University of Copenhagen

Applied High Performance Computing

Author: William Henrich Due

1 Definitions

Definition 1.1 (Union-Find). The union-find data structure D represents a partition of a set S if:

- 1. $a \neq \emptyset$ for all $a \in \mathcal{C}(D)$
- 2. $a \cap b = \emptyset$ for all $a, b \in \mathcal{C}(D)$ where $a \neq b$
- 3. $\bigcup_{a \in \mathcal{C}(D)} a = S$

where $\mathcal{C}: \mathbb{P}(D) \to \mathbb{P}(\mathbb{P}(S))$ converts the data structure D into a set of sets of positive integers.

Definition 1.2. Union-find set The set $\mathbb{U}_n = \mathbb{P}(\mathbb{N}_{\leq n} \times (\mathbb{N}_{\leq n} \cup \{0\}) \times S)$ is the set of all union-find data structures of size n. Each element $U \in \mathbb{U}_n$ is a set of tuples (i, p, s) where:

- 1. $i \in \mathbb{N}_{\leq n}$ is a unique index identifying the element.
- 2. $p \in \mathbb{N}_{\leq n} \cup \{0\}$ is the index of the parent element. If p = 0 then the element is a root.
- 3. $s \in S$ is the value associated with the element.

Definition 1.3 (Cycle). A cycle exists in a set $U \in \mathbb{U}_n$ if:

- 1. i = p for some $(i, p, s) \in U$ or
- 2. $p_1 = i_2, p_2 = i_3, \dots, p_m = i_1$ for some $(i_1, p_1, s_1), (i_2, p_2, s_2), \dots, (i_m, p_m, s_m) \in U$ where m > 1.

Definition 1.4 (Find Root). The root of an element i in a cycleless union-find data structure $U \in \mathbb{U}_n$ is defined as:

$$\mathcal{P}_{U}(i) = \begin{cases} i & \text{if } p = 0 \\ \mathcal{P}_{U}(p) & \text{if } p \neq 0 \end{cases} \text{ where } (j, p, s) \in U \land i = j.$$

Proposition 1.1 (Termination of Find Root). The function $\mathcal{P}_U(i)$ defined in definition 1.3 terminates for all i where $1 \leq i \leq n$ if $U \in \mathbb{U}_n$ has no cycles.

Proof. The proof is trivially true.

Proposition 1.2 (Representation of Union-Find). The union-find structure $U \in \mathbb{U}_n$ fulfills definition 1.1 if:

- 1. Unique indices i.e. |U| = |A| where $A = {\pi_1(t) : t \in U}$.
- $2.\ U$ has no cycles.
- 3. The following conversion function:

$$\mathcal{C}(D) := \{ \{ \pi_3(t) : t \in U \land \mathcal{P}_U(\pi_1(t)) = p \} : p \in \mathbb{N}_{\leq n} \} \setminus \{\emptyset\}$$

Proof. Let $U \in \mathbb{U}_n$ be a union-find data structure fulfilling the three criteria in proposition 1.2. We will show that U fulfills the three criteria in definition 1.1.

- 1. By definition of \mathcal{C} it is clear that $a \neq \emptyset$ for all $a \in \mathcal{C}(D)$ since \mathcal{C} only includes non-empty sets.
- 2. Let $a, b \in \mathcal{C}(D)$ where $a \neq b$.