Data-Driven Superstabilizing Control of Error-In-Variables Discrete-Time Linear Systems

Jared Miller

Tianyu Dai

Mario Sznaier

December 8, 2022

IEEE CDC: Paper ThBT11.1

Error-in-Variable Noise Task

Noisy measurements $\mathcal{D} = \{\hat{x}_t, \hat{u}_t\}_{t=1}^T$ of linear system

$$x_{t+1} = Ax_t + Bu_t$$

Data \mathcal{D} corrupted by (L_{∞} -bounded):

 Δx : state-measurement noise

 Δu : input noise

w: process noise

Find state-feedback u = Kx to stabilize all plants (A, B) consistent with \mathcal{D}

Error-in-Variable Relations

Noise processes
$$\forall t = 1..T$$

$$\epsilon_x \geq \|\Delta x_t\|_{\infty}$$
 $\epsilon_u \geq \|\Delta u_t\|_{\infty}$ $\epsilon_w \geq \|w_t\|_{\infty}$

Relations
$$\forall t=1..T-1$$

$$x_{t+1}=Ax_t+Bu_t+Ew_t$$

$$\hat{x}_t=x_t+\Delta x_t$$

$$\hat{u}_t=u_t+\Delta u_t$$

 $(A, B, \Delta x, \Delta u, w)$ unknown, $E \in \mathbb{R}^{n \times e}$ known

Bilinear Trouble

Multiplication between unknown $A\Delta x_t$, also in $B\Delta u_t$ Stabilization task is immediately NP-hard Even sysid is NP-hard

Main Ideas

Use superstability to form a more tractable control problem

Formulate a large-scale polynomial optimization problem

Improve scalability by applying a Theorem of Alternatives

Superstability

Superstablity Definition

Superstability (Polyak 2001), $||x||_{\infty}$ is a CLF

$$||A + BK||_{\infty} < 1$$

Poles of A + BK in unit diamond $\{z \mid \operatorname{Re}(z) + \operatorname{Im}(z) < 1\}$

If
$$\|A+BK\|_{\infty}=\gamma$$
, then $\|x_t\|_{\infty}\leq \gamma^{(t+1)/n}\|x_0\|_{\infty}$

Constant K must superstabilize all consistent (A, B)

Superstability Formulations

Linear constraints to impose superstability

Sign-based formulation, $n2^n$ linear constraints

$$\sum_{s \in \{-1,1\}^n} s_j (A + BK)_{ij} < 1 \qquad \forall i$$

Equivalent Convex Lift, $2n^2 + n$ linear constraints

$$\exists M \in \mathbb{R}^{n \times n} :$$

$$\sum_{j=1}^{m} M_{ij} < 1 \qquad \forall i$$

$$-M_{ij} \le (A + BK)_{ij} \le M_{ij} \qquad \forall i, j$$

Full Program

Consistency Set

Consistency set $\bar{P}(A, B, \Delta x)$ (with $\epsilon_u = \epsilon_w = 0$)

$$ar{\mathcal{P}}: \ egin{cases} 0 = -\Delta x_{t+1} + A\Delta x_t + h_t^0 & orall t = 1..T - 1 \ \|\Delta x_t\|_{\infty} \leq \epsilon_x & orall t = 1..T \end{cases}$$

Affine weight h^0 is defined by,

$$h_t^0 = \hat{x}_{t+1} - A\hat{x}_t - Bu_t \qquad \forall t = 1..T - 1.$$

Assumption: enough data collected such that $\bar{\mathcal{P}}$ compact

Superstability for Plants

Set of plants consistent with \mathcal{D} (with projection π):

$$\mathcal{P}(A,B) = \pi^{A,B}\bar{\mathcal{P}}(A,B,\Delta x)$$

Find $K \in \mathbb{R}^{m \times n}$ such that (A + BK) is Schur $\forall (A, B) \in \mathcal{P}$

Restrict to superstability: $||A + BK||_{\infty} < 1$, $\forall (A, B) \in \mathcal{P}$

