Question #1: Expression

Objective: Expression

Write a python program to calculate the projection motion as details below.

- 1. Inputs:
 - v_0 : The initial velocity of the projectile (in m/s).
 - heta: The launch angle (in degrees).
- 2. Conversion:
 - The angle is converted from degrees to radians using math.radians() since trigonometric functions in Python work with radians.
- 3. Equations, where $g = 9.81 \text{ m/s}^2$:
 - Maximum Height (h_{max}) in meters:

$$h_{max} = rac{v_0^2 \cdot \sin^2(heta)}{2g}$$

• Maximum Range (R) in meters:

$$R = \frac{v_0^2 \cdot \sin(2\theta)}{g}$$

• The time-of-flight T is calculated using the formula in seconds:

$$T=rac{2v_0\sin(heta)}{g}$$

- 4. Outputs:
 - The maximum height, maximum range, and the time of flights.

INPUT

A single line containing (1) the initial velocity of the projectile (m/s) and (2) the launch angle (in degrees). If the number of inputs is not equal to 2, show an error message "Error!".

OUTPUT

A single line containing (1) the maximum height, (2) maximum range, and (3) the time of flights. They must be shown in two decimal points (e.g., 7.00); Hint: f-string (f"...") should be helpful. Moreover, all outputs must not be negative.

EXAMPLES

Input (from keyboard)	Output
	(on-screen)
	Error!
1.2	Error!
12 77.5	7. <mark>00</mark> 6.20 2.39
7.5 75.5	2.69 2.78 1.48
20 190.75	0.71 14.94 0.76
7.5 90 100	Error!

Test Cases in Grader

Testcases will be grouped. Each group has the following criteria:

Testcases quantity	Testcase characteristics
14%	Error inputs
57%	Valid inputs and positive outputs
29%	Valid inputs and negative outputs