Scientific Visualization Autumn 2015

Teachers

Anders Hast (head teacher)
Associate Professor in computer
graphics/visualization

Stefan Seipel (teacher)
Professor in computer graphics

Johan Nysjö (lab assistant) PhD student in medical image analysis

Formalities

- 2 mandatory assignments
- 1 project (also mandatory)
- 1 case study (seminar)
- Written exam (5 hours)
- All information and material is (or will be) on Studentportalen
- If you haven't registered for the course yet, please do!

Course book

Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th Edition

Order the textbook directly from the publisher Kitware, Inc. or via Amazon.com

"A picture is worth a thousand words"

Refers to that complex stories can be described with a single image.

This expression is valid also in scientific visualisation.

When **large** and **complex** data sets are resulting from experiments and computations, visualisation is a way to give deeper **insight** and **knowledge**.

When **large** and **complex** data sets are resulting from experiments and computations, visualisation is a way to give deeper **insight** and **knowledge**.

vtk DataFile Version 3.0 vtk output **BINARY** DATASET STRUCTURED POINTS **DIMENSIONS 256 256 124** SPACING 0.9 0.9 0.9 ORIGIN 0 0 0 CELL DATA 7998075 POINT DATA 8126464 COLOR SCALARS ImageFile 1 ^D^E^C^G^D^B^D^B^B^C^D^E^D^E^C^C ^D^C^C^C^C^E^D^C^A^B^B^B^F^A^C^E ^D^D^E^A^A^C^B^B^E^B^A^A^E^B^E^E ^A^C^C^G^C^D^F^B^D^E^@^G^C^D^D^C ^D^C^F^C^B^E^E^E^B^C^C^B^C^B ^C^C^F^E^F^C^D^A^A^C^F^D^D^E^E^B

When **large** and **complex** data sets are resulting from experiments and computations, visualisation is a way to give deeper **insight** and **knowledge**.

vtk DataFile Version 3.0 vtk output **BINARY** DATASET STRUCTURED POINTS **DIMENSIONS 256 256 124** SPACING 0.9 0.9 0.9 ORIGIN 0 0 0 CELL DATA 7998075 POINT DATA 8126464 COLOR SCALARS ImageFile 1 ^D^E^C^G^D^B^D^B^B^C^D^E^D^E^C^C ^D^C^C^C^C^E^D^C^A^B^B^B^F^A^C^E ^D^D^E^A^A^C^B^B^E^B^A^A^E^B^E^E ^A^C^C^G^C^D^F^B^D^E^@^G^C^D^D^C ^D^C^F^C^B^E^E^E^B^C^C^B^C^B ^C^C^F^E^F^C^D^A^A^C^F^D^D^E^E^B

Scientific visualization

- Scientific visualisation is the process of exploring, transforming, and viewing data as images
- The data describes natural or physical phenomena or quantities
- Often observed (measured) or simulated data
- Visualisation is often interactive
- We are (usually) not trying to create realistic images, but to visualise data in an informative way
- Application dependent

- This course will mainly focus on visualization of three-dimensional (3D) data
- You will learn how
 - to select appropriate visualization methods, possibilities and limitations of methods,
 - and to use visualisation toolkits.
- A focus will be on using script programming (Python) in combination with VTK (the Visualisation Toolkit).

Assignment 1

Isosurface rendering

Visualization of air currents and molecular data

Assignment 2

MPR visualization of CT data

Volume rendering

Project

Visualization of earthquake data from northern Italy

Visualization purposes

- Communication of information (emphasizing, narrating)
- Improve understanding (illustrating, interpreting, finding)
- Decision support (analyzing, extrapolation)
- Answering questions (diagnosing, interpreting)
- Support creativity (inspiration)
- Making new discoveries through interaction!

