Sample Answers for Problem Set 1

Problem 1.

(a) The nominal GDPs for 2018, 2019, and 2020 are

$$100 \times 1.00 + 100 \times 0.50 + 50 \times 2.00 = 250,$$

 $120 \times 2.00 + 150 \times 0.75 + 100 \times 2.50 = 602.5,$
 $150 \times 2.50 + 200 \times 1.00 + 150 \times 3.00 = 1025.$

The real GDPs for 2018, 2019, and 2020 are

$$100 \times 1.00 + 100 \times 0.50 + 50 \times 2.00 = 250,$$

 $120 \times 1.00 + 150 \times 0.50 + 100 \times 2.00 = 395,$
 $150 \times 1.00 + 200 \times 0.50 + 150 \times 2.00 = 550.$

(b) The GDP deflators in 2019 and 2020 are

GDP Deflator in 2019 =
$$\frac{\text{Nominal GDP in 2019}}{\text{Real GDP in 2019}} \times 100 = \frac{602.5}{395} \times 100 \approx 152.53,$$

GDP Deflator in 2020 = $\frac{\text{Nominal GDP in 2020}}{\text{Real GDP in 2020}} \times 100 = \frac{1025}{550} \times 100 \approx 186.36.$

The Consumer Price Indexes in 2019 and 2020 are

$$CPI_{2019} = \frac{100 \times 2.00 + 100 \times 0.75 + 50 \times 2.50}{100 \times 1.00 + 100 \times 0.50 + 50 \times 2.00} \times 100 = \frac{400}{250} \times 100 = 160,$$

$$CPI_{2020} = \frac{100 \times 2.50 + 100 \times 1.00 + 50 \times 3.00}{100 \times 1.00 + 100 \times 0.50 + 50 \times 2.00} \times 100 = \frac{500}{250} \times 100 = 200.$$

Then the inflation rates in 2019 and 202 are

Inflation in
$$2019 = \frac{CPI_{2019} - CPI_{2018}}{CPI_{2018}} \times 100\% = \frac{1.6 - 1}{1} = 60\%,$$
Inflation in $2020 = \frac{CPI_{2020} - CPI_{2019}}{CPI_{2019}} \times 100\% = \frac{2 - 1.6}{1.6} = 25\%.$

(c)

$$CPI_{2021} = \frac{100 \times 3.0 + 100 \times 5.60 + 50 \times 7.00}{100 \times 1.00 + 100 \times 0.50 + 50 \times 2.00} \times 100 = \frac{1210}{250} \times 100 = 484$$

Inflation in
$$2021 = \frac{CPI_{2021} - CPI_{2020}}{CPI_{2020}} \times 100\% = \frac{4.84 - 2}{2} \times 100\% = 142\%$$

(d) inflation

Problem 2.

Write $u=\frac{U}{E+U}$ and $e=\frac{E}{E+U+N}$, where E denotes the number of the employed, U denotes the number of the unemployed, and N denotes the number of those out of the labor force. Then the labor-force participation rate is

$$\frac{E+U}{E+U+N} = \frac{\frac{1}{E+U+N}}{\frac{1}{E+U}} = \frac{\frac{E}{E+U+N}}{\frac{E}{E+U}} = \frac{\frac{E}{E+U+N}}{1-\frac{U}{E+U}} = \frac{e}{1-u}.$$

Problem 3.

Real GDP: https://fred.stlouisfed.org/release/tables?rid=53&eid=41074#snid=41075
Nominal GDP:

https://fred.stlouisfed.org/release/tables?rid=53&eid=41047#snid=41048 Population: https://fred.stlouisfed.org/series/B230RC0A052NBEA

	Most recent year (2019)	Your birth year	Start of "Post-War Period"
		(1989)	(1956)
Nominal GDP	\$21372582 million	\$5641580 million	\$449353 million
Real GDP	\$19032672 million	\$9197997 million	\$2934391 million
Population	330513000	247387000	168221000
Nominal GDP per			
capita (GDP /	\$64664.88	\$22804.67	\$2671.21
Population)			
Real GDP per capita	\$57585.24	\$37180.60	\$17443.67
(GDP / Population)	\$37363.2 4	\$57 180.00	\$17443.07
Implied Deflator			
(Nominal GDP per	112.29	61.33	15.31
capita / Real GDP per	112,27	01.33	13.31
capita * 100)			