Auftragsannahme- und Lagerhaltungsentscheidungen bei auftragsbezogenen Instandhaltungsprozessen

Masterarbeit

zur Erlangung des akademischen Grades "Master of Science (M.Sc.)" im Studiengang Wirtschaftswissenschaft

der Wirtschaftswissenschaftlichen Fakultät der Leibniz Universität Hannover

vorgelegt von

Robert Matern

geb. am 7. März 1987 in Tschimkent (Matrikel-Nr. 2798160)

Erstprüfer: Prof. Dr. Stefan Helber

Hannover, den 11. September 2015

Inhaltsverzeichnis

Αŀ	okürz	ungsverzeichnis	iv
Sy	mbo	lverzeichnis	V
Ta	belle	enverzeichnis	vi
Αŀ	bildı	ungsverzeichnis	vii
Vc	orwor	t	1
1	Einl	eitung	2
	1.1	Problemstellung	2
	1.2	Zielsetzung	4
	1.3	Aufbau der Arbeit	4
2	Gru	ndlagen zu auftragsbezogenen Instandhaltungsprozessen	5
	2.1	Einordnung in die Produktionswirtschaft	5
	2.2	Charakteristika	5
	2.3	Relevanz für betriebliche Entscheidungen	5
3	Das	Konzept des Revenue Managements bei der Annahme von	
	Auf	trägen	6
	3.1 3.2	Herkunft des Revenue Managements	6
		gements	7
	3.3	Mathematische Modellformulierung des Revenue Managements beim Entscheidungsproblem der Auftragsannahme von Instandhaltungs-	
			9
4	Bes	tehende Ansätze zur Annahme von Auftragsproduktion und	
	Inst	andhaltungsprozessen	13
	4.1	Review 1	13
	42	Raview 2	13

Inhaltsverzeichnis iii

	4.3 4.4	Review 3	
5		exaktes Lösungsverfahren zur Auftragsannahme- und Lager- ungsentscheidung bei auftragsbezogenen Instandhaltungspro- en	14
	5.1	Mathematische Modellformulierung zur Auftragsannahme- und Lagerhaltungsentscheidung bei auftragsbezogenen Instandhaltungs-	
		prozessen	14
	5.2	Implementierung mittels IPython Notebook	14
	5.3	Numerische Untersuchung	14
6	Sch	lussbemerkung	15
Ar	hang	g	16
Lit	terati	urverzeichnis	17

Abkürzungsverzeichnis

DLP Deterministisch-lineares Programm

DP Dynamisches Programm zur Annahme von Aufträgen

DP-storage Dynamisches Programm zur Annahme von Aufträgen unter Beach-

tung von Lagerbeständen

GAMS General Algebraic Modeling System

GE Geldeinheiten

OK Opportunitätskosten

RM Revenue Management

u. B. d. R. unter Berücksichtigung der Randbedingungen

Symbolverzeichnis

a_m	vektor des Nessourcenverbrauchs im Austumungsmodus m
a_{hm}	Verbrauch der Ressource h im Ausführungsmodus m
С	Vektor der Ressourcenkapazität
c_h	Kapazität der Ressource h
D_{jt}	Aggregierte erwartete Nachfrag nach Produkt j zur Periode t
h	Ressource aus der Menge ${\cal H}$
\mathcal{H}	Menge an Ressourcen
i	Produkt-Ressourcen-Kombination aus der Menge ${\mathcal I}$
\mathcal{I}	Gesamtmenge an möglichen Kombinationen von Produkten und Ressourcen
j	Produkt aus der Menge ${\cal J}$
${\cal J}$	Menge an Produkten
m	Ausführungsmodus aus der Menge \mathcal{M}_j
\mathcal{M}_j	Menge an produktspezifisch-möglichen Ausführungsmodi für ein Produkt j
π_h	Bid-Preis der Ressource h
$p_j(t)$	Wahrscheinlichkeit der Nachfrage nach Produkt j in Periode t
r_j	Erlös des Produkts j
t	Periode des Buchungshorizonts ${\cal T}$
au	Endperiode $t=1$ im Buchungshorizont ${\cal T}$
T	Buchungshorizont
$V(\mathbf{c},t)$	Ertragsfunktion in Abhängigkeit der Kapazitäten c in der Periode
$V(c_{h'},t)$	Ertragsfunktion in Abhängigkeit der Kapazität c_{h^\prime} in der Periode t
x_{jm}	Anzahl der akzeptierten Anfragen nach Produkt j im Ausführungsmodus m

