

Generative Methods

___ GAN (Generative Adversarial Networks) _____

Supervised vs Unsupervised Learning

- Supervised data + label
 - classification, regression, detection etc.
 - learning a function to map x to y

- Unsupervised Just data + no labels
 - clustering, dimensionality reduction, feature learning etc.
 - Learn some underlying hidden structure of the data

Generative modeling

Given training data, generate new samples from the same distribution

The 60 False-Positive pairs (1.00%) on LFW by DeepFace-ensemble.

Generative modeling

Given training data, generate new samples from the same distribution

4

Background - Auto encoders

- Encoder Decoder architecture
 - Use for compression
 - Or throw away the decoder after training use the compressed code for supervised learning tasks (particularly useful in problems with small training set)

Background – Image to Image

Generation

Semantic Segmentation

Neural Inpainting

Generative Models

Increasing Role of Synthetic Data

- Code to synthesis "Real data";
 - Role in data augmentation
 - Capability to generate for Neural Networks

Can we detect generated?

• The "story" of Police and "fake notes"

Image: Courtesy to Richard Gall.

Blank Slide

Blank Slide

GANs

- Generative Adversarial Networks
- A game between two players:
 - Discriminator D
 - Generator G
- D tries to discriminate between:
 - A sample from the data distribution
 - A sample from the generator G
- G tries to "trick" D by generating samples that are hard for D to distinguish from data.

GAN: Network architecture

GAN: Network architecture

Image credit: Thalles Silva

GAN framework

Slide credit: Ian Goodfellow

GANs

Extension: Deep Convolutional GAN (DCGAN)

Radford et al ICLR 2016

Samples (Synthetic Images)

Results: Progressive GAN (ICLR 2018)

Results: Big GAN (ICLR 2019)

Results: Big GAN (ICLR 2019)

GANs

- Generator (G) that learns the real data distribution to generate fake samples
- Discriminator (D) that attributes a probability p of confidence of a sample being real (i.e. coming from the training data)

Conditional Generation

- G and D can be conditioned by additional information y
- Adding y as an input of both networks will condition their outputs
- y can be external information or data from the training set

More GANs

Source->Target domain transfer

CycleGAN. Zhu et al. 2017.

Text -> Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

this magnificent fellow is crest, and white cheek patch.

Reed et al. 2017.

Pix2pix. Isola 2017. Many examples at https://phillipi.github.io/pix2pix/

Generation with "control

- Generator is a "black box"
- Separate "Style" and similar "Factors"
- Face
 - Higher Level attribute (Pose, Identity)
 - Fine attributes (freckles, hair, texture)

Results: Style Based Generator

All images in this video were produced by our generator, they are not photographs of real people

Limitations of GANs

1. Training instability

 Good sample generation requires reaching Nash Equilibrium in the game, which might not always happen

2. Mode collapse

- When G is able to fool D by generating similarly looking samples from the same data mode
- GANs were original made to work only with real-valued, continuous data (e.g. images)
 - Slight changes in discrete data (e.g. text) are impractical

How to Evaluate Generated Outputs?

- What makes a good generative model?
 - Each generated sample is indistinguishable from a real sample

Generated samples should have variety

A Number of Advanced Generative Models

- GANs vs VAEs
- Style GANs and Controllable Generation
- Generation of Multiple Modalities
- Conditional Generation
- Capability to Edit/Process Compact codes
- Diffusion models
- Etc.
- Concern of generation as "fakes".
 - An emerging ethical concern

Case study

Image to Image Translation

Image to Image Translation with GANs

Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Key Idea

- Training a conditional GAN to map Facade → photo
- The discriminator, D, learns to classify between fake and real {edge, photo} tuples
- The generator, G, learns to fool the discriminator
- Unlike an unconditional GAN, both the generator and discriminator observe the input edge map

Results

Input

Output

Data Driven Understanding: Aka Deep Learning

Generative Techniques

Ian Goodfellow, "GAN"

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{ullet} = \mathcal{I}^{ullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

$$Arrows = (Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

LSTM/Conv1D

Powerful Combination: Translational Models

Inherently multimodal and cross-modal

Summary

- A new training paradigm
 - Adversarial Training
- A set of new methods for generation
 - GANs, VAEs, variants
- Applications
 - Understanding ML, Data, Algorithms
 - Practical Utility vs Ethical Concerns: Race that can never end?
- Cross Modality
 - Transfer and Translation

Thanks!!

Questions?