AL/OE-TR-1997-0118

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

Compliance Sampling of the Type "1" Classified Waste Incinerator Hickam AFB, Hawaii

Kyle W. Blasch, Captain, USAF, BSC

19970918 107

September 1997

DTIC QUALITY INSPECTED 3

Approved for public release; distribution is unlimited.

Occupational and Environmental Health Directorate Bioenvironmental Engineering Division 2402 E Drive Brooks AFB, TX 78235-5114

NOTICES

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161-2103.

KYLE W. BLASCH, Capt, USAF, BSC Consultant, Air Quality Function

LARRY T. KIMM, Major, USAF, BSC Deputy Chief, Biognovironmental

Engineering Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

	1 1204, Artington, VA 22202-4302, and to the Office of Manager		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES	COVERED
	September 1997		1-15 August 1996
4. TITLE AND SUBTITLE	France #1 # Classified Wests Incine	1	FUNDING NUMBERS
Compliance Sampling of The 1	Type "1" Classified Waste Incine	rator Hickam AFB, HI	
6. AUTHOR(S)			
Blasch, Kyle W., Capt		ľ	
,,,,,			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION
Armstrong Laboratory			REPORT NUMBER
Occupational and Environment	al Health Directorate		AT /OF ED 1007 0110
Bioenvironmental Engineering	Division		AL/OE-TR-1997-0118
2402 E Drive		1	
Brooks Air Force Base Texas 7 9. SPONSORING/MONITORING AGENCY N	78235-5114		
9. SPONSORING/MONITORING AGENCY N	IAME(S) AND ADDRESS(ES)	10.	SPONSORING/MONITORING AGENCY REPORT NUMBER
			Adence Report Muniber
11. SUPPLEMENTARY NOTES			
		•	
12a. DISTRIBUTION AVAILABILITY STATE		121	b. DISTRIBUTION CODE
Approved for public release; di	stribution is unlimited		
13. ABSTRACT (Maximum 200 words)			
	or total particulate matter was co	inducted on a Type "1" inci	inerator located at Building 83366,
			aste consisting of paper documents
	apling was performed from 1 Au		
			t the Type "1" incinerator is in ful
	particulate matter emission stand		the Type 1 memerator is in the
compilation with an applicable	particulate matter emission stand	arus.	
14. SUBJECT TERMS			15. NUMBER OF PAGES
Classified Waste Incinerator	Source Sampling Emissions Tes	ting	50
Type "1" Incinerator Particul	ate Matter Air Pollution Hicka	m AFB	16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION	20. LIMITATION OF
OF REPORT		OF ABSTRACT	ABSTRACT
UL	UL	UL	UL

TABLE OF CONTENTS

<u>Pa</u>	ge
INTRODUCTION 1	
SITE AND INCINERATOR DESCRIPTION 1	
APPLICABLE STANDARDS AND GUIDELINES 2	
METHODS AND MATERIALS 3	
QUALITY ASSURANCE AND QUALITY CONTROL 9	
RESULTS 1	0
DISCUSSION 12	2
REFERENCES	3
APPENDIXES:	
A Personnel Information	15
B Request Letter	1/
C Calibration Data	
D HP 41 Program Printouts	
E Field Data	29

DTIC QUALITY INSPECTED 3

List of Figures

Fig. No.		Page
1	Type "1" Incinerator	2
2	Front End Loading	3
3	Schematic of Type "1" Incinerator	4
4	Locations of Exhaust Stack Sampling Ports	5
5	Schematic of Orsat Analyzer	6
6	Orsat Analysis	7
7	Schematic of EPA Method 5 Schematic	8
8	EPA Method 5 Sampling Train	9

List of Tables

Table No.		Page
1.	Total Mass of Particulate Matter Collected	11
2.	Total Mass of Particulate Matter Emitted	11
3.	Incinerator Compliance Results	12

vi

COMPLIANCE SAMPLING OF THE TYPE "1" CLASSIFIED WASTE INCINERATOR HICKAM AFB, HAWAII

INTRODUCTION

On 1-15 Aug 96, compliance emissions testing was conducted on a type "1" (Bldg. 83366) classified waste incinerator at Hickam AFB, Hawaii (Figure 1). A type "1" incinerator is defined as a solid waste incinerator which burns type "1" waste: a mixture of combustible waste such as paper, cardboard cartons, wood scrap, and foliage. The Hickam AFB incinerator burns primarily classified paper and cardboard waste.

The current particulate matter emissions requirement by the State of Hawaii for type "1" incinerators is 4.0 lb PM per ton of waste burned. This emission limit is less than the emission factor contained in AP-42 of 4.7 lb PM/ton for multiple chamber incinerators. The Environmental Flight (15 CES/CEV) at Hickam AFB requested the assistance of Armstrong Laboratory's Air Quality Function (AL/OEBQ) in quantifying the pollutant emissions from the incinerator to determine compliance status (see Appendices A&B). The emissions sampling results were used to determine whether the incinerator meets the 4.0lb/ton limit. Pollutants monitored during the survey included total particulate matter (PM), oxygen (O₂), and carbon monoxide (CO). Environmental Protection Agency (EPA) Method 5 contained in 40 CFR 60 Appendix A was used to sample for total particulate matter.

Site and Incinerator Description

The Hickam AFB type "1" incinerator is an Advanced Combustion Model No. CA 750, Serial No. 5933. This incinerator consists of both a primary (lower) and secondary (upper) chamber. Loading of the waste is accomplished by one entry port on the front of the incinerator (Figure 2 and 3). The incinerator uses multiple diesel-fired burners for each chamber. The incinerator is currently utilized to burn type "0" waste and has a design (rated) capacity of 750 lb/hr.

Figure 1. Type "1" Incinerator (left) and Silver Reclamation Incinerator (right) at Hickam AFB, Hawaii.

The type "1" incinerator is scheduled to burn two charges per week. Each charge weighs 250 lb on average. The batch is allowed to burn until all refuse is reduced to ashes. Most of the batch is burned within the first hour and the remaining portion of the waste smolders until it no longer burns. Typically the smoldering lasts approximately 24 hours.

The type "1" incinerator is equipped with a screen at the top of the stack to control large particulates (see Figure 1 and 3). It is not equipped with further control devices.

Applicable Standards and Guidelines

According to the State of Hawaii regulations, Title II Chapter 60.12, the TPM emission standard is $4.0~\rm lb/ton$ (2 g/kg) from a type "1" incinerator. In order to determine compliance with this standard the incinerator needed to be sampled or an appropriate emission factor determined. The EPA's emission factor document, AP-42, was consulted for emission factors. Unfortunately, the EPA AP-42¹ TPM emission factor for the type "1" incinerator is 4.7

1b/ton. This exceeds the allowable limit for the State of Hawaii 4.0 lb/ton limit. As a result emissions testing was conducted to determine the total particulate matter emission rate.

Figure 2. Front end loading of Type "1" incinerator.

METHODS AND MATERIALS

Particulate sampling and analysis were conducted in accordance with Environmental Protection Agency (EPA) Methods 1 through 5. These methods are found in Appendix A to Title 40, Code of Federal Regulations, Part 60^3 . As indicated previously, each burn can last up to 24-36 hours in length, however most of the waste is consumed in the first hour. Sample runs were started at the beginning of each burn and assumed to collect most of the particulate matter mass released.

