Semiconductor Devices Summary

Andreas Biri, D-ITET

30.07.14

1. Constants & Various

Constants (@300K)

$$\varepsilon_0 = 8.854 * 10^{-12} F/m$$
 $m_0 = 9.11 * 10^{-31} kg$ $k = 1.38 * 10^{-23} J/K = 8.617 * 10^{-5} eV/K$ $\frac{kT}{q} = 0.0259 V$, $\frac{q}{kT} = 38.61 \frac{1}{V}$, $kT = 25.9 meV$ $1 eV = 1.602 * 10^{-19} J$ $q = 1.602 * 10^{-19} A s$

Silicon (@300K) -> 4 valence electrons

$$n_i^2 = 9.3 * 10^{19}/cm^6$$
 $n_i = 9.65 * 10^9/cm^3$ $N_C = 2.86 * 10^{19}/cm^3$ $N_V = 2.66 * 10^{19}/cm^3$ $\varepsilon_s = 11.8 * \varepsilon_0$ $v_{th} \approx 10^7 \, cm/s$ $\varepsilon_{ox} = 3.9 \, (SiO_2)$ $E_G = 1.12 \, eV$ $\chi_S = 4.05 \, V$

Quantum physics

$$h = 6.625 * 10^{-34} J s = \lambda * p$$

$$\omega = \frac{2\pi}{T} = v * k \qquad k = \frac{2\pi}{\lambda} \qquad p = \frac{h}{2\pi} * k = h' * k$$

$$\frac{1}{2} m v_{th} = \frac{3}{2} kT \rightarrow v_{th} = \sqrt{3kT/m_0} \approx 10^7 cm/s$$

Electronics

$$R=
ho*{Length/_{Area}}$$
 , ho conductivity (Ω/cm) $E_{kin}+E_{pot}=constant$ $V=-rac{E_{pot}}{a}=-\int E \, dx$, $E=-rac{dV}{dx}$

2. Crystals and Current Carriers

Semi-Conductor: Conductivity controllable over orders of magnitude by means of : Impurities (doping), light, temperature, EM-fields

Coordination number: number of nearest neighbors

Simple Metals: coord. number > # of valence electrons

Transition Metals: bonds covalent-like, harder

Covalent Bonding: hybridization of s- & p-orbitals, stiff
-> tetrahedral bonding: coord. number = 4, 8N states

s-orbitals: 2 allowed states; p-orbitals: 6 allowed states

Partially filled/empty bands conduct currents!

Band gap: between valence and conduction band

Intrinsic carriers

No doping, pure semiconductor, created by heat

$$n_0 = p_0 = n_i \sim \frac{1}{E_G}$$

 E_G : Silicon 1.12 eV, GaAs 1.42 eV @ 300 K

Extrinsic carriers

Donors (n-type): give electrons (P, As, Sb) **Acceptors (p-type):** give holes (B, Al, Ga, In)

Overall, solid is neutral: one fixed charge, one free

$$p_0=rac{n_i^2}{N_D}$$
 , $n_0=rac{n_i^2}{N_A}$

Fermi Dirac Statistics

F(E): probability of finding an electron with energy E

$$F(E) = \frac{1}{1 + e^{(E - E_F)/kT}} \cong e^{-\frac{(E - E_F)}{kT}} \quad E \gg E_F$$

Fermi level E_F : energy where $F(E = E_F) = \frac{1}{2}$ Probability of finding a hole: H(E) = 1 - F(E)

$$n_0 = \int_{E_C}^{\infty} \! f(E) \ x \ D(E_{kin}) \ dE_{kin} \ , \\ p_0 = \int_{-\infty}^{E_V} \! \left(1 - f(E)\right) x \ D(E_{kin}) \ dE_{kin}$$

Density of State:
$$D(E_{kin}) = \frac{8\pi\sqrt{2}}{h^3} (m^*)^{3/2} (E_{kin})^{1/2}$$

Kinetic energy:
$$E_{kin} = \frac{|\vec{p}|}{2m^*} = \frac{(p_x)^2 + (p_y)^2 + (p_z)^2}{2m^*}$$

- i) Fermi levels in all regions will lign up
- ii) Far away from transition, Fermi level is like without junction (material doesn't "know")
- iii) At Equilibrium/Steady-State, E_F must be flat (constant) so that no current will be flowing

