LOAN DOCUMENT

	PHOTOGRAPH TI	DS CUEFT
UMBER	LEVEL.	INVENTORY
DTIC ACCESSION NUMBER	ating of Weapon Compo Dec 80	onents with
	DISTRIBUTION ST Approved for Put Distribution U	olic Release Inlimited
COSSION DOS	DISTRIBU	
NTIS GRAM DITC TRAC UNANNOUNCED UNANNOUNCED USTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL		
by		DATE ACCESSIONED
DISTRIBUTION STAMP		
		DATE RETURNED
199905	19 142) - 1
DATE RECEI	VED IN DTIC OTOGRAPH THIS SHEET AND RETURN TO DTIC	REGISTERED OR CERTIFIED NUMBER
OTIC FORM 70A	DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL

LOAN DOCUMENT

RIA-81-U241 Cy No. 1

COATING OF WEAPON COMPONENTS WITH BEARING MATERIAL (Phase 1)

M.SOLANKI

DECEMBER 1980

TECHNICAL REPORT

ENGINEERING DIRECTORATE

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

ROCK ISLAND ARSENAL ROCK ISLAND, ILLINOIS 67299

DISPOSITION INSTRUCTIONS:

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER:

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. JOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
EN-81-01		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Coating of Steel Pistons with Bear	ing Materials	Technical Report
(Phase 1)		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Mukesh Solanki		
		(a)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Commander		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Rock Island Arsenal		AMS Code 4932.06.8035
Rock Island, IL 61299		, 5545 1,55215515555
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Commander		October 1980
Rock Island Arsenal, SARRI-EN		13. NUMBER OF PAGES 29
Rock Island, IL 61299 14. MONITORING AGENCY NAME & ADDRESS(If different	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
Approved for public release; disti	ribution unlimite	ed.
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	om Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)
,		
1. Nodular iron 4	. Toughness	
	. GMAW (Gas Meta	al Arc Weld)
	. Wear	
20. ABSTRACT (Continue on reverse side if necessary an	d identify by block number)	
Nodular iron pistons for the M174 less-than-desirable service lives of fracture toughness of the iron with a bearing material, required lubricity indigenous to nodular in	Recoil Mechanism the deficiency Consequently, since the steel	characteristically yield being attributed to a lack cast steel pistons clad does not offer the built-in
Cost-effective Gas Metal Arc Weld to provide an aluminum-bronze bear	ing (GMAW) proces ring surface to t	ssing techniques were developed the steel pistons. Concurrent

READ INSTRUCTIONS

laboratory tests were conducted on welded specimens to simulate live-firing performance. The tests included chemical, mechanical and metallurgical analyses. After development of the GMAW procedure, including selection of an aluminum-bronze bearing material, a coated steel piston was manufactured at Rock Island Arsenal and subjected to firing tests. Its performance in the Arsenal simulator followed by live-firing at Yuma Proving Ground exceeded all requirements.

Future studies will provide more clad steel pistons for firing tests to verify material performance. In addition, strip welding and explosive bonding methods will be evaluated to determine the least cost method of cladding steel components with aluminum-bronze.

FOREWORD

The work was authorized as part of the Manufacturing Methods and Technology Program of the U.S. Army Materiel Development and Readiness Command and was administered by the U.S. Army Industrial Base Engineering Activity.

TABLE OF CONTENTS

DD F	ORM 1473				•			•	•	•		•	•		•		•	•				٠						i
FORE	WORD		. ,								•						•					•					i	ii
TABL	E OF CONT	ENTS	· .	•						,																		iv
LIST	OF TABLE	s.	• •		. ,								•											• (. •			٧
LIST	OF FIGUR	ES	, .			, .		•										•			•		•		•	•		vi
1.0	INTRODUC	TION	١.					•		•	•						,		•	•	•	•	•		•	,	•	1
	1.1 GMA 1.2 Str	W We	lding ladd	g (Pl ing (nase (Pha	: 1) ise	2)	•							•													1
2.0	MECHANIC																											
	2.2 Har 2.3 Fri 2.3 2.3 2.3 2.3 2.4 She 2.4 2.4 2.5 Met	dnes ctio .1 .2 .3 .4 ar a		alysiar Tea Appa imen Prod Itsa ensiledure Its nic A	ests Fab cedu and le T	us ric re Dis est	ati	ion	on	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•	•		•		•	3444455555
3.0	WELDING	PROC	EDURE	FOR	ST	EEL	PI	ST	ON	S	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	8
4.0	FIRING T	ESTS		ANAL	.YSE	s.	•	•		•	•	•		•	•		•			•			•				•	9
	4.1 Simu 4.2 Live	ulat e-Ei	ion T ring	est Test	and an	An d A	aly nal	ys i	s is	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		:	•	9
5.0	CONCLUSIO	ONS	. , .								•		•	•						•	•			•	•			9
6.0	RECOMMEN	DATI	ons .	. , .	•		•	•			•	•		•						•								10
7.0	FUTURE W	ORK									_				_													10

