Name:

Instructions: You may have a calculator (no TI-89 or equivalent) and a handwritten $3'' \times 5''$ note card during the exam. You may not have any devices that are connected to the internet. I will provide scratch paper if you need it. There are 70 points on this exam. The other 30 are from your take-home final.

True/False (4 points each)

If you answer "True," provide a brief justification. If you answer "False," provide a counterexample.

1. _____ Let n be an odd integer. Then $n^2 - 1$ is even.

2. _____ If $\sqrt{2}$ is rational, then chocolate milk comes from brown cows.

3. _____ Let A and B be subsets of a universal set. Then |A - B| = |A| - |B|.

4. _____ Every surjection $f: \mathbb{R} \to \mathbb{R}$ is invertible.

5. _____ < is an equivalence relation, where < is the usual 'less than' relation on \mathbb{R} .

Short Answer (4 points each)

Your answers should be a sentence or two, or perhaps some mathematical symbols.

6. Write the negation of the following sentence in plain English:

If I had a hammer, I'd hammer in the morning.

7. Write the following set in set-builder notation:

$$\left\{\dots, \frac{1}{27}, \frac{1}{9}, \frac{1}{3}, 1, 3, 9, 27\dots\right\}$$

8. Let P, Q, R be statements. Write the contrapositive of

$$[(P \land \neg Q)] \to (\neg P \lor R)$$

in symbolic notation and simplify using DeMorgan's Laws.

9. Let $A = \{x \in \mathbb{Z} \mid x^2 = 1\}$, $B = \{y \in \mathbb{R} \mid y^2 = 2\}$, and $C = \{-2, -1, 0, 1, 2\}$. Write $(C - A) \times B$ in roster notation.

10. Give an example of a relation that is not symmetric, but is reflexive and transitive. You may do this either by specifying a set and a relation on it using mathematical symbols, or you may draw a digraph representing such a relation.

Proofs (10 points each)

- 11. Choose **three** of the following four propositions and provide a full proof for each of them. Attach additional pages as necessary. (If you attempt all four, please make it clear which ones you would like me to grade.)
 - (a) Prove that $3 \mid 5^n 2^n$ for all $n \in \mathbb{N}$.
 - (b) Let $x \in \mathbb{R}$ such that x > 0. Prove that $(1+x)^n > 1+xn$ for all natural numbers $n \ge 2$.
 - (c) Let U be a universal set, and let A and B be nonempty subsets of U. Prove that $(A \cup B) (A \cap B) = (A B) \cup (B A)$.
 - (d) Define a relation \sim on \mathbb{Z} as follows: $a \sim b$ if and only if $3a + b \equiv 0 \pmod{4}$ for all $a, b \in \mathbb{Z}$. Prove that \sim is an equivalence relation and determine all of the equivalence classes for \sim .