华文 mooc 计组课后题

1.计算机基本结构

下列哪些定律属于计算机行业的著名"定律"? ✓ A、摩尔定律 ✔ B、反摩尔定律 □ C、墨菲定律 □ D、马太效应 ■ E、木桶定律 答案: A,B 2、(5分) 当前摩尔定律的常见表述是

- A、当价格不变时,集成电路可容纳的晶体管数数量,约每隔6个月便会增加一倍,性能也将提升一倍。
- ◎ B、当价格不变时,集成电路可容纳的晶体管数数量,约每隔12个月便会增加一倍,性能也将提升一倍。
- C、当价格不变时,集成电路可容纳的晶体管数数量,约每隔18个月便会增加一倍,性能也将提升一倍。
- D、当价格不变时,集成电路可容纳的晶体管数数量,约每隔24个月便会增加一倍,性能也将提升一倍。

下列关于反摩尔定律的表述正确的是 ○ A、一个IT公司如果今天和6个月前卖掉同样多,同样的产品,它的营业额就要降一半。 ○ B、一个IT公司如果今天和12个月前卖掉同样多,同样的产品,它的营业额就要降一半。 ● C、一个IT公司如果今天和18个月前卖掉同样多,同样的产品,它的营业额就要降一半。 ○ D、一个IT公司如果今天和24个月前卖掉同样多,同样的产品,它的营业额就要降一半。 答案: C 4、(5分) 在计算机结构的简化模型中,下列哪个寄存器是用于记录存储单元地址的? A、MAR ○ B、MDR ○ C、IR O D、PC ○ E、RO **5、**(5分) 在指令的取指阶段,CPU中的MAR的内容来自哪里? O A, IR B MDR ○ C、R0 D、PC ○ E、ALI 答案: D

21、 (5分) 在传统台式机主板的南北桥结构中,下列设备中哪些属于南桥?	
✓ A、U盘	
✓ B、硬盘	
✓ C、鼠标	
✓ D、键盘	
□ E、PCle显卡	
□ F、内存	
☐ G、CPU	
答案: A,B,C,D	
22、(5分)	V
下列哪些设备属于输入设备?	
✓ A、鼠标	
▼ B、键盘	
▼ C、麦克风	
☑ D、摄像头	
□ E、显示器	
□ F、音箱	
□ G、打印机	
答案: A,B,C,D	

2.指令体系结构

下列关于CISC和RISC的描述错误的是?

- A、CISC指令长度是不固定的
- B、CISC指令的操作数必须预存于寄存器中
- C、RISC指令长度是固定的
- D、RISC指令的操作数必须预存于寄存器中
- E、RISC架构的指令种类通常比CISC架构更少

2、(5分)

下列关于Intel处理器及其推出时间描述错误的是?

- A、Intel 8086——1978年
- B、Intel 80286——1982年
- C、Intel Pentium——1993年
- D、Intel PentiumPro——1995年
- E、Intel 80386——1988年
- F、Intel Core i7——2008年
- G、Intel Core 2——2006年

3、(5分)
x86体系结构中,寄存器EAX长度为多少位?
○ A、8位
○ B、16位
○ C、32位
○ D、64位
4、(5分)
x86体系结构中,寄存器AX长度为多少位?
○ A、8位
○ B、16位
○ C、32位
○ D、64位
5、(5分)
IA-32寄存器模型中包括以下哪些寄存器? (多选题)
□ A、通用寄存器
■ B、指令指针寄存器
□ C、页面寄存器
D、标志寄存器
■ E、段寄存器
6、(5分)
8086系统中标志位CF的含义是?
○ A、溢出标志
○ B、零标志
○ C、符号标志
○ D、进位标志

7、(5分)	
8086系统中标志位CF的含义是?	
○ A、符号标志	
○ B、奇偶标志	
○ C、溢出标志	
○ D、进位标志	
8、(5分)	
8086系统中标志位ZF的含义是?	
○ A、符号标志	
○ B、奇偶标志	
○ C、溢出标志	
○ D、进位标志	
○ E、零标志	
9、(5分)	
9、(5分)	
9、 (5分) 8086系统中段寄存器DS的含义是?	
9、(5分) 8086系统中段寄存器DS的含义是? ○ A、代码段寄存器	
9、(5分) 8086系統中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器	
9、(5分) 8086系統中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器	
9、(5分) 8086系統中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器	
 9、(5分) 8086系统中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器 D、堆栈段寄存器 	
9、(5分) 8086系統中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器 D、堆栈段寄存器	
 9、(5分) 8086系统中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器 D、堆栈段寄存器 10、(5分) 8086系统中段寄存器CS的含义是? 	
 9、(5分) 8086系統中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器 D、堆栈段寄存器 10、(5分) 8086系统中段寄存器CS的含义是? A、数据段寄存器 	
 9、(5分) 8086系统中段寄存器DS的含义是? A、代码段寄存器 B、附加段寄存器 C、数据段寄存器 D、堆栈段寄存器 D、堆栈段寄存器 A、数据段寄存器 B、附加段寄存器 	

设CS=2500H, DS=2400H, SS=2430H, BP=0200H, SI=0010H, DI=0206H, 计算下列x86指令源操作数的物理地址: MOV AX, [2000H]

- A、4500H
- B、27000H
- C、26000H

12、(5分)

设CS=2500H, DS=2400H, SS=2430H, BP=0200H, SI=0010H, DI=0206H, 计算下列x86指令源操作数的物理地址: MOV AX, [BP+SI+4]

- A、2714H
- B、25214H
- C、24514H
- D, 2614H

16,	(5分)	
	下列x86指令中,哪些属于算术运算指令? (多	多选题)
	A、ADD	
	B、DEC	
	C、MOV	
	D、IN	
	E、 LEA	
	F、 AND	
	G、SHL	
	H、MOVSB	
	I、 CALL	
	J、 JNZ	
	K, LOOP	
	L, MUL	

17、(5分)
下列关于MIPS指令的主要特点说法错误的是?
○ A、指令长度固定
○ B、 寻址模式简单
○ C、只有Load和Store指令可以访问存储器
○ D、需要优秀的编译器支持
○ E、指令数量多,且功能复杂
18、(5分)
18、(5分) MIPS按照指令的基本格式可以分为三种类型,以下不属于这三种类型的是?
MIPS按照指令的基本格式可以分为三种类型,以下不属于这三种类型的是?
MIPS按照指令的基本格式可以分为三种类型,以下不属于这三种类型的是? A、R型指令
MIPS按照指令的基本格式可以分为三种类型,以下不属于这三种类型的是? A、R型指令 B、O型指令
MIPS按照指令的基本格式可以分为三种类型,以下不属于这三种类型的是? □ A、R型指令 □ B、O型指令 □ C、M型指令

MIPS按照指令的基本格式进行划分,可以分为几种?

