

උසස් පෙළ ඉංජිනේරු තාක්ෂණවේදය උසස් පෙළ ඉංජිනේද තාක්ෂණවේදය උසස් පෙළ ඉංජිනේරු තාක්ෂණවීදය දක් පෙළ ඉංජිනේරු තාක්ෂණවේදය උසස් පෙළ ඉංජිනේරු තාක්ෂණවේදය උසස් පෙළ ඉංජිනේරු තාක්ෂණවේදය උසස් පෙළ ඉංජිනේරු තාක්ෂණවේදය උසස් පෙළ ඉංජිනේරු ක්රීම් කිරීම් තිබේරු තාක්ෂණවේදය උසස් පෙළ ඉංජිනේරු කිරීම් කි ඉංපිනේරු නාක්ෂණවේදය උසස් පෙළ ඉ**ලිපුරුනුරුණුපිරික්කුණුල**ාපිනේරු නාක්ෂණවේදය උසස් පෙ සස් පෙළ ඉංපිනේරු නාක්ෂණවේදය උසස් පෙළ ඉ**ළින**්ර නාක්ෂණවේදය උස්ස් පෙළ ඉංපිනේරු නාක්ෂණවේදය උස

ඉංජිනේරු තාක්ෂණවේදය I Engineering Technology

	=		
Ш	65	c	т
Ш	UJ	2	1
Ŀ			

13 ශේණිය

පැය දෙකයි Two hours

විභාග	අංකය	

උපලදස් :-

- මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 9ක අඩංගු වේ.
- සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1) , (2) , (3) , (4) , (5) යන පිළිතුරු වලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරාගෙන, එය පිළිතුරු පතුයේ දැක්වෙන උපදෙස් පරිදි කතිරයකින් (X) ලකුණු කරන්න.

වැඩසටහන් සම්පාදනය කල නො හැකි ගණක යන්තු භාවිතයට ඉඩ දෙනු ලැබේ.

 $[g = 10 \text{ N kg}^{-1}]$

- (01). භාවිතයේ පවතින තාක්ෂණය නව සොයාගැනීම් මගින් නව මඟකට යොමු කෙරේ. අතීතයේ සිට වර්තමානය තෙක් බිහිවූ එවැනි හැරවුම් ලක්ෂාවලට අයත් නො වන්නේ,
 - (1). මුදුණ කලාව
- (2). ඉලෙක්ටොනික වෑල්වය (3). ටුාන්සිස්ටරය

(4). වීදුරු

- (5). ගල් අඟුරු
- (02). ගොඩනැගිල්ලක විදුලි කාන්දු වීම නිසා හදිස්සියේ ගින්නක් ඇති විය. එම ගින්න නිවා දැමීම සඳහා මින් කුමන වර්ණවලින් යුත් ගිනි නිවීමේ උපකරණ භාවිත කළ හැකි ද?
 - (1). නිල්/කළු
- (2). රතු/නිල්
- (3). රතු/කළු

(3). කළු

- (3). රතු
- (03). ඉංජිනේරු ක්ෂේතුයට බලපාන පරිදි පුමිති හා පිරිවිතර සකස් කිරීමට රාජා හා පෞද්ගලික අංශවල දායකත්වය ලබා ගැනීම සිදුවේ. එසේ පිළිගත් ආයතනයක් නො වන්නේ,
 - International Standard Organization (1). ISO
 - (2). SLS - Sri Lankan Standard
 - (3). BS - British Standard
 - (4). CIDA Construction Industry Development Authority
 - (5). RDA Road Development Authority
- (04). වෙළෙඳපොළ සමීක්ෂණයකින් ලබාගත හැකි තොරතුරක් නො වන්නේ,
 - (1). පාරිභෝගික හැසිරීම.

- (2). වෙළෙඳපොළ ලාභය.
- (3). වෙළඳපොලේ පවතින තරඟකාරිත්වය.
- (4). යෙදිය යුතු පුාග්ධනය.
- (5). අපේක්ෂිත නිෂ්පාදනය සඳහා පවතින ඉල්ලුම ස්වභාවය
- (05). රටක පුද්ගල සමාජ හා ආර්ථික සංවර්ධනයට වායසායකත්වය දායක විය හැකි ආකාර පහත පුකාශ වලින් දක්වා ඇත. ඒ අතුරින් නොගැලපෙන පුකාශය වන්නේ,

- (1). සේවා නියුක්තිය ඉහළ නැංවීම.
- (2). බාල අමුදුවාවලින් වැඩි ලාභයක් ලැබීම.
- (3). පාරිභෝගික අවශාතා සැපිරීම.
- (4). නව භාණ්ඩ හා සේවා වෙළඳපොළට එකතු වීමෙන් වෙළෙඳපොළ පුළුල් වීම.
- (5). සාර්ථක වහාපාර අවස්ථා හා බැඳුණු සෘජු හා වකු වහාපාර ඇති වීම.

