Mining Software Repositories for Intelligent Software Maintenance

Thomas Weibel <weibelt@ethz.ch>

SETLabs, Infosys Tech. Ltd., Bangalore

December 1, 2009

Introduction

Executive Summary

- Change management with version control systems
- Improving software maintenance through software repository mining
- Framework for preventive maintenance
- Novelty: Metrics for localization
- Study of Open Source projects

Outline

- 1 Version Control
- **2** Mining Software Repositories
 - Frequent Item Set Mining
 - Maintenance Challenges
- 3 Framework
- 4 Novelty
- **5** Experiments
 - Linux 2.6
 - Wine
 - Insights

Thomas Weibel <weibelt@ethz.ch> Mining software repositories

Version Control

Version Control

Main Trunk

Milk Soup Juice Eggs

Juice Eggs

- Management of changes to computer files in a repository
- Changes identified by a number or letter code ("revision")
- Each revision associated with timestamp and person making the change
- Version control systems: CVS, Subversion, Git, ...

Working Copy, Commits and Change Sets

- Working copy: Local copy of files from a repository
- Commit: Writing changes to the working copy into the repository
- Change set: Set of changes made in a single commit

```
commit 3d2d827f5ca5e32816194119d5c980c7e04474a6
```

Author: Michael S. Tsirkin <mst@redhat.com>

Date: Mon Sep 21 17:03:51 2009 -0700

mm: move use_mm/unuse_mm from aio.c to mm/

- M fs/aio.c
- A include/linux/mmu_context.h
- M mm/Makefile
- A mm/mmu_context.c

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

5

Mining Software Repositories

Outline

- 1 Version Control
- 2 Mining Software Repositories
 - Frequent Item Set Mining
 - Maintenance Challenges
- 3 Framework
- 4 Novelty
- **5** Experiments
 - Linux 2.6
 - Wine
 - Insights

Software Repository Mining

- Version control systems contain large amounts of historical information: "Who changed what, why and when."
- Learn from the past to shape the future
- Automated extraction, collection, and abstraction of information from software development data

Thomas Weibel <weibelt@ethz.ch> Mining software repositories Mining Software Repositories **Populating Version History Database** Extract version history Date Author Message Added f1, f2 23.11.2009 Zaphod rev1 Updated f1 rev2 25.11.2009 Arthur Repository rev3 30.11.2009 Zaphod Deleted f1 Revision Action type File Add f1 rev1 rev1 Add f2 f1 rev2 Modify f1 rev3 Delete Write into database database

Frequent Item Set Mining

- Popular method for market basket analysis
- Identify sets of products frequently bought together: Beer and diapers
- Framework applies frequent item set mining to the version history of software repositories
- Identify which code files have been frequently changed together

Source: http://research.nii.ac.jp/~uno

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Mining Software Repositories Frequent Item Set Mining

Frequent Item Set Mining: Transactions

- Transactions: Change sets
- Example:

```
{ fs/aio.c, include/linux/mmu_context.h,
  mm/Makefile, mm/mmu_context.c }
```

commit 3d2d827f5ca5e32816194119d5c980c7e04474a6

- fs/aio.c М
- include/linux/mmu_context.h Α
- M mm/Makefile
- mm/mmu_context.c Α

Frequent Item Set Mining: Definitions

- Transaction database contains all change sets
- Members of transactions are items
- Item set is a subset of possible items
- **Support** of an item set i: sup(i) := number of transactions t that contain i

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Mining Software Repositories Frequent Item Set Mining

Frequent Item Set Mining: Association Rules

Customers Who Bought This Item Also Bought

All the Fish by Douglas

★★★☆ (80) \$7.99

So Long, and Thanks for The Restaurant at the End of the Universe by Douglas Adams ***** (122) \$11.20

***** (166) \$7.99

the Galaxy, 25th A... by Douglas Adams ***** (873) \$10.20

Page 1 of 20

Source: amazon.com

- If a customer buys bread and wine, then she will probably also buy cheese
- Problem decomposed into two subproblems:
 - Finding frequent item sets with minimum support
 - Generate association rules with minimal confidence
- Confidence for association rule $R: X \rightarrow Y$: $conf(R) = conf(X \to Y) = sup(X \cup Y) / sup(X)$

