### Designing Block Ciphers --- DES

Dhiren Patel (Oct 2022)

### **Designing Block Ciphers**

- Kerckhoff's principle: The secrecy should be in the key, not in the encryption/decryption algorithms!!!
- Cipher (Encryptor/Decryptor)
- SKC and PKC

## SKC – Symmetric Key Cryptography



**Figure 3.1** Communication using symmetric key cryptography ( $k = k_1 = k_2$ ).

#### **BLOCK CIPHER MODEL - SKC**



Figure 1.1 Encryption and decryption.

- Encryption algorithm/decryption algorithm
- Secret Key(s)

### Cipher – other properties



Figure 1.1 Encryption and decryption.

- Encryption algorithm/decryption algorithm
- Secret Key
- Block size <no of plain text bits encrypted at a time> (64, 128, ....)
- Key size < number of bits in key> (64, 128, 192 ...)
- Confusion and Diffusion (Claude Shannon 1949)

### Confusion

- No clue regarding relationship between the cipher text and the key
- a single bit change in key changes roughly half of the bits in corresponding cipher text, moreover positions of changed (flipped) bits are random!
- Substitution enhances confusion!!

### Diffusion

- Concerned with the relationship between the plain text and the corresponding cipher text.
- Changing a single bit in a block of plain text will have the effect of changing each bit of cipher text with probability of 0.5
- However, this changes are scattered across the block of cipher text.
- between plain text and cipher text no statistical relation...
- Transposition enhances diffusion!!!

### Block Cipher Design

- A block cipher (is a function which maps) n-bit plaintext blocks to n-bit ciphertext blocks; n is called the block length.
  - $E: \{0,1\}^n \times \{0,1\}^k \rightarrow \{0,1\}^n$
- Use of plaintext and ciphertext blocks of equal size avoids data expansion.
- The function is parameterized by a k-bit key.

## **Block Cipher Design**

- To allow unique decryption, the encryption function must be one-to-one (i.e., invertible)
- For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is a bijection (1-to-1 and on-to), defining a permutation on n-bit vectors.
- Smaller block size may be vulnerable to attacks based on statistical analysis.

## Product cipher

- Combine both substitution (confusion) and transposition <permutation> (diffusion)
- Principal design template for symmetric block ciphers

### Substitution box – S box

- Takes as input a string (binary) of length m
- Returns a string of length n
- Implemented using a table (array) of 2<sup>m</sup> rows each containing an n-bit value.
- Input to S-box is used to index the table which returns n-bit output of S-box.
- Usually m = n (need not always)
- In DES m > n.

## e.g. $6\times4$ -bit S-Box from DES (S<sub>5</sub>)

|                |    |      | Middle 4 bits of input |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----------------|----|------|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| S <sub>5</sub> |    | 0000 | 0001                   | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|                | 00 | 0010 | 1100                   | 0100 | 0001 | 0111 | 1010 | 1011 | 0110 | 1000 | 0101 | 0011 | 1111 | 1101 | 0000 | 1110 | 1001 |
| Outer<br>bits  | 01 | 1110 | 1011                   | 0010 | 1100 | 0100 | 0111 | 1101 | 0001 | 0101 | 0000 | 1111 | 1010 | 0011 | 1001 | 1000 | 0110 |
|                | 10 | 0100 | 0010                   | 0001 | 1011 | 1010 | 1101 | 0111 | 1000 | 1111 | 1001 | 1100 | 0101 | 0110 | 0011 | 0000 | 1110 |
|                | 11 | 1011 | 1000                   | 1100 | 0111 | 0001 | 1110 | 0010 | 1101 | 0110 | 1111 | 0000 | 1001 | 1010 | 0100 | 0101 | 0011 |

- selecting the row using the outer two bits (the first and last bits), and the column using the inner four bits.
- For example, an input "011011" has outer bits "01" and inner bits "1101"; the corresponding output would be "1001".

### S-box

- Injects non-linearity into the design of cipher
- Absence of a linear relationship between any subset of bits in the plain text, cipher text, and the key.