- (06). ඉංජිතේරු පුමිති හා පිරිවිතර සම්බන්ධයෙන් පහත පුකාශවලින් අසතා පුකාශය තෝරන්න.
 - (1). පුමිතියක් යනු ආයතන විශාල සංඛ්යාවකට අදාළ ව ගෙවන ලද දෙයකි.
 - (2). පිරිවිතරයක් යනු එක් ආයතනයකට සුවිශේෂී වූ පරිචය එකතුවකි.
 - (3). පුමිතියක් යනු එක් ආයතනයකට සුවිශේෂී වූ පරිචය එකතුවකි.
 - (4). ශීු ලංකාවේ ඉදිකිරීම් පිරිවිතර පැනවීම CIDA මඟින් සිදු කරයි.
 - (5). පුමිතියක් හෝ පිරිවිතරයක් යනු සෑම විට ම පුකාශයට පත්කරන ලද ලියවිල්ලකි.
- (07). ඉංජිනේරු ඇදීම්වල දී මාන දැක්වීම පිළිබඳ පහත පුකාශවලින් අස**නා** පුකාශය තෝරන්න.
 - (1). වැඩ කොටසෙහි ඡේදනයක් කර එය ඇඳ දැක්වීමට සිදු වූ විට එම ඡේදනය කළ යුතු ස්ථානය දැක්වීම සඳහා ඝන දාම රේඛාව භාවිත කරනු ලැබේ.
 - (2). මධා අක්ෂය දැක්වීම සඳහා භාවිත කරන්නේ සිහින් දාම රේඛාව යි.
 - (3). වෘත්ත කණ්ඩයක චාප හෝ මිනුම් යෙදීමට සිදු වූ විට මානයට ඉදිරියෙන් R අක්ෂරය යෙදිය යුතු ය.
 - (4). හරස්කඩ දැක්වීම සඳහා භාවිත වන සම්මත රේඛාවේ නම සිහින් අඛණ්ඩ අවධි රේඛාව යි.
 - (5). වෘත්තයක මධා රේඛා දෙක එකිනෙකට ඡේදනය වන ස්ථානයේ කෙටි රේඛා දෙක හෝ කෙටි රේඛාව සහ දිගු රේඛාව නොපැවතිය යුතු ය.
- (08). කේතුවක වෘත්තාකාර පාදම තිරස් තලයක වන සේ අචල ව ඇති විට එහි පැති තලයට සමාන්තර වන ලෙස හෙවත් තිරස් තලයට ආනත වන ලෙස කැපු විට ලැබෙනුයේ,
 - (1). වෘත්තයකි.
- (2). පරාවලයකි.
- (3). ඉලිප්සයකි.

- (4). බහුවලයකි.
- (5). තිකෝණයකි.
- (09). මෝටර් රථයක එන්ජිමක සිලින්ඩර හිස හා බඳ නිර්මාණය කිරීමට වඩාත් බහුල වශයෙන් භාවිත කරන දුවා දෙක මොනවා ද?
 - (1). චීනච්චට්ටි හා වානේ

- (2). චීනච්චට්ටි හා ඇලුමිනියම් මිශු ලෝහ
- (3). වානේ හා ඇලුමිනියම් මිශු ලෝහ
- (4). පිත්තල හා වාතේ
- (5). චීනච්චට්ටි හා පිඟන් මැටි
- (10). මෝටර් රථ බැටරියක පුධානතම කාර්යය වන්නේ,
 - A පුතාාවර්තකයට (Alternator) විදුලිය සැපයීම යි.
 - B විදුලි ගබඩාවක් (Reservoir) හෝ ස්ථායිකාරකයක් ලෙස කිුියා කිරීම යි.
 - ${f C}$ එන්ජිම කිුිියාත්මක සෑම අවස්ථාවක දී ම වාහනයේ විදුලි පද්ධතියට විදුලි බලය සැපයීම යි.
 - D එන්ජිම පණ ගැන්වීමේ දී පුාරම්භක මෝටරය කරකැවීමට විශාල පුමාණයේ ජවය සැපයීම යි.

ඉහත පුකාශ අතුරෙන් නිවැරදි පුකාශය වන්නේ,

- (1). B පමණි.
- (2). D පමණි.
- (3). A හා C පමණි.

- (4). B හා D පමණි.
- (5). A, B හා D පමණි.
- (11). එන්ජිමක වා පෙරනයේ (air Cleaner) අරමුණු විස්තර කෙරෙන පුකාශ තුනක් පහත දැක්වේ.
 - A එය එන්ජිමේ සම්පීඩන අනුපාතය පාලනය කරයි.
 - B එය එන්ජිමේ කම්පනය අඩු කරයි.
 - C එය ආගන්තුක දුවා හා දූවිලි එන්ජිම තුළට ඇතුළු වීම වලකයි.

