

Bùi Tiến Lên

Đai học Khoa học Tư nhiên TPHCM

1/1/2018

Giới Thiệu

- Bài toán luồng cực đại trên mạng là một trong những bài toán tối ưu trên đồ thị và có những ứng dụng rất rộng rãi trong lý thuyết và thực tế
- ▶ Bài toán được đưa ra vào đầu những năm 1950 và gắn liền với tên tuổi của hai nhà toán học **Ford** và **Fulkerson**

Nội dung

Spring 2018 Graph Theory 2

Các định nghĩa về mạng

Định nghĩa 7.1

Mạng (flow network) (mạng chuẩn) là một đồ thị có hướng N = (V, E, C) với V là tập đỉnh thường được gọi là **nút** (node), E là tập cạnh thường được gọi là **cung** (arc) và C là hàm khả năng trong đó

- Có duy nhất một nút s không có cung đi vào, được gọi là nút phát (source)
- Có duy nhất một nút t không có cung đi ra, được gọi là nút thu (sink)
- Mỗi cung $e = (u, v) \in E$ được gán một số thực không âm c(u, v) được gọi là **khả năng thông qua (capacity)** của cung

pring 2018 Graph Theory 3 Spring 2018 Graph Theory 4

Các định nghĩa về mạng (cont.)

Định nghĩa 7.1

- ▶ Tập hợp $W^-(v)$ là tập các cung đi vào nút v
- ightharpoonup Tập hợp $W^+(v)$ là tập các cung đi ra nút v

Spring 2018

Graph Theory

-

Các đinh nghĩa về luồng

Định nghĩa 7.2

Cho mạng N=(V,E,C,s,t), **Luồng (flow)** f trong mạng là một ánh xạ

$$f: V^2 \rightarrow R^+$$

$$(u, v) \mapsto f(u, v)$$

$$(7.1)$$

thỏa mãn được hai điều kiện sau

ightharpoonup Điều kiện 1 (capacity constraint): luồng trên mỗi cung (u,v) không vượt quá khả năng thông qua của cung

$$0 \le f(u, v) \le c(u, v) \tag{7.2}$$

Các định nghĩa về mạng (cont.)

Hình 7.1: Mang gồm 6 nút, 8 cung, đỉnh phát s và đỉnh thu t

Spring 2018 Graph Theory

Các định nghĩa về luồng (cont.)

Định nghĩa 7.2

▶ Điều kiện 2 (flow conversion): điều kiện cân bằng luồng trên mỗi đỉnh v (trừ đỉnh thu và đỉnh phát) là tổng luồng trên các cung đi vào bằng tổng luồng trên các cung đi ra

$$\sum_{e \in W^{+}(v)} f(e) = \sum_{e \in W^{-}(v)} f(e)$$
 (7.3)

Spring 2018 Graph Theory 7 Spring 2018 Graph Theory

Các định nghĩa về luồng (cont.)

Hình 7.2: Một luồng f trên mạng, số thứ nhất trên cung là giá trị luồng, số thứ hai trên cung là khả năng thông qua

Spring 2018 Graph Theory

Các định nghĩa về luồng (cont.)

Hình 7.3: Hai luồng khác nhau trên cùng một mạng

Các định nghĩa về luồng (cont.)

Định nghĩa 7.3

Cho một mạng N=(V,E,C,s,t) và một luồng f trên mạng. Giá trị của một luồng trên mạng được định nghĩa là bằng tổng giá trị luồng các cung đi ra từ đỉnh phát hoặc tổng giá trị luồng các cung đi vào đỉnh thu

$$f(N) = \sum_{e \in W^{+}(s)} f(e) = \sum_{e \in W^{-}(t)} f(e)$$
 (7.4)

Spring 2018 Graph Theory 10

Bài toán luồng cực đại

Bài toán 7.1

Cho một mạng N=(V,E,C,s,t), gọi $\mathcal F$ là tập hợp các luồng trên mạng N. Bài toán tìm **luồng cực đại** (max flow) được phát biểu qua công thức sau

$$f = \arg\max_{f} (f(N), f \in \mathcal{F})$$
 (7.5)

Lưu ý

Nói chung, tồn tại vô số luồng cực đại

Spring 2018 Graph Theory 11 Spring 2018 Graph Theory 12

Bài toán luồng cực đại (cont.)