The incinerator exhaust stack is circular with an inside diameter of 36 inches (see Figure 4). The Type "1" incinerator stack is 226 inches tall. Each stack has 2 sampling port holes. The sampling ports are on the same horizontal plane, 90 degrees apart. The sampling ports for the Type "1" incinerator are located 54 inches upstream from the stack exit and 172 inches downstream from the last stack disturbance (Figure 4). EPA Method 1 requires the sampling port holes to be located a minimum of 0.5

duct diameters upstream and 2.0 duct diameters downstream of the nearest flow disturbances. The ports are 1.5 duct diameters upstream (the stack exit) and 4.8 duct diameters downstream (incinerator exit).

Figure 3. Schematic of Type "1" incinerator. (Not to Scale)

Notes

- 1. A = Distance from center of port holes to the nearest flow disturbance downstream. If possible, this distance should be ≥ 2 stack diameters. At a minimum, this distance must be ≥ 0.5 stack diameters. (For the Type "1" Incinerator A = 54".)
- 2. B = Distance from center of port holes to the nearest flow disturbance upstream. If possible, this distance should be ≥ 8 stack diameters. At a minimum, this distance must be ≥ 2 stack diameters. (For the Type "1" Incinerator B = 172".)

Figure 4. Locations of Exhaust Stack Sampling Ports

The EPA's Hewlett-Packard 41 (HP 41) "METH 1" calculator program was used to determine locations and numbers of traverse points⁴. A total of 24 traverse points (12 for each port hole) were used to collect a representative sample from the Type "1" incinerator.

Prior to the first sampling run, the average degree of cyclonic flow was determined by using a Type-S pitot tube and measuring the stack gas rotational angle at each point along the center traverse. Flow conditions are considered acceptable when the arithmetic mean average of the rotational angles is 20 degrees or less. Rotational angle measurements showed the Type "1" incinerator's air flow to be within acceptable limits. A' preliminary velocity pressure traverse, using the same Type-S pitot tube, was also accomplished at this time.

A grab sample for Orsat analysis (measures $\rm O_2$ and $\rm CO_2$ for stack gas molecular weight determination) was taken during each sampling run (see Figures 5 & 6)

Figure 5. Schematic of Orsat Analyzer

Figure 6. Orsat Analysis

For each representative sample, 3 sampling runs were conducted and the results averaged to determine the final emission value. All sampling runs were 60 minutes in duration.

The particulate matter content, moisture, velocity, and temperature of the exhaust stack gas were determined using an EPA Method 5 sampling train. The train consisted of a button-hook probe nozzle, heated stainless steel probe, heated glass-fiber filter, impingers, and a pumping/metering device (meter box). A schematic of the Method 5 sampling train is shown in Figure 7 and a picture of a Method 5 sampling train in the field is shown in Figure 8. Calibration data for the Method 5 equipment are found in Appendix C. Calibrations were performed in accordance with EPA's Quality Assurance Handbook. 5 Stack gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer and the procedures described in EPA Method 2. The probe nozzle was sized (with a micrometer) prior to sampling using EPA Method 5 criteria. Type K thermocouples were used to measure stack gas and sampling train temperatures. The probe liner was heated to minimize moisture condensation. The heated filter was used to filter out particulates prior to the impingers. The impinger train consisted of four glass impingers in series. The impinger train was placed in an ice bath which enabled the stack gas moisture to condense into the impingers. The first, third, and fourth impingers were of modified Greenburg-Smith design while the second impinger was a

standard Greenburg-Smith type. The first and second impingers each contained 100 milliliters (ml) of distilled water, the third impinger was empty, and the fourth impinger contained 200 grams (g) of silica gel.

The pumping and metering system was used to control and monitor the sample gas flow rate. The velocity and flow rate of the stack gas were calculated using the EPA's HP 41 "METH 2" Calculator Program. The percent moisture of the exhaust stack gas was calculated using the EPA's Hewlett-Packard 41 (HP 41) "METH 4" Calculator Program. Printouts from all the HP 41 programs run for this survey are found in Appendix D.

Figure 7.0 Schematic of EPA Method 5

Figure 8. EPA Method 5 sampling train

Front half particulate matter mass (material collected on sampling train surfaces up to and including the filter) was determined for compliance purposes according to the procedures specified in EPA Method 5. Field data from particulate sampling are presented in Appendix E. Emission calculations were accomplished using the "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" developed by the EPA Office of Air Quality Planning and Standards.

Quality Assurance/ Quality Control

Copies of all supporting calibration and quality assurance date are in the appendices.

Pre-survey

Prior to the survey, several steps were taken to calibrate equipment and prepare the sample filters. The meter box contains a dry gas meter that was calibrated using another dry gas meter. Although a dry gas meter is considered a secondary standard it can be used in lieu of a primary standard provided it is calibrated by a transfer standard whose calibration is traceable to a primary standard (i.e., wet test method). The purpose of this calibration is to ensure the volume collected as indicated by the meterbox is a measure of the true volume collected. Sample filters were pre-

dried in a dessicator for twenty-four hours and weighed to the nearest 0.1 milligram. They were placed back in the dessicator and re-weighed 6 hours later. If the weights were within 0.5 milligrams the average weight was recorded on a resealable plastic bag and the filter placed in it. Pitot tubes used to measure velocity were also calibrated within standards, correction factors determined, and recorded.

Survey

During the survey several steps were taken to ensure sample accuracy and precision. When the sampling train is assembled a leak test of the sample train and pitot tube was conducted before and after each sample run. Additionally, the nozzle selected for a particular run was measured using a micrometer and the diameter recorded on a calibration sheet.

Post-Survey

Upon completion of the sample run, the filter was removed and placed in aluminum foil which in-turn was labeled and placed in the resealable plastic bag. Post weighing was performed at Armstrong Laboratory using the same procedures indicated in EPA Method 5. The stainless steel probe was rinsed and brushed into a sample container at the on-site laboratory with acetone. collects any particulate matter that may have adhered to the inside of the probe. The sample jars were labeled with run number, level of rinse (used to determine if a jar leaked during transport), and finally shipped to Armstrong Laboratory. Armstrong Laboratory the acetone rinse was transferred to preweighed beakers. The volume of acetone was recorded and the beakers were placed in a controlled ventilation hood. After the acetone had evaporated the beakers were weighed in the same manner as the filters. The acetone residual weight was calculated and normalized to a QA/QC probe rinse. The impinger contents were measured using a graduated cylinder and electronic balance.

RESULTS

Sample results for particulate matter are shown in Table 1. Total particulate matter is a combination of PM collected on the filter and PM collected from rinsing the EPA Method 5 train components.

Table 1. Total Mass of Particulate Matter Collected

Test Run #	Filter PM Collected (lb)	Rinse PM Collected (lb)	Total Particulate Matter (lb)	
TYPE"1" - 1	2.62E-04	1.84E-04	4.46E-04	
TYPE"1" - 2	N/A	N/A	N/A	
TYPE"1" - 3	4.80E-05	1.72E-04	2.28E-04	
TYPE"1" - 4	8.16E-05	1.80E-04	2.62E-04	

Table 2 shows the calculated particulate matter emissions rates. The amount of particulate matter captured in the EPA Method 5 train is adjusted to reflect the total particulate emissions from the stack. The sampling train's dry gas meter records the amount of exhaust gas collected through the train. At the same time, pitot tube readings from within the stack determine the stack gas velocity. By knowing the stack gas velocity, stack area and time sampled it is possible to determine the total gas exhausted through the stack. Total particulate matter is then determined by multiplying the particulate matter collected through the train by the ratio of gas collected through the train to the total gas exhausted through the stack. The total particulate matter value is then divided by the amount of waste incinerated to determine the emission rate.

