Composition comprenant la polyprotéine NS3/NS4 et le polypeptide NS5b du VHC, vecteurs d'expression incluant les séquences nucléiques correspondantes et leur utilisation en thérapeutique

La présente invention concerne le domaine de la vaccination prophylactique et thérapeutique dirigée contre le virus de l'hépatite C (VHC). Elle a notamment pour objet une nouvelle composition contenant une polyprotéine correspondant aux deux protéines colinéaires NS3 et NS4 (appelée ci-après polyprotéine NS3/NS4) et un polypeptide constitué de NS5b, les vecteurs, tels qu'adénovirus ou poxvirus, capables d'exprimer cette composition et leur utilisation en tant que vaccin.

L'hépatite C est la cause principale des hépatites acquises par transfusion. L'hépatite C peut également être transmise par d'autres voies percutanées, par exemple par injection de drogues par voie intraveineuse. Le risque de contamination des professionnels de la santé n'est par ailleurs pas négligeable. La transmission sexuelle a été décrite.

L'hépatite C se distingue des autres formes de maladies du foie associées à des virus, telles que les hépatites A, B ou D. Les infections par le virus de l'hépatite C (VHC ou HCV) sont majoritairement chroniques avec pour résultante des maladies du foie, telles que hépatite, cirrhose et carcinome dans un grand nombre de cas (5 à 20%) et représentent dans les pays développés 30% des transplantations hépatiques.

Bien que le risque de transmission du virus par transfusion ait diminué du fait de la mise en place de tests de criblage dans les années 1990, la fréquence de nouvelles infections par le VHC reste élevée. A titre d'exemple, une étude récente indique qu'il y aurait encore aujourd'hui 10 000 à 15 000 nouveaux cas d'infection par an en France (S. Deuffic et al., Hepatology 1999; 29: 1596-1601). Actuellement, environ 170 millions de personnes à travers le monde sont infectées de manière chronique par le VHC (Hepatitis C: Global prevalence (update) », 2000, Weekly Epidemiological Record, Vol 75(3)). Les populations à risque élevé sont principalement le personnel hospitalier et les utilisateurs de drogues intraveineuses, mais il existe des donneurs de sang asymptomatiques qui n'appartiennent pas à ces groupes à risque élevé et chez lesquels des anticorps anti-VHC circulants ont été retrouvés. Pour ces demiers, la voie de l'infection n'a encore pas été identifiée. Il existe donc

des infections à VHC (estimation entre 5 et 10%), dites infections sporadiques dont l'étiologie est inconnuc et qui ne peuvent être contrôlées.

Le VHC a été le premier virus hépatotrope isolé au moyen des techniques de biologie moléculaire. Les séquences du génome viral ont été clonées avant que la particule virale n'ait été visualisée.

Le VHC appartient à un nouveau genre de la famille des *Flaviviridae*, les hepacivirus. C'est un virus à ARN simple brin positif, de 9,5 kb, qui se réplique par une copie d'ARN complémentaire et dont le produit de traduction est un précurseur polyprotéique d'environ 3 000 acides aminés. L'extrémité 5' du génome du VHC correspond à une région non traduite adjacente aux gènes qui codent pour les protéines structurales, la protéine core de la nucléocapside, les deux glycoprotéines d'enveloppe, E1 et E2, et une petite protéine appelée p7. La région non traduite 5' et le gène core sont relativement bien conservés dans les différents génotypes. Les protéines d'enveloppe E1 et E2 sont codées par des régions plus variables d'un isolat à un autre. La protéine p7 est une protéine extrêmement hydrophobe qui constituerait un canal ionique. L'extrémité 3' du génome du VHC contient les gènes qui codent pour les protéines non structurales (NS2, NS3, NS4, NS5) et pour une région 3' non codante possédant un domaine bien conservé (Major ME, Feinstone SM, Hepatology, juin 1997, 25(6): 1527-1538).

A l'heure actuelle, la thérapie la plus efficace pour le traitement de l'hépatite C associe l'interféron pégylé et la ribavirine (Manns MP et al., The Lancet, 22 septembre 2001, Vol. 358, 958-965). Alors que cette thérapie est particulièrement efficace dans le cas des patients infectés par des souches virales appartenant aux génotypes 2 et 3, elle n'a encore qu'un effet limité sur les génotypes 1a, 1b et 4 (Manns MP, *supra*). Moins de 50% des patients traités deviennent des «répondeurs au long terme ». Par ailleurs, cette thérapie est une intervention coûteuse (10 000 à 15 000 euro/patient/an) et est associée à des effets toxiques. En effet, 5 à 10% des patients sont obligés d'interrompre le traitement avant la fin.

Il est donc nécessaire de mettre au point une composition vaccinale ciblant tous les génotypes.

Plusieurs études montrent aujourd'hui que le contrôle d'une infection due au VHC,

soit naturellement (« résolution spontanée »), soit après traitement (« résolution thérapeutique ») est associé à l'induction ou la potentialisation de réponses immunes à médiation cellulaire faisant intervenir les lymphocytes T-CD4⁺ et T-CD8⁺ (comme décrit par exemple dans LECHNER, F. et al., Eur. J. Immunol., 30 : 2479-2487 (2000) et dans Thimme R. et al., 2001, J. Exp. Med., 194(10) : 1395-1406).

Les molécules du complexe majeur d'histocompatibilité (CMH ou autrement appelé HLA chez l'homme) sont dites de classe I ou de classe II. Les molécules de classe I sont exprimées sur la quasi-totalité des cellules nucléées et sont capables de présenter des épitopes ou peptides aux de-lymphocytes T cytotoxiques (CTL) CD8⁺. Les molécules de classe II sont capables de présenter des épitopes aux cellules T CD4⁺, mais leur expression est restreinte aux cellules présentatrices d'antigène.

Les vaccins contre le virus de l'hépatite C actuellement envisagés sont basés sur l'utilisation de protéines recombinantes adjuvantées, de peptides, de vecteurs d'expression parmi lesquels on peut citer les vecteurs d'origine virale ou bactérienne ou d'ADN nu. Dans ce cas, une ou plusieurs protéines virales ou un ou plusieurs gènes codant pour ces protéines virales sont utilisés.

Lorsque plusieurs protéines virales ou un ou plusieurs gènes codant pour ces protéines virales sont sélectionnés, ceux-ci sont souvent constitués soit par une partie ou l'ensemble des protéines structurales (Makimura et al., 1996, Vaccine, 14: 28-34; Fournillier A., et al, 1999, J. Virology, 73: 7497-7504), soit par les protéines non structurales individuelles ou comprenant au moins deux protéines contiguës (Brinster et al., 2001, Hepatology, 34: 1206-1217), soit par un mélange de protéines structurales et non structurales (Pancholi et al., 2003, J. Virology, 77:382-390).

La demande de brevet WO99/38880 décrit l'utilisation de trois gènes codant séparément pour les trois protéines NS3, NS4 et NS5 (a et b) dans une composition vaccinale comprenant trois vaccins ADN exprimant chacun séparément ces trois protéines. Les auteurs montrent chez la souris l'induction de lymphocytes T spécifiques des trois antigènes. Seul le vaccin exprimant NS5a et b a été testé *in vivo* dans un test de protection.

La demande de brevet WO01/30812 décrit quant à elle l'utilisation d'une protéine de

25

fusion constituée des protéines non structurales NS3, NS4 et NS5a, le cas échéant en association avec la protéine non structurale NS5b. Les auteurs ont indiqué que cette association permettait d'activer les cellules T spécifiques de VHC. Cette demande de brevet décrit simplement la capacité de formulations vaccinales (type ADN nu, adénovirus recombinant ou virus de la vaccine recombinant) exprimant la protéine de fusion NS3 NS4 NS5a ou la protéine NS5a à induire des réponses immunitaires spécifiques et médiées par des lymphocytes T spécifiques.

La Demanderesse a maintenant mis en évidence, contre toute attente, que l'association particulière des protéines non structurales NS3, NS4 et NS5b, NS3 et NS4 étant exprimées de façon colinéaire, présentait un meilleur pouvoir immunogène et protecteur supérieur à celui obtenu avec un vaccin incluant, outre ces protéines non structurales, également la protéine NS5a et/ou d'autres protéines structurales du VHC telles que core, E1 ou E2, et avait un effet sur la capacité des cellules provenant de patients infectés par des souches virales à induire des réponses immunitaires spécifiques.

Ainsi, la présente invention a pour objet une composition peptidique comprenant une polyprotéine NS3/NS4 du virus de l'hépatite C, ainsi qu'un polypeptide NS5b du virus de l'hépatite C.

Elle a également pour objet, les vecteurs incluant les séquences nucléotidiques codant pour cette composition peptidique, tels que les adénovirus et les poxvirus, ainsi que les microorganismes ou cellules hôtes transformés par ces vecteurs.

Elle a enfin pour objet les anticorps dirigés contre la composition peptidique de l'invention, ainsi que l'utilisation de la composition peptidique, des vecteurs et des anticorps pour la préparation d'un médicament destiné à l'inhibition ou le contrôle d'une infection provoquée par le virus de l'hépatite C, et dans une composition vaccinale.

La présente invention propose donc une nouvelle composition peptidique constituée d'une polyprotéine NS3/NS4 et d'un polypeptide NS5b du VHC, laquelle composition a la capacité de stimuler une réponse immunitaire à médiation cellulaire spécifique du VHC, de sorte qu'elle est utile dans le domaine de la vaccination prophylactique et thérapeutique dirigée contre le virus de l'hépatite C.

La polyprotéine NS3/NS4 de la composition peptidique de l'invention est constituée de la protéine NS3 et de la protéine NS4a et b, sans interruption dans la séquence peptidique, comme dans la polyprotéine native. En effet, comme indiqué précédemment, le génome du VHC contient un seul cadre de lecture ouvert qui est transcrit en une polyprotéine. Cette polyprotéine du VHC peut être clivée pour produire au moins dix parties distinctes, dans l'ordre NH₂-Core-E1-E2-p7-NS2-NS3-NS4a-NS4b-NS5a-NS5b-COOH.

La protéine NS3 est une protéine de 630 acides aminés qui apparaît approximativement de l'acide aminé 1027 à l'acide aminé 1657 de la polyprotéine. La protéine NS4, protéine de 314 acides aminés, quant à elle apparaît approximativement de l'acide aminé 1658 à l'acide aminé 1972 (numérotation par rapport au VHC-1) (Choo et al., 1991, Proc. Natl. Acad. Sci., vol 88:2451-2455). La polyprotéine NS3/NS4 apparaît donc approximativement de l'acide aminé 1027 à l'acide aminé 1972.

S'agissant du polypeptide NS5b également contenu dans la composition de l'invention, il est constitué de 590 acides aminés et apparaît approximativement de l'acide aminé 2421 à l'acide aminé 3011 de la polyprotéine (Choo et al., 1991, *supra*).

La protéine NS3 comprend deux domaines structuraux distincts, à savoir un domaine N-terminal doté d'une activité protéasique à sérine active intervenant dans la maturation de la polyprotéine virale et un domaine C-terminal comprenant une activité hélicase associée à une activité NTPasique qui joue un rôle dans la réplication du génome viral.

Par « polyprotéine NS3/NS4 » et « polypeptide NS5b », on entend bien entendu les polyprotéines et polypeptides ayant les séquences en acides aminés natives, provenant de toute souche et isolat du VHC, ainsi que leurs analogues, mutéines et homologues.

Par « analogues » ou » mutéines » de la polyprotéine et du polypeptide, on entend les dérivés biologiquement actifs des molécules de référence qui présentent l'activité souhaitée, à savoir la capacité à stimuler une réponse immunitaire à médiation cellulaire comme défini ci-dessus.

De façon générale, le terme « analogue » se réfère à des composés ayant une séquence et une structure polypeptidique native présentant une ou plusieurs additions, substitutions (généralement conservatrice en termes de nature) et/ou délétions d'acide aminé, par rapport à la molécule native, dans la mesure où les modifications ne détruisent pas l'activité immunogène. Par le terme «mutéine », on entend les peptides présentant un ou plusieurs éléments imitant le peptide («peptoïdes »), tels que ceux décrits dans la demande de brevet PCT WO91/04282. De préférence, l'analogue ou la mutéine ont au moins la même immunoactivité que la molécule native. Des procédés de préparation d'analogues et mutéines polypeptidiques sont connus de l'homme du métier et sont décrits ci-dessous.

Les analogues particulièrement préférés incluent les substitutions conservatrices en nature, c'est-à-dire les substitutions qui prennent place dans une famille d'acides aminés. Spécifiquement, les acides aminés sont généralement divisés en 4 familles, à savoir (1) les acides aminés acides tels que l'aspartate et le glutamate, (2) les acides aminés basiques tels que la lysine, l'arginine et l'histidine, (3) les acides aminés non polaires tels que l'alamine, la leucine, l'isoleucine, la proline, la phénylalanine, la méthionine et le tryptophane et (4) les acides aminés non chargés polaires tels que la glycine, l'asparagine, la glutamine, la cystéine, la sérine, la thréonine et la tyrosine. La phénylalanine, le tryptophane et la tyrosine sont parfois classés en acides aminés aromatiques. Par exemple, on peut prédire de façon raisonnable qu'un remplacement isolé de leucine par de l'isoleucine ou de la valine, d'un aspartate par un glutamate, d'une thréonine par une sérine, ou un remplacement conservateur similaire d'un acide aminé par un autre acide aminé ayant un rapport structurel, n'aura pas d'effet majeur sur l'activité biologique. L'homme du métier déterminera facilement les régions de la molécule peptidique d'intérêt qui peuvent tolérer un changement par référence à aux plots Hopp/Woods et Kyte-Doolite, biens connus dans la technique.

Par «homologie», on entend le pourcentage d'identité entre deux molécules peptidiques, telles que polyprotéines et polypeptides. Deux séquences d'acides aminés sont « sensiblement homologues » l'une par rapport à l'autre lorsque les séquences présentent au moins 60%, de préférence au moins 75%, de préférence encore au moins 80-85%, de préférence encore au moins 90% et d'avantage préféré au moins 95-98% ou plus d'identité de séquence sur une longueur définie des molécules peptidiques.

De manière générale, le terme «identité» se réfère à une correspondance exacte acide arniné par acide arniné de deux séquences peptidiques. Le pourcentage d'identité peut

être déterminé par une comparaison directe de l'information de séquence entre deux molécules en alignant les séquences, en comptant le nombre exact de mésappariements entre les deux séquences alignées, en divisant par la longueur de la séquence la plus courte et en multipliant le résultat par 100. Le pourcentage d'identité peut également être déterminé à l'aide de programmes d'ordinateurs tels que ALIGN, Dayhoff, M.O. dans Atlas of Protein Sequence and Structure M.O. Dayhoff ed., 1981, 5 Suppl., 3:482-489.

Les séquences d'acide nucléique et en acides aminés d'un certains nombre de souches et isolats du VHC, et en particulier de la protéine NS3, de la protéine NS4 et du polypeptide NS5b, ont déjà été déterminées.

10 Par exemple, l'isolat HCV-J1 est décrit dans Okamoto H. et al., 1992, Nucleic Acids Res., 20: 6410-6410. Les séquences codantes complètes de deux isolats indépendants du VHC, à savoir les isolats HCV-J et -BK, ont été décrits respectivement dans Kato et al., 1990, Proc. Natl. Acda., Sci., 87: 9524-9528 et dans Takamizawa et al., 1991, J. Virol., 65: 1105-1113. S'agissant de l'isolat HCV-1, il est décrit dans Choo et al., 1990, Brit. Med. Bull., 46: 423-441 et dans Choo et al., 1991, supra. L'isolat HVC-H a été décrit dans Inchauspé G. et al ;, 1991, Proc. Natl. Acad. Sci., 88 : 10292-10296. L'isolat HCV-G9 a été décrit dans Okamoto H., et al., 1994, J. Gen. Virol., 45: 629-635. Les isolats HCV-J6 et -J8 ont été décrits respectivement dans Okamoto H., et al., 1991, J. Gen. Virol., 72: 2697-2704 et Okamoto H., et al., 1992, Virology, 188: 331-341. L'isolat HVC-BEBE1 a été décrit dans Nako H., et al., 1996, J. Gen. Virol., 141: 701-704 et l'isolat HCV-NZL1 a été décrit dans Sakamoto M., et al., 1994, J. Gen. Virol., 75 : 1761-1768. S'agissant de l'isolat HCV-Tr, il a été décrit dans Chayama K., et al., 1994, J. Gen. Virol., 75: 3623-3628. Les isolats HCV-ED43 et -EUH1480 ont été décrits respectivement dans Chamberlain R.W., et al., 1997, J. Gen. Virol., 78: 1341-1347 et Chamberlain R.W., et al., 1997, Biochem. Biophys. Res. Commun., 236: 44-49. L'isolat HCV-EUHK2 a été décrit dans Adams A., et al., 1997, Biochem. Biophys. Res. Commun., 234: 393-396. Les isolats HCV-VN235, -VN405 et -VN004 ont été décrits dans Tokita H., et al., 1998, J. Gen. Virol., 79: 1847. Enfin, s'agissant des isolats HCV-JK049 et -JK046, ils ont été décrits dans Tokita H. et al., 1996, J. Gen. Virol., 77: 293-301.

Les souches et isolats du VHC, tel qu'illustrés ci-dessus, peuvent présenter des génotypes différents, à savoir des génotypes 1a (isolats HCV-1, -J1 et -H), 1b (isolats HCV-J et BK), 1c (isolat HCV-G9), 2a (isolat HCV-J6), 2b (isolat HCV-J8), 2c (isolat HCV-BEBE1), 3a (isolat HCV-NZL1), 3b (isolat HCV-Tr), 4a (isolat HCV-ED43), 5a (isolat HCV-EUH1480), 6a (isolat HCV-EUHK2), 7b (isolat HCV-VN235), 8b (isolat HCV-VN405), 9a (isolat HCV-VN004), 10a (isolat HCV-JK049) et 11a (isolat HCV-JK046).

Selon un mode de réalisation de l'invention, NS3 et/ou NS4 et/ou NS5b proviennent de virus de génotypes différents.

Selon un autre mode de réalisation, NS3 et/ou NS4 et/ou NS5b proviennent de virus de même génotype, de préférence de génotype 1b.

La polyprotéine NS3/NS4 et le polypeptide NS5b contenus dans la composition peptidique de l'invention peuvent être soit d'origine native, soit d'origine recombinante.

La polyprotéine NS3/NS4 et le polypeptide NS5b d'origine native sont obtenus à partir des souches ou isolats du VHC, par le biais de l'utilisation d'arnorces oligonucléotidiques synthétiques qui vont servir à amplifier les séquences virales natives, soit à partir de sera de patients infectés par le ou les génotypes viraux ciblés, soit à partir d'ARN viral déjà purifié, provenant par exemple de sang ou de foie de patients, soit à partir d'ADN complémentaire libre ou cloné au préalable dans un vecteur d'expression, soit encore à partir de particules virales purifiées à partir de prélèvements biologiques ou de système de propagation *in vitro*.

La polyprotéine NS3/NS4 et le polypeptide NS5b de l'invention d'origine recombinante peuvent également être obtenus par la technique du génie génétique qui comprend les étapes de :

- culture d'un microorganisme ou de cellules eucaryotes transformé(es) à l'aide d'une séquence nucléotidique codant pour ladite polyprotéine NS3/NS4 ou pour ledit polypeptide NS5b et
- récupération du peptide produit par ledit microorganisme ou lesdites cellules eucaryotes.

Cette technique est bien connue de l'homme du métier. Pour plus de détails la concernant, on pourra se référer à l'ouvrage ci-après : Recombinant DNA Technology I,

Editors Ales Prokop, Raskesh K Bajpai; Annals of the New-York Academy of Sciences, Volume 646, 1991.

Les séquences nucléotidiques codant pour la polyprotéine NS3/NS4 et le polypeptide NS5b peuvent être préparées par synthèse chimique couplée à une approche de génie génétique ou par génie génétique seul, en utilisant les techniques bien connues de l'homme du métier et décrites par exemple dans Sambrook J. et al., Molecular Cloning : A Laboratory Manual, 1989.

Les séquences nucléotidiques codant pour la polyprotéine NS3/NS4 et le polypeptide NS5b peuvent être insérées dans des vecteurs d'expression dans un système d'expression adapté, afin d'obtenir la composition peptidique de l'invention.

