AI 6102: Machine Learning Methodologies & Applications

L4: Linear Models: Classification

Sinno Jialin Pan

Nanyang Technological University, Singapore

Homepage: http://www.ntu.edu.sg/home/sinnopan

Outline

- Linear regression revisit
- Linear models for classification
 - Logistic Regression
 - Support Vector Machines (basic idea, details will be taught in next lecture)

Linear Regression Revisit

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

• $f(x_i; \theta)$ is defined as

$$f(x; \theta) = w \cdot x + b$$

$$OR f(x; \theta) = w \cdot x \quad \text{by introducing additional} \quad w_0 \text{ and } x_0 \text{ to absorb } b \text{ in } w$$

- The loss function $\ell(f(x_i; \theta), y_i)$ is defined as the squared difference between $f(x_i; \theta)$ and y_i
- The regularization term is defined as the L2 norm

Linear Regression Revisit (cont.)

• With a set of N labeled data $\{(x_1, y_1), ..., (x_N, y_N)\}$, the optimization problem is specified as

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_i - y_i)^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

• We have derived that there is a closed-form solution for regularized linear regression:

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$

Linear Models for Classification

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

• In general, for classification, $f(x_i; w)$ is defined as

$$f(\mathbf{x}; \boldsymbol{\theta}) = h(\mathbf{w} \cdot \mathbf{x} + b)$$

where h(z) is a function to map continuous values to discrete values (denoting different categories)

• For binary classification,

$$h(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

Hyperplane

- In linear algebra, from the geometry point of view, $w \cdot x + b = 0$, where $w, x \in \mathbb{R}^m$ defines a hyperplane in the m-dimensional space, and separate the m-dimensional space into two regions
- For a data instance x_i
 - If $\mathbf{w} \cdot \mathbf{x}_i + b = 0$, then \mathbf{x}_i is on the hyperplane
 - If $\mathbf{w} \cdot \mathbf{x}_i + b > 0$, then \mathbf{x}_i is on one side of the hyperplane
 - If $\mathbf{w} \cdot \mathbf{x}_i + b < 0$, then \mathbf{x}_i is on the other side of the hyperplane

In the 3-dimensional space, hyperplanes are 2-dimensional planes, while in the 2-dimensional space, hyperplanes are lines

A Compact Form of Hyperplane

Recall from Lecture 3

$$w \cdot x + b = 0$$
, where $w, x \in \mathbb{R}^m$

$$\sum_{i=1}^m w_i x_i + b = 0$$

Hyperplane as A Classifier

- Consider binary classification
- We can learn a hyperplane $\mathbf{w} \cdot \mathbf{x} = 0$ in terms of \mathbf{w} to separate data instances of two different classes
- With the learned hyperplane, we can design a function h(z) to generate classification result

$$\hat{y} = f(x; \theta) = h(w \cdot x)$$

$$z = w \cdot x$$

$$h(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$
This is also known as a sign or threshold function

Hyperplane as A Classifier (cont.)

- The sign function is NOT differentiable everywhere
- Need to look for a more smooth function

$$f(\mathbf{x};\boldsymbol{\theta}) = h(\mathbf{w} \cdot \mathbf{x})$$

sigmoid function

$$h(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$h(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

$$z = w \cdot x$$

Hyperplane as A Classifier (cont.)

$$h(z) = \frac{1}{1 + \exp(-z)} \qquad z = w \cdot x$$

$$\{-1,+1\} \rightarrow \{0,1\}$$

$$\begin{cases} 1 & \text{if } h(z) \ge 0.5 \ (z \ge 0) \\ 0 & \text{if } h(z) < 0.5 \ (z < 0) \end{cases}$$

0 if
$$h(z) < 0.5$$
 ($z < 0$)

More convenient to design a loss function

Loss Function

- With the sigmoid function, the predicted values are in [0,1], the ground-truth values are in {0,1}, can we use the square loss as in linear regression?
- Given N training data instances $\{x_i, y_i\}$, i = 1, ..., N, where x_i is (m + 1)-dimensional $(x_{0i} = 1)$, and y_i is either 0 or 1

$$\sum_{i=1}^{N} \ell(h(\mathbf{x}_i; \mathbf{w}), y_i) = \sum_{i=1}^{N} (h(\mathbf{x}_i; \mathbf{w}) - y_i)^2$$

• However, $h(x_i; w) = \frac{1}{1 + \exp(-w \cdot x_i)}$ is nonlinear w.r.t. w. It can be shown that the square loss is non-convex

Loss Function (cont.)

