一、填空题(每小题3分,共18分)

- 1. 设事件 A 的概率 P(A) = 0.4, P(B) = 0.3, 且事件 A , B 互不相容, \therefore P(AB) = 0.3
- 2. 设事件A的概率P(A)=0.4,P(B)=0.3,且事件A,B相互独立,P(A9)=P(A),P(B)则 $P(AB) = \frac{\phi(A-AB) = \phi(A) - \rho(AB)}{\phi(A) - \rho(A)} = \rho(A) - \rho(B) = \rho(A) \cdot (1-\rho(B)) = \rho(A) - \rho(B) = 0.28$
- 3. 设事件 A 的概率 P(A) = 0.4, P(B) = 0.3, 且 P(A|B) = 0.2, $(A|B) = \frac{P(A|B)}{|A|B}$ 则 $P(AB) = P(A) - P(AB) = P(A) - P(B) \cdot P(AB) = 0.4 - 0.3 \times 0.2 = 0.34$
- 4. 某种型号的器件的寿命 X (以小时记) 具有以下的概率密度

 $f(x) = \begin{cases} \frac{1000}{x^2}, x > 1000 \\ 0, 其它 \end{cases}$,现从一大批此种器件中任取 1 只,则此只器件的寿命小

于 1500 小时的概率为 P{X<1500} = \(\int_{1000} \) = \(\frac{1000}{\text{z}^2} \) dx = \(\frac{1}{3} \)

- 5. 若随机变量 $X \sim N(2,16)$,则 $P\{-2 < X < 6\} = P\{\frac{-2-2}{4} < \frac{X-2}{4} < \frac{6-2}{4}\}$ (结果用 = p \ -1 < \frac{\frac{1}{4}}{4} < 1 \} = \phi(1) - \phi(-1) = 2\phi(1) - 1 标准正态分布函数 $\Phi(x)$ 表示,且 x > 0)
- 6. 设二维连续型随机变量(X,Y)服从平面区域 $D = \{(x,y) | x^2 + y^2 < 1\}$ 上的均匀分 布,则(X,Y)在D上的概率密度函数 f(x,y) =

二、试解下列各题(共20分)

- 1. (本题 10 分)某工厂有三台机器同时生产日光灯,已知第二台机器的产量是第一台机器 产量的 4 倍,第三台机器的产量是第一台机器产量的 3 倍,而第一、二、三台机器产品次品 率分布为 0.05, 0.04, 0.03, 现在从三台机器生产的日光灯中任取一只, 求
- (1) 这只日光灯是次品的概率:
- (2) 已知取出的目光灯为次品,此目光灯属于第一台机器生产的概率。

沒 B表示10支打为次品。
由起五种:
$$p(A_1) = \frac{1}{8}$$
 , $p(A_2) = \frac{4}{8}$, $p(A_3) = \frac{3}{8}$ $p(B|A_1) = 0.05$, $p(B|A_2) = 0.04$, $p(B|A_3) = 0.03$

由分似和我可怜: P(B) = P(BA,) + P(BA) + P(BA) = P(B|A,)P(A,) + P(B|A,)P(A,) + P(B|A,)P(A,) $= out \times \frac{1}{8} + o.o4 \times \frac{4}{8} + o.o3 \times \frac{3}{9} = \frac{3}{90}$

12)由欠叶斯公式。

$$P(A_1|B) = \frac{P(A_1B)}{P(B)} = \frac{P(B|A_1)P(A_1)}{P(B)} = \frac{\frac{1}{8} \times 0.05}{\frac{3}{80}} = \frac{1}{16}$$

2. (本题 10 分)将 3 只球随机地放入 4 个杯子中去,设随机变量 X 表示杯子中球

的最大个数. (1) 求 X 的分布律: (2) X 的分布函数 F(x):

三、(本题 10 分)设随机变量 X 的分布律 λ ,

, 5417			
X	-3	0	1
P	0.3	0.6	0.1
	X	X -3	X -3 0

求(1) $Y = X^2 + 1$ 的分布律; (2) 概率 $P\{X < 1\}$.

网: (1) 将X的的有质值代入 Y=X+1 可无。Y的有多能取值的1,2,10.

