MCDONNELL DOUGLAS ASTRONAUTICS CO HUNTINGTON BEACH CALIF FACUANTITATIVE METHODS FOR SUF WARE RELIABILITY MEASUREMENTS. (U) AD-A035 585 F/6 9/2 DEC 76 P B MORANDA MDC-66553 F44620-74-C-0008 UNCLASSIFIED AFOSR-TR-77-0046 NL 1 OF 3 AD 35585

ADA 035585

PERMIT FULLY LEGIBLE PRODUCTION

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

CORPORATION

Approved for public release; distribution unlimited.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is

mistechnical release IAW AFR 190-12 (7b).

Distribution is unlimited.

A. B. EOSE

Technical Information Officer

Plank

-- ---

| (19) REPORT DOCUMENTATION PAGE                                                                              | READ INSTRUCTIONS BEFORE COMPLETING FOR            |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| AFOSR - TR - 77 - 004 6 2 GOVT AC                                                                           | CESSION NO. 3 MECIPIENT'S CATALOG NUMBER           |
| AFOSRI-TIK- 77 PARTO                                                                                        | (4)                                                |
| A TITUS (and Subtitio)                                                                                      | Final Report                                       |
| QUANTITATIVE METHODS FOR SOFTWA                                                                             | 1 December 1973 thru                               |
| RELIABILITY MEASUREMENTS .                                                                                  | 16 PERFORMING ORG. ROOM NUMB                       |
|                                                                                                             | MDC-G6553                                          |
| 7. AU (0)                                                                                                   | 8. CONTRACT OR GRANT NUMBER(*)                     |
| Dr. Paul B. Moranda                                                                                         | (5) F4462Ø-74-C-ØØØ8                               |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                 | 10. PROGRAM ELEMENT, PROJECT, T.                   |
| McDonnell Douglas Astronautics Compa                                                                        | ny AREA WORK UNIT NUMBERS                          |
| 5301 Bolsa Avenue                                                                                           | 2304 A2                                            |
| Huntington Beach, CA 92647                                                                                  |                                                    |
| Air Force Office of Scientific Research                                                                     | Dec 76                                             |
| Bolling AFB, Washington D. C.                                                                               | 13. NUMBER OF PAGES                                |
|                                                                                                             | 191                                                |
| MONITORING AGENCY NAME A ADDRESS(II different from Contro                                                   | Iling Office) 15. SECURITY CLASS. (of this report) |
| (12) 1720.                                                                                                  | Unclassified                                       |
|                                                                                                             |                                                    |
|                                                                                                             | 15a. DECLASSIFICATION DOWNGRADI                    |
| Approved for public release; distribution                                                                   | unlimited.                                         |
| Approved for public release; distribution  17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, | unlimited.                                         |
| Approved for public release; distribution  17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, | unlimited.                                         |

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

## 20. Abstract (Continued)

algorithm is employed to estimate the total number of execution sequences which are likely to be eventually driven by random number inputs, and, by implication, the point in testing where the change to constructed cases should be made. Models for determining the count of these execution sequences are described and tables which facilitate estimation of the number of logical paths and related parameters are provided for convenience.

#### **PREFACE**

This report documents the results obtained under contract F44620-74-C-0008 entitled "Quantitative Methods for Software Reliability Measurements", during the 36 month period ending in November 1976. This work was conducted in the Information Systems Sciences Branch, of the Data Control and Processing Subsystems Department, McDonnell Douglas Astronautics Company-West, in Huntington Beach, California. Excepting the Appendix I, this report was written by Paul B. Moranda, Information Systems Advisor Senior and Principal Investigator, under the direction of Zygmunt Jelinski, Program Manager. The assistance of Mrs. Carolyn Boettcher of McDonnell Douglas Automation Company, in performing several special numerical analyses and in writing the supporting computer programs for the study, is gratefully acknowledged. This work was conducted under the auspices of the Air Force Office of Scientific Research and was monitored by Lt. Col. Thomas Wachowski and Lt. Col. George W. McKemie whose assistance, both direct and indirect, are also gratefully acknowledged.



#### **ABSTRACT**

This research effort in the field of software reliability is primarily based on probability: as applied to error detection rates; as applied to the generation of input test data; and as applied to the economics of random versus constructed test cases. The background description of the flow of computations is made by means of a directed graph representation and a connection matrix depicting possible links between program segments. Random numbers selected from a given domain by several distributions are employed as input to programs instrumented to detect the use of the program's segments. An algorithm is employed to estimate the total number of execution sequences which are likely to be eventually driven by random number inputs, and, by implication, the point in testing where the change to constructed cases should be made. Models for determining the count of these execution sequences are described and tables which facilitate estimation of the number of logical paths and related parameters are provided for convenience.

Miles Section

## TABLE OF CONTENTS

| I        | INTRODUCTION AND SUMMARY                                   | 1  |  |  |  |
|----------|------------------------------------------------------------|----|--|--|--|
|          | A. Introduction                                            | 1  |  |  |  |
|          | B. Objectives and Task Descriptions                        | 2  |  |  |  |
|          | C. Course of the Research Program                          | 3  |  |  |  |
|          | D. Publications and Presentations                          | 6  |  |  |  |
| II       | PRELIMINARY TECHNICAL DISCUSSION                           | 7  |  |  |  |
| 12-14-15 | A. Framework of Representation                             | 7  |  |  |  |
|          | B. Analytical Background for Generation of Random Numbers  | 19 |  |  |  |
|          | 1. Introductory Comments                                   | 19 |  |  |  |
|          | 2. Beta Distribution                                       | 19 |  |  |  |
|          | 3. Triangular Distribution                                 | 22 |  |  |  |
|          | 4. Truncated Normal Distribution                           | 23 |  |  |  |
|          | C. Program Testing System (Overview)                       | 25 |  |  |  |
| III      | DETECTION RATE MODELS (PRELIMINARY)                        | 27 |  |  |  |
|          | A. De-Eutrophication Model                                 |    |  |  |  |
|          | B. Geometric De-Eutrophication Model                       | 29 |  |  |  |
|          | C. Hybrid Geometric Process                                | 29 |  |  |  |
| IV       | ANALYSIS OF PROGRAMS                                       | 33 |  |  |  |
|          | A. Lehmer Root-Solver                                      | 33 |  |  |  |
|          | <ol> <li>Description of the Root-Solving Method</li> </ol> | 33 |  |  |  |
|          | 2. Lehmer Program Description                              | 37 |  |  |  |
|          | 3. Analysis of PTT-Segment Data                            | 39 |  |  |  |
|          | a. Aggregate Effects                                       | 41 |  |  |  |
|          | b. Distributional Effects                                  | 42 |  |  |  |
|          | 4. Analysis of Aggregated Segment Data                     | 45 |  |  |  |
|          | a. Random Input Data                                       | 45 |  |  |  |
|          | b. Special Test Cases                                      | 54 |  |  |  |
|          | (1) Fundamental Combinations                               | 57 |  |  |  |
|          | (2) Special Cases                                          | 58 |  |  |  |
|          | (3) Constructed Cases                                      | 60 |  |  |  |
|          | c. Status of Testing (Random and Selective)                | 61 |  |  |  |
|          | d. Summary of Analysis                                     | 63 |  |  |  |

# TABLE OF CONTENTS (continued)

|   | В.                                   | IMSL Routine ZPOLYR                                 | 65  |  |  |  |
|---|--------------------------------------|-----------------------------------------------------|-----|--|--|--|
|   |                                      | 1. Description of Root-Solving Method               | 65  |  |  |  |
|   |                                      | 2. ZPOLYR Program Listing                           | 65  |  |  |  |
|   |                                      | 3. Analysis of PTT-Segments                         | 65  |  |  |  |
|   |                                      | a. Summary Data                                     | 65  |  |  |  |
|   |                                      | b. Estimation of Total Number of Execution Sequence | 69  |  |  |  |
|   |                                      | (1) Introduction                                    | 69  |  |  |  |
|   |                                      | (2) Technique                                       | 70  |  |  |  |
|   |                                      | (3) Summary and Extensions                          | 74  |  |  |  |
|   |                                      | 4. Constructed Cases (ZPOLYR)                       | 75  |  |  |  |
|   |                                      | a. Segment Analysis                                 | 75  |  |  |  |
|   |                                      | b. Summary                                          | 77  |  |  |  |
|   |                                      | 5. Rationale for Test Case Selection (ZPOLYR)       | 78  |  |  |  |
|   | C.                                   | Curvature Program                                   | 79  |  |  |  |
|   |                                      | 1. Description of Program CURVTR                    | 79  |  |  |  |
|   |                                      | 2. CURVTR Listing                                   | 80  |  |  |  |
|   |                                      | 3. Random Testing of CURVTR                         | 80  |  |  |  |
|   |                                      | 4. Testing by Constructed Cases                     | 86  |  |  |  |
|   |                                      | 5. Number Test Cases Required                       | 86  |  |  |  |
| ٧ | DEVELOPMENT OF DETECTION RATE MODELS |                                                     |     |  |  |  |
|   | A.                                   | The De-Eutrophication Process                       | 91  |  |  |  |
|   |                                      | 1. Maximum Likelihood Estimates of Parameters       | 91  |  |  |  |
|   |                                      | a. Estimate of MTTF                                 | 93  |  |  |  |
|   |                                      | b. Estimate of Purification Percentage              | 93  |  |  |  |
|   |                                      | c. Variance/Covariances of Estimates                | 94  |  |  |  |
|   |                                      | 2. Explanation and Development of Appendix II       | 96  |  |  |  |
|   | B.                                   | Geometric De-Eutrophication Fracess                 | 99  |  |  |  |
|   |                                      | 1. Maximum Likelihood Estimates of Parameters       | 99  |  |  |  |
|   |                                      | a. Estimate of MTTF                                 | 100 |  |  |  |
|   |                                      | b. Estimate of Purification Percent                 | 100 |  |  |  |
|   |                                      | c. Variance/Covariance of Estimates                 | 100 |  |  |  |

# TABLE OF CONTENTS (continued)

|          |     | 2. Explanation of Appendix III                       | 102 |
|----------|-----|------------------------------------------------------|-----|
|          |     | C. Hybrid Geometric/Poisson Process                  | 103 |
|          |     | 1. Maximum Likelihood Estimates of Parameters        | 103 |
|          |     | 2. Sample Application                                | 109 |
| VI       |     | A PRIORI RELIABILITY                                 | 107 |
|          |     | REFERENCES                                           | 109 |
| Appendix | I   | PROGRAM TESTING SYSTEM                               | 113 |
| Appendix | 11  | TABLES FOR THE DE-EUTROPHICATION PROCESS             | 123 |
| Appendix | III | FORMULAS FOR THE GEOMETRIC DE-EUTROPHICATION PROCESS | 193 |

## LIST OF FIGURES

| 1.  | Code and Diagram for "Test Scores" Program                   | 1  |
|-----|--------------------------------------------------------------|----|
| 2.  | Connection Matrix and Algebra                                | 1: |
| 3.  | Triangular Density                                           | 2  |
| 4.  | De-Eutrophication Process                                    | 2  |
| 5.  | Geometric De-Eutrophication Process                          | 3  |
| 6.  | Combination Geometric De-Eutrophication and Poisson Model    | 3  |
| 7.  | T000 Subroutine Coding                                       | 4  |
| 8.  | Paths Exercised by First Test Case from Uniform Distribution | 5  |
| 9.  | Ten-Sample Uniform Distribution Segment Usage                | 5  |
| 10. | "Pruned" Flow Diagram and Usage                              | 6  |
| 11. | Listing of CURVTR Substructure                               | 8  |
| 12. | Segmented CURVTR Program                                     | 8  |
| 13. | Segments Driven by Random Inputs                             | 8  |
| 14. | Constructed Case I                                           | 8  |
| 15. | Constructed Case II                                          | 8  |

## LIST OF TABLES

| I    | Triangular Distribution Results | 4   |
|------|---------------------------------|-----|
| II   | Uniform Distribution Results    | 4:  |
| III  | T000 Segments                   | 40  |
| IV   | T000 Segments Usage (Case I)    | 5   |
| ٧    | Unexercised Segments            | 56  |
| VI   | ZPOLYR Segment Usage (Run #1)   | 66  |
| VII  | ZPOLYR Segment Usage (Run #2)   | 66  |
| VIII | ZPOLYR Segment Usage (Rune #4)  | 68  |
| X    | ZPOLYR Segment Usage (Run #5)   | 68  |
| X    | ZPOLYR Segment Usage (Run #6)   | 69  |
| XI   | Sample Table                    | 97  |
| XII  | Failure Rate Data               | 105 |

#### I. INTRODUCTION AND OVERVIEW

## A. Introduction

A reasonable categorization of the broad study of software reliability corresponds in many respects, to one of the commonly employed categorizations of the phases of development which software packages undergo. Corresponding to the design phase of software development, there is an aspect of the reliability problem dealing with estimation of the error content before (a priori) any actual running of the program has taken place. The test phase of software development can be associated with reliability estimates which are determined during relatively exhaustive testing by measures of the internal operations of single modules; some measure of the complexity of the package and of the response to randomly chosen inputs are useful in developing reliability estimates. The third phase of software development can go under the name of user-phase; this phase would include any significant testing of sets of modules (ordinarily this makes up part of what is called integration); this phase would employ the time record of the occurrences of errors, for the primary data for system level reliability estimation.

Data relating to the third category was the object of study by MDAC during the period prior to the contract interval (1971-1973) and as a result of this effort, the first parametric model for the software debugging process was developed and reported in the literature (Reference 1). This model required no knowledge of the actual coding, the flow charting, or the mode of operation, and, indeed, treated the software package as a "blackbox".

The first category, that of developing a priori estimates, vis a vis the a posteriori estimates of the previous work, was the principal subject of the work performed during the first year of the contract. In order to develop estimates of that type it was necessary to "look inside the box," and to develop efficient means of describing the information. The resultant

study resulted in a directed graph/connection matrix representation for the static and dynamic analyses of the test programs.

Input test cases, formed by means of random number generators, were employed to drive the programs in different ways.

As an outgrowth of this research, particularly that which developed the framework for computation of a priori or "operational" software reliability estimates, a need for deeper investigations into test case selection was noted and redirection in that area was carried out during the second phase.

As an aid to determining the point in testing where a change should be made from tests based on random number inputs, to tests constructed on the basis of the code itself, an algorithm was developed which permits evaluation of the "yield" which can be gained by additional testing.

## B. Objectives and Task Descriptions

The original plan for the research redirected in ways subsequently described, was given in terms of three tasks of the first (of three) phase(s):

Task I - to investigate the existence of relations between the number and range of input variables and software reliability, and to establish a relationship between the gross measures (such as program size, number of branching statements) of a software package and its reliability. A program testing translator will be used as a tool to analyze frequency of execution of branches and instructions.

Task II - to develop an algorithm representing relationships between variables and the software reliability - extrapolation techniques will be developed which will relate the counts obtained over a given collection of subsets or samples to the counts which would be obtained over larger sets.

Task III - to generalize the above algorithm. This algorithm will be tested on a representative sample of FORTRAN programs and adjusted accordingly.

## C. Course of the Research Program

First, it is well to note that, with respect to the problem of relating reliability to measures of the internal parameters of a program, that two separate studies by other groups, (one by TRW, Reference [2] and one by Lulejian and Associates, Reference [3],concluded that out of 22 quantitative measures of programs (and their programmers) there was only one case which showed a significant correlation. This significant correlation was between reliability and program size. Only the contrary would be surprising - more opportunities for errors should be accompanied by more errors. These studies employed relatively large real time programs (command and control) and as such they dealt with programs which are quite relevant to this study. Because of the essentially negative results which were obtained, there seemed to be little use in pursuing similar lines in our investigation.

The initial work focused on the instrumentation (insertion of monitoring instructions) of programs so that their dynamic (performance) rather than their static (structured) aspects could be examined. The investigation of the dynamic or operational characteristics turned out to be important: in the final analysis it is relatively unimportant how complex a program appears to be, it matters more what the program actually does. The instrumentation was accomplished by use of a MDAC-developed software tool called the Program Testing Translator (PTT). This tool described in some detail in Section of this report (and in complete detail by L. Stucki in Reference (4)), provides the user with a means of establishing the usage of each instruction and each branch of predicates of FORTRAN programs. In addition, the range of values which the program variables take as a result of a particular value of the input variable (which can be considered to be a vector, since in most programs several input variables are employed) was recorded for each segment containing an assignment instruction, the equivalent of a program function.

Any particular point of the input data set, more commonly called the domain of the input variable, will cause the associated program to sequence its instructions in a particular way. When the program has been instrumented with the Program Testing Translator, data relating to the path of computation and values achieved by computed variables can be composed. An augmentation

of the PTT permits automatic generation of program segments and this materially aided the analysis.

After the initial experiments were made with random numbers with two programs, there were several factors which led the investigation to open up new avenues of research. In the first place, a review of the International Mathematical Subroutine Library (IMSL), which had been selected as the set of programs for the investigation, revealed that most of the inputs to these programs cannot realistically be assumed to be governed by probability laws; the degree of a polynomial and the order of a matrix are not random for example, and even when the variables can be considered random, such as the coefficients in a polynomial root locator, the law which fits the sampling of these numbers (by the universe of all users) will not be known. The alternative of analyzing real-time programs requires special knowledge of special languages and special machines and so requires a number of highly skilled programmers.

In addition, the measurement of reliability of a program in the sense used in the task description, depends on data which, it was assumed would be recorded either by the users of the routines of the library (it was assumed they would record anomalies as they were discovered), or, alternatively, by a single user or small set of users, who could pervasively test the programs by means of random number generators and special tests until a significant set of errors were discovered. Neither of these turn out to be practical alternatives.

On the one hand, the subroutines from the software library which are used, are generally in linkage with others, and the "input" data to the routine usually is totally transparent to the programmer, it comes as a result of prior computations. Of course, it is possible to gain snapshots of this inputs, but the price is considerable coding time by systems-level programmers; it is unlikely that this overhead can be justified.

On the other side, it becomes apparent, with experience, that the input per se is less a determinant of the degree of testing than such things as the structure of the program or the amount of protection inserted to guard against certain, perhaps rarely occurring, events. Furthermore, it is likely that a user who did not participate in the design of the program

will be essentially naive with respect to the occurrence of an actual error and with respect to the location of the "sensitive" portions to test with well-chosen input data.

Because of the factors cited above, a fresh approach was taken; one which, to begin with, was essentially exploratory. The major aim in this approach was to develop an a priori measure of reliability using input data which is assumed to be randomly chosen by a known law or set of laws, and the length and connectivity of the segments (the programs building blocks) which the random data drive. An important feature of this type of testing is that the dynamic (performance) rather than the static (structural) aspects are emphasized. It is important also to note that the output of the program is not examined critically and consequently most software errors which do occur will not ordinarily be detected. The a priori reliability is developed on the basis of the way the program is used and a "universal" a priori probability for the rate of occurrence of coding errors.

This type of measure would be valuable in some real time programs which depend on sensor measurements for some or all of its data. Gyroscopes, telescopes, accelerometers, and their pickoffs, resolvers, and similar devices all have random components in their associated measurements; furthermore, the systematic portion of the measurement in many cases may be considered in a larger sense as having a probability law governing their choice - initial vector heading at alignment time might, for example, be any value (uniformly) on the circle.

As this study developed, it became clear that the use of random numbers as input can serve very well toward achieving comprehensive testing of almost any program. This investigation then picked up earlier work, started during the exploratory phase, and simple measures of the degree to which random numbers can test a program were developed. Following this, there was an attempt made to give a quantitative measure to the eventual level of testing which could be achieved by random number inputs. This resulted in an algorithm which was even more useful than the one which was sought: it provided an estimate of the total number of execution sequences (realizable logical paths) which can be achieved by random testing. The application of this algorithm on two programs produced results which were surprising

in the respect that the numbers produced were orders of magnitude smaller than those propounded by the "conventional myth". Further, the results were consistent in the sense that application of the algorithm to a portion, an initial segment, of data produced estimates which the later realization tended to support.

## D. Publications and Presentations

The following papers which were sponsored entirely, or in part, by the contract are listed below. In most cases these were personally presented to a professional audience and published in proceddings of the respective meetings.

- "Predictions of Software Reliability During Debugging", 1975
   Proc. Annual Reliability and Maintainability Symposium, Washington,
   D.C., January 1975.
- "Estimation of A-Priori Software Reliability", Proceedings of Computer Science and Statistics: 8th Annual Symposium on the Interface, Los Angeles, February 1975.
- "Software Reliability Predictions", International Federation of Automatic Control 6th World Triennial Congress, Boston/Cambridge, August, 1975.
- "Probability-Based Models for the Failures During Burn-In", Joint National Meeting ORSA/TIMS, Las Vegas, November 1975.
- "A Comparison of Software Error Rate Models", Fourth Texas Conference on Computing Systems, Austin, Texas, November 1975.
- 6. "A Failure Rate Model for Burn-In through Steady State", Joint National Meeting of ORSA/TIMS, Philadelphia, March 1976.

In addition, the manuscript for a book to be published by Academic Press has been prepared and is in the preliminary stages. This book, "Probability-Based Models for Software Reliability Analysis", authored by P. Moranda and Z. Jelinski, contains much material developed under the AFOSR contract and described herein. It is not current in the respect that several new and significant results produced under the contract are not included.

#### II. PRELIMINARY TECHNICAL DISCUSSION

## A. Framework of Representation

In the customary renditions of program flowcharts, each (rectangular) block represents either a simple instruction, or a group of operations, with a single output, while each diamond represents a single explicit or implied predicate which has two or more output options. Connecting the blocks and diamonds of a flowchart, are directed lines denoted, and referred to, as arrows. These lines represent the options possible and are called flow-of-control arrows. These fundamental building blocks are adequate for the static or structural description of a program, but are not convenient for representing its operational aspects. The basic operations are better defined in terms of some simple program components. These lend themselves to mathematical descriptions and they motivate the choice for the "atomic" or fundamental unit of description.

First, it is noted that an instruction in a program, while easy to define (statically) in "machine language", becomes rather difficult in most of the higher order languages. Thus a "clear and add" instruction, in machine language, causes a register (accumulator) to be set to zero and another register to be transferred to the cleared register and nothing more.

Once the final bit is transferred, the machine waits until the next instruction, which is generally started by a timing or clock pulse. On the other hand, the concept of an instruction in the higher languages is less clear. An "instruction" in ALGOL, for example, is either a statement or a declaration, and in either case is used to indicate required compiler (as against computer) actions. As a result of compiler action, an object program with actual instructions, is produced, and it is in proper form for computer execution.

Thus, there is a spectrum of statements in that language: the simplest type is an assignment, such as X:=1; while one of the more complex statements is, begin ... end, which group statements together to form compound statements (and blocks).

In any higher order language where grouping is required, there is a need for so-called delimiters (explicit or implicit) which can be used as boundaries for the steps, and form the building blocks of a program. A similar device is required in the description of dynamic operations - a means of grouping instructions into fundamental operational units.

Generally, the linking of instructions can be represented by means of a Boolean indication, with the value 1 used where the instructions are or can be "contiguous", and 0 used to denote the fact that they are not connected. These Boolean values could be used as entries of a connection matrix whose row and columns are numbered to accord with an (arbitrary) numbering scheme for the steps. But a straightforward application in this manner, on the instruction level, would normally produce inordinately large and unmanageable connection matrices. Some of the redundant information in such a matrix could be eliminated if certain agreements can be made: for example, if step 1 is always followed in sequence by steps 2, 3, and 4 and there is not opportunity for branching until step 4 (at least), then steps 1 through 4 can be merged or combined, and three of the rows and columns of the connector matrix could be eliminated. This reduction in redundancy is an additional reason for choosing groups of instructions for the description.

Because certain instructions or statements have more than one output(such as i6...then...else) there is a need to devise a convention which will permit identification of each of the exits. If statement A is a single-output statement and it connects to statement B which has multiple outputs, the notation [A,B), which is "closed" on the left and "open" on the right, is meant to imply that A is executed and control is passed to (or toward) B, but that B is not executed, but it is next in line. If B is a two-output instruction and connects to L1 and L2, then both [B,L1) and [B,L2) are used to describe the optional branches which can be taken.

The procedure which has been described can be so far, by a flow diagram of a very simple program. In Figure 1 is a combination of a code listing on the right and a flow diagram on the left. Numbers refer to the instructions listed. The program is designed to process a sequence (one or more) of

lists, with each list consisting of "test scores" augmented by the number -1 (which is not a test score); the last list is further augmented with a -2 (for HALT purposes). The program tallies the number of scores within each list which are at least as large as 70 (passing), and also tallies the total number of passing scores within all lists (the Grand Sum).

To continue with the description, it will be seen in Figure 1 that the first connection to a branching instruction is made at instruction number 3. From 3 the branch taken is determined by the predicate (X=-2) and how the input to 3 (carried out of 2) values it (true or false). Thus, instruction number 3 is connected to 14 and to 4, as potential (operating) successors to 3. In the same way, 5 as a branching statement connects to 6 and 10.

A variation of the technique which is usually employed, characterized by connecting "nodes" (representing sets of instructions) is proposed here. Emphasis in this variation is on the branches which emanate or terminate with branching instructions, and, in fact, the fundamental or "atomic" element in the representation of a program is taken to be a <u>segment</u> or string of instructions between two branching instructions. More precisely a segment is: a sequence of instructions starting with either a START, or a branching instruction, and ending (but not inclusively) with the first subsequent branching instruction, or a HALT, in which particular case the segment is considered to include the instruction which ends it.

As an example of the way segments are developed, the flow diagram in Figure 1 is analyzed:

 $S_1 = [1,2,3)$ 

 $S_2 = [3,14,15]$ 

 $S_3 = [3,4,5)$ 

 $S_4 = [5,10,11,12,13,3)$ 

 $S_5 = [5,6)$ 

 $S_6 = [6,8,9,5)$ 

 $S_7 = [6,7,8,9,5)$ 

The distinction between brackets and parentheses is important and has been noted. The only cases where square brackets are used on the right are those in which the last instruction listed is a HALT (number 15 in the example).

Any particular set of values (for the coordinates) of the input vector (point in the input space), causes exactly one sequence of operations to be executed. These segments linked together form a <u>logical path</u> through the program.

It is useful to modify the term <u>logical path</u> with the word <u>realizable</u> when input data can cause it. Before data is entered, <u>possible</u> (<u>or feasible</u>) <u>logical paths</u> can be formed by any concatenation of contiguous segments which have the START-segment first and end with a HALT-segment. In the case a program has self-contiguous segments (loops) or one or more concatenations which join end-to-end, the number of (possible) repetitions of the joined segments is arbitrarily large - except where a predetermined number of traversals are specified in the program.

The following sequences of segments in the program of Figure 1 are illustrative of some possible or feasible logical paths:

The first path is of minimum possible length, linking, as it does, the START - and HALT - segments. The last two are interesting in that they exhaust the collection of segments.

In order to determine realizable logical paths, the documentation or "program writeup" must considered. In this simple case it is very easy to establish data which will realize the flows represented by the last two sequences of the above list. (It should be noted that insofar as testing to the instruction-level only one of these two need be driven but to obtain segment or branch-level testing, both need to be tested).



Figure 1. Test Scores Program and Flow Dingram

If for example the data sequence (stacked)

$$x = 35, -1, -2$$

is employed, the next to the last sequence of the above list describes the flow, and for the "stack"

$$x = 75, -1, -2$$

the last sequence describes the flow. The two stacks together provide an exhaustive test of the segments of the program.

Moreover, a single sequence 35, -1, 75, -1, -2 would also produce an exhaustive test of the segments with the sequence  $S_1S_3S_5S_6S_5S_7S_4S_2$ . While these do not exhaustively test the realizable logical paths (which, without further explicit restrictions, are infinite in number), it is well to note that the complete segment-testing partially accomplishes one of the major purposes of case selection, that of exercising all instructions so as to locate errors.

This limited form of testing brings up a very interesting and very obvious observation that is true for any program represented as a collection of segments: if a program consists of k segments, and every segment can be exercised by some data point, then only k data points are required to exhaustively test the program in the segment testing sense. This is of course very useful in the case that an interactive or communicative mode of testing is employed.

As an example of the way the segment representation might be used, the previously discussed simple program is used. Shown in Figure 2 is a connection matrix which is composed of Boolean 0's and 1's, with a 1 representing a connection from the segment numbered-by-the-column to the segment numbered-by-the-row. Thus the element in the 4th column and 2nd row has a Boolean 1 since the segment  $S_4$ , connects (or more properly can connect) with segment  $S_2$ , as shown in Figure 2.

The Boolean Matrix Algebra is clear and the essential rules are shown at the bottom of Figure 2. These rules are formed directly from the basic Boolean Arithmetic. As an illustration of the use of the algebra for constructive testing, the concept of "basis" or state vectors is employed.

|   |    | FROM |   |   |   |   |   |   |
|---|----|------|---|---|---|---|---|---|
|   |    | 1    | 2 | 3 | 4 | 5 | 6 | 7 |
|   | 1  | 0    | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 2  | 1    | 0 | 0 | 1 | 0 | 0 | 0 |
|   | 3  | 1    | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 4  | 0    | 0 | 1 | 0 | 0 | 1 | 1 |
|   | 5  | 0    | 0 | 1 | 0 | 0 | 1 | 1 |
|   | 6  | 0    | 0 | 0 | 0 | 1 | 0 | 0 |
|   | .7 | 0    | 0 | 0 | 0 | 1 | 0 | 0 |

ALGEBRA

 $1 \oplus 1 = 1$   $0 \oplus 1 = 1$   $0 \oplus 0 = 0$   $1 \oplus 0 = 1$   $1 \otimes 1 = 1$   $1 \otimes 0 = 0$ 

CONNECTION MATRIX

STATE VECTORS

 $E_1 = (1, 0, 0, 0, 0, 0, 0, 0)^T$  $E_2 = (0, 1, 0, 0, 0, 0, 0)^T$ 

Figure 2. Connection Matrix and Algebra

There are as many state vectors as there are segments and they are denoted by  $E_1$ ,  $E_2$ ,..., $E_m$  where  $E_i$  is the transpose of a row array consisting of 0's, except for the ith position, which contains a 1. These vectors can be used as markers or tokens to represent the location of the computing operation at the "initial" computing time;  $E_3$  for example, could be used to show that at some arbitrarily chosen time, the site for computing is in segment 3. When  $E_3$  is multiplied by the connector matrix, C, the arithmetic shows that the vector  $\begin{bmatrix} 0,0,0,1,1,0,0 \end{bmatrix}^T$  results. This vector can be represented as the vector sum  $E_4+E_5$  and would represent the fact that in the first exit from  $E_3$ , the computing can be carried forward in either segment  $S_4$  or segment  $S_5$ .