LIST OF TABLES

TABLE	1	-	CHEMICAL	COMPOS	ITIO	Ν.	• •		•	•	•		•	•	•	•	•	•	•	•	•	•	•	3
TABLE	2	-	HARDNESS	SURVEY	'S OF	OVE	RLAYE	D STE	EL	PL	ATE	Ξ.		•	•	•	•	•	•	•	•	•	•	3
TABLE	3	-	RESULTS'	OF FRI	T10N	AND	WEAR	TEST	S								•	•						6

LIST OF FIGURES

1	-	FRICTION & WEAR TEST SPECIMENS	11
2		SHOWING WEAR ON SURFACES AFTER ONE-HOUR TESTS	12
3	_	DIMENSIONS FOR SHEAR AND TENSILE TEST SPECIMENS	13
4	-	SPECIMENS BEFORE AND AFTER TESTS	14
5	-	MICROGRAPHS SHOWING COPPER-RICH DENDRITES IN AL-BRONZE OVERLAY	15
6	_	HEAT AFFECTED ZONE CONSISTS OF BAINITE AND FERRITE STRUCTURES	16
7	-	CROSS SECTIONAL VIEW OF RECOIL PISTON FOR M174 GUN MOUNT, COATED WITH BEARING MATERIAL	17
8	-	OVERALL SET UP FOR OVERLAYING AL-BRONZE ON M174 RECOIL PISTON USING GMAW PROCESS	18
9	-	ILLUSTRATION OF TORCH POSITION LOOKING FROM REAR OF PISTON	19
10	-	M174 PISTON COATED WITH AL-BRONZE (UNFINISHED)	20
11	-	CROSS SECTIONAL VIEW OF M174 PISTON, COATED WITH AL-BRONZE ON O.D. AND I.D. SURFACE	21
12	-	LIGHT SCORING ON OUTER BEARING SURFACE OF M174 PISTON	22
13	-	LIGHT SCORING ON INNER BEARING SURFACE OF M174 PISTON	23
14	_	LINEAR SCRATCHES ON CHROMIUM PLATED SURFACE OF RECOIL CYLINDER	24

1.0 INTRODUCTION:

The objective of this project is to develop cost effective manufacturing methods to coat weapon components with bearing materials for improved performance. The first phase of the work was directed to the manufacture of a steel piston for the M174 Recoil Mechanism which is not prone to failure by fracture of the piston body and which exhibits significantly greater bearing wear life when compared to the one-piece cast nodular piston currently in use. The use of nodular iron in production has been desirable since its microstructure offers "built-in" lubricity. However, the attainment of a homogeneous microstructure is most difficult and, if possible, very costly when casting non-uniform wall thicknesses typical of the piston. Therefore, low alloy steel was substituted for the nodular iron to impart adequate performance characteristics to the piston.

The use of steel for pistons dictates that a bearing material must be applied to surfaces since the steel does not afford the built-in lubricity of nodular iron. Several methods to coat the steel with bearing materials, e.g., flame spray, arc spray, etc., have been used. Sprayed castings may have an inherent advantage, i.e., they are less than fully dense (approximately 20 - 25% porosity) after being applied to the substrate and this might impart some self-lubricating quality to the material. However, this possible advantage is far outweighed by the coatings having low adhesive strengths (generally less than 1,000 psi), and being subject to brittle failure because of the formulation of oxide layers on metal particles. The oxide layers formed make surfaces hard and abrasive thereby reducing the bearing quality of the material. Consequently, their function as bearing materials is quite limited. In addition, the application of sprayed coatings to the inner diameter surfaces of certain components is often inhibited by the space available. That is, proper tool-to-workpiece distances are not possible when coating interior surfaces. It is, therefore desirable to define improved methods to coat pistons with bearing materials. The following are methods to be evaluated in Phase 1 and Phase 2.

