Code **▼**

SVM S&P500 Weekly MA 01-01-2012 to 06-30-2018

Hide

```
#install.packages("quantmod")
#install.packages("e1071")
library(quantmod)
library(e1071)
# Importing the dataset
startDate = as.Date("2011-01-01")
endDate = as.Date("2018-06-30")
getSymbols("^GSPC",src="yahoo",from=startDate,to=endDate)
```

[1] "GSPC"

Hide

dataset=data.frame(to.weekly(GSPC))
dim(dataset)

[1] 391 6

Hide

head(dataset)

	GSPC.Op <dbl></dbl>	GSPC.High <dbl></dbl>	GSPC.L <dbl></dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted <dbl></dbl>
2011-01-07	1257.62	1278.17	1257.62	1271.50	23655220000	1271.50
2011-01-14	1270.84	1293.24	1262.18	1293.24	21286570000	1293,24
2011-01-21	1293.22	1296.06	1271.26	1283.35	19899340000	1283.35
2011-01-28	1283.29	1302.67	1275.10	1276.34	23156650000	1276.34
2011-02-04	1276.50	1311.00	1276.50	1310.87	21726860000	1310.87
2011-02-11	1311.85	1330.79	1311.74	1329.15	20109950000	1329.15
6 rows						

Hide

tail(dataset)

	GSPC.Op <dbl></dbl>	GSPC.High <dbl></dbl>	GSPC.L <dbl></dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted <dbl></dbl>
2018-05-25	2735.39	2742.24	2707.38	2721.33	15963780000	2721.33
2018-06-01	2705.11	2736.93	2676.81	2734.62	15217440000	2734.62
2018-06-08	2741.67	2779.90	2739.51	2779.03	17380480000	2779.03
2018-06-15	2780.18	2791.47	2761.73	2779.66	19368250000	2779 <u>.</u> 66
2018-06-22	2765.79	2774.99	2743.19	2754.88	19026830000	2754.88
2018-06-29	2742.94	2746.09	2691.99	2718.37	17980020000	2718.37
6 rows						

Price (Closes above Open = 1, Closes below Open = 0)
Price=ifelse(dataset[4]>dataset[1], 1,0)
head(Price)

GSP	C.Close
2011-01-07	1
2011-01-14	1
2011-01-21	0
2011-01-28	0
2011-02-04	1
2011-02-11	1

Hide

tail(Price)

GSF	C.Close
2018-05-25	0
2018-06-01	1
2018-06-08	1
2018-06-15	0
2018-06-22	0
2018-06-29	0

Hide

tail(dataset)

	GSPC.Op <dbl></dbl>	GSPC.High <dbl></dbl>	GSPC.L <dbl></dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted <dbl></dbl>
2018-05-25	2735.39	2742.24	2707.38	2721.33	15963780000	2721.33
2018-06-01	2705.11	2736.93	2676.81	2734.62	15217440000	2734.62

	(GSPC.High				GSPC.Adjusted
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
2018-06-08	2741.67	2779.90	2739.51	2779.03	17380480000	2779.03
2018-06-15	2780.18	2791.47	2761.73	2779.66	19368250000	2779.66
2018-06-22	2765.79	2774.99	2743.19	2754.88	19026830000	2754.88
2018-06-29	2742.94	2746.09	2691.99	2718.37	17980020000	2718.37
6 rows						

plot(Price)

Hide

```
j=3
##-----##
# Exponential Moving Average Indicator
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff1 =
                           (Op(dataset) - exponentialMovingAverage20)
##-----##
##-----##
# Exponential Moving Average Indicator
i = 2*j
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff2 = (Op(dataset) - exponentialMovingAverage20)
##-----##
##-----##
# Exponential Moving Average Indicator
i = 3*j
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff3 = (Op(dataset) - exponentialMovingAverage20)
##-----##
##-----##
# Exponential Moving Average Indicator
i = 4*j
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff4 = (Op(dataset) - exponentialMovingAverage20)
##-----##
##-----##
# Exponential Moving Average Indicator
i = 5*j
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff5 = (Op(dataset) - exponentialMovingAverage20)
##-----##
##-----##
# Exponential Moving Average Indicator
i = 6*i
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff6 = (Op(dataset) - exponentialMovingAverage20)
##----##
##-----##
# Exponential Moving Average Indicator
i = 7*i
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff7 = (Op(dataset) - exponentialMovingAverage20)
##-----##
##-----##
# Exponential Moving Average Indicator
i = 8*j
```

```
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff8 = (Op(dataset) - exponentialMovingAverage20)
##----##
##----##
# Exponential Moving Average Indicator
i = 9*i
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff9 = (Op(dataset) - exponentialMovingAverage20)
##----##
##-----##
# Exponential Moving Average Indicator
i = 10*j
exponentialMovingAverage20=EMA(Op(dataset),n=i)
# Difference in Exponential Moving Average
exponentialMovingAverageDiff10 = (Op(dataset) - exponentialMovingAverage20)
##-----##
dataset1 = data.frame(exponentialMovingAverageDiff1,
                  exponentialMovingAverageDiff2,
                  exponentialMovingAverageDiff3,
                  exponentialMovingAverageDiff4,
                  exponentialMovingAverageDiff5,
                  exponentialMovingAverageDiff6,
                  exponentialMovingAverageDiff7,
                  exponentialMovingAverageDiff8,
                  exponentialMovingAverageDiff9,
                  exponentialMovingAverageDiff10,
                  Price)
tail(dataset1)
```

