

Word Beam Search: A Connectionist Temporal Classification Decoding Algorithm

Harald Scheidl, Stefan Fiel, Robert Sablatnig

Introduction

- Text encoded by paths in RNN output
 - Characters can be repeated: "ab" → "aaab"
 - And can be followed by blanks: "aaab" → "aaa-b"
- Word Beam Search (WBS) decodes RNN output

Fig.: CTC-trained neural network

Fig.: RNN output containing character-probabilities

Related Algorithms

- Best path decoding
 - Collapse best-scoring path
- Token passing
- Sequence of dictionary words, word-level LM
- Vanilla beam search (VBS)
- Tree of beams, character-level LM

Fig.: Tree of beams

Fig.: RNN output with paths

Proposed Method

- Beam state
 - Inside word: constrain beam by prefix tree
 - Between words: allow arbitrary many non-word characters

Fig.: Beam states

Fig.: Extending a beam in word-state

- Word-level LM with 4 possible scoring-modes
 - Only constrain words
 - N-gram score whenever beam finishes a word
- N-gram lookahead: possible words given a prefix
- N-gram sampled lookahead: subset of words

Fig.: Constrained tree of beams

Fig.: Prefix tree

Example

- Best path decoding: "ssla." → collapse → "sla." X
- Dictionary contains: "see", "sea", "as", "is", "else"
- Token passing: "sea" 💢
- VBS and WBS: beam width is 2, results see below

Results

- Evaluation on IAM and Bentham HTR datasets
- Two different texts to train LM
 - Perfect: text of test-set (OOV-rate 0%)
 - Rudimentary: text of training-set + 370k word list

	Perfect LM	Rudimentary LM
Best Path	8.77 / 29.07	8.77 / 29.07
Token Passing	10.46 / 12.37	(not feasible)
VBS	8.27 / 27.34	8.48 / 28.24
WBS W	5.62 / 11.01	8.95 / 24.19
WBS N	5.33 / 9.77	10.00 / 23.88
WBS N+F	5.23 / 9.82	8.61 / 22.86
WBS N+F+S	5.21 / 9.78	8.62 / 22.91

Table: CER [%] / WER [%] on IAM dataset

	Perfect LM	Rudimentary LM
Best Path	5.60 / 17.06	5.60 / 17.06
Token Passing	8.16 / 9.24	(not feasible)
VBS	5.35 / 16.02	5.55 / 16.39
WBS W	4.22 / 7.90	5.47 / 14.09
WBS N	4.07 / 7.08	6.15 / 13.90
WBS N+F	4.05 / 7.36	6.76 / 18.00
WBS N+F+S	4.06 / 7.39	6.75 / 18.06

Table: CER [%] / WER [%] on Bentham dataset

- Dependence of running time on dictionary size
 - Token passing: only feasible for 2k words
 - Small dependence: VBS and WBS modes W and N
 - Large dependence: WBS modes N+F and N+F+S

Fig.: Running time [ms] for Bentham with different dictionary sizes

Conclusion

- **Decodes** output of CTC-trained neural network
- Words constrained by dictionary
- Allows arbitrary number of non-word characters between words
- Optional word-level LM
- Faster than token passing

Code:

github.com/githubharald/CTCWordBeamSearch Contact:

harald_scheidl@hotmail.com

