ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Τεχνητή Νοημοσύνη

Ακ.έτος 2021-2022

1η Γραπτή Σειρά Ασκήσεων

Καραβαγγέλης Αθανάσιος

A.M.:03117022

Άσκηση 1

1.

Hill Climbing

Frontier	Closed Set	State	Children
(s,9) ^s	{}	S	[(b,5) ^{sb} , (c,2) ^{sc} , (s,d) ^{sd}]
(c,2) ^{sc}	{ (s,9) ^s }	С	[(h,5) ^{sch}]

Ο αλγόριθμος δεν μπορεί να συνεχίσει διότι ο κόμβος h με τιμή ευρυστικής 5 που είναι το μοναδικό "παιδί" του κόμβου c με τιμή ευρυστικής 2, έχει μεγαλύτερη τιμή ευρυστικής.

Ουσιαστικά, ο κόμβος (c,2) αποτελεί τοπικό ελάχιστο για τη συνάρτηση κόστους.

Best First

Frontier	Closed Set	State	Children
$\{ (c,2)^{sc}, (d,4)^{sd}, (b,5)^{sb} \}$	{}	S	$[(c,2)^{sc}, (d, 4)^{sd}, (b,5)^{sb}]$
$\{ (d,4)^{sd}, (b,5)^{sb}, (h,5)^{sch} \}$	{ (s,9) ^s }	С	[(h,5) ^{sch}]
$\{ (i,2)^{sdi}, (b,5)^{sb}, (h,5)^{sch}, (h,5)^{sdh} \}$	{ (s,9) ^s , (c,2) ^{sc} }	d	[(h,5) ^{sdh} , (i,2) ^{sdi}]
$\{ (b,5)^{sb}, (h,5)^{sch}, (h,5)^{sdh}, (j,6)^{sdij} \}$	{ (s,9) ^s , (c,2) ^{sc} , (d,4) ^{sd} }	·	[(j,6) ^{sdij}]
$\{ (k,2)^{sbk}, (h,5)^{sch}, (h,5)^{sdh}, (e,5)^{sbe}, (j,6)^{sdij} \}$	{ (s,9) ^s , (c,2) ^{sc} , (d,4) ^{sd} , (i,2) ^{sdi} }	b	[(e,5) ^{sbe} , (k,2) ^{sbk}]
$\{ (g,0)^{\text{sbkg}}, (h,5)^{\text{sch}}, (h,5)^{\text{sdh}}, (e,5)^{\text{sbe}}, (h,5)^{\text{sbkh}}, (j,6)^{\text{sdj}} \}$		k	[(g,0) ^{sbkg} , (h,5) ^{sbkh}]
-		g	-

Ο αλγόριθμος τερματίζει επιτυχώς βρίσκοντας το μονοπάτι **sbkg** κόστους 12. Δεν βρίσκει το συντομότερο μονοπάτι που υπάρχει καθώς υπάρχει και μονοπάτι κόστους 11.

A* algorithm

Frontier	Closed Set	Stat e	Children
{ (c,2;1) ^{sc} , (d, 4;2) ^{sd} , (b,5;2) ^{sb} }	{ }	Ø	[(c,2;1) ^{sc} , (d, 4;2) ^{sd} , (b,5;2) ^{sb}]
{ (d,4;2) ^{sd} , (b,5;2) ^{sb} , (h,5;7) ^{sch} }	{ (s,9;0) ^s }	С	[(h,5;7) ^{sch}]