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{N} \left(\frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x}_i)} - y_i \right)^2$$

• What is the problem if the objective is not convex?

Logistic Regression Loss

Define the loss function as

$$\ell(h(\mathbf{x}_i; \mathbf{w}), y_i) = \begin{cases} -\ln(h(\mathbf{x}_i; \mathbf{w})) & \text{if } y_i = 1 \\ -\ln(1 - h(\mathbf{x}_i; \mathbf{w})) & \text{if } y_i = 0 \end{cases}$$

$$y_i = 1$$

If
$$\hat{y}_i = 1$$
, $\ell(\hat{y}_i, y_i) = 0$
If $\hat{y}_i = 0$, $\ell(\hat{y}_i, y_i) = \text{infinite}$

$$-\ln(\hat{y}_i)$$

$$0 \qquad \hat{y}_i = h(x_i; \mathbf{w}) \qquad 1$$

$$y_i = 0$$

Logistic Regression Loss (cont.)

$$\ell(h(\mathbf{x}_i; \mathbf{w}), y_i) = \begin{cases} -\ln(h(\mathbf{x}_i; \mathbf{w})) & \text{if } y_i = 1 \\ -\ln(1 - h(\mathbf{x}_i; \mathbf{w})) & \text{if } y_i = 0 \end{cases}$$

The above loss can be simplified as

$$\ell(h(\boldsymbol{x}_i; \boldsymbol{w}), y_i) = -y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) - (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w}))$$

- If $y_i = 1$, then $\ell(h(x_i; w), y_i) = -\ln(h(x_i; w)) 0$
- If $y_i = 0$, then $\ell(h(x_i; w), y_i) = 0 \ln(1 h(x_i; w))$

Logistic Regression Objective

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{N} \left[-y_i \ln(h(\mathbf{x}_i; \mathbf{w})) - (1 - y_i) \ln(1 - h(\mathbf{x}_i; \mathbf{w})) \right]$$

$$\Longrightarrow_{\mathbf{w}} \sum_{i=1}^{N} \left[y_i \ln(h(\mathbf{x}_i; \mathbf{w})) + (1 - y_i) \ln(1 - h(\mathbf{x}_i; \mathbf{w})) \right]$$

where
$$h(\mathbf{x}_i; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x}_i)}$$

The objective is convex w.r.t. w, and differentiable

Probabilistic Point of View

$$z = \mathbf{w}^T \mathbf{x} \qquad y = \frac{1}{1 + \exp(-z)}$$

Assume the conditional probability of class 1 is modeled as

$$P(y = 1|x) = h(x; w) = \frac{1}{1 + \exp(-w^T x)}$$

• Thus, the conditional probability of class 0 is

$$P(y = 0|\mathbf{x}) = 1 - P(y = 1|\mathbf{x}) = 1 - h(\mathbf{x}; \mathbf{w}) = \frac{\exp(-\mathbf{w}^T \mathbf{x})}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

Probability Review

- Let *A* be a random variable (a feature / a label in machine learning)
- Marginal probability $0 \le P(A = a) \le 1$ P(A = a)refers to the probability that variable A = a

$$\sum_{a_i} P(A = a_i) = 1$$

• For example, in binary classification problem, a class label y has two possible values, 0 or 1 (-1 or +1)

$$P(y = 0) + P(y = 1) = 1$$

Probability Review (cont.)