- O A, 1
- B、 2
- C、3
- D, 4

20、(5分)

某MIPS指令的机器码是0x20A5FFFF, 对应的汇编指令是什么?

- A、 addi \$a2,\$a2,-1
- B、 ori \$a1,\$a1,-1
- C ori \$a2,\$a2,-1
- D addi \$a1,\$a1,-1

21、(5分)

某MIPS指令的机器码是0x0005402A,对应的汇编指令是什么?

- A slt \$a1,\$0,\$t0
- B or \$v0,\$0,\$a1
- C or \$a1,\$0,\$v0
- D slt \$t0,\$0,\$a1

```
22、(5分)
   阅读下面的x86汇编程序,回答问题。
   ; 设DS=1000H
   MOV SI, 1250H
   MOV DI, 1370H
   MOV CL, 3
   MOV AX, DS
   MOV ES, AX
   MOV BX, 5
   STD
   REP MOVSB
   请问,在这次串传送操作中,完成了第一个元素的传送后,SI寄存器的值是什么?
○ A、124FH
○ B、1252H
○ C、1251
○ D、不确定
 23、(5分)
    阅读下面的x86汇编程序,回答问题。
    ; 设DS=1000H
    MOV SI, 1250H
    MOV DI, 1370H
    MOV CL, 3
    MOV AX, DS
    MOV ES, AX
   MOV BX, 5
    STD
    请问,在这次串传送操作中,完成了第一个元素的传送后,SI寄存器的值是什么?
 O A、124FH
 ○ B、1249
 ○ C、1249H
 ○ D、不确定
```

```
24、(5分)
   阅读下面的x86汇编程序,回答问题。
   ; 设DS=1000H
   MOV SI, 1250H
   MOV DI, 1370H
   MOV CL, 3
   MOV AX, DS
   MOV ES, AX
   MOV BX, 5
   STD
   REP MOVSB
   请问,在这次串传送操作中,完成了第一个元素的传送后,SI寄存器的值是什么?
○ A、124FH
○ B、1248H
○ C、1251H
○ D、1252H
 25、(5分)
    阅读下面的x86汇编程序,回答问题。
   ; 设DS=1000H
    MOV SI, 1250H
    MOV DI, 1370H
    MOV CL, 3
   MOV AX, DS
   MOV ES, AX
   MOV BX, 5
   CLD
   REP MOVSB
    请问,这次串传送操作,总共传送了多少个字节的数据?
 ○ A、0↑
 ○ B、3↑
 ○ C、5个
 ○ D、不确定
```

26、(5分)
如果想用8086 CPU把内存中某个区域的1024个字节的数据传送到另一个区域,可以选用如下三种方法
(1) 只使用传送指令(MOV);
(2) 使用传送指令(MOV),并用条件转移指令建立循环语句的结构;
(3) 使用串传送指令(MOVSB)以及必要的配合指令,不使用循环语句的结构。
请比较用这三种方法编写的程序,执行时访问存储器次数最少的是:
○ A、方法一
◎ B、方法二
○ C、方法三
○ D、无法比较
如果想用8086 CPU把内存中某个区域的1024个字节的数据传送到另一个区域,可以选用如下三种方法:
(1) 只使用传送指令(MOV);
(2) 使用传送指令(MOV),并用条件转移指令建立循环语句的结构;
(3) 使用串传送指令(MOVSB)以及必要的配合指令,不使用循环语句的结构。
请比较用这三种方法编写的程序,执行时访问存储器次数最多的是:
○ A、方法一
A. p. +++=
◎ B、方法二
○ C、方法三
○ D、无法比较
U. Allaturx
28、(5分)
如果想用8086 CPU把内存中某个区域的1024个字节的数据传送到另一个区域,可以选用如下三种方法:
(1) 只使用传送指令(MOV);
(2) 使用传送指令(MOV),并用条件转移指令建立循环语句的结构;
(3) 使用串传送指令(MOVSB)以及必要的配合指令,不使用循环语句的结构。
请比较用这三种方法编写的程序,程序代码占用存储器空间最大的是:
○ A、方法1
○ B、方法2
○ C、方法3

○ D、无法比较

29、(5分)
很多x86指令的功能比较复杂,往往一条x86指令可以完成的功能,需要多条MIPS指令才能实现。请问下列x86指令中,哪些确定
能够只用一条MIPS指令完成对应的功能?(注:只需考虑这条指令本身,不用考虑对后续指令的影响)
A、ADD ECX, 15H
■ B、MOV EAX, 28H
□ C、ADD EDX, EBX
□ D、ADD EAX, [13H]
□ E、MOV EDX, [EBX+11H]
F、 ADD [EBX+ESI*4+200H], EAX
☐ G、REP MOVSB
■ H、JZ LOOP_1

3.算术逻辑单元

5.并小是科士儿
1、(5分)
下列哪些和时间相关的名词,是属于D触发器的特性?
✓ A、CLK-to-Q time
☐ B、Setup time
D, Select time
F. Output time
☐ G、Access time
答案: A,B,C

"溢出"的检测方法是:

- A、 "最高位的进位输入"不等于"最高位的进位输出"
- B、 "最高位的进位输入"等于"最高位的进位输出"
- C、"最高位的进位输入"不等于"次高位的进位输出"
- D、"最高位的进位输入"等于"次高位的进位输出"
- E、 "最高位的进位输入"不等于"最低位的进位输出"
- F、 "最高位的进位输入" 等于 "最低位的进位输出"

答案: A

11、(5分)

MIPS和x86对溢出的处理方式是:

无符号数,不处理"溢出"

