Kommentare zu den Lehrveranstaltungen Mathematik

Wintersemester 2015/16

Foto: Martin Kramer

Fakultät für Mathematik und Physik Mathematisches Institut

Stand: 27. Oktober 2015

Inhaltsverzeichnis

Allgemeine Hinweise zur Planung des Studiums	Ę
Hinweise des Prüfungsamts Hinweise zum 1. Semester	8
Sprechstunden	10
Informationen zum Vorlesungsangebot in Straßburg	13
1. Vorlesungen	14
1b. Pflichtveranstaltungen	15
Stochastik (1. Teil der zweisemestrigen Veranstaltung)	
Numerik (1. Teil der zweisemestrigen Veranstaltung)	16
Algebra und Zahlentheorie	17
Mehrfachintegrale	18
Analysis III	19
1c. vierstündige Kurs- und Spezialvorlesungen	20
Wahrscheinlichkeitstheorie	20
Einführung in Theorie und Numerik partieller Differentialgleichungen	21
Mengenlehre	22
Modelltheorie	23
Differentialgeometrie I	24
Variationsrechnung	
Mathematische Statistik	26
Stochastische Prozesse	27
Theorie und Numerik für hyperbolische Erhaltungsgleichungen	
Theorie und Numerik partieller Differentialgleichungen	
Numerical Optimization	30
1d. zweistündige Kurs- und Spezialvorlesungen	31
Bochner-Räume	31
Computational Finance	32
Credit Risk	33
Einführung in die Differentialtopologie	34
Shimura Varieties	
Nonlinear Expectation, G -Brownian motion and risk measures	36
Topics in Stochastic Analysis	37
2. Berufsorientierte Veranstaltungen	39
2a. Begleitveranstaltungen	40
Lernen durch Lehren	

2b. Fachdidaktik	41
Didaktik der Algebra und Analysis	41
Robotik als Abenteuer – MINT	42
Medieneinsatz im Mathematikunterricht	43
Schulmathematische Themen mit Geogebra	44
2c. Praktische Übungen	45
Numerik (1. Teil der zweisemestrigen Veranstaltung)	45
Einführung in Theorie und Numerik partieller Differentialgleichungen	46
Theorie und Numerik für hyperbolische Erhaltungsgleichungen	47
3. Seminare	48
3a. Proseminare	49
Elementare Algebraische Geometrie	49
Graphentheorie	50
Kombinatorik	51
Zahlentheorie	52
3b. Seminare	53
Allgemeine Relativitätstheorie	53
Elementare Differentialgeometrie	54
Homotopietheorie	55
Minimalflächen	56
Seminar über Modelltheorie	57
Mathematische Modellierung von Mehrphasenströmungen mit Phasenübergang .	58
Sobolev-Funktionen und deren Approximation	59
Kategorientheorie und Quantengruppen	60
Ringe stetiger Funktionen: Grundlagen	61
Ringe stetiger Funktionen: Ausgewählte Kapitel	62
Statistische Modelle in der klinischen Epidemiologie	63
Continuous Time Finance	64
4. Oberseminare, Projektseminare und Kolloquien	65
4b. Projektseminare und Lesekurse	66
"Wissenschaftliches Arbeiten"	66
Seminar des Graduiertenkollegs	67
Numerik	68
Modelle für abhängige Lévy- und Markovprozesse	69
4c. Kolloquien und weitere Veranstaltungen	70
Internationales Forschungsseminar Algebraische Geometrie	70
Kolloquium der Mathematik	71
Impressum	7 4

Liebe Studierende der Mathematik,

das kommentierte Vorlesungsverzeichnis gibt über das Lehrangebot des Mathematischen Instituts im aktuellen Semester Auskunft. Welche Vorlesungen, Seminare und Übungen Sie belegen können und müssen sowie Informationen zum Studienverlauf entnehmen Sie am besten den Modulhandbüchern der einzelnen Studiengänge, die Sie auf den Internet-Seiten unter http://www.math.uni-freiburg.de/lehre/studiengaenge/ finden. Dort enthalten Sie auch Informationen über die Schwerpunktgebiete in Mathematik. Bitte beachten Sie, dass die Anforderungen in den einzelnen Studiengängen unterschiedlich sein können, in Abhängigkeit von der bei Studienbeginn gültigen Prüfungsordnung.

Zahlreiche Informationen zu Prüfungen und insbesondere zur Prüfungsanmeldung finden Sie auf den Internetseiten des Prüfungsamts. Einige Hinweise für Studieneinsteiger, zur Organisation des Studiums sowie zur Orientierungsprüfung folgen auf den nächsten Seiten.

Hinweise für Studienanfänger

An unserem Mathematischen Institut können Sie Mathematik mit folgenden Zielen studieren:

- Mathematik-bezogene Ausbildung für Beschäftigungen in Banken, Industrie, ... oder Forschung: In diesem Fall beginnen Sie Ihr Studium am besten mit dem Bachelor-of-Science-Studiengang Mathematik (im Folgenden auch BSc Mathematik oder 1-Fach-Bachelor-Studiengang Mathematik). Nach einer Regelstudienzeit von sechs Semestern können Sie den Master of Science Mathematik (auch MSc Mathematik) anschließen.
- Ausbildung zum Lehramt an Gymnasien: Ab WS 2015/16 lösen Bachelor- und Master-Studiengänge die bisher angebotenen Staatsexamens-Studiengänge (Lehramts-Studiengang nach GymPO) ab. Für Sie bedeutet dies, dass Sie Ihr Studium mit dem Polyvalenten 2-Fächer-Studiengang mit Lehramtsoption (im Folgenden auch 2-Hauptfächer-Bachelor-Studiengang) beginnen. Neben der Mathematik wählen Sie ein zweites Fach, und belegen innerhalb des Studiums im Wahlbereich Module in Bildungswissenschaften und Fachdidaktik. Nach einer Regelstudienzeit von sechs Semestern studieren Sie weiter im Studiengang Master of Education, der spätestens zum WS 2018/19 eingeführt werden wird.
- Sie können bei Interesse an einer bestimmten Fächerkombination auch den *Polyvalenten 2-Fächer-Studiengang* ohne Lehramtsoption studieren. Falls sich im Laufe des Studiums ein stärkeres Interesse an Mathematik und der Wunsch einer auf dem Mathematikstudium aufbauenden Beschäftigung ergeben, sollten Sie einen Wechsel in den 1-Fach-Bachelor-Studiengang in Betracht ziehen.

Allgemeine Hinweise zur Planung des Studiums

Spätestens ab Beginn des 3. Semesters sollten Sie die Studienberatungsangebote des Mathematischen Instituts in Anspruch nehmen (allgemeine Studienberatung des Studiengangkoordinators, Studienfachberatung der einzelnen Abteilungen, Mentorenprogramm). Im Rahmen des Mentorenprogramms der Fakultät wird Ihnen in der Regel am Ende Ihres 3. Semester ein Dozent oder eine Dozentin als Mentor zugewiesen, der oder die Sie zu Beratungsgesprächen einladen wird. Die Teilnahme an diesem Programm wird nachdrücklich empfohlen.

Zur sinnvollen Planung Ihres Studiums beachten Sie bitte folgende allgemeine Hinweise:

- Mittlere oder höhere Vorlesungen: Inwieweit der Stoff mittlerer oder höherer Vorlesungen für Diplom- oder Staatsexamensprüfungen oder mündliche Prüfungen im Masterstudiengang ausreicht bzw. ergänzt werden sollte, geht entweder aus den Kommentaren hervor oder muss rechtzeitig mit den Prüfern abgesprochen werden. Eine Liste der Arbeitsgebiete der Professorinnen und Professoren finden Sie vor dem Sprechstundenverzeichnis.
- Seminare: Die Teilnahme an Seminaren setzt in der Regel den vorherigen Besuch einer oder mehrerer weiterführender Vorlesungen voraus. Die Auswahl dieser Vorlesungen sollte rechtzeitig erfolgen. Eine Beratung durch Dozenten oder Studienberater der Mathematik erleichtert Ihnen die Auswahl.

Unabhängig hiervon sollten Sie folgende Planungsschritte beachten:

• 1-Fach-Bachelor:

Spätestens am Ende des ersten Studienjahrs: Wahl des Anwendungsfaches Ende des 3. Semesters: Planung des weiteres Studienverlaufs Beginn des 5. Semesters: Wahl geeigneter Veranstaltungen zur Vorbereitung der Bachelor-Arbeit

• Lehramts-Studiengang nach GymPO (Studienbeginn bis SS 2015):

Nehmen Sie rechtzeitig Kontakt mit den Prüfern auf, um die Prüfungsgebiete im Staatsexamen abzusprechen. Durch die Wahl der Veranstaltung(en) im Modul "Mathematische Vertiefung" können Sie die Auswahl für die Prüfungsgebiete erhöhen. Falls Sie die Wissenschaftliche Arbeit in Mathematik schreiben möchten, empfiehlt es sich, die Wahl der Veranstaltungen (weiterführende Vorlesung, Seminar) mit dem Betreuer/der Betreuerin der Arbeit abzusprechen.

• 2-Hauptfächer-Bachelor-Studiengang:

Für den Einstieg ins gymnasiale Lehramt ist die Belegung der Lehramtsoption im Wahlbereich erforderlich. Diese besteht aus einem Fachdidaktikmodul in jedem Fach und zwei Bildungswissenschaftlichen Modulen.

Das Fachdidaktik-Modul wird von der Abteilung Didaktik der Mathematik im dritten Studienjahr angeboten. Die Bildungswissenschaftlichen Module sind "Einführung in die Bildungswissenschaften", Mo 14–16 Uhr, (ab erstem Semester möglich), und das Orientierungspraktikum mit Vor- und Nachbereitung.

IHR STUDIENDEKAN MATHEMATIK

WS 2015/16

An die Studierenden des 1. und 2. Semesters

Alle Studierenden der Mathematik (außer im Erweiterungsfach Mathematik im Lehramtsstudiengang) müssen eine Orientierungsprüfung in Mathematik ablegen oder als Ersatz für eine Orientierungsprüfung gewisse Studienleistungen bis zu einem gewissen Zeitpunkt erbracht haben. Für die genaue Regelung konsultieren Sie bitte die jeweils gültige Prüfungsordnung.

Im Wesentlichen gilt:

Im 1-Fach-Bachelor-Studiengang:

Die Klausuren zu Analysis I und Lineare Algebra I müssen bis zum Ende des zweiten Fachsemesters bestanden sein.

Im 2-Hauptfächer-Bachelor-Studiengang:

Eine der beiden Klausuren zu Analysis I und Lineare Algebra I muss bis zum Ende des zweiten Fachsemesters bestanden sein.

Im Lehramtsstudiengang nach GymPO (Studienbeginn ab WS 2010/2011 und bis SS 2015):

Die Modulteilprüfung Analysis I oder die Modulteilprüfung Lineare Algebra I muss bis zum Ende des zweiten Fachsemesters bestanden sein.

Diese Regelung entfällt im Erweiterungsfach.

Weitere Informationen finden Sie auf den Webseiten des Prüfungsamts Mathematik (http://home.mathematik.uni-freiburg.de/pruefungsamt/) beziehungsweise am Aushang vor dem Prüfungsamt (Eckerstr. 1, 2. OG, Zi. 239/240).

Kategorisierung von Vorlesungen

Verwendbarkeit im Master-Studiengang

Für den Master-Studiengang (und in der Folge auch für den 1-Fach-Bachelor-Studiengang) ist die folgende Einteilung der Veranstaltungen zu beachten:

Kategorie I: kann im Master-Studiengang nicht verwendet werden. Dazu gehören:

Lineare Algebra I–II; Analysis I–III; Elementargeometrie; Mehrfachintegrale; Numerik; Praktische Übung zu Numerik; Stochastik; Praktische Übung zu Stochastik; Proseminare

Kategorie II: kann im Master-Studiengang nur eingeschränkt verwendet werden: Vorlesungen der Kategorie II können in den Modulen "Reine Mathematik", "Angewandte Mathematik" und im Wahlmodul verwendet werden, nicht aber im Modul "Mathematik" und im Vertiefungsmodul. Zur Kategorie II gehören:

Algebra und Zahlentheorie; elementare Differentialgeometrie; Funktionalanalysis; Funktionentheorie; Numerik für Differentialgleichungen; Topologie; Wahrscheinlichkeitstheorie

Kategorie III: kann ohne Einschränkung im Master-Studiengang in den Modulen "Reine Mathematik", "Angewandte Mathematik", "Mathematik" und im Wahlmodul verwendet werden. Die Zusammensetzung des Vertiefungsmoduls erfolgt in Absprache mit dem Prüfer/der Prüferin. Zur Kategorie III gehören im Wintersemester 2015/16 alle weiteren Vorlesungen.

Einteilung in Angewandte und Reine Mathematik

Unter den für das Wintersemester 2015/16 angebotenen Wahlvorlesungen zählen zu

Reine Mathematik:

Algebra und Zahlentheorie; Bochner-Räume; Differentialgeometrie I; Mengenlehre I; Modelltheorie I; Shimura varieties; Variationsrechnung

Angewandte Mathematik:

Bochner-Räume; Computational Finance; Credit Risk; Einführung in Theorie und Numerik partieller Differentialgleichungen; Mathematische Statistik; Numerical Optimization; Stochastische Prozesse; Theorie und Numerik für hyperbolische Erhaltungsgleichungen; Theorie und Numerik partieller Differentialgleichungen; Wahrscheinlichkeitstheorie

Im 1-Fach-Bachelor-Studiengang muss eine der weiterführenden Vorlesungen aus dem Bereich der Reinen Mathematik stammen; im Master-Studiengang ergibt sich aus der Zuteilung die Möglichkeit, die Vorlesungen in den Modulen "Reine Mathematik" und "Angewandte Mathematik" (unter Beachtung der obenstehenden Kategorisierung) zu verwenden.

Arbeitsgebiete für Abschlussarbeiten

Die folgende Liste soll einen Überblick geben, aus welchen Gebieten die Professorinnen und Professoren des Mathematischen Instituts zur Zeit Themen für Examensarbeiten vergeben. Die Angaben sind allerdings sehr global; für genauere Informationen werden persönliche Gespräche empfohlen.

