

Santo André	Centro Paula Souza	GOVERNO DO ESTADO DE SÃO PAULO
Disciplina: Linguagem e Técnica de	Programação	Semestre: 1°
Nome: Douglas Prieto da Silva	RA: 1600732111033	Data: 30/03/21
Título: Lista 1 para P1		Nota:

EXERCÍCIO 1A:

Processo	e_nro_1	e_nro_2	e_nro_3	Saída e_nro_1	Saída e_nro_2	Saída e_nro_3
1	(21)	(34)	(3)			
2	21	34	3	3	21	34

Processo	e_nro_1	e_nro_2	e_nro_3	Saída e_nro_1	Saída e_nro_2	Saída e_nro_3
1	(10)	(3)	(20)			
2	10	3	20	3	10	20

Processo	e_nro_1	e_nro_2	e_nro_3	Saída e_nro_1	Saída e_nro_2	Saída e_nro_3
1	(3)	(20)	(54)			
2	3	20	54	3	20	54

EXERCÍCIO 1B:

```
#include <stdio.h>
int main(void) {
 //Declarar variaveis
 int e_nro_1, e_nro_2, e_nro_3;
 //orientar usuario
 printf("\n\n");
 printf("Programa C a partir no Fluxograma - Classificar \n");
 printf("\n\n");
 printf("Informe primeiro valor [inteiro]:\n");
 scanf("%d", &e_nro_1);
 printf("\n\n");
 printf("Informe segundo valor [inteiro]:\n");
 scanf("%d", &e_nro_2);
 printf("\n\n");
 printf("Informe terceiro valor [inteiro]:\n");
 .
scanf("%d", &e_nro_3);
 //Condicional
 if(e_nro_1 > e_nro_2)
  if(e_nro_2 > e_nro_3)
   //Apresentar resultado1
    printf("\n\n");
    printf("Em ordem crescente: \n");
    printf("%d \n", e nro 3);
   printf("%d \n", e nro 2);
   printf("%d \n", e_nro_1);
  else
   if(e_nro_1 > e_nro_3)
     //Apresentar resultado2
     printf("\n\n");
     printf("Em ordem crescente: \n");
     printf("%d \n", e_nro_2);
printf("%d \n", e_nro_3);
printf("%d \n", e_nro_1);
   else
     //Apresentar resultado3
     printf("\n\n");
     printf("Em ordem crescente: \n");
     printf("%d \n", e_nro_2);
     printf("%d \n", e nro 1);
     printf("%d \n", e_nro_3);
 }
 else
  if(e_nro_1 > e_nro_3)
```

```
//Apresentar resultado4
printf("\n\n");
printf("Em ordem crescente: \n");
printf("%d \n", e_nro_3);
printf("%d \n", e_nro_1);
printf("%d \n", e_nro_2);
}
else
{
  if(e_nro_2 > e_nro_3)
  {
    //Apresentar resultado5
    printf("\n\n");
    printf("Em ordem crescente: \n");
    printf("%d \n", e_nro_1);
    printf("%d \n", e_nro_2);
}
else
  {
    //Apresentar resultado6
    printf("\n\n");
    printf("Em ordem crescente: \n");
    printf("\n\n");
    printf("\n\n", e_nro_1);
    printf("\d \n", e_nro_2);
    printf("\d \n", e_nro_3);
}
}
return 0;
```


EXERCÍCIO 3:


```
#include <stdio.h>
```

```
int main(void) {
 //Declarar variaveis
 int inA, inB, aux;
 //Valores das variaveis
 inA = 10;
 inB = 20;
 //Inverter valores das variaveis
 aux = inA:
 inA = inB;
 inB = aux;
 //Apresentar resultado
 printf("\n\n");
printf("Variável 'A' apresenta agora valor: %d \n", inA);
 printf("\n\n");
 printf("Variável 'B' apresenta agora valor: %d \n", inB);
 return 0;
}
```

