Algebras Por Regular Relations

Rémi Morvan Labret, Univ. Bordeaux www. morvan. 2048

Highlights 23 Wassel 27 Joly 2023

 $R = \sum^* \times \sum^*$

$$\mathbb{R} \subseteq \mathbb{Z}^* \times \mathbb{Z}^*$$
 $(aa, abbb) \longrightarrow (aabbb)$

$$\mathbb{R} = \mathbb{Z}^* \times \mathbb{Z}^*$$

(aa, abbb) \longrightarrow (aa $\mathbb{D} \mathbb{D}$)

accepts Same-Parity: ? (u,v) | lul = Iul mod 2}.

$$R = \sum^* \times \sum^*$$

(aa, abbb) \longrightarrow (aaDB)

(abbb)

(abb)

regular relations \subseteq regular languages over Σ over $\Sigma \times \Sigma \cup \Sigma \times \Omega \times \Sigma$

regular relations = regular languages
over Σ over $\Sigma \times \Sigma \cup \Sigma \times \{\Omega\} \cup \{\Omega\} \times \Sigma$

エハ (エ×エッエ×「ロシット」)*:

regular relations e regular languages
over Σ over $\Sigma \times \Sigma \cup \Sigma \times \{\Omega\} \cup \{\Omega\} \times \Sigma$

エハ (エ×エッエ×「ロシット」)*:

regular relations over 2 regular languages over IXI u INJX I

エハ (エ×エッエ×(ロ)・エ)*:

R = f(u,v) e Z* z* | |u| = |v| mod 2].

Same parity

regular relations over 2 regular languages over IXI u IXIII u 10]x I

工へ (エ×エッエ×(ロかいか)*:

R = f(u,v) e Z* Z* | | | u| = | v| mod 2 }

R = same parity

R is a commutative language?

R is a commutative language? No.


```
V: class of reg. languages

2: FLEV, R= Ln (well-formed)?

""V-relation"
```


V: class of reg. languages

2: FLEV, R= Ln (well-formed)?

""V-relation"

Same-parity is:

- not a commutative language

_ is a commutative relation

V: class of reg. languages

2: FLEV, R= Ln (well-formed)?

""V-relation"

Same parity is:

- not a commutative language

- is a commutative relation

- not a grap language

- is a grap relation

Classes of kang.

languages

Classes of relations

group relations

Classes of Semigroups W groups

Groups

Classes of relations

group relations

Classes of Seorigraps V

Seorigraps V

Groups

Classes of Seorigraps V

Classes of Synchronous capebras

group

group

relations

Classes of Servigroups V

Servigroups V

Groups

Classes of Servigroups V

Groups

Classes of Synchronous

relations

Group

Group

Appeties of

App

"Def": Synchronous algebras:

n typed semigraps

(a). (a) (baa). (a) x6.72 well-defined?

(5.2) compatible

Classes of Servigroups V

Groups

Classes of Properties of synchronous algebras

group

group

Groups

"Def": Synchronous algebras:

n typed semigraps

(a). (a) (ba). (a) 26. 25 mell-defined?
(5.2) compatible

Fact. Finitely many types

Classes of Services of Service

group relations Properties of synchronous algebras

Synchronous algebras:

n typed semigraps

(a). (a) (ba). (a) x6.72 well-defined?
(5.2) compatible

Fact Finitely many types

Classes of Servigraps W

Servigraps W

Groups

Classes of Arapeties of Synchronous

relations

roup relations

"Def": Synchronous algebras:

n typed semigraps

(a). (a) (ba). (a) 26. 72 well-defined?

(5.2) compatible

Fact

· Finitely many types · Monads à la Bojanczyk

Classes of king.

group languages

Classes o

Foresties of Searigraps IV

xy' = x

Properties synchronous algebras

semigraps

xo. 22 mell-offined? (5,2) compat:ble

Fact

· Finitely many types · Monads à la Bojonczyk

Classes of Apperties of Servigroups V

Servigroups V

Groups

Josephanes (profinite appellies)

Classes of Synchronous (A, =)

chromatic algebras (A, \equiv) appropriations profinite equivalences (A, \equiv) (A, \equiv) (A, \equiv) are already (A, \equiv) (A, \equiv) (A, \equiv) and (A, \equiv) are already (A, \equiv) and (A, \equiv) are already (A, \equiv) are al

"Def": Synchronous alsebras:

n typed semigraps

(a). (a) (baa). (a) 26. 25 well-defined?

(5,2) compatible

Fact

· Finitely many types · Monads à la Bojonczyk

Foresties of Semigroups W group xy' = x, (profinite y'x = x equalities) Properties of synchronous chromatic algebras (A, => Classes of relations

This construction works for many V.

group profinite profinite $xy' \equiv x$, relations $y: x \equiv x$

Works Por all D? Cani

Synchronous algebras:

typed semigraps

(ba). (a)
(ba). (a) (a). (a)

xe. 22 mell-gelined? (5,2) compat:ble

Fact

. Monads à la Béjanczyk