MA439: Functional Analysis Tychonoff Spaces: Extra Problem & 1, 2, 5, 7 pg. 51, Ben Mathes

Huan Q. Bui

Due: Wed, Oct 28, 2020

Exercise 1. $C(X) = \{f : X \to \mathbb{C} : f \text{ unif. cont., bdd} \}$ and uniform norm $||f|| = \sup_{x \in X} |f(x)|$. Consider $B(X) = \{f : X \to \mathbb{C}, \text{ bdd}\}$. Show that $C(X) \subseteq B(X)$ is closed, i.e. a uniform limit of uniformly continuous function is uniformly continuous.

Proof. Let us prove the "easier" case on metric spaces first. Suppose that $f_n \to f$ uniformly where $\{f_n\}$ is a sequence of uniformly continuous functions. We claim that f must also be uniformly continuous. To see this, let $\epsilon > 0$. We first have that

$$||f_n(x), f(x)|| < \frac{\epsilon}{3}$$

for all x whenever n is sufficiently large. Now, each f_n is uniformly continuous, so there is a δ for which $d(x,y) < \delta$ implies $|f_n(x) - f_n(y)| < \frac{\epsilon}{3}$. Finally, consider $x,y \in X$ such that $d(x,y) < \delta$, then

$$||f(x) - f(y)|| \le ||f(x) - f_n(x)|| + ||f_n(x) - f_n(y)|| + ||f_n(y) - f(y)|| < \epsilon.$$

so f is uniformly continuous. This implies that the space C(X) of all uniformly continuous functions from X to \mathbb{C} is a closed subset of B(X).

Exercise 2 (Ex. 1, pg. 51). Prove that a closed subset of a complete uniform space is complete

Proof. Let a C be a closed subset of $(\mathcal{X}, \mathcal{U})$ a complete uniform space be given. Consider a Cauchy net $\{x_i\}$ in C. Since $C \subseteq X$, $\{x_i\}$ is also a Cauchy net in \mathcal{X} . Thus, $\{x_i\}$ converges because \mathcal{X} is complete. This limit must belong to the closed set C, so C is complete.

Exercise 3 (Ex. 2, pg. 51). If \mathcal{F} is a Cauchy filter and $\mathcal{F} \subseteq \mathcal{F}_0$, prove that \mathcal{F}_0 is a Cauchy.

Proof. Let \mathcal{F} be a Cauchy filter in $(\mathcal{X}, \mathcal{U})$ and $\mathcal{F} \subseteq \mathcal{F}_0$. It is clear that \mathcal{F}_0 is also a filter. Now, let $\epsilon > 0$ and $d \in \mathcal{U}$ be given. \mathcal{F} is Cauchy, so there exists an $x \in \mathcal{X}$ for which $B_d(x, \epsilon) \in \mathcal{F} \subset \mathcal{F}_0$. So \mathcal{F}_0 is also Cauchy.

Exercise 4 (Ex. 5, pg. 51). An element x of a Tychonoff space is a cluster point of a net $\{x_i\}$ if the net is frequently in every neighborhood of x. Prove that a Cauchy net converges to any of its cluster points.

Proof. Let a Cauchy net $\{x_i\}_{i\in I}$ be given. Consider a cluster point $x \in \{x_i\}_{i\in I}$. We want to show that $\{x_i\}_{i\in I} \to x$. By the hypothesis, any neighborhood \mathcal{U} containing x must also contain infinitely many elements of $\{x_i\}_{i\in I}$. The Cauchyness of $\{x_i\}_{i\in I}$ guarantees that \mathcal{U} contains a tail of $\{x_i\}_{i\in I}$. This implies the convergence of $\{x_i\}_{i\in I}$.

Exercise 5 (Ex. 7, pg. 51). Any filter \mathcal{F} is a directed set, and if, for $F \in \mathcal{F}$ we choose $x_F \in F$, we obtain a **net based on the filter** (there are many of them). Prove that the filter converges to x if and only if the net $\{x_F\}_{F \in \mathcal{F}}$ converges to x.

Proof. (\Longrightarrow) Suppose that a filter $\mathcal{F} \to x$. Consider a net based on \mathcal{F} denoted by $\{x_F\}_{F \in \mathcal{F}}$. $\mathcal{F} \to x$ iff $\mathcal{F}_x \subseteq \mathcal{F}$. Consider a neighborhood $F_x \in \mathcal{F}_x$ of x. We have that F_x contains a tail of $\{x_F\}_{F \in \mathcal{F}}$. To see this, fix an F_x . Because any F in \mathcal{F} meets F_x , $F' = F \cap F_x \subseteq F_x \in \mathcal{F}$. It is now clear that $\{x_F\}_{F \in \mathcal{F}}$ for all $F \geq F'$ is contained in F_x . Therefore, $\{x_F\}_{F \in \mathcal{F}} \to x$.

(\Leftarrow) Let a filter \mathcal{F} and $\{x_F\}_{F\in\mathcal{F}}\to x$ be given. Assume to get a contradiction that $\mathcal{F}\not\to x$. This means that there is some set $O\subseteq\mathcal{X}$ containing an open set $F_x\ni x$ such that $O\notin\mathcal{F}$. This means that $F_x\notin\mathcal{F}$. Now, consider the net $\{y_F\}_{F\in\mathcal{F}}$ which does not intersect F_x . Clearly, this net cannot converge to x, which contradicts the fact that all nets $\{x_F\}_{F\in\mathcal{F}}\to x$.