### Permutation box - P box

- Performs permutation or rearrangement of the bits in the input
- E.g. IP (initial permutation in DES 64 bit), there is a 32bit P also!
- The meaning is as follows: the first bit of the output is taken from the 58th bit of the input; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input. This information is presented as a table for ease of

presentation; it is a vector.

| IP . |    |    |    |    |    |    |      |  |  |  |  |  |
|------|----|----|----|----|----|----|------|--|--|--|--|--|
| 58   | 50 | 42 | 34 | 26 | 18 | 10 | 2    |  |  |  |  |  |
| 60   | 52 | 44 | 36 | 28 | 20 | 12 | 4    |  |  |  |  |  |
| 62   | 54 | 46 | 38 | 30 | 22 | 14 | 6    |  |  |  |  |  |
| 64   | 56 | 48 | 40 | 32 | 24 | 16 | 8    |  |  |  |  |  |
| 57   | 49 | 41 | 33 | 25 | 17 | 9  | 1    |  |  |  |  |  |
| 59   | 51 | 43 | 35 | 27 | 19 | 11 | 3    |  |  |  |  |  |
| 61   | 53 | 45 | 37 | 29 | 21 | 13 | 5    |  |  |  |  |  |
| 63   | 55 | 47 | 39 | 31 | 23 | 15 | 14 7 |  |  |  |  |  |

# IP in DES (P-box)



$$FP = IP^{-1}$$

The final permutation is the inverse of the initial permutation (64-bit)



#### P-Box

- Diffuses or spreads contiguous bits of the input across the block
- Removing local effect i.e. certain bits of the output would not be a certain bits of input

## P (different than IP)

• The P permutation shuffles the bits of a 32-bit half-block.



#### Fiestel Structure – DES SPN

Hornst Fiestel – IBM (key designer of DES)

#### DES

- SPN Substitution Permutation Network
- Successor to a cipher Lucifer designed by cryptographers at IBM
- DES adopted by NIST as standard in 1977 FIPS 46.
- Block size of 64-bits
- Key 56 bits (+8 bits parity check of each byte)
- Initial Permutation, Rounds, left-right swap, Final Permutation, Fiestel structure

#### DES

- there are 16 identical stages of processing, termed rounds.
- an initial and final permutation, termed *IP* and *FP*
- F-function

#### DES

- DES operates on the 64-bit blocks using key sizes of 56- bits. (+8 parity bits)
- Each block of 64 bits is divided into two blocks of 32 bits each, a left half block L and a right half R.
- Generate 16 subkeys from given key.
- Go through 16 iterations (Rounds)

• 
$$L_n = R_{n-1}$$
  
 $R_n = L_{n-1} + f(R_{n-1}, K_n)$ 

### **DES SPN**





## Key permutation (64 $\rightarrow$ 56)

The 64-bit key is permuted to generate 56-bit key. (It is to note that bit 08, 16, 24, 32, 40, 48, 56, 64 are ignored)

```
      57
      49
      41
      33
      25
      17
      09

      01
      58
      50
      42
      34
      26
      18

      10
      02
      59
      51
      43
      35
      27

      19
      11
      03
      60
      52
      44
      36

      63
      55
      47
      39
      31
      23
      15

      07
      62
      54
      46
      38
      30
      22

      14
      06
      61
      53
      45
      37
      29

      21
      13
      05
      28
      20
      12
      04
```

## Key schedule of DES

 16 nos. of 48-bit subkeys — one for each round — are derived from the main key using the key schedule.



## Key schedule

- Next, split this key into left and right halves,  $C_0$  and  $D_0$ , where each half has 28 bits.
- With  $C_0$  and  $D_0$  defined, create sixteen blocks  $C_n$  and  $D_n$ , 1 <= n <= 16.
- Each pair of blocks  $C_n$  and  $D_n$  is formed from the previous pair  $C_{n-1}$  and  $D_{n-1}$ , respectively using the following left shift schedule.
- $C_3$  and  $D_3$  are obtained from  $C_2$  and  $D_2$ , respectively, by two left shifts, and  $C_{16}$  and  $D_{16}$  are obtained from  $C_{15}$  and  $D_{15}$ , respectively, by one left shift

