Неопределенность результата косвенного измерения

Пусть задана модель измерения – математическое описание физического эффекта, положенного в основу измерения:

$$Y(X_1, X_2, ..., X_m)$$
, где

Y — величина, которую надо найти, $X_1, X_2, ..., X_m$ - непосредственно измеряемые или другие величины, влияющие на результат измерения.

Например: $Q = Mc(T_2 - T_1)$, где M — масса образца, кг, c — удельная теплоемкость [Дж/(кг*K)], T_2 и T_1 — начальная и конечная температуры, К. Формула является строгим законом Термодинамики и известна со школы.

Проводя измерение, мы получаем оценки параметров $x_1, x_2, ..., x_m$ — строго говоря, случайные числа, неопределенность которых оценивается в результате измерения и является его обязательной составляющей. Поэтому мы получаем ОЦЕНКУ величины Y — значение $y = f(x_1, x_2, ..., x_m)$. Оценка y — случайное число, неопределенность которого можно оценить, зная неопределенности параметров $x_1, x_2, ..., x_m$.

Рассмотрим следующую задачу.

Пусть $Y(X_1, X_2, X_3)$ — функция трех параметров X_1, X_2, X_3 . Известны оценки параметров x_1, x_2, x_3 и их неопределенности. Составим БЮДЖЕТ Неопределенности.

Таблица 1. Бюджет неопределенности

Величина	Оценка	Стандартная	Тип	Число степеней	Коэффициент
		неопределенность	оценивания	свободы	чувствительнос
			(А или Б)		ТИ
X_1	x_1	$u_A(x_1)$	A	$\nu_{1,A} = N_1 - 1$	$c_1 = \left(\frac{\partial f}{\partial x_1}\right)$
		$u_B(x_1)$	Б	$v_{1,A} = N_1 - 1$ $v_{1,B} = \infty$	1
X_2	x_2	$u_B(x_2)$	Б	$\nu_{2,B}=\infty$	$c_2 = \left(\frac{\partial f}{\partial x_2}\right)$
X_3	<i>X</i> ₃	$u_A(x_3)$	A	$\nu_{3,A} = N_3 - 1$	$c_3 = \left(\frac{\partial f}{\partial x_3}\right)$
		$u_{B,1}(x_3)$	Б	$v_{3,A} = N_3 - 1$ $v_{3,B1} = \infty$	∂x_3
		$u_{B,2}(x_3)$	Б	$v_{3,B2} = \infty$	

Как видно из Таблицы 1, оценка параметра x_1 имеет две составляющие неопределенности: $u_A(x_1)$ и $u_B(x_1)$. Стандартная неопределенность типа А $u_A(x_1)$ получена в результате многократных измерений величины x_1 , стандартная неопределенность по типу Б получена из паспортных данных на прибор, которым измеряли величину x_1 .

Оценка параметра x_2 имеет только одну составляющую неопределенности: $u_B(x_2)$. Это вполне реальная ситуация, если величина x_2 получена в результате однократного измерения или её значение приведено в отчетах сторонней организации.

Оценка параметра x_3 имеет три составляющие неопределенности: $u_A(x_3)$, $u_{B,1}(x_3)$, $u_{B,2}(x_3)$. Стандартная неопределенность типа А $u_A(x_3)$ получена в результате многократных измерений величины x_3 , стандартная неопределенность по типу Б получена из паспортных данных на прибор, которым измеряли величину x_3 . При этом пришлось учесть две составляющие приборной погрешности: основную $u_{B,1}(x_3)$ и дополнительную $u_{B,2}(x_3)$.

