

Conserved Peroxiporin Function in MIP Channels: Structural and Thermodynamical Insights.

Jonathan Chevriau^{1,2}, Gerardo Zerbetto De Palma^{1,2}, Ari Zeida³, Karina Alleva^{1,2} 1) Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina. 2) IQUIFIB, UBA-CONICET, Argentina 3)Departamento de Bioquímica y Centro de Investigaciones Biomédicas (Ceinbio), Facultad de Medicina, Universidad de la República, Uruguay

The Membrane Intrinsic Protein (MIP) family plays a crucial role in facilitating the transport of water and small solutes across biological membranes, including hydrogen peroxide (H₂O₂). However, the evolutionary origin of H₂O₂ transport within the MIP family remains unclear, with the possibility that this function could be an ancestral trait. MIPs that are capable of transporting H₂O₂ are referred to as peroxiporins. It is important to note that not all MIPs, even those that are closely related, exhibit H₂O₂ permeability. The molecular determinants that govern H₂O₂ permeation and selectivity are not yet fully understood. Our previous studies have provided valuable insights into the transport mechanism of the MtPIP2;3 protein

Constriction regions in MIPs

Selectivity Filter (SF):

• Composed of amino acids that form a structure selective for

- specific molecules (e.g., water).
- Selectivity varies across MIP types, influencing permeability.
- Contains two conserved NPA motifs forming loops near the SF. • Critical for pore formation and molecule selectivity.
- Found in gated aquaporins like PIPs.
- Conformational rearrangement blocks water transport.

It is unclear whether peroxiporin activity is conserved across all MIP subfamilies or arose through lineagespecific diversification

To assess the conservation of the H₂O₂ permeation mechanism observed in MtPIP2;3 and to investigate the structural determinants of H₂O₂ permeability, we extended our analysis to a diverse set of MIP channels representing the four major eukaryotic evolutionary groups (AQP1-like, AQP3-like, AQP8-like, and AQP11-like). This comparative analysis included both experimentally validated H₂O₂ transporters and non-transporters, as well as their human and plant homologs.

MtPIP2;3 H₂O₂ transport

study:

• MtPIP2;3 expressed in *Saccharomyces cerevisiae* localizes to the plasma membrane. • Capable of transporting hydrogen peroxide (peroxiporin)

Impact of H₂O₂ on water transport

- MtPIP2;3 is highly efficient in water transport. • Heterologous system (Xenopus laevis oocytes) used to study H2O2 effects on MtPIP2;3
- H₂O₂ does not alter water permeability of MtPIP2;3 in either open or closed state. • No direct regulatory effect of H₂O₂ on water transport.

Model characterization

•Open/closed states identified in molecular dynamics simulations. •H₂O₂ addition had no impact on protein conformations.

•Main difference: closed state has narrower pore due to leucine protrusion from loop D.

•Permeability events occur in open chains, but no molecule passage in

• H_2O vs H_2O_2 Distribution:

• H₂O is uniformly distributed along the pore in both conformations. • H₂O₂ shows preference for specific areas:

• NPA region excludes H₂O₂, but H₂O is distributed normally. • In the closed state, H₂O₂ presence in SF, NPA, and CC regions is negligible.

Permeation Energy:

• Both molecules face a major energy barrier around the SF region in the open state (~4 kcal/mol).

•In the open state, H₂O₂ experiences a free energy increase (~1 kcal/mol) in the NPA region, unlike H₂O.

•In the closed state, energy barriers are higher for both molecules (~8 kcal/mol for H₂O₂).

•Lower energy between NPA and CC, but increases near the pore end in both states, trapping molecules and hindering passage.