Tabellenverzeichnis

1	Datastal	.: D	ll.a. D	N A - 4					1	1
1	Beisbiei	einer Pro	odukt-Ressou	ircen-iviatrix	 	 			- 1	T

Abbildungsverzeichnis

Vorwort

1 Einleitung

1.1 Problemstellung

Die Entscheidung über die Annahme von Kundenaufträgen zur Instandsetzung von Gütern ist von zentrale Bedeutung für Reparaturdienstleister. Abhängig des Kundenauftrags, indem der Zustand des Gutes beschrieben ist sowie die für die Reparatur notwendigen Prozessschritte beschrieben sind, generiert der Dienstleister unterschiedliche Erträge. Die jeweiligen Prozessschritte zur Instandsetzung des Gutes geben zusätzlich den notwendigen Ressourcenbedarf für die auszuführende Dienstleistung an, die notwendig ist um das Gut in seinen ursprünglichen bzw. geforderten Zustand zurückzuversetzen. Ressourcen zur Instandsetzung von Gütern können z. B. Material oder Personalstunden sein. Abhängig des möglichen Ertrags und des für den Auftrag notwendigen Ressourcenbedarf muss der Reparaturdienstleister die Entscheidung über Annahme oder Ablehnung des Kundenauftrags treffen. Sofern nur der einfache Fall betrachtet wird, bei dem nur der einzelne Kundenauftrag zur Auswahl steht, ist die Entscheidung für den Dienstleister einfach getroffen. Der Kundenauftrag wird angenommen, sofern der Aufwand des Ressourceneinsatzes niedriger als der erziele Umsatz ist (sofern von einer Vollkostenrechnung ausgegangen wird). Sofern der Reparaturdienstleister eine begrenzte Ressourcenkapazität zur Instandsetzung der Güter besitzt, muss zusätzlich der absolute Ressourcenverbrauch des Auftrags für Annahmeentscheidung geprüft werden. Mit Annahme des Auftrags ist ein individueller Ertrag erzielt und ein auftragsbezogener Ressourcenverbrauch eingetreten. Nachdem diese Entscheidung getroffen ist, wird der zeitlich darauffolgenden Kundenauftrag betrachtet.

Für die Entscheidung über die Annahme oder Ablehnung eines Kundenauftrags (KA) zur Instandhaltung von Gütern bedarf es einer umfassenderen Betrachtung als nur die kurzsichtige Entscheidung über einen einzelnen Auftrag. Angenommen ein Reparaturdienstleister besitzt ein bestimmtes Kontingent an unterschiedlichen Ressourcen über einen bestimmten Zeitraum zur Erfüllung seiner angebotenen

1 Einleitung 3

Dienstleistung. In diesem betrachteten Zeitraum treffen jetzt unterschiedliche Kundenaufträge mit unterschiedlicher Wertigkeit ein. Zur Maximierung seiner Erträge über diesen Zeitraum unter Beachtung der vorhanden Ressourcenkapazität kann es sinnvoll sein, Anfragen mit niedrigem Ertrag abzulehnen, sofern im weiteren Verlauf des betrachteten Zeitraums Aufträge mit höherem Ertrag eintreffen.

Bei der Problemformulierung der Auftragsannahmeentscheidung bei auftragsbezogenen Instandhaltungsprozessen handelt es sich um ein stochastisch-dynamisches Optimierungsmodell. Eine mögliche grafische Darstellungsform dieser Problemstellung erfolgt als sogenannter Entscheidungsbaum. Bei dem Entscheidungsbaum handelt es sich um ein gerichteten azyklischen Graphen. Abhängig der eintreffenden Anfragen, der vorhandenen Kapazitäten, der möglichen Entscheidungen und des betrachteten Zeithorizont hat der Entscheidungsbaum eine unterschiedliche Anzahl an Kanten und Knoten. Ein Knoten bildet jeweils einen neuen Zustand des Systems ab und eine Kante die mögliche Entscheidung in einen neuen Systemzustand zu gelangen.

