Statistical Methods for Data Science: A Starter Kit

Yinan Yu

yinan@chalmers.se/yinan.yu@asymptotic.ai

Statistical Data Type (11)

Categorical data: labels or tags

- Nominal: unordered labels, e.g. species of ducks
- Ordinal: ordered labels, e.g. {"duckling", "teen duck", "adult duck"}

Numerical data:

- Discrete (interval): countable, e.g. integers; numbers of ducks
- Continuous (ratio): uncountable, e.g. real values; weights of ducks

Data Container (l1)

Array (tensor):

- Scalar, vector, matrix, higher order array
- Same numerical data type
- Python library: numpy

Table:

- Described by columns and rows
- Mixed data types
- Python library: pandas

Descriptive Statistics: numerical data (11)

Data set (a sample): numerical data x_1, \dots, x_N Centrality:

- sample mean: $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- \bullet median: sort x_i and median is the value in the middle
- mode (discrete values): the most frequent value in a sample

Dispersion:

- min, max, range: min $\{x_i\}$, max $\{x_i\}$, max $\{x_i\}$ min $\{x_i\}$
- quantiles/percentiles: given $p \in (0,1)$, q is a p-quantile of the data if $p \times 100\%$ of the data are smaller than q

• sample variance: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$

 $\bullet\,$ sample standard deviation: s

Dependence: given a data set with two paired values:

$$\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$$

• covariance:

$$cov(x,y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})$$

 \bullet correlation: measures how close data is to a linear relationship

$$corr(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}, \ -1 \le corr(x,y) \le 1$$

Descriptive Statistics: categorical data (l1)

Data set (a sample): categorical data x_1, \dots, x_N

- Count/frequency
- $\bullet\,$ Transformed into numerical, discrete data

Visualization: numerical data (l1)

- Distribution:
 - Histogram/normalized histogram

- Box plot
- Dependence (two variables):
 - Scatter plot
 - Heat map for covariance/correlation

 ■

Visualization: categorical data (l1)

- Distribution
 - Bar chart
 - Pie chart

- Mosaic plot

Probability distribution (l2)

- Experiment: an action that leads to one outcome
- Sample space: the set of all possible outcomes from an experiment
- Event: a subset of the sample space
- Random variable (discrete/continuous): assigning a numerical value to each outcome of the experiment; denoted by capital letters, e.g. X
- Probability distribution: the probability of the occurrence of *any* event in the sample space; can be described by P(event)/PDF/PMF/CDF
 - $-\ P({\rm event}):$ the probability of an event occurring
 - PDF f(x): the probability density function for continuous random variables; $\int_{-\infty}^{+\infty} f(x)dx = 1$
 - PMF f(x): the probability mass function for discrete random variables; $\sum_{x=-\infty}^{+\infty} f(x) = 1$
 - CDF F(x): the cumulative density function; $F(x) = P(X \le x)$
- Quantile function Q: the inverse CDF, i.e.

$$F_X(Q(p)) = p$$
 and $Q(F_X(q)) = q$

- Conditional probability
- Independent and identically distributed (i.i.d.) random variables

Examples (12)

Discrete/continuous, PMF/PDF, parameters, typical use cases (statistical data type, example scenarios)

• Bernoulli distribution

• Categorical distribution

• Discrete uniform

• Gaussian distribution

Generalize this learning routine to unknown distributions

Properties of Gaussian distributions (16)

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian
 - Scaling: $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2), t \neq 0$ is a constant
 - Translation: $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $-tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian

$$-X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

$$-X - Y \sim \mathcal{N}(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Bayes' rule (14, 15)

• Parameter estimation:

$$f_{\Theta|data}(\theta \mid data) = \underbrace{\frac{f_{data|\Theta}(data \mid \theta)}{f_{data}(data)}^{\text{prior}}}_{\text{likelihood}}$$

where $f(\cdot)$ is the PDF/PMF

• Multinomial naive Bayes classifier:

$$P(Y = y \mid X = x) = \underbrace{\frac{P(X = x \mid Y = y)}{P(X = x)}}^{\text{likelihood}} \underbrace{\frac{P(Y = y)}{P(Y = y)}}^{\text{prior}}$$

