19. Linear algebra

Last time

- Mid-term review
- Designing auxiliary problems
- Convergence

Goals for today

- Conceptual review of linear algebra
- Emphasising geometry

- Vectors
- Linear transformations
- Matrices
- lacksquare Mostly think about \mathbb{R}^2

■ Linear: Something related to "lines"

- Linear: Something related to "lines"
 - flatness

- Linear: Something related to "lines"
 - flatness

■ Algebra: Manipulating, solving, understanding "structure"

- Linear: Something related to "lines"
 - flatness

Algebra: Manipulating, solving, understanding "structure"

Study of vectors and linear transformations between them

Why linear algebra?

- Have repeatedly seen systems of linear equations crop up:
 - First-order Taylor expansion
 - Newton's method (linear equations to solve nonlinear equations)
 - Coefficients of interpolating polynomial (Vandermonde matrix)

Why linear algebra?

- Have repeatedly seen systems of linear equations crop up:
 - First-order Taylor expansion
 - Newton's method (linear equations to solve nonlinear equations)
 - Coefficients of interpolating polynomial (Vandermonde matrix)

- Discretising many PDEs gives linear systems
- Numerical linear algebra: fundamental importance in science and engineering

Why linear algebra II

■ Algebraic: simplest relation between ≥ 2 variables:

$$ax + by = c$$

– linear equation relating variables \boldsymbol{x} and \boldsymbol{y}

Why linear algebra II

■ Algebraic: simplest relation between ≥ 2 variables:

$$ax + by = c$$

– linear equation relating variables \boldsymbol{x} and \boldsymbol{y}

(Relative) simplicity allows us to obtain much information

Why linear algebra II

■ Algebraic: simplest relation between ≥ 2 variables:

$$ax + by = c$$

– linear equation relating variables \boldsymbol{x} and \boldsymbol{y}

■ (Relative) simplicity allows us to obtain much information

- Geometry: "flat" objects lines, planes, hyperplanes
- Flatness makes much easier to understand than general curved surfaces
 - "rigidity"

Vectors

- Vectors are the cornerstone of linear algebra
- What is a vector?

Vectors

- Vectors are the cornerstone of linear algebra
- What is a vector?

- Directed / oriented piece of line
- Displacement through space
- Column of numbers

- Must be able to operate on vectors in 2 ways:
- f 1 Scalar multiplication: lpha v

- Must be able to operate on vectors in 2 ways:
- f 1 Scalar multiplication: lpha v
 - lacktriangle Geometry: Stretch vector by factor lpha in same direction

- Must be able to operate on vectors in 2 ways:
- f 1 Scalar multiplication: lpha v
 - lacktriangle Geometry: Stretch vector by factor lpha in same direction
 - "Scaling"

- Must be able to operate on vectors in 2 ways:
- f 1 Scalar multiplication: lpha v
 - lacktriangle Geometry: Stretch vector by factor lpha in same direction
 - "Scaling"

 $\ \ \, \textbf{2} \ \, \textbf{Addition} \ \, v_1 + v_2$

- Must be able to operate on vectors in 2 ways:
- f 1 Scalar multiplication: lpha v
 - lacktriangle Geometry: Stretch vector by factor lpha in same direction
 - "Scaling"

- **2** Addition: $v_1 + v_2$
 - Geometry: Move along one vector and then the other

Linear combinations

- In general, + and scalar multiplication *only* operations
- So we can only form (finite) linear combinations

$$\alpha_1 v_1 + \dots + \alpha_n v_n$$

Linear combinations

- In general, + and scalar multiplication *only* operations
- So we can only form (finite) linear combinations

$$\alpha_1 v_1 + \dots + \alpha_n v_n$$

■ Define **span** $\langle v_1, \dots, v_n \rangle$ as set of *all* linear combinations

What are spans geometrically?

- What are spans geometrically?
- Points in space that are **reachable** using given vectors

- What are spans geometrically?
- Points in space that are **reachable** using given vectors

■ Simplest case: 1 vector

- What are spans geometrically?
- Points in space that are **reachable** using given vectors

- Simplest case: 1 vector
 - $\langle v \rangle$ is line through origin in direction of v

- What are spans geometrically?
- Points in space that are **reachable** using given vectors

 \blacksquare Simplest case: 1 vector $\langle v \rangle \mbox{ is line through origin in direction of } v$

2 vectors:

 $\langle v_1, v_2 \rangle$: unique plane containing v_1 and v_2

- What are spans geometrically?
- Points in space that are **reachable** using given vectors
- \blacksquare Simplest case: 1 vector $\langle v \rangle \mbox{ is line through origin in direction of } v$

- 2 vectors:
 - $\langle v_1,v_2 \rangle$: unique plane containing v_1 and v_2 except if v_2 is in $\langle v_1 \rangle$ i.e. if $v_2=\beta v_1$ linearly dependent

3 vectors:

 $\langle v_1, v_2, v_3 \rangle$: 3D hyperplane containing the vectors

3 vectors:

 $\langle v_1, v_2, v_3 \rangle$: 3D hyperplane containing the vectors

lacksquare all of space if $v_i \in \mathbb{R}^3$

3 vectors:

 $\langle v_1, v_2, v_3 \rangle$: 3D hyperplane containing the vectors

- lacksquare all of space if $v_i \in \mathbb{R}^3$
- \blacksquare unless e.g. $v_3 \in \langle v_1, v_2 \rangle$

3 vectors:

 $\langle v_1, v_2, v_3 \rangle$: 3D hyperplane containing the vectors

- \blacksquare all of space if $v_i \in \mathbb{R}^3$
- \blacksquare unless e.g. $v_3 \in \langle v_1, v_2 \rangle$
- All spans contain 0
- A span is a vector subspace

- Vector subspaces must pass through the origin
- More general: **affine subspace**

- Vector subspaces must pass through the origin
- More general: affine subspace
- Simplest is straight line: need one point on line and direction

- Vector subspaces must pass through the origin
- More general: affine subspace
- Simplest is straight line: need one point on line and direction
- $lackbox{$\blacksquare$} \ell(t) = p + tv$ parametric equation

- Vector subspaces must pass through the origin
- More general: affine subspace
- Simplest is straight line: need one point on line and direction
- $lackbox{}{lackbox{}{l}} \ell(t) = p + tv$ parametric equation
- **E**.g. Line joining points a and b:

$$(1-\alpha)a + \alpha b$$

lacksquare $\alpha=0$ gives a and $\alpha=1$ gives b

Vector equations

- lacksquare Suppose $old u := egin{bmatrix} u_1 \ u_2 \end{bmatrix}$ and $old v := egin{bmatrix} v_1 \ v_2 \end{bmatrix}$ span \mathbb{R}^2
- lacksquare Suppose $\mathbf{b} := egin{bmatrix} b_1 \ b_2 \end{bmatrix} \in \mathbb{R}^2$

Vector equations

- \blacksquare Suppose $\mathbf{u}:=\begin{bmatrix}u_1\\u_2\end{bmatrix}$ and $\mathbf{v}:=\begin{bmatrix}v_1\\v_2\end{bmatrix}$ span \mathbb{R}^2
- lacksquare Suppose $\mathbf{b} := egin{bmatrix} b_1 \ b_2 \end{bmatrix} \in \mathbb{R}^2$
- lacktriangle Then there must exist scalars x and y such that

$$x \mathbf{u} + y \mathbf{v} = \mathbf{b}$$

Vector equations

- \blacksquare Suppose $\mathbf{u}:=\begin{bmatrix}u_1\\u_2\end{bmatrix}$ and $\mathbf{v}:=\begin{bmatrix}v_1\\v_2\end{bmatrix}$ span \mathbb{R}^2
- lacksquare Suppose $\mathbf{b} := egin{bmatrix} b_1 \ b_2 \end{bmatrix} \in \mathbb{R}^2$
- lacktriangle Then there must exist scalars x and y such that

$$x \mathbf{u} + y \mathbf{v} = \mathbf{b}$$

 $\blacksquare x, y$: "how much **u** and **v** need to reach **b**"

Vector equations II

- Suppose $x\mathbf{u} + y\mathbf{v} = \mathbf{b}$
- Rewrite in terms of components:

$$x \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + y \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Vector equations II

- Suppose $x\mathbf{u} + y\mathbf{v} = \mathbf{b}$
- Rewrite in terms of components:

$$x \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + y \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Take components:

$$u_1 x + v_1 y = b_1$$

$$u_2 x + v_2 y = b_2$$

Vector equations II

- Suppose $x\mathbf{u} + y\mathbf{v} = \mathbf{b}$
- Rewrite in terms of components:

$$x \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + y \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Take components:

$$u_1x + v_1y = b_1$$
$$u_2x + v_2y = b_2$$

 So linear system can be interpreted as finding correct linear combination of vectors

Linear maps

- lacksquare Consider a function / map $f:\mathbb{R}^n o\mathbb{R}^m$
- In general: complicated and hard to understand

Linear maps

- lacksquare Consider a function / map $f:\mathbb{R}^n o \mathbb{R}^m$
- In general: complicated and hard to understand

- To understand and calculate, study maps with structure
- i.e. restrict to some *subset* of all maps

Linear maps

- lacksquare Consider a function / map $f:\mathbb{R}^n o\mathbb{R}^m$
- In general: complicated and hard to understand

- To understand and calculate, study maps with structure
- i.e. restrict to some *subset* of all maps

One very important subclass are linear maps

lacksquare A map f:X o Y is **linear** if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \quad \forall x, y \in X$$

lacksquare A map f:X o Y is **linear** if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \quad \forall x, y \in X$$

- A linear map preserves operations + and *
- Doesn't matter whether we do them before or after applying the map

Geometrical interpretation of this linearity condition?