Hình 7.4: Luồng cực đại

Hình 7.5: Luồng cực đại với $\forall x, 0 \le x \le 1$

Spring 2018 Graph Theory 1:

Đồ thị tăng luồng

Định nghĩa 7.4

Cho mạng N = (V, E, C, s, t) và f là luồng trên mạng. **Đồ thị tăng luồng (residual network)** là đồ thị có hướng có trọng số $N_f = (V, E_f)$ với các cung được xây dựng như sau:

Xét một cung $(u, v) \in E$

- $lackbox{N\'eu} f(u,v)=0$ thì $(u,v)\in E_f$ với trọng số c(u,v)
- Nếu f(u,v)=c(u,v) thì $(v,u)\in E_f$ với trọng số c(u,v)
- Nếu 0 < f(u, v) < c(u, v) thì
 - $(u, v) \in E_f$ với trọng số c(u, v) f(u, v)
 - $(v, u) \in E_f$ với trọng số f(u, v)
- ightharpoonup Các cung thuộc N_f cũng thuộc N được gọi là **cung thuận**
- ightharpoonup Các cung thuộc N_f không thuộc N được gọi là **cung nghịch**

Thuật toán Ford-Fulkerson tìm luồng cực đại

Cho mạng N = (V, E, C, s, t), thuật toán gồm hai bước

Algorithm 1 Thuật toán Ford-Fulkerson

- ▶ **Bước khởi tạo**: Luồng f bắt đầu với giá tri trên các cung là 0
- Bước lặp:
 - ightharpoonup Xây dựng đồ thị tăng luồng N_f
 - ightharpoonup Tìm đường tăng luồng P trên đồ thị tăng luồng N_f
 - Dùng đường tăng luồng P để cập nhật giá tri luồng f
- ▶ Bước lặp kết thúc khi không tìm được đường tăng luồng và *f* cuối cùng chính là luồng cực đai

oring 2018 Graph Theory 14

Đồ thị tăng luồng (cont.)

Hình 7.7: Đồ thị tăng luồng N_f , các cung thuận vẽ liền, các cung nghịch vẽ gạch đứt

pring 2018 Graph Theory 15 Spring 2018 Graph Theory 16

Đường tăng luồng

Đinh nghĩa 7.5

Gọi $P = (s = v_0, v_1, ..., v_k = t)$ là một đường đi từ s đến t trên đồ thị tăng luồng N_f được gọi là **đường tăng luồng (augmenting path)** cho luồng f.

Spring 2018

Graph Theory

17

Spring 2018

Graph Theory

18

Cập nhật đường tăng luồng (cont.)

Hình 7.8: Đường đi từ đỉnh s đến t và có giá trị k=2 trên N_f

Hình 7.9: Cập nhật các cung của luồng f nằm trên đường đi

Cập nhật đường tăng luồng

Gọi k là trọng số của cung nhỏ nhất. Cập nhật luồng f cho các cung trên đường đi P. Luồng cập nhất gọi là f^{new}

- $ightharpoonup f^{new}(u,v)=f(u,v)+k$ nếu $(u,v)\in P$ là cung thuận
- $ightharpoonup f^{new}(u,v) = f(u,v) k \text{ n\'eu } (u,v) \in P \text{ là cung nghich}$

Sau khi cập nhật ta có

$$f^{new}(N) = f(N) + k$$

Nghĩa là luồng mới đã được tăng thêm k đơn vi so với luồng cũ

Minh họa thuật toán Ford-Fulkerson

► Cho mạng dưới, hãy tìm luồng cực đại

Hình 7.10: Mạng 6 nút 9 cung

Spring 2018 Graph Theory 19 Spring 2018 Graph Theory 20

Minh hoa thuât toán Ford-Fulkerson (cont.)

