Épreuve Physique Chimie Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

N°	Elts de rép.		
01-	Étude thermique d'un bâtiment		
01-	Préambule		
01-05	Modélisation de la pièce		
1	Il s'agit de la définition de la capacité thermique $dU = CdT$	1	
2	la capacité thermique volumique est une capacité thermique par	1	
	unité de volume donc $[C_v] = \frac{[U]}{[T][V]} = \frac{[E]}{\theta L^3}$ donc l'unité de C_v est		
	le J.K ⁻¹ .m ⁻³ . Le volume V de la pièce est donné par $V=abh$.		
	La capacité thermique est donc $C = VC_v = abhC_v = 1,25.10^5$		
	$ m J.K^{-1}$		
3	On applique le 1er principe entre t et t+dt à la pièce : $dE + dU =$	1	
	$\delta W + \delta Q$. Il n'y a pas de variation de l'énergie mécanique de la		
	pièce, ni de travail de force extérieure donc $dE = \delta W = 0$, donc		
	$dU = \delta Q$. Le transfert thermique reçue par la pièce provient du		
	radiateur $\delta Q = Pdt$ et l'énergie interne est reliée à la température		
	par la capacité calorifique $dU = CdT$ donc $CdT = Pdt$ donc $\frac{dT}{dt} = \frac{P}{C}$		
4	Sachant que $T(0) = T_0$ et $\frac{dT}{dt} = \frac{P}{C}$ on en déduit que $T(t) = \frac{1}{C}$	1	
	$\frac{P}{C}t + T_0$. graphe de la droite. Il faut attendre la durée t_f tel que		
	$T(t_f) = T_f \operatorname{donc} \frac{P}{C} t_f + T_0 = T_f \operatorname{donc} t_f = \frac{C}{P} (T_f - T_0).$		
5	On peut proposer la charge d'un condensateur C par un géné-	1	
	rateur de courant i. L'équation différentielle correspondante est		
	$i = C \frac{dU}{dt}$ avec U analogue à la température, i à la puissance du		
	radiateur P, C à la capacité thermique de la pièce.		
06-07	Influence des murs		
6	L'ensemble est supposé parfaitement isolé au niveau du sol et du	1	
	plafond donc on ne considère que les quatres murs latéraux de		
	surface $S_p = ah + bh + ah + bh = 2(a+b)h$. L'application numérique		
	nous donne $S_p = 65 \text{ m}^2$		

7	Le volume des murs est donné par $V_p = S_p L$. La capacité thermique du mur est $C_{mur} = c m_{mur} = c \rho V_p = c \rho S_p L$. On trouve numériquement $C_{mur} = 2, 1.10^7 \text{ J.K}^{-1}$. C_{mur} est grand devant C , or on a montré que $t_f = \frac{C}{P}(T_f - T_0)$, donc le temps de montée en température est beaucoup plus long lorsqu'on prend en considération l'épaisseur du mur.	1	
08-	Équation de la chaleur		
08-	Généralités		
8	La loi de Fourier $\vec{j} = -\lambda \overline{\text{grad}}T$, avec \vec{j} la densité de flux thermique surfacique, ou densité de courant thermique thermique, et λ la conductivité thermique. Le signe $-$ indique que le transfert thermique se fait toujours dans le sens des températures élevées vers les températures basses. $j(x,t) = \frac{\delta Q}{dSdt}$ est le transfert thermique par unité de surface et par unité de temps, à la position x et l'instant t . L'unité de j est donc le W.m $^{-2}$. $\vec{j} = -\lambda \overline{\text{grad}}T$, donc $[\lambda] = \frac{[j]}{[\text{grad}T]} = \frac{[j]L}{[T]} = E.T^{-1}.L^{-2}.L.\theta^{-1} = E.T^{-1}.L^{-1}.\theta^{-1}$ son unité est donc W.m $^{-1}$.K $^{-1}$	1	
