표시과목 「전자」의 교사 자격 기준과 평가 영역 및 평가 내용 요소

- 수정·보완(2018년) -

표시과목		~	선 자
연구	수행기관	한국교육	육 과 정 평 가 원
공동	연구기관	• 연구주관학회: 대한공업교육학회	1
	연구책임자	김진수 (한국교원대학교)	
2008.9. 연구	공동 연구자	김성득(안동대학교) 노태천(충남대학교) 윤형기(양영디지털고등학교) 이명의(한국기술교육대학교) 이양원(호남대학교)	김진권(제천디지털전자고등학교) 오승균(성남공업고등학교) 은태욱(광주정보고등학교) 이명훈(성동공업고등학교)
	연구책임자	이혁=	수(안동대학교)
2018.7. 연구	공동 연구자	김성득(안동대학교) 임승각(공주대학교) 강윤국(문경공업고등학교)	송영직(의성공업고등학교) 조한욱(충남대학교)

- ① 본 자료는 2008년 발표한 '표시 과목별 중등교사 자격 기준과 평가 영역 및 평가 내용 요소'를 그동안의 교육 현황과 전공 학문의 변화를 반영하여 2018년에 수정·보완한 것입니다. 이 자료는 2021학년도 중등교사임용후보자선정경쟁시험부터 표시과목별 출제 문항의 타당도를 제고하는 기초 자료로 활용될 것입니다. 다만, 출제위원단의 결정에 따라 세부적인사항의 일부가 문항 출제 과정에서 조정될 수 있음을 밝힙니다.
- ② 표시과목별 교사 자격 기준은 교육부가 발표한 '신규 교사의 자질과 능력에 관한 일반 기준 (2006. 11. 17.)'을 바탕으로 표시과목의 성격에 맞게 구체화 한 것입니다.
- ③ 표시과목별 '평가 영역'과 '평가 내용 요소'는 위의 교사 자격 기준을 근거로 하고, 교육부고시 제2016-106호(2016. 12. 23.) '교사자격종별 및 표시과목별 기본이수과목(또는 분야)'에 제시된 과목을 준거로 수정·보완한 것입니다.
- ④ 한국교육과정평가원과 학회가 공동 연구를 수행하는 과정에서 표시과목별로 실시한 '세미나' 자료 및 '공청회' 자료는 최종 연구 결과와 다를 수 있습니다. 따라서 중등교사 신규임용전형 시·도공동관리위원회의 위탁을 받아 한국교육과정평가원이 공식적으로 공개한 본 자료를 참고하시기 바랍니다.