(In an interactive mode this might be used as follows: if the data point which is used to "feed" the program has previously caused  $S_3$  and  $S_4$  to be exercised, the adaptive user, or tester, would search for a new area of the input data space, in an attempt to exercise segment  $S_5$  in some subsequent step in the testing process).

The connection matrix idea has been proposed in other applications, notably by F. E. Hohn and L. Shissler [5] in which it is applied to hardware switching circuits. The theory is well developed by H. G. Flegg in his book [6].

The algebra of Boolean matrices and vectors is exhaustively treated by Flegg, and, although there is a slight difference between the matrices which depict software and those that depict hardware (each hardware circuit node is generally considered to be connected to itself, while in software this is true only for certain kinds of loops), the algebras are not significantly different. The rules of multiplication and addition are the same, the basic associative and distributive laws hold and all of the ordinary matrix algebra holds.

Although the basic rules and many others which are introduced with the concepts of order, complementation, zero, and identity are easy to verify, the requirements for any of these more extensive rules are essentially non-existent. (Some 50 rules have been verified but have little promise in our applications). Of interest to software applications are some of the simple-to-describe techniques involving multiplication. One of these has been noted above where the state

vectors are "propagated." In a more interesting application, it is easy by matrix manipulation to find if there is an eventual link between a given segment and another in a program which has n segments. It is only necessary to "raise" the nxn matrix to the first n powers. The remote, or subtle, i.e., multi-step connection, if it exists, will be manifested by a Boolean 1 in the position corresponding to the 1st order connection between the two segments. As a matter of fact and interest if ordinary (real number) matrix multiplication is used instead of Boolean algebra, the number which occurs after, say, k multiplications represents the number of different paths that join the two segments in exactly k steps.

C. V. Ramamoorthy has developed the basic technique (using real numbers as well as Boolean symbols) to some very interesting results. In the majority of applications Ramamoorthy [7] employs the concept of a generating function from node i to node k. For a given connection matrix, C, the generating function is

$$G_{ik}(z) = \sum_{m=0}^{\infty} g_m z^m$$

where explicitly

$$G_{ik}(z) = (I-Cz)^{-1}$$

where I is the identity matrix and z is a dummy variable. Under the non-Boolean interpretation (i.e., real numbers) of the connection matrix, C, as an nxn matrix, the factor  $\mathbf{g}_{\mathbf{m}}$  represents the total number of ways of reaching node k from i in m-steps.

Although it should be stated at this point that the apparent promise of achieving useful results in studies of software has not been met, for reasons which are described later, it is well to note what can be done by developing the fundamental concept. Several important theorems, lemmas and observations, derive from the use of the generating function and its companion function, called the characteristic function |I-Cz|, where the vertical lines denote the determinant of the matrix I-Cz. (It is noted that this concept is used in ordinary matrix theory; the characteristic function determines the so-called eigenvalues of the matrix).

It is worth noting that the sophistication offered by the generating function does not seem to produce any result not otherwise obtained with as much facility by the connection matrix and Boolean operations as defined above. Nonetheless, a review of Ramamoorthy's findings are described in terms of the characteristic and generating functions.

One of the easily obtained results is that  $G_{SE}(z)$ , (S for start and E for end) is equal to zero if and only if there is no path linking S to E. If the coefficients  $g_m$  are accepted as the number of ways of reaching E from S this is clear: otherwise, the aforementioned technique employing powers of the connection matrix can be used.

Because a directed graph which has no single-step loops has zeros on the diagonal of the connector matrix, and, further, must have at least one of the matrix elements  $C_{\mu\nu}$  or  $C_{\nu\mu}$  (the symmetric-about the diagonal elements) equal to zero, the determinant |I-Cz| will be constant, so that the inverse matrix, which is formed by taking the quotient of cofactors of the matrix and this determinant, consists of polynomials of degree at most n. Thus,

$$G_{SE}(z) = \sum_{i=0}^{n} g_i z^i$$

for loop-less graphs. For the general case the characteristics function is a polynomial and  $G_{SE}(z)$  is an infinite "series". So the above shows that the largest exponent of the generating function is finite when there are no loops. The converse is also true since  $g_m$  will be non-zero if there are loops.

The concepts of a strongly connected, and maximally strongly connected graphs and subgraphs are due to Ramamoorthy [8]. A graph (or subgraph - one obtained from a given graph by taking a subset of its nodes and retaining all of the connections between these nodes and inserting no others) is strongly connected if and only if any node can be reached from any other. Maximal strongly connected (M.S.C.) subgraphs are defined with respect to particular nodes. For a given node, it is the largest strongly connected subgraph that contains that node. It is unique for a given node.

When both  $G_{SE}(z)$  and  $G_{ES}(z)$  are not equal to zero, the two nodes S and E belong to the same strongly connected subgraph, since they are mutually reachable.

An essential node with respect to  $G_{SE}(z)$  is defined to be one which is reachable from S and can reach E. Under the same conditions for  $G_{SE}(z)$  and  $G_{ES}(z)$  (i.e.,  $\neq$  0) it is true that any essential node w.r. to  $G_{SE}(z)$  is essential w.r. to  $G_{ES}(z)$ . (S and E are always (by definition) essential w.r. to  $G_{SE}(z)$ . This is so since any essential node on the "forward" path from S to E is either on a "reverse" path which is known to exist  $(G_{ES}(z)\neq 0)$  and is therefore essential to  $G_{ES}(z)$  or it can be linked first to E then to any one of the reverse paths to S.

Ramamoorthy uses these concepts and facts to develop means of analytically, i.e., by matrix manipulation, determining when a graph has structural flaws in the form of entrance but no exit, or redundant (i.e., not essential) nodes w.r. to S and E.

The criterion  $G_{SE}(z)\neq 0$  can be determined by forming a "reachability" matrix (with Boolean elements) by logical operations on the rows and columns of the connector matrix.

The major structural theorem is that a graph is strongly connected if and only if  $G_{i,j}(z)\neq 0$  for all nodes i and j.

Loops can be detected through use of the reachability matrix. (It is well to note that the Boolean-element connector matrix can be used to achieve this: by examining the main diagonal of the powers of the connection matrix. For that matrix there is no need to go beyond the nth power of an nxn matrix).

The presence of strongly connected subgraph is made manifest by the presence of all 1's (Boolean) in the matrix formed by taking the logical conjunct of the reachability matrix and its transpose. A given directed graph can be partitioned into separate maximal strongly connected subgraphs, and these could conceivably serve as aids to determining isolated regions for testing.

As noted above, for program testing and for describing the operational sequence caused by data, this technique does not appear to be very useful, at least in the form which presently is employed to depict them. The reason for this is that all of the potential path segments must be used, and would be represented as arcs between the graph nodes. Hence while nodes may be connected

"topologically" there may be no logical or numerical way for them to be connected (as part of an execution sequence). It may be noted that the use of this technique in hardware circuitry where "hard" connections exist between points, has been described by W. Mayeda and C. V. Ramamoorthy [9]. Nonetheless, this technique is useful in eliminating flaws, as noted before, and it probably will have use in testing of programs in an interactive mode. It would be necessary in that case for the user to employ the numerical values of the program variables which result during a particular execution sequence, so as to direct the computation along his chosen paths. But his choice of these paths could be materially aided by the isolation of maximally strongly connected subgraphs. This would be the case even if the arcs of the directed graph represent only potential program subpaths.

It has been suggested by M. Lipow [10], that the mathematical subfield of Lattice Theory may have application in the analysis of programs. In particular, it is proposed that the number of test cases required for exhaustive testing can be determined by application of theorem due to R. P. Dilworth [11].

In the suggested application the entities which have been defined earlier as segments serve as nodes of a directed graph, while the arcs of the graphs represent transfers between segments.

Using the order relation (x - y) between two elements, x and y, to mean y can be reached from x as defined in the earlier discussion; a program can be represented as a partially ordered set. Elements which are comparable can be put into chains linking together those that stand in the "forward reaching" relation. Mutually incomparable elements can be considered to comprise what is called an antichain. Execution sequences form chains from an initial node (starting segment) to the end node (halt segment). Dilworth showed that the smallest number of disjoint chains in a partially ordered set is equal to the largest number of mutually incomparable elements of the set. Lipow showed that the requirement that chains be disjoint, can be altered. He showed that the theorem is true if the chains are all maximal chains (i.e., like logical paths in software).

This fact, as with the Ramamoorthy (et.al.) results, is promising, but they cannot be applied as a direct measure of the number of realizable logical paths. The reason is as before stated, there is no way of knowing what potential paths actually are linked together until input data is employed to produce execution sequences.

## B. Analytical Background for Generation of Random Numbers

## 1. Introductory Comments

Described below are the specifications for a program or subroutine which will provide random numbers for use as input variables to programs under test. All variables are confined to a finite range so that truncation is required in order to use distributions such as the normal (Gaussian) or exponential, which have infinite ranges. In order to fit any distribution to the finite range it is necessary to do some initial processing in order that those computer programs which have been developed as standard commercially available routines can be used. The analysis required is described here. Appendix I contains a description of the program (in Section II, Test Case Preprocessor).

IMSL (International Mathematical and Statistical Libraries) subroutines exist for many probability laws including the beta, uniform, and normal laws discussed here. In order to develop numbers from an arbitrary range, meeting other requirements with respect to shape and moments it is necessary to develop relations which will preprocess and postprocess the data entering into or coming from these subroutines.

In the following sections such processing as is required for three distributions is given: the beta distribution, triangular distribution and the truncated normal.

#### 2. Beta Distribution

The routine for generating beta-distributed variables which is included in the IMSL package requires as input two parameters p and q which are required to be multiples of 1/2. The probability density function in terms of these parameters is given by the formula

$$F(x) = \frac{\Gamma(p+q)}{\Gamma(p)} \Gamma(q) x^{p-1} (1-x)^{q-1}$$
 (1)

on the interval  $0 \le x \le 1$ , and F(x) = 0 elsewhere.

A variable linearly related to the beta variable through the linear transformation

$$u = L + Rx$$

is also beta distributed. This is a convenient form to start with, since u can be assigned to an arbitrary interval by specifying the lower limit L, and the range R.

The following relations between the variables hold

$$E(u) = L + RE(x) \tag{2}$$

$$\sigma_{\mu}^2 = R^2 \sigma_{\chi}^2 \tag{3}$$

$$M = L + Rx_{m}$$
 (4)

where E is the expectation operator (or average),  $\sigma_x^2$  is the variance of x, M is the mode (location of the most likely u value) and  $x_m$  is the mode of x.

The relations (2), (3), and (4) can be solved to obtain the mean, variance, and mode of the standardized beta variable. The mean and variance of this variable whose density is given by (1) are

$$E(x) = \frac{p}{p+q} \tag{5}$$

$$\sigma_{X}^{2} = \frac{pq}{(p+q)^{2}(p+q+1)}$$
 (6)

The mode is

$$x_{m} = \frac{p-1}{p+q-2} \tag{7}$$

One of the difficulties with using the beta distribution is that arbitrary assignments to the mean, variance and mode cannot be made. Fortunately, there is, for this distribution, a wealth of experience developed (in the early 1960's) during the analytical background for the PERT technique.

Some of the early workers in PERT used two approximations that, while limiting the family somewhat, served well in the sense of producing realistic results: the standard deviation, in all cases, was chosen to be 1/6 of the range (R), and the average was taken to be 1/6 (L+4M+U), where L and U (U=L+R) are the lower and upper limits of the variable, and M is the "most likely" value.

Recapping, the process can be carried to the point of determining the parameters p and q by selecting L, R, and M, computing E(u) as E(u)=1/6 (L+4M+U), computing  $\sigma^2_u$  by taking 1/36 of the squared range (R<sup>2</sup>) and solving equations (2) and (3) for E(x) and  $\sigma^2_x$  (=1/36).

It is necessary to develop a solution to equations (5) and (6). To do so m<sub>1</sub> is used to replace E(x) and m<sub>2</sub> is used to replace  $\sigma_x^2$ , then

$$m_1 = \frac{p}{p+q}$$

$$m_2 = \frac{pq}{(p+q)^2(p+q+1)}$$

Put u=p+q and q=u-p then

$$m_1 = \frac{p}{u}$$

$$m_2 = \frac{p(u-p)}{u^2(u+1)}$$

and

$$m_2 = \frac{um_1(u-um_1)}{u^2(u+1)} = \frac{m_1(1-m_1)}{u+1}$$

SO

$$u = \frac{m_1(1-m_1)}{m_2} - 1$$
hence  $p = \frac{m_1}{m_2} (m_1(1-m_1)-m_2)$  (8)

and 
$$q = \frac{(1-m_1)}{m_2} (m_1(1-m_1)-m_2)$$
 (9)

This general solution can be specialized in the present case, since  $m_2=1/36$ 

$$p_s = m_1 (36m_1(1-m_1)-1)$$
 (8a)

and

$$q_s = (1-m_1)(36m_1(1-m_1)-1)$$
 (9a)

Since GGBET, the IMSL routine which provides random numbers under a beta probability law, requires p and q to be multiples of 1/2 the nearest lattice point to the computed (ps,qs) point should be taken.

## 3. Triangular Distribution

The general form for the triangular density is given in Figure 3

**CR118** 



Figure 3. Triangular Density

For a density, the area must be 1, so that

$$1/2$$
 (c-a) h=1  
or h =  $\frac{2}{C-a}$ 

In general,

Prob 
$$(t \le z) = \int_{a}^{z} f(x)dx$$
  $a \le z \le c$   
and in particular  $\int_{a}^{a} \frac{2}{c-a} \left(\frac{x-a}{b-a}\right)dx$   $a \le z \le b$ 

$$=\frac{2}{c-a} \cdot \frac{1}{b-a} \cdot \frac{(z-a)^2}{2} \quad a \le z \le b$$

and for z>b

Prob 
$$(t \le z) = \frac{b-a}{c-a} + \int_{a}^{z} \frac{2}{c-a} \frac{c-x}{c-b} dx$$
  
=  $\frac{b-a}{c-a} + \frac{2}{c-a} \frac{1}{c-b} \left[ \frac{(c-b)^2}{2} - \frac{(c-z)^2}{2} \right]$ 

Simplifying,

F(z) = 
$$\frac{1}{c-a} \frac{(z-a)^2}{b-a} = a \le z \le b$$
  
= 1-  $\frac{(c-z)^2}{(c-b)(c-a)} = b \le z \le c$ 

Using (F(z)) as the function relating the variables z and u, that is, for u=F(z)

it is known that generally

where  $p_{\mu}$  and  $p_{z}$  are densities for the variables at corresponding values, and

$$p_z = \frac{dF(z)}{dz}$$

$$p_{u} = \frac{p_{z}}{\frac{du}{dz}} = \frac{p_{z}}{p_{z}} = 1$$

so that u is uniform on F(a)=0 to F(b)=1.

Since F(z) is monotone, its inverse function exists and the variables u and z can be related through the inverse,

$$z=F^{-1}(u)$$
.

The inverse function is given by

$$z = a + \sqrt{(c-a)(b-a)u} \qquad \text{for } 0 \le u \le \frac{b-a}{c-a}$$
 (10)

= c- 
$$\sqrt{(c-b)(c-a)(1-u)}$$
 for  $\frac{b-a}{c-a} \le u \le 1$ . (10a)

In operation u is chosen on the range 0 to 1, tested as to whether it is less or greater than  $\frac{b-a}{c-a}$  and, depending on the result one or the other of the formulas is used to determine the Z variable, which is a triangularly distributed variable.

#### 4. Truncated Normal Distribution

As a result of the operation of the GGNOR, the IMSL subroutine for generating numbers used a normal probability law, N normal variables are produced, each of which has a mean value of zero and a standard deviation of unity.

The usual application is to convert the standard normal variable into one with a mean m and a standard deviation  $\sigma$ . This is done by multiplying the standard normal variable,  $x_n$ , by  $\sigma$  and adding m, that is

$$z = \sigma x_n + m$$

is a normal variate with mean m and standard deviation of o

For present purposes, it is desired that a truncated normal variable be produced. This can be done by specifying any interval along the real number line; however, for applications which are made in this study, the interval has the mean m as its midpoint. Thus, intervals of the form  $(m-k\sigma, m+k\sigma)$ , where k is any positive number, are employed.

This trunctated distribution is accomplished easily: since the program for generating the normal variables exists, it is somewhat inefficient, but mathematically correct to throw out those which are not in the range of the interval. In other words, the user takes the normal variables as they come, and eliminates those outside the range  $(m-k\sigma, m+k\sigma)$ . Usually, k will be chosen so that only a relative small proportion of the generated numbers are not used: for k=1.96, about 1 in 20 numbers are not used; and, for k=2.58, 1 in 100 are not used.

As a sample computation, suppose that a normal variable truncated to the real number range [a,b] is desired. It is necessary then to also specify the "amount" of truncation by specifying k - as indicated above k=1.96 will produce a set in which about 19 out of 20 occur in the truncation interval. For the analysis k is left open but would have to be specified as input data by the user. Since the normal is symmetric and, by the choice previously cited, the truncation interval is symmetric about the mean, then in terms formerly described

$$\frac{a+b}{2} = m$$
and
$$\sigma = \frac{b-a}{2k}.$$

Thus for a, b and k input, m and  $\sigma$  are produced. These are used to modify the subroutine-generated standard normal variables to the variate z previously

defined. The random numbers are further subjected to the truncation limits and eliminated or retained.

### C. Program Testing System (Overview)

The preliminary processing of the input data by PTS provides a set of FORTRAN-conformable data elements, maintaining the format which the program under test requires of the data.

In order to collect the necessary data from a selected computer program, it is necessary to "instrument" the program by insertion of transparent instructions which can collect information relevant to the operation of the program. The backbone instrumentation is provided by a McDonnell Douglas Astronautics Company-developed program called PET. This is described as part of Appendix I, which discusses the special program PTS (Program Testing System) developed for this study. The preprocessor of this program automatically generates a FORTRAN program to prepare data in the format required for the execution of the particular program under test.

An additional augmentation of the basic system consists in a segment postprocessor. This develops program segments from the listing, and subsequent to the running of a set of tests, prints tables describing the relative frequency of use of each segment.

The first post-processor report contains the FORTRAN source listing, followed by statement numbers which are assigned by PTS. Each executable FORTRAN statement is assigned a number. A logical IF statement is assigned two numbers, one for the IF portion, and one for the true branch, of the IF. This report allows the user to correlate the program segments with the actual source statements.

The second report describes the FORTRAN segments as defined by PTS. For each test case a cumulative number of times each segment was executed is shown. At the end of the report, the percentage of the segments that were executed for each case are printed.

The third PTS post-processor report consists in a list of the segments and the percentage of the cases that executed each segment. For instance, if a segment is exercised in 13 of 14 test cases, 93.33 would be printed.

The final report in the series is a summary of the segments that were not executed.

Manager and the State of State

# III DETECTION RATE MCDELS (PRELIMINARY)

Described in this section, in a preliminary way, are three detection rate models, two of these were initiated prior to the period of the contract, but were developed in directions which proved useful to the problem of estimation of the number of logical paths. That technique is illustrated in the next section under a description of the analysis of programs when driven by random numbers. A third model was developed at MDAC during the contract period and while the results have been presented to a national meeting of a professional society, there were no formal proceedings of that meeting published, and so the description is presented here. It is presented in an overview form here, and in a more detailed way in Section V which provides a comprehensive description of all three models.

In order to present the material in a manner which conforms to the earlier published work, all models are described as if they were failure or detection rate models with time as the independent variable. In the applications of these models to the major estimation problem described later, the independent variable is the trial number which "runs" like time, and detection corresponds to the finding of a segment or path not formerly exercised. The random nature of the input data makes each selection an "attempt" to find a new branch, where in the original context each unit of time corresponded to an "attempt" to det2ct a software error or anomaly.

# A. <u>De-Eutrophication Model</u>

The assumption of a uniform detection rate over a program's development period is unrealistic. But when viewed at a more microscopic level, uniformity may have its place: over periods of time between the detection of successive errors, the assumption of uniformity merely interprets the system as being one where any remnant error (or unexercised path in the current context) can occur at any time. The basic model describing the detection of software failures was proposed by Z. Jelinski and P.B. Moranda [12] is indicated in Figure 4. The





Figure 4. De-Eutrophication Process and Its Realization

detection rate at any time is assumed to be proportional to the current error content of the tested program. The initial error content is then denoted by N, and the proportionality constant is denoted by  $\emptyset$ ; the failure rate drops to  $(N-1)\emptyset$  after the first error is detected, and so forth. The step size represents one "errors worth" of contribution to the total.

A typical realization of such a process is depicted in the lower portion of the figure, the increasing time between errors is purposely indicated by the spacing. The term "de-eutrophication" would seem to be appropriate to describe such a random process. The data comprising the observables are the times between adjacent errors. These are denoted by  $X_1, X_2, \ldots, X_n$ .

#### B. Geometric De-Eutrophication Process

While the basic model presented in the preceding section of this report may have much appeal, the data obtained in real applications may not fit the underlying assumptions. There are those who believe that there are not a finite number of errors in a large real-time program: certainly this is so if there is an attempt to mirror in software all of the continuum of eventualities which occur in complex dynamic situations. Also, the assumption that all errors have the same likelihood of detection is sometimes an imperfect rendition of the real situation.

In a variation of the basic model, both of these are to a degree alleviated. In this variation, proposed by Moranda [13], the step representing the decrease in failure rate between adjacent intervals, (which are defined, as before, by the occurrence or detection of an error), is taken to be a geometrically varying amount. This is represented in Figure 5.

Here again, the times are random variables and are mutually statistically independent. The observables for use in the analysis are, as before, the time separation between adjacent errors.

# C. Hybrid Geometric Process

This model was described by Moranda [14] as a candidate for depicting the initial segment of hardware system testing. It covers the burn-in and steady state interval of time. The model also has applicability to the software process,



Figure 5. Geometric De-Eutrophication Process

producing estimates of the eventual MTTF, or in the more relevant context, the average number of trials to uncover a new segment.

The hybrid or composite model formed from the Geometric De-Eutrophication Model and a pure Poisson model, is depicted in Figure 6. The three parameters are: D, the initial term of the geometric progression; k, the ratio between successive terms; and 0, the parameter of the Poisson process.



Figure 6. Hybrid Geometric Process

#### IV ANALYSIS OF PROGRAMS

With the brief background provided in the preceding sections, a review of the results obtained in the application of the techniques to three programs can be described.

These programs are each driven initially by random number generators, subsequently each is analyzed as to the requirements on the input data for driving some of the still unexercised program segments. In some cases there are segments which cannot be exercised; these are identified.

The programs are discussed in the order in which they were studied. As a consequence the presentations are not the same. The first program is discussed at greatest length, although the most significant techniques are discussed in the description of the second program and its test results.

#### A. Lehmer Root-Solver

1. Description of the Root-Solving Method

The first program analyzed is a general purpose polynomial root solver based on the so-called Lehmer method.

This method, described by D. H. Lehmer in JACM [15], is basically a search process consisting of sequences of overlapping circles and annuli with decreasing radii in the complex plane. While the procedure is not a topic vital to the understanding to the testing process, it is well to describe it in some detail so that the discussion of various points which are made here will be clearer.

For a polynomial f(z), with complex coefficients, rings of the form

R < |z| < 2R

are formed. If, as it may be assumed, the polynomial does not have zero as a

root,  $f(0) \neq 0$ , the process of doubling or halfing the radius will eventually result in an annulus which has no zeros inside the inner ring and one or more inside the outer ring. A basic algorithm determines when a given circle contains one or more roots of the polynomial. The so-found and conditioned ring can be covered by 8 overlapping circles, each with radius  $\frac{5}{6}R$ , and with centers at  $\frac{5}{3}R(\exp[\frac{2\pi i k}{8}])$  for  $k=0,1,2,\ldots,7$ . One of these must contain at least one root. If taken in sequence, the first one which contains a root, as determined by the test algorithm mentioned above and described more fully later, is subjected to further examination. Because of the overlap, this root (or roots) may fall outside of the original annulus; if so, the procedure of successive encircling is carried out on that root until the value of the root is found, and then the procedure is restarted with the original sequence of circles operating on the reduced polynomial. (Since all roots are finite, the process of diverging away from the main focus of the search cannot continue without end).

With the center of the circle which is (first) known to contain a root, a new annulus of the form

$$R_1 < |z-\alpha_1| < 2R_1$$

(actually,  $R_1 = \frac{5}{6} R 2^{-\theta}$  where  $\theta$  is a positive integer) is used. This annulus is covered by 8 circles of smaller radius and the first one containing a root is selected. In this way, a sequence of circles is constructed whose radii form a convergent geometric (null) sequence, and the root can be found to any desired accuracy.

Fundamental to the procedure is an algorithm which establishes whether or not the interior of the circle

has a root of the polynomial equation f(z)=0.

By a simple linear transformation, the given circle can be transformed to the unit circle, and, with the notation  $g(z)=f(\rho z+c)$ , the root location decision process can be carried out starting with the unit circle and using g(z)=0 as the canonical polynomial equation.

The linear combination

$$T(g(z)) = \overline{a}_0 g(z) - a_n z^n \overline{g} (\overline{z}^{-1})$$

is the fundamental device for producing the answer to the question of whether the unit circle contains a root of g.

T(g(z)) is a polynomial which, by construction, has no  $z^n$  term, and is therefor of degree lower than n. The constant term of T(g(z)) is

$$T(g(0)) = |a_0|^2 - |a_n|^2$$

If this is different from zero then T(g(z)) (has no zero root) is a polynomial on which the linear combination T can be applied, as before.

Such a process can be continued through the sequence T(g),  $T^2(g)$ , ...,  $T^k(g)$  where  $T^k(g(0))$  is identically zero. This is so since the degree of the polynomials in the sequence decreases under each application of T.

With this as background, the following fundamental theorem can be stated:

Let g (z) have no zero on the unit circle. If, for some h>0,  $T^h(g(0))<0$ , then g has at least one root inside of the unit circle. On the other hand, if  $T^i(g(0))>0$  for all  $0\le i< k$  and  $T^k(g(0))$  is constant, then no root of g lies inside the unit circle.

This theorem is proved by the use of four lemmas, two of which are the Cauchy Integral Theorem, and the Theorem of Rouche; the other two have to de exclusively with polynomials and are interesting in their own right.

The first of these is

Lemma: For P and Q polynomials such that |P(z)| < |Q(z)| on the unit circle, then Q and P+Q have the same number of roots inside the unit circle.

The second lemma is:

Lemma: Let  $\emptyset$  be a polynomial of degree d with no root on the unit circle and m roots inside. If  $T(\emptyset(0))\neq 0$  then  $T(\emptyset)$  has no root on the unit circle and has m or d-m roots inside according as  $T(\emptyset(0))$  is positive or negative.

A useful fact is developed in a second theorem:

Theorem. The previous theorem is true even if g(z) has a zero on the unit circle.

An example from Lehmer's paper can be used to clarify the procedure

For

$$g(z) = -8z^3 - 14z^2 + 3z + 9$$

the function  $g^*(z) = z^n \overline{g}(\overline{z}^{-1})$  is

$$g*(z) = -8 - 14z + 3z^2 + 9z^3$$

so that

$$T(g(z)) = -6z^2 - 5z + 1$$

Hence

With reapplication of the procedure to the polynomial

$$g_1(z) = T(g(z)),$$

there results the function

$$g_1^*(z) = -6-5z + z^2$$

and

$$T^2(g) = -35z - 35$$

Hence

$$T^2(g(0)) < 0$$

and so by the theorem g has a root inside the unit circle.

To show the use of the annuli, the original polynomial is transformed by replacing z by  $\frac{z}{2}$ . Then, after eliminating the common factor:

$$g'(z) = -2z^3 - 7z^2 + 3z + 18.$$

Application of the T-transformation results in the sequence

$$T(g'(0)) = 320$$

$$T^2(g'(0)) = 880$$

$$T^3(g'(0)) = 391$$

and  $T^{i}(g'(0))$  are all positive and there are no roots of g'(z)=0 inside the unit circle. Thus, for the original polynomial, there are no roots inside the circle  $|z|=\frac{1}{2}$ . Thus, it can be stated that the original polynomial equation has one or more roots in the annulus

$$\frac{1}{2} < |z| < |z|$$

but none inside

$$|z| = \frac{1}{2}$$

Actually, the roots of g(z)=0 are 3/4, -1, and -3/2, as can be verified by substitution.

## 2. Lehmer Program Description

The program which employs this algorithm is coded in FORTRAN, and consists of three major subroutines. The first, denoted LEHMER, maintains the main stream of the development, forming the circles and annuli on the complex plane and testing the criteria for continuing the search. This routine uses the other two subroutines for the repetitive operations: the first, T000, is used to compute the coefficients of the linear combination T(g(z)), and evaluate the simpler combinations, such as T(g(0)); the second, S000, is essentially a polynomial evaluation routine, taking the coefficients of the polynomial f(z) (or T(g(z))) and evaluating them at particular points.

The coding for subroutine T000 is listed in a later figure (see Figure 7). The description of this program in the computing manual is given below.

#### LEHMER

Double Precision Polynomial Root finder SUBROUTINE

a. <u>Description</u> - This subroutine subprogram finds all the real or complex roots of a polynomial with real or complex coefficients.

- b. <u>Use</u> CALL LEHMER (ar, ai, n, rr, ri, er, ei, r, z, i, br, bi, cr, ci, qr, qi, dr, di, tq) where:
  - n is an INTEGER variable. This variable is the degree of the polynomial.
  - is a DOUBLE PRECISION array dimensioned n+1.

    The elements of this array are the real parts of the polynomial coefficients beginning with the constant term.
  - is a DOUBLE PRECISION array dimensioned n+1.

    The elements of this array are the imaginary parts of the polynomial coefficients beginning with the constant term.
  - r is a DOUBLE PRECISION variable. If the magnitude of the evaluation check is less then r, the root is acceptable. If r is not in the range  $10^{-13} \le r \le 10^{-5}$ , then is used.
  - z is a DOUBLE PRECISION variable. If the magnitude of the difference between two consecutive approximations to the root is less than z, then the root is acceptable. If z is not in the range  $10^{15} \le z \le 10^{-7}$ , then  $10^{-9}$  is used.
  - i is an INTEGER variable. If i=0, complex conjugates of roots are found when all of the polynomial coefficients are real. If i=1 then no complex conjugates are found.
  - br, bi, cr, ci, dr, di, qr, qi, tq
     are DOUBLE PRECISION arrays dimensioned n+1.
     These arrays are used as working storage.
  - rr is a DOUBLE PRECISION ARRAY DIMENSIONED n.
    The elements of this array are the real
    parts of the complex roots.

