Séance 1: Généralités sur l'analyse Multidimensionnelle

Indices statistiques

Sébastien Gadat

Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS

www.lsp.ups-tlse.fr/gadat

Première partie I

Introduction à l'analyse des données

Définitions élémentaires

variables quantitatives et Statistiques univariées ndice de dispersion, statistiques univariées Corrélations, statistiques bi-variées Covariances, statistiques bi-variées

Interprétation géométrique de quelques indices Interprétation géométrique de quelques indices Un exemple

Stabilité des indices statistiques Représentation graphique - Boxplot Représentation graphique - Histogramme

Définitions élémentaires

- Unités statistiques ou individus, numérotés de 1 à n
- Poids sur les individus
- Poids normalisés
- Objectifs:
 - Statistique inférentielle :
 - Statistique descriptive :
- Variables
 - Quantitatives
 - Qualitatives
 - Explicatives
 - À expliquer

Variables quantitatives et Statistiques univariées

Variables quantitatives et Statistiques univariées

- Espace des Variables $x = (x^1, \dots, x^p) \in \mathbb{R}^p$
- x_i^j est la valeur de la variable x^j pour l'individu i

Généralités et Définitions

- Moyenne empirique de x^{j} :
- Nuage d'individus X qui synthétise les données

$$X = \begin{pmatrix} x_1^1 & \dots & x_1^j & \dots & x_1^p \\ \vdots & \ddots & \dots & \vdots \\ x_i^1 & \dots & x_i^j & \ddots & x_i^p \\ \vdots & \dots & \ddots & \ddots & \vdots \\ x_n^1 & \dots & x_i^j & \dots & x_n^p \end{pmatrix}$$

Définitions élémentaires

Variables quantifatives et Statistiques univariées
Indice de dispersion, statistiques univariées
Corrélations, statistiques bi-variées
Covariances, statistiques bi-variées
Quelques exemples
Interprétation géométrique de quelques indices
Interprétation géométrique de quelques indices
Un exemple
Stabilité des indices statistiques
Pagrassantation graphique - Royalet

Variables quantitatives et Statistiques univariées

- Nuage centré X̄ :
- Une variable x^j est dit centré si et seulement si sa moyenne sur les individus est nulle.
- En pratique n >> p

Indice de dispersion, statistiques univariées

Indice de dispersion, statistiques univariées

Variance de x^j

$$AVar(x^j) = = =$$

Propriété

$$AVar(\bar{x^j}) = Var(x^j)$$

- La variance est invariante par translation
- $AVar(ax^{j})=$
- Écart type $\sigma(x^j) =$
- Variable centrée réduite construite à partir de xⁱ

Définitions élémentaires
Variables quantitatives et Statistiques univariées
Indice de dispersion, statistiques univariées
Corrélations, statistiques bi-variées
Covariances, statistiques bi-variées
Cuelques exemples
Interprétation géométrique de quelques indices
Interprétation géométrique de quelques indices
Interprétation géométrique de quelques indices

Corrélations, statistiques bi-variées

 La corrélation est un indice de liaison entre 2 variables x^j et x^k défini par

$$\rho(x^j, x^k) =$$

C'est un coefficient compris entre −1 et 1 :

$$-1 \le \rho(x^j, x^k) \le 1$$

• ρ est indépendant de l'unité de mesure, invariant par translation, et homothétie

Définitions élémentaires Variables quantitatives et Statistiques univariées Indice de dispersion, statistiques univariées Corrélations, statistiques bi-variées Covariances, statistiques bi-variées Qualques examples

Interprétation géométrique de quelques indice Interprétation géométrique de quelques indice Un exemple Stabilité des indices statistiques

Stabilité des indices statistiques
Représentation graphique - Boxplot
Représentation graphique - Histogramme:

Corrélations, statistiques bi-variées

Dans le cas de variables réduites :

$$\rho(y^j, y^k) =$$

Propriété :

$$|\rho(x^j, x^k)| = 1 \iff x^j = ax^k + b$$
 avec $sgn(a) = sgn(\rho)$

Définitions élémentaires Variables quantitatives et Statistiques univariées Indice de dispersion, statistiques univariées Cordiations, statistiques bi-variées Covariances, statistiques bi-variées Quelques exemples Interprétation géométrique de quelques indices Interprétation géométrique de quelques indices Un exemple

Corrélations, statistiques bi-variées

- Interprétation du coefficient ρ :
 - Si $\rho(x^j, x^k)$ proche de 1, x^j et x^k sont fortement corrélées
 - Si $\rho(x^i, x^k)$ proche de -1, x^i et x^k sont fortement anti-corrélées
 - Si $\rho(x^j, x^k)$ proche de 0, x^j et x^k sont non-corrélées
- La corrélation mesure la dépendance linéaire entre x^j et x^k

Définitions élémentaires
Variables quantitatives et Statistiques univariées
Indice de dispersion, statistiques univariées
Corrélations, statistiques bi-variées
Covariances, statistiques bi-variées
Quelques exemples
Interprétation géométrique de quelques indices
Interprétation géométrique de quelques indices
Un exemple
Stabilité des indices statistiques

Covariances, statistiques bi-variées

• On appelle covariance de x^j et x^k la quantité

$$Cov(x^j, x^k) =$$

- La covariance est une forme bilinéaire symétrique positive.
- On a bien sûr :

$$Cov(x^j, x^j) = Var(x^j)$$

Definitions elementaires
Variables quantitatives et Statistiques univari
Indice de dispersion, statistiques univariées
Corrélations, statistiques bi-variées
Covariances, statistiques bi-variées
Quelques exemples
Interprétation géométrique de quelques indic
Un exemple
Stabilité des indices statistiques
Stabilité des indices statistiques
Représentation graphique - Royolot

