What is NumPy?

This lesson gives a brief introduction to what is NumPy and explains data types in NumPy.

we'll cover the following ^

• Data type

NumPy is a *library for the Python programming language*, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.

Data type

Туре	Name	Bytes	Description
bool	b	1	Boolean (True or False) stored as a byte
int	1	4-8	Platform (long) integer (normally either int32 or int64)
intp	p	4-8	Integer used for indexing (normally either int32 or int64)

int8	i1	1	Byte (-128 to
			127)
int16	i2	2	Integer (-32768 to 32767)
int32	i4	4	Integer (-2147483648 to 2147483647)
int64	i8	8	Integer (-922337203685 4775808 to 9223372036854 775807)
uint8	u1	1	Unsigned integer (0 to 255)
uint16	u2	2	Unsigned integer (0 to 65535)
uint32	u4	4	Unsigned integer (0 to 4294967295)
uint64	u8	8	Unsigned integer (0 to 1844674407370 9551615)
float	f8	8	Shorthand for float64

float16	f2	2	Half precision
			float: sign bit, 5
			bits exponent,
			10 bits
			mantissa
			Single precision
			float: sign bit, 8
float32	f	4	bits exponent,
			23 bits
			mantissa
			Double
			precision float:
float64	d	8	sign bit, 11 bits
			exponent, 52
			bits mantissa
			Shorthand for
complex	c16	16	complex128.
			complexizo.
			Complex
			number,
complex64	c8	8	represented by
			two 32-bit
			floats
			Complex
			number,
complex128	c16	16	represented by
			two 64-bit
			floats

NumPy knows that int refers to np.int_, bool means np.bool_, that float is np.float_ and complex is np.complex_. The other data-types do not have Python equivalents.

Additionally, the names such as intc, long, or double used in the C programming language are defined.

Now that the concept of data types is clear, let's move on to the next lesson "Creation in NumPy".