Московский Государственный Университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. КОНСПЕКТ ЛЕКЦИЙ

(V семестр)

составитель — Д. В. Ховрато́вич

v. 1.15 - 19.03.2005

1 Классификация уравнений с частными производными второго порядка

Определение. Пусть в пространстве E^2 задана некоторая функция u(x,y), имеющая частные производные второго порядка (причем $u_{xy}=u_{yx}$). Тогда **общим уравнением в частных производных** называется уравнение:

$$F(x, y, u, u_x, u_y, u_{yy}, u_{xx}, u_{xy}) = 0,$$

где F — некоторая функция. Его частным случаем является так называемое **квазилинейное уравнение**:

$$a_{11}(x,y,u,u_x,u_y)u_{xx} + 2a_{12}(x,y,u,u_x,u_y)u_{xy} + a_{22}(x,y,u,u_x,u_y)u_{yy} + F_1(x,y,u,u_x,u_y) = 0.$$

Нас будут интересовать уравнения, **линейные относительно старших производных**, то есть, когда функции a_{11}, a_{12}, a_{22} зависят только от переменных x, y:

$$a_{11}(x,y)u_{xx} + 2a_{12}(x,y)u_{xy} + a_{22}(x,y)u_{yy} + F(x,y,u,u_x,u_y) = 0.$$

Уравнение называется **линейным**, если оно линейно как относительно старших производных (в данном случае u_{xx}, u_{yy}, u_{xy}), так и относительно функции u и ее первых производных:

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + b_1u_x + b_2u_y + cu + f = 0, (1.1)$$

где a_{11} , a_{12} , a_{22} , b_1 , b_2 , c, f — функции только от x и y.

Определение. Если $f \equiv 0$, то уравнение (1.1) называется **однородным**, в противном случае — **неоднородным**.

Определение. Уравнение (1.1) имеет в точке (x_0, y_0)

- 1. гиперболический тип, если $a_{12}^2(x_0, y_0) a_{11}(x_0, y_0)a_{22}(x_0, y_0) > 0$;
- 2. эллиптический тип, если $a_{12}^2(x_0, y_0) a_{11}(x_0, y_0)a_{22}(x_0, y_0) < 0$;
- 3. параболический тип, если $a_{12}^2(x_0, y_0) a_{11}(x_0, y_0)a_{22}(x_0, y_0) = 0$.

Аналогично определяется тип уравнения для некоторой области: уравнение (1.1) имеет в области **гипер-болический (эллиптический) [параболический]** тип, если $a_{12}^2(x,y) - a_{11}(x,y)a_{22}(x,y) > 0 (<0) [=0]$ во всех точках этой области.

Если уравнение имеет разный тип в различных точках области, то оно называется **уравнением сме**шанного типа в этой области.

2 Уравнения параболического типа

2.1 Вывод уравнения теплопроводности в пространстве

Рассмотрим в трехмерном пространстве некоторое тело, проводящее тепло, и пусть температура в его произвольной точке M с координатами (x,y,z) в момент времени t задается функцией u(x,y,z,t). Известно, что для вектора теплового потока \overrightarrow{W} справедлива следующая формула, называемая **законом Фурье**:

$$\overrightarrow{W} = -k \operatorname{gr} u,$$

где k(x, y, z) — коэффициент теплопроводности.

Если тело задается в пространстве ${\bf E^3}$ областью Ω с границей Σ , тогда количество тепла в Ω в момент времени t считается по формуле:

$$Q(t) = \iiint_{\Omega} c(M)\rho(M)u(M,t) d\tau_M,$$

где c — удельная теплоемкость, а ρ — плотность вещества.

Рассмотрим промежуток времени $[t_1; t_2]$ $(Q(t_1) = Q_1, Q(t_2) = Q_2)$. Тогда

$$Q_2 - Q_1 = \iiint\limits_{\Omega} c(M)\rho(M)u(M, t_2) d\tau_M - \iiint\limits_{\Omega} c(M)\rho(M)u(M, t_1) d\tau_M.$$

Изменение количества тепла происходит вследствие притока (оттока) тепла извне и действия некоторых внутренних источников (стоков):

$$Q_2 - Q_1 = \int_{t_1}^{t_2} \left[-\iint_{\Sigma} (\overrightarrow{W}, \overrightarrow{n}) d\sigma \right] dt + \int_{t_1}^{t_2} \left[\iiint_{\Omega} F(M, t) d\tau_M \right] dt.$$

Применим формулу Остроградского-Гаусса (5.3) для первого интеграла и формулу среднего значения (5.1) для второго интеграла:

$$Q_2 - Q_1 = -\int_{t_1}^{t_2} \left[\iiint_{\Omega} (\operatorname{div} \overrightarrow{W}) d\tau \right] dt + (t_2 - t_1) \iiint_{\Omega} F(M, t_4) d\tau_M,$$

где $t_4 \in [t_1; t_2]$.

Воспользуемся формулой Лагранжа:

$$u(M, t_2) - u(M, t_1) = u_t(M, t_3)(t_2 - t_1), t_3 \in [t_1; t_2]$$

для гладкой (предположим это) функции u. Тогда получим:

$$Q_2 - Q_1 = \iiint_{\Omega} c(M)\rho(M)u(M, t_2) d\tau_M - \iiint_{\Omega} c(M)\rho(M)u(M, t_1) d\tau_M =$$

$$= (t_2 - t_1) \iiint_{\Omega} c(M)\rho(M)u_t(M, t_3) d\tau_M.$$

Итак,

$$(t_2 - t_1) \iiint_{\Omega} c(M) \rho(M) u_t(M, t_3) d\tau_M = - \int_{t_1}^{t_2} \left[\iiint_{\Omega} (\operatorname{div} \overrightarrow{W}) d\tau_M \right] dt + (t_2 - t_1) \iiint_{\Omega} F(M, t_4) d\tau_M.$$

Теперь применим для всех интегралов обобщенную формулу среднего значения (5.2):

$$c(M_1)\rho(M_1)u_t(M_1,t_3)V_{\Omega}(t_2-t_1) = -\operatorname{div} \overrightarrow{W}\Big|_{\substack{t=t_5\\M=M_2}} \cdot V_{\Omega}(t_2-t_1) + F(M_3,t_4)V_{\Omega}(t_2-t_1),$$

где $t_5 \in [t_1;\,t_2];\; M_1,M_2,M_3 \in \Omega, V_\Omega$ — объем $\Omega.$ Сократив на $V_\Omega(t_2-t_1),$ получим

$$c(M_1)\rho(M_1)u_t(M_1,t_3) = -\operatorname{div} \overrightarrow{W}\Big|_{\substack{t=t_5\\M=M_2}} + F(M_3,t_4)$$

для некоторых точек M_1, M_2, M_3 из Ω . Теперь сожмем Ω в некоторую точку M_0 , а отрезок $[t_1; t_2]$ — в точку t_0 . Очевидно, точки M_1, M_2, M_3 перейдут в M_0 , а t_3, t_4, t_5 - в t_0 . В пределе получим:

$$c(M_0)\rho(M_0)u_t(M_0, t_0) = -\operatorname{div} \overrightarrow{W}\Big|_{\substack{t=t_0\\M=M_0}} + F(M_0, t_0).$$

Записав для \overrightarrow{W} закон Фурье, получим:

$$\operatorname{div} \overrightarrow{W} = \operatorname{div} (-k \operatorname{gr} u) = -\frac{\partial}{\partial x} k \frac{\partial u}{\partial x} - \frac{\partial}{\partial y} k \frac{\partial u}{\partial y} - \frac{\partial}{\partial z} k \frac{\partial u}{\partial z} \Longrightarrow$$

$$\Longrightarrow c(M_0) \rho(M_0) u_t(M_0, t_0) = \frac{\partial}{\partial x} k \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial u}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial u}{\partial z} + F(M_0, t_0).$$

Так как точки M_0 и t_0 мы выбирали произвольно, то можно распространить полученную формулу на весь $[t_1; t_2]$ и всю область Ω :

$$\begin{split} c(x,y,z)\rho(x,y,z)u_t(x,y,z,t) &= \frac{\partial}{\partial x}(k(x,y,z)u_x(x,y,z,t)) + \frac{\partial}{\partial y}(k(x,y,z)u_y(x,y,z,t)) + \\ &+ \frac{\partial}{\partial z}(k(x,y,z)u_z(x,y,z,t)) + F(x,y,z,t). \end{split}$$

Полученное выражение называется **уравнением распространения тепла в пространстве**. Взяв c, ρ, k константами, получим следующее уравнение:

$$u_t = a^2(u_{xx} + u_{yy} + u_{zz}) + f(x, y, z, t), \ a^2 = \frac{k}{c\rho}, \ f = \frac{F}{c\rho}.$$
 (2.1)

Если u, f зависят только от переменных x и t, то это уравнение записывается так:

$$u_t = a^2 u_{xx} + f(x, t). (2.2)$$

В физической интерпретации это уравнение распространения тепла в однородном тонком стержне. Уравнение (2.2) мы и будем в дальнейшем называть **уравнением теплопроводности**.

Аналогичные рассуждения можно провести и для некоторых других физических процессов, например для диффузии. Если u(x,y,z,t) — концентрация газа в пространстве, то **уравнение диффузии** будет выглядеть так:

$$c u_t = \operatorname{div} (D \operatorname{gr} u) + F(x, y, z, t),$$

где D — коэффициент диффузии, а F — некоторая функция.

2.2 Уравнение теплопроводности с одной пространственной переменной. Постановка основных задач

Будем рассматривать следующее уравнение:

$$u_t = a^2 u_{xx} + f(x,t), \ 0 < x < l, \ 0 < t \le T.$$

Если нам известна температура в стержне в начальный момент времени, то мы получаем **начальное** условие:

$$u(x,0) = \phi(x), \ 0 \leqslant x \leqslant l,$$

а если всегда знаем ход температуры на краях, то некоторые из краевых условий:

при
$$x=l,\ 0\leqslant t\leqslant T$$

$$\left\{\begin{array}{lll} (1) & u(l,t) &=& \mu_2(t)-\text{первое краевое условие;}\\ (2) & u_x(l,t) &=& \nu_2(t)-\text{второе краевое условие;}\\ (3) & u_x(l,t) &=& -\lambda_2[u(l,t)-\theta_2(t)]-\text{третье краевое условие}\ (\lambda_2>0). \end{array}\right.$$
 и при $x=0,\ 0\leqslant t\leqslant T$
$$\left\{\begin{array}{lll} (4) & u(0,t) &=& \mu_1(t)-\text{первое краевое условие;}\\ (5) & u_x(0,t) &=& \nu_1(t)-\text{второе краевое условие;}\\ (6) & u_x(0,t) &=& \lambda_1[u(0,t)-\theta_1(t)]-\text{третье краевое условие}\ (\lambda_1>0). \end{array}\right.$$

Выбирая несколько из этих условий, можно получить различные типы задач:

Первая краевая задача.

$$\begin{cases} u_t &= a^2 u_{xx} + f(x,t), & 0 < x < l, \ 0 < t \leqslant T; \\ u(0,t) &= \mu_1(t), & 0 \leqslant t \leqslant T; \\ u(l,t) &= \mu_2(t), & 0 \leqslant t \leqslant T; \\ u(x,0) &= \phi(x), & 0 \leqslant x \leqslant l. \end{cases}$$

Вторая краевая задача.

$$\begin{cases} u_t &= a^2 u_{xx} + f(x,t), & 0 < x < l, \ 0 < t \leqslant T; \\ u_x(0,t) &= \nu_1(t), & 0 \leqslant t \leqslant T; \\ u_x(l,t) &= \nu_2(t), & 0 \leqslant t \leqslant T; \\ u(x,0) &= \phi(x), & 0 \leqslant x \leqslant l. \end{cases}$$

Задача на полупрямой.

$$\begin{cases} u_t &= a^2 u_{xx} + f(x,t), & x > 0, \ 0 < t \le T; \\ u(0,t) &= \mu(t), & 0 \le t \le T; \\ u(x,0) &= \phi(x), & x \ge 0 \end{cases}$$

Залача Коппи

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), & -\infty < x < +\infty, \ 0 < t \leqslant T; \\ u(x,0) = \phi(x), & -\infty < x < +\infty. \end{cases}$$

2.3 Существование решения первой краевой задачи. Метод разделения переменных

Остановимся более детально на первой краевой задаче:

$$[2.1] \left\{ \begin{array}{rcl} u_t & = & a^2 u_{xx} + f(x,t), & 0 < x < l, \ 0 < t \leqslant T; \\ u(0,t) & = & \mu_1(t), & 0 \leqslant t \leqslant T; \\ u(l,t) & = & \mu_2(t), & 0 \leqslant t \leqslant T; \\ u(x,0) & = & \phi(x), & 0 \leqslant x \leqslant l. \end{array} \right.$$

— рассмотрим существование и единственность решения, устойчивость, применение функции Грина. Что же такое решение первой краевой задачи? Очевидно, в случае однородного уравнения теплопроводности ей удовлетворяет множество разрывных функций $\widetilde{u}(x,t)$ вроде

$$\begin{array}{lcl} \widetilde{u}(x,t) & = & const, & (x,t) \in \mathbf{Q_T} = \{(\mathbf{x},\mathbf{t}): (\mathbf{0};\,\mathbf{l}) \times (\mathbf{0};\,\mathbf{T}]\}; \\ \widetilde{u}(0,t) & = & \mu_1(t); & 0 \leqslant t \leqslant T; \\ \widetilde{u}(l,t) & = & \mu_2(t); & 0 \leqslant t \leqslant T; \\ \widetilde{u}(x,0) & = & \phi(x); & 0 \leqslant x \leqslant l. \end{array}$$

Поэтому потребуем от функции непрерывность — этим требованием, как мы увидим позже, отсекаются почти все неудобные для исследования функции.

Определение. Функция u(x,t) называется решением первой краевой задачи для уравнения теплопроводности [2.1], если она удовлетворяет следующим трем условиям:

- 1. $u \in C[\overline{Q}_T];$
- 2. $u_t, u_{xx} \in C[Q_T];$
- 3. u(x,t) удовлетворяет условиям [2.1].

Найдем решение для первой краевой задачи с нулевыми краевыми условиями с однородным уравнением теплопроводности:

$$[\mathbf{2.2}] \left\{ \begin{array}{lll} (1) & u_t & = & a^2 u_{xx}, & 0 < x < l, \ 0 < t \leqslant T; \\ (2) & u(0,t) & = & 0, & 0 \leqslant t \leqslant T; \\ (3) & u(l,t) & = & 0, & 0 \leqslant t \leqslant T; \\ (4) & u(x,0) & = & \phi(x), & 0 \leqslant x \leqslant l. \end{array} \right.$$

Искать решение мы будем следующим образом: сначала с помощью преобразований исходного уравнения (важно отметить, что они не всегда будут строгими — это пока не требуется) построим некоторую функцию u(x,t), а потом докажем, что при определенных ограничениях на начальные условия данная функция будет решением первой краевой задачи.

Определим новую функцию:

$$v(x,t) = X(x)T(t).$$

Подставив нашу функцию в уравнение теплопроводности, получим:

$$X(x)T'(t) = a^2X''(x)T(t).$$

Разделим обе части уравнения на $a^2X(x)T(t)$:

$$\frac{T'(t)}{a^2 T(t)} = \frac{X''(x)}{X(x)}.$$

Так как справа и слева стоят функции, зависящие от разных переменных, очевидно, что обе они равны некоторой константе, которую мы обозначим $-\lambda$:

$$\frac{T'(t)}{a^2 T(t)} = \frac{X''(x)}{X(x)} = -\lambda.$$

Отсюда получаем два уравнения:

$$X''(x) + \lambda X(x) = 0; \tag{2.3}$$

$$T'(t) + a^2 \lambda T(t) = 0. \tag{2.4}$$

Записав краевые условия для нашей функции v(x,t):

$$\left\{ \begin{array}{ll} v(0,t)=0;\\ v(l,t)=0. \end{array} \right., t\in [0;\,T],$$

получим, что, ввиду ее представления в виде произведения,

$$\begin{cases} X(0) = 0; \\ X(l) = 0. \end{cases}$$

Соединив (2.3) с полученной системой, получим задачу Штурма-Лиувилля:

$$\begin{cases} X''(x) + \lambda X(x) = 0; \\ X(0) = 0; \\ X(l) = 0. \end{cases}$$

Требуется найти все λ , при которых существуют ненулевые решения этой системы. Из курса "Дифференциальные уравнения" известно, что:

ференциальные уравнения известно, что:
$$\begin{cases} \lambda_n = \left(\frac{\pi n}{l}\right)^2, \ n \in N - \text{собственные значения.} \\ X_n(x) = c_n^1 \sin(\frac{\pi n}{l}x), \ n \in N - \text{соответствующие собственные функции } (c_n^1 - \text{некоторые константы}). \end{cases}$$

Подставляя λ_n в (2.4), получим уравнения вида

$$T_n'(t) + a^2 \lambda_n T_n(t) = 0.$$

Решением, очевидно, будет $T_n = c_n^2 \exp\{-a^2 \left(\frac{\pi n}{l}\right)^2 t\}$. Объединив $X_n(x)$ и $T_n(t)$, получим:

$$v_n(x,t) = X_n(x)T_n(t) = c_n \sin(\frac{\pi n}{l}x) \exp\{-a^2 \left(\frac{\pi n}{l}\right)^2 t\}.$$

Заметим, что все такие функции являются решениями уравнения теплопроводности (1) и удовлетворяют краевым условиям (2),(3).

Определим функцию u(x,t) как сумму ряда:

$$u(x,t) = \sum_{n=1}^{\infty} v_n(x,t).$$

Заметим, что она удовлетворяет краевым условиям, а в случае равномерной сходимости ряда из производных — и уравнению теплопроводности. Подберем константы так, чтобы выполнялось начальное условие:

$$\phi(x) = u(x,0) = \sum_{n=1}^{\infty} v_n(x,0) = \sum_{n=1}^{\infty} c_n \sin(\frac{\pi n}{l}x).$$

Домножим равенство на $\sin(\frac{\pi m}{l}x)$ (m — целое), сделаем замену переменной $(x\to s)$ и проинтегрируем по s:

$$\int_{0}^{l} \phi(s) \sin(\frac{\pi m}{l}s) ds = \sum_{n=1}^{\infty} c_n \int_{0}^{l} \sin(\frac{\pi m}{l}s) \sin(\frac{\pi n}{l}s) ds.$$

$$\int_{0}^{l} \sin(\frac{\pi n}{l}x) \sin(\frac{\pi m}{l}x) dx = \begin{cases} 0, & n \neq m; \\ \frac{l}{2}, & n = m. \end{cases} \Longrightarrow$$

$$\int_{0}^{l} \phi(s) \sin(\frac{\pi m}{l}s) ds = \frac{l}{2} c_m \Longrightarrow$$

$$c_m = \frac{2}{l} \int_{0}^{l} \phi(s) \sin(\frac{\pi m}{l}s) ds.$$

Окончательно получаем формулу для u(x,t):

$$u(x,t) = \sum_{n=1}^{\infty} \frac{2}{l} \left(\int_{0}^{l} \phi(s) \sin(\frac{\pi n}{l}s) ds \right) \sin(\frac{\pi n}{l}x) \exp\{-a^2 \left(\frac{\pi n}{l}\right)^2 t\}.$$
 (2.5)

Теперь докажем, что эта формула корректна.

Теорема 2.1 (существования). Пусть функция $\phi(x)$ такова, что $\phi(x) \in C^1[0; l]$ и $\phi(0) = \phi(l) = 0$. Тогда формула (2.5) определяет класс решений задачи [2.2].

Доказательство. (1) Докажем сначала непрерывность полученной функции u(x,t) в \overline{Q}_T . Легко видеть, что

$$|u(x,t)| \leqslant \sum_{n=1}^{\infty} |v_n(x,t)| \leqslant \sqrt{\frac{2}{l}} \sum_{n=1}^{\infty} |\phi_n|,$$

где $\phi_n=\sqrt{\frac{2}{l}}\int\limits_0^l\phi(s)\sin(\frac{\pi n}{l}s)\,ds.$ Понятно, что если мы докажем сходимость ряда $\sum\limits_{n=1}^\infty|\phi_n|$, то получим

(по признаку Вейерштрасса) равномерную сходимость ряда $\sum_{n=1}^{\infty} |v_n(x,t)|$. Так как все функции $v_n(x,t)$ непрерывны, то и функция u(x,t) будет непрерывна, так как она определяется равномерно сходящимся рядом из непрерывных функций.

Итак, преобразуем ϕ_n :

$$\begin{split} \phi_n &= \sqrt{\frac{2}{l}} \int\limits_0^l \phi(s) \sin(\frac{\pi n}{l} s) \, ds = \{\text{интегрирование по частям}\} = \\ &= -\sqrt{\frac{2}{l}} \frac{l}{\pi n} \phi(s) \cos(\frac{\pi n}{l} s) \bigg|_0^l + \sqrt{\frac{2}{l}} \int\limits_0^l \phi'(s) \frac{l}{\pi n} \cos(\frac{\pi n}{l} s) \, ds = \\ &= \frac{1}{n} \int\limits_0^l \frac{l}{\pi} \phi'(s) \sqrt{\frac{2}{l}} \cos(\frac{\pi n}{l} s) \, ds. \end{split}$$

Пусть $\widetilde{\phi}_n = \int\limits_0^l \phi'(s) \sqrt{\frac{2}{l}} \cos(\frac{\pi n}{l} s) \, ds$. Воспользуемся неравенством Бесселя для ортонормированной си-

стемы функций $\left\{\sqrt{\frac{2}{l}}\cos(\frac{\pi n}{l}s)\right\}_{n=1}^{\infty}$:

$$\sum_{n=1}^{\infty}\widetilde{\phi}_n^2 = \sum_{n=1}^{\infty} \left(\int\limits_0^l \phi'(s) \sqrt{\frac{2}{l}} \cos(\frac{\pi n}{l} s) \, ds \right)^2 \leqslant \int\limits_0^l \left(\phi'(s) \right)^2 \, ds.$$

Теперь мы можем преобразовать нужный нам ряд $\sum_{n=1}^{\infty} |\phi_n|$:

$$\sum_{n=1}^{\infty}|\phi_n|=\frac{l}{\pi}\sum_{n=1}^{\infty}\frac{1}{n}|\widetilde{\phi}_n|\leqslant \{ab\leqslant \frac{a^2+b^2}{2}\}\leqslant \frac{l}{\pi}\left(\sum_{n=1}^{\infty}\frac{1}{n^2}+\sum_{n=1}^{\infty}\widetilde{\phi}_n^2\right)$$

Первый ряд, как известно, сходится, сходимость второго мы только что показали. Отсюда получаем сходимость ряда из коэффициентов Фурье $\sum\limits_{n=1}^{\infty}|\phi_n|$ и, как было показано ранее, непрерывность функции u(x,t).

(2) Теперь покажем существование и непрерывность производных u_t , u_{xx} в Q_T . Покажем, к примеру, существование u_{xx} для всех 0 < x < l, $t_0 < t < T$, где t_0 — произвольное положительное число. Из этого, очевидно, следует существование u_{xx} в Q_T . Продифференцировав формально ряд (2.5), получим:

$$u_{xx}(x,t) = \sum_{n=1}^{\infty} \phi_n \sqrt{\frac{2}{l}} \left(-(\frac{\pi n}{l})^2 \right) \sin(\frac{\pi n}{l} x) \exp\{-a^2 (\frac{\pi n}{l})^2 t\}.$$

Легко заметить, что множитель $\exp\{-a^2(\frac{\pi n}{l})^2t\}$ дает нам равномерную сходимость мажорантного ряда на $t_0 < t < T$. Из этого следует равномерная сходимость ряда $\sum\limits_{n=1}^{\infty} (v_n)_{xx}(x,t)$ и существование $u_{xx}(x,t)$ в Q_T . Непрерывность $u_{xx}(x,t)$ следует из непрерывности слагаемых ряда. Существование и непрерывность u_t доказывается аналогично.

(3) То, что функция u(x,t) удовлетворяет всем условиям [2.2], было показано во время ее построения. Теорема доказана.

2.4 Принцип максимального значения для уравнения теплопроводности

Рассмотрим множество $Q_T = \{(x,t): (0;l) \times (0;T]\}$. Обозначим $\Gamma = \overline{Q}_T \setminus Q_T$. Докажем, что функция u(x,t), удовлетворяющая уравнению теплопроводности, достигает своего максимального (и минимального) значения именно на этой границе.

Теорема 2.2 (принцип максимального значения). Пусть $u(x,t) \in C[\overline{Q}_T]$, u_t , $u_{xx} \in C[Q_T]$ и $u_t = a^2 u_{xx}$ в Q_T . Тогда

$$\max_{\overline{Q}_T} u(x,t) = \max_{\Gamma} u(x,t);$$

$$\min_{\overline{Q}_T} u(x,t) = \min_{\Gamma} u(x,t).$$

Доказательство. Докажем первое утверждение. Предположим противное: пусть $\max_{\Gamma} u(x,t) = M$ и существует точка $(x_0,t_0) \in Q_T$ такая, что $u(x_0,t_0) = M + \varepsilon$, $\varepsilon > 0$. В этом случае определим новую функцию v(x,t) так:

$$v(x,t) = u(x,t) - \frac{\varepsilon}{2T}(t-t_0). \tag{2.6}$$

Очевидно, что $v(x_0,t_0)=u(x_0,t_0)=M+\varepsilon$. Кроме того, так как $|rac{arepsilon}{2T}(t-t_0)|\leqslant rac{arepsilon}{2}$ при $t\in[0;T]$, то

$$\max_{\Gamma} v(x,t) = \max_{\Gamma} \{u(x,t) - \frac{\varepsilon}{2T}(t-t_0)\} \leqslant M + \frac{\varepsilon}{2}.$$

Отсюда следует, что существует внутренняя точка (x_1,t_1) , в которой v(x,t) достигает максимума. Согласно необходимому условию максимума дважды дифференцируемой функции,

$$\begin{cases} v_t(x_1, t_1) \geqslant 0; \\ v_{xx}(x_1, t_1) \leqslant 0, \end{cases}$$

причем в первом случае строгое неравенство может иметь место только при $t_1 = T$.

Продифференцировав (2.6) по t, получим:

$$u_t(x,t) = v_t(x,t) + \frac{\varepsilon}{2T}.$$

Аналогично, после двойного дифференцирования по x получаем:

$$u_{xx}(x,t) = v_{xx}(x,t).$$

Из написанной выше системы неравенств следует, что

$$u_t(x_1, t_1) = v_t(x_1, t_1) + \frac{\varepsilon}{2T} > 0 \geqslant a^2 v_{xx}(x_1, t_1) = a^2 u_{xx}(x_1, t_1),$$

что противоречит уравнению теплопроводности. Следовательно, предположение о существовании внутренней точки максимума неверно, поэтому $\max_{\overline{Q}_T} u(x,t) = \max_{\Gamma} u(x,t)$, и первое утверждение доказано.