중등학교교사 표시과목

전 자

교사 자격 기준

2018, 7, 31,

한 국 교 육 과 정 평 가 원 대 한 공 업 교 육 학 회

1. 교사 자격 기준

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준과의 관련성
1. 공업교직 사명감 및 태도	[기준1] 공업 교사는 건전한 인성과 공업 교직 시명감 및 윤리의식을 갖추고, 교육공동체 구성원과 협력관계를 구축한다.	 교사는 건전한 인성을 바탕으로 학생을 존중하고 공정하게 대한다. 교사는 공업 교직 사명감과 책임감을 가지고 교육에 한신한다. 교사는 청렴한 생활 태도와 예의를 바탕으로 교직 윤리의식과 사회적 책임의식을 갖는다. 교사는 교육의 사회·문화·정치·경제적 맥락을 이해 하고 학생, 학부모의 의견을 수렴하여 적절한 조치를 취한다. 교사는 교육공동체 구성원들과의 효과적 의사소통을 위해 교과 협의회, 교원 협의회, 교원 동아리 등에 참여한다. 	[기준1] 1-1 1-2 1-3 [기준2] 2-1 [기준9] 9-1 9-2 9-3
2. 공업교과 전문 지식	[기준2] 공업 교사는 공업 교 과에 대한 전문 지식과 기술을 갖는다.	 교사는 교과에 관한 기본 원리와 내용 구조를 깊이 이해하고 관련 기능을 숙달하여 지도한다. 교사는 교과 영역에서 주로 활용되는 설비, 시설, 도구 등을 원활하게 운영한다. 교사는 교과의 기반이 되는 학문의 핵심 개념, 개념들의 관계, 탐구방식을 이해한다. 교사는 교과의 기반이 되는 학문의 최신 동향을 지속적으로 탐구한다. 	[기준4] 4-1 4-2 4-3
3. 공업 교육과정 개발·운영	[기준3] 공업 교사는 공업 교과, 학생, 교육상황에 적절 한 교육과정을 개발· 운영한다.	 교사는 공업 분야 산업 및 직업 전망, 노동 시장 등의 동향을 분석한다. 교사는 지역산업 특성, 지역사회 자원 등의 교육환경을 분석한다. 교사는 노동 시장의 요구와 직업교육에서의 인력 공급의 차이를 분석한다. 교사는 교과와 관련된 국가 및 시·도교육청 수준 교육과정을 이해한다. 교사는 교과와 관련된 국가직무능력표준과 자격 제도를 이해한다. 교사는 학생, 학과, 학교 특성을 고려하여 교육과정을 편성하고 운영한다. 교사는 다양한 실습 및 체험 교육프로그램을 개발하고 운영한다. 교사는 교육과정을 산업 수요 및 학습자의 요구에 맞도록 평가하고 보완한다. 	[기준5] 5-1 5-2 5-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준과의 관련성
4. 공업 교수·학습	[기준4] 공업 교사는 학생과 학생의 학습·발달을 이해하며 수업을 효과 적으로 계획·운영한다.	 교사는 학생 특성과 교육적 요구, 교육 환경을 분석한다. 교사는 교육목표, 교과, 학생에게 적합한 수업계획과 평가계획을 수립하고 실천한다. 교사는 교수학습에 필요한 실제적인 교수학습 자료를 개발한다. 교사는 학생에게 적절한 학습 환경 제공을 위해 실험·실습에 필요한 재료와 자료의 준비를 돕는다. 교사는 다양한 교수학습활동을 개발하고 자료 및 매체를 활용하여 수업을 효과적으로 운영한다. 교사는 다양한 방법을 적용하여 학생의 동기를 유발하고 적극적인 참여를 유도한다. 교사는 직업기초능력과 기초학력이 부진한 학생에게 보충 학습 지도를 한다. 교사는 실험·실습실, 현장체험학습, 학교기업 등에서의 실제적 체험과 활동을 통하여 필요한 기술과 바람직한 작업 태도를 기르도록 지도한다. 교사는 학생에게 실험·실습, 현장체험학습 등에 따른안전 수칙을 지도하고 안전사고를 예방하도록 노력한다. 	[기준3] 3-1 3-2 3-3 [기준6] 6-1 6-2 6-3
5. 공업교육 평가	[기준5] 공업 교사는 학생의 학습을 모니터하고 평가 한다.	 교사는 학생들의 성취기준 및 성취수준을 결정하고 평가 목적과 내용에 적절한 다양한 평가 방법을 선정 한다. 교사는 선정한 평가방법에 필요한 타당도와 신뢰도 가 높은 평가도구를 개발하고 적용한다. 교사는 학습 및 과제 평가결과에 대해 타당한 분석을 하고 효과적으로 의사소통한다. 교사는 학습 및 과제 평가결과를 학생의 학습 지원과 수업 개선에 활용한다. 	[기준7] 7-1 7-2 7-3
6. 학생 지도 및 학급 운영	[기준6] 공업 교사는 학습, 직업 및 진로를 지원하는 환 경과 문화를 조성한다.	 교사는 학생 개개인의 특성과 환경을 이해한다. 교사는 학생의 인지·사회성·정서·신체 발달이 촉진 되도록 교과 외 학습 지도에 적극적으로 임한다. 교사는 학생의 흥미와 적성을 고려한 전공 및 창업 관련 동아리 지도에 적극적으로 임한다. 교사는 학생의 가정과 지역사회와 연계되는 생활 지도에 적극적으로 임한다. 교사는 학생이 자신의 잠재력을 최대한 발휘하며 성 장하도록 진로 및 취업 지도에 적극적으로 임한다. 교사는 학생이 장기적인 성장 경로를 설계할 수 있도록 평생직업능력개발 지도에 적극적으로 임한다. 교사는 학생의 자율적 문제해결과 의사결정을 통하여 학급 자치 활동을 지원한다. 교사는 학급 경영 계획을 수립하고 민주적이며 효율 적으로 운영한다. 	[기준2] 2-2 2-3 [기준3] 3-1 3-2 3-3 [기준8] 8-1 8-2 8-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준과의 관련성
7. 산학협력	[기준기 공업 교사는 학생의 산학협동과 직업 및 진 로 지도에 노력한다.	 교사는 학생이 현장실습 및 산학협력 프로그램에 참여 하도록 계획하고 실천한다. 교사는 학생이 현장실습 및 산학협력 프로그램에 따른 자신의 권리를 보호할 수 있도록 지도한다. 교사는 학생에게 현장실습 및 산학협력 프로그램에 따른 안전 수칙을 지도하고 안전사고 예방에 노력한다. 교사는 학생의 현장실습 및 산학협력 프로그램 결과를 평가하고 개선에 노력한다. 교사는 교육의 현장성 강화와 학생의 직업세계 탐색을 위하여 산업체(단체), 지역사회와 연계한 각종 행사 및 교육 활동을 계획하고 실천한다. 	[기준3] 3-1 3-2 3-3 [기준9] 9-1 9-2 9-3
8. 전문성 개발	[기준8] 공업 교사는 전문성 개발을 위해 끊임없이 노력한다.	 교사는 공업교육 및 공업 분야 산업의 최신 동향을 탐색한다. 교사는 공업교육에 대한 교육실천을 연구하고 향상시킨다. 교사는 공업교육에 관련된 각종 발표회, 교과연구회등에 자주 참여한다. 교사는 공업 분야 실험·실습에 필요한 새로운 기기사용에 대한 각종 연수에 자주 참여한다. 교사는 교과 전문지식에 관련된 각종 세미나, 학회,산업체 연수에 자주 참여한다. 교사는 직업교육 관련 정책 방향을 파악하고 내실있는 실천 방안을 탐색한다. 교사는 자신 및 동료의 교수역량을 진단하고 개선하는 연구 및 연수활동에 자주 참여한다. 교사는 공업 분야 산업 직무 현장을 체험하고 최신기술 동향을 지속적으로 탐구한다. 	[기준10] 10-1 10-2 10-3

