Kia Ora! (Hello)

Using R to Estimate Animal Population Density

Some problems with simply counting animals:

- Animals move
- Tiny animals or camouflaging animals can be very difficult to spot
- Double counting can be hard to avoid when relying on our sight alone

Definitions:

- N = The total number of animals... but where?
- A = The survey region
- Density = N/A

Acoustic spatial capture-recapture (ASCR)*

Spatially explicit capture-recapture (SECR)

Binary capture history

0	1	1	0	0
1	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	0	1	0	0
1	0	1	0	0
0	0	0	1	1
0	1	0	1	0

1 2 3 4 5

Detection occasions

	1	0	1	1	0	0
	2	1	0	0	0	0
		0				
Animals —	4 0 1 0 5 0 0 1	1	1			
		0	0			
	6	1	0	1	0	0
	7	0	0	0	1	1

Detection occasions

Butterfly 1 was detected on the second and third occasions only.

Detection occasions

The first time we set up our nets, we only captured two butterflies: butterfly 2 and butterfly 6.

Multi-session binary capture history

Sessio	on 1	Session 2	Session 3
0 1 1	0 0	1 0 1 0 1	1 1 0 1 0
1 0 0	0 0	0 0 0 0	0 0 1 0 1
0 0 1	0 1	1 0 1 0 0	0 1 1 0 0
0 1 0	1 1	1 1 0 0 0	1 1 0 0 1
0 0 1	0 0	1 0 1 1 0	0 0 0 1 1
1 0 1	0 0	0 0 1 0 1	0 0 1 0 0
0 0 0	1 1	0 0 0 0	1 1 1 0 1
0 1 0	1 0	1 0 1 0 0	1 0 1 1 0

The secr package

Authors: Murray Efford, Philipp Jund, David Fletcher

```
https://www.otago.ac.nz/density/,
https://github.com/MurrayEfford/secr/
https://www.stats.otago.ac.nz/secrapp/
```

Example data

```
#Load the secr library
install.packages("secr")
library(secr)

#List available example datasets
data(package = "secr")
```

```
possumarea (possum)
possummask (possum)
```

The Brushtail Possum Trapping Dataset

From the **secr** vignette:

Description: Data from a trapping study of brushtail possums at Waitarere, North Island, New Zealand.

Source: Landcare Research, New Zealand

The Brushtail Possum Trapping Dataset

Some background:

- Brushtail possums are an Australian species and considered an invasive species in New Zealand.
- Vectors of bovine tuberculosis.
- Damage native vegetation.
- Threat to native birds.

Example data

The components of the data:

- Capture histories (possumCH)
- Mask (possummask)
- Habitat perimeter (possumarea)

The Capture Histories

```
Session = WaitarerePossums
    1 2 3 4 5
1501 0 0 0 0 0
1502 0 0 0 0 0
1503 0 0 0 0 0
1504 0 0 0 0 0
1506 0 0 0 0 0
1509 0 0 0 0 0
```

```
summary(possumCH)
                 capthist
                 180
                            14
                               9 112
                            18
                               18
                                    112
                     80 89 103 112 112
                            66
detections
detectors visited 61 51 55
detectors used 180 180 180 180 180
                                     900
Individual covariates
 FALSE: 104
 TRUE:8
```

```
capthist
Object class
                180
                          14
                             9 112
                          18
                             18
                                 112
                   80 89 103 112 112
                          66
detections
detectors visited 61 51 55
                          66 72
detectors used 180 180 180 180 180
                                  900
```

Individual covariates

TRUE:8

FALSE: 104

summary(possumCH)

```
summary(possumCH)
                 capthist
Detector number
                 180
                 2697793 2699225 m
                            14
                                9 112
                            18
                               18
                                    112
                     80 89 103 112 112
                            66
detections
detectors visited 61 51 55
detectors used 180 180 180 180 180
                                     900
Individual covariates
 FALSE: 104
 TRUE:8
```

```
summary(possumCH)
                 capthist
                 180
                 20 m
Average spacing
                 2697793 2699225 m
                            14
                               9 112
                            18
                               18
                                    112
                     80 89 103 112 112
                            66
detections
detectors visited 61 51 55
                            66 72
detectors used 180 180 180 180 180
                                     900
Individual covariates
 FALSE: 104
 TRUE:8
```

```
summary(possumCH)
                 capthist
                 180
                 2697793 2699225 m
x-range
                 6077470 6078201 m
y-range
                            14
                                9 112
                            18
                               18
                                    112
                     80 89 103 112 112
                            66
detections
detectors visited 61 51 55
detectors used 180 180 180 180 180
                                     900
Individual covariates
 FALSE: 104
 TRUE:8
```

```
summary(possumCH)
                  capthist
                 180
                 2697793 2699225 m
                                 5 Total
                     51
                  61
                         55
                             66
                                 72
n
                             14
                                9 112
                            18
                                18
                                     112
                     80 89 103 112 112
detections
                 61
                     51
                         55
                             66
                                72
detectors visited 61 51
detectors used 180 180 180 180 180
                                     900
Individual covariates
 FALSE: 104
 TRUE:8
```

```
summary(possumCH)
                 capthist
                 180
                 2697793 2699225 m
                            14
                                9 112
                            18
                                18
                                     112
                     80 89 103 112 112
detections
                            66
                     51
                         55
detectors visited 61
                             66
                                72
detectors used 180 180 180 180 180
Individual covariates
FALSE: 104
TRUE:8
```

