FPGA 实验报告

姓名: __薛宇翔_

学号: 20049200057

班级: 2003052

熟悉 Xilinx 开发工具

一、实验介绍

本实验主要介绍 Xilinx 的开发工具——ISE 的使用。

二、实验目标

- 了解 FPGA 的开发流程;
- 熟悉 Spartan-3E 开发套件的功能特点;
- 清楚 PicoBlaze8 位控制器的特性。

三、实验过程

本实验包含五个主要的部分:

- 1. 使用 ISE 集成环境创建一个新的工程:
- 2. 添加设计文件到工程中;
- 3. 编译设计;
- 4. 仿真设计;
- 5. 实现设计。

四、实验步骤

首先,阅读 PicoBlaze 的说明文档,以便熟悉 8 位微控制器的体系结构和编译系统,可参考". JKCPSM3 docs\"目录下的KCPSM3_manual. pdf 文档。本系列实验将使用基于 PicoBlaze 处理器的设计,举例说明 ISE 设计流程及其相关的各个重要工具。

1. 启动 ISE 创建一个新的工程

- (1) 选择 "开始→程序→Xilinx ISE 14.7.1i" 或直接在桌面 双击 Xilinx ISE 14.7.1i 图标,打开 ISE14.7集成环境。
- (2) 在 ISE 中,选择菜单栏中的 File→New Project, 打开创建新工程界面,如图所示。

- (3)在工程名称填写栏里输入 Flow Lab; 工程存放位置选择"…" 按钮指定到下列目录之一, 然后单击 OK 按钮。
 - Verilog \xup\fpgaflow\labs\verilog\labl;
 - VHDL \xup\fpgaflow\labs\vhdl\labl。
 - (4) 单击 Next 按钮,将出现器件和设计工具选择对话框。
 - (5) 选择下列参数,并单击 Next 按钮。
 - Family (器件类别): Spartan3E;
 - Device (器件型号): XC3S500E;
 - Package (封装): FG320;
 - Speed (速度等级): -4;
 - Synthesis Tool (综合工具): XST (VHDL/Verilog);
 - Simulator (仿真工具): ISE Simulator (VHDL/Verilog);
 - Preferred Language (偏好语言): Verilog or VHDL (select your preference)。

单击 Next 按钮,将会出现创建新文件的对话框,如图 7.3 所示,在这个对话框里可以通过单击 New Source..按钮,按照用户定义的模块名称、端口属性等信息来创建一个新的 HDL 源文件,对文件的全部后续修改只能在 HDL 编辑器中完成。本实验所用到的 HDL 源文件已被创建好了,故此处不用单击 New Source..按钮创建新文件。

(6) 单击 Next 按钮,将会出现添加已有文件的对话框。

2.添加 HDL 源文件到工程

- (1)单击 Add Source,浏览 \xup\fpgaflow\KCPSM3\VHDL 目录。
- (2) 选择 VHDL/Verilog 文件 kcpsm3 int test 和 kcpsm3, 并单 击 Open 按钮。
- (3) 单击 Next 按钮,然后单击 Finish 按钮,将出现选择源文件类型对话框,如图所示。

(4) 单击 OK 按钮,接受默认设置。

注意:在分层显示列表中,会出现带有红色问号标记名为 int_test 的模块。这个模块是个 BlockRAM,它包含 PicoBlaze 控制器的指令信息,这些指令信息将在随后的步骤中被添加。

3. 编译设计

编写 MY AND2 实体的 VHDL 代码。

- (1) 打开 Windows 搜索,在 KCPSM3 子目录里找到编译器。
- (2)使用诸如写字板这样的文本编辑器打开文件 int test.psm, 查看代码,可参考 PicoBlaze 8-bit Embedded Microcontroller User Guide 或 KCPSM3 manual 得到技术帮助。这些文档存放在 Docs 子目录中。
 - (3) 打开命令窗口(开始→程序→附件→命令提示符)。
 - (4) 使用 cd 命令切换到 Assembler 目录。
- (5)在命令提示符下输入以下命令,立即编译代码输出程序 ROM 文件。

>kcpsm3 int_test.psm

注意:在编译器子目录里,现在应该能看到几个以 INIT_TEST* 开头的文件,包括 VHDL (INT TEST. VHD)和 Verilog(INT TEST. V) 程序 ROM 文件。