Bien entendu, les séquences nucléotidiques peuvent être insérées dans un seul vecteur d'expression ou bien dans deux vecteurs d'expression différents. Dans ce dernier cas, la séquence codant pour la polyprotéine NS3/NS4 est insérée dans l'un des deux vecteurs et la séquence codant pour le polypeptide NS5b est insérée dans l'autre vecteur, ces deux vecteurs pouvant être de nature identique ou différente.

Ainsi, un autre objet de l'invention consiste en les vecteurs d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et une séquence nucléotidique codant pour le polypeptide NS5b, ainsi que les moyens nécessaires à son expression.

On entend par moyen nécessaire à l'expression d'un peptide, le terme peptide étant utilisé pour toute molécule peptidique, telle que protéine, polyprotéine, polyprotéine, etc., tout moyen qui permet d'obtenir le peptide, tel que notamment un promoteur, un terminateur de transcription, une origine de réplication et de préférence un marqueur de sélection.

Les moyens nécessaires à l'expression d'un peptide sont liés de façon opérationnelle à la séquence d'acide nucléique codant pour le peptide d'intérêt. Par « liés de façon opérationnelle », on entend une juxtaposition desdits éléments nécessaires à l'expression et du gène codant pour le peptide d'intérêt, lesquels sont en une relation telle que cela leur permet de fonctionner de façon attendue. Par exemple, ils peut exister des bases supplémentaires entre le promoteur et le gène d'intérêt tant que leur relation fonctionnelle est préservée.

Les moyens nécessaires à l'expression d'un peptide peuvent être des moyens homologues, c'est-à-dire inclus dans le génome du vecteur utilisé, ou bien être hétérologues. Dans ce dernier cas, lesdits moyens sont clonés avec le peptide d'intérêt à exprimer.

Des exemples de promoteurs hétérologues comprennent (i) les promoteurs viraux tels que le promoteur SV40 (Virus simien 40), le promoteur du gène de la thimidine-kinase du virus simplex de l'Herpès (TK-HSV-1), le LTR du virus du sarcome de Rous (RSV), le promoteur premier immédiat du cytomégolovirus (CMV) et le promoteur dernier majeur adénoviral (MLP), ainsi que (ii) tout promoteur cellulaire qui contrôle la transcription des gènes codant pour des peptides chez des eucaryotes supérieurs, tel que le promoteur du gène de phosphoglycérate-kinase (PGK) constitutif (Adra et al., 1987, Gene, 60 : 65-74), le promoteur des gènes spécifiques du foie alpha1-antitrypsine et FIX et le promoteur SM22 spécifique des cellules du muscle lisse (Moessler et al., 1996, Development, 122 : 2415-2425)

Selon un mode de réalisation de l'invention, les séquences nucléotidiques codant pour ladite polyprotéine NS3/NS4 et ledit polypeptide NS5b sont issus de génotypes différents.

Selon un autre mode de réalisation, les séquences nucléotidiques codant pour ladite polyprotéine et ledit polypeptide sont issus d'un virus de même génotype, de préférence le génotype 1b.

Là encore, on entend par «séquence nucléotidique », toutes les séquences codant pour la polyprotéine NS3/NS4 et le polypeptide NS5b natifs, ainsi que pour leurs analogues, mutéines et homologues, tels que définis précédemment.

Lesdites séquences contenues dans le vecteur d'expression peuvent être liées directement entre elles sous le contrôle d'un seul promoteur et/ou d'un seul élément régulateur de l'expression, ou bien elles peuvent être séparées en étant sous la dépendance chacune de promoteurs et/ou régulateurs de l'expression indépendants, identiques ou différents.

A titre de vecteur d'expression qui conviennent aux fins de l'invention, on peut citer par exemple les plasmides, les vecteurs viraux type adenovirus, poxvirus, virus de la vaccine, baculovirus, les vecteurs bactériens du type salmonelle, BCG.

Les adénovirus ont été détectés dans de nombreuses espèces animales, ne s'intègrent

pas et sont peu pathogènes. Ils sont capables d'infecter une variété de types cellulaires, les cellules en division et les cellules en repos. Ils possèdent un tropisme naturel pour les épithéliums bronchiques. De plus, ils ont été utilisés en tant que vaccins entériques vivants pendant de nombreuses années avec un excellent profile de sécurité. Enfin, on peut les faire pousser facilement et les purifier en grande quantité. Ces caractéristiques ont fait que les adénovirus sont particulièrement appropriés pour une utilisation en tant que vecteurs d'expression et notamment en tant vecteurs de thérapie génique à des fins thérapeutiques et vaccinales.

Selon un mode de réalisation préféré, le vecteur de l'invention est un adénovirus.

Des exemples d'adénovirus à utiliser dans la présente invention peuvent être dérivés de toute source d'origine humaine ou animale, en particulier d'origine canine (par exemple CAV-1 ou CAV-2; référence Genbank CAV1GENOM et CAV77082, respectivement), d'origina avienne (référence Genbank AAVEDSDNA), d'origine bovine (telle que BAV3, Seshidhar Reddy et al., 1998, J. Virol., 72: 1394-1402), d'origine ovine, féline, porcine, d'origine simienne, ou bien d'un de leurs hybrides. Tout sérotype peut être utilisé. Toutefois, les adénovirus d'origine humaine sont préférés et en particulier l'adénovirus 5 (AdIV).

De façon générale, les virus cités sont disponibles dans les collections ATCC et ont fait l'objet de nombreuses publications décrivant leur séquence, leur organisation et leur biologie, ce qui permet à l'homme du métier de les appliquer facilement. Par exemple, la séquence de l'adénovirus type 5 est décrite dans la base de donnée Genbank (M73260 et M29978) et est incorporée ici par référence.

Le génome des adénovirus est constitué d'une molécule d'ADN linéaire double brin d'environ 36 kb portant plus d'environ 30 gènes nécessaires pour terminer le cycle viral. Les premiers gènes sont divisés en 4 régions dispersées dans le génome de l'adénovirus (E1 à E4). Les régions E1, E2 et E4 sont essentielles pour la réplication virale. La région E3 est considérée comme une région non essentielle sur la base de l'observation que les virus mutants apparaissant naturellement ou les virus hybrides ayant perdu cette région E3 continuent à se répliquer comme les virus de type sauvage dans les cellules cultivées (Kelly et Lewis, 1973, J. Virol., 12:643-652). Les derniers gènes (L1 à L5) codent en majorité pour

20

25

les protéines structurales constituant la capside virale. Ils chevauchent au moins en partie les premiers motifs de transcription et sont transcrits à partir d'un promoteur unique (MLP pour «Major Late Promoter»). De plus, le génome adénoviral porte aux deux extrémités des régions à action en cis essentielles pour la réplication d'ADN, respectivement les motifs de répétition inversés 5' et 3' (ITRs pour «Inverted Terminal Repeats») et une séquence d'empaquetage.

Les adénovirus actuellement utilisés dans les protocoles de thérapie génique sont dénués de la majorité de la région E1, ce qui rend les virus déficients au niveau de leur réplication pour éviter leur dissémination dans l'environnement et dans l'organisme hôte. En outre, la plupart des adénovirus sont également dénués de la région E3 afin d'accroître leur capacité de clonage. La faisabilité du transfert de gène en utilisant ces vecteurs a été démontrée dans une variété de tissus *in vivo* (voir par exemple Yei et al., 1994, Hum. Gene Ther., 5: 731-744; Dai et al., 1995, Proc. Natl. Acad Sci. USA, 92: 1401-1405; US6,099,831; et US6,013,638).

De préférence, les promoteurs utilisés dans les adénovirus comme vecteur d'expression, sont des promoteurs hétérologues tels que les promoteurs le CMV et le SV40.

De préférence encore, le promoteur CMV est le promoteur de la polyprotéine NS3/NS4 et le vecteur d'expression comprend comme séquence nucléotidique codant pour ladite polyprotéine la cassette d'expression CMV-NS3-NS4.

Par « cassette d'expression », on entend une séquence d'ADN contenant un promoteur et un cadre de lecture ouvert pour l'expression du peptide d'intérêt, à insérer dans un vecteur.

De préférence également, le promoteur SV40 est le promoteur du polypeptide NS5b et le vecteur d'expression comprend comme séquence nucléotidique codant pour ledit polypeptide la cassette d'expression SV40-NS5b.

Selon un mode de réalisation de l'invention, le génome de l'adénovirus est modifié de façon à remplacer la région E1 par la cassette d'expression CMV-NS3-NS4 et à remplacer la région E3 par la cassette d'expression SV40-NS5b.

Les méthodes de suppression et d'insertion de séquences d'ADN dans des vecteurs

25

d'expression sont largement connues de l'homme du métier et consistent notamment en des étapes de digestion enzymatique et ligature.

Un autre vecteur d'expression particulièrement approprié aux fins de l'invention est un poxvirus, lequel constitue un autre mode de réalisation de l'invention.

Les poxvirus constituent un groupe de virus complexe enveloppés, se distinguant principalement par leur morphologie inhabituelle, leur grand génome d'ADN et leur site cytoplasmique de réplication. Le génome de plusieurs éléments des poxviridae, comprenant la souche virale de la vaccine de Copenhagen (VV) (Goebel et al., 1990, Virol. 179: 247-266 et 517-563) et la souche du virus de la vaccine modifié d'Ankara (MVA) (Antoine et al., 1998, Virol., 244 : 635-396), a été cartographié et séquencé. La souche VV possède un génome d'ADN double brin d'environ 192 kb codant pour environ 200 protéines dont approximativement 100 sont impliquées dans l'assemblage du virus. La souche MVA est une souche du virus de la vaccine hautement atténuée, générée par plus de 500 passages en série de la souche d'Ankara du virus de la vaccine (CVA) sur des fibroblastes d'embryons de poulet (Mayr et al., 1975, Infection, 3: 6-16). Le virus MVA a été déposé devant la Collection Nationale de Cultures de Microorganismes (CNCM) sous le numéro 1721. La détermination de la séquence complète du génome du MVA et la comparaison avec celui du VV permet l'identification précise des altérations qui sont apparues dans le génome viral et la définition de sept délétions (I à VII) et de nombreuses mutations conduisant à des cadres de lecture ouverts fragmentés (Antoine et al., 1998, Virology, 244 : 365-396).

D'autres exemples de poxvirus appropriés aux fins de l'invention comprennent le pox du canari, le pox de volaille, le pox de vache, l'entornopox, le pox de singe, le pox de porc et le pox de pingouin.

Le poxvirus se trouve sous deux formes morphologiquement distinctes, appelées virus mature intracellulaire (IMV) et virus extracellulaire enveloppé (EEV).

Le poxvirus utilisé comme vecteur d'expression de l'invention présente au moins l'une des caractéristiques suivantes, prises seules ou en association :

- (i) le poxvirus est un virus MVA,
- (ii) le poxvirus est sous forme morphologique IMV, et

20

le génome du poxvirus est modifié de façon à insérer la cassette d'expression
 NS3/NS4 et à insérer la cassette d'expression NS5b.

Lorsque le génome du poxvirus est modifié de façon à insérer les deux cassettes d'intérêt, les moyens nécessaires à leur expression sont homologues. Ainsi, dans le cas où on utilise le virus MVA, l'expression de NS3/NS4 peut être par exemple sous le contrôle du promoteur ph5r de sorte que la cassette d'expression correspondante est ph5r-NS3-NS4, et l'expression de NS5b peut être par exemple sous le contrôle du promoteur p7.5 de sorte que la cassette d'expression correspondante est p7.5-NS5b, et vice et versa.

Selon un mode de réalisation particulier, lorsque le génome du poxivirus est modifié de façon à insérer les deux cassettes d'intérêt, les deux dites cassettes d'expression sont orientées dans le même sens.

Selon un autre mode de réalisation particulier, elles sont orientées en sens opposé.

Là encore, les cassettes d'expression sont insérées dans le génome du poxvirus de façon connue par l'homme du métier, comme indiqué précédemment.

Les vecteurs de l'invention peuvent également comprendre des séquences nécessaires au ciblage des peptides vers des compartiments cellulaires particuliers. Un exemple de ciblage peut être le ciblage vers le réticulum endoplasmique obtenu en utilisant des séquences d'adressage du type de la séquence leader issue de la protéine E3 de l'adénovirus (Ciernik L.F., et al., The Journal of Immunology, 1999, 162, 3915-3925).

Ils peuvent également comprendre des séquences nécessaires au ciblage vers les cellules dendritiques et au ciblage à la membrane des cellules.

L'invention a également pour objet les microorganismes et les cellules eucaryotes transformés par un vecteur d'expression de l'invention.

A titre d'exemples de microorganisme qui conviennent aux fins de l'invention, on peut citer les levures, telles que celles des familles suivantes: Saccharomyces, Schizosaccharomyces, Kluveromyces, Pichia, Hanseluna, Yarowia, Schwaniomyces, Zygosaccharomyces, Saccharomyces cerevisiae, Saccharomyces carlsbergensis et Kluveromyces lactis étant préférées; et les bactéries, telles que E. coli et celles des familles suivantes: Lactobacillus, Lactococcus, Salmonella, Strptococcus, Bacillus et

Streptomyces.

A titre d'exemples de cellules eucaryotes, on peut citer les cellules provenant d'animaux tels que les mammifères, les reptiles, les insectes et équivalent. Les cellules eucaryotes préférées sont les cellules provenant du hamster chinois (cellules CHO), du singe (cellules COS et Vero), du rein de hamster nain (cellules BHK), du rein de cochon (cellules PK 15) et du rein de lapin (cellules RK13, les lignées cellulaires humaines de l'ostéosacorme (cellules 143 B), les lignées cellulaires humaines HeLa et les lignées cellulaires humaines de l'hépatome (du type cellules Hep G2), ainsi que les lignées cellulaires d'insecte (par exemple de Spodoptera frugiperda).

Les cellules hôtes peuvent être fournies dans des cultures en suspension ou en flacon, dans des cultures fissulaires, des cultures d'organe et équivalent. Les cellules hôtes peuvent également être des animaux transgéniques.

L'invention concerne également des anticorps dirigés contre l'une des compositions peptidiques de l'invention telles que définies précédemment ou bien contre l'un des vecteurs d'expression de l'invention tels que définis précédemment.

Les anticorps selon l'invention sont soit des anticorps polyclonaux, soit monoclonaux.

Les anticorps polyclonaux susmentionnés peuvent être obtenus par immunisation d'un animal avec la composition peptidique de l'invention ou bien avec le vecteur de l'invention à titre «d'antigène d'intérêt », suivie de la récupération des anticorps recherchés sous forme purifiée, par prélèvement du sérum dudit animal, et séparation desdits anticorps des autres constituants du sérum, notamment par chromatographie d'affinité sur une colonne sur laquelle est fixée un antigène spécifiquement reconnu par les anticorps, notamment un antigène viral d'intérêt.

Les anticorps monoclonaux peuvent être obtenus par la technique des hybridomes dont le principe général est rappelé ci-après.

Dans un premier temps, on immunise un animal, généralement une souris, (ou des cellules en culture dans le cadre d'immunisations in vitro) avec la composition peptidique de l'invention ou bien avec le vecteur de l'invention à titre «d'antigène d'intérêt », dont les lymphocytes B sont alors capables de produire des anticorps contre ledit antigène. Ces

15

25

lymphocytes producteurs d'anticorps sont ensuite fusionnés avec des cellules myélomateuses "immortelles" (murines dans l'exemple) pour donner lieu à des hybridomes. A partir du mélange hétérogène des cellules ainsi obtenu, on effectue alors une sélection des cellules capables de produire un anticorps particulier et de se multiplier indéfiniment. Chaque hybridome est multiplié sous la forme de clone, chacun conduisant à la production d'un anticorps monoclonal dont les propriétés de reconnaissance vis-à-vis de l'antigène d'intérêt pourront être testées par exemple en ELISA, par immunotransfert en une ou deux dimensions, en immunofluorescence, ou à l'aide d'un biocapteur. Les anticorps monoclonaux ainsi sélectionnés, sont par la suite purifiés notamment selon la technique de chromatographie d'affinité décrite ci-dessus.

Les compositions peptidiques, les vecteurs d'expression, les séquences nucléotidiques codant pour ladite polyprotéine NS3/NS4 et ledit polypeptide NS5b, ainsi que les anticorps de l'invention sont particulièrement efficaces pour l'inhibition, la prévention et le contrôle de l'infection des patients porteurs du virus du VHC, de sorte que leur utilisation pour la préparation d'un médicament constitue un autre objet de l'invention.

La présente invention concerne également une composition pharmaceutique, notamment vaccin, contenant à titre de substance active la composition peptidique de l'invention, ou bien un vecteur d'expression de l'invention, ou bien un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, ou bien les séquences nucléotidiques codant pour ladite polyprotéine NS3/NS4 et ledit polypeptide NS5b, lesdites séquences nucléotidiques correspondant aux séquences contenues dans les vecteurs d'expression de l'invention, placées sous le contrôle d'éléments nécessaires à une expression constitutive et/ou inductible desdits peptides, ou bien l'un au moins des anticorps de l'invention.

Par éléments nécessaires à une expression constitutive des peptides, on entend un promoteur ubiquitaire ou spécifique des cellules eucaryotes.

A titre d'éléments nécessaires à une expression inductible des peptides, on peut citer les éléments de régulation de l'opéron de E. coli pour la résistance à la tétracycline (Gossen

25

M. et al, Proc Natl Acad Sci USA, 89: 5547-5551 (1992).

Selon un mode de réalisation particulier de l'invention, la composition pharmaceutique contient également un véhicule pharmaceutiquement approprié. Bien entendu, l'homme du métier déterminera facilement la nature du véhicule pharmaceutiquement approprié et la quantité de polypeptides à utiliser en fonction des constituants de la composition pharmaceutique.

La quantité et la nature du véhicule pharmaceutiquement approprié peuvent être facilement déterminées par l'homme du métier. Elles sont choisies selon la forme pharmaceutique et le mode d'administration souhaités.

Les compositions pharmaceutiques de l'invention sont appropriées pour l'administration orale, sublinguale, sous-cutanée, intramusculaire, intraveineuse, topique, locale, intratrachéale, intranasale, transdermique, rectale, intraoculaire, intra-auriculaire, ledit principe actif pouvant être administré sous forme unitaire d'administration.

Les formes unitaires d'administration peuvent être par exemple des comprimés, des gélules, des granules, des poudres, des solutions ou suspensions orales injectables, des timbres transdermiques (« patch »), des formes d'administration sublinguale, buccale, intratrachéale, intraoculaire, intranasale, intra-auriculaire, par inhalation, des formes d'administration topique, transdermique, sous-cutanée, intramusculaire ou intraveineuse, des formes d'administration rectale ou des implants. Pour l'administration topique, on peut envisager des crèmes, gels, pommades, lotions ou collyres.

Ces formes galéniques sont préparées selon les méthodes usuelles des domaines considérés.

Les dites formes unitaires sont dosées pour permettre une administration journalière de 0,001 à 10 mg de substance active par kg de poids corporel, selon la forme galénique.

Il peut y avoir des cas particuliers où des dosages plus élevés ou plus faibles sont appropriés; de tels dosages ne sortent pas du cadre de l'invention. Selon la pratique habituelle, le dosage approprié à chaque patient est déterminé par le médecin selon le mode d'administration, le poids et la réponse du patient.

Selon un autre mode de réalisation de l'invention, la présente invention concerne

20

également une méthode de traitement des pathologies associées au virus de l'hépatite C qui comprend l'administration, à un patient, d'une dose efficace d'un médicament de l'invention.

Les compositions pharmaceutiques de l'invention contiennent de préférence à titre de substance active un des vecteurs de l'invention ou bien un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, de sorte qu'elles sont utiles en vaccination prophylactique et thérapeutique.

La vaccination prophylactique et thérapeutique peut être mise en œuvre par injection d'un vaccin à base d'un ou plusieurs vecteurs d'expression de l'invention, dans la mesure où le ou les vecteurs d'expression codent au final pour la polyprotéine NS3/NS4 et pour le polypeptide NS5b à titre de substance active, injection suivie de rappels ou non. Elle peut également être mise en œuvre en injectant deux types de vecteurs d'expression de l'invention différents, tout d'abord un adénovirus, puis un poxvirus, de façon simultanée ou différée dans le temps, et vice et versa.

