UNIT 3 & 4 CHEM

Name:	

TOPIC 1:EQUILIBRIUM

Le Chatelier's Principle

If a stress is applied to a system in dynamic equilibrium, the system will adjust to relieve that stress.

Syllabus dot-points

CHC	e Onderstanding.
	collision theory can be used to explain and predict the effects of concentration, temperature, pressure, the
	presence of catalysts and surface area of reactants on the rates of chemical reactions
	chemical systems include physical changes and chemical reactions and may be open (which allow matter and
	energy to be exchanged with the surroundings) or closed (which allow energy, but not matter, to be
	exchanged with the surroundings)
	observable changes in chemical reactions and physical changes can be described and explained at an atomic
	and molecular level
	over time, in a closed system, reversible physical and chemical changes may reach a state of dynamic
	equilibrium, with the relative concentrations of products and reactants defining the position of equilibrium
	the characteristics of a system in dynamic equilibrium can be described and explained in terms of reaction
	rates and macroscopic properties
	the reversibility of chemical reactions can be explained in terms of the activation energies of the forward and
	reverse reactions
	the effects of changes in temperature, concentration of species in solution, partial pressures of gases, total
	volume and the addition of a catalyst on equilibrium systems can be predicted using Le Châtelier's Principle
	the effects of changes in concentration of solutions and partial pressures of gases on chemical systems
	initially at equilibrium can be predicted and explained by applying collision theory to the forward and reverse
	reactions
	the effect of changes of temperature on chemical systems initially at equilibrium can be predicted by
	considering the enthalpy changes for the forward and reverse reactions; this can be represented on energy
	profile diagrams and explained by the changes in the rates of the forward and reverse reactions
	equilibrium law expressions can be written for homogeneous and heterogeneous systems; the equilibrium
	constant (K), at any given temperature, indicates the relationship between product and reactant concentrations
	at equilibrium
	the relative amounts of reactants and products (equilibrium position) can be predicted qualitatively using
	equilibrium constants (K _c)
	reagents and reaction conditions are chosen to optimise yield and rate for chemical synthesis processes,
	including in the production of ammonia (Haber process) sulfuric acid (Contact process)

REACTION RATES

Collision theory: In order for particles to react, they need to collide with correct orientation and sufficient energy to overcome the activation energy.

Energy profile diagrams:

FACTORS AFFECTING REACTION RATES

Concentration Affects number of collisions

Surface area Affects number of collisions

Pressure of gas Depends on how change in pressure was achieved

This is an important distinction and will be relevant later when discussing equilibrium.

Method for changing pressure	Decrease volume	Add inert gas (green)
Effect on total pressure	Increase	Increase
Effect on partial pressure of reactants	Increase	No change
Effect on collisions between reactants	Increase	No change
Effect on reaction rate	Increase	No effect

Catalysts

Provide an alternate reaction pathway which lowers the activation energy for the reaction. This means a greater proportion of particles have sufficient energy to overcome the activation energy.

Temperature

- (1) Increases average kinetic energy of particles. More particles have sufficient energy to overcome E_a .
- (2) Particles move faster, therefore more collisions

Exam techniques:

- In written answers:
- · Identify the factors affecting reaction rate
- Incorporate collision theory as part of your answer. Explicitly use the word "collisions".
- Consider sketching graphs as part of your answer, particularly in extended-answer type questions
- In energy profile diagrams:
 - · Common in questions where effect of catalyst needs to be shown
 - Recognise if the reaction is exothermic (- Δ H) or endothermic (+ Δ H) and draw correct graph
 - Label the axes correctly. The Y-axis is <u>Enthalpy</u> and the units are <u>kJ mol-1</u>. Common to see errors here.
 - Label ΔH and Ea

Question 31 (6 marks)

Most modern cars are powered by an engine with a 4-stroke combustion cycle. The purpose of each stroke is described below.

- 1. Intake stroke the fuel is injected in as a fine mist, where it mixes with air
- 2. Compression stroke the fuel/air mixture is compressed into a small volume
- 3. Combustion stroke a spark plug ignites the fuel/air mixture, which explodes
- 4. Exhaust stroke exhaust fumes leave through the valve

Explain, in terms of the collision theory, how each of the conditions described in **stroke 1, 2 and 3** affect the rate of reaction between the fuel and the air.

Question 28 (7 marks)

Consider the following reaction:

$$\mathrm{CO_2}(\mathrm{g}) + \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g}) + \mathrm{NO_2}(\mathrm{g}) \qquad \qquad \Delta \mathrm{H} = + \; 226 \; \mathrm{kJ} \; \mathrm{mol^{-1}}, \; \mathrm{E_a} = 360 \; \mathrm{kJ}$$

(a) On the axes below draw a potential energy diagram for this reaction. Label the activation energy (E_a) and enthalpy change (ΔH) for the reaction. Include a scale on the vertical axis.

