第2节 常规的数列求和方法 (★★★)

强化训练

类型 I: 错位相减与裂项相消

1. (★★) 设 $a_n = (2n-1) \cdot 3^n$, 求数列 $\{a_n\}$ 的前n项和 S_n .

解: $\{2n-1\}$ 是等差数列, $\{3^n\}$ 是等比数列,两者相乘可用错位相减法求其前n项和)

曲题意,
$$\begin{cases} S_n = 1 \times 3^1 + 3 \times 3^2 + 5 \times 3^3 + \dots + (2n-3) \cdot 3^{n-1} + (2n-1) \cdot 3^n & ① \\ 3S_n = 1 \times 3^2 + 3 \times 3^3 + 5 \times 3^4 + \dots + (2n-3) \cdot 3^n + (2n-1) \cdot 3^{n+1} & ② \end{cases}$$

所以① — ②可得
$$-2S_n = 3 + 2 \times 3^2 + 2 \times 3^3 + \dots + 2 \times 3^n - (2n-1) \cdot 3^{n+1}$$
,

(去除首尾两项,中间的 $2\times3^2+2\times3^3+\dots+2\times3^n$ 是等比数列求和,共n-1项)

故
$$-2S_n = 3 + \frac{2 \times 3^2 (1 - 3^{n-1})}{1 - 3} - (2n - 1) \cdot 3^{n+1} = 3 + 3^2 (3^{n-1} - 1) - (2n - 1) \cdot 3^{n+1}$$

$$=3+3^{n+1}-9-(2n-1)\cdot 3^{n+1}=(2-2n)\cdot 3^{n+1}-6$$
,

所以 $S_n = (n-1) \cdot 3^{n+1} + 3$.

- 2. (2023 辽宁模拟 ★★) 已知等比数列 $\{a_n\}$ 的公比 $q \neq 1$,且 $a_1 = 2$, $2a_1 + a_3 = 3a_2$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设数列 $\{a_n\}$ 的前 n 项和为 S_n ,求数列 $\{\frac{n}{S_n+2}\}$ 的前 n 项和 T_n ,证明: $T_n<1$.

解: (1) (已知 a_1 ,将 $2a_1+a_3=3a_2$ 用通项公式翻译出来,即可求出q)

因为
$$2a_1 + a_3 = 3a_2$$
,所以 $2a_1 + a_1q^2 = 3a_1q$,故 $2 + q^2 = 3q$,解得: $q = 2$ 或 1,

又
$$q \neq 1$$
,所以 $q = 2$,故 $a_n = a_1 q^{n-1} = 2 \times 2^{n-1} = 2^n$.

(2) 由(1)可得
$$S_n = 2 + 2^2 + \dots + 2^n = \frac{2 \times (1 - 2^n)}{1 - 2} = 2^{n+1} - 2$$
,所以 $\frac{n}{S_n + 2} = \frac{n}{2^{n+1} - 2 + 2} = \frac{n}{2^{n+1}}$,

(像 $\frac{n}{2^{n+1}}$ 这种 等 的分式结构,可在和式两端同乘以分母的公比来错位)

故
$$\begin{cases} T_n = \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \dots + \frac{n-1}{2^n} + \frac{n}{2^{n+1}} & 1 \\ 2T_n = \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n-1}{2^{n-1}} + \frac{n}{2^n} & 2 \end{cases}$$

② - ①可得:
$$T_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} - \frac{n}{2^{n+1}} = \frac{\frac{1}{2}[1 - (\frac{1}{2})^n]}{1 - \frac{1}{2}} - \frac{n}{2^{n+1}} = 1 - (\frac{1}{2})^n - \frac{n}{2^{n+1}},$$

(要进一步化简,可将 $(\frac{1}{2})^n$ 变形成 $\frac{2}{2^{n+1}}$,调整为与 $\frac{n}{2^{n+1}}$ 次数相同的结构)

所以
$$T_n = 1 - \frac{2}{2^{n+1}} - \frac{n}{2^{n+1}} = 1 - \frac{n+2}{2^{n+1}}$$
,因为 $\frac{n+2}{2^{n+1}} > 0$,所以 $T_n < 1$.

