CSC236 Midterm Test Solutions

A correlation between the midterm test and exam has been confirmed. Please use this resource to study well!

Written by AlexTheMango, with pleasure [^_-]/

Prepared for December 19, 2024

Let \mathcal{F} be the collection of all functions with domain \mathbb{N} and co-domain \mathbb{R} . Given $A, B \in \mathcal{P}(\mathcal{F})$, define addition on $\mathcal{P}(\mathcal{F})$ by

$$A+B \coloneqq \{f+g: f \in A, g \in B\}.$$

Recall that f+g is the function with domain $\mathbb N$ and co-domain $\mathbb R$ such that

$$(f+g)(n) = f(n) + g(n).$$

Also recall that, if $h \in \mathcal{F}$, then

$$O(h) = \{ q \in \mathcal{F} : (\exists n_0, c \in \mathbb{N}) (\forall n \ge n_0) [|q(n)| \le c|h(n)|] \}.$$

<u>Claim:</u> For arbitrary nonnegative $u, v \in \mathcal{F}$, it follows that O(u) + O(v) = O(u + v).

Proof.

This proof demonstrates a double-subset inclusion to show equality.

Forward Inclusion —
$$O(u) + O(v) \subseteq O(u+v)$$
:
Let $h \in [O(u) + O(v)]$. Then, $h = f + g$, where $f \in O(u)$ and $g \in O(v)$.

By definition, there exists $c_1, c_2, n_1, n_2 > 0$ such that

- $|f(n)| \le c_1 |u(n)|$ for all $n \ge n_1$;
- $|g(n)| \le c_2 |v(n)|$ for all $n \ge n_2$.

Choose $n_0 = max(n_1, n_2)$ and $c = max(c_1, c_2)$.

Using the definition, triangle inequality, and assumption that u, v are nonnegative functions,

it follows that

$$|h(n)| = |f(n) + g(n)| \le |f(n)| + |g(n)| \le c_1 |u(n)| + c_2 |v(n)|$$

$$\le c|u(n)| + c|v(n)|$$

$$\le c(|u(n)| + |v(n)|)$$

$$= c(u(n) + v(n)) = c(|u(n) + v(n)|) = c(|(u + v)(n)|).$$

Thus, $|h(n)| \le c|(u+v)(n)|$.

By definition, $h \in O(u+v)$. Therefore, $O(u) + O(v) \subseteq O(u+v)$.

Backward Inclusion — $O(u) + O(v) \supseteq O(u+v)$: Let $h \in O(u+v)$.

By definition, there exists $c, n_0 > 0$ such that $|h(n)| \le c|(u+v)(n)|$ for all $n \ge n_0$.

It follows that $|h(n)| \le c|u(n) + v(n)| = c(u(n) + v(n))$, as u, v are nonnegative functions.

Let w(n) = h(n) - cu(n). Consider the following cases for w(n).

Case — w(n) > 0:

Notice that $w(n) > 0 \implies h(n) - cu(n) > 0 \implies h(n) > cu(n)$.

Since u is a nonnegative function, then h(n) must be positive.

Recall $|h(n)| \le c|(u+v)(n)| = c|u(n)+v(n)|$, and both u,v are nonnegative functions.

It follows that

$$|w(n)| = |h(n) - cu(n)| = h(n) - cu(n)$$

$$= |h(n)| - cu(n) \le |cu(n) + cv(n)| - cu(n)$$

$$= cu(n) + cv(n) - cu(n) = cv(n) = c|v(n)|.$$

Thus, $|w(n)| \le c|v(n)|$. This means $w(n) \in O(v)$.

Write h(n) = cu(n) + w(n). It is obvious that $cu(n) \in O(u)$, and recall that $w(n) \in O(v)$.

Thus, $h(n) \in O(u+v)$.

Case — $w(n) \leq 0$:

Notice that $w(n) \leq 0 \implies h(n) - cu(n) \leq 0 \implies h(n) \leq cu(n)$. So, choose h(n) = cu(n). Then, w(n) = h(n) - cu(n) = cu(n) - cu(n) = 0.

Notice that $|w(n)| = |0| = 0 \le c|v(n)|$, in fact, for any c > 0. Clearly, $w(n) \in O(v)$.

Write h(n) = cu(n) + w(n). It is obvious that $cu(n) \in O(u)$, and recall that $w(n) \in O(v)$.

Thus, $h(n) \in O(u+v)$.

Conclusion of Cases:

In all cases, $h(n) \in O(u+v)$ has been demonstrated.

Therefore, $O(u) + O(v) \subseteq O(u + v)$.