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Frequent Item Set Mining: Example

Transaction IDs	Transactions (Files)
1	{1, 2, 3, 4}
2	{2, 3, 4}
3	{2, 3}
4	{1, 2, 4}
5	{1, 2, 3, 4}
6	{2,4}

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Mining Software Repositories Maintenance Challenges

GOOD WORK.) NOW ALL WE NEED IS THAT

PLAN.

Maintenance Challenges

- Predicting changes
 - Incomplete changes
- Traceability links
 - "Cross-language" changes
- Predicting faults
- Understanding software evolution
 - Measure change localization

Predicting Changes

A. Ying, G. Murphy et al., *Predicting Source Code Changes by* Mining Change History

- Determines change patterns from change history of the code base
- Uses association rule mining for identifying implicit dependencies
- Change patterns can be used to recommend potentially relevant source code to a developer performing a modification task

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Mining Software Repositories Maintenance Challenges

Predicting Changes: Incomplete Change

- Comments in modification task report of Mozilla:
 - 2002-06-12 14:14: Patch to gtk/nsFontMetricsGTK.cpp, limiting the size of fonts to twice the display height.
 - 2002-06-12 14:37: Patch misses the Xlib version.
 - A patch was later submitted with the correct changes in the X-windows font handling code in the file xlib/nsFontMetricsXlib.cpp
- gtk/nsFontMetricsGTK.cpp does not reference $xlib/nsFontMetricsXlib.cpp \rightarrow used in different configurations$
- \blacksquare Files were changed 41 times together \rightarrow change pattern
- Changing the gtk/nsFontMetricsGTK.cpp could trigger a recommendation for xlib/nsFontMetricsXlib.cpp

Traceability Links

H. Kadgi et al., Mining Software Repositories for Traceability Link

- If files of difference types are co-changed with a high frequency over multiple versions \rightarrow potential traceability link
- Traceability links derived from the actual changes to files by mining software repositories
- Uses sequential-pattern mining to identify and analyze sets of files that are committed together
- Sequential-pattern mining produces ordered lists of co-changing files
- Ordering information can be used to infer directionality

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Mining Software Repositories Maintenance Challenges

Traceability Links: Example

- Mining change sets in the Wine repository
- Changes are tested:
 - ./dlls/gdiplus/graphicspath.c -> ./dlls/gdiplus/tests/graphicspath.c
 - ./dlls/inetmib1/main.c -> ./dlls/inetmib1/tests/main.c
- Cross language changes:
 - ./dlls/rpcrt4/tests/server.c -> ./dlls/rpcrt4/tests/server.idl
 - ./dlls/dxgi/dxgi_private.h -> ./include/wine/winedxgi.idl

Predicting Faults

S. Kim, T. Zimmermann et al., Predicting Faults from Cached History

- Assumption: faults do not occur in isolation, but rather in bursts of several related faults
- Identifying bug fixes by mining commit messages: Searching for keywords such as "Fixed" or "Bug" and references to bug reports like "42"
- Cache locations that are likely to have faults
- By consulting the cache at the moment a fault is fixed, a developer can detect likely fault-prone locations

Thomas Weibel <weibelt@ethz.ch> Mining software repositories **Outline** 1 Version Control 2 Mining Software Repositories ■ Frequent Item Set Mining ■ Maintenance Challenges 3 Framework 4 Novelty **5** Experiments ■ Linux 2.6 Wine

Insights

Architecture

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

21

Git

- Free distributed version control system
- Initially designed and developed for Linux kernel development
- Every working directory is a full-fledged repository:
 - Complete history
 - Full revision tracking capabilities
 - Not dependent on network access or a central server
- Easily convert repositories of other version control systems like Subversion into Git repositories
- Only need to write mining and analysis tools for one format rather than many

