Lógica

Mauro Polenta Mora

Ejercicio 4

Consigna

Considere un lenguaje de primer orden del tipo $\langle 1,2;2;0\rangle$ con dos símbolos de relación P_1 (unario) y P_2 (binario) y un símbolo de función f_1 (binario). Sea FORM el conjunto de fórmulas de dicho lenguaje. Indique cuáles de las siguientes son fórmulas bien formadas de dicho lenguaje (o sea, cuáles cumplen la definición de FORM).

```
1. ((\forall x_1)((\exists x_2)P_2(x_1, x_2)))

2. (P_1(x_1) \to (((\exists x_2)f_1(x_1, x_2) =' x_2) \land ((\exists x_1)P_2(x_1, x_2))))
```

- 3. $(((\exists x_1)((\exists x_2)f_1(x_1,x_2))) \to ((\forall x_1)P_1(f_1(x_1,x_1))))$
- 4. $((\forall x_1)((\forall x_2)(P_1(x_1) \lor ((\exists x_1)P_2(x_1, x_2)))))$
- $5. \ (P_1((\forall x_1)P_2(x_1,x_2)) \leftrightarrow ((\forall x_1)P_1(P_2(x_1,x_2)))) \\$
- 6. $((\exists x_1) \land ((\forall x_2) P_2(x_1, x_2)))$
- 7. $((\forall x_1)(P_1(x_1) \to (P_1(f_1(x_1, x_2)) \land ((\exists x_1)P_1(f_1(x_1, f_1(x_1, x_2)))))))$

Resolución

Para esto es conveniente recordar como definimos FORM:

Sea A el alfabeto de tipo $\langle r_1, \dots, r_n; a_1, \dots, a_m; k \rangle$. El conjunto $FORM_A$ de las fórmulas del lenguaje de primer orden con alfabeto A se define inductivamente por:

```
1. \bot \in FORM_A
```

- 2. Si $t_1, \ldots, t_{r_i} \in TERM_A$, entonces $P_i(t_1, \ldots, t_{r_i}) \in FORM_A$
- 3. Si $t_1, t_2 \in TERM_A$, entonces $t_1 = t_2 \in FORM_A$
- 4. Si $\alpha, \beta \in FORM_A$, entonces $(\alpha \Box \beta) \in FORM_A$
- 5. Si $\alpha \in FORM_A$, entonces $(\neg \alpha) \in FORM_A$
- 6. Si $\alpha \in FORM_A$, entonces $((\forall x_i)\alpha), ((\exists x_i)\alpha) \in FORM_A$

Vamos a pensar la definición basado en el tipo de alfabeto que tenemos.

Parte 1

$$(\forall x_1)((\exists x_2)P_2(x_1,x_2))$$

Veamos si efectivamente la proposición pertenece a $FORM_A$:

$$(\forall x_1)((\exists x_2)P_2(x_1,x_2)) \in FORM_A \\ \iff (\text{regla 6 de } FORM_A) \\ ((\exists x_2)P_2(x_1,x_2)) \in FORM_A \\ \iff (\text{regla 6 de } FORM_A) \\ P_2(x_1,x_2) \in FORM_A \\ \iff (\text{regla 2 de } FORM_A) \\ x_1,x_2 \in TERM_A \quad \Box$$

Donde lo último se cumple, por lo que efectivamente la proposición pertenece a $FORM_A$

Parte 2

$$(P_1(x_1) \to (((\exists x_2) f_1(x_1, x_2) =' x_2) \land ((\exists x_1) P_2(x_1, x_2))))$$

Veamos si efectivamente la proposición pertenece a $FORM_A$:

Como cada paso se cumple, efectivamente la proposición pertenece a $FORM_A$

Parte 3

$$(((\exists x_1)((\exists x_2)f_1(x_1,x_2))) \to ((\forall x_1)P_1(f_1(x_1,x_1))))$$

Veamos si efectivamente la proposición pertenece a $FORM_A$:

$$\begin{array}{ccc} 1. & ((\exists x_1)((\exists x_2)f_1(x_1,x_2))) \in FORM_A \\ & \bullet & ((\exists x_2)f_1(x_1,x_2)) \in FORM_A \\ & & - f_1(x_1,x_2) \in FORM_A \quad \text{;ABSURDO!} \\ 2. & ((\forall x_1)P_1(f_1(x_1,x_1))) \in FORM_A \end{array}$$

Observemos que $f_1(x_1, x_2) \in TERM_A$, por el razonamiento que hicimos debería estar en $FORM_A$, por lo cual la proposición **NO** pertenece a $FORM_A$.