	T	1	<u>r</u>
{ (b,5;2) ^{sb} , (h,5;4) ^{sdh} (i,2;12) ^{sdi} }	{ (s,9;0) ^s , (c,2;1) ^{sc} }	d	[(h,5;4) ^{sdh} , (i,2;12) ^{sdi}]
{ (k,2;3) ^{sbk} , (h,5;4) ^{sdh} , (e,5;5) ^{sbe} (i,2;12) ^{sdi} }	{ (s,9;0) ^s , (c,2;1) ^{sc} (d, 4;2) ^{sd} }	b	[(e,5;5) ^{sbe} , (k,2;3) ^{sbk}]
{ (h,5;4) ^{sdh} , (h,5;4) ^{sbkh} , (e,5;5) ^{sbe} , (g,0;12) ^{sbkg} , (i,2;12) ^{sdi} }	{ (s,9;0) ^s , (c,2;1) ^{sc} (d, 4;2) ^{sd} ,(b,5;2) ^{sb} }	k	[(g,0;12) ^{sbkg} , (h,5;4) ^{sbkh}]
{ (h,5;4) ^{sbkh} , (i,2;7) ^{sdhi} , (e,5;5) ^{sbe} , (g,0;12) ^{sbkg} , (j,6;11) ^{sdhj} }	{ (s,9;0) ^s , (c,2;1) ^{sc} (d, 4;2) ^{sd} ,(b,5;2) ^{sb} , (k,2;3) ^{sbk} }	h	[(i,2;7) ^{sdhi} ,(j,6;11) ^{sdhj}]
{ (i,2;7) ^{sdhi} , (i,2;7) ^{sbkhi} (e,5;5) ^{sbe} , (g,0;12) ^{sbkg} , (j,6;11) ^{sdhj} , (j,6;11) ^{sbkhj} }	{ (s,9;0) ^s , (c,2;1) ^{sc} (d, 4;2) ^{sd} ,(b,5;2) ^{sb} , (k,2;3) ^{sbk} ,(h,5;4) ^{sdh} }	h	[(i,2;7) ^{sbkhi} ,(j,6;11) ^{sbkhj}]
{ (i,2;7) ^{sbkhi} , (e,5;5) ^{sbe} , (g,0;12) ^{sbkg} , (j,6;11) ^{sdhj} , (j,6;11) ^{sbkhj} }	{ (s,9;0) ^s , (c,2;1) ^{sc} (d, 4;2) ^{sd} ,(b,5;2) ^{sb} , (k,2;3) ^{sbk} ,(h,5;4) ^{sdh} ,(h,5;4) ^{sbkh} }	i	[(j,6;14) ^{sdhij}]
{ (e,5;5) ^{sbe} , (g,0;12) ^{sbkg} , (j,6;11) ^{sdhj} , (j,6;11) ^{sbkhj} }		i	[(j,6;14) ^{sbkhij}]
{ (g,0;11) ^{sbeg} , (j,6;11) ^{sdhj} , (j,6;11) ^{sbkhj} }		е	[(g,0;6) ^{sbeg}]
		g	-

Παρατηρώ αρχικά πως είχα δύο διαδοχικές επεκτάσεις των κόμβων 'i' και 'h' για διαφορετικά μονοπάτια και ότι ο αλγόριθμος τερματίζει επιτυχώς. Βρίσκει το μονοπάτι **sbeg** συνολικού κόστους 11 (το οποίο φαίνεται να είναι το συντομότερο μονοπάτι), άρα ο Α* <u>βρίσκει τη βέλτιστη λύση</u> στην άσκηση μας.

2.

Μετατρέποντας τον γράφο σε δέντρο(με πολλαπλές εμφανίσεις κάθε κόμβου) βλέπουμε ότι υπάρχουν 9 διαφορετικές λύσεις για το πρόβλημα, δηλαδή 9 διαφορετικά μονοπάτια προς τον g. Η βέλτιστη λύση φαίνεται να είναι το μονοπάτι **sbeg** μήκους 9.

Οι λύσεις που βρίσκουν οι αλγόριθμοι είναι:

Αλγόριθμος	Λύση	Κόστος
Hill Climbing	Δεν βρίσκει.	-
Best First	sbkg	12
A*	sbeg	11

Γενικά ο αλγόριθμος Α* βρίσκει την βέλτιστη λύση όταν η heuristic function είναι "admissible" δηλαδή η τιμή της ευρετικής είναι μικρότερη ή ίση με την πραγματική τιμή. Στην άσκησή μας, παρατηρώ ότι αυτό δεν συμβαίνει σε όλους τους κόμβους, αφού π.χ. ο κόμβος 'j' έχει ευρετική τιμή 6 και πραγματική τιμή 3. Επομένως, δεν θα μπορούσαμε εκ των προτέρων να είμαστε σίγουροι ότι ο Α* θα έβρισκε βέλτιστη λύση.

Άσκηση 2

1.

Το δέντρο έπειτα από το γέμισμα των κόμβων με τον αλγόριθμο Minimax. Στα maximize επίπεδα , συμπληρώνω με τη μεγαλύτερη τιμή από τους κόμβους παιδιά , ενώ στα minimize επίπεδα με τη μικρότερη τιμή:

2.

Έχω αριθμήσει κάθε κόμβο όπως ζητείται στην εκφώνηση με κόκκινο και έχω διαγράψει με κόκκινο όσους κόμβους δε θα επισκεφθεί ο αλγόριθμος Minimax με τη χρήση AB pruning.

Η σειρά με την οποία ο αλγόριθμος θα επισκεφθεί τους κόμβους είναι η κάτωθι:

1, 2, 5, 11, 23, 24, 12, 25, 6, 13, 28, 29, 14, 30, 3, 7, 16, 33, 34, 35, 4, 9, 18, 38, 39, 20, 43, 44

→ Παρατηρώ πως με τη χρήση του AB pruning δεν επισκέφθηκα καθόλου 16 κόμβους :

(8, 15, 17, 21, 22, 26, 27, 31, 32, 36, 37, 45, 46, 47, 48, 49)