Zusammenfassung Gewöhnliche DGLn

© FY Tim Baumann, http://timbaumann.info/uni-spicker

Def (Klassifikation von DGLn).

- (I) Gewöhnliche DGL: Gesucht ist Funktion in einer Variable Partielle DGL: Gesucht ist Funktion in mehreren Variablen
- (II) Ordnung einer DGL: Höchste Ableitung der gesuchten Funktion, die in Gleichung vorkommt
- (III) Explizite DGL: Gleichung der Form $y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)})$ Implizite DGL: Allgemeinere Form $F(t, y, \dot{y}, ..., y^{(k)}) = 0$
- (IV) Skalare DGL: Gesucht ist Funktion mit Wert in \mathbb{R} n-dimensionale DGL: Gesuchte Funktion hat Wert in \mathbb{R}^n
- (V) Lineare DGL: Gleichung hat die Form $a_k(t)y^{(k)}(t)+a_{(k-1)}(t)y^{k-1}(t)+\ldots+a_1(t)\dot{y}(t)+a_0(t)y(t)=0$
- (VI) Autonome DGL: Gleichung der Form $F(y, \dot{y}, ..., y^{(k)}) = 0$ (keine Abhängigkeit von t, Zeitinvarianz)

Def. Sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$ offen, $f : \mathcal{D} \to \mathbb{R}^n$ und $(t_0, y_0) \in \mathcal{D}$. Dann ist ein **Anfangswertproblem** (AWP) gegeben durch die Gleichungen

$$\dot{y}(t) = f(t, y(t)), \qquad y(t_0) = y_0.$$
 (1.1)

Notation. Seien im Folgenden I und J stets Intervalle in \mathbb{R} .

Def. • Sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$, $f: \mathcal{D} \to \mathbb{R}^n$. Eine differenzierbare Funktion $y: I \to \mathbb{R}^n$ heißt **Lösung** von $\dot{y} = f(t, y)$, falls für alle $t \in I$ gilt: $\dot{y}(t) = f(t, y(t))$.

• Sei $\mathcal{D} \subset \mathbb{R} \times (\mathbb{R}^n)^k = \mathbb{R} \times \mathbb{R}^n \times ... \times \mathbb{R}^n$, $f: \mathcal{D} \to \mathbb{R}^n$. Eine k-mal differenzierbare Funktion $y: I \to \mathbb{R}^n$ heißt Lösung von

$$y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)}), \tag{1.2}$$

falls für alle $t \in I$ gilt: $y^{(k)}(t) = f(t, y(t), \dot{y}(t), ..., y^{(k-1)}(t))$

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von (1.2), dann ist

$$(y_1,...,y_k): I \to \mathbb{R}^{kn}, \qquad t \mapsto (y(t),\dot{y}(t),...,y^{(k-1)}(t))$$

eine Lösung des Systems von Gleichungen

$$(1.3) \begin{cases} \dot{y}_1 = y_2 \\ \dot{y}_2 = y_3 \\ \vdots \\ \dot{y}_{k-1} = y_k \\ \dot{y}_k = f(t, y_1, y_2, ..., y_{k-1}, y_k) \end{cases}$$

• Ist umgekehrt $(y_1,...,y_k):I\to\mathbb{R}^n$ eine Lösung von (1.3), dann ist $y=y_1:I\to\mathbb{R}^n$ eine Lösung von (1.2).

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von AWP (1.1), dann ist $(y_1, y_2): I \to \mathbb{R}^{n+1}, \qquad t \mapsto (y_1(t), y_2(t)) = (t, y(t))$

eine Lösung des Anfangswertproblems

$$(1.4) \left\{ \begin{array}{ll} \dot{y}_1(t) = 1, & y_1(t_0) = t_0 \\ \dot{y}_2(t) = f(y_1(t), y_2(t)), & y_2(t_0) = y_0 \end{array} \right.$$

• Ist $(y_1, y_2): I \to \mathbb{R}^{n+1}$ eine Lösung von (1.4), dann ist $y = y_2: I \to \mathbb{R}^n$ eine Lösung von (1.1).

Problem. Gesucht ist eine Lösung $y:I\to\mathbb{R}$ der linearen, skalaren, expliziten DGL 1. Ordnung (mit $a,b:I\to\mathbb{R}$ stetig)

$$\dot{y}(t) = a(t) \cdot y(t) + b(t) \tag{1.5}$$

Satz. Die allgemeine Lösung der Gleichung $\dot{y}(t) = a(t) \cdot y(t)$ ist gegeben durch $y_h(t) = c \cdot \exp\left(\int\limits_{t_0}^t a(s) \,\mathrm{d}s\right)$ mit $c \in \mathbb{R}$.

