Regressor Dataset ¶

```
In [398]: boston = load_boston()
    X_df = pd.DataFrame(boston.data, columns=boston.feature_names)
    y_df = pd.DataFrame(boston.target, columns=["target"])
    df=pd.concat([X_df, y_df], axis=1, sort=False)
In [399]: df.head()
```

Out[399]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

Data-based importance strategies:

Ranking features by their Spearman's rank correlation coefficient

Spearman's rank correlation heatmap:

In [400]: corr=plot_spearman_rank_matrix(df)

Ranking features by their Spearman's rank correlation coefficient

```
In [401]: imp_score=corr[['target']]
    imp_score['target1']=np.abs(imp_score['target'])
    imp_score.sort_values(by='target1',ascending=False)[['target']]
```

Out[401]:

	target
target	1.000000
LSTAT	-0.852914
RM	0.633576
INDUS	-0.578255
NOX	-0.562609
TAX	-0.562411
CRIM	-0.558891
PTRATIO	-0.555905
AGE	-0.547562
DIS	0.445857
ZN	0.438179
RAD	-0.346776
В	0.185664
CHAS	0.140612

This method is measuring single-feature relevance importance and works well for independent features, but **suffers in the presence of codependent features**.

Groups of features with similar relationships to the response variable receive the same or similar ranks, even though just one should be considered important.

From our Spearman rank plot we can see that some features are highly correlated with each other like *DIS* is highly correlated with *RM* and *Age*. So, this is not efficient measure for feature importance ranking

PCA- Principle Component Analysis

PCA transforms data into a new space characterized by eigenvectors and identifies features that explain the most variance in the new space. If the first principal component covers a large percentage of the variance, the "loads" associated with that component can indicate importance of features in the original X space.

In [403]: perform_PCA(df, features)

```
explained variance ratio: [0.47129606 0.11025193 0.0955859 ]
components: [[ 0.2509514 -0.25631454
                                       0.34667207
                                                   0.00504243 0.34285231
-0.18924257
   0.3136706
             -0.32154387 0.31979277
                                       0.33846915
                                                   0.20494226 - 0.20297261
   0.309759841
 [-0.31525237 -0.3233129]
                           0.11249291
                                       0.45482914
                                                   0.21911553
                                                               0.14933154
   0.31197778 - 0.34907
                          -0.27152094 -0.23945365 -0.30589695
                                                               0.23855944
 -0.074322031
 [ 0.24656649  0.29585782  -0.01594592
                                       0.28978082
                                                   0.12096411
                                                                0.59396117
  -0.01767481 -0.04973627 0.28725483
                                       0.22074447 - 0.32344627 - 0.3001459
  -0.26700025]]
```

```
'CRIM'=0.2509514, 'ZN'=-0.25631454, 'INDUS'=0.34667207, 'CHAS'=0.00504243, 'NOX'=0.34285231, 'RM'=-0.18924257, 'AGE'=0.3136706, 'DIS'=-0.32154387, 'RAD'=0.31979277, 'TAX'=0.33846915, 'PTRATIO'=0.20494226, 'B'=-0.20297261, 'LSTAT'=0.30975984
```

This method shows that if we transform data into 3 principal componenents, 58% of the variance is explained by 2 components. Principal component is responsible for 47% of variance and according to principal component, the variance contributed by each feature is as shown in first array. According to it, features like INDUS, NOX,DIS, TAX, LSTAT are more important tham features like CHAS, RM

minimal-redundancy-maximal-relevance (mRMR)

In an effort to deal with codependencies, data analysis techniques rank features not just by relevance (correlation with the response variable) but also by low redundancy, the amount of information shared between codependent features

```
In [404]: corr
```