- Geometrical interpretation of this linearity condition?
- What is action of linear map on a line?

- Geometrical interpretation of this linearity condition?
- What is action of linear map on a line?

$$f\left(\left(1-\alpha\right)a+\alpha\,b\right)=\left(1-\alpha\right)a'+\alpha\,b'$$
 where $a':=f(a)$ and $b':=f(b)$

- Geometrical interpretation of this linearity condition?
- What is action of linear map on a line?

$$f\left(\left(1-\alpha\right)a+\alpha\,b\right)=\left(1-\alpha\right)a'+\alpha\,b'$$
 where $a':=f(a)$ and $b':=f(b)$

 So linear map maps lines to lines and moves along them at the same speed

 \blacksquare Linearity *greatly* restricts what f can do

- \blacksquare Linearity greatly restricts what f can do
- lacksquare Suppose x and y span \mathbb{R}^2
- lacksquare Suppose f is linear map from \mathbb{R}^2 to \mathbb{R}^2
- lacktriangle Then we know exactly what f does for every point on the plane!

Geometry of linear maps

What does a linear map (or linear transformation) do geometrically?

Geometry of linear maps

- What does a linear map (or linear transformation) do geometrically?
- Squishes unit square into parallelogram
- Or rotates it
- Or reflects it

How do we specify a linear map?

- What does a general linear map look like?
- Specifying action on any two (non-collinear) vectors

$$f(a)=:a' \text{ and } f(b)=:b'$$
 specifies everything

How do we specify a linear map?

- What does a general linear map look like?
- Specifying action on any two (non-collinear) vectors

$$f(a) =: a' \text{ and } f(b) =: b'$$
 specifies everything

In \mathbb{R}^2 encode via action on standard basis vectors $e_1:=\begin{bmatrix}1\\0\end{bmatrix}$ and $e_2:=\begin{bmatrix}0\\1\end{bmatrix}$

Matrices

- $lacksquare e_1$ mapped to $a_1 := f(e_1)$
- $\blacksquare \ e_2 \text{ mapped to } a_2 := f(e_2)$
- Need 4 parameters; encode as matrix

$$\begin{bmatrix} | & | \\ a_1 & a_2 \\ | & | \end{bmatrix}$$

- \blacksquare First column is image of $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Second **column** is image of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- $\blacksquare Ae_1 = a_{1,1}e_1 + a_{2,1}e_2$

- lacktriangle Let matrix A represent linear map f
- Define matrix-vector product by

$$Ax := f(x)$$

- lacktriangle Let matrix A represent linear map f
- Define matrix-vector product by

$$Ax := f(x)$$

- \blacksquare Let A have columns a_1 and a_2
- $\blacksquare \ \, \mathrm{Let} \, x \, \mathrm{be} \, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- Then $f(x) = f(x_1e_1 + x_2e_2) = x_1f(e_1) + x_2f(e_2) = x_1a_1 + x_2a_2$
- lacksquare So $A\,x$ is linear combination of columns of A

For matrix A and vector x define $A \cdot x$ as

$$A \cdot x := \begin{bmatrix} | & | \\ a_1 & a_2 \\ | & | \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} := xa_1 + ya_2$$

Matrix-vector multiplication is linear combination of columns of A

lacksquare For matrix A and vector x define $A \cdot x$ as

$$A \cdot x := \begin{bmatrix} \mid & \mid \\ a_1 & a_2 \\ \mid & \mid \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} := xa_1 + ya_2$$

 $\begin{tabular}{ll} \hline & Matrix-vector multiplication is {\it linear combination} of \\ & columns of A \\ \hline \end{tabular}$

Linear system becomes

$$Ax = b$$

 $\blacksquare \ \, \mathsf{Let} \ A, B \ \mathsf{represent \ linear \ mapS} \ f, g \ \mathsf{resp}.$

- lacksquare Let A,B represent linear mapS f,g resp.
- Define matrix-matrix product AB by action on vectors:

$$(A B)(x) := A (B x) = f(g(x)) = (f \circ g)(x)$$

- Let A, B represent linear mapS f, g resp.
- Define matrix-matrix product AB by action on vectors:

$$(A B)(x) := A (B x) = f(g(x)) = (f \circ g)(x)$$

Calculate as

$$AB = \begin{bmatrix} | & | \\ (Ab_1) & (Ab_2) \\ | & | \end{bmatrix}$$

- Let A, B represent linear mapS f, g resp.
- Define matrix-matrix product A B by action on vectors:

$$(A\,B)(x):=A\,(B\,x)=f(g(x))=(f\circ g)(x)$$

Calculate as

$$AB = \begin{bmatrix} | & | \\ (Ab_1) & (Ab_2) \\ | & | \end{bmatrix}$$

 $\blacksquare \text{ Since } (AB)(e_1) = A(B\,e_1) = A\,b_1$

Summary

- Vectors are basic objects
- Linearly independent spans form a basis
- Define matrices as recording action of a linear map