Ces vecteurs peuvent être contenus dans un kit pharmaceutique.

Aussi, un autre objet de l'invention consiste en des kits pharmaceutiques, notamment vaccinaux, comprenant au moins un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et au moins un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b.

Un autre objet de l'invention consiste en des kits pharmaceutiques, notamment vaccinaux, comprenant au moins un vecteur d'expression de type adénovirus tel que défini précédemment et/ou au moins un vecteur d'expression de type poxvirus tel que défini précédemment.

La vaccination prophylactique et thérapeutique peut également être mise en œuvre par injection d'un vaccin à base d'au moins un vecteur d'expression de l'invention, ou bien un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, et d'au moins une composition pharmaceutique de l'invention constituée de la composition peptidique de l'invention ou des anticorps de l'invention. Elle

20

25

peut également être mise en œuvre par injection d'un vaccin à base d'au moins un vecteur d'expression de l'invention, ou bien un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, et d'au moins une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et pour le polypeptide NS5b.

Aussi, un autre objet de l'invention consiste en des kits pharmaceutiques, notamment vaccinaux, comprenant au moins un vecteur d'expression de l'invention, ou bien un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, et au moins une composition pharmaceutique de l'invention ou au moins une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et pour le polypeptide NS5b.

La présente invention sera mieux comprise à l'aide des exemples suivants donnés uniquement à titre illustratif et non limitatif, ainsi qu'à l'aide des figures 1 à 7 annexées, sur lesquelles:

- la figure 1A à 1K représente les cartes des différents plasmides utilisés pour l'obtention d'un adénovirus AdNS3NS4NS5b selon l'invention, sur lesquelles sont indiqués les sites des différentes enzymes de restriction et l'emplacement des fragments de séquence codant pour NS3/NS4 et pour NS5b,
- la figure 2A à 2H représente les cartes des différents plasmides utilisés pour l'obtention d'un poxvirus MAV NS3NS4NS5b selon l'invention, sur lesquelles sont indiqués les sites des différentes enzymes de restriction et l'emplacement des fragments de séquence codant pour NS3/NS4 et pour NS5b,
- la figure 3 donne la réponse cellulaire induite par l'adénovirus AdNS3NS4, soit selon le test CTL (figure 3A) où on a utilisé l'épitope GLL pour stimuler les splénocytes en culture et pour charger les cibles du CTL et dont le résultat est exprimé en pourcentage de lyse spécifique en fonction du rapport effecteur/cible, soit selon le test ELISPOT (figure 3B), spécifique pour l'épitope GLL, où le résultat est donné en nombre de spots/10⁶ cellules,

10

15

- la figure 4 donne la réponse cellulaire induite par l'adénovirus AdNS5b selon le test ELISPOT, spécifique des épitopes ALY et KLP,
- la figure 5 donne la réponse cellulaire induite par l'adénovirus AdCE1E2 selon le test CTL où on a utilisé l'épitope DLM pour stimuler les splénocytes en culture et pour charger les cibles du CTL et dont le résultat est exprimé en pourcentage de lyse spécifique en fonction du rapport effecteur/cible,
- la figure 6 donne le titre de virus recombinant de la vaccine, résultant du test d'épreuve, en pfu/ml/mg ovaire, pour les 4 groupes de 8 souris immunisées par les différentes combinaisons d'adénovirus : AdNS3NS4 + AdNS5b (1^{er} groupe), les adénovirus AdNS3NS4 + AdNS5b + AdNS5b + AdNS5a (2^{ème} groupe), les adénovirus AdNS3NS4 + AdNS5b + AdCE1E2 (3^{ème} groupe) et l'adénovirus AdβGal (4^{ème} groupe) et
- la figure 7 donne le titre de virus recombinant de la vaccine, résultant du test d'épreuve, en pfu/ml/mg ovaire, pour les 3 groupes de 8 souris immunisées par les différentes combinaisons d'adénovirus suivantes : AdNS3NS4NS5b (1^{er} groupe), AdNS3NS4 + AdNS5b (2^{ème} groupe) et AdβGal (3^{ème} groupe).

Exemple 1 : Préparation d'un adénovirus permettant l'expression des protéines NS3/NS4 et NS5b selon l'invention

20 1 Adénovirus

Les adénovirus recombinants sont générés par transfection (CaPO₃) de la lignée de complémentation 293 (Graham, Smiley, et al. 1977) après linéarisation des génomes par PacI. Les virus recombinants se propagent et sont amplifiés sur cette même lignée, et leur purification est réalisée à partir des cellules infectées. Les cellules sont récupérées par centrifugation (1500 tpm (tours par min), 10 min) et lysées par 3 cycles de congélation/décongélation. Le lysat cellulaire est clarifié par deux centrifugations (2000 tpm, 10 min; 8000 tpm, 15 min), puis purifié par deux ultracentrifugations successives. La première est réalisée sur un gradient de Chlorure de Césium (densités 1,4 et 1,25) à 30000 tpm pendant 1 heure. La seconde est réalisée sur un coussin de Chlorure de Césium (densité

1,34) à 35000 tpm pendant 18 heures. Les phases contenant les virions sont prélevées et diluées de moitié dans un tampon saccharose 60%. Les suspensions virales sont alors dialysées contre du tampon de formulation (pour 10 litres: 3423g de saccharose; 12,11g de Tris; 2,033g de MgCl₂; 87,7g de NaCl), puis aliquotées. Leur titrage est réalisé par immunofluorescence indirecte sur cellules 293 infectées par différentes dilutions virales et marquées par un anticorps spécifique de la DNA-Binding Protein adénovirale (α72K B6-8) (Reich, Sarnow, et al. 1983).

2 Préparation de l'adénovirus AdNS3NS4

Cet adénovirus permet l'expression du gène codant pour la polyprotéine NS3/NS4 (SEQ ID N°1 et 2) sous le contrôle du promoteur CMV.

2.1 <u>Amplification par PCR de la séquence nucléotidique codant pour la polyprotéine NS3/NS4</u>

Pour ce faire, on a utilisé les oligonucléotides suivants :

oIV166: 5'-GGG GGG GCT ATG GCG CCT ATC ACG GCC TA-3' (SEQ ID N°9)

o<u>IV171</u>: 5'-GGG GGG ACG CGT TTA GCA TGG CGT GGA GCA GT-3' (SEQ ID N°10)

ainsi que les réactifs suivants :

Taq DNA Polymérase, tampon PCR, MgCl 1,5mM et dNTP 10mM (Invitrogen).

Les conditions de PCR ont été les suivantes :

20 5 min à 94°C, puis

25

30 cycles de la série: 45 s à 94°C, 45 s à 62°C et 1 min à 72°C, puis

10 min à 72°C

2.2 <u>Insertion du fragment de PCR NS3/NS4 dans le plasmide de transfert pTG13387</u>

On a effectué les étapes suivantes :

- Digestion enzymatique du plasmide <u>pTG13387</u> (figure 1A, Transgène) par *Nhe I/Mlu*I (NheI, Invitrogen dans React 4 Buffer et MluI, Invitrogen dans React 3 Buffer)
- Digestion enzymatique du fragment NS3/NS4 par NheI/MluI
- Ligature(T4 DNA Ligase (Invitrogen) dans Reaction Buffer (Invitrogen)),

- Transformation bactérienne (souche 5K, Transgène)
- Sélection des clones bactériens sur milieu LB (Difco) + ampicilline (100 µg/ml, Duchefa)
- Maxi-préparation plasmidique (Qiagen, selon le protocole du fournisseur) d'un clone positif après analyse de restriction
- Analyse de restriction : digestion par SmaI (Invitrogen dans React 4 Buffer) et obtention de fragments de : 5450, 2164, 909, 214 et 180 pb
 - Obtention du plasmide <u>pIV315</u> délété de sa région E1 et contenant la séquence NS3/NS4 sous le contrôle du promoteur CMV (figure 1B).
- 2.3 <u>Recombinaison homologue avec le génome adénoviral complet délété de sa</u>

 10 région E3 contenu dans le plasmide pTG6624

On a effectué les étapes suivantes :

- Digestion enzymatique du plasmide obtenu ci-dessus <u>pIV315</u> par *PacI/PvuI* (*PacI* dans tampon NEB1, Biolabs et *PvuI* dans React 7 Buffer, Invitrogen); isolement sur gel d'agarose du fragment contenant la cassette pCMV-NS3-NS4
- Digestion enzymatique du plasmide <u>pTG6624</u> (figure 1C) par ClaI (dans React 1 Buffer, Invitrogen)
 - Transformation bactérienne (souche BJ, Transgène) pour effectuer la recombinaison homologue entre les deux fragments plasmidiques
 - Sélection des clones bactériens sur milieu LB + ampicilline (100 μg/ml)
- 20 Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction
 - Analyse de restriction : digestion par *Sma*I et obtention de fragments de : 2263, 621, 3814, 214, 2164, 909, 180, 2463, 6480, 1398, 4456, 1455, 3540, 3386, 230 et 3685 pb
 - Obtention du génome adénoviral complet Adénovirus AdNS3NS4, délété de ses régions E3 et E1, cette dernière ayant été remplacée par la cassette d'expression pCMV-NS3-NS4 (pIV317, figure 1D).

3 Préparation de l'adénovirus AdNS3NS4NS5b

Cet adénovirus permet l'expression du gène codant pour la polyprotéine NS3/NS4 sous le contrôle du promoteur CMV et l'expression du gène codant pour le polypeptide NS5b sous le contrôle du promoteur SV40

3.1 Construction du plasmide de transfert permettant le clonage dans la région E3 de l'adénovirus d'une séquence codante sous le contrôle du promoteur CMV

On a mis en œuvre les étapes suivantes :

- Digestion enzymatique du plasmide pTG4664 (figure 1E, Transgène) par BgIII (dans React
- 5 3 Buffer, Invitrogen)
 - Digestion enzymatique du plasmide <u>pTG13074</u> (figure 1F, Transgène) par *BamHI/BgI*II (dans React 3 Buffer, Invitrogen)
 - Ligature (T4 DNA ligase), transformation bactérienne (souche 5K)
 - Sélection des clones bactériens sur milieu LB + ampicilline (100 μg/ml)
- 10 Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction
 - Analyse de restriction: digestion par *Sma*I et obtention de fragments de : 4940, 1305 et 230 pb
 - Obtention du plasmide pIV267 (figure 1G)
- Digestion du plasmide ainsi obtenu <u>pIV267</u> par *Clal/Mun*I (dans React 1 Buffer, 5 Invitrogen)
 - Traitement par la DNA Polymerase I, Large (Klenow) Fragment (dans React 2 Buffer, Invitrogen)
 - Ligature (T4 DNA Ligase)
 - Transformation bactérienne (souche 5K)
- Sélection des clones bactériens sur milieu LB + ampicilline (100 μg/ml)
 - Maxi-préparation plasmidique (Qiagen)
 - Analyse de restriction: digestion par *Sma*I et obtention de fragments de : 4692, 1305 et 230 pb
 - Obtention du plasmide pIV270, plasmide de transfert permettant le clonage dans la région
- 25 E3 de l'adénovirus d'une séquence codante sous le contrôle du promoteur CMV (figure 1H).
 - 3.2 Remplacement du promoteur CMV par le promoteur SV40 dans pIV270 On a effectué les étapes suivantes :
 - Amplification par PCR du fragment nucléotidique correspondant au promoteur SV40, à partir du plasmide commercial pcDNAHygro (Clonetech) grâce aux oligonucléotides suivants:

- 0IV232: 5'-GGG GGG AGA TCT CCA GCA GGC AGA AGT ATG-3' (SEQ ID N°11)
- <code>oIV233</code>: 5'-GGG GGG GTC GAC CGA AAA TGG ATA TAC AAG CTC-3' (SEQ ID $N^{\circ}12$)
- 5 et selon le mode opératoire décrit dans le point 2.1 ci-dessus, à ceci près qu'on a utilisé une température de 58°C à la place de 62°C
 - Digestion enzymatique de <u>pIV270</u> par BgIII/SalI (dans React 10 Buffer, Invitrogen)
 - Digestion enzymatique du fragment de PCR par BglII/SalI
 - Ligature (T4 DNA ligase), transformation bactérienne (souche 5K)
- Sélection des clones bactériens sur milieu LB + ampicilline (100 μg/ml)
 - Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction
 - Analyse de restriction : digestion par *Sma*l et obtention de fragments de : 4692, 719, 80 et 230 pb
 - Obtention du plasmide <u>pIV330</u>, plasmide de transfert permettant le clonage dans la région
- 15 E3 de l'adénovirus d'une séquence codante sous le contrôle du promoteur SV40 (figure 11).
 - 3.3 <u>Insertion du fragment de PCR NS5b dans le plasmide de transfert pIV330</u> On a effectué les étapes suivantes :
 - Amplification par PCR de la séquence nucléotidique codant pour la protéine NS5b (SEQ ID N°3 et 4) grâce aux oligonucléotides suivants:
- $_{20}$ $_{0}$ IV212: 5'-GGG GGG TCT AGA ATG TCA ATG TCC TAC ACA TGG AC-3' (SEQ ID N°13)
 - 0IV218: 5'-GGG GGG TCT AGA TTA CCG GTT GGG GAG CAG GT-3' (SEQ ID $N^{\circ}14$)
 - et selon le mode opératoire décrit dans le point 2.1 ci-dessus, à ceci près qu'on a utilisé une température de 60°C à la place de 62°C
 - Digestion enzymatique du plasmide <u>pIV330</u> obtenu ci-dessus par *Xba*I (dans React 2 Buffer, Invitrogen)
 - Digestion enzymatique du fragment de PCR par XbaI
 - Ligature (T4 DNA Ligase), transformation bactérienne (souche 5K)

- Sélection des clones bactériens sur milieu LB + ampicilline (100 μg/ml)
- Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction
- Analyse de restriction : digestion par *Sma*I et obtention de fragments de : 4692, 1505, 760, 719 et 230 pb
- Obtention du plasmide <u>pIV336</u>, plasmide de transfert dans la délétion E3 contenant la séquence NS5b sous le contrôle du promoteur SV40 (figure 1J)

3.4 <u>Recombinaison homologue avec le génome adénoviral recombinant pIV317 pour obtenir l'adénovirus du titre</u>

On a mis en œuvre les étapes suivantes :

- Digestion du plasmide <u>pIV317</u> obtenu dans le point 2.3 ci-dessus par SrfI (dans Universal Buffer, Stratagene)
 - Digestion du plasmide <u>pIV336</u> obtenu dans le point 3.3 par *NheI/SacII* (dans Buffer T, Amersham Pharmacia Biotech) et isolement sur gel d'agarose du fragment contenant la cassette pSV40-NS5b
- Transformation bactérienne (souche BJ) pour effectuer la recombinaison homologue entre les deux fragments plasmidiques
 - Sélection des clones bactériens sur milieu LB + ampicilline (100 μg/ml)
 - Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction
 - Analyse de restriction: digestion par SmaI et obtention de fragments de: 6480, 4456,
- 3814, 3540, 3386, 2739, 2463, 2263, 2164, 1455, 1398, 1105, 909, 760, 719, 621, 230, 214 et 180 pb
 - Obtention du génome adénoviral complet souhaité, délété de la région E1, celle-ci ayant été remplacée par la cassette d'expression pCMV-NS3-NS4, et délété de la région E3, celle-ci ayant été remplacée par la cassette d'expression pSV40-NS5B (plasmide pIV342, figure 1K).

4 Confirmation de l'expression des antigènes insérés dans les différents adénovirus

L'expression des antigènes du VHC codés par les adénovirus AdNS3NS4, AdNS5b et AdNS3NS4NS5b a été vérifiée par Western blot après infection de cellules Huh7.

20

Comme attendu, tous les antigènes ont été exprimés.

Exemple 2: Préparation d'un poxvirus permettant l'expression des protéines NS3/NS4 et NS5b selon l'invention

5 <u>1 Poxvirus MVA</u>

La souche Modified Virus Ankara MVATG N33 a été fourni par TRANSGENE S.A. (Strasbourg, France).

2 Préparation du plasmide de transfert permettant l'expression du gène NS3/NS4 sous le contrôle du promoteur ph5r

2.1 Construction du vecteur pIV250 contenant les bras de recombinaison BRG2 et BRD2 du MVA, ainsi que le gène de sélection GPT sous le contrôle du promoteur ph5r (MVA), suivi d'un deuxième promoteur ph5r pour permettre l'expression du gène d'intérêt

Dans ce point, on souhaite l'insertion du fragment ph5r-GPT-BRG3-ph5r (provenant du plasmide pTG9997, Transgène) dans le plasmide pTG6018 (Transgène) contenant les bras de recombinaison BRG2 et BRD2.

Pour ce faire, on a effectué les étapes suivantes :

- Digestion enzymatique par BamHI/SacI (dans React 2 Buffer, Invitrogen) du vecteur pTG6018 (figure 2A)
- Digestion enzymatique par BamHI, puis digestion partielle par SacI du plasmide pTG9997 (figure 2B)
- Purification selon le protocole de QIAGEN du fragment de restriction de 1047 pb qui contient la séquence codant pour ph5r-GPT-BRG3-ph5r
- Ligature (T4 DNA Ligase), transformation bactérienne (souche TG1, Statagene)
- Sélection des clones bactériens sur ampicilline (100 $\mu g/ml$)
- Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction (*EcoRV* + *Hind*III (dans React 2 Buffer, Invitrogen) : fragments de 246, 439, 476, 826 et 2789 pb ; *SacI* : fragments de 915 et 3861 pb)
 - Obtention du plasmide visé (pIV250, figure 2C).
 - 2.2 Amplification par PCR de la séquence nucléotidique codant pour la polyprotéine

NS3/NS4

On a utilisé les oligonucléotides suivants :

- oIV225: 5'- GGG GGG CTG CAG ATG GCG CCT ATC ACG GCC TA -3' (SEQ ID $N^{\circ}15$)
- 5 oIV226: 5'- GGG GGG TCT AGA TTA GCA TGG CGT GGA GCA GT -3' (SEQ ID N°16)

et selon le mode opératoire décrit dans l'exemple 1, point 2.1 ci-dessus, à ceci près qu'on a utilisé une température de 52°C à la place de 62°C

- 2.3 Insertion du fragment de PCR NS3-NS4 dans le plasmide pIV250
- 10 Pour ce faire, on a effectué les étapes suivantes :
 - Digestion enzymatique du plasmide pIV250 obtenu dans le point 2.1 ci-dessus par *PstI* (dans React 2 Buffer, Invitrigen)/XbaI
 - Digestion enzymatique du fragment PCR NS3/NS4 par Pst1/XbaI
 - Ligature (T4 DNA Ligase), transformation bactérienne (souche TG1)
- 15 Sélection des clones bactériens sur ampicilline (100 μg/ml)
 - Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction :(HindIII (dans React 2 Buffer, Invitrogen) : fragments de 4763 et 2789 pb ; SphI (dans React 6 Buffer, Invitrogen) : 1534 et 5991 pb ; NcoI (dans React 3 Buffer, Invitrogen) : 2764 et 4761 pb)
- Obtention du plasmide de transfert contenant la séquence codant pour la polyprotéine
 NS3/NS4 sous le contrôle du promoteur ph5r (pIV327, figure 2D).

<u>3 Préparation du plasmide pIV328 permettant l'expression de la protéine NS5b sous le contrôle du promoteur p7.5</u>

3.1 <u>Amplification par PCR de la séquence nucléotidique codant pour la protéine</u>
25 NS5b

On a utilisé les oligonucléotides suivants :

- oIV227 : 5'- GGG GGG GTC GAC ATG TCA ATG TCC TAC ACA TGG AC -3' (SEQ ID $N^{\circ}17$)
- oIV228 : 5'- GGG GGG GCA TGC TTA CCG GTT GGG GAG CAG GT -3' (SEQ ID

N°18)

20

ct selon le mode opératoire décrit dans l'exemple 1, point 2.1 ci-dessus, à ceci près qu'on a utilisé une température de 52°C à la place de 62°C.

