TopicQuiz5

Started: 6 May at 21:09

Quiz instructions

Question 1	1 pts
Despite theoretical concerns about ANNs getting stuck in local optima during training, why has this limitation been found to be benign in practice, especial larger neural networks?	_
Training algorithms have become more efficient at escaping local optima	
Local optima often perform almost as well as the global optimum	
The global optimum is not important for model performance	
Larger neural networks have fewer local optima	

Question 2 2 pts

Given the perceptron's threshold logic unit (TLU) architecture, what would be the output of a TLU with the following input weights, input values, and bias: w = [0.5, -0.2], x = [2, 3], and b = 0.1?

○ -0.1

 \bigcirc 0

 \bigcirc 1

O.6

Question 3 1 pts

Given a neural network with an input matrix X of shape (m, n) and a weight matrix W of shape (n, p), what are the dimensions of X and W, respectively? n instances with m features for X; p inputs with n neurons for W m instances with n features for X; n inputs with p neurons for W m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W		
A layer in which every input is connected to every output A layer that contains only a single threshold logic unit (TLU) Question 4 1 pts Given a neural network with an input matrix X of shape (m, n) and a weight matrix W of shape (n, p), what are the dimensions of X and W, respectively? n instances with m features for X; p inputs with n neurons for W m instances with n features for X; n inputs with p neurons for W m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W Question 5 1 pts In the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix? Dividing the matrix by the vector	A layer that is solely responsible for calculating the loss function	
A layer that contains only a single threshold logic unit (TLU) Question 4 1 pts Given a neural network with an input matrix X of shape (m, n) and a weight matrix W of shape (n, p), what are the dimensions of X and W, respectively? n instances with m features for X; p inputs with n neurons for W m instances with n features for X; n inputs with p neurons for W n instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W Question 5 1 pts In the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix? Dividing the matrix by the vector		
Question 4 1 pts Given a neural network with an input matrix X of shape (m, n) and a weight matrix W of shape (n, p), what are the dimensions of X and W, respectively? n instances with m features for X; p inputs with n neurons for W m instances with n features for X; n inputs with p neurons for W m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W Question 5 1 pts n the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix?		
Given a neural network with an input matrix X of shape (m, n) and a weight matrix W of shape (n, p), what are the dimensions of X and W, respectively? n instances with m features for X; p inputs with n neurons for W m instances with n features for X; n inputs with p neurons for W m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W Question 5 1 pts the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix?	○ A layer that contains only a single threshold logic unit (TLU)	
W of shape (n, p), what are the dimensions of X and W, respectively? n instances with m features for X; p inputs with n neurons for W m instances with n features for X; n inputs with p neurons for W m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W Question 5 1 pts n the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix?	Question 4	1 pts
m instances with n features for X; n inputs with p neurons for W m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W Question 5 1 pts n the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix? Dividing the matrix by the vector	• • • • • • • • • • • • • • • • • • • •	•
m instances with p features for X; n inputs with m neurons for W p instances with n features for X; m inputs with n neurons for W 1 pts n the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix? Dividing the matrix by the vector	○ n instances with m features for X; p inputs with n neurons for W	
p instances with n features for X; m inputs with n neurons for W Question 5 1 pts In the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix? Dividing the matrix by the vector	○ m instances with n features for X; n inputs with p neurons for W	
Question 5 1 pts In the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix? Dividing the matrix by the vector	○ m instances with p features for X; n inputs with m neurons for W	
n the context of neural networks and data science, what does "broadcasting" refer to when adding a vector to a matrix?	○ p instances with n features for X; m inputs with n neurons for W	
refer to when adding a vector to a matrix? O Dividing the matrix by the vector	Question 5	1 pts
		padcasting"
Adding the vector to every column in the matrix	Dividing the matrix by the vector.	
	O Dividing the matrix by the vector	

What is the main principle behind Hebbian learning in the context of neunetworks?	
	ıral
Neurons that fire independently, lose their connections	
Neurons that fire together, wire together	
Neurons that fire together, lose their connections	
O Neurons that fire independently, wire together	
Question 7	1 pts
	апи п –
	and II –
0.1.	and IJ –
0.1. ○ 0.6	and IJ –
○ 0.54	and II –