1.1 GMAW Welding: (Phase 1)

The use of Gas Metal Arc Welding (GMAW) methods to apply bronze bearing materials to inner and outer surfaces of the pistons was investigated. The reasons for its selection are attributed to its high bond strength (equivalent to the yield strength of the material) and very low porosity and oxide contamination when compared to flame and arc sprays. As the bearing material is welded to the substrate, the mechanically-bonded interface typical of sprayed metals is eliminated; hence, highest interface strengths are available. Also, automation of the welding operation is possible, thereby reducing process variables. The primary caution is concerned with the avoidance of a complete reheat treatment being required after welding. This is accomplished by minimizing the effects of high localized heat-input to the metallurgical condition of the steel, i.e., by adapting adequate cooling methods and by interrupting the welding process at required intervals.

1.2 Strip Cladding: (Phase 2)

The use of strip cladding (modified submerged arc welding) methods to apply thin metal strip rather than wire to substrates will be investigated in Phase 2. This process is characterized by high deposition rates, i.e., 40-55 lbs/hr, when compared to GMAW welding processes which characteristically deposit approximately 20-25 lbs/hr or metal arc spray methods which impart about 25 lbs/hr. Because of the lower heat input and lower dilution of filler metal and substrate, post heat treatment requirements are further minimized. In addition, the strip cladding procedures are more amenable to automation techniques. Some development of the strip cladding process is required before it can be used, therefore, it was decided to use state-of-the-art GMAW methods for the Phase 1 study.

2.0 MECHANICAL, CHEMICAL AND METALLURGICAL ANALYSES:

To evaluate important properties of bearing material and processes of cladding by simulation and live firing tests would be difficult and very expensive. Consequently, chemical, hardness, wear and friction, tensile and shear (bond) strength test and metallographic analyses were conducted in the laboratory. These tests were carried out for better understanding of material performance.

A low alloy steel plate ($20^{\circ} \times 12^{\circ} \times 0.5^{\circ}$) was clad with Al-Bronze (Ampcotrode 46) using the following welding parameters:

Voltage: 28-29 V Current: 260-300 amp

Slope: Flat

Travel speed: 20 in/min

Shielding Gas/Flow Rate: Argon/35 CFH

Cooling: Water spray

Preheat: None

After being coated with Al-Bronze, the test plate was tempered at 1000°F for 2 hours. Various specimens were then machined for laboratory testing.

2.1 Chemical Analysis:

Chemical composition of steel plate was determined by using optical emission spectrographic techniques and chemical analyses of filler wire and the clad deposit was accomplished by wet chemical analysis. The chemical composition of the bearing alloy and steel substrate are presented in Table 1.

TABLE I

CHEMICAL COMPOSITION

Chemical elements (weight %)

Stee	1 Subst	rate								
С	Si	Cu	Mn	Ni	V	Р	Cr	S	Мо	Fe
0.28	7 0.304	0.12	5 0.51	8 0.065	0.003	0.0011	0.983	0.0123	0.221	Balance
Ampc	o-trode	46 (f	iller w	ire)						
	Cu	Ni	Fe	Al	Mn	Zn	Sn	Pb	S	i
	81.2	4.3	4.1	9.1	1.08	0.006	0.0	4 0.0	02 0.0	03
Clad	Clad Deposit									
	Cu	Ni	Fe	A1 Mi	n Zn	sn Sn	Pb	Si	Othe	r
	76.4	3.8	7.2	8.9 1.0	02 .00	0.06	0.00	3 0.0	6 2.5	

During weld cladding operations, it is desired to minimize dilution of the deposit. If the iron content in the deposit exceeds 10%, then a hard, iron-rich phase is formed that reduces the bearing quality of the coated surface. But by using filler wire of proper chemical composition and adequate cooling, it is observed that the iron content in the deposit was limited to 7.2%.

2.2 Hardness Analysis:

Hardness determination of test steel plate is presented in Table 2. As desired, the hardness of the bearing material was about 50 points Brinell lower than the steel substrate.