Для доказательства второго утверждения теоремы (принцип минимума) достаточно перейти от u(x,t) к функции w(x,t)=-u(x,t), которая принимает максимальное значение там, где u(x,t) принимает минимальное. Теорема доказана.

В приложении к краевым задачам принцип максимума выглядит следующим образом. Пусть

$$\begin{cases} u_t &= a^2 u_{xx}, & 0 < x < l, \ 0 < t \leqslant T; \\ u(0,t) &= \mu_1(t), & 0 \leqslant t \leqslant T; \\ u(l,t) &= \mu_2(t), & 0 \leqslant t \leqslant T; \\ u(x,0) &= \phi(x), & 0 \leqslant x \leqslant l. \end{cases}$$

Тогда $\max_{\overline{Q}_T} u(x,t) = \max\{\max_{t \in [0;T]} \mu_1(t), \max_{t \in [0;T]} \mu_2(t), \max_{x \in [0;t]} \phi(x)\}$. Это равенство имеет простой физический смысл. Оно означает, что температура стержня не может быть выше температуры на его краях и в начальный момент времени.

2.5 Единственность и устойчивость решения первой краевой задачи

Теорема 2.3 (единственности). Пусть функции $u_1(x,t), u_2(x,t)$ таковы, что $u_i \in C[\overline{Q}_T], \ \frac{\partial^2 u_i}{\partial x^2}, \frac{\partial u_i}{\partial t} \in C[Q_T], \ i=1,2,$ причем они являются решениями **одной и той же** первой краевой задачи [2.1]. Тогда $u_1(x,t) \equiv u_2(x,t)$ в \overline{Q}_T .

Доказательство. Определим новую функцию $v(x,t)=u_1(x,t)-u_2(x,t)$. Тогда $v\in C[\overline{Q}_T],\ v_t,\ v_{xx}\in C[Q_T],$ и является решением такой краевой задачи:

$$\begin{cases} v_t &= a^2 v_{xx}, & 0 < x < l, \ 0 < t \leqslant T; \\ v(0,t) &= 0, & 0 \leqslant t \leqslant T; \\ v(l,t) &= 0, & 0 \leqslant t \leqslant T; \\ v(x,0) &= 0, & 0 \leqslant x \leqslant l. \end{cases}$$

Для функции v(x,t), очевидно, выполнены все условия принципа максимума. Применяя его, получим:

$$\begin{cases} \max_{\overline{Q}_T} v(x,t) &= \max_{\Gamma} v(x,t) = 0; \\ \min_{\overline{Q}_T} v(x,t) &= \min_{\Gamma} v(x,t) = 0. \end{cases} \Longrightarrow v(x,t) \equiv 0 \Longrightarrow u_1(x,t) \equiv u_2(x,t).$$

Теорема доказана.

Устойчивость решения первой краевой задачи

Лемма 1. Пусть функции $u_1, u_2(x, t)$ таковы, что

$$\begin{split} &u_i \in C[\overline{Q}_T],\\ &\frac{\partial^2 u_i}{\partial x^2}, \frac{\partial u_i}{\partial t} \in C[Q_T], \ i=1,2, \end{split}$$

причем

$$\begin{cases} \frac{\partial u_i}{\partial t} &= a^2 \frac{\partial^2 u_i}{\partial x^2}, \quad 0 < x < l, \ 0 < t \leqslant T, \quad i = 1, 2; \\ u_1(0,t) &\geqslant u_2(0,t), \quad 0 \leqslant t \leqslant T; \\ u_1(l,t) &\geqslant u_2(l,t), \quad 0 \leqslant t \leqslant T; \\ u_1(x,0) &\geqslant u_2(x,0), \quad 0 \leqslant x \leqslant l. \end{cases}$$

Тогда $u_1(x,t) \geqslant u_2(x,t)$ в \overline{Q}_T .

Доказательство. Снова, пусть $v(x,t)=u_2(x,t)-u_1(x,t)$. Легко видеть, что $v\in C[\overline{Q}_T],\ v_{xx},v_t\in C[Q_T],$ причем

$$\begin{cases} v_t(x,t) &= a^2 v_{xx}(x,t); \\ v(0,t) &\geqslant 0, & 0 \leqslant t \leqslant T; \\ v(l,t) &\geqslant 0, & 0 \leqslant t \leqslant T; \\ v(x,0) &\geqslant 0, & 0 \leqslant x \leqslant l. \end{cases}$$

Воспользовавшись вторым утверждением принципа максимума, получим:

$$\min_{\overline{Q}_T} v(x,t) = \min_{\Gamma} v(x,t) \geqslant 0 \Longrightarrow u_1(x,t) \geqslant u_2(x,t), \ (x,t) \in \overline{Q}_T.$$

Лемма доказана.

Теорема 2.4 (устойчивости). Пусть функции $u_1, u_2(x,t)$ таковы, что

$$\begin{split} &u_i \in C[\overline{Q}_T],\\ &\frac{\partial^2 u_i}{\partial x^2}, \frac{\partial u_i}{\partial t} \in C[Q_T], \ i=1,2, \end{split}$$

причем

$$\begin{cases} \frac{\partial u_i}{\partial t} &= a^2 \frac{\partial^2 u_i}{\partial x^2}, & 0 \leqslant x \leqslant l, \ 0 < t \leqslant T & i = 1, 2; \\ u_i(0,t) &= \mu_1^i(t), & 0 \leqslant t \leqslant T, & i = 1, 2; \\ u_i(l,t) &= \mu_2^i(t), & 0 \leqslant t \leqslant T, & i = 1, 2; \\ u_i(x,0) &= \phi_i(x), & 0 \leqslant x \leqslant l, & i = 1, 2. \end{cases}$$

Тогда $\max_{\overline{Q}_T} |u_1(x,t) - u_2(x,t)| \leqslant \max\{\max_{t \in [0;T]} |\mu_1^1(t) - \mu_1^2(t)|, \max_{t \in [0;T]} |\mu_2^1(t) - \mu_2^2(t)|, \max_{x \in [0;t]} |\phi_1(x) - \phi_2(x)|\}$

Доказательство. Снова введем функцию $v(x,t) = u_1(x,t) - u_2(x,t)$. Тогда

$$v \in C[\overline{Q}_T],$$

$$v_{xx}, v_t \in C[Q_T],$$

$$v_t(x, t) = a^2 v_{xx}(x, t).$$

Обозначив $\varepsilon = \max\{\max_{t \in [0;T]} |\mu^1_1(t) - \mu^2_1(t)|, \max_{t \in [0;T]} |\mu^1_2(t) - \mu^2_2(t)|, \max_{x \in [0;l]} |\phi_1(x) - \phi_2(x)|\},$ получим, что

$$\max_{\Gamma} |v(x,t)| \leqslant \varepsilon.$$

Из этого следует, что $-\varepsilon \leqslant v(x,t) \leqslant \varepsilon$ на Γ . Применив лемму к парам функций $(-\varepsilon,v(x,t))$ и $(v(x,t),\varepsilon)$, получим, что

$$-\varepsilon \leqslant u_1(x,t) - u_2(x,t) \leqslant \varepsilon$$
 в \overline{Q}_T .

Теорема доказана. □

Полученное утверждение означает, что из близости исходных данных следует близость полученных решений.

2.6 Единственность решения общей краевой задачи

Общая краевая задача формулируется так:

$$[\mathbf{2.3}] \left\{ \begin{array}{rcl} u_t & = & a^2 u_{xx} + f(x,t); & 0 < t \leqslant T, \ 0 < x < l; \\ \alpha_1 u(0,t) - \alpha_2 u_x(0,t) & = & p(t); & 0 \leqslant t \leqslant T; \\ \beta_1 u(l,t) + \beta_2 u_x(l,t) & = & q(t); & 0 \leqslant t \leqslant T; \\ u(x,0) & = & \phi(x); & 0 \leqslant x \leqslant l. \end{array} \right.$$

Здесь $\alpha_1, \alpha_2, \beta_1, \beta_2$ — неотрицательные постоянные, причем требуется, чтобы

$$\alpha_1 + \alpha_2 > 0; \quad \beta_1 + \beta_2 > 0.$$

Докажем единственность решения такой задачи.

Теорема 2.5 (единственности). Пусть в Q_T функции $u_1, u_2(x,t)$ таковы, что

$$\begin{array}{rcl} u_i, & \frac{\partial u_i}{\partial x} & \in & C[\overline{Q}_T], \ i=1,2; \\ \\ \frac{\partial^2 u_i}{\partial x^2}, & \frac{\partial u_i}{\partial t} & \in & C[Q_T], \ i=1,2, \end{array}$$

причем они являются решениями одной и той же задачи [2.3]. Тогда $u_1(x,t)=u_2(x,t)$ в \overline{Q}_T .

Доказательство. Для доказательства единственности введем, как обычно, новую функцию $v(x,t)=u_1(x,t)-u_2(x,t)$. Тогда, очевидно, $v,v_x\in C[\overline{Q}_T],\ v_t,v_{xx}\in C[Q_T]$ и v(x,t) будет являться решением следующей краевой задачи:

$$\begin{cases} v_t &= a^2 v_{xx}; & 0 < t \le T, \ 0 < x < l; \\ \alpha_1 v(0,t) - \alpha_2 v_x(0,t) &= 0; & 0 \le t \le T; \\ \beta_1 v(l,t) + \beta_2 v_x(l,t) &= 0; & 0 \le t \le T; \\ v(x,0) &= 0; & 0 \le x \le l. \end{cases}$$

Умножив $v_t=a^2v_{xx}$ на 2v и учтя, что $2vv_t=\frac{\partial}{\partial t}(v^2)$, получим:

$$\frac{\partial}{\partial \tau}(v^2(x,\tau)) = 2a^2v(x,\tau)v_{xx}(x,\tau).$$

Из равенства функций следует равенство определенных интегралов:

$$\int_{0}^{l} \int_{0}^{t} \frac{\partial}{\partial \tau} (v^{2}(x,\tau)) d\tau dx = 2a^{2} \int_{0}^{l} \int_{0}^{t} v(x,\tau) v_{xx}(x,\tau) d\tau dx,$$

причем в правой части мы можем поменять порядок интегрирования:

$$\int_{0}^{l} \int_{0}^{t} \frac{\partial}{\partial \tau} (v^{2}(x,\tau)) d\tau dx = 2a^{2} \int_{0}^{t} \left[\int_{0}^{l} v(x,\tau) v_{xx}(x,\tau) dx \right] d\tau.$$
 (2.7)

Из начального условия следует, что

$$\int_{0}^{l} \int_{0}^{t} \frac{\partial}{\partial \tau} (v^{2}(x,\tau)) d\tau dx = \int_{0}^{l} v^{2}(x,t) dx.$$

Внутренний интеграл в правой части (2.7) возьмем по частям:

$$\int_{0}^{l} v(x,\tau)v_{xx}(x,\tau) dx = v(x,\tau)v_{x}(x,\tau)\Big|_{0}^{l} - \int_{0}^{l} (v_{x}(x,t))^{2} dx.$$

Из краевых условий легко вывести, что

$$v(l,t)v_x(l,t) = \left\{ \begin{array}{ll} 0, & \text{если } \beta_1 = 0, \ \beta_2 > 0; \\ 0, & \text{если } \beta_1 > 0, \ \beta_2 = 0; \\ -\frac{\beta_1}{\beta_2}v^2(l,t), & \text{если } \beta_1 > 0, \ \beta_2 > 0. \end{array} \right.,$$

$$v(0,t)v_x(0,t) = \left\{ \begin{array}{ll} 0, & \text{если } \alpha_1 = 0, \ \alpha_2 > 0; \\ 0, & \text{если } \alpha_1 > 0, \ \alpha_2 = 0; \\ \frac{\alpha_1}{\alpha_2}v^2(0,t), & \text{если } \alpha_1 > 0, \ \alpha_2 > 0. \end{array} \right.,$$

для любых $t \in [0; T]$.

Из этого следует, что если обозначить

$$P(\tau) = v(x,\tau)v_x(x,\tau)|_0^l = v(l,\tau)v_x(l,\tau) - v(0,\tau)v_x(0,\tau),$$

TO $P(\tau) \leqslant 0, \ \forall \tau \in [0; T].$

Тогда равенство (2.7) можно переписать так:

$$\int_{0}^{l} v^{2}(x,t) dx - 2a^{2} \int_{0}^{t} P(\tau) d\tau + 2a^{2} \int_{0}^{t} \int_{0}^{l} v_{x}^{2}(x,\tau) dx d\tau = 0.$$

Первое и третье слагаемые, очевидно, неотрицательны; неотрицательность второго следует из неположительности подынтегральной функции. Из этого следует, что все они на самом деле равны нулю. Так

как функция v(x,t) непрерывна, то из того, что $\int\limits_0^l v^2(x,t)\,dx=0$, следует, что

$$v(x,t) \equiv 0.$$

Отсюда получаем, что $u_2(x,t) \equiv u_1(x,t)$. Теорема доказана.

2.7 Существование решения задачи Коши

Рассмотрим однородную задачу Коши:

$$[2.4] \left\{ \begin{array}{lcl} (1) & u_t & = & a^2 u_{xx}, & -\infty < x < +\infty, \ t > 0; \\ (2) & u(x,0) & = & \phi(x), & -\infty < x < +\infty. \end{array} \right.$$

Действуя так же, как и при поиске решения первой краевой задачи, проведем некоторые преобразования, а потом докажем, что полученная функция будет являться решением.

Определим новую функцию v(x,t) как произведение двух функций:

$$v(x,t) = X(x)T(t).$$

Потребуем, чтобы она удовлетворяла уравнению теплопроводности:

$$T'(t)X(x) = a^2X''(x)T(t).$$

Разделив на $a^2X(x)T(t)$ и заметив, что слева и справа стоят функции, зависящие от разных переменных, получим:

$$\frac{X''(x)}{X(x)} = \frac{T'(t)}{a^2 T(t)} = -\lambda^2,$$

где $\lambda = const > 0$.

Примечание. Мы пишем " $-\lambda^2$ ", потому что так нам захотелось. Могли бы и что-нибудь другое написать...

Отсюда получаем два уравнения:

$$X''(x) + \lambda^2 X(x) = 0; \tag{2.8}$$

$$T'(t) + a^2 \lambda^2 T(t) = 0. (2.9)$$

Легко видеть, что функция $X(x) = e^{i\lambda x}$ будет решением (2.8). Аналогично, функция $T(t) = e^{-a^2\lambda^2 t}$ будет являться решением (2.9). Следовательно,

$$v(x,t) = e^{i\lambda x - a^2\lambda^2 t}$$

– решение (1). Очевидно, функция

$$u_{\lambda} = A(\lambda)e^{i\lambda x - a^2\lambda^2 t}$$

тоже будет решением $(A(\lambda))$ — некоторая функция). Теперь определим итоговую функцию следующим образом:

$$u(x,t) = \int_{-\infty}^{+\infty} A(\lambda)e^{i\lambda x - a^2\lambda^2 t} d\lambda.$$

Потребуем, чтобы она удовлетворяла начальному условию:

$$u(x,0) = \phi(x) = \int_{-\infty}^{+\infty} A(\lambda)e^{i\lambda x} d\lambda$$

Согласно теории преобразования Фурье, отсюда легко находится $A(\lambda)$:

$$A(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-i\lambda s} \phi(s) \, ds.$$

Итак, получаем следующий вид функции u(x,t):

$$u(x,t) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} \left[\int_{-\infty}^{+\infty} e^{-i\lambda s} \phi(s) \, ds \right] e^{i\lambda x - a^2 \lambda^2 t} \, d\lambda = \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{i\lambda(x-s) - a^2 \lambda^2 t} \, d\lambda \right] \phi(s) \, ds.$$

Проведя вычисление внутреннего интеграла (которое мы опускаем), получим окончательную формулу для u(x,t):

$$u(x,t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\}\phi(s) ds.$$
 (2.10)

Обозначив $G(x,s,t) = \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\}$, получим

$$u(x,t) = \int_{-\infty}^{+\infty} G(x,s,t)\phi(s) ds.$$

Покажем, что функция G(x,s,t) является решением уравнения теплопроводности при фиксированном s:

$$G_x(x,s,t) = \frac{1}{\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} \left(-\frac{2(x-s)}{4a^2 t}\right);$$

$$G_{xx}(x,s,t) = \frac{1}{\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} \frac{(x-s)^2}{4a^4 t^2} + \frac{1}{\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} \left(-\frac{2}{4a^2 t}\right);$$

$$G_t(x,s,t) = -\frac{1}{2\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} + \frac{1}{\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} \frac{(x-s)^2}{4a^2 t^2}$$

Легко проверить, что $G_t(x, s, t) = a^2 G_{xx}(x, s, t)$.

Теперь докажем, что при определенных ограничениях на начальное условие полученная функция будет существовать.

Теорема 2.6 (существования). Пусть функция $\phi(x)$ задает начальное условие в задаче Коши [2.4], причем $\phi(x) \in C(\mathbb{R}), \ |\phi(x)| \leqslant M, \ \forall x \in \mathbb{R}.$ Тогда функция u(x,t), определяемая формулой (2.10), непрерывна при $x \in \mathbb{R}, t > 0$, имеет непрерывные частные производные u_t, u_{xx} при $x \in \mathbb{R}, t > 0$, удовлетворяет уравнению теплопроводности при $x \in \mathbb{R}, t > 0$ и $\forall x_0 \in \mathbb{R}$ $\lim_{t \to 0+} u(x,t) = \phi(x_0)$.

Замечание. Последнее утверждение теоремы означает, что функция

$$u(x,t) = \begin{cases} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\}\phi(s) ds, & t > 0; \\ \phi(x), & t = 0. \end{cases}$$

непрерывна в (x,t): $x \in \mathbb{R}, t \ge 0$.

Доказательство. (1) Докажем непрерывность u(x,t) при $x \in \mathbb{R}, t > 0$. Для этого, очевидно, достаточно доказать, что функция непрерывна в прямоугольнике $\Pi_{L,t_0,T} = \{(x,t): -L < x < L; t_0 < t < T\}$, где L, t_0, T — произвольные положительные константы.

Подынтегральные функции, очевидно, непрерывны в $\Pi_{L,t_0,T}$. Тогда для доказательства непрерывности функции u(x,t) в $\Pi_{L,t_0,T}$ достаточно показать равномерную сходимость интеграла (2.10). Чтобы применить признак Вейерштрасса равномерной сходимости, построим такую функцию F(s), чтобы

$$\begin{cases} |G(x,s,t)| \leqslant F(s) \ \forall x,t \in \Pi_{L,t_0,T}, \\ \text{Интеграл} \int\limits_{-\infty}^{+\infty} F(s) \ ds \ \text{сходился.} \end{cases}$$

Для этого оценим показатель экспоненты для различных s:

$$\begin{split} & \Pi \text{ри } |s| \leqslant 2L \qquad -\frac{(x-s)^2}{4a^2t} \leqslant 0; \\ & \Pi \text{ри } s \geqslant 2L \qquad \frac{(x-s)^2}{t} \geqslant \frac{(L-s)^2}{T} \Longrightarrow -\frac{(x-s)^2}{4a^2t} \leqslant -\frac{(L-s)^2}{4a^2T}; \\ & \Pi \text{ри } s \leqslant -2L \qquad \frac{(x-s)^2}{t} \geqslant \frac{(L+s)^2}{T} \Longrightarrow -\frac{(x-s)^2}{4a^2t} \leqslant -\frac{(L+s)^2}{4a^2T}. \end{split}$$

При $t_0 \leqslant t \leqslant T$ первый сомножитель в интеграле (2.10) можно оценить так:

$$\frac{1}{\sqrt{4\pi a^2 t}} \leqslant \frac{1}{\sqrt{4\pi a^2 t_0}}$$

В итоге получаем ограниченность |G(x, s, t)| сверху:

$$|G(x,s,t)|\leqslant F(s)=\left\{\begin{array}{ll} \frac{1}{\sqrt{4\pi a^2t_0}}, & |s|\leqslant 2L;\\ \\ \frac{1}{\sqrt{4\pi a^2t_0}}\exp\{-\frac{(L-s)^2}{4a^2T}+\frac{L^2}{4a^2T}\}, & s\geqslant 2L;\\ \\ \frac{1}{\sqrt{4\pi a^2t_0}}\exp\{-\frac{(L+s)^2}{4a^2T}+\frac{L^2}{4a^2T}\}, & s\leqslant -2L; \end{array}\right.$$

— слагаемое $\frac{L^2}{4a^2T}$ в показателе экспоненты было добавлено для непрерывности F(s) (очевидно, оно не изменит оценки сверху).

Наличие экспоненты говорит о том, что интеграл $\int\limits_{-\infty}^{+\infty} F(s)\,ds$ сходится. Таким образом, используя ограниченность $|\phi(x)|$, мы можем модуль подынтегральной функции в (2.10) оценить сверху функцией MF(s), соответствующий интеграл от которой сходится. По признаку Вейерштрасса мы получаем равномерную сходимость исходного интеграла и непрерывность функции u(x,t) в $\Pi_{L,t_0,T}$.

(2) Покажем непрерывность частных производных на том же прямоугольнике $\Pi_{L,t_0,T}$. Докажем непрерывность u_{xx} . Из формулы для G(x,s,t) следует, что:

$$|G_{xx}(x,s,t)| = \left|\frac{(x-s)^2}{4a^4t^2}G(x,s,t) - \frac{1}{2a^2t}G(x,s,t)\right| \leqslant F(s)\left[\frac{1}{2a^2t_0} + \frac{L^2 + 2Ls + s^2}{4a^4t_0^2}\right] = F_1(s).$$

Многочлен во втором сомножителе, очевидно, не изменит интегрируемость F(s). Тогда получаем

$$u_{xx}(x,t) = \int_{-\infty}^{+\infty} G_{xx}(x,s,t)\phi(s) ds \leqslant \int_{-\infty}^{+\infty} |G_{xx}(x,s,t)| |\phi(s)| ds \leqslant M \int_{-\infty}^{+\infty} F_1(s) ds < \infty$$

- то есть равномерную сходимость интеграла от производной, а, следовательно, и непрерывность $u_{xx}(t)$. Непрерывность u_t доказывается аналогично.
- (3) Мы показали, что функция G(x, s, t) является решением уравнения теплопроводности. Отсюда получаем:

$$u_t(x,t) = \int_{-\infty}^{+\infty} G_t(x,s,t)\phi(s) \, ds = a^2 u_{xx}(x,t) = a^2 \int_{-\infty}^{+\infty} G_{xx}(x,s,t)\phi(s) \, ds.$$

- то есть функция u(x,t) тоже удовлетворяет уравнению теплопроводности.
 - (4) Итак, нам осталось доказать, что

$$\forall x_0 \in \mathbb{R} \lim_{\substack{t \to 0+\\ x \to x_0}} u(x,t) = \phi(x_0).$$

То есть, по определению предела функции

$$\forall x_0 \ \forall \varepsilon > 0 \ \exists \delta : \ \forall x, t : \ t, \ |x - x_0| < \delta \Longrightarrow |u(x, t) - \phi(x_0)| < \varepsilon.$$

Фиксируем точку x_0 и произвольное $\varepsilon > 0$. Из непрерывности $\phi(x)$ следует, что

$$\exists \Delta : |x - x_0| < \Delta \Longrightarrow |\phi(x) - \phi(x_0)| < \frac{\varepsilon}{4}.$$

Рассмотрим $|u(x,t)-\phi(x_0)|$:

$$|u(x,t) - \phi(x_0)| = |\int_{-\infty}^{+\infty} G(x,s,t)\phi(s) \, ds - \phi(x_0)| \le |\int_{-\infty}^{x_0 - \Delta} G(x,s,t)\phi(s) \, ds| + |\int_{x_0 + \Delta}^{+\infty} G(x,s,t)\phi(s) \, ds| + |\int_{x_0 - \Delta}^{+\infty} G(x,s,t)\phi(s)$$

Обозначив по порядку интегралы символами J_1, J_2, J_3, J_4 , получим

$$|u(x,t) - \phi(x_0)| \le |J_1| + |J_2| + |J_3| + |J_4|.$$

Оценим $|J_3|$. Мы уже знаем, что $|\phi(x)-\phi(x_0)|<rac{arepsilon}{4}$ в Δ -окрестности. Тогда, учитывая, что $\int\limits_{-\infty}^{+\infty}G\,ds=1,$ получим

$$|J_3| = |\int_{x_0 - \Delta}^{x_0 + \Delta} G(x, s, t)(\phi(s) - \phi(x_0)) ds| \leqslant \frac{\varepsilon}{4} \int_{x_0 - \Delta}^{x_0 + \Delta} G(x, s, t) ds \leqslant \frac{\varepsilon}{4} \int_{-\infty}^{+\infty} G(x, s, t) ds$$

Отсюда получаем, что

$$|J_3| \leqslant \frac{\varepsilon}{4}.$$

Теперь потребуем, чтобы $|x-x_0|<\delta_1<\frac{\Delta}{2}$. Все дальнейшие оценки проводятся только для таких x. Оценим $|J_4|$:

$$|J_4| = |\int_{x_0 - \Delta}^{x_0 + \Delta} G(x, s, t) \phi(x_0) \, ds - \phi(x_0)| \leqslant |\phi(x_0)| |\int_{x_0 - \Delta}^{x_0 + \Delta} G(x, s, t) \, ds - 1| = \{z \leftrightarrow \frac{s - x}{\sqrt{4a^2t}}\} = |\phi(x_0)| |\int_{\frac{x_0 + \Delta - x}{\sqrt{4a^2t}}}^{\frac{x_0 + \Delta - x}{\sqrt{4a^2t}}} \frac{1}{\sqrt{\pi}} e^{-z^2} \, dz - 1|.$$

Уменьшая t, мы получим стремление верхнего предела интегрирования $\kappa + \infty$, а нижнего — $\kappa - \infty$.

