

Outils numériques, pour quoi faire?

Outils numériques, intérêts

- Résolution d'équations / de systèmes d'équations
 - Symbolique
 - Numérique
- Simulation de modèles physiques / mathématiques

- Affichage et mise en forme de données
- Traitement de données

Outils numériques, intérêts

Acquisition et Traitement de données

Simulation / Modélisation Conception

Interface de pilotage Contrôle / Commande

Conception Optique - Zemax-OpticStudio

Interface Humain Machine - Pilotage

Outils Numériques pour l'Ingénieur.e

 Construire une boite à outils de méthodes numériques pour de futur.es ingénieur.es en physique

Méthodes Numériques

Programmation

Ingénieur.e en Physique

Méthodes Numériques

- utiliser l'écriture matricielle/vectorielle pour stocker et traiter des données
- · organiser la résolution d'un problème en actions élémentaires
- décrire les tests de validation
- organiser les informations à manipuler/générer

• choisir une **méthode de résolution numérique** adaptée à la problématique et en comprendre ses limites

Programmation (1/2)

Critères non évalués

- décrire les éléments internes d'un système à processeurs et mémoire
- décrire les différences de codage des informations numériques
- décrire les zones de **stockage des données** et lister les conséquences de chacun des types de support en termes d'impact sur les ressources (performances, énergie...)
- organiser la résolution d'un problème en actions élémentaires, décrire les tests de validation et en évaluer l'impact sur les ressources

Doit-on faire confiance aux ordinateurs?

• Que donnent les calculs suivants ?

$$>$$
 $3-2-1=??$

$$> 0.3 - 0.2 - 0.1 = ??$$

Programmation (2/2)

- écrire et commenter du code informatique en respectant des conventions (PEP 8 Python)
- utiliser, écrire et valider des fonctions / modules dans un langage de haut niveau (type Python ou Matlab)
- documenter des fonctions (PEP 257 Python)
- utiliser une bibliothèque / un module dans un langage de haut niveau
- écrire et valider une bibliothèque dans un langage de haut niveau et la documenter
- écrire et valider une classe dans un langage de haut niveau

Ingénieur.e en Physique

- produire un graphique pertinent (axes, titre, légende) à partir de données expérimentales
- générer un ensemble de données de test pour valider un modèle numérique
- analyser les résultats d'une modélisation physique simple et valider le modèle utilisé

• gérer les versions de ses codes

Déroulement du module

3 blocs de 4 séances (2h/séance)

- Sur machine
- En binôme ou seul
- 2 encadrant.es par séance

Déroulement de chaque bloc

Séance 1 : problématique

Séance 2 : mise en œuvre numérique

Séance 3 : mise en forme des résultats

Séance 4 : synthèse

Méthodes numériques

Intro / Langage haut niveau **Problème 1**: circuit RC

Traitement de données 2D

Problème 2 : images d'un faisceau LASER en différents points d'un chemin optique

Traitement de données 1D

Problème 3 : signal modulé en amplitude / acquisition numérique

Outils de travail

Outils numériques

- Utilisation de Python
 - Anaconda 3
 - Python 3.9 (ou supérieur)
 - Spyder 5

- Exemples en C/C++
 - GCC / MingW
 - CodeBlocks 17 (ou sup.)

Ressources en ligne

Site du LEnsE

- lense.institutoptique.fr/python/
- lense.institutoptique.fr/outils_nums/

GitHUB

• github.com/IOGS-Digital-Methods

Méthodes de travail

Méthode de travail / Bonnes pratiques

- Développement sous Python 3.9 (min) / Anaconda 3 / Spyder 5
 - Style de code selon le guide PEP 8
 https://peps.python.org/pep-0008/
 - Style de commentaires et de documentation selon le guide PEP 257 https://peps.python.org/pep-0257/
- Utilisation de bibliothèques standards (Numpy, Matplotlib, Scipy...)
- Découpage en fonctions simples (fichiers .py séparés)

Méthode de travail / Bloc 1

- Démystifier les langages de haut niveau
 - Quelques notions théoriques
 - Des exemples pratiques en Python (ou C/C++)
- Calcul scientifique / Plusieurs méthodes de résolution

Phases d'apprentissage

S'ENTRAINER

Travail à réaliser

- Résultats à faire valider par un e encadrant la séance
 - Bonnes pratiques en programmation :
 - Code propre / documenté
 - Utilisation de fonctions
 - Présentation des résultats
 - Analyse et critiques des résultats (aspect physique/mathématique)

Approfondissement

ALLER PLUS LOIN

Travail pour approfondir les notions / Valider ses acquis

- Résultats que vous pouvez soumettre par mail
 - Bonnes pratiques en programmation :
 - Code propre / documenté
 - Utilisation de fonctions
 - Présentation des résultats
 - Analyse et critiques des résultats (aspect physique/mathématique)

Evaluations

Evaluations

Travail réalisé

- 1 évaluation par bloc faite par un.e encadrant.e
- 1 auto-évaluation
- Grille critériée :
 - A Expert.e (4 points)
 - B Maitrise (2,5 points)
 - C Débutant.e (1 point)
 - D Non démontré

Note Module 50% Bloc 2 50% Bloc 3

METHODES NUMERIQUES	Α	В	С	D
Ecriture Matricielle / Vectorielle				
Organisation en actions élémentaires				
Description des tests de validation				
Organisation des informations à traiter				
PROGRAMMATION	Α	В	С	D
Ecriture et commentaires (PEP 8)				
Utilisation, écriture et validation de fonctions				
Documentation des fonctions (PEP257)				
Utilisation de bibliothèques				
Ecriture et validation d'une bibliothèque				
INGENIEUR.E PHYSIQUE	Α	В	С	D
Graphiques pertinents et légendés				
Génération de données pertinentes de tests				
Analyse des données et validation modèle				

BLOC 1

