Algorithmic Methods for Singularities Talk 2: Invariants from the computational perspective

Anne Frühbis-Krüger and Matthias Zach

Institut für Mathematik Universität Oldenburg

Sao Carlos, July 12th 2022

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number l

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[\underline{x}]/I$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[\underline{x}]/I$

minimal number of generators of an m-primary ideal

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- ▶ minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$
- ▶ Noether normalization $\mathbb{C}[y_1, \dots, y_d] \subset \mathbb{C}[\underline{x}]/I$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurini number l

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- ▶ minimal number of generators of an m-primary ideal
- ightharpoonup trdeg $_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$
- ▶ Noether normalization $\mathbb{C}[y_1, \dots, y_d] \subset \mathbb{C}[\underline{x}]/I$
- $ightharpoonup \deg_t(HSP(\mathbb{C}[\underline{x}]_{\mathfrak{m}}/I))$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

▶ maximal length *d* of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- ▶ minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$
- ▶ Noether normalization $\mathbb{C}[y_1, \ldots, y_d] \subset \mathbb{C}[\underline{x}]/I$
- $\blacktriangleright \deg_t(\mathit{HSP}(\mathbb{C}[\underline{x}]_{\mathfrak{m}}/I))$

Efficiently computable: the last two items!

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number l

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

Hilbert-Samuel Function:

$$HS_A(k) := \dim_{\mathbb{C}} A/\mathfrak{m}^k$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number l

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

Hilbert-Samuel Function:

$$HS_A(k) := \dim_{\mathbb{C}} A/\mathfrak{m}^k$$

Hilbert-Samuel Polynomial:

$$\exists P \in \mathbb{Q}[t] : HS_A(k) = P(k) \quad \forall k >> 0$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

Hilbert-Samuel Function:

$$HS_A(k) := \dim_{\mathbb{C}} A/\mathfrak{m}^k$$

Hilbert-Samuel Polynomial:

$$\exists P \in \mathbb{Q}[t] : HS_A(k) = P(k) \quad \forall k >> 0$$

Let
$$P(t) = \sum_{\nu=0}^{d} a_i t^d$$
, then

- ightharpoonup dim(A) = d
- ightharpoonup mult(A) = $d! \cdot a_d$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

A monomial example

Consider the 3 coordinate axes in $(\mathbb{C}^3, 0)$:

$$I = \langle xy, xz, yz \rangle \subseteq \mathbb{C}[x, y, z]_{\langle x, y, z \rangle}$$
$$A = \mathbb{C}[x, y, z]_{\langle x, y, z \rangle} / I$$

k	new monomials	total number
1	1	1
2	x, y, z	4
3	x^2, y^2, z^2	7
4	$ \begin{vmatrix} x, y, z \\ x^2, y^2, z^2 \\ x^3, y^3, z^3 \end{vmatrix} $	10
:		

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

A monomial example

Consider the 3 coordinate axes in $(\mathbb{C}^3, 0)$:

$$I = \langle xy, xz, yz \rangle \subseteq \mathbb{C}[x, y, z]_{\langle x, y, z \rangle}$$
$$A = \mathbb{C}[x, y, z]_{\langle x, y, z \rangle} / I$$

k	new monomials	total number
1	1	1
2	x, y, z	4
3	x^2, y^2, z^2	7
4	x, y, z x^2, y^2, z^2 x^3, y^3, z^3	10
÷		

Obviously, $P(t) = 3 \cdot t - 2$

Hence: dim(X) = 1 and mult(X) = 3 as expected

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

From ideal to monomial ideal

Key to computing previous example: Monomial ideal

And in the non-monomial case?

