Alexandre Marangoni Costa André Luiz de Brandão Damasceno Antonio José Grandson Busson Beatriz Marques Santiago

# Problema da Mochila Fracionária e Multiplicação de Polinômios

## Alexandre Marangoni Costa André Luiz de Brandão Damasceno Antonio José Grandson Busson Beatriz Marques Santiago

#### Problema da Mochila Fracionária e Multiplicação de Polinômios

Relatório técnico apresentado como requisito parcial para obtenção de aprovação na disciplina Projeto e Análise de Algoritmos.

Pontíficia Universidade Católica do Rio de Janeiro Programa de Pós-Graduação em Informática

> Rio de Janeiro - RJ 2017

# Sumário

| In | trodu | ıção                                                | 3  |
|----|-------|-----------------------------------------------------|----|
| 1  | Mo    | chila Fracionária                                   | 4  |
|    | 1.1   | Mochila Fracionária utilizando Heapsort             | 5  |
|    | 1.2   | Mochila Fracionária utilizando Mediana das Medianas |    |
|    | 1.3   | Mochila Fracionária utilizando Pivô                 | 7  |
| 2  | Mul   | tiplicação de Polinômios                            | 11 |
|    | 2.1   | Multiplicação Direta                                | 11 |
|    | 2.2   | Divisão e Conquista                                 | 12 |
|    | 2.3   | Transformada Rapida de Fourier                      | 14 |
| 3  | Res   | ultados                                             | 16 |
|    | 3.1   | Mochila Fracionária                                 | 16 |
|    | 3.2   | Multiplicação de Polinômios                         | 22 |
| Co | onclu | são                                                 | 27 |
| Re | eferê | acias                                               | 28 |

# Introdução

Este relatório é resultado de um trabalho prático que desenvolveu códigos para a solução de dois problemas clássicos: Problema da Mochila Fracionária e Multiplicação de Polinômios. Além do desenvolvimento de algoritmos que solucionem esses problemas, este trabalho visa realizar uma análise da complexidade e do desempenho das implementações em relação ao tempo de execução.

O problema da mochila fracionária se enquadra numa classe de algoritmos chamados gulosos (MANBER, 1989). As soluções utilizadas para a resolução desse problema utilizam os seguintes métodos: ordenação, mediana das medianas e uma variação da mediana das medianas onde o pivô é o resultado de uma divisão que tem como divisor o número de elementos de um vetor e o dividendo o somatório da razão do valor pelo peso.

A solução do segundo problema foi feita usando algoritmos que utilizam 3 estratégias diferentes: por multiplicação direta, divisão e conquista (Karatsuba) e por último foi feita a multiplicação por Transformada de Fourier. Vale ressaltar que nos dois últimos, usa-se a técnica da Divisão e Conquista, porém com abordagens distintas. Estudaremos essas abordagens no Capítulo 2.

Este relatório é complementar ao entregue em 24 de junho de 2017.

## 1 Mochila Fracionária

O problema da mochila consiste em selecionar um subconjunto de itens de forma que o somatório de seus valores seja maximizado sem exceder a capacidade da mochila. Existem variações do problema mochila, nesse trabalho foi abordado a mochila fracionária, onde os itens podem ser divididos para entrar na mochila. Dado essas premissas, o algoritmo que soluciona essa questão tenta determinar quantas porções de cada objeto devem ser adicionadas à mochila.

A estrutura geral do algoritmo segue uma classe denominada de algoritmo guloso, ou seja, se seleciona o que é melhor no momento, faz-se uma opção ótima para determinado momento e espera-se que essa coleção de opções ótimas alcance o ótimo global. Para provar a corretude do algoritmo, considera-se, sem perda de generalidade que os objetos disponíveis são enumerados em ordem decrescente de valor por unidade de peso:

$$v_1/w_1 \ge v_2/w_2 \ge \dots \ge v_n/w_n$$

Sendo  $X=(x_1,x_2,x_3,...,x_4)$  uma solução produzida pelo algoritmo. Se todos os  $x_i$  são iguais a 1, a solução é ótima. Caso contrário, seja j o menor índice cujo  $x_j < 1$ . Então,  $x_i = 1$  quando i < j,  $x_i = 0$  quando i > j, e  $\sum_{i=1}^n x_i w_i = W$ . Logo,  $V(X) = \sum_{i=1}^n x_i w_i$ .

Agora Considerando  $Y=(y_1,y_2,y_3,...,y_4)$  como outra solução viável. Então  $\sum_{i=1}^n y_i w_i \leq W$  e  $\sum_{i=1}^n (x_i-y_i)w_i \geq 0$ . Logo com  $V(Y)=\sum_{i=1}^n y_i w_i$ , temos:

$$V(X) - V(Y) = \sum_{i=1}^{n} (x_i - y_i) v_i = \sum_{i=1}^{n} (x_i - y_i) w_i (v_i / w_i)$$

Quando i < j,  $x_i = 1$ , então  $x_i - y_i$  é positivo ou zero, enquanto  $v_i/w_i \ge v_j/w_j$ , já quando i > j,  $x_i = 0$  e então  $x_i - y_i$  é negativo ou zero, enquanto  $v_i/w_i \le v_j/w_j$ . Dessa forma, para todo i = 1,2,3,..., n é verdade que  $(x_i - y_i)(v_i/w_i) \le (x_i - y_i)(v_j/w_j)$ . Então pode-se concluir que:

$$V(X) - V(Y) \le (v_j/w_j) \sum_{i=1}^{n} (x_i - y_i) w_i \le 0$$

Dessa forma, prova-se que não existe solução viável que possua valor estritamente maior que o valor V(X) da solução encontrada pelo algoritmo, logo X é uma solução ótima para o problema da mochila fracionária.

Para este trabalho foram implementados 3 algoritmos com estratégias distintas e realizado uma análise das suas complexidades relacionando-as com seus tempos computacionais. A principal diferença nas complexidades das implementações se deve a variação no método de escolha dos elementos a serem colocados na mochila, sendo que em todos são utilizados como critério a razão entre o valor e o peso do item.

