TEAM 1 (REX): Final Presentation

Preston Ching, Marcel Hedman, Nam Luu, Owen Schafer

Agenda

Problem Statement

Motivation, Scope of Work, Lit Review

Baseline Model

Non-Submarket and Submarket Approaches

Diving into the Data

Data Sources and Integration

04

Developed Model

Submarket Hierarchical Approach

Problem -01 Problem – Statement

Motivation, Scope of Work

Motivation

Industry Opportunity

\$9.6 trillion real estate market has limited technology disruption.

Price Indices

The NAR and Zillow only provide price indices which are noisy metrics due to spreads and approvals.

Non-Granular

Current solutions only provide granularity at the state or city level.

Scope of Work

Challenges Proposed Model Success Metrics Our aim is to predict demand No clear definition of Benchmark against by building a Bayesian demand target variables non-Bayesian submarkets hierarchical baseline models Fixing or varying the **model** in the Denver Market (with and without number of submarkets submarkets) Accuracy, AUC and R² on testing sets

Literature Review

Motivates measures of demand Fall 2020 IACS Project 01 **Top-down** approach (macroeconomic / census) **Hedonic Valuation** Motivates use of latent variable submarkets 02 **Bottom-up** approach but still a **price index** with Submarkets Assumes main measures of demand are **Our Model: Augmented** 03 functions of the homes' attributes along with **Hedonic Demand** census-tract characteristics

Diving Into the Data

Data Sources and Integration

Datasets

Data exploration

Geographical

Temporal

Target variable

$$y = \mathbf{P}\left(\frac{\text{propery is sold}}{\text{property is listed}}\right)$$

Distribution of days-on-market

Data Processing

Combine features

Remove low variance

Handpick features

Correlation matrix

Data Processing

Baseline 13 Model

Non-Submarket and Submarket

What We are Predicting

Demand

Predicted probabilities of house being sold given that it was listed in a time period

Evaluated using

- 1. Accuracy and ROC-AUC
- 2. Predicted number homes sold and MSE/R²

Overview of Models Developed

1

Non-submarket baseline

Parametric and non-parametric approaches

Overview of Models Developed

1

Non-submarket baseline

Parametric and non-parametric approaches

2

Submarket baseline

Naively assigning to submarkets by feature similarity

Overview of Models Developed

1

Non-submarket baseline

Parametric and non-parametric approaches

2

Submarket baseline

Naively assigning to submarkets by feature similarity 3

Developed model

Bayesian Hierarchical approach

Non-submarket Baseline

Incorporate new dataset from REX

Previously ran with approaches such as Random Forest and neural networks

Test accuracy ROC-AUC Regression ROC-AUC Roccasion ROC-AUC Roccasion Roccasi

Predicted

Submarket Baseline

Cluster using K-Means

Cross validation to find Optimal cluster number

Fit K distinct models in line with **hedonic** assumptions

Submarket Baseline

	No. Submarkets	Test accuracy	ROC-AUC	Predicted number of sales / Actual number of sales
Logistic Regression	11	0.63	0.55	0.9964
XGBoost	7	0.65	0.69	1.0004

Developed Model

Submarket Hierarchical Approach

Model Hierarchy

Submarket Latent Variable

Model learns submarket classification and fit to observed data simultaneously

Identifies optimal submarket classification for most accurate prediction

Developed Model

Same dataset as baseline models

EM used to train models with different hedonic functions

Similar accuracies and ROC-AUC to baselines

	Logistic Regression	XGBoost
No. Submarkets	11	7
Test Accuracy	0.62	0.66
ROC-AUC	0.50	0.62
MSE	383.0	511.9

Developed Model

Logistic Regression

XGBoost

Next Steps

01	Summarize Lessons Learned	Defendance in the state of the
02	Test Other Hedonic Demand Functions	 Logistic Regression and XGBoost are interpretable Prioritize balance between interpretability and performance
03	Stretch Goal: Extend to Time Series	Currently only focused on prediction for a fixed time frame

Q&A

Acknowledgements:

- Zona Kostic
- Will Fried
- Chris Tanner