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2  | 2  | 2  | 2  | 2  | 2  | 1  |

## Key schedule - PC-2

• Form the keys (48-bit)  $K_n$ , for 1 <= n <= 16, by applying the following permutation table to each of the concatenated pairs  $C_n D_n$ . Each pair has 56 bits, but **PC-2** only uses 48 of these.

```
03 28 15 06 21 10
23 19 12 04 26 08
16 07 27 20 13 02
41 52 31 37 47 55
```

14 17 11 24 01 05

30 40 51 45 33 48 44 49 39 56 34 53

46 42 50 36 29 32

### F -function

- operates on half a block (32 bits) at a time and consists of four stages:
- The Feistel function (F-function) of DES
- Expansion the 32-bit half-block is expanded to 48 bits using the expansion permutation, denoted E in the diagram, by duplicating half of the bits. The output consists of eight 6-bit(8\*6=48bits) pieces, each containing a copy of 4 corresponding input bits, plus a copy of the immediately adjacent bit from each of the input pieces to either side.

### E - function

• Some bits from the input are duplicated at the output; e.g. the fifth bit of the input is duplicated in both the sixth and eighth bit of the output. Thus, the 32-bit half-block is expanded to 48 bits.



### F-function

- Substitution after mixing in the subkey, the block is divided into eight 6-bit pieces before processing by the S-boxes.
- Each of the eight S-boxes replaces its six input bits with four output bits according to a non-linear transformation, provided in the form of a lookup table.
- The S-boxes provide the core of the security of DES without them, the cipher would be linear, and trivially breakable.
- Permutation finally, the 32 outputs from the S-boxes are rearranged according to a fixed permutation, the P-box.
- This is designed so that, after expansion, each S-box's output bits are spread across 6 different S boxes in the next round.

#### Feistel Cipher Structure (DES – encryption and decryption)



### Security of block ciphers

- The objective of a block cipher is to provide confidentiality.
- The corresponding objective of an adversary is to recover plaintext from ciphertext.
- The best measure of security for practical ciphers is the complexity of the best known attack. Various aspects of such complexity may be distinguished as follows:
  - Data Complexity
  - Storage Complexity
  - Processing Complexity
- Cost of attack v/s value of information!!!

### Security of Block Ciphers

- A block cipher is totally broken if a key can be found, and
  partially broken if an adversary is able to recover part of the
  plaintext (but not the key) from ciphertext.
- To evaluate block cipher security, it is customary to always assume that an adversary
  - (i) has access to all data transmitted over the ciphertext channel;
  - (ii) knows all details of the encryption function except the secret key

## Weak keys in DES

- few specific keys termed "weak keys" and "semiweak keys".
- These are keys that cause the encryption mode of DES to act identically to the decryption mode of DES (albeit potentially that of a different key).
- four keys are weak and twelve keys are semiweak
- DES weak keys produce sixteen identical subkeys.

## Weak keys

- This occurs when the key bits are:
- (0x01010101010101)
- (0xFEFEFEFEFEFEFE)
- (0xE0E0E0E0F1F1F1F1)
- (0x1F1F1F1F0E0E0E0E)
- If an implementation does not consider the parity bits, the corresponding keys with the inverted parity bits may also work as weak keys:
- all zeros (0x000000000000000)
- all ones (0xFFFFFFFFFFFFFFF)
- (0xE1E1E1E1F0F0F0F0)
- (0x1E1E1E1E0F0F0F0F)

## Weak/Semi-weak keys

- Using weak keys, the outcome of the Permuted Choice 1
   (PC1) in the DES key schedule leads to round keys being
   either all zeros, all ones or alternating zero-one patterns.
- Since all the subkeys are identical, and DES is a Feistel network, the encryption function is self-inverting; that is, encrypting twice produces the original plaintext.

### Semi weak keys

- There are six semi-weak key pairs:
- 0x011F011F010E010E and 0x1F011F010E010E01
- 0x01E001E001F101F1 and 0xE001E001F101F101
- 0x01FE01FE01FE01FE and 0xFE01FE01FE01
- 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
- 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
- 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1