In dieser Arbeit wird aber zusätzlich zur Annahmeentscheidung eines Auftrags zur Instandhaltung eines Gutes auch die Entscheidung über eine mögliche Lagerhaltung von Gütern getroffen. Durch Annahme der Entscheidung zur Lagerhaltung des defekten Gutes wird dieses in die Lagerhaltung des Reparaturdienstleisters übernommen und durch ein bereits repariertes Gut ausgetauscht. Das reparierte Gut entspricht den vom jeweiligen Auftrag geforderten Instandhaltungszustand. Anders formuliert bedeutet dies, dass ein Reparaturdienstleister nicht nur die Entscheidungsmöglichkeit über die Instandsetzung des Gutes hat, sonder auch die Möglichkeit hat in Abhängigkeit des verfügbaren Lagerbestandes bereits reparierte Güter zur Befriedigung der Kundenaufträge zu verwenden.

Das stochastisch-dynamische Optimierungsmodell muss demnach die Entscheidung treffen, ob die Auftragsannahme zur Instandsetzung des Gutes, die Lagerhaltung des defekten Gutes sowie die Herausgabe eines bereits reparierten Gutes oder die Ablehnung des Kundenauftrags erfolgen soll. Diese Entscheidung erfolgt in Abhängigkeit der verfügbaren restlichen Ressourcenkapazität, die zur Instandsetzung der Güter notwendig ist, des aktuell-vorhandenen Lagerbestandes der bereits reparierten Güter und der noch potentiell eintreffenden Anfragen zur Instandhaltung von Gütern.

1 Einleitung 4

1.2 Zielsetzung

Die mathematische Darstellung des Optimierungsmodells der Auftragsannahmeund Lagerhaltungsentscheidungen bei auftragsbezogenen Instandhaltungsprozessen erfolgt als *dynamische Programmierung (DP)*. Die Aufgabe des DP ist laut Talluri und van Ryzin (2004b) die Entscheidungsfindung zu unterstützen, damit der Gesamtertrag des Dienstleisters maximiert wird. Der Gesamtertrag wird bewertet in Geldeinheiten (GE). Das Grundmodell zur Annahme von Kundenaufträgen bzw. anfragen kommt aus der wissenschaftlichen Betrachtung des Revenue Management von Dienstleistungsunternehmen mit beschränkten Ressourcenkapazitäten.

Die Zielsetzung der Arbeit ist demnach das Grundmodell des Revenue Managements zur Annahme von Kundenaufträgen mit der Möglichkeit der Entscheidung der Lagerhaltung der Güter zu erweitern.

1.3 Aufbau der Arbeit

Der Aufbau der Arbeit ist demnach,

die Grundlagen über auftragsbezogenen Instandhaltungsprozessen zu definieren,

das Konzept des Revenue Management bei der Annahme von Kundenaufträgen vorzustellen,

bestehende Ansätze zum Lösen des stochastisch-dynamischen Optimierungsmodells bei der Annahme von Kundenaufträgen in der Auftragsproduktion und bei Instandhaltungsprozessen aufzuführen

sowie eine dynamische Programmierung für die Auftragsannahme- und Lagerhaltungsentscheidungen bei auftragsbezogenen Instandhaltungsprozessen zu formulieren und exakt zu lösen.

- 2 Grundlagen zu auftragsbezogenen Instandhaltungsprozessen
- 2.1 Einordnung in die Produktionswirtschaft
- 2.2 Charakteristika
- 2.3 Relevanz für betriebliche Entscheidungen

3 Das Konzept des Revenue Managements bei der Annahme von Aufträgen

3.1 Herkunft des Revenue Managements

Der Begriff Revenue Management wird im deutschsprachigen Raum meist mit Ertragsmanagement oder Erlösmanagement übersetzt.⁵ Yield Management wird als Synonym benutzt.⁶ Dabei greift der Begriff zu kurz, da Yield im Luftverkehr den Erlös je Passagier und geflogener Meile bezeichnet.⁷ Daher hat sich der Term Revenue Management gegenüber Yield Management durchgesetzt.⁸ Erste Ansätze des RM wurden in der Praxis entwickelt. Durch die Deregulierung des amerikanischen Luftverkehrsmarktes im Jahr 1978 mussten die traditionellen Fluggesellschaften ihre Wettbewerbsfähigkeit gegenüber Billiganbietern erhöhen und entwickelten das frühe RM.⁹ In der Literatur ist der Begriff des RM unterschiedlich definiert. Friege (1996) bezeichnet das RM als Preis-Mengen-Steuerung, Daudel und Vialle (1992) als Preis-Kapazitäts-Steuerung und Talluri und van Ryzin (2004b) verstehen es als das gesamtes Management der Nachfrage. Klein (2001, S. 248) definiert RM als:

"Revenue Management umfasst eine Reihe von quantitativen Methoden zur Entscheidung über Annahme oder Ablehnung unsicherer, zeitlich verteilt eintreffender Nachfrage unterschiedlicher Wertigkeit. Dabei wird das Ziel verfolgt, die in einem begrenzten Zeitraum verfügbare, unflexibel Kapazität möglichst effizient zu nutzen."

⁵Vgl. z. B. Zehle (1991), S. 486

⁶Vgl. z. B. Kolisch und Zatta (2006), S. 319

⁷Vgl. z. B. Weatherford (1998), S. 69

⁸Vgl. Klein und Steinhardt (2008), S. 6

⁹Vgl. Petrick (2009), S. 1-3

Petrick (2009) definiert das RM als Ziel einer Unternehmung die Gesamterlöse zu maximieren, die sich aufgrund der speziellen Anwendungsgebiete ergeben. Damit definiert Petrick (2009) das RM als Zusammenfassung aller Interaktionen eines Unternehmens, die mit dem Markt, also der Absatz- oder Nachfrageseite, zusammenhängen. Kimms und Klein (2005) weisen darauf hin, dass eine differenzierte Betrachtung des Konzepts notwenig ist: Einerseits im Hinblick auf die Anwendungsvoraussetzungen und andererseits im Hinblick auf die Instrumente des Revenue Managements, damit verdeutlicht dargestellt ist, in welchen Branchen das RM Potentiale liefert. Dabei sollten branchenspezifische Besonderheiten, neben den zahlreichen Ähnlichkeiten Berücksichtigung finden, sowie das begrenzte Kapazitätenkontingent, damit die Potentiale des RM zur Maximierung der Gesamterlöse in den Dienstleistungsbranchen erfolgen kann.¹⁰

3.2 Anwendungsvoraussetzungen und Instrumente des Revenue Managements

Es wurden typische Anwendungsgebiete für das RM aufgezeigt. (???) Jedoch bereitet die Definition weitere Schwierigkeiten. Kimms und Klein (2005) versuchen durch eine umfangreiche Diskussion einige Erklärungsansätze aufzuzeigen. Zum einen hat das RM vor allem aus dem älteren, englischsprachigen Bereich einen engen Bezug zu konkreten Anwendungsgebieten. Weiter versuchen viele Autoren das komplexe Konzept des Revenue Managements in einer kurzen Erklärung zu verdeutlichen. Dieses läuft letztlich darauf hinaus, dass diese Autoren einige situative Merkmale und Instrumente des Managements vermischen, gleichzeitig aber versuchen, die Zielsetzung festzulegen und das Anwendungsgebiet auf bestimmte Branchen zu beschränken.

Die beiden ersteren Definitionen können als Synonym für eines der Instrumente des RM stehen und daher finden diese für das gesamte Konzept keine weitere Verwendung.¹¹

Im Kern lassen sich drei wichtige Perspektiven für eine Definition des Revenue

¹⁰Vgl. z. B. von Martens (2009), S. 11-24

¹¹Vgl. z. B. Petrick (2009)

Managements nach Petrick (2009), Stuhlmann (2000), Corsten und Stuhlmann (1999) übernehmen:

- Ziel ist es die Gesamterlöse unter möglichst optimaler Auslastung der vorhandenen Kapazitäten zu maximieren.
- Durch eine aktive Preispolitik wird das reine Kapazitäts- oder Auslastungsmanagement unterstützt.
- Für die erfolgreiche Implementierung des Revenue Managements ist eine umfangreiche Informationsbasis notwendig. Es muss u. a. eine möglichst gute Prognose über die zukünftige Nachfrage und Preisbereitschaft der Kunden vorhanden sein.

Wie im vorherigen Abschnitt beschrieben, müssen bestimmte Voraussetzungen bestehen, damit die Instrumente des RM zur Anwendung kommen können.

