Real Analysis II - FINAL

SungBin Park, 20150462

December 14, 2018

Problem 1

Let $\mu \in M(\mathbb{R}^n)$. Construct $\phi_t \in C_c^{\infty}(\mathbb{R}^n)$ for t > 0 such that $\int \phi_t dx = 1$. More explicitly, we can set $\phi_t(x) = t^{-n}\phi(t^{-1}x)$ where $\phi(x)$ defined as

$$\phi(x) = \begin{cases} \exp[(|x|^2 - 1)^{-1}] & \text{if } |x| < 1\\ 0 & \text{if } |x| \ge 1. \end{cases}$$

Since $\phi_t \in L^1(\mathbb{R}^n)$ for all t > 0, $\phi_t * \mu(x) = \int f(x-y)d\mu(y)$ exists for a.e. x, $\phi_t * \mu \in L^1$, and $\|\phi_t * \mu\|_1 \le \|\mu\| = \|\mu\|(\mathbb{R}^n)$. Since $\phi_t * \mu \in L^1$, we can identify $\phi_t * \mu \in L^1$ as a Radon measure on \mathbb{R}^n and denote $d\mu_t = (\phi_t * \mu)dm$. I'll show that $\mu_t \to \mu$ vaguely by showing that $\int f d\mu_t \to \int f d\mu$ for all $f \in C_0(\mathbb{R}^n)$. Fix $f \in C_0(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} f d\mu_t = \int_{\mathbb{R}^n} f(\phi_t * \mu) dm = \int_{\mathbb{R}^n} f(x) \left(\int_{\mathbb{R}^n} \phi_t(x - y) d\mu(y) \right) dx$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) \phi_t(x - y) dx d\mu(y) \text{ (By Fubini theorem)}$$

$$= \int_{\mathbb{R}^n} (f * \tilde{\phi_t})(y) d\mu(y)$$

The Fubini theorem can be applied since $f(x)\phi_t(x-y)$ is continuous on $\mathbb{R}^n \times \mathbb{R}^n$ and $\left|\int_{\mathbb{R}^n} f(\phi_t * \mu) dm\right| \le \|f\|_{\infty} \int_{\mathbb{R}^n} |(\phi_t * \mu)| dm < \infty$, implying $f(x)\phi_t(x-y) \in L^1(\mu \times m)$. (Since the function is continuous, we can consider m be a Borel measure restricting to $\mathcal{B}_{\mathbb{R}^n}$.)

I claim that $f * \tilde{\phi}_t \in C_0(\mathbb{R}^n)$. Since $f \in C_0(\mathbb{R}^n)$, there exists a sequence $\{f_j\} \subset C_c(\mathbb{R}^n)$ such that $\|f_j - f\|_u \to 0$ as $j \to \infty$. Note that $f \in L^\infty$ and $\tilde{\phi}_t \in L^1$, so $f * \tilde{\phi}_t$ is bounded and uniform continuous. As $f_j, \tilde{\phi}_t \in C_c, f_j * \tilde{\phi}_t \in C_c$ and

$$\left\| f_j * \tilde{\phi}_t - f * \tilde{\phi}_t \right\|_u = \left\| (f_j - f) * \tilde{\phi}_t \right\|_u \le \left\| (f_j - f) \right\|_{\infty} \left\| \phi_t \right\|_1 = \left\| (f_j - f) \right\|_u \left\| \phi_t \right\|_1 \to 0$$

Therefore, $f * \tilde{\phi_t} \in C_0(\mathbb{R}^n)$.