Carrier concentration

$$N_C = \frac{4\sqrt{2}(\pi m^*kT)^{3/2}}{h^3}, \qquad N_V = \frac{4\sqrt{2}(\pi m^*kT)^{3/2}}{h^3}$$

$$n_0 = N_C * e^{\frac{-E_C - E_F}{kT}} = n_i * e^{\frac{E_F - E_i}{kT}}$$

$$p_0 = N_V * e^{-\frac{E_F - E_V}{kT}} = n_i * e^{\frac{E_i - E_F}{kT}}$$

$$n_i^2 = N_V * N_C * e^{-E_G/kT}, \qquad E_G = E_C - E_V$$

Constant product:
$$n_0 * p_0 = n_i^2$$

Carrier "Freeze-Out": T << 0°C

"Extrinsic Region": donors ionized

"Intrinsic Region": doping irrelevant

3. Carrier transport

Diffusion current: concentration gradients from high to low concentration

$$J_n = q D_n \frac{dn}{dx}$$
 , $J_p = -q D_p \frac{dp}{dx}$

Drift current: electric field

holes with field, electrons against it

$$J_n = n \ q \ \mu \ \vec{E}$$
 , $J_p = p \ q \ \mu \ \vec{E}$

Total current:

$$J_n = nq\mu\vec{E} + qD_n\frac{dn}{dx}$$
, $J_p = pq\mu\vec{E} - qD_p\frac{dp}{dx}$

Conductivity

$$J_{drift.tot} = \sigma E \rightarrow \sigma = nq\mu_n + pq\mu_p$$

Einstein relation

$$D_n = \frac{kT}{q} \mu_n, \qquad D_p = \frac{kT}{q} \mu_p$$

In PN Junction: only diffusion currents (flat bands)

$$\frac{dn}{dx} = \frac{n_{po}(e^{qV_F/kT} - 1)}{L_n}, \frac{dp}{dx} = \frac{p_{no}(e^{qV_F/kT} - 1)}{L_n}$$

$$J_t = q D_n * \frac{dn}{dx} - q D_p \frac{dp}{dx} = J_S * (e^{qV_F/kT} - 1)$$

$$J_{t} = \left[\frac{q D_{n} n_{po}}{L_{n}} + \frac{q D_{p} p_{n0}}{L_{p}} \right] * (e^{qV_{F}/kT} - 1)$$

Reverse breakdown

- i) Band-to-Band Tunneling (Zener) applies when both sides are heavily doped
- ii) Avalanche Multiplication strong electric field creates large kinetic energy to the carriers, so that they ionize others via collision

4. PN Junction

Built-in voltage

Band-bending that balances drift & diffusion currents

$$V_{bi} = \frac{kT}{q} * \ln\left(\frac{N_A * N_D}{(n_i)^2}\right) = \frac{1}{2} E_{max} * W$$

Forward Bias: reduce band bending, less difference more minority carriers -> minority carrier injection Reverse Bias: increase band bending, less minority

Band-bending = presence of an electric field

Conduction Band Edge: E_{not} of electrons Valence Band Edge: E_{not} of holes

Diode currents: minority carriers

$$n_{p0} = \frac{(n_i)^2}{N_A} = N_D * e^{-\frac{qV_{bi}}{kT}}$$

$$p_{no} = \frac{(n_i)^2}{N_D} = N_A * e^{-\frac{qV_{bi}}{kT}}$$

Under Forward-Bias: Shockley Boundary Conditions

$$n_p = N_D * e^{-rac{q(V_{bi} - V_F)}{kT}} = n_{po} * e^{+rac{qV_F}{kT}}$$
 $p_n = N_A * e^{-rac{q(V_{bi} - V_F)}{kT}} = p_{no} * e^{+rac{qV_F}{kT}}$

Poisson Equation

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_r * \varepsilon_0} = \frac{\rho}{\varepsilon_S} \rightarrow V_{bi} = -\int_{-x_p}^{x_n} E(x) \ dx$$

Depletion approximation

$$|E_{max}| = |E(x = 0)| = \frac{qN_Ax_p}{\varepsilon_S} = \frac{qN_Dx_n}{\varepsilon_S}$$

$$W = x_p + x_n = \sqrt{\frac{2\varepsilon_S}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) \left(V_{bi} - V_{apply}\right)}$$

Neutrality: $N_A x_n = N_D x_n$ (same areas)

One-Sided junction: only depletion on lightly-doped side

$$W \approx \sqrt{\frac{2 \, \varepsilon_S}{q} \frac{1}{N_D} \, V_{bi}} \, , \qquad N_D \ll N_A$$

