

# SPATIAL TRANSCRIPTOMICS DATA ANALYSIS: THEORY AND PRACTICE

PRACTICAL SESSION 4

DR SIMON J COCKELL ELEFTHERIOS (LEFTERIS) ZORMPAS

BIOSCIENCES INSTITUTE,
FACULTY OF MEDICAL SCIENCES,
NEWCASTLE UNIVERSITY
23/07/2023

#### **Practical session 4**

In this practical session, we will have a hands-on exploration of GW-PCA and its application to STx data.

What can we learn from this novel technique?

## 4.1 GW-PCA: Geographically Weighted PCA

**GWPCA**: perform PCA analysis in a local way to reveal location-related principal components of variability



# 4.2 Load Quality Controlled and Normalised data

```
sfe <- readRDS(file = "./data/to_load/practical03_sfe.rds")
top_hvgs <- readRDS(file = "./data/to_load/practical03_topHVGs.rds")</pre>
```

## 4.4 Parameter preparation for GWPCA

```
## Get the gene names that are going to be evaluated
vars = top_hvgs
## Set a fixed bandwidth
bw = 6*sfe@metadata[["spotDiameter"]][["JB0019"]][["spot_diameter_fullres"]]
## Set the number of components to be retained
k = 20
## Set the kernel to be used
kernel = "gaussian"
## Set the Minkowski distance power: p = 2 --> Euclidean
p = 2
## Is the bandwidth adaptive?: No because spots are fixed
adaptive = FALSE
## Cross-Validate GWPCA?
cv = TRUE
## Calculate PCA scores?
scores = FALSE
## Run a robust GWPCA?
robust = FALSE
## Make a cluster for parallel computing (otherwise GWPCA is slow!)
my.cl <- parallel::makeCluster(parallelly::availableCores() - 1, type = 'FORK')</pre>
```

#### 4.5 Run GWPCA

Because GWPCA can take some time to run, we ran it for you and below you can load the output:

```
pcagw <- readRDS(file = "./data/to_load/practical04_pcagw.rds")</pre>
```

#### gwpcaSTE:

- > Function from the STExplorerDev package.
- Re-implementation of the gwpca function from the GWmodel package.
- Sets a future backend to allow parallel processing.
- The future, strategy and workers arguments are used to set up the parallel backend.
- > By default runs sequentially.

## 4.6 Plot global PCA results



The percentages of variance explained by the global PCA PCs are small.

- If the first 4 PCs explain less than 15% of the variance then:
  - the data is highly dispersed or
  - there is a large amount of noise or
  - lack of clear structure in the data or
  - lack of meaningful patterns



GWPCA might be more appropriate because the global model might not reflect what is happening locally

# 4.7 Identify the leading genes in each location

#### Single leading gene

| ## | 16 l  | leading | genes f | ound | for    | PC1 |        |         |           |           |          |
|----|-------|---------|---------|------|--------|-----|--------|---------|-----------|-----------|----------|
| ## | The l | Leading | genes i | n Po | C1 ar  | e:  |        |         |           |           |          |
| ## | Д     | NDH1A   | C7      |      | CRP    | (   | СҮРЗА4 | GLUL    | GSTA2     | HAMP      | HBA2     |
| ## |       | 2       | 11      |      | 4      |     | 365    | 7       | 1         | 13        | 33       |
| ## | 1     | GLL5    | MALAT1  | MTR  | NR2L12 | MTF | RNR2L8 | NNMT    | PTGDS     | SAA1      | SDS      |
| ## |       | 87      | 39      |      | 153    |     | 181    | 23      | 73        | 36        | 133      |
| ## | 21 l  | leading | genes f | ound | for    | PC2 |        |         |           |           |          |
| ## | The 1 | leading | genes i | n Po | C2 ar  | e:  |        |         |           |           |          |
| ## |       | C7      | CAT     |      | CFHR1  |     | CRP    | CYP3A4  | GLUL      | HBA2      | HBI      |
| ## |       | 3       | 6       |      | 38     |     | 39     | 149     | 83        | 2         | 37       |
| ## | IG    | FBP3    | IGFBP7  |      | IGJ    |     | IGLL5  | MALAT1  | MTRNR2L10 | MTRNR2L12 | MTRNR2L  |
| ## |       | 49      | 39      |      | 34     |     | 246    | 80      | 10        | 78        | 12       |
| ## |       | NNMT    | SAA1    |      | SDS    |     | TAGLN  | UGT2B7  |           |           |          |
| ## |       | 42      | 12      |      | 69     |     | 20     | 1       |           |           |          |
| ## | 24 1  | leading | genes f | ound | for    | PC3 |        |         |           |           |          |
| ## | The 1 | leading | genes i | n Po | C3 ar  | e:  |        |         |           |           |          |
| ## | P     | EBP1    | C7      |      | CAT    |     | CFHR1  | CRP     | CYP3A4    | GLUL      | HBA      |
| ## |       | 2       | 2       |      | 27     |     | 20     | 5       | 20        | 17        | 2        |
| ## |       | HBB     | IGFBP3  |      | GFBP7  |     | IGJ    | IGLL5   | MALAT1    | MTRNR2L10 | MTRNR2L1 |
| ## |       | 150     | 41      |      | 77     |     | 6      | 399     | 136       | 6         | 6        |
| ## | MTRN  | IR2L8   | MYL9    |      | NNMT   |     | SAA1   | SCGB3A1 | SDS       | TAGLN     | UGT2B    |
| ## |       | 25      | 9       |      | 24     |     | 6      | 56      | 15        | 26        |          |
| ## | 25 l  | Leading | genes f | ound | for    | PC4 |        |         |           |           |          |
| ## | The 1 | leading | genes i | n Po | C4 ar  | e:  |        |         |           |           |          |
| ## | P     | EBP1    | CAT     |      | CFHR1  |     | CRP    | FXYD2   | GLUL      | GSTA2     | HBA      |
| ## |       | 1       | 53      |      | 15     |     | 7      | 7       | 33        | 3         |          |
| ## |       | HBB     | IGFBP3  |      | GFBP7  |     | IGJ    | IGLL5   | MALAT1    | MTRNR2L10 | MTRNR2L1 |
| ## |       | 181     | 100     |      | 51     |     | 60     | 281     | 201       | 5         | 1        |
| ## | MTRN  | IR2L8   | MYLS    |      | NNMT   |     | 0RM2   | SAA1    | SDS       | SPINK1    | TAGL     |
| ## |       | 16      | 5       |      | 55     |     | 6      | 6       | 37        | 12        |          |
| ## | UG    | ST2B7   |         |      |        |     |        |         |           |           |          |
| ## |       | 4       |         |      |        |     |        |         |           |           |          |



