

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

CENTRUM FÜR INFORMATIONS- UND SPRACHVERARBEITUNG STUDIENGANG COMPUTERLINGUISTIK

NACHHOLKLAUSUR ZUR VORLESUNG BACHELORMODUL "SYMBOLISCHE PROGRAMMIERSPRACHE" WS 2020/2021 FLORIAN FINK

NACHHOLKLAUSUR ZUR VORLESUNG AM 13.04.2021

V	ORNAME:				
N	ACHNAME:				
N	IATRIKELNUMMER:				
S	TUDIENGANG:	B.Sc. Computerlinguistik, B.Sc. Informatik, Magister			
	sur zur Vorlesung bes fgabe angegeben. Die				
Sie ein v	ollständiges Exempla	r erhalten haben.			
	Aufgabe		mögliche Punkte	erreichte Punkte]
	Aufgabe 1. Precision, Recall t	ınd Accuracy	mögliche Punkte	erreichte Punkte]
		ınd Accuracy		erreichte Punkte	
	1. Precision, Recall 1	ınd Accuracy	6	erreichte Punkte	
	1. Precision, Recall u 2. Quiz	•	6 5	erreichte Punkte	
	1. Precision, Recall u 2. Quiz 3. Naive-Bayes	18	6 5 8	erreichte Punkte	
	 Precision, Recall u Quiz Naive-Bayes Objektorientierun 	ig eval	6 5 8 4	erreichte Punkte	
	 Precision, Recall to 2. Quiz Naive-Bayes Objektorientierum Information Retri 	ig eval	6 5 8 4 6	erreichte Punkte	
	 Precision, Recall u Quiz Naive-Bayes Objektorientierum Information Retri NLTK und lexikali 	ig eval	6 5 8 4 6 7	erreichte Punkte	
	 Precision, Recall to 2. Quiz Naive-Bayes Objektorientierum Information Retri NLTK und lexikali POS Tagging 	ig eval	6 5 8 4 6 7 4	erreichte Punkte	
Hiermit	1. Precision, Recall u 2. Quiz 3. Naive-Bayes 4. Objektorientierun 5. Information Retri 6. NLTK und lexikali 7. POS Tagging Summe	eval ische Information	6 5 8 4 6 7 4 40		ung

${\bf Aufgabe} \,\, {\bf 1} \,\, {\it Precision, Recall und Accuracy}$

[6 Punkte]

Ein Klassifizierer teilt 100 Texte in die 4 Klassen A, B, C und D ein. Bei der Auswertung ergibt sich folgende Wahrheitsmatrix (confusion matrix):

		Α	В	C	D				
	-+-					+			
Α	<	30>	7	13	3				
В		8 .	<1>	4	3				
С		7	5	<3>	3				
D		7	1	2 <	<3>	۱.			
	-+-					+			
(r	ow	=]	ref	erer	ıce	;	col	=	test)

Berechnen Sie

- (a) die Accuracy des Klassifizierers,
- (b) die Precision des Klassifizierers für Klasse C,
- (c) den Recall des Klassifizierers für Klasse C,

Ihr Rechenweg muss nachvollziehbar sein.

(2+2+2 = 6 Punkte)

A C 1		•	
$\Delta 11 + \alpha 2$	h Δ '	, ,	1117
Aufgal	UC 2		uls
		_ ~	

[5 Punkte]

Bearbeiten Sie folgende Aufgaben.

- (a) Die beiden Ereignisse A und B seien statistisch unabhängig. Wie kann die Wahrscheinlichkeit P(A und B) berechnet werden (in Abhängigkeit von P(A) und P(B))?
- (b) (Anmerkung: Das Vorkommen von Worten ist im Allgemeinen **nicht** *statistisch unabhängig*). Geben Sie an, wie die Wahrscheinlichkeit des Satzes *,,heute schneit es*" berechnet wird (Wahrscheinlichkeit von Wortsequenzen).
- (c) Berechnen Sie die Länge $|\vec{x}|$ des Vektors $\vec{x}=(4,2,4)$.
- (d) Berechnen Sie das Skalarprodukt $\vec{x} \cdot \vec{y}$ zwischen den Vektoren $\vec{x} = (2,4)$ und $\vec{y} = (3,2)$.
- (e) Wozu dient die sog. Addiere-1 Glättung?

(1+1+1+1+1=5 Punkte)

Aufgabe 3 Naive-Bayes

[8 Punkte]

Der Naive-Bayes Algorithmus ist ein Algorithmus zur Klassifikation. Gehen Sie für diese Aufgabe davon aus, dass wir den Naive-Bayes Algorithmus zur Klassifikation von E-Mails verwenden. E-Mails sollen dabei entweder in die Klasse HAM (E-Mail ist keine Spam-E-Mail) oder in die Klasse SPAM (E-Mail ist eine Spam-E-Mail) eingeteilt werden.

- (a) Handelt es sich beim Naive-Bayes Algorithmus um einen *überwachten (supervised)* oder einen *unüberbwachten (unsupervised)* Algorithmus (begründen Sie Ihre Aussage)?
- (b) Wie könnten mögliche Trainingsdaten für den Naive-Bayes Algorithmus zur Klassifikation von E-Mails aussehen?
- (c) Beschreiben Sie, wie mit dem Naive-Bayes Algorithmus eine E-Mail klassifiziert wird.

(2+2+4 = 8 Punkte)

Aufgabe 4 Objektorientierung

[4 Punkte]

```
import nltk
import os
class DocumentCollection:
    def __init__(self, docs):
        self.docs = docs
    @classmethod
    def from_dir(cls, d):
        cls([Document.from_file(p) for p in os.listdir(d) if p.endswith(".txt")])
    def x(self, term):
        return len([d for d in self.docs if term in d.counts])
class Document:
    def __init__(self, counts):
        self.counts = counts
    @classmethod
    def from_file(cls, path):
        with open(path, mode='r', encoding='utf-8') as f:
            return cls(nltk.FreqDist(nltk.word_tokenize(f.read()))
    def y(self, term):
        return self.counts.get(term, 0)
```

Betrachten Sie folgenden objektorientierten Python-Code.

- (a) Was berechnet die Funktion x in der DocumentCollection Klasse?
- (b) Was berechnet die Funktion y in der Document Klasse?
- (c) Was enthält das Attribut docs in der DocumentCollection Klasse?
- (d) Was ist die Bedeutung der self Variable in den beiden Klassen?

(1+1+1+1=4 Punkte)

Aufgabe 5 Information Retrieval

[6 Punkte]

Erläutern Sie die Dokumentensuche mit dem Vektorraummodell (Vektor Space Model). Gehen Sie dabei auch auf die Dokumentenrepräsentation, die Gewichtungsfunktion, die Ähnlichkeitsberechnung und die Bearbeitung von Suchanfragen ein.

Aufgabe 6 NLTK und lexikalische Information

[7 Punkte]

- (a) Definieren Sie die Begriffe Token, Type und Konkordanz.
- (b) Betrachten Sie folgenden Code. Was enthalten jeweils die Variablen ws, bs, cfd und result?

```
import nltk
ws = nltk.corpus.brown.words(categories="fiction")
bs = nltk.bigrams(ws)
cfd = nltk.ConditionalFreqDist(bs)
result = cfd["living"].max()
```

(3+4=7 Punkte)

Aufgabe 7 POS Tagging

[4 Punkte]

Gegeben sei die Hypothese: "Ein Satz endet niemals mit einer Präposition". Beschreiben Sie, wie man mit NLTK in einem Korpus diese Hypothese überprüfen kann.