Hình 7.11: Luồng khởi tạo f

Hình 7.12: Đồ thị tăng luồng và đường đi tăng luồng

Spring 2018 **Graph Theory** 21

Minh hoa thuât toán Ford-Fulkerson (cont.)

Hình 7.15: Luồng cập nhật f

Hình 7.16: Đồ thị tăng luồng và đường đi tăng luồng

Minh hoa thuật toán Ford-Fulkerson (cont.)

Hình 7.13: Luồng cập nhật f

Hình 7.14: Đồ thị tăng luồng và đường đi tăng luồng

Spring 2018 **Graph Theory** 22

Minh hoa thuật toán Ford-Fulkerson (cont.)

Hình 7.18: Đồ thị tăng luồng và đường đi tăng luồng

Spring 2018 24 Spring 2018 **Graph Theory Graph Theory**

Minh họa thuật toán Ford-Fulkerson (cont.)

Hình 7.19: Luồng cực đại f với giá tri cực đại là 19

Spring 2018 Graph Theory 2

Một số vấn đề (cont.)

Lưu ý

Phải chọn đường đi tăng luồng cẩn thận vì có những đường đi

- Làm cho thuật toán chay lâu
- Làm cho thuật toán không bao giờ kết thúc

Một số vấn đề

Khi cài đặt thuật toán Ford-Fulkerson ta lưu ý những điểm sau

- ► Có cần đồ thị tăng luồng không?
 - Xây dựng đồ thị tăng luồng
 - ► Không xây dựng đồ thị tăng luồng
- ► Tìm đường đi tăng luồng như thế nào?
 - ► Tìm đường đi bằng DFS
 - ► Tìm đường đi bằng BFS
 - ► Tìm đường đi "tối ưu"

Spring 2018 Graph Theory 26

Một số vấn đề (cont.)

Ví dụ 7.1

Cho mạng như hình dưới hãy lần lượt hiện việc tăng luồng trên mạng theo hai đường tăng luồng P_1 và P_2 như sau: $P_1, P_2, P_1, P_2, \dots$

Hình 7.20: Mạng 4 nút và 5 cung

Spring 2018 Graph Theory 27 Spring 2018 Graph Theory 28

Một số vấn đề (cont.)

(a) Đường tăng luồng P_1 s-a-b-t (b) Đường tăng luồng P_2 s-b-a-t **Hình 7.21:** Hai đường tăng luồng

Spring 2018 Graph Theory 29

Một số vấn đề (cont.)

Hình 7.23: Đường tăng luồng P_0

Một số vấn đề (cont.)

Ví dụ 7.2

Cho mạng hình dưới hãy lần lượt thực hiện việc tăng luồng theo các đường tăng luồng sau: $P_0, P_1, P_2, P_1, P_3, P_1, P_2, P_1, P_3, \dots$

Spring 2018 Graph Theory 30

Một số vấn đề (cont.)

Hình 7.24: Đường tăng luồng P_1

Spring 2018 Graph Theory 31 Spring 2018 Graph Theory 32

Một số vấn đề (cont.)

Hình 7.25: Đường tăng luồng P_2

Spring 2018 Graph Theory

Cải tiến thuật toán Ford-Fulkerson

Một trong những cải tiến là chỉ tính toán trên đồ thị tăng luồng mở rộng. Cho mạng N=(V,E,C,s,t)

Algorithm 2 Thuật toán cải tiến

- **Bước khởi tạo**: khởi tạo đồ thị tăng luồng mở rộng N_f
- ▶ Bước lặp:
 - lacktriang Tìm đường tăng luồng P trên đồ thị tăng luồng mở rộng N_f
 - ightharpoonup Dùng đường tăng luồng P để cập nhật trọng số đồ thị tăng luồng mở rộng N_f
- ightharpoonup Bước lặp kết thúc khi không tìm được đường tăng luồng và xác định luồng cực đại f từ đồ thị tăng luồng mở rộng cuối cùng N_f

Một số vấn đề (cont.)

