Abgabe - Übungsblatt [8] Einführung in die Computergraphik und Visualisierung

[Till Sebastian] [Felix Grefe] [Marius Rometsch] 18. Juni 2018

Teilaufgabe 1

b)

Radiance (Strahldichte) $\operatorname{L} e_1(x,w_1) = \frac{d^2\phi e_1}{\cos(e_1)dAdw_1} \left[\frac{w}{srm^2}\right]$

- Leistung pro Einheitsraumwinkel je projizierter Einheitsfläche
- Helligkeit(Photonendichte) eines Punktes in Richtung w_1

Irradiance (Bestrahlungsstärke)

- Auftreffende Strahlungsleistung pro Fläche $E_e=\frac{d\phi e_2}{dA_2}=I_e\frac{\cos(\alpha_2)}{R^2}[\frac{w}{m^2}]$
- Leistung pro Einheitsraumwinkel je projizierter Einheitsfläche
- \bullet Helligkeit (Photonendichte) eines Punktes in Richtung w_1

c)

Raytracing

Aus VL:

"...Raytracing vor allem für Szenen mit hohem spiegelnden und transparente Flächenanteil gut geeignet

Vorteil Beleuchtungsmodell muss nur in sichtbaren Objektpunkten berechnet werden

Nachteil Abtastung der Szene mit einem Strahl pro Pixel erzeugt i.d.R. Aliasing

Teilaufgabe 3

