MTH 344-001 Winter 2022 HW 1

Randi Bolt

1/14/2022

- 1. Do the following define operations on the given set? Why or why not? (Your answers only need to be a sentance or two; if these do define operations, you do not need to check if they're commutative, associatve, ect. in this problem.)
- (a) a*b=4a-b on \mathbb{Z}

Yes, a^*b should work for any two elements in \mathbb{Z} , and produce a unique output that exists in \mathbb{Z} .

(b) $a * b = 3^b$ on \mathbb{Q}

No, because an operation needs two elements a and b, and a*b only performs an operation on one element.

(c) $a * b = \frac{a}{ab+2}$ on \mathbb{R}

No, because it is possible for ab = -2 which would make a*b undefined.

(d) $a*b = \frac{1}{ab+2}$ on \mathbb{R}^+

Yes, a^*b should work for any two elements in \mathbb{R}^+ , and product a unique output that also exists in \mathbb{R}^+ .

- **2.** Define an operation * on \mathbb{R} by a*b=3a-4b+2
- (a) Is * commutative?

No, it is given that a*b=3a-4b+2, but b*a=3b-4a+2, which is clearly not the same.

To show by this by example let a = 1, and b = 2. We see that a * b = 3a - 4b + 2 = 3(1) - 4(2) + 2 = -3 and b * a = 3b - 4a + 2 = 3(2) - 4(1) + 2 = 4.

Since $a * b \neq b * a$, then * is NOT commutative.

(b) Is * associative?

No,

$$(a*b)*c = (3a - 4b + 2)*c$$

$$= 3(3a - 4b + 2) - 4c + 2$$

$$= 9a - 12b + 6 - 4c + 2$$

$$= 9a - 12b - 4c + 8$$
(1)

$$a*(b*c) = a*(3b-4c+2)$$

$$= 3a-4(3b-4c+2)+2$$

$$= 3a-12b+16c-8+2$$

$$= 3a-12b+16c-6$$
(2)

Since $(a * b) * c \neq a * (b * c)$, then * isn't associative.

(c) Is there an identity element $e \in \mathbb{R}$ w.r.t. *?

No, let $e \in \mathbb{R}$ such that $e * a = a \forall a \in \mathbb{R}$.

$$e * a = a \Rightarrow 3a - 4e + 2 = a$$

$$\Rightarrow 4e = 2a + 2$$

$$\Rightarrow e = \frac{1}{4}(2a + 2) = \frac{1}{2}a + \frac{1}{2}$$
(3)

Since the identity element must be constant then there is no identity in \mathbb{R} w.r.t. *.

(d) Does every element $a \in \mathbb{R}$ have an inverse w.r.t. *?

No, since there is no identity then are no inverse in \mathbb{R} w.r.t. *.

3. Define an operation * on \mathbb{R} by a * b = a + b - ab.

(a) Is * commutative?

Yes,

$$a * b = a + b - ab$$

 $= b + a - ab$ since + is commutative
 $= b + a - ba$ since · is commutative
 $= b * a$ (4)

Since a * b = b * a then * is commutative.

(b) Is * associative?

Yes,

$$a*(b*c) = a*(b+c-bc)$$

$$= a + (b+c-bc) - a(b+c-bc)$$

$$= a + b + c - ab - ac - bc + abc$$
(5)

$$(a*b)*c = (a+b-ab)*c$$

$$= (a+b-ab)+c-c(a+b-ab)$$

$$= a+b-ab+c-ca+cb-abc$$

$$= a+b+c-ab-ac-bc+abc$$
(6)

Since a * (b * c) = (a * b) * c then * is associative.

(c) Is there an identity element $e \in \mathbb{R}$ w.r.t. *?

Yes, since $0 \in \mathbb{R}$ a * 0 = 0 * a = a + 0 - a(0) = a. Therefore there is an identity element e = 0 w.r.t. *.

(d) Does every element $a \in \mathbb{R}$ have an inverse w.r.t. *?

Yes, suppose $b = a^{-1}$, then a * b = b * a = 0 (Identity found if part c).

$$a * b = 0 \Rightarrow a + b - ab = 0$$

$$\Rightarrow b(1 - a) = -a$$

$$\Rightarrow b = \frac{-a}{1 - a}$$
(7)

Therefore $\forall a \in \mathbb{R}$ except for 1 has an inverse given by: $a^{-1} = \frac{-a}{1-a}$.

4. Define an operation * on the set $G = \{(x,y) \in \mathbb{R} \times \mathbb{R} | x \neq 0\}$ by

$$(a,b)*(c,d) = (ac,ad+bc).$$

Prove that $\langle G, * \rangle$ is an abelian group. (You do not need to check associativity. We will show this in class.)

Let $G = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \neq 0\}$. Define * on G by

$$(a,b)*(c,d) = (ac,ad+bc)$$

For $\langle G, * \rangle$ is an abelian group it must be commutative, associative, have an identity element, and each element must have an inverse.

(i) Commutative

For (a, b) * (c, d) to be commutative then (a, b) * (c, d) = (d, a) * (b, c) = (c, d) * (a, b) = (b, c) * (d, a).

