Preliminares

Algunas técnicas de derivadas e integrales necesarias para el curso

Derivadas

Comenzamos con algunas reglas de derivación. Los fundamentos de la derivación se pueden encontrar en cualquier libro de cálculo, por ejemplo, en el libro de Stewart, y en su curso de Fundamentos matemáticos. Aquí sólo recordaremos algunas reglas básicas.

1. Regla 1: derivada de una potencia

$$\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}$$

Ejemplos:

$$\frac{\mathrm{d}}{\mathrm{d}x}x^2 = 2x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}x^3 = 3x^2$$

$$\frac{\mathrm{d}}{\mathrm{d}x}1/x = -1/x^2$$

2. Regla 2: derivada de un producto

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)g(x) = f(x)\frac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x)\frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

Ejemplos:

$$\frac{\mathrm{d}}{\mathrm{d}x}x^2 \exp(x) = x^2 \frac{\mathrm{d}}{\mathrm{d}x} \exp(x) + \exp(x) \frac{\mathrm{d}}{\mathrm{d}x}x^2 = x^2 \exp(x) + 2x \exp(x)$$

En el anterior, hacemos uso de la regla 1 para calcular la derivada de x^2 y de otra regla que no hemos mencionado: la derivada de la exponencial, que es igual a la exponencial:

$$\frac{\mathrm{d}}{\mathrm{d}x}\exp(x) = \exp(x)$$

Algunas reglas de la exponencial:

- 1. $\exp(x+y) = \exp(x)\exp(y)$.
- 2. $\exp(x) > 0$.
- 3. $\exp(0) = 1$.
- 4. $\exp(x/y) = \exp(x)^{1/y}$.
- 5. $\ln(\exp(x)) = x$.
- 6. Regla 3: derivada de una división

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{f(x)}{g(x)} = \frac{f(x) \frac{\mathrm{d}}{\mathrm{d}x} g(x) - g(x) \frac{\mathrm{d}}{\mathrm{d}x} f(x)}{g(x)^2}$$

Ejemplo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{x^2}{\exp(x)} = \frac{x^2\frac{\mathrm{d}}{\mathrm{d}x}\exp(x) - \exp(x)\frac{\mathrm{d}}{\mathrm{d}x}x^2}{\exp(x)^2} = \frac{x^2\exp(x) - \exp(x)2x}{\exp(x)^2} = \frac{x^2 - 2x}{\exp(x)}$$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \frac{x+2}{\sqrt{1+x}} &= \\ \frac{(x+2) \frac{\mathrm{d}}{\mathrm{d}x} \sqrt{1+x} - \sqrt{1+x} \frac{\mathrm{d}}{\mathrm{d}x} (x+2)}{\sqrt{1+x^2}} &= \\ \frac{(x+2) \frac{1}{2\sqrt{1+x}} - \sqrt{1+x}}{\sqrt{1+x^2}} &= \\ \frac{1}{2\sqrt{1+x}} - \frac{x+2}{2(1+x)\sqrt{1+x}} &= \\ \frac{1}{2(1+x)\sqrt{1+x}} \end{split}$$

4. Regla 4: regla de la cadena

$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = f'(g(x))g'(x)$$

Ejemplo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\exp(x^2) = \exp(x^2)\frac{\mathrm{d}}{\mathrm{d}x}x^2 = 2x\exp(x^2)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \exp(2^{-x}) = \exp(2^{-x}) \frac{\mathrm{d}}{\mathrm{d}x} 2^{-x} = -2^{-x} \ln(2) \exp(2^{-x})$$

5. Regla 5: derivada de función logarítmica

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x) = \frac{1}{x}$$

Ejemplo:

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x^2) = \frac{1}{x^2}2x = \frac{2}{x}$$

Notar que $\ln(x^2)=2\ln(x)$ debido a la regla logarítmica $\ln(x^a)=a\ln(x)$. Otras reglas de logaritmos:

- 1. $\ln(xy) = \ln(x) + \ln(y)$.
- 2. $\ln(x/y) = \ln(x) \ln(y)$.
- 3. $\ln(x^a) = a \ln(x)$.
- 4. $\ln(\exp(x)) = x$.

