MATH 2418: Linear Algebra

Assignment# 1

Due: 08/30/2022, Tuesday, before 11:59pm

Term _: Fall 2022

[Last Name]

[First Name]

[Net ID]

[Lab Section]

Recommended Problems:(Do not turn in)

Sec 1.1: 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 18, 26, 27, 28, 31.

- 1. Let $\mathbf{v} = (2, 3, 1)$, $\mathbf{w} = (1, -1, -1)$, and $3\mathbf{u} + 2\mathbf{v} 4\mathbf{w} = (1, -2, 3)$. Find
 - (a) the vector \mathbf{u}

Solution: Given

$$3\mathbf{u} + 2\mathbf{v} - 4\mathbf{w} = (1, -2, 3)$$

$$\Rightarrow \mathbf{u} = \frac{1}{3}[4\mathbf{w} - 2\mathbf{v} + (1, -2, 3)]$$

$$= -\frac{1}{3}[4(1, -1, -1) - 2(2, 3, 1) + (1, -2, 3)]$$

$$= \frac{1}{3}(4 - 4 + 1, -4 - 6 - 2, -4 - 2 + 3)$$

$$= \frac{1}{3}(1, -12, -3),$$

(b) the linear combination: $2\mathbf{u} - 3\mathbf{v} + 5\mathbf{w}$.

Solution: Plug in $\mathbf{u}, \mathbf{v}, \mathbf{w}$:

$$2\mathbf{u} - 3\mathbf{v} + 5\mathbf{w} = \frac{2}{3}(1, -12, -3) - 3(2, 3, 1) + 5(1, -1, -1)$$
$$= \left(-6 + 5 + \frac{2}{3}, -8 - 9 - 5, -2 - 3 - 5\right)$$
$$= \left(-\frac{1}{3}, -22, -10\right).$$

2. Given vectors \mathbf{u} and \mathbf{v} in diagram below, shade in all linear combinations $c\mathbf{u} + d\mathbf{v}$ for

- (a) $0 \le c \le 1$ and $0 \le d \le 1$
- (b) $0 \le c \le 1$ and d > 1
- (c) $0 \le d \le 1 \text{ and } c > 1$.

(You can use different shading styles in same picture for all three parts or can graph them separately in three different pictures)

Solution:

(a) $\{c\mathbf{u} + d\mathbf{v} : 0 \le c \le 1, 0 \le d \le 1\}$

(b) $\{c\mathbf{u} + d\mathbf{v} : 0 \le c \le 1, \ d > 1\}$

(c) $\{c\mathbf{u} + d\mathbf{v} : 0 \le d \le 1, \ c > 1\}$

3. Let $\mathbf{0} = (0,0,0)$, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ be vectors in \mathbb{R}^3 . Given a cube with an edge 5 inches in the figure below

(a) Write down the vectors \overrightarrow{OE} , \overrightarrow{OD} , \overrightarrow{OF} , \overrightarrow{OG} as linear combinations of $\mathbf{i}, \mathbf{j}, \mathbf{k}$

(i)
$$\overrightarrow{OE} = (5, 0, 5)$$

(ii)
$$\overrightarrow{OD} = (0, 5, 5)$$

(iii)
$$\overrightarrow{OF} = (5, 5, 5)$$

(iv)
$$\overrightarrow{OG} = (5, 5, 0)$$

(b) Let P, Q, R, S, T, U be the centers of the faces \overrightarrow{AGFE} , \overrightarrow{GBDF} , \overrightarrow{DCEF} , \overrightarrow{OAEC} , \overrightarrow{OAGB} , \overrightarrow{OBDC} respectively, write the vectors: \overrightarrow{OP} , \overrightarrow{OQ} , \overrightarrow{OR} , \overrightarrow{OS} , \overrightarrow{OT} , \overrightarrow{OU} as a linear combinations of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

(i)
$$\overrightarrow{OP} = \left(5, \frac{5}{2}, \frac{5}{2}\right)$$

(ii)
$$\overrightarrow{OQ} = \left(\frac{5}{2}, 5, \frac{5}{2}\right)$$

(iii)
$$\overrightarrow{OR} = \left(\frac{5}{2}, \frac{5}{2}, 5\right)$$

(iv)
$$\overrightarrow{OS} = \left(\frac{5}{2}, 0, \frac{5}{2}\right)$$

(v)
$$\overrightarrow{OT} = \left(\frac{5}{2}, \frac{5}{2}, 0\right)$$

(vi)
$$\overrightarrow{OU} = \left(0, \frac{5}{2}, \frac{5}{2}\right)$$

4. Let $\mathbf{u} + \mathbf{v} = (3, -3)$ and $\mathbf{u} - \mathbf{v} = (1, 1)$.

(a) Find \mathbf{u} and \mathbf{v}

(b) Draw the vectors \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$, $(\mathbf{u} - \mathbf{v})$, $(-\mathbf{u} + \mathbf{v})$, $(-\mathbf{u} - \mathbf{v})$ in a single xy-plane.