Depletion capacitance

$$C_{j} = \frac{dQ}{dV} = \frac{\varepsilon_{S}}{W(V_{bi}, V_{apply})} = \sqrt{\frac{q \varepsilon_{0} \varepsilon_{r} N_{A} N_{D}}{2 V_{bi} (N_{A} + N_{D})}}$$

No voltage applied

Positive voltage on p-side E_{E} is separated by qV_{E}

between p- and n-side W increases at reverse bias

 $E_{\rm F}$ is separated by $qV_{\rm R}$ between p- and n-side

4. Generation and Recombination

Recombination brings the system back to equilibrium

Non-equilibrium concentration:

$$n = n_0 + \Delta n$$
, $p = p_0 + \Delta p$, $\Delta n = \Delta p$

Recombination rate (even at Non-equilibrium):

$$R = \beta * (n * p)$$

Thermal generation rate

$$G_{th} = R_{th} = \beta * (n_{n0} * p_{n0})$$

External excitation (e.g. Light) gives additional term:

$$G = G_L + G_{th} \rightarrow \frac{dp_n}{dt} = G_L + G_{th} - R$$

Direct recombination

Direct recombination across the bandgap results in the emission of a photon with energy $E_G = h * f$

Net generation rate U

$$U = \beta * (n * p - n_i^2) = G_L = R - G_{th}$$

Under low-level injection: $p_{n0} \ll n_{n0}$, $\Delta p \ll n_{n0}$

$$U=rac{\Delta p}{ au_p}$$
 , $au_p=rac{1}{eta\,n_{n0}}$

 τ : Minority carrier lifetime (how fast decay)

Example: Lesson 5, p.7

- Light ON

$$G_L = U = \frac{p_n - p_{n0}}{\tau_p} \rightarrow p_n = p_{no} + \tau_p G_L$$

- Light OFF:

$$G_L = 0 \rightarrow \frac{dp_n}{dt} = G_{th} - R = -\frac{p_n - p_{n0}}{\tau_p}$$

$$\rightarrow p_n(t) = p_{n0} + \tau_p G_L e^{-t/\tau_p}$$

Indirect recombination (Neamen: p.223)

G-R Centers in the Gap (defect states near midgap) These "traps" facilitate the return of an electron **G/R centers:** most effective if E_t near intrinsic E_i

$$U \approx v_{th}\sigma_0 N_t * \frac{\Delta p}{1 + \left(\frac{2n_i}{n_{n0}}\right) \cosh\left(\frac{E_t - E_i}{kT}\right)} = \frac{\Delta p}{\tau_p}$$

 N_t : Density of Recombination Centers

 σ : Recombination Center cross section

$$e_n = v_{th} \sigma_n n_i e^{(E_t - E_t)/kT}$$
 Electron emission prob. $e_p = v_{th} \sigma_p n_i e^{(E_i - E_t)/kT}$ Hole emission probability

Surface recombination: "dangling bonds" at surface

Continuity equation

$$\frac{dn}{dt} = \frac{1}{q}\frac{dJ_n}{dx} + (G_n - R_n), \frac{dp}{dt} = -\frac{1}{q}\frac{dJ_p}{dx} + (G_p - R_p)$$

$$\frac{dn_p}{dt} = n_p \mu_n \frac{d\vec{E}}{dx} + \mu_n \vec{E} \frac{dn_p}{dx} + D_n \frac{d^2 n_p}{dx^2} + G_n - \frac{n_p - n_{p0}}{\tau_n}$$

$$\frac{dp_n}{dt} = -p_n \mu_p \frac{d\vec{E}}{dx} - \mu_p \vec{E} \frac{dp_n}{dx} + D_p \frac{d^2 p_n}{dx^2} + G_p - \frac{p_n - p_{n0}}{\tau_p}$$

Steady State: Quantities are Time Independent **Zero Field:** fields in neutral regions are approx. zero

Generation: deficiency of minority carriers **Recombination:** excess of minority carriers

Exp: Steady State surface Generation

Long diode: semi-infinite, exponential decay $L \ll W$

Short diode: finite, linear decay

 $L\gg W$

$$p_n(0) = const,$$
 $p_n(x = W) = p_{n0}$

$$p_n(x) = p_{n0} + [p_n(0) - p_{n0}] \left[\frac{\sinh\left(\frac{W - x}{L_p}\right)}{\sinh\left(\frac{W}{L_p}\right)} \right]$$