Prof. Dr. V. Bangert: Differentialgeometrie und dynamische Systeme

Prof. Dr. S. Bartels: Angewandte Mathematik, Partielle Differentialgleichungen und Numerik

Prof. Dr. S. Goette: Differentialgeometrie, Topologie und globale Analysis

Prof. Dr. A. Huber-Klawitter: Algebraische Geometrie und Zahlentheorie

Prof. Dr. S. Kebekus: Algebra, Funktionentheorie, Komplexe und Algebraische Geometrie

Prof. Dr. D. Kröner: Angewandte Mathematik, Partielle Differentialgleichungen und Numerik

Prof. Dr. E. Kuwert: Partielle Differentialgleichungen, Variationsrechnung

Prof. Dr. E. Lütkebohmert-Holtz: Finanzmathematik, Risikomanagement und Regulierung

Prof. Dr. H. Mildenberger: Mathematische Logik, darin insbesondere: Mengenlehre und unendliche Kombinatorik

Prof. Dr. P. Pfaffelhuber: Stochastik, Biomathematik

Prof. Dr. L. Rüschendorf: Wahrscheinlichkeitstheorie, Mathematische Statistik und Finanzmathematik

Prof. Dr. M. Růžička: Angewandte Mathematik und Partielle Differentialgleichungen

Prof. Dr. T. Schmidt: Finanzmathematik

Prof. Dr. M. Schumacher: Medizinische Biometrie und Angewandte Statistik

Prof. Dr. W. Soergel: Algebra und Darstellungstheorie

Prof. Dr. G. Wang: Partielle Differentialgleichungen, Variationsrechnung

Prof. Dr. K. Wendland: Funktionentheorie, Komplexe Geometrie und Analysis, Mathematische Physik

Prof. Dr. M. Ziegler: Mathematische Logik, Modelltheorie

Nähere Beschreibungen der Arbeitsgebiete finden Sie auf der Internet-Seite http://www.math.uni-freiburg.de/personen/dozenten.html

Mathematik – Sprechstunden (Stand: 27. Oktober 2015)

Abteilungen: AM-Angewandte Mathematik, D-Dekanat, Di-Didaktik, ML-Mathematische Logik, PA-Prüfungsamt, RM-Reine Mathematik, MSt-Mathematische Stochastik

Adressen: E $1-{\rm Eckerstr.}$ 1, HH $10-{\rm Hermann-Herder-Str.}$ 10

Name	Abt.	Raum/Str.	Tel.	Sprechstunde
Ansari, DiplMath. Jonathan	MSt	228/E1	2666	Mo 12:00–14:00, Mi 10:00–12:00
Bangert, Prof. Dr. Victor	$_{ m RM}$	335/E1	5562	Di 14:00–15:00 und n.V.
Bartels, Prof. Dr. Sören	AM	209/HH10	5628	lt. Bekanntgabe auf der eigenen Homepage
Bäumle, DiplMath. Erik	AM	148/E1	5588	n.V.
Bäurer, DiplMath. Patrick	MSt	223/E1	2670	Fr 8:00–12:00
Caycedo, Dr. Juan Diego	ML	304/E1	2609	Di 10:00–11:00 und n.V.
				Studienfachberatung Mathematische Logik
Daube, DiplMath. Johannes	AM	212/HH10	5639	s. http://aam.uni-freiburg.de/abtlg/wissmit/agkr/daube
Depperschmidt, Dr. Andrej	MSt	248/E1	5673	Do 12:00–13:00 und n.V.
				Studienfachberatung Stochastik
Dziuk, Prof. Dr. Gerhard	$_{ m AM}$	/HH10		Kontakt über Sekretariat: Frau Ruf Tel. 203-5629
Eberlein, DiplMath. Hannes	$_{ m AM}$	144/E1	5679	Do 14:00–17:00
Eberlein, Prof. Dr. Ernst	MSt	229/E1	2660	n.V.
Eckstein, DiplMath. Sarah	$_{ m AM}$	149/E1	5583	n.V.
Gerhards, DiplMath. M. A. Maximilian MSt	MSt	231/E1	2666	Di 16:00–18:00, Mi 14:00–16:00
Gersbacher, DiplMath. Christoph	$\overline{\mathrm{AM}}$	222/HH10	5645	Do 11:00–12:00 und n.V.
				Studienfachberatung Angewandte Mathematik
Goette, Prof. Dr. Sebastian	RM	340/E1	5571	Mi 13:15–14:00 und n.V.
				(Sprechstunde in Prüfungsangelegenheiten bitte nur Mi 10:30–12:00 im Prüfungsamt Raum 240)

Name	Abt.	Raum/Str.	Tel.	Sprechstunde
Hein, Dr. Doris	$_{ m RM}$	323/E1	5573	Do 10:00–12:00
Hermann, DiplMath. Felix	MSt	244/E1	5674	Di 10:00–12:00, Mi 10:00–12:00
Huber-Klawitter, Prof. Dr. Annette	RM	434/E1	5560	Di 10:30–11:30
Junker, PD Dr. Markus	D	423/E1	5537	Di 14:00–15:00 und n.V.
				Allgemeine Studienberatung und Prüfungsberatung
				Studiengangkoordinator, Assistent des Studiende-
				kans
Junker, PD Dr. Markus	ML	423/E1	5537	Di 14:00–15:00
Kebekus, Prof. Dr. Stefan	$_{ m RM}$	432/E1	5536	n.V.
Ketterer, Dr. Christian	$_{ m RM}$	214/E1	5582	Di 14:00–16:00 und Do 10:00–12:00
Khosrawi-Sardroudi, MSc Wahid	MSt	224/E1	5671	Mi 16:00–18:00, Do 10:00–12:00
Knies, Dr. Susanne	D	150/E1	5590	n.V.
Korsch, DiplMath. Andrea	$_{ m AM}$	228/HH10	5635	Di 10:30–11:30
Kramer, Martin	Di	131/E1	5616	n.V.
Kröner, Prof. Dr. Dietmar	$_{ m AM}$	215/HH10	5637	Mi 11:00–12:00
				Dekan
Kuwert, Prof. Dr. Ernst	$_{ m RM}$	208/E1	5585	Mi 11:15–12:15
Köpfer, DiplMath. Benedikt	MSt	227/E1	2677	Mo 14:00–16:00, Mi 14:00–16:00
Lerche, Prof. Dr. Hans Rudolf	MSt	229/E1	5662	Di 11:00–12:00 (n.V.)
Malkmus, Tobias	$_{ m AM}$	210/HH10	5627	Di 10:00–11:00 und n. V.
Mattuschka, DiplMath. Marco	$_{ m RM}$	205/E1	5600	Mo 10:00–12:00, Mi 10:00–12:00
Mildenberger, Prof. Dr. Heike	ML	310/E1	5603	Di 13:00–14:00 und n.V.
				Gleichstellungsbeauftragte
Milicevic, M.Sc. Marijo	AM	211/HH10	5654	Di 14:00–15:00 u.n.V.
Nolte, Dr. Martin	$_{ m AM}$	204/HH10	5630	Di 10:00–11:00 und n. V.

Name	Abt.	Raum/Str.	Tel.	Sprechstunde
Nägele, DiplMath. Philipp	$\overline{\mathrm{AM}}$	147/E1	5682	Mi 09:00–12:00 und n.V.
Papathanassopoulos, DiplMath. Alexis	$\overline{\mathrm{AM}}$	208/HH10	5643	Di 11:00–12:00
Pfaffelhuber, Prof. Dr. Peter	MSt	233/E1	2999	Fr 16:00–17:00; vorlesungsfreie Zeit: n.V.
				Studiendekan
Prüfungssekretariat	PA	239/240/E1	5576/5574	Mi 10:00–11:30 und n.V.
Prüfungsvorsitz (Prof. Dr. S. Goette)	PA	$240/\mathrm{E}1$	5574	Mi 10:30–12:00
				ausschließlich in Prüfungsangelegenheiten und nur im Prüfungsamt Raum 240
Rudmann, DiplMath. Marcus	MSt	244/E1	5674	Mi 10:00–12:00, 14:00–16:00
Rüschendorf, Prof. Dr. Ludger	MSt	242/E1	2999	Di 11:00–12:00
Růžička, Prof. Dr. Michael	$\overline{\mathrm{AM}}$	145/E1	5680	Mi 13:00–14:00 und n.V.
Scheidegger, PD Dr. Emanuel	RM	329/E1	5578	Mi 16:00–19:00 und n.V.
Schmidt, Prof. Dr. Thorsten	MSt	247/E1	2668	n.V.
Schmidtke, DiplMath. Maximilian	RM	333a/E1	5553	Mo 09:00–11:00 und Di 14:00–16:00 und n.V.
Schreier, DiplMath. Patrick	$_{ m AM}$	207/HH10	5647	Mi 13:00–15:00
Soergel, Prof. Dr. Wolfgang	RM	429/E1	5540	Do 11:30–12:30 und n.V.
Szemberg, Prof. Dr. Thomas	RM	408/E1	5589	Mo $10:00-12:00$
Wang, Prof. Dr. Guofang	RM	$209/\mathrm{E}1$	5584	Mi 11:30–12:30
Weisshaupt, PD Dr. Heinz	MSt	$110/\mathrm{E}1$	2022	n.V.
Wendland, Prof. Dr. Katrin	RM	$337/\mathrm{E}1$	5563	Di 12:30–13:30
Wittmann, DiplMath. Anja	RM	$325/\mathrm{E}1$	5549	Do 09:00–12:00
Ziegler, Prof. Dr. Martin	ML	$313/\mathrm{E}1$	5610	nach vorheriger Vereinbarung unter Tel. 5602
				Auslandsbeauftragter

Informationen zum Vorlesungsangebot in Straßburg im akademischen Jahr 2015/2016

In **Straßburg** gibt es ein großes Institut für Mathematik. Es ist untergliedert in eine Reihe von Équipes, siehe:

http://www-irma.u-strasbg.fr/rubrique127.html

Seminare und Arbeitsgruppen (groupes de travail) werden dort angekündigt. Grundsätzlich stehen alle dortigen Veranstaltungen im Rahmen von **EUCOR** allen Freiburger Studierenden offen. Credit Points können angerechnet werden. Insbesondere eine Beteiligung an den Angeboten des M2 (zweites Jahr Master, also fünftes Studienjahr) ist hochwillkommen. Je nach Vorkenntnissen sind sie für Studierende ab dem 3. Studienjahr geeignet.

Programme Master 2. Mathématique fondamentale. Année 2015/2016

http://www-irma.u-strasbg.fr/article1489.html

Premier trimestre.

- 1. Systèmes hyperboliques. (Hyperbolische Systeme), Philippe Helluy et B. Rao
- 2. Théorie et approximation des EDP paraboliques. (Theorie und Numerik von parabolischen partiellen Differentialgleichungen), Z. Belhachmi et C. Murea (Université de Haute Alsace)

Deuxième trimestre.

- 1. Réduction des modèles. (Modellreduktion), C. Prudhomme et S. Hirstoaga
- 2. Multidisciplinary approaches in the study of biological fluids and tissues: mathematical modeling and clinical experience. (Vorlesung auf Englisch), G. Guidoboni (Indiana University-Purdue University Indianapolis)
- 3. Contrôle de l'équation des ondes. (Kontrolltheorie für Wellengleichungen), N. Anantharaman

Termine: Die erste Vorlesungsperiode ist Ende September bis Mitte Dezember, die zweite Januar bis April. Eine genauere Terminplanung wird es erst im September geben. Die Stundenpläne sind flexibel. In der Regel kann auf die Bedürfnisse der Freiburger eingegangen werden. Einzelheiten sind durch Kontaktaufnahme vor Veranstaltungsbeginn zu erfragen.

Raum: Salle C32 des Gebäudes von Mathematik und Informatik

Fahrtkosten können im Rahmen von EUCOR bezuschusst werden. Am schnellsten geht es mit dem Auto, eine gute Stunde. Für weitere Informationen und organisatorische Hilfen stehe ich gerne zur Verfügung.

Ansprechpartner in Freiburg: Prof. Dr. Annette Huber-Klawitter

annette.huber@math.uni-freiburg.de

Ansprechpartner in Straßburg: Prof. Carlo Gasbarri, Koordinator des M2

gasbarri@math.u-strasbg.fr

oder die jeweils auf den Webseiten genannten Kursverantwortlichen.

1. Vorlesungen

Vorlesung: Stochastik (1. Teil der zweisemestrigen Veranstaltung)

Dozent: Prof. Dr. T. Schmidt

Zeit/Ort: Di 14–16 Uhr, HS Rundbau, Alberstr. 21

Übungen: 2-std. (14-tägl.) n.V.

Tutorium: W. Khosrawi

Web-Seite: http://www.stochastik.uni-freiburg.de/Vorlesungen

Inhalt:

Die Vorlesung führt in die stochastische Denkweise ein und erläutert Begriffe, Techniken und Resultate der Wahrscheinlichkeitstheorie. Grundlegend sind hierbei diskrete und stetige Wahrscheinlichkeitsverteilungen sowie Zufallsvariablen. Zunächst starten wir mit einer präzisen Definition von Wahrscheinlichkeiten, Zufallsvariablen, Dichten und lernen die zugehörigen Techniken kennen. Danach werden zentrale Resultate wie das Gesetz der großen Zahlen und der zentralen Grenzwertsatz eingeführt. Schließlich wird eine kurze Einführung in die parametrische statistische Testtheorie Maximum-Likelihood-Schätzer und Hypothesentests behandeln.

Die Vorlesung wird im SS 2016 durch eine weitere 2-stündige Vorlesung fortgesetzt, dann wird es auch $Praktische \ddot{U}bungen zur Stochastik$ geben.

Der Stoff der Vorlesung kann als Prüfungsstoff für Staatsexamensprüfungen herangezogen werden.

Literatur:

- 1.) Krengel, U.: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Vieweg, 1988
- 2.) Georgii, H. O.: Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. de Gruyter, 2002
- 3.) Czado, C. und T. Schmidt: Mathematische Statistik. Springer, 2011. (Nur für den statistischen Teil)

Typisches Semester: ab 3. Semester

ECTS-Punkte: (für Teile 1 und 2 der Vorlesung zusammen) 9 Punkte

Notwendige Vorkenntnisse: Analysis I

Prüfungsleistung: Klausur nach dem 2. Teil

Folgeveranstaltungen: Stochastik (2. Teil der Vorlesung); Praktische Übungen zur

Stochastik

Sprechstunde Dozent: n.V., Zi. 247, Eckerstr. 1

Sprechstunde Assistent: Mi 16–18 Uhr, Do 10–12 Uhr, Zi. 224, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2015/16

Vorlesung: Numerik (1. Teil der zweisemestrigen Veranstaltung)

Dozent: Prof. Dr. S. Bartels

Zeit/Ort: Mi, 14–16 Uhr, HS Weismann-Haus, Albertstr. 21 a

Übungen: 2-std. (14-tägl.) n.V.

Tutorium: Dipl.-Math. A. Papathanassopoulos

Web-Seite: http://aam.uni-freiburg.de/bartels

Inhalt:

Die Numerik ist eine Teildisziplin der Mathematik, die sich mit der praktischen Lösung mathematischer Aufgaben beschäftigt. Dabei werden Probleme in der Regel nicht exakt sondern approximativ gelöst. Typische Beispiele sind die Bestimmung von Nullstellen einer Funktion oder die Lösung linearer Gleichungssysteme. In der Vorlesung werden einige grundlegende numerische Algorithmen vorgestellt und im Hinblick auf Rechenaufwand sowie Genauigkeit untersucht. Die Vorlesung ist der erste Teil eines zweisemestrigen Kurses. Der Besuch der begleitenden praktischen Übungen wird empfohlen. Diese finden 14-täglich im Wechsel mit der Übung zur Vorlesung statt.

Literatur:

- 1.) R. Plato: Numerische Mathematik kompakt. Vieweg, 2006.
- 2.) R. Schaback, H. Wendland: Numerische Mathematik. Springer, 2004.
- 3.) J. Stoer, R. Burlisch: Numerische Mathematik I, II. Springer, 2007, 2005.
- 4.) G. Hämmerlin, K.-H. Hoffmann: Numerische Mathematik. Springer, 1990.
- 5.) P. Deuflhard, A. Hohmann, F. Bornemann: Numerische Mathematik I, II. DeGruyter, 2003.

Typisches Semester: 3. Semester

ECTS-Punkte: (für Teile 1 und 2 der Vorlesung zusammen) 9 Punkte Notwendige Vorkenntnisse: Grundvorlesungen Lineare Algebra und Analysis Folgeveranstaltungen: Numerik (2. Teil im Sommersemester 2016)

Studienleistung: Aktive Teilnahme an den Übungen

Prüfungsleistung: Klausur nach dem 2. Teil

Sprechstunde Dozent: Mi 12–13 Uhr, Zi. 209, Hermann-Herder-Str. 10 und n.V. Sprechstunde Assistent: Mi 11–12 Uhr, Zi. 208, Hermann-Herder-Str. 10 und n.V.

Abteilung für Reine Mathematik

WS 2015/16

Vorlesung: Algebra und Zahlentheorie

Dozent: Prof. Dr. Stefan Kebekus

Zeit/Ort: Mi, Fr 8–10 Uhr, HS II, Albertstr. 23 b

Übungen: 2-std. n.V.

Tutorium: Dr. Behrouz Taji

Web-Seite: http://home.mathematik.uni-freiburg.de/kebekus/teaching

Inhalt:

In der linearen Algebra ging es um das Lösen von linearen Gleichungssystemen. Gegenstand der Vorlesung "Algebra und Zahlentheorie" ist das Lösen von Polynomgleichungen in einer Variablen. Aus der Schule bekannt ist der Fall quadratischer Gleichungen und deren Lösungsformel. Eines unserer Hauptresultate wird es sein, dass sich diese Lösungsformel nicht verallgemeinern lässt. Verwandt ist die Frage nach der Konstruierbarkeit von geometrischen Figuren mit Zirkel und Lineal.

Unser wesentliches Hilfsmittel ist die Theorie der algebraischen Körpererweiterungen mit dem Hauptsatz der Galoistheorie als Höhepunkt. Auf dem Weg werden wir auch andere algebraische Strukturen wie Gruppen und Ringe studieren. Von besonderem Interesse ist der Fall von Gleichungen über den rationalen oder gar ganzen Zahlen. Dies ist Gegenstand der Zahlentheorie.

