## Econ 722 - Advanced Econometrics IV

Francis J. DiTraglia

University of Pennsylvania

Lecture #8 – High-Dimensional Regression II

**LASSO** 

# Least Absolute Shrinkage and Selection Operator (LASSO)

Bühlmann & van de Geer (2011); Hastie, Tibshirani & Wainwright (2015)

Assume that X has been centered: don't penalize intercept!

#### **Notation**

$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2, \quad ||\beta||_1 = \sum_{j=1}^p |\beta_j|$$

Ridge Regression –  $L_2$  Penalty

$$\widehat{\beta}_{\textit{Ridge}} = \mathop{\arg\min}_{\beta} \; (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \left| |\beta| \right|_{2}^{2}$$

LASSO –  $L_1$  Penalty

$$\widehat{\beta}_{\textit{Lasso}} = \mathop{\arg\min}_{\beta} \; (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \left|\left|\beta\right|\right|_{1}$$

## Other Ways of Thinking about LASSO

### Constrained Optimization

$$rg \min_{eta} (\mathbf{y} - Xeta)'(\mathbf{y} - Xeta)$$
 subject to  $\sum_{j=1}^p |eta_j| \leq t$ 

Data-dependent, one-to-one mapping between  $\lambda$  and t.

### Bayesian Posterior Mode

Ignoring the intercept, LASSO is the posterior model for  $\beta$  under

$$\mathbf{y}|X, \beta, \sigma^2 \sim N(X\beta, \sigma^2 I_n), \quad \beta \sim \prod_{j=1}^{p} \mathsf{Lap}(\beta_j|0, \tau)$$

where  $\lambda=1/ au$  and  $\mathrm{Lap}(x|\mu, au)=(2 au)^{-1}\exp\left\{- au^{-1}|x-\mu|
ight\}$ 

# Comparing Ridge and LASSO – Bayesian Posterior Modes



Figure: Ridge, at left, puts a normal prior on  $\beta$  while LASSO, at right, uses a Laplace prior, which has fatter tails and a taller peak at zero.

# Comparing LASSO and Ridge – Constrained OLS



Figure:  $\widehat{\beta}$  denotes the MLE and the ellipses are the contours of the likelihood. LASSO, at left, and Ridge, at right, both shrink  $\beta$  away from the MLE towards zero. Because of its diamond-shaped constraint set, however, LASSO favors a sparse solution while Ridge does not

### No Closed-Form for LASSO!

## Simple Special Case

Suppose that  $X'X = I_p$ 

### Maximum Likelihood

$$\widehat{\boldsymbol{\beta}}_{MLE} = (X'X)^{-1}X'\mathbf{y} = X'\mathbf{y}, \quad \widehat{\beta}_{j}^{MLE} = \sum_{i=1}^{n} x_{ij}y_{i}$$

### Ridge Regression

$$\widehat{\boldsymbol{\beta}}_{Ridge} = (X'X + \lambda I_p)^{-1}X'\mathbf{y} = [(1+\lambda)I_p]^{-1}\widehat{\boldsymbol{\beta}}_{MLE}, \quad \widehat{\boldsymbol{\beta}}_{j}^{Ridge} = \frac{\widehat{\boldsymbol{\beta}}_{j}^{MLE}}{1+\lambda}$$

So what about LASSO?

LASSO when 
$$X'X = I_p$$
 so  $\widehat{\beta}_{MLE} = X'\mathbf{y}$ 

### Want to Solve

$$\widehat{\boldsymbol{\beta}}_{LASSO} = \mathop{\arg\min}_{\boldsymbol{\beta}} \; (\mathbf{y} - X\boldsymbol{\beta})'(\mathbf{y} - X\boldsymbol{\beta}) + \lambda \left| \left| \boldsymbol{\beta} \right| \right|_1$$

### **Expand First Term**

$$\begin{aligned} (\mathbf{y} - X\boldsymbol{\beta})'(\mathbf{y} - X\boldsymbol{\beta}) &= \mathbf{y}'\mathbf{y} - 2\boldsymbol{\beta}'X'\mathbf{y} + \boldsymbol{\beta}'X'X\boldsymbol{\beta} \\ &= (\mathsf{constant}) - 2\boldsymbol{\beta}'\widehat{\boldsymbol{\beta}}_{\mathit{MLE}} + \boldsymbol{\beta}'\boldsymbol{\beta} \end{aligned}$$

#### Hence

$$\begin{split} \widehat{\boldsymbol{\beta}}_{LASSO} &= \underset{\boldsymbol{\beta}}{\arg\min} \left(\boldsymbol{\beta}'\boldsymbol{\beta} - 2\boldsymbol{\beta}'\widehat{\boldsymbol{\beta}}_{MLE}\right) + \lambda \left|\left|\boldsymbol{\beta}\right|\right|_{1} \\ &= \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i=1}^{p} \left(\beta_{j}^{2} - 2\beta_{j}\widehat{\boldsymbol{\beta}}_{j}^{MLE} + \lambda \left|\boldsymbol{\beta}_{j}\right|\right) \end{split}$$

# LASSO when $X'X = I_p$

### Preceding Slide

$$\widehat{\boldsymbol{\beta}}_{LASSO} \ = \ \arg\min_{\boldsymbol{\beta}} \sum_{j=1}^{p} \left(\beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{MLE} + \lambda \left| \beta_{j} \right| \right)$$

### **Key Simplification**

Equivalent to solving j independent optimization problems:

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \left( \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} + \lambda \left| \beta_{j} \right| \right)$$

- ▶ Sign of  $\beta_i^2$  and  $\lambda |\beta_j|$  unaffected by sign $(\beta_j)$
- $ightharpoonup \widehat{eta}_j^{MLE}$  is a function of data only outside our control
- ▶ Minimization requires matching sign( $\beta_i$ ) to sign( $\widehat{\beta}_i^{MLE}$ )

# LASSO when $X'X = I_p$

Case I: 
$$\widehat{\beta}^{MLE} > 0 \implies |\beta_j| = |\beta_j| = |\beta_j|$$

Optimization problem becomes

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \, \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} + \lambda \beta_{j}$$