Hình 7.26: Đường tăng luồng P_3

Spring 2018 Graph Theory 34

Cải tiến thuật toán Ford-Fulkerson (cont.)

Định nghĩa 7.6

Cho mạng N = (V, E, C, s, t) và f là luồng trên mạng. **Đồ thị tăng luồng mở rộng** là đồ thị có hướng có trọng số $N_f = (V, E_f)$ với các cung được xây dựng như sau: Nếu $(u, v) \in E$ thì

- \blacktriangleright $(u, v) \in E_f$ với trọng số c(u, v)
- $ightharpoonup (v,u) \in E_f$ với trọng số 0

pring 2018 Graph Theory 35 Spring 2018 Graph Theory 36

Cải tiến thuật toán Ford-Fulkerson (cont.)

- $ightharpoonup N_f(u,v) = N_f(u,v) k$
- $\blacktriangleright \ N_f(v,u) = N_f(v,u) + k$

Spring 2018 Graph Theory

Minh họa thuật toán (cont.)

Hình 7.28: Khởi tạo đồ thị tăng luồng

Minh họa thuật toán

Tìm luồng cực đại cho mang sau

Hình 7.27: Mạng 6 nút và 10 cung

Spring 2018 Graph Theory 38

Minh họa thuật toán (cont.)

Hình 7.29: Đường đi tăng luồng

Spring 2018 Graph Theory 39 Spring 2018 Graph Theory 40

Minh họa thuật toán (cont.)

Hình 7.30: Cập nhật đồ thị tăng luồng

Minh họa thuật toán (cont.)

Hình 7.31: Đường đi tăng luồng

Spring 2018

Graph Theory

...

Spring 2018

Graph Theory

Minh họa thuật toán (cont.)

Hình 7.32: Cập nhật đồ thị tăng luồng

Minh họa thuật toán (cont.)

Hình 7.33: Đường đi tăng luồng

Spring 2018 Graph Theory 43 Spring 2018 Graph Theory 44

Minh họa thuật toán (cont.)

Hình 7.34: Cập nhật đồ thị tăng luồng

Minh họa thuật toán (cont.)

Hình 7.35: Đường đi tăng luồng

Spring 2018

Graph Theory

.-

Spring 2018

Graph Theory

Minh họa thuật toán (cont.)

Hình 7.36: Cập nhật đồ thị tăng luồng

Minh họa thuật toán (cont.)

Hình 7.37: Đường đi tăng luồng

Spring 2018 Graph Theory 47 Spring 2018 Graph Theory 48

Minh họa thuật toán (cont.)

Hình 7.38: Cập nhật đồ thị tăng luồng

Spring 2018 Graph Theory

Các dạng mở rộng

Mạng chuẩn có thể mở rộng thành

- Mạng với nhiều điểm phát hoặc nhiều điểm thu (multiple sources or sinks)
- Mạng với khả năng thông qua nút (vertex capacity)
- Mạng với khả năng thông qua cung bị chặn hai phía

Minh họa thuật toán (cont.)

Hình 7.39: Luồng cực đại

Spring 2018 Graph Theory 50

Mạng với nhiều điểm phát hoặc nhiều điểm thu

Hình 7.40: Mạng gồm 2 nguồn phát và 2 nguồn thu

Spring 2018 Graph Theory 51 Spring 2018 Graph Theory 52

Mạng với nhiều điểm phát hoặc nhiều điểm thu (cont.)

