Linear decoding:

- This technique uses the unused address lines of the microprocessor as chip selects for the memory chips.
- This method is used for small systems.
- A simple way to connect an 8 bit microprocessor to a 6k RAM system using linear decoding is shown as follows.
- In this approach, the address lines A9 though A0 of the microprocessor are used as a common input to each 1K x 8 RAM chip.
- The remaining 6 high order lines are use to select one of the 6 RAM chips

Address Map realized by the system:

	Binary address pattern A ₁₅ A ₁₄ A ₁₃ A ₁₂ A ₁₁ A ₁₀ A ₉ A ₈ A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀														Device Selected	Address arranged in Hex	
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	RAM	0400
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	Chip 0	To 07FF
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	RAM	0800
0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	Chip 1	To 0BFF
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	RAM	1000
0	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	Chip 2	To 13FF
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	RAM	2000
	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	Chip 3	To 23FF
																RAM	
																Chip 4	
																RAM	
																Chip 5	

Advantages: does not require decoding hardware

Disadvantages:

- 64K bytes of RAM space, interface only 6 K
- Address map is not contiguous, it is sparsely distributed.
- If both A11 & A12 high at the same time, bus conflict occurs.
- If all unused address lines are not utilized as CS for memory Then unused pins don't care

Full-partial decoding:

- Here 2- to- 4 decoder is used and interface the
 - 8 bit microprocessor with 4K bytes of RAM
- Also observe that this hardware makes sure that the memory
- system is enabled only when the lines A15 through A12 are Zero.
 The complete address map corresponding to this organization is
 - summarized below

	Binary address pattern A ₁₅ A ₁₄ A ₁₃ A ₁₂ A ₁₁ A ₁₀ A ₉ A ₈ A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀														Device Selected				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	RAM 0	RAM Chip		
0	0	0	0	0	1	0	0	0	0	0	0	0	0		0	RAM 1	Chip	0400 To 07FF	
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	RAM 2	Chip	0800 To 0BFF	
0	0	0	0	1	1	0	0	0	0	0	0	0	0	-	0	RAM 3	Chip	0C00 To 0FFF	

Memory management Unit:
The MMU translates logical addresses to physical addresses provided by the memory chips
The memory can perform address translation in one of two ways:
Using Substitution technique
By adding an offset to each logical address to obtain the corresponding physical address
The MMU reduces the burden of the memory management function of O/S
The basic function provided by MMU are
Address translation
Protection