Problema 1. Considere a cadeia de Markov em $I = \{1, 2, 3, 4, 5\}$ com

$$P = \begin{bmatrix} 1/3 & 0 & 2/3 & 0 & 0 \\ 1/4 & 1/2 & 1/4 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2/3 & 1/3 \end{bmatrix}$$

Classifique seus estados e ache as distribuições estacionárias dessa cadeia. Simule essa cadeia considerando $X_0=1,2,3,4,5$ e aproxime o limite:

$$\lim_{n \to +\infty} \mathbb{P}(X_n = j \mid X_0 = i)$$

para todos $i, j \in I$. Verifique que os resultados encontrados estão convergindo para os valores corretos.

Solução:

Observando o diagrama da cadeia podemos ver que o estado 2 é transiente e os outros estados são recorrentes e se dividem em duas Classes irredutíveis $R_1 = \{1,3\}, R_2 = \{4,5\} \in I$. Portanto, $T = \{2\}$ (estado transiente) e $R = R_1 \cup R_2$ (estados recorrentes).

Agora vamos calcular as distribuições estacionárias dessa cadeia. Seja $\pi = [\pi_1 \ \pi_2 \ \pi_3 \ \pi_4 \ \pi_5]$ tal distribuição. Devemos ter $\pi P = \pi$ e $\sum_{i=1}^{5} \pi_i = 1$.

Resolvendo o sistema, obtemos: $\pi_2 = 0$, $\pi_3 = \frac{4}{3}\pi_1$ e $\pi_5 = \frac{3}{2}\pi_4$. Além disso, pela segunda equação temos $\pi_4 = \frac{6 - 14\pi_1}{15}$. Seja $\pi_1 = \alpha$. As distribuições estacionárias dessa cadeia são dadas por:

$$\pi(\alpha) = \begin{bmatrix} \alpha & 0 & \frac{4}{3}\alpha & \frac{6-14\alpha}{15} & \frac{3-7\alpha}{5} \end{bmatrix} \quad , \alpha \in \begin{bmatrix} 0, \frac{3}{7} \end{bmatrix}$$

Para calcular o limite vamos considerar separadamente as classes $C_1 = \{1, 2, 3\}$ e $C_2 = \{4, 5\}$ observe que:

- Se $i \in C_1$ então: $\lim_{n \to +\infty} \mathbb{P}(X_n = j \mid X_0 = i) = 0$ para $j \in C_2$, uma vez que os estados não são atingíveis. Pelo mesmo motivo, se $i \in C_2$ então: $\lim_{n \to +\infty} \mathbb{P}(X_n = j \mid X_0 = i) = 0$ para $j \in C_1$.
- Se $i, j \in C_1$ então o limite é 0 se j = 2 (estado transiente). Se j = 1, 3 temos uma cadeia irredutível, recorrente positiva e aperiódica no espaço $I' = \{1, 3\}$. Se π' é a distribuição estacionária dessa cadeia então:

$$\mathbb{P}(X_n = j \mid X_0 = i) = \pi'_j$$

$$\mathbb{P}(X_n = j \mid X_0 = i) = \pi_j \left(\frac{3}{7}\right)$$

Isto é:
$$\mathbb{P}(X_n = 1 \mid X_0 = i) = 3/7 \in \mathbb{P}(X_n = 3 \mid X_0 = i) = 4/7$$

• Analogamente, se $i, j \in C_2$ temos uma cadeia irredutível, recorrente positiva e aperiódica no espaço $I'' = \{4, 5\}$. Se π'' é a distribuição estacionária dessa cadeia então:

$$\mathbb{P}(X_n = j \mid X_0 = i) = \pi_j''$$

$$\mathbb{P}(X_n = j \mid X_0 = i) = \pi_j(0)$$

Isto é: $\mathbb{P}(X_n = 4 \mid X_0 = i) = 2/5 \text{ e } \mathbb{P}(X_n = 5 \mid X_0 = i) = 3/5.$