Petrick (2009) weist darauf hin, dass anhand von Anwendungsvoraussetzungen geprüft wird, ob das RM für die jeweilige Situation des Unternehmens (oder die gesamte Branche) zur Maximierung des Gesamterlöses beiträgt. Kimes (1989b) definiert die in der Literatur häufigsten Anwendungsvoraussetzungen:¹²

"weitgehend fixe" Kapazitäten

"Verderblichkeit" bzw. "Nichtlagerfähigkeit" der Kapazitäten und der Leistung

Möglichkeit zur Vorausbuchung von Leistungen

stochastische, schwankende Nachfrage

hohe Fixkosten für die Bereitstellung der gesamten Kapazitäten bei vergleichsweise geringen variablen Kosten für Produktion einer Leistungseinheit

Möglichkeit zur Marktsegmentierung und im Ergebnis dessen zur segmentorientierten Preisdifferenzierung Klein und Steinhardt (2008) setzen sich mit den Anwendungsvoraussetzungen von mehreren Autoren auseinander. Sie konnten Gemeinsamkeiten innerhalb der Definitionen der Autoren finden, aber zeigten auch die

¹²Vgl. u. a. Friege (1996), S. 616-622, und Weatherford und Bodily (1992), 831-832

Unterschiede und die Kritiken auf. In ihrer Arbeit übernehmen sie die Anwendungsvoraussetzung von Corsten und Stuhlmann (1998): "Marktseitige Anpassungserfordernis steht unternehmesseitigig unzureichendes Flexibilitätspotential hinsichtlich der Kapazität - bezogen auf Mittel- oder Zeitaufwand gegenüber". Zugleich weisen sie jedoch darauf hin, dass zum Verständnis eines komplexen und interdisziplinären Ansatzes auch die Definitionen anderer Autoren im Hinblick auf das Verständnis der Anwendungsvoraussetzungen beitragen.

Auf Grundlage der von Friege (1996) beschriebenen Anwendungsvoraussetzungen hat Petrick (2009) drei Instrumente des RM bestimmt. Die Instrumente benötigen als Grundlage *Daten der Prognose*, damit sie zur Anwendung kommen.¹³ Zu den Instrumenten zählen die **segmentorientierte Preisdifferenzierung**, die **Kapazitätensteuerung** und die **Überbuchungssteuerung**. Es lassen sich unterschiedliche Abhängigkeiten der Instrumente untereinander ermitteln.¹⁴

3.3 Mathematische Modellformulierung des Revenue Managements beim Entscheidungsproblem der Auftragsannahme von Instandhaltungsprozessen

Im Folgenden wird das dynamisch, stochastische Grundmodell des RM nach Talluri und van Ryzin (2004, S. 18-19) beschrieben. Ein Dienstleistungsnetzwerk eines Anbieters benötigt jeweils zur Erstellung einer Dienstleistung eine bestimmte Kombination an Ressourcen aus der Menge der Ressourcen $\mathcal{H}=\{1,...,l\}$. Der Index h beschreibt dabei eine jeweilige Ressource und der Index l die gesamte Anzahl an möglichen Ressourcen. Die jeweilig verbleibende Kapazität einer Ressource $h\in\mathcal{H}$ ist durch den Parameter c_h beschrieben und die gesamten Kapazitäten der Ressourcen ist als Vektor $\mathbf{c}=(c_1,...,c_h,...,c_l)$ formuliert. Ein Produkt in dem Netzwerk ist durch den Parameter j aus der Menge an Produkten $\mathcal{J}=\{1,...,n\}$ beschrieben. Die gesamte Anzahl an Produkten ist durch den Parameter n definiert. Sobald ein

¹³Die Prognose zählt laut Petrick (2009) nicht als eigenständiges Instrument des RM.

¹⁴Als Beispiel baut die Kapazitätensteuerung auf den Ergebnissen der Preisdifferenzierung auf und die Überbuchungssteuerung kann selten ohne Kapazitätensteuerung gelöst werden.

