

ACC MICRO 2016 BUFFER AND MUX LOGIC

DATA BOOK

MARCH 1997 Revision 2.0

ACC Microelectronics Corporation

2500 Augustine Drive, Santa Clara, CA 95054

Phone: (408) 980-0622 Fax: (408) 980-0626

Copyright 1996 ACC Microelectronics Corporation. All rights reserved.

P/N 520210 Rev. 2.0 March 1997

Copyright

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of ACC Microelectronics Corp, 2500 Augustine Drive, Santa Clara, CA 95054.

Disclaimer

ACC Microelectronics Corp. makes no representations or warranties with respect to the design and documentation herein described and especially disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, ACC Microelectronics Corp. reserves the right to revise the design and associated documentation and to make changes from time to time in the content without obligation of ACC Microelectronics Corp. to notify any person of such revisions or changes.

Trademarks

Single Chip Solution is registered trademark of ACC Microelectronics Corp.

All other trademarks and copyrights are the property of their respective holders.

Table of Contents

Title		Page
1.0	Introduction	1
	1.1 ACC Micro 2016 Description	1
	1.2 ACC Micro 2016 Features	1
	1.3 ACC Micro 2016 Block Diagram	2
	1.3.1 2016 Internal Block Diagram with 2268/2178/2168/	
	2056/2057/2066/2048 System Logic	2
	1.3.2 2016 Internal Block Diagram with 2086/2087/2089	
	System Logic	2
	1.4 ACC Micro 2016/2178 Application Circuit Diagram	3
2.0	ACC Micro Functional Description	3
3.0	ACC Micro Pin Description	4
	3.1 2268/2178/2168/2056/2057/2066/2048 System Logic	4
	Table 3.1.1 Address Buffer Signals	4
	Table3.1.2 Data Buffer Signals	4
	Table 3.1.3 Multiplexer Signals	4
	Table 3.1.4 MA Mux Signals	5
	Table 3.1.5 AT Bus Signals	5
	Table 3.1.6 RESET Signal	4
	Table 3.1.7 Power Signals	4
	3.2 2086/2087/2089 System Logic	(
	Table 3.2.1 Address Buffer Signals	(
	Table 3.2.2 Data Buffer Signals	6
	Table 3.2.3 Multiplexer Signals	6
	Table 3.2.4 MA Mux Signals	6
	Table 3.2.5 AT Bus Signals	7
	Table 3.2.6 RESET Signal	7
	Table 3.2.7 Power Signals	7
4.0	ACC Micro 2016 DC Specifications	8
5.0	ACC Micro 2016 Package Specifications	10
	5.1 100-pin PQFP Package Specification	10
	5.2 100-pin TQFP Package Specification	11

Appendix A-1 List of Sales Representatives

ACC Micro 2016 Buffer and MUX Logic

Section 1 Introduction

1.1 Description

The ACC Micro 2016 is designed to work together with the system core logic products to provide the decoding logic for the Real Time Clock (RTC), address buffer, and data buffer for the 486/386DX and Pentium applications. At least seven TTLs can be saved when using the 2016.

1.2 Features

- ♦ Address Buffer
- ♦ Data Buffer
- ♦ Decode logic for /ROMCS, /KBCS, /RTCWR, and /RTCDS
- ♦ Saved up to 7 TTLs
- ♦ 100-pin PQFP and TQFP

1.3.1 2016 Internal Block Diagram with 2268/2178/2168/2056/2057/2066/2048 System Logic

1.3.2 2016 Internal Block Diagram with 2086/2087/2089 System Logic

1.4 2016/2178 Application Circuit Diagram

Section 2 Functional Description

The 2016 can be used with either the 2268/2178/2168/2056/2057/2066/2048 system logic or the 2086/2087/2089 super chip. The 2016 is based on the condition of the /ROMCS signal to determine which system logic to work with. During power up, if the /ROMCS is pulled high, it works with the 2268/2178/2168/2056/2057/2066/2048 system logic. If /ROMCS is pulled low, it works with the 2086/2087/2089 super chip. The /RTCDS signal (pin 97) requires a pull low through a damping register for all system logic applications.

Section 3.0 Pin Description

3.1 2268/2178/2168/2056/2057/2066/2048 System Logic

Table 3.1.1 Address Buffer Signals

Pin Name	Pin #	Type	Description
A2-A16	2531,33-40	I/O	Local Address Bus
SA2-SA16	6-13,15,17-22	I/O	System Address Bus
/ENABUS	24	I	Address bus buffer

Table 3.1.2 Data Buffer Signals

Pin Name	Pin #	Type	Description
SD0-SD7	73-80	I/O	System Data Bus
XD0-XD7	81-89	I/O	XD Bus
/XDIR	62	I	XD bus direction control