- ☑ A、对于MIPS,提供两类不同的指令分别处理,分别是:将操作数看做有符号数,发生 "溢出"时产生异常;将操作数看做
- ☑ B、对于x86,利用程序状态字寄存器中的OF位,发生溢出,设置OF=1
- □ C、对于MIPS,提供两类不同的指令分别处理,分别是:将操作数看做无符号数,发生"溢出"时产生异常;将操作数看做有符号数,不处理"溢出"
- □ D、对于x86,利用程序状态字寄存器中的ZF位,发生溢出,设置ZF=1
- E、对于x86,利用标志寄存器中的OF位,发生溢出,设置OF=0

答案: A,B

٦

超前进行加法器相对于行波进位加法器的优化思路是:	
● A、提前计算出"进位输出信号"	
○ B、简化电路实现的复杂程度	
○ C、适用更宽位的加法运算	
○ D、节省基本逻辑门之间的连线	
答案: A	
15、(5分)	√
关于行波进位加法器和超前进位加法器各自的优缺点描述正确的是:	V
✓ A、行波进位加法器门延迟比超前进位加法器更长	
■ B、行波进位加法器电路实现相对简单	
□ C、超前进位加法器门延迟比行波进位加法器更长	
□ D、行波进位加法器电路实现更加复杂	
E、超前进位加法器电路实现更加简单	
16、(5分)	√
对于4-bit超前进位加法器,如何用生成信号Gi和传播信号Pi表示 C2:	•
• A、G1+P1•G0+P1•P0•C0	
○ C、G1+P1+P0	
○ D、G1+P1+P0•C0•G0	
答案: A	

4.乘法器除法器

7

对于第一版乘法器,当乘数寄存器最低位为1时,在该次循环过程中,需要将乘数寄存器向哪个方向移动,需要将被乘数寄存器向哪个方向移动?

- A、右、左
- B、不移动, 左
- C、不移动,右
- D、右、右
- E、左、左
- F、右,不移动

答案: A

2、(5分)

对于第一版乘法器,在每次循环的过程中,需要将被乘数寄存器的内容与乘积寄存器中的内容相加,并将结果放入乘积寄存器的条件是:

- A、乘数寄存器的最低位为1
- B、乘数寄存器的最低位为0
- C、被乘数寄存器的最低位为1
- D、被乘数寄存器的最低位为0
- E、乘积寄存器的最低位为1

答案: A

对于32-bit的第一版乘法器,每次循环都需要判断的条件是哪几个?

- ✔ A、乘数寄存器的最低位是否为0
- ✔ B、是否循环了32次
- □ C、被乘数寄存器的最低位是否为0
- □ D、是否循环了33次
- E、是否循环了31次

答案: A,B

4、(5分)

以4-bit的第一版乘法器为例,对于二进制数0010□0011,当第2次循环结束时,被乘数寄存器、乘数寄存器和乘积寄存器的值分别 是?

- A、00001000, 0000, 00000110
- B、 00001000, 0001, 00000110
- C、00000100, 0000, 00000110
- O D, 00000100, 0000, 00000010

答案: A

٦/

对于32-bit的第一版乘法器,需要包含以下哪些组成部分?

- ✓ A、64位ALU
- ✔ B、32位的乘数寄存器
- ✔ C、64位的被乘数寄存器
- ☑ D、64位的乘积寄存器
- E、32位ALU
- □ F、32位的被乘数寄存器

答案: A,B,C,D

6、(5分)

对于第一版乘法器,下列哪些属于对其进行面积优化的措施?

- ✓ A、将加法运算和两个移位同时进行
- ☑ B、将加法器和被乘数寄存器位宽减半优化面积
- ✓ C、64-bit加法器缩小为32-bit
- ✓ D、取消乘数寄存器
- E、乘积寄存器需支持右移

答案: A,B,C,D,E

对于第一版乘法器,控制逻辑的作用是哪些?

- ☑ A、控制何时对被乘数寄存器进行移位
- ☑ B、控制何时对乘数寄存器进行移位
- ✓ C、控制何时将新值写入积寄存器
- D、控制何时将乘积寄存器进行移位

答案: A,B,C

8、(5分)

对于本课中讲授的第二版乘法器,在对乘法器进行面积优化后,一个32-bit乘法器需要包含以下哪些部分?

- ✓ A、32位ALU
- ✔ B、32位的被乘数寄存器
- ✔ C、64位的乘积寄存器
- D、32位的乘数寄存器
- E、64位ALU
- □ F、32位的乘积寄存器

答案: A,B,C

对于第一版除法器,在一次循环中当余数寄存器大于0时,需要将商寄存器向哪个方向移动,需要将除数寄存器向哪个方向移动?

- A、左、右
- B、不移动, 左
- C、不移动, 右
- D、右、右
- E、左、左
- F、右,不移动

答案: A

10、(5分)

对于第一版除法器,在每次循环的过程中,需要左移商寄存器,并将其最低位设置为1的条件是:

- A、余数大于等于0
- B、余数小于0
- C、除数寄存器的最低位为1
- D、除数寄存器的最低位为0

答案: A

一个32-bit除法器,对于第一种除法算法,每次迭代时都需要判断的条件是哪几个?

- ✔ A、余数寄存器是否小于0
- ✔ B、是否完成了重复了33次循环
- □ C、除数寄存器是否小于0
- □ D、是否重复了31次循环
- □ E、是否重复了32次循环

答案: A,B

12、(5分)

对于32-bit的第一版除法器,需要包含以下哪些组成部分?

- ✓ A、64位ALU
- ✔ B、32位的商寄存器
- ✔ C、64位的余数寄存器
- ☑ D、64位的除数寄存器
- E、32位ALU
- □ F、32位的除数寄存器

答案: A,B,C,D

以4-bit的第一版除法器为例,对于二进制数0111+0010,当第2次循环结束时,商寄存器、除数寄存器和余数寄存器的值是?

- A、0000, 00001000, 00000111
- B、0001, 00001000, 00000111
- C、0000, 00001000, 11110111
- O D, 0000, 00010000, 00000111

答案: A

14、(5分)

对于第二版除法器,在对除法器进行面积优化后,一个32-bit除法器需要包含以下哪些组成部分?

- ✓ A、32位ALU
- ✔ B、32除数寄存器
- ✔ C、64位余数寄存器
- D、64位ALU
- E、32位商寄存器
- □ F、32位余数寄存器

答案: A,B,C

对于第二种除法算法,在对除法器进行面积优化后,商的结果放置在哪里?

