

ТЕПЛОВЫЧИСЛИТЕЛИ СПТ941

Интерфейс связи

РАЖГ.421412.031 Д7

СОДЕРЖАНИЕ

1 Оощие сведения	3
2 Система нумерации параметров тепловычислителя	
2.1 Настроечные параметры	3
2.2 Текущие параметры	7
2.3 Тотальные параметры	8
2.4 Служебные параметры	
3 Архивы	10
3.1 Интервальные архивы	
3.2 Асинхронные архивы	12
4 Общие требования к процедурам обмена	12
4.1 Инициализация обмена	12
4.2 Деление архивов на разделы	
4.3 Ограничения в реализации протокола	
4.4 Таймауты на магистрали	
→	

Отдельные изменения, связанные с дальнейшим совершенствованием тепловычислителей, могут быть не отражены в настоящей 1-ой редакции описания.

© ЗАО НПФ ЛОГИКА, 2014

1 Общие сведения

Настоящий документ содержит информацию, необходимую для организации обмена данными с тепловычислителями СПТ941 модификации 941.20 (далее – тепловычислители).

Обмен данными с тепловычислителями осуществляется посредством магистрального протокола обмена М4. Предусмотренные протоколом процедуры взаимодействия устройств и форматы представления данных подробно описаны в документе РАЖГ.00293-33 «Магистральный протокол М4. Руководство программиста». В частности, этим документом установлены следующие используемые в настоящем документе понятия:

- наименования сообщений и их полей;
- форматы представления параметров;
- обозначения тегов.

Упоминаний вышеназванного документа в связи с использованием перечисленных понятий в ходе дальнейшего изложения не делается.

2 Система нумерации параметров тепловычислителя

Тепловычислитель производит обработку и вычисление параметров, которые делятся на следующие группы:

- настроечные параметры;
- текущие измеряемые и вычисляемые параметры;
- тотальные параметры;
- служебные параметры.

Каждому из параметров тепловычислителя присвоено буквенное обозначение и номер, который используется при обращении к тепловычислителю с помощью запросов протокола М4. При чтении или записи параметра его номер подставляется в поле Pn соответствующего запроса. При этом поле Ch (канал) адресованных тепловычислителю запросов должно иметь нулевое значение.

Общая система нумерации параметров тепловычислителя отражена в таблице 1.

Полный их перечень приводится далее.

Таблица 1 – Система нумерации параметров

Диапазон номеров	Тип
0 1023	Настроечные
10242047	Текущие
20484095	Тотальные
81929215	Служебные

2.1 Настроечные параметры

Перечень настроечных параметров тепловычислителя приведен в таблице 2.

При записи и чтении параметров этого типа используется единый формат передачи значений параметров – ASCIIString.

Настроечные параметры могут быть аппаратно защищены от записи с помощью ключа ЗАЩИТА, который находится в монтажном отсеке тепловычислителя. При замкнутом ключе ЗАЩИТА возможна запись только тех параметров, которые сконфигурированы как оперативные.