#### 4.7 Identify the leading genes in each location

#### Top-k leading genes

```
## The number of individual leading genes groups found for PC1 is: 110
## These groups are: Too many to print them!
## The number of individual leading genes groups found for PC2 is: 240
## These groups are: Too many to print them!
## The number of individual leading genes groups found for PC3 is: 310
## These groups are: Too many to print them!
## The number of individual leading genes groups found for PC4 is: 421
## These groups are: Too many to print them!
```

Too many groups to print them out as we did at the previous ones



## 4.8 Percentage of Total Variation (PTV)

```
## Calculate the PTV for multiple Components
pcagw <- gwpca_PropVar(gwpca = pcagw, n_comp = 2:10, sfe = sfe)</pre>
```

| ## | Comps_01       | Comps_02      | Comps_03      | Comps_04      |  |  |
|----|----------------|---------------|---------------|---------------|--|--|
| ## | Min. : 6.279   | Min. :11.67   | Min. :16.43   | Min. :20.69   |  |  |
| ## | 1st Qu.: 9.483 | 1st Qu.:16.13 | 1st Qu.:21.24 | 1st Qu.:25.69 |  |  |
| ## | Median :16.782 | Median :25.54 | Median :30.37 | Median :34.46 |  |  |
| ## | Mean :17.370   | Mean :25.92   | Mean :31.35   | Mean :35.49   |  |  |
| ## | 3rd Qu.:22.534 | 3rd Qu.:32.87 | 3rd Qu.:39.42 | 3rd Qu.:43.81 |  |  |
| ## | Max. :38.254   | Max. :46.50   | Max. :54.25   | Max. :57.51   |  |  |
| ## | Comps_05       | Comps_06      | Comps_07      | Comps_08      |  |  |
| ## | Min. :24.64    | Min. :28.28   | Min. :31.49   | Min. :34.26   |  |  |
| ## | 1st Qu.:29.65  | 1st Qu.:33.13 | 1st Qu.:36.54 | 1st Qu.:39.53 |  |  |
| ## | Median :37.79  | Median :40.86 | Median :43.53 | Median :46.17 |  |  |
| ## | Mean :38.98    | Mean :42.07   | Mean :44.84   | Mean :47.38   |  |  |
| ## | 3rd Qu.:47.17  | 3rd Qu.:49.78 | 3rd Qu.:52.16 | 3rd Qu.:54.19 |  |  |
| ## | Max. :60.60    | Max. :62.97   | Max. :65.04   | Max. :67.03   |  |  |
| ## | Comps_09       | Comps_10      |               |               |  |  |
| ## | Min. :36.76    | Min. :39.15   |               |               |  |  |
| ## | 1st Qu.:42.34  | 1st Qu.:45.05 |               |               |  |  |
| ## | Median :48.60  | Median :50.96 |               |               |  |  |
| ## | Mean :49.73    | Mean :51.91   |               |               |  |  |
| ## | 3rd Qu.:56.07  | 3rd Qu.:57.77 |               |               |  |  |
| ## | Max. :68.83    | Max. :70.39   |               |               |  |  |
|    |                |               |               |               |  |  |

# Remember these are cumulative %..





## 4.9 Identify discrepancies

## Plot the discrepancies as boxplot
plotGWPCA\_discr(pcagw, type = "box")









**Eleftherios Zormpas** 





**Dr Simon J Cockell** 





**Dr Rachel Queen** 





**Prof. Alex Comber** 





**iSMB** feedback form:









© ICBAM research group, Newcastle University, UK



MRC DiMeN Doctoral Training Partnership<sup>12</sup>