(i,j)	1	2	3	4	5
1	0.42869	0	0.57131	0	0
2	0.428459	4e-07	0.57154	0	0
3	0.428313	0	0.571687	0	0
4	0	0	0	0.400049	0.599951
5	0	0	0	0.400024	0.599976

Tabela 1: Valores simulados da probabilidade-limite para cada $i, j \in I$

Problema 2. Considere a cadeia de Markov em $I = \{1, 2, 3, 4\}$ com

$$P = \begin{bmatrix} 1/3 & 0 & 2/3 & 0 \\ 1/4 & 1/2 & 1/4 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 2/3 \end{bmatrix}$$

Simule essa cadeia considerando $X_0=1$ e aproxime o limite

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

Verifique que o resultado encontrado está convergindo para o valor correto.

Solução:

Note que a cadeia dada em I pode ser particionada em três classes irredutíveis disjuntas: $T_1 = \{2\}, T_2 = \{4\}$ e $R = \{1,3\}$. Dado $X_0 = 1$, temos que $X_n \in R$ para todo $n \ge 0$. Então basta considerar a cadeia R formada exclusivamente pelos estados 1 e 3.

Resolvendo a equação

$$\begin{bmatrix} \pi_1 \ \pi_3 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} \pi_1 \ \pi_3 \end{bmatrix}$$

em conjunto com $\pi_1 + \pi_3 = 1$, encontramos $\pi_1 = \frac{3}{7}$ e $\pi_3 = \frac{4}{7}$. Logo, a distribuição estacionária dessa cadeia é

$$\pi = \begin{bmatrix} \frac{3}{7} & \frac{4}{7} \end{bmatrix}$$

Como R é uma cadeia recorrente positiva e irredutível, podemos usar o teorema ergódico para calcular o limite. Seja $f: \{1,3\} \to \mathbb{R}$ dada por $f(x) = x^2$ e $I' = \{1,3\}$ temos

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i)$$

$$= \sum_{i \in I'} f(i) \pi_i$$

$$= 1 \cdot \frac{3}{7} + 9 \cdot \frac{4}{7}$$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{39}{7}.$$

Simulando a cadeia com 10000000 de iterações chegamos ao resultado de:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2 \approx 8.8676$$

Problema 3. Simule vários caminhos do martingal $M_n = \prod_{k=1}^n X_k \text{ com } (X_k)_{k \in \mathbb{N}} \text{ iid e}$ $\mathbb{P}(X_n = 1/2) = \mathbb{P}(X_n = 3/2) = 1/2 \text{ e mostre graficamente que } M_n \to 0 \text{ q.c}$

Solução:

A seguir segue o gráfico com 20 simulações do martingal M_n . Foram utilizadas 200 iterações para cada simulação.

Figura 1: Simulação de diversos caminhos do martingal M_n .

Problema 4. Simule J caminhos do processo de Poisson com $\lambda=1$ até o tempo T=5 de duas maneiras:

- usando os tempos entre-chegadas $(X_n)_{n\in\mathbb{N}}$
- usando o Teorema 4.4.8 das notas de aula

Calcule a esperança

$$\mathbb{E}\left[\int_0^T N_t dt\right] \approx \frac{1}{J} \sum_{i=1}^J \int_0^T N_t^{(j)} dt$$

usando os caminhos simulados acima e compare com o valor exato.

Solução:

Foram simulados 5 caminhos distintos do processo de Poisson para visualização. Os resultados podem ser observados na figura abaixo.

Figura 2: Gráficos do Processo de Poisson N_t de parâmetro $\lambda = 1$ no intervalo [0, 5].