Следовательно, так как $\int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-z^2} dz = 1$, то

$$\exists \delta_2: \ t < \delta_2 \implies |J_4| \leqslant |\phi(x_0)| | \int_{\frac{x_0 - \Delta - x}{\sqrt{4a^2t}}}^{\frac{x_0 + \Delta - x}{\sqrt{4a^2t}}} \frac{1}{\sqrt{\pi}} e^{-z^2} dz - 1| \leqslant \frac{\varepsilon}{4}.$$

Оценим теперь $|J_1|$:

$$|J_{1}| = |\int_{-\infty}^{x_{0} - \Delta} G(x, s, t)\phi(s) ds| \leq |\int_{-\infty}^{x_{0} - \Delta} \frac{1}{\sqrt{4\pi a^{2}t}} \exp\{-\frac{(x - s)^{2}}{4a^{2}t}\} M ds| =$$

$$= \{z \leftrightarrow \frac{-(x - s)}{\sqrt{4a^{2}t}}\} = \frac{M}{\sqrt{\pi}} \int_{-\infty}^{\frac{-x + x_{0} - \Delta}{\sqrt{4a^{2}t}}} e^{-z^{2}} dz.$$

В силу сходимости интеграла, мы можем подобрать такое δ_3 , что $\forall \; t < \delta_3$

$$\frac{M}{\sqrt{\pi}} \int_{-\infty}^{\frac{-x+x_0-\Delta}{\sqrt{4a^2t}}} e^{-z^2} dz \leqslant \frac{\varepsilon}{4}.$$

Следовательно, $|J_1| \leqslant \frac{\varepsilon}{4}$. Такая же оценка верна и для $|J_2|$ (доказательство аналогично).

Итак, мы получили, что

$$|u(x,t) - \phi(x_0)| \le |J_1| + |J_2| + |J_3| + |J_4| \le \varepsilon \Longrightarrow$$

 $\Longrightarrow \forall x_0 \ \forall \varepsilon > 0 \ \exists \delta = \min(\delta_1, \delta_2, \delta_3) : \ \forall x, t : t, |x - x_0| < \delta \quad |u(x,t) - \phi(x_0)| < \varepsilon.$

Теорема полностью доказана.

Следствие 1. Заметим, что при выполнении условий теоремы $(\phi(x) \in C(\mathbb{R}), |\phi(x)| \leq M)$ мы получаем ограниченность u(x,t):

$$|u(x,t)| = \int_{-\infty}^{+\infty} |G(x,s,t)| |\phi(s)| ds \leqslant M \int_{-\infty}^{+\infty} G(x,s,t) ds = M.$$

Следствие 2. Также можно получить бесконечную дифференцируемость u(x,t) на $\mathbb{R} \times \mathbb{R}^+$. В этом случае

$$\frac{\partial^{p} u}{\partial x^{k} \partial t^{m}}(x,t) = \int_{-\infty}^{+\infty} \frac{\partial^{p} G}{\partial x^{k} \partial t^{m}}(x,s,t) \phi(s) ds, \quad (k+m=p)$$

а этот интеграл равномерно сходится, что можно показать теми же рассуждениями, что и в доказательстве теоремы.

Следствие 3. Приняв условие задачи Коши, мы получаем «бесконечную» скорость распространения тепла. Представим, что непрерывная функция $\phi(x) = u(x,0)$ равна нулю всюду, за исключением некоторого отрезка [a;b]. Тогда получаем, что

$$u(x,t) = \int_{a}^{b} G(x,s,t)\phi(s) ds > 0 \quad \forall t > 0, \ \forall x \in \mathbb{R}.$$

2.8 Единственность решения задачи Коши

Итак, мы доказали существование решения задачи Коши для ограниченного и непрерывного начального условия. Покажем, что в этом случае решение единственно.

Теорема 2.7 (единственности). Пусть две функции u_1 , $u_2(x,t)$ непрерывны на $(\mathbb{R} \times \mathbb{R}^+)$, являются решениями одной и той же задачи Коши [2.4], причем

$$|u_i(x,t)| \leqslant M, \ \forall (x,t) \in \mathbb{R} \times \overline{\mathbb{R}^+};$$

 $\frac{\partial u_i}{\partial t}, \ \frac{\partial^2 u_i}{\partial x^2} \in C(\mathbb{R} \times \mathbb{R}^+).$ $i = 1, 2$

 $Torda\ u_1(x,t) = u_2(x,t)\ \forall (x,t) \in (\mathbb{R} \times \overline{\mathbb{R}^+})$

Доказательство. Введем новую функцию $u(x,t) = u_1(x,t) - u_2(x,t)$. Очевидно, она также будет непрерывна, причем

$$\begin{cases} u_t, u_{xx} \in C(\mathbb{R} \times \mathbb{R}^+); \\ u_t = a^2 u_{xx}; \\ u(x,0) = 0, \ \forall x \in \mathbb{R}; \\ |u(x,t)| \leqslant 2M, \ \forall (x,t) \in (\mathbb{R} \times \overline{\mathbb{R}}^+). \end{cases}$$

Очевидно, для доказательства теоремы достаточно показать, что функция u(x,t) тождественно равна нулю, то есть равна нулю в произвольной точке (x_0,t_0) .

Для этого возьмем такие константы L и T, чтобы точка (x_0, t_0) содержалась в прямоугольнике

$$\Pi_{LT} = \{(x,t): |x| \leq L, 0 \leq t \leq T\}, \Gamma_{LT}$$
 — его граница.

Рассмотрим новую вспомогательную функцию $v^L(x,t)=\frac{4M}{L^2}(\frac{x^2}{2}+a^2t).$ Легко проверить, что

$$v_t^L, v_{xx}^L \in C[\Pi_{LT}];$$

 $v_t^L = a^2 v_{xx}^L \in C[\Pi_{LT}].$

Кроме того, для нее справедливы такие оценки на границе Γ_{LT} :

$$v^{L}(L,t), v^{L}(-L,t) \geqslant \frac{4M}{L^{2}}(\frac{L^{2}}{2}+0) = 2M;$$

 $v^{L}(x,0) = \frac{4M}{L^{2}}\frac{x^{2}}{2} \geqslant 0.$

Из исходных оценок для u(x,t) получаем, что $v^L(x,t)\geqslant u(x,t)$ всюду на Γ_{LT} . Согласно принципу максимального значения

$$v^L(x,t) \geqslant u(x,t) \ \forall (x,t) \in \Pi_{LT}.$$

Аналогично, $-v^L(x,t)\leqslant u(x,t)\ \forall (x,t)\in \Pi_{LT}.$ Из этого следует, что

$$|u(x_0, t_0)| \le v^L(x_0, t_0) = \frac{4M}{L^2} (\frac{x_0^2}{2} + a^2 t_0).$$

Устремив L к бесконечности, получим, что $|u(x_0,t_0)| \leq v^{\infty}(x_0,t_0) = 0$. Теорема доказана.

2.9 Существование решения первой и второй краевой задачи для уравнения теплопроводности на полупрямой

Рассмотрим первую краевую задачу на полупрямой:

$$[2.5] \begin{cases} u_t = a^2 u_{xx}, & x > 0, \ t > 0; \\ u(0,t) = 0, & t \geqslant 0; \\ u(x,0) = \phi(x), & x \geqslant 0, \end{cases}$$

где $\phi(0) = 0$.

Найдем ее решение, доопределив нечетным образом функцию $\phi(x)$, задающую начальное условие на всей вещественной оси:

$$\Phi(x) = \begin{cases} \phi(x), & x \geqslant 0; \\ -\phi(-x), & x < 0. \end{cases}$$

Соответственно, рассмотрим такую задачу Коши:

$$[2.6] \left\{ \begin{array}{rcl} U_t & = & a^2 U_{xx}, & -\infty < x < +\infty, \ t > 0; \\ U(0,t) & = & 0, & t \geqslant 0; \\ U(x,0) & = & \Phi(x), & -\infty < x < +\infty. \end{array} \right.$$

Ее решение нам известно:

$$U(x,t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\} \Phi(s) ds.$$

Пусть u(x,t)=U(x,t) при $(x,t)\in (\overline{\mathbb{R}}^+\times\overline{\mathbb{R}}^+)$. Покажем, что эта функция является решением [2.5]. Из постановки задачи Коши [2.6] очевидно, что

$$\begin{cases} u_t = a^2 u_{xx}, & x > 0, \ t > 0; \\ u(x,0) = \phi(x), & x \geqslant 0. \end{cases}$$

Проверим выполнение граничного условия:

$$u(0,t) = U(0,t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{s^2}{4a^2 t}\} \Phi(s) ds$$

Под интегралом стоит произведение четной и нечетной функций, следовательно, он равен нулю. Граничное условие выполнено. Получим теперь полную формулу для решения:

$$\begin{split} u(x,t) &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\} \Phi(s) \, ds = \\ &= \int_{-\infty}^{0} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\} (-\phi(-s)) \, ds + \int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\} \phi(s) \, ds = \\ &= -\int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x+s)^2}{4a^2 t}\} \phi(s) \, ds + \int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\{-\frac{(x-s)^2}{4a^2 t}\} \phi(s) \, ds = \\ &= \int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \left[\exp\{-\frac{(x-s)^2}{4a^2 t}\} - \exp\{-\frac{(x+s)^2}{4a^2 t}\} \right] \phi(s) \, ds. \end{split}$$

Итак,

$$u(x,t) = \int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \left[\exp\{-\frac{(x-s)^2}{4a^2 t}\} - \exp\{-\frac{(x+s)^2}{4a^2 t}\} \right] \phi(s) ds$$
 (2.11)

- это и есть решение первой краевой задачи на полупрямой.

Вторая краевая задача на полупрямой

Вторая краевая задача на полупрямой имеет следующий вид:

$$[2.7] \left\{ \begin{array}{rcl} u_t & = & a^2 u_{xx}, & x > 0, \ t > 0; \\ u_x(0,t) & = & 0, & t \geqslant 0; \\ u(x,0) & = & \phi(x), & x \geqslant 0. \end{array} \right.$$

Снова для поиска решения доопределим функцию, задающую начальное условие, но на этот раз четным образом:

$$\Phi(x) = \begin{cases} \phi(x), & x \geqslant 0; \\ \phi(-x), & x < 0. \end{cases}$$

Изменив исходную задачу, получим такую задачу Коши:

$$\begin{cases} U_t &= a^2 U_{xx}, & -\infty < x < +\infty, \ t > 0; \\ U_x(0,t) &= 0, & t \geqslant 0; \\ U(x,0) &= \Phi(x), & -\infty < x < +\infty. \end{cases}$$

Аналогично, решением ее будет функция $U(x,t)=\int\limits_{-\infty}^{+\infty}\frac{1}{\sqrt{4\pi a^2t}}\exp\{-\frac{(x-s)^2}{4a^2t}\}\Phi(s)\,ds.$ Пусть $u(x,t)=\int\limits_{-\infty}^{+\infty}\frac{1}{\sqrt{4\pi a^2t}}\exp\{-\frac{(x-s)^2}{4a^2t}\}\Phi(s)\,ds$

U(x,t) при $(x,t)\in(\overline{\mathbb{R}}^+\times\overline{\mathbb{R}}^+)$. Опять же, очевидно, что

$$\begin{cases} u_t = a^2 u_{xx}, & x > 0, \ t > 0; \\ u(x,0) = \phi(x), & x \geqslant 0. \end{cases}$$

Проверим выполнение краевого условия:

$$u_x(x,t) = U_x(x,t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \left(-\frac{(x-s)}{2a^2 t} \right) \exp\{-\frac{(x-s)^2}{4a^2 t}\} \Phi(s) \, ds \Longrightarrow$$
$$u_x(0,t) = U_x(0,t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \left(\frac{s}{2a^2 t} \right) \exp\{-\frac{s^2}{4a^2 t}\} \Phi(s) \, ds \, \forall t \geqslant 0.$$

Под получившимся интегралом стоят произведение двух четных и одной нечетной функций, следовательно, он обращается в ноль. Граничное условие выполнено. Получим формулу для решения [2.7]:

$$u(x,t) = \int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} \phi(s) \, ds + \int_{-\infty}^{0} \frac{1}{\sqrt{4\pi a^2 t}} \exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} \phi(-s) \, ds = \int_{0}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \left[\exp\left\{-\frac{(x-s)^2}{4a^2 t}\right\} + \exp\left\{-\frac{(x+s)^2}{4a^2 t}\right\}\right] \phi(s) \, ds.$$

- это решение второй краевой задачи на полупрямой.

2.10 Функция Грина для первой краевой задачи

Рассмотрим первую краевую задачу:

$$\begin{cases} u_t &= a^2 u_{xx}, & 0 < x < l, \ 0 < t \leqslant T; \\ u(0,t) &= 0, & 0 \leqslant t \leqslant T; \\ u(l,t) &= 0, & 0 \leqslant t \leqslant T; \\ u(x,0) &= \phi(x), & 0 \leqslant x \leqslant l. \end{cases}$$

Как уже известно, ее решение задается следующим образом:

$$u(x,t) = \sum_{n=1}^{\infty} \frac{2}{l} \left(\int_{0}^{l} \phi(s) \sin(\frac{\pi n}{l} s) \, ds \right) \sin(\frac{\pi n}{l} x) \exp\{-a^2 \left(\frac{\pi n}{l}\right)^2 t\}.$$

Мы можем представить его в несколько ином виде, как уже делали при решении задачи Коши:

$$u(x,t) = \int_{0}^{l} G(x,s,t)\phi(s) ds,$$

где
$$G(x,s,t)=\sum_{l=1}^{\infty}\frac{2}{l}\sin(\frac{\pi n}{l}s)\sin(\frac{\pi n}{l}x)\exp\{-a^2\left(\frac{\pi n}{l}\right)^2t\}.$$
 (2.12)

– функция Грина для первой краевой задачи.

Докажем несколько свойств функции Грина.

Свойство 1.

$$G(x, s, t) = G(s, x, t).$$

Это свойство очевидно из определения функции Грина.

Свойство 2.

$$G(x, s, t) \in C^{\infty}(\mathbb{R} \times \mathbb{R} \times \mathbb{R}^+).$$

Доказательство. Докажем непрерывность в точке (x, s, t). Для этого достаточно заметить, что при $t > t_0$ ряд равномерно сходится по признаку Вейерштрасса, так как его можно ограничить сходящимся рядом из экспонент:

$$|G(x, s, t)| \le \sum_{n=1}^{\infty} \frac{2}{l} \exp\{-a^2 \left(\frac{\pi n}{l}\right)^2 t_0\}.$$

Для доказательства дифференцируемости достаточно заметить, что ряд из производных будет равномерно сходиться, так как при дифференцировании в качестве новых множителей появятся только полиномы от n, которые не помешают — экспонента все равно обеспечивает сходимость.

Свойство 3.

$$\begin{cases} G_t = a^2 G_{xx}; \\ G_t = a^2 G_{ss}. \end{cases}$$

Первое уравнение можно проверить простым дифференцированием формулы (2.12), а второе — дифференцированием уравнения из свойства 1.

Свойство 4.

$$G(x, s, t) \ge 0, \ x, s \in [0; l], \ t > 0.$$

Доказательство. Докажем это для произвольной точки (x, s_0, t) . Пусть функция $\phi_h(x)$ равна некоторой положительной функции $\widetilde{\phi}(x)$ на интервале $(s_0 - h; s_0 + h)$, а вне этого интервала равна нулю:

$$\phi_h(x) = \begin{cases} \widetilde{\phi}(x) > 0, & x \in (s_0 - h; s_0 + h); \\ 0, & x \in [0; l] \setminus (s_0 - h; s_0 + h). \end{cases}$$

Кроме того, она удовлетворяет следующим условиям:

$$\begin{cases} \phi_h(x) \in C[0; l]; \\ \int\limits_0^l \phi_h(x) \, dx = 1. \end{cases}$$

и задает начальное условие в некоторой краевой задаче типа [2.2]. Тогда функция $u_h(x,t)$, являющаяся решением этой краевой задачи, задается формулой:

$$\begin{split} u_h(x,t) &= \int\limits_0^l G(x,s,t)\phi_h(s)\,ds = \int\limits_{s_0-h}^{s_0+h} G(x,s,t)\phi_h(s)\,ds = \\ &= \{ \text{ теорема о среднем значении } (5.1)\} = G(x,\theta,t) \int\limits_{s_0-h}^{s_0+h} \phi_h(s)\,ds = G(x,\theta,t), \; \theta \in (s_0-h; \, s_0+h). \Longrightarrow \\ &\Longrightarrow \lim_{h \to 0} G(x,\theta,t) = \lim_{h \to 0} u_h(x,t) \Longrightarrow \end{split}$$

$$G(x, s_0, t) = \lim_{h \to 0} u_h(x, t). \tag{2.13}$$

Применим принцип максимального значения, зная, что $u_h(0,t) \equiv 0 \equiv u_h(l,t)$:

$$\min_{\substack{x \in [0;\,l] \\ t \in [0;\,T]}} u_h(x,t) = \min\{0,0,\min_{x \in [0;\,l]} \phi_h(x)\} = 0.$$

Согласно (2.13), получаем неотрицательность $G(x, s_0, t)$. Свойство 4 доказано.

3 Уравнения эллиптического типа

Пусть Ω — некоторая открытая область в ${\bf E^3}$, ограниченная поверхностью Σ . Аналогично, D — некоторая открытая область в ${\bf E^2}$, ограниченная кривой L.

3.1 Уравнения Лапласа и Пуассона. Постановка краевых задач. Фундаментальные решения уравнения Лапласа

Рассмотрим такие уравнения теплопроводности:

$$\begin{array}{rcl} u_t(x,y,z,t) & = & a^2 \Delta u(x,y,z,t) + f_1(x,y,z), & (x,y,z) \in \Omega; & \Delta u = u_{xx} + u_{yy} + u_{zz}; \\ u_t(x,y,t) & = & a^2 \Delta u(x,y,t) + f_2(x,y), & (x,y) \in D; & \Delta u = u_{xx} + u_{yy}. \end{array}$$

В случае стационарного теплового процесса $(u_t \equiv 0)$ мы получаем уравнения эллиптического типа: $\Delta u = -f$. При этом из общего вида получаются два типа уравнений:

$$\left\{\begin{array}{l} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -f(x,y,z);\\ -y \text{равнения Пуассона в } \mathbf{E^3} \text{ и } \mathbf{E^2};\\ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -f(x,y). \end{array}\right.$$

$$\left\{\begin{array}{l} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0;\\ -y \text{равнения Лапласа в } \mathbf{E^3} \text{ и } \mathbf{E^2};\\ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. \end{array}\right.$$

Эти уравнения широко используются при описании разнообразных стационарных физических полей. Определение. Функция u(x,y,z) называется гармонической в Ω , если $u \in C^2(\Omega)$ и $\Delta u \equiv 0$ в Ω .

Гармонические функции от двух переменных можно получить, используя понятие аналитичности функции комплексного переменного. В курсе ТФКП показывалось, что если функция f(z) = u(x,y) + iv(x,y) аналитична, то выполняются условия Коши-Римана для функций u,v:

$$\begin{cases} u_x(x,y) = v_y(x,y); \\ u_y(x,y) = -v_x(x,y). \end{cases}$$

Дифференцируя верхнее равенство по x, а нижнее — по y, получим

$$\begin{cases} u_{xx}(x,y) = v_{yx}(x,y); \\ u_{yy}(x,y) = -v_{xy}(x,y). \end{cases} \Longrightarrow u_{xx} + u_{yy} = 0$$

Аналогично — для функции v. Отсюда можно сделать вывод, что если функция f(z)=u(x,y)+iv(x,y) — аналитическая, то функции $u,\ v$ — гармонические.

В дальнейшем мы будем рассматривать в пространстве ${\bf E^3}$ такие задачи:

Внутренняя задача Дирихле

$$\left\{ \begin{array}{lcl} \Delta u(x,y,z) & = & 0, & (x,y,z) \in \Omega; \\[1mm] u(x,y,z) & = & \mu(x,y,z), & (x,y,z) \in \Sigma. \end{array} \right.$$

Внутренняя задача Неймана

$$\left\{ \begin{array}{lcl} \Delta u(x,y,z) & = & 0, & (x,y,z) \in \Omega; \\ \frac{\partial u}{\partial n}(x,y,z) & = & \nu(x,y,z), & (x,y,z) \in \Sigma. \end{array} \right.$$

Внешняя задача Дирихле

$$\left\{ \begin{array}{lcl} \Delta u(x,y,z) & = & 0, & (x,y,z) \in E^3 \setminus \overline{\Omega}; \\[1mm] u(x,y,z) & = & \mu(x,y,z), & (x,y,z) \in \Sigma. \end{array} \right.$$

Внешняя задача Неймана

$$\left\{ \begin{array}{lcl} \Delta u(x,y,z) & = & 0, & (x,y,z) \in E^3 \setminus \overline{\Omega}; \\ \frac{\partial u}{\partial n}(x,y,z) & = & \nu(x,y,z), & (x,y,z) \in \Sigma. \end{array} \right.$$

Естественно обобщить данные задачи на случай уравнения Пуассона. Кроме того, существуют и двухмерные аналоги, например:

$$\left\{ \begin{array}{lll} \Delta u(x,y) & = & 0, & (x,y) \in D; \\ u(x,y) & = & \mu(x,y), & (x,y) \in L. \end{array} \right. \ \ - \ {\bf внутренняя} \ {\bf задача} \ {\bf Дирихле} \ {\bf B} \ E^2.$$

Докажем, что функция

$$u(x, y, z) = \frac{1}{R_{MM_0}} = \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}}$$

 $(R_{MM_0}$ — расстояние между точками M(x,y,z) и $M_0(x_0,y_0,z_0))$ является решением уравнения Лапласа в $E^3 \setminus M_0$:

$$\begin{split} u_x &= -\frac{1}{2} \frac{2(x-x_0)}{R_{MM_0}^3} = -\frac{x-x_0}{R_{MM_0}^3}; \quad u_{xx} = -\frac{3(x-x_0)^2}{R_{MM_0}^5} - \frac{1}{R_{MM_0}^5} \\ u_y &= -\frac{1}{2} \frac{2(y-y_0)}{R_{MM_0}^3} = -\frac{y-y_0}{R_{MM_0}^3}; \quad u_{yy} = -\frac{3(y-y_0)^2}{R_{MM_0}^5} - \frac{1}{R_{MM_0}^5} \\ u_z &= -\frac{1}{2} \frac{2(z-z_0)}{R_{MM_0}^3} = -\frac{z-z_0}{R_{MM_0}^3}; \quad u_{zz} = -\frac{3(z-z_0)^2}{R_{MM_0}^5} - \frac{1}{R_{MM_0}^5} \\ \Longrightarrow \Delta \frac{1}{R_{MM_0}} &= \frac{3(x-x_0)^2 + 3(y-y_0)^2 + 3(z-z_0)^2}{R_{MM_0}^5} - \frac{3}{R_{MM_0}^3} \equiv 0 \end{split}$$

В случае $\mathbf{E^2}$ легко проверить, что функция $u(x,y)=\ln\frac{1}{\rho_{MM_0}}$, где $\rho_{MM_0}=\sqrt{(x-x_0)^2+(y-y_0)^2}$ будет решением уравнения Лапласа в $\mathbf{E^2}\setminus M_0$.

Эти функции называются фундаментальными решениями уравнения Лапласа.

3.2 1-я и 2-я формулы Грина

Первая формула Грина

Пусть поверхность Σ состоит из конечного числа замкнутых кусков, имеющих в каждой точке касательную, причем любые прямые, параллельные координатным осям, пересекают ее либо в конечном числе точек, либо по конечному числу отрезков. Тогда в области Ω для функции $\vec{A}(x,y,z) = \{P(x,y,z),Q(x,y,z),R(x,y,z)\}$, где $P,Q,R \in C^1(\bar{\Omega})$, верна формула Остроградского-Гаусса:

$$\iint_{\Sigma} (\vec{A}, \vec{n}) d\sigma = \iiint_{\Omega} \operatorname{div} \vec{A} d\tau.$$
(3.1)

Пусть u(x,y,z) и $v(x,y,z) \in C^2(\Omega) \cap C^1(\overline{\Omega}), \ \vec{A} = u \ {\rm gr} \ v.$ Тогда по формуле (3.1)

$$\iiint_{\Omega} \operatorname{div} (u \operatorname{gr} v) d\tau = \iint_{\Sigma} (u \operatorname{gr} v, \vec{n}) d\sigma =
= \left\{ (\operatorname{gr} v, \vec{n}) = \frac{\partial v}{\partial n}; \operatorname{div} (u \operatorname{gr} v) = (\operatorname{gr} u, \operatorname{gr} v) + u\Delta v \right\} = \iint_{\Sigma} u \frac{\partial v}{\partial n} d\sigma \Longrightarrow
\iint_{\Omega} ((\operatorname{gr} u, \operatorname{gr} v) + u\Delta v) d\tau = \iint_{\Sigma} u \frac{\partial v}{\partial n} d\sigma.$$
(3.2)

Полученная формула называется первой формулой Грина.

Вторая формула Грина

Поменяем местами в первой формуле Грина функции u и v . Вычитая полученное равенство из (3.2), получим **вторую формулу Грина**:

$$\iiint_{\Omega} (u\Delta v - v\Delta u) d\tau = \iint_{\Sigma} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) d\sigma.$$
 (3.3)

3.3 3-я формула Грина

Используем то, что функция

$$v = \frac{1}{R_{MM_0}} = \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}}$$

является решением уравнения Лапласа в пространстве ${\bf E^3}$. Фиксируем точку $M_0 \in \Omega$ и окружим ее сферой Σ_{ε} достаточно малого радиуса ε . Тогда функция $v \in C^2(\overline{\Omega}_{\varepsilon})$, где $\Omega_{\varepsilon} = \Omega \setminus S_{M_0}(\varepsilon)$.

