

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

여러 가지 머신러닝 알고리즘이 필요한 이유?

특정 알고리즘이 모든 상황에서 다른 알고리즘보다 우월하다는 결론을 내릴 수 없음

여러 가지 머신러닝 알고리즘이 필요한 이유?

- 머신러닝 알고리즘은 여러 가지가 존재
 - ✔ 동일한 결과를 얻기 위한 다양한 길이 존재하기 때문

"Separate the riding mower buyers(●) from non-buyers(○)"

• 목적

- ✔ 한 번에 하나씩의 설명변수를 사용하여 정확한 예측이 가능한 규칙들의 집합을 생성
- ✓ 최종 결과물은 나무를 뒤집어 놓은 형태인 규칙들의 집합

규칙 예시

만일 내일 날씨가 맑고 습도가 70% 이하이면 아이는 밖에 나가서 놀 것이다.

or

만일 내일 비가 오고 바람이 불면 아이는 밖에 나가 놀지 않을 것이다.

• 용어 정의

- ✔ Parent node: 분기 전 node
- ✓ Child node: 분기 후 결과물 node
- ✓ Split criterion: 특정 노드를 분기하기 위해 사용한 변수 및 기준 값
- ✔ Root node: Child node만 존재하고 Parent node가 없는 node (Tree의 시작 노드)
- ✓ Leaf node: Parent node만 존재하고 Child node가 없는 node (더 이상 분기가 진행되 지 않는 node)

- 왜 의사결정나무인가?
 - ✓ 결과를 사람이 이해할 수 있는 규칙의 형태로 제공함
 - ✔ 데이터의 사전 전처리를 최소화함 (정규화/결측치 처리 등을 하지 않아도 됨)
 - ✓ 수치형 변수와 범주형 변수를 함께 다룰 수 있음
- 핵심 아이디어: Key Ideas
 - ✓ 재귀적 분기: Recursive Partitioning
 - 입력 변수의 영역을 두 개로 구분 → 구분하기 전보다 구분된 뒤에 각 영역의 순도 (purity, homogeneity)가 증가하도록
 - ✓ <u>가지치기: Pruning the Tree</u>
 - 과적합을 방지하기 위하여 너무 자세하게 구분된 영역을 통합

Classification and Regression Tree: CART

Classification and Regression Tree (CART)

- 개별 변수의 영역을 반복적으로 분할함으로써 전체 영역에서의 규칙을 생성하는 지도학습 기법 (Breiman, 1984)
- If-then 형식으로 표현되는 규칙(rules)을 생성함으로써, 결과에 대한 예측과 함께 그 이유를 설명할 수 있는 장점이 있음
- 수치형 변수와 범주형 변수에 대한 동시 처리 가능

재귀적 분기 (Recursive Partitioning)

분기 가지치기 artitioning) (Pruning)

- 특정 영역(부모 노드)에 속하는 개체들을 하나의 기준 변수 값의 범위에 따라 분기
- 분기에 의해 새로 생성된 자식 노드의 동질성이 최대화 되도록 분기점 선택
- 불순도를 측정하는 기준으로는 범주형 변수에 대해서는 지니계수, 수치형 변수에 대해서는 분산을 이용

Classification and Regression Tree: CART

Classification and Regression Tree (CART)

- 개별 변수의 영역을 반복적으로 분할함으로써 전체 영역에서의 규칙을 생성하는 지도학습 기법 (Breiman, 1984)
- If-then 형식으로 표현되는 규칙(rules)을 생성함으로써, 결과에 대한 예측과 함께 그 이유를 설명할 수 있는 장점이 있음
- 수치형 변수와 범주형 변수에 대한 동시 처리 가능

재귀적 분기 (Recursive Partitioning)

가지치기 (Pruning)

- 과적합^{Over-fitting}을 방지하기 위하여 하위 노드들을 상위 노드로 결합
- Pre-pruning: Tree를 생성하는 과정에서 최소 분기 기준을 이용하는 사전적 가지치기
- Post-pruning: Full-tree 생성 후, 검증 데이터의 오분류율과 Tree의 복잡도(말단 노드의수) 등을 고려하는 사후적 가지치기

- 예시: 잔디깎기 기계 구입 예측
 - ✓ 목적: 24개의 가정에 대해 잔디깍기 기계 구입 여부를 분류
 - ✓ 설명변수: 수입(Income), 집의 크기(Lot size)

