How to Transform Kernels for Scale-Convolutions

Ivan Sosnovik, Artem Moskalev, Arnold Smeulders UvA-Bosch Delta Lab, University of Amsterdam

Universiteit van Amsterdam

Scale-Convolution

The mapping defined as:

$$[f \star_H \kappa](s,t) = \sum_{s'} [f(s',\cdot) \star \kappa_s(s^{-1}s',\cdot)](\cdot,t)$$

is scale-equivariant if and only if the following is true with respect to the kernels.

$$L_s[f] \star \kappa = L_s[f \star \kappa_{s^{-1}}], \quad \forall f, s$$

When it is not satisfied an equivariance error appears

Equivariance Constraint

The equivariance constraint can be rewritten in the matrix form as follows:

$$KLf = LK_{s^{-1}}f, \ \forall f \iff KL = LK_{s^{-1}}$$

It has a solution only if the downscaling is performed by an **integer scale factor**. In this cases, the solution is a dilated filter. In all other cases, only an **approximated solution** can be computed as follows, for example:

$$\kappa_{\sqrt{2}} = \arg\min \mathbb{E}_f ||L[f] \star \kappa_1 - L[f \star \kappa_{\sqrt{2}}]||_F^2$$
$$+ ||L[f] \star \kappa_{\sqrt{2}} - L[f \star \kappa_2]||_F^2$$

DISCO Kernels are computed via multiplying a fixed multi-scale basis with trainable weights. $\sqrt{2}$ is the smallest non-integer scale, for which the kernel is approximated by minimizing the equivariance constraint, the rest of the kernels can be obtained with dilation.

Equivariance Error vs Classification Error

Lower equivariance error leads to a lower classification error on the MNIST-scale dataset.

Large-Scale

Model	Basis	STL-10	Time, s
WRN	-	11.48	10
SiCNN	-	11.62	110
SI-ConvNet	-	12.48	55
DSS	Dilation	11.28	40
SS-CNN	Radial	25.47	15
SESN	Hermite	8.51	165
DISCO	Discrete	8.07	50

Model	AUC	FPS
SiamFC	0.61	-
TriSiam	0.62	-
SiamFC+	0.67	56
SE-SiamFC+	0.68	14
DISCO-SiamFC+	0.68	28

The proposed DISCO filters allow for more accurate classification on STL-10 (left) and faster inference when it is extremely important, such as on OTB-13 (Right).

[SESN] Sosnovik I., Szmaja M., Smeulders A., Scale-equivariant steerable networks. ICLR 2020 [SiamFC+] Sosnovik I., Moskalev A., Smeulders A. W. M., Scale equivariance improves siamese tracking. WACV 2021

[DISCO] Sosnovik I., Moskalev A., Smeulders A. How to Transform Kernels for Scale-Convolutions ICCV 2021, VIPriors