Introduction

Tight Bounds for Tseitin Formulas

OBDD(∧, reordering)

Dmitry Itsykson ¹ Artur Riazanov ^{1, 2} Petr Smirnov ^{1, 3}

¹St. Petersburg Department of V.A. Steklov Mathematical Institute of RAS, Russia

²The Henry and Marylin Taub Faculty of Computer Science, Technion, Israel

³HSE University at Saint Petersburg, Russia

The 25th International Conference on Theory and Applications of Satisfiability Testing August 3, 2022

OBDD(∧, reordering)

Table of Contents

- Introduction
- \bigcirc OBDD(\land , reordering)
- 4 Open Questions

Proof Complexity

Proof systems are ways to certify formula unsatisfiability (e.g. natural deduction)

- Polynomially bounded proof system does not exist \implies NP \neq coNP Cook's program [Cook, Reckhow; 1979]
- 2 SAT-solvers are equivalent to proof systems DPLL-solvers — tree-like resolution CDCL-solvers — general resolution

Automatability

• A proof system Π is automatable if there is an algorithm that finds a refutation of any formula ϕ in time $T \leq \text{poly}(|\phi|, S) = \exp(\log |\phi| + \log S)$, where S is the size of the shortest Π -refutation of ϕ .

- Many classical proof systems (resolution, cutting planes, and others) are not automatable unless P = NP.
- There are weakened notions of automatability: quasi-automatability: $T < \exp(\operatorname{poly}(\log |\phi|, \log S))$ almost automatability: $T \leq \exp(\log |\phi| \cdot \log S)$ (introduced in this work)
- Non-automatability results hold for the class of all CNF formulas. We may consider automatability on some important formula classes.

- Tseitin formula T(G, c) is defined for a graph
 - every edge is labeled with a variable
 - every vertex has a 0-1 label: $c: V \rightarrow \{0, 1\}$

•
$$T(G, c)(\vec{x}) = 1 \iff$$

$$\bigwedge_{v \in V} \left(\sum_{e \text{ is incident to } v} x_e = c(v) \mod 2 \right) = \bigwedge_{v \in V} P_v$$

- A Tseitin formula is satisfiable iff for every connected component the sum of labels is even
- Unsatisfiable Tseitin formulas are classical hard instances for proof systems

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 + x_3 + x_4 = 0 \\ x_2 + x_4 = 1 \\ x_3 = 1 \end{cases}$$

• To prove that Π is automatable on Tseitin formulas, we may prove a constructive upper bound and a matching lower bound for all Tseitin formulas

• To prove that Π is automatable on Tseitin formulas, we may prove a constructive upper bound and a matching lower bound for all Tseitin formulas

OBDD(∧, reordering)

• Classical lower bounds works only for specific graphs (expanders, grids)

- \bullet To prove that Π is automatable on Tseitin formulas, we may prove a constructive upper bound and a matching lower bound for all Tseitin formulas
- Classical lower bounds works only for specific graphs (expanders, grids)
- Grid Minor Theorem: any graph contains a grid minor $t \times t$, where $t = \Omega \left(\text{tw}(G)^{\lambda} \right)$. Known for $\lambda = 0.1$, necessary $\lambda \leq 0.5$. [Robertson, Seymour, 1986; Chuzhov, 2015]
- Gives lower bounds for all Tseitin formulas in several proof systems: Resolution: $S > \exp(\mathsf{tw}(G)^{\lambda})$ OBDD(\land , reordering): $S \ge \exp(\mathsf{tw}(G)^{\lambda})$ [Glinskih, Itsykson, 2019] Depth-d Frege: $S \ge \exp(\mathsf{tw}(G)^{\Omega(1/d)})$ for $d \le \frac{C \log n}{\log \log n}$ [GIRS, 2019]
- Very general approach, gives bounds far from optimal.

• To prove that Π is automatable on Tseitin formulas, we may prove a constructive upper bound and a matching lower bound for all Tseitin formulas

- Classical lower bounds works only for specific graphs (expanders, grids)
- Grid Minor Theorem: any graph contains a grid minor $t \times t$, where $t = \Omega \left(\text{tw}(G)^{\lambda} \right)$. Known for $\lambda = 0.1$, necessary $\lambda \leq 0.5$. [Robertson, Seymour, 1986; Chuzhov, 2015]
- Gives lower bounds for all Tseitin formulas in several proof systems: Resolution: $S > \exp(\mathsf{tw}(G)^{\lambda})$ OBDD(\land , reordering): $S \ge \exp(\mathsf{tw}(G)^{\lambda})$ [Glinskih, Itsykson, 2019] Depth-d Frege: $S \ge \exp(\mathsf{tw}(G)^{\Omega(1/d)})$ for $d \le \frac{C \log n}{\log \log n}$ [GIRS, 2019]
- Very general approach, gives bounds far from optimal.
- We prove better lower bounds for Regular Resolution and OBDD(\wedge , reordering). In both cases, we do it by (different) reductions from satisfiable Tseitin formulas.