9	D'après le premier principe $dH = \delta Q$ donc $cdm \frac{\partial T}{\partial t} dt = j(x,t)Sdt - j(x+dx,t)Sdt$ donc $c\rho Sdx \frac{\partial T}{\partial t} dt = -\frac{\partial j}{\partial x} dxSdt$ donc $c\rho \frac{\partial T}{\partial t} = -\frac{\partial j}{\partial x}$. La loi de Fourier donne $j = -\lambda \frac{\partial T}{\partial x}$. Donc $c\rho \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2}$	1	
10 -	Étude du régime stationnaire		
10	En régime stationnaire les grandeurs ne dépendent plus du temps donc $\frac{\partial T}{\partial t}=0$	1	
11	$\frac{\partial^2 T}{\partial x^2} = 0$, donc $T(x) = ax + b$ or $T_{int} = T(x = 0)$ et $T_{ext} = T(x = L)$. Donc $T(x) = \frac{T_{ext} - T_{int}}{L}x + T_{int}$. Tracer le graphe de la droite affine.	1	
12	La température moyenne est donnée par $T_{moy} = \frac{1}{L} \int_0^L T(x) dx = \frac{T_{int} + T_{ext}}{2}$. $T(x_p) = T_{moy}$ donc $x_p = \frac{L}{2}$.	1	
13	$\frac{T_{int} + T_{ext}}{2}. T(x_p) = T_{moy} \text{ donc } x_p = \frac{L}{2}.$ $j(x) = -\lambda \frac{\partial T}{\partial x} = -\lambda \frac{T_{ext} - T_{int}}{L} = \lambda \frac{T_{int} - T_{ext}}{L}. \text{ On remarque que } j \text{ ne dépend pas de } x.$	1	
14	Le radiateur doit compenser les pertes thermique donc $P=jS_p=\lambda \frac{T_{int}-T_{ext}}{L}S_p=6,5$ kW. Donc le radiateur installé ne suffit pas à maintenir une température intérieure de 20 °C, il faut isoler la pièce.	1	
15 -	Résistance thermique		
15	Par analogie, $R_{mur} = \frac{\Delta T}{P} = \frac{T_{int} - T_{ext}}{P} = \frac{T_{int} - T_{ext}}{jS_p} = \frac{L}{\lambda S_p}$. Son unité est d'après la première égalité des K.W ⁻¹ et l'application numérique donne $R_{mur} = 1, 5.10^{-3} \text{ K.W}^{-1}$.	1	

16 -	Modélisation électrique	
16 -	Circuit électrique	
16	L'analogie donne : le générateur de courant correspond au radiateur donc $I=P$, le condensateur C_1 correspond à la capacité thermique de la pièce donc $C_1=C$, la tension u_1 correspond à la différence de température entre la pièce et l'extérieur donc $u_1=T-T_{ext}$, la résistance R_1 correspond à la moitié intérieure du mur donc $R_1=\frac{R_{mur}}{2}$, le condensateur C_2 correspond à la capacité thermique du mur donc $C_2=C_{mur}$; la tension u_2 correspond à la différence de température entre la température moyenne du mur et l'extérieur donc $u_2=T_{moy}-T_{ext}$, R_2 correspond à la	
17	moitié extérieure du mur donc $R_2 = \frac{R_{mur}}{2}$. En régime permanent continu on obtient un pont diviseur de tension. Donc $u_2 = \frac{R_2}{R_1 + R_2} u_1$. Voir question ci-dessus $R_1 = R_2 = \frac{R_{mur}}{2}$.	1
18 -	Établissement de l'expression d'une impédance	
18	Il l'agit d'une résistance et d'un condensateur en parallèle donc les admittances s'ajoutent $\underline{Z_2} = \frac{1}{\frac{1}{R_2} + jC_2\omega} = \frac{R_2}{1 + jR_2C_2\omega}$	1
19	Il s'agit de deux dipôles en série donc $\underline{Z_1} = R_1 + \underline{Z_2}$	1
20	Le condensateur C_1 et l'impédance $\underline{Z_1}$ sont en parallèle donc les admittances s'ajoutent $\frac{\underline{i}}{\underline{u_1}} = jC_1\omega + \frac{1}{\underline{Z_1}}$ $Donc \frac{u_1}{i} = \frac{\overline{Z_1}}{1+jZ_1C_1\omega} = \frac{R_1+Z_2}{1+jR_1C_1\omega+jZ_2C_1\omega} =$	
