HW9 Report

R10922067 林云雲

Introduction

This program does edge detection to an image with *Robert's Operator, Prewitt's Edge Detector, Sobel's Edge Detector, Frei-and-Chen's Gradient Operator, Kirsch's Compass Operator, Robinson's Compass Operator, Nevatia-Babu 5x5 Operator.* Each of these methods defines its masks to calculate gradient magnitude for every pixel to generate the output image.

Usage

Place the source image and main.py under the same directory. Run the following command in the terminal.

```
python3 main.py -s <source> -m <method> -t <threshold>
```

Parameters

Robert's Operator

1. Masks

2. Gradient Magnitude

gradient magnitude = $\sqrt{r_1^2 + r_2^2}$

3. The result (threshold=12 for example) is saved as robert.png as shown on the right.

Prewitt's Edge Detector

1. Masks

	p_1			p_2	
-1		1	-1	-1	-1
-1		1			
-1		1	1	1	1

2. Gradient Magnitude gradient magnitude = $\sqrt{p_1^2 + p_2^2}$

3. The result (threshold=24 for example) is saved as prewitt.png as shown on the right.

Sobel's Edge Detector

1. Masks

	s_1			s_2	
-1		1	-1	-2	-1
-2		2			
-1		1	1	2	1

2. Gradient Magnitude gradient magnitude = $\sqrt{s_1^2 + s_2^2}$

3. The result (threshold=38 for example) is saved as sobel.png as shown on the right.

Frei-and-Chen's Gradient Operator

1. Masks

2. Gradient Magnitude

gradient magnitude = $\sqrt{f_1^2 + f_2^2}$

3. The result (threshold=30 for example) is saved as frei_and_chen.png as shown on the right.

Kirsch's Compass Operator

1. Masks

	k_1		
-3	-3	5	
-3		5	
-3	-3	5	

	κ_2	
-3	-3	-3
-3		5
-3	5	5

	3	
-3	-3	-3
-3		-3
5	5	5

	k_4		
-3	-3	-3	4
5		-3	4
5	5	-3	4
	5		

	κ_5	
5	-3	-3
5		-3
5	-3	-3
	-3	

	κ ₆	
5	5	-3
5		-3
-3	-3	-3

κ_7	
5	5
	-3
-3	-3
	5

	k_8	
-3	5	5
-3		5
-3	-3	-3

2. Gradient Magnitude

 $gradient\ magnitude = max\ k_n\ \ (n=1,...,8)$

3. The result (threshold=135 for example) is saved as kirsch.png as shown below.

Robinson's Compass Operator

1. Masks

	r_1	
-1		1
-2		2
-1		1

12	
1	2
	1
-1	
	1

	13	
1	2	1
-1	-2	-1

	<i>1</i> ₄	
2	1	
1		-1
	-1	-2

	15	
1		-1
2		-2
1		-1

	16	
	-2	-1
1		-1
2	1	

	17	
-1	-2	-1
1	2	1
1	2	1

	r_8	
-2	-1	
-1		1
	1	2

2. Gradient Magnitude

gradient magnitude = $\max r_n$ (n = 1, ...,8)

3. The result (threshold=43 for example) is saved as robinson.png as shown below.

Nevatia-Babu 5x5 Operator

1. Masks

		N_1		
100	100	100	100	100
100	100	100	100	100
0	0	0	0	0
-100	-100	-100	-100	-100
-100	-100	-100	-100	-100

		N_2		
100	100	100	100	100
100	100	100	78	-32
100	92	0	-92	-100
32	-78	-100	-100	-100
-100	-100	-100	-100	-100

		N_3		
100	100	100	100	100
-32	78	100	100	100
-100	-92	0	92	100
-100	-100	-100	-78	32
-100	-100	-100	-100	-100

		N_4		
-100	-100	-100	-100	-100
-100	-100	-100	-100	-100
0	0	0	0	0
100	100	100	100	100
100	100	100	100	100

N_5					
00	100	100	32	-100	
00	100	92	-78	-100	
00	100	0	-100	-100	
00	78	-92	-100	-100	
00	-32	-100	-100	-100	
	000 000 000 000	000 100 000 100 000 78	00 100 100 00 100 92 00 100 0 00 78 -92	00 100 100 32 00 100 92 -78 00 100 0 -100 00 78 -92 -100	

		N_6		
-100	32	100	100	100
-100	-78	92	100	100
-100	-100	0	100	100
-100	-100	-92	78	100
-100	-100	-100	-32	100

2. Gradient Magnitude

 $gradient \ magnitude = max \ N_n \quad (n = 1, ..., 6)$

3. The result (threshold=12500 for example) is saved as nevatia_babu.png as shown below.