• Gaussian naive Bayes classifier/Gaussian mixture models:

$$P(Y = y \mid X = x) = \underbrace{\frac{f_{X|Y=y}(x \mid Y = y)}{f_{X}(x)} \underbrace{P(Y = y)}_{\text{prior}}}_{\text{prior}}$$

Q-Q plot (l3)

- Use cases:
 - Compare a data distribution to a theoretical distribution (one sample test)
 - Compare two data distributions (two sample test)
- Steps:
 - Choose a set of m probabilities $p_1, \dots, p_m \in [0, 1]$ (make sure they spread evenly between 0 and 1)
 - For $i = 1, 2, \dots, m$:
 - * Compute the quantile q_i^1 of the first distribution at p_i
 - * Compute the quantile q_i^2 of the second distribution at p_i
 - * Make a scatter plot of the pair (q_i^1, q_i^2)
- Interpretation
 - Case 1: if the two distributions are identical, the points in the Q-Q plot should follow a 45° straight line y=x
 - Case 2: if the two distributions are linearly related, the points in the Q-Q plot follow a straight line that is not necessarily y = x
 - Case 3: if the two distributions are from different families of distributions, the points in the Q-Q plot are not lying on a straight line.

Mathematical Modeling (13)

$$y = g(x; \theta \mid h)$$

- 1. What do we want to predict, i.e. what is the target y?
- 2. What are the variables x?
- 3. What is the mathematical function g that relates variables x to the target y?
- 4. Are there any hyperparameters h in the function g? How do we choose them?
- 5. What are the unknown parameters θ in g? How do we estimate them from data?

Parameter estimation (14)

- Maximum likelihood estimation: frequentist approach θ is deterministic (constant)
- Maximum A Posteriori estimation: Bayesian approach θ is probabilistic (random)

Maximum Likelihood Estimation (l4)

Given a model $y = g(x; \mathcal{O} \mid h)$, where \mathcal{O} is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest $\theta \in \mathcal{O}$
- e) Choose the maximum likelihood estimation as the estimation method: Given data x_1, \dots, x_N and assume i.i.d. random variables X_i with PDF/PMF $f(x_i)$,

$$L(\theta \mid x_1, \cdots, x_N) = \prod_{i=1}^{N} f(x_i; \theta)$$

f) Compute $\hat{\theta}_{MLE}$ by maximizing the likelihood function:

$$\hat{\theta}_{MLE} = \arg \max_{\theta} L(\theta \mid x_1, \dots, x_N)$$

$$= \arg \max_{\theta} \prod_{i=1}^{N} f(x_i; \theta)$$

or equivalently, minimizing the **negative log likelihood function**:

$$\hat{\theta}_{MLE} = \arg\min_{\theta} - \sum_{i=1}^{N} \log(f(x_i; \theta))$$

- Simple case, e.g. i.i.d. Gaussian, find the closed-form solution by:
 - * Taking the partial derivative with respect to the parameter
 - * Setting the derivative to zero
 - * Solving for the parameter
- In general, the estimate needs to be found by iterative methods, e.g. gradient descent

Maximum A Posteriori Estimation (14)

Given a model $y = g(x; \mathcal{O} \mid h)$, where \mathcal{O} is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest $\theta \in \mathcal{O}$
- e) Choose the maximum a posteriori estimation as the estimation method
 - $-\theta$ is assumed to be drawn from a random distribution
 - Choose a prior distribution for θ along with the hyperparameters: $f_{\Theta}(\theta)$
 - * Prior might be known by the problem setup
 - * If prior unknown, conjugate priors are typically chosen for various reasons
 - Find the likelihood function: $f_{X\mid\Theta}(\boldsymbol{x}\mid\theta)$ (same as in MLE)
 - Express the posterior distribution in terms of the prior and the likelihood function

$$f_{\Theta|X}(\boldsymbol{\theta} \mid \boldsymbol{x}) = \frac{f_{X|\Theta}(\boldsymbol{x} \mid \boldsymbol{\theta})f_{\Theta}(\boldsymbol{\theta})}{f_{X}(\boldsymbol{x})}$$

f) Compute $\hat{\theta}_{MAP}$ by maximizing the posterior function (or equivalently, minimizing the negative log posterior function without the normalization constant). The optimal solution can be found by a closed-form expression or using iterative techniques.