Возьмем некоторую функцию u такую, что $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$. Запишем вторую формулу Грина для области Ω_{ε} :

$$\begin{split} & \iiint\limits_{\Omega_{\varepsilon}} \left(u \Delta v - v \Delta u \right) d\tau = \iint\limits_{\Sigma} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) \, d\sigma + \iint\limits_{\Sigma_{\varepsilon}} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) \, d\sigma \Longrightarrow \left\{ \Delta v \equiv 0 \right\} \Longrightarrow \\ & - \iint\limits_{\Omega_{\varepsilon}} \frac{1}{R_{MM_0}} \Delta u(M) \, d\tau_M = \iint\limits_{\Sigma} \left(u \frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) - \frac{1}{R_{MM_0}} \frac{\partial u}{\partial n} (M) \right) \, d\sigma_M + \\ & + \iint\limits_{\Sigma_{\varepsilon}} \left(u \frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) - \frac{1}{R_{MM_0}} \frac{\partial u}{\partial n} (M) \right) \, d\sigma_M. \end{split}$$

Рассмотрим поведение второго двойного интеграла при $\varepsilon \to 0$. Известно, что единичная нормаль \vec{n} к сфере Σ_{ε} в точке $\{x,y,z\}$ задается как $\{-\frac{x-x_0}{R_{MM_0}}, -\frac{y-y_0}{R_{MM_0}}, -\frac{z-z_0}{R_{MM_0}}\}$. Следовательно,

$$\frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) = \left(\vec{n}, \ \operatorname{gr} \frac{1}{R_{MM_0}} \right) = \frac{(x - x_0)^2}{R_{MM_0}^4} + \frac{(y - y_0)^2}{R_{MM_0}^4} + \frac{(z - z_0)^2}{R_{MM_0}^4} = \frac{1}{R_{MM_0}^2} = \frac{1}{\varepsilon^2}.$$

Тогда этот интеграл преобразуется следующим образом:

$$\iint_{\Sigma_{\varepsilon}} \left(u \frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) - \frac{1}{R_{MM_0}} \frac{\partial u}{\partial n} \right) d\sigma = \frac{1}{\varepsilon^2} \iint_{\Sigma_{\varepsilon}} u d\sigma - \frac{1}{\varepsilon} \iint_{\Sigma_{\varepsilon}} \frac{\partial u}{\partial n} d\sigma =$$

$$= \{ \text{ общая теорема о среднем значении } \} = u(M_{\varepsilon}') \frac{4\pi \varepsilon^2}{\varepsilon^2} - \frac{\partial u}{\partial n} (M_{\varepsilon}'') \frac{4\pi \varepsilon^2}{\varepsilon} =$$

$$= 4\pi u(M_{\varepsilon}') - 4\pi \varepsilon \frac{\partial u}{\partial n} (M_{\varepsilon}''),$$

где $M_{arepsilon}^{\prime\prime}, M_{arepsilon}^{\prime}$ — точки на сфере $\Sigma_{arepsilon}.$

Устремим ε к нулю, учитывая ограниченность $\frac{\partial u}{\partial n}$:

$$4\pi u(M_{\varepsilon}') - 4\pi \varepsilon \frac{\partial u}{\partial n}(M_{\varepsilon}'') \xrightarrow{\varepsilon \to 0} 4\pi u(M_0).$$

Перенеся в исходной формуле часть слагаемых в правую часть, получим формулу для $u(M_0)$:

$$4\pi u(M_0) = -\iiint_{\Omega} \frac{1}{R_{MM_0}} \Delta u(M) d\tau_M - \iint_{\Sigma} \left[u(M) \frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) - \frac{1}{R_{MM_0}} \frac{\partial u}{\partial n}(M) \right] d\sigma_M$$
(3.4)

Эта формула называется третьей формулой Грина.

Проведя аналогичные рассуждения в E^2 , легко получить двумерные аналоги второй и третьей формул Грина:

$$\iint\limits_{D} \left(u\Delta v - v\Delta u\right) ds = \int\limits_{L} \left(u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}\right) dl.$$

$$2\pi u(M_0) = -\iint\limits_{D} \ln\left(\frac{1}{\rho_{MM_0}}\right) \Delta u \, ds - \int\limits_{L} \left[u\frac{\partial}{\partial n} \left(\ln\frac{1}{\rho_{MM_0}}\right) - \ln\frac{1}{\rho_{MM_0}}\frac{\partial u}{\partial n}\right] \, dl.$$

3.4 Свойства гармонических функций

Напомним определение.

Определение. Функция u называется гармонической в области Ω , если $u \in C^2(\Omega)$ и $\Delta u = 0$ в Ω . Свойство 1. Если v — гармоническая в Ω , то

$$\iint\limits_{\widetilde{\Sigma}} \frac{\partial v}{\partial n} \, d\sigma = 0,$$

где $\widetilde{\Sigma}$ — произвольная замкнутая поверхность, лежащая в Ω .

Доказательство. Положив в первой формуле Грина (3.2) для области, ограниченной $\widetilde{\Sigma}$, $u \equiv 1$ (очевидно, u — гармоническая функция), получим

$$\iint_{\widetilde{\Sigma}} \frac{\partial v}{\partial n} \, d\sigma = 0.$$

Свойство 2 (Теорема о среднем значении). Пусть функция u — гармоническая в Ω . Тогда для любой точки $M_0 \in \Omega$ и для любой сферы Σ_a радиуса a с центром в M_0 , лежащей в Ω справедлива формула:

$$u(M_0) = \frac{1}{4\pi a^2} \iint_{\Sigma_a} u(P) d\sigma_p.$$
(3.5)

Доказательство. Запишем третью формулу Грина (3.4) для внутренности сферы Σ_a :

$$4\pi u(M_0) = -\iint_{\Sigma_a} \left[u \frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) - \frac{1}{R_{MM_0}} \frac{\partial u}{\partial n} \right] d\sigma = \left\{ \frac{\partial}{\partial n} \left(\frac{1}{R_{MM_0}} \right) = -\frac{1}{a^2} \right\} =$$

$$= \frac{1}{a^2} \iint_{\Sigma_a} u \, d\sigma + \iint_{\Sigma_a} \frac{1}{a^2} \frac{\partial u}{\partial n} \, d\sigma.$$

По первому свойству гармонической функции второй интеграл обращается в ноль и мы получаем доказательство формулы (3.5).

Свойство 3. Если функция u — гармоническая в Ω , то она бесконечно дифференцируема в Ω .

Доказательство. Снова запишем третью формулу Грина (3.4) для $u(M) = u(x,y,z) \quad (P(P_x,\,P_y,\,P_z) \in \Sigma)$:

$$4\pi u(x, y, z) = -\iint_{\Sigma} \left[u(P) \frac{\partial}{\partial n} \left(\frac{1}{\sqrt{(x - P_x)^2 + (y - P_y)^2 + (z - P_z)^2}} \right) - \frac{1}{\sqrt{(x - P_x)^2 + (y - P_y)^2 + (z - P_z)^2}} \frac{\partial u(P)}{\partial n} \right] d\sigma_P.$$

Видно, что если точка M не лежит на границе (Σ) , то подынтегральная функция бесконечно дифференцируема по параметру x (а также по y,z). Известно, что в этом случае и весь интеграл, а следовательно, и функция u(M) является бесконечно дифференцируемой функцией.

3.5 Принцип максимума для гармонических функций

Теорема 3.1 (Принцип максимума). Если функция $u \in C(\overline{\Omega})$ и гармоническая в Ω , то она достигает своего максимума (минимума) на границе области:

$$\max_{\substack{M\in\overline{\Omega}}}u(M)=\max_{\substack{M\in\Sigma}}u(M);\\ \min_{\substack{M\in\overline{\Omega}}}u(M)=\min_{\substack{M\in\Sigma}}u(M).$$

Доказательство. Предположим, что функция достигает, например, максимума в некоторой внутренней точке M_0 :

$$u(M_0) = \max_{M \in \overline{\Omega}} u(M).$$

Тогда по формуле среднего значения (3.5) (a - достаточно малое число)

$$u(M_0) = \frac{1}{4\pi a^2} \iint_{\Sigma_a} u(P) d\sigma_P \leqslant \frac{1}{4\pi a^2} \iint_{\Sigma_a} u(M_0) d\sigma = u(M_0).$$

Так как функция u — непрерывна, то $u(P) \equiv u(M_0)$ (то есть максимум достигается на всей сфере). Продолжая эти преобразования нужное количество раз, получим, что максимум достигается и на границе тоже (таким образом, функция тождественно равна константе).

3.6 Единственность и устойчивость решения внутренней задачи Дирихле

Здесь и далее функции μ и ν — некоторые заданные функции.

Определение. Функция u(x,y,z) называется **решением внутренней задачи Дирихле**, если она удовлетворяет следующим трем условиям:

$$[\mathbf{3.1}] \left\{ \begin{array}{lcl} (1) & u(x,y,z) & \in & C(\overline{\Omega}), \ u \in C^2(\Omega); \\ (2) & \Delta u(x,y,z) & = & 0, & (x,y,z) \in \Omega; \\ (3) & u(x,y,z) & = & \mu(x,y,z), & (x,y,z) \in \Sigma. \end{array} \right.$$

Докажем теорему единственности непрерывного и гармонического в Ω решения.

Теорема 3.2 (единственности). Пусть функции $u_1(x,y,z), u_2(x,y,z)$ являются решениями **одной и той** же внутренней задачи Дирихле [3.1]. Тогда $u_1(x,y,z) = u_2(x,y,z)$ в $\overline{\Omega}$.

Доказательство. Определим новую функцию $v=u_1-u_2$. Легко видеть, что она непрерывна в $\overline{\Omega}$, гармоническая в Ω и $v(x,y,z)=0, \ (x,y,z)\in \Sigma$. Тогда для функции v выполнены все условия принципа максимального значения, следовательно

$$\left. \begin{array}{l} \max v = \max v = 0 \\ \overline{\Omega} \quad \Sigma \\ \min v = \min v = 0 \\ \overline{\Omega} \quad \Sigma \end{array} \right\} \Longrightarrow v(x,y,z) \equiv 0, \ (x,y,z) \in \Omega.$$

Теорема доказана.

Теперь покажем устойчивость решения внутренней задачи Дирихле, но сначала докажем следующую лемму.

Лемма 1. Пусть функции $u_1(x, y, z), u_2(x, y, z)$ такие, что:

- 1. $u_1, u_2 \in C(\overline{\Omega});$
- 2. u_1, u_2 гармонические в Ω ;
- 3. $u_1(x, y, z) \ge u_2(x, y, z), (x, y, z) \in \Sigma.$

Тогда $u_1 \geqslant u_2$ в Ω .

Доказательство. Снова рассмотрим функцию $v = u_1 - u_2$. Тогда $v(x, y, z) \geqslant 0$ на Σ . Воспользовавшись принципом минимума (очевидно, все условия выполнены), получим

$$\min_{\overline{\Omega}} v = \min_{\Sigma} v \geqslant 0 \Longrightarrow u_1 \geqslant u_2$$
 в $\overline{\Omega}$

Лемма доказана.

Теорема 3.3 (устойчивости). Пусть функции $u_1(x,y,z), u_2(x,y,z)$ таковы, что:

$$\begin{cases} (1) & u_1, u_2 \in C(\overline{\Omega}) \cap C^2(\Omega); \\ (2) & \Delta u_1(x, y, z) = \Delta u_2(x, y, z) = 0, & (x, y, z) \in \Omega; \\ (3) & u_i(x, y, z) = \mu_i(x, y, z), & (x, y, z) \in \Sigma, \ i = 1, 2. \end{cases}$$

Тогда $\max_{\overline{\Omega}} |u_1 - u_2| \leqslant \max_{\Sigma} |\mu_1 - \mu_2|$.

Доказательство. Обозначим $\varepsilon = \max_{\Sigma} |\mu_1 - \mu_2|, \ v = u_1 - u_2$. Тогда v — гармоническая в $\Omega, -\varepsilon \leqslant v \leqslant \varepsilon$ при $(x,y,z) \in \Sigma$. Тогда, применяя лемму для пар функций $(-\varepsilon,v)$ и (v,ε) (очевидно, ее условия выполнены), получим, что

$$-\varepsilon \leqslant v \leqslant \varepsilon, \ (x,y,z) \in \overline{\Omega} \Longrightarrow |u_1 - u_2| \leqslant \varepsilon \text{ B } \overline{\Omega}$$

Теорема доказана.

Следствие. Пусть каждая функция из последовательности $u_n(x,y,z)$, а также функция u(x,y,z), является решением соответствующей задачи Дирихле при $u_n = \mu_n$ на Σ , $u = \mu$ на Σ . Тогда из равномерной сходимости $\mu_n(\mu_n \rightrightarrows \mu$ на Σ) следует, что $u_n \rightrightarrows u$ в Ω .

Замечание. Доказанные теоремы полностью справедливы и для двумерного случая. Чтобы убедиться в этом, достаточно провести аналогичные рассуждения.

Теперь рассмотрим другой вариант задачи Дирихле — внешнюю задачу Дирихле.

3.7 Единственность решения внешней задачи Дирихле

Внешняя задача Дирихле в пространстве

Определение. Функция u(x,y,z) называется решением внешней задачи Дирихле в пространстве, если она удовлетворяет следующим условиям:

$$[{\bf 3.2}] \left\{ \begin{array}{lcl} (1) & u(x,y,z) & \in & C(E^3 \setminus \Omega); \\ (2) & u(x,y,z) & - & \text{гармоническая в} & E^3 \setminus \overline{\Omega}; \\ (3) & u(x,y,z) & = & \mu(x,y,z), & (x,y,z) \in \Sigma. \\ (4) & u(x,y,z) & \rightrightarrows & 0 & (\text{равномерно сходится к нулю) при } (x,y,z) \longrightarrow \infty. \end{array} \right.$$

Локажем, что непрерывное решение единственно.

Теорема 3.4 (единственности). Пусть $u_1, u_2(x,y,z)$ — такие функции, что

$$\begin{cases} (1) & u_1, u_2(x, y, z) \in C(E^3 \setminus \Omega); \\ (2) & u_1, u_2 - \text{ rapmonuveckue } e E^3 \setminus \overline{\Omega}; \\ (3) & u_1, u_2(x, y, z) = \mu(x, y, z), & (x, y, z) \in \Sigma. \\ (4) & u_1, u_2(x, y, z) \Rightarrow 0, & (x, y, z) \longrightarrow \infty. \end{cases}$$

Toe∂a $u_1(x,y,z) = u_2(x,y,z)$ в $E^3 \setminus \overline{\Omega}$.

Доказательство. Пусть $v(x,y,z) = u_1(x,y,z) - u_2(x,y,z)$. Тогда v удовлетворяет условиям теоремы при $\mu(x,y,z) \equiv 0$. Докажем, что функция v тождественно равна нулю.

Предположим противное: $\exists M_0(x_0,y_0,z_0) \in E^3 \setminus \overline{\Omega}: v(x_0,y_0,z_0) = A > 0$. Тогда из определения равномерной сходимости существует такая сфера Σ_R радиуса R, полностью содержащая Ω и точку M_0 , что $|v(x,y,z)| \leqslant \frac{A}{2}, \; (x,y,z) \in \Sigma_R$. Тогда

$$\begin{aligned} \max_{\Sigma_R} v(x,y,z) &\leqslant \frac{A}{2}; \\ \min_{\Sigma_R} v(x,y,z) &\geqslant -\frac{A}{2}. \end{aligned}$$

Применив к v принцип максимального значения в открытой области Ω_R (это область, ограниченная снаружи Σ_R , а изнутри — Σ), получим

$$\begin{cases} \max v = \max_{\Sigma \cup \Sigma_R} v \leqslant \frac{A}{2}; \\ \min v = \min_{\Sigma \cup \Sigma_R} v \geqslant -\frac{A}{2}; \end{cases} \implies |v(x_0, y_0, z_0)| \leqslant \frac{A}{2}.$$

Мы получили противоречие с тем, что $v(x_0, y_0, z_0) = A$. Тогда $v(x, y, z) \equiv 0$ и теорема доказана.

Приведем пример, показывающий важность условия (4).

Пример. Пусть

$$\begin{split} \Omega: \ x^2 + y^2 + z^2 &< a^2; \\ \Sigma: \ x^2 + y^2 + z^2 &= a^2. \end{split}$$

Рассмотрим такую постановку внешней задачи Дирихле:

- 1. $u \in C(E^3 \setminus \Omega)$;
- 2. u гармоническая в $E^3 \setminus \overline{\Omega}$;
- 3. $u(x, y, z) = C = const, (x, y, z) \in \Sigma$.

Легко видеть, что функции $u_1(x,y,z)=C$ и $u_2(x,y,z)=\frac{C\,a}{\sqrt{x^2+y^2+z^2}}$ являются решениями данной задачи, однако $u_1\neq u_2$, поэтому в этой постановке единственность нарушается.

Теперь рассмотрим внешнюю задачу на плоскости.

Внешняя задача Дирихле на плоскости

Определение. Функция u(x,y) называется решением внешней задачи Дирихле на плоскости, если она удовлетворяет следующим условиям:

$$[\mathbf{3.3}] \left\{ \begin{array}{lcl} (1) & u(x,y) & \in & C(E^2 \setminus D), & u \in C^2(E^2 \setminus \overline{D}); \\ (2) & \Delta u(x,y) & = & 0, & (x,y) \in E^2 \setminus \overline{D}; \\ (3) & u(x,y) & = & \mu(x,y), & (x,y) \in L. \\ (4) & |u(x,y)| & \leqslant & C = const, & (x,y) \in E^2 \setminus \overline{D}. \end{array} \right.$$

Теорема 3.5 (единственности). Пусть $u_1, u_2(x, y) - maкие функции, что$

$$\begin{cases}
(1) & u_1, u_2(x, y) \in C(E^2 \setminus D), & u \in C^2(E^2 \setminus \overline{D}); \\
(2) & \Delta u_1(x, y) = \Delta u_2(x, y) = 0, & (x, y) \in E^2 \setminus \overline{D}; \\
(3) & u_1, u_2(x, y) = \mu(x, y), & (x, y) \in L. \\
(4) & |u_i(x, y)| \leqslant c_i = const, & i = 1, 2, (x, y) \in E^2 \setminus \overline{D}.
\end{cases}$$

Тогда $u_1(x,y) = u_2(x,y)$ в $E^2 \setminus \overline{D}$.

Доказательство. Пусть $v=u_1-u_2$. Тогда функция $v: v(x,y)=0, \ (x,y)\in L, \ |v(x,y)|\leqslant C=c_1+c_2$. Докажем, что $v(x,y)\equiv 0, \ (x,y)\in E^2\setminus \overline{D}$.

Предположим противное: существует точка $M^*(x^*,y^*), (x^*,y^*) \in E^2 \setminus \overline{D}: v(x^*,y^*) = A > 0$. Тогда возьмем a такое, что окружность L_a с центром в точке $M_0(x_0,y_0)$ полностью лежит в D, и такое R, что окружность L_R содержит область D и точку M^* . Определим функцию

$$w_R(x,y) = C \frac{\ln \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{a}}{\ln \frac{R}{a}}.$$

Видно, что

- 1. $w_R(x,y) \in C(E^2 \setminus D);$
- 2. $w_R(x,y)$ гармоническая в $E^2 \setminus \overline{D}$;
- 3. $w_R(x,y) \ge 0$ на L;
- 4. $w_R(x,y) = C$ на L_R .

Из этого следует, что

$$\left\{ \begin{array}{l} |v(x,y)| \leqslant w_R(x,y), \ (x,y) \in L; \\ |v(x,y)| \leqslant C = w_R(x,y), \ (x,y) \in L_R. \end{array} \right.$$

Применив принцип максимума, получим, что в D_{LL_R} — области, ограниченной изнутри L и снаружи L_R

$$|v(x,y)| \le w_R(x,y), \ (x,y) \in D_{LL_R} \Longrightarrow$$

$$|v(x^*,y^*)| \le w_R(x^*,y^*) = C \frac{\ln \frac{\sqrt{(x^*-x_0)^2 + (y^*-y_0)^2}}{a}}{\ln \frac{R}{a}}.$$

Устремляя R к бесконечности, получим, что

$$|v(x^*, y^*)| \le w_{\infty}(x^*, y^*) = 0.$$

Мы получили противоречие с тем, что $v(x^*,y^*)=A>0,$ следовательно $v(x,y)\equiv 0.$ Теорема доказана.

Приведем пример, показывающий важность условия (4).

Пример. Пусть

$$D: x^2 + y^2 < b^2;$$

 $L: x^2 + y^2 = b^2.$

Рассмотрим такую постановку внешней задачи Дирихле:

$$\left\{ \begin{array}{l} \Delta u \equiv 0 \text{ B } E^2 \setminus \overline{D}; \\ u(x,y) = C = const, \ (x,y) \in L. \end{array} \right.$$

Легко видеть, что функции $u_1(x,y)=C$ и $u_2(x,y)=C+\ln\frac{\sqrt{x^2+y^2}}{b}$ являются решениями данной задачи, однако функция u_2 не ограничена никакой константой, поэтому в этой постановке единственность нарушается.

3.8 Внутренняя задача Неймана. Необходимое условие ее разрешимости. Единственность решения

Определение. Функция u(x,y,z) из ${\bf E^3}$ называется **решением внутренней задачи Неймана**, если она удовлетворяет следующим трем условиям:

$$[\mathbf{3.4}] \left\{ \begin{array}{lcl} (1) & u(x,y,z) & \in & C^1(\overline{\Omega}), & u \in C^2(\Omega); \\ (2) & \Delta u(x,y,z) & = & 0, & (x,y,z) \in \Omega; \\ (3) & \frac{\partial u}{\partial n}(x,y,z) & = & \nu(x,y,z), & (x,y,z) \in \Sigma. \end{array} \right.$$

Обратим внимание на то, что от функции u требуется непрерывность вместе с первой производной в $\overline{\Omega}$, в отличие от задачи Дирихле, в которой требуется просто непрерывность.

Необходимое условие разрешимости внутренней задачи Неймана

Предположим, что u — решение [3.4], а v — произвольная дважды дифференцирумая функция. Запишем для этих функций вторую формулу Грина:

$$\iiint_{\Omega} (u\Delta v - v\Delta u) d\tau = \iint_{\Sigma} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) d\sigma$$

Тогда при $v \equiv 1$ получим

$$\iint_{\Sigma} \frac{\partial u}{\partial n} d\sigma = \iint_{\Sigma} \nu(x, y, z) d\sigma = 0.$$
(3.6)

Равенство (3.6) называется необходимым условием разрешимости внутренней задачи Неймана.

Докажем теорему единственности решения задачи Неймана. Легко проверить, что, если u — решение [3.4], то (u + const) — тоже решение. Назовем это **тривиальной неоднозначностью**. Докажем, что возможна только такая неоднозначность.

Теорема 3.6 (единственности). Пусть $u_i(x, y, z)$, i = 1, 2:

- 1) $u_i \in C^1(\overline{\Omega});$
- 2) u_i гармоническая в Ω ;

 $3)\frac{\partial u_i}{\partial n}(x,y,z)=\nu(x,y,z),\quad (x,y,z)\in\Sigma.$ Тогда $u_1-u_2\equiv const.$ (Фактически это означает, что при $\nu\equiv 0$ есть только тривиальное решение.)

Доказательство. Запишем первую формулу Грина для двух произвольных дважды дифференцируемых функций u и v:

$$\iint\limits_{\Omega} (u\Delta v + (\text{ gr }u,\text{ gr }v))\,d\tau = \iint\limits_{\Sigma} u\frac{\partial v}{\partial n}\,d\sigma.$$
 Положим
$$\left\{\begin{array}{l} u=u_1-u_2 & -\text{ это будет решение задачи [3.4] при }\nu\equiv 0;\\ v=u. \end{array}\right.$$

Тогда

$$\begin{split} & \iiint\limits_{\Omega} (u\Delta u + grad^2 u) \, d\tau = \iint\limits_{\Sigma} u \frac{\partial u}{\partial n} \, d\sigma \\ & \Longrightarrow \iiint\limits_{\Omega} (u_x^2 + u_y^2 + u_z^2) \, d\tau = 0 \Longrightarrow u_x \equiv u_y \equiv u_z \equiv 0 \\ & \Longrightarrow u \equiv const. \end{split}$$

Теорема доказана.

Функция Грина для уравнения Лапласа и ее свойства

Запишем третью формулу Грина в ${\bf E^3}$ для гармонической функции u:

$$u(M) = \frac{1}{4\pi} \iint_{\Sigma} \left[\frac{1}{R_{MP}} \frac{\partial u}{\partial n}(P) - u(P) \frac{\partial}{\partial n} \left(\frac{1}{R_{MP}} \right) \right] d\sigma_P, \ P \in \Sigma, \ M \in \Omega.$$
 (3.7)

Итак, мы получили выражение для функции u(M). Попробуем использовать его для наших задач -Дирихле и Неймана. Запишем вторую формулу Грина (v — некая гармоническая в Ω функция):

$$\iiint\limits_{\Omega} (u\Delta v - v\Delta u) d\tau = \iint\limits_{\Sigma} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) d\sigma.$$

Функции u и v — гармонические, следовательно

$$\iint_{\Sigma} \left[u(P) \frac{\partial v}{\partial n}(P) - v(P) \frac{\partial u}{\partial n}(P) \right] d\sigma_P = 0.$$
 (3.8)

Вычитая (3.8) из (3.7), получим

$$u(M) = \iint\limits_{\Sigma} \left[\left(\frac{1}{4\pi R_{MP}} + v(P) \right) \frac{\partial u}{\partial n}(P) - u(P) \frac{\partial}{\partial n} \left(\frac{1}{4\pi R_{MP}} + v(P) \right) \right] d\sigma_{P}.$$

Положим

$$G(M,P) = \frac{1}{4\pi R_{MP}} + v(P).$$

Тогда

$$u(M) = \iint_{\Sigma} \left[G(M, P) \frac{\partial u}{\partial n}(P) - u(P) \frac{\partial G}{\partial n}(M, P) \right] d\sigma_{P}.$$

Итак, мы получили новую формулу для u(M) с использованием произвольной гармонической функции v. Изменяя ее, мы можем получить решения различных задач. Например:

1. Если $G|_{P\in\Sigma}=0$, то $u(M)=-\iint\limits_{\Sigma}u(P)\frac{\partial G}{\partial n}(M,P)\,d\sigma_P$ — мы получили формулу для решения задачи

Дирихле [3.1]:

$$u(M) = -\iint_{\Sigma} \mu(P) \frac{\partial G}{\partial n}(M, P) d\sigma_{P}.$$

2. Если $\widetilde{G}: \left. \frac{\partial \widetilde{G}}{\partial n} \right|_{P \in \Sigma} = 0$, то $u(M) = \iint_{\Sigma} \widetilde{G}(M,P) \frac{\partial u}{\partial n}(P) \, d\sigma_P$ — мы получили формулу для решения

задачи задачи Неймана [3.4]:

$$u(M) = \iint_{\Sigma} \nu(P)\widetilde{G}(M, P) \, d\sigma_{P}.$$

То есть, мы упростили нахождение решения задач Дирихле и Неймана, сведя их к соответствующим функциям Грина. Дадим теперь четкое определение.

Определение. Функция $G(M,P): M(x,y,z), P(\xi,\eta,\zeta) \in \overline{\Omega}$ называется функцией Грина для внутренней задачи Дирихле, если:

1.
$$\frac{\partial^2 G}{\partial \xi^2} + \frac{\partial^2 G}{\partial n^2} + \frac{\partial^2 G}{\partial \zeta^2} = 0 \quad \forall P \in \Omega, \ P \neq M$$

2. Для G(M, P) справедливо представление

$$G(M,P) = \frac{1}{4\pi R_{MP}} + v$$
, где v — гармоническая функция в Ω . (3.9)

3. $G(M, P)|_{P \in \Sigma} = 0$.

То есть
$$\left\{ \begin{array}{l} v-\text{гармоническая в }\Omega\\ v|_{\Sigma}=-\frac{1}{4\pi R_{MP}} \end{array} \right. \quad \ -\text{ это все требования, наложенные нами на }v.$$

Свойства функции Грина

Свойство 1.

$$G(M, P) > 0$$
, $M, P \in \Omega$, $P \neq M$.

Доказательство. Возьмем некоторую точку M_0 внутри Ω . Рассмотрим сферу достаточно малого радиуса a с центром в точке M_0 , и область Ω_a между Σ и Σ_a .

