Shape Formulae

I can use simple formulae for calculating the area and perimeter of shapes.

Use the formulas to calculate the unknown dimensions of these 2D shapes.

Rectangles

$$\frac{\text{area}}{\text{length}}$$
 = width

$$\frac{\text{area}}{\text{width}}$$
 = length

$$\frac{\text{perimeter}}{2}$$
 - length = width

$$\frac{\text{perimeter}}{2}$$
 - width = length

26cm

Triangles

$$\frac{\text{base} \times \text{height}}{2} = \text{area}$$

$$\frac{\text{area} \times 2}{\text{base}} = \text{height}$$

$$\frac{\text{area} \times 2}{\text{height}} = \text{base}$$

442cm²

Regular Polygons

$$\frac{perimeter}{length} = number of sides$$

$$\frac{\text{perimeter}}{\text{number of sides}} = \text{length}$$

Length	Number of Sides	Perimeter
34.2cm	5	
	5	182cm

Base	Height	Area	
18cm	25cm		
	23cm	184cm²	
15cm		180cm²	

	_	·
Length	Width	Perimeter
35.6cm	17.2cm	
	16.3cm	100.8cm
26.4cm		90cm

Shape Formulae

I can use simple formulae for calculating the area and perimeter of shapes.

Use the shape formulas to prove if the dimensions of the shapes have been calculated correctly.

Rectangles

$$\frac{\text{area}}{\text{length}}$$
 = width

$$\frac{\text{area}}{\text{width}}$$
 = length

$$\frac{\text{perimeter}}{2}$$
 - length = width

$$\frac{\text{perimeter}}{2}$$
 - width = length

Triangles

$$\frac{\text{base} \times \text{height}}{2} = \text{area}$$

$$\frac{\text{area} \times 2}{\text{base}} = \text{height}$$

$$\frac{\text{area} \times 2}{\text{height}} = \text{base}$$

Regular Polygons

$$\frac{\text{perimeter}}{\text{length}} = \text{number of sides}$$

$$\frac{\text{perimeter}}{\text{number of sides}} = \text{length}$$

If the base of this triangle measures 12cm and the area is 96cm², then the height of the triangle must be greater than 15cm.

Correct? Prove it!

If the perimeter of this regular hexagon measures 88.8cm, then the length of each side must be an even number of mm.

Correct? Prove it!

If the perimeter of this parallelogram measures 90.5cm and the length measures 21cm, then the width must measure more than 25cm.

Correct? Prove it!

Shape Formulae

I can use simple formulae for calculating the area and perimeter of shapes.

Use the shape formulae to calculate the area of these compound shapes:

Shape Formulae **Answers**

26cm	17cm	442cm ²	
Length	Number of Sides	Perimeter	
34.2cm	5	171cm	

5

182cm

	_	
Length	Width	Perimeter
35.6cm	17.2cm	105.6cm
34.1cm	16.3cm	100.8cm
26.4cm	18.6cm	90cm

36.4cm

Shape Formulae Answers

If the base of this triangle measures 12cm and the area is 96cm², then the height of the triangle must be greater than 15cm.

Correct? Prove it!

Correct because $(96 \times 2) \div 12 = 16$, which is greater than 15cm.

If the perimeter of this regular hexagon measures 88.8cm, then the length of each side must be an even number of mm.

Correct? Prove it!

Correct because $88.8 \text{cm} \div 6 = 14.8 \text{cm}$.

If the perimeter of this parallelogram measures 90.5cm and the length measures 21cm, then the width must measure more than 25cm.

Correct? Prove it!

Incorrect because 90.5cm $\div 2 - 21 = 24.25$ cm.

Shape Formulae Answers

$$9.6cm \times 4.3cm = 41.3cm^2$$

 $9.6cm \times (12.2cm - 4.3cm) \div 2 = 37.9cm^2$
 $41.3cm^2 + 37.9cm^2 = 79.2cm^2$

$$13.7cm \times 7.8cm = 106.9cm^2$$

$$(13.7cm - 9.1cm)$$

 $\div 2 = 2.3cm$
 $7.8cm - 5.6cm = 2.2cm$

$$((2.3cm \times 2.2cm) \div 2)$$
 $106.9cm^2 - 5.1cm^2$
 $\times 2 = 5.1cm^2$ $= 101.8cm^2$

$$12.2cm \times 5.8cm = 70.8cm^{2}$$

$$(12.2cm \times (8.3cm - 5.8cm)) \div 2 = 15.3cm^{2}$$

$$70.8cm^{2} + 15.3cm^{2} = 86.1cm^{2}$$

$$2.lcm \times 1.7cm = 3.6cm^{2}$$

$$(6.lcm + 1.7cm) \times (4.6cm - 2.lcm) = 19.5cm^{2}$$

$$19.5cm^{2} + 3.6cm^{2} = 23.lcm^{2}$$

All answers have been rounded to one decimal place.