Superstability Application

Superstability certificate $M(A, B) : \mathcal{P} \to \mathbb{R}^{n \times n}$

 $2n^2 + n$ inequality expressions over $\bar{\mathcal{P}}$ (margin $\delta > 0$)

$$\forall i = 1..n : 1 - \delta - \sum_{j=1}^{n} M_{ij}(A, B) \ge 0$$
 (1a)

$$\forall i = 1..n, \ j = 1..n$$
: (1b)

$$M_{ij}(A,B) - (A_{ij} + \sum_{\ell=1}^m B_{i\ell}K_{\ell j}) \geq 0$$

$$M_{ij}(A,B)+(A_{ij}+\sum_{\ell=1}^m B_{i\ell}K_{\ell j})\geq 0$$

Can choose M to be continuous in compact \mathcal{P}

Computational Complexity (Full)

Restrict $M_{ij}(A, B)$ to a polynomial of degree 2d

Each infinite-dimensional linear constraint becomes an SOS constraint (Psatz) in $(A, B, \Delta x)$

Each Psatz has a PSD Gram matrix of size $\binom{n(n+m+T)+d}{d}$

$$(n = 2, m = 2, T = 15, d = 2)$$
: size 780

Alternatives

Motivation and Size Comparision

Use Δx -affine structure of $\bar{\mathcal{P}}$ to eliminate Δx

Maximal size of Gram (PSD) matrices

Size Full Alternatives
Super
$$\binom{n(n+m+T)+d}{d}$$
 $\binom{n(n+m)+d}{d}$

When
$$(n = 2, m = 2, T = 15, d = 2)$$
:
Full = 780, Altern. = 45

Theorem of Alternatives

Superstability condition q: Full program in $(A, B, \Delta x)$

$$q(A,B) \ge 0$$
 $\forall (A,B,\Delta x) \in \bar{P}$

Alternatives program in (A, B) with no conservatism

find
$$\zeta_{1:T}^{\pm}(A, B) \geq 0$$
, $\mu_{1:T-1}(A, B)$
 $q \geq \sum_{t,i} \epsilon_x (\zeta_{t,i}^+ + \zeta_{t,i}^-) + \sum_{t=1}^{T-1} \mu_t^T h_t^0 \quad \forall (A, B)$
 $\zeta_1^+ - \zeta_1^- = A^T \mu_1$
 $\zeta_T^+ - \zeta_T^- = -\mu_{T-1}$
 $\zeta_t^+ - \zeta_t^- = A^T \mu_t - \mu_{t-1}$ $\forall t \in 2..T-1$

Polynomial Alternatives Certificate

Choose ζ^{\pm} SOS, μ polynomial when $\bar{\mathcal{P}}$ compact Express SOS Alternatives certificate as $q(A,B)\in \Sigma^{\mathrm{alt}}[\mathcal{P}]$ Find degree-2d polynomial matrix $M_{ij}(A,B)$ with

$$egin{aligned} orall i = 1..n : 1 - \delta - \sum_{j=1}^n M_{ij}(A,B) \in \Sigma^{
m alt}[\mathcal{P}] \ orall i = 1..n, \ j = 1..n : \ M_{ij}(A,B) - (A_{ij} + \sum_{\ell=1}^m B_{i\ell}K_{\ell j}) \in \Sigma^{
m alt}[\mathcal{P}] \ M_{ij}(A,B) + (A_{ij} + \sum_{\ell=1}^m B_{i\ell}K_{\ell j}) \in \Sigma^{
m alt}[\mathcal{P}] \end{aligned}$$

 $\zeta^{\pm},~\mu$: same multiplicity as SOS Psatz multipliers over $ar{\mathcal{P}}$

Further notes about complexity

In practice d=1 suffices for Alternatives while d=2 is required for Full

With
$$(n = 2, m = 1, d_{alt} = 1, d_{full} = 2)$$

Maximum size PSD matrices

	Gram	ζ	μ (vector)
Alternatives	7	7	7
Full $(T = 4)$	120	15	120
Full $(T = 6)$	190	19	190
Full $(T = 8)$	276	23	276

All Noise

All Noise Consistency Set

Consistency set $\bar{\mathcal{P}}^{\text{all}}(A, B, \Delta x, \Delta u, w)$:

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t + Ew_t & \forall t = 1..T - 1 \\ \hat{x}_t &= x_t + \Delta x_t, & \hat{u}_t &= u_t + \Delta u_t & \forall t = 1..T - 1 \\ \epsilon_x &\geq \|\Delta x_t\|_{\infty}, & \epsilon_u \geq \|\Delta u_t\|_{\infty}, & \epsilon_w \geq \|w_t\|_{\infty} & \forall t = 1..T \end{aligned}$$

