МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №5 по курсу «Методы машинного обучения»

Тема: «Линейные модели, SVM и деревья решений»

исполнитель:	_Бабин В.Е _{Фио}	•
группа ИУ5-22М	подпись	
	" " — — — — — — — — — — — — — — — — — —	2020 г.
ПРЕПОДАВАТЕЛЬ:	ФИО	
	подпись	
	11 11	2020 г.

Москва - 2020

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - о одну из линейных моделей;
 - SVM;
 - о дерево решений.
- 5. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 6. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 7. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

lab5

May 15, 2020

```
[1]: import pandas as pd
  import numpy as np
  import io
  import requests
  from sklearn.impute import SimpleImputer

# mushrooms dataset
  url = "https://www.wolframcloud.com/obj/d0c0084e-0b60-46db-a4d9-beb33412905e"
  s = requests.get(url).content
  data = pd.read_csv(io.StringIO(s.decode('utf-8')))
  data.head()
[1]: CapShape CapSurface CapColor Population Habitat Class
```

```
[1]:
      CapShape CapSurface CapColor ... Population Habitat
                                                           Class
        convex
                  smooth
                          brown ... scattered
                                               urban poisonous
    1
        convex
                  {\tt smooth}
                          yellow ... numerous grasses
                                                          edible
         bell
    2
                  smooth white ... numerous meadows
                                                          edible
    3
                 scaly white ... scattered urban poisonous
        convex
                  smooth
                                                          edible
        convex
                           gray ... abundant grasses
    [5 rows x 23 columns]
```

Dataset preparation

CapSurface: ['smooth' 'scaly' 'fibrous' 'grooves']

```
'green']
    Bruises: [ True False]
    Odor: ['pungent' 'almond' 'anise' 'none' 'foul' 'creosote' 'fishy' 'spicy'
     'musty']
    GillAttachment: ['free' 'attached']
    GillSpacing: ['close' 'crowded']
    GillSize: ['narrow' 'broad']
    GillColor: ['black' 'brown' 'gray' 'pink' 'white' 'chocolate' 'purple' 'red'
    'buff'
     'green' 'yellow' 'orange']
    StalkShape: ['enlarging' 'tapering']
    StalkRoot: ['equal' 'club' 'bulbous' 'rooted' 'Missing[]']
    StalkSurfaceAboveRing: ['smooth' 'fibrous' 'silky' 'scaly']
    StalkSurfaceBelowRing: ['smooth' 'fibrous' 'scaly' 'silky']
    StalkColorAboveRing: ['white' 'gray' 'pink' 'brown' 'buff' 'red' 'orange'
    'cinnamon' 'yellow']
    StalkColorBelowRing: ['white' 'pink' 'gray' 'buff' 'brown' 'red' 'yellow'
    'orange' 'cinnamon']
    VeilType: ['partial']
    VeilColor: ['white' 'brown' 'orange' 'yellow']
    RingNumber: [1 2 0]
    RingType: ['pendant' 'evanescent' 'large' 'flaring' 'none']
    SporePrintColor: ['black' 'brown' 'purple' 'chocolate' 'white' 'green' 'orange'
    'yellow'
     'buff']
    Population: ['scattered' 'numerous' 'abundant' 'several' 'solitary' 'clustered']
    Habitat: ['urban' 'grasses' 'meadows' 'woods' 'paths' 'waste' 'leaves']
    Class: ['poisonous' 'edible']
[3]: """
     on initial viewing it seems that we have single column
     with absence of values in rows: this column is StalkRoot and
     absence of values is indicated like Missing[]
     11 11 11
     # Take a look at columns more precisely to ensure that this column is single_
      →with absence of values
     for col in data.columns:
         # Missing[] amount
         temp_null_count = data[data[col] == 'Missing[]'].shape[0]
         dt = str(data[col].dtype)
         if temp_null_count>0 and (dt=='object'):
             temp_perc = round((temp_null_count / rows) * 100.0, 2)
             print('Column {}. Data type {}. amount of Missing[] values {}, {}%.'.

→format(col, dt, temp_null_count, temp_perc))
```

CapColor: ['brown' 'yellow' 'white' 'gray' 'red' 'pink' 'buff' 'purple'

'cinnamon'

```
Column StalkRoot. Data type object. amount of Missing[] values 2480, 30.53%.
```

/usr/local/lib/python3.6/dist-packages/pandas/core/ops/array_ops.py:253:
FutureWarning: elementwise comparison failed; returning scalar instead, but in
the future will perform elementwise comparison
res_values = method(rvalues)

```
[4]: data['StalkRoot'].unique()
```

```
[4]: array(['equal', 'club', 'bulbous', 'rooted', 'Missing[]'], dtype=object)
```

```
[5]: # impute data with most frequent values
imputation = SimpleImputer(missing_values='Missing[]', strategy='most_frequent')
data_imputed = imputation.fit_transform(data[['StalkRoot']])
np.unique(data_imputed)
```

