

Robótica Industrial

Trabalho 3 - Translação e rotação de objetos 3D

Mestrado Integrado em Engenharia Mecânica Mestrado em Engenharia de Automação Industrial

Objetivos

- (1) Familiarização com operações de translação e rotação de objetos 3D.
- (2) Familiarização com a simulação de manipuladores RRR.

1 Simulação de manipuladores RRR a 2D

Considere o manipulador RRR ilustrado na Fig. 1. Pretende-se realizar operações de rotação deste manipulador no sistema cartesiano 2D.

Fig. 1. Manipulador RRR com: elo 1 a 90° (elo mais próximo da origem $(0,0)^T$); os restantes elos a 0°.

- a) Visualizar o manipulador RRR usando um script no Matlab.
- b) Implementar as matrizes homogéneas para a rotação e translação no espaço ao longo dos eixos do sistema de coordenadas cartesiano: $\operatorname{rot}(x,\theta)$, $\operatorname{rot}(y,\theta)$, $\operatorname{rot}(z,\theta)$ e $\operatorname{trans}(p_x,p_y,p_z)$.
- c) Simular o funcionamento do manipulador RRR para rotações especificadas pelo utilizador para cada elo.

2 Simulação de manipuladores RRR a 3D

Considere o manipulador RRR ilustrado na Fig. 2a. Pretende-se realizar operações de rotação deste manipulador no sistema cartesiano 3D.

Fig. 2. Manipulador RRR: (a) desenho esquemático; (b) visualização do manipulador no espaço usando elos simplificados (cúbicos); (c) visualização do manipulador simplificado no plano xz. A esta posição corresponde um espaço de juntas com rotações nulas.

a) Visualizar o manipulador RRR simplificado usando um script no Matlab.

b) Posicionar o manipulador RRR na posição inicial
$$p_0 = \begin{bmatrix} 0 \\ 3 \\ 7 \end{bmatrix}$$
 (Fig. 3). Considere que

a posição do end-effector é o centro de um plano do último elo, nomeadamente o mais afastado da origem $(0,0,0)^T$ aquando do espaço de juntas ter rotações nulas (como ilustrado na alínea 2a).

Fig. 3. Manipulador RRR em p_0 : (a) no espaço; (b) no plano yz.

c) Implementar uma trajetória do ponto
$$p_0 = \begin{bmatrix} 0 \\ 3 \\ 7 \end{bmatrix}$$
 ao ponto $p_1 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$

d) Aplicando a rotação de -135° em \hat{z} ao elo 1, -45° em \hat{x} ao elo 2, 0° ao elo 3 e -45° em \hat{x} ao elo 4 a partir de p_0 , identifique a posição p_2 de chegada da trajetória. Implementar a trajetória de p_0 para p_2 .

Informação adicional

Este trabalho deve ser realizado por grupos de 2 alunos e tem a duração de duas aulas.

Todos os ficheiros deverão ser compactados e enviados para o docente via Elearning até ao dia 13 de novembro de 2020. O nome do ficheiro compactado deve seguir a seguinte norma: $Trabalho2_[nmec1]_[nmec2].rar$ (exemplo: $Trabalho2_01234_56789.rar$).