Table 3.1.3 Multiplexer Signals

Pin Name	Pin #	Type	Description
MUXO0-	42-44	О	Multiplexed output for KBINT, IRQ3-9, and /RTCINT.
MUXO2			Multiplexed output for IRQ10-15, KGA20, and /IOCHK.
			Multiplexed output for DRQ0-3, DRQ5-7, and /KBRST.
SEL0-SEL2	45-47	I	Multiplexer select pins for MUXO0-MUXO2.
IRQ3-IRQ7	48-52	I	RTC interrupt.
IRQ9,	53		
/RTCINT	55		
IRQ10-IRQ13	56-58		
DRQ6-7	59-60	I	DMA request.
/KBCS	61	О	Keyboard chip select.
IRQ14-IRQ15	63-64	I	Interrupt
/IOCHK	65		
DRQ0-DRQ3	66-68, 71		
DRQ5	72		
/IOCHK	65	I	I/O channel check DMA request.
DRQ0-DRQ3	66-68, 71		
DRQ5	72		

Table 3.1.4 MA Mux Signals

Pin Name	Pin #	Type	Description
MA0	23	I	MA0 from ACC Micro system logic. In AT cycle, this is a
			multiplexed pin for /ROMCS.
/ROMCS	92	I/O	ROM Chip Select output. Pulled high.
/RTCWR	96	О	RTC Write output.
/RTCDS	97	I/O	RTC Data Strobe output.
/KGA20	2	I/O	Keyboard GA20 input
/KBRST	3	I/O	Keyboard reset input.
KBINT	98	I/O	Keyboard interrupt input.
IRQ12	99	I/O	Interrupt request.

Table 3.1.5 AT Bus Signals

Pin Name	Pin #	Type	Description
/IOR	93	I	AT Bus Read.
/IOW	94	I	AT Bus Write.
AEN	95	I	Bus Hold Acknowledge
/MASTER	100	I	AT Bus Master
/REF	1	I	Refresh Cycle.
SA0	4	I	System Address Bit 0.
SA1	5	I	System Address Bit 1.

Table 3.1.6 RESET Signal

Pin Name	Pin #	Type	Description
/RST	91	I	Chip reset.

Table 3.1.7 Power Signals

Pin Name	Pin #	Type	Description
VDD	16, 32, 54, 69,	P	5V power.
	90		
GND	14, 41, 70, 88	P	Ground.

3.2 2086/2087/2089 System Logic

Table 3.2.1 Address Buffer Signals

Pin Name	Pin #	Type	Description
A2-A16	2531,33-40	I/O	Local Address Bus
SA2-SA16	6-13,15,17-22	I/O	System Address Bus
/ENABUS	24	I	Address bus buffer

Table 3.2.2 Data Buffer Signals

Pin Name	Pin #	Type	Description
SD0-SD7	73-80	I/O	System Data Bus
XD0-XD7	81-89	I/O	XD Bus
/XDIR	62	I	XD bus direction control

Table 3.2.3 Multiplexer Signals

Pin Name	Pin #	Type	Description
D16-D31	42-53, 55-58	I/O	CPU Data Bus.
/ENSDL	59	I	SD Bus buffer low byte enable.
/ENSDH	60	I	SD Bus buffer high byte enable.
/SDDIR	61	I/O	SD Bus Direction control.
SD8-SD15	63-68, 71-72	I/O	System data bus.

Table 3.2.4 MA Mux Signals

Pin Name	Pin #	Type	Description
MA0	23	I	MA0 from ACC Micro system logic. In AT cycle, this is a
			multiplexed pin for /ROMCS.
/ROMCS	92	I/O	ROM Chip Select output. Pulled low.
/RTCWR	96	О	RTC Write output.
/RTCDS	97	I/O	RTC Data Strobe output.
/IENL	2	I/O	IDE data buffer low byte enable.
/IENH	3	I/O	IDE data buffer high byte enable.
/HCS0	98	I/O	IDE chip select bit 0.
/HCS1	99	I/O	IDE chip select bit 1.

Table 3.2.5 AT Bus Signals

Pin Name	Pin #	Type	Description
/IOR	93	I	AT Bus Read.
/IOW	94	I	AT Bus Write.
AEN	95	I	Bus Hold Acknowledge
/MASTER	100	I	AT Bus Master
/REF	1	I	Refresh Cycle.
SA0	4	I	System Address Bit 0.
SA1	5	I	System Address Bit 1.

Table 3.2.6 RESET Signal

Pin Name	Pin #	Type	Description
/RST	91	I	Chip reset.

Table 3.2.7 Power Signals

Pin Name	Pin #	Type	Description
VDD	16, 32, 54, 69,	P	5V power.
	90		
GND	14, 41, 70, 88	P	Ground.