Literatur:

- 1.) Michael Artin: Algebra
- 2.) Siegfried Bosch, Algebra
- 3.) Serge Lang, Algebra

Typisches Semester: ab dem 3. Semester

ECTS-Punkte: 9 Punkte

Studienleistung: Lösen von Übungsaufgaben und Teilnahme an den Übungen

Prüfungsleistung: Klausur

Sprechstunde Dozent: Mi 13–14 Uhr, Zi. 432, Eckerstr. 1

Sprechstunde Assistent: Fr 14–16 Uhr und n.V., Zi. 425, Eckerstr. 1

Vorlesung: Mehrfachintegrale

Dozent: Prof. Dr. Sebastian Goette

Zeit/Ort: Fr 10–13 Uhr, HS Weismann-Haus, Albertstr. 21 a

Beginn: Fr 8. 1. 2016

Übungen: 2-std. n.V.

Tutorium: Dr. Anda Degeratu

Web-Seite: http://home.mathematik.uni-freiburg.de/goette/

Inhalt:

Das mehrdimensionale Riemann-Integral ist eine direkte Verallgemeinerung des Riemann-Integrals aus der Analysis-Vorlesung. Es erlaubt, stetige Funktionen über geeignete "einfache" kompakte Gebiete im \mathbb{R}^n zu integrieren. Wir beweisen in diesem Kontext den Satz von Fubini und die Transformationsformel, mit deren Hilfe sich diese Integrale oft auf mehrere eindimensionale Integrale zurückführen lassen. Außerdem führen wir Oberflächenintegrale ein und lernen elementare Formen der Integralsätze von Stokes und Gauß kennen.

Literatur:

1.) W. Walter, Analysis 2, 5. erw. Aufl., Springer, Berlin, 2002

Typisches Semester: 5. Semester (nach Ende des Praxissemesters)

ECTS-Punkte: 2 Punkte

Notwendige Vorkenntnisse: Analysis I, II, Lineare Algebra I

Studienleistung: Regelmäßige Teilnahme an den Übungsgruppen, 50 % der

Übungspunkte, einmaliges Vorrechnen einer Übungsaufgabe

Sprechstunde Dozent: n.V., Raum 340, Eckerstr. 1 Sprechstunde Assistentin: n.V., Raum 328, Eckerstr. 1

Kommentar: Diese Veranstaltung richtet sich ausschließlich an Studierende

des Lehramts

Abteilung für Reine Mathematik

WS 2015/16

Vorlesung: Analysis III

Dozent: Prof. Dr. W. Soergel

Zeit/Ort: Di, Do 10–12 Uhr, HS Weismann-Haus, Albertstr. 21 a

Übungen: 2-std. n. V.

Tutorium: A. Sartori

Web-Seite: http://home.mathematik.uni-freiburg.de/asartori/lehre/

ws15anaIII/index.html

Inhalt:

Grundlagen der Maßtheorie: Maße, Fortsetzungssatz, Lebesgue-Integral, Konvergenzsätze, Fubini; Integration im \mathbb{R}^n : Lebesgue-Maß, Transformationssatz, Untermannigaltigkeiten und Oberflächenintegrale, Satz von Gauß, Satz von Stokes, Fouriertransformation.

Literatur:

- 1.) H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. 3. Auflage, de Gruyter, 1978
- 2.) J. Elstrodt, Maß- und Integrationstheorie, Springer, 2007
- 3.) H. Amann, J. Escher, Analysis III, Birkhäuser, 2001
- 4.) W.H. Fleming, Functions of several variables, Springer, 1977
- 5.) H.W. Alt, Lineare Funktionalanalysis, Springer, 2002. Hierin die Kapitel über die Lebesgue-Räume.
- 6.) W. Soergel, Analysis 3, http://home.mathematik.uni-freiburg.de/soergel/#Skripten

Typisches Semester: 3. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis I, Analysis II, Lineare Algebra I Sprechstunde Dozent: Do 11:30–12:30 Uhr, Zi. 429, Eckerstr. 1

Wahrscheinlichkeitstheorie Vorlesung:

Dozent: Prof. Dr. Ludger Rüschendorf

Zeit/Ort: Di, Do 14–16 Uhr, HS Weismann-Haus, Albertstr. 21 a

Übungen: 2-std. n. V.

Tutorium: N.N.

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Die Aufgabe der Wahrscheinlichkeitstheorie ist es, zufallsabhängige Vorgänge mathematisch zu beschreiben. Die Vorlesung ist eine systematische Einführung dieses Gebietes auf maßtheoretischer Grundlage.

Ziel der Vorlesung ist es, Methoden der stochastischen Modellbildung und Analyse zu entwickeln und einige der klassischen Grenzwertsätze herzuleiten. Vorkenntnisse aus der Vorlesung Analysis III sind hilfreich, jedoch nicht Voraussetzung.

Literatur:

- 1.) Klenke, A.: Wahrscheinlichkeitstheorie, Springer 2008
- 2.) Kallenberg, O.: Foundations of Modern Probability, Springer 2002
- 3.) Williams, D.: Probability with Martingales, Cambridge University Textbooks, 1991
- 4.) Hesse, Ch.: Angewandte Wahrscheinlichkeitstheorie, Vieweg, Januar 2003

ab 5. Semester Typisches Semester: 9 Punkte ECTS-Punkte: Notwendige Vorkenntnisse: Stochastik Nützliche Vorkenntnisse:

Folgeveranstaltungen: Stochastische Prozesse; Mathematische Statistik

Analysis III

Sprechstunde Dozent: Di 11-12 Uhr, Zi. 242, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2015/16

Vorlesung: Einführung in Theorie und Numerik partieller

Differentialgleichungen

Dozent: Prof. Dr. M. Růžička

Zeit/Ort: Mo, Mi 10–12 Uhr, HS Weismann-Haus, Albertstr. 21a

Übungen: 2-std. n.V.

Tutorium: S. Eckstein

Inhalt:

Diese Vorlesung ist die erste eines Kurses von aufeinander aufbauenden Vorlesungen zur Theorie und Numerik partieller Differentialgleichungen.

Partielle Differentialgleichungen treten oft als Modelle für physikalische Vorgänge auf, z.B. bei der Bestimmung einer Temperaturverteilung, bei der Beschreibung von Schwingungen von Membranen oder Strömungen von Flüssigkeiten.

In dieser Vorlesung werden wir uns mit elliptischen Differentialgleichungen beschäftigen. Es wird sowohl die klassische Existenztheorie, als auch die moderne Theorie zur Lösbarkeit solcher Gleichungen behandelt. Selbst wenn man für einfache Probleme explizite Lösungsformeln hat, können diese nur selten auch konkret berechnet werden. Deshalb ist es wichtig numerisch approximative Lösungen zu berechnen und nachzuweisen, dass diese in geeigneter Weise gegen die exakte Lösung konvergieren. Dazu wird in der Vorlesung die entsprechende Theorie Finiter Elemente dargestellt.

Parallel zu der Vorlesung wird eine Praktische Übung (siehe Kommentar zur Praktischen Übung) angeboten.

Literatur:

- 1.) Evans, Partial Differential equations, AMS (1998).
- 2.) Braess, Finite Elemente, Springer (1992).
- 3.) Dziuk, Theorie und Numerik partieller Differentialgleichungen, De Gruyter (2010).

Typisches Semester: 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis und Lineare Algebra

Nützliche Vorkenntnisse: Partielle Differentialgleichungen oder Funktionalanalysis
Folgeveranstaltungen: Nichtlineare Funktionalanalysis, Theorie und Numerik partiel-

ler Differentialgleichungen

Sprechstunde Dozent: Mi 13–15 Uhr, Zi. 145, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2015/16

Vorlesung: Mengenlehre

Dozentin: Heike Mildenberger

Zeit/Ort: Mo, Mi 10–12 Uhr, Hörsaal II, Albertstr. 23 b

Übungen: 2-std. n.V.

Tutorium: N. N.

Web-Seite: http://home.mathematik.uni-freiburg.de/mildenberger/

veranstaltungen/ws15/mengenlehre.html

Inhalt:

Wir beginnen mit der Vorstellung der Axiome der Mathematik. Sie prägen unsere Auffassung von den möglichen definierbaren oder vielleicht weniger konstruktiv gegebenen mathematischen Objekten. Allerdings zeichnen sie kein vollständiges Bild eines einzigen mathematischen Universums. Die Liste der herleitbaren mathematischen Aussagen ist unvollständig: Für manche φ ist weder φ noch sein Negat aus den Zermelo-Fraenkel'schen Axiomen ZFC beweisbar. Man sagt " φ ist unabhängig von ZFC".

Die Vorlesung führt in die Technik der Unabhängigkeitsbeweise ein. Wir stellen Gödels inneres Model L und die ersten Schritte des Forcing vor.

Die bekannteste von ZFC unabhängige Aussage ist die Kontinuumshypothese, die sagt, dass es genau \aleph_1 reelle Zahlen gibt.

Literatur:

- 1.) H.-D. Ebbinghaus, Einführung in die Mengenlehre. 4. Auflage, 2003.
- 2.) L. Halbeisen, Combinatorial Set Theory. With a Gentle Introduction to Forcing, 2012
- 3.) Thomas Jech, Set Theory. The Third Millenium Edition, 2001.
- 4.) Kenneth Kunen, Set Theory, An Introduction to Independence Proofs. 1980.
- 5.) Kenneth Kunen, Set Theory. Second Edition, 2013.

Typisches Semester: ab dem dritten Semester

ECTS-Punkte: 9 Punkte

Nützliche Vorkenntnisse: Mathematische Logik

Folgeveranstaltungen: Seminar über iteriertes Forcing

Studienleistung: Erfolgreiche Teilnahme an den Übungen

Prüfungsleistung: Klausur oder mündliche Prüfung Sprechstunde Dozent: Di 13–14 Uhr, Zi. 310, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2015/16

Vorlesung: Modelltheorie

Dozent: Markus Junker

Zeit/Ort: Mo, Do 8–10 Uhr, HS II, Albertstr. 23 b

Übungen: 2-std. n.V.

Tutorium: N. N.

Web-Seite: http://home.mathematik.uni-freiburg.de/junker/ws15/

modell.html

Inhalt:

Die Modelltheorie untersucht den Zusammenhang zwischen mathematischer Syntax und Semantik, d. h. zwischen der Art, wie mathematische (hier vor allem: algebraische) Eigenschaften in formaler Sprache ausgedrückt werden, und dem Verhalten ihrer Modelle.

Ein offensichtliches Beispiel eines solchen Zusammenhangs liefert die Beobachtung, dass universelle (d. h. durch Allquantoren ausdrückbare) Eigenschaften von Strukturen auf ihre Unterstrukturen übergehen. Es gilt aber auch die Umkehrung: Unter Unterstrukturen abgeschlossene Modellklassen sind durch universelle Eigenschaften axiomatisierbar.

Die Vorlesung soll bis zu den Sätzen von Morley und Baldwin-Lachlan kommen, die eine Strukturtheorie für sogenannte \aleph_1 -kategorische Theorien entwickeln, die die aus der Linearen Algebra bekannte Dimensionstheorie von Vektorräumen verallgemeinert: K-Vektorräume sind bis auf Isomorphie durch ihre Dimension charakterisiert. Ein anderes Beispiel sind algebraisch abgeschlossene Körper fester Charakteristik, die bis auf Isomorphie durch ihren Transzendenzgrad bestimmt sind.

Die Vorlesung setzt einige Kenntnisse aus der formalen Logik voraus, die zu Beginn rasch wiederholt werden. Sie kann ohne vorausgehende "Mathematische Logik" gehört werden, wenn man bereit ist, sich diese Logik-Grundlagen im Selbststudium anzueignen. Beispiele kommen meistens aus der Algebra und setzen vereinzelt algebraische Kenntnisse voraus.

Literatur:

1.) M. Ziegler: Skript "Modelltheorie", 2001. home.mathematik.uni-freiburg.de/ziegler/skripte/

- 2.) K. Tent, M. Ziegler: "A course in model theory", Association of Symbolic Logic 2012.
- 3.) W. Hodges: "Model Theory", Cambridge University Press 1993

Typisches Semester: ab 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Anfängervorlesungen und ein wenig Logik

Nützliche Vorkenntnisse: Mathematische Logik, Algebra

Folgeveranstaltungen: Seminar im SS 2016

Studienleistung: regelmäßige und erfolgreiche Bearbeitung der Übungsblätter Prüfungsleistung: im Bachelor-Studiengang: voraussichtlich mündliche Prüfung;

bei großer Teilnehmerzahl Klausur

Sprechstunde Dozent: Di 14–15 Uhr, Zi. 423, Eckerstr. 1

Abteilung für Reine Mathematik

WS 2015/16

Vorlesung: Differentialgeometrie I

Dozent: Prof. Dr. V. Bangert

Zeit/Ort: Di, Do 10–12 Uhr, Hörsaal II, Albertstr. 23 b

Übungen: 2-std. n.V.

Tutorium: Dr. B. Mramor

Web-Seite: http://home.mathematik.uni-freiburg.de/geometrie/lehre/

ws2015/vorlesung/Differentialgeometrie/index.html

Inhalt:

Zunächst werden differenzierbare Mannigfaltigkeiten, Vektorfelder und allgemeine Tensorfelder eingeführt. Das sind grundlegende Begriffe der Differentialgeometrie, die auch in der Analysis und der Physik wichtig sind. Darauf aufbauend wird eine Einführung in das größte Teilgebiet der Differentialgeometrie, die Riemannsche Geometrie, gegeben. Insbesondere werden Geodätische und der Riemannsche Krümmungstensor eingeführt und die geometrische Bedeutung des Riemannschen Krümmungstensors erklärt.

Literatur:

- 1.) J.M. Lee: Introduction to Smooth Manifolds. Springer (GTM 218), 2003
- 2.) M.P. do Carmo: Riemannian Geometry. Birkhäuser, Boston 1992
- 3.) J.M. Lee: Riemannian Manifolds. An Introduction to Curvature. Springer (GTM 176), 1997

Typisches Semester: ab 5. Semester ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse:

Nützliche Vorkenntnisse:

Folgeveranstaltungen:

Analysis I–III, Lineare Algebra I und II
Elementare Differentialgeometrie
im SS 2016: (Bachelor-)Seminar,

im WS 2016/17: Differentialgeometrie II

Sprechstunde Dozent: Di 14–15 Uhr, Zi. 335, Eckerstr. 1

Vorlesung: Variationsrechnung

Dozent: Dr. Christian Ketterer

Zeit/Ort: Di, Do 8–10 Uhr, SR 404, Eckerstr. 1

Übungen: 2-std. n.V.

Tutorium: Zhiqiang Sun

Web-Seite: http://home.mathematik.uni-freiburg.de/ketterer/VR.html

Inhalt:

Gegenstand der Vorlesung ist die mehrdimensionale Variationsrechnung. Wir betrachten Funktionale bzw. Variationsintegrale der Form

$$F(u) = \int f(x, u(x), Du(x)) dx$$

für zulässige $u:\Omega\to\mathbb{R}^N$ und $\Omega\subset\mathbb{R}^n$. Beispiele sind Bogenlänge von Kurven und Flächeninhalt, sowie Energien von Feldern in der Physik. Zentrale Fragen der Vorlesung sind die Existenz von Minimierern und deren Regularität. Da sich aus der Endlichkeit des Funktionals keine punktweise Kontrolle der Funktionen u ergibt, werden wir Räume von verallgemeinerten differenzierbaren Funktionen, sogenannte Sobolevräume, einführen und in diesen das Existenzproblem lösen. In einem zweiten Schritt werden wir die Regularität der Minimierer untersuchen. Sofern die Zeit das erlaubt, wollen wir auch Verfahren zur Konstruktion nichtminimierender Lösungen vorstellen.

Literatur:

- 1.) Struwe, Michael, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edition. Springer-Verlag, Berlin, 2008.
- 2.) Giaquinta, Mariano, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, 1983.

Typisches Semester: 5. und 7. Semester

ECTS-Punkte: 9 Punkte Notwendige Vorkenntnisse: Analysis 3

Sprechstunde Dozent: Di 14–16 Uhr, Do 10–12 Uhr, Zi. 214, Eckerstr. 1

Vorlesung: Mathematische Statistik

Dozent: Prof. Dr. Peter Pfaffelhuber

Zeit/Ort: Mo, Mi 12–14 Uhr, HS Weismann-Haus, Albertstr. 21 a

Übungen: 2-std. n.V.