Interior solution:

$$\widehat{\beta}_j = \widehat{\beta}_j^{MLE} - \frac{\lambda}{2}$$

Can't have 
$$\beta_j < 0$$
: corner solution sets  $\beta_j = 0$  
$$\widehat{\beta}_j^{\textit{Lasso}} = \max \left\{ 0, \widehat{\beta}_j^{\textit{MLE}} - \frac{\lambda}{2} \right\}$$

# LASSO when $X'X = I_p$

Case II: 
$$\widehat{\beta}^{MLE} \leq 0 \implies \beta_j \leq 0 \implies |\beta_j| = -\beta_j$$

Optimization problem becomes

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \, \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} - \lambda \beta_{j}$$

Interior solution:

$$\widehat{\beta}_j = \widehat{\beta}_j^{MLE} + \frac{\lambda}{2}$$

Can't have 
$$\beta_j > 0$$
: corner solution sets  $\beta_j = 0$  
$$\widehat{\beta}_j^{\textit{Lasso}} = \min \left\{ 0, \widehat{\beta}_j^{\textit{MLE}} + \frac{\lambda}{2} \right\}$$

# Ridge versus LASSO when $X'X = I_p$





Figure: Horizontal axis in each plot is MLE

$$\begin{split} \widehat{\beta}_{j}^{Ridge} &= \left(\frac{1}{1+\lambda}\right) \widehat{\beta}_{j}^{MLE} \\ \widehat{\beta}_{j}^{Lasso} &= \operatorname{sign}\left(\widehat{\beta}_{j}^{MLE}\right) \max \left\{0, \left|\widehat{\beta}_{j}^{MLE}\right| - \frac{\lambda}{2}\right\} \end{split}$$

## Calculating LASSO - The Shooting Algorithm

Cyclic Coordinate Descent

```
Data: y, X, \lambda > 0, \varepsilon > 0
Result: LASSO Solution
\beta \leftarrow \mathsf{ridge}(X, \mathbf{y}, \lambda)
repeat

\beta^{peri} \leftarrow \beta

for j = 1, ..., p do

\begin{vmatrix}
a_j \leftarrow 2 \sum_i x_{ij}^2 \\
c_j \leftarrow 2 \sum_i x_{ij} (y_i - \mathbf{x}_i'\beta + \beta_j x_{ij}) \\
\beta_j \leftarrow \text{sign}(c_j/a_j) \max \{0, |c_j/a_j| - \lambda/a_j\}
\end{vmatrix}

until |\beta - \beta^{prev}| < \varepsilon:
```

# Coordinate Updates in the Shooting Algorithm

$$\frac{\partial}{\partial \beta_{j}} (\mathbf{y} - X\boldsymbol{\beta})' (\mathbf{y} - X\boldsymbol{\beta}) = a_{j}\beta_{j} - c_{j}$$

$$a_{j} \equiv 2 \sum_{i=1}^{n} x_{ij}^{2}$$

$$c_{j} \equiv 2 \sum_{i=1}^{n} x_{ij} (\underbrace{y_{i} - \mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{j}x_{ij}}_{\text{Residual excluding } x_{ij}})$$

$$\beta_{j}^{\text{New}} = \begin{cases} (c_{j} + \lambda)/a_{j}, & c_{j} < -\lambda \\ 0, & c_{j} \in [-\lambda, \lambda] \\ (c_{i} - \lambda)/a_{i}, & c_{i} > \lambda \end{cases}$$

### Prediction Error of LASSO

#### **Punchline**

With the appropriate choice of  $\lambda$ , Lasso can make very good predictions even when p is much larger than n, so long as  $\sum_{j=1}^{p} |\beta_j|$  is small.

## Sparsity?

One way to have small  $\sum_{j=1}^{p} |\beta_j|$  is if  $\beta$  is *sparse*, i.e.  $\beta_j = 0$  for most j, but sparsity is not required.

We'll look at a simple example...

## Prediction Error of LASSO: Simple Example

### Suppose that:

- X and y are centered
- X is fixed and scaled so that  $\mathbf{x}_i'\mathbf{x}_j = n$
- $\mathbf{y} = X\beta_0 + \varepsilon$ ,  $\varepsilon \sim N(0, \sigma^2 I)$ .
- $\lambda = c\sigma \sqrt{\log(p)/n}$  where c is a constant

#### **Theorem**

Let 
$$\widehat{m{\beta}} = \mathop{\arg\min}_{m{\beta}} \frac{1}{2n} \left\| \mathbf{y} - X m{\beta} \right\|_2^2 + \lambda \left\| m{\beta}_0 \right\|_1$$
. Then,

$$\mathbb{P}\left(\frac{1}{n}\left\|X\beta_{0}-X\widehat{\beta}\right\|_{2}^{2}\leq4\lambda\left\|\beta_{0}\right\|_{1}\right)\geq1-p^{-\left(c^{2}/2-1\right)}$$

## What Does This Mean?

$$\boxed{\mathbb{P}\left(\frac{1}{n}\left\|X\beta_{0}-X\widehat{\beta}\right\|_{2}^{2}\leq4\lambda\left\|\beta_{0}\right\|_{1}\right)\geq1-p^{-\left(c^{2}/2-1\right)}}$$

#### **Notation**

$$\|\mathbf{z}\|_2^2 \equiv \mathbf{z}'\mathbf{z}, \quad \|\alpha\|_1 \equiv \sum_{j=1}^p |\alpha_j|$$

### Convenient Scaling

Divide RSS by 
$$2n$$
:  $\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\arg\min} \frac{1}{2n} \|\mathbf{y} - X\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}_0\|_1$ 

### Prediction Error Comparison

Optimal: 
$$\varepsilon = \mathbf{y} - X\beta_0$$
 Lasso:  $\widehat{\varepsilon} = \mathbf{y} - X\widehat{\beta}$ 

$$\frac{1}{n} \|\widehat{\varepsilon} - \varepsilon\|_{2}^{2} = \frac{1}{n} \|(\mathbf{y} - X\widehat{\boldsymbol{\beta}}) - (\mathbf{y} - X\boldsymbol{\beta}_{0})\|_{2}^{2} = \frac{1}{n} \|X\boldsymbol{\beta}_{0} - X\widehat{\boldsymbol{\beta}}\|_{2}^{2}$$