ඉහත ඒවා අතුරෙන් නිවැරදි පුකාශය පුකාශ තෝරන්න.

- (1). A පමණි.
- (2). C පමණි.
- (3). A හා B පමණි.

- (4). B හා C පමණි.
- (5). A, B හා C යන සියල්ල ම.

(12). දුාව රෝධක පද්ධතියක තිරිංග පැඩලය කිුයාත්මක වන විට බලය සම්පේෂණය වන අනුපිළිවෙල වන්නේ,

- (1). තිරිංග පාදිකය, පුධාන සිලින්ඩරය, වැරුම් කපාටය, රෝධක නල, රෝධක සිලින්ඩරය
- (2). තිරිංග පාදිකය, රෝධක නල, පුධාන සිලින්ඩරය, වැරුම් කපාටය, රෝධක සිලින්ඩරය
- (3). තිරිංග පාදිකය, වැරුම් කපාටය, පුධාන සිලින්ඩරය, රෝධක නල, රෝධක සිලින්ඩරය
- (4). තිරිංග පාදිකය, පුධාන සිලින්ඩරය, රෝධක සිලින්ඩරය, රෝධක නල, වැරුම් කපාටය
- (5). තිරිංග පාදිකය, රෝධක නල, රෝධක සිලින්ඩරය, වැරුම් කපාටය, පුධාන සිලින්ඩරය,
- (13). වාහනයක ලිස්සුම් විරෝධී රෝධක පද්ධතියෙහි (ABS) කාර්යය නිවැරදි ව දැක්වෙන පුකාශය වන්නේ,
 - (1). එය රෝධක ගෙවී යාම අඩු කරයි.
 - (2). එය නැවතුම් දුර අඩු කරයි.
 - (3). රෝද අගුලු වැටීම වැළැක්වීම මගින් රෝධක යෙදීමේ දී දිශා පාලනය පවත්වාගෙන යනු ලබයි.
 - (4). රෝධක යෙදීමේ දී වාහනය ලම්බාකාර ව පහත්වීම වැළැක්වීමෙන් රෝද අගුලු වැටීම පමා කරයි.
 - (5). වංගු ගැනීමේ දී සහ ක්ෂණික හැරවීමේ දී රෝද පැත්තට ලිස්සා යෑම වළකයි.
- පහත රූපසටහන භාවිතයෙන් පුශ්න අංක (14) සිට (15) දක්වා
 පිළිතුරු සපයන්න.

- (14). රූපයෙහි දක්වා ඇති හිරමන තලයේ දත් මුවහත් කිරීම සඳහා භාවිත කළ හැකි උපකරණය කුමක් ද?
 - (1). අඬුව
- (2). අතකොලුව
- (3). පීර
- (4). ලෝහ කියත
- (5). දඬු අඬුව
- (15). රූපයෙහි B, C හා D වලින් පෙන්වා ඇති ස්ථානවල එකලස් කුමය පිළිවෙලින්,
 - (1). මිටියම් කිරීම, පෑස්සීම, ඉස්කුරුප්පු ඇල්ලීම.
 - (2). පැස්සීම, මිටියම් කිරීම, මුරිච්චි හා බදැණ.
 - (3). මූරිච්චි හා ඇණ, පෑස්සීම, මිටියම් කිරීම.
 - (4). පැස්සීම, මිටියම් කිරීම, ඉස්කුරුප්පු ඇල්ලීම.
 - (5). මුරිච්චි හා ඇණ, ඉස්කුරුප්පු ඇල්ලීම, පෑස්සීම.
- (16). පහත සංකේතය මඟින් නිරූපණය වන්නේ,
 - (1). 5/2 ලීවර මගින් කිුයා කරන දුව ජව සම්පේෂණ කපාටයකි.
 - (2). 5/2 ලීවර මගින් කිුයා කරන වායු ජව සම්පේෂණ කපාටයකි.
 - (3). 4/2 පරිතාලිකා මගින් කිුිිියා කරන වායු ජව සම්පේෂණ කපාටයකි.
 - (4). 5/2 පරිතාලිකා මගින් කිුිිිිිිිිිි කරන වායු ජව සම්පේෂණ කපාටයකි.
 - (5). 4/3 ලීවර මඟින් කිුයාකරන දුව ජව සම්පේෂණ කපාටයකි.