On the same axes, use a dashed line to show a possible catalysed pathway. (5 marks)

REVERSIBLE REACTIONS

A reversible reaction is a reaction where:

- Reactants form products
- Products form reactants

$$CO + NO_2 \rightleftharpoons CO_2 + NO$$

Reversible reactions and energy profile diagrams:

Key features:

- Forwards reaction is exothermic
- Reverse reaction is endothermic
- Values of ΔH_{forwards} and ΔH_{reverse} will be opposite
- Each reaction has a different activation energy

CHARACTERISTICS OF DYNAMIC EQUILIBRIUM

When a system is in dynamic equilibrium:

- The rates of forwards and reverse reactions are equal
- The concentrations of reactants and products are constant*
- The macroscopic properties are constant
 - Colour of mixture
 - Mass of solid
 - Pressure of gas

GRAPHING DYNAMIC EQUILIBRIUM

 $[^]st$ Constant means unchanging. It doesn't mean equal (to each other). Be very careful with language here.

Explain, using collision theory, what is happening in the system on the left from time=0 to time=T.
Explain the shape of the graph after time=T.
Measure (in cm) the height that the following concentration lines decreased or increased from time=0 to time=T.
• Decrease in $[I_2] =$ cm Note: square brackets is shorthand for concentration. $[I_2]$ means "concentration of I_2 "
Decrease in [H ₂] = cm
• Increase in [HI] = cm
Why do $[I_2]$ and $[H_2]$ decrease at the same rate as each other?
What is significant about the increase in [HI] relative to the decrease in $[I_2]$ and $[H_2]$? How can this be explained?
HI(g) and H ₂ (g) are both colourless, and I ₂ (g) is purple. What would be observed in this mixture throughout the different stages of the experiment? Justify your answer.

Sample Questions

2008 TEE Exam (Question 22):

Consider the following system, which is at equilibrium:

$$C_2H_4(g) + HC\ell(g) \rightleftharpoons CH_3CH_2C\ell(g)$$

$$\Delta H = -70 \text{ kJ mol}^{-1}$$

Which one of the following statements about the system is true?

- a) The rate of the forward reaction and the rate of the reverse reaction are zero?
- b) The concentrations of the reactants will remain constant over time
- c) The concentration of C₂H₄ will equal the concentration of CH₃CH₂Cℓ
- d) The sum of the concentrations of C_2H_4 and $HC\ell$ will equal the concentration of $CH_3CH_2C\ell$

2011 WACE Exam (Question 12):

Which of the following properties are characteristic of a gaseous system in dynamic chemical equilibrium?

- i. The concentrations of reactants are equal to the concentration of products
- ii. The concentrations of reactants and products are constant
- iii. The rate of the forward reaction is equal to the rate of the reverse reaction
- iv. The pressure of the system is constant
- a) (i), (ii) and (iii)
- b) (i), (ii) and (iv)
- c) (ii), (iii) and (iv)
- d) (iii) only

Misc. question:

The graph below shows the change in concentration for gases present over a period of time for the reaction that occurs when sulfur dioxide is burnt in oxygen in a closed system.

Reaction: $2 SO_2 + O_2 \implies 2 SO_3$: $\Delta H = -99 \text{ kJ mol}^{-1}$

- a) Identify which substances are represented by the lines... A: _____ B: ____ C: ____
- b) At what point was equilibrium reached?

Justify your answer. _____

PHYSICAL EQUILIBRIUM

Physical change: A change where no new substances are formed **Chemical change:** A change that produces new substances

Vapour Pressure

Explain how the diagram shows equilibrium.

Write an equation for this reaction.

Saturated solutions

The diagram to the right shows a saturated solution of silver chloride. Would it be right to say that a solutes stops dissolving in saturated solutions? Explain.

DO ALL SYSTEMS FORM EQUILIBRIUM?

For a system to form dynamic equilibrium there need to be two conditions:

- 1) The reaction is reversible
- 2) The system is closed

Open system:

A chemical system in which substances are able to enter or leave

Closed system:

A chemical system in which no substances are able to enter or leave

Example: $3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \rightleftharpoons \text{Fe}_3\text{O}_4(\text{s)} + 4 \text{ H}_2(\text{g)}$

By passing steam over the iron you can form Fe_3O_4 . The hydrogen is swept away by the steam. Although the reaction is theoretically reversible, the H_2 is removed before it can react with the Fe_3O_4 . This is an **open system** and it will **not** reach equilibrium.

CHANGES TO CONCENTRATION

In this experiment we will investigation how **concentration** affects the equilibrium between potassium chromate (K_2CrO_4) and potassium dichromate $(K_2Cr_2O_7)$.

These two species exist in equilibrium with each other:

2
$$\operatorname{CrO_4}^{2-} + 2 \operatorname{H}^+ \rightleftharpoons \operatorname{Cr_2O_7}^{2-} + \operatorname{H_2O}$$

yellow orange

Method:

- 1. Place about 1 mL of 0.1 mol L^{-1} K_2CrO_4 into each of two test tubes and note the colour of the solution. Use one of the test tubes for comparison of colours.
- 2. Place about 1 mL of 0.1 mol L^{-1} $K_2Cr_2O_7$ into each of two test tubes and note the colour of the solution. Use one of the test tubes for comparison of colours.