Standardization (16)

Standardization: let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

Central limit theorem (16)

Given an i.i.d. sample X_1, X_2, \dots, X_N from **ANY probability distribution** with *finite mean* μ *and variance* σ^2 (most distributions satisfy this!), when the sample size N is sufficiently large, the sample mean approximately follows a Gaussian distribution with mean μ and variance $\frac{\sigma^2}{N}$, i.e.

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

Confidence interval (16)

- Data: x_1, \dots, x_N
- Random variable: X_1, \dots, X_N with i.i.d. assumption
- Parameter of interest: θ , e.g. the mean μ
- Estimate: $\hat{\theta}$, e.g. the sample mean \bar{x}
- Confidence interval for a given confidence level 1α (e.g. 95%)
 - Definition:

confidence interval = $(\hat{\theta} - \mathbf{margin of error}, \hat{\theta} + \mathbf{margin of error})$

where

margin of error = critical value × standard error of $\hat{\theta}$

- Calculation:

Distribution of X_i	Scenario	θ	$\hat{\theta}$ (sampling distribution)	Critical value	Standard error	Confidence interval	Note	
i.i.d. Gaussian	σ known	mean	sample mean \bar{x}	$z_{\alpha/2}$	$\frac{\sigma}{\sqrt{N}}$	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$	exact	
	σ unknown		(Gaussian distribution)	$t_{\alpha/2}$	$\frac{s}{\sqrt{N}}$	$\left(\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{N}}, \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{N}}\right)$		
i.i.d.	σ known		sample mean \bar{x}	$z_{\alpha/2}$	$\frac{\sigma}{\sqrt{N}}$	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$	approximate	
	σ unknown		(approximately Gaussian under CLT)	$t_{\alpha/2}$	$\frac{s}{\sqrt{N}}$	$\left(\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{N}}, \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{N}}\right)$	for large N	
i.i.d.	-	any	MLE (asymptotically Gaussian)	$z_{lpha/2}$	$\frac{1}{\sqrt{NI_N(\hat{ heta})}}$	$\left(\hat{\theta} - z_{\alpha/2} \frac{1}{\sqrt{NI_N(\hat{\theta})}}, \hat{\theta} + z_{\alpha/2} \frac{1}{\sqrt{NI_N(\hat{\theta})}}\right)$	asymptotic	
i.i.d.	-	any	any statistic (any distribution)	bootstrap the error quantile		$\left(\hat{ heta} - \epsilon_{1-lpha/2}, \hat{ heta} - \epsilon_{lpha/2} ight)$	approximate	

where σ is the standard deviation of the X_i and s the sample standard deviation

Hypothesis testing steps (17)

- Step 1 Make a "boring" statement, i.e. the default explanation
- Step 2 Design an **experiment**
- Step 3 Describe the data generated from the experiment and the corresponding random variables
- Step 4 Describe the parameter of interest and their estimates
- Step 5 Translate the "boring" statement into a statistical hypothesis and call it the **null hypothesis** H_0
- \bullet Step 6 Find the expression for the **test statistic** s
- Step 7 Find the expression for the **null distribution**
- Step 8 Define an alternative hypothesis H_A : one-tailed or two-tailed
- Step 9 Choose a significance level α (the tail), which defines the rejection region
- Step 10 Collect data
- $\bullet\,$ Step 11 Compute the test statistic from data
- Step 12 Compute the *p*-value
- Step 13 If p-value $< \alpha$, i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0 ; otherwise, we fail to reject H_0 .

