Konstruktionsrichtlinie CNC-Drehen

1. Einleitung

Vor Beginn der Konstruktion in CAD sollten sich berei, ts die fundamentalen Gedanken zur spanenden Fertigung des Werkstückes gemachten worden sein. Diese Gedanken sollten neben der Wahl des Fertigungsverfahren zusätzlich noch überdenken, ob jedes Gestaltungselement, was in CAD zu optischen Zwecken gut aussieht, auch in der Realität notwendig ist.

Grundlegenden stehen im Labor der DHBW Mosbach zur spanenden metallischen Fertigung folgende Maschinen zur Verfügung: 5-Achs Fräsmaschine, Drehmaschine und Wasserstrahlschneidmaschine

2. Werkstückgröße

Die Bauteilobergrenze ist durch den maximalen Durchmesser des Spannmittels und der Ausraglänge definiert:

→ Maximale Bauteil Abmaße: Ø200 x 500

Bauteil mit Maximalen Durchmesser an derSpannung

Bauteil mit Maximalen Längenmaß des Bauteils

3. Innenkanten

Für die optimale Gestaltung zwischen zwei Wellenabsätzen ist darauf zu achten, bei großen Durchmessern Sprüngen auf scharfe Kanten zu verzichten. Scharfe Kanten verhindern dabei einen optimalen Verfahrweg des Meisels und erhöht die Bildung von Kerbwirkung an den Übergängen.

3. Innenkanten

Zur Optimierung werden hier Radien vorgesehen, sollen später zusätzliche Bauteile auf der Welle positioniert werden, empfehlen sich hier für Wellenfreistiche (DIN 509 Form E)

	r		t1	f g		t2	Zuordnung zum Durchmesser d1 für Werkstücke				
Form	Reihe 1	Reihe 2	+0,1	+0,2		+0,05	übliche Beanspruchung	für erhöhte			
	Keine I		0	0		0	ubliche beanspruchung	Wechselfestigkeit			
E und F		0,2	0,1	1	0,9	0,1	über 1,6 bis 3				
E una F	0.4			2	1,1	0,1	über 3 bis 18				
G	0,4		0,2	1	1,2	0,2	uber 3 bis 18				
		0,6		2	1,4	0,1	über 10 bis 18				
E und F	-	0,6	0,3	2,5	2,1	0,2					
	0,8	-			2,4	0,2	über 18 bis 80				
Н	0,8			2	1,1	0,05					
	1,2	1	0,2	2,5	1,8	0,1	-	über 18 bis 50			
E und F			0,4	4	3,2	0,3	über 80				
E una r			0,2	2,5	2	0,1	-	über 18 bis 50 -			
		-	0,4	4	3,4	0,3	über 80				
Н			0,3	2,5	1,5	0,05		über 18 bis 50			
	1,6		0,3	4	3,1	0,2		über 50 bis 80			
E und F	2,5		0,4	5	4,8		· .	über 80 bis 125			
	4		0,5	7	6,4	0,3		über 125			

5. Mindestwandstärken

Ein zu großer Materialabtrag kann in Kombination mit Bohrungen im Bauteil zu teils dünnwandigen Teilen führen. Daher gilt der Grundsatz: Ist an dieser Stelle ein dünwandiger Querschnitt nötig?

Um die Stabilität und Genauigkeit während des Fertigungsprozesses zu gewähren, gilt dabei die Mindestwandstärke zu beachten.

- → Innenwandstärke von 1,0mm
- → Außenwandstärke von 2,0mm

Toleranzen

Ohne die spezifische Angabe von Toleranzen und Passungen werden die Allgemeintoleranzen DIN 2768-mK angenommen

Toleranz- klasse	Grenzabmaße in mm für Nennmaßbereich in mm													
	< 0,5	0,5 bis 3	über 3 bis 6	über 6 bis 30	über 30 bis 120	über 120 bis 400	über 400 bis 1000	über 1000 bis 2000	über 2000 bis 4000	über 4000 bis 8000				
f (fein)		± 0,05	± 0,05	± 0,10	± 0,15	± 0,2	± 0,3	± 0,5						
m (mittel)		± 0,10	± 0,10	± 0,20	± 0,30	± 0,5	± 0,8	± 1,2	± 2	± 3				

DIN ISO 2768-m: Grenzmaße für Längenmaße

Toleranzklasse	Allgemeintoleranzen für Geradheit und Ebenheit für Nennmaßbereich mm									
	bis 10	über 10 bis 30	über 30 bis 100	über 100 bis 300	über 300 bis 1000	über 1000 bis 3000				
Н	0,02	0,05	0,1	0,2	0,3	0,4				
К	0,05	0,1	0,2	0,4	0,6	0,8				
L	0,1	0,2	0,4	0,8	1,2	1,6				

Toleranzen

Neben der Gültigkeit der Allgemeintoleranz DIN 2768-mK können auch freie, eigens gewählte Toleranzen, sowie Passungen für Funktions- oder Fügeflächen vorgesehen werden. Die Machbarkeit ist bis zu Toleranzklasse IT7 gegeben. (Beispiel: H7 Bohrung)

Nennmaß in mm		ITO	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12
über	bis	Werte in µm												
1	3	0,5	0,8	1,2	2	3	4	6	10	14	25	40	60	100
3	6	0,6	1	1,5	2,5	4	5	8	12	18	30	48	75	120
6	10	0,6	1	1,5	2,5	4	6	9	15	22	36	58	90	150
10	18	0,8	1,2	2	3	5	8	11	18	27	43	70	110	180
18	30	1	1,5	2,5	4	6	9	13	21	33	52	84	130	210
30	50	1	1,5	2,5	4	7	11	16	25	39	62	100	160	250
50	80	1,2	2	3	5	8	13	19	30	46	74	120	190	300
80	120	1,5	2,5	4	6	10	15	22	35	54	87	140	220	350
120	180	2	3,5	5	8	12	18	25	40	63	100	160	250	400
180	250	3	4,5	7	10	14	20	29	46	72	115	185	290	460

ISO-Grundtoleranzen (IT-Klassen) nach DIN ISO 286

Oberflächen

Hergestellt werden die Bauteile in 2 Schritten, dem Schruppen und Schlichten. Für die Oberflächen entscheidend sind Schnittgeschwindigkeit, Vorschub und Zustellung.