OBDD(∧, reordering)

Table of Contents

- Regular Resolution
- \bigcirc OBDD(\land , reordering)
- Open Questions

Regular Resolution

• Resolution refutation of a CNF formula ϕ uses **resolution rule**:

$$\frac{C \vee x, D \vee \neg x}{C \vee D} \quad \text{(eliminates } x\text{)}$$

- A refutation of ϕ is a sequence of clauses C_1, C_2, \ldots, C_s such that
 - for every *i*, *C_i* is either
 - a clause of ϕ or
 - obtained by the resolution rule from previous clauses
 - C_s is an empty clause (i.e. identically false)
- Regular resolution: for any path in the proof graph, all eliminated variables are different.

Automatability of Regular Resolution on Tseitin formulas

• An upper bound is given by BWBATP algorithm [Alekhnovich, Razborov, 2011]: $T < \exp(\mathsf{tw}(G) \cdot \Delta + \log|V|).$

OBDD(∧, reordering)

• Automatability: $T \leq \exp(\log |\phi| + \log S)$, Almost automatability: $T \leq \exp(\log |\phi| \cdot \log S)$, Quasi-automatability: $T < \exp(\operatorname{poly}(\log |\phi|, \log S))$

	$\log S \geq \Omega(\ldots)$	$\Delta=\mathcal{O}(1)$	Δ is arbitrary
Grid Minor Theorem IRSS, 2019 De Colnet, Mengel, SAT 2021	$tw(G)^\lambda \ tw(G)/\log V \ tw(G)/\Delta$	quasi-aut. almost aut. automatable	quasi-aut. quasi-aut. quasi-aut.
New result	tw(<i>G</i>)	automatable	almost aut.

Previous Results

Theorem (Itsykson, Riazanov, Sagunov, S., 2019)

Let G = (V, E) be a graph, T(G, c) be unsatisfiable. Then $\operatorname{RegRes}(T(G,c)) > \exp(\operatorname{tw}(G)/\log|V|)$.

• RegRes for $T(G, c) \longrightarrow 1$ -BP for T(G, c') of size $S^{\mathcal{O}(\log |V|)}$. where T(G, c') is satisfiable

OBDD(∧, reordering)

2 1-BP(T(G, c')) > exp(tw(G))

Previous Results

Theorem (Itsykson, Riazanov, Sagunov, S., 2019)

Let G = (V, E) be a graph, T(G, c) be unsatisfiable.

Then $\operatorname{RegRes}(\operatorname{T}(G,c)) \ge \exp(\operatorname{tw}(G)/\log|V|)$.

- RegRes for $T(G,c) \longrightarrow 1$ -BP for T(G,c') of size $S^{\mathcal{O}(\log |V|)}$. where T(G, c') is satisfiable
- 2 1-BP(T(G, c')) > exp(tw(G))

Theorem (de Colnet, Mengel, 2021)

Let G = (V, E) be a graph with maximal degree Δ and T(G, c) be unsatisfiable. Then RegRes(T(G, c)) $\geq \exp(tw(G)/\Delta)/|V|$.

- lacktriangle RegRes for $T(G,c) \longrightarrow DNNF$ for T(G,c') of size S[V]. where T(G, c') is satisfiable
- \bigcirc DNNF(T(G, c')) > exp(tw(G)/ \triangle)

New Lower Bound for Regular Resolution

$\mathsf{Theorem}$

Introduction

Let G = (V, E) be a graph and T(G, c) be unsatisfiable. Then RegRes(T(G, c)) > exp(tw(G)).

- RegRes for $T(G, c) \longrightarrow DNNF$ for T(G, c') of size S[V], where T(G, c') is satisfiable
- \bigcirc DNNF(T(G, c')) > exp(tw(G))

Moreover, we prove that this is an exact size characterization of DNNF computing Tseitin formulas:

Theorem

$$DNNF(T(G,c')) = \exp(\Theta(\mathsf{tw}(G))).$$

So such a reduction to DNNF can not give better lower bounds.

