The Hot Path SSA Form in LLVM Algorithms & Applications

Mohd. Muzzammil¹, Abhay Mishra¹, Sumit Lahiri¹ Awanish Pandey², and Subhajit Roy¹

 $^1\mathrm{Dept.}\,$ of Computer Science & Engineering, IIT Kanpur $^2\mathrm{Qualcomm}$ India Pvt. Ltd.

References

This presentation presents the details of building a robust and efficient implementation of the **Hot Path SSA (HPSSA)** form in the LLVM compiler infrastructure.

References

This presentation presents the details of building a robust and efficient implementation of the **Hot Path SSA (HPSSA)** form in the LLVM compiler infrastructure.

The Hot Path SSA form is based on the following research papers.

- Subhajit Roy and Y.N. Srikant. The Hot Path SSA Form: Extending the Static Single Assignment Form for Speculative Optimizations. In CC '10: International Conference on Compiler Construction. 2010. CC 2010:304-323
- Smriti Jaiswal, Praveen Hegde and Subhajit Roy. Constructing HPSSA over SSA.
 In Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems. 2017. SCOPES 2017: 31-40

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- 2 What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- 2 What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Profile-guided analysis on paths

Summary

- Profile-guided analysis across paths is stronger—can capture correlations between control-flow of basic-blocks
- Collecting path-profiles seems challenging—requires "recording" of a sequence of basic-blocks

Profile-guided analysis on paths

Summary

- Profile-guided analysis across paths is stronger—can capture correlations between control-flow of basic-blocks
- Collecting path-profiles seems challenging—requires "recording" of a sequence of basic-blocks

Profiling acyclic paths

Ball-Larus Acyclic Profiling [Ball & Larus, MICRO'96]

- Core idea: assign an identifier to each path, that can be calculated efficiently at runtime
- Record frequencies against these identifiers (instead of a sequence of node identifiers)

Profiling acyclic paths

Ball-Larus Acyclic Profiling [Ball & Larus, MICRO'96]

- Core idea: assign an identifier to each path, that can be calculated efficiently at runtime
- Record frequencies against these identifiers (instead of a sequence of node identifiers)

Capturing still longer paths (k-iteration paths)

- Allows capturing correlations across loop iterations [Roy & Srikant, CGO'09]; a generalization of the Ball-Larus algorithm
- Subsequent work by other groups [D'Elia & Demetrescu, OOPSLA'13]; uses a prefix forest to record BL paths

Profile-guided analyses

- Code understanding
 - Can expose refactoring opportunities

Profile-guided analyses

- Code understanding
 - Can expose refactoring opportunities
- Program testing and verification
 - Data-driven synthesis of invariants
 - Guided testing for low frequency paths

Profile-guided analyses

- Code understanding
 - Can expose refactoring opportunities
- Program testing and verification
 - Data-driven synthesis of invariants
 - Guided testing for low frequency paths
- Profile-guided optimizations

Why is path-profile-guided analysis hard?

disparate data-structures, one for program representation and other for profile information.

Why is path-profile-guided analysis hard?

- There has been enough interest in path-profile-guided analysis and optimizations....
- ...however, designing path-profile-guided variants of traditional optimizations remained hard
- ...hard enough to justify publications per optimization
 - Gupta, Benson, Fang. Path profile guided partial dead code elimination using predication. PACT '97.
 - Gupta, Benson, Fang. Path profile guided partial redundancy elimination using speculation. ICCL '98.
 - ..

Can we weave profile information into the program representation

Can we weave profile information into the program representation

....into a single, consistent data-structure

Can we weave profile information into the program representation

....into a single, consistent data-structure

... that provides the convenience and elegance of an SSA-like intermediate form

Can we weave profile information into the program representation

....into a single, consistent data-structure

... that provides the convenience and elegance of an SSA-like intermediate form

...allowing the design of profile-guided versions of "traditional" optimizations with **trivial algorithmic modification** of the base algorithms

