BST 210 Applied Regression Analysis

Tales of a 6th grade math student

Lecture 12 Plan for Today

- Review binary outcomes and logistic regression thus far
- Assumptions of the logistic regression model
- Interpretation, interpretation!
- More interpretation
- Confounding in logistic regression
- Multiple logistic regression
- Lot's of examples, some code

Recall: Binary Outcomes -> Probabilities and Proportions

- Probabilities can be estimated using sample proportions p
- The probabilities of the outcome are actually conditional probabilities,

$$p_1$$
 = P(outcome | exposure) and

$$p_2$$
 = P(outcome | no exposure)

- Comparisons of these two conditional probabilities above are called <u>measures of effect</u>
- One measure of effect we will focus on in logistic regression is the <u>odds</u>
 <u>ratio</u> of an outcome for exposed versus unexposed subjects, which is
 defined as:

OR =
$$\frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$

Recall: Logistic Regression Model

 In order to model a <u>binary outcome</u> Y with covariate X and draw inference regarding the resulting proportions, or <u>OR</u>s, we could use the logistic regression model defined as

$$\log[p/(1-p)] = \alpha + \beta X$$

- Here p = P(Y=1|X=x), and we assume that the relationship between log[p/(1-p)] = logit(p) and x is linear (<u>linear on logit scale</u>)
- Solving for *p*, we obtain:

$$p = \frac{\exp^{(\alpha + \beta X)}}{1 + \exp^{(\alpha + \beta X)}}$$

and the estimated probabilities fall between (0,1), as on next plot ->

Recall: Logistic Regression Model

New! Assumptions of Logistic Regression Model

- Y follows a binomial distribution
- E[Y|X] = P(x) is defined as the logistic function (ie linear in the logit)

$$logit(p_i) = log[p_i/(1 - p_i)] = \alpha + \beta x_i$$

- Y are independent
- 10-20 observations for each covariate
- Little to no collinearity

Recall: Logistic Regression: single binary covariate

- What do our logistic model coefficients represent?
- Let the subscript *i* represent the *i*th subject in a sample
- Let X be a <u>binary covariate</u> such that

 $x_i = 1$ if the subject is exposed and

 $x_i = 0$ if unexposed

(by the way X could be continuous, indicator, etc)

- p_i = probability of disease (or 'success') for the i^{th} subject
- We then fit the logistic regression model

$$logit(p_i) = log[p_i/(1-p_i)] = \alpha + \beta x_i$$

Recall: Logistic Regression: single binary covariate

Interpret 'intercept' α

```
\rightarrow if x_i = 0, e^{\alpha} = odds of disease (or 'success') for unexposed \rightarrow ...or.... \alpha = \log(\text{odds of disease for unexposed})
```

Interpret 'slope' β

```
\rightarrow e<sup>\beta</sup> = OR of disease (or 'success') for exposed versus unexposed \rightarrow \beta = log(OR of disease for exposed versus unexposed)
```

In general

Exposed =
$$\alpha + \beta$$

Unexposed = α

New! Logistic Regression: single continuous covariate

- What do our logistic model coefficients represent?
- Let the subscript *i* represent the *i*th subject in a sample
- Let X be a continuous covariate rather than binary
- p_i = probability of disease for the i^{th} subject
- We fit the logistic regression model

$$logit(p_i) = log[p_i/(1-p_i)] = \alpha + \beta x_i$$

Logistic Regression: single continuous covariate

- We compare two people, A and B, with levels of exposure (x + 1) and x (say person A who is age (x + 1) year) compared with person B who is age x)
- $logit_A = \alpha + \beta (x + 1) = \alpha + \beta x + \beta$ $logit_B = \alpha + \beta x$
- $\beta = logit_A logit_B = log(odds_A) log(odds_B) = log \frac{odds_A}{odds_B} = log OR_{A \text{ versus } B}$ $e^{\beta} = odds_A / odds_B = OR_{A \text{ versus } B}$
- Interpret 'slope' β $\beta = \log OR_{A \text{ versus } B}$ $e^{\beta} = OR_{A \text{ versus } B}$

Logistic Regression: single continuous covariate

More specifically,

- The odds in favor of disease for person A (with exposure x + 1) versus person B (with exposure x) are e^{β}
- $e^{\beta} = OR_{A \text{ versus } B}$ is the OR associated with a 1 unit increase in the continuous covariate X
- We extend this to say that the
 - OR associated with a 10 unit increase in X is $e^{10\beta}$, and the OR associated with a 20 unit increase in X is $e^{20\beta}$