Рассмотрим в Ω_a функцию Грина от переменных M_0, P . Тогда в области Ω_a она гармоническая. Следовательно, выполнены все условия принципа максимального значения: $\min_{\Omega_a} G = \min_{\Sigma \cup \Sigma_a} G$. Так как для $G(M_0, P)$ справедливо представление (3.9)

$$G(M_0, P) = \frac{1}{4\pi R_{M_0 P}} + v(P)$$
, причем $\frac{1}{4\pi R_{M_0 P}} \stackrel{R\to 0}{\longrightarrow} \infty$,

а v — гармоническая (а, значит, и ограниченная) в Ω функция, следовательно, можно взять такое a, что $G|_{P\in\Sigma_a}>0$. Следовательно, так как $G(M,P)|_{P\in\Sigma}=0$, то $G(M_0,P)\geqslant 0\ \forall P$ из Ω_a . Так как функция G — не константа, следовательно, она не может достигать минимума (то есть нуля) внутри Ω_a . Тогда получаем (так как a можно уменьшать бесконечно), что в Ω для любых точек $P\neq M$ G(M,P)>0. Утверждение доказано.

Свойство 2.

$$G(M, P) = G(P, M) \quad \forall M, P \in \Omega, \ M \neq P.$$
(3.10)

Доказательство. Зафиксируем M_1, M_2 — две произвольные различные точки из Ω . Достаточно доказать, что $G(M_1, M_2) = G(M_2, M_1)$. Обозначим

$$u(\xi, \eta, \zeta) = G(M_1, P);$$

$$v(\xi, \eta, \zeta) = G(M_2, P).$$

Пусть Σ_{ε}^{1} — сфера (и соответствующий ей шар Ω_{ε}^{1}) достаточно малого радиуса ε , окружающая M_{1} , а Σ_{ε}^{2} , Ω_{ε}^{2} — аналогичные сфера и шар для M_{2} . Возьмем Ω_{ε} — внутренность Ω , не содержащая шаров Ω_{ε}^{2} , Ω_{ε}^{1} . Записав вторую формулу Грина для функций u и v (они гармонические в Ω_{ε} по определению функции Грина), получим

$$\iiint_{\Omega_{\varepsilon}} (u\Delta v - v\Delta u) d\tau = \iint_{\Sigma} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) d\sigma + \iint_{\Sigma_{\varepsilon}^{1}} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) d\sigma + \iint_{\Sigma_{\varepsilon}^{1}} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) d\sigma + \iint_{\Sigma_{\varepsilon}^{1}} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) d\sigma \Longrightarrow \{G|_{P \in \Sigma} \Longrightarrow u|_{\Sigma} = v|_{\Sigma} = 0\} \Longrightarrow \iint_{\Sigma_{\varepsilon}^{2}} \left[G(M_{1}, P) \frac{\partial G(M_{2}, P)}{\partial n} - G(M_{2}, P) \frac{\partial G(M_{1}, P)}{\partial n} \right] d\sigma_{p} + U(M_{1}, P) \frac{\partial G(M_{2}, P)}{\partial n} = 0$$

$$+ \iint_{\Sigma_{-}^{2}} \left[G(M_{1}, P) \frac{\partial G(M_{2}, P)}{\partial n} - G(M_{2}, P) \frac{\partial G(M_{1}, P)}{\partial n} \right] d\sigma_{p} = 0$$
(3.11)

Рассмотрим первое слагаемое в первом интеграле. При $\varepsilon \longrightarrow 0$ функции $\frac{\partial G(M_2,P)}{\partial n}$ и v, участвующая в представлении (3.9) функции $G(M_1,P)$, — гармонические и ограниченные (например, константами c_1 и c_2 соответственно) на Σ_{ε}^1 . Тогда получаем

$$\iint_{\Sigma_{\varepsilon}^{1}} (G(M_{1}, P) \frac{\partial G(M_{2}, P)}{\partial n} d\sigma_{p} \leqslant \iint_{\Sigma_{\varepsilon}^{1}} \left| \frac{1}{4\pi R_{M_{1}P}} + v \right| \left| \frac{\partial G(M_{2}, P)}{\partial n} \right| d\sigma_{p} \leqslant
\leqslant \iint_{\Sigma_{\varepsilon}^{1}} \left| \frac{c_{1}}{4\pi R_{M_{1}P}} + c_{1}c_{2} \right| d\sigma_{p} = \iint_{\Sigma_{\varepsilon}^{1}} \left| \frac{c_{1}}{4\pi\varepsilon} + c_{1}c_{2} \right| d\sigma_{p} = c_{1}\varepsilon + 4\pi c_{1}c_{2}\varepsilon^{2} \xrightarrow{\varepsilon \to 0} 0.$$

Со вторым слагаемым ситуация сложнее. Пользуясь представлением (3.9) для функции $G(M_1, P)$, разобьем его на два интеграла.

$$\iint_{\Sigma_{-}^{1}} G(M_{2}, P) \frac{\partial}{\partial n} \left(\frac{1}{4\pi R_{M_{1}P}} \right) d\sigma_{p} + \iint_{\Sigma_{-}^{1}} G(M_{2}, P) \frac{\partial v}{\partial n} d\sigma_{p}.$$

Второй также стремится к нулю с уменьшением ε (аналогично описанному выше). Исследуем множитель $\frac{\partial}{\partial n}\left(\frac{1}{4\pi R_{M,P}}\right)$. По определению, $\frac{\partial f}{\partial n}\equiv(\vec{n},\ {\rm gr}\,f)$. В нашем случае

$$\vec{n} = \left\{ -\frac{(\xi - x)}{R_{M_1 P}}, -\frac{(\eta - y)}{R_{M_1 P}}, -\frac{(\zeta - z)}{R_{M_1 P}} \right\}, \text{ gr } \frac{1}{R_{M_1 P}} = \left\{ -\frac{(\xi - x)}{R_{M_1 P}^3}, -\frac{(\eta - y)}{R_{M_1 P}^3}, -\frac{(\zeta - z)}{R_{M_1 P}^3} \right\}.$$

Из этого следует, что

$$\begin{split} &\frac{\partial}{\partial n} \left(\frac{1}{R_{M_1 P}} \right) = \frac{1}{4\pi R_{M_1 P}^2} \Longrightarrow \iint_{\Sigma_{\varepsilon}^1} G(M_2, P) \frac{\partial}{\partial n} \left(\frac{1}{4\pi R_{M_1 P}} \right) \, d\sigma_p = \\ &= \frac{1}{4\pi \varepsilon^2} \iint_{\Sigma_{\varepsilon}^1} G(M_2, P) \, d\sigma_p = \{ \text{ формула среднего значения (5.2)} \} = \\ &= \frac{G(M_2, P')}{4\pi \varepsilon^2} \iint_{\Sigma_{\varepsilon}^1} d\sigma \overset{\varepsilon \to 0}{\longrightarrow} \, G(M_2, M_1). \end{split}$$

Второй интеграл в формуле (3.11) получается из первого заменой переменной и сменой знака. Проводя аналогичные рассуждения, получим, что он стремится к $G(M_1, M_2)$. Отсюда получаем формулу

$$G(M_2, M_1) - G(M_1, M_2) = 0,$$

верную для любых различных точек $M_1,\ M_2$ из $\Omega.$ Утверждение доказано.

3.10 Потенциалы простого и двойного слоя. Потенциал двойного слоя с единичной плотностью

Итак, мы знаем решения уравнения Лапласа на плоскости и в пространстве:

$$\mathbf{E^3}: \frac{1}{R_{MP}}; \quad \mathbf{E^2}: \ln \frac{1}{\rho_{MP}},$$

где M(x,y,z) — фиксированная точка, $P(\xi,\eta,\zeta)$ — переменная. Пусть Σ — некоторая замкнутая поверхность, ограничивающая область Ω , содержащую точку M. Рассмотрим в $\mathbf{E^3}$ следующую функцию

$$v(M) = \iint_{\Sigma} g(P) \frac{1}{R_{MP}} d\sigma_{P}.$$

и назовем ее потенциалом простого слоя. А также функцию

$$u(M) = -\iint_{\Sigma} f(P) \frac{\partial}{\partial n} \left(\frac{1}{R_{MP}} \right) d\sigma_{P}$$

и назовем ее потенциалом двойного слоя.

Покажем, что $\forall M \notin \Sigma \quad \Delta v \equiv \Delta u \equiv 0$:

$$\begin{split} &\Delta_M v = \Delta_M \iint_{\Sigma} g(P) \frac{1}{R_{MP}} \, d\sigma_P = \\ &= \iint_{\Sigma} g(P) \Delta_M \left(\frac{1}{R_{MP}} \right) \, d\sigma_P = 0 \ (\text{t.k.} \ \Delta_M \left(\frac{1}{R_{MP}} \right) \equiv 0). \end{split}$$

Для потенциала двойного слоя результат аналогичен:

$$\Delta_{M}u = \Delta_{M} \iint_{\Sigma} f(P) \frac{\partial}{\partial n} \frac{1}{R_{MP}} d\sigma_{P} =$$

$$= \iint_{\Sigma} f(P) \frac{\partial}{\partial n} \left(\Delta_{M} \frac{1}{R_{MP}} \right) d\sigma_{P} = 0.$$

Определим понятие потенциала на плоскости. Пусть L — некоторая замкнутая кривая, окружающая точку M(x,y):

$$\begin{split} v(M) &= \int_L g(P) \ln \frac{1}{\rho_{MP}} \, dl_P \; - \text{потенциал простого слоя.} \\ u(M) &= -\int_{\mathcal{I}} f(P) \frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) \, dl_P \; - \text{потенциал двойного слоя.} \end{split}$$

Итак, потенциалы являются гармоническими функциями. Из этого следует, что их можно использовать для решения задачи, к примеру, Неймана, подбирая соответствующие функции g и f, которые назовем **плотностями** соответствующих потенциалов.

Рассмотрим более детально потенциал двойного слоя на плоскости:

$$u(M) = -\int_{L} f(P) \frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) dl_{P}. \tag{3.12}$$

Предположим гладкость кривой L и непрерывность (в некотором смысле) ее касательных. В соответствии с этим преобразуем выражение $-\frac{\partial}{\partial n}\left(\ln\frac{1}{\rho_{MP}}\right)$:

$$\begin{split} \frac{\partial}{\partial \xi} \left(\ln \frac{1}{\rho_{MP}} \right) &= \left\{ \rho_{MP} = \sqrt{(x - \xi)^2 + (y - \eta)^2} \right\} = -\frac{1}{\rho_{MP}} \frac{1}{2} \frac{2(\xi - x)}{\rho_{MP}} = -\frac{\xi - x}{\rho_{MP}^2}; \\ \frac{\partial}{\partial \eta} \left(\ln \frac{1}{\rho_{MP}} \right) &= -\frac{\eta - y}{\rho_{MP}^2}; \\ \overrightarrow{MP} &= \left\{ \xi - x; \eta - y \right\} \Longrightarrow -\frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = (\vec{n}, \overrightarrow{\frac{MP}{\rho_{MP}}}) = \frac{\cos \angle (\overrightarrow{MP}, \vec{n})}{\rho_{MP}} \Longrightarrow -\frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = (\vec{n}, \overrightarrow{\frac{MP}{\rho_{MP}}}) = \frac{\cos \angle (\overrightarrow{MP}, \vec{n})}{\rho_{MP}} \Longrightarrow -\frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = (\vec{n}, \overrightarrow{\frac{MP}{\rho_{MP}}}) = \frac{\cos \angle (\overrightarrow{MP}, \vec{n})}{\rho_{MP}} \Longrightarrow -\frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = (\vec{n}, \overrightarrow{\frac{MP}{\rho_{MP}}}) = \frac{\cos \angle (\overrightarrow{MP}, \vec{n})}{\rho_{MP}} \Longrightarrow -\frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = (\vec{n}, \overrightarrow{\frac{MP}{\rho_{MP}}}) = \frac{\cos \angle (\overrightarrow{MP}, \vec{n})}{\rho_{MP}} \Longrightarrow -\frac{\partial}{\partial n} \left(\ln \frac{1}{\rho_{MP}} \right) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right)) = -(\vec{n}, \text{ gr } \ln \left(\frac{1}{\rho_{MP}} \right))$$

$$\Longrightarrow u(M) = \int_{I} f(P) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} \, dl_{P}. \tag{3.13}$$

Пусть $u_e(M) = \int\limits_L \frac{\cos\angle(\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} \, dl_P$ — потенциал с единичной плотностью. Вычислим его, исполь-

зуя полярную систему координат. Проведем через точку M некоторую ось и будем от нее считать угол ϕ . Обозначим за угол α из промежутка $[0; \frac{\pi}{2}]$ угол между касательной к кривой L в точке P и этой осью. Тогда будут справедливы следующие соотношения:

$$\angle(\overrightarrow{MP}, \overrightarrow{n}) = \frac{\pi}{2} - \phi - \alpha;$$

$$\implies \cos \angle(\overrightarrow{MP}, \overrightarrow{n}) = \sin(\phi + \alpha) \Longrightarrow$$

$$\implies u_e(M) = \int_L \frac{\sin(\phi + \alpha)}{\rho_{MP}} \, dl_P.$$
(3.14)

Перейдем в координатах точки $P(\xi,\eta)$ от прямоугольной системы координат к полярной:

$$\xi = r(\phi)\cos\phi; \quad d\xi = [(r'(\phi)\cos(\phi) - r(\phi)\sin(\phi)]d\phi;
\eta = r(\phi)\sin\phi; \quad d\eta = [(r'(\phi)\sin(\phi) + r(\phi)\cos(\phi)]d\phi;$$
(*)

Из рисунка можно увидеть, что $\left\{ \begin{array}{l} d\xi = -dl\cos\alpha;\\ d\eta = dl\sin\alpha. \end{array} \right.$

Преобразуем подынтегральную функцию в (3.14):

$$\sin(\phi + \alpha) dl = \sin \phi \cos \alpha dl + \cos \phi \sin \alpha dl = \begin{cases} d\xi = -dl \cos \alpha \\ d\eta = dl \sin \alpha \end{cases} \} =$$

$$= \cos \phi d\eta - \sin \phi d\xi = (*) = (r' \cos \phi \sin \phi + r \cos^2 \phi - r' \sin \phi \cos \phi + r \sin^2 \phi) d\phi = r d\phi$$

$$\implies \cos \angle (\overrightarrow{MP}, \overrightarrow{n}) dl = r(\phi) d\phi$$

$$\implies u_e(M) = \int_{L} \frac{r(\phi)}{r(\phi)} d\phi = 2\pi.$$

Аналогично получим, что если точка лежит вне области или на границе, то будут выполнены соотношения

$$u_e(M) = \left\{ \begin{array}{ll} \pi, & M \in L \\ 0, & M \not \in \overline{D} \end{array} \right..$$

Итак,

$$u_e(M) = \begin{cases} 2\pi, & M \in D; \\ \pi, & M \in L; \\ 0, & M \notin \overline{D}. \end{cases}$$
 (3.15)

Свойства потенциалов

Теперь, зная выражение для потенциала с единичной плотностью, выведем некоторые свойства нашего исходного потенциала. Для этого нам понадобится

Определение. Интеграл $\int\limits_L F(P,M)\,dl_P$ называется равномерно сходящимся в точке $M_0\in L$, если

 $\forall \varepsilon>0$ $\exists V(M_0)$ — окрестность точки M_0 и дуга $l\in L$ такая, что интеграл $\int\limits_l F(P,A)\,dl_P$ сходится $\forall A\in L$

$$V(M_0)$$
 и $|\int\limits_l F(P,A)\,dl_p|\leqslant \varepsilon.$

Будем пользоваться следующей теоремой без доказательства:

Теорема 3.7. Пусть функция F(P,M) непрерывна всюду при $P \neq M$. Тогда интеграл $\int_{l} F(P,M) \, dl_{p}$ является непрерывной функцией в тех точках, где он равномерно сходится.

Возьмем на границе L некоторую точку M_0 и рассмотрим функцию $u(M) - f(M_0)u_e(M)$.

Теорема 3.8. Если в (3.12) функция f(P) непрерывна в точке M_0 , то функция $u(M) - f(M_0)u_e(M)$ — непрерывна в точке M_0 .

Доказательство.

$$u(M) - f(M_0)u_e(M) = (3.13) = \int_L f(P) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_p - \int_L f(M_0) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_p =$$

$$= \int_L (f(P) - f(M_0)) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_p$$

Из непрерывности нашей функции $\forall \varepsilon > 0$ следует существование такой окрестности точки M_0 , где $|f(P) - f(M_0)| \leqslant \varepsilon$. Следовательно, переходя к полярным координатам с центром в точке M_0 , получим

$$\left| \int_{L} (f(P) - f(M_0)) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_p \right| = \left| \int_{L} (f(P) - f(M_0)) d\phi \right| \leqslant \varepsilon \left| \int_{L} d\phi \right| = 2\pi\varepsilon$$

— при наложенных нами на кривую условиях.

Получаем, что интеграл равномерно сходится и теорема доказана.

Теперь, используя формулу (3.15) для функции $u_e(M)$ и утверждение теоремы, получим, что функция u(M) в точке M_0 имеет тот же вид , что и функция $u_e(M)f(M_0)$. Мы получили

Следствие 1.

Обозначим
$$u_{\text{внутр}}(M_0) = \lim_{\substack{M \to M_0; \\ M \in D}} u(M);$$

$$u_{\text{внеш}}(M_0) = \lim_{\substack{M \to M_0; \\ M \not\in \overline{D}}} u(M).$$

$$u_{\text{внутр}}(M_0) = u(M_0) + \pi f(M_0);$$

$$u_{\text{внеш}}(M_0) = u(M_0) - \pi f(M_0).$$

Таким образом, на контуре можно представить потенциал так:

$$u(M_0) = \frac{u_{\text{внеш}}(M_0) + u_{\text{внутр}}(M_0)}{2}.$$

Следствие 2. Функция u(M) непрерывна при $M \in L$, если f(P) непрерывна на L.

Доказательство. Мы имеем на контуре $f(M)u_e(M) = \pi f(M); \ u(M) - f(M_0)u_e(M) = \psi(M)$ — некоторая непрерывная функция. Тогда функция u(M) представима в виде $u(M) = \pi f(M) + \psi(M)$.

3.11 Сведение задачи Дирихле к интегральному уравнению Фредгольма 2-го рода

Рассмотрим внутреннюю задачу Дирихле в ${\bf E^2}$:

$$[\mathbf{3.5}] \left\{ \begin{array}{lcl} (1) & u(x,y) & \in & C(\overline{D}); \\ (2) & u(x,y) & - & \text{гармоническая в } D; \\ (3) & u(x,y) & = & \mu(x,y), \quad (x,y) \in L. \end{array} \right.$$

Будем искать решение в виде потенциала двойного слоя. Пусть

$$\overline{u}(M) = \int_{\Gamma} f(P) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_{p}$$

Тогда условие (2) сразу выполняется. Попробуем получить условия (1) и (3), изменяя f(P). Определим новую функцию

$$u(M) = \left\{ \begin{array}{ll} \overline{u}(M), & M \in D; \\ \overline{u}_{\text{внутр}}(M), & M \in L, \end{array} \right.$$

где $\overline{u}_{{\scriptscriptstyle{\mathrm{BHYTp}}}}(M) = \lim_{\stackrel{A \to M;}{A \in \overline{D}}} \overline{u}(A).$

Легко проверить, что полученная функция будет непрерывной в \overline{D} . Чтобы получить условие (3), воспользуемся следствием 1 из теоремы **3.8**. Тогда получаем:

$$\left\{ \begin{array}{l} \overline{u}_{\text{внутр}}(M) = \pi f(M) + \int\limits_{L} f(P) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} \, dl_{P}, \ M \in L; \\ \overline{u}_{\text{внутр}}(M) = \mu(M), \ M \in L. \end{array} \right. \Longrightarrow$$

$$\pi f(M) + \int_{\Gamma} f(P) \frac{\cos \angle (\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_p = \mu(M), \ M \in L$$
 (3.16)

Полученное уравнение относительно функции f(P) называется **интегральным уравнением Фредгольма 2-го рода**. Следующую теорему примем без доказательства:

Теорема 3.9 (альтернатива Фредгольма). Интегральное уравнение Фредгольма 2-го рода имеет единственное непрерывное решение $\forall \mu(M) \in C(L)$ тогда и только тогда, когда однородное уравнение (3.16) (т.е. $\mu(M) \equiv 0$) имеет только нулевое решение.

Используя это утверждение, докажем единственность решения задачи Дирихле [3.5].

Определение. Контур L называется строго выпуклым, если, какие бы две точки на нем мы не взяли, отрезок, их соединяющий, лежит целиком внутри контура.

Теорема 3.10 (существования и единственности). Пусть область D строго выпукла (L- строго выпуклый контур). Тогда внутренняя задача Дирихле [3.5] имеет единственное решение для любой непрерывной на L функции $\mu(M)$.

Доказательство. Согласно альтернативе Фредгольма, достаточно доказать, что уравнение

$$\pi f(M) + \int_{L} f(P) \frac{\cos \angle(\overrightarrow{MP}, \overrightarrow{n})}{\rho_{MP}} dl_{P} = 0, M \in L.$$
(3.17)

имеет только нулевое решение. Возьмем такую точку $M_0 \in L$, что $|f(M_0)| = \max_{M \in L} |f(M)|$. Мы знаем, что согласно формуле для потенциала с единичной плотностью (3.15),

$$\pi f(M_0) = \int_L f(M_0) \frac{\cos \angle (\overrightarrow{M_0 P}, \overrightarrow{n})}{\rho_{M_0 P}} dl_P, \ M_0 \in L.$$

Кроме того, так как f(M) — решение (3.17), то

$$\pi f(M_0) + \int_I f(P) \frac{\cos \angle (\overrightarrow{M_0 P}, \overrightarrow{n})}{\rho_{M_0 P}} dl_P = 0.$$

Складывая полученные равенства, получаем:

$$\int_{L} [f(P) + f(M_0)] \frac{\cos \angle (\overrightarrow{M_0P}, \overrightarrow{n})}{\rho_{M_0P}} dl_P = 0$$

Из определения $M_0: |f(M_0)|\geqslant |f(P)| \ \forall P\in L$ и того, что

$$\frac{\cos \angle (\overrightarrow{M_0P}, \overrightarrow{n})}{\rho_{M_0P}} = \frac{d\varphi}{dl_P} > 0,$$

получаем, что $f(M_0)+f(P)\equiv 0 \quad (\forall P\in L).$

Взяв $P=M_0$, получим $f(M_0)=0\Rightarrow f\equiv 0$. Теорема доказана.

4 Уравнения гиперболического типа

4.1 Постановка задач для уравнения колебаний

Рассмотрим несколько уравнений гиперболического типа.

Пусть функция $u(x,t) \in C^2((x,t): 0 < x < l, t > 0)$. Тогда уравнение

$$u_{tt} = a^2 u_{xx}, \ 0 < x < l, \ t > 0. \tag{4.1}$$

называется уравнением колебаний идеальной струны.

В случае функции от двух пространственных переменных u(x, y, t):

$$u_{tt} = a^2 \Delta u, \ (x, y) \in D, \ t > 0$$

- это уравнение колебаний упругой мембраны.

Рассмотрим уравнение (4.1). Мы можем задать начальные условия:

$$\begin{cases} u(x,0) = \phi(x), & 0 \leqslant x \leqslant l; - \text{интерпретируется как смещение струны от положения равновесия;} \\ u_t(x,0) = \psi(x), & 0 \leqslant x \leqslant l. \end{cases}$$

и краевые условия:

$$\left\{ \begin{array}{rcl} u(l,t) & = & \mu(t), & t>0; & \text{(в закрепленном случае } \mu\equiv 0) \\ u_x(l,t) & = & \nu(t), & t>0; \\ u(l,t) + \alpha u_x(l,t) & = & \theta(t), & t>0. \end{array} \right.$$

– обычно мы берем некоторые из них.

Краевые задачи ставятся аналогично случаю уравнений параболического типа. Вот пример **первой** краевой задачи.

$$\begin{cases} u_{tt} &= a^2 u_{xx}, & 0 < x < l, \ 0 < t \leqslant T; \\ u(x,0) &= \phi(x), & 0 \leqslant x \leqslant l; \\ u_t(x,0) &= \psi(x), & 0 \leqslant x \leqslant l; \\ u(0,t) &= \mu_1(t), & 0 \leqslant t \leqslant T; \\ u(l,t) &= \mu_2(t), & 0 \leqslant t \leqslant T. \end{cases}$$

Вот она же для полупрямой:

$$\begin{cases} u_{tt} &= a^2 u_{xx}, & x > 0, 0 < t \leq T; \\ u(x,0) &= \phi(x), & x \geq 0; \\ u_t(x,0) &= \psi(x), & x \geq 0; \\ u(0,t) &= \mu(t), & 0 \leq t \leq T. \end{cases}$$

Также можно рассмотреть обыкновенную задачу Коши

$$\begin{cases} u_{tt} = a^2 u_{xx}, & -\infty < x < +\infty, \ 0 < t \le T; \\ u(x,0) = \phi(x), & -\infty < x < +\infty; \\ u_t(x,0) = \psi(x), & -\infty < x < +\infty. \end{cases}$$

4.2 Формула Даламбера. Существование, устойчивость и единственность решения задачи Коши

Рассмотрим задачу Коши для уравнения колебаний:

$$[\mathbf{4.1}] \left\{ \begin{array}{lll} (1) & u_{tt} & = & a^2 u_{xx}, & -\infty < x < +\infty, \ 0 < t \leqslant T; \\ (2) & u(x,0) & = & \phi(x), & -\infty < x < +\infty; \\ (3) & u_t(x,0) & = & \psi(x), & -\infty < x < +\infty. \end{array} \right.$$

Пусть $u \in C^2(\mathbb{R} \times \mathbb{R}^+)$ и является решением задачи Коши [4.1]. Определим новые переменные ξ и η :

$$\left\{ \begin{array}{lll} \xi & = & x + at; \\ \eta & = & x - at. \end{array} \right. \Longrightarrow \left\{ \begin{array}{lll} x & = & \frac{\xi + \eta}{2}; \\ t & = & \frac{\xi - \eta}{2a}. \end{array} \right.$$

Определим новую функцию $v(\xi,\eta)=u(\frac{\xi+\eta}{2},\frac{\xi-\eta}{2a}).$ Найдем частные производные этой функции:

$$v_{\xi} = u_{x}(\frac{\xi + \eta}{2}, \frac{\xi - \eta}{2a})\frac{1}{2} + u_{t}(\frac{\xi + \eta}{2}, \frac{\xi - \eta}{2a})\frac{1}{2a};$$

$$v_{\xi\eta} = u_{xx}(\ldots)\frac{1}{4} + u_{xt}(\ldots)(-\frac{1}{4a}) + u_{tx}(\ldots)\frac{1}{4a} + u_{tt}(\ldots)(-\frac{1}{4a^{2}}) =$$

$$= u_{xx}(\ldots)\frac{1}{4} - \frac{1}{4a^{2}}u_{tt}(\ldots) = \{ \text{ уравнение колебаний } \} = 0.$$

Теперь проведем обратное интегрирование:

$$v_{\xi\eta}(\xi,\eta) = 0 \overset{\text{инт-ue, no } \xi}{\Longrightarrow} v_{\eta}(\xi,\eta) = \widetilde{f}_{1}(\eta) \overset{\text{инт-ue, no } \eta}{\Longrightarrow} v(\xi,\eta) = \int \widetilde{f}_{1}(\eta) \, d\eta + f_{2}(\xi)$$

$$\Longrightarrow v(\xi,\eta) = f_{1}(\eta) + f_{2}(\xi) \Longrightarrow \{u(x,t) = v(x+at,x-at)\} \Longrightarrow$$

$$u(x,t) = f_{1}(x-at) + f_{2}(x+at), \tag{4.2}$$

где $\widetilde{f}_1,\,f_1,\,f_2$ — некоторые функции, получающиеся при интегрировании.

