Оценка делителей

- 1. Наибольший собственный делитель натурального числа n равен d. Может ли наибольший собственный делитель n+2 быть равен d+2?
- 2. Найдите все пары (n,d) натуральных чисел, таких что d делитель числа n, а nd+1 делитель числа $n^2+d^2.$
- 3. Пусть n и d натуральные числа, такие что d>n>1 и $d\mid n^2+1$. Докажите, что $d>n+\sqrt{n}$.
- 4. Натуральные числа a>b>1 таковы, что $b^2+a-1\mid a^2+b-1$. Докажите, что b^2+a-1 не является степенью простого числа.
- 5. Найдите все простые числа p>2, такие что оба числа $\frac{p+1}{2}$ и $\frac{p^2+1}{2}$ являются полными квадратами.
- 6. Натуральное число a таково, что для каждого $n \in \mathbb{N}$ у числа n^2a-1 есть делитель вида $nx+1, x \in \mathbb{N}$. Докажите, что число a является полным квадратом.
- 7. Натуральное число n называется совершенным, если $\sigma(n)=2n$. Докажите, что чётные совершенные числа представимы в виде $2^{k-1}(2^k-1)$, где число 2^k-1 простое.
- 8. Найдите все пары (m, n) натуральных чисел, таких что $mn-1 \mid n^3+1$.
- 9. Найдите все целые числа x и y, такие что $x^2 + x = y^3 + y^2 + y$.
- 10. Найдите все натуральные числа n и k, такие что $(n-1)!+1=n^k$.
- 11. О натуральных числах m и n известно, что $m > n^{n-1}$ и все числа $m+1, m+2, \ldots, m+n$ составные. Докажите, что существуют такие попарно различные простые числа p_1, p_2, \ldots, p_n , что $p_k \mid m+k$ для всех $k=\overline{1,n}$.
- 12. Даны натуральные числа a_1, a_2, \ldots, a_n и a>1 такие, что a делится на произведение $a_1a_2\ldots a_n$. Докажите, что $a^{n+1}+a-1$ не делится на $(a+a_1-1)(a+a_2-1)\ldots (a+a_n-1)$.
- 13. Натуральные числа x и y таковы, что $2x^2-1=y^{15}$. Докажите, что, если x>1, то x делится на 5.
- 14. Найдите все такие нечётные натуральные n>1, что для любых взаимно простых делителей a и b числа n число a+b-1 также является делителем n.
- 15. Натуральные числа x>2, y>1 и z таковы, что $x^y+1=z^2$. Пусть p- количество различных простых делителей числа x, а q- количество различных простых делителей числа y. Докажите, что $p\geqslant q+2$.
- 16. Найдите все такие составные числа n, что для любого разложения n=xy на два натуральных множителя x и y сумма x+y является степенью двойки.
- 17. Найдите все простые числа p и натуральные числа x и y, удовлетворяющие равенству $x^3 + y^3 = p(xy + p)$.