A joint normal-ordinal model for ordinal and continuous longitudinal data

Joint Statistical Meeting, August 2024

Margaux Delporte

0 Case study

- ▶ 60 older patients with hip fractures
- Post-operative follow-up
- ► Activities of Daily Living (ADL)
- Cognitive impairment (MMSE)

0 Activities of daily living score

0 Mini Mental State Exam

0 Research question

What is the association between cognitive impairment and activities of daily living?

Table: Number of measurements at each time point for MMSE and ADL.

Response	Day 1	Day 3	Day 5	Day 8	Day 12
MMSE	59	58	60	52	38
ADL	60	0	60	0	40

0 Time dependent covariates

$$Y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})\mathsf{t}_{ij} + \beta_2 \mathsf{X}_{1i(j-1)} + \beta_3 \mathsf{X}_{2i} + \epsilon_{ij}$$

- Lag relationship
- ► Endogenous/exogenous

0 Joint mixed model

$$Y_{1ij} = \mathbf{X}_{1ij}\boldsymbol{\beta}_1 + b_{10i} + b_{11i}t_{ij} + \epsilon_{1ij}, \Phi^{-1}(P(Y_{2ij} \le c)) = \gamma_c - (\mathbf{X}_{2ij}\boldsymbol{\beta}_2 + b_{20i} + b_{21i}t_{ij}).$$

The random intercepts (b_{10i}, b_{20i}) and the random slopes (b_{11i}, b_{21i}) follow a multivariate normal distribution with mean $\mathbf{0}$ and variance-covariance \mathbf{D} .

0 Latent correlations

Table: Latent correlations [CI] between the random effects of impairment and ADL.

	b_{10i}	b_{11i}	b_{20i}	b_{21i}
$\overline{b_{10i}}$	1			
b_{11i}	.12 [44;.61]	1		
b_{20i}	70[89;31]	38 [77;.21]	1	
b_{21i}	.38 [80;.95]	07 [98;.98]	72 [-1;.95]	1

0 Manifest correlations

Table: Correlations between ADL (higher: lower functioning) and severe cognitive impairment for 78-year-old men.

	t(Impaired)				
t(ADL)	1	3	5	8	12
1	.44[.28;.58]	.44[.29;.57]	.44[.29;.57]	.43[.28;.57]	.42[.26;.57]
5	.48[.34;.60]	.48[.34;.60]	.48[.34;.60]	.48[.34;.61]	.48[.31;.61]
12	.47[.26;.65]	.48[.28;.64]	.48[.29;.64]	.49[.29;.64]	.49[.28;.65]

Manifest correlations

Table: Correlations between ADL (higher: lower functioning) and cognitive impairment for 78-year-old men.

	t(Impaired)				
t(ADL)	1	3	5	8	12
1	.47[.31;.60]	.47[.32;.60]	.47[.33;.60]	.48[.34;.60]	.48[.32;.61]
5	.51[.38;.62]	.52[.39;.62]	.52[.41;.62]	.53[.41;.63]	.54[.41;.65]
12	.50[.30;.66]	.51[.32;.66]	.52[.34;.66]	.54[.37;.67]	.55[.37;.70]

0 Predictions

Table: Prediction of cognitive impairment based on the history of ADL at time 1 and 5 for 78-year-old women.

History ADL (day 1 – day 5)	P(Impairment) (day 12)		P(Severe Impairment) (day 12)		
14.57-10.87 18.10-15.42 21.63-19.97	0.57	[0.05;0.33] [0.41;0.72] [0.74;0.98]	0.17	[0.08;0.34]	

0 Summary

- Multiple longitudinal responses can be analyzed with joint models
- ► Formulas for computing the correlations between the responses on the observed scale
- Formulas for predictions of one response given the other response(s)

0 More detailed information

⋈ margaux.delporte@kuleuven.be