Minority Carrier Diffusion Length:

$$L_p = \sqrt{D_p \, \tau_p}$$

Quasi-Fermi Levels

Under bias, the equilibrium Fermi level splits into 2 distinct quasi-Fermi levels that describe carrier statistics in each diode region

$$n(x) = N_C e^{-(E_C(x) - E_{Fn})/kT}$$
, $p(x) = N_V e^{-(E_{Fp} - E_V(x))/kT}$
 $n(x)p(x) = N_C N_V e^{-\frac{E_G}{kT}} e^{(E_{Fn} - E_{Fp})/kT}$
 $E_{Fn} - E_{Fp} = q V_F$

Carrier Profile through Depletion Region

Forward Bias

Reverse Bias

Capacitance in depletion region

Depletion capacity per unit square [F/cm^2]

$$C_A = \frac{C}{A} = \frac{\varepsilon_0 \varepsilon_r}{W}$$
, $W: depletion \ width$

Non idealities

$$n(x) = N_C e^{-\frac{E_C(x) - E_{Fn}}{kT}}$$

$$p(x) = N_V e^{-\frac{E_{Fp} - E_V(x)}{kT}}$$

$$n(x) p(x) = N_C N_V e^{-\frac{E_G}{kT}} * e^{\frac{E_{Fn} - E_{Fp}}{kT}} = n_i^2 e^{\frac{qV_F}{kT}}$$

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Generation currents

Reverse bias

Carrier Deficit -> Generation current

$$J_{gen} = \int_0^W qG \ dx = \frac{q \ n_i}{\tau_g} \ W \quad , \qquad G = \frac{n_i}{\tau_g}$$

$$J_{RT} = J_S + J_{gen} = \left[\frac{qD_n}{N_A L_n} + \frac{qD_p}{N_D L_p} \right] n_i^2 + \frac{qW n_i}{\tau_q}$$

Forward bias

Carrier Excess -> Recombination current

$$U_{max} = \sigma_0 N_t \frac{n_i^2 (e^{\frac{qV_F}{kT}} - 1)}{p_n + n_n + 2n_i} \approx \frac{1}{2} v_{th} \sigma_0 N_t n_i e^{qV_F/kT}$$

$$J_{rec} = \int_{0}^{W} q \ U \ dx = \frac{q \ W \ n_{i}}{2 \ \tau_{r}} \ e^{\frac{q V_{F}}{2 k T}}$$

$$J_{FT} = \left[\frac{q D_N}{N_A L_n} + \frac{q D_p}{N_D L_p} \right] n_i^2 \ e^{q w V_F / k T} + \frac{q \ W \ n_i}{2 \ \tau_r} \ e^{q V_F / 2 k T}$$

Ideality Factor η : characterizes Diode Forward Current Ideality Materials with longer recombination lifetime have better ideality

$$J_{FT} = J_S \left(e^{\frac{qV_F}{kT}} - 1 \right) + J_{rec} \sim \exp \left[\frac{qV_F}{\eta kT} \right]$$

Reverse Breakdown of Diode:

- i) Band-to-Band Tunneling (Zener)applies when both sides are heavily doped
- ii) Avalanche Multiplicationstrong electric field creates large kinetic energy to the carriers, so that they ionize others via collision

Real PN Junction Diode

Ohmic losses

Ohmic losses reduce the internal voltage that actually appears across the depletion; at low current levels negligible

$$I \approx I_S \, \frac{e^{qV_A/kT}}{e^{qIR/kT}}$$

5. Bipolar Junction Transistor (BJT)

BJT is a Minority Carrier Device and acts as an ideal current source ($I_{Collector}$ does not vary with V_{CR})

Emitter/Base Junction (in active mode) Forward-Biased: Minority Carrier Injection

Base/Collector Junction (in active mode) Reversed-Biased: Minority Carrier Extraction

Modes	B-E	B-C		
Active	Forward	Reverse		
Saturation	Forward	Forward		
Cutoff	Reverse	Reverse		
	i	i		
inverted	Reverse	forward		
E B	<u>c</u> _	E B	С	
n_p n_p		n_p n_p		
0 W		0 W		
Active	0	Saturatio		
E B	<u>c</u>	E B	C	
n_p p_n p_n	n_p	n_p 0 0	n_p	
Cutoff		Inverted		
<u>Е</u> <u>В</u>	<u>c</u>			
n p	n			
E _C	gV _{cs} E_C		$ \begin{array}{c c} E_C \\ \hline V_{BC} \\ \end{array} $	
	Ly	V _{EB}		

PNP

NPN

Ideal currents

- Injection from Emitter into Base
- No Generation/Recombination in Base Laver
- neglect Diode Leakage Current

