Particle Swarm Optimization Algorithm Visualization in 2D space

Ramkumar

February 10, 2024

PSO Algorithm introduction

- ▶ A non-gradient, population-based algorithm for optimization
- Inspired from the nature: flock of birds in search of food etc...
- ► It uses a number of particles whose position and velocity will depend on the personal and global optimum locations
- Velocity of each particle is calculated/updated on each iteration with below equation

$$\bar{v}^{(k+1)} = w\bar{v}^{(k)} + C_1 r_1^{(k)} \left(\bar{p}_{best} - \bar{x}^{(k)}\right) + C_2 r_2^{(k)} \left(\bar{g}_{best} - \bar{x}^{(k)}\right)$$

w, C_1 , C_2 are constants, and r_1 , r_2 are random values between 0 to 1 for each iteration

▶ The position of each particle is updated using below equation

$$\bar{x}^{(k+1)} = \bar{x}^{(k)} + \bar{v}^{(k+1)}$$

Program key points

- Code was developed using Python programming language
- ► Each particle was treated as an object instance from the main Particle class definition
- Main script file and a separate inputFile.py were developed to induce undisturbance to the main file
- Objective function and its sampling ranges, along with other inputs like number of particles, can be defined in the inputFile.py file
- Program will output a final_output.csv file that will contain the final position and velocity information of all particles at the end of iteration
- As optional output features, the history of each particle and the contour outputs can also be obtained from the program

Test Optimization functions

The following test functions were used for demonstration

Deformed egg carton function

$$f(x, y) = (x - 3.14)^{2} + (y - 2.2)^{2} + \sin(3x + 1.41) + \sin(4y - 1.73)$$
$$0 \le x, y \le 5$$

Beale function

$$f(x,y) = (1.5 - x + xy)^{2} + (2.25 - x + xy^{2})^{2} + (2.625 - x + xy^{3})^{2} - 4.5 \le x, y \le 4.5$$

Himmelblau function

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$
$$-5 \le x, y \le 5$$

Three hump camel function

$$f(x,y) = 2x^{2} - 1.05x^{4} + \frac{x^{6}}{6} + xy + y^{2}$$
$$-5 \le x, y \le 5$$

Test Optimization functions Contd.

Egg holder function

$$f(x,y) = -(y+47)\sin\sqrt{|\frac{x}{2} + (y+47)|} - x\sin\sqrt{|x - (y+47)|}$$
$$-512 \le x, y \le 512$$

McCormick function

$$f(x, y) = \sin(x + y) + (x - y)^{2} - 1.5x + 2.5y + 1$$
$$-1.5 \le x \le 4, -3 \le y \le 4$$

Output from program

The following items were output from program for each test function and are present in its own directories

final particle data such as velocity and position final_data.csv

Animated video output output.mp4