The Mask

A mask is a defined habitat region around the detectors/traps, divided into 'cells'.

https://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf

head(possummask)

	X	У
58	2698543	6077080
59	2698563	6077080
60	2698583	6077080
61	2698603	6077080
62	2698623	6077080
63	2698643	6077080

The Study Area

The study area is simply the coordinates of the perimeter of the survey region.

head (possumarea)

	x	У
1	2697117	6075605
2	2697197	6075953
3	2697260	6076226
4	2697284	6076351
5	2697316	6076513
6	2697359	6076799

Visualize the study area

Code from the **secr** vignette

```
plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
```

```
plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
```



```
plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
```



```
plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
```



```
plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
```


The Null Model

```
#Create a null model
possum.null <- secr.fit(capthist = possumCH, model
= list(D~1, g0~1, sigma~1), mask = possummask,
trace = F)
summary(possum.null)</pre>
```

Note: you can find this model already pre-fitted in the secr package. It is called possum.model.0

The Null Model

```
#Create a null model
possum.null <- secr.fit(capthist = possumCH, model
= list(D~1, g0~1, sigma~1), mask = possummask,
trace = F)
summary(possum.null)</pre>
```

Note: you can find this model already pre-fitted in the secr package. It is called possum.model.0

The Null Model

```
#Create a null model
possum.null <- secr.fit(capthist = possumCH, model
= list(D~1, g0~1, sigma~1), mask = possummask,
trace = F)
summary(possum.null)</pre>
```

Note: you can find this model already pre-fitted in the secr package. It is called possum.model.0

Output part 1:

```
$traps
Detector Number Spacing UsagePct
  single 180 20
                           100
Occasions Detections Animals Detectors
                                             Moves Animals2
               305
                                               184
                          112
                                     180
                                                           80
$mask
Cells Spacing Area
          20 204.8
 5120
$modeldetails
   CL fixed distribution hcov
FALSE none
```

Output part 2:

```
$AICtable
          model detectfn npar logLik AIC
                                                  AICc
D~1 g0~1 sigma~1 halfnormal 3 -1097.107 2200.214 2200.437
$coef
          beta SE.beta <u>lcl</u>
                                        ucl
D 0.5257912 0.10283337 0.3242415 0.7273409
g0 -1.4354960 0.14050246 -1.7108757 -1.1601162
sigma 3.9415010 0.04961677 3.8442539 4.0387481
$predicted
      link estimate SE.estimate lcl
                                              ucl
D
   log
           1.6917969 0.17443411 1.3829813 2.0695701
  logit 0.1922438 0.02181808 0.1530502 0.2386462
q0
sigma log 51.4958399 2.55663044 46.7238130 56.7552466
```

Output part 2:

```
$AICtable
          model detectfn npar logLik AIC
                                                 AICc
D~1 g0~1 sigma~1 halfnormal 3 -1097.107 2200.214 2200.437
$coef
          beta SE.beta <u>lcl</u>
                                        ucl
D 0.5257912 0.10283337 0.3242415 0.7273409
g0 -1.4354960 0.14050246 -1.7108757 -1.1601162
sigma 3.9415010 0.04961677 3.8442539 4.0387481
$predicted
      link estimate SE.estimate lcl
                                              ucl
D
 log
           1.6917969 0.17443411 1.3829813 2.0695701
  logit 0.1922438 0.02181808 0.1530502 0.2386462
q0
sigma log 51.4958399 2.55663044 46.7238130 56.7552466
```

The Detection Function

A detection function models the probability of detection from the distance of the animal to the detector.