Income	Lot size	Ownership	Income	Lot size	Ownership
60.0	18.4	Owner	75.0	19.6	Non-owner
85.5	16.8	Owner	52.8	20.8	Non-owner
64.8	21.6	Owner	64.8	17.2	Non-owner
61.5	20.8	Owner	43.2	20.4	Non-owner
87.0	23.6	Owner	84.0	17.6	Non-owner
110.1	19.2	Owner	49.2	17.6	Non-owner
108.0	17.6	Owner	59.4	16.0	Non-owner
82.8	22.4	Owner	66.0	18.4	Non-owner
69.0	20.0	Owner	47.4	16.4	Non-owner
93.0	20.8	Owner	33.0	18.8	Non-owner
51.0	22.0	Owner	51.0	14.0	Non-owner
81.0	20.0	Owner	63.0	14.8	Non-owner

한 변수를 기준으로 하여 정렬

■ 정렬 기준 변수: <u>lot size</u>

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

불순도 지표: 지니 계수(Gini Index)

• m개의 레코드가 속하는 A 영역에 대한 지니 계수

$$I(A) = 1 - \sum_{k=1}^{m} p_k^2$$

 $\checkmark p_k$ = A영역에 속한 레코드 중 k 범주에 속하는 레코드의 수

$$I(A) = 1 - \sum_{k=1}^{m} p_k^2$$

$$= 1 - \left(\frac{6}{16}\right)^2 - \left(\frac{10}{16}\right)^2$$

$$\approx 0.47$$

- ✓ 모든 레코드가 동일한 범주에 속할 경우 I(A) = 0
- ✓ 두 개의 범주에 속하는 개체의 수가 동일할 경우 I(A)=0.5

불순도 지표: 지니 계수(Gini Index)

• 두 개 이상의 영역에 대한 지니 계수

$$I(A) = \sum_{i=1}^{d} \left(R_i \left(1 - \sum_{k=1}^{m} p_{ik}^2 \right) \right)$$

✓ R_i = 분할 전 레코드 중 분할 후 i영역에 속하는 레코드의 비율

$$= 0.5 \times \left(1 - \left(\frac{7}{8}\right)^2 - \left(\frac{1}{8}\right)^2\right) + 0.5 \times \left(1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2\right)$$

$$= 0.34$$

✓ 분기 후의 정보 획득Information gain: 0.47-0.34=0.13

순차적으로 가능한 분기점에 대한 정보 획득 계산

- 첫 번째 후보 분기점 = I4.4 (0.5*(I4.0+I4.8))
- Lot size > 14.4 와 Lot size < 14.4 인 두 영역으로 구분
- 불순도^{impurity} 계산: 지니 계수^{Gini index}
 - ✓ 분기 전:

$$1 - \left(\frac{12}{24}\right)^2 - \left(\frac{12}{24}\right)^2 = 0.5$$

✓ 분기 후:

$$\frac{1}{24} \left(1 - \left(\frac{1}{1} \right)^2 \right) + \frac{23}{24} \left(1 - \left(\frac{12}{23} \right)^2 - \left(\frac{11}{23} \right)^2 \right) \approx 0.48$$

✓ 정보 획득^{Information gain}: 0.50-0.48=0.02

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

- 범주형 변수에 대해서는 분기가 가능한 모든 경우의 수를 조사
 - ✓ 예시: 3개의 범주 A, B, and C가 존재하는 경우
 - {A} vs. {B,C}
 - {B} vs. {A,C}
 - {C} vs. {A,B}
 - ✔위 경우의 수에 대한 정보 획득을 각각 계산

최적의 분기점 선택

■ 정보획득을 최대화하는 분기점을 선택하여 분기

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

의사결정나무 구조

- 분기점은 나무의 노드가 되며 원 안의 숫자는 분기 기준이 되는 변수의 값임
- 사각형은 말단 노드(leaf node, 더 이상 분기가 수행되지 않는 노드)가 됨
- 선 아래 숫자는 분기로 인해 나뉜 레코드의 수를 의미

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

모든 노드의 순도가 **I00%**가 될 때까지 반복적으로 분기를 수행

- 정보획득이 0이 되는 시점까지 수행
- 두 번째 분기점: income = 84.75

Income	Lot size	Ownership
33.0	18.8	Non-owner
47.4	16.4	Non-owner
49.2	17.6	Non-owner
51.0	14.0	Non-owner
59.4	16.0	Non-owner
60.0	18.4	Owner
63.0	14.8	Non-owner
64.8	17.2	Non-owner
66.0	18.4	Non-owner
84.0	17.6	Non-owner
85.5	16.8	Owner
108.0	17.6	Owner

