iistodan stazlino Nediariller T_{wo-level Otsu} th_{resholding} 3 datasets Global Otsu thresholding Preprocessing Gaussian filter Local adaptive Otsu Two-level Otsu thresholding clip thresholding average _{Postprocess}ing Dice Score

Optimal segmented image

Timeline recap

Topic 01: Biomedical Image Analysis

Supervisor: PD Dr. Karl Rohr, Christian Ritter, Tutor: Marie Becker

Group 01.04: Marie-Claire Indilewitsch, Helen Jade, Maribel Schneider, Ieva Sorokina-Ozola

Date: 20.07.2022

Overview

N2DH-GOWT1

(first dataset)

N2DL-HeLa

(second dataset)

NIH3T3

(third dataset)

- Noise
- Low contrast
- Holes

- Varying brightness of cell nuclei
- Low contrast

- Non-uniform illumination
- Reflections

Expectations

	Challenge	Preprocessing method	Otsu thresholding variation
N2DH- GOWT1	Noise Low contrast Holes	Filters Histogram stretching and combinations +postprocessing	Global Otsu Two-level Otsu
N2DL-HeLa	Varying brigtness of cell nuclei Low contrast	Filters Histogram stretching and combinations	Global Otsu Two-level Otsu Local adaptive thresholding
NIH3T3	Non-uniform illumination Reflection	Filters Histogram stretching and combinations	Global Otsu Two-level Otsu Local adaptive thresholding

Does the combination between preprocessing method and Otsu thresholding variation solve/improve the challenge?

Global Otsu thresholding

Preprocessing methods N2DH-GOWT1 and N2DL-HeLa

Preprocessing methods NIH3T3

N2DH-GOWT1: Effects of histogram stretching

NIH3T3: Reflections

Two-level Otsu thresholding

Preprocessing methods N2DH-GOWT1 and N2DL-HeLa

Preprocessing methods NIH3T3 two-level Otsu and clip

N2DH-GOWT1: Effects of histogram stretching

NIH3T3: Two-level Otsu thresholding clip

Local adaptive Otsu thresholding

Preprocessing methods N2DL-HeLa and NIH3T3

Challenges

RANDOM NOISE

UNSEGMENTED EDGES

NIH3T3: Effects of local adaptive Otsu thresholding

Local adaptive two-level Otsu thresholding

Local Two-level Otsu thresholding average - N2DH-GOWT1 - t31

Local Two-level Otsu thresholding clip average - NIH3T3 - dna32

Local Two-level Otsu thresholding average - N2DL-HeLa - t75

Challenges

Challenges

- Runtime
- Optimal bin size
- Optimal filter size
- Edge issue
- Local adaptive Otsu thresholding count vs. average

All challenges solved?

Optimal segmentation method for N2DH-GOWT1 and N2DL-HeLa

Optimal segmentation method NIH3T3

		Global Otsu Thresholding	Two-level Otsu thresholding	Two-level Otsu Clip	Local adaptive thresholding average
N2DH- GOWT1	Preprocessing method	Histogram stretching	Median filter		
	Dice Score	0.89	0.85		
N2DL-HeLa	Preprocessing method	Histogram stretching and median	Histogram stretching		Median filter and histogram stretching
	Dice Score	0.80	0.89		0.81
NIH3T3	Preprocessing method	Histogram stretching and median	No preprocessing	No preprocessing	Gaussian filter and histogram stretching
	Dice Score	0.70	0.64	0.65	0.83

Conclusion

The perfect recipe

N2DH-GOWT1

(first dataset)

- •Preprocessing: histogram stretching
- Postprocessing: hole filling
- Otsu: global Otsu thresholding
- Final median Dice Score: 0.8864

N2DL-HeLa

(second dataset)

- •Preprocessing: histogram stretching
- **Otsu:** two-level Otsu thresholding
- •Final median Dice Score: 0.8866

NIH3T3

(third dataset)

29

- •Preprocessing: Gaussian filter + histogram stretching
- Otsu: local adaptive Otsu thresholding
- •Final median Dice Score: 0.8293

N: nuclear 2D: two-dimensional H: high resolution L: low resolution

Thank you for your attention!

Extra slides

Why local thresholding?

