

Abbau von Arzneimitteln*

7 NODAA VOIT / (IZHOHTIILLOHT		
Aufgabennummer: B_340		
Technologieeinsatz:	möglich □	erforderlich 🗵
Bei der Einnahme von Arznei kreislauf, wo diese dann abge		ber den Verdauungstrakt in den Blut-
a) Nach Einnahme einer Ta Funktion m beschrieber		nge im Blut näherungsweise durch die
$m(t) = 20 \cdot (1 - e^{-0.05 \cdot t})$	$-0,125 \cdot t \text{ mit } t \ge 0$	
$t \dots$ Zeit nach der Einna $m(t) \dots$ Wirkstoffmenge	hme in Minuten (min) im Blut zur Zeit <i>t</i> in Milligramr	m (mg)
 Berechnen Sie, zu we menge im Blut 0,5 mg 	g/min beträgt.	vollständig abgebaut ist. ane Änderungsrate der Wirkstoff- , dass die Funktion <i>m</i> negativ ge-

^{*} ehemalige Klausuraufgabe

Abbau von Arzneimitteln 2

- b) Zur näherungsweisen Beschreibung des Abbaus eines Arzneimittels können lineare oder exponentielle Modelle verwendet werden.
 - Zu Beginn (t = 0 min) sind 200 mg des Wirkstoffs im Blut, nach 120 Minuten ist nur noch ein Achtel dieser Menge vorhanden.

- Veranschaulichen Sie den Verlauf des linearen Modells im nachstehenden Diagramm.

- Ermitteln Sie die Halbwertszeit desjenigen exponentiellen Modells, das diesen Abbau beschreibt, in Minuten.
- Veranschaulichen Sie den Verlauf des exponentiellen Modells unter Verwendung der ermittelten Halbwertszeit im obigen Diagramm.
- Erklären Sie, für welches der beiden Modelle zu jedem Zeitpunkt gilt: $\frac{dW}{dt} = -\frac{35}{24}$.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Abbau von Arzneimitteln 3

Möglicher Lösungsweg

a) Lösung der Gleichung mittels Technologieeinsatz:

$$m(t) = 0$$

 $t = 159,9... \approx 160$

Nach etwa 160 Minuten ist der Wirkstoff vollständig abgebaut.

$$m'(t) = e^{-0.05 \cdot t} - 0.125$$

Lösung der Gleichung m'(t) = 0.5 mittels Technologieeinsatz: $t = 9.40... \approx 9.4$ Nach etwa 9,4 Minuten beträgt die momentane Änderungsrate der Wirkstoffmenge im Blut 0,5 mg/min.

Da die 2. Ableitung $m''(t) = -0.05 \cdot e^{-0.05 \cdot t}$ eine Exponentialfunktion vom Typ $a \cdot e^{\lambda \cdot x}$ mit a < 0 ist, sind alle Funktionswerte dieser 2. Ableitung negativ. Daher ist die Funktion m im gesamten Definitionsbereich negativ gekrümmt.

b)
$$\frac{1}{8} = \left(\frac{1}{2}\right)^3 \implies 120 = 3 \cdot T_{1/2} \implies T_{1/2} = 40 \text{ min}$$

Die angegebene momentane Änderungsrate ist konstant. Es handelt sich daher um das lineare Modell.

Abbau von Arzneimitteln 4

Lösungsschlüssel

- a) 1 x B1: für das richtige Ermitteln desjenigen Zeitpunkts, zu dem der Wirkstoff vollständig abgebaut ist
 - 1 x B2: für die richtige Berechnung desjenigen Zeitpunkts, zu dem die momentane Änderungsrate der Wirkstoffmenge im Blut 0,5 mg/min beträgt
 - 1 × D: für die richtige Argumentation
- b) 1 × A1: für das richtige Veranschaulichen des linearen Modells
 - 1 × B: für das richtige Ermitteln der Halbwertszeit in Minuten
 - $1 \times A2$: für das richtige Veranschaulichen des exponentiellen Modells unter Verwendung der Halbwertszeit
 - 1 × D: für die richtige Erklärung