OBDD(∧, reordering)

•0000ò

Table of Contents

- ③ OBDD(∧, reordering)
- Open Questions

OBDD

- π -OBDD represents a Boolean function f
- it is a DAG with nodes labeled with variables
- each node has two outgoing edges, one is labeled with 0 and the other is labeled with 1
- the value of $f(\vec{x})$ determined by the label of the sink at the end of the path corresponding to \vec{x}
- \bullet for every path, variables are appeared in the same order π
- If D_1 and D_2 are OBDDs in the same order, we can construct $D_1 \wedge D_2$ in time $\mathcal{O}(|D_1||D_2|)$
- If D_1 and D_2 are OBDDs in the same order, we can check them for equivalence in time $\mathcal{O}(|D_1||D_2|)$
- If D_1 is a π -OBDD representing f, we can construct σ -OBDD D_2 representing the same f in time $\mathcal{O}(|D_1||D_2|)$

$$f(x, y, z) = x \oplus y \oplus z$$
,
order π is (x, z, y)

$OBDD(\land, reordering)$

- An OBDD(\wedge , reordering) refutation of ϕ is a sequence of OBDDs D_1, D_2, \ldots, D_s such that
 - for every i, D_i is either
 - represents a clause of ϕ , or
 - obtained by conjunction of two previous OBDDs D_i and D_k (j, k < i) having the same variable order, or

- obtained by changing variable order of a previous OBDD D_i (i < i).
- D_s represents identically false function.
- Note that every OBDD in a refutation corresponds to a subset of clauses of ϕ .
- The size of a refutation is the sum of the sizes of all OBDDs in it.

Automatability of OBDD(\(\lambda\), reordering) on Tseitin formulas

- We prove a constructive upper bound: $T \leq \exp(\operatorname{tw}(G) \log |T(G,c)|)$.
- And a new lower bound:

		$\log S \geq \Omega(\ldots)$	Δ is arbitrary
(Glinskih, Itsykson, 2019	$tw(\mathit{G})^{\lambda}$	quasi-automatable
Ν	lew result	tw(G)	almost automatable

OBDD(∧, reordering)

000000

The Plan of the Proof

Consider the minimal refutation of unsatisfiable T(G, c).

• Consider its last step. It is the conjunction: $D_1 \wedge D_2 = D$, where D represents unsatisfiable T(G, c) and is identically false.

- Choose partial assignments α_1 and α_2 , such that if $F_1 = D_1|_{\alpha_1}$ and $F_2 = D_2|_{\alpha_2}$, then $F_1 \wedge F_2 = D'$ represents satisfiable T(G', c').
- Note that $|D'| < |F_1| \cdot |F_2|$.
- If we can estimate $|D'| \geq S$, then $|F_1|$ or $|F_2|$ is at least $\Omega(\sqrt{S})$, and the same for D_1 and D_2 .
- We have such an estimation: $|D'| \ge \exp(\mathsf{tw}(G'))$ [IRSS, 2019].

The Plan of the Proof (cont.)

- D_1 does not contain a clause for a vertex $v \in V$, D_2 does not contain a clause for a vertex $\mu \in V$.
- We want to remove v, u and some path connecting them such that the rest part of Tseitin formula is satisfiable.
- Choose substitutions carefully.
- Preserve treewidth: In a 2-connected graph, for any vertices v and u, there is a path p such that $\mathsf{tw}(G \setminus V(p)) \geq \Omega(\mathsf{tw}(G))$ [Robertson, Seymour, Thomas, 1994].
- $G' = G \setminus V(p)$, and D' computing T(G', c') has size at least $exp(\Omega(tw(G)))$.

The Plan of the Proof (cont.)

- D_1 does not contain a clause for a vertex $v \in V$, D_2 does not contain a clause for a vertex $\mu \in V$.
- We want to remove v, u and some path connecting them such that the rest part of Tseitin formula is satisfiable.
- Choose substitutions carefully.
- Preserve treewidth: In a 2-connected graph, for any vertices v and u, there is a path p such that $\mathsf{tw}(G \setminus V(p)) \ge \Omega(\mathsf{tw}(G))$ [Robertson, Seymour, Thomas, 1994].
- $G' = G \setminus V(p)$, and D' computing T(G', c') has size at least $exp(\Omega(tw(G)))$.

OBDD(∧, reordering)

Table of Contents

- \bigcirc OBDD(\land , reordering)
- Open Questions

Open Questions

- Automatability for RegRes: RegRes(T(G, c)) $\geq \exp(tw(L(G)))$?
- Automatability for OBDD(∧, reordering)?
- Prove a lower bound for all Tseitin formulas for unrestricted resolution. Now we have only a bound using Grid Minor Theorem.

OBDD(∧, reordering)

• Urauhart's conjecture: Regular resolution polynomially simulates general resolution on Tseitin formulas.