Programación Numérica Cálculo Numérico Año: 2021

Trabajo Práctico Nº 9

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ejercicio 1: Dado el siguiente Problema de Valor Inicial $\begin{cases} y' = f(x, y) = x + y \\ y(0) = 1 \end{cases}$

- i) Estudiar el campo de existencia
- ii) Mediante el desarrollo de Taylor obtener $y_{i+1} = e^h (1+x_i+y_i) (1+h+x_i)$
- iii) Justificar que el error de truncamiento es nulo.
- iv) Estimar y_1 e y_2 tomando h = 0.001

Ejercicio 2: Resolver $\begin{cases} y' = f(x, y) = y \\ y(0) = 1 \end{cases}$ por el método de Euler en [0,1] con h = 0.01

Ejercicio 3: Usar algoritmo de Taylor de orden 2 para resolver $\begin{cases} y' = f(x, y) = \frac{1}{x^2} + \frac{y}{x} - y^2 \\ y(1) = -1 \end{cases}$

en [1, 2] con h = 0.1; h = 1/32; h = 1/64.

Ejercicio 4: La velocidad de emisión radiactiva de una sustancia es proporcional a la cantidad de sustancia remanente. La ecuación diferencial es y' = -k y. Si k = 0.01, y se tiene 100 grs al tiempo t = 0. Cuánto material queda para t = 100?

Resolver numéricamente:

i) Euler

con h = 25 h = 10

h = 1.

ii) Euler mejorado

con h = 20 h = 10.

iii) Runge Kutta 4

con h = 100 h = 50.

Ejercicio 5: Resolver $\begin{cases} y' = f(x, y) = x + y \\ y(0) = 0 \end{cases}$ usando Adams con h = 0.1

Ejercicio 6: Deducir pareja predictor–corrector para n = 2, n = 3, n = 4 y n = 5.

Bloque 2 - Programación

- Implementar un programa para resolver PVI mediante los métodos de:
 - a) Euler
 - b) Runge Kutta
 - c) Una pareja predictor-corrector