

# Bölüm 13: Geri Dönüşlü Algoritmalar Algoritmalar





- Bazen bir problemi çözmek için
  - farklı yollar denemek ve
  - yanlış yollardan geri dönmek gerekir.
- Backtracking, karmaşık problemleri çözmek için bu stratejiyi kullanır.







- Bir labirentte yolculuk yapan kişiye benzetilebilir.
- Kişi, her kavşak noktasında bir karar vererek ilerler.
- Seçtiği yol çıkışa götürmüyorsa, geri dönüp başka bir yol denenir.
- Her adımda bir karar verilir ve kararın doğru olup olmadığı kontrol edilir.
- Bu deneme-yanılma süreci problemi çözene kadar sürer.
- Labirent, sudoku ve satranç gibi yapay zeka oyunlarında kullanılır.



- Sudoku'nun amacı,
  - 9x9'luk bir kare içindeki her satır, her sütun ve her 3x3'lük küçük karede
  - 1'den 9'a kadar olan sayıları tek seferde kullanmaktır.

| 5           | 3 |   |   | 7 |   |   |   |        |
|-------------|---|---|---|---|---|---|---|--------|
| 6           |   |   | 1 | 9 | 5 |   |   |        |
|             | 9 | 8 |   |   |   |   | 6 |        |
| 8           |   |   |   | 6 |   |   |   | 3      |
| 8<br>4<br>7 |   |   | 8 |   | 3 |   |   | 1<br>6 |
| 7           |   |   |   | 2 |   |   |   | 6      |
|             | 6 |   |   |   |   | 2 | 8 |        |
|             |   |   | 4 | 1 | 9 |   |   | 5<br>9 |
|             |   |   |   | 8 |   |   | 7 | 9      |



- Boş bir hücreye bir rakam ata.
- Eğer atanan rakam geçerli ise, devam et.
- Geçerli değilse, geri adım at (backtrack).
- Önceki adıma dön ve farklı bir rakam dene.
- Eğer tüm rakamlar denenmişse,
  - önceki hücreye geri dön
  - farklı bir rakam dene.
- Tüm hücreler dolana kadar adımları tekrarla.



| 5      | 3 | 1 | 2 | 7 | 6 | 8    | 9  | 4    |
|--------|---|---|---|---|---|------|----|------|
| 6      | 2 | 4 | 1 | 9 | 5 | 2    |    | 27.2 |
| W. 100 | 9 | 8 |   |   |   |      | 6  | 0.00 |
| 8      |   |   |   | 6 | 1 | - 2  |    | 3    |
| 4      |   |   | 8 |   | 3 |      |    | 9    |
| 7      | 3 |   |   | 2 |   |      | 11 | 6    |
| 8      | 6 |   |   |   |   | 2    | 8  |      |
|        |   |   | 4 | 9 | 9 |      |    | 5    |
| (S)    |   |   |   | 8 |   | - 30 | 7  | 9    |



| 5           | 3  | 1 | 2 | 7 | 6 | 9    | 4 | 8 |
|-------------|----|---|---|---|---|------|---|---|
| 6           | 4  | 2 | 1 | 9 | 5 | 7    | 3 | 4 |
| Alexander : | 9  | 8 |   |   | - |      | 6 | 0 |
| 8           |    |   |   | 6 |   | - A1 |   | 3 |
| 4           |    |   | 8 |   | 3 |      |   | 9 |
| 7           |    |   |   | 2 |   | 13   |   | 6 |
| 89          | 6  |   |   |   |   | 2    | 8 |   |
|             |    |   | 4 | 9 | 9 |      |   | 5 |
| (§          | 57 |   |   | 8 |   | - 10 | 7 | 9 |



| 5   | 3 | 1 | 6 | 7       | 2 | 4 | 9     | 8 |
|-----|---|---|---|---------|---|---|-------|---|
| 6   | 4 | 7 | 1 | 9       | 5 | 3 | - 1   |   |
|     | 9 | 8 |   | E 232 S |   |   | 6     |   |
| 000 |   |   |   | 6       | 1 |   | 120-3 | 3 |
| 4   |   |   | 8 |         | 3 |   |       | 1 |
| 7   |   |   |   | 2       |   |   |       | 6 |
| 80  | 6 |   |   |         |   | 2 | 8     |   |
|     |   |   | 4 | 9       | 9 |   |       | 5 |
| 68  |   | 3 |   | 8       |   | 1 | 7     | 9 |



