Teoria Obwodów w zadaniach

Jakub Stankowski, Agnieszka Wardzińska, Krzysztof Wegner, Krzysztof Klimaszewski

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-2-0 Wydrukowano w Polsce

Rozdział 1

Prawo Ohma, rezystancja zastępcza, dzielniki pradowe i napięciowe, zwijanie obwodu

1.1 Teoria

1.1.1 Prawo Ohma

Rezystancja (opór) - R
[Ohm] - R
[Ω]

$$R = \frac{U}{I} \tag{1.1}$$

$$U = R \cdot I \tag{1.2}$$

$$I = \frac{U}{R} \tag{1.3}$$

Konduktancja - G[Siemens] - G[S]

$$G = \frac{1}{R} \tag{1.4}$$

$$R = \frac{1}{G} \tag{1.5}$$

1.1.2 Opór zastępczy

Szeregowe łączenie rezystorów

$$R_z = R_1 + R_2 (1.6)$$

$$R_1$$
 R_2 R_n S_2

$$R_z = R_1 + R_2 + \dots + R_n \tag{1.7}$$

Równoległe łączenie rezystorów

$$R_z = \frac{R_1 \cdot R_2}{R_1 + R_2} \tag{1.8}$$

$$R_1$$
 R_2
 R_2
 R_n
 R_n
 R_n
 R_n

$$\frac{1}{R_z} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} \tag{1.9}$$

Dzielniki napięciowe i prądowe 1.1.3

Dzielnik napięciowy

$$U = U_1 + U_2 (1.10)$$

$$U_1 = R_1 \cdot I \tag{1.11}$$

$$U_2 = R_2 \cdot I \tag{1.12}$$

$$U_{2} = R_{2} \cdot I$$

$$I = \frac{U}{R_{z}} = \frac{U}{R_{1} + R_{2}}$$
(1.12)

$$U_1 = \frac{R_1}{R_1 + R_2} \cdot U \tag{1.14}$$

$$U_2 = \frac{R_2}{R_1 + R_2} \cdot U \tag{1.15}$$

$$U_1 = \frac{G_2}{G_1 + G_2} \cdot U \tag{1.16}$$

$$U_2 = \frac{G_1}{G_1 + G_2} \cdot U \tag{1.17}$$

Dzielnik pradowy

$$I = I_1 + I_2 (1.18)$$

$$I = \frac{U}{R_z} = \frac{U}{\frac{R_1 \cdot R_2}{R_1 + R_2}} \tag{1.19}$$

$$I_1 = \frac{U}{R_1} \tag{1.20}$$

$$I_2 = \frac{U}{R_2} \tag{1.21}$$

$$I_1 = \frac{R_2}{R_1 + R_2} \cdot I \tag{1.22}$$

$$I_2 = \frac{R_1}{R_1 + R_2} \cdot I \tag{1.23}$$

$$I_1 = \frac{G_1}{G_1 + G_2} \cdot I \tag{1.24}$$

$$I_2 = \frac{G_2}{G_1 + G_2} \cdot I \tag{1.25}$$

1.1.4 Przekształcenie trójkat-gwiazda i gwiazda-trójkąt

Trójkąt

Gwiazda

Przekształcenie trójkat-gwiazda

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} \tag{1.26}$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} \tag{1.27}$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} \tag{1.28}$$

Przekształcenie gwiazda-trójkąt

$$R_1 = R_A + R_B + \frac{R_A \cdot R_B}{R_C} \tag{1.29}$$

$$R_2 = R_A + R_C + \frac{R_A \cdot R_C}{R_B} \tag{1.30}$$

$$R_3 = R_b + R_C + \frac{R_B \cdot R_C}{R_A} \tag{1.31}$$

1.2 Zadania

Zadanie 1. Wyznacz opór zastępczy układu

Rozwiązanie

 TBD

Zadanie 2. Wyznacz opór zastępczy widziany z zacisków A i F. R=6 Ω

Rozwiązanie

 ${\bf Zadanie~3.~}$ Oblicz rezystancję zastępczą widziana z zacisków a i b.

Rozwiązanie

 ${\bf Zadanie}~{\bf 4.}~~{\rm Oblicz}$ rezystancję zastępczą widziana z zacisków a i b.

Rozwiązanie

Zadanie 5. Oblicz rezystancję zastępczą widziana z zacisków a i b.

$$R_1 = R_3 = 20\Omega, R_2 = R_4 = 40\Omega, R_5 = 30\Omega, R_6 - R_7 = 30\Omega$$

Rozwiązanie

 ${\bf Zadanie~6.}~$ Oblicz rezystancję zastępczą widziana z zacisków a i b.

$$R_1 = 10\Omega, R_2 = 20\Omega, R_3 = 30\Omega, R_4 = 40\Omega, R_5 = 50\Omega$$

Rozwiązanie

Zadanie 7. Oblicz rezystancję zastępczą widziana z zacisków a i b.

Rozwiązanie

 TBD

Zadanie 8. Wyznacz opór zastępczy poniższego układu. Podaj wzór na opór zastępczy oraz jego wartość. Przyjmij że $R=3\Omega$

Rozwiązanie

Należy zauważyć iż zaznaczone na schemacie S17 oporniki połączone są szeregowo.

Oporniki te zastępujemy jednym opornikiem o oporze zastępczym R_{Z1}

$$R_{Z1} = R + R = 2R$$

Następnie należy zauważyć iż zaznaczone na schemacie S19 są połączone równoległe i zastąpić je jednym oporem zastępczym o wartości R_{Z2}

$$\frac{1}{R_{Z2}} = \frac{1}{R_{Z1}} + \frac{1}{R}$$

$$\frac{1}{R_{Z2}} = \frac{1}{2R} + \frac{1}{R} =$$

$$= \frac{1}{2R} + \frac{2}{2R} =$$

$$= \frac{3}{2R}$$

$$R_{Z2} = \frac{2}{3}R$$

Następnie należy zauważyć iż zaznaczone na schemacie S21 są połączone szeregowo i zastąpić je jednym oporem zastępczym o wartości R_{Z3}

$$R_{Z3} = \frac{2}{3}R + R$$

$$R_{Z3} = \frac{2}{3}R + \frac{3}{3}R$$

$$= \frac{5}{3}R$$

Następnie należy zauważyć iż zaznaczone na schemacie S23 są połączone równolegle i zastąpić je jednym oporem zastępczym o wartości R_{Z4}

