

Projet de bureau d'études II :

Machine à bobiner les câbles électriques

Réalisé par :

Encadré par :

- HILAL ZITOUNI
- CHALI MALAMA
- TAMINI Osmi Nayolsé Abel

Mr. KHALLOUKI

Année universitaire: 2023/2024

Remerciement:

Le développement industriel moderne repose sur l'ingéniosité et l'efficacité des systèmes mécaniques qui sous-tendent une vaste gamme d'applications. Dans ce contexte, notre projet de bureau d'études se focalise sur la conception d'une machine à bobiner les câbles électriques, un dispositif fondamental dans la production et la gestion des câbles électriques.

L'objectif principal de ce rapport est de présenter notre démarche de conception, du concept initial à la modélisation détaillée en passant par les choix techniques et les calculs de dimensionnement. Nous mettrons en lumière les défis spécifiques rencontrés lors de ce processus de conception, ainsi que les solutions innovantes que nous avons développées pour les surmonter.

Au terme de ce projet de bureau d'études, nous tenons à exprimer notre plus profonde gratitude à **Mr. Khallouki** pour sa précieuse guidance, son soutien indéfectible et son expertise inestimable tout au long de cette aventure. Sa disponibilité, sa patience et son dévouement ont été des piliers essentiels dans la réalisation de ce travail.

Table des matières

-Recherche bibliographique :	4
1- Bobinage :	4
2-Types de bobinages des câbles électriques :	4
II- L'analyse fonctionnelle du Système :	5
1- Bête à corne :	5
2 -Diagramme pieuvre :	5
3-Cahier de charge fonctionnel :	7
4-diagramme SADT :	7
5-Diagramme FAST :	8
	9
	9
6-le choix des solutions technologiques :	10
7- Schéma cinématique :	11
	11
III-LE DIMENSIONNEMENT :	12
1-dimensionement de la longueur de câble :	12
2-calcul de <i>La vitesse angulaire, la vitesse de rotation</i> :	14
3-Calcul de la tension du cable :	14
4-le choix du moteur :	16
5-choix d'accouplement :	16
6-dimensionement d'arbre moteur :	17
8-dimensionement de l'arbre du contre pointe :	23
9-dimensionnement des engrenages :	24
8-dimensionement des roulements :	28
10-dessin de engrenages en DAO (SolidWorks) :	33

| -Recherche bibliographique :

1- Bobinage :

Le bobinage des fils électriques est le processus de fabrication de bobines ou enroulements de fils conducteurs autour d'un noyau ou d'une structure, souvent dans le but de créer des composants électromagnétiques tels que des transformateurs, des moteurs électriques, des bobines d'induction, etc. Les bobinages peuvent être réalisés manuellement ou automatiquement à l'aide de machines spécialisées.

2-Types de bobinages des câbles électriques :

- **1. Bobinage en couche simple (ou simple couche) :** Les fils conducteurs sont enroulés en une seule couche autour du noyau sans chevauchement, ce qui permet une dissipation de chaleur efficace. Ce type de bobinage est souvent utilisé dans les transformateurs de puissance.
- **2. Bobinage en couches multiples (ou couches superposées**): Les fils sont enroulés en plusieurs couches successives, ce qui permet d'augmenter le nombre de spires dans un espace limité. Cependant, cela peut entraîner des problèmes de dissipation de chaleur et d'isolation électrique.

- **3. Bobinage toroïdal :** Les fils sont enroulés en forme de toroïde autour d'un noyau circulaire ou annulaire. Ce type de bobinage est souvent utilisé dans les transformateurs et les inducteurs en raison de ses propriétés magnétiques favorables et de son faible rayonnement électromagnétique.
- **4. Bobinage bifilaire :** Deux fils conducteurs sont enroulés en parallèle autour du noyau, généralement dans des directions opposées, pour annuler les champs magnétiques externes et réduire l'inductance parasite.
- **5. Bobinage croisé** : Les fils sont enroulés en croisant les couches successives, ce qui améliore la résistance mécanique de la bobine et réduit les effets de capacitance parasite.
- **6. Bobinage aléatoire** : Les fils sont enroulés de manière irrégulière ou aléatoire autour du noyau, souvent utilisé dans les inducteurs de radiofréquence pour réduire les pertes par courants de Foucault.

