Learning Dynamics: Assignement 1

Hakim Boulahya hboulahy@ulb.ac.be

Université Libre de Bruxelles

November 3, 2017

1 Hawk-Dove game

2 Social Dilemma

	DDD	CCC	CCD	CDC	CDD	DCC	DCD	DDC
С	1/3	3	8/3	4/3	1	7/3	2	2/3
D	2/3	4	7/3	11/3	2	8/3	1	7/3

Figure 1: Expected payoff of player A for all possible combinations of player B's types

	C	$\mid D \mid$	$^{\rm C}$	D	C	D
С	2	5	5	2	2	5
D	0	1	0	1	1	0

Figure 2: Best response of player B against player A in all games (in the following order): Prisonners, Stag-hunt, Snowdrift

3 Sequential truel

The diagram representing the subgames are drawn as trees in Figure 3, 4 and 5. When we will refer to T_1 , T_2 and T_3 it means that we are referring to, respectively, Figure 3, 4 and 5. In the subgames, the action t(i) where $i \in \{A, B, C\}$, means that the current player is targeting player i. The current player can of course not targeting himself.

The main game is represented by T_1 . As mentioned in the assignment specifications, the subgames when A fails to hits in intended target are the same, it is T_2 . When in subgame T_2 , we also found that when B misses is intended target, the subgames are the same, it is T_3 .

Figure 3: T_1 , main subgame

3.1 Preferences

- Players prefer outcomes with fewer people
- Players prefer to stay alive

3.2 Subgame perfect equilibria

C equilibrium in T_3 To find the SPE, we have to use the backward induction, so we need to find the SPE of T_3 first. Player C always stay alive whatever target she is choosing. The SPE is t(A) if $p_a > p_b$, and t(B) if $p_b > p_a$.

B equilibrium in T_2 Let's consider subgame T_2 . Player B needs either to target A or target C. If B targets A, she has less chance to survive because, since next turn C will play and will still be alive whatever the result is of this shoot, so it B will always target C in T_3 . Formally, if B misses her outcome will be the same, because it will have the SPE of subgame T_3 , which is unique. If B targets A and hits her, she has a probability of $1 - p_c$ to stay alive. If B targets C and hits her, she has a probability of 1 to stay alive. So B will always choose to target C.

Figure 4: T_2 , subgame when A misses her intended target

Figure 5: T_3 , subgame when A and B miss their intended targets

A equilibrium in T_1 Let's consider the full game, subgame T_1 . Intuitively, it is best for A to target the player with the biggest probability, because she will have more chance to stay alive if she manage to eliminate the strongest opponent. Formally, if A misses her intended target, the outcome will be the same since T_2 has an unique SPE. If A targets B and hits her, she has a probability of $1-p_c$ to stay alive, because C is the remaining shooter and has a probability of $1-p_c$ to fail. If A targets C and hits her, she has a probability of $1-p_b$ to stay alive, because B is the remaining shooter and has a probability of $1-p_b$ to fail. So A targets B if $(1-p_c) > (1-p_b)$, which can be simplify as $p_c < p_b$, and A targets C if $(1-p_b) > (1-p_c)$, which can be simplify as $p_b < p_c$.

Weakness is strength In the previous paragraph, we explained that if $p_c > p_b A$ will target C. If C is the target, the her probability of survival is the probability that A misses and B misses, formally:

$$(1 - p_a)(1 - p_b) = 1 - p_b - p_a + p_a p_b = 1 - p_a - p_b(1 - p_a)$$
(1)

If $p_b > p_c$ A will target B, then C chance of survival is A hits her target and C will be the last player with a bullet or A misses her target and B misses also her target. Formally:

$$p_a + (1 - p_a)(1 - p_b) = p_a + 1 - p_b - p_a + p_a p_b = 1 - p_b(1 - p_a)$$
 (2)

The difference between the probablity (1) and (2), is that (1) is decreasing (2) with p_a , so (1) will always be smaller that (2). The probablity of survival of C when $p_c > p_b$ will always be smaller than the probability of survival of C when $p_b > p_c$. C is always better off when $p_b > p_c$.