$$\frac{1}{R_{Z4}} = \frac{1}{R} + \frac{1}{R_{Z3}}$$

$$\frac{1}{R_{Z4}} = \frac{1}{R} + \frac{1}{\frac{5}{3}R} =$$

$$= \frac{1}{R} + \frac{3}{5R} =$$

$$= \frac{5}{5R} + \frac{3}{5R} =$$

$$= \frac{8}{5R}$$

$$R_{Z4} = \frac{5}{8}R$$

$$R R_{Z4} = \frac{5}{8}R (S24)$$

Ostatecznie należy zauważyć iż zaznaczone na schemacie $\S 25$ są połączone szeregowo i zastąpić je jednym oporem zastępczym o wartości R_{Z5}

$$R = \frac{5}{8}R$$
 (S25)

$$R_{Z5} = R + R_{Z4}$$

 $R_{Z5} = R + \frac{5}{8}R =$
 $= \frac{8}{8}R + \frac{5}{8}R =$
 $= \frac{13}{8}R$

$$R_{Z5} = \frac{13}{8}R \tag{S26}$$

Tak więc opór zastępczy obwodu przedstawionego na schemacie ${\color{red}{\rm S16}}$ równa się ${\frac{13}{8}}R$

Zadanie 9. Wyznacz impedancje zastępczą Z_{AB} poniższego układu pomiędzy zaciskami A i B. Podaj wzór na impedancje zastępczą oraz jego wartość. Przyjmij że $Z=3+j\,\Omega$

Rozwiązanie

Analizę układu należy rozpocząć od obserwacji iż zaznaczone na schemacie S17 impedancje Z_6 oraz Z_7 połączone są równolegle.

Impedancje te zastępujemy jedną impedancją o impedancji zastępczej \mathbb{Z}_{67}

$$\frac{1}{Z_{67}} = \frac{1}{Z_6} + \frac{1}{Z_7} =$$

$$= \frac{Z_7}{Z_6 \cdot Z_7} + \frac{Z_7}{Z_6 \cdot Z_7} =$$

$$= \frac{Z_7 + Z_6}{Z_6 \cdot Z_7} =$$

$$Z_{67} = \frac{Z_6 \cdot Z_7}{Z_7 + Z_6}$$

Następnie należy zauważyć iż impedancje \mathbb{Z}_3 i \mathbb{Z}_4 są połączone szeregowo i zastąpić je jedną impedancją zastępczą o wartości \mathbb{Z}_{35}

Następnie należy zauważyć iż impedancje Z_{11} oraz Z_{12} są połączone równolegle i zastąpić je jedną impedancją zastępczą o wartości \mathbb{Z}_{1112}

 $Z_{34} = Z_3 + Z_4$

$$\begin{split} \frac{1}{Z_{1112}} &= \frac{1}{Z_{11}} + \frac{1}{Z_{12}} = \\ &= \frac{Z_{12}}{Z_{11} + Z_{12}} R + \frac{Z_{11}}{Z_{11} + Z_{12}} = \\ &= \frac{Z_{12} \cdot Z_{11}}{Z_{11} + Z_{12}} \\ Z_{1112} &= \frac{Z_{11} + Z_{12}}{Z_{12} \cdot Z_{11}} \end{split}$$

Następnie należy zauważyć iż impedancja Z_9 jest połączona równolegle ze zwarciem. I można ją zastąpić jednym zwarciem.

$$\frac{1}{Z_{90}} = \frac{1}{Z_9} + \frac{1}{0} =$$

$$= \frac{0}{Z_9 \cdot 0} + \frac{Z_9}{Z_9 \cdot 0} =$$

$$= \frac{0 + Z_9}{Z_9 \cdot 0}$$

$$Z_{90} = \frac{Z_9 \cdot 0}{0 + Z_9} =$$

$$= \frac{0}{Z_9} = 0$$

Następnie należy zauważyć iż impedancje Z_{10} oraz Z_{1112} jest połączona szeregowo. I można ją zastąpić jedną impedancją zastępczą o wartości Z_{101112} .

$$Z_{101112} = Z_{10} + Z_{1112}$$

Wstawiając obliczoną wcześniej wartość impedancji \mathbb{Z}_{1112}

$$Z_{101112} = Z_{10} + Z_{1112} =$$

$$= Z_{10} + \frac{Z_{11} + Z_{12}}{Z_{12} \cdot Z_{11}} =$$

$$= \frac{Z_{10} \cdot (Z_{12} \cdot Z_{11})}{Z_{12} \cdot Z_{11}} + \frac{Z_{11} + Z_{12}}{Z_{12} \cdot Z_{11}} =$$

$$= \frac{Z_{10} \cdot (Z_{12} \cdot Z_{11}) + Z_{11} + Z_{12}}{Z_{12} \cdot Z_{11}}$$

$$Z_{10} \cdot (Z_{12} \cdot Z_{11}) + Z_{11} + Z_{12}$$

$$Z_{10} \cdot (Z_{12} \cdot Z_{11}) =$$

$$Z_{10} \cdot (Z_{12} \cdot Z_{11}) + Z_{11} + Z_{12}$$

$$Z_{10} \cdot (Z_{12} \cdot Z_{11}) + Z_{11} + Z_{12}$$

$$Z_{11} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{11} \cdot Z_{12} \cdot Z_{11}$$

$$Z_{12} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{13} \cdot Z_{14} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{14} \cdot Z_{15} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{15} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{15} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{16} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{17} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{17} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11} \cdot Z_{11}$$

$$Z_{17} \cdot Z_{11} \cdot Z_{11}$$

Następnie należy zauważyć iż impedancja Z_{101112} połączona jest równolegle ze zwarciem. A więc można ją zastąpić zwarciem.

$$= \frac{Z_{101112}}{0 \cdot Z_{101112}} + \frac{0}{0 \cdot Z_{101112}} =$$

$$= \frac{Z_{101112} + 0}{0 \cdot Z_{101112}}$$

$$Z_{1011120} = \frac{0 \cdot Z_{101112}}{Z_{101112} + 0} = 0$$

Następnie należy zauważyć iż impedancja Z_8 połączona jest równolegle ze zwarciem. A więc można ją zastąpić zwarciem.

$$\frac{1}{Z_{80}} = \frac{1}{0} + \frac{1}{Z_8} =$$

$$= \frac{Z_8}{0 \cdot Z_8} + \frac{0}{0 \cdot Z_8} =$$

$$= \frac{Z_8 + 0}{0 \cdot Z_8}$$

$$Z_{80} = \frac{0 \cdot Z_8}{Z_8 + 0} = 0$$

Następnie należy zauważyć iż impedancje Z_5 i Z_{67} są połączone szeregowo. A więc można ją zastąpić jedną impedancją zastępczą o wartości Z_{567} .

$$Z_{567} = Z_5 + Z_{67}$$

Wstawiając wcześniej obliczoną wartość impedancji \mathbb{Z}_{67}

$$Z_{567} = Z_5 + Z_{67} =$$

$$= Z_5 + \frac{Z_6 \cdot Z_7}{Z_7 + Z_6} =$$

$$= \frac{Z_5 \cdot (Z_7 + Z_6)}{Z_7 + Z_6} + \frac{Z_6 \cdot Z_7}{Z_7 + Z_6} =$$

$$= \frac{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7}{Z_7 + Z_6}$$

Następnie należy zauważyć iż impedancje Z_{34} i Z_{567} są połączone równolegle. A więc można ją zastąpić jedną impedancją zastępczą o wartości Z_{34567} .