Satz. Sei $y_p:I\to\mathbb{R}$ eine partikuläre Lösung von (1.5). Dann ist die Menge aller Lösungen von (1.5) gegeben durch

$$\{y_p + y_h \mid y_h : I \to \mathbb{R} \text{ ist L\"osung von } \dot{y_h}(t) = a(t) \cdot y_h(t)\}$$

Bemerkung. Der Ansatz mit Variation der Konstanten $y_p(t) = c(t) \cdot y_h(t)$ für (1.5) führt zu

$$c(t) = \frac{1}{c_0} \int_{t_0}^{t} b(\tau) \cdot \exp\left(-\int_{t_0}^{\tau} a(s) \, ds\right) d\tau$$
$$\Rightarrow y_p(t) = \left(\int_{t_0}^{t} b(\tau) \cdot \exp\left(-\int_{t_0}^{\tau} a(s) \, ds\right) d\tau\right) \cdot \exp\left(\int_{t_0}^{t} a(s) \, ds\right)$$

Korollar. Die Lösung des Anfangswertproblems

$$(1.6) \begin{cases} \dot{y}(t) = a(t) \cdot y(t) + b(t) \\ y(t_0) = y_0 \end{cases}$$

mit $a, b: I \to \mathbb{R}$ stetig, $t_0 \in I$ und $y_0 \in \mathbb{R}$ ist gegeben durch

$$y(t) = \left(y_0 + \int_{t_0}^t b(\tau) \cdot \exp\left(-\int_{t_0}^\tau a(s) \, \mathrm{d}s\right) \, \mathrm{d}\tau\right) \cdot \exp\left(\int_{t_0}^t a(s) \, \mathrm{d}s\right)$$

Problem. Ges. ist Lösung der DGL mit getrennten Variablen

$$\dot{y}(t) = g(t) \cdot h(y) \tag{1.7}$$

mit $g: I \to \mathbb{R}$ und $h: J \to \mathbb{R}$ stetig.

Lsg. 1. Fall: h(y₀) = 0 für ein y₀ ∈ J. Dann ist y(t) = y₀ eine Lsg.
Fall: Es gibt kein y₀ ∈ J mit h(y₀) = 0. Sei H eine Stammfunktion von 1/h und G eine Stammfunktion von g. Da h stetig und nirgends null ist, ist h entweder strikt positiv oder strikt negativ. Somit ist H streng monoton steigend/fallend und somit umkehrbar. Eine Lösung von (1.7) ist nun gegeben durch

$$y(t) = H^{-1}(G(t) + c_0) \quad \text{mit } c_0 \in \mathbb{R}.$$

Problem. Gesucht ist Lösung des AWP mit getrennten Variablen

$$(1.8) \left\{ \begin{array}{l} \dot{y}(t) = g(t) \cdot h(y(t)) \\ y(t_0) = y_0 \end{array} \right.$$

Lsg. 1. Fall: $h(y_0) = 0$. Dann ist $y(t) = y_0$ eine Lösung.

2. Fall: $h(y_0) \neq 0$. Dann ist h in einer Umgebung von y_0 strikt positiv/negativ. Setze

$$H_1(y) \coloneqq \int_{y(t_0)}^{y} \frac{1}{h(s)} ds, \quad G_1(t) \coloneqq \int_{t_0}^{t} g(s) ds.$$

Dann ist H_1 in einer Umgebung von y_0 invertierbar und eine Lösung von (1.8) ist gegeben durch

$$y(t) = H_1^{-1}(G_1(t)).$$

Technik (Transformation). Manchmal lässt sich eine DGL durch **Substitution** eines Termes in eine einfachere DGL überführen, deren Lösung mit bekannten Methoden gefunden werden kann. Die Lösung der ursprünglichen DGL ergibt sich durch Rücksubstitution.

Bsp. Gegeben sei die DGL $\dot{y} = f(\alpha t + \beta y + \gamma)$ mit $\alpha, \beta, \gamma \in \mathbb{R}$, $\beta \neq 0$ und $f : \mathbb{R} \to \mathbb{R}$ stetig. Substituiere $z(t) = \alpha t + \beta y(t) + \gamma$. Es ergibt sich die neue DGL $\dot{z}(t) = \beta f(z(t)) + \alpha$, die sich durch Trennung der Variablen lösen lässt.

