Engenharia de Controle e Automação

Informática Industrial I

Introdução ao Sistema de Automação e a Linguagem 61131

Automação e Tecnologia de Controle

Sistema de Controle:

Executa as instruções de forma a realizar alguma operação de produção

Programa de Instruções

Imagine um cenário onde você está no controle industrial

- trabalhando com diversos controladores de marcas diferentes que possuem diferentes linguagens de programação
- E você tem diferentes nível de engenheiros e operadores de manutenção no chão de fábrica
- O que esta errado?

Fora da Selva...

 A atual variedade de problemas pode ser amplamente reduzida através da padronização

O padrão IEC 61131

"A melhor coisa que aconteceu ao controle industrial" - Sugar Lantic on Automation Maillist

Padrão IEC 61131

- Para atender as demandas da comunidade industrial um grupo da International Electrotechnical Commission(IEC) (em Genegra) analisou e especificou o projeto de Controladores Programáveis definindo:
 - Hardware, instalação, teste, documentação, programação e comunicação.
- 1ª especificação IEC 1131 de 1992
- Atual IEC 61131

Estado atual da Norma IEC 61131

Parte	Titulo	Conteúdo	Publicação
IEC 61131-1	General information	Definições iniciais do conceito	V2.0 (2003)
IEC 61131-2	Equipment requirements and tests	Testes de verificação e fabricação	V3.0 (2007)
IEC 61131-3	Programming Languages	Estrutura de Software do CP, linguagens e execução de programa	V3.0 (2013)
IEC 61131-4	User Guidelines	Orientação para seleção, instalação e manutenção de CPs.	V2.0 (2004)
IEC 61131-5	Messaging service specification	Funcionalidades de comunicação com outros dispositivos.	V1.0 (2000)

Estado atual da Norma IEC 61131

Parte	Titulo	Conteúdo	Publicação
IEC 61131-6	Functional Safety	Especifica requerimentos para CPs, para uso em sistemas de segurança.	V1.0 (2012)
IEC 61131-7	Fuzzy control programming	Funcionalidades de software para utilização com lógica Fuzzy	V1.0 (2000)
IEC 61131-8	Guidelines for the application and implementation of programming languages	Orientação para implementação do 61131.	
IEC 61131-9	Single-drop digital communication interface for small sensors and actuators	Este padrão é conhecido como IO-Link e cobre interfaces de comunicacao.	Versão Draft.

IEC 61131-3 – Linguagens de Programação

IEC 61131-3 Standard

Elementos Comuns

Linguagens de Programação

IEC 61131-3: Elementos Comuns

Modelo de Software

- Configuração
- Recursos
- Tarefas
- Programas

Configuration

A configuração define todos os elementos de software que interagem entre si para desempenhar as funções de controle.

Configuração:

- Uma configuração pode corresponder a 1 ou mais CLPs.
- Para sistemas mais complexos pode existir vários CLPs de diferentes fabricantes.

Recurso:

- Qualquer elemento com capacidade de processamento, responsável pela execução dos programas.
- Cada recurso pode ter um ou mais programas

O recurso pode existir fisicamente ou ser apenas

uma máquina virtual.

Exemplo – PC Based Solution Siemens

Exemplo de recursos distintos seria em um computador pode existir uma HMI e um SoftPLC (PC Based Solution).

Communication Function

Tarefas:

- Pode ser configurada para controlar a execução de programas ou blocos funcionais de forma periódica ou gatilhada com disparo de eventos (triggers).
- A norma não define os mecanismos de execução dos elementos de software mas define os comportamentos de partida e parada.

Communication Function

Programa:

- Pode ser construído a partir de diferentes elementos de software, cada qual escrito em qualquer uma das linguagens 1131.
- Um programa pode acessar diretamente as variáveis de E/S e comunicar com outros programas.

Blocos Funcionais:

- Possuem um conjunto de dados que pode ser alterado por um algoritmo interno.
- Este conjunto de dados é mantido na memória para uma determinada instância do bloco funcional.
- O uso de blocos funcionais permite o projeto de software de forma hierárquica e estruturada.
- Podem ser utilizados para criação de elementos de software totalmente reutilizável, desde a utilização de outros blocos funcionais mais simples ate programas complexos.

Modelo de Software IEC

Variáveis Locais ou Globais:

- O escopo da variável é local ao elemento de software que as declara, permitindo acesso somente ao elemento.
- O escopo da variável é global sendo acessada por todos os elementos contidos no mesmo nível.

Caminhos de acesso:

 Permitem a transferência de dados entre diferentes configurações.

Vantagens do Modelo IEC 61131-3

CP Conventional vs IEC 61131-3

IEC 61131-3: Elementos Comuns

ELEMENTOS COMUNS

- Configurações
- Recursos
- Tarefas
- Programming Organization Units(POUs)
 - * Functions
 - * Function Blocks
 - * Programs

Programa

- Pode ser construído a partir de diferentes elementos de software escritos em qualquer uma das diferentes linguagens 61131.
- Um programa consiste de um código de execução, capaz de trocar dados através das conexões de software.
- Um programa pode acessar as variáveis do CLP e se comunicar com outros programas.
- A execução de diferentes partes de um programa pode ser controlada usando *Tasks*.

Exemplo programa linguagem Ladder (LD)

Bloco Funcional (FB)

- O conceito de FBs é um dos mais importantes da norma IEC61131-3, para permitir o projeto de software de forma hierárquica e estruturada.
- FB podem ser utilizados para a criação de elementos de software totalmente reutilizáveis.
- FB possuem um conjunto de dados, os quais podem ser alterados por um algoritmo interno.
- O conjunto de dados é mantido na memória para uma determinada instância do bloco funcional.

