1. D'Angelo 1.13 Assume $a \in \mathbb{R}, b \in \mathbb{C}$, and c > 0. Find the minimum of the Hermitian polynomial R:

$$R(t, \overline{t}) = a + bt + \overline{b}\overline{t} + c|t|^2.$$

Solution:

Note

$$R(t,\overline{t}) = c \left(t + \overline{b}/c\right) \overline{\left(t + \overline{b}/c\right)} - |b|^2/c + a$$

$$\stackrel{*}{=} c|t + \overline{b}/c|^2 + (a - |b|^2/c)$$

$$\geq (a - |b|^2/c)$$

for all $t \in \mathbb{C}$. Moreover, if $t = -\overline{b}/c$, then $R(t,\overline{t}) \stackrel{*}{=} (a-|b|^2/c)$. Hence $\sup_{t \in \mathbb{C}} R(t,\overline{t}) = (a-|b|^2/c)$.

2. D'Angelo 1.16 Prove the following statement from plane geometry. Let ξ be a point in the complex plane other than the origin, and let ω lie on the unit circle. Then every circle perpendicular to the unit circle, and containing both ξ and ω , also contains $(\overline{\xi})^{-1}$.

Solution:

Figure 1: A diagram illustrating the statement.

Without loss of generality, we need only consider the case where $\omega=1$, by transforming each point in the statement by the isometry given by $T(z)=e^{-i\theta}z$ where $\omega=e^{i\theta}$. Having proved the statement for $\omega=1$, we transform back by $T^{-1}(z)=e^{i\theta}z$, and since this map is an isometry, the coincidence and geometric structure is preserved.

Any circle perpendicular to the unit circle at $\omega = 1$ has as its center 1 + ir for some r > 0. To see this, recall for every line tangent to a circle at some point ω , the line perpendicular to the tangent at ω passes through the center of the circle. Hence, for any circle, say \mathcal{C} , perpendicular to the unit circle at $\omega = 1$, \mathcal{C} is tangent

to the real axis at $\omega = 1$, and the perpendicular line $\{1 + ir : r > 0\}$ passes through the center. See Figure 1.

Since $\xi \in \mathcal{C}$, we have

$$\begin{aligned} |\xi - (1+ir)|^2 &= r^2 \\ \iff |\xi|^2 - \overline{\xi}(1+ir) - \xi(1-ir) + 1 + r^2 &= r^2 \\ \iff |\xi|^2 - \overline{\xi}(1+ir) - \xi(1-ir) + 1 &= 0. \end{aligned}$$

Now, it will suffice to show $|1/\overline{\xi} - (1+ir)|^2 = r^2$. Observe,

$$|1/\overline{\xi} - (1+ir)|^2 = |1/\overline{\xi}|^2 - (1/\xi)(1+ir) - (1/\overline{\xi})(1-ir) + 1 + r^2$$

$$= \frac{1 - \overline{\xi}(1+ir) - \xi(1-ir) + |\xi|^2}{|\xi|^2} + r^2$$

$$\stackrel{\dagger}{=} 0 + r^2.$$

3. D'Angelo 1.17 Prove that the series

$$e^M = \sum_{k=0}^{\infty} \frac{M^k}{k!}$$

converges for each square matrix of complex numbers.

(Please forgive the use of i as an integer index in the following solution.)

Solution:

Let M be a $k \times k$ matrix with entries $\{a_{ij}\}$. Take $m = \max |a_{ij}|$. We first find an upper bound on the absolute value of the terms of M^n in terms of |m|. We claim such an upper bound is $k^{n-1}m^n$ and prove it by induction. By definition, the entries of M^1 satisfy $|a_{ij}| \leq k^0 m$. Now, denote the entries of M^n as $b_{ij}(n)$ and suppose $|b_{ij}(n)| \leq k^{n-1}m^n$. The absolute value of the (i,j)th entry of M^{n+1} is

$$\left| \sum_{s=0}^{k} b_{is}(n) a_{sj} \right| \le \sum_{s=0}^{k} |b_{is}(n)| |a_{sj}| \le \sum_{s=0}^{k} k^{n-1} m^n \cdot m = k^n m^{n+1}.$$

The induction on the claim is complete. Now, the absolute value of the entries of $\sum_{n=0}^{N} M^n/(n!)$ satisfy

$$\left| \sum_{n=0}^{N} \frac{b_{ij}(n)}{n!} \right| \leq \sum_{n=0}^{N} \frac{b_{ij}(n)}{n!}$$

$$\leq \sum_{n=0}^{N} \frac{k^{n-1}m^{n}}{n!}$$

$$\leq \sum_{n=0}^{N} \frac{(km)^{n}}{n!}.$$

This last sequence of partial sums converges to e^{km} , and thinking of $b_{ij}(n)$ as a function of (i, j), the Weierstrass M-test gives the convergence of the entries of the partial matrix sums of $\sum M^n/(n!)$.