Table 2. Total Mass of Particulate Matter Emitted

Test Run #	Total PM Emitted (lb)	Amount of Waste Incinerated (ton)	Total PM Emitted Per Waste Incinerated (lb/ton)	
TYPE"1" - 1	4.46E-04	0.284	3.65	
TYPE"1" - 2	N/A		N/A	
TYPE"1" - 3	2.28E-04	0.147	3.61	
TYPE"1" - 4	2.62E-04	0.132	4.61	

Table 3 shows the average emissions and compliance standard.

Table 3. Incinerator Compliance Results

Test Run #	Total PM Emitted (lb/ton)	Total PM Standard (lb/ton)	Compliance Status		
TYPE"1" - 1	3.80				
TYPE"1" - 2	N/A				
TYPE"1" - 3	3.48				
TYPE"1" - 4	4.39				
Average	3.89	4.0	Yes		

DISCUSSION

Results from the particulate matter emissions testing for the Type "1" Incinerator are below State of Hawaii Permit limits. Operators of the incinerator should ensure that the temperature and retention time in the secondary chamber is sufficient to maintain complete combustion.

Results for the second run are not shown because the wrong input data was used in the HP41 calculator program. The values obtained were not considered valid. A fourth run was administered to obtain three complete and valid data sets.

Visual inspections of the stack exhausts showed a decrease in particulate matter released after the first forty minutes. This is consistent with the test methodology previously stated. Inspections of the incinerated material after a 2-4 hours showed very little remaining combustion and after 12 hours there were no visible cinders.

REFERENCES

- Compilation of Air Pollution Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, AP-42, Office of Air Quality Planning and Standards (OAQPS), U.S. Environmental Protection Agency (EPA), Research Triangle Park (RTP), North Carolina (NC), January 1995.
- 2. Hawaii Regulations, Title 11, Chapter 60.1, "Air Pollution Control"
- 3. Office of the Federal Register National Archives and Records Service, Code of Federal Regulations, Title 40, Part 60, Washington DC, July 1994.
- 4. U.S. Environmental Protection Agency, Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators, EPA-340/1-85-018, Research Triangle Park NC, May 1987
- 5. U.S. Environmental Protection Agency, Quality Assurance
 Handbook for Air Pollution Measurement Systems: Volume III.
 Stationary Sources Specific Methods, EPA/600/4-77/-07b,
 Research Triangle Park NC, December 1984

APPENDIX A

Personnel Information

Armstrong Laboratory Air Quality Test Team

Capt Kyle W. Blasch, Air Quality Consultant, Project Officer Capt Thomas C. Moore, Air Quality Consultant Capt Greg P. Durand, Air Quality Consultant

AL/OEBQ 2402 E Drive Brooks AFB TX 78235-5114 Phone: DSN 240-3305 Comm (210) 536-3305

Hickam AFB On-Site Representatives

Mr. Melvin Muraoka 15 CES/CEV 75 H Street Hickam AFB, HI 96853-5233 Phone: DSN 449 - 8998 Comm (808) 449-8998 APPENDIX B

DEPARTMENT OF THE AIR FORCE PACIFIC AIR FORCES

12 0 MAY 1996

MEMORANDUM FOR AL/OEBO

2402 E. DRIVE, BUILDING 175W BROOKS AFB TX 78235-5114

FROM: 15 CES/CEV:

75 H Street

Hickam AFB HI 96853-5233

SUBJECT: Air Sampling Work - Title V

- 1. Armstrong Laboratory (AL) is scheduled to conduct National Emission Standard for Hazardous Air Pollutants (NESHAP) work on Hickam AFB during the Jul/Aug timeframe. During this period, we would like AL to conduct source sampling on two incinerators located on Hickam AFB.
- 2. During our annual air emission update/Title V permit review, we identified a possible compliance issue with our incinerators. EPA AP-42 air emission factors indicate the following emissions for PM-10 (Particulate Matter less than 10 micron diameter).

Type Incinerator	Emission Rate
Type "O" waste incinerator	5.7 lb/ton
Silver reclamination incinerator	4.7 lb/ton

3. The State of Hawaii limitation for all incinerators is 4.0 lb/ton. Source testing for PM-10 needs to be conducted on these two incinerators to determine compliance status.

4. Please contact Mr. Melvin Muraoka at (808) 449-8998 to discuss any items.

MICHAEL F. MCGHEE, P.E. Chief, Environmental Flight 15th Civil Engineer Squadron

APPENDIX C

METER BOX CALIBRATION DATA AND CALCULATION FORM							
English Units							
Meter Box Number:	4	Date:	12-Jul-96				
Barometric Pressure, Pb, in.Hg:							

Orifice	Gas Vo	lume		Temperat	ures		Time	Yi	ΔH@;
			100	-			Time	11	ΔHe
Manometer	Wet Test	Dry Gas	Wet Test	Dry (Gas Meter				
Setting	Meter	Meter	Meter	Inlet	Outlet	Avg			
(ΔH)	(V_w)	(V_d)	(t _w)	(t _{di})	(t _{do})	(t_d)	(Θ)		
in. H ₂ 0	ft ³	ft ³	°F	°F	°F	°F	min		in. H₂O
0.50	5	4.985	74	77	76	76.5	12.35	1.006447	1.74759
1.00	5	4.99	76	82	78	80	8.5	1.006964	1.65728
1.50	10	10.43	76	86	80	83	. 14.31	0.967665	1.75171
2.00	10	10.145	75	90	83	86.5	12.74	1.001886	1.83252
3.00	10	10.035	76	93	84	88.5	10.32	1.01216	1.80383
4.00	10	9.99	75	96	86	91	8.93	1.02073	1.78600
		•					Average	1.002642	1.76316

$$Y_{i} = \frac{V_{w} P_{b} (t_{d} + 460)}{V_{d} (P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$$

$$\Delta H@_{i} = \frac{0.0317}{P_{b}(t_{d} + 460)} \left[\frac{(t_{w} + 460)\Theta}{V_{w}} \right]^{2}$$

14/101

Date:			Post Test C	Calibration					
Orifice	Gas Volume		Temperatures			Time	Yi	ΔH@ _i	
Manometer	Wet Test	Dry Gas	Wet Test Dry Gas Meter						
Setting	Meter	Meter	Meter	Inlet	Outlet	Avg			
(∆H)	(V_w)	(V_d)	(t _w)	(t _{di})	(t _{do})	(t_d)	(Θ)		
in. H₂0	ft ³	ft ³	°F	°F	°F	°F	min		in. H ₂ O
2.50	10	10.265	68	74	73	73.5	12.17	0.978218	2.08554
2.50	10	10.29	70	80	74	77	12.31	0.978536	2.135983
2.50	10	10.17	72	85	77	81	12.24	0.993708	2.111996
							Average	0.983487	2.111173

Run	Pre test Calibration Factor	Post Test Calibration Factor	Change	% Change
#1	1.002642	0.98349	0.019155	1.910453

Operator: Kyle Blasch

Signature:____

Quality Assurance Handbook M5-2.3A

		Nozzle Calibration Data Form		
BRUDIET	AFB		Date:	25 Avg 95
ē	RODIES	ROOKS AFB		

Nozzle Identification		Nozzle Diameter ^a			ΔD^{b}		D _{avg} ^c			
Number	D	1	D ₂	2	D	3	7			
Units	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
1		0.747		0.747		6,747		0		6,747
2										101111
3		0.623		0.622		0.622		,00i		0.622
4										
5										1
6										
7										
8										
9										
10										
11										
			* ***							
										
										1

										,
	***************************************				W.WW					
									-	
					-		-			

Where:

^c D_{avg} = Average of D_1 , D_2 , and D_3

Operator: Kyle Blasch	Signature:	1/1 Dela
		V

Quality Assurance Handbook M5-2.6

 $^{^{}a}$ D_{1,2,3} = Three different nozzle diameters; Each diameter should be measured to the nearest 0.025mm (0.001 in.)