TABLE 2 HARDNESS SURVEYS OF OVERLAYED STEEL PLATE

Hardness

Bearing Material (Ampco-trode 46)	231 (216		
Steel Substrate (QQ-S-681, Grade 4)	27 (265	28 271	

2.3 Friction Wear Tests:

- 2.3.1 Test Apparatus: The friction and wear properties of the bearing materials were determined using the Alpha LFW-3 Tester. The flat surface of a rotating annular ring is used in this machine to give area contact against a stationary flat surface. The apparent area contact can be varied by a change in the diameter or width of the annular ring. Bearing pressures with standard specimens vary from 400 to 20,000 psi and this can be increased by a reduction in the area of contact. Speeds are infinitely variable from 1.47 to 52.3 fpm, and oscillatory motion is possible from 6 to 227 cycles per minute (cpm). The machine is designed for testing dry or liquid lubricants in various atmospheres and at temperatures from room temperature to 1,200°F. A single channel recorder was used for continuous recording of frictional force. Temperature measurement was done by Heat-Prober Thermometer.
- 2.3.2 Specimen Fabrication: The bearing materials were machined to form the stationary disc specimens. The wearing surface of the specimens was prepared on a table grinder to 14 rms finish. Final dimensions of bearing disc are shown in Figure 1a.

The mating material (4130 steel) was machined to form the oscillatory ring specimens. The wearing surface of these specimens was surface ground to a 20 rms finish. Final dimensions of the steel ring are shown in Figure 1b.

2.3.3 Test Procedure: The LFW-3 specimens, when initially received from the machine shop, were wiped and sprayed with naptha petroleum solvent. Before and after each LFW-3 test, the specimens were washed consecutively in methanol and petroleum ether. The specimens were blown dry and weighed.

Initially, the bearing and the mating test specimens were weighed to the nearest 0.1 mg. The specimens were then mounted in their respective positions and covered with hydraulic fluid (MIL-H6083D). The LFW-3 test conditions were those involving a 120° angle of oscillation at a frequency of 120 cycles per minute (64 inch per second linear velocity). The tests were conducted for durations of 10 and 60 minutes. The pressure during the first 60 seconds was 200 lbs/in 2 and was followed over the next 60 seconds by an increase in load to pre-set pressures of 500, 1000 or 1500 lbs/in 2 .

The variables measured in each LFW-3 test were co-efficients of friction $(\mu_f),$ friction generated temperature (T), and total wear. The initial co-efficients of friction $(\mu_f$ initial) were determined immediately after full load was reached. Final co-efficients of friction $(\mu_f$ final) were determined just before the end of the test period. The temperature of the hydraulic fluid covering the wear specimens was monitored continuously.

After completion of the test, both the mating and bearing LFW-3 specimens were visually examined, and the weight loss or gain of each was determined. The visual examination consisted of inspection for evidence of discoloration, type of wear and metal transfer.

2.3.4 Results and Discussion:

Under all experimental conditions used, the co-efficient of friction for Al-Bronze is twice that of nodular iron (see Results, Table 3). It was observed that for the shorter time duration test (1 min.), nodular iron shows less wear than Al-Bronze. But for the one hour test at higher load (1500 lbs), the nodular iron surface and mating steel surface experienced severe galling (Figure 2a), whereas under the same experimental conditions the Al-Bronze surface revealed medium galling (Figure 2b). A possible explanation for this is that under higher loads for long time, graphite particles imbedded in the nodular iron matrix are gradually eroded from the surface causing the material to lose its natural lubricity.

2.4 Shear and Tensile Test:

2.4.1 Procedure: The particular tensile/shear test specimen design is used to measure bond strength in shear and also tensile strength of cladding materials (see Figure 3).

Both the tensile and shear specimen are pulled in tension. The shear specimen, however, has a smaller interface between the overlay and the substrate. Therefore, a larger shear stress is experienced when the shear specimen receives the same load as the tensile specimen. If the bond strength of the interface in shear is greater than the yield strength of the overlay in tension, then the specimen will fail in the bearing material. If the reverse situation is true, the specimen will fail in shear at the interface region.

2.4.2 Results: In all the tests, failure occurred through the clad material in Figure 4. Measured tensile strengths were between 75 to 94 KSI. This indicates that the bond strength in shear is much higher than the tensile strength of bearing material.

2.5 <u>Metallographic Analysis</u>:

The microstructures of weld deposits on the test plate are shown in Figures 5a and 5b. In Figure 5a, a columnar dendritic freezing pattern is evident in the copper-base weld. Crystals grew with a preferred orientation and the dendrite direction is parallel to the direction of heat flow. The gray interdendrite phase may be untransformed beta (Al Cu3). This phase is retained on rapid cooling of the weld alloy. Such a structure is typical of as-cast copper alloys and is not harmful. No iron-rich phases were detected using the Scanning Electron Microscope. Nominal number of shrinkage cracks were discovered, depths ranging from 0.003 in. to 0.010 in. Since the weld alloy completely filled and bonded these cracks, they were judged to have produced no harmful effects.

