Machine Learning Lab

Name -	SRN -	Class -	Topic -
G S S Surya Prakash	PES2UG23CS192	5 'C'	Artificial Neural Networks

<u>Lab</u> - 6

Introduction

This project implements a simple feedforward neural network from scratch using NumPy. The goal is to understand the full pipeline of weight initialization, forward propagation, backpropagation, and training with early stopping. The model is applied to a regression task, and performance is evaluated using Mean Squared Error (MSE) and R² score.

Dataset Description

- Polynomial Type: QUARTIC:
 - $y = 0.0171x^4 + 1.76x^3 0.37x^2 + 4.80x + 8.23$
- Noise Level: ε ~ N(0, 1.95)
- Architecture: Input(1) → Hidden(64) → Hidden(64) → Output(1)
- Learning Rate: 0.015
- Architecture Type: Balanced Architecture
- Number of samples: 100,000 total (80,000 training, 20,000 testing).

Methodology

- Weight Initialization: Xavier initialization is used to prevent vanishing/exploding gradients.
- Network Architecture: Input layer (1 unit) → Hidden Layer 1 → Hidden Layer 2 → Output layer (1 unit). Hidden layers use nonlinear activations (ReLU or alternatives), while the output layer is linear.

- Forward Propagation: Computes pre-activations and activations layer by layer until predictions are produced.
- Backpropagation: Uses the chain rule to calculate gradients of the MSE loss with respect

Results and Analysis

1. Exp1 (baseline)

2. Exp2

3. Exp3

4. Exp4

5. Exp5

Experiment	Learning Rate	No. of epochs	Optimizers	Activation function	Final Training Loss	Final Test Loss	R ² Score
Exp1 (Baseline)	0.001	500	Gradient Descent	ReLu	0.392330	0.389025	0.6057
Exp2	0.010	500	Gradient Descent	ReLu	0.064375	0.063714	0.9354
Exp3	0.050	500	Gradient Descent	ReLu	0.004521	0.004384	0.9956
Exp4	0.015	450	Gradient Descent	Tanh	0.041660	0.041325	0.9581
Exp5	0.025	400	Gradient Descent	Sigmoid	0.022590	0.022294	0.9774