Name: Sachid Deshmukh, Michael Yampol, Vishal Arora, Ann Ferrara

Date: 09-25-2019

Assignment: Data 621 HW-1

Contents

Data Exploration	1
Data Preparation	4
Build Models	6
	_
Select Models	13

Data Exploration

Let's load the training dataset and take a preview

##		INDEX	TARGET_WINS	TEAM_BATTING_H	TEAM_BATTING_2B	TEAM_BATTING_3B
##	1	1	39	1445	194	39
## :	2	2	70	1339	219	22
## :	3	3	86	1377	232	35
##	4	4	70	1387	209	38
##	5	5	82	1297	186	27
##	6	6	75	1279	200	36
##		TEAM_B	ATTING_HR T	EAM_BATTING_BB 1	FEAM_BATTING_SO !	TEAM_BASERUN_SB
## :	1		13	143	842	NA
## :	2		190	685	1075	37
## :	3		137	602	917	46
##	4		96	451	922	43
##	5		102	472	920	49
##	6		92	443	973	107
##		TEAM_B	ASERUN_CS T	EAM_BATTING_HBP	TEAM_PITCHING_H	TEAM_PITCHING_HR
##	1		NA	NA	9364	84
## :	2		28	NA	1347	191
## :	3		27	NA	1377	137
##	4		30	NA	1396	97
## :	5		39	NA	1297	102
##	6		59	NA	1279	92
##		TEAM_P	ITCHING_BB	TEAM_PITCHING_SO	TEAM_FIELDING_	E TEAM_FIELDING_DP
##	1		927	5456	5 101:	l NA
## :	2		689	1082	19:	3 155
## :	3		602	917	17	153
##	4		454	928	16	156
##	5		472	920	13	3 168
##	6		443	973	3 12:	3 149

Train Data has 2276 observations and 17 variables.

Following columns have missing values.

TEAM_BATTING_SO: Strikeouts by batters

TEAM_BASERUN_SB : Stolen bases
TEAM_BASERUN_CS : Caught stealing

TEAM_BATTING_HBP: Batters hit by pitch (get a free base)

TEAM_PITCHING_SO: Strikeouts by batters

TEAM_FIELDING_DP: Double Plays

Let's look at the target variable which is TARGET_WINS

1] Summary

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 71.00 82.00 80.79 92.00 146.00
```

As we can see here Target_Wins has a range from 0 to 146. Median and Mean values are close to each other indicating there is no skew in the data

2] Distribution

Target variable is normally distributed with mean as 80.79. Histogram above shows that new skew in the data.

3] Box Plot

Box plot for Target_Wins variable is very symmetric. This proves our point of no data skew. There seems to be two outliers in the box plot. We will keep then in data for now

Let's look at correlation plot of train dataframe

Above correlation plot shows that Target_Wins is highly correlated with following variables

Positive correlation

- 1] Team_Batting_H
- 2] Team_Batting_2B
- 3] Team_Batting_BB
- 4] Team_Batting_HR
- 5] Team_Pitching_HR
- 6]Team_Pitching_BB

Negative Correlation

- 1] Team_Fielding_E
- 2] Team_Pitching_H

Data Preparation

We will do following data clean up and data transformations task on the raw data

- 1] Drop columns with null values from training data frame
- 2] Combine Team_Batting_H, Team_Batting_2B and Team_Batting_3B variables into one by taking sum
- 3] Combine Team_Fielding_E and Team_Pitching_E variables into one by taking sum

Look at summary of resultant data frame

```
## TARGET_WINS TEAM_BATTING_H TEAM_BATTING_BB TEAM_PITCHING_HR
## Min. : 0.00 Min. :1026 Min. : 0.0 Min. : 0.0
## 1st Qu.: 71.00 1st Qu.:1739 1st Qu.:451.0 1st Qu.: 50.0
## Median : 82.00 Median :1862 Median :512.0 Median :107.0
## Mean : 80.79 Mean :1865 Mean :501.6 Mean :105.7
## 3rd Qu.: 92.00 3rd Qu.:1978 3rd Qu.:580.0 3rd Qu.:150.0
## Max. :146.00 Max. :3092 Max. :878.0 Max. :343.0
## TEAM_PITCHING_BB TEAM_FIELDING_E
## Min. : 0.0 Min. : 1276
## 1st Qu.: 476.0 1st Qu.: 1566
## Median : 536.5 Median : 1679
## Mean : 553.0 Mean : 2026
## 3rd Qu.: 611.0 3rd Qu.: 1922
## Max. :3645.0 Max. :31860
```

Look at pair plot (fig 1.0) of resultant data frame

From the pair plot (fig 1.0) above we can see that following variables are not normally distributed.

- 1] Team_Pitching_HR
- 2] Team_Pitching_BB
- 3] Team_Fielding_E

Linear regression model works better if the input variables are normally distributed. Let's take log transformation of those variables and plot the pair plot (fig 1.0) after transformation

Figure 1.0Pair plot after variable transformation looks much better. We can see that all the variables have approximately normal distribution

Build Models

- 1] Model-1 In the first model we will model Target_Wins against following variables
 - Team_Batting_H
 - Team_Batting_BB
 - Team_Pitching_HR
 - Team_Pitching_BB
 - Team_Fielding_E
- 2] Print the model summary