Таблица 2 – Настроечные параметры тепловычислителя

Таолиц	а 2 – пастр	оечные параметры тепловычислителя 		
Номер	Обозн.	Описание		
0	СП	Схема потребления		
1	ЕИ/Р	Единицы измерений давления		
2	ЕИ/Q	Единицы измерения тепловой энергии		
3	TO	Начальное время		
4	ДО	Начальная дата		
5	РКЧ	Разовая корректировка хода часов		
6	CP	Расчетные сутки		
7	ЧР	Расчетный час		
8	ПЛ	Управление автоматическим переводом часов на зимнее/летнее время		
9	txĸ	Константа температуры холодной воды		
10	Рхк	Константа давления холодной воды		
11	TC	Тип подключаемых датчиков температуры		
12	TC1	Признак использования термопреобразователя ТС1		
13	tк1	Константа температуры по трубопроводу 1		
14	TC2	Признак использования термопреобразователя ТС2		
15	tк2	Константа температуры по трубопроводу 2		
16	TC3	Признак использования термопреобразователя ТСЗ		
17	tк3	Константа температуры по трубопроводу 3		
18	ПД1	Признак использования датчика давления ПД1		
19	ВП1	Верхний предел диапазона измерений датчика ПД1		
20	Рк1	Константа давления по трубопроводу 1		
21	ПД2	Признак использования датчика давления ПД2		
22	ВП2	Верхний предел диапазона измерений датчика ПД2		
23	Рк2	Константа давления по трубопроводу 2		
24	ПД3	Признак использования датчика давления ПДЗ		
25	ВП3	Верхний предел диапазона измерений датчика ПДЗ		
26	Рк3	Константа давления по трубопроводу 3		
27	C1	Цена импульса датчика объема BC1		
28	G в1	Верхний предел диапазона измерений датчика ВС1		
29	Gн1	Нижний предел диапазона измерений датчика ВС1		
30	Скв 1	Верхняя константа объемного расхода по трубопроводу 1		
31	Скн1	Нижняя константа объемного расхода по трубопроводу 1		
32	Gотс1	Уставка на отсечку показаний объемного расхода G1		
33	AG _B 1	Алгоритм использования константы Скв1		
34	AG _H 1	Алгоритм использования константы Скн1		
35	C2	Цена импульса датчика объема BC2		
36	G _B 2	Верхний предел диапазона измерений датчика ВС2		
37	Gн2	Нижний предел диапазона измерений датчика ВС2		
38	Скв2	Верхняя константа объемного расхода по трубопроводу 2		
39	Скн2	Нижняя константа объемного расхода по трубопроводу 2		
40	Gотс2	Уставка на отсечку показаний объемного расхода G2		
41	AG _B 2	Алгоритм использования константы Gкв2		
42	AGн2	Алгоритм использования константы Скн2		
43	C3	Цена импульса датчика объема BC3		
44	G _B 3	Верхний предел диапазона измерений датчика ВСЗ		
45	Gн3	Нижний предел диапазона измерений датчика ВСЗ		
46	Скв3	Верхняя константа объемного расхода по трубопроводу 3		
47	Скн3	Нижняя константа объемного расхода по трубопроводу 3		
48	Gотс3	Уставка на отсечку показаний объемного расхода G3		

Номер	Обозн.	Описание		
49	AG _B 3	Алгоритм использования константы Gкв3		
50	АСн3	Алгоритм использования константы Gкн3		
51	HM	Уставка на небаланс масс {0,00000,0400}.		
52	Мк	Константа часовой массы		
53	АМк	Алгоритм использования константы Мк		
54	ArV	Алгоритм использования произведения р3·V3 вместо разности масс (M1-M2)		
55	Qк	Константа часового тепла		
56	AQк	Алгоритм использования константы Ок		
57	NT	Сетевой номер тепловычислителя		
58	ИД	Идентификатор тепловычислителя		
59	КИ1	Конфигурация интерфейса М4 (разъем Х2)		
60	КИ2	Конфигурация интерфейса RS232 (разъем X3)		
61	КИ3	Конфигурация оптопорта		
62	КД1	Настройка дискретного входа/выхода DI1/DO1 (разъем X4)		
63	АКД1	Алгоритм замыкания дискретного выхода DO1		
64	КД2	Настройка дискретного входа DI2 (разъеме X11)		
65	AHC	Список событий, относимых к нештатным ситуациям		
66	ACT1	Алгоритм работы таймера СТ1		
67	ACT2	Алгоритм работы таймера СТ2		
68	ACT3	Алгоритм работы таймера СТЗ		
69	ACT4	Алгоритм работы таймера СТ4		
70	ACT5	Алгоритм работы таймера СТ5		
71	ACT6	Алгоритм работы таймера СТ6		
72	ACT7	Алгоритм работы таймера СТ7		
73	ACT8	Алгоритм работы таймера СТ8		
74	ACT9	Алгоритм работы таймера СТ9		
75	ACT10	Алгоритм работы таймера СТ10		
76	ACT11	Алгоритм работы таймера СТ11		
77	ACT12	Алгоритм работы таймера СТ12		
78	ACT13	Алгоритм работы таймера СТ13		
79	ACT14	Алгоритм работы таймера СТ14		
80	ACT15	Алгоритм работы таймера СТ15		
81	ACT16	Алгоритм работы таймера СТ16		
82	КТГ	Управление контролем температурного графика		
83	tn1	Температурный график подающего трубопровода, точка 1		
84	tπ2	Температурный график подающего трубопровода, точка 2		
85	tn3	Температурный график подающего трубопровода, точка 3		
86	tπ4	Температурный график подающего трубопровода, точка 4		
87	tn5	Температурный график подающего трубопровода, точка 5		
88	to1	Температурный график обратного трубопровода, точка 1		
89	to2	Температурный график обратного трубопровода, точка 2		
90	to3	Температурный график обратного трубопровода, точка 3		
91	to4	Температурный график обратного трубопровода, точка 4		
92	to5	Температурный график обратного трубопровода, точка 5		
93	КУ1	Управление контролем параметра 1 по уставкам		
94	УВ1	Верхнее значение уставки 1		
95	УН1	Нижнее значение уставки 1		
96	КУ2	Управление контролем параметра 2 по уставкам		
97	УВ2	Верхнее значение уставки 2		
98	УН2	Нижнее значение уставки 2		