Constant carrier densities in the depleted regions Assumed no recollection or generation

$$n_{E} = n_{E0}, x \to \infty; n_{E}(-x_{E}) = n_{E0} * e^{\frac{qV_{BE}}{kT}}$$

$$n_{E}(x) = n_{E0} + (n_{E}(-x_{E}) - n_{E0}) * e^{\frac{x+x_{E}}{kT}}$$

$$\to I_{nE} = I_{B} = q D_{nE} \frac{dn_{E}}{dx} = \frac{qD_{nE}}{L_{nE}} n_{E0} \left(e^{\frac{qV_{EB}}{kT}} - 1 \right)$$

$$p_{B}(0) = p_{B0} * e^{\frac{qV_{BE}}{kT}}, \quad p_{B}(W) = p_{B0} * e^{\frac{qV_{BC}}{kT}}$$

$$p_{B}(x) = p_{B}(W) + (p_{B}(0) - p_{B}(W)) * \left(1 - \frac{x}{W} \right)$$

$$\rightarrow I_{pB} = -q \ D_{pB} \frac{dp_{nB}}{dx} = \frac{qD_{pB}}{W_B} \ p_{B0} \left(e^{\frac{qV_{EB}}{kT}} - e^{\frac{qV_{BC}}{kT}} \right)$$

For NPN:

$$I_{B} = I_{pB} = I_{pE} = -\frac{q D_{P}}{L_{pE}} p_{E0} \left(e^{\frac{q V_{BE}}{kT}} - 1 \right)$$

$$I_{C} = I_{nB} = -\frac{q D_{NB}}{W_{B}} n_{B0} \left(e^{\frac{q V_{BE}}{kT}} - e^{\frac{q V_{BC}}{kT}} \right)$$

Common Emitter current gain

$$\beta = \frac{I_C}{I_B} = \frac{I_{pC}}{I_{nE}} = \frac{I_{pE}}{I_{nE}} = \frac{D_{pB}}{D_{nE}} \frac{L_{nE}}{W} \frac{N_{AE}}{N_{DB}}, \qquad V_{CB} = 0$$

$$I_C = \alpha I_E = \beta I_B$$
, $\beta = \alpha/1 - \alpha$

Emitter doping must be higher than base doping:

$$I_{pC} \gg I_{nE} \Leftrightarrow N_{AE} \gg N_{DB}$$

Doping Ration most powerful factor to reach gain Gummel-Characteristics: $\frac{60mV}{dec}$ gain in I/V

Transconductance

Collector current: $I_C = I_S * \left(e^{\frac{qV_{EB}}{kT}} - 1\right)$

Transconductance: $g_m \approx \frac{I_C}{kT_c/a}$

Non-ideal currents

NPN	PNP			
$J_{nE} = -q D_{nB} \frac{\partial n_{pB}}{\partial x} \Big _{x=0}$	$J_{nE} = -qD_{nE} \frac{\partial n_{pE}}{\partial x} \Big _{x = -x_E}$			
$J_{pE} = -q D_{pE} \frac{\partial z}{\partial x} \Big _{x=-x_E}$	$J_{pE} = -q D_{pB} \frac{\partial p_{nB}}{\partial x} \Big _{x=0}$ $J_{nC} = q D_{nC} \frac{\partial n_{pC}}{\partial x} \Big _{x=x_{C}}$			
$J_{nC} = q D_{nB} \frac{\partial n_{pB}}{\partial x} \Big _{x=W}$	$\left J_{nC} = q D_{nC} \frac{\partial n_{pC}}{\partial x} \right _{x=x_C}$			
$J_{pc} = -qD_{pc} \frac{\partial p_{nc}}{\partial x} \Big _{x=x_c}$	$J_{pc} = -qD_{pB} \frac{\partial p_{nB}}{\partial x} \Big _{x=W}$ $J_{BB} = J_{pE} - J_{pc}$			
$J_{BB} = J_{nE} - J_{nC}$	$J_{BB} = J_{pE} - J_{pC}$			
No hara wasan kinatian if				

$$\begin{split} W_{B} \ll L_{nB} & \Rightarrow J_{BB} \approx 0 \\ I_{E} & = I_{pE} + I_{nE} \\ I_{C} & = I_{pC} + I_{nC} \\ I_{B} & = I_{pE} + (I_{nE} - I_{nC}) - I_{pC} \end{split} \qquad \begin{aligned} W_{B} \ll L_{pB} & \Rightarrow J_{BB} \approx 0 \\ I_{E} & = I_{nE} + I_{pE} \\ I_{C} & = I_{nC} + I_{pC} \\ I_{B} & = I_{nE} + (I_{pE} - I_{pC}) - I_{nC} \end{aligned}$$