- (17). තෙමං උත්පේරක පරිවර්තකයක (Three way Catalytic Converter) කාර්යය වන්නේ,
 - (1). පිටාර වායු නැවත සංසරණය කිරීම යි.
 - (2). ඉන්ධන වාෂ්ප දහනය කිරීම යි.
 - (3). N_2 , H_2O , CO_2 විමෝචන මට්ටම් අඩු කිරීම යි
 - (4). එය හරහා ගමන් කරන පිටාර වායුවලින් ${
 m CO, HC, NO_2}$ ඉවත් කිරීම යි.
 - (5). පිටාර වායුවලින් HC, CO ඔක්සිකරණය කිරීම යි.
- (18). පහත රූපයේ දැක්වෙන ඇඳුම් 200 ක් නිවැරදි මිනුම් සහිත ව කපා ගැනීමට අවශා ව ඇත. මේ සඳහා භාවිත කළ හැකි වඩාත් සුදුසු යන්තු වර්ගය වන්නේ,
 - (1). වයර් කට් (Wire Cut) විද_්නුත් විසර්ජන යන්තුය.
 - (2). මෙහෙලුම් යන්තුය.
 - (3). ලේසර් කැපුම් යන්තුය.
 - (4). කැපීමේ (Shearing) යන්තුය.
 - (5). CNC ලේයත යන්තුය.

					4					
	(19). ලෝහ	. ලෝහ නෙරවුම් (Metal Extruding) කිුයාවලිය පිළිබඳ නිවැරදි පුකාශය පුකාශ වන්නේ,								
	 A - රවුම් දඩුවල විශ්කම්භය අඩු කිරීමට යොදා ගනී. B - ලෝහයක් අවශා හැඩයකට කපා විවරයක් තුළින් තෙරපුමට ලක්කොට හැඩගන්වයි. C - මුරිච්චි හා ඇණ සෑදීමට භාවිතා කරයි. D - ලෝහ පෘෂ්ඨවල කල් පැවැත්ම වැඩි කිරීමට යොදා ගනී. 									
	(1).	C පමණි.		(2).	D පමණි.	(3).	B හා D පමණි			
	(4).	A හා D පමණි		(5).	A, B හා C පමණි.					
(20). ලෝහ කැපීම සඳහා යොදා ගන්නා ආවුදවල තිබිය යුතු යාන්තිුක ගුණයස						රියක් වන්නේ,				
	(1).	පුබලතාව		(2).	දැඩිබව	(3).	භංගුරතාව			
	(4).	පුතාස්ථතාව		(5).	සුවිකාර්යතාව					
	(21). ශීතක	රන කිුයාවලියක	n ශීතකාරකය	ාක් ම	තා්රාගැනීමේ දී ස(ලකා බැලිය ;	යුතු කරුණක් ෙ	නා වන්නේ		
	A - උෂ්ණත්ව පරාසය B - යොදා ගන්නා සම්පීඩක වර්ගය C - යොදා ගන්නා වායු පරිමාව D - පද්ධතිය සම්පීඩනය කරන පීඩන අගය									
		A හා B පමණි. C පමණි.		` '	B පමණි A, B හා C යන සි		C හා D පමණි			
(22). දුාව ජැක්කුවක කුඩා පිස්ටනයෙහි වර්ගඵල $2~\mathrm{m}^2$ ය ද, විශාල පිස්ටනයෙහි වර්ගඵලය $6~\mathrm{m}^2$ ද ව පිස්ටනය මත $6~\mathrm{N}$ ක බලයක් යෙදීමෙන් එසවිය හැකි භාරය සොයන්න.								m^2 ද නම්,		
	(1).	18 N	(2). 9 N		(3). 2 N	(4). 8 N	V (5).	36 N		
	_									

- කුඩා
- (23). ඉදිකිරීම් දුවා සතු ගුණාංග පදනම් කරගෙන ගෙන ඒවා කාණ්ඩ කිහිපයකට වෙන්කර ඇත. මෙම පුකාශ සලකා ඒ පුකාශය ඇසුරෙන් අසතා පුකාශය තෝරන්න.
 - (1). යම් දුවාsයක් මත යෙදෙන බලයක දී එම දුවා හැසිරෙන ආකාරය දුවායේ යාන්තිුක ගුණ මත රඳා පවතී.
 - (2). සම්පීඩන ශක්තිය, ආතනා ශක්තිය, පුතාස්ථතාව, දැඩි බව, උපයෝජානාව යාන්තික ගුණවලට අයත් වේ.
 - (3). ඝනත්වය, පෙනුම, කල් පැවැත්ම, පිරිවැය ඉදිකිරීමේ දුවාවල භෞතික ගුණවලට අයත් වේ.
 - (4). කිසියම් දුවායක් තාප විචලනයක් හෝ අන්තරයක් හමුවේ දක්වන පුතිචාර, හැසිරීමේ දුවායේ තාපීය ගුණ යටතට ගැනේ.
 - (5). ජ්වලන උෂ්ණත්වය, තාපාංකය, තාප සන්නායකතාව හා පුසාරණතාව තාපීය ගුණවලට අයත් වේ.
- (24). පහත දක්වා ඇත්තේ කොන්කීුට් හා සම්බන්ධ පුකාශ කිහිපයකි.
 - A කොන්කීට්වල වැඩ කිරීමේ හැකියාව (Workability) බැහුම් පරීක්ෂාව (Slump Test) මගින් පරීක්ෂා කළ හැකි ය.
 - $\, {
 m B} \,$ කොන්කීට් පදම් කිරීමේ දී සිදු කරනුයේ සිමෙන්ති හා ජලය අතර සිදුවන රසායනික පුතිකිුයාවේ දී පිට වන තාපය ඉවත් කිරීම යි.
 - C කෙටීම (Tamping), කුරුලෑම (Rodding), ඉස්කෝපයකින් කෙටීම (Spading) ආදී කුම භාවිතයෙන් කොන්කීුට් සුසංහනය කළ හැකි ය.