Econ 722, Spring '19

### What Does This Mean?

$$\boxed{\mathbb{P}\left(\frac{1}{n}\left\|X\beta_{0}-X\widehat{\beta}\right\|_{2}^{2}\leq4\lambda\left\|\beta_{0}\right\|_{1}\right)\geq1-p^{-\left(c^{2}/2-1\right)}}$$

#### Recall

$$\lambda = c\sigma\sqrt{\log(p)/n}, \quad \varepsilon \sim N(0, \sigma^2 I)$$

#### We choose c

Larger  $c \implies$  higher probability that the bound obtains:

$$c = 2 \implies 1 - p^{-(c^2/2 - 1)} = 1 - 1/p$$
  
 $c = 3 \implies 1 - p^{-(c^2/2 - 1)} = 1 - p^{-7/2}$   
 $c = 4 \implies 1 - p^{-(c^2/2 - 1)} = 1 - p^{-7}$ 

## What Does This Mean?

$$\boxed{\mathbb{P}\left(\frac{1}{n}\left\|X\beta_{0}-X\widehat{\beta}\right\|_{2}^{2}\leq 4\lambda\left\|\beta_{0}\right\|_{1}\right)\geq 1-p^{-(c^{2}/2-1)}}$$

### Recall

$$\lambda = c\sigma\sqrt{\log(p)/n}, \quad \varepsilon \sim N(0, \sigma^2 I)$$

### We choose c

Larger  $c \implies$  looser bound:

$$c = 2 \implies 4\lambda \|\boldsymbol{\beta}_0\|_1 = 8\sigma \sqrt{\log(p)/n} \times \|\boldsymbol{\beta}_0\|_1$$

$$c = 3 \implies 4\lambda \|\boldsymbol{\beta}_0\|_1 = 12\sigma \sqrt{\log(p)/n} \times \|\boldsymbol{\beta}_0\|_1$$

$$c = 4 \implies 4\lambda \|\boldsymbol{\beta}_0\|_1 = 16\sigma \sqrt{\log(p)/n} \times \|\boldsymbol{\beta}_0\|_1$$

# We can allow $p \gg n$ provided $\|\beta\|_1$ is small

$$\boxed{\mathbb{P}\left(\frac{1}{n}\left\|X\beta_{0}-X\widehat{\beta}\right\|_{2}^{2}\leq4\lambda\left\|\beta_{0}\right\|_{1}\right)\geq1-p^{-(c^{2}/2-1)}}$$

### Recall

$$\lambda = c\sigma \sqrt{\log(p)/n}, \quad \varepsilon \sim N(0, \sigma^2 I)$$

| р      | n    | $\sqrt{\log(p)/n}$ |
|--------|------|--------------------|
| 100    | 100  | 0.21               |
| 1000   | 1000 | 0.08               |
| 1000   | 100  | 0.26               |
| 10000  | 1000 | 0.10               |
| 10000  | 100  | 0.30               |
| 100000 | 1000 | 0.11               |

## Lecture #9 – High-Dimensional Regression III

Principal Component Analysis (PCA)

Principal Components Regression

Comparing OLS, Ridge, and PCR

Overview of Factor Models

Choosing the Number of Factors

Diffusion Index Forecasting

# Principal Component Analysis (PCA)

#### Notation

Let **x** be a  $p \times 1$  random vector with variance-covariance matrix  $\Sigma$ .

### **Optimization Problem**

$$lpha_1 = rg \max_{lpha} \ \mathsf{Var}(lpha'\mathbf{x}) \quad \mathsf{subject to} \quad lpha'lpha = 1$$

### First Principal Component

The linear combination  $\alpha'_1 x$  is the first principal component of x.

The random vector  $\mathbf{x}$  has maximal variation in the direction  $\alpha_1$ .

# Solving for $\alpha_1$

### Lagrangian

$$\mathcal{L}(\alpha_1, \lambda) = \alpha' \Sigma \alpha - \lambda(\alpha' \alpha - 1)$$

#### First Order Condition

$$2(\Sigma \alpha_1 - \lambda \alpha_1) = 0 \iff (\Sigma - \lambda I_p)\alpha_1 = 0 \iff \Sigma \alpha_1 = \lambda \alpha_1$$

#### Variance of 1st PC

 $\alpha_1$  is an e-vector of  $\Sigma$  but which one? Substituting,

$$\mathsf{Var}(lpha_1'\mathbf{x}) = lpha_1'(\Sigmalpha_1) = \lambdalpha_1'lpha_1 = \lambda$$

#### Solution

Var. of 1st PC equals  $\lambda$  and this is what we want to maximize, so  $\alpha_1$  is the e-vector corresponding to the largest e-value.

# Subsequent Principal Components

#### Additional Constraint

Construct 2nd PC by solving the same problem as before with the additional constraint that  $\alpha_2'\mathbf{x}$  is uncorrelated with  $\alpha_1'\mathbf{x}$ .

### jth Principal Component

The linear combination  $\alpha'_j \mathbf{x}$  where  $\alpha_j$  is the e-vector corresponding to the jth largest e-value of  $\Sigma$ .

## Sample PCA

### Notation

 $X = (n \times p)$  centered data matrix – columns are mean zero.

### **SVD**

$$X = UDV'$$
, thus  $X'X = VDU'UDV' = VD^2V'$ 

### Sample Variance Matrix

 $S = n^{-1}X'X$  has same e-vectors as X'X – the columns of V!