... and PGO is easy with the Hot Path SSA (HPSSA) Form!

```
1 // Function to process "llum.tau" function intrinsic.
 2 void SpecSCCPInstVisitor::visitTauNode(Instruction &Tau) {
     // Code similar to that in visitPHINode(...).
     if (Tau.getType()->isStructTy())
         return (void)markOverdefined(&Tau);
     if (TauState.isOverdefined())
       return (void)markOverdefined(%Tau):
     // additional code
     unsigned NumActiveIncoming = 0:
10
     SpecValueLatticeElement &TauState = getValueState(&Tau),
11
       beta = getValueState(Tau.getOperand(1)),
12
       x0 = getValueState(Tau.getOperand(0));
13
14
     for (unsigned i = 1, e = (Tau.getNumOperands() - 1); i != e; ++i){
15
       SpecValueLatticeElement IV = getValueState(Tau.getOperand(i)):
16
       beta.mergeIn(IV):
17
       NumActiveIncoming++;
18
       if (beta.isOverdefined())
19
         break:
20
21
22
     if (beta.isConstantRange()
23
         && beta.getConstantRange().isSingleElement())
24
       beta.markSpeculativeConstantRange(beta.getConstantRange());
25
     if (beta.isConstant())
26
       beta.markSpeculativeConstant(beta.getConstant());
27
28
      x0.mergeInSpec(beta, TauState) :
29
     ... // futher processing similar to visitPHINode():
30 3
```

```
// Omit handling of "llum tau" intrinsic
 2 // as a regular Instruction.
   void SpecSCCPInstVisitor::solve() {
     for (auto& I : *&(*(BB))) {
       CallInst* CI = dyn_cast<CallInst>(&I);
       if (CT != NULL) {
         Function* CF = CI->getCalledFunction():
10
         if (CF != NULL &&
11
           CF->getIntrinsicID() ==
12
           Function::lookupIntrinsicID("llvm.tau")){
13
           visitTauNode(I):
14
         } else {
15
           visit(I):
16
17
       } else {
18
         visit(I):
19
20
     ... // rest of the code.
```

... and PGO is easy with the Hot Path SSA (HPSSA) Form!

```
Only these few lines were enough to create a new path profile guided analysis.
      Speculative Sparse Conditional Constant Propagation (SpecSCCP)
               from the currently existing SCCP pass in LLVM!
```

... and PGO is easy with the Hot Path SSA (HPSSA) Form!

```
It took us only an afternoon to transform SCCP to SpecSCCP
```

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

SCCP vs SpecSCCP

```
SCCP
 1 int main() {
     int x = 2, m, n, y, z = 9, c = 1;
     std::cin >> m;
     switch( m ) {
      case 2 : x = 2 * c + 5; n = 10; break;
      case 4 : x = 2 * c + 5; n = x - 2; break;
      case 6 : x = 2 * c + 1; n = x + 2; break;
      default : break:
10
     if ( y <= z + x ) {
12
13
     } else {
       z = n + 3 * x;
14
      switch (z) {
15
        default : break:
16
17
     case 200 : goto end:
18
      case 300 : exit(0): }
19
20
    m = n + x;
21
22
       z = x :
     return 0:
24 }
```

$\mathsf{Spec}\mathsf{SCCP}$

```
1 int main() {
     int x = 2, m, n, y, z = 9, c = 1;
     std::cin >> m:
     switch( m ) {
     case 2 : x = 2 * c + 5; n = 10; break;
     case 4 : x = 2 * c + 5; n = x - 2; break;
     case 6 : x = 2 * c + 1; n = x + 2; break;
 8
      default : break:
 9
10
     if ( y <= z + x ) {
12
13
     } else {
       z = n + 3 * x ; // n : Speculative Constant 5
14
15
      switch (z) {
16
        default : break:
        case 200 : goto end:
        case 300 : exit(0); }
18
19
     m = n + x; // x : Speculative Constant 7
     end:
       z = x;
     return 0:
24 }
```