(6) 在 ISE 集成环境里, 打开 Project→Add Copy of Source 并找到 INT_TEST. VHD 或 INT_TEST. V 文件 (7) 单击 Open 按钮,然后单击 OK 按钮把 INIT_TEST 当作设计文件添加到工程。

4. 仿真设计

添加测试文件 testbench. vhd/. v 并阅读其代码。使用 Xilinx iSIM 仿真工具完成行为级仿真并检查仿真结果。

- (1) 在 ISE 的 Sources 窗口中,选择 Project→Add Copy of Source 并找到 vhdl 目录。
- (2) 选择文件 test bench. vhd (或 testbench. v) 并单击 Open 按钮。
- (3) 选择 Simulation Only 并单击 OK 按钮,添加测试文件到工程。
- (4)选中 testbench 测试文件,在 Processes 窗口中展开 Xilinx ISE Simulator 仿真工具,右键单击 Simulate Behavioral Model 并选择属性 Properties。
- (5) 在 Simulation Run Time 选项下输入值 25000ns 并单击 OK 按钮。
- (6) 双击 Simulate Behavioral Model 仿真设计。仿真结束后会出现两个窗口。一个窗口以波形方式显示仿真结果,另一个以HDL 格式显示 testbench 文件。
- (7)单击 waveform 查看仿真结果,缩放并仔细观察波形确认仿真结果准确性。
 - (8) 关闭窗口,退出仿真。

5. 实现设计

- (1) 在 Sources 窗口中,选择 Synthesis/Implementation, 并选中顶层设计文件 kcpsm3_int_test.v。
- (2) 在 Processes 窗口中双击 Implement Design, ISE 工具会运行所有需要的过程来实现设计,在实现之前首先运行综合。
- (3) 在实现过程中,单击 Implement Design 旁边的"+"展开实现步骤,查看进展。每个阶段完成后,都会出现一个对应符号:
 - 对号表示正确;
 - 感叹号表示警告;
 - X表示错误。

对于这个设计,在某些步骤中可能会出现一个感叹号(警告),这里的警告是可以忽略的。

- (4) 在 ISE 集成环境的底部消息窗口阅读消息。
- (5) 实现结束后,在 Design Summary 窗口中查看设计的资源利用情况。

Project File:	Flow_Lab.ise		Current State:	Placed and Routed		
Module Name:		kcpsm3_int_test		• Errors: No Errors		DFS.
Target Device:		xc3s500e-4fg320		• Warnings:	346 Warnings	
Product Version:		ISE, B.1.03i		• Updated:	• Updated: Mon May 15 09:43:08 2006	
			Device Utili	zation Summary		
Logic Utilization		Used		Available	Utilization	Note(s
Number of Slice Flip Flops			76	9,312		1%
Number of 4 input LUTs			187	9,312		1%
Logic Distribution						
Number of occupied Slices			99	4,656	2%	
Number of Slices containing only related logic			99	99	100%	
Number of Slices containing unrelated logic			0	99	0%	
Total Number 4 input LUTs			177	9,312		1%
Number used as logic			107			
Number used as a route-thru			2			
Number used for Dual Port RAMs			16			
Number used for 32x1 RAMs			52			
Number of bonded IDBs			18	232	7%	
IOB Flip Flops			16			
Number of Block RAMs			1	20	5%	
Number of GCLKs			1	24	4%	
Total equivalent gate count for design			74,954			
Additional JTAG gate count for IOBs			964			
			Performa	nce Summary		
Final Timing Score:		0		Pinout Data:	Pinout	Report
Routing Results:		All Signals Completely Routed		Clock Data:	Clock Report	
Timing Constraints:		All Constraints Met				
			Details	ed Reports		
Report Name	Status	Gener	ated	Errors	Warnings	Infos
Synthesis Report	Current	Mon May 15 09:42:22 2006		0	345 Warnings	0
Translation Report	Current Mon May 15 09:42:28 2006		0	1 Warning	a	
Map Report	ecot		ay 15 09:42:38 2006	0	0	2 Infos
Place and Route Report	Current	Mon M	ay 15 09:43:01 2006	0	0	2 Infos

五、实验总结与反思

本次实验中,创建了一个简单的逻辑门模块,并且在上层的模块中调用这个模块,使用信号将模块之间相连。通过这个实验,接触了解了一些 VHDL 的基本技术和方法,在之后的应用中将会有更多的使用。