Universität Duisburg-Essen Fakultät für Mathematik

Kursmaterial

BEGLEITEND ZU VORLESUNG UND ÜBUNG

Merkblatt zur Einführung in die Hochschulmathematik

von Montag, 2. September bis Freitag, 27. September 2019

im WSC-N-U-4.04, täglich von 13:00 Uhr bis 15:00 Uhr

Vorlesung: Prof. Dr. Dirk PAULY

 $\ddot{U}bung:$ Jonathan Busse

INHALTS...

Kapitel 1 Mengenlehre • Aussagenlogik • Rechenregeln

Kapitel 2 Folgen • Summen • Induktion

Kapitel 3 Stetigkeit • Differenzialrechnung • Integration

Kapitel 4 Gruppen • Homomorphismen

Übung 5 Gruppen • Homomorphismen

[∞]VERZEICHNIS

Liebe angehende Studierende, ich hoffe ihr könnt mit dem Merkblatt etwas anfangen! viel Glück in der Vorlesung ©

Notation 1 (Mengen). Seien A, B zwei Mengen, a, b Elemente aus A respektive B und $\mathfrak{A}(a)$ eine Aussage [1-9] die für a gilt, dann schreiben wir

(i) $A \subseteq B$: A ist eine Teilmenge von B

(vi) $A \cup B$: Vereinigung von A und B

(ii) $A \supseteq B$: A ist eine Obermenge von B

(vii) $A \cap B$: Durchschnitt von A und B

(iii) A = B: A ist gleich B

(viii) $A \setminus B$: Differenz von A und B

(iv) A := B : A ist definiert als B

(das heißt A "ohne" B)

(v) $a \in A$: a ist ein Element von A

(ix) $A \times B$: Kartesisches Produkt von A und B.

Wir schreiben $B := \{a \in A : \mathfrak{A}(a)\}$ für die Menge aller a für die $\mathfrak{A}(a)$ (gilt) und erhalten das karthesische Produkt mit $A \times B := \{(a, b) : a \in A, b \in B\}.$

AUFGEPASST! die leere Menge $\emptyset := \{\}$ kann selbst ein Element einer Menge sein, also ist $\emptyset \neq \{\emptyset\}$.

Bemerkung 2 (Zahlenmengen).

[34-44]

AUFGEPASST! wir schreiben \mathbb{N}_0 für $\mathbb{N} \cup \{0\}$, $\mathbb{Z}_{\geq m}$ für $\{x \in \mathbb{Z} \mid x \geq m\}$ wobei $m \in \mathbb{Z}$ und \mathbb{R}_+ für die positiven reellen Zahlen.

Notation 3 (Quantoren und Junktoren). Seien $\mathfrak{A}(a)$, $\mathfrak{A}(b)$ Aussagen die für a respektive b gelten, dann [Vorlesung] benutzen wir die Quantoren

(i) $\exists a \ \mathfrak{A}(a)$: es existiert (mindestens) ein $a \ \text{sodas} \ \mathfrak{A}(a)$

(iii) $\forall a \, \mathfrak{A}(a)$: für alle a (gilt) $\mathfrak{A}(a)$

(ii) $\exists ! a \, \mathfrak{A}(a)$: es existiert genau ein $a \, \text{sodas} \, \mathfrak{A}(a)$

und die Junktoren

 $\mathfrak{A}(a) \wedge \mathfrak{A}(b) : \mathfrak{A}(a) \text{ und } \mathfrak{A}(b)$

(iv) $\mathfrak{A}(a) \Rightarrow \mathfrak{A}(b)$: aus $\mathfrak{A}(a)$ folgt $\mathfrak{A}(b)$

 $\mathfrak{A}(a) \vee \mathfrak{A}(b) : \mathfrak{A}(a) \text{ oder } \mathfrak{A}(b)$ (ii)

(v) $\mathfrak{A}(a) \Leftarrow \mathfrak{A}(b)$: $\mathfrak{A}(a)$ folgt aus $\mathfrak{A}(b)$

 $\neg \mathfrak{A}(a)$: nicht $\mathfrak{A}(a)$ (iii)

(vi) $\mathfrak{A}(a) \Leftrightarrow \mathfrak{A}(b)$: $\mathfrak{A}(a)$ genau dann, wenn $\mathfrak{A}(b)$.