Produkt $j \in \mathcal{J}$ abgesetzt ist, fällt für den Verkauf der Ertrag r_j an. Der Buchungshorizont entspricht T Perioden und kann jeweils in einzelne Perioden t=1,...,T aufgeteilt werden. Dabei muss Beachtung finden, dass der Buchungshorizont T gegenläufig verläuft. Die Wahrscheinlichkeit der Nachfrage eines Produkts j in der Periode t entspricht $p_j(t)$ und die Wahrscheinlichkeit, dass keine Nachfrage in der Periode t eintrifft, entspricht $p_0(t)$. Es gilt $\sum_{j\in\mathcal{J}}p_j(t)+p_0(t)=1$ und somit kann $p_0(t)$ durch den Term $p_0(t)=1-\sum_{j\in\mathcal{J}}p_j(t)$ für die Periode t ermittelt werden. Die noch erwartete Nachfrage D_{jt} für ein bestimmtes Produkt j für eine beliebige Periode t lässt sich durch $\sum_{\tau=1}^t p_j(\tau)$ aggregieren.

Die bisherige Notation ist analog der Formulierung des Grundmodells nach Talluri und van Ryzin (2004, S. 18-19). Nachfolgend wird die Modellerweiterung nach Gönsch und Steinhardt (2013) beschrieben. Sofern ein Anbieter opake Produkte in sein Produktportfolio integriert, muss die Menge $\mathcal{M}_j \subseteq \mathcal{I}$ eingeführt werden. Mit dieser Menge ist die Erfassung des differenzierten Ressoucenverbrauchs der spezifischen und opaken Produkte $i \in \mathcal{J}$ möglich. Sie ist eine Teilmenge der Indexmenge $\mathcal{I} \subseteq \mathbb{N}^+$, die alle produktspezifischen Kombinationen für die Menge der Ressourcen ${\cal H}$ beschreibt. Die Menge ${\cal I}$ beschreibt alle möglichen Kombinationen von Produkten und Ressourcen. Für das weitere Vorgehen genügt das Betrachten der jeweiligen möglichen Ausführungsmodi \mathcal{M}_j eines Produkts $j \in \mathcal{J}$. Eine einzelne produktspezifische Kombination der verfügbaren Ressourcen ist durch den Parameter $m \in \mathcal{M}_i$ beschrieben. Der jeweilige Verbrauch einer Ressource h im Ausführungsmodus mdurch Annahme einer Anfrage nach einem Produkt j ist anhand des Parameters a_{hm} beschrieben. Durch Vektorschreibweise kann der Ressourcenverbrauch einer produktspezifischen Kombination als $\mathbf{a}_m = (a_{1m},...,a_{hm},...,a_{lm})$ formuliert werden. Die Tabelle 1 verdeutlicht den Zusammenhang der Produkte $j \in \mathcal{J}$ und der Ressourcen $h \in \mathcal{H}$ mit dem dazugehörigen produktspezifischen Ausführungsmodus $m \in \mathcal{M}_j$ in einer Matrix.

Das Beispiel in Tabelle 1 zeigt einen Reiseveranstalter mit fünf Ressourcen. Bei den ersten zwei Ressourcen handelt es sich um einen 1.-Klasse-Flug (h=1) und um einen 2.-Klasse-Flug (h=2). Bei der Ressource 3 handelt es sich jeweils um eine mögliche Überführungsfahrt (h=3) zu einem Hotel am Strand (h=4). Bei der letzten Ressource handelt es sich um ein Business-Hotel direkt am Flughafen (h=5). Die verschiedenen Ressourcen sind in dem Beispiel unterschiedlich zu

¹⁵Vgl. Talluri und van Ryzin, S. 18

		Ressurce	enverbra	uch a_{hm}	\imath			
$Produkt\ j$	1	für jewei	lige Res	source /	Ausführungsmodus $\it m$	Erlös r_j		
	1	2	3	4	5			
	a_{11}	_	a_{31}	a_{41}	_	1		
1	_	a_{22}	a_{32}	a_{42}	_	2	100	
1	a_{13}	_	_	a_{43}	_	3	100	
	_	a_{24}	_	a_{44}	_	4		
2	a_{15}	_	_	_	a_{55}	5	150	