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

From ideal to monomial ideal

Key to computing previous example: Monomial ideal

And in the non-monomial case? standard bases

- K a (exact computable) field
- \triangleright > suitable total ordering on Mon(\underline{x})
- ▶ LT(f) largest monomial in $f \in K[\underline{x}]$ w.r.t. >
- $\blacktriangleright L(I) := \langle LT(f) \mid f \in I \rangle$

$$G = \{g_1, \dots, g_s\}$$
 standard basis of I
 \iff
 $L(G) = L(I) \text{ and } \langle G \rangle = I$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Standard Bases

$$G = \{g_1, \dots, g_s\}$$
 standard basis of I
 \iff
 $L(G) = L(I) \text{ and } \langle G \rangle = I$

Facts:

- $\qquad \mathsf{dim}(K[\underline{x}]_{\langle\underline{x}\rangle}/I) = \mathsf{dim}(K[\underline{x}]_{\langle\underline{x}\rangle}/L(I))$
- $\qquad \mathsf{mult}(K[\underline{x}]_{\langle\underline{x}\rangle}/I) = \mathsf{mult}(K[\underline{x}]_{\langle\underline{x}\rangle}/L(I))$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurini number l

Example

Consider

- $I = \langle x^2 + y^2, xy \rangle \subseteq \mathbb{Q}[x, y]_{\langle x, y \rangle}$
- > negative degree reverse lexicographical ordering
- $L(x^2 + y^2) = x^2$, L(xy) = xy

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Example

Consider

- $I = \langle x^2 + y^2, xy \rangle \subseteq \mathbb{Q}[x, y]_{\langle x, y \rangle}$
- > negative degree reverse lexicographical ordering

$$L(x^2 + y^2) = x^2$$
, $L(xy) = xy$

Obviously:

$$y^3 = y \cdot (x^2 + y^2) - x \cdot xy \in I$$
 and hence in $L(I)$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Example

Consider

- $I = \langle x^2 + y^2, xy \rangle \subseteq \mathbb{Q}[x, y]_{\langle x, y \rangle}$
- > negative degree reverse lexicographical ordering

$$L(x^2 + y^2) = x^2$$
, $L(xy) = xy$

Obviously:

$$y^3 = y \cdot (x^2 + y^2) - x \cdot xy \in I$$
 and hence in $L(I)$

Actually, standard basis of I:

$$G = \{x^2 + y^2, xy, y^3\}$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

A multiplicity 4 space curve example

Consider

- $I = \langle xy, x^2 + y^2 + z^2 \rangle \subseteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$
- > suitable negative degree ordering (e.g. negdeglex(z > y > x))
- L(xy) = xy, $L(x^2 + y^2 + z^2) = z^2$

This is already a standard basis.

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number l

A multiplicity 4 space curve example

Consider

- $I = \langle xy, x^2 + y^2 + z^2 \rangle \subseteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$
- > suitable negative degree ordering (e.g. negdeglex(z > y > x))
- L(xy) = xy, $L(x^2 + y^2 + z^2) = z^2$

This is already a standard basis.

new monomials	total number
1	1
x, y, z	4
x^2, y^2, xz, yz	8
x^3, y^3, x^2z, y^2z^3	12
	•
	new monomials 1 x, y, z x^2, y^2, xz, yz x^3, y^3, x^2z, y^2z^3

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

A multiplicity 4 space curve example

Consider

$$I = \langle xy, x^2 + y^2 + z^2 \rangle \subseteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$$

- > suitable negative degree ordering (e.g. negdeglex(z > y > x))
- L(xy) = xy, $L(x^2 + y^2 + z^2) = z^2$

This is already a standard basis.

k	new monomials	total number
1	1	1
2	x, y, z	4
3	x^2, y^2, xz, yz	8
4	x^3, y^3, x^2z, y^2z^3	12
:	$ \begin{array}{c} x, y, z \\ x^2, y^2, xz, yz \\ x^3, y^3, x^2z, y^2z^3 \end{array} $	'

$$P(t) = 4 \cdot t - 4$$
, dim = 1, mult = 4

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Jupyter Notebook 2, Block 1

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Milnor number of a Hypersurface

Let
$$(X,0) = (V(f),0) \subseteq \mathbb{C}\{\underline{x}\}.$$

Milnor number:

$$\mu := \dim_{\mathbb{C}} \mathbb{C}\{\underline{x}\}/\langle \frac{\partial f}{\partial x_1}, \dots \frac{\partial f}{\partial x_n} \rangle$$

geometric interpretation of the Milnor number:

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Milnor number: Example

Consider
$$f=x^3+y^5$$

$$\mu=\dim_{\mathbb{C}}\mathbb{C}\{x,y\}/\langle x^2,y^4\rangle$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

number I

Milnor and Tjurina

Milnor number: Example

Consider
$$f = x^3 + y^5$$

$$\mu = \dim_{\mathbb{C}} \mathbb{C}\{x,y\}/\langle x^2,y^4\rangle$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Milnor and Tjurina number I