Heat Affected Zone (HAZ) consists of bainite and ferrite structures as shown in Figure 6. These types of microstructures are desirable as they have higher toughness, hence re-heat treatment of component is not required.

TABLE 3

RESULTS OF FRICTION & WEAR TESTS

	T (°F)	190	280	300	004	180	175	170	760
	Test time (min)	10	10	10	09	10	10	10	09
on it (με)	Final (uf)¢	0.136	0.151	0.102	0.126	0.107	0.097	0.092	0.135
Friction $(co-efficient)$	lnitial (u≠);	0.166	0.226	0.224	0.230	0.108	0.105	0.099	0.107
	Load Applied (1bs)	500	1000	1500	1500	200	1000	1500	1500
40	Face Ring	4130 steel	4130 steel	4130 steel	4130 steel	4130 steel	4130 steel	4130 steel	4130 steel
Wearing Materials	Bearing Disc	Ampco-trade 46	Ampco-trode 46	Ampco-trode 46	Ampco-trode 46	Nodular iron	Nodular Iron	Nodular Iron	Nodular Iron
	Test Set	_	7	~	7.	5	9	7	∞

(Table 3 cont'd next page)

TABLE 3 cont'd RESULTS OF FRICTION & WEAR TESTS

Wear Type	Face Ring	IVL	IVL	2M, 3VL, 4	2M, 3VL, 4	1VL	IVL	2M, 3	2H, 35
Wea	Bearing Disc	IVL	2VL	2H, 5	2M, 5	JVL	2VL	2M, 4L	2S, 4H
ial ess	Face Ring	35∴R _c	34.5 Rc	35 R _c	35 R _C	34 R _B	35 R _B	35 RB	34.5 RB
Initial Hardness	Bearing Disc	22.5 R _c	22.B	22.5 R _c	22.3 Rc	97.5 RB	98.0 R _B	99.0 Kg	98.5 RB
Initial Surface Finish (RMS)	Face Ring	15-20	15-20	15-20	15-20	15-20	15-20	15-20	15-20
Initia] Finish	Bearing Disc	10-14	10-14	10-14	10-14	12-16	12-16	12-16	12-16
ge in ht test (mg)	Face	+0.05	+0.27	+0.91	+0.88	+0.62	-0.03	-0.15	-0.2
Change in Weight at end of test (mg)	Bearing Disc	-0.04	-4.91	-6.72	-37.05	-0.32	-0.14	-0.16	-125.3
	Test	_	2	٣	4	5	9	7	∞

LEGEND

1 - Smooth
2 - Galling
3 - Transferred Bearing Material
4 - Discoloration to blue - gray
5 - Discoloration to copper luster
VL - Very light
L - Light
M - Medium
H - Heavy
S - Severe

3.0 WELDING PROCEDURE FOR STEEL PISTONS:

Gas metal arc welding of steel pistons was initiated. The aluminum bronze family of alloys was proposed as the bearing material after considering ease of application by welding, toughness in service, and a confirmed history of successful application for use in reducing wear/friction when abraded by dissimilar materials. The particular selection of Ampco-trode 46 was made following the established practice whereby the bearing material should be 50 to 75 points Brinell lower in hardness than the mating surface.

3.1 Welding Parameters:

The following parameters were used in the welding process:

Inner Diameter:

Lathe Speed: 35 sec/rev (19.7 IPM on 3.660 in. 0.D.)

Carriage Feed: 0.204 in/rev

Pulse: 36V, 1/6 cycle duration, DCRP

Background, 24V, DCRP Current: 175-195 Amps

Shielding Gas/Flow Rate: Argon/35 CFH

Water cooled O.D. Preheat: None

(Max. interpass temperature of body: 300°F, cooled with water spray back up for continuous weld.)

Outer Diameter:

Lathe Speed: 71.45 sec/rev (19.8 IPM on 7.5 in. 0.D.)

Carriage Feed: 0.200 in/rev

Pulse: 36V, 1/6 cycle duration, DCRP

Background: 24V, DCRP Current: 190 Amps

Shielding Gas/Flow Rate: Argon/35 CFH

Air cooled Preheat: None

(No more than two revolutions were made without interruption for cooling.)

Figure 7 shows the desired dimensions for the Al-Bronze coated M174 Piston. Five test pistons were prepared at Rock Island Arsenal (RIA) for simulation and live firing test. A LINDE wire feeder and ST-9 modified torch plus AIRCO pulse arc power supply was used for welding pistons. The overall set-up of the process is shown in Figure 8.