3.2 Obtention du plasmide

- 5 On a effectué les étapes suivantes :
 - Digestion enzymatique du fragment PCR codant pour NS5b par Sall/SphI
 - Digestion enzymatique de pTG186 (figure 2E, Transgène) par SalVSphI
 - Déphosphorylation du vecteur pTG186 (phosphatase alkaline ROCHE)
 - Ligature (T4 DNA Ligase), transformation bactérienne (souche TG1)
- Sélection des clones bactériens sur ampicilline (100 μg/ml)
 - Maxi-préparation plasmidique (Qiagen) d'un clone positif après analyse de restriction : (*Hind*III : fragments de 1984, 2627 et 4437 pb ; *Bgl*II : fragments de 321, 557, 1361, 1451, 2237 et 3121 pb ; *Kpn*I (dans React 4 Buffer, Invitrogen) : fragments de : 2787 et 6261 pb)
 - Obtention du plasmide de transfert contenant la séquence codant pour le polypeptide NS5b sous le contrôle du promoteur p7.5 (pIV328, figure 2F)
 - <u>4 Préparation des plasmides de transfert pIV329 et pIV344 permettant</u>
 <u>l'expression du gène codant pour la polyprotéine NS3/NS4 sous le contrôle du promoteur ph5r et du gène codant pour la protéine NS5b sous le contrôle du promoteur p7.5</u>
 - Pour ce faire, on a mis en œuvre les étapes suivantes :
 - Amplification par PCR de la séquence nucléotidique codant pour la protéine NS5b à partir du plasmide pIV328 obtenu dans le point 3.2 ci-dessus en utilisant les oligonucléotides suivants:
 - oIV229 : 5'- GGG GGG TCT AGA CCG GTA GTT CGC ATA TAC ATA -3' (SEQ ID $N^{\circ}19$)
 - oIV218 : 5- GGG GGG TCT AGA TTA CCG GTT GGG GAG CAG GT-3' (SEQ ID N°14)
 - et selon le mode opératoire décrit dans l'exemple 1, point 2.1 ci-dessus, à ceci près qu'on a utilisé une température de 50°C à la place de 62°C

- Digestion enzymatique du fragment de PCR par XbaI
- Digestion enzymatique du plasmide pIV327 obtenu dans le point 2.3 ci-dessus par XbaI
- Ligature (T4 DNA Ligase), transformation bactérienne (souche TG1)
- Sélection des clones bactériens sur ampicilline (100 µg/ml)
- 5 Maxi préparation plasmidique (Qiagen) de 2 clones positifs après analyse de restriction: (PstI: pIV329: fragments de 3033 et 6466 pb, pIV344: 4641 et 4858 pb; ApaI (dans React 4 Buffer, Invitrigen): pIV329: 454, 960 et 8085 pb, pIV344: 454, 1418 et 7627 pb; NcoI: pIV329: 4269, 469 et 4761 pb, pIV344: 3053, 1685 et 4761 pb; SmaI: pIV329: 214, 2164, 1444 et 5677 pb, pIV344: 214, 2164, 928 et 6193 pb)
- Obtention soit du plasmide de transfert permettant l'expression de la polyprotéine NS3/NS4 sous le contrôle du promoteur ph5r et de la protéine NS5b sous le contrôle du promoteur p7.5, les 2 cassettes d'expression étant orientées dans le même sens (p1V329, figure 2G), soit du plasmide de transfert permettant l'expression de la polyprotéine NS3/NS4 sous le contrôle du promoteur ph5r et de la protéine NS5b sous le contrôle du promoteur p7.5, les 2 cassettes d'expression étant orientées en sens opposés (pIV344, figure 2H).

5 Confirmation de l'expression des antigènes insérés dans les différents poxyirus

On a vérifié par Western blot, après infection de cellules Huh7 avec les poxvirus concernés, que les poxvirus pIV329 et pIV344, contenant les séquences codant pour la polyprotéine NS3NS4 et le polypeptide NS5b, exprimaient ces dits antigènes du VHC.

Exemple 3: Mise en évidence de l'immunogénicité de la combinaison NS3/NS4 et NS5b

1 Immunisation des souris

25

- On a immunisé des souris transgéniques HLA-A2.1, une fois, par injection intramusculaire d'au moins un adénovirus choisi parmi les adénovirus suivants :
 - AdNS3NS4 préparé dans l'exemple 1 ci-dessus (point 2.3),
 - AdNS5b préparé dans l'exemple 1 ci-dessus (point 3.3),

- AdNS5a préparé selon le mode opératoire de l'exemple 1, point 2, à ceci près qu'on a utilisé les amorces nucléotidiques suivantes pour amplifier la séquence nucléotidique codant pour le polypeptide NS5a (SEQ ID N°5 et 6):
- oIV172: 5'-GGG GGG GGT ACC ATG TCC GGC TCG TGG CTA AGG-3' (SEQ ID N°20),
- oIV173: 5'-GGG GGG TCT AGA TTA GCA GCA GAC GAT GTC GTC-3' (SEQ ID N°21),
- qu'on a remplacé dans la PCR la température de 62°C par 56°C, que la digestion enzymatique de pTG13387 et du fragment NS5a a été mise en œuvre par *KpnI/Xba*I,
- l'analyse de restriction par digestion par *Sma*I de pTG13387 donnant les fragments de 180 et 7251 pb et de pTG6624 donnant les fragments de 2263, 621, 5615, 180, 2463, 6480, 1398, 4456, 1455, 3540, 3386, 230 et 3685 pb
- AdCE1E2 selon le mode opératoire de l'exemple 1, point 2, à ceci près qu'on a utilisé les arnorces nucléotidiques suivantes pour amplifier la séquence nucléotidique codant pour la polyprotéine Core-E1-E2 (autrement appelée CE1E2) (SEQ ID N°7 et 8):
 - oIV62: 5'-GGG GGG GCT AGC ATG AGC ACA AAT CCT AAA CCT-3' (SEQ ID N°22)
 - oIV68: 5'-GGG GGG TCT AGA TCA GGC CTC AGC CTG GGC TAT-3' (SEQ ID N°23),
- qu'on a remplacé dans la PCR la température de 62°C par 56°C, que la digestion enzymatique de pTG13387 et du fragment CE1E2 a été mise en œuvre par *NheIIXbaI*, l'analyse de restriction par digestion par *SmaI* de pTG13387 donnant les fragments de 163, 435, 2270, 180 et 5254 pb et de pTG6624 donnant les fragments de 2263, 621, 3618, 163, 435, 2270, 180, 2463, 6480, 1398, 4456, 1455, 3540, 3386, 230 et 3685 pb,
- 25 AdNS3NS4NS5b préparé dans l'exemple 1 ci-dessus (point 3) et
 - AdβGal (Transgène),

selon le protocole suivant :

- 109 pfu d'AdNS3NS4 ou
- 10⁹ pfu d'AdNS5b ou

- 109 pfu d'AdCE1E2 ou
- 109 pfu d'AdNS3NS4 et 109 pfu d'AdNS5b ou
- 10° pfu d'AdNS3NS4, 10° pfu d'AdNS5b et 10° pfu d'AdNS5a
- 109 pfu d'AdNS3NS4, 109 pfu d'AdNS5b et 109 pfu d'AdCE1E2
- 5 10⁹ pfu AdNS3NS4NS5b ou
 - 109 pfu d'Adβ-Gal à titre de témoin.

Avant immunisation, on a vérifié, par Western blot, l'expression des antigènes du VHC et de β -Gal par les différents adénovirus utilisés pour l'immunisation.

2 Tests CTL et ELISPOT

Quinze jours après l'injection, on a analysé la réponse cellulaire en isolant les cellules de la rate (splénocytes) des souris et on a effectué un test CTL et un test ELISPOT comme suit :

Pour le test CTL, on a cultivé ces splénocytes en plaque 24 puits en présence de :

- 5 μM de l'épitope GLL (GLLGCIITSL, SEQ ID N°24) dans le cas des splénocytes provenant de souris ayant reçu AdNS3NS4, 5 μM de l'épitope ALY (ALYDVVSTL, SEQ ID N°25) ou 5 μM de l'épitope KLQ (KLQDCTMLV, SEQ ID N°26) dans le cas des splénocytes provenant de souris ayant reçu AdNS5b ou de 5 μM de l'épitope DLM (DLMGYIPLV, SEQ ID N°27) dans le cas des splénocytes provenant de souris ayant reçu AdCE1E2, lesdits épitopes étant sous la forme de peptide synthétique (Eurogentex), et
- 10 U d'interleukine 2 recombinante murine (Brinster et al., Hepatology 2001) par ml dans du milieu minimum essentiel alpha (αMEM) pendant 5 jours. Au 5^{ème} jour, on a effectué l'étape de restimulation qui consiste à rajouter aux splénocytes en culture des splénocytes de souris naïves en présence desdits épitopes pendant 2 jours. Au 7^{ème} jour, on a réalisé le test CTL en lui-même qui consiste à mettre en présence les splénocytes des souris immunisées après les 7 jours de culture (cellules effectrices) et des cellules EL4 S3-Rob HDD chargées avec 10μM desdits épitopes et marquées au Cr⁵¹ (cellules cibles). On a déterminé l'activité cytotoxique spécifique des cellules effectrices par la mesure, après 4 h d'incubation avec les cellules cibles, du Cr⁵¹ libéré suite à la lyse des cellules cibles en utilisant un appareil de comptage γ-Cobra II (Packard, Rungis, France). On a déterminé la libération spontanée et

maximale à partir de puits contenant soit du milieu seul, soit du tampon de lyse (HCl 1N). On a calculé le pourcentage spécifique de cytotoxicité par la formule :

(libération dans l'essai – libération spontanée)/(libération maximale – libération spontanée) ×100. On a déterminé la lyse spécifique d'épitope par la différence entre le pourcentage de lyse spécifique obtenu en présence ou en l'absence desdits épitopes.

On a effectué le test ELISPOT en cultivant les splénocytes pendant 48 h dans des plaques 96 puits Multiscreen (Millipore) préalablement «coatées » avec de l'anticorps antiinterféron gamma (IFNγ) (10μg/ml final). On a mis en culture les splénocytes en présence de
10μM des épitopes appropriés, comme indiqué ci-dessus, et de 10 U d'interleukine 2
recombinante murine par ml dans du αΜΕΜ. Pour le contrôle positif, on a cultivé les
splénocytes en présence de concanavaline A (5 μg/ml). Pour le contrôle négatif, on a cultivé
les splénocytes soit en présence d'un peptide non spécifique appartenant à la protéine de
capside du VHC, de séquence DLMGYIPLV (également appelé peptide irrelevant), soit en
milieu seul sans épitope. On a lavé les puits à trois reprises, respectivement avec du PBSTween 0,05% puis du PBS, opération suivie d'une incubation de 2 h avec des anticorps antiIFNγ de souris biotinylés. Après lavage, on a incubé les puits pendant 1 h avec un conjugué
streptavidine-peroxydase de raifort et on a révélé l'activité enzymatique par dégradation du
substrat AEC (aminoethylcarbazole). Les spots obtenus ont été comptés grâce à un lecteur
ELISpot Zeiss (microscope Zeiss couplé au logiciel KS-ELISpot).

Les résultats sont indiqués sur les figures 3 à 5 sur lesquelles S correspond à souris et Souris neg correspond à la souris témoin.

Ces résultats mettent en évidence que

- l'AdNS3NS4 induit bien une réponse à médiation cellulaire spécifique des antigènes exprimés, comme illustré sur la figure 3A et 3B par la détection de lymphocytes T spécifiques de l'épitope GLL contenu dans NS3.
- l'AdNS5b induit bien une réponse à médiation cellulaire spécifique des antigènes exprimés,
 comme illustré sur la figure 4 par la détection de lymphocytes T spécifiques de l'épitope ALY
 et KLQ contenus dans NS5b.

l'AdCE1E2 induit bien une réponse à médiation cellulaire spécifique des antigènes exprimés,
 comme illustré sur la figure 5 par la détection de lymphocytes T spécifiques de l'épitope DLM
 contenus dans la protéine Core.

3 Test d'épreuve in vivo à l'aide d'un virus vaccine recombinant

Afin d'évaluer si les réponses immunes spécifiques induites par les différents adénovirus étaient capables d'induire une protection contre une épreuve infectieuse (« protection *in vivo* »), nous avons soumis les souris vaccinées à une telle épreuve.

La souris n'étant pas infectable directement par le VHC, nous avons utilisé, pour relier l'induction d'une réponse immunitaire spécifique et la résistance à une infection, un virus vaccine recombinant (souche WR) codant pour les protéines non structurales du VHC (NS2 à NS5b) pour réaliser cette épreuve. Ce virus recombinant de la vaccine, après injection intra-péritonéale de 10⁷ pfu à la souris, va se répliquer chez l'animal. La réplication de ce virus induit une réponse immunitaire à la fois spécifique des antigènes de la vaccine et spécifique des antigènes du VHC, comme il exprime aussi les protéines NS du VHC. Cette réponse spécifique des antigènes du VHC sera d'autant plus efficace et vigoureuse que les souris auront déjà reçu un vaccin exprimant les antigènes du VHC. En d'autres termes, plus la vaccination (dans le cas présent réalisée avec les adénovirus recombinants) aura été efficace (c'est-à-dire que le système immun des souris aura été « primé » efficacement par le vaccin), plus la réponse anti-VHC générée après l'épreuve par le virus recombinant de la vaccine sera forte et, par voie de conséquence, plus les souris seront « protégées » contre cette épreuve. En pratique, plus le taux résiduel de virus de la vaccine dans les souris sera faible, plus la protection ou la neutralisation due à la vaccination aura été efficace.

La neutralisation du virus vaccine reflète à la fois la réponse cellulaire induite par les protéines du VHC et par les protéines de la vaccine. La neutralisation est évaluée par titration du virus vaccine résiduel à partir des ovaires des animaux comme suit : les ovaires sont prélevés à 4 jours post-épreuve, soniqués, congelés-décongelés 3 fois puis après centrifugation, des dilutions successives de surnageant sont titrées selon la technique des plages de lyse (Murata et al., PNAS, vol. 100, p.6753-6758) sur cellules Hutk-. Les titres viraux sont déterminés en pfu/ml/mg d'ovaire.

25

4 Mise en évidence d'une protection supérieure d'une vaccination combinant la polyprotéine NS3/NS4 et le polypeptide NS5b.

On a déterminé le titre de virus recombinant de la vaccine pour 4 groupes de 8 souris immunisées par les combinaisons d'adénovirus suivantes : AdNS3NS4 + AdNS5b (1^{cr} groupe), AdNS3NS4 + AdNS5b + AdNS5b (2^{ème} groupe), AdNS3NS4 + AdNS5b + AdCE1E2 (3^{ème} groupe) et AdβGal (4^{ème} groupe).

Les résultats, donnés sur la figure 6, sont traités de façon statistique en se basant sur le test non paramétrique de Mann Whitney Wilcoxon (Methodes Statistiques à l'usage des médecins et des biologistes, Collection Statistique en Biologie et en Médecine, Flammarion Medecine Sciences, (D. Schwartz), 1977) qui repose sur une comparaison des moyennes, et permet la comparaison des valeurs de deux échantillons x et y indépendants.

Ce test est mis en œuvre comme suit : l'ensemble des valeurs des deux groupes x et y à comparer est classé de façon croissante. Un rang est ensuite attribué à chaque valeur, et la somme des rangs est effectuée. On obtient alors Wx et Wy. On calcule alors une valeur de référence appelée $(Wx)_t$ (valeur théorique dans l'hypothèse nulle où Wx n'est pas différent de Wy) et liée par le rapport : n(N+1)/2, avec n = nombre de souris testées dans le groupe x et y.

Si Wx est inférieur à $(Wx)_t$ (taux résiduel de virus de la vaccine dans les souris faible), alors on peut conclure que la neutralisation due à la vaccination est significativement efficace.

Si nous prenons l'exemple du groupe AdNS3NS4S5b noté x comparé au groupe Ad β Gal noté y, nous obtenons les valeurs suivantes :

$$Wx = 1+2+4+6+8+11+13+14 = 59$$
 (8 souris testées)
 $Wy = 3+5+7+9+10+12+15+16 = 77$ (8 souris testées)

Sous l'hypothèse nulle, Wx n'est pas différent de Wy, la valeur attendue est : $(Wx)_i = (1/2)*8*17 = 68$

 $Wx < (Wx)_t$ ce qui signifie que les valeurs obtenues dans le groupe AdNS3NS4NS5b sont plus petites que celles obtenues dans le groupe Ad β Gal et que la neutralisation due à la vaccination est significativement efficace.

Les valeurs statistiques pour les autres groupes de souris sont indiquées dans le

tableau 1 ci-dessous:

Tableau 1

Groupe/Adβ Gal	Wx	(Wx) _t
AdNS3NS4+NS5b	52	68
AdNS3NS4+NS5b+		<u> </u>
NS5a	68	68
AdNS3NS4+NS5b+		
CE1E2	74	68

Les valeurs dans le tableau 1 ci-dessus montrent que seule une vaccination des souris par la combinaison des Adénovirus NS3NS4 et adénovirus NS5b est capable d'induire une neutralisation significative de la réplication du virus de la vaccine utilisé dans l'épreuve par rapport au groupe de souris contrôle vacciné par l'AdβGal. Les vaccinations réalisées en utilisant les combinaisons comprenant (AdNS3NS4 + AdNS5b + AdNS5a) ou (AdNS3/NS4 + AdNS5b + AdCE1E2), n'aboutissent pas à une différence significative par rapport au groupe de souris contrôle immunisé par AdβGal.

Ces résultats permettent donc de mettre en évidence, de façon inattendue, la protection supérieure d'une vaccination combinant la polyprotéine NS3NS4 et le polypeptide NS5b.

5 Confirmation de la protection d'une vaccination combinant la polyprotéine NS3/NS4 et le polypeptide NS5b exprimés conjointement par un même vecteur

On a déterminé le titre de virus recombinant de la vaccine pour 3 groupes de 8 souris immunisées par les combinaisons d'adénovirus suivantes : AdNS3NS4NS5b (1^{er} groupe), AdNS3NS4 + AdNS5b (2^{ème} groupe) et Ad β Gal (3^{ème} groupe).

Les résultats, donnés sur la figure 7, sont traités de façon statistique en se basant sur le test non paramétrique de Mann Whitney Wilcoxon comme décrit dans l'expérience précédente.

Les valeurs statistiques pour les groupes 1 et 2 comparées au groupe contrôle

$Ad\beta \, Gal$ sont indiquées dans le tableau 2ci-dessous :

Tablcau 2

Groupe/Adβ Gal	Wx	(Wx) _t
AdNS3NS4NS5b	49	68
AdNS3NS4+NS5b	53	68

Les valeurs dans le tableau 2 ci-dessus montrent que la vaccination des souris par un adénovirus codant à la fois pour les trois antigènes NS3, NS4 et NS5b, tout comme la combinaison des Adénovirus NS3NS4 et Adénovirus NS5b, est capable d'induire une neutralisation significative de la réplication du virus de la vaccine utilisé dans l'épreuve par rapport au groupe de souris contrôle vacciné par l'AdénoβGal. Ce résultat confirme la protection d'une vaccination combinant la polyprotéine NS3/NS4 et le polypeptide NS5b exprimés conjointement par un même vecteur.

REVENDICATIONS

1. Composition peptidique caractérisée en ce qu'elle comprend une polyprotéine NS3/NS4 du virus de l'hépatite C, ainsi qu'un polypeptide NS5b du virus de l'hépatite C.

5

- 2. Composition peptidique selon la revendication 1, caractérisée en ce que NS3 et/ou NS4 et/ou NS5b proviennent de virus de génotypes différents.
- 3. Composition peptidique selon la revendication 1, caractérisée en ce que NS3,
 NS4 et NS5b proviennent d'un virus de même génotype, de préférence de génotype 1b.
 - 4. Vecteur d'expression caractérisé en ce qu'il comprend une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et une séquence nucléotidique codant pour le polypeptide NS5b, ainsi que les moyens nécessaires à leur expression.

15

5. Vecteur d'expression selon la revendication 4, caractérisé en ce que les séquences nucléotidiques codent pour une polyprotéine et un polypeptide issus de virus de génotypes différents.

- 6. Vecteur d'expression selon la revendication 4, caractérisé en ce que les séquences nucléotidiques codent pour une polyprotéine et un polypeptide issus d'un virus de même génotype, de préférence le génotype 1b.
- 7. Vecteur d'expression selon l'une quelconque des revendications 4 à 6, caractérisé en ce que ce vecteur est un adénovirus.
 - 8. Vecteur d'expression selon la revendication 7, caractérisé en ce que le génome de l'adénovirus est modifié de façon à remplacer la région E1 par la cassette d'expression CMV-NS3-NS4 et à remplacer la région E3 par la cassette d'expression SV40-NS5b.

