Introduction to Intel Xeon Phi Workshop

Computational Science Team @ NeSI

Jordi Blasco (jordi.blasco@nesi.org.nz)

Outline

- Intel Xeon Phi overview Why this enthusiasm with Intel Phi? Hardware specs Roadmap
- Parallel Strategies
 How easy is it?
 Perfect Candidates
 How to get the maximum performance on Intel Phi

Why this enthusiasm about Intel Phi?

- You don't need to learn a new programming language (CUDA,...)
- You don't need to change the code in order to run on MIC.
- But,....
- The Intel MIC CPUs are slow comparing with the current Xeon.
- To get real performance you need to apply some changes.
- Is not easy, but a medium size code can be modified in few hours or days.
- Comparing with other architectures, it's like child's play.

Figure : source www.intel.com

System based on coprocessors in TOP500 – June 2013

Figure : source Top500 http://www.top500.org/statistics/list/

System based on coprocessors in TOP500 – June 2014

Figure : source Top500 http://www.top500.org/statistics/list/

Hardware specs

Hardware specs of 5110P (KNF)

- 60 cores/1.053 GHz/240 threads.
- 30MB cache
- 8 GB memory and 320 GB/s bandwidth.
- GDDR5 x16 channels (5.5Gbit each).
- 300 ns access!
- Linux operating system, IP addressable.
- Built using Intel's 22nm process technology.
- 512-bit Single Instruction, Multiple Data instructions (SIMD).
- 32 vector registers.

Intel Xeon Phi Public Roadmap

Figure: source http://newsroom.intel.com/servlet/JiveServlet/download/38-32805/ISC14_Raj_Hazra_keynote.pdf > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 >

Intel Omni Scale Fabric Roadmap

Figure : source http://newsroom.intel.com/servlet/JiveServlet/download/38-32805/ISC14_Raj_Hazra_keynote.pdf \rightarrow 0.5 \rightarrow 0.5

Matrix addition processing in scalar and vector mode.

- SSE 128-bit (streaming) SIMD / 4 elements at a time (2008).
- AVX 256-bit SIMD / 8 elements at a time (2011).
- MIC 512-bit SIMD / 16 elements at a time (2012).
- AVX3 512-bit SIMD / 16 elements at a time (2014).

Figure: source: www.intel.com

Parallel Strategies

Perfect Candidates

Perfect Candidates

- Serial applications that need to be run many times.
- Massive parallel applications (OpenMP).
- Massive parallel applications (MPI).
- Massive hybrid parallel applications (MPI+OpenMP).
- Applications that can exploit the vectorial capabilities of MIC.

How to get the maximum performance on Intel Phi

Maximize the performance in the processor first!

- The first advise is to focus in the processor performance
- Audit the loops and find the hot-spots
- Profile the code
- Profile the MPI collectives
- Explore the Vectorization opportunities

Questions & Answers

for more info

Books

- James Jeffers & James Reinders, Intel Xeon Phi Coprocessor High Performance Programming, Newnes, 2013. ISBN: 0124104940
- James Reinders, Parallel Programming and Optimization with Intel® Xeon PhiTMCoprocessors, Colfax 2013. ISBN-13: 978-0-9885234-1-8

Intel website (trainings and workshops)

- http://software.intel.com/en-us/mic-developer
- http://software.intel.com/en-us/intel-mkl
- http://software.intel.com/en-us/intel-composer-xe/