II- L'analyse fonctionnelle du Système :

1- Bête à corne :

2-Diagramme pieuvre :

FONCTION	DESCRIPTION
FP1	Enrouler les câbles
FC1	Assurer la gestionnaires des câbles
FC2	Changer La bobine par l'utilisateur
FC3	Doit être alimenter en énergie électrique
FC4	Doit être adaptable avec le milieu extérieure
FC5	Doit être un système facile à maintenir

3-Cahier de charge fonctionnel :

Fonction	Critère d'appréciation	Niveaux	Flexibilité
FP1 : Enrouler les câbles	Vitesse de rotationVitesse de translation	-Max :290.25 tr /min -2400 m/min	F1
FC2: La bobine doit être changer par l'utilisateur	Changement des bobines	Dext de la bobine : 630 mm Largeur extérieur de la bobine :460mm	FO
FC1 : Assurer la gestionnaires des câbles	gestionnaire des très longues câbles	Jusqu'à 25 km	F0
FC3 : Doit être alimenter en énergie électrique	Alimenter en triphasé	Fréquence :50Hz	FO

4-diagramme SADT:

5-Diagramme FAST :	
8	

6-le choix des solutions technologiques :

68 76 80 10	Fonctio	on	38.	Solution Choisie	Commentaires
FP	FT1	FT11	FT113	Roulements	Tout le système est basé sur le bon fonctionnement de rotation alors avec optimisation entre performances et cout c'est la meilleur solution
			FT115	Multiplicateur	Imposé par le cahier de charge
FC1	FT2 + FT3	FT21	FT214	Glissière Table de	Le système doit soutenir des charges très importante ce qui nous laisse les 2 choix : Vis écrou/Q glissière mais car on ne cherche pas des vitesse importantes et en cherchant des couts optimale on peut tolérer la glissière Les deux solutions
				commandes	vont donner le même fonctionnement alors on optimisant le cout on doit choisir cette solution
FC3	FT31			Vis	2
				Boulons Rigides	L'assemblage peut s'effectuer en introduisant toutes ces solutions
	FT42			Joints d'amortissement Lubrification	On peut introduire les deux solutions à fin de minimiser le bruit pour une norme à la vigueur

7- Schéma cinématique :

III-LE DIMENSIONNEMENT:

1-dimensionement de la longueur de câble :

> Nombre des spires dans chaque nappe :

$$n_1 = E\left(\frac{L}{d} - 1\right) = E\left(\frac{390}{3} - 1\right) = 129$$

> Nombre maximal des nappes :

$$n_2 = E\left(\frac{H}{d}\right) = E\left(\frac{630 - 250}{2 \times 3}\right) = 63$$

> La longueur du fil dans la nième nappe :

$$L_n = n_1 \times \pi D = n_1 \times \pi (250 - 3 + 2 \times 3 \times n)$$

= 129\pi (247 + 6n)

> La longueur totale du fil :

$$L_t = \sum_{i=1}^{n_2} L_i = \sum_{1}^{63} 129\pi(247 + 6i) = 63 \times 129\pi \times 247 + 129\pi \times 6 \sum_{1}^{63} i = 11,209Km$$

Donc la longueur totale de câble est : 11,209 km

Les volumes du cuivre et du polystyrène sont :

$$\begin{cases} V_{cuivre} = L_t \pi \frac{1,5^2}{4} = 19807,93cm^3 \\ V_{polystyr \ \`{e}ne} = L_t \pi \frac{3^2 - 1,5^2}{4} = 59423,81cm^3 \end{cases}$$