5

- 9. Vecteur d'expression selon l'une quelconque des revendications 4 à 6, caractérisé en ce que ce vecteur est un poxvirus.
- 10. Vecteur d'expression selon la revendication 9, caractérisé en ce que le génome du poxvirus est modifié de façon à insérer la cassette d'expression ph5r-NS3-NS4 et à insérer la cassette d'expression p7.5-NS5b.
- 11. Microorganisme ou cellule hôte transformé par un vecteur d'expression tel que défini dans l'une quelconque des revendications 4 à 10.
 - 12. Utilisation d'une composition peptidique telle que définie dans l'une quelconque des revendications 1 à 3, ou bien d'un vecteur d'expression tel que défini dans l'une quelconque des revendication 4 à 10, ou bien d'un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, ou bien des séquences nucléotidiques codant pour ladite polyprotéine NS3/NS4 et ledit polypeptide NS5b, lesdites séquences nucléotidiques correspondant aux séquences contenues dans les vecteurs d'expression tels que définis dans l'une quelconque des revendication 4 à 10, placées sous le contrôle d'éléments nécessaires à une expression constitutive et/ou inductible desdits peptides, pour la préparation d'un médicament destiné à l'inhibition, la prévention ou le contrôle d'une infection provoquée par le virus de l'hépatite C chez un animal, de préférence l'homme.
 - 13. Composition pharmaceutique, notamment vaccin, comprenant à titre de substance active la composition peptidique telle que définie dans les revendications 1 à 3, ou bien un vecteur d'expression tel que défini dans l'une quelconque des revendication 4 à 10, ou bien un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine

NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide.

- 14. Composition pharmaceutique selon la revendication 13, caractérisée en ce qu'elle comprend également un véhicule pharmaceutiquement approprié.
 - 15. Kit pharmaceutique, notamment vaccinal, caractérisé en ce qu'il comprend au moins un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et au moins un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b.
 - 16. Kit pharmaceutique, notamment vaccinal, caractérisé en ce qu'il comprend au moins un vecteur d'expression tel que défini dans la revendication 7 ou 8 et au moins un vecteur d'expression tel que défini la revendication 9 ou 10.

- 17. Kit pharmaceutique, notamment vaccinal, comprenant au moins un vecteur d'expression tel que défini dans l'une quelconque des revendications 4 à 10, ou bien au moins un vecteur d'expression comprenant une séquence nucléotidique codant pour la polyprotéine NS3/NS4 avec un vecteur d'expression comprenant une séquence nucléotidique codant pour le polypeptide NS5b, et
 - au moins une composition peptidique telle que définie dans les revendications 1 à
 3 ou
 - (ii) au moins une séquence nucléotidique codant pour la polyprotéine NS3/NS4 et pour le polypeptide NS5b.

Figure 1

Figure 1A

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure 1C

Figure 1D

WO 2004/111082 PCT/FR2004/050214

3/17
Figure 1 (suite)

Figure 1E

Figure 1F

Figure 1H

FEUILLE DE REMPLACEMENT (REGLE 26)

WO 2004/111082 PCT/FR2004/050214

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure 1 (suite)

Figure 1K

7/17 Figure 2

Figure 2A

8/17
Figure 2 (suite)

Figure 2B

WO 2004/111082 PCT/FR2004/050214

9/17
Figure 2 (suite)

Figure 2C

Figure 2 (suite)

Figure 2D

11/17
Figure 2 (suite)

Figure 2E

12/17
Figure 2 (suite)

Figure 2F

13/17
Figure 2 (suite)

Figure 2G

14/17
Figure 2 (suite)

Figure 2H

15/17

Figure 3

Figure 3B 2500 S p ot 2000 ☑ Peptide 1500 s ■ Peptide irrelevant ١F 1000 Νγ 500 10 6 S3 Sneg S2 S1

Figure 5

17/17

Figure 6

FEUILLE DE REMPLACEMENT (REGLE 26)

10/559431 IAP12 Rec'd PCT/PTO 05 DEC 2005

WO 2004/111082

<110> BIOMERIEUX

1

PCT/FR2004/050214

SEQUENCE LISTING

	<11			ÆRIE TUT		IANO	DE	LA S	ANTE	e et	DE I	LA RE	CHER	CHE	MEDI	CALE	•	
		0>	Comp	osit urs d	ion	comp	rena	nt l	la po luant	าไขกร	·otái	ne l	א/ כסו	TC4 -			ypeptide NS5b rrespondantes	du et
	<13	0>	ADEN	OVIR	Ł													
	<16	0>	27	•														
	<17	0>	Pate	ntIn	ver	sion	3.1											
	<21 <21 <21	1>	1 2844 DNA	ı														
	<21	3 >	Arti	fici	al s	eque	nce											
	<22 <22		séqu	ence	cod	ant	pour	NS3	NS4									
	<22: <22: <22:	1> 2>	CDS (1).	. (28	44)													
	<40 atg Met 1	gcg	cct Pro	atc Ile	acg Thr 5	gcc Ala	tat Tyr	tcc Ser	caa Gln	caa Gln 10	acg Thr	cgg Arg	ggc	ctg Leu	ctt Leu 15	ggc	48	
	tgt Cys	atc Ile	atc Ile	act Thr 20	agc Ser	ctc Leu	aca Thr	ggt	cgg Arg 25	gac Asp	aag Lys	aac Asn	cag Gln	gtc Val 30	gat Asp	ejy aaa	96	
	gag Glu	gtt Val	cag Gln 35	gtg Val	ctc Leu	tcc Ser	acc Thr	gca Ala 40	acg Thr	caa Gln	tct Ser	ttc Phe	ctg Leu 45	gcg Ala	acc Thr	tgc Cys	144	
	gtc Val	aat Asn 50	ggc	gtg Val	tgt Cys	tgg Trp	acc Thr 55	gtc Val	tac Tyr	cat His	ggt Gly	gcc Ala 60	ggc Gly	tcg Ser	aag Lys	acc Thr	192	
٠.	ctg Leu 65	gcc Ala	ggc ggc	ccg Pro	aag Lys	ggt Gly 70	cca Pro	atc Ile	acc Thr	caa Gln	atg Met 75	tac Tyr	acc Thr	aat Asn	gta Val	gac Asp 80	240 ′	
	cag Gln	gac Asp	ctc Leu	gtc Val	ggc Gly 85	tgg Trp	ccg Pro	gcg Ala	ccc Pro	ccc Pro 90	ej aaa	gcg Ala	cgc Arg	tcc Ser	atg Met 95	aca Thr	288	
	ccg Pro	tgc Cys	acc Thr	tgc Cys 100	ggc Gly	agc Ser	tcg Ser	gac Asp	ctt Leu 105	tac Tyr	ttg Leu	gtc Val	acg Thr	agg Arg 110	cat His	gcc Ala	336	
	gat Asp	gtc Val	att Ile 115	ccg Pro	gtg Val	cgc Arg	cgg Arg	cga Arg 120	ggc	gac Asp	agc Ser	agg Arg	999 Gly 125	agt Ser	cta Leu	ctc Leu	384	

tcc Ser	cct Pro 130	agg Arg	ccc Pro	gtc Val	tcc Ser	tac Tyr 135	ctg Leu	aag Lys	ggc	tcc Ser	tcg Ser 140	Gly	gga Gly	cca Pro	ctg Leu		432
ctt Leu 145	tgc Cys	cct Pro	tcg Ser	gjå aaa	cac His 150	gtt Val	gta Val	ggc Gly	atc Ile	ttc Phe 155	cgg Arg	gct Ala	gct Ala	gtg Val	tgc Cys 160		480
acc Thr	cgg Arg	GJA aaa	gtt Val	gcg Ala 165	aag Lys	gcg Ala	gtg Val	gac Asp	ttc Phe 170	ata Ile	ccc Pro	gtt Val	gag Glu	tct Ser 175	atg Met		528
gaa Glu	act Thr	acc Thr	atg Met 180	cgg Arg	tct Ser	ccg Pro	gtc Val	ttc Phe 185	aca Thr	gac Asp	aac Asn	tca Ser	tcc Ser 190	cct Pro	ccg Pro		576
gcc Ala	gta Val	ccg Pro 195	caa Gln	aca Thr	ttc Phe	caa Gln	gtg Val 200	gca Ala	cat His	tta Leu	cac His	gct Ala 205	ccc Pro	act Thr	Gly		624
agc Ser	ggc Gly 210	aag Lys	agc Ser	acc Thr	aaa Lys	gtg Val 215	ccg Pro	gct Ala	gca Ala	tat Tyr	gca Ala 220	gcc Ala	caa Gln	eja aaa	tac Tyr		672
aag Lys 225	gtg Val	ctc Leu	gtc Val	cta Leu	aac Asn 230	ccg Pro	tcc Ser	gtt Val	gct Ala	gcc Ala 235	aca Thr	ttg Leu	ggc Gly	ttt Phe	gga Gly 240		720
gcg Ala	tat Tyr	atg Met	tcc Ser	aag Lys 245	gca Ala	cat His	ggc Gly	atc Ile	gag Glu 250	cct Pro	aac Asn	atc Ile	aga Arg	act Thr 255	G1Å aaa		768
gta Val	agg Arg	acc Thr	atc Ile 260	acc Thr	acg Thr	ggc Gly	ggc Gly	ccc Pro 265	atc Ile	acg Thr	tac Tyr	tcc Ser	acc Thr 270	tat Tyr	ggc Gly		816
aag Lys	ttc Phe	ctt Leu 275	gcc Ala	gac Asp	ggt Gly	gga Gly	tgc Cys 280	tcc Ser	Gly 333	ggc Gly	gcc Ala	tat Tyr 285	gac Asp	atc Ile	ata Ile		864
					cac His												912
ggc Gly 305	aca Thr	gtc Val	ctg Leu	gat Asp	cag Gln 310	gca Ala	gag Glu	acg Thr	gct Ala	gga Gly 315	gcg Ala	cgg Arg	ctc Leu	gtc Val	gtg Val 320		960
ctc Leu	gcc Ala	acc Thr	gcc Ala	acg Thr 325	cct Pro	ccg Pro	gga Gly	tcg Ser	atc Ile 330	acc Thr	gtg Val	cca Pro	cac His	ccc Pro 335	aac Asn	:	1008
atc Ile	gag Glu	gaa Glu	gtg Val 340	gcc Ala	ctg Leu	tcc Ser	aac Asn	act Thr 345	gly ggg	gag Glu	att Ile	ccc Pro	ttc Phe 350	tat Tyr	ggc Gly	:	1056
aaa Lys	gcc Ala	atc Ile 355	ccc Pro	att Ile	gag Glu	gcc Ala	atc Ile 360	aag Lys	eja aaa	gga Gly	agg Arg	cat His 365	ctc Leu	atc Ile	ttc Phe	:	1104

tgo Cys	cat His	361	aag Lys	g aag E Lys	g aag Lys	tgt Cys	: Asp	gag Gly	g cto 1 Lev	gco 1 Ala	gca Ala 380	a Lys	g cto	g ạca 1 Thi	a ggc : Gly	1152
cto Lev 385	. Gry	cto Leu	aat Asr	get Ala	gta Val 390	Ата	tat Tyr	tac Tyr	cgg Arg	39t 39t	/ Let	c gat ı As <u>ı</u>	gtg Val	g tco l Ser	gtc Val 400	1200
ata Ile	ccg Pro	act Thr	ago Ser	gga Gly 405	ASD	gto Val	gtt Val	gto Val	gtg Val	. Ala	aca Thi	a gad Asp	gct Ala	cta Lev 415	atg Met	1248
	GIY	FIIG	420	GIY	Asp	Pne	Asp	9 Ser 425	Val	Ile	: Asp	Cys	430	Thr	tgt Cys	1296
Vu.	1111	435	. 1111	val	Asp	Pne	440	Leu	Asp	Pro	Thr	Phe 445	Thr	: Ile	gag Glu	1344
	450	1111	· val	PLO		455	Ala	Val	Ser	Arg	Ser 460	Gln	Arg	Arg	Gly	1392
465		GTY	мy	сту	agg Arg 470	ser	GTÀ	Ile	Tyr	Arg 475	Phe	Val	Thr	Pro	Gly 480	1440
	3		DCI	485	atg Met	Pile	Asp	ser	Ser 490	Val	Leu	Cys	Glu	Cys 495	Tyr	1488
		CLY	500	wra	tgg Trp	Tyr	GIu	Leu 505	Thr	Pro	Ala	Glu	Thr 510	Thr	Val	1536
3		515	nia	ıyı	ctg Leu	ASI	520	Pro	Gly	Leu	Pro	Val 525	Cys	Gln	Asp	1584
	530	GIU	FILE	тр	gaa Glu	535	val	Phe	Thr	Gly	Leu 540	Thr	His	Ile	Asp	1632
545			neu	261	caa Gln 550	inr	гÀ2	GIn	Ala	Gly 555	qaA	Asn	Phe	Pro	Tyr 560	1680
			-7-	565	gcc Ala	1111	val	сув	A1a 570	Arg	Ala	Gln	Ala	Pro 575	Pro	1728
		11.0	580	GIII	atg Met	тър	гля	Cys 585	Leu _.	Ile	Arg	Leu	Lys 590	Pro	Thr	1776
ctg Leu		999 61y 595	cca Pro	aca Thr	ccc Pro	neu .	ctg Leu 600	tat Tyr	agg Arg	cta Leu	gga Gly	gcc Ala 605	gtt Val	caa Gln	aat Asn	1824

			ctc Leu													1872
tcg Ser 625	gcc Ala	gac Asp	ctg Leu	gag Glu	gtc Val 630	gtc Val	act Thr	agc Ser	acc Thr	tgg Trp 635	gtg Val	ctg Leu	gta Val	ggc Gly	gga Gly 640	1920
			gct Ala													1968
			agg Arg 660													2016
agg Arg	gaa Glu	gtc Val 675	ctc Leu	tac Tyr	cgg Arg	gag Glu	ttc Phe 680	gat Asp	gaa Glu	atg Met	gaa Glu	gag Glu 685	tgc Cys	gcc Ala	tca Ser	2064
			tac Tyr													2112
cag Gln 705	cag Gln	gca Ala	ctc Leu	ejà aaa	ttg Leu 710	ctg Leu	caa Gln	aca Thr	gcc Ala	acc Thr 715	aag Lys	caa Gln	gcg Ala	gag Glu	gcc Ala 720	2160
_	_		gtg Val	_						_			_			2208
			atg Met 740													2256
			ctg Leu													2304
			atc Ile													2352
			gly aaa													2400
			ttc Phe													2448
ata Ile	ggc Gly	ctt Leu	999 Gly 820	aag Lys	gtg Val	ctt Leu	gtg Val	gac Asp 825	att	ctg Leu	gcg Ala	ggc	tat Tyr 830	gga Gly	gcg Ala	2496
			ggt Gly													2544

Pro	tcc Ser 850	ALA	gag Glu	gac Asp	ctg Leu	gtt Val 855	aac Asn	ttg Leu	ctc Leu	cct Pro	gcc Ala 860	Ile	ctc Leu	tcc Ser	ccc	259	92
ggc Gly 865	АТА	ttg Leu	gtc Val	gtc Val	999 Gly 870	atc Ile	gtg Val	tgt Cys	gca Ala	gca Ala 875	atc Ile	ctg Leu	cgt Arg	cgg Arg	cac His 880	264	10
gtg Val	ggc Gly	ccg Pro	gga Gly	gag Glu 885	Gly 999	gct Ala	gtg Val	cag Gln	tgg Trp 890	atg Met	aac Asn	cgg Arg	ctg Leu	ata Ile 895	gcg Ala	268	88
ttc Phe	gct Ala	tcg Ser	cgg Arg 900	ggt Gly	aac Asn	cac His	gtt Val	tcc Ser 905	Pro	acg Thr	cac His	tac Tyr	gtg Val 910	cct Pro	gag Glu	273	3'6
agc Ser	gac Asp	gcc Ala 915	gca Ala	gca Ala	cgt Arg	gta Val	act Thr 920	cag Gln	atc Ile	ctc Leu	tcc Ser	agc Ser 925	ctc Leu	acc Thr	atc Ile	278	34
act Thr	cag Gln 930	ctg Leu	ctg Leu	aag Lys	agg Arg	ctt Leu 935	cac His	cag Gln	tgg Trp	att Ile	aat Asn 940	gag Glu	gac Asp	tgc Cys	tcc Ser	283	12
	cca Pro		taa													284	4
<21 <21 <21 <21	1> : 2> :	2 947 PRT Arti:	ficia	al se	equer	ıce											
<22					_												
<22		séque	ence	coda	int p	our	NS3N	IS4					-				
<22 <40	3 > 8	séque 2	ence	coda	int p	our	NS3N	IS4									
<40	3 >	2	ence						Gln 10	Thr	Arg	Gly	Leu	Leu 15	Gly		
<40 Met 1	3>	? Pro		Thr 5	Ala	Туг	Ser	Gln	10					15	_		
<40 Met 1 Cys	3>	Pro Ile	Ile Thr	Thr 5 Ser	Ala Leu	Tyr Thr	Ser Gly	Gln Arg 25	10 Asp	Lys	Asn	Gln	Val 30	15 Asp	Gly		
<40 Met 1 Cys	3> s 0> 2 Ala Ile Val	Pro Ile Gln 35	Ile Thr 20	Thr 5 Ser Leu	Ala Leu Ser Trp	Tyr Thr Thr	Ser Gly Ala	Gln Arg 25 Thr	10 Asp Gln	Lys Ser	Asn Phe	Gln Leu 45	Val 30 Ala	15 Asp Thr	Gly Cys		
<40 Met 1 Cys Glu Val	3> s 0> 2 Ala Ile Val Asn 50	Pro Ile Gln 35	Ile Thr 20 Val	Thr 5 Ser Leu Cys	Ala Leu Ser	Tyr Thr Thr Thr 55	Ser Gly Ala 40 Val	Gln Arg 25 Thr	10 Asp Gln His	Lys Ser Gly	Asn Phe Ala 60	Gln Leu 45 Gly	Val 30 Ala Ser	15 Asp Thr Lys	Gly Cys Thr		
<40 Met 1 Cys Glu Val Leu 65	3> s 0> 2 Ala Ile Val Asn 50 Ala	Pro Ile Gln 35 Gly	Thr 20 Val Val Pro	Thr 5 Ser Leu Cys	Ala Leu Ser Trp Gly 70	Thr Thr Thr 55	Ser Gly Ala 40 Val	Gln Arg 25 Thr Tyr	Asp Gln His	Lys Ser Gly Met 75	Asn Phe Ala 60 Tyr	Gln Leu 45 Gly Thr	Val 30 Ala Ser	15 Asp Thr Lys Val	Gly Cys Thr Asp		

