$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Reducimos módulo 9

$$15x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Reducimos módulo 9

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} & \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$mcd(6, 9) = 3$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$mcd(6, 9) = 3$$

6 es múltiplo de 3

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

mcd(6, 9) = 3 6 es múltiplo de 3 La congruencia tiene solución.

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

mcd(6, 9) = 3
6 es múltiplo de 3
La congruencia tiene solución.
Dividimos todo por 3

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$
$$2x \equiv 2 \pmod{3}$$

mcd(6, 9) = 3
6 es múltiplo de 3
La congruencia tiene solución.
Dividimos todo por 3

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$
$$2x \equiv 2 \pmod{3}$$

Calculamos el inverso de 2 módulo 3

$$\begin{cases}
15x \equiv 6 \pmod{9} & \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

 $6x \equiv 6 \pmod{9}$
 $2x \equiv 2 \pmod{3}$

Calculamos el inverso de 2 módulo 3 Dicho inverso vale 2

$$\begin{cases} 15x \equiv 6 \pmod{9} \longleftarrow \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$
$$2x \equiv 2 \pmod{3}$$

Calculamos el inverso de 2 módulo 3

Dicho inverso vale 2

Multiplicamos por 2

$$\begin{cases}
15x \equiv 6 \pmod{9} & \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$
$$2x \equiv 2 \pmod{3}$$
$$x \equiv 2 \cdot 2 \pmod{3}$$

Calculamos el inverso de 2 módulo 3

Dicho inverso vale 2

Multiplicamos por 2

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Reducimos módulo 3

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Reducimos módulo 3

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Luego la solución es

$$15x \equiv 6 \pmod{9}$$

 $6x \equiv 6 \pmod{9}$
 $2x \equiv 2 \pmod{3}$
 $x \equiv 2 \cdot 2 \pmod{3}$
 $x \equiv 1 \pmod{3}$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

$$x = 1 + 3k_1 : k_1 \in \mathbb{Z}$$

Luego la solución es

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos x en la segunda congruencia

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

Sustituimos x en la segunda congruencia

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

Operamos y reducimos módulo 21

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$

Operamos y reducimos módulo 21

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1 + 3k_1) \equiv 11 \pmod{21}$$

 $8 + 24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$

Operamos y reducimos módulo 21

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1 + 3k_1) \equiv 11 \pmod{21}$$

 $8 + 24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

Operamos y reducimos módulo 21

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$mcd(3, 21) = 3$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$mcd(3, 21) = 3$$

3 es múltiplo de 3

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$

Luego la solución es

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Luego la solución es

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 = 1 + 7k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos k_1 en x

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 = 1+7k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos k_1 en x

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1+7k_2$
 $k_1 \equiv 1+7k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1+7k_2$
 $k_1 \equiv 1+3(1+7k_2)$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $k_1 = 1 + 3(1+7k_2)$
 $k_1 = 4 + 21k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y esta es la solución de las dos primeras congruencias.

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $x = 1+3(1+7k_2)$
 $x = 4+21k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y esta es la solución de las dos primeras congruencias.

$$x=4+21k_2:\ k_2\in\mathbb{Z}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$
 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $x = 1 + 3(1+7k_2)$
 $x = 4 + 21k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} &\longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

O lo que es lo mismo:

$$x \equiv 4 \pmod{21}$$

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Sustituimos x en la tercera congruencia

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4+21k_2) \equiv 7 \pmod{16}$$

Sustituimos x en la tercera congruencia

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Operamos y reducimos módulo 16

$$11(4+21k_2) \equiv 7 \pmod{16}$$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$

Operamos y reducimos módulo 16

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Operamos y reducimos módulo 16

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Operamos y reducimos módulo 16

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$mcd(7, 16) = 1$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$mcd(7, 16) = 1$$

La congruencia tiene solución.

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

mcd(7, 16) = 1La congruencia tiene solución.Calculamos el inverso de 7 (mód 16)

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$\begin{array}{c|cccc}
 & 16 & 0 & \\
\hline
 & 7 & 1 & \\
\hline
 & 2 & 2 & -2 & \\
\hline
 & 1 & 3 & \\
\end{array}$$

$$0 - 2 \cdot 1 = -2$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$\begin{array}{c|cccc}
16 & 0 \\
\hline
7 & 1 \\
\hline
2 & 2 & -2 \\
\hline
1 & 3 & 7 \\
\end{array}$$

$$1 - 3 \cdot (-2) = 7$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Por tanto

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Por tanto el inverso vale 7

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Por tanto
el inverso vale 7
Multiplicamos por 7

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Por tanto
el inverso vale 7
Multiplicamos por 7