- ri is a DOUBLE PRECISION array dimensioned n.

  The elements of this array are the imaginary parts of the complex roots.
- er is a DOUBLE PRECISION array dimensioned n. The k<sup>th</sup> element of this array is the real part of the polynomial evaluated at the k<sup>th</sup> root.
- ei is a DOUBLE PRECISION array dimensioned n.

  The k<sup>th</sup> element of this array is the imaginary part of the polynomial evaluated at the k<sup>th</sup> root.
- c. <u>Support Level</u> Supported by Programming Systems and Support Branch of Information Processing Systems.
- d. Language Used FORTRAN.
- e. Availability On FORTRAN library.
- f. Extent 64148 words.
- g. Timing Not available.

There are three programmer-specified options: an evaluation check, in which f(z) evaluated at the root,  $z_i$ , is subject to the test  $|f(z_i)| < r$ ; a convergence circle check in which successive approximations to the root are compared to an assigned value zeta; and a short-cut which employs the conjugate of a found root in case of a real polynomial.

3. Analysis of PTT-Segment Data

This program, when instrumented with the Program Testing Translator results in 406 PTT-segments, which include segments which are terminated not only by branching statements, but by any label; thus, a GO TO (LABEL) would be the terminating instruction in a PTT-segment, while it would not be in the segments as defined earlier. These PTT-segments are useful as they stand, since they provide usage information directly, i.e., without a second processing of the instrumented program. In the later more detailed work, these PTT-segments were used to develop the longer segments for the TOOO and SOOO subroutines. This

resulting composition resulted in 94 segments for the TOOO subroutine, made up from 195 PTT-segments. The SOOO subroutine was composed into 23 segments from 61 PTT-segments.

Much of the early work, however, was done using the PTT-segments since the statistics which were developed automatically were referenced to those segments. In the initial runs triangular, uniform, and beta distributions (defined in Section II) were used.

Described first is a typical result. Polynomials of degree 4 were formed by random selection of their coefficients from the interval [10<sup>-14</sup>, 10<sup>14</sup>] using a triangular probability density function; the resulting number for each coefficient was assigned a positive or negative sign on a 50-50 random basis. A batch of 10 polynomials so formed were employed in this typical run.

The first case (of the 10 cases), with the randomly selected coefficients

$$a_0 = 1.427044 \times 10^{-4}$$
 $b_0 = -6.719286 \times 10^{-6}$ 
 $a_1 = 7.940723 \times 10^{-3}$ 
 $b_1 = -7.710267 \times 10^{0}$ 
 $a_2 = 4.145428 \times 10^{-6}$ 
 $b_2 = -7.922906 \times 10^{2}$ 
 $a_3 = -2.621762 \times 10^{-6}$ 
 $b_3 = -6.921374 \times 10^{-3}$ 
 $b_4 = -5.723998 \times 10^{+2}$ 

exercised 204 of the 406 PTT-segments.

As a matter of interest, the resultant polynomial was found to have the roots

$$r_1 = -8.67 \times 10^{-8} + j (1.85 \times 10^{-6})$$
 $r_2 = -9.67 \times 10^{-2} + j (-1.308 \times 10^{-4})$ 
 $r_3 = -5.87 \times 10^{-2} + j (1.16)$ 
 $r_4 = .155 + j (-1.16)$ 

The degree of accuracy of these roots can be measured by the evaluation of the polynomial at the root (i.e.,  $f(r_1)$ ,  $f(r_2)$ , etc.) These are

$$f(r_1) = -3.9 \times 10^{-9} + j (-1.4 \times 10^{-8})$$

$$f(r_2) = -2.0 \times 10^{-9} + j (-1.5 \times 10^{-8})$$

$$f(r_3) = -2.0 \times 10^{-8} + j (-1.0 \times 10^{-6})$$

$$f(r_4) = 3.2 \times 10^{-7} + j (-9.6 \times 10^{-7})$$

These evaluations are useful for the typical user, and it is interesting to note that in 3 of the first 10 cases run (the batch which is the subject of the discussion), one or more of the roots were not located with what at first look, would be judged as satisfactory accuracy. As an example, one of the cases had a value of |f(r)| of  $10^9$ . On inspection, the coefficients in this case had magnitudes which with one exception, vary from large to very large  $(10^5, 10, 10^2, 10^7)$ . Moreover, one root has a magnitude of  $10^7$ , and some values in the evaluation of the polynomial at that root would be as large as  $10^{28}$  (the  $10^{28}$  term has coefficient of "about"  $10^{28}$ ). Viewed in this light the accuracy is less suspect and the program does well under the stress imposed by the large numbers used.

As noted before, the interest is not in the correctness of the programs being tested; however, the above discussion does describe some of the details which are descriptive of the program.

#### a. Aggregate Effects

A straightforward table of the cases shows the following sets of numbers exercised against the case number

Table I Triangular Distribution Results

| Case | No. of Segments<br>Exercised |
|------|------------------------------|
| 1    | 204                          |
| 2    | 199                          |
| 3    | 202                          |
| 4    | 205                          |
| 5    | 200                          |
| 6    | 197                          |
| 7    | 197                          |
| 8    | 201                          |
| 9    | 196                          |
| 10   | 208                          |
|      |                              |

The number not exercised by any of the test cases totaled 183. Thus, the program was exercised by at least one of the test cases in 223 out of 406, or a percentage of 54.9. Because the smallest number in the above table represents 49.2%, there is much overlap in the testing.

For purposes of illustrating the analysis described later, the following data is useful. It lists the trial number versus number of "new" PTT-segments exercised. The initial number if 204 as indicated in the above table. Even though there are fewer total in case 2, there are some branches (PTT-segments) taken during this execution which did not occur in the first case. The actual number is 6. The third case exercises 1 PTT-segment not exercised by either case 1 or 2. The fourth exercises 5 not previously exercised. The fifth exercises 1 new segment; 1 new segment is found in case 6; 3 in case 7; 1 in case 8; none in case 9, and 1 in case 10.

Data of this type are useful in analysis of the economic stop point. In the present instance, there is no analysis necessary and no reason to stop testing since, in all but one case there is a non-zero yield in the new cases found.

#### b. Distributional Effects

At this point, it is helpful to discuss the effects which different distributions have on the results. For this purpose, runs of size 10 which were made with each of the three distributions (uniform, beta, and triangular on 10<sup>14</sup> to 10<sup>14</sup> with random signs) can be used.

Intuitively, the beta and triangular distributions should furnish almost the same in-the-large results since they are shaped nearly the same. This indeed is found to be the case. None of the cases in the "beta-batch" exercised any segments not already included in the triangular. This is probably within the "noise" of samples of this size: ten additional cases of either distribution would probably show a similar comparison.

On the other hand, the triangular (and beta) differ considerably in shape from the uniform, and it is expected that there would be a difference in the results. This turns out to be the case, with 10 segments exercised by the 10-size "uniform-batch" not exercised by the same sized "triangular batch", and, for completeness, 2 in the latter batch not in the former.

The results of the ten cases for the uniform are summarized below in Table II.

Table II Uniform Distribution Sample

| Case | No. of Segments<br>Exercised |
|------|------------------------------|
| 1    | 213                          |
| 2    | 196                          |
| 3    | 202                          |
| 4    | 187                          |
| 5    | 197                          |
| 6    | 202                          |
| 7    | 188                          |
| 8    | 199                          |
| 9    | 197                          |
| 10   | 179                          |
|      |                              |

The number of segments exercised are nearly the same as those for the triangular distribution as shown in Table II. As noted, not only do the numbers correspond, the actual paths correspond. Of interest are cases 1 and 10; the latter has the fewest actual number of segments exercised, while the former exceeds (by five) the largest of the number found in any uniform case.

The section of code which is caused to be entered by the data of this test case is governed by a test of the magnitude of the coefficient of the highest degree of a "working" polynomial. The actual test is of the form

where  $c_m$  is the mth coefficient of a "working" polynomial and the B-labelled instruction is the entry into the section of code. The imaginary part of the working polynomial coefficient is

$$Im(c_m) = (Re(a_1))(Im(a_m)) - (I_m(a_1))(Re(a_m))$$

But for m=n-1, the actual data shows

$$Re(a_1) = 5.2 \times 10^{-9}$$

$$Im(a_{n-1}) = 3/4 \times 10^{-12}$$

$$Im(a_1) = -4.4 \times 10^{-13}$$

$$Re(a_{n-1}) = 3.1 \times 10^{-13}$$

so that the branch B is taken for this data.

Under a triangular or beta distribution (with symmetry about the midpoint of the interval) the values  $10^{-13}$  and  $10^{-12}$  which occur in this uniform case would indeed be data freaks.

The 10th case is of interest because it exercises only 179 PTT-segments. This is caused by the fact that some of the coefficients of the test case are very large  $(10^5, 10^5, 10^9, 10^6)$  for the first four coefficients). The test on the working polynomial (which always contains as one factor in each of four multiplications, either 8.9 x  $10^{11}$  or -2.1 x  $10^5$ ) is directed away from a particular area of code, represented by 14 PTT-segments.

These two cases illustrate the benefit of testing with the uniform distribution. It stresses the program in small samples in a way which could only be achieved by large samples from the triangular or beta distribution.

It is relevant and necessary in a complete description, to point out that in programs of the type studied here, there are a great many CALLS to subroutines with data generated by intermediate computations. There are, for example, 287 calls (in Case 10 of the uniform distribution) of the major subroutine T000. Thus, for a single random number (set) on the input, there is in this case a great proliferation of numbers with which to test the segments of the subroutines.

To show the essential difference here, a coarse look can be made at the segment numbers, which are, even for this program which has a very large number of GOTO instructions, correlated with the actual execution sequence. It is noted that the largest number of times any of the first 50 listed PTT-segments is exercised is 9, and this occurred in a DO-loop which was entered three times and iterated 3 times. The first large usage number (58) occurred at the instruction which called TOOO; the next significantly

large number occurred at an instruction which has 8 different (i.e., "gone to") entry paths. The point to be made is, that "early" in a program the distributional effects may be more pronounced than in later portions or in repeatedly called subroutines.

The degree of the buildup is clearly shown by noting that while there is only one entry to LEHMER, in the case at hand, the entry to T000 is made 308 times, and S000 is entered 406 times.

It is along the same line, that the following observation, which while obvious, is of practical value. It is a fact that the large sample runs by any distribution over the same range on the input domain will produce the "same" results (i.e., exercise, in total, the same program segment).

The purpose in using particular distributions is to reflect the "real" world and that was the original reason for choosing different distributions. This is of little relevance in the area of testing which is aimed at exercising the greatest number of program paths. On the other hand, it is well to note here, that particular distributions reflecting reality have use in developing a priori estimates of software reliability. This point is discussed in Section VI.

- 4. Analysis of Aggregated Segment Data
- a. Random Input Data

It is instructive to follow insofar as is possible a single input data case through the program. This has been done to the extent possible and the results are presented below.

First, it is noted that the trace through the entire program is extremely tedious and a more limited investigation is made, that being a trace through the subroutine TOOO. This is done with segments as defined in Section II, and requires chaining of some of the PTT-segments which were employed in the analysis above. The so-chained segments are listed in Table III and are obtained from the coding for the subroutine shown in Figure 7. A total of 94 segments are shown, and these are obtained from the 194 PTT-segments (and 155 instructions) in the TOOO subroutine. The analysis shows that TOOO is called 147 times by the LEHMER subroutine in Case I. The number

## Table III TOOO Segments

```
[78, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 383, 384)
T, :
       [384,385,386,387,388,389,286,287,383,384)
T2:
T3:
       (384,390)
Th:
       [390,391,392,294)
       [390,288,289,290,291,292,293,393)
T5:
T6:
       [294,297,298,299)
T7:
       [294,295,296,305)
       [299,285,286,287,383,384)
Tg:
To:
       [299,300)
       [393,394)
T10:
T11:
       [393,402)
       [305,297,298,299)
T12:
T13:
       [305,314)
Tal:
       [305,306)
       [300,303,304,285,286,287,383,384)
T15:
       [300,301,302,376,377]
T16:
T19:
       [394,395)
       [394,402)
T20:
       [402,344,345,346,347,410,411)
T21:
       [402,294)
T22:
       (314,315)
T23:
       [314,316,317,376,377]
Tok:
       [306,376,377]
T25:
       [306,307,308,309,328]
T26:
       [306,312,313,308,309,328)
T 27:
       [306,310,311,308,309,328)
T28:
       [395,396)
T29:
       [395,402)
T30:
       [396,397)
T31:
       (396,402)
T32:
       [411,412,413,414,415,345,346,347,410,411)
T33:
       (411,348)
Tal:
T37:
       (315,320,321,322)
       [315,318,319,377]
T38:
       [328,329)
T39:
       (328,333,334,335,336,337,338,339,340,403,404)
Tho:
```

```
[397,416,417,418,419,398,399)
T41:
       [397,420,421,422,423,424,425,426,427,398,399)
T42:
       [348,349,350)
T43:
       [348,356,357)
T44:
        [322,326,327,285,286,287,383,384)
T47:
        [322,323)
T48:
       [329,330)
T49:
       [329,331,332,376,377]
T<sub>50</sub>:
       [404,405,406,407,408,409,336,337,338,339,340,403,404)
T<sub>51</sub>:
       [404,341,342)
T<sub>52</sub>:
       [399,400)
T<sub>53</sub>:
       [399,401)
T54:
        [350,297,298,299)
T<sub>55</sub>:
       [350,351)
T<sub>56</sub>:
       [357,358)
T57:
T58A:
       [357,297,298,299)
       [357,364,365)
T58B:
T59:
       [323,376,377]
       [323,324,325,376,377]
T60:
       [323,325,376,377]
T61:
T62:
       [330,378)
       [330,376,377]
T63:
       [330,380,381,382,285,286,287,383,384)
T64:
       [342,393)
T65:
        [342,343,344,346,347,410,411)
T66:
       [460,358)
T67:
        [400,297,298,299,300]
T68:
        [400,364,365)
T69:
        (401,314)
T70:
        [401,297,298,299,300)
T71:
        [401,306)
T72:
        [351,354,355,297,298,299)
T73:
        [351,352,353,376,377]
T74:
T75:
        [358,359)
```

```
[358,360,361,376,377]
T76:
       [378,379)
T77:
       [378,376,377]
T78:
       [365,366,367,368,369,370,371)
T79:
       [365,372)
T80:
       [359,362,363)
T81:
       [359,318,319,377]
T82:
T83:
       [379,376,377]
       [379,380,381,382,285,286,287,383,384)
T84:
       [371,335,336,337,338,339,340,403,404)
T85:
T86:
       [371,372)
       [372,374,375,376,377]
T87:
       [372,373)
T88:
       [373,378)
T89:
       [373,376,377]
T90:
       [373,380,381,382,285,286,287,383,384)
T91:
       [363,376,377]
T92:
       [363,320,321,322)
T93:
```

```
SUBROUTINE TOOD (AREAL,QOODFL,N,TAU,S,ALPHAR,ALPHAI,M,11,112,
1BREAL,BINAG,CREAL,CINAG,QR ,QIMAG,TR)
DIMENSION AREAL(1),QOODFL(1),BREAL(1),BINAG(1),T(1)
CREAL(1),CINAG(1),QR (1),QINAG(1),TR(1)
DOUBLE PRECISION AREAL, QOODFL, BEAL, BINAG, CREAL
DOUBLE PRECISION TIMAG, QR QIMAG, TR T
DOUBLE PRECISION TO CINAG, QR QIMAG TR T
DOUBLE PRECISION TO COMBO TO TAU TEND TO THE TO T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GO TO 346
CONTINUE
TR(L)=(CREAL(1)**2+CIMAG(1)**2)-(CREAL(NL)**2-
1CIMAG(NL)**2)
GO TO 410
IF (DABS(TR(L))-TAU) 349,349,356
LT=LT+1
LT-LT+1
LT-LT+1
LT-LT+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           345
346
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           347
348
349
350
351
352
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LT=LT+1

IF (LT-5) 297,351,351

IF (IN) 354,352,354

T=32.000/729,000*T

GO TO 376

T=10.000*T

GO TO 297
      273
274
275
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
371
372
373
374
   276
277
278
279
280
281
282
283
284
285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 297
LT=0
IF (TR(L)) 358,297,364
IF (IN) 360,359,360
GO TO (362,362,318),KL
                                                                                                                                  LZ=0
MX=1
MY=1
                                                                                                                                  MQ=0
IN=11
KL=4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12=3
GO TO 376
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LZ-LZ+1

IF (LZ-20) 320,320,376

LZ-0

IF(L-N) 366,372,372

DO 368 I=1,JJ

BREAL(I)=CREAL(I)

BIMG(I)=CIMAG(I)

JI=JJ-1
                                                                                                                 KL-4
CALL SOOO (AREAL,QOOOFL,M,1,T,BREAL,BIMAG,
1ALPHAR,ALPHAI,VREAL,VIMAG,CREAL,CIMAG)
T1-(BREAL(1)=*2+BIMAG(1)**2)-(BREAL(M)**2+BIMAG(M)**2)
GO TO 383
NL-M
CREAL(1)=BREAL(1)
CIMAG(1)=BIMAG(1)
CREAL(ML)=BREAL(M)
GO TO 393
IF(DABS(T1)-TAU) 297,297,295
LS-0
   BIMG(I)=CIMAG(I)
J)=JJ-I
L=L+1
IF (L-M) 335,335,372
IF (IN) 374,373,374
GO TO (378,376,380),KL
12=4
GO TO 376
M=T
RETURN
IF (ALPHAL) 376,379,376
IF (ALPHAL) 376,380,376
T=2.000*T
KL=6
GO TO 285
CALL OVERFL(KOOOFX)
GO TO (385,390),KOOOFX
DO 387 I=I,M
BREAL(I)=BREAL(I)*10,00-10
BIMAG(I)=BIMAG(I)*10,00-10
MX=2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          JJ=JJ-1
                                                                                                                                  LS=0
GO TO 305
T=1.500*T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       T-1,500°T

LS-LS-1

IF (LS-5) 285,300,300

IF (IN) 303,301,303

T-22,000/729.000°T

GO TO 376

T-10,000°T

GO TO 285

IF (T1) 314,297,306

GO TO (376,376,376,307,310,312),KL

KL-1

MO-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MQ-0
GO TO 328
KL=2
GO TO 303
                                                                                                       KL-2
GO TO 308
KL-3
GO TO 308
IF (IN) 316,315,316
GO TO (320,320,320,320,320,318),KL
12-1
GO TO 376
W-500*T
GO TO 377
T-500*T
MO-MO+1
IF (M0-20) 326,326,323
GO TO (376,376,376,324,325,325),KL
T-32,00*T
GO TO 376
KL-5
GO TO 376
KL-5
GO TO 285
IF (N-1) 329,329,333
IF (IN) 331,330,331
GO TO (378,376,380),KL
12-2
J-3J
DO 339
J-N+1
L-2
J-3J
CKEAL(J)-(BREAL(J)-(BIMAG(J))*BIMAG(J))-(IMAG(J)-(BREAL(J)-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J)-(BIMAG(J))-(BIMAG(J))-(BIMAG(J))-(BIMAG(J)-(BIMAG(J))-(BIMAG(J)-(BIMAG(J))-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(J)-(BIMAG(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      BREAL (|| "BREAL (|| "10. UD-10 BIMAG(|| "BIMAG(|| "BIMA
   338
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       419
420
421
422
423
424
425
426
427
428
339
340
341
                                                                                                                               J=J-1
GO TO 403
NL=N+2-L
                                                                                                                                  GO TO (393,343),MY
```

Figure 7. T000 Subroutine Coding

of times each segment is exercised is listed in Table IV. There is an apparent law of conservation: any end-node of a segment with say N counts must link to start-nodes which total N counts (if there are no other linkings to those nodes). Thus,  $T_{10}$  with 85 counts and end-node No. 394 links to  $T_{19}$  with 85 and  $T_{20}$  with zero. This process becomes complex because of loops which exist, many of which are not at all obvious. Thus, many of the segments have more than one (apparent) lead-in path, making the balancing process somewhat difficult. Thus, the 440 count for segment  $T_{11}$  and the 85 for segment  $T_{10}$  arise from two sources, 221 from  $T_{5}$  and 304 from  $T_{65}$ .

It is not feasible to establish the program's execution sequence through this routine. To do so would require a trace from the start - that is, from the start in the LEHMER routine - through the 147 CALLS of this routine, and this is manifestly impractical, and very likely impossible from the aggregate data alone.

However, potential paths can be formed. In some cases, actual partial paths can be inferred, but, in other cases, no rescue is possible.

Figure 8 shows the paths which were exercised in Case 1 of the uniform sample. It presents a good status keeper for the test cases. Of the 93 segments which are included in T000, the case which was selected, exercised 50 segments (the figure 53.7% of segments agrees very well with the 52.46% figure for the PTT-segments; these should, of course, correlate well, but the closeness in actual values is fortuitous).

From the printout for the 10-size "uniform" - batch, the "union" of all segments exercised can be found. This is shown in Figure 9. A total of 54 segments out of 93 are included.

Table IV
TO00 - SEGMENT USAGE (CASE I)

| т <sub>3</sub>  | 221 | T <sub>41</sub>  | 71  | T <sub>85</sub>               | 100 |  |  |
|-----------------|-----|------------------|-----|-------------------------------|-----|--|--|
| T <sub>5</sub>  | 221 | T <sub>42</sub>  | 12  | T <sub>87A</sub>              | 88  |  |  |
| т <sub>7</sub>  | 209 | T <sub>44</sub>  | 233 | T <sub>88</sub>               | 47  |  |  |
| T <sub>10</sub> | 85  | T <sub>47</sub>  | 56  | T <sub>89</sub>               | 17  |  |  |
| T <sub>11</sub> | 440 | T52              | 304 | T <sub>90</sub>               | 14  |  |  |
| T <sub>13</sub> | 17  | T <sub>53</sub>  | 71  | T <sub>91</sub>               | 16  |  |  |
| T <sub>14</sub> | 192 | T <sub>54</sub>  | 12  | T <sub>93</sub>               | 41  |  |  |
| T <sub>19</sub> | 85  | T <sub>57</sub>  | 55  |                               |     |  |  |
| T <sub>21</sub> | 233 | T <sub>58B</sub> | 178 |                               |     |  |  |
| T <sub>22</sub> | 209 | T <sub>65</sub>  | 304 | (0                            |     |  |  |
| T <sub>23</sub> | 17  | T <sub>67</sub>  | 14  | (Remainder are not exercised) |     |  |  |
| T <sub>26</sub> | 146 | T <sub>69</sub>  | 57  |                               |     |  |  |
| T <sub>27</sub> | 16  | T <sub>72</sub>  | 12  |                               |     |  |  |
| T <sub>28</sub> | 42  | T <sub>75</sub>  | 41  |                               |     |  |  |
| T <sub>29</sub> | 85  | T <sub>76</sub>  | 28  |                               |     |  |  |
| T <sub>31</sub> | 83  | T <sub>77</sub>  | 2   |                               |     |  |  |
| T <sub>32</sub> | 2   | T <sub>78</sub>  | 15  |                               |     |  |  |
| T <sub>34</sub> | 233 | T <sub>79</sub>  | 100 |                               |     |  |  |
| Т <sub>37</sub> | 15  | T <sub>80</sub>  | 135 |                               |     |  |  |
| T <sub>38</sub> | 2   | T <sub>81</sub>  | 41  |                               |     |  |  |
| T <sub>40</sub> | 204 | T <sub>84</sub>  | 2   |                               |     |  |  |



Figure 8. Paths Exercised by First Test Case from Uniform Distribution

Figure 9. Ten-Sample Uniform Distribution Segment Usage

## b. Special Test Cases

The preferred method of testing is one where a naive user can employ the program documentation and, on the basis of the description given, test all options. This program is lacking in the kind of detailed description needed. (As a means of more closely obtaining the kind of testing environment conceived as desirable, a second program using the same general problem (polynomial root solving) was instrumented. That program is described in the next subsection). The desired condition not attaining, it is still possible, by examination of the code, to find cases which will drive some of the branches and to find some impossible-to-exercise branches.

First, with respect to one of the options which directly affect the flow of control, the choice I=0 (which was set on the initial run and never changed) specifies that if the coefficients are all real then conjugate-pairs of roots are found. It is noted from code analysis that segments  $T_{15}$ ,  $T_{24}$ ,  $T_{50}$ ,  $T_{73}$ ,  $T_{76}$ , and  $T_{87}$  are all "started" by this condition on this index.  $T_{50}$  and  $T_{73}$  depend only on other segments which were not exercised. Of those remaining, only  $T_{76}$  and  $T_{87}$  are exercised and these are exercised presumably by a second pass in which there is an override on the conflicting data (complex coefficients, but I=0).

Among the possible segments, it is easy to identify some of the causes that certain segments are not exercised. For example, the initial overflow can only be caused by choosing input data which is severely taxing. In the data described so far, the initial overflow test cannot be made true since all data is in the range  $10^{-14}$  to  $10^{-14}$ . Later tests are also made but they too are in most cases not made true, even though much intermediate processing involving products of large numbers takes place. Segments  $T_2$ ,  $T_{33}$ , and  $T_{51}$  are overflow segments not taken (these are easy to identify as the only (obvious) loops in Figure 9 which start and end on the same node.

Similarly, several tests are made on a program variable representing the working value of T(g(0)). These are made with respect to a program-specified value of  $10^{-30}$ . Specifically, T(g(0)) must have a magnitude of less than (or equal to)  $10^{-30}$  in order to have  $T_6$  in the execution sequence. While this can be achieved easily, as shown in the next paragraph,

it would be (or would have been) convenient, to merely increase the value of tau  $(10^{-30})$  to, say,  $10^{-5}$  (the accuracy of the roots may suffer, but this is not a real consideration).

To continue with this point, it is noted by code inspection, that branch  $\mathsf{T}_6$  can be taken provided

$$|a_0|^2 - |a_n|^2 < 10^{-30}$$

a requirement met by setting  $a_0=a_n$ . This of course, "never" occurs for randomly generated data. So this case is one which essentially must employ examination of the code.

In an elaboration of this kind of case construction, examination of the code shows that the following list of segments which are not exercised but which are affected by "zero-relations" among the program variables at entry:  $T_{15}$ ,  $T_{16}$ ,  $T_{12}$ ,  $T_{49}$ ,  $T_{74}$ ,  $T_{58A}$ ,  $T_{68}$ ,  $T_{71}$ . It is well to note here, however that not all of these are directly dependent on values of the input variables: some of them are transfer controls. Listed below are all of the segments which were (possible) and were unexercised after the 10-size uniform random drivers were used, with those of the above listed set, together with the overflow test branches mentioned above, either encircled (zero tests) or "ensquared" (overflow tests).

Table V
Unexercised Segments

| T <sub>2</sub>   | Т <sub>4</sub>      | <sup>T</sup> 6  | т <sub>8</sub>  | Т <sub>9</sub>  | (T <sub>12</sub> ) |
|------------------|---------------------|-----------------|-----------------|-----------------|--------------------|
| T <sub>15</sub>  | (T <sub>16</sub> *) | T <sub>25</sub> | T <sub>33</sub> | T <sub>39</sub> | T <sub>43</sub>    |
| T <sub>48</sub>  | (T <sub>49</sub> *) | T <sub>50</sub> | T <sub>51</sub> | T <sub>55</sub> | T <sub>56</sub>    |
| T <sub>58A</sub> | T <sub>59</sub>     | T <sub>60</sub> | T <sub>61</sub> | T <sub>62</sub> | T <sub>63</sub>    |
| T <sub>64</sub>  | <sup>T</sup> 66     | T <sub>68</sub> | T <sub>70</sub> | (7)             | T <sub>73</sub>    |
| T74*             | T <sub>82</sub>     | T <sub>86</sub> | T <sub>92</sub> |                 |                    |

\*Most of the zero-tests can be expected to be exercised since as noted they involve control transfers or the running down of the equivalent of index registers. Those are marked by an asterisk in the table. Others such as  $T_{12}$ ,  $T_{68}$ ,  $T_{58A}$  are dependent on continuous variables.

#### (1) Fundamental Combinations

It is interesting to illustrate here the way in which efficient testing can be developed on the remaining segments. If the status represented by the Figures 8 and 9 above attains, and assuming  $T_6$  has not been exercised, it is noted that the node numbered 99\* (at the end of the arrow representing  $T_6$ ) has the property that all arrows exiting from it ( $T_8$  and  $T_9$ ) are zero. This means necessarily, that all segments leading into that node are not exercised. Thus, for example, because  $T_8$  and  $T_9$  are not exercised it can be ensured that  $T_{12}$ ,  $T_{73}$ ,  $T_{55}$ ,  $T_{584}$  are not exercised.

This forms the seed of a method for searching for "fundamental" combinations of segments, and although not explored in the present contract seems to be of promise in an interactive mode of test case selection.

These combinations can be found from the list as constructed in Table V, by locating segments with the same start node which all have zero usage.

The following combinations are found to be linked in the manner suggested

$$T_8 - T_9$$
 :  $T_6, T_{12}, T_{73}, T_{55}, T_{58A}$ 
 $T_{15}^{-1}_{16}$  :  $T_9, T_{68}, T_{71}$ 
 $T_{49}^{-1}_{50}$  :  $T_{39}$ 
 $T_{55}^{-1}_{56}$  :  $T_{43}$ 
 $T_{59}^{-1}_{60}^{-1}_{61}$  :  $T_{48}$ 
 $T_{62}^{-1}_{63}^{-1}_{64}$  :  $T_{49}$ 
 $T_{73}^{-1}_{74}$  :  $T_{56}$ 

\*Because of (self-imposed) display constraints, there are a few nodes with non-unique numbers - there are two 99-labeled nodes, for example.

This formation would be very easy to program and would be very useful even though, in some respects, it is backward, for it does not always specify which of multiple drivers will produce the necessary data to drive the segments. On the other hand, as the last five combinations show, the drivers may be clear but the "driven" is not. (It is fundamental that the out-degree of every node of the graph-representation of the program by segments is 2 or more, and that this ambiguity is therefore inevitable).

In developing a strategy for testing, the nesting of the combinations can produce the likely best choices. Thus,  $T_{43}$  if exercised will exercise either  $T_{55}$  or  $T_{56}$ , and, in turn, either  $T_8$  or  $T_9$  in the former case, or  $T_{73}$  or  $T_{74}$  in the latter case.  $T_{39}$  will exercise either  $T_{49}$  or  $T_{50}$ , and the former would exercise  $T_{62}$  or  $T_{63}$  or  $T_{64}$ . In developing a metric for the degree of testing achieved, it is well to realize that  $T_{43}$  "represents" 3 segments which will be exercised, similarly  $T_{39}$  "represents" 3.