### Sample PCA

Let  $\mathbf{v}_i$  be the jth column of V. Then,

 $\mathbf{v}_j = PC$  loadings for jth PC of S

 $\mathbf{v}_i'\mathbf{x}_i = \mathsf{PC}$  score for individual/time period i

## Sample PCA

### PC scores for jth PC

$$\mathbf{z}_{j} = \begin{bmatrix} z_{j1} \\ \vdots \\ z_{jn} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{j}' \mathbf{x}_{1} \\ \vdots \\ \mathbf{v}_{j}' \mathbf{x}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}' \mathbf{v}_{j} \\ \vdots \\ \mathbf{x}_{n}' \mathbf{v}_{j} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}' \\ \vdots \\ \mathbf{x}_{n}' \end{bmatrix} \mathbf{v}_{j} = X \mathbf{v}_{j}$$

### Getting PC Scores from SVD

Since X = UDV' and V'V = I, XV = UD, i.e.

$$\begin{bmatrix} \mathbf{x}_1' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} \begin{bmatrix} \mathbf{v}_i & \cdots & \mathbf{v}_p \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} d_1 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & d_r \end{bmatrix}$$

Hence we see that  $\mathbf{z}_i = d_i \mathbf{u}_i$ 

Econ 722, Spring '19

# Properties of PC Scores $\mathbf{z}_{j}$

Since X has been de-meaned:

$$\bar{z}_j = \frac{1}{n} \sum_{i=1}^n \mathbf{v}_j' \mathbf{x}_i = \mathbf{v}_j' \left( \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \right) = \mathbf{v}_j' \mathbf{0} = 0$$

Hence, since  $X'X = VD^2V'$ 

$$\frac{1}{n}\sum_{i=1}^{n}(z_{ji}-\bar{z}_{j})^{2}=\frac{1}{n}\sum_{i=1}^{n}z_{ji}^{2}=\frac{1}{n}\mathbf{z}_{j}'\mathbf{z}_{j}=\frac{1}{n}(X\mathbf{v}_{j})'(X\mathbf{v}_{j})=\mathbf{v}_{j}'S\mathbf{v}_{j}=d_{j}^{2}/n$$

# Principal Components Regression (PCR)

- 1. Start with centered X and y.
- 2. SVD of  $X \implies PC$  scores:  $\mathbf{z}_j = X\mathbf{v}_j = d_j\mathbf{u}_j$ .
- 3. Regress **y** on  $[\mathbf{z}_1 \ldots \mathbf{z}_m]$  where m < p.

$$\widehat{\mathbf{y}}_{\mathsf{PCR}}(m) = \sum_{j=1}^{m} \mathbf{z}_{j} \widehat{\theta}_{j}, \quad \widehat{\theta}_{j} = \frac{\mathbf{z}_{j}' \mathbf{y}}{\mathbf{z}_{j}' \mathbf{z}_{j}} \quad (\mathsf{PCs orthogonal})$$

### Standardizing X

Because PCR is not scale invariant, it is common to standardize X.

This amounts to PCA performed on a correlation matrix.

## Comparing PCR, OLS and Ridge Predictions

### Assumption

Centered data matrix  $X \atop (n \times p)$  with rank p so OLS estimator is unique.

**SVD** 

$$\underset{(n\times p)}{X} = \underset{(n\times p)(p\times p)(p\times p)}{D} \underset{(p\times p)}{V'}, \quad U'U = V'V = I_p, \quad VV' = I_p$$

### Ridge Predictions

$$\widehat{\mathbf{y}}_{\mathsf{Ridge}}(\lambda) = X \widehat{\beta}_{\mathsf{Ridge}}(\lambda) = X \left( X'X + \lambda I_p \right)^{-1} X' \mathbf{y}$$

$$= \left[ UD \left( D^2 + \lambda I_p \right)^{-1} DU' \right] \mathbf{y}$$

$$= \sum_{i=1}^{p} \left( \frac{d_j^2}{d_j^2 + \lambda} \right) \mathbf{u}_j \mathbf{u}_j' \mathbf{y}$$

# Relating OLS and Ridge to PCR

#### Recall: *U* is Orthonormal

$$\mathbf{u}_{j}\mathbf{u}_{j}'\mathbf{y} = d_{j}\mathbf{u}_{j}\left(d_{j}^{2}\mathbf{u}_{j}'\mathbf{u}_{j}\right)^{-1}d_{j}\mathbf{u}_{j}'\mathbf{y} = \mathbf{z}_{j}(\mathbf{z}_{j}'\mathbf{z}_{j})^{-1}\mathbf{z}_{j}'\mathbf{y} = \mathbf{z}_{j}\widehat{\theta}_{j}$$

### Substituting

$$\begin{split} \widehat{\mathbf{y}}_{\mathsf{Ridge}}(\lambda) &= \sum_{j=1}^m \left( \frac{d_j^2}{d_j^2 + \lambda} \right) \mathbf{u}_j \mathbf{u}_j' \mathbf{y} = \sum_{j=1}^m \left( \frac{d_j^2}{d_j^2 + \lambda} \right) \mathbf{z}_j \widehat{\theta}_j \\ \widehat{\mathbf{y}}_{\mathsf{OLS}} &= \widehat{\mathbf{y}}_{\mathsf{Ridge}}(0) = \sum_{j=1}^p \mathbf{z}_j \widehat{\theta}_j \end{split}$$

# Comparing PCR, OLS, and Ridge Predictions

$$\widehat{\mathbf{y}}_{\mathsf{PCR}}(m) = \sum_{j=1}^{m} \mathbf{z}_{j} \widehat{\theta}_{j}, \quad \widehat{\mathbf{y}}_{\mathsf{OLS}} = \sum_{j=1}^{p} \mathbf{z}_{j} \widehat{\theta}_{j}, \quad \widehat{\mathbf{y}}_{\mathsf{Ridge}}(\lambda) = \sum_{j=1}^{m} \left( \frac{d_{j}^{2}}{d_{j}^{2} + \lambda} \right) \mathbf{z}_{j} \widehat{\theta}_{j}$$

- ▶ **z**<sub>i</sub> is the jth sample PC
- $ightharpoonup d_i^2/n$  is the variance of the jth sample PC
- Ridge regresses y on sample PCs but shrinks predictions towards zero: higher variance PCs are shrunk less.
- PCR truncates the PCs with the smallest variance.
- OLS neither shrinks nor truncates: is uses all the PCs.