- A、余数寄存器的低32位
- B、余数寄存器的高32位
- C、除数寄存器的低32位
- D、除数寄存器的高32位

答案: A

5.单周期处理器

- 1、(5分)处理器设计的五个步骤如下,请正确排序。
 - 1 连接组件建立数据通路
 - 2 为数据通路选择合适的组件
 - 3 集成控制信号,形成完整的控制逻辑
 - 4 分析指令系统,得出对数据通路的需求
 - 5 分析每条指令的实现,以确定控制信号

答案样例格式: 12345

42153

答案: 42153

2、(5分)
课程中提到的MIPS-lite指令子集(addu, subu, ori, lw, sw, beq)对ALU的需求有哪些?
✓ A、加法
▼ B、減法
✓ C、逻辑或
□ D、相等
☑ E、逻辑与
□ F、逻辑非
✓ G、乘法
✓ H、除法
□Ⅰ、左移
□」、右移
答案: A,B,C,D
3、 (5分)
下列关于MIPS-lite指令子集对数据通路的需求描述正确的是?
✓ A、add指令与ori指令对寄存器堆的写操作需求不一样
■ B、 lw指令需要符号扩展部件
✓ C、lw指令与sw指令都需要数据存储器
□ D、add指令需要零扩展部件

答案: A,B,C

■ E、sub指令需要符号扩展部件

☐ F、 ori指令需要符号扩展部件

下列关于运算指令的控制信号描述正确的是?

- ✓ A、add指令与ori指令的寄存器堆控制信号RegDst不同
- ☑ B、add指令与ori指令的ALU源操作数控制信号ALUSrc不同
- ✓ C、add指令与ori指令的ALU运算类型控制信号ALUctr不同
- ☑ D、add指令的扩展部件控制信号ExtOp不唯一
- E、ori指令的扩展部件控制信号ExtOp不唯一
- F、add指令与ori指令的数据存储器控制信号MemWr可以不相同

答案: A,B,C,D

5、(5分)

下列关于访存指令的控制信号描述正确的是?

- ✓ A、Iw指令与sw指令的ALU运算类型控制信号ALUctr相同
- ☑ B、 lw指令与sw指令的控制信号MemtoReg可以不相同
- C、lw指令与sw指令的寄存器堆控制信号RegDst一定相同
- □ D、lw指令与sw指令的扩展部件控制信号ExtOp可以不相同
- E、lw指令与sw指令的数据存储器控制信号MemWr可以不相同

答案: A,B

6、(5分)

下列关于beq指令的执行描述正确的是?

- ✓ A、beq指令的寄存器堆控制信号RegDst是不唯一的
- ☑ B、beq指令与lw指令的数据存储器控制信号MemWr是相同的
- C、beq指令与add指令的ALU运算类型控制信号ALUctr相同
- ☑ D、beq指令的扩展部件控制信号ExtOp一定为sign
- E、若ALU计算结果为零,则beq指令不需要执行PC+4操作

7、(5分)
在单周期处理器上执行beq指令,使用到了下列哪些部件?
✓ A、寄存器堆
☐ B、ALU
▼ C、扩展部件 (零扩展或符号扩展)
D、数据存储器
答案: A,B
8、(5分)
在单周期处理器上执行add指令,使用到了下列哪些部件?
✓ A、寄存器堆
₽ B、ALU
□ C、扩展部件 (零扩展或符号扩展)
D、数据存储器
答案: A,B
9、 (5分)
在单周期处理器上执行ori指令,使用到了下列哪些部件?
✓ A、扩展部件 (零扩展或符号扩展)
☑ B、寄存器堆
✓ C、 ALU
□ D、数据存储器
答案: A,B,C

10、(5分)	
在单周期处理器上执行W指令,使用到了下列哪些部件?	
✓ A、扩展部件 (零扩展或符号扩展)	
✓ B、数据存储器	
✓ C、寄存器堆	
☑ D、ALU	
答案: A,B,C,D	
11、(5分)假设单周期处理器五个阶段的延迟分别为200ps(取指)、50p U操作)、300ps(访存)、100ps(写寄存器),则sw指令的 接填数字,不用带单位)	▼
答案: 750	
12 (5/1)	
12、(5分)假设单周期处理器五个阶段的延迟分别为200ps(取指)、50p U操作)、300ps(访存)、100ps(写寄存器),则W指令的 填数字,不用带单位)	V
850	

13、 (55)	分)假设单周期处理器五个阶段的延迟分别为200ps(取指)、50ps(读寄存器)、200ps(AL	
	U操作)、300ps(访存)、100ps(写寄存器),则add指令的总延迟为多少ps? (答案直	
	接填数字,不用带单位)	
550	<i>a</i>	
答案:	: 550	
14 . (54	分)假设单周期处理器五个阶段的延迟分别为200ps(取指)、50ps(读寄存器)、200ps(AL	-/
(3)	U操作)、300ps(访存)、100ps(写寄存器),则beq指令的总延迟为多少ps?(答案直	٧
	接填数字,不用带单位)	
450		
15 、(5½		√
假设	&一条指令的32位编码从高到低依次为Ins<31>, Ins<30>,, Ins<0>, 则产生ExtOp控制信号需要用到指令编码中的多少	位?
A	6位	
○ B、	12位	
○ C′	32位	
○ D,	1位	
答案:	A	
16、(5分	s)	$\sqrt{}$
假设-	一条指令的32位编码从高到低依次为Ins<31>, Ins<30>,, Ins<0>, 则产生MemWr控制信号需要用到指令编码中的多少	
位?		
A, 6	6位	
○ B、1	12位	
○ C、3	32位	
O D, 1	1位	
答案:	A	

假设一条指令的32位编码从高到低依次为Ins<31>, Ins<30>,, Ins<0>, 则产生ALUctr[0]控制信号需要用到指令编码中的多少
位?
● A、12位
○ B、6位
○ C、7位
○ D、26位
○ E、32位
◎ F、14位
答案: A
18、(5分)
假设一条指令的32位编码从高到低依次为Ins<31>, Ins<30>,, Ins<0>, 则产生RegWr控制信号需要用到指令编码中的多少
位?
● A、12位
○ B、6位
○ C、7位
○ D 26/立