Figure 9 (a & b) shows the torch position for I.D. and O.D. overlaying. After being coated with Al-Bronze, the pistons were tempered at 1000°F for 2 hours. Inspection of X-ray photographs of the pistons revealed a few minor voids,

less than about 0.094 in., and a material which was relatively free of microshrinkage. Window areas showed known defects related to prior weld repair of the steel piston and not related to the overlay. This was not of concern since the window areas were to be removed in final machining.

Figure 10 shows the M174 Piston with the Al-Bronze overlay on the outer diameter. After machining, the finished I.D. and O.D. thicknesses of the overlay were 0.060 in. (Figure 11).

4.0 FIRING TESTS AND ANALYSES:

4.1 Simulation Test and Analysis:

A steel piston clad with Al-Bronze was selected for simulation and livefiring tests. The simulation tests were conducted on a hydraulic gymnasticator at Rock Island Arsenal and a total of 3,025 rounds were fired.

On completion of simulation the gun mount was disassembled and both, piston and cylinder, were thoroughly cleaned and visual examination of surfaces was accomplished.

Bearing surfaces of the I.D. and O.D. of the piston were lightly scored as shown in Figures 12 and 13. This was mainly due to abrasion of hard chromium particles which were chipped off from chromium plated surface of the cylinder. Overall performance of Al-Bronze as bearing material was considered good. Figure 14 reveals few linear scratches on inner surface of cylinder.

4.2 Live-Firing Test and Analysis:

After simulation testing, the piston was then sent to Yuma Proving Ground, AZ for live-firing test where a total of 518 rounds were fired. At the conclusion of the test the recoil mechanism was disassembled and the piston was visually examined. It was observed that no adverse degradation of the piston had occurred. Only a few additional scratches were evident and none of these scratches were of any appreciable depth. The piston is considered in excellent condition for additional testing.

5.0 CONCLUSIONS:

The use of cast steel pistons clad with an aluminum-bronze bearing material will resolve prior failure problems experienced with nodular iron pistons currently used in the M174 recoil mechanism. GMAW of Ampco-trode 46 to cast steel pistons results in a competitively priced clad steel piston with no material/manufacturing deficiencies. For example, the intermetallics formed are minimal and do not degrade material performance, i.e., the bond strength of bearing material and its substrate is over twenty times stronger than conventional electric arc metallized coatings. In addition, subject to high pressure friction tests, the aluminum-bronze coatings have better wear resistance when compared to nodular iron.

Development of suitable GMAW procedures results in the cladding of an improved steel piston wherein the dilution of the aluminum-bronze bearing material with iron is kept well below critical levels. Consequently, the quality of the bearing material is maintained. Control of welding parameters and interpass temperatures eliminate re-heat treatment requirements since the bulk temperature of the steel substrate does not exceed the tempering temperature of 1100°F. In those areas at the interface where melting occurs, subsequent cooling is provided by the substrate and martensite is formed. Stress relief heat treatment of the material immediately after welding tempers the martensite and eliminates any undesirable residual stresses.

6.0 RECOMMENDATIONS:

Control of interpass and bulk temperatures of cast steel pistons is critical to the success when GMAW bearing materials to heat treated steel pistons. Although GMAW procedures developed in this program are cost competitive, the rate of deposition, with attendent cost reduction, could be increased significantly by developing procedures to use larger diameter welding wire.

7.0 FUTURE WORK:

During the second phase of this program additional clad steel pistons will be manufactured for field tests. GMAW procedures using larger diameter wire will be investigated. Other cladding processes using strip welding and explosive bonding methods will be evaluated to determine the least-cost manufacturing method. An Engineering Change Proposal will be submitted to recommend implementation of the selected cladding process in production.

NOTE: DIM A = 0.60 THICKNESS AL-BRONZE OVERLAY

FIGURE 1. FRICTION & WEAR TEST SPECIMENS.

a. BEARING DISC

b. MATING STEEL RING

FIGURE 2. SHOWING WEAR ON SURFACES AFTER ONE-HOUR TESTS. (a) NODULAR IRON VS. STEEL (b) AL- BRONZE OVERLAY VS. STEEL

FIGURE 3. DIMENSIONS FOR SHEAR AND TENSILE TEST SPECIMENS.

