Advanced Cloud Computing MapReduce

Wei Wang CSE@HKUST Spring 2025

Common theme?

Parallelization problem arise from

- communication between workers (e.g., state exchange)
- access to shared resources (e.g., data)

Thus, we need a synchronization mechanism

Managing multiple workers

Thus, we need

- semaphores (lock, unlock)
- conditional variables (wait, notify, broadcast)
- barriers (a job cannot start until its prerequisites have completed)

But still...

- deadlock, race conditions...
- dinning philosophers, sleeping barbers...

Current tools

Programming models

- shared memory (pthreads)
- message passing (MPI)

Design Patterns

- master-slaves
- producer-consumer flows
- shared work queues

Where the rubber meets the road

Concurrency is difficult to reason about

And it is even more so

- at the scale of datacenters
- in the presence of failures
- in terms of multiple interacting services

Not to mention debugging...

Typical big data problems

Iterate over a large number of records

Extract something of interest from each

Shuffle and sort intermediate results

Aggregate intermediate results

Generate final output

Key idea: provide a *functional* abstraction for these two operations

Roots in functional programming

Functional programming

Given a dataset $X = [x_1, \dots, x_n]$, compute the square sum

$$\int_{i} x_{i}^{2}$$

$$f(x) = x^{2}$$

$$f(x) = x^{2}$$

$$f(x) = x^{2}$$

$$f(x) = y^{2}$$

$$g(x, y) = x + y$$

$$0 = y^{2}$$

$$g(x, y) = y^{2}$$

Functional programming

Functional operations never modify existing datasets, but they create new ones

Ideal for parallelization

What if a worker fails?

Ideal for parallelization

Do the work again, on some other machines

Can we apply any function?

Can we apply any function?

What if g(x, y) = x - y?

Nope...

The order matters, making the results indefinite and hard to reason about!

Thus, we require...

Commutativity

- e.g., x + y = y + x

Associativity

- g(g(x, y), z) = g(x, g(y, z))
- e.g., (x + y) + z = x + (y + z)

The programming model of MapReduce borrows from functional programming

Records from the data source are fed as key-value pairs, e.g., [<filename, line>]

MapReduce

Programmers specify two functions

- ▶ map (k, v) → $[<k_2, v_2>]$
- ▶ reduce $(k_2, [v_2])$ → $[< k_3, v_3 >]$

All values with the same key are sent to the same reducer

The execution framework handles everything else...

WordCount: a "Hello World" from MapReduce

A tale of two functions...

What to emit?

```
Map(String docid, String text):
    for each word w in text:
        Emit(w, I);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
    Emit(term, sum)
```

How to reduce?

MapReduce

Programmers specify two functions

- ▶ map (k_1, v_1) → $[< k_2, v_2 >]$
- ▶ reduce $(k_2, [v_2])$ → $[< k_3, v_3 >]$

All values with the same key are sent to the same reducer

The execution framework handles everything else...)

What's "everything else"?

Everything else...

Handles scheduling

- assigns workers to map and reduce tasks
- load balancing

Handles "data distribution"

- move processes to data
- automatic parallelization

Everything else...

Handles synchronization

- gathers, sorts, and shuffles intermediate data
- network and disk transfer optimization

Handles errors and faults

detects worker failures and restarts

Everything happens on top of a distributed filesystem

MapReduce refinement

Programmers specify two functions

- ▶ map (k_1, v_1) → $[< k_2, v_2 >]$
- ▶ reduce $(k_2, [v_2])$ → $[< k_3, v_3 >]$
- ▶ All values with the same key are reduced together

Not quite... usually, programmers also specify combiner and partitioner

Combiner and partitioner

combine $(k, [v]) \rightarrow \langle k, v \rangle$

- mini-reducers that run in memory after the map phase
- used as an optimization to reduce network traffic

partition (k, # of partitions) → partition for k

- divides up key spaces for parallel reduce operations
- often a simple hash of the key, e.g., hash(k) mod n

MapReduce

Programmers specify:

- ▶ map (k_1, v_1) → $[< k_2, v_2 >]$
- ▶ combine $(k_2, [v_2]) \rightarrow \langle k_2, v_2 \rangle$
- ▶ partition (k_2 , # of partitions) → partition for k_2
- ▶ reduce $(k_2, [v_2])$ → $[< k_3, v_3 >]$

All values with the same key are reduced together

The execution framework handles everything else...

Two more details...

Barrier between map and reduce phases

- no reduce can start until map is complete
- but we can begin transferring intermediate data earlier to pipeline shuffling with map execution

Process	Time>										
User Program	MapReduce()				wait						
Master	Assign tasks to worker machines										
Worker 1		Map 1	Мар 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1				Read 2.2	Read	d 2.3	Reduce	2

Two more details...

Barrier between map and reduce phases

- no reduce can start until map is complete
- but we can begin transferring intermediate data earlier to pipeline shuffling with map execution

Keys arrive at each reducer in sorted order

no enforced ordering across reducers

MapReduce can refer to...

The programming model

The execution framework (aka "runtime")

The specific implementation

Usage is usually clear from context!

MapReduce Implementations

MapReduce implementations

Google has a proprietary implementation in C++

- bindings in Java, Python
- master-slave architecture

One of the most influential work in computer systems:

▶ J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In USENIX OSDI, 2004.

Credits

Some slides are adapted from Prof. Jimmy Lin's slides at the University of Waterloo