

Приемники навигационные GL8088s и ML8088s

Описание команд и сообщений Редакция 1.1

Оглавление

Оглавление	2
Аннотация	3
Аббревиатуры и ключевые слова	4
Интерфейс связи	7
Команды	7
Сообщения	7
Стандартные сообщения NMEA	8
Специфические сообщения STMicroelectronics	8
Команды	9
Список команд программного обеспечения	9
Команды управления приемником	10
Команды конфигурации приемника	18
Блок конфигурационных данных (CDB)	26
Структура блока конфигурационных данных	26
Изменение настроек, принятых по умолчанию	35
Сообщения	36
Список стандартных сообщений NMEA	36
Список сообщений ST NMEA	36
Спецификация стандартных сообщений NMEA	38
Спецификация сообщений ST NMFA	46

Аннотация

Этот документ содержит обзор различных команд NMEA и сообщений приемников ГЛОНАСС/GPS HABИA GL8088s и ML8088s, основанных на чипсете STA8088 производства компании STMicroelectronics.

Документ предназначен для пользователей приемников НАВИА, разработчиков аппаратного и программного обеспечения, специалистов службы сервиса и прочих специалистов, осуществляющих внедрение и обслуживание аппаратуры, содержащей приемники НАВИА.

Аббревиатуры и ключевые слова

Аббревиатура или ключевое слово	Определение			
Точность	Отклонение положения, определенного с помощью ГЛОНАСС/GPS, от истинного положения.			
Альманах	Содержит информацию обо всех доступных спутниках, данные об их орбитах и времени на их часах.			
Azim	Азимут – угловое расстояние от эталона			
Банк Своп	Замена местами двух модулей памяти для хранения данных.			
Baud Rate	Скорость обмена данными в бодах. Мера скорости передачи для эффективной пересылки содержимого данных (может отличаться от битов/секунду)			
Контрольная сумма	Вычисляется для пересылаемых символов сообщения с помощью операции "Исключающее ИЛИ" для значений 8-Битнхы символов, включая разделители (без контрольной суммы).			
CNR	Отношение сигнал/шум – Определяет качество полученного сигнала.			
Холодный старт	Условие запуска для системы ГЛОНАСС/GPS, не имеющей сведений ни о положении, ни о времени. Альманахи и эфемериды также недоступны.			
Dead Reckoning	Инерциальное Навигационное счисление. Процесс на основе датчиков для определения движения мобильного устройства, использующих гироскоп, одометр и импульсы с ABS пропорциональные скорости оборотов колеса.			
Разделитель (в рамках NMEA 0183)	Символ ASCII "\$" для указания поля адреса. Символ ASCII "," для указания поля данных. Символ ASCII "*" для указания поля контрольной суммы.			
DGPS	Дифференциальная GPS – система коррекции GPS, определяющая положение опорной станции для уменьшения ошибок системы.			
EGNOS	European Geostationary Navigation Overlay System – Европейская геостационарная система навигационная покрытия			
Elev	Возвышение – угол между уровнем высоты или внеземной граничной точкой и горизонтальной плоскостью наблюдателя.			
Эфемериды	Эфемеридные данные передаются каждым спутником и содержат текущую и расчетную позицию спутника.			
FDA	Failure Detection Algorithm – Алгоритм обнаружения ошибки – Специфический алгоритм для обнаружения ошибок в вычислении позиции.			

GDOP	Geometric Dilution Of Position – Геометрическое снижение
	точности позиции – Качественная величина,
	представляющая все факторы ошибок на геометрической
	основе в системе.
GNSS	Global Navigation Satellite System – Глобальная
	навигационная спутниковая система – Система на
	спутниковой основе для вычисления позиции приемника
	на поверхности Земли.
GPS	Global Positioning System – Глобальная система
	определения положения – Система на спутниковой основе
	для вычисления позиции приемника на поверхности
	Земли.
Библиотека GPS	С-библиотека от компании STMicroelectronics,
	содержащая все функции, связанные с GPS и ГЛОНАСС.
Gyro	Гироскоп – датчик для обнаружения вращательных
	движений.
HDOP	Horizontal Dilution Of Position – Снижение точности в
	горизонтальной плоскости – Качественная величина,
	представляющая все факторы ошибок на основе
	двумерной геометрии в системе.
Горячий старт	Условие запуска для системы ГЛОНАСС/GPS, уже
	имеющей сведения о положении, времени, Альманахе и
	эфемеридах.
Lat	Широта – Угловое отклонение данной позиции от
	экватора. Возможны значения от 0 ⁰ до 90 ⁰ , бывает
	северной или южной.
Lat-Ref	Широтная ссылка – Указание на то, является ли широта
	северной или южной.
Long	Долгота – Угловое отклонение данной позиции от
	"эталонной" долготы, указанной, как "000". Возможны
	значения от 0° до 180°, бывает западной или восточной.
Long-Ref	Долготная ссылка – Указание на то, является ли долгота
	западной или восточной относительно меридиана "000".
NMEA	National Marine Electronics Association – Национальная
	ассоциация морской электроники – Организация
	стандартизации в США для морского оборудования.
NMEA 0183	Национальная ассоциация морской электроники –
	Стандарт для взаимодействия устройств морской
	электроники.
NVM	Энергонезависимая память – Любой тип памяти, которая
	сохраняет данные при отсутствии постоянного напряжения
	питания (включая устройства памяти с батарейным
	питанием).
Специфические	Сообщения в рамках NMEA0183, которые не
сообщения	стандартизированы NMEA. Они начинаются с \$Р и имеют
STMicroelectronics	идентификатор из 3 символов.

PRN	Pseudo Random Number – Псевдослучайное число – 1023-
1 1314	Битное число, связанное с конкретным спутником и
	используемое для скремблирования излучаемого сигнала
	в целях выравнивания его энергетического спектра.
RF	Radio Frequency – Радиочастота – Высокая частота для
IXI	
RS232	приема с помощью радиочастотного приемника.
K3232	Стандарт IEEE – Стандарт физического уровня для
Cot ID	передачи данных.
Sat-ID	Идентификатор спутника – Число, связанное с конкретным
	спутником и используемое для генерации
0040	соответствующего кода PRN.
SBAS	Satellite Based Augmentation System – Спутниковая
	система коррекции – Усовершенствованная система GPS
	на основе геостационарных спутников.
Статическая	Алгоритм для обнаружения того, что приемник GPS не
фильтрация	движется и позиционный выход остается стабильным.
позиции	
UTC	Universal Time Coordinated – Всеобщее
	скоординированное время
WAAS	Wide Area Augmentation System – Широкозонная
	корректирующая система – Американская система
	коррекции GPS, поставляющая точные данные об
	ионосфере.
Теплый старт	Условие запуска для системы ГЛОНАСС/GPS, уже
	имеющей сведения о Альманахе и эфемеридах.
	Необходима доступность времени с достаточной
	точностью (с погрешностью в несколько секунд).
2D-fix	Двухмерная фиксация. Фиксация на основе
	использования 3 спутников.
3D-fix	Трехмерная фиксация. Фиксация на основе
	использования 4 спутников.

Интерфейс связи

Связь между внешним процессором и ГЛОНАСС/GPS приемником НАВИА может быть установлена разными способами, в зависимости от реализации процессора системы.

Для упрощения в данном документе будет описываться обмен с приемником через интерфейс UART (имеются иные реализации интерфейса, такие как USB или SPI). Используемый аппаратный интерфейс не влияет на содержание посылаемых или принимаемых данных.

Вся информация, содержащаяся в этом документе, относится к "порту NMEA" приемника. ГЛОНАСС/GPS приемники НАВИА могут содержать дополнительный "отладочный порт", однако обмен данными по этому порту не описывается в этом документе.