La interpretación geométrica de la derivada es la pendiente de la recta tangente a la curva en un punto dado. Por ejemplo, la pendiente de la recta tangente a la curva $y=x^2$ en el punto x=1 es 2.

A continuación se muestra un ejemplo usando la función $f(x) = x^2$.

```
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [7, 3]
plt.style.use('seaborn-whitegrid')
# Define the quadratic function and its derivative
def f(x):
    return x**2
```

```
def f_prime(x):
    return 2*x
# Equation for the tangent line at a given x value
def tangent_line(x, x1):
    y1 = f(x1)
    m = f_prime(x1)
    return m * (x - x1) + y1
# Define the 5 points
points = \begin{bmatrix} -2, 0, 2 \end{bmatrix}
# Generate the x values for plotting the curve
x = np.linspace(-3, 3, 400)
y = f(x)
plt.plot(x, y, label="$f(x) = x^2$")
# For each of the 5 points, plot a vertical dotted line, annotate the x value, and plot th
for p in points:
    y_p = f(p)
    plt.axvline(x=p, color='gray', linestyle='-', ymax=(y_p - min(y))/(max(y) - min(y)))
    plt.annotate(f"{p}", (p, -6), textcoords="offset points", xytext=(0,5), ha='center')
    plt.scatter(p, y_p, color='red', marker='o', s=30)
    y_tangent = tangent_line(x, p)
    plt.plot(x, y_tangent, label=f"Tangent at x={p}", linestyle="--")
plt.title("Quadratic function with intersections and tangents")
plt.xlabel("x")
plt.ylabel("$y=f(x)$")
plt.legend(loc="best")
plt.ylim(min(y) - 1, max(y) + 1) # adjust the y-axis limits
plt.show()
```

/tmp/ipykernel_60631/1422889217.py:4: MatplotlibDeprecationWarning: The seaborn styles shippplt.style.use('seaborn-whitegrid')

Derivadas parciales

La derivada parcial de una función f(x,y) respecto a la variable x se define como:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

El procedimiento es sencillo. Primero derivamos respecto a x y consideramos a y como una constante. Luego, derivamos respecto a y y consideramos a x como una constante. Por ejemplo, si $f(x,y) = x^2 + 2xy + y^2$, entonces:

$$\frac{\partial f}{\partial x} = 2x + 2y$$

Las reglas de derivación son las mismas que para derivadas ordinarias.

Ejemplos:

1.
$$f(x,y) = x^2 + 2xy + y^2$$

Derivar con respecto a x:

$$\left.\frac{\partial f}{\partial x}\right|_{y}=\frac{\partial}{\partial x}\Big(x^{2}+2xy+y^{2}\Big)=\frac{\partial}{\partial x}\Big(x^{2}\Big)+\frac{\partial}{\partial x}\Big(2xy\Big)+\frac{\partial}{\partial x}\Big(y^{2}\Big)=2x+2y$$

En este caso, dado que la función es una suma, podemos derivar cada término por separado, y aplicamos la regla de derivación de la potencia: $\frac{\partial}{\partial x}(x^2) = 2x$. Dado que tratamos a y como una constante, el tercer término se vuelve 0, dado que la derivada de una constante es 0. El segundo término también tratamos a y como una constante, y solo derivamos con respecto a x, por lo que obtenemos 2y.

Ejemplos que involucran derivadas parciales de funciones de dos variables:

2.
$$f(x,y) = \frac{1}{x^2 + y^2}$$

Su derivada parcial con respecto a x es:

$$\left.\frac{\partial f}{\partial x}\right|_{y}=\frac{\partial}{\partial x}\Big(\frac{1}{x^2+y^2}\Big)=\frac{\partial}{\partial x}\Big((x^2+y^2)^{-1}\Big)=-1(x^2+y^2)^{-2}\frac{\partial}{\partial x}\Big(x^2+y^2\Big)=-2x(x^2+y^2)^{-2}$$

Su derivada parcial con respecto a y es:

$$\begin{split} \frac{\partial f}{\partial y}\Big|_{x} &= \frac{\partial}{\partial y}\Big(\frac{1}{x^{2}+y^{2}}\Big) = \frac{\partial}{\partial y}\Big((x^{2}+y^{2})^{-1}\Big) = -1(x^{2}+y^{2})^{-2}\frac{\partial}{\partial y}\Big(x^{2}+y^{2}\Big) = -2y(x^{2}+y^{2})^{-2}\\ 3. \ \ f(x,y) &= \frac{x}{x^{2}+y^{2}} \end{split}$$