"Early" - effect:

In practice, the I_C depends on V_{RC} . The depletion region becomes wider with increasing BC reverse bias, decreasing the undeplented base width, which increases I_c . To avoid this, the base doping must be higher than collector:

Power Gain from Amplifier

For power gain:

$$R_{out} \to \infty \quad \Leftrightarrow \quad V_A \to \infty$$

$$G_A = \beta^2 \frac{R_L}{R_{in}} \left(\frac{[V_A + V_{CE}]/I_C R_L}{[V_A + V_{CE}]/I_C R_L + 1} \right)$$

Used power:

 $P = V_{CF} * I_{C}$

Cost of power gain: $P_D = V_{CE} * I_C - P_{out}$

Maximum Power gain (with impedance matching)

$$G_p = \frac{1}{f^2} \frac{f_T}{8\pi R_B C_{BC}}$$
, $f_{MAX} = \sqrt{\frac{f_T}{8\pi R_B C_{BC}}}$

Cutoff frequency

Unity Current Gain Cutoff frequency: $\beta(f_T) = 1$

Measured with Short-Circuit load ($R_L = 0$)

$$h_{fe}(\omega) = \frac{I_C}{I_B} = \frac{g_m r_\pi}{1 + j\omega r_\pi C_\pi} = \beta(\omega)$$

$$h_{fe}(\omega = 0) = g_m r_\pi$$

Transistor behaves as a Low-Pass

$$\beta(\omega) = h_{fe}(\omega) = \frac{\beta_0}{1 + j(f/f_\beta)}$$

$$f_{\beta} = \frac{1}{2\pi C_{\pi} r_{\pi}}, \qquad \beta_0 = g_m r_{\pi}$$

Cutoff Frequency: $f_{To} = \frac{g_m}{2\pi C}$

Common-Base (BC) Current Gain

$$\alpha(\omega) = \frac{\beta(\omega)}{\beta(\omega) + 1} = \frac{I_C}{I_E} = \frac{\alpha_0}{1 + j(f/f_\alpha)}$$

$$f_{\alpha} = (\beta_0 + 1) f_{\beta}, \qquad \alpha_0 = {\beta_0}/{\beta_0 + 1}$$

Additional Delay terms

 τ_{R} : Base Transit Time (diffusion across the base)

 τ_C : Collector Signal Delay Time (through depletion)

$$au_{B} = rac{Q_{B}}{J_{C}} = rac{W_{B}^{2}}{2D_{n}}, au_{C} = rac{W_{C}}{2 * v_{sat}}$$
 $rac{1}{f_{cr}} = rac{1}{f_{cr}} + rac{1}{f_{r}}, au_{f_{\tau}} = rac{1}{2\pi\tau}$

Cutoff frequency including delay terms

$$f_T = \sqrt{\beta_0^2 - 1} f_{\beta \tau} \approx \alpha_0 f_{\alpha \tau} = \frac{1}{2\pi \tau_T}$$

Where τ_T is the transit time / sum of all delays

$$\tau_T \approx \frac{C_\pi}{g_m} + \tau = \frac{C_\pi}{g_m} + \tau_1 + \tau_2 + \dots$$

Common-emitter delay term: C_{π}/a_{m}

Kirk-Effect ("Base spreading")

At high currents, the electron density n_c in the collector becomes comparable to the donor density (npn BJT). Therefore, it cannot be neglected for the calculation of the E-Field in the collector:

$$E(x) = \frac{q}{\varepsilon_S} \left[(N_{DC} - n_C)x + E_{depletion} \right]$$

Base spread (increases τ_R , reduces β)

$$W_k = W_C * \left[1 - \sqrt{\frac{V_{CB}/V_{Cd}}{(n_C/N_{DCl}) - 1}} \right]$$

Kirk effect threshold current

$$J_K = q * v_{sat} * N_{DCl} \left(1 + \frac{2 \varepsilon_S V_{CB}}{q N_{DCl} W_C^2} \right)$$

Base drift field

Carrier transport across the base can be aided by introducing an electric field, such as by **non-flat base doping profiles / grading the doping**.