Команды

Команда – это пакет данных, который посылается от внешнего процессора к приемнику для управления поведением приемника ГЛОНАСС/GPS. Команда имеет следующую регулярную структуру:

command-ID, <parameters> <cr><lf>

Для получения команд приемник ГЛОНАСС/GPS соединяется с ПК через порт NMEA (убедитесь, что используете нужный последовательный кабель, иногда необходимо использовать переходной кабель). Взаимодействие с пользователем может быть достигнуто использованием эмулятора терминала ПК, который подключен к соответствующему СОМ-порту со следующими настройками:

- Скорость обмена 115200 бод
- 0 битов четности
- 1 стоповый бит
- 8 битов данных

Скорость обмена NMEA при 115200 является значением, принятым по умолчанию и автоматически устанавливаемом при запуске системы. Она может быть изменена на работающей системе с помощью соответствующей команды.

Самый простой способ посылки команды в устройство — это написать командную строку в текстовом файле (пожалуйста, обратитесь к нескольким примерам приложения А в конце этого документа) и послать ее, используя свойство "послать файл" эмулятора терминала. По этой причине важно, чтобы эмулятор терминала (или тестовая программа получения), выполняемая в ПК, могла посылать текстовые файлы через связь RS232 в приемник ГЛОНАСС/GPS.

Сообщения

Сообщение – это заданный набор данных, посылаемый из приемника ГЛОНАСС/GPS в ведущий процессор, используя тот же интерфейс, который применяется для пересылки команд в систему. Сообщения могут не быть включены по умолчанию, однако они могут включаться и выключаться с помощью команды во время работы системы. Сообщение имеет следующую основную структуру:

message-ID,<parameters> <cr><lf>

Реализовано два основных набора сообщений.

Стандартные сообщения NMEA

Стандартные сообщения NMEA определены в стандарте "NMEA 0183", выпущенном Национальной ассоциацией морской электроники. Стандарт NMEA 0183 ссылается на них, как на Предложения (сообщение из одной строки) или Сообщения (сообщение из нескольких строк).

Формируемые приемником сообщения базируются на редакции 3.1, датированной январем 2002 года.

Для получения обзора стандартных сообщений NMEA, поддерживаемых системами ГЛОНАСС/GPS от компании STMicroelectronics, обратитесь к разделу "Список стандартных сообщений NMEA" этого документа.

Стандартные сообщения NMEA начинают идентификатор сообщения с:

\$<Talker ID>

Поддерживаемыми идентификаторами источника сообщения являются: "GP", "GL" и "GN" для стандартных предложений NMEA.

Специфические сообщения STMicroelectronics

ГЛОНАСС/GPS приемники НАВИА изготовлены на основе чипсета от компании STMicroelectronics. Применяя специальные сообщения, разработанные в соответствии с правилами формирования сообщений NMEA, пользователь может запрашивать и получать дополнительные сообщения с более подробным содержанием. Это необходимо для передачи информационного содержания о ГЛОНАСС/GPS и работе приемника, которое не определено в стандартном выводе NMEA.

Специфические сообщения STMicroelectronics начинаются с:

\$PSTM...

Для получения обзора специфических сообщений, заданных компанией STMicroelectronics, обратитесь к разделу ???? этого документа.

Команды

Список команд программного обеспечения

Таблица, приведенная ниже, содержит команды¹, поддерживаемые уровнем ST NMEA:

Синтаксис	Описание
\$PSTMCLREPHS	Стереть все эфемериды
\$PSTMCLRALMS	Стереть все альманахи
\$PSTMCOLD	Выполнить ХОЛОДНЫЙ старт
\$PSTMWARM	Выполнить ТЕПЛЫЙ старт
\$PSTMHOT	Выполнить ГОРЯЧИЙ старт
\$PSTMNMEAONOFF	ВКЛЮЧЕНИЕ/ВЫКЛЮЧЕНИЕ выхода NMEA
\$PSTMGETSWVER	Получить строку с версией библиотеки ГЛОНАСС/GPS
\$PSTMGETRTCTIME	Получить текущее время часов реального времени
\$PSTMSETPAR	Установить системный параметр
\$PSTMGETPAR	Получить системный параметр
\$PSTMSAVEPAR	Сохранить системные параметры
\$PSTMRESTOREPAR	Восстановить параметры заводской настройки

Предупреждение: Команда \$PSTMSETPAR обеспечивает непосредственное изменение системных параметров. Неправильные настройки могут ухудшить работу системы ГЛОНАСС/GPS или даже остановить работу системы.

¹ Если не указано однозначно, то для всех команд, которые изменяют состояние параметров, эти изменения не сохраняются в резервной памяти. Любая новая настройка будет заменять значения, принятые по умолчанию, после сброса системы или выключения питания системы.

Команды управления приемником \$PSTMCLREPHS

Стереть все эфемериды. Эта команда стирает все эфемериды, сохраненные в резервной NVM-памяти.

Синтаксис:

\$PSTMCLREPHS<cr><lf>

Аргументы:

Нет.

Результаты:

- Все эфемериды, сохраненные в резервной энергонезависимой памяти (в резервном статическом ОЗУ или флэш-памяти), будут уничтожены.
- Не будет послано никакого ответного сообщения.

Пример:

\$PSTMCLREPHS

\$PSTMCLRALMS

Эта команда стирает все Альманахи, сохраненные в резервн
--

Синтаксис:

\$PSTMCLRALMS<cr><lf>

Аргументы:

Нет.

Результаты:

- Все Альманахи, сохраненные в резервной энергонезависимой памяти, будут уничтожены.
- Не будет послано никакого ответного сообщения.

Пример:

\$PSTMCLRALMS

\$PSTMCOLD

Выполнить ХОЛОДНЫЙ старт.

Синтаксис:

\$PSTMCOLD,<Mask><cr><lf>

Аргументы:

Параметр	Формат	Описание	
		Необязательный параметр для того, чтобы сделать	
Mask	Целое число	недействительным время, позицию, эфемериды и	
		Альманах:	
		0x1 – стереть Альманах	
		0x2 – стереть эфемериды	
		0x4 – стереть позицию	
		0х8 – стереть время	

Результаты:

- Начало холодного старта и перезапуск системы².
- Если используется параметр Mask, то только выбранные данные GPS становятся недействительными для этого реального холодного старта. Поддерживается множественный выбор (то есть, 0xD).
- Если параметр Mask не используется, то используется маска 0хE, принятая по умолчанию (стереть эфемериды, время и позицию).

Пример:

\$PSTMCOLD,6

² Обработчик GPS будет сброшен. Эта процедура не является перезагрузкой системы.

1	PS	T 8	// 1	A / A		
У.		/ /\	// 1/	17 /\	$\boldsymbol{\omega}$	\ /I
./3	/ w)		/ I V	ν	$I \setminus I$	VI.

φΓ	Выполнить ТЕПЛЫЙ старт.
	Синтаксис:
	\$PSTMWARM <cr><lf></lf></cr>
	Аргументы:
	Нет.
	Результаты:
	• Начало теплого старта и перезапуск системы ³ .
	Пример:
	\$PSTMWARM

 $^{^{3}}$ Обработчик GPS будет сброшен. Эта процедура не является перезагрузкой системы.

\$	D	9	T	M	Щ		T
וש		U	11	VI	, ,	\mathbf{C}	

Выполнить ГОРЯЧИЙ старт.
Синтаксис:
\$PSTMHOT <cr><lf></lf></cr>
Аргументы:
Нет.
Результаты:
• Перезапуск системы ⁴ .
Пример:
\$PSTMHOT

 $^{^4}$ Обработчик GPS будет сброшен. Эта процедура не является перезагрузкой системы.

