(X,d) is a metric space.

Definition 0.1 X is sequentially compact if every sequence in X has a convergent sequence.

Definition 0.2 X is compact if every covering of X has a finite subcover.

Theorem 0.3 X is sequentially compact \iff X compact.

Proof: Compactness ⇒ Sequential Compactness

Let (x_n) be a sequence in X.

WTS (x_w) has a convergent subsequence.

Let $A = x_n$

$$(x_n) = x_1, x_2, \dots$$

Case 1 A is finite.

Then some value $x_j \in A$ is repeated infinitely often in the sequence (x_n) . Choose the subsequence (x_{n_j}) with $x_{n_j} = \overline{x} \ \forall j$.

Then (x_{n_i}) is a constant sequence : convergent.

Case 2: A is infinite.

Claim: A has a limit point.

Suppose not. Then A is closed. because $\overline{A} = A \cup \{\text{limit points}\}\$.

If $a \in A$, then a is not a limit point.

 $\therefore \exists$ open set \cup_a containing $a, A \cap U_a = \{a\}.$

$$X = A^c \bigcup_{a \in A} U_a.$$

By compactness \exists a finite subcover of X.

$$X = A^c \cup U_{a_1} \cup \ldots \cup U_{a_n}.$$

This is a contradiction because A is infinite.

Let x be a limit point of A.

 $\forall \varepsilon > 0, B_{\varepsilon}(x)$ contains infinitely points points of A other than X.

Choose $x_{n_1} \in A$, s.t. $d(x_{n_1}, x) < 1$.

Choose $x_{n_2} \in A$, $n_2 > n$,s.t. $d(x_{n_2}, x) < 1/2$.

:

Choose $x_{n_k} \in A$, s.t. $n_k > n_{k-1} d(x_{n_k}, x) < 1/k$.

:

Then $(x_{n_j})_{j=1}^{\infty}$ is a subsequence of (x_n) . $(x_{n_j}) \to x$ as $j \to \infty$

 \therefore (x_n) has a convergent subsequence.

Sequential compactness \implies Compactness

Suppose X is sequentially compact.

Claim: For each $k \in \mathbb{N}$, \exists finitely many points $\{x_1, \ldots, x_N\}$ s.t. $x \in X \implies d(x_i, x) < \frac{1}{k}$ for some $x_i \in \{x_1, \ldots, x_N\}$

Choose x_1

Choose $x_2 \in X \setminus B_{\frac{1}{h}}(x_1)$

Choose $x_3 \in X \setminus [B_{\frac{1}{k}}(x_2) \cup B_{\frac{1}{k}}(x_1)]$

Keep going until this stop. This must stop.

If this does not stop, then (x_n) is a sequence with no convergent subsequence.

For each $k \in \mathbb{N}$, let A_k be the set chosen by this process.

Let $A = \bigcup_{k \in N} A_k$. Then A is countable, dense.

Definition 0.4 A is dense in X if $\overline{A} = X$.

Claim: Every open cover of X has a countable subcover.

Let $\mathcal{F} = \{U_i\}_{i \in I}$ be a covering of X by open sets.

If $\exists x \in A$, some r > 0 s.t. $B_r(x) \subset U_i$ for some i, choose one such U_i , call it $U_{x,r}$.

Let $\mathcal{F}^* = \{U_{x,r} : x \in A, r > 0 \text{ is retained}\}$

 \mathcal{F}^* countable. \mathcal{F}^* covers X.

Let $y \in X$. Then $\exists s > 0$ s.t. $B_s(y) \subset U_i$ for some i.

Choose rational r

 $\frac{s}{4} < r < \frac{s}{2}$.

Choose $x \in A$ s.t. d(x, y) < r.

Then $y \in B_r(x)$.

Then $y \in B_r(x) \subset B_s(y) \subset U_i$.

 $\implies \exists U_{x,r} \in \mathcal{F}^* \text{ s.t. } y \in U_{x,r} \text{ by defintiion of } \mathcal{F}^*.$

If $\{U_n\}_{n\in\mathbb{N}}$ is a countable open cover of X, then \exists a finite subcover.

Let $V_n = U_1 \cup U_2 \ldots \cup U_n$

WTS $V_n = X$ for large enough n.

Suppose not. Then $\forall n \exists x_n \in X \backslash V_n$.

X is sequentially compact \therefore (X_n) has a convergent subsequence.

By relabelling we may assume $x_n \to x$. $x \in U_n$ for some N. $x_n \in U_n$, $\forall n$ suff large. \Rightarrow contradiction because $x_n \in X \setminus V_n$.