Tarea 3: Clasificación de sentimientos base de datos IMBD

Luis Maximiliano López Ramírez

Septiembre 27, 2024

1 Instrucciones

- 1. Descargar el siguiente notebook: https://github.com/azunre/transfer-learning-for-nlp/blob/master/Ch2-3/tlfornlp-chapters2-3-imdb-traditional.ipynb
- 2. Revisión del Código: El código tiene un pequeño error a la hora de cargar los datos. ¡Hay que encontrar cuál es el error! También se pueden buscar alternativas para leer y cargar la base de datos correctamente.
- 3. Entrenamiento con Features BOW: Entrenar con las características BOW (Bag-of-Words) los modelos indicados en el notebook. Comparar el desempeño con las siguientes configuraciones:
 - (a) Configuración 1: maxtokens = 50, maxtokenlen = 20
 - (b) Configuración 2: maxtokens = 100, maxtokenlen = 100
 - (c) Configuración 3: maxtokens = 200, maxtokenlen = 100
- 4. Entrenamiento con TF-IDF: Repetir el proceso anterior quitando las características BOW y utilizando ahora el método TF-IDF mediante la función TFidVectorizer() de scikit-learn.

2 Tablas Comparativas

• Configuraciones

```
- Inciso a: {"maxtokens": 50, "maxtokenlen": 20}
- Inciso b: {"maxtokens": 100, "maxtokenlen": 100}
- Inciso c: {"maxtokens": 200, "maxtokenlen": 100}
```

•

Se usaron features BOW y features TF-IDF (TFidVectorizer())

Table 1: BOW - Tabla 1

	Inciso a	Inciso b	Inciso c
Logistic Regression Time Logistic Regression Accuracy SVC Time SVC Accuracy Random Forest Time Random Forest Accuracy	0.352871 0.680000 5.318035 0.665000 2.084996 0.658333	0.692264 0.735000 8.017462 0.715000 2.652875 0.721667	1.103024 0.761667 11.882643 0.746667 3.456817 0.763333
Gradient Boosting Time Gradient Boosting Accuracy	$\begin{array}{c} 18.737749 \\ 0.650000 \end{array}$	$39.877150 \\ 0.663333$	$\begin{array}{c} 56.840677 \\ 0.748333 \end{array}$

Table 2: TF-IDF (TFidVectorizer) - Tabla 2

	Inciso a	Inciso b	Inciso c
Logistic Regression Time	0.241724	0.333917	0.777298
Logistic Regression Accuracy	0.703333	0.776667	0.805000
SVC Time	11.379516	17.148620	45.520317
SVC Accuracy	0.720000	0.763333	$\begin{array}{c} 0.808333 \\ 12.661570 \\ 0.751667 \\ 321.756221 \\ 0.766667 \end{array}$
Random Forest Time	4.171154	5.544183	
Random Forest Accuracy	0.705000	0.736667	
Gradient Boosting Time	50.776217	91.489628	
Gradient Boosting Accuracy	0.663333	0.738333	

3 Observaciones y Conclusiones

Conclusiones Basadas en las Tablas de Resultados

Las dos tablas presentan el desempeño de diferentes modelos de clasificación (Regresión Logística, SVC, Random Forest y Gradient Boosting) en términos de tiempo de entrenamiento y precisión (*Accuracy*) bajo dos enfoques distintos para la representación de las características: **BOW** (Bag-of-Words) y **TF-IDF** (*TFidVectorizer* de scikit-learn). Cada tabla contiene los resultados para tres configuraciones de parámetros (**Inciso a, b y c**), que varían los valores de maxtokens y maxtokenlen.

1. Comparación de Desempeño entre BOW y TF-IDF

- El método **TF-IDF** muestra consistentemente mejores resultados en términos de precisión (*Accuracy*) que **BOW** para la mayoría de los modelos y configuraciones.
- En *Logistic Regression*, la precisión mejora significativamente al utilizar **TF-IDF**, pasando de 0.761667 (BOW, Inciso c) a 0.805000 (TF-IDF, Inciso c).
- Para SVC, el salto de precisión entre BOW y TF-IDF también es notable, alcanzando un valor máximo de 0.808333 en la configuración TF-IDF frente a 0.746667 en la mejor configuración de BOW.
- El modelo de *Gradient Boosting* es el más beneficiado por el uso de **TF-IDF**, con un incremento significativo en precisión de 0.748333 (BOW, Inciso c) a 0.766667 (TF-IDF, Inciso c).

2. Impacto de las Configuraciones (Incisos a, b y c)

- A medida que se incrementan los valores de maxtokens y maxtokenlen (de Inciso a a Inciso c), todos los modelos tienden a mejorar su precisión. Esto es más evidente en el modelo SVC y Gradient Boostina.
- En **TF-IDF**, los tiempos de entrenamiento para *Gradient Boosting* incrementan exponencialmente al aumentar los valores de maxtokens, pasando de 50.776217 segundos (Inciso a) a 321.756221 segundos (Inciso c), lo que sugiere que configuraciones más grandes son muy costosas en términos computacionales.

3. Comparación entre Modelos

- Regresión Logística: Aunque es el modelo más simple, muestra una buena precisión en TF-IDF (0.805000 en Inciso c) y es competitivo con Random Forest.
- SVC: Tiene una mejora significativa en TF-IDF frente a BOW, alcanzando su mayor precisión (0.808333) en TF-IDF con Inciso c, pero con tiempos de entrenamiento altos.
- Random Forest: Muestra un desempeño robusto y consistente, manteniendo un buen balance entre precisión y tiempo en ambas representaciones.

• Gradient Boosting: Aunque logra las mejores precisiones en la mayoría de las configuraciones, el costo en tiempo es considerablemente más alto, especialmente en TF-IDF con configuraciones elevadas.