Conforme pode ser visto no código abaixo, em ambas as estratégias foram utilizadas uma mesma estrutura para armazenar o identificador, o valor, o peso e a razão entre valor e peso de cada item.

```
struct item
{
  unsigned int id;
  int value;
  int weight;
  float rate; // Razao entre o valor e peso.
};
```

Vale ressaltar também que ambas as estratégias utilizam as mesmas funções de leitura dos itens a serem computados (loadItems) e adição dos itens na mochila (fillKnapsack). As 3 estratégias de seleção de itens apresentadas no código abaixo são descritas nas próximas seções.

```
void main (FILE *fileIn, int select)
{
   struct item *items = loadItems (fileIn); // Carrega os Itens.

switch (select) // Seleciona a estratégia.
   case 1: // O(nlog n)
     heapsortRate (items, n);
   break;

case 2: // O(n)
   kesimo (items, 0, n-1, 0);
   break;

case 3: // O(n2)
   pivot (items, 0, n-1, 0);
   break;

knapsack = fillKnapsack (items, W); // Adiciona na mochila.
}
```

#### 1.1 Mochila Fracionária utilizando Heapsort

Nesta implementação é utilizado o algoritmo de ordenação Heapsort, que utiliza uma estrutura de heap para armazenar os itens em ordem decrescente de acordo com

sua fração (valor/peso). Como existem n elementos e todos são adicionados à heap, a complexidade mínima seria O(n), mas ainda é necessário assim que cada elemento é adicionado, reordenar a heap o que, no pior caso, ocorre em O(logn). Como n elementos são adicionados, a complexidade de construção da heap é O(nlogn).

Avaliando os passos explicados acima, este algoritmo apresenta uma complexidade teórica de O(nlogn). Abaixo segue uma simplificação do código utilizado.

```
void heapsortRate (struct item *list, int length)
{
   struct item aux;
   int cunrrentLength = length;

   buildHeap (list, length); // Constroi a heap.

   while (cunrrentLength > 1)
   { // Troca a posicao do primeiro elemento com o ultimo.
      aux = list[0];
      list[0] = list[cunrrentLength-1];
      list[cunrrentLength-1] = aux;
      cunrrentLength--;

   heapify (list, cunrrentLength, 0); // Reorganiza
   }
}
```

#### 1.2 Mochila Fracionária utilizando Mediana das Medianas

Esta implementação faz uso do algoritmo do k-ézimo elemento em que a escolha do pivô é baseada no método da mediana das medianas, usando como critério a razão de valor e peso. Conforme pode ser visto no código abaixo, a função partition retorna a posição do pivô resultante do processamento da mediana das medianas e coloca todos elementos maiores que ele a esquerda e menores a direita, não necessariamente ordenados. Todos esses elementos que ficaram a esquerda tem seu peso somado e comparado a capacidade da mochila. Dependendo do resultado dessa comparação, três passos podem ser seguidos:

- 1. Caso o peso seja igual ao valor da mochila, o *partition* retorna exatamente o valor da mediana das medianas e todos os elementos da esquerda são adicionados à mochila juntamente com o k-ézimo, sendo esta uma condição de parada.
- 2. Caso o peso seja maior que a capacidade, mas o peso menos o peso do item retornado pela mediana das medianas seja menor que a capacidade, este elemento é retornado

para que se possa calcular sua fração que deve entrar na mochila de acordo com a capacidade restante (no caso anterior ele entrou inteiro), sendo esta uma condição de parada.

- 3. Caso o peso seja maior que a capacidade, os valores a direita do partition são desconsiderados e é realizado uma nova mediana das medianas apenas com os valores das razões a esquerda e realizado uma nova soma dos pesos.
- 4. Caso o peso seja menor que a capacidade, esse peso é armazenado, é feito uma nova chamada ao kézimo, com novo partition com os valores da razão a direita do partition anterior e a soma dos pesos é acrescentada a soma anterior armazenada.

A nova soma é novamente comparada a capacidade da mochila e essa iteração ocorre até chegar a alguma das duas condições de parada descritas.

```
void kesimo (struct item *items, int 1, int r, int usedWeight)
{
  int m = partition (items, 1, r);
  int sum = usedWeight;

  for (int i = 1; i <= m; i++)
     sum += items[i].weight;

  if (sum == W || m >= numberItems_-1)
    return m;
  else if ((sum > W) && (sum - items[m].weight <= W))
    return m;
  else if (sum > W)
    return kesimo (items, 1, m-1, usedWeight);
  else
    return kesimo (items, m+1, r, sum);
}
```

Fazendo uma análise de complexidade paralela ao item anterior, podemos substituir a complexidade de se ordenar os itens O(nlogn) pela complexidade do k-ézimo, O(n). Desta forma, a complexidade teórica desta implementação é O(n).

#### 1.3 Mochila Fracionária utilizando Pivô

Esta última implementação é semelhante a anterior com a diferença que, no lugar da mediana das medianas, o partition se utiliza de um pivô que é calculado da seguinte

forma:

$$piv\hat{\mathbf{o}} = \frac{1}{|K|} \sum_{j \in K} \frac{v_j}{w_j}$$

onde K é o conjunto de itens considerados.

```
findPivot (item, int 1, int r)
{
  int k = r + 1 - 1;
  float pivot = 0;

  for (int i = 1; i <= r; i++){
     pivot += items[i].rate;
  }

  return (pivot/k);
}</pre>
```

É importante destacar também que a função partitionPivot, equivalente a partition mostrada na subseção anterior, altera a posição do item mais próximo ao valor calculado pelo findPivot, para a última posição a ser considerada como o última item a ser colocada na mochila. Em seguida os itens até a posição j, tem seus pesos somados e verificado se excede o peso da mochila.

```
int partitionPivot (struct item *items, int 1, int r)
{
  float pivot = findPivot (items, 1, r);
  int posPivot = -1;
  int i = 1;
  int j = r;

  struct item aux;

while (1)
  {
    for (; items[i].rate >= pivot && i <= r; i++);
    for (; items[j].rate < pivot && j >= 1; j--);
    if (i < j)
      {
        if (items[j].rate == pivot)
        {
            posPivot = i;
        }
    }
}</pre>
```

```
aux = items[i];
      items[i] = items[j];
      items[j] = aux;
    }
    else
    {
      if (posPivot == -1){
        posPivot = 1;
        for (int z = 1; z \le j; z++)
        { // Encontra o item com valor mais proximo do pivot
          if(items[posPivot].rate > items[z].rate)
            posPivot = z;
        }
      }
      aux = items[posPivot];
      items[posPivot] = items[j];
      items[j] = aux;
      return j;
    }
  }
}
```

