

План

Ансамбли алгоритмов: примеры и обоснование

Повышение разнообразия в ансамблях

Комитеты (голосование, Voting Ensembles), усреднение

Бэгинг (Bagging)

Пэстинг (Pasting)

Случайные подпространства (Random Subspaces)

Случайные патчи (Random Patches)

Cross-Validated Committees

Стекинг (Stacking)

Блендинг (Blending)

Случайные леса (Random Forests)

Бустинг (Boosting)

Ансамбль алгоритмов (Ensemble / Multiple Classifier System)

- алгоритм, который состоит из нескольких алгоритмов машинного обучения (базовых алгоритмов - base learners)

простой ансамбль в регрессии:

$$a(x) = \frac{1}{n} \left(b_1(x) + \dots + b_n(x) \right)$$

простой ансамбль в классификации:

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитет большинства

В чём может быть усложнение?

Ансамбль алгоритмов

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм (meta-estimator),

 b_{i} – базовые алгоритмы (base learners)

в бустинге - слабые (weak)

Реализация в scikit-learn

```
from sklearn.linear model import LogisticRegression
from sklearn.naive bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(multi class='multinomial', random state=1)
clf2 = RandomForestClassifier(n estimators=50, random state=1)
clf3 = GaussianNB()
eclf1 = VotingClassifier(estimators=[
     ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
     voting='hard', # по большинству или soft - сумме вероятностей
     weights=None, # веса алгоритмов
     flatten transform=True) # для мягкого голосования - форма ответа
eclf1 = eclf1.fit(X, y)
print(eclf1.predict(X))
```

Ошибка суммы регрессоров: теоретическое обоснование

Если ответы регрессоров на объекте – независимые случайные величины с одинаковым матожиданием и дисперсией

$$\xi = \frac{1}{n} (\xi_1 + \dots + \xi_n)$$

$$E\xi = \frac{1}{n} (E\xi_1 + \dots + E\xi_n) = E\xi_i$$

$$\mathbf{D}\xi = \frac{1}{n^2} (\mathbf{D}\xi_1 + \dots + \mathbf{D}\xi_n) = \frac{\mathbf{D}\xi_i}{n}$$

А если есть корреляция между базовыми алгоритмами?

Ошибка комитета большинства: теоретическое обоснование

Пусть три (независимых) классификатора на два класса с вероятностью ошибки $\,p\,$

Пусть верный ответ - 0

$$\begin{array}{cccc}
(0,0,0) & (1-p)(1-p)(1-p) \\
(1,0,0) & p(1-p)(1-p) \\
(0,1,0) & (1-p)p(1-p) \\
(0,0,1) & (1-p)(1-p)p
\end{array}$$

$$\begin{array}{cccc}
(1,1,1) & ppp \\
(1,1,0) & pp(1-p)
\end{array}$$

(0,1,1) (1-p)pp

(1,0,1) p(1-p)p

верный ответ

ошибка

вероятность ошибки

$$p^3 + 3(1-p)p^2 = p^2(3-2p)$$

Ошибка комитета большинства

При малых $\,p\,$ ошибка комитета очень мала!

При p=0.2 – почти в два раза меньше

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

- Решают одну задачу
- Настраиваются на один целевой вектор
- Могут быть из одной модели (ну, 2-3 разных)!

Повышения разнообразия – что «варьируют»

Ансамбли алгоритмов

• обучающую выборку

(бэгинг)

признаки

(Random Subspaces)

• целевой вектор

(ECOC, f(y))

• модели

(стекинг)

• алгоритмы в модели

(разные гиперпараметры, инициализации, snapshot, разные random seed в RF, ...)

Способы усреднения: комитеты (голосование, Voting Ensembles)

голосование по большинству (Majority vote)

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитеты единогласия

в бинарной задаче классификации – $a(x) = \min(b_1(x),...,b_n(x))$

обнаружение аномалий –
$$a(x) = \max(b_1(x),...,b_n(x))$$

Способы усреднения: обобщения среднего арифметического

«среднее арифметическое»

$$a(x) = \frac{1}{n} \left(b_1(x) + \dots + b_n(x) \right)$$

+ любые другие средние (ех: по Колмогорову)

$$a(x) = \frac{1}{n} f^{-1} (f(b_1(x)) + \dots + f(b_n(x)))$$

Ранговое усреднение (Rank Averaging)

$$a(x) = \frac{1}{n} \left(\operatorname{rank}(b_1(x)) + \dots + \operatorname{rank}(b_n(x)) \right)$$

ориентировано на конкретный AUC ROC

Способы усреднения: усреднение с весами (weighted averaging)

