Введение в искусственный интеллект. Машинное обучение

Лекция 5. Линейные классификаторы и стохастический градиентный спуск

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

03 ноября 2020 г.

• Эмпирический риск и его минимизация

- Эмпирический риск и его минимизация
- 2 Разделяющая поверхность

- Эмпирический риск и его минимизация
- Разделяющая поверхность
- GD u SGD

- Эмпирический риск и его минимизация
- Разделяющая поверхность
- GD u SGD
- Теорема Новикова

- Эмпирический риск и его минимизация
- Разделяющая поверхность
- GD u SGD
- Теорема Новикова
- Линейный классификатор и примеры (перцептрон, логистическая регрессия, оптимальный байесовский классификатор)

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\ldots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$
- Задача обучения по прецедентам состоит в том, чтобы построить алгоритм $a:X\to Y$, который приближал бы целевую зависимость y^* как на обучающей выборке X^m , так и на всём множестве X

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\ldots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$
- Задача обучения по прецедентам состоит в том, чтобы построить алгоритм $a: X \to Y$, который приближал бы целевую зависимость y^* как на обучающей выборке X^m , так и на всём множестве X
- Эмпирический риск это средняя величина ошибки a на X^m

- X множество описаний объектов, Y множество допустимых ответов
- ullet Неизвестная целевая зависимость: отображение $y^*:X o Y$
- ullet Конечная обучающая выборка: $X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}$, т.ч. $y_i = y^*(x_i)$
- Задача обучения по прецедентам состоит в том, чтобы построить алгоритм $a:X\to Y$, который приближал бы целевую зависимость y^* как на обучающей выборке X^m , так и на всём множестве X
- Эмпирический риск это средняя величина ошибки a на X^m
- Метод минимизации эмпирического риска это общий подход к решению широкого класса задач обучения по прецедентам (задачи классификации и регрессии)

Эмпирический риск - определения

Функция потерь L(y, y')

Характеризует величину отклонения ответа y=a(x) от правильного ответа $y'=y^*(x)$ на объекте $x\in X$

Эмпирический риск - определения

Функция потерь L(y, y')

Характеризует величину отклонения ответа y=a(x) от правильного ответа $y'=y^*(x)$ на объекте $x\in X$

Множество алгоритмов $A = \{a : X \rightarrow Y\}$

В этом множестве будет вестись поиск отображения, приближающего неизвестную целевую зависимость

Эмпирический риск - определения

Функция потерь L(y, y')

Характеризует величину отклонения ответа y=a(x) от правильного ответа $y'=y^*(x)$ на объекте $x\in X$

Множество алгоритмов $A = \{a : X \rightarrow Y\}$

В этом множестве будет вестись поиск отображения, приближающего неизвестную целевую зависимость

Эмпирический риск

Функционал качества, характеризующий среднюю ошибку алгоритма a на выборке X^m : $R(a, X^m) = \frac{1}{m} \sum_{i=1}^m L(a(x_i), y^*(x_i))$

Минимизация эмпирического риска

Минимизация эмпирического риска (М.Э.Р.)

В заданном множестве алгоритмов A найти алгоритм, минимизирующий эмпирический риск:

$$a = \underset{a \in A}{\operatorname{arg \, min}} R(a, X^m)$$

Минимизация эмпирического риска

Минимизация эмпирического риска (М.Э.Р.)

В заданном множестве алгоритмов A найти алгоритм, минимизирующий эмпирический риск:

$$a = \underset{a \in A}{\operatorname{arg \, min}} R(a, X^m)$$

Достоинство М.Э.Р.

Конструктивный и универсальный подход, позволяющий сводить задачу обучения к задачам численной оптимизации

Минимизация эмпирического риска

Минимизация эмпирического риска (М.Э.Р.)

В заданном множестве алгоритмов A найти алгоритм, минимизирующий эмпирический риск:

$$a = \underset{a \in A}{\operatorname{arg\,min}} R(a, X^m)$$

Достоинство М.Э.Р.

Конструктивный и универсальный подход, позволяющий сводить задачу обучения к задачам численной оптимизации

Недостаток М.Э.Р.

Явление переобучения, которое возникает практически всегда при использовании метода м.э.р.