Итак, мы получили общий вид для функции u, являющейся решением уравнения колебаний. Попробуем найти f_1 и f_2 , используя начальные условия:

$$\begin{cases} u(x,0) &= f_1(x) + f_2(x) = \phi(x); \\ u_t(x,0) &= -af_1'(x) + af_2'(x) = \psi(x). \end{cases} \Longrightarrow \begin{cases} -f_1(x) + f_2(x) &= \frac{1}{a} \int_{x_0}^x \psi(\xi) \, d\xi + C; \\ f_1(x) + f_2(x) &= \phi(x). \end{cases}$$

Складывая и вычитая уравнения системы, получим:

$$\begin{cases} f_2(x) = \frac{\phi(x)}{2} + \frac{1}{2a} \int_{x_0}^x \psi(\xi) \, d\xi + \frac{c}{2}; \\ f_1(x) = \frac{\phi(x)}{2} - \frac{1}{2a} \int_{x_0}^x \psi(\xi) \, d\xi - \frac{c}{2}. \end{cases} \Longrightarrow \{u(x,t) = f_1(x-at) + f_2(x+at)\} \Longrightarrow$$

$$u(x,t) = \frac{\phi(x-at) + \phi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi.$$
 (4.3)

Полученное выражение называется формулой Даламбера.

Теорема 4.1 (существования и единственности решения задачи Коши). Пусть функция $\phi(x) \in C^2(\mathbb{R}), \ \psi(x) \in C^1(\mathbb{R}).$ Тогда существует и единственна функция u(x,t) такая, что $u(x,t) \in C^2(\mathbb{R} \times \overline{\mathbb{R}}^+)$ и является решением задачи Коши [4.1], где функции $\phi(x)$ и $\psi(x)$ определяют начальные условия.

Доказательство. Существование проверяется непосредственной подстановкой с использованием условий (1)–(3) и условий теоремы.

Единственность следует из того, что для любой функции, удовлетворяющей условиям (1)–(3), справедливо представление по формуле Даламбера, а оно подразумевает только одну функцию. Теорема доказана.

Теорема 4.2 (устойчивости). Пусть $\phi_1, \phi_2(x) \in C^2(\mathbb{R}), \psi_1, \psi_2(x) \in C^1(\mathbb{R})$ и ограничены на \mathbb{R} . Тогда, если $u_1, u_2(x,t)$ — решения задач типа [4.1] с ϕ_1, ψ_1 и ϕ_2, ψ_2 в качестве начальных условий соответственно, то

$$\sup_{x \in \mathbb{R}, \ 0 \leqslant t \leqslant T} |u_1(x,t) - u_2(x,t)| \leqslant \sup_{x \in \mathbb{R}} |\phi_1(x) - \phi_2(x)| + T \sup_{x \in \mathbb{R}} |\psi_1(x) - \psi_2(x)|.$$

Доказательство. Из формул Даламбера (4.3) для u_1, u_2 следует:

$$|u_1 - u_2| \leq \left| \frac{\phi_1(x+at) - \phi_2(x+at)}{2} \right| + \left| \frac{\phi_1(x-at) - \phi_2(x-at)}{2} \right| + \frac{1}{2a} \int_{x-at}^{x+at} |\psi_1(\xi) - \psi_2(\xi)| \, d\xi \leq \frac{1}{2a} \int_{x-at}^{x+at} |\psi_1(\xi)| \, d\xi \leq \frac{1$$

$$\leq \sup_{x \in \mathbb{R}} |\phi_1(x) - \phi_2(x)| + \sup_{x \in \mathbb{R}} |\psi_1(x) - \psi_2(x)| \frac{1}{2a} \int_{x-at}^{x+at} d\xi \leq \sup_{x \in \mathbb{R}} |\phi_1(x) - \phi_2(x)| + \sup_{x \in \mathbb{R}} |\psi_1(x) - \psi_2(x)| T.$$

Теорема доказана.

4.3 Характеристики уравнения в частных производных второго порядка

Классическое уравнение в частных производных второго порядка имеет следующий вид:

$$a_{11}(x,y)u_{xx} + 2a_{12}(x,y)u_{xy} + a_{22}(x,y)u_{yy} = F(x,y,u,u_x,u_y)$$

$$(4.4)$$

Поставим ему в однозначное соответствие обыкновенное дифференциальное уравнение:

$$a_{11}(dy)^2 - 2a_{12}dxdy + a_{22}(dx)^2 = 0 (4.5)$$

Тогда функции (кривые), являющиеся решением (4.5), называются **характеристиками уравнения** (4.4).

Например, для уравнения колебаний

$$a^2 u_{xx} - u_{tt} = 0$$

уравнение для получения характеристик выглядит так:

$$a^{2}(dt)^{2} - (dx)^{2} = 0.$$

Из него получаем

$$\left[\begin{array}{cccc} a\,dt+dx &=& 0;\\ a\,dt-dx &=& 0. \end{array}\right] \implies \left[\begin{array}{cccc} x+at &=& const;\\ x-at &=& const. \end{array}\right.$$

- это две прямые, являющиеся характеристиками гиперболического уравнения.

Пусть функция u(x,t) является решением некоторой задачи Коши. Возьмем в I четверти плоскости ОХТ произвольную точку (x_0,t_0) . Через нее проходят только две характеристики: $x-at=x_0-at_0,\ x+at=x_0+at_0$. Они пересекают ось ОХ в точках $(x_0+at_0,0),\ (x_0-at_0,0),\$ образуя при этом так называемый характеристический треугольник.

Записав для функции u(x,t) в точке $u(x_0,t_0)$ формулу Даламбера (4.3):

$$u(x_0, t_0) = \frac{\phi(x_0 - at_0) + \phi(x_0 + at_0)}{2} + \frac{1}{2a} \int_{x_0 - at_0}^{x_0 + at_0} \psi(\xi) d\xi,$$

получим, что значения функции u(x,t) в произвольной точке внутри характеристического треугольника определяются только значениями функций $\phi(x)$, $\psi(x)$ на его основании. Это — важная особенность гиперболического уравнения, которая станет понятна на следующем примере:

Пусть функции $\phi(x)$, $\psi(x)$ равны нулю вне некоторого отрезка [a;b]. Тогда в областях II,III функция u(x,t) будет, как легко видеть из формулы Даламбера, тождественно равна нулю. Этот факт показывает конечную скорость (в течение времени t) распространения сигнала u(x,t) (по оси x) в гиперболическом уравнении.

Напротив, в задаче Коши для уравнения теплопроводности:

$$\left\{ \begin{array}{rcl} u_t & = & a^2 u_{xx}, & & -\infty < x < \infty, \ t > 0 \\ u(x,0) & = & \phi(x), & & -\infty < x < \infty \end{array} \right.$$

решение, как показывалось ранее, имеет вид

$$u(x,t) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{4\pi a^2 t}} \exp\left(-\frac{(x-s)^2}{4a^2 t}\right) \phi(s) ds$$

Видно, что если функция $\phi(s)$ непрерывна, неотрицательна и в некоторой точке отлична от нуля, то $u(x,t)>0 \ \forall t>0 \ \forall x\in\mathbb{R}.$

То есть, мы как бы получаем то, что сигналы в случае уравнения теплопроводности распространяются практически мгновенно.

4.4 Задача на полупрямой. Метод продолжений

Первая краевая задача

Первая краевая задача для уравнения колебаний на полупрямой с однородным краевым условием имеет следующий вид:

$$\begin{cases} (1) & u_{tt} = a^2 u_{xx}, & x > 0, \ t > 0; \\ (2) & u(0,t) = 0, & t > 0; \\ (3) & u(x,0) = \phi(x), & x \geqslant 0; \\ (4) & u_t(x,0) = \psi(x), & x \geqslant 0. \end{cases}$$

Добавим условия сопряжения

$$\begin{cases} \phi(0) = 0; \\ \psi(0) = 0. \end{cases}$$

для обеспечения непрерывности функций u(x,t) и $u_t(x,t)$ в нуле.

Найдем решение данной краевой задачи, расширив ее до случая всей прямой. Доопределим нечетным образом функции $\phi(x)$ и $\psi(x)$ на всей прямой, задав новые функции Φ и Ψ :

$$\Phi(x) = \begin{cases}
\phi(x), & x \geqslant 0; \\
-\phi(-x), & x < 0.
\end{cases}$$

$$\Psi(x) = \begin{cases}
\psi(x), & x \geqslant 0; \\
-\psi(-x), & x < 0.
\end{cases}$$

Рассмотрим модифицированную задачу Коши:

$$\begin{cases} U_{tt}(x,t) &= a^2 U_{xx}(x,t), & -\infty < x < \infty, \ t > 0; \\ U(x,0) &= \Phi(x); \\ U_t(x,0) &= \Psi(x). \end{cases}$$

В данном случае для нахождения U(x,t) мы можем применить формулу Даламбера:

$$U(x,t) = \frac{\Phi(x-at) + \Phi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \Psi(\xi) d\xi.$$

Возьмем в качестве нужной нам функции u(x,t) при $x,t\geqslant 0$ функцию U(x,t). Очевидно, что условия (1),(3) и (4) при $x,t\geqslant 0$ выполняются сразу — это следует из определения функций $\Psi(x)$ и $\Phi(x)$. Выполнение условия (2) следует из следующих преобразований:

$$u(0,t) \stackrel{def}{=} U(0,t) = \frac{\Phi(-at) + \Phi(at)}{2} + \frac{1}{2a} \int_{-at}^{at} \Psi(\xi) d\xi.$$

В силу нечетности соответствующих функций первое и второе слагаемые обращаются в ноль, что и дает выполнение условия (2). Итак, мы доказали, что построенная нами функция u(x,t) — решение первой краевой задачи. Выразим $\Phi(x)$ и $\Psi(x)$ через исходные функции $\phi(x)$ и $\psi(x)$ соответственно:

При
$$x \geqslant at$$

$$\begin{cases} \Phi(x+at) &= \phi(x+at); \\ \Phi(x-at) &= \phi(x-at); \\ \Psi(\xi) &= \psi(\xi), \text{ при } \xi \in [x-at;x+at]. \end{cases}$$
 При $x < at$
$$\begin{cases} \Phi(x+at) = \phi(x+at); \\ \Phi(x-at) = -\phi(at-x); \end{cases}$$

Теперь запишем вспомогательную формулу для решения первой краевой задачи:

При
$$x < at$$

$$\int_{x-at}^{x+at} \Psi(\xi) d\xi = \int_{x-at}^{0} \Psi(\xi) d\xi + \int_{0}^{x+at} \Psi(\xi) d\xi = \int_{x-at}^{0} - \psi(-\xi) d\xi + \int_{0}^{x+at} \psi(\xi) d\xi =$$

$$= \{ \text{ положим } -\xi = \xi \} = \int_{at-x}^{0} \psi(\xi) d\xi + \int_{0}^{x+at} \psi(\xi) d\xi = \int_{at-x}^{at+x} \psi(\xi) d\xi.$$

Тогда общая формула будет такой:

$$u(x,t) = \begin{cases} \frac{\phi(x+at) + \phi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi, & x \geqslant at; \\ \frac{\phi(at+x) - \phi(at-x)}{2} + \frac{1}{2a} \int_{at-x}^{at+x} \psi(\xi) d\xi, & x < at. \end{cases}$$

Вторая краевая задача

Вторая краевая задача на полупрямой с однородным краевым условием имеет вид:

$$\begin{cases} (1) & u_{tt} = a^2 u_{xx}, & x > 0, t >$$

Будем действовать так же, как и в предыдущем случае, однако здесь нас устроит только четное продолжение:

$$\Phi(x) = \begin{cases} \phi(x), & x \geqslant 0; \\ \phi(-x), & x < 0. \end{cases}$$

$$\Psi(x) = \begin{cases} \psi(x), & x \geqslant 0; \\ \psi(-x), & x < 0. \end{cases}$$

Новая задача Коши и решение для нее по формуле Даламбера будут выглядеть так же, как и в предыдущем случае:

$$U(x,t) = \frac{\Phi(x - at) + \Phi(x + at)}{2} + \frac{1}{2a} \int_{x - at}^{x + at} \Psi(\xi) d\xi.$$

Аналогично, пусть $u(x,t)=U(x,t),\;x,t>0.$ Тогда выполнение условий (1),(3),(4) опять же очевидно. Проверим условие (2). Дифференцируя формулу Даламбера и используя то, что у четной функции $\Psi(t)$ производная нечетна, получим

$$u_x(0,t) = U_x(0,t) = \frac{\Phi'(at) + \Phi'(-at)}{2} + \frac{1}{2a} \left[\Psi(at) - \Psi(-at) \right].$$

Из нечетности $\Phi'(t)$ и четности $\Psi(t)$ видно, что оба слагаемых равны нулю. Общая формула для u(x,t) получается аналогично.

4.5 Метод разделения переменных для доказательства существования решения первой краевой задачи

Рассмотрим на отрезке [0; l] ортонормированные системы функций:

$$\left\{ \sqrt{\frac{2}{l}} \sin(\frac{\pi n}{l}x) \right\}, \ n = 1, 2, 3, \dots$$
$$\left\{ \frac{1}{\sqrt{l}}, \sqrt{\frac{2}{l}} \cos(\frac{\pi n}{l}x) \right\}, \ n = 1, 2, 3, \dots$$

Определим коэффициенты Фурье так:

$$\phi_n = \int_0^l \phi(s) \sin(\frac{\pi n}{l}s) ds;$$
$$\widetilde{\phi}_n = \int_0^l \phi(s) \cos(\frac{\pi n}{l}s) ds.$$

Тогда из курса математического анализа известно, что, если $\phi(x) \in C[a;b]$, то ряды $\sum\limits_{n=1}^{\infty} \phi_n^2, \sum\limits_{n=1}^{\infty} \widetilde{\phi}_n^2$ сходятся. Запомним это и перейдем к **первой краевой задаче** с однородным уравнением колебаний и

однородными краевыми условиями:

$$[4.2] \begin{cases} (1) & u_{tt} = a^2 u_{xx}, & 0 < x < l, t > 0; \\ (2) & u(0,t) = u(l,t) = 0, & t \geqslant 0; \\ (3) & u(x,0) = \phi(x), & 0 \geqslant x \geqslant l; \\ (4) & u_t(x,0) = \psi(x), & 0 \geqslant x \geqslant l. \end{cases}$$

Найдем ее решение следующим способом: проведем преобразования, приводящие к некоторой функции u(x,t), а потом докажем, что при определенных условиях на функции $\phi(x)$ и $\psi(x)$ эта функция будет существовать и являться решением исходной задачи.

Будем искать решение в виде:

v(x,t) = X(x)T(t) — пусть это некоторая не равная тождественно нулю функция.

Подставив v(x,t) в уравнение колебаний, получим:

$$T''(t)X(x) = a^2X''(x)T(t) \Longrightarrow$$
$$\frac{X''(x)}{X(x)} = \frac{T''(t)}{a^2T(t)} = -\lambda,$$

где λ — некоторая константа.

Отсюда получаются два уравнения:

$$\left\{ \begin{array}{l} X''(x) + \lambda X(x) = 0, \ 0 < x < l; \\ T''(t) + \lambda a^2 T(t) = 0, \ t > 0. \end{array} \right.$$

При X(0) = X(l) = 0 функция v(x,t), очевидно, будет удовлетворять условию (2). Найдем нетривиальные решения следующей задачи Штурма-Лиувилля:

$$\left\{ \begin{array}{l} X''(x) + \lambda X(x) = 0, \ 0 \leqslant x \leqslant l; \\ X(0) = X(l) = 0. \end{array} \right.$$

Как уже говорилось при выводе решения для уравнения теплопроводности, нам подойдут такие собственные значения и соответствующие им собственные функции:

$$\lambda_n = \left(\frac{\pi n}{l}\right)^2;$$

$$X_n(x) = \sin(\frac{\pi n}{l}x), \ n = 1, 2, \dots$$

Подставим найденные λ_n в уравнение для T(t):

$$T_n''(t) + \left(\frac{\pi n}{l}a\right)^2 T_n(t) = 0 \Longrightarrow T_n(t) = a_n \cos(\frac{\pi n}{l}at) + b_n \sin(\frac{\pi n}{l}at),$$

где a_n, b_n — некоторые константы.

Итак, мы нашли функции $X_n(x)$, $T_n(t)$, для которых выполняются условия (1),(2).

Положим $v_n(x,t) = X_n(x)T_n(t)$. Очевидно, для этой функции тоже выполняются условия (1),(2).

Найдем константы a_n, b_n из условий (3), (4), положив $u(x,t) = \sum_{n=1}^{\infty} v_n(x,t)$:

$$u(x,t) = \sum_{n=1}^{\infty} v_n(x,t) = \sum_{n=1}^{\infty} \sin(\frac{\pi n}{l}x) \left[a_n \cos(\frac{\pi n}{l}at) + b_n \sin(\frac{\pi n}{l}at) \right];$$

$$\phi(x) = u(x,0) = \sum_{n=1}^{\infty} a_n \sin(\frac{\pi n}{l}x) \Longrightarrow a_n = \frac{2}{l} \int_0^l \phi(s) \sin(\frac{\pi n}{l}s) ds;$$

$$\psi(x) = u_t(x,0) = \sum_{n=1}^{\infty} \left(b_n \frac{\pi na}{l} \right) \sin(\frac{\pi n}{l}x) \Longrightarrow \frac{\pi na}{l} b_n = \frac{2}{l} \int_0^l \psi(s) \sin(\frac{\pi n}{l}s) ds \Longrightarrow$$

$$b_n = \frac{2}{\pi na} \int_0^l \psi(s) \sin(\frac{\pi n}{l}s) ds.$$

Итак, мы нашли константы, запишем полную формулу:

$$u(x,t) = \sum_{n=1}^{\infty} \left[\frac{2}{l} \int_{0}^{l} \cos(\frac{\pi n}{l} at) \phi(s) \sin(\frac{\pi n}{l} s) ds + \frac{2}{\pi n a} \int_{0}^{l} \sin(\frac{\pi n}{l} at) \psi(s) \sin(\frac{\pi n}{l} s) ds \right] \sin(\frac{\pi n}{l} x). \tag{4.6}$$

Теперь сформулируем те условия, при которых она будет корректна.

Теорема 4.3 (существования). Пусть

$$\begin{array}{l} \phi(x) \in C^3[0;\, l], \; \phi(0) = \phi(l) = \phi''(0) = \phi''(l) = 0; \\ \psi(x) \in C^2[0;\, l], \; \psi(0) = \psi(l) = 0. \end{array}$$

Тогда функция u(x,t), определяемая формулой (4.6), обладает следующими свойствами: $u(x,t) \in C^2\{[0;l] \times [0;T]\}$ (T-произвольное>0), и удовлетворяет условиям (1)-(4) (является решением краевой задачи [4.2]).

Доказательство. Докажем, что $u(x,t) \in C^2\{[0;t] \times [0;T]\}$. Пусть

$$\begin{split} \phi_n &= \int\limits_0^l \phi(s) \sin(\frac{\pi n}{l} s) \, ds = \{\text{интегрирование по частям}\} = \\ &= -\phi(s) \frac{l}{\pi n} \cos(\frac{\pi n}{l} s) \bigg|_0^l + \frac{l}{\pi n} \int\limits_0^l \phi'(s) \cos(\frac{\pi n}{l} s) \, ds = \\ &= \{\text{еще раз интегрирование по частям}\} = \left(\frac{l}{\pi n}\right)^2 \phi'(s) \sin(\frac{\pi n}{l} s) \bigg|_0^l - \left(\frac{l}{\pi n}\right)^2 \int\limits_0^l \phi''(s) \sin(\frac{\pi n}{l} s) \, ds = \\ &= \left(\frac{l}{\pi n}\right)^3 \phi''(s) \cos(\frac{\pi n}{l} s) \bigg|_0^l - \left(\frac{l}{\pi n}\right)^3 \int\limits_0^l \phi'''(s) \cos(\frac{\pi n}{l} s) \, ds. \end{split}$$
 Положим $\widehat{\phi_n} = \int\limits_0^l \phi'''(s) \cos(\frac{\pi n}{l} s) \, ds$. Тогда $n^3 |\phi_n| = \left(\frac{l}{\pi}\right)^3 |\widehat{\phi_n}|$.

По упомянутому ранее свойству ряд $\sum_{n=1}^{\infty} \widehat{\phi_n}^2$ сходится. Покажем, что из этого следует сходимость ряда $\sum_{n=1}^{\infty} n^2 |\phi_n|$:

$$\sum_{n=1}^{\infty} n^2 |\phi_n| = \left(\frac{l}{\pi}\right)^3 \sum_{n=1}^{\infty} \frac{1}{n} |\widehat{\phi_n}| \leqslant \left\{ ab \leqslant \frac{a^2 + b^2}{2} \right\} \leqslant \left(\frac{l}{\pi}\right)^3 \left[\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} + \frac{1}{2} \sum_{n=1}^{\infty} \widehat{\phi_n}^2 \right]$$

Итак, у нас оба слагаемых представляют собой сходящиеся ряды, поэтому ряд $\sum_{n=1}^{\infty} n^2 |\phi_n|$ сходится по мажорантному признаку.

Аналогично, пусть

$$\psi_n = \int_0^l \psi(s) \sin(\frac{\pi n}{l}s) \, ds = \{\text{интегрирование по частям}\} =$$

$$= -\psi(s) \frac{l}{\pi n} \cos(\frac{\pi n}{l}s) \Big|_0^l + \frac{l}{\pi n} \int_0^l \psi'(s) \cos(\frac{\pi n}{l}s) \, ds =$$

$$= \{\text{еще раз интегрирование по частям}\} = \left(\frac{l}{\pi n}\right)^2 \psi'(s) \sin(\frac{\pi n}{l}s) \Big|_0^l - \left(\frac{l}{\pi n}\right)^2 \int_0^l \psi''(s) \sin(\frac{\pi n}{l}s) \, ds$$

Аналогично, можно показать, что ряд $\sum\limits_{n=1}^{\infty}n|\psi_n|$ — сходится.

Ограничив $|\cos(\frac{\pi n}{l}at)|$ и $|\sin(\frac{\pi n}{l}at)|$ единицей, получим, что ряд (4.6) для u(x,t) равномерно сходится по признаку Вейерштрасса (мажорантой является, очевидно, сходящийся ряд $\sum\limits_{n=1}^{\infty}\left[\frac{2}{l}|\phi_n|+\frac{2}{\pi n\,a}|\psi_n|\right]$). Кроме того, функция u(x,t) в данном случае непрерывна на $[0;l]\times[0;T]$.

Точно так же, для существования и непрерывности первой и второй производных по x достаточно доказать равномерную сходимость ряда из соответствующих производных в формуле (4.6). Продифференцировав по x, получим

$$u_x(x,t) = \sum_{n=1}^{\infty} \frac{\pi n}{l} \left[\frac{2}{l} \int_{0}^{l} \cos(\frac{\pi n}{l} a t) \phi(s) \sin(\frac{\pi n}{l} s) ds + \frac{2}{\pi n a} \int_{0}^{l} \cos(\frac{\pi n}{l} a t) \psi(s) \sin(\frac{\pi n}{l} s) ds \right] \cos(\frac{\pi n}{l} x).$$

$$u_{xx}(x,t) = \sum_{n=1}^{\infty} \left(\frac{\pi n}{l} \right)^2 \left[\frac{2}{l} \int_{0}^{l} \cos(\frac{\pi n}{l} a t) \phi(s) \sin(\frac{\pi n}{l} s) ds + \frac{2}{\pi n a} \int_{0}^{l} \cos(\frac{\pi n}{l} a t) \psi(s) \sin(\frac{\pi n}{l} s) ds \right] \sin(\frac{\pi n}{l} x).$$

Тогда (по признаку Вейерштрасса) достаточно показать сходимость рядов

$$\sum_{n=1}^{\infty} \frac{\pi n}{l} \left(\frac{2}{l} |\phi_n| - \frac{2}{\pi n a} |\psi_n| \right), \quad \sum_{n=1}^{\infty} \left(\frac{\pi n}{l} \right)^2 \left(\frac{2}{l} |\phi_n| - \frac{2}{\pi n a} |\psi_n| \right).$$

Она же следует из только что доказанных свойств для рядов $\sum\limits_{n=1}^{\infty}n^2|\phi_n|$ и $\sum\limits_{n=1}^{\infty}n|\psi_n|$. Проведя те же самые рассуждения для производных по t, получим в итоге, что $u(x,t)\in C^2\left\{[0;t]\times[0;T]\right\}$.

В этом случае легко проверить, что функция u(x,t), задаваемая формулой (4.6), удовлетворяет уравнению колебаний (то есть условию (1)). То, что такая функция u(x,t) удовлетворяет условиям (2)-(4), видно из ее построения — краевые и начальные условия были учтены. Теорема доказана.

Итак, решение построено. Докажем, что при некоторых условиях оно единственно.

4.6 Интеграл энергии. Единственность решения краевых задач для уравнения колебаний

Рассмотрим общую первую краевую задачу:

$$[\textbf{4.3}] \left\{ \begin{array}{rcl} u_{tt} & = & a^2u_{xx} + f(x,t), & 0 < x < l, \ 0 < t < T; \\ u(0,t) & = & \mu_1(t), & 0 \leqslant t \leqslant T; \\ u(l,t) & = & \mu_2(t), & 0 \leqslant t \leqslant T; \\ u(x,0) & = & \phi(x), & 0 \leqslant x \leqslant l; \\ u_t(x,0) & = & \psi(x), & 0 \leqslant x \leqslant l. \end{array} \right.$$

Докажем единственность ее решения.