Milnor number: non-monomial setting

Consider
$$f = x \cdot y \cdot (x + y - 1)$$

Jacobian matrix of
$$f: (2xy + y^2 - y \quad x^2 + 2xy - x)$$

L(I) w.r.t. local degree odering:
$$\langle x, y \rangle \Longrightarrow \mu = 1$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Milnor and Tjurina

number I

Milnor number: non-monomial setting

Consider
$$f = x \cdot y \cdot (x + y - 1)$$

Jacobian matrix of
$$f: (2xy + y^2 - y \quad x^2 + 2xy - x)$$

L(I) w.r.t. local degree odering:
$$\langle x, y \rangle \Longrightarrow \mu = 1$$

L(I) w.r.t. global degree ordering:
$$\langle x^2, xy, y^3 \rangle \Longrightarrow \mu = 4$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Milnor and Tjurina

number I

Milnor number: non-monomial setting

Consider
$$f = x \cdot y \cdot (x + y - 1)$$

Jacobian matrix of
$$f: (2xy + y^2 - y \quad x^2 + 2xy - x)$$

L(I) w.r.t. local degree odering:
$$\langle x, y \rangle \Longrightarrow \mu = 1$$

L(I) w.r.t. global degree ordering:
$$\langle x^2, xy, y^3 \rangle \Longrightarrow \mu = 4$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Milnor and Tjurina

Local and global orderings

Examples of global monomial orderings $(1 < x_i \ \forall i)$:

Example of local monomial ordering $(1 > x_i \ \forall i)$:

negdeglex
$$\underline{x}^{\alpha} > \underline{x}^{\beta} \iff$$
 $(\deg(\underline{x}^{\alpha}) < \deg(\underline{x}^{\beta}))$ or $(\deg(\underline{x}^{\alpha}) = \deg(\underline{x}^{\beta})$ and $\underline{x}^{\alpha} >_{lex} \underline{x}^{\beta})$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Tjurina number of a Hypersurface

Let
$$(X,0) = (V(f),0) \subseteq \mathbb{C}\{\underline{x}\}.$$

Tjurina number:

$$\tau := \dim_{\mathbb{C}} \mathbb{C}\{\underline{x}\}/\langle \frac{\partial f}{\partial x_1}, \dots \frac{\partial f}{\partial x_n}, f \rangle$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Milnor and Tjurina

number I

Tjurina number of a Hypersurface

Let
$$(X,0) = (V(f),0) \subseteq \mathbb{C}\{\underline{x}\}.$$

Tjurina number:

$$\tau := \dim_{\mathbb{C}} \mathbb{C}\{\underline{x}\}/\langle \frac{\partial f}{\partial x_1}, \dots \frac{\partial f}{\partial x_n}, f \rangle$$

Example:

$$f = x \cdot y \cdot (x + y - 1)$$

(3 singular points as seen before)

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Tjurina number of a Hypersurface

Let $(X,0) = (V(f),0) \subseteq \mathbb{C}\{\underline{x}\}.$

Tjurina number:

$$\tau := \dim_{\mathbb{C}} \mathbb{C}\{\underline{x}\} / \langle \frac{\partial f}{\partial x_1}, \dots \frac{\partial f}{\partial x_n}, f \rangle$$

Example:

$$f = x \cdot y \cdot (x + y - 1)$$

(3 singular points as seen before)

$$au_{(0,0)} = 1, \ au_{(1,0)} = 1, \ au_{(0,1)} = 1$$
 $au_{global} = au_{(0,0)} + au_{(1,0)} + au_{(0,1)} = 3$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

μ versus τ : inhomogeneous example

Fact for hypersurface germs: $\tau \leq \mu$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

μ versus τ : inhomogeneous example

Fact for hypersurface germs: $\tau \leq \mu$

Consider μ and τ for $(V(x^5 + y^5 - t \cdot x^3y^3), 0)$:

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Milnor and Tjurina number I

Worksheet 2, Block 2

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

A different perspective:

Let
$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in \mathbb{C}\{\underline{x}\}.$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

A different perspective:

Let
$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in \mathbb{C}\{\underline{x}\}.$$

Newton Polytope:
$$\Delta(f) := Conv\{\alpha \in \mathbb{N} \mid a_{\alpha} \neq 0\}$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

A different perspective:

Let
$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in \mathbb{C}\{\underline{x}\}.$$

Newton Polytope: $\Delta(f) := Conv\{\alpha \in \mathbb{N} \mid a_{\alpha} \neq 0\}$

$$K(f) = Conv(\Delta(f) \cup \{0\})$$

$$K_0(f) = \text{closure of } (K(f) \setminus \Delta(f)) \cup \{0\}$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

number I

Milnor and Tjurina

A different perspective:

Let
$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \underline{x}^{\alpha} \in \mathbb{C}\{\underline{x}\}.$$

Newton Polytope: $\Delta(f) := Conv\{\alpha \in \mathbb{N} \mid a_{\alpha} \neq 0\}$

$$K(f) = Conv(\Delta(f) \cup \{0\})$$

$$K_0(f) = \text{closure of } (K(f) \setminus \Delta(f)) \cup \{0\}$$

Fact:

f Newton non-degenerate

$$\Longrightarrow \mu(f) = \text{Minkowski mixed volume of } K_0(f)$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Newton polyhedron in a picture

$$\Delta(f) := Conv\{\alpha \in \mathbb{N} \mid a_{\alpha} \neq 0\}$$

$$K(f) = Conv(\Delta(f) \cup \{0\})$$

$$K_0(f) = \text{closure of } (K(f) \setminus \Delta(f)) \cup \{0\}$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

otandara Dases

Milnor and Tjurina number I

μ for ICIS: Lê-Greuel formula

The setting:

- $ightharpoonup q \geq 2$
- $ightharpoonup X = (V(f_1, \ldots, f_q), 0) \subseteq (\mathbb{C}^n, 0)$ ICIS germ
- ▶ $J_k = \langle m \in \mathbb{C}\{\underline{x}\} \mid m \ k \text{minor of } \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n}}$
- $I_k = \langle f_1, \dots, f_{k-1} \rangle + J_k$
- ▶ all I_k have finite colength in $\mathbb{C}\{\underline{x}\}$

Then:

$$\mu(X,0) = \sum_{\nu=1}^{q} (-1)^{(q-\nu)} \dim_{\mathbb{C}} (\mathbb{C}\{\underline{x}\}/I_{\nu})$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

otandard Bases

number l

The colength condition on I_k

The condition: $\dim_{\mathbb{C}}(\mathbb{C}\{\underline{x}\}/I_k) < \infty$

where
$$I_k = \langle f_1, \dots, f_{k-1} \rangle +$$

$$\langle m \in \mathbb{C}_{\underline{X}} \mid m \ k - \text{minor of } \left(\frac{\partial f_i}{\partial x_j} \right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n}}$$

Warning example: S_5 -Singularity $V(xy, x^2 + y^2 + z^2)$

$$f_1 = xy, f_2 = x^2 + y^2 + z^2$$

 $\Longrightarrow I_2 = \langle xy, xz, yx, x^2 + y^2 \rangle$
Problem: $z^i \notin I_k \ \forall i \in \mathbb{N}$

$$f_1 = x^2 + y^2 + z^2, f_2 = xy$$

 $\Longrightarrow l_2 = \langle x^2 + y^2 + z^2, xz, xy, x^2 + y^2 \rangle$
no problem: finite colength

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Tjurina number and T^1 for ICIS

$$X = (V(\underbrace{f_1,\ldots,f_q}_{=:I}),0) \subseteq (\mathbb{C}^n,0)$$
 ICIS germ, $q \geq 1$

Then

$$T^1_{(X,0)} = (\mathbb{C}\{\underline{x}\})^q/(I \cdot (\mathbb{C}\{\underline{x}\})^q + J)$$

where
$$J = \langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \rangle \subset (\mathbb{C}\{\underline{x}\})^q$$
.

Note: no condition on the generators (unlike Milnor number!)

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number l

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

number I

Milnor and Tjurina number II

See Jupyter Notebook 2, Block 3