

Операционни усилватели II

Операционни усилватели без ОВ (Компаратори). Операционни усилватели с ПОВ.

V. Операционни усилватели с ООВ

Неинвериращ усилвател - Входният сигнал се подава на неинвертиращия вход. Резултатът от това е, че изходният сигнал е "във фаза" с входния сигнал.

От
$$U_{id}$$
 = 0 следва $U_N = U_P = u_i$
От I_{iOY} = 0 следва $I_i = I_o$
 $U_N = u_o$. $R_1 / R_1 + R_2 = u_i$
 $K_u = u_o / u_i = (R_1 + R_2) / R_1$
 $K_u = 1 + R_2 / R_1$

От уравнението по-горе се вижда, че общият коефициент на усилване на неинвертиращ усилвател Ки винаги ще бъде по-голям, но никога по-малък от 1, и се определя от съотношението на стойностите на R1 и R2.

V. Операционни усилватели с ООВ

□ Неинвериращ усилвател - повторител

Този усилвател има извънредно високо входно съпротивление и ниско изходно съпротивление и се нарича буферен усилвател или повторител. Използва се за съгласуване на усилватели с високо изходно съпротивление и нискоомен товар.

V. Операционни усилватели с ООВ

Диференциален усилвател - Входните сигнали се

подават еднпвременно и на двата входа на ОУ

$$u_o = -\frac{R_2}{R_1}u_1$$

$$u_o = \underbrace{\frac{u_2 \cdot R_2}{R_1 + R_2}}_{\text{denumen}} \cdot \underbrace{\left[1 + \frac{R_2}{R_1}\right]}_{K_u}$$

$$u_o = \frac{u_2 \cdot R_2 (R_1 + R_2)}{(R_1 + R_2) R_1} = \frac{R_2}{R_1} u_2$$

ипи

$$u_o = \frac{R_2}{R_1}(u_2 - u_1)$$

Досега в схемите с ОУ се използваше само един от входоветена ОУ, или "инвертиращия", или "неинвертиращия" вход, а другият вход е свързан към маса. При подаване на входни напрежения едновременно на двата входа, се получава изходно напрежение U0, пропорционално на разликата на двете входни напрежения U1 и U2.

Компараторът е електронна схема за сравняване на два аналогови сигнала, която използва операционни усилватели с много голямо усилване без обратна връзка (т.е. няма резистор за обратна връзка).

Лесно е да се създаде компаратор с ОУ, тъй като полярността на изходното напрежение VOUT на ОУ зависи от полярността на разликата между двете входни напрежения.

ОУ сравнява едно аналогово напрежение VIN с друго аналогово напрежение или някакво предварително зададено референтно напрежение VREF и въз основа на това сравнение на величините на напреженията на двата входа, определя кое от двете е по-голямо.

Аналоговият компаратор е предназначен да сравнява по ниво две входни напрежения и скокообразно да изменя изходното си напрежение в случай, че едно от сравняваните напрежения е по-голямо от другото.

От особено значение са големината на:

- VD за да може да реагира на малки разлики между VIN и VREF
- SR за да се намали времето за преминаване от едното състояние в другото.

- ✓ Операционните усилватели работят като усилватели с дълбока ООВ.
- ✓ Без ОВ операционните усилватели работят в ключов режим, ако входните сигнали превишават определена малка стойност.
- ✓ ОУ работят в ключов режим като комутатори с изходно напрежение Uomax или Uomin в зависимост от това дали Ui⁺ е по-голямо или по-малко от Ui⁻.

Компараторът сравнява два входни сигнала U_{i}^{+} и U_{i}^{+} или един-единствен сигнал U_i+ със зададено (опорно) напрежение U_{RFF} . Компарторът се превключва, когато входния сигнал практически стане равен на

Когато напрежението, което ще се сравнява с опорното се подава на неинвертиращия вход, изходният сигнал се променя както е показано от 0 до +Vcc.

Когато напрежението, което ще се сравнява с опорното се подава на инвертиращия вход, изходният сигнал се променя както е показано от +Vcc до 0V.

Тази схема има важен недостатък: ако входното напрежение V_{IN} се изменя бавно и се намира близо до V_{REF} , то шумовете съдържащи се в V_{IN} могат да предизвикат лъжлива промяна на изходния сигнал V_{OUT}

Компараторите се явяват съставна част от устройствата за автоматичен контрол, аналого-цифровото преобразуване, захранващите устройства и др.

VII. Операционни усилватели с положителна обратна връзка (Тригер на Шмит)

За да се избегне влиянието на шумовете в схемата на компаратора, се въвежда положителна обратна връзка (ПОВ) и те се превръщат в т. нар. схема тригер на Шмит или компаратор с хистерезис. Входният сигнал се подава на инвертиращия вход, а напрежението от веригата на ПОВ на неинвертиращия вход.

VII. Операционни усилватели с положителна обратна връзка (Тригер на Шмит)

Изходното напрежение се променя, когато входното пресича горния и долния праг праговете на превключване, който се задава от съпротивленията R_1 И R_2 . Разликата между двете прагови напрежние се нарича напрежение на хистерезис.

$$V_{\text{хистерезис}} = V_{\text{горен праг}} - V_{\text{долен праг}}$$

VII. Операционни усилватели с положителна обратна връзка (Тригер на Шмит)

Предавателнахарактеристика на Тригера на Шмид

Всички смущения с амплитуда, по-малка от $V_{\text{хистерезис}}$, не въздействат върху компаратора Следователно недостатък на компараторите с хистерезис е по-малката им чувствителност.

VII. Операционни усилватели с положителна обратна връзка (Тригер на Шмид)

Компараторите с хистерезис намират различни приложения, например за формиране на правоъгълни импулси от синусоидално напрежение.