> La masse du fil :

$$M_f = V_{cui} \rho_{cui} + V_{poly} \rho_{poly} = 239,874Kg$$

> Calcul de la masse de la bobine :

$$\frac{\delta V}{24} = \pi \times 390 \times \frac{250^{2} - 216^{2}}{2} = 758105,54m^{3}$$

$$\frac{2}{2} \times \frac{1}{10} = 21820,14,44m^{3}$$

$$= 21.820,14 - cm^{3}$$

$$\frac{1}{10} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac$$

2-calcul de La vitesse angulaire, la vitesse de rotation :

Dans le cahier charge on a la cadence moyenne : **15 bobines/jour avec 8h de travail/jour.**

Alors une bobine va prend: 32 minutes

Donc: N=129*72 tr/min

➤ La vitesse de rotation : N=290.25 tr/min

La vitesse angulaire : 30,39 rad/s

$$N = 129 \times 72 + tr/32 min$$
 $N = 290, 25 tr/min$
 $W = 20.0 = 30,39$ rad/s

3-Calcul de la tension du cable :

$$F = min(F1, F2)$$

F1: l'effort maximal appliqué sur la partie du cuivre du câble

F2: l'effort maximal appliqué sur la parte du polyéthylène du câble

on $\sigma = F/s$ avec s: la section

 $\sigma max = Re/k$ avec k : le coefficient de sécurité

Donc:

$$F_1 = \frac{Re_1*s}{k}$$
; et $F_2 = \frac{Re_2*s}{k}$;

Re1: la limite élastique de cuivre qui vaut 40MPa

Re2 : la limite élastique du polyéthylène qui vaut 25MPa

Calcul de sections :

$$S_1 = \frac{\pi}{4} * D_1^2 \text{et } S_1 = \frac{\pi}{4} * (D_2^2 - D_1^2);$$

Prenons: K=1.25 on trouve après un AN: F1= 56,54 N

F2=106.02N

Ce qui donne la tension du fil est : F=56.54N

Calcul du couple :

On a : Cr =c (statique)+C(dynamique)

Avec: Cs=Rmax*F=0.315*56.54=17,81 N.m

Et Cd =8 N.m

Donc : **Cr=25,81 N.m**

4-le choix du moteur:

i)calcul de puissance : P=V*F

Vint=Rint*w=3,79 m/s

Vext=Rext*w=9,57m/s

P=541,08 W

Or: P= C*W donc C=P/w (w:vitesse angulaire en rad/s)

C=17,80 N.m

Hypothese: on prend le rendement: n=0.9

Donc: P= 601.20 W

Et le couple : C= 19.78 N.m

Le choix de moteur d'apres le catalogue est : BA90LB8* 8 Pôles avec :

P=0.65 KW, N=690 tr/min, cos(phi) =2.70

BA 71 A8	0,08	660	0,60	0,53	42,9	1,16	2,0	2,0	90	110	30000	7,20	14	43	10,
BA 71 B8	0,11	660	0,80	0,55	43,7	1,59	2,0	2,0	90	110	30000	8,10	14	43	10
BA 80 A8	0,18	675	0,95	0,59	50,3	2,55	2,0	2,2	140	150	30000	23,40	18	45	14
BA 80 B8	0,25	675	1,25	0,62	52,1	3,54	2,0	2,2	140	150	30000	27,21	18	45	15
BA 90 SA8	0,37	680	1,50	0,60	60,6	5,20	2,1	2,9	300	150	20000	35,93	38	46	20
BA 90 LA8	0,55	690	2,20	0,56	61,4	7,61	2,1	2,8	300	150	17000	46,08	38	46	22
BA 90 LB8*	0,65	690	2,70	0,56	64,9	9,00	2,1	2,8	300	150	14000	53,00	38	46	24
BA 100 LA8	0,75	700	2,75	0,58	68,1	10,23	2,1	3,0	300	150	14000	87,40	50	49	33
BA 100 LB8	1,1	700	4,1	0,59	70,2	15,01	2,5	4,0	300	150	9400	99,19	50	49	35
BA 112 MB8	1,5	705	4,9	0,60	73,6	20,32	2,0	4,5	280	470	7200	168,3	80	52	4
BA 132 SB8	2,2	700	5,2	0,75	80,8	30,01	2,1	4,7	580	680	2100	325,0	150	55	1
BA 132 MB8	3,0	700	7,1	0,75	80,8	40,93	2,1	4,7	580	680	2100	413,0	150	55	(
BA 160 MA8	4,0	725	9,6	0,72	83,1	52,69	2,3	6,5	1390	860	1800	1030,0	190	58	15

5-choix d'accouplement :

On a le diamètre d'arbre moteur est :20 mmm

Le couple nominal : 20 N .m

La vitesse de rotation : 290.25 N.m.