\$PSTMNMEAONOFF

Эта команда ВКЛЮЧАЕТ или ВЫКЛЮЧАЕТ выходные сообщения NMEA.

Синтаксис:

\$PSTMNMEAONOFF,<on_off><cr><lf>

Аргументы:

Параметр	Формат	Описание	
on_off ⁵	Целое число	0 = Выход NMEA ВЫКЛЮЧЕН	
		1 = Выход NMEA ВКЛЮЧЕН	

Результаты:

- Если сообщение выхода NMEA выдается, то при посылке команды "\$PSTMNMEAONOFF,0" выход NMEA останавливается.
- Если сообщение выхода NMEA ВЫКЛЮЧЕНО, то при посылке команды "\$PSTMNMEAONOFF,1" выход NMEA запускается.
- Посылка команды "\$PSTMNMEAONOFF,1" во время работы выхода NMEA или посылка "\$PSTMNMEAONOFF,0", если выход NMEA выключен, приводит к отбраковке команды без каких-либо последствий.

Пример:

\$PSTMNMEAONOFF,0

⁵ Входной параметр "on_off" был добавлен, начиная с версии 7.1.9.29 программного обеспечения. Для обратной совместимости старый синтаксис команды также поддерживается: посылка команды \$PSTMNMEAONOFF без входного параметра производит переключение состояния ВКЛЮЧЕН/ВЫКЛЮЧЕН выхода NMEA.

\$PSTMGETSWVER

Получить строку с версией библиотеки ГЛОНАСС/GPS, встроенной в программное приложение.

Синтаксис:

\$PSTMGETSWVER<cr><lf>

Аргументы:

Нет.

Результаты:

\$PSTMGETSWVER,GNSSLIB_<Ver>,<Type>,<Date>,<Time><cr><lf>

Где:

Параметр	Формат	Описание	
GNSSLIB	Текст, фиксированный	Текстовая строка	
Ver	X.X.X.X	Версия библиотеки: пример 7.1.1.15	
Type	ARM, GNU	Тип компилятора: ARM или GNU	
Date	mm dd yyyy	Дата компиляции: пример Sept 04 2008	
Time	hh:mm:ss	Время компиляции: пример 13:15:03	

Пример:

\$PSTMGETSWVER

\$PSTMGETRTCTIME

Получить текущее время часов реального времени (RTC	C).
---	-------------

Синтаксис:

\$PSTMGETRTCTIME<cr><lf>

Аргументы:

Нет.

Результаты:

• Система будет посылать данные и состояние RTC.

\$PSTMGETRTCTIME,<time>,<date>,<rtc_status>,<time_validity>*<checksum><cr><lf><

Где:

Параметр	Формат	Описание	
time	hhmmss.ms	Текущее время, считанное на RTC	
date	ddmmyy	Текущая дата, считанная на RTC	
rtc_status	Десятичное число, 1 цифра	Состояние: 0 – СОСТОЯНИЕ RTC	
		НЕДЕЙСТВИТЕЛЬНО	
		1 – COCTOЯНИЕ RTC COXPAHEHO	
		2 – COCTOЯНИЕ RTC	
		ПРИБЛИЗИТЕЛЬНО	
time_validity	Десятичное число, 1	Достоверность:	
	цифра	0 – НЕТ ВРЕМЕНИ	
		1 – ВРЕМЯ ОТКЛЮЧЕНИЯ	
		2 – ВРЕМЯ ПОЛЬЗОВАТЕЛЯ	
		3 – ВРЕМЯ RTC ПОЛЬЗОВАТЕЛЯ	
		4 – BPEMЯ RTC	
		5 – ТОЧНОЕ ВРЕМЯ RTC	
		6 – ПРИБЛИЗИТЕЛЬНОЕ ВРЕМЯ	
		7 – ПОЗИЦИОННОЕ ВРЕМЯ	
		8 – ЭФЕМЕРИДНОЕ ВРЕМЯ	
checksum	Шестнадцатеричное	Контрольная сумма байтов сообщения	
	число, 2 цифры	без символов * <checksum><cr><lf>.</lf></cr></checksum>	

Пример:

\$PSTMGETRTCTIME

Команды конфигурации приемника

Программное обеспечение GNSS использует "Блок конфигурационных данных", который содержит рабочие параметры для системы. Параметры могут быть установлены, прочитаны или сохранены (в NVM), используя команды конфигурации системы: \$PSTMSETPAR, \$PSTMGETPAR и \$PSTMSAVEPAR. Имеется также команда для восстановления заводских настроечных параметров: \$PSTMRESTOREPAR.

Во время работы системы можно иметь до трех различных конфигурационных блоков:

- Текущая конфигурация: располагается в оперативной памяти и содержит текущую конфигурацию каждого параметра. Этот конфигурационный блок может изменяться с помощью команды \$PSTMSETPAR. Команда \$PSTMSAVEPAR сохраняет текущий блок конфигурационных данных в памяти NVM. При запуске системы текущий блок конфигурационных данных загружается из NVM (если сохраненный блок данных доступен) или загружается блока, принятого по умолчанию и встроенного в код (заводские настройки).
- Конфигурация по умолчанию: обычно располагается в во флэш/постоянной памяти. Она содержит заводскую настройку для каждого параметра. Эта конфигурация используется при запуске системы, если в памяти NVM нет конфигурационных данных.
- Конфигурация, сохраненная в памяти NVM: доступна в резервной памяти NVM после выполнения команды \$PSTMSAVEPAR. Она содержит все параметры, измененные и сохраненные пользователем. При запуске системы управление конфигурацией программного обеспечения проверяет, имеется ли действительный конфигурационный блок в резервной памяти NVM. Если сохраненная конфигурация доступна, то она будет использоваться для конфигурации системы. Если она не доступна, то будет использоваться настройка, принятая по умолчанию.

Примечание: Параметры блока конфигурационных данных, не описанные в этом руководстве, должны считаться зарезервированными и не должны изменяться. Изменение любого из этих параметров, случайное или преднамеренное, может прекратить работу системы и/или ухудшить производительность системы.

\$PSTMSETPAR

Эта команда устанавливает для заданного параметра (указанного параметром команды "ID") значение, заданное в качестве параметра команды "param_value".

Синтаксис:

\$PSTMSETPAR,<ConfigBlock><ID>,<param_value>[,<mode>]*<cr><lf>

Аргументы:

Параметр	Формат	Описание
ConfigBlock	Десятичное число, 1 цифра	Указывает один из конфигурационных блоков:
		1 = Текущая конфигурация,
		2 = Конфигурация, принятая по
		умолчанию
		3 = Конфигурация, сохраненная в памяти NVM
ID	Десятичное число, 3	ID – идентификатор
	цифры	(смотрите Блок конфигурационных
	1 41	данных)
param_value	От 1 до 80 байтов	Устанавливаемое значение
. –		параметра, смотрите "Допустимые
		значения"
mode	Десятичное число, 1	Этот параметр является
	цифра	необязательным. Он позволяет
		выполнять побитовые операции "ИЛИ"
		или "И" между выбранным параметром
		в конфигурационном блоке и
		значением параметра param_value
		команды.
		Он имеет следующее значение:
		0: значение параметра в
		конфигурационном блоке заменяется
		значением param_value. Это действие
		применяется по умолчанию в случае
		отсутствия параметра mode.
		1: значение параметра в
		конфигурационном блоке является
		результатом значением побитовой
		операции "ИЛИ" между старым
		значением параметра и значением
		параметра param_value команды. Это
		полезно для настройки с битовой
		маской.
		2: значение параметра в
		конфигурационном блоке является
		результатом значением побитовой

операции "И" между старым значением параметра и ИНВЕРСИЕЙ значения
параметра param_value команды. Это полезно для сброса с битовой маской.