P-type base with width W_B with an electric field:

$$n_B(x) = -\frac{J_n W_B}{q D_n} \frac{1 - e^{-\eta (1 - \frac{x}{W_B})}}{\eta}, \qquad \eta = \frac{W_B}{x_0}$$

 η : accelerating field factor / grading

$$au_B = rac{W_B^2}{D_n} \left(rac{\eta \ - \ 1 + e^{-\eta}}{\eta^2}
ight), \qquad au_B(\eta = 0) = rac{W_B^2}{2D_{nB}}$$

NPN base charge: $Q_B = \int_0^{W_B} -q \, n_B \, dx \, \left[C/cm^2 \right]$

Heterojunction Bipolar Transistor (HBT)

Different materials and bandgaps for emitter & base

$$eta = eta_{BJT} * rac{n_{iB}^2}{n_{iF}^2} = eta_{BJT} \; e^{rac{\Delta E_G}{kT}}$$

Darlington Pair

6. MOSFET

In contrast to BJTs majority devices (majority carrier) N-Channel: electrons, P-Channel: holes

Depletion Mode: channel present at equilibrium **Enhancement Mode:** no channel at equilibrium

Structure

Drain-Source voltage V_{DS} : low for uniform channel **Gate-Source voltage** V_{GS} : large enough for channel

Channel is built by minority carriers between S & D

Sheet resistance

$$R_{S} = \rho * \frac{Length}{Area} = \frac{\rho}{Thickness} \left[\Omega / m^{2} \right]$$

$$R_{S}(x) = \frac{1}{\mu_{n} C_{OX} \left(V_{CS} - V_{T} - V(x) \right)}$$

V(x): channel voltage; $V(0) = V_S = 0$, $V(L) = V_{DS}$

 V_T : threshold voltage for strong inversion

Basic characteristics

Inversion layer has thickness X, charge density Q_n

$$Q_n = -q \, n \, X = -C_{OX} \left(V_{GS} - V_T - V(x) \right)$$

$$X = \frac{C_{OX} \left(V_{GS} - V_T - V(x) \right)}{q \, n} \,, \qquad Z: width$$

$$I_{CH} = I_D = \frac{\mu_n C_{OX}}{2} \frac{Z}{L} [2(V_{GS} - V_T) V_{DS} - V_{DS}^2]$$

Pinch-Off

Pinch-off when $V_{DS} \ge V_{GS} - V_T$ at drain side

Linear region:
$$V_{DS} < V_{GS} - V_T$$

$$I_{CH} = I_D = \frac{\mu_n C_{OX}}{2} \frac{Z}{L} \left[2(V_{GS} - V_T) V_{DS} - V_{DS}^2 \right]$$

Saturation region: $V_{DS} \ge V_{GS} - V_T$

$$I_{D_{Sat}} = \frac{\mu_n C_{OX}}{2} \frac{Z}{L} (V_{GS} - V_T)^2$$

Transconductance in Saturation region

$$g_m = \frac{dI_{D_{Sat}}}{dV_{GS}} = \frac{\mu_n C_{OX} Z}{L} \left(V_{GS} - V_T \right)$$

Channel length modulation (L12P2)

Assume $\Delta L \ll L$: channel length idependent of V_{DS} . When we cannot assume that $\Delta L \ll L$, we have a short-channel MOSFET whose drain-current increases with increasing V_{DS} ! Like Early for BJTs

Reducing the channel length increases:

- transconductance g_m
- operation speed
- device density

But V_T decreases (threshold voltage shift)

Band diagramm

Electron affinity: $\chi = E_0 - E_C$ [eV] Work function: $\Phi = E_0 - E_F$ [eV]

 $Vacuum\ level$: E_0

At Equilibrium, the Fermi Level must be constant!

As the metal workfunction differs from the semiconductor workfunction, there will be bandbending

Flatband voltage: Gate voltage that makes them flat

Channel Modulation

Band bending

General potential: $q \Psi(x) = E_i - E_i(x)$

Bulk potential : $q \Psi_B(x) = E_i - E_F$

$$\Psi_B = \frac{kT}{q} \ln \left(\frac{N_A}{n_i} \right)$$

$$p_p = n_i e^{\frac{E_i - E_F}{kT}} = n_i e^{\frac{q(\Psi_B - \Psi)}{kT}}$$

$$n_p = n_i e^{\frac{E_F - E_i}{kT}} = n_i e^{\frac{q(\Psi - \Psi_B)}{kT}}$$

Midgap: $\Psi_S = \Psi_B$, $n_p = p_p = n_i$

Depletion region width

$$\Psi(x) = \Psi_S \left(1 - \frac{x}{W}\right)^2$$
, $\Psi_S = \frac{qN_AW^2}{2\varepsilon_S}$