Common detection functions:

- Halfnormal
- Hazard rate
- Exponential
- Uniform

Detectors don't have to be traps

Other examples of detectors include:

- Camera traps
- Hair snares
- Microphones*

Halfnormal Detection Function

$$g(d) = g_0 \exp\left(rac{-d^2}{2\sigma^2}
ight)$$

Halfnormal Detection Function

Detection Function Parameters: **g0**

g0 is the probability of trapping/detecting the animal when its distance from the trap is zero, i.e. it is the 'baseline detection probability'

Detection Function Parameters: **sigma** (σ)

Sigma is the scale at which the detection probability decreases as the distance between the animal and the detector/trap decreases

Output part 2:

```
$AICtable
          model detectfn npar logLik AIC
                                                  AICc
D~1 g0~1 sigma~1 halfnormal 3 -1097.107 2200.214 2200.437
$coef
          beta SE.beta <u>lcl</u>
                                        ucl
D 0.5257912 0.10283337 0.3242415 0.7273409
g0 -1.4354960 0.14050246 -1.7108757 -1.1601162
sigma 3.9415010 0.04961677 3.8442539 4.0387481
$predicted
      link estimate SE.estimate lcl
                                              ucl
   log 1.6917969 0.17443411 1.3829813 2.0695701
D
  logit 0.1922438 0.02181808 0.1530502 0.2386462
q0
sigma log 51.4958399 2.55663044 46.7238130 56.7552466
```

```
#Create a model using a covariate
possum.ds <- secr.fit(capthist = possumCH, model =
list(D ~ d.to.shore), mask = possummask,
    link = list(D = "identity"), method =
"Nelder-Mead", trace = FALSE)
summary(possum.ds)</pre>
```

Note: you can find this model already pre-fitted in the secr package. It is called possum.model.Ds

Using covariates in models

```
#Create a model using a covariate
possum.ds <- secr.fit(capthist = possumCH, model =
list(D ~ d.to.shore), mask = possummask,
        link = list(D = "identity"), method =
"Nelder-Mead", trace = FALSE)
summary(possum.ds)</pre>
```

Note: you can find this model already pre-fitted in the secr package. It is called possum.model.Ds

Output part 1:

```
Detector Number Spacing UsagePct
  single 180 20
                          100
                                           Moves Animals2
Occasions Detections Animals Detectors
               305
                         112
                                   180
                                            184
                                                       80
$mask
Cells Spacing Area
     20 204.8
 5120
```

\$modeldetails
 CL fixed distribution hcov
FALSE none poisson

Output part 2:

```
$AICtable
```

```
model detectfn npar logLik AIC AICc D~d.to.shore g0~1 sigma~1 halfnormal 4 -1096.511 2201.021 2201.395
```

\$coef

```
betaSE.beta1c1uclD2.03969024530.23007894421.5887438012.4906366896D.d.to.shore-0.00083513310.0002804306-0.001384767-0.0002854992g0-1.43479285030.1406632548-1.710487764-1.1590979369sigma3.94212700630.04978320013.8445537274.0397002856
```

\$predicted

```
estimate SE.estimate
         link
                                           lcl
                                                     ucl
D
     identity
               1.490883
                          0.1760654
                                    1.1458014
                                               1.8359651
g0
        logit
               0.192353
                        0.0218525
                                     0.1531005
                                                0.2388312
              51.528085
                        2.5668232 46.7378219
                                              56.8093137
     log
sigma
```

Compare Models

We can compare models to determine which one is the best fit for the possum data using the Akaike Information Criterion (AIC).

```
AIC(possum.null, possum.ds)
modelAverage(possum.null, possum.ds)
```

Compare Models

We can compare models to determine which one is the best fit for the possum data using the Akaike Information Criterion (AIC).

```
AIC(possum.null, possum.ds)
modelAverage(possum.null, possum.ds)
```

				model	detectfn	npar	logLik	AIC	AICc	dAIC
AICcv	vt									
	ım.null	D~1	g0~1	sigma~1	halfnormal	3	-1097.107	2200.214	2200.437	0.000
0.617										
possu 0 382		D~d.to.shore	g0~1	sigma~1	halfnormal	4	-1096.511	2201.021	2201.395	0.958

Compare Models

We can compare models to determine which one is the best fit for the possum data using the Akaike Information Criterion (AIC).

```
AIC (possum.null, possum.ds)
modelAverage (possum.null, possum.ds)
```

g0 0.1922856 0.02183131 0.1530693 0.2387171 sigma 51.5081714 2.56057924 46.7290795 56.7760321

1.26968527

estimate SE.estimate

2.4471863

D

lcl

0.9398882 6.3717371

ucl

Brief Notes on Acoustic Capture-Recapture

- We can't always physically see or capture animals, but sometimes we can hear them, .e.g. tiny frogs or huge whales.
- Capture histories give us information about estimated bearings, estimated distances, and received signal strengths.
- We estimate call density, rather than animal density.
- We have to independently collect data on call rate.
- We can then estimate animal density by dividing call density by call rate.

R Packages for ASCR Models

- ascr (https://github.com/b-steve/ascr)
- acre (https://github.com/b-steve/acre)

Credits and References

Ben Stevenson, The University of Auckland Professor James Russell, The University of Auckland

The University of Otago (2023, July 14). *DENSITY: spatially explicit capture-recapture*. https://www.otago.ac.nz/density/

Efford M (2023). secr: Spatially explicit capture-recapture models. R package version 4.6.1, https://CRAN.R-project.org/package=secr.

Ngā Mihi (Thank You)