Результаты:

• Параметр, заданный значением идентификатора, устанавливается в соответствии с параметрами, включенными в param_value. При отсутствии ошибок возвращается следующее сообщение:

\$PSTMSETPAROK,<ConfigBlock><ID>*<checksum><cr><lf>

• В случае ошибок возвращается сообщение об ошибке:

\$PSTMSETPARERROR*<checksum><cr><lf>

Где:

Параметр	Формат	Описание
ConfigBlock	Десятичное число, 1 цифра	Указывает один из конфигурационных блоков: 1 = Текущая конфигурация, 2 = Конфигурация, принятая по умолчанию, 3 = Конфигурация, сохраненная в памяти NVM.
ID	Десятичное число, 3 цифры	ID – идентификатор (смотрите Блок конфигурационных данных)
checksum	Шестнадцатеричное число, 2 цифры	Контрольная сумма байтов сообщения без символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

Выдавая команду:

\$PSTMSETPAR,1121,10*

Вы можете получить следующий ответ:

\$PSTMSETPAROK,1121*

Примечание: Параметр конфигурационного блока игнорируется командой "УСТАНОВИТЬ", так как может быть записана только текущая конфигурация, хранящаяся в оперативной памяти. Этот параметр используется только для поддержания того же синтаксиса, что и у команды "ПОЛУЧИТЬ". Конфигурационный блок, хранящийся в памяти NVM, будет заменен текущей конфигурацией после команды \$PSTMSAVEPAR.

Примечание: Между параметрами ConfigBlock и ID нет ни запятой, ни пробела.

Примечание: Bходной параметр param_value должен быть выражен в шестнадцатеричном формате без префикса "0х" для любого целого числа, кроме конфигурации DOP. Этот параметр должен быть десятичным для любого нецелого числа и настройки DOP.

\$PSTMGETPAR

Эта команда читает заданный параметр (указанного параметром команды "ID") из блока конфигурационных данных и возвращает его в виде конкретного сообщения.

Синтаксис:

\$PSTMGETPAR,<ConfigBlock><ID>*<cr><lf>

Аргументы:

Параметр	Формат	Описание	
ConfigBlock	Десятичное число, 1	Указывает один из конфигурационных	
	цифра	блоков:	
		1 = Текущая конфигурация,	
		2 = Конфигурация, принятая по	
		умолчанию,	
		3 = Конфигурация, сохраненная в	
		памяти NVM.	
ID	Десятичное число, 3	ID – идентификатор	
	цифры	(смотрите Блок конфигурационных	
		данных)	

Результаты:

• При отсутствии ошибок возвращается значение выбранного параметра ID в следующем сообщении:

\$PSTMSETPAR,<ConfigBlock><ID>,<value>*<checksum><cr><lf>

• В случае ошибок возвращается сообщение об ошибке:

\$PSTMGETPARERROR*<checksum><cr><lf>

Где:

Параметр	Формат	Описание	
ConfigBlock	Десятичное число, 1	Указывает один из конфигурационных	
_	цифра	блоков:	
		1 = Текущая конфигурация,	
		2 = Конфигурация, принятая по	
		умолчанию,	
		3 = Конфигурация, сохраненная в	
		памяти NVM.	
ID	Десятичное число, 3	ID – идентификатор	
	цифры	(смотрите Блок конфигурационных	
		данных)	
value	Шестнадцатеричное или	Значение возвращаемого параметра. В	

	десятичное число	соответствии с типом параметра, оно может быть выражено в шестнадцатеричном формате (если параметр является целым числом) или в десятичном формате (если параметр выражен числом с плавающей запятой).
checksum	Шестнадцатеричное	Контрольная сумма байтов сообщения
	число, 2 цифры	без символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

Выдавая команду:

\$PSTMGETPAR,1403*

Вы можете получить следующий ответ:

\$PSTMSET,1403,15,12,12,18*<checksum><cr><lf>

Примечание: Между параметрами ConfigBlock и ID нет ни запятой, ни пробела.

Примечание: В случае отсутствия ошибки ответом сознательно является \$PSTMSET, а не \$PSTMGET.

Примечание: Если параметр ID равен "000", то выдается весь конфигурационный блок, используя по одному сообщению для каждого параметра. Синтаксис такого сообщения аналогичен указанному выше.

\$PSTMSAVEPAR

	Company
	Синтаксис:
	\$PSTMSAVEPAR <cr><lf></lf></cr>
	Аргументы:
	Нет.
	Результаты:
	• Текущий блок конфигурационных данных, включая измененные параметрь будет сохранен в резервной памяти (NVM).
исг	Примечание: Параметры заводской настройки могут быть восстановлены, пользуя команду \$PSTMRESTOREPAR.
	Пример:
	\$PSTMSAVEPAR

Сохранить текущий блок конфигурационных данных в резервной памяти.

\$PSTMRESTOREPAR

Восстановить параметры заводской настройки. Блок конфигурационных данных, сохраненный в NVM, если он имеется, станет недействительным. Любые изменения параметров будут утеряны.

иенения параметров будут утеряны.
Синтаксис:
\$PSTMRESTOREPAR <cr><lf></lf></cr>
Аргументы:
Нет.
Результаты:
 Параметры заводской настройки будут восстановлены, а конфигурационный блок в резервной памяти будет утерян. Перезагрузка системы необходима для завершения восстановления заводских настроек, чтобы система работала с настройками, принятыми по умолчанию.
Пример:
\$PSTMRESTOREPAR

Блок конфигурационных данных (CDB)

Структура блока конфигурационных данных

Блок конфигурационных данных — это структура данных, которая может храниться в энергонезависимой памяти системы. Он позволяет системе снова использовать сохраненные параметры при новых запусках системы без необходимости повторного конфигурирования системы.

ID	Название параметра	Размер в байтах	Допустимые значения	Значение по умолчанию	Описание
101	Номер порта NMEA	1	02	2	Устанавливает номер порта NMEA
102	Скорость обмена для порта NMEA	1	0x0 = 300 бод 0x1 = 600 бод 0x2 = 1200 бод 0x3 = 2400 бод 0x4 = 4800 бод 0x5 = 9600 бод 0x6 = 14400 бод 0x7 = 19200 бод 0x8 = 38400 бод 0x9 = 57600 бод 0xA = 115200 бод 0xB = 230400 бод 0xC = 460800 бод 0xD = 921600 бод	0xA	Устанавливает скорость обмена для порта NMEA
120	Тип Холодного старта	1	0xF = стерты Альманах, эфемериды, время и позиция 0xE = стерты эфемериды, время и позиция	0xE	Устанавливает тип Холодного старта с выбираемым стиранием данных
121	Период NMEA GSV	1	0255	1	Устанавливает период передачи сообщений в секундах

200	вкл/выкл	4	0x2 =	0x1639604	Активизирует /
	приложение		GPS_2D_FIX_EN		дезактивирует
			ABLE		свойства приложения
			0x4 =		GNSS
			SBAS_ENABLE 0x200 =		
			CONFIG_TXT_HE		
			ADER EN		
			0x400 =		
			ST_HEADERS_E		
			NABLE		
			0x1000 =		
			FDE_ENABLE 0x4000 =		
			WALKING MODE		
			ENABLE		
			0x8000 =		
			STOP_DETECTIO		
			N_ENABLE		
			0x10000 =		
			GPS_ENABLE 0x20000 =		
			ГЛОНАСС_ENAB		
			LE		
			0x40000 =		
			QZSS_ENABLE		
			0x80000 =		
			NMEA_GNGSV_E		
			NABLE 0x100000 =		
			NMEA_GNGSA_E		
			NABLE		
			0x200000 =		
			ГЛОНАСС_USE_		
			ENABLE		
			0x400000 =		
			GPS_USE_ENAB		
			LE 0x800000 =		
			QZSS_USE_ENA		
			BLE		
			0x1000000 =		
			PPS_ENABLE		
			0x2000000 =		
			PPS_POLARITY_I		
201	Список	4	NVERSION Ot 0x0000.0000	0x84356	Настраивает список
201	список	-	до 0xFFFF.FFFF	0.04000	сообщений NMEA
	порта NMEA		- */ · · · · · · · · · · · · · · · · · ·		