pg.23

SCCP vs SpecSCCP

```
SpecSCCP discovers n \& x as speculative constants.
```

Legend: 🔲 Overdefined 🔲 Real Constants 📕 Speculative Constants

SCCP vs SpecSCCP

Standard SCCP VS. Speculative SCCP Pass.

```
# Running Regular SCCP Pass on Program.
      $ opt -sccp -time-passes -debug-only=sccp \
 3
       IR/LL/test.ll -S -o \
       IR/LL/test_sccp_onbaseline.ll \
       -f 2> output/custom_sccp_onbaseline.log
      Output:
10
       Constant: i32 2 =
                           %mul = mul nsw i32 2, 1
11
       Constant: i32 7 =
                           %add = add nsw i32 2. 5
12
       Constant: i32 2 =
                           %mul2 = mul nsw i32 2, 1
13
       Constant: i32 7 = %add3 = add nsw i32 2. 5
14
       Constant: i32 5 = %sub = sub nsw i32 7. 2
15
       Constant: i32 2 = %mul5 = mul nsw i32 2. 1
16
       Constant: i32 3 = %add6 = add nsw i32 2. 1
17
       Constant: i32 5 =
                           %add7 = add nsw i32 3. 2
18
19
20
21
```

```
# Running HPSSA Transformation followed by Speculative SCCP Pass.
      $ opt -load build/SCCPSolverTau.cpp.so
        -load build/HPSSA.cpp.so \
        -load-pass-plugin=build/SpecSCCP.cpp.so \
        -passes="specscop" \
        -time-passes -debug-only=specsccp \
        IR/LL/test.ll -S -o IR/LL/test spec sccp.ll \
        -f 2> output/custom_speculative_sccp.log
 9
10
11
     Output :
12
        Constant: i32 2 = %mul = mul nsw i32 2, 1
13
        Constant: i32 7 = %add = add nsw i32 2. 5
14
        Constant: i32 2 =
                          %mul2 = mul nsw i32 2. 1
15
        Constant: i32 7 = %add3 = add nsw i32 2. 5
16
       Constant: i32 5 = %sub = sub nsw i32 7. 2
17
        Constant: i32 2 = %mul5 = mul nsw i32 2. 1
18
        Constant: i32 3 = %add6 = add nsw i32 2. 1
19
        Constant: i32 5 = %add7 = add nsw i32 3, 2
20
     Speculative Constant: i32 5 = %tau1 = call i32 (...)
21
          dllvm.tau.i32(i32 %tau, i32 5, i32 5)
22
     Speculative Constant: i32 7 = %tau7 = call i32 (...)
23
          011vm.tau.i32(i32 %tau4. i32 7. i32 7)
```

From SpecSCCP Pass

Basic blocks from the transformed IR after the SpecSCCP pass with assignSpecValue() calls added.

```
if.else:
                                                             ; preds = %sw.epilog
            %tau = call i32 (...) @llvm.tau.i32(i32 %tau8, i32 7, i32 3)
            %tau10 = call i32 (...) @llvm.tau.i32(i32 %tau9, i32 5, i32 5)
            %tau10_spec = call i32 @assignSpecValue(i32 5)
            %mul11 = mul nsw i32 3, undef
            %add12 = add nsw i32 %tau10_spec, %mul11
            switch i32 %add12, label %sw.default13 [
             i32 200, label %sw.bb14
             i32 300, label %sw.bb15
11
12
13
14
          if.end:
                                                             : preds = %sw.epilog, %if.else
15
            %tau11 = call i32 (...) @llvm.tau.i32(i32 %tau8, i32 7, i32 7)
16
            %tau11_spec = call i32 @assignSpecValue(i32 7)
17
            %tau12 = call i32 (...) @llvm.tau.i32(i32 %tau9, i32 5, i32 10)
18
            %add17 = add nsw i32 undef, %tau11_spec
19
            store i32 %add17, i32* %m, align 4
20
            br label %end
```

Using the HPSSA Form for writing new analyses

- Include the header file HPSSA.h to use llvm::HPSSAPass class.
- Load shared object using opt tool. opt -load HPSSA.cpp.so ...

```
1 #include <HPSSA.h> // import the header.
2 #include <SCCP.h>
 3
4 class YourPGOPass : public PassInfoMixin<YourPGOPass> {
    public: PreservedAnalyses run(Function &F.
    FunctionAnalysisManager &AM);
7 };
8
9 PreservedAnalyses YourPGOPass::run(Function &F,
    FunctionAnalysisManager &AM) {
10
11
       . . .
      HPSSAPass hpssaUtil; // Make a HPSSAPass Object.
12
      hpssaUtil.run(F, AM); // Call the HPSSAPass::run() function.
13
14
       . . .
      // Rest of the code ...
                                                                                        pg.29
15
16
```

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

The Hot Path SSA Form (HPSSA)

Semantics of a ϕ -function

$$y = \phi(x_1, x_2, \dots, x_n)$$

Semantics of a τ -function

$$\tau(x_0, x_1, x_2, \dots, x_n) = \begin{cases} x_0 & \text{safe interp.} \\ \phi(x_1, x_2, \dots, x_n) & \text{speculative interp.} \end{cases}$$

No frequent path carrying:

- def $x_2 = 3$ to use at block **f**
- def $x_4 = 1$ to use at block **g**

Properties

If a program is in the Hot Path SSA form, then,

• each use of a variable is reachable by a single definition; [SSA-like form]