Примеры функций потерь

Задача классификации

- ullet Пороговая функция L(y,y')=[y
 eq y']
- Функция разрывна \Rightarrow минимизация эмпирического риска это задача комбинаторной оптимизации \Rightarrow во многих практически важных случаях сводится к поиску максимальной совместной подсистемы в системе неравенств (число неравенств совпадает с число объектов обучения m) и является NP-полной

Примеры функций потерь

Задача классификации

- Пороговая функция $L(y, y') = [y \neq y']$
- Функция разрывна \Rightarrow минимизация эмпирического риска это задача комбинаторной оптимизации \Rightarrow во многих практически важных случаях сводится к поиску максимальной совместной подсистемы в системе неравенств (число неравенств совпадает с число объектов обучения m) и является NP-полной

Задача регрессии

Квадратичная функция потерь $L(y, y') = (y - y')^2$

Разделяющая поверхность

- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x,w) = \operatorname{sign} g(x,w)$, где g(x,w) дискриминантная функция, а w вектор параметров
- g(x,w)=0 разделяющая поверхность; $M_i(w)=y_ig(x_i,w)$ отступ объекта x_i ; $M_i(w)<0 \Leftrightarrow a(x_i,w)\neq y_i$.

Разделяющая поверхность

- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x, w) = \operatorname{sign} g(x, w)$, где g(x, w) дискриминантная функция, а w вектор параметров
- g(x,w)=0 разделяющая поверхность; $M_i(w)=y_ig(x_i,w)$ отступ объекта x_i ; $M_i(w)<0\Leftrightarrow a(x_i,w)\neq y_i$.
- М.Э.Р.: $R(a, X^m) = \frac{1}{m} \sum_{i=1}^m [M_i(w) < 0] \le \tilde{R}(a, X^m) = \frac{1}{m} \sum_{i=1}^m L(M_i(w))$, где новая функция потерь L(M) невозрастающая и неотрицательная аппроксимация функции [M < 0], т.ч.: $L(M) \ge [M < 0]$

Разделяющая поверхность

- Рассмотрим задачу бинарной классификации: $X \to Y$, $Y = \{+1, -1\}$ на обучающей выборке $X^m = (x_i, y_i)_{i=1}^m$
- Будем алгоритм искать в виде $a(x, w) = \operatorname{sign} g(x, w)$, где g(x, w) дискриминантная функция, а w вектор параметров
- g(x,w) = 0 разделяющая поверхность; $M_i(w) = y_i g(x_i,w)$ отступ объекта x_i ; $M_i(w) < 0 \Leftrightarrow a(x_i,w) \neq y_i$.
- М.Э.Р.: $R(a, X^m) = \frac{1}{m} \sum_{i=1}^m [M_i(w) < 0] \le \tilde{R}(a, X^m) = \frac{1}{m} \sum_{i=1}^m L(M_i(w))$, где новая функция потерь L(M) невозрастающая и неотрицательная аппроксимация функции [M < 0], т.ч.: $L(M) \ge [M < 0]$

Замечание. В дальнейшем будем предполагать, что мы работаем сразу с аппроксимаций Э.Р. \tilde{R} , поэтому знак $\tilde{\ }$ будем опускать.

Вероятностный смысл минимизации аппроксимированного Э.Р.

Рассмотрим принцип максимизации правдоподобия, или MLE (Maximum Likelihood Estimation).

- Параметрическая модель плотности распределения p(x,y|w)
- Максимизация логарифма правдоподобия

$$L(w, X^m) = \ln \prod_{i=1}^m p(x_i, y_i | w) = \sum_{i=1}^m \ln p(x_i, y_i | w) \to \max_w$$

Вероятностный смысл минимизации аппроксимированного Э.Р.

Рассмотрим принцип максимизации правдоподобия, или MLE (Maximum Likelihood Estimation).

- Параметрическая модель плотности распределения p(x,y|w)
- Максимизация логарифма правдоподобия

$$L(w, X^m) = \ln \prod_{i=1}^m p(x_i, y_i | w) = \sum_{i=1}^m \ln p(x_i, y_i | w) \to \max_w$$

• Минимизация аппроксимированного Э.Р.

$$R(w,X^m) = \frac{1}{m} \sum_{i=1}^m L(M_i(w)) \to \min_{w}$$

Вероятностный смысл минимизации аппроксимированного Э.Р.