FIGURE 4. SPECIMENS BEFORE AND AFTER TESTS - (a) TENSILE TEST; (b) SHEAR TEST

(b)

FIGURE 5. MICROGRAPHS SHOWING COPPER-RICH DENDRITES IN A1-BRONZE OVERLAY. MAG.: a. 100X b. 800X, ETCHANT: $_{4}^{\rm OH}$ - $_{12}^{\rm O}$ 0 (1:1)

FIGURE 6. HEAT AFFECTED ZONE CONSISTS OF BAINITE AND FERRITE STRUCTURES. MAG.: 800X, ETCHANT: 2% Nital

Figure 8. OVERALL SET UP FOR OVERLAYING AL-BRONZE ON MI74 RECOIL PISTON USING GMAW PROCESS

Figure 9. ILLUSTRATION OF TORCH POSITION LOOKING FROM REAR OF PISTON.

FIGURE 10. MI74 PISTON COATED WITH AI-BRONZE (UNFINISHED).

FIGURE 11. CROSS SECTIONAL VIEW OF M174 PISTON, COATED WITH AL-BRONZE ON O.D. AND I.D. SURFACES.

FIGURE 12. LIGHT SCORING ON OUTER BEARING SURFACE OF M174 PISTON AFTER TEST FIRING.

FIGURE 13. LIGHT SCORING ON INNER BEARING SURFACE OF M174 PISTON AFTER TEST FIRING.

FIGURE 14. LINEAR SCRATCHES ON CHROMIUM PLATED SURFACE OF RECOIL CYLINDER AFTER TEST FIRING,

		Lopies
A.	Department of Defense	
	Defense Documentation Center ATTN: TIPDR Cameron Station Alexandria, VA 22314	12
8.	Department of the Army	
	Commander US Army Materiel Development and Readiness Command ATTN: DRCMT 5001 Eisenhower Avenue Alexandria, VA 22333	1
	Commander US Army Materiel Development and Readiness Command Scientific and Technical Information Team' - Europe ATTN: DRXST-STL, Dr. Richard B. Griffin APO New York 09710	1
	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-RDP DRSAR-SC DRSAR-QAE DRSAR-IRW Rock Island, IL 61299	! ! !
	Commander US Army Armament Research & Development Command ATTN: DRDAR-PMP, Mr. Donald J. Fischer Dover, NJ 07801	1
	Director US Army Materials and Mechanics Research Center ATTN: DRXMR-M Watertown, MA 02172	2
	Commander US Army Maintenance Management Center ATTN: DRXMD-A Lexington, KY 40507	1
	Commander US Army Electronics Research and Development Command ATTN: DRSEL-PA-E Fort Monmouth, NJ 07703	1

	Copies
Department of Defense	
Defense Documentation Center	
ATTN: TIPOR	12
Cameron Station Alexandria, VA 22314	
Department of the Army	
Commander	
US Army Materiel Development and Readiness Command	•
ATTN: DRCMT	1
5001 Eisenhower Avenue Alexandria, VA 22333	
Commander US Army Materiel Development and Readiness Command	
Scientific and Technical Information Team' - Europe	
ATTN: DRXST-STL, Dr. Richard B. Griffin	1
APO New York 09710	•
Are new lork 63716	
Commander	
US Army Armament Materiel Readiness Command	
ATTN: DRSAR-RDP	1
DRSAR-SC	
DRSAR-QAE	
DRSAR-IRW Rock Island, IL 61299	1
ROCK ISTAND, IL 01233	
Commander	
US Army Armament Research & Development Command	
ATTN: DRDAR-PMP, Mr. Donald J. Fischer	1
Dover, NJ 07801	
Director	
US Army Materials and Mechanics Research Center	
ATTN: DRXMR-M	2
Watertown, MA 02172	
Commander	
US Army Maintenance Management Center	
ATTN: DRXMD-A	1
Lexington, KY 40507	
Commander	
US Army Electronics Research and Development Command ATTN: DRSEL-PA-E	
Fort Monmouth, NJ 07703	1
TOTAL HOURING CITY INC. Of /O)	

