Model Selection and Variance Components

Peter von Rohr

2024-04-24

Breeding Program

New Trait

- New trait to be considered in breeding program
- ▶ Why? → Trait is of economic importance
- ▶ Want to improve average level of trait in a given population
- ► How is this done?
- What do we have to do?

Background and Context

- Farms/Enterprise use livestock products as base for economic existence
- Improvements of production efficiency improves sustainability
- Short-term:
 - improve management and environment
 - select optimal livestock breed / population for given environment
- ► Long-term:
 - improve population at genetic level
 - define breeding goal
 - select parents such that offspring are "closer" to goal compared to parents

Genetic Improvement

- Genetic improvement happens between parents and offspring
- Parents pass random sample of alleles to offspring
- ▶ Goal: select parents that have many "good" alleles to pass to offspring
- ► How to find parents with "good" alleles without knowing which genes are important?
- → Statistical Modeling

Genotype and Phenotype

Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is enough to look at a diagram

Statistical Modelling Because . . .

Two types of dependencies between physical quantities

- 1. deterministic
- 2. stochastic

Deterministic Versus Stochastic

Statistical Model

- stochastic systems contains many sources of uncertainty
- statistical models can handle uncertainty
- components of a statistical model
 - response variable *y*
 - \triangleright predictor variables x_1, x_2, \dots, x_k
 - error term e
 - function m(x)

How Does A Statistical Model Work?

- ▶ predictor variables $x_1, x_2, ..., x_k$ are transformed by function m(x) to explain the response variable y
- uncertainty is captured by error term.
- ▶ as a formula, for observation *i*

$$y_i = m(x_i) + e_i$$

Which function m(x)?

- \triangleright class of functions that can be used as m(x) is infinitely large
- restrict to linear functions of model parameter $(b_0 \text{ and } b_1)$, e.g.

$$y_i = b_0 + b_1 * x_i + e_i$$

Which predictor variables?

Question, about which predictor variables to use is answered by model selection

Why Model Selection

- Many predictor variables are available
- Are all of them relevant?
- ▶ What is the meaning of relevant in this context?

Example Dataset

Animal	Breast Circumference	Body Weight	RandPred
1	176	471	178
2	177	463	177
3	178	481	182
4	179	470	181
5	179	496	184
6	180	491	184
7	181	518	181
8	182	511	182
9	183	510	177
10	184	541	181

No Relevance of Predictors

Relevance of Predictors

Fitting a Regression Model

```
##
## Call:
## lm(formula = 'Body Weight' ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
##
      Min
          1Q Median
                             30
                                    Max
## -25.867 -17.921 -9.036 19.827 45.133
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 93.511 598.111 0.156 0.880
## RandPred 2.223
                          3.310 0.672 0.521
##
## Residual standard error: 25.66 on 8 degrees of freedom
## Multiple R-squared: 0.05338, Adjusted R-squared: -0.06495
## F-statistic: 0.4511 on 1 and 8 DF, p-value: 0.5207
```

Fitting a Regression Model II

```
##
## Call:
## lm(formula = 'Body Weight' ~ 'Breast Circumference', data = tbl reg aug)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                        Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                       -1065.115 255.483 -4.169 0.003126 **
## 'Breast Circumference' 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```

Multiple Regression