ඉහත පුකාශ අතුරින් අතුරෙන් සතා පුකාශය වන්නේ,

- (1). A පමණි.
- (2). A හා B පමණි.
- (3). B හා C පමණි.

- (4). A හා C පමණි.
- (5). A, B හා C යන සියල්ල ම.

- (25). හොඳ තීන්ත වර්ගයක තිබිය යුතු ගුණාංගයක් නො වන්නේ,
 - (1). බූරුසුව ඉතා පහසුවෙන් හැසිරවීමේ හැකියාව.
 - (2). වර්ණය නොවෙනස් ව දිගු කාලයක් පැවතීම.
 - (3). වියළීමේ දී පුපුරා යමින් ඉරි තැලීම් සිදු නො වීම.
 - (4). වියලීමට වැඩි කාල පරාසයක් ගතවීම.
 - (5). හොඳින් පැතිර යාමේ පැතිරයාමේ හා විසිරියාමේ ගුණය.
- (26). පහත වගුවේ A කොටසේ දක්වා ඇත්තේ තීන්තවල වාුහය වන අතර B කොටසේ දක්වා ඇත්තේ එහි සංඝටක මගින් කෙරෙන කාර්ය යි. ඒවා නිවැරදි ව ගලපා ඇති පිළිතුර වන්නේ,

A I

- (a). පාදකය p තීන්තවල ඇති දුවමය ස්වභාවය ඉක්මනින් වියලීම.
- (b). වාහකය q තීන්තවල ස්කන්ධය කෙරෙහි බලපායි.
- (c). දාවකය r තීන්ත විසිරී යාමට ආධාර කරයි.
- (d). වියලකය s තීන්තවල වර්ණය හා පාරාන්ධ භාවය ලබා දෙයි.
- (e). වර්ණකය t පහසුවෙන් ආලේප කිරීම සඳහා පරිවර්තනය කිරීමට උපකාරී වේ.
- (1). as, bt, cr, dp, eq
- (2). ar, bt, cp, dq, es
- (3). aq, br, ct, dp, es

- (4). ar, bt, cq, dp, es
- (5). aq, br, cs, dt, ep
- (27). කරතලාද වහලේ පරාලය සමඟ කරතලාදය අතර ඇති දැව මූට්ටුව වන්නේ,
 - (1). ඉලිප්පු මූට්ටුව (Birds mouth joint)
 - (2). කත්තුමල්ලි අඩපළු මූට්ටුව (Dovetail halved joint)
 - (3). හැඩ මූට්ටුව (Splayed joint)
 - (4). මයිටර් මුට්ටුව (Miter joint)
 - (5). කයිනොක්කු මූට්ටුව (Scarf joint)
- (28). අත්තිවාරමක් සම්බන්ධ පුකාශ කිහිපයක් පහත දී ඇත.
 - A අත්තිවාරම මඟින් ගොඩනැගිල්ලේ සියලු භාර දරා සිටී.
 - B අත්තිවාරමේ කාණුව තුළ පස හා කොන්කී්ටයක වෙන්කර ගැනීමට අත්තිවාරමේ කාණුව පතුළට කැට කොන්කී්ට් තට්ටුවක් යොදයි.
 - C ගෙබිම සෝදන විට අත්තිවාරම තුළට ජලය ගලා යාම වැළැක්වීමට පතුල් පටිය යොදයි.

ඉහත පුකාශ අතුරෙන් සතා පුකාශය වන්නේ,

- (1). A පමණි.
- (2). B පමණි.
- (3). C පමණි.