	~	~	~	~	~	~	~	~		
Référence	Matière du corps de base	C (DIN 912-12.9)	Couple de serrage des vis Nm	D1	D4	L	R	Couple nominal Nm	CAO Ac	c. Prix
K2065.1080	acier	M3x8	2,1	8	24	35	26,8	50	8	38,98 € 🕣
K2065.1100	acier	M4x12	4,6	10	29	45	32,7	70	8	42,38 € 🕣
K2065.1120	acier	M4x12	4,6	12	29	45	32,7	70	8	42,38 € 🕕
K2065.1140	acier	M5x16	9,5	14	34	50	39,4	190	8	47,93 € 📵
K2065.1150	acier	M5x16	9,5	15	34	50	39,4	190	8	47,93 € 📵
K2065.1160	acier	M5x16	9,5	16	34	50	39,4	190	8	47,93 € 📵
K2065.1190	acier	M6x18	16	19	42	65	48,2	300	8	56,53 € 🕕
K2065.1200	acier	M6x18	16	20	42	65	48,2	350	8	56,53 € 🕕
K2065.1250	acier	M6x18	16	25	45	75	50,8	390	8	62,31 € 🕣
K2065.1300	acier	M6x18	16	30	54	83	58,6	475	8	85,52 € 🕕
K2065.1350	acier	M8x25	39	35	67	95	74,1	1100	8	110,87 € 🕕
K2065.1400	acier	M8x25	39	40	77	108	83,4	1325	8	145,79 € 🕕
K2065.1500	acier	M10x25	77	50	85	124	93,2	2250	8	170,59 € 🕣

6-dimensionement d'arbre moteur :

> Modélisation des efforts :

Hypothèse:

- On néglige les efforts normaux et tranchants devant les moments fléchissant et le moment de la torsion.
- Le choix de matériel pour l'arbre est l'acier avec la limite d'élasticité vaut 250 MPA.
- Le coefficient de sécurité est fixe a s=1.5
- On va utiliser le critère de Von-mises pour déterminer le diamètre de l'arbre.
- On va utiliser les engrenages hélicoïdaux avec Fa= -348.91 N, Fr=404N, Fr=1110 N, et le diamètre extérieur =35.64 mm et alors le rayon extérieur r1= 17.82 mm
 - ii) torseurs de cohésion :

On isole l'arbre et on cherche le torseur de cohesion::

NB: a= 100mm et b=50 mm

i) Zone 1: $0 \le x \le a$

La fleche est maximale quand x= a.

Von mises
$$\Rightarrow \sigma (e \ q) = \sqrt{(\sigma^2 + 3\tau^2)} \le \frac{\sigma e}{s}$$

$$\sigma = \frac{Mf}{I \ g \ z} \cdot r \qquad e \ t \qquad \tau = \frac{Mt}{I \ g} \cdot r$$

$$Mf = \sqrt{(x \cdot F \ t)^2 + (F \ r \cdot x + F \ a \cdot r \ 1)^2}$$
 A.N $\rightarrow Mf = 120391.85 \ Nmm$
Mt = $r + 1 \cdot F \ t$ A.N $\rightarrow Mt = 19780.2 \ Nmm$

$$I g z \frac{\pi r^4}{4} \qquad \qquad I g = \frac{\pi r^4}{2}$$

Donc
$$r \ge 6\sqrt{\frac{2s}{\pi \sigma e}} (4M\ell^{-2} + 3M\ell^{-2})$$
 A.N $r(min) = 24.67mm$

ii) Zone 2:
$$a \le x \le (b + a)$$

Von mises
$$\Rightarrow \sigma$$
 ($e \ q$) = $\sqrt{(\sigma^2 + 3\tau^2)} \le \frac{\sigma e}{s} \sigma = 0 \ e \ t = \frac{2Mt}{\pi \cdot r^3}$
Alors $r \ge \sqrt[3]{\frac{2s}{\pi \cdot \sigma \cdot e} \cdot \sqrt{3} \cdot C}$
A.N. $r(\min) == 5.07 \text{ mm}$