- Let A and B be a pair of random variables (features/labels in machine learning).
- Their joint probability

$$P(A = a, B = b)$$
 refers to the probability that variable $A = a$, and at the same time variable $B = b$

• E.g., for pair of input data instance and output label (x_i, y_i) , its joint probability is

$$P(\mathbf{x} = \mathbf{x}_i, y = y_i)$$
OR

 $P(x_i, y_i)$ for simplicity

Probability Review (cont.)

Conditional probability

$$P(B=b|A=a)$$

refers to the probability that variable B will take on the value b, given that the variable A is observed to have the value a

$$\sum_{b_i} P(B = b_i | A = a) = 1$$

• For example, in binary classification, given a data instance x_i

$$P(y_i = 1|x_i) + P(y_i = 0|x_i) = 1$$

Parametric Form

$$P(y = 1|x) = h(x; w) = \frac{1}{1 + \exp(-w^T x)}$$

$$P(y = 0|x) = 1 - h(x; w) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)}$$

We can define more compact form as

$$P(y|x; w) = h(x; w)^{y} (1 - h(x; w))^{1-y}$$

- If y = 1, then $P(y|x; w) = h(x; w)^{1}(1 h(x; w))^{0}$
- If y = 0, then $P(y|x; w) = h(x; w)^0 (1 h(x; w))^1$
- To find w that makes sampling y_i conditioned on x_i from P(y|x; w) as likely as possible
 - Maximum likelihood estimation

Maximum Likelihood Estimation

• For each training pair $\{x_i, y_i\}$, the likelihood of parameter w of the conditional probability P(y|x; w) is

$$l(\mathbf{w}|\{\mathbf{x}_i, y_i\}) \triangleq P(y_i|\mathbf{x}_i; \mathbf{w}) = h(\mathbf{x}_i; \mathbf{w})^{y_i} (1 - h(\mathbf{x}_i; \mathbf{w}))^{1-y_i}$$

- Ideally, for each training pair $\{x_i, y_i\}$, $l(w|\{x_i, y_i\}) = P(y_i|x_i; w) = 1$
- Maximum likelihood estimation (MLE) aims to find a solution of w such that $P(y_i|x_i;w)$ is maximized

$$\widehat{\boldsymbol{w}} = \arg \max_{\boldsymbol{w}} l(\boldsymbol{w} | \{\boldsymbol{x}_i, y_i\}) = \arg \max_{\boldsymbol{w}} P(y_i | \boldsymbol{x}_i; \boldsymbol{w})$$

 The parametric form of the conditional probability fits the pair of input data instance and corresponding output well

MLE (cont.)

• Given a set of N training input-output pairs $\{x_i, y_i\}$, i = 1, ..., N, which are i.i.d., the likelihood is defined as the product of the likelihoods of each individual data pairs

$$\mathcal{L}(w) = \prod_{i=1}^{N} l(w|\{x_i, y_i\}) = \prod_{i=1}^{N} P(y_i|x_i; w)$$

• The goal of MLE is to find a solution of \mathbf{w} such that $\mathcal{L}(\mathbf{w})$ is maximized, ideally for all $\{\mathbf{x}_i, y_i\}$, i = 1, ..., N, $P(y_i | \mathbf{x}_i; \mathbf{w}) = 1$, and thus $\mathcal{L}(\mathbf{w}) = 1$

$$\widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \arg \max_{\mathbf{w}} \prod_{i=1}^{N} P(y_i | \mathbf{x}_i; \mathbf{w})$$

$\ln(ab) = \ln a + \ln b$

MLE (cont.)

$$\widehat{\boldsymbol{w}} = \arg \max_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \arg \max_{\boldsymbol{w}} \left[\prod_{i=1}^{N} P(y_i | \boldsymbol{x}_i; \boldsymbol{w}) \right]$$

- In practice, we maximize $ln \mathcal{L}(w)$ instead. Why?
 - 1. The $ln(\cdot)$ function converts the product into a sum

$$\ln \mathcal{L}(\mathbf{w}) = \ln \left(\prod_{i=1}^{N} P(y_i | \mathbf{x}_i; \mathbf{w}) \right) = \sum_{i=1}^{N} \ln P(y_i | \mathbf{x}_i; \mathbf{w})$$