[5]: array(['bulbous', 'club', 'equal', 'rooted'], dtype=object)

```
[6]: # put imputed data in our dataset
for i in range(rows):
   data['StalkRoot'][i] = data_imputed[i][0]
   data['StalkRoot'].unique()
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

This is separate from the ipykernel package so we can avoid doing imports until

[6]: array(['equal', 'club', 'bulbous', 'rooted'], dtype=object)

```
[7]: # now we'll transform categorical columns to columns with values in [0, 1]
    object_columns = []

# initially, find amount of unique values for each column
# and add categorical columns to object_columns
for column in data.columns:
    dt = str(data[column].dtype)
    amount_unique = len(pd.unique(data[column]))
    print('{}: {}, {}'.format(column, amount_unique, dt))
    if dt == 'object':
        object_columns.append({'column': column, 'amount': amount_unique})
```

CapShape: 6, object
CapSurface: 4, object

```
Bruises: 2, bool
    Odor: 9, object
    GillAttachment: 2, object
    GillSpacing: 2, object
    GillSize: 2, object
    GillColor: 12, object
    StalkShape: 2, object
    StalkRoot: 4, object
    StalkSurfaceAboveRing: 4, object
    StalkSurfaceBelowRing: 4, object
    StalkColorAboveRing: 9, object
    StalkColorBelowRing: 9, object
    VeilType: 1, object
    VeilColor: 4, object
    RingNumber: 3, int64
    RingType: 5, object
    SporePrintColor: 9, object
    Population: 6, object
    Habitat: 7, object
    Class: 2, object
[0]: from sklearn.preprocessing import OneHotEncoder
     ohe = OneHotEncoder()
[0]: """
     after oneHot encoding for single value we'll have something like this [0.0, 1.
      \hookrightarrow 0, 0.0, 0.0, \ldots ]
     but we need to have just a number - so this function will normalize it with \sqcup
     \hookrightarrow next formula:
     norm_val = (N - i) / N, where
     N - amount of unique values for our column
     i - index of 1.0 in values [0.0, 1.0, 0.0, 0.0, ...] before normalizing
     so for example if we'll have 10 different values - then in normalized view it_{\sqcup}
      \hookrightarrow will variating
     from 0.1 (if index = 9) to 1.0 (if index = 0)
     def from_bytes_to_num(col_in_arr, uniquie_amount):
         normalized_col = []
         for value in col_in_arr:
             normalized_value = (uniquie_amount - np.where(value == 1.0)[0][0]) /__
      →uniquie_amount
             normalized_col.append(float("{0:.4f}".format(normalized_value))) #_J
      \rightarrow digits after float point
         return normalized_col
```

CapColor: 10, object

```
normalized_data = []
for col in object_columns:
    uniquie_amount = col['amount']
    col_name = col['column']

#encode with oneHot
    column_after_encoding = ohe.fit_transform(data[[col_name]])

#fetch it to array
    col_in_arr = column_after_encoding.toarray()

#normilizing column values
    normalized_col = from_bytes_to_num(col_in_arr, uniquie_amount)

normalized_data.append({'column': col_name, 'data': normalized_col})
```

```
[10]: #set normalized values for general dataset
for col in normalized_data:
        col_in_dataFrame = pd.DataFrame(data={col['column']: col['data']})
        data[col['column']] = col_in_dataFrame

data
```

[10]:	CapShape	CapSurface	${\tt CapColor}$		Population	Habitat	Class
0	0.6667	0.25	1.0		0.5000	0.4286	0.5
1	0.6667	0.25	0.1		0.6667	1.0000	1.0
2	1.0000	0.25	0.2		0.6667	0.7143	1.0
3	0.6667	0.50	0.2		0.5000	0.4286	0.5
4	0.6667	0.25	0.7		1.0000	1.0000	1.0
•••	•••	•••				•••	
8119	0.3333	0.25	1.0	•••	0.8333	0.8571	1.0
8120	0.6667	0.25	1.0		0.3333	0.8571	1.0
8121	0.5000	0.25	1.0		0.8333	0.8571	1.0
8122	0.3333	0.50	1.0		0.3333	0.8571	0.5
8123	0.6667	0.25	1.0	•••	0.8333	0.8571	1.0

[8124 rows x 23 columns]

Data splitting

```
[11]: from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import cross_val_score, train_test_split
    dcopy = data.copy()