EXERCÍCIO 4:


```
#include <stdio.h>
int main(void) {
 //Declarar variaveis
 int e_nro_1, e_nro_2, e_nro_3;
 //orientar usuario
 printf("\n\n");
 printf("Classificar numeros em ordem crescente \n");
 printf("\n\n");
 printf("Informe primeiro valor [inteiro]:\n");
 scanf("%d", &e nro 1);
 printf("\n\n");
 printf("Informe segundo valor [inteiro]:\n");
 scanf("%d", &e_nro_2);
 printf("\n\n");
 printf("Informe terceiro valor [inteiro]:\n");
 scanf("%d", &e_nro_3);
 //Condicional
 if(e_nro_1 > e_nro_2)
  if(e_nro_2 > e_nro_3)
   //Apresentar resultado1
   printf("\n\n");
   printf("Em ordem crescente: \n");
   printf("%d \n", e_nro_1);
   printf("%d \n", e nro 2);
   printf("%d \n", e_nro_3);
  else
   if(e_nro_1 > e_nro_3)
     //Apresentar resultado2
     printf("\n\n");
     printf("Em ordem crescente: \n");
     printf("%d \n", e_nro_1);
printf("%d \n", e_nro_3);
printf("%d \n", e_nro_2);
   else
     //Apresentar resultado3
     printf("\n\n");
     printf("Em ordem crescente: \n");
     printf("%d \n", e_nro_3);
     printf("%d \n", e_nro_1);
     printf("%d \n", e_nro_2);
  }
 else
  if(e_nro_1 > e_nro_3)
   //Apresentar resultado4
   printf("\n\n");
```

```
printf("Em ordem crescente: \n");
    printf("%d \n", e_nro_2);
printf("%d \n", e_nro_1);
printf("%d \n", e_nro_3);
   else
     if(e_nro_2 > e_nro_3)
       //Apresentar resultado5
       printf("\n\n");
       printf("Em ordem crescente: \n");
       printf("%d \n", e_nro_2);
       printf("%d \n", e_nro_3);
       printf("%d \n", e_nro_1);
     }
     else
     {
       //Apresentar resultado6
      printf("\n\n");
printf("Em ordem crescente: \n");
printf("%d \n", e_nro_3);
printf("%d \n", e_nro_2);
printf("%d \n", e_nro_1);
 return 0;
}
```

EXERCÍCIO 5:

```
#include <stdio.h>
int main(void) {
 //Declarar variaveis
 float inAltura, inSexo, outPesoldeal;
 //orientar usuario
 printf("\n\n");
 printf("Calculo do Peso Ideal conforme ALTURA e PESO: \n");
 printf("\n\n");
 printf("Informe a sua altura [m]: \n");
 scanf("%f", &inAltura);
printf("\n\n");
 printf("Informe o seu sexo [Digite 0 ou 1]: \n");
 printf("0 - Feminino \n");
 printf("1 - Masculino \n");
 scanf("%f", &inSexo);
 //Calculos
 if(inSexo == 1)
  outPesoIdeal = (72.7 * inAltura) - 58;
 else if(inSexo == 0)
  outPesoldeal = (62.1 * inAltura) - 44.7;
 else
 {
  printf("Os dados não são válidos \n");
 //Apresentar resultado
 printf("Seu Peso Ideal é: %.1f kg.\n", outPesoIdeal);
 return 0;
```

EXERCÍCIO 6:

- 7. Caso material = 3 (Ro = 0,00000244; coefTemp =0,034)
- 8. Caso material = 4 (Ro = 0,00000292; coefTemp =0,039) 9. Caso material = 5 (Ro = 0,0000056; coefTemp =0,045)
- 10. Calcular Resistencia: outResist = (Ro * (1 + coefTemp * (inTemp 20)) * inCompr * 12732,39545) / (inDiam * inDiam)
 - a. Passar diâmetro para cm, calcular raio em seguida a área
 - b. Passar comprimento do fio para cm
- 11. Mostrar outResist

