ALXEBRA (Grao en Enxeñería Informática) 1ª Oportunidade - 12/xaneiro/2021

- 1)– (2p.) Considera la matriz $A=\begin{pmatrix}1&-2&1\\-1&1&b\\1&b&1\end{pmatrix}\in\mathcal{M}_3(\mathbb{R}).$
 - 1)— Calcula el rango de A según los valores de b.
 - 2)- Para b = 0, calcula A^{-1} y expresa A^{t} como producto de matrices elementales.
 - 3)— Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal tal que $(f)_{\mathcal{C},\mathcal{C}} = A$ ¿Para que valores de b no existe ningún vector $(x,y,z) \in \mathbb{R}^3$ tal que f(x,y,z) = (1,-1,3)?
 - 4)- Para b = 0, calcula $|E_{-F_3} \cdot E_{F_2 \leftrightarrow F_3} \cdot ((-2)A^t) \cdot E_{F_1 2F_3} \cdot E_{F_2 \leftrightarrow F_3}|$.
- 2)- (1p.) **Demuestra** que si $A, B \in \mathcal{M}_n(K)$ y B es no singular, se verifica que a.- $(AB)^t = B^t A^t$. b.- $(B^t)^{-1} = (B^{-1})^t$.
- 3)– (2p.) Razona si son verdaderas o falsas las siguientes afirmaciones:
 - a)- El \mathbb{R} espacio vectorial $V := \{f : \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}_3[x]\}$ de las aplicaciones lineales de $\mathcal{M}_2(\mathbb{R})$ (matrices cuadradas de orden 2) en $\mathbb{R}_3[x]$ (polinomios de grado ≤ 3) tiene dimensión 2^3 .
 - b)- Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz cuadrada de orden n y denotemos por A^t su traspuesta. Considerar $T : \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ la aplicación lineal dada por $T(A) := A + A^t$, entonces dim Im(T) = n(n-1)/2
 - c)- En el espacio vectorial $\mathbb{R}_3[X]$ de los polinomios de grado ≤ 3 en una variable con coeficientes reales, el subespacio $U := \{p(x) \in \mathbb{R}_3[X]/p(0) = 0, p(1) = 0, p(-1) = 0\}$ tiene dimensión 1 y está generado por el polinomio $x x^3$. [p(a) denota el valor que toma p(x) para $x = a \in \mathbb{R}$
 - d)- Existe $f: \mathbb{R}^2 \to \mathbb{R}^2$ lineal, no nula tal que $\operatorname{Ker} f = \operatorname{Im} f = \langle (1,1) \rangle$ y que no diagonaliza.
- 4)– (2p.) En $\mathcal{M}_2(\mathbb{R})$, espacio vectorial de las matrices reales 2×2 , **considera** los subespacios $U \setminus V$:

$$U := \{ \begin{pmatrix} a & b \\ a-b & a+b \end{pmatrix} \mid a,b \in \mathbb{R} \}, \qquad V := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a+b+c+d = 0, \ 2a-c-d = 0 \}$$

- a)- Halla bases y ecuaciones implicitas de $U, V, U \cap V, U + V$.
- b)- **Prueba** que $W = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \rangle$ es un suplementario de U.

Expresa el vector $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ como suma de un vector de U y otro de W.

- 5)– (3p.) Sea $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ la aplicación lineal que respecto de las bases canónicas C_3 y C_4 está dada por : f(x, y, z, t) = (x + 2z t, -x, 2x 2z + t)
 - i.- Calcula $(f)_{C_4C_3}$ la matriz asociada respecto de las bases canónicas.¿Que rango tiene? ¿Es f inyectiva?¿Es sobreyectiva ? Razónese.

Halla una base del núcleo y las ecuaciones lineales de ${\rm Im} f$.

- ii.- Considera los subespacios W_4 y U_3 , respectivamente de \mathbb{R}^4 y \mathbb{R}^3 , $W_4 = \langle \{e_1 + e_3, e_2 + e_3 + 2e_4\} \rangle$ y $U_3 = \{(x, y, z)/x + y + z = 0\}$. Calcula $f(W_4)$ y $f^{-1}(U_3)$ y comprueba que U_3 y $f(W_4)$ son subespacios suplementarios. ¿Son W_4 y $f^{-1}(U_3)$ suplementarios? Razónese.
- iii.- Sea $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ la aplicación lineal que respecto de las bases canónicas C_3 y C_4 está dada por : $g(e_1') = e_1 + 2e_3 e_4$, $g(e_2') = -e_1$. $g(e_3') = 2e_1 2e_3 + e_4$.

Comprueba que diagonaliza la matriz $(f \circ g)_{C_3}$, asociada a la composición de g con f, respecto a la base canonica de \mathbb{R}^3 .

Calcula la base B, de \mathbb{R}^3 de vectores propios respecto de la cual la matriz $D = (f \circ g)_B$, de $f \circ g$ respecto a B, es diagonal.

Encuentra una matriz P no singular tal que $P^{-1}DP = A$, siendo $A = (f \circ g)_{C_3}$.