ÜBUNGEN ZUR KLASSISCHEN PHYSIK 2

SS 2024

1. Übungsblatt

24.04.-30.04.

Vor Beginn Ihrer Übungsstunde kreuzen Sie die Aufgaben, die Sie vorstellen möchten, in der virtuellen Ankreuzliste im WueCampus-Kursraum an.

Fragen zur Vorbereitung

- Welche Größen sind Zustandsgrößen? Was bedeutet das?
- Wie sieht die ideale Gasgleichung aus? Was bedeutet das für isotherme, isobare und isochore Zustandsänderungen?
- Wie hängt die innere Energie mit der Temperatur, dem Druck, den Freiheitsgraden zusammen?
- Was ist ein pV-Diagramm?
- Wie beschreibt man die Wärmeausdehnung von Festkörpern? Wie bestimmt man die Länge eines Kreisbogens?

Aufgabe 1.1: Zustandsänderungen

Eine abgeschlossene Menge eines idealen Gases (Teilchenzahl N_1 , Druck p_1 , Volumen V_1) führt drei Zustandsänderungen durch. Zunächst wird eine isobare Expansion zum Volumen $V_2 = 3V_1$ in den Zustand 2 durchgeführt. Im Anschluss erfolgt eine isochore Halbierung des Druckes in den Zustand 3 und zuletzt eine isotherme Kompression zum Anfangsvolumen in den Zustand 4.

- a) Bestimmen Sie Druck, Temperatur und Volumen in den vier Zuständen als Funktion von N_1 , p_1 und V_1 .
- b) Zeichnen Sie den Prozess in ein p(V)-Diagramm.
- c) Bestimmen Sie den Zustand, der zweimal während des Gesamtprozesses durchlaufen wird.

Im Zustand 4 wird das Gefäß geöffnet, während es sich noch im Wärmebad der dritten Zustandsänderung befindet. Gasteilchen können langsam ausströmen.

d) Bestimmen Sie die Anzahl Teilchen N_{ent} , die aus dem Gefäß entwichen sind, wenn es den Anfangsdruck p_1 erreicht.

Aufgabe 1.2: Isoliertes System

Ein mit einem einatomigen Gas gefülltes Gefäß ist durch einen Schieber in zwei gleich große Teile mit jeweils dem Volumen V_0 unterteilt. Die beiden Gefäßhälften befinden sich in zwei Wärmebädern unterschiedlicher Temperatur $(T_1 > T_2)$. In beiden Teilen herrscht der gleiche Druck p_0 (siehe Skizze).

a) In welchem Verhältnis stehen die beiden Teilchenzahlen N_1/N_2 ?

Nun werden die beiden Wärmebäder durch eine Isolierschicht ersetzt.

Vorüberlegungen: Welche Zustandsgrößen sind während des Prozesses konstant (im Teilsystem/im Gesamtsystem)?

b) Bestimmen Sie Druck p_n , Temperatur T_n und Volumina $V_{1,n}$ und $V_{2,n}$ im neuen Gleichgewichtszustand.

SS 2024

1. Übungsblatt

24.04.-30.04.

Aufgabe 1.3: Gasthermometer

Bei dem rechts dargestellten Gasthermometer wird der mit Gas gefüllte Kolben V_0 durch Herrn Feichtner bzw. Herrn Freibott in der Vorlesung erwärmt. Zu Beginn bei Raumtemperatur T_0 im Kolben ist der Flüssigkeitsspiegel im U-Rohr (Innendurchmesser d) auf beiden Seiten gleich hoch. Bei der Erwärmung steigt die Flüssigkeit $\rho_{\rm W}$ im rechten Schenkel um die Höhe h_1 bzw. h_2 nach oben.

- a) Bestimmen Sie für den Prozess p(V) und zeichnen Sie dies in ein p(V)-Diagramm.
- b) Bestimmen Sie aus der Höhenänderung des Flüssigkeitsspiegels h die Temperatur des Gases im Kolben nach der Erwärmung. Achtung: Druck und Volumen ändern sich.
- c) Wie warm war das Gas nach der Erwärmung durch Herrn Feichtner bzw. Herrn Freibott beim Vorlesungsexperiment? $V_0=180\,\mathrm{ml},\,T_0=21.7\,^\circ\mathrm{C},\,d=6.0\,\mathrm{mm},\,\rho_\mathrm{W}=997\,\mathrm{kg/m^3},\,p_0=1013\,\mathrm{hPa}$ und $h_\mathrm{Fe}=1.3\,\mathrm{cm}$ bzw. $h_\mathrm{Fr}=2.5\,\mathrm{cm}$.
- d) Was gilt für die von der Hand an das Gas abgegebene Wärme ΔQ 1) $|\Delta Q| < |\Delta U|$ 2) $|\Delta Q| = |\Delta U|$ 3) $|\Delta Q| > |\Delta U|$? Begründung!

Aufgabe 1.4: Thermostat

Betrachten Sie das Modell eines Thermostats auf Basis eines Bimetallstreifens. Unterschreitet die Temperatur im Raum eine bestimmte Temperatur, schließt sich der Kontakt und die Heizungsventile öffnen sich.

Bei der Temperatur T_0 ist der Bimetallstreifen gerade und hat die Länge l_0 . Die Stärke der zusammengelöteten Metallstreifen ist jeweils d. Verringert sich die Temperatur, verbiegt sich der Streifen in Richtung Kontakt bis er bei der Temperatur T_1 den Kontakt schließt. Nehmen Sie an, dass der Streifen dabei die Form eines Kreisbogens hat. Die Längenausdehnungskoeffizienten der Metalle seien α_I und α_{II} mit $\alpha_I > \alpha_{II}$. Vernachlässigen Sie die Wärmeausdehnung der Streifen in Breite und Stärke.

- a) Machen Sie eine Skizze bei $T = T_0$ und $T = T_1!$
- b) Bestimmen Sie den Abstand des geraden Bimetallstreifens zum Kontakt.