6.流水线处理器

○ E、32位

○ F、 14位

答案: A

17、(5分)

١,	(5分	·)	
ı	MIPS	的五级流水线结构中,计算访存的地址是在哪个阶段完成的?	
•	Α、	执行	
0	В,	取指	
0	C′	译码	
0	D,	访存	
0	E,	回写	
i	答案	A	
2	(53	\\	
	155	7`)	
		5 / S的五级流水线结构中,读寄存器堆是在哪个阶段完成的?	
	MIF		
•	MIF	S的五级流水线结构中,读寄存器堆是在哪个阶段完成的?	
•	MIF A B	S的五级流水线结构中,读寄存器堆是在哪个阶段完成的? 译码	
•	MIF) A,) B,) C,	S的五级流水线结构中,读寄存器堆是在哪个阶段完成的? 译码 取指	
	MIF (MIF (A) (A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	S的五级流水线结构中,读寄存器堆是在哪个阶段完成的? 译码 取指	
	MIF MIF D C D D E	S的五级流水线结构中,读寄存器堆是在哪个阶段完成的? 译码 取指 执行	
	MIF MIF D C D D E	S的五级流水线结构中,读寄存器堆是在哪个阶段完成的? 译码 取指 执行 访存	

16,	(5分)
	在流水线处理器设计时,如果划分出五个相对独立的阶段,延迟分别为: 250ps, 150ps, 200ps, 300ps, 250ps。而还需要加入
	的流水线寄存器延迟为50ps。那时钟周期应该为:
•	A、350ps
0	B、 250ps
	C、300ps
0	D、150ps
0	E、 2.8GHz
0	F、 2.5GHz
	答案: A
17	、(5分)
	在流水线处理器设计时,如果划分出五个相对独立的阶段,延迟分别为:450ps,350ps,300ps,400ps,350ps。而还需要加入
	的流水线寄存器延迟为50ps。那时钟频率应该为:
•) A、2GHz
	B、 450ps
) C、400ps
) D、500ps

答案: A

18,	(55	())
	有一	-个五级流水线的处理器设计,每一级的延迟分别为:450ps,650ps,450ps,450ps,450ps。其中包含流水线寄存器延迟50
	ps.	如果将第二级(650ps)均匀拆分为两级,从而形成六级流水线。那新处理器的主频应该是:
•	A,	2.22GHz
	В,	500ps
	C′	450ps
	D,	300ps
	E,	325ps
	F,	2.86GHz
	G.	2GHz
		3.33GHz
	I,	3.07GHz
á	答案:	A
19,	(55	分)
	右-	
	-	一个五级流水线的处理器设计,每一级的延迟分别为:450ps,950ps,450ps,450ps,450ps。其中包含流水线寄存器延迟50
		一个五级流水线的处理器设计,每一级的延迟分别为: 450ps, 950ps, 450ps, 450ps, 450ps。其中包含流水线寄存器延迟50如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是:
•	ps.	
	ps.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是:
0	ps。 A、 B、	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps
0	ps. A. B. C.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps
0	ps. A, B, C,	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps 450ps
0	ps. A. A. B. C. D. E.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps 450ps 500ps
0	ps. A. A. B. C. D. E. F.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps 450ps 2700ps
	ps.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps 450ps 500ps 2700ps 2750ps 2750ps 2950ps
	ps.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps 450ps 500ps 2700ps 475ps 2750ps
	ps.	如果将第二级(950ps)均匀拆分为两级,从而形成六级流水线。那在新处理器上,一条指令的执行时间是: 3000ps 2500ps 450ps 500ps 2700ps 475ps 2750ps 2850ps

20、(5分) 以下关于超标量的说法,哪些是正确的? ■ A、超标量和流水线是两种独立的技术 ■ B、超标量是一种利用空间并行性的优化 ■ C、现代的多核CPU通常都是超标量处理器 ■ D、超标量技术是建立在标量流水线技术基础上的 ■ E、超标量处理器是多核CPU的另一种说法 ■ F、超标量是一种利用时间并行性的优化 答案: A,B,C

29,	(5分)
	对于典型的MIPS五级流水线处理器(不前递,指令存储器和数据存储器分开),下面这段代码中,存在哪些冒险?
	lw \$1, 40(\$6)
	beq \$2, \$1, Label;
	add \$6, \$6, \$2
	add \$6, \$6, \$1
	Label: add \$2, \$6, \$6
•	A、数据冒险
•	B、控制冒险
	C、运算冒险
	D、指令冒险
ŕ	答案: A,B
30,	(5分)
	对于典型的MIPS五级流水线处理器(不前递,指令存储器和数据存储器分开),下面这段代码中,存在哪些冒险?
	lw \$1, 40(\$6)
	add \$6, \$1, \$2
	sw \$6, 50(\$1)
•	A、数据冒险
0	B、结构冒险
0	C、控制冒险
0	D、运算冒险
	答案: A

对于典型的MIPS五级流水线处理器(不前递,指令存储器和数据存储器分开),下面这段代码中,存在哪些冒险?

lw \$1, 40(\$6)

add \$6, \$1, \$2

sw \$6, 50(\$1)

- A、数据冒险
- B、控制冒险
- C、指令冒险
- D、结构冒险

答案: A

32、(5分)

对于典型的MIPS五级流水线处理器(不前递),下面这段代码中,哪条指令会遇到数据冒险?

instruction 1: add \$1, \$2, \$3

instruction 2: sw \$2, 0(\$1)

instruction 3: lw \$1, 4(\$2)

instruction 4: add \$2, \$2, \$1

- ✓ A, instruction 2
- B、 instruction 4
- C、instruction 1
- D, instruction 3

```
33、(5分)
   对于典型的MIPS五级流水线处理器,即使已经对数据冒险进行了处理,下面这段代码中,哪条指令还是会导致流水线停顿?
   add $s0, $t0, $t1
   sub $t2, $s0, $t3
   lw $t3, 40($t2)
   or $t4, $t3, $t2
   and $t3, $t4, $t2
A lw
○ B、and
○ C、or
O D、add
  答案: A
34、(5分)
   对于典型的MIPS五级流水线处理器,即使已经对数据冒险进行了处理,下面这段代码中,哪条指令还是会导致流水线停顿?
   add $s0, $t0, $t1
   sub $t2, $s0, $t3
   lw $t3, 40($t2)
   or $t4, $t3, $t2
   and $t3, $t4, $t2
A、lw
○ B、or
C cub
O D, and
  答案: A
```