Para provar que a complexidade de pior caso pode chegar a  $O(n^2)$  vamos aplicar este método no conjunto de dados n abaixo e uma mochila de capacidade 200 mil.

$$valor = \{1; 2; 3; 4; 5; 6; 7\}$$
 
$$peso = \{10.000.000; 100.000; 1.000; 10; 0, 1; 0, 001; 0, 00001\}$$

Para ficar mais fácil o entendimento, considere a tabela 1 que será atualizada a cada iteração do k-ézimo:

```
2
     valor
                                     3
                                           4
                                                 5
                                                       6
                                                                7
                 1
             10000000
                         100.000
                                   1.000
                                           10
                                                0.1
                                                     0.001
                                                             0.00001
      peso
valor/peso | 0,0000001
                        0,00002 | 0,003 |
                                          0,4
                                                50
                                                     6000
                                                             700000
```

Tabela 1: Dados iniciais

Para esse dados da tabela 1, o primeiro pivot calculado terá valor 100864, 3433 e apenas o último elemento de n terá razão maior que o pivô e poderá entrar na mochila. Como a capacidade da mochila ainda é muito superior, teremos os dados da tabela 2 para realizar um novo k-ézimo.

| valor      | 1         | 2       | 3     | 4   | 5   | 6     |
|------------|-----------|---------|-------|-----|-----|-------|
| peso       | 10000000  | 100.000 | 1.000 | 10  | 0,1 | 0,001 |
| valor/peso | 0,0000001 | 0,00002 | 0,003 | 0,4 | 50  | 6000  |

Tabela 2: Dados após a primeira iteração do k-ézimo

O pivô da segunda iteração terá valor 1008, 400503 e, novamente, apenas 1 elemento tem fração superior ao pivô calculado, somando peso 13 na mochila e resultando nos dados da tabela 3 para a nova iteração.

| valor      | 1          | 2       | 3     | 4   | 5   |
|------------|------------|---------|-------|-----|-----|
| peso       | 10.000.000 | 100.000 | 1.000 | 10  | 0,1 |
| valor/peso | 0,0000001  | 0,00002 | 0,003 | 0,4 | 50  |

Tabela 3: Dados após a segunda iteração do k-ézimo

Se continuarmos até achar exatamente os elementos que cabem na mochila, teremos chamado a rotina do k-ézimo O(n) vezes, como essa rotina tem complexidade O(n), é possível achar um conjunto de itens em que, no pior caso, a execução pode chegar a ter complexidade  $O(n^2)$ .

# 2 Multiplicação de Polinômios

Neste trabalho, o problema da multiplicação de polinômios foi atacado com 3 algoritmos diferentes:

- 1. Algoritmo que faz a multiplicação direta dos polinômios de entrada  $(O(n^2))$ .
- 2. Algoritmo utilizando divisão-e-conquista ( $O(n^{log}\_^{23})$ ).
- 3. Algoritmo utilizando a DFT e a FFT (Fast Fourier Transform) (O(nlogn)).

A importância do estudo da multiplicação de polinômios está na sua aplicabilidade em problemas comuns. Por exemplo, a multiplicação de inteiros dos computadores nada mais é do que a multiplicação de polinômios, já que o inteiro vira um polinômio em base 2, no processador.

Um outro exemplo interessante é na área de processamento de sinais digitais. Quando um sinal é colocado num sistema linear, a saída desse sistema é descrita por uma função matemática idêntica a fórmula da multiplicação de polinômios. Assim, multiplicar polinômios mais rapidamente revolucionou a era das telecomunicações. (DASGUPTA; PAPADIMITRIOU; VAZIRANI, 2006)

#### 2.1 Multiplicação Direta

O produto de dois polinômios de grau d é um polinômio de grau 2d. Seja o polinômio  $A(x)=a_0+a_1x+a_2x^2+...+a_dx^d$  e o polinômio  $B(x)=b_0+b_1x+b_2x^2+...+b_dx^d$ , o produto destes polinômios  $C(x)=c_0+c_1x+c_2x^2+...+a_2x^2d$  tem os segintes coeficientes:

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_o = \sum_{i=0}^k a_i b_{k-i}$$

O seguinte código para iterar entre A(x) e B(x) para calcular C(x):

```
int* multiply_trivial(int A[], int B[], int n) {
   int *C = (int *) calloc(2*n + 1, sizeof(int));
   for (int i = 0; i < n + 1; i++)
        for (int j = 0; j < n + 1; j++)
            C[i+j] += A[i] * B[j];
   return C;
}</pre>
```

Olhando com atenção, o código é uma transcrição da fórmula acima. Cada C[i+j] corresponde ao  $c_k$ , e é a soma dos produtos entre A[i] e B[j]. Observe que i+j é igual ao k da fórmula.

A análise de complexidade é direta: para cada coeficiente de A passamos por todos os coeficientes de B. Como A e B tem n coeficientes, a complexidade é  $O(n^2)$ .