21	$\begin{array}{ c c c c } Donc & \frac{u_1}{i} & = & \frac{Z_1}{1+jZ_1C_1\omega} & = & \frac{R_1+Z_2}{1+jR_1C_1\omega+jZ_2C_1\omega} & = \\ & \frac{R_1+\frac{R_2}{1+jR_2C_2\omega}}{1+jR_1C_1\omega+\frac{jR_2C_2\omega}{1+jR_2C_2\omega}} & = & \frac{R_2+R_1(1+jR_2C_2\omega)}{(1+jR_2C_2\omega)(1+jR_1C_1\omega)+jR_2C_1\omega} & = \\ & \frac{1+j\frac{R_1R_2}{R_1+R_2}C_2\omega}{1+j((R_1+R_2)C_1+R_2C_2)\omega-R_1R_2C_1C_2\omega^2}(R_1+R_2) & \end{array}$	1
22 -	Exploitation	
22	Faire les schémas équivalents à haute et basse fréquence, montrer que c'est en accord avec une fonction de transfert de passe-bas. Pour $\omega = 0$ alors $U_{10} = (R_1 + R_2)I_0 = R_{mur}P$.	1
23	Lorsque C_2 tend vers 0, c'est comme si on retirait le condensateur C_2 du circuit, on a donc $\frac{u_1}{i} = \frac{R_1 + R_2}{1 + j(R_1 + R_2)C_1\omega}$. Si C_2 tend vers $+\infty$ on remplace le condensateur C_2 par un fil, on a don $\frac{u_1}{i} = \frac{R_1}{1 + jR_1C_1\omega}$.	1
24	C'est un filtre passe-bas d'après les schéma équivalents haute et basse fréquences.	1
25	On obtient $H = \frac{1+j\frac{\alpha}{4}RC\omega}{1+j(1+\frac{\alpha}{2})RC\omega-\frac{\alpha}{4}(RC\omega)^2}$	1
26-	Diagramme de Bode	
26	en basse fréquence $H \sim \frac{j}{4} RC\omega$ où le tracé des deux asymptotes de pente 0 $\frac{j\frac{\alpha}{4}RC\omega}{-\frac{\alpha}{4}(RC\omega)^2} \sim \frac{1}{jRC\omega}$. D'où le tracé des deux asymptotes de pente 0 dB/décades (pour $\omega \ll \omega_0$) et -20 dB/décades (pour $\omega \gg \omega_0$) qui se croisent en $\omega_0 = \frac{1}{RC}$.	1

27	Si $\alpha = 200$ alors $H = \frac{1+j50RC\omega}{1+j101RC\omega-50(RC\omega)^2}$ donc on repère des zones rectilignes entre les trois pulsations de coupure $\omega_1 = \frac{1}{101RC}$, $\omega_2 = \frac{1}{50RC}$, et $\omega_3 = \frac{1}{7RC}$.	1	
28	$\omega_2 = \frac{1}{50RC}, \text{ et } \omega_3 = \frac{1}{7RC}.$ $H = \frac{1+j\frac{\omega}{\omega_2}}{1+j\frac{\omega}{\omega_1} + (j\frac{\omega}{\omega_3})^2}$	1	
29	La pulsation de coupure est définie à -3 dB, ici $\omega_c=8.10^{-5}$ rad.s ⁻¹ . La durée du régime transitoire est de l'ordre de $\tau=\frac{1}{\omega_c}=3h30$	1	
30-	Isolation		
30-	Importance de l'isolation		
30	L'épaisseur est faible on peut donc utiliser l'expression de la résistance thermique en 1D démontrer plus haut. On obtient $R_i = \frac{e}{\lambda S_p} = 1,5.10^{-3} \text{ K.W}^{-2}$ donc R_i est 10 fois plus grande R_{mur} , $R_i \gg R_{mur}$	1	
31	Pour une isolation par l'intérieur on ajoute R_i en série avec R_1 . Pour une isolation par l'extérieur on ajoute R_i en série avec R_2 .	1	
32	On est en régime permanent, donc les condensateurs sont des interrupteurs ouverts. Que l'isolation soit par l'intérieur ou l'extérieur le schéma équivalent est le même et $U_{10}=(R_{mur}+R_i)i$ donc $P=\frac{T_{int}-T_{ext}}{R_{mur}+R_i}=\frac{T_{int}-T_{ext}}{(1+\beta)R_{mur}}=0,65 \text{ kW}$	1	
33-	Isolation intérieure ou extérieure		