2. The $ln(\cdot)$ function is a strictly increasing function, the solution of \boldsymbol{w} remains the same

$$\widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) \Leftrightarrow \widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \ln \mathcal{L}(\mathbf{w})$$

Maximum Log-Likelihood

• How to understand "the $ln(\cdot)$ function is a strictly increasing function, the solution of \boldsymbol{w} remains the same"

 $y = \ln(x)$

$$\widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) \iff \widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \ln \mathcal{L}(\mathbf{w})$$

Maximum Log-Likelihood (cont.)

$$\widehat{\boldsymbol{w}} = \arg \max_{\boldsymbol{w}} \ln \mathcal{L}(\boldsymbol{w}) = \arg \max_{\boldsymbol{w}} \sum_{i=1}^{N} \ln P(y_i | \boldsymbol{x}_i; \boldsymbol{w})$$

Recall that
$$P(y_i|x_i; w) = h(x_i; w)^{y_i} (1 - h(x_i; w))^{1-y_i}$$

$$\rightarrow \hat{w} = \arg \max_{w} \sum_{i=1}^{N} \ln(h(x_i; w)^{y_i} (1 - h(x_i; w))^{1-y_i})$$

$$\ln(a^c b^d) = \ln a^c + \ln b^d = c \ln a + d \ln b$$

$$\widehat{\boldsymbol{w}} = \arg\max_{\boldsymbol{w}} \sum_{i=1}^{N} \left[y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) + (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right]$$

Maximum Log-Likelihood (cont.)

$$\widehat{\boldsymbol{w}} = \arg\max_{\boldsymbol{w}} \sum_{i=1}^{N} \left[y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) + (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right]$$
Equivalent!

$$\hat{w} = \arg\min_{w} - \sum_{i=1}^{N} [y_i \ln(h(x_i; w)) + (1 - y_i) \ln(1 - h(x_i; w))]$$

The objective induced on Page 15 based on empirical risk minimization

Why Called Logistic Regression?

- In statistics, given a variable z that has two outcomes $\{0, 1\}$, denoted by p = P(z = 1), then 1 p = P(z = 0)
- The odds of the probability p is defined as the ratio of p and 1 p

$$odds = \frac{P(z=1)}{P(z=0)} = \frac{p}{1-p}$$

• The logit of the probability p is the logarithm of the odds:

$$logit(p) = ln(odds) = ln\left(\frac{p}{1-p}\right)$$

Recall that

$$P(y = 1|x) = h(x; w) = \frac{1}{1 + \exp(-w^T x)}$$

$$P(y = 0|x) = 1 - h(x; w) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)}$$

Logit + Regression

Denote by

$$p = P(y = 1|x) = \frac{1}{1 + \exp(-w^T x)}$$

• The logit of p is

$$\ln\left(\frac{p}{1-p}\right) = \ln\left(\frac{\frac{1}{1+\exp(-w^Tx)}}{\frac{\exp(-w^Tx)}{1+\exp(-w^Tx)}}\right)$$

$$= \ln(\exp(-w^Tx))^{-1}$$

$$\ln(\exp(a)^{-1}) = -1\ln\exp(a) = -a$$

$$= -1 \times (-w^Tx)$$

$$= w^Tx \text{ Linear regression}$$

Approaches to Solution

Objective E(w)

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \left[-\sum_{i=1}^{N} \left[y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) + (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right] \right]$$

- The objective is convex, differentiable, without constraints
- Can we set derivatives equal to zero and solve the resultant equations to get a closed form solution?
 - Optimization methods
 - Gradient descent first order methods
 - Newton's method second order methods

