A and B are progrests with P(A) > 0 and P(B) > 0 and ANBIO i. P(AUB) = P(A)+P(B) - P(A MB) \leq 1 ii. P(ANB = P(A)+P(B)-1 iii. P(AUB) > P(AAB) iv. P(AUB) > P(A)+P(B)-1 and from i we know I. P(AUB) < P(A) P(B) From IV and I we know P(A)+ P(B)-1 = P(AUB) = P(A)+P(B) Given A, B are indeprendent P(ANB) = P(A) · P(B) P(A)=.3, P(B)) ,4 P(AUB)=Untrown P(A)= P(A), P(B)= (.3). (.4)=,12 P(BIA) = P(ANB) = P(A) -P(B) = .4 P(AUB)=P(A)+P(B)-P(A)B)=.3+04-.12 P(AUB)=,58

3) a)
$$(.55)$$
 $5 = .73$
b) $(.45..7) + (.65..2) = .425$
c) $P(RISAS) = P(RISAS) = .315 = .7412$
e) $P(red | B_1) = 10$ $P(Grant | B_2) = 3$
 $P(0.41 | D_2) = 6$ $P(Grant | B_2) = 4$

a)
$$P(\text{red from B}_1) = \frac{10}{1013} = \frac{10}{13} = 0.769$$

b)
$$n=25$$
 $P=.5$ # of 505 shoppor = χ
 $\chi \sim B$ irromizal $(n=25, P=.5)$
 $P(\chi=\chi) = \binom{n}{\chi} p^{\chi} (1-P)^{n-\chi}$
we have to fine the $P(\chi \ge 8) = 1-P(\chi \le 7)$
 $P(\chi=\chi) = \binom{25}{\chi}.5^{\chi}(1-.5)^{25-\chi} = \binom{25}{\chi}.5^{25}$
Hence, $P(\chi \le 7) = \frac{2}{10}(P(\chi=1)) = \frac{2}{10}(\frac{25}{10})(.5)^{25} = .5^{25} = \binom{25}{10}(.5)^{25}$
 $.5^{25}$ It $\chi^{25} + 300 + 2300 + 12650 + 53136 + 177100 + 480700$
 $= \frac{25}{10}(1-.0216) = \frac{n!}{(n-r)!}$ Thus $P(\chi > 8) = (1-.0216) = .9784$

5)c)
$$P(x \in Y) = P(x \in Y)$$

 $P(x \in Y) = P(x \in Y)$
 $P(x \in Y) = P(x \in Y) = P($

(b) a)
$$E(2x_1) = 2E(x_1) = 2(\frac{6}{2}) = 0$$

 $E(2x_1) = 2E(x_1) = 2E(\frac{6x_1}{n}) = \frac{2E(6x_1)}{n}$
 $\frac{2EG}{2n} = \frac{2nG}{2n} = E(2x_1) = 0$ both
 $2x_1, Grid 2x_1 one unbrase 2 estimators for $0$$

b) Sime Marmfor
$$(0,6)$$
; $V(x) = (0-0)^2 - 6^2$ and his 2x av72x m MSE(2xi) = $V(2xi)$ = $V(2xi)$

For poisson (1),
$$I=(x)=\lambda$$
 means of normalyam equals the south mean with population mean.

i. $I=X=\lambda$ ($I=X=\lambda$) $I=X=\lambda$

b) literhood tunches of $I=X=\lambda$
 $I=X=\lambda$ ($I=X=\lambda$) $I=X=\lambda$
 $I=X=\lambda$ ($I=X=\lambda$) $I=X=\lambda$
 $I=X=\lambda$

 $(\Theta, \widetilde{\Theta}) = 2\overline{x}$

Scanned with CamScanner

86) dest
$$T = m_{ax}(x_{i}, x_{i}, \dots, x_{n}) = x(n)$$

PDF of $T_{i}, T_{i}(t) = \frac{n+n-1}{n}$

we need forms $E(t)$

= $\int_{0}^{t} + f(t) dt + \int_{0}^{t} \int_{0}^{t} dt + \int_{0}^{t} \int_{0}^{t} dt + \int_{0}^{t} \int_{0}^{t} dt + \int_{0}^{t} \int_{0$

 $^{9}b)$ cont. $T_3 = \overline{\chi}$ F(T3)=E(X)=Y X ~n(4,6/n) V(T3)= 5% T3 13 on unbiased estimator of M 9)c) Ti /13, T3 greall unbrosed estimors of u, hore Bros(Ti) = E(Ti) - M = G Bras(T2) = E(T2) -4 = 0 Bros (T3) = E(T3) -N <0 TO fond MSE OFTI, TZ, TZ MSE (t,) = VarT+ blas(+)2=62+02=62 MSE(T2)=V(T2)+hm>(T2)2=562 MSE(B)=VB)=5 The estantor will be best down MSE 13 mon gre n 15 leas Honce MSE (T3) will be mon Mon 128T, To 13 the best estrater among all (To = X If TISMLE 10a) here $g(m0) = wP \in$ then MLE 15, § (M, E) = M+6 = I+B+N for a parement O Mor Hore 15 9(N,0) = W d furetry g(+) of premapponela MLEB & (N, 8) = 1/6 = = MLE of O(0) mill be 9(T) hered (0)=

MLE

9(t) Mostrin-

vorume promy of

$$P(\bar{x}>5)$$

$$= P(\bar{x}-m) > 5-m \\ 6/\pi > 5-m \\ 1-P(z>5-m) = 1-P(z>5-m)$$

$$= 1-P(z>5-m) = 1-P(sn 5-m)$$

$$= \frac{1}{6}(-1\pi 5-m) = \frac{1}{6}(sn m-5)$$

$$= \frac{1}{6}(-1\pi 5-m) = \frac{1}{6}(sn m-5)$$

$$= \frac{1}{$$