Compensating a Power Amplifier using Iterative Learning Control : from Design to Realisation

Jules Hammenecker Brussels Faculty of Engineering Vrije Universiteit Brussel - Université Libre de Bruxelles

2014-2015

Thank You Note

Contents

1	Introduction		
	1.1 W	hy Digital Predistortion?	2
	1.2 Cu	rrent Techniques of DPD	2
	1.3 IL	C	2
	1.4 Us	sing ILC for DPD	2
2	Compensating with ILC using the BLA Estimating the DPD		5
3			
4	Results		-

Introduction

1.1 Why Digital Predistortion?

Power amplifiers are used in almost all wireless communication devices. They amplify the communication signal such that a good signal to noise ratio is obtained. They also are an important power consuming block in a communication chain. A power amplifier is often operated in a nonlinear operation mode to improve its efficiency. This nonlinear behavior should be compensated in a later step to reach the strict telecommunication requirements. A Digital Pre-Distortion (DPD) is a common technique to linearize the input-output behavior of a power amplifier. With DPD the input signal of the amplifier is modified such that the desired (i.e. linear) behavior is obtained.

1.2 Current Techniques of DPD

1.3 ILC

1.4 Using ILC for DPD

A nonlinear dynamic system can alternatively be represented by the combination of a linear transfer function G_{BLA} and a nonlinear function F.

Figure 1.1: Alternative representations of a nonlinear system.

Figure 1.2: Switching the input and output, creating the inverse of the nonlinear system.

Figure 1.3: Connecting the inverse and the original system together.

Figure 1.4: Getting creative with the blocks.

Figure 1.5: Cut the loop!

Figure 1.6: Reorganise the blocks one last time.

Compensating with ILC using the BLA

Estimating the DPD

Results

Bibliography

[1] J. Schoukens, R. Pintelon, Y. Rolain , *Mastering System Identification in 100 Exercises*. IEEE Press (2012), 183-238.