- A study was performed comparing in-hospital mortality (0/1 variable) in low birth weight infants in 14 hospitals before and after the start of surfactant use
- Before: 3922 births with weight 500-1500 g, of which 960 died in the hospital (group 2)
- After: 1707 births with weight 500-1500 g, of which 335 died in the hospital (group 1)

$$\hat{p}_2 = 0.245, \hat{p}_1 = 0.196.$$

		In-Ho Mort		
		Yes	No	Total
Surfactant Use	Yes	335 (19.6%)	1372	1707
	No	960 (24.5%)	2962	3922
	Total	1295 (23.0%)	4334	5629

Remember: OR = (335)(2962)/(960)(1372) = 0.75

• We can use most stat packages to fit the logistic regression model and get estimates for α and β

$$logit(p_i) = \alpha + \beta x_i$$

- $p_i = P(Y=death)$ for the i^{th} subject
- x_i = 1 if surfactant use = yes, and
 x_i = 0 if surfactant use = no
- We expect to get the same estimates for OR as the 2x2 table whenever the covariate is binary

> dat.surfactant

```
birthwt surfactant death freq
                            177
                         0 153
                         1 479
                         0 290
                         1 78
6
                         0 336
                         1 257
8
                         0 646
9
         3
                         1 40
10
                         0 375
11
        3
                         1 142
12
                         0 885
13
                         1 40
14
                         0 508
15
                             82
16
                         0 1141
```

(Need to expand these rows (by freq) in our programming to create a line for each subject.)

Single Binary Covariate: Surfactant Use

```
> # Fit logistic regression model and find coefficients and CIs
R code:
            > surf.glm <- glm(dat.surfactant$death ~ dat.surfactant$surfactant,</pre>
             family = binomial(), weights = freq, data = dat.surfactant)
            > summary(surf.glm)
            Call:
            glm(formula = dat.surfactant$death ~ dat.surfactant$surfactant,
                family = binomial(), data = dat.surfactant, weights = frea)
            Deviance Residuals:
                Min
                          10
                               Median
                                             30
                                                     Max
            -25.311 -13.325
                                1.619
                                         16.952
                                                  36,719
            Coefficients:
                                       Estimate Std. Error z value Pr(>|z|)
            (Intercept)
                                       -1.12669
                                                   0.03714 - 30.337 < 2e-16
            dat.surfactant$surfactant -0.28321
                                                   0.07137 -3.968 7.24e-05
            > coefficients(surf.glm)
                         (Intercept) dat.surfactant$surfactant
                          -1.1266867
                                                   -0.2832076
           > exp(coefficients(surf.alm))
                         (Intercept) dat.surfactant$surfactant
                           0.3241053
                                                    0.7533634
            > exp(confint(surf.qlm))
            Waiting for profiling to be done...
                                        2.5 %
                                                 97.5 %
            (Intercept)
                                    0.3012131 0.3484226
            dat.surfactant$surfactant 0.6543888 0.8656901
```

Single Binary Covariate: Surfactant Use

So our fitted model is:

$$logit (p_{death}) = -1.127 + -0.283 * surfactant$$

- Assume 'exposed' = (X=1) = surfactant-use group = p₁ (treated)
 'unexposed' = (X=0) = no surfactant-use group = p₂ (untreated)
- Then the estimated <u>odds of death</u> (or 'disease') in the 'unexposed/no surfactant' group is estimated to be

$$e^{(-1.127)} = 0.324$$

and in the 'exposed/surfactant' group is estimated to be

$$e^{(-1.127 + -0.283)} = 0.244$$

 And the estimated <u>OR of death</u> in the 'exposed' (surfactant) group versus the 'unexposed' (non-surfactant) group is

$$e^{(-0.283)} = 0.753$$
, with 95% CI: $e^{(-.283 - 1.96*0.07, -.283 + 1.96*0.07)} = (0.654, 0.866)$

Single Binary Covariate: Surfactant Use

- We estimate that the odds of death in the exposed group is ~ 25% lower than the odds of death in the unexposed group.
- That is, the odds of death after introduction of surfactant is ~ 25% lower than the odds of death before surfactant use. Another way of saying this is that the odds of death in the surfactant group versus the non-surfactant group are about 3:4.
- With 95% confidence, the odds of death in the surfactant use group is between 13% and 35% lower than that of the non-surfactant use group (CI doesn't contain 1)
- That is, $\widehat{OR} = 0.7533634$, z = -3.97, p < 0.001, 95% CI = (0.6550237, 0.866467)
- Thus, the use of surfactant shows statistical significance and appears protective against in-hospital mortality in this lower birth weight cohort