Properties

If a program is in the Hot Path SSA form, then,

- each use of a variable is reachable by a single definition; [SSA-like form]
- safe interpretation: [supports traditional analysis]
 - each use of a variable is reachable by the *meet-over-all-paths* reaching definition chains;

Properties

If a program is in the Hot Path SSA form, then,

- each use of a variable is reachable by a single definition; [SSA-like form]
- safe interpretation: [supports traditional analysis]
 - each use of a variable is reachable by the meet-over-all-paths reaching definition chains;
- speculative interpretation: [supports profile-guided analysis]
 - each use of a variable in a basic-block is reachable by the meet-over-frequent-paths
 reaching definitions.

^aor the meet-over-all-paths reaching definition chains, if the use is not reachable from any meet-over-hot-paths reaching definition chain

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Speculative Sparse Conditional Constant Propagation (SpecSCCP)

- Introduce new speculative values $\{\ldots,1^s,2^s,\ldots\}\in\mathcal{C}^S$
- Operation with speculative values result in speculative results (with same semantics as base operator)

$$\alpha^{s} \langle op \rangle \beta = (\alpha \langle op \rangle \beta)^{s}$$

• Transfer function for τ -functions $(\beta = x_1 \sqcup x_2 \sqcup \cdots \sqcup x_n$, i.e. join of speculative args.)

$$\tau(x_0, x_1, \dots, x_n) \sqcup \begin{cases} \top & \text{if } \beta = \top \\ \beta & \text{if } \beta \neq \top \land x_0 \sqsubseteq \beta \\ \beta^s & \text{otherwise} \end{cases}$$

Speculative Sparse Conditional Constant Propagation (SpecSCCP)

- Introduce new speculative values $\{\ldots,1^s,2^s,\ldots\}\in C^S$
- Operation with speculative values result in speculative results (with same semantics as base operator)

$$\alpha^{s} \langle op \rangle \beta = (\alpha \langle op \rangle \beta)^{s}$$

• Transfer function for τ -functions $(\beta = x_1 \sqcup x_2 \sqcup \cdots \sqcup x_n$, i.e. join of speculative args.)

$$\tau(x_0, x_1, \dots, x_n) \sqcup \begin{cases} \top & \text{if } \beta = \top \\ \beta & \text{if } \beta \neq \top \land x_0 \sqsubseteq \beta \\ \beta^s & \text{otherwise} \end{cases}$$

Almost trivial to generate profile-guided variants of standard analyses—an afternoon to "port" SCCP to SpecSCCP!

Presentation Outline

- 1 HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Brief Algorithm

- Insert τ -functions
 - Insert at Thermal Frontiers
- Allocate arguments to τ -functions
 - \bullet path-sensitive traversal through the program to identify definitions that reach $\tau\text{-functions}$ through hot paths
 - \bullet constrains its inspection to only the ϕ -functions and the τ -functions

Optimized SSA forms

a and x.2 are live simultaneously — hence, cannot be different versions of the same variable

Optimized SSA forms

a and x.2 are live simultaneously — hence, cannot be different versions of the same variable

in the above example, copy propagation breaks the phi congruence property...

ϕ – congruence property

Shreedhar et al. [SAS'99]

"The occurrences of all resources which belong to the same phi congruence class in a program can be replaced by a representative resource. After the replacement, the phi instruction can be eliminated without violating the semantics of the original program."

- Sreedhar et al. circumvent the problem by translating the optimized SSA form to the conventional SSA form (that satisfies the phi congruence property) before translating out of SSA.
- We directly build the HPSSA form over the optimized SSA form!

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

What we modified in LLVM Source?

• New llvm::intrinsic signature, "llvm.tau" to support addition and removal of τ -functions to the LLVM SSA IR representation.

What we modified in LLVM Source?

• New llvm::intrinsic signature, "llvm.tau" to support addition and removal of τ -functions to the LLVM SSA IR representation.

 Modified Verifier::verifyDominatesUse() function since we don't want our intrinsic to interfere with dominators computation.

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.
 - | std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented 11vm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.
 - std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet used to track hot paths that pass through a given basic block.

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.
 - std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet used to track hot paths that pass through a given basic block.
 - std::map<std::pair<llvm::BasicBlock *, Value *>, frame> defAcc

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.
 - std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet used to track hot paths that pass through a given basic block.
 - std::map<std::pair<llvm::BasicBlock *, Value *>, frame> defAcc keeps track of the hot definitions for a variable that reaches a given basic block.