Optimization

Gradient descent

$$\begin{aligned} \boldsymbol{w}_{t+1} &= \boldsymbol{w}_t - \rho \frac{\partial E(\boldsymbol{w})}{\partial \boldsymbol{w}} \\ \frac{\partial E(\boldsymbol{w})}{\partial \boldsymbol{w}} &= \frac{\partial \left(-\sum_{i=1}^{N} \left[y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) + (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right] \right)}{\partial \boldsymbol{w}} \\ &= -\sum_{i=1}^{N} \frac{\partial \left[y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) + (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right]}{\partial \boldsymbol{w}} \\ &= -\sum_{i=1}^{N} \left(\frac{\partial \left(y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) \right)}{\partial \boldsymbol{w}} + \frac{\partial \left((1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right)}{\partial \boldsymbol{w}} \right) \end{aligned}$$

$$\frac{\partial \left(y_{i} \ln\left(h(\boldsymbol{x}_{i}; \boldsymbol{w})\right)\right)}{\partial \boldsymbol{w}} \frac{\partial \ln f(z)}{\partial z} = \frac{\partial \ln f(z)}{\partial f(z)} \frac{\partial f(z)}{\partial z} = \frac{1}{f(z)} \frac{\partial f(z)}{\partial z}$$

$$= y_{i} \frac{1}{h(\boldsymbol{x}_{i}; \boldsymbol{w})} \frac{\partial \left(h(\boldsymbol{x}_{i}; \boldsymbol{w})\right)}{\partial \boldsymbol{w}}$$

$$P(y = 1 | \boldsymbol{x}_{i}) = h(\boldsymbol{x}_{i}; \boldsymbol{w}) = \frac{1}{1 + \exp(-\boldsymbol{w}^{T} \boldsymbol{x}_{i})}$$

$$= y_{i} \frac{1}{h(\boldsymbol{x}_{i}; \boldsymbol{w})} \frac{\partial \left((1 + \exp(-\boldsymbol{w}^{T} \boldsymbol{x}_{i}))^{-1}\right)}{\partial \boldsymbol{w}}$$

$$\frac{\partial f(z)^{k}}{\partial z} = \frac{\partial f(z)^{k}}{\partial f(z)} \frac{\partial f(z)}{\partial z} = kf(z)^{k-1} \frac{\partial f(z)}{\partial z}$$

$$= y_{i} \frac{1}{h(\boldsymbol{x}_{i}; \boldsymbol{w})} (-1)(1 + \exp(-\boldsymbol{w}^{T} \boldsymbol{x}_{i}))^{-2} \frac{\partial \exp(-\boldsymbol{w}^{T} \boldsymbol{x}_{i})}{\partial \boldsymbol{w}}$$

$$y_{i} \frac{1}{h(x_{i}; w)} (-1) (1 + \exp(-w^{T} x_{i}))^{-2} \frac{\partial \exp(-w^{T} x_{i})}{\partial w}$$

$$\frac{\partial \exp(f(z))}{\partial z} = \frac{\partial \exp(f(z))}{\partial f(z)} \frac{\partial f(z)}{\partial z} = \exp(f(z)) \frac{\partial f(z)}{\partial z}$$

$$= y_{i} \frac{1}{h(x_{i}; w)} (-1) (1 + \exp(-w^{T} x_{i}))^{-2} \exp(-w^{T} x_{i}) (-x_{i})$$

$$P(y = 1 | x_{i}) = h(x_{i}; w) = \frac{1}{1 + \exp(-w^{T} x_{i})}$$

$$= y_{i} (1 + \exp(-w^{T} x_{i})) \frac{1}{(1 + \exp(-w^{T} x_{i}))^{2}} \exp(-w^{T} x_{i}) x_{i}$$

$$= y_i \frac{\exp(-\boldsymbol{w}^T \boldsymbol{x}_i)}{1 + \exp(-\boldsymbol{w}^T \boldsymbol{x}_i)} \boldsymbol{x}_i$$

$$\frac{\partial \left((1 - y_i) \ln(1 - h(x_i; w)) \right)}{\partial w}$$

$$= (1 - y_i) \frac{1}{1 - h(x_i; \mathbf{w})} (-1) \frac{\partial (h(x_i; \mathbf{w}))}{\partial \mathbf{w}}$$

$$P(y = 1 | x_i) = h(x_i; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T x_i)}$$