- 3. $(2023 \cdot 贵州模拟 \cdot ★★)$ 公比为 q 的等比数列 $\{a_n\}$ 满足 $a_1 + a_5 = 17$, $a_4 + a_8 = 136$.
- (1) 求 $\{a_n\}$ 的通项公式;

解: (1) 由题意,
$$\begin{cases} a_1 + a_5 = a_1(1+q^4) = 17 & ① \\ a_4 + a_8 = a_1q^3 + a_1q^7 = a_1q^3(1+q^4) = 136 & ② \end{cases}$$
,用②除以①可得 $q^3 = 8$,所以 $q = 2$,

代入①可得 $a_1 = 1$,所以 $a_n = a_1 q^{n-1} = 2^{n-1}$.

(2) 由 (1) 可得 $b_n = \log_2 a_{n+1} = \log_2 2^n = n$, 所以 $b_{n+1} - b_n = n + 1 - n = 1$, 故 $\{b_n\}$ 是等差数列,

所以
$$T_n = \frac{n(b_1 + b_n)}{2} = \frac{n(1+n)}{2}$$
, 故 $\frac{1}{T_n} = \frac{2}{n(n+1)}$, (注意到 $n = 1$ 是前后项关系,故可裂项)

所以
$$\frac{1}{T_n} = \frac{2}{n(n+1)} = 2(\frac{1}{n} - \frac{1}{n+1})$$
, 故 $\frac{1}{T_1} + \frac{1}{T_2} + \dots + \frac{1}{T_n} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}) = 2(1 - \frac{1}{n+1}) = \frac{2n}{n+1}$.

- 4. $(2023 \cdot \text{甘肃兰州模拟改} \cdot \star \star)$ 已知等差数列 $\{a_n\}$ 为递增数列,其前 n 项和为 S_n , $S_6 = 36$,且 a_1 , a_2 , a_5 成等比数列.
- (1) 求数列 $\{a_n\}$ 的通项公式;

(2) 令
$$b_n = \frac{1}{a_n a_{n+1}}$$
, 若 T_n 为数列 $\{b_n\}$ 的前 n 项和, 求 T_n .

解: (1) 设 $\{a_n\}$ 的公差为d,因为 $\{a_n\}$ 是递增数列,所以d>0,又 $S_6=36$,所以 $6a_1+15d=36$ ①,

因为 a_1 , a_2 , a_5 成等比数列,所以 $a_2^2 = a_1 a_5$, 故 $(a_1 + d)^2 = a_1 (a_1 + 4d)$, 结合d > 0整理得: $d = 2a_1$, 代入①可得 $a_1 = 1$,所以d = 2,故 $a_n = a_1 + (n-1)d = 2n-1$.

(2) (看到
$$b_n = \frac{1}{a_n a_{n+1}}$$
, 想到裂项)由(1)可得 $b_n = \frac{1}{a_n a_{n+1}} = \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}(\frac{1}{2n-1} - \frac{1}{2n+1})$,

所以
$$T_n = \frac{1}{2}(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1}) = \frac{1}{2}(1 - \frac{1}{2n+1}).$$

5. $(\star\star\star)$ 在各项均为正数的等差数列 $\{a_n\}$ 中, a_1 , a_2 , a_6 构成公比不为 1 的等比数列, S_n 是数列 $\left\{\frac{1}{a_n a_{n+1}}\right\}$ 的前n 项和.

(1) 若
$$a_1 = \frac{1}{3}$$
, 设 $b_n = a_n + \frac{2}{3}$, 求数列 $\left\{ \frac{1}{b_n b_{n+1}} \right\}$ 的前 n 项和 T_n ;

(2) 若对任意的
$$n \in \mathbb{N}^*$$
, $S_n > \frac{1}{a_1}$, 证明: $a_1 < \frac{1}{3}$.