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.
 - std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet used to track hot paths that pass through a given basic block.
 - std::map<std::pair<llvm::BasicBlock *, Value *>, frame> defAcc keeps track of the hot definitions for a variable that reaches a given basic block.
 - std::map<llvm::Value *, std::vector<llvm::Value *>> renaming_stack

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using llvm::BitVector for maintaining hot paths in the program.
 - std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet used to track hot paths that pass through a given basic block.
 - std::map<std::pair<llvm::BasicBlock *, Value *>, frame> defAcc keeps track of the hot definitions for a variable that reaches a given basic block.
 - std::map<llvm::Value *, std::vector<llvm::Value *>> renaming_stack used to store the most "recent" tau definition encountered so far corresponding for a tau variable used later in variable renaming phase.

- class HPSSAPass : public PassInfoMixin<HPSSAPass>
 - Implemented llvm::HPSSAPass pass using the new LLVM Pass Manager.
 - Function HPSSAPass::run(Function &F, ...) runs over a llvm::Function and inserts "llvm.tau" intrinsic calls with speculative and safe argument at strategic positions in the LLVM IR and handles argument allocation for "llvm.tau" intrinsic calls.
- Key HPSSA Data Structures and Functions:
 - Hot Path Set using 11vm::BitVector for maintaining hot paths in the program.
 - std::map<llvm::BasicBlock*, llvm::BitVector> HotPathSet used to track hot paths that pass through a given basic block.
 - std::map<std::pair<llvm::BasicBlock *, Value *>, frame> defAcc keeps track of the hot definitions for a variable that reaches a given basic block.
 - std::map<llvm::Value *, std::vector<llvm::Value *>> renaming_stack used to store the most "recent" tau definition encountered so far corresponding for a tau variable used later in variable renaming phase.
 - HPSSAPass::AllocateArgs(BasicBlock* BB, DomTreeNode& DTN) | handles argument pg.59 allocation for τ -functions inserted

HPSSAPass: Destruction Pass

- Out of HPSSA Form.
 - A seperate pass using the new LLVM Pass Manager.
 class TDSTRPass : public PassInfoMixin<TDSTRPass>

HPSSAPass: Destruction Pass

- Out of HPSSA Form.
 - A seperate pass using the new LLVM Pass Manager.
 class TDSTRPass: public PassInfoMixin<TDSTRPass>
 - Using TDSTRPass::run(Function &F, ...), we replace all use of existing tau
 operands with first argument of "llvm.tau" intrinsic (corresponds to the safe
 argument) and remove the "llvm.tau" intrinsic call from the LLVM IR.
 - The LLVM IR becomes identical to what it was before running the HPSSA Pass.

HPSSAPass: Destruction Pass

- Out of HPSSA Form.
 - A seperate pass using the new LLVM Pass Manager.
 class TDSTRPass : public PassInfoMixin<TDSTRPass>
 - Using TDSTRPass::run(Function &F, ...), we replace all use of existing tau
 operands with first argument of "llvm.tau" intrinsic (corresponds to the safe
 argument) and remove the "llvm.tau" intrinsic call from the LLVM IR.
 - The LLVM IR becomes identical to what it was before running the HPSSA Pass.

```
x_3 = 	au(x_0, x_1, x_2), 	au-function
```

```
x_3 = x_0, Replace all use of x_3 with x_0.
```

Presentation Outline

- HPSSA: Why another SSA Form?
 - Introduction to Path Profile Guided Optimizations
 - Profile Guided SpecSCCP Analysis using HPSSA Form
- What is HPSSA form?
 - Hot Path SSA Form
 - Profile Guided SpecSCCP Pass
- 3 How is HPSSA Implemented?
 - Constructing HPSSA Form
 - Implementing HPSSA Form in LLVM
- 4 Conclusion

Conclusion

• The Hot Path SSA form opens up an exciting opportunity for compiler writers to "port" exisiting standard analyses to their profile guided variants.

Conclusion

- The Hot Path SSA form opens up an exciting opportunity for compiler writers to "port" exisiting standard analyses to their profile guided variants.
- We plan to open source our work soon and push it to the LLVM "main" branch.

LLVM Implementation: Profile Guided SpecSCCP Pass

 Modified the existing SCCP Pass to add visitTauNode() function which handles the special "llvm.tau" intrinsic instructions used for τ -functions.¹

¹Since we added the τ -functions as an "llvm.tau" intrinsic, we blocked processing it as a regular LLVM Instruction.

