Ponovljeni završni međuispit iz Matematike 3R

(pitanja iz trećeg ciklusa nastave) 05.02.2008.

1. (4 boda)

Zadan je graf G čiji vrhovi su svi podskupovi skupa $\{1,2,3\}$. Vrhovi X i Y su susjedni ako i samo ako je $X \subseteq Y$ i $X \setminus Y$ jednočlan, ili $Y \subseteq X$ i $X \setminus Y$ jednočlan.

- a) (1b) Nacrtajte graf G.
- b) (1b) Nađite matricu susjedstva grafa G.
- c) (1b) Jesu li grafovi G i 3-kocka Q_3 izomorfni? Obrazložite.
- d) (1b) Odredite $\lambda(G)$, tj. bridnu povezanost od G.

2. (3 boda)

- a) (2b) Iskažite i dokažite Lemu o rukovanju.
- b) (1b) Postoji li graf s neparnim brojem vrhova koji su svi neparnog stupnja? Detaljno obrazložite.

3. (2 boda)

Dokažite tvrdnju:

Ako su svi vrhovi povezanog grafa G parnog stupnja, onda je G eulerovski.

4. (4 boda)

Neka je G jednostavan graf sn vrhova, m bridova i k komponenata povezanosti. Dokažite da je

$$n-k \le m \le \frac{(n-k)(n-k+1)}{2}$$

5. (3 boda)

Neka je T povezan graf kojemu je svaki brid most. Dokažite da su svaka dva vrha od T povezana točno jednim putem.

6. (3 boda)

Neka je G kocka s 2^3 vrhova, te neka je dan graf $H = G - v, v \in V(G)$. Je li H hamiltonovski? Je li skoro hamiltonovski? Dokažite tvrdnje.

7. (3 boda)

U težinskom grafu zadanom na Slikom 1 Dijkstrinim algoritmom na
đite najkraći put od vrha u do vrha v. Kolika je duljina tog puta?

8. (3 boda)

Riješite problem kineskog poštara za graf sa Slike 2. Kolika je duljina poštareve šetnje? Ispišite dobivenu šetnju. Kojim ste se svim algoritmima koristili?

Slika 2

PITANJA IZ CIJELOG GRADIVA

9. (3 boda)

Razvijte u Fourierov red funkciju $f(x) = \sin x$, definiranu na intervalu $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

10. (2 boda)

Primjenom Laplaceove transformacije odredite original funkcije

$$F(s) = \frac{s \cdot e^{-2s}}{s^2 + 6s + 10}$$

11. (3 boda)

Koliko ima parnih sedmeroznamenskastih brojeva u kojima neparnih znamenaka ima više nego parnih? (0 smatramo parnom znamenkom)

12. (2 boda)

Izvedite funkciju izvodnicu za niz Fibonaccijevih brojeva.

Zabranjena je upotreba kalkulatora. Ispit se piše 150 minuta.

Rješenja ponovljenog završnog međuispita iz Matematike 3R

(pitanja iz trećeg ciklusa nastave) 05.02.2008.

1. (4 boda)

a) (1b) Graf ima 8 vrhova, k-člane podskupove-vrhove spajamo bridom s njegovim k-1-članim podskupovima-vrhovima.

b) (1b)

- c) (1b) Treba konstruirati neki izomorfizam $f: G \to Q_3$. Neka je f npr. funkcija koja elementu $X \in G$ pridružuje "kod" skupa X. To nije jedini izomorfizam.
- d) (1b) $\lambda(G) = 3$ jer ako maknemo sva 3 brida oko nekog vrha, on ostaje izoliran, a graf postaje nepovezan.

2. (3 boda)

- a) (2b) Knjiga str.7.
- b) (1b) Ne, jer bi tada suma stupnjeva bila neparan broj, a to je u kontradikciji s Lemom o rukovanju.

3. (2 boda)

Knjiga str.27-28.

4. (4 boda)

Knjiga str.20-21.

5. (3 boda)

Teorem 5, str 24. $iv) \Rightarrow v$:

Zbog povezanosti od T, između svaka dva vrha postoji barem jedan put. Ako bi između neka dva vrha postojala dva puta, tvorila bi zatvorenu šetnju, koja sadrži barem jedan ciklus, a bridovi u ciklusu nisu mostovi, suprotno pretpostavci.