33	On a montré que la consommation est la même pour une isolation par l'intérieur ou par l'extérieur. Le choix se fera selon l'utilisation que l'on fait de la pièce. Si l'on veut maintenir une température constante dans la pièce et limiter les variations de température alors il faut choisir une isolation par l'extérieur, car la capacité thermique des murs s'ajoute à celle de la pièce, par contre le temps mis pour chauffer la pièce sera plus long. Si la pièce n'est pas utilisée en continue mais que l'on veut pouvoir chauffer ou refroidir rapidement la pièce, alors il faut réaliser une isolation par l'intérieur.	1	
34	$U_{10} = (1+\beta)R_{mur}I_0$, pour une isolation par l'extérieur on ajoute R_i à R_2 donc $U_{20} = \frac{(1/2+\beta)}{(1+\beta)}U_{10} = (\frac{1}{2}+\beta)R_{mur}I_0$, pour une isolation par l'intérieur on ajoute R_i à R_1 donc $U_{20} = \frac{(1/2)}{(1+\beta)}U_{10} = \frac{1}{2}R_{mur}I_0$	1	
35	Il faut remplacer R_1 ou R_2 par $(1/2 + \beta)R$ et $\frac{R}{2}$ dans l'expression établit plus haut, on obtient $H = \frac{1+j\frac{\alpha(1/2+\beta)}{2(1+\beta)}RC\omega}{1+j(1+\beta+\alpha/2)RC\omega-\frac{\alpha}{2}(1/2+\beta)(RC\omega)^2}$	1	
36	Il faut comparer les pulsations ω_1 , ω_2 , ω_3 pour choisir le diagramme de Bode correspondant. Si $\omega_3 \sim \omega_2 < \omega_1$, alors il s'agit du graphe a. Si $\omega_1 < \omega_2 < \omega_3$ alors il s'agit du graphe b.	1	

37-	L'eau de Javel		
37-	Généralités		
37-	Autour des éléments chlore et oxygène		
37	Les orbitales classées par niveau d'énergie sont $1s2s2p3s3p$, on détermine le nombre d'électron à placer selon le numéro atomique et la charge globale de l'espèce, puis on rempli $O: 1s^22s^22p^4$, $O^{2-}: 1s^22s^22p^6$, $Cl: 1s^22s^22p^63s^23p^5$, $Cl^-: 1s^22s^22p^63s^23p^6$	1	
38		1	
39	pour Cl ⁻ no -I, pour Cl ₂ no 0, pour HClO no +I, pour ClO ⁻ no +I, pour ClO ₃ no +V	1	
40-	Décomposition de l'acide hypochloreux HClO en phase gazeuse		
40	$\Delta_r S_1^{\circ} = \sum_i \nu_i S_{m,i}^{\circ} = -18,4 \text{ J.K}^{-1}.\text{mol}^{-1}, \ \Delta_r G_1^{\circ} = -RT \ln(K^{\circ}) = -5,96 \text{ kJ.mol}^{-1}$. Le nombre de mole de gaz des réactifs et des produits est identique donc on ne peut pas prédire le signe de $\Delta_r S_1^{\circ}$ mais on peut prédire que ça valeur soit faible.	1	
41	$\Delta_r H_1^{\circ} = \Delta_r G_1^{\circ} + T \Delta_r S_1^{\circ} = -11, 4 \text{ kJ.mol}^{-1}.$ L'enthalpie standard de réaction est négative, la réaction est exothermique. D'après la loi de Hess $\Delta_f H^{\circ}(HClO) = \frac{1}{2} (\Delta_f H^{\circ}(Cl_2O) + \Delta_f H^{\circ}(H_2O) - \Delta_r H^{\circ}) = -74, 8 \text{ kJ.mol}^{-1}$	1	
42	$\Delta_r G_1 = \Delta_r G^\circ + RT \ln{(Q_r)} = \Delta_r G^\circ + RT \ln{\left(\frac{p_{H_2OPCl_2O}}{p_{HClO}^2}\right)} \to -\infty.$ L'enthalpie libre standard de réaction est négative donc le système évolue dans le sens direct.	1	
43	On fait un tableau d'avancement pour exprimer $Q_r = K_1^{\circ}$, donc $\frac{(\xi/V)^2}{(p_{HClO}-2\xi/V)^2} = K_1^{\circ}$ donc dans l'état final $p_{H_2O,f} = p_{Cl_2O,f} = \frac{\xi}{V} = 0,026$ bar et $p_{HClO,f} = 0,0078$ bar	1	
44	La pression totale n'intervient pas dans l'expression du quotient de réaction, ce n'est donc pas un facteur d'équilibre. Il n'y a pas d'influence.	1	