#### 2.2 Divisão e Conquista

A solução por divisão e conquista da multiplicação de polinômios divide cada polinômio em dois (coeficientes pares e coeficientes ímpares) da seguinte forma: Seja polinômio A de grau d, onde, por simplicidade d é potencia de 2,

$$A(x) = a_0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + \dots + a_{d-2} x^{d-2} + a_{d-1} x^{d-1} + a_d x^d$$

Ele pode ser representado da seguinte forma:

$$A(x) = (a_0 + a_2x^2 + \dots + a_{d-2}x^{d-2} + a_dx^d) + (a_1 + a_3x^2 + \dots + a_{d-2}x^{d-2})x$$

Aplicando essa representação sucessivamente, reduzimos o problema à multiplicação  $(ax+b)\times(cx+d)=acx^2+(ad+bc)x+bd$ . Apesar de parecer que há a necessidade de 4 multiplicações no código, assim como o Algoritmo de Strassen na multiplicação de matrizes consegue diminuir 8 multiplicações para 7, é possível reduzir de 4 para 3 multiplicações se observamos a seguinte igualdade:

$$(ad + bc) = (a+b)(c+d) - ac - bd$$

Com isso, basta apenas multiplicar  $a \times c$ ,  $b \times d$  e  $(a + b) \times (c + d)$ 

Para analisar a complexidade é necessário observar a relação de recorrência. O problema é dividido pela metade, e são executadas 3 chamadas recursivas, desta forma temos:

$$T(n) = 3T(n/2) + O(n)$$

Aplicando a relação de recorrência  $T(n) = aT(n/b) + O(n^d)$ , temos  $a=3,\,b=2$  e d=1:

$$\frac{a}{b^d} = \frac{3}{2} > 1$$

Portanto:

$$T(n) = O(n^{\log_b a}) = O(n^{\log 3})$$

O código abaixo mostra a implementação desta técnica em C. Foram omitidas as declarações de variáveis e alocações dinâmicas, entre outros detalhes, para simplificação da leitura:

```
int * multiply_divide_conquer(int AB[], int CD[], int n)
{
    // Base case
    if (n < 10)
        return multiply_trivial(AB, CD, n);
    // Divide Step
    int half = n / 2;
    for (int i = 0; i < half; i++) {</pre>
        a[i] = AB[i];
        c[i] = CD[i];
        b[i] = AB[i+half];
        d[i] = CD[i+half];
    }
    for(int i = 0; i < half; i++) {</pre>
        ab[i] = a[i]+b[i];
        cd[i] = c[i]+d[i];
    }
    // Conquer
    int *ac = multiply_divide_conquer(a,c, half);
    int *bd = multiply_divide_conquer(b,d, half);
    int *abcd = multiply_divide_conquer(ab, cd, half);
    // Combine
    for (int i = 0; i < n; i++) {
        result[i]
                         += ac[i];
        result[i+half]
                         += abcd[i] - ac[i] - bd[i];
        result[i+2*half] += bd[i];
    }
    return result;
}
```

#### 2.3 Transformada Rapida de Fourier

De acordo com (DASGUPTA; PAPADIMITRIOU; VAZIRANI, 2006), a utilização da Transformada Rápida de Fourier (FFT) (BRIGHAM, 1988) para redução do tempo computacional na multiplicação de polinômios faz uso do fato de que um polinômio de grau d pode ser representado tanto pelos seus coeficientes quanto pelo seu valor em d+1 pontos distintos. Desta forma, o polinômio C, de grau 2d, resultante da multiplicação  $(A \times B)$ , também pode ser representado pelo seu valor em 2d+1 pontos distintos.

Para achar o valor de C em qualquer ponto z, basta apenas saber o valor de A(z) e B(z) e multiplica-los. Por ultimo, para saber os coeficientes de C é necessário fazer uma interpolação a partir dos valores nos d+1 pontos. Apesar de parecer simples, o cálculo do valor de um polinimio grau  $d \leq n$  em apenas 1 ponto tem complexidade O(n), tomando como base a necessidade de se calcular em n pontos, teremos a complexidade de  $O(n^2)$ . Para tentar reduzir esta complexidade, usamos a FFT para um conjunto particular de pontos (raízes complexas da unidade), em que é possível reaproveitar passos computacionais. A FFT utiliza a estratégia de dividir e conquistar, empregando os coeficientes de índices par e os coeficientes de índice ímpar de do polinômio A(x) separadamente para definir os dois novos polinômios de limite de grau  $n/2A^{[0]}(x)$  e  $n/2A^{[1]}(x)$ , onde  $A^{[0]}$  contém todos os coeficientes de índice par e  $A^{[1]}$  os de índice ímpar:

$$A^{[0]}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{n/2-1}$$

$$A^{[1]}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{n/2-1}$$

Pelo lema das divisão em metades, a lista de valores  $((\omega_n^0)^2, (\omega_n^1)^2, ..., (\omega_n^{n-1})^2)$  não consiste em n<br/> valores distintos, mas somente nas n/2 raízes (n/2)-ésimas complexas da unidade, com cada raiz ocorrendo exatamente duas vezes. Assim, os polinômios  $A^{[0]}$  e  $A^{[1]}$  de limite de grau n/2 são avaliados recursivamente nas n/2 raízes (n/2)-ésimas complexas da unidade. Esses sub-problemas apresentam exatamente a mesma forma do problema original, mas tem metade dos tamanho. Essa decomposição é a base do algoritmo FFT recursivo descrito abaixo:

```
RECURSIVE_FFT(Vector a){
1
2
       int n = a.size;
       if(a == 1)
3
           retorn a;
4
       float wn = pow(E,(2*PI*I)/n);
5
       float w = 1;
6
       Vector a0 = getEvenCoefficients(a);
7
       Vector a1 = getOddCoefficients(a);
8
       Vector y = createVector(n);
9
```

```
10
       Vector y0 = RECURSIVE_FFT(a0);
       Vector y1 = RECURSIVE_FFT(a1);
11
       for (k = 0; k < n/2; k++) {
12
            y[k] = y0[k] + w*y1[k];
13
            y[k + n/2] = y0[k] + w*y1[k];
14
              = w*wn;
15
       }
16
17
   return y;
18
   }
```

A função RECURSIVE-FFT descrita na listagem acima, funciona da seguinte forma. As linhas 2 e 3 descrevem a base da recursão. Nesse caso, a DFT de um elemento é o próprio elemento  $(y_0 = a_0 \omega_1^0 = a_0.1 = a_0)$ . As linhas 7 e 8 definem os vetores de coeficientes para os vetores que armazenam os polinômios A0 e A1. As linhas 5, 6 e 15 garantem que  $\omega$  será atualizado corretamente, de tal forma que, sempre que as linhas 13 e 14 são executadas o valor de  $\omega$  recebe  $\omega_n^k$ . As linhas 10 e 11 executam os  $DFT_{n/2}$  cálculos para k = 0, 1, ..., n/2-1.