### The Basic Idea

- $ightharpoonup (T \times N)$  Matrix X of observations
- $\triangleright$   $X_t$  contains a large number N of time series
- ► Comparable number *T* of time periods
- ► Can we "summarize" this information in some useful way?
- Forecasting and policy analysis applications

### Survey Articles

Stock & Watson (2010), Bai & Ng (2008), Stock & Watson (2006)

## Example: Stock and Watson Dataset



Monthly Macroeconomic Indicators: N > 200, T > 400

## Classical Factor Analysis Model

Assume that  $X_t$  has been de-meaned...

$$X_{t} = \Lambda F_{t} + \epsilon_{t}$$

$$(N \times 1) = (r \times 1) + \epsilon_{t}$$

$$\left[\begin{array}{c}F_t\\\epsilon_t\end{array}\right] \stackrel{iid}{\sim} \mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{cc}I_r&0\\0&\Psi\end{array}\right]\right)$$

 $\Lambda = matrix$  of factor loadings

 $\Psi =$  diagonal matrix of idiosyncratic variances.

## Adding Time-Dependence

$$\begin{array}{rcl}
X_t & = & \Lambda F_t + \epsilon_t \\
(N \times 1) & = & (r \times 1)
\end{array}$$

$$\begin{array}{rcl}
F_t & = & A_1 F_{t-1} + \ldots + A_p F_{t-p} + u_t \\
\begin{bmatrix} u_t \\ \epsilon_t \end{bmatrix} & \stackrel{iid}{\sim} & \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} I_r & 0 \\ 0 & \Psi \end{bmatrix}\right)$$

## **Terminology**

Static  $X_t$  depends only on  $F_t$ 

Dynamic  $X_t$  depends on lags of  $F_t$  as well

Exact  $\Psi$  is diagonal and  $\epsilon_t$  independent over time

Approximate Some cross-sectional & temporal dependence in  $\epsilon_t$ 

The model I wrote down on the previous slide is sometimes called an "exact, static factor model" even though  $F_t$  has dynamics.

### Some Caveats

- 1. Are "static" and "dynamic" really different?
  - ▶ Can write dynamic model as a static one with more factors
  - ► Static representation involves "different" factors, but we may not care: are the factors "real" or just a data summary?
- 2. Can we really allow for cross-sectional dependence?
  - lacktriangle Unless the off-diagonal elements of  $\Psi$  are close to zero we can't tell them apart from the common factors
  - lacktriangle "Approximate" factor models basically assume conditions under which the off-diagonal elements of  $\Psi$  are negligible
  - Similarly, time series dependence in  $\epsilon_t$  can't be very strong (stationary ARMA is ok)

# Methods of Estimation for Dynamic Factor Models

- 1. Bayesian Estimation
- 2. Maximum Likelihood: EM-Algorithm + Kalman Filter
  - Watson & Engle (1983); Ghahramani & Hinton (1996); Jungbacker
     & Koopman (2008); Doz, Giannone & Reichlin (2012)
- 3. "Nonparametric" Estimation via PCA
  - ▶ PCA on the  $(T \times N)$  matrix X, ignoring time dependence.
  - ▶ The  $(r \times 1)$  vector  $\hat{F}_t$  of PC scores associated with the first r PCs are our estimate of  $F_t$
  - Essentially treats  $F_t$  as an r-dimensional parameter to be estimated from an N-dimensional observation  $X_t$

### Estimation by PCA

#### **PCA Normalization**

- $F'F/T = I_r$  where  $F = (F_1, \dots, F_T)'$
- $\land$   $\Lambda'\Lambda = diag(\mu_1, \dots, \mu_r)$  where  $\mu_1 \geq \mu_2 \geq \dots \geq \mu_r$

#### Assumption I

Factors are *pervasive*:  $\Lambda'\Lambda/N \to D_{\Lambda}$  an  $(r \times r)$  full rank matrix.

### Assumption II

max e-value  $E[\epsilon_t \epsilon_t'] \leq c \leq \infty$  for all N.

### Upshot of the Assumptions

Average over the cross-section  $\implies$  contribution from the factors persists while contribution from the idiosyncratic terms disappears as  $N \to \infty$ .

# Key Result for PCA Estimation

Under the assumptions on the previous slide and some other technical conditions, the first r PCs of X consistently estimate the space spanned by the factors as  $N, T \to \infty$ .

### Choosing the Number of Factors – Scree Plot

If we use PC estimation, we can look a something called a "scree plot" to help us decide how many PCs to include:



This figure depicts the eigenvalues for an N=1148, T=252 dataset of excess stock returns

# Choosing the Number of Factors - Bai & Ng (2002)

Choose r to minimize an information criterion:

$$IC(r) = \log V_r(\widehat{\Lambda}, \widehat{F}) + r \cdot g(N, T)$$

where

$$V_r(\Lambda, F) = \frac{1}{NT} \sum_{t=1}^{T} (X_t - \Lambda F_t)'(X_t - \Lambda F_t)$$

and *g* is a penalty function. The paper provides conditions on the penalty function that guarantee consistent estimation of the "true number" of factors.

# Some Special Problems in High-dimensional Forecasting

### **Estimation Uncertainty**

We've already seen that OLS can perform very badly if the number of regressors is large relative to sample size.

#### Best Subsets Infeasible

With more than 30 or so regressors, we can't check all subsets of predictors making classical model selection problematic.

#### Noise Accumulation

Large N is supposed to help in factor models: averaging over the cross-section gives a consistent estimator of factor space. This can fail in practice, however, since it relies on the assumption that the factors are *pervasive*. See Boivin & Ng (2006).

# Diffusion Index Forecasting – Stock & Watson (2002a,b)

JASA paper has the theory, JBES paper has macro forecasting example.

### Basic Setup

Forecast scalar time series  $y_{t+1}$  using N-dimensional collection of time series  $X_t$  where we observe periods t = 1, ..., T.

