Seminar 9

- 1. Fie $x = (1, 0, -1), y = (3, -1, 1) \in \mathbb{R}^3$. Calculati $x + y, x \cdot y, ||x||, ||-2y||$ si ||x y||.
- 2. Fie $x,y\in\mathbb{R}^m$ si notam $a=x\cdot y,\,b=||x||$ si c=||y||. Exprimati urmatoarele marimi in functie de $a,\,b$ si c
 - a) $(x+y) \cdot y$
 - b) $x \cdot (2x y)$
 - c) ||x y||
- 3. Fie $x, y \in \mathbb{R}^m$. Demonstrati **identitatea paralelogramului**

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

- 4. Determinati intA, frA, precum si daca A este multime deschisa, respectiv multime inchisa.
 - a) $A = B(O_2, 1) \subseteq \mathbb{R}^2$
 - b) $A = [2, \infty) \times (2, \infty) \subseteq \mathbb{R}^2$
 - c) $A = \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$
 - $d) A = \mathbb{R} \setminus \mathbb{Z} \subseteq \mathbb{R}$
- 5. $\forall A \subseteq \mathbb{R}^m$ multime nevida, au loc afirmatiile
 - a) $int A \subseteq A$
 - b) $int A \cap fr A = \emptyset$
 - c) $A \subseteq \text{int} A \cup \text{fr} A$ (cu "=" daca multimea A este inchisa)
 - d) int $A \cup \operatorname{fr} A \cup \operatorname{int} (\mathbb{R}^m \setminus A) = \mathbb{R}^m$
- 6. Fie $A, B \subseteq \mathbb{R}^m$ multimi nevide. Numarul real

$$d(A, B) = \inf\{||x - y|| | x \in A, y \in B\}$$

se numeste distanta dintre multimile A si B.

- a) Determinati distanta dintre multimile $A = [1, 2]^2$ si $B = B(O_2, 1)$
- b) Dati exemplu de doua multimi nevide $A, B \subseteq \mathbb{R}^2$ cu $A \cap B = \emptyset$ si d(A, B) = 0.

Exercitii suplimentare

- 1. Fie $x = (-1, 2, 3), y = (-2, 1, -3) \in \mathbb{R}^3$.
 - a) Determinati valorile lui r > 0 astfel incat $y \notin B(x,r)$
 - b) Determinati valorile lui $t \in \mathbb{R}$ astfel incat vectorul (1, -1, t) sa apartina bilei $\overline{B}(x, 5)$.
- 2. Fie $x, y \in \mathbb{R}^m$. Demonstrati ca

a)
$$x \cdot y = \frac{1}{4} (||x + y||^2 - ||x - y||^2)$$

b) $|||x|| - ||y||| \le ||x - y||$

- 3. Doi vectori $x, y \in \mathbb{R}^m$ se numesc **ortogonali** daca $x \cdot y = 0$. Justificati afirmatia

$$x, y \in \mathbb{R}^m$$
 sunt ortogonali $\iff ||x - y||^2 = ||x||^2 + ||y||^2$

- 4. Determinati intA, frA, precum si daca A este multime deschisa, respectiv multime inchisa.
 - a) $A = \overline{B}(O_2, 1) \setminus \{O_2\} \subseteq \mathbb{R}^2$ b) $A = [0, 1] \times (0, 1) \subseteq \mathbb{R}^2$

 - c) $A = [0, 1] \times (0, 1) \subseteq \mathbb{R}^2$ d) $A = \{(1 + \frac{1}{n})^n \mid n \in \mathbb{N}^*\} \subseteq \mathbb{R}$
- 5. $\forall A \subseteq \mathbb{R}^m$ multime nevida, au loc afirmatiile
 - a) $A' \subseteq A \cup \operatorname{fr} A$
 - b) $\operatorname{int} A \cap \operatorname{int} (\mathbb{R}^m \setminus A) = \emptyset$
 - c) $\operatorname{fr} A = \operatorname{fr} (\mathbb{R}^m \setminus A)$
 - d) $int A = A \setminus fr A$
- 6. Fie $A \subseteq \mathbb{R}^m$ multime nevida. Au loc afirmatiile
 - a) Daca A este multime deschisa atunci $A \subseteq A'$
 - b) Daca A este multime inchisa atunci $A' \subseteq A$

Reciprocele afirmatiilor sunt adevarate?

7. Fie $x = (x_1, x_2, \dots, x_m) \in \mathbb{R}^m$. Numarul real pozitiv

$$||x||_{M} \stackrel{\text{not}}{=} |x_{1}| + |x_{2}| + \ldots + |x_{m}|$$

se numeste norma Minkowski a vectorului x. Aratati ca aceasta verifica proprietatile normei euclidiene.