301	Продолжите льность импульса PPS	8	<= 1,0 секунды	0,5	Ширина импульса PPS. Это расстояние (в секундах) между поднимающимся фронтом PPS и следующим падающим фронтом PPS
302	Коррекция задержки PPS	8	<= 1,0 секунды	0,0	Коррекция временной задержки PPS. Позволяет компенсировать любую задержку, вносимую в сигнал PPS цепью RF.
303	Период фиксации GNSS	8	> 0,2 секунды	1,0	Устанавливает период частоты фиксации GNSS
400	Порог двумерного DOP	4	P=099, V=099, H=099, G=099	P=15, V=12, H=12, G=18	Устанавливает значения DOP, принятые по умолчанию для двумерных фиксаций
401	Порог трехмерного DOP	4	P=099, V=099, H=099, G=099	P=15, V=12, H=12, G=18	Устанавливает значения DOP, принятые по умолчанию для трехмерных фиксаций
402	Стартовый 2D DOP	4	P=099, V=099, H=099, G=099	P=15, V=12, H=12, G=18	Устанавливает стартовые значения DOP для двумерных фиксаций
403	Стартовый 3D DOP	4	P=099, V=099, H=099, G=099	P=15, V=12, H=12, G=18	Устанавливает стартовые значения DOP для трехмерных фиксаций
500	Текстовое сообщение	88	Символы ASCII	Произволь- ная конфигура- ция	Задает текстовое сообщение, посылаемое при запуске.

CDB-ID 101 – Настройка порта NMEA

Позволяет настраивать номер порта NMEA.

Для использования новой настройки необходимо перезагрузить приемник.

CDB-ID 102 – Настройка скорости обмена порта NMEA

Позволяет настраивать скорость обмена порта NMEA. Таблица преобразования указана выше.

Для использования новой настройки необходимо перезагрузить приемник.

CDB-ID 120 – Настройка Холодного старта

Позволяет указывать данные, стираемые перед выполнением команды ХОЛОДНОГО СТАРТА. Этот параметр является битовой маской, где единичное значение бита указывает на стираемые данные.

Бит	Битовая маска	Описание
0	0x1	Стереть Альманахи
1	0x2	Стереть эфемериды
2	0x4	Стереть позицию
3	0x8	Стереть время

Может использоваться любая комбинация битовой маски, по умолчанию используется маска 0xE.

Эта настройка оказывается на своем месте после выполнения команды \$PSTMSETPAR.

CDB-ID 121 – Период сообщений NMEA GSV

Позволяет настраивать временной период, с которым сообщение GVS посылается в порт NMEA.

Для использования новой настройки необходимо перезагрузить приемник.

CDB-ID 200 – ВКЛЮЧИТЬ/ВЫКЛЮЧИТЬ приложение

Позволяет включать/выключать различные свойства в библиотеке GNSS. Для каждого бита:

- 0 означает выключенное свойство;
- 1 означает включенное свойство.

Бит ⁶	Битовая маска	Функция	
1	0x2	Фиксация двумерной позиции (с алгоритмом большого	
		сдвига позиции)	
2	0x4	Система коррекции SBAS (WAAS/EGNOS)	
9	0x200	Посылать "сконфигурированный текст" в "заголовочное	
		сообщение" при запуске	
10	0x400	Посылать стандартные заголовки ST NMEA	
12	0x1000	Алгоритм FDE	

0x4000	Алгоритм прогулочного режима
0x8000	Алгоритм обнаружения остановки
0x10000	Включить группировку GPS
0x20000	Включить группировку ГЛОНАСС
0x40000	Включить группировку QZSS
0x80000	Включить NMEA GNGSV
0x100000	Включить NMEA GNGSA
0x200000	Включено использование ГЛОНАСС для определения
	положения
0x400000	Включено использование GPS для определения
	положения
0x800000	Включено использование QZSS для определения
	положения
0x1000000	Включение PPS
0x2000000	Инверсия полярности PPS
	0x8000 0x10000 0x20000 0x40000 0x80000 0x100000 0x400000 0x400000 0x1000000

Бит 1 – Алгоритм 2D fix позиционирования

Включает/выключает алгоритм двумерной фиксации. Если этот бит включен, то большой сдвиг позиции для позиции двумерной фиксации допускается в условиях Холодного старта. Это свойство ВЫКЛ по умолчанию.

Бит 2 – Система коррекции SBAS (WAAS/EGNOS)

Включает/выключает обработчик SBAS. Если этот бит включен, то обработчик SBAS запускается в поиске спутников SBAS при запуске системы.

Бит 9 – Послать сконфигурированный текст

Включает/выключает посылку сконфигурированного текста в порт NMEA при запуске.

Бит 10 – Послать заголовки ST

Включает/выключает посылку стандартных заголовков в порт NMEA при запуске.

Бит 12 – Алгоритм FDE

Включает/выключает алгоритм обнаружения отказа и исключения.

Бит 14 – Алгоритм прогулочного режима

Включает/выключает алгоритм прогулочного режима.

⁶ Битовое значение указывает позицию бита (начиная с 0 в качестве самого младшего бита), таким образом возможен множественный выбор.

Бит 15 – Алгоритм обнаружения остановки

Включает/выключает алгоритм обнаружения остановки.

Бит 16 - Созвездие GPS

Включает/выключает группировку GPS. Если этот бит включен, то спутники GPS включены для отслеживания и используются для определения положения. Настоятельно рекомендуется выполнять команду полного Холодного старта (\$PSTMCOLD,15) каждый раз, когда новая Созвездие включается или выключается.

Установка этого бита влияет также на идентификатор источника сообщений NMEA GSV и GSA. Если включена только Созвездие GPS, то идентификатор источника сообщений NMEA для GSV и GSA равен "GP". Если также включена Созвездие ГЛОНАСС, то "GP" используется для сообщений GSV, связанных с GPS, тогда как "GN" используется для сообщений GSA.

Примечание: Если включены группировки GPS и ГЛОНАСС, то сообщения GSV посылаются в два отдельных набора: один с "GP" в качестве идентификатора источника сообщений, и один с "GL".

Бит 17 - Созвездие ГЛОНАСС

Включает/выключает группировку ГЛОНАСС. Если этот бит включен, то спутники ГЛОНАСС включены для отслеживания. Для их использования при определении должен быть также включен бит 21. Настоятельно рекомендуется выполнять команду полного Холодного старта (\$PSTMCOLD,15) каждый раз, когда новая Созвездие включается или выключается.

Установка этого бита влияет также на идентификатор источника сообщений NMEA GSV и GSA. Если включена только Созвездие ГЛОНАСС, то идентификатор источника сообщений NMEA для GSV и GSA равен "GL". Если также включена Созвездие GPS, то "GL" используется для сообщений GSV, связанных с ГЛОНАСС, тогда как "GN" используется для сообщений GSA.

Примечание: Если включены группировки GPS и ГЛОНАСС, то сообщения GSV посылаются в два отдельных набора: один с "GP" в качестве идентификатора источника сообщений, и один с "GL

Бит 18 - Созвездие QZSS

Включает/выключает группировку QZSS. Если этот бит включен, то спутники QZSS включены для отслеживания и используются для определения положения. Настоятельно рекомендуется выполнять команду полного Холодного старта (\$PSTMCOLD,15) каждый раз, когда новая Созвездие включается или выключается.