Mạng với nhiều nguồn phát $s_1, s_2, ..., s_m$ và nhiều nguồn thu $t_1, t_2, ..., t_n$ sẽ được biến đổi thành mạng chuẩn như sau

- ► Thêm vào một **nguồn phát giả** (dummy source) *S* nối với tất cả các nguồn phát *s_i*
 - ightharpoonup Khả năng thông qua của cung giữa S và s_i là tổng khả năng phát của s_i
- ► Thêm vào một **nguồn thu giả** (**dummy sink**) *T* nối với tất cả các nguồn thu t_i
 - ightharpoonup Khả năng thông qua của cung giữa t_i và T là tổng khả năng thu của t_j

Spring 2018 Graph Theory

Mạng với khả năng thông qua nút

Hình 7.42: Mang có nút a và b bi han chế khả năng thông qua

Mạng với nhiều điểm phát hoặc nhiều điểm thu (cont.)

Hình 7.41: Biến đổi mạng gồm 2 nguồn phát và 2 nguồn thu thành mang chuẩn gồm 1 nguồn phát và 1 nguồn thu

Spring 2018 Graph Theory 54

Mạng với khả năng thông qua nút (cont.)

Mạng với nút bị hạn chế khả năng thông qua sẽ được biến đổi như sau

- \blacktriangleright Đối với nút u bị hạn chế khả năng thông qua sẽ được tách thành hai đỉnh u^+ và u^-
- ightharpoonup Các cung đi vào u sẽ đi vào u^+
- ► Các cung đi ra *u* sẽ đi ra *u*
- \blacktriangleright Một cung nối u^+ và u^- sẽ có khả năng thông qua là khả năng thông qua của đỉnh u

Spring 2018 Graph Theory 55 Spring 2018 Graph Theory 56

Mạng với khả năng thông qua nút (cont.)

Hình 7.43: Biến đổi mạng có nút a và b bị hạn chế khả năng thông qua thành mang chuẩn

Spring 2018

Graph Theory

E7

Mạng với khả năng thông qua cung bị chặn hai phía (cont.)

Mạng với khả năng thông qua của cung (u,v) bị giới hạn bởi $[c_{min},c_{max}]$ sẽ được biến đổi như sau

- ▶ Thêm cung (t,s) với khả năng thông qua của cung là ∞
- ightharpoonup Thêm vào nguồn phát S và nguồn thu T
- Với cung (u, v) có $c_{min}(u, v) > 0$ thì
 - Thêm cung (S, v) với khả năng thông qua là $c_{min}(u, v)$
 - lacktriangle Thêm cung (u,T) với khả năng thông qua là $c_{min}(u,v)$
 - P Cập nhật lại khả năng thông qua cho cung (u,v) là $c(u,v)=c_{\max}(u,v)-c_{\min}(u,v)$

Mạng với khả năng thông qua cung bị chặn hai phía

Hình 7.44: Mạng với cung bị chặn hai phía, mỗi cung sẽ có hai giá trị: giá trị thứ nhất là khả năng thông qua tối thiểu, giá trị thứ hai là khả năng thông qua tối đa

Spring 2018 Graph Theory 58

Mạng với khả năng thông qua cung bị chặn hai phía (cont.)

Hình 7.45: Mạng với cung bị chặn hai phía được biến đổi thành mạng chuẩn

Spring 2018 Graph Theory 59 Spring 2018 Graph Theory 60

Mạng với khả năng thông qua cung bị chặn hai phía (cont.)

Định lý 7.1

- Nếu giá trị luồng cực đại trong mạng N' bằng $\sum_{e \in E} c_{min}(e)$ thì tồn tai luồng cực đai tương ứng trong N
- Nếu giá trị luồng cực đại trong mạng N' không bằng $\sum_{e \in E} c_{min}(e)$ thì không tồn tại luồng cực đại tương ứng trong N

Chứng minh

Sinh viên tự chứng minh ■

Spring 2018 Graph Theory

Các định nghĩa về lát cắt

Định nghĩa 7.7

Cho một mạng N = (V, E, C, s, t)

- Một **lát cắt** (cut) (S, T) là một phân hoạch tập đỉnh V sao cho $s \in S$ và $t \in T$
- Một **tập cắt (cut-set)** là một tập các cung $\{(u,v) \in E | u \in S, v \in T\}$
- \blacktriangleright Khả năng thông qua của lát cắt (S, T) được định nghĩa là