Para determinar o tempo de execução da função, observa-se que, para dividir o polinômio entre os vetores  $A^{[0]}$  e  $A^{[1]}$  é gasto  $\theta(n)$ . Em seguida, cada vetor é passado por parâmetro pelas chamadas recursivas. Dessa forma, a recorrência para o tempo de execução é a seguinte:

$$T(n) = 2T(n/2) + \theta(n)$$

Que segundo o teorema mestre é:

$$T(n) = \theta(nLog(n))$$

## 3 Resultados

Esta seção apresenta os resultados da execução dos algoritmos descritos na seção anterior. A Sub-seção 3.1 apresenta os resultados para o problema da mochila fracionária. Em seguida, a Sub-seção 3.2 apresenta os resultados para o problema de multiplicação de polinômios.

#### 3.1 Mochila Fracionária

Para realizar os experimentos do Problema da Mochila Fracionária foram utilizados máquinas de mesma configuração com processador Intel Core i7-6700 3,4 GHz x 8, memória de 15,6 GB e sistema operacional ubuntu 16.04 LTS na versão 64 bits. Os algoritmos foram implementados utilizando a linguagem C e compilados através do gcc 5.4.0.

| Heapsort - O(nlogn) |       |          |                      |       |  |  |
|---------------------|-------|----------|----------------------|-------|--|--|
| Arquivo             | Itens | Tempo    | Complexidade Teórica | Razão |  |  |
| knap_1000_1         | 1000  | 0,000158 | 9965,78              | 1,59  |  |  |
| knap_2000_1         | 2000  | 0,000373 | 21931,57             | 1,70  |  |  |
| knap_3000_1         | 3000  | 0,000592 | 34652,24             | 1,71  |  |  |
| knap_4000_1         | 4000  | 0,000821 | 47863,14             | 1,72  |  |  |
| knap_5000_1         | 5000  | 0,001050 | 61438,56             | 1,71  |  |  |
| knap_6000_1         | 6000  | 0,001302 | 75304,48             | 1,73  |  |  |
| knap_7000_1         | 7000  | 0,001562 | 89411,97             | 1,75  |  |  |
| knap_8000_1         | 8000  | 0,001828 | 103726,27            | 1,76  |  |  |
| knap_9000_1         | 9000  | 0,002048 | 118221,38            | 1,73  |  |  |
| knap_10000_1        | 10000 | 0,002303 | 132877,12            | 1,73  |  |  |
| knap_11000_1        | 11000 | 0,002529 | 147677,37            | 1,71  |  |  |
| knap_12000_1        | 12000 | 0,002783 | 162608,96            | 1,71  |  |  |
| knap_13000_1        | 13000 | 0,003048 | 177660,91            | 1,72  |  |  |
| knap_14000_1        | 14000 | 0,003318 | 192823,95            | 1,72  |  |  |
| knap_15000_1        | 15000 | 0,003623 | 208090,12            | 1,74  |  |  |
| knap_16000_1        | 16000 | 0,003922 | 223452,55            | 1,76  |  |  |
| knap_17000_1        | 17000 | 0,004274 | 238905,20            | 1,79  |  |  |
| knap_18000_1        | 18000 | 0,004561 | 254442,77            | 1,79  |  |  |
| knap_19000_1        | 19000 | 0,004840 | 270060,52            | 1,79  |  |  |
| knap_20000_1        | 20000 | 0,005102 | 285754,25            | 1,79  |  |  |

| knap_ | 100000_1 | 100000 | 0,031747 | 1660964,05 | 1,91 |
|-------|----------|--------|----------|------------|------|
|-------|----------|--------|----------|------------|------|

| Mediana das Medianas - O(n) |        |          |                      |       |  |
|-----------------------------|--------|----------|----------------------|-------|--|
| Arquivo                     | Itens  | Tempo    | Complexidade Teórica | Razão |  |
| knap_1000_1                 | 1000   | 0,000090 | 1000                 | 9,00  |  |
| knap_2000_1                 | 2000   | 0,000354 | 2000                 | 17,70 |  |
| knap_3000_1                 | 3000   | 0,000359 | 3000                 | 11,97 |  |
| knap_4000_1                 | 4000   | 0,000690 | 4000                 | 17,25 |  |
| knap_5000_1                 | 5000   | 0,000545 | 5000                 | 10,90 |  |
| knap_6000_1                 | 6000   | 0,001120 | 6000                 | 18,67 |  |
| knap_7000_1                 | 7000   | 0,001292 | 7000                 | 18,46 |  |
| knap_8000_1                 | 8000   | 0,000998 | 8000                 | 12,48 |  |
| knap_9000_1                 | 9000   | 0,001312 | 9000                 | 14,58 |  |
| knap_10000_1                | 10000  | 0,001546 | 10000                | 15,46 |  |
| knap_11000_1                | 11000  | 0,001796 | 11000                | 16,33 |  |
| knap_12000_1                | 12000  | 0,001392 | 12000                | 11,60 |  |
| knap_13000_1                | 13000  | 0,002532 | 13000                | 19,48 |  |
| knap_14000_1                | 14000  | 0,002992 | 14000                | 21,37 |  |
| knap_15000_1                | 15000  | 0,003312 | 15000                | 22,08 |  |
| knap_16000_1                | 16000  | 0,001616 | 16000                | 10,10 |  |
| knap_17000_1                | 17000  | 0,002497 | 17000                | 14,69 |  |
| knap_18000_1                | 18000  | 0,002538 | 18000                | 14,10 |  |
| knap_19000_1                | 19000  | 0,003918 | 19000                | 20,62 |  |
| knap_20000_1                | 20000  | 0,003777 | 20000                | 18,89 |  |
| knap_100000_1               | 100000 | 0,013099 | 100000               | 13,10 |  |