Alors pour verifier les 2 zones il faut que r(min) = max (24.67, 5.07) = 24.67
Et donc on choissir alors
$$r = 25 \text{ mm}$$
 cad $d = 50 \text{mm}$

7-dimensionnement d'arbre récepteur :

i) Modélisation des efforts :

les hypothèses de travail :

- ➤ On néglige les efforts normaux et tranchants devant les moments fléchissant et le moment de la torsion
- ➤ Le choix de matériel pour l'arbre est l'acier avec la limite d'elasticite = 250Mpa.
- ➤ Le coefficient de sécurité est fixe a "s=1.5"
- On va utiliser le critère de von-mises pour déterminer le diamètre de l'arbre
- ➤ On vas utiliser les engrange hélicoïdale avec Fa = -348,91 N , Fr = 404 N , Ft = 1110 N et diamètre ext= 35.64 mm et alors le rayon extérieur r1=17.82mm

3. Torseurs de cohesion

On isole l'arbre et on cherche le torseur de cohesion::

NB : a= 70mm et b=70 mm

Zone 1: $0 \le x \le a$

La fleche est maximale quand x= a= 70mm

Von mises ==
$$\sigma(e|q|) = \sqrt{(\sigma^2 + 3 \cdot \tau^2)} \le \frac{\sigma(e)}{s}$$

Mf== 89673.2 Nmm

Mt == 52447.5Nmm

Alors
$$r \ge 6 \sqrt{\frac{2s}{\pi \cdot \sigma \cdot e}} \cdot (4 \cdot Mf^{-2} + 3 \cdot Mt^{-2})$$

Donc A.N $r(min) = 9.15mm$

Mf==

Von mises
$$\rightarrow r \ge \sqrt[3]{\frac{4 \cdot Mf \cdot s}{\pi \cdot \sigma e}}$$
 AN == rmin =9.01mm

Alors pour verifier les 2 zones il faut que r(min) = max (9.15, 9.01) = 9.15Et donc on choissir alors r = 20mm cad d= 40mm

8-dimensionement de l'arbre du contre pointe :

On applique le PFS

P est le poids

D'où : Fby=Fay=0.5*P=1369.45 N et Fbx= $tan(\alpha)$ *Fby=760.6 N

3. Torseur de cohesion

La fleche est maximale lorsque x= a =100

Mf =113227Nmm

Alors von mises
$$r \ge \sqrt[3]{\left(\frac{4\cdot Mf}{\tau\tau} \cdot \left(\frac{s}{\sigma e}\right)^2\right)}$$

rmin=1.73mm

On prends r =20mm cad d=40mm

9-dimensionnement des engrenages :

On a déjà calculé la masse totale de la bobine et on trouve :40,82 kg et la masse du fil : Mf=233.0715 kg , donc il ya une masse énorme a faire tourne pendant 8h de travail par jour , donc il ya des effort axial très important pour cela on choisit d'utiliser les engrenages hélicoïdal.

i)méthode élémentaire :

- ➤ Le rapport de transmission : r=290.25/690 =0.42
- ➤ Le type d'engrenage : hélicoïdale (supportes les charges important, r=0.42<1)
- $\triangleright \alpha = 20^{\circ}$, $\beta = 17.45^{\circ}$ d'après le catalogue
- \rightarrow Ft= F*cos(α)
- \triangleright Fr=Ft*tan(α)

