Segmentifier: Interactively Refining Clickstream Data into Actionable Segments

Kimberly Dextras-Romagnino Supervisor: Tamara Munzner University of British Columbia April 18th, 2018

Introduction: *E-commerce*

Collaborators

- Build mobile apps for large e-commerce companies
- Understand the importance of good websites on revenue

E-commerce Goals

- Increase traffic
 - number of users on a site
- Reduce abandonment
 - o number of users leaving the site
- Increase consumer engagement
 - time users spend on the site
 - o chances that a user returns to the site
- Increase conversion rate
 - odds a user purchases

How did we help them solve these goals?

Research Method

Contributions

Research Method: Applied Visualisation Research

Nested Model for Visualization Design and Evaluation:

[Munzner 2009]

Domain Situation:

Characterize domain problem

Data/task abstraction:

Translate problem into abstract data types and user tasks

Visual encoding/Interaction Idiom:

 Design visual encoding and interaction techniques that map to abstract data and task

Algorithm:

Create algorithms to execute techniques efficiently

Research Method: Design Study Methodology

Design Study:

- A project
- Specific real-world problem
- Design a visualization system
- Validate the design
- Reflect about lessons learned

9 stage Framework

[SedImair et al. 2012]

- Precondition: Learn, Winnow, Cast
- Core: Discover, Design, Implement, Deploy
- Analysis: Reflect, Write

personal validation

inward-facing validation

outward-facing validation

Research Method: Mobify

Pre-condition Phase

- Period of 5 months
- Met with 12 employees
- Core Phase
 - Data and Task Abstraction
 - Design interface
 - Implement interface
- Analysis Phase
 - Formulate Framework
 - Write Paper/Thesis

Research Method: Contributions

- Thorough characterization of task and data abstraction for clickstream data analysis
 - Clickstream Segment Analysis Framework abstracts iterative process
 - View, Refine, Record, Export, Abandon, Conclude
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis
 - Rich set of views showing both derived attributes and raw sequence details
 - Filtering and Partitioning through visual queries
 - Quantitative attributes
 - Custom sequences of events aggregated according to a novel three-level hierarchy
 - Detailed glyph based visual history of the automatically recorded refinement process showing the provenance of each segment in terms of its analysis path
- Preliminary evidence of utility from:
 - Usage Scenario with real world data
 - Case Study with industry analyst

What are the **Data and Task Abstractions** for Clickstream Data Analysis?

Clickstream Data

Clickstream Analysis Tasks

What is *Clickstream Data*?

Data: Actions

Data: Action Attributes

Data: Action Types

Action Hierarchy

Action Hierarchy

Data: Sequences

Data: Sequences

Data: Client Sequences

Client Sequences: all actions performed by a single user

Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.

Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.

Data: Sequence Attributes

Data: Segments

Segment: any set of sequences

Data: Segment Attributes

What are Clickstream Data Analysis Tasks?

Actionable Result: result or insight found through analysis that can be acted on

Result ⇒ Action

Actionable Results

Identify successful trends ⇒ Optimize

Identify problems ⇒ Fix/Improve

Identify groups of common behavior ⇒ Personalize experience

Identify site metrics/benchmarks ⇒ Keep track of state of website

Actionable Result: result or insight found through analysis that can be acted on

Result ⇒ Action

Actionable Results

Identify successful trends ⇒ Optimize

Identify problems ⇒ Fix/Improve

Identify groups of common behavior ⇒ Personalize experience

Identify site metrics/benchmarks ⇒ Keep track of state of website

Domain-Specific Questions

How many users purchase? What path did they choose?

Actionable Result: result or insight found through analysis that can be acted on

Result ⇒ Action

Actionable Results

Identify successful trends ⇒ Optimize

Identify problems ⇒ Fix/Improve

Identify groups of common behavior ⇒ Personalize experience

Identify site metrics/benchmarks ⇒ Keep track of state of website

Domain-Specific Questions

How many bounce (exit after viewing one page)?

Actionable Result: result or insight found through analysis that can be acted on

Result ⇒ Action

Actionable Results

Identify successful trends ⇒ Optimize

Identify problems ⇒ Fix/Improve

Identify groups of common behavior ⇒ Personalize experience

Identify site metrics/benchmarks ⇒ Keep track of state of website

Domain-Specific Questions

Can you classify different types of buying behaviors?

Actionable Result: result or insight found through analysis that can be acted on

Result ⇒ Action

Actionable Results

Identify successful trends ⇒ Optimize

Identify problems ⇒ Fix/Improve

Identify groups of common behavior ⇒ Personalize experience

Identify site metrics/benchmarks ⇒ Keep track of state of website

Domain-Specific Questions

What is the average number of sessions in a month? Was this month abnormal?

Tasks: Segment Behavior

Behavior: set of attribute constraints

Tasks: Segment Behavior

Behavior: set of attribute constraints

Expected

Users add to cart before purchasing

Unexpected

No purchases on a certain month

Favorable

Purchased

Unfavorable

Bounced

Tasks: Task Abstraction

Identify Tasks

Discovering new interesting behaviors

- Identify new interesting behaviors:
 - Is there a way to distinguish a set of sequences representing behaviors?
- Identify the cause or effect of a behavior.
 - What behaviors trigger/follow behavior X?
- Identify more fine-grained behaviors from an initial behavior:
 - Can sequences that follow behavior X be described by more specific behavior Y?