Section 4.0 2016 DC Specifications

TA = 0° C to 45° C, $Vdd = 5.0V \pm 5\%$

Signals: AEN, MAO, SAO, SA1, /ENABUS, /IOR, /IOW, /REF, /MASTER, /XDIR, DRQ6, DRQ7

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Input low voltage	VIL		0.8	V	$Vdd = 5.0 \pm 5\%$
Input high voltage	VIH		2.0	V	$Vdd = 5.0 \pm 5\%$
Input low current	IIL		-10.0	uA	Vin = 0.0V
Input high current	IIH		10.0	uA	Vin = Vdd

Signals: /RST

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Threshold voltage low to high	VTLH	2.4	3.0	V	$Vdd = 5.0V \pm 5\%$
Threshold voltage high to low	VTLH	1.2	1.8	V	$Vdd = 5.0V \pm 5\%$
Hysteresis	VH	0.9	1.5	V	
Triput low Leakage Current	IIL		-10.0	uA	Vin = 0.0V
Input high Leakage Current	IIH		10.0	uA	Vin = 5.5V

Signals: /RTC

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Output low voltage	VOL		0.4	V	IOL = 4.0 mA
Output high voltage	VOH	2.4		V	IOH = 4.0 mA
Tristate Output Leakage	IOZ	-10.0	10.0	uA	0V < Vout < Vdd
Current					

Signals: A2-A16, MUX0-MUX2, SEL0-SEL2, IRQ3-IRQ7, IRQ9-IRQ13, /RTCINT, XD0-XD7, /ROMCS, /RTCDS, /KBCS

/ROMCS, /RTCDS, /KBCS

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Input low voltage	VTL		0.8	V	$Vdd = 5.0V \pm 5\%$
Input high voltage	VIH	2.0		V	$Vdd = 5.0V \pm 5\%$
Input low current	IIL		-10.0	uA	VIN = 0.0V
Input high current	IIH		10.0	uA	VIN = Vdd
Output low voltage	VOL		0.4	V	IOL = 4.0 mA
Output high voltage	VOH	2.4		V	IOH = -4.0 mA
Tristate output leakage current	IOZ	-10.0	10.0	uA	0V < Vout < Vdd

Signals: KBINT, /KGA20, /KBRST

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Input low voltage	VTL		0.8	V	$Vdd = 5.0 V \pm 5\%$
Input high voltage	VIH	2.0		V	$Vdd = 5.0 V \pm 5\%$
Input low current	IIL		-10.0	uA	VIN = 0.0V
Input high current	IIH		10.0	uA	VIN = Vdd
Output low voltage	VOL		0.4	V	IOL = 4.0 mA
Output high voltage	VOH	2.4		V	IOH = -4.0 mA
Tristate output leakage current	IOZ	-10.0	10.0	uA	0V < Vout < Vdd

Signals: SA2-SA16, SD0-SD7

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Input low voltage	VIL		0.8	V	$Vdd = 5.0V \pm 5\%$
Input high voltage	VIH	2.0		V	$Vdd = 5.0V \pm 5\%$
Input low current	IIL		-10.0	uA	VIN = 0.0V
Input high current	IIH		10.0	uA	VIN = Vdd
Output low voltage	VOL		0.4	V	IOL = 4.0 mA
Output high voltage	VOH	2.4		V	IOH = -4.0 mA
Tristate output leakage current	IOZ	-10.0	10.0	uA	0V < Vout < Vdd

Signals: IRQ14, IRQ15, /IOCHK, DRQ0-DRQ3, DRQ5

Parameter	Sym.	Min.	Max.	Unit	Test Condition
Input low voltage	VIL		0.8	V	$Vdd = 5.0V \pm 5\%$
Input high voltage	VIH	2.0		V	$Vdd = 5.0V \pm 5\%$
Input low current	IIL		-10.0	uA	VIN = 0.0V
Input high current	IIH		10.0	uA	VIN = Vdd
Output low voltage	VOL		0.4	V	IOL = 4.0 mA
Output high voltage	VOH	2.4		V	IOH = -4.0 mA
Tristate output leakage current	IOZ	-10.0	10.0	uA	0V < Vout < Vdd

Section 5 Package Specifications

5.1 100-pin PQFP Package Specification

Unit: inches (mms.)

5.2 100-pin TQFP Package Specification

Unit: inches (mms.)

ACC Microelectronics Headquarters

ACC Microelectronics Corporation 2500 Augustine Drive, Santa Clara, CA 95054 Phone: (408) 980-0622

Fax: (408) 980-0626

International Sales

Taiwan

ACC Taiwan Inc. 10-2 FL., No.77. Sec.4, Nan-King E. Rd., Taipei, Taiwan, R.O.C. Phone: (02) 719-9076 Fax: (02) 514-9127

Seper Technology Corp. 4th Fl., 75 Sec. 3, Ming-Sheng E. Rd., Taipei, Taiwan, R.O.C. Phone: (02) 506-3320 Fax: (02) 504-8081

Yosun Industrial Corporation 7F, No. 76, Sec. 1, Cheng Kung Road Nan Kang, Taipei, Taiwan

Phone: (02) 788-1991 Fax: (02) 788-1996

Japan

Nippon IMEX Corp. 1-46-9 Matsubara Setagaya-Ku Tokyo, 156 Japan Phone: (33) 321-8000 Fax: (33) 325-0021

Korea

Intellect, Inc.

Sonam Bldg. 3F, 1001-4, Dacchi-dong, Kangnam-Ku

Seoul, Korea

Phone: (2) 568-0501 Fax: (2) 558-0444

Connecticut

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Maine

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Massachusettes

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Minnesota

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076

New Hampshire

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

North Dakota

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076

contd...

Rhode Island

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

South Dakota

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076

Vermont

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Wisconsin (Western)

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076