#### Assumption

Static representation of Dynamic Factor Model:

$$y_t = \beta' F_t + \gamma(L) y_t + \epsilon_{t+1}$$
$$X_t = \Lambda F_t + e_t$$

#### "Direct" Multistep Ahead Forecasts

"Iterated" forecast would be linear in  $F_t$ ,  $y_t$  and lags:

$$y_{t+h}^{h} = \alpha_h + \beta_h(L)F_t + \gamma_h(L)y_t + \epsilon_{t+h}^{h}$$

# This is really just PCR

# Diffusion Index Forecasting – Stock & Watson (2002a,b)

#### Estimation Procedure

- 1. Data Pre-processing
  - 1.1 Transform all series to stationarity (logs or first difference)
  - 1.2 Center and standardize all series
  - 1.3 Remove outliers (ten times IQR from median)
  - 1.4 Optionally augment  $X_t$  with lags
- 2. Estimate the Factors
  - ▶ No missing observations: PCA on  $X_t$  to estimate  $\hat{F}_t$
  - Missing observations/Mixed-frequency: EM-algorithm
- 3. Fit the Forecasting Regression
  - Regress  $y_t$  on a constant and lags of  $\hat{F}_t$  and  $y_t$  to estimate the parameters of the "Direct" multistep forecasting regression.

# Diffusion Index Forecasting – Stock & Watson (2002b)

Recall from above that, under certain assumptions, PCA consistently estimates the space spanned by the factors. Broadly similar assumptions are at work here.

#### Main Theoretical Result

Moment restrictions on  $(\epsilon,e,F)$  plus a "rank condition" on  $\Lambda$  imply that the MSE of the procedure on the previous slide converges to that of the infeasible optimal procedure, provided that  $N,T\to\infty$ .

# Diffusion Index Forecasting – Stock & Watson (2002a)

### Forecasting Experiment

- ➤ Simulated real-time forecasting of eight monthly macro variables from 1959:1 to 1998:12
- ► Forecasting Horizons: 6, 12, and 24 months
- "Training Period" 1959:1 through 1970:1
- ▶ Predict *h*-steps ahead out-of-sample, roll and re-estimate.
- ▶ BIC to select lags and # of Factors in forecasting regression
- Compare Diffusion Index Forecasts to Benchmark
  - ► AR only
  - ▶ Factors only
  - ► AR + Factors

# Diffusion Index Forecasting – Stock & Watson (2002a)

### **Empirical Results**

- ► Factors provide a substantial improvement over benchmark forecasts in terms of MSPE
- Six factors explain 39% of the variance in the 215 series;
   twelve explain 53%
- Using all 215 series tends to work better than restricting to balanced panel of 149 (PCA estimation)
- ightharpoonup Augmenting  $X_t$  with lags isn't helpful

### Lecture #10 – Selective Inference

Optimal Inference After Model Selection (Fithian et al., 2017)

# How Statistics is Done In Reality

#### Step 1: Selection – Decide what questions to ask.

"The analyst chooses a statistical model for the data at hand, and formulates testing, estimation, or other problems in terms of unknown aspects of that model."

### Step 2: Inference – Answer the Questions.

"The analyst investigates the chosen problems using the data and the selected model."

### Problem - "Data-snooping"

Standard techniques for (frequentist) statistical inference assume that we choose our questions before observing the data.

$$Y_i \sim \text{iid N}(\mu_i, 1) \text{ for } i = 1, \dots, n$$

- ▶ I want to know which  $\mu_i \neq 0$ , but I'm busy and n is big.
- ▶ My RA looks at each  $Y_i$  and finds the "interesting" ones, namely  $\widehat{\mathcal{I}} = \{i \colon |Y_i| > 1\}.$
- ▶ I test  $H_{0,i}$ :  $\mu_i = 0$  against the two-sided alternative at the 5% significance level for each  $i \in \widehat{\mathcal{I}}$ .

#### Two Questions

- 1. What is the probability of falsely rejecting  $H_{0,i}$ ?
- 2. Among all  $H_{0,i}$  that I test, what fraction are false rejections?

$$\begin{split} \mathbb{P}_{H_{0,i}}(\{\text{Reject } H_{0,i}\}) &= \mathbb{P}_{H_{0,i}}(\{\text{Test } H_{0,i}\} \cap \{\text{Reject } H_{0,i}\}) \\ &= \mathbb{P}_{H_{0,i}}(\{\text{Reject } H_{0,i}\} | \{\text{Test } H_{0,i}\}) \mathbb{P}_{H_{0,i}}(\{\text{Test } H_{0,i}\}) \\ &= \mathbb{P}_{H_{0,i}}\left(\{|Y_i| > 1.96\} | \{|Y_i| > 1\}\right) \mathbb{P}_{H_{0,i}}(\{|Y_i| > 1\}) \\ &= \frac{2\Phi(-1.96)}{2\Phi(-1)} \times 2\Phi(-1) \\ &\approx 0.16 \times 0.32 \approx 0.05 \end{split}$$

$$\begin{split} \mathbb{P}_{H_{0,i}}(\{\text{Reject } H_{0,i}\} | \{\text{Test } H_{0,i}\}) &= \mathbb{P}_{H_{0,i}}\left(\{|Y_i| > 1.96\} | \{|Y_i| > 1\}\right) \\ &= \frac{\Phi(-1.96)}{\Phi(-1)} \approx 0.16 \end{split}$$

### Conditional vs. Unconditional Type I Error Rates

- ▶ The conditional probability of falsely rejecting  $H_{0,i}$ , given that I have tested it, is about 0.16.
- ▶ The unconditional probability of falsely rejecting  $H_{0,i}$  is 0.05 since I only test a false null with probability 0.32.

#### Idea for Post-Selection Inference

Control the Type I Error Rate conditional on selection: "The answer must be valid, given that the question was asked."

### Conditional Type I Error Rate

Solve 
$$\mathbb{P}_{H_{0,i}}(\{|Y_i|>c\}|\{|Y_i|>1\})=0.05$$
 for  $c$ .

$$\mathbb{P}_{H_{0,i}}(\{|Y_i| > c\}|\{|Y_i| > 1\}) = \frac{\Phi(-c)}{\Phi(-1)} = 0.05$$

$$c = -\Phi^{-1}(\Phi(-1) \times 0.05)$$

$$c \approx 2.41$$

#### Notice:

To account for the first-stage selection step, we need a larger critical value: 2.41 vs. 1.96. This means the test is less powerful.

# Selective Inference vs. Sample-Splitting

#### Classical Inference

Control the Type I error under model  $M: \mathbb{P}_{M,H_0}(\text{reject } H_0) \leq \alpha$ .