Reactions of potassium chromate:

- 3. To one of the test tubes of KCrO₄ add 0.2 mol L⁻¹ HCl dropwise until a colour change is noted
- 4. To the same solution now add 0.2 mol L⁻¹ NaOH dropwise until another colour change is noted.

Reactions of potassium dichromate:

- 5. To one of the test tubes of K₂Cr₂O₇ add 0.2 mol L⁻¹ NaOH dropwise until a colour change is observed.
- 6. To the same solution now add 0.2 mol L⁻¹ HCℓ dropwise until another colour change is noted.

Results:

Initial solution	Change	Observation	Inference
Potassium chromate (K ₂ CrO ₄)	Add HCℓ		
	then add NaOH		
Potassium dichromate (K ₂ Cr ₂ O ₇)	Add NaOH		
	then add HCℓ		

Question:

What evidence is there that the system is in dynamic equilibrium prior to adding HCl or NaOH?

What evidence is there that adding HCℓ or NaOH temporarily disrupts equilibrium?

LE CHÂTELIER'S PRINCIPLE

Le Châtelier's principle is a useful tool for **predicting** the effects of changes to systems at equilibrium.

It states:

"If a system at equilibrium is subject to a change in conditions, then the system will behave in such a way as to partially counteract the change."

Le Châtelier's principle **predicts how** a system will react, but does not **explain why** the system reacts in such a way. To <u>explain</u> in written answers you will need to use collision theory.

APPLYING L.C.P. TO CONCENTRATION

$$2 \text{ CrO}_4^{2-} + 2 \text{ H}^+ \rightleftharpoons \text{Cr}_2 \text{O}_7^{2-} + \text{H}_2 \text{O}$$

Imposed change: Adding HCl increased the [H ⁺]	$[H^+] = concentration of H^+$
Effect: The system shifted to the to INCREASE/DECREA	_the [H ⁺] SE
This caused the [] to increase, solution became mo	ORANGE/YELLOW

$2 \text{ CrO}_4^{2-} + 2 \text{ H}^+ \rightleftharpoons \text{Cr}_2 \text{O}_7^{2-} + \text{H}_2 \text{O}$

Imposed change: Adding NaOH decreased the [H ⁺]	
Effect: The system shifted to the to INCREASE/DECREASE	the [H ⁺]
This caused the [] to increase, solution became more	e
	ORANGE/YELLOW

APPLYING L.C.P. TO CONCENTRATION

Important notes about changes in concentration:

- Changes in concentration relate to <u>aqueous</u> and <u>gaseous</u> species
- Adding a <u>liquid</u> does not change its concentration and will not affect equilibrium*
- ◆ Adding an insoluble solid does not change its concentration and will not affect equilibrium

^{*} If you add H₂O to a system with dissolved ions, you won't change the concentration of the water itself, but you will change the concentration of substances <u>dissolved</u> in the water. We will look at this advanced example later.

Complete the following tables for the changes shown. For each change show:

- the direction of shift (*left, right* or *no change*)
- a comparison of the concentration of species at the new equilibrium compared to the old equilibrium (increased, decrease or no change)

Equation: Fe³⁺(aq) + SCN⁻(aq) \rightleftharpoons FeSCN²⁺(aq) pale yellow clear reddish-brown

Change	Direction of	Concentration	Observations		
Change	shift	Fe ³⁺	SCN ⁻	FeSCN ²⁺	Observations
Add some additional Fe³+(aq)					

Equation: Fe³⁺(aq) + SCN⁻(aq) \rightleftharpoons FeSCN²⁺(aq) pale yellow clear reddish-brown

Change	Direction of shift	Concentration of species at new equilibrium Fe ³⁺ SCN ⁻ FeSCN ²⁺			Observations
Add some additional SCN ⁻ (aq)					

Chango	Direction of	Concentration	Observations		
Change	shift	Fe³+	SCN ⁻	FeSCN ²⁺	Observations
Add some F ⁻ reacts with Fe ³⁺ to form FeF ₆ ³⁻					

Equation: $3 \text{ Cu(s)} + 2 \text{ NO}_3(\text{aq}) + 8 \text{ H}^+(\text{aq}) \Rightarrow 3 \text{ Cu}^{2+}(\text{aq}) + 2 \text{ NO}(\text{g}) + 4 \text{ H}_2\text{O}(\ell)$

Changa	Direction of chift	Direction of shift Concentration of species at new equilibrium			librium
Change	Direction of Shift	[NO ₃ -]	[H ⁺]	[Cu ²⁺]	[NO]
Add some concentrated HCl					

Equation: $3 \text{ Cu(s)} + 2 \text{ NO}_3(\text{aq}) + 8 \text{ H}^+(\text{aq}) \Rightarrow 3 \text{ Cu}^{2+}(\text{aq}) + 2 \text{ NO}(\text{g}) + 4 \text{ H}_2\text{O}(\ell)$