Out[404]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
CRIM	1.000000	-0.571660	0.735524	0.041537	0.821465	-0.309116	0.704140	-0.744986	0.
ZN	-0.571660	1.000000	-0.642811	-0.041937	-0.634828	0.361074	-0.544423	0.614627	-0.1
INDUS	0.735524	-0.642811	1.000000	0.089841	0.791189	-0.415301	0.679487	-0.757080	0.4
CHAS	0.041537	-0.041937	0.089841	1.000000	0.068426	0.058813	0.067792	-0.080248	0.0
NOX	0.821465	-0.634828	0.791189	0.068426	1.000000	-0.310344	0.795153	-0.880015	0.!
RM	-0.309116	0.361074	-0.415301	0.058813	-0.310344	1.000000	-0.278082	0.263168	-0.
AGE	0.704140	-0.544423	0.679487	0.067792	0.795153	-0.278082	1.000000	-0.801610	٥.،
DIS	-0.744986	0.614627	-0.757080	-0.080248	-0.880015	0.263168	-0.801610	1.000000	-0.4
RAD	0.727807	-0.278767	0.455507	0.024579	0.586429	-0.107492	0.417983	-0.495806	1.0
TAX	0.729045	-0.371394	0.664361	-0.044486	0.649527	-0.271898	0.526366	-0.574336	0.
PTRATIO	0.465283	-0.448475	0.433710	-0.136065	0.391309	-0.312923	0.355384	-0.322041	0.:
В	-0.360555	0.163135	-0.285840	-0.039810	-0.296662	0.053660	-0.228022	0.249595	-0.1
LSTAT	0.634760	-0.490074	0.638747	-0.050575	0.636828	-0.640832	0.657071	-0.564262	0.:
target	-0.558891	0.438179	-0.578255	0.140612	-0.562609	0.633576	-0.547562	0.445857	-0.:

Ranking features by their mRMR(using Spearman's rank coefficient)

INDUS -0.777200

AGE -0.743498

PTRATIO -0.688662

ZN 0.678640

RAD -0.552212

B 0.322286

CHAS 0.144123

We can see that the feature ranking amongst variables vary if we use mRMR rather than only ranking based on Spearman's rank coefficient

Model-based importance strategies

```
In [508]:
           df.head(2)
Out[508]:
               CRIM
                      ZN INDUS CHAS
                                       NOX
                                                  AGE
                                                         DIS RAD
                                                                   TAX PTRATIO
                                                                                   B LSTAT
                                             RM
            0 0.00632
                     18.0
                            2.31
                                   0.0
                                      0.538 6.575
                                                  65.2 4.0900
                                                              1.0
                                                                  296.0
                                                                           15.3
                                                                                396.9
                                                                                       4.98
            1 0.02731
                            7.07
                                   0.0 0.469 6.421 78.9 4.9671
                      0.0
                                                              2.0 242.0
                                                                           17.8 396.9
                                                                                       9.14
           df train, df test = train test split(df, test size=0.20, random state=99)
In [560]:
           X_train, y_train = df_train.drop('target',axis=1), df_train['target']
           X_test, y_test = df_test.drop('target',axis=1), df_test['target']
           X train['random'] = np.random.random(size=len(X train))
           X test['random'] = np.random.random(size=len(X test))
```

Drop-column importance

Procedure:

- 1. Compute metric for model trained on all features using validation set
- 2. Drop column !"
- 3. Retrain model
- 4. Compute metric using validation set
- 5. Importance score is the drop in metric

We have also introduced a 'random' column which contains random values. We can see that the importance score associated with this column is almost zero. We can safely say that columns having scores less than random column should be disregarded.

Disadvantages of drop-column importance technique:

Very expensive because it means retraining the model p times for p features.

Codependent features often result in 0 or very low importance.

eg. **DIS** was higly correlated with other features, its importance_score is coming to be almost zero.

Permutation importance

Procedure:

1. Compute metric for model trained on all features using validation set

- 2. Permute column !"
- 3. Compute metric using validation set
- 4. Importance score is the drop in metric

```
In [566]: rf_reg_perm = RandomForestRegressor(n_estimators=100, n_jobs=-1,
                                       max features=1.0,
                                       min_samples_leaf=10, oob_score=True)
          feature imp df perm=permutation importances(rf reg perm, X train, y train,
In [567]:
                                                       X_test, y_test)
In [568]:
          %R -i feature_imp_df_perm
In [569]:
          ggplot(data=feature_imp_df_perm, aes(x = reorder(feature,Importance_Score),
                                                y = Importance Score, fill = Importanc
                    color = "white",
                    x.text.angle = 90,
                    ggtheme = theme_minimal()
                    )+ xlab("Feature")+
          geom_bar(stat = "identity")+ coord_flip()
```


Features:

No need to retrain the model so much more efficient than drop column importance

Codependent features often share importance.