	Copies
Commander US Army Missile Research and Development Command ATTN: DRDMI Redstone Arsenal, AL 35809	1
Commander US Army Tank-Automotive Materiel Readiness Command ATTN: DRSTA-Q	
Warren, MI 48090	1
Commander US Army Tank-Automotive Research and Development Command ATTN: DRDAR-UL DRDTA-RKA Warren, MI 48090	1
Commander US Army Aviation Research and Development Command ATTN: DRDAV-EXT P.O. Box 209 St. Louis, MO 63166	1
Commander US Army Troop Support and Aviation Materiel Readiness Com ATTN: DRSTS-PLE 4300 Goodfellow Blvd. St. Louis, MO 63120	nmand 1
Commander Ballistic Research Laboratories ATTN: DRXBR-X Aberdeen Proving Ground, MD 21005	1
Commander Harry Diamond Laboratories ATTN: DRXDO-RCD 2800 Powder Mill Road Adelphi, MD 20783	1
Commander New Cumberland Army Depot ATTM: SDSNC-QA New Cumberland, PA 17070	1
Commander Pueblo Army Depot Activity ATTN: DRXPU Pueblo CO 81001	1

	Lopies
Commander Red River Army Depot ATTN: SDSRR-QA Texarkana, TX 75501	1
Commander Sacramento Army Depot ATTN: SDSSA-QA Sacramento, CA 95813	1
Commander Seneca Army Depot ATTN: SDSSE-R Romulus, NY 14541	1
Commander Sharpe Army Depot ATTN: SDSSH-QE Lathrop, CA 95330	1
Commander Sierra Army Depot ATTN: SDSSI-DQA Herlong, CA 96113	1
Commander Tobyhanna Army Depot ATTN: SDSTO-Q Tobyhanna, PA 18466	1
Director US Army Industrial Base Engineering Activity ATTN: DRXIB-MT Rock Island Arsenal Rock Island, IL 61299	2
Director USDARCOM Intern Training Center ATTN: SDSRR-QA Red River Army Depot Texarkana, TX 75501	1
Commander US Army Tropic Test Center ATTN: STETC-TD Drawer 942 Fort Clayton, Canal Zone	1

	Lopies
Commander Anniston Army Depot ATTN: SDSAN-QA Anniston, AL 36202	1
Commander Corpus Christi Army Depot ATTN: SDSCC-MEE Mail Stop 55 Corpus Christi, TX 78419	1
Commander Fort Wingate Army Depot Activity ATTN: DRXFW Gallup, NM 87301	1
Commander Letterkenny Army Depot ATTN: SDSLE Chambersburg, PA 17201	1
Commander Lexington-Blue Grass Army Depot Activity ATTN: SDSLX Lexington, KY 40507	1
Commander Tooele Army Depot ATTN: SDSTE-QA Tooele, UT 84074	. 1
Commander Holston Army Ammunition Plant ATTN: SARHO Kingsport, TN 37660	1
Commander Indiana Army Ammunition Plant ATTN: SARIN Charleston, IN 47111	1
Commander Iowa Army Ammunition Plant ATTN: SARIO Middletown, IA 52601	1

	Copies
Commander Joliet Army Ammunition Plant ATTN: SARJO Joliet, IL 60434	1
Commander Lone Star Army Ammunition Plant ATTN: SARLS Texarkana, TX 75501	1
Commander Louisiana Army Ammunition Plant ATTN: SARLA P.O. Box 30058 Shreveport, LA 71161	1
Commander Milan Army Ammunition Plant ATTN: SARMI Milan, TN 38358	1
Commander Radford Army Ammunition Plant ATTN: SARRA Radford, VA 24141	1
Commander Riverbank Army Ammunition Plant ATTN: SARRB Riverbank, CA 95367	1
Commander Scranton Army Ammunition Plant ATTN: SARSC Scranton, PA 18501	1
Commander Twin Cities Army Ammunition Plant ATTN: SARTC New Brighton, MN 55112	1
Commander Volunteer Army Ammunition Plant ATTN: SARVO-T P.O. Box 6008 Chattanooga, TN 37401	1

Department of the Navy	
Commander	
US Navy Materiel Industrial Resources Office	
ATTN: Code 044, CPT L. C. Dictmar	1
Code 227	1
Philadelphia, PA 19112	
Department of the Air Force	
Commander	
Air Force Materials Laboratory	
ATTN: LTM	1
Wright-Patterson AFB, OH 45433	•

DISTRIBUTION LIST UPDATE

- - - FOR YOUR CONVENIENCE - - -

Government regulations require the maintenance of up-to-date distribution lists for technical reports. This form is provided for your convenience to indicate necessary changes or corrections.

If a change in our mailing lists should be made, please check the appropriate boxes below. For changes or corrections, show old address exactly as it appeared on the mailing label. Fold on dotted lines, tape or staple the lower edge together, and mail.

Remove Name	From List	Change or Correct Address	
old Address:		Corrected or New Address:	
		COMMENTS	
Date:		Signature:	

Technical Report #