중등학교교사 표시과목

전 자

평가 영역 및 평가 내용 요소

2018. 7. 31.

2. 평가 영역 및 평가 내용 요소

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			공업교육 개념과 필요성	
		공업교육 일반	공업교육 역사와 정책	
			공업교육 행정 및 장학	
			공업 교육과정 개념과 변천	
		공업 교육과정	공업 교육과정 개발 및 편성	
		으면 파파되었	공업 교육과정 운영	
			공업 교육과정 평가 및 피드백	
			공업 교수·학습 원리 및 방법	
		공업 교수·학습	공업 교수·학습지도안 개발과 전개	
			공업 교수·학습 매체 선정과 활용	
	공업	실기지도법	실기 지도 방법	성공적인 직업생활 공업 일반
			실기 교수·학습자료 개발	
교과			실습장 조직 및 관리	
교육학	교육론		실습장 안전교육	
		공업교육 평가	공업교육 평가 특성과 유형	
			공업교육 평가 도구 개발	
			수행평가 및 실기평가	
			자격 제도 개념과 유형	-
			산학협력교육 개념과 유형	
		산학협력	산학협력체제의 조직과 운영	
		전략합력	현장실습 지도	
			근로 보호와 산업 안전	
			직업·진로교육 개념과 역사	
		직업·진로 지도	직업·진로 발달 원리 및 방법	
		구마"면도 시조	직업·진로 지도 원리 및 방법	
			직업·진로 심리 및 상담	

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			전하, 전기장, 전기력, 전위, 쿨롱의 법칙	
			자기장, 자기력	
		전기와 자기	전류의 자기 작용	
			전자기력	· 전기전자기초-전기회로
			전자 유도 작용	
교과	전기전자		직류회로	
내용학	일반	전기 회로	교류회로	
			전기전자측정	
			전자회로 소자 (저항, 인덕터, 커패시터, 다이 오드, 트랜지스터, 연산증폭기)	
		전자 회로	정류 회로와 전력 변환 회로	전기전자기초-전자회로 - -
			디지털 논리 회로	
		직류회로	전압, 전류, 전력, 에너지와 전원	- 전기회로-직류회로
			옴의 법칙과 키르히호프의 법칙	
			전위의 평형과 휘트스톤 브리지의 원리	
			노드해석, 루프해석, 중첩의 정리 및 전원변환	
			테브난, 노튼의 정리, 최대전력전달	
			커패시터, 인덕터의 특성 및 과도현상	
			정현파 교류의 발생 원리와 표현 방법	
			정현파 교류 전류, 전압의 복소수 표기	
교과	회로이론		커패시터와 인덕터의 임피던스 특성	
내용학			R-L-C 회로 해석	
			교류회로에서의 전력과 역률	
		교류회로	3상 교류의 발생 원리, 3상 교류 회로의 결선 법과 3상 전력	전기회로-교류회로 -
			직렬 및 병렬 공진 회로 (선택도, 반전력점과 대역폭, 보드선도)	
			임펄스 응답	
			상호 인덕턴스, 정현파 전원을 갖는 결합 회로 와 이상 변압기	_

