Prefix Sum Fenwick Tree

Outline

- Range Sum
 - ▶ 1D
- Prefix Sum
 - ▶ 1D
 - ▶ 2D
- Fenwick Tree (Binary Indexed Tree)
 - ▶ 1D

ADT: 1D Range Sum

- Objects: a sequence $S=(s_1,...,s_n)$ of summable elements
- Operations:
 - Create(S,A[1,..,n]): initial a sequence S containing A[1], ..., A[n].
 - ▶ Update(S,i,x): update the ith element S to x.
 - ▶ RangeSum(S,i,j): return $s_i+s_{i+1}+...+s_j$.

Range Sum

Straightforward: Store all range sums in a 2D table.

Space: O(n²)

Query: O(1)

Update?

Range Sum: Update s₅=1

Straightforward: Updating an entry takes O(n²) time.

Prefix Sums

- Let $p_0=0$ and $p_i=s_1+s_2+...+s_i$. We say $(p_0,...,p_n)$ is the prefix sums of $(s_1,...,s_n)$.
 - Note: $p_i=p_{i-1}+s_i$. This fact allow us to evaluate $(p_0,...,p_n)$ in O(n).
- ▶ Compute $s_i+...+s_j$: use p_j-p_{i-1} .
- ▶ Build time: O(n)
- Query: O(1)
- Update?

Prefix Sum: Update s₅=1

	0	1	2	3	4	5	6	7	8	9
A[i]		0	1	1	1	1	2	1	1	0
P[i]	0	0	1	2	3	4	6	7	8	8

Prefix Sums: 2D

- Consider an n-by-n matrix $A=(a_{i,j})$.
- Let $p_{0,0}=0$ and $p_{i,j}=\Sigma_{0< x\le i}\Sigma_{0< y\le j}a_{i,j}$ for i>0 or j>0. We say $P=(p_{i,j})$ is the prefix sums of A.
 - Note: $p_{i,j}=p_{i-1,j}+p_{i,j-1}+a_{i,j}-p_{i-1,j-1}$. This fact allow us to evaluate P in O(n²).
- How to compute $\Sigma_{L \leq x \leq R} \Sigma_{B \leq y \leq U} a_{i,j}$?
 - $(p_{R,U})-(p_{L-1,U})-(p_{R,B-1})+(p_{L-1,B-1})$

8

Prefix Sums: 2D

A	1	2	3	4	5	Р	1	2	3	4	5
1	0	0	0	0	1	1					
2	0	1	1	0	0	2					
3	0	0	0	2	0	3					
4	1	0	1	0	0	4					
5	0	1	0	0	1	5					

Prefix Sums: 2D

A	1	2	3	4	5	Р	1	2	3	4	5
1	0	0	0	0	1	1	O	0	0	0	1
2	0	1	1	0	0	2	0	1	2	2	3
3	0	0	0	2	0	3	0	1	2	4	5
4	1	0	1	0	0	4	1	2	4	6	7
5	0	1	0	0	1	5	1	3	5	7	9

- Provide efficient prefix sum query and update for an array with an easy implementation.
- Initial build: O(nlogn) or O(n)?
- Update si: O(logn)
- ▶ Prefix Sum $s_1+...+s_i$: O(logn)
- Range Sum $s_i+...+s_j$: O(logn)

Binary Tree: Array

Fenwick Tree (Binary Indexed Tree)

If a complete binary tree has 2^k-1 nodes, then its root has index 2^{k-1} and its left half has 2^{k-1} nodes.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Si	1	0	3	8	5	6	7	10	9	13	11	12	16	25	29

i ends in 1000

If a complete binary tree has 2^k –1 nodes, then its root has index 2^{k-1} and its left half has 2^{k-1} nodes.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Si	1	0	3	8	5	6	7	10	9	13	11	12	16	25	29

i ends in 1000

A node has index x10ⁱ if it is i level higher than the leaves: the set of nodes on its left consists of left halves of complete subtrees.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Si	1	0	3	8	5	6	7	10	9	13	11	12	16	25	29

Closest Ancestors

Parent & Child

Parent & Child

Finding Parent

- Lowest non-zero bit of x:
 - $\rightarrow lnzb(x)=x & (-x)$
- \rightarrow y=x-lnzb(x):
 - ▶ The closest left ancestor of x.
- $ightharpoonup z = x + \ln z b(x)$:
 - ▶ The closest right ancestor of x.
- ▶ Parent: The closest ancestor!

