Problem Set 8

Due dates: Electronic submission of this homework is due on Friday 11/5/2021 before 11:59pm on canvas.

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing your answers to this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:

This homework needs to be typeset in LaTeX to receive any credit. All answers need to be formulated in your own words.

Problem 1 (20 points). Suppose that the sample space Ω is given by the set of positive integers. Let \mathcal{F} denote the smallest family of subsets of Ω such that (a) \mathcal{F} contains all finite sets, (b) \mathcal{F} is closed under complements (meaning if A is in \mathcal{F} , then A^c is in \mathcal{F}), and (c) \mathcal{F} is closed under countable unions (so if the sets E_1, E_2, \ldots are contained in \mathcal{F} , then $\bigcup_{k=1}^{\infty} E_k$ is contained in \mathcal{F}).

- (a) Show that \mathcal{F} is a σ -algebra.
- (b) Prove of disprove: \mathcal{F} is equal to the power set $P(\Omega)$.

[Hint: You might have to qualify your answer depending on the cardinality of the sample space.

Solution. a) There are a set of conditions to prove that \mathcal{F} is a σ -algebra. The first one is that \mathcal{F} is countable, which means it contain the empty set. Another one is that \mathcal{F} is closed under compliments so as given that for set A there is a set A^c . And finally that \mathcal{F} is a countable collection. If $E_1 \cup E_2 ... E_n \cup \sigma \in \mathcal{F}$, then $E_1 \cap E_2 \dots A_n$, \mathcal{F} because each $E_i^c \in \mathcal{F}$ and its closed under finite unions which belongs to \mathcal{F} . Considering these conditions, \mathcal{F} meets all of them so its a σ -algebra.

b) For this part we must Prove of disprove: \mathcal{F} is equal to the power set $P(\Omega)$. We know that the power set of a set Ω is the set of all subsets of Ω , which also includes an empty set. So $E_1 \cup E_2 ... E_n = \Omega$ and $E_i \cap E_j ... E_n = \sigma$. Since $\sigma \in \mathcal{F}$. then we can conclude that \mathcal{F} is equal to set of $P(\Omega)$.

Problem 2 (20 points). Let B_1, B_2, \ldots, B_t denote a partition of the sample space Ω .

- (a) Prove that $\Pr[A] = \sum_{k=1}^t \Pr[A \mid B_k] \Pr[B_k]$. (b) Deduce that $\Pr[A] \leq \max_{1 \leq k \leq t} \Pr[A \mid B_k]$.

Solution. a) For this part we must prove $\Pr[A] = \sum_{k=1}^t \Pr[A \mid B_k] \Pr[B_k]$. Since we are given that B_1, B_2, \dots, B_t is a partition, $A = \bigcup_{k=1}^t (A \cap B_k)$. Then $P(A) = P(\bigcup_{k=1}^{t} (A \cap B_k))$, which is equal to $\sum_{k=1}^{t} A \cap B_k$. This then simplifies to $\sum_{k=1}^{t} P(A|B_k)P(B_k)$, hence proving the statement.

b) For this problem we must deduce that $\Pr[A] \leq \max_{1 \leq k \leq t} \Pr[A \mid B_k]$. So using, This is equal to $\max_{k=1}^t P(A|B_k)(1)$. Further simplifying to $P(A) \leq \max_{k=1}^t P(A|B_k)(1)$. This shows that $\Pr[A] \leq \max_{1 \leq k \leq t} \Pr[A \mid B_k]$.

Problem 3 (20 points). Consider an experiment, where you toss two fair coins. Give examples of events where (a) $Pr[A_1 \mid B_1] < Pr[A_1]$, (b) $Pr[A_2 \mid B_2] =$ $Pr[A_2]$, and (c) $Pr[A_3 \mid B_3] > Pr[A_3]$. Make sure that your proofs are complete and self-contained.

Solution. a) For this part we must give an example of $Pr[A_1 \mid B_1] < Pr[A_1]$. We can consider A to be heads for both of the coins and B to be tails for both of the coins. The probability of getting A given B would be 0 since there can only be one tails out of the two coins. Both coins can't be heads or both be tails at the same time, also that probability would be 1/2 * 1/2 = 1/4. So we can say that $\Pr[A_1 \mid B_1] < \Pr[A_1]$.

- b) For this part we must give an example of $\Pr[A_2 \mid B_2] = \Pr[A_2]$. Here we can consider that both A and B are heads in any given event, so then we would get the probability of 1/2, since they can be considered independent events. Because they can also be considered independently, A would also be 1/2 and B would be 1/2. Hence, we can say $\Pr[A_2 \mid B_2] = \Pr[A_2]$.
- c) Now lets consider a situation where in A both coins are heads and in B only one coin is heads. The probability of A given B is 1/2 since one coin is heads and the other has 0.5 chance of being heads. This leaves A with the probability of 1/4 because each coin has the probability if 1/2 and 1/2. Hence we can prove $\Pr[A_3 \mid B_3] > \Pr[A_3]$.

Problem 4 (20 points). There may be several different min-cut sets in a graph. Using the analysis of the randomized min-cut algorithm, argue that there can be at most n(n-1)/2 distinct min-cut sets.

Solution. For this problem we must use a randomized min-cut algorithm to argue that there can be at most n(n-1)/2 distinct min-cut sets. The meaning of a min cut is essentially the smallest cut to be made on a graph and every graph has 2^{n-1} cuts. Out of this n(n-1)/2 can be the most minimum cuts in a graph where n represents vertices. We can consider a graph where there is at least 2k/n edges and the degree of the vertices is k or more. The probability of finding an edge that passes a cut on the first try is 2/n and the probability of finding a different cut is 1-(2/n). Using this information, we can further infer that the remaining vertices are n-m+1, and theres $(k/2)^*(n-m+1)$ edges. The probability to pick an edge that crosses this cut is 2/(n-m+1). The conditional probability is $Pr[E_m|E_{m-1}\cap\ldots\cap E_1]\geq 1-(2/(n-m+1))=(n-m-1)/(n-m+1)$. So, the summation of the conditional probabilities gives us $Pr[\bigcap_{j=1}^{n-2} E_i] \geq \sum_{m=1}^{n-2} (n-m-1)/(n-m+1) = n(n-1)/2$

Problem 5 (20 points). A popular choice for pivot selection in Quicksort is the median of three randomly selected elements. Approximate the probability of obtaining at worst an a-to-(1-a) split in the partition (assuming that a is a real number in the range 0 < a < 1/2).

[Hint: Suppose that the median-of-three is the m-th smallest element of the array. Then it gives at worst an a-to-(1-a) split if and only if $an \le m \le (1-a)n$. Now count how many sets of three elements can lead to the pivot (= median-of-three) being the m-th smallest element.]

Solution. In order to find the approximate probability we can take a specific number of possible solutions and divide it by all solutions. To implement this we can take some element m between a*n and (1-a)n, where we can find the probability of one element on the right then the left. Then we can take the

summation of all possible m values so $(a*n \le m \le (1-a)n)$. Hence, utilizing the hint, and making m some median, we get $Pr(\frac{n}{3} \le i \le \frac{2n}{3}) = \sum_{i=n/3}^{2n/3} \frac{6(i-1)(n-i)}{n(n-1)(n-2)}$. This is the probability of obtaining the worst split partition.

Checklist:

Did you add your name?
Did you disclose all resources that you have used?
(This includes all people, books, websites, etc. that you have consulted)
Did you sign that you followed the Aggie honor code?
Did you solve all problems?
Did you submit the pdf file of your homework?