Denture hélicoïdale :

$$Ft = F \cos \alpha \cos \beta$$

 $Fr = F \sin \alpha$
 $Fa = -F \cos \alpha \sin \beta$
Ou :
 $Fr = Ft \tan \alpha / \cos \beta$
 $Fa = -Ft \tan \beta$

et

Re = Résistance pratique à l'extension

$$==> m \ge 2.34 \sqrt{\frac{Ft}{kRe}}$$

Avec Ft= 2*Cn/d1 et $d1=mt*Z1=mn*Z1/cos(\beta)$

Donc:

On suppose que : **Z1= 17** et on a : r= Z1/Z2

Alors :**Z2= 41**

D'âpre le guide de dessinateur on trouve que la condition d'interférence st vérifie puisque on trouve **Z2=41>13**

SIZAL	No.	Modul	es no	ormali	sés			
C ()	in almala	0,3	0,5	0,8	1	1,25	1,5	2
Série pr	incipale	2,5	3	4	5	6	8	10
	Nom	bre m	inim	al de	den	ts*		
ZA	13	14		15		16		17
ZB	13 à 16	13 à	26	13 à 45	1	3 à 101	13	à∞

Le calcul des efforts :

- -Ft=1110 N
- -Fr=404 N
- -Fa=-348.91 N

A partir de catalogue :

en plastique

ØD

35

(30*)

Info. Important : un hélicoïdal incliné à droite s'engrène avec un hélicoïdal incliné à gauche.

in	dication de co	ouple et a	e puiss	ance	
3	Pour 50 de	nts à 100	00 t/mir	١.	
	20NCD2				
	Z10CNF18.09	trempé	laiton	delrin	
Nm	33,89	134,0	16,94	8,0	
kW	3,56	14,0	1,78	-	

REMISES DELRIN

Qté 1+ 6+ 30+ Rem. Prix -22% Sur demande

On choisit notre:

SH2-45 ZSH2-45

Calcul de d1 :35.64 mm

Diamètre primitif d2:95.50 mm

ACIER	DELRIN	Dents	Primitif	Extérleur	SH	ZSH	SH	ZSH
SH2-10	ZSH2-10	10	21,00	25,00	25	24	12	10
SH2-15	ZSH2-15	15	31,50	35,50	25	25	15	12
SH2-18	ZSH2-18	18	37,80	41,80	30	30	15	12
SH2-20	ZSH2-20	20	42,00	46,00	30	30	15	12
SH2-22	ZSH2-22	22	46,20	50,20	35	30	15	12
SH2-24	ZSH2-24	24	50,40	54,40	35	30	15	12
SH2-25	ZSH2-25	25	52,50	56,50	35	30	15	12
SH2-30	ZSH2-30	30	63,00	67,00	40	30	20	12
SH2-32	ZSH2-32	32	67,20	71,20	40	30	20	12
SH2-35	ZSH2-35	35	73,50	77,50	50	30	20	12
SH2-40	ZSH2-40	40	84,00	88,00	50	35	20	12
SH2-45	ZSH2-45	45	94,50	98,50	50	35	20	15
SH2-48	ZSH2-48	48	100,80	104,80	50	35	20	15
SH2-50	ZSH2-50	50	105,00	109,00	50	35	20	15
SH2-55	ZSH2-55	55	115,50	119,50	50	35	20	15
SH2-56	ZSH2-56	56	117,60	121,60	50	35	20	15
SH2-60	ZSH2-60	60	126,00	130,00	50	35	20	15
SH2-65	ZSH2-65	65	136,50	140,50	50	40	20	15

8-dimensionement des roulements :

1 - Guidage en rotation par roulements à bille à contact radiale de l'arbre moteur :

Ce genre de roulement peut supporter des charges radiales et axiales considérables et nécessite également un bon alignement coaxial des arbres et des logements. Dans notre cas, ce type de roulement convient parfaitement à nos besoins.

ce qui donne :