Wstawiając wcześniej obliczone wartości impedancji \mathbb{Z}_{34} oraz \mathbb{Z}_{567}

$$\begin{split} \frac{1}{Z_{34567}} &= \frac{1}{Z_{34}} + \frac{1}{Z_{567}} = \\ &= \frac{1}{Z_3 + Z_4} + \frac{1}{\frac{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7}{Z_7 + Z_6}} = \\ &= \frac{1}{Z_3 + Z_4} + \frac{Z_7 + Z_6}{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7} = \\ &= \frac{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7}{(Z_3 + Z_4) \cdot (Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7)} + \frac{Z_3 + Z_4}{(Z_3 + Z_4) \cdot (Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7)} = \\ &= \frac{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7 + Z_3 + Z_4}{(Z_3 + Z_4) \cdot (Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7)} \\ Z_{34567} &= \frac{(Z_3 + Z_4) \cdot (Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7)}{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7 + Z_3 + Z_4} \end{split}$$

Ostatecznie należy zauważyć iż impedancje Z_1 , Z_{34567} oraz Z_2 są połączone szeregowo i zastąpić je jedną impedancją zastępczą o wartości $R_{1234567}$

$$Z_{1234567} = Z_1 + Z_{34567} + Z_2$$

Podstawiając obliczoną wcześniej wartość impedancji \mathbb{Z}_{34567}

$$Z_{1234567} = Z_1 + Z_{34567} + Z_2 =$$

$$= Z_1 + \frac{(Z_3 + Z_4) \cdot (Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7)}{Z_5 \cdot (Z_7 + Z_6) + Z_6 \cdot Z_7 + Z_3 + Z_4} + Z_2$$

$$A_{\circ}$$

$$Z_{1234567}$$

$$Z_{1234567}$$

$$(S47)$$

Tak więc impedancja zastępcza obwodu przedstawionego na schemacie S27 równa się $\mathbb{Z}_{1234567}$

Zadanie 10. Wyznacz impedancje zastępczą Z_{AB} poniższego układu pomiędzy zaciskami A i B. Podaj wzór na impedancje zastępczą oraz jego wartość. Przyjmij że $Z=2+j\,\Omega$

Rozwiązanie

Analizę układu należy rozpocząć od obserwacji iż zaznaczone na schemacie S49 impedancje Z_5 oraz Z_6 połączone są równolegle.

Impedancje tą zastępujemy jedną impedancją zastępczą o wartości \mathbb{Z}_{56}

$$\frac{1}{Z_{56}} = \frac{1}{Z_5} + \frac{1}{Z_6} =$$

$$= \frac{Z_6}{Z_5 \cdot Z_6} + \frac{Z_5}{Z_5 \cdot Z_6} =$$

$$= \frac{Z_6 + Z_5}{Z_5 \cdot Z_6}$$

$$Z_{56} = \frac{Z_5 \cdot Z_6}{Z_6 + Z_5}$$

Następnie należy zauważyć iż impedancje Z_3 i Z_{56} są połączone szeregowo i zastąpić je jedną impedancją zastępczą o wartości Z_{356}

$$Z_{356} = Z_3 + Z_{56} =$$

$$= Z_3 + \frac{Z_5 \cdot Z_6}{Z_6 + Z_5}$$

Następnie należy przerysować układ delikatnie wyprostowując impedancje Z_{356} . Można wtedy zauważyć iż impedancje Z_2 oraz Z_{356} są połączone równolegle i zastąpić je jedną impedancją zastępczą o wartości Z_{2356}

$$\begin{split} \frac{1}{Z_{2356}} &= \frac{1}{Z_2} + \frac{1}{Z_{356}} = \\ &= \frac{Z_{356}}{Z_2 \cdot Z_{356}} + \frac{Z_2}{Z_2 \cdot Z_{356}} = \\ &= \frac{Z_{356} + Z_2}{Z_2 \cdot Z_{356}} \\ Z_{2356} &= \frac{Z_2 \cdot Z_{356}}{Z_{356} + Z_2} \end{split}$$

Wstawiają wcześniej wyznaczoną wartości impedancji Z_{356} otrzymujemy

$$\begin{split} Z_{2356} &= \frac{Z_2 \cdot Z_{356}}{Z_{356} + Z_2} = \\ &= \frac{Z_2 \cdot \left(Z_3 + \frac{Z_5 \cdot Z_6}{Z_6 + Z_5} \right)}{Z_3 + \frac{Z_5 \cdot Z_6}{Z_6 + Z_5} + Z_2} = \end{split}$$

$$= \frac{Z_2 \cdot Z_3 + Z_2 \cdot \frac{Z_5 \cdot Z_6}{Z_6 + Z_5}}{Z_3 + \frac{Z_5 \cdot Z_6}{Z_6 + Z_5} + Z_2} =$$

$$= \frac{Z_2 \cdot Z_3 \cdot Z_5 + Z_2 \cdot (Z_3 + Z_5) \cdot Z_6}{(Z_2 + Z_3) \cdot Z_5 + (Z_2 + Z_3 + Z_5) \cdot Z_6}$$

(S54)

Następnie należy zauważyć iż impedancje Z_1 oraz Z_{2356} są połączone szeregowo. I można je zastąpić jedną impedancją zastępczą o wartości Z_{12356} .

