STATS 415: Assessing Model Accuracy Part II

Prof. Liza Levina

Department of Statistics, University of Michigan

Measuring Quality of Fit: MSE

- Recall the regression setting: y_i is the observed value of response for point i; \hat{y}_i is the predicted value of response for point i.
- Can measure accuracy by the mean squared error (MSE), i.e.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Training MSE: plug in training data
- Test MSE: plug in test data

Training vs Test MSE

- Regression methods are designed to make training MSE small
- If you increase flexibility (add new variables in linear regression; add interaction terms; reduce K in KNN regression), the training MSE will never increase, and in most cases will decrease.
- Test error may go up or down: reducing training error may just be overfitting
- To understand this better, we need to look at the bias and variance trade-off

Bias

- Bias refers to systematic error introduced by approximating a real life problem by a model (e.g., a linear model).
- Formally, if $y = f(x) + \varepsilon$, $E\varepsilon = 0$, then

$$bias(\hat{f}(x)) = E\hat{f}(x) - f(x)$$

- The expectation is taken over the distribution of noise
- A method is called unbiased if bias(x) = 0 for all x
- In general, the more flexible a method, the lower its bias.

$$E(y0=F(f(x)+epsilon)=f(x)=0=f(x)$$

Variance

- Variance refers to random error resulting from sample variability; it measures how much \hat{f} would change if you had a different training sample from the same distribution.
- Formally, if $y = f(x) + \varepsilon$, $E\varepsilon = 0$, then

$$Var(\hat{f}(x)) = E(\hat{f}(x) - E\hat{f}(x))^2$$

- The expectation is taken over the distribution of noise
- In general, the more flexible a method, the higher its variance.

The Bias/Variance Trade-off

- The bias and variance are competing forces; generally reducing one increases the other.
- For a given fixed point x, the expected test MSE for a new y at x is

$$E(MSE(x)) = E(y - \hat{f}(x))^{2}$$

$$= [E(\hat{f}(x)) - f(x)]^{2} + E[\hat{f}(x) - E(\hat{f}(x))]^{2} + Var(\varepsilon)$$

$$= [Bias(\hat{f}(x))]^{2} + Var(\hat{f}(x)) + \sigma^{2}$$

- Thus the expected test MSE may go up or down with increased complexity, depending on which term dominates.
- σ^2 is the irreducible noise; no method can do better than that.

Model complexity trade-off

Different Levels of Flexibility: Example I

- Left: black (truth); orange (linear estimate); blue (smoothing spline); green (smoothing spline, more flexible)
- Right: red (test MSE); grey (training MSE); dashed (minimum possible test MSE, irreducible error)

Different Levels of Flexibility: Example II

- Left: black (truth); orange (linear estimate); blue (smoothing spline); green (smoothing spline, more flexible)
- Right: red (test MSE); grey (training MSE); dashed (minimum possible test MSE, irreducible error)

Different Levels of Flexibility: Example III

- Left: black (truth); orange (linear estimate); blue (smoothing spline); green (smoothing spline, more flexible)
- Right: red (test MSE); grey (training MSE); dashed (minimum possible test MSE, irreducible error)

Test MSE, Bias and Variance for Examples I, II, III

KNN regression: MSE

A flexible non-parametric method, predicting value at x as

$$\hat{f}(x) = \frac{1}{K} \sum_{i: x_i \in N_K(x)} y_i$$

where $N_K(x)$ is K closest neighbors of x in the training data

- The smaller K, the more complex the model: the number of "parameters" is roughly n/K.
- As long as n/K > p, KNN is more "flexible" than a linear model with p predictors.
- Suppose the data arise from a model $y = f(x) + \varepsilon$, with $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$. The general formula is

$$E(MSE(x)) = E(y - \hat{f}(x))^2 = [Bias(\hat{f}(x))]^2 + Var(\hat{f}(x)) + \sigma^2$$

