COMPAS データセットを用いた再犯予測モデル の精度向上

工学部 電子情報学科 学籍番号:08D23091 辻 孝弥

May 21, 2025

1 はじめに

本課題では、COMPAS データセットを用いて再犯予測モデルの精度向上を目的とした。XGBoost と MLP の 2 種類のモデルを構築・改善し、さらに両者をスタッキングする手法を適用した。

2 実験方法

2.1 XGBoost モデルの導入とハイパーパラメータ調整

使用モデル: XGBClassifier

2.1.1 Optuna による事前探索と二段階学習

Optuna を用いて最適なハイパーパラメータを事前に調査し、その結果をbest_params に設定して一次学習を実施した。

続いて一次学習済みモデルで派生特徴量を生成し、クラス不均衡補正などを加えた新たなパラメータセット new_params で再度全データを用いた二次学習を行った。

2.1.2 主なハイパーパラメータ設定

- 学習率 (learning_rate): $0.05 \rightarrow 0.08$
- 木の深さ (max_depth):3
- サブサンプリング率 (subsample): 0.90
- 特徴量サンプリング率 (colsample_bytree):0.78
- 最小子ノード重量 (min_child_weight):5
- 正則化パラメータ (gamma): 0.50
- L1 正則化 (reg_alpha): 5.4×10^{-6}
- L2 正則化 (reg_lambda): 5.88

- 木数 (n_estimators): 200
- 早期停止 (early_stopping_rounds):10
- クラス不均衡補正 (scale_pos_weight):訓練データのクラス比に基づき自動設定

2.2 特徴量エンジニアリング

2.2.1 不要特徴量の削減

重要度上位 80%を残し、下位 20%を削除(priors_count・age は保護)

2.2.2 ChatGPT による特徴量選択

全ての CSV カラムを逐次試すのは非効率なため、ChatGPT を用いて平均的 に効果が見込める無難な派生特徴量案を取得し、それを見ながら実装した。

2.2.3 主な派生特徴量

- priors_per_year (前科数/(年齢+1))
- sum_priors_and_age (前科数+年齢)
- age_squared (年齢²)
- log_priors_p1 (log(前科数+1))
- age_times_priors (年齢×前科数)
- total_juv_cnt (少年期犯罪合計)
- juv_ratio (少年期犯罪合計/(前科数+1))
- log_len_stay (拘束期間の対数化)

2.2.4 dob (生年月日) の扱い

- 初期には再犯率と無関係と判断し除外したが、除外時の Accuracy が 0.688→0.679 に低下
- 最終的には dob を含める実装とし、Accuracy を 0.699→0.710 へ改善

2.3 MLP モデルの構造・学習戦略改善

2.3.1 ネットワーク構造

隠れ層: $256 \rightarrow 128$, ReLU + BatchNorm + Dropout(0.3/0.2)

2.3.2 学習戦略

- Optimizer: Adam(lr=1e-3, weight_decay=1e-5)
- Scheduler : CosineAnnealingLR
- 損失関数:クラス重み付き CrossEntropy
- EarlyStopping: patience=15

2.4 モデルスタッキング

• メタ学習器:LogisticRegression (L2, C=1.0)

● 入力特徴:XGBoost/MLP の検証データ予測確率

• 閾値決定: Youden's J による最適閾値

3 結果

モデル	Accuracy
① MLP 単体	0.675
② XGBoost 単体+特徴量変更	0.688
③ ②モデル(dob 除外)	0.679
④ 今回実装モデル(dob 除外)	0.699
⑤ 完全実装モデル(dob 含む)	0.710

3.1 ⑤の詳細ログ

3.1.1 混同行列

[[1591 421] [627 968]]

3.1.2 分類レポート

	precision	recall	f1-score	support
0	0.717	0.791	0.752	2012
1	0.697	0.607	0.649	1595
accuracy			0.710	3607
macro avg	0.707	0.699	0.701	3607
weighted avg	0.708	0.710	0.706	3607

 $\begin{array}{c} Accuracy: \ 0.710 \\ ROC\text{-}AUC: \ 0.767 \\ LogLoss: \ 0.576 \end{array}$

4 考察

4.1 Optuna によるハイパラ最適化

一次学習で得られたパラメータをもとに、二次学習時にはクラス不均衡補正などを加えた new_params を適用し、性能向上に寄与した。

4.2 ChatGPT 活用の特徴量設計

無難で効果の期待できる特徴量案を迅速に取得でき、実装工数を大幅に削減できた。

4.3 dob 除外の効果検証

当初「再犯率に関係がない」と判断して dob を除外したが、Accuracy が $0.688 \rightarrow 0.679$ に低下した。

dob を含めることで $0.699 \rightarrow 0.710$ へ改善し、生年月日情報が有用であることを確認した。

4.4 スタッキング効果

異なるモデルの補完性により、最終的に Accuracy:0.710 / ROC-AUC:0.767 / LogLoss:0.576 を達成した。

5 結論

Optuna による二段階ハイパラ最適化と ChatGPT 提案の特徴量エンジニアリングを組み合わせ、実装に忠実に dob 情報の有効性を再検証した結果、再犯予測タスクにおいて高い汎化性能を実現できた。今後はさらに異なる情報源やモデル統合手法を探索し、性能向上を図る余地がある。

参考文献

スタッキングの実装と効果について
https://potesara-tips.com/ensemble-stacking/#toc13