解: (1) 设 $\{a_n\}$ 的公差为 d,因为 a_1 , a_2 , a_6 构成公比不为 1 的等比数列,所以 $d \neq 0$,且 $a_2^2 = a_1 a_6$,

故
$$(a_1+d)^2=a_1(a_1+5d)$$
,整理得: $d=3a_1$,所以 $a_n=a_1+(n-1)d=a_1+(n-1)\cdot 3a_1=(3n-2)a_1$,

结合
$$a_1 = \frac{1}{3}$$
 可得 $a_n = n - \frac{2}{3}$,所以 $b_n = a_n + \frac{2}{3} = n$,故 $\frac{1}{b_n b_{n+1}} = \frac{1}{n(n+1)}$,(分母为前后项关系,考虑裂项求和)

所以
$$\frac{1}{b_n b_{n+1}} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
,故 $T_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$.

(2) 由 (1) 可得 $a_n = (3n-2)a_1$, (尽管 a_1 未知,但 $\frac{1}{a_n a_{n+1}}$ 的分母仍为前后项关系,可裂项求和)

因为
$$\frac{1}{a_n a_{n+1}} = \frac{1}{d} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right)$$
,所以 $S_n = \frac{1}{d} \left(\frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_2} - \frac{1}{a_3} + \dots + \frac{1}{a_n} - \frac{1}{a_{n+1}} \right) = \frac{1}{d} \left(\frac{1}{a_1} - \frac{1}{a_{n+1}} \right)$,

故
$$S_n > \frac{1}{a_1}$$
 即为 $\frac{1}{d}(\frac{1}{a_1} - \frac{1}{a_{n+1}}) > \frac{1}{a_1}$, (要证的是 $a_1 < \frac{1}{3}$, 故全部用 a_1 表示)

所以
$$\frac{1}{3a_1}\left[\frac{1}{a_1}-\frac{1}{(3n+1)a_1}\right]>\frac{1}{a_1}$$
①,因为 $\{a_n\}$ 各项均为正数,

所以
$$a_1 > 0$$
,故由式①整理得: $a_1 < \frac{1}{3}(1 - \frac{1}{3n+1})$,因为 $\frac{1}{3}(1 - \frac{1}{3n+1}) < \frac{1}{3}$,所以 $a_1 < \frac{1}{3}$.

- 6. (2022•山西模拟•★★★) 已知正项数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$, $a_n a_{n+2}=2a_{n+1}^2(n \in \mathbb{N}^*)$.
- (1) 求 $\{a_n\}$ 的通项公式; 《一数·言考数学核心方法》
- (2) 设 $b_n = \log_2 a_{n+1}$, 数列 $\left\{\frac{1}{b_n}\right\}$ 的前n项和为 S_n , 求数列 $\left\{\lg S_n\right\}$ 的前99项和.

解: (1) 因为
$$a_n a_{n+2} = 2a_{n+1}^2$$
, 所以 $\frac{a_{n+2}}{a_{n+1}} = 2 \cdot \frac{a_{n+1}}{a_n}$, 又 $a_1 = 1$, $a_2 = 2$, 所以 $\frac{a_2}{a_1} = 2$,

故数列 $\left\{\frac{a_{n+1}}{a_n}\right\}$ 是以2为首项,2为公比的等比数列,所以 $\frac{a_{n+1}}{a_n}=2^n$,(要由此式求 a_n ,可用累乘法)

又 $a_1 = 1$ 也满足上式,所以 $\forall n \in \mathbb{N}^*$,都有 $a_n = 2^{\frac{n(n-1)}{2}}$.