| Pivô - $O(n^2)$ |       |          |                      |       |  |  |  |
|-----------------|-------|----------|----------------------|-------|--|--|--|
| Arquivo         | Itens | Tempo    | Complexidade Teórica | Razão |  |  |  |
| knap_1000_1     | 1000  | 0,000035 | 1000000              | 0,35  |  |  |  |
| knap_2000_1     | 2000  | 0,000083 | 4000000              | 0,21  |  |  |  |
| knap_3000_1     | 3000  | 0,000129 | 9000000              | 0,14  |  |  |  |
| knap_4000_1     | 4000  | 0,000181 | 16000000             | 0,11  |  |  |  |
| knap_5000_1     | 5000  | 0,000223 | 25000000             | 0,09  |  |  |  |
| knap_6000_1     | 6000  | 0,000270 | 36000000             | 0,08  |  |  |  |
| knap_7000_1     | 7000  | 0,000315 | 49000000             | 0,06  |  |  |  |
| knap_8000_1     | 8000  | 0,000364 | 64000000             | 0,06  |  |  |  |

| knap_9000_1   | 9000   | 0,000410 | 81000000    | 0,05 |
|---------------|--------|----------|-------------|------|
| knap_10000_1  | 10000  | 0,000455 | 100000000   | 0,05 |
| knap_11000_1  | 11000  | 0,000509 | 121000000   | 0,04 |
| knap_12000_1  | 12000  | 0,000555 | 144000000   | 0,04 |
| knap_13000_1  | 13000  | 0,000599 | 169000000   | 0,04 |
| knap_14000_1  | 14000  | 0,000633 | 196000000   | 0,03 |
| knap_15000_1  | 15000  | 0,000693 | 225000000   | 0,03 |
| knap_16000_1  | 16000  | 0,000725 | 256000000   | 0,03 |
| knap_17000_1  | 17000  | 0,000788 | 289000000   | 0,03 |
| knap_18000_1  | 18000  | 0,000814 | 324000000   | 0,03 |
| knap_19000_1  | 19000  | 0,000872 | 361000000   | 0,02 |
| knap_20000_1  | 20000  | 0,000912 | 400000000   | 0,02 |
| knap_100000_1 | 100000 | 0,004544 | 10000000000 | 0,00 |



Figura 1: Gráfico comparativo entre o TEMPO DE CPU dos algoritmos para o problema da mochila fracionária para as instancias terminadas em  $\_1$ 



Figura 2: Gráfico comparativo entre a RAZÃO dos algoritmos para o problema da mochila fracionária para as instancias terminadas em  $\_1$ 

| Heapsort - O(nlogn) |       |          |                      |       |  |  |
|---------------------|-------|----------|----------------------|-------|--|--|
| Arquivo             | Itens | Tempo    | Complexidade Teórica | Razão |  |  |
| knap_1000_2         | 1000  | 0,000155 | 9965,78              | 1,56  |  |  |
| knap_2000_2         | 2000  | 0,000373 | 21931,57             | 1,70  |  |  |
| knap_3000_2         | 3000  | 0,000586 | 34652,24             | 1,69  |  |  |
| knap_4000_2         | 4000  | 0,000815 | 47863,14             | 1,70  |  |  |
| knap_5000_2         | 5000  | 0,001059 | 61438,56             | 1,72  |  |  |
| knap_6000_2         | 6000  | 0,001324 | 75304,48             | 1,76  |  |  |
| knap_7000_2         | 7000  | 0,001544 | 89411,97             | 1,73  |  |  |
| knap_8000_2         | 8000  | 0,001819 | 103726,27            | 1,75  |  |  |
| knap_9000_2         | 9000  | 0,002032 | 118221,38            | 1,72  |  |  |
| knap_10000_2        | 10000 | 0,002312 | 132877,12            | 1,74  |  |  |
| knap_11000_2        | 11000 | 0,002574 | 147677,37            | 1,74  |  |  |
| knap_12000_2        | 12000 | 0,002811 | 162608,96            | 1,73  |  |  |
| knap_13000_2        | 13000 | 0,003106 | 177660,91            | 1,75  |  |  |
| knap_14000_2        | 14000 | 0,003307 | 192823,95            | 1,72  |  |  |
| knap_15000_2        | 15000 | 0,003582 | 208090,12            | 1,72  |  |  |
| knap_16000_2        | 16000 | 0,004039 | 223452,55            | 1,81  |  |  |

| knap_17000_2  | 17000  | 0,004216 | 238905,20  | 1,76 |
|---------------|--------|----------|------------|------|
| knap_18000_2  | 18000  | 0,004541 | 254442,77  | 1,78 |
| knap_19000_2  | 19000  | 0,004798 | 270060,52  | 1,78 |
| knap_20000_2  | 20000  | 0,005084 | 285754,25  | 1,78 |
| knap_100000_1 | 100000 | 0,031747 | 1660964,05 | 1,91 |

| Mediana das Medianas - O(n) |        |          |                      |       |  |  |
|-----------------------------|--------|----------|----------------------|-------|--|--|
| Arquivo                     | Itens  | Tempo    | Complexidade Teórica | Razão |  |  |
| knap_1000_2                 | 1000   | 0,000172 | 1000                 | 17,20 |  |  |
| knap_2000_2                 | 2000   | 0,000422 | 2000                 | 21,10 |  |  |
| knap_3000_2                 | 3000   | 0,000505 | 3000                 | 16,83 |  |  |
| knap_4000_2                 | 4000   | 0,000651 | 4000                 | 16,28 |  |  |
| knap_5000_2                 | 5000   | 0,000749 | 5000                 | 14,98 |  |  |
| knap_6000_2                 | 6000   | 0,001233 | 6000                 | 20,55 |  |  |
| knap_7000_2                 | 7000   | 0,001358 | 7000                 | 19,40 |  |  |
| knap_8000_2                 | 8000   | 0,001772 | 8000                 | 22,15 |  |  |
| knap_9000_2                 | 9000   | 0,001014 | 9000                 | 11,27 |  |  |
| knap_10000_2                | 10000  | 0,001444 | 10000                | 14,44 |  |  |
| knap_11000_2                | 11000  | 0,001177 | 11000                | 10,70 |  |  |
| knap_12000_2                | 12000  | 0,001624 | 12000                | 13,53 |  |  |
| knap_13000_2                | 13000  | 0,001952 | 13000                | 15,02 |  |  |
| knap_14000_2                | 14000  | 0,001393 | 14000                | 9,95  |  |  |
| knap_15000_2                | 15000  | 0,002686 | 15000                | 17,91 |  |  |
| knap_16000_2                | 16000  | 0,002092 | 16000                | 13,08 |  |  |
| knap_17000_2                | 17000  | 0,002272 | 17000                | 13,36 |  |  |
| knap_18000_2                | 18000  | 0,002606 | 18000                | 14,48 |  |  |
| knap_19000_2                | 19000  | 0,002831 | 19000                | 14,90 |  |  |
| knap_20000_2                | 20000  | 0,002901 | 20000                | 14,51 |  |  |
| knap_100000_1               | 100000 | 0,013099 | 100000               | 13,10 |  |  |