KNN: Bias/Variance Trade-off

- Recall $\hat{y} = \frac{1}{K} \sum_{\ell=1}^{K} y_{(\ell)}$, where the subscript (ℓ) indicates the sequence of nearest neighbors to x.
- For simplicity, assume x_i 's in the sample are fixed (nonrandom). Then

$$\begin{split} Ey_{(\ell)} &= Ef(x_{(\ell)}) + E\varepsilon = f(x_{(\ell)}) \\ \operatorname{Var}(y_{(\ell)}) &= \operatorname{Var}(f(x_{(\ell)})) + \operatorname{Var}(\varepsilon) = \sigma^2 \\ E\hat{f}(x) &= \frac{1}{K} \sum_{\ell=1}^K Ey_{(\ell)} = \frac{1}{K} \sum_{\ell=1}^K f(x_{(\ell)}) \\ \operatorname{Var}(\hat{f}(x)) &= \frac{1}{K} \sum_{\ell=1}^K \operatorname{Var}(y_{(\ell)}) = \frac{\sigma^2}{K} \\ E(\operatorname{MSE}(x)) &= \left(f(x) - \frac{1}{K} \sum_{\ell=1}^K f(x_{(\ell)}) \right)^2 + \frac{\sigma^2}{K} + \sigma^2 \end{split}$$

$$E(MSE(x)) = \left(f(x) - \frac{1}{K} \sum_{\ell=1}^{K} f(x_{(\ell)})\right)^{2} + \frac{\sigma^{2}}{K} + \sigma^{2}$$

$$= Bias^{2} + Variance + Irreducible Error$$

- The squared bias term tends to increase with *K*.
 - For small K, the closest neighbors have values $f(x_{(\ell)})$ similar to $f(x_0)$, at least if f is smooth.
 - For large *K*, "further away" points are counted as neighbors.
- The variance term decreases when K increases.

The Classification Setting

- The class label y takes values in a finite, unordered set (spam/email, cancer type, etc).
 - Two-class: $y \in \{c_1, c_2\}$
 - Multi-class: $y \in \{c_1, c_2, ..., c_K\}$
- For a classification problem we can use the error rate, i.e.

Error Rate =
$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i \neq \hat{y}_i)$$

- $\mathbb{I}(y_i \neq \hat{y}_i)$ is an indicator function, = 1 if $(y_i \neq \hat{y}_i)$ and otherwise 0.
- The error rate is the fraction of incorrect classifications, or misclassifications.
- Again, training error always goes down as model complexity increases; the test error can go up or down.

The Optimal Classifier

- (x,y) have a joint probability distribution.
- Want a classifier $\hat{C}(x)$ with a small misclassification error:

$$\mathsf{R}(\hat{C}) = P(\hat{C}(x) \neq y)$$

Bayes optimal classifier:

$$C^*(x_0) = \arg\min_{C} \mathsf{R}(C)$$

= $\arg\max_{k} P(y = c_k | x = x_0)$

• In practice, P(y|x) is not known, but it can be estimated; KNN estimates it in a flexible non-parametric way.

Bayes Error Rate

The Bayes error rate is the error of the Bayes optimal classifier:

$$P(C^*(x) \neq y)$$

- This is the lowest possible error rate that can only be achieved if we knew exactly the "true" probability distribution of the data.
- No classifier (or statistical learning method) can achieve lower expected test error than the Bayes error rate; but in practice it cannot be calculated.

Bayes Optimal Classifier: Simulated Data

Simulated Data: KNN classifier with K = 1 and K = 100

KNN: K=1

Simulated Data: KNN classifier with K = 10

Training vs Test Error Rates on the Simulated Data

 As K increases, the bias goes up; the variance goes down; the optimum test error is somewhere in between.

Another binary example: simulated data

The optimal classifier

Can only be computed because this is simulated data

Bayes Optimal Classifier

The 1-NN classifier

1-Nearest Neighbor Classifier

The 15-NN classifier

15-Nearest Neighbor Classifier

Traning vs test error for kNN classifier

Summary: model complexity trade-off

