Análisis Funcional - Notas de clase

Pablo Miralles González

Nov 2021

Índice

1.	Espacios de Hilbert.	2
2.	Teoría espectral de operadores compactos autoadjuntos.	3
	2.1. Teorema espectral para operadores compactos autoadjuntos	9

1. Espacios de Hilbert.

2. Teoría espectral de operadores compactos autoadjuntos.

2.1. Teorema espectral para operadores compactos autoadjuntos.

Proposición 2.1. Si $T = T^*$ y $Tv = \lambda v$ con $v \neq 0$, entonces $\lambda \in \mathbb{R}$.

Demostración.
$$\lambda \langle v, v \rangle = \langle Tv, v \rangle = \langle v, T^*v \rangle = \langle v, Tv \rangle = \overline{\lambda} \langle v, v \rangle$$
. Como $v \neq 0$ se da $\lambda = \overline{\lambda}$.

Proposición 2.2. Si T es compacto, $\forall \lambda \neq 0$ se tiene que $Ker(T - \lambda Id)$ es de dimensión finita.

Demostración. Si no es de dimensión finita, podemos tomar $(\phi_n)_n$ ortonormal e infinita en $Ker(T - \lambda Id)$ (espacio cerrado en un Hilbert, pues es preimagen de un $\{0\}$ por una función continua).

Como T es compacto, $(T\phi_n)_n$ debe tener una subsucesión convergente, pero como $T\phi_n = \lambda\phi_n$ $\forall n \in \mathbb{N}, \|T\phi_{n_j} - T\phi_{n_k}\| = |\lambda| \|\phi_{n_j} - \phi_{n_k}\| = \lambda\sqrt{2}$, así que ninguna subsucesión es de Cauchy, y no pueden ser convergentes.

Proposición 2.3. Si T es un operador compacto y autoadjunto, entonces o bien ||T|| o bien -||T|| es un valor propio.

Demostraci'on. Sabemos que $\|T\|=\sup\{|\langle Tf,f\rangle|:\|f\|\leqslant 1\}$ por ser $T=T^*$. La idea es encontrar un máximo.

Tomo $(f_n)_n$ con $||f_n|| \le 1$ y $\langle Tf_n, f_n \rangle \to \lambda$ para $|\lambda| = ||T||$. Como T es compacto, $(Tf_n)_n$ tiene una subsucesión $(Tf_{n_k})_k$ convergente en H, y llamo al límite $g \in H$.

Afirmo entonces que g es vector propio de T con valor propio λ , lo que terminaría la prueba.

$$0 \leqslant \|Tf_{n_k} - \lambda f_{n_k}\|^2 = \langle Tf_{n_k}, Tf_{n_k} \rangle - 2\lambda \langle f_{n_k}, Tf_{n_k} \rangle + \lambda^2 \langle f_{n_k}, f_{n_k} \rangle =$$
$$\|Tf_{n_k}\|^2 - 2\lambda \langle Tf_{n_k}, f_{n_k} \rangle + \lambda^2 \underbrace{\|f_{n_k}\|^2}_{1}.$$

Tomando límites, por la continuidad de la norma:

$$0 \leqslant \|g - \lambda \lim_{k \to \infty} f_{n_k}\|^2 \leqslant \|g\|^2 - 2\lambda \cdot \lambda + \lambda^2 = 0.$$

Se tiene entonces que $g = \lim_{k\to\infty} \lambda f_{n_k}$, y por lo tanto

$$Tg = T(\lim_{k \to \infty} \lambda f_{n_k}) = \lambda T(\lim_{k \to \infty} f_{n_k}) = \lambda g,$$

quedan demostrada la afirmación.

Observación 2.4. En l^2 , el operador T que actua $(\psi_n)_n \to (0, \psi_1, \psi_2, ...)$ no es invertible (no es sobreyectiva), esto es, $T - 0 \cdot Id$ no es invertible, y sin embargo 0 no es valor propio. Por eso el concepto de espectro es más general que el de valores propios, y por eso el teorema que dice que el espectro no es vacío no nos sirve para demostrar que existe un valor propio.

Teorema 2.5 (Hilbert-Schmidt). Sea H espacio de Hilbert separable, $T: H \to H$ un operador compacto y autoadjunto. Entonces existe una base hilbertiana $\{v_k\}_{k=1}^{\infty}$ de H con $Tv_k = \lambda_k v_k$ para $\lambda_k \in \mathbb{R} \ \forall k = 1, 2, \ldots \ y \ \text{lim}_{k \to \infty} \ \lambda_k = 0$.

Demostración. Llamo $S = \overline{span}\{v : v \text{ es vector propio de } T\} \subset H$.

Afirmo que si $KerT = \{0\}$ entonces S = H. Para demostrarlo, supongamos lo contrario, esto es, $S \neq H = S \oplus S^{\perp}$. $T(S) \subset S$ claramente, así que si $g \in S^{\perp}$ entonces $\langle Tg, f \rangle = \langle g, Tf \rangle = 0 \ \forall f \in S$, y por lo tanto $Tg \in S^{\perp}$. Puedo entonces considerar el operador $T|_{S^{\perp}}$ tiene un vector propio $v \in S^{\perp}$ (2.3), que también lo será de T, contradicción¹.

Si además $Tv_k = \lambda_k$ para $k = 1, 2, \ldots$ para $\{v_k\}_{k=1}^{\infty}$ base hilbertiana, veamos que $\lim_{k \to \infty} \lambda_k = 0$. Si no fuese así, existiría una subsucesión $(\lambda_{k_i})_i$ con $|\lambda_{k_i}| \ge \varepsilon \ \forall i \in \mathbb{N}$. Se tiene entonces:

$$\|\lambda_{k_i}v_{k_i} - \lambda_{k_j}v_{k_j}\| = \lambda_{k_i}^2 + \lambda_{k_j}^2 > 2 \cdot \varepsilon,$$

y la sucesión $(TV_k)_k$ no puede tener subsucesiones convergentes, que contradice que el operador sea compacto.

Falta ver el caso no inyectivo. Si $KerT \neq 0$, como $H = KerT \oplus (KerT)^{\perp}$ y KerT es el espacio propio asociado al valor propio 0, aplicando el caso inyectivo a $T|_{(KerT)^{\perp}}$ ya lo tenemos, solo hay que ver que $Tg \in (KerT)^{\perp}$ para cada $g \in (KerT)^{\perp}$. Pero si $x \in KerT$, $\langle x, Tg \rangle = \langle Tx, g \rangle = \langle 0, g \rangle = 0$. \square

Observación 2.6. En ese caso $Tx = \sum_{n=1}^{\infty} \lambda_k \langle x, v_k \rangle v_k$ por ser el operador continuo.

Observación 2.7. $H = \bigoplus_{i=1}^{\infty} Ker(T - \lambda_i Id) \ con \ \lambda_i \to 0.$

Definición 2.8. Un operador T es normal si $T^*T = TT^*$.

El teorema es cierto también para operadores normales, no hace falta que sean autoadjuntos.

¹Creo que no se usa que sea inyectivo y que esto termina la prueba en el caso general.