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			마이크로폰의 전기적 특성과 지향성	
		음향기기	스피커의 종류와 스피커 시스템	
			라디오 송・수신기의 원리	
교과 내용학	전자기기		텔레비전 신호의 전기적 표현과 이의 재현 원리	전자회로
		영상기기	텔레비전 수상기 구성과 동작	
			영상 입력 장치와 디스플레이 장치의 종류, 용도 및 특성	
			다이오드의 구조 및 동작특성	
			BJT의 구조 및 동작특성	
		반도체 소자와	JFET와 MOSFET의 구조 및 동작특성	
	전자회로	집적 회로	전력제어용 반도체 구조 및 동작특성 (SCR, TRIAC, IGBT)	전자회로-반도체 소자
			광전소자(발광소자, 수광소자, 광도전체, 포토 커플러)	
		직류 전원 회로	직류 전원 회로의 전체 구성과 과정	전자회로-직류 전원회로
			변압기, 반파/전파/브리지 정류, 배전압 회로 및 평활 회로의 특성과 출력 파형	
			정전압 안정화 회로 및 스위칭 모드 전원 회로 의 구성과 활용	
교과		회로	BJT와 FET 증폭회로	
교 내용학			차동 증폭회로	
			되먹임(feedback) 회로의 원리 및 해석	
		증폭회로	동조 증폭회로	전자회로-증폭회로
			전력 증폭회로	
			연산 증폭회로 (반전/비반전, 가산/감산, 미분/ 적분, 비교기, 계측증폭기, 필터회로)	
			발진의 원리 및 발진 조건	
			RC/LC/크리스탈 발진회로	
		발진 및	사인패/삼각파 파형발생회로, 슈미트 트리거 회로	전자회로-발진 및 펄스 - 회로
		펄스 회로	펄스발생회로 (비안정/단안정/쌍안정 멀티바이브레이터)	
			펄스정형회로 (클리퍼, 클램퍼)	

구분	기본 이수과 목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			아날로그 변·복조 회로의 동작 원리	
		변·복조회로	디지털 변·복조 회로의 동작 원리	전자회로-변·복조 회로
			펄스 변·복조 회로의 동작 원리	
			입력 및 출력 인터페이스 회로의 구성 요소와 동작 원리	
		인터페이스 회로	디지털 회로 (BJT/MOSFET을 이용한 논리회로, 잡음 여유도, 소비전력, 팬인/팬아웃)	전자회로-인터페이스 회로
			디지털 출력회로 종류 (표준, 오픈 컬렉터/드레인, 3상태출력)	
		신호 변환 회로	A/D 변환회로와 D/A 변환회로	전자회로-신호 변환 회로
		전압, 전류, 전력 측정	각종 지시계기를 사용한 전압, 전류, 전력 등의 측정	전기전자측정-전압, 전류 및 전력 측정
		저항, 인덕턴스 및 커패시턴스의 측정	저항, 인덕턴스, 커패시턴스 측정	전기전자측정-저항, 인덕턴스 및 커패시턴스의 측정
		오실로스코프 사용법	오실로스코프를 사용한 전압, 주파수 등의 측정	전기전자측정-주파수 및 파형 측정
		반도체 다이오드	반파 및 전파 정류회로의 동작 실험	전자회로-직류
		특성실험	클리퍼와 클램퍼 회로의 동작 실험	전원회로
			BJT 회로 동작 실험	
		트랜지스터의 전기전자 동작 특성 실험	A급, B급, C급 전력증폭기 실험	전자회로-증폭회로
교과	전기전자		차동증폭기 회로 실험	
내용학	실험	0 1 10 21	되먹임(feedback) 회로 실험	
			각종 증폭기의 주파수 특성 측정	
			반전 증폭기와 비반전 증폭기 회로 실험	
		연산 증폭기의	가산기와 감산기 회로 실험	저지하고_여시즈포기
		동작 실험	적분기와 미분기 회로 실험	- 전자회로-연산증폭기 - -
			필터회로 실험	
		전계효과트랜	JFET 회로 동작 실험	
		지스터의 특성 실험	MOSFET 회로 동작 실험	전자회로-증폭회로
		발진회로실험	발진회로 실험	전자회로-발진회로
		데이터 변환실험	A/D 변환회로와 D/A 변환회로 실험	전자회로-신호변환 회로