Примечание: Только "GN" поддерживается в качестве идентификатора источника для сообщений GSV и GSA QZSS.

Бит 19 – Включен NMEA GNGSV

Включает/выключает идентификатор источника "GN" для сообщений GSV, сообщающих о спутнике для всех группировок. Если этот бит включен, то только идентификатор источника "GN" используется для сообщений GSV.

Примечание: В этом случае сообщения GSV посылаются в единственном наборе, сообщающем о спутниках для всех включенных группировок.

Бит 20 – Включен NMEA GNGSA

Включает/выключает идентификатор источника "GN" для сообщений GSA, сообщающих о спутнике для всех группировок. Если этот бит включен, то только идентификатор источника "GN" используется для сообщений GSA.

Примечание: В этом случае сообщения GSA посылаются в единственном наборе, сообщающем о спутниках для всех включенных группировок.

Бит 21 – Использование ГЛОНАСС

Включает/выключает использование спутника ГЛОНАСС для фиксации позиции GNSS. Если этот бит выключен, а Созвездие ГЛОНАСС включена, то спутники ГЛОНАСС только отслеживаются.

Бит 22 – Использование GPS

Включает/выключает использование спутника GPS для фиксации позиции GNSS. Если этот бит выключен, а Созвездие GPS включена, то спутники GPS только отслеживаются.

Бит 23 – Использование QZSS

Включает/выключает использование спутника QZSS для фиксации позиции GNSS. Если этот бит выключен, а Созвездие QZSS включена, то спутники QZSS только отслеживаются.

Бит 24 – Включение PPS

Включает/выключает генерацию PPS на выводе PPS.

Бит 25 – Инверсия полярности сигнала PPS

Включает/выключает инверсию полярности PPS. Если инверсия полярности выключена (бит25 = 0), то сигнал PPS имеет поднимающийся фронт при событии PPS. Если инверсия полярности включена (бит25 = 1), то сигнал PPS имеет падающий фронт при событии PPS.

CDB-ID 201 – Список сообщений NMEA

Позволяет включать/выключать каждое сообщение NMEA в списке сообщений. Для каждого бита:

- 0 означает выключенное свойство;
- 1 означает включенное свойство.

Бит ⁷	Битовая маска	Функция
0	0x1	Сообщение \$GPGGA
1	0x2	Сообщение \$GPGGA5
2	0x4	Сообщение \$GPGSA
3	0x8	Не используется
4	0x10	Сообщение \$GPVTG
5	0x20	Не используется
6	0x40	Сообщение \$GPRMC
7	0x80	Сообщение \$PSTMRF
8	0x100	Сообщение \$PSTMTG
9	0x200	Сообщение \$PSTMTS
10	0x400	Сообщение \$PSTMPA
11	0x800	Сообщение \$PSTMSAT
12	0x1000	Сообщение \$PSTMRES
13	0x2000	Сообщение \$PSTMTIM
14	0x4000	Сообщение \$PSTMWAAS
15	0x8000	Сообщение \$PSTMDIFF
16	0x10000	Сообщение \$PSTMCORR
17	0x20000	Сообщение \$PSTMSBAS
18	0x40000	Сообщение \$PSTMTESTRF
19	0x80000	Сообщение \$GPGSV
20	0x100000	Сообщение \$GPGLL
21	0x200000	Не используется
22	0x400000	Не используется
23	0x800000	Не используется
24	0x1000000	Не используется
25	0x2000000	Не используется
26	0x4000000	Не используется
27	0x8000000	Сообщение \$PSTMKFCOV
28	0x10000000	Сообщение \$PSTMAGPS
29	0x20000000	Не используется
30	0x40000000	Не используется
31	0x80000000	Не используется

 $^{^{7}}$ Битовое значение указывает позицию бита, таким образом возможен множественный выбор.

CDB-ID 301 – Продолжительность импульса PPS

Позволяет настраивать продолжительность сигнала PPS. Продолжительность импульса обеспечивает временной интервал между поднимающимся фронтом PPS и следующим падающим фронтом, если инверсия полярности выключена, или временной интервал между падающим и поднимающимся фронтами, если инверсия полярности включена.

CDB-ID 302 – Коррекция задержки PPS

Позволяет устанавливать временную коррекцию для компенсации любой задержки, вносимой в сигнал "Импульс в секунду" (PPS) кабелями и/или цепью RF.

CDB-ID 303 – Период фиксации GNSS

Позволяет настраивать скорость фиксации библиотеки GNSS. Это временной период между двумя последовательными оценками фиксации позиции.

Для использования новой настройки необходимо перезагрузить систему.

CDB-ID 400 – 2D DOP по умолчанию

Позволяет настраивать значение, принятое по умолчанию для двумерного DOP. Это значение используется при работе после стартовой фазы GNSS в качестве порога достоверности двумерной фиксации. DOP ниже этого порога будет считаться допустимым для фиксации позиции.

Для использования новой настройки необходимо перезагрузить систему.

CDB-ID 401 – 3D DOP по умолчанию

Позволяет настраивать значение, принятое по умолчанию для трехмерного DOP. Это значение используется при работе после стартовой фазы GNSS в качестве порога достоверности трехмерной фиксации. DOP ниже этого порога будет считаться допустимым для фиксации позиции.

Для использования новой настройки необходимо перезагрузить систему.

CDB-ID 402 – Стартовый 2D DOP

Позволяет настраивать стартовое значение для двумерного DOP. Это значение используется на стартовой фазе GNSS в качестве порога достоверности двумерной фиксации. DOP ниже этого порога будет считаться допустимым для фиксации позиции.

Для использования новой настройки необходимо перезагрузить систему.

CDB-ID 403 – Стартовый 3D DOP

Позволяет настраивать стартовое значение для трехмерного DOP. Это значение используется на стартовой фазе GNSS в качестве порога достоверности трехмерной фиксации. DOP ниже этого порога будет считаться допустимым для фиксации позиции.

Для использования новой настройки необходимо перезагрузить систему.

CDB-ID 500 – Текстовое сообщение

Позволяет установить текстовое сообщение, которое посылается (если включено – бит 9 в параметре ВКЛ/ВЫКЛ приложения) при запуске через порт NMEA. Пользователь может использовать этот текст в качестве названия продукта или как особый конфигурационный маркер.

Для использования новой настройки необходимо перезагрузить систему.

Изменение настроек, принятых по умолчанию

Настройки, принятые по умолчанию в программном обеспечении GPS, закодированы в двоичном файле программного обеспечения. По специальному запросу программное обеспечение может быть изменено с целью изменения установок «по умолчанию».

Сообщения

Этот раздел содержит стандартные сообщения NMEA и Специфические сообщения STMicroelectronics, доставляемые от любой системы ST-GPS. Кроме того, он содержит сообщения, являющиеся результатом ввода конкретной команды.