Рассмотрим принцип максимизации правдоподобия, или MLE (Maximum Likelihood Estimation).

- Параметрическая модель плотности распределения p(x,y|w)
- Максимизация логарифма правдоподобия

$$L(w, X^m) = \ln \prod_{i=1}^m p(x_i, y_i | w) = \sum_{i=1}^m \ln p(x_i, y_i | w) \to \max_w$$

• Минимизация аппроксимированного Э.Р.

$$R(w,X^m) = \frac{1}{m} \sum_{i=1}^m L(M_i(w)) \to \min_{w}$$

Вывод. Эти два принципа эквивалентны при $L(M_i(w)) = -\ln p(x_i, y_i|w)$ (коэффициент не влияет на вывод).

Об аппроксимации

- Рассмотрим аппроксимацию функции ошибки на обучающем примере: $L(M) \ge [M < 0]$
- В дальнейшем будем рассматривать в основном достаточно гладкие (непрерывные и дифференцируемые) функции L(M)
- Некоторые аппроксимации способны улучшать обобщающую способность классификатора
- Непрерывные аппроксимации позволяют применять известные численные методы оптимизации для настройки весов w (например, градиентные методы и методы выпуклого программирования)

Примеры аппроксимации функции [M<0]:

Классический градиентный спуск

Задача: минимизировать аппроксимированный Э.Р. (выбор алгоритма осуществляется по w):

$$R(w) = \frac{1}{m} \sum_{i=1}^{m} L(M_i(w)) = \frac{1}{m} \sum_{i=1}^{m} L_i(w) \to \min_{w}$$

Классический градиентный спуск

Задача: минимизировать аппроксимированный Э.Р. (выбор алгоритма осуществляется по w):

$$R(w) = \frac{1}{m} \sum_{i=1}^{m} L(M_i(w)) = \frac{1}{m} \sum_{i=1}^{m} L_i(w) \to \min_{w}$$

Численная оптимизация методом градиентного спуска

- $w^{(0)} :=$ начальное приближение
- ullet $w^{(t+1)} := w^{(t)} \eta \cdot
 abla R(w^{(t)})$ итерация алгоритма
- η градиентный шаг

Классический градиентный спуск

Задача: минимизировать аппроксимированный Э.Р. (выбор алгоритма осуществляется по w):

$$R(w) = \frac{1}{m} \sum_{i=1}^{m} L(M_i(w)) = \frac{1}{m} \sum_{i=1}^{m} L_i(w) \to \min_{w}$$

Численная оптимизация методом градиентного спуска

- $w^{(0)} :=$ начальное приближение
- ullet $w^{(t+1)} := w^{(t)} \eta \cdot
 abla R(w^{(t)})$ итерация алгоритма
- ullet η градиентный шаг

Проблема: сложно считать в условиях большого количества объектов в обучающей выборке.

Стохастический градиентный спуск

Алгоритм стохастического градиентного спуска

- Инициализация весов *w*
- ullet Инициализация eta.Р. $R := rac{1}{m} \sum_{i=1}^m L_i(w)$

Итерации

- ullet Выбор объекта $x_i \in X^m$ (например, случайным образом)
- ullet Вычисление ошибки на данном объекте: $arepsilon_i = L_i(w)$
- ullet Шаг градиентного спуска: $w:=w-\eta\cdot
 abla L_i(w)$
- Вычисление сглаженного Э.Р.: $R := (1 \lambda)R + \lambda \varepsilon_i$

Замечание: параметр сглаживания $\lambda \in [0,1]$ (можно использовать, например, 0.1).

