Paul Gustafson

Texas A&M University - Math 666

Instructor: Igor Zelenko

HW 1

1 Write the control system on $M=\mathbb{R}^2\times\mathbb{T}^3$ corresponding to the car with two off-hook trailers system.

Proof. Let $n_i = (\cos \theta_i, \sin \theta_i)$ and $n_i' = (-\sin \theta_i, \cos \theta_i)$ for $0 \le i \le 2$. Then $n_i \cdot n_j = \cos(\theta_i - \theta_j) = n_i' \cdot n_j'$ and $n_i \cdot n_j' = \sin(\theta_i - \theta_j)$.

Let v_2 denote the velocity of the car, and v_i denote the velocity of the (n-i)-th trailer. Let $v_{1.5}$ denote the velocity of the first hook, and $v_{0.5}$ denote the velocity of the second hook. Let $\omega_i = \frac{\partial \theta_i}{\partial t}$.

In the case of linear motion of the car, we have $v_2 = vn_2$ and $\omega_2 = 0$. Hence,

$$v_{1.5} = vn_{2}$$

$$v_{1} = (v_{1.5} \cdot n_{1})n_{1}$$

$$= (vn_{2} \cdot n_{1})n_{1}$$

$$= v\cos(\theta_{2} - \theta_{1})n_{1}$$

$$\omega_{1} = v_{1.5} \cdot n'_{1}$$

$$= vn_{2} \cdot n'_{1}$$

$$= v\sin(\theta_{2} - \theta_{1})$$

$$v_{0.5} = v_{1} - \omega_{1}n'_{1}$$

$$= v\cos(\theta_{2} - \theta_{1})n_{1} - v\sin(\theta_{2} - \theta_{1})n'_{1}$$

$$\omega_{0} = v_{0.5} \cdot n'_{0}$$

$$= v\cos(\theta_{2} - \theta_{1})n_{1} \cdot n'_{0} - v\sin(\theta_{2} - \theta_{1})n'_{1} \cdot n'_{0}$$

$$= v\cos(\theta_{2} - \theta_{1})\sin(\theta_{1} - \theta_{0}) - v\sin(\theta_{2} - \theta_{1})\cos(\theta_{1} - \theta_{0})$$

$$= v\sin((\theta_{1} - \theta_{0}) - (\theta_{2} - \theta_{1}))$$

$$= v\sin(2\theta_{1} - \theta_{0} - \theta_{2}).$$

For the case of the car turning, we have $v_2 = 0$ and $\omega_2 = \omega$. Hence,

$$v_{1.5} = -\omega n_2'$$

$$v_1 = (v_{1.5} \cdot n_1)n_1$$

$$= (-\omega n_2' \cdot n_1)n_1$$

$$= \omega \sin(\theta_2 - \theta_1)n_1$$

$$\omega_1 = v_{1.5} \cdot n_1'$$

$$= -\omega n_2' \cdot n_1'$$

$$= -\omega \cos(\theta_2 - \theta_1)$$

$$v_{0.5} = v_1 - \omega_1 n_1'$$

$$= \omega \sin(\theta_2 - \theta_1)n_1 + \omega \cos(\theta_2 - \theta_1)n_1'$$

$$\omega_0 = v_{0.5} \cdot n_0'$$

$$= \omega \sin(\theta_2 - \theta_1)n_1 \cdot n_0' + \omega \cos(\theta_2 - \theta_1)n_1' \cdot n_0'$$

$$= \omega \sin(\theta_2 - \theta_1)\sin(\theta_1 - \theta_0) + \omega \cos(\theta_2 - \theta_1)\cos(\theta_1 - \theta_0)$$

$$= \omega \cos(2\theta_1 - \theta_0 - \theta_2)$$

Hence the control system for M is given by the family of vector fields $\mathcal{F} = \{\pm X_1, \pm X_2\}$, where

$$X_1 = \cos(\theta_2) \frac{\partial}{\partial x} + \sin(\theta_2) \frac{\partial}{\partial y} + \sin(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + A \frac{\partial}{\partial \theta_0}$$

with $A = \sin(2\theta_1 - \theta_0 - \theta_2)$, and

$$X_2 = \frac{\partial}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + B \frac{\partial}{\partial \theta_0}$$

with
$$B = \cos(2\theta_1 - \theta_0 - \theta_2)$$
.