구분	기본 이수 과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
		반도체 물성의	전자의 에너지 상태 표현	
		기초	반도체의 에너지 대역에 대한 표현	
		반도체 캐리어	n형 반도체의 캐리어 특성	
		한고세 개니어	p형 반도체의 캐리어 특성	
		pn 접합 다이오드	pn 접합의 공핍층 형성과정	
	HTC -II	pri did cioiz_	pn 접합의 바이어스 방법	저지하고 비트웨
교과 내용학	반도체 공학	쌍극성 접합	BJT의 접합구조와 캐리어 특성	전자회로-반도체 소자와 집적회로
		트랜지스터(BJT)	BJT의 증폭 작용과 스위칭 작용	
		TI 711 - 71	JFET의 구조와 핀치오프 현상	
		전계효과 트랜지스터(FET)	공핍형/증가형 MOSFET의 구조와 문턱전압	
			FET의 전달 특성	
		집적회로	집적회로의 종류와 특징	
		접직외도	집적회로 제조공정	
	디지털회로 설계		논리식, 진리표, 상태도, 상태표, 타이밍도, 논리 회로도의 이해 및 작성	디지털 논리회로- 논리 회로 설계
교과			조합논리회로의 해석 및 설계	디지털 논리회로- 조합 논리 회로
내용학			동기식 순서논리회로의 해석 및 설계	디지털 논리회로- 순서 논리 회로
		하드웨어 기술언어	하드웨어기술언어(Verilog, VHDL)로 작성된 디지털회로의 이해	1903060104_14v3 디지털 회로 설계
		디지터 사사테	디지털정보의 표현 방법	디지털 논리회로-
		디지털 시스템	펄스 파형의 주기, 주파수, 듀티 사이클	디지털 시스템
		논리 소자	ROM, RAM 메모리의 구조와 동작 원리	디지털 논리회로- 논리
			AND, OR, NOT, NAND, NOR, XOR, XNOR, 버퍼, 3상태 버퍼	소자
		저번이 교립	10진수, 2진수, 8진수, 16진수 사이의 변환	디지털 논리회로-
교과 내용학		정보의 표현	디지털 코드의 종류와 활용법	정보의 표현
907	<u> </u>	노기 원그 서계	논리회로에서의 게이트 동작과 불대수와의 관계	디지털 논리회로- 논리
		논리 회로 설계	논리식의 간소화 (불대수, 카르노도)	회로 설계
			최소항/최대항을 이용한 출력함수의 유도	
		조합논리회로	반가산기와 전가산기의 구조와 원리	디지털 논리회로-
		· 포함군터와도	병렬 가산기, 가감산기, BCD가산기의 동작원 리와 활용	조합논리회로

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			인코더, 디코더의 동작원리와 활용	
			멀티플렉서, 디멀티플렉서의 동작원리와 활용	
			크기비교기의 동작원리와 활용	
			코드변환기의 동작원리와 활용	
			래치, 플립플롭의 동작원리와 활용	
		순서논리회로	레지스터의 종류와 동작	디지털 논리회로-순서 노리회로
			동기식/비동기식 카운터의 동작원리와 활용	
		논리회로의 설계	브레드보드를 이용한 논리회로 구성 일반	디지털 논리회로- 논리 소자
			전가산기와 병렬 가산기 실험	
		조합 논 리회로	크기 비교기 실험	디지털 논리회로-
			인코더와 디코더 실험	조합 논리회로
교과	디지털회로		멀티플렉서와 디멀티플렉서 실험	
내용학	실험	실험 순서논리회로 실험	플립플롭 응용회로의 동작에 대한 타이밍도 표현 및 관측 실험	_
			좌우 방향 시프트 레지스터 및 순환 레지스터 실험	
			상태도 및 회로 여기표를 활용한 카운터 회로 설계 실험	
			마이크로프로세서의 기본 구성, 기능과 동작 원리	디지털 논리회로- 디지털 논리회로의 응용 컴퓨터구조-컴퓨터의 구성과 동작 원리 자동화설비-마이크로 프로세서 제어 프로그래밍-프로그래 밍의 개요 컴퓨터구조-입출력 장치
			마이크로프로세서의 하드웨어 구조 체계	
교과 내용학	마이크로	마이크로	어셈블리어 프로그램의 동작과정 일반	
	프로세서	로세서 프로세서	입출력 장치와의 인터페이스	
			주소 공간(memory map) 개념과 어드레싱 (addressing) 방법	
			인터럽트와 타이머/카운터	컴퓨터구조-제어 장치
			DMA 개념 및 동작	