Next - Continuous Covariate: Birth weight

• A potential covariate of interest is birth weight, which is divided into the following categories:

500-749 g	(group 1)
750-999 g	(group 2)
1000-1249 g	(group 3)
1250-1500 g	(group 4)

Continuous Covariate: Birth weight

- We will first treat birth weight as 'continuous' (even though it's coded ordinal – we'll try ordinal after)
- We can run the model

$$logit(p) = \alpha + \beta x$$
, where $x = 1, 2, 3$, or 4

- Here a 1 unit increase in x corresponds to a ~250 g increase in birth weight
- (Another alternative is to use a continuous birth weight for each subject, rather than just ordinally categorized)

Continuous Covariate: Birth weight

logistic death birthwt

Logistic regres	sion			Number	of obs	; =	5629
				LR chi2	2(1)	=	1079.76
				Prob >	chi2	=	0.0000
Log likelihood = -2496.1053				Pseudo	R2	=	0.1778
death (Std. Err.			_	Conf.	Interval]
birthwt	.3539453	.0126528	-29.05	0.000	.329	995	.3796338
DITCHWC	.5559455	.0120520			. 523		.5,50550

- $\beta = \log(OR) = \log(.354) = -1.04$
- $logit(p) = \alpha + -1.04*birthwt$
- The estimated odds ratio is 0.354, with 95% confidence interval (0.329, 0.379) and p < 0.001

Continuous Covariate: Birth weight

- This means that if we compare two infants A and B such that infant A weighs 250 g more than infant B (infant A is one ordinal category higher than B), then the odds ratio in favor of death for infant A versus infant B is 0.35
- Infant A has a lower odds of death (65% lower)
- This would be true for category 4 versus 3, 3 versus 2, and 2 versus 1 since we are treating birth weight as continuous
- Pros and Cons to modeling a 'continuous' covariate this way

• We next consider birth weight as a <u>categorical variable</u> divided into four mutually exclusive categories:

500-749 g	(group 1)
750-999 g	(group 2)
1000-1249 g	(group 3)
1250-1500 g	(group 4)

- We select one category as a reference or baseline group, and create indicator variables (dummy variables) I(x) for the other categories
- If we choose 500-749 g (group 1) as the reference group x_1 , then we create three indicator variables as follows ->

$$x_2 = 1$$
 if birth weight = group 2, 0 otherwise

$$x_3$$
 = 1 if birth weight = group 3, 0 otherwise

$$x_4$$
 = 1 if birth weight = group 4, 0 otherwise

And we run the model

$$log[p/(1-p)] = \alpha + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

Then,

$$e^{\beta 2} = OR_2$$

= odds of death for birth weight group 2 versus odds of death for birth weight group 1

ie group 2 versus group 1

$$e^{\beta 3} = OR_3$$
 group 3 versus group 1

$$e^{\beta 4} = OR_4$$
 group 4 versus group 1

Statistical packages will provide estimates of the three odds ratios OR_2 , OR_3 , and OR_4 (or the three β coefficients), where the reference group is birth weight group 1 (500-749 g)

Tabulation:

Birth weight	Frequency	Percent
500-749 g	1,099	19.5
750-999 g	1,317	23.4
1000-1249 g	1,442	25.6
1250-1500 g	1,771	31.5

Tabulation:

Birth weight	Freq.	# Died	Percent Died
500-749 g	1,099	656	59.7
750-999 g	1,317	335	25.4
1000-1249 g	1,442	182	12.6
1250-1500 g		122	6.7

Getting a look at the breakdown, and labeling in Stata:

- . label variable birthwt "Birth weight (g)"
- . label define bwcat 1 "500-749" 2 "750-999" 3 "1000-1249" 4 "1250-1500"
- . label values birthwt bwcat
- . tabulate birthwt

			Birth
Cum.	Percent	Freq.	weight (g)
19.52 42.92 68.54	19.52 23.40 25.62	1,099 1,317 1,442	500-749 750-999 1000-1249
100.00	31.46	1,771 +	1250-1500
	100.00	5,629	Total