X = dcopy.drop("Class", axis=1)
```

```
y = dcopy["Class"]
      print(X.head(), "\n")
      print(y.head())
        CapShape
                  CapSurface CapColor ... SporePrintColor Population
                                                                           Habitat
          0.6667
     0
                         0.25
                                    1.0 ...
                                                      1.0000
                                                                  0.5000
                                                                            0.4286
          0.6667
                         0.25
     1
                                    0.1 ...
                                                      0.8889
                                                                  0.6667
                                                                            1.0000
                                    0.2 ...
          1.0000
                         0.25
                                                      0.8889
                                                                  0.6667
                                                                            0.7143
                                    0.2 ...
     3
          0.6667
                         0.50
                                                      1.0000
                                                                  0.5000
                                                                            0.4286
                                    0.7 ...
          0.6667
                         0.25
                                                      0.8889
                                                                   1.0000
                                                                            1.0000
     [5 rows x 22 columns]
          0.5
     0
          1.0
     1
          1.0
     3
          0.5
          1.0
     Name: Class, dtype: float64
[12]: # divide train and test selections
      X_train, X_test, y_train, y_test = train_test_split(X, y,
                                   test_size=0.25, random_state=1)
      print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
     (6093, 22)
     (2031, 22)
     (6093,)
     (2031,)
     Models training
 [0]: # checking metricks of the model
      def test model(model):
          print("mean_absolute_error:",
                mean_absolute_error(y_test, model.predict(X_test)))
          print("median_absolute_error:",
                median_absolute_error(y_test, model.predict(X_test)))
          print("r2_score:",
```

```
[0]: from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import mean_absolute_error
```

r2_score(y_test, model.predict(X_test)))

— Lasso

Linear model — Lasso

```
[26]: from sklearn.linear_model import Lasso, LinearRegression

las_1 = Lasso(alpha=1.0)
las_1.fit(X_train, y_train)
test_model(las_1)
```

mean_absolute_error: 0.24994854496806154
median_absolute_error: 0.2383883144592155

r2_score: -0.0017653308163576575

SVM

```
[94]: from sklearn.svm import NuSVR

nusvr_05 = NuSVR(nu=0.5, gamma='scale')
nusvr_05.fit(X_train, y_train)
test_model(nusvr_05)
```

mean_absolute_error: 0.000534966386468839
median_absolute_error: 0.00015048447756371708

r2_score: 0.9999126628428283

Decision tree

```
[47]: from sklearn.tree import DecisionTreeRegressor

dt_6 = DecisionTreeRegressor(max_depth=6)
dt_6.fit(X_train, y_train)
test_model(dt_6)
```

mean_absolute_error: 0.0
median_absolute_error: 0.0

```
r2_score: 1.0
```

```
[48]: def stat_tree(estimator):
         n nodes = estimator.tree .node count
          children_left = estimator.tree_.children_left
          children_right = estimator.tree_.children_right
         node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
          is_leaves = np.zeros(shape=n_nodes, dtype=bool)
          stack = [(0, -1)] # seed is the root node id and its parent depth
         while len(stack) > 0:
             node_id, parent_depth = stack.pop()
             node_depth[node_id] = parent_depth + 1
              # If we have a test node
              if (children_left[node_id] != children_right[node_id]):
                  stack.append((children_left[node_id], parent_depth + 1))
                  stack.append((children_right[node_id], parent_depth + 1))
              else:
                  is_leaves[node_id] = True
         print("
                       :", n_nodes)
                         :", sum(is_leaves))
         print("
                        :", max(node depth))
         print("
         print("
                                     :", min(node_depth[is_leaves]))
                                   :", node_depth[is_leaves].mean())
         print("
     # Structure of decision tree we got
     stat_tree(dt_6)
```

: 27 : 14 : 6 : 2 : 4.357142857142857

Selection of hyperparameter K

Lasso

```
[82]: param_range = np.arange(0.0, 0.1, 0.001)
tuned_parameters = [{'alpha': param_range}]
tuned_parameters
```

```
[82]: [{'alpha': array([0. , 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01 , 0.011, 0.012, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019, 0.02 , 0.021, 0.022, 0.023, 0.024, 0.025, 0.026,
```