Пусть анализ результатов показал, что величины x_1 и x_3 коррелированы между собой. При многократных измерениях x_1 и x_3 было получено, что коэффициент корреляции $r(x_1, x_3)$ равен (-1). Коэффициент $r(x_1, x_3)$ рассчитали, используя соотношение

$$r(x_1, x_3) = \frac{\sum_{i=1}^{N} (x_{1,i} - x_1)(x_{3,i} - x_3)}{\sqrt{\sum_{i=1}^{N} (x_{1,i} - x_1)^2 \sum_{j=1}^{N} (x_{3,i} - x_3)^2}}$$

где N – число согласованных пар $x_{1,i}$, $x_{3,i}$. Значения $x_{1,i}$ и $x_{3,i}$ взяли из таблицы измерений:

Величина	Номер измерения				
Desiri inita	1	2	••••	N	
X_1	<i>x</i> _{1,1}	<i>x</i> _{1,2}		$x_{1,N}$	
X_3	<i>x</i> _{3,1}	x _{3,2}		$x_{3,N}$	

Так как коэффициент корреляции $r(x_1, x_3)$ получен в результате статистических расчетов, назовем его коэффициентом корреляции, оцененным по типу А: $r_A(x_1, x_3)$.

Пусть из анализа отчетов следует, что измерения величин x_1 и x_2 проводились одним прибором по одной методике и это обстоятельство является существенным. То есть, величины x_1 и x_2 коррелированы между собой, коэффициент корреляции $r(x_1, x_2)$ равен (+1).

Так как коэффициент корреляции $r(x_1, x_2)$ получен в результате дополнительного, нестатистического анализа, назовем его коэффициентом корреляции, оцененным по типу Б: $r_B(x_1, x_2)$.

Для оценки погрешности величины y воспользуемся формулой (10) из РМГ 43-2001 Применение «Руководства по выражению неопределенности измерений» (учтя, что формула «не допечатана» условием $i \neq j$):

$$u_{c}(y) = \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}}\right)^{2}} u^{2}(x_{i}) + \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} r(x_{i}, x_{j}) u(x_{i}) u(x_{j})$$

$$i \neq j$$

Подставив в данную формулу величины, приведенные в БЮДЖЕТЕ Неопределенностей, получим:

$$u_c^2(y) = \left(\frac{\partial f}{\partial x_1}\right)^2 \left(u_A^2(x_1) + u_B^2(x_1)\right) + \left(\frac{\partial f}{\partial x_2}\right)^2 u_B^2(x_2)$$

$$+ \left(\frac{\partial f}{\partial x_3}\right)^2 \left(u_A^2(x_3) + u_{B,1}^2(x_3) + u_{B,2}^2(x_3)\right)$$

$$+ 2\left(\frac{\partial f}{\partial x_1}\right) \left(\frac{\partial f}{\partial x_3}\right) u_A(x_1) u_A(x_3) r_A(x_1, x_3)$$

$$+ 2\left(\frac{\partial f}{\partial x_1}\right) \left(\frac{\partial f}{\partial x_2}\right) u_B(x_1) u_B(x_2) r_B(x_1, x_2)$$

Расширенная неопределенность результата измерения y находится как $U_n = k u_c(y)$,

где k — коэффициент охвата $k=t_p(\nu_{eff});$ $t_p(\nu_{eff})$ - квантиль распределения Стьюдента с эффективным числом степеней свободы ν_{eff} и уровнем доверия (доверительной вероятностью) p.

Эффективное число степеней свободы ν_{eff} найдем, следуя формуле (12) из РМГ 43-2001 Применение «Руководства по выражению неопределенности измерений»:

$$v_{\text{eff}} = \frac{u_c^4}{\sum_{i=1}^m \frac{u^4(x_i)}{v_i} \left(\frac{\partial f}{\partial x_i}\right)^4},$$

$$v_{eff} = \frac{u_c^4(y)}{\left(\frac{\partial f}{\partial x_1}\right)^4 \frac{u_A^4(x_1)}{N_1 - 1} + \left(\frac{\partial f}{\partial x_3}\right)^4 \frac{u_A^4(x_3)}{N_3 - 1}}$$

Литература:

РМГ 43-2001 Применение «Руководства по выражению неопределенности измерений».

Рекомендуемые документы (по порядку прочтения и изучения):

Учебник: Фридман А.Э. Основы метрологии. Современный курс.- С.- Пб.: НПО «Профессионал», 2008. 284 с. Глава 3: «Неопределенность измерений».

1. РМГ 43-2001 Применение «Руководства по выражению неопределенности измерений».