35,	. (5分)
	对于典型的MIPS五级流水线处理器,按照指令执行的正常流程,beq指令的分支条件判定会在哪个阶段完成?
•	A、执行
	B、访存
0	C、取指
0	D、译码
	答案: A
36、	(5分)
	对于典型的MIPS五级流水线处理器,按照指令执行的正常流程,beq指令的分支条件判定会在哪个阶段完成?
•	A、执行
\bigcirc	B、回写
	C、译码
0	D、访存

答案: A

```
37、(5分)
    如果采用延迟转移技术(延迟数为1),那么执行完下面这些指令之后,$s1的内容是什么?
    xor $s1, $s1, $s1
    addi $t1, $t3, 1
    subi $t2, $t4, 2
    beq $t1, $t2, Next; Assume $t1 == $t2 is True
   addi $s1, $s1, 1
   addi $s1, $s1, 2
   Next:
   addi $s1, $s1, 3
 A, 4
 ○ B, 2
○ C、1
O D, 5
  答案: A
 38、(5分)
    如果采用延迟转移技术(延迟数为1),那么执行完下面这些指令之后,$s1的内容是什么?
    xor $s1, $s1, $s1
     addi $t1, $t3, 1
     subi $t2, $t4, 2
     beg $t1, $t2, Next; Assume $t1 == $t2 is True
     addi $s1, $s1, 1
     addi $s1, $s1, 2
    Next:
    addi $s1, $s1, 3
  A 4
  ○ B, 5
  ○ C、1
  O D, 0
    答案: A
```

```
39、(5分)
如果采用延迟转移技术(延迟数为1),那么执行完下面这些指令之后,$s1的内容是什么?
xor $s1, $s1, $s1
addi $t1, $t3, 1
subi $t2, $t4, 2
beq $t1, $t2, Next; Assume $t1 == $t2 is True
addi $s1, $s1, 1
addi $s1, $s1, 2
Next:
addi $s1, $s1, 3

A、 4
B、 0
C、 3
D、 1
```

```
40、(5分)
如果采用延迟转移技术(延迟数为1),那么执行完下面这些指令之后,$s1的内容是什么?
xor $s1, $s1, $s1
addi $t1, $t3, 1
subi $t2, $t4, 2
beq $t1, $t2, Next; Assume $t1 == $t2 is True
addi $s1, $s1, 1
addi $s1, $s1, 2
Next:
addi $s1, $s1, 3

■ A、4

■ B、0

■ C、6

■ D、1
```

7.存储层次结构

4 (7.0)		
1、(5分)		
下列哪些常用的设备是基于非易失性存储器的?		
✓ A、固态硬盘 (SSD)		
☑ B、机械硬盘		
✓ C、光盘		
▼ C、元益		
✔ D、优盘 (Flash)		
▼ E、BIOS ROM芯片		
■ F、SDRAM芯片		
□ G、SRAM芯片		
答案: A,B,C,D,E		
2 (5.0)		
2、(5分)		

按照课程中提供的SRAM结构图,在写入"0"的过程中,哪几个晶体管是处于连通状态?

- ✓ A、M3
- ✓ B、M2
- ✓ C、 M5
- ✓ D、M6
- E、M1
- F、 M4

答案: A,B,C,D

3、(5分)			
下面是有关SRAM和DRAM的叙述正确的是哪几项?			
✓ A、DRAM结构比SRAM简单			
■ B、DRAM功耗比SRAM低			
✓ C、DRAM要刷新,SRAM不要刷新			
D、单位容量的DRAM比SRAM成本高			
■ E、单位容量的DRAM比SRAM速度快			
☐ F、单位容量的DRAM比SRAM面积大			
答案: A,B,C			

4、(5分)
 以PC133标准的SDRAM为例, 时钟频率133MHz。设tRCD=15ns, CL=2, tRP=15ns。在正常的读操作情况下, 从内存控制器发出行地址到内存输出第四个数据, 需要多少个时钟周期?
 ● A、7
 ● B、4
 ● C、12
 ● D、5
 ● E、6
 ● F、8
 ● G、9
 ● H、15

答案: A

5、(5分) 以PC133标准的SDRAM为例,时钟频率133MHz。设tRCD=15ns,CL=2,tRP=15ns。在正常的读操作情况下,从内存控制器发 出行地址到内存输出第一个数据,需要多少个时钟周期? A, 4 ○ B、 2 ○ C′3 O D, 5 ○ E、8 O F, 12 O G、15 答案: A 6、(5分) 以PC133标准的SDRAM为例,时钟频率133MHz。设tRCD=22ns,CL=2,tRP=22ns。如果内存控制器需要发起两次不同行地址 的读操作,每次读操作读出四个数据,那从发出第一个行地址到发出第二个行地址,最短需要多少个时钟周期? A、11 ○ B、 4 ○ C、7 O D, 5 ○ E、8 ○ F、10 ○ G、15 答案: A

7、(5分)	X
以PC133标准的SDRAM为例,时钟频率133MHz。设tRCD=15ns,CL=2,tRP=22ns。如果内存控制器需要发起两次不同行地址	
的读操作,每次读操作读出四个数据,那从发出第一个行地址到发出第二个行地址,最短需要多少个时钟周期?	
○ A、10	
○ C、7	
O D, 5	
○ E、8	
● F、11	
○ G、15	
答案: A	
8、(5分)	
64-bit数据宽度的DDR-400 SDRAM的峰值带宽为3.2GB/s,核心时钟频率为200MHz,芯片内部采用了2位数据预取技术,其接口	
频率是多少?	
A、200MHz	
○ B、400MHz	
○ C、800MHz	
O D、1600MHz	
○ E、100MHz	
○ F、1200MHz	
答案: A	