AUFGEPASST! bei ",\lambda" "handelt es sich um ein einschließendes oder, das heißt, $\mathfrak{A}(a) \wedge \mathfrak{A}(b) \Rightarrow \mathfrak{A}(a) \vee \mathfrak{A}(b)$.

Rechergel 4 (Brüche und Potenzen). Seien $a, b \in \mathbb{R}$ und $c, d \in \mathbb{R} \setminus \{0\}$, dann gilt

[14.15][17-19]

(i) $\frac{-a}{c} = -\frac{a}{c} = \frac{a}{-c}$ (iii) $a^{-\frac{b}{c}} = \frac{1}{\sqrt[6]{a^b}}$ (v) $\frac{a}{c} + \frac{b}{d} = \frac{a \cdot d + c \cdot b}{c \cdot d}$ (vii) $\frac{a}{c} \cdot \frac{b}{d} = \frac{a \cdot b}{c \cdot d}$

[21,22]usw.

(ii) $\frac{a \cdot b}{c \cdot b} = \frac{a}{c}$ (iv) $\frac{a^b}{a^c} = a^{b-c}$ (vi) $\frac{a}{c} - \frac{b}{d} = \frac{a \cdot d - c \cdot b}{c \cdot d}$ (viii) $\frac{a}{c} : \frac{b}{d} = \frac{a \cdot d}{c \cdot b}$.

Weiterhin gelten für $a, b, c \in \mathbb{R}$ die Potenzgesetze

(ix) $a^b \cdot a^c = a^{b+c}$ (x) $a^c \cdot b^c = (a \cdot b)^c$ (xi) $(a^b)^c = a^{b \cdot c}$ (xii) $\frac{a^b}{d^b} = (\frac{a}{d})^b$.

AUFGEPASST! es gilt $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ aber $\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$ (wobei $c \neq 0$ und $b \neq -c$).

Rechenregel 5 (Quadratische Gleichungen). Wir betrachten die Unbekannte x und die Koeffizienten a, b, c [20] auf den reellen Zahlen, dann gilt

1

(i)
$$a = 1$$
: $a \cdot x^2 + bx + c = 0 \iff x_{1,2} = -\frac{b}{2} \pm \sqrt{(\frac{b}{2})^2 - c} \land (\frac{b}{2})^2 - c) \ge 0$

(ii)
$$a \neq 0$$
: $a \cdot x^2 + bx + c = 0 \Leftrightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} \land b^2 - 4 \cdot a \cdot c \ge 0$

- [34] **Definition 6** (Folge). Eine unendliche Folge $(a_n)_{n\in\mathbb{N}}:=(a_0,a_1,...,a_n,...)$ auf den reellen Zahlen ist eine
- [38] Abbildung, die jeder natürlichen Zahl n inklusive der Null eine reelle Zahl a_n zuordnet. Eine Folge
- [43] [45]
- (i) ist positiv (nicht negativ), wenn alle a_n positiv (nicht negativ) sind,
- (ii) ist [streng] monoton fallend (steigend), wenn für alle $n \in \mathbb{N}$: $a_n \stackrel{[>]}{\geq} a_{n+1}$ $(a_n \stackrel{[<]}{\leq} a_{n-1})$
- (iii) ist beschränkt, wenn es ein $m \in \mathbb{N}$ gibt, sodas für alle $n \in \mathbb{N}$: $-m \le a_n \le m$
- (iv) konvergiert gegen a, wenn für alle $\epsilon>0$ ein $N\in\mathbb{N}$ existiert, sodas für alle $n\geq N$: $|a_n-a|<\epsilon$.