Номер	Обозн.	Описание		
99	КУ3	Управление контролем параметра 3 по уставкам		
100	УВ3	Верхнее значение уставки 3		
101	УН3	Нижнее значение уставки 3		
102	КУ4	Управление контролем параметра 4 по уставкам		
103	УВ4	Верхнее значение уставки 4		
104	УН4	Нижнее значение уставки 4		
105	КУ5	Управление контролем параметра 5 по уставкам		
106	УВ5	Верхнее значение уставки 5		
107	УН5	Нижнее значение уставки 5		
108	ПС	Управление выводом суточных квитанций на печать		
109	ПМ	Управление выводом месячных квитанций на печать		
150	PLG	Логин провайдера		
151	PPW	Пароль провайдера		
152	AT1	Набор АТ-команд 1		
153	OTB1	Ответ 1		
154	AT2	Набор АТ-команд 2		
155	OTB2	Ответ 2		
156	AT3	Набор АТ-команд 3		
157	OTB3	Ответ 3		
158	AT4	Набор АТ-команд 4		
159	OTB4	Ответ 4		
160	AT5	Набор АТ-команд 5		
161	OTB5	Ответ 5		
162	IP	ІР- адрес сервера		
163	PORT	Порт сервера		
164	SLG	Логин сервера		
165	SPW	Пароль сервера		
166	Tka	Период отправки Keep Alive		

2.2 Текущие параметры

Перечень отображаемых тепловычислителем текущих параметров приведен в таблице 3.

Таблица 3 – Текущие параметры

	Обозн.	Формот	_
Номер	О003н.	Формат	Описание
1024	T	TIME	Текущее Время
1025	Д	DATE	Текущая дата
1026	СП	IntU	Текущая схема потребления
1027	G1	IEEEFloat	Объемный расход теплоносителя по трубопроводу 1
1028	G2	IEEEFloat	Объемный расход теплоносителя по трубопроводу 2
1029	G3	IEEEFloat	Объемный расход теплоносителя по трубопроводу 3
1030	Gм1	IEEEFloat	Массовый расход теплоносителя по трубопроводу 1
1031	Gм2	IEEEFloat	Массовый расход теплоносителя по трубопроводу 2
1032	Gм3	IEEEFloat	Массовый расход теплоносителя по трубопроводу 3
1033	t1	IEEEFloat	Температура теплоносителя по трубопроводу 1
1034	t2	IEEEFloat	Температура теплоносителя по трубопроводу 2
1035	dt	IEEEFloat	Разность температур
1036	t3	IEEEFloat	Температура теплоносителя по трубопроводу 3
1037	tx	IEEEFloat	Температура холодной воды
1038	t4	IEEEFloat	Температура по дополнительному каналу измерений
1039	P1	IEEEFloat	Давление теплоносителя по трубопроводу 1
1040	P2	IEEEFloat	Давление теплоносителя по трубопроводу 2
1041	P3	IEEEFloat	Давление теплоносителя по трубопроводу 3
1042	Px	IEEEFloat	Давление холодной воды
1043	P4	IEEEFloat	Давление по дополнительному каналу измерений
1044	ДС	FLAGS	Сборка флагов диагностических сообщений
1045	HC	FLAGS	Сборка флагов нештатных ситуаций