答案: A,B,C

11、(5分)请阅读代码片段	
sum = 0;	
for (i = 0; i < n; i++)	
sum += a[i];	
return sum;	
在上述代码片段中,对数组a[]的使用体现了局部性。	
4-7	
空间	
答案:空间	
12、(5分)请阅读代码片段	\checkmark
sum = 0;	
for (i = 0; i < n; i++)	
sum += a[i];	
return sum; 在上述代码片段中,对变量sum的使用体现了局部性。	
在上述IV时/ 战中,对支重Sulli的使用体现 J	
时间	
答案: 时间	
HORE PULL	
13、(5分)—个容量为1GB的硬盘,如果不考虑冗余空间,那可以存储多少个二进制位的信息?(只填	
写数字,中间不带任何分隔符,后面不带单位)	·
800000000	
800000000	

14、(5分)—个容量为1GB的内存,如果不考虑冗余空间,那可以存储多少个二进制位的信息?(只填写数字,中间不带任何分隔符,后面不带单位)
8589934592
答案: 8589934592
15、(5分)—个传输率为100Mbps的以太网接口,每秒钟最多能输出多少个二进制位的信息?(只填写数字,中间不带任何分隔符,后面不带单位)
100000000
答案: 100000000
16、(5分)—个传输率为100Mbps的内存接口,每秒钟最多能输出多少个二进制位的信息?(只填写数字,中间不带任何分隔符,后面不带单位)
104857600
答案: 100000000
17、(5分)—个传输率为100Mbps的硬盘接口,每秒钟最多能输出多少个二进制位的信息?(只填写数字,中间不带任何分隔符,后面不带单位)
100000000
答案: 100000000

1、(5分)x86实模式下,若中断类型码为15H,则中断向量存放在从哪个地址开始的4个字节单元中。 (答案用16进制数表示,如02ABCH)
00054H
答案: 00054h
2、 (5分)x86实模式下,若中断类型码为10H,则中断向量存放在从哪个地址开始的4个字节单元中。
(答案用16进制数表示,如02ABCH)
00040H
答案: 00040h
3、 (5分)x86实模式下,若某中断向量对应的4字节内容分别是10H, 24H, 50H, 68H (从低到
高) ,则中断程序的入口地址为多少? (答案用16进制数表示,如02ABCH)
52A90H
答案: 6a910h
4、 (5分)x86实模式下,若某中断向星对应的4字节内容分别是10H,34H,50H,78H(从低到
高),则中断程序的入口地址为多少?(答案用16进制数表示,如02ABCH)
7B910H
答案: 7b910h

5、(5分)x86实模式下,若中断类型码为20H,中断服务程序的入口地址为5670H:1350H,试指出中	
断向量表中存放该中断向量的第3个字节(从低到高)单元的内容是什么?(答案用16进制	
数表示, 如12H)	
70H	
答案: 70h	
6 (5/\) and 17-17 the second of	
6、(5分)x86实模式下,若中断类型码为20H,中断服务程序的入口地址为5670H:1350H,试指出中断向量表中存放该中断向量的第2个字节(从低到高)单元的地址是什么?(答案用16进制	
数表示,如02ABCH)	
13H	
答案: 00081h	
7、(5分)	×
8086系统中,中断标志寄存器是哪一个?	
A IF	
○ B、DF	
⊖ C、TF	
○ D、ZF	
○ E、OF	
○ F、CF	
答案:	

8、 (5分)中断处理—共分为六个步骤,请按照正确处理顺序为各个步骤排序,答案直接填写数字,如	
(0)3	123456。	
	1 识别中断源	
	2 执行中断服务程序	
	3 关中断	
	4 恢复现场并返回	
	5 保存断点	
	6 保护现场	
351624		
答案:	351624	
9. (5	分) 列哪项操作是在中断处理过程中的"保护现场"步骤进行的?	
ℯ A	、将中断服务程序中要使用的寄存器压入堆栈	
✔ B	、将标志寄存器压入堆栈	
	、屏蔽其他中断请求	
	、将发生中断处的指令地址压入堆栈	
E	、找到相应的中断服务程序的入口地址	
_ F	、开放中断,以便允许响应较高优先级的中断	
_ G	、将标志寄存器弹出堆栈	
答	毫 : A,B	

10、(5分)
下列哪些操作是在中断处理过程中的"恢复现场"步骤进行的?
✓ A、将中断服务程序中要使用的寄存器弹出堆栈
■ B、将标志寄存器弾出堆栈
▼ C、执行中断返回指令
D、将发生中断处的指令地址压入堆栈
■ E、将中断服务程序中要使用的寄存器压入堆栈
□ F、屏蔽其他中断请求
答案: A,B,C

下列关于除法错中断描述错误的是?

- A、除法错中断可以通过软件方法屏蔽
- B、除法错中断的中断类型号为0
- C、DIV指令能够触发除法错中断
- D、IDIV指令能够触发触发错中断
- E、除法错中断属于内部中断

答案: A

12、(5分)

下列关于溢出中断描述正确的是?

- ✓ A、溢出中断有时候会被处理器为空操作
- ☑ B、溢出中断属于内部中断
- C、溢出中断的中断类型号为1
- □ D、溢出中断的触发与标志位ZF有关
- □ E、溢出中断只能跟在DIV指令之后使用

13、 (5分) 下列关于单步中断描述正确的是?
✓ A、单步中断服务程序一般用于显示CPU内部各寄存器的内容
■ B、单步工作方式下, CPU每执行完一条指令, 就会自动产生一个单步中断
□ C、单步中断的中断类型号为4
D、单步中断不能通过软件方法屏蔽
■ E、单步中断的执行与OF标志位有关
答案: A,B

下列关于断点中断描述错误的是?

- A、断点中断可以通过软件方法屏蔽
- B、断点中断通常与单步中断结合使用
- C、断点中断的中断服务程序通常显示CPU各寄存器的值
- D、断点中断的中断类型号为3

答案: A

15、(5分)

下列关于断点中断描述错误的是?

- A、断点中断可以通过软件方法屏蔽
- B、断点中断的中断服务程序通常显示CPU各寄存器的值
- C、断点中断往往作为一种程序的调试手段
- D、断点中断通常与单步中断结合使用

16、	(5分)
	下列x86程序实现的是什么功能?
	MOV AH, 2CH
	INT 21H
	A、读取时间
•	B、輸入字符
0	C、显示字符串
0	D、设置时间
名	客案∶ A
17.	、(5分)
	下列x86程序实现的是什么功能?
	MOV AH, 2CH
	INT 21H
)A、读取时间
С	B、设置时间
•) C、輸入字符
) D、输出字符
	答案: A
18	8、(5分)
	下列x86程序实现的是什么功能?
	MOV AH, 0
	MOV AL, 12H
	INT 10H
(● A、设置显示方式为640×480彩色图形
(B、设置光标位置
(C、读时钟
(○ D、设置显示方式为640×480单色图形
	答案: A

下列x86程序实现的是什么功能?