(2) 由 (1) 可得
$$b_n = \log_2 a_{n+1} = \log_2 2^{\frac{n(n+1)}{2}} = \frac{n(n+1)}{2}$$
, 所以 $\frac{1}{b_n} = \frac{2}{n(n+1)} = 2(\frac{1}{n} - \frac{1}{n+1})$,

从前
$$S_n = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}) = 2(1 - \frac{1}{n+1}) = \frac{2n}{n+1}$$
,故 $\lg S_n = \lg \frac{2n}{n+1}$,

(同底对数的加法有公式,故直接相加即可求和)

所以
$$\lg S_1 + \lg S_2 + \dots + \lg S_{99} = \lg \frac{2 \times 1}{2} + \lg \frac{2 \times 2}{3} + \lg \frac{2 \times 3}{4} + \dots + \lg \frac{2 \times 99}{100}$$

$$= \lg(\frac{2 \times 1}{2} \times \frac{2 \times 2}{3} \times \frac{2 \times 3}{4} \times \dots \times \frac{2 \times 99}{100}) = \lg(2^{99} \times \frac{1}{100}) = \lg 2^{99} + \lg \frac{1}{100} = 99 \lg 2 - 2.$$

类型 II: 分组求和与倒序相加

7. (2023 •全国模拟 •★★)数列 $\{a_n\}$ 满足 $a_n = 3n+1$,数列 $\{b_n\}$ 的前 n 项和为 T_n ,且 $b_n = (-1)^{n+1}a_n$,则 $T_{10} = (-1)^{n+1}a_n$

答案: 31

解析:直接观察 $\{b_n\}$ 的通项找不到求和的思路,故先列几项看看规律,

{b..} 中的项为: 4, -7, 10, -13, 16, -19, …,

我们发现若每2项分一组,则每组的和都是-3,前19项可分9组余1项,

所以
$$T_{19} = (b_1 + b_2) + (b_3 + b_4) + \dots + (b_{17} + b_{18}) + b_{19}$$

$$= 9 \times (-3) + (-1)^{19+1} a_{19} = -27 + (3 \times 19 + 1) = 31.$$

8. $(2023 \cdot 福建模拟 \cdot \star \star \star \star)$ 数列 $\{a_n\}$ 的通项公式 $a_n = n\cos\frac{n\pi}{2} + 1$,其前 n 项和为 S_n ,则 $S_{100} = _____$.

答案: 150

解析: $a_n ext{ 由 } n\cos\frac{n\pi}{2}$ 和 1 两部分构成,可分别求和再相加,设 $b_n = n\cos\frac{n\pi}{2}$,数列 $\{b_n\}$ 的前 n 项和为 T_n ,

下面先求 T_n ,直接观察 $\{b_n\}$ 的通项找不到求和的思路,故先列几项看看规律,

 $\{b_n\}$ 中的项为: 0, -2, 0, 4, 0, -6, 0, 8, …,

我们发现若每4项分一组,则每组的和都是2,

所以 $T_{100} = (b_1 + b_2 + b_3 + b_4) + (b_5 + b_6 + b_7 + b_8) + \dots + (b_{97} + b_{98} + b_{99} + b_{100}) = 2 \times 25 = 50$

因为 $a_n = b_n + 1$,所以 $S_{100} = T_{100} + 100 = 150$.

9. $(2023 \cdot 辽宁沈阳模拟 \cdot ★★★★) 已知函数 <math>f(x+\frac{1}{2})$ 为奇函数,且 g(x)=f(x)+1,若 $a_n=g(\frac{n}{2022})$,

则数列 $\{a_n\}$ 的前 2022 项和为_____.

答案: 2022

解析: 由题意, $a_1 + a_2 + \cdots + a_{2021} + a_{2022} =$

$$g(\frac{1}{2023}) + g(\frac{2}{2023}) + \dots + g(\frac{2021}{2023}) + g(\frac{2022}{2023})$$
 (1),

上式与函数g(x)有关,故先由条件分析g(x)的性质,

将 f(x) 左移 $\frac{1}{2}$ 个单位得到奇函数 $f(x+\frac{1}{2})$,该函数关于原点对称,所以 f(x) 关于点 $(\frac{1}{2},0)$ 对称,

又 g(x) = f(x) + 1, 所以将 f(x) 上移 1 个单位可得到 g(x),

从而 g(x) 关于点 $(\frac{1}{2},1)$ 对称,故 g(x)+g(1-x)=2,

由此可发现在求式①的值时,应将自变量之和为1的两项组合,为了便于观察,我们用倒序相加法,

则
$$S = g(\frac{2022}{2023}) + g(\frac{2021}{2023}) + \dots + g(\frac{2}{2023}) + g(\frac{1}{2023})$$
 ③,

②+③可得2
$$S = [g(\frac{1}{2023}) + g(\frac{2022}{2023})] + [g(\frac{2}{2023}) + g(\frac{2021}{2023})]$$

$$+\cdots+[g(\frac{2022}{2023})+g(\frac{1}{2023})]=2+2+\cdots+2=2\times2022$$
,

所以S = 2022.