#### (2) Special Cases

The only segments which are not among the set of fundamental combinations and are not overflow or zero-dependent are:  $T_{25}$ ,  $T_{66}$ ,  $T_{70}$ ,  $T_{82}$ ,  $T_{86}$ ,  $T_{92}$ . These are discussed as "special cases" here, but of course, the fundamental combinations and zero- and overflow-dependents are also special cases.

 $T_{25}$ : Analysis of this shows that this segment requires T1 (a "working" value of T) to be greater than zero, <u>OR</u> CNORM>0, <u>AND</u> the index variable KL=1,2, or 3. The first two conditions are (probably) met. Entry To  $T_{25}$  comes from either  $T_{72}$ , which, if exercised at all, "carries" one of the values K=4,5, or 6; or from  $T_{14}$ , which does not change KL, and which comes from  $T_{7}$  which again does not change KL, and which, in turn, comes from  $T_{4}$  or  $T_{22}$ . But  $T_{4}$  is overflow dependent, as noted earlier, while  $T_{22}$ , which was exercised, can only "carry" the value KL=4.

This means that  $T_{25}$  can only be exercised on an overflow, along with  $T_4$  and  $T_2$ . (Note again that  $T_2$ ,  $T_4$  and  $T_{25}$  are (probably)linked; however, in a less certain way than is the case with the fundamental sets).

 $T_{66}$ : This segment requires the value MY=2 AND  $T_{52}$  to be exercised. But MY=2 is set only by one instruction (408) which is contained only in  $T_{51}$ , which is an overflow path. Thus,  $T_{66}$  is linked to the overflow segment, precisely as with the preceding case.

 $T_{70}$ : The segment requires KL=4, 5, or 6. Thus,  $T_{41}$ , which requires KL=1,2, or 3 cannot be the driver and  $T_{42}$  is the only potential source. It does carry KL=4,5 or 6. The code shows that failing a test for magnitude on the real and imaginary parts of  $a_0$  and  $a_n$ , these are all multiplied by  $10^{10}$  and a new test is made on the difference. It is reasonable to expect that this segment would have been exercised.

The code on instruction numbered 398, indeed, does look wrong: the code which reads CIMAG\*\*2, should be CIMAG(1)\*\*2. (Whether or not this is a real or only an apparent error was not being investigated; it is noted that the original code is the same and it is not a typing-translation error).

 $T_{82}$ : This segment depends on some rare but not impossible computational values. It is necessary for KL=3 and this is attained. Additional cases should exercise this branch.

 $T_{86}$ : This segment depends on the predicate L>N being true. (For the case at hand, N=4). On the other hand,  $T_{86}$  depends exclusively on  $T_{79}$ . But in order for  $T_{79}$  to be exercised, it is necessary for L to be less than N. But L is increased by 1 unit at a time; hence, the case L=N is reached ahead of the test L>N and  $T_{86}$  can never be exercised.

T<sub>92</sub>: This branch requires a loop counter in excess of 20. For the data used, this did not happen. Each time the subroutine is entered the counter is set to zero in initialization and it is set to zero on exit. This branch should be exercised in a different sample.

#### (3) Constructed Cases

- 1. The first case consisted of assigning as input a 1st degree polynomial (-.004z+3=0) with real coefficients, without error check. This simple choice exercised only 24 segments of T000; but among these are the segments  $T_{39}$ ,  $T_{49}$ ,  $T_{50}$ ,  $T_{62}$ ,  $T_{63}$ ,  $T_{64}$ , none of which had been exercised by the random tests. The string  $T_{49}$ ,  $T_{62}$ ,  $T_{63}$ ,  $T_{64}$  form a fundamental combination and  $T_{39}$ ,  $T_{49}$ ,  $T_{50}$  form another.
- 2. This case was a 1st degree polynomial with complex coefficients, specifically (-.004+3.2i)z+(3.0-.07i)=0. No error check was used. This caused a subset of the case 1 segments to be exercised.
- 3. A second degree polynomial specifically  $10.8z^2$ -.004z+3.0=0, with real coefficients, roots computed without conjugates, and no error checks, resulted in one new segment,  $T_{92}$ , (as well as  $T_{83}$  which had been exercised by random numbers).
- 4. This consisted of a polynomial of degree 2, with complex coefficients without error check and without conjugates. No new segments were exercised.
- 5. This case consisted of a degree 2 polynomial. The "conjugate" choice was made: that is, one root is found by taking the conjugate of the other. An error bound of  $r=10^{-14}$  was employed. No new segments were executed.
- 6. A degree 3 real polynomial, no conjugates, no error check comprised case 6. Segments  $T_{29}$ ,  $T_{79}$ , and  $T_{85}$  were exercised, but these had been exercised by at least one of the random cases. (In addition, for summary comparison purposes, 6 new PTT-segments in the LEHMER and S000 were exercised).
- 7. A complex polynomial of degree 3, without error checks and without conjugates, was used. Segments  $T_{82}$ ,  $T_{84}$ , and  $T_{21}$  were new segments.  $T_{84}$  and  $T_{21}$  had been exercised by random numbers. (Seven PTT-segments among the LEHMER or S000 were exercised).

Case 8 - A 4th degree real polynomial without conjugates and no error check was used.  $T_{32}$ ,  $T_{91}$  were exercised, both of which had been exercised by the random cases (Three PTT-segments).

Case 9 - A 4th degree complex polynomial without error check, and without conjugate was used. No new segments were exercised.

## c. Status of Testing (Random and Selective)

T2: Overflow is required

TA: Overflow dependent

T6: Exercised with an=ao

 $T_8$ : Exercised when conditions on  $T_6$  are met.

 $T_9$ : Can be exercised by a polynomial with roots which have a small magnitude, but whose coefficients are sufficiently large to exceed the value of tau  $(10^{-30})$ .

 $T_{12}$ : Requires  $T_1$  = 0, but, if this were to occur, the segment  $T_6$  (starting at 294) (and not  $T_7$ ) would be exercised. But  $T_6$  and  $T_{12}$  are not compatible.  $T_{12}$  CANNOT BE EXERCISED.

T15- Exactly one of these will be exercised when To is exercised.

T<sub>16</sub>: The former would be exercised when conjugates are specified and the latter when they are not.

 $T_{25}$ : This was discussed above under the section title, Special Cases. This is overflow dependent (on  $T_4$ ).

 $T_{33}$ : This segment is an overflow test branch.

T<sub>39</sub>: This was exercised by the case of a first degree polynomial (Constructed Case No. 1).

 $T_{43}$ : The conditions are the same as for  $T_9$ .

T<sub>48</sub>: This would be exercised when conjugates are specified and would be exercised by Constructed Case No. 1, if that option were specified.

T<sub>49</sub>: This is exercised by Constructed Case No. 1.

- $T_{50}$ : This is exercised by Constructed Case No. 1.
- T<sub>51</sub>: This is an overflow test branch.
- $T_{55}$ : This segment would be exercised with  $T_9$  on the first pass through a loop:  $T_{55}^{-T}9^{-T}15^{-T}3^{-T}5^{-T}11^{-T}21^{-T}34^{-T}43^{-T}55$ .
- T<sub>56</sub>: This segment would be exercised on the fifth passage through the same loop. A higher degree polynomial would exercise this segment.
- $T_{58}$ : This requires a working value of T(g(0)) to be zero. This can only be achieved by an extremely rare event. While not impossible to exercise, it is very unlikely that it will be.
- $T_{59}$ : This segment requires  $T_{48}$  to be Exercised and KL=1, 2, or 3.  $T_{48}$  is conjugate choice dependent. This segment will be exercised with a higher degree polynomial.
- T<sub>60</sub>: This requires KL=4, and since it can be achieved with almost any choice on initial input. T<sub>48</sub> must be driven, however.
- $T_{61}$ : This requires KL=5 or 6 which can be met when  $T_{48}$  is driven.
- T<sub>62</sub>: Exercised by Constructed Case 1.
- T<sub>63</sub>: Exercised by Constructed Case 1.
- T<sub>64</sub>: Exercised by Constructed Case 1.
- T<sub>66</sub>: This segment is described above. It is linked to overflow.
- T<sub>68</sub>: This segment requires CNORM=0 and KL=1, 2, or 3. With well chosen coefficients this will be exercised from the top.
- T<sub>70</sub>: This segment has been discussed above under Special Cases. There may be a coding error in the program.
- T<sub>71</sub>: This segment requires CNORM=0 and KL=4, 5, 6.
- T<sub>73</sub>: This requires I=1, and will be exercised with any data.
- $T_{74}$ : This requires I=0 and would be exercised when  $T_{56}$  is
- T<sub>82</sub>: This was exercised by the 7th Constructed Case.
- T<sub>86</sub>: As shown in the analysis under Special Cases, this segment CANNOT BE EXERCISED.

T<sub>92</sub>: This segment, discussed above under Special Cases, willbe exercised with a higher degree polynomial.

#### d. Summary of Analysis

First, with respect to the quite limited testing which was done, it is noted that, excepting the overflow or overflow-dependent segments, those which are dependent on the choice I=l and which would have been exercised with that choice, those which cannot be exercised, and those which are directly dependent on these, the number of segments exercised by random testing with the small sample of 10 exercised 54 of 80 possible segments.

It is useful in this respect to note that the usual problem-proofing procedure consists of running a set of simple cases (check problems) such as those listed under Constructed Cases. It is noted that the union of segments exercised by one or more of these tests numbered only 16. The total possible can again be taken to be 80.

From the results of this simple comparison it seems clear that the random or blind testing (although to be sure other Constructed Cases - especially higher degree polynomials - would produce a higher yield than those employed), is very effective in testing a program.

Presented in Figure 10 is a modified flow diagram in which three essential changes are made to the original diagram: the impossible segments are deleted, the conjugate-choice option corresponding to I=1 are eliminated, all overflow or overflow dependent segments are deleted. In addition, an exit on the occurrence of a zero or negative degree is deleted along with the segments which (after the previously described deletions) are dependent only on that condition (segments  $T_{39}$ ,  $T_{49}$ ,  $T_{62}$ ,  $T_{63}$ , and  $T_{64}$  are so affected).

This figure shows clearly the degree to which these random tests exhaust the possible branches. It is also clear from the figure what additional tests need to be developed. On application of Constructed Cases which are discussed above, the segment  $T_{92}$  and  $T_{82}$  were exercised. It is again clear where the focus should be placed for the additional segments. For example,  $T_{43}$  if exercised, will add a minimum of 2 and as many as 3 segments.



Figure 10. "Pruned" Flow Diagram and Usage

History

#### B. IMSL Routine ZPOLYR

1. Description of Root-Solving Method

Because of the difficulty in tracing through the unstructured program which was written for the Lehmer method, a second polynomial solver was selected using the criterion that the documentation be more adequate and the listing more easy to follow. This was supplied by an IMSL Library program named ZPOLYR.\*

This program uses the Jenkins-Traub (16) three-stage algorithm. Some of the difficulties which the original program had are discussed in the analysis to form constructed cases. The major deficiencies seem to be: in the original program the largest roots were extracted first and the resultant "deflated" polynomial - obtained by factoring out a quadratic - on occasion, produced apparent zero-valued roots; the degree limitation was raised to 100 in the new or replacement program; zero leading coefficients cause an instant error exit.

2. ZPOLYR Program Listing

This program is commercially available and the listing is available in the IMSL Library.

- 3. Analysis of PTT-Segments
- a. Summary Data

In the first run, a sample of size 10 from a triangular distribution was used. The range of this distribution on the logarithm of the coefficients was [-14, +14] with a mode of +2. Signs were chosen by parity of random numbers. The degree was chosen to be 4. The percentage of segments exercised by these cases (PTT-segments were used) were as shown in Table VI.

\*This program and a major subroutine were both replaced by IMSL in 1975.

Table VI ZPOLYR Segment Usage (Run #1)

| Case No. | % Used | Number Used |
|----------|--------|-------------|
| 1        | 44.68  | 63          |
| 2        | 44.68  | 63          |
| 3        | 65.96  | 93          |
| 4        | 65.96  | 93          |
| 5        | 50.35  | 71          |
| 6        | 44.68  | 63          |
| 7        | 54.61  | 77          |
| 8        | 65.25  | 92          |
| 9        | 65.96  | 93          |
| 10       | 44.68  | 63          |

Run #2 used the same degree (4), and a uniform distribution on the logarithm of the coefficient over the range [-14, 14]. A sample of size 20 was used.

Insofar as segment usage is concerned, the results were as shown in Table VII.

Table VII
ZPOLYR Segment Usage (Run #2)

| Case No. | %_    | No. | Case No. | %     | No. |
|----------|-------|-----|----------|-------|-----|
| 1        | 60.28 | 85  | 11       | 39.72 | 56  |
| 2        | 62.41 | 88  | 12       | 54.61 | 77  |
| 3        | 61.70 | 87  | 13       | 65.25 | 92  |
| 4        | 65.25 | 92  | 14       | 63.83 | 90  |
| 5        | 54.61 | 77  | 15       | 46.81 | 66  |
| 6        | 46.10 | 65  | 16       | 52.48 | 74  |
| 7        | 45.39 | 64  | 17       | 39.72 | 56  |
| 8        | 46.81 | 66  | 18       | 69.50 | 98  |
| 9        | 50.35 | 71  | 19       | 68.09 | 96  |
| 10       | 60.28 | 85  | 20       | 54.61 | 77  |

The numbers here shown are both larger (69.50) and smaller (39.72) than for the 10-sample triangular case. This effect is probably more due to the distributional difference, than to the sample size. The uniform distribution can pick large values (1 to  $10^{14}$ ) for the coefficients as frequently as small values (numbers in the range  $10^{-14}$  to 1).

Examination of the printout for the two cases (11 and 17) which exercised the fewest number, show a lack of convergence: "La Guerre's Method has failed to converge." The input data in case 11 showed a coefficient of about 1.5 x  $10^9$  for the  $z^3$  term and  $1.0 \times 10^{-6}$  for the  $z^4$  term and  $-4.5 \times 10^{-4}$  for the coefficient of z. Case 17 had coefficients:  $6.5 \times 10^{-14}$ ,  $1.2 \times 10^3$ ,  $-4.9 \times 10^{-8}$ ,  $1.1 \times 10^2$ ,  $2.4 \times 10^{-12}$ . The apparent conclusion is that because of a failure to converge, there was a quick exit.

Actual segment usage data for the Case 11 shows (a typically) zero usage in the program from instruction 132 to 195 (assuming continguity of numbers implies something about the actual operating sequence), corresponding to a program section which "extracts" a quadratic factor from the original or reduced polynomial. Entry into this section is governed by the test as to whether or not the nth iterative approximation is "close to the real axis relative to step size." Case 17 shows a similar usage pattern.

Before going into an analysis of the program and construction of special cases, the several additional run results are presented.

Run #3 employed a quadratic with 15 samples and a uniform distribution. All samples exercised the same (small) number of segments, 12. Furthermore, they all exercised exactly the same segments. Part of the reason for the light usage is mentioned above; basically it is the degree of the polynomial which causes the light usage.

Run #4 was characterized by choosing a polynomial of degree 12, uniform distribution on the log of the coefficients over the same range employed before, and a sample size of 15. Table VIII summarizes the usage data.

Table VIII
ZPOLYR Segment Usage (Run #4)

| Case No. | % Used | No. Used | Case No. | % Used | No. Used |
|----------|--------|----------|----------|--------|----------|
| 1        | 65.25  | 92       |          |        |          |
| 2        | 68.09  | 96       | 9        | 67.38  | 95       |
| 3        | 69.50  | 98       | 10       | 40.43  | 57       |
| 4        | 66.67  | 94       | 11       | 69.50  | 98       |
| 5        | 62.41  | 88       | 12       | 68.79  | 97       |
| 6        | 67.38  | 95       | 13       | 68.09  | 96       |
| 7        | 65.25  | 92       | 14       | 68.09  | 96       |
| 8        | 64.54  | 91       | 15       | 64.54  | 91       |
|          |        |          |          |        |          |

Run #5 employed 40 samples, a 4th degree polynomial, and a uniform distribution as before. Table IX summarizes the usage data for the run.

Table IX
ZPOLYR Segment Usage (Run #5)

| Case No. | % Used | No. Used | Case No. | % Used | No. Used |
|----------|--------|----------|----------|--------|----------|
| 1        | 39.72  | 56       | 21       | 43.97  | 62       |
| 2        | 45.39  | 64       | 22       | 46.81  | 66       |
| 3        | 44.68  | 63       | 23       | 68.09  | 96       |
| 4        | 45.39  | 64       | 24       | 36.17  | 51       |
| 5        | 61.70  | 87       | 25       | 44.68  | 63       |
| 6        | 46.81  | 66       | 26       | 49.65  | 70       |
| 7        | 69.50  | 98       | 27       | 60.28  | 85       |
| 8        | 46.81  | 66       | 28       | 45.39  | 64       |
| 9        | 47.52  | 67       | 29       | 61.70  | 87       |
| 10       | 44.68  | 63       | 30       | 44.68  | 63       |
| 11,000   | 44.68  | 63       | 31       | 44.68  | 63       |
| 12       | 46.81  | 66       | 32       | 46.81  | 66       |
| 13       | 45.39  | 64       | 33       | 63.83  | 90       |
| 14       | 50.35  | 71       | 34       | 70.92  | 100      |

Table IX (continued)

| Case No. | % Used | No. Used | Case No. | % Used | No. Used |
|----------|--------|----------|----------|--------|----------|
| 15       | 56.03  | 79       | 35       | 44.68  | 63       |
| 16       | 44.68  | 63       | 36       | 60.28  | 85       |
| 17       | 69.50  | 98       | 37       | 62.41  | 88       |
| 18       | 44.68  | 63       | 38       | 62.41  | 88       |
| 19       | 60.28  | 85       | 39       | 69.50  | 98       |
| 20       | 63.12  | 89       | 40       | 51.06  | 72       |

Finally, a run with a 15th degree polynomial and a sample size of 15 produced the summary usage data depicted in Table X.

Table X
ZPOLYR Segment Usage (Run # 6)

| Case No. | % Used | No. Used | Case No. | % Used | No. Used |
|----------|--------|----------|----------|--------|----------|
| 1        | 68.79  | 97       | 9        | 67.38  | 95       |
| 2        | 64.54  | 91       | 10       | 68.79  | 97       |
| 3        | 61.70  | 87       | 11       | 67.38  | 95       |
| 4        | 65.25  | 92       | 12       | 65.25  | 92       |
| 5        | 65.96  | 93       | 13       | 65.96  | 93       |
| 6        | 65.25  | 92       | 14       | 64.54  | 94       |
| 7        | 65.96  | 93       | 15       | 67.38  | 91       |
| 8        | 68.79  | 97       |          |        |          |

# b. Estimation of Total Number of Execution Sequences

## (1) Introduction

The interesting pattern in the above data is the separation between the trial numbers at which the "new" or apparently "new", execution sequences are found. If, as is initially assumed each execution sequence (or realizable logical path)

has the same chance of being exercised when random numbers are used as input, then the number of these paths can be estimated by applying a model developed by Jelinski and Moranda for a different purpose. That model was described briefly in Section III. There are some necessary changes in interpretation, however: in the original model, the number of software errors contained in a package is the equivalent of the number of execution sequences here. Time, which was the independent variable in the original model, is made to be the analog of trial number in the variation. When an error is detected and corrected, the original model assumes a detection rate which is correspondingly reduced (by one unit); in this application a new execution sequence is noted by comparing the pattern of the segments exercised against all earlier occurring sequences.

Because execution sequences are characterized by the particular segments driven (and the order in which they are executed) the total number listed in the preceding tables are not sufficient. They are, of course, very useful since if the totals are different then necessarily the execution sequences are different.

There is a pair of fine points which need to be acknowledged and which indeed help in the definition of what is here called an execution sequence. First, it is possible for the PTT-segment usages to be identical in two cases while the actual sequences could differ; no information is available to decide such fine differences. Second, two cases may exercise exactly the same PTT-segments but with different numbers on one or more of the segments and these are classified as the same. For many purposes, including the purpose of thorough test, both of the interpretations are acceptable variants.

#### (2) Technique

For the analysis given here for illustration of a technique, the runs 2 and 5 are merged together to form a sample of size 60. These are numbered from 1 to 20 through the Run 2 sample and 21-60 through Run 5. As noted above, it is easy to determine by inspection of summary data, the first nine cases represent different execution sequences. Case 10 not only has the same % usages as Case 1, but identical segment usage. Case 12, on the other hand, has a different execution sequence from Case 5, even though they

have the same total segment usage. Similarly, Case 13 is different from Case 4 although they have the same total count. Taking each case number in sequence, if it is different in total from all the preceding, it represents a new execution sequence; if it is the same as one or more earlier-listed ones, it must be closely examined against all of them with the same usage %'s, to see if it indeed, is a different case.

The following sequence of numbers is formed as follows: a l is recorded if there is a new sequence found and a zero if there is not. The sequence of 0's and 1's versus case number is:

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 1  | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
| 0  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  |

The formulas developed for the De-Eutrophication model are:

$$\sum_{i=1}^{n} \frac{1}{N-(i-1)} = \frac{n}{\sum_{i=1}^{n} (i-1)x_{i}}$$
(11)

In the present application, n will stand for the number of execution sequences found during a number of cases T (one case per unit of time). N is the unknown number of execution sequences (not to be confused with the polynomial degree which has the same notation): the number which could eventually be exercised by a 4th degree polynomial whose coefficients are chosen at random in the manner indicated. X<sub>i</sub> represents the "time" between the discovery of new execution sequences. If this happens in consecutive cases, this number

is taken to be 1.  $\emptyset$  is a proportionality constant and represents "one execution sequence" worth of detection rate (starting with a value N $\emptyset$  for the detection rate and decreasing by one on each discovery.)

The data so defined becomes

$$x_{1}=1$$
,  $x_{2}=1$ ,  $x_{3}=1$ ,  $x_{4}=1$ ,  $x_{5}=1$ ,  $x_{6}=1$ ,  $x_{7}=1$ ,  $x_{8}=1$ ,  $x_{9}=2$ ,  $x_{10}=1$ ,  $x_{11}=1$ ,  $x_{12}=1$ ,  $x_{13}=2$ ,  $x_{14}=2$ ,  $x_{15}=1$ ,  $x_{16}=4$ ,  $x_{17}=4$ ,  $x_{18}=1$ ,  $x_{19}=1$ ,  $x_{20}=3$ ,  $x_{21}=1$ ,  $x_{22}=1$ ,  $x_{23}=1$ ,  $x_{24}=2$ ,  $x_{25}=3$ ,  $x_{26}=1$ ,  $x_{27}=1$ ,  $x_{28}=2$ ,  $x_{29}=2$ ,  $x_{30}=8$ ,  $x_{31}=6$ .

If it were assumed that only the first 20 cases (i.e., the Run #1 data) were available, then the following processed data would apply:  $X_1-X_{15}$  as above,  $X_{16}=2$  (at least 2 units to the next detection, based on the best "current" knowledge - that at trial number 20); n=16; T=20. This results in a ratio  $\Sigma(i-1)X_i/20 = 8.4$  and this ratio completely determines the parameters N and  $\emptyset$ .

Tables have been constructed to solve those equations and are found in Appendix II. From these tables the following information is found for the ratio (8.4) and n=16.

$$\hat{N}$$
 = 31.82  
Var( $\hat{N}$ ) = 29.54 (standard deviation of 5.4)

The total number found after 60 cases is 31, an agreement so close as to require explanation. It is noted that "time" has by no means run out and the 60th case showed a new discovery. Hence, the total error content is larger than 31, and the agreement is fortuitous. By way of further illustration and to erase the impression that this technique is as accurate as luck has made it appear at first sight, the first 40 trials are analyzed. Again, the data at  $X_1$ - $X_{15}$  is as before,  $X_{16}$  is now "revealed" to be 4 (instead of the value 2 which served as the current best value before), the value  $X_{17}$ - $X_{25}$  are as listed.

Computation of the ratio  $\begin{cases} (i-1)x_i/40 \text{ is found to be } 13.4. \end{cases}$  From the tables estimate for N in this case, is 50.25 and the

standard deviation of the estimate is 6.1. The realized (so far) value of 31 falls barely short of the 3 $\sigma$  lower limit of acceptability, but of course would increase with larger samples. Computation with the total sample of 60 produces for n=31, a ratio of 18.46 and an estimate of 40.5 with a standard deviation of 2.95. This is the best estimate and is certainly a reasonable one. In the long run, and 60 is not considered long, this is the expected number which will be exercised in this way. The value obtained is noteworthy in at least two respects. The conventional myth about execution sequences is that there are a very great number (10<sup>10</sup> for even reasonable sized programs) of them. The evidence seems to indicate that for this relatively small program this is not the case. On the other hand with 141 segments with which to form sequences and a rough estimate of 70 two-way predicates to consider, there are reasons to believe that there would be a great number of sequences. Again, this does not seem to be the case. Of course, this observation must be put in context. The choice of the degree as 4 in all of the above analyses may have prevented a great number of the 141 segments from being used. (This effect is very clear for the quadratic -Run #3 showed all 15 cases had exactly the same segment usage).

This point was investigated with inconclusive results. An analysis of the segment usage data for a run made with a polynomial of degree 12 (Run #4), produced the following pattern of 1's and 0's (using the above interpretation):

1,1,1,1,1,1,1,1,1,1,1,1,0,1 indicating, at first look, a large number of sequences. But the initial segment (of 14) of the corresponding sequence in the preceding analysis showed a similar pattern but produced many duplicates in the next 10 cases. If the data from Run #6 (not quite comparable because it inputs a polynomial of degree 15) is used together with the Run #4 data, there is seen to be indications of duplicates (within the run (#6), and with that of Run #4). Closer analysis was not made.

It seems fairly sure that the number of execution sequences is much smaller than is ordinarily thought.

#### (3) Summary and Extensions

The technique employed above in the illustration provides the only known practical means of estimating the number of execution sequences. The alternative procedures involve the solution of a number of simultaneous logical equations formed from the program's predicates, and result in a very large number of equations and no clear solution in case the program functions (those that change program variables) are non-linear.

This technique has two variants which amount to application of models developed by Moranda [13] and [14]. The first model treats detection of errors (or new execution sequences in the present case) as random a process in which the detection rate decreases in a geometric progression on the occurrence of each error detection (and, correction in the case of errors).

Because of the importance of this and the earlier-described model, they were more fully developed, particularly in the direction of obtaining variances and covariances of the estimates and, preparing tables for the first named model, which will greatly assist the task of solving a difficult equation. The second model results in equations which are not solvable in advance, since as seen in Section V, they are based on polynomials with random numbers as coefficients.

The third model also developed by Moranda [14] has applicability to the process of estimation of the number of execution sequences. This model, described in Section V, while decreasing the rate in a geometric progression has a constant rate which represents the long term or asymptotic detection rate. That model while having applicability in describing the transition between the "burn-in" and steady state phases as defined in hardware reliability studies, has applicability to software which is used in programs controlling equipment, and which consequently derive some of their input from sensors of the ambient conditions.

In more extensive use of the above described techniques, it is well to set up separate tests for each combination of input parameters. For example, the degree of the polynomial is known to have an pronounced effect on the execution sequences which are realized. That has been noted in

the above (all quadratics exercised but 12 segments). For the program which is tested here, a good analysis would involve estimating the execution sequences for each degree, from zero (constant), to at least 80. (Instruction 4-5 makes a test on the degree against an upper limit of 79).

## 4. Constructed Cases (ZPOLYR)

The following PTT-segments were not exercised by any of the preceding described runs:

| 2  | 4   | 14  | 16  | 21  |
|----|-----|-----|-----|-----|
| 21 | 24  | 25  | 27  | 28  |
| 29 | 30  | 39  | 41  | 42  |
| 44 | 45  | 48  | 53  | 92  |
| 94 | 109 | 111 | 130 | 132 |

Because of the extensive comments in the listing of the program, it is quite easy to construct cases which exercise many of these still undriven segments.

## a. Segment Analysis

For a polynomial of degree 80, PTT-segment No. 2 (denoted  $Z_2$ , here) is exercised, while it is not for any smaller degree. This or any larger degree causes the execution sequence  $Z_2$ ,  $Z_4$ ,  $Z_{140}$ . Of these,  $Z_{140}$  is exercised by any error message and it has been exercised before. Thus, the limitation on the degree causes two new segments to be exercised.)

A polynomial of 1st or 0th degree will cause the execution sequence  $Z_1$ ,  $Z_3$ ,  $Z_5$ ,  $Z_6$ ,  $Z_9$ ,  $Z_{35}$ ,  $Z_{37}$ ,  $Z_{40}$ ,  $Z_{139}$ , all of which are exercised in at least one prior case (if the quadratic had been considered after this construction,  $Z_9$  and others would not have been exercised.

Segment  $Z_{14}$  can be exercised by entering a string of zeros for input. This segment then leads into formerly exercised segments.

Segment  $Z_{16}$  can be exercised by entering coefficients which exceed a programmer-specified parameter, which in the cases employed had the value  $10^{150}$ . This did not and could not occur with the "picking" function used. It can be by choosing  $2^{\frac{1}{2}}$  N  $\frac{1}{2}$  and any coefficient in excess of  $10^{150}$ . Alternatively, the parameter can be assigned a smaller value.

Segments  $Z_{21}$ ,  $Z_{23}$ , and  $Z_{24}$  are inexorably linked and can be exercised by backworking from the condition ABS (SNGL (DU(I)) < BIT), where BIT is set to be the smallest positive number in the machine. This condition can be met by setting the leading coefficients of the polynomial equal to zero. The implication to the program user is that an infinite zero is found (an error message would have done as well for ordinary problems, but since ZPOLYR is a callable subroutine it is useful to have this capability).

Segments  $Z_{25}$ ,  $Z_{27}$ ,  $Z_{28}$ ,  $Z_{29}$  and  $Z_{30}$  are linked and are dependent on a condition met by the occurrence of zero for at least two leading coefficients (i.e., the coefficients of  $z^n$  and  $z^{n-1}$  are zero). This will occur with very low probability (the product of two very small values) when random numbers are used.

Segments  $Z_{39}$ ,  $Z_{40}$ , and  $Z_{41}$  are linked and dependent on the occurrence of an error or anomaly in a called subroutine (ZQUADR). Insofar as this routine is concerned, these segments should not be counted as relevant.

Segment  $Z_{42}$ ,  $Z_{44}$ , and  $Z_{45}$  are linked and depend on the constant term of the input (or derived polynomial) being zero. With random number generators used to pick coefficients, this is unlikely and indeed it did not occur. Entry of a 4th degree polynomial with a zero for the constant would exercise  $Z_{42}$ ,  $Z_{44}$  and  $Z_{45}$ .