 $^{^{}b}$ ΔD = Maximum difference between any two diameters; $\Delta D \leq$ 0.10 mm (0.004 in.)

TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot Tube Assembly Level? Pitot Tube Openings Damaged?	yes yes (explain below)	no	
$\alpha_1 = \frac{1}{\beta_1}$ o (<10°) $\beta_1 = \frac{1}{\beta_2}$ o (<5°)	$\alpha_2 = \frac{2.5}{3.5}$ $\beta_2 = \frac{1}{3.5}$	° (<10°) ° (<5°)	
$ \gamma = 0.5 \\ \theta = 0.2 \\ A = 0.85 \\ \text{cm (in.)} $			
	<0.32 cm (<1/8 in.) <0.08 cm (<1/32 in.)		
$P_{a} = 0.430 \text{ cm (in.)}$ $P_{b} = 6.450 \text{ cm (in.)}$ $D_{t} = 0.336 \text{ cm (in.)}$			
Comments:			
	• • • • • • • • • • • • • • • • • • • •		
Calibration Required?ye	sno		

Operator: KYLE BLASCH Signature: Kyle 31 Sc1 96

Quality Assurance Handbook M2-1.7

TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot	Tube	Assembly	Level?
Pitot	Tube	Openings	Damaged?

_____yes ___ _____yes (explain below) __

$$\alpha_1 = 3^{\circ}$$
 ° (<10°)
 $\beta_1 = 3^{\circ}$ ° (<5°)

 $\alpha_2 = 5$ $\beta_2 = 3$ ° (<10°)
° (<5°)

___no X__no

$$z = A \sin \gamma =$$
 cm (in.); <0.32 cm (<1/8 in.)
 $w = A \sin \theta =$ 0.0174 cm (in.); <0.08 cm (<1/32 in.)

Comments:	461 + , 455 = A= ,916	
	,461	
	· 45 [
	.916	

Calibration Required?	yes	_	nc

Operator: Kyle Mash

Signature:

Quality Assurance Handbook M2-1.7

APPENDIX D

YROM "METH

DIA IN	CHES? 36.0000	RUN	DIA INC		
NIPPLE			NIPPLE	17,0000 INCH ?	
POINTS	5,2500 ONE TRV?	RUN		0,0000	
POINT	12,0000	RUN	POINTS	ONE TRV? 10,0000	,R
	1,	6,3	POINT	1,	
POINT	2,		POINT	2,	
POINT	3,	7,7	POINT	3,	
POINT	4,	9,5			
POINT	5,	11,6	POINT	4,	
	•	14,3	POINT	5,	
POINT	6,	18,1	POINT	6,	
POINT	7,		POINT	7,	1
POINT	8,	28,4			1
POINT	9,	32,3	POINT	8,	1-
	,	34,9	POINT	9,	i
POINT	10,	37,0	POINT	1.5	
BOTHE	7.1	07,0			1

STACK DIA INCH? 36,0000 NO TRAV PTS.? 12,0000 BAR PRESS? 30,0200 STATIC IN HOH? .0900 % MOISTURE?	RUN RUN RUN RUN	PS = 8, 620, TACK TEMP? 650, PS = 8,	RUN RUN RUN	## OTHER PRESS ?09 ### STACK FOR 2 ### STACK FOR 2	RUN RUN RUN RUN RUN
3,0000 PITOT CP ? .8400 % CO2 ? .8,0000 % OXYGEN ? % CO ? .9,0000 MOL WT OTHER ? .0,0000	RUN RUN RUN RUN RUN RUN	PELTA P 3, .01 STACK TEMP? 730, PS = 8, ELTA P 4, .01 TACK TEMP?	RUN RU RU		
ALTHA C. C.		850, PS = 9, VELTA P 5, .01 TACK TEMP? 950, PS = 9,	RU' RU RU		
		DELTA P 6, .01 STACK TEMP? 1.083, PS = 10,	Ribm 2		
		ELTA P 7, .01 TACK TEMP? 1.125, PS = 10,	RL:		
		ELTA P 8, .01 TACK TEMP? 1.125, PS = 10,	R. Ru		
		ELTA P 9, .01 .TACK TEMP? 1.120, PS = 10,			
· _		YELTA P 10, .01 STACK TEMP? 1.116, FPS = 10,	•		
		DELTA P 11, .01 STACK TEMP? 1.090, FPS = 10,	R. R.		
•		DELTA P 12, .01 STACK TEMP? 1.078, FPS = 10,	RUN RUN	-	
		AVE FPS = 9, AVE FPM = 552, AVE DELTA P = 0,0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

### RUN SERVE HICKAM AFB TYPE O INCIN ONE ###################################	UN NUMBER LICKAM AFB TYPE O INCIN THREE ETER BOX Y? 1,0030 ELTA H? 9900 ETER VOL 32,0650 ETER VOL 32,0650 ETER VOL 32,0650 ETER GAS COTHER GAS EMOVED BEFORE ORY GAS METER ? STATIC HOH IN ? STACK TEMP. 1.0900 ML. WATER 81,5000	BAR PRESS ? METER VOL ? METER VOL ? 35,4340 MTR TEMP F? 93,0000 4 OTHER GAS REMOVED BEFORE DRY GAS METER ? 0,0000 STATIC HOH IN ?
IMP. % HOH = 7,3 % HOH=7,3 % CO2? % OXYGEN? % OXYGEN? % CO ? % GO000 RC MOL WT OTHER? 0,0000 RU MWd =28,85 MW WET=28,06	7 00 0	IMP. % HOH = 12,4 % HOH=12,4 % CO2? % OXYGEN? % CO ? MOL WT OTHER? 9,0000 ; MWd =29,59 MW WET=28,16
SQRT PSTS ? TIME MIN ? 60,0000	SQRT PSTS ? TIME MIN ? 60,0000 R NOZZLE DIA ? STK DIA INCH ? 36,0000 R * VOL MTR STD = 30,992 STK PRES ABS = 30,06 VOL HOH GAS = 3,84 X MOISTURE = 11,01 MOL DRY GAS = 0,890 X NITROGEN = 81,00 MOL WT WET = 29,75 MOL WT WET = 29,75 MOL WT WET = 29,46 VELOCITY FPS = 9,97 STACK AREA = 7,07 STACK ACFM = 4.226, * STACK DSCFM = 1.201, 99,9	TIME MIN ? 3,8200 F. **ROZZLE DIA ? 7470 F. **STK DIA INCH ? 36.0000 P.