Conclusion:

Since both inclusions hold, O(u) + O(v) = O(u + v).

Let \mathcal{F} be as in Question #1. Let \mathcal{G} be the collection of all functions with domain $\mathcal{N} \times \mathcal{N}$ and co-domain \mathcal{R} . Let $V \in \mathcal{G}$.

For every $i \in \mathbb{N}$, let $g_i(n) = \sum_{j=1}^i V(j,n)$, and let $f_i(n) = V(i,n)$.

(a)

<u>Claim:</u> For all $i \in \mathbb{N}$, it follows that $O(g_i) = \sum_{j=0}^{i} O(f_j)$.

Proof.

Denote the predicate:

$$P(i) := O(g_i) = \sum_{j=0}^{i} O(f_j)$$

Proceed using the principle of simple induction over P(i) for all $i \in \mathbb{N}$.

Base Case:

Let i = 0.

Then,

$$O(g_i) = O(g_0)$$

$$= O(\sum_{j=0}^{0} V(j, n))$$

$$= O(V(0, n))$$

$$= O(f_0)$$

$$= \sum_{j=0}^{0} O(f_j)$$

$$= \sum_{j=0}^{i} O(f_j).$$

Thus, P(0).

Induction Hypothesis:

Assume for some $k \in \mathbb{N}$, P(k).

This means $O(g_k) = \sum_{j=0}^k O(f_j)$.

Induction Step:

Notice that

$$O(g_{k+1}) = O(\sum_{j=0}^{k+1} V(j, n))$$

$$= O(\sum_{j=0}^{k+1} f_j)$$

$$= O(\sum_{j=0}^{k} f_j + f_{k+1})$$

$$= O(\sum_{j=0}^{k} f_j) + O(f_{k+1}), \text{ by } Question #1$$

$$= \sum_{j=0}^{k} O(f_j) + O(f_{k+1}), \text{ by the Induction Hypothesis}$$

$$= \sum_{j=0}^{k+1} O(f_j).$$

Thus, $P(k) \implies P(k+1)$.

Conclusion:

Therefore, by the principle of simple induction, P(i) holds for all $i \in \mathbb{N}$.

(b)

<u>Claim:</u> If $g(n) = g_n(n)$, then $O(g) = \sum_{j=0}^n O(f_j)$ does **not** necessarily hold.

(b)

<u>Claim:</u> If $g(n) = g_n(n)$, then $O(g) = \sum_{j=0}^n O(f_j)$ does **not** necessarily hold.

Proof.

To show that the equivalence in the claim does not necessarily hold, consider a counterexample.

Fix n_0 . Define $f_i(n)$ as follows:

$$f_j(n) = \begin{cases} n^2 & \text{if } j = n, \\ 1 & \text{if } j \neq n. \end{cases}$$

Consider the function $g_n(n) = \sum_{j=0}^n f_j(n)$.

For $n > n_0$, compute $g_n(n)$ as follows:

$$g_n(n) = \sum_{j=0}^n f_j(n) = \sum_{j=0}^{n-1} f_j(n) + f_n(n).$$

Substituting the definition of $f_i(n)$, this leads to:

$$\sum_{j=0}^{n-1} f_j(n) = \sum_{j=0}^{n-1} 1 = n.$$

Since $f_n(n) = n^2$, it follows that:

$$g_n(n) = n + n^2.$$

Therefore, $O(g_n) = O(n + n^2) = O(n^2)$. Let this be the left-hand side (LHS).

On the other hand, consider $\sum_{j=0}^{n} O(f_j)$:

$$f_j(n) = 1$$
 for all $j \neq n$.

Hence, $O(f_j) = O(1)$. There are n terms where $f_j(n) = 1$, so:

$$\sum_{j=0}^{n} O(f_j) = \sum_{j=0}^{n} O(1) = (n+1)O(1).$$

This simplifies to O(n+1) = O(n). Let this be the right-hand side (RHS).

Clearly, $LHS = O(n^2) \neq O(n) = RHS$.

Note that this analysis holds for $n > n_0$, as n_0 is fixed and n can grow arbitrarily large. Fixing n_0 ensures a concrete starting point, while allowing $n > n_0$ provides generality for the counterexample. The counterexample demonstrates that $O(g) = \sum_{j=0}^{n} O(f_j)$ does not necessarily hold in general.

Thus, the equivalence in the claim is disproved.

<u>Claim:</u> $f(n) = \lceil \sqrt{n} \rceil - \lfloor \sqrt{n} - 4 \rfloor$ is asymptotically constant (i.e. $f(n) \in \Theta(1)$).