General development of visualization

- Rather new discipline still developing into sub-areas
- Tool users vs. tool developers
- Collaboration among computer scientists and computational scientists
- Faster computers, high-speed networks, new userinterfaces

Visualizations help us getting insight

- Takes advantage of human sensory abilities
 - Pattern recognition, trend discovery, etc.
- Useful when
 - numeric data is to be understood
 - complex relations must be understood
 - multiple variables have to be analyzed
- Visualization is not a substitute to, but a complement to, statistical analysis and other quantitative methods

Graphs are one type of visualization

Length	Width
5.1	3.5
4.9	3.0
4.7	3.2
4.6	3.1
5.0	3.6
5.4	3.9
4.6	3.4
5.0	3.4
4.4	2.9
4.9	3.1

Data from the Iris flower dataset

Graphs are one type of visualization

Length	Width	Iris setosa
5.1	3.5	
4.9	3.0	3.8-
4.7	3.2	2.6
4.6	3.1	3.6-
5.0	3.6	# 3.4- •
5.4	3.9	
4.6	3.4	3.2-
5.0	3.4	3.0-
4.4	2.9	
4.9	3.1	2.8 4.4 4.6 4.8 5.0 5.2 5.4 5.6 Length

Data from the Iris flower dataset

Some more sophisticated examples

Nuclear, Quantum, and Molecular Modeling

Structures, Fluids, and Fields

Advanced Imaging and Data Management

Classical example

Dr. John Snow; The Cholera Epidemic in London 1854

Used *spot-map* to graphically depict cholera incidents.

Spatial clusters *led to him to the hypothesis* that cholera was communicated through contaminated water.

Identification and removal of contaminated pump led to reduced mortality and partly confirmed his hypothesis.

Note: The visualisation did not prove anything. But was influential to the development of the novel hypothesis which was later proved true.

Ch 3: Computer Graphics

- Computer graphics aims at creating pictures by mimicking the image formation process that occurs in conventional photography.
- Foundation of scientific visualization

The Utah Teapot

Computer Graphics examples

Simulate and visualize real things

Interior design (Linus Karlsson, CCG 2011)

Interactive Games

Make visible what cannot really be seen

Visualisation of semantic networks in SemNet.

Hard-Disk utilization (WinDirStat)

Computer Graphics

What is needed to mimic photography, i.e., to render images with a computer?

- Virtual objects: 3D models, geometry, material properties
- Virtual light sources: position, color, attenuation, etc.
- Virtual camera: position, direction, lens projection
- Illumination model: Rendering algorithms that model the propagation of light and its interaction with objects in the scene.

Computer Graphics & Visualization

 Graphical rendering is one pillar of Scientific/Information Visualisation

Computer Graphics & Visualization

 Graphical rendering is one pillar of Scientific/Information Visualisation

Visualisation is more than computer graphics!

Computer Graphics

Anders will tell you more about this topic in a later lecture

Ch 4: The Visualization Pipeline

- Visualization addresses the issues of
 - Transformation: converting data from its original form into graphics primitives and into computer images
 - Representation: the internal data structures and the graphics primitives

vtk DataFile Version 3.0 vtk output BINARY DATASET STRUCTURED POINTS DIMENSIONS 256 256 124 SPACING 0.9 0.9 0.9 ORIGIN 0 0 0 CELL DATA 7998075 POINT DATA 8126464 COLOR SCALARS ImageFile 1 ^D^E^C^G^D^B^D^B^B^C^D^E^D^E^C^C ^D^C^C^C^C^E^D^C^A^B^B^B^F^A^C^E ^D^D^E^A^A^C^B^B^E^B^A^A^E^B^E^E ^A^C^C^G^C^D^F^B^D^E^@^G^C^D^D^C ^D^C^F^C^B^E^E^E^B^C^C^B^C^B^C^B ^C^C^F^E^F^C^D^A^A^C^F^D^D^E^E^B

? 🖒

Visualization pipeline, cont.

- The pipeline consists of
 - objects to represent data
 - objects to operate on data
 - indicated direction of data flow (arrow connections between objects)

Process objects

- Operate on input data to generate output data
 - Output data can be new data or new form

Source objects

initiate (read, generate) visualization data flow

Filter objects

maintain visualization data flow

Mapper objects

- terminate (write, graph) visualization data flow

A visualization pipeline

Executing the pipeline

- Causing each process object to operate
- Most frequent executions due to user interaction
 - change parameters of process object
 - change input to process object
- For efficiency, only execute the process objects whose input has changed
- Synchronization required

Conclusion

- Visualisation helps to understand the data and get insight on the data
- It is also a tool to discover the data and find "hidden truths" in the data
- Visualisation uses Computer Graphics

Next lecture

Python and VTK programming

