Implicit Surfaces Overview

$$\forall \mathbf{p} \in S, \mathbf{n} = -\nabla f(\mathbf{p}) / || \nabla f(\mathbf{p}) ||$$

$$\nabla f(\mathbf{p}) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \quad \Omega = \left\{\mathbf{p} \in \mathbf{R}^3, f(\mathbf{p}) > 0\right\}$$

From mathematics ...

... to the screen

Introduction

► Introduction

Mathématiques

Applications

Applications

Représentation mathématique adaptée à la modélisation de volumes (de géométrie et de topologie changeante)

Terminator 2 Judgment day

Verrous scientifiques et techniques

Grande variété de formes avec une représentation compacte

Introduction

Introduction

▶ Mathématiques **Applications**

L!RİS Université Lumière Lyon 2

Définition

Caractérisation indirecte de la surface $S = \{ \mathbf{p} \in \mathbf{R}^3, f(\mathbf{p}) = 0 \}$

Propriétés

Les surfaces implicites sont des formes géométriques à 2 dimensions dans R³

Une surfaces implicite est une 2 variété

Le voisinage autour de tout point **p** de la surface est équivalent à un disque (difféomorphisme)

Surfaces Eulériennes

Formule d'Euler pour les maillages V - E + F = 2 - 2 H

$$V - E + F = 2 - 2 H$$

Introduction

Introduction

MathématiquesApplications

Théorème des fonctions implicites

Si 0 est une valeur régulière de f, alors la surface implicite $f^{-1}(0)$ est une 2 variété

Théorème de séparation

Une 2 variété sépare l'espace \mathbb{R}^3 en une surface et 2 sous domaine connexes : une région finie dans la surface \mathbb{S} et une région infinie dehors

Mathématiques

Introduction

Mathématiques

Applications

Définition et propriétés

Intérieur de la surface Gradient

$$\nabla f(\mathbf{p}) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Approximation numérique des dérivées

$$\frac{\partial f}{\partial x} \approx \frac{f(x+\varepsilon, y, z) - f(x-\varepsilon, y, z)}{2\varepsilon}$$

Normale à la surface

$$\forall \mathbf{p} \in S, \mathbf{n} = -\nabla f(\mathbf{p}) / \|\nabla f(\mathbf{p})\|$$

Suivi de gradient

Algorithme fondamental de projection d'un point sur la surface

Mathématiques

Introduction

MathématiquesApplications

Matrice Hessienne

La matrice hessienne de f est la matrice carrée $\mathbf{H}(f)$ de ses dérivées partielles secondes

$$\mathbf{H}_{ij}(f) = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$\mathbf{H}_{ij}(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix}$$

Pour f de classe C^2 définie sur un ouvert Ω de \mathbb{R}^3 , cette matrice est bien définie et symétrique

Applications

Nature des points critiques de la fonction f (annulation de ∇f) Un point critique \mathbf{p} de f est dégénéré si det ($\mathbf{H}(f(\mathbf{p})) = 0$

Classification par analyse du signe des valeurs propres $\lambda_k(\mathbf{H}(f))$

 $\mathbf{H}(f)$ définie positive, la fonction f atteint un minimum local **H** (f) définie négative, la fonction f atteint un maximum local

 $\mathbf{H}(f)$ a des valeurs propres positives et négatives : point col

Mathématiques

Introduction

MathématiquesApplications

Propriétés

La fonction f doit être au moins de classe C^0 Les fonctions f de classe C^1 ou C^2 sont plus régulières

Fonctions Lipschitziennes

Par définition

$$\exists \lambda > 0 \quad \forall (\mathbf{x}, \mathbf{y}) \in \Omega \times \Omega \quad |f(\mathbf{x}) - f(\mathbf{y})| < \lambda |\mathbf{x} - \mathbf{y}|$$

Modélisation de terrains

Introduction

Mathématiques

Applications

Apport des surfaces implicites

Caractérisation volumique des matériaux Lissage de la surface par convolution Représentation implicite des rochers

