GEOG 491/891: Special Topics - Spatial Analysis in R

Week 10.02: Raster algebra

Dr. Bitterman

Today's schedule

- Open discussion
- Raster basics

Anything to discuss? Questions?

Remaining topics

- Week 10: Rasters (Friday: update presentations)
- Week 11: Making maps (Intro lab 4)
- Week 12: Interactive mapping (Intro lab 5)
- Week 13: Applications
- Week 14: Thanksgiving week
- Week 15: Applications
- Week 16: Project presentations

Map algebra

Map algebra (or cartographic modeling) divides raster operations into four subclasses (Tomlin 1990), with each working on one or several grids simultaneously:

- 1. Local or per-cell operations
- 2. Focal or neighborhood operations. Most often the output cell value is the result of a 3 x 3 input cell block
- 3. Zonal operations are similar to focal operations, but the surrounding pixel grid on which new values are computed can have irregular sizes and shapes
- 4. Global or per-raster operations; that means the output cell derives its value potentially from one or several entire rasters

Local operations

- Local operations comprise all cell-by-cell operations in one or several layers
- Raster algebra is a classical use case of local operations

Let's try an example

Setup

```
library(tidyverse)
library(raster)
library(tmap)
```

Load the same raster from last class

```
myras <- raster::raster("./data/ts_2016.1007_1013.L4.LCHMP3.CIcyano.MAXIMUM_7day.tif")
plot(myras)</pre>
```

A simple local operation

myras * 2

How would you check your work?

One way is to verify the ranges

```
myras %>% values() %>% range(na.rm = T)

# What's different here?
(myras * 2) %>% values() %>% range(na.rm = T)
```

Other simple local operations

```
myras - 4
myras ** 2
log(myras)
```

Essentially any alebraic operation works

Reclassify

First, let's setup our reclassification scheme

```
rcl = matrix(c(0, 1, 0, 2, 249, 1, 250, 256, 0), ncol = 3, byrow = TRUE) rcl
```

What does it look like?

Then apply it

```
validdata = reclassify(myras, rcl = rcl)
validdata
plot(validdata)
```

What do we have?

How might this (essentially binary) raster be useful?

Ideas?

Let's multiply our "valid" raster with the original

Expected output?

```
validRaster <- myras * validdata
plot(validRaster)</pre>
```

We can "do algebra" using a function too!

```
# NOAA transform for CHAMPLAIN data
# valid as of 2019-02-01 metadata
transform_champlain_olci <- function(x){
    10**(((3.0 / 250.0) * x) - 4.2)
}
myras.ci <- validRaster %>% transform_champlain_olci
plot(myras.ci)
```

Focal operations

- Focal operations take into account a central (focal) cell and neighbors
- The neighborhood (also named kernel, filter, or moving window) can be any size/shape, but typically 3x3 grid
- operation applies aggregation function to all cells within the specified neighborhood
- function output is the new value for the the central cell, and moves on to the next central cell

0	2	3	4	5	6	0	0	2	3	4	5
7	8	9	10	11	12	0 >	0	2	3	4	5
13	14	15	16	17	18	7	7	8	9	10	11
19	20	21	22	23	24	13	13	14	15	16	17
25	26	27	28	29	30	19	19	20	21	22	23
31	32	33	34	35	36	25	25	26	27	28	29

(from https://geocompr.robinlovelace.net/spatial-operations.html#mapalgebra)

Example

Let's break down the code

How does it work conceptually?

```
myras_focal = focal(myras.ci, w = matrix(1, nrow = 3, ncol = 3), fun = max)
plot(myras_focal)
```

What does the new raster look like?

How might we know what actually changed?

Change detection

(myras_focal - r_focal) %>% plot

What assumptions does the comparison make?

Good practice is to verify same extent, projection, resolution, and origin

```
# good practice
compareRaster(myras_focal, r_focal)
```

Global operations (are boring)

```
raster::maxValue(myras.ci)
raster::minValue(myras.ci)
# or
myras.ci %>% raster::values() %>% mean(na.rm = T)
```

Questions?

Your task with the remaining time

- There is a second raster in the data folder
 - # ts_2016.0902_0908.L4.LCHMP3.CIcyano.MAXIMUM_7day.tif
- Compare it to the image we've been using as myras

Questions

- Did the cyanobacteria bloom get larger or smaller from the September image to the
 October image (see the filename for the image dates)?
- Report a statistic (of your choosing) that characterizes the change in bloom intensity between images

For this week

- Friday: in-class update presentations... upload them to Canvas by the due date
- Readings posted on Canvas
- Practice, practice, practice
- Work on your projects