Vector Norm

- For $\mathbf{v} \in \mathbb{R}^n$, with entries $v_1, ..., v_n$, the square root of $\mathbf{v} \cdot \mathbf{v}$ is defined because $\mathbf{v} \cdot \mathbf{v}$ is nonnegative.
- **Definition**: The length (or norm) of \mathbf{v} is the non-negative scalar $\|\mathbf{v}\|$ defined as the square root of $\mathbf{v} \cdot \mathbf{v}$:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$

Geometric Meaning of Vector Norm

- Suppose $\mathbf{v} \in \mathbb{R}^2$, say, $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.
- $\|\mathbf{v}\|$ is the length of the line segment from the origin to \mathbf{v} .
- This follows from Pythagorean Theorem applied to a triangle such as the one shown in the following figure:

• For any scalar c, the length $c\mathbf{v}$ is |c| times the length of \mathbf{v} That is, $||c\mathbf{v}|| = |c| ||\mathbf{v}||$

a

Unit Vector

- A vector whose length is 1 is called a unit vector.
- Normalizing a vector: Given a nonzero vector \mathbf{v} , if we divide it by its length, we obtain a unit vector $\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$.
- u is in the same direction as v, but its length is 1.

Distance between Vectors in \mathbb{R}^n

- **Definition:** For \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the **distance between \mathbf{u}** and \mathbf{v} , written as dist (\mathbf{u}, \mathbf{v}) , is the length of the vector $\mathbf{u} \mathbf{v}$. That is, $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$
- Example: Compute the distance between the vector $\mathbf{u} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
- Solution: Calculate $\mathbf{u} \mathbf{v} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ $\|\mathbf{u} \mathbf{v}\| = \sqrt{3^2 + (-1)^2} = \sqrt{10}$

Distance between Vectors in \mathbb{R}^n

• The distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathbf{u} - \mathbf{v}$ to 0.

Inner Product and Angle Between Vectors

 Inner product between u and v can be rewritten using their norms and angle:

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

• Example:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ \|\mathbf{u}\| = \sqrt{2^2 + 1^2} = \sqrt{5} \quad \|\mathbf{v}\| = \sqrt{1^2 + 3^2} = \sqrt{10} \end{bmatrix}$$

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \quad \Rightarrow \cos \theta = \frac{5}{\sqrt{50}} = \frac{1}{\sqrt{2}}$$

$$\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \Rightarrow \theta = 45^\circ$$

Orthogonal Vectors

• **Definition:** $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$ That is,

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = 0.$$

 $\cos \theta = 0$ for nonzero vectors **u** and **v**

$$\theta = 90^{\circ} (\mathbf{u} \perp \mathbf{v}).$$

 \longrightarrow **u** and **v** are perpendicular each other.

