Normalización

Técnico Universitario en Programación - Laboratorio de Computación III

Autor: Simón, Angel

Primera Forma Normal (1FN)

La primera forma normal establece que cada atributo de una tabla debe contener un solo valor, lo que significa que no debe haber atributos multivalorados ni atributos que contengan conjuntos de valores. Además, cada registro de la tabla debe tener un identificador único, es decir, una clave primaria.

Por ejemplo, considera la siguiente tabla que almacena información de clientes:

Nombre	Apellido	Teléfonos
Juan	Pérez	111-1111, 222-2222
Ana	López	333-3333

En esta tabla, el atributo "Teléfonos" tiene varios valores en una sola celda, violando la primera forma normal. Para normalizar esta tabla, debemos dividir la columna de teléfonos en una tabla separada con una clave foránea que apunte a la tabla original. La tabla resultante se vería así:

Tabla Clientes:

ID_Cliente	Nombre	Apellido
1	Juan	Pérez
2	Ana	López

Tabla Teléfonos:

ID_Telefono	ID_Cliente	Teléfono
1	1	111-1111
2	1	222-2222
3	2	333-3333

Ahora la tabla "Clientes" está en primera forma normal porque cada atributo contiene un solo valor, y la tabla "Teléfonos" tiene una clave foránea que apunta a la tabla "Clientes".

Segunda Forma Normal (2FN)

La segunda forma normal establece que cada atributo no clave de una tabla debe depender únicamente de la clave primaria de la tabla. En otras palabras, no debe haber dependencias parciales, lo que significa que cada atributo no clave debe estar relacionado con la clave primaria completa, no solo con una parte de ella.

Por ejemplo, considera la siguiente tabla que almacena información de pedidos:

ID_Pedido	ID_Cliente	Nombre_Cliente	Producto	Precio
1001	1	Juan	Zapatos	50
1002	1	Juan	Camisa	20
1003	2	Ana	Pantalón	30

En esta tabla, el atributo "Nombre_Cliente" no depende de la clave primaria "ID_Pedido", sino de la clave foránea "ID_Cliente". Para normalizar esta tabla, debemos dividirla en dos tablas separadas: una tabla "Pedidos" y una tabla "Clientes". La tabla resultante se vería así:

Tabla Pedidos:

ID_Pedido	ID_Cliente	Producto	Precio
1001	1	Zapatos	50
1002	1	Camisa	20
1003	2	Pantalón	30

Tabla Clientes:

ID_Cliente	Nombre
1	Juan
2	Ana

Ahora la tabla "Pedidos" está en segunda forma normal porque cada atributo no clave de la tabla Pedidos depende completamente de la clave primaria "ID_Pedido", y la tabla "Clientes" tiene una clave primaria única "ID_Cliente" que es independiente de la tabla "Pedidos".

En resumen, la segunda forma normal es importante porque garantiza que los datos de la tabla sean consistentes y que no se produzcan anomalías de actualización o eliminación al modificar o eliminar registros en la tabla. Además, al normalizar una tabla en segunda forma normal, podemos dividirla en tablas más pequeñas y más fáciles de entender y mantener.

Tercera Forma Normal (3FN)

La tercera forma normal (3FN) es una forma de normalización en la que se eliminan las dependencias transitivas entre los atributos de una tabla. En otras palabras, una tabla está en 3FN si todos sus atributos dependen únicamente de la clave primaria y no de otros atributos no clave.

Para entender esto, podemos considerar una tabla que contiene información sobre los pedidos de los clientes. La tabla podría tener la siguiente estructura:

ID_Pedido	Fecha	ID_Cliente	Nombre_Cli ente	Dirección_ Cliente	_	Descripció n_Producto	_
1	01/01/2022	1001	Ana	Calle 123	1	Camiseta	20
2	02/01/2022	1002	Juan	Calle 456	2	Pantalón	30
3	03/01/2022	1003	María	Calle 789	3	Zapatos	50

En esta tabla, podemos ver que hay dependencias transitivas entre los atributos no clave Nombre_Cliente y Dirección_Cliente y la clave primaria ID_Pedido. Esto se debe a que el nombre y la dirección del cliente dependen del ID_Cliente. El ID_Cliente depende del ID_Pedido en la tabla de Pedidos porque representa el ID del cliente que ha hecho ese pedido.

Para normalizar esta tabla en 3FN, podemos dividirla en dos tablas separadas. La primera tabla contendrá información sobre los pedidos y el cliente asociado:

ID_Pedido	Fecha	ID_Cliente	ID_Producto	Precio_Unitario
1	01/01/2022	1001	1	20
2	02/01/2022	1002	2	30
3	03/01/2022	1003	3	50

La segunda tabla contendrá información sobre los clientes, incluyendo su nombre y dirección:

ID_Cliente	Nombres	Dirección
1001	Ana	Calle 123
1002	Juan	Calle 456
1003	María	Calle 789

Al dividir la tabla original en dos tablas separadas, hemos eliminado las dependencias transitivas entre los atributos no clave y la clave primaria, asegurándonos de que cada tabla contenga información que depende únicamente de la clave primaria.

Es importante tener en cuenta que la normalización en 3FN es solo uno de los pasos en el proceso de normalización de una base de datos, y puede haber situaciones en las que la normalización en 3FN no sea la mejor opción en términos de rendimiento o facilidad de uso.

En resumen, la normalización en tercera forma normal es una técnica importante en el diseño de bases de datos relacionales que permite eliminar las dependencias transitivas entre los atributos de una tabla, lo que a su vez ayuda a mejorar la integridad de los datos y la eficiencia del sistema de bases de datos.