范

信号与系统 I 试 题(A)

学号	
姓名	

题号	_	 三	四	五.	考试成绩	平时成绩	总分(考试×0.6+平时)
分数							

一、解答题(共40分)

注 煮 行 为 规 1. (5分)已知信号 $x_1(t)$ 的波形如图 1(a)所示,则如何用 $x_1(t)$ 表示图 1(b)中 的信号 $x_2(t)$?

图 1(a)

图 1(b)

守 考 场 纪 律

遵

2. (5 分) 已知信号 $x_I(t)$ =sin (5 πt),信号 $x_2(t)$ = e^{-j10t} + e^{j15t} ,则信号 $x_I(t)$ 、 $x_2(t)$ 的周 期分别为?

主管 领导 审核 签字

 $\overline{3.(5分)}$ 假设信号 $f_1(t)$ 的最高频率分量为 ω_1 , $f_2(t)$ 的奈奎斯特频率为 ω_2 ,则信号 $f(t)=f_1(2t+2)$ $f_2(t+1)$ 的奈奎斯特频率为?

4. (5分) 三个信号 $x(t) = \cos(3t) + \sin(5t)$ 、 $x(t) = e^{j2t} + \cos(10t)$ 、 $x(t) = \sin \pi t + e^{j10t}$ 中,不可以用傅里叶级数分析的是?

5. (5 分)已知信号的拉氏变换变换为 $F(s) = \frac{s^3 + s^2 + 2s + 1}{(s+1)(s+2)(s+3)}$,则原信号的初值和终值分别为?

6. (10 分) 请判断 K 取何值时系统稳定、临界稳定。

7. (5 分) 已知
$$x(n) = \{1, 2, 3, 4\}, y(n) = \{4, 3, 2, 1\}, 求解 $x(n) * y(n)$ 。$$

二、(15分)

已知某系统由两子系统组成,结构如图 3 所示,其中 $h_1(t) = h_2(t) = e^{-t}u(t)$,则总的系统冲激响应为? 当输入信号为 e(t) = u(t)时,系统的零状态响应为?

三、(共15分)

已知系统如图 4 所示,有

$$H_{1}(j\omega) = \begin{cases} 3 & |\omega| < 2 \\ 0 & |\omega| > 2 \end{cases} \qquad H_{1}(j\omega) \qquad f_{1}(t) \qquad f_{2}(t) \qquad H_{2}(j\omega) \qquad y(t) \qquad y$$

试分别求解下列各题

- 1. 当 f(t) = Sa(t) 时,给出 $f_1(t)$, $f_2(t)$ 的频谱函数,并解答出响应信号 y(t) 的频谱函数;
- 2. 当 $f(t) = Sa(t)\cos 2t$ 时,给出 $f_1(t), f_2(t)$ 的频谱函数,并解答出响应信号 y(t) 的频谱函数;

四、(15分)

图 5 (a) 所示系统,已知当 $x(t) = \delta(t)$ 时,全响应为 $y(t) = \frac{2}{3}\delta(t) + e^{-\frac{t}{3}}u(t)$

- 1. 求冲激响应h(t)和阶跃响应g(t),并画出g(t)的波形;
- 2. 求系统的零输入响应 $y_{zi}(t)$;
- 3. 若激励信号 x(t) 如图 5 (b) 所示,求系统的零状态响应 $y_{zs}(t)$.

五、(15分)

已知某离散系统的系统函数为 $H(z) = \frac{z}{(z-0.5)(z-2)(z-3)}$ 0.5 < |z| < 2,

- 1. 判断系统的因果性与稳定性,并说明理由;
- 2. 求系统的单位样值响应 h[n];
- 3. 若取H(z)单位圆内的零、极点构成一个因果系统 $H_1(z)$,写出 $H_1(z)$ 的表达式,注明收敛域。
- 4. 系统的单位样值响应 h[n]是否存在傅里叶变换? 为什么?