Lavoro elettrico, Potenziale elettrostatico

- · Lavoro della forza elettrica;
- · Potenzaiale elettrostatico;
- · Il campo come gradiente del potenziale;
- Riepilogo

Lavoro e tensione elettrica

• La forza che agisce su una carica, e che in quanto tale si chiama forza elettrica è espressa dalla formula:

$$\vec{E} = \frac{\vec{F}}{q_0} \Rightarrow \vec{F} = q_0 * \vec{E}$$

• Il lavoro della forza F lungo un percorso C_1 è dato da:

$$W = \int_{C_1} \vec{F} * d\vec{s} = q_0 * \int_{C_1} \vec{E} * d\vec{s}$$

• Si definisce tensione elettrica tra i due punti A e B il rapporto $\frac{W}{q_0}$

Tensione elettrica =
$$\int_{C_1} \vec{E} * d\vec{s}$$

Differenza di potenziale

- Il lavoro di una forza elettrica si può espimere tramite un integrale di linea
- Se il campo è elettrosttaico esso è anche conservativo (il lavoro non dipende dal percorso seguito) e quindi può sempre essere espresso come differenza dei valori di una funzione delle coordinate:

$$\int_{A}^{B} \vec{E} * d\vec{s} = f(B) - f(A)$$

- All'opposto di questa funzione si da il nome di potenziale elettrostatico del campo $ec{E}$ che risulta definito come:

$$V_A - V_B = \int_A^B \vec{E} * \vec{s}$$

Energia potenziale

• L'energia potenziale elettrica U_E posseduta da una carica elettrica puntiforme q_0 nella posizione r in presenza di un campo elettrico \vec{E} è l'opposto del lavoro W compiuto dalla forza elettrostatica $\vec{F}=q\vec{E}$

$$U_e(r) = -W_{A\to B} = -\int_A^B q_0 * \vec{E} * d\vec{r} = q_0 * V(A) - q_0 * V(B)$$

Flusso del campo elettrico

• Si definisce flusso del campo \vec{E} attraverso la superficie d Σ la quantità scalare:

$$d\Phi(\vec{E}) = \vec{E} * \overrightarrow{u_n} d\Sigma$$

• Su una superficie chiusa:

$$\Phi(\vec{E}) = \oint_{\Sigma} \vec{E} * \overrightarrow{u_n} d\Sigma$$

- I contributi positivi all'integrale sono quelli per cui $\vec{E} * \overrightarrow{u_n} > 0$
- I contributi negativi all'integrale sono quelli per cui $\vec{E}*\overrightarrow{u_n}<0$

Teorema di Gauss

- Possiamo determina il campo $ec{E}$ nel caso in cui la distribuizione di carica presenti un elevato grado di simmetria
- Si dimostra che:

$$\Phi(\vec{E}) = \frac{q}{\varepsilon_0} \Rightarrow E = \frac{q}{\varepsilon_0 * \Sigma}$$

dove q è la carica posta all'interno della superficie chiusa.

Campo elettrostatico nell'intorno di uno strato superficiale di carica 1/2

- La carica in un conduttore in equilibrio si distribuisce sulla superficie esterna.
- Applico il teorema di Gaussa ad un cilindro come mostrato in figura

Campo elettrostatico nell'intorno di uno strato superficiale di carica 2/2

- campo elettrostatico normale alla superficie (una componente tangenziale metterebbe in movimento le cariche elettriche)
- Equilibrio in un conduttore se e solo se all'interno del conduttore $\overrightarrow{F_{tot}} = 0 \Rightarrow \overrightarrow{E_{int}} = 0$

$$d\Phi = E * d\Sigma = \frac{dq}{\varepsilon_0} \Rightarrow E = \frac{1}{\varepsilon_0} * \frac{dq}{d\Sigma}$$
$$E = \frac{\sigma}{\varepsilon_0}, \text{ dove } \sigma = \frac{dq}{d\Sigma}$$