2.3 Тотальные параметры

К тотальным относятся параметры, значения которых накапливаются нарастающим итогом в течение всего времени эксплуатации тепловычислителя.

Перечень тотальных параметров приведен в таблице 4.

Таблица 4 – Тотальные параметры тепловычислителя

таолица 4 — тотальные параметры тепловычислителя			
Номер	Обозн.	Формат	Описание
2048	V1	MIXED	Объем теплоносителя по трубопроводу 1
2049	V2	MIXED	Объем теплоносителя по трубопроводу 2
2050	V3	MIXED	Объем теплоносителя по трубопроводу 3
2051	M1	MIXED	Масса теплоносителя по трубопроводу 1
2052	M2	MIXED	Масса теплоносителя по трубопроводу 2
2053	M3	MIXED	Масса теплоносителя по трубопроводу 3
2054	Q	MIXED	Тепловая энергия
2055	Qг	MIXED	Тепловая энергия ГВС
2056	Ти	IEEEFloat	Время интегрирования
2057	Тн	IEEEFloat	Время нештатной работы
2058	Тш	IEEEFloat	Время штатной работы
2059	CT1	IEEEFloat	Время счета таймера СТ1
2060	CT2	IEEEFloat	Время счета таймера СТ2
2061	CT3	IEEEFloat	Время счета таймера СТЗ
2062	CT4	IEEEFloat	Время счета таймера СТ4
2063	CT5	IEEEFloat	Время счета таймера СТ5
2064	CT6	IEEEFloat	Время счета таймера СТ6
2065	CT7	IEEEFloat	Время счета таймера СТ7
2066	CT8	IEEEFloat	Время счета таймера СТ8
2067	CT9	IEEEFloat	Время счета таймера СТ9
2068	CT10	IEEEFloat	Время счета таймера СТ10
2069	CT11	IEEEFloat	Время счета таймера СТ11
2070	CT12	IEEEFloat	Время счета таймера СТ12
2071	CT13	IEEEFloat	Время счета таймера СТ13
2072	CT14	IEEEFloat	Время счета таймера СТ14
2073	CT15	IEEEFloat	Время счета таймера СТ15
2074	CT16	IEEEFloat	Время счета таймера СТ16

2.4 Служебные параметры

К служебным относятся параметры тепловычислителя, несущие дополнительную информацию о его состоянии и режимах функционирования. Как правило, такая информация необходима при проведении пусконаладочных работ и при контроле состояния тепловычислителя в ходе эксплуатации. Номенклатура служебных параметров отражена в таблицах 5 и 6.

Таблица 5 – Результаты тестов входных цепей

Номер	Обозн.	Формат	Входной сигнал
8192	X5	IEEEFloat	Harana and a same and a same a
8193	X7	IEEEFloat	Числоимпульсный сигнал с частотой до 1000 Гц
8194	X9	IEEEFloat	с частотой до 1000 г ц
8195	X6	IEEEFloat	
8196	X8	IEEEFloat	Ток 020 мА
8197	X10	IEEEFloat	
8198	X12	IEEEFloat	
8199	X13	IEEEFloat	Сопротивление 0142 Ом
8200	X14	IEEEFloat	