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Reducimos módulo 16

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Reducimos módulo 16

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Luego la solución es

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Luego la solución es

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos k_2 en x

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos k_2 en x

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$
 $k_3 \equiv 4 + 21(13 + 16k_3)$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$
 $k_3 \equiv 4 + 21(13 + 16k_3)$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

$$44 + 231k_2 \equiv 7 \pmod{16}$$

$$231k_2 \equiv -37 \pmod{16}$$

$$7k_2 \equiv 11 \pmod{16}$$

$$k_2 \equiv 11 \cdot 7 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 \equiv 13 + 16k_3$$

$$x = 4 + 21(13 + 16k_3)$$

$$x = 277 + 336k_3$$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y esta es la solución de las tres primeras congruencias.

$$x = 277 + 336k_3 : k_3 \in \mathbb{Z}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

$$44 + 231k_2 \equiv 7 \pmod{16}$$

$$231k_2 \equiv -37 \pmod{16}$$

$$7k_2 \equiv 11 \pmod{16}$$

$$k_2 \equiv 11 \cdot 7 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 \equiv 13 + 16k_3$$

$$x = 4 + 21(13 + 16k_3)$$

$$x = 277 + 336k_3$$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}}$$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Sustituimos x en la cuarta congruencia

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

Sustituimos x en la cuarta congruencia

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Reducimos módulo 22

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$2016 = 22 \cdot 91 + 14$$

$$-1652 = 22 \cdot (-76) + 20$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Reducimos módulo 22

$$2016 = 22 \cdot 91 + 14$$

 $-1652 = 22 \cdot (-76) + 20$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

$$mcd(14, 22) = 2$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

$$mcd(14, 22) = 2$$

2 es divisor de 20

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

Calculamos el inverso de 7módulo 11

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

11	0
7	1

$6(277 + 336k_3)$	≡ 10	(mód 22)
$1662 + 2016k_3 \equiv$	≣ 10	(mód 22)
$2016k_3\equiv -16$	52 (mód 22)
$14k_3 \equiv 20$	(mó	d 22)
$7k_3 \equiv 10$	(móc	l 11)

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

	11	0	
Ī	7	1	
Ī			$11 = 7 \cdot 1 + 4$
			$7 = 4 \cdot 1 + 3$
			$4 = 3 \cdot 1 + 1$

$6(277 + 336k_3)$	≣ 10	(mód 22)
$1662 + 2016k_3$	≡ 10	(mód 22)
$2016k_3 \equiv -16$	52 (mód 22)
$14k_3\equiv 20$	(mó	d 22)
$7k_3 \equiv 10$	(móc	l 11)

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

$6(277+336k_3)\equiv$	10 (mód 22)
$1662+2016k_3\equiv$	10 (mód 22)
$2016k_3 \equiv -1653$	2 (mód 22)
$14k_3 \equiv 20$	(mód 22)
$7k_3 \equiv 10$ (mód 11)

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

Puesto que
$$-3 \equiv 8 \pmod{11}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

Puesto que
$$-3 \equiv 8 \pmod{11}$$

El inverso vale 8

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

Puesto que
$$-3 \equiv 8 \pmod{11}$$

El inverso vale 8
Multiplicamos por 8

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

Puesto que
$$-3 \equiv 8 \pmod{11}$$

El inverso vale 8
Multiplicamos por 8

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

Reducimos módulo 11

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \leftarrow$$

Reducimos módulo 11

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

La solución de esta congruencia es

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$x = 277 + 336k_3$$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

La solución de esta congruencia es

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 + 11 \cdot k$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

Sustituimos k_3 en x

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 + 11 \cdot k$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

Sustituimos k_3 en x

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 + 11 \cdot k$
 $x = 277 + 336(3 + 11 \cdot k)$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right. \leftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 + 11 \cdot k$
 $k_3 \equiv 277 + 336(3 + 11 \cdot k)$

$$x = 277 + 336k_3$$

$$\left\{ 6x \equiv 10 \pmod{22} \right\} \longleftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 + 11 \cdot k$
 $k_4 \equiv 277 + 336(3 + 11 \cdot k)$
 $k_5 \equiv 1285 + 3696 \cdot k : k \in \mathbb{Z}$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

La solución de este sistema de congruencias es

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

La solución de este sistema de congruencias es

$$x = 1285 + 3696 \cdot k : k \in \mathbb{Z}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la primera:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la primera:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

 $15 \cdot 1285 - 6 = 19269$ Que es múltiplo de 9

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la primera:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la primera:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la tercera:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

 $15 \cdot 1285 - 6 = 19269$ Que es múltiplo de 9 ya que $19269 = 9 \cdot 2141$ $8 \cdot 1285 - 11 = 10269$ Que es múltiplo de 21 ya que $10269 = 21 \cdot 489$ $11 \cdot 1285 - 7 = 14128$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la tercera:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la tercera:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la tercera:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Y para la cuarta:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias. Y para la cuarta:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$
 $6 \cdot 1285 - 10 = 7700$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias. Y para la cuarta:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$
 $6 \cdot 1285 - 10 = 7700$
Que es múltiplo de 22

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias. Y para la cuarta:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$
 $6 \cdot 1285 - 10 = 7700$
Que es múltiplo de 22
ya que $7700 = 22 \cdot 350$