

UNIVERSITÀ

DI PAVIA

Lower bounds for the Integrality Gap of the Metric Steiner Tree Problem via a novel formulation

Ambrogio Maria Bernardelli¹ Eleonora Vercesi^{2, 4} Luca Maria Gambardella^{2, 4} Stefano Gualandi ¹ Monaldo Mastrolilli ^{2, 3}

¹University of Pavia, Pavia 27100, Italy ²IDSIA (USI - SUPSI), ³SUPSI, ⁴USI, Lugano 6900, Switzerland

Steiner Tree Problem (STP)

- G = (V, E) undirected, edge-weighted, connected graph, |V| = n, T \subset V, |T| = t, 2 \leq t \leq n.
- Find the minimum-cost tree that spans T.
- The STP is NP-Hard and the corresponding decision problem is NP-Complete [3].

Figure 1. Example of an STP instance and its solution. Green dots represent the *terminal nodes* T while gray squares represents the *potential Steiner nodes* V \ T. Potential Steiner nodes are called *Steiner nodes* of a given solution if they are part of that solution.

Bidirected cut formulation (DCUT)

$$\begin{array}{ll} \underset{\boldsymbol{x} \in \mathbb{R}^{2 \times |E|}}{\text{min}} & \sum_{e = \{i,j\} \in E} c_e(x_{ij} + x_{ji}) & \text{(1a)} \\ & \text{s.t.} & x_{ij} + x_{ji} \leq 1, & \text{\{i,j\}} \in E, & \text{(1b)} \\ & & x(\delta^-(W)) \geq 1, & W \subset V \setminus \{r\}, \ |W \cap T| \geq 1, & \text{(1c)} \\ & & x_{ij} \in \{0,1\}, & \text{(i,j)} \in A, & \text{(1d)} \\ & \text{with } r \in T \text{ and } A \text{ the set of arcs.} \\ & P_{DCUT}(n,t) = \{x \mid \text{(1b)}, \text{(1c)}, \ 0 \leq x_{ij} \leq 1\}. & \end{array}$$

The Gap Problem

As done in [1], given x vertex of $P_{DCUT}(n, t)$ we define

$$\frac{1}{\text{Gap(x)}} = \min_{c \in \mathbb{R}^{|E|}} c \cdot \bar{x}$$
s.t. c pseudometric, STP(c) \geq 1, duality constraints, complementary slackness conditions.

The integrality gap of thet DCUT formulation is known to lie between 36/31 and 2 [2, 4].

Lemma (Metric closure gap)

Let G be an STP instance and let G^* be its metric closure. Then $Gap(G) = Gap(G^*)$,

where Gap(G) is the ratio between the optimal value of the STP over the instance G and the optimum of the linear relaxation of the STP formulation.

Complete Metric Formulation (CM)

$\min_{\mathbf{x} \in \mathbb{R}^{2 imes E }}$	$\sum_{\{i,j\}\in E} c_{e}(x_{ij} + x_{ji})$		(2a)
s.t.	$x_{ij} + x_{ji} \leq 1$,	$e = \{i, j\} \in E$	(2b)
	$\times (\delta^{-}(W)) \geq 1$,	$W \subset V \setminus \{r\}, W \cap T \geq 1,$	(2c)
	$\times(\delta^{-}(r)) = O,$		(2d)
	$- \times (\delta^{-}(j)) \ge -1$,	$j \in V \setminus \{r\},$	(2e)
	$x(\delta^{+}(j)) \geq 2x(\delta^{-}(j)),$	$j \in V \setminus T$,	(2f)
	$x_{ij} \in \{0, 1\},$	$(i,j) \in A$.	(2g)
$P_{CM}(n,t) = {}$	$(2b) - (2f), O < x_{ii}$	< 1}.	

Theorem (CM equivalence)

Let G = (V, E) be a complete metric graph, T \subset V, r \in T. Then there exists an optimal solution of the DCUT formulation for the STP instance G that satisfies (2d), (2e), (2f).

Lemma (CM structure)

The support graph of every feasible point of $P_{CM}(n,t)$ is a tree. Moreover, if $t \le 1 + n/2$, any feasible point x of $P_{CM}(n,t)$ satisfies $\sum_{i,j} x_{i,j} \le 2t - 3$ and so we can remove some of the Constraints (2c) by only taking into account the sets $W = U_1 \sqcup U_2$, $U_1 \subset T \setminus r$, $|U_1| \ge 1$, $U_2 \subset V \setminus T$, $|U_2| \le t - 2$.

Theorem (Dimensionality reduction)

Let x be a vertex of $P_{CM}(n, t)$, $t \le n - 1$, such that there exists a k for which $x(\delta^-(k)) + x(\delta^+(k)) = 0$. Then there exists y vertex of $P_{CM}(n-1, t)$ such that x and y are isomorphic as edge-weighted node-colored directed graphs, with thee colors representing the sets $\{r\}$, $T \setminus \{r\}$, $V \setminus T$.

Lemma (1-2-costs)

Let x be an integer point of of $P_{CM}(n, t)$. Then it is an optimum for the metric cost $c_{ij} = 2 - (x_{ij} + x_{ji})$.