Function Block example

Function Blocks:

Standard Function Blocks

Function Blocks:

- Standard Function Blocks
- FB adicionais (fabricante)

%DB2 "PID_Compact_1"

Function Blocks:

- Standard Function Blocks
- FB adicionais (fabricante)
- FB definidos pelo usuário

 Todos FB são altamente reutilizáveis no mesmo programa ou diferentes programas ou projetos

Funções:

- São elementos de software que desempenham um determinado algoritmo e tem característica dinâmica (não possuem persistência).
- São os elementos mais básicos do software, como exemplos blocos aritméticos, lógicos, comparadores.

* Funções Padrões

ADD, SQRT, SIN, COS, GT, MIN, MAX, AND, OR, etc.

Funções do Usuário

```
FUNCTION SIMPLE_FUN: REAL VAR_INPUT

A, B: REAL;

C: REAL := 1.0;

END_VAR

SIMPLE_FUN:= A*B/C;

END FUNCTION
```

POUs : Projeto de integração como tijolos de

Unidade de Organização de Programa (POU)

Vantagens das POUs:

- Criar bibliotecas próprias de FB (por área de aplicação)
- FBs são modularizados, testados e documentados
- Tornar as bibliotecas acessíveis e reutilizável em qualquer lugar
- Alterar a programação para criar redes de FBs
- Economize 40% no próximo projeto

IEC 61131-3 Standard

Elementos Comuns

Linguagens de Programação

 A especificação IEC 61131-3 define cinco linguagens de programação:

Texto Estruturado (ST)	Textual
Lista de Instruções (IL)	Textual
Diagrama de blocos Funcionais (FBD)	Gráfica
Diagrama Ladder (LD)	Gráfica
Sequenciamento Gráfico de Funções (SFC)	Gráfica

Exemplo programa linguagem Ladder (LD)

 Exemplo programa linguagem Function Block (FBD)

 Exemplo programa linguagem Function Block (FBD)

Linguagem Instruction List (IL)

- Poderosa linguagem de programação
- Difícil entendimento
- Baseado na linguagem Assembler

```
NETWORK 1 // Partida motor

LD IO.1 // Se a entrada IO.1 é ativa (on)

A IO.2 // E se a entrada IO.2 é ativa (on)

= QO.2 // Partida motor 2

NETWORK 2 // Parada de emergência

LD IO.3 //Se a entrada IO.3 é ativa (on)

ON IO.4 // Ou então a entrada IO.4 não é ativa (off)

R Q O.1, 1 // Para motor 1

Instrução

Operando

Comentário inicia com duas barras oblíquas
```

Linguagem Struct Text (ST)

- Poderosa linguagem de programação estruturada
- Baseada na linguagem Pascal
- Permite operações não existentes em LD e FBD

```
10 IF IO.0=IO.1 // Se a entrada IO.0 é igual a entrada IO.1
20 THEN SET QO.0 // Ativa (on) a saída QO.0
30 ELSE RES QO.0 // Se não desativa (off) a saída QO.0
40 GOTO 10 // Salta a instrução 10
```

 Exemplo programa linguagem Sequencial Function Chart (SFC)

- Técnica gráfica poderosa para descrever o comportamento seqüencial de um programa
- Utilizado para particionar um problema de controle
- Mostra a visão geral, também adequada para diagnósticos rápidos

Decomposição e reuso

Decomposição

Reuso via Function Blocks padrões

Pode-se montar um carro através dos diferentes componentes padronizados.

Abstração e Hierarquia

A decomposição pode fornecer diferentes níveis de abstração, que fornecem maneiras diferentes de analisar o "problema".

Bottom-up após top-down

 Primeiramente decompõe-se o problema. Então preenche cada uma das caixinhas.

Como fazer isso no IEC 61131-3?

ESTUDO DE CASO DE UM SISTEMA DE FERMENTAÇÃO

Processo de fermentação

 Um tanque é alimentado pela válvula de alimentação com o líquido. Pode ser aquecido através do sistema de aquecimento. Pode ser agitado através do motor do reator,e possui entradas para fluido ácido e alcalino.

Como criar um sistema de controle para este sistema?

Etapa 1: Identificação de Interfaces Externas no Sistema

Identificação das entradas:

- Sensor de temperatura
- Sensor de pH
- Posições das válvulas
- Velocidade do motor

Etapa 1: Identificação de Interfaces Externas no Sistema

Identificação das saidas:

- Posição das válvulas
- Posição do Motor
- Banda de aquecimento

Etapa 2: Definição dos principais sinais entre o sistema e a planta

Neste exemplo n\u00e3o h\u00e1 acoplamento \u00e0 planta,

mas poderia haver algo como:

- ... acoplando-se aos vasos principais com líquidos
- ... acoplando ao sistema de transporte / estação de enchimento após o fim do processo

Etapa 3: Definição de todas as interações do operador, substituições e dados de supervisão

Para o operador, definimos:

- ... Um botão "Iniciar"
- ... Um botão "Parar"
- ... Uma entrada de "duração"

Agora nós definimos todas as interfaces

Etapa 4: Quebra em partições lógicas

- Sequencia principal enchimento, aquecimento, agitação, fermentação, colheita, limpeza.
- Controle de válvulas
- Controle de temperatura
- Controle do Agitador
- Controle do PH

Passo 5 : Definição dos programas (POU)

A estrutura do programa de controle de fermentação seria:

Sequencia principal usando SFC

 Onde as Actions e Transitions pode ser programada em qualquer uma das quarto linguagens IEC