Calcul des charges radiales et axiales sur les roulements 1 et 2 :

$$F_{12} = \sqrt{(Y_{1}^{2} + Z_{1}^{2})} = 1284,18N$$

$$F_{12} = \sqrt{(Y_{2}^{2} + Z_{2}^{2})} = 455,16N$$

$$F_{2} = X_{2} = 167,41N$$

ightharpoonup Calcul de $\frac{c}{p}$:

$$\frac{C}{P} = \left[\frac{Lh}{10^6}.60N\right]^{\frac{1}{3}}$$

Lh est la duree de vie en heures qui est fixe a [$10\ 000 - 20000$] heures, N= $290.25\ tr/min$. Avec Lh= $10\ 000$.

$$\frac{C}{P} = 5.58$$

Donc : $\frac{c}{P} = 5.58$

> Evaluation de P :

$$\frac{Fa1}{Fr1} = 0 \ et \frac{Fa2}{Fr2} = 0.30$$

Donc pour:

Roulement 1 : $\frac{Fa1}{Fr}$ < 0.19 donc : P1=Fr1=994.6N

Roulement 2 :0.19 $<\frac{Fa2}{Fr2}$ < 0.44 avec 1<Y<2.30

P2=0.56Fr2+2.3Fa2=2235N

> Calcul de charge dynamique C:

C1=6.34 N Et C2=26.17N

Donc d'après le catalogue SKF on choisit les roulements :

Roulement 1 : 61904-2RS1

Roulement2 : 6404

Dimensions d'encombrement		dyna-		Limite de fatigue	Vitesses de Vitesse de référence	base Vitesse (imite1)	Masse	Désignations Roulement ouvert ou protégé	protégé	
d	D	В	mique C	C ₀	P_{u}	reference	ilmite±)		des deux côtés	d'un côté ¹⁾
mm			kN		kN	tr/min	15	kg		_
17 suite	47 47 47	14 14 14	14,3 14,3 14,3	6,55 6,55 6,55	0,275 0,275 0,275	34 000 - 34 000	22 000 11 000 17 000	0,11 0,12 0,12	► 6303 ► 6303-2R5H 6303-2R5L	6303-RSH 6303-RSL
	47 47 62	14 19 17	14,3 13,5 22,9	6,55 6,55 10,8	0,275 0,275 0,455	34 000 - 28 000	17 000 11 000 18 000	0,12 0.16 0,27	• 6303-2Z 62303-2RS1 6403	6303-Z -
20	32 32 32	7 7 7	4,03 4,03 4,03	2,32 2,32 2,32	0,104 0,104 0,104	45 000 45 000	13 000 22 000 28 000	0,018 0,018 0,018	► 61804-2R51 ► 61804-2RZ ► 61804	Ξ
	37 37 37	9 9 9	6,37 6,37 6,37	3,65 3,65 3,65	0,156 0,156 0,156	- 43 000 43 000	12 000 20 000 26 000	0,038 0,038 0,037	► 61904-2RS1 ► 61904-2RZ ► 61904	Ē
	42 42 42	8 12 12	7,28 9,95 9,95	4.05 5 5	0,173 0,212 0,212	38 000 38 000 -	24 000 24 000 11 000	0,051 0,067 0,067	► 16004 ► 6004 ► 6004-2RSH	- 6004-RSH
	42 42 42	12 12 16	9,95 9,95 9,36	5 5 5	0,212 0,212 0,212	38 000 38 000 -	19 000 19 000 11 000	0,069 0,071 0,086	► 6004-2RSL ► 6004-2Z 63004-2RS1	6004-RSL 6004-Z
	47 47 47	14 14 14	13,5 13,5 13,5	6,55 6,55 6,55	0,28 0,28 0,28	32 000 - 32 000	20 000 10 000 17 000	0,11 0,11 0,11	► 6204 ► 6204-2RSH ► 6204-2RSL	6204-RSH 6204-RSL
	220		1272	1.02	2.00	DUTTUE!	W.E.P.P.E.	0.402.90	SPECIAL SECTION	100000
72	1	19	30,7	15	0.64	24 000	15 000	0,41	6404	-

10-dessin de engrenages en DA0 (SolidWorks) :