Tabelle 1 Beispiel einer Produkt-Ressourcen-Matrix

Produkten $j \in \mathcal{J}$ kombiniert. Dies könnte einerseits daran liegen, dass einige Kombinationen für einen Anbieter nicht rentabel sind oder andererseits keine Nachfrage erhalten. Damit zeigt die Produkt-Ressourcen-Matrix nicht alle möglichen Kombinationsmöglichkeiten $i \in \mathcal{I}$ für die Menge an Ressourcen \mathcal{H} . Die Matrix zeigt keinen Wert für den Ressourcenverbrauch an, sofern $a_{hm}=0$ entspricht. Damit wird zur Erstellung des Produkts j in dem Ausführungsmodus m die jeweilige Ressource h nicht benötigt. In dem Beispiel ist das Produkt j=1 ein opakes Produkt mit den Ausführungsmodi $m \in \mathcal{M}_1 = \{1,2,3,4\}$. Dies liegt an der frei gewählten Angebotsstruktur. Der Anbieter könnte jeden Ausführungsmodus $m \in \mathcal{M}_j$ für ein eigenständiges Produkt nutzen. Bspw. handelt es sich bei dem Produkt j=2 um ein spezifisches Produkt, das der Anbieter nur in einem Ausführungsmodus $m \in \mathcal{M}_2 = \{5\}$ anbietet. Somit sind spezifische Produkte eines Netzwerks als Sonderfall von opaken Produkten anzusehen, die nur einen Ausführungsmodus aufweisen $(|\mathcal{M}_{j'}|=1)$. 16

Mit den vorangegangenen Parametern kann der maximal erwartete Ertragswert $V(\mathbf{c},t)$ für eine Periode t bei einer noch vorhandenen Ressourcenkapazität \mathbf{c} als Bellman-Gleichung formuliert werden (**DP-op**):¹⁷

¹⁶Vgl. Gönsch und Steinhardt (2013), S. 96

¹⁷Vgl. Gönsch und Steinhardt (2013), S. 97

$$V(\mathbf{c},t) = \sum_{j \in \mathcal{J}} p_j(t) \max \left(V(\mathbf{c},t-1), \ r_j + \max_{m \in \mathcal{M}_j} V(\mathbf{c} - \mathbf{a}_m, t-1) \right) + p_0(t)V(\mathbf{c}, t-1)$$
(1)

Es handelt sich hier um die Modellformulierung der dynamischen Programmierung im RM opaker Produkte. Die Gleichung weist die Grenzbedingungen $V(\mathbf{c},0)=0$ für $\mathbf{c}\geq 0$ sowie sonst $V(\mathbf{c},0)=-\infty$ auf, da eine jeweilig verbleibende Kapazität nach Bereitstellung des Produkts wertlos und eine negative Ressourcenkapazität nicht möglich ist. Die Standardformulierung der dynamischen Programmierung wird mit dem Term $\max_{m\in\mathcal{M}_j}V(\mathbf{c}-\mathbf{a}_m,t-1)$ erweitert. Damit ist sichergestellt, dass eine Anfrage nach einem opaken Produkt j nur im Ausführungsmodus m mit dem höchsten Ertragswert gewählt wird. Der Gesamtertrag des Anbieters ist maßgeblich durch die Entscheidung der gewählten Ausführungsmodi $m\in\mathcal{M}_j$ abhängig, da das Modell durch eine jede Entscheidung bzgl. der weiteren möglichen opaken Produkt j ist demnach dann akzeptiert, wenn gilt:

$$r_j \ge \min_{m \in \mathcal{M}_j} \left\{ V(\mathbf{c}, t - 1) - V(\mathbf{c} - \mathbf{a}_m, t - 1) \right\}$$
 (2)

Somit erfolgt die Akzeptanz einer Anfrage nach einem opaken Produkt $j \in \mathcal{J}$ ausschließlich nur dann, sofern die OK des Ressourcenverbrauchs niedriger als der Ertrag ist. Zusätzlich wird der Ausführungsmodus $m \in \mathcal{M}_j$ mit den niedrigsten OK gewählt, wodurch das Maximum des gesamten Ertragswerts gewährleistet bleibt. Ein potentieller Ausführungsmodus m^* mit minimalen OK $(V(\mathbf{c},t-1)-V(\mathbf{c}-\mathbf{a}_{m^*},t-1))$ ist gewählt und die Kapazität werden dementsprechend reduziert. Bei spezifischen Produkten existiert nur ein Ausführungsmodus $|\mathcal{M}_{j'}|=1$ und daher ist die Maximalfunktion in der Gleichung (1) und die Minimalfunktion in der Gleichung (2) nicht notwendig.