Making I(x) with group =1 as reference category:

```
. generate bwt1 = 0
. replace bwt1 = 1 if birthwt == 1
(1099 real changes made)
. generate bwt2 = 0
. replace bwt2 = 1 if birthwt == 2
(1317 real changes made)
. generate bwt3 = 0
. replace bwt3 = 1 if birthwt == 3
(1442 real changes made)
. generate bwt4 = 0
. replace bwt4 = 1 if birthwt == 4
(1771 real changes made)
. logistic death bwt2 bwt3 bwt4
```

- . * Stata can also create the indicator variables for you with the i. command
- . logistic death i.birthwt

Running logistic regression model, all comparisons to group 1:

Logistic regression Log likelihood = -2478.6223				LR ch Prob	i2(3) > chi2	=	5629 1114.73 0.0000 0.1836
death	Odds Ratio	Std. Err.	z	P> z	 [95% C	onf.	Interval]
1000-1249 1250-1500	.2303739 .097544 .0499619 1.480813	.0097884	-23.19 -26.71	0.000	.08012	79 05	
Logistic regree		3		LR ch Prob	i2(3) > chi2	=	5629 1114.73 0.0000 0.1836
death		Std. Err.			 [95% C	onf.	Interval]
1000-1249	-1.468052 -2.327451 -2.996494	.0882334	-16.64 -23.19 -26.71	0.000 0.000 0.000	-2.5241 -3.2163	31 68	-2.130771

^{. *} Without exactly telling you, Stata is using the first/lowest category as

^{. *} baseline group here (500-749 g), so these results match with using

^{. *} bwt2, bwt3, and bwt4 as indicator variables we included above

Logistic regression results:

Coef	\hat{eta}	$s.e.(\hat{\beta})$	\widehat{OR}	<i>P</i>
<i>X</i> ₂	-1.468	0.088	0.230	<0.001
<i>X</i> ₃	-2.327	0.100	0.098	<0.001
<i>X</i> ₄	-2.996	0.112	0.050	<0.001
Const	0.392	0.061		< 0.001

 Here we are comparing with the baseline category 1, namely 500-749 g

- The estimated odds ratios for groups 2, 3, and 4 versus group 1, are 0.23, 0.10, and 0.05 respectively
- All have p < 0.001, meaning that we would reject each of the null hypotheses (separately):

$$H_0$$
: $\beta_2 = 0$ vs. H_1 : $\beta_2 \neq 0$

$$H_0$$
: $\beta_3 = 0$ vs. H_1 : $\beta_3 \neq 0$

$$H_0$$
: $\beta_4 = 0$ vs. H_1 : $\beta_4 \neq 0$

- We conclude that each of the three β coefficients are not equal to 0, and therefore that all three odds ratios are not equal to 1
- They are all less than 1 in fact
- These are called Wald tests -- we will discuss hypothesis testing next week
- The odds of death are significantly lower for birth weights greater than 500-749 g

• We may also wish to compare to group = 4 rather than group = 1:

Logistic regression results:

Coef	\hat{eta}	$s.e.(\hat{eta})$	ÔR	P
<i>x</i> ₁	2.996	0.112	20.0	<0.001
<i>x</i> ₂	1.528	0.113	4.6	<0.001
<i>X</i> ₃	0.669	0.123	2.0	<0.001
Const	-2.604	0.094		<0.001

• Here we are comparing with the baseline category 4, namely 1250- 1500 g, and the OR estimates are > 1

Next, Estimating the p's (probabilities): Birth weight

 We may want to estimate the probabilities of disease p_i (or death in this example) for given values of X

$$\hat{p} = \frac{\exp(a + b_2 x_2 + b_3 x_3 + b_4 x_4)}{1 + \exp(a + b_2 x_2 + b_3 x_3 + b_4 x_4)}$$

- Each of the indicator variables in the expression above takes the value 0 or 1
- For a child in birth weight category 3, for example, $x_2 = 0$, $x_3 = 1$, and $x_4 = 0$
- You would simply insert coefficients from the fitted logistic regression model

Estimating the p's (probabilities): Birth weight

- We are able to predict the probability of in-hospital mortality for each birth weight category
- . predict phat bwt
- . list birthwt phat bwt

Estimating the p's (probabilities): Birth weight

Estimated p

Estimated logit(p)

More sigmoidal

More linear in the logit

Changing reference group: Birth weight

 Returning to the model with birth weight coded as a categorical variable, suppose that the odds ratio for group 2 versus group 1 is not significantly different from 1...

