

환경구축을 위한 스터디_20221103

▼ 미세먼지 센서 PMS7003 data sheet

• 주요 특성

오경보율 0, 실시간 측정, 정확한 데이터, 식별 가능한 최소 입자 직경: 0.3 마이크로미터, 6면 차폐 구조로 인한 높은 간섭 방지 기능, 공기 흡입구 및 배출구의 방향선택 가능

• 개요

일종의 디지털 및 범용 입자 농도 센서로 공기 중 부유하는 입자 수를 측정하기 위해 사용 ⇒ 입자 농도를 디지털 형태로 출력

다양한 기기에 삽입 가능하며 대기 환경의 정확한 농도 데이터를 실시간으로 제공 하기 위한 장비

• 작용 워리

레이저 산란 원리 - 레이저를 사용해 공기 중 부유 입자를 방사한 후 산란광을 모으고, 시간에 따라 변하는 산란광의 곡선을 구함 단위 부피당 입자 수 계산 가능

Figure 1 Functional block diagram of sensor

센서의 기능 다이어그램

• 기술 인덱스

파라미터	인덱스	단위
측정 범위	0.3~1.0 1.0~2.5 2.5~10	μ m 마이크로미터
계산 효율성	50%@0.3μ m 98%@>=0.5μ m	
유효 범위 (PM 2.5 기준)	0~500	μ g/m³
최대 범위 (PM 2.5 기준)	1000 이하	μ g/m³
분해능	1	μ g/m³
최대 일관성 오류 (PM 2.5 기준)	±10%@100~500μ g/m³ ±10μ g/m³@0~100μ g/m³	
표준 용량	0.1	L리터
단일 응답 시간	1 이내	second (s)
전체 응답 시간	10 이내	second (s)
전원 공급	Typ: 5.0 Min: 4.5 Max: 5.5	volt (v)
활성 전류	100 이하	Milliampere (mA)
대기 전류	200 이하	Microampere (μ A)
신호 레벨	L <0.8 @3.3 H >2.7@3.3	volt (v)
작동 온도 범위	-10 ~ +60	°C
작동 습도 범위	0~99%	
보관 온도 범위	-40 ~ +80	°C
MTTF (Mean Time to Failure)	3 이하	year (y)
물리적 크기	48×37×12	Millimeter (mm)

참고 1: 최대 범위는 PM2.5 표준 데이터의 가장 높은 출력 값이 1000 이상임을 의미

참고 2: "PM2.5 표준 데이터"는 부록의 "데이터2"

• 핀설명

Figure 2 **Connector Definition**

커넥터 구조

PIN1	VCC	양(+)전원 5V
PIN2	VCC	양(+)전원 5V
PIN3	GND	음(-)전원
PIN4	GND	음(-)전원
PIN5	RESET	모듈 재설정 신호 /TTL level@3.3V, low reset
PIN6	NC	
PIN7	RX	직렬 포트 수신 핀/TTL level@3.3V
PIN8	NC	
PIN9	TX	직렬 포트 전송 핀/TTL level@3.3V
PIN10	SET	핀 설정 /TTL level@3.3V, high 레벨은 정상 작 동 상태, low 레벨은 sleep 모드(절전모드)

Reset

*** VCC : 트랜지스터에 공급되는 전원을 이야기하는 용어들. 모든 회로는 (+)극에서 시작하여 (-)극으로 끝나며 (+)극을 VCC라 부르며 (-)극을 GND라고 부름

- 보드 회로에 관한 기본적인 개념

http://ardunityproject.blogspot.com/2016/06/blog-post.html

*** **GND**: 전압의 크기를 나타내는 기준 전압. GND는 0v로 접속해주면 되고, 우리가 평소에 사용하는 110v나 220v는 이 기준전압인 GND보다 110v나 220v 높다는 뜻

*** NC : No connected

*** **RX** : 데이터를 수신받는 핀 *** **TX** : 데이터를 송신하는 핀

⇒ 출력 결과 :

단위부피당 크기가 다른 각 입자의 품질 및 수로 주로 출력되며, 입자수의 단위 부피는 0.1L이고 질량농도의 단위는 μg/m³이다.