MOV AH, 0

MOV AL, 12H

INT 10H

- A、设置显示方式为640×480彩色图形
- B、设置光标位置
- C、读时钟
- D、置时钟

答案: A

9.i/o 设备

1、(5分)

I/O接口的主要功能有哪些?

- ✓ A、数据缓冲
- ✔ B、提供联络信息
- ✔ C、信号与信息格式的转换
- ✔ D、设备选择
- E、提高处理器性能
- F、提高处理器工作频率

答案: A,B,C,D

_	
2. (5	分)
现	代个人计算机中,哪些设备可以看做是1/0接口?
	、 显卡
✓ [、并口控制芯片
✓ (C、南桥
✓ [)、网卡
E	、硬盘
F	, SD+
	G、耳机
	H、内存控制器
答	窯: A,B,C,D
3, (5分)
٦	列关于I/O端口和存储器统一编址的说法哪些是正确的?
✓	A、可以利用访问存储器的指令来访存I/O,功能比较齐全
✓	B、CPU内部的控制逻辑较为简单
✓	C、可以减少CPU的引脚数目
	D、可以增大用户的存储器地址空间
	E、I/O指令的执行速度更快
	F、 I/O指令的地址译码更方便
名	案: A,B,C

8、(5分)	
下列哪些是程序查询方式的特点?	
✔ A、比无条件传送方式准确可靠	
☑ B、查询外设状态占用了大量的时间	
□ C、CPU不需要参与数据传输	
D、只适用于简单外设操作	
答案: A,B	
9、(5分)请按照正确的程序查询数据输出过程,	给下列各个步骤排序,答案直接填写数字,如12345
6.	
1 CPU执行指令,将数据写到接口的"辅	出缓冲寄存器"
2 在这个过程中,CPU反复执行指令从	"状态寄存器"中读出状态字,直到
发现"输出缓冲空",然后开始下一个输出	出过程,继续输出新数据
3 外设发现"输出准备好"信号有效后,从	"并行数据输出"信号线上接收
数据,并将"输出回答"信号置为有效	
4接口发现"输出回答"信号有效后,将"	状态寄存器"中的状态位"输出
缓冲空"置为有效	
5 接口将数据发到"并行数据输出"信号统	龙上,并将"输出准备好"信号置
为有效	
6 CPU执行指令,将控制字写入接口的	控制寄存器",从而设置接口的工
作模式	
615342	
	<i>1</i> 2
答案: 615342	

10、(5分)请按照正确的程序查询数据输入过程,给下列各个步骤排序,答案直接填写数字,如12345
6.
1 外设将数据发到"并行数据输入"信号线上,并将"输入准备好"信号置
为有效
2接口将"输入回答"信号置为无效,等待外设输入新数据
3接口将"状态寄存器"中的状态位"输入缓冲满"置为有效
4 系统初始化时,CPU执行指令,将控制字写入接口的"控制寄存器",设
置接口的工作模式
5 在上述过程中,CPU反复执行指令从"状态寄存器"中读出状态字,直到
发现"输入缓冲满",然后执行指令从"输入缓冲寄存器"中读出数据
6 接口发现"输入准备好"信号有效后,从"并行数据输入"信号线上接收
数据,放入"输入缓冲寄存器",并将"输入回答"信号置为有效,阻止
外设输入新数据
416352
答案: 416352
11、(5分)
下列关于中断控制方式的描述哪些是正确的?
☑ A、CPU可以和外设并行工作,提高了工作效率
☑ B、外围设备具有申请服务的主动权
▼ C、一定程度上满足了I/O处理的实时性要求
D、CPU不再需要参与数据传输
し、「「「「「「「「「」」」」」」
■ E、需要反复检查状态位
答案:A.B
Albert . An
12、 (5分)x86 CPU的外部中断有两大类:可屏蔽中断和()中断?
非屏蔽
答案:非屏蔽

13、(5分)	
8086系统中,假设同时发生了溢出中断,单步中断和可屏蔽中断,则哪个中断会被优先处理?	•
● A、溢出中断	
○ B、单步中断	
○ C、可屏蔽中断	
37/10/14/	
○ D、任意中断都有可能被优先处理	
答案: A	
首美····································	
14 ([/\\]	1
14、(5分)请给下列DMA方式进行数据传输的主要步骤进行排序,答案直接填写数字,如1234567	V
1、CPU设置DMAC内部配置寄存器	
2、重复总线读写直到本次DMA传送完成	
3、DMAC响应I/O接口的申请	
4、DMAC向I/O接口发起总线读传输	
5、DMAC处于空闲等待状态	
6、I/O接口向DMAC发出DMA传送申请	
7、DMAC向存储器发起总线写传输	
1563472	
15、(5分)	
DMA控制器初始化时,至少要配置哪些参数?	
✓ A、源地址的初始值	
▼ B、传送时的地址增减方式	
▼ C、目的地址的初始值	
□ D、待传送数据的长度	
D. INREXAMEDIA	
■ E、DMA控制器的时钟频率	
□ F、传送接□的数据位宽	
T. PAZISTINIAMIESE	
答案: A,B,C	

√

16、(5分)
现代个人计算机中,哪些设备通常是自带DMA控制器的?
✓ A、显卡
● B、网卡
✓ C、声卡
□ D、内存
E、键盘
□ F、鼠标
□ G、打印机
答案: A,B,C
17、 (5分)
关于I/O的各种控制方式,下列哪些说法是正确的?
✓ A、DMA方式不需要CPU干预数据传送
■ B、中断方式需要保护和恢复现场
□ C、DMA方式需要和程序控制方式或者中断方式配合使用
■ D、DMA方式数据需要先存入CPU中,在转到内存中

■ E、中断方式的效率总比程序控制的效率要高

□ F、程序控制方式需要反复读取状态寄存器

答案: A,B,C