

[Nicolas Douillet]

Introduction et existant : conjecture des nombres premiers jumeaux, (à démontrer)

Il existe une infinité de nombre premiers dits jumeaux, c'est à dire de couples (p_A, p_B) de nombres premiers tels qu'il existe un unique $n \in \mathbb{N}^* \setminus \{1\}$, $p_A = n-1$, et $p_B = n+1$, soit $p_B - p_A = 2$, que l'on peut donc aussi qualifier de nombres « 2-jumeaux ».

Généralisation de la conjecture des nombres premiers jumeaux : conjecture de Polignac reformulée

En reprenant et en étendant cette définition, on conjecture qu'il existe de même une infinité de nombres premiers « 4-jumeaux », « 6-jumeaux », …, « 2n-jumeaux », c'est à dire d'ensembles de couples (p_A, p_B) de nombres premiers tels que p_B - p_A = 2n, avec $n \in \mathbb{N}^* \setminus \{1\}$.

Chacun de ces ensembles, peut aussi être appelé plus précisément « ensemble des « nombres premiers frères à distance 2n ». Pour $n \in \mathbb{N}^*$, il existe donc une infinité d'ensemble de nombres premiers frères à distance 2n.

Le nombre 2, unique premier pair peut être alors défini comme son propre « 0-jumeau » ou « frère à distance 0 ».

Conjecture de Nicolas : sur la réunion des n ensembles de « nombres premiers frères à distance 2n »

La réunion des n ensembles de « nombres premiers frères à distance 2n », $n \in \mathbb{N}^*$ et du nombre 2 constitue l'ensemble des nombres premiers IP.

Cette réunion est aussi la réunion de l'intersection des n ensembles de « nombres premiers frères à distance $2n \gg n \in \mathbb{N}^*$ et du nombre $2n \gg n \in \mathbb{N}^*$