UFPA PPGCC: Aprendizado de Máquina Lista de exercício #1

1. (1.0 pt) Os dados abaixo se referem a taxas de colesterol total (mg/100ml) de 30 indivíduos. Utilize duas casas decimais para o cálculo.

140									
190									
214	214	220	220	225	230	240	260	280	315

a) Montar uma tabela de distribuição de frequência por intervalo para as taxas (utilize a regra de Sturges para calcular o número de classes – intervalos).

Número de clases
$$k = 1 + 3.3*log(30) = 6$$

Amplitud $L = 315 - 140 = 175$
Largura da classe $h = L/k = 29.79$

Classe	Intervalo				
1	[139 – 169,9)				
2	[169,79 – 199,58)				
3	[199,58 – 229,37)				
4	[229,37 – 259,16)				
5	[259,16 – 288,95)				
6	[288,95 – 317,74)				

b) Calcule o histograma

c) Calcule as frequências relativas, as frequências acumuladas absolutas e relativas e os pontos médios para todas as classes.

Classe	Frequência absoluta	Frequência relativa	Frequência acumulada absoluta	Frequência acumulada relativa	Pontos médios
1	3	0,1	3	0,1	154,395
2	11	0,366	14	0,4666	184,685
3	11	0,366	25	0,4666	214,475
4	2	0,066	27	0,9	244,265
5	2	0,066	29	0,9666	274,055
6	1	0,0333	30	1	303,345

d) Calcule a taxa de colesterol média

$$m\acute{e}dia = \sum_{i=1}^{30} x_i = 205.1$$

e) Calcule a taxa de colesterol mediana

$$mediana = \frac{200 + 200}{2} = 200$$

f) Calcule a variância e o desvio padrão amostral

$$variancia = \sigma^2 = \sum_{i=1}^{N} \left(\frac{(x_i - \mu)^2}{N} \right) = 1184,1566$$

desvio padrão amostral=
$$\sqrt{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})^2}{n-1}\right)}$$
=34,9998

2. (1.5 pt) Considere que os valores assumidos por um dado atributo numérico são listados no vetor $x = \{1, 3, 2, 3, 2, 2, 0, 1, 0, 0, 3, 0, 2, 3, 2, 2, 3, 3, 0, 3, 2, 0\}$.

a) Calcule o histograma de x (utilize o bom senso para definir o número de classes).

b) Supondo que tais valores correspondem aos assumidos em um experimento por uma variável aleatória X, estime sua média $E[X] = \mu$, $E[X^2]$, variância σ_x^2 , o desvio padrão σ_x e o desvio médio absoluto.

$$E[x] = \sum_{i=1}^{n} p_{i}x_{i}$$

$$E[x] = (0,2727)*0+(0,0909)*1+(0,3181)*2+(0,3181)*3=1,6818$$

$$E[x^{2}] = (0,2727)*0^{2}+(0,0909)*1^{2}+(0,3181)*2^{2}+(0,3181)*3^{2}=4,2272$$

$$\sigma^{2} = E[x^{2}] - E[x]^{2} = 4,2272 - 1,6818^{2} = 1,3987$$

$$\sigma = \sqrt{\sigma^{2}} = \sqrt{1,3987} = 1,1826$$

$$Desvio \textit{médio absoluto} = D_{m} = \sum_{i=1}^{N} \left(\frac{|x_{i} - \overline{x}|}{N}\right)$$

$$D_{m} = 1,0413$$

c) X é uma variável aleatórioa ou contínua?

Eu acho que X é contínuo, já que as possibilidades de cada número são diferentes, eu acho que elas deveriam ser mais semelhantes.

3. (2.0 pt) Use um editor de texto ASCII para verificar o conteúdo do arquivo iris.arff (o qual vem com Weka). Estude-o também usando a GUI chamada Explorer do pacote Weka. Copie a iris.arff para um novo arquivo chamado iris.csv, elimine o header (primeirais linhas, antes de @data), e leia o arquivo iris.cvs no Excel. Escreva código em Java ou outra linguagem de sua preferência para calcular a variância do terceiro parâmetro (terceiro elemento de x) a partir da leitura do arquivo iris.csv. Compare o resultado com as variâncias estimadas pelos programas Weka e Excel. Inclua a listagem de seu código.

