Decision Tree for Regression

```
path='https://frenzy86.s3.eu-west-2.amazonaws.com/fav/tecno/
petrol_consumption.csv'
```

```
Petrol tax Average income ... Population Driver licence(%)
Petrol Consumption
          9.0
                         3571
                                                            0.525
541
          9.0
                         4092
                                                            0.572
1
524
2
          9.0
                                                            0.580
                         3865
561
          7.5
                                                            0.529
3
                         4870
414
                         4399 ...
          8.0
                                                            0.544
410
```

[5 rows x 5 columns]

Petrol_tax		Petrol_Consumption
$48.00\overline{0}000$		48.000000
7.668333		576.770833
0.950770		111.885816
5.000000		344.000000
7.000000		509.500000
7.500000		568.500000
8.125000		632.750000
10.000000		968.000000
	$48.00\overline{0}000$ 7.668333 0.950770 5.000000 7.000000 7.500000 8.125000	$48.00\overline{0}000$ 7.668333 0.950770 5.000000 7.000000 7.500000 8.125000

[8 rows x 5 columns]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48 entries, 0 to 47
Data columns (total 5 columns):

Column Non-Null Count Dtype 0 Petrol tax 48 non-null float64 1 Average income 48 non-null int64 Paved_Highways 2 48 non-null int64 3 Population Driver licence(%) 48 non-null float64 48 non-null int64

4 Petrol_Consumption dtypes: float64(2), int64(3)

memory usage: 2.0 KB

Regression

	reale	predetto
29	534	541.0
4	410	414.0
26	577	574.0

30	571	554.0
32	577	631.0
37	704	644.0
34	487	648.0
40	587	540.0
7	467	414.0
10	580	464.0

Evaluating the Algorithm

To evaluate performance of the regression algorithm, the commonly used metrics are mean absolute error, mean squared error, and root mean squared error.

```
Mean Absolute Error (MAE): 56.2
Mean Squared Error (MSE): 6298.2
Root Mean Squared Error (RMSE): 79.36119958770784
```

With Linear Regression

```
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
normalize=False)
```

	reale	predetto_lr
29	534	$469.391\overline{9}89$
4	410	545.645464
26	577	589.668394
30	571	569.730413
32	577	649.774809
37	704	646.631164
34	487	511.608148
40	587	672.475177
7	467	502.074782
10	580	501.270734

Mean Absolute Error (MAE): 56.8222474789647 Mean Squared Error (MSE): 4666.344787588362 Root Mean Squared Error (RMSE): 68.31064915215168