§1 Lecture 01-29

§1.1 Multilinear functions or forms

Note 1.1. A form is just another way of saying function.

$$f: \underbrace{V \times \cdots \times V}_{k} \to F$$

Given a basis e_1, \ldots, e_n of V, the k-multilinear form f is determined by

$$(f(e_{i1},\ldots,e_{ik}))_{1\leq i_1,\ldots,i_k\leq n}$$

Definition 1.2. f is symmetric if

$$f(v_{\sigma 1}, \dots, v_{\sigma k}) = f(v_1, \dots, v_k) \quad \forall \sigma \in S_k$$

Definition 1.3. f is alternating if

$$f(v_{\sigma 1}, \dots, v_{\sigma k}) = \operatorname{sign}(\sigma) f(v_1, \dots, v_k) \quad \forall \sigma \in S_k$$

Sign is defined as follows:

$$S_k \to \{1,-1\}$$

$$\sigma \mapsto (-1)^{\text{number of transposition needed to write }\sigma}$$

Remark 1.4. If f is symmetric, then f is determined by

$$(f(v_{i1},\ldots,v_{ik}))_{1\leq i_1\leq i_2\leq \cdots\leq i_k\leq n}$$

If f is alternating, then f is determined by

$$(f(v_{i1},\ldots,v_{ik}))_{1 < i_1 < i_2 < \cdots < i_k < n}$$

Theorem 1.5

The set of alternating n-multilinear functions on a vector space of dimension n is a one-dimensional vector space.

Example 1.6

n = 2. $V = Fe_1 \oplus Fe_2$.

Two different approaches.

1.

$$f(ae_1 + be_2, ce_1 + de_2) = acf(e_1, e_1) + adf(e_1, e_2) + bcf(e_2, e_1) + bdf(e_2, e_2)$$

If alternating: = $(ad - bc)f(e_1, e_2)$

2.

$$f(ae_1 + be_2, ce_1 + de_2) = f(ae_1 + be_2, (-\frac{c}{a}b + d)e_2)$$

$$= (-\frac{bc}{a} + d)f(ae_1 + be_2, e_2)$$

$$= (-\frac{bc}{a} + d)f(ae_1, e_2)$$

$$= (-bc + ad)f(e_1, e_2)$$

Definition 1.7. The unique *n*-multilinear alternating function f satisfying $f(e_1, \ldots, e_n) = 1$ is called the determinant relative to (e_1, \ldots, e_n) .

$$\det: V^n \to F$$

Note 1.8. $\det_B(v_1,\ldots,v_n)$ is the value of the determinant relative to B, at (v_1,\ldots,v_n) .

Properties: $\det_B(v_1,\ldots,v_n) = 0 \Leftrightarrow (v_1,\ldots,v_n)$ are linearly dependent.

Proof. \Leftarrow If (v_1, \ldots, v_n) are linearly dependent, then WLOF, $v_1 = \lambda_2 v_2 + \cdots + \lambda_n v_n$.

$$\det(v_1, ..., v_n) = \det(\lambda_2 v_2 + \dots + \lambda_n v_n, v_2 \dots, v_n)$$

$$= \lambda_2 \det(v_2, v_2, v_3, \dots, v_n) + \lambda_3 \det(v_3, v_2, v_3, \dots, v_n) + \dots + \lambda_n \det(v_n, v_2, v_3, \dots, v_n)$$

$$= \lambda_2 0 + \dots + \lambda_n 0 = 0$$

 \Rightarrow Left as an exercise

Proposition 1.9

For (v_1, \ldots, v_n) in a vector space of dim n, the following are equivalent:

- 1. $\det_B(v_1,\ldots,v_n)\neq 0$
- 2. (v_1, \ldots, v_n) are linearly independent 3. (v_1, \ldots, v_n) span V
- 4. (v_1, \ldots, v_n) form a basis.

§1.2 Determinent of $T: V \to V$

Proposition 1.10

There is a unique scalar d_T such that $\det_B(T(v_1), \dots, T(v_n)) = d_T \det_B(v_1, \dots, v_n)$.

Proof. The function

$$(v_1,\ldots,v_n)\mapsto \det_B(T(1),\ldots,T(v_n))$$

is a function $V^n \to F$ which is also n-multilinear and alternating.

$$\det'(v_{1},...,v_{n}) = \det(T(v_{1}),...,T(v_{n}))$$

$$\det'(\lambda_{1}v_{1} + \lambda'_{1}v'_{1},v_{2},...,v_{n}) = \det(T(\lambda_{1}v_{1} + \lambda'_{1}v'_{1}),T(v_{2}),...,T(v_{n}))$$

$$= \det(\lambda_{1}T(v_{1}) + \lambda'_{1}T(v'_{1}),T(v_{2}),...,T(v_{n}))$$

$$= \lambda_{1}\det(T(v_{1}),T(v_{2}),...,T(v_{n})) + \lambda'_{1}\det(T(v'_{1}),T(v_{2}),...,T(v_{n}))$$

$$= \lambda_{1}\det'(v_{1},...,v_{n}) + \lambda'_{1}\det'(v'_{1},v_{2},...,v_{n})$$

This proves that this function is still multi-linear. We know that it's a multiple because we showed that the set of alternating functions is one-dimensional.

Therefore $\det_B(T(-),\ldots,T(-))$ is a scalar multiple of \det_B .

Definition 1.11. The determinent of T is the unique scalar det(T) such that

$$\det_{R}(T(v_1),\ldots,T(v_n)) = \det(T) \cdot \det_{R}(v_1,\ldots,v_n)$$

Note that this defining property is independent of B.

§1.3 Next week

Let $T: V \to V$. Then T generates a subring of $\operatorname{End}_F(V)$.

$$F[T] = \{a_0I + a_1T + a_2T^2 + \dots + a_kT^k\} \quad a_0, \dots, a_k \in F$$

F[T] is a quotient of F[x]. $F[x] \to F[T]$, $p(x) \mapsto p(T)$.

$$I_T = \{p(x) \in F[x] \text{ such that } p(T) = 0_v\}$$

 I_T is an ideal in F[x].

 $\exists ! P_T(x)$ monic such that $I_T = (p_T(x))$. $P_T(x)$ is the min poly.

Characteristic Poly: det(xI - T).