Integrales

Integrales definidas

La integral definida de una función f(x) en el intervalo [a,b] se define como el área bajo la curva de f(x) en el intervalo [a,b]. La integral definida se denota como:

$$\int_{a}^{b} f(x) \mathrm{d}x = F(b) - F(a)$$

En donde F(a) es la integral de f(x) evaluada en a, y F(b) es la integral de f(x) evaluada en b. Por ejemplo, si $f(x) = x^2$, y su integral es $F(x) = \frac{1}{3}x^3$, entonces:

$$\int_0^1 x^2 \mathrm{d}x = \frac{1}{3} - 0 = \frac{1}{3}$$

Reglas de integración:

Regla 1: integral de una constante

$$\int_{a}^{b} c \mathrm{d}x = cx \Big|_{a}^{b} = c(b-a)$$

Ejemplo:

$$\int_0^1 2 \mathrm{d}x = 2x \Big|_0^1 = 2(1-0) = 2$$

Regla 2: integral de una función lineal

$$\int_{a}^{b} (mx+b) dx = \frac{m}{2}x^{2} + bx \Big|_{a}^{b} = \frac{m}{2}(b^{2} - a^{2}) + b(b - a)$$

Ejemplo:

$$\int_0^1 (2x+1) dx = \frac{2}{2}x^2 + x \Big|_0^1 = \frac{2}{2}(1-0) + 1(1-0) = 2$$

Regla 3: integral de una función cuadrática

$$\int_{a}^{b} (x^2 + bx + c) \mathrm{d}x = \frac{1}{3}x^3 + \frac{b}{2}x^2 + cx \Big|_{a}^{b} = \frac{1}{3}(b^3 - a^3) + \frac{b}{2}(b^2 - a^2) + c(b - a)$$

Ejemplo:

$$\int_0^1 (x^2 + 2x + 1) dx = \frac{1}{3}x^3 + x^2 + x \Big|_0^1 = \frac{1}{3}(1 - 0) + 1(1 - 0) + 1(1 - 0) = \frac{5}{3}$$

Regla 4: integral de x^n (caso general)

$$\int_a^b x^n \mathrm{d}x = \frac{1}{n+1} x^{n+1} \Big|_a^b = \frac{1}{n+1} (b^{n+1} - a^{n+1})$$

Ejemplo:

$$\int_0^1 x^3 dx = \frac{1}{3+1} x^{3+1} \Big|_0^1 = \frac{1}{4} (1-0) = \frac{1}{4}$$

Regla 5: integral de una función exponencial

$$\int_a^b e^x \mathrm{d}x = e^x \Big|_a^b = e^b - e^a$$

Ejemplo:

$$\int_0^1 e^x dx = e^x \Big|_0^1 = e^1 - e^0 = e - 1$$

Regla 6: integral de una función logarítmica

$$\int_a^b \ln(x) \mathrm{d}x = x \ln(x) - x \Big|_a^b = b \ln(b) - b - a \ln(a) + a$$

Ejemplo:

$$\int_{1}^{2} \ln(x) \mathrm{d}x = x \ln(x) - x \Big|_{1}^{2} = 2 \ln(2) - 2 - 1 \ln(1) + 1 = 2 \ln(2) - 1$$

Regla 7: integración por partes

$$\int_a^b u(x)v'(x)\mathrm{d}x = u(x)v(x)\Big|_a^b - \int_a^b u'(x)v(x)\mathrm{d}x$$

Ejemplo:

$$\int_0^1 x e^x dx = x e^x \Big|_0^1 - \int_0^1 e^x dx = e - 0 - e^x \Big|_0^1 = e - 1$$

Ejemplo:

$$\int_0^1 x e^{-2x} \mathrm{d}x = x e^{-2x} \Big|_0^1 - \int_0^1 e^{-2x} \mathrm{d}x = e^{-2} - 0 - \frac{1}{2} e^{-2x} \Big|_0^1 = e^{-2} - \frac{1}{2} e^{-2}$$