(S55)

$$Z_{12356} = Z_1 + Z_{2356}$$

Wstawiają wcześniej wyznaczoną wartości impedancji \mathbb{Z}_{2356} otrzymujemy

$$Z_{12356} = Z_1 + Z_{2356} =$$

$$= Z_1 + \frac{Z_2 \cdot Z_3 \cdot Z_5 + Z_2 \cdot (Z_3 + Z_5) \cdot Z_6}{(Z_2 + Z_3) \cdot Z_5 + (Z_2 + Z_3 + Z_5) \cdot Z_6}$$

Następnie należy zauważyć iż impedancje Z_4 oraz Z_{12356} są połączona równolegle. I można ją zastąpić jedną impedancją zastępczą o wartości Z_{123456} .

$$\frac{1}{Z_{123456}} = \frac{1}{Z_4} + \frac{1}{Z_{12356}}$$

Wstawiając obliczoną wcześniej wartość impedancji Z_{12356}

$$\frac{1}{Z_{123456}} = \frac{1}{Z_4} + \frac{1}{Z_{12356}}$$

$$Z_{1} \cdot Z_4 \cdot ((Z_2 + Z_3) \cdot Z_5 + (Z_2 + Z_3 + Z_5) \cdot Z_6) + Z_2 \cdot Z_4 \cdot (Z_5 \cdot Z_6 + Z_3 \cdot (Z_5 + Z_6) + Z_6) + Z_6 \cdot Z_6 + Z_7 \cdot Z_7 + Z_7 \cdot Z_7$$

Tak więc impedancja zastępcza obwodu przedstawionego na schemacie S48 równa się \mathbb{Z}_{123456}

Zadanie 11. Wyznacz impedancje zastępczą Z_{AB} poniższego układu pomiędzy zaciskami A i B. Podaj wzór na impedancje zastępczą oraz jego wartość. Przyjmij że $Z=2+j\,\Omega$

Rozwiązanie

Analizę układu należy rozpocząć od obserwacji iż żadne dwie impedancje nie są połączone szeregowo ani równolegle. Można natomiast zauważyć iż zaznaczone na schemacie S60 impedancje Z_1 , Z_2 oraz Z_3 są połączone w gwiazdę. Można zastąpić je układem trzech impedancji Z_A , Z_B i Z_C połączonych w trójkąt.

$$R_A = R_1 + R_3 + \frac{R_1 \cdot R_3}{R_2}$$

$$R_B = R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1}$$

$$R_C = R_1 + R_2 + \frac{R_1 \cdot R_2}{R_3}$$

Następnie należy zauważyć iż impedancje Z_4 i Z_5 są połączone szeregowo i zastąpić je jedną impedancją zastępczą o wartości Z_{45}

$$Z_{45} = Z_4 + Z_5$$

Następnie można zauważyć iż impedancje Z_{45} oraz Z_A są połączone równolegle i zastąpić je jedną impedancją zastępczą o wartości Z_{45A}

$$\begin{split} \frac{1}{Z_{45A}} &= \frac{1}{Z_{45}} + \frac{1}{Z_A} = \\ &= \frac{Z_A}{Z_{45} \cdot Z_A} + \frac{Z_{45}}{Z_{45} \cdot Z_A} = \\ &= \frac{Z_{45} + Z_A}{Z_{45} \cdot Z_A} \\ Z_{45A} &= \frac{Z_{45} \cdot Z_A}{Z_{45} + Z_A} \end{split}$$

Wstawiają wcześniej wyznaczone wartości impedancji \mathbb{Z}_{45} i \mathbb{Z}_A otrzymujemy

$$\begin{split} Z_{45A} &= \frac{Z_{45} \cdot Z_A}{Z_{45} + Z_A} = \\ &= \frac{(Z_4 + Z_5) \cdot \left(R_1 + R_3 + \frac{R_1 \cdot R_3}{R_2}\right)}{Z_4 + Z_5 + R_1 + R_3 + \frac{R_1 \cdot R_3}{R_2}} \end{split}$$

Następnie należy zauważyć iż impedancje Z_B oraz Z_6 są połączone równolegle. I można je zastąpić jedną impedancją zastępczą o wartości Z_{B6} .

$$\frac{1}{Z_{B6}} = \frac{1}{Z_B} + \frac{1}{Z_6} =$$

$$= \frac{Z_6 + Z_B}{Z_B \cdot Z_6}$$

$$Z_{B6} = \frac{Z_B \cdot Z_6}{Z_6 + Z_B}$$

Wstawiają wcześniej wyznaczoną wartości impedancji \mathbb{Z}_B otrzymujemy

$$Z_{B6} = \frac{Z_B \cdot Z_6}{Z_6 + Z_B} =$$

$$= \frac{\left(R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1}\right) \cdot Z_6}{Z_6 + R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1}}$$

Następnie należy zauważyć iż impedancje Z_{45A} oraz Z_{B6} są połączona szeregowo. I można ją zastąpić jedną impedancją zastępczą o wartości Z_{45AB6} .

$$Z_{45AB6} = Z_{45A} + Z_{B6}$$

Wstawiając obliczone wcześniej wartości impedancji \mathbb{Z}_{45A} i \mathbb{Z}_{B6}

$$Z_{45AB6} = Z_{45A} + Z_{B6} =$$

$$= \frac{(Z_4 + Z_5) \cdot \left(R_1 + R_3 + \frac{R_1 \cdot R_3}{R_2}\right)}{Z_4 + Z_5 + R_1 + R_3 + \frac{R_1 \cdot R_3}{R_2}} + \frac{\left(R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1}\right) \cdot Z_6}{Z_6 + R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1}}$$

Ostatecznie można zauważyć iż impedancje Z_C oraz Z_{45AB6} są połączona równolegle. I można ją zastąpić jedną impedancją zastępczą o wartości Z_{C45AB6} .

$$\frac{1}{Z_{C45AB6}} = \frac{1}{Z_C} + \frac{1}{Z_{45AB6}}$$
$$= \frac{Z_C + Z_{45AB6}}{Z_C \cdot Z_{45AB6}}$$
$$Z_{C45AB6} = \frac{Z_C \cdot Z_{45AB6}}{Z_C + Z_{45AB6}}$$

Wstawiając obliczone wcześniej wartości impedancji \mathbb{Z}_C i \mathbb{Z}_{45AB6} otrzymujemy

$$Z_{C45AB6} = \frac{Z_C \cdot Z_{45AB6}}{Z_C + Z_{45AB6}} =$$
$$= dokończyć$$

Tak więc impedancja zastępcza obwodu przedstawionego na schemacie S59 równa się Z_{C45AB6}

Rozdział 2

Źródła sterowane i zamiana źródeł

2.1 Teoria

2.1.1 Źródła idealne

Źródło napięciowe

$$\begin{array}{c}
U \\
\hline
\end{array}$$
(S72)

