Lecture 8

Regression and Linear Algebra

DSC 40A, Summer 2024

Announcements

- Homework 3 is due tomorrow.
 - We moved some office hours around we now have some on Saturday!

Agenda

- Overview: Spans and projections.
- Regression and linear algebra.
- Multiple linear regression.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " > Lecture Questions" link in the top right corner of dsc40a.com.

Overview: Spans and projections

Projecting onto the span of a single vector

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The answer is the vector $w\vec{x}$, where the w is chosen to minimize the length of the error vector:

$$\|ec{\pmb{e}}\| = \|ec{\pmb{y}} - w ec{\pmb{x}}\|$$

• **Key idea**: To minimize the length of the error vector, choose w so that the error vector is **orthogonal** to \vec{x} .

Projecting onto the span of a single vector

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer**: It is the vector $w^*\vec{x}$, where:

$$w^* = rac{ec{x} \cdot ec{y}}{ec{x} \cdot ec{x}}$$

Projecting onto the span of multiple vectors

- Question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- The answer is the vector $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$, where w_1 and w_2 are chosen to minimize the **length** of the error vector:

$$\|ec{m{e}}\| = \|ec{m{y}} - w_1 ec{m{x}}^{(1)} - w_2 ec{m{x}}^{(2)}\|$$

• **Key idea**: To minimize the length of the error vector, choose w_1 and w_2 so that the error vector is **orthogonal** to **both** $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.

If $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are linearly independent, they span a plane.

Matrix-vector products create linear combinations of columns!

- Question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- To help, we can create a **matrix**, X, by stacking $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ next to each other:

• Then, instead of writing vectors in $\mathrm{span}(\vec{x}^{(1)},\vec{x}^{(2)})$ as $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$, we can say:

$$egin{array}{ccc} oldsymbol{X}ec{w} & ext{where }ec{w} = egin{bmatrix} w_1 \ w_2 \end{bmatrix} \end{array}$$

• Key idea: Find \vec{w} such that the error vector, $\vec{e} = \vec{y} - X\vec{w}$, is orthogonal to every column of X.

Constructing an orthogonal error vector

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the error vector, $\vec{e} = \vec{y} X\vec{w}$, is orthogonal to the columns of X.
 - Why? Because this will make the error vector as short as possible.
- The \vec{w}^* that accomplishes this satisfies:

$$X^T \vec{e} = 0$$

• Why? Because $X^T \vec{e}$ contains the **dot products** of each column in X with \vec{e} . If these are all 0, then \vec{e} is **orthogonal** to **every column of** X!

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} -egin{aligned} ar{x}^{(1)^T}-\ -ar{x}^{(2)^T}- \end{aligned} \end{bmatrix} ec{e} = egin{bmatrix} ar{x}^{(1)^T} ar{e} \ ar{x}^{(2)^T} ar{e} \end{aligned} \end{aligned}$$

The normal equations

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the error vector, $\vec{e} = \vec{y} X\vec{w}$, is orthogonal to the columns of X.
- The \vec{w}^* that accomplishes this satisfies:

$$egin{aligned} oldsymbol{X}^T ec{oldsymbol{e}} &= 0 \ oldsymbol{X}^T (ec{oldsymbol{y}} - oldsymbol{X} ec{oldsymbol{w}}^*) &= 0 \ oldsymbol{X}^T ec{oldsymbol{y}} - oldsymbol{X}^T oldsymbol{X} ec{oldsymbol{w}}^* &= 0 \ \implies oldsymbol{X}^T oldsymbol{X} ec{oldsymbol{w}}^* &= oldsymbol{X}^T ec{oldsymbol{y}} \end{aligned}$$

 The last statement is referred to as the normal equations. • Assuming X^TX is invertible, this is the vector:

$$ec{ec{w}^*} = (oldsymbol{X^TX})^{-1}oldsymbol{X^Tec{y}}$$

- This is a big assumption, because it requires X^TX to be **full rank**.
- \circ If X^TX is not full rank, then there are infinitely many solutions to the normal equations,

$$X^T X \vec{w}^* = X^T \vec{y}.$$

What does it mean?

