

Übersicht

- 1. Einführung
 - a. Motivation
 - b. Ähnlichkeitssuche in Multimedia Daten
- 2. Feature Detection / Description
 - a. Feature
 - b. Ermittlung interessanter Punkte
 - c. Beschreibung von Features
- 3. ORB
 - a. Oriented FAST and Rotated BRIEF
 - b. FAST (oFAST)
 - c. BRIEF (rBRIEF)
 - d. Demo
- 4. Zusammenfassung

Einführung

Ähnlichkeitssuche in Multimedia Daten

Multimediale Ähnlichkeitssuche

- Wiedererkennen von Bildinhalten im Bereich des Maschinellen Sehens und Bildverarbeitung
 - Robotik
 - Multimediadaten
 - Nehmen massiv zu

Feature Detection/ Description

66

In computer vision and image processing, a feature is a piece of information which is relevant for solving the computational task related to a certain application. [10]

Feature

- Nicht einheitlich Definiert
- "interessante" Teil eines Bildes
- Bildet eine Art Startpunkt
- Verschiedene Typen sind inhärent

Feature - Typen

[2

- Gradientenbasiert
- Templatebasiert
 - Kontourbasiert

[3]

Feature - Detector

- Erkennt "interessante" Bereiche
 - Position/Größe der Punkte/Gebiete
- O Leistungsindikatoren:
 - Wiederholbarkeit
 - Eindeutigkeit
 - Anzahl
 - Effizienz

Feature - Descriptor

- Berechnet numerischen Fingerabdruck
 - Umgebung eines Features wird betrachtet (z.B. Rohwerte oder Histogram of oriented Gradients)
- O Leistungsindikatoren:
 - Rotations-/ Skaleninvariant
 - Eindeutig
 - Effizient

Feature Description: ORB

Oriented Fast and Rotated Brief

- 2011 veröffentlicht von "OpenCV Labs"
 - → patentlose Alternative zu SIFT/SURF
 - Entwickelt von E. Rublee et al.
- Effiziente Alternative
 - Feature detection: ≈ SIFT, > SURF
 - 1 2 Größenordnungen schneller als SURF / SIFT
 - Geringere Platzkomplexität
- O Basiert auf:
 - FAST (detector)
 - BRIEF (descriptor)

(o)FAST

- Features from Accelerated Segment Test
- Aufgabe: Auffinden von Ecken
- Methode: Template
- Sehr Effizient durch einfache Vergleichsoperationen
- oFast erweitert um Skalen-,Rotationsinvarianz

FAST

$$S_{p \to x} = \begin{cases} d, & I_{p \to x} \leq I_p - t & \text{(darker)} \\ s, & I_p - t < I_{p \to x} < I_p + t & \text{(similar)} \\ b, & I_p + t \leq I_{p \to x} & \text{(brighter)} \end{cases}$$

$$C(p) = \max(S_{bright}, S_{dark})$$

Wenn nun $C(p) \ge N \rightarrow p$ ist Ecke

- N=9 liefert sehr gute Ergebnisse (FAST-9)
- o t ist Kontextabhängig zu wählen
 - Radius 3 um p bleibt unverändert

oFast

FAST ist von Auflösung abhängig

oFAST verwendet Bildpyramiden

Ecken werden auf Ebenen berechnet

→ partielle Skaleninvarianz

oFast

- FAST ist nicht rotationsrobust
- oFAST verwendet Intensitätsschwerpunkte (intensity centroids)

$$C = \left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)$$

 $\theta = atan2(m_{01}, m_{10})$

m00=4 | m10=5 | m01=8 | C=(1.25,2)

(r)BRIEF

- Binary Robust Independent Elementary Features
- Aufgabe: Umgebungsbeschreibung von Feature
- Binäre Featurebeschreibung (128-512 bits)
 - → Ressourcenschonend

BRIEF

- Definiere die Nachbarschaft N um das Feature F
- 2. Ausgehen von Gauß-Verteilung G mit Abweichung σ und F, wähle ein Pixel p1 in N
- 3. Ausgehend von p1 und G mit $\sigma/2$, wähle p2
- 4. Wenn I(p1)>I(p2) wird 1 gewählt, sonst 0

rBRIEF

- Standard BRIEF ist anfällig gegenüber Rotation
- rBRIEF (Rotation-aware BRIEF) wirkt entgegen
- Adaption an verschiedenen Stellen
 - Steuerung durch Orientierung der Features
 - Generierung einer Lookup-Tabelle durch ein Machine Learning Verfahren

Live-Demo

Fazit

Zusammenfassung

- Feature, Feature Detector / Descriptor
- FAST / oFAST
- O BRIEF / rBRIEF
- ORB eine Alternative?

Detector	ORB	SURF	SIFT
Time per frame (ms)	15.3	217.3	5228.7

[7]

Quellen

- [1] https://www.mathworks.com/discovery/edge-detection.html
- [2] https://www.mathworks.com/help/vision/ug/local-feature-detection-and-extraction.html
- [3] https://sites.google.com/a/umich.edu/eecs442-winter2015/homework/blobs
- [4] https://www.researchgate.net/figure/Histogram-of-oriented-gradients-descriptor-a-The-histogram-of-oriented-gradients-HoG fig3 256451629
- [5] https://medium.com/@deepanshut041/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
- [6] https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html
- [7] https://ieeexplore.ieee.org/document/6126544 http://www.willowgarage.com/sites/default/files/orb_final.pdf
- [8] https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html
- [9] https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_brief/py_brief.html
- [10] https://en.wikipedia.org/wiki/Feature (computer vision)
- [11] https://www.researchgate.net/publication/221304115 BRIEF Binary Robust Independent Elementary Features
- [12] https://link.springer.com/chapter/10.1007%2F11744023 34 &

https://www.researchgate.net/publication/38114446 FASTER and better A Machine Learning Approach to Corner Detection

Vielen Dank!

Backup