Вариативность SGD

Инициализация

- $w_j = 0 \quad \forall j = 1, \dots, n$ (где n число весов)
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$
- Предобучение на другой обучающей выборке

Вариативность SGD

Инициализация

- $w_j = 0 \quad \forall j = 1, \dots, n$ (где n число весов)
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$
- Предобучение на другой обучающей выборке

Порядок выбора объектов x_i

- Случайная перетасовка: попеременно брать объекты разных классов
- ullet Чаще брать объекты с большой ошибкой (маленькое значение M_i)
- ullet Чаще брать объекты с большой неуверенностью (маленькое значение $|M_i|$)

Вариативность SGD

Инициализация

- \bullet $w_j = 0 \quad \forall j = 1, \dots, n$ (где n число весов)
- $w_j = rand(-\frac{1}{2n}, \frac{1}{2n})$
- Предобучение на другой обучающей выборке

Порядок выбора объектов x_i

- Случайная перетасовка: попеременно брать объекты разных классов
- ullet Чаще брать объекты с большой ошибкой (маленькое значение M_i)
- ullet Чаще брать объекты с большой неуверенностью (маленькое значение $|M_i|$)

Критерий остановки

- Исчерпали лимит по числу шагов
- Значение Э.Р. либо весов перестало меняться

Пакетный (mini-batch) SGD

Пакетный SGD

Идея: на каждом шаге использовать более надежную оценку градиента не на одном примере, а на нескольких

Итерации

- ullet Выбор подмножества объектов мощности 1 < k < m: $J = \{i_1, \dots, i_k\}$
- ullet Вычисление ошибки на этих объектах: $L_{i_1}(w^{(t)}), \dots, L_{i_k}(w^{(t)})$
- ullet Шаг градиентного спуска: $w^{(t+1)} := w^{(t)} \eta \cdot rac{1}{k} \sum_{j=1}^k
 abla_w L_{i_j}(w^{(t)})$

Выбор шага SGD

• Сходимость гарантируется 2 для выпуклых функций Э.Р. и ограниченного градиента при

$$\eta_t o 0, \sum_{t=0}^\infty \eta_t = \infty, \sum_{t=0}^\infty \eta_t^2 < \infty$$
 (например, подходит $\eta_t = rac{1}{t}$)

- При этом скорость сходимости будет также $O(\frac{1}{t})$
- ullet Метод скорейшего градиентного спуска $R(w-\eta
 abla R(w)) o min_\eta$ позволяет найти оптимальный η^*
- Время от времени бывает полезно делать большие шаги для "выпрыгивания" из локальных минимумов

Плюсы и минусы SGD

Плюсы

- Легко реализуется на практике;
- Легко обобщается на любые алгоритмы и функции потерь;
- Возможно онлайн до-обучение (для нового x_i);
- Необязательно использовать все объекты x_i .

Плюсы и минусы SGD

Плюсы

- Легко реализуется на практике;
- Легко обобщается на любые алгоритмы и функции потерь;
- Возможно онлайн до-обучение (для нового x_i);
- Необязательно использовать все объекты x_i .

Минусы

- На практике возможны расходимость / медленная сходимость;
- Локальные минимумы!!!
- Подбор шага градиента, условия остановки неочевидны;
- Переобучение.

Понятие линейной классификации

Линейный классификатор

Это алгоритм классификации, основанный на построении линейной разделяющей поверхности

Понятие линейной классификации

Линейный классификатор

Это алгоритм классификации, основанный на построении линейной разделяющей поверхности

• В случае **двух** классов разделяющей поверхностью является **гиперплоскость**, которая делит пространство признаков на два полупространства

Понятие линейной классификации

Линейный классификатор

Это алгоритм классификации, основанный на построении линейной разделяющей поверхности

- В случае **двух** классов разделяющей поверхностью является **гиперплоскость**, которая делит пространство признаков на два полупространства
- В случае числа классов больше двух разделяющая поверхность кусочно-линейна

Линейная классификация: определения

Два класса

Дискриминантная функция:

$$g(x,w) = \sum_{j=1}^{n} w_{j}f_{j} - w_{0}$$
, где

 $f_i:X o\mathbb{R}$ – числовые признаки.

Алгоритм классификации

$$a(x, w) = \operatorname{sign}(\sum_{j=1}^{n} w_j f_j - w_0).$$

Если ввести константный признак $f_0 \equiv -1$, то

$$x = (f_0(x), \ldots, f_n(x)),$$

и алгоритм в векторной записи:

$$a(x, w) = sign(\langle w, x \rangle).$$

Отступ объекта x_i : $M_i = \langle w, x_i \rangle y_i$

Линейная классификация: определения

Два класса

Дискриминантная функция:

$$g(x,w) = \sum_{j=1}^{n} w_{j}f_{j} - w_{0}$$
, где

 $f_i:X o\mathbb{R}$ – числовые признаки.