The perceptro separable	 The perceptron learning process is guaranteed to converge if the data is linearly separable 	
○ The perceptro	○ The perceptron learning process always converges, regardless of the data distribution	
○ The perceptro	n learning process never converges for non-linearly separable data	
Question 9	1 pts	
What kind of pro	oblems can a multilayer perceptron (MLP) solve that a simple not?	
Problems with	non-linearly separable data	
O Problems with	linearly separable data only	
O Problems that	involve unsupervised learning	
○ Problems that	require reinforcement learning	
Question 10	1 pts	
	owing is a reason why perceptrons may not generalize as well as on or linear SVM classifiers?	
 Logistic regres 	ssion and linear SVM classifiers cannot handle non-linearly separable data	
Perceptrons sset	top training as soon as there are no more prediction errors on the training	
○ Perceptrons re	equire more computational resources	
O Perceptrons u	se regularization by default	

Question 11 1 pts

network's error" refer to?	
○ The change in error with respect to the number of layers in the network	
 The change in error with respect to the change in model parameters, such and biases 	ı as weights
○ The change in error with respect to the choice of activation functions	
The change in error with respect to the change in input values	
Question 12	1 pts
Why is it important to initialize the weights of a neural network's hidd randomly?	en layers
 Random initialization breaks symmetry, allowing backpropagation to train a of neurons 	a diverse team
Random initialization ensures faster convergence	
Random initialization ensures all neurons in a layer are identical	
Random initialization reduces the need for regularization techniques	
Question 13	1 pts
Why does the backpropagation algorithm not work well with step act functions in neural networks?	ivation
 Step activation functions have no gradient, making it impossible to update gradient-based methods 	weights using
 Step activation functions require more computational resources, making be inefficient 	ackpropagation

Step activation functions have a very large gradient, causing instability during training	
 Step activation functions have a constant gradient, leading to slow convergence 	
Question 14	1 pts
why are activation functions necessary in neural networks?	
To simplify the network architecture by removing unnecessary connection.	tions
 To introduce non-linearity between layers, enabling the network to lea and effectively utilize multiple layers 	rn complex patterns
To reduce the need for regularization techniques	
To ensure faster convergence during training	
Question 15	1 pts
	·
What is the main difference between the Softplus and ReLU activ	·
What is the main difference between the Softplus and ReLU activ ○ Softplus is a smooth approximation of ReLU	·
	·
○ Softplus is a smooth approximation of ReLU	·
○ Softplus is linear, while ReLU is non-linear	·
 Softplus is a smooth approximation of ReLU Softplus is linear, while ReLU is non-linear ReLU is linear, while Softplus is non-linear 	·

○ 20 batches of size 19 and 1 batch of size 5	
21 batches of size 19 and 1 batch of size 6	
○ 20 batches of size 20 and 1 batch of size 5	
Question 17	1 pts
What is transfer learning in the context of deep neural networks?	
○ Initializing the weights and biases of a new network with random values	
 Reusing the lower layers of a pre-trained network and fine-tuning the high- new, related task 	er layers for a
Training a network from scratch for each new task	
Reusing the entire pre-trained network for a new, unrelated task	
Question 18	1 pts
Question 18 What is the main concern when a layer in a neural network has too f	·
	ew neurons?
What is the main concern when a layer in a neural network has too f The layer will not have enough representational power to preserve all the	ew neurons?
What is the main concern when a layer in a neural network has too f The layer will not have enough representational power to preserve all the information from the inputs, potentially leading to unrecoverable information	ew neurons?

Question 19 1 pts

f(x) = 1 / (1 + exp(-x))		
Linear functionSigmoid function		
○ Rectified Linear Unit (ReLU)		
Question 20	1 pts	
Which activation function is commonly used in for binary classification problems?	the output layer of a neural network	
○ Tanh		
○ Tanh○ ReLU		

Not saved

Submit quiz