

Cornell Theory Center

Cornell University, Ithaca New York Leading Edge Scalable Clusters

CTC-Manhattan, New York City
Clusters for Finance and Business Solutions

Over 100 Cornell Projects from Diverse Fields

- Agricultural, Resource, and Managerial Economics
- Animal Science
- Astronomy
- Biochemistry, Molecular and Cell Biology
- Chemistry
- Chemical Engineering
- Civil and Environmental Engineering
- Clinical Sciences
- Computer Science
- Design and Environmental Analysis

- Ecology and Systematics
- Electrical Engineering
- Geological Sciences
- Marketing
- Mathematics
- Mechanical and Aerospace Engineering
- Neurobiology and Behavior
- Nuclear Science and Engineering
- Physics
- Plant Breeding and Biometry
- Theoretical and Applied Mechanics

Key Components for Success

User Interfaces

- Telnet Seattle Lab and Microsoft built in.
- Cygwin, Interix Unix tools + look and feel
- Terminal Server Remote access to Windows GUI
- Citrix Terminal Server Remote access to Windows GUI for non-MS platforms
- X Windows

Ease of Porting from Other Environments

- Compilers MS, Compag, Intel, PGI, Gnu
- Cygwin Unix shell support and Make
- Debugging Studio, Gnu
- MPIPro, MPI Software Technology, Inc.

Batch and Interactive Job Scheduling

• Cluster CoNTroller, MPI Software Technology, Inc.

Reliable Servers, Software, and Storage

- Windows 2000 Advanced Server Solid!
- Dell Hardware just works!
- Scalable Storage using Microsoft DFS.

System Management

- Windows Management Instrumentation
- CTC Domain Monitoring Tools
- Software Distribution and Remote Installation

Velocity 1 – 256 Processors

64 Dell PowerEdge 6350 Servers

- Quad Pentium III Xeon 500 Mhz (SMP)
- 4 GB RAM/Node
- 2 MB Cache/Processor
- 50 GB Disk/Node (Raid 0 Stripe Set)
- Emulex CLan Interconnect (100 MB/second)
- Switched Ethernet (100 Mb/second)

Velocity 1 Plus Cluster - 128 Processors

64 Dell PowerEdge 2450 Servers

- Dual Pentium III 733 Mhz
- 2 GB RAM/Node
- 256 KB Cache/Processor
- 27 GB Disk (RAID 0)/Node
- Emulex CLan Interconnect (100 MB/second)
- Switched Ethernet (100 Mb/second)

Special Purpose CTC Clusters

32 Dell PowerEdge 2450 Servers (Application Center - .Net)

- Dual Processor Pentium III 933 Mhz
- 256 KB Cache/Processor
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node

8 Dell PowerEdge 1550 Servers (NASA/NYS Educluster)

- Dual Processor Pentium III 1 Ghz
- 256 KB Cache/Processor
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node

8 Dell PowerEdge 1550 Servers Development Cluster, 16 processors

- Dual Processor Pentium III 866 MHz
- 256 KB Cache/Processors
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node
- Emulex CLan Interconnect (100 MB/second)
- 15 Minute Job Limit

36 Dell PowerEdge Servers (Serial Nodes)

- Pentium III 600+ MHz
- 256 KB Cache/Processor
- 1 GB RAM/Node
- 27 GB Disk (RAID 0)/Node

Dedicated Clusters

ARS/USDA Cluster for Agricultural Bioinformatics, 48 processors

- 4 Dell PowerEdge 6300 Servers
- Quad Processor SMP 400 Mhz Pentium II Xeons, 1 GB Ram, 56 GB Disk
- 8 Dell PowerEdge 6350 Servers
- Quad Processor SMP 550 Mhz Pentium III Xeons, 1 GB Ram, 54 GB Disk
- Gigabit switched Ethernet
- 2 TB Dell Power Vault Storage Equipment

Social and Economics Research Cluster, 32 processors

- 8 Dell PowerEdge 6350 Servers
- Quad Processor SMP 550 Mhz Pentium III Xeons
- 1 GB RAM/Node
- 54 GB Disk/Node
- Gigabit switched Ethernet
- 3 TB Dell Power Vault Storage Equipment

Tri-Institutional/Computational Materials Institute Cluster, 256 processors

- 128 Dell PowerEdge 1550 Servers
- Dual Processor Pentium III 1 Ghz
- 2 GB RAM/Node
- 27 GB Disk (RAID 0)/Node
- Emulex CLan Interconnect