45-	Structure cristallographique de sodium NaCl		
45	représenter un cubique face centrée et tous les sites occupés	1	
46	La coordinence est le nombre de plus proche voisin. Ici un atome est entouré de 6 sites occupés (2 dans chacune des trois directions).	1	
47	$\rho = \frac{m}{V} = \frac{4m_{Na} + 4m_{Cl}}{a^3} = \frac{4M(Na)/N_a + 4M(Cl)/N_a}{a^3} = \frac{4(M(Na) + M(Cl))}{N_a a^3}.$ Donc $a = \left(\frac{4(M(Na) + M(Cl))}{N_a \rho}\right)^{1/3} = 560$ pm. La double somme des rayons ionique est $2(R_{Na^+} + R_{Cl^-}) = 572$ pm est proche de la valeur trouvée précédemment.	1	
48-	Suivi de la décomposition du bleu brillant en présence d'hypochlorite de sodium		
48-	Suivi spectrophotométrique de la réaction		
48	L'absorbance est un nombre sans dimension définie pour chaque longueur d'onde par $A = \ln\left(\frac{I_{O,\lambda}}{I_{T,\lambda}}\right)$	1	

49	Il faut choisir le maximum d'absorbance donc $\lambda=630$ nm. La couleur du bleu brillant est la couleur complémentaire de la couleur rouge la plus absorbée.	1	
50	On prélève 10mL de solution mère avec une pipette jaugée qu'on place dans une fiole jaugée de 25mL. On complète jusqu'au trait de jauge avec de l'eau distillée. On mélange et on ajuste le volume.	1	
51	La loi de Beer-Lambert donne $A = \sum_i \epsilon_i l c_i$ avec ϵ_i le coefficient d'absorption molaire, l la longueur de la cuve, c_i la concentration molaire de l'espèce i . On suppose que seul le bleu brillant absorbe donc $A = \epsilon l$ [E133]. On trace à la calculette A en fonction de [E133] et on obtient une droite.	1	
52	Le blanc revient à enlever l'absorbance due aux éléments communs à toutes les mesures (cuve, solvant,)	1	
53	Elle ne détériore pas les espèces. Elle peut être faite en temps réel et automatisée. La mesure est directement proportionnelle à la concentration en l'espèce absorbante à la longueur d'onde choisie. L'espèce à suivre est colorée.	1	
54-55	Étude cinétique	2	
54	La concentration c_2 en $\text{ClO}_{(aq)}^-$ est très grande devant la concentration c_1 en bleu brillant. On peut donc négligé l'évolution de la concentration $\left[ClO_{()aq)}^-\right](t) \approx c_2$, c'est une méthode par dégénérescence de l'ordre.	1	
55	$v = k \left[E133\right]^{\alpha} \left[ClO^{-}\right]^{\beta} \approx k_{app} \left[E133\right]^{\alpha} \text{ avec } k_{app} = k \left[ClO^{-}\right]^{\beta}$	1	
56-59	Étude expérimentale	4	
56	Supposons que $\alpha=1$ donc $v=k_{app}$ [E133] donc $\frac{d[E133]}{dt}=-v=-k_{app}$ [E133] équation différentielle dont la solution est [E133] = [E133] ₀ exp $(-k_{app}t)$. On en déduit $\ln\left(\frac{A}{A_0}\right)=\ln\left(\frac{[E133](t)}{[E133]_0}\right)=-k_{app}t$	1	
57	On trace $\ln\left(\frac{A}{A_0}\right)$ en fonction de t , puis on fait une régression linéaire à la calculatrice et on déduit de la pente $k_{app}=0,28$ min ⁻¹ .	1	
58	On a déterminé à la question précédente la valeur de $k_{app} = kc_2^{\beta}$, par la même méthode on peut déterminer la valeur de $k'_{app} = kc_3^{\beta} = 0,14 \text{ min}^{-1}$. On en déduit $\beta = \frac{\ln(k_{app}/k'_{app})}{\ln(c_2/c_3)} = 1$	1	
59	$k = \frac{k_{app}}{c_2} = 21 \text{ min}^{-1}$	1	