School of Computing and Information Systems The University of Melbourne COMP30027 Machine Learning (Semester 1, 2021)

Workshop: Week 4

ID	A (°C)	B (mm)	c (hPa)	CLASS
1	22.5	4.6	1021.2	AUT
2	16.7	21.6	1027.0	AUT
3	29.6	0.0	1012.5	SUM
4	33.0	0.0	1010.4	SUM
5	13.2	16.4	1019.5	SPR
6	14.9	8.6	1016.4	SPR
7	18.3	7.8	995.4	WIN
8	16.0	5.6	1012.8	WIN

- 1. What is **Discretisation**, and where might it be used?
- (i). Summarise some approaches to **supervised** discretisation.
- (ii). Discretise the above dataset according to the (unsupervised) methods of **equal width**, **equal frequency**, and **k-means** (breaking ties where necessary).
- 2. Find the (sample) **mean** and (sample) **standard deviation** for the attributes in the above dataset:
- (i). In its entirety, and;
- (ii). For each individual class;
- (iii). How could we use this information when building a classifier over this data?
- 3. How is **holdout** evaluation different to **cross-validation** evaluation? What are some reasons we would prefer one strategy over the other?
- 4. A **confusion matrix** is a summary of the performance of a (supervised) classifier over a set of development ("test") data, by counting the various instances:

		Actual			
		a	b	c	d
	а	10	2	3	1
Classified	b	2	5	3	1
Classified	c	1	3	7	1
	d	3	0	3	5

- (i). Calculate the classification accuracy of the system. Find the error rate for the system.
- (ii). Calculate the **precision**, **recall**, **F-score** (where $\beta = 1$), **sensitivity**, and **specificity** for class d. (Why can't we do this for the whole system? How can we consider the whole system?)