1.CapstoneProject: SPSS Analysis

Project Title:

Does the type of background lighting affect reading speed?

Objective:

To find out if different lighting environments (Natural Light, White LED, or Dim Light) impact how quickly people can read a passage (measured in seconds).

What Kind of Datals This?

Variable Name	Туре	Description
Lighting_Type	Categorical	Type of lighting used while reading
Reading_Time	Numeric	Time taken to read a fixed passage (in seconds)

Step1:PrepareYourData

Use this sample data for simplicity:

Person_ID	Lighting_Type	Reading_Time
1	NaturalLight	120
2	NaturalLight	125
3	NaturalLight	118
4	WhiteLED	135
5	WhiteLED	132
6	WhiteLED	137
7	DimLight	145
8	DimLight	150

9	DimLight	148

Step 2: Open SPSS and Create Variables

- 1. Open SPSS → Click Variable View
- 2. Createtwovariables:
 - o **Lighting_Type** → Type:String
 - o **Reading_Time** → Type:Numeric

Step3:EntertheData

Click DataView, and input the data line by line as shown in Step 1.

Step 4: Analyze the Data Using One-Way ANOVA

- 1. Goto Analyze → Compare Means → One-Way ANOVA
- 2. MoveReading_Time to **Dependent List**
- 3. MoveLighting_Type to Factor
- 4. Click OK

Step5:InterprettheOutput

You' llget two important tables:

1.DescriptivesTable(SampleOutput)

Lighting_Type	MeanReading_Time
NaturalLight	121 secs
WhiteLED	134.6secs
DimLight	147.6 secs

2. ANOVA Table

If **Sig. value** < **0.05**, the result is significant. For

Sig.=0.004 → Since 0.004 < 0.05 → Yes, lighting affects reading speed

Final Conclusion:

- NaturalLight allows fastest reading
- **DimLight** slows reading the most
- WhiteLED is in between
- Result is statistically significant → **Lightingtype impacts reading performance**

Bonus Step: Bar Chart Visualization

- 1. Click **Graphs** → **Chart Builder**
- 2. Select Bar Chart

- 3. DragLighting_Type to x-axis and Reading_Time to y-axis
- 4. Click **OK** to generate chart

Shorter bars = faster reading time.

2.CapstoneProject: SPSS Analysis

Project Title:

Does noise level affect a person's concentration?

Objective:

To examine whether different levels of background noise (Quiet, Moderate, Loud) influence how well a person concentrates, measured through a standardized concentration test score.

What Kind of DataIs This?

Variable Name	Туре	Description
Noise_Level	Categorical	Environment condition: Quiet, Moderate, or Loud
Concentration_Scor	Numeric	Score on a concentration test (out of 100)
e		

Step1:PrepareYourData

Usethis sample data:

Person_ID	Noise_Level	Concentration_Score
1	Quiet	88
2	Quiet	85
3	Quiet	90
4	Moderate	78
5	Moderate	74

6	Moderate	76
7	Loud	65
8	Loud	68
9	Loud	62

Step2:CreateVariablesinSPSS

- 1. Open SPSS → Click on Variable View
- 2. Create:
 - o Noise_Level → Type: String
 - o Concentration_Score → **Type:Numeric**

Step3:EntertheData

Switch to **DataView** and enter the values row by row as shown in Step 1.

Step4: Run One-Way ANOV A

- 1. Click Analyze → Compare Means → One-Way ANOVA
- 2. MoveConcentration_Score to **Dependent List**
- 3. MoveNoise_LeveltoFactor
- 4. Click **OK**

Step5:InterprettheOutput

1.DescriptiveStatisticsTable(Example)

Noise_Level	MeanConcentration_Score
Quiet	87.6
Moderate	76.0
Loud	65.0

2. ANOVA Table

If the Sig.(p-value) < 0.05, the result is significant.

Example:

Sig.=0.002 → Since 0.002 < 0.05 → Yes, noiselevel affects concentration

Conclusion:

• Quiet environments lead to the highest concentration scores

- Loudenvironments result in the lowest scores
- The difference is statistically significant, suggesting background noise affects focus levels

Bonus Step: Visual Bar Chart

- 1. Goto Graphs → Chart Builder
- 2. Dragin a Bar Chart
- 3. Set Noise_Levelonthe x-axis, Concentration_Score on the y-axis
- 4. Click OK

Visualinsight: Higher bars = better concentration.