Таблица 6 – Системная информация

Тиотпіди	5 — Системная информация		1
Номер	Обозначение	Формат	Примечание
8224	Информация о приборе	ASCIIString	Прибор, модель, версия и контрольная сумма ПО
8227	Состояние ключа защита	IntU	0 — разомкнуто; 1 — замкнуто.
8228	Наличие сигнала на дискретном входе DI1 (X4)	IntU	0 – нет; 1 – есть.
8229	Состояние дискретного выхода DO1 (X4)	IntU	0 — разомкнуто; 1 — замкнуто.
8230	Номер текущего раздела	IntU	
8231	Дата создания текущего раздела	ARJDATE	
8232	Системная диагностика	SEQUENCE	Дамп системной информации, каждый элемент оторого обрамлен тегами, эответствующими формату этого элемента
8233	Внешнее питание	IntU	0 – нет; 1 – есть.
8256	Заводской номер	IntU	
8257	Код изготовителя	IntU	
8258	Идентификатор модуля М941	OCTET_STRING	
8259	Наличие сигнала на дискретном входе DI2 (X11)	IntU	0 – нет; 1 – есть.
8260	Контрольный код настроечной БД	OCTET_STRING	

3 Архивы

Состав архивов тепловычислителя приведен в таблице 7. Все архивы можно условно разделить на две группы: интервальные и асинхронные. К интервальным относятся архивы, момент формирования которых жестко привязан к отсчетам текущего времени и даты: к смене часа, к наступлению новых суток или месяца. Таковыми являются часовые, суточные, месячные и контрольные архивы.

К асинхронным архивам относятся архив событий и архив изменений БД. Момент формирования записи в асинхронный архив определяется временем наступления фиксируемого события.

Таблица 7 – Архивы тепловычислителя

Тип	Код по протоколу М4 (Rectype)
Часовой	0
Суточный	1
Месячный	3
Контрольный	7
Изменения БД	4
События	6

3.1 Интервальные архивы

Часовой, суточный и месячный архивы тепловычислителя содержат средние и итоговые значения измеряемых и вычисляемых параметров за соответствующий интервал времени. Эти архивы имеют единую структуру записи, которая представлена в таблице 8.

В контрольный архив тепловычислителя заносятся значения измеряемых и вычисляемых тепловычислителем параметров, имевших место на момент завершения каждого суточного интервала. Структура записи в контрольный архив приведена в таблице 9.

Таблица 8 – Структура записи в интервальный архив

таолица о	– Структу	ра записи в и	нтервальный архив
№ п/п	Обозн.	Формат	Описание
1	T	TIME	Время создания записи
2	Д	DATE	Дата создания записи
3	СП	IntU	Схема потребления на момент создания записи
4	t1	IEEEFloat	Температура теплоносителя по трубопроводу 1
5	t2	IEEEFloat	Температура теплоносителя по трубопроводу 2
6	dt	IEEEFloat	Разность температур
7	t3	IEEEFloat	Температура теплоносителя по трубопроводу 3
8	tx	IEEEFloat	Температура холодной воды
9	tв	IEEEFloat	Температура воздуха
10	P1	IEEEFloat	Давление теплоносителя по трубопроводу 1
11	P2	IEEEFloat	Давление теплоносителя по трубопроводу 2
12	P3	IEEEFloat	Давление теплоносителя по трубопроводу 3
13	Px	IEEEFloat	Давление холодной воды
14	P4	IEEEFloat	Давление по дополнительному каналу измерения
15	V1	IEEEFloat	Объем теплоносителя по трубопроводу 1
16	V2	IEEEFloat	Объем теплоносителя по трубопроводу 2
17	V3	IEEEFloat	Объем теплоносителя по трубопроводу 3
18	M1	IEEEFloat	Масса теплоносителя по трубопроводу 1
19	M2	IEEEFloat	Масса теплоносителя по трубопроводу 2
20	M3	IEEEFloat	Масса теплоносителя по трубопроводу 3
21	Q	IEEEFloat	Тепловая энергия
22	QΓ	IEEEFloat	Тепловая энергия ГВС