Statistical tests (18)

	Data discrete/continuous	No. of samples used in the test	Remark	Test statistic	Null distribution
One-sample z-test	Continuous	1	σ known	$\frac{\bar{x}-c}{\sigma/\sqrt{N}}$	Standard Gaussian
One-sample t-test	Continuous	1	σ unknown	$\frac{\bar{x}-c}{s/\sqrt{N}}$	Student's-t distribution
Two-sample z-test	Continuous	2	$\sigma_X, \sigma_Y \mathrm{known}$	$\frac{\overline{x} - \overline{y} - c}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$	Standard Gaussian
Two-sample t-test	Continuous	2	σ_X, σ_Y unknown	$\frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$	Student's-t distribution
Paired t-test	Continuous	1 or 2 (paired)	$\sigma_X, \sigma_Y \text{unknown}$	$\frac{m_{X-Y}-c}{s_{X-Y}/\sqrt{N}}$	Student's-t distribution
Binomial test (exact)	Discrete	1	Small N	k_0	Binomial distribution
Binomial test (approximate)	Discrete	1	Large N	$\frac{k_0 - N\pi}{\sqrt{N\pi(1-\pi)}}$	Standard Gaussian
McNemar's test (exact)	Discrete	1 (2 groups)	Small $n_{01} + n_{10}$	$\min(n_{01}, n_{10})$	Binomial distribution
McNemar's test (approximate)	Discrete	1 (2 groups)	Large $n_{01} + n_{10}$	$ \frac{(n_{01} - n_{10} - 1)^2}{n_{01} + n_{10}} $	Chi-squared distribution

Machine learning: classification

Multinomial naive Bayes classifier (15)

- **Prediction** y: categorical data $y \in \{1, \dots, C\}$
- Variables x_i , $i = 1, \dots, n$: categorical data $x_i \in V$, where V is the vocabulary $V = \{w_1, \dots, w_K\}$ given K unique categories
 - Assumptions:
 - * x_i 's are independent **NAIVE!**
 - * x_i follows a categorical distribution

Note: here n is the size of the input data, e.g. the length of a document

• Model g:

$$\hat{y} = g(x_1, \dots, x_n) = \underset{c \in \{1, \dots, C\}}{\arg \max} P(c) \prod_{i=1}^n P(x_i \mid c)$$

where P(c) is the prior and $\prod_{i=1}^{n} P(x_i \mid c)$ is the likelihood under the assumptions

- Hyperparameters h: smoothing factor α , e.g. $\alpha = 1$
- Parameters θ : P(c), V (if not given) and $P(w_i \mid c)$ for all $w_i \in V$
- Parameter estimation (training): given the vocabulary $V = \{w_k\}_{k=1}^K$ and a training data set $\{(b_1, y_1), \dots, (b_N, y_N)\}$, where each b_j contains a list of words. Let $N_c = count(y_j = c)$.
 - Likelihood $P(w_i \mid c)$ for each w_i :

$$P(w_i \mid c) = \frac{count(\forall w_i \in b_j \ for \ y_j = c) + \alpha}{count(\forall \ words \in \ class \ c) + \alpha K}$$

- Prior P(c):

$$P(c) = \frac{N_c}{N}$$

Gaussian naive Bayes classifier (15)

- Prediction y: categorical data $y \in \{1, \dots, C\}$
- Variables x_i , $i = 1, \dots, d$: continuous numerical data $x_i \in \mathbb{R}$
 - Assumption:
 - * x_i 's are independent **NAIVE!**
 - * x_i follows a Gaussian distribution
- Model g:

$$\hat{y} = g(x_1, \dots, x_d)$$

$$= \underset{c \in \{1, \dots, C\}}{\arg \max} P(c) \prod_{i=1}^d f_i(x_i \mid y = c)$$

where P(c) is the prior and $\prod_{i=1}^{d} f_i(x_i \mid y=c)$ is the likelihood under the assumptions with $f_i(x_i \mid y=c) = \frac{1}{\sqrt{2\pi\sigma_{c,i}^2}} e^{-\frac{(x_i-\mu_{c,i})^2}{2\sigma_{c,i}^2}}$