APPENDIX E

Table E.1 Hickam AFB Incinerator Survey Filter Weights

Run #	1 st Weight 29Aug/0900	2 nd Weight 29Aug/1500	3 rd Weight 30Aug/0745	4 th Weight 30Aug/1500	5th Weight 3Sep/0730
	(g)	(g)	(g)	(g)	(g)
T1I - 01	0.4072	0.4057	0.4069	0.4051	0.4048
T1I - 03	0.3122	0.3114	0.3121	0.3114	0.3112
T1I - 04	0.3272	0.3265	0.3269	0.3262	0.3258

Table E.2 Particulate Matter From Filter Collection

Run #	Filter Initial Weight (g)	Filter Final Weight (g)	Particulate Matter Weight (g)	Total PM For Each Run (g)
T1I - 01	0.2864	0.4050	0.119	0.119
T1I - 03	0.2895	0.3113	0.0218	0.0218
T1I - 04	0.2889	0.3260	0.0371	0.0371

Table E.3 Particulate Matter From Acetone Rinse

Run #	Initial Weight 29Aug/1600 (g)	1 st Weight 5Sep/0745 (g)	2 nd Weight 5Sep/1600 (g)	Final Weight (g)	Acetone Rinse Weight (g)
Blank	162.9687	162.9682	162.9680	162.9681	-0.0006
T1I - 01	165.8259	165.9099	165.9095	165.9097	0.0838
T1I - 03	162.7079	162.7862	162.7862	162.7862	0.0783
T1I - 04	166.1486	166.2308	166.2304	166.2306	0.0820

Table E.4 Type "1" Incinerator Stack Sampling Results

	Run 1	Run 3	Run 4	Average
Test Date	6 Aug 96	9 Aug 96	12 Aug 96	
Test Start Time (Military)	1045-1145	1000-1100	1400-1500	
Station Pressure ("Hg)	30.01	30.07	30.02	
Stack Static Pressure ("H ₂ O)	-0.09	-0.09	-0.09	
Average Stack Gas Temperature (° F)	781	1201	961	
Stack Gas Moisture Content (%H ₂ O)	7.3	11.0	12.4	
Stack Gas Oxygen Content (%O ₂)	21	10.73	11.0	
Stack Gas Carbon Dioxide Content (%CO ₂)	.070	8.27	7.2	
Stack Gas Velocity (ft/sec)	13.03	9.97	9.44	
Actual Stack Gas Flow Rate (ACFM)	5528	4226	4002	
Corrected Flow Rate (DSCFM)	2187	1201	1307	
Total Gas Volume (DSCF)	54.266	32.065	35.434	
Percent Isokinetic	93.47	99.93	102.20	
Waste Incinerated (ton)	0.284	0.147	0.132	
PM Collected (lb)	4.46E-04	2.28E-04	2.62E-04	
PM Emission Rate (lb/ton)	3.80	3.48	4.39	3.89

Units

"Hg = inches of mercury

" H_2O = inches of water

° F = degrees Fahrenheit

 $%H_2O$ = percent moisture

 $%O_2$ = percent oxygen

ft/sec = feet per second

ACFM = actual cubic feet per minute

DSCFM = dry standard cubic feet per minute

lb/hr = pounds per hour

Note: $lb/hr = (ppm) (MW) (DSCFM) (1.55 \times 10^{-7})$

State of Hawaii Permit Limits

Particulate Matter:

4.0 lb/ton

		urvey Data Shee	t			
		e Calculation			,	
Base: Hickan Al	EB .	- Constitution of the Cons	Date:	2 Avg		
Base: It'ckan At Source: Type "1" In	cinerator		Time:	10:00		
Inside Stack Diameter (Inc		36 in				
Stack Static Pressure (In I		-0.09				
Station Pressure (In. Hg):		30.02				
otation i recoure (iii. rig).		30.00				
			•			
Sampling Data:						
Traverse Point Number	Stack Temperature (°F)	Velocity Head (∆p In. H₂O)	(∆p) ^{0.5}	Dwell Time (min)	Cyclonic Flow (°)	Abs Flow (°)
1		0.01			0	
2	650	0.01			0	
3	730	0.01			0	
4	850	0.01			5	
5	940	0.01			0	
6	1083	0.01			0	
7	1125	0.01			0	
8	1125	0.01			0	
9	1120	0-01			0	
10	1116	0.01			0	
11	1090	0.01			0	
12	1078	0.01			0	
13						
14						
15				, ,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
16						
17			ļ			
18						
19						
20						
21						
22						
23						
Average =	961	0.01			0.42	
					0.76	
Operator: GREG D	urad	Signature:	-:5/	all		

	Impinge	er and Orsat Anal	ysis Data Sheet		
Base: HICKAM AFB			Date: 6 Avc 9	î6	
Source: TYPE "O"	Run	13.1	Date: 6 Aug 9		
		IMPINGER		VOLUME	WATER
ITEM			INITIAL VOLUME		
		(ml)	(ml)	(mi)	
IMPINGER 1 (H₂0)		153	100	53	
IMPINGER 2 (H₂O)	Standard Tip	115	100	15	
IMPINGER 3 (H₂0)		P	0	φ	
IMPINGER 4 (Silica Ge	el)	22¢	200 gm	20	
		Total Volume of \	Water Collected	88	
II.		MIGHTY	ORSAT		
Scratch Space:					
15.6 19.4 20.6 21.0 21.2	19.0	0 0 14-4 24-2		288 + 6.72 € 3	× 2. 114
		•	V - 7 V		
CO ₂ = Reading A; O ₂ = Reading B-A; C			%O ₂ - %CO ₂);		
DMW = 0.440(%CO2) + 0.320(%O2) +	0.280(%CO + %N	N2)			,
ITEM	ANALYSIS	ANALYSIS	ANALYSIS	AVERAGE	COMMENT
	1	2	3		
Reading A	0,0	0.2	00		
Reading B	21.0	21.2	21.0		
Reading C			_		
VOL% CO₂	6.0	6. 2	0.0		
VOL% O₂	21.0	21.0	21.0	21.0	
VOL% CO					
VOL% N ₂	79.0	78.0	79.€		
Dry Molecular Weight	28.84	23.872	28.84	28,551	L
Fuel Factor: $F_0 = (20.9 - \%O_2)$) / %CO ₂ =		F _o (Natural G	as): 1.600 - 1.836	3
Operator: Kylc Bla	och		Signature:	Kyl MI	

168.336

Pressure Vacuum ("Hg) Schematic of Stack **Outlet Temp** Impinger 59/825 (F) 8 000 8 COS 8 88 S S, Box Temp Sample 2232 (F) 200 3 ese ese 200 340 126 747 THE. 52 m (at 15 "Hg) (at 22, "Hg) 29.24 Probe Temp 250 05E (F) 8x6 550 200 550 500 350 23% 261 345 Z 3 de 37.5 Assumptions MW_D: Orifice Diff Press, AH ("H₂O) S. 2.03 2.50 2.07 2.03 28.7 3.74 203 3.46 2.03 Post Train Check: Pre Train Check: Particulate Sampling Data Sheet Post Pitot Check: in Pre Pitot Check: %H20: 7.5 Head, Ap Velocity ("H₂O) · oute ,03 000 800. 500 000 0000 250 Seo-,035 20, 0000 000 ago. 200. 3 200. 200 oco-0 5/0-100 Temp, T_s 360 Stack 418 6001 230 33% 000 523 346 300 3 361 1001 0 9 0.147 Q.84 1.763 1.003 Gas Meter Temp, T_m 479 3 ont (PF) 32896 2000 Pitot Coefficient, Cp. 000 द्रहरी द्रावर \mathscr{S} 2/2 Meter Box ∆H@: Nozzle Diameter: 0 Meter Box Y; "Hg Meter Box #: 200 "H2O Probe #: (P) 8 00 200 14.067 Meter Vol Dry Gas (\mathbb{H}^3) INCIN 30.01 Sampling J.Susin 60.1 Time (min) Ž Source ID: TYPE Base: HICKAM Station Pressure: 6 Aug Static Pressure: Run Number: Fraverse Number Point 3 5 Ą 0 0 d 300 O 7 Date:

Meter Box Operator:

GREG Purand

Signature:

57965

Avg (PsTs)

Avg $\Delta H =$

128

Avg T_s =

9

Avg T_m =

いどのどう

Total Gas Vol

Nov 95

68.576

2.36

	Imping	er and Orsat Ana	lysis Data Sheet		
Base: HICKAM AFB			Date: 8 Ava		
Source: TIPE "O" Incin	Ru 6	2	Time: 13:30		
I. ITEM			ANALYSIS INITIAL VOLUME	VOLUME	MATED
11 - 101					
		(ml)	(ml)	(ml)
IMPINGER 1 (H₂0)		183	100	83	
IMPINGER 2 (H₂O)	Standard Tip	60	100	-40	no visible movement during requi
IMPINGER 3 (H₂0)		0	0	O	
IMPINGER 4 (Silica Ge	el)	206	200 gm	6	
		Total Volume of \	Water Collected	49	
ii.		MIGHTY	ORSAT	·	
Scratch Space:					
6.46.4 6.97		7.07.0			
17.2 19.2 15.8 18.3 18.3 18.9	18.6	16.4 16.9			
18.3 18.3 18.9	18.9	1920			
2.816+ 3.808+22.876	3.040	02 3,806 - 22.3	709 3,0807	+ 3.84 + 22,	1800
CO ₂ = Reading A; O ₂ = Reading B-A; C					
MW = 0.440(%CO2) + 0.320(%O2) +	0.280(%CO + %N	12)			
ITEM	ANALYSIS	ANALYSIS	ANALYSIS	AVERAGE	COMMENT
112.11	1	2	3	AVENAGE	COMMENT
Reading A 6.	1	7.0	7.0	6.8	
Reading B 16	3	18:9	19.0		
Reading C					
VOL% CO ₂	.4	7.0	7.0	6.8	
VOL% O ₂ //,		17.9	12.0	11.9373	
VOL% CO		1	-	. , , , , ,	
	, 7	81.1	81.0		
	50c	29-5967	29.6007	29.5658	
Fuel Factor: $F_0 = (20.9 - \%O_2)$	/ %CO ₂ =		F _o (Natural G	as): 1.600 - 1.836	
Operator: Kyle Llase	h	_	Signature:	fall	

Nozzle Diameter:					Pa	Particulate Sam	Sampling Data Sheet	heet				
Source	Date:	BA,	9	Nozzle Dian		0.747 in	Pre Pitot Ch			Sc	hematic of Sta	송
Standon Pressure: \$\frac{1}{2}\triangle \triangle \triangle \frac{1}{2}\triangle \triangle \frac{1}{2}\triangle	Base:		£;	Pitot Coeffic		4.81	Post Pitot C					
Station Pressure: Total State World State Woody Ordice of Front State State Woody Ordice of Front State Woody Ordice of Front Front State Woody Ordice of Front Front Front Ordice of Front Front Ordice of Or	Source ID	到めんし.		Meter Box >	ئ	1.003	Pre Train Cl	3	(at	T =		
Static Pressure:	Run Num	ber: Two		Meter Box	AH@:	1.763	Post Train C		4			
Static Pressure Static Pre	Station P	essure: 30.		Meter Box#		7		Assumptions	(0)			
Traverse Sampling Dry Gas Gas Mater Temp. T _m Stack (Webcoly) Ordica Diff Traverse Sample Impripare Neuron Vol 6 In 7 Out 1 Cept. 1 Cept. 1 Cept. 2 C	Static Pre	ssure:		Probe #:		Ĭ.		S MWb:	17			
Number Time Mater Vol & In 7 Out Temp Temp Temp Temp Mater Vol & In 7 Out Temp Temp Temp Mater Vol & In 7 Out Temp Temp Temp Mater Vol & In 7 Out Temp Temp Temp Temp Mater Vol & In 7 Out Temp Tem	Travers		Dry Gas	Gas Mete		Stack	Velocity	Orifice Diff	ے Probe	Sample	Impinger	Vacuum
Number (min) (R) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P	Point	Time	. Meter Vol	<u>ه</u>	ō	Temp, Ts	Head, ∆p	Press, ∆H	d Temp	Box Temp	Outlet Temp	Pressure
	Numbe		(#3)	(°F)	(F)	(°F)	("H ₂ O)	("H ₂ O)	(°F)	3 (°F)	7 (°F)	("Hg)
			150									
S	11	9 Bistrin		83	20	1,41	5/0'	2.57	348	HAC	6.7	S
3	18	11		80	06	08C	000'	2.70	250	348	63	9
	w	1/		16,	06	548	5/01	183	252	252	eg eg	6
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	*	11		65	8	388	2015	127	250	348	<i>E9</i>	Ŋ
	لم	//		26	06	00/	.030	2.33	5.50	9HE	62	S
1	P	11 .		23	06	399	,020	2.33	5550	\@33	63	7
	7	. "		46	06	1008	5/00	603	257	232	53	45
10 11 12 12 13 14 10 1360 135 10 10 10 10 10 10 10 1	O	//		46	70	299	0/00		360	236	65	6
10 11 12 12 12 12 12 12		11		46	30	1036	5/0,	1,01	560	238	64	5
		//		46	16,	8/00/	5101	001	0360	342	19	5
12		"		56	18	290/	5/00	28%	262	446	1.9	۵
	(2)	//		26	18	7077	0/0"	590	1.90	340	5.5	5
2 0,5 min 236,450 91 91 100 0.06 0.49 0.49 0.30 570 0.30 570 0.05 0.05 0.45 0.30 570 0.30 570 0.05 0.05 0.05 0.30 570 0.05 0.05 0.05 0.05 0.05 0.05 0.05			3									
3	18		3	16	16	985°	0/0-	690	440	338	2/	A
7	1			23	16	1120	2/00	560	345	233	25	3
\$\limits_{\infty} \begin{array}{c ccccccccccccccccccccccccccccccccccc	ח	1		92	2/	1233	210-	0.89	250	250	52	9
State Stat	4	"		46	82	1350	2/0,	0,00	250	272	53	9
\$\limins_{\text{C}} \times_{\text{C}} \times_{\text{C}} \times_{\text{C}} \text{C}_{\text{C}} \text{C}_{\t	5	//		46	92	1278	5100	28.0	200	240	żs	Ý
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	`		75.	22	1295	0,0/5	0.86	640	414	22	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2		36	55	1306	.015	0.86	246	348	26	Ş
1	B	7		27	છ	1310	oro.	250	She	348	57	4
10 10 245 249 246 240 245 245 245 245 245 245 245 245 245 245 245 245 245 245 245 259 245 259 245 259 245 259 245 259 245 259 245 259 245 259 255	0	`		27	55	1303	010-	0.57	247	348	5.9	4
	10	1		86	24	8681	0/0.	6.50	bre	54C.	25	5
Total Gas Vol = 34.037 Avg $T_m = 1/3$ Avg $T_s = 92$ Avg $\Delta H = 1/7$ Avg $(P_s T_s)^{0.5} = 4/3330$ Nov 95 Signature: Che Mineral Sig	11	11		86	46	1296	0.10	0.53	150	34C	85	4
Total Gas Vol = 34.037 Avg $T_m = 1/3$ Avg $T_s = 989$ Avg $\Delta H = 1/3$ Avg $(P_sT_s)^{0.5} = 4/3$ Nov 95 35.75 Avg 35.35 Meter Box Operator: 64.9 Avg $T_s = 989$ Avg $\Delta H = 1/9$ Avg $(P_sT_s)^{0.5} = 4/3$ 35.75 Avg $\Delta H = 1/9$	S.	"		86	46	1294	010.	וניו	350	3HC	25	b
Total Gas Vol = 3% , 937 Avg $T_m = 1/3$ Avg $T_s = 963$ Avg $\Delta H = 1/3$ Avg $(P_sT_s)^{0.5} = 4/3$ Nov 95 $35/35/35/35$ Meter Box Operator: 6% Avg $T_s = 963$ Avg $\Delta H = 1/3$ Avg $(P_sT_s)^{0.5} = 4/3$ $35/35/35/35/35/35/35/35/35/35/35/35/35/3$			602750	•								
351.759 235.350 Meter Box Operator. 6kg Awand Signature: 35.359 15.379 15.359	Total Gas		1.037	Avg T _m =	113	11	136	Avg AH =		Avg (P _s T _s) ^{0.5}	= 4.	
18:11 6	Nov 95 9-37, 175 5-376. 1/5 6	SE N	Meter Box	Operator:	5	Dercord		,	Signature:	180	00	
	15:457		14.057								,	