Since $f \in C_0(\mathbb{R}^n)$, it is uniformly continuous, (Let $U \subset \mathbb{R}^n$ such that $f(x) \leq \epsilon$, then U^c is bounded as $f \in C_0$, so U^c is compact. Therefore, |f(x) - f(y)| can be controlled by controlling |x - y| uniformly.) and so, $f * \tilde{\phi}_t \to f$ uniformly as $t \to 0$. As $\mu \in M(\mathbb{R}^n)$, $f \mapsto \int f d\mu$ is bounded linear functional, so $\int f * \tilde{\phi}_t d\mu \to \int f d\mu$ as $t \to \infty$. It means

$$\int_{\mathbb{R}^n} f d\mu_t = \int_{\mathbb{R}^n} (f * \tilde{\phi}_t)(y) d\mu(y) \to \int_{\mathbb{R}^n} f d\mu$$

as $t \to \infty$ and $\mu_t \to \mu$. Since μ_t is generated by L^1 functions, this result shows that $L^1(\mathbb{R}^n)$ is dense in $M(\mathbb{R}^n)$.

Problem 2

(1) By the fundamental Theorem of Calculus for Lebesgue Integrals, F is absolutely continuous on [0,1]. Also, F is bounded variation [0,1]. I need to show that F(0) = F(1) to state that $F \in C(\mathbb{T})$, but $\hat{f}(0) = 0$ implies

$$\hat{f}(0) = \int_0^1 f(x)dx = 0.$$

Therefore, F(1) = 0 = F(0) and $F \in C(\mathbb{T})$.

By the fundamental Theorem of Calculus for Lebesgue Integrals again, F is differentiable a.e. on [0,1] and F' = f. Therefore,

$$\hat{F}(n) = \int_0^1 F(x)e^{-2\pi i nx} dx = \left[\frac{1}{-2\pi i n} F(x)e^{-2\pi i nx} \right]_0^1 + \frac{1}{2\pi i n} \int_0^1 f(x)e^{-2\pi i nx} dx$$
$$= \frac{1}{2\pi i n} f(n)$$

for $n \neq 0$ and if n = 0, $\hat{F}(0) < \infty$ since F is continuous on [0, 1], which is compact set.

(2) Since F is bounded variation on \mathbb{T} , we can apply Fejér's theorem and get

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (S_n F)(0) = F(0).$$

By the definition of $(S_n F)(0)$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=-n}^{n} \hat{F}(k) = \lim_{N \to \infty} \frac{1}{N} \left(N \hat{F}(0) + \sum_{n=1}^{N-1} (N-n) (\hat{F}(n) + \hat{F}(-n)) \right)$$

$$= \hat{F}(0) + \lim_{N \to \infty} 2 \sum_{n=1}^{N-1} \left(1 - \frac{n}{N} \right) \hat{F}(n)$$

$$= \hat{F}(0) + \lim_{N \to \infty} 2 \sum_{n=1}^{N-1} \left(1 - \frac{n}{N} \right) \frac{\hat{f}(n)}{2i\pi n}$$

$$= F(0).$$

(In the calculation, I used $\hat{F}(-n) = \frac{1}{-2\pi i n} \hat{f}(-n) = \frac{1}{2\pi i n} \hat{f}(n) = \hat{F}(n)$.) Therefore,

$$\lim_{N \to \infty} 2 \sum_{n=1}^{N-1} \left(1 - \frac{n}{N} \right) \frac{\hat{f}(n)}{n} = 2\pi i (F(0) - \hat{F}(0)) = -2\pi i \hat{F}(0)$$

since F(0) = 0.

(3) By Hausdorff-Young Inequality, if $f \in L^1(\mathbb{T})$, $\hat{f} \in l^{\infty}(\mathbb{Z})$ and $\|\hat{f}\|_{\infty} \leq \|f\|_1$. Therefore,

$$\lim_{N \to \infty} 2 \sum_{n=1}^{N-1} \left(\frac{\hat{f}(n)}{N} \right) \le \|f\|_1$$

and

$$\left\|\lim_{n\to\infty}\frac{1}{n}\hat{f}(n)\right\|\leq \|f\|_1+\left\|\pi i\hat{F}(0)\right\|<\infty$$

for the norm on \mathbb{C} , and $\lim_{n\to\infty} \frac{1}{n}\hat{f}(n) < \infty$ since $\hat{f}(n) \in \mathbb{R}$ for all $n \in \mathbb{Z}$.