Усреднение (регрессия)

Голосование (классификация)

$$a(x) = \frac{1}{w_1 + \dots + w_n} \left(w_1 \cdot b_1(x) + \dots + w_n \cdot b_n(x) \right)$$

$$a(x) = \arg \max_{j} \left[\sum_{t:b_t(x)=j} w_t \right]$$

Feature-Weighted Linear Stacking

Области компетентности алгоритмов – линейные регрессии

$$a(x) = w_1(x) \cdot b_1(x) + ... + w_n(x) \cdot b_n(x) =$$

$$= \sum_{t} \left(\sum_{i} w_{ti} x_{[i]} \right) b_{t}(x) = \sum_{t,i} w_{ti} x_{[i]} b_{t}(x)$$

Варьирование выборки: Бэгинг (Bagging)

bootstrap aggregating

каждый базовый алгоритм настраивается на случайной подвыборке обучения

Бэгинг (Bagging)

- 1. Цикл по t (номер базового алгоритма)
 - 1.1. Взять подвыборку [X',y'] обучающей выборки [X,y]
 - 1.2. Обучить t-й базовый алгоритм на этой подвыборке:

$$b_t = \operatorname{fit}(X', y')$$

2. Ансамбль

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

(для задач регрессии).

Каждый базовый алгоритм обучается ~ на 63% данных, остальные называются – out-of-bag-наблюдениями (ООВ)

$$1 - \frac{1}{e} \approx 0.632$$

~ процедура снижения variance в статистическом обучении

Бэггинг и ООВ (out of bag)

Выбор объектов для обучения (с помощью бутстрепа), остальные – локальный контроль...

ООВ-ответы бэгинга (ООВ-prediction)

$$a_{\text{OOB}}(x_j) = \frac{1}{|\{i : x_j \in \text{OOB}_i\}|} \sum_{i: x_j \in \text{OOB}_i} b_i(x_j)$$

Ответы разных деревьев – можно усреднить и вычислить качество

Реализация в scikit-learn

есть ещё

ensemble.BaggingRegressor

clf.fit(X, y)

Примеры бэгинга

одно дерево

ближайший сосед

бэгинг 100 деревьев

бэгинг 100 ближайших соседей

Варьирование признаков

Варьирование признаков

Случайные подпространства (Random Subspaces)	случайное подмножество признаков
Бэгинг (Bagging)	подвыборка обучающей выборки берётся с помощью бутстрепа
Пэстинг (Pasting)	случайная обучающая подвыборка
Cross-Validated Committees	k обучений на (k-1)-м фолде
Случайные патчи (Random Patches)	одновременно берём случайное подмножество объектов и признаков

Построение случайного леса

- 1. Выбирается подвыборка max_samples (м.б. с повторением) на ней строится дерево чаще всего используется bootstrap
- 2. Строим дерево
 - 2.1. Для построения каждого расщепления просматриваем max_features случайных признаков
 - 2.2. Как правило, дерево строится до исчерпания выборки (без прунинга)

Ответ лесав задачах классификации:

по большинству, вероятность = процент деревьев (R) сравниваем вероятность с порогом / по максимальной вероятности, вероятность = среднее арифметическое вероятностей в листьях деревьев ансамбля (sklearn)

Ответ леса в задачах регрессии: среднее арифметическое

Случайный лес (Random Forest)

дерево № 1

RF, число деревьев=10

дерево № 2

RF, число деревьев=100

дерево № 3

RF, число деревьев=1000

Реализация случайного леса

```
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n estimators=100, # число деревьев
                             criterion='gini', # было
                             max depth=None, # было
                             min samples split=2, # было
                             min samples leaf=1, # было
                             min weight fraction leaf=0.0, # было
                             max features='sqrt', # было
                             max leaf nodes=None, # было
                             min impurity decrease=0.0, # было
                             bootstrap=True, # делать ли бутстреп
                             oob score=False, # ООВ-оценка качества
                             n jobs=None,
                             random state=None,
                             verbose=0,
                             warm start=False, # дополнять ли существующий лес
                             class weight=None, # было
                             ccp alpha=0.0, # было
                             max samples=None) # объём подвыборки (при bootstrap=True)
clf.fit(X, y)
```

Варьирование моделей: Блендинг (Blending)

Варьирование моделей + обобщение усреднения: Стекинг (stacking)

Идея: хорошо усреднять алгоритмы, но почему именно усреднять? приходит в голову всем...

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм, который нужно отдельно настроить!

Д. Волпертом, автором серии теорем «No free lunch...» в 1992 году

Наивная форма стекинга

что здесь неправильно?