| 5       | 3  | 1 | 6 | 7 | 2 | 8    | 9 | 4   |
|---------|----|---|---|---|---|------|---|-----|
| 6       | 7  | 4 | 1 | 9 | 5 | 6    |   | 2.0 |
| States: | 9  | 8 |   |   |   |      | 6 |     |
| 8       |    |   |   | 6 |   |      |   | 3   |
| 4       |    |   | 8 |   | 3 | 39   |   | 9   |
| 7       |    |   |   | 2 |   |      |   | 6   |
| 83      | 6  |   |   |   |   | 2    | 8 |     |
|         | 7- |   | 4 | 9 | 9 |      |   | 5   |
| Ø       |    |   |   | 8 |   | - 13 | 7 | 9   |



| 5        | 3 | 1 | 6 | 7 | 4 | 8    | 9 | 2 |
|----------|---|---|---|---|---|------|---|---|
| 6        | 2 | 4 | 1 | 9 | 5 | 7    | 7 | 8 |
| Ser inse | 9 | 8 |   |   |   | 92   | 6 |   |
| 8        |   |   |   | 6 |   | 1)(  |   | 3 |
| 4        |   |   | 8 |   | 3 | 30   |   | 9 |
| 7        |   |   |   | 2 |   |      |   | 6 |
| 8        | 6 |   |   |   |   | 2    | 8 | 8 |
|          |   |   | 4 | 9 | 9 |      |   | 5 |
| 82:      |   | 3 |   | 8 |   | - 85 | 7 | 9 |



| 5  | 3 | 1 | 6 | 7         | 8 | 9       | 2 | 4  |
|----|---|---|---|-----------|---|---------|---|----|
| 6  | 2 | 4 | 1 | 9         | 5 | 8       | 6 | 24 |
|    | 9 | 8 |   | 8 / / / S |   |         | 6 |    |
| 8  |   |   |   | 6         |   | W.      |   | 3  |
| 4  |   |   | 8 |           | 3 | 10      |   | 9  |
| 7  |   |   |   | 2         |   |         |   | 6  |
| 8  | 6 |   |   |           |   | 2       | 8 |    |
|    |   |   | 4 | 9         | 9 | - Ingri |   | 5  |
| (Q |   | 8 |   | 8         |   | - 80    | 7 | 9  |



| 5  | 3  | 1 | 6 | 7 | 8   | 9    | 4 | 2 |
|----|----|---|---|---|-----|------|---|---|
| 6  | 2  | 4 | 1 | 9 | 5   | 7    | 3 | 8 |
| 8  | 9  | 8 |   |   |     | 92   | 6 |   |
| 8  |    |   |   | 6 |     |      |   | 3 |
| 4  |    |   | 8 |   | 3   | - SS |   | 9 |
| 7  |    |   |   | 2 |     |      |   | 6 |
| 8  | 6  |   |   |   |     | 2    | 8 |   |
|    |    |   | 4 | 9 | 9   |      |   | 5 |
| 13 | 82 | 3 |   | 8 | - 4 | - 40 | 7 | 9 |



| (k)       |     |   | 4 | 1       | 9      |      | 7  | 5   |
|-----------|-----|---|---|---------|--------|------|----|-----|
|           | 6   |   |   |         |        | 2    | 8  |     |
| 7         |     |   |   | 2       |        |      |    | 6   |
| 4         |     |   | 8 |         | 3      | 33   |    | 9   |
| 000       |     |   |   | 6       |        | U 5  |    | 3   |
| Series    | (P) | 8 |   | E 292 S | 222.63 | 72   | 60 |     |
| <b>60</b> |     |   | 9 | 9       | 5      | 8    |    | 22. |
| 5         | 3   | 2 |   | 7       | ė į:   | - 20 |    | 60  |



| 5  | 3  | 2 | 6 | 7 | 8 | 1    | 9 | 4  |
|----|----|---|---|---|---|------|---|----|
| 6  | 4  | 7 | 1 | 9 | 5 | 3    | 2 | 8  |
| 1  | 9  | 8 | 2 | 2 |   |      | 6 | SC |
| 8  |    |   |   | 6 |   |      |   | 3  |
| 4  |    |   | 8 |   | 3 | 39   |   | 1  |
| 7  |    | 8 |   | 2 |   |      |   | 6  |
| 83 | 6  |   |   |   |   | 2    | 8 |    |
|    |    |   | 4 | 9 | 9 | 1000 |   | 5  |
| Ø  | 83 |   |   | 8 |   | 10   | 7 | 9  |