3.Capstone Project: SPSS Analysis

Project Title:

Do more breaks really boost productivity?

Objective:

To examine if the number of breaks a person takes during a 4-hour work session affects their productivity, measured as a score out of 100.

Variables Overview

Variable Name	Туре	Description
Breaks_Count	Categorical	Frequency of breaks: No Break,1—2 Breaks,3+Breaks
Productivity_Scor	Numeric	Productivity output score (based on tasks completed,
e		accuracy,andpace)

Step1:SampleDataset

Person_ID	Breaks_Count	Productivity_Score
1	No Break	60
2	No Break	58
3	No Break	62
4	1– 2Breaks	75

5	1– 2Breaks	78
6	1–2Breaks	72
7	3+Breaks	65
8	3+Breaks	66
9	3+Breaks	63

Step2:VariableSetupinSPSS

- 1. Open SPSS → Go to **VariableView**
- 2. Add:
 - o Breaks_Count → Type: **String**
 - o Productivity_Score → Type: **Numeric**

Step3:EntertheData

In **DataView**, type the sample data row by row as above.

Step4:PerformOne-Way ANOV A

- 1. Click Analyze → Compare Means → One-Way ANOVA
- 2. MoveProductivity_Score to **DependentList**
- 3. MoveBreaks_Count to Factor
- 4. Click OK

Step5:InterpretYourResults

Descriptive Stats (Example Output):

Breaks_Count MeanProductivity_Score

No Break 60.0 1–2 Breaks 75.0 3+ Breaks 64.6

ANOVASignificanceTest:

• If **Sig.** < **0.05**, the difference is statistically meaningful. Example:

Sig.=0.01 → Significant → Break patternaffects productivity.

Conclusion:

- People who took 1— 2 breaks had the highest productivity
- No breaks and too many breaks (3+) both **lowered** performance
- Abalanced break schedule seems ideal
- Result is statistically significant → Breakfrequency does affect output

Optional: Visual Representation

- 1. Click Graphs \rightarrow Chart Builder
- 2. Select a **Bar Chart**
- 3. X-Axis:Breaks_Count
- 4. Y-Axis:Productivity_Score
- 5. Generate the chart

4.CapstoneProject: SPSS Analysis

Project Title:

Does caffeine boost attention span?

Objective:

To evaluate whether different levels of caffeine consumption influence a person's ability to maintain attention during a 30-minute cognitive task.

Variables Summary

Variable Name	Туре	Description
Caffeine_Intake	Categorical	Caffeine level: None, Low (1cup), High (3+cups)
Attention_Span	Numeric	Score from an attention spantest (out of 100)

Step1:HypotheticalSampleData

Person_ID	Caffeine_Intake	Attention_Span
1	None	64
2	None	67
3	None	62
4	Low	76
5	Low	79
6	Low	75

7	High	70
8	High	68
9	High	72

Step2:SetUpinSPSS

In Variable View, define:

- Caffeine_Intake → String
- Attention_Span → Numeric

Then, enter data in **DataView** as shown above.

Step3:RunaOne-Way ANOV A

- 1. Goto Analyze → Compare Means → One-Way ANOVA
- 2. Move Attention_Span → **Dependent List**
- 3. MoveCaffeine_Intake → Factor
- 4. Click OK

Step4:Interpret theOutput

ExampleDescriptiveStatistics:

Caffeine_Intake	Mean Attention_Span
None	64.3
Low	76.6
High	70.0

ANOVAResults:

• Sig.=0.015 → This is less than 0.05 → Statistically significant

Conclusion:

- Low caffeine intake (around 1 cup) appears to enhance attention span
- Nocaffeine yields the lowest scores
- **Highcaffeine** doesn't give additional benefit and might slightly reduce performance
- The difference is statistically significant \rightarrow Caffeine affects attention, but more isn't alwaysbetter

VisualizationIdea:

Create a bar chart to show average attention span by caffeine level.

1. Graphs → ChartBuilder

- 2. Choose Bar Chart
- 3. X-axis: Caffeine_Intake, Y-axis: Attention_Span
- 4. Click **OK**

BonusIdeas:

- Add a line graph to track **attention over time** post-caffeine
- Explore interaction effects: Sleephours + Caffeine intakevs Attention