Tutorium: Felix Hermann

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Grundlegende Probleme der statistischen Entscheidungtheorie sind das Schätzen von Parametern eines statistischen Modells sowie Hypothesentests. Aufbauend auf der Vorlesung Wahrscheinlichkeitstheorie werden die wichtigsten Begriffe und Methoden der Mathematischen Statistik erarbeitet. Dabei wird sowohl Wert auf die Theorie als auch auf in Anwendungen häufig auftretende Verfahren gelegt.

Stichworte: Bayes'sche Statistik, Klassifizierung, Lebenszeitanalyse, Likelihood Ratio Test, Maximum Likelihood, Multiples Testen, Principle Component Analyse, Regression, Regularisierung, Resampling-Methoden, Varianzanalyse, Zeitreihe.

Literatur:

- 1.) C. Czado und T. Schmidt, Mathematische Statistik (Statistik und ihre Anwendungen), Springer, 2011
- 2.) T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2011
- 3.) L. Rüschendorf, Mathematische Statistik, Springer 2014

Typisches Semester: ab dem 5. Semester

ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Wahrscheinlichkeitstheorie

Sprechstunde Dozent: Mo, 14:15–15:15 Uhr, Zi. 233, Eckerstr. 1

Vorlesung: Stochastische Prozesse

Dozent: Prof. Dr. Thorsten Schmidt

Zeit/Ort: Di 16–18 Uhr, SR 404 und

Mi 14–16 Uhr HS II, Albertstr. 23 b

Übungen: 2-std. n.V.

Tutorium: T. Fadina

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Die Vorlesung ist die erste Veranstaltung im Studiengang Master of Science Mathematik, Studienschwerpunkt Wahrscheinlichkeitstheorie, Finanzmathematik und Statistik, insbesondere in der neuen Profillinie Finanzmathematik. Sie schließt direkt an die Vorlesung Wahrscheinlichkeitstheorie aus dem WS 2014/15 an.

Ein stochastischer Prozess $(X_t)_{t\geq 0}$ ist eine Familie von Zufallsvariablen. Einfache Beispiele sind Irrfahrten, Markov-Ketten, die Brown'sche Bewegung oder davon abgeleitete Prozesse. Vor allem in der Modellierung von finanzmathematischen oder naturwissenschaftlichen Fragestellungen spielt die Brownsche Bewegung eine große Rolle.

Wir werden uns zunächst mit der reichhaltigen Klasse von Martingalen beschäftigen und die wichtigen Martingalkonvergenzsätze kennen lernen. Anschließend konstruieren wir die Brown'sche Bewegung und studieren ihre Pfadeigenschaften. Infinitesimale Charakteristiken eines Markov-Prozesses werden durch Generatoren beschrieben, was eine Verbindung zur Theorie von partiellen Differentialgleichungen ermöglicht.

Im Sommersemester 2016 wird diese Veranstaltung durch die Vorlesung Stochastische Integration und Finanzmathematik fortgeführt.

Literatur:

- 1.) O. Kallenberg. Foundations of Modern Probability (Probability and Its Applications). Springer 2002
- 2.) A. Klenke. Wahrscheinlichkeitstheorie. Springer 2006
- 3.) D. Williams. Probability with Martingales (Cambridge Mathematical Textbooks). Cambridge University Press 1991

Typisches Semester: 1. Semester Master

ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Wahrscheinlichkeitstheorie

Folgeveranstaltungen: Stochastische Integration und Finanzmathematik

Sprechstunde Dozent: n.V., Zi. 237, Eckerstr. 1 Sprechstunde Assistentin: n.V., Zi. 241, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2015/16

Vorlesung: Theorie und Numerik für hyperbolische Erhal-

tungsgleichungen

Dozent: Dr. Martin Nolte

Zeit/Ort: Mo 14–16 Uhr, Do 14–16 Uhr, HS II, Albertstr. 23 b

Übungen: 2-std. n.V.

Tutorium: Andrea Korsch

Web-Seite: http://aam.uni-freiburg.de/lehre/ws15/hyppde/

Inhalt:

Viele Phänomene in der Natur lassen sich durch mathematische Modelle, insbesondere durch partielle Differentialgleichungen, beschreiben. Die wichtigsten unter diesen sind die elliptischen, die parabolischen und die hyperbolischen Differentialgleichungen. Gesucht werden jeweils Funktionen mehrerer Veränderlicher, deren Ableitungen gewisse Gleichungen erfüllen.

Eine besondere Klasse von partiellen Differentialgleichungen bilden die hyperbolischen Erhaltungssätze. Trotz beliebig glatter Daten (damit sind Randwerte, Anfangswerte und die Koeffizienten gemeint) können die zugehörigen Lösungen unstetig sein. Ihre Behandlung ist daher eine besondere Herausforderung an die Analysis und die Numerik.

Diese Differentialgleichungen sind z.B. mathematische Modelle für Strömungen kompressibler Gase und für verschiedene Probleme aus den Bereichen Astrophysik, Grundwasserströmungen, Meteorologie, Halbleitertechnik und reaktive Strömungen. Beispielsweise ist das mathematische Modell für eine Supernova von derselben Struktur wie das für die Verbrennung in einem Fahrzeugmotor. Kenntnisse in diesen Bereichen werden aber nicht vorausgesetzt. In der Vorlesung sollen die theoretischen Grundlagen geschaffen werden, um Simulationen der oben genannten Probleme am Computer durchzuführen.

Literatur:

- 1.) D. Kröner, Numerical Schemes for Conservation Laws, Wiley und Teubner, Chichester, Stuttgart (1997)
- 2.) R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel (1992)
- 3.) R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002)

Typisches Semester: ab dem 7. Semester

ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Numerische Analysis

Nützliche Vorkenntnisse: Einführung in die Theorie und Numerik partieller Differential-

gleichungen

Sprechstunde Dozent: Mi 11–12 Uhr und n.V., Raum 204, Hermann-Herder-Str. 10 Sprechstunde Assistentin: Di 10:30–12:30 Uhr, Raum 228, Hermann-Herder-Str. 10

Abteilung für Angewandte Mathematik

WS 2015/16

Vorlesung: Theorie und Numerik partieller Differentialglei-

chungen

Dozent: Patrick Dondl

Zeit/Ort: Di, Do 10–12 Uhr, SR 226, Hermann-Herder-Str. 10

Übungen: 2-std. n.V.

Tutorium: N. N.

Inhalt:

Im ersten Teil dieser Vorlesung betrachten wir analytische und numerische Methoden um parabolische partielle Differentialgleichungen zweiter Ordnung, also natürliche Verallgemeinerungen der Wärmeleitungsgleichung, zu behandeln. Wir zeigen insbesondere Existenz und Eindeutigkeit, sowie Regularität, von schwachen Lösungen solcher Gleichungen und entwickeln darauf aufbauend numerische Verfahren.

Im zweiten Teil behandeln wir nichtlineare elliptische Variationsprobleme und deren Gradientenflüsse. Ein besonderer Fokus in diesem Teil liegt in Modellen aus der Elastizitätstheorie und in Modellen, bei denen ein Grenzübergang mit einem kleinen Parameter auftritt. Am Beispiel der Modica-Mortola-Energie lernen wir hier die analytische Methode der Gamma-Konvergenz kennen.

Literatur:

- 1.) L.C. Evans: Partial Differential Equations (2nd edition). American Mathematical Society 2010.
- 2.) D. Braess: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer 2013.
- 3.) V. Thomee: Galerkin finite element methods for parabolic problems. Springer 2010.
- 4.) A. Braides: Gamma-Convergence for Beginners. Oxford University Press 2002.

ECTS-Punkte: 9 Punkte

Sprechstunde Dozent: n. V., Zi. 227, Hermann-Herder-Str. 10

Abteilung für Angewandte Mathematik

WS 2015/16

Vorlesung: Numerical Optimization

Dozent: Prof. Dr. Moritz Diehl

Zeit/Ort: Di, Fr 14–16 Uhr, HS II, Albertstr. 23 b

Übungen: Mi 16–18 Uhr, Georges-Köhler-Allee 101, SR 01-016

Tutorium: Dimitris Kouzoupis

Web-Seite: http://syscop.de/teaching

Inhalt:

The course's aim is to give an introduction into numerical methods for the solution of optimization problems in science and engineering. The focus is on continuous nonlinear optimization in finite dimensions, covering both convex and nonconvex problems. The course is accompanied by intensive computer exercises and divided into four major parts:

- 1. Fundamental Concepts of Optimization: Definitions, Types, Convexity, Duality
- 2. Unconstrained Optimization and Newton Type Algorithms: Stability of Solutions, Gradient and Conjugate Gradient, Exact Newton, Quasi-Newton, BFGS and Limited Memory BFGS, and Gauss-Newton, Line Search and Trust Region Methods, Algorithmic Differentiation
- 3. Equality Constrained Optimization Algorithms: Newton Lagrange and Generalized Gauss-Newton, Range and Null Space Methods, Quasi-Newton and Adjoint Based Inexact Newton Methods
- 4. Inequality Constrained Optimization Algorithms: Karush-Kuhn-Tucker Conditions, Linear and Quadratic Programming, Active Set Methods, Interior Point Methods, Sequential Quadratic and Convex Programming, Quadratic and Nonlinear Parametric Optimization

Literatur:

- 1.) Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 2006
- 2.) Amir Beck, Introduction to Nonlinear Optimization, MOS-SIAM Optimization, 2014
- 3.) Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004

Typisches Semester: ab dem 5. Semester

ECTS-Punkte: 9 Punkte

Notwendige Vorkenntnisse: Analysis I+II, Lineare Algebra I+II

Nützliche Vorkenntnisse: Einführung in die Numerik Studienleistung: wöchentliche Computerübungen

Prüfungsleistung: Semesterabschlussprojekt und schriftliche Prüfung

Sprechstunde Dozent: Mi 14–16 Uhr, Georges-Köhler-Allee 102, 1. Stock, Anbau Sprechstunde Assistent: Mi 14–16 Uhr, Georges-Köhler-Allee 102, 1. Stock, Anbau

Kommentar: Kurssprache ist Englisch

Abteilung für Angewandte Mathematik

WS 2015/16

Vorlesung: Bochner-Räume

Dozent: Philipp Nägele

Zeit/Ort: Mi 16–18 Uhr, HS II, Albertstr. 23b

Übungen: $\mathbf{n.V.}$

Tutorium: N. N.

Web-Seite: http://aam.uni-freiburg.de/naegele/bochner

Inhalt:

Eine naheliegende Verallgemeinerung von Funktionen $f:I\subset\mathbb{R}\to\mathbb{R}$ sind Funktionen $\mathbf{u}:I\to B$ mit Werten in einem allgemeinen Banachraum B. Bochner-Räume $L^p(I,B)$ können zunächst als Abstraktion der in Analysis III definierten Lebesgue-Räume $L^p(I,\mathbb{R})$ aufgefasst werden. Es zeigt sich aber andererseits auch, dass Bochner-Räume den geeigneten Rahmen für die mathematische Behandlung einer Vielzahl instationärer partieller Differentialgleichungen bilden. Exemplarisch seien die Navier-Stokes-Gleichungen aus der Theorie inkompressibler, viskoser Flüssigkeiten erwähnt, deren mathematische Behandlung sicheren Umgang mit Bochner-Räumen verlangt.

Wir wollen in dieser Vorlesung daher grundlegende Techniken und Resultate wie z.B. Bochner-Meßbarkeit, Dualräume, vektorwertige Distributionen, die partielle Integrations-Formel oder das Kompaktheitslemma von Aubin und Lions erarbeiten. Geplant ist außerdem, dass parallel zur Vorlesung ein Skript entsteht.

Die Vorlesung richtet sich besonders an Studenten, die eine Bachelor- oder Masterarbeit in einem Bereich der angewandten Mathematik planen.

Literatur:

- 1.) Michael Růžička, Nichtlineare Funktionalanalysis, Springer, 2004
- 2.) Etienne Emmrich, Gewöhnliche und Operator-Differentialgleichungen, Vieweg+Teubner, 2004
- 3.) H. Gajewski, K. Gröger. K. Zacharias, Nichtlineare Operatorgleichungen, Akademie-Verlag, $1974\,$

Typisches Semester: ab 5. Semester ECTS-Punkte: 6 Punkte

Notwendige Vorkenntnisse: Analysis III, Funktionalanalysis Sprechstunde Dozent: Mi 9–12 Uhr, Zi. 147, Eckerstr. 1

Vorlesung mit Computational Finance

prakt. Übung:

Dozent: Dr. E. A. v. Hammerstein

Zeit/Ort: Mi 16–18 Uhr, Poolräume -100/-101, Rechenzentrum

Übungen: Do 16–18 Uhr (14-tägl.), Poolräume -100/-101, RZ

Tutorium: Dr. E. A. v. Hammerstein

Teilnehmerliste: Die Teilnehmerzahl ist auf die in den RZ-Poolräumen verfügbaren

Arbeitsplätze beschränkt. Interessenten werden gebeten, sich recht-

zeitig per Mail anzumelden bei

 $\verb|ernst.august.hammerstein@finance.uni-freiburg.de|\\$

Web-Seite: http://www.finance.uni-freiburg.de

Inhalt:

In this course, we first give a concise introduction to the R programing environment (for students of mathematics, this may be a refreshment of some material they already encountered in the practical exercises accompanying the lecture "Stochastik"). With help of the provided tools, we then develop some programs for bootstrapping zero rates, pricing vanilla options in binomial trees and exotic options in time-continuous models via Monte Carlo methods. We also regard some aspects of hedging and convergence in this context. Further we discuss the implementation of risk measures, the sampling of loss distributions in elementary credit risk models. Depending on the time left, we may additionally discuss the simulation of (approximate) solutions to stochastic differential equations.

The course, which is taught in English, is offered for the second year in the Finance profile of the M.Sc. Economics program as well as for students of M.Sc. (possibly also B.Sc.) Mathematics (can be credited as "Wahlmodul" in both M.Sc. and B.Sc. Mathematics, and in particular for students of the profile "Finanzmathematik" in M.Sc. Mathematics as specialization in economics).

Literatur:

- 1.) Hull, J.C.: Options, Futures, and other Derivatives, 7th ed., Prentice Hall, 2009
- 2.) Lai, T.L., Xing, H.: Statistical Models and Methods for Financial Markets, Springer, 2008
- 3.) Seydel, R.U.: Tools for Computational Finance, 4th ed., Springer, 2009
- 4.) Any introductory book to the R programming environment, e.g.,

Brown, J., Murdoch, D.J.: A First Course in Statistical Programming with R, Cambridge University Press, 2007

Typisches Semester: ab 7. Semester ECTS-Punkte: 5 Punkte

Notwendige Vorkenntnisse: Vorlesungen Stochastik und Futures and Options Studienleistung: computerbasierte Klausur (in den RZ-Poolräumen) n. V., Zi. 01010, Alte Universität, Bertholdstraße 17

Vorlesung: Credit Risk

Dozentin: Prof. Dr. E. Lütkebohmert-Holtz

Zeit/Ort: Mo, 14–16, HS 1221, KG I

Übungen: Di, 14–16, HS 1015, KG I

Tutorium: Dr. E. A. v. Hammerstein

Web-Seite: http://www.finance.uni-freiburg.de/

Inhalt:

Credit risk represents by far the biggest risk in the activities of a traditional bank. In particular, during recession periods financial institutions loose enormous amounts of money as a consequence of bad loans and default events. In the last two decades, a multitude of credit-linked derivatives has been developed to manage and transfer credit risks in an efficient and standardized way. These allow banks to shape their risk profile according to regulatory standards.

In this lecture, we introduce some of the most popular single name- and portfolio credit models and show how these are used to measure credit risk and to price credit derivatives like credit default swaps (CDS), basket default swaps and defaultable bonds. We will also introduce different measures of credit risk and will discuss concentration risk in credit portfolios.

The course, which is taught in English, is offered for students in the Finance profile of the M.Sc. Economics, but is also open to students of M.Sc. Volkswirtschaftslehre and M.Sc. Mathematics, especially to those of the profile "Finanzmathematik".

