My Wonderful Presentation A not so good subtitle

Derek Harter

Professor

Department of Computer Science

Texas A&M University - Commerce

Fall 2021

To Be Covered in this Talk

- General information
- 2 Formatting

Themes, fonts, etc.

- I use default **pandoc** themes.
- This presentation is made with **Frankfurt** theme and **beaver** color theme.
- I like **professionalfonts** font scheme.

Links

- Matrix of beamer themes: https://hartwork.org/beamer-theme-matrix/
- $\bullet \ \, Font \ themes: \ http://www.deic.uab.es/\sim iblanes/beamer_gallery/index_by_font.html \\$
- Nerd Fonts: https://nerdfonts.com

Text formatting

Normal text. Italic text and \mathbf{bold} $\mathbf{text}.$ Strike out is supported.

Notes

This is a note. > Nested notes are not supported. And it continues.

Blocks

This is a block A

- Line A
- Line B

New block without header.

This is a block B.

- Line C
- Line D

Listings

Listings out of the block.

```
1 #!/bin/bash
2 echo "Hellouworld!"
3 echo "line"
```

Listings in the block.

```
| #!/bin/bash
| echo "Hello_world!"
| echo "line"
```

Python Code

Does python code block get syntax highlighting?

```
#!/usr/bin/env python
x = 5
s = "Hello world "
print(x * s)
| Hello world Hello world Hello world Hello world
```

Python Figure

If we create a figure as output frompython code block, does it work?

```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi)
plt.plot(x, np.sin(x), label='sin(x)')
plt.plot(x, np.cos(x), label='cos(x)')
plt.legend()
```


Figure 1: My Great Code Chunk Figure

Python Figure in Columns

If we create a figure as output from python code block, does it work?

```
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi)
plt.plot(x, np.sin(x), label='sin(x)')
plt.plot(x, np.cos(x), label='cos(x)')
plt.yticks([-1.0, 0.0, 1.0])
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2,
           [r'$-\pi$', r'$\frac{-\pi}{2}$
r'$\frac{\pi}{2}$', r'$\pi$'])
plt.grid()
plt.legend()
```


Table

Item	Description	Q-ty
Item A	Item A description	2
Item B	Item B description	5
Item C	N/A	100

Single picture

This is how we insert picture. Caption is produced automatically from the alt text.

```
1 | ![Aleph 0] (figures/aleph0.png)
```


Figure 3: Aleph 0

Two or more pictures in a raw

Here are two pictures in the raw. We can also change two pictures size (height or width).

Lists

- Idea 1
- 2 Idea 2
 - genius idea A
 - more genius 2
- Conclusion

Two columns of equal width

Left column text.

Another text line.

- Item 1.
- Item 2.
- Item 3.

Two columns of with 40:60 split

Left column text.

Another text line.

- Item 1.
- Item 2.
- Item 3.

Three columns with equal split

Left column text.

Another text line.

Middle column list:

- **1** Item 1.
- 2 Item 2.

Right co

- Iter
- Iter

Three columns with 30:40:30 split

Left column text.

Another text line.

Middle column list:

- **1** Item 1.
- **2** Item 2.

Right column list:

- Item 1.
- Item 2.

Two columns: image and text

Text in the right column. List from the right column:

- Item 1.
- Item 2.

Two columns: image and table

$\overline{ ext{Item}}$	Option
Item 1	Option 1
Item 2	Option 2

Fancy layout

Proposal

- Point A
- Point B

Pros

- Good
- Better
- Best

Cons

- Bad
- Worse
- Worst

Conclusion

- Let's go for it!
- No way we go for it!
- A citation (Sorin, 1998)
- Another citation (Delorme et al., 1995)

Presentation References I

- Delorme, F. et al. (1995). Butt-jointed DBR laser with 15 nm tunability grown in three MOVPE steps. *Electron. Lett.*, 31(15), 1244–1245.
- Sorin, W. V. (1998). Optical reflectometry for component characterization. In D. Derickson (Ed.), Fiber optic test and measurement. Prentice-Hall.