	Impinge	er and Orsat Anal	ysis Data Sheet		
	11		Date: 9 M	i. dh	
	HICKam AFB		Time:	ng 46	
Source.	0 3	-			
l		IMPINGER	ANALYSIS		
ITEM		FINAL VOLUME	INITIAL VOLUME	VOLUME	WATER
		(ml)	(ml)	(mi)
IMPINGER 1 (H₂0	0)	202	100	102	
IMPINGER 2 (H₂C	D) Standard Tip	18 72	100	-28	
IMPINGER 3 (H₂0	0)	0	0	۵	
IMPINGER 4 (Silid	ca Gel)	207.5	200 gm	7.5	
		Total Volume of \	Vater Collected	81.5	
11.		MIGHTY	ORSAT		
Scratch Space:		michili	0110711		
8.2 8.2 19.0 19.0	9.0 9.0 18.6 -3.4	6:97:67.6			
3.6+ 3.456 +22	3.49 3.41	+ 3.077 + 22.	792 3,344	+ 3.776 + 22.5	68
CO ₂ = Reading A; O ₂ = Reading	B-A; CO ₂ = Reading C-B	B; N ₂ =(100% - %CO ₂ - '	%O ₂ - %CO ₂);		
DMW = 0.440(%CO2) + 0.320(9					
					,
ITEM	ANALYSIS	ANALYSIS	ANALYSIS 3	AVERAGE	COMMENT
Reading A	1	2	7.6	8.2667	
Reading B	8.2	7.0	19,4	19.00	
Reading C	1 110	10.0	11,	, , , ,	
T todding o					
VOL% CO₂	162 B.1	9.0	7.6	8.27	
VOL% O ₂	10.8	9,6	11.6	10-73	
VOL% CO	-	-	-	•	
VOL% N₂	\$1.0	81.4	80.6	81	
Dry Molecular Weight	29.736	वर् ६२५	29-688	29,7493	
Fuel Factor: F _o = (20.9 -	- %O ₂) / %CO ₂ =		F _o (Natural C	Gas): 1.600 - 1.836	3
Operator: K	, le Blesch		Signature:	if we	

Base:					Pa	Particulate Sampling Data Sheet	Ipling Data	Sheet				
Number: The Carlington, April Principal Principa		84UG 96		Nozzle Dian	neter:		Pre Pitot Ch		£	Sc	hematic of St	ack
Number Fore Part		FICKAM	F.B.	Pitot Coeffic	int,	Ø, 84	Post Pitot C		<u></u>			
Moter Box Art Moter Box Ar	Source ID	YPE "		Meter Box \	ا:	1,003	Pre Train C	1	(at	ī		
Chessure 1	Run Numb	Der: THREE	1,1	Meter Box,		1.763	Post Train C		, (at	ı.		
Chessure: + 0 a o ThO Probe #: 644 Stack Velocity Ordine Diff Probe Stample Impiles	Station Pro			Meter Box #		7		mpti	1	<u> </u>		
Sampling Dry Gass Gass Meter Temp, T _m Stack Velocity Oritice Diff Frühe Sample Impinger	Static Pres			Probe #:		١.						
	Traverse		Dry Gas	Gas Mete	ď	Stack	E	Orific	-	Sample	Impinger	Vacuum
	Point		. Meter Vol	드	Out	Temp, T _s	Head, ∆p	Press, AH		Box Temp	Outlet Temp	Pressure
A 0.5° 3.50.344 87 87 470 -1 1.79 353 345 555	Number		(ft³)	(°F)	(°F)		("H ₂ O)	("H ₂ O)	(°F)	(°F)	(P)	(Ha)
A 3.5" 81			4/C.CSE									5
	7			18	28	A.S.	10'	1.79	250	250	19	1.5
	18	"		80	28	250	100	1.55	253	348	85	000
	(ve	2		8	28	789	10.	1.25	ise	253	57	200
	1	"		88	B	7885	10.	1:09	256	350	20	00
	لم (*		90	400	89//	10.	0.97	38	75%		0.0
	97	;;		م	Por	1334	100	296	357	47	23	200
		,		2	83	1225	10.		363	257	2.5	25
				5	83	1305	10'		360	253	23	3.5
				53	86	\ 1	10.	0.90	250	253	5	3.0
10 2.5" 365.2%	67			53	88	_ \ I	100	0.83	252	253	S	30
2 2.5" 362.7%	1			Ž	88	1319	10.	0.89	253	249	25	3.0
10 2.5" 368.797 34 29 99 91 139 20 1.00 20 20 20 20 20 20 20 20 20 20 20 20 2	7				68	1319	100	900	450	348	50	3.0
1 6 2.5" 368.191 37.92 399 437488			JER. 545.									
7	. 1	7,5"	JE 197	d o	\$	13788	ja	11/28:0	L l	SHE.	85.85	3.83.5
74 72 734	7			52	à	~ 1	101	100%	240	252	5.3	3,5
7	2			46	200		100	0.0	24.0	555	žS	55
\$\begin{align*}{c c c c c c c c c c c c c c c c c c c	7			75	3	135%	10.	0.80	243	316	X	3.0
7	h			9.5	80	1372	10.	0.37	242	252	SS	3,0
Gas Vol = 32.065 Avg T _m = 92 (394 of 0.96 347 349 59 Gas Vol = 32.065 Avg T _m = 92 (405 of 0.96 347 357 60 Signature: 24.734 Meter Box Operator: 649 0.00 0.96 357 353 60 (4.5.734 Avg T _m = 92 Avg T _s = 720/Avg AH = 0.99 Avg (P _s T _s) ^{0.5} = 4.059	ا ق			53	8	136	10.	0.66	1/10	756	23	3.0
Gas Vol = 32.0c5 Avg T _m = 92 (1399 (.0) 0.96 347 349 59 Gas Vol = 32.0c5 Avg T _m = 92 Avg T _s = 130/ Avg AH = 0.99 Avg (P _s T _s) ⁰⁵ = 4059 (137) 12 (137) Avg T _s = 130/ Avg AH = 0.99 Avg (P _s T _s) ⁰⁵ = 4059 (137) 12 (137) Avg T _s = 130/ Avg AH = 0.99 Avg (P _s T _s) ⁰⁵ = 4059				76	Ž	1394	10:	0.86	243	248	م	6
Gas Vol = 32.0 c5 Avg T _m = 92 Avg T _s = 1204 Avg AH = 0.96 Avg (P _s T _s) ⁰⁵ = 4.059 (Signature: Avg (P _s T _s) ⁰⁵ = 4.059 (Signat				7/	2	1383	100	0,8	THE	349	موتي	3.0
Gas Vol = 32.065 Avg T _m = 92 Avg T _s = 1201 Avg AH = 0.99 Avg (P _s T _s) ^{0.5} = 14.059/ 52.065 Avg T _m = 92 Avg T _s = 1201 Avg AH = 0.99 Avg (P _s T _s) ^{0.5} = 14.059/ 52.065.787 / 5:734	7	**		120	25	1661	100	28%	277	348	60	0 M
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 3			10		1405	10.	0.96	249	251	60	20
Gas Vol = $38.0 cS^{-}$ Avg T _m = 92 Avg T _s = $190/$ Avg AH = $3.9/$ Avg (P _s T _s) ^{0.5} = $14.059/$ Signature: $18.77/$ Avg (P _s T _s) ^{0.5} = $14.059/$				A 00	77	10%	10.	0.86	349	35%	60	0.5
Gas Vol = $3 \approx 0 65^\circ$ Avg $T_m = 92$ Avg $T_s = 7/20/7$ Avg $\Delta H = \alpha_s P_0$ Avg $(P_s T_s)^{0.5} = 1/20/7$ Avg $\Delta H = \alpha_s P_0$ Avg $(P_s T_s)^{0.5} = 1/20/7$ Avg $\Delta H = \alpha_s P_0$ Avg Δ	7			12	2	1398	10.	0.86	25%	555	60	3.0
Gas Vol = $3 \times 3 \times 3 \times 5 \times $			7		(
14 368-787 15:734 Meter Box Operator: 649 Devend	Total Gas		. 1	Avg T _m =	B	Avg T _s =	100)	Avg AH =	0.99		7	
14 060-111 15:734	Sec. Sec.	ながれない。	, Meter Box	Operator:	(6/63	Dunga			Signature:	La	Del	
15.734	50.011	260-111	15:75	ý -	`					0		
	6,53	15.734	30.00	.] L								