Pure half-integer vertices

Given x a non-integer vertex of $P_{CM}(n, t)$, we say that x is

- half integer (HI) if $x_{ij} \in \{0, 1/2, 1\}$ for all $(i, j) \in A$,
- pure half integer (PHI) if $x_{ij} \in \{0,1/2\}$ for all $(i,j) \in A$.

Theorem (PHI theorem)

Let x be a PHI vertex of $P_{CM}(n,t)$, $t \ge 3$, and let it also be a vertex of $P_{DCUT}(n,t)$ optimum for a metric cost. Suppose that $x \not\cong y$ for every y vertex of $P_{CM}(n-1,t)$. Define G_X as the support graph of x. In the hypothesis that the indegree of every nonterminal node in G_X is exactly 1, the followings hold:

Pure half-integer search

 \mathbb{G} = {G = (V, E) | G connected, deg(i) \geq 2 for all i \in V,

add to di@ every non-isomorphic orientation

· every edge can be oriented in only one way

· every node has a maximum indegree of 2

• G_X is a connected graph with n nodes;

|V| = n, |E| = n + t - 2 [5]

if $|\{i \in V \mid deg(i) = 2\}| \le t$ **then**

G_X has exactly n + t - 2 edges.

for $G = (V, E) \in \mathbb{G}$ do

of G s.t.

for $diG = (V, A) \in diG do$

if $\nu_1 \wedge \nu_2 \wedge \nu_3$ then

add x to \mathcal{V}

end if

end if

end for

22: end procedure

 ν_1 , ν_2 , $\nu_3 \in \{\text{True, False}\}$

 $\nu_1 = (|\{i \in V \mid indeg(i) = 0\}| = 1)$

 $\nu_2 = (|\{i \in V \mid indeg(i) = 1\}| = n - t)$

 $\nu_3 = (|\{i \in V \mid indeg(i) = 2\}| = t - 1)$

 $P_{CM}(n, t)$ with

 $x_{ii} = 1/2$ iff $(i, j) \in A$ is a solution of

 $\cdot \{r\} = \{i \in V \mid indeg(i) = 0\}$

if x is a feasible vertex of $P_{CM}(n, t)$ then

 \cdot V \ T = {i \in V | indeg(i) = 1}

 $\cdot T \setminus \{r\} = \{i \in V \mid indeg(i) = 2\}$

procedure PHI(n, t)

end if

end for

 \mathcal{V} = \varnothing

diG = Ø

Figure 2. Some PHI vertices of different $P_{CM}(n,t)$. Green hollow dots represent the root, green dots represent the other terminal nodes, gray squares represent Steiner nodes.

Table 1. Number of vertices of $P_{CM}(n,t)$ attaining different values of integrality gap. Note that some configurations do not give interesting vertices.

hat	son	ne configur	ations do	not give	interestin	g vertice	? S.				
			Gap								
n	t	1	24/23	22/21	20/19	18/17	16/15	14/13	12/11	10/9	
7	4	0	0	0	0	0	0	0	0	2	
	5	21	0	0	O	O	O	O	O	0	
	6	18	Ο	Ο	O	O	0	0	0	0	
8	5	40	0	0	0	2	0	7	15	0	
	6	382	0	O	O	O	O	0	0	0	
	7	122	Ο	Ο	O	0	0	0	0	0	
9	5	6	0	0	0	0	0	9	30	12	
	6	1686	6	21	16	45	75	179	0	0	
	7	4742	0	0	O	O	O	0	0	0	
	8	763	0	0	O	0	0	0	0	O	

Other research directions

1-2-costs heuristic

We generate all the non-isomorphic, connected, node-colored graphs. Given such a graph, we then obtain an STP instance by giving cost 1 to the edges that appear in the graph and cost 2 to all the others.

Figure 3. Some HI vertices of $P_{CM}(8, 5)$. Gray lines represent a value of $x_{ii} = 1/2$ while black lines represent a value of $x_{ii} = 1$.

Generalization fo PHI theorem

Figure 4. A vertex of $P_{CM}(15, 8)$ with Gap= 8/7. Gray thin lines represent a value of x_{ii} = 1/4.

References

- [1] Benoit, G., and Boyd, S., Finding the exact integrality gap for small traveling salesman problems. *Mathematics of Operations Research*, **33**(4), pp. 921–931, 2008.
- [2] Byrka, J., and Grandoni, F., and Rothvoß, T., and Sanità, L., Steiner tree approximation via iterative randomized rounding, *Journal of the ACM*, **60**(1), pp. 1–33, 2013.
- [3] Karp, R. M., Reducibility among combinatorial problems, *Springer Berlin Heidelberg*, 2010.
- [4] Ljubić, I., Solving Steiner trees: Recent advances, challenges, and perspectives, *Networks*, **77**(2), pp. 177–204, 2021.
- [5] McKay, B. D., and Piperino, A., Practical graph isomorphism, II, *Journal of symbolic computation*, **60**, pp. 94–112, 2014.