$$= (y_i - 1) \frac{1 + \exp(-\mathbf{w}^T x_i)}{\exp(-\mathbf{w}^T x_i)} \frac{1}{(1 + \exp(-\mathbf{w}^T x_i))^2} \exp(-\mathbf{w}^T x_i) x_i$$

$$= (y_i - 1) \frac{1}{1 + \exp(-\boldsymbol{w}^T \boldsymbol{x}_i)} \boldsymbol{x}_i$$

$$\frac{\partial \left((1 - y_i) \ln(1 - h(x_i; w)) \right)}{\partial w} = (y_i - 1) \frac{1}{1 + \exp(-w^T x_i)} x_i$$

$$= (y_i - 1) h(x_i; w) x_i$$

$$\frac{\partial \left(y_i \ln(h(x_i; w)) \right)}{\partial w} = y_i \frac{\exp(-w^T x_i)}{1 + \exp(-w^T x_i)} x_i$$

$$= y_i (1 - h(x_i; w)) x_i$$

$$\frac{\partial \left((1 - y_i) \ln(1 - h(x_i; w)) \right)}{\partial w} + \frac{\partial \left(y_i \ln(h(x_i; w)) \right)}{\partial w} = (y_i - h(x_i; w)) x_i$$

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -\sum_{i=1}^{N} \left(\frac{\partial (y_i \ln(h(\mathbf{x}_i; \mathbf{w})))}{\partial \mathbf{w}} + \frac{\partial ((1 - y_i) \ln(1 - h(\mathbf{x}_i; \mathbf{w})))}{\partial \mathbf{w}} \right)$$
$$= -\sum_{i=1}^{N} (y_i - h(\mathbf{x}_i; \mathbf{w})) \mathbf{x}_i$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \rho \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{w}_t + \rho \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i; \mathbf{w})) \mathbf{x}_i$$

Recall: Approaches to Solution

Objective E(w)

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \left[-\sum_{i=1}^{N} \left[y_i \ln(h(\boldsymbol{x}_i; \boldsymbol{w})) + (1 - y_i) \ln(1 - h(\boldsymbol{x}_i; \boldsymbol{w})) \right] \right]$$

- The objective is convex, differentiable, without constraints
- Can we set derivatives equal to zero and solve the resultant equations to get a closed form solution?
- Optimization methods
 - Gradient descent first order methods

Newton's method – second order methods

Newton's Method in Optimization

- Consider one dimension case, and our goal is to find an optimal solution x^* that minimizes a convex objective g(x)
- Gradient descent methods only use the first derivative together with a learning rate (step size) to generate a series $\{x_t\}$, t = 0,1,..., iteratively, which converges to the optimal solution x^*
 - May take many steps to converge to the optimum
- Newton's method aims to exploit the second order derivative to "guess" a better x_t at each iteration t
 - Needs fewer steps to converge to the optimum
 - Assumption: g(x) is at least twice differentiable, and $g''(x) \neq 0$

Out of scope

Regularized Logistic Regression

Objective $E(\mathbf{w})$

$$\min_{\mathbf{w}} \left[-\sum_{i=1}^{N} \left[y_i \ln(h(\mathbf{x}_i; \mathbf{w})) + (1 - y_i) \ln(1 - h(\mathbf{x}_i; \mathbf{w})) \right] + \frac{\lambda}{2} ||\mathbf{w}||_2^2 \right]$$

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -\sum_{i=1}^{N} \left(\frac{\partial \left(y_i \ln \left(h(\mathbf{x}_i; \mathbf{w}) \right) + (1 - y_i) \ln \left(1 - h(\mathbf{x}_i; \mathbf{w}) \right) \right)}{\partial \mathbf{w}} \right) + \frac{\partial \left(\frac{\lambda}{2} ||\mathbf{w}||_2^2 \right)}{\partial \mathbf{w}}$$

$$= -\sum_{i=1}^{N} (y_i - h(x_i; w)) x_i + \lambda w$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \rho \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{w}_t + \rho \left(\sum_{i=1}^N (y_i - h(\mathbf{x}_i; \mathbf{w})) \mathbf{x}_i - \lambda \mathbf{w} \right)$$