| ${ m Piv\hat{o}}$ - ${ m O(n^2)}$ |       |          |                      |       |  |  |  |
|-----------------------------------|-------|----------|----------------------|-------|--|--|--|
| Arquivo                           | Itens | Tempo    | Complexidade Teórica | Razão |  |  |  |
| knap_1000_2                       | 1000  | 0,000036 | 1000000              | 0,36  |  |  |  |
| knap_2000_2                       | 2000  | 0,000082 | 4000000              | 0,21  |  |  |  |
| knap_3000_2                       | 3000  | 0,000133 | 9000000              | 0,15  |  |  |  |
| knap_4000_2                       | 4000  | 0,000178 | 16000000             | 0,11  |  |  |  |

| knap_5000_2   | 5000   | 0,000226 | 25000000    | 0,09 |
|---------------|--------|----------|-------------|------|
| knap_6000_2   | 6000   | 0,000277 | 36000000    | 0,08 |
| knap_7000_2   | 7000   | 0,000318 | 49000000    | 0,06 |
| knap_8000_2   | 8000   | 0,000362 | 64000000    | 0,06 |
| knap_9000_2   | 9000   | 0,000402 | 81000000    | 0,05 |
| knap_10000_2  | 10000  | 0,000455 | 100000000   | 0,05 |
| knap_11000_2  | 11000  | 0,000496 | 121000000   | 0,04 |
| knap_12000_2  | 12000  | 0,000549 | 144000000   | 0,04 |
| knap_13000_2  | 13000  | 0,000592 | 169000000   | 0,04 |
| knap_14000_2  | 14000  | 0,000642 | 196000000   | 0,03 |
| knap_15000_2  | 15000  | 0,000689 | 225000000   | 0,03 |
| knap_16000_2  | 16000  | 0,000751 | 256000000   | 0,03 |
| knap_17000_2  | 17000  | 0,000783 | 289000000   | 0,03 |
| knap_18000_2  | 18000  | 0,000836 | 324000000   | 0,03 |
| knap_19000_2  | 19000  | 0,000866 | 361000000   | 0,02 |
| knap_20000_2  | 20000  | 0,000920 | 400000000   | 0,02 |
| knap_100000_1 | 100000 | 0,004544 | 10000000000 | 0,00 |



Figura 3: Gráfico comparativo entre o TEMPO DE CPU dos algoritmos para o problema da mochila fracionária para as instancias terminadas em  $\_2$ .



Figura 4: Gráfico comparativo entre a RAZÃO dos algoritmos para o problema da mochila fracionária para as instancias terminadas em \_2.

### 3.2 Multiplicação de Polinômios

Para realizar os experimentos do Problema da Multiplicação de Polinômios foram utilizados máquinas de mesma configuração com processador Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz x 4, memória de 8 GB e sistema operacional Manjaro Linux na versão 64 bits. Os algoritmos foram implementados utilizando a linguagem C e compilados através do gcc 6.3.1.

|         | Trivial      |               |       |
|---------|--------------|---------------|-------|
| n       | Tempo        | $n^2$         | Razão |
| 4       | 0,0000003    | 16            | 1,73  |
| 8       | 0,0000006    | 64            | 0,89  |
| 16      | 0,0000022    | 256           | 0,85  |
| 32      | 0,0000110    | 1024          | 1,07  |
| 64      | 0,0000243    | 4096          | 0,59  |
| 128     | 0,0000860    | 16384         | 0,52  |
| 256     | 0,0003600    | 65536         | 0,55  |
| 512     | 0,0012800    | 262144        | 0,49  |
| 1024    | 0,0047467    | 1048576       | 0,45  |
| 2048    | 0,0189000    | 4194304       | 0,45  |
| 4096    | 0,0760000    | 16777216      | 0,45  |
| 8192    | 0,3053333    | 67108864      | 0,45  |
| 16384   | 1,2299999    | 268435456     | 0,46  |
| 32768   | 4,8496662    | 1073741824    | 0,45  |
| 65536   | 19,4083315   | 4294967296    | 0,45  |
| 131072  | 78,4116590   | 17179869184   | 0,46  |
| 262144  | 317,4866350  | 68719476736   | 0,46  |
| 524288  | 1521,8165150 | 274877906944  | 0,55  |
| 1048576 | 5113,8961550 | 1099511627776 | 0,47  |

Tabela 10: Tabela de resultados da Multiplicação de Polinômios para a solução Trivial. O cálculo da razão foi feito dividindo o tempo pela complexidade. As razões foram multiplicadas por uma constante para facilitar a leitura (entre  $10^0$  e  $10^3$ )

|         | Karatsuba   |                |       |
|---------|-------------|----------------|-------|
| n       | Tempo       | $n^{\log_2 3}$ | Razão |
| 4       | 0,0000003   | 9              | 3,11  |
| 8       | 0,0000005   | 27             | 1,94  |
| 16      | 0,0000023   | 81             | 2,80  |
| 32      | 0,0000093   | 243            | 3,84  |
| 64      | 0,0000257   | 729            | 3,52  |
| 128     | 0,0000810   | 2187           | 3,70  |
| 256     | 0,0002400   | 6561           | 3,66  |
| 512     | 0,0007467   | 19683          | 3,79  |
| 1024    | 0,0022400   | 59049          | 3,79  |
| 2048    | 0,0065333   | 177147         | 3,69  |
| 4096    | 0,0210333   | 531441         | 3,96  |
| 8192    | 0,0593333   | 1594323        | 3,72  |
| 16384   | 0,1843333   | 4782969        | 3,85  |
| 32768   | 0,5916666   | 14348907       | 4,12  |
| 65536   | 1,6649995   | 43046721       | 3,87  |
| 131072  | 4,9699995   | 129140163      | 3,85  |
| 262144  | 15,2566650  | 387420489      | 3,94  |
| 524288  | 44,7499950  | 1162261467     | 3,85  |
| 1048576 | 134,1533200 | 3486784401     | 3,85  |