Wir nennen a den Grenzwert von $(a_n)_{n\in\mathbb{N}}$ und schreiben $a_n \xrightarrow{n\to\infty} a$ oder $\lim_{n\to\infty} a_n = a$.

Aufgepasst! die Abbildungsvorschrift darf auch rekursiv angegeben werden, das heißt, dass sich ein Folgeglied aus den vorhergehenden Gliedern berechnen lässt.

[33] **Definition 7** (Binominalkoeffizient). Seien $n, k \in \mathbb{N}_0$ wobei $k \leq n$, dann definieren wir den Binominalkoeffizienten $\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!}$, wobei $n! := n \cdot (n-1)!$ und 0! := 1.

AUFGEPASST! aus $n! = n \cdot (n-1)!$ folgt z. B., dass $(n - (k-1))! = ((n+1) - k) \cdot (n-k)!$.

- [34-43] **Beweisverfahren 8** (vollständige Induktion). Ausdrücke die von natürlichen Zahlen abhängen, können mit vollständiger Induktion beweisen:
 - 1. Beweis von $\mathfrak{A}(n)$ für ein minimales n_0 , meist $\mathfrak{A}(0)$ oder $\mathfrak{A}(1)$ aufstellen einer Induktionsannahme, der Aussage $\mathfrak{A}(n)$ die wir beweisen \mathfrak{O} .
 - 2. Beweis von $\mathfrak{A}(n+1)$ \longrightarrow dabei dürfen wir $\mathfrak{A}(n)$ für ein beliebiges (aber festes) n \longrightarrow als bewiesen voraussetzen.
- [34-43] **Beispiel 9** (Vollständige Induktion). Sei $n \in \mathbb{N}$ und n! (Fakultät) wie in Definition 7, dann erhalten wir
 - **0**. die Induktionsannahme: $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$
 - 1. den Induktionsanfang: $(1! = 1 \cdot 0! = 1 \cdot 1 = 1)$
 - **2.** den Induktionsschritt: $((n+1)!^{\frac{\text{Def }7}{2}}(n+1) \cdot n! \stackrel{\text{IA}}{=} (n+1) \cdot n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1)$

womit wir die Aussage mit Beweisverfahren 8 gezeigt haben.

1

[36-42] **Definition 10** (Partialsummen). Sei $(a_0, a_1, ..., a_n, ...)$ eine Folge wie in Definition 6, dann definieren wir die Partialsummen der ersten n+1 Glieder mit $s_n := \sum_{k=1}^n a_k$. Einige wichtige Partialsummen sind

$$\underbrace{\sum_{k=0}^{n} q^{k} = \frac{1-q^{n+1}}{1-q} \quad (q \neq 0)}_{\text{geometrische Reihe}} \qquad \underbrace{\left((x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} \quad (0^{0} := 1)\right)}_{\text{Binomischer Lehrsatz}}$$

Aufgepasst! die meisten Partialsummenformeln lassen sich mit Beweisverfahren 8 zeigen.

Definition 11 (Funktion). Eine Abbildung f, die jedem x aus dem Definitionsbereich $D_f \subseteq \mathbb{R}$ ein f(x) aus [21] dem Wertebereich $W_f \subseteq \mathbb{R}$ zuweist, nennen wir Funktion auf den reellen Zahlen und schreiben $f: D_f \to [54-56]$ $W_f, x \mapsto f(x)$. Wir nennen die Funktion

- (i) injektiv, wenn für alle $x, y \in D_f$ mit f(x) = f(y) folgt, dass x = y
- (ii) surjektiv, wenn $W_f = \{f(x) : x \in D_f\}$
- (iii) bijektiv, wenn f injektiv und surjektiv ist.