Verify Tasks

Interesting behaviors known prior to analysis

- Verify existence of a behavior
 - Do any sequences follow behavior X?
- Verify amount of support for a behavior
 - How many sequences follow behavior X?
- Verify if a behavior causes another behavior
 - Do sequences that follow behavior X also follow behavior Y?

How to solve these goals with **Visual Analytics**?

Visual Analytics

Other Related Work

Our Solution

Why Visual Analytics?

- Automation would be nice...
 - Put data in, action results appear
- ... but it is not realistic
 - Many possible questions, data-driven interplay between finding answers and generating new questions
- Human-in-the-loop visual data analysis
 - Integrate computing power of machine with intuition of domain experts

What Visual Analytics Systems exist for Clickstream Data Analysis?

Related Work

Two major categories:

Technique

- Focuses on the development of specific techniques
- Addresses one specific task
- Examples:
 - Clustering
 - Pattern mining

Exploratory

- Closest work to ours
- Focuses on exploring data
- Overview of data
- Major emphasis on viewing sequences

Related Work: Problems

Real-world Clickstream Data

Real-world Clickstream Data

Scale is huge

Variability is high

Real-world Clickstream Data

Scale is huge

Variability is high

Most work **fails** when applied to real-world data.

Technique

Most techniques have data requirements to work effectively

Exploratory

Most focus on analyzing sequences.

Too many to view at once.

Our Solution

General idea:

Combine domain knowledge with computational support to iteratively view and refine data into segments that lead to **actionable results** or more effective **downstream analysis**

- Gives Insight into underlying data of segment
 - Sequences
 - Segment Attributes
- Leads to:
 - Actionable answers
 - New questions
 - New ways on how to refine
 - Whether segment should be abandoned
 - Whether segment should be exported

Refine

- Apply operation to create new segments
- Type of Refinements
 - Filter
 - Partition
 - Transform

- Record all refinement steps automatically
- Keep track of questions
- Ability to create and view multiple segments from the same segment

Export

- Export refined segments for further downstream analysis, such as applying techniques:
 - Pattern mining
 - Clustering
- Each technique:
 - Answers a specific *task*
 - Has data requirements for effective results

Conclude

Discover action result by viewing segment

Abandon

- By viewing the segment, analyst abandons if:
 - No actionable results
 - No further ways to refine
 - Not suitable for *export*

- Take a giant, noisy dataset and refine it into small, clean segments appropriate for each task
- Bridge the gap between real-world data and other techniques
- Encapsulates the design rationale of Segmentifier

The Segmentifier Interface

Results

Case Study #1

- 2 hour chauffeured analysis
- With Mobify data analyst
- Purpose:
 - One month post launch report
 - Discover actionable insights and improvements for customer
- Data
 - Session sequences
 - o 200K sequences

Case Study #1

Case Study #1: Analysis A

A Analyze Purchasing Behavior

- 12% of sessions contain more checkout pages than necessary
- 30% of users actually exit the site and return later to complete their purchase

Case Study #1: Analysis B

B Compare Morning vs Night

- No significant difference for percentage of sessions that contain full purchasing funnel
- No significant difference for number of actions

Case Study #1: Analysis C

C Analyze add and remove from cart behavior

- No insight for add to cart behavior
- 30% of users who removed from cart exited the session and most likely did not come back

Case Study #1: Analysis D

D Analyze purchasing funnel

 20% of people who get to checkout will not end up purchasing

Case Study #2

- 2 hour chauffeured analysis
- With Mobify data analyst
- Purpose:
 - Revisit some questions from last analysis using client sequences
- Data
 - Client sequences
 - Much longer
 - Capture longitudinal behavior
 - o 200K sequences

Case Study #2

Summary of Insights

- 25% who remove from cart at checkout stage, exit and never purchase
- appStart action triggered before cart page
- Awards page analysis:
 - 1% signed up
 - o 27% purchased
 - Longer sequences

- Understandable segments:
 - Each possible refinement operation corresponds to one attribute constraint
 - In contrast to clustering, pattern mining that have uninterpretable results for this scale of noisy data

- Segmentifier explicitly supports refinement through both filtering and partitioning.
 - Encourages subsequent analysis
 - Allows comparison
 - Future comparison work

- Trade-off between power and simplicity for this application context
 - Actions Operation Builder: regex with glyphs
 - Previous work:
 - Full support of regex
 - Difficult for non-programmers
 - Our design: deliberately less powerful so usable by non-technical analysts

- Focus on agile and iterative development of design
 - Modest engineering effort to achieve base level of usability to test design concept
 - Loading times
 - Processing time
 - Goal:
 - Proof of concept that design works for target tasks
 - Not (premature) engineering optimization
 - Future work:
 - Engineering optimization for this final design

Conclusions

Thorough characterization of task and data abstraction for clickstream data analysis

Clickstream Segment Analysis Framework

Conclusions

- Thorough characterization of task and data abstraction for clickstream data analysis
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis

Conclusions

- Thorough characterization of task and data abstraction for clickstream data analysis
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis
- Preliminary evidence of utility

Thank you

Questions?

Extra Slides