Źródło prądowe

$$\underbrace{\hspace{1.5cm}}^{I} \qquad (S73)$$

2.1.2 Źródła rzeczywiste

Źródło napięciowe

Źródło prądowe

2.1.3 Źródła sterowane

Źródło napięciowe sterowane napięciem

$$U_1 \qquad e = k \cdot U_1 \qquad (S76)$$

Źródło napięciowe sterowane prądem

$$I_1 = \underbrace{\qquad \qquad }_{0} e = r \cdot I_1 \tag{S77}$$

Źródło prądowe sterowane napięciem

$$U_1 \qquad \qquad j = g \cdot U_1 \qquad (S78)$$

Źródło prądowe sterowane prądem

$$I_1 = \alpha \cdot I_1 \tag{S79}$$

2.1.4 Zamiana źródeł

$$\begin{array}{c}
R_{w2} \\
j \\
\hline
\end{array}$$
(S81)

$$R_{w1} = R_{w2} = R_w (2.1)$$

$$e = R_w \cdot j \tag{2.2}$$

$$j = \frac{e}{R_w} \tag{2.3}$$

2.1.5 Łączenie źródeł

2.1.6 Szeregowe łączenie źródeł napięciowych

$$e = e_1 + e_2 (2.4)$$

$$R = R_1 + R_2 (2.5)$$

2.1.7 Równoległe łączenie źródeł pradowych

$$j = j_1 + j_2 (2.6)$$

$$R = R_1 || R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} \tag{2.7}$$

2.1.8 Równoległe łączenie źródeł napięciowych

$$e = \frac{e_1 \cdot R_2 + e_2 \cdot R_1}{R_1 + R_2} \tag{2.8}$$

$$R = R_1 || R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} \tag{2.9}$$

2.1.9 Szeregowe łączenie źródeł pradowych

$$R = R_1 + R_2 (2.10)$$

$$e = e_1 + e_2 = j_1 \cdot R_1 + j_2 \cdot R_2 \tag{2.11}$$

$$j = \frac{e}{R} = \frac{j_1 \cdot R_1 + j_2 \cdot R_2}{R_1 + R_2} \tag{2.12}$$

2.2 Zadania

Zadanie 1. Uprość obwód

Rozwiązanie

Zadanie 2. Uprość obwód

Rozwiązanie

Rozdział 3

Prawa Kirchhoffa

3.1 Teoria

3.1.1 I prawo Kirchhoffa - prądowe prawo Kirchhoffa

Suma prądów wpływających i wypływających z węzła jest równa 0

$$\sum_{i} I_i = 0 \tag{3.1}$$

Prądy wpływające do węzła (I_1, I_5) oznaczamy ze znakiem plus, prądy wypływające z węzła (I_2, I_3, I_4) oznaczamy ze znakiem minus.

$$I_1 - I_2 - I_3 - I_4 + I_5 = 0 (3.2)$$

3.1.2 II prawo Kirchhoffa - napięciowe prawo Kirchhoffa

W każdym obwodzie zamkniętym suma spadków napięć na poszczególnych elementach obwodu jest w każdej chwili równa zero

$$\sum_{i} U_i = 0 \tag{3.3}$$

Należy założyć sobie kierunek obiegu obwodu. Napięcia zgodne z kierunkiem obiegu obwodu mają znak dodatki, napięcia przeciwne z kierunkiem obiegu obwodu mają znak ujemny.

$$U_1 - U_2 - U_3 + E_3 + E_4 + U_4 = 0 (3.4)$$

3.2 Zadania

Zadanie 1. Wyznacz spadek napięcia na rezystorze \mathbb{R}_1

Rozwiązanie

Zadanie 2. W układzie dzielnika prądowego pokazanego na rysunku dobrać tak wartość oporu R_2 , aby przez opór R_1 płynął prąd o natężeniu $p\cdot I$

Rozwiązanie

Zadanie 3. Wzynacy wartość sił
z elektromotorycznej E, która na oporze R_7 powoduje spadek napięci
a ${\cal U}$

Do obliczeń przyjmij że $U=2V,\,R_1=5\Omega,\,R_2=6\Omega,\,R_3=7\Omega,\,R_4=8\Omega,\,R_5=9\Omega,\,R_6=10\Omega,\,R_7=5\Omega,$

Rozwiązanie

Zadanie 4. Oblicz rozpływ prądów w układzie podanym na rysunku metodą praw Kirchhoffa. Wyznacz napięcia na rezystorach.

Do obliczeń przyjmij że: $E_1=4V,\,E_2=6V,\,R_1=2\Omega,\,R_2=12\Omega,\,R_3=4\Omega.$

Rozwiązanie

Zadanie 5. Oblicz rozpływ prądów metodą praw Kirchhoffa

Do obliczeń przyjmij: $E_5=6V,~E_6=4V,~R_1=3\Omega,~R_2=2\Omega,~R_3=4\Omega,~R_4=5\Omega,~R_5=1\Omega,~R_6=2\Omega.$

Rozwiązanie

Zadanie 6. W układzie przedstawionym poniżej dobierz opór R w taki sposób aby prąd I był równy zero.

Rozwiązanie

Zadanie 7. W układzie przedstawionym poniżej określ rozpływ prądów i rozkład napięć.

Do obliczeń przyjmij $R_1=1\Omega,\,R_2=2\Omega,\,R_3=3\Omega,\,R_4=4\Omega,\,E=10V,\,I_1=2A,\,I_2=5A.$

Rozwiązanie

Zastosować przekształcenie źródeł

Zadanie 8. W układzie przedstawionym poniżej oblicz wartość prądu $\underline{I_1}$

Do obliczeń przyjmij $\underline{E}=3\cdot e^{\jmath\cdot\frac{\pi}{4}}\,V,\,Z=2+\jmath\,\Omega.$

Rozwiązanie

Zadanie 9. W układzie przedstawionym poniżej dobierz wartość zespolonej amplitudy napięcia \underline{E} aby wartość zespolonej amplitudy natężenia prądu $\underline{I_x}$ była równa $1+\jmath A$.

Do obliczeń przyjmij $Z=1+2\cdot \jmath\,\Omega.$

Rozwiązanie

Zadanie 10. W układzie przedstawionym poniżej wyznacz wartość zespolonej amplitudy natężenia prądu $\underline{I_1}$.

$$e_1(t) = 2 \cdot \sin(2 \cdot t) V$$

$$e_2(t) = \sin(2 \cdot t) V$$

$$j(t) = \cos(2 \cdot t) A$$

$$Z_1 = \jmath \Omega$$

$$Z_2 = 2\jmath + 1\,\Omega$$

$$Z_3 = j\Omega$$

$$Z_4 = 1 \Omega$$

Rozwiązanie

Zadanie 11. W układzie przedstawionym poniżej dobierz wartość zespolonej amplitudy natężenia prądu źródła $\underline{J_2}$ w taki sposób aby wartość zespolonej amplitudy natężenia prądu $\underline{I_1}$ była równa 0.

$$e_1(t) = 2 \cdot \sin(2 \cdot t) V$$

$$j(t) = \cos(2 \cdot t) A$$

$$Z_1 = j\Omega$$

$$Z_2 = 2\jmath + 1\,\Omega$$

$$Z_3 = \jmath \Omega$$

Rozwiązanie

Zadanie 12. W układzie przedstawionym poniżej dobierz wartość impedancji Z_1 w taki sposób aby ...

$$e(t) = 2 \cdot \sin(2 \cdot t) V$$

$$j(t) = 2 \cdot \sin(2 \cdot t + \frac{\pi}{2}) V$$

$$R_1 = 2 \Omega$$

$$R_2 = 1 \Omega$$

$$L_1 = 3 H$$

$$C_1 = 0.5 F$$

${\bf Rozwiązanie}$

Zadanie 13. Oblicz przesunięcie fazowe pomiędzy natężeniem prądu $\underline{I_1}$ a napięciem $\underline{U_1}$ w poniższym układzie.

