1 Mécanique du point matériel

1.1 Tige en rotation

On considère une tige rigide, soudée au point O sur un support mis en rotation à la vitesse angulaire ω . Sur la tige, on place une perle, assimilée au point matériel M qui glisse sans frotter sur la tige. On note $\mathcal{R} = (\vec{e}_r, \vec{e}_\theta, \vec{e}_z)$ la base cylindrique. La position de la perle sur la tige est repérée par $x_e = ||\vec{O}M||$.

- 1. En utilisant le principe fondamental de la dynamique, préciser les positions x_e d'équilibre de la perle sur la tige.
- 2. Donner R_1 , R_2 , R_3 , les composantes de la réaction \vec{R} de la tige sur la perle dans la base cylindrique \mathcal{R} .
- 3. Mêmes questions mais en utilisant maintenant un théorème énergétique.

2 Théorème du moment cinétique

2.1 Toboggan

2.2 Tige en rotation

Un enfant se laisse glisser sur un toboggan sans vitesse initiale. Le toboggan, représenté sur la figure ci-contre est un quart de cercle de rayo R=2.7 m. L'enfant est modélisé par son centre de gravité G qui se situe 20 cm au-dessus de la surface du toboggan. L'angle initial fait par G avec l'horizontal est $\theta_0=15$.

- 1. Représenter les forces qui s'appliquent sur G.
- 2. A l'aide du théorème du moment cinétique, déterminer le mouvement du point G.
- 3. En déduire l'expression de la vitesse en fonction de θ .
- 4. Quelle est la vitesse maximale atteinte? $R\acute{e}ponse: 6 \text{ m.s}^{-1}.$

2.3 Mouvement tournant d'une masse accrochée à un ressort

Soit un point matériel M, de masse m, accroché à un ressort de constante de raideur k et de longueur à vide l_0 . Le ressort est fixé au point O, origine du repère cartésien $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. Le ressort est libre de tourner autour de l'axe vertical et on place l'ensemble sur une table à coussin d'air, de sorte que la masse se déplace sans frottements dessus.

- 1. Faire un bilan des forces sur la masse M et montrer qu'il y a conservation du moment cinétique de M par rapport à O.
- 2. A t=0, on lâche M depuis l'axe des abscisses sans vitesse initiale: $\vec{O}M(t=0)1.2l_0\vec{u}_x$ et $v_0=0$. Calculer le moment cinétique de M par rapport à O. En déduire la nature de la trajectoire.

- 3. En utilisant une relation fondamentale de la dynamique, donner l'évolution de OM(t) et préciser ses borners.
- 4. La masse est maintenant lâchée avec une vitesse intiale. $\vec{O}M(t=0) = l_1\vec{u}_x$ et $\vec{v}_0 = \omega l_1\vec{u}_y$ Quel est le moment cinétique du mobile?
- 5. Montrer que l'énergie mécanique est conservée.
- 6. Donner l'expression de l'énergie mécanique et la mettre sous la forme

$$E_m = \frac{1}{2}m\dot{r}^2 + E_{peff}(r)$$

Exprimer E_{peff} en fonction de r et des conditions initiales.

7. Tracer E_{peff} et en déduire pourquoi la masse ne peut pas s'éloigner du point O.

3 Théorèmes énergétiques

3.1 Perle sur un anneau en rotation

Soit un anneau en rotation à la vitesse angulaire $\vec{\Omega} = \Omega \vec{e}_z$. On place une perle sur l'anneau qui glisse sans frottemenets. La position est repérée par le point \mathbf{M} , sa masse est m. θ est langle entre l'axe de rotation et le vecteur $\vec{O}M$ (O est le centre de l'anneau). On note R le rayon de l'anneau.

On souhaite étudier les positions d'équilibre de la perle sur l'anneau en fonction de la vitesse de rotation de ce dernier.

- 1. Pour obtenir l'équation du mouvement de la perle sur l'anneau, quelle est la méthode la plus adaptée? (2nde loi de Newton, Théorème du moment cinétique, etc...)
- 2. Déterminer l'équation du mouvement de la perle sur l'anneau (équation différentielle sur l'angle θ).
- 3. Déterminer les positions d'équilibres $\theta_{eq}(\Omega)$.
- 4. Étudier leur stabilité.
- 5. Donner la période des oscillations autour d'une position d'équilibre stable.

4.1 Stabilité d'un champ de force en $\frac{1}{r}$

On considère un point matériel \mathbf{M} de masse m plongé dans un champ de force centrale $\vec{F} = F(r)\vec{e}_r$. \vec{e}_r est le vecteur radial dans la base polaire.

- 1. Quelle relation relie le rayon r_0 et la vitesse v_0 dans le cas d'une trajectoire circulaire?
- 2. A t=0, on fait subir à l'objet, alors en trajectoire circulaire, une perturbation :

$$r_0 \longrightarrow r_0 + \epsilon$$
, avec $\epsilon \ll 1$.

Donner l'évolution de r(t) au voisinage de r_0 . Donner un critère sur le champ de force pour que l'évolution soit bornée.

- 3. On suppose que $F(r)=-\frac{A}{r^n}$ où A>0. Donner un critère sur n pour que les trajectoires soient stables. Que dire du cas Newtonien?
- 5 Pot-pourri: ordres de grandeur, problèmes ouverts, etc
- 5.1 Marche

Retrouver l'ordre de grandeur de la fréquence de la marche d'un Homme.