4. D'Angelo 1.22 Find e^{At} if

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

Solution:

Let $A = \Lambda + N$ where

$$\Lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Note that N^2 is the zero matrix, so $N^j = 0$ for j > 1. Now, observe for n > 0

$$A^{n} = (\Lambda + N)^{n}$$

$$\stackrel{\dagger}{=} \sum_{j=0}^{n} \binom{n}{j} \Lambda^{N-n} N^{j}$$

$$= \Lambda^{n} + \Lambda^{n-1} N.$$

Both Λ^n and Λ^{n-1} are diagonal matrices with λ^n and λ^{n-1} on each diagonal, respectively. We compute

$$A^{n} = \Lambda^{n} + \Lambda^{n-1}N = \begin{pmatrix} \lambda^{n} & n\lambda^{n-1} \\ 0 & \lambda^{n}, \end{pmatrix}$$

so

$$e^{At} = \sum_{n=0}^{\infty} \frac{(At)^n}{n!}$$

$$= I + \sum_{n=1}^{\infty} \frac{t^n}{n!} \left(\Lambda^n + \Lambda^{n-1} N \right)$$

$$= \begin{pmatrix} \sum_{n=0}^{\infty} (\lambda t)^n / n! & \sum_{n=1}^{\infty} n t^n \lambda^{n-1} / n! \\ 0 & \sum_{n=0}^{\infty} (\lambda t)^n / n! \end{pmatrix}$$

$$= \begin{pmatrix} e^{\lambda t} & t e^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix}.$$

We remark that for a matrix in Jordan form, one proceeds as above, but when one expands the binomial in \dagger , higher order powers of N appear. One need only compute a closed form for each $\binom{n}{j}\Lambda^{n-j}\sum N^n$, which is relatively easy yet tedious and is not done here.

5. D'Angelo 1.19 If B is invertible, prove that $Be^MB^{-1} = e^{BMB^{-1}}$. Solution:

First note that $(BMB^{-1})^n = BM^nB^{-1}$. This can be seen by induction. That is, in the n=1 case it is given, and if $(BMB^{-1})^n = BM^nB^{-1}$, then $(BMB^{-1})^{n+1} = (BM^nB^{-1})(BMB^{-1}) = BM^{n+1}B^{-1}$, and the induction is complete. Now, let us compute

$$e^{BMB^{-1}} = \sum_{n=0}^{\infty} (BMB^{-1})^n / n!$$

$$= \sum_{n=0}^{\infty} BM^n B^{-1} / n!$$

$$= B \left(\sum_{n=0}^{\infty} M^n / n! \right) B^{-1}$$

$$= Be^M B.$$

6. D'Angelo 1.20 Find a simple expression for $det(e^M)$ in terms of a trace. Solution:

Recall from linear algebra, that for every $k \times k$ matrix M, there exists an invertible $k \times k$ matrix P, and an upper triangular matrix U so that

$$M = PUP^{-1}$$
.

Using the result in 1.19, we have

$$e^M = Pe^U P^{-1}.$$

Note that for U upper triangular with diagonal elements $(\lambda_1, \ldots, \lambda_k)$, U^n is also upper triangular with diagonal elements $(\lambda_1^n, \ldots, \lambda_k^n)$. Hence, e^U is upper triangular with diagonal elements $(e^{\lambda_1}, \ldots, e^{\lambda_k})$. Using the fact that the determinant of an upper triangular matrix is given by the product of the diagonal elements, and that determinants respect multiplication and inversion, we have

$$\det(e^M) = \det(P)\det(e^U)\det(P)^{-1} = \prod_{j=1}^k e^{\lambda_j} = \exp\left(\sum_{j=1}^k \lambda_j\right) = \exp(\operatorname{Tr}(\mathbf{M})),$$

where Tr(M) denotes the trace of M.