Asp	Val	Ile 115	Pro	Val	Arg	Arg	Arg 120	Gly	Asp	Ser	Arg	Gly 125	Ser	Leu	Leu
Ser	Pro 130	Arg	Pro	Val	Ser	Tyr 135	Leu	Lys	Gly	Ser	Ser 140	Gly	Gly	Pro	Leu
Leu 145	Cys	Pro	Ser	Gly	His 150	Val	Val	Gly	Ile	Phe 155	Arg	Ala	Ala	Val	Cys 160
Thr	Arg	Gly	Val	Ala 165	Lys	Ala	Val	Asp	Phe 170	Ile	Pro	Val	Glu	Ser 175	Met
Glu	Thr	Thr	Met 180	Arg	Ser	Pro	Val	Phe 185	Thr	Asp	Asn	Ser	Ser 190	Pro	Pro
Ala	Val	Pro 195	Gln	Thr	Phe	Gln	Val 200	Ala	His	Leu	Hìs	Ala 205	Pro	Thr	Gly
Ser	Gly 210	Lys	Ser	Thr	Lys	Val 215	Pro	Ala	Ala	Tyr	Ala 220	Ala	Gln	Gly	Tyr
Lys	Val	Leu	Val	Leu	Asn	Pro	Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly
225					230					235					240
Ala	Tyr	Met	Ser	Lys 245		His	Gly	Ile	Glu 250		Asn	·Ile	Arg	Thr 255	Gly
Val	Arg	Thr	Ile 260		Thr	Gly	Gly	Pro 265	Ile	Thr	Tyr	Ser	Thr 270	туг	Gly
Lys	Phe	Leu 275		Asp	Gly	Gly	Cys 280		Gly	Gly	Ala	Tyr 285	Asp	Ile	Ile
Ile	Cys 290		Glu	Cys	His	Ser 295	Thr	Asp	Trp	Thr	Thr 300		Leu	Gly	Ile
Gly 305		Val	Leu	Asp	Gln 310		Glu	Thr	Ala	Gly 315		Arg	Leu	Val	Val 320
Leu	Ala	Thr	Ala	Thr 325		Pro	Gly	Ser	330		Val	Pro	His	Pro 335	Asn
Ile	Glu	Glu	Val 340		Leu	Ser	Asn	Thr 345		Glu	Ile	Pro	Phe 350		Gly
ГÀв	Ala	11e 355		Ile	: Glu	Ala	360		Gly	Gly	Arg	His 365		Ile	Phe
Cys	His 370		Lys	s Lys	. Lys	375	a Asp	Glu	ı Lev	ı Ala	Ala 380		Leu	Thr	Gly
Leu 385		/ Let	ı Asr	n Ala	390		а Туг	Туг	Arg	395 395		Asp	Val	Ser	Val 400
Ile	Pro	Thi	s Sei	Gl ₃		va.	l Val	L Val	Val 410		t Thi	. Asp	Ala	Leu 415	
Thi	. Gl	Phe	Th:		/ Ası	Phe	e Ası	Se:		l Ile	e Asp	Суа	430		Cys

Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu 435 440 445

Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly
450 455 460

Arg Thr Gly Arg Gly Arg Ser Gly Ile Tyr Arg Phe Val Thr Pro Gly 465 470 475 480

Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr 485 490 495

Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Thr Val 500 505 510

Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp 515 520 525

His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp 530 540

Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr 545 550 560

Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro 575

Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr 580 585 590

Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn 595 600 605

Glu Ile Thr Leu Thr His Pro Ile Thr Lys Phe Val Met Ala Cys Met 610 620

Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly 625 630 640

Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val 645 650 655

Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Val Pro Asp
660 665 670

Arg Glu Val Leu Tyr Arg Glu Phe Asp Glu Met Glu Glu Cys Ala Ser 675 680 685

His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys

Gln Gln Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala 705 710 715 720

Ala Ala Pro Val Val Glu Ser Arg Trp Arg Ala Leu Glu Ala Phe Trp
725 730 735

Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly
740 745 750

Leu	Ser	Thr 7 55	Leu	Pro	Gly	Asn	Pro 760	Ala	Ile	Ala	Ser	Leu 765	Met	Ala	Phe		
Thr	Ala 770	Ser	Ile	Thr	Ser	Pro 775	Leu	Thr	Thr	Gln	Asn 780	Thr	Leu	Leu	Phe		
Asn 785	Ile	Leu	Gly	Gly	Trp 790	Val	Ala	Ala	Gln	Leu 795	Ala	Pro	Pro	Ser	Ala 800		
Ala	Ser	Ala	Phe	Val 805	Gly	Ala	Gly	Ile	Ala 810	Gly	Ala	Ala	Ile	Gly 815	Ser		
Ile	Gly	Leu	Gly 820	Lys	Val	Leu	Val	Asp 825		Leu	Ala	Gly	Tyr 830	Gly	Ala		
Gly	Val	Ala 835		Ala	Leu	Val	Ala 840		Lys	Val	Met	Ser 845	Gly	Glu	Ala		
Pro	Ser 850	Ala	Glu	Asp	Leu	Val 855	Asn	Leu	Leu	Pro	Ala 860	Ile	Leu	Ser	Pro		
Gly 865	Ala	Leu	Val	Val	Gly 870		Val	Cys	Ala	Ala 875		. Lev	Arg	Arg	His 880		
Val	Gly	Pro	Gly	61u 885		Ala	Val	. Gln	890		. Asn	Arg	, Lev	1 Ile 899	a Ala		
Phe	Ala	Ser	900		Asn	His	Val	Ser 905		Thr	His	: Ту	910	l Pro	o Glu		
Ser	Asp	Ala 915		Ala	Arg	Val	Thr 920		ı Ile	e Lev	ı Ser	92!	c Lei	ı Th:	r Ile		
Thr	930		ı Lev	ı Lys	a Arg	935		s Glr	ı Tr	, Ile	940	n Gl	u Asj	o Cy	s Ser		
Thr 945		Су:	5										ı				
<23 <23	L2>	3 177 DNA Art		ial :	sequ	ence											
	20> 23>	séq	uenc	e co	dant	pou	r NS	5b									
<2:	20> 21> 22> 23>	CDS	(1	779)													
a t-	00> g tc t Se	a at	g to	c ta r Ty 5	c ac	a tg r Tr	g ac p Th	a gg ir Gl	gt go .y Al 10	a Le	g at eu Il	c ac le Ti	g co ir Pi	a to co Cy 1!	ge get ys Ala	t 48 a	3
gc Al	g ga a Gl	g ga u Gl	ig ag Lu Se	er Ly	g tt	g co u Pr	c at o II	c aa le As 25	n Pi	g tt	g ag eu Se	gc aa er Aa	ac to sn Se 30	er L	tg ct eu Le	g 96 u	5

cgt Arg	cac His	cac His 35	agt Ser	atg Met	gtc Val	tac Tyr	tcc Ser 40	aca Thr	aca Thr	tct Ser	cgc Arg	agc Ser 45	gca Ala	agt Ser	ctg Leu		144
cgg Arg	cag Gln 50	aag Lys	aag Lys	gtc Val	acc Thr	ttt Phe 55	gac Asp	aga Arg	ctg Leu	caa Gln	gtc Val 60	ctg Leu	gac Asp	gac Asp	cac His		192
tac Tyr 65	cgg Arg	gac Asp	gtg Val	ctc Leu	aag Lys 70	gag. Glu	atg Met	aag Lys	gcg Ala	aag Lys 75	gcg Ala	tcc Ser	aca Thr	gtt Val	aag Lys 80	•	240
gct Ala	agg Arg	ctt Leu	cta Leu	tct Ser 85	ata Ile	gag Glu	gag Glu	gcc Ala	tgc Cys 90	aaa Lys	ctg Leu	acg Thr	ccc Pro	cca Pro 95	cat His		288
tcg Ser	gcc Ala	aaa Lys	tcc Ser 100	aaa Lys	ttt Phe	ggc	tac Tyr	999 91y	gcg Ala	aag Lys	gac Asp	gtc Val	cgg Arg 110	agc Ser	cta Leu		336
tcc Ser	agc Ser	agg Arg 115	gcc Ala	gtc Val	aac Asn	cac His	atc Ile 120	cgc Arg	tcc Ser	gtg Val	tgg Trp	gag Glu 125	gac Asp	ttg Leu	ctg Leu		384
gaa Glu	gac Asp 130	act Thr	gaa Glu	aca Thr	cca Pro	att Ile 135	gat Asp	acc Thr	acc Thr	atc Ile	atg Met 140	gca Ala	aaa Lys	aat Asn	gag Glu		432
gtt Val 145	ttc Phe	tgc Cys	gtc Val	caa Gln	cca Pro 150	gag Glu	aaa Lys	gga Gly	ggc	cgc Arg 155	aag Lys	cca Pro	gct Ala	cgc Arg	ctt Leu 160		480
atc Ile	gta Val	ttc Phe	cca Pro	gac Asp 165	ctg Leu	glà aaa	gta Val	cgt Arg	gta Val 170	tgc Cys	gag Glu	aag Lys	atg Met	gcc Ala 175	ctt Leu		528
tac Tyr	gac Asp	gtg Val	gtc Val 180	tcc Ser	acc Thr	ctt Leu	cct Pro	cag Gln 185	gcc Ala	gtg Val	atg Met	ggc Gly	ccc Pro 190	tca Ser	tac Tyr		576
gga Gly	ttc Phe	cag Gln 195	tac Tyr	tct Ser	cct Pro	elà aaa	cag Gln 200	cgg Arg	gtc Val	gag Glu	ttc Phe	ctg Leu 205	gtg Val	aat Asn	acc Thr		624
tgg Trp	aaa Lys 210	tca Ser	aag Lys	aaa Lys	tgc Cys	cct Pro 215	atg Met	ggc Gly	ttc Phe	tca Ser	tat Tyr 220	gac Asp	acc Thr	cgc Arg	tgc Cys		672
ttt Phe 225	gac Asp	tca Ser	acg Thr	gtc Val	act Thr 230	gag Glu	aat Asn	gac Asp	atc Ile	cgt Arg 235	act Thr	gag Glu	gag Glu	tca Ser	atc Ile 240		720
tac Tyr	caa Gln	tgt Cys	tgt Cys	gac Asp 245	ttg Leu	gcc Ala	ccc Pro	gaa Glu	gcc Ala 250	aga Arg	cag Gln	gcc Ala	ata Ile	aag Lys 255	tcg Ser		768
ctc Leu	aca Thr	gag Glu	cgg Arg 260	ctc Leu	tac Tyr	atc Ile	G1Å aaa	ggt Gly 265	ccc Pro	ctg Leu	act Thr	aat Asn	tca Ser 270	aaa Lys	gjy aaa		816

cag Gln	aac Asn	tgc Cys 275	ggt Gly	tat Tyr	cgc Arg	cgg Arg	tgc Cys 280	cgc Arg	gcg Ala	agc Ser	ggc	gte Va: 28!	ΙL	tg eu	acg Thr	act Thr	864
agc Ser	tgc Cys 290	Gly	aat Asn	acc Thr	ctc Leu	aca Thr 295	tgc Cys	tac Tyr	ttg Leu	aaa Lys	gcc Ala 300	Th	t g r A	ıcg la	gcc Ala	tgt Cys	912
cga Arg 305	gct Ala	gca Ala	aag Lys	ct.c Leu	cag Gln 310	gac Asp	tgc Cys	acg Thr	atg Met	ctc Leu 315	. Val	aa As	c g	gga Bly	gac Asp	gac Asp 320	960
ctt Leu	gtc Val	gtt Val	ato Ile	tgc Cys 325	Glu	agc Ser	gcg Ala	gga Gly	acc Thr 330	Glr	gag Glu	g ga ı As	t g	gcg Ala	gcg Ala 335	agc Ser	1008
cta Leu	cga Arg	gto Val	tto Phe	acg Thr	gag Glu	gct Ala	atg Met	act Thr 345	Arg	tac Ty:	tci Se:	t go r Al	.a	ccc Pro 350	ccc Pro	gly aaa	1056
gac Asp	ccg	9r0	Glı	a cca a Pro	gaa Glu	tac Tyr	gac Asp 360	Leu	gag Glu	cto Le	g at	a ac e Th 36	ır	tca Ser	tgc Cys	tcc Ser	1104
tcc Ser	aat Asn 370	. Va	g tog l Se:	g gto r Val	gcg Ala	cac His	Asp	gca Ala	tco Ser	Gl;	c aa y Ly 38	S A	rg	gtg Val	tac Tyr	tac Tyr	1152
cto Leu 385	Thi	c cg	t ga g As	e eed p Pro	acc Thr 390	Thr	ecc Pro	cto Lev	gca 1 Ala	a cg a Ar 39	g Al	t go .a A	cg la	tgg Trp	gag Glu	aca Thr 400	i
gtt Val	aga L Arg	a ca g Hi	c ac s Th	t cca r Pro 40	o Val	aac L Ası	tco Sei	tgg Tr	g cta p Le 41	u Gl	c aa y Aa	it a sn I	tc le	ato Ile	ato Met	: Tyı	1248
gcg	g cc	c ac	c ct r Le 42	a tg u Tr 0	g gcg p Ala	g agg	g ato	g at: t Il: 42:	e Le	g at u Me	g ac	et c ir H	at is	Phe 430	PRe	c tci e Sei	1296 r
ate Ile	c ct e Le	t ct u Le 43	u Al	t ca .a Gl	g ga n Gl	g ca u Gl:	a ct n Le 44	u Gl	a aa u Ly	a go	c ci la L	eu A	at sp 45	tgi Cy:	cag Gl:	g aten	c 1344 e
Ту	r G1 45	у А. О	ia Cy	jc ta /s Ty	r Se	r Il 45	e Gl 5	u Pr	o Le	u A	вр L 4	eu I 60	?ro	G1:	u II	е тт	e
Gl 46	u Ar	g L	eu H	at gg is Gl	y Le 47	u Se O	r Al	a Ph	e Se	er L	eu H 75	is S	ser	ту	r se	48	0
G1	y Gl	lu I	le A		rg Va 35	ıl Al	a Se	er Cy	rs Le 49	eu A 90	rg L	ys .	Leu	I GI	y va 49	95	.0
Pi	co Li	eu A	rg V	tc to al T: 00	gg ag rp Ai	ga ca rg Hi	it co Ls Ai	rg A.	ec ag La Ai D5	ga a rg S	gt g er V	ntc Val	Arg	g gc g Al 51	.a ь	ag tt 78 Le	:g 1536 eu

Leu	tcc Ser	cag Gln 515	Gly 999	gjå aaa	agg Arg	gcc Ala	gcc Ala 520	act Thr	tgc Cys	ggc Gly	aaa Lys	tac Tyr 525	ctc Leu	ttc Phe	aac Asn	1584
tgg Trp	gca Ala 530	gta Val	agg Arg	acc Thr	aag Lys	ctt Leu 535	aaa Lys	ctc Leu	act Thr	cca Pro	atc Ile 540	ccġ Pro	gct Ala	gcg Ala	tcc Ser	1632
cag Gln 545	cta Leu	gac Asp	ttg Leu	tcc Ser	ggc Gly 550	tgg Trp	ttc Phe	gtt Val	gct Ala	ggt Gly 555	tac Tyr	aac Asn	ej aaa	gga Gly	gac Asp 560	1680
ata Ile	tat Tyr	cac His	agc Ser	ctg Leu 565	tct Ser	cgt Arg	gcc Ala	cga Arg	ccc Pro 570	cgt Arg	tgg Trp	ttc Phe	atg Met	ttg Leu 575	tgc Cys	1728
cta Leu	ctc Leu	cta Leu	ctt Leu 580	tct Ser	gta Val	GJA aaa	gta Val	ggc Gly 585	atc Ile	tac Tyr	ctg Leu	ctc Leu	ccc Pro 590	aac Asn	cgg Arg	1776
taa																1779
<21 <21 <21 <21	1> ! 2> 1	4 592 PRT Artii	ficia	al se	equer	ıce										
<22 <22		séque	ence	coda	ant r	our	NS5l	,								
					-			-								
<40	0> 4	1			-											
			Ser						Ala 10	Leu	Ile	Thr	Pro	Суа 15	Ala	
Met 1	Ser	Met		Tyr 5	Thr	Trp	Thr	Gly	10					15		
Met 1 Ala	Ser Glu	Met Glu	Ser Ser	Tyr 5 Lys	Thr Leu	Trp Pro	Thr Ile	Gly Asn 25	10 Pro	Leu	Ser	Asn	Ser 30	15 Leu	Leu	
Met 1 Ala Arg	Ser Glu His	Met Glu His 35	Ser Ser 20	Tyr 5 Lys Met	Thr Leu Val	Trp Pro Tyr	Thr Ile Ser 40	Gly Asn 25 Thr	10 Pro Thr	Leu Ser	Ser Arg	Asn Ser 45	Ser 30 Ala	15 Leu Ser	Leu Leu	
Met 1 Ala Arg	Ser Glu His Gln 50	Met Glu His 35 Lys	Ser Ser 20 Ser	Tyr 5 Lys Met Val	Thr Leu Val	Trp Pro Tyr Phe 55	Thr Ile Ser 40 Asp	Gly Asn 25 Thr	10 Pro Thr Leu	Leu Ser Gln	Ser Arg Val 60	Asn Ser 45 Leu	Ser 30 Ala Asp	15 Leu Ser Asp	Leu Leu His	
Met 1 Ala Arg Arg	Ser Glu His Gln 50 Arg	Met Glu His 35 Lys Asp	Ser Ser 20 Ser	Tyr 5 Lys Met Val	Thr Leu Val Thr Lys 70	Trp Pro Tyr Phe 55 Glu	Thr Ile Ser 40 Asp	Gly Asn 25 Thr Arg Lys	10 Pro Thr Leu Ala	Leu Ser Gln Lys 75	Ser Arg Val 60 Ala	Asn Ser 45 Leu Ser	Ser 30 Ala Asp	15 Leu Ser Asp	Leu Leu His Lys	
Met 1 Ala Arg Arg Tyr 65	Ser Glu His Gln 50 Arg	Met Glu His 35 Lys Asp	Ser Ser 20 Ser Lys	Tyr 5 Lys Met Val Leu Ser 85	Thr Leu Thr Lys 70 Ile	Trp Pro Tyr Phe 55 Glu	Thr Ile Ser 40 Asp Met Glu	Gly Asn 25 Thr Arg Lys	10 Pro Thr Leu Ala Cys 90	Leu Ser Gln Lys 75 Lys	Ser Arg Val 60 Ala Leu	Asn Ser 45 Leu Ser	Ser 30 Ala Asp Thr	15 Leu Ser Asp Val	Leu His Lys 80	
Met 1 Ala Arg Arg Arg Ser	Ser Glu His Gln 50 Arg Arg	Met Glu His 35 Lys Asp Leu Lys	Ser 20 Ser Lys Val Leu Ser	Tyr 5 Lys Met Val Leu Ser 85	Thr Leu Val Thr Lys 70 Ile	Trp Pro Tyr Phe 55 Glu Glu Gly	Thr Ile Ser 40 Asp Met Glu Tyr	Gly Asn 25 Thr Arg Lys Ala Gly 105	Thr Leu Ala Cys 90 Ala	Leu Ser Gln Lys 75 Lys	Ser Arg Val 60 Ala Leu Asp	Asn Ser 45 Leu Ser Thr	Ser 30 Ala Asp Thr Pro	15 Leu Ser Asp Val Pro 95 Ser	Leu Leu His Lys 80 His	