(4) By integral test of $\sum_{n=2}^{\infty} \frac{1}{n \log n}$,

$$\sum_{n=2}^{\infty} \frac{1}{n \log n} \le \frac{1}{2 \log 2} + \int_{2}^{\infty} \frac{1}{x \log x} dx = \frac{1}{2 \log 2} + [\ln t]_{\ln 2}^{\infty} = \infty,$$

so $\sum_{n=2}^{\infty} \frac{1}{n \log n} \to \infty$ and it is not a Fourier series of L^1 function. However,

$$\sum_{n=2}^{\infty} \frac{\sin 2\pi nx}{\log n}$$

converges for all x: computing $\sum_{i=2}^{N} e^{2\pi i n x}$, it is $\frac{e^{2\pi i (N+1)x} - e^{4\pi i x}}{-1 + e^{2\pi i x}}$, whose absolute value is upper bounded by $\frac{2}{-1 + e^{2\pi i x}}$ for fixed x without x = 0, 1 for all N. Therefore, $\sum_{i=2}^{N} \sin(2\pi i n x)$ is bounded by $|M(x)| < \infty$ for fixed x in [0,1] for all N. Since $\frac{1}{\log n}$ is decreasing sequence, by Dirichlet test, $\sum_{n=2}^{\infty} \frac{\sin 2\pi n x}{\log n}$ converges for all x.

Problem 3

I'll follow the steps in exercise 11 in sec 9.1.

(1) There exist $N \in \mathbb{N}$, C > 0 such that for all $\phi \in C_c^{\infty}$,

$$|\langle F, \phi \rangle| \le \sum_{|\alpha| \le N} \sup_{|x| \le 1} |\partial^{\alpha} \phi(x)|. \tag{1}$$

Proof. $F: C_c^{\infty}(\mathbb{R}^n) \to \mathbb{R}$, which is continuous linear functional, and $C_c^{\infty}(\mathbb{R}^n)$ is Fréchet space with the topology defined by the norms

$$\phi \to \|\partial^{\alpha}\phi\|_{\alpha} \quad (\alpha \in \{0,1,2,\ldots\}^n)$$

for $K \subset U$, $\phi \in C_c^{\infty}(K)$. Therefore, by proposition 5.15 in Folland, there exists $\alpha_1, \ldots, \alpha_k \in \{0, 1, 2, \ldots\}^n$ and C > 0 such that

$$|\langle F, \phi \rangle| \le C \sum_{j=1}^{k} \|\partial^{\alpha_j} \phi\|_u$$

To concentrate only on $|x| \leq 1$ region, make C_c^{∞} function φ using C^{∞} Urysohn lemma such that $\varphi = 1$ on $|x| \leq 1/2$ and $\varphi = 0$ at $|x| \geq 1$. Denote $\phi_1 = \varphi \phi$ and $\phi_2 = (1 - \varphi)\phi$. Then, $\phi_1 + \phi_2 = \phi$ and

$$|\langle F, \phi \rangle| = |\langle F, \phi_1 \rangle + \langle F, \phi_2 \rangle| = |\langle F, \phi_1 \rangle|$$

since $supp(F) = \{0\}$. Hence,

$$|\langle F, \phi \rangle| = |\langle F, \phi_1 \rangle| \le C \sum_{|\alpha| \le N} \sup_{|x| \le 1} |\partial^{\alpha} \phi(x)|$$

where $N = |\alpha_k|$.

(2) Take $\psi \in C_c^{\infty}$ with $\psi(x) = 1$ for $|x| \le 1$ and $\psi(x) = 0$ for $|x| \ge 2$. Assume $\phi \in C_c^{\infty}$ and $\partial^{\alpha} \phi(0) = 0$ for $|\alpha| \le N$. Let $\phi_k(x) = \phi(x)(1 - \psi(kx))$, then $\partial_k^{\alpha} \phi \to \partial^{\alpha} \phi$ uniformly as $k \to \infty$ for $|\alpha| \le N$.