#### Selective Inference

Control the Type I error under model M, given that M and  $H_0$  were selected:  $\mathbb{P}_{M,H_0}(\text{reject }H_0|\{M,H_0\text{ selected}\}) \leq \alpha$ .

### Sample-Splitting

Use different datasets to choose  $(M, H_0)$  and carry out inference:

 $\mathbb{P}_{M,H_0}(\text{reject } H_0|\{M,H_0 \text{ selected}\}) = \mathbb{P}_{M,H_0}(\text{reject } H_0).$ 

### Selective Inference in Exponential Family Models

#### Questions

- 1. Recipe for selective inference in realistic examples?
- 2. How to construct the "best" selective test in a given example?
- 3. How does selective inference compare to sample-splitting?

### Fithian, Sun & Taylor (2017)

- Use classical theory for exponential family models (Lehmann & Scheffé).
- Computational procedure for UMPU selective test/CI after arbitrary model/hypothesis selection.
- Sample-splitting is typically inadmissible (wastes information).
- Example: post-selection inference for high-dimensional regression

### A Prototype Example of Selective Inference

This is my own example, but uses the same idea that underlies Fithian et al.

- Choose between two models on a parameter  $\delta$ .
  - ▶ If  $\delta \neq 0$ , choose M1; if  $\delta = 0$ , choose M2
  - ▶ E.g.  $\delta$  is the endogeneity of X, M1 is IV and M2 is OLS
- Observe  $Y_{\delta} \sim N(\delta, \sigma_{\delta}^2)$  and use this to choose a model.
  - ▶ Selection Event:  $A \equiv \{|Y_{\delta}| > c\}$ , for some critical value c
  - ▶ If A, then choose M1. Otherwise, choose M2.
- After choosing a model, carry out inference for  $\beta$ .
  - ▶ Under a particular model M,  $Y_{\beta} \sim N(\beta, \sigma_{\beta}^2)$
  - β is a model-specific parameter: could be meaningless or not even exist under a different model.
- If Y<sub>β</sub> and Y<sub>δ</sub> are correlated (under model M), we need to account for conditioning on A when carrying out inference for β.

### All Calculations are Under a Given Model M

### Key Idea

Under whichever model M ends up being selected, there is a joint normal distribution for  $Y_{\beta}$  and  $Y_{\delta}$  without conditioning on A.

WLOG unit variances,  $\rho$  known

$$\left[egin{array}{c} Y_{eta} \ Y_{\delta} \end{array}
ight] \sim \mathsf{N}\left(\left[egin{array}{c} eta \ \delta \end{array}
ight], \left[egin{array}{c} 1 & 
ho \ 
ho & 1 \end{array}
ight]
ight)$$

As long as we can consistently estimate the variances of  $Y_{\beta}$  and  $Y_{\delta}$  along with their covariance, this is not a problem.

### Selective Inference in a Bivariate Normal Example

$$\left[ \left[ \begin{array}{c} Y_{\beta} \\ Y_{\delta} \end{array} \right] \sim \mathsf{N} \left( \left[ \begin{array}{c} \beta \\ \delta \end{array} \right], \left[ \begin{array}{c} 1 & \rho \\ \rho & 1 \end{array} \right] \right), \quad A \equiv \{|Y_{\delta}| > c\}$$

#### Two Cases

- 1. Condition on A occurring
- 2. Condition on A not occurring

#### **Problem**

If  $\delta$  were known, we could directly calculate how conditioning on A affects the distribution of  $Y_{\beta}$ , but  $\delta$  is unknown!

#### Solution

Condition on a sufficient statistic for  $\delta$ .

# Conditioning on a Sufficient Statistic

#### Theorem

If U is a sufficient statistic for  $\delta$ , then the joint distribution of  $(Y_{\beta}, Y_{\delta})$  given U does not depend on  $\delta$ .

#### In Our Example

Residual  $U = Y_{\delta} - \rho Y_{\beta}$  from a projection of  $Y_{\delta}$  onto  $Y_{\beta}$  is sufficient for  $\delta$ .

### Straightforward Calculation

$$\left[egin{array}{c} Y_{eta} \ Y_{\delta} \end{array}
ight] \left(U=u
ight) = \left[egin{array}{c} eta+Z \ u+
ho(eta+Z) \end{array}
ight], \quad Z\sim {\sf N}(0,1)$$

Notice that this is a singular normal distribution

# The Distribution of $Y_{\beta}|(A, U = u)$

$$\left[ \left[ \begin{array}{c} Y_{\beta} \\ Y_{\delta} \end{array} \right] \middle| (U=u) = \left[ \begin{array}{c} \beta + Z \\ u + \rho(\beta + Z) \end{array} \right], \quad Z \sim \mathsf{N}(0,1)$$

Start with case in which A occurs so we select M1. Under  $H_0$ :  $\beta = \beta_0$ ,

$$\mathbb{P}_{\beta_0} (Y_{\beta} \leq y | A, U = u) = \frac{\mathbb{P}_{\beta_0} (\{ Y_{\beta} \leq y \} \cap A | U = u)}{\mathbb{P}_{\beta_0} (A | U = u)}$$

$$= \frac{\mathbb{P} (\{ Z \leq y - \beta_0 \} \cap \{ | u + \rho(\beta_0 + Z) | > c \})}{\mathbb{P} (| u + \rho(\beta_0 + Z) | > c)}$$

