JEPPE HINRICHS

Copenhagen, Denmark

Employment History

2024-now	Electrical Engineer, Research & Development, Sensata Technologies
2021 - 2023	Graduate Researcher, Brain/Biomedical Microsystems Laboratory
2015 - 2017	Electrical Engineer, Development & Engineering, Welltec
2014 - 2015	Intern, Development & Engineering, Welltec

Education

2021 - 2023	Master of Science in Electrical Engineering, Korea Advanced Institute of Science & Technology
2021-2023	Master of Science in Electrical Engineering, Technical University of Denmark
2020	Research Student (Exchange), Tokyo Institute of Technology, Japan
2018 - 2020	Bachelor of Electrical Engineering, Technical University of Denmark

₹ Selected Projects

- 2023 Master Thesis | LTspice, Altium Designer, MATLAB, Xilinx Vivado, Jupyter
 - Title: Portable ultrasound system for blood velocity estimation
 - Analysed research in devices for estimating the velocity of blood
 - Designed system architecture and state machine of Doppler ultrasound imaging device
 - Implemented Zynq 7000 FPGA bitstream for ultrasound pulser control system
 - Implemented MCU/FPGA interconnects, registers and flags necessary for operation
 - Performed in-depth signal propagation analysis to determine validity of bitstream
- 2023 A wearable pH sensor with high sensitivity based on a flexible charge-coupled device | Nanofabrication
 - pH sensor exceeded Nernst limit by accumulating charges
 - Flexible Schottky-junction control CCD-based
 - Wearable sensor with $\Delta V > 2.5 V$ over pH range
 - Integrated temperature sensor using carbon nanotube principle
- 2022 Biomedical MEMS and Electrical Engineering | MATLAB, Simulink, Coventorware
 - Title: Characterizing a Hydraulic Displacement Amplifier for a Piezoelectric Microvalve
 - Characterization of piezo-electric actuator platform for microfluidic valve applications
 - Simulated and fabricated MEMS device for validation of characterisation
 - Achieved high-frequency (1 kHz), high-pressure (300 kPa) and large stroke targets (30 µm)
 - Estimated flow rate at 0.21 mLs⁻¹ with a 1 kHz driving voltage of 500 V peak-to-peak
- 2021 Fabrication of Dopamine Sensor | COMSOL Multiphysics, Nanofabrication, Photolithography
 - Design and simulation of dopamine sensor using simulation software
 - Fabricated sensor from ground-up in a cleanroom environment
 - Using state-of-the-art fabrication machines to validate process and wafer yields
- 2020 High-Speed Convolutional Neural Network Accelerator | Xilinx Vivado, Jupyter
 - Conducted study into training models for machine vision
 - Achieved highly parallelized accelerator that maximizes computational and resource efficiency
 - Implementation of low-resolution CNN inference was 17x in comparison with a baseline measurement

* Skills

Languages Danish, English, German, Japanese, Korean

Coding </br>
C/C++, Python, Bash, LabVIEW, Assembly, Make

CAE/CAD 💆 Altium Designer, KiCAD, OrCAD, LTspice, Qspice, Simulink, Fusion 360

Technologies Linux, Git, RTOS, Xilinx Vivado, MATLAB, NI-DAQ

Misc. Academic research, teaching, training, microcontrollers, computer hardware, exercise, music

Q Miscellaneous Experience

2023 Scholarship Award, from Siemens Foundation for research project funding at KAIST in South Korea

2020 Scholarship Award, from Scandinavia-Sasakawa Foundation for research project at Tokyo Institute of Technology in Japan