Each can be defined:

$$(a,b)*(c,d) = (ac,ad+bc)$$

$$(d,a)*(b,c) = (db, dc + ab)$$

$$(c,d)*(a,b) = (ca,cb+da)$$

$$(b,c)*(d,a) = (bd,ba+cd)$$

Since multiplication and addition are communicative on \mathbb{R} , we can also show that

(1)
$$(a,b)*(c,d) = (ac,ad+bc) = (ca,da+cb) = (ca,cb+da) = (c,d)*(a,b)$$

and

(2)
$$(d, a) * (b, c) = (db, dc + ab) = (db, cd + ba) = (db, ba + cd) = (b, c) * (d, a)$$

However $(1) \neq (2)$.

To show this by example let a = 1, b = 2, c = 3, and d = 4. Then,

(1)
$$(a,b)*(c,d) = (ac,ad+bc) = (1(3),1(4)+2(3)) = (3,10)$$

(2)
$$(d, a) * (b, c) = (db, dc + ab) = (4(2), 4(3) + 1(2)) = (8, 14)$$

Since $(3,10) \neq (8,14)$ and $(a,b)*(c,d) = (c,d)*(a,b) \neq (d,a)*(b,c) = (b,c)*(d,a)$ then $\langle G,* \rangle$ is not commutative.

(ii) Associative

done in class.

(iii) Identity

Let $(a, b) * (e_1, e_2) = (a, b)$ for $e_1, e_2 \in \mathbb{R}$.

$$(a,b) * (e_1, e_2) = (a,b) \Rightarrow (ae_1, ae_2 + be_1) = (a,b)$$

 $\Rightarrow (e_1, e_2) = (1,0)$ (8)

Checking the other order,

$$(e_1, e_2) * (a, b) = (1, 0) * (a, b) = (1a, 1b + a0)$$

= (a, b) (9)

Since $(a,b)*(e_1,e_2)=(a,b)$ there is an identity in \mathbb{R} w.r.t. $\langle G,*\rangle$.

(iv) Inverse

Suppose $(c,d) = (a,b)^{-1}$, then (a,b)*(c,d) = (1,0) (identity found in part iii).

$$(a,b) * (c,d) = (1,0) \Rightarrow (ac,ad+bc) = (1,0)$$

$$\Rightarrow (c,ad) = (\frac{1}{a},-bc)$$

$$\Rightarrow (c,a^{-1}ad) = (\frac{1}{a},a^{-1}(-b)c)$$

$$\Rightarrow (c,d) = (\frac{1}{a},-ba^{-1}c)$$

$$\Rightarrow (c,d) = (\frac{1}{a},-ba^{-1}a^{-1})$$

$$\Rightarrow (a,b)^{-1} = (\frac{1}{a},-ba^{-2})$$

$$(10)$$

Therefore $\forall (a,b) \in \mathbb{R}, \langle G, * \rangle$ has an inverse given by $(\frac{1}{a}, -ba^{-2})$.

By parts ii - iv, G is associative, has an identity element, and every element has an inverse. Therefore $\langle G, * \rangle$ is an group, but because it isn't commutative, then $\langle G, * \rangle$ is not an abelian group.

5. Let a,b,c,x be elements of a group G. Solve the following system of equations for x:

(a)
$$bx^2 = ax^{-1}$$
 and $x^4 = c$

$$bx^2 = ax^{-1} \Rightarrow b = ax^{-3} \Rightarrow a^{-1}b = x^{-3}$$

$$x^4 = c \Rightarrow x = cx^{-3} = ca^{-1}b = a^{-1}bc$$

Therefore $x = a^{-1}bc$.

(b)
$$x^2c = bxa^{-1}$$
 and $xca = cax$

$$x^{2}c = bxa^{-1}$$

$$\Rightarrow xxc = bxa^{-1}$$

$$\Rightarrow xxca = bxa^{-1}a$$

$$\Rightarrow x(xca) = bx(a^{-1}a)$$

$$\Rightarrow x(cax) = bx(e)$$

$$\Rightarrow xcaxx^{-1} = bxx^{-1}$$

$$\Rightarrow xca(xx^{-1}) = b(xx^{-1})$$

$$\Rightarrow xca(e) = b(e)$$

$$\Rightarrow xc(aa^{-1}) = ba^{-1}$$

$$\Rightarrow x = ba^{-1}c^{-1}$$

Therefore $x = ba^{-1}c^{-1}$. \Box

6. This problem asks you to consider the importance of using proper notation for inverses in groups. Your answer only needs to be a sentence or two.

Suppose a,b, and x are elements of a *nonabelian* group G, and that we want to solve the equation ax = b for x. Why would it be incorrect and unclear to say that the solution is $x = \frac{b}{a}$

It would be incorrect and unclear to say that $x=\frac{b}{a}$ for a nonabelian group G, because a nonabelian group wouldn't be commutative. This is important because the side an operation happens on matters. Meaning that $(ax=b) \Rightarrow (x=\frac{b}{a}) \neq (\frac{a}{b}=x) \Leftarrow (bx=a)$.