

Boosting Recommender Systems with Deep Learning

João Gomes

RecSys 2017 - Como, Italy

230 Countries

2500 Brands 500 Boutiques

300K Products 4M users

200 clickstream events / sec

1800+ employees 20+ in Data Science

Visual Similarity

YOU MAY ALSO LIKE

Visual similarity

Deep Learning for **feature extraction**

Off-the-shelf Model

- ResNet-50 pre-trained on ImageNet
- Previous to last layer for the embeddings

Find similar items

• Nearest neighbours with cosine similarity

Easy, fast, testable

Useful in some contexts

- Out of stock replacement
- Smart mirror in a fitting room

Train for another objective

Extend network to predict categories

- Start with ResNet
- Add more dense layers

Retrain

- Start with pre-trained weights
- Fine-tune last layers of ResNet

Use new predictions

- Find and fix catalog erros
- · Cross learn item attributes

Use new embeddings

Complementary Products

A more complex problem

Can we model complex stylistic relationships?

Pairwise complementarity score

• Learn a function y = f(i,j) that takes a pair of items, and outputs a score

Deep Siamese Neural Network

Embeddings

- Shared between both legs
- · Weights are learned

Fusion Layer

Concatenation

Merge Layer

- Concatenation
- Element-wise max/min/sum/avg

Training data

Positive pairs

- Next-click / same-basket / same-session pairs are noise day
- We use our collection of >100k manually curated outfits
- External datasets

Negative pairs

- Random may work (if you have enough data)
- Manually labeled data is better

Data augmentation to expand

- Find pairs with items similar to observations
- Image translation, rotation, noise will make the network more robust

Human in the loop

Good, reliable, labeled data is a competitive advantage. Involve your company in your problem!

Conclusions

Next Steps

Outfit generation

- Pairwise function is not sufficient.
- find a function f(i, j, k...) that takes a set of products and **outputs goodness of outfit**
- Extend our siamese network with more legs

Use DL embeddings in current recommendation models

- In content-based and hybrid models
- · As side information in MF
- To solve item cold-start problem

Personalized recommendations with end-to-end DL

• Exciting approaches seen at DLRS!

Conclusions

Deep learning is not trivial, but it isn't hard to get started

- You can do incremental improvements to many components of your rec-sys
- Start simple, try off the shelf models
- Fine tune to your problem

Get good data

- Involve your company's experts
- Crowdsource

Deep network engineering is fun!

Great potential for innovation

Thank you!

João Gomes joao.gomes@farfetch.com data@farfetch.com

We're hiring!

Get in touch for research collaborations