| 5  | 3       | 2 | 6 | 7 | 8 | 9   | 1   | 4 |
|----|---------|---|---|---|---|-----|-----|---|
| 6  | 7       | 4 | 1 | 9 | 5 | 8   | 3   | 2 |
| 1  | 9       | 8 | 3 | 4 | 9 |     | 6   |   |
| 8  |         |   |   | 6 |   | l ( |     | 3 |
| 4  | V)<br>M |   | 8 |   | 3 |     | *** | 1 |
| 7  |         |   |   | 2 |   |     |     | 6 |
| 80 | 6       |   |   |   |   | 2   | 8   |   |
|    |         |   | 4 | 1 | 9 | YA. |     | 5 |
| £0 | 83      |   |   | 8 |   |     | 7   | 9 |



| 5        | 3       | 4 | 2   | 7 | 6 | 9   | 1   | 8 |
|----------|---------|---|-----|---|---|-----|-----|---|
| 6        | 2       | 7 | 1   | 9 | 5 | 4   | 4   |   |
| States . | 9       | 8 | -w2 |   |   |     | 6   |   |
| 8        |         |   | Ÿ.  | 6 |   |     |     | 3 |
| 4        | y<br>et |   | 8   |   | 3 |     | *** | 1 |
| 7        |         |   |     | 2 |   |     |     | 6 |
|          | 6       |   |     |   |   | 2   | 8   |   |
|          |         |   | 4   | 9 | 9 | Y/. |     | 5 |
| 20       |         |   |     | 8 |   |     | 7   | 9 |



| 5     | 3 | 4 | 6 | 7 | 2        | 8    | 9 | 3   |
|-------|---|---|---|---|----------|------|---|-----|
| 6     |   |   | 1 | 9 | 5        | - 8  |   | 27. |
| 20120 | 9 | 8 |   |   | 2500 (%) | 0.0  | 6 |     |
| 8     |   |   |   | 6 |          |      |   | 3   |
| 4     |   |   | 8 |   | 3        | - 30 | E | 1   |
| 7     |   |   |   | 2 |          |      |   | 6   |
|       | 6 |   |   |   |          | 2    | 8 |     |
|       |   |   | 4 | 9 | 9        |      |   | 5   |
| 8     |   | 3 |   | 8 |          | - 6  | 7 | 9   |



| 5  | 3  | 4 | 6 | 7 | 8 | 1        | 9 | 2 |
|----|----|---|---|---|---|----------|---|---|
| 6  | 2  | 7 | 1 | 9 | 5 | 3        | 4 | 8 |
| 1  | 9  | 8 | 2 | 3 | 4 | 5        | 6 | 7 |
| 8  | 1  | 2 | 9 | 6 | 7 | 4        | 5 | 3 |
| 4  | 5  | 6 | 8 | 1 | 3 | 72 15400 |   | 9 |
| 7  |    |   |   | 2 |   |          |   | 6 |
| 88 | 6  |   |   |   |   | 2        | 8 |   |
|    |    |   | 4 | 9 | 9 | . t g    |   | 5 |
| £0 | 83 |   |   | 8 |   | - 10     | 7 | 9 |



| 5      | 3   | 4 | 6 | 7 | 8 | 9        | 1 | 2 |
|--------|-----|---|---|---|---|----------|---|---|
| 6      | 2   | 7 | 1 | 9 | 5 | 4        | 3 | 8 |
| 1      | 9   | 8 | 2 | 3 | 4 | 5        | 6 | 7 |
| 8      | 1   | 9 | 3 | 6 |   | 4        | X | 3 |
| 4      | 20  |   | 8 |   | 3 | n<br>Die |   | 9 |
| 7      |     | a |   | 2 |   |          |   | 6 |
|        | 6   |   |   |   |   | 2        | 8 |   |
|        |     |   | 4 | 9 | 9 |          |   | 5 |
| ()———— | (5) |   |   | 8 |   | 100      | 7 | 9 |



| 5        | 3        | 4 | 6 | 7 | 8  | 9   | 1 | 2 |
|----------|----------|---|---|---|----|-----|---|---|
| 6        | 7        | 2 | 1 | 9 | 5  | 3   | 4 | 8 |
| 1        | Op<br>Op | 8 | 2 | 3 | 4  | 5   | 6 | 7 |
| 8        | 1        | 5 | 9 | 6 | 1  |     |   | 3 |
| 4        |          |   | 8 |   | 3  | 39  |   | 1 |
| 7        | 9        | 3 |   | 2 | 02 | - 3 |   | 6 |
|          | 6        |   | 2 |   |    | 2   | 8 |   |
|          |          |   | 4 | 9 | 9  |     |   | 5 |
| <u>(</u> | 88       |   |   | 8 |    |     | 7 | 9 |



