Fonctions affines

Gabriel Farenheit 1686-1736 est un physicien allemand qui a donné son nom à la première échelle de température.

I. Définition.

Définition: On appelle fonction affine une fonction f dont l'expression est de la forme f(x) = mx + p. m est appelé le coefficient directeur et p l'ordonnée à l'origine. Si m=0 on dit que la fonction est constante.

II .Représentation graphique d'une fonction affine.

Propriété: La courbe représentative d'une fonction affine est une droite. Si m = 0 c'est une droite parallèle à l'axe des abscisses.

☑ <u>Savoir-faire : Savoir représenter</u> une fonction affine.

Soit f et g les fonctions définies par

$$f(x) = 3x - 2$$
 et $g(x) = -2x + 4$. Construire C_f et C_g .

$$f(0) = -2$$
 $A(0; -2) \in C_f$
 $f(3) = 7$ $B(3; 7) \in C_f$
 $g(2) = 0$ $C(2; 0) \in C_g$
 $g(-1) = 6$ $D(-1; 6) \in C_g$

Propriété : Soit f une fonction affine alors pour tous nombres a et b ($a \ne b$) son coefficient directeur vérifie $m = \frac{f(a) - f(b)}{a - b}$

☑ Savoir-faire: Savoir déterminer graphiquement l'équation d'une droite:

Donne sans justification les équations des droites représentées ci-contre.

$$(d_1): y = 3$$

$$(d_2): \quad x = -2$$

$$(d_2): x = -2$$
 $(d_4): y = x + 2$

(d₃):
$$y = -2 \propto + 9$$

(d₃):
$$y = -2 \propto + 4$$
 (d₅): $y = \frac{2}{3} \propto$

III. Variations d'une fonction affine.

Si m > 0 la fonction est strictement from sur IR.

x	- 00	+ 200
Variations de f		<u></u>

Si m < 0 la fonction est strictemen describe sur IR.

IV. Signes d'une fonction affine.

☑ Savoir-faire : Savoir résoudre une équation du premier degré :

1) Résoudre l'équation (E₁): -2x+3 = 0. $(E_1) = \begin{cases} \frac{3}{2} \\ \frac{3}{2} \end{cases}$

2) Traduire ce résultat graphiquement.

Si
$$f/f(x) = -2 + 3$$
 alors Cf coupe l'axe des abscisses en $(\frac{3}{2}, 0)$

4) Traduire ce résultat graphiquement.

Les droites qui ont pour éguation
$$y = -2x + 3$$
 et $y = 3x - 12$ ont pour point d'intersection (3, -3) (cor -2x3+3=-3 et 3x3-12=-3)

☑ Savoir-faire : Savoir résoudre une inéquation du premier degré :

1) Résoudre l'équation (I₁): -2x+3 < 0. $5(|_{1}) = \int_{-2}^{3} \frac{3}{2} + \infty L$

2) Traduire ce résultat graphiquement.

$$f: x \mapsto -2x+3$$
, (f est au dessus de l'axe des abscisses sur $\int \frac{3}{2} \frac{1}{7} + \infty$

Propriété : Soit f une fonction affine dont l'expression est de la forme f(x) = mx + p, avec $m \ne 0$. L'équation f(x) = 0 a une unique solution qui est $x = -\frac{p}{m}$ La droite coupe l'axe des abscisses en 1 seul point.

On en déduit les tableaux de signes :

x	-0	~ e	+00
Si m < 0 Signes de f(x)= mx+p	+	0	_

☑ Savoir-faire : Savoir résoudre des inéquations du 2° degré et des inéquations rationnelles :

Résoudre : (I1) : $\frac{(-2x+2)(2x-1)}{(-x+3)(1+x)} \leq 0$

$$(E_n):-2\times+2=\{1\},(E_n):-2\times-1=\{\frac{1}{2}\}$$

 $(E_n):-2\times+3:=\{3\},(E_n):-1+2=\{-1\}$

	- ·	47	r .	2 5	
Donc $S(I_1) =$.11.	.z. J V.	1.7.1.	.3.L	

x	-00 -	1 2	1	3	400
-2x + 2	+	+	+ (b -	_
2x-1	-	- 0) +	+	+
-x+3	+	+	+	+ 0) <u> </u>
1+2	_	0 +	+	+	+
·22·2)(22·1) ·2·3)(1·2)	+	-	+	φ-1	+