- Parameters θ : P(c), $\mu_{c,i}$, $\sigma_{c,i}$ in $f_i(x_i \mid y = c)$ for all c and i
- Parameter estimation (training): given a training data set $\{(\boldsymbol{x}_1,y_1),\cdots,(\boldsymbol{x}_N,y_N)\}$, where each $\boldsymbol{x}_j=[x_1^j,\cdots,x_d^j]$ is a vector containing all the features for one data point. Let $N_c=count(y_i=c)$.
 - $-\mu_{c,i}, \sigma_{c,i}$ in the likelihood $f_i(x_i \mid y=c)$ for all variable i and all classes c:

$$\hat{\mu}_{c,i} = \frac{1}{N_c} \sum_{t=1}^{N_c} x_i^t$$

$$\hat{\sigma}_{c,i} = \sqrt{\frac{1}{N_c - 1} \sum_{t=1}^{N_c} (x_i^t - \hat{\mu}_{c,i})^2}$$

for all $t \in \text{class c}$

- Prior P(c):

$$P(c) = \frac{N_c}{N}$$

Machine learning: clustering

K-means (19)

- Prediction y: categorical data $y \in \{1, \dots, K\}$
- Variables x: d dimensional feature vector x

• Model:

$$y = \arg\min_{k \in \{1, \cdots, K\}} dist(\boldsymbol{x}, \boldsymbol{\mu}_k)$$

where $dist(\cdot, \cdot)$ is a distance measure; in this course, we use the Euclidean distance; it is **hard clustering** - one data point is assigned to only one cluster

- Hyperparameters: K
- Parameters: K centroids
- Parameter estimation: an iterative method to update the centroids until convergence
 - Randomly choose K centroids $\hat{\mu}_k$ for $k=1,\cdots,K,$ e.g. randomly choose K data points from \mathcal{X}
 - Repeat the two steps below until convergence, e.g. $\hat{\boldsymbol{\mu}}_k$ does not change anymore
 - * For all $i = 1, \dots, N$, assign \boldsymbol{x}_i to a cluster \hat{k}_i by computing

$$\hat{k}_i = \arg\min_{k \in \{1, \dots, K\}} dist(\boldsymbol{x}_i, \hat{\boldsymbol{\mu}}_k)$$

* Let \mathcal{X}_k be the set of all x_i assigned to cluster k and N_k be the size of \mathcal{X}_k , compute

$$\hat{oldsymbol{\mu}}_k \leftarrow rac{1}{N_k} \sum_{oldsymbol{x}_j \in \mathcal{X}_k} oldsymbol{x}_j$$

Gaussian Mixture Models (110, 111)

- Prediction y: y can be a set of continuous numerical data K posterior probabilities or categorical data $y \in \{1, \dots, K\}$
- Variables x: a d dimensional feature vector $x = [x_1, \dots, x_d]$ with PDF $f(x) = \sum_{k=1}^K \pi_k f(x \mid k)$
- **Model**: for $k = 1, \dots, K$

likelihood of k

$$\underbrace{P(k \mid \boldsymbol{x})}_{posterior} = \underbrace{\frac{prior}{P(k)} \underbrace{\frac{given \ data}{f(\boldsymbol{x} \mid k)}}_{\sum_{c=1}^{K} P(c) f(\boldsymbol{x} \mid c)}$$

It is **soft clustering** - x is assigned to **all clusters** with a probability - the posterior $P(k \mid x)$; **alternatively**, y can be defined as the cluster index with the highest posterior probability, i.e.

$$y = \arg\max_{k \in \{1, \cdots, K\}} P(k \mid \boldsymbol{x}) = \arg\max_{k \in \{1, \cdots, K\}} P(k) f(\boldsymbol{x} \mid k)$$

- Hyperparameters: K
- Parameters: the parameters of the mixture distribution f(x)
 - The parameters for each Gaussian likelihood $f(\boldsymbol{x} \mid k)$
 - The prior P(k), typically denoted as π_k
- Parameter estimation: the Expectation-Maximization algorithm

What is a likelihood function (l4)

- Intuitively, the likelihood describes how likely the observed data points are generated from a given probability distribution
- If data is not modeled by probability distributions, there is no likelihood
- Graphically, in a PDF/PMF plot, data is on the x-axis and the likelihood is on the y-axis
- If data is discrete, likelihood = the probability
- If data is continuous, likelihood! = the probability
- The **likelihood function**: $L(\theta \mid x) = f(x; \theta)$
- Note: we use Gaussian distributions for illustration purposes

