1. Linear combinations and spans

Let V be a vector space.

Definition 1.

• A sum of the form

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n$$

where x_1, x_2, \ldots, x_n are scalars and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \in V$, is called a *linear combination* of the vectors v_1, v_2, \ldots, v_n .

• The span of S, written span S is the set of vectors $\mathbf{v} \in V$ expressible as a linear combination of elements of S:

$$\exists$$
 finitely many vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in S$
 $\mathbf{v} \in \operatorname{span} S \iff \operatorname{and scalars} x_1, x_2, \dots x_n \text{ such that}$
 $\mathbf{v} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n.$

Theorem 2. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Then $\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a subspace of V.

Proof. Let $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and let $\mathbf{x}, \mathbf{y} \in W$ and let x be a scalar. Then there are scalars x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n such that

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n$$
 and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n$

and

$$\mathbf{x} + \mathbf{y} = (x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n) + (y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n)$$

= $(x_1 + y_1)\mathbf{v}_1 + (x_2 + y_2)\mathbf{v}_2 + \dots + (x_n + y_n)\mathbf{v}_n$.

Thus, $\mathbf{x} + \mathbf{y}$ is a linear combination of the \mathbf{v}_i and $\mathbf{x} + \mathbf{y} \in W$. We have established that W is closed under addition. We have

$$x\mathbf{x} = x(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n) = (xx_1)\mathbf{v}_1 + (xx_2)\mathbf{v}_2 + \dots + (xx_n)\mathbf{v}_n \in W,$$

so W is closed under scalar multiplication as well.

Example 3. Consider the vectors following vectors in \mathbb{R}^3 :

$$\mathbf{a}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{a}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

Then $\mathbf{a} \in \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ as

$$\mathbf{a} = \mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3.$$

Example 4. The zero vector $\mathbf{0}$ belongs to the span of any set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ because

$$0\mathbf{v}_1 + \mathbf{v}_2 + \dots + 0\mathbf{v}_n = \mathbf{0}.$$

Example 5. Let $\mathbf{e}_i \in \mathbf{R}^n$ be the column vector whose only nonzero entry is a 1 in row *i*. If $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^T \in \mathbf{R}^n$, then $\mathbf{x} \in \text{span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ as

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$$

Theorem 6 (Linear combinations are matrix-vector products). Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in \mathbf{R}^m$ and let A be the matrix with column vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$:

$$A = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix}$$
.

Then the linear combinations of the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are precisely the matrix-vector products $A\mathbf{x}$ for $\mathbf{x} \in \mathbf{R}^n$.

Proof. The identity

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

holds. \Box

Corollary 7. Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ and A be as in Theorem 6. The following are equivalent for a vector $\mathbf{b} \in \mathbf{R}^m$.

- (1) **b** can be expressed as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$.
- $(2) \mathbf{b} \in \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}.$
- (3) $A\mathbf{x} = \mathbf{b}$ has a solution.
- (4) **b** belongs to C(A).

Remark 8. The column space is called the column space because it's the space spanned by the columns.

Example 9. Let \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 and \mathbf{b} be as in Example 3. Since the matrix

$$A = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

is invertible, the solution $\mathbf{x} = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}^T$ of the equation $A\mathbf{x} = \mathbf{b}$ is unique. Therefore, \mathbf{b} does not belong to any of span $\{\mathbf{e}_1, \mathbf{e}_2\}$, span $\{\mathbf{e}_1, \mathbf{e}_3\}$ or span $\{\mathbf{e}_2, \mathbf{e}_3\}$.

Example 10. Let P be the set of polynomials in the variable x with coefficients in \mathbf{R} . Then

$$span{1, x, x^2, x^3, ...} = P$$

because every polynomial is a **finite** sum of monomials¹ and a finite sum of monomials is a linear combinations of elements of $\{1, x, x^2, x^3, \ldots\}$.

1.1. The pivot columns span the column space.

Theorem 11. Let $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$ be an $m \times n$ matrix in reduced row echelon form with leading 1s in positions (i, j_i) , $1 \le i \le r$. Then

$$C(A) = \operatorname{span}\{\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_r}\}.$$

¹A monomial is a polynomial of the form ax^n , where $a \in \mathbf{R}$ and $n \geq 0$.