Change	Direction of chift	Conce	ntration of spec	ies at new equi	librium
Change	Direction of shift	[NO ₃ ·]	[H ⁺]	[Cu ²⁺]	[NO]
Dissolve some CuSO ₄ (s)					

Equation: $3 \text{ Cu(s)} + 2 \text{ NO}_3(\text{aq}) + 8 \text{ H}^+(\text{aq}) \Rightarrow 3 \text{ Cu}^{2+}(\text{aq}) + 2 \text{ NO(g)} + 4 \text{ H}_2\text{O}(\ell)$

Change	Direction of shift	Concentration of species at new equilibrium				
Change	Direction of Shift	[NO ₃ -]	[H ⁺]	[Cu ²⁺]	[NO]	
Add 5 drops of concentrated KOH						

Equation: $3 \text{ Cu(s)} + 2 \text{ NO}_3(\text{aq}) + 8 \text{ H}^+(\text{aq}) \Rightarrow 3 \text{ Cu}^{2+}(\text{aq}) + 2 \text{ NO(g)} + 4 \text{ H}_2\text{O}(\ell)$

Changa	Direction of chift	Concentration of species at new equilibrium				
Change Direction of shift		[NO ₃ -]	[H ⁺]	[Cu ²⁺]	[NO]	
Add more copper metal to the container						

Equation: $3 \text{ Cu(s)} + 2 \text{ NO}_3(\text{aq}) + 8 \text{ H}^+(\text{aq}) \Rightarrow 3 \text{ Cu}^{2+}(\text{aq}) + 2 \text{ NO(g)} + 4 \text{ H}_2\text{O}(\ell)$

Chango	Direction of shift	Concentration of species at new equilibrium				
Change	Direction of Shift	[NO ₃ -]	[H ⁺]	[Cu ²⁺]	[NO]	
Open the container to						
let out the NO(g) and						
then close it again						

CHANGES TO CONCENTRATION

Use collision theory to **explain** the change that occurs when HCl is added to chromate/dichromate.

$$2 \text{ CrO}_4^{2-} + 2 \text{ H}^+ \rightleftharpoons \text{ Cr}_2 \text{O}_7^{2-} + \text{ H}_2 \text{O}$$
yellow orange

- Adding HCl increases the $[H^+]$. This increases the rate of **forwards reaction** due to more collisions between H^+ and CrO_4^{2-} .
- The system is no longer at equilibrium because forwards rate > reverse rate.
- Over time, this leads to [reactants] decreasing and [products] increasing, causing forwards rate to
 decrease and reverse rate to increase until equilibrium is re-established
- The colour change from yellow to orange is due to increasing [Cr₂O₇²⁻] as equilibrium is reestablished

These changes can be represented using concentration-time and rate-time graphs.

Addition of NaOH to potassium dichromate solution.

2	CrO₁2-	+	2 H⁺	\Rightarrow	Cr ₂ O ₇ ² ·	+	H ₂ O

diagram of concentration and reaction rates as part of your answer.

Order for drawing the graphs:

- 1. What is the **initial** change in concentration?
- 2. What is the initial (immediate) effect of this change on forward and/or reverse reaction rate?
- 3. What will happen to the forward and reverse reaction rates as equilibrium is re-established?
- 4. What will happen to the concentrations of the reactants and products as equilibrium is re-established? (Hint: Look at which reaction rate is faster in the graph underneath...)
- 5. Double check mole ratios and curve shapes.

Forwards reaction rate Reverse reaction rate

Changes to Concentration:

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$$
 (colourless) (red)

Changes to Concentration:

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$$
 (colourless) (red)

A solution of Fe ³⁺ /SCN ⁻ /FeSCN ²⁺ is initially at equilibrium. The solution is a pale red colour. Explain what would happen if drops of concentrated potassium hydroxide were added to the water.

DILUTING SOLUTIONS

If water is added to a system with multiple (aq) substances, it will decrease the concentration of <u>all</u> aqueous species.

Le Châtelier's principle predicts the reaction will favour whichever side produces more moles of (aq) as this will <u>increase</u> the overall concentration of ions.

If both sides of the equation have equal moles of (aq), then the reaction will not shift. These reactions remain at equilibrium when diluted.

Prediction of shift: Diluting a saturated solution of lead(II) iodide causes the reaction to shift right, as the R.H.S. has more moles of aqueous substances (3 mol vs 0 mol).

