ME 598/494 Exam 1 - September 14, 2017

Problem 1 (20 Points)

Check if the following statements are true or not. Explain.

- (a) If x_* is a stationary point of a continuous and differentiable function f, then x_* is a local minimum of f.
- (b) The union of two convex sets is also convex. If true, please explain; if not, please provide a counter example.

- (c) The problem $\min_{x} \frac{1}{x} + x$ for $x \ge 0$ has a minimizer.
- (d) An ant is planning a move to the pizza (see figure). There is a unique shortest path from this ant to this piece of pizza.

Solutions

- (a) False. Could be saddle or local maximum.
- (b) False. Counter example: draw two circles with some overlap.
- (c) True. Set derivative to zero to find $x^* = 1$. Also Hessian (second order derivative) is positive.
- (d) True. The pizza is convex. The distance function on \mathbb{R}^2 is a convex function. Therefore finding a shortest distance within the pizza is a convex problem and has one unique solution.

Problem 2 (25 Points)

- (a) Derive the iteration formula for solving n-dimensional unconstrained problems with the gradient descent method without line search. (5 Points)
- (b) Derive the iteration formula for solving n-dimensional unconstrained problems with Newton's method without line search. (5 Points)
- (c) Explain why line search is needed for gradient descent and Newton's method. Propose a line search algorithm (can be an existing one). (5 Points)
- (d) Discuss briefly advantages and disadvantages of using Newton's method in solving optimization problems. (10 Points)

Solutions

See notes.

Problem 3 (10 Points)

For an unconstrained function f in \mathbb{R} that is continuous and differentiable, perform the following line search at the current point \mathbf{x}_k with gradient \mathbf{g}_k and Hessian \mathbf{H}_k : (1) Consider the one-dimensional function $f(\mathbf{x}_k - \alpha \mathbf{g}_k)$ with respect to α . Derive its second order approximation at $\alpha = 0$. (2) Minimize this approximation to find the optimal step α^* . What could go wrong with this line search method? (Hint: see figure)

Solutions

See notes.

Problem 4 (10 Points)

- (a) Consider the linear programming problem $\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$, where \mathbf{c} is a constant vector. Does this problem have a solution? (2 Points)
- (b) Consider the linear programming problem $\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$, subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$, where \mathbf{c} is a p-by-1 constant vector, \mathbf{b} is an n-by-1 constant vector, and \mathbf{A} is an n-by-p constant matrix. If this problem has solutions (local minima), how many solutions do you expect to have? Please explain. (8 Points) Hint: An optimization problem is convex if the objective is a convex function, and the feasible domain is a convex set. The problem is strictly convex when the objective is strictly convex.

Solutions

- (a) No. Let $\mathbf{x} = -t\mathbf{c}$, where t > 0. Then the objective is $-t||\mathbf{c}||^2 < 0$. This value can go to $-\infty$ as $t \to \infty$.
- (b) Notice that the objective is a convex function, and the feasible domain of **x** is a convex set, the problem has a global solution, but this solution is not necessarily unique. See hrefftp://ftp.cs.wisc.edu/pub/techreports/1978/TR316.pdfthe uniqueness proof. **Note**: You get full points if you show convexity of the objective and the contraints.

Problem 5 (10 Points)

Consider a triangle with three sides a, b and c. Fix a = 1, and b + c = 2. How does the triangle look like when it has the largest area (by changing b and c). (Hint: The Heron's formula for triangle area is $A = \sqrt{s(s-a)(s-b)(s-c)}$, where s = (a+b+c)/2. The optimal solution for a positive function f(x) is also optimal for $f(x)^2$.)

Solutions

The objective is proportional to the negative squared area: f(b,c) = -(1+b)(1+c), with the constraint b+c=2. Convert this to an unconstrained problem: $\bar{f}(b) = -(1+b)(3-b)$. The derivative is df/db = (3-b) - (1+b) = 0. Thus $b^* = 1$ and $c^* = 1$. The second-order derivative is $d^2f/db^2 = 2 > 0$. Therefore the stationary point is a global minimizer.

Problem 6 (25 Points)

Consider a linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is a n-by-n matrix, \mathbf{x} is n-by-1, and \mathbf{b} is n-by-1. We can find the solution \mathbf{x} by solving

$$\min_{\mathbf{x}} \quad 0.5(\mathbf{A}\mathbf{x} - \mathbf{b})^T(\mathbf{A}\mathbf{x} - \mathbf{b}). \tag{1}$$

- (b) In what cases is this problem strictly convex? (5 Points, optional for MAE494)
- (c) The figure to the right shows the convergence of gradient descent on this problem. Do you trust this result? Please explain. (5 Points)
- (d) Consider solving the problem using Newton's method starting at \mathbf{x}_0 . How many steps will you take to reach the solution? Please explain. (5 Points)
- (e) Please explain in what cases you will not be able to use Newton's method, and how you will resolve this issue. (5 Points, optional for MAE494)

Solutions

(a) The Hessian $\mathbf{A}^T \mathbf{A}$ is psd. To show this, let \mathbf{x} be an arbitrary non-zero vector. Then $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = ||\mathbf{A} \mathbf{x}||^2 \ge 0$. Therefore the problem is convex.

- (b) It is strictly convex when all eigenvalues of $\mathbf{A}^T \mathbf{A}$ are positive, or equivalently \mathbf{A} is non-singular.
- (c) No. Since this is a convex problem, the convergence should be linear.
- (d) One step. The problem is quadratic and convex.
- (e) When **A** is singular. We can use a modified Hessian $\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}$ with $\lambda > 0$ to ensure the convergence.