```
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB +
     TEAM_PITCHING_HR + TEAM_PITCHING_BB + TEAM_FIELDING_E, data = train.trans)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.452 -9.134 0.337 9.240 48.351
                                      Max
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.101138 10.855178 5.629 2.04e-08 ***
## TEAM_BATTING_H 0.041235 0.001990 20.720 < 2e-16 ***
## TEAM BATTING BB 0.011761 0.004849 2.426 0.0154 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 13.82 on 2270 degrees of freedom
## Multiple R-squared: 0.2316, Adjusted R-squared: 0.2299
\#\# F-statistic: 136.9 on 5 and 2270 DF, p-value: < 2.2e-16
```

Please note that all the variable coefficients are statistically significant except Team_PitchingBB. F statistic is significant indicating one or more variables are useful in predicting Target_Wins variable.

R square value is 0.23 which indicates the model effectiveness

3] Plot the residuals

From the above residual plot we can see that there is some non-linearity between independent variable and dependent variable. We can certainly enhance this model by adding polinimial tearms

4] Model -2 In the second model from pair plot above (fig 1.0) we can see that there is a non linear relationship between Target_Wins and Team_Batting_BB variable. Let's add polynomial term for Team_Batting_BB variable in the model

5] Print model summary

```
##
## Call:
## lm(formula = TARGET WINS ~ TEAM BATTING H + poly(TEAM BATTING BB,
     2) + TEAM_PITCHING_HR + poly(TEAM_PITCHING_BB, 2) + poly(TEAM_FIELDING_E,
##
      2), data = train.trans)
##
## Residuals:
## Min 1Q Median 3Q
## -52.787 -8.938 0.192 9.165 49.336
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
2.848e+00 3.764e+00 0.757 0.449
4.945e-02 2.586e-03 19.122 < 2e-16 ***
##
## (Intercept)
## TEAM BATTING H
## poly(TEAM_BATTING_BB, 2)1 -3.781e+02 6.711e+01 -5.634 1.98e-08 ***
## poly(TEAM_BATTING_BB, 2)2 2.057e+02 2.629e+01 7.826 7.65e-15 ***
## TEAM_PITCHING_HR -3.246e+00 5.333e-01 -6.088 1.34e-09 ***
## poly(TEAM_PITCHING_BB, 2)1 2.847e+02 4.062e+01 7.009 3.16e-12 ***
## poly(TEAM PITCHING BB, 2)2 1.759e+02 2.884e+01 6.100 1.24e-09 ***
## poly(TEAM_FIELDING_E, 2)1 -5.730e+02 6.423e+01 -8.920 < 2e-16 ***
## poly(TEAM_FIELDING_E, 2)2 -1.043e+02 1.606e+01 -6.496 1.01e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.58 on 2267 degrees of freedom
## Multiple R-squared: 0.259, Adjusted R-squared: 0.2563
## F-statistic: 99.02 on 8 and 2267 DF, p-value: < 2.2e-16
```

We can see from the above model summary that all the coefficient are statistically significant. Adding polinomial term to our model has increased the R square value to 0.259 which is improvement over model-1

6] Plot the residuals

We can see that residuals are looking better now.

7] Model-3 Pair plot above (fig 1.0) shows one more variable which has non-linear relationship with Target_Wins. Variable Team_Fielding_E. This is important variable which is negatively correlated with Target Wins. Adding polynomial term for this variable may further improve the model effectiveness

Let's add polynomial term for Team_Fielding_E variable

8] Print model summary

```
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + poly(TEAM_BATTING_BB,
## 2) + TEAM_PITCHING_HR + poly(TEAM_PITCHING_BB, 2) + poly(TEAM_FIELDING_E,
##
      3), data = train.trans)
##
## Residuals:
                                3Q
               1Q Median
## Min
                                        Max
## -51.800 -8.957 0.291 9.101 49.593
##
## Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.836e+00 3.756e+00 0.755 0.45028
## TEAM_BATTING_H 5.083e-02 2.614e-03 19.443 < 2e-16 ***
## poly(TEAM_BATTING_BB, 2)1 -3.519e+02 6.744e+01 -5.218 1.97e-07 ***
## poly(TEAM_BATTING_BB, 2)2 1.826e+02 2.716e+01 6.722 2.26e-11 ***
## TEAM PITCHING HR
                               -3.827e+00 5.607e-01 -6.826 1.12e-11 ***
## poly(TEAM_PITCHING_BB, 2)1 2.781e+02 4.058e+01 6.855 9.19e-12 ***
## poly(TEAM_PITCHING_BB, 2)2 1.952e+02 2.937e+01 6.646 3.77e-11 ***
## poly(TEAM_FIELDING_E, 3)1 -5.658e+02 6.413e+01 -8.823 < 2e-16 ***
## poly(TEAM_FIELDING_E, 3)2 -1.051e+02 1.602e+01 -6.561 6.61e-11 ***
## poly(TEAM_FIELDING_E, 3)3 -5.528e+01 1.682e+01 -3.286 0.00103 **
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.55 on 2266 degrees of freedom
## Multiple R-squared: 0.2625, Adjusted R-squared: 0.2595
## F-statistic: 89.6 on 9 and 2266 DF, p-value: < 2.2e-16
```

From the above model summary we can see that all the coefficient are statistically significant. This indicates that all the variables in the model are effective in predicting Target_Wins. Statistically significant F stats also proves this point. If we look at the R square it is further improved at 0.2625

9] Print Residual plot

Above residual plot for model-3 looks much better now

Select Models

For model selection we will use R square as model selection criteria. R square indicates the portion of variance explained by model from total available variance in the data set. Value of R square ranges from 0 to 1.0 indicates poor model fitting and 1 indicates good fit of the model.

In general model with high R square value indicates better model fit and can be used for model selection.

In the three models above we can see that model-3 has the highest R square 0.2625 so we will select model-3 as our winning model