Val 145	Phe	Cys	Val	Gln	Pro 150	Glu	ГÀЗ	Gly	Gly	Arg 155	Lуs	Pro	Ala	Arg	Leu 160
Ile	Val	Phe	Pro	Asp 165		Gly	Val	Arg	Val 170	Cys	Glu	Lys	Met	Ala 175	Leu
Tyr	Asp	Val	Val 180	Ser	Thr	Leu	Pro	Gln 185	Ala	Val	Met	Gly	Pro 190	Ser	Туг
Gly	Phe	Gln 195	Tyr	Ser	Pro	Gly	Gln 200	Arg	Val	Glu	Phe	Leu 205	Val	Asn	Thr
Trp	Lys 210	Ser	Lys	Lys	Суз	Pro 215	Met	Gly	Phe	Ser	Tyr 220	Asp	Thr	Arg	Суз
Phe 225	Asp	Ser	Thr	Val	Thr 230	Glu	Asn	Asp	Ile	Arg 235	Thr	Glu	Glu	Ser	11e 240
Tyr	Gln	Cys	Сув	Asp 245	Leu	Ala	Pro	Glu	Ala 250	Arg	Gln	Ala	Ile	Lys 255	Ser
Leu	Thr	Glu	Arg 260	Leu	Tyr	Ile	Gly	Gly 265	Pro	Leu	Thr	Asn	Ser 270	Lys	Gly
Gln	Asn	Cys 275	Gly	Tyr	Arg	Arg	Cys 280	Arg	Ala	Ser	Gly	Val 285	Leu	Thr	Thr
Ser	Cys 290	Gly	Asn	Thr	Leu	Thr 295	Сув	Tyr	Leu	ГÀЗ	Ala 300	Thr	Ala	Ala	Cys
Arg 305	Ala	Ala	Lys	Leu	Gln 310	Asp	Cys	Thr	Met	Leu 315		Asn	Gly	Asp	Asp 320
Leu	Val	Val	Ile	Cys 325		Ser	Ala	Gly	Thr 330		Glu	Asp	Ala	Ala 335	
Leu	Arg	Val	Phe 340		Glu	Ala	Met	Thr 345		Tyr	Ser	Ala	350		Gly
Asp	Pro	Pro 355		Pro	Glu	Туг	Asp 360		Glu	Leu	Ile	Thr 365	Ser	Cys	Ser
Ser	Asn 370		Ser	· Val	Ala	His 375	_	Ala	Ser	: Gly	380 Lys		y Val	Tyr	Туз
Leu 385		Arg	Asp	Pro	390		Pro	Leu	Ala	395		Ala	Trp	Glu	400
Val	Arg	His	Thr	405		Asr	. Ser	Trp	410		Asn	ı Ile	e Ile	Met 415	
Ala	Pro	Thr	Lev 420		Ala	Arg	y Met	11e 425		ı Met	Thr	Hi:	430		s Se
Ile	Leu	435		a Glr	ı Glu	Glr	1 Leu 440		ı Lya	s Ala	a Lev	1 Asj 449	o Cys	Glr	ı Ile
Туг	Gly	Ala	а Суя	ту1	: Ser	: Ile	e Glu	ı Pro	Lev	ı Ası	Let 460		o Gli	ı Ile	e Il

rg Leu	His	Gly	Leu 470	Ser	Ala	Phe	Ser	Leu 475	His	Ser	туг	Ser	Pro 480	
lu Ile	. Asn	Arg 485	Val	Ala	Ser	Суз	Leu 490	Arg	Lys	Leu	Gly			
eu Arc	Val 500	Trp	Arg	His	Arg	Ala 505	Arg	Ser	Val	Arg	Ala 510		Leu	
er Glr 515	Gly	Gly	Arg	Ala	Ala 520	Thr	Cys	Gly	Lys	Tyr 525	Leu	Phe	Asn	
la Val 30	Arg	Thr	Lys	Leu 535	Lys	Leu	Thr	Pro	Ile 540	Pro	Ala	Ala	Ser	
eu Asp	Leu	Ser	Gly 550	Trp	Phe	Val	Ala	Gly 555	Tyr	Asn	Gly	Gly	Asp 560	
yr His	Ser	Leu 565	Ser	Arg	Ala	Arg	Pro 570	Arg	Trp	Phe	Met	Leu 575	Суз	
eu Leu	Leu 580	Ser	Val	Gly	Val	Gly 585	Ile	Tyr	Leu	Leu	Pro 590	Asn	Arg	
CDS			ant p	oour	NS5a	a								·
5 cc ggc er Gly	tcg Ser	tgg Trp 5	cta Leu	agg Arg	gat Asp	gtt Val	tgg Trp 10	gac Asp	tgg Trp	ata Ile	tgc Cys	acg Thr 15	gtg Val	48
et gac er Asp	ttc Phe 20	aag Lys	acc Thr	tgg Trp	ctc Leu	cag Gln 25	tcc Ser	aag Lys	ctc Leu	ctg Leu	ccg Pro 30	aaa Lys	ttg Leu	96
	cct	ttc	ttc	tca	tgc	caa	cgc	āāā	tac	aag	gga	gtc	tgg	144
y Val 35	Pro	Phe	Phe	Ser	Cys 40	Gln	Arg	Glγ	Tyr	Lys 45	Gly	Val	Trp	
у мат	ggc	atc	Phe	Ser	Cys 40 acc	Gln	tac	cca	tat	45	ac.	433		192
	eu Arger Glm 515 la Val au Asper His eu Leu 5 1344 DNA Arti séqu CDS (1) 5 cc ggc	lu Ile Asn eu Arg Val 500 er Gln Gly 515 la Val Arg au Asp Leu 77 His Ser eu Leu Leu 580 5 1344 DNA Artifici séquence CDS (1) . (134 cc ggc tcg cr Gly Ser et gac ttc	lu Ile Asn Arg 485 eu Arg Val Trp 500 er Gln Gly Gly 515 la Val Arg Thr 30 eu Asp Leu Ser 77 His Ser Leu 565 eu Leu Leu Ser 580 5 1344 DNA Artificial se séquence code CDS (1)(1344) 5 ce ggc tcg tgg cer Gly Ser Trp 5 cet gac ttc aag ar Asp Phe Lys	tu Ile Asn Arg Val 485 au Arg Val Trp Arg 500 ar Gln Gly Gly Arg 515 la Val Arg Thr Lys 30 au Asp Leu Ser Gly 550 Ar His Ser Leu Ser 565 au Leu Leu Ser Val 580 5 1344 DNA Artificial sequer séquence codant p CDS (1)(1344) 5 cc ggc tcg tgg cta ar Gly Ser Trp Leu 5 ct gac ttc aag acc ar Asp Phe Lys Thr	lu Ile Asn Arg Val Ala 485 eu Arg Val Trp Arg His 500 er Gln Gly Gly Arg Ala 515 la Val Arg Thr Lys Leu 535 eu Asp Leu Ser Gly Trp 550 yr His Ser Leu Ser Arg 565 eu Leu Leu Ser Val Gly 580 5 1344 DNA Artificial sequence séquence codant pour CDS (1)(1344) 5 cr ggc tcg tgg cta agg 6r Gly Ser Trp Leu Arg 5 cr gac ttc aag acc tgg 6r Asp Phe Lys Thr Trp	lu Ile Asn Arg Val Ala Ser 485 eu Arg Val Trp Arg His Arg 500 er Gln Gly Gly Arg Ala Ala 520 la Val Arg Thr Lys Leu Lys 535 eu Asp Leu Ser Gly Trp Phe 550 yr His Ser Leu Ser Arg Ala 565 eu Leu Leu Ser Val Gly Val 580 5 1344 DNA Artificial sequence séquence codant pour NS5a CDS (1)(1344) 5 cr ggc tcg tgg cta agg gat cr Gly Ser Trp Leu Arg Asp 55 et gac ttc aag acc tgg ctc ar Asp Phe Lys Thr Trp Leu	lu Ile Asn Arg Val Ala Ser Cys 485 eu Arg Val Trp Arg His Arg Ala 500 er Gln Gly Gly Arg Ala Ala Thr 515 la Val Arg Thr Lys Leu Lys Leu 30 eu Asp Leu Ser Gly Trp Phe Val 550 eu Leu Leu Ser Val Gly Val Gly 580 5 1344 DNA Artificial sequence séquence codant pour NS5a CDS (1)(1344) 5 cc ggc tcg tgg cta agg gat gtt er Gly Ser Trp Leu Arg Asp Val 5 ct gac ttc aag acc tgg ctc cag er Asp Phe Lys Thr Trp Leu Gln	lu Ile Asn Arg Val Ala Ser Cys Leu 485 eu Arg Val Trp Arg His Arg Ala Arg 500 er Gln Gly Gly Arg Ala Ala Thr Cys 520 la Val Arg Thr Lys Leu Lys Leu Thr 535 eu Asp Leu Ser Gly Trp Phe Val Ala 550 eu Leu Leu Ser Val Gly Val Gly Ile 580 eu Leu Leu Ser Val Gly Val Gly Ile 580 CDS (1)(1344) 5 ggc tcg tgg cta agg gat gtt tgg er Gly Ser Trp Leu Arg Asp Val Trp 10 et gac ttc aag acc tgg ctc cag tcc car Asp Phe Lys Thr Trp Leu Gln Ser	470 10 Ile Asn Arg Val Ala Ser Cys Leu Arg 485 10 Arg Val Trp Arg His Arg Ala Arg Ser 505 11 Arg Cln Gly Gly Arg Ala Ala Thr Cys Gly 515 12 Val Arg Thr Lys Leu Lys Leu Thr Pro 30 13 Val Arg Thr Lys Leu Lys Leu Thr Pro 555 14 Val Arg Thr Lys Ser Arg Ala Arg Pro Arg 555 15 Yr His Ser Leu Ser Arg Ala Arg Pro Arg 565 16 Leu Leu Ser Val Gly Val Gly Ile Tyr 580 17 Ser Sequence codant pour NS5a 18 CDS (1) (1344) 19 CS Gggc tcg tgg cta agg gat gtt tgg gac for Gly Ser Trp Leu Arg Asp Val Trp Asp 10 18 gac ttc aag acc tgg ctc cag tcc aag tr Asp Phe Lys Thr Trp Leu Gln Ser Lys	lu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys 490 eu Arg Val Trp Arg His Arg Ala Arg Ser Val 500 er Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys 520 la Val Arg Thr Lys Leu Lys Leu Thr Pro Ile 535 eu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr 550 yr His Ser Leu Ser Arg Ala Arg Pro Arg Trp 565 eu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu 580 5 1344 DNA Artificial sequence séquence codant pour NS5a CDS (1)(1344) 5 cc ggc tcg tgg cta agg gat gtt tgg gac tgg far Gly Ser Trp Leu Arg Asp Val Trp Asp Trp 5 10 et gac ttc aag acc tgg ctc cag tcc aag ctc tra Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu	and the Ash Arg Val Ala Ser Cys Leu Arg Lys Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg 500 The Glu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg 505 The Glu Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr 525 The Val Arg Thr Lys Leu Lys Leu Thr Pro Ile Pro 530 The His Ser Leu Ser Gly Trp Phe Val Ala Gly Tyr Ash 555 The Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu 580 The Ser Val Gly Val Gly Ile Tyr Leu Leu 580 The Ser Val Gly Val Gly Ile Tyr Leu Leu 580 The Ser Codant pour NS5a The Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile 10 The Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile 110 The Gas ttt aag acc tgg ctc cag tcc aag ctc ctg 12 Ctc 12 Ctg 12 Ctc 14 Ctg 12 Ctc 14 Ctg 14 Ctc	Ato Ato Ato Ato Ato Ato Ato Ato	At 11e Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val 485 au Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Lys 500 ar Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe 515 au Arg Thr Lys Leu Lys Leu Thr Pro IIe Pro Ala Ala 300 au Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Asn Gly Gly 555 au Asp Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu 570 au Leu Leu Ser Val Gly Val Gly IIe Tyr Leu Leu Pro Asn 580 5 1344 DNA Artificial sequence séquence codant pour NS5a CDS (1)(1344) 5 cr ggc tcg tgg cta agg gat gtt tgg gac tgg ata tgc acg arg Gly Ser Trp Leu Arg Asp Val Trp Asp Trp IIe Cys Thr 10 at gac ttc aag acc tgg ctc cag tcc aag ctc ctg ccg aaa tr Asp Phe Lys Thr Trp Leu Clu Ser Lys Leu Leu Pro Lys	The Ite Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val Pro 495 au Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Lys Leu Soo Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe Asn 515 au Arg Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala Ser 535 au Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Asn Gly Gly Asp 550 au Asp Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu Cys 570 au Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg 580 au Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg 580 CDS (1)(1344) 5 cc ggc tcg tgg cta agg gat gtt tgg gac tgg ata tgc acg gtg arg Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys Thr Val 15 at gac ttc aag acc tgg ctc cag tcc aag ctc ctg ccg aaa ttg tas tgac ttc aag acc ttg ctg cag ata ttg and the Leu Pro Lys Leu Pr

tgc Cys	agc Ser	aac Asn	acg Thr	tgg Trp 85	cac His	gga Gly	acg Thr	ttc Phe	ccc Pro 90	atc Ile	aac Asn	gcg Ala	tac Tyr	acc Thr 95	aca Thr	2	88
ggc Gly	ccc Pro	tgc Cys	aca Thr 100	ccc Pro	tcc Ser	ccg Pro	gcg Ala	ccg Pro 105	aac Asn	tat Tyr	tcc Ser	agg Arg	gcg Ala 110	ctg Leu	tgg Trp	3	36
cgg Arg	ġtg Val	gct Ala 115	gct Ala	gaa Glu	gag Glu	tac Tyr	gtg Val 120	gag Glu	att Ile	acg Thr	cgg Arg	gtg Val 125	gjå aaa	gac Asp	ttc Phe	3	84
cac His	tac Tyr 130	gtg Val	acg Thr	ggt Gly	atg Met	acc Thr 135	acc Thr	gac Asp	aac Asn	gta Val	aaa Lys 140	tgc Cys	ccg Pro	tgc Cys	cag Gln	4	:32
gtc Val 145	ccg Pro	gcc Ala	ccc Pro	gaa Glu	ttc Phe 150	ttc Phe	act Thr	gaa Glu	ttg Leu	gac Asp 155	Gly 999	gtg Val	cgg Arg	ttg Leu	cac His 160	4	180
agg Arg	tac Tyr	gct Ala	ccg Pro	gcg Ala 165	tgc Cys	aga Arg	cct Pro	ctc Leu	cta Leu 170	cgg Arg	gtg V al	gat Asp	gtc Val	aca Thr 175	ttc Phe	5	528
cag Gln	gtc Val	GJA aaa	ctc Leu 180	aac Asn	caa Gln	tac Tyr	ctg Leu	gtt Val 185	Gly	tca Ser	cag Gln	ctc Leu	cca Pro 190	tgc Cys	gag Glu	5	576
cct Pro	gag Glu	ccg Pro 195	Asp	gtg Val	gca Ala	gtg Val	ctc Leu 200	act Thr	tcc Ser	atg Met	ctc Leu	acc Thr 205	Asp	ccc Pro	tcc Ser	•	624
cac His	att Ile 210	Thr	gca Ala	gag Glu	acg Thr	gct Ala 215	Lys	cgt Arg	agg Arg	ccg Pro	gcc Ala 220	Arg	Gly 999	tct Ser	ccc	,	672
ccc Pro 225	Ser	ttg Leu	gcc Ala	ago Ser	tct Ser 230	Ser	gct Ala	ago Ser	caa Gln	ttg Leu 235	Ser	gcg Ala	r cct . Pro	tcc Ser	ttg Leu 240		720
aag Lys	gca Ala	aca Thr	tgo Cys	act Thr 245	Thr	cac His	cat His	gac Asp	tco Ser 250	Pro	gad Asp	gct Ala	gac Asp	cto Lev 255	atc lle		768
gag Glu	gco Ala	aac Asi	cto Lev 260	ı Lev	j tgg ı Trp	g cgg	g Cag	gag 1 Glu 265	ı Met	: Gly	gga Gl	a aac y Asi	270	th:	c cgt Arg		816
gt <u>e</u> Val	gaq Glu	tca Ser 27!	r Glı	g aat 1 Asi	aag Lys	g gtg s Val	g gta L Val 280	Ile	ttg E Lei	g gad 1 Asi	tc Se:	t tto r Pho 28	e Ası	c ccg	g ctt b Leu		864
cga Arg	g gcg J Ala 290	a Gl	a gag u Gl	g gat u Asj	c gag p Glu	g agg 1 Arg 29!	g Gl	a gta ı Va:	a tce l Se:	c gti r Vai	t gc 1 Al 30	a Al	a gaq a Gli	g ato	c ctg e Leu		912
ega Arg 30!	у Бу	a tc s Se	c aa r Ly	g aag s Ly	g tto s Pho 31	e Pr	c cc	c gc	g tt: a Le	g cc u Pr 31	o Il	a tg e Tr	g gc p Al	a cg	c ccg g Pro 320		960

gat Asp	tac Tyr	aac Asn	cct Pro	cca Pro 325	ctg Leu	tta Leu	gag Glu	tcc Ser	tgg Trp 330	aaa Lys	agt Ser	ccg Pro	gac Asp	tac Tyr 335	gtc Val	1008
cct Pro	ccg Pro	gcg Ala	gtg Val 340	cat His	GJ Y GG G	tgc Cys	cca Pro	ttg Leu 345	Pro	cct Pro	acc Thr	acg Thr	ggc Gly 350	cct Pro	cca Pro	1056
ata Ile	ccg Pro	cct Pro 355	cca Pro	cgg Arg	aaa Lys	aag Lys	agg Arg 360	acg Thr	gtt Val	gtt Val	ctg Leu	aca Thr 365	gag Glu	tcc Ser	acc Thr	1104
gtg Val	Ser 370	tct Ser	gcc Ala	ttg Leu	gcg Ala	gag Glu 375	ctg Leu	gct Ala	act Thr	aag Lys	act Thr 380	ttc Phe	ggc	agc Ser	tcc Ser	1152
385	ser	tcg Ser	Ala	Val	390	Ser	Gly	Thr	Ala	Thr 395	Ala	Pro	Pro	Asp	Gln 400	1200
Inr	ser	gac Asp	Asp	Gly 405	Asp	Lys	Glu	Ser	Asp 410	Ile	Glu	Ser	Tyr	Ser 415	Ser	1248
Mec	PLO	ccc Pro	420	GIU	GТĀ	GIU	Pro	Gly 425	Asp	Pro	Asp	Leu	Ser 430	Asp	Gly	1296
tct Ser	tgg Trp	tct Ser 435	acc Thr	gtg Val	agc Ser	GJÀ aaa	gag Glu 440	gcc Ala	Gly	gac Asp	gac Asp	atc Ile 445	gtc Val	tgc Cys	tgc Cys	1344
<21 <21 <21 <21	1> 4 2> 1	5 148 PRT Artif	icia	ıl se	equer	ıce										
<22 <22		séque	ence	coda	int p	our	NS5a	ι								
<40	D> 6	5														•
Met 1	Ser	Gly	Ser	Trp 5	Leu	Arg	Asp	Val	Trp	Asp	Trp	Ile	Cys	Thr 15	Val	
Leu	Thr	Asp	Phe 20	Lys	Thr	Trp	Leu	Gln 25	Ser	Lys	Leu	Leu	Pro 30	Lys	Leu	
Pro	Gly	Val 35	Pro	Phe	Phe	Ser	Cys 40	Gln	Arg	Gly	Tyr	Lys 45	Gly	Val	Trp	
Arg	Gly 50	Asp	Gly	Ile	Met	Gln 55	Thr	Thr	Cys	Pro	Сув 60	Gly	Ala	Gln	Ile	
Thr 65	Gly	His	Val	Lys	Asn 70	Gly	Ser	Met	Arg	Ile 75	Val	Gly	Pro	Lys	Thr 80	
Сув	Ser	Asn	Thr	Trp 85	His	Gly	Thr	Phe	Pro 90	Ile	Asn	Ala	Tyr	Thr 95	Thr	

Gly	Pro	Cys	Thr 100	Pro	Ser	Pro		Pro :	Asn	Tyr	Ser	Arg	Ala 110	Leu	Trp
Arg	Val	Ala 115	Ala	Glu	Glu		Val 120	Glu	Ile	Thr	Arg		Gly	Asp	Phe
His	Tyr 130	Val	Thr	Gly	Met	Thr 135	Thr	Asp	Asn	Val	Lys 140	Cys	Pro	Сув	Gln
Val 145	Pro	Ala	Pro	Glu	Phe 150	Phe	Thr	Glu	Leu	Asp 155	Gly	Val	Arg	Leu	His 160
Arg	Tyr	Ala	Pro	Ala 165	Cys	Arg	Pro	Leu	Leu 170	Arg	Val	Asp	Val	Thr 175	Phe
Gln	Val	Gly	Leu 180	Asn	Gln	Tyr	Leu	Val 185	Gly	Ser	Gln	Leu	Pro 190	Cys	Glu
Pro	Glu	Pro 195	Asp	Val	Ala	Val	Leu 200	Thr	Ser	Met	Leu	Thr 205	Asp	Pro	Ser
His	11e 210		Ala	Glu	Thr	Ala 215	Lys	Arg	Arg	Pro	Ala 220	Arg	Gly	Ser	Pro
Pro 225		Leu	Ala	Ser	Ser 230	Ser	Ala	Ser	Gln	Leu 235	Ser	Ala	Pro	Ser	Leu 240
Lys	Ala	Thr	Cys	Thr 245	Thr	His	His	Asp	Ser 250		Asp	Ala	Asp	Leu 255	Ile
Glu	Ala	Asn	Leu 260		Trp	Arg	Gln	Glu 265	Met	Gly	Gly	Asn	11e 270	Thr	Arg
Val	Glu	Ser 275		Asn	Lys	Val	Val 280		Leu	Asp	Ser	Phe 285		Pro	Leu
Arg	Ala 290		Glu	Asp	Glu	Arg 295		Val	Ser	Val	Ala 300		Glu	Ile	Leu
Arg 305		Ser	. Lys	. Pàs	Phe 310		Pro	Ala	Leu	Pro 315		Trp	Ala	Arg	Pro 320
Asp	Туг	: Asr	ı Pro) Pro		Leu	Glu	Ser	330		Ser	Pro	Asp	335	Val
Pro	Pro	Ala	a Val		Gly	Cys	Pro	Leu 345		Pro	Thr	Thr	Gl ₃ 350		Pro
Ile	e Pro	35!		Arg	J Lys	Lys	360		Val	. Va	L Lev	365	Glı	ı Seı	Thr
Va:	1 Se:		r Ala	a Let	ı Ala	375		ı Ala	Thi	c Ly:	380		e Gly	y Sea	Ser
G1; 38;	_	r Se	r Ala	a Vai	1 Ası 390		r Gly	Thr	c Ala	39:		a Pro	Pr	eA c	0 Gln 400
Th	r Se	r As	p As	9 Gl		p Ly:	s Glı	ı Sei	41		e Gl	u Se:	г Ту	r Se:	r Ser 5