Теорема 4.4 (единственности). Пусть функции $u_1, u_2(x,t) \in C^2\{[0; l] \times [0; T]\}$ и являются решениями одной и той же краевой задачи [4.3]. Тогда $u_1(x,t) \equiv u_2(x,t)$ на $\{[0; l] \times [0; T]\}$.

Доказательство. Пусть $v(x,t)=u_1-u_2$. Очевидно, функция является решением нашей краевой задачи с тождественно равными нулю функциями f,ϕ,ψ,μ_1,μ_2 . Таким образом, $v(x,t)\in C^2\{[0;t]\times[0;T]\}$ и

$$\begin{cases} v_{tt} = a^2 v_{xx}, \ 0 < x < l, \ 0 < t < T; \\ v(0,t) \equiv v(l,t) \equiv v(x,0) \equiv v_t(x,0) \equiv 0. \end{cases}$$

Понятно, требуется доказать, что $v(x,t) \equiv 0$.

Определим функцию

$$E(t) = \int_{0}^{l} \left[(v_t(x,t))^2 + a^2(v_x(x,t))^2 \right] dx$$

и назовем ее **интегралом энергии**. В физической интерпретации с точностью до константы это полная энергия, к примеру, нашей колеблющейся струны.

Очевидно, при наших условиях на функцию v функция E(t) дифференцируема. Тогда ее производная вычисляется так:

$$E'(t) = \int_{1}^{l} \left[2v_t(x,t)v_{tt}(x,t) + 2a^2v_x(x,t)v_{xt}(x,t) \right] dx.$$

Преобразуем второе слагаемое в интеграле интегрированием по частям по x:

$$E'(t) = \int_{0}^{l} \left[2v_t(x,t)v_{tt}(x,t) - 2a^2v_{xx}(x,t)v_t(x,t) \right] dx + 2a^2v_x(x,t)v_t(x,t) \Big|_{0}^{l}.$$

Заметим, что, так как v(x,t) — решение уравнения колебаний, подынтегральная функция тождественно равна нулю. Продифференцировав краевые условия по t, получим, что $v_t(0,t) \equiv 0 \equiv v_t(l,t)$. Из этого следует, что и внеинтегральное слагаемое обращается в ноль. Итак, $E'(t) \equiv 0$, или, что то же самое,

$$E(t) = \int_{0}^{l} \left[(v_t(x,t))^2 + a^2(v_x(x,t))^2 \right] dx \equiv const.$$

На самом деле мы просто получили еще один вид закона сохранения энергии — в замкнутой системе, описываемой уравнениями [4.3], количество энергии постоянно. Очевидно,

$$E(t) = E(0) = \int_{0}^{l} \left[(v_t(x,0))^2 + a^2 (v_x(x,0))^2 \right] dx.$$

Из начальных условий получаем, что $v_t(x,0) = v_x(x,0) = 0, \ 0 \le x \le l, \ a, \ c$ ледовательно,

$$E(0) = 0 \Longrightarrow E(t) \equiv 0.$$

Из неотрицательности подынтегральных функций получаем, что

$$v_t(x,t) \equiv v_x(x,t) \equiv 0.$$

Из этого следует, что $v\equiv const$, а из начальных условий следует, что $v\equiv 0$. Теорема доказана. $\ \square$

Замечание. Все утверждения верны и для задач с краевыми условиями второго рода:

$$\begin{cases} v_x(0,t) = 0; \\ v_x(l,t) = 0. \end{cases}$$

— это ничего не меняет в доказательстве, кроме способа доказательства равенства нулю внеинтегрального слагаемого, а также верны для краевых условий смешанного вида.

4.7 Задача с данными на характеристиках. Эквивалентная система интегральных уравнений

Рассмотрим следующую задачу:

$$[\mathbf{4.4}] \left\{ \begin{array}{lll} (1) & u_{xy}(x,y) & = & a(x,y)u_x(x,y) + b(x,y)u_y(x,y) + f(x,y,u(x,y)), \ 0 < x < l_1, \ 0 < y < l_2; \\ (2) & u(x,0) & = & \phi(x), \ 0 \leqslant x \leqslant l_1; \\ (3) & u(0,y) & = & \psi(y), \ 0 \leqslant y \leqslant l_2. \end{array} \right.$$

Эта задача с нелинейным уравнением гиперболического типа называется задачей Гурса. По данному ранее определению характеристиками уравнения (1) будут функции, удовлетворяющие уравнению

$$dx dy = 0.$$

Это дает семейство прямых вида x = const, y = const. Таким образом, наша функция u(x,t) задается данными на характеристиках x = 0, y = 0.

Определение. Функция u(x,y) называется решением задачи [4.4], если $u(x,y) \in C^2\{[0; l_1] \times [0; l_2]\}$ и удовлетворяет условиям (1)-(3).

Докажем существование и единственность решения данной задачи в несколько этапов. Сначала покажем, что задача [4.4] эквивалентна некоторой системе нелинейных интегральных уравнений.

Пусть функция u(x,y) — решение задачи [4.4]. Тогда, интегрируя уравнение (1) сначала по y, а потом по x, получим

$$u_x(x,y) = u_x(x,0) + \int_0^y a(x,\eta)u_x(x,\eta) \, d\eta + \int_0^y b(x,\eta)u_y(x,\eta) \, d\eta + \int_0^y f(x,\eta,u(x,\eta)) \, d\eta;$$

$$u(x,y) = u(0,y) + u(x,0) - u(0,0) + \int_{0}^{x} \int_{0}^{y} a(\xi,\eta) u_{x}(\xi,\eta) d\eta d\xi + \int_{0}^{x} \int_{0}^{y} b(\xi,\eta) u_{y}(\xi,\eta) d\eta d\xi + \int_{0}^{x} \int_{0}^{y} f(\xi,\eta, u(\xi,\eta)) d\eta d\xi.$$
(4.7)

Введем две новые функции

$$\begin{cases} v(x,y) = u_x(x,y); \\ w(x,y) = u_y(x,y). \end{cases}$$

Тогда, используя начальные условия (2)-(3), уравнение (4.7) можно переписать в виде

$$u(x,y) = \psi(y) + \phi(x) - \phi(0) + \int_{0}^{x} \int_{0}^{y} \left[a(\xi,\eta)v(\xi,\eta) + b(\xi,\eta)w(\xi,\eta) \right] d\eta d\xi + \int_{0}^{x} \int_{0}^{y} f(\xi,\eta,u(\xi,\eta)) d\eta d\xi.$$
 (4.8)

Продифференцировав по x, получим

$$v(x,y) = \phi'(x) + \int_{0}^{y} \left[a(x,\eta)v(x,\eta) + b(x,\eta)w(x,\eta) \right] d\eta + \int_{0}^{y} f(x,\eta,u(x,\eta)) d\eta.$$
 (4.9)

Аналогично, по y:

$$w(x,y) = \psi'(y) + \int_{0}^{x} \left[a(\xi,y)v(\xi,y) + b(\xi,y)w(\xi,y) \right] d\xi + \int_{0}^{x} f(\xi,y,u(\xi,y)) d\xi.$$
 (4.10)

Итак, если u(x,y) — решение задачи [4.4], то существуют функции v(x,y), w(x,y), удовлетворяющие уравнениям (4.8)-(4.10). Обратно, из существования непрерывных функций u, v, w, являющихся решениями уравнений (4.8) - (4.10), следует, что $v = u_x$; $w = u_y$. Также непосредственным дифференцированием можно убедиться, что функция u(x,y) будет являться решением задачи [4.4].

4.8 Существование решения задачи с данными на характеристиках

Теорема 4.5 (существования). Пусть выполняются следующие четыре условия:

- 1. $a(x,y), b(x,y) \in C\{[0; l_1] \times [0; l_2]\}$
- 2. $f(x,y,p) \in C\{[0;l_1] \times [0;l_2] \times \mathbf{E}\}$ то есть мы заменили функцию u(x,y) переменной p, принимающей любые значения.
- 3. $|f(x,y,p_1)-f(x,y,p_2)| \leq L|p_1-p_2|, \ \forall x \in [0;l_1], \ \forall y \in [0;l_2], \ \forall p_1,p_2 \in E y$ crosue \mathcal{J} unuuu no p.
- 4. $\phi(x) \in C^1[0; l_1], \ \psi(y) \in C^1[0; l_2], \ \phi(0) = \psi(0).$

Тогда существует решение задачи [4.4].

Доказательство. Так как [4.4] эквивалентно (4.8)-(4.10), докажем, что существуют непрерывные функции u(x,y),v(x,y),w(x,y), удовлетворяющие (4.8)-(4.10). Найдем эти функции последовательностью ите-

ции
$$u(x,y),v(x,y),w(x,y),$$
 удовлетворяющие (4.8) - (4.10) . Найдем эти функции последовательностью итераций, а итерационный процесс построим следующим образом:
$$\begin{cases} u_0(x,y)=v_0(x,y)=w_0(x,y)=0;\\ u_{n+1}(x,y)=\psi(y)+\phi(x)-\phi(0)+\int\limits_0^x\int\limits_0^y\left[a(\xi,\eta)v_n(\xi,\eta)+b(\xi,\eta)w_n(\xi,\eta)\right]\,d\eta\,d\xi+\int\limits_0^x\int\limits_0^yf(\xi,\eta,u_n(\xi,\eta))\,d\eta\,d\xi;\\ v_{n+1}(x,y)=\phi'(x)+\int\limits_0^y\left[a(x,\eta)v_n(x,\eta)+b(x,\eta)w_n(x,\eta)\right]\,d\eta+\int\limits_0^yf(x,\eta,u_n(x,\eta))\,d\eta;\\ w_{n+1}(x,y)=\psi'(y)+\int\limits_0^x\left[a(\xi,y)v_n(\xi,y)+b(\xi,y)w_n(\xi,y)\right]\,d\xi+\int\limits_0^xf(\xi,y,u_n(\xi,y))\,d\xi. \end{cases}$$

Докажем сходимость этого процесса. Для этого оценим разность между членами последовательностей u_n, v_n, w_n . Из определения итерации для u_n и условия (3) теоремы следует, что

$$|u_{n+1} - u_n| \leq \int_0^x \int_0^y [|a(\xi, \eta)||v_n(\xi, \eta) - v_{n-1}(\xi, \eta)| + |b(\xi, \eta)||w_n(\xi, \eta) - w_{n-1}(\xi, \eta)|] d\eta d\xi + \int_0^x \int_0^y L|u_n(\xi, \eta) - u_{n-1}(\xi, \eta)| d\eta d\xi.$$

Пусть $M = \max\{\max|a(x,y)|,\max|b(x,y)|,L\}$ при $(x,y) \in \{[0;l_1] \times [0;l_2]\}$. Тогда

$$|u_{n+1} - u_n| \leq M \int_0^x \int_0^y \left[|v_n(\xi, \eta) - v_{n-1}(\xi, \eta)| + |w_n(\xi, \eta) - w_{n-1}(\xi, \eta)| + |u_n(\xi, \eta) - u_{n-1}(\xi, \eta)| \right] d\eta d\xi. \quad (4.11)$$

Аналогично, для функций v_n, w_n :

$$|v_{n+1} - v_n| \leqslant M \int_0^y \left[|v_n(x, \eta) - v_{n-1}(x, \eta)| + |w_n(x, \eta) - w_{n-1}(x, \eta)| + |u_n(x, \eta) - u_{n-1}(x, \eta)| \right] d\eta; \qquad (4.12)$$

$$|w_{n+1} - w_n| \leq M \int_0^x \left[|v_n(\xi, y) - v_{n-1}(\xi, y)| + |w_n(\xi, y) - w_{n-1}(\xi, y)| + |u_n(\xi, y) - u_{n-1}(\xi, y)| \right] d\xi. \tag{4.13}$$

Заметим, что все элементы итерационного процесса — непрерывные функции. Из этого следует, что функции $|u_1|, |v_1|, |w_1|$ ограничены некоторой константой H. Из определения нулевых членов последовательности получаем, что

$$|u_1 - u_0| \le H$$
; $|v_1 - v_0| \le H$; $|w_1 - w_0| \le H$.

Используя это, оценим разности следующего порядка:

$$|u_2 - u_1| \le M \int_0^x \int_0^y 3H \, d\xi \, d\eta = 3HMxy \le 3HM \frac{(x+y)^2}{2};$$

$$|v_2 - v_1| \le M \int_0^y 3H \, d\eta = 3HMy \le 3HM(x+y);$$

$$|w_2 - w_1| \le M \int_0^x 3H \, d\xi = 3HMx \le 3HM(x+y).$$

Для доказательства равномерной сходимости наших последовательностей нам надо будет построить некий мажорантный ряд, но сначала докажем следующую оценку:

$$|u_n(x,y) - u_{n-1}(x,y)| \le 3HM^{n-1}K^{n-2}\frac{(x+y)^n}{n!};$$

$$|v_n(x,y) - v_{n-1}(x,y)| \le 3HM^{n-1}K^{n-2}\frac{(x+y)^{n-1}}{(n-1)!};$$

$$|w_n(x,y) - w_{n-1}(x,y)| \le 3HM^{n-1}K^{n-2}\frac{(x+y)^{n-1}}{(n-1)!},$$

где $K = 2 + l_1 + l_2$.

Доказательство проведем по индукции.

База индукции. При n=2 оценка верна — доказано выше.

Предположение индукции. Предположим, что она верна для n. Докажем ее для n+1.

Индуктивный переход. Оценим разность $|u_{n+1} - u_n|$, используя предположение индукции:

$$|u_{n+1} - u_n| \leqslant M \int_0^x \int_0^y \left[3HM^{n-1}K^{n-2} \frac{(\xi + \eta)^n}{n!} + 2 \cdot 3HM^{n-1}K^{n-2} \frac{(\xi + \eta)^{n-1}}{(n-1)!} \right] d\xi d\eta \leqslant$$

$$\leqslant 3HM^nK^{n-2} \left[\int_0^x \frac{(\xi + \eta)^{n+1}}{(n+1)!} \Big|_0^y d\xi + 2 \int_0^x \frac{(\xi + \eta)^n}{n!} \Big|_0^y d\xi \right].$$

Вычислим интегралы, при этом при подстановке пределов интегрирования в первообразную отбросим нижние подстановки. Их слагаемые отрицательны, поэтому для исходной разности получаем такую оценку сверху:

$$|u_{n+1} - u_n| \leq 3HM^n K^{n-2} \left[\frac{(x+y)^{n+2}}{(n+2)!} + 2\frac{(x+y)^{n+1}}{(n+1)!} \right] = 3HM^n K^{n-2} \frac{(x+y)^{n+1}}{(n+1)!} \left[\frac{x+y}{n+2} + 2 \right] \leq \left\{ \frac{x+y}{n+2} + 2 \leq l_1 + l_2 + 2 = K \right\} \leq 3HM^n K^{n-1} \frac{(x+y)^{n+1}}{(n+1)!}.$$

Итак, предположение индукции для последовательности u_n доказано. Доказательство оценки для остальных двух последовательностей будет похожим:

$$\begin{split} |v_{n+1}-v_n| & \leqslant M \int\limits_0^y \left[3HM^{n-1}K^{n-2} \frac{(\xi+\eta)^n}{n!} + 2 \cdot 3HM^{n-1}K^{n-2} \frac{(\xi+\eta)^{n-1}}{(n-1)!} \right] \, d\eta \leqslant \\ & \leqslant \big\{ \text{ отбрасывание отрицательных слагаемых } \big\} \leqslant \\ & \leqslant 3HM^nK^{n-2} \left[\frac{(x+y)^{n+1}}{(n+1)!} + 2\frac{(x+y)^n}{n!} \right] = 3HM^nK^{n-2} \frac{(x+y)^n}{n!} \left[\frac{x+y}{n+1} + 2 \right] \leqslant \\ & \leqslant 3HM^nK^{n-1} \frac{(x+y)^n}{n!}. \end{split}$$

Следовательно, и вторая оценка верна. Доказательство третьей оценки совершенно аналогично доказательству второй, поэтому опускается.

Теперь докажем равномерную сходимость последовательностей u_n, v_n, w_n . Очевидно, что каждый член такой последовательности можно представить как частичную сумму соответствующего ряда:

$$u_n(x,y) = \sum_{m=1}^{n} (u_m(x,y) - u_{m-1}(x,y));$$

$$v_n(x,y) = \sum_{m=1}^{n} (v_m(x,y) - v_{m-1}(x,y));$$

$$w_n(x,y) = \sum_{m=1}^{n} (w_m(x,y) - w_{m-1}(x,y)).$$

Для оценки слагаемых первого ряда мы доказали оценку:

$$|u_n(x,y) - u_{n-1}(x,y)| \le 3HM^{n-1}K^{n-2}\frac{(x+y)^n}{n!} \le 3HM^{n-1}K^{n-2}\frac{(l_1+l_2)^n}{n!} = C\frac{a^n}{n!}, \quad C, a = const.$$

Известно, что ряд вида $\sum_{n=1}^{\infty} C \frac{a^n}{n!}$ сходится — отсюда по признаку Вейерштрасса получаем равномерную сходимость последовательности u_n . Из непрерывности слагаемых следует непрерывность предельной функции:

$$u_n(x,y) \rightrightarrows u(x,y) \in C\{[0; l_1] \times [0; l_2]\}.$$

Аналогично, для двух других последовательностей:

$$v_n(x,y) \rightrightarrows v(x,y) \in C\{[0; l_1] \times [0; l_2]\};$$

 $w_n(x,y) \rightrightarrows w(x,y) \in C\{[0; l_1] \times [0; l_2]\}.$

Теперь мы имеем право перейти в записи итерационного процесса к пределу при $n \to \infty$. При этом получим в точности уравнения (4.8)-(4.10), а это и означает существование функций u, v, w, являющихся решением этой системы уравнений. Из предположения эквивалентности этой системы уравнений исходной задаче на характеристиках [4.4] получаем, что теорема полностью доказана.

4.9 Единственность решения задачи с данными на характеристиках

Итак, мы доказали существование решения задачи [4.4]. Теперь докажем его единственность — очевидно, это эквивалентно единственности решения системы интегральных уравнений (4.8)-(4.10).

Теорема 4.6 (единственности решения задачи [4.4]). Пусть существуют две системы функций $\{u_1(x,y), v_1(x,y), w_1(x,y)\}$ и $\{u_2(x,y), v_2(x,y), w_2(x,y)\}$, являющиеся решениями системы интегральных уравнений (4.8)-(4.10), причем выполнены условия (1)-(4) теоремы **4.5** (существования решения задачи [4.4]). Тогда функции

$$U(x,y) = u_1(x,y) - u_2(x,y), \ V(x,y) = v_1(x,y) - v_2(x,y), \ W(x,y) = w_1(x,y) - w_2(x,y)$$

тождественно равны нулю в $\Pi_{l_1 l_2} = \{[0; l_1] \times [0; l_2]\}$. (То есть системы функций совпадают.) Доказательство. Итак, u_1, u_2 — решения (4.8):

$$u_{1}(x,y) = \psi(y) + \phi(x) - \phi(0) + \int_{0}^{x} \int_{0}^{y} \left[a(\xi,\eta)v_{1}(\xi,\eta) + b(\xi,\eta)w_{1}(\xi,\eta) \right] d\eta d\xi + \int_{0}^{x} \int_{0}^{y} f(\xi,\eta,u_{1}(\xi,\eta)) d\eta d\xi;$$

$$u_{2}(x,y) = \psi(y) + \phi(x) - \phi(0) + \int_{0}^{x} \int_{0}^{y} \left[a(\xi,\eta)v_{2}(\xi,\eta) + b(\xi,\eta)w_{2}(\xi,\eta) \right] d\eta d\xi + \int_{0}^{x} \int_{0}^{y} f(\xi,\eta,u_{2}(\xi,\eta)) d\eta d\xi.$$

Вычитая одно из другого и применяя условие Липшица для функции f(x,y,p), получим:

$$|u_{2} - u_{1}| \leq \int_{0}^{x} \int_{0}^{y} \left[M|v_{2}(\xi, \eta) - v_{1}(\xi, \eta)| + M|w_{2}(\xi, \eta) - w_{1}(\xi, \eta)| + M|u_{2}(\xi, \eta) - u_{1}(\xi, \eta)| \right] d\eta d\xi \Longrightarrow$$

$$|U(x, y)| \leq \int_{0}^{x} \int_{0}^{y} \left[M|V(\xi, \eta)| + M|W(\xi, \eta)| + M|U(\xi, \eta)| \right] d\eta d\xi. \tag{4.14}$$

Аналогичный результат справедлив для V(x, y), W(x, y):

$$\begin{split} |V(x,y)| &\leqslant \int\limits_{0}^{y} \left[M|V(x,\eta)| + M|W(x,\eta)| + M|U(x,\eta)| \right] \, d\eta; \\ |W(x,y)| &\leqslant \int\limits_{0}^{x} \left[M|V(\xi,y)| + M|W(\xi,y)| + M|U(\xi,y)| \right] \, d\xi. \end{split}$$

Докажем, что из этого следует равенство нулю этих функций в $\Pi_{l_1l_2}$. Для начала покажем, что они равны нулю в прямоугольнике $\Pi_{x_0y_0} = \{[0; x_0] \times [0; y_0]\}$, где x_0, y_0 удовлетворяют следующим условиям:

$$\begin{cases} 3x_0y_0M < 1; \\ 3x_0M < 1; \\ 3y_0M < 1. \end{cases}$$

Положим

$$\overline{U} = \max_{\Pi_{x_0 y_0}} |U(x, y)|; \ \overline{V} = \max_{\Pi_{x_0 y_0}} |V(x, y)|; \overline{W} = \max_{\Pi_{x_0 y_0}} |W(x, y)|.$$

Не ограничивая общности, пусть $\overline{U} \geqslant \max{\{\overline{V}, \overline{W}\}}$. Тогда из неравенства (4.14) следует, что

$$|U(x,y)| \leqslant M \int_{0}^{x} \int_{0}^{y} \left[\overline{U} + \overline{U} + \overline{U} \right] dy dx \leqslant 3M x_0 y_0 \overline{U}, \quad (x,y) \in \Pi_{x_0 y_0} \Longrightarrow \overline{U} \leqslant 3M x_0 y_0 \overline{U}.$$

Так как $3x_0y_0M < 1$, то это выполняется только при $\overline{U} = 0$. Из этого, очевидно, следует, что функции U(x,y), V(x,y), W(x,y) тождественно равны нулю в $\Pi_{x_0y_0}$.

На следующем шаге мы берем такое x_1 , что

$$\begin{cases} 3(x_1 - x_0)y_0M < 1; \\ 3(x_1 - x_0)M < 1; \\ 3y_0M < 1. \end{cases}$$

и рассматриваем прямоугольник $\Pi_{x_1y_0}$. Тогда неравенство (4.14) перепишется так:

$$|U(x,y)| \leqslant M \int_{x_0}^{x} \int_{0}^{y} \left[\overline{U} + \overline{U} + \overline{U} \right] dy dx, \ (x,y) \in \Pi_{x_1 y_0}.$$

Действуя аналогично предыдущему шагу, получим, что функции U(x,y), V(x,y), W(x,y) тождественно равны нулю в $\Pi_{x_1y_0}$. Продолжая подобные рассуждения, можно за конечное число шагов показать равенство нулю этих функций в $\Pi_{l_1y_0}$, а затем и в $\Pi_{l_1l_2}$.

Теорема доказана.

4.10 Сопряженный дифференциальный оператор

Будем действовать в пространстве $\mathbf{E}^{\mathbf{n}}$. Пусть $x = (x_1, \dots, x_n)$ — набор переменных, а u(x) — функция от n переменных.

Определение. Дифференциальный оператор L[u] от некоторой функции $u(x) \in C^2({\bf E^n})$ определяется как

$$L[u] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b_i(x)u_{x_i} + c(x)u,$$

$$(4.15)$$

где $a_{ij}, b_i \in C^2(\mathbf{E^n}), c$ — некоторые функции. Так как частные производные второго порядка в данном случае не зависят от порядка дифференцирования, то принимается соглашение: $a_{ij}(x) = a_{ji}(x)$.

Определение. Каждому дифференциальному оператору L[u] можно поставить во взаимно однозначное соответствие так называемый **сопряженный оператор** к L:

$$M[v] = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij}(x)v)_{x_i x_j} - \sum_{i=1}^{n} (b_i(x)v)_{x_i} + c(x)v.$$

Определение. Дифференциальный оператор L[u] называется **самосопряженным**, если L[u] = M[u]. Нам понадобится следующая формула:

$$vL[u] - uM[v] = \sum_{i=1}^{n} (p_i(x))_{x_i},$$
(4.16)

где
$$p_i(x) = \sum_{j=1}^n \left[v a_{ij} u_{x_j} - u (a_{ij} v)_{x_j} \right] + b_i u v.$$

Для доказательства этой формулы просто подставим выражение для $p_i(x)$ в правую часть и перегруп-

пируем слагаемые:

$$\sum_{i=1}^{n} (p_{i}(x))_{x_{i}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \left[va_{ij}u_{x_{j}x_{i}} - u(a_{ij}v)_{x_{j}x_{i}} \right] + \sum_{i=1}^{n} \sum_{j=1}^{n} \left[(va_{ij})_{x_{i}}u_{x_{j}} - u_{x_{i}}(a_{ij}v)_{x_{j}} \right] + \sum_{i=1}^{n} \left[vb_{i}u_{x_{i}} + u(b_{i}v)_{x_{i}} \right] + cuv - cuv = \sum_{i=1}^{n} \sum_{j=1}^{n} va_{ij}u_{x_{j}x_{i}} + \sum_{i=1}^{n} vb_{i}u_{x_{i}} + cuv - \left(\sum_{i=1}^{n} \sum_{j=1}^{n} u(a_{ij}v)_{x_{j}x_{i}} + \sum_{i=1}^{n} u(b_{i}v)_{x_{i}} + cuv \right) + \sum_{i=1}^{n} \sum_{j=1}^{n} \left[(va_{ij})_{x_{i}}u_{x_{j}} - u_{x_{i}}(a_{ij}v)_{x_{j}} \right] = vL[u] - uM[v] + \sum_{i=1}^{n} \sum_{j=1}^{n} \left[(va_{ij})_{x_{i}}u_{x_{j}} - u_{x_{i}}(a_{ij}v)_{x_{j}} \right].$$

Оставшаяся двойная сумма равна нулю — это следует из симметричности индексов слагаемых. Отсюда получаем, что формула (4.16) верна.

Связь с сопряженным оператором из линейной алгебры

В линейной алгебре определением для оператора A^* , сопряженного к оператору A, было соотношение:

$$(Au, v) = (u, A^*v)$$

которое должно было выполняться для любых u, v из ${\bf E^n}$.

Посмотрим, как согласуется с данным определением наше.