Rozwiązanie

Zadanie 14. Wyznacz wartość natężenia prądu $i_1(t)$ oraz $i_1(t)$ w obwodzie na rysunku poniżej.

$$L = \ln H$$

$$C = 250p F$$

$$e_1(t) = 100 \cdot \sin \left(10^9 \cdot t + \frac{\pi}{4}\right)$$

$$e_2(t) = 100 \cdot \sin \left(10^9 \cdot t + \frac{\pi}{2}\right)$$

Rozwiązanie

Zadanie 15. Wyznacz wartość napięcia $u_c(t)$ na kondensatorze w obwodzie na rysunku poniżej.

$$e_1(t) = \sin\left(2 \cdot 10^9 \cdot t + \frac{3\pi}{4}\right)$$

$$e_2(t) = \sin\left(2 \cdot 10^9 \cdot t + \frac{3\pi}{2}\right)$$

$$e_2(t) = \sin\left(2 \cdot 10^9 \cdot t + \pi\right)$$

$$L_1 = \ln H$$

$$L_2 = 0, 5n H$$

$$R_1 = R_2 = R_3 = 1 \Omega$$

$$C_1 = 10, 5n F$$

Rozwiązanie

Zadanie 16. Wyznacz wartość napięcia $u_{c1}(t)$ na kondensatorze w obwodzie na rysunku poniżej.

$$e_{1}(t) = \sin\left(2 \cdot 10^{9} \cdot t + \frac{3\pi}{4}\right)$$

$$e_{2}(t) = \sin\left(2 \cdot 10^{9} \cdot t + \frac{3\pi}{2}\right)$$

$$e_{2}(t) = \sin\left(2 \cdot 10^{9} \cdot t + \pi\right)$$

$$L_{1} = \ln H$$

$$L_{2} = 0, 5n H$$

$$R_{1} = R_{2} = R_{3} = 1 \Omega$$

$$C_{1} = 10, 5n F$$

$$C_{2} = \ln F$$

Rozwiązanie

Rozdział 4

Metoda prądów oczkowych

4.1 Zadania

Zadanie 1. Oblicz rozpływ prądów metodą prądów oczkowych

Zadanie 2. Oblicz rozpływ prądów metodą prądów oczkowych

Zadanie 3. Oblicz rozpływ prądów metodą prądów oczkowych

$$e_1(t) = 2\sin(2t + \frac{\pi}{2})$$
 (4.1)

$$e_2(t) = \sin(2t) \tag{4.2}$$

$$e_3(t) = \sqrt{8}\sin(2t) \tag{4.3}$$

$$e_4(t) = 2\sin(2t + \frac{\pi}{4})$$
 (4.4)

$$L = 1H \tag{4.5}$$

$$C = 1F \tag{4.6}$$

$$R = 1\Omega \tag{4.7}$$

(4.8)

Zadanie 4. Oblicz rozpływ prądów metodą prądów oczkowych

$$e_1(t) = 2\sin(2t + \frac{\pi}{2})$$
 (4.9)

$$e_2(t) = \sin(2t) \tag{4.10}$$

$$e_3(t) = \sqrt{8}\sin(2t) \tag{4.11}$$

$$e_4(t) = 2\sin(2t + \frac{\pi}{4}) \tag{4.12}$$

$$L = 1H \tag{4.13}$$

$$C = 1F \tag{4.14}$$

$$R = 1\Omega \tag{4.15}$$

(4.16)

Zadanie 5. Oblicz rozpływ prądów metodą prądów oczkowych

Rozdział 5

Metody źródeł zastępczych

- 5.1 Teoria
- 5.1.1 Twierdzenie Thevenina
- 5.1.2 Twierdzenie Nortona

5.2 Zadania

Zadanie 1. Rozwiąż metodą potencjałów węzłowych

Zadanie 2. Rozwiąż metodą potencjałów węzłowych

Zadanie 3. Rozwiąż metodą potencjałów węzłowych

Zadanie 4. Rozwiąż metodą potencjałów węzłowych

Zadanie 5. Rozwiąż metodą potencjałów węzłowych

Rozdział 6

Moc i dopasowanie na maksimum przekazywanej mocy

6.1 Zadania

Zadanie 1. W prostym układzie pokazanym poniżej występuje źródło napięcia sinusoidalnego o amplitudzie wynoszącej 10V i o rezystancji wewnętrznej $R_S = 2\Omega$. Źródło jest obciążone odbiornikiem o impedancji wynoszącej Z_L . Rozważmy dwa oddzielne przypadki.

Przypadek 1: $Z_L 1 = 3 + 0j$

Przypadek 2: $Z_L 2 = 1, 5 + 0, 5j$

Dla każdego z przypadków proszę wyznaczyć:

- 1) moc pozorną i czynną wydzielaną w obciążeniu,
- 2) moc pozorną i czynną wydzielaną (traconą) w rezystancji wewnętrznej źródła.

Rozwiązanie

Wiemy, że moc pozorna wydzielana w dowolnym elemencie określana jest wzorem

$$S = I_{sk} \cdot U_{sk}^* \tag{6.1}$$

natomiast moc czynna jest częścią rzeczywistą mocy pozornej

$$P = \Re(S) = \Re(\underline{I_{sk}} \cdot \underline{U_{sk}}^*) \tag{6.2}$$

gdzie $\underline{I_{sk}}$ to zespolona wartość skuteczna prądu, a $\underline{U_{sk}}^*$ to sprzężona wartość zespolonej wartości skutecznej napięcia. Wiadomo również, że dla elementu o impedancji Z słuszna jest zależność

$$U_{sk} = I_{sk} \cdot Z \tag{6.3}$$

gdzie Z to impedancja elementu.