```
0.027, 0.028, 0.029, 0.03, 0.031, 0.032, 0.033, 0.034, 0.035,
               0.036, 0.037, 0.038, 0.039, 0.04, 0.041, 0.042, 0.043, 0.044,
               0.045, 0.046, 0.047, 0.048, 0.049, 0.05, 0.051, 0.052, 0.053,
               0.054, 0.055, 0.056, 0.057, 0.058, 0.059, 0.06, 0.061, 0.062,
               0.063, 0.064, 0.065, 0.066, 0.067, 0.068, 0.069, 0.07, 0.071,
               0.072, 0.073, 0.074, 0.075, 0.076, 0.077, 0.078, 0.079, 0.08,
               0.081, 0.082, 0.083, 0.084, 0.085, 0.086, 0.087, 0.088, 0.089,
               0.09, 0.091, 0.092, 0.093, 0.094, 0.095, 0.096, 0.097, 0.098,
               0.0991)}1
[83]: from sklearn.model selection import GridSearchCV
      from sklearn.model_selection import ShuffleSplit
      gs = GridSearchCV(Lasso(), tuned_parameters,
                        cv=ShuffleSplit(n_splits=10), scoring="r2",
                        return_train_score=True, n_jobs=-1)
      gs.fit(X, y)
      gs.best_estimator_
     /usr/local/lib/python3.6/dist-packages/sklearn/model selection/ search.py:739:
     UserWarning: With alpha=0, this algorithm does not converge well. You are
     advised to use the LinearRegression estimator
       self.best_estimator_.fit(X, y, **fit_params)
     /usr/local/lib/python3.6/dist-
     packages/sklearn/linear_model/_coordinate_descent.py:476: UserWarning:
     Coordinate descent with no regularization may lead to unexpected results and is
     discouraged.
       positive)
     /usr/local/lib/python3.6/dist-
     packages/sklearn/linear_model/_coordinate_descent.py:476: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 63.69040267838188, tolerance: 0.05070940423436683
       positive)
[83]: Lasso(alpha=0.0, copy_X=True, fit_intercept=True, max_iter=1000,
            normalize=False, positive=False, precompute=False, random_state=None,
            selection='cyclic', tol=0.0001, warm_start=False)
[84]: import matplotlib.pyplot as plt
      from sklearn.model_selection import learning_curve, validation_curve
      plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```

9

[84]:


```
[86]: reg = LinearRegression()
reg.fit(X_train, y_train)
```

```
test_model(reg)
     mean_absolute_error: 0.08340159869364022
     median_absolute_error: 0.05722169623926676
     r2_score: 0.7608112307370376
     SVM
[95]: param_range = np.arange(0.0, 1.0, 0.1)
      tuned_parameters = [{'nu': param_range}]
      tuned_parameters
[95]: [{'nu': array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])}]
[96]: gs = GridSearchCV(NuSVR(gamma='scale'), tuned_parameters,
                        cv=ShuffleSplit(n_splits=10), scoring="r2",
                        return_train_score=True, n_jobs=-1)
      gs.fit(X, y)
      gs.best_estimator_
     /usr/local/lib/python3.6/dist-
     packages/joblib/externals/loky/process executor.py:706: UserWarning: A worker
     stopped while some jobs were given to the executor. This can be caused by a too
     short worker timeout or by a memory leak.
       "timeout or by a memory leak.", UserWarning
[96]: NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='scale', kernel='rbf',
           max iter=-1, nu=0.2, shrinking=True, tol=0.001, verbose=False)
[97]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
[97]:
```


Decision tree

```
[103]: param_range = np.arange(1, 17, 1)
       tuned_parameters = [{'max_depth': param_range}]
       tuned_parameters
[103]: [{'max_depth': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
       15, 16])}]
[104]: gs = GridSearchCV(DecisionTreeRegressor(), tuned_parameters,
                         cv=ShuffleSplit(n_splits=10), scoring="r2",
                         return_train_score=True, n_jobs=-1)
       gs.fit(X, y)
       gs.best_estimator_
[104]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=7,
                             max_features=None, max_leaf_nodes=None,
                             min_impurity_decrease=0.0, min_impurity_split=None,
                             min_samples_leaf=1, min_samples_split=2,
                             min_weight_fraction_leaf=0.0, presort='deprecated',
                             random_state=None, splitter='best')
[105]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
[105]:
                1.0
                0.9
                0.8
                0.7
                0.6
                0.5
                          2
                                 4
                                        6
                                               8
                                                      10
                                                             12
                                                                     14
                                                                            16
```

```
[106]: plt.plot(param_range, gs.cv_results_["mean_test_score"]);
[106]:
```



```
[111]: param_range = np.arange(1, 9, 1)
       tuned_parameters = [{'max_depth': param_range}]
       tuned_parameters
[111]: [{'max_depth': array([1, 2, 3, 4, 5, 6, 7, 8])}]
[112]: gs = GridSearchCV(DecisionTreeRegressor(), tuned_parameters,
                         cv=ShuffleSplit(n_splits=10), scoring="r2",
                         return_train_score=True, n_jobs=-1)
       gs.fit(X, y)
       gs.best_estimator_
[112]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=6,
                             max_features=None, max_leaf_nodes=None,
                             min_impurity_decrease=0.0, min_impurity_split=None,
                             min_samples_leaf=1, min_samples_split=2,
                             min_weight_fraction_leaf=0.0, presort='deprecated',
                             random_state=None, splitter='best')
[113]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);
[113]:
```


[0]: