Mining Massive Datasets Homework 6

Exercise 1

The Jaccard similarity can be applied to sets of elements. Sometimes, documents (or other objects) may be represented as multi-sets/bags rather than sets. In a multi-set, an element can be a member more than once, whereas a set can only hold each element at most once. Try to define a similarity metric for multi-sets. This metric should take exactly the same values as Jaccard similarity in the special case where both multi-sets are in fact sets.

The Jaccard similarity for sets is defined as

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|},$$

for the multisets we need to redefine the operations of intersection and union to account for element multiplicities. For each element x in the multi-sets, the multiplicity in the intersection is the minimum of its multiplicities in A and B

$$(A \cap B)(x) = \min(A(x), B(x)).$$

For each element x, the multiplicity in the union is the maximum of its multiplicities A and B

$$(A \cup B)(x) = \max(A(x), B(x)).$$

Therefore the generalized Jaccard similarity for the multisets is

$$J(A, B) = \frac{\sum_{x \in (A \cup B)} \min(A(x), B(x))}{\sum_{x \in (A \cup B)} \max(A(x), B(x))}$$

Exercise 2

See Task2.py

Exercise 3

Representing four sets S1, S2, S3 and S4 (subsets of 0, 1, 2, 3, 4, 5)

Element	S_1	S_2	S_4	S_4
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

(a) Compute the MinHash signature for each set using the following three hash functions:

Element(x)	$h_1(x) = (2x+1) \mod 6$	$h_2(x) = (3x+2) \mod 6$	$h_3(x) = (5x+2) \mod 6$
0	$(2*0)+1 \mod 6 = 1$	$(3*0)+2 \mod 6 = 2$	$(5*0) +2 \mod 6 = 2$
1	$(2*1)+1 \mod 6 = 3$	$(3*1)+2 \mod 6 = 5$	$(5*1) + 2 \mod 6 = 1$
2	$(2*2)+1 \mod 6 = 5$	$(3*2)+2 \mod 6 = 2$	$(5*2) +2 \mod 6 = 0$
3	$(2*3)+1 \mod 6 = 1$	$(3*3)+2 \mod 6 = 5$	$(5*3) +2 \mod 6 = 5$
4	$(2*4)+1 \mod 6 = 3$	$(3*4)+2 \mod 6 = 2$	$(5*4) +2 \mod 6 = 4$
5	$(2*5)+1 \mod 6 = 5$	$(3*5)+2 \mod 6 = 5$	$(5*5) +2 \mod 6 = 3$

Hash each element using the hash functions h_1, h_2, h_3 . To compute the MinHash-signature, we use the minimum value of the corresponding set.

Set	Element	h_1	h_2	h_3
S_1	{2,5}	$\min(5,5) = 5$	$\min(2,5) = 2$	$\min(0,3) = 0$
S_2	{0,1}	$\min(1,3) = 1$	$\min(2,5) = 2$	$\min(2,1) = 1$
S_3	{3,4}	$\min(1,3) = 1$	$\min(5,2) = 2$	$\min(5,4) = 4$
S_4	{0,2,4}	$\min(1,5,3) = 1$	$\min(2,2,2) = 2$	$\min(2,0,4) = 0$

Final MinHash Signatures

Set	h_1	h_2	h_3
S_1	5	2	0
S_2	1	2	1
S_3	1	2	4
S_4	1	2	0

(b) To determine whether a hash function is a true permutation, we check if the function produces a one-to-one mapping of the input set onto itself.

For $h_1(x) = (2x+1) \mod 6$, the output is $\{1,3,5,1,3,5\}$. It is not a true permutation because there is collision between elements.

For $h_2(x) = (3x + 2) \mod 6$, the output is $\{2,5,2,5,2,5\}$. It is not a true permutation, because there is a collision between elements.

For $h_3 = (5x + 2) \mod 6$, the output is $\{2,1,0,5,4,3\}$. It is a true element, as the elements are unique.

(c) To compare the similarity of MinHash signatures with the corresponding Jaccard similarities for the given sets, we proceed in two steps:

1. Calculate the Jaccard Similarity for Each Pair of Sets: The Jaccard similarity between two sets is defined as:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}.$$

Using the sets $S_1 = \{2, 5\}$, $S_2 = \{0, 1\}$, $S_3 = \{3, 4\}$, $S_4 = \{0, 2, 4\}$.

2. Compare Jaccard Similarity with MinHash Signature Similarity: The MinHash similarity is the fraction of matching values in the MinHash signatures for two sets.

Set	$S_i \cap S_j$	$S_i \cup S_j$	Jaccard Similarity
S_1, S_2	Ø	{0,1,2,5}	0/4 = 0
S_1, S_3	Ø	{2,3,4,5}	0/4 = 0
S_1, S_4	{2}	{0,2,4,5}	1/4 = 0.25
S_2, S_3	Ø	{0,1,3,4}	0/4 = 0
S_2, S_4	{0}	{0,1,2,4}	1/4 = 0.25
S_3, S_4	{4}	{0,2,3,4}	1/4 = 0.25

Set	Matches	MinHash Similarity
S_1, S_2	{2}	1/3 = 0.333
S_1, S_3	{2}	1/3 = 0.333
S_1, S_4	{0,2}	2/3 = 0.667
S_2, S_3	{1,2}	2/3 = 0.667
S_2, S_4	{1,2}	2/3 = 0.667
S_3, S_4	{1,2}	2/3 = 0.667

The MinHash similarity approximates the Jaccard similarity by comparing the MinHash signatures.

Exercise 4

See Task 4.py with attached results