Bridging the gap AI world - embedded world

Embedded Al Coder

Benefits

Generating C-code from trained neural networks for embedded systems

Al without new costly hardware

Enabling AI on today's microcontrollers & microprocessors. No need for specialized AI hardware.

Functional safety support

Suitable for **safety-relevant projects** (subject to ISO-26262)

Proven in use

Developed at Bosch and **proven in use** across the Bosch corporation

State-of-the-art resource efficiency

Minimizing resource consumption on **highly constrained** embedded systems

Artificial Intelligence in products

Why AI on Embedded Systems?

Improve efficiency of products

Example: Object height classification in ultrasonic parking systems

Classic solution: Rule-based software

- High complexity
- High maintenance effort

Al solution:

- Significantly better object classification
- Simple maintenance and thus cost savings

Decrease cost of products

Example: Virtual sensors in various actuator systems

Classic solution: Physical sensor

- High product cost
- High mechanical complexity and risk of defects

Al solution:

- Significantly reduced hardware cost
- Reduced maintenance cost

Enable new product innovation

Example: Predictive maintenance

Classic solution: None

Al solution:

 Predict end-of-life of industrial machine and avoid production line outage

Embedded AI holds significant business potential in a variety of applications

Embedded AI Coder

Reduce effort to deploy AI code in series

Safe code

- Numerically correct behavior of generated code
- Memory safety
- MISRA compliance

Automatic verification

- Integrated test suite for automated testing of generated code
- Provisioning of test report and safety manual for qualification

Reparameterization

- Build once and calibrate easily for multiple variants
- Supports known automotive formats like DCM

Embedded Al Coder

Universal code generator

Works on microcontrollers and microprocessors from any vendor

Embedded AI Coder generated code can be deployed to any device

Hardware-agnostic optimizations yielding strong performance

Network sized range from hundreds to millions of parameters

Optimizations for vendor-specific architectures available

Multiple vendor-specific architectures supported

ARM Cortex-M

ARM Cortex-A

Synopsys DSPs

Renesas

Further vendor-specific optimizations possible on demand

Useful applications of neural networks start at ~200 trained parameters with ~600 byte of RAM

Embedded AI Coder

High performance & resource efficiency

State-of-the-art performance

On par performance with other commercial tools and hardwarevendor specific solutions

Significantly higher performance than open-source tools

Flexible Trade-offs for Memory and Runtime

Choose from various implementation variants with different tradeoffs between RAM usage and inference speed

All results available on MLCommons® (consortium that publishes Al benchmarks)

Thoughts on SONNX

1

Embedded Al Coder

Tools for automotive software development need to be reproducible for 8-15 years

Tensorflow <=2.12

Critical vulnerabilities in the code base

Tensorflow 2.18

Fully Connected uses per-channel quantization

Tensorflow 2.15

Implementation of quantized LSTMs changed

Tensorflow Lite Micro

Numerical differences to tensorflow lite, especially with quantized networks

Float32 vs float64 discrepancies between tools

Perfect agreement between tools is very hard to achieve

Varying float precision in ML tools

Multiplication is done in float32 precision and then cast to float64

EmbeddedAlCoder casts to float64 (python) first and then multiplies

tflite-micro/tensorflow/lite/kernels/kernel_util.cc

Neural Network Representations

Representation of equivalent models varies between frameworks

Broken LSTM conversion to tflite

EmbeddedAlCoder

Ambiguities in ONNX Operators

Some Operators in ONNX have several variants of property handling

Simple LSTM models can be very complicated in ONNX

Unsqueeze axis can either be an attribute or an input tensor

```
def convert unsqueeze(op, subgraph, tensor collection, index):
    input shape tensor = None
   try:
            (input tensor, input shape tensor),
            (output tensor,),
       ) = get input and output tensors from(
            tensor collection,
            num expected inputs=2,
            num expected outputs=1,
            allow parameter=[1],
            allow not found=[1],
    except (ParserError, ValueError):
            (input tensor,),
            (output tensor,),
       ) = get input and output tensors from(
            tensor collection,
            num expected inputs=1,
            num expected outputs=1,
     output shape = input shape tensor.data
        if input shape tensor else output tensor.shape
     return Unsqueeze(
            input tensors=(input tensor,),
            output tensors=(output tensor,),
            shape=output shape,
            index=index,
```


Data layout transformations for hardware deployment

ONNX data layout not optimal for all hardware targets

Inputs

Between 2 and 3 inputs.

X (heterogeneous) - T:

Input data tensor from previous layer; has size $(N \times C \times H \times W)$, where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is $(N \times C \times D1 \times D2 \dots \times Dn)$. Optionally, if dimension denotation is in effect, the operation expects input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].

ONNX (NCHW)

Microcontrollers typically profit from NHWC layout.

Other hardware might require more special layouts.

Requires verification outside of the SONNX standard.

Goal

SONNX as a file standard

Tools can test ONNX models on whether they comply with the standard and if not, give a reason for it.

Tools like our code generator can give stronger guarantees with models complying with SONNX.

A simple script that checks ONNX files for compliance could be developed in the working group.

Would ensure that the first deployment step DL framework to ONNX model worked correctly.

Empowering Developers to Deploy Al Today

Meet us at

CES Las Vegas (Jan. 7th – Jan 10th, 2025) Embedded World Nürnberg (March 11th – March 13th, 2025)

www.etas.com/embeddedai
Support.embeddedai@etas.com

