1.5em 0pt

Сходимость с оценкой вероятностей больших отклонений для задач выпуклой оптимизации и седловых задач в условиях повышенной гладкости

Денис Николаевич Рубцов

Московский физико-технический институт

Научный руководитель: д.ф.-м.н. А.В. Гасников

2024

Цель исследования

Цели

- разработать быстрые алгоритмы для решения задач выпуклой оптимизации и седловыз задач с высокой вероятностью сходимости
- разработать ускоренные версии алгоритмов в условиях повышенной гладкости функций

Тяжелые хвосты распределения шума стохастического градиента

Гистограмма распределения шума стох.градиента для датасета "australian"из библиотеки LIBSVM. Красная линия аппроксимирует гистограмму функцией плотности нормального распределения.

Постановка задачи

Задача стохастической оптимизации

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}f(x, \xi), \ \xi \sim \mathcal{P}$$

Как правило, результатом стохастических градиентных методов является точка x_{ε} такая, что

$$\mathbb{E}f(x_{\varepsilon})-\min f\leq \varepsilon$$

Мы рассматриваем алгоритмы, результатом которых являются точки $x_{\varepsilon,p}$, удовлетворяющие условию

$$P\{f(x_{\varepsilon,p}) - \min f \le \varepsilon\} \ge 1 - p$$

где «уровень уверенности» 1-p может быть достаточно большим

Постановка задачи

Если решить задачу $\mathbb{E} f(x_{\varepsilon}) - \min f \leq p \varepsilon$, то желаемое неравенство $P\{f(x_{\varepsilon,p}) - \min f \leq \varepsilon\} \geq 1-p$ следует автоматически по неравенству Маркова. Сложность решения задачи сходимости по матожиданию, обычно, порядка $\mathcal{O}(\frac{1}{\varepsilon})$. Тогда сложность наивного решения задачи сходимости с высокой вероятностью $\mathcal{O}(\frac{1}{p\varepsilon})$. Хочется уменьшить множитель $\frac{1}{p}$ до $\ln(\frac{1}{p})$

Robust distance estimation (RDE)

Обозначим за $\mathcal{D}(\varepsilon)$ - оракул, возвращающий точку x: $\mathbb{E} f(x) - \min f \leq \frac{\varepsilon}{3}$, т.е. $P[||x-x^*|| \leq \varepsilon] \geq \frac{2}{3}$. Можно сделать m вызовов этого оракула $x_1,...,x_m$ и выбрать среди полученных точек такую x_{i^*} , вокруг которой класстеризуются остальные точки.

Theorem

Точка x_{i*} , возвращаемая алгоритмом RDE удовлетворяет условию

$$P(||x_{i^*}-x^*|| \le 3\varepsilon) \ge 1-e^{-\frac{m}{18}}$$

Применение RDE для обеспечения сходимости с высокой вероятностью: описание подхода

$$rac{\mu}{2}||x-x^*||^2 \leq f(x) - f(x^*) \leq rac{L}{2}||x-x^*||^2$$
 Пусть мы имеем точки x_i $(i=1,...,m)$ такие, что $\mathbb{E} f(x_i) - \min f \leq rac{arepsilon}{3} \xrightarrow{\text{неравенство Маркова}}$ $P(f(x_i) - f^* \leq arepsilon) \geq rac{2}{3} \xrightarrow{\text{сильная выпуклость}}$ $P(||x_i - x^*|| < \sqrt{rac{2arepsilon}{\mu}} =: \delta) \geq rac{2}{3} \xrightarrow{\text{ЕДЕ}}$ $P(||x_{i^*} - x^*|| < 3\delta) \geq 1 - e^{-rac{m}{18}} \xrightarrow{\text{гладкость}}$ $P(f(x_{i^*}) - f^* \leq 9rac{L}{\mu}arepsilon) \geq 1 - e^{-rac{m}{18}}$

