Introdução Organização de Computadores

Organização estruturada de computadores

- Existe uma grande lacuna entre o que é conveniente para as pessoas e o que é conveniente para computadores.
- As pessoas querem fazer X, mas os computadores só podem fazer Y, o que dá origem a um problema.
- A complexidade pode ser dominada e os sistemas de computação podem ser projetados de forma sistemática e organizada.
- Denominamos essa abordagem organização estruturada de computadores.

- Um método de execução de um programa escrito em L1 é primeiro substituir cada instrução nele por uma sequência equivalente de instruções em L0.
- O programa resultante consiste totalmente em instruções L0.
- O computador, então, executa o novo programa L0 em vez do antigo programa L1.
- Essa técnica é chamada de tradução.

- A outra técnica é escrever um programa em L0 que considere os programas em L1 como dados de entrada e os execute, examinando cada instrução por sua vez, executando diretamente a sequência equivalente de instruções L0.
- Essa técnica não requer que se gere um novo programa em L0.
- Ela é chamada de interpretação, e o programa que a executa é chamado de interpretador.

- Muitas vezes é mais simples imaginar a existência de um computador hipotético ou máquina virtual cuja linguagem seja L1.
- Vamos chamar essa máquina virtual de M1 (e de M0 aquela correspondente a L0).
- Um terceiro conjunto também forma uma linguagem, que chamaremos de L2 (e com a máquina virtual M2).
- As pessoas podem escrever programas em L2 exatamente como se de fato existisse uma máquina real com linguagem de máquina L2.

Máquina multinível.

Máquinas multiníveis contemporâneas

Um computador com seis níveis.

- Os circuitos eletrônicos, junto com a memória e dispositivos de entrada/saída, formam o hardware do computador.
- Este consiste em objetos tangíveis em vez de ideias abstratas, algoritmos ou instruções.
- O software consiste em algoritmos e suas representações no computador – isto é, programas.
- Hardware e software são logicamente equivalentes.

- Os primeiros computadores digitais, na década de 1940, tinham apenas dois níveis:
- 1. o nível ISA, no qual era feita toda a programação, e
- 2. o nível lógico digital, que executava esses programas.
- Em torno de 1970, a ideia de interpretar o nível ISA por um microprograma, em vez de diretamente por meios eletrônicos, era dominante.
- Por volta de 1960, as pessoas tentaram reduzir o desperdício de tempo automatizando o trabalho do operador.

- Um programa denominado sistema operacional era mantido no computador o tempo todo.
- O programador produzia certos cartões de controle junto com o programa, que eram lidos e executados pelo sistema operacional.
- A figura a seguir apresenta uma amostra de serviço (job) para um dos primeiros sistemas operacionais de ampla utilização, o FMS (FORTRAN Monitor System), no IBM 709.

- Muitas outras instruções foram adicionadas ao microprograma. Entre elas, as mais frequentes eram:
- 1. Instruções para multiplicação e divisão de inteiros.
- 2. Instruções aritméticas para ponto flutuante.
- 3. Instruções para chamar e sair de procedimentos.
- Instruções para acelerar laços (looping).
- 5. Instruções para manipular cadeias de caracteres.

- Assim que os projetistas de máquinas perceberam como era fácil acrescentar novas instruções, começaram a procurar outras características para adicionar aos seus microprogramas.
- Alguns exemplos desses acréscimos são:
- Características para acelerar cálculos que envolvessem vetores (indexação e endereçamento indireto).
- Características para permitir que os programas fossem movidos na memória após o início da execução (facilidades de relocação).

- 3. Sistemas de interrupção que avisavam o computador tão logo uma operação de entrada ou saída estivesse concluída.
- 4. Capacidade para suspender um programa e iniciar outro com um pequeno número de instruções.
- 5. Instruções especiais para processar arquivos de áudio, imagem e multimídia.
- Por fim, alguns pesquisadores perceberam que, eliminando o microprograma, as máquinas podiam ficar mais rápidas.

 Alguns marcos no desenvolvimento do computador digital moderno:

Ano	Nome	Construído por	Comentários
1834	Máquina analítica	Babbage	Primeira tentativa de construir um computador digital
1936	Z1	Zuse Primeira máquina de calcular com relés	
1943	COLOSSUS	Governo britânico	Primeiro computador eletrônico
1944	Mark I Aiken Primeiro computador norte-americano de uso geral		Primeiro computador norte-americano de uso geral
1946	ENIAC	Eckert/Mauchley	A história moderna dos computadores começa aqui
1949	EDSAC	Wilkes	Primeiro computador com programa armazenado
1951	Whirlwind I	MIT	Primeiro computador de tempo real
1952	IAS	von Neumann	A maioria das máquinas atuais usa esse projeto
1960	PDP-1	DEC	Primeiro minicomputador (50 vendidos)
1961	1401	IBM	Máquina para pequenos negócios, com enorme popularidade

 Alguns marcos no desenvolvimento do computador digital moderno:

Ano	Nome	Construído por	Comentários			
1962	7094	IBM	Dominou computação científica no início da década de 1960			
1963	B5000	Burroughs	Primeira máquina projetada para uma linguagem de alto nível			
1964	360	IBM	Primeira linha de produto projetada como uma família			
1964	6600	CDC	Primeiro supercomputador científico			
1965	PDP-8	DEC	Primeiro minicomputador de mercado de massa (50 mil vendidos)			
1970	PDP-11	DEC	Dominou os minicomputadores na década de 1970			
1974	8080	Intel	Primeiro computador de uso geral de 8 bits em um chip			
1974	CRAY-1	Cray	Primeiro supercomputador vetorial			
1978	VAX	DEC	Primeiro superminicomputador de 32 bits			
1981	IBM PC	IBM	Deu início à era moderna do computador pessoal			

 Alguns marcos no desenvolvimento do computador digital moderno:

Ano	Nome	Nome Construído por Comentários		
1981	Osborne-1	Osborne	Primeiro computador portátil	
1983	Lisa	Apple	Primeiro computador pessoal com uma GUI	
1985	386	Intel	Primeiro ancestral de 32 bits da linha Pentium	
1985	MIPS MIPS Primeira mád		Primeira máquina comercial RISC	
1985	XC2064	Xilinx	Primeiro FPGA (Field-Programmable Gate Array)	
1987	SPARC	Sun	Primeira estação de trabalho RISC baseada em SPARC	
1989	GridPad	Grid Systems	Primeiro computador tablet comercial	
1990	RS6000	IBM	Primeira máquina superescalar	
1992	Alpha	Alpha DEC Primeiro computador pessoal de 64 bits		
1992	Simon	IBM	Primeiro smartphone	
1993	Newton	Apple	Primeiro computador palmtop (PDA)	
2001	POWER4	IBM	Primeiro multiprocessador com chip dual core	

- A primeira pessoa a construir uma máquina de calcular operacional foi o cientista francês Blaise Pascal (1623– 1662), em cuja honra a linguagem Pascal foi batizada.
- Em 1943, e Mauchley e seu aluno de pós-graduação, J.
 Presper Eckert, passaram a construir um computador eletrônico, ao qual deram o nome de ENIAC.
- O transistor foi inventado no Bell Labs em 1948 por John Bardeen, Walter Brattain e William Shockley, pelo qual receberam o Prêmio Nobel de física de 1956.

- A invenção do circuito integrado de silício por Jack Kilby e Robert Noyce em 1958 permitiu que dezenas de transistores fossem colocados em um único chip.
- Na década de 1980, a VLSI tinha possibilitado colocar primeiro dezenas de milhares, depois centenas de milhares e, por fim, milhões de transistores em um único chip.
- Em 1989, a Grid Systems lançou o primeiro tablet, denominado GridPad. Ele consistia em uma pequena tela em que os usuários poderiam escrever com uma caneta especial, para controlar o sistema.

 A lei de Moore prevê um aumento anual de 60% no número de transistores que podem ser colocados em um

chip.

Tipos de computador disponíveis atualmente.

Tipo	Preço (US\$)	Exemplo de aplicação	
Computador descartável	0,5	Cartões de felicitação	
Microcontrolador	5	Relógios, carros, eletrodomésticos	
Computador móvel e de jogos	50	Videogames domésticos e smartphones	
Computador pessoal	500	Computador de desktop ou notebook	
Servidor	5K	Servidor de rede	
Mainframe	5M	Processamento de dados em bloco em um banco	

- Os computadores embutidos, às vezes denominados microcontroladores, gerenciam os dispositivos e manipulam a interface de usuário.
- São encontrados em grande variedade de aparelhos diferentes, entre eles os seguintes:
- Eletrodomésticos.
- Aparelhos de comunicação.
- Periféricos de computadores.
- Equipamentos de entretenimento.

- Aparelhos de reprodução de imagens.
- Equipamentos médicos.
- Sistemas de armamentos militares.
- Dispositivos de vendas.
- Brinquedos.
- Um nível acima estão as máquinas de videogame.

 O termo "computadores pessoais" abrange os modelos de desktop e notebook.

- A placa de
- circuito impres:
- está no coraçã
- de cada compi
- tador pessoal.

- Já os servidores vêm em configurações com um único processador com múltiplos processadores.
- Têm gigabytes de memória, centenas de gigabytes de espaço de disco rígido e capacidade para trabalho em rede de alta velocidade.
- Clusters consistem em sistemas padrão do tipo servidor, conectados por redes de gigabits/s.
- Os mainframes têm mais capacidade de E/S e costumam ser equipados com vastas coleções de discos que contêm milhares de gigabytes de dados.

- Arquitetura x86
- Principais membros da família de CPUs da Intel.