Observation: More of the yellow solid dissolves

Predict how the following systems would be affected by addition of water:

Descrion	Moles of aqueo	Moles of aqueous substances		
Reaction	L.H.S.	R.H.S.	when diluted	
$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$				
$[Cu(H_2O)_6]^{2+}(aq) + 4 C\ell^{-}(aq) \rightleftharpoons [CuC\ell_4]^{2-}(aq) + 6 H_2O(\ell)$				
$CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$				
$H_2O(\ell) \rightleftharpoons H_2O(g)$				
$CO_2(g) + NaOH(aq) \rightleftharpoons NaHCO_3(aq)$				
Cu(s) + 2 Ag ⁺ (aq) \rightleftharpoons Cu ²⁺ (aq) + 2 Ag(s)				
$2 \operatorname{FeCl}_3(aq) + \operatorname{SnCl}_2(aq) \rightleftharpoons 2 \operatorname{FeCl}_2(aq) + \operatorname{SnCl}_4(aq)$				

CHANGES TO PARTIAL PRESSURE

'Partial pressure' refers to the pressure of an individual gas within a mixture. It is changed by adding or removing the gas from the mixture.

A change to the partial pressure of a gas is effectively the same as a change in concentration. It can be explained in terms of collision theory using very similar terminology.

Example:

The reaction between carbon and hydrogen gas to form methane can be presented by the following equation. $C(s) + 2 H_2(g) \Rightarrow CH_4(g) + 75 kJ$

The concentrations of hydrogen and methane were plotted over time and the following graph produced.

Q: At what time did the reaction (first) reach	•		
Q: What could have caused the change at o	occurred after 2	5 minutes?	
Q: Explain the change in shape from t=25 to	o t=45.		
Changes to Partial Pressure:	$I_2(g) + H_2(g)$ (purple)	$g) \rightleftharpoons 2 HI(g)$ (colourless)	
Use collision theory to explain the change	es that occur wh	nen additional I₂(g) is	added to the container.

CHANGES TO PRESSURE — SIZE OF CONTAINER

Changing the size of a container will change the partial pressures of all gaseous substances.

If you reduce the size of the container you will increase overall pressure.

Le Châtelier's principle predicts the system will oppose this change by favouring the side of the reaction with the **least moles of gas**.

If you increase the size of the container you will decrease overall pressure.

Le Châtelier's principle predicts the system will oppose this change by favouring the side of the reaction with the **most moles of gas**.

Example #1:
$$3 H_2(g) + N_2(g) \rightleftharpoons 2 NH_3(g)$$

$$4 \text{ moles of gas} 2 \text{ moles of gas}$$

Change: Decrease the volume of the container, causing overall pressure to increase

Effect: According to Le Châtelier's principle, the system will shift in a way to reduce overall pressure. Reaction would shift right as the R.H.S. has less moles of gas (2 mol vs. 4 mol).

Example #2:
$$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$$

2 moles of gas 2 moles of gas

Change: Increase the volume of the container, causing overall pressure to decrease

Effect: Both sides have equal moles of gas so they would not be affected by a change in overall pressure.

Complete the table:

Reaction	Imposed change	Shift in equilibrium
$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$	Decrease volume	
$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$	Increase volume	
$2 C_2H_4(g) + 2 H_2O(g) \Rightarrow 2 C_2H_6(g) + O_2(g)$	Increase volume	
$Ti(s) + 2 C\ell_2(g) \Rightarrow TiC\ell_4(g)$	Decrease volume	

CHANGES TO PRESSURE — SIZE OF CONTAINER

Use Le Châtelier's Principle to predict the changes the occur when a syringe containing the following gases is compressed:

$$2 \text{ NOC} \ell(g) \rightleftharpoons 2 \text{ NO}(g) + \text{ C} \ell_2(g)$$

- When the volume of the syringe is compressed it increases the partial pressure (concentration) of **all** gaseous species. This increases the rate of **both** reactions due to more collisions between gaseous particles.
- Le Châtelier's Principle predicts that the system will shift to the left to favour the side of the equation with the least moles of gas (i.e. reverse rate is faster than forwards rate).
- Over time the [reactants] increases and [products] decreases, causing the **forwards rate** to increase and **reverse rate** to decrease until equilibrium is re-established

Pay attention to the following:

- Unlike the concentration graphs, a change in volume causes an instant change in the concentration of all gases. Think carefully about whether the change will increase or decrease concentration.
 - "Increase in volume" = "Decrease in concentration"
- The <u>initial</u> changes in conc. is <u>not</u> related to the mole ratio. In this example, all concentrations were <u>doubled</u> for the initial change (i.e.volume <u>halved</u>)
- reactions both involve gases then they will **both** be affected by a change in volume. i.e. **both** increase or **both** decrease instantly. Think about the direction of shift to figure out which increases or decreases more than the other. In this case LCP predicts reaction will shift right, so forward rate must increase more than reverse rate.

Changes to Pressure (volume of container):

Use **Le Châtelier's Principle** to **predict** the changes that occur when a syringe containing the following gases is expanded to take up more volume. Include the expected observations.

Changes to Pressure (volume of container):

Use **Le Châtelier's Principle** to **predict** the changes that occur when a syringe containing the following gases is compressed. Include the expected observations.

CHANGES TO TEMPERATURES

Changing the temperature will cause the reaction to favour either the endothermic or exothermic reaction.