O valor exato da esperança $E = \mathbb{E}\left[\int_0^T N_t dt\right]$ é dado por:

$$E = \int_0^T \mathbb{E} [N_t] dt$$
$$= \int_0^T \lambda t dt$$
$$E = \lambda \cdot \frac{T^2}{2}$$

Pondo $\lambda = 1$ e T = 5, temos:

$$\mathbb{E}\left[\int_{0}^{5} N_{t}dt\right] = 1 \cdot \frac{5^{2}}{2} = 12.5$$

Para simular E geramos J=10000 caminhos do processo de Poisson para cada método. Na tabela a seguir, podemos ver alguns valores aproximados para a esperança E em função do número de iterações:

N	$X_n \sim exp(\lambda)$	$T_i \sim \overline{U}(0,5)$
1	7.49846	9.3354
100	11.9502	12.3694
1000	12.2824	12.3824
10000	12.5336	12.4912

Problema 5. Use processos Gaussianos para estimar uma regressão não-paramétrica. Implemente sua própria função para calcular a função média e o kernel de covariância. Simule os dados usando a seguinte equação:

$$y(x) = \sin(x) + \epsilon$$

Use kernel RBF:

$$k(x, x') = \sigma_f^2 exp \left\{ -\frac{1}{2l^2} (x - x')^2 \right\}$$

com
$$l = 1$$
, $\sigma_f = 1$ e $\epsilon \sim N(0, 0.16)$.

Solução:

Para realizar a simulação utilizamos 8 pontos igualmente espaçados no intervalo I = [-4,4] para a distribuição a priori de X. Em seguida, calculamos os valores de $Y = sin(X) + \epsilon$ onde o ruído $\epsilon \sim N(0,0.001)$. Para a distribuição a posteriori de X^* utilizamos 1000 pontos, também igualmente espaçados no intervalo I. A partir daí calculamos a função de média e covariância da normal multivariada Y^* e plotamos os extremos do intervalo de confiança a dois desvios padrão da média.

Figura 3: Gráfico da função média com intervalo de confiança de 95% (região em azul).

Problema 6. Simule os caminhos do movimento Browniano entre 0 e 1 e calcule $M_1 = \max_{t \in [0,1]} B_t$. Plote o histograma de M_1 e compare com a densidade exata de M_1 :

$$f_{M_1}(m) = \sqrt{\frac{2}{\pi}}e^{-m^2/2}.$$

Solução: Dizemos que $(B_t)_{t\geq 0}$ é um movimento browniano, quando:

- 1. $B_0 = 0$ q.c.
- 2. $B_t B_s$ é independente de $(B_u)_{u \in [0,s]}$, para todo $t \geq s$. (Incrementos independentes)
- 3. $B_t B_s \sim N(0, t s)$, para todo $t \ge s$.
- 4. $t \mapsto B_t$ é contínuo q.c.

Para realizar a simulação geramos n caminhos com m intervalos $X_i = B_{t_{i+1}} - B_{t_i}$, com $X_i \sim N(0, \Delta t)$ onde $\Delta t = 1/m$. Para obter B_{t_k} somamos, cumulativamente, os intervalos de cada caminho:

$$B_{t_k} = \sum_{j=0}^{k-1} X_j$$
 , $\forall k \in \{1, ..., m-1\}$

Na figura abaixo podemos ver o resultado obtido para n = 5 e m = 1000:

Figura 4: Simulação do movimento browniano no intervalo [0, 1].

Para plotar o histograma de M_1 utilizamos n=500 caminhos distintos.

(a) Histograma de M_1

(b) Densidade exata de M_1 .

Figura 5: Variável aleatória: $M_1 = \max_{t \in [0,1]} B_t$.

Problema 7. O modelo de Black-Scholes pode ser escrito como:

$$S_t = S_0 e^{(r - \sigma^2/2)t + \sigma W_t}.$$

Usando o item anterior, simule vários caminhos de S com $S_0 = 100$, r = 0.05, $\sigma = 0.4$, T = 1. Use eles para calcular a seguinte esperança para K = [80, 85, 90, ..., 120]:

$$C(K) = \mathbb{E}\left[e^{-rT}(S_T - K)^+\right] \approx \frac{1}{N} \sum_{n=1}^{N} e^{-rT}(S_T^{(n)} - K)^+,$$

onde $x^+ = max\{x,0\}$. Esse método é conhecido como Monte Carlo. Mostre o gráfico de C