2 Find all points $q \in M$ such that \mathcal{F} is bracket-generating. At these points, calculate the degree of nonholonomy of \mathcal{F} .

Proof. We have

$$\begin{split} [X_1, X_2] &= \left[\cos(\theta_2) \frac{\partial}{\partial x} + \sin(\theta_2) \frac{\partial}{\partial y} + \sin(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + A \frac{\partial}{\partial \theta_0}, \right. \\ &\left. \frac{\partial}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + B \frac{\partial}{\partial \theta_0} \right] \\ &= \sin(\theta_2 - \theta_1) \left(- \sin(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + \frac{\partial B}{\partial \theta_1} \frac{\partial}{\partial \theta_0} \right) + A \frac{\partial B}{\partial \theta_0} \frac{\partial}{\partial \theta_0} \\ &- \left(- \sin(\theta_2) \frac{\partial}{\partial x} + \cos(\theta_2) \frac{\partial}{\partial y} + \cos(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + \frac{\partial A}{\partial \theta_2} \frac{\partial}{\partial \theta_0} \right) \\ &+ \cos(\theta_2 - \theta_1) \left(- \cos(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + \frac{\partial A}{\partial \theta_1} \frac{\partial}{\partial \theta_0} \right) - B \frac{\partial A}{\partial \theta_0} \frac{\partial}{\partial \theta_0} \\ &= \sin(\theta_2) \frac{\partial}{\partial x} - \cos(\theta_2) \frac{\partial}{\partial y} \\ &+ \left(- \sin^2(\theta_2 - \theta_1) - \cos(\theta_2 - \theta_1) - \cos^2(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_1} \\ &+ \left(\sin(\theta_2 - \theta_1) \frac{\partial B}{\partial \theta_1} + A \frac{\partial B}{\partial \theta_0} - \frac{\partial A}{\partial \theta_2} + \cos(\theta_2 - \theta_1) \frac{\partial A}{\partial \theta_1} - B \frac{\partial A}{\partial \theta_0} \right) \frac{\partial}{\partial \theta_0} \\ &= \sin(\theta_2) \frac{\partial}{\partial x} - \cos(\theta_2) \frac{\partial}{\partial y} + (-1 - \cos(\theta_2 - \theta_1)) \frac{\partial}{\partial \theta_1} \\ &+ \left(\sin(\theta_2 - \theta_1) (-2A) + A^2 + B + \cos(\theta_2 - \theta_1) (2B) - B(-B) \right) \frac{\partial}{\partial \theta_0} \\ &= \sin(\theta_2) \frac{\partial}{\partial x} - \cos(\theta_2) \frac{\partial}{\partial y} + (-1 - \cos(\theta_2 - \theta_1)) \frac{\partial}{\partial \theta_1} \\ &+ (2\cos((\theta_2 - \theta_1) + (2\theta_1 - \theta_0 - \theta_2)) + B + 1) \frac{\partial}{\partial \theta_0} \\ &= \sin(\theta_2) \frac{\partial}{\partial x} - \cos(\theta_2) \frac{\partial}{\partial y} + C \frac{\partial}{\partial \theta_1} + D \frac{\partial}{\partial \theta_0}, \end{split}$$
where $C = -1 - \cos(\theta_2 - \theta_1)$ and $D = 2\cos(\theta_1 - \theta_0) + \cos(2\theta_1 - \theta_0 - \theta_2) + 1$. Hence,
$$\frac{\partial D}{\partial \theta_2} = \sin(2\theta_1 - \theta_0 - \theta_2)$$

$$\frac{\partial D}{\partial \theta_2} = -2\sin(\theta_1 - \theta_0) - 2\sin(2\theta_1 - \theta_0 - \theta_2)$$

 $\frac{\partial D}{\partial \theta_0} = 2\sin(\theta_1 - \theta_0) + \sin(2\theta_1 - \theta_0 - \theta_2)$