Пример 1. Пусть $\Omega \subset \mathbf{E}^3$, и скалярное произведение определяется так:

$$(f,g) = \iiint_{\Omega} fg \, d\tau, \quad f,g \in C^2(\Omega) \cap C^1(\overline{\Omega}).$$

Тогда для функций $u,v\in C^2(\Omega)\cap C^1(\overline{\Omega})$ и таких, что $u,v|_{\Sigma}=0$, где Σ — граница Ω , верно, что

$$(v, L[u]) = (M[v], u).$$

Покажем это:

$$\begin{split} &(v, L[u]) - (M[v], u) = \iiint_{\Omega} (vL[u] - uM[v]) \, d\tau = \{(4.16)\} = \iiint_{\Omega} (\frac{\partial p_1}{\partial x_1} + \frac{\partial p_2}{\partial x_2} + \frac{\partial p_3}{\partial x_3}) \, d\tau = \\ &= \{\vec{P} = (p_1, p_2, p_3)\} = \iiint_{\Omega} \mathrm{div} \, \vec{P} \, d\tau = \{ \text{ формула Остроградского-Гаусса } (5.3)\} = \\ &= \iint_{\Omega} (\vec{P}, \, \vec{n}) \, d\sigma = \{\vec{n} = (n_x, n_y, n_z)\} = \iint_{\Omega} (p_1 n_x + p_2 n_y + p_3 n_z) \, d\sigma = 0 \end{split}$$

 $-p_i|_{\Sigma}=0$ в силу граничного условия для u,v.

Пример 2. Простейшим примером самосопряженного оператора является оператор Лапласа, к примеру, в ${\bf E^3}$:

$$L[u] = \Delta u = u_{x_1 x_1} + u_{x_2 x_2} + u_{x_3 x_3}.$$

Легко проверить, что $M[v] = \Delta v$.

4.11 Метод Римана

Рассмотрим в E^2 для функции u(x,y) такой дифференциальный оператор:

$$L[u] = u_{xy} + a(x,y)u_x(x,y) + b(x,y)u_y(x,y) + c(x,y)u(x,y).$$
(4.17)

По определению, сопряженный к нему имеет следующий вид:

$$M[v] = v_{xy} - (a(x,y)v)_x - (b(x,y)v)_y + c(x,y)v.$$

Таким образом, в обозначениях формулы (4.15): $a_{11}=a_{22}=0,\ a_{12}=a_{21}=\frac{1}{2},\ b_1=a,\ b_2=b,\ c=c.$ Легко видеть, что $p_1,\ p_2$, используемые в (4.16), считаются так:

$$p_1 = \frac{1}{2}(vu_y - uv_y) + auv;$$

$$p_2 = \frac{1}{2}(vu_x - uv_x) + buv.$$

Пусть теперь на плоскости ОХҮ задана кривая y = f(x), причем $\forall x \ f'(x) < 0$. График ее обозначим L_f .

Будем обозначать символом R_f^+ полуплоскость, точки которой лежат выше графика функции f(x): $R_f^+ = \{(x,y): y > f(x)\}.$

Рассмотрим такую краевую задачу (как нетрудно заметить, это задача на уравнение гиперболического типа): [4.5]

$$\left\{ \begin{array}{lll} (1) & L[u] &=& F(x,y), & (x,y) \in R_f^+; & (L[u] \text{ определяется формулой } (4.17)) \\ (2) & u(x,y) &=& \phi(x,y), & (x,y) \in L_f; \\ (3) & \dfrac{\partial u}{\partial n}(x,y) &=& \psi(x,y), & (x,y) \in L_f. \end{array} \right.$$

Будем искать ее решение в R_f^+ . Покажем, как его можно вычислить в произвольной точке $A(x_0, y_0) \in R_f^+$.

Для этого соединим точку A с кривой L_f отрезками, параллельными осям координат, получив на пересечении точки $B(x,y_0)$ и $C(x_0,y)$. Обозначим символом L контур, образованный отрезками AB и AC и дугой BC, а внутренность его — символом D.

Воспользуемся формулой (4.16) для сопряженного дифференциального оператора M[v] (v — некоторая функция):

$$\iint\limits_{D} (vL[u] - uM[v]) \, ds = \iint\limits_{D} \left(\frac{\partial p_1}{\partial x} + \frac{\partial p_2}{\partial y} \right) ds.$$

Для преобразования правой части воспользуемся формулой Грина для криволинейных интегралов:

$$\int_{L} P dx + Q dy = \iint_{D} (Q_x - P_y) ds.$$

В этом случае имеем:

$$\iint\limits_{D} (vL[u] - uM[v]) \, ds = \int\limits_{L} -p_2 \, dx + p_1 \, dy = \{\text{Части контура параллельны осям координат}\} = \int\limits_{D}^{C} \left\{ \left[\frac{1}{2} (vu_y - uv_y) + auv \right] dy - \left[\frac{1}{2} (vu_x - uv_x) + buv \right] dx \right\} +$$

$$+ \int_{C}^{A} \left[\frac{1}{2} (vu_y - uv_y) + auv \right] dy + \int_{B}^{A} \left[\frac{1}{2} (vu_x - uv_x) + buv \right] dx.$$
 (4.18)

Как известно, $(vu)_y = vu_y + uv_y$; $(vu)_x = vu_x + uv_x$. Используя эти формулы, преобразуем два последних интеграла в (4.18):

$$\int_{C}^{A} \left[\frac{1}{2} (vu_y - uv_y) + auv \right] dy + \int_{B}^{A} \left[\frac{1}{2} (vu_x - uv_x) + buv \right] dx =$$

$$= \int_{C}^{A} \left[\frac{1}{2} (uv)_y - uv_y + auv \right] dy + \int_{B}^{A} \left[\frac{1}{2} (vu)_x - uv_x + buv \right] dx$$

До этого мы определяли функцию v просто как дважды непрерывно дифференцируемую. Теперь потребуем, чтобы M[v]=0, а точнее, чтобы она являлась решением такой задачи:

$$\begin{cases}
(4) & v_{xy} - (a(x,y)v)_x - (b(x,y)v)_y + c(x,y)v = 0, \ x \leqslant x_0, \ y \leqslant y_0; \\
(5) & v(x_0,y) = \exp\{\int_{y_0}^y a(x_0,s) \, ds\}, \ y \leqslant y_0; \\
(6) & v(x,y_0) = \exp\{\int_{x_0}^y b(s,y_0) \, ds\}, \ x \leqslant x_0.
\end{cases}$$

Это задача с данными на характеристиках вида [4.4]. В предыдущих разделах было показано, что существует и единственна функция v(x,y), являющаяся ее решением. Будем считать, что она нам известна, и будем использовать именно эту функцию.

Вернемся к выражению (4.18), подставив туда функцию F(x,y) из исходного уравнения (1) для u(x,y):

$$\iint\limits_{D} v(x,y)F(x,y)ds = \int\limits_{B}^{C} \left\{ \left[\frac{1}{2}(vu_y - uv_y) + auv \right] dy - \left[\frac{1}{2}(vu_x - uv_x) + buv \right] dx \right\} + I_{CA} + I_{BA}.$$

Воспользуемся тем, что в интегралах I_{CA} , I_{BA} одна из координат фиксирована. Из условия (4) для v(x,y) легко получить, что $v_y - av = 0$ при $x = x_0$. Таким образом,

$$I_{CA} = \int_{C}^{A} \left[\frac{1}{2} (uv)_{y} - uv_{y} + auv \right] dy = \int_{C}^{A} \left[\frac{1}{2} (uv)_{y} - u(v_{y} - av) \right] dy = \frac{1}{2} (uv) \Big|_{A} - \frac{1}{2} (uv) \Big|_{C}.$$

Аналогично, $v_x - bv = 0$ при $y = y_0$. Следовательно,

$$I_{BA} = \int_{B}^{A} \left[\frac{1}{2} (uv)_{x} - uv_{x} + buv \right] dx = \int_{B}^{A} \left[\frac{1}{2} (uv)_{x} - u(v_{x} - bv) \right] dx = \frac{1}{2} (uv) \Big|_{A} - \frac{1}{2} (uv) \Big|_{B}.$$

Итак, выражение (4.18) можно переписать так:

$$\iint\limits_{D} v(x,y)F(x,y)ds = \int\limits_{B}^{C} \left\{ \left[\frac{1}{2}(vu_y - uv_y) + auv \right] dy - \left[\frac{1}{2}(vu_x - uv_x) + buv \right] dx \right\} + uv|_A - \frac{1}{2}(uv)|_C - \frac{1}{2}(uv)|_B.$$

Отсюда легко получить значение функции u(x,y) в точке $A(x_0,y_0)$:

$$u(x_0, y_0)v(x_0, y_0) = -\int_{B}^{C} \left\{ \left[\frac{1}{2} (vu_y - uv_y) + auv \right] dy - \left[\frac{1}{2} (vu_x - uv_x) + buv \right] dx \right\} + \frac{1}{2} (uv) \Big|_{C} + \frac{1}{2} (uv) \Big|_{B} + \iint_{D} v(x, y) F(x, y) ds.$$

Из граничных условий (5),(6) для v(x,y) следует, что $v(x_0,y_0)=1$. Тогда получаем, что:

$$u(x_{0}, y_{0}) = -\int_{B}^{C} \left\{ \left[\frac{1}{2} (vu_{y} - uv_{y}) + auv \right] dy - \left[\frac{1}{2} (vu_{x} - uv_{x}) + buv \right] dx \right\} +$$

$$+ \frac{1}{2} (uv) \Big|_{C} + \frac{1}{2} (uv) \Big|_{B} + \iint_{D} v(x, y) F(x, y) ds.$$

$$(4.19)$$

Это и есть окончательная формула для $u(x_0, y_0)$. Может показаться, что нам неизвестны частные производные u(x, y) на контуре. Покажем, что их можно найти из граничных условий (2),(3):

$$\left\{ \begin{array}{ll} u(x,f(x)) &= \phi(x,f(x)); \\ \frac{\partial u}{\partial n}(x,f(x)) &= \psi(x,f(x)). \end{array} \right.$$

Единичный вектор $\vec{\tau}$ касательной к L_f имеет следующий вид: $\vec{\tau} = \left\{ \frac{1}{\sqrt{1 + (f'(x))^2}}; \frac{f'(x)}{\sqrt{1 + (f'(x))^2}} \right\}$.

Отсюда получаем, что

$$\frac{\partial u}{\partial \tau}(x,y) = \frac{\partial u}{\partial x} \frac{1}{\sqrt{1 + (f'(x))^2}} + \frac{\partial u}{\partial y} \frac{f'(x)}{\sqrt{1 + (f'(x))^2}}.$$

 $\frac{\partial u}{\partial \tau}$ находится из следующих преобразований:

$$\frac{\partial}{\partial x}u(x, f(x)) = u_x(x, f(x)) + u_y(x, f(x))f'(x) = \sqrt{1 + (f'(x))^2} \frac{\partial u}{\partial \tau}(x, y).$$

Как известно, $\frac{\partial u}{\partial n}=(\vec{n},\ {\rm gr}\, u).$ Единичный вектор нормали к L_f , ортогональный вектору $\vec{\tau}$, считается так:

$$\vec{n} = \left\{ \frac{f'(x)}{\sqrt{1 + (f'(x))^2}}; -\frac{1}{\sqrt{1 + (f'(x))^2}} \right\}.$$

Отсюда получаем:

$$\frac{\partial u}{\partial n}(x,y) = \frac{\partial u}{\partial x} \frac{f'(x)}{\sqrt{1 + (f'(x))^2}} - \frac{\partial u}{\partial y} \frac{1}{\sqrt{1 + (f'(x))^2}}$$

Окончательно, из граничных условий получаем систему для поиска u(x,y) на контуре L:

$$\begin{cases} \frac{\partial}{\partial x}\phi(x,f(x)) &= \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}f'(x); \\ \psi(x,f(x)) &= \frac{\partial u}{\partial x} \frac{f'(x)}{\sqrt{1 + (f'(x))^2}} - \frac{\partial u}{\partial y} \frac{1}{\sqrt{1 + (f'(x))^2}}. \end{cases}$$

Ее определитель нигде не равен нулю. Отсюда следует, что $u_x(x,y)$, $u_y(x,y)$ существуют и их можно определить однозначно.

Итак, мы обосновали корректность формулы (4.19). Используемый для ее получения метод называется методом **Римана**.

Замечание. Формула Даламбера является частным случаем формулы (4.19).

4.12 Обобщенные решения

Встречаются случаи, когда решения прикладных задач бывают разрывными. Такие решения нельзя получить стандартными формулами из данного курса, однако их можно представить, к примеру, как предел "обычных" решений.

Обобщенные решения в форме предельного перехода

Общий подход. Пусть функцию u надо найти из уравнения L[u]=0, причем на нее наложены условия в виде некоторых функций F и Φ . Если такая задача не имеет решения (например, из-за того, что $F \notin C^2$, $\Phi \notin C^2$), то мы строим равномерно сходящиеся последовательности:

$$F_n \rightrightarrows F, \ \Phi_n \rightrightarrows \Phi,$$

где $F_n \in C^2$, $\Phi_n \in C^2$. Тогда, если существует решение (функция u_n), соответствующее функциям F_n и Φ_n , то в качестве u берем предел функций u_n :

$$u = \lim_{n \to \infty} u_n$$

при условии, что последовательность u_n равномерно сходится к u.

Пример. Рассмотрим задачу Коши для гиперболического уравнения:

$$\begin{cases} u_{tt} = a^2 u_{xx}, & -\infty < x < +\infty, \ 0 < t \le T; \\ u(x,0) = \phi(x), & -\infty < x < +\infty; \\ u_t(x,0) = \psi(x), & -\infty < x < +\infty. \end{cases}$$

Известно, что если $\phi \in C^2(\mathbf{E}), \ \psi \in C^1(\mathbf{E}),$ то решение задается формулой Даламбера:

$$u(x,t) = \frac{\phi(x-at) + \phi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi.$$

Теперь пусть в аналогичной задаче функции $\overline{\phi},\overline{\psi}$ всего лишь непрерывны — то есть мы не можем воспользоваться формулой Даламбера.

Будем работать в полосе $0 < t \leqslant T$. Потребуем, чтобы $\overline{\phi} = \overline{\psi} = 0$ вне отрезка [-d; d], где d — некоторая константа. (Такое свойство обозначается как $\operatorname{supp} \overline{\phi}, \overline{\psi} = [-d; d]$.)

Предположим, что существуют такие функции $\phi_n(x)$, $\psi_n(x)$, что $\phi_n \in C^2(\mathbf{E})$, $\psi_n \in C^1(\mathbf{E})$, причем $\phi_n(x) = \psi_n(x) = 0$ для $|x| \geqslant 2d$ и

$$\left\{ \begin{array}{l} \phi_n(x) \rightrightarrows \overline{\phi}(x); \\ \psi_n(x) \rightrightarrows \overline{\psi}(x). \end{array} \right. \ \, \text{на отрезке}[-2(d+aT); \, 2(d+aT)].$$

Для решения задач Коши, соответствующих функциям ϕ_n и ψ_n , справедлива формула Даламбера:

$$u_n(x,t) = \frac{\phi_n(x-at) + \phi_n(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi_n(\xi) d\xi \implies u_n(x,t) \in C^2\{\mathbf{E} \times [0;T]\}.$$

Назовем решением предел таких функций: $\overline{u}(x,t) = \lim_{n \to \infty} u_n(x,t)$.

Определение будет корректным, если мы покажем, что в прямоугольнике $\Pi = \{(x,t): -2d-aT \leqslant x \leqslant 2d+aT,\ 0\leqslant t\leqslant T\}$ последовательность $u_n(x,t)$ равномерно сходится (очевидно, вне его все ее члены тождественно равны нулю). Для этого докажем, что u_n — фундаментальная последовательность, то есть

$$\forall \varepsilon > 0 \quad \exists M : \forall m > M, \forall p > 0 \quad |u_{m+p}(x,t) - u_m(x,t)| < \varepsilon \quad \forall (x,t) \in \Pi.$$

Оценим эту разность через формулу Даламбера:

$$|u_{m+p}(x,t) - u_m(x,t)| \le \frac{|\phi_{m+p}(x+at) - \phi_m(x+at)|}{2} + \frac{|\phi_{m+p}(x-at) - \phi_m(x-at)|}{2} + \frac{1}{2a} \int_{x-at}^{x+at} |\psi_{m+p}(\xi) - \psi_m(\xi)| d\xi.$$

Полученную сумму можно сделать меньше любого наперед заданного ε — это следует из равномерной сходимости, а, следовательно, и фундаментальности последовательностей ϕ_n , ψ_n .

Отсюда получаем, что

$$u_n(x,t) \rightrightarrows \overline{u}(x,t), (x,t) \in \Pi$$
, причем $\overline{u}(x,t) \in C[\Pi]$.

Кроме того, так как $u_n(\pm (2d+aT),t)=0$, то $\overline{u}(\pm (2d+aT),t)=0$, и $\overline{u}(x,t)=0$ вне Π .

Построенная таким образом функция называется обобщенным решением в форме предельного перехода.

Возникает вопрос: единственно ли такое решение (ведь последовательности ϕ_n , ψ_n мы выбирали произвольно)? Для ответа на этот вопрос возьмем любые две пары последовательностей ϕ_n^1 , ϕ_n^2 и ψ_n^1 , ψ_n^2 такие, что

$$\left\{ \begin{array}{l} \phi_n^1 \rightrightarrows \overline{\phi}, \; \phi_n^2 \rightrightarrows \overline{\phi}; \\ \psi_n^1 \rightrightarrows \overline{\psi}, \; \psi_n^2 \rightrightarrows \overline{\psi}. \end{array} \right.$$

Предположим, что им соответствуют два решения: $\overline{u}^1(x,t)$, $\overline{u}^2(x,t)$, являющихся пределами полученных по формуле Даламбера членов последовательностей u_n^1 и u_n^2 соответственно. Докажем, что $\overline{u}^1(x,t) \equiv \overline{u}^2(x,t)$. Для этого оценим их разность:

$$|\overline{u}^{1}(x,t) - \overline{u}^{2}(x,t)| \leqslant |\overline{u}^{1}(x,t) - u_{n}^{1}(x,t)| + |u_{n}^{1}(x,t) - u_{n}^{2}(x,t)| + |\overline{u}^{2}(x,t) - u_{n}^{2}(x,t)|.$$

Первое и третье слагаемые стремятся к нулю в силу равномерной сходимости функций u_n^1 и u_n^2 к \overline{u}^1 и \overline{u}^2 соответственно. Оценим второе, применяя формулу Даламбера:

$$|u_n^1(x,t) - u_n^2(x,t)| \leqslant \frac{|\phi_n^1(x+at) - \phi_n^2(x+at)|}{2} + \frac{|\phi_n^1(x-at) - \phi_n^2(x-at)|}{2} + \frac{1}{2a} \int_{x-at}^{x+at} |\psi_n^1(\xi) - \psi_n^2(\xi)| \, d\xi.$$

Оно также стремится к нулю, так как последовательности ϕ_n^1 , ϕ_n^2 и ψ_n^1 , ψ_n^2 сходятся к одним и тем же функциям — к $\overline{\phi}$ и $\overline{\psi}$ соответственно. Отсюда получаем равенство $\overline{u}^1(x,t)$ и $\overline{u}^2(x,t)$.

Обобщенное решение в смысле интегрального тождества

Другим примером применения обобщенных решений может быть случай, когда в уравнении Пуассона

$$\Delta u = -f(x, y, z).$$

функция f не является дважды дифференцируемой — то есть "нормального" решения нет (т.к. всегда $\Delta u \in C^2$).

Общий подход. Пусть в области $\Omega \subset \mathbf{E^3}$ с границей Σ функция $u(x_1,x_2,x_3)$ определяется уравнением L[u]=F, где

$$L[u] = \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij}(x)u_{x_ix_j} + \sum_{i=1}^{3} b_i(x)u_{x_i} + c(x)u.$$

Тогда сопряженный к L оператор задается так:

$$M[v] = \sum_{i=1}^{3} \sum_{j=1}^{3} (a_{ij}(x)v)_{x_i x_j} - \sum_{i=1}^{3} (b_i(x)v)_{x_i} + c(x)v.$$

Будем рассматривать только такие функции v, что $v \in C^2(\Omega)$, $\operatorname{supp} v \subset \Omega$ (полностью внутри Ω). Известно, что, если $u, v \in C^2(\Omega) \cap C^1(\overline{\Omega})$, то справедлива формула (4.16):

$$\iiint\limits_{\Omega} (vL[u]-uM[v])\,d\tau = \iiint\limits_{\Omega} {\rm div}\,\vec{P}\,d\tau = \{\text{формула Остроградского - Гаусса }(5.3)\} = \iint\limits_{\Sigma} (\vec{P},\,\vec{n})\,d\sigma.$$

Из условий на v получаем, что функции $v, v_x, v_y, v_z,$ а, следовательно, и вектор-функция \vec{P} обращаются в нуль на Σ . Отсюда получаем, что

$$\iiint_{\Omega} (vL[u] - uM[v]) d\tau = 0.$$

Используем, что L[u] = F:

$$\iiint_{\Omega} vF \, d\tau = \iiint_{\Omega} uM[v] \, d\tau. \tag{4.20}$$

Полученное выражение для u называется обобщенным решением в смысле интегрального тождества. Таким образом, мы преобразовали исходное уравнение для u, "перебросив" требование непрерывной дифференцируемости на функцию v, потребовав также, чтобы она была не равна нулю лишь в области, лежащей строго внутри Ω .

5 Приложение. Вспомогательные формулы и определения

Определение. Пусть функция $\phi(x, y, z)$ задана в пространстве **E**³. Тогда ее **градиентом** называется вектор-функция gr $\phi = \{\phi_x, \phi_y, \phi_z\}$, определенная всюду, где существуют все частные производные функции $\phi(x, y, z)$.

Определение. Пусть вектор-функция $\vec{A}(x, y, z)$ имеет вид:

$$\vec{A}(x, y, z) = \{ P(x, y, z), Q(x, y, z), R(x, y, z) \}.$$

Тогда ее **дивергенцией** называется функция div $\vec{A} = P_x + Q_y + R_z$, определенная всюду, где существуют соответствующие производные.

Пусть функция f(t) непрерывна на отрезке $[t_1; t_2]$. Тогда для нее справедлива **теорема о среднем значении**:

$$\int_{t_1}^{t_2} f(t) dt = f(t^*)(t_2 - t_1), \tag{5.1}$$

где t^* — некоторая точка из этого отрезка.

Пусть функция f(x,y,z) непрерывна в замкнутой области Ω . Тогда для нее справедлива обобщенная теорема о среднем значении:

$$\iiint_{\Omega} f(x, y, z) dx dy dz = f(P^*) V_{\Omega}, \tag{5.2}$$

где P^* — некоторая точка из области $\Omega,$ а V_{Ω} — объем этой области.

Пусть поверхность Σ области Ω состоит из конечного числа замкнутых кусков, имеющих в каждой точке касательную, причем любые прямые, параллельные координатным осям, пересекают ее либо в конечном числе точек, либо по конечному числу отрезков. Тогда для функции $\vec{A}(x,y,z) = \{P(x,y,z), \, Q(x,y,z), \, R(x,y,z)\}$, где $P,Q,R \in C^1(\overline{\Omega})$ имеет место формула Остроградского-Гаусса:

$$\iint_{\Sigma} (\vec{A}, \vec{n}) d\sigma = \iiint_{\Omega} \operatorname{div} \vec{A} d\tau \tag{5.3}$$

Слова благодарности

Я выражаю искреннюю благодарность всем тем, кто помог мне в работе над данным конспектом: прежде всего нашему лектору — Денисову Александру Михайловичу, который не просто обеспечил меня материалами, но и помог исправить огромное количество ошибок; моим друзьям: Бекетовой Елене, чей конспект привнес в этот труд множество недостающих формул и пояснений, Поспелову Алексею — за постоянную помощь в решении технических проблем, Кругловой Елене — за моральную поддержку, в которой я так часто нуждался, а также всем тем, кто сподвиг меня на эту работу.

Без вас я бы не справился. Спасибо всем большое!!!

Кроме того, прошу всех, кто найдет еще ошибки и/или неточности в данном материале, сообщить об этом на enlightened@mail.ru. Я не Кнут, деньги платить за это не могу, но благодарен буду.

Содержание

1	Кла	ассификация уравнений с частными производными второго порядка	2
2	Ура	авнения параболического типа	3
	2.1	Вывод уравнения теплопроводности в пространстве	3
	2.2	Уравнение теплопроводности с одной пространственной переменной. Постановка основных задач	1
	2.3	Существование решения первой краевой задачи. Метод разделения переменных	$\frac{4}{5}$
	$\frac{2.3}{2.4}$	Принцип максимального значения для уравнения теплопроводности	9
	2.4	Единственность и устойчивость решения первой краевой задачи	10
	$\frac{2.6}{2.6}$	Единственность решения общей краевой задачи	12
	$\frac{2.0}{2.7}$	Существование решения задачи Коши	13
	2.8	Единственность решения задачи Коши	18
	2.9	Существование решения первой и второй краевой задачи для уравнения теплопроводности	10
		на полупрямой	19
	2.10	Функция Грина для первой краевой задачи	21
3	Ура	авнения эллиптического типа	24
	3.1	Уравнения Лапласа и Пуассона. Постановка краевых задач. Фундаментальные решения	
		уравнения Лапласа	24
	3.2	1-я и 2-я формулы Грина	25
	3.3	3-я формула Грина	26
	3.4	Свойства гармонических функций	27
	3.5	Принцип максимума для гармонических функций	28
	3.6	Единственность и устойчивость решения внутренней задачи Дирихле	29
	3.7	Единственность решения внешней задачи Дирихле	30
	3.8	Внутренняя задача Неймана. Необходимое условие ее разрешимости. Единственность решения	32 33
	3.9	Функция Грина для уравнения Лапласа и ее свойства	36
		Сведение задачи Дирихле к интегральному уравнению Фредгольма 2-го рода	40
	3.11	Сведение задачи дирихле к интегральному уравнению Фредгольма 2-10 рода	
4	_	авнения гиперболического типа	42
	4.1	Постановка задач для уравнения колебаний	42
	4.2	Формула Даламбера. Существование, устойчивость и единственность решения задачи Коши	42
	4.3	Характеристики уравнения в частных производных второго порядка	44
	4.4	Задача на полупрямой. Метод продолжений	45
	4.5	Метод разделения переменных для доказательства существования решения первой краевой	47
	1 G	задачи	47
	$4.6 \\ 4.7$		51 52
	4.7	Задача с данными на характеристиках. Эквивалентная система интегральных уравнений Существование решения задачи с данными на характеристиках	53
	4.9		56
	4.9	Единственность решения задачи с данными на характеристиках	57
	4.11		59
		Обобщенные решения	62
5	При	иложение. Вспомогательные формулы и определения	65