专业班级

(题目不得超过此线

请诚信应考,考试作弊将带来严重后果!

考试中心填写:

2012年01月 日 期末考试用

湖南大学课程考试试卷

题 号	1~3	4~6	7~9	10~12	13	14	15	16	总分
应得分	15	15	15	21	8	8	9	9	100
实得分									
评卷人									

第1~9题每题5分,共45分.

1. 求极限
$$\lim_{n\to+\infty} \frac{2^n+3^n}{2^{n+1}+3^{n+1}}$$
.

2. 设常数
$$a>0, b>0, c>0$$
,求极限 $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$.

3. 设
$$f(x)$$
 可导,且 $y = f[\sin(x^2)] + \sin^2[f(x)]$,求导数 $\frac{dy}{dx}$.

姓名

4. 设方程 $y=1+xe^y$ 确定函数 y(x),求导数 $\frac{d^2y}{dx^2}$.

5. 求不定积分
$$\int \frac{3x+1}{x^2-2x+5} dx .$$

6. 计算定积分 $\int_{1}^{\sqrt{3}} \frac{dx}{x^2 \sqrt{1+x^2}}$.

7. 设由连续曲线 y = f(x),直线 x = p, x = q 以及 x 轴所围的曲边梯形面积为 $\sqrt{q^2 - p^2}$,求函数 f(x) .

9. 将函数 $f(x) = \begin{cases} 1, & 0 \le x \le \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < x \le \pi \end{cases}$ 展开成正弦级数.

第10~12题每题7分,共21分.

10. 判断级数 $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$ 的收敛性, 若收敛求其和.

11. 求解微分方程问题 $x\frac{dy}{dx} + y = x\cos 2x$, $y(\frac{\pi}{2}) = 0$.

12. 求解微分方程 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = e^x + \cos x.$

第13,14 题每题 8 分, 共 16 分.

13. 假设足球场的球门宽度为 4 米,一球员沿垂直于底线的方向带球前进,其行进路线与底线的交点距离右门柱 6 米,问他在离底线几米的位置上将获得最大的射门张角 θ ?

装订线(题目不得超过此线

14. 古埃及胡夫金字塔的塔基为 230m×230m 的正方形, 塔高 146m, 建造金字塔所用的 230 多万块石料的平均密度为 3210kg/m³. (1) 运用积分方法计算金字塔的体积; (2) 建造时需要将石料从地面抬到所在高处,试估算建成金字塔所作的总功.

第 15,16 题每题 9 分, 共 18 分.

- (1) 若 f(x)是偶函数,则 F(x)是否也是偶函数? (2) 若 f(x)是单调减函数,则 F(x)是 否也是单调减函数?

16. 设当 $x \in [0,1]$ 时, $|f''(x)| \le M$,且f(x)在(0,1)内取得最大值,试证明不等式 $|f'(0)| + |f'(1)| \le M$.