Systèmes linéaires

Exercice 1 Résoudre les systèmes linéaires suivants par la méthode de Gauss.

$$(S_1) \begin{cases} x + y + z = 2 \\ -x + 2y + 3z = 4 \\ x + y + 2z = 5 \end{cases}$$

$$(S_2) \begin{cases} x + y + 2z = 4 \\ x + y + 2z = 2 \\ 3y + 3z = 1 \\ 2x - y + z = 2 \end{cases}$$

$$(S_3) \begin{cases} x + y + 2z = 4 \\ 2x - y + z = 2 \end{cases}$$

$$(S_4) \begin{cases} x + y + 2z = 4 \\ 2x - y + z = 2 \end{cases}$$

$$(S_4) \begin{cases} x + y + 2z = 4 \\ 2x + y + 3z + z = 7 \\ 3x + y + 4z + 2z = 10 \end{cases}$$

Solution de l'exercice 1

L'ensemble des solutions de (S_1) est $S_1 = \{(1, -2, 3)\}.$

L'ensemble des solutions de (S_2) est $S_2 = \emptyset$.

L'ensemble des solutions de (S_3) est $S_3 = \{(2,2,0) + z(-1,-1,1), z \in \mathbb{R}\}.$ L'ensemble des solutions de (S_4) est $S_4 = \{(3,1,0,0) + z(-1,-1,1,0) + s(-1,1,0,1), z, s \in \mathbb{R}\}.$

Espaces vectoriels

Les sous-ensembles ci-dessous sont-ils des sous espaces vectoriels de \mathbb{R}^3 ? Exercice 2

1.
$$W_1 = \{(x, y, z) \in \mathbb{R}^3 / x \ge 0 \}$$
.

2.
$$W_2 = \left\{ (x, y, z) \in \mathbb{R}^3 \middle/ x^2 + y^2 + z^2 \le 1 \right\}$$
.

3.
$$W_3 = \left\{ (x, y, z) \in \mathbb{R}^3 \middle/ x = 3y \right\} \text{ et } W_3' = \left\{ (x, y, z) \in \mathbb{R}^3 \middle/ x = 3y + 2 \right\}.$$

4.
$$W_4 = \left\{ (x, y, z) \in \mathbb{R}^3 / xy = 0 \right\}$$
.

Solution de l'exercice 2

 W_1 n'est pas un s.e.v. de \mathbb{R}^3 , parce que $u=(3,0,0)\in W_1$, mais avec $\lambda=-1,\,\lambda u=(-3,0,0)\not\in W_1$. W_2 n'est pas un s.e.v de \mathbb{R}^3 , parce que u=(1,0,0) et v=(0,1,0) appartiennent à W_2 , mais pas leur somme.

 $W_3 = \text{Vect}((3,1,0),(0,0,1))$ donc W_3 est un s.e.v. de \mathbb{R}^3 . En revanche, comme $(0,0,0) \notin W_3'$, W_3' n'est pas un s.e.v de \mathbb{R}^3 .

 W_4 n'est pas un s.e.v de \mathbb{R}^3 , parce que u=(1,0,0) et v=(0,1,0) appartiennent à W_4 , mais pas leur somme.

Exercice 3 On note $C(\mathbb{R})$ l'ensemble des fonctions continues sur \mathbb{R} et on admettra ici que cet ensemble, muni de l'addition de deux fonctions et de la multiplication d'une fonction par un réel, est un espace vectoriel sur \mathbb{R} . Posons $W := \{ f \in C(\mathbb{R}) \mid f(x) = 0 \text{ pour tout } x \leq 0 \}$. Montrer que W, muni des mêmes opérations que ci-dessus, est un sous-espace vectoriel de $C(\mathbb{R})$.

Solution de l'exercice 3

- La fonction nulle est bien dans W, donc W est non vide;
- Soit f et g deux fonctions de W. Comme $W \subset C(\mathbb{R})$ et $C(\mathbb{R})$ espace vectoriel, on a $f+g \in C(\mathbb{R})$. De plus pour tout x réel, (f+g)(x)=f(x)+g(x). Et pour tout $x\leq 0$, comme f(x)=0 et g(x) = 0, on a bien f(x) + g(x) = 0 et donc (f + g)(x) = 0. Ainsi $f + g \in W$.

• Soit $f \in W$ et $\lambda \in \mathbb{R}$. L'appartenance de λf à $C(\mathbb{R})$ est immédiate.

Pour tout réel x, $(\lambda f)(x) = \lambda f(x)$. Et pour tout $x \leq 0$, comme f(x) = 0, on a $\lambda f(x) = 0$ et donc $(\lambda f)(x) = 0$.

Ainsi, $\lambda f \in W$.

Etude de familles de vecteurs, bases

Exercice 4 Exprimer
$$v = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$$
 comme CL^1 de $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

Solution de l'exercice 4

$$v = -6u_1 + 3u_2 + 2u_3.$$

Exercice 5 Pour chacune des familles de vecteurs de \mathbb{R}^n données ci-dessous, dire si elles sont libres et/ou sont génératrices de \mathbb{R}^n . Lorsqu'elles ne forment pas une base de \mathbb{R}^n , déterminer l'espace vectoriel qu'elles engendrent (i.e. en donner la dimension et une base).

$$\mathcal{F}_{1} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\},$$

$$\mathcal{F}_{2} = \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\},$$

$$\mathcal{F}_{3} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\},$$

$$\mathcal{F}_{5} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix} \right\},$$

$$\mathcal{F}_{5} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\},$$

$$\mathcal{F}_{6} = \left\{ \text{Proposez la famille de votre choix } ! \right\}.$$

Solution de l'exercice 5

 \mathcal{F}_1 est génératrice de \mathbb{R}^2 , mais ce n'est pas une famille libre (elle est formée de 4 vecteurs et $4 > 2 = \dim(\mathbb{R}^2)$).

