 ± 294.5

Figure 2: Comparaison des algorithmes OpenAI ES et Canonical ES : moyenne sur 30 sessions d'entraînement du score final obtenu pour chaque jeu. Les résultats significativement meilleurs (test U de Mann-Whitney) sont représentés en bleu.

Présentation de nos premiers résultats et comparaison avec ceux

obtenus par les auteurs

Comportement de l'agent entraîné avec Canonical ES

Comparaison avec de nos résultats avec ceux des auteurs

	OpenAl ES (1h)	Canonical ES (1h)	OpenAl ES (5h)	Canonical ES (5h)
Résultats obtenus par les auteurs	21	8.2	21	21
Nos résultats	15	5	17	16

Tableau 1: Comparaison des scores finaux moyens obtenus pour le jeu Pong (21 étant le score maximal)

CEM (Cross-Entropy Method)

- Se base sur une optimisation probabiliste appartenant au domaine de l'optimisation stochastique
- · Le principe est le suivant :
 - On génère des échantillons de données aléatoires en utilisant un ensemble de paramètres dynamiques
 - On met à jour les paramètres permettant de générer les nouvelles données aléatoires en se basant sur les meilleurs échantillons de la génération courante

CMA-ES (Covariance Matrix Adaptation Evolution Strategy)

- · Algorithme évolutionnaire
- Adapte sa moyenne et sa matrice de covariance en s'appuyant sur les meilleures solutions de la génération précédente
- L'algorithme peut ainsi décider d'élargir son espace de recherche lorsque les meilleures solutions sont éloignées les unes des autres ou de le réduire lorsqu'elles sont proches
- Au fil des itérations, la population se concentre autour de l'optimum global

DQN

- · Algorithme d'apprentissage par renforcement profond
- Il prend en entrée l'observation courante et retourne les Q-valeurs des couples (état, action)
- Il estime la qualité d'effectuer une action à partir d'un état donné

Présentation de nos résultats fin-

aux

Présentation de nos résultats finaux

Figure 3: Évolution des récompenses en fonction du temps sur le jeu Ponglors de la phase d'apprentissage

Conclusion

Conclusion

- Les algorithmes évolutionnaires deviennent de réels concurrents aux algorithmes d'apprentissage par renforcement profond
- Combiner les forces des deux méthodes pourrait conduire à des performances inégalées

Références

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller. *Playing Atari with Deep Reinforcement Learning*. arXiv:1312.5602.

Brandon Amos, Denis Yarats. The Differentiable Cross-Entropy Method. arXiv:1909.12830

Saliman et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. arXiv:1703.03864.

Nikolaus Hansen. *The CMA Evolution Strategy: A Tutorial* . arXiv:1604.00772.

Merci pour votre attention