- (4). A හා B පමණි.
- (5). B හා C පමණි.
- (29). පල්දෝරු අපවහන නල පද්ධතියක යොදාගත යුතු නල සහ උපාංගවලට අයත් නො වන්නේ,
 - (1). ජල උගුල්/හබක (Water trops)
 - (2). සනීපාරක්ෂක උවාරණ (Sanitary appliances)
 - (3). තලුමුව (Intake)
 - (4). පූතික ටැංකිය හා පෙඟවුම් වල (Septic tank & Storage pit)
 - (5). මනුබිල්/පරීක්ෂණ කවුළු (Manhole)
- (30). පහත පුකාශ සලකන්න.
 - A කසල බැහැර කිරීමේ කුම ලෙස පිළිස්සීම, නැවත භාවිතය, ජීර්ණය කිරීම හෝ පුතිචකීකරණය යෙදීම දැක්විය හැකි ය.
 - B වීදුරු, ලෝහ, ප්ලාස්ටික්, පොලිතින් කඩදාසි වැනි දුවා කසල වශයෙන් පවතී නම්, ඒවා පුතිචක්රියකරණය සඳහා යොදාගත හැකි ය.
 - C ශලාහාගාර හා රසායනාගාරවලින් නිකුත් කරන කසළ, සත්ත්ව ගොවිපලවලින් බැහැර කරන කසළ කාබනික කසල ලෙස හැඳින්වෙයි.

ඉහත පුකාශ අතරින් අතරෙන් සතා පුකාශය වන්නේ,

- (1). A හා B පමණි.
- (2). B හා C පමණි.
- (3). A හා C පමණි.

- (4). B පමණි.
- (5). A, B හා C යන සියල්ල ම.
- (31). පහත පුකාශ අතරින් අසතා පුකාශය තෝරන්න.
 - A පා කපාටය (Foot Valve) හා අනාගමන කපාටය (Non return Valve) මගින් ජලය එක දිශාවකට පමණක් ගැලීම සිදුවේ.
 - B PVC නල මූට්ටු කිරීම සඳහා දුාවීය සිමෙන්ති (Solvent Cement) යොදා ගත හැකි ය.
 - C ජල ගබඩා ටැංකිවල ජල මට්ටම පාලනය කිරීමට සහ ස්වයංකිය ව ජලය ගැලීම නතර කිරීමට දොරටු කපාටය (Gate Valve) යොදා ගනී.
 - (1). A පමණි.
- (2). B පමණි.
- (3). C පමණි.

- (4). A හා B පමණි.
- (5). B හා C පමණි.
- (32). පහත දක්වා ඇති තොරතුරුවලට අනුව ශුද්ධ ඒකට මිල යටතට පමණක් ගතහැකි මිල ගණන් වන්නේ,
 - (1). දුවා මීල, ගබඩා කුලිය, පුහුණු ශුම වියදම.
 - (2). දවා මිල, පුහුණු ශුම වියදම, පරිපාලන ගාස්තු.
 - (3). පුහුණු ශුම මිල, නුපුහුණු ශුම මිල, ආයුධ උපකරණ මිල.
 - (4). ආවුද උපකරණ මිල, දවා මිල, අපතේ යාම.
 - (5). දුවා මිල, පුවාහන මිල, නුපුහුණු ශුමය.
- (33). පුමාණ බිල්පත් සකස් කරන්නා විසින් භාවිත කරන ආකෘතියක් නො වන්නේ,
 - (1). මිනුම් පත
- (2). ලුහුඬු පතුය
- (3). පුමාණ බිල් පතුය

- (4). සැලසුම් පතුය
- (5). විමසුම් පතුය/ගැටළු පතුය
- (34). පහත දක්වා ඇත්තේ දම්වැල් මැනුමට අදාළ පුකාශ කීපයකි කිහිපයකි. ඒවායින් සතා වන්නේ,
 - A මනාව සැකසූ තිුකෝණ යනු සමපාද තිුකෝණ වේ.
 - B ආවේක්ෂණ රේඛා මගින් මැනුම්වල නිරවදානාව පරීක්ෂා කළ හැකි ය.
 - C මැනුම් රේඛාවක සිට ඉඩමේ මායිමට හා අනෙකුත් ලක්ෂාවලට ඇති දුර මැනීම අනුලම්භ ගැනීම මගින් සිදු කළ හැකි ය.
 - (1). A පමණි.
- (2). B පමණි.
- (3). C පමණි.

- (4). B හා C පමණි.
- (5). A, B හා C සියල්ල ම.
- (35). පහත දැක්වෙන්නේ පංචාසුාකාර තියෙන තියොඩලයිට්ටු පරිකුමණයක් සඳහා ලබාගත් උත්කුමණය කෝණ අගයන් ය. මිනුම් ගැනීමෙන් පසු එහි සියලු කෝණ සඳහා +20" ක දෝෂයක් ඇති බව සොයා ගන්නා ලදී. එහි ලබාගත් උත්කුමණය කෝණවල අගයන් පහත දැක්වේ.

