Transfer Learning in CNNs With Medical Images

Dhruvin Patel

University of Mississippi drpatel@go.olemiss.edu

April 17, 2019

- What are CNNs?
- What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- 6 Experiment Setup
- Results
- 8 Discussion
- Onclusion

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- Experiment Setup
- Results
- 8 Discussion
- Onclusion

What are CNNs?

- CNNs stands for Convolutional Neural Networks
- They are a category of Neural Networks
- Shown to be very effective in areas of image recognition and classification
- Comprised of four main operations
 - Convolution
 - Non Linearity (ReLu)
 - Pooling
 - Classification

What are CNNs?

Figure: Example of a CNN

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- Experiment Setup
- Results
- 8 Discussion
- Onclusion

What is Transfer Learning?

Idea:

- Transferring knowledge from one domain to another related domain
- The idea comes from humans
 - For example, if two people want to learn how to code in Python
 - One person has some coding experience and the other does not
 - Person with experience will learn faster

What is Transfer Learning?

Figure: Traditional ML vs Transfer Learning

What is Transfer Learning?

Instead of training a network from scratch:

- Take a network trained on a different domain for a different source task
- Adapt it for the target domain and the target task

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- Experiment Setup
- Results
- 8 Discussion
- Onclusion

How can we transfer knowledge in CNNs?

TRAINING FROM SCRATCH

TRANSFER LEARNING

Figure: Training from Scratch vs Transfer Learning

- What are CNNs?
- What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- 6 Experiment Setup
- Results
- 8 Discussion
- Onclusion

Project Goals

- Is it possible to transfer knowledge from a generalized unrelated model to specific model?
- With classifying medical images?
- What are the benefits? What are the negatives?
- What layers in the model matter more when fine-tuning the model?

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- Experiment Setup
- Results
- 8 Discussion
- Conclusion

Datasets

Two Medical Image Datasets

- HAM10000 MINST dataset
 - Consist of 10,015 dermatoscopic images of common pigmented skin lesions
 - With 7 classes
 - Image size (600,450) rescaled to (224,224)
- Chest X-Ray dataset
 - Consist of 5,856 chest X-Ray images
 - 2 classes: Normal or Pneumonia
 - Image size (2090, 1858) rescaled to (224,224)

HAM10000 Dataset

7 skin diagnostic classes

- Actinic keratoses and intraepithelial carcinoma / Bowens disease (akiec)
- 2 basal cell carcinoma (bcc)
- benign keratosis-like lesions (bkl)
- dermatofibroma (df)
- melanoma (mel)
- melanocytic nevi (nv)
- vascular lesions (vasc)

HAM10000 Dataset

Figure: HAM10000 Image Distribution

X-Ray Dataset

Figure: X-Ray Image Distribution

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- 6 Experiment Setup
- Results
- 8 Discussion
- Onclusion

Baseline Models

- Decision Tree
- Random Forest
- CNN with random weights

Transferred Models

- CNN with pre-trained weights
- CNN with different layers frozen

Decision Tree and Random Forest

- 80/20 split
- implement using ski-learn
- features for the classifier were the pixel values

CNN

- 60/20/20 split
- Pixel values scaled from -1 to 1
- Early stop
- Pre-trained weights: trained on ImageNet
- VGG16 model

ImageNet

- Large visual database with 14 million images
- Contain more than 20,000 categories
- Categories like dog, cat, strawberry, etc.

Figure: VGG16 Model

Classification layer changed to:

- 1 flatten layer
- 2 dense layers
- 2 dropout layer between the dense layers
- 1 last dense layer

Development Environment

- Windows 10
- GPU: GTX 1080 (supports Cuda)
- Cuda 9.0
- Python 3.6
- Keras 2.2.4
- Numpy 1.15.4
- Mathplotlib 3.0.2

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- Experiment Setup
- Results
- 8 Discussion
- Onclusion

	Baseline Models			CNN Models using ImageNet Weights				
	Decision Tree	Random Forest	CNN Random Weights	All Layers Trainable	Last Block Trainable	First Block Trainable	First and Last Blocks Trainable	
akiec	.09	.25	.31	.36	.27	.00	.36	
bcc	.20	.38	.41	.64	.59	.00	.64	
bkl	.26	.40	.37	.64	.58	.00	.60	
df	.00	.00	.00	.27	.00	.00	.07	
mel	.19	.22	.34	.58	.54	.01	.53	
nv	.76	.84	.88	.92	.91	.80	.91	
vasc	.06	.00	.17	.78	.50	.00	.50	
micro avg	.57	.70	.72	.81	.79	.66	.79	
macro avg	.23	.30	.35	.60	.48	.11	.52	

Table: F1-scores of baseline models and CNNs models on HAM10000.

- CNN with random weights had to best accuracy from the baseline models.
- Best accuracy using ImageNet weights
- Last block has higher accuracy than beginning layers

	Ва	seline Mod	Transferred Models		
	Decision Tree	Random Forest	CNN Random Weights	CNN ImageNet Weights	CNN HAM10000 Weights
Normal	.75	.88	.89	.91	.90
Pneumonia	.91	.96	.96	.97	.96
micro avg	.87	.94	.94	.95	.94
macro avg	.83	.92	.92	.94	.93

Table: F1-scores of baseline models and CNNs models on X-Ray dataset.

- Using ImageNet weights got the best accuracy
- CNN models also outperformed the baseline decision tree and random forest
- Outperform random weights but not better than using ImageNet weights.

Random vs ImageNet Weights

- A higher slope when training
- A higher accuracy
- finishes training in **few number of epochs**.

Figure: Line graph of training accuracies of two models: Using ImageNet Weights and Without ImageNet Weights

- What are CNNs?
- 2 What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- Experiment Setup
- Results
- 8 Discussion
- Onclusion

Discussion

Positives

- The target task can use pre-trained weights to learn features
- A significant boost in performance compared to random initialization
- ImageNet weights are a favorable starting parameters

Discussion

Figure: Visualize of intermediate activation from first convolutional layer

(b) Activation with ImageNet

(c) Activation

weights

with

random

Discussion

Negatives

- Using VGG16 model
- Smaller datasets may have varying results
- Image size for model at (224,224)

- What are CNNs?
- What is Transfer Learning?
- 3 How can we transfer knowledge in CNNs?
- Project Goals
- Datasets
- 6 Experiment Setup
- Results
- 8 Discussion
- Conclusion

Conclusion

- A target task can benefit from a unrelated source task
- ImageNet weights as a feature extractor
- Impressive performance compared to random weights
- Later layers matter more than beginning layers

Questions?