모든 노드의 순도가 **100%**가 될 때까지 반복적으로 분기를 수행

- 정보획득이 0이 되는 시점까지 수행
- 두 번째 분기점: income = 84.75

Income	Lot size	Ownership
33.0	18.8	Non-owner
47.4	16.4	Non-owner
49.2	17.6	Non-owner
51.0	14.0	Non-owner
59.4	16.0	Non-owner
60.0	18.4	Owner
63.0	14.8	Non-owner
64.8	17.2	Non-owner
66.0	18.4	Non-owner
84.0	17.6	Non-owner
85.5	16.8	Owner
108.0	17.6	Owner

재귀적 분기 완료

■ 모든 영역에는 하나의 범주에 속하는 레코드만 존재

의사결정나무: 과적합 문제

• 재귀적 분기는 모든 말단노드의 순도가 100%일때 종료됨

의사결정나무: 과적합 문제

- 재귀적 분기는 모든 말단노드의 순도가 100%일때 종료됨
 - ✓ 일반적으로 이러한 Full tree는 과적합의 문제를 내포하고 있으며, 이는 새로운 데이터에 대한 예측 성능 저하의 위험을 안고 있음
 - ✓ 의사결정나무의 노드 수가 증가할 때, 처음에는 새로운 데이터에 대한 오분류율이 감소하나, 일정 수준 이상이 되면 오분류율이 증가하는 현상 발생

21/43

- ✓ 의사결정나무는 Full Tree를 생성한 뒤 적절한 수준에서 말단 노드를 결합하는 가지치기 수행
- ✔ 검증데이터에 대한 오분류율이 증가하는 시점에서 가지치기
- ✔ Full tree에 비해 구조가 단순한 의사결정나무가 생성됨
- ✓ 비용 복잡도cost complexity 를 사용하여 최적의 의사결정나무 구조 선택

• 비용 복잡도^{Cost complexity}

$$CC(T) = Err(T) + \alpha \times L(T)$$

- ✓ CC(T) = 의사결정나무의 비용 복잡도 (낮을수록 우수한 의사결정나무)
- ✓ ERR(T) = 검증데이터에 대한 오분류율
- ✓ L(T) = 말단 노드의 수 (구조의 복잡도)
- ✓ Alpha = ERR(T)와 L(T)를 결합하는 가중치 (사용자에 의해 부여됨)

• 비용 복잡도^{Cost complexity} 예시 I

검증 데이터셋 오류율 = 10%

검증 데이터셋 오류율 = 15%

Leaf 4

✓ 같은 수의 말단 노드를 갖는 Tree라면 검증 데이터셋 오류율이 낮은 Tree I을 선택

Leaf 5

• 비용 복잡도^{Cost complexity} 예시 I

검증 데이터셋 오류율 = 15%

검증 데이터셋 오류율 = 15%

✓ 동일한 검증 데이터셋 오류율이라면 말단 노드의 수가 적은 Tree A를 선택

• 재귀적 분기를 통한 Full Tree 생성

• 가지치기를 통한 일반화 성능 확보

• 가지치기 수행 전 (재귀적 분기 완료 단계)

• 가지치기 수행 후

CART: 예측

의사결정나무를 통한 예측

- 의사결정나무가 생성된 뒤 각 말단노드에 속하는 레코드들은 학습데이터에 속한 레코드들임
- 각 말단노드에 해당하는 범주는 해당 노드에 포함된 개체들이 속한 범주의 비율을 이용하여 판단
- 분류 기준값^{Cut-off}을 0.5로 사용하게 되면 다수결^{majority voting} 방식을 이용하여 범주를 예측하는 것임
- 범주 A에 대한 Cut-off를 0.75로 설정 = 각 말단노드에 속하는 레코드의 비율이 0.75 이상일 경우에만 범주 A로 예측

의사결정나무 예시

• Universal bank의 개인신용대출 예측

✔ 고객의 인구통계학적 정보와 은행 이용 행태를 바탕으로 개인신용대출을 이용할 고객

판별

일련 번호	나이	경력	소득	가족 수	월별 신용카드 평균사용액	교육 수준	담보부 채권	개인 대출	증권 계좌	CD 계좌	온라인 뱅킹	신용 카드
1	25	1	49	4	1.60	UG	0	No	Yes	No	No	No
2	45	19	34	3	1.50	UG	0	No	Yes	No	No	No
3	39	15	11	1	1.00	UG	0	No	No	No	No	No
4	35	9	100	1	2.70	Grad	0	No	No	No	No	No
5	35	8	45	4	1.00	Grad	0	No	No	No	No	Yes
6	37	13	29	4	0.40	Grad	155	No	No	No	Yes	No
7	53	27	72	2	1.50	Grad	0	No	No	No	Yes	No
8	50	24	22	1	0.30	Prof	0	No	No	No	No	Yes
9	35	10	81	3	0.60	Grad	104	No	No	No	Yes	No
10	34	9	180	1	8.90	Prof	0	Yes	No	No	No	No
11	65	39	105	4	2.40	Prof	0	No	No	No	No	No
12	29	5	45	3	0.10	Grad	0	No	No	No	Yes	No
13	48	23	114	2	3.80	Prof	0	No	Yes	No	No	No
14	59	32	40	4.	2.50	Grad	0	No	No	No	Yes	No
15	67	41	112	1	2.00	UG	0	No	Yes	No	No	No
16	60	30	22	1	1.50	Prof	0	No	No	No	Yes	Yes
17	38	14	130	4	4.70	Prof	134	Yes	No	No	No	No
18	42	18	81	4	2.40	UG	0	No	No	No	No	No
19	46	21	193	2	8.10	Prof	0	Yes	No	No	No	No
20	55	28	21	1	0.50	Grad	0	No	Yes	No	No	Yes