Segment  $Z_{48}$  requires simultaneous (logical AND) satisfaction of a predicate which states that the original polynomial, or a "working" polynomial derived from it by quadratic factoring, has the (N-2)nd and (N-1)st coefficients equal to zero. This can be met most easily by choice (and not "easily" by random selection).

Segment  $Z_{53}$  requires three (logical AND) conditions to be satisfied:

- (a) The degree of the polynomial must be even.
- (b) The product of the signs of the coefficients of the lowest and highest degree terms in a reduced polynomial must be positive.
- (c) The occurrence of zero for the leading coefficients of a polynomial when returning from a subroutine (ZQUADR).

This segment had no realized predecessor for all but one case; that is to say, the lead-in path to the segment was blocked except for one case. In that one case there was an overflow in the program and the real part of the first root extracted had a magnitude of  $10^{151}$ . This probably caused the deflated polynomial, obtained by extracting a linear or quadratic factor out of the original polynomial, to appear to have zero leading coefficient and the test conditions (c) was met. However, the product of signs in the original polynomial (and probably in the deflated polynomial), in that case was negative. This path can be exercised by random numbers but was not.

 $\rm Z_{92}$  and  $\rm Z_{94}$  are linked and depend on an error occurring in the subroutine ZQUADR. This did not occur at that point in the program. These segments should not be considered relevant to the ZPOLYR subroutine.

 $Z_{109}$  and  $Z_{111}$  are exactly the same as the preceding pair: they depend on an error in ZQUADR. These too should not be considered as relevant.

 $\rm Z_{130}$  and  $\rm Z_{132}$  are linked and depend on a zero value for the imaginary part of a coefficient of a working polynomial. This is not likely to occur in random tests.

 $Z_{138}$  depends on an error occurring in ZQUADR and is not relevant.

#### b. Summary

From the above, a categorization can be made. First, those that test for acceptable data:

Second, there are those that are zero test dependent:

Third, there are segments which are irrelevant in that they depend on the occurrence of an error in a called subroutine:

Finally,  $Z_{53}$ , stands apart and requires satisfaction of three conditions. It can conceivably be exercised by random data.

The number of exercisable segments by random data then can be considered to number 131.

## Rationale for Test Case Selection (ZPOLYR)

The difficulties which occur in the preceding described program can or could be alleviated in several ways.

First, as a general comment, it is clear that a systematic case selection which consists in stepping through the degree of the input polynomial would accomplish the testing of those branches which are degree dependent.

The same or similar remark would apply to other input parameters, which are actually programmer options, but which in most cases are not generally changed from the built-in values which are provided when no choice is made by the user. Varying these would provide a more exhaustive level of testing even though the computational results may be inaccurate, or intermediate results may cause premature or unnecessary overflows.

For a fixed degree and a fixed set of input parameters (as distinct from input data) the results which have been obtained are more than satisfactory: random cases in small sample sizes generally exercise all but the overflow and zero-tests for program variables. This cannot be compared with other options until a standard set of input cases is specified. But it is clear that the cases used comprise a more extensive testing level than "ordinarily" is achieved. Ordinarily the test cases are made by forming simple integer-coefficient polynomial and generally with ratios of max to min which are small while in the random testing these ratios can (and did) achieve values of nearly  $10^{28}$ .

In order to supply a more exhaustive test and to accomplish a hybrid random/ constructed case selection, a sequence of polynomials can be formed in which the value zero is provided as a part of the domain from which the random numbers are chosen. As noted before, the random testing employed in the illustrated cases could not pick zero values, and even if zero were in the range of

possible values it would be selected with essentially zero probability. This fact, coupled with the realization that the particular nature of the distribution has no real relevance to exhaustive testing, make this option very appealing. The probability split between non-zero and zero input cases is (again) arbitrary but if the split is too much biased against zeros, the occurrence of multiple zeros such as are required for certain program branches, would not occur often in reasonable sized samples. A split of 8 to 1 seems reasonable for input samples of reasonable size.

#### C. Curvature Program

Because of the large non-stochastic portion of the testing in the polynomial-root-solver programs which were discussed above, a library search for programs which were less-dependent on program parameters was made. The following described program is seemingly ideal in this respect.

#### 1. Description of Program CURVTR

The program selected computes the curvature, and the direction cosines of the normal, at a point or a surface defined over the unit square (using variables u and w as the independent variables, this is the region  $0 \le u \le 1$ ).

Each coordinate of the surface is represented by a bi-cubic in the variables u and w. Thus the x-component is

$$x(uv_{i}) = \int_{i=0}^{3} \int_{j=0}^{3} A_{ij}u^{i}w^{i}$$

and similarly for the y and z coordinates of a surface point. The program employs the notation v, for the point with components x,y, and z. There are altogether 48 coefficients for the three coordinates. The so-defined surface is unique and unambiguous.

Required for the curvature and direction cosines are the first and second partial derivatives with respect to the parameters u and v and these are determined by simple formulas. For example,

determined by simple formulas. For example, 
$$\frac{\delta x(u,v)}{\delta u} = \int_{j=0}^{3} \sum_{j=0}^{3} iA_{i,j}u^{i-1}w^{j}.$$

Essentially all of the computations are formula evaluations with a pair of assigned values to u and w.

2. CURVTR Listing

The listing of this program is shown in the following pages, as Figure 11.

Random Testing of CURVTR
 Processing of this program by the PTS system established that there are 56 PTS-segments.

After the set of PTS-segments are linked together to form segments as previously defined, they were found to number 36. These can be represented as a directed graph as shown in Figure 12.

As noted in previous discussions, the number of possible paths through a system may be fairly large. But as also mentioned before, it has been found "experimentally" that many of the potential paths are not realizable. To this point, in Figure 13, there is shown the result of using 20 cases consisting of coefficients (48) chosen from a  $\beta$ -distribution on the logarithm and positions chosen by a  $\beta$ -distribution on each coordinate in the unit square. This result is interesting in at least two respects. First, the paths shown account for only 10 out of 31 of the segments. But, more importantly, the response is perfectly consistent: every one of the 20 random test cases which were used, exercised all three of the branches numbered 8, 9, and 10 of Figure 13. Thus the randomly selected cases exhibited a remarkable consistency.

Although 20 is a small sample size it should be stated that in separate runs, distributions other than the  $\beta$  were employed and identical results were obtained. In a certain sense, this rather simple program has been exhaustively tested by just one sample. The sense, of course, is that all the branches ever executed by random selection is accomplished on the first "draw".

The algorithm employed so successfully before is of no value in estimating the number of execution sequences. An alternative is mentioned below.

```
SUBROUTINE CURVTR ( V,U,W,CV,DC )
                                                                                            CURVO010
        THIS ROUTINE WILL FIND THE CURVATURES OF A LINE DEFINED BY THE
                                                                                            CURV0020
C
        INTERSECTION OF EACH OF THE THREE ORTHOGONAL PLANES WITH THE
                                                                                            CURVO030
        PATCH (V) AT THE POINT (U,W), DIRECTION COSINES OF THE SURFACE NORMALS AT THAT POINT ARE PLACED IN (DC).
C
                                                                                            CURV0040
                                                                                            CURV0050
CAUTION - THIS ROUTINE WILL NOT COMPUTE CURVATURE AT THE DEGENERATE
                                                                                            CURV0060
            EDGE OF A PATCH
                                                                                            CURV0070
              ARGUMENT DESCRIPTION
CCCCCCC
                                                                                            CURV0080
              V(16,3) INPUT, PATCH COEFFICIENTS IN ALGEBRAIC FORM
                                                                                            CURV0090
                        INPUT, PARAMETRIC VARIABLE U
                                                                                            CURV0100
                        INPUT, PARAMETRIC VARIABLE W
                                                                                            CURVO110
              CV(1)
                        OUTPUT, CURVATURE IN Y-Z PLANE
                                                                                            CURV0120
              CV(2)
                        OUTPUT, CURVATURE IN X-Z PLANE
                                                                                            CURV0130
              CV(3)
                        OUTPUT, CURVATURE IN X-Y PLANE
                                                                                            CURV0140
CCC
              DC(1)
                        OUTPUT, X DIRECTION COSINE
                                                                                            CURV0150
                        OUTPUT, Y DIRECTION COSINE OUTPUT, Z DIRECTION COSINE
              DC(2)
                                                                                            CURV0160
              DC(3)
                                                                                            CURV0170
        SUBROUTINES CALLED: PLACE
                                                                                            CURV0180
       DIMENSION B(16),C(3),CV(3),DC(3),V(16,3),VU(3),VW(3),VUU(3),VWW(3)CURVO200
      1, VUW(3), A1(3,2), A2(3,2)
                                                                                            CURV0210
       EQUIVALENCE (VU(1),A1(1,1)),(VW(1),A1(1,2)),(VUU(1),A2(1,1)),
                                                                                            CURV0220
      1(VWW(1),A2(1,2))
                                                                                            CURV0230
       U3 = 3.00*U
                                                                                            CURV0240
                                                                                                           1
       U6 = U3 + U3
                                                                                            CURV0250
       W3 = 3.00*W
                                                                                            CURV0260
       W6 = W3 + W3
                                                                                            CURV0270
       DO 10 I = 1,3
                                                                                            CURV0280
       CALL PLACE ( V(1,I),B,O )
                                                                                            CURV0290
                                                                                                           6
       B2 = B(2) + B(2)
                                                                                            CURV0300
       B6 = B(6) + B(6)
                                                                                            CURV0310
       B10 = B(10) + B(10)
                                                                                            CURV0320
       B14 = B(14) + B(14)
                                                                                            CURV0330
       VUW(I) = ((B(1)*U3+B2)*U+B(3))*W3*W*((B(5)*U3+B6)*U+B(7))*(W+W)
                                                                                            CURV0340
      1 + (B(9)*U3+B10)*U+B(11)
                                                                                            CURV0350
                                                                                                          11
       VUU(I)=(((B(1)*U6+B2)*W+B(5)*U6+B6)*W+B(9)*U6+B10)*W+B(13)*B6+B14 CURV0360
VU(I) = (((B(1)*U3+B2)*U+B(3))*W+(B(5)*U3+B6)*U+B(7))*W+(B(9)*U3 CURV0370
      1*B10)*U+B(11))*W+(B(13)*U3+B14)*U+B(15)
                                                                                            CURV0380
       B2 = B(5) + B(5)

B10 = B(7) + B(7)
                                                                                            CURV0390
                                                                                            CURV0400
       B14 = B(8) + B(8)
                                                                                            CURV0410
                                                                                                          16
      VWW(I)=(((B(1)*W6+B2)*U+B(2)*W6+B6)*U+B(3)*W6+B10)*U B(4)*W6+B14
VW(I) = (((B(1)*W3+B2)*W+B(9))*U+(B(2)*W3+B6)*W+B(10))*U+(B(3)*
1W3+B10)*W+B(11))*U+(B(4)*W3+B14)*W+B(12)
                                                                                            CURV0420
                                                                                            CURV0430
                                                                                            CURV0440
   10 CONTINUE
                                                                                            CURV0450
       B(1) = VU(1)*VU(1) + VU(2)*VU(2) + VU(3)*VU(3)

B(2) = VU(1)*VW(1) + VU(2)*VW(2) + VU(3)*VW(3)
                                                                                            CURV0460
                                                                                            CURV0470
                                                                                                          21
       B(3) = VW(1)*VW(1) + VW(2)*VW(2) + VW(3)*VW(3)
                                                                                            CURV0480
       U3 = 1.00 / ( B(1)*B(3) - B(2)*B(2) )
U6 = SQRT ( U3 )
                                                                                            CURV0490
                                                                                            CURV0500
       B(4) = U6*(VU(2)*VW(3) - VU(3)*VW(2))
                                                                                            CURV0510
       B(5) = U6*( VU(3)*VW(1) - VU(1)*VW(3)
B(6) = U6*( VU(1)*VW(2) - VU(2)*VW(1)
                                                                                            CURV0520
                                                                                                          26
                                                                                            CURV0530
       B(7) = VUU(1)*B(4) + VUU(2)*B(5) + VUU(3)*B(6)
B(8) = VUW(1)*B(4) + VUW(2)*B(5) + VUW(3)*B(6)
B(9) = VWW(1)*B(4) + VWW(2)*B(5) + VWW(3)*B(6)
                                                                                            CURV0540
                                                                                           CURV0550
                                                                                           CURV0560
```

Figure 11. Listing of CURVTR Subroutine (Page 1 of 3)

```
CURV0570
                                                                                     31
    D0 70 I = 1,3
    CV(I) = 0.00
                                                                         CURV0580
    B(I+9) = U3*(B(3)*VU(I) - B(2)*VW(I))
                                                                         CURV0590
    B(I+12) = U3*(B(1)*VW(I) - B(2)*VU(I))
                                                                         CURV0600
    IF ( ABS( B(I+3) ) ,LT, ,99999D0 ) GO TO 70
                                                                         CURV0610
                                                                                     35
                                                                                          36
                                                                         CURV0620
    J = 0
                                                                                     38
                                                                                          39
   IF ( B(7) .NE. 0.00) GO TO 20
                                                                         CURV0640
                                                                         CURV0640
    J = 1
    B(16) = 1.00 / (B(1) * SQRT(B(1)))
                                                                                     41
                                                                         CURV0650
    GO TO 30
                                                                         CURV0660
                                                                                          44
 20 IF ( B(9) .NE. 0.00 ) GO TO 70
                                                                         CURV0670
                                                                                     43
                                                                         CURV0680
    B(16) = 1.00 / (B(3) * SQRT(B(3)))
                                                                                     46
                                                                         CURV0690
 30 IF (I - 2) 40, 50, 60
                                                                         CURV0700
 40 \text{ CV}(1) = (A1(3,J)*A2(2,J) = A1(2,J)*A2(3,J))*B(16)
                                                                         CURV0710
    GO TO 70
                                                                         CURV0720
 50 \text{ CV}(2) = (A1(3,J)*A2(1,J) = A1(1,J)*A2(3,J))*B(16)
                                                                         CURV0730
    GO TO 70
                                                                         CURV0740
                                                                                     51
 60 \text{ CV}(3) = (A1(2,J)*A2(1,J) = A1(1,J)*A2(2,J))*B(16)
                                                                         CURV0750
 70 CONTINUE
                                                                         CURV0760
    DO 170 I = 1,3
                                                                         CURV0770
    W6 = B(I+3)
                                                                         CURV0780
    B(I+3) = 0.00
                                                                         CURV0790
                                                                                     56
    U6 = B(4)*B(4) + B(5)*B(5) + B(6)*B(6)
                                                                         CURV0800
    VUW(I) = SQRT(U6)
                                                                         CURV0810
    B(I+3) = W6
                                                                         CURV0820
    IF ( U6 .EQ. 0.00 ) GO TO 110
                                                                         CURV0830
                                                                                     60
                                                                                          61
    C(I) = 0.00
                                                                         CURV0840
    IF(I=2)80,90,100
                                                                         CURV0850
80 C(2) = -B(6)
                                                                         CURV0860
    C(3) = B(5)
                                                                         CURV 0870
    GO TO 150
                                                                         CURV0880
                                                                                     66
 90 \text{ C}(1) = B(6)
                                                                         CURV 0890
    C(3) = -B(4)
                                                                         CURV0900
    GO TO 150
                                                                         CURV0910
100 C(1) = -B(5)
                                                                         CURV0920
    C(2) = B(4)
                                                                                     71
                                                                         CURV0930
    GO TO 150
                                                                         CURV0940
110 \ U3 = 1.00
                                                                         CURV0950
    W3 = 1.00
                                                                         CURV0960
    IF ( VW(I) .EQ, 0.00 ) GO TO 120
                                                                                     75
                                                                                          76
                                                                         CURV 0970
    W3 = -VU(I) / VW(I)
                                                                         CURV 0980
    GO TO 140
                                                                         CURV0990
120 IF ( VU(I) .EQ, 0.00 ) GO TO 130
                                                                         CURV1000
                                                                                     79
                                                                                          80
    U3 = 0.00
                                                                         CURV1010
                                                                                     81
    GO TO 140
                                                                         CURV 1020
130 IF ( ABS(VU(1))+ ABS(VU(2))+ ABS(VU(3)) .EQ, 0.00 ) GO TO 140
                                                                         CURV1030
                                                                                     83
                                                                                          84
    W3 = 0.00
                                                                         CURV1040
140 C(1) = U3*VU(1) + W3*VW(1)
                                                                                     86
                                                                         CURV1050
    C(2) = U3*VU(2) + W3*VW(2)
                                                                         CURV1060
    C(3) = U3*VU(3) + W3*VW(3)
                                                                         CURV1070
    U6 = C(1)*C(1) + C(2)*C(2) + C(3)*C(3)
                                                                         CURV1080
    IF ( U6 .EQ. 0.00 ) GO TO 160
                                                                                     90
                                                                                          91
                                                                         CURV1090
150 U6 = 1.00 / SQRT( U6 )
                                                                         CURV1100
160 C(1) = C(1)*06
                                                                         CURV1110
    C(2) = C(2)*U6
                                                                         CURV 1120
Figure 11. Listing of CURVTR Subroutine (Page 2 of 3)
```

82

```
CURV1130
       C(3) = C(3)*U6
       VUU(I) = C(1)*B(10) + C(2)*B(11) + C(3)*B(12)

VWW(I) = C(1)*B(13) + C(2)*B(14) + C(3)*B(15)
                                                                                                                                      CURV1140
                                                                                                                                                           96
                                                                                                                                      CURV1150
170 CONTINUE
                                                                                                                                      CURV1160
       D0 190 I = 1.3
                                                                                                                                      CURV1170
       DC(I) = B(I+3)
                                                                                                                                      CURV1180
      DC(I) = B(I+3)
IF ( CV(I) .NE. 0.00 ) GO TO 190
IF ( ABS( VUU(I) ) .LT. .1E-30 ) VUU(I) = 0.00
IF ( ABS( VWW(I) ) .LT. .1E-30 ) VWW(I) = 0.00
VU(1) = VUU(I)*VUU(I)
VU(2) = ( VUU(I)*VWW(I) ) + ( VUU(I)*VWW(I) )
VU(3) = VWW(I)*VWW(I)
VW(I) = B(7)*VU(1) + B(8)*VU(2) + B(9)*VU(3)
IF ( VUW(I) .EQ. 0.00 ) GO TO 180
Cr(I) = VW(I) / VUW(I)
GO TO 190
                                                                                                                                      CURV1190
                                                                                                                                                         101
                                                                                                                                                                  102
                                                                                                                                      CURV 1200
                                                                                                                                                        103
                                                                                                                                                                  104
                                                                                                                                      CURV1210
                                                                                                                                                         105 106
                                                                                                                                      CURV 1220
                                                                                                                                      CURV 1230
                                                                                                                                      CURV1240
                                                                                                                                      CURV1250
                                                                                                                                      CURV1260
                                                                                                                                                        111 112
                                                                                                                                      CURV1270
                                                                                                                                      CURV 1280
       GO TO 190
180 \text{ CV}(I) = 1.E40
                                                                                                                                      CURV1300
190 CONTINUE
                                                                                                                                      CURV1300
       RETURN
                                                                                                                                      CURV1310
       END
                                                                                                                                      CURV1320
```

Figure 11. Listing of CURVTR Subroutine (Page 3 of 3)

CR118



Figure 12. Segmented CURVTR Program



Figure 13. Segments Driven by Random Inputs

AD-A035 585 MCDONNELL DOUGLAS ASTRONAUTICS CO HUNTINGTON BEACH CALIF FACUANTITATIVE METHODS FOR SOF WARF RELIABILITY MEASUREMENTS. (U) F/6 9/2 DEC 76 P B MORANDA F44620-74-C-0008 AFOSR-TR-77-0046 UNCLASSIFIED MDC-66553 NL 20**3** AD 35585

#### 4. Testing by Constructed Cases

Without discussing in detail the method of constructing the special test cases, it is noted that the sequencing of the cases was done in the most natural way, that is, by "painting" through the program to the first untested branch, inventing a way of testing it, examining the result of the test case, retracing through to the next untested case, and so forth.

The first constructed test case, which was designed to exercise segment number 3, also exercised segments 5, 7, 12, 19, 20, and 21 (as well as 25, 27, 29, and 31 which were also exercised by the random cases). This is shown in Figure 14. The test designed to drive segment 4, also drove 10, 11, 14, 16, 17, 23, 25, 26, 23 and 30 (as well as 19 and 20). This is shown in Figure 15.

After obvious permutations of variables and four well designed cases all of the segments were tested except segments 13 and 27. It can be shown that segment 13 cannot be exercised by input data (the condition which is necessary cannot exist at this level of the program). It is unknown (and not worth the effort to establish) whether or not segment 27 can be driven by data, but is is safe to say that it will only be driven by data on a knife-edge.

In the construction of the test cases the conditions which had to be met were very severe\*, and it is doubted that the protection afforded by the programming was worth its direct cost (labor of the programmer ) or the indirect cost (a "crash" due to its absence). Obviously each program requires a separate judgement in this respect.

#### 5. Number Test Cases Required

In the sample problem, a total of 31 segments are shown and this is an upper bound for the number of test cases if segment level testing is required. Because of the particular nature of the sample program, "closing" as it does at two nodes between the start and end nodes, a sharper upper bound can be obtained.

\*one test branch requires a direction cosine greater than .99999 (instruction 0610).

THE SALES OF THE SALES OF THE SALES



Figure 14. Constructed Case I



Figure 15. Constructed Case II

Inspection shows that the bottom cluster can be exercised completely by at most 5 test cases. Any path from the top node in the bottom cluster starting with 25 will drive three more segments. There are then only four other segments to drive (in actuality it was found that 3 cases covered all of the segments in the bottom cluster). A generous upper bound to the cases required to the coverage (at the segment level testing) of both the middle and bottom clusters can be found by adding to those segments in the middle cluster which were driven in covering the segments in the bottom cluster (and are therefore already covered and not to be doubly counted), those segments still uncovered. In the specific example this turns out to be 3, but in the general case where no other information would be available, it would only be possible to assume that one of the middle branches were used, so that the number which might be used - this would assume that all of the segments driven in the bottom cluster can be driven by data which drives the same branch in the middle cluster - would be one less than the number of segments in the middle branch minus the number of segments in the shortest branch in the middle cluster. This (pessimistic) estimate in the sample program would be 10. But once data has been used and the segments in the bottom cluster are driven, it turns out that there are only three segments in the middle left uncovered. It also turns out that all of the segments in the top cluster are exercised when the bottom two clusters, are, but without the knowledge so obtained, it would be necessary to use the total count 10 (or 9 since segment 1 is always driven), since the shortest branch is of length 1.

Thus a generous upper limit for the test cases, in the absence of any other knowledge would be (in this special kind of case), 25. On the other hand if the estimate were sequentially formed on the basis of the results obtained by the constructed cases, they would be 21, 10, 6, 5, 5 (a fast converging sequence).

#### V. DEVELOPMENT OF DETECTION RATE MODELS

## A. The De-Eutrophication Process

This model is described in an overview manner in Section III.

The data for analysis consist of the sequence of times between errors:  $x_1, x_2, \dots, x_n$ , as shown in Figure 4 (Section III).

1. Maximum Likelihood Estimates of Parameters
Estimation of the parameters N and ø can be made by application of the
maximum likelihood principle. Under the assumption that there is a uniform
failure rate between errors, the density for X; is given by

$$p(X_{i}) = \emptyset[N-(i-1)] \exp \left\{-\emptyset[N-(i-1)]X_{i}\right\}$$
 (13)

and the likelihood function is

$$L(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} \phi[N-(i-1)] \exp \left\{-\phi[N-(i-1)]X_i\right\}$$
 (14)

It is more convenient to maximize the natural logarithm of the likelihood:

$$\log_{e} L = \sum_{i=1}^{n} \log[N-(i-1)] \phi - \sum_{i=1}^{n} [N-(i-1)] \phi X_{i}$$
 (15)

$$= \sum_{i=1}^{n} \log[N-(i-1)] + n \log \emptyset - \sum_{i=1}^{n} [N-(i-1)] \emptyset X_{i}$$
 (15a)

Taking partials and setting to zero

$$\frac{\partial \log L}{\partial N} = \sum_{i=1}^{n} \frac{1}{N - (i-1)} - \sum_{i=1}^{n} \phi X_{i} = 0$$
 (16)

$$\frac{\partial \log L}{\partial \phi} = \frac{n}{\phi} - \frac{n}{\sum_{i=1}^{n} (N-(i-1))X_{i}} = 0$$
 (17)

Letting  $\Sigma x_i = T$ , Eq. 17 can be solved for  $\phi$  to yield

$$\phi = \frac{n}{NT - \sum (i-1)X_i}$$
 (18)

and Eq. 16 becomes

$$\sum_{i=1}^{n} \frac{1}{(N-(i-1))} = \frac{nT}{NT - \sum_{i=1}^{n} (i-1)X_{i}} = \frac{n}{n - \frac{1}{T} - \sum_{i=1}^{n} (i-i)X_{i}}$$
(19)

Equation 19 is free of  $\phi$  and presents the key equation to solve. The two data-derived statistics are  $T = \sum X_i$  and  $\sum (i-1)X_i$ . Knowing these we can solve Eq. 19 for N, the initial error content.

Solving this for N, and calling the result  $\hat{\mathbf{N}}$ , we can obtain the estimate for

$$\phi = \frac{n}{\hat{N}T - \sum (i-1)X_i}$$
(20)

The preceding development is essentially a mathematical exercise and does not explicitly employ properties of the Poisson process; accordingly, the following heuristic argument is given for the genesis of Eqs. (16) and (17).

The mean, or expected value, of a random variable having an exponential distribution,  $\lambda e^{-\lambda X}$ , is equal to  $\lambda^{-1}$  and in the particular terminology of the Poisson process, this is called the mean-time-between-failures. Thus, a reasonable "representative" for the variable  $X_1$ , whose distribution is exponential with parameter Nø, is 1; similarly the quantity 1 "represents"  $X_2$ , and so forth. Thus summing over the n variables, there results

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} \frac{1}{(N-i-1)}$$

which is essentially Eq. 16. With the expectation operator applied to the sum this equation would be precise.

For a Poisson process with a uniform failure rate,  $\theta$ , a reasonable estimate for  $\theta$  would be the ratio formed by dividing the number of failures observed by the time of observation. Another way of looking at this, and a way which

permits generalization, is to estimate the number of failures occurring in a given period by integrating the (constant) failure rate over that period. This same procedure will apply to a variable failure rate, and in the particular process of the model, the integration becomes very simple. Performing the integration and setting it equal to n produces the equation

$$n = N \phi X_1 + (N-1) \phi X_2 + ... + (N-(n-1)) \phi X_n$$

or

$$\frac{n}{\phi} = \sum_{i=1}^{n} (N-(i-1))X_{i}$$

which is seen to be the same as Eq. 17.

#### a. Estimate of MTTF

From general considerations, an estimate for other functions of the two variables N and  $\phi$  can be obtained by substitution of their estimated value into the functional relation.

In particular, the estimate of the MTTF can be obtained by taking the reciprocal of the failure rate at the end of the observation period. In the present instance, the next error is the (n+1)st error and the estimate for the MTTF is

$$\hat{\mathbf{M}}_{1} = [\hat{\mathbf{N}} - \mathbf{n}]\hat{\boldsymbol{\phi}}^{-1} \tag{21}$$

where we have used a subscript to distinguish between the estimates which different models provide.

## b. Estimate of Purification Percentage

For comparison purposes, the degree of purification which has been achieved through testing can be used. It is simply the ratio of the difference between the initial and final failure rate and the initial failure rate. In the present instance this is

$$P_1 = 100. \frac{\hat{N}\hat{\phi} - [\hat{N} - n]\hat{\phi}}{\hat{N}\hat{\phi}} = 100. \frac{n}{\hat{N}}$$
 (22)

where we, again, use a subscript to denote the model associated with the estimate.

## c. Variances/Covariances of Estimates

The general properties of maximum likelihood estimates can be used in a purely formal way to derive some measure of the variability in the estimates. This point must be emphasized since it is manifest that the use of asymptotic formulas (involving large sample sizes) on samples which are fundamentally limited to be finite (there can be no larger samples than there are errors) can result only in caution-laden approximations. Nonetheless, the experiences which have been gained using the models seem to indicate that these approximations for the variances are generally much too large.

The basis for the development of the large sample estimates is a theorem due to R. A. Fisher which states that under certain "general conditions", which have to do with the boundedness of the first three derivatives of the likelihood, the variance and covariances of the estimates are given by the inverse of a matrix formed from the mathematical expectation of second partial derivatives.

Explicitly the matrix  $A_{ij}$  (which is to be inverted) employed in the estimation of several parameters  $(\theta_1,\theta_2,\ldots,\theta_n)$  has the terms

$$A_{ij} = -E \left\{ \frac{\partial^2 \log L}{\partial \theta_i \partial \theta_j} \right\} \qquad (23)$$

From Eqs. (16) and (17) above

$$\frac{a^2L}{aN^2} = -\sum_{i=1}^{n} \frac{1}{(N-i+1)^2}$$
 (24)

$$\frac{\partial^2 L}{\partial N \partial \phi} = \frac{\partial^2 L}{\partial \phi \partial N} = -\sum_{i=1}^{n} X_i$$
 (25)

$$\frac{\partial^2 L}{\partial \phi^2} = -\frac{n}{\phi^2} \tag{26}$$

And since

$$E(X_i) = \frac{1}{(N-i+1)\delta}$$

the matrix elements become:

$$A_{11} = \sum_{i=1}^{n} \frac{1}{(N-i+1)^2}$$
 (27)

$$A_{12} = A_{21} = \sum_{i=1}^{n} \frac{1}{(N-i+1)\phi}$$
 (28)

$$A_{22} = \frac{n}{6^2} \tag{29}$$

where for evaluation in practical situations, the values of  $\hat{N}$  and  $\hat{\phi}$  (the estimates based on the data) are used. The determinant (denoted  $Det_1$ ) of the A-matrix is

$$Det_1 = A_{11}A_{22}-A_{12}A_{21} = \sum_{i=1}^{n} \frac{1}{(N-i+1)^2} \cdot \frac{n}{p^2} - T^2$$
 (30)

where we have used the fact that "on the average"

$$\sum_{i=1}^{n} \frac{1}{(N-i+1)\phi} = T, \text{ the total observation time.}$$

Hence

$$Var (\hat{N}) = \frac{n}{p^2} \cdot \frac{1}{Det_1}$$
 (31)

$$Var(\hat{\theta}) = \sum_{i=1}^{n} \frac{1}{N-i+1}^{2} \cdot \frac{1}{Det_{1}}$$
 (32)

$$Covar (\hat{N}, \hat{\beta}) = -\frac{T}{Det_1}$$
 (33)

Since for a fixed sample size n, the solutions for N and  $\emptyset$  by means of Eqs. (18) and (19), depend only on the ratio  $R = \frac{\Sigma(i-1)X_i}{\Sigma X_i}$ , so also can

the variance and covariance be determined from R. This is done in the subsequent section.