Chip	Data	MHz	Trans.	Memória	Notas	
4004	4/1971	0,108	2.300	640	Primeiro microprocessador em um chip	
8008	4/1972	0,108	3.500	16 KB	Primeiro microprocessador de 8 bits	
8080	4/1974	2	6.000	64 KB	Primeira CPU de uso geral em um chip	
8086	6/1978	5–10	29.000	1 MB	Primeira CPU de 16 bits em um chip	
8088	6/1979	5–8	29.000	1 MB	Usada no IBM PC	
80286	2/1982	8–12	134.000	16 MB	Com proteção de memória	
80386	10/1985	16–33	275.000	4 GB	Primeira CPU de 32 bits	
80486	4/1989	25–100	1,2M	4 GB	Memória cache de 8 KB embutida	
Pentium	3/1993	60–233	3,1M	4 GB	Dois pipelines; modelos posteriores tinham MMX	
Pentium Pro	3/1995	150–200	5,5M	4 GB	Dois níveis de cache embutidos	
Pentium II	5/1997	233–450	7,5M	4 GB	Pentium Pro mais instruções MMX	
Pentium III	2/1999	650-1.400	9,5M	4 GB	Instruções SSE para gráficos em 3D	
Pentium 4	11/2000	1.300–3.800	42M	4 GB	Hyperthreading; mais instruções SSE	
Core Duo	1/2006	1.600-3.200	152M	2 GB	Dual cores em um único substrato	
Core	7/2006	1.200–3.200	410M	64 GB	Arquitetura <i>quad</i> core de 64 bits	
Core i7	1/2011	1.100-3.300	1.160M	24 GB	Processador gráfico integrado	

Arquitetura x86

- O chip Intel Core i7-3960X.
- O substrato tem 21 ×
 21 mm e 2,27
 bilhões de transistores.

- Arquitetura x86
- Lei de Moore para chips de CPU (Intel).

- Arquitetura ARM
- No início da década de 1980, a empresa Acorn Computer começou a trabalhar em uma segunda máquina com a esperança de competir com o recém-lançado IBM PC.
- Eles decidiram montar sua própria CPU para o projeto e o chamaram de Acorn RISC Machine (ou ARM).
- A primeira arquitetura ARM (denominada ARM2) apareceu no computador pessoal Acorn Archimedes.
- A Apple fez contato com a Acorn para desenvolver um processador ARM para seu próximo projeto Apple Newton.

- Arquitetura ARM
- Diferente de muitas empresas de computador, a ARM não fabrica qualquer microprocessador.
- A figura a seguir mostra uma foto do substrato do sistemaem-um-chip Tegra 2 da Nvidia.
- O projeto contém três processadores ARM:
- o dois núcleos ARM Cortex-A9 de 1,2 GHz mais
- um núcleo ARM7.

Arquitetura ARM

- Arquitetura AVR
- A arquitetura AVR é usada em sistemas embutidos de muito baixo nível.
- É realizada em três classes de microcontroladores:

Chip	Flash	EEPROM	RAM	Pinos	Características
tinyAVR	0,5–16 KB	0-512 B	32-512 B	6–32	Pequeno, E/S digital, entrada analógica
megaAVR	8–256 KB	0,5–4 KB	0,25–8 KB	28–100	Muitos periféricos, saída analógica
AVR XMEGA	16–256 KB	1–4 KB	2–16 KB	44–100	Aceleração criptográfica, E/S USB

Arquitetura AVR

- Junto com diversos periféricos adicionais, cada classe de processador AVR inclui alguns recursos de memória adicionais.
- Os microcontroladores possuem em geral três tipos de memória na placa:
- 1. flash,
- 2. EEPROM e
- 3. RAM.

- Arquitetura AVR
- Para entender melhor quantas coisas podem caber em um microcontrolador moderno, vejamos os periféricos incluídos no Atmel ATmega168 AVR:
- 1. Três temporizadores.
- 2. Clock de tempo real com oscilador.
- Seis canais por modulação de largura de pulso usados, por exemplo, para controlar a intensidade da luz ou a velocidade do motor.

- Arquitetura AVR
- 4. Oito canais de conversão analógico-digital.
- 5. Receptor/transmissor serial universal.
- 6. Interface serial I2C.
- 7. Temporizador de vigia programável.
- 8. Comparador analógico no chip.
- 9. Detector de falha de energia.
- 10. Oscilador de clock interno programável.

slide 35 © 2014 Pearson. Todos os direitos reservados.

Unidades métricas

• Os principais prefixos métricos.

Ехр.	Explícito	Prefixo	Ехр.	Explícito	Prefixo
10-3	0,001	mili	10³	1.000	kilo
10 ⁻⁶	0,000001	micro	10 ⁶	1.000.000	mega
10-9	0,00000001	nano	10 ⁹	1.000.000.000	giga
10-12	0,00000000001	pico	10 ¹²	1.000.000.000.000	tera
10-15	0,0000000000001	femto	10 ¹⁵	1.000.000.000.000.000	peta
10-18	0,0000000000000001	ato	10 ¹⁸	1.000.000.000.000.000.000	exa
10-21	0,00000000000000000000001	zepto	10 ²¹	1.000.000.000.000.000.000	zeta
10-24	0,0000000000000000000000000001	iocto	1024	1.000.000.000.000.000.000.000	iota