Extension to Multiple Classes

- Suppose there are C classes, $\{0, 1, ..., C 1\}$
- Each class except class 0 is associated with a specific

$$\mathbf{w}^{(c)}, c = 1, ..., C - 1$$
For $c > 0$: $P(y = c|\mathbf{x}) = \frac{\exp(-\mathbf{w}^{(c)^T}\mathbf{x})}{1 + \sum_{c=1}^{C-1} \exp(-\mathbf{w}^{(c)^T}\mathbf{x})}$
For $c = 0$: $P(y = 0|\mathbf{x}) = \frac{1}{1 + \sum_{c=1}^{C-1} \exp(-\mathbf{w}^{(c)^T}\mathbf{x})}$

- For learning each $w^{(c)}$, the procedure is basically the same as what we derived!
- For a test data instance \mathbf{x}^* , $\mathbf{y}^* = \arg\max_{c \in \{0,\dots,C-1\}} P(\mathbf{y} = c | \mathbf{x}^*)$

Self-reading on additional notes

Implementation using scikit-learn

• API: sklearn.linear_model: Linear Models https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model

Linear classifiers

linear_model.LogisticRegression([penalty, ...]) Logistic Regression (aka logit, MaxEnt) classifier.
linear_model.LogisticRegressionCV(*[, Cs, ...]) Logistic Regression CV (aka logit, MaxEnt) classifier.

sklearn.linear_model.LogisticRegression

 $class \ \, sklearn.linear_model. \ \, LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) \\ [source]$

C: float, default=1.0

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

Example

```
>>> from sklearn.linear_model import LogisticRegression
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.integers(2, n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> logisticR = LogisticRegression()
>>> logisticR.fit(X, y)
>>> pred= logisticR.predict(X)
```

Model training and testing

Support Vector Machines

• To learn a binary classifier

• To find a hyperplane (also known as decision boundary) such that all the squares reside on one side of the hyperplane and all the circles reside on the other side

A Possible Decision Boundary

One Possible Solution

Another Possible Decision Boundary

Another possible solution

Many Possible Decision Boundary

 Though all the shown decision boundaries can separate training examples perfectly, their test errors may be different

 Which one should be used to construct the classifier?

Decision Boundaries Comparison

Which one is better? B1 or B2?

Margin of Decision Boundary

- Each decision boundary B_i is associated with a pair of parallel hyperplanes: b_{i1} and b_{i2}
- b_{i1} is obtained by moving the hyperplane until it touches the closest circle(s)
- b_{i2} is obtained by moving a hyperplane away from the decision boundary until it touches the closest square(s)

The distance between the parallel hyperplanes is known as the margin of the decision boundary

Support Vector Machines

- Support Vector Machines (SVMs) aim to learn a linear decision boundary whose margin is largest over the training data instances
- SVMs are one of the most classical machine learning methods
- In the past (in 90's and 00's), SVMs have shown promising empirical results in many practical applications, such as computer vision, sensor networks and text mining

How to Represent A Margin?

Optimization problem of linear SVMs (separable case)

$$\min_{\substack{w,b}} \frac{\|w\|_2^2}{2}$$
s.t. $w \cdot x_i + b \ge 1$, if $y_i = 1$, $w \cdot x_i + b \le -1$, if $y_i = -1$, $i = 1, ..., N$

$$\qquad \qquad \qquad \downarrow \downarrow$$

$$\min_{\substack{w,b \ w,b}} \frac{\|w\|_2^2}{2}$$
s.t. $y_i \times (w \cdot x_i + b) \ge 1$, $i = 1, ..., N$

Linear SVMs: Non-separable Case

• What if data instances of the two class are not separable?

Slack variables $\xi_i \ge 0$ need to be introduced to absorb errors

Detailed induction will be presented next week

Nonlinear SVMs

Detailed induction will be presented next week

• What if the decision boundary is not linear?

Kernel methods

Thank you!