

Deep Q-network Development and Validation based on Interactive 2D Video Games

尤存翰 李睿潜 王祎 张梓贤

Outline

Introduction of Interactive 2D Video Games

Structure of Deep Q-Network for Metroidvania Games

Evaluation for Game Al Performance

Future Works

1. Introduction of Interactive 2D Video Games

Metroidvania Games

Hollow Knight

Celeste

1. Introduction of Interactive 2D Video Games

- Common methods for game AI:
 - traditional SOTA algorithm

Hanoi

Tetris

- deep learning algorithms
 - convolutional neural network(CNN)

Mahjong

deep Q-network(DQN)

Pong

2. Structure of Deep-Q-Network for Metroidvania Games

2.1 Deep Neural Network in DQN

2.2 Q-Learning Algorithm in DQN

$$Q(s_{t+1}, a_{t+1}) = Q(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

$$= O(s_t, a_t) + \alpha(r + \gamma maxQ(s', a') - Q(s_t, a_t))$$

- reward: add the differences of reward for different operations at different locations to accelerate toward optimal solutions
- discount: reduce discount to prioritize current benefits

2.3 Operation Selection in DQN

- ϵ -greedy policy of action selection
 - if random() < ϵ :
 - select random action
 - else:
 - select $\underset{a}{\operatorname{ergmax}} Q(s_t, a)$

 We define some basic knowledge to constrain random action, thereby increasing learning efficiency

3. Evaluation for Game Al Performance

Hollow Knight

	resNet18	resNet34
Clearance Rate	18.22%	22.49%
Total Average of Life	0.28	0.3
Average Life of Pass	1.53	1.33
Average time of Pass	57.12s	62.33s

4. Future Works

- Experiments for validation
 - check whether the model can pass under several circumstances
 - speed up
 - shelter
 - ban certain operations
 - •
- Experiments for more games
 - Ori and the Will of the Wisps

