MODERN ALGEBRA II SPRING 2013: SECOND PROBLEM SET

- 1. (i) Show that $(\mathbb{Z}[i])^*$, the multiplicative group of units in $\mathbb{Z}[i]$, is equal to $\{\pm 1, \pm i\}$. In particular, every element in the (finite) group $(\mathbb{Z}[i])^*$ has order at most 4.
 - (ii) In the ring $\mathbb{Z}[\sqrt{2}]$, show that $1+\sqrt{2}$ is a unit by explicitly finding an inverse for $1+\sqrt{2}$ in $\mathbb{Z}[\sqrt{2}]$. However, by viewing $1+\sqrt{2}$ as a real number, show that no positive power of $1+\sqrt{2}$ is equal to 1 and hence that $(\mathbb{Z}[\sqrt{2}])^*$ contains an element of infinite order.
- 2. Let p be a prime number.
 - (a) If k is an integer with $1 \le k \le p-1$, show that p divides the binomial coefficient $\binom{p}{k}$.
 - (b) Let R be a ring of characteristic p (recall that this means that $p \cdot r = 0$ for all $r \in R$. Show that, for all $r, s \in R$, $(r+s)^p = r^p + s^p$. (Use the binomial theorem from the last problem set.)
 - (c) If R is a ring of characteristic p, show that the function $F: R \to R$ defined by $F(r) = r^p$ is a homomorphism (the Frobenius homomorphism). If R is an integral domain, show that F is injective.
 - (d) Let $R = \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$. Show that $F: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity. (Note: you will need to use a standard number theory fact which we proved last semester.)
 - (e) Let $R = (\mathbb{Z}/p\mathbb{Z})[x] = \mathbb{F}_p[x]$. Show that $F: R \to R$ is injective but not surjective and describe the image of F.

The Frobenius homomorphism is very important in the study of finite fields, and it will reappear later.

- 3. Recall that an element r of a ring R is nilpotent if there exists a positive integer N such that $r^N = 0$. (The possibility that r = 0, i.e. that N = 1, is allowed.)
 - (a) Show that, if r is nilpotent and $s \in R$, then sr is nilpotent.
 - (b) Show that, if $r, s \in R$ and r and s are both nilpotent, then r + s is also nilpotent (i.e. the sum of two nilpotent elements is again nilpotent. (The binomial theorem again.) (Note: this

does not necessarily hold in a non-commutative ring, for example, in $\mathbb{M}_2(\mathbb{R})$ both $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ are nilpotent, but their sum is invertible.)

- (c) Show that, if r is nilpotent, then 1+r is a unit. (Hint: geometric series.) More generally, if u is a unit in R and r is nilpotent, then u+r is a unit.
- (d) If r is a nilpotent element of R, then the polynomial 1 + rx is a unit in R[x]. Hence, if R is not an integral domain, then it is possible for $(R[x])^*$ to be larger than R^* .
- 4. Let n be a positive integer. What are all of the (nonzero) divisors of zero in $\mathbb{Z}/n\mathbb{Z}$? What are all of the nilpotent elements in $\mathbb{Z}/n\mathbb{Z}$ (i.e. those elements $a \in \mathbb{Z}/n\mathbb{Z}$ such that $a^N = 0$ for some N > 0)?
- 5. Let $\mathbb{Q}(i) = \{a+bi: a, b \in \mathbb{Q}\}$ be the subring of \mathbb{C} given by the image of $\operatorname{ev}_i \colon \mathbb{Q}[x] \to \mathbb{C}$. Show that $\mathbb{Q}(i)$ is a field, not just an integral domain, by showing that, if a, b are not both 0, then a+bi has a multiplicative inverse. (This is the usual trick of "rationalizing the denominator" of 1/(a+bi).) Similarly, show that the subring $\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2}: a, b \in \mathbb{Q}\}$ of \mathbb{R} is a field.
- 6. Let $a, b, c \in \mathbb{Q}$, not all zero. We would like to show that $\mathbb{Q}(\sqrt[3]{2})$ is a field by rationalizing the denominator in an expression of the form $\frac{1}{a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2}$. Show that this can be done by multiplying by

$$1 = \frac{(a^2 - 2bc) + (-ab + 2c^2)\sqrt[3]{2} + (b^2 - ac)(\sqrt[3]{2})^2}{(a^2 - 2bc) + (-ab + 2c^2)\sqrt[3]{2} + (b^2 - ac)(\sqrt[3]{2})^2},$$

by checking that

$$(a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2)((a^2-2bc)+(-ab+2c^2)\sqrt[3]{2}+(b^2-ac)(\sqrt[3]{2})^2))$$

is in fact a rational number, in fact it is $a^3 + 2b^3 + 4c^3 - 6abc$, which is nonzero if not all of a, b, c are zero (you do **not** need to prove that this expression is nonzero). How could you hope to guess such a formula? We will see a few different ways to find this formula over the course of the semester.