Proof.

By definition, if x and y are arbitrary real numbers, then

$$(x \le \lceil x \rceil < x + 1)$$

and

$$(y-1<|y|\leq y).$$

Rewrite the second inequality as $-y \le -\lfloor y \rfloor < -(y-1)$.

By adding the two inequalities, it follows that $x - y \le \lceil x \rceil - \lfloor y \rfloor < x + 1 - (y - 1) = x - y + 2$.

Let $x = \sqrt{n}$ and $y = \sqrt{n} - 4$, for arbitrary natural n.

Then,
$$\lceil x \rceil - \lfloor y \rfloor = \lceil \sqrt{n} \rceil - \lfloor \sqrt{n} - 4 \rfloor = f(n)$$
. As well, $x - y = \sqrt{n} - (\sqrt{n} - 4) = 4$.

This means $x - y \le \lceil x \rceil - \lfloor y \rfloor < x - y + 2 \implies 4 \le f(n) < 4 + 2 \implies 4 \le f(n) < 6$.

Let $n_0 = 0, c = 4, d = 6$. Let g(n) = 1.

Notice that $4 \le f(n) < 6 \implies cg(n) \le f(n) \le dg(n)$, for all $n \ge n_0 = 0$ with c = 4, d = 6.

Therefore, $f(n) \in \Theta(g(n)) \implies f(n) \in \Theta(1)$. Indeed, f(n) is asymptotically constant.

<u>Claim:</u> The recurrence, $T(n) = 3T(\frac{n}{3}) + n^2 - n$, can be solved using the master theorem, and there exists a function g(n) such that $T \in \Theta(g(n))$.

Proof.

The recurrence $T(n) = 3T(\frac{n}{3}) + n^2 - n$ has the form $T(n) = aT(\frac{n}{b}) + f(n)$, where a = 3, b = 3, and $f(n) = n^2 - n$. Since $f(n) = n^2 - n$ asymptotically behaves like n^2 , it follows that $f(n) \in \Theta(n^2)$, implying k = 2.

Master theorem applies to recurrences of this form, provided a > 0, b > 1, and f(n) is non-negative for sufficiently large n. Here, a = 3, b = 3, and $f(n) = n^2 - n$ satisfies all these conditions since n^2 dominates n as $n \to \infty$.

Next, compute $\log_b a$:

$$\log_b a = \log_3 3 = 1.$$

Compare $\log_b a$ with k:

$$k = 2 > \log_3 3 = 1.$$

By the master theorem, when $k > \log_b a$, this leads to $T(n) \in \Theta(n^k)$. Thus:

$$T(n)\in\Theta(n^2).$$

Therefore, there exists a function $g(n) = n^2$ such that $T(n) \in \Theta(g(n))$.

Claim: Every regex without the Kleene star * represents a finite language.

Proof.

Let r be a regular expression without the Kleene star *.

Define the predicate:

$$P(r) := \mathcal{L}(r)$$
 is a finite language.

Proceed using the principle of structural induction over P(r) for all regular expressions r without the Kleene star *.

Base Case:

By the definition of regular expressions,

- $\mathcal{L}(\varnothing) = \varnothing$
- $\mathcal{L}(\epsilon) = \{\epsilon\}$
- $\mathcal{L}(a) = \{a\}$, where $a \in \Sigma$ is an arbitrary symbol

Clearly, all three languages as denoted above are finite.

Thus, $P(\emptyset)$, $P(\epsilon)$, P(a) all hold.

Induction Hypothesis:

Assume that for some regular expressions r_1, r_2 without the Kleene star *, $P(r_1), P(r_2)$ hold.

This means the languages $\mathcal{L}(r_1)$, $\mathcal{L}(r_2)$ are finite.

Induction Step:

Consider that every language without the Kleene star * can be obtained by the union or concatenation of languages.

By the Induction Hypothesis, $\mathcal{L}(r_1)$ and $\mathcal{L}(r_2)$ are finite languages. Recall that languages are sets of elements, where the elements are symbols of some alphabet Σ .

By definition, $\mathcal{L}(r_1 + r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$, which is finite as the union of finite sets (languages) is a finite set.

By definition, $\mathcal{L}(r_1r_2) = \mathcal{L}(r_1) \cap \mathcal{L}(r_2)$, which is finite as the concatenation of two finite languages remains finite.

Conclusion:

By the principle of structural induction, every regular expression without the Kleene star * represents a finite language.

wordsgohere

Proof.

 ${\it proofgoeshere}$

wordsgohere

Proof.

 ${\it proofgoeshere}$