Алгоритм классификации

$$a(x, w) = \operatorname{sign}(\sum_{j=1}^{n} w_j f_j - w_0).$$

Если ввести константный признак $f_0 \equiv -1$, то

$$x=(f_0(x),\ldots,f_n(x)),$$

и алгоритм в векторной записи:

$$a(x, w) = sign(\langle w, x \rangle).$$

Отступ объекта x_i : $M_i = \langle w, x_i \rangle y_i$

Произвольное число классов

У каждого класса $c \in Y$ свой вектор весов: $w^c = (w_0^c, ..., w_n^c)$.

Линейный классификатор:

$$a(x, w) = \arg\max_{c \in Y} \sum_{j=0}^{n} w_j^c f_j(x) = \arg\max_{c \in Y} \langle w^c, x \rangle.$$

Отступ:

$$M_i(w) = \langle x_i, w^{y_i} \rangle - \max_{c \in Y, c \neq y_i} \langle x_i, w^c \rangle$$

Замечание. Обратите внимание на разницу со случаем двух классов!

Биологический нейрон

- Кора головного мозга содержит 10¹¹ нейронов
- Каждый нейрон связан синапсами с 10³ — 10⁴ другими нейронами
- Скорость распространения импульсов 100 м/с
- Входы (много) дендриты
- Выход (один) аксон

Математическая модель нейрона

Предложена МакКалоком и Питтсом в 1943 году³.

$$a(x,w) = \sigma(\langle w, x \rangle) = \sigma(\sum_{j=1}^{n} w_j f_j - w_0)$$

где $\sigma(x)$ - некоторая функция активации (например, sign).

³McCulloch, W. S. and Pitts, W. (1943). "A logical calculus of the ideas immanent in∗nervous activity"

Примеры функций активаций

SGD для линейной регрессии: ADALINE

В задаче линейной регрессии функция потерь:

$$L(a(x_i, w), y_i) = (a(x_i, w) - y_i)^2$$

Адаптивный линейный нейрон (ADAptive Linear NEuron) ADALINE предложен Видроу и Хоффом в 1960^4 :

$$a(x, w) = \langle w, x \rangle$$

Градиентный шаг стохастического градиентного спуска - т.н. дельта-правило:

$$w^{(t+1)} = w^{(t)} - \eta(\langle w^{(t)}, x_i \rangle - y_i)x_i$$

SGD для линейного классификатора

Алгоритм стохастического градиентного спуска в общем виде для линейного классификатора:

$$L = L(\langle w, x_i \rangle y_i) \Rightarrow w^{(t+1)} = w^{(t)} - \eta L'(z)|_{z = \langle w^{(t)}, x_i \rangle y_i} x_i y_i$$

Рассмотрим подробнее некоторые частные случаи.

История: правила Хэбба и Розенблатта

Правило Хэбба, 1949⁵

В задаче бинарной ($Y = \{-1, +1\}$) классификации линейный классификатор: $a(x, w) = \text{sign}(\langle w, x \rangle)$

Функция потерь: $L(a(x_i, w), y_i) = [a(x_i, w) \neq y_i].$

Шаг обновления: если $a(x_i, w^{(t)}) \neq y_i \Leftrightarrow a(x_i, w^{(t)}) y_i < 0$, то $w^{(t+1)} = w^{(t)} + \eta x_i y_i$

⁵Hebb, D. O. (1949). "The organization of behavior: a neuropsychological theory."

Ž

⁶Rosenblatt, F. (1957). "The perceptron, a perceiving and recognizing automaton"

История: правила Хэбба и Розенблатта

Правило Хэбба, 1949⁵

В задаче бинарной ($Y = \{-1, +1\}$) классификации линейный классификатор: $a(x, w) = sign(\langle w, x \rangle)$

Функция потерь: $L(a(x_i, w), y_i) = [a(x_i, w) \neq y_i].$

Шаг обновления: если $a(x_i, w^{(t)}) \neq y_i \Leftrightarrow a(x_i, w^{(t)})y_i < 0$, то $w^{(t+1)} = w^{(t)} + nx_i y_i$

Правило перцептрона Розенблатта, 19576

Пусть $X = \{0, 1\}^n$, $Y = \{0, +1\}$. Тогда:

если
$$a(x_i, w^{(t)}) \neq y_i$$
: $w^{(t+1)} = w^{(t)} + \eta x_i$, если $y_i = 1$, и $w^{(t+1)} = w^{(t)} - \eta x_i$, если $y_i = 0$

⁵Hebb, D. O. (1949). "The organization of behavior: a neuropsychological theory."