Bsp (Bernoulli-DGL). Gegeben sei die DGL $\dot{y}(t) = \alpha(t) \cdot y(t) + \beta(t) \cdot (y(t))^{\delta}$ mit $\alpha, \beta: I \to \mathbb{R}$ stetig und $\delta \in \mathbb{R} \setminus \{0,1\}$. Multiplikation mit $(1-\delta)y^{-\delta}$ und Substitution mit $z(t) = (y(t))^{1-\delta}$ führt zur skalaren linearen DGL 1. Ordnung

$$\dot{z}(t) = (1 - \delta)\alpha(t)z(t) + (1 - \delta)\beta(t).$$

Def. Sei $\mathcal{D} \subset \mathbb{R}^n$. Eine Abb. $f: \mathcal{D} \to \mathbb{R}^n$ heißt **stetig in** $x_0 \in \mathcal{D}$, falls $\forall \epsilon > 0: \exists \delta > 0: \forall x \in \mathcal{D}: ||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \epsilon$. Die Abb. heißt **stetig** in \mathcal{D} , falls sie in jedem Punkt in \mathcal{D} stetig ist.

Notation.
$$C(I, \mathbb{R}^n) := \{f : I \to \mathbb{R}^n \mid f \text{ stetig}\}, \|f\|_{\infty} := \sup_{t \in I} \|f(t)\|$$

Bemerkung. $(\mathcal{C}(I,\mathbb{R}^n), \|-\|_{\infty})$ ist ein Banachraum.

Def. Eine Teilmenge $A \subset X$ eines topologischen Raumes X heißt relativ kompakt, wenn ihr Abschluss \overline{A} kompakt in X ist.

Def. Seien $(X,\|-\|_X)$ und $(Y,\|-\|_Y)$ Banachräume. Sei $\mathcal{D}\subset X$. Eine Abbildung $T:\mathcal{D}\to Y$ heißt

- stetig in $x \in \mathcal{D}$, falls $Tx_n \xrightarrow{n \to \infty} Tx$ in Y für jede Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \xrightarrow{n \to \infty}$ in \mathcal{D} gilt.
- Lipschitz-stetig in \mathcal{D} , falls eine Konstante $\alpha > 0$ existiert mit

$$\forall x_1, x_2 \in \mathcal{D} : ||Tx_1 - Tx_2||_Y \le \alpha \cdot ||x_1 - x_2||_X.$$

- kontraktiv, falls T Lipschitz-stetig mit $\alpha < 1$ ist.
- **kompakt**, falls T stetig ist und beschränkte Mengen in X auf relativ kompakte Mengen in Y abgebildet werden, d. h. für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ in \mathcal{D} besitzt die Folge $(Tx_n)_{n\in\mathbb{N}}$ eine konvergente Teilfolge.

 $Bemerkung.\ Lipschitz-stetige$ Funktionen sind stetig, die Umkehrung gilt aber nicht.

Satz (Arzelà-Ascoli). Sei $I \subset \mathbb{R}$ kompakt. Eine Teilmenge $\mathcal{F} \subset \mathcal{C}(I, \mathbb{R}^n)$ ist genau dann relativ kompakt, wenn

• \mathcal{F} ist punktweise beschränkt, d. h.

$$\forall t \in I : \exists M : \forall f \in \mathcal{F} : ||f(t)|| \leq M$$

• F ist gleichgradig stetig, d.h.

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall t_1, t_2 \in I, f \in \mathcal{F} : ||t_1 - t_2|| < \delta \Rightarrow ||f(t_1) - f(t_2)|| < \epsilon$$

Satz (Fixpunktsatz von Banach). Sei $(X, ||-||_X)$ ein Banachraum, $\mathcal{D} \subset X$ nichtleer, abgeschlossen. Sei $T: \mathcal{D} \to \mathcal{D}$ eine Kontraktion. Dann besitzt die Fixpunktgleichung y = Ty genau eine Lösung in D.

Satz (Fixpunktsatz von Schauder). Sei $(X, \|-\|_X)$ ein Banachraum, sei $\mathcal{D} \subset X$ nichtleer, abgeschlossen, beschränkt, konvex. Sei $T: \mathcal{D} \to \mathcal{D}$ eine kompakte Abbildung. Dann besitzt die Fixpunktgleichung y = Ty mindestens eine Lösung in \mathcal{D} .

Satz. Sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$ offen, $f: \mathcal{D} \to \mathbb{R}^n$ stetig, $(t_0, y_0) \in D$. Dann ist das AWP (1.1) lokal lösbar, d. h. es existiert ein Intervall $I \subset \mathbb{R}$ mit $t_0 \in I$ und eine stetig diff'bare Funktion $y: I \to \mathbb{R}^n$, die das AWP (1.1) erfüllt.