Lowest Non-Zero Bit

In C, we use 2's complement to represent a negative integer: -x=(-x+1).

X	0	0	0	1	1	0	1	0	0	1	0	1	0	0	0
~X	1	1	1	0	0	1	0	1	1	0	1	0	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
-x	1	1	1	0	0	1	0	1	1	0	1	1	0	0	0
X	0	0	0	1	1	0	1	0	0	1	0	1	0	0	0
x&(-x)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Fenwick Tree: Prefix Sum

Key idea: Store the sum of left half of a subtree on its root.

ends i	n 1000								46			
ends	in 100				23							
end	s in 10		16				11				12	
ene	ds in 1	10		3		2		7		11		8
	fi	10	16	3	23	2	11	7	46	11	12	8
	Si	10	6	3	4	2	9	7	5	11	1	8

fi	10	16	3	23	2	11	7	46	11	12	8		
Si	10	6	3	4	2	9	7	5	11	1	8		

$$s_1+...+s_7=23+11+7=41$$

ends i	n 1000								46			
ends	in 100				23							
end	s in 10		16				11				12	
ene	ds in 1	10		3		2		7		11		8
	fi	10	16	3	23	2	11	7	46	11	12	8
	Si	10	6	3	4	2	9	7	5	11	1	8

fi	10	16	3	23	2	11	7	46	11	12	8		
Si	10	6	3	4	2	9	7	5	11	1	8		

fi	10	16	3	23	2	11	7	46	11	12	8		
Si	10	6	3	4	2	9	7	5	11	1	8		

$$s_1+...+s_9=46+11=57$$

ends i	n 1000											
ends	in 100				23							
end	s in 10		16				11				12	
ends in 1		10		3		2		7		11		8
	f_i	10	16	3	23	2	11	7	46	11	12	8
	Si	10	6	3	4	2	9	7	5	11	1	8

fi	10	16	3	23	2	11	7	46	11	12	8		
Si	10	6	3	4	2	9	7	5	11	1	8		

fi	10	16	3	23	2	11	7	46	11	12	8		
Si	10	6	3	4	2	9	7	5	11	1	8		

$$s_1+...+s_{10}=46+12=58$$

ends i	n 1000			46								
ends	in 100				23							
ends in 10		16				11				12		
ends in 1		10		3		2		7		11		8
	f_i	10	16	3	23	2	11	7	46	11	12	8
	Si	10	6	3	4	2	9	7	5	11	1	8

39 **Data Structures**

8

3

Si

4

update s₇=10

ends i	n 1000											
ends	in 100				23							
ends in 10			16				11				12	
ends in 1		10		3		2		7		11		8
	fi	10	16	3	23	2	11	7	46	11	12	8
	Si	10	6	3	4	2	9	7	5	11	1	8

update s₇=10

ends i	n 1000											
ends	in 100				23							
end	nds in 10 16					11				12		
en	ends in 1			3		2		10		11		8
	f_i	10	16	3	23	2	11	10	49	11	12	8
	Si	10	6	3	4	2	9	10	5	11	1	8

Data Structures 4

fi	10	16	3	23	2	11	10	49	11	12	8		
Si	10	6	3	4	2	9	10	5	11	1	8		

update $s_1=9$

ends i	n 1000				46							
ends	in 100				23							
end	s in 10	16					11				12	
ends in 1		10		3		2		7		11		8
	fi	10	16	3	23	2	11	7	46	11	12	8
	Si	10	6	3	4	2	9	7	5	11	1	8

update $s_1=9$

ends i	n 1000											
ends	in 100				22							
end	s in 10 15				11				12			
ene	ds in 1	9		3		2		7		11		8
	f_i	9	15	3	22	2	11	7	45	11	12	8
	Si	9	6	3	4	2	9	7	5	11	1	8

Homework 7.1

- ▶ a) Prove or disprove to construct a Fenwick tree from an array A[1..n] can be done in O(n).
- ▶ b) How to generalize Fenwick trees to support k-dimensional range sum query?
- ▶ c) How to use Fenwick trees to support range query without subtraction and negation?