CS 4750 Milestone 1: DB design

Yusuf Cetin (yc5xw), Matthew Remigino (mr3ea), Maajid Husain (mah2ksc), Alex Becker (amb3yn)

Part 1: Develop E-R diagram

Our ER diagram comprises 10 tables describing users, boat types, extra workouts, and their relationships. Coaches and athletes are subclasses of User. Our four boat types are each subclasses of Boat. Each ExtraWork must exist with an Athlete. Athletes have two calculated attributes, G8 and age. G8 is a weight adjusted 2k score and age will be calculated from date of birth. An athlete can row in only one boat at a time, and a boat can have many athletes in it. A Daily workout is connected to athletes via a "practice relation". Over the course of a season an athlete will complete many daily workouts, and each daily workout will have many athletes complete it in the form of practice.

See next page for ER diagram

Part 2: Convert E-R diagram into tables

- 1. Athlete(<u>user_id</u>, first_name, last_name, email, phone_number, date_of_birth, grad_year, height, class, boat_side, 2KPR, weight, g8, age)
- 2. Coach(<u>user_id</u>, first_name, last_name, email, phone_number, position)
- 3. ExtraWork(athlete_user_id, workout_id, minutes, date, workout_type, description)
- 4. Single(<u>name</u>, oars, rigging, one_seat)
- 5. TwoMan(name, oars, rigging, one seat, two seat)
- 6. FourMan(<u>name</u>, oars, rigging, coxswain, one_seat, two_seat, three_seat, four_seat)
- 7. Eight(<u>name</u>, oars, rigging, coxswain, one_seat, two_seat, three_seat, four_seat, five_seat, six_seat, seven_seat, eight_seat)
- 8. DailyWorkout(<u>workout_ID</u>, description)
- 9. RowsIn(<u>athlete_user_id</u>, boat_name)
- 10. Practices(athlete user id, daily workout ID, date)

Part 3: Decompose tables using 3NF or BCNF

All tables are decomposed using 3NF

1. Athlete

Table Keys:

```
user id: A
first name: B
last name: C
email: D
phone number: E
date_of_birth: F
grad year: G
height: I
class: J
boat side: K
2KPR: L
weight: M
g8: N
age: 0
FDs:
{ A \rightarrow BCDEFGHIJKLMNO,
  LM \rightarrow N,
  F \rightarrow O }
```

Calculate F_c

1. Copy FD A → BCDEFGHIJKLMNO	2. No reflexivity	3. Remove extraneous attributes A → BCDEFGHIJKLMNO
LM → N		$LM \rightarrow N$
F -> O		F → O

Tables:

ABCDEFGHIJKLMNO // LMN // FO AthleteData // ErgData // AgeData

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. Dependency preserving:
 - a. $A \rightarrow BCDEFGHIJKLMNO$ is satisfied by ABCDEFGHIJKLMNO
 - b. $LM \rightarrow N$ is satisfied by LMN
 - c. $F \rightarrow O$ is satisfied by FO
- 4. Lossless Join

- a. $ABCDEFGHIJKLMNO \cap LMN = LMN \& LM \text{ is } SK \text{ of } LMN$
- b. $ABCDEFGHIJKLMNO \cap FO = FO \& F \text{ is } SK \text{ of } FO$

2. Coach

Table Keys:

```
user_id: A
first_name: B
last_name: C
email: D
phone_number: E
position: F
FDs:
{ A \rightarrow BCDEF }
```

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
A → BCDEF		remove

Tables:

ABCDEF

Coach

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

3. ExtraWork

Table key:

```
athlete_user_id: A
workout_id: B
minutes: C
date: D
workout_type: E
description: F
```

FDs:

```
\{ AB \rightarrow CDEF \}
```

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
AB → CDEF		remove

Tables:

ABCDEF

ExtraWork

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

4. Single

Table Keys:

```
name: A
oars: B
rigging: C
one seat: D
```

FDs:

 $\{ A \rightarrow BCD \}$

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
A → BCD		remove

Tables:

ABCD

Single

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

5. TwoMan

Table Keys:

```
name: A
oars: B
rigging: C
one_seat: D
```

```
two_seat: E
```

FDs:

 $\{ A \rightarrow BCDE \}$

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to	l
A → BCDE		remove	l

Tables:

ABCDE

TwoMan

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

6. FourMan

Table Keys:

name: A
oars: B
rigging: C
coxswain: D
one_seat: E
two_seat: F
three_seat: G
four_seat: H

FDs:

 $\{ A \rightarrow BCDEFG \}$

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
A → BCDEFGH		remove

Tables:

ABCDEFGH

FourMan

Prove 3NF:

1. Each column is atomic and flat

- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

7. Eight

Table Keys:

```
name: A
oars: B
rigging: C
coxswain: D
one_seat: E
two_seat: F
three_seat: G
four_seat: H
five_seat: I
six_seat: j
seven_seat: k
eight_seat: L
```

FDs:

```
\{ A \rightarrow BCDEFGHIJ \}
```

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
A → BCDEFGHIJ		remove

Tables

ABCDEFGHIJ

TwoMan

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

8. DailyWorkout

Table Keys:

```
workout_id: A
description: B
```

FDs:

```
\{ A \rightarrow B \}
```

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
$A \rightarrow B$		remove

Tables:

AΒ

DailyWorkout

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

9. RowsIn

Table Keys:

```
athlete_user_id: A
boat_name: B
```

FDs:

 $\{ A \rightarrow B \}$

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
A → B		remove

Tables:

AΒ

RowsIn

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, A, is a SK

10. Practices

Table Keys:

```
athlete_user_id: A
daily_workout_id: B
date: C
```

FDs:

 $\{AB \rightarrow C\}$

Calculate F_c:

1. Copy FD	2. No reflexivity	3. No extraneous attributes to
AB→ C		remove

Tables:

ABC

Practices

Prove 3NF:

- 1. Each column is atomic and flat
- 2. No partial dependency
- 3. The LHS of the FD in the relation, AB, is a SK

Post normalization schema:

- 1. AthleteData(<u>user_id</u>, first_name, last_name, email, phone_number, date_of_birth, grad_year, height, class, boat_side, 2KPR, weight, g8, age)
- 2. ErgData(<u>2KPR</u>, <u>weight</u>, g8)
- 3. AgeData(date_of_birth, age)
- 4. Coach(user id, first name, last name, email, phone number, position)
- 5. ExtraWork(athlete user id, workout id, minutes, date, workout type, description)
- 6. Single(name, oars, rigging, one seat)
- 7. TwoMan(<u>name</u>, oars, rigging, one_seat, two_seat)
- 8. FourMan(<u>name</u>, oars, rigging, coxswain, one seat, two seat, three seat, four seat)
- 9. Eight(<u>name</u>, oars, rigging, coxswain, one_seat, two_seat, three_seat, four_seat, five_seat, six_seat, seven_seat, eight_seat)
- 10. DailyWorkout(workout ID, description)
- 11. RowsIn(<u>athlete user id</u>, boat_name)
- 12. Practices(athlete user id, daily workout ID, date)

Contact Info

Alex Becker, amb3yn@virginia.edu
Yusuf Cetin, yc5xw@virginia.edu
Maajid Husain, mah2ksc@virginia.edu
Matt Remigino, mr3ea@virginia.edu