Windows Based CAVE

- 3 Dual Processor Dell Precision 620 Workstations
- Wildcat 4210 Graphics Adapters
- 1 GB RAM/Workstation
- Emulex CLan Interconnect

Windows 2000 Cluster Management

Job Scheduling & Resource Management

Cluster CoNTroller

www.mpi-softtech.com/products/cluster_controller

Resource Monitoring

Windows Management Instrumentation

msdn.microsoft.com/library/en-us/dnwmi/html/wmicim.asp

Microsoft Operations Manager

www.microsoft.com/mom/

Perl & Python

www.activestate.com

System Installations

Symantec Ghost

enterprisesecurity.symantec.com/content/ProductJump.cfm?Product=3&PID=na

WinInstall LE

www.microsoft.com/WINDOWS2000/techinfo/planning/management/veritas.asp

Reliability

CTC HPC Experience

- 99.9986% the first three months we ran Windows 2000
- 99.99999% the past four months!
- Working on a Standard Reliability Benchmark

Protein Folding/Structural Biology

Ron Elber, Harold Scheraga

Collaborators at Hauptman-Woodward Medical Research Institute; Mt. Sinai School of Medicine, U. Rochester

Protein Folding Per/Processor Performance

Results on different computers for a protein structures:

Machine	System	CPU	CPU speed [MHz]	compiler	Energy evaluations per second
Blue Horizon (SP San Diego)	AIX 4	Power3	222	xIf	44.3
Linux cluster	Linux 2.2	PentiumIII	650	PGF 3.1	59.1
Velocity (CTC)	Win 2000	PentiumIII Xeon	500	df v6.1	46.0
Velocity+ (CTC)	Win 2000	PentiumIII	733	df v6.1	59.2

Results on different computers for (a /b or b proteins):

Machine	System	CPU	CPU speed [MHz]	compiler	Energy evaluations per second
Blue Horizon (SP San Diego)	AIX 4	Power3	222	xlf	15.0
Linux cluster	Linux 2.2	PentiumIII	650	PGF 3.1	21.0
Velocity (CTC)	Win 2000	PentiumIII Xeon	500	df v6.1	16.9
Velocity+ (CTC)	Win 2000	PentiumIII	733	df v6.1	22.4

Computational Materials Institute

Anthony Ingraffea, Keshav Pingali

Mission:

- Connect nano-scale and intermediate scale understanding of "old" materials to new designs and life-extension of existing designs;
- Create simulation tools that support virtual design and testing of new materials;
- Compliment the theoretical/experimental activities of the Cornell Center for Materials Research.

Concrete Dam

Vertices: 86,325 Tetrahedra: 401,124 dof

<u>Machine</u>	Processors	Time/Iteration
SP2	16x1	0.48
Velocity	4x4	0.53
Velocity	8x2	0.43
Velocity	16x1	0.39
SP2	32x1	0.27
Velocity	8x4	0.27
Velocity	16x2	0.22
Velocity	32x1	0.2
SP2	64x1	0.16
Velocity	16x4	0.15
Velocity	32x2	0.12
Velocity	64x1	0.12

Fatigue Cracks in Spiral Bevel Power Transmission Gear

Vertices: 344,777 Tetrahedra: 1,535,943 dof

Machine	Processors	Time/Iteration
Velocity	16x1	1.54
Velocity	16x2	0.87
Velocity	32x1	0.78
Velocity	16x4	0.55
Velocity	32x2	0.44
Velocity	64x1	0.4
Velocity	20x4	0.43
Velocity	40x2	0.36
Velocity	64x2	0.23

Microsoft **Application Center**2000

Bioinformatics

Fracture Mechanics

Finance

Learning, Observing and Outputting Protein Patterns (LOOPP)

by <u>Jarek Meller</u> and <u>Ron Elber</u>

The **LOOPP** program (Learning, Observing and Outputting Protein Patterns). A program for potential optimization and alignments. LOOPP aligns sequence to sequence, sequence to structure, and structure to structure. It further enables the optimization of potentials and scoring functions for the above mentioned applications.

To download the source code, click <u>here</u> Click here for Loopp online tutorial

submit your sequence to our server, complete the requested information below, then click Submit/Run Prediction. **ur results will be sent to you by email at the address you provide.**

pe the information into the fields	Description of field
	Your email address
	Name of sequence (optional)
	Paste, or type your sequence
	 amino acids in one-letter code white spaces allowed non-standard amino acids ignored use <u>SRS6</u> to get your sequence from a public database
SUBMIT / RUN PREDICTION CLEAR PAGE	

