Devoir à la maison n° 3

À rendre le 3 octobre

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente s'il existe $p \in \mathbb{N}$ tel que $A^p = 0$. On définit alors l'exponentielle de A comme

$$\exp(A) = \sum_{k=0}^{p-1} \frac{1}{k!} A^k.$$

1) Soit $A \in \mathcal{M}_n(\mathbb{K})$ nilpotente et $p \in \mathbb{N}$ tel que $A^p = 0$. Montrer que pour tout $q \geqslant p$:

$$\exp(A) = \sum_{k=0}^{q} \frac{1}{k!} A^k.$$

- 2) La somme de deux matrices nilpotentes est-elle nécessairement nilpotente?
- 3) Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices nilpotentes qui commutent : AB = BA.
 - a) Montrer que A + B est nilpotente.
 - **b)** Montrer que $\exp(A + B) = \exp(A) \exp(B)$. Est-ce que $\exp(A)$ et $\exp(B)$ commutent?
- 4) Montrer que l'exponentielle d'une matrice nilpotente est inversible et déterminer son inverse.
- 5) L'exponentielle d'une matrice nilpotente est-elle nilpotente?
- **6)** Un exemple. On pose $A = \begin{pmatrix} -10 & 8 & -8 \\ -7 & 6 & -5 \\ 5 & -4 & 4 \end{pmatrix}$.
 - a) Vérifier que A est nilpotente.
 - **b)** Calculer $\exp(A)$.
 - c) Écrire et résoudre le système AX = 0. Donner un vecteur u solution dont la première composante est 4.
 - d) Écrire et résoudre le système AX = u. Donner un vecteur v solution dont la première composante est 2.
 - e) Écrire et résoudre le système AX = v. Donner un vecteur w solution dont la première composante est -1.
 - f) En notant P la matrice dont les trois colonnes sont respectivement u, v et w, montrer que P est inversible et calculer P^{-1} .
 - g) Calculer $N = P^{-1}AP$.
 - h) Exprimer pour tout $n \in \mathbb{N}$ A^n en fonction de N^n . En déduire une expression de $\exp(A)$ en fonction de $\exp(N)$, que l'on calculera.
 - i) Déterminer $\exp(A)^{-1}$.

— FIN —