Solution:

(a) We have $\mathbf{u} + \mathbf{v} = (3, -3)$ and $\mathbf{u} - \mathbf{v} = (1, 1)$. Adding these two vectors we get,

$$2\mathbf{u} = (4, -2) \implies \boxed{\mathbf{u} = (2, -1)}$$

Using this information, we get,

$$\mathbf{v} = (3, -3) - \mathbf{u} \implies \boxed{\mathbf{v} = (1, -2)}$$

Note that $-{\bf u} + {\bf v} = (-1, -1)$ and $-{\bf u} - {\bf v} = (-3, 3)$.

5. (a) Determine all real values of p such that the set of all linear combination of $\mathbf{u} = (-3, p)$ and $\mathbf{v} = (2, 3)$ is all of \mathbb{R}^2 . Justify your answer.

Solution. Consider that if the set of all linear combinations of the vectors:

$$\mathbf{u} = (-3, p)$$
 $\mathbf{v} = (2, 3)$

is all of \mathbb{R}^2 , then it must hold that:

$$c\mathbf{v} = (2c, 3c) \neq (-3, p) = \mathbf{u} \tag{1}$$

for every real number c (for otherwise, \mathbf{u} and \mathbf{v} occupy the same line in \mathbb{R}^2 , so that any linear combination of these vectors must also occupy that same line, and thus the set of all such linear combinations of \mathbf{u} and \mathbf{v} cannot be all of \mathbb{R}^2).

Now condition (1) holds if, and only if when 2c = -3, hence c = -3/2, we have:

$$3c = 3 \cdot -\frac{3}{2} = -\frac{9}{2} \neq p$$

and thus the set of all real values p such that the set of all linear combinations of vectors \mathbf{u} and \mathbf{v} is all \mathbb{R}^2 is computed as:

$$p \in \mathbb{R} : p \neq -9/2$$

(b) Determine all real values of p and q such that the set of all linear combinations of $\mathbf{u} = (1, p, -1)$ and $\mathbf{v} = (3, 2, q)$ is a plane in \mathbb{R}^3 . Justify your answer.

Solution. Similar to problem (a) above, for the set of all linear combinations of \mathbf{u} and \mathbf{v} to be a plane of \mathbb{R}^3 we require:

$$c\mathbf{v} = (3c, 2c, qc) \neq (1, p, -1) = \mathbf{u}$$
 (2)

for every real c (this conditions assures, similar to problem (a), that \mathbf{u} and \mathbf{v} are not colinear in \mathbb{R}^3 , hence the set all linear combinations of these two vectors constitutes a plane of \mathbb{R}^3).

Now condition (2) holds if, and only if, when 3c = 1, hence c = 1/3, we have either of the two below conditions:

$$2c = 2 \cdot \frac{1}{3} = \frac{2}{3} \neq p$$
 or $qc = q \cdot \frac{1}{3} = \frac{q}{3} \neq -1$

Thus we find that condition (2) holds if, and only if, $p \neq 2/3$ or $q \neq -3$. In other words, the set all real pairs (p,q) such that the set all linear combinations of **u** and **v** is a plane in \mathbb{R}^3 is:

$$\{(p,q) \in \mathbb{R}^2 : p \neq 2/3 \text{ or } q \neq -3\}$$

- 6. Determine whether the set of all linear combinations of the following set of vectors in \mathbb{R}^3 is a line or a plane or all of \mathbb{R}^3 . Justify, your answer.
 - (a) $\{(-2,5,-3), (6,-15,9), (-10,25,-15)\}$
 - (b) $\{(0,0,3),(0,1,2),(1,1,0)\}$
 - (c) $\{(1,2,0),(1,1,1),(4,5,3)\}$

Solution:

- (a) Since (6, -15, 9) = 3(-2, 5, -3) and (-10, 25, -15) = 5(-2, 5, -3), the linear combination of the vectors form the set $\{k(-2, 5, -3) \in \mathbb{R}^3 | k \in \mathbb{R}\}$. This set is a line.
- (b) Let us see if we can express the third vector as a linear combination of the first two. Say we have $p, q \in \mathbb{R}$ such that

$$p(0,0,3) + q(0,1,2) = (1,1,0)$$

For any values of p and q, the first coordinate cannot be matched. So the vector (1,1,0) does not belong in the plane of (0,0,3) and (0,1,2). Also, (0,1,2) is not a multiple of (0,0,3). The set of linear combinations of the vectors is all of \mathbb{R}^3 .

(c) We can express the third vector in the set, (4,5,3), as a linear combination of the other two vectors.

$$(4,5,3) = (1,2,0) + 3(1,1,1)$$

So, the third vector belongs to the plane of (1, 2, 0) and (1, 1, 1). The linear combination of the three vectors is a plane.