Populating the Version History Database

- Gitup generates logfile and initializes versions history database
- Shiatsu massages the data to be used by the metrics applications
 - Set modularization according to specified directory depth
 - Remove deleted files
 - Set number of modifications
 - Heuristics for file moves
- Massaged version history database is used to generate frequent item sets and calculate metrics

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

23

Framewo

Preventing Maintenance

Our framework can help with solving all mentioned maintenance challenges:

- Predicting changes
 - Incomplete changes
- Traceability links
 - "Cross-language" changes
- Predicting faults
- Understanding software evolution
 - Measure change localization

Outline

- 1 Version Control
- **2** Mining Software Repositories
 - Frequent Item Set Mining
 - Maintenance Challenges
- 3 Framework
- **4** Novelty
- **5** Experiments
 - Linux 2.6
 - Wine
 - Insights

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

2!

Novelt

Change Localization

- A change is well localized, if it touches only one or very few modules
- A change is not well localized, if it touches many modules
- Apply change localization for frequent item sets

Hypothesis

Changes in frequent item sets in well modularized software systems are localized

Change Localization: Example

■ Well localized: Touches only one module

```
dlls/ntdll/signal_i386.c
dlls/ntdll/thread.c
```

■ Badly localized: Touches four modules out of five possible

```
if1632/thunk.c
include/process.h
loader/task.c
scheduler/process.c
scheduler/thread.c
```

■ Not localized at all: Touches all possible modules

```
files/dos_fs.c
scheduler/syslevel.c
tools/winapi-check
```

Thomas Weibel weibelt@ethz.ch>

Mining software repositories

27

Novelty

Change Localization Metrics

- Value between 0 and 1
- 0: Not localized at all
- 1: Fully localized

$$\sum_{i=\mathsf{FIS}_1}^{\mathsf{FIS}_n} 1 - \left(\mathsf{if}\left(i.\mathsf{modules_touched} = 1, 0, \frac{i.\mathsf{modules_touched}}{i.\mathsf{files_touched}}\right)\right)$$

n

Outline

- 1 Version Control
- **2** Mining Software Repositories
 - Frequent Item Set Mining
 - Maintenance Challenges
- 3 Framework
- 4 Novelty
- **5** Experiments
 - Linux 2.6
 - Wine
 - Insights

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

Experiments Linux 2.6

Linux 2.6

- Unix-like operating system kernel
- Repository checked out on November 19, 2009
- 25, 277 code files
- 168,800 commits
- Frequent item set mining:
 - Minimum number of commits (modifications) for code files: 4
 - Minimum support: 4
 - Maximum size of commits (number of code files): 50

Experiments Linux 2.6

Linux 2.6: Frequent Item Set Metrics

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

31

Wine

xperiments V

- Allows execution of Microsoft Windows programs on Unix-like operating systems
- Repository checked out on November 20, 2009
- 3,479 code files
- 63,864 commits
- Frequent item set mining:
 - Minimum number of commits (modifications) for code files: 4
 - Minimum support: 4
 - Maximum size of commits (number of code files): 50

Wine: Frequent Item Set Metrics

 ${\sf Thomas\ Weibel}<\!\!{\sf weibelt@ethz.ch}\!\!>$

Mining software repositories

33

Insights

- Code file moves increase localization
- Adding of many code files decrease localization
- Adding of code files can clear effect of moves on localization
- Stable versions contain mostly bug fixes
 - \Rightarrow low localization, only few moves and adds
- Unstable versions contain mostly new features
 - \Rightarrow high localization, many moves and adds

Future Work

- Use framework to mine software repositories of commercial systems
- Compare localization metrics of Open Source and Closed Source systems
- Use the frequent item sets extracted to come up with a better modularization
- Publish research in the form of a paper

Thomas Weibel <weibelt@ethz.ch>

Mining software repositories

3!

Summary

- Mining software repositories for intelligent software maintenance
- Applications of frequent item set mining in improving software maintainability
- Framework for preventing software maintenance
- New metrics for change localization
- Localization of frequent item sets of Open Source projects

