

Algèbre de Boole et Logique combinatoire

Algèbre de Boole

- $B = \{0, 1\}$: l'espace de Boole
- Une variable booléenne simple est définie sur B
 - Deux valeurs possibles
- Une variable booléenne générale est définie sur B^n : $(x_{n-1},...x_0)$
 - Juxtaposition de plusieurs bits
 - 2ⁿ valeurs possibles

Algèbre de Boole

Les opérations de l'algèbre de Boole sont les suivantes :

- La Conjonction (ou produit logique) de deux variables (bits): on parlera plus volontiers du ET logique, dénoté par un signe croix (×).
- La **Disjonction** (or somme logique) de deux variables (bits) : on parlera plus volontiers du **OU** logique, dénoté par un signe plus (+).
- La **Négation** (or complementation or inversion) d'un seul bit : on parlera plus volontiers du **NON**, dénoté par une barre au dessus de la variable (\bar{a}) .

Ces opérations peuvent être représentées par des **tables de vérité**, qui énumèrent explicitement les correspondances entre les entrées et les sorties :

a	b	$a \times b$
0	0	0
0	1	0
1	0	0
1	1	1

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

a	\bar{x}
0	1
1	0

 $x \times y$ vaut 1 si x vaut 1 et x vaut 1, 0 sinon.

x + y vaut 1 si x vaut 1 ou x vaut 1, 0 sinon.

 \bar{x} vaut 1 si x vaut 0, 0 sinon.

Algèbre de Boole

Soit x,y,z des variables booléennes. Les axiomes de l'Algèbre de Boole sont les suivants :

- 1. + est associatif: x + (y + z) = (x + y) + z
- 2. \times est associatif: $x \times (y \times z) = (x \times y) \times z$
- 3. + est commutatif: x + y = y + x
- 4. \times est commutatif: $x \times y = y \times x$
- 5. existence d'un élément neutre pour $+: \exists 0/x + 0 = x$
- 6. existence d'un élément neutre pour $\times : \exists 1/x \times 1 = x$
- 7. \times est distributif sur +: x.(y+z) = x.y + x.z
- 8. + est distributif sur \times : x + (y.z) = (x + y).(x + z). Ce résultat est plus surprenant!
- 9. existence du complément

Théorèmes

- 1. + est idempotent : x + x = x
- 2. \times est idempotent : $x \times x = x$
- 3. 1 est absorbant pour +: x + 1 = 1
- 4. 0 est absorbant pour $\times : x \times 0 = 0$
- 5. unicité du complément
- 6. complément du complément : $\overline{(\overline{x})} = x$
- 7. $x + x \cdot y = x$
- 8. $x \times (x+y) = x$
- 9. $x + \bar{x} \times y = x + y$

Théorème de De Morgan

Petit calcul ...

а	ь	a+b	$Y_1 = \overline{a + b}$	a	Б	Y ₂ = ā. b
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

$$A + B = A \cdot B$$

$$A.B = A + B$$

Principales portes logiques

Inverseur (not)

(a) NOT-gate symbol

Input	Output		
A	Y		
0	1 0		

Buffer trois états une porte à part

Symbol	Truth Table		
Enable →	Enable	Α	Q
Data IN Output	1	0	0
	1	1	1
	0	0	Hi-Z
Tri-state Buffer	0	1	Hi-Z

Hi-Z = haute impédance (aucune courant ne circule) = déconnexion = ni 0 ni 1 =

Indispensable pour éviter les courts circuits lorsque plusieurs circuits tentent d'accéder à un même fil

Equation, porte et table de vérité

Représentations « équivalentes »

Combinaison de portes logiques

des portes à l'équation

(b) Boolean expressions at the outputs of the AND gates

De l'équation à la table de vérité

Deux méthodes:

- calcul systématique de la fonction pour toutes ses entrées
- observation des valeurs à vrai (ou faux) de la fonction

A: B+B: C=Y

exemple

Je cherche Y à **vrai** Y est vrai quand :

- soit A et B sont vrais
- soit B et C sont vrais

Dans tous les autres cas, Y est faux

Circuit combinatoire

- Implémente une fonction combinatoire
 - Au sens mathématique
 - A une variable booléenne générale d'entrée n'est associée qu'une valeur de sortie
- Pas de rebouclage des sorties sur les entrées
- Pas de mémorisation