의사결정나무 예시

의사결정 마디	학습용 집합의 오차율	평가용 집합의 오차율		
41	0	2.133333		
40	0.04	2.2		
39	0.08	2.2		
38	0.12	2.2		
37	0.16	2.066667		
36	1	2.066667		
35	I	2.066667		
34	0.24	2.066667		
•••	•••	•••		
13	1.16	1.6		
12	1.2	1.6		
11	1.2	1.466667	최소 오차 나무	
10	1.6	1.666667	, ,	
9	2.2	1.666667		
8	2.2	1.866667		
7	2.24	1.866667		
6	2.24	1.6	< 최적의 가지친 나무	l
5	4.44	1.8		•
4	5.08	2.333333		
3	5.24	3.466667		
2	9.4	9.533333		
1	9.4	9.533333		
0	9.4	9.533333		

의사결정나무 예시

의사결정나무 예시: 규칙 생성

• 최적 의사결정으로부터 분류 규칙을 생성

- IF(Lot size < 19) AND IF(Income < 84.75) THEN Owner = No
- IF(Lot size < 19) AND IF(Income > 84.75) THEN Owner = YES
- IF(Lot size > 19) AND IF(Income < 57.15) THEN Owner = NO
- IF(Lot size > 19) AND IF(Income > 57.15) THEN Owner = YES

• 회귀 나무의 형태

- ✔ 아래 그림에서 왼쪽과 같은 형태는 선형 회귀분석으로 추정하는 것이 적합함
- ✓ 오른쪽 그림과 같은 형태는 선형 회귀분석으로 추정하는 것이 부적합함

• 말단 노드의 예측값

- ✔ 해당 노드에 속하는 모든 개체의 종속변수 값의 평균으로 예측
- ✔ 아래 예시에서 split point = 5.5, if x < 5.5, y = 4, if x > 5.5, y = 8

Split point

• 말단 노드의 예측값

✔ 해당 노드에 속하는 모든 개체의 종속변수 값의 평균으로 예측

• 말단 노드의 예측값

✔ 해당 노드에 속하는 모든 개체의 종속변수 값의 평균으로 예측

회귀 모형에서 불순도를 측정하는 과정

- 불순도^{Impurity} 측정
 - ✓ Sum of the squared error (SSE: $\sum_{i=1}^{n} (y_i \hat{y})^2$)
 - \checkmark SSE(Parent) = 300, SSE(Left) = 10, SSE(Right) = 40, Gain = 250

- 왼쪽 말단 노드의 예측값 = 10
- 오른쪽 말단 노드의 예측값 = 20

• 토요타 코롤라 중고차 가격 예측 문제

Dependent variable (target)

Independent variables (attributes, features)

	Variable	Description				
_	Price	Offer Price in EUROs				
	Age_08_04	Age in months as in August 2004				
	KM	Accumulated Kilometers on odometer				
	Fuel_Type	Fuel Type (Petrol, Diesel, CNG)				
	HP	Horse Power				
	Met_Color	Metallic Color? (Yes=1, No=0)				
	Automatic	Automatic ((Yes=1, No=0)				
	CC	Cylinder Volume in cubic centimeters				
	Doors	Number of doors				
	Quarterly_Tax	Quarterly road tax in EUROs				
	Weight	Weight in Kilograms				

의사결정나무: 요약

• 의사결정나무의 장점

- ✓ 의사결정나무는 예측에 대한 설명을 제공할 수 있음
- ✓ 변수 선택 과정이 자동적으로 수행됨
- ✔ 특별한 통계적 가정을 요구하지 않음
- ✓ 결측치가 존재하는 상황에서도 모델 구축이 가능함

• 의사결정나무의 단점

✓ 한 번에 하나의 변수만 고려하므로 변수간 상호작용을 파악하기 어려움