- 4 Bestehende Ansätze zur Annahme von Auftragsproduktion und Instandhaltungsprozessen
- 4.1 Review 1
- 4.2 Review 2
- 4.3 Review 3
- 4.4 Review 4

- 5 Ein exaktes Lösungsverfahren zur Auftragsannahme- und Lagerhaltungsentscheidung bei auftragsbezogenen Instandhaltungsprozessen
- 5.1 Mathematische Modellformulierung zur Auftragsannahme- und Lagerhaltungsentscheidung bei auftragsbezogenen Instandhaltungsprozessen
- 5.2 Implementierung mittels IPython Notebook
- 5.3 Numerische Untersuchung

6 Schlussbemerkung

Anhang

Literaturverzeichnis

- Corsten, H. und Stuhlmann, S. (1998): Yield Management: Ein Ansatz zur Kapazitätsplanung und-steuerung in Dienstleistungsunternehmen. In: Schriften zum Produktionsmanagement. Bd. 18.
- Corsten, H. und Stuhlmann, S. (1999): Yield Management als Ansatzpunkt für die Kapazitätsgestaltung von Dienstleistungsunternehmungen. In: Wettbewerbsfaktor Dienstleistung: Produktion von Dienstleistungen-Produktion als Dienstleistung, Vahlen, München, S. 79–107.
- Daudel, S. und Vialle, G. (1992): Yield-Management: Erträge optimieren durch nachfrageorientierte Angebotssteuerung. Campus-Verlag.
- Friege, C. (1996): Yield-Management. In: WiSt-Wirtschaftswissenschaftliches Studium. Bd. 25, S. 616–622.
- Gönsch, J. und Steinhardt, C. (2013): Using dynamic programming decomposition for revenue management with opaque products. In: BuR-Business Research. Bd. 6, Nr. 1, S. 94–115.
- Kimes, S.E. (1989b): Yield management: a tool for capacity-considered service firms. In: Journal of operations management. Bd. 8, Nr. 4, S. 348–363.
- Kimms, A. und Klein, R. (2005): Revenue Management im Branchenvergleich. Arbeitspapier. Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Klein, R. (2001): Revenue Management: Quantitative Methoden zur Erlösmaximierung in der Dienstleistungsproduktion. Arbeitspapier. Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).

- Klein, R. und Steinhardt, C. (2008): Revenue Management : Grundlagen und mathematische Methoden. Springer, Berlin [u.a.].
- Kolisch, R. und Zatta, D. (2006): Revenue-Management in der Sachgüterproduktion. In: Marketing Journal. Bd. 12, S. 38–41.
- von Martens, T. (2009): Kundenwertorientiertes Revenue Management im Dienstleistungsbereich. Gabler, Wiesbaden, 1. aufl.. Aufl.
- Petrick, A. (2009): Multimodale Produkte im Revenue Management : Potenziale und Ansätze zur Realisierung einer Kapazitätssteuerung. Südwestdeutscher Verl. für Hochschulschriften, Saarbrücken.
- Stuhlmann, S. (2000): Kapazitätsgestaltung in Dienstleistungsunternehmungen: eine Analyse aus der Sicht des externen Faktors. Deutscher Universitäts-Verlag.
- Talluri, K. und van Ryzin, G.J. (2004): Revenue management under a general discrete choice model of consumer behavior. In: Management Science. Bd. 50, Nr. 1, S. 15–33.
- Talluri, K.T. und van Ryzin, G.J. (2004b): The Theory and Practice of Revenue Management. International Series in Operations Research and Management Science, vol. 68. Springer.
- Weatherford, L.R. (1998): A tutorial on optimization in the context of perishable-asset revenue management problems for the airline industry. In: Operations Research in the airline industry. Springer, S. 68–100.
- Weatherford, L.R. und Bodily, S.E. (1992): A taxonomy and research overview of perishable-asset revenue management: yield management, overbooking, and pricing. In: Operations Research. Bd. 40, Nr. 5, S. 831–844.
- Zehle, K.O. (1991): Yield-Management–Eine Methode zur Umsatzsteigerung für Unternehmen der Tourismusindustrie. In: Tourismusmanagement undmarketing. Landsberg/Lech: Moderne Industrie, S, S. 483–504.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.

Hannover, 11. September 2015