Wyznaczmy zatem wartość skuteczną prądu płynącego w obwodzie $\underline{I_{sk}},$ według poniższego schematu.

Zgodnie z napięciowym prawem Kirchoffa, $\underline{I_{sk}}$ będzie wynosił:

$$\underline{I_{sk}} = \frac{\underline{U_{sk}}}{R_S + Z_L} \tag{6.4}$$

Przebieg napięcia jest określony jako sinusoidalny o amplitudzie 10V, zatem $\underline{U_{sk}}$ wynosi $\frac{10}{\sqrt{2}}$ V. Podstawiając wartości R_s oraz Z_L otrzymujemy kolejno wartości skuteczne prądu dla obu przypadków:

$$\underline{I_{sk1}} = \frac{\frac{10}{\sqrt{2}} V}{(2+3+0j) \Omega} = \frac{2}{\sqrt{2}} A \approx 1,4142 A$$
 (6.5)

$$\underline{I_{sk2}} = \frac{\frac{10}{\sqrt{2}} V}{(2+1, 5+0, 5j) \Omega} = \frac{\frac{10}{\sqrt{2}} V}{(3, 5+0, 5j) \Omega} \approx (1,9799 - 0,2828j) A$$
 (6.6)

Teraz możemy skorzystać z zależności (6.3) i wyznaczyć napięcia skuteczne występujące na obciążeniu

$$U_{Lsk1} = 1,4142 A \cdot (3+0j) \Omega = 4,2426 V$$
(6.7)

$$U_{Lsk2} = (1,9799 - 0,2828j) A \cdot (1,5+0,5j) \Omega = (3,1113+0,5657j) V$$
(6.8)

aby w końcu wyznaczyć, zgodnie ze wzorem (6.1) wartości mocy pozornej na odbiorniku

$$S_{L1} = 1,4142 A \cdot 4,2426 V \approx 6 V A \tag{6.9}$$

$$S_{L2} = (1,9799 - 0,2828j) A \cdot (3,1113 + 0,5657j)^* V =$$

$$= (1,9799 - 0,2828j) A \cdot (3,1113 - 0,5657j) V \approx (6 - 2j) V A \quad (6.10)$$

i zgodnie z (6.2) wartość mocy czynnej wydzielanej na odbiorniku

$$P_{L1} = 6W (6.11)$$

$$P_{L2} = 6W (6.12)$$

Następnie możemy wyznaczyć napięcie skuteczne na rezystancji wewnętrznej źródła:

$$U_{Ssk1} = 1,4142 A \cdot (2+0j) \Omega = 2,8284 V$$
 (6.13)

$$U_{Ssk2} = (1,9799 - 0,2828j) A \cdot (2 + 0j) \Omega = (3,9598 - 0,5656j) V$$
(6.14)

oraz ostatecznie moc pozorną:

$$S_{S1} = 1,4142 A \cdot 2,8284 V = 4 V A$$
 (6.15)

$$S_{S2} = (1,9799 - 0,2828j) A \cdot (3,9598 - 0,5656j)^* V =$$

$$= (1,9799 - 0,2828j) A \cdot (3,9598 + 0,5656j) V = 8 VA \quad (6.16)$$

i moc czynną wydzielaną na rezystancji wewnętrznej źródła:

$$P_{S1} = 4W (6.17)$$

$$P_{S2} = 8W (6.18)$$

Porównanie wyników uzyskanych dla dwóch powyższych przypadków pozwala zauważyć, że moc czynna dostarczana do odbiornika jest w obu przypadkach taka sama (6.11), (6.12), jednak moc czynna tracona w rezystancji wewnętrznej źródła jest dwukrotnie większa dla drugiego przypadku (6.18) niż dla pierwszego przypadku (6.17) Sprawność przekazywania energii do obciążenia jest zatem mniejsza dla układu, w którym obciążenie charakteryzuje się niezerową wartością reaktancji.

Zadanie 2. Na podstawie wyników uzyskanych w Zadaniu 1, proszę wyznaczyć wartość współczynnika mocy $(\cos(\varphi))$ dla przypadku 2 rozważanego w tym zadaniu.

Rozwiązanie

Wartość współczynnika mocy definiuje się jako stosunek mocy czynnej do wartości bezwzględnej mocy pozornej

$$\cos(\varphi) = \frac{P}{|S|} \tag{6.19}$$

W przypadku 2 z Zadania ${\color{blue}1}$ moc czynna miała wartość 6 W, a moc pozorna (6 – 2 \jmath) VA, zatem

$$\cos(\varphi) = \frac{6}{|6 - 2j|} = \frac{6}{\sqrt{6^2 + 2^2}} = \frac{6}{6,3246} = 0,9487 \tag{6.20}$$

Warto również zauważyć, że ten sam wynik otrzymamy, gdy wartość bezwzględna mocy pozornej wyznaczona będzie przez pomnożenie modułu skutecznego prądu zespolonego i skutecznego napięcia zespolonego:

$$|3,1113+0,5657j| \cdot |1,9799-0,2828j| = 6,3246$$
 (6.21)

co oznacza, że moc pozorna ma wartość równą mocy czynnej, jaka wydzieliłaby się na badanym elemencie, gdyby przy zachowaniu bez zmian wartości amplitud, prąd i napięcie były zgodne w fazie.

 Zadanie 3. Proszę wyznaczyć wartość mocy wydzielanej w rezystorze R_1 i R_2 w układzie pokazanym poniżej.

$$\begin{array}{c|c}
R_1 & I_A \\
\hline
R_2 & R_3
\end{array}$$
(S117)

Wartości elementów wynoszą: $R_1=560\,\Omega,\,R_2=110\,\Omega,\,R_3=240\,\Omega.$

Rozwiązanie

Wyznaczmy, metodą prądów oczkowych, prądy w układzie:

$$\begin{bmatrix} 560 + 110 & -110 \\ -110 & 240 + 110 \end{bmatrix} \cdot \begin{bmatrix} I_I \\ I_{II} \end{bmatrix} = \begin{bmatrix} 5 \\ -20 \cdot I_A \end{bmatrix}$$
 (6.22)

Przyglądając się układowi, zauważyć można, że $I_A = I_I$, zatem ostatecznie możemy przekształcić równanie macierzowe do postaci:

$$\begin{bmatrix} 670 & -110 \\ -110 & 350 \end{bmatrix} \cdot \begin{bmatrix} I_I \\ I_{II} \end{bmatrix} = \begin{bmatrix} 5 \\ -20 \cdot I_I \end{bmatrix}$$

$$(6.23)$$

$$\begin{bmatrix} 670 & -110 \\ -110 + 20 & 350 \end{bmatrix} \cdot \begin{bmatrix} I_{II} \\ I_{II} \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 670 & -110 \\ -90 & 350 \end{bmatrix} \cdot \begin{bmatrix} I_{I} \\ I_{II} \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$$(6.24)$$

$$\begin{bmatrix} 670 & -110 \\ -90 & 350 \end{bmatrix} \cdot \begin{bmatrix} I_I \\ I_{II} \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
 (6.25)