Met	Pro	Pro	Leu	Glu	ı Gly	Glu	Pro	Glv	Asc	Pro	Agr	. T.e.i	Ser	. New	Gly	
			420	•				425	i				430	1		
Ser	Trp	9 Ser 435	Thr	· Val	. Ser	Gly	Glu 440	Ala	Gly	Asp	Asp	1le 445		Cys	Cys	
<21 <21 <21 <21	1> 2>	7 2241 DNA Arti		al s	eque	nce										
<22 <22		séqu	ence	cod	lant	pour	CE1	E2								
<22 <22 <22 <22	1> 2>	CDS (1).	. (22	41)												
<40	0>	7												٠		
atg Met 1	agc Ser	aca Thr	aat Asn	cct Pro 5	aaa Lys	cct Pro	caa Gln	aga Arg	aaa Lys 10	acc Thr	aaa Lys	cgt Arg	aac Asn	acc Thr 15	aac Asn	48
cgc Arg	cgc Arg	cca Pro	cag Gln 20	gac Asp	gtt Val	aag Lys	ttc Phe	ccg Pro 25	ggc	ggt Gly	ggt Gly	cag Gln	atc Ile 30	gtt Val	ggt Gly	96
gga Gly	gtt Val	tac Tyr 35	ctg Leu	ttg Leu	ccg Pro	cgc Arg	agg Arg 40	ggc	ccc Pro	agg Arg	ttg Leu	ggt Gly 45	gtg Val	cgc Arg	gcg Ala	144
act Thr	agg Arg 50	aag Lys	act Thr	tcc Ser	gag Glu	cgg Arg 55	tcg Ser	caa Gln	cct Pro	cgt Arg	gga Gly 60	agg Arg	cga Arg	caa Gln	cct Pro	192
atc Ile 65	ccc Pro	aag Lys	gct Ala	cgc Arg	cgg Arg 70	ccc Pro	gag Glu	ggt Gly	agg Arg	acc Thr 75	tgg Trp	gct Ala	cag Gln	ccc Pro	80 GJA 333	240
tac Tyr	cct Pro	tgg Trp	ccc Pro	ctc Leu 85	tat Tyr	ggc Gly	aac Asn	gag Glu	ggt Gly 90	atg Met	gly aaa	tgg Trp	gca Ala	gga Gly 95	tgg Trp	288
ctc Leu	ctg Leu	tca Ser	ccc Pro 100	cgt Arg	Gly	tct Ser	cgg Arg	cct Pro 105	agt Ser	tgg Trp	ggc Gly	ccc Pro	aca Thr 110	gac Asp	ccc Pro	336
cgg Arg	cgt Arg	agg Arg 115	tcg Ser	cgt Arg	aat Asn	ttg Leu	ggt Gly 120	aag Lys	gtc Val	atc Ile	gat Asp	acc Thr 125	ctt Leu	aca Thr	tgc Cys	384
ggc	ttc Phe 130	gcc Ala	gac Asp	ctc Leu	atg Met	999 Gly 135	tac Tyr	att Ile	ccg Pro	ctt Leu	gtc Val 140	ggc Gly	gcc Ala	ccc Pro	cta Leu	432
gga Gly 145	ggc ggc	gct Ala	gcc Ala	agg Arg	gcc Ala 150	ctg Leu	gcg Ala	cat His	ggc Gly	gtc Val 155	cgg Arg	gtt Val	ctg Leu	gag Glu	gac Asp 160	480

t.

ggc Gly	gtg Val	aac Asn	tat Tyr	gca Ala 165	aca Thr	Gly .	aat Asn	ctg Leu	ccc Pro 170	ggt Gly	tgc Cys	tct Ser	ttc Phe	tct Ser 175	atc Ile	528
ttc Phe	ctc Leu	tta Leu	gct Ala 180	ttg Leu	ctg Leu	tct Ser	tgt Cys	ttg Leu 185	acc Thr	atc Ile	cca Pro	gct Ala	tcc Ser 190	gct Ala	tac Tyr	576
gag Glu	gtg Val	cgc Arg 195	aac Asn	gtg Val	tcc Ser	eja aaa	ata Ile 200	tac Tyr	cat His	gtc Val	acg Thr	aac Asn 205	gac Asp	tgc Cys	tcc Ser	624
aac Asn	tca Ser 210	agt Ser	att Ile	gtg Val	tat Tyr	gag Glu 215	gca Ala	gcg Ala	gac Asp	atg Met	atc Ile 220	atg Met	cac His	acc Thr	ccc Pro	672
999 Gly 225	tgc Cys	gtg Val	ccc Pro	tgc Cys	gtc Val 230	cgg Arg	gag Glu	agt Ser	aat Asn	ttc Phe 235	tcc Ser	cgt Arg	tgc Cys	tgg Trp	gta Val 240	720
gcg Ala	ctc Leu	act Thr	ecc Pro	acg Thr 245	ctc Leu	gcg Ala	gcc Ala	agg Arg	aac Asn 250	agc Ser	agc Ser	atc Ile	ccc Pro	acc Thr 255	Thr	768
aca Thr	ata Ile	cga Arg	cgc Arg 260	His	gtc Val	gat Asp	ttg Leu	ctc Leu 265	gtt Val	Gly 333	gcg	gct Ala	gct Ala 270	Leu	tgt Cys	816
tcc Ser	gct Ala	atg Met 275	Tyr	gtt Val	GJ Y	gat Asp	ctc Leu 280	Cys	gga Gly	tcc	gtt Val	ttt Phe 285	Leu	gto Val	tcc Ser	864
Gln	Leu 290	Phe	e Thr	Phe	Ser	295	Arg	Arg	Tyr	Glu	300	r Val	. Glr	ı Asp	tgc Cys	912
aat Asn 305	Суя	tca Sei	a ato r Ile	tat Tyr	Pro	Gly	Cac	gta Val	tca Ser	ggt Gl ₃ 315	/ His	c cgc	ato Met	g gct : Ala	tgg Trp 320	960
gat	ato Met	g ato	g ato t Me	g aad Asi 325	ı Trp	tca Ser	cat Pro	aca Thi	acc Thr 330	: Ala	c cta a Le	a gto u Vai	g gta l Val	a tog 1 Se: 33	g cag r Gln 5	1008
Let	ı Le	u Ar	g Il. 34	e Pro	o Glr	n Ala	ı Va	1 Va:	l Asp	o Me	t Va	l Al	a Gl; 35	y Al 0	c cac a His	1056
Tr	o G1	y Va 35	l Le	u Ala	a Gl	y Lei	1 Ala 36	а Ту: 0	r Ty:	r Se	r Me	t Va 36	1 G1 [.] 5	y As	c tgg n Trp	
Al	а Б у 37	s Va O	l Le	u Il	e Va	1 Me	t Le	u Le	u Ph	e Al	a G1 38	y Va 0	l As	p G1	g cac y His	
ac Th 38	r Hi	c gt s Va	g ac	a gg r Gl	39 9 99	y Ar	g gt g Va	a gc l Al	c tc a Se	c ag r Se 39	r Th	c ca r Gl	g ag n Se	c ct r Le	c gtg u Val 400	

tcc Ser	tgg Trp	ctc Leu	tca Ser	caa Gln 405	ej aaa	cca Pro	tct Ser	cag Gln	aaa Lys 410	atc Ile	caa Gln	ctc Leu	gtg Val	aac Asn 415	acc Thr		1248
aac Asn	ggc Gly	agc Ser	tgg Trp 420	cac His	atc Ile	aac Asn	agg Arg	acc Thr 425	gct Ala	ctg Leu	aat Asn	tgc Cys	aat Asn 430	gac Asp	tcc Ser		1296
ctc Leu	caa Gln	act Thr 435	G1y 999	ttc Phe	att Ile	gct Ala	gcg Ala 440	ctg Leu	ttc Phe	tac Tyr	gca Ala	cac His 445	agg Arg	ttc Phe	aac Asn		1344
gcg Ala	tcc Ser 450	gga Gly	tgt Cys	cca Pro	gag Glu	cgc Arg 455	atg Met	gcc Ala	agc Ser	tgc Cys	cgc Arg 460	ccc Pro	atc Ile	gac Asp	aag Lys		1392
ttc Phe 465	gct Ala	cag Gln	Gly 999	tgg Trp	ggt Gly 470	ccc Pro	atc Ile	act Thr	cac His	gtt Val 475	gtg Val	cct Pro	aac Asn	atc Ile	tcg Ser 480		1440
gac Asp	cag Gln	agg Arg	cct Pro	tat Tyr 485	tgc Cys	tgg Trp	cac His	tat Tyr	gca Ala 490	ccc Pro	caa Gln	ccg Pro	tgc Cys	ggt Gly 495	att Ile		1488
gta Val	ccc Pro	gcg Ala	tcg Ser 500	cag Gln	gtg Val	tgt Cys	ggc Gly	cca Pro 505	gtg Val	tat Tyr	tgc Cys	ttc Phe	acc Thr 510	ccg Pro	agt Ser		1536
cct Pro	gtt Val	gtg Val 515	gtg Val	Gly aaa	acg Thr	acc Thr	gac Asp 520	cgt Arg	tcc Ser	gga Gly	gtc Val	ccc Pro 525	acg Thr	tat Tyr	agc Ser		1584
tgg Trp	999 530	gag Glu	aat Asn	gag Glu	aca Thr	gac Asp 535	gtg Val	ctg Leu	cta Leu	ctc Leu	aac Asn 540	aac Asn	acg Thr	cgg Arg	ccg Pro		1632
ccg Pro 545	caa Gln	ggc Gly	aac Asn	tgg Trp	ttc Phe 550	gly ggc	tgt Cys	aca Thr	tgg Trp	atg Met 555	aat Asn	agc Ser	acc Thr	gjà aaa	ttc Phe 560		1680
acc Thr	aag Lys	acg Thr	tgc Cys	999 565	ggc Gly	ccc Pro	ccg Pro	tgt Cys	aac Asn 570	atc Ile	Gly aaa	Gly 999	gtt Val	ggc Gly 575	aac Asn		1728
aac Asn	acc Thr	ttg Leu	att Ile 580	tgc Cys	ccc Pro	acg Thr	gat Asp	tgc Cys 585	ttc Phe	cga Arg	aag Lys	cac His	ccc Pro 590	gag Glu	gcc Ala		1776
act Thr	tac Tyr	acc Thr 595	aaa Lys	tgc Cys	gjå aac	tcg Ser	ggt Gly 600	cct Pro	tgg Trp	ttg Leu	aca Thr	cct Pro 605	agg Arg	tgt Cys	cta Leu		1824
gtt Val	gac Asp 610	tac Tyr	cca Pro	tac Tyr	aga Arg	ctt Leu 615	tgg Trp	cac His	tac Tyr	ccc Pro	tgc Cys 620	act Thr	atc Ile	aat Asn	ttt Phe		1872
acc Thr 625	atc Ile	ttc Phe	aag Lys	gtc Val	agg Arg 630	atg Met	tac Tyr	gtg Val	G1A aaa	ggc Gly 635	gtg Val	gag Glu	cac His	agg Arg	ctc Leu 640	-	1920

. 3

aac Asn	gcc Ala	gcg Ala	tgc Cys	aat Asn 645	tgg Trp	acc Thr	cga Arg	gga Gly	gag Glu 650	cgc Arg	tgt Cys	gac Asp	ctg Leu	gag Glu 655	gac Asp	1968
agg Arg	gat Asp	aga Arg	tca Ser 660	gag Glu	ctt Leu	agc Ser	ccg Pro	ctg Leu 665	cta Leu	ttg Leu	tct Ser	aca Thr	acg Thr 670	gag Glu	tgg Trp	2016
cag Gln	gta Val	ctg Leu 675	ccc Pro	tgt Cys	tcc Ser	ttt Phe	acc Thr 680	acc Thr	cta Leu	ccg Pro	gct Ala	ctg Leu 685	tcc Ser	act Thr	gga Gly	2064
ttg Leu	atc Ile 690	cac His	ctc Leu	cat His	cag Gln	aat Asn 695	atc Ile	gtg Val	gac Asp	gtg Val	caa Gln 700	tac Tyr	ctg Leu	tac Tyr	ggt Gly	2112
gta Val 705	Gly ggg	tca Ser	gtg Val	gtt Val	gtc Val 710	tcc Ser	gtc Val	gta Val	atc Ile	aaa Lys 715	tgg Trp	gag Glu	tat Tyr	gtt Val	ctg Leu 720	2160
ctg Leu	ctc Leu	ttc Phe	ctt Leu	ctc Leu 725	ctg Leu	gcg Ala	gac Asp	gcg Ala	cgc Arg 730	gtc Val	tgt Cys	gcc Ala	tgc Cys	ttg Leu 735	tgg Trp	2208
atg Met	atg Met	ctg Leu	ctg Leu 740	Ile	gcc Ala	cag Gln	gct Ala	gag Glu 745	Ala	tga						2241
<21 <21 <21 <21 <22 <22 <22	1> .2> .3>		fici				: CEJ	E2								
<4(0>	8														
1				5					10					15	r Asn	
Arg	g Ar	g Pr	o Glr 20	n Ası	val	LЪys	s Phe	25	o Gly	y Gly	/ Gly	y Gli	30	e Va	l Gly	
Gl	y Va	1 Ty:	r Lei	ı Le	ı Pro	Ar	g Arg	g Gl	y Pr	o Arg	g Le	u G1; 45	y Va	l Ar	g Ala	
Th	r Ar 50		s Th	r Se	r Gl	ı Ar	g Se	r Gl	n Pr	o Ar	g G1; 60	y Ar	g Ar	g Gl	n Pro	
I1 65	e Pr	о Гу	s Al	a Ar	g Ar	g Pr	o Gl	u Gl	y Ar	g Th 75	r Tr	p Al	a Gl	n Pr	o Gly 80	
Ту	r Pr	o Tr	p Pr	o Le 85		r Gl	y As	n Gl	u Gl 90	у Ме	t Gl	y Tr	p Al	a G1	y Trp	
Le	u Le	eu Se	r Pr 10		g Gl	y Se	r Ar	g Pr		r Tr	p Gl	уРг	o Th	r Ae .0	p Pro	

Arg Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu 130 140

Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160

Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175

Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr 180 185 190

Glu Val Arg Asn Val Ser Gly Ile Tyr His Val Thr Asn Asp Cys Ser 195 200 205

Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Met Ile Met His Thr Pro 210 215 220

Gly Cys Val Pro Cys Val Arg Glu Ser Asn Phe Ser Arg Cys Trp Val 225 230 235 240

Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ser Ser Ile Pro Thr Thr 245 250 255

Thr Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala Ala Leu Cys 260 265 270

Ser Ala Met Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser 275 280 285

Gln Leu Phe Thr Phe Ser Pro Arg Arg Tyr Glu Thr Val Gln Asp Cys 290 295 300

Asn Cys Ser Ile Tyr Pro Gly His Val Ser Gly His Arg Met Ala Trp 305 310 315 320

Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln 325 330 335

Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His 340 345 350

Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp 355 360 365

Ala Lys Val Leu Ile Val Met Leu Leu Phe Ala Gly Val Asp Gly His 370 375 380

Thr His Val Thr Gly Gly Arg Val Ala Ser Ser Thr Gln Ser Leu Val
385 390 395 400

Ser Trp Leu Ser Gln Gly Pro Ser Gln Lys Ile Gln Leu Val Asn Thr
405 410 415

Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser 420 425 430 Asn Thr Leu Ile Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala 580 585 590

Thr Tyr Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Leu 595 600 605

Val Asp Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Ile Asn Phe 610 620

Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Leu 625 630 635 640

Asn Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp 645 650 655

Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Ser Thr Thr Glu Trp
660 665 670

Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly 675 680 685

Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly

Val Gly Ser Val Val Val Ser Val Val Ile Lys Trp Glu Tyr Val Leu
705 710 715 720

Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Val Cys Ala Cys Leu Trp
725 730 735

Met Met Leu Leu Ile Ala Gln Ala Glu Ala 740 745

<210>	9	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	amorce oIV166	
10000	amoree orving	
<400>	9	
	•	
999999	gcta tggcgcctat cacggccta	29
	·	
<210>	10	
<211>	32	
<212>		
<213>	Artificial sequence	
<220>		
<223>	amorce oIV171	
<400>	10	
gggggg	acgc gtttagcatg gcgtggagca gt	
22233	and a second designation of	32
<210>	11	
<211>	30	
<212>	·	
<213>	Artificial sequence	
<220>		
<223>	amorce oIV232	
<400>	11	
gggggg	agat ctccagcagg cagaagtatg	3.0
	- 35 5 5	30
<210>	12	
<211>	33	
<212>		
	Artificial sequence	
14137	ATTITICIAL Sequence	
<220>		
	2	
<223>	amorceoIV233	
. 4 0 0		
<400>	12	
9999999	ptcg accgaaaatg gatatacaag ctc	33
<210>		
<211>	35	
<212>		
<213>	Artificial sequence	
	• 	
<220>		
<223>	amorce oIV212	
<400>	13	
	cta gaatgtcaat gteetacaca tggac	
	Jan-Journ Beergara Lygar	35

<210><211><211><212><213>	32	
<220> <223>	amorce oIV218	
<400> gggggg	14 tcta gattaccggt tggggagcag gt	32
<210><211><212><213>	32	
<220> <223>	amorce oIV225	
	15 getge agatggegee tateaeggee ta	32
<210> <211> <212> <213>	32	
<220> <223>	amorce oIV226	
<400> ggggg	16 gtcta gattagcatg gcgtggagca gt	32
<210><211><212><213>	35	
<220> <223>	amorce oIV227	
<400> ggggg	17 ggtcg acatgtcaat gtcctacaca tggac	35
<210><211><211><212><213>	32 DNA	
<220> <223>		
<400>	> 18 gggcat gcttaccggt tggggagcag gt	32

<210>	19	
<211>	33	
<212>	DNA	
<213>	Artificial sequence	
	•	
<220>		
<223>	amorce oIV229	
<400>	19	
	tcta gaccggtagt tegcatatac ata	•
33333	sock gacoggiage cogcacacae aca	33
	•	
<210>	20	
<211>	33	
<212>		
<213>	Artificial sequence	
<220>		
<223>	amorce oIV172	
<400>	20	
999999	ggta ccatgtccgg ctcgtggcta agg	33
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33
<210>	21	
<211>	33	
<212>		
<213>		
10252	mitticial sequence	
<220>		
	·	
<223>	amorce oIV173	
400		
<400>	21	
aaaaaa	tcta gattagcagc agacgatgtc gtc	33
	·	
<210>	22	
<211>	33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	amorce oIV62	
<400>	22	
	gcta gcatgagcac aaatcctaaa cct	
55555	John Johnsagoud adatectada ett	33
<210>	23	
<211>	33	
<211>	·	.*
	DNA	
<213>	Artificial sequence	
.000		
<220>		٠.
<223>	amorce oIV68	
400		
<400>.		
aaaaaat	teta gateaggeet cageetggge tat	33

. . . .

```
<210> 24
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> épitope GLL
<400> 24
Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu
<210> 25
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> épitope ALY
<400> 25
Ala Leu Tyr Asp Val Val Ser Thr Leu
1 5
<210> 26
<211> 9
<212> PRT
<213> Artificial sequence
 <220>
 <223> épitope KLQ
 <400> 26
 Lys Leu Gln Asp Cys Thr Met Leu Val
 <210> 27
<211> 9
<212> PRT
 <213> Artificial sequence
 <220>
 <223> épitope DLM
 <400> 27
 Asp Leu Met Gly Tyr Ile Pro Leu Val
```