Don't forget to write down clearly your **Name**:

and ID number:

. True or False (10 points) Check the box in front of a correct statement.					
$\ \square$ If G is a group of order 5, then the coset space G/G has 5 elements.					
$\hfill \Box$ An isometry of a Euclidean vector space that fixes zero must be linear.					
\square The group $O(2,\mathbb{R})$ is abelian.					
☐ A composition of isometries is also an isometry.					
\square The cyclic subgroup C_n in D_n is normal.					
\Box The dihedral group D_6 is cyclic.					
\square The symmetric group on n -letters S_n acts transitively on that set of n -letters.					
\square The additive group $\mathbb R$ has a subgroup of order 10 .					
\square The stabilizer subgroup in D_6 of a vertex in a regular hexagon has order 2.					

2. Group action (10 points). Answer the following questions and justify your answer. Consider a map of sets "."

$$G \times S \to S$$
, $(g,s) \mapsto g \cdot s$.

(a) Write down the conditions for this map to be a group action. (2 points)

 \square The left-multiplication action $GL(n,\mathbb{R})$ on \mathbb{R}^n is transitive.

((b)	Let H be a group.	Consider G :	$= H \times H$	and $S = H$	as in (a).	Prove that

$$(H \times H) \times H \to H, \quad ((h_1, h_2), h) \mapsto (h_1, h_2) \cdot h := h_1 h h_2^{-1}$$

is a group action. (3 points)

(c) Prove that, if $\phi:G'\to G$ is a group homomorphism and G acts on S as above, then the map

$$G' \times S \to S, \quad (g', s) \mapsto \phi(g') \cdot s$$

defines a group action of G' on S. (3 points)

(d) Consider the diagonal group homomorphism $\Delta: H \to H \times H$ and the action we considered in (b). What is this group action of H on itself you obtain if you apply the construction in (c) for this homomorphism? (No proof needed for this part. 2 points.)