Then

$$\begin{split} [X_1,[X_1,X_2]] &= \left[\cos(\theta_2)\frac{\partial}{\partial x} + \sin(\theta_2)\frac{\partial}{\partial y} + \sin(\theta_2 - \theta_1)\frac{\partial}{\partial \theta_1} + A\frac{\partial}{\partial \theta_0},\right. \\ &\left. \sin(\theta_2)\frac{\partial}{\partial x} - \cos(\theta_2)\frac{\partial}{\partial y} + C\frac{\partial}{\partial \theta_1} + D\frac{\partial}{\partial \theta_0}\right] \\ &= \sin(\theta_2 - \theta_1)\left(\frac{\partial C}{\partial \theta_1}\frac{\partial}{\partial \theta_1} + \frac{\partial D}{\partial \theta_1}\frac{\partial}{\partial \theta_0}\right) + A\frac{\partial D}{\partial \theta_0}\frac{\partial}{\partial \theta_0} \\ &- C\left(-\cos(\theta_2 - \theta_1)\frac{\partial}{\partial \theta_1} + \frac{\partial A}{\partial \theta_1}\frac{\partial}{\partial \theta_0}\right) + D\frac{\partial A}{\partial \theta_0}\frac{\partial}{\partial \theta_0} \\ &= \left(\sin(\theta_2 - \theta_1)\frac{\partial C}{\partial \theta_1} + C\cos(\theta_2 - \theta_1)\right)\frac{\partial}{\partial \theta_1} \\ &\left. \left(\sin(\theta_2 - \theta_1)\frac{\partial D}{\partial \theta_1} + A\frac{\partial D}{\partial \theta_0} - C\frac{\partial A}{\partial \theta_1} + D\frac{\partial A}{\partial \theta_0}\right)\frac{\partial}{\partial \theta_0} \right. \\ &= \left(\sin(\theta_2 - \theta_1)\frac{\partial C}{\partial \theta_1} + C\cos(\theta_2 - \theta_1)\right)\frac{\partial}{\partial \theta_1} \\ &\left. \left(\sin(\theta_2 - \theta_1)\frac{\partial C}{\partial \theta_1} + C\cos(\theta_2 - \theta_1)\right)\frac{\partial}{\partial \theta_1} \right. \end{split}$$

and

$$\begin{split} [X_2,[X_1,X_2]] &= \left[\frac{\partial}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + B \frac{\partial}{\partial \theta_0}, \right. \\ &\quad \sin(\theta_2) \frac{\partial}{\partial x} - \cos(\theta_2) \frac{\partial}{\partial y} + C \frac{\partial}{\partial \theta_1} + D \frac{\partial}{\partial \theta_0} \right] \\ &= \cos(\theta_2) \frac{\partial}{\partial x} + \sin(\theta_2) \frac{\partial}{\partial y} + \frac{\partial C}{\partial \theta_2} \frac{\partial}{\partial \theta_1} + \frac{\partial D}{\partial \theta_2} \frac{\partial}{\partial \theta_0} \\ &\quad - \cos(\theta_2 - \theta_1) \left(\frac{\partial C}{\partial \theta_1} \frac{\partial}{\partial \theta_1} + \frac{\partial D}{\partial \theta_1} \frac{\partial}{\partial \theta_0} \right) + B \frac{\partial D}{\partial \theta_0} \frac{\partial}{\partial \theta_0} \\ &\quad - C \left(-\sin(\theta_2 - \theta_1) \frac{\partial}{\partial \theta_1} + \frac{\partial B}{\partial \theta_1} \frac{\partial}{\partial \theta_0} \right) - D \frac{\partial B}{\partial \theta_0} \frac{\partial}{\partial \theta_0} \\ &= \cos(\theta_2) \frac{\partial}{\partial x} + \sin(\theta_2) \frac{\partial}{\partial y} \\ &\quad + \left(\frac{\partial C}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial C}{\partial \theta_1} + C \sin(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_1} \\ &\quad + \left(\frac{\partial D}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial D}{\partial \theta_1} + B \frac{\partial D}{\partial \theta_0} - C \frac{\partial B}{\partial \theta_1} - D \frac{\partial B}{\partial \theta_0} \right) \frac{\partial}{\partial \theta_0} \\ &= \cos(\theta_2) \frac{\partial}{\partial x} + \sin(\theta_2) \frac{\partial}{\partial y} \\ &\quad + \left(\frac{\partial C}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial C}{\partial \theta_1} + C \sin(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_1} \\ &\quad + \left(\frac{\partial C}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial C}{\partial \theta_1} + C \sin(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_1} \\ &\quad + \left(\frac{\partial C}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial C}{\partial \theta_1} + C \sin(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_1} \\ &\quad + \left(\frac{\partial C}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial C}{\partial \theta_1} + C \sin(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_1} \\ &\quad + \left(\frac{\partial C}{\partial \theta_2} - \cos(\theta_2 - \theta_1) \frac{\partial C}{\partial \theta_1} + C \sin(\theta_2 - \theta_1) \right) \frac{\partial}{\partial \theta_0} \end{aligned}$$

