$$V_{\alpha} = \{\alpha, \beta\}$$
 Чаще всего будет рассматривать такой алфавит: $V_0 = \{0, 1\}$

Теорема 0.1. (О переводе). Каков бы ни был нормальный алгорифм $\mathcal{A} = (V', S, P)$ над алфавитом $V \subset V'$, может быть построен НА \mathcal{B} в алфавите $V \cup V_{\alpha}$ так, что $(\forall x \in V^*)(\mathcal{B}(x) \simeq \mathcal{A}(x))$

0.1 Теорема сочетания

0.1.1 Композиция

Теорема 0.2. (О композиции). Каковы бы ни были HA A, B в алфавите V может быть построен HA алгорифм C над алфавитом V такой, что

$$(\forall x \in V^*)(\mathcal{C}(x) \simeq \mathcal{B}(\mathcal{A}(x)))$$

Доказательство. Вводится алфавит двойников.

$$V=\{a_1,a_2,\ldots,a_n\}$$
 $\overline{V}=\{\overline{a_1},\overline{a_2},\ldots,\overline{a_n}\}$ Вводятся две буквы α,β такие, что $\alpha,\beta\not\in V\cup\overline{V}$

$$\mathcal{C}: \begin{cases} \xi\alpha \to \alpha\xi \ //\xi \in V \\ \alpha\xi \to \alpha\overline{\xi} \\ \overline{\xi}\eta \to \overline{\xi}\overline{\eta} \ //\xi, \eta \in V \\ \overline{\xi}\beta \to \beta\overline{\xi} \end{cases}$$

$$\mathcal{C}: \begin{cases} \beta\overline{\xi} \to \beta\xi \\ \xi\overline{\eta} \to \xi\eta \\ \alpha\beta \to \bullet \end{cases}$$

$$\mathcal{A}^{\alpha}$$

A'	A^{α}
$u \rightarrow v$	$u \rightarrow v$
$u \rightarrow \bullet v$	$u \rightarrow \alpha v$

В•	$\overline{\mathcal{B}_{lpha}^{eta}}$
$u \rightarrow v$	$\overline{u} \to \overline{v}$
$u \neq \lambda$	
$\rightarrow v$	$\alpha \to \alpha \overline{v}$
$u \rightarrow \bullet v$	$\overline{u} \to \beta \overline{v}$
$\rightarrow \bullet v$	$\alpha \to \alpha \beta \overline{v}$

Примерно идея доказательства. $x \in V^*$

$$\mathcal{C}:x\models^{!\mathcal{A}^{\boldsymbol{\cdot}}(x)}_{(9)}y_1\alpha y_2,$$
 где $y_1y_2=\mathcal{A}^{\boldsymbol{\cdot}}(x)$

Если $\neg!\mathcal{A}^{\centerdot}(x)$, то и $\neg!\mathcal{C}(x)$, заметим. Отсюда

$$y_1 \alpha y_2 \models_{(1)} \alpha y_1 y_2 = \alpha y = \alpha y(1) y(2) \dots y(m),$$

где $y_1y_2 = y$. Далее получаем

$$\alpha y(1)y(2)\dots y(m)\vdash_{(2)}\alpha\overline{y(1)}y(2)\dots y(m)\models_{(3)}\alpha\overline{y(1)y(2)}\dots\overline{y(m)}=\alpha\overline{y}$$

Следующий, третий шаг

$$\alpha \overline{y} \models_{(8)} \alpha \overline{z_1}, \beta \overline{z_2}_z$$
, где $z_1, z_1 = z = \mathcal{B}^{\scriptscriptstyle \bullet}(y)$, если ! $\mathcal{B}(y)$

Заметим, что если $\neg !\mathcal{B}^{\bullet}(y) \implies \neg !\mathcal{C}(y) \implies \neg !\mathcal{C}(x)$. Получаем

$$\alpha \overline{z_1} \beta \overline{z_2} \models_{(4)} \alpha \beta \overline{z_1} \overline{z_2} = \alpha \beta \overline{z} \models_{(5),(6)} \alpha \beta z \vdash \cdot z = \mathcal{B}^{\cdot}(y) = \mathcal{B}^{\cdot}(\mathcal{A}^{\cdot}(x)) = \mathcal{B}(\mathcal{A}(x))$$

Пример.