№ п/п	Обозн.	Формат	Описание
23	Ти	IEEEFloat	Время работы
24	Тн	IEEEFloat	Время нештатной работы
25	Тш	IEEEFloat	Время штатной работы
26	CT1	IEEEFloat	Время счета таймера СТ1
27	CT2	IEEEFloat	Время счета таймера СТ2
28	CT3	IEEEFloat	Время счета таймера СТЗ
29	CT4	IEEEFloat	Время счета таймера СТ4
30	CT5	IEEEFloat	Время счета таймера СТ5
31	CT6	IEEEFloat	Время счета таймера СТ6
32	CT7	IEEEFloat	Время счета таймера СТ7
33	CT8	IEEEFloat	Время счета таймера СТ8
34	CT9	IEEEFloat	Время счета таймера СТ9
35	CT10	IEEEFloat	Время счета таймера СТ10
36	CT11	IEEEFloat	Время счета таймера СТ11
37	CT12	IEEEFloat	Время счета таймера СТ12
38	CT13	IEEEFloat	Время счета таймера СТ13
39	CT14	IEEEFloat	Время счета таймера СТ14
40	CT15	IEEEFloat	Время счета таймера СТ15
41	CT16	IEEEFloat	Время счета таймера СТ16
42	ДС	FLAGS	Сборка флагов диагностических сообщений
43	НС	FLAGS	Сборка флагов нештатных ситуаций

Таблица 9 – Структура записи в контрольный архив

№ п/п	Обозн.	Формат	Описание
1	T	TIME	Время создания записи
2	Д	DATE	Дата создания записи
3	СП	IntU	Схема потребления на момент создания записи
4	G1	IEEEFloat	Объемный расход теплоносителя по трубопроводу 1
5	G2	IEEEFloat	Объемный расход теплоносителя по трубопроводу 2
6	G3	IEEEFloat	Объемный расход теплоносителя по трубопроводу 3
7	Gм1	IEEEFloat	Массовый расход теплоносителя по трубопроводу 1
8	Gм2	IEEEFloat	Массовый расход теплоносителя по трубопроводу 2
9	Gм3	IEEEFloat	Массовый расход теплоносителя по трубопроводу 3
10	t1	IEEEFloat	Температура теплоносителя по трубопроводу 1
11	t2	IEEEFloat	Температура теплоносителя по трубопроводу 2
12	dt	IEEEFloat	Разность температур
13	t3	IEEEFloat	Температура теплоносителя по трубопроводу 3
14	tx	IEEEFloat	Температура холодной воды
15	t4	IEEEFloat	Температура по дополнительному каналу измерения
16	P1	IEEEFloat	Давление теплоносителя по трубопроводу 1
17	P2	IEEEFloat	Давление теплоносителя по трубопроводу 2
18	P3	IEEEFloat	Давление теплоносителя по трубопроводу 3
19	Px	IEEEFloat	Давление холодной воды
20	P4	IEEEFloat	Давление по дополнительному каналу измерения
21	V1	MIXED	Объем теплоносителя по трубопроводу 1
22	V2	MIXED	Объем теплоносителя по трубопроводу 2
23	V3	MIXED	Объем теплоносителя по трубопроводу 3
24	M1	MIXED	Масса теплоносителя по трубопроводу 1
25	M2	MIXED	Масса теплоносителя по трубопроводу 2

