

INSTITUTO POLITÉCTICO NACIONAL

ESCUELA SUPERIOR DE COMPUTO

PRACTICA

Informe técnico

presenta:

Balderas Hernández David Vadhir Díaz González Lizeth Hernández García Jaime Gabriel Meza Bravo Iván Marcelino

Ingeniería de Software

Fecha 13/04/2025

Informe Técnico

El sistema fue desarrollado siguiendo un enfoque basado en el modelo en cascada con trazabilidad entre los distintos niveles de abstracción:

- Modelo de dominio y diagrama de clases conceptuales: Identificamos las entidades claves como EventoSismico, Nodo, Magnitud, Ubicacion, Profundidad y Fecha, así como sus relaciones.
- Diagrama Entidad-Relación (ER): Representa la estructura de datos que se almacena en la base de datos, estableciendo claves primarias, foráneas y restricciones.
- Diccionario de datos: Complementa el ER especificando el significado, tipo, dominio y uso de cada atributo de las entidades.
- Diagramas de secuencia y robustez: Permiten modelar la lógica de los casos de uso desde la interacción del usuario hasta el procesamiento de datos.
- Diagrama de clases de diseño: Define la arquitectura orientada a objetos del sistema, integrando lógica de negocio, servicios y controladores.
- Modelo de interfaz y navegación: Representa la interacción del usuario con las diferentes vistas del sistema.
- Patrón de diseño aplicado (Factory Method): Se utilizó para instanciar diferentes tipos de operaciones como filtrado, predicción, carga de datos y exportación.
- Modelo de implementación: Cada clase del diseño fue implementada usando un lenguaje orientado a objetos. Se respetaron los principios de encapsulamiento, herencia y polimorfismo.
- Diagrama de despliegue: Especifica la distribución del sistema en componentes físicos como servidores, base de datos y cliente web.

Decisiones técnicas tomadas

- Uso del patrón Factory Method: Para desacoplar la creación de operaciones del flujo de control y permitir escalabilidad.
- Separación en capas (MVC simplificado): Interfaz, controlador y modelo se mantienen independientes para facilitar el mantenimiento.
- Persistencia en base de datos relacional: Se optó por una base de datos estructurada para facilitar consultas y relaciones.
- PlantUML como herramienta de modelado: Para la generación rápida y automatizada de diagramas UML.

Desafíos encontrados y soluciones implementadas

Desafío	Solución
Manejo de diferentes operaciones (filtrado, predicción, exportación, etc.)	Se diseñó una jerarquía de clases y fábricas con el patrón Factory Method
Mantener bajo acoplamiento	Se introdujo una interfaz Operacion que permite el uso polimórfico
Estructuración de la base de datos para datos sísmicos	Se diseñó un modelo ER y diccionario de datos detallado
Sincronización entre modelos V codido	Uso de nomenclatura consistente y trazabilidad entre diagramas

Métricas de calidad aplicadas al diseño

- SRP (Principio de responsabilidad única): Cada clase tiene una responsabilidad clara.
- OCP (Principio abierto/cerrado): Se pueden agregar nuevas operaciones sin modificar las existentes.
- Cohesión alta: Las clases están bien organizadas y relacionadas internamente.

- Acoplamiento bajo: Las clases dependen de interfaces, no de implementaciones concretas.
- Reusabilidad y extensibilidad: Las operaciones pueden ser reutilizadas y extendidas fácilmente.

Conclusión

Este informe documenta el alineamiento entre los modelos teóricos y su implementación en el sistema de procesamiento de datos sísmicos. Se utilizaron buenas prácticas de diseño orientado a objetos y patrones de diseño para lograr un sistema modular, escalable y fácil de mantener.