Вариант 6

 A_i (i = 1, 2, 3) — базы с однородной продукцией, на которых содержатся единицы однородной продукции a_i . Кол-во продукции a = (161; 113; 300)

 B_j (j = 1, 2, 3, 4) — пункты поставки готовой продукции, которые имеют потребности в продукции b_i . Потребность продукции b = (279; 110; 162; 198)

 C_{ij} – матрица стоимости перевозки единицы продукции из пункта A_i в пункт B_i

$$C = \begin{pmatrix} 7 & 5 & 4 & 3 \\ 5 & 2 & 7 & 7 \\ 3 & 7 & 4 & 7 \end{pmatrix} \qquad c = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

Для получения итоговых цен сложим себестоимость товаров из вектора с и цены на доставку из матрицы С для соответствующих баз А.

Сумма продукции на базах: $\sum_{i=1}^3 a_i = 161 + 113 + 300 = 574$ Потребность продукции в пунктах: $\sum_{j=1}^4 b_j = 279 + 110 + 162 + 198 = 749$

749 > 574. Следовательно, модель исходной задачи является открытой. Для получения закрытой модели нужно ввести фиктивную базу A_4 с запасом продукции $A_4 = 749 - 574 = 175$

Вид математической модели:

$$F(x) = 9x_{11} + 7x_{12} + 6x_{13} + 5x_{14} + 9x_{21} + 6x_{22} + 11x_{23} + 11x_{24} + 6x_{31} + 10x_{32} + 7x_{33} + 10x_{34} + 0x_{41} + 0x_{42} + 0x_{43} + 0x_{44} \rightarrow \min$$

при условии вывоза всей продукции с баз:

$$x_{11} + x_{12} + x_{13} + x_{14} = 161$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 113$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 300$$

$$x_{41} + x_{42} + x_{43} + x_{44} = 175$$

При удовлетворении потребностей всех пунктов:

$$x_{11} + x_{12} + x_{13} + x_{14} = 279$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 110$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 162$$

$$x_{41} + x_{42} + x_{43} + x_{44} = 198$$

При условии неотрицательных переменных:

$$X_{ij} >= 0$$
, $i = (1, 2, 3, 4)$, $j = (1, 2, 3, 4)$

 $(x_{ij} - кол-во единиц продукции перевозимой с <math>i$ -ой базы в j-й пункт)

Таблица итоговых цен за перевозку

ai\bi	279	110	162	198
161	9	7	6	5
113	9	6	11	11
300	6	10	7	10
175	0	0	0	0

Первый опорный план

ai\bi	279	110	162	198
161	9	7	6	5 161
113	9 3	6 110	11	11
300	6 276	10	7 24	10
175	0	0	0 138	0 37

Ищем потенциалы. Полагаем u1 = 0.

Для клетки (1, 4):
$$v_4 = c_{14} - u_1 = 5 - 0 = 5$$
;

Для клетки (4, 4):
$$u_4 = c_{44} - v_4 = 0 - 5 = -5$$
;

Для клетки (4, 3):
$$v_3 = c_{43} - u_4 = 0 - (-5) = 5$$
;

Для клетки (3, 3):
$$u_3 = c_{33} - v_3 = 7 - 5 = 2$$
.

Для клетки (3, 1):
$$v_1 = c_{31} - u_3 = 6 - 2 = 4$$
;

Для клетки (2, 1):
$$u_2 = c_{21} - v_1 = 9 - 4 = 5$$
;

Для клетки (2, 2):
$$v_2 = c_{22} - u_2 = 6 - 5 = 1$$
;

ai\bi		279	110	162	198	ui
	161	9	7	6	5 161	0
	113	9 3	6 110	11	11	5
	300	6 276	10	7 24	10	2
	175	0	0	0 138	0 37	-5
vi		4	1	5	5	

Находим оценки свободных клеток по формуле:

$$\Delta_{ij} = c_{ij} - u_i - v_j.$$

$$\Delta_{11} = c_{11} - u_1 - v_1 = 9 - 0 - 4 = 5;$$

$$\Delta_{12} = c_{12} - u_1 - v_2 = 7 - 0 - 1 = 6;$$

$$\Delta_{13}=c_{13}-u_1-v_3=6-0-5=1;$$

$$\Delta_{23} = c_{23} - u_2 - v_3 = 11 - 5 - 5 = 1;$$

$$\Delta_{24}=c_{24}-u_2-v_4=11-5-5=1;$$

$$\Delta_{32}=c_{32}-u_3-v_2=10-2-1=7;$$

$$\Delta_{34} = c_{34} - u_3 - v_4 = 10 - 2 - 5 = 3;$$

$$\Delta_{41} = c_{41} - u_4 - v_1 = 0 - (-5) - 4 = 1;$$

$$\Delta_{42} = c_{42} - u_4 - v_2 = 0 - (-5) - 1 = 4.$$

Поскольку отрицательных оценок нет, то план оптимален. Поскольку нет оценки, равных нулю, то решение единственное.

F min = 5 * 161 + 6 * 110 + 11 * 3 + 6 * 104 + 7 * 162 + 10 * 34 + 0 * 175 = 3596

А) Продукция развозится:

От поставщика А1 в пункт В4

От поставщика А2 в пункт В1, В2

От поставщика АЗ в пункт В1, В3

- Б) Нераспределенная продукция останется в пунктах: ВЗ (138 ед.), В4 (37 ед.)
- В) Суммарные минимальные затраты: 3596