Supplementary Information

January 16, 2017

Figure S1: Effect of read aligner on error rates. Here we mapped reads from the standard IDT oligo with BBMap (red), Bowtie2 (green), and our Needleman-Wunsch aligner (blue), and quantified the error rates with our pipeline. We see that the choice of aligner affects the resulting error rates, especially for detecting multiple-base deletions.

Figure S2: Distributions of error rates per position for the standard oligo assembly before and after ErrASE treatment. We were unable to detect a significant change between the median error rate after two treatments for mismatches. Note: black bar is median value.

Figure S3: In-depth analysis of error-doped assemblies. Here, we find no significant difference in the median mismatch rate of all four bases, median transition or transversion rate, or rate of single-base deletions for each base (all tests were Mann-Whitney U, NS, Holm-corrected). Note: here we performed the same analysis as Figure 2 in the main text with the error-doped assembly.

Figure S4: Comparison of measured error rates from error-doped and standard oligos. Here we plot the distribution of error rates per position and see that for every error sub-type the error rates are significantly higher for the error-doped oligos than those produced by the standard process (Mann-Whitney U Test, all p << 0.001). Note: Black bar is the median value.

Figure S5: Mismatch correction preferences relative to the error-doped oligo for every enzyme across two consecutive treatments. Error rates are plotted as the \log_2 -fold-change in error rate relative to the error-doped template. Note: box plots are first and third quartile for hinges, median for bar, and $1.5\times$ the inter-quartile range for whiskers.

Figure S6: Single-base deletion correction preferences relative to the error-doped oligo for every enzyme across two consecutive treatments. Error rates are plotted as the \log_2 -fold-change in error rate relative to the error-doped template. Note: box plots are first and third quartile for hinges, median for bar, and $1.5\times$ the inter-quartile range for whiskers.

Figure S7: Single-base insertion correction preferences relative to the error-doped oligo for every enzyme across two consecutive treatments. Error rates are plotted as the \log_2 -fold-change in error rate relative to the error-doped template. Note: box plots are first and third quartile for hinges, median for bar, and $1.5\times$ the inter-quartile range for whiskers.

Table S1: Examples of where various aligners fail. Here _ are padding for visualization, * are soft-trimming, and lower-case bases are inserts.

Aligner:	Ideal	Needleman-Wunsch	Bowtie2	ВВМар
Reference: Read:	_GCTGCCGATTTCCA	_GCTGCCGATTTCCA	G_CTGCCGATTTCCA aGCTGCCGATTTCCA	*GCTGCCGATTTCCA
Reference: Read:	GCTGCCGATTTCCA	GCTGCCGATTTCCA aaGCTGCCGATTTCCA	GCTGCCGATTTCCA aaGCTGCCGATTTCCA	**GCTGCCGATTTCCA **GCTGCCGATTTCCA
Reference: Read:	GCTGCCGATTTCCA GCTGATTTCCA	GCTGCCGATTTCCA	GCTGCCGATTTCCA	GCTGCCGATTTCCA
Reference: Read:	GCTGCCGATTTCCA GCTGTTCCA	GCTGCCGATTTCCA	GCTGCCGAT_TTCCA	GCTGCCGATTTCCA
Reference: Read:	TGTTGTATATATCG_	TGTTGTATATATCG_	TGTTGTATATATC_G	TGTTGTATATATCG* TGTTGTATATCG*
Reference: Read:	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG**
Reference: Read:	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG** TGTTGTATATATgt**
Reference: Read:	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG
Reference: Read:	TGTTGTATATATCG	TGTTGTATATATCG	TGTTGTATATATCG TGTTGTATATATgtCG	TGTTGTATATATCG**