Imposed change: Increase the temperature of a system

Method of counteracting: Favour the endothermic reaction

(removes heat)

Imposed change: Decrease the temperature of a system

Method of counteracting: Favour the exothermic reaction

(produces heat)

Reaction	Imposed change	Direction of shift
$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g); \Delta H = -92 kJ$	Increase the temperature	
$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g); \Delta H = +52 \text{ kJ}$	Decrease the temperature	
$Ag^{+}(aq) + Cl^{-}(aq) \rightleftharpoons AgCl(s) + 112 kJ$	Decrease the temperature	

Experiment:

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$$
 $\Delta H = -57 \text{ kJ}$

brown colourless

Predict how temperature will affect the colour of a mixture of NO₂ and N₂O₄.

Justify your reasoning using Le Châtelier's principle.

EXPLAINING EFFECT OF TEMPERATURE

Temperature increases the rate of reaction due to particles having greater kinetic energy, therefore having more energy than the activation energy.

BUT... in a reversible reaction the two reactions have different activation energies.

The endothermic reaction has the largest E_{α} , so it is always affect more by increases or decreases in temperature.

Explain, using collision theory, why the yield (amount) of N_2O_4 decreases when a tube containing NO_2 and N_2O_4 is heated.

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g) \qquad \Delta H = -57 \text{ kJ}$$

- Heating the tube increases both the **forwards** <u>and</u> <u>reverse</u> reaction rates. This is due to particles having greater E_K , and a greater proportion of particles having $E_K > E_a$. This results in an increased number of collisions, and a greater proportion of those collisions lead to successful reactions.
- Endothermic reactions are more affected by changes in temperature because they have a greater activation energy barrier, therefore the reverse rate increases more than the forwards rate.
- Reverse rate is favoured, therefore over time $[NO_2]$ increases and $[N_2O_4]$ decreases. This causes reverse rate to increase and forward rate to decrease until equilibrium is re-established (both rates equal)

Changes in temperature:

Readtion rates

Predict whether a decrease in temperature will increase or decrease the yield of HI(g). Justify your answer using **Le Châtelier's Principle**. (Yield = Amount)

Thought process you should follow:

- 1. How does a decrease in temperature affect reaction rates?
- 2. Which reaction (forward or reverse) is affected *more* by changes in temperature?
- 3. Which reaction is favoured after the temperature changes? What would that mean about the concentration of reactants and products over time?
- 4. What mole ratio do I need to show while equilibrium is being re-established? How will that affect my curves?

Changes in temperature:

Predict whether an increase in temperature will increase or decrease the yield of $H_2(g)$. Justify your answer using **Le Châtelier's Principle**.

Production of ethanol from ethene:

$$CH_2=CH_2(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$$
 $\Delta H = -45 \text{ kJ/mol}$

The activation energy for the forwards reaction is 22 kJ/mol.

•Draw a labelled energy profile diagram for this reaction, showing ΔH , Ea and Ea reverse. Use this energy profile diagram to explain the temperature conditions that would be used in an industrial process to achieve the maximum yield (amount) of ethanol.

The reaction pictured left was heated after 10 minutes. The equation is:

$$A_2 + 2 B_2 \rightleftharpoons 2 AB_2$$

Is the forwards reaction endothermic or exothermic? Justify your reasoning.

FACTORS THAT DO NOT AFFECT EQUILIBRIUM

In the past pages we have considered how temperature, concentration and pressure affect equilibrium. It is worthwhile also realising that some changes don't have <u>any</u> impact on systems at equilibrium. These include:

Amount of an (insoluble) solid

Solids do not change their concentration.

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

Adding additional AgCl(s) to a saturated solution of AgCl will not change the concentration of Ag $^+$ (aq) or Cl $^-$ (aq). Addition of a solid does not affect equilibrium.

Amount of liquid

Adding a liquid does not change its concentration

Vapour pressure equilibrium: $Br_2(\ell) \rightleftharpoons Br_2(g)$

Increasing surface area will increase rate of evaporation and condensation equally.

*Exception: Addition of water to a mixture containing (aq) substances will affect the concentration of the (aq) substances, therefore will affect equilibrium.

<u>Inert gases</u>

Equilibrium is affected when the forwards and reaction rates are not equal.

Adding an inert (unreactive) gas increases total pressure, but does not affect collisions between reacting particles and has no effect on forwards and reverse reaction rates. Therefore it will have no effect on equilibrium either.

Adding a catalyst

Adding a catalyst increases both rates **equally**.

Both rates are still equal, . the reaction is still at equilibrium.

EQUILIBRIUM CONSTANTS

Systems at equilibrium will have a certain ratio of reactants to products at a given temperature. This ratio is called the **equilibrium constant (K)**.