82⁰ 12' 35"

 \boldsymbol{x}

79° 24' 30"

63° 33' 30"

 $63^{\circ} 38' 40''$

x කෝණයේ අගය විය හැක්කේ

- (1). 70° 10' 45"
- $(2). 70^{0} 11' 00"$
- $(3). 70^{0} 10' 50"$

- $(4). 70^{0} 11' 05"$
- $(5). 70^{0} 11' 25"$
- (36). පහත ටුාන්සිස්ටර පරිපථයේ $I_{C\,(sat)}$ හා $V_{CE\,(cutoff)}$ කොපමණ ද?
 - (1). 2 mA හා -20 V
 - (2). 20 mA හා 2 V
 - (3). 20 mA හා 20 V
 - (4). 0 mA හා 10 V
 - (5). 10 mA හා -20 V

- (37). 120 m ක දුරක් 1 : 500 පරිමාණයකට සිතියමක අඳින විට ඇඳිය යුතු රේඛාවේ දිග කොපමණ ද?
 - (1). 60 cm

- (2). 6.0 cm
- (3). 24 cm

(4). 2.4 cm

- (5). ඉහත පිළිතුරු සියල්ල අසතා වේ.
- (38). මූර්ජනය සම්බන්ධ පහත පුකාශ සලකන්න.
 - A සංඛාහංක සංඥා, පුතිසම සංඥාවලට සාපේක්ෂ ව පහසුවෙන් ගබඩා කළ හැක.
 - B පුතිසම සංඥාවලට සාපේක්ෂ ව සංඛාහංක සංඛාහවල විදයුත් සෝෂාවේ බලපෑම අඩු ය.
 - C සංඛාහංක සංඥා නියත අගයන් දෙකකින් ඕනෑම එක් අගයක් ගන්නා අතර, පුතිසම සංඥා යම් පරාසයක් තුළ පිහිටයි.

ඉහත පුකාශ අතුරෙන් නිවැරදි පුකාශය පුකාශ වන්නේ,

- (1). A පමණි.
- (2). A හා B පමණි.
- (3). A හා C පමණි.

- (4). B හා C පමණි.
- (5). A, B හා C සියල්ල ම.
- (39). රූපයේ දැක්වෙන පරිපථයේ පුතිදාන චෝල්ටියතාව (${
 m V}_{
 m o}$) වන්නේ,
 - (1). -0.25 V
 - (2). -0.125 V
 - (3). 0.25 V
 - (4). 0.125 V
 - (5). 0 V

- (40). සෙනර් ඩයෝඩ දෙකක් පහත පරිදි ශේණීගත ව සම්බන්ධ කර ඇත. ඩයෝඩ තුළින් ගලා යන උපරිම ධාරාව $250~\mathrm{mA}$ වේ. සෙනර් වෝල්ටියතාව $20~\mathrm{V}$ ද, $\mathrm{V_S} = 50~\mathrm{V}$ ද නම්, R හි අගය කොපමණ ද?
 - (1). 10Ω
 - (2). 80Ω
 - (3). 20Ω
 - (4). 40Ω
 - (5). 25Ω

- (41). පරිපථයේ දැක්වෙන්නේ සන්ධි ක්ෂේතු ආචරණ ටුාන්සිස්ටරයක් වර්ධකයක් ලෙස භාවිත වන අවස්ථාවකි. සොරොව් ධාරාව $2.5~\mathrm{mA}$ නම්, V_DS හා V_GS පිළිවෙලින් දැක්වෙන්නේ,
 - (1). 17 V , -0.5 V ලව්.
 - (2). -0.5 V , 10 V ලව්.
 - (3). 10 V , -17 V වේ.
 - (4). 1 V , -0.5 V මව්.
 - (5). 10 V , -3.5 V මව්.

- (42). බෙදාහැරීමේ උපපොළ (Distribution Substation) තුළ ඇති අවකර පරිණාමකයේ පුාථමිකයේ සහ ද්විතීකයේ චෝල්ටීයතා හා දඟර සම්බන්ධ වී ඇති ආකාරය පිළිවෙලින් දැක්වෙන්නේ,
 - (1). 1 kVතාරකා / 33 kV ඩෙල්ටා
- (2). 400 kVතාරකා / 11 kV ඩෙල්ටා
- (3). 11 kV ඩෙල්ටා / 400 kV තාරකා
- (4). 33 kV ඩෙල්ටා / 11 kV තාරකා
- (5). 33 kV තාරකා / 400 kV ඩෙල්ටා