LLVM Implementation : Profile Guided SpecSCCP Pass

- Modified the existing SCCP Pass to add visitTauNode() function which handles the special "llvm.tau" intrinsic instructions used for τ-functions.¹
- Added a new lattice element type "spec_constant" and mergeInSpec() function in ValueLattice class supporting operations on speculative constants. Modified the existing mergeIn() function to handle lattice "meet" operation for the new speculative constants introduced.

pg.67

¹Since we added the τ -functions as an "llvm.tau" intrinsic, we blocked processing it as a regular LLVM Instruction.

LLVM Implementation : Profile Guided SpecSCCP Pass

- Modified the existing SCCP Pass to add visitTauNode() function which handles the special "llvm.tau" intrinsic instructions used for τ-functions.¹
- Added a new lattice element type "spec_constant" and mergeInSpec() function in ValueLattice class supporting operations on speculative constants. Modified the existing mergeIn() function to handle lattice "meet" operation for the new speculative constants introduced.
- Added new functions in the SCCPInstVisitor and SCCPSolver class to handle operations on speculative constants. Eg. Operands can be marked speculative using as function markSpeculativeConstant().

pg.68

¹Since we added the τ -functions as an "llvm.tau" intrinsic, we blocked processing it as a regular LLVM Instruction.

LLVM Implementation: Profile Guided SpecSCCP Pass

- Modified the existing SCCP Pass to add visitTauNode() function which handles the special "llvm.tau" intrinsic instructions used for τ -functions.¹
- Added a new lattice element type "spec_constant" and mergeInSpec() function in ValueLattice class supporting operations on speculative constants. Modified the existing mergeIn() function to handle lattice "meet" operation for the new speculative constants introduced.
- Added new functions in the SCCPInstVisitor and SCCPSolver class to handle operations on speculative constants. Eg. Operands can be marked speculative using as function markSpeculativeConstant().
- Modified the SCCPInstVisitor::solve() function to process "llvm.tau" intrinsic instructions using visitTauNode() instead of the standard visit() function.

¹Since we added the τ -functions as an "llvm.tau" intrinsic, we blocked processing it as a regular LLVM Instruction.

HPSSAPass: Details of run(...)

- HPSSAPass::run(Function &F, FunctionAnalysisManager &AM)
 - Invokes HPSSAPass::getProfileInfo() function to get a compact representation of all the profiled hot paths in the program and then calls HPSSAPass::getCaloricConnector() to get all the caloric connectors from the hot path information. This is a precursor to finding strategic positions to place "llvm.tau" intrinsic calls in the LLVM IR.

HPSSAPass: Details of run(...)

- HPSSAPass::run(Function &F, FunctionAnalysisManager &AM)
 - Invokes HPSSAPass::getProfileInfo() function to get a compact representation of all
 the profiled hot paths in the program and then calls HPSSAPass::getCaloricConnector()
 to get all the caloric connectors from the hot path information. This is a precursor to
 finding strategic positions to place "llvm.tau" intrinsic calls in the LLVM IR.
 - Runs over each basic block in the function "F" in topological order using iterator returned from llvm::Function::RPOT() call.
 - Uses the llvm::dominates() function from llvm::DominatorTreeAnalysis to check for dominance frontier while processing the child nodes of the current basic block. This step is a part of correctly placing "llvm.tau" intrinsic calls in the LLVM IR.

HPSSAPass: Details of run(...)

- HPSSAPass::run(Function &F, FunctionAnalysisManager &AM)
 - Invokes HPSSAPass::getProfileInfo() function to get a compact representation of all
 the profiled hot paths in the program and then calls HPSSAPass::getCaloricConnector()
 to get all the caloric connectors from the hot path information. This is a precursor to
 finding strategic positions to place "llvm.tau" intrinsic calls in the LLVM IR.
 - Runs over each basic block in the function "F" in topological order using iterator returned from llvm::Function::RPOT() call.
 - Uses the llvm::dominates() function from llvm::DominatorTreeAnalysis to check for
 dominance frontier while processing the child nodes of the current basic block. This step is
 a part of correctly placing "llvm.tau" intrinsic calls in the LLVM IR.
 - Uses the renaming stack and HPSSAPass::Search() function to search and replace all use of PHI result operand with that returned by the "llvm.tau" intrinsic call.

Program in SSA Form

pg.73

Program in Hot Path SSA Form

pg.74