Os cálculos foram arredondados para quatro casas decimais.

Variância	Weka	Excel	Var Python	Var amostral Python	
variancia	3,1117	3,1132	3,0924	3,1132	

```
df = pd.read_csv("./iris.csv", names=["sepallength","sepalwidth","petallength","petalwidth", "CLASSE"])
print("varianza por Python: ", round(np.var(df["petallength"]), 4))
print("varianza Amostral por Python: ", round(np.var(df["petallength"], ddof=1), 4))
df.head()
```

varianza por Python: 3.0924 varianza Amostral por Python: 3.1132

	sepallength	sepalwidth	petallength	petalwidth	CLASSE
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

4. (2.5 pt) O Coeficiente de variação (CV) é uma medida relativa de variabilidade que independe da unidade de medida utilizada CV = (Desvio p adrao/M edia). É possível utilizar o CV para selecionar os "melhores" atributos, ou seja, aqueles que contenham os menores valores de CV. Selecione duas bases de dados do UCI e construa um gráfico (Taxa de erro versus conjunto de atributos) para cada base. Utilize o classificador 1-NN para estimar a taxa de erro. Os conjuntos de atributos serão formados da seguinte maneira: inicialmente o conjunto irá conter o atributo com o menor CV: no passo seguinte o conjunto irá conter os dois atributos com os menores CVs; e assim por diante até que o conjunto final seja formado por todas os atributos.

DataSet Iris:

CV sepallength: 0,1412
CV sepalwidth: 0,1415
CV petallength: 0,4678
CV petalwidth: 0,6345

DataSet winequality-red

•	CV density:	0,0018
•	CV pH:	0,0466
•	CV Calcohol:	0,1022
•	CV fixed acidity:	0,2092
•	CV sulphates:	0,2574
•	CV volatile acidity:	0,3391
•	CV chlorides:	0,5379
•	CV residual sugar:	0,5551
•	CV free sulfur dioxide:	0,6587
•	CV total sulfur dioxide:	0,7076
•	CV citric acid:	0,7186

5. (2.0 pt) Classifique o dataset iris usando o classificador DecisionStump. Descreva a saída em texto que o Weka fornece, tentando explicar cada um dos itens (e.x., confusion matrix, etc.). Usando o Weka Explorer, verifique se é possível encontrar um outro classificador que alcance uma taxa de erro menor que o Decision Stump. Caso positivo, diga qual o classificador usado (e.x., uma árvore decisão).

Saída da Weka

=== Run information ===

Scheme: weka.classifiers.trees.DecisionStump

Relation: iris Instances: 150 Attributes: 5

> sepallength sepalwidth petallength petalwidth class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Decision Stump

Classifications: O Decision Stump só tem em conta dois classes de acordo com o atributo "petallength", então ele não tem em conta a classe "Iris-setosa".

petallength <= 2.45 : Iris-setosa petallength > 2.45 : Iris-versicolor petallength is missing : Iris-setosa

Class distributions: As classes tem a mesma quantidade de dados, 0.33 para cada uma.

petallength <= 2.45

Iris-setosa Iris-versicolor Iris-virginica

1.0 0.0 0.0 petallength > 2.45

Iris-setosa Iris-versicolor Iris-virginica

0.0 0.5 0.5 petallength is missing

Iris-setosa Iris-versicolor Iris-virginica

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary **===**

- O classificador tem um 66.66% de precisão, ele classificou 100 dados bem:

Correctly Classified Instances 100 66.6667 %

- O classificador tem um 33.33% de erro, ele classificou 50 dados ruim:

Incorrectly Classified Instances 50 33.3333 %

- O classificador tem um 50% de precisão de acordo com a metrica Kappa, ela tem em conta a escolha aleatória.