Наивная форма стекинга

Наивная форма стекинга

происходит переобучение

базовый алгоритм на обучении воспроизводит истинные метки, метаалгоритм ему доверяет... но на тесте он уже не знает правильных меток

Блендинг (Blending) – простейшая форма стекинга

Блендинг

– термин введён победителями конкурса Netflix

Сейчас блендингом называются простейшие формы стекинга, например, выпуклую комбинацию алгоримтов

Недостатки

Используется не вся обучающая выборка

- можно усреднить несколько блендингов
- можно «состыковать»
- долго и не всегда лучше по качеству
- ответы всё равно надо будет усреднить

Блендинг: усреднение ответов

Стекинг – хотим использовать всю обучающую выборку

м.б. разные разбиения на фолды и усреднить ответы базовых алгоритмов или стекингов

Стекинг – хотим использовать всю обучающую выборку

получаем k-Fold-методом все метапризнаки (используем все базовые алгоритмы) обучаем мета-алгоритм

Стекинг

На данных реальной задачи mlbootcamp

Геометрия стекинга

Геометрия стекинга

Стекинг

- Нужны достаточно большие выборки
- Заточен на работу алгоритмов разной природы Но для каждого м.б. своё признаковое пространство
 - Хорош на практике (бизнес-задачи)

Пример: регрессоры + RF = устойчивость к аномальным значениям признаков

- Многоуровневый стекинг Оправдан только в спортивном анализе данных
- Появляются дополнительные гиперпараметры количество фолдов, уровень шума

Минутка кода: стекинг

```
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.model selection import train test split
from sklearn.model selection import cross val predict
class DjStacking(BaseEstimator, ClassifierMixin):
    """Стэкинг моделей scikit-learn"""
    def __init__(self, models, ens_model):
        Инициализация
        models - базовые модели для стекинга
        ens model - мета-модель
        11 11 11
        self.models = models
        self.ens model = ens model
        self.n = len(models)
        self.valid = None
```

https://github.com/Dyakonov/ml_hacks/blob/master/dj_stacking.ipynb

```
def fit(self, X, y=None, p=0.25, cv=3, err=0.001, random state=None):
                                                          cv (при p=0) - сколько фолдов использовать
        Обучение стекинга
       р - в каком отношении делить на обучение / тест err (при p=0) - случайная добавка к метапризнакам
            если р = 0 - используем всё обучение!
                                                         random state - инициализация генератора
        77 77 77
        if (p > 0): # делим на обучение и тест
            # разбиение на обучение моделей и метамодели
            train, valid, y_train, y_valid = train_test_split(X, y, test_size=p, random_state=random_state)
            self.valid = np.zeros((valid.shape[0], self.n)) # заполнение матрицы для обучения метамодели
            for t, clf in enumerate(self.models):
                clf.fit(train, y train)
                self.valid[:, t] = clf.predict(valid)
            self.ens model.fit(self.valid, y valid)
                                                           # обучение метамодели
        else: # используем всё обучение
            self.valid = err*np.random.randn(X.shape[0], self.n) # для регуляризации - берём случ. добавки
            for t, clf in enumerate(self.models):
                # это oob-ответы алгоритмов
                self.valid[:, t] += cross val predict(clf, X, y, cv=cv, n jobs=-1, method='predict')
                clf.fit(X, y) # но сам алгоритм надо настроить
            self.ens model.fit(self.valid, у) # обучение метамодели
        return self
```

Варьирование целевого вектора: искусственные, бустинг

Бустинг

Главная идея – базовые алгоритмы строятся не независимо, каждый следующий мы строим так, чтобы он исправлял ошибки предыдущих и повышал качество всего ансамбля

Идея градиентного бустинга

FSAM + минимизация в случае дифференцируемой функции ошибки

Задача регрессии с выборкой $(x_i, y_i)_{i=1}^m$, дифференцируемая функция ошибки L(y, a), уже есть алгоритм a(x) – строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}.$$

т.е. настраиваемся на невязку

$$b(x_i) \approx y_i - a(x_i)$$

формально надо:

а не

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

$$\sum_{i=1}^{m} L(y_i - a(x_i), b(x_i)) \to \min$$

хотя часто они эквивалентны

Проблема

Задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

может не решаться аналитически

$$F(b_1,...,b_m) = \sum_{i=1}^m L(y_i, a(x_i) + b_i) \to \min_{(b_1,...,b_m)}$$

Функция $F(b_1,...,b_m)$ убывает в направлении антиградиента, поэтому выгодно считать

$$b_i = -L'(y_i, a(x_i)), i \in \{1, 2, ..., m\}.$$

новая задача для настройки второго алгоритма:

$$(x_i, -L'(y_i, a(x_i)))_{i=1}^m$$
.