Hole filling

Solution Ideas

Challenge	Solution
Random noise	Gaussian filter, median filter
Holes	Median filter
Low contrast	Histogram stretching
Reflections	Intensity clipping, multithresholding
Brightness	Local thresholding

Challenges: N2DL-HeLa

Reflections

Dice score - Issues

Evaluation algorithm - Dice score

N2DH-GOWT1

- Express Oct4-GFP
- Leica TGS SP5 (confocal microscope)
- •6 images total
- ■1024x1024 pixels
- ■10-20 nulei per image

NIH3T3

Cell type: Embryonic fibroblast cells | Organism: Mouse (Mus musculus)

- Stained with Hoechst (fluorescent dye)
- •Fluorescence microscope
- ■18 images total
- •Size: 1344x1024 pixels
- ■about 60 nuclei per image

N2DL-HeLa

Cell type: cervical adenocarcinoma cells | organism: human (Homo sapiens)

- Express H2B-GFP
- Olympus IX81 Confocal Microscope
- 4 images total
- •Size: 1100x 700 pixels
- ■30-50 nuclei per image

Otus Thresholding usage

- Locate cell boundaries
- Cell type classification
 - Cell counting
 - Cell phenotype analysis (size, shape,..)
- But not used for very complex images!

Otsu Thresholding

Class probabilities ($\omega_{0,1}$):

$$\omega_0 = \Pr(C_0) = \sum_{i=1}^k p_i = \omega(k)$$

$$\omega_1 = \Pr(C_1) = \sum_{i=k+1}^{L} p_i = 1 - \omega(k)$$

Class mean levels ($\mu_{0,1}$) and total mean level (μ_T):

$$\mu_0 = \sum_{i=1}^{k} i \operatorname{Pr}(i \mid C_0) = \sum_{i=1}^{k} i p_i / \omega_0 = \mu(k) / \omega(k)$$

$$\mu_1 = \sum_{i=k+1}^{L} i \operatorname{Pr}(i \mid C_1) = \sum_{i=k+1}^{L} i p_i / \omega_1 = \frac{\mu_T - \mu(k)}{1 - \omega(k)}$$

$$\mu_T = \mu(L) = \sum_{i=1}^L i p_i$$

Class variances ($\sigma_{0,1}^2$) and total variance (σ_T^2):

$$\sigma_0^2 = \sum_{i=1}^k (i - \mu_0)^2 \operatorname{Pr}(i \mid C_0) = \sum_{i=1}^k (i - \mu_0)^2 p_i / \omega_0$$

$$\sigma_1^2 = \sum_{i=k+1}^L (i - \mu_1)^2 \Pr(i \mid C_1) = \sum_{i=k+1}^L (i - \mu_1)^2 p_i / \omega_1$$

$$\sigma_T^2 = \sum_{i=1}^{L} (i - \mu_T)^2 p_i$$

$$L =$$
 Number of gray levels in the picture

$$n_i$$
 = Number of pixels at level i

$$N = \text{Total number of pixels}$$

$$p_i$$
 = Probability of level i

$$k =$$
Threshold intensity

$$p_i = n_i/N$$

Otsu Thresholding

Weight
$$W_f = \frac{6+9+4}{36} = 0.5278$$

Mean $\mu_f = \frac{(3\times6)+(4\times9)+(5\times4)}{19} = 3.8947$
Variance $\sigma_f^2 = \frac{((3-3.8947)^2\times6)+((4-3.8947)^2\times9)+((5-3.8947)^2\times4)}{19}$
 $= \frac{(4.8033\times6)+(0.0997\times9)+(4.8864\times4)}{19}$
 $= 0.5152$

Weight
$$W_b = \frac{8+7+2}{36} = 0.4722$$

Mean $\mu_b = \frac{(0\times8)+(1\times7)+(2\times2)}{17} = 0.6471$
Variance $\sigma_b^2 = \frac{((0-0.6471)^2\times8)+((1-0.6471)^2\times7)+((2-0.6471)^2\times2)}{17}$
 $= \frac{(0.4187\times8)+(0.1246\times7)+(1.8304\times2)}{17}$
 $= 0.4637$

Discriminant Criterion Measure

Criterion measure

$$\eta(T) = \sigma_B^2(T) / \sigma_T^2$$

 σ_B^2 = Between-class variance σ_T^2 = Total variance $0 < n^* < 1$

Holes

Bildquelle: OpenStax Biology.

Histogram stretching

stretching range of intensity values to achieve a higher contrast -> linear scaling

$$P_{\text{out}} = (P_{\text{in}} - c)(\frac{b-a}{d-c}) + a$$

Example Histogram stretching

Two-level Otsu Thresholding

Two-level Otsu Thresholding

$$\sigma_B^2 = \omega_1(\mu_1 - \mu_T)^2 - \omega_2(\mu_2 - \mu_T)^2 - \omega_3(\mu_3 - \mu_T)^2$$

 $\omega_{1,2,3}$ = Probabilities of class occurrence

 $\mu_{1,2,3}$ = Class mean levels

 μ_T = Total mean level

Application of Filter

- Choose Filtermask
- Convolution
 - Flipping filter
 - Multiplication of filter values with image intensity values
 - Summation of the multiplication results