Список стандартных сообщений NMEA

Синтаксис	Значение по умолчанию	Описание
\$GPGGA	выключено	NMEA: Зафиксированные данные Глобальной
		системы позиционирования
\$GPGGA5	ВКЛЮЧЕНО	NMEA: Зафиксированные данные Глобальной
		системы позиционирования (как ранее) с 5 цифрами
		вместо 3 в дробных частях широты и долготы.
\$GPGLL	выключено	NMEA: Географическая широта/долгота
		позиционирования
\$GSA	ВКЛЮЧЕНО	NMEA: GPS DOP и активные спутники.
		Идентификаторы источника "GP", "GL" и "GN"
		поддерживаются в соответствии с конфигурацией
		программного обеспечения.
\$GSV	ВКЛЮЧЕНО	NMEA: Спутники GPS в просмотре.
		Идентификаторы источника "GP", "GL" и "GN"
		поддерживаются в соответствии с конфигурацией
		программного обеспечения.
\$GPRMC	ВКЛЮЧЕНО	NMEA: Рекомендуемые минимальные конкретные
		данные GPS/ПЕРЕДАЧИ
\$GPVTG	выключено	NMEA: Правильный путь и наземная скорость
\$GPZDA	выключено	NMEA: Время и дата

Список сообщений ST NMEA

Синтаксис	Значение по	Описание
	умолчанию	
\$PSTMDIFF	ВЫКЛЮЧЕНО	ST: Данные дифференциальной
		коррекции
\$PSTMPRES	ВЫКЛЮЧЕНО	ST: Прогнозная ошибка позиции
\$PSTMVRES	ВЫКЛЮЧЕНО	ST: Прогнозная ошибка скорости
\$PSTMPA	ВЫКЛЮЧЕНО	ST: Позиционный алгоритм
\$PSTMRF	ВЫКЛЮЧЕНО	ST: Радиочастота
\$PSTMSAT	ВЫКЛЮЧЕНО	ST: Информация о спутнике
\$PSTMSBAS	ВКЛЮЧЕНО	ST: Система коррекции
\$PSTMSBASCORR	ВЫКЛЮЧЕНО	ST: Данные о коррекции спутника
\$PSTMTIM	ВЫКЛЮЧЕНО	ST: Системное время

\$PSTMTG	выключено	ST: Время и количество
		используемых спутников
\$PSTMTS	выключено	ST: Данные отслеживаемого
		спутника
\$PSTMKFCOV	выключено	ST: Стандартное отклонение и
		ковариация
\$PSTMAGPS	выключено	ST: Информация о предсказанных
		эфемеридах STAGPS

7.3 Список сообщений – ответов на команды

Синтаксис	Значение по	Описание
	умолчанию	
\$PSTMALMANAC	Ответ	ST: Вывод данных Альманаха
\$PSTMEPH	Ответ	ST: Вывод данных эфемерид
\$PSTMGETRTCTIME	Ответ	ST: Получить текущее время часов
		реального времени
\$PSTMVER	Ответ	ST: Вывести строку версии

Спецификация стандартных сообщений NMEA

Эти сообщения определены в спецификации "NMEA 0183".

\$GPGGA

Зафиксированные данные Глобальной системы позиционирования, количество знаков в дробной части значений широты и долготы задается конфигурацией приемника.

Битовая маска списка сообщений NMEA: 0x1

Формат:

\$GPGGA,<Timestamp>,<Lat>,<N/S>,<Long>,<E/W>,<GPSQual>,<Sats>,<HDOP>,<A lt>,<AltVal>,<GEOSep>,<GEOVal>,<DGPSAge>,<DGPSRef>,<checksum><cr><lf>

Параметр	Формат	Описание
Timestamp	hhmmss	Время UTC отсчета GPS, пример: 160836
Lat	DDMM.MMM	Широта (Градус-Минута.доли минуты): 4208.536
N/S	"N" или "S"	Широтное направление: север или юг
Long	DDMM.MMM	Долгота (Градус-Минута.доли минуты): 1105.345
E/W	"Е" или "W"	Долготное направление: восток или запад
GPSQual	Десятичное число, 1 цифра	0 = недействительное значение 1 = GPS 2 = DGPS
Sats	Десятичное число, 2 цифры	Видимые спутники: например, 8
HDOP	Десятичное число, 3 цифры	Снижение точности в горизонтальной плоскости, максимум: 99.0
Alt	Десятичное число, 5 цифр	Высота над эллипсоидом WGS84, максимум: 999.99
Alt-Val	"M"	Измерение высоты в "М" = метрах
GEOSep		
GEOVal		
DGPSAge		
DGPSRef		
checksum	Шестнадцатеричное число, 2 цифры	Контрольная сумма байтов сообщения без символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

\$GPGGA,115107.000,6001.287,N,03019.294,E,1,17,0.6,0041.2,M,18.0,M,,*6F

\$GPGGA5

Зафиксированные данные Глобальной системы позиционирования (5 цифр для дробной части широты и долготы)

Битовая маска списка сообщений NMEA: 0x2

Формат:

\$GPGGA,<Timestamp>,<Lat>,<N/S>,<Long>,<E/W>,<GPSQual>,<Sats>,<HDOP>,<A It>,<AltVal>,<GEOSep>,<GEOVal>,<DGPSAge>,<DGPSRef>,<checksum><cr><lf>

Параметр	Формат	Описание
Timestamp	Hhmmss	Время UTC отсчета GPS, пример: 160836
Lat	DDMM.MMMMM	Широта (Градус-Минута.доли минуты): 4208.53683
N/S	"N" или "S"	Широтное направление: север или юг
Long	DDMM.MMMMM	Долгота (Градус-Минута.доли минуты): 1105.34567
E/W	"Е" или "W"	Долготное направление: восток или запад
GPSQual	Десятичное число, 1 цифра	0 = недействительное значение 1 = GPS 2 = DGPS
Sats	Десятичное число, 2 цифры	Видимые спутники: например, 8
HDOP	Десятичное число, 3 цифры	Снижение точности в горизонтальной плоскости, максимум: 99.0
Alt	Десятичное число, 5 цифр	Высота над эллипсоидом WGS84, максимум: 999.99
Alt-Val	"M"	Измерение высоты в "М" = метрах
GEOSep		
GEOVal		
DGPSAge		
DGPSRef		
checksum	Шестнадцатеричное число, 2 цифры	Контрольная сумма байтов сообщения без символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

\$GPGGA,114949.000,6001.28756,N,03019.29228,E,1,18,0.6,040.27,M,18.0,M,,*6A

\$GPGLL

Географическая широта/долгота позиционирования

Битовая маска списка сообщений NMEA: 0x100000

Формат:

\$GPGLL,<Lat>,<N/\$>,<Long>,<E/W>,<Timestamp>,<Status>,<checksum><cr><lf>

Параметр	Формат	Описание
Lat	DDMM.MMMM	Широта (Градус-Минута.доли минуты):
		4208.5368
N/S	"N" или "S"	Широтное направление: север или юг
Long	DDMM.MMMM	Долгота (Градус-Минута.доли минуты):
		1105.3456
E/W	"Е" или "W"	Долготное направление: восток или запад
Timestamp	hhmmss	Время UTC отсчета GGL, пример: 160836
Status	"A"	Достоверность данных: "А" = достоверные, "V"
		= недостоверные
checksum	Шестнадцатеричное	Контрольная сумма байтов сообщения без
	число, 2 цифры	символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

\$GPGLL,6001.288,N,03019.292,E,114949.000,A*33

\$--GSA

GPS DOP и активные спутники. Идентификатор источника для этого сообщения NMEA зависит от включенной группировки:

- "GP", если включена только Созвездие GPS.
- "GL", если включена только Созвездие ГЛОНАСС.
- "GN", если включены группировки GPS и ГЛОНАСС. Этот идентификатор источника используется, даже если он принудительно используется в конфигурационном блоке (смотрите бит 20 параметра 200 «ВКЛ/ВЫКЛ приложения»).