. logistic death bwt2 bwt3 bwt4

Logistic regression Log likelihood = -2478.6223				Number LR chi: Prob > Pseudo	2(3) chi2	s = = = =	5629 1114.73 0.0000 0.1836
death		Std. Err.	z	P> z	[95%	Conf.	Interval]
bwt2 bwt3 bwt4	.2303739 .097544 .0499619	.0203267 .0097884 .0056048	-16.64 -23.19 -26.71	0.000 0.000 0.000	.1937 .0801 .0401	.279	.2738657 .1187457 .0622485

Changing reference group: Birth weight

We might choose to drop bwt2 from the model

. logistic death bwt3 bwt4

```
Logistic regression

| Number of obs = 5629 |
| LR chi2(2) = 819.51 |
| Prob > chi2 = 0.0000 |
| Pseudo R2 = 0.1350 |
| death | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
| bwt3 | .2077027 | .0185763 | -17.57 | 0.000 | .1743063 | .2474976 |
| bwt4 | .106385 | .0109085 | -21.85 | 0.000 | .0870162 | .1300651 |
```

If we do this, we are changing the reference group ->

Changing reference group: Birth weight

- We are now comparing group 3 to groups (1 + 2), and group 4 to groups (1 + 2)
- Not only do the odds ratios change, but their interpretations change as well
- We must be cautious when removing indicator variables from models (e.g., suppose it had been the odds ratio for group 4 versus group 1 that was not statistically significant)

Summary: Surfactant Data

- We have shown that among low birth weight infants with respiratory distress syndrome, the odds ratio for in-hospital mortality after surfactant use versus before surfactant use is 0.75 (p < 0.001)
- Also, birth weight is significantly associated with mortality, with lower odds of mortality as birth weight increases

Other relationships: Surfactant Data

- If there are trends in birth weight over time, it is possible that the surfactant effect might be due (at least in part) to birth weight
- Birth weight might be a confounder of the relationship between surfactant use and mortality
- We would like to examine the relationship between surfactant use and mortality, controlling for birth weight

Other relationships: Surfactant Data

- A confounder is a variable that is related to both the exposure and the disease
- It is important to control for confounding variables when studying disease-exposure associations, to avoid possible misinterpretation of the relationship
- Confounders can make the relationship seem either stronger or weaker than it really is (and occasionally even make it go in the opposite direction)

Confounding: Surfactant Data

- Do we always want to control for 'confounding-like' variables?
- In some cases, a 'confounder-like' factor may be an intermediate variable between exposure and disease
- In particular, such a variable may be on the "causal pathway" between exposure and outcome, and adjusting for this factor may *not* be appropriate
- Intermediate variables should usually not be controlled for when studying the association between exposure and disease

Confounding: Surfactant Data

- The decision about whether a variable is in the causal pathway between exposure and disease should be based on biological rather than statistical considerations
- What are your thoughts on the relationship between birth weight, surfactant and mortality?
- If we do not think a confounder is an intermediate variable, how do we control for its effect?

There are three methods commonly used:

- <u>Stratification</u> (stratified analysis, performing separate analyses for each stratum; simpler but more inefficient)
- Adjustment after stratification (Mantel-Haenszel methods; appropriate for categorical confounding factors)
- <u>Multivariable analysis</u> (logistic regression; appropriate for categorical or continuous confounding factors)

- <u>Stratification</u>: A stratified analysis is the simplest approach analytically, but it is inefficient if there are many strata and sample sizes within strata are small
- This means there is a loss of statistical power, and usually more complication since samples are not always big enough across strata!

Adjustment after stratification:

. cc death surfactant, by (birthwt) woolf

• Multiple Logistic Regression:

Another approach is to consider the model

$$logit(p_i) = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i}$$

where

```
x_{1i} = surfactant use (1 = yes, 0 = no)
```

$$x_{2i}$$
 = 1 if birth weight = 750-999 g, 0 otherwise

$$x_{3i} = 1$$
 if birth weight = 1000-1249 g, 0 otherwise

$$x_{4i}$$
 = 1 if birth weight = 1250-1500g, 0 otherwise

Ahead:

- Multiple Logistic Regression and examples
- Hypothesis testing and confidence intervals
- Effect modification
- Compare and contrast to linear regression
- Model building and model assessment

...and more!