Let k be an algebraically closed field. Please answer the following questions independently.

- 1. Let $P_1, P_2, \dots, P_n \in \mathbb{P}^2_k$ and [X, Y, Z] be the homogeneous coordinate of \mathbb{P}^2_k . Prove that
 - (1) there exists a projective transform T such that $P_1^T, P_2^T, \dots, P_n^T \subset \{Z \neq 0\}$;
- (2) for a given curve C there exists a projective transform T such that none of $P_1^T, P_2^T, \dots, P_n^T$ lies on C.
 - 2. Let $P = (0,0) \in \mathbb{A}^2$ and $F = 3x^2 + y^3, G = x + xy + y^4, H = xy + y^2$.
 - (1) Compute $I_P(F \cap G)$;
 - (2) P is a simple point of G and write out a uniformizer;
 - (3) whether H satisfies Noether's condition for F and G at P.
- 3. Let $P=(0,0)\in\mathbb{A}^2$ and $I=(x,y)_P$. Let $f,g\in k[x,y]$ be two elements prime to each other. Write that $f=f_{m_1}+f_{>m_1}$ and $g=g_{m_2}+g_{>m_2}$ where f_{m_1},g_{m_2} are the homogeneous part of minimal degree of f,g respectively. Show that
 - (1) there exists a number n such that $I^n \subseteq (f,g)_P$;
 - (2) if $I^n \subseteq (f_{m_1}, g_{m_2})_P$ then $I^n \subseteq (f, g)_P$.
 - 4. Let $C \subset \mathbb{P}^2$ be the cubic curve defined by $X^3 + Y^3 = Z^3$ (char $k \neq 3$).
 - (1) Show that C is nonsingular;
 - (2) for a fixed point $P \in C$, write out the equation of the tangent line L_P ;
 - (3) find all possible point $P \in C$ such that $I_P(L_P \cap C) = 3$.
 - 5. Assume char k = 0. Show that
- (1) a projective plane curve F(X,Y,Z)=0 is non-singular if and only if, for sufficiently large N the ideal (F,F_X,F_Y,F_Z) contains X^N,Y^N,Z^N ;
 - (2) for any d > 0, there exists a nonsingular projective plane curve of degree d;
- (3) the set of singular plane curves of degree d=2 is a proper closed subset of the linear system $V(d) \cong \mathbb{P}^5$.