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$
(7.6)

Lát cắt nhỏ nhất (min cut) là lát cắt có khả năng thông qua nhỏ nhất

Các ứng dụng của bài toán luồng cực đại

Bài toán luồng cực đại có nhiều ứng dụng thực tế. Có thể áp dụng nó để giải quyết

- ► Bài toán ghép cặp
- ▶ Bài toán chuyển tải điện, nước hay dầu

Spring 2018 Graph Theory 62

Các định nghĩa về lát cắt (cont.)

Hình 7.46: Mạng có lát cắt ($S=\{s,a\},T=\{b,c,d,t\}$). Khả năng thông qua của lát cắt là 17

Hình 7.47: Mạng có lát cắt $(S=\{s,a,c\},T=\{b,d,t\})$. Khả năng thông qua của lát cắt là 14

Spring 2018 Graph Theory 63 Spring 2018 Graph Theory 64

Bài toán tìm lát cắt nhỏ nhất

Bài toán 7.2

Cho một mạng N = (V, E, C, s, t). Hãy tìm lát cắt nhỏ nhất

Tự học

Sinh viên hãy tự nghiên cứu ■

pring 2018 Graph Theory 6

Mối quan hệ giữa luồng cực đại - lát cắt nhỏ nhất (cont.)

Định lý 7.2

Giá trị luồng cực đại trong mạng bằng giá trị khả năng thông qua của lát cắt nhỏ nhất

Chứng minh

Sinh viên tư chứng minh ■

Mối quan hệ giữa luồng cực đại - lát cắt nhỏ nhất

Cho một mạng N = (V, E, C, s, t). Ta có những nhận xét sau

Giá trị của một luồng f trong mạng bất kỳ luôn nhỏ hơn giá trị khả năng thông qua của một lát cắt (S,T) bất kỳ trong mạng

$$f(N) \le c(S, T) \tag{7.7}$$

Giá trị luồng cực đại trong mạng không vượt quá khả năng thông qua của lát cắt nhỏ nhất trong mang

Spring 2018 Graph Theory 66

Mối quan hệ luồng cực đại - lát cắt - đường tăng luồng

Định lý 7.3

Các mệnh đề dưới đây là tương đương:

- 1. f là luồng cực đại
- 2. Không tìm được đường tăng luồng P cho f
- **3.** Tồn tại một lát cắt (S, T) sao cho c(S, T) = f(N)

Chứng minh

Sinh viên đọc tài liệu [Trần and Dương, 2013] ■

Spring 2018 Graph Theory 67 Spring 2018 Graph Theory 68

Mối quan hệ luồng cực đại - lát cắt - đường tăng luồng (cont.)

Định lý 7.4 (Định lý về tính nguyên)

Nếu khả năng thông qua của các cung trên mạng đều là số nguyên thì luồng cực đại cũng sẽ có giá trị nguyên

Chứng minh

Sinh viên đọc tài liệu [Trần and Dương, 2013] ■

Spring 2018 Graph Theory 69

Tài liệu tham khảo (cont.)

- Trần, T. and Dương, D. (2013).

 Giáo trình lý thuyết đồ thị. 2013.

 NXB Đại Học Quốc Gia TPHCM.
- West, D. B. et al. (2001).

 Introduction to graph theory.

 Prentice hall Englewood Cliffs.

Spring 2018 Graph Theory 71

Tài liệu tham khảo

Graph theory. 2005.

Springer-Verlag.

Moore, E. F. (1959).

The shortest path through a maze.

Bell Telephone System.

Rosen, K. H. and Krithivasan, K. (2012).

Discrete mathematics and its applications.

McGraw-Hill New York.

Tarjan, R. (1972).

Depth-first search and linear graph algorithms.

SIAM journal on computing, 1(2):146-160.

Spring 2018 Graph Theory 70