微分積分学 A 理解度確認試験

2024年7月25日第2時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

次の問いに答えなさい.

- (1) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f : I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to A$ $(x \to a)$ の定義を述べなさい.
- (4) $f: \mathbb{R} \to \mathbb{R}$ に対し、 $f(x) \to A$ $(x \to -\infty)$ の 定義を述べなさい.

- (2) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to -\infty$ $(x \to a)$ の定義を述べなさい.
- (5) $I \subset \mathbb{R}$ 上の関数 $f: I \to \mathbb{R}$ が $x = a \in I$ で連続 であることの定義を ε - δ 論法で述べなさい.

- (3) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to A$ $(x \to a + 0)$ の定義を述べなさい.
- (6) $f:[a,b] \to \mathbb{R}$ に対して、Weierstrass の最大値定理の主張を述べなさい.

- (7) $f:[a,b] \to \mathbb{R}$ に対して、中間値の定理の主張を述べなさい.
- (10) $\arcsin\left(\sin\left(\frac{7}{4}\pi\right)\right)$ を求めなさい.

- (8) $f:[a,b] \to \mathbb{R}$ が [a,b] 上一様連続であることの定義を述べなさい.
- (11) $y = \arctan x$ $(x \in \mathbb{R})$ のグラフの概形を書きなさい.

- (9) $f: \mathbb{R} \to \mathbb{R}$ を $f(x) := -x^2$ $(x \in \mathbb{R})$ で定める. 像 f([-1,4]) を求めなさい.
- (12) $\lim_{x\to\infty} (\sqrt{x^2+3x-2}-x)$ を求めなさい.

(13)
$$\lim_{x\to 3} \frac{2x^2 - 5x - 3}{3x^2 - 11x + 6}$$
 を求めなさい.

この下は計算用紙として利用してよい.

(14)
$$\lim_{x\to 0} \frac{1-\cos(3x)}{x^2}$$
 を求めなさい.

(15) $\lim_{x\to\infty}e^{-x}\sin(x^2)$ を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.

$$(x-1)\sin\left(\frac{1}{(x-1)^2}\right) \to 0 \quad (x\to 1)$$
 となることを ε - δ 論法で示したい.

(1)
$$(x-1)\sin\left(\frac{1}{(x-1)^2}\right) \to 0$$
 $(x\to 1)$ の ε - δ 論法を用いた定義を述べなさい.
(2) $(x-1)\sin\left(\frac{1}{(x-1)^2}\right) \to 0$ $(x\to 1)$ を ε - δ 論法を用いて示しなさい.

(2)
$$(x-1)\sin\left(\frac{1}{(x-1)^2}\right) \to 0$$
 $(x\to 1)$ を ε - δ 論法を用いて示しなさい.

問題 3.

 $f:\mathbb{R}\to\mathbb{R}$ を $f(x):=x^2-x$ $(x\in\mathbb{R})$ で定義する. f が x=-1 で連続となることを ε - δ 論法で示したい.

- (1) 示すべきこと (f がx = -1 で連続となることの ε - δ 論法を用いた定義) を述べなさい.
- (2) f が x = -1 で連続となることを ε - δ 論法で示しなさい.

問題 4.

 $f: \mathbb{R} \to \mathbb{R}$ を、 $f(x) := \cos x \quad (x \in \mathbb{R})$ で定義する。f が \mathbb{R} 上一様連続であることを示したい。

- (1) 示すべきこと (f が \mathbb{R} 上一様連続であることの定義) を述べなさい.
- (2) f が \mathbb{R} 上一様連続であることを示しなさい. なお, $\theta \in \mathbb{R}$ に対して, $|\sin \theta| \leq |\theta|$ は断わりなしに使ってよい.

以下は計算用紙として利用してよい. 採点には一切利用しない.