14.2 コミッティ

平成 28 年 9 月 11 日

概 要

PRML の「14.2 コミッティ」についての実装と考察

目 次

1	問題設定	2
2	アルゴリズム	2
3	コード	2
4	結果	3
5	まとめ	4

1 問題設定

コミッティを用いて回帰問題に対する予測性能を向上させる.

2 アルゴリズム

まず、ブーストラップデータ集合を作る.

ブーストラップ ----

1. N 個のデータ点 $X=x_1,\ldots,x_N$ から N 回復元抽出することによって新たなデータ集合を作る.

このデータ集合を用いて、ブートストラップ集約を行う.

ブーストラップ集約 (バギング) ——

- 1. M 個のブーストラップデータ集合を作る.
- 2. それぞれのデータ集合に対して M 個の予測モデル $y_m(x)$ を作る.
- 3. M 個の予測モデル $y_m(x)$ の平均がコミッティの予測である.

3 コード

ブートストラップ集約のコード (committee.py).

```
S_N=np.zeros((L,M,M))
m_N=np.zeros((L,M))
for 1 in range(L):
        #ブートストラップ
        x_1,t_1=[],[]
        for n in range(N):
                num=rd.randint(N)
                x_l.append(x[num])
                t_l.append(t[num])
        for n in range(N):
                for m in range(M):
                         P[n,m]=gauss_basis(x_l[n],m,mu[m],s)
        alpha, beta=0, 1.0/(0.3)**2
        delta=0.5
        lam = eigvals (np.dot(P.T,P))
        while delta > 10 ** -6:
                tmp_alpha,tmp_beta=alpha,beta
                S_N[1,:,:]=inv(alpha*I+beta*np.dot(P.T,P))
                m_N[1,:] = beta*np.dot(S_N[1,:,:],np.dot(P.T,t_1))
                new_lam=lam*beta
                gamma=0
                for m in range(M):
                         gamma+=new_lam[m]/(alpha+new_lam[m])
                alpha=gamma/np.dot(m_N[1,:],m_N[1,:])
                tmp=0
                for n in range(N):
                         tmp+=(t_1[n]-np.dot(m_N[1,:],P[n,:]))**2
```

4 結果

ここでは例として, ガウス基底を用いた線形基底関数モデルで実験をした. コミッティの影響が見えた例として, 通常であれば

となったものが、コミッティを行うとL = 1, 5, 10

となった.

誤差は

M	30	100	500
5	0.82	0.89	0.88
10	0.35	0.29	0.28
15	0.35	0.28	0.29

表 1: 通常の線形基底関数モデル

が

M	30	100	500
5	0.84	0.89	0.87
10	0.36	0.30	0.27
15	0.34	0.31	0.27

表 2: コミッティ L=1

M	30	100	500
5	0.87	0.90	0.89
10	0.37	0.28	0.28
15	0.37	0.29	0.27

表 3: コミッティ L=5

M	30	100	500
5	0.82	0.89	0.88
10	0.35	0.29	0.28
15	0.35	0.28	0.27

表 4: コミッティ L=10

となった.

5 まとめ

コミッティ(ブートストラップ集約)で変わるのは、データへの依存性の部分である. 同じモデルを用いて、違うデータに対して平均をとるというだけなので、モデルの改善にはつながらないと考える. ブートストラップデータ集合を用いるという点からしてうさんくさく、結果だけを取り繕うとした感じがする.

また, ブートストラップもあまり効果的であるとは考えられない. ブートストラップを使うなら, 交差確認を行ったほうがいいように感じる.