Anmerkungen und Lösungen zu

Einführung in die Algebra

Jendrik Stelzner

Letzte Änderung: 18. November 2017

Aufgabe 4

Wir betrachten im Folgenden nur die Fälle $n \geq 3$, da die auf dem Übungszettel gegebene Defition für D_1 und D_2 nicht (ohne weiteres) funktoniert.

(a)

Es gibt verschiedene Möglichkeiten, die (Anzahl der) Elemente von D_n zu bestimmen:

- Es gibt n Rotation, jeweils um Vielfache von $360^{\circ}/n$, bzw. um $2\pi/n$. Zudem gibt es noch n Spiegelungen:
 - $\circ~$ Ist nungerade, so gehen die Spiegelungsachsen durch einen der Eckpunkte, sowie den Mittelpunkt der gegebenüberliegenden Kante.
 - \circ Ist n gerade, so gibt es zwei Arten von Spiegelungen:
 - \ast Es gibt n/2 Spiegelungen, deren Spiegelungsachse durch einen Eckspunkt sowie den gegenüberliegenden Eckpunkt gehen.
 - \ast Es gibt n/2 Spiegelungen, deren Spiegelungsachse durch den Mittelpunkte einer Kante sowie den Mittelpunkt der gegenüberliegenden Kante gehen.

Damit ergeben sich insgesamt 2n Isometrien.

• Es sei x einer der Eckpunkte und x' einer der zu x benachbarten Eckpunkte. Dann ist jede Isometrie des n-Ecks durch die Wirkung auf den benachbarten Eckpunkten x und x' bereits eindeutig bestimmt.

Der Eckpunkt x kann auf jeden der anderen Eckpunkte abgebildet werden, wofür es n Möglichkeiten gibt. Wird der Eckpunkt x auf einen Eckpunkt y abgebildet, so kann x' auf jeden der beiden zu y benachbarten Eckpunkt geschickt werden.

Somit ergeben sich 2n Isometrien

Um zu zeigen, dass D_n nicht abelsch ist, nummerieren wir die Eckpunkte des n-Ecks mit den Elementent von \mathbb{Z}/n , so dass der Eckpunkt \overline{k} mit den Eckpunkten $\overline{k-1}$ und $\overline{k+1}$ benachbart sind.

Die Rotation um $360^{\circ}/n$ ist dann durch

$$r: \mathbb{Z}/n \to \mathbb{Z}/n, \quad \overline{k} \mapsto \overline{k+1}$$

gegeben. Die Spiegelung, deren Achse durch den Eckpunkt $\overline{0}$ geht, ist dann durch

$$r: \mathbb{Z}/n \to \mathbb{Z}/n, \quad \overline{k} \mapsto \overline{-k}$$

gegeben. Es gilt

$$(r \circ s)(\overline{0}) = r(s(\overline{0})) = r(\overline{0}) = \overline{1}$$

aber

$$(s \circ r)(\overline{0}) = s(r(\overline{0})) = s(\overline{0}) = \overline{-1},$$

wobei $\overline{1} \neq \overline{-1}$ da $n \geq 3$.