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성	
			데이터 표현 방법, 변수 선언과 유효 범위		
			제어문 활용 (조건문, 반복문)		
			연산자 활용	프로그래밍-C프로그래 밍의 기초	
		C 언어	함수, 배열, 포인터를 활용한 프로그래밍	0-1-1-	
			구조체/공용체		
			마이크로프로세서 입출력 장치 제어	자동화설비-마이크로프 로세서 제어 회로 실습	
			시간영역과 주파수 영역의 상호관계		
		시호이 시스템	표본화, 양자화, 부호화	트시아바 트시아 기호	
		신호와 시스템	신호의 특성 및 주파수영역 해석	통신일반-통신의 기초	
			컨벌루션(convolution)		
			아날로그 통신 시스템 일반(AM, FM 변복조)		
	통신 이론	아날로그 및 디지털 통신	디지털 통신 시스템 일반 (ASK, FSK, PSK, QAM 변복조)	통신일반-통신 방식	
			전송 속도		
교과			단방향, 반이중, 전이중 전송 방식		
내용학			동기식/비동기식 전송 방식		
			직렬/병렬 전송 방식		
			다중화 기본 개념과 방식		
		광통신	광통신 시스템 일반(광케이블, 발광소자, 수광 소자)	통신일반-전송 방식	
			이동통신	이동통신 기본 구성과 특징 (핸드오버, 위치등록, 셀분할, 로밍)	
		이 6 년	이동통신의 전송기술 개요 (CDMA, OFDM, LTE)		
		되나트시	정보통신시스템 구성요소와 장치		
		정보통신 시스템	전송제어절차 단계별 역할과 기능		
			오류제어방식 기본원리 (검출, 정정)		
교과 내용학			네트워크 구조 (Topology)	7HEN 7H ENO	
	디지털 통신		유무선 전송매체별 특징	정보통신-정보 통신의 기초	
	ᆼ 낕	정보통신망의 활용	네트워크 주요 장비 역할과 특징 (트랜시버, 라우터, 게이트웨이)		
			프로토콜 기본 요소와 기능 이해 (OSI참조모델)		
				유무선 LAN의 액세스 기본방식	-

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			TCP/IP의 개념과 원리 및 OSI 7계층 비교	정보통신-정보 통신의 기초 정보통신-인터넷 통신
			IP 주소의 기본 개념 (IPv4, IPv6)	정보통신-인터넷 통신
		인터넷 통신	도메인 네임 시스템의 구성	8286 69% 86
			라우팅 프로토콜의 기본 개념과 종류	정보통신-인터넷 통신 정보통신-네트워크 구축
			HTML 태그를 이용한 홈페이지 제작	정보통신-인터넷 통신
	전자파 응용	_ · ·	정전기장에서의 Coulomb의 법칙	- - 전기회로-전기
			전기장과 전기력선, 전기장의 세기	
			전위와 등전위면	
			물질이 존재하는 공간에서의 전기장	
			유전체 내에서의 분극	
			저항과 정전용량	
			정자기장에서의 Biot-Savart 법칙과 응용	
교과			Ampere의 법칙과 응용	
내용학			자속밀도, 자기 스칼라 포텐셜, 자기 벡터 포 텐셜	- - - 전기회로-자기
			전자기장에서의 힘	
			인덕터와 인덕턴스	
			자기에너지와 자기회로	
		시버 저지게	전자유도	
		시변 전자계	Maxwell 방정식	- 전기회로-전기와 자기
		응용사례	전자파 성질 및 응용사례	