Deep learning & applications

Practice#2-1

Tae Hyun Kim

Task: binary classification using logistic regression (loss = binary cross entropy loss)

```
Input: 2-dim vector, \mathbf{x} = \{x_1, x_2\}
Output: label of the input, \mathbf{y} \in \{0,1\}
```

Pseudo code to generate dataset

Step 1. Generate 10000(=m) train samples & 1000(=n) test samples:

```
x1_{train}=[], x_{2}_{train}=[], y_{train}=[]
for i in range(m):
   x1_train.append(random.uniform(-10, 10))
   x2_train.append(random.uniform(-10, 10))
   if x1_{train}[-1] < -5 or x1_{train}[-1] > 5:
       y_train.append(1)
   else:
       y_train.append(0)
x_test=[], y_test=[] #similarly generate 1000 test samples!
```

Task: binary classification using logistic regression (loss = binary cross entropy loss)

Input: 2-dim vector, $x = \{x_1, x_2\}$

Output: label of the input, $\mathbf{y} \in \{0,1\}$

Pseudo code to train a 2-layered net.

Step 2. Build the model using Tensorflow

Step 3. Update trainable parameters for 5000 epochs with 'm' samples

Step 4. Try with different optimizers (SGD, ADAM, RMSPROP) and compare the accuracies.