Subsections

- Cartesian Form and the Complex Plane
- Polar Form
- Exponential Form
- Complex Conjugation and the Complex Square
- Finding Roots

Review of Complex Numbers

Cartesian Form and the Complex Plane

- Complex numbers and functions contain the number $i = \sqrt{-1}$.
- Any complex number or function z can be written in Cartesian form,

$$z = a + ib \tag{1}$$

where a is the **real part** of z and b is the **imaginary part** of z, often denoted $a = Re\{z\}$ and $b = Im\{z\}$, respectively. Note that a and b are both real numbers.

• The form of Eq. 1 is called Cartesian, because if we think of z as a two dimensional vector and $Re\{z\}$ and $Im\{z\}$ as its components, we can represent z as a point on the **complex plane**.

Polar Form

As with a two dimensional vector, a complex number can be written in a second form, as a magnitude ρ and angle φ,

$$\rho = \sqrt{a^2 + b^2}$$

$$\tan \phi = \frac{b}{a}$$

$$a = \rho \cos \phi$$

$$b = \rho \sin \phi.$$
(2)

where ϕ is called the **complex phase** of z.

Exponential Form

• Consider the relation

$$e^{\pm i\phi} = \cos\phi \pm i\sin\phi. \tag{4}$$

This can be shown by comparing the Taylor series expansions of $e^{i\phi}$, $\cos \phi$, and $\sin \phi$. It follows that z can be written in a third form,

$$z = \rho e^{i\phi}. (5)$$

• Eq. $\underline{5}$ provides a useful way of looking at multiplication of complex numbers. The product z_1z_2 is obtained by multiplying magnitudes and adding complex phases,

$$z_1 z_2 = \rho_1 \rho_2 e^{i(\phi_1 + \phi_2)}. (6)$$

• Raising complex numbers to powers is also simplified by Eq. 5,

$$(z)^p = \rho^p e^{ip\phi}. (7)$$

For example, we can evaluate $(i + 1)^4$, noting that

$$1 + i = \sqrt{2} e^{i\frac{\pi}{4}}$$

and using Eq. 7, we find

$$(1+i)^4 = (\sqrt{2})^4 (e^{i\frac{\pi}{4}})^4 = 4 e^{i\pi}$$
$$= -4$$

Complex Conjugation and the Complex Square

• The complex conjugate of $z = a + ib = \rho e^{i\phi}$ is

$$z^* = a - ib = \rho e^{-i\phi}.$$

It is obtained by changing the sign of i wherever it appears in z.

 \circ To calculate the magnitude ρ directly from z written in any form, we use the **complex square**,

$$|z|^2 = z^*z$$

The complex square in terms of a and b is

$$|z|^2 = (a+ib)(a-ib) = a^2 + iba - iab - (i^2)b^2$$

= $a^2 + b^2 = \rho^2$

and in terms of ρ and ϕ

$$|z|^2 = \rho e^{-i\phi} \rho e^{i\phi} = \rho^2.$$

Hence,

$$\rho = \sqrt{|z|^2}. (8)$$

• We can also use complex conjugation to separate the real and imaginary parts of z.

$$z + z^* = a + ib + a - ib = 2a$$

$$Re\{z\} = \frac{z + z^*}{2} \tag{9}$$

similarly

$$Im\{z\} = \frac{z - z^*}{2i} \tag{10}$$

For example, it follows from Eq.'s 9 and 10 together with Eq. 4 that

$$Re\{e^{i\phi}\}$$
 = $\cos\phi = \frac{e^{i\phi} + e^{-i\phi}}{2}$

$$Im\{e^{i\phi}\} = \sin\phi = \frac{e^{i\phi} - e^{-i\phi}}{2i} \tag{11}$$

Finding Roots

- $\sqrt[n]{z}$ has n unique values for integer n. For example, $\sqrt{4} = +2$, -2. In general, some or all of the n roots are complex numbers.
- The cyclical nature of angles means that

$$z = \rho e^{i\phi}, \, \rho e^{i(\phi+2\pi)}, \, \rho e^{i(\phi+4\pi)}, \, \rho e^{i(\phi+5\pi)}, \dots$$

all represent the same number.

- However, if we take the nth root of these representations of z, we find that there are n unique results with complex phase angles less than 2π .
- Example 1
 - The first 6 representations of z = 8 are

$$\begin{array}{rcl} 8 & = & 8, \, 8e^{i2\pi}, \, 8e^{i4\pi}, \\ & & 8e^{i5\pi}, \, 8e^{i8\pi}, \, 8e^{i10\pi}. \end{array}$$

Taking the 6th root, we obtain

The rest of the roots have complex phase $\geq 2\pi$ and all of them are alternate representations of the six roots above.

o Graphically,

• In general, to find the n roots of a number $z = \rho e^{i\phi}$, start with $\sqrt[n]{\rho} e^{i\phi/n}$. The remaining roots lie, along with the first, on a circle of radius $\sqrt[n]{\rho}$ in the complex plane at an equal spacing of $2\pi/n$ in phase angle.

Copyright © 2002-2004, Lewis A. Riley

Updated Mon Jan 19 13:29:10 2004

This work is licensed under a <u>Creative Commons License</u>.