Circuit combinatoire

« Cône logique »

Chemin critique d'un circuit combinatoire

Chaque circuit possède un temps de propagation caractéristique entre Ses entrées et la sortie

Le chemin critique correspond à la traversée la plus longue parmi tous les chemins (acycliques) possibles

Ici : chemin en rouge pour des délais tous unitaires

(site du Zero)

Elaboration de circuits complexes

Notion de hiérarchie

Elaboration de circuits complexes Notion de hiérarchie

Simplification des fonctions logiques Méthode algébrique

L'expression d'un problème peut mener à des Formules non optimisées

Applications des axiomes et théorèmes de Boole

Expression simplifée
Circuit plus petit, moins gourmand,...

Simplification des fonctions logiques Méthode algébrique

•
$$F = (X + Y)(\overline{X} + Y)$$

•
$$G = XY + \overline{Z} + Z(\overline{X} + \overline{Y})$$

• H=
$$(X + Y + Z)(\overline{X} + Y + Z) + XY + YZ$$

Simplification des fonctions logiques

Tableaux de Karnaugh

Simplification des fonctions logiques Tableaux de Karnaugh (K-map)

- Fonctionne pour n variables
 - En pratique, n <=4 seulement
- Pour n>2:
 - basé sur l'adjacence des codes de Gray
 - Ex:

	С	C
ĀB		
ĀВ		
АВ		
A B		

Minimisation des fonctions logiques

Tableaux de Karnaugh

Tableaux de Karnaugh

Méthode générale

- A partir de la table de vérité, établir F comme somme de produits
- Pour chacun des produits présents, placer un '1' correspondant dans une K-map
- Effectuer les regroupements de 2,4 ou 8 '1'
 - Avec recouvrements possibles
- Dans ces groupes, supprimer la ou les variables qui apparaissent avec leurs compléments, et conserver les autres
- Restituer le résultat sous forme d'une nouvelle somme

Tableaux de Karnaugh exotiques

Motifs de regroupements « exotiques » possibles

Cases adjacentes bien qu'éloignées

Tableaux de Karnaugh

Notion de « don't care »

- Parfois l'énoncé d'un problème conduit à une table de vérité incomplète :
 - Pour certaines valeurs des variables en présence, le problème ne spécifie rien sur la fonction, en ce point
 - C'est la notion de « don't care »
 - Une valeur indifféremment 1 ou 0
 - Sans répercussion sur l'ensemble
- Les don't care constituent une opportunité de regroupements plus grands
 - Donc de meilleures simplifications

Tableaux de Karnaugh

Notion de « don't care »

• Exemple :

Regroupement possible

Mapping technologique

circuits discrets

Série 74XX

Faible capacité en #portes !!!

Mapping technologique librairies fondeur

- Les gros circuits ne sont pas réalisés selon ces techniques programmables
 - Les circuits sont réalisés dans le silicium de manière dédiée et figée.
 - Chaque fondeur possède ses bibliothèques de circuits élémentaires (portes) qu'il sait synthétiser sur ce silicium
 - Certaines de vos portes complexes (ex : AND à 5 entrées) peuvent ne pas exister dans cette librairie
 - Il faut donc transformer votre formule dans technologie du vendeur

Mapping technologique SPLD : simple programmable logic device

Mapping technologique SPLD

Equation de la PAL 2 entrées 1 sortie vierge

$$Q = E1.\overline{E1}.E2.\overline{E2}. + E1.\overline{E1}.E2.\overline{E2}$$

Un fusible « grillé » ramène un niveau logique haut.

Exemple pour faire un un « ou exclusif » $Q = \overline{E2}.E1 + E2.\overline{E1}$ on grille F2,F3,F5,F8 représentation simplifiée

Mapping technologique

Vers des composants programmables de + en + complexes

Extrait du schéma interne d'un SPLD 22V10

Mapping technologique FPGA

Have Fun!

Ce qu'il faut retenir

- Table de vérité, équation, circuits combinatoires
- Minimisation
 - Règles algébriques
 - Tables de Karnaugh
- Chemin critique