Set of consistent plants,

$$\mathcal{P}^{\mathrm{all}}(A,B) = \pi^{A,B} \bar{\mathcal{P}}^{\mathrm{all}}(A,B,\Delta x,\Delta u,w)$$

 $(\Delta x, \Delta u, w)$ together not much more complex than Δx alone

All Noise Size

Use Alternatives to eliminate $(\Delta x, \Delta u, w)$

Maximal size of Gram (PSD) matrices

Size Full Alternatives

Super
$$\binom{n(n+m)+T(n+m+e)+d}{d}$$
 $\binom{n(n+m)+d}{d}$

When
$$(n = 2, m = 2, T = 15, d = 2, e = 1)$$
:
Full = 3570, Alternatives = 45

Examples

Example 1

Ground-truth system n = 3, m = 2, T = 40

$$A = \begin{bmatrix} 0.6852 & 0.0274 & 0.5587 \\ 0.2045 & 0.6705 & 0.1404 \\ 0.8781 & 0.4173 & 0.1981 \end{bmatrix}, B = \begin{bmatrix} 0.4170 & 0.3023 \\ 0.7203 & 0.1468 \\ 0.0001 & 0.0923 \end{bmatrix}$$

Noise parameters $\epsilon_x = 0.05, \epsilon_u = 0, \ \epsilon_w = 0$

Solve
$$\gamma^* = \min_{\gamma \in \mathbb{R}} \gamma : \|A + BK\|_{\infty} \le \gamma$$
 for all $(A, B) \in \mathcal{P}$

Example 1: Complexity

Data horizon T = 6,

d #scalar variables

Full 2 3.4×10^7

Altern. 1 67776

Altern recovers ground truth $\gamma^*=0.7259$ when $\epsilon_{\scriptscriptstyle X}=0$

Example 1: Results

```
With T = 40:
```

```
\gamma_{
m alt}^*=0.8880 Alternatives with d=1 (worst-case) \gamma_{
m clp}^*=0.7749 Alternatives controller applied to ground truth \gamma_{
m true}^*=0.7259 Ground truth
```

Example 2: (Monte Carlo test)

Ground truth system $(\epsilon_w, \epsilon_u = 0)$

$$A = \begin{bmatrix} 0.6863 & 0.3968 \\ 0.3456 & 1.0388 \end{bmatrix}, \quad B = \begin{bmatrix} 0.4170 & 0.0001 \\ 0.7203 & 0.3023 \end{bmatrix}$$

S = number of successful designs out of 100 trials

S vs.
$$\epsilon_X$$
 with $T=8$

$\epsilon_{\scriptscriptstyle X}$	0.05	0.08	0.11	0.14
S	100	84	57	39

S vs.
$$T$$
 with $\epsilon_{x}=0.14$

T	8	10	12	14
S	39	60	75	86

Take-aways

Conclusion

Superstabilization in the Error-in-variables setting

Formulate SOS certificates over consistency set

Alternatives to simplify computational complexity

Conservatism only introduced in Superstability

Acknowledgements

CDC Organising Committee

CDC Best Student Paper Award Committee

Didier Henrion, POP group at LAAS-CNRS

Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.

National Science Foundation (NSF)

Air Force Office of Scientific Research (AFOSR)

Thank you for your attention

arxiv:2210.1489

github:jarmill/error_in_variables

Bonus Content

Sum-of-Squares Method

Nonnegative $q(x) \in \mathbb{R}[x]$ is SOS $(q \in \Sigma[x])$ if there exists a vector $v(x) \in \mathbb{R}[x]^s$, Gram matrix $Z \in \mathbb{S}^s_+$ with $q = v^T Z v$

Putinar Positivestellensatz (Psatz) nonnegativity certificate over set $\mathbb{K} = \{x \mid g_i(x) \geq 0, h_j(x) = 0\}$:

$$q(x) = \sigma_0(x) + \sum_i \sigma_i(x) g_i(x) + \sum_j \phi_j(x) h_j(x)$$

$$\exists \sigma_0(x) \in \Sigma[x], \quad \sigma_i(x) \in \Sigma[x], \quad \phi_j \in \mathbb{R}[x].$$

Psatz at degree 2d is an SDP, monomial basis: $s = \binom{n+d}{d}$