 $\mathbb{P}(A|U=u)$  under  $H_0$ :  $\beta=\beta_0$ 

$$P_{D}(A) \equiv P_{\beta_{0}}(A|U=u)$$

$$= \mathbb{P}(|u+\rho(\beta_{0}+Z)| > c)$$

$$= \mathbb{P}[u+\rho(\beta_{0}+Z) > c] + \mathbb{P}[u+\rho(\beta_{0}+Z) < -c]$$

$$= \mathbb{P}[\rho(\beta_{0}+Z) > c-u] + \mathbb{P}[u+\rho(\beta_{0}+Z) < -c-u]$$

$$= 1 - \Phi\left(\frac{c-u}{\rho} - \beta_{0}\right) + \Phi\left(\frac{-c-u}{\rho} - \beta_{0}\right)$$

$$\mathbb{P}(\{Y_{\beta} \leq y\} \cap A | U = u) \text{ under } H_0 \colon \beta = \beta_0$$

$$\begin{split} P_N(A) &\equiv \mathbb{P}(\{Y_\beta \leq y\} \cap A | U = u) \\ &= \mathbb{P}(\{Z \leq y - \beta_0\} \cap \{|u + \rho(\beta_0 + Z)| > c\}) \\ &= \begin{cases} \Phi(y - \beta_0), & y < (-c - u)/\rho \\ \Phi\left(\frac{-c - u}{\rho} - \beta_0\right), & (-c - u)/\rho \leq y \leq (c - u)/\rho \\ \Phi(y - \beta_0) - \Phi\left(\frac{c - u}{\rho} - \beta_0\right) + \Phi\left(\frac{-c - u}{\rho} - \beta_0\right), & y > (c - u)/\rho \end{cases} \end{split}$$

$$F_{\beta_0}(y|A, U=u)$$

Define  $\ell(u) = (-c - u)/\rho$ ,  $r(u) = (c - u)/\rho$ . We have:

$$F_{\beta_0}(y|A, U=u) = P_N(A)/P_D(A)$$

where

$$P_D(A) \equiv 1 - \Phi(r(u) - \beta_0) + \Phi(\ell(u) - \beta_0)$$

$$P_{N}(A) \equiv \begin{cases} \Phi(y - \beta_{0}), & y < \ell(u) \\ \Phi(\ell(u) - \beta_{0}), & \ell(u) \leq y \leq r(u) \\ \Phi(y - \beta_{0}) - \Phi(r(u) - \beta_{0}) + \Phi(\ell(u) - \beta_{0}), & y > r(u) \end{cases}$$

Note that  $F_{\beta_0}(y|A,U=u)$  has a flat region where  $\ell(u) \leq y \leq r(u)$ 

$$Q_{\beta_0}(\rho|A, U=u)$$

Inverting the CDF from the preceding slide:

$$Q_{\beta_0}(p|A, U = u) = \begin{cases} \beta_0 + \Phi^{-1}(p \times P_D(A)), & p < p^* \\ \beta_0 + \Phi^{-1}[p \times P_D(A) + \Phi(r(u) - \beta_0) - \Phi(\ell(u) - \beta_0)], & p \ge p^* \end{cases}$$

where

$$p^* \equiv \Phi \left( \ell(u) - \beta_0 \right) / P_D(A)$$

$$P_D(A) \equiv 1 - \Phi \left( r(u) - \beta_0 \right) + \Phi \left( \ell(u) - \beta_0 \right)$$

$$\ell(u) \equiv (-c - u) / \rho$$

$$r(u) \equiv (c - u) / \rho$$

# The Distribution of $Y_{\beta}|(A^c, U=u)$

$$\left[ \left[ \begin{array}{c} Y_{\beta} \\ Y_{\delta} \end{array} \right] \middle| (U=u) = \left[ \begin{array}{c} \beta + Z \\ u + \rho(\beta + Z) \end{array} \right], \quad Z \sim \mathsf{N}(0,1)$$

If A does not occur, when we select M2. Under  $H_0$ :  $\beta = \beta_0$ ,

$$\mathbb{P}_{\beta_0} (Y_{\beta} \leq y | A^c, U = u) = \frac{\mathbb{P}_{\beta_0} (\{ Y_{\beta} \leq y \} \cap A^c | U = u)}{\mathbb{P}_{\beta_0} (A^c | U = u)} \\
= \frac{\mathbb{P} (\{ Z \leq y - \beta_0 \} \cap \{ | u + \rho(\beta_0 + Z) | < c \})}{\mathbb{P} (| u + \rho(\beta_0 + Z) | < c)}$$

$$F_{\beta_0}(y|A^c, U=u)$$

As above, define  $\ell(u) = (-c - u)/\rho$ ,  $r(u) = (c - u)/\rho$ . We have:

$$F_{\beta_0}(y|A^c, U=u) = P_N(A^c)/P_D(A^c)$$

where

$$P_{D}(A^{c}) \equiv \Phi(r(u) - \beta_{0}) - \Phi(\ell(u) - \beta_{0})$$

$$P_{N}(A^{c}) \equiv \begin{cases} 0, & y < \ell(u) \\ \Phi(y - \beta_{0}) - \Phi(\ell(u) - \beta_{0}), & \ell(u) \leq y \leq r(u) \\ \Phi(r(u) - \beta_{0}) - \Phi(\ell(u) - \beta_{0}), & y > r(u) \end{cases}$$

Notice that this is a CDF with a bounded support set:  $y \in [\ell(u), r(u)]$ 

$$Q_{\beta_0}(p|A^c, U=u)$$

Inverting the CDF from the preceding slide:

$$Q_{\beta_0}(p|A^c, U = u) = \beta_0 + \Phi^{-1}[p \times P_D(A^c) + \Phi(\ell(u) - \beta_0)]$$

where:

$$P_D(A^c) \equiv \Phi(r(u) - \beta_0) - \Phi(\ell(u) - \beta_0)$$
$$\ell(u) \equiv (-c - u)/\rho$$
$$r(u) \equiv (c - u)/\rho$$

### Equal-tailed Selective Test

#### Conditional on A

- 1. Compute observed value u of  $U = Y_{\delta} \rho Y_{\beta}$  (given A).
- 2. Compute  $q_{\alpha/2} \equiv Q_{\beta_0}(\alpha/2|A, U=u)$
- 3.  $q_{1-\alpha/2} \equiv Q_{\beta_0}(1-\alpha/2|A, U=u)$
- 4. Reject  $H_0$ :  $\beta = \beta_0$  if  $Y_{\beta}$  lies outside outside  $[q_{\alpha/2}, q_{1-\alpha/2}]$ .

#### Conditional on Ac

Same as above, but replace A with  $A^c$  in the preceding expressions.

### Constructing a Confidence Interval

Simply invert the test: find the values of  $\beta_0$  that are not rejected.

Valid *conditional* on  $(U = u) \implies$  valid unconditionally!