Salts, Buffers, and Titrations Practice

Calculate the pH of a 0.200 M NH₄NO₃ solution given K_b = 1.8 × 10

Salts, Buffers, and Titrations Practice

1. Calculate the pH of a 0.200 M NH₄NO₃ solution given
$$K_b = 1.8 \times 10^{-5}$$
.

NH₄ ND₇ + H₂ D \rightarrow NH₄ + H₂ D \rightarrow NH₃ + H₃ D \rightarrow NH₃ + H₂ D \rightarrow NH₃ + H₃ D

reated using 20 mL of 0.10 M HF and 0.050 g of NaF, calculate the pH assuming the

K. VALE = 41.988173 y/mol	of HF is 3.5 × 10 ⁻⁴ .	mol NAF	0.00119 males No	f = 1.	. 19 mmoles a	la E
20mL (0.10 M	0.050g NaF 1 41	· 988173,	$\frac{2}{2K_n + l_n\left(\frac{1.11}{2}\right)} =$			

Calculate the pH of the solution resulting from titrating 30 mL of 0.10 M HOBr with 24 mL of 0.10

 Sketch a titration curve for the titration of 30 mL of the 0.25 M diprotic acid HA with 0.25 M NaOH by calculating the following ($K_{a1} = 5.9 \times 10^{-2}$ and $K_{a2} = 6.4 \times 10^{-5}$):

(a) The initial pH
$$R$$
 $H_{L}A + H_{T}O \rightarrow H_{T}Of + HA$ $K_{a_{1}} = \frac{\times^{2}}{0.25 - \times}$ $X = 0.095$
 $K_{a_{1}} = \frac{\times^{2}}{0.25 - \times}$ $X = 0.095$
 $K_{a_{1}} = \frac{\times^{2}}{0.25 - \times}$ $X = 0.095$
 $K_{a_{1}} = \frac{\times^{2}}{0.25 - \times}$ $X = 0.095$