Proof. Since $\partial^{\alpha} \phi_k(x)$ is compactly supported on the support of ϕ for $|\alpha| \leq N$, we just need to show that $\partial^{\alpha} \phi_k \to \partial^{\alpha} \phi$. Fix α such that $|\alpha| \leq N$, then

$$|\partial^{\alpha}\phi - \partial^{\alpha}\phi_k| = |\partial^{\alpha}(\phi - \phi_k)| = |\partial^{\alpha}(\phi(x)\psi(kx))|$$

and $\partial^{\alpha}(\psi(kx)) = 0$ on |x| > 2/k. Using Leibniz rule and hint, $|\partial^{\alpha}\phi(x)| \le C|x|^{N+1-|\alpha|}$ for $|\alpha| \le N$ on $|x| \le 1$, which will be proven later,

$$\begin{aligned} |\partial^{\alpha}(\phi(x)\psi(kx))| &= \left| \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} (\partial_{x}^{\beta}(\phi(x)))(\partial_{x}^{\gamma}(\psi(kx))) \right| \\ &\leq \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} |(\partial_{x}^{\beta}(\phi(x)))(\partial_{x}^{\gamma}(\psi(kx)))| \\ &\leq C \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} |x|^{N+1-|\beta|} |k|^{|\gamma|} |(\partial^{\gamma}\psi)(kx)| \\ &= C \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} |kx|^{|\gamma|} |x|^{|N+1-|\beta|-|\gamma|)} |(\partial^{\gamma}\psi)(kx)| \end{aligned}$$

in the support of $\psi(kx) \subset \{|x| \leq 1\}$. The support of ψ is a subset of $|kx| \leq 2$ and $|N+1-|\beta|-|\gamma|)| = |N+1-|\alpha|| \geq 1$ for $|\alpha| \leq N$. Also, $\partial^{\gamma} \psi(x)$ is bounded for $|\gamma| \leq N$ since it is C_c^{∞} function. Summarising the fact,

$$|\partial^{\alpha}(\phi(x)\psi(kx))| \le C'|x| \le \frac{2C'}{k}$$

for some C' > 0 for all $|\alpha| \leq N$ and goes to 0 as $k \to \infty$. Therefore,

$$\partial^{\alpha}\phi_{k} \to \partial^{\alpha}\phi$$

uniformly as $k \to \infty$ for $|\alpha| \le N$.

pf of hint: The Taylor series of ϕ about 0 would be

$$\phi(x) = \sum_{|\beta| \le N+1} \frac{\partial^{\beta} \phi(0)}{\beta!} x^{\beta} + r(x)$$

such that r(x) is differentiable and $\lim_{x\to 0}\frac{r(x)}{|x|^{N+1}}=0$. Since we only interested in $|x|\le 1$, $\partial^\beta\phi$ is bounded for all $|\beta|\le N+1$ and and $\frac{r(x)}{x^{N+1}}$ is bounded in $|x|\le 1$. As $\partial^\beta\phi(0)=0$ for $|\beta|\le N$, we can get

$$|\phi(x)| \le \left(C + \frac{r(x)}{|x|^{N+1}}\right) |x|^{N+1} \le C' |x|^{N+1}.$$

for some $0 < C, C' < \infty$. By the same reason, we can get

$$|\partial^{\alpha}\phi(x)| \le C|x|^{N+1-|\alpha|}$$

for $|\alpha| \leq N$.