Literatur:

- 1.) **Bielecki, T.R., Rutkowski, M.:** Credit Risk: Modeling, Valuation, and Hedging. Springer, 2002
- 2.) Bluhm, C., Overbeck, L.: Structured credit portfolio analysis, baskets & CDOs. Chapman & Hall/CRC Press, 2006
- 3.) **Duffie, D., Singleton, K.F.:** Credit Risk: Pricing, Measurement, and Management. Princeton University Press, 2003
- 4.) Lando, D.: Credit Risk Modeling: Theory and Applications. Princeton University Press, 2004
- 5.) Lütkebohmert, E.: Concentration Risk in Credit Portfolios. Springer, 2009
- 6.) Schönbucher, P.J.: Credit Derivatives Pricing Models. Wiley, 2003

Typisches Semester: ab 7. Semester ECTS-Punkte: 6 Punkte

Notwendige Vorkenntnisse: Wahrscheinlichkeitstheorie

Nützliche Vorkenntnisse: Stochastische Prozesse (kann parallel gehört werden)

Prüfungsleistung: Klausur

Sprechstunde Dozentin: n. V., Zi. 2314, KG II, Platz der Alten Synagoge Sprechstunde Assistent: n. V., Zi. 01010, Alte Universität, Bertholdstraße 17

Abteilung für Reine Mathematik

WS 2015/16

Vorlesung: Einführung in die Differentialtopologie

Dozent: Nadine Große

Zeit/Ort: Mi 12–14 Uhr, HS II, Albertstr. 23b

Übungen: 2-std. n. V.

Inhalt:

In der Differentialtopologie werden globale geometrische Invarianten topologischer Räume, die zusätzlich eine differenzierbare Struktur besitzen, gesucht und untersucht. Wir werden mit der Brouwerschen Definition des Abbildungsgrades und regulären Werten einsteigen und uns bis zu gerahmten Kobordismen vorarbeiten.

Die Vorlesung soll einen elementaren und intuitiven Einstieg in die Differentialtopologie ermöglichen und wird ausschließlich mit Untermannigfaltigkeiten arbeiten, also mit expliziten Einbettungen von Mannigfaltigkeiten in den euklidischen Raum. Damit ist die Vorlesung sowohl begleitend/anschließend zur Differentialgeometrie oder algebraischen Geometrie geeignet als auch für Hörer ohne diese Vorkenntnisse.

Literatur:

- 1.) J. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, 1965
- 2.) V. Guillemin und A. Pollack, Differential topology, Prentice-Hall, 1974

Typisches Semester: ab dem 5. Semester

ECTS-Punkte: 6 Punkte

Notwendige Vorkenntnisse: Analysis I–III, Algebra I und II

Nützliche Vorkenntnisse: Elementare Differentialgeometrie oder Topologie

Sprechstunde Dozentin: n. V., Zi. 325, Eckerstr. 1

Vorlesung: Shimura Varieties

Dozent: Dr. Fritz Hörmann

Zeit/Ort: Mo 10–12 Uhr, SR 404, Eckerstr. 1

Übungen: Do 14–16 Uhr, SR 404, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/hoermann/

shimura/

Inhalt:

The group $\operatorname{SL}_2(\mathbb{R})$ acts on the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ by fractional linear transformations, yielding an isomorphism $\operatorname{Aut}(\mathbb{H}) \cong \operatorname{SL}_2(\mathbb{R})/\{\pm 1\}$. Let Γ be a subgroup of $\operatorname{SL}_2(\mathbb{Z})$ defined by congruence conditions. The quotients $\Gamma\backslash\mathbb{H}$, more precisely, certain disjoint unions X of them, are the easiest examples of Shimura varieties. The following observations can be made:

- 1. X is an algebraic variety, canonically defined over \mathbb{Q} (sometimes even over \mathbb{Z}). It is the solution to a moduli problem for elliptic curves with level structures.
- 2. There are canonical line bundles on the Xs, whose sections are precisely the modular forms.
- 3. X can be *naturally* compactified.
- 4. There are distinguished points on the Xs, the so called CM-points (complex multiplication), where the Galois action can be described explicitly in terms of class field theory. There are sufficiently many of those to characterize the \mathbb{Q} -models of the Xs uniquely.
- 5. There is a huge ring of correspondences, the so called Hecke algebra, acting on X and the modular forms. It can be used to reveal a deep connection between modular forms and 2-dimensional Galois representations.

All these facts have analogues for \mathbb{H} replaced by an arbitrary $Hermitian\ symmetric\ domain$ \mathbb{D} and for Γ replaced by a subgroup of $G(\mathbb{Z})$ defined by congruence conditions. Here G is a linear algebraic group defined over \mathbb{Z} (semi-simple over \mathbb{Q}) with a surjective homomorphism with compact kernel

$$G(\mathbb{R}) \to \operatorname{Aut}(\mathbb{D})^+$$
.

There will be two appointments per week. One will be used for the lecture, and the other for discussing exercises, providing background material (e.g. on linear algebraic groups, Abelian varieties, class field theory, etc.).

Literatur:

- 1.) Milne, J. S.; Introduction to Shimura varieties., available at http://www.jmilne.org/math/
- 2.) Deligne, Pierre; *Travaux de Shimura.* (French) Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, pp. 123–165.

Typisches Semester: 6.–10. Semester

ECTS-Punkte: 6 Punkte

Notwendige Vorkenntnisse: Kommutative Algebra und Einf. in die algebr. Geometrie

Nützliche Vorkenntnisse: Alg. Zahlentheorie, alg. Schemata Sprechstunde Dozent: Di 14–16 Uhr, Zi. 421, Eckerstrasse 1

Vorlesung: Nonlinear Expectation, G-Brownian motion and

risk measures

Dozentin: Dr. Tolulope Fadina

Zeit/Ort: Di 10–12 Uhr, SR 218, Eckerstr. 1

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Frank Knight (1921) remarks that "The practical difference between risk and uncertainty is that in the former the distribution of the outcome in a group of instances is known (either through calculation a priori or from statistics of past experience), while in the case of uncertainty this is not true". In this course, we will discuss the theory of model uncertainty (also known as G-stochastic calculus) as introduced by Shige Peng. What drew much attention to the study of G-stochastic calculus in the first place is a novel notion of coherent risk measures known as the G-expectation. The G-expectation and its corresponding canonical process, the G-Brownian motion can be seen as the central objects of the G-stochastic calculus.

This course, which is taught in English, is offered for students of the profile *Finanzmathe-matik*.

Literatur:

1.) Peng, S.:

Nonlinear Expectations and Stochastic Calculus under Uncertainty. Preprint, 2010.

2.) Fadina, T. R.:

Nonstandard Analysis for G-Stochastic Calculus. Bielefeld University, 2015.

Typisches Semester: im Masterstudium

Notwendige Vorkenntnisse: Stochastische Prozesse, Stochastische Integration

Sprechstunde Dozentin: n. V., Zi. 241, Eckerstr. 1

Vorlesung: Topics in Stochastic Analysis

Dozent: Prof. Dr. Thorsten Schmidt

Zeit/Ort: Mi 10–12 Uhr, SR 218, Eckerstr. 1

Tutorium: W. Khosrawi-Sardroudi

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

In dieser Vorlesung wird die stochastische Integration im endlichdimensionalen Fall für allgemeine Semimartingale eingeführt. Auf der einen Seite ist dies die größte Klasse von Prozessen, für die sich eine stochastische Analysis gut betreiben lässt, auf der anderen Seite sind dies auch genau die Prozesses, die nach dem FTAP zu arbitragefreien Märkten führen.

Die Vorlesung vertieft die Inhalte der Vorlesung Stochastische Prozesse und führt sie auf einem höheren Level fort. Die Vorlesung kann auch auf Englisch gehalten werden.

The first two lectures will be given by Monique Jeanblanc, who will give an introductory course on enlargement of filtrations in discrete time. Prof. Jeanblanc is one of the leading experts in this topic, so this will be a good starting point for the following lectures. (These lectures will be in English.)

The lectures will be in English on request.

We will start with a detailed look into the theory of semimartingale processes. The focus will be on the important proofs, and other parts will be left as exercise. The course is intended for students with a strong background in probability.

Literatur:

- 1.) Jacod/Shiryaev: Limit Theorems for Stochastic Processes
- 2.) Bichteler: Stochastic Integration and L^p -Theory of Semimartingales, Ann. Probab. 9 (1981) 49–89

Typisches Semester: 1. Semester Master

ECTS-Punkte: 5 Punkte

Notwendige Vorkenntnisse: Wahrscheinlichkeitstheorie, Stochastische Prozesse

Sprechstunde Dozent: Mi, 13–14 Uhr, Zi. 237, Eckerstr. 1

Sprechstunde Assistent: Do, 9–10 Uhr, 13–15 Uhr, Zi. 241, Eckerstr. 1

2. Del disolicifolici de la cialistatudi ge	2.	Berut	fsorien	tierte	Veranstaltu	ıngen
---	----	-------	---------	--------	-------------	-------

Veranstaltung: Lernen durch Lehren

Dozent: Alle Dozentinnen und Dozenten von Vorlesungen

Inhalt:

Bei diesem Modul handelt es sich um eine Begleitveranstaltung zu Tutoraten zu Mathematikvorlesungen. Teilnehmen können an dem Modul alle Studierenden im BSc- oder MSc-Studiengang Mathematik, die sich für das gleiche Semester erfolgreich um eine Tutoratsstelle zu einer Mathematikvorlesung beworben haben (mindestens eine zweistündige oder zwei einstündige Übungsgruppen über das ganze Semester, aber ohne Einschränkungen an die Vorlesung). Das Modul kann einmal im Bachelor-Studium und bis zu zweimal im Master-Studium absolviert werden und wird jeweils mit 3 ECTS-Punkten im Wahlmodulbereich angerechnet. Es handelt sich um eine Studienleistung, d.h. das Modul wird nicht benotet.

Leistungsnachweis:

- Teilnahme an der Einführungsveranstaltung (voraussichtlich in der ersten Vorlesungswoche; Termin wird kurzfristig im Vorlesungsverzeichnis bekanntgegeben)
- regelmäßige Teilnahme an der Tutorenbesprechung
- zwei gegenseitige Tutoratsbesuche mit einem anderen Modulteilnehmer, welcher nach Möglichkeit die gleiche Vorlesung tutoriert, oder zwei Besuche durch den betreuenden Assistenten und Austausch über die Erfahrungen (die Zuteilung der Paarungen erfolgt bei der Einführungsveranstaltung)
- Schreiben eines Erfahrungsberichts, der an den betreuenden Dozenten geht

In Ermangelung eines passenden Wahlbereichs kann das Modul für Lehramtsstudierende in dieser Form zur Zeit nicht angeboten werden.

Typisches Semester: ab 5. Fachsemester

Kommentar: nur für BSc- oder MSc-Studiengang Mathematik; Tutorat zu

einer Mathematik-Vorlesung im gleichen Semester ist notwen-

dige Voraussetzung

ECTS-Punkte: 3 Punkte

Studienleistung: siehe Text oben

WS 2015/16

Vorlesung: Didaktik der Algebra und Analysis

Dozent: Martin Kramer

Zeit/Ort: 2-std. zur Wahl: Mo 14–16 Uhr o. Di 10–12 Uhr o. Mi 10–12

Uhr, SR 404, Eckerstr. 1

Übungen: 14-tgl. n. V.

Tutorium: NJohannes Maier; Natasha Fix; Frieder Roggenstein

Teilnehmerliste: Bitte tragen Sie sich im Campus-Management in Ihren Wunschter-

min für die Vorlesung UND einen Termin für das Tutorat ein.

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik/

Inhalt:

Die Vorlesungen über Didaktik bestehen aus zwei Teilen: Didaktik der Algebra und Analysis (WS) und Didaktik der Geometrie und Stochastik (SS).

Eine scharfe Abgrenzung der Einzelthemen ist im schulischen Kontext wenig hilfreich. So wird z.B. die Projektion auf den ersten Blick der Geometrie zugeordnet, andererseits entsteht durch die Projektion einer Drehbewegung die Sinus- bzw. Kosinusfunktion. Im Sinne einer ganzheitlichen und vernetzenden Didaktik werden in der Vorlesung viele Bezüge zwischen den einzelnen, innermathematischen Disziplinen geschaffen. Erörtert werden didaktische Methoden der Geometrie und Stochastik, die didaktische Bedeutung des Materials im schulischen Kontext sowie die Bedeutung von kooperativem Lernen (Gruppenarbeit). Zentral ist der Wechsel zwischen symbolischen, ikonischen und enaktiven Repräsentationsebenen (nach Bruner). An konkreten Beispielen wird ein konstruktivistischer Vermittlungsansatz im Kontext der bildungsplanspezifischen Inhalte (lernen, begründen, problemlösen und kommunizieren) aufgezeigt.

Die Vorlesung legt Wert darauf, dass die dargestellte Didaktik konkret und interaktiv erlebt wird. Die Folge ist ein ständiger Rollenwechsel des Hörers: Einerseits erlebt er die Dinge aus der Schülerperspektive, auf der anderen Seite schlüpft er in die Rolle des reflektierenden Lehrers.

Literatur:

- 1.) Bauer, J.: Warum ich fühle, was Du fühlst; Hoffmann und Campe
- 2.) Eichler A.; Vogel M.: Leitidee Daten und Zufall: Von konkreten Beispielen zur Didaktik der Stochastik; Wiesbaden: Vieweg + Teubner, 2009
- 3.) Henn, J.: Geometrie und Algebra im Wechselspiel: Mathematische Theorie für schulische Fragestellungen; Springer Spektrum, 2012
- 4.) Kramer, M.: Mathematik als Abenteuer; Aulis Verlag
- 5.) Kramer, M.: Schule ist Theater; Schneider-Verlag Hohengehren
- 6.) Spitzer, M.: Geist im Netz Modelle für Lernen, Denken und Handeln; Spektrum Akademischer Verlag, Heidelberg
- 7.) Thun, S. v.: Miteinander Reden, Bd. I–III; Rowohlt Tb.

Typisches Semester: 6. Semester ECTS-Punkte: 3 Punkte

Sprechstunde Dozent: n.V., Zi. 131, Eckerstr. 1

Kommentar: Bitte tragen Sie Ihren Wunschtermin im Campus-Management

für die Vorlesung UND für das Tutorat ein.

Die Teilnehmerzahl sollte die Zahl 35 pro Termin nicht

übersteigen.

Seminar: Robotik als Abenteuer – MINT

Dozent: Martin Kramer

Zeit/Ort: Di 14–17 Uhr, SR 127, Eckerstr. 1

Teilnehmerliste: Interessenten sollen sich bitte in eine bei Frau Schuler ausliegende

Liste eintragen, Raum 132, Di-Do, 9-13 Uhr und 14-16:30 Uhr.

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik/

Inhalt:

MINT steht für die Vernetzung von Mathematik, Informatik, Naturwissenschaft und Technik. Der erste Buchstabe steht für Mathematik, jedoch vereint Robotik alle (!) vier Buchstaben gleichzeitig und eignet sich exemplarisch für die Schule, sowohl im Rahmen einer AG, von Projekttagen oder im Unterricht.

Das Seminar besteht aus zwei Teilen. Zuerst wird aus Fischertechnik ein mobiler Roboter gebaut und mit immer feineren Methoden mit der kindgerechten Software RoboPro programmiert. Im Vordergrund steht ein konstruktivistisches und kommunikatives Lernverständnis. Wie können geeignete Lernumgebungen für Jugendliche so geschaffen werden, dass Lernerfolg, Nachhaltigkeit und Spielfreude gewährleistet ist?

Der zweite Teil besteht in der Durchführung eines zweitägigen Workshops (Freitagnachmittag bis Sonntagmorgen), der im Seminar geplant und von je zwei Teilnehmern in den Semesterferien durchgeführt wird.

Es sind keinerlei Vorkenntnisse erforderlich.