 $\int x^2, -1 < x < 0$ 四、(本题 12 分) 设连续型随机变量 X 的概率密度为 $f(x) = \begin{cases} k, 0 \le x < 1 \end{cases}$

(1) 求k; (2) 求X的分布函数F(x); (3) 概率 $P\{|X| > \frac{1}{2}\}$.

月: (1) 由
$$1 = \int_{-\infty}^{+\infty} f x dx = \int_{0}^{\infty} r^{2} dx + \int_{0}^{2} k dx = \frac{1}{3} + k$$
 得 $k = \frac{2}{3}$

$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} \int_{-1}^{x} t^{2} dt = \frac{t^{2}}{3} \Big|_{-1}^{x} = \frac{x^{2}+1}{3}, & \text{if } x < 0 \\ \int_{-1}^{x} t^{2} dt + \int_{0}^{x} \frac{1}{3} dt = \frac{1}{3} + \frac{1}{3}x, & \text{os } x < 1 \end{cases}$$

五、(本题 18 分)设二维随机变量(X,Y)的联合分布律为:

Y	0	1
$X \longrightarrow 0$	0.2	0.1
1	0.5	0.2

- (1) 求关于X与关于Y的边缘分布律:
- (2) 求在条件 X = 1 下关于 Y 的条件分布律.
- (3) 求概率 P{X+Y≤1}:
- (4) 求条件概率 $P\{Y < 1 | X + Y = 1\}$;

(2)
$$P\{Y=0 \mid X=1\} = \frac{P\{Y=0, X=1\}}{P\{X=1\}} = \frac{0.5}{0.7} = \frac{5}{7}$$

$$P\{Y=1 \mid X=1\} = \frac{P\{Y=1, X=1\}}{P\{X=1\}} = \frac{0.2}{0.7} = \frac{2}{7}$$

(4)
$$P\{y < | x + y = 1\} = \frac{P\{y < 1, x + y = 1\}}{P\{x + y = 1\}} = \frac{P\{y = 0, x = 1\}}{P\{x = 0, y = 1\} + P\{x = 1, y = 0\}} = \frac{0.6}{0.6} = \frac{5}{6}$$

六、(本题 18 分)设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 3, 0 < x < 1, 0 < y < x^2 \\ 0, \text{ 其他} \end{cases}$$

$$f(x,y) = \begin{cases} 3, 0 < x < 1, 0 < y < x^2 \\ 0, \text{ in } \end{cases}$$

(1) 求关于X和关于Y的边缘概率密度:

(2) 求条件概率密度 $f_{y|x}(y|x)$;

$$= \begin{cases} \int_0^{\chi^2} 3 dy = 3\chi^2, & \text{occ} \\ 0, & \text{if } \end{cases}$$

(3) 求概率 P{ 2Y < X};

(4) 求条件概率 $P\{Y < \frac{1}{8} | X = \frac{1}{2}\}$. $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \int_{-\infty}^{1} 3 dx = 3(1-\sqrt{y})$, ocycl.

(2). $f_{Y|X}(y|X) = \frac{f(x,y)}{f_{X}(x)} = \begin{cases} \frac{3}{3X} = \frac{1}{X^2}, & \text{ocycl} \end{cases}$, 文件 七、(本题 4 分) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x^2}{9}, & \text{ocycl} \end{cases}$, 其他 .

(3).
$$p\{2Y < X\} = p\{(x,y) \in G_T\} = \iint_G f(x,y) dx dy$$
$$= \int_0^{\frac{1}{2}} dx \int_0^{x^2} 3 dy + \int_{\frac{1}{2}}^{1} dx \int_0^{\frac{X}{2}} 3 dy$$
$$= \frac{11}{16}$$

而随机变量
$$Y = \begin{cases} 2, X \le 1 \\ X, 1 < X < 2, 求 Y 的分布函数 $F_{\gamma}(y) = 1, X \ge 2 \end{cases}$$$

科: 由 Yin表达式可和, Yin 取值范围为 1≤Y≤2.

$$F_{y}(y) = P\{Y \le y\} = P\{Y \ge 1 \cup 1 < Y \le y\}$$

$$= P\{Y = 1\} + P\{1 < Y \le y\} = P\{X \ge 2\} + P\{1 < X \le y\}$$

$$= \int_{2}^{3} \frac{x^{2}}{9} dx + \int_{1}^{3} \frac{x^{2}}{9} dx = \frac{y^{3} + 18}{27}$$

$$\frac{1}{7}$$
 $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$