(3) Considering $\langle F, \phi - \phi_k \rangle$,

$$|\langle F, \phi - \phi_k \rangle| \le C \sum_{|\alpha| < N} \sup_{|x| \le 1} |\partial^{\alpha} (\phi - \phi_k)(x)|$$

and we already showed that $|\partial^{\alpha}(\phi - \phi_k)(x)| \to 0$ uniformly as $k \to \infty$ for $|\alpha| \le N$. Therefore,

$$|\langle F, \phi \rangle| = \lim_{k \to \infty} |\langle F, \phi_k \rangle|.$$

For all k, $\langle F, \phi_k \rangle = 0$ since $\phi_k(x) = 0$ on $|x| \le 1/k$. Therefore, $\langle F, \phi \rangle = 0$ if $\phi \in C_c^{\infty}$ and $\partial^{\alpha} \phi(0) = 0$ for $|\alpha| \le N$.

(4) I'll use $\varphi \in C_c^{\infty}$ in step 1 again. Assume $\phi \in C_c^{\infty}$ and $\partial^{\alpha} \phi(0) = a_{\alpha}$, then let $f(x) = \varphi \sum_{|\alpha| \leq N} \frac{a_{\alpha}}{\alpha!} x^{\alpha}$. Then, $f \in C_c^{\infty}$ and $g = \phi - f \in C_c^{\infty}$ such that $\partial^{\alpha} g(0) = 0$ for all $|\alpha| \leq N$. Therefore $\langle F, g \rangle = 0 = \langle F, \phi \rangle - \langle F, f \rangle$, and $\langle F, \phi \rangle = \langle F, f \rangle = \sum_{|\alpha| \leq N} \frac{a_{\alpha}}{\alpha!} \langle F, x^{\alpha} \rangle$. Let $c_{\alpha} = \frac{\langle F, x^{\alpha} \rangle}{\alpha!}$, then

$$\langle F, \phi \rangle = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \phi(0) = \langle \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \delta, \phi \rangle.$$

Therefore, $F = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \delta$.

Problem 4

I'll follow the steps in exercise 20 in sec 9.2.

(1) If $\psi \in \mathcal{S}$, which is Schwartz class, then $G * \psi \in \mathcal{S}$ for $G \in \mathcal{E}'$.

Proof. Since $G \in \mathcal{E}'$, choose $\phi \in C_c^{\infty}(U)$ with $\phi = 1$ on $\mathrm{supp}(G)$, and define the linear functional H on $C_c^{\infty}(U)$ by $\langle H, \psi \rangle = \langle G, \phi \psi \rangle$. Then, it is continuous on $C_c^{\infty}(U)$ and unique continuous extension of G. Taking restriction of H to S, we can make tempered distribution H and $\langle H, \psi \rangle = \langle G, \phi \psi \rangle$ for $\psi \in S$. By the definition of the convolution,

$$H * \psi(x) = \langle H, \tau_x \tilde{\psi} \rangle = \langle G, (\tau_x \tilde{\psi}) \phi \rangle$$

for $\psi \in \mathcal{S}$. So, we can define $G * \psi(x) = \langle G, (\tau_x \tilde{\psi}) \phi \rangle$ and get $H * \psi(x) = G * \psi(x)$

To show that $G * \psi$ is in Schwartz class, I'll compute each semi-norms in Schwartz class. For $N \in \mathbb{N}$, α ,

$$\begin{split} \|\partial^{\alpha}(G * \psi)\|_{N,\alpha} &= \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |\partial^{\alpha}(G * \psi)(x)| \\ &= \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |G * \partial^{\alpha}\psi| \\ &= \sup_{x \in \mathbb{R}^n} (1 + |x|)^N \Big| \langle G, (\tau_x \widetilde{\partial^{\alpha}\psi}) \phi \rangle \Big| \\ &= \sup_{x \in \mathbb{R}^n} (1 + |x|)^N \Big| \langle G, (\tau_x \widetilde{\partial^{\alpha}\psi}) \phi \rangle \Big| \\ &\leq C \sup_{x \in \mathbb{R}^n} (1 + |x|)^N \sum_{|\beta| \leq M} \sup_{y \in \mathbb{R}^n} (1 + |y|)^m \Big| \partial^{\beta}((\tau_x \widetilde{\partial^{\alpha}\psi}) \phi) \Big| \\ &\leq C \sup_{x \in \mathbb{R}^n} (1 + |x|)^N \sum_{|\beta| \leq M} \sup_{y \in \mathbb{R}^n} (1 + |y|)^m \Big| \partial^{\beta}(\partial^{\alpha}\psi(x - y)) \phi(y)) \Big|. \end{split}$$