Likelihood of μ Given One Observation x (14)

Likelihood of μ given data x = 4: $f(x = 4; \mu \mid \sigma = 2)$:

Likelihood Function Given One Observation x (14)

Likelihood function of μ given data x = 4 for $-\infty \le \mu \le \infty$:

$$L(\mu \mid x = 4, \sigma = 2) = f(x = 4; \mu \mid \sigma = 2)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{8\pi}} e^{-\frac{(4-\mu)^2}{8}}$$

PDF, Probability, Likelihood, Likelihood Function (14)

Likelihood of μ Given N Observations x_1, \dots, x_N (14)

Assumption: random variables X_i are independent and identically distributed (i.i.d.) random variables

• X_1, \dots, X_N are independent:

$$f_{X_1,\dots,X_N}(x_1,\dots,x_N) = f_{X_1}(x)\dots f_{X_N}(x)$$

• X_1, \dots, X_N are identically distributed - they have the same PDF:

$$f_{X_1}(x; \mu \mid \sigma) = \cdots = f_{X_N}(x; \mu \mid \sigma) = f(x; \mu \mid \sigma)$$

where $\sigma = \sigma_1 = \sigma_2 = \cdots = \sigma_N$ and $\mu = \mu_1 = \mu_2 = \cdots = \mu_N$. The likelihood function can be expressed as:

$$L(\mu \mid x_1 = 6.98, x_2 = 5.43, \dots, x_{20} = 7.27, \sigma = 2)$$

$$= f(x_1 = 6.98, x_2 = 5.43, \dots, x_{20} = 7.27; \mu \mid \sigma = 2)$$

$$= f(6.98; \mu \mid \sigma = 2)f(5.43; \mu \mid \sigma = 2) \dots f(7.27; \mu \mid \sigma = 2)$$

$$= \frac{1}{\sqrt{8\pi}} e^{-\frac{(6.98 - \mu)^2}{8}} \frac{1}{\sqrt{8\pi}} e^{-\frac{(5.43 - \mu)^2}{8}} \dots \frac{1}{\sqrt{8\pi}} e^{-\frac{(7.27 - \mu)^2}{8}}$$

$$= (\frac{1}{\sqrt{8\pi}})^{20} e^{-\frac{(6.98 - \mu)^2 + \dots + (7.27 - \mu)^2}{8}}$$

Likelihood of A Mixture Model Given One Observations x (110)

Parameters: π_k (prior), μ_k , σ_k , for all $k = 1, \dots, K$

$$f(x) = \sum_{k=1}^{K} \pi_k f(x|k)$$

where $f(x \mid k)$ is Gaussian PDF with parameters μ_k and σ_k

Likelihood of A Mixture Model Given N Observations x_1, \dots, x_N (110)

Parameters: π_k (prior), μ_k , σ_k , for all $k = 1, \dots, K$

$$f_{X_1,\dots,X_N}(x_1,\dots,x_N) \stackrel{i.i.d.}{=} \prod_{i=1}^N f(x_i) = \prod_{i=1}^N \sum_{k=1}^K \pi_k f(x|k)$$

Symbols and notations

- Generic mathematical symbol
 - Integral (area under the curve between a and b): $\int_a^b f(x)dx$
 - Summation: $\sum_{i=1}^{N} x_i = x_1 + x_2 + \dots + x_N$
 - Product: $\prod_{i=1}^{N} x_i = x_1 \times x_2 \times \cdots \times x_N$
 - Factorial: $n! = n \times (n-1) \times \cdots \times 1$
 - Probability of an event: P(event)
 - -[a,b]: the range from a to b, where a and b are numerical values
 - $\{a,b,\cdots\}$: a set that contains elements a,b,\cdots
 - Mean value: μ
 - Standard deviation: σ
- $\bullet\,$ Symbols specific in this course
 - N: sample size; number of data points in a data set
 - N_X : size of sample X
 - Chonker duck: a duck that is very round and probably overweight