6. (3 boda)

Odstranjivanjem vrha v, odrstanili smo i tri brida. Kroz (bivše) susjede od v potencijalni hamiltonovski ciklus prolazi jednoznačno, jer su to vrhovi stupnja 2. Zatvoreni ciklus je premali i jedan će vrh ostati izvan ciklusa. Dakle, graf nije hamiltonovski. Postoji put kroz sve vrhove pa je graf skoro hamilonovski.

7. (3 boda)

Potrebno je detaljno i jasno provesti Dijkstrin algoritam. Duljina puta iznosi 3+1+2+1+3=10.

8. (3 boda)

Prvo Fleuryevim algoritmom pronađemo stazu koja sadrži sve bridove, a zatim pronađemo najkraći put između prvog i zadnjeg vrha staze koristeći Dijkstrin algoritam. Ukupna duljina šetnje je 55 + 9 = 64.

PITANJA IZ CIJELOG GRADIVA

9. (3 boda)

f neparna $\Rightarrow a_n = 0, \forall n$

$$b_n = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \sin x \sin 2nx dx = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \frac{\cos(2n-1)x - \cos(2n+1)x}{2} dx =$$

$$= \frac{2}{\pi} \left(\frac{\sin(2n-1)x}{2n-1} - \frac{\sin(2n+1)x}{2n+1} \Big|_0^{\frac{\pi}{2}} \right) =$$

$$= \frac{2}{\pi} \left(\frac{\sin(2n-1)\frac{\pi}{2}}{2n-1} - \frac{\sin(2n+1)\frac{\pi}{2}}{2n+1} \right) =$$

$$= \frac{2}{\pi} \left(\frac{\sin n\pi \cos \frac{\pi}{2} - \cos n\pi \sin \frac{\pi}{2}}{2n-1} - \frac{\sin n\pi \cos \frac{\pi}{2} + \cos n\pi \sin \frac{\pi}{2}}{2n+1} \right) =$$

$$= \frac{-8n}{\pi} \frac{\cos n\pi}{4n^2 - 1} = \frac{8n}{\pi} \frac{(-1)^{n+1}}{4n^2 - 1}$$

$$S(x) = \sum_{n=1}^{\infty} \frac{8n}{\pi} \frac{(-1)^{n+1}}{4n^2 - 1} \sin 2nx$$

10. (2 boda)

$$F(s) = \frac{s \cdot e^{-2s}}{s^2 + 6s + 10} = \frac{(s+3)e^{-2s}}{(s+3)^2 + 1} - \frac{3e^{-2s}}{(s+3)^2 + 1}$$
$$f(t) = \cos(t-2)e^{-3(t-2)}u(t-2) - 3\sin(t-2)e^{-3(t-2)}u(t-2) =$$
$$= (\cos(t-2) - 3\sin(t-2))e^{-3(t-2)}u(t-2)$$

11. (3 boda)

Zadnja znamenka mora biti parna.

1 parna znamenka : $5 \cdot 5^6$

2 parne znamenke : (vodeća znamenka parna) $5 \cdot 4 \cdot 5^5 + (\text{vodeća znamenka neparna}) 5 \cdot 5\binom{5}{1} \cdot 5 \cdot 5^4$

3 parne znamenke : (vodeća znamenka parna) $5 \cdot 4 \cdot \binom{5}{1} \cdot 5 \cdot 5^4 + \text{(vodeća znamenka neparna)}$

 $5 \cdot 5 \cdot {5 \choose 2} \cdot 5^2 \cdot 5^3$

Ukupno:
$$5^7 + 4 \cdot 5^6 + 5^8 + 4 \cdot 5^7 + {5 \choose 2} 5^7 = 1625000$$

12. (2 boda)

$$F_n = F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$$

$$\sum_{n=2}^{\infty} F_n x^n = \sum_{n=2}^{\infty} F_{n-1} x^n + \sum_{n=2}^{\infty} F_{n-2} x^n$$

$$\sum_{n=2}^{\infty} F_n x^n = x \sum_{n=1}^{\infty} F_{n-1} x^n + x^2 \sum_{n=0}^{\infty} F_{n-2} x^n$$

$$g(x) - F_0 - F_1 x = x [g(x) - F_0] + x^2 g(x)$$

$$g(x) = \frac{x}{1 - x - x^2}$$

Rješenja su dana u skraćenom obliku.