

Universidade do Vale do Itajaí Escola do Mar, Ciência e Tecnologia - EMCT Ciência da Computação

Lógica

Operações Lógicas sobre Proposições

 As operações sobre proposição são também conhecidas como operações lógicas

 As operações lógicas obedecem regras de cálculo, denominado cálculo proposicional

Proposições dividas em simples e compostas

Simples:

- R(p) = Felipe é professor
- R(q) = Felipe é engenheiro

Composta:

R(p,q) = Felipe é professor e Felipe é engenheiro

- Utilização de conectivos
 - P: Felipe é professor e Felipe é engenheiro
 - Q: Augusto é alto ou Carlos é rico
 - R: Se Carlos é rico, então é feliz
- Utilização para definir condições de, por exemplo, existência, acontecimento, etc...

Notação:

- V(p) = F = 0
 - Ex: (p) A Terra é maior que o Sol
- V(a) = V = 1
 - Ex: (a) A Terra é um planeta

- Tipos de Operações
 - Negação (') ou (~)
 - Conjunção () ou (^)
 - Disjunção (+) ou (v)
 - Disjunção Exclusiva (⊕) ou (v)
 - □ Condicional (→)
 - Bicondicional (↔)

Obs: Utilizada abordagem apresentada por *Daghlian

Negação

Trocamos a proposição NÃO por p'

- Lê-se: "não p"
 - V(p') = 0 (falsidade) se V(p) = 1 (verdade)
 - V(p') = 1 (verdade) se V(p) = 0 (falsidade)

р	p'
0	1
1	0

- Exemplos:
 - p: 1 + 4 é igual a 5 (1)

q: João é estudante

(0)

p': 1 + 4 não é igual a 5(0) q': João não é estudante (1)

$$V(p') = 0$$

$$V(q') = ?$$

Negação - Exercícios

- Dê a negação das seguintes proposições e coloque na notação formal:
 - A Lua é satélite
 - – A aula é a noite
 - Não é verdade que Vitória pertence ao Espírito Santo

Conjunção

- A conjunção de duas proposições só é verdadeira se as duas proposições são verdadeiras
 - \Box V(p) = V(q) = 1
 - Notação V(p q) = 1
 - Ex: p = 0 (falsidade) e q = 1 (verdade) = $V(p \cdot q) = 0$
 - □ Lê-se: "p e q" = p q
 - p: O carro é vermelho (1)

$$p \cdot q = 1 \cdot 1 = 1$$

Notação: $V(p \cdot q) = V(p) \cdot V(q) = 1 \cdot 1 = 1$

р	q	p • q
0	0	0
0	1	0
1	0	0
1	1	1

Conjunção - Exercícios

- Dê a conjunção das seguintes proposições e coloque na notação formal:
 - Ciência da Computação é uma graduação
 - A Univali é uma universidade

- O ser humano é mamífero
 - O cavalo é um inseto

Disjunção

- A disjunção de duas proposições só é falsa se as duas proposições são falsas
 - \Box V(p) = V(q) = 0
 - □ Notação V(p + q) = 0
 - Ex: p = 0 (falsidade) e q = 0 (falsidade) = V(p + q) = 0
 - □ Lê-se: "p ou q" = p + q
 - p: O carro é vermelho (1)

$$p + q = 1 + 1 = 1$$

Notação: V(p + q) = V(p) + V(q) = 1 + 1 = 1

р	q	p + q	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Disjunção - Exercícios

- Dê a disjunção das seguintes proposições e coloque na notação formal:
 - Ciência da Computação não é uma graduação
 - A Univali é uma universidade

- O ser humano é mamífero
 - O cavalo é um animal

Disjunção Exclusiva

- A disjunção exclusiva de duas proposições só é verdadeira quando as proposições forem diferentes
 - $V(p) \neq V(q) : 1 e V(p) = V(q) : 0$
 - Notação: V(p⊕q) = 0
 - Ex: p = 0 (falsidade) e q = 0 (falsidade) = $V(p \oplus q) = 0$
 - Lê-se: "p ou q, mas não ambas" = p⊕q
 - p: O carro é vermelho (1)

$$p \oplus q = 1 \oplus 1 = 0$$

Notação: $V(p \oplus q) = V(p) \oplus V(q) = 1 \oplus 1 = 0$

р	q p⊕q	
0	0	0
0	1	1
1	0	1
1	1	0

Disjunção Exclusiva - Exercícios

- Dê a disjunção exclusiva das seguintes proposições e coloque na notação formal:
 - Ciência da Computação não é uma graduação
 - A Univali é uma universidade

- O ser humano é mamífero
 - O cavalo é um animal

Condicional

- O condicional de duas proposições só é falsa quando V(p) = 1 e V(q) = 0
 - □ Lê-se: "se p então q"
 - Notação: $V(p \rightarrow q) = 0 (\rightarrow é \text{ chamado de símbolo da implicação})$
 - Ex: p = 0 (falsidade) e q = 0 (falsidade) = $V(p \rightarrow q) = 1$
 - p é antecedente e q de consequente
 - p é condição suficiente para q
 q é condição necessária de p
 q é consequência de p

р	q	p→q
0	0	1
0	1	1
1	0	0
1	1	1

Condicional

- Exemplo da aplicação do condicional
 - Luz é uma condição necessária para enxergar
 - Se há luz, então eu enxergo
 - Antecedente: há luz
 - Consequente: enxergo
- Notação:
 - p: O aluno tem média final 6
 - q: ele está aprovado na disciplina
 - $p \rightarrow q$: se o aluno tem média final 6, então ele está aprovado na disciplina

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = 1 \rightarrow 1 = 1$$

Condicional

- Neste exemplo, suponha que seu amigo falasse:
 - Se eu me formar na primavera, então vou tirar férias na Flórida
- Condições:
 - Se ele realmente se formar na primavera (V) e tirar suas férias na Flórida (V), a sentença foi VERDADEIRA
 - Porém, se ele se formar na primavera (V) e não tirar suas férias na Flórida (F), seu comentário foi uma sentença FALSA
 - ☐ Agora, supondo que ele não se formou (F)
 - Independentemente de ele tirar ou não as férias na Flórida, a sentença não tornou-se falsa, pois demos-lhe o benefício da dúvida

Condicional - Exercícios

- Crie duas proposições compostas utilizando condicionais
- Indique o antecedente e o consequente
- Coloque na notação formal

Bicondicional

- O bicondicional de duas proposições é verdadeira quando V(p) = V(q) e falsa quando V(p) ≠ V(q)
 - Lê-se: "p se e somente se q"
 - □ Notação: $V(p \leftrightarrow q) = 0$
 - Ex: p = 0 (falsidade) e q = 0 (falsidade) = $V(p \leftrightarrow q) = 1$
- Ressalta-se que o bicondicional não é uma operação original, mas sim uma dupla aplicação do conectivo →
 - p é condição necessária e suficiente para q
 q é condição necessária e suficiente para p

р	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Bicondicional

Notação:

p: O aluno tem média final 6

q: ele está aprovado na disciplina

p↔q : o aluno tem média final 6 se e somente se ele está aprovado na disciplina

$$V(p\leftrightarrow q) = V(p)\leftrightarrow V(q) = 1\leftrightarrow 1 = 1$$

Bicondicional

Considerando uma bi-implicação

р	q	p→q	q→p	(q→p) • (p→q)
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

O bicondicional é equivalente a: $(p \rightarrow q) \cdot (q \rightarrow p)$

Bicondicional - Exercícios

- Crie duas proposições compostas utilizando bicondicionais
- Apresente a tabela verdade com a bi-implicação
- Utilize a notação adequada