Применение RDE для обеспечения сходимости с высокой вероятностью: проблема

$$\mathbb{E}f(x_i) - \min f \le \frac{\varepsilon}{3} \Longrightarrow$$

$$P(f(x_{i^*}) - f^* \le 9\frac{L}{\mu}\varepsilon) \ge 1 - e^{-\frac{m}{18}}$$

Таким образом, генерируя точки алгоритмом, дающим гарантии сходимости с точностью ε по матожиданию, но не с высокой вероятностью, мы предъявили алгоритм, дающий гарантию сходимости с высокой вероятностью, но лишь с $\kappa \varepsilon$ -точностью, где число обусловленности $\kappa = \frac{L}{\mu} \gg 1$ может быть достаточно большим.

Проксимальный метод *proxBoost*

Зафиксируем возрастающую последовательность $\lambda_0,...,\lambda_T$ и последовательность точек $x_0,...,x_T$. На каждой итерации i=0,...,T будем решать задачу минимизации не функции f, а функции f^i

$$f^{i}(x) := f(x) + \frac{\lambda_{i}}{2}||x - x_{i}||^{2}$$
$$\bar{x}_{i+1} := \operatorname*{min}_{x} f^{i}(x)$$

Число обусловленности новых функций можно сделать значительно меньше $\kappa_i=\frac{L+\lambda_i}{\mu+\lambda_i}=(\lambda_i=\mu\cdot 2^i)=\frac{L+\mu\cdot 2^i}{\mu+\mu\cdot 2^i}=\mathcal{O}(1)$ при $i>\log\frac{L}{\mu}$

При этом решение новых задач будет приближенным решением основных задач

$$f(x_{j+1}) - f^* \le (f^j(x_{j+1}) - f^j(\bar{x}_{j+1})) + \sum_{i=0}^j \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2.$$

Сложность алгоритма proxBoost

Theorem

Пусть имеется оракул $\mathcal{M}(f,\varepsilon)$, возвращающий точку x_{ε} такую, что $P(f(x_{\varepsilon}) - \min f \leq \varepsilon) \geq \frac{2}{3}$. Стоимость вызова такого оракула обозначим за $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)$. Тогда для μ -сильно выпуклых L-гладких функций алгоритм, решающий задачу $P\{f(x_{\varepsilon,p}) - \min f \leq \varepsilon\} \geq 1 - p$ требует

$$\log(\frac{\log \kappa}{p})\log \kappa \cdot \mathcal{C}_{\mathcal{M}}(f, \frac{\varepsilon}{\log \kappa}).$$

Метод регуляризации для решения не сильно выпуклых задач

Theorem

Пусть функция f(x) выпукла. Будем решать задачу минимизации функции

$$f^{\mu}(x) = f(x) + \frac{\mu}{2}||x - x_0||^2,$$

где $\mu \sim rac{arepsilon}{R^2}, R = ||x^* - x_0||.$

Пусть мы нашли точку х такую, что

$$f^{\mu}(x) - \min f^{\mu} < \frac{\varepsilon}{2}$$

Тогда

$$f(x) - \min f < \varepsilon$$

Сложность алгоритма proxBoost в выпуклом случае

Theorem

Обобщение алгоритма proxBoost для выпуклых L-гладких функций алгоритм, решающего задачу $P\{f(x_{\varepsilon,p}) - \min f \leq \varepsilon\} \geq 1 - p$ требует

$$\log(\frac{\log\frac{LR^2}{\varepsilon}}{p})\log\frac{LR^2}{\varepsilon}\cdot\mathcal{C}_{\mathcal{M}}(f,\frac{\varepsilon}{\log\frac{LR^2}{\varepsilon}}).$$

Заключение

Результаты

- алгоритм proxBoost для решения задач стохастической оптимизации сильно выпуклых функций обобщен для не сильно выпуклых функций

Планы

- проведение численных экспериментов сходимости предложенных методов
- разработка аналогичных алгоритмов для седловых задач
- использование повышенной гладкости функций для ускорения алгоритмов