## 2. Explanation and Development of Appendix II

The solutions to the maximum likelihood equations and the subsequent computation of the MTTF and other derived measures are difficult to wring out. A material assist is provided by the tables which form Appendix II.

Since for a fixed sample size n, the solutions for N and  $\emptyset$  by means of Eqs. 18 and 19 depend only on the ratio  $R = \frac{\Sigma(i-1)X_1}{\Sigma X_1}$ , it is possible to tabulate solutions as a function of the ratio. With the so-determined solutions, the (estimated) variances and covariances, and the MTTF can be obtained. Such a table can be computed for each integer n.

In order to tabulate the parameters for an arbitrary realization of the process, it is necessary that the scale for time be normalized. Since the total observation time, T, is assumed recorded by the data collection process, it is a natural scale factor to use. It must be pointed out however, that this time is a random variable; although it is treated as if it were a constant, this is a purely pragmatic interpretation. A reasonable interpretation which can be made is that the results which are recorded are conditional on the observed time.

Given the ratio R, the MLEs become

$$\sum_{j=1}^{n} \frac{1}{N-(j-1)} = \frac{n}{N-R}$$
(34)

and

Equation (34) can be solved essentially by trial and error. Once N is established, the quantity of can be obtained from Eq. (35). The quality of is entered in column 3 of the sample table, Table XI.

The variance of N can be obtained in the following way.

Table XI
Sample Table
(n = 26)

| Ratio | Error<br>Content | (PHI)T | DEVN  | DEVø<br>(Normed) | COVAR<br>(Normed) | MTTF<br>(Normed) |
|-------|------------------|--------|-------|------------------|-------------------|------------------|
| 14.0  | 51.19            | .6991  | 35.88 | .6883            | -24.2005          | .0568            |
| 1.2   | 46.94            | .7942  | 27.74 | .6907            | -18.6666          | .0601            |
| 14.4  | 43.62            | .8899  | 22.04 | .6936            | -14.7968          | .0638            |
| 14.6  | 40.95            | .9866  | 17.87 | .6966            | -11.9618          | .0678            |
| 14.8  | 38.78            | 1.0842 | 14.75 | .7001            | -9.8426           | .0722            |
| 15.0  | 36.98            | 1.1826 | 12.36 | .7041            | -8.2155           | .0770            |
| 15.2  | 35.47            | 1.2824 | 10.47 | .7083            | -6.9311           | .0823            |
| 15.4  | 34.19            | 1.3836 | 8.95  | .7129            | -5.9020           | .0882            |
| 15.6  | 33.10            | 1.4857 | 7.73  | .7181            | -5.0736           | .0948            |
| 15.8  | 32.15            | 1.5898 | 6.72  | .7235            | -4.3850           | .1022            |
| 16.0  | 31.34            | 1.6953 | 5.88  | .7296            | -3.8158           | .1105            |
| 16.2  | 30.62            | 1.8027 | 5.17  | .7361            | -3.3350           | .1200            |
| 16.4  | 30.00            | 1.9121 | 4.56  | .7432            | -2.9274           | .1308            |
| 16.6  | 29.45            | 2.0236 | 4.05  | .7508            | -2.5795           | .1433            |
| 16.8  | 28.96            | 2.1377 | 3.60  | .7591            | -2.2784           | .1579            |
| 17.0  | 28.53            | 2.2541 | 3.21  | .7681            | -2.0185           | .1750            |
| 17.2  | 28.15            | 2.3737 | 2.87  | .7777            | -1.7909           | .1956            |
| 17.4  | 27.82            | 2.4959 | 2.58  | .7883            | -1.5935           | .2205            |
| 17.6  | 27.52            | 2.6222 | 2.32  | .7995            | -1.4173           | .2516            |
| 17.8  | 27.25            | 2.7519 | 2.08  | .8119            | -1.2630           | .2912            |
| 18.0  | 27.01            | 2.8862 | 1.87  | .8251            | -1.1250           | .3436            |
| 18.2  | 26.80            | 3.0247 | 1.59  | .8396            | -1.0035           | .4154            |
| 18.4  | 26.61            | 3.1680 | 1.52  | .8556            | 8964              | .5200            |

Column 1 is the ratio  $\Sigma(i-1)X_i / \Sigma X_i$ 

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to botain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

By Eq. (31)

$$Var(N) = \frac{n}{b^2 Det_1}$$
 (36)

but using the substitution

$$S_2 = \int_{i=1}^{n} \frac{1}{(N-i+1)^2}$$
 (37)

the determinant of Eq. (30) can be expressed as

$$Det_1 = \frac{nS_2}{6^2} - T^2$$

or

$$\phi^2 \text{Det}_1 = \text{ns}_2 - (\phi T)^2$$

Hence the denominator of Eq. 36 can be evaluated using the estimates  $\phi T$  and N.

Hence

$$Var(N) = \frac{n}{nS_2 - (\phi T)^2}$$
(38)

The standard deviation is the more useful measure and is obtained by taking the square root of Var(N). This is entered in column 4 of the sample table.

The variance of  $\phi T$  is obtained in much the same way: Det<sub>1</sub> is evaluated as before, and with S<sub>2</sub> as defined,

as before, and with 
$$S_2$$
 as defined,
$$Var(\phi T) = T^2 \qquad \frac{S_2}{Det_1} = \frac{S_2 T^2}{S_2 \frac{n}{\phi^2} - T^2}$$

$$= \frac{S_2(\phi T)^2}{nS_2 - (\phi T)^2}$$
 (39)

D can be eliminated from both equations to leave a single equation.

$$\frac{\sum_{i=1}^{n} i k^{i-1} X_{i}}{\sum_{k} i^{i-1} X_{i}} = \frac{n+1}{2}$$
 (45)

## a. Estimate of MTTF

For this model the MTTF at the end of the test, where n errors have been detected, is given by the reciprocal of the failure rate for the n+1st error:

Thus

$$MTTF_2 = \left(\hat{D}\hat{k}^n\right)^{-1} \tag{46}$$

## b. Estimate of Purification Percent

For comparison purposes among models the degree of achievement of the "ultimate" is measured, as before by the ratio formed by dividing the difference between the initial and final failure rate by the initial failure rate.

Thus, in percent

$$\hat{P}_2 = (1 - \hat{k}^n) (100)$$
 (47)

# c. Variances/Covariances of Estimates

The variance and covariances for this process are found by the same procedure used above. Distinct from the case above, however, this process has an infinite number of errors, and so the sample size can become large, and the asymptotic formulas can be applied without apology.

Directly by differentiation of the likelihood given in Eq. (42),

$$\frac{\delta^2 \log L}{\delta D^2} = -\frac{n}{D^2} \tag{48}$$

$$\frac{\delta^2 \log L}{\delta D \delta k} = \frac{\delta^2 \log L}{\delta k \delta D} = -\sum_{i=1}^{\infty} (i-1)k^{i-2}X_i$$
 (49)

$$\frac{\delta^2 \log L}{\delta k^2} = p \frac{1}{k^2} \sum_{i=1}^{n} (i-1) - D \sum_{i=1}^{n} (i-1)(i-2) k^{i-3} X_i$$
 (50)

Since  $E(X_i) = \frac{1}{Dk^{i-1}}$ , the associated A-matrix elements are

$$A_{11} = \frac{n}{D^2} \tag{51}$$

$$A_{12} = A_{21} = \frac{1}{Dk} \quad \sum_{i=1}^{n} (i-1) = \frac{1}{Dk} \quad \frac{n(n-1)}{2}$$
 (52)

$$A_{22} = \frac{1}{k^2} \sum_{i=1}^{n} (i-1) + \frac{1}{k^2} \sum_{i=1}^{n} (i-1)(i-2)$$
 (53)

$$= \frac{1}{k^2} \sum_{i=1}^{n} (i-1)^2 = \frac{1}{6k^2} n(n-1)(2n-1)$$
 (54)

Using  $\operatorname{Det}_2$  to represent the determinant of the A-matrix, we obtain after simple reduction:

$$Det_2 = \frac{1}{D^2 k^2} \cdot \frac{n^2 (n^2 - 1)}{12}$$
 (55)

Thus, the variances and covariances are

$$Var \hat{D} = D^2 \frac{2(2n-1)}{n(n+1)}$$
 (56)

$$Var \hat{k} = k^2 \frac{12}{n(n^2-1)}$$
 (57)

$$Covar (\hat{D}, \hat{k}) = -Dk \frac{6}{n(n+1)}$$
 (58)

In the limit these variances tend to zero. On the other hand, it will be noted that the correlation coefficient between the estimates is quite high (in absolute value):

$$\rho = -\sqrt{\frac{3}{2}} \frac{(n-1)}{(2n-1)} \tag{59}$$

which is in excess of 0.85.

The estimate for the MTTF which has the character of the maximum likelihood estimates is given by Eq. (27) as

$$\hat{M}_2 = \frac{1}{\hat{D}\hat{k}^n}$$

where the subscript 2 denotes the estimate for this process. The asymptotic approximations can be employed in another reasonable approximation in order to derive a measure of the variation in the estimate of the MTTF. By differentiation taking the total differential and expectations it is seen that

$$Var M_2 = \frac{1}{D^2 k^2 n} Var(D) + \frac{2n}{D^3 k^2 n+1} Covar (D,k) + \frac{n^2}{D^2 k^2 n+2} Var(k)$$
(60)

where, again the estimates would be used as proxies for the (unknown) parameters.

# 2. Explanation of Appendix III

After elimination of one of the parameters from the pair of maximum likelihood equations, there results a polynomial (in k). This polynomial has the (random) separation times  $x_1, x_2, \ldots, x_n$  for coefficients. Of course, it is not possible to formulate the equation until a realization of the process has occurred; furthermore, the relation between D and k shown in Eq. 45, involves evaluation of this polynomial. Consequently, there is no way to construct tables for this process.

Appendix III provides a convenient summary of the formulas which are associated with that process.

# C. Hybrid Geometric/Poisson Process

Analysis of this model which is described in preliminary form in Section III, follows that of the two de-eutrophication models. Because some results have been produced which have not previously published in open literature a more extensive development is made as well as a description of an application.

# 1. Maximum Likelihood Estimates of Parameters

The likelihood function for the error separation times  $X_i = T_i - T_{i-1}$ , for i=1,2,...,n, and  $T_0=0$ , is:

$$L = \prod_{i=1}^{n} Dk^{i-1} + \theta \exp \left\{ -Dk^{i-1} + \theta X_{i} \right\}.$$

The maximum likelihood equations are obtained by partial differentiation of the logarithm of the likelihood function. These are

$$\sum_{i=1}^{n} \frac{k^{i-1}}{Dk^{i-1}+\theta} - \sum_{i=1}^{n} k^{i-1}X_{i} = 0$$
 (61)

$$\sum_{i=1}^{n} \frac{(i-1)k^{i-2}}{Dk^{i-1}+0} - \sum_{i=1}^{n} (i-1)k^{i-2}X_{i} = 0$$
 (62)

$$\sum_{i=1}^{n} \frac{1}{Dk^{i-1}+0} - \sum_{i=0}^{n} x_{i} = 0$$
 (63)

By simple manipulation on Eq. 61 it can be converted to

$$n - \theta \sum_{i=1}^{n} \frac{1}{Dk^{i-1} + \theta} = \sum Dk^{i-1} X_{i}$$
 (64)

and, from Eq. 63, using  $T = \sum_{i=1}^{n} X_i$ , the explicit relation  $Q = \frac{n - \sum_{i=1}^{n} Dk^{i-1}X_i}{\sum_{i=1}^{n} N_i},$  (65)

can be obtained.

Since the second term of the numerator represents the integral of the failure rate out to time T, and so is an estimate of the number of non-repeatable errors, the numerator represents the number of "true" Poisson-like errors. Consequently, the quotient of this number divided by time is similar to the commonly employed estimate.

The Eqs. 61, 62 and 63 constitute a set of non-linear equations which can be solved by either the Newton method by iteration with the Jacobian, or by the method, due to K. M. Brown [17]. The latter method is used in the illustrative example following.

Although the Brown method is used, the possibility of a solution is determined by the evaluation of Jacobian (determinant) associated with the three equations. If  $F_1(D,k,\theta)$ ,  $F_2,(D,k,\theta)$ , and  $F_3(D,k,\theta)$  are used to denote the left sides of 61, 62 and 63, respectively, and replace D, k, and  $\theta$  by  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$ , then the Jacobian entries are obtained by differentiation. Thus, generically we have

$$J_{ij} = \frac{\delta F_i}{\delta \theta_i}$$

and the particular entries are 
$$J_{11} = -\sum_{i=1}^{n} \frac{k^{2i-2}}{(Dk^{i-1}+\theta)^2} \qquad J_{31} = -\sum_{i=1}^{n} \frac{k^{i-1}}{(Dk^{i-1}+\theta)^2}$$

$$J_{12} = \sum_{i=1}^{n} \frac{(i-1)k^{2i-3}}{(Dk^{i-1}+\theta)^2} \qquad J_{32} = -\sum_{i=1}^{n} \frac{(i-1)k^{i-2}}{(Dk^{i-1}+\theta)^2}$$

$$J_{13} = -\sum_{i=1}^{n} \frac{k^{i-1}}{(Dk^{i-1}+\theta)} \qquad J_{33} = -\sum_{i=1}^{n} \frac{1}{(Dk^{i-1}+\theta)^2}$$

$$J_{21} = -\sum_{i=1}^{n} \frac{(Dk^{i-1}+\theta)(i-1)k^{i-2}-k^{i-1}D(i-1)k^{i-2}}{(Dk^{i-1}+\theta)^2} -\sum_{i=1}^{n} \frac{(i-1)k^{i-2}X_i}{(i-1)k^{i-2}X_i}$$

$$J_{22} = -\sum_{i=1}^{n} \frac{(Dk^{i-1}+\theta)(i-1)(i-2)k^{i-3}-(i-1)k^{i-2}D(i-1)k^{i-2}}{Dk^{i-1}+\theta)^{2}} - \sum_{i=1}^{n} (i-1)k^{i-3}\chi_{i}$$

$$J_{23} = -\sum_{i=1}^{n} \frac{D(i-1)k^{i-2}}{(Dk^{i-1}+\theta)^{2}}$$

# 2. Sample Application

The above procedure is applied to the data shown in Table XII.

Table XII
Failure Rate Data

| Error No. | Xi | Error No. | Xi |
|-----------|----|-----------|----|
| 1         | 9  | 14        | 9  |
| 2         | 12 | 15        | 4  |
| 3         | 11 | 16        | 1  |
| 4         | 4  | 17        | 3  |
| 5         | 7  | 18        | 3  |
| 6         | 2  | 19        | 6  |
| 7         | 5  | 20        | 1  |
| . 8       | 8  | 21        | 11 |
| 9         | 5  | 22        | 33 |
| 10        | 7  | 23        | 7  |
| 11        | 1  | 24        | 91 |
| 12        | 6  | 25        | 2  |
| 13        | 1  | 26        | 1  |
|           |    |           |    |

The initial guess for the solution to the three equations are  $D_0$  = .2112,  $k_0$  = .95125, and  $\theta_0$  = .0576. The first two correspond to the solution obtained by solving the Eqs. 61 and 62 with  $\theta$ =0. The value  $\theta_0$  is obtained by evaluating the test-end value of the failure rate, that is  $\theta_0$ = $D_0k_0^{26}$ .

These three values produced the starting point for solving Equations 61, 62, and 63, by the Brown method. The resultant values are:

 $\hat{D} = .2211$ 

 $\hat{k} = .9468$ 

 $\hat{\theta} = .00106$ 

The compare with the values D=.2112 and k=.95125 which were obtained with the Geometric De-Eutrophication Process.

#### VI. A PRIORI RELIABILITY

One of the possible areas of application of random test cases is in the estimation of an a priori reliability. This can be done in at least two ways. One of these has been described by Moranda (18) in which an assumed distribution of input data is used to estimate the average (weighted) number of errors resident in a program before testing is completed.

In this application the number of instructions (vis a vis segments) executed can counted directly. If the sample cases are drawn randomly according to the fitting operational probability law, then a simple calculation will give what may be called the "average operational error content".

This is done by applying the "Programmers Poisson Parameter" which is a universal constant of 1 error per 50 lines of code. If a run is made using the cases generated by operational-like data and the result is a sequence of numbers  $N_1, N_2, \ldots, N$  representing the number of instructions exercised in each run, then an estimate of the average error content is the product of 1/50 and the average number of instructions exercised.

Thus, explicitly

$$M = 1/50 \sum_{i=1}^{m} \frac{1}{i} N_i$$

is the estimated average error content.

It might be argued that the total error content is not so much dependent on the instruction counts as it is on the number of logical paths which can be formed. Without arguing this point, one way or another, it is merely noted that the method of estimating the total number of logical paths is the only one known which provides this figure, and hence could be used to make this estimate.

Once this figure is arrived at, there is a new way of providing an estimate of reliability. The number of paths found by test (and which presumably

have furnished debugging information for their correction, and which then can be considered error free) subtracted from the estimated total number produce a number which represents the number proportional to the error count (estimate).

It should be noted that the average operational error content derived above is not related in any simple way to the total software error content, since the former figure depends on the probability law for the operational input as well as on the structure of the program, while the best guess as to the total error content of the package is 1/50 times the total number of instructions - some of which may seldom, if ever, be exercised.

Once threads through a program can be established, a similar application can be made on them. The complications due to loops and repeated instruction are the major problems in this respect. These can best be resolved by forming mutually exclusive sets, but no clear cut best choice for this process has been found.

## References

- Z. Jelinski and P. Moranda, "Software Reliability Research", pp. 464-484 in "Statistical Computer Performance Evaluation", edited by Walter Freiberger and published by Academic Press in 1972.
- TRW Systems Group, "Software Development Characteristics Study for the CCIP-85 Study Group," C. A. Bosch TRW Study Manager, B. W. Boehm CCIP-85 Study Chairman, Redondo Beach, California, October 1971.
- 3. B. J. Hatter, "Excerpt from CCIP Study Regarding Analysis of TRW Software Analysis Data", Lulejian and Associates, Inc., Redondo Beach California, November 1971.
- L. G. Stucki, "A Prototype Automatic Program Testing Tool", Proceedings of the Symposium on Software Reliability, sponsored by IEEE, New York City, May 1973.
- F. E. Hohn, L. Shissler, "Boolean Matrices and the Design of Combinational Relay Switching Circuits", Bell Systems Technical Journal, Vol. 34, pp. 177-202.
- H. G. Flegg, "Boolean Algebra Including Boolean Matrix Theory", John Wiley and Sons, Inc., 1962.
- C. V. Ramamoorthy, "Discrete Systems Representation and Analysis by Generating Functions of Abstract Graphs", IFIP Congress Symposium, New York, May 1965.
- 8. C. V. Ramamoorthy, "Analysis of Graphs by Connectivity Considerations," JACM Vol. 13, No. 2, April 1966, pp. 211-222.

- W. Mayeda and C. V. Ramamoorthy, "Distinguishability Criteria in Oriented Graphs and their Application to Computer Design", IEEE Transactions on Circuit Theory, Vol. CT-16, No. 4, November 1969.
- 10. M. Lipow, "Some Directed Graph Methods for Analyzing Computer Programs" in Proceedings of Computer Science and Statistics: 8th Annual Symposium on the Interface, Los Angeles, February 1975.
- R. P. Dilworth, "A Decomposition Theorem for Partially Ordered Sets", Annuals of Math, Vol. 51, No. 1, Jan 1950.
- Z. Jelinski and P. B. Moranda "Software Reliability Research" in Statistical Computer Performance Evaluation", Walter Freiberger, ed., Academic Press, New York, 1972.
- 13. P. B. Moranda, "Predictions of Software Reliability During Debugging 1975 Proc. Ann. Rel. and Maint. Symp., Washington, D.C. January 1975.
- P. B. Moranda, "A Failure Rate Model for Burn-In Through Steady-State", Joint National Meeting of ORSA/TIMS, Philadelphia, 31 March-2 April, 1976.
- D. H. Lehmer, "A Machine Method for Solving Polynomial Equations", JACM, Vol. 8, 1961.
- 16. M. A. Jenkins and J. F. Traub, "A Three-Stage Variable-Shift Iteration for Polynomial Zeros and its Relation to Generalized Rayleigh Iteration", Numerical Methods, Vol. 14 (1970).
- K. M. Brown, "A Quadractically Convergent Newton-Like Method Based Upon Gaussian Elimination", SIAM Journ. on Numerical Analysis, Vol. 6, No. 4, 1969.

- P. B. Moranda, "Probability-Based Models for the Failures During Burn-In", Joint National Meeting of ORSA/TIMS, Las Vegas, Nevada, November 17-19, 1975.
- 19. P. B. Moranda, "Estimation of A Priori Software Reliability", Proceedings of Computer and Statistics: 8th Annual Symposium on the Interface, Los Angeles, February 1975.

# Appendix I PROGRAM TESTING SYSTEM

## INTRODUCTION

The Program Testing System (PTS) was designed as an aid in software reliability studies of FORTRAN programs. The PTS system uses the International Mathematical and Statistical Library, IMSL, to generate the random data needed by the reliability study.

There are four basic modules in the PTS system.

# (1) TEST CASE PREPROCESSOR

The Test Case Preprocessor generates a driver program for the subroutines under study. It also generates the data for test cases under user control.

# (2) PET PREPROCESSOR

The preprocessor module of the PET system is used to analyze the FORTRAN source code under study in order to identify the program branch points. This information is put on an intermediate file and is used to define program segments. It also instruments the source code in order to gather execution statistics.

# (3) TEST CASE LIBRARY

The Test Case Library write an intermediate file with execution statistics for each test case. It is transparent to the user.

# (4) SEGMENT POSTPROCESSOR

The Segment Postprocessor using the file generated by the PET Preprocessor defines the program segments and prints the reports needed in the reliability study.

Complete descriptions of modules (1), (3) and (4) are given in sections II, III and IV. The preprocessor is described in the PET Manual issued by McDonnell Douglas Automation Company.

Illustration I-1 shows the flow of control through the PTS system.

The user inputs the test case options desired on cards to the test case preprocessor which outputs a FORTRAN driver program. The subject program is input to the preprocessor which outputs instrumented source code and a file with syntactic information to be used by the postprocessor. Then the driver program and instrumented source are compiled and executed. A file of execution statistics is generated at this time. Then the segment postprocessor is executed using the execution and syntactic statistic files and generating the reports needed for the reliability study.

### II. TEST CASE PREPROCESSOR

The Test Case Preprocessor constructs, under user control, the random data for test cases needed to drive the subroutines being studied. In addition, it automatically generates a FORTRAN program to execute the subroutines. A restriction of the study is that all input must be through the calling sequence of the subroutine.

Four types of random distributions may be specified: Uniform, Triangular, Beta and Truncated Normal. The user must supply the range of values that the input parameter may assume. The range must be on the field of real numbers. A most likely value (mode) may be input; otherwise, it is assumed to be at the center of the range. The random numbers are then mapped into the range or into the log of the range according to a linear interpolation.

One of the above distribution options is specified for each individual variable or array. The same options are in effect for all the test cases.



Figure 1-1. Flow of Control

#### II.1 Random Methods Used

The initial seed for generating the random numbers is obtained from the system clock accurate to 1/1000 second. The fractional part of the time divided by 1000, TIME/1000, is used, which gives a number between 0 and 1 with 6 significant digits. Since the TIME parameter is given in seconds, this number repeats approximately every 15 minutes. Subsequent seeds are obtained from the IMSL uniform random number generator, GGU1.

#### II.1.1 Uniform Distribution

The IMSL subroutine GGU1 is entered once to obtain uniformly distributed random numbers for all cases for the given variable/array. The equations for mapping the random numbers into the range are given below.

Given a range of (a,c) and random numbers  $r_i$ , i=1, n, these are mapped into the range by

$$s_i = a + r_i (c-a)$$
 (I-1)

If the range represents the  $\log_{10}$  of the actual range,

$$t_i = k (10^{r_i})$$
 where (I-2)  
 $k = +1$  if  $r_{n-i+1} > .5$  and  
 $k = -1$  if  $r_{n=i+1} \le .5$ .

# II.1.2 Triangular Distribution

The IMSL subroutine GGU1 is entered once to obtain uniformly distributed random numbers for all cases for the given variable/array. Then the random numbers are mapped into the range using a triangular distribution.



Given a range (a,c), a mode b, and an array of random numbers  $r_i$ , i=1, n, where  $0 \le r_i \le 1$ , the following equations are used.

If 
$$0 \le r_i < \frac{b-a}{c-a}$$
, then

$$s_i = a + [r_i (c-a) (b-a)]^{1/2}$$
 (I-3)

If 
$$\frac{b-a}{c-a} \le r_i \le 1$$
, then

$$s_i = c - [(c-b) (c-a) (1-r_i)]^{1/2}$$
 (I-4)

If the range represents the  $\log_{10}$  of the number, then equation I-2 is used to obtain the actual numbers.

#### II.1.3 Beta Distribution

In order to obtain n  $\beta$ -distributed random numbers, the IMSL subroutine GGBET is entered n times. The GGBET routine requires a p and q which are multiples of 1/2. These are obtained using the following equations.



Let (L,U) be the range and M the mode.

Then E (u) = 
$$\frac{1}{6}$$
 (L + 4M +U) (I-5)

$$m = (E(u) - L)/R$$
 where  $R = U - L$  (I-6)

$$P_s = m (36m (1-m) - 1)$$
 (I-7)

and

$$q_s = (1-m)(36m (1-m) - 1)$$
 (I-8)

Since p and q must be multiples of 1/2, the following approximation must be used:

$$p = int (2p_s + .5)/2$$
 (I-9)  
 $q = int (2q_s + .5)/2$ 

where int = integer part.

If the range represents the  $\log_{10}$  of the number, then

 $t = k (10^r)$  where r is the  $\beta$ -distributed random number.

 $k = \pm 1$  depending on the value of s(n).

where s(n) is a uniformly distributed random number obtained during the computation of 4.

### II.1.4 Truncated Normal Distribution

The IMSL routine GGNOR is entered once to obtain normally distributed random numbers. Since a truncated normal is desired, the user must specify a range and the amount of truncation indicated by k. The mean will be assumed to be at the midpoint of the range. Let the range be given by (a,b). Then

$$m = (a + b)/2$$
 (I-10)  
 $\sigma = (b - a)/2k$  (I-11)

The normal variable 
$$r_i$$
 is mapped into the range using  $s = \sigma \cdot r_i + m$  (I-12)

For k = 1.96 about 1 in 20 numbers are not in the range and for k = 2.58, 1 in 100 are not in the range. To account for this, for  $1.96 \le k < 2.58$ , 5% over the nominal amount of normal numbers are produced. And for k > 2.58, 1% additional are produced.

If the s produced by I-12 is not in the range specified, it will be discarded and  $r_{i+1}$  will be tried.

## III. TEST CASE LIBRARY

The Test Case Library writes a tape with execution statistics for each test case. It is loaded with the PET instrumented code and is transparent to the user in the PTS system. The library consists of three subroutines QERRQ, QPOST and QPCASE. Subroutine QPCASE writes case information on the tape every time it is called. Subroutine QPOST "wraps up" the run.

There are two records written on the tape for each case. The first record contains the branch and statement execution counts and the second record contains the variable assignment information.

# IV. SEGMENT POSTPROCESSOR

The segment postprocessor defines the program segments and prints the reports necessary for the reliability study. The annotated source file fromthe PET preprocessor is used to define the FORTRAN program segments. There is a limit of 1000 segments which for a "typical" program would represent about 500 source statements. A complete description of a FORTRAN segment as defined in the PTS system is given in Section IV.2. There is no user input to the segment postprocessor. The reports generated by the segment postprocessor are described in detail in the following section.

#### IV.1 Postprocessor Reports

The first report contains the FORTRAN source listing followed by the statement numbers assigned by the PTS system. Each <u>executable</u> FORTRAN statement is assigned a number. A logical IF statement is assigned two numbers, one for the IF portion, and one for the true branch of the IF. This report allows the PTS user to correlate the program segments with the actual source statements.

The second report describes the FORTRAN segments as defined by the PTS system. Each segment consists of a set of statements that are executed sequentially. Two symbols are used in defining segments "," and "-". A "," indicates a branch and "-" indicates inclusive execution of the statements indicated. A "-1" is used to indicate an unresolved branch to a FORTRAN label. At the present time, it is left of the PTS user to resolve such branches.

As an example, a segment described as (1-3,5) would include statements (1,2,3,5). The first statement of a segment is the last statement of its predecessor segment(s). Using the segment report, program paths may be constructed by the PTS user. The execution statistics for the segment are printed beside the segment description. At the end of the report, the percentage of the segments that were executed for each case are printed.

The third report shows the percentage of the cases that executed each segment. For instance, if segment 3 shows non-zero execution counts for 4 of 10 test cases, 40% would be printed.

The final report is a summary of the segments that were not executed. The percentage of the segments that were not executed for any test case is printed.

IV.2 Algorithm for Defining FORTRAN Program Segments

A program segment consists of a set of statements that are always executed sequentially and has one entrance and one exit. All segments have at least one predecessor segment except those starting with a subroutine entry. All segments have at least one successor segment except those ending on a return or halt.

There are four criteria for beginning a new segment.

- (1) a subroutine or entry statement
- (2) a statement label
- (3) a DO statement
- (4) termination of a previous segment

A segment will terminate if one or more of the following conditions are encountered:

- (1) a RETURN or STOP statement
- (2) a branching statement
- (3) a CALL statement
- (4) the end of a DO loop
- (5) the beginning of a new segment

A FORTRAN multiple branch statement will cause several segments to be generated. For this reason, a given statement may be contained in more than one segment.

Illustration I-2 shows a sample of a FORTRAN program and the segments that were defined by the PTS system.

