Problem 1 (7 points)

For each of the 7 devices in the circuit of Fig. 1, determine whether the device is a supplier or a recipient of power and how much power it is supplying or receiving.

Note: Use the passive sign convention.

Fig. 1 for Problem 1.

Solution:

	Voltage	Current	Power	Power Supplier (S) or Recipient (R)?
	(V)	(A)	(W)	
Device 1	24	-5	-120	S
Device 2	6	5	-30	R
Device 3	8	1	8	R
Device 4	12	4	48	R
Device 5	4	-2	-8	S
Device 6	10	3	30	R
Device 7	6	2	12	R

Problem 2 (12 points)

Find *I* in the circuit of Fig. 2.

Fig. 2 for Problem 2.

Solution:

Problem 3 (12 points)

Find current I_x in the circuit of Fig.3.

Fig. 3 for Problem 3.

Solution: The presence of a voltage source between designated nodes 1 and 2 makes the combination of nodes 1 and 2 a supernode. Hence,

$$\frac{V_1}{0.5} - 2 + \frac{V_2}{0.5} + \frac{V_2 - V_3}{0.5} = 0. \tag{1}$$

For node 3,

$$\frac{V_3 - V_2}{0.5} - 4 + 2 = 0, (2)$$

and the auxiliary equation is

$$V_2 - V_1 = 6. (3)$$

Combining the three equations leads to:

$$V_1 = -2 \text{ V}, \qquad V_2 = 4 \text{ V}, \qquad V_3 = 5 \text{ V}.$$

Hence,

$$I_x = \frac{V_2}{0.5} = \frac{4}{0.5} = 8 \text{ A}.$$

Problem 4 (12 points)

In the circuit of Fig. 4(a), when U=1V, I=-0.2A, when U=7V, I=1A. Find the current I_1 in Fig. 4(b).

Fig. 4 for Problem 4. The linear circuits in these two subfigures are the same.

Solution:

I is a linear function of U, easy to find that I = 0.2U - 0.4.

When U=0, I=-0.4A.

So $I_1 = 0.8A$.

Problem 5 (15 points)

For the circuit in Fig. 5,

- a) Find the Thevenin equivalent circuit at terminals (a, b) as seen by the load resistor R_L .
- b) Choose R_L so that the current flowing through it is 0.16mA. 0.2K
- c) Choose R_L so that the power delivered to it is maximum. How much power will that be?

Fig. 5 for Problem 5.

Solution: We need to find the Thévenin equivalent circuit at terminals (a,b), as if R_L were not present.

The current source will divide among I_1 and I_2 such that

$$(4+2)I_1 = (8+6)I_2$$

Also, $I_1 + I_2 = 2$ mA.

The solution yields:

$$I_1 = 1.4 \text{ mA},$$
 $I_2 = 0.6 \text{ mA}.$
 $V_{\text{oc}} = (-4I_1 + 8I_2) \times 10^3$
 $= -4 \times 1.4 + 8 \times 0.6 = -0.8 \text{ V}.$

To find $R_{\rm Th}$, we suppress the current source and simplify the circuit:

b)
$$R_L = 200\Omega$$

c)
$$R_L = 4.8k\Omega$$
, max power = $\frac{(0.4V)^2}{4.8k\Omega} = 33\mu$ W.

Problem 6 (12 points)

In the circuit shown in Fig. 6, find the gain $G = \frac{v_0}{v_s}$.

Fig. 6 for Problem 6.

Solution: For the second op amp,

$$v_{\rm o} = \left(-\frac{R_{\rm f_2}}{R_{\rm s_2}}\right)v_{\rm o_1} \tag{1}$$

For the first op amp,

$$\frac{v_{n_1} - v_s}{R_{s_1}} + \frac{v_{n_1} - v_{o_1}}{R_{f_1}} + \frac{v_{n_1} - v_o}{R_{f_3}} = 0$$

Also,

$$\upsilon_{n_1}=\upsilon_{p_1}=0.$$

Hence,

$$-\frac{v_{\rm s}}{R_{\rm s_1}} - \frac{v_{\rm o_1}}{R_{\rm f_1}} - \frac{v_{\rm o}}{R_{\rm f_3}} = 0 \tag{2}$$

Simultaneous solution of (1) and (2) leads to

$$v_{o} = \frac{v_{s}}{R_{s_{1}}} \left[\frac{R_{f_{1}}R_{f_{2}}R_{f_{3}}}{R_{f_{3}}R_{s_{2}} - R_{f_{1}}R_{f_{2}}} \right].$$

Problem 7 (10 points)

The ideal operational amplifier circuit shown in Fig. 7 is driven by a input ramp signal

$$v_I(t) = \left\{ \begin{matrix} 0 \ V, & t < 0 \\ 1000t \ V, & t \geq 0 \end{matrix} \right.$$

Assume that the capacitor voltage is zero for t < 0. What are the value of output voltage $v_I(t)$ at t = 1ms?

Fig. 7 for Problem 7.

Solution:

KCL at node v^- :

$$\frac{v_I(t) - 0}{1000} + C\frac{dv_I(t)}{dt} + \frac{v_0(t) - 0}{2000} = 0, \text{ since } v^- = v^+ = 0$$

Therefore,
$$v_I(t) = 1000t$$
, $\frac{dv_I(t)}{dt} = 1000$, so

$$v_0(t) = -2000 \cdot t - 2 \left[volts \right]$$

$$v_0(t=1ms) = -4Volts$$

Problem 8 (20 points)

Design an op-amp circuit that can perform the operation

$$i_o = (30i_1 - 8i_2 + 0.6)$$
 A

Where i_1 and i_2 are two input current sources.

Solution: Below is just one possible solution.

Remember to include the internal resistance of current sources when you calculate the gain!!!

$$v_{o} = \left(-\frac{R_{2}}{R_{1}}\right)v_{s_{1}} + \left(\frac{R_{2} + R_{1}}{R_{1}}\right)\left[v_{s_{2}} + V_{0}\right]$$
$$= \left(-\frac{R_{2}}{R_{1}}\right)i_{2}R_{1} + \left(\frac{R_{2} + R_{1}}{R_{1}}\right)\left[i_{1}R_{3} + I_{0}R_{3}\right]$$

Choose $R_1 = 2 \text{ k}\Omega$, $R_2 = 8 \text{ k}\Omega$. Hence,

$$v_{\rm o} = -8 \times 10^3 i_2 + 5[i_1 R_3 + I_0 R_3]$$

Choose $R_3 = 6 \text{ k}\Omega$, os that the coefficient of i_1 is 30×10^3 . Choose $I_0 = 0.02 \text{ A} = 20 \text{ mA}$, so that $5I_0R_3 = 0.6 \times 10^3$. Hence,

$$v_{\rm o} = -8 \times 10^3 i_2 + 30 \times 10^3 i_1 + 0.6 \times 10^3$$
 (V)
 $i_{\rm o} = \frac{v_{\rm o}}{R_{\rm L}}$

Choose $R_L = 1 \text{ k}\Omega$,

$$i_0 = (30i_1 - 8i_2 + 0.6) \text{ A}.$$