1.

$$B[g]=A[f]+A[f+1];$$

2.

i.

without:

Instruction	I Mem	Reg Rd	ALU	D Mem	Reg Wr	Total
R-Type	400	200	120		200	920
load	400	200	120	350	200	1270
store	400	200	120	350		1070
branch	400	200	120			720
jump	400					400

with:

Instruction	I Mem	Reg Rd	ALU	D Mem	Reg Wr	Total
R-Type	400	200	420		200	1020
load	400	200	420	350	200	1370
store	400	200	420	350		1170
branch	400	200	420			820
jump	400					400

ii.

Speedup =
$$1270/1235=1.028$$

3. In the original ISA, the funct field is only used when the op field is all 0's(000000). Therefore, in the original ISA, there are 127 total instructions ($2^6 - 1 + 2^6$). Therefore, the new ISA would have 254 instructions. One straightforward solution is to make the op field 8 bits and remove the funct field ($2^8 = 256$). That would decrease our shift amount, so the implication is that we would need more than 1 shift instruction if we want to shift by more than a 3-bit value.

Another solution is to make a new instruction type for shift instructions; We can call that type S. Our op field can be increased to 7 bits, and then we can have more op codes utilize the funct field (as opposed to only all 0's). More precisely: $2^7 - x + (2^4) = 254$, where x is the number of op codes that utilize the 4 funct bits. That means that 8 op codes will need to use the funct field so that we can have at least 254 different instructions. Also, in this solution the shift amount would be decreased to 4 bits.

R typ	be									
op	7bits	rs	7bits	rt	7bits		rd	7bits		Funct 4bits
I typ	I type									
op	op 7bits		rs 7bits		rt 7bits		Immediate 11 bits			
J type										
op 71	oits					Address 25 bits				
Or you can have R type										
op	8bits	rs	7bits	rt	7bits		rd	7bits		Shamt 3bits
I type										
op	p 8bits rs 7bits			rt 7bits		Immediate 10 bits				
J type										
op 8bits Address 2						24 bits				

As a result, I-type immediate decrease from 16 bits to 11 bits (or 10 bits), which is -2^10 to 2^10-1 (-2^9 to 2^9-1).

Branch is an I-type so now can only reach 2047(1023) instructions away. Jump address is divided in half.

4.