Tabela 11: Tabela de resultados da Multiplicação de Polinômios para a solução Karatsuba. O cálculo da razão foi feito dividindo o tempo pela complexidade. As razões foram multiplicadas por uma constante para facilitar a leitura (entre  $10^0$  e  $10^3$ )

|         | Fourier  |            |        |  |
|---------|----------|------------|--------|--|
| n       | Tempo    | $n \log n$ | Razão  |  |
| 4       | 0,00003  | 8          | 380,54 |  |
| 8       | 0,00006  | 24         | 263,96 |  |
| 16      | 0,00014  | 64         | 212,81 |  |
| 32      | 0,00028  | 160        | 176,87 |  |
| 64      | 0,00061  | 384        | 158,33 |  |
| 128     | 0,00128  | 896        | 143,34 |  |
| 256     | 0,00262  | 2048       | 127,93 |  |
| 512     | 0,00537  | 4608       | 116,46 |  |
| 1024    | 0,01116  | 10240      | 108,98 |  |
| 2048    | 0,02250  | 22528      | 99,88  |  |
| 4096    | 0,04803  | 49152      | 97,72  |  |
| 8192    | 0,09933  | 106496     | 93,27  |  |
| 16384   | 0,20667  | 229376     | 90,10  |  |
| 32768   | 0,42033  | 491520     | 85,52  |  |
| 65536   | 0,86833  | 1048576    | 82,81  |  |
| 131072  | 1,76833  | 2228224    | 79,36  |  |
| 262144  | 3,78667  | 4718592    | 80,25  |  |
| 524288  | 7,56000  | 9961472    | 75,89  |  |
| 1048576 | 15,46000 | 20971520   | 73,72  |  |

Tabela 12: Tabela de resultados da Multiplicação de Polinômios para a solução Fourier. O cálculo da razão foi feito dividindo o tempo pela complexidade. As razões foram multiplicadas por uma constante para facilitar a leitura (entre  $10^0$  e  $10^3$ )



Figura 5: Gráfico comparativo entre o TEMPO DE CPU dos algoritmos para o problema de multiplicação de polinômios.



Figura 6: Gráfico comparativo entre as RAZÕES dos algoritmos para o problema de multiplicação de polinômios.

## Conclusão

No problema da mochila fracionaria o trabalho mostra que os algoritmos comportaramse da seguinte forma:

#### Mediana das Medianas < Heapsort < Pivô

Apesar da complexidade teórica do algoritmo Mediana das Medianas ser O(n), o algoritmo do Pivô obteve melhor desempenho para instâncias executados. Tal fato ocorreu porque a Mediana das Medianas executou um número operações maior que número de operações para calcular o Pivô. Contudo, conforme apresentado na sessão 1.3, no pior caso o algoritmo do Pivô tem uma complexidade de  $O(n^2)$ .

No problema de multiplicação de polinômios, os resultados mostram que, para um número grande de coeficientes (n > 4096), os algoritmos comportam-se da seguinte forma:

#### Transformada de Fourier < Karatsuba < Trivial

Percebe-se que as razões entre a complexidade teórica e o tempo de execução mantiveramse constante no Trivial e no Karatsuba. Apesar da Transformada de Fourier ter sido a mais rápida, as razões entre a complexidade teórica e o tempo de execução não se mantiveram constantes. Isso deve-se ao fato de que o algoritmo usado para execução da FFT é uma implementação amadora, inspirado no pseudo-código do (CORMEN et al., 2009), feita por terceiros. Não foi possível garantir que a complexidade na prática, dessa implementação, seja exatamente O(n \* log(n)). Uma possível solução para esse problema seria usar o pacote (FFTW, ) que disponibiliza diversas implementações de transformada de Fourier em linguagem C, e garante a complexidade teórica na prática.

É interessante notar que a implementação Trivial tem um ótimo tempo de execução para valores de n < 4096. Uma possível explicação é que os algoritmos de Karatsuba e de FFT utilizados fazem muita alocação dinâmica e chamadas recursivas. Quando n é pequeno, essa quantidade de alocações dinâmicas e chamadas recursivas prejudicam o tempo de execução mais do que o tamanho de n. Nestes casos, a multiplicação trivial mostrou-se mais interessante por sua simplicidade. Deve-se lembrar que o caso base do Karatsuba, mostrado na listagem 2.2, é uma execução do Trivial. Portanto, com poucos coeficientes, faz sentido o tempo de execução ser bem próximo.

Os códigos utilizados no desenvolvimento deste projeto podem ser integralmente acessados no repositório do Github.  $^{1}$ 

https://github.com/Busson/puc-rio.paa-2017.1-poggi

## Referências

BRIGHAM, E. O. The {F} ast {F} ourier {T} ransform and its applications. Prentice Hall, 1988. Citado na página 14.

CORMEN, T. H. et al. *Introduction to Algorithms*. [S.l.]: The MIT Press, 2009. Citado na página 27.

DASGUPTA, S.; PAPADIMITRIOU, C.; VAZIRANI, U. *Algorithms*. [S.l.]: McGraw-Hill Education, 2006. 119–127 p. Citado 2 vezes nas páginas 11 e 14.

FFTW. Disponível em: <a href="http://www.fftw.org/">http://www.fftw.org/</a>>. Acesso em: 01.6.2017. Citado na página 27.

MANBER, U. Introduction to Algorithms: A Creative Approach. [S.l.]: Addison-Wesley, 1989. Citado na página 3.