Temp.	Initial concentrations (mol L ⁻¹)		Final concentrations in the equilibrium mixture (mol L ⁻¹)			Equilibrium constant	
(°C)	H ₂	I ₂	HI	H ₂	I ₂	HI	$\frac{[HI]^2}{[H_2][I_2]}$
490	1.0	1.0	0	0.228	0.228	1.544	45.9
490	0	0	1.0	0.114	0.114	0.772	45.9
490	1.0	2.0	3.0	0.316	1.316	4.368	45.9
^	•		<i>></i>	~	^	7	^
Same temp.	Different	starting conce	entrations	Differer	nt final concer	ntrations	Same ratio

Equilibrium constants are written as a ratio of [products] / [reactants].

Solids and liquids are not included in the equilibrium constant because their concentrations do not change during the reaction.

For the reaction:
$$aA + bB = cC + dD$$
 $K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$

Example:
$$H_2(g) + I_2(g) \stackrel{?}{=} 2 HI(g)$$

$$K = \frac{[HI]^2}{[H_2][I_2]}$$

Information given by K:

- K tells you the relative amounts of products and reactants at equilibrium
- If K is very large, reaction heavily favours the products
- If K is very **small**, reaction heavily favours the <u>reactants</u>
- K does not tell you anything about the rate of the reaction

Effect of temperature:

- Temperature is the <u>only</u> thing that affects the value of K
- If increasing the temperature favours more products, then increasing temp. will increase K
- If increasing the temperature favours more reactants, then increasing temp. will decrease K

Past WACE and TEE questions about equilibrium constants: (2000-2014)

Equation	$BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$
Equilibrium constant expression	

Equation	$2 \text{ CrO}_4^{2-}(aq) + 2 \text{ H}^+(aq) \rightleftharpoons \text{Cr}_2\text{O}_7^{2-}(aq) + \text{H}_2\text{O}(\ell)$
Equilibrium constant expression	

Equation	$Ca(HCO_3)_2(s) \rightleftharpoons CaO(s) + 2 CO_2(g) + H_2O(g)$
Equilibrium constant expression	

Equation	$Co(H_2O)_6^{2+}(aq) + 4 C\ell(aq) \rightleftharpoons CoC\ell_4^{2-}(aq) + 6 H_2O(\ell)$
Equilibrium constant expression	

Equation	$2 H_2O(\ell) + 4 Au(s) + O_2(g) + 8 CN^-(aq) \rightleftharpoons 4 Au(CN)_2^-(aq) + 4 OH^-(aq)$
Equilibrium constant expression	

Equation	$PbC\ell_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 C\ell^{-}(aq)$
Equilibrium constant expression	

Equation	$Fe(H_2O)_5NCS^{2+}(aq) + H_2O(\ell) \rightleftharpoons Fe(H_2O)_6^{3+}(aq) + NCS^{-}(aq)$
Equilibrium constant expression	

Equation	$2 \text{ NOCl}(g) \rightleftharpoons 2 \text{ NO}(g) + \text{Cl}_2(g)$
Equilibrium constant expression	
Equation	$2 HI(g) \rightleftharpoons H_2(g) + I_2(g)$
Equilibrium constant expression	
Equation	$4 \text{ NH}_3(g) + 3 \text{ O}_2(g) \rightleftharpoons 2 \text{ N}_2(g) + 6 \text{ H}_2\text{O}(g)$
Equilibrium constant expression	
Equation	$C\ell_2(g) + H_2O(\ell) \rightleftharpoons HOC\ell(aq) + H^+(aq) + C\ell^-(aq)$
Equilibrium constant expression	
Equilibrium process	Vaporisation of water
Equation	
Equilibrium constant expression	
Equilibrium process	Dissolution of ammonium chloride
Equation	
Equilibrium constant expression	

Industrial Applications of Equilibrium

HABER PROCESS

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) \Delta H = -92 kJ$$

Conditions used:

- Moderate temp (400-450 °C)
- High pressure (200 atm)
- Iron-based catalyst

> Temperature

High temperatures would increase the **rate** of ammonia production due to particles having greater kinetic energy. More particles would have energy > E_a, so a greater proportion of collisions would be successful.

Low temperatures would increase the **equilibrium yield** of ammonia. According to Le Châtelier's principle, decreasing the temperature would favour the exothermic reaction, which in this case is the forwards reaction.

The Haber process uses moderate temperatures of 400-450 °C. This is used as a compromise between reaction rate and yield. Higher temperatures would have too low of a yield, whereas lower temperatures would have too low of a reaction rate.

Pressure

High pressures would increase the **rate** of production due to more collisions between gas particles.

High pressures would also increase the **equilibrium yield** of ammonia. According to Le Châtelier's principle, high pressures favour the side of the reaction with the least moles of gas, which in this case is the right hand side (4 moles \rightarrow 2 moles).

The chosen pressure of 200 atmospheres is high to maximise rate and yield. Higher pressures are possible and would further increase the yield and reaction rate, but higher pressures are too expensive to maintain and pose additional safety risks and this makes it economically unviable.

Catalyst

An iron-base catalyst is used. Catalysts increase the rate of reaction by providing an alternate reaction pathway with a lower activation energy. This means that more particles at a given temperature can react because they have energy greater than the catalysed activation energy.