Observations:

Drop-column tends to show low importance scores and permutation tends to share importance scores for codependent features Eg. **DIS** and **NOX** - were highly correlated and sharing importance but DIS importance almost dropped to zero in drop-column importance.

Importance score of **random** column was negative in drop-column importance but is zero in permutation importance mechanism.

Show the effect of duplicated column:

```
In [529]: df_train_dup = df_train
    df_test_dup = df_test
    #Duplicating the RM column
    df_train_dup['RM_dup']=df_train_dup['RM']
    df_test_dup['RM_dup']=df_test_dup['RM']

In [524]: X_train_dup, y_train_dup = df_train_dup.drop('target',axis=1), df_train_dup
    X_test_dup, y_test_dup = df_test_dup.drop('target',axis=1), df_test_dup['target']

In [525]: feature_imp_df_dup = dropcol_importances(rf_reg, X_train_dup, y_train_dup,
    %R -i feature_imp_df_dup
```


We can see that:

drop-column importance: importance score of duplicated columns drop to zero. **permutation importance:** importance score of duplicated columns is pulled down but not dropped to zero.

eg. RM and RM_dup

Automatic feature selection algorithm

Algorithm:

- 1.> Have an ordering of features from most to least important.
- 2.> Get a baseline validation metric appropriate for a classifier or a regressor with all features.
- 3.> Drop the lowest importance feature and retrain the model and re-compute the validation metric.
- 4.> If the validation metric starts getting worse, then stop the process.

```
In [573]:
           df.head(2)
Out[573]:
               CRIM
                      ZN INDUS CHAS
                                      NOX
                                             RM
                                                 AGE
                                                        DIS RAD
                                                                  TAX PTRATIO
                                                                                  B LSTAT
             0.00632
                     18.0
                            2.31
                                  0.0
                                      0.538
                                            6.575
                                                 65.2
                                                      4.0900
                                                             1.0
                                                                 296.0
                                                                          15.3
                                                                               396.9
                                                                                      4.98
                            7.07
           1 0.02731
                      0.0
                                  0.0 0.469 6.421
                                                 78.9 4.9671
                                                             2.0 242.0
                                                                          17.8 396.9
                                                                                      9.14
In [597]:
           df_train, df_test = train_test_split(df, test_size=0.20, random_state=99)
           X_train, y_train = df_train.drop('target',axis=1), df_train['target']
           X test, y test = df test.drop('target',axis=1), df test['target']
In [598]:
           #Get the order of feature importance using permutation importances
           feature imp df perm=permutation importances(rf reg perm, X train, y train,
               rev_feature_list=np.flip(feature_imp_df perm.iloc[:,0].values)
In [599]:
               rev feature list=rev feature list.tolist()
               rev feature list
Out[599]: ['CHAS', 'ZN', 'RAD', 'B', 'PTRATIO', 'TAX', 'INDUS', 'AGE', 'DIS', 'CRIM', 'NOX', 'RM', 'LSTAT']
In [601]:
           important_features, non_important_features = auto_feature_selection(
               model, X_train, y_train, X_test, y_test, rev_feature_list)
           print("important features:", important features)
           print("non_important_features:", non_important_features)
           important_features: ['B', 'PTRATIO', 'TAX', 'INDUS', 'AGE', 'DIS', 'CRI
           M', 'NOX', 'RM', 'LSTAT']
           non important features: ['CHAS', 'ZN', 'RAD']
```

So, we will drop 3 features and keep the remaining ones.

Comparison between feature importances of linear regressor, random forest and xgBoost:

```
In [734]: feature_imp_df_xgboost['feature'].tolist()
```

Out[734]: ['LSTAT', 'RM', 'PTRATIO', 'TAX', 'B', 'INDUS', 'NOX', 'AGE', 'CRIM', 'DIS']

Out[711]:

	feature	rf_rank	xg_rank	lin_rank
0	LSTAT	0	-1	0
1	RM	-1	0	-1
2	DIS	-2	-9	-4
3	PTRATIO	-3	-2	-5
4	NOX	-4	-6	-3
5	В	-5	-5	-8
6	TAX	-6	-3	-9
7	AGE	-7	-8	-6
8	INDUS	-8	-4	-7
9	CRIM	-9	-7	-2

```
In [712]: %R -i feature_imp_df
```


We can see that ranking differs among different models.