for some m. Since $\phi \in C_c^{\infty}$, there exists $y_0^{\beta}(x)$ such that $\sup_{y \in \mathbb{R}^n} (1 + |y|)^m \left| \partial^{\beta}(\partial^{\alpha} \psi(x - y)) \phi(y) \right|$ has maximum for each β and x. Also, $\left| y_0^{\beta}(x) \right|$ is uniformly bounded for β and x since it is in the compact set. As $\psi \in \mathcal{S}$, $\sup_{x \in \mathbb{R}^n} (1 + |x|)^N \sum_{|\beta| \leq M} (1 + \left| y_0^{\beta}(x) \right|)^m \left| \partial^{\beta}(\partial^{\alpha} \psi(x - y_0^{\beta}(x))) \phi(y_0^{\beta}(x)) \right|$ is bounded for all α and N, directly proving $G * \psi \in \mathcal{S}$.

(2) Let's define F * G by

$$\langle F * G, \psi \rangle = \langle F, \tilde{G} * \psi \rangle.$$

for $\psi \in \mathcal{S}$. Since $\tilde{G} \in \mathcal{E}'$, $\tilde{G} * \psi \in \mathcal{S}$, and $\langle F, \tilde{G} * \psi \rangle$ is well-defined since F is tempered distribution, i.e., if $\psi_j \to \psi$ in \mathcal{S} , then calculating $\|\partial^{\alpha}(G * (\psi_j - \psi))\|_{N,\alpha}$ for all N, α as above and let $\|\psi - \psi_j\|_{M,\beta}$ for all M, β , we get $G * \psi_j \to G * \psi$ in \mathcal{S} and $\langle F, \tilde{G} * \psi_j \rangle \to \langle F, \tilde{G} * \psi \rangle$ as $F \in \mathcal{S}'$. It means F * G is continuous linear functional on S.

Since F * G is tempered distribution, we can define Fourier transform of it, then

$$\langle (F * G) \hat{,} \psi \rangle = \langle (F * G), \hat{\psi} \rangle = \langle F, \tilde{G} * \hat{\psi} \rangle.$$

Also, (the compactly supported function ϕ is omitted.)

$$\langle \tilde{G} * \hat{\psi}, \varphi \rangle = \langle \tilde{G}, \varphi * \tilde{\hat{\psi}} \rangle = \langle \tilde{G}, \varphi * \check{\psi} \rangle = \langle \tilde{G}, (\hat{\varphi}\psi) \rangle = \langle \hat{G}, \hat{\varphi}\psi \rangle = \langle (\hat{G}\psi) \rangle, \varphi \rangle$$

for $\psi, \varphi \in \mathcal{S}$. Therefore,

$$\langle F, \tilde{G} * \hat{\psi} \rangle = \langle F, (\hat{G}\psi) \hat{} \rangle = \langle \hat{F}, \hat{G}\psi \rangle = \langle \hat{F}\hat{G}, \psi \rangle$$

since we can view \hat{G} a slowly increasing C^{∞} function as $G \in \mathcal{E}'$.

