## Math 527 - Homotopy Theory Spring 2013 Homework 2 Solutions

**Problem 1.** Show that the reduced suspension  $\Sigma X = X \wedge S^1$  of any pointed space X is a homotopy cogroup object in  $\mathbf{Top}_*$ , with structure maps coming from those of  $S^1$  (c.f. Homework 1 Problem 3).

**Solution.** The functor  $X \wedge -: \mathbf{Top}_* \to \mathbf{Top}_*$  preserves finite coproducts (by Homework 1 Problem 4), including the initial object (by the homeomorphism  $* \xrightarrow{\cong} X \wedge *$ ). Therefore, applying  $X \wedge -$  to the stucture maps of  $S^1$  endows  $X \wedge S^1$  with structure maps of the correct type. They satisfy the requisite equations up to pointed homotopy, because the functor  $X \wedge -$  sends pointed-homotopic maps to pointed-homotopic maps (by Problem 3a.)

**Problem 2.** Show that a pointed homotopy between two pointed maps  $X \to Y$  is the same as a pointed map

$$X \wedge (I_+) \rightarrow Y$$

where  $(-)_+$  denotes the disjoint basepoint construction.

**Solution.** Given the homeomorphism

$$X \wedge (I_+) \cong X \times I/x_0 \times I$$

a (continuous) map  $H: X \wedge (I_+) \to Y$  is the same as a (continuous) map  $H: X \times I \to Y$  which is constant on the subset  $x_0 \times I$ . Thus, a *pointed* map  $H: X \wedge (I_+) \to Y$  is the same as a map  $H: X \times I \to Y$  with constant value  $y_0$  on the subset  $x_0 \times I$ , i.e. a pointed homotopy between two pointed maps  $X \to Y$ .

## **Problem 3.** Let X be a pointed space.

**a.** Show that the functor  $X \wedge -: \mathbf{Top}_* \to \mathbf{Top}_*$  sends pointed-homotopic maps to pointed-homotopic maps.

**Solution.** Recall that two pointed maps  $f, g: Y \to Z$  are pointed-homotopic if there exists a map H making the diagram



commute, where  $\iota_0: Y \cong Y \wedge S^0 \to Y \wedge (I_+)$  denotes the inclusion at  $0 \in I$  and likewise for  $\iota_1$ . Note that  $\iota_0$  is the map obtained by applying the functor  $Y \wedge -$  to the pointed map

$$S^0 \cong \{0\}_+ \hookrightarrow I_+.$$

By associativity of the smash product, applying the functor  $X \wedge -$  yields

$$X \wedge Y \to X \wedge (Y \wedge I_+) \cong (X \wedge Y) \wedge I_+$$

which is still the inclusion at 0.

Therefore, applying  $X \wedge -$  to the diagram above yields, up to natural isomorphism, the commutative diagram



and thus a pointed homotopy from  $X \wedge f$  to  $X \wedge g$ .

**b.** Show that the pointed map "inclusion at 0"

$$X \to X \land (I_+)$$
$$x \mapsto [x, 0]$$

is a pointed homotopy equivalence.

**Solution.** Note that the inclusion  $\{0\} \hookrightarrow I$  is a homotopy equivalence. Since the disjoint base-point functor  $(-)_+$  sends homotopic maps to pointed-homotopic maps, the inclusion  $\{0\}_+ \hookrightarrow I_+$  is a pointed homotopy equivalence. By part (a), applying the functor  $X \land -$  yields a pointed homotopy equivalence  $X \to X \land (I_+)$ .