Advanced Level Experimental Physics

G2-1: Transistor Characteristics

Apparatus

3V battery; 9V battery; 2 rheostats (high resistance); resistor R_2 (approx. 50 k Ω); voltmeter (0–5 Vdc); ammeter ($\approx 50\mu A$ fsd); ammeter (≈ 3 mA fsd); transistor (pnp); connecting leads (12 short); 2 sheets graph paper.

Instructions

Set up the circuit as above, but do not connect the batteries until a teacher has checked the circuit (to avoid damaging the ammeters or transistor). In the experiment, when not taking readings, leave the batteries disconnected.

EXPERIMENT 1

To investigate the 'transfer characteristics' of the transistor. The transistor acts as a current amplifier: the size of the large current I_C depends on the size of the small current I_B . The circuit used above is called a 'common emitter' circuit.

1: Procedure

- 1. Set V_{CE} to 4V using rheostat R_3 . Ensure that this remains constant (adjust R_3 again later as necessary).
- 2. Set I_B to 0 using R_1 . Read and note I_B and I_C .
- 3. Increase I_B a little using ${
 m R}_1$, and read and note I_B and I_C . Continue increasing I_B and reading the ammeters until $I_C=3$ mA.
- 4. Tabulate the readings of I_E , I_C , and the value of V_{CE} .

1: Analysis

- 1. Plot a graph of I_C against I_B , labelling the curve with the value of V_{CE} used.
- 2. Find the gradient of the straight-line section of the curve. Then:

Current gain
$$\beta = \frac{\Delta I_C}{\Delta I_B} = \text{gradient}$$

EXPERIMENT 2

To study how I_C varies when V_{CE} is changed, for certain fixed values of I_B . The graph obtained is called the 'output characteristic' of the transistor.

2: Procedure

- 1. Set $I_B=0$ using ${
 m R}_1$. Starting with $V_{CE}=0$, and little by little increasing V_{CE} up to 5V, take a set of readings of I_C and V_{CE} and note the value of $I_B=0$.
- 2. Increase I_B to $10\mu\mathrm{A}$, and obtain another set of readings of I_C and V_{CE} as in step 1.
- 3. Repeat the procedure with $I_B=20\mu$ A then 30μ A.
- 4. Tabulate the sets of readings of I_C and V_{CE} , noting the value of I_B for each set.

2: Analysis

1. Plot a graph of I_C vs. V_{CE} to obtain four curves. Label each curve with the appropriate value of I_B used.

Questions

- 1. When $I_B=0$, I_C should be zero for all V_{CE} . However all transistors have some 'leakage current.' What is the value of the leakage current I_C when $V_{CE}=4$ V?
- 2. What is the approximate minimum V_{CE} so that a variation in I_B between 0 and $30\mu A$ produces a large change in I_-C ? (In practice the supply voltage is usually set between this value and a certain maximum. The maximum depends on the 'breakdown voltage' of the junctions).
- 3. In use as an amplifier, an AC input voltage makes I_B vary with time. For example:

- a. Use the value of eta to make a graph of I_C against time.
- b. If a resistor R=1k Ω is connected in series with the collector C, so that I_C flows through it; draw a graph of the potential difference (p.d.) across this resistor against time.
- c. What is the frequency of these AC currents and p.d.?
- 4. Draw a diagram to show while the pnp transistor is conducting:
 - a. Electron flows and conventional currents through the three terminals.
 - b. Electron & hole movements inside the transistor (may be simplified).

© 2015 <u>CC-BY</u> by Bob Drach and Norman Price Based off of book published ????

<u>About</u>