HsAQP1

– . –	MIPs exhibiting positive experimental H ₂ O ₂ transport

	MIP	H ₂ O ₂ transport activity	Reference	Permeation events by chain
AQP1- LIKE	MtPIP2;3	+	Chevriau et al., 2024	11-4-0-5
	HsAQP1	-	Almasalmeh et al, 2014	47-33-24-63
	AtPIP2;4	+	Hooijmaijers et al, 2012	24-0-4-0
	AtPIP2;8	-	Hooijmaijers et al, 2012	7-5-0-0
AQP3- LIKE	HsAQP3	+	Miller <i>et al</i> , 2010	25-10-9-11
	OsNIP3;3	+	Katsuhara et al, 2014	34-37-34-67
	OsNIP3;1	-	Katsuhara et al, 2014	62-53-53-34
AQP8- LIKE	HsAQP8	+	Almasalmeh et al, 2013 Laforenza et al, 2017	6-17-11-18
	AtTIP1;2	+	Bienert et al, 2007	19-17-22-21
	AtTIP2;1	-	Bienert et al, 2007	6-10-1-0
AQP11-LIKE	HsAQP11	+	Bestetti <i>et al</i> , 2019	303-91-83-49

Molecular Dynamics simulations

Molecular dynamics simulations were performed for homotetrameric assemblies of selected MIP, with homology models created with SWISS-MODEL online server, using SoPIP2;1 open state crystal 3D structure (2B5F) as template, or by AlphaFold Server. Assemblies were embedded in a fully hydrated POPC bilayer, with explicit solvent (TIP3P water) and ions (NaCl 0.15M) using the membrane builder tool provided in the CHARMM-GUI website. ~300mM was added to the systems by replacement of water molecules, and 500ns unbiased molecular dynamics simulations were run with in an NPT ensemble with full periodic boundary conditions, performed with AMBER18 MD package, using hydrogen mass repartitioning (HMR) and parameters from AMBER14SB and LIPID17 force fields.

MIPs exhibiting negative experimental H₂O₂ transport

Density probability calculation

The density probability function were calculated by extracting the XYZ positions of the geometric center of the H₂O₂ or H₂O molecules throughout the simulation time with the cpptraj program of the AmberTools package. The origin of the Z coordinate of the system was centered in each simulation frame towards the geometric center formed by the Ar/R residues and the probability density along the pore was calculated by Kernel Density Estimation (KDE) using the software R.

Permeation events

To quantify permeation events, a custom Python script was developed. This script leverages molecular dynamics trajectories to track the movement of molecules through a defined pore region. Specifically, the script establishes reference points on either side of the pore and counts the number of molecules that traverse these points over the course of the simulation, regardless of the direction of permeation.

Pore Dimensions

To calculate pore dimensions along the Z-axis for each trajectory and perform statistical analysis, the HOLE module within the MDAnalysis package was employed, along with custom Python scripts.

Conclusions

- Spontaneous H2O2 permeation was observed in channels previously considered nontransporters (AtPIP2;8, OsNIP3;1, AtTIP2;1). This suggests pore structure alone doesn't fully explain H₂O₂ permeability, with other factors like post-translational modifications, lipid interactions, or experimental limitations playing a role. Negative results in yeast experimental assays may be due to methodological issues.
- H2O2 transport appears to be a characteristic shared across multiple MIP families, suggesting it could be an ancestral trait. The loss of H₂O₂ permeability in certain MIPs may not be due to changes in the pore itself, but rather to post-translational modifications or regulatory mechanisms acting outside the pore.
- The H₂O₂ restriction seen in MtPIP2;3 NPA region was also observed in other MIP families, indicating this may be a broader regulatory mechanism.

•Almasalmeh et al. (2014). **FEBS Journal, 281(3),** 647–656. https://doi.org/10.1111/febs.12653 •Bestetti et al. (2019). Redox Biology, 28, 101326. https://doi.org/10.1016/j.redox.2019.101326 •Chevriau et al. (2024). **Biochemical Journal.** https://doi.org/10.1042/bcj20240310

•Miller et al. (2010). **PNAS, 107(36),** 15681–15686. https://doi.org/10.1073/pnas.1005776107

