Raíces

Nicolás González Martínez

8 de junio de 2015

Definición: Si n es un entero par positivo y a es un rel positivo, entonces $\sqrt[n]{a}$ es un único real b, positivo, tal que $b^n = a$.

Definición: Si n es n entero impar positivo y a es un real cualquiera, entonces $\sqrt[n]{a}$ es un único real b, tal que, $b^n = a$.

Observaciones:

- 1. si n es un entero par positivo y a es un real negativo, entonces $\sqrt[n]{a}$ NO ES REAL
- 2. la expresión $\sqrt[n]{a^k}$ con a real positivo, puede expresarse como una potencia de exponente fraccionario, es decir $\sqrt[n]{a^k} = a^{\frac{k}{n}}$

1

3. $\sqrt{a^2} = |a|$, para todo número real

Propiedades de las Raíces

1.
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$2. \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$3. \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

4.
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$

$$5. \sqrt[n]{a} \cdot \sqrt[m]{b} = \sqrt[nm]{a^m \cdot b^n}$$

$$6. \sqrt[n]{b^n \cdot a} = b \cdot \sqrt[n]{a}$$

Calcule el valor de:

1.
$$\sqrt[4]{16} + \sqrt[5]{32} - \sqrt[3]{-27}$$

2.
$$\sqrt{18} + \sqrt{50} - \sqrt{8} - 2\sqrt{2}$$

3.
$$\sqrt{0,0036} - \sqrt{0,01}$$

4. Si
$$m=-3$$
 y $n=-2$, calcule $\sqrt{(m-n)^2}$

5. Si
$$a \triangle b = \sqrt[3]{b^a}$$
 entonces $\frac{3}{2} \triangle 25$ es

$$6. \ \sqrt{\frac{32}{3}} \cdot \sqrt{\frac{27}{2}}$$

7.
$$\sqrt{4\frac{3}{8}} \cdot \sqrt{\frac{7}{10}}$$

8. Si $\sqrt{5}\approx 2$, entonces el valor de $\frac{\sqrt{108}+\sqrt{60}}{\sqrt{12}}$ es aproximadamente

9. Si
$$a+b=-\sqrt{3}$$
 y $ab=1-\sqrt{3}$, entonces a^2+b^2 es

- 10. $\sqrt{(-3^3)^2}$ equivale a
- 11. Demuestre que $5\sqrt{\frac{1}{5}\sqrt[3]{125}}$ es igual a 5
- 12. Demuestre que $\sqrt[3]{\sqrt[4]{8^8}}$ es igual a 2
- 13. $\sqrt{27} \cdot \sqrt[3]{16}$
- 14. Si $m = \sqrt[8]{ab^3}$ y $n = \sqrt[6]{3a^2b^3}$, ¿Cual de las siguientes afirmaciones es siempre verdadera?

$$a) \frac{n}{m} = \sqrt[24]{3^4 a^5 b^3}$$

$$b) \ \frac{m}{n} = \sqrt[48]{\frac{1}{3a}}$$

c)
$$m \cdot n = \sqrt[48]{3a^3b^6}$$

$$d) m + n = \sqrt[24]{3^4 a^{11} b^{21}}$$