	Impinge	er and Orsat Ana	ysis Data Sheet		
Base: HICKAM AFB		-	Date: 12 Avg 9	6	
Source: TD-4			Time: 16:00		
l			ANALYSIS	1/01/11/15	WATER
ITEM		FINAL VOLUME	INITIAL VOLUME	VOLUME	
		(ml)	(ml)	(ml)
IMPINGER 1 (H₂0)		215	100	115	
IMPINGER 2 (H₂O)	Standard Tip	81	100	-19	
IMPINGER 3 (H₂0)		0	0	6	
IMPINGER 4 (Silica	Gel)	206.5	200 gm	6,5	
		Total Volume of	Water Collected	102.5	
11.		MIGHTY	ORSAT		
18-9 10.9	17-9 17.5	17,9178			
3.212+3,7/2+				1+3.36+23.	016
CO ₂ = Reading A; O ₂ = Reading B-			%O ₂ - %CO ₂);		
DMW = 0.440(%CO2) + 0.320(%O	2) + 0.280(%00 + %1)	(2)			
ITEM	ANALYSIS 1	ANALYSIS 2	ANALYSIS 3	AVERAGE	COMMENT
Reading A	7.3	7.0	7.3		
Reading B	18.9	17.9	17.8		
Reading C					
VOL% CO₂	7.3	7.0	7.0	7 2	
VOL% CO2		7.0	7.3	7.2 11	
VOL% CO	11.6	10.9	10.5	1 I	
VOL% N₂	81.1	921	82.2		
Dry Molecular Weight	29.632	29,584	29,585	29,6613	
Fuel Factor: $F_0 = (20.9 - \%)$				as): 1.600 - 1.836	3
Operator:	Cyle Blasch	_	Signature:	K/M	

,		ack		tuduliu tu				Vacuum	Pressure	(*Hg)		ĺΣ	~	3	いと	80	3.0	35	りゃ	3.5	0%	40	4.0		5,0	5%	5%	5.0	5.0	5:0	550	5.0	50	5.0	250	5.0	51	
		Schematic of Stack				`		Impinger	Outlet Temp	(°F)	¥	49	5.5	6,5	60	09	85	SS	25	25	8	85	<i>و</i> تی	•	5.0	50	27	تحك	53	کی	کخی	5.6	27	85	65	250	= 3.815	A.
		os				···-		Sample	Box Temp	(PF) ·		45C	250	S. Y	300	150	HAC	140	250	250	150	3/20	020		37	ميري	840	252	245	25th	575	201	25%	ब्रद्ध	755	373	Avg (P _s T _s) ^{0.5}	of
. *	,	2	,	(at 15	(at "Hg)	Si	30.0	Probe	Temp	· (°F)		253	555	3B	253	356	Sie	255	65C	255	260	250	356		846	She.	250	250	25%	<i>حر</i> کچھ	2556	255	252	255	257	35.5	1.23	Signature:
	heet	1	`	heck: <i>(Res</i>		Assun	. "	Orifice Diff	Press, ∆H	("H ₂ O)		2.34	1.69	1.40	60 %	1.85	1.30	5/1	1111	80%	50%	1.01	1,00		1.76	1.34	1111	0/7	1000	20%	1:04	0.96	0.81	0.89	0.89	0.00	Avg AH ==	
	Particulate Sampling Data Sheet	in Pre Pitot Check:	Post Pitot Check:	Pre Train Check:	Post Train Check:		%H ₂ O: ℤ	Velocity	Head, ∆p	("H ₂ O)		100	10.	10.	5/0.	2101	10.	10.	10'	101	10.	10'	100		10.	10.	10.	70.	101	10.	10.	101	100	10:	101	100	196	
3H Ibs	ticulate San		0.84	1.003	1,763	4	££	Stack	Temp, T _s	(°F)		250	6180	689	Sal	8 30	870	830	086	1030	1060	1130	1144		046	830	970	788	3/0/	250%	1072	86.11	28 81	1326	1340	1355	Avg T _s =	Owner
HOC	Pai	neter:	ient, C _p :	<u>(</u> !:	ΔН@:	4.	1	Gas Meter Temp, T _m	Out	(°F)		92	92	88	86	765	82	93	93	5	93	93	23		8	16	8	0)	B	ò	18	6	92	88	8	8	63	Cres
		Nozzle Diameter:	Pitot Coefficient, Cp:	Meter Box Y _i :	Meter Box ∆H@:	"Hg Meter Box #:	P	Gas Mete	u	(°F)			8	93	48	.SS.	96	36	36	26	26	67	87			92	53	હ	S.	24	56	Ø	95	8		36	Avg T _m =	c Operator:
16.154 18.681 75.435			\$			ã		Dry Gas	. Meter Vol	(ft³)	345.702												36% 383	545 7.98												381.37	36.434	プラピラン スペッパン Meter Box Operator: アラブダ
1/8		12 ms	HICKAM	TYPE "0"	1	sure: 30.		Sampling	Time	(min)		2.5 min	1	"	11	1	1	. 1/	11	1	1	1	1		2.5	11	11	1	•	1	;	`	//)	1	ì		250
		Date:	Base:	Source ID:	Run Number	Station Pressure:	Static Pressure:	Traverse	Point	Number		7	જ	h	V	لم	9	7	G	م	70	11	ং		7	8	ζ,	*	کم	Φ	7	d	λ	9/	1	Ø	Total Gas Vol =	18.68