Therefore, we can say that features determined for one model do not export well to other models.

Comparisons with SHAP for Random forest and XGBoost

In []: # Citation :https://towardsdatascience.com/

For XGBoost:

For XGBoost:

With SHAP: ['LSTAT','RM', 'CRIM', 'NOX', 'DIS', 'PTRATIO', 'B', 'TAX', 'INDUS', 'AGE'] With permutation importance ['LSTAT', 'RM', 'PTRATIO', 'TAX', 'B', 'INDUS', 'NOX', 'AGE', 'CRIM', 'DIS']

Therefore, order varies slightly

For Random Forest:

```
In [728]: model = RandomForestRegressor(max_depth=6, random_state=0, n_estimators=10)
    model.fit(X[important_features], y)
    shap_values = shap.TreeExplainer(model).shap_values(X[important_features])
    shap.summary_plot(shap_values, X[important_features], plot_type="bar")
```


Computing SHAP on all features

```
In [733]: model.fit(X, y)
    shap_values = shap.TreeExplainer(model).shap_values(X)
    shap.summary_plot(shap_values, X, plot_type="bar")
```


For Random Forest:

With SHAP: ['RM', 'LSTAT', 'CRIM', 'NOX', 'DIS', 'PTRATIO', 'TAX', 'AGE', 'B', 'INDUS'] With permutation importance ['LSTAT', 'RM', 'DIS', 'PTRATIO', 'NOX', 'B', 'TAX', 'AGE', 'INDUS', 'CRIM']

Therefore, order of features differ for SHAP and permutation importance

But an important observation is **least important features matches for SHAP and permutation importance**

Classifier Dataset

```
wine = load wine()
In [826]:
           X_df_wine=pd.DataFrame(wine.data, columns=wine.feature_names)
           y df wine = pd.DataFrame(wine.target, columns=["target"])
           df wine=pd.concat([X df wine, y df wine], axis=1, sort=False)
In [827]: df_wine.head()
Out[827]:
              alcohol malic_acid
                               ash
                                   alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_p
            0
                14.23
                          1.71 2.43
                                             15.6
                                                      127.0
                                                                   2.80
                                                                            3.06
                13.20
                          1.78 2.14
                                             11.2
                                                      100.0
                                                                   2.65
                                                                            2.76
            1
            2
                13.16
                          2.36 2.67
                                             18.6
                                                      101.0
                                                                   2.80
                                                                            3.24
            3
                14.37
                          1.95 2.50
                                             16.8
                                                      113.0
                                                                   3.85
                                                                            3.49
                13.24
                          2.59 2.87
                                             21.0
                                                                   2.80
                                                                            2.69
            4
                                                      118.0
In [828]:
          rf = RandomForestClassifier(n estimators=100, max depth=10, random state=0)
In [829]: df train, df test = train test split(df wine,
                                     test size=0.20, random state=99)
           X train, y train = df train.drop('target',axis=1), df train['target']
           X test, y test = df test.drop('target',axis=1), df test['target']
           X train['random'] = np.random.random(size=len(X train))
           X test['random'] = np.random.random(size=len(X test))
In [830]: feature imp_df = permutation_importances(rf, X_train, y_train, X_test, y_te
```

In [831]: feature_imp_df

Out[831]:

	feature	Importance_Score	Importance
6	flavanoids	0.194444	Positive
12	proline	0.166667	Positive
9	color_intensity	0.083333	Positive
11	od280/od315_of_diluted_wines	0.027778	Positive
0	alcohol	-0.000000	Negative
1	malic_acid	-0.000000	Negative
2	ash	-0.000000	Negative
3	alcalinity_of_ash	-0.000000	Negative
4	magnesium	-0.000000	Negative
5	total_phenols	-0.000000	Negative
7	nonflavanoid_phenols	-0.000000	Negative
8	proanthocyanins	-0.000000	Negative
13	random	-0.000000	Negative
10	hue	-0.027778	Negative

In [832]: %R -i feature_imp_df

We can see that feature importances for most of the columns is zero or negative below	ow
random column	