Proof. Since rows r+1 through m of A have no leading 1s and A is in row echelon form, they are zero rows. Therefore, $a_{ij}=0$ for $r+1 \le i \le m$ and $1 \le j \le n$. Since A is in reduced row echelon form, the 1 in row i of the column vector \mathbf{a}_{j_i} is the only nonzero entry in \mathbf{a}_{j_i} . Combining these facts, we see that

$$\mathbf{a}_j = a_{1j}\mathbf{a}_{j_1} + a_{2j}\mathbf{a}_{j_2} + \dots + a_{rj}\mathbf{a}_{j_r} \in \operatorname{span}\{\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_r}\}\$$

for $1 \leq j \leq n$, proving that all the columns of A belong to span $\{\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_r}\}$.

Exercise 12. Suppose $1 \le i < j \le n$. Let $\mathbf{v}^{ij} \in \mathbf{R}^n$ be the vector with 1s in positions i and j and 0s in all other positions and let

$$S_n = {\mathbf{v}^{ij} : 1 \le i < j \le n}.$$

For n = 2, 3, 4, answer the following:

- (1) Is it true that span $S_n = \mathbf{R}^n$?
- (2) Find all ways of writing the zero vector $\mathbf{0} \in \mathbf{R}^n$ as a linear combination of elements of S_n .
- (3) Find all ways of writing the "ones vector" $\mathbf{1} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix} \in \mathbf{R}^n$ as a linear combination of elements of S_n .

Exercise 13. Let $\mathbf{e}^{ij} \in M_2(\mathbf{R})$ be the matrix whose only nonzero entry is a 1 in position (i, j). Let

$$R = \{ \mathbf{e}^{11}, \mathbf{e}^{12}, \mathbf{e}^{21}, \mathbf{e}^{22} \}, \qquad S = \{ \mathbf{e}^{11}, \mathbf{e}^{12} + \mathbf{e}^{21}, \mathbf{e}^{22} \}, \quad \text{and} \quad T = \{ \mathbf{e}^{12} - \mathbf{e}^{21} \}.$$

Show that:

- (1) span $R = M_2(\mathbf{R})$.
- (2) span S is the set of symmetric matrices in $M_2(\mathbf{R})$. (A matrix A is symmetric if $A^T = A$.)
- (3) span T is the set of skew-symmetric matrices in $M_2(\mathbf{R})$. (A matrix A is skew-symmetric if $A^T = A$.)

Exercise 14. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ and $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ be list of vectors in \mathbf{R}^n . Prove that $\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subset \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ if and only if $\mathbf{v}_i \in \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ for all $i, 1 \leq i \leq m$. (How might you apply the result of this exercise to prove equality of two spans rather than containment?)

Exercise 15. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$ and let x and y be scalars with $x \neq 0$. Prove:

- (1) $\operatorname{span}\{x\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\} = \operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}.$
- (2) span{ $\mathbf{v}_1 + y\mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n$ } = span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ }.
- 1.2. A spanning subset of \mathbb{R}^m can't be too small.

Theorem 16. Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be vectors in \mathbf{R}^m and suppose that n < m. Then the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ do not span \mathbf{R}^m .

Proof. Let $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$. Let R be any row echelon form of A and let U be an invertible $m \times m$ matrix such that R = UA. Since R has n columns, A has at most n pivot rows. Since m > n, R must have at least one zero row. In particular, the m-th row of R is zero. Therefore, $A\mathbf{x} = \mathbf{e}_m$ has no solution, where $\mathbf{e}_m \in \mathbf{R}^m$ is the column vector whose only nonzero entry is a 1 in row m. Setting $\mathbf{b} = U^{-1}\mathbf{e}_m$, it follows that $A\mathbf{x} = \mathbf{b}$ has no solution. Therefore, by Corollary 7, $\mathbf{b} \notin \text{span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.

1.3. Uniqueness of reduced row echelon form. (Under construction; do not read!)

Lemma 17. Let $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \mathbf{a}_n)$ be an $m \times n$ matrix reduced row echelon form with pivot columns $j_1 < j_2 < \ldots < j_r$. The following are equivalent:

- (1) \mathbf{a}_i is a pivot column of A.
- (2) $\mathbf{a}_j \notin \operatorname{span}\{\mathbf{a}_{j_i} : j_i < j\}.$
- (3) $\mathbf{a}_j \notin \operatorname{span}\{\mathbf{a}_k : k < j\}.$

Proof. Let $A_j = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_j)$. Then A_j is in reduced row echelon form as A is (reference an exercise?) and $\{\mathbf{a}_{j_i}: j_i < j\}$ is a basis for $C(A_j)$ by Theorem 11. In particular, if $1 \le p \le r$ then $\{\mathbf{a}_{j_i}: 1 \le i \le p\}$ is a basis of $C(A_{j_p})$. Since bases are linearly independent,

$$\mathbf{a}_{j_p} \notin \operatorname{span}\{\mathbf{a}_{j_i} : 1 \le i < p\},\$$

proving that (1) implies (2).