Ferner sagen f ist stetig im Punkt $x_0 \in D_f$, wenn

- (iv) für alle $(a_n)_{n\in\mathbb{N}}$ auf D_f mit $a_n \xrightarrow{n\to\infty} a: \lim_{a_n\to a} f(a_n) = f(a)$
- (v) für alle $\epsilon > 0$ existiert $\beta > 0$, sodas für alle $x \in D_f$ mit $|x x_0| < \beta : |f(x) f(x_0)| < \epsilon$.

Wir nennen eine Funktion stetig, wenn sie in allen $x_0 \in D_f$ stetig ist.

Aufgepasst! um Stetigkeit zu zeigen, können wir uns eines der Kriterien (iv) oder (v) aussuchen.

Definition 12 (Ableitung). Existiert für $f: D_f := (a, ..., b) \to W_f: x \mapsto f(x)$ und $x_0 \in D_f$ der Grenzwert $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = f'(x_0)$ sagen wir f ist differenzierbar in x_0 . Ist f differenzierbar in allen $x_0 \in D_f$ [90] sagen wir f ist differenzierbar auf dem offenen Intervall (a, ..., b). Wir bezeichnen $f': D_f \to W_{f'}, x \mapsto f'(x)$ als die erste und (falls existent) $f^{(n)}$ als die n-te Ableitung von f. Wir sagen f ist (n-mal) stetig differenzierbar, wenn f' (respektive $f^{(n)}$) stetig ist.

Aufgepasst! differenzierbare Funktionen sind stetig, stetige Funktionen nicht immer differenzierbar.

Rechenregel 13 (Ableitungsregeln). Seien f, g und $g \circ f : D_f \to W_f \subseteq D_g \to W_g$, $x \mapsto (g \circ f)(x) := g(f(x))$ [79-83] differenzierbare Funktionen und $a, b \in \mathbb{R}$ Konstanten, dann gilt

Satz 14 (Hauptsatz der Differential und Integralrechnung). Sei f auf dem abgeschlossenen Intervall [a, b] [92] an (höchstens) endlich vielen Punkten nicht stetig, dann ist die Stammfunktion $F: D_f \to W_F, x \mapsto [96]$ $\int_{x_0}^x f(t) dt = F(x) - F(x_0)$ differenzierbar und es gilt F' = f.

AUFGEPASST! wir differenzieren auf offenen und integrieren auf abgeschlossenen Intervallen.

Rechenregel 15 (Integrationsregeln). Seien $f, g : [a, b] \to \mathbb{R}$ in (höchstens) endlich vielen Punkte nicht [95-99] stetig, $a, b, n \in \mathbb{R}$ Konstanten und $f(x)|_a^b := f(b) - f(a)$, dann gilt

Sind ferner F,g und $\phi:[\alpha,\beta]\to[a,b]$ stetig differenzierbar, erhalten wir

$$\left(\int_{\alpha}^{\beta} f(\phi(t))\phi' \, dt = \int_{\phi(\alpha)}^{\phi(\beta)} f(x) \, dx\right) \qquad \left(\int_{a}^{b} f(x)h(x) \, dx = F(x)h(x)\Big|_{a}^{b} - \int_{a}^{b} F(x)h'(x) \, dx\right)$$
Integration durch Substitution

Partielle Integration

Aufgepasst! Integration durch Substitution können wir in beide Richtungen anwenden.

Definition 16 (Gruppe). Eine Menge G mit einer inneren Verknüpfung $G \times G \to G$, $(a, b) \to a \circ b$, heißt eine [kommutative] Gruppe, wenn die folgenden Eigenschaften erfüllt sind:

(i) $(a \circ b) \circ c = c \circ (b \circ c)$ für alle $a, b, c \in G$.

(Assoziativität)

(ii) Es existiert ein $e \in G$ sodass $e \circ a = a$ für alle $a \in G$.