Fondamentaux

Introduction

Mathématiques

Applications

Structure de données

Caractérisation volumique des matériaux en piles de matière Lissage de la surface par convolution

$$S = \left\{ \mathbf{p} \in \mathbb{R}^3, f(\mathbf{p}) = 0 \right\}$$

Fonction de potentiel

Convolution sur un support compact cubique

$$f(\mathbf{p}) = \frac{i(\mathbf{p})}{4\sigma^3} - 1 \qquad i(\mathbf{p}) = (g * h)(\mathbf{p}) = \int_{\mathbb{R}^3} g(\mathbf{p}) h(\mathbf{p} - \mathbf{q}) d\mathbf{q}$$
Squelette
$$g(\mathbf{p}) = \begin{cases} 1 \text{ si } \mathbf{p} \in M \\ 0 \text{ sinon} \end{cases}$$
Noyau
$$h(\mathbf{q}) = \begin{cases} 1 \text{ si } \|\mathbf{q}\|_{\infty} < \sigma \\ 0 \text{ sinon} \end{cases}$$

$$f(\mathbf{p}) = \frac{i(\mathbf{p})}{4\sigma^3} - 1 = 2\frac{\mathcal{V}_M}{\mathcal{V}_{\Omega}} - 1$$

A. Peytavie, E. Galin, J. Grosjean, S. Mérillou. Arches: a Framework for Modeling Complex Terrains. *Computer Graphics Forum (Proceedings of Eurographics)*, **28**(2), 457-467, 2009.

Opérations d'édition

Introduction

Mathématiques

Applications

Combinaison des modèles implicites et discrets

Créer une primitive avec un centre c Mélange avec la primitive implicite

Discrétisation de la surface implicite en piles

Terrains

Introduction

Mathématiques

▶ Applications

Sculpture

Génération de surplombs et de gorges

11

Introduction

Mathématiques

Applications

Principe de la méthode

Pavage apériodique de motifs tridimensionnels

Génération d'un ensemble de configuration cubiques C_k

Distribution cohérente de centres \mathbf{c}_j dans les cubes \mathbf{C}_k

Instanciation

Seuls les rochers dont les centres \mathbf{c} sont à l'intérieur d'un volume de référence Ω sont instanciés

Construction des cellules de Voronoï V_j pour les nuages $\{c_j\}$

Erosion locale des cellules V_j pour définir les rochers

12

A. Peytavie, E. Galin, J. Grosjean, S. Mérillou. Procedural generation of rock piles using aperiodic tiling. *Computer Graphics Forum (Proceedings of Pacific Graphics)*, **28**(7), 1801-1809, 2009.

Génération de la forme des rochers

Introduction

Overview

Tile Generation

▶ Volume Generation

Erosion Process

Instantiation

Results

Conclusion

Génération

Volumes des cellules de Voronoï aux points \mathbf{p}_k Distance anisotrope pour contrôler la forme et l'orientation

$$d_k(\mathbf{p}) = \frac{1}{g_k} f_k(\mathbf{p})$$

 g_k et \mathbf{n}_k contrôlent la taille des blocs \mathbf{x} , \mathbf{y} , \mathbf{z} orientation des rochers α_k , β_k , γ_k facteur d'échelle

$$f_k(\mathbf{p}) = \alpha_k ((\mathbf{p} - \mathbf{p}_k)\mathbf{x})^2 + \beta_k ((\mathbf{p} - \mathbf{p}_k)\mathbf{y})^2 + \gamma_k ((\mathbf{p} - \mathbf{p}_k)\mathbf{z})^2$$

Erosion

Erosion des volumes de Voronoï Atténuation de l'érosion aux points de contact

Introduction

Mathématiques

Applications

Sculpture

Création automatique de rochers en contact sur des formes quelconques

Introduction

Mathématiques

Applications

Génération procédurale

Création automatique d'empilements de rochers

Introduction

Mathématiques

Applications

Génération procédurale

Création automatique d'empilements de rochers