Segment 1 was terminated because a FORTRAN program need not return after a CALL statement. Segment 2 was terminated because of the statement label. Segments 3 and 4 represent the path taken by the FALSE and TRUE branch of the logical IF, respectively. Segment 9 terminated upon entry into the DO-loop, since the segment model being used differentiates between loops which "fall through" immediately and those which are iterated on. Segment 11 represents the path out of the DO-loop.

|      | SAMPLE PROGRA      | M       |     | SEGMENTS    | CR118 |
|------|--------------------|---------|-----|-------------|-------|
|      | STATEMENT          | NO.     | NO. | DESCRIPTION |       |
|      | CALL OVERFL        | 1       | 1   | 1 – 2       |       |
|      | N-J                | 2       | 2   | 2 – 3       |       |
| 900  | TAU ID-29          | 3       | 3   | 3 – 24, 26  |       |
|      |                    |         | 4   | 3 – 25, -1  |       |
|      |                    |         |     |             |       |
|      | Self III me select |         |     |             |       |
|      | NN=N               | 23      | •   |             |       |
|      | IF ( ) GO TO 6501  | 24 – 25 | 9   | 30 – 31     |       |
|      |                    |         |     |             | *     |
|      |                    | 26      | 10  | 31 – 32     |       |
|      |                    |         | 11  | 32 – 33     |       |
| 6560 | DO 4000 I=1, M     | 30      |     |             |       |
|      | DR(I) - AR(J)      | 31      |     |             |       |
| 4000 | DI(I) - Q(J)       | 32      |     |             |       |
|      | RETURN             | 33      |     |             |       |

Figure 1-2. Sample FORTRAN Program and Segments

# Appendix II TABLES FOR THE DE-EUTROPHICATION PROCESS

Presented in the following set of tables are the estimates of model parameters and of their variances/covariances as well as estimates of the MTTF (at the end of the test) and the purification percentage.

These tables are derived from the data-derived ratio

$$R = \frac{\sum_{i=1}^{n} (i-1)X_{i}}{\sum_{i=1}^{n} X_{i}}$$

in the manner described in Section 5. Once R is calculated, values for all other parameters can be obtained by table lookup.

The technique as well as the use of the tables is described in Section 5, where sample table (Table XI on page 97) is explained. Footnotes on that table apply here.

| TOTAL  | STEP                                                                                                                        | VAR                                                                                                                                                                                                                     | VAH                                                                                                                                                                                                                                                                                                                  | COVAR                         | MITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR  | SIZE                                                                                                                        | ERROR                                                                                                                                                                                                                   | STEP                                                                                                                                                                                                                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100.50 | .1608                                                                                                                       | 519.99                                                                                                                                                                                                                  | .6971                                                                                                                                                                                                                                                                                                                | -465,9663                     | .0727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | .0797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | 0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | 0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | ,1474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | ,1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | ,1351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | ,1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | ,1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | 2045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | **                            | 2420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                               | 2941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | -2.0237                       | , 3089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | -1,6550                       | 4869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | -1,3614                       | ,7021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                             |                                                                                                                                                                                                                         | 1,1121                                                                                                                                                                                                                                                                                                               | *1.1251                       | 1,2221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 3.2107                                                                                                                      | 1,17                                                                                                                                                                                                                    | 1.1528                                                                                                                                                                                                                                                                                                               | -,9337                        | 4,3337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | TOTAL<br>ERROR<br>100.50<br>50.50<br>38.59<br>30.96<br>26.45<br>21.43<br>17.90<br>17.22<br>16.69<br>15.52<br>15.23<br>15.07 | ERROR 5126  100.50 .1608 53.98 .3220 38.59 .4841 30.96 .6475 26.45 .8129 23.50 .98.05 21.43 1.1510 19.92 1.3251 16.78 1.5034 17.90 1.6862 17.20 1.6754 16.64 2.0714 16.19 2.2758 15.62 2.4897 15.52 2.7151 15.28 2.9545 | ERROR SIZE ERROR  100.50 .1608 519.99 53.98 .3220 129.48 38.59 .4841 57.19 30.96 .6475 31.87 26.45 .8129 20.15 23.50 .9805 13.78 21.43 1.1510 9.95 19.92 1.3251 7.46 16.73 1.5034 5.75 17.90 1.6862 4.54 17.20 1.6754 3.64 16.64 2.0714 2.95 16.19 2.2758 2.42 15.62 2.4897 2.00 15.52 2.7151 1.66 15.28 2.9545 1.39 | ERROR SIZE ERROR STEP  100.50 | ERROR       STEP         100.50       .1608       519.99       .8971       -465.9663         53.98       .3220       129.48       .8989       -115.8873         38.59       .4841       57.19       .9020       -51.0875         30.96       .6475       31.87       .9063       -28.3873         26.45       .8129       20.15       .9120       -17.8803         23.50       .9805       13.78       .9190       -12.1778         21.43       1.1510       9.95       .9277       -8.7458         19.92       1.3251       7.46       .9380       -6.5158         16.79       1.5034       5.75       .9500       -4.9898         17.90       1.6862       4.54       .9644       -3.9068         17.20       1.6754       3.64       .9807       -3.1019         16.64       2.0714       2.95       .9992       -2.4946         16.19       2.2758       2.42       1.0218       -2.0237         15.62       2.4897       2.00       1.0474       -1.6550         15.52       2.7151       1.06       1.0773       -1.3614         15.23       2.9545       1.39 |

Column 1 is the ratio E(i-1)Xi / EXi

Column 2 is the estimate for the total error content

Column 3 is the normed-estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$: in order to obtain the actual estimated covariance the entry should be divided by T.

| PATIO | TOTAL   | STEP   | VAR   | VAR    | COVAR    | MITE_  |
|-------|---------|--------|-------|--------|----------|--------|
|       |         | 4.     |       |        |          |        |
| 8.0   | 50.39   | .3774  | 97,26 | . 8709 | -84,2061 | .0770  |
| 8.2   | 38,41   | .5297  | 49,27 | .0740  | .42,5688 | 0643   |
| 8.4   | 31,82   | 6931   | 29,54 | 8783   | -25,4517 | 0925   |
| 8.6   | 27.69   | .6383  | 19,54 | 8837   | m16,7772 | 1021   |
| 8.8   | 24.87   | 9957   | 13,79 | . 4902 | -11,7685 | 1132   |
| 9.0   | 22.85   | 1.1556 | 10,19 | 8980   | -8,6624  | 1264   |
| 9.2   | 21.33   | 1.3186 | 7,78  | 9072   | m6,5738  | 1422   |
| 9.4   | 20.17   | 1,4851 | 6,09  | , 9181 | m5,1144  | 1013   |
| 9.6   | 19,26   | 1,6559 | 4,86  | ,9305  | -4,0527  | .1851  |
| 9.8   | . 18.54 | 1.6315 | 3,94  | ,9449  | -3,2589  | ,2153  |
| 10.0  | 17.95   | 2.0130 | 3,23  | ,9613  | -2,6488  | ,2550  |
| 10.2  | 17,47   | 2.2015 | 2,68  | ,9801  | -2.1709  | 3095   |
| 10.4  | 17.07   | 2.3976 | 2,23  | 1,0017 | +1.7926  | . 3086 |
| 10.6  | 16.75   | 2,6037 | 1,87  | 1,0265 | -1,4857  | .5154  |
| 10.8  | 16.47   | 2.8201 | 1,58  | 1.0549 | -1.2389  | ,1467  |
| 11.0  | 16.25   | 3.0493 | 1,34  | 1.0880 | -1,0370  | 1.3273 |
| 11.2  | 16.06   | 3.2941 | 1,13  | 1,1264 | -,8707   | 5,3138 |
|       |         |        |       |        |          |        |

Column 1 is the ratio [(1-1)X1 / EX1

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$\phi\$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL  | STEP   | VAR    | VAR    | COVAR     | MTTF   |
|-------|--------|--------|--------|--------|-----------|--------|
|       | ERROR  | SIZE   | ERROR  | STEP   |           |        |
| 8.2   | 128,16 | .1417  | 712,14 | .8420  | -599.1572 | ,0635  |
| 8.4   | 68.32  | 2837   | 177,54 | 8434   | -149,2391 | ,0687  |
| 8.6   | 48,47  | .4264  | 78,48  | 8455   | -65,8611  | .0745  |
| 8.8   | 38,63  | .5698  | 43,85  | .8488  | -36,7176  | . 0811 |
| 9.0   | 32.79  | .7146  | 27,80  | , 8528 | -23,2121  | ,0886  |
| 9.2   | 28,95  | 6609   | 19,08  | , 8578 | -15,8789  | 0472   |
| 9.4   | 26.25  | 1.0090 | 13,84  | .8640  | m11,4674  | ,1072  |
| 9.6   | 24.26  | 1.1595 | 10,43  | 6712   | m8,5956   | ,1188  |
| 9.8   | 22.75  | 1.3127 | 8,09   | 8795   | -6,6318   | ,1325  |
| 10.0  | 21.57  | 1.4691 | 6,42   | .8892  | -5,2273   | ,1469  |
| 10.2  | 20.63  | 1.6292 | 5,18   | ,9002  | -4,1901   | ,1689  |
| 10.4  | 19,88  | 1.7934 | 4,24   | , 9128 | -3,4044   | ,1437  |
| 10.6  | 19.26  | 1.9623 | 3,51   | ,9270  | -2,7918   | ,2253  |
| 10.8  | 18.75  | 2.1377 | 2,93   | , 9433 | +2,3101   | ,2064  |
| 11.0  | 18,33  | 2.3168 | 2,47   | ,9619  | -1,9252   | ,3239  |
| 11.2  | 17.98  | 2,5079 | 2,09   | 9829   | -1,6110   | ,4075  |
| 11.4  | 17,68  | 2,7056 | 1,77   | 1.0009 | -1,3546   | .5409  |
| 11.6  | 17,43  | 2,9138 | 1,51   | 1,0343 | R1,1420   | ,/903  |
| 11.8  | 17,22  | 3.1344 | 1,29   | 1,0656 | -,9648    | 1,4268 |
| 12.0  | 17.05  | 3,3689 | 1,11   | 1,1018 | -,8183    | 6,4287 |

Column 1 is the ratio  $\Sigma(i-1)X_i / \Sigma X_i$ 

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$\phi\$: in order to obtain the actual estimated covariance the entry should be divided by T.

|       | • • • • • • | CT. D  | WAR    | WAD    | COVAR     | M775   |
|-------|-------------|--------|--------|--------|-----------|--------|
| PATIO | TOTAL       | STEP   | YAR    | VAR    | COVAR     | MITE   |
|       | EKROR       | SIZE   | ERROR  | STEP   |           |        |
|       |             |        |        |        |           |        |
| 9.0   | 62,73       | .3350  | 130.94 | .8202  | -106,8948 | ,0667  |
| 9.2   | 47.51       | .4699  | 66,45  | , 0225 | -54,1557  | .0721  |
| 9.4   | 39,12       | 6057   | 39,89  | 8255   | -32,4321  | 0782   |
| 9.6   | 33.84       | .7426  | 26,47  | 0294   | -21.4577  | 0850   |
| 9.8   | 30.23       | .8810  | 18,74  | 8342   | -15,1387  | 0928   |
|       |             |        |        | 8399   |           |        |
| 10.0  | 27.63       | 1.0210 | 13,90  |        | #11,1830  | 1117   |
| 10.2  | 25.60       | 1.1632 | 10,66  | ,8465  | .8,5333   | ,1120  |
| 10.4  | 24.16       | 1.3078 | 8,33   | ,8541  | -6,6763   | ,1241  |
| 10.6  | 22.97       | 1.4554 | 6,73   | ,8627  | -5,3242   | 1303   |
| 10.8  | 22.01       | 1.6057 | 5,49   | , 0727 | F4.3171   | ,1553  |
| 11.0  | 21.23       | 1.7661 | 4,53   | , 5838 | -3,5387   | 1761   |
| 11.2  | 25.58       | 1.9184 | 3,79   | , 8966 | -2,9315   | 2018   |
| 11.4  | 20.05       | 2.0917 | 3.19   | 91.08  | -2,4455   | 2347   |
| 11.6  | 19.60       | 2.2504 | 2,70   | 9268   | -2,0533   | .2780  |
| 11.6  | 19.22       | 2.4257 | 2.30   | 9449   | -1.7312   | 3378   |
|       |             |        |        | 9454   |           |        |
| 12.0  | 18.90       | 2.6079 | 1.97   | ,9654  | -1,4664   | ,4251  |
| 12.2  | 1.8.63      | 2.7786 | 1.69   | , 9865 | -1,2458   | ,5056  |
| 12.4  | 18.40       | 2,9995 | 1.46   | 1,0147 | -1,0598   | ,8314  |
| 12.6  | 18,21       | 3.2112 | 1.26   | 1.0446 | -,9049    | 1,5158 |
| 12.A  | 16.04       | 3,4365 | 1.09   | 1,0787 | -,7735    | 7,6774 |

Column 1 is the ratio E(i-1)Xi / EXi

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATI | O TOTAL   | STEP   | VAR    | VAR    | COVAR     | MTTF   |
|------|-----------|--------|--------|--------|-----------|--------|
|      | ERROR     |        | ERROR  | STEP   |           |        |
|      | EN TO     | 3.2.   |        |        |           |        |
| 9.   | 2 159.15  | 1247   | 941,55 | ,7961  | -749.0902 | ,0563  |
|      |           |        | 234,85 | 1971   | -186,7059 | .0004  |
| 9.   | 4 84.32   | . 2536 | 103,93 | 7987   | -82,5185  | ,0049  |
| ,    | 6 59,47   | .3810  | 58 14  | 8011   | -46,0807  | 0698   |
| 9.   | 8 47.13   | ,5089  | 58.14  |        | -29.2121  | 0754   |
| 10.  | 0 39.79   | ,6377  | 36,94  | ,8042  |           | 0817   |
| 10.  | 2 34,95   | ,7677  | 25,42  | 8079   | -20,0442  | .0017  |
| 10.  | 4 31.54   | , 8989 | 18,48  | ,8124  | -14,5182  | 0887   |
| 10.  | 6 29.02   | 1.0316 | 13,97  | ,8178  | -10,9398  | 0469   |
| 10.  |           | 1.1665 | 10,88  | ,6238  | -B, 4747  | ,1060  |
| 11.  |           |        | 8,67   | 8309   | -6.7246   | ,1166  |
| 11.  |           | 1,4428 | 7,03   | . 6387 | -5,4204   | ,1291  |
| 11.  |           |        | 5,60   | 8478   | -4,4391   | ,1437  |
| 11.  |           | 1,7301 | 4,83   | 8578   | -3,6709   | ,1014  |
|      | 8 21.91   | 1.8794 | 4,06   | 8689   | -3,0613   | 1829   |
| 11.  | 24 75     | 0.0704 | 3,44   | 8816   | -2,5746   | 2095   |
| 12,  | 0 21.35   | 2.0324 | 2 94   | 8957   | -2,1782   | 2435   |
| 12.  | 20.88     | 2.1902 | 2,94   | 9116   | -1,8510   | 2563   |
| 12.  |           | 2,3533 | 2,32   | 1,110  | 1 5747    | 3505   |
| 12,  | 6 20,13   | 2,5230 | 2,17   | ,9291  | -1,5763   |        |
| 12,  | 8 19.84   | 2,6795 | 1,87   | ,9488  | -1,3473   | 4418   |
| 13,  | 0 . 19.59 | 2,6833 | 1,63   | .9713  | -1,1562   | ,5881  |
| 13.  | 2 19.37   | 3.0771 | 1,41   | 9963   | -,9919    | 8675   |
| 13,  | 4 19.19   | 3,2811 | 1,23   | 1,0248 | -,8536    | 1,5977 |
| 13.  | 6 19.03   | 3,4979 | 1,07   | 1,0570 | -,7348    | 8,9645 |
|      |           |        |        |        |           |        |

Column 1 is the ratio I(i-1)Xi / IXi

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL | STEP   | VAR    | VAR    | COVAR     | MITE    |
|-------|-------|--------|--------|--------|-----------|---------|
|       | ERROR | SIZE   | ERROP  | STEP   |           |         |
|       |       |        |        |        |           |         |
|       |       |        |        |        |           |         |
| 10.0  | 76,40 | .3012  | 170.75 | .1774  | -132,2428 | ,0589   |
| 10.2  | 57.55 | .4224  | 96,71  | , 1791 | m67.0543  | .0630   |
| 10.4  | 47.16 | .5441  | 52,15  | ./815  | m40,2679  | ,0677   |
| 10.6  | 40.60 | .6567  | 34,65  | ./844  | -26,6839  | 0728    |
| 10.8  | 36,11 | .7903  | 24,59  | ./860  | -18,8818  | .0786   |
| 11.0  | 32.65 | 9152   | 18,28  | ,7923  | -13,9868  | ,0850   |
| 11.2  | 30.40 | 1.0415 | 14.06  | ,/972  | -10.7167  | 0923    |
| 11.4  | 28,50 | 1,1694 | 11,10  | ,8030  | -8,4301   | ,1006   |
| 11.6  | 26.99 | 1.2996 | 6,94   | , 5092 | -6,7545   | 1101    |
| 11.0  | 25.77 | 1.4317 | 7,35   | ,0165  | -5.5039   | 1211    |
| 12.0  | 24.77 | 1.5664 | 6,08   | , 6246 | +4,5425   | 1539    |
| 12.2  | 23,94 | 1.7037 | 5,11   | 8338   | -3,7964   | 1490    |
| 12.4  | 23,24 | 1.8444 | 4,33   | 8439   | -3,1867   | 1672    |
| 12.6  | 22.66 | 1.9886 | 3,69   | 8552   | -2,6992   | 1892    |
| 12.8  | 22.16 | 2,1369 | 3,17   | 8677   | +2,2950   | 2167    |
| 13.0  | 21.73 | 2.2897 | 2,74   | 8817   | -1.9654   | 2518    |
| 13.2  | 21.37 | 2.4485 | 2,37   | 8969   | #1,6836   | 2985    |
| 13.4  | 21.06 | 2,6124 | 2,06   | 91.41  | -1,4490   | 3025    |
| 13.6  | 20.79 | 2,7827 | 1,80   | 9335   | -1,2508   | 4564    |
| 13.8  |       |        | 1 57   | 9550   | -1,0807   | 8300    |
|       | 20.55 | 2.9609 | 1,57   |        | 41,000    | 9004    |
| 14.0  | 20,35 | 3,1462 | 1,37   | 9790   | -,9339    |         |
| 14.2  | 20.18 | 3.3448 | 1,20   | 1.0062 | 7.8098    | 1,6661  |
| 14.4  | 20.03 | 3,5536 | 1,05   | 1,0366 | -,7017    | 10,0229 |

Column 1 is the ratio E(i-1)Xi / EXi

Column 2 is the estimate for the total error content

Column 3 is the normed-estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$: in order to obtain the actual estimated covariance the entry should be divided by T.

| MITE    | COVAR     | STEP   | VAR<br>ERROR | STEP   | TOTAL  | RATIO |
|---------|-----------|--------|--------------|--------|--------|-------|
| ,0506   | -916,0569 | .7571  | 1210,65      | ,1145  | 193.50 | 10.2  |
| 0>39    | -228,3303 | ,7578  | 301,98       | . 5383 | 101.9R | 10.4  |
| 0574    | -101,0581 | ,/591  | 133,79       | ,3443  | 71.59  | 10.6  |
| 0613    | -56,5231  | 7610   | 14,93        | 4598   | 56,47  | 10.8  |
| ,0656   | -35,8842  | ,7633  | 47,66        | ,5759  | 47,46  | 11.0  |
| 0704    | -24,6640  | ,/660  | 32,84        | .6929  | 41,51  | 11.2  |
| 0757    | -17,9195  | ,7696  | 23,93        | .8108  | 37.30  | 11.4  |
| .0816   | -13,5333  | ,7736  | 18,13        | ,9299  | 34,19  | 11.6  |
| 0882    | -10,5285  | ,7782  | 14,16        | 1.0703 | 31,79  | 11.3  |
| 0957    | .8,3771   | ,7834  | 11,31        | 1.1723 | 29.91  | 12.0  |
| ,1042   | -6,7944   | ,7895  | 9,22         | 1.2958 | 28,41  | 12.2  |
| ,1139   | +5,5913   | ,7963  | 7,52         | 1.4213 | 27,18  | 12.4  |
| 1252    | -4,6513   | 6037   | 6,39         | 1,5492 | 26,16  | 12.6  |
| ,1384   | -3,9033   | ,8118  | 5,39         | 1,6800 | 25,30  | 12.8  |
| ,1540   | -3,3060   | ,H210  | 4,50         | 1,8131 | 24,58  | 13.0  |
| 1725    | -2,8175   | ,8312  | 3,95         | 1.9494 | 23.97  | 13.2  |
| ,1954   | ,2,4113   | 4422   | 3,41         | 2.0897 | 23,45  | 13,4  |
| , 2235  | -2,0763   | , 548  | 2,96         | 2.2332 | 23,00  | 13.6  |
| ,2597   | -1,7905   | ,8683  | 2,57         | 2,3420 | 22,62  | 13.8  |
| 3074    | +1,5498   | , 5834 | 2,25         | 2,5353 | 22,28  | 14.0  |
| , 3735  | -1,3431   | ,9001  | 1,97         | 2,6946 | 21.99  | 14.2  |
| 4707    | -1.1670   | ,9187  | 1,73         | 2.8600 | 21.74  | 14.4  |
| ,6283   | -1,0154   | , 9394 | 1,52         | 3,0325 | 21.52  | 14.6  |
| 9285    | -,8843    | 9626   | 1,34         | 3,2134 | 21,34  | 14.8  |
| 1,7236  | -,7716    | 9885   | 1,18         | 3,4033 | 21,17  | 15.0  |
| 10,5589 | -,6733    | 1,0174 | 1,04         | 3.6044 | 21.03  | 15.2  |

Column 1 is the ratio I(1-1)X1 / EX1

Column 2 is the estimate for the total error content

Column 3 is the nor destimate for step size: in order to determine the actual estimate of the ep size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$\phi\$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL | STEP    | VAR    | VAR    | COVAR     | MITE                                    |
|-------|-------|---------|--------|--------|-----------|-----------------------------------------|
|       | EHROR | SIZE    | FRROR  | STEP   |           | • • • • • • • • • • • • • • • • • • • • |
|       |       |         |        |        |           |                                         |
| 14 0  | 94 40 | 0774    | 244 98 | ,7408  | -160,2254 | ,0527                                   |
| 11.0  | 91.40 | .2736   | 216,98 |        |           |                                         |
| 11.2  | 68,55 | .3636   | 110,26 | ,7420  | -81,3201  | ,0560                                   |
| 11.4  | 55,94 | .4939   | 66,41  | ,7440  | -48,9103  | . 0597                                  |
| 11.6  | 47.97 | .6050   | 44,19  | .7463  | -32,4798  | 0637                                    |
| 11.8  | 42.49 | .7168   | 31,40  | ,7490  | -23,0251  | ,0061                                   |
| 12.6  | 38,52 | .6294   | 23,39  | ,/524  | -17,1010  | 0730                                    |
| 12.2  | 35,52 | , \$433 | 18,02  | ,7561  | m13,1322  | .0784                                   |
| 12.4  | 33.19 | 1.5582  | 14,27  | ,7605  | m10,3650  | .0844                                   |
| 12.6  | 31,33 | 1.1748  | 11,53  | ,7653  | -8,3372   | .0913                                   |
| 12.9  | 29.82 | 1.2928  | 9,48   | ./709  | +6,8227   | 0989                                    |
| 13.0  | 28.5A | 1,4123  | 7,90   | ./772  | -5,6620   | 1077                                    |
| 13.2  | 27,54 | 1,5341  | 6,66   | 7841   | -4,7462   | 1177                                    |
| 13.4  | 26 67 | 1,6584  | 5,67   | 7915   | -4,0120   | 1292                                    |
| 13.6  | 26.67 | 1,7650  | 4,86   | 7999   | -3,4174   | 1427                                    |
|       | 25.20 |         | 4 10   | 8090   | -2,9280   | 1567                                    |
| 13,8  | 25,29 | 1,9145  | 4,19   | 8402   | -2 5244   | 1773                                    |
| 14.0  | 24.75 | 2.0468  | 3,64   | ,8192  | -2,5241   | 12010                                   |
| 14.2  | 24.28 | 2,1528  | 3,17   | ,8302  | -2,1826   | ,2010                                   |
| 14.4  | 23,87 | 2,3230  | 2,78   | ,8423  | -1,8923   | ,2301                                   |
| 14.6  | 23,52 | 2.4667  | 2,44   | 8559   | 11,6485   | 2069                                    |
| 14.8  | 23,21 | 2,6160  | 2,15   | 6706   | +1,4364   | ,3160                                   |
| 15.0  | 22,94 | 2,7703  | 1,90   | , 6869 | 71,2547   | . 3835                                  |
| 15.2  | 22.71 | 2,9366  | 1,68   | ,9050  | -1,0979   | ,4827                                   |
| 15.4  | 22,50 | 3,0982  | 1,48   | , 4249 | -,9604    | ,6444                                   |
| 15.6  | 22.32 | 3,2734  | 1,31   | 9470   | -,8414    | 9519                                    |
| 15.8  | 22.16 | 3,4574  | 1,17   | 9717   | -,7376    | 1,7728                                  |
| 16.0  | 55.05 | 3,6515  | 1,03   | . 9991 | -,6471    | 11,0242                                 |
|       | ,     | 414.74  |        |        |           | ,                                       |

Column 1 is the ratio Z(1-1)X1 / EX1

Column 2 is the estimate for the total error content

Column 3 is the normed-estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TUTAL          | STEP   | VAR          | VAR     | COVAR                       | MITE    |
|-------|----------------|--------|--------------|---------|-----------------------------|---------|
|       | ERROR          | SIZE   | ERROR        | STEP    |                             |         |
| 11.2  | 231.15         | .1046  | 1520.33      | .7232-1 | 098,9330                    | ,0459   |
| 11.4  | 121.32         | .2092  | 379,58       | .7238 - | 274,2511                    | .0486   |
| 11.6  | 04,01          | ,3142  | 168,19       |         | 121,4035                    | ,0515   |
| 11.8  | 66,64          | .4194  | 94,26        | ./262   | -67,9556                    | ,0546   |
| 12.0  | 55.80          | .5252  | 60,03        | ,/281   | 443,2105                    | ,0561   |
| 12.2  | 48,62          | ,6315  | 41,43        | ,7303   | -29,7610                    | ,0018   |
| 12.4  | 43.54          | ,7387  | 30,21        | ,7330   | -21,6495                    | ,0059   |
| 12.6  | 39,77          | ,8465  | 22,94        | ,7362   | -16,3968                    | .0704   |
| 12,8  | 36,67          | .9554  | 17,95        | 7399    | -12,7914                    | .0754   |
| 13.0  | 34.59          | 1.6655 | 14,39        | ,7440   | =10,2158                    | .0810   |
| 13.2  | 32.75          | 1.1768 | 11,75        | 7487    | -8,3101                     | ,0472   |
| 13.4  | 31.23          | 1,2896 | 9,74<br>8,17 | /538    | -6,8585<br>-5,7238          | 1021    |
| 13.2  | 29.98          | 1,4044 | 6,94         | 7658    | -4,8344                     | ,1110   |
| 14.0  | 28,93<br>28,04 | 1,5205 | 5,94         | 1728    | =4,1151                     | 1212    |
| 14.2  | 27,27          | 1,7595 | 5,12         | .7803   | -3,5235                     | 1330    |
| 14.4  | 26,62          | 1.8825 | 4,44         | 7887    | -3,0371                     | 1465    |
| 14.6  | 26,05          | 2,0082 | 3,87         | 7979    | -2,6314                     | ,1031   |
| 14.8  | 25.56          | 2.1372 | 3,39         | .8079   | -2,2869                     | 1826    |
| 15.0  | 25,14          | 2,2693 | 2,99         | . 8189  | -1,9952                     | 2064    |
| 15.2  | 24,76          | 2,4054 | 2,63         | 0309    | -1.7444                     | ,2360   |
| 15.4  | 24,43          | 2.5461 | 2,33         | 6438    | +1,5203                     | ,2740   |
| 15.6  | 24,15          | 2.6700 | 2,06         | 6583    | -1,3404                     | 3238    |
| 15.8  | 23.90          | 2.8405 | 1,83         | , 5743  | -1,1791                     | 3925    |
| 16.0  | 23.68          | 2,9967 | 1.63         | ,8917   | +1,0365                     | ,4442   |
| 16.2  | 23,48          | 3.1590 | 1,45         | 9110    | -,9127                      | ,0>84   |
| 16.4  | 23,31          | 3,3287 | 1,29         | ,9323   | -,8040                      | ,9705   |
| 16.6  | 23.16          | 3,5068 | 1,15         | ,9558   | 7087                        | 1,7476  |
| 16.8  | 23.02          | 3,6948 | 1,03         | ,9819   | -,6242                      | 10,8617 |
|       |                |        |              |         | to the North Control of the |         |

Column 1 is the ratio I(i-1)Xi / EXi

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$: in order to obtain the actual estimated covariance the entry should be divided by T.

|   |   | ** |
|---|---|----|
| N | = | 24 |
|   | - |    |

| RATIO | TOTAL  | STEP   | VAR    | VAR    | COVAR     | MTIF    |
|-------|--------|--------|--------|--------|-----------|---------|
|       | ERROR  | SIZE   | ERHOR  | STEP   |           |         |
| 12.0  | 107.74 | .2507  | 270.02 | .7089  | -190,9127 | . 476   |
| 12.2  | 8.0.51 | .3513  | 137,35 | ,7100  | -97,0195  | ,0504   |
| 12.4  | 65,46  | ,4524  | 82,73  | ,/114  | -58,3553  | 0533    |
| 12.6  | 55.94  | 5538   | 55.11  | ,7133  | m38,8116  | .0560   |
| 12.8  | 49.39  | 6559   | 39,21  | ,/155  | -27,5582  | ,0000   |
| 13.0  | 44,63  | 7587   | 29,23  | 1180   | m20,4979  | ,0639   |
| 13.2  | 41.04  | 8622   | 22,58  | ./211  | m15,7893  | ,0681   |
| 13.4  | 36,23  | 9666   | 17,91  | ./246  | -12,4890  | 0727    |
| 13.6  | 35,99  | 1,0721 | 14,51  | ,/285  | -10,0823  | 0778    |
| 13.8  | 34.16  | 1.1789 | 11,95  | ,7328  | -8,2736   | ,0035   |
| 14.0  | 32,65  | 1.2372 | 9,98   | ,7376  | 90,8806   | 0899    |
| 14.2  | 31.39  | 1.3965 | 8,44   | ,/431  | -5,7947   | ,0970   |
| 14.4  | 30.31  | 1,5082 | 7,20   | ,7487  | +4,9146   | ,1050   |
| 14.6  | 29,41  | 1,6210 | 6,20   | ,7552  | -4,2091   | ,1141   |
| 14.8  | 28,62  | 1,7360 | 5,37   | ,1623  | -5,6273   | ,1246   |
| 15.0  | 27.95  | 1.8536 | 4,68   | ,1699  | -3,1400   | ,1367   |
| 15.2  | 27.36  | 1,4734 | 4,10   | ,/782  | -2,7325   | ,1507   |
| 15.4  | 26,85  | 2.0957 | 3,61   | 7874   | -2,3883   | ,1073   |
| 15.6  | 26.40  | 2.2214 | 3,19   | ,7973  | -2,0913   | ,1873   |
| 15.8  | 26.01  | 2.3504 | 2,82   | ,8080  | -1,8367   | ,2115   |
| 16.0  | 25,67  | 2,4931 | 2,51   | ,8197  | -1,6158   | ,2418   |
| 16.2  | 25,36  | 2.0190 | 2,23   | ,8328  | -1,4269   | ,2000   |
| 16.4  | 25.09  | 2.7604 | 1,99   | ,8467  | 41,2581   | 3511    |
| 16.6  | 24,86  | 2,9064 | 1,78   | ,8622  | -1.1119   | .4012   |
| 16.3  | 24,65  | 3.0977 | 1,59   | , 6791 | -,9839    | ,5040   |
| 17.0  | 24.46  | 3,2156 | 1,42   | ,8977  | -,8703    | 6708    |
| 17.2  | 24,30  | 3,3805 | 1,27   | ,9181  | -,7701    | 9875    |
| 17.4  | 24.15  | 3,5532 | 1,14   | 9406   | -,6818    | 1,6211  |
| 17.6  | 24.03  | 3.7348 | 1.02   | ,9655  | -,6038    | 10.2977 |