Covariances, statistiques bi-variées

On synthétise ces informations bivariées dans la matrice de Variance / Covariance symétrique définie positive :

$$V = \begin{pmatrix} Var(x^1) & \dots & Cov(x^1; x^j) & \dots & Cov(x^1; x^p) \\ \vdots & \ddots & \dots & & \vdots \\ Cov(x^i; x^1) & \dots & Cov(x^i; x^j) & \ddots & Cov(x^i; x^p) \\ \vdots & \dots & \ddots & \ddots & \vdots \\ Cov(x^p; x^1) & \dots & Cov(x^p; x^j) & \dots & Cov(x^p; x^p) \end{pmatrix}$$

finitions elementaires

Variables quantitatives et Statistiques univariées Indice de dispersion, statistiques univariées Corrélations, statistiques bi-variées

Quelques exemples

Interpretation geometrique de quelques indices Interprétation géométrique de quelques indices Un exemple

Stabilité des indices statistiques

Représentation graphique - Boxplot

Quelques exemples

Définitions élémentaires Variables quantitatives et Statistiques univariées Indice de dispersion, statistiques univariées Corrélations, statistiques bi-variées Covariances, statistiques bi-variées Quelques exemples

Interprétation géométrique de quelques indices Interprétation géométrique de quelques indices Un exemple

Représentation graphique - Boxplot Représentation graphique - Histogramme

Interprétation géométrique de quelques indices statistiques

On munit \mathbb{R}^p du produit scalaire défini par

$$\langle x^j, x^k \rangle = \sum_{i=1}^n p_i x_i^j x_i^k$$

La norme associée vaut

$$||x^j|| = \langle x^j, x^j \rangle^{1/2}$$

La moyenne empirique est donnée par

$$\bar{x^j} = \langle x^j, \mathbf{1_n} \rangle$$

 x^{j} centrée si et seulement si x^{j} orthogonal à $\mathbf{1}_{\mathbf{n}}$.

Variables quantitatives et Statistiques univariées
Indice de dispersion, statistiques univariées

corrélations, statistiques bi-variées
corrélations, statistiques bi-variées
covinances, statistiques bi-variées

Interprétation géométrique

Interprétation géométrique de quelques indices Un exemple

Représentation graphique - Boxplot
Représentation graphique - Histogramme

Interprétation géométrique de quelques indices statistiques

• Décomposition orthogonale de x^j :

$$\mathbf{x}^{j} = \bar{\mathbf{x}}^{j} \mathbf{1}_{n} + \underbrace{\left(\mathbf{x}^{j} - \bar{\mathbf{x}}^{j} \mathbf{1}_{n}\right)}_{\tilde{\mathbf{x}}^{j} \in \mathbf{1}_{n}^{\perp}}$$

•
$$Var(x^j) = \|\tilde{x}^j\|^2$$
 $\sigma(x^j) = \|\tilde{x}^j\|$

•
$$Cov(x^j; x^k) = \langle \tilde{x}^j; \tilde{x}^k \rangle$$

initions elementaires

Variables quantitatives et Statistiques univariées

ndice de dispersion, statistiques univariées

Covariances, statistiques bi-variées

Quelques exemples

Interprétation géométrique de quelques indice Interprétation géométrique de quelques indice

Un exemple

Stabilite des indices statistiques

Représentation graphique - Revolet

Représentation graphique - Histogramme

Un exemple

On se donne 5 individus équipondérés décrits par deux variables

$$X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 4 & 0 \\ 7 & 1 \\ 7 & -1 \end{pmatrix}$$

Pour chacune des variables, calculer leurs moyennes, donner le tableau centré associé, la matrice de variance/covariance ainsi que celle des corrélations.

Définitions élémentaires Variables quantitatives et Statistiques univarié Indice de dispersion, statistiques univariées Corrélations, statistiques bi-variées Covariances, statistiques bi-variées Quelques exemples Interprétation géométrique de quelques indice Interprétation géométrique de quelques indice Un exemple Stabilité des indices statistiques Représentation graphique - Boxplot

Stabilité des indices statistiques

- Ces indices ne sont que des résumés numériques. Ils sont très sensibles aux "outlayers". Représenter les données dans une "bonne" base sera une nécessité.
- Moyenne plus stable que la variance.
- Médiane plus stable que les quartiles.
- Médiane plus stable que la moyenne.
- Quartiles plus stables que la variance.
- Avant des analyses complexes, une étude unidimensionnelle (et bidimensionnelle) s'impose en général

finitions elementaires

variables quantitatives et statistiques univariées Indice de dispersion, statistiques univariées Corrélations, statistiques bi-variées Covariances, statistiques bi-variées

Queiques exemples

Interpretation geometrique de quelques indice: Interprétation géométrique de quelques indice: Un exemple

Stabilité des indices statistiques

Représentation graphique - Boxplot Représentation graphique - Histogramm

Représentation graphique - Boxplot

Sébastien Gadat

Séance 1: Généralités sur l'analyse Multidimensionnelle

efinitions elementaires

variables qualitatives et datistiques univariées ndice de dispersion, statistiques univariées Covariances, statistiques bi-variées Covariances, statistiques bi-variées

Quelques exemples

Interprétation géométrique de quelques indice Interprétation géométrique de quelques indice Un exemple

Stabilité des indices statistiques
Représentation graphique - Boxplot
Représentation graphique - Histogrammes

Représentation graphique -Histogrammes