Conversely, suppose \mathbf{a}_j is not a pivot column of A. Now the column space of A_j is spanned by its pivot columns, namely, the \mathbf{a}_{j_i} with $j_i < j$, so $\mathbf{a}_j \in \text{span}\{\mathbf{a}_{j_i} : j_i < j\}$. This proves that (2) implies (1).

To see that (2) and (3) are equivalent, observe that span $\{\mathbf{a}_k : k < j\}$ is by definition, the column space of A_j while span $\{\mathbf{a}_{j_i} : j_i < j\}$ is the span of the pivot columns of A_j . But these spans are equal by Theorem 11.

Exercise 18. Let A be an $m \times n$ matrix in row echelon form whose leading 1s lie in positions $(i, j_i), 1 \le i \le r$. Suppose $j_i < j < j_{i+1}$. Prove that $a_{pj} = 0$ for i .

Theorem 19. Let A and B be row equivalent matrices in reduced row echelon form. Then A = B.

Proof. Suppose not. Then there is a pair of $m \times n$ matrices (A, B) witnessing the failure of the theorem such that n minimal among all such witnesses. In other words:

- (i) A and B are distinct, row equivalent matrices in reduced row echelon form.
- (ii) If A' and B' is another such pair then A has fewer columns than A'.

Since A and B are row equivalent and in reduced row echelon form, so are A_{n-1} and B_{n-1} . (Why?) By the minimality of n, the theorem holds for A_{n-1} and B_{n-1} . Therefore, $A_{n-1} = B_{n-1}$. Thus, to prove the theorem, it suffices to show that $\mathbf{a}_n = \mathbf{b}_n$.

Suppose, first, that \mathbf{a}_n is a pivot column of A. Then $\mathbf{a}_n \notin C(A_{n-1})$ by Lemma 17. Since A and B are row equivalent, $\mathbf{a}_n \in C(A_{n-1})$ if and only if $\mathbf{b}_n \in C(B_{n-1})$. (Row equivalence preserves linear relations between columns.) Therefore, $\mathbf{b}_n \notin C(B_{n-1})$ and, by Lemma 17 again, \mathbf{b}_n is a pivot column of B. Let $r = \operatorname{rank} A_{n-1} = \operatorname{rank} B_{n-1}$. Then \mathbf{a}_n and \mathbf{b}_n must both equal \mathbf{e}_{r+1} because A and B are in reduced row echelon form. Thus, $\mathbf{a}_n = \mathbf{b}_n$.

Now suppose that \mathbf{a}_n is not a pivot column of A. Then $\mathbf{a}_n \in C(A_{n-1})$ by Lemma 17, so there is a vector $\mathbf{x} \in \mathbf{R}^{n-1}$ such that $\mathbf{a}_n = A_{n-1}\mathbf{x}$. Since A and B are row equivalent, $\mathbf{b}_n = B_{n-1}\mathbf{x}$. But $A_{n-1} = B_{n-1}$, so it follows once again that $\mathbf{a}_n = \mathbf{b}_n$.

Exercise 20. Let W and W' be subspaces of W. Let S and S' be spanning sets of W and W', respectively. Show that $S \cup S'$ is a spanning set of $W \cup W'$.

Exercise 21. Let $A \in \mathbf{R}^{m \times n}$ and let $\mathbf{v} \in R(A)$. Show that if $\mathbf{v}^T \in N(A)$ then $\mathbf{v} = \mathbf{0}^{1 \times m}$. (Hint: Since $\mathbf{v} \in R(A)$, there is a row vector $\mathbf{x} \in \mathbf{R}^{1 \times m}$ such that $\mathbf{v} = \mathbf{x}A$. If $A\mathbf{v}^T = \mathbf{0}^{m \times 1}$ then

$$\mathbf{v}\mathbf{v}^T = \mathbf{x}A\mathbf{v}^T = \mathbf{x}\mathbf{0}^{m\times 1} = \mathbf{0}^{m\times 1}.$$

Explain why $\mathbf{v}\mathbf{v}^T = 0$ implies $\mathbf{v} = \mathbf{0}^{1 \times m}$.) Conclude that $R(A^T) \cap N(A) = \{0\}$.