Typisches Semester: 4.–8. Semester ECTS-Punkte: 4 Punkte

Folgeveranstaltungen: Fachdidaktik-Vorlesungen Sprechstunde Dozent: n. V., Zi. 131, Eckerstr. 1

WS 2015/16

Seminar: Medieneinsatz im Mathematikunterricht

Dozent: Jürgen Kury

Zeit/Ort: Mi 14–16 Uhr, SR 127, Eckerstr. 1

Übungen: Mi 16–17 Uhr, SR 131 (Vorraum Didaktik), Eckerstr. 1

Teilnehmerliste: Interessenten sollen sich bitte in eine bei Frau Schuler ausliegende

Liste eintragen, Raum 132, Di-Do, 9-13 Uhr und 14-16:30 Uhr.

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik/

Inhalt:

Der Einsatz von Unterrichtsmedien im Mathematikunterricht gewinnt sowohl auf der Ebene der Unterrichtsplanung wie auch der der Unterrichtsrealisierung an Bedeutung. Vor dem Hintergrund konstruktivistischer Lerntheorien zeigt sich, dass der reflektierte Einsatz unter anderem von Computerprogrammen die mathematische Begriffsbildung nachhaltig unterstützen kann. So erlaubt beispielsweise das Experimentieren mit Computerprogrammen mathematische Strukturen zu entdecken, ohne dass dies von einzelnen Routineoperationen (wie z. B. Termumformung) überdeckt würde. Es ergeben sich daraus tiefgreifende Konsequenzen für den Mathematikunterricht. Von daher setzt sich dieses Seminar zum Ziel, den Studierenden die notwendigen Entscheidungs- und Handlungskompetenzen zu vermitteln, um zukünftige Mathematiklehrer auf ihre berufliche Tätigkeit vorzubereiten. Ausgehend von ersten Überlegungen zur Unterrichtsplanung werden anschließend Computer und Tablets hinsichtlich ihres jeweiligen didaktischen Potentials untersucht. Die dabei exemplarisch vorgestellten Systeme sind:

- dynamische Geometrie-Software: Geogebra
- Tabellenkalkulation: Excel
- Apps für Smartphones und Tablet

Jeder Studierende soll Unterrichtssequenz ausarbeiten, die dann in den Übungen besprochen werden.

Typisches Semester: ab 1. Semester ECTS-Punkte: 4 Punkte

Nützliche Vorkenntnisse: Anfängervorlesungen

Studienleistung: wöchentliche Übungen, Abschlussklausur in Form einer Unter-

richtssequenz

Sprechstunde Dozent: n. V.

WS 2015/16

Seminar: Schulmathematische Themen mit Geogebra

Dozent: Dr. Gerhard Metzger

Zeit/Ort: Mo 14–17 Uhr, SR 131 (Vorraum Didaktik), Eckerstr. 1

Teilnehmerliste: Interessenten sollen sich bitte in eine bei Frau Schuler ausliegende

Liste eintragen, Raum 132, Di-Do, 9-13 Uhr und 14-16:30 Uhr.

Web-Seite: http://home.mathematik.uni-freiburg.de/didaktik/

Inhalt:

Geogebra ist eine dynamische Geometriesoftware, die die Möglichkeiten von Computeralgebrasystemen und Dynamischer Geometriesoftware verbindet. Sie wird immer stärker auch im Unterricht eingesetzt.

In diesem Seminar sollen konkrete, unterrichtsrelevante Beispiele aus allen Jahrgangsstufen fachwissenschaftlich und fachdidaktisch aufgearbeitet werden. An ihnen werden Kenntnisse über den Einsatz von Geogebra vermittelt. Dabei wird auch stets der sinnvolle Einsatz von Geogebra thematisiert. Die Erstellung eigener Arbeitsblätter wird angestrebt.

Mögliche Themen sind z. B. der Einsatz von Geogebra im Geometrieunterricht, bei der Behandlung von Extremwert- und Optimierungsaufgaben, bei der Einführung von Ableitung und Integral und im Stochastikunterricht.

Typisches Semester: ab dem 1. Semester

ECTS-Punkte: 4 Punkte

Nützliche Vorkenntnisse: Kenntnisse aus den Anfängervorlesungen

Sprechstunde Dozent: n. V., Terminvereinbarung unter gerhard-metzger@t-online.de

Abteilung für Angewandte Mathematik

WS 2015/16

Prakt. Übung zu: Numerik (1. Teil der zweisemestrigen Veranstaltung)

Dozent: Prof. Dr. S. Bartels

Zeit/Ort: Di, Fr 10–12 Uhr; Mi, Do 16–18 Uhr; Do 14–16 Uhr;

CIP-Pool Raum 201, Hermann-Herder-Str. 10,

Übungen: **2-std.** (14-tägl.);

Termin zur Wahl im Rahmen der Kapazitäten.

Tutorium: Dipl.-Math. A. Papathanassopoulos

Web-Seite: http://aam.uni-freiburg.de/bartels

Inhalt:

In der praktischen Übung zur Numerik-Vorlesung sollen die in der Vorlesung entwickelten und analysierten Algorithmen praktisch umgesetzt und getestet werden. Dies wird in der Programmiersprache C sowie mit Hilfe der kommerziellen Software Matlab zur Lösung und Visualisierung mathematischer Probleme geschehen. Elementare Programmierkenntnisse werden vorausgesetzt.

Literatur:

- 1.) R. Plato: Numerische Mathematik kompakt. Vieweg, 2006.
- 2.) R. Schaback, H. Wendland: Numerische Mathematik. Springer, 2004.
- 3.) J. Stoer, R. Burlisch: Numerische Mathematik I, II. Springer, 2007, 2005.
- 4.) G. Hämmerlin, K.-H. Hoffmann: Numerische Mathematik. Springer, 1990.
- 5.) P. Deuflhard, A. Hohmann, F. Bornemann: Numerische Mathematik I, II. DeGruyter, 2003.

Typisches Semester: 3. Semester

ECTS-Punkte: (für Teile 1 und 2 zusammen) 3 Punkte

Notwendige Vorkenntnisse: Vorlesung Numerik (parallel)

Sprechstunde Dozent: Mi, 12–13 Uhr, Zi. 209, Hermann-Herder-Str. 10 und n. V. Sprechstunde Assistent: Mi, 11–12 Uhr, Zi. 208, Hermann-Herder-Str. 10 und n. V.

Abteilung für Angewandte Mathematik

WS 2015/16

Prakt. Übung zu: Einführung in Theorie und Numerik partieller

Differentialgleichungen

Dozent: Prof. Dr. M. Růžička

Zeit/Ort: Mo 16–18 Uhr, CIP-Pool, Hermann-Herder-Str. 10

Tutorium: T. Malkmus

Web-Seite: http://aam.uni-freiburg.de/lehre/ws15/prapde0

Inhalt:

In den praktischen Übungen sollen die in der Vorlesung "Einführung in die Theorie und Numerik partieller Differentialgleichungen" vorgestellten numerischen Verfahren zur Lösung partieller Differentialgleichungen implementiert werden. Ziel ist die Erstellung eines Programmpakets zur Berechnung von Näherungslösungen elliptischer Differentialgleichungen mit Hilfe der Finite-Elemente-Methode.

Das Praktikum setzt Programmierkenntnisse in einer Programmiersprache voraus (z. B. C/C++, Matlab, Python, Java, ...).

Studierenden, die vorhaben, in der Angewandten Mathematik eine Arbeit zu schreiben, wird die Teilnahme an den praktischen Übungen empfohlen.

Literatur:

- 1.) D. Braess, Finite Elemente, Springer, Berlin (2007)
- 2.) H. R. Schwarz, Methode der Finiten Elemente, Teubner, Stuttgart (1991)
- 3.) G. Dziuk, Theorie und Numerik partieller Differentialgleichungen, De Gruyter (2010)

Typisches Semester: 5. Semester ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Einführung in Theorie und Numerik partieller Differentialglei-

chungen (parallel), Programmierkenntnisse

Sprechstunde Dozent: Mi 13–14 Uhr, Raum 145, Eckerstr. 1

Sprechstunde Assistent: Di 10–11 Uhr, Raum 210, Herrmann-Herder-Str. 10

Abteilung für Angewandte Mathematik

WS 2015/16

Prakt. Übung zu: Theorie und Numerik für hyperbolische Erhal-

tungsgleichungen

Dozent: Dr. M. Nolte

Zeit/Ort: Mi 10–12 Uhr, CIP-Pool, R. 201, Hermann-Herder-Str. 10

Tutorium: Janick Gerstenberger

Web-Seite: http://aam.uni-freiburg.de/lehre/ws15/hyppde/

Inhalt:

In den praktischen Übungen werden die in der Vorlesung "Theorie und Numerik für hyperbolische Erhaltungsgleichungen" besprochenen Algorithmen implementiert und an praktischen Beispielen getestet. Ziel sind die Implementierung von Finite Differenzen (FD) und Finite Volumen (FV) Verfahren zur numerischen Lösung von skalaren hyperbolischen Erhaltungsgleichungen.

Das Praktikum setzt Kenntnisse in einer gängigen Programmiersprache voraus (z. B. C/C++, Python, Matlab, Java, . . .).

Studierenden, die das Ziel haben in der Angewandten Mathematik eine Zulassungs- oder Masterarbeit zu schreiben, wird die Teilnahme an den praktischen Übungen empfohlen.

Typisches Semester: ab dem 7. Semester

ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Theorie und Numerik für hyperbolische Erhaltungsgleichungen

(parallel), Programmierkenntnisse

Sprechstunde Dozent: Mi 11–12 Uhr und n. V., Raum 204, Hermann-Herder-Str. 10

Sprechstunde Assistent: n. V., Raum 210, Hermann-Herder-Str. 10

3. Seminare

WS 2015/16

Proseminar: Elementare Algebraische Geometrie

Dozentin: Prof. Dr. Stefan Kebekus

Zeit/Ort: Mi 10–12 Uhr, SR 125, Eckerstr. 1

Tutorium: Dr. Behrouz Taji

Vorbesprechung: Mo, 27.7.2015, 10:00 Uhr im SR 127, Eckerstraße 1.

Bitte melden Sie sich bei uns, wenn Sie Probleme haben,

diesen Termin wahrzunehmen.

Teilnehmerliste: Wenn Sie an diesem Proseminar teilnehmen möchten, tragen Sie

sich bitte bis zur Vorbesprechung in meinem Sekretariat bei Frau

Frei (Raum 433) verbindlich in die Teilnehmerliste ein.

Web-Seite: http://home.mathematik.uni-freiburg.de/kebekus/teaching

Auf dieser Seite finden Sie ab etwa Ende Juni detaillierte Informa-

tionen über Vortragsinhalte und -planung.

Inhalt:

Algebraische Geometrie ist ein aktives Gebiet der modernen Mathematik mit Verbindungen zu vielen weiteren Forschungsrichtungen wie der komplexen Geometrie, Differentialgeometrie und Algebra. Es gibt Anwendungen in der Informatik und Cryptographie. In diesem Proseminar werden die Grundbegriffe der algebraischen Geometrie eingeführt und an konkreten Problemstellungen illustriert.

Literatur:

- 1.) Frances Kirwan, Complex Algebraic Curves, Cambridge University Press
- 2.) Cox/Little/O'Shea: Ideals, Varieties and Algorithms, Springer
- 3.) Hassett, Introduction to Algebraic Geometry, Cambridge University Press

Typisches Semester: ab dem 4. Semester

ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Anfängervorlesungen in Linearer Algebra und Analysis

Nützliche Vorkenntnisse: Algebra oder Funktionentheorie

Folgeveranstaltungen: Das Proseminar passt inhaltlich gut zur Vorlesung "Algebra

und Zahlentheorie". Im SS16 wird eine weiterführende Vorle-

sung und ein weiterführendes Seminar angeboten.

Studienleistung: Regelmäßige Teilnahme

Prüfungsleistung: Vortrag

Sprechstunde Dozent: Mi 13–14 Uhr, Zi. 432, Eckerstr. 1

Sprechstunde Assistent: Fr 14–16 Uhr und n. V., Zi. 425, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2015/16

Proseminar: Graphentheorie

Dozentin: Prof. Dr. Heike Mildenberger

Zeit/Ort: Di 16–18, SR 318, Eckerstr. 1

Tutorium: Dr. Doris Hein

Vorbesprechung: Mo, 13.7.2015, 13:00 Uhr, SR 318, Eckerstr. 1

Teilnehmerliste: bis 10.7.2015 in Raum 312 bei Frau Samek

Web-Seite: http://home.mathematik.uni-freiburg.de/mildenberger/

veranstaltungen/ws2015/proseminar.html

Inhalt:

In diesem Proseminar studieren wir einige grundlegende Themen aus der Graphentheorie. Ein (ungerichteter) Graph ist eine Struktur (V, E) mit einer nicht leeren Menge V von Knoten (vertices) und einer Menge $E \subseteq \{\{x,y\}: x \neq y, x,y \in V\}$ von Kanten (edges). Als Beispiel für einen Satz mit einem graphentheoretischen Beweis nennen wir einen Satz von Dilworth über Halbordnungen:

Sei $m \geq 1$ eine natürliche Zahl, und sei (H, \leq) eine Halbordnung. Wenn in (H, \leq) jede Menge von paarweise unvergleichbaren Elementen höchstens m Elemente hat, dann lässt sich H als Vereinigung von höchstens m Ketten schreiben. Eine Kette ist eine Teilmenge, die durch \leq linear geordnet ist.

Literatur:

- 1.) R. Diestel, Graph Theory, 2010
- 2.) B. Bollobás, Graph Theory, 1979

Typisches Semester: ab dem dritten Semester

ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Anfängervorlesungen Prüfungsleistung: Vortrag an der Tafel

Sprechstunde Dozentin: Di 13–14 Uhr, Zi. 310, Eckerstr. 1

Sprechstunde Assistentin: n. V., Zi. 323, Eckerstr. 1

Proseminar: Kombinatorik

Dozent: Dr. Andrej Depperschmidt

Zeit/Ort: Wird in der Vorbesprechung festgelegt.

Beginn: Januar 2016

Vorbesprechung: Do 23.7.2015, 17:15 Uhr, Zi. 232, Eckerstr. 1

Teilnehmerliste: Eintrag in eine Liste im Sekretariat der Stochastik (Zi. 226 bzw. 245,

Eckerstr. 1) ab 8.7.2015 bis zum 21.7.2015

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Grob gesagt, beschäftigt sich Kombinatorik mit Abzählen von Elementen in bestimmten endlichen Mengen. Typischerweise handelt es sich dabei um Mengen von Anordnungen (Permutationen), Auswahlen (Kombinationen) und Zerlegungen (Partitionen). Erste einfache Resultate aus der Kombinatorik dürften bereits aus den Anfängervorlesungen und insbesondere Stochastik bekannt sein. Man denke z. B. an den Binomischen Lehrsatz oder Urnenmodelle aus der (elementaren) Stochastik. Im Gegensatz zu vielen anderen Teilgebieten der Mathematik lassen sich typische Probleme der Kombinatorik oft sehr einfach (auch für Nichtmathematiker verständlich) formulieren. Die Lösungen sind mitunter schwerer als es zunächst erscheinen mag. Exemplarisch sei hier das Ménage-Problem erwähnt:

Auf wie viele Weisen können n Ehepaare um einen runden Tisch mit 2n Plätzen so gesetzt werden, dass die Geschlechter alternieren und dass keine Ehefrau neben ihrem Ehemann sitzt?

Wir orientieren uns bei der Themenauswahl hauptsächlich an Jacobs & Jungnickel (2003).

Literatur:

- 1.) Martin Aigner und und Günter M. Ziegler: Das BUCH der Beweise, Springer 2015 (4. Auflage)
- 2.) Titu Andreescu und Zuming Feng: A Path to Combinatorics for Undergraduates, Springer 2004 (ursprünglich Birkhäuser 2004)
- 3.) Konrad Jacobs und Dieter Jungnickel: Einführung in die Kombinatorik. De Gruyter 2003 (2. Auflage)
- 4.) Peter Tittmann: Einführung in die Kombinatorik. Springer 2014 (2. Auflage)

Typisches Semester: 5. (nach dem Praxissemester)

ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Anfängervorlesungen

Nützliche Vorkenntnisse: Stochastik

Studienleistung: Regelmäßige Teilnahme

Prüfungsleistung: Vortrag

Sprechstunde Dozent: Do 12–13 Uhr, Zi. 248, Eckerstr. 1

Kommentar: Dieses Proseminar richtet sich in erster Linie an Lehramtsstu-

dierende im Praxissemester.