$$\mathcal{A}^{\cdot}: \begin{cases} \#\alpha \to \alpha \# \\ \#\beta \to \beta \# \\ \# \to \cdot aba \\ \to \# \\ \to \cdot \end{cases}$$

$$\mathcal{B}^{\bullet}: \left\{ egin{array}{l}
ightarrow \bullet babb \\
ightarrow \bullet \end{array}
ight.$$

Строим систему:

$$\mathcal{A}^{\alpha}: \left[\begin{array}{c} a \to a\# \\ \#b \to b\# \\ \# \to \alpha aba \\ \to \# \\ \to \alpha \end{array} \right.$$

$$\overline{B}_{\alpha}^{\beta} : \left[\begin{array}{c} \alpha \to \alpha \beta \overline{babb} \\ \alpha \to \alpha \beta \end{array} \right]$$

 $x = bab \vdash \#bab \models bab\# \vdash bab\alpha aba \models \alpha bababa \vdash \\ \vdash \alpha \overline{b}ababa \models \alpha \overline{bababa} \vdash \\ \vdash \alpha \beta \overline{babbbababa} \vdash \alpha \beta \alpha \beta b \overline{abbbababa} \models \\ \models \alpha \beta babbbababa \vdash \bullet babbbababa$

Отсюда видно:

$$\mathcal{C} \leftrightharpoons \mathcal{B} \circ \mathcal{A};$$

$$\mathcal{B} \circ \mathcal{A}(x) \simeq \mathcal{B}(\mathcal{A}(x));$$

$$\mathcal{A}_n \circ \mathcal{A}_{n-1} \circ \dots \circ \mathcal{A}_1 \leftrightharpoons \mathcal{A}_n \circ (\mathcal{A}_{n-1} \circ \dots \circ \mathcal{A}_1), n \ge 1;$$

Определение 1. Степень алгорифма:

$$\mathcal{A}^n \leftrightharpoons \mathcal{A} \circ \mathcal{A}^{n-1}, n \geq 1$$
, где $\mathcal{A}^0 \leftrightharpoons \mathcal{J} \alpha$

0.1.2 Объединение

Теорема 0.3. (Объединения). Каковы бы ни были $HA \ A, \mathcal{B}$ в алфавите V, может быть построен $HA \ A$ над алфавитом V так, что

$$(\forall x \in V^*)(\mathcal{C}(x) \simeq \mathcal{A}(x)\mathcal{B}(x))$$

Можно представить это так:

$$\overline{\mathcal{C}(x\$y)} \simeq \mathcal{A}(x)\$\mathcal{B}(y)$$
$$\$ \not\in V$$

0.1.3 Разветвление

Записать в виде псевдокода можно так:

$$if(\mathcal{C}(x) = \lambda) \ \underline{then} \ y := \mathcal{A}(x) \ \underline{else} \ y := \mathcal{B}(x);$$

Теорема 0.4. (О разветвлении). Каковы бы ни были HA A, B, C в алфавите V, может быть построен HA D над алфавитом V так, что

$$(\forall x \in V^*)(D(x) = \mathcal{A}(x), \ ecnu \ \mathcal{C}(x) = \lambda) \ u \ (D(x) = \mathcal{B}(x), \ ecnu \ \mathcal{C}(x) \neq \lambda)$$

$$D \leftrightharpoons \mathcal{C}(\mathcal{A} \lor \mathcal{B})$$

0.1.4 Повторение

В виде псевдокода:

• Для цикла с условием, пока правда:

while
$$\mathcal{B}(x) = \lambda \ \underline{do} \ x := \mathcal{A}(x) \ \underline{end}$$
; Записывается так: $\beta\{\mathcal{A}\}$

• Для цикла с условием, пока неправда:

while
$$\mathcal{B}(x)! = \lambda \, \underline{do} \, x := \mathcal{A}(x) \, \underline{end};$$
Записывается так: $\beta \langle \mathcal{A} \rangle$

Теорема 0.5. (Повторения). Каковы бы ни были НА \mathcal{A} , \mathcal{B} в алфавите V, может быть построен НА \mathcal{C} над алфавитом V такой, что $!\mathcal{C}(x) \leftrightharpoons (\mathcal{B}(x) \neq \lambda)$ и тогда $\mathcal{C}(x) = x$ или существует последовательность $x = x_0, x_1, \ldots, x_n$, где $(\forall i = \overline{0, n-1})$ $(\mathcal{B}(x_i) = \lambda)$ и $x_{i+1} = \mathcal{A}(x_i)$; $\mathcal{B}(x_n) \neq \lambda$ и $\mathcal{C}(x) = x_n$