Битовая маска списка сообщений NMEA: 0x4

Формат:

\$--GSA,<Mode>,<CurrentMode>,[<SatPRN1>],...,[<SatPRNN>],<PDOP>,<HDOP>,<VDOP>,<checksum><cr><lf>

Параметр	Формат	Описание
Mode	"M' или "A"	Рабочий режим: М = Ручной, А =
		Автоматический (двухмерный/трехмерный)
CurrentMode	Десятичное число, 1	Текущий режим:
	цифра	1 = нет доступной фиксации
		2 = двухмерный
		3 = трехмерный
SatPRN1N	Десятичное число, 2	Список спутников, используемый в фиксации
	цифры	позиции (максимум, 12)
PDOP	Десятичное число, 3	Снижение точности позиции, максимум: 99.0
	цифры	
HDOP	Десятичное число, 3	Снижение точности в горизонтальной
	цифры	плоскости, максимум: 99.0
VDOP	Десятичное число, 3	Снижение точности в вертикальной
	цифры	плоскости, максимум: 99.0
checksum	Шестнадцатеричное	Контрольная сумма байтов сообщения без
	число, 2 цифры	символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

\$GNGSA,A,3,22,83,14,73,89,85,15,91,92,21,79,88,1.0,0.6,0.8*2F \$GNGSA,A,3,18,03,11,86,19,,,,,,1.0,0.6,0.8*2F

В одном сообщении передается информация о 12 спутниках максимум, поэтому в случае, если видимых спутников больше, информация передается двумя сообщениями.

\$--GSV

Спутники GPS в просмотре. Идентификатор источника для этого сообщения NMEA зависит от включенной группировки:

- "GP", если включена только Созвездие GPS. Набор сообщений \$GPGSV посылается для отчета обо всех спутниках GPS.
- "GL", если включена только Созвездие ГЛОНАСС. Набор сообщений \$GLGSV посылается для отчета обо всех спутниках ГЛОНАСС.
- "GN", если включен в конфигурационном блоке (смотрите бит 19 параметра 200 «ВКЛ/ВЫКЛ приложения») для отчета обо всех спутниках всех включенных группировок. Единственный набор сообщений \$GNGSV посылается для отчета обо всех спутниках.

Битовая маска списка сообщений NMEA: 0x80000

Формат:

\$--GSV,<GSVAmount>,<GSVNumber>,<TotSats>,[<Sat1PRN>,<Sta1Elev>,
<Sat1Azim>,<Sat1C/N0>],...[<SatNPRN>,<StaNElev>,<SatNAzim>,<SatNC/N0>]<che cksum><cr><lf>

Nmax 4

Параметр	Формат	Описание
GSVAmount	• •	Общее количество GSV сообщений,
	цифра	максимум 3
GSVNumber	Десятичное число, 1	Продолжаемый GSV номер этого
	цифра	сообщения
TotSats	Десятичное число, 2	Общее количество спутников в обзоре,
	цифры	максимум 12
SatxPRN	Десятичное число, 2	Hoмер PRN спутника х
	цифры	
StaxElev	Десятичное число, 2	Возвышение спутника х в градусах,
	цифры	090
SatxAzim	Десятичное число, 3	Азимут спутника х в градусах относительно
	цифры	"Севера',
		000359
SatxC/N0	Десятичное число, 2	Отношение несущего сигнала к шуму для
	цифры	спутника х в децибелах,
		0099
checksum	Шестнадцатеричное	Контрольная сумма байтов сообщения без
	число, 2 цифры	символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

\$GPGSV,3,1,12,02,09,055,14,05,37,074,40,06,05,277,17,10,07,020,26*77 \$GPGSV,3,2,12,13,12,347,,16,22,310,,21,41,208,,23,03,323,*73 \$GPGSV,3,3,12,25,21,157,34,29,71,112,39,30,51,284,,31,23,244,*77

\$GLGSV,3,1,11,66,46,275,,71,46,275,,72,19,216,,74,25,081,37*60 \$GLGSV,3,2,11,77,25,124,,78,15,009,28,82,25,124,30,83,43,274,*68 \$GLGSV,3,3,11,84,25,338,13,87,40,062,38,90,78,054,22,,,,*57

Примечание: В связи с тем, что в обзоре могут быть до 16 спутников, это сообщение может повторяться до 4 раз, описывая до 4 разных спутников в каждом сообщении. GSVAmount указывает общее количество GSV сообщений, подлежащих передаче, тогда как GSVNumber указывает реальный номер текущего кадра сообщения.

Информация о спутниках созвездий ГЛОНАСС и GPS передается раздельно, с соответствующими префиксами GL и GP соответственно, если выключен режим передачи совмещенной информации.

\$GPRMC

Рекомендуемые минимальные конкретные данные GPS/передачи

Битовая маска списка сообщений NMEA: 0x40

Формат:

\$GPRMC,<Timestamp>,<Status>,<Lat>,<N/S>,<Long>,<E/W>,<Speed>,<Trackgood >,<Date>,<MagVar>,<MagVarDir> <checksum><cr><lf>>

Параметр	Формат	Описание
Timestam	hhmmss	Время UTC отсчета RMC, пример: 160836
р		
Status	"А" или "V"	Предупреждение приемника: "А" = действительны
		й, "V" = Предупреждение
Lat	DDMM.MMMM	Широта (Градус-Минута.доли минуты): 4208.5368
N/S	"N" или "S"	Широтное направление: север или юг
Long	DDMM.MMMM	Долгота (Градус-Минута.доли минуты): 1105.3456
E/W	"Е" или "W"	Долготное направление: восток или запад
Speed	Десятичное число,	Скорость относительно земли в узлах: максимум
	4 цифры	999,9
Trackgood	Десятичное число,	Правильный курс, максимум 359,9
	4 цифры	
Date	Десятичное число,	Дата фиксации: ddmmyyyy
	6 цифр	
MagVar	Десятичное число,	Магнитное склонение, максимум: 090,0
	4 цифры	-
MagVarDir	"E", "W"	Направление магнитного склонения
checksum	Шестнадцатерично	Контрольная сумма байтов сообщения без
	е число, 2 цифры	символов * <checksum><cr><lf>.</lf></cr></checksum>

Пример:

\$GPRMC,115108.000,A,6001.287,N,03019.294,E,0.9,264.1,281111,0.0,W*7A

\$GPVTG

Рекомендуемые минимальные конкретные данные GPS/передачи

Битовая маска списка сообщений NMEA: 0x10

Формат:

\$GPVTG,<TMGT>,T,<TMGM>,M,<SoGN>,N,<SoGK>,K*<checksum><cr><lf>

Параметр	Формат	Описание
TMGT	ddd.d в градусах	Путь относительно "истинных" полюсов земли
Т		Указывает "наземный"
TMGM	ddd.d в градусах	Путь относительно "магнитных" полюсов
		земли
M		Указывает "магнитный"
SoGN	ddd.d в узлах	Скорость относительно земли в узлах
N		Указывает "узлы"
SoGK	ddd.d в км/ч	Скорость относительно земли в километрах в
		час
K		Указывает "километры в час"
checksum	Шестнадцатеричное	Контрольная сумма байтов сообщения без
	число, 2 цифры	символов * <checksum><cr><lf></lf></cr></checksum>

Пример:

\$GPVTG,264.1,T,,M,0.9,N,1.7,K*6E

Спецификация сообщений ST NMEA

Для получения от ГЛОНАСС/GPS приемника НАВИА дополнительных данных и информации, не предусмотренных стандартными сообщениями NMEA, разработчик чипсета компания STMicroelectronics предусмотрела "Специфические сообщения STMicroelectronics". Любое собственное сообщение в порту NMEA начинается с "\$Рхххх..." и следующих трех букв, указывающих, что это собственное сообщение ST (\$PSTMxxx...).

Имеется два вида "специфических сообщений". Они или повторно посылаются с заданной или задаваемой частотой, или посылаются только однократно в качестве реакции на команду.

Описание специфических сообщений ST NMEA доступно по специальному запросу после подписания соответствующих соглашений и NDA.