Алгоритм градиентного бустинга (примитивный вариант)

• Строим алгоритм в виде

$$a_n(x) = \sum_{t=1}^n b_t(x),$$

для удобства можно даже считать, что $a_0(x) \equiv 0$.

• Пусть построен $a_{t}(x)$, тогда обучаем алгоритм $b_{t+1}(x)$ на выборке

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$

•
$$a_{t+1}(x) = a_t(x) + b_{t+1}(x)$$
.

Итерационно получаем сумму алгоритмов...

Вот почему называется градиентный бустинг

Частный случай: регрессия с СКО

$$L(y,a) = \frac{1}{2}(y-a)^2$$
, $L'(y,a) = -(y-a)$

Задача для настройки следующего алгоритма

$$(x_i, y_i - a_t(x_i))_{i=1}^m$$

т.е. очень логично: настраиваемся на невязку!

Частный случай: классификация на два класса

нужна дифференцируемая функция ошибки...

- предполагаем, что алгоритм выдаёт вещественные значения
 - нам подходят суррогатные функции ошибки

Эвристика сокращения – Shrinkage

$$a_{t+1}(x) = a_t(x) + \eta \cdot b_t(x),$$
 $\eta \in (0,1]$ – скорость (темп) обучения (learning rate)

Видно, что число слагаемых (базовых алгоритмов) – шагов бустинга – надо контролировать (при увеличении можем переобучиться)

Чем меньше скорость, тем больше итераций надо

История продвинутых методов / современные реализации

sklearn.ensemble.	GradientBoostingRegressor
	GradientBoostingClassifier
XGBoost (eXtreme Gradient Boosting)	https://github.com/dmlc/xgboost
LightGBM, Light Gradient Boosting Machine	https://github.com/Microsoft/LightGBM
CatBoost	https://github.com/catboost/catboost

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Итог: ключевые идеи ансамблирования

1. Объединение ответов разных алгоритмов

усреднение / голосование / стекинг ...

2. Повышения разнообразия / независимости базовых алгоритмов

«варьирование» признаков, объектов, моделей, в модели и т.п.

Использование подвыборок / весов

3. Ансамблирование: параллельное и последовательное

Parallel ensembles – все алгоритмы строятся независимо Идея: усреднить (high complexity, low bias)-модели, для снижения variance

Sequential ensembles – алгоритмы строятся последовательно

Некоторые библиотеки

ML-Ensemble http://ml-ensemble.com/ General ensemble learning

mlxtend http://rasbt.github.io/mlxtend/ Regression and Classification ensembles

H20 http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
Distributed stacked ensemble learning. Limited to estimators in the H20 library

Литература

Статья про ансамбли

Dietterich, T. G. (2000). «Ensemble Methods in Machine Learning» // First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science (pp. 1-15). New York: Springer Verlag.

Предложен Feature-Weighted Linear Stacking

Sill, J.; Takacs, G.; Mackey, L.; Lin, D. (2009). «Feature-Weighted Linear Stacking». arXiv:0911.0460.

Бэгинг и аналогичные идеи:

- L. Breiman, Pasting small votes for classification in large databases and on-line, Machine Learning, 36(1), 85-103, 1999.
 - L. Breiman, Bagging predictors, Machine Learning, 24(2), 123-140, 1996.
- T. Ho, The random subspace method for constructing decision forests, Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998.
- G. Louppe and P. Geurts, Ensembles on Random Patches, Machine Learning and Knowledge Discovery in Databases, 346-361, 2012.

Ансамбли в машинном обучении

https://dyakonov.org/2019/04/19/ансамбли-в-машинном-обучении/

Стекинг (Stacking) и блендинг (Blending)

https://dyakonov.org/2017/03/10/стекинг-stacking-и-блендинг-blending/

Литература

A. Liaw, M. Wiener Classification and Regression by randomForest // R News (2002) Vol. 2/3 p. 18.

http://www.bios.unc.edu/~dzeng/BIOS740/randomforest.pdf

A. Natekin, A. Knoll Gradient boosting machines, a tutorial // Front Neurorobot. 2013; 7: 21.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/

все статьи по XGBoost, LightGBM, CatBoost

Сравнения

https://www.kaggle.com/nholloway/catboost-v-xgboost-v-lightgbm https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc

Про параметры

https://neptune.ai/blog/lightgbm-parameters-guide