Kappa statistic 0.5

- O erro de acordo com a metrica da diferença de distância na previsão e na saída esperada.
 Mean absolute error 0.2222
- O classificador tem um 33.33% de erro dada pela raiz da diferençã ao cuadrado Root mean squared error 0.3333
- O classificador tem um 50% de erro de acordo com a metrica *Relatice absolute error* a qual é dada pela soma da diferença absoluta entre a saída do classificador e o valor esperado, que é dividido pela soma da diferença entre o valor esperado e a média esperada.

Relative absolute error 50 %

- A metrica é dada pela raiz da diferença ao cuadrado, tendo em conta a média esperada.

Root relative squared error 70.7107 %

Total Number of Instances 150

=== Detailed Accuracy By Class =

TP Rate: True Positive Rate é uma metrica que diz se o classificador acertou todos os dados de uma classe dada (neste caso a classe positiva).

FP Rate: False Positive Rate é uma metrica que diz quantos dados o classificador achava que eram da classe positiva, mas não era assim, isso em uma escala de 0 a 1.

Precision: A precisão do classificador.

Recall: É uma metrica que tem como visa saber com precisão quantos acertó propiamente de uma classe específica, do total dessa classe. **TP/(TP + FN)**

F-Measure: É uma metrica de accuracy, que envolve a *Precision* e o *Recall.*

MCC: Envolve o *TP* Rate e o *FP* Rate, é uma metrica que está entre -1 e 1, sendo 1 o melhor caso. v -1 o ruim.

ROC Area: é o area baixo a curva, uma métrica para medir o desempenho do classificador. **PRC Area:** Precision Recall Curve, é uma metrica de desempenho que mide a precisão vs. Recall.

TP Rate	FP Rate	Precision	Recall	F-Measure	МСС	ROC Area	PRC Area	Class
1	0	1	1	1	1	1	1	Iris-setosa
1	0,5	0,5	1	0,667	0,5	0,75	0,5	Iris-versicolor
0	0	?	0	?	?	0,75	0,5	Iris-virginica
0,667	0,167	?	0,667	?	?	0,833	0,667	Weight Avg.

=== Confusion Matrix ===

A matriz de confusão diz a relação das classes, sendo o melhor score a matriz com só a diagonal diferente de cero, aquí se pode ver que o *Decision stump* classificou a classe "c" como se fosse "b".

```
a b c <-- classified as
50 0 0 | a = Iris-setosa
0 50 0 | b = Iris-versicolor
0 50 0 | c = Iris-virginica
```

0 4 46 | c = Iris-virginica

Melhor Classificador (Random Forest)

```
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                        143
                                                           95.3333 %
                                                            4.6667 %
Incorrectly Classified Instances
                                           0.93
Kappa statistic
Mean absolute error
                                          0.0408
Root mean squared error
                                          0.1621
Relative absolute error
                                          9.19
                                          34.3846 %
Root relative squared error
Total Number of Instances
                                        150
=== Detailed Accuracy By Class ===
                                                         F-Measure
                 TP Rate FP Rate Precision Recall
                                                                     MCC
                                                                              ROC Area
                                                                                         PRC Area Class
                 1,000
                           0,000
                                    1,000
                                                1,000
                                                         1,000
                                                                     1,000
                                                                              1,000
                                                                                         1,000
                                                                                                   Iris-setosa
                 0,940
                           0,040
                                    0,922
                                                0,940
                                                         0,931
                                                                     0,896
                                                                              0,991
                                                                                         0,984
                                                                                                   Iris-versicolor
                 0,920
                           0,030
                                    0,939
                                                0,920
                                                         0,929
                                                                     0,895
                                                                              0,991
                                                                                         0,982
                                                                                                   Iris-virginica
Weighted Avg.
                                    0,953
                                                         0,953
                                                                              0,994
                                                                                         0,989
                 0,953
                           0,023
                                                0,953
                                                                     0,930
=== Confusion Matrix ===
           <-- classified as
50 0 0 | a = Iris-setosa
0 47 3 | b = Iris-versicolor
```