Depletion width: $W = \sqrt{\frac{2 \varepsilon_S \Psi_S}{q N_A}}$

Max. at inversion: $W_{max} = \sqrt{\frac{2 \, \varepsilon_S \, 2 \, \Psi_B}{q \, N_A}}$, $\Psi_S = 2 \Psi_B$

Electric field: $E_s(x) = \frac{q N_A}{\varepsilon} (W - x)$

Ideal gate voltage relationship

$$V_G = V_{ox} + \Psi_S = d * E_{ox} + \Psi_S$$

 V_G : Potential drop across oxide & semiconductor

$$V_{ox} = \frac{\sqrt{2 q \varepsilon_S N_A \Psi_S}}{C_{OX}}, \qquad C_{OX} = \frac{\varepsilon_{ox}}{d}$$
$$V_G = \frac{\sqrt{2 q \varepsilon_S N_A \Psi_S}}{C_{OX}} + \Psi_S$$

Threshold voltage ($\Psi_S=2~\Psi_B$)

$$V_T = \frac{\sqrt{2 q \varepsilon_S N_A 2 \Psi_B}}{C_{OX}} + 2 * \Psi_B$$

After that, W is maximal and stays more or less

Non-ideal gate voltage relationship (voltage shift)

Bands are not flat due to

- 1. Workfunction difference $\Psi_{ms} = \left(\Phi_m \Phi_S \right) / q$
- 2. Fixed charges inside the oxide

$$\rightarrow$$
 $V_G = V_G' + V_{FB}$, V_G' : ideal gate voltage

$$V_{FB} = \Psi_{ms} - \frac{1}{\varepsilon_S} \int_{oxide} x \ \rho_{ox}(x) \ dx \ , \qquad \varepsilon_S = C_o \ d$$

If the charge in the oxide is fixed:

$$V_{FB} = \Psi_{ms} - \frac{Q_O}{C_{ox}}, \qquad Q_O \left[\frac{C}{cm^2} \right]$$

MOS Capacitance

$$C = rac{C_{ox} C_{j}}{C_{ox} + C_{j}}$$
, C_{j} : depletion capacitance $rac{C}{C_{ox}} = rac{1}{\sqrt{1 + rac{2 \, arepsilon_{ox}^{2} \, V}{q \, N_{A} \, arepsilon_{ox}^{2} \, d}}$, C_{ox} : $rac{arepsilon_{ox}}{d}$

Accumulation: only majority carriers can respond to fast AC signal → added delta-charge

Deep depletion: DC bias changes so fast that minority carriers cannot respond. Therefore, the depletion layer keeps increasing

Cutoff frequency

$$I_d=g_m v_{gs}, \qquad I_g=rac{v_{gs}}{1/j\omega C_{gt}}, \qquad C_{gt}=C_{gs}+C_{gd}$$

$$f_T = \frac{g_M}{2\pi(C_{qs} + C_{qd})} = \frac{3\mu_n}{4\pi} \frac{V_{Gs} - V_T}{L^2}$$

Subthreshold swing

Subthreshold regime: $V_G < V_T$

Subthr. Swing: how effective can it be turned on / off

$$S = \frac{1}{\frac{d (\ln(I_D))}{d V_G}}$$

7. Various / General

Direct and Indirect Bandgaps

A transition in an indirect bandgap material must necessarily include an interaction with the crystal so that crystal momentum is conserved

Material properties

Gate Material	Work Function (eV)
n+ Polysilicon	4.0
Al	4.25
W	4.6
MoSi ₂	4.5
PtSi	5.4
Pd ₂ Si	5.1

Selected Gate Insulators $\Delta E_C = \chi_S - \chi_i$					
Insulator	ε,	Gap (eV)	ΔE _c to Si		
SiO ₂	3.9	8-9	3.2		
Si_3N_4	7.2-7.6	5.1	2.0		
Al ₂ O ₃	9.0	8.7	2.1		
Ta ₂ O ₅	26	4.5	0.5		
ZrO ₂	25	5.8	1.2		
HfO ₂	25	5.7	1.5		
TiO ₂	80	3.5	1.2		

Conduction

Tipps & Tricks

Energy: $E = \int q \cdot \varepsilon \cdot dx$

 $E_{kin} + E_{pot} = const.$ $\varepsilon = \frac{1}{q} \frac{dE}{dx} = -\frac{dV}{dx}$

E-Field: $\varepsilon = \frac{1}{a} \frac{dE}{dx} = -\frac{d}{dx}$

Potential: $V = -\int \varepsilon \cdot dx = -\frac{1}{a}E_C$

Charge d. with depletion approximation: $q \cdot (N_A - N_D)$

Diamond structure