Catalysts do not affect equilibrium yield because the increase forward and reverse rates equally. This means that catalysts can increase rate without negatively affecting yield, giving them an economic benefit.

> Removing the ammonia and recycling the reactants

In the final stage of the process the ammonia is liquefied and removed. The unreacted N_2 and H_2 are re-added to the reaction mixture to keep reacting.

Removing the ammonia prevents the reverse reaction from happening, stopping the NH₃ from reacting again to make N₂ and H₂.

When the unreacted gases are added back into the reaction mixture they increase the concentration of reactants and cause the reaction to shift to the right, allowing more NH_3 to be produced.

CONTACT PROCESS

The Contact Process is used for the manufacture of sulfuric acid. It involves multiple steps.

Step 1: Sulfur is combusted in the presence of oxygen.

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

Step 2: Sulfur dioxide is oxidised to form sulfur trioxide. This is a reversible, exothermic reaction.

$$SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g) \Delta H = -196 kJ$$

Conditions used in Step 2:

- Moderate temp (400-500 °C)
- Low pressure (1 atmosphere)
- Vanadium(V) oxide (V₂O₅) catalyst

> Temperature:

[The explanation for why a moderate temperature is used in the Contact Process is virtually identical to the explanation for temperature in the Haber Process, previous page. Both reactions are exothermic, so yield is decreased at higher temperatures. A moderate temperature is needed to obtain a satisfactory balance between yield and rate]

> Pressure:

High pressures would increase the rate of production due to more collisions between gas particles.

High pressures would also increase the **equilibrium yield** of sulfur trioxide. According to Le Châtelier's principle, high pressures favour the side of the reaction with the least moles of gas, which in this case is the right hand side (2 moles \rightarrow 1 mole).

Despite this, the actual pressure used is quite low. This is because the reaction actually has quite a high yield and rate at atmospheric pressures. High pressures are expensive to maintain and add safety risks, so there is no economic benefit in increasing the pressure above 1 atmosphere.

> Catalyst:

[Once again, this explanation would be identical to the one given for the Haber process, only it would mention the V_2O_5 catalyst instead of the iron-based catalyst]

Step 3 & 4: The $SO_3(g)$ cannot be directly reacted with water to form $H_2SO_4(\ell)$ because the reaction is uncontrollable and forms a fog of sulfuric acid.

Instead, the SO_3 is reacted with concentrated H_2SO_4 to form an intermediate, $H_2S_2O_7(\ell)$ (oleum). The oleum can then be safely reacted with water to produce concentrated sulfuric acid.

Step 3:
$$SO_3(g) + H_2SO_4(\ell) \rightarrow H_2S_2O_7(\ell)$$

Step 4:
$$H_2S_2O_7(\ell) + H_2O(\ell) \rightarrow 2 H_2SO_4(\ell)$$

Past exam question (TEE 2008):

Nickel ores are predominantly sulphides and oxides. The Mond process is an industrial process used to extract nickel from nickel oxide ores. It involves three steps, with each step conducted at moderate pressures.

- Step 1: Nickel oxide is reacted with hydrogen at 200 °C to produce impure nickel metal and water. The impurities present include iron and cobalt. This step goes to completion.
- Step 2: The impure nickel is converted into gaseous nickel carbonyl, Ni(CO)₄, using an excess of carbon monoxide at 50-80 °C. The reaction is exothermic.
- Step 3: The nickel carbonyl is separated from the residue and passed over platinum heated to 220-250 °C. The nickel carbonyl decomposes, giving pure nickel and carbon monoxide. The carbon monoxide is recovered for purifying further batches of nickel.

Explain the conditions used to maximise yield in the Mond process in terms of reaction rates and equilibrium.

HOMEWORK

Source	Topics	Set/ Chapter	Questions to complete									
	Reaction rates & collision theory	EC Set 1		3	4	5		9	10	11		
	Characteristics of systems in equilibrium	EC Set 2	1	2	3	4	5					
Essential	Changes to concentration	EC Set 2	6		9	10	11					
Chemistry	Changes to pressure and temperature	EC Set 2	12	13	14	15	16					
	Equilibrium constants	EC Set 2	7	8								
	Industrial processes	EC Set 21 (page 172)	14	15	16	17						
	Collision theory, reaction rates, energy profile diagrams	Section 1	[MC]	Pg:	2	3	4	5				
			[SA]	Pg:	6	7	8					
	Systems in equilibrium, Le Châtelier's Principle, Equilibrium Expressions	Section 2	[MC]	Pg:	9	10	11	12	13	14	15	16
					17	18	19	20				
Past Exam Questions			[SA]	Pg:	21	22	23	24	25	26	27	28
					29	30	31	32	33	34	35	36
					37	38						
	Industrial and environmental applications of rates and equilibrium	Section 3	[SA]	Pg:	39	40	41	42	43	44	45	46
		Section 3			47	48	49	50	51	52		