10. (2023・青海一模・★★★) 在等比数列
$$\{a_n\}$$
中, $a_1 + a_2 = 5a_2 = \frac{5}{4}$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\{\frac{3}{4}a_n + 2n 1\}$ 的前 n 项和 S_n .

解: (1) 设
$$\{a_n\}$$
 的公比为 q ,因为 $a_1 + a_2 = 5a_2 = \frac{5}{4}$,所

以
$$a_2 = \frac{1}{4}$$
, $a_1 = 4a_2 = 1$, 从而 $q = \frac{a_2}{a_1} = \frac{1}{4}$, 故 $a_n = (\frac{1}{4})^{n-1}$.

(2) 由 (1) 可得
$$\frac{3}{4}a_n + 2n - 1 = \frac{3}{4} \cdot (\frac{1}{4})^{n-1} + 2n - 1$$

$$=3\cdot(\frac{1}{4})^n+2n-1,$$

(此数列由等比部分 $3 \cdot (\frac{1}{4})^n$ 和等差部分2n-1相加构成,可分别求和再相加)

所以
$$S_n = 3 \times (\frac{1}{4})^1 + 1 + 3 \times (\frac{1}{4})^2 + 3 + \dots + 3 \times (\frac{1}{4})^n + 2n - 1$$

$$= 3 \times \left[\left(\frac{1}{4} \right)^{1} + \left(\frac{1}{4} \right)^{2} + \dots + \left(\frac{1}{4} \right)^{n} \right] + \left[1 + 3 + \dots + (2n - 1) \right]$$

$$= 3 \times \frac{\frac{1}{4} \times \left[1 - \left(\frac{1}{4}\right)^{n}\right]}{1 - \frac{1}{4}} + \frac{n(1 + 2n - 1)}{2} = 1 - \left(\frac{1}{4}\right)^{n} + n^{2}.$$

- 11. (★★★★) 已知数列 $\{a_n\}$ 满足 $a_1 = 2$, $a_{n+1} = a_n^2 (n \in \mathbb{N}^*)$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \log_2 a_n + \log_2(\log_2 a_n)$, 求数列 $\{b_n\}$ 的前n项和 S_n .

 \mathbf{m} : (1)(受第二问 $_{b_n}$ 的结构的启发,我们可以试试将题干的递推公式两端取对数来看)

因为
$$a_{n+1} = a_n^2$$
,所以 $\log_2 a_{n+1} = \log_2 a_n^2 = 2\log_2 a_n$,

又 $a_1 = 2$,所以 $\log_2 a_1 = 1$,故 $\{\log_2 a_n\}$ 是首项为1,公比为2的等比数列,

所以
$$\log_2 a_n = 2^{n-1}$$
, 故 $a_n = 2^{2^{n-1}}$.

(2) 由 (1) 可得
$$b_n = \log_2 2^{2^{n-1}} + \log_2 (\log_2 2^{2^{n-1}}) = 2^{n-1} + \log_2 (2^{n-1}) = 2^{n-1} + n - 1$$
,

 $(2^{n-1} \pi n - 1)$ 和 $(2^{n-1} \pi n - 1)$

所以
$$S_n = \frac{1 \times (1 - 2^n)}{1 - 2} + \frac{n(0 + n - 1)}{2} = 2^n - 1 + \frac{n(n - 1)}{2}$$
.

【反思】涉及 $a_{n+1} = a_n^k(k)$ 为常数)这类递推公式,可考虑两端取对数,构造等比数列求通项.

《一数•高考数学核心方法》