Proseminar: Zahlentheorie

Dozent: Dr. Oliver Bräunling

Zeit/Ort: Mi 12–14 Uhr, SR 404, Eckerstr. 1

Tutorium: Dr. Oliver Bräunling

Vorbesprechung: steht noch nicht fest

Teilnehmerliste: bei Frau Frei (Raum 433, Eckerstraße 1)

Web-Seite: http://home.mathematik.uni-freiburg.de/arithmetische-

geometrie/lehre/ws15/proseminar.htm

Inhalt:

Wie groß ist die Wahrscheinlichkeit, dass zwei zufällig gewählte natürliche Zahlen teilerfremd sind? Überraschenderweise $6/\pi^2$, wobei es zunächst völlig unklar erscheinen mag, was Primzahlen überhaupt mit einer Zahl wie π zu tun haben. Wie viele Möglichkeiten gibt es eine natürliche Zahl n als Summe natürlicher Zahlen zu schreiben? Wenn n klein ist, kann man das von Hand schnell durchprobieren. Für große n wird dies zunehmend unpraktikabel. Man kann jedoch zeigen, dass je größer n, die Zahl ungefähr

$$\frac{1}{4n\sqrt{3}}e^{\pi\sqrt{2n/3}}$$

ist. Wir wollen uns mit solchen oder ähnlichen Fragen beschäftigen. Auch damit, was eine algebraische oder transzendente Zahl ist, und warum es kein Polynom mit rationalen Koeffizienten gibt, dass bei π eine Nullstelle hat.

Literatur:

- 1.) M. AIGNER, G. ZIEGLER Proofs from THE BOOK (2nd Edition), Springer, 2000
- 2.) J. P. Delahaye Pi Die Story, Birkhäuser, 1999 (Übersetzung des franz. Originals, Le fascinant nombre π , Belin, Pour la Science, 1997)
- 3.) D. J. Newman Analytic Number Theory, Springer 1998
- 4.) S. Lang Introduction to transcendental numbers, Addison-Wesley 1966
- 5.) T. Apostol Introduction to Analytic Number Theory, Springer 1976

Es gibt zahlreiche weitere Quellen, die vergleichbares Material abdecken.

Typisches Semester: ab 2. Semester ECTS-Punkte: 3 Punkte

Notwendige Vorkenntnisse: Analysis I, Lineare Algebra

Nützliche Vorkenntnisse: Funktionentheorie

Sprechstunde Dozent: Di 14–16 Uhr, Zimmer 436, Eckerstr. 1

Seminar: Allgemeine Relativitätstheorie

Dozentin: Katrin Wendland

Zeit/Ort: Di 14–16 Uhr, SR 404, Eckerstr. 1

Tutorium: Anda Degeratu

Vorbesprechung: Di, 14.7.2015, 12:15 Uhr, SR 318, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/mathphys/lehre/

WiSe15/ART.html

Inhalt:

Introduced in 1915 by Einstein, General Relativity is a geometric theory of gravitation. It generalizes Special Relativity and Newton's Law of Gravitation. Its essence are Einstein's Field Equations, which describe how spacetime is curved by the presence of energy and matter. The goal of this seminar is to derive and discuss Einstein's Field Equations. Among the topics to be discussed are:

- (1) Newtonian limit and weak gravitation,
- (2) the Schwarzschild solution and predictions for the motions of planets and the bending of light,
- (3) the extended Schwarzschild solution and black holes,
- (4) the Friedmann-Lemaitre-Robertson-Walker solutions and explanation of cosmological redshift and the origins of big-bang.

Notwendige Vorkenntnisse: Differential and Riemannian Geometry

Nützliche Vorkenntnisse: Knowing tensors and tensor calculus as well as some classical

physics will be helpful.

Sprechstunde Dozentin: Mi 13–14 Uhr, Zi. 337, Eckerstr. 1 Sprechstunde Assistentin: Mo 13–15 Uhr, Zi. 325, Eckerstr. 1

Seminar: Elementare Differentialgeometrie

Dozent: Prof. Dr. V. Bangert

Zeit/Ort: Fr 14–16 Uhr, SR 404, Eckerstr. 1

Tutorium: Dr. B. Mramor, Dr. B. Taji

Vorbesprechung: Do, 23.7.2015, 13:00–14:00 Uhr, SR 404, Eckerstr. 1.

Teilnehmerliste: Bitte tragen Sie sich bis 17.7.2015 in eine bei Frau Wöske (Zi. 336,

Mo-Mi 12-16 Uhr, Fr 8-12 Uhr) ausliegende Liste ein.

Web-Seite: http://home.mathematik.uni-freiburg.de/geometrie/lehre/

ws2015/seminar/ElDiffgeo/index.html

Inhalt:

Ziel des Seminars ist die Vertiefung des Stoffs der Vorlesung "Elementare Differentialgeometrie". In den Vorträgen werden weitere Ergebnisse über Kurven und Flächen im euklidischen Raum behandelt werden.

Das Seminar ist vor allem für Studierende des Lehramtsstudiengangs vorgesehen. Frei bleibende Plätze können an Studierende anderer Studiengänge vergeben werden.

Typisches Semester: ab 5. Semester

Notwendige Vorkenntnisse: Elementare Differentialgeometrie

Prüfungsleistung: Vortr

Sprechstunde Dozent: Di 14–15 Uhr, Zi. 335, Eckerstr. 1

Seminar: Homotopietheorie

Dozentin: Prof. Dr. S. Goette

Zeit/Ort: Mo 14–16 Uhr, SR 127, Eckerstr. 1

Tutorium: Dr. Doris Hein

Vorbesprechung: Do, 23.7.2015, 13:00 Uhr, SR 119, Eckerstr. 1

Web-Seite: http://www.mathematik.uni-freiburg.de/goette/

Inhalt:

Wir schauen uns Anwendungen der algebraischen Topologie, speziell der Homotopietheorie an. Die genaue Auswahl der Themen erfolgt bei der Vorbesprechung.

Mit den Adams-Operationen in K-Theorie kann man beispielsweise zeigen, dass \mathbb{R} , \mathbb{C} , \mathbb{H} und \mathbb{O} die einzigen normierten Divisionsalgebren über \mathbb{R} sind. Charakteristische Klassen und Zahlen erlauben eine grobe Bordismus-Klassifikation glatter Mannigfaltigkeiten.

Die Steenrod-Algebra A(p) beschreibt \mathbb{Z}/p -Kohomologieoperationen. Für jeden Raum X ist $\tilde{H}^{\bullet}(X,\mathbb{Z}/p)$ ein A(p)-Modul, und stetige Abbildungen induzieren A(p)-lineare Abbildungen. Das ermöglicht Aussagen zur Existenz stetiger Abbildungen, beispielsweise lässt sich die maximale Anzahl punktweise linear unabhängiger Vektorfelder auf S^n bestimmen. Spektralsequenzen sind Folgen von Kettenkomplexen, wobei jeder einzelne Komplex die Homologie seines Vorgängers ist. Erste Beispiele sind die Atiyah-Hirzebruch-Spektralsequenz, mit der man beliebige allgemeine (Ko-) Homologiefunktoren für CW-Komplexe bestimmen kann. Eng verwandt ist die Leray-Serre-Spektralsequenz für Faserbündel.

Mit Hilfe der Adams-Spektralsequenz und A(p) lässt sich die Menge $[X,Y]^s$ der Homotopieklassen stabiler Abbildungen von X nach Y beschreiben, beispielsweise lassen sich einige stabile Homotopiegruppen der Sphären berechnen.

Für andere Themenvorschläge bin ich offen. Beispielsweise könnten sich im Rahmen der Sommerschule "Mannigfaltigkeiten und K-Theorie" weitere Themen ergeben.

Literatur:

- 1.) J. F. Adams, Stable homotopy and generalised homology, The University of Chicago Press, Chicago, 1974.
- 2.) A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002, xii+544S., http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- 3.) ——, Vector bundles and K-theory, preprint,

http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html

4.) ——, Spectral Sequences in Algebraic Topology, preprint, http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html

Typisches Semester: 1.–3. Semester M.Sc.

Notwendige Vorkenntnisse: Algebraische Topologie I/II Sprechstunde Dozent: n. V., Zi. 340, Eckerstr. 1 Sprechstunde Assistentin: n. V., Zi. 323, Eckerstr. 1

Seminar: Minimalflächen

Dozent: Ernst Kuwert

Zeit/Ort: Di 14–16 Uhr, SR 125, Eckerstr. 1

Tutorium: Marco Mattuschka

Vorbesprechung: Mi, 15.7.2015, 18:00 Uhr, SR 218, Eckerstr. 1

Teilnehmerliste: Email an ludmilla.frei@math.uni-freiburg.de bis 12.7.2015

Web-Seite: http://www.mathematik.uni-freiburg.de/

Inhalt:

Das Seminar behandelt Themen aus der Theorie der zweidimensionalen Minimalflächen, also der Flächen mit mittlerer Krümmung Null. Geometrische Vorkenntnisse sind nicht vorausgesetzt, die notwendigen Begriffe werden mit erarbeitet. Ein Teil der Vorträge basiert auf reellen Methoden wie zum Beispiel dem Maximumprinzip; ein zweiter Teil wird komplexe Methoden beleuchten, wie sie zum Teil in der Vorlesung über Funktionentheorie im Sommer behandelt wurden. Das Buch von Osserman stellt eine Grundlage für das Seminar dar, die durch weitere Literatur ergänzt wird. Das Seminar wendet sich an Studierende im Bachelor/Master als auch im Lehramt.

Literatur:

- 1.) Osserman, R., A survey of minimal surfaces, Van Nostrand 1969.
- 2.) Colding, T., Minicozzi, W.P., Minimal Surfaces, New York University 1999.

Typisches Semester: 5. Semester

Notwendige Vorkenntnisse: Analysis 3 oder Mehrfachintegrale

Nützliche Vorkenntnisse: Funktionentheorie oder Elem. Differentialgeometrie

Prüfungsleistung: Vortrag

Sprechstunde Dozent: Mi 11:15–12:15 Uhr, Zi. 208, Eckerstr. 1 Sprechstunde Assistent: Mo, Mi 10–12 Uhr, Zi. 205, Eckerstr. 1

Abteilung für Mathematische Logik

WS 2015/16

Seminar: Seminar über Modelltheorie

Dozent: Martin Ziegler

Zeit/Ort: Mi 8–10 Uhr, SR 318, Eckerstr. 1

Tutorium: Moshen Khani

Vorbesprechung: Do, 23.7.2015, 9:45 Uhr, SR 404, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/ziegler/

veranstaltungen/ws16-seminar.html

Inhalt:

Im Seminar lesen wir das neue Buch von Pierre Simon über NIP-Theorien.

Sei T eine vollständige Theorie. Eine Formel $\phi(x,y)$ hat die Unabhängigbkeitseigenschaft, wenn es für jede Relation $R \subset \{1,\ldots n\}^2$ ein Modell M von T und Elemente a_1,\ldots,a_n und b_1,\ldots,b_n in M gibt, sodaß

$$M \models \phi(a_i, b_i) \Leftrightarrow iRj.$$

T ist NIP (hat Nicht die Independence Property), wenn keine Formel die Unabhängigkeitseigenschaft hat. Eine Theorie ist genau dann stabil, wenn sie einfach und NIP ist. NIP-Theorien, die nicht einfach sind, sind zum Beispiel o-minimale Theorien, insbesondere die Theorie des Körpers der reellen Zahlen.

Literatur:

- 1.) P. Simon A Guide to NIP-Theories, http://www.normalesup.org/~simon/NIP_guide.pdf oder bei Cambridge University Press
- 2.) K. Tent und M. Ziegler *A course in Model Theory* Lecture Notes in Logic 40, Cambridge UP 2012.

Typisches Semester: ab 5. Semester Notwendige Vorkenntnisse: Modelltheorie 1

Sprechstunde Dozent: n. V., Zi. 313, Eckerstr. 1

Abteilung für Angewandte Mathematik

WS 2015/16

Seminar: Mathematische Modellierung von Mehrphasen-

strömungen mit Phasenübergang

Dozent: Prof. Dr. D. Kröner

Zeit/Ort: Di 16–18 Uhr, SR 226, Hermann-Herder-Str. 10

Tutorium: M. Kränkel

Vorbesprechung: Mi, 15.7.2015, 16:00 Uhr, Besprechungs-Raum neben SR

226, Hermann-Herder-Str. 10

Web-Seite: http://aam.uni-freiburg.de/

Inhalt:

Dieses Seminar ist ein gemeinsames Seminar mit dem Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg. In diesem Seminar werden wir mathematische Modelle für Mehrphasenströmungen mit Phasenübergang herleiten und diese Modelle analysieren und die Lösungen numerisch approximieren. Mehrphasenströmungen entstehen z. B. beim Kochen von Wasser. In diesem Falle sind die beiden Phasen Wasser bzw. Wasserdampf. Ständig wird Wasser verdampft bzw. Wasserdampf kondensiert.

Ein anderes Beispiel kommt vor im Zusammenhang mit der magnetokalorischen Kühlung. In diesem Falle werden zur Erwärmung des Wassers Materialien verwendet, die durch Anlegen eines Magnetfeldes ihre Temperatur ändern. Durch geschickte Anordnung dieser Magneten und geeignete Änderung des Magnetfelds kann man in periodischer Weise Wasser zum Verdampfen bzw. Kondensieren bringen und damit einen Kühlprozess initiieren. Das technologische Fernziel dieses Prozesses ist die Ersetzung von Fluorkohlenwasserstoffen als Kühlmittel durch diesen magnetokalorischen Prozess.

Das Seminar richtet sich an Studierende ab dem 5. Semester, die Erfahrungen haben im Bereich partielle Differentialgleichungen und Numerik.

Typisches Semester: ab 5. Semester

Notwendige Vorkenntnisse: Numerik I, II; Numerik für Differentialgleichungen; Theorie

und Numerik für partielle Differentialgleichungen

Sprechstunde Dozent: Mi 11–12 Uhr und n. V., Zi. 215, Hermann-Herder-Str. 10

Sprechstunde Assistent: n. V., Zi. 223, Hermann-Herder-Str. 10

Abteilung für Angewandte Mathematik

WS 2015/16

Seminar: Sobolev-Funktionen und deren Approximation

Dozent: Prof. Dr. S. Bartels

Zeit/Ort: Di 16–18 Uhr, HS II, Albertstr. 23 b

Tutorium: M. Milicevic, M.Sc.

Vorbesprechung: Mo, 20.7.2015, 15:30 Uhr, SR 226, Hermann-Herder-Str.

10

Teilnehmerliste: Bei Frau Ruf, Zi. 205, Hermann-Herder-Str. 10

Web-Seite: http://aam.uni-freiburg.de/bartels

Inhalt:

Im Seminar sollen grundlegende Eigenschaften von Sobolev-Funktionen sowie deren Approximation durch Finite-Elemente Funktionen diskutiert werden. Ein wesentlicher Aspekt ist dabei die Vermeidung von höheren Regularitätsannahmen.

Literatur:

- 1.) M. Dobrowolski: Angewandte Funktionalanalysis, Springer, 2010.
- 2.) H.-W. Alt: Lineare Funktionalanalysis, Springer, 2002.
- 3.) S.C. Brenner, L.R. Scott: The Mathematical Theory of Finite Element Methods, Springer, 2007.
- 4.) R.A. Adams, J.J.F. Fourner: Sobolev Spaces, Academic Press, 2003.
- 5.) W.P. Ziemer: Weakly Differentiable Functions, Springer, 1989.

Typisches Semester: ab 6. Semester

Notwendige Vorkenntnisse: Funktionalanalysis, Einführung in die Theorie und Numerik

partieller Differentialgleichungen

Studienleistung: Regelmäßige Teilnahme

Prüfungsleistung: Vortrag und zweiseitige Ausarbeitung

Sprechstunde Dozent: Mi 12–13 Uhr, Zi. 209, Hermann-Herder-Str. 10 und n. V. Sprechstunde Assistent: Mo 14–15 Uhr, Zi. 211, Hermann-Herder-Str. 10 und n. V.

