Emily Muller ELEC 413 Project 1

Chip 1

Requirements:

- Oxide Clad
- Use EBeam Library on KLayout, components include
 - GC_TE_1310_8degOxide_BB
 - Waveguide: 350nm x 220nm @ 1310nm
 - ebeam_splitter_swg_assist_te1310
- 1310nm wavelength
- FSR = 25GHz Spacing
- 605 x 410 um floorplan

$$FSR = \frac{c}{n_g \Delta L}$$

Know FSR = 25GHz, c = $3*10^8$ m/s. Need to find ng through simulation so that we can solve for the desired ΔL .

Know $\Delta L \approx 2.7mm$

wavelength (µm)	loss (dB/cm)	group index	
1.31	0.00069427	4.685088+3.373411e-09i	97
1.31	0.00067847	5.280983+5.911007e-09i	6
1.31	0.00015743	2.067760+2.796693e-09i	41
			\ \ \

L1 = 77.625

L2 = 2718.742

DL = 2641.118 = 2.641 mm \bigcirc

For second setup:

L1 = 77.625

L2 = 2747.32

DL = 2669.695 = 2.67mm

Chip 2

Know FSR = 25GHz, c = $3*10^8$ m/s. Need to find ng through simulation so that we can solve for the desired ΔL .

Ng = 4.88

DL = 2.469mm

L1 = 61.481

L2 = 2530.116

DL = 2468.635 = 2.468mm