Letting T be the matrix with rows $X_1, X_2, [X_1, X_2], [X_1, [X_1, X_2]], [X_2, [X_1, X_2]],$ using MATLAB we find that $\det(T) = \sin(\theta_2 - \theta_1) - \sin(\theta_1 - \theta_0) + \sin(\theta_2 - 2\theta_1 + \theta_0).$

If $\det(T) \neq 0$, then $Lie_q^3 = T_q M$, and the degree of nonholonomy at q is 3. On the other hand, if $\det(T) = 0$ then let $\alpha = \theta_2 - \theta_1$ and $\beta = \theta_1 - \theta_0$. Then we have $0 = \det(T) = \sin(\alpha) - \sin(\beta) + \sin(\alpha - \beta) = \sin(\alpha) - \sin(\beta) + \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha) = \sin(\alpha)(1 + \cos(\beta)) - \sin(\beta)(1 + \cos(\alpha))$. If either $\sin(\alpha) = 0$ or $\sin(\beta) = 0$, then $(\alpha, \beta) \in \{(0, 0)\} \cup \{\{\pi\} \times S^1\} \cup \{S^1 \times \{\pi\}\}\}$.

 $\sin(\alpha)\cos(\beta)-\sin(\beta)\cos(\alpha)=\sin(\alpha)(1+\cos(\beta))-\sin(\beta)(1+\cos(\alpha)). \text{ in either } \sin(\alpha)=0 \text{ or } \sin(\beta)=0, \text{ then } (\alpha,\beta)\in\{(0,0)\}\cup(\{\pi\}\times S^1)\cup(S^1\times\{\pi\}).$ Otherwise, we have $\frac{1+\cos(\beta)}{\sin(\beta)}=\frac{1+\cos(\alpha)}{\sin(\alpha)}.$ Let $f:(0,2\pi)\to\mathbb{R}$ be defined by $f(\pi)=0$ and $f(x)=\frac{1+\cos(x)}{\sin(x)}$ otherwise. Note that $f'(x)=-1-\frac{(1+\cos(x))\cos(x)}{\sin^2(x)}=-1-\frac{\cos(x)}{1-\cos(x)}<0$ for all x. Hence f is monotone decreasing. Thus, $\alpha=\beta$.

Thus, the points q such that $Lie_q^3 \neq T_q M$ are those points such that $\alpha = \pi$, or $\beta = \pi$, or $\beta - \alpha = 0$. In the original variables, this means $\theta_2 - \theta_1 = \pi$. or $\theta_1 - \theta_0 = \pi$, or $2\theta_1 - \theta_0 - \theta_2 = 0$.

Suppose $q \in M$ such that $Lie_q^4 \neq T_qM$. Using MATLAB, I found that the matrix with rows $X_1, X_2, [X_1, X_2], [X_1, [X_1[X_1, X_2]], [X_2, [X_1, X_2]]$ has determi-

nant $\sin(\alpha) + \sin(\beta) + \sin(\alpha + \beta)$, which must be 0 at q. Hence if $\alpha = \beta$, then $0 = 2\sin(\alpha) + \sin(2\alpha) = 2\sin(\alpha)(1 + \cos(\alpha))$. Hence $\alpha \in \{0, \pi\}$ if $\alpha = \beta$.

