Linearna algebra nad polkolobarji

Jimmy Zakeršnik

mentor: prof. dr. Tomaž Košir

23. junij 2023

Napovednik:

- Motivacija
- Monoidi in urejenost
- Olkolobarji in dioidi
- Polmoduli in moduloidi
- Matrike nad polkolobarji
- O Pideterminanta in karakteristični pipolinom
- Posplošeni Cayley-Hamiltonov izrek

Motivacija:

Polkolobarjev je veliko - pojavljajo se v skoraj vsakem področju matematike. Nekateri primeri so:

- \mathbb{N}_0 oz. \mathbb{Z}^+ , \mathbb{Q}^+ , \mathbb{R}^+ za standardne operacije + in *,
 - max-plus algebra $(\mathbb{R} \cup \{-\infty\}, max, +)$ in min-plus algebra $(\mathbb{R} \cup \{\infty\}, min, +)$,
- Boolove algebre,
- $\bullet \ \ \text{Potenčne množice za} \cup \text{in} \ \cap.$

Monoidi in urejenost:

Definicija

Monoid (M,*) je *kanonično urejen*, če je kanonična šibka urejenost $x \le y \iff \exists z \in M: y = x*z$ na M antisimetrična.

Monoidi in urejenost:

Definicija

Monoid (M,*) je *kanonično urejen*, če je kanonična šibka urejenost $x \le y \iff \exists z \in M: y = x*z$ na M antisimetrična.

Izrek

Monoid ne more hkrati biti grupa in kanonično urejen.

Monoidi in urejenost:

Definicija

Monoid (M,*) je *kanonično urejen*, če je kanonična šibka urejenost $x \le y \iff \exists z \in M : y = x*z$ na M antisimetrična.

Izrek

Monoid ne more hkrati biti grupa in kanonično urejen.

Izrek

Naj bo monoid (M,*) okrajšljiv in naj zadošča pogoju pozitivnosti. Potem je kanonična šibka urejenost \leq na M antisimetrična.

Definicija

Za neprazno množico R, ki je opremljena z operacijama \oplus in \otimes pravimo, da je *polkolobar*, če zanjo velja naslednje:

- \bullet (R, \oplus) je komutativen monoid z nevtralnim elementom 0,
- (R, \otimes) je monoid z enoto 1,
- 3 leva oz. desna distributivnost \otimes in \oplus ,
- $0 \otimes a = 0 = a \otimes 0; \forall a \in R.$

Ĉe je operacija \otimes komutativna, pravimo, da je polkolobar R komutativen. Oznaka: (R, \oplus, \otimes) .

Definicija

Naj bo (R,\oplus,\otimes) polkolobar. Če je kanonično urejen glede na kanonično šibko urejenost definirano preko \oplus , pravimo, da je *dioid*.

Definicija

Naj bo (R,\oplus,\otimes) polkolobar. Če je kanonično urejen glede na kanonično šibko urejenost definirano preko \oplus , pravimo, da je *dioid*.

Trditev

Če je (R, \oplus, \otimes) polkolobar na katerem kanonična šibka urejenost \leq definirana preko \oplus ni antisimetrična in je $\mathcal E$ ekvivalenčna relacija s predpisom $x\mathcal E y \iff x \leq y \ \& \ y \leq x$, je $R/\mathcal E$ dioid za inducirani operaciji.

Definicija

Dioid (R, \oplus, \otimes) je *poln*, če je za kanonično delno urejenost definirano preko \oplus poln kot množica in ustreza t. i. posplošeni distributivnosti: $\forall P \subseteq R, \forall r \in R$:

- $\bullet \left(\bigoplus_{p \in P} p \right) \otimes r = \bigoplus_{p \in P} \left(p \otimes r \right)$
- $\bullet \ r \otimes \left(\bigoplus_{p \in P} p \right) = \bigoplus_{p \in P} \left(r \otimes p \right)$

Definicija

Naj bo R polkolobar. *Levi R-polmodul* je komutativen monoid (M,+) z aditivno identiteto θ , na katerem imamo definirano množenje s skalarjem $\cdot: R \times M \to M$, ki zadošča naslednjim pogojem za vsaka $\lambda, \mu \in R$ in vsaka $x,y \in M$:

- 2 $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$ in $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$,

Analogno definiramo desni R-polmodul.

Definicija

Naj bo R dioid in (M,+) (levi) R-polmodul. Če je (M,+) kanonično delno urejen glede na +, mu pravimo (levi) R-moduloid.

Definicija

Naj bo X neka neprazna družina elementov R-polmodula (M,+). Najmanjši R-podpolmodul v M, ki vsebuje X, imenujemo R-polmodul generiran z X in ga označimo z $\langle X \rangle$. Če je $\langle X \rangle = M$, pravimo, da X generira M. Če je X končna družina, ki generira M, pravimo, da je M končno generiran.

Definicija

Naj bo X neka neprazna družina elementov R-polmodula (M,+). Najmanjši R-podpolmodul v M, ki vsebuje X, imenujemo R-polmodul generiran z X in ga označimo z $\langle X \rangle$. Če je $\langle X \rangle = M$, pravimo, da X generira M. Če je X končna družina, ki generira M, pravimo, da je M končno generiran.