	exponentialMovingAverageDiff1 <dbl></dbl>	exponentialMovingAverageDiff2 <dbl></dbl>
2018-05-25	13.839521	30.0642684
2018-06-01	-8.220133	-0.1539411
2018-06-08	14.169841	26.0041956
2018-06-15	26.339926	46.0815754
2018-06-22	5.975016	22.6369160
2018-06-29	-8.437541	-0.1522728
6 rows 1-3 of 11 co	lumns	

```
# Size of Data
str(dataset1)
```

```
'data.frame':
                391 obs. of 11 variables:
 $ exponentialMovingAverageDiff1 : num
                                       NA NA 19.33 4.7 -1.05 ...
 $ exponentialMovingAverageDiff2 : num NA NA NA NA NA ...
 $ exponentialMovingAverageDiff3 : num
                                       NA NA NA NA NA ...
 $ exponentialMovingAverageDiff4 : num
                                       NA NA NA NA NA NA NA NA NA ...
 $ exponentialMovingAverageDiff5 : num
                                       NA NA NA NA NA NA NA NA NA ...
 $ exponentialMovingAverageDiff6 : num
                                       NA NA NA NA NA NA NA NA NA ...
 $ exponentialMovingAverageDiff7 : num
                                       NA NA NA NA NA NA NA NA NA ...
 $ exponentialMovingAverageDiff8 : num
                                       NA NA NA NA NA NA NA NA NA ...
 $ exponentialMovingAverageDiff9 : num
                                       NA NA NA NA NA NA NA NA NA ...
 $ exponentialMovingAverageDiff10: num
                                       NA NA NA NA NA NA NA NA NA ...
 $ GSPC.Close
                                 : num
                                       1 1 0 0 1 1 1 0 0 0 ...
                                                                                              Hide
dim(dataset1)
[1] 391 11
                                                                                              Hide
#Checking for missing data
d3=dataset1
for(i in 1:ncol(d3))
   {
    print(colnames(d3[i]))
   print(sum(is.na(d3[i])))
   }
[1] "exponentialMovingAverageDiff1"
[1] 2
[1] "exponentialMovingAverageDiff2"
[1] 5
[1] "exponentialMovingAverageDiff3"
[1] 8
[1] "exponentialMovingAverageDiff4"
[1] 11
[1] "exponentialMovingAverageDiff5"
[1] 14
[1] "exponentialMovingAverageDiff6"
[1] 17
[1] "exponentialMovingAverageDiff7"
[1] 20
[1] "exponentialMovingAverageDiff8"
[1] 23
[1] "exponentialMovingAverageDiff9"
[1] 26
[1] "exponentialMovingAverageDiff10"
[1] 29
[1] "GSPC.Close"
[1] 0
```

```
# Removing all rows of missing data
dataset1 = na.omit(dataset1)
#Checking for missing data again
dim(dataset1)
```

[1] 362 11

Hide

```
d3=dataset1
for(i in 1:ncol(d3))
    {
     print(colnames(d3[i]))
     print(sum(is.na(d3[i])))
}
```

[1] "exponentialMovingAverageDiff1" [1] 0 [1] "exponentialMovingAverageDiff2" [1] 0 [1] "exponentialMovingAverageDiff3" [1] 0 [1] "exponentialMovingAverageDiff4" [1] 0 [1] "exponentialMovingAverageDiff5" [1] 0 [1] "exponentialMovingAverageDiff6" [1] 0 [1] "exponentialMovingAverageDiff7" [1] "exponentialMovingAverageDiff8" [1] 0 [1] "exponentialMovingAverageDiff9" [1] 0 [1] "exponentialMovingAverageDiff10" [1] 0 [1] "GSPC.Close" [1] 0

Hide

```
colnames(dataset1)=c ("EMA1", "EMA2", "EMA3", "EMA4", "EMA5", "EMA6", "EMA7", "EMA8", "EMA9", "E
MA10", "Price")
# Encoding the target feature as factor
dataset1$Price=as.factor(dataset1$Price)
# Exploring the data set components
#str(dataset1)
# Splitting the dataset into the Training set and Test set
library(caTools)
set.seed(123)
split = sample.split(dataset1$Price, SplitRatio = 0.8)
training set = subset(dataset1, split == TRUE)
test_set = subset(dataset1, split == FALSE)
# Feature Scaling (Normalization and dropping the predicted variable)
training_set[-11] = scale(training_set[-11])
test set[-11] = scale(test set[-11])
# Applying Kernel SVM Model on the Training set
library(e1071)
classifier = svm(formula = Price ~ .,
                 data = training set,
                 type = 'C-classification',
                 kernel = 'radial')
summary(classifier)
```

```
Call:
svm(formula = Price ~ ., data = training_set, type = "C-classification",
    kernel = "radial")

Parameters:
    SVM-Type: C-classification
SVM-Kernel: radial
    cost: 1
        gamma: 0.1

Number of Support Vectors: 255

( 119 136 )

Number of Classes: 2

Levels:
    0 1
```

classifier

```
Call:
svm(formula = Price ~ ., data = training_set, type = "C-classification",
    kernel = "radial")
Parameters:
   SVM-Type: C-classification
 SVM-Kernel: radial
       cost: 1
      gamma: 0.1
Number of Support Vectors: 255
                                                                                                Hide
# Predicting the Test set results
predict_val = predict(classifier, newdata = test_set[-11])
# Confusion Matrix
cm = table(test_set[, 11], predict_val)
print(cm)
   predict val
     0 1
  0 0 30
  1 0 43
                                                                                                Hide
# Evaluating Model Accuracy on test data set using Confusion Matrix
\label{eq:model_Accuracy=(cm[1,1] + cm[2,2])/ (cm[1,1] + cm[1,2] + cm[2,1] + cm[2,2])} \\
print("Model Accuracy is")
[1] "Model Accuracy is"
                                                                                                Hide
print(Model_Accuracy)
[1] 0.5890411
```