Parte 4

$$((\forall x_1)((\forall x_2)(P_1(x_1) \lor ((\exists x_1)P_2(x_1, x_2)))))$$

Veamos si efectivamente la proposición pertenece a $FORM_A$:

$$\begin{array}{ccc} 1. & ((\forall x_2)(P_1(x_1) \vee ((\exists x_1)P_2(x_1,x_2)))) \in FORM_A & \Box \\ & \bullet & (P_1(x_1) \vee ((\exists x_1)P_2(x_1,x_2))) \in FORM_A & \Box \end{array}$$

$$\begin{array}{ccc} - \ P_1(x_1) \in FORM_A & \square \\ - \ ((\exists x_1) P_2(x_1, x_2)) \in FORM_A & \square \\ & * \ P_2(x_1, x_2) \in FORM_A & \square \\ & \cdot \ x_1, x_2 \in TERM_A & \square \end{array}$$

Como cada paso se cumple, efectivamente la proposición pertenece a $FORM_A$.

Parte 5

$$(P_1((\forall x_1)P_2(x_1,x_2)) \leftrightarrow ((\forall x_1)P_1(P_2(x_1,x_2))))$$

Veamos si efectivamente la proposición pertenece a $FORM_A$:

1. $P_1((\forall x_1)P_2(x_1, x_2)) \in FORM_A$ • $(\forall x_1)P_2(x_1, x_2) \in TERM_A$ ¡ABSURDO! 2. $((\forall x_1)P_1(P_2(x_1, x_2))) \in FORM_A$

Observemos que $(\forall x_1)P_2(x_1, x_2) \in FORM_A$, por el razonamiento que hicimos debería estar en $TERM_A$, por lo cual la proposición **NO** pertenece a $FORM_A$.

Parte 6

$$((\exists x_1) \wedge ((\forall x_2) P_2(x_1, x_2)))$$

Veamos si efectivamente la proposición pertenece a $FORM_A$:

1.
$$\wedge ((\forall x_2)P_2(x_1, x_2)) \in FORM_A$$
 ; ABSURDO!

Observemos que $\wedge((\forall x_2)P_2(x_1,x_2))$ está mal construido, ninguna regla permite construir proposiciones a partir de un conectivo binario con una sola proposición, por lo cual la proposición \mathbf{NO} pertenece a $FORM_A$.

Parte 7

$$((\forall x_1)(P_1(x_1) \to (P_1(f_1(x_1, x_2)) \land ((\exists x_1)P_1(f_1(x_1, f_1(x_1, x_2))))))) \\ 1. \ P_1(x_1) \in FORM_A \quad \Box \\ \bullet \ x_1 \in TERM_A \quad \Box \\ 2. \ (P_1(f_1(x_1, x_2)) \land ((\exists x_1)P_1(f_1(x_1, f_1(x_1, x_2))))) \in FORM_A \quad \Box \\ \bullet \ P_1(f_1(x_1, x_2)) \in FORM_A \quad \Box \\ - \ f_1(x_1, x_2) \in TERM_A \quad \Box \\ \bullet \ (\exists x_1)P_1(f_1(x_1, f_1(x_1, x_2))) \in FORM_A \quad \Box \\ - \ P_1(f_1(x_1, f_1(x_1, x_2))) \in FORM_A \quad \Box \\ \bullet \ f_1(x_1, f_1(x_1, x_2)) \in TERM_A \quad \Box \\ & \cdot \ x_1 \in TERM_A \quad \Box \\ & \cdot \ f_1(x_1, x_2) \in TERM_A \quad \Box$$

Como cada paso se cumple, efectivamente la proposición pertenece a $FORM_A$