- Original question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Final answer: Assuming X^TX is invertible, it is the vector $X\vec{w}^*$, where:

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

• Revisiting our example:

$$X = egin{bmatrix} | & | & | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

- ullet Using a computer gives us $ec{w}^* = (X^TX)^{-1}X^Tec{y} pprox egin{bmatrix} 0.7289 \ 1.6300 \end{bmatrix}$.
- So, the vector in $\mathrm{span}(\vec{x}^{(1)},\vec{x}^{(2)})$ closest to \vec{y} is $0.7289\vec{x}^{(1)}+1.6300\vec{x}^{(2)}$.

An optimization problem, solved

- We just used linear algebra to solve an optimization problem.
- Specifically, the function we minimized is:

$$\operatorname{error}(\vec{w}) = \|\vec{y} - X\vec{w}\|$$

- \circ This is a function whose input is a vector, \vec{w} , and whose output is a scalar!
- The input, \vec{w}^* , to $\mathbf{error}(\vec{w})$ that minimizes it is one that satisfies the **normal** equations:

$$X^T X \vec{w}^* = X^T \vec{y}$$

If X^TX is invertible, then the unique solution is:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

We're going to use this frequently!

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - \circ Are non-linear in the features, e.g. $H(x)=w_0+w_1x+w_2x^2$.
- Let's see if we can put what we've just learned to use.

Simple linear regression, revisited

- Model: $H(x)=w_0+w_1x$.
- Loss function: $(y_i H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

ullet Observation: $R_{
m sq}(w_0,w_1)$ kind of looks like the formula for the norm of a vector,

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

Example

Consider
$$H(x)=2+rac{1}{2}x$$
.

$$ec{y}= \qquad \qquad ec{h}=$$

$$ec{e} = ec{y} - ec{h} =$$

$$egin{aligned} R_{ ext{sq}}(H) &= rac{1}{n} \sum_{i=1}^n \left(oldsymbol{y_i} - H(x_i)
ight)^2 \ &= \end{aligned}$$

Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

• **Key idea**: We can rewrite the mean squared error of \boldsymbol{H} as:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(m{y_i} - H(x_i)
ight)^2 = rac{1}{n} \| m{ec{e}} \|^2 = rac{1}{n} \| m{ec{y}} - ar{h} \|^2$$

The hypothesis vector

- ullet The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- ullet For the linear hypothesis function $H(x)=w_0+w_1x$, the hypothesis vector can be written:

$$ec{h} = egin{bmatrix} w_0 + w_1 x_1 \ w_0 + w_1 x_2 \ dots \ w_0 + w_1 x_n \end{bmatrix} = \ w_0 + w_1 x_n \end{bmatrix}$$

Rewriting the mean squared error

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_n \end{bmatrix}$$

- ullet Define the **parameter vector** $ec{w} \in \mathbb{R}^2$ to be $ec{w} = egin{bmatrix} w_0 \ w_1 \end{bmatrix}$.
- Then, $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{ ext{sq}}(\pmb{H}) = rac{1}{n} \| ec{\pmb{y}} - ec{\pmb{h}} \|^2 \implies \left| R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{\pmb{y}} - \pmb{X} ec{w} \|^2
ight|$$

Minimizing mean squared error, again

• To find the optimal model parameters for simple linear regression, w_0^{st} and w_1^{st} , we previously minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (extbf{ extit{y}}_{m{i}} - (w_0 + w_1 extbf{ extit{x}}_{m{i}}))^2$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$ that minimizes:

$$\left\|R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{oldsymbol{y}} - oldsymbol{X} ec{w}\|^2
ight\|$$

ullet Do we already know the $ec{w^*}$ that minimizes $R_{
m sq}(ec{w})$?

An optimization problem we've seen before

ullet The optimal parameter vector, $ec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$, is the one that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{oldsymbol{y}} - oldsymbol{X} ec{w} \|^2$$

- Previously, we found that $\vec w^*=(X^TX)^{-1}X^T\vec y$ minimizes the length of the error vector, $||\vec e||=||\vec y-X\vec w||$
- $R_{\mathrm{sq}}(\vec{w})$ is closely related to $\|\vec{e}\|$:

- ullet The minimizer of $\|ec{m{e}}\|$ is the same as the minimizer of $R_{
 m sq}(ec{w})!$
- Key idea: $ec{w}^* = (X^TX)^{-1}X^Tec{y}$ also minimizes $R_{
 m sq}(ec{w})!$

The optimal parameter vector, $ec{w}^*$

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{\rm sq}(w_0,w_1)=\frac{1}{n}\sum_{i=1}^n(y_i-(w_0+w_1x_i))^2$.
 - We found, using calculus, that:

$$ullet egin{aligned} ullet w_1^* &= rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x} \end{aligned}.$$

- $lacksquare w_0^* = ar y w_1^* ar x$
- Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{\rm sq}(\vec{w}) = \frac{1}{n} ||\vec{y} X\vec{w}||^2$.
 - \circ The minimizer, if X^TX is invertible, is the vector $\vec{w}^* = (X^TX)^{-1}X^T\vec{y}$.
- These formulas are equivalent!

