MAP2210 Aplicações em Álgebra Linear —Questão 1 P2—

Vitor Gonçalves Ribeiro Nº Usp:9379548

June 5, 2022

Abstract

Neste trabalho iremos aproximar numericamente uma equação diferencial de segunda ordem usando uma matriz esparsa, e analisaremos a ordem dessa aproximação, discutiremos o limite de erro da resolução computacional e abordaremos as vantagens em tempo na utilização de um modelo de matriz esparsa contra uma matriz normal.

1 Modelo da Solução

Neste modelo iremos aproximar numericamente a equação diferencial de segunda ordem

$$u''(x) = f(x), \ x \ \epsilon \ (a, b) \tag{1}$$

Para isso discretizaremos a solução usando o Método das Diferenças Finitas, com esquemas diferentes entre as linhas da matriz, esses esquemas serão:

$$-\frac{1}{h^2}(u_{k-1} - 2u_k + u_{k+1}) = f_k \tag{2}$$

$$-\frac{1}{h^2}(2u_k - 5u_{k+1} + 4u_{k+2} + u_{k+3}) = f_k \tag{3}$$

$$-\frac{1}{12h^2}(-u_{k-2} + 16u_{k-1} - 30u_k + 16u_{k+1} - u_{k+2}) = f_k \tag{4}$$

Nos esquemas acima temos $u_k \approx u(x_k)$ e $f(x_k) = f_k$, onde o conjunto de pontos $x_k = a + hk$, $k = 0, 1, \ldots, n$ discretiza o domínio de definição da solução. Note que o passo h = (b - a)/n é determinado pela escolha de n, que será nossa variável de análise.

Usaremos a equação (3) para a primeira linha da matriz (não temos um u_{k-2} para essa linha), e a condição (2) para a ultima (não temos um u_{k+2} nessa linha), para as demais utilizaremos a condição (4).

Utilizando condições de contorno de Dirichlet, ou seja os valores de u(a) e u(b) são dados, podemos transformar nosso problema na solução da expressão:

Como $u_0 = u(a)$ e $u_n = u(b)$ e são dados, elas vão para o lado da conhecido da equação.

2 Modelo Computacional

Para criar o modelo computacional descrito acima, foi criada a função P2Q1, onde recebe como parâmetros:

- f0: valor de u_0
- f1: valor de u_n
- \bullet x0: valor de a
- \bullet x1: valor de b
- \bullet n: numero de divisões n
- b: vetor resultado f_k

Essa função cria a Matriz A, conforme descrito na sessão de Modelo da Solução usando a biblioteca do python scipy.sparse, para aproveitar da esparsidade da matriz, reduzindo o tempo de execução. A função é mostrada abaixo.

```
def P2Q1(f0, f1, x0, x1, n, b):
t = time()
a = b*((x1-x0)/n)**2
if (n>=5):
     A = lil_m atrix((n-1,n-1))
     for i in range (n-1):
     if (i == 0):
                        A[\,i\,\,,i\,\,]\,\,=\,\,2
              A[i, i+1] = -5
              A[i, i+2] = 4
              A[i, i+3] = -1
              a[i] = -a[i]
               elif(i=n-2):
                        A[i, i] = -2
                        A\,[\,i\,\,,i\,-1]\,\,=\,\,1
                        a[i] = -a[i] - f1
               else:
                        a[i] = -12*a[i]
                        if(i > 1):
                                 A[i, i-2] = -1
                        else:
                                  a[i] = a[i] + f0
                        A[i, i-1]=16
                        A[i, i] = -30
                        A[i, i+1]=16
                        if(i < n-3):
```

$$A[i\,,i+2]{=}{-}1$$
 else:
$$a[i] = a[i] + f1$$
 else:
$$print("numero \ de \ colunas \ insuficientes") \\ A = A.tocsr()$$

$$return \ linalg_sparse.spsolve(A,a),time(){-}t$$

Ao final essa função retorna a resolução da equação, ou seja os valores de u_k , e o tempo de execução, esses resultados serão mostrados em tabelas na próxima sessão.

3 Resultados

Para obter os resultados desse problema foi usada a equação

$$-u''(x) = (\cos(x) - \sin^2(x))\exp(\cos(x)) = f(x)$$
 (5)

que a solução analítica é conhecida

$$u(x) = \exp(\cos(x)) \tag{6}$$

dessa forma podemos calcular o erro, e assim aproximar a ordem p do erro $(O(h^p))$

n	$h_n = \frac{(T - t_0)}{n}$	$ e(T,h_n) _2$	ordem p_2
128	4.90874e-02	2.65068e-04	_
256	2.45437e-02	1.71826e-05	3.94735e+00
512	1.22718e-02	1.08473e-06	3.98554e+00
1024	6.13592 e-03	6.79975 e - 08	3.99571e+00
2048	3.06796 e - 03	4.24739e-09	4.00083e+00
4096	1.53398e-03	2.31112e-10	4.19992e+00
8192	7.66990e-04	2.00766e-10	2.03076e-01
16384	3.83495 e-04	9.31555e-10	-2.21413e+00
32768	1.91748e-04	3.60026e-09	-1.95039e+00

Table 1: Método de Euler aplicado ao Problema de Cauchy em t=T.

4 análise

n	$h_n = \frac{(T - t_0)}{n}$	$ e(T,h_n) _{\infty}$	ordem p_{∞}
128 256 512 1024 2048 4096 8192	1.53398e-03 7.66990e-04	4.54881e-04 2.96326e-05 1.87824e-06 1.17977e-07 7.38815e-09 4.61880e-10 2.58854e-10	nan 3.94023e+00 3.97973e+00 3.99280e+00 3.99715e+00 3.99962e+00 8.35379e-01
16384 32768	3.83495e-04 1.91748e-04	1.18161e-09 4.61141e-09	-2.19054e+00 -1.96445e+00

Table 2: Método de Euler aplicado ao Problema de Cauchy em t=T.

n	$h_n = \frac{(T - t_0)}{n}$	$tempo\ A\ sparsa(s)$	$tempo\ A\ normal(s)$
128	4.90874e-02	7.48713e-02	2.58684e-01
256	2.45437e-02	9.59039e-03	1.16580e-02
512	1.22718e-02	2.22425 e - 02	2.84448e-02
1024	6.13592 e-03	3.70302 e-02	1.16141e-01
2048	3.06796 e - 03	3.46773 e- 02	4.44659 e-01
4096	1.53398e-03	9.52613 e-02	2.06000e+00
8192	7.66990e-04	1.19611e-01	1.21814e+01
16384	3.83495 e-04	2.02301 e-01	9.48454e + 01
32768	1.91748e-04	4.00943e-01	Morto

Table 3: Método de Euler aplicado ao Problema de Cauchy em $t=T. \label{eq:table_table}$