(neutrales Element)

(iii) Zu jedem $a \in G$ gibt es ein $b \in G$ sodass $a \circ b = e$.

(inverses Element)

(iv) $a \circ b = b \circ a$ für alle $a, b \in G$.

[Kommutativität]

Für eine natürliche Zahl n und $g \in G$ schreiben wir g^n oder $n \cdot g$ für $g \circ g \circ \dots \circ g$. Wir schreiben 1_G für das neutrale Element in (G, \circ) und g^{-1} für das inverse Element von $g \in G$.

- Lemma 17. Ist (G, \circ) eine Gruppe mit neutralem Element 1_G dann bezeichnen wir das inverse Element von $a \in G$ mit a^{-1} und es gilt
 - (i) 1_G ist eindeutig und kommutativ
- (iii) das Inverse des Inversen von a ist a
- (ii) a^{-1} ist eindeutig und kommutativ
- (iv) das Inverse von $a \circ b$ ist $b^{-1} \circ a^{-1}$

Definition 18 (Untergruppe). Sei (G, \circ) eine Gruppe und U eine nichtleere Teilmenge von G. Ist (U, \circ) selbst eine Gruppe sagen wir U ist eine Untergruppe von G und schreiben $U \leq G$.

- **Lemma 19.** Eine nichtleere Teilmenge U von G ist eine Untergruppe (U, \circ) von (G, \circ) genau dann, wenn für alle $a, b \in U$ auch $a \circ b^{-1} \in U$.
- **Definition 20** (Mächtigkeit). Zwei Mengen $A, B \neq \emptyset$ nennen wir gleichmächtig, wenn eine bijektive Abbildung $f: A \to B$ existiert. Wir schreiben $A \cong B$.
- **Lemma 21.** Seien (G, \circ) und (H, *) Gruppen, $K := G \times H$ und $\bullet : K \times K \mapsto K$, $(g, h) \times (g', h') \mapsto (g \circ g', h * h')$. Dann ist ist (K, \bullet) eine Gruppe und kommutativ genau dann, wenn (G, \circ) und (H, *) kommutativ sind.
- Definition 22 (Gruppenhomomorphismus). Seien (G, \circ) und (H, *) Gruppen und $U \leq H$ eine Untergruppe von H. Wir nennen wir die Abbildung $\alpha : G \to H$ Gruppenhomomorphismus, wenn für alle $g, h \in G$ gilt $\alpha(g \circ h) = \alpha(g) * \alpha(h)$. Wir nennen
 - (i) $\operatorname{Im}(\alpha) := \{\alpha(g)\}\ \text{das Bild von }\alpha$
 - (ii) $\alpha^-(U) := \{g \in G : \alpha(g) \in U\}$ das Urbild von U unter α
 - (iii) $\operatorname{Ker}(\alpha) := \{g \in G : \alpha(g) = 1_H\}$ den Kern von α .
- **Lemma 23.** Ist $\alpha:(G,\circ)\to (H,*)$ ein Gruppenhomomorphismus und $g\in G$, dann gilt $\alpha(g^{-1})=\alpha(g)^{-1}$ und $\alpha(1_G)=1_H$.
- **Lemma 24.** Ist $\alpha:(G,\circ)\to (H,*)$ ein Gruppenhomomorphismus, dann ist α injektiv genau dann, wenn $\operatorname{Ker}(\alpha)=\{1_G\}$. Gilt ferner $G\cong H$ dann sind folgende Aussagen äquivalent
 - (i) α ist injektiv
- (ii) α ist surjektiv
- (iii) α ist bijektiv.

Aufgabe 1 (Gruppeneigenschaften). Sei (G, \circ) eine Gruppe. Zeige, dass für alle $a, a', b, b' \in (G, \circ)$ gilt [17]

- (i).1 $a \circ 1_G = a = 1_G \circ a$
- (ii).1 ist $b \circ a = 1_G$ folgt $a \circ b = 1_G$ (iii) $(a^{-1})^{-1} = a$
- (i).2 wenn $a\circ a'=a$ folgt $a'=1_G$ (ii).2 wenn $a\circ b'=1_G$ folgt b=b' (iii) $(a\circ b)^{-1}=b^{-1}\circ a^{-1}$

Zeige ferner, dass (G, \circ) kommutativ ist, wenn für alle $a, b \in G$ gilt

(iv) $a = a^{-1}$

(v) $(a \circ b)^2 = a^2 \circ b^2$.

Aufgabe 2. Zeige, dass eine nichtleere Teilmenge U der Gruppe (G, \circ) wobei

[18] [19]

- (i) $\circ: U \times U \to U$
- (ii) für $q \in U$ auch $q^{-1} \in U$

eine Untergruppe von G ist. Benutze (i) und (ii) um Lemma 19 zu beweisen.

Aufgabe 3 (Mächtigkeit). Prüfe die Gleichmächtigkeit der Mengen

[20]

- (i) \mathbb{N} und $\mathbb{Z}_{\geq m}$
- (ii) \mathbb{N} und \mathbb{Z}
- (iii) N und Q
- (iv) \mathbb{N} und \mathbb{R}

Aufgabe 4. Sei $\alpha:(G,\circ)\to (H,*)$ ein Gruppenhomomorphismus und $g\in G$. Untersuche $\alpha(g^{-1})*\alpha(g)$ [23]und beweise dann Lemma 23.

Aufgabe 5. Sei $\alpha:(G,\circ)\to (H,*)$ ein Gruppenhomomorphismus und $g\in G$. Zeige,

[22]

- (i) $Ker(\alpha) \leq G$
- (ii) $\operatorname{Im}(\alpha) \leq H$
- (iii) $\alpha^{-1}(\alpha(g)) = \{g \circ h : h \in \text{Ker}(\alpha)\}.$

Aufgabe 6 (Zwölfeck). Betrachten wir ein regelmäßiges Zwölfeck, welches sich durch Drehungen um Vielfache von 45 Grad wieder in sich selbst überführen lässt. Für ein $k \in (0, 1, ..., 7)$ schreiben wir d_k für eine Drehung um $k\cdot 45^{\circ}$. Da eine Drehung um 360 Grad der Identität entspricht gilt für ein $m\in\mathbb{N}_0:d_m=d_k$ wobei k der Rest von m bei Teilung durch 8 ist.

- (i) Zeige mit Definition 16, dass die Drehungen zusammen mit der Hintereinanderausführung ∘ als Ver-[16] knüpfung eine Gruppe () = $\{k_0, k_1, ..., k_7\}$ bilden.
- (ii) Zeige mit Lemma 19, dass $\bigcirc := \{k_0, k_2, k_4, k_6\}$ eine Untergruppe von \bigcirc ist [19]

Betrachten wir die Abbildung $\phi: \mathbb{Z} \to \bigcirc$, $k \mapsto$ Drehung um $k \cdot 30^{\circ}$. Bestimme die Mengen [24]

- (iii) $\{k \in \mathbb{Z} : \phi(k) = k_0\}$
- und zeige dann
- (vi) ϕ ist surjektiv

- (iv) $\phi^-(()$ in \mathbb{Z}
- (v) ϕ ist ein Homomorphismus
- (vii) ϕ ist nicht bijektiv.

Betrachten wir nun die Untergruppen (),(),(),()

- (viii) Stelle eine vollständige Liste aller Untergruppen auf
- (ix) bestimme (), $() \le ()$, sodass $() \times () \cong ($ [21] [22]

Gebe weiterhin drei bijektiven Abbildungen $f, \alpha, \beta : \longrightarrow \times \longrightarrow$ an, sodas gilt

- (x) f ist nicht homomorph
- (xi) α ist homomorph
- (xii) $\beta \neq \alpha$ ist homomorph.