Problem 5

(1) Without 0, $(x^2+y^2)^{-1}$ is continuous function, and it is locally integrable function on $\mathbb{C}\setminus\{0\}$, which is second countable. Therefore, $(x^2+y^2)^{-1}dxdy$ is a Radon measure. I'll show the left and right-invariant. For $f\in C_c^+$, $z_0=x_0+y_0i\in\mathbb{C}\setminus\{0\}$

$$\int_{\mathbb{C}\setminus\{0\}} \frac{f((x_0+y_0i)(x+iy))}{x^2+y^2} dxdy = \int_{\mathbb{C}\setminus\{0\}} \frac{f((x_0x-y_0y)+(x_0y+y_0x)i)}{x^2+y^2} dxdy.$$

Let $s = x_0x - y_0y$, $t = x_0y + y_0x$. Then, $dsdt = (x_0^2 + y_0^2)dxdy$ and $\frac{x_0s + y_0t}{x_0^2 + y_0^2} = x$, $\frac{-y_0s + x_0t}{x_0^2 + y_0^2} = y$. Since it is linear transformation with full rank, it maps $\mathbb{C} \setminus \{0\}$ to $\mathbb{C} \setminus \{0\}$.

$$\int_{\mathbb{C}\backslash\{0\}} \frac{f((x_0x - y_0y) + (x_0y + y_0x)i)}{x^2 + y^2} dxdy = \int_{\mathbb{C}\backslash\{0\}} \frac{f(s + ti)}{\left(\frac{x_0s + y_0t}{x_0^2 + y_0^2}\right)^2 + \left(\frac{-y_0s + x_0t}{x_0^2 + y_0^2}\right)^2} (x_0^2 + y_0^2)^{-1} dsdt$$

$$= \int_{\mathbb{C}\backslash\{0\}} \frac{f(s + ti)}{s^2 + t^2} dsdt$$

It proves left-invariant. Since $\mathbb{C} \setminus \{0\}$ is Abelian group, left-invariant implies right-invariant. Hence, it is Haar measure.

(2) Again, x^{-1} , x^{-2} is continuous function without x=0, and it is locally integrable function on $\{(x,y)\in\mathbb{R}^2\mid x>0\}$. Therefore, $x^{-1}dxdy$ and $x^{-2}dxdy$ are Radon measure on G, which is homeomorphic to $\{(x,y)\in\mathbb{R}^2\mid x>0\}$. I'll show left and right-invariant. Let

$$A = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$$

$$\int_G f(\left(\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}\right) x^{-2} dx dy = \int_G f(\left(\begin{bmatrix} ax & ay + b \\ 0 & 1 \end{bmatrix}\right) x^{-2} dx dy.$$

Let s = ax, t = ay + b, then $dsdt = a^2dxdy$ and the integration region does not change since the matrix is invertible.

$$\int_G f(\left(\begin{bmatrix} ax & ay+b \\ 0 & 1 \end{bmatrix}\right)x^{-2}dxdy = \int_G f(\left(\begin{bmatrix} s & t \\ 0 & 1 \end{bmatrix}\right)(s/a)^{-2}a^{-2}dsdt = \int_G f(\left(\begin{bmatrix} s & t \\ 0 & 1 \end{bmatrix}\right)s^{-2}dsdt.$$

For right-invariant:

$$\int_G f(\left(\begin{bmatrix}x&y\\0&1\end{bmatrix}\begin{bmatrix}a&b\\0&1\end{bmatrix}\right)x^{-1}dxdy = \int_G f(\left(\begin{bmatrix}ax&bx+y\\0&1\end{bmatrix}\right)x^{-1}dxdy.$$

Let s = ax, t = bx + y, then dsdt = adxdy. The integration region does not change since the matrix is invertible.

$$\int_G f(\left(\begin{bmatrix} ax & bx+y \\ 0 & 1 \end{bmatrix}\right)x^{-1}dxdy = \int_G f(\left(\begin{bmatrix} s & t \\ 0 & 1 \end{bmatrix}\right)(s/a)^{-1}a^{-1}dsdt = \int_G f(\left(\begin{bmatrix} s & t \\ 0 & 1 \end{bmatrix}\right)s^{-1}dsdt.$$

Therefore, they are Haar measure.