 \mathcal{F}_2 est libre et contient $3 = \dim(\mathbb{R}^3)$ vecteurs. C'est donc une base de \mathbb{R}^3

 \mathcal{F}_3 n'est ni libre, ni génératrice de \mathbb{R}^3 . En revanche, les deux premiers vecteurs de la famille sont libres. Ils constituent donc une base de Vect(\mathcal{F}_3) qui est ainsi de dimension 2.

 \mathcal{F}_4 est libre. Donc $\operatorname{Vect}(\mathcal{F}_4)$ est de dimension 3. Comme $3 < 4 = \dim(\mathbb{R}^4)$, \mathcal{F}_4 ne peut pas être génératrice de \mathbb{R}^4 .

 \mathcal{F}_5 n'est pas une famille libre (elle est formée de 4 vecteurs de \mathbb{R}^3 et $4 > 3 = \dim(\mathbb{R}^3)$). Son troisième vecteur est la somme des deux premiers et le dernier vecteur est la différence des deux premiers. Comme les deux premiers vecteurs sont libres, ils sont générateurs de \mathcal{F}_5 , et ainsi $\text{Vect}(\mathcal{F}_5)$ est de dimension 2.

Pour vous entrainer ...

Exercice 6 Résoudre les systèmes linéaires suivants par la méthode de Gauss.

$$(S_{1}) \begin{cases} x + y + z = 2 \\ x + 2y - z = 4 \\ x + 3y + z = 5 \end{cases}$$

$$(S_{3}) \begin{cases} x + 2y + z = 0 \\ 2x + y + z = 0 \\ x + z = 0 \\ x + y + z = 0 \end{cases}$$

$$(S_{2}) \begin{cases} x + y + z + s = 0 \\ 2x + y + z = 0 \end{cases}$$

$$(S_{4}) \begin{cases} x + 2y + z = 0 \\ 2x + y + z = 0 \\ x + z - s = 0 \end{cases}$$

$$(S_{4}) \begin{cases} x + 2y + z = 0 \\ x + z = 0 \\ x + z = 0 \end{cases}$$

Solution de l'exercice 6

L'ensemble des solutions de (S_1) est $S_1 = \{(3/4, 3/2, -1/4)\}.$

L'ensemble des solutions de (S_2) est $S_2 = \text{Vect}(\{(-1, -1, 1, 1)\})$

L'ensemble des solutions de (S_3) est $S_3 = \{(0,0,0)\}.$

L'ensemble des solutions de (S_4) est $S_4 = \text{Vect}(\{(-1, -1, 1, 0), (1, -1, 0, 1)\}).$

Exercice 7 Pour chacune des familles de vecteurs de \mathbb{R}^n données ci-dessous, dire si elles sont libres et/ou sont génératrices de \mathbb{R}^n . Lorsqu'elles ne forment pas une base de \mathbb{R}^n , déterminer l'espace vectoriel qu'elles engendrent (i.e. en donner la dimension et une base).

$$\mathcal{F}_{7} = \left\{ \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix} \right\}, \\
\mathcal{F}_{8} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}, \\
\mathcal{F}_{9} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\}, \\
\mathcal{F}_{11} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Solution de l'exercice 7

 \mathcal{F}_7 est génératrice de \mathbb{R}^2 , mais ce n'est pas une famille libre (elle est formée de 3 vecteurs et $3 > 2 = \dim(\mathbb{R}^2)$).

 \mathcal{F}_8 est libre, mais elle ne pas être génératrice de \mathbb{R}^3 puisqu'elle ne contient que 2 vecteurs et que $2 < 3 = \dim(\mathbb{R}^3)$.

 \mathcal{F}_9 ne peut pas être une famille libre de \mathbb{R}^3 , puisque elle contient $4 > 3 = \dim(\mathbb{R}^3)$ vecteurs. Cependant, les trois premiers vecteurs de la famille sont libres. Ils forment donc une base de \mathbb{R}^3 . Ainsi, la famille \mathcal{F}_9 est génératrice de \mathbb{R}^3 et la dimension de $\operatorname{Vect}(\mathcal{F}_9)$ est 3.

 \mathcal{F}_{10} est une base de \mathbb{R}^4 .

 \mathcal{F}_{11} n'est pas une famille libre de \mathbb{R}^3 (trop de vecteurs), mais les trois premiers vecteurs sont libres. Ils forment donc une base de \mathbb{R}^3 . Ainsi, la famille \mathcal{F}_{11} est génératrice de \mathbb{R}^3 et la dimension de $\text{Vect}(\mathcal{F}_{11})$ est 3.

Exercice 8 Exprimer
$$v = \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix}$$
 comme CL^2 de $u_1 = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$, $u_2 = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix}$.

Solution de l'exercice 8

Il n'est pas possible d'exprimer v comme une CL de u_1 , u_2 et u_3 .

²combinaison linéaire