Словарик

- \circ Отображение $\varphi: G_1 \to G_2$ называется *гомоморфизмом*, если переводит композицию в композицию, иначе говоря для любых $a, b \in G_1$ в группе G_2 выполняется соотношене $\varphi(ab) = \varphi(a)\varphi(b)$.
 - Эпиморфизмом называют сюръективный гомоморфизм, мономорфизмом называют инъективный гомоморфизм, а изоморфизмом, на самом деле, называют биективный гомоморфизм.
- Множество всех значений гомоморфизма φ : $G_1 \to G_2$ называется его образом и обозначается іт φ или $\varphi(G_1) = \{ \varphi(g_1) \mid g_1 \in G_1 \}$.
- о Подмножество $f^{-1}(y)$ ⊂ X называется слоем отображения $f: X \to Y$ над точкой $y \in Y$.
- \circ Полный прообраз единицы $e_2 \in G_2$ при гомоморфизме групп $\varphi \colon G_1 \to G_2$ называется sdpom гомоморфизма φ , обозначается $\ker \varphi \stackrel{\mathrm{def}}{=} \{g_1 \in G_1 \mid \varphi(g_1) = e_2\}.$
- \circ Гомоморфизм $\varphi \colon \mathcal{G} \to \operatorname{Aut}(X)$ называется Действием группы \mathcal{G} на множестве X или представлением группа \mathcal{G} автоморфизмами множества X.
- \circ Классом эквивалентности отношения $x \sim y \iff gx = y$ называется орбитой точки x под действием G и обозначается $Gx \stackrel{\text{def}}{=} \{gx \mid g \in G\}$. Множеством всех орбит называется фактором множества X под действием G и обозначается X/G.
- \circ Слоем отображения $\operatorname{ev}_{\times} \colon \mathscr{G} \twoheadrightarrow \mathscr{G} \times$ над самой точкой \times называется $\operatorname{cma6u-}$ лизатором точки $\times \in X$ и обозначается $\operatorname{Stab}(\times) \stackrel{\operatorname{def}}{=} \{ g \in \mathscr{G} \mid g \times = \times \}.$
- \circ Длина орбиты произвольной точки $x \in X$ при действии на неё конечной группы преобразований \mathcal{G} равна $|\mathcal{G}x| = \frac{|\mathcal{G}|}{|\operatorname{Stab}(x)|}$. В частности, длины всех орбит и порядки стабилизаторов всех точек являются делителем порядка группы.

Задачки

- 1. Найдите длину орбиты и стабилизатор каждой точки тетраэдра и додекаэдра под действием собственной группы этого тела.
- 2. Пусть $\varphi \colon \mathbb{Z} \to \mathbb{Z}/(6)$ гомоморфизм, который $n \mapsto n \pmod{6}$. Является ли он изоморфизмом? Найдите $\ker \varphi$ и опишите, чем являются элементы $\operatorname{im} \varphi$?
- 3. Пусть $H = \{e, |12\rangle\}$ подгруппа S_3 . Постройте гомоморфизм $\psi \colon S_3 \to H$, такой что четные перестановки он переводит в e, а нечетные в $|12\rangle$.

- (a) Проверьте, что гомоморфизм ψ сохраняет композицию.
- (b) Найдите $\ker \psi$.
- (c) Проверьте, что $S_3 / \ker \psi \cong H$.
- 4. Группа D_4 действует на множестве вершин квадрата $\{1, 2, 3, 4\}$.
 - (а) Сколько орбит у этого действия?
 - (b) Найдите стабилизатор вершины 1. Какой группе он изоморфен?
 - (c) Проверьте, что $|\mathcal{D}_4| = |\operatorname{Stab}(1)| \cdot |\operatorname{Orb}(1)|$.
- 5. Группа S_3 действует на многочлене $P(x_1, x_2, x_3) = x_1^2 + x_2x_3$, переставляя переменные. Найдите орбиты этого действия. Какой стабилизатор у P?
- 6. Пусть задан гомоморфизм $\mu: \mathbb{Z}/(12) \to \mathbb{Z}/(12)$, который $z \mapsto 3z$.
 - (a) Найдите ker µ.
 - (b) Постройте таблицу Кэли для $\operatorname{im} \mu$.
 - (c) Изоморфна ли im μ какой-то известной группе?
- 7. Группа $\mathcal{G}=\mathbb{Z}/(4)$ действует на множестве $X=\{1,2,3,4\}$ циклическими сдвигами. Запишите соответствующий гомоморфизм $\varphi\colon \mathcal{G}\to \mathcal{G}_4$. Чему равно $\ker \varphi$?
- 8. Группа $\mathbb{Z}/(6)$ действует на множестве $X = \{A, B, C\}$ по правилу

$$k \cdot A = A$$
, $k \cdot B = C$, $k \cdot C = B$, $\forall k \in \mathbb{Z}/(6)$.

Найдите орбиты и стабилизаторы элементов X.

- 9. Пусть задан гомоморфизм групп $\varphi \colon G \to M$. Докажите, что для любого элемента $h \in \ker \varphi$ и произвольного $g \in G$ выполняется $ghg^{-1} \in \ker \varphi$.
- 10. Постройте группу A_n с помощью какого-то гомоморфизма $S_n \to S_n$.

¹Этим доказательством вы покажете, что ядра гомоморфизмов являются *нормальными* подгруппами.