From MATLAB, we also have $\det(X_1, X_2, [X_1, X_2], [X_1[X_1, X_2]], [X_2, [X_2, [X_1, X_2]]) = 2\cos(\beta) + \cos(\alpha + \beta) + 2\cos(\alpha) + \cos(\alpha - \beta) + 2$. If this determinant is zero, we cannot have $\alpha = \beta = 0$.

The only remaining case is either $\alpha=\pi$ or $\beta=\pi$. Each of these subspaces of M is invariant under the family of controls \mathcal{F} . To see why, first suppose $\alpha=\theta_2-\theta_1=\pi$. Then $X_1=\cos(\theta_2)\frac{\partial}{\partial x}+\sin(\theta_2)\frac{\partial}{\partial y}-\sin(\theta_1-\theta_0)\frac{\partial}{\partial \theta_0}$. Hence, the value of α at q is the same as the value at $e^{X_1t}(q)$ for any t. A similar argument holds for X_2 , and for the subspace $\beta=\pi$ in place of $\alpha=\pi$. Thus each of the subspaces is invariant under \mathcal{F} , hence under any Lie bracket of \mathcal{F} . In particular, $\frac{\partial}{\partial \theta_1} \not\in Lie^n_q$ for some q such that $\alpha(q)=\pi$ or $\beta(q)=\pi$ and any n, since $\frac{\partial}{\partial \theta_1} \alpha \neq 0$ and $\frac{\partial}{\partial \theta_1} \beta \neq 0$. Thus, \mathcal{F} is not bracket-generating at q.

In summary, the only non-bracket-generating points are those with $\theta_2 - \theta_1 = \pi$ or $\theta_1 - \theta_0 = \pi$. Out of the remaining points of M, the points with $\theta_1 - \theta_0 = \theta_2 - \theta_1 \neq \pi$ have degree of nonholomony 4. Everything else has degree of nonholomomy 3.

3 Let \widetilde{M} denote the set of bracket-generating points of \mathcal{F} . Prove that the system is controllable on \widetilde{M} .

Proof. By the Rachevskii-Chow theorem, it suffices to show that \widetilde{M} is connected. Let $q^1,q^2\in\widetilde{M}$ with $q^1=(x^1,y^1,\theta^1_2,\theta^1_1,\theta^1_0)$ and $q^2=(x^2,y^2,\theta^2_2,\theta^2_1,\theta^2_0)$. Let I=[0,1]. Define $p_1:I\to\widetilde{M}$ by $p_1(t)=q^1+(x^2-x^1,y^2-y^1,0,0,0)t$. Define $p_2:I\to\widetilde{M}$ by $p_2(t)=p_1(1)+(0,0,\theta^2_1-\theta^1_1,\theta^2_1-\theta^1_1,\theta^2_1-\theta^1_1)t$.

Define $p_3: I \to \widetilde{M}$ by holding all coordinates but θ_2 constant and letting the path of θ_2 in S_1 be a path that starts at the $\theta_2(p_2(1))$ and ends at θ_2^2 and does not pass through $\pi + \theta_1^2$. To see that such a path exists, first note that since $p_2(1) \in \widetilde{M}$ with $\theta_1(p_2(1)) = \theta_1^2$, we have $\theta_2(p_2(1)) - \theta_1^2 \neq \pi$. Similarly, by the definition of \widetilde{M} , we have $\theta_2^2 - \theta_2^1 \neq \pi$. Since $S^1 \setminus \{\pi + \theta_1^2\}$ is path-connected, there exists such a path p_3 .

The same argument works to get a path p_4 from $p_3(1)$ to q^2 , holding everything constant except the θ_0 coordinate.

Hence the concatenation of p_1 , p_2 , p_3 , and p_4 is a path in \widetilde{M} from q^1 to q^2 . Thus \widetilde{M} is path-connected, hence connected.