Subjective Questions

Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Optimal value of alpha for Ridge Regression is 2.0 Optimal value of alpha for Lasso Regression is 0.0001

Created models by doubling the alpha values for both ridge and lasso, R2 score on test data remains almost same when compared with optimal values i.e; 0.89, But there is a slight change in the coefficients and important predictor variables. Here are some of the important predictors and values of coefficients for reference

Ridge Co-Efficient		Ridge Double Co-Efficient	
GrLivArea	0.1304	GrLivArea	0.1038
1stFlrSF	0.1089	1stFlrSF	0.0970
GarageArea	0.0694	GarageArea	0.0639
MSZoning_FV	0.0666	OverallQual_Ex	0.0568
OverallQual_Ex	0.0626	TotalBsmtSF	0.0527
TotalPorchArea	0.0514	MSZoning_FV	0.0458
TotalBsmtSF	0.0503	TotalPorchArea	0.0456
MSZoning RL	0.0498	FullBath	0.0439
OverallCond Ex	0.0492	OverallCond_Ex	0.0429
SaleCondition_Alloca	0.0451	Neighborhood_Crawfor	0.0418
Neighborhood Crawfor	0.0445	BsmtFinSF1	0.0400
Neighborhood_StoneBr	0.0443	BedroomAbvGr	0.0387
OverallQual VeryGd	0.0415	LotArea	0.0387
LotArea	0.0404	OverallQual_VeryGd	0.0382
FullBath	0.0396	Neighborhood_StoneBr	0.0382
Exterior1st BrkFace	0.0391	SaleCondition_Alloca	0.0353
BsmtFinSF1	0.0387	SaleCondition_Normal	0.0349
MSZoning RM	0.0386	Exterior1st_BrkFace	0.0347
BedroomAbvGr	0.0385	MSZoning_RL	0.0330

	Lasso Co-Efficient		Lasso Double Co-Efficient
GrLivArea	0.3239	GrLivArea	0.3434
OverallQual_Ex	0.0793	GarageArea	0.0732
GarageArea	0.0717	OverallQual_Ex	0.0711
MSZoning_FV	0.0603	TotalBsmtSF	0.0616
TotalBsmtSF	0.0568	Neighborhood_Crawfor	0.0473
OverallCond_Ex	0.0496	OverallQual_VeryGd	0.0391
1stFlrSF	0.0493	TotalPorchArea	0.0383
Neighborhood_Crawfor	0.0486	1stFlrSF	0.0375
OverallQual_VeryGd	0.0481	SaleType_New	0.0362
TotalPorchArea	0.0471	OverallCond_Ex	0.0355
MSZoning_RL	0.0433	SaleCondition_Normal	0.0328
Neighborhood_StoneBr	0.0356	Neighborhood_NridgHt	0.0316
SaleCondition_Alloca	0.0355	MSZoning_FV	0.0295
SaleCondition_Normal	0.0345	Exterior1st_BrkFace	0.0282
SaleType_New	0.0342	BsmtFullBath	0.0270
LotArea	0.0338	BsmtExposure_Gd	0.0268
Neighborhood_NridgHt	0.0336	BsmtCond_TA	0.0261
Exterior1st_BrkFace	0.0332	BsmtFinSF1	0.0254
BsmtFullBath	0.0308	Neighborhood_StoneBr	0.0242
OverallQual_VeryEx	0.0286	BsmtCond_Gd	0.0233

As the overall alpha value is small there are no much changes in the model even after doubling the alpha values. (For full coefficients and model values check the python notebook)

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ridge and Lasso shrinks the coefficients depending on the hyper parameter lambda. In this process Lasso shrinks less important feature coefficients to 0 thus, removing features all together which leads to Feature Selection.

In this case, Optimal value of lambda for Ridge Regression is 2.0 and for Lasso Regression is 0.0001 Both Ridge and Lasso performs almost similar when compared with R2scores, RMSE.

	Lasso	Ridge
R2Train	0.9370	0.9409
R2Test	0.8965	0.8874
RSS Train	1.2894	1.2094

RSS Test	0.8821	0.9590
RMSE Train	0.0356	0.0345
RMSE Test	0.0450	0.0470

Here we consider Lasso Regression model as the final model as this will provide feature selection with good R2score.

Question 3

After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

The top most predictor values for Lasso model are

- GrLivArea 0.3239

- OverallQual_Ex 0.0793

- GarageArea 0.0717- MSZoning_FV 0.0603- TotalBsmtSF 0.0568

After removing these features and build model using lasso, the important predictors are

 1stFIrSF
 0.2840

 OverallCond_Ex
 0.0627

 LotArea
 0.0619

 FullBath
 0.0531

 TotalPorchArea
 0.0530

 HouseAge
 -0.0647

 OverallQual_Po
 -0.1167

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

As per Occam's Razor, a predictive model has to be as simple as possible but no simpler. To measure the simplicity, we can say that more complex the model is, less simple it is.

There are different ways to measure the complexity of the model. Few are

- 1. Number of coefficients
- 2. Degree of the function
- 3. Size of the best possible representation of the model. For e.g., precision, large numbers in the coefficients of the model.
- 4. Depth or size of a decision tree

Given two models that show similar performance in the finite training or test data, we should pick the model that makes fewer assumptions about the unseen data due to following reasons

- Simpler models are usually more generic and more widely applicable.
- Simpler models require few training samples than the complex ones.
- Simpler models are more robust
- Simpler models make more errors in the training data set

So, to make the model more robust and generalizable, make the model simple but not simpler.

Now there is tradeoff between variance and bias to select the optimal model.

Bias quantifies how accurate is the model likely to be on test data. The Variance of a model is the variance in its output on some test data with respect to changes in the training data.

A complex model can do accurate predictions if there is enough training data. Models that are too simple or naive and which give same outputs to all the test data and makes no difference has large bias.

Thus, the accuracy of the model can be maintained by keeping the balance between Bias and Variance.

The figure explains the typical trade-off between bias and variance. Simpler model models have high bias and low variance whereas complex models have low bias and high variance.

The best model is the one that balances between both bias and variance without compromising too much on accuracy.

Regularization is the process used in machine learning to deliberately simplify models by achieving the balance between making simple model but not too naïve which is of no use.

This is a simplification done by the training algorithm to control the model complexity.

For Regression this involves adding regularization term to the cost that adds up the absolute values (Lasso) or squares of the parameters (Ridge) of the model.