⁶Rosenblatt, F. (1957), "The perceptron, a perceiving and recognizing automaton" Бабин Д.Н., Иванов И.Е., Петюшко А.А

История: правила Хэбба и Розенблатта

Правило Хэбба, 1949⁵

В задаче бинарной ($Y = \{-1, +1\}$) классификации линейный классификатор: $a(x, w) = \text{sign}(\langle w, x \rangle)$

Функция потерь: $L(a(x_i, w), y_i) = [a(x_i, w) \neq y_i].$

Шаг обновления: если $a(x_i, w^{(t)}) \neq y_i \Leftrightarrow a(x_i, w^{(t)})y_i < 0$, то $w^{(t+1)} = w^{(t)} + \eta x_i y_i$

Правило перцептрона Розенблатта, 19576

Пусть $X = \{0, 1\}^n$, $Y = \{0, +1\}$. Тогда:

если
$$a(x_i,w^{(t)}) \neq y_i$$
: $w^{(t+1)}=w^{(t)}+\eta x_i$, если $y_i=1$, и $w^{(t+1)}=w^{(t)}-\eta x_i$, если $y_i=0$

Правило Хэбба и правило Розенблатта - суть одно и то же, и совпадают с правилом ADALINE с заменой a(x,w) на соответствующее значение из Y:

$$w^{(t+1)} = w^{(t)} - \eta(a(x_i, w^{(t)}) - y_i)x_i$$

⁶Rosenblatt, F. (1957). "The perceptron, a perceiving and recognizing automaton"

⁵Hebb, D. O. (1949). "The organization of behavior: a neuropsychological theory."

Теорема Новикова⁷

Задача бинарной классификации $X=\mathbb{R}^{n+1}, Y=\{-1,+1\}.$

Теорема Новикова, 1962

Пусть выборка X^m линейно разделима, т.е. $\exists \tilde{w}, ||\tilde{w}|| = 1, \exists \delta > 0: \langle \tilde{w}, x_i \rangle y_i > \delta$ для всех i=1,...,m. Пусть начальный вектор весов $w^0=0$. Также в процедуре обучения каждый объект обучающей выборки появляется повторно через некоторый конечный интервал времени.

Тогда алгоритм SGD с правилом Хэбба находит вектор весов w:

- разделяющий выборку без ошибок,
- ullet при любом шаге градиентного спуска η ,
- ullet независимо от порядка предъявления x_i ,
- ullet за конечное число исправлений вектора w: $t_{max} \leq rac{1}{\delta^2} \max_i ||x_i||^2$

⁷Novikoff, A. (1962). "On Convergence Proofs on Perceptrons"

Теорема Новикова: доказательство

С одной стороны. $\langle \tilde{\mathbf{w}}, \mathbf{w}^t \rangle = \langle \tilde{\mathbf{w}}, \mathbf{w}^{t-1} \rangle + \eta \langle \tilde{\mathbf{w}}, \mathbf{x}_i \rangle \mathbf{v}_i > \langle \tilde{\mathbf{w}}, \mathbf{w}^{t-1} \rangle + \eta \delta > \cdots > \langle \tilde{\mathbf{w}}, \mathbf{w}^0 \rangle + t \eta \delta = t \eta \delta.$ С другой стороны, поскольку выборка конечна. $\exists D > 0 : ||x_i|| < D$ для всех i. В силу этого $||w^t||^2 = ||w^{t-1}||^2 + \eta^2||x_i||^2 + 2\eta \langle w^{t-1}, x_i \rangle y_i$. Так как для применения правила Хэбба должно быть $\langle w^{t-1}, x_i \rangle v_i < 0$, то $||w^t||^2 < ||w^{t-1}||^2 + n^2D^2 < \cdots < ||w^0||^2 + tn^2D^2 = tn^2D^2$ По неравенству Коши-Буняковского $\langle \tilde{w}, w^t \rangle < ||\tilde{w}|| \cdot ||w^t||$. Объединяя эти неравенства, получаем $\eta \delta t \leq \langle \tilde{w}, w^t \rangle \leq \eta D \sqrt{t} \cdot ||\tilde{w}||$, или $\sqrt{t} \leq \frac{D}{\delta}$. T.о. при $t>\frac{D^2}{s^2}$ не найдётся ни одного x_i , т.ч. $\langle w^t,x_i\rangle y_i<0$, т.е. вся выборка будет правильно классифицирована. Ч.т.д.

Линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y = +1|x) - \lambda_- p(y = -1|x)) = \operatorname{sign}\left(\frac{p(y = +1|x)}{p(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(y|x) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), w_0 = \ln \frac{\lambda_-}{\lambda_+};$$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1+e^{-z}}$ – логистическая функция (сигмоид).

Линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y=+1|x) - \lambda_- p(y=-1|x)) = \operatorname{sign}\left(\frac{p(y=+1|x)}{p(y=-1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(y|x) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), w_0 = \ln \frac{\lambda_-}{\lambda_+};$$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1+e^{-z}}$ – логистическая функция (сигмоид).

Определение логистической регрессии

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся сигмоидом от линейной функции по входу.

Логарифмическая функция потерь

Напоминание: максимизация логарифма правдоподобия:

•
$$L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$$

Логарифмическая функция потерь

Напоминание: максимизация логарифма правдоподобия:

•
$$L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$$

Подставим в формулу выражение для логистической регрессии $p(x,y) = p(y|x) \cdot p(x) = \sigma(\langle w, x \rangle) \cdot const(w)$:

•
$$L(w, X^m) = \sum_{i=1}^m \log \sigma(\langle w, x_i \rangle y_i) + const(w) \rightarrow \max_w$$

Логарифмическая функция потерь

Напоминание: максимизация логарифма правдоподобия:

•
$$L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$$

Подставим в формулу выражение для логистической регрессии $p(x,y)=p(y|x)\cdot p(x)=\sigma(\langle w,x\rangle)\cdot const(w)$:

•
$$L(w, X^m) = \sum_{i=1}^m \log \sigma(\langle w, x_i \rangle y_i) + const(w) \rightarrow \max_w$$

Максимизация L эквивалентна минимизации аппроксимированного Э.Р. R:

$$R(w, X^m) = \sum_{i=1}^m \log(1 + \exp(-\langle w, x_i \rangle y_i)) \to \min_w$$

Многоклассовая логистическая регрессия

Рассмотрим случай произвольного количества классов |Y| > 2. Тогда линейный классификатор (напоминание):

$$a(x) = \underset{c \in Y}{\operatorname{arg\,max}} \langle w^c, x \rangle \quad x, w^c \in \mathbb{R}^n$$

Многоклассовая логистическая регрессия

Рассмотрим случай произвольного количества классов |Y| > 2. Тогда линейный классификатор (напоминание):

$$a(x) = \underset{c \in Y}{\operatorname{arg\,max}} \langle w^c, x \rangle \quad x, w^c \in \mathbb{R}^n$$

Вероятность принадлежности объекта x к классу c определяется т.н. функцией SoftMax:

$$SoftMax(\langle w^c, x \rangle) = P(y = c | x, w) = \frac{\exp(\langle w^c, x \rangle)}{\sum_{z \in Y} \exp(\langle w^z, x \rangle)}$$

T.o. функция $SoftMax: \mathbb{R}^{|Y|} \to \mathbb{R}^{|Y|}$ преобразует любой вещественнозначный вектор в вектор дискретного распределения.

О переобучении

Причины переобучения

- Маленькая обучающая выборка; большое число признаков;
- Признаки линейно зависимы;
- Неинформативные (шумовые) признаки.

О переобучении

Причины переобучения

- Маленькая обучающая выборка; большое число признаков;
- Признаки линейно зависимы;
- Неинформативные (шумовые) признаки.