- (43). රූපයේ දක්වා ඇත්තේ ටුාන්සිස්ටර පරිපථයකි. සෙනර් ඩයොඩ බිඳවැටීම් වෝල්ටියතාවෙ 5.3~V වේ. $V_{BE}=0.6~V$ ලෙස ගත්විට ධාරා ලාභය (β) හි අගය ගණනය කරන්න.
 - (1). 10
 - (2). 19
 - (3). 12
 - (4). 08
 - (5). 20

- (44). රුයේ දක්වා ඇත්තේ හානි රහිත අවකර පරිණාමකයකි. මෙම පරිණාමයේ පුාථමික දඟරයේ ගලන ධාරාව වන්නේ,
 - (1). 0.001 mA
 - (2). 100 mA
 - (3). 0.1 mA
 - (4). 10 mA
 - (5). 1 mA

- (45). මෙම පරිපථය තුලින් ගලා යන ධාරාව කොපමණ ද?
 - (1). 1.13 A
 - (2). 1.71 A
 - (3). 2.00 A
 - (4). 2.31 A
 - (5). 7.00 A

- (46). මෙම පරිපථයේ $V_1 = 100~V$, $V_2 = 300~V$, $V_3 = 400~V$ වේ. සැපයුම් චෝල්ටියතාව (V_S) හා ජව සාධකය පිළිවෙලින් දැක්වෙන්නේ,
 - (1). $100\sqrt{2} \text{ V} \cdot 1/\sqrt{2}$
 - (2). $100\sqrt{2} \text{ V}$, 1/2
 - (3). 315 V, 2
 - (4). $100/\sqrt{2} \text{ V}$, 1
 - (5). $200\sqrt{2} \text{ V}$, 1

- (47). පහත ශක්ති පභව අතුරින් පුනර්ජනනීය නොවන ශක්ති පුභවය වන්නේ,
 - (1). ජෛව ස්කන්ධ
- (2). ජෛව වායු
- (3). මුහුදු රළ ශක්තිය

- (4). භූ තාපය
- (5). ස්වභාවික වායු
- (48). තාරුකා/ඩෙල්ටා ආරම්භය (Star-Delta starter) පිළිබඳ ව දක්වා ඇති වගන්ති අතුරෙන් සතා වගන්තිය වන්නේ,
 - (1). කුඩා ජවයක් සහිත මෝටර් සඳහා මෙම කුමය යොදා ගනී.
 - (2). එතුම් ඩෙල්ටා කුමයට සම්බන්ධ කිරීමේ දී තාරකා කුමයේ දී මෙන් තුන් තුන්ගුණයක ජවයක් නිපදවයි.
 - (3). තාරුකා කුමයේ දී ඩෙල්ටා කුමයේ දී මෙන් තුන්ගුණයක ධාරාවක් සැපයුමෙන් ලබා ගනී.

- (4). මෝටර ආරම්භයේ දී ඩෙල්ටා කුමයට සම්බන්ධය පවත්වා ගනී.
- (5). ඉහත වගන්ති සියල්ල අසතා වේ.

- (49). පුතාපාවර්තක තරංග ආකාරයක වර්ග මධානා මූල අගය සම්බන්ධ පහත පුකාශ සලකා බලන්න.
 - A පුතාාවර්ත ධාරා, වෝල්ටියතා වැනි විචලා රාශීන් මැනීම සඳහා භාවිත වන මැනුම් උපකරණ වලින් මනිනු ලබන්නේ මෙම වර්ග මධානා මූල අගය වේ.
 - B විවිධ තරංග ආකාර සඳහා මෙම සංඛාාත්මක අගය වෙනස් නො වේ.
 - C $V_{rms} = V_P / \sqrt{2}$ ලෙස දැක්විය හැක.
 - D $I_{rms} = \sqrt{2} I_P$ ලෙස ලබාගත හැක.

ඉහත වගන්ති අතුරෙන් අසතා වගන්තිය වගන්ති වන්නේ,

- (1). A හා B පමණි.
- (2). B හා C පමණි.
- (3). B හා D පමණි.

- (4). C හා D පමණි.
- (5). A හා D පමණි.
- (50). පහත පරිපථ පරිපථවල පුතිරෝධක හා බැටරි විවිධ සම්බන්ධතා මගින් සම්බන්ධ කර ඇත. බැටරිය තුළින් ලබාගන්නා ධාරා අගයක් සමාන වන්නේ කුමන පරිපථ තුළ දී ද?

(I). (II). (III).2R ≹R **≨** 2R V主 **₹**2R 2V 主 V 主 **≨**R (IV). (V). 2R **≩**R ≹R 2V 主 ≹R

- (1). I හා II
- (2). I හා V
- (3). II හා III
- (4). I හා II
- (5). II හා IV

**