№ п/п	Обозн.	Формат	Описание
26	M3	MIXED	Масса теплоносителя по трубопроводу 3
27	Q	MIXED	Тепловая энергия
28	Qг	MIXED	Тепловая энергия ГВС
29	Ти	IEEEFloat	Время работы
30	Тн	IEEEFloat	Время нештатной работы
31	Тш	IEEEFloat	Время штатной работы
32	CT1	IEEEFloat	Время счета таймера СТ1
33	CT2	IEEEFloat	Время счета таймера СТ2
34	CT3	IEEEFloat	Время счета таймера СТЗ
35	CT4	IEEEFloat	Время счета таймера СТ4
36	CT5	IEEEFloat	Время счета таймера СТ5
37	CT6	IEEEFloat	Время счета таймера СТ6
38	CT7	IEEEFloat	Время счета таймера СТ7
39	CT8	IEEEFloat	Время счета таймера СТ8
40	CT9	IEEEFloat	Время счета таймера СТ9
41	CT10	IEEEFloat	Время счета таймера СТ10
42	CT11	IEEEFloat	Время счета таймера СТ11
43	CT12	IEEEFloat	Время счета таймера СТ12
44	CT13	IEEEFloat	Время счета таймера СТ13
45	CT14	IEEEFloat	Время счета таймера СТ14
46	CT15	IEEEFloat	Время счета таймера СТ15
47	CT16	IEEEFloat	Время счета таймера СТ16
48	ДС	FLAGS	Сборка флагов диагностических сообщений
49	HC	FLAGS	Сборка флагов нештатных ситуаций

3.2 Асинхронные архивы

Данные асинхронных архивов передаются тепловычислителем в текстовом формате ASCIIString. Представление текстовой информации подразумевает ее непосредственный вывод на терминал оператора.

4 Общие требования к процедурам обмена

4.1 Инициализация обмена

На запрос сеанса связи тепловычислитель отвечает сообщением:

0x3F

DVC_L DVC_H VX

Где:

DVC_L, DVC_H – байты идентификатора устройства, равные, соответственно 0x92 0x29; VX – идентификатор исполнения, который может принимать значения 0x80 и выше.

4.2 Деление архивов на разделы

В тепловычислителе предусмотрена возможность систематизации архивной информации пользователем путем ее деления на разделы. Такое структурирование аналогично размещению различных данных в папках с разными наименованиями на жестком диске персонального компьютера.

В качестве названий разделов выступают порядковые номера их создания. Каждому новому разделу автоматически присваивается номер, равный номеру предыдущего раздела, увеличенному на единицу. Накапливаемые тепловычислителем архивы всегда помещаются в последний созданный раздел. Данные предыдущих разделов сохраняются неизменными и доступными для чтения.

Для создания нового раздела тепловычислителю должен быть передан запрос управления счетом, опция CMD которого равна 1.

При передаче тепловычислителю запроса со значением опции CMD, отличным от 1, будет сформировано сообщение об ошибке с кодом 0x02 «Недопустимые значения параметров запроса», а сам запрос будет игнорирован.

4.3 Ограничения в реализации протокола

При реализации процедур обмена с тепловычислителем следует учитывать перечисленные ниже ограничения.

Максимальное число записываемых/считываемых одним запросом параметров – 32.

Максимальный размер сообщения как адресованного тепловычислителю, так и исходящего от тепловычислителя, не может превышать 1024 байтов. Входящие сообщения большего размера не обрабатываются. Размер исходящих сообщений ограничивается с точностью до одного логически завершенного структурного элемента. Например, при запросе большого количества архивных записей, их количество в ответе будет ограничено максимальным значением, обеспечивающим вышеизложенное требование к общему размеру сообщения.

Запросы чтения архивов, устанавливающие обратный хронологический порядок сортировки записей в ответе тепловычислителя (сортировка по убыванию даты создания), не поддерживаются. На такой запрос формируется сообщение об ошибке с кодом 0x02 «Недопустимые значения параметров запроса».

4.4 Таймауты на магистрали

Требования к таймаутам на магистрали должны определяться с учетом характеристик тепловычислителя, отраженных на рисунке 1 и в таблице 10.

Рисунок 1 – Диаграмма магистрального обмена с тепловычислителем

Tr ~	10	n			
Габлица	1()_	- Кизиениа	TAMMANTOR	uа	магистрали
таолица	10	JIId ICIIIII	Tarima y TOE	mu	mai no i pasin

Обозн.	Параметр		Значение, мс	
			Макс	
T_{start}	Таймаут после передачи стартовой последовательности	0	-	
T_{proc}	Время обработки запроса	-	2500	