4. More about SPSS syntax

Karl B Christensen

http://publicifsv.sund.ku.dk/~kach/SPSS

Reproducible research

Different steps in making the research reproducible

- Data handling, data bases, merging
- manipulating the data: setting up definitions and codes.
- statistical analyses (also involves data manipulation).

steps typically takes place in statistical software and can thus be

- documented
- reproduced
- shared

in collaborative research - need syntax for this.

Command Syntax Reference

Three variable definitions

- Variable Labels
- Value Labels
- Missing Data codes.

syntax is simple

For a data set with the variables Gender, Smoke, and Exercise, with the following definitions:

```
Gender 0=Male, 1=Female

Smoking 1=Never 2=Sometimes 3=Daily

Alcohol 1=Never 2=Sometimes 3=Daily

(for all variables: 999 = a user-defined missing value)
```

```
VARIABLE LABELS
GENDER 'Participant Gender'
SMOKE 'Does Participant Smoke Cigarettes?'
EXERCISE 'How Often Does Participant drink alcohol'.
```

Notice: all three in the same VARIABLE LABELS statement.

Remember a period at the end of the statement. This is required.

```
VALUE LABELS
GENDER 0 'Male' 1 'Female'
/SMOKE EXERCISE
1 'Never'
2 'Sometimes'
3 'Daily'.

MISSING VALUES
GENDER SMOKE EXERCISE (999).
```

Notice: all three have the same missing data code - include them all in the same statement.

Using point-and-click: 'Variable View' (define type, missing, measure (ordinal, nominal, scale). Can change these by double clicking (name, missing, type)

Data -> Define variable properties

Can define labels for ordinal and nominal data. Can define missing values

Transposing data sets. Two types of transposing

- long to wide
- wide to long

typically used with longitudinal where different analyses requires either long or wide format.

Wide format

id	age1	age2	age3	height1	height2	height3
1	9	10	11	130	140	148
2	9.5	10.23	10.78	120	125	130

Long format

id	age	height
1	9	130
1	10	140
1	11	148
2	9.5	120
2	10.23	125
2	10.78	130

Wide to long

- 'more than one' (2) (age and height)
- variables to be transposed has two levels, start with first
- age -> age1,age2,age3
- height -> height1, height2, height3
- use the arrow on the 'trans1' to change the name and to select 'trans2' for height.
- continue to 'index variables'
- continue to 'create one index variables'
- OK
- OK

long to wide

- 'indentifier variables'='id' (next)
- yes or no to sorting
- 'order of new variables groups' check 'group by index'

syntax

```
GET FILE='p:\small.sav'.
```


syntax

```
SORT CASES BY id .
CASESTOVARS
/ID=id
/GROUPBY=VARIABLE.
```

Generated Variables

Name	Aerobic capacity (VO2)	1	VO2.1
		2	VO2.2
	time	1	time.1
		2	time.2
	6 minute walk distance	1	six.1
	(6MWD)	2	six.2
	HADS_A	1	HADS_A.1
		2	HADS_A.2
	HADS_D	1	HADS_D.1
		2	HADS_D.2
Label	Aerobic capacity (VO2)	2	VO2.1: Aerobic capacity (VO2) VO2.2: Aerobic
			capacity (VO2)
	6 minute walk distance (6MWD)	1	six.1: 6 minute walk distance (6MWD)
		2	six.2: 6 minute walk distance (6MWD)

Reshaping data using syntax - the other way around

GET FILE='p:\wide.sav'.

Reshaping data using syntax - the other way around

GET FILE='p:\wide.sav'.

Reshaping data using syntax - the other way around

```
VARSTOCASES
/MAKE VO2 FROM VO2.1 VO2.2
/INDEX = tid.
LIST id group.
```


Sorting of data (split file)- revisited

Obs	age	csex	fev1	pemax	bmi	Obs	age	csex	fev1	pemax	bmi
:	:	m	:	:	:	:	:	:	:	:	:
:	:	m	:	:	:	:	:	:	:	:	:
:	:	m	:	:	:	:	:	:	:	:	:
:	:	f	:	:	:	:	:	:	:	:	:
1 :	:	f	:	:	:	:	:	:	:	:	:
:	:	f	:	:	:	:	:	:	:	:	:

Today: combining smaller data sets into larger ones

Appending data sets: ADD

More cases, same variables. Two data sets hosp1.sav

Obs	id	sex	bp	weight	bmi	treatment	hospital
1	1	1	110	75.8	24.5	0	herlev
2	2	2	125	89.8	26.8	0	herlev

and hosp2.sav

Obs	id	day	sex bp		weight	teatment	hospital
1	3	11/11/97	2	131	57.8	1	gentofte
2	4	12/11/97	2	121	98.8	1	gentofte

put together using ADD FILES

```
ADD FILES FILE="p:\hosp1.sav"

/FILE="p:\hosp2.sav".

SAVE OUTFILE="p:\hosp.sav".
```

Result

Obs	id	sex	bp	weight	bmi	treatment	hospital	day	teatment
1	1	1	110	75.8	24.5	0	herlev		
2	2	2	125	89.8	26.8	0	herlev		
3	3	2	131	57.8			gentofte	11/11/97	1
4	4	2	121	98.8			gentofte	12/11/97	1

Note that missing values are generated for variables not present in all data sets.

Merging data set: MERGE

new variables, same cases. Often there is a key, say id, and all data sets must be merged by id. Data quest.sav concerns the same sample of patients

Obs	id	income	employed
1	3	35000	1
2	2	44000	1
3	5	25500	1

We want to merge this with the data set hosp.sav

Code for merging data sets

```
GET FILE = "p:\hosp.sav".

SORT CASE BY id.

SAVE OUTFILE = "p:\merge1.sav".

GET FILE = "p:\quest.sav".

SORT CASE BY id.

SAVE OUTFILE = "p:\merge2.sav".

MATCH FILES

/FILE="p:\merge1.sav"
/FILE="p:\merge2.sav"
/BY id.

SAVE OUTFILE = "p:\data.sav".
```

Result

Obs	id	sex	bp	weight	bmi	treat	hospital	day	teat	income	employed
						-ment			-ment		
1	1	1	110	75.8	24.5	0	herlev				
2	2	2	125	89.8	26.8	0	herlev			44000	1
3	3	2	131	57.8			gentofte	11/11/97	1	35000	1
4	4	2	121	98.8			gentofte	12/11/97	1		
5	5									25500	1

Note, that subject with id=5 who is present only in quest.sav has missing values for variables not in that data set.

MERGE exercise

Look at data set RCT.sav. Compute the change scores

 $\Delta = (VO_2 max after intervention) - (baseline VO_2 max)$

for each subject. One (complicated) way of doing this:

- Make two data sets: a baseline data set and a follow-up data set.
- ② In the baseline data set with make a new variable VO2base.
- In the follow-up data set with make a new variable VO2foll.
- Merge these data sets so that information from the same patient are in the same row.
- 6 Calculate the change scores

This can also be done using CASESTOVARS