Seminar: Kategorientheorie und Quantengruppen

Dozentin: Prof. W. Soergel

Zeit/Ort: Mi 10–12 Uhr, SR 127, Eckerstr. 1

Tutorium: A. Sartori

Vorbesprechung: Mo, 20.07.2015, 12:15 Uhr, SR 404, Eckerstr. 1

Web-Seite: http://home.mathematik.uni-freiburg.de/asartori/lehre/

ws15katq/index.html

Inhalt:

Wir beginnen mit dem allgemeinen Formalismus der Kategorientheorie nach [Saunders-MacLane]. Im weiteren Verlauf studieren wir dann monoidale Kategorien und ihre Beziehung zu Quantengruppen nach [Kassel].

Literatur:

- 1.) Saunders-MacLane, Categories for the working mathematician
- 2.) Christian Kassel, Quantum groups

Typisches Semester: 5. Semester

Notwendige Vorkenntnisse: Lineare Algebra I und II

Nützliche Vorkenntnisse: Weitere Veranstaltungen zur Algebra oder Topologie

Sprechstunde Dozent: Do 11:30–12:30 Uhr, Zi. 429, Eckerstr. 1

Seminar: Ringe stetiger Funktionen: Grundlagen

Dozent: PD Dr. Dr. Heinz Weisshaupt

Zeit/Ort: Blockseminar, Termin nach Absprache

Vorbesprechung: Do, 16.07.2015, 12:15-13:15 Uhr, SR 404, Eckerstr. 1

Teilnehmerliste: Eintrag in eine Liste im Sekretariat der Stochastik (Zi. 226 bzw. 245,

Eckerstr. 1) ab 8.7.2015 bis zum 15.7.2015

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Das Seminar behandelt Fragestellungen betreffend den Zusammenhang zwischen den topologischen Eigenschaften eines Raumes X und den algebraischen Eigenschaften des Ringes C(X) der stetigen reellwertigen Funktionen auf X, bzw. des Teilringes $C^*(X)$ der beschränkten Funktionen in C(X). Insbesondere wird die Frage der Charakterisierbarkeit eines Raumes X durch die Ringe C(X) bzw. $C^*(X)$ untersucht. Hierbei kommt den Nullstellenmengen stetiger Funktionen besondere Bedeutung zu.

Literatur:

1.) [GJ] Gillman and Jerison, Rings of Continuous functions

Vor der Vorbesprechung sollten Sie sich [GJ] 0.8 bis 0.11 kurz ansehen.

(Hierbei können Sie vorläufig annehmen, dass alle vorkommenden Räume metrisch sind. Ein Raum ist kompakt, sofern jede Überdeckung des Raumes durch offene Mengen eine endliche Teilüberdeckung besitzt.)

Typisches Semester: Ab dem 5. Semester; auch für höhere Semester

Notwendige Vorkenntnisse: Analysis I+II, Lineare Algebra I+II; Freude an abstrakten

Konzepten und die Bereitschaft neue Konzepte zu erlernen.

Nützliche Vorkenntnisse: Kenntnisse in Topologie. Grundbegriffe der Ringtheorie; wobei

es genügt diese für Funktionenringe zu verstehen.

Sprechstunde Dozent: Nach Vereinbarung

Seminar: Ringe stetiger Funktionen: Ausgewählte Kapitel

Dozent: PD Dr. Dr. Heinz Weisshaupt

Zeit/Ort: Blockseminar, Termin nach Absprache

Vorbesprechung: Do, 16.7.2015, 12:15–13:15 Uhr, SR 404, Eckerstr. 1

Teilnehmerliste: Eintrag in eine Liste im Sekretariat der Stochastik (Zi. 226 bzw. 245,

Eckerstr. 1) ab 8.7.2015 bis zum 15.7.2015

Web-Seite: http://www.stochastik.uni-freiburg.de/

Inhalt:

Der Zusammenhang zwischen den topologischen Eigenschaften eines Raumes X und den algebraischen Eigenschaften des Ringes C(X) der stetigen reellwertigen Funktionen auf X wird zur Untersuchung verschiedener mathematischer Objekte wie der Stone-Čech-Kompaktifizierung, der hyper-reellen Zahlen, des Dimensionsbegriffes oder nichtmessbarer Kardinalzahlen angewandt.

Literatur:

1.) [GJ] Gillman and Jerison, Rings of Continuous functions

Das Seminar kann auch gemeinsam mit dem Seminar 'Ringe stetiger Funktionen: Grundlagen' besucht werden.

Typisches Semester: Ab dem 5. Semester; auch für höhere Semester

Notwendige Vorkenntnisse: Analysis I+II, Lineare Algebra I+II, Vorkenntnisse aus dem

Gebiet der allgemeinen Topologie (oder Funktionalanalysis)

Nützliche Vorkenntnisse: Filterkonvergenz, abstrakte Algebra.

Sprechstunde Dozent: Nach Vereinbarung

Institut für

Medizinische Biometrie und Medizinische Informatik

WS 2015/16

Seminar: Statistische Modelle in der klinischen Epidemio-

logie

Dozent: Prof. Dr. Martin Schumacher

Zeit/Ort: Mi 10–11:30 Uhr, HS Med. Biometrie und Med. Informa-

tik, Stefan-Meier-Str. 26, 1. OG

Vorbesprechung: Mi 15.7.2015, 11:30–12:30 Uhr, Konferenzraum Med. Bio-

metrie und Med. Informatik, Stefan-Meier-Str. 26, 1. OG

Teilnehmerliste: Vorherige Anmeldung per E-Mail (sec@imbi.uni-freiburg.de) ist

erwünscht.

Web-Seite: http://portal.uni-freiburg.de/imbi/lehre/WS/

Hauptseminar

Inhalt:

Moderne statistische Methoden und Modellierungstechniken im Bereich der Biostatistik adressieren komplexe Fragestellungen in den biomedizinischen Wissenschaften, wie z.B. die Einbeziehung molekularer Information in Studien zur Ätiologie, Diagnose/Prognose und Therapie. Eine Auswahl solcher Problemstellungen soll in den Seminarvorträgen vorgestellt werden, die sich an kürzlich erschienenen Originalarbeiten orientieren; die genaue thematische Ausrichtung wird noch festgelegt.

Zu Beginn des Seminars werden ein oder zwei Übersichtsvorträge stehen, die als Einführung in die Thematik dienen.

Das Hauptseminar ist terminlich und inhaltlich mit dem Oberseminar "Medizinische Statistik" abgestimmt.

Literatur wird in der Vorbesprechung bekannt gegeben.

Das Seminar beginnt am 21.10.2015 und endet mit dem 10.02.2016.

Typisches Semester: Für Masterstudent(inn)en

Notwendige Vorkenntnisse: gute Kenntnisse in Wahrscheinlichkeitstheorie und Mathema-

tischer Statistik

Sprechstunde Dozent: n.V.

Seminar/ Continuous Time Finance

Topics Course:

Dozentin: Prof. Dr. E. Lütkebohmert-Holtz

Zeit/Ort: Mo 10–12 Uhr, HS 1221, KG I

Tutorium: Prof. Dr. E. Lütkebohmert-Holtz

Vorbesprechung: Am ersten Veranstaltungstermin (19.10.2015)

Teilnehmerliste: Interessenten werden gebeten, sich bis zum 30.09.2015 per Mail an

das Sekretariat

claudia.manzoni@finance.uni-freiburg.de

anzumelden. Bitte geben Sie hierbei Ihren Namen, Matrikelnummer,

Studiengang und aktuelle Semesterzahl an!

Web-Seite: http://www.finance.uni-freiburg.de/

Inhalt:

This topics course provides a continuation and natural extension of the lecture "Futures and Options" which mainly dealt with the valuation of derivatives in discrete time. In this course, we introduce financial models in continuous time and discuss their application to option pricing, interest rate modelling, and bond pricing. At the first dates, the basic concepts, definitions, and main results will be presented in lecture form by the instructor. Using these prerequisites, the presentations of the participants then will be given at subsequent dates.

A first general overview can be obtained from the literature given below. A more detailed reference list will be provided in the first lecture.

The topics course, which will be given in English, is offered for students in the Finance profile of the M.Sc. Economics, but is also open to students of M.Sc. Volkswirtschaftslehre and M.Sc. Mathematics, especially to those of the profile "Finanzmathematik". For students of mathematics, the topic course is considered as a "Seminar".

Literatur:

- 1.) **Bingham, N., Kiesel, R.:** Risk Neutral Valuation: Pricing and Hedging of Financial Derivatives (2nd ed.), Springer Finance, 2004
- 2.) Björk, T.: Arbitrage Theory in Continuous Time (3rd ed.), Oxford University Press, 2009
- 3.) Hull, J.C.: Options, Futures, and other Derivatives (7th ed.), Prentice Hall, 2009
- 4.) Shreve, S.E.: Stochastic Calculus for Finance II: Continuous Time Models, Springer Finance, 2004

Typisches Semester: ab 7. Semester

Notwendige Vorkenntnisse: Wahrscheinlichkeitstheorie

Nützliche Vorkenntnisse: Futures and Options, Principles of Finance

Prüfungsleistung: Vortrag und schriftliche Ausarbeitung (ca. 10 Seiten) Sprechstunde Dozentin: n. V., Zi. 2314, KG II, Platz der Alten Synagoge

4. Oberseminare, Projektseminare und Kolloquien

Mathematisches Institut

WS 2015/16

Lesekurs: "Wissenschaftliches Arbeiten"

Dozent: Alle Dozentinnen und Dozenten des Mathematischen

Instituts

Zeit/Ort: nach Vereinbarung

Inhalt:

In einem Lesekurs "Wissenschaftliches Arbeiten" wird der Stoff einer vierstündigen Vorlesung im betreuten Selbststudium erarbeitet. In seltenen Fällen kann dies im Rahmen einer Veranstaltung stattfinden; üblicherweise werden die Lesekurse aber nicht im Vorlesungsverzeichnis angekündigt. Bei Interesse nehmen Sie vor Vorlesungsbeginn Kontakt mit einer Professorin/einem Professor bzw. einer Privatdozentin/einem Privatdozenten auf; in der Regel wird es sich um die Betreuerin/den Betreuer der Master-Arbeit handeln, da der Lesekurs als Vorbereitung auf die Master-Arbeit dienen kann.

Der Inhalt des Lesekurses, die näheren Umstände sowie die zu erbringenden Studienleistungen (typischerweise regelmäßige Treffen mit Bericht über den Fortschritt des Selbststudiums, eventuell Vorträge in einer Arbeitsgruppe (einem Oberseminar, Projektseminar...)) werden zu Beginn der Vorlesungszeit von der Betreuerin/dem Betreuer festgelegt. Die Arbeitsbelastung sollte der einer vierstündigen Vorlesung mit Übungen entsprechen.

Die Betreuerin/der Betreuer entscheidet am Ende der Vorlesungszeit, ob die Studienleistung bestanden ist oder nicht. Im Vertiefungsmodul wird der Stoff des Lesekurses in der mündlichen Abschlussprüfung zusammen mit dem weiteren Stoff abgeprüft.

Typisches Semester:

Kommentar:

Notwendige Vorkenntnisse:

Studienleistung:

Prüfungsleistung:

9. Fachsemester, unmittelbar vor der Master-Arbeit

Teil des Vertiefungsmoduls im Master-Studiengang

hängen vom einzelnen Lesekurs ab wird vom Betreuer festgelegt

Das Vertiefungsmodul wird mit einer mündlichen Prüfung über

u.a. den Stoff des Lesekurses abgeschlossen.

Abteilung für Reine Mathematik

WS 2015/16

Projektseminar: Seminar des Graduiertenkollegs

Dozent: Die Dozenten des Graduiertenkollegs

Zeit/Ort: Mi 14–16 Uhr, SR 404, Eckerstr. 1

Web-Seite: http://gk1821.uni-freiburg.de

Inhalt:

We are studying a subject within the scope our Graduiertenkolleg "Cohomological Methods in Geometry": algebraic geometry, arithmetic geometry, representation theory, differential topology or mathematical physics or a mix thereof.

The precise topic will be chosen at the end of the preceding semester. The program will be made available via our web site.

The level is aimed at our doctoral students. Master students are very welcome to participate as well. ECTS points can be gained as in any other seminar. For enquiries, see Prof. Dr. A. Huber-Klawitter or any other member of the Graduiertenkolleg.

Typisches Semester: ab 7. Semester ECTS-Punkte: 6 Punkte

Notwendige Vorkenntnisse: je nach Thema, meist algebraische Geometrie

Abteilung für Angewandte Mathematik

WS 2015/16

Projektseminar: Numerik

Dozent: Prof. Dr. D. Kröner

Zeit/Ort: Mi 14–16 Uhr, Seminarraum 226, Hermann-Herder-Str. 10

Tutorium: N. N.

Web-Seite: http://aam.uni-freiburg.de/

Inhalt:

In diesem Projektseminar werden Bachelor- und MasterstudentInnen sowie auch DoktorandInnen über die Zwischen- bzw. Endergebnisse ihrer Arbeiten berichten.

Typisches Semester: ab 6. Semester Notwendige Vorkenntnisse: nach Absprache

Sprechstunde Dozent: Mi 11–12 Uhr und n. V., Zi. 215, Hermann-Herder-Str. 10

Projektseminar: Modelle für abhängige Lévy- und Markovprozes-

 \mathbf{se}

Dozent: Prof. Dr. L. Rüschendorf

Zeit/Ort: Mi 14–16 Uhr, Raum 232, Eckerstr. 1

Tutorium: Jonathan Ansari

Web-Seite: http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/

Lesekurs_Rue_WS1516

Inhalt:

Thema des Projektseminars ist die Modellierung von mehrdimensionalen abhängigen Lévyund Markovprozessen. Spezifisch besprechen wir:

- 1) Den Lecture-Notes-Band von Tankov über exponentielle Lévy-Prozesse, Esschertransformation, Optionspreise und hedging
- 2) Die Konstruktion von Lévy-Copulamodellen nach Kallsen, Tankov
- 3) Die dynamische Copula-Modellierung von Markovprozessmodellen von Bielecki et al.

Typisches Semester: ab 8. Semester

Notwendige Vorkenntnisse: stochastische Prozesse

Sprechstunde Dozent: Di 11–12 Uhr, Zi. 242, Eckerstr. 1

Sprechstunde Assistent: Mo 14–15 Uhr, Do 10–12 Uhr, Zi. 228, Eckerstr. 1

Abteilung für Reine Mathematik

WS 2015/16

Forschungseminar: Internationales Forschungsseminar

Algebraische Geometrie

Dozent: Prof. Dr. Stefan Kebekus

Zeit/Ort: zwei Termine pro Semester, n.V., IRMA – Strasbourg,

siehe Website

Web-Seite: http://home.mathematik.uni-freiburg.de/kebekus/ACG/

Inhalt:

The Joint Seminar is a research seminar in complex and algebraic geometry, organized by the research groups in Freiburg, Nancy and Strasbourg. The seminar meets roughly twice per semester in Strasbourg, for a full day. There are about four talks per meeting, both by invited guests and by speakers from the organizing universities. We aim to leave ample room for discussions and for a friendly chat.

The talks are open for everyone. Contact one of the organizers if you are interested in attending the meeting. We have some (very limited) funds that might help to support travel for some junior participants.

Mathematisches Institut

WS 2015/16

Veranstaltung: Kolloquium der Mathematik

Dozent: Alle Dozenten der Mathematik

Zeit/Ort: Do 17:00 Uhr, HS II, Albertstr. 23 b

Inhalt:

Das Mathematische Kolloquium ist eine gemeinsame wissenschaftliche Veranstaltung des gesamten Mathematischen Instituts. Sie steht allen Interessierten offen und richtet sich neben den Mitgliedern und Mitarbeitern des Instituts auch an die Studierenden.

Das Kolloquium wird im Wochenprogramm angekündigt und findet in der Regel am Donnerstag um 17:00 Uhr im Hörsaal II in der Albertstr. 23 b statt.

Vorher gibt es um 16:30 Uhr im Sozialraum 331 in der Eckerstraße 1 den wöchentlichen Institutstee, zu dem der vortragende Gast und alle Besucher eingeladen sind.

Weitere Informationen unter http://home.mathematik.uni-freiburg.de/kolloquium/

${\bf Impressum}$

Herausgeber:

Mathematisches Institut Eckerstr. 1 79104 Freiburg

 $Tel.:\ 0761\text{--}203\text{--}5534$

 $\hbox{E-Mail: institut@math.uni-freiburg.de}\\$