Проявление переобучения

- Резкое увеличение нормы w;
- Большая разница в ошибке классификации на тестовой и обучающей выборках;

О переобучении

Причины переобучения

- Маленькая обучающая выборка; большое число признаков;
- Признаки линейно зависимы;
- Неинформативные (шумовые) признаки.

Проявление переобучения

- Резкое увеличение нормы w;
- Большая разница в ошибке классификации на тестовой и обучающей выборках;

Борьба с переобучением

- Ранняя остановка обучения;
- Уменьшение норм весов (регуляризация);

Вероятностный смысл простой регуляризации

Рассмотрим принцип максимума совместного правдоподобия данных и модели, или МАР (Maximum A Posteriori Probability). Дано:

- Параметрическая модель плотности распределения p(x,y|w)
- Априорная информация о плотности распределения параметров модели p(w) Например, параметрическое семейство априорных распределений p(w;h), где h неизвестная и неслучайная величина (гиперпараметр).

Вероятностный смысл простой регуляризации

Рассмотрим принцип максимума совместного правдоподобия данных и модели, или МАР (Maximum A Posteriori Probability). Дано:

- Параметрическая модель плотности распределения p(x,y|w)
- Априорная информация о плотности распределения параметров модели p(w) Например, параметрическое семейство априорных распределений p(w;h), где h неизвестная и неслучайная величина (гиперпараметр).

Тогда:

- Плотность $p(X^m, w; h) = p(X^m|w)p(w; h)$
- Максимизируем логарифм совместного распределения

$$L(w, X^m) = \ln p(X^m, w; h) = \sum_{i=1}^m \ln p(x_i, y_i | w) + \ln p(w; h) \to \max_{w, h}$$

$|L_2$ -регуляризация|

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w,X^m) = R(w,X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $abla R_{ au}(w,X^m) =
abla R(w,X^m) + au w$,

L_2 -регуляризация

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w,X^m) = R(w,X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $\nabla R_{\tau}(w, X^m) = \nabla R(w, X^m) + \tau w$, А градиентный шаг: $w^{(t+1)} = (1 - \tau \eta) w^{(t)} - \eta \nabla R(w^{(t)}, X^m)$.

L_2 -регуляризация

Рассмотрим введение квадратичного штрафа за увеличение нормы весов в функционал Э.Р.:

$$R_{\tau}(w,X^m) = R(w,X^m) + \frac{\tau}{2}||w||^2 \rightarrow \min_{w}$$

Тогда градиент Э.Р.: $\nabla R_{\tau}(w, X^m) = \nabla R(w, X^m) + \tau w$, A градиентный шаг: $w^{(t+1)} = (1 - \tau \eta) w^{(t)} - \eta \nabla R(w^{(t)}, X^m)$.

Подбор параметра регуляризации au

- ullet Больше значение au больше штрафа за переобучение (но сходимость медленнее!)
- Методом скользящего контроля (cross-validation);

• Эмпирическим риском измеряем качество классификатора

- Эмпирическим риском измеряем качество классификатора
- 2 На практике используется аппроксимационный эмпирический риск

- Эмпирическим риском измеряем качество классификатора
- 2 На практике используется аппроксимационный эмпирический риск
- Линейный классификатор предельный простой случай (тем не менее, работающий на практике!)

- Эмпирическим риском измеряем качество классификатора
- На практике используется аппроксимационный эмпирический риск
- Линейный классификатор предельный простой случай (тем не менее, работающий на практике!)
- Градиентный спуск алгоритм оптимизации первого порядка

- Эмпирическим риском измеряем качество классификатора
- 2 На практике используется аппроксимационный эмпирический риск
- Линейный классификатор предельный простой случай (тем не менее, работающий на практике!)
- Градиентный спуск алгоритм оптимизации первого порядка
- SGD практическая версия GD

- Эмпирическим риском измеряем качество классификатора
- 2 На практике используется аппроксимационный эмпирический риск
- Линейный классификатор предельный простой случай (тем не менее, работающий на практике!)
- Градиентный спуск алгоритм оптимизации первого порядка
- SGD практическая версия GD
- Регуляризация изменяет коэффициенты для SGD

Дорожная карта Scikit-Learn⁸

⁸https://scikit-learn.org/stable/tutorial/machine_learning_map/

Источники

Ha основе материалов сайта http://www.machinelearning.ru.