Rozwiązując układ otrzymujemy

$$\begin{bmatrix} 670 & -110 \\ -90 & 350 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 670 & -110 \\ -90 & 350 \end{bmatrix} \cdot \begin{bmatrix} I_I \\ I_{II} \end{bmatrix} = \begin{bmatrix} 670 & -110 \\ -90 & 350 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
(6.26)

$$\frac{1}{1000} \cdot \begin{bmatrix} 1,5583 & 0,4898 \\ 0,4007 & 2,9831 \end{bmatrix} \cdot \begin{bmatrix} 670 & -110 \\ -90 & 350 \end{bmatrix} \cdot \begin{bmatrix} I_I \\ I_{II} \end{bmatrix} = \frac{1}{1000} \cdot \begin{bmatrix} 1,5583 & 0,4898 \\ 0,4007 & 2,9831 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
(6.27)

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} I_I \\ I_{II} \end{bmatrix} = \frac{1}{1000} \cdot \begin{bmatrix} 7,7916 \\ 2,0036 \end{bmatrix}$$
 (6.28)

Zatem prąd $I_I = 7,79 \, mA$, natomiast prąd $I_{II} = 2 \, mA$. Możemy teraz wyznaczyć wartość mocy wydzielającej się na rezystorze R_1 . Wiadomo, że dla prądu stałego, moc wydzielana na elemencie jest równa iloczynowi wartości prądu płynącego przez element i wartości napięcia na tym elemencie. Prąd płynący przez rezystor R_1 to ten sam prąd, który jest na schemacie oznaczony jako I_A . Zatem $I_{R1} = I_A = I_I = 7,79 \, mA$.

$$P_{R1} = I_{R1} \cdot U_{R1} = I_I \cdot (I_I \cdot R_1) = 33,98mW \tag{6.29}$$

Na rezystorze R_1 wydziela się moc około 34mW.

Z kolei dla rezystora R_2 mamy:

$$P_{R2} = I_{R2} \cdot U_{R2} = (I_I - I_{II}) \cdot ((I_I - I_{II}) \cdot R_2) = 3,69mW$$
(6.30)

Na rezystorze R_2 wydziela się moc około 3,7mW.

 ${f Zadanie}$ 4. Moc wydzielana na R

 ${f Zadanie}$ 5. Moc wydzielana na R

Zadanie 6. Dopasowanie na moc

 ${\bf Zadanie}~{\bf 7.}~~{\bf Oblicz}~{\bf moc}$ zespoloną wydzielaną na kondensatorze

Zadanie 8. W obwodzie prądu stałego oblicz moc czynną wydzielaną na rezystorze R_x

Zadanie 9. Ile wynosi R_w w obwodzie przedstawionym poniżej jeśli wiadomo że następuje dopasowanie na moc czynną.

Zadanie 10. Ile wynosi R_w w obwodzie przedstawionym poniżej jeśli wiadomo że następuje dopasowanie na moc czynną.

$$X_{C_1} = X_{C_2} = X_L (6.31)$$

Zadanie 11. Korzystając z dzielników napięć i prądów, sprawdzić czy suma mocy wydzielanej na poszczególnych rezystancjach równa się mocy odebranej na zaciskach układu.

$$X_{C_1} = X_{C_2} = X_L (6.32)$$

Zadanie 12. Udowodnij że w układzie prądu stałego, dopasowanie na moc czynna następuje gdy $R_w=R$

Zadanie 13. Udowodnij że w układzie przedstawiony poniżej, dopasowanie na moc czynna następuje gdy $Z_w=Z$

Zadanie 14. Układzie przedstawiony poniżej, dopierz Z_1 w taki sposób aby nastąpiło dopasowanie na moc czynna.

$$Z_w = 2 + 2\jmath \tag{6.33}$$

$$C = 5F \tag{6.34}$$

$$R = 10\,\Omega\tag{6.35}$$

$$j(t) = 2\sin(t) \tag{6.36}$$

Metoda Superpozycji

7.1 Teoria

7.2 Zadania

Zadanie 1. Oblicz rozpływ prądów metodą superpozycji. Do obliczeń przyjmij: $E_1=40V,$ $E_2=12V,$ $R_1=60\Omega,$ $R_2=64\Omega,$ $R_3=40\Omega.$

Zadanie 2. Oblicz rozpływ prądów metodą superpozycji. Do obliczeń przyjmij: $E_1=45V,$ $E_2=30V,$ $J_1=1mA,$ $R_1=6k\Omega,$ $R_2=2k\Omega,$ $R_3=4k\Omega,$ $R_3=12k\Omega.$

Zadanie 3. Oblicz rozpływ prądów metodą superpozycji. Do obliczeń przyjmij: $E_1=20V,$ $J_2=0.1A,$ $R_1=10\Omega,$ $R_2=40\Omega,$ $R_3=50\Omega,$ $R_4=20\Omega.$

Układy nieliniowe

8.1 Zadania

Zadanie 1. Napięcie na R_n . Gdzie $R_n: U = k \cdot J^2$

Zadanie 2. Napięcie na R_n . Gdzie $R_n: U = k \cdot J^2$

Zadanie 3. Napięcie na R_n . Gdzie $R_n: U = 2 \cdot J^3$

Impedancja zastępcza

9.1 Zadania

Zadanie 1. Oblicz impedancje zastepcza

Zadanie 2. Oblicz impedancje zastepcza

Zadanie 3. Oblicz impedancje zastepcza

Metoda potencjałów węzłowych i metoda prądów oczkowych

10.1 Zadania

Zadanie 1.

Zadanie 2.

Zadanie 3.

Moc i dopasowanie na moc

11.1 Zadania

Zadanie 1. Obliczyć moc czynną pobieraną za źródła $j=J_m\cdot\cos(\omega\cdot t)$ jeżeli amplituda prądu i wynosi $1mA,\,\omega\cdot L=\frac{1}{2\cdot\omega\cdot C}=1k\Omega$ a impedancja obciążająca źródło $Z_{AB}=(6-2j)k\Omega.$

Zadanie 2.

Dopasowanie na moc czynną. $E_1=10V,\,\omega=5\cdot 10^5,\,R_1=1k\Omega,\,C_1=1nF,\,L_1=1mH,\,R_2=???,\,C_2=???$