Teste de Mesa								
Processo	inMaterial	inDiam	inCompr	inTemp	Ro	coefTemp	Saida	
1	(1)							
2	1				0,00000159	0,038		
3	1	(1)			0,00000159	0,038		
4	1	1	(30)		0,00000159	0,038		
5	1	1	30	(25)	0,00000159	0,038		
6	1	1	30	25	0,00000159	0,038		
7	1	1	30	25	0,00000159	0,038	0,723	


```
#include <stdio.h>
int main(void) {
 //Declarar variaveis
 float inDiam, inCompr, inTemp, outResist, Ro, coefTemp;
 int inMaterial;
 //Orientar usuario
 printf("\n\n");
 printf("Calculo da Resistencia do Fio: \n");
 printf("\n\n");
 printf("Selecione o material do fio [digite 1 a 5]: \n");
 printf("1 - Prata. \n");
 printf("2 - Cobre. \n");
 printf("3 - Ouro. \n");
 printf("4 - Alumínio. \n");
 printf("5 - Tungstênio. \n\n");
 scanf("%d", &inMaterial);
 //Variavel recebe Resistividade e Coeficiente de Temperatura
 switch(inMaterial)
 {
  case 1:
   printf("Prata. \n\n");
   Ro = 0.00000159;
   coefTemp =0.038;
  break;
  case 2:
   printf("Cobre. \n\n");
   Ro = 0.00000172;
   coefTemp =0.039;
  break;
  case 3:
   printf("Ouro. \n\n");
   Ro = 0.00000244;
   coefTemp =0.034;
  break;
  case 4:
   printf("Alumínio. \n\n");
   Ro = 0.00000292;
   coefTemp =0.039;
  break;
  case 5:
   printf("Tungstênio. \n\n");
   Ro = 0.0000056;
   coefTemp =0.045;
  break;
  default:
   printf("Material incorreto. Erro! \n\n");
   return 0;
}
 //Orientar usuario
 printf("Informe o diâmetro do fio [mm]: ");
 scanf("%f", &inDiam);
 printf("\n");
 printf("Informe o comprimento do fio [m]: ");
 scanf("%f", &inCompr);
 printf("\n");
```

```
printf("Informe a temperatura de uso [Celsius]: ");
scanf("%f", &inTemp);
printf("\n");

//Calcular Resistencia do Fio
outResist = (Ro * (1 + coefTemp * (inTemp - 20)) * inCompr * 12732.39545) / (inDiam * inDiam);

//Mostrar resultado
printf("A resistência do fio é [ohm]: %.2f", outResist);
return 0;
}
```

EXERCÍCIO 7:


```
#include <stdio.h>
int main(void) {
 //Declarar variaveis
 float inR1, inR2, inR3, inR4, outReq;
 //Orientar usuario
 printf("\n\n");
 printf("Calculo da Resistencia Equivalente em Serie: \n");
 printf("\n\n");
 printf("Informe o valor de R1 [ohm 0.0]: \n");
 scanf("%f", &inR1);
 printf("\n\n");
 printf("Informe o valor de R2 [ohm 0.0]: \n");
 scanf("%f", &inR2);
 printf("\n\n");
 printf("Informe o valor de R3 [ohm 0.0]: \n");
 scanf("%f", &inR3);
 printf("\n\n");
 printf("Informe o valor de R4 [ohm 0.0]: \n");
 scanf("%f", &inR4);
 //Calculos
 outReq = inR1+inR2+inR3+inR4;
 //Apresentar resultado
 printf("A Resistencia Equivalente é: %.1f ohm.\n", outReq);
 return 0;
```

EXERCÍCIO 8:


```
#include <stdio.h>
int main(void) {
 //Declarar variaveis
 float inR1, inR2, inR3, inR4, outReq;
 //Orientar usuario
 printf("\n\n");
 printf("Calculo da Resistencia Equivalente em Paralelo: \n");
 printf("\n\n");
 printf("Informe o valor de R1 [ohm 0.0]: \n");
 scanf("%f", &inR1);
 printf("\n\n");
 printf("Informe o valor de R2 [ohm 0.0]: \n");
 scanf("%f", &inR2);
 printf("\n\n");
 printf("Informe o valor de R3 [ohm 0.0]: \n");
 scanf("%f", &inR3);
 printf("\n\n");
 printf("Informe o valor de R4 [ohm 0.0]: \n");
 scanf("%f", &inR4);
 //Calculos
 outReq = 1/((1/inR1)+(1/inR2)+(1/inR3)+(1/inR4));
 //Apresentar resultado
 printf("A Resistencia Equivalente é: %.1f ohm.\n", outReq);
 return 0;
}
```