Definicija

Rang R-polmodula (M,+) je najmanjše naravno število $n\in\mathbb{N}$ za katerega obstaja družina $X\subseteq M$ kardinalnosti n, ki generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X linearno neodvisna, če za vsak disjunktni par $I_1,I_2\subseteq J$ velja $\langle X_{I_1}\rangle\cap\langle X_{I_2}\rangle=\{\theta\}.$

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X linearno neodvisna, če za vsak disjunktni par $I_1,I_2\subseteq J$ velja $\langle X_{I_1}\rangle\cap\langle X_{I_2}\rangle=\{\theta\}$.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X *šibko linearno neodvisna*, če za njo velja pogoj: $\forall j\in J: x_j\notin \langle X\setminus\{x_j\}\rangle$.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X baza M, če je linearno neodvisna in generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X baza M, če je linearno neodvisna in generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X *šibka baza* M, če je šibko linearno neodvisna in generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X prosta množica v M, če je za vsak element iz M, ki ga lahko zapišemo kot linearno kombinacijo elementov iz X, ta zapis enoličen.

Proste baze so hkrati tudi šibke.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X prosta množica v M, če je za vsak element iz M, ki ga lahko zapišemo kot linearno kombinacijo elementov iz X, ta zapis enoličen.

Proste baze so hkrati tudi šibke.

Izrek

Če R-polmodul M premore kako neskončno šibko bazo, so vse šibke baze M neskončne.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna družina elementov iz M. Pravimo, da je vektor x razcepen na $\langle X \rangle$, če in samo če obstajata taka vektorja $y,z\in \langle X \rangle$, oba različna od x, da je x=y+z. Če x ni razcepen na $\langle X \rangle$, pravimo, da je nerazcepen na $\langle X \rangle$.

Izrek

Naj bo (R,\oplus,\otimes) polkolobar z enotama 0 in 1 za katerega velja $r\oplus p=1\Rightarrow r=1\lor p=1$ in $r\otimes p=1\Rightarrow r=1\land p=1$. Naj bo (M,+) kanonično urejen R-polmodul na katerem za $y\in M\setminus\{\theta\}, x\in M\setminus\{y\}$ in poljuben $\lambda\in R$ velja $y=\lambda\cdot y+x\Rightarrow \lambda=1$. Potem velja, da če M premore kako bazo, je ta enolično določena.

Matrike:

Tudi na polmodulih lahko definiramo linearne preslikave: Zahtevamo aditivnost in homogenost. Nad polkolobarjem (R,\oplus,\otimes) lahko definiramo $m\times n$ matrike, za poljubna $m,n\in\mathbb{N}$. Pri tem seštevanje definiramo enako kot za matrike nad obsegi (po komponentah), množenje pa na sledeč način za $A\in M_{m\times n}(R), B\in M_{n\times l}(R)$:

komponentah), množenje pa na sledeč način za
$$A \in M_{m \times n}(R), B \in M_{n \times l}(R)$$
:
$$A*B = C \in M_{m \times l}(R); \ c_{ij} = \sum_{k=1}^n (a_{ik} \otimes b_{kj}) \ \forall i \in \{1,2,\ldots,m\} \ \& \ \forall j \in \{1,2,\ldots,l\}$$

Pri tem je $C \in M_{m \times l}(R)$.

Pideterminante:

Definicija:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem R. Bideterminanta matrike A je urejeni par $(det^+(A), det^-(A))$, kjer sta vrednosti $det^+(A)$ in $det^-(A)$ definirani na naslednji način:

$$det^{+}(A) = \sum_{\pi \in Per^{+}(n)} (\prod_{i=1}^{n} (a_{i,\pi(i)}))$$
$$det^{-}(A) = \sum_{\pi \in Per^{+}(n)} (\prod_{i=1}^{n} (a_{i,\pi(i)}))$$

Karakteristični bipolinom

Definicija:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem R.

Karakteristični bipolinom matrike A je dvojica $(P_A^+(\lambda), P_A^-(\lambda))$, kjer sta $P_A^+(\lambda)$ in $P_A^-(\lambda)$ polinoma stopnje n v spremenljivki λ , definirana na naslednji način:

$$\begin{split} P_A^+(\lambda) &= \sum_{q=1}^n \left(\left(\sum_{\substack{\sigma \in Part^+(n) \\ |dom(\sigma)| = q}} \left(\prod_{i \in dom(\sigma)}^n (a_{i,\sigma(i)}) \right) \right) * \lambda^{n-q} * \lambda^n \right) \\ P_A^-(\lambda) &= \sum_{q=1}^n \left(\left(\sum_{\substack{\sigma \in Part^-(n) \\ |dom(\sigma)| = q}} \left(\prod_{i \in dom(\sigma)}^n (a_{i,\sigma(i)}) \right) \right) * \lambda^{n-q} \right) \end{split}$$

Cayley-Hamiltonov izrek nad polkolobarji

Izrek:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem z nevtralnim elementom 0 in enoto 1 in naj bo $(P_A^+(\lambda), P_A^-(\lambda))$ bipolinom, ki pripada matriki A. Tedaj velja:

$$P_A^+(A) = P_A^-(A) {1}$$

kjer sta $P_A^+(A)$ in $P_A^-(A)$ matriki, ki ju dobimo, če v $P_A^+(\lambda)$ in $P_A^-(\lambda)$ λ^{n-q} zamenjamo z A^{n-q} . Pri tem razumemo A^0 kot multiplikativno identiteto v polkolobarju $M_n(R)$.

Literatura:

- Yi-Jia Tan Invertible matrics over semirings, https://www. tandfonline.com/doi/abs/10.1080/03081087.2012.703191
- Yi-Jia Tan Bases in semimodules over commutative semirings,, https://www.sciencedirect.com/science/article/pii/ \$0024379513007234
- Yi-Jia Tan Determinants of matrices over semirings, https://www.tandfonline.com/doi/abs/10.1080/03081087.2013.784285
- Michel Gondran, Michel Minoux Combinatorial Properties of (Pre)-Semirings, https://www.researchgate.net/publication/ 319772435_Combinatorial_Properties_of_Pre-Semirings