Individuals and Moving Range Charts – Data Transformation

Data Science for Quality Management: X and Moving Range Charts for Non-Normally Distributed Data with Wendy Martin

Learning objective:

Transform non-normal distributions using the Log Normal transformation

Lognormal Transformation

The Food Distributor Delivery Problem:

 Currently, for the food category in question, the temperature of the refrigeration unit upon delivery is supposed to be between 37 and 49 degrees, and ideally (Nominal) at 43 degrees.

Lognormal Transformation

 Each time a truck arrives with a temperature outside of these limits, the truck is rejected; the food is declared to be "spoilage", and a claim filed against the Distributor.

Lognormal Transformation

- For each truck that is rejected at the customer's dock, it costs the Distributor approximately \$550.00 in total losses.
- This could be a problem, in that the Distributor makes an average of 1000 deliveries per day for this type of food.

Lognormal Transformation

- A random sample of truck delivery records have been selected for review from the last few months of delivery data (Delivery.dat).
- When evaluating the data, we find that the Temperature data are non-normal, and that we are sampling from a moderately skewed, mesokurtic distribution:


```
nqtr(summary.continuous(Delivery$Temp)
, 5)
n          60
mean          43.36667
var          7.08362
g3.skewness     0.63363
g3test.p          0.04312
g4.kurtosis     0.31915
g4test.p          0.47427
```


This condition renders the use of \mathbf{s} and $\hat{\mathbf{s}}$ values questionable for the generation of control limits.

• In many instances, these type of nonnormal distributions may be transformed with mathematical functions to achieve a state of normality; specifically, the Natural-Log Transformation.

- This transformation requires us to calculate the ln(X) values, re-test them for normality, and if we accept normality, generate the required control limits from these transformed values.
- All these operations may be executed within Rstudio.

The raw data as it was gathered.

> Delivery\$Intemp<-log(Delivery\$Temp)

• Testing the transformed data for normality, we can now see that the log X values are normally distributed, so that the use of s (the standard deviation) is now justified.


```
nqtr(summary.continuous(Delivery$Intemp),5)
n 60
mean 3.76788
var 0.00366
g3.skewness 0.46738
g3test.p 0.12596
g4.kurtosis 0.11273
g4test.p 0.68757
```

When using the Lognormal Transformation, there are two considerations:

• If the data are all positive (no negative values) the log transformation can simply be applied to the original data values.

• If there are negative values in the data set (which can occur with Interval scale data or when data are taken from a reference point), a constant must be added to each data value prior to performing the log transformation.

 In this case, we will add 2 times the absolute value of the minimum value to each value prior to the lognormal transformation

 This transformation helps to avoid taking the log of a negative number, which would result in a 'NaN' (not a number) in R.

- > Delivery\$Temp2<-2*abs(min(Delivery\$Temp))
- + Delivery\$Temp

> Delivery\$Intemp2<-log(Delivery\$Temp2)</pre>

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005