| 5 | 3   | 4 | 6 | 7 | 8 | 9       | 1   | 2 |
|---|-----|---|---|---|---|---------|-----|---|
| 6 | 7   | 2 | 1 | 9 | 5 | 3       | 4   | 8 |
| 1 | 9   | 8 | 3 | 4 | 2 | 5       | 6   | 7 |
| 8 | 2   | 9 | 7 | 6 | 1 | 4       | 5   | 3 |
| 4 | 6   |   | 8 |   | 3 | U-18-09 |     | 1 |
| 7 |     | 8 |   | 2 |   |         |     | 6 |
|   | 6   |   |   |   |   | 2       | 8   |   |
|   |     |   | 4 | 1 | 9 |         | 121 | 5 |
|   | (8) |   |   | 8 |   | 100     | 7   | 9 |



| 5 | 3  | 4 | 6 | 7 | 8 | 9    | 1 | 2 |
|---|----|---|---|---|---|------|---|---|
| 6 | 7  | 2 | 1 | 9 | 5 | 3    | 4 | 8 |
| 1 | 9  | 8 | 3 | 4 | 2 | 5    | 6 | 7 |
| 8 | 5  | 9 | 7 | 6 | 1 | 4    | 2 | 3 |
| 4 | 2  | 6 | 8 | 5 | 3 | 7    | 9 | 9 |
| 7 | 1  | 3 | 3 | 2 |   |      |   | 6 |
|   | 6  |   |   |   |   | 2    | 8 |   |
|   |    |   | 4 | 9 | 9 |      |   | 5 |
| Ø | 88 |   |   | 8 |   | - 18 | 7 | 9 |



| 5 | 3 | 4 | 6 | 7 | 8 | 9 | 1 | 2 |
|---|---|---|---|---|---|---|---|---|
| 6 | 7 | 2 | 1 | 9 | 5 | 3 | 4 | 8 |
| 1 | 9 | 8 | 3 | 4 | 2 | 5 | 6 | 7 |
| 8 | 5 | 9 | 7 | 6 | 1 | 4 | 2 | 3 |
| 4 | 2 | 6 | 8 | 5 | 3 | 7 | 9 | 9 |
| 7 | 1 | 3 | 9 | 2 | 4 | 8 | 5 | 6 |
| 9 | 6 | 1 | 5 | 3 | 7 | 2 | 8 | 4 |
| 2 | 8 | 7 | 4 | 9 | 9 | 6 | 3 | 5 |
| 3 | 4 | 5 | 2 | 8 | 6 | 1 | 7 | 9 |



24

#### **8 Vezir Problemi**



- Bir 8x8 satranç tahtasına 8 vezirin yerleştirilmesi.
- Bulmaca, her bir vezirin diğerlerini tehdit etmediği bir yerleşim bulma.
- Backtracking algoritması, bu tür problemleri çözmek için kullanılır.



#### **8 Vezir Problemi**



26

- Tahtanın her hücresi başlangıçta boş olarak atanır.
- İlk vezir ilk sıradaki bir sütuna yerleştirilir.
- Yerleştirilen vezirin diğer vezirlerle çakışıp çakışmadığı kontrol edilir.
- Çakışma yoksa, bu konum geçerli kabul edilir.
- Bir sonraki vezir sonraki sırada bir sütuna yerleştirilir.
- Tüm sütunlar denenip çözüm bulunamazsa, bir önceki vezir yer değiştirilir.
- Tüm 8 vezir yerleştirildiğinde, çözüm bulunmuş olur.













1/20/2023 Sercan KÜLCÜ, Tüm hakları saklıdır.







1/20/2023 Sercan KÜLCÜ, Tüm hakları saklıdır.















1/20/2023 Sercan KÜLCÜ, Tüm hakları saklıdır.





1/20/2023 Sercan KÜLCÜ, Tüm hakları saklıdır.

















1/20/2023 Sercan KÜLCÜ, Tüm hakları saklıdır.











































1/20/2023 Sercan KÜLCÜ, Tüm hakları saklıdır. 45









#### SON