Roadmap

- To give us a break from math, we'll switch to a notebook, linked here, showing that both formulas that is, (1) the formulas for w_1^* and w_0^* we found using calculus, and (2) the formula for \vec{w}^* we found using linear algebra give the same results.
- Then, we'll use our new linear algebraic formulation of regression to incorporate multiple features in our prediction process.

Summary: Regression and linear algebra

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$, **observation vector** $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

• How do we make the hypothesis vector, $\vec{h}=X\vec{w}$, as close to \vec{y} as possible? Use the parameter vector \vec{w}^* :

$$ec{w}^* = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Tec{oldsymbol{y}}$$

• We chose \vec{w}^* so that $\vec{h}^* = X\vec{w}^*$ is the projection of \vec{y} onto the span of the columns of the design matrix, X.

Multiple linear regression

	departure_hour	day_of_month	minutes
0	10.816667	15	68.0
1	7.750000	16	94.0
2	8.450000	22	63.0
3	7.133333	23	100.0
4	9.150000	30	69.0
	•••	•••	

So far, we've fit **simple** linear regression models, which use only **one** feature ('departure_hour') for making predictions.

Incorporating multiple features

• In the context of the commute times dataset, the simple linear regression model we fit was of the form:

$$ext{pred. commute} = H(ext{departure hour}) \ = w_0 + w_1 \cdot ext{departure hour}$$

Now, we'll try and fit a multiple linear regression model of the form:

```
	ext{pred. commute} = H(	ext{departure hour}) \ = w_0 + w_1 \cdot 	ext{departure hour} + w_2 \cdot 	ext{day of month}
```

- Linear regression with multiple features is called multiple linear regression.
- How do we find w_0^* , w_1^* , and w_2^* ?

Geometric interpretation

The hypothesis function:

$$H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour}$$

looks like a **line** in 2D.

Questions:

How many dimensions do we need to graph the hypothesis function:

$$H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month}$$

• What is the shape of the hypothesis function?

Our new hypothesis function is a **plane** in 3D!

Our goal is to find the plane of best fit that pierces through this cloud of points.

The setup

• Suppose we have the following dataset.

	departure_nour	day_or_montn	minutes
row			
1	8.45	22	63.0
2	8.90	28	89.0
3	8.72	18	89.0

• We can represent each day with a **feature vector**, \vec{x} :

The hypothesis vector

• When our hypothesis function is of the form:

 $H(ext{departure hour})=w_0+w_1\cdot ext{departure hour}+w_2\cdot ext{day of month}$ the hypothesis vector $ec{h}\in\mathbb{R}^n$ can be written as:

$$\vec{h} = \begin{bmatrix} H(\text{departure hour}_1, \text{day}_1) \\ H(\text{departure hour}_2, \text{day}_2) \\ \dots \\ H(\text{departure hour}_n, \text{day}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

Finding the optimal parameters

• To find the optimal parameter vector, \vec{w}^* , we can use the **design matrix** $X \in \mathbb{R}^{n \times 3}$ and **observation vector** $\vec{y} \in \mathbb{R}^n$:

• Then, all we need to do is solve the **normal equations**:

$$oldsymbol{X}^T X ec{w}^* = X^T ec{y}$$

If X^TX is invertible, we know the solution is:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

Roadmap

- To wrap up today's lecture, we'll find the optimal parameter vector \vec{w}^* for our new two-feature model in code. We'll switch back to our notebook, linked here.
- ullet On Monday, we'll present a more general framing of the multiple linear regression model, that uses d features instead of just two.
- We'll also look at how we can engineer new features using existing features.
 - o e.g. How can we fit a hypothesis function of the form

$$H(x) = w_0 + w_1 x + w_2 x^2$$
?