```
##
## Call:
## lm(formula = 'Body Weight' ~ 'Breast Circumference' + RandPred,
      data = tbl reg aug)
##
##
## Residuals:
##
      Min 10 Median 30 Max
## -17.817 -6.946 -1.337 9.196 13.118
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       -1218.2339 352.3805 -3.457 0.010588 *
## 'Breast Circumference' 8.5321 1.4885 5.732 0.000711 ***
## RandPred
                           0.9879 1.4983 0.659 0.530785
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 11.5 on 7 degrees of freedom
## Multiple R-squared: 0.8337, Adjusted R-squared: 0.7862
## F-statistic: 17.55 on 2 and 7 DF, p-value: 0.001874
```

Which model is better?

Why not taking all predictors?

- Additional parameters must be estimated from data
- Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)
- ► Bias-variance trade-off

Bias-variance trade-off

Assume, we are looking for optimum prediction

$$s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}$$

with q relevant predictor variables

ightharpoonup Average mean squared error of prediction s_i

$$MSE = n^{-1} \sum_{i=1}^{n} E \left[(m(x_i) - s_i)^2 \right]$$

where m(.) denotes the linear function of the unknown true model.

Bias-variance trade-off II

MSE can be split into two parts

$$MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)$$

where $n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the squared **bias**

- ▶ Increasing q leads to reduced bias but increased variance $(var(s_i))$
- ightharpoonup Hence, find s_i such that MSE is minimal
- ▶ Problem: cannot compute MSE because m(.) is not known
- \rightarrow estimate MSE

Mallows C_p statistic

- ▶ For a given model \mathcal{M} , $SSE(\mathcal{M})$ stands for the residual sum of squares.
- MSE can be estimated as

$$\widehat{\mathit{MSE}} = \mathit{n}^{-1}\mathit{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2|\mathcal{M}|/\mathit{n}$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , n is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in \mathcal{M}

$$C_p(\mathcal{M}) = \frac{SSE(\mathcal{M})}{\hat{\sigma}^2} - n + 2|\mathcal{M}|$$

Searching The Best Model

- Exhaustive search over all sub-models might be too expensive
- For p predictors there are $2^p 1$ sub-models
- ▶ With p = 16, we get 6.5535×10^4 sub-models
- \rightarrow step-wise approaches

Forward Selection

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \to results in sequence $\mathcal{M}_0\subseteq\mathcal{M}_1\subseteq\mathcal{M}_2\subseteq\dots$ of sub-models
 - 4. Out of sequence of sub-models choose the one with minimal C_p

Backward Selection

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0\supseteq\mathcal{M}_1\supseteq\mathcal{M}_2\supseteq\dots$ of sub-models
 - 4. Out of sequence choose the one with minimal C_p

Considerations

- Whenever possible, choose backward selection, because it leads to better results
- ▶ If $p \ge n$, only forward is possible, but then consider LASSO

Alternative Selection Criteria

- AIC or BIC, requires distributional assumptions.
- ► AIC is implemented in MASS::stepAIC()
- Adjusted R^2 is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- Try in exercise

Genetic Variation

- Requirement for trait to be considered in breeding goal
- Breeding means improvement of next generation via selection and mating
- ▶ Only genetic (additive) components are passed to offspring
- Selection should be based on genetic component of trait
- Selection only possible with genetic variation
- \rightarrow genetic variation indicates how good characteristics are passed from parents to offspring
- ightarrow measured by **heritability** $h^2=rac{\sigma_a^2}{\sigma_p^2}$

Two Traits

Problems

- Genetic components cannot be observed or measured
- Must be estimated from data
- Data are mostly phenotypic
- ightarrow topic of variance components estimation
 - Model based, that means connection between phenotypic measure and genetic component are based on certain model

$$p = g + e$$

with cov(g, e) = 0

▶ **Goal**: separate variation due to $g\left(\sigma_a^2\right)$ from phenotypic variation

Example of Variance Components Separation

- Estimation of repeatability
- Given repeated measurements of same trait at the same animal
- Repeatability means variation of measurements at the same animal is smaller than variation between measurements at different animals

Repeatability Plot

Model

$$y_{ij} = \mu + t_i + \epsilon_{ij}$$

where

 y_{ij} measurement j of animal i

 μ expected value of y

 t_i random deviation of y_{ij} from μ attributed to animal i

 $\epsilon_{\it ij}$ measurement error

Animal Model

- ightharpoonup trait of interest as response variable (y)
- fixed effects (b) as known part of environment
- ightharpoonup random animal effect, corresponds to breeding values (u)

$$y = Xb + Zu + e$$

with

- vector e as random residuals and
- matrices X and Z as design matrices

Estimates and Predictions

solution leading to estimates of fixed effects

$$\hat{b} = (X^T V^{-1} X)^- X^T V^{-1} y$$

predictions for random effects

$$\hat{u} = GZ^T V^{-1} (y - X\hat{b})$$

with

- ightharpoonup G = var(u)
- ightharpoonup V = var(y)

Mixed Model Equations

Equivalent solutions are obtained via

$$\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}$$

with

$$\triangleright$$
 $G = A * \sigma_u^2$

where A is pedigree-based relationship matrix and σ_u^2 the genetic additive variance

Single-Step Genomic Breeding Values

Assume all animals have genotypes

$$y = Xb + Zu + e$$

$$\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + H^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}$$

$$\blacktriangleright$$
 $H = A_G * \sigma_u^2$

where A_G is the genomic relationship matrix and σ_u^2 the genetic additive variance