디지털 출력에는 passive와 active의 두 가지 옵션이 있다. 기본 모드는 전원을 켠 후 활성화되고 이 모드에서는 센서가 자동으로 호스트에 직렬 데이터를 보낸다.

active 모드는 안정 모드와 고속 모드 두 가지로 나뉜다. 농도 변화가 작을 경우 센서는 실제 2.3초의 간격으로 안정 모드로 작동한다. 변화가 크면 센서가 자동으로 고속 모드로 변경되며, 농도가 높을수록 간격이 짧은 200~800ms로 작동한다.

일반 회로 모습

- 이후 이어지는 그래프는 일반적인 출력 특성으로 다양한 온도와 시간 경과에 따른 측정 일관성을 보여주는 듯
- 내구성 특성(표)
- 회로 주의 사항
 - 1. 팬을 5V로 구동해야 하므로 DC 5V 전원 공급 필요하나 high level의 데이터 핀은 3.3V로, 호스트 MCU 전력이 5V인 경우 레벨 변환 장치를 사용해야 함
 - 2. SET과 RESET 핀은 내부로 당겨져 있으므로 사용하지 않을 경우 연결하지 말 것
 - 3. PIN7과 PIN8은 연결하면 X
 - 4. 팬 성능 때문에 센서가 sleep 모드(절전 모드)에서 해제된 후 최소 30초 후에 안정적인 데이터를 얻어야 함
- 설치 주의 사항
 - 1. 금속 쉘은 GND에 연결되어 있으므로 GND를 제외한 회로의 다른 부분과 단락 되지 않도록 주의
 - 2. 설치의 가장 좋은 방법은 inset과 outset의 평면이 host의 평면과 가깝도록 만드는 것이다. 아니라면 내부 루프로부터의 공기 흐름을 막기 위해 inset과 outset 사이에 쉴드를 배치해야 한다.
 - 3. 센서는 바닥에서 20cm 이상 높게 설치해 바닥 먼지에 막히지 않도록 해야 함

▼ 온습도 센서 AM2302 data sheet

• 주요 특성

높은 정확도, 뛰어난 안정성, 추가 구성 요소 불필요, 장거리 전송(최대 100m), 저 전력 소비, 4핀 패키지이며 완전 호환 가능

• 개요

보정된 디지털 신호를 출력하며 디지털 신호 수집 기술과 습도 감지 기술을 적용, 8 비트 싱클 칩 컴퓨터와 연결되어 있음

• 기술 인덱스

전원 공급	3.3 - 5.5V DC
출력 신호	1-wire 버스를 통한 디지털 신호
감지 요소	고분자 습도 capacitor
작동 범위	습도 0 ~ 100% 온도 -40 ~ 80 ℃
정확도	습도 +-2% RH (MAX +-5%) 온도 +-0.5 °C
분해능(해상도)	습도 0.1% RH 온도 0.1 °C
반복성	습도 +-1% RH 온도 +-0.2 °C
습도 이력?	+-0.3 RH
long-term 안정성	+-0.5% RH/year
호환성	완전 호환

• 핀

PIN1	VDD-전원 공급
PIN2	DATA-신호
PIN3	GND
PIN4	GND

• 회로

회로 다이어그램

• 상세 설명

MCU가 시작 신호를 보내면 센서가 대기 → 실행 상태로 변경 MCU가 시작 신호 송신을 마치면 센서가 상대습도와 온도를 반영하는 40비트 데이 터의 응답신호를 MCU로 전송, MCU 시작 신호가 없다면 센서도 응답 신호를 전송 X

전체 프로세스의 간격은 2초를 초과해야 함

- ▼ 라즈비안 설치-모니터 없이 원격으로 연결(putty이용): https://corytips.tistory.com/237
 - 1. sd 카드를 pc에 연결해 라즈비안 imager 설치
 - 2. sd 카드 폴더에 txt 파일 2개를 생성(ssh, wpa supplicant.conf)
 - 3. wpa supplicant.conf 파일에 무선인터넷 접속을 위한 네트워크 id와 pw 정보 입력

```
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=GB

network={
  ssid="KT_GiGA_5G" // 무선 인터넷 이름
  psk="123456789" // 무선 인터넷 비밀번호
}
```

- 4. sd 카드를 라즈베리파이에 삽입
- 5. pc에서 putty(리눅스 계열 서버에 원격으로 접속하는 프로그램, 라즈베이파이는 리눅스 기반이므로 설정을 위해 필요)
- 6. 라즈베리파이에 접속해 ifconfig로 IP값 확인

https://scribblinganything.tistory.com/574

▼ 측정데이터를 가져오는 예제 코드

git clone https://github.com/eleparts/PMS7003