VERMES MIKLÓS Fizikaverseny 2015. március 9.

I. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

X. osztály

I. feladat

a.) Vasgolyót dinamométerre függesztünk, majd vízbe merítjük.
A vizet lassan melegítjük. Többet, vagy kevesebbet fog mutatni az erőmérő? Indoklás.
b.) A hűtőből kivett sör az üveg felnyitása után lehűl, annyira, hogy akár meg is fagyhat.
Magyarázzuk meg, miért!
6 p
c.) Miért oltják porral az égő olajat?
2 p

II. feladat

Egy edényben m=10~kg tömegű víz-jég keverék található. Az edényt bevisszük a szobába és azt tapasztaljuk, hogy $\Delta t_1=50$ percig a hőmérséklet 0°C marad, majd $\Delta t_2=10$ perc alatt 2°C-kal nő a hőmérséklete. Ekkor $m_2=2~kg~\theta_2=-5$ °C-os jeget adunk a rendszerhez és azt tapasztaljuk, hogy a hőmérséklet $\Delta t_3=20$ perc alatt $\theta_3=0$ °C-ra csökken. Határozzuk meg:

a.) Mennyi jég volt az edényben, amikor bevittük a szobába?	4 p
b.) Mennyi a jég tömege a t₃=80 perc időpillanatban?	6 p

Adott: $c_i = 2100 \text{ J/kgK}$, $c_v = 4200 \text{ J/kgK}$, $\lambda_i = 340 \text{ kJ/kg}$.

Az edény hőkapacitása elhanyagolható, a rendszer által a környezetből időegység alatt felvett hő állandónak tekinthető.

III. feladat

1.) Ideális gáz az ábrán látható körfolyamatban vesz részt. Határozzuk meg a körfolyamat hatásfokát n és γ függvényében!

2.) Egy búvár olyan sűrített levegővel telt palackot használ, melyben a nyomás $p = 60 \cdot 10^5$ Pa, a hőmérséklet $t = 27^{\circ}$ C, a palack térfogata V = 10 l. Lemerülve 50 méterre egy korábban elsüllyedt hajó kincseire bukkan. Volt nála egy könnyű, elhanyagolható tömegű, nagyon erős anyagból készült összehajtható léggömb.

a.) Hány levegőrészecske volt kezdetben a palackban?
b.) Milyen tömegű kincset tud felhozni?
c.) Változik-e a sebesség emelkedés közben?
1 p
1 p
1 p

Adott: $g = 10 \text{ m/s}^2$, $p_0 = 100 \text{ kPa}$, $k = 1,38 \cdot 10^{-23} \text{ J/K}$, $\rho_{\text{viz}} = 1000 \text{ kg/m}^3$