Column 1 is the ratio I(1-1)Xi / IXi

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$\phi\$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL          | STEP   | VAR<br>ERROR | VAR          | COVAR            | MITE   |
|-------|----------------|--------|--------------|--------------|------------------|--------|
| 12.2  | 272.14         | .0962  | 1873,68      | 6940         | 298,8904         | 0421   |
| 12.4  | 142.32         | .1924  | 467,89       |              | 324,2377         | 0443   |
| 12.6  | 29.14          | .2989  | 207,42       |              | 143,6165         | 0467   |
| 12.8  | 77,63          | .3056  | 116,28       | 0976         | -80,4245         | 0493   |
| 13.0  | 64,80          | .4826  | 74,15        |              | -51,2273         | U521   |
| 13.2  | 56,29          | .5302  | 51,22        |              | -35,3237         | U551   |
| 13.4  | 50,25          | .6784  | 37,39        |              | -25,7297         | U584   |
| 13.6  | 45,77          | .7770  | 28,43        | 7041         | -19,5248         | 0620   |
| 13.8  | 42,32          | .8766  | 22,28        |              | -15,2584         | 0659   |
| 14.0  | 39,59          | .9769  | 17,89        |              | -12,2157         | 0702   |
| 14.2  | 37,38          | 1.0785 | 14,63        |              | -9,9536          | 0749   |
| 14.4  | 35,57          | 1,1810 | 12,15        | 7179         | -8,2385          | 0001   |
| 14.6  | 34,66          | 1,2846 | 10,23        | /225         | -6,9084          | 0859   |
| 14.8  | 32,79          | 1,3596 | 8,71         | /276         | -5,8544          | 0924   |
| 15.0  | 31,70          | 1,4966 | 7,47         | /328         | -4,9946          | 0997   |
| 15.2  | 30,78          | 1.6049 | 6,46         | 7388         | -4,2973          | 1171   |
| 15.4  | 29,98          | 1.7148 | 5,63         | 7454         | -3,7237          | 1171   |
| 15.6  | 29,28          | 1.8271 | 4,93         | 7524         | -3,2395          | 1278   |
| 15.6  | 28.68          | 1.9412 | 4,34         | 7602         | -2,8339          | 1400   |
| 16.0  | 28.15          | 2.0580 | 3,83         | 7685         | -2,4860          | 1544   |
| 16.2  | 27.66          | 2.1775 | 3,40         | 7775         | -2,1871          | 1713   |
| 16.4  | 27.27          | 2.3001 | 3,02         | 7872         | -1,9282          | 1716   |
| 16.6  | 26.91          | 2,4258 | 2,69         | 7978         | -1,7041          | 2163   |
| 16.8  | 26.59          | 2,5548 | 2,40         | 8094         | -1,5094          | 2469   |
| 17.0  | 26.30          | 2,6877 | 2,15         | 8221         | -1,3388          | 2859   |
| 17.2  | 26.05          | 2,8254 | 1,93         | 8357         | -1,1870          | 3376   |
| 17.4  | 25.83          | 2,9672 | 1,73         | 8508         | -1,0553          | 4083   |
| 17.6  | 25.63          | 3,1147 | 1,55         | 8671         | -,9375           | 5126   |
| 17.8  | 25.45          | 3,2682 | 1,40         | 8850         | -,8331           | 6009   |
| 18.0  | 25.29          | 3,4283 | 1,26         | 9046         | -,7406           | 9962   |
| 18.2  | 25.15<br>25.03 | 3.5060 | 1,13         | 9262<br>9499 | -,6583<br>-,5858 | 1.6270 |

Column 1 is the ratio I(i-1)Xi / IXi

Column 2 is the estimate for the total error content

Column 3 is the normed-estimate for step size: in order to determine the actual estimate of the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$: in order to obtain the actual estimated covariance the entry should be divided by T.

Column 7 is the normed MTTF and in order to obtain the actual value the

| 13.2 93.42 .3241 167,99 ,6817 m11<br>13.4 75.72 ,4172 101,28 ,0829 m6<br>13.6 64.51 ,5107 67,49 ,6844 m6                                       | CQVAR MITE<br>24.2022 ,0435<br>14.0230 ,0458<br>55,6705 ,0482<br>45.6908 ,0508 |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 13.0 125.40 .2313 330,06 .6808 -22<br>13.2 93.42 .3241 167.99 .6817 -11<br>13.4 75.72 .4172 101.28 .6829 -6<br>13.6 64.51 .5107 67,49 .6844 -6 | 14.0230 ,0458<br>66,6705 ,0462                                                 |
| 13.2 93.42 .3241 167.99 ,6817 m11<br>13.4 75.72 ,4172 101.28 ,0829 m6<br>13.6 64.51 ,5107 67,49 ,6844 m6                                       | 14.0230 ,0458<br>66,6705 ,0462                                                 |
| 13.2 93.42 .3241 167.99 ,6817 m11<br>13.4 75.72 ,4172 101.28 ,0829 m6<br>13.6 64.51 ,5107 67,49 ,6844 m6                                       | 14.0230 ,0458<br>66,6705 ,0462                                                 |
| 13.4 75.72 ,4172 101,28 ,6829 m6<br>13.6 64.51 ,5107 67,49 ,6844 m6                                                                            | 6,6705 0482                                                                    |
| 13.4 75.72 ,4172 101,28 ,6829 m6<br>13.6 64.51 ,5107 67,49 ,6844 m6                                                                            | 66,6705 .0482<br>45,6908 .0508                                                 |
|                                                                                                                                                | 45,6908 .0508                                                                  |
| 13.6 56.81 6046 46.07 6862 -3                                                                                                                  |                                                                                |
|                                                                                                                                                | 32,4853 ,0537                                                                  |
| 14.0 51.19 ,6991 35,88 ,0883 -2                                                                                                                | 24,2005 ,0568                                                                  |
|                                                                                                                                                | 18,6666 ,0001                                                                  |
|                                                                                                                                                | 14,7968 ,0638                                                                  |
|                                                                                                                                                | 11,9618 ,0078                                                                  |
| 14.8 38.78 1.0842 14.75 ./001                                                                                                                  | 9,8426 ,0722                                                                   |
|                                                                                                                                                | 8,2155 ,0770                                                                   |
| 15.2 35.47 1.2824 10.47 ./083                                                                                                                  | 6,9311 .0023                                                                   |
| 15.4 34.19 1.3036 8.95 ./129                                                                                                                   | 5,9020 ,0822                                                                   |
| 15.6 33.10 1.4857 7.73 ./161                                                                                                                   | 5,0736 ,0948                                                                   |
| 15.8 32,15 1,5898 6,72 ,7235                                                                                                                   | 4,3850 ,1022                                                                   |
| 10.0 31.34 1.6953 5.88 ,/296                                                                                                                   | 3,8158 ,1105                                                                   |
| 16.2 30.62 1.6027 5.17 ./361                                                                                                                   | .3,3350 ,1200                                                                  |
| 16.4 30.60 1.9121 4.56 .7432                                                                                                                   | 2,9274 ,1308                                                                   |
| 16.6 29.45 2.0236 4.05 ./508                                                                                                                   | 2,5795 ,1433                                                                   |
| 16.6 26.96 2.1377 3,60 ,7591                                                                                                                   | 2,2784 1579                                                                    |
| 17.0 28.53 2.2541 3.21 7661                                                                                                                    | 2,0185 .1750                                                                   |
| 17.2 28,15 2,3737 2,87 ,7777                                                                                                                   | 1,7909 ,1956                                                                   |
| 1/.4 2/.02 2.4959 2.58 ./883                                                                                                                   | 1,5935 ,2205                                                                   |
| 17.6 27.52 2.6722 2.32 .7995                                                                                                                   | 1,4173 2516                                                                    |
| 17.8 27.25 2.7519 2.08 8119                                                                                                                    | 1,2630 2912                                                                    |
| 18.0 27.01 2.6862 1.87 ,5251                                                                                                                   | 1,1250 3430                                                                    |
| 18.2 26.60 3.0247 1.69 .8396                                                                                                                   | 1,0035 4154                                                                    |
| 18,4 26,61 3,1680 1,52 ,6556                                                                                                                   | -,8964 ,5200 -                                                                 |
| 18,6 26,44 3,3175 1,37 ,8728                                                                                                                   | -,7996 ,6895                                                                   |
| 18.8 26.29 3.4729 1.24 .8918                                                                                                                   | -,7142 1,0052                                                                  |
| 19.0 26.15 3.6360 1.12 ,9123                                                                                                                   | -,6369 1,0243                                                                  |
| 19.7 26,03 3,6067 1,01 ,9350                                                                                                                   | -,5685 8,7126                                                                  |

じらし

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between H and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL  | STEP   | VAR     | VAR    | COVAR    | MTTF   |
|-------|--------|--------|---------|--------|----------|--------|
|       | FRROR  | SIZE   | ERROR   | STEP   |          |        |
|       |        |        |         |        |          |        |
| 47.0  | 744 40 | . 00.  | 2272,37 | 6672=4 | 515,7236 | .0388  |
| 13.2  | 316.49 | .0090  |         | 6677   | 778 4470 | 0407   |
| 13.4  | 164,99 | 1781   | 567,54  | 6683 - | 378,4439 | .0407  |
| 13.6  | 114.59 | .2674  | 251,67  |        | 167,6967 | 0449   |
| 13.8  | 89.47  | .3768  | 141.19  |        | -93,9958 | 0472   |
| 14.0  | 74.47  | 4465   | 90.06   |        | -59,8899 | 0407   |
| 14.2  | 64.51  | ,5367  | 62,25   |        | -41,3342 | ,0497  |
| 14.4  | 57,44  | ,6273  | 45,48   | 6737   | -30,1483 | 0524   |
| 14.6  | 52,19  | .7183  | 34,62   | 6759   | -22,9073 | ,0553  |
| 14.8  | 48,14  | 8099   | 27,17   | ,6783  | -17,9354 | ,0584  |
| 15.0  | 44,93  | ,9022  | 21,84   |        | -14,3823 | .0618  |
| 15.2  | 42.32  | 9755   | 17,89   | .6839  | -11,7425 | ,0056  |
| 15.4  | 40.18  | 1,0996 | 14,83   | ,6871  | -9,7380  | ,0096  |
| 15.6  | 38,39  | 1.1745 | 12,55   | 9069   | -8,1826  | .0741  |
| 15,8  | 36.88  | 1.2900 | 10.70   | ,0948  | -6,9481  | .0790  |
| 16.0  | 35.60  | 1.3776 | 9,21    | 6992   | -5,9559  | 0844   |
| 16.2  | 34.49  | 1.4761 | 7,98    | ,/040  | -5,1415  | .0904  |
| 16.4  | 33.54  | 1.5757 | 6,97    | ,/093  | -4,4716  | .0971  |
| 16.6  | 32.70  | 1.6773 | 6,12    | ,7148  | -3,9028  | 1046   |
| 16.8  | 31.97  | 1.7804 | 5,40    | ./208  | -3,4257  | ,1131  |
| 17.0  | 31.32  | 1.8351 | 4.79    | .7274  | -3,0199  | ,1227  |
| 17.2  | 30.76  | 1.9918 | 4,26    | ,7345  | -2,6718  | 1337   |
| 17.4  | 30.25  | 2.1009 | 3,81    | ,7420  | -2,3682  | ,1464  |
| 17.6  | 29,80  | 2.2125 | 3,41    | ,7501  | -2.1036  | ,1512  |
| 17.8  | 29,41  | 2.3261 | 3,06    | ,7591  | -1,8757  | 1786   |
| 18.0  | 29.35  | 2.4431 | 2,75    | ,7685  | -1,6718  | 1495   |
| 18.2  | 28.74  | 2,5628 | 2,48    | ,7788  | -1,4933  | ,2249  |
| 18.4  | 28,45  | 2,6954 | 2,24    | 7901   | -1,3370  | ,2561  |
| 18.6  | 28,20  | 2,8121 | 2,02    | 8021   | -1,1966  | 2960 - |
| 18.8  | 27.97  | 2,9431 | 1,83    | ,0150  | -1,0704  | 3489   |
| 19.0  | 27.77  | 3,0780 | 1,65    | 9292   | -,9596   | 4208   |
| 19.2  | 27,59  | 3,2184 | 1,50    | ,8444  | -,8585   | ,5274  |
| 19.4  | 27,43  | 3,3637 | 1,36    | ,8611  | -,7695   | 0965   |
| 19.6  | 27,28  | 3,5148 | 1,23    | 8794   | -,6402   | 1,0096 |
| 19.8  | 27,15  | 3,6731 | 1,11    | 8992   | -,6181   | 1,0055 |
| 20.0  | 27.03  | 3,8386 | 1,01    | ,9209  | -,5539   | 7,7113 |
|       |        |        |         |        |          |        |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL. | STEP   | VAR    | VAR   | COVAR          | MITE   |
|-------|--------|--------|--------|-------|----------------|--------|
|       | ERROR  | SIZE   | EKROR  | STEP  |                |        |
|       |        |        |        |       |                |        |
| 14.0  | 144,39 | .2147  | 397,42 | ,6558 | -260,1252      | ,0400  |
| 14.2  | 107.28 | .3006  | 202,39 | .0566 | -132,3920      | ,0419  |
| 14.4  | 86.71  | .3372  | 122,04 | ,0575 | P79,7458       | ,0440  |
| 14.6  | 73.70  | .4738  | 81,42  | ,6588 | +53,1448       | ,0462  |
| 14.8  | 64.73  | .5608  | 58,02  | ,6603 | m37,8104       | ,0486  |
| 15.0  | 58.19  | .6483  | 43,34  | ,0620 | -28,1974       | ,0511  |
| 15.2  | 53.23  | .7362  | 33,55  | ,0641 | -21.7839       | ,0538  |
| 15.4  | 49.35  | .8747  | 26,67  | ,0663 | -17,2794       | ,0568  |
| 15.6  | 46,24  | .9138  | 21.67  | .0691 | -14,0057       | ,0000  |
| 15.8  | 43.70  | 1.0036 | 17,92  | .6718 | -11,5468       | ,0035  |
| 16.0  | 41.59  | 1.0943 | 15,02  | ,6750 | #9,6522        | ,0675  |
| 16.2  | 39,81  | 1.1800 | 12.75  | ,6784 | -8,1616        | .0714  |
| 16.4  | 38,30  | 1.2786 | 10,92  | ,6821 | <b>*6,9691</b> | ,0759  |
| 16.6  | 37.01  | 1.3721 | 9,45   | ,6863 | -6,0059        | ,0509  |
| 16.8  | 35.89  | 1,4671 | 8,23   | 6907  | -5,2068        | ,0864  |
| 17.0  | 34.91  | 1.5630 | 7,22   | ,6957 | =4,5475        | .0925  |
| 17.2  | 34.06  | 1.6606 | 6,36   | .7009 | -3,9882        | 0993   |
| 17.4  | 33,31  | 1,7595 | 5,64   | 1065  | -3,5148        | ,1070  |
| 17.6  | 32.65  | 1.8604 | 5,01   | ,7125 | -3,1070        | ,1156  |
| 17.8  | 32.07  | 1.9628 | 4,48   | 7191  | +2,7587        | ,1253  |
| 18.0  | 31,55  | 2.0670 | 4,01   | ,7262 | -2,4562        | 1364   |
| 18.2  | 31.68  | 2,1737 | 3,60   | ,7337 | -2.1901        | ,1493  |
| 18.4  | 30.67  | 2,2824 | 3,24   | ,/419 | -1,9561        | ,1642  |
| 18.6  | 30.30  | 2,3942 | 2,92   | ,/504 | -1.7509        | ,1820  |
| 18.5  | 29,96  | 2,5081 | 2,64   | ,7598 | -1,5697        | ,2031  |
| 19.0  | 29.67  | 2,6251 | 2,39   | ,/700 | -1,4088        | ,2286  |
| 19.2  | 29,40  | 2,7452 | 2,17   | 1/809 | -1,2656        | ,2603  |
| 19.4  | 29.16  | 2.8687 | 1,97   | ,7927 | -1.1380        | 3004 - |
| 19.6  | 28,94  | 2,9965 | 1,79   | ,8053 | -1.0225        | ,3534  |
| 19.8  | 26.75  | 3,1284 | 1,62   | ,6190 | -,9192         | ,4261  |
| 20.0  | 28,58  | 3.2650 | 1,47   | ,8339 | -,8266         | ,5318  |
| 20.2  | 28.42  | 3.4069 | 1,34   | ,8500 | -,7428         | ,7010  |
| 20.4  | 28.28  | 3,5543 | 1,22   | ,6675 | -,6678         | 1,0131 |
| 20.6  | 28,15  | 3.7080 | 1,11   | ,8966 | 7,6006         | 1,7831 |
| 20.8  | 28.04  | 3.8689 | 1,00   | ,9073 | -,5399         | 6,9537 |

Column 1 is the ratio E(i-1)X, /EX,

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL   | STEP<br>S1ZE | ERROR   | VAR       | COVAR    | MITE   |
|-------|---------|--------------|---------|-----------|----------|--------|
| 14.2  | 364,17  | . 1629       | 2718,20 | . 6438-17 | 49.4325  | ,0360  |
| 14.4  | 1 19.31 | . 1658       | 678,65  | , 6441 -  | 36,5859  | . 4376 |
| 14.6  | 131,14  | ,2468        | 301.10  | 0447 -1   | 93,6438  | .0393  |
| 14.8  | 102.14  | .3320        | 169.03  | ,6455 -1  | 08,6126  | .0412  |
| 15.0  | 84.80   | 4155         | 107,83  | ,6465 ,   | 69,2094  | ,0431  |
| 15.2  | 73,29   | ,4993        | 74,58   | .6477     | 47,8043  | .0452  |
| 15.4  | 65.11   | ,5834        | 54,54   | ,0492     | 34,91.06 | 0475   |
| 15.8  | 59.02   | .6678        | 41,55   | 6509      | 26,5475  | 0499   |
| 15.8  | 54.32   | 7528         | 32,63   | ,0529     | 20,8124  | . 0525 |
| 16.0  | 50.59   | ,8384        | 26,25   | ,6551     | 16,7064  | ,0552  |
| 16.2  | 47,57   | 9245         | 21,54   |           | 13,6708  | ,0563  |
| 16.4  | 45,08   | 1.0113       | 17,95   |           | -11,3639 | ,0615  |
| 16.6  | 42,99   | 1.0090       | 15,15   | 6633      | -9,5624  | 0651   |
| 16,8  | 41,22   | 1.1874       | 12,94   | ,6666     | -8,1413  | .0089  |
| 17.0  | 39,72   | 1,2767       | 11,16   | 6703      | -6,9937  | 0731   |
| 17.2  | 38.41   | 1.3671       | 9,69    | 6741      | -6,0513  | 0777   |
| 17.4  | 37.28   | 1.4567       | 8,47    | ,6782     | -5.2688  | .0828  |
| 17.6  | 36,30   | 1,5511       | 7,46    | 6829      | -4.6209  | 0884   |
| 17.8  | 35.43   | 1.6454       | 6,60    | 6876      | m4.0652  | 0946   |
| 18.0  | 34,66   | 1.7405       | 5,87    | .6930     | -3,5979  | 1015   |
| 18,2  | 33,99   | 1,8371       | 5,24    | 6988      | -3,1960  | 1092   |
| 18.4  | 33.38   | 1.9358       | 4,69    | 7047      | -2,8434  | ,1179  |
| 18.6  | 32,64   | 2,0361       | 4,21    | ,7112     | -2,5382  | ,1278  |
| 18.8  | 32,36   | 2.1379       | 3,80    | 7183      | -2.2741  | 1390   |
| 19.0  | 31,93   | 2.2423       | 3,43    | 7257      | -2.0378  | 1521   |
| 19.2  | 31,55   | 2,3487       | 3,10    | 7338      | -1,8306  | ,1072  |
| 19.4  | 31,20   | 2,4976       | 2,81    | ,7424     | -1,6465  | 1849   |
| 19.6  | 30.89   | 2.5696       | 2,55    | 7515      | -1,4805  | 2064 - |
| 19.8  | 30,61   | 2,6838       | 2,32    | ,/615     | -1,3345  | 2321   |
| 20.0  | 30.35   | 2,6016       | 2,11    | 1721      | -1.2026  | .2641  |
| 20.2  | 30.12   | 2,9222       | 1,92    | 7837      | -1,0855  | 3045   |
| 20.4  | 29.92   | 3.0409       | 1.75    | 7960      | -,9792   | 3576   |
| 20.6  | 29.73   | 3,1760       | 1,59    | 8092      | .8828    | 4307   |
| 20.8  | 29.56   | 3,3091       | 1,45    | 8237      | -,7969   | ,5360  |
| 21.0  | 29,41   | 3,4473       | 1,32    | 8393      | 7189     | 7034   |
| 21.2  | 29,28   | 3,5912       | 1,21    | 8561      | 6479     | 1,0117 |
| 21.4  | 29,15   | 3,7406       | 1,10    | 8745      | +,5849   | 1,7511 |
| 21.6  | 29.04   | 3,6970       | 1,00    | 8944      | -,5275   | 6,1091 |
|       |         | .,,,,,       | -100    |           |          |        |

THE REPORT OF THE PROPERTY AND A POSSIBLE POSSIBLE PROPERTY OF THE PROPERTY OF

| RATIO | TOTAL  | STEP   | VAR    | VAR    | COVAR     | MITE    |
|-------|--------|--------|--------|--------|-----------|---------|
|       | ERROR  | SIZE   | ERROR  | STEP   |           |         |
| 15.0  | 164.72 | .2004  | 472,50 | ,6334  | -298,7872 | , 037 n |
| 15.2  | 122.09 | 2807   | 240,70 | .0341  | -152,1264 | .0387   |
| 15.4  | 98.46  | 3612   | 145,22 | 6349   | -91,6995  | 0404    |
| 15.6  | 83.49  | 4419   | 96,92  | 6360   | m61.1410  | 0423    |
| 15.8  | 73.17  | ,5230  | 69.11  | 0372   | -43,5380  | 0443    |
| 16.0  | 65.64  | .6044  | 51,66  | 0386   | -32,4925  | 0464    |
| 16.2  | 59.92  | 6861   | 40.02  | 0404   | 125,1303  | 0487    |
| 16.4  | 55.44  | .7684  | 31,84  | ,0422  | n19,9555  | ,0712   |
| 16.6  | 51.84  |        | 25 40  | 6444   | -16,1929  | 0538    |
|       |        | 8312   | 25,89  | ,6468  | 13,3670   | ,0>66   |
| 16.5  | 48,90  | .9346  | 21,43  | ,6494  | -11,1952  | 0597    |
| 17.2  | 46.45  | 1.0185 | 17,99  | 6524   | 9,4922    | 0630    |
|       | 44.40  | 1.1031 | 15,30  |        |           | 0444    |
| 17.4  | 42.64  | 1.1887 | 13,13  | , 6555 | -8,1217   | ,0666   |
| 17.6  | 41.13  | 1.2750 | 11,37  | ,6585  | -7,0113   | 0705    |
| 17.8  | 39,82  | 1.3625 | 9,92   | 16625  | -6,0917   | 0794    |
| 18.0  | 38.68  | 1.4505 | 8,72   | ,6666  | -5,3363   | 0794    |
| 18.2  | 37,68  | 1.5401 | 7,70   | 6708   | *4,6911   | .0046   |
| 18.4  | 36,60  | 1.6304 | 6,84   | ,0755  | -4.1501   | 2060    |
| 18.6  | 36.02  | 1.7227 | 6,10   | ,6803  | -3,6765   | .0965   |
| 18.8  | 35.32  | 1,6161 | 5,46   | ,6855  | *3,2745   | ,1035   |
| 19.0  | 34.70  | 1.9108 | 4,90   | .0912  | -2,9256   | .1113   |
| 19.2  | 34,15  | 2,0070 | 4,42   | .0973  | -2,6213   | ,1201   |
| 19.4  | 33,65  | 2.1054 | 3,99   | 7037   | -2,3517   | 1302    |
| 19.6  | 33,20  | 2,2055 | 3,61   | 71.06  | -2,1145   | 1416    |
| 19.8  | 32,80  | 2,3071 | 3,28   | ,7182  | -1,9071   | ,1546   |
| 20.0  | 32,44  | 2,4114 | 2,98   | ,7261  | -1,7199   | 1699    |
| 20.2  | 32,11  | 2,5179 | 2,71   | .7346  | -1,5538   | 1878    |
| 20.4  | 31,62  | 2,6274 | 2,47   | 7436   | -1,4029   | 2053 -  |
| 20.6  | 31,55  | 2,7395 | 2,25   | 7533   | -1,2682   | ,2354   |
| 20.8  | 31,31  | 2,6546 | 2,05   | 7637   | -1,1469   | 2676    |
| 21.0  | 31,09  | 2,9726 | 1,88   | ,7750  | -1,0391   | 3080    |
| 21.2  | 30.89  | 3,0945 | 1,72   | ,7870  | -,9403    | 3013    |
| 21.4  | 30,72  | 3,2206 | 1,57   | 7999   | -,8506    | ,4543   |
| 21.6  | 30,55  | 3,3507 | 1,43   | 6139   | -,7700    | ,5393   |
| 21.8  | 30.41  | 3,4956 | 1,31   | ,8289  | -,6968    | 7050    |
| 22.0  | 30,27  | 3,6259 | 1,20   | ,8451  | -,6298    | 1,0075  |
| 22.2  | 30,15  | 3,7716 | 1,10   | 8628   | -,5701    | 1,7187  |
| 22.4  | 30.05  | 3,9237 | 1,00   | ,8819  | -,5156    | 5,5075  |

[-

| RATIO | TOTAL.                              | STEP   | VAR              | VAR     | COVAR                | HTTF   |
|-------|-------------------------------------|--------|------------------|---------|----------------------|--------|
|       | EKROR                               | SIZE   | ERHOR            | STEP    |                      |        |
|       |                                     |        |                  |         |                      |        |
|       |                                     |        |                  |         |                      |        |
| 15.2  | 415.14                              | .0775  | 3211,43          | ,0226-1 | 998,8055             | ,0336  |
| 15.4  | 215.32                              | 1551   | 802,26<br>356,06 | .0229   | 21,4977              | . 0350 |
| 15.6  | 215.32<br>148,62<br>115.64<br>95.79 | ,232/  | 320,00           | 6234    | 221,49//             | 0365   |
| 15.8  | 112,04                              | 3105   | 199.83           | 6240 -  | 124,1987             | 0361   |
| 16.0  | 80.40                               | 3885   | 127,53           | 6248    | -79,1855             | 0397   |
| 16.2  | 73,26                               | ,4667  | 88,29            | 6259    | -54,7617<br>-40,0192 | 0415   |
| 16.6  | 66.27                               | 6241   | 64,60            |         | 30,4491              | 0454   |
| 16.8  | 50,88                               | ,7033  | 49,23<br>38,69   |         | 25,8927              | 0476   |
| 17.0  | 56,59                               | .7830  | 31,16            | 0321    | 19,2066              | 0499   |
| 17.2  | 53.11                               | 8432   | 25,58            | 6342    | 15,7294              | 0224   |
| 17.4  | 50.24                               | 9439   | 21,35            | 6365    | 13,0968              | 0>51   |
| 17.6  | 47.64                               | 1.0253 | 18,05            | 6390    | 11.0419              | 0579   |
| 17.8  | 45.80                               | 1,1071 | 15,43            | 0419    | -9,4189              | 0610   |
| 18.0  | 44,05                               | 1.1899 | 13,32            | 6448    | ·8,1028              | .0044  |
| 18.2  | 42,54                               | 1,2737 | 11,58            | 0479    | .7.U216              | 0800   |
| 18.4  | 41,23                               | 1.3579 | 10,16            | 0515    | m6,1363              | 0720   |
| 18.6  | 40.08                               | 1,4433 | 8,95             | 6553    | -5,3901              | .0763  |
| 18.8  | 39.06                               | 1.5298 | 7,94             | 6593    | -4,7578              | 0011   |
| 19.0  | 38.17                               | 1.6170 | 7.08             | 6638    | •4.2232              | 0462   |
| 19.2  | 37,37                               | 1,7060 | 6,32             | .0682   | N3,7561              | 0920   |
| 19.4  | 36,66                               | 1,7961 | 5,68             | 6732    | +3,3942              | 0984   |
| 19.6  | 36.03                               | 1.8871 | 5,12             | 6.786   | -3,0007              | 1054   |
| 19,8  | 35,46                               | 1,9001 | 4,62             | ,6842   | -2,7013              | 1133   |
| 20.0  | 34,94                               | 2.0748 | 4,18             | 6901    | -2,4298              | ,1223  |
| 20.2  | 34,48                               | 2.1709 | 3,80             | .0966   | -2,1915              | 1324   |
| 20.4  | 34,06                               | 2,2669 | 3,45             | 7035    | -1,9801              | 1439   |
| 20.6  | 33,69                               | 2.3685 | 3,15             | 7109    | -1,7930              | 1570 - |
| 20.8  | 33.34                               | 2,4712 | 2,87             | 7185    | -1,6207              | ,1726  |
| 21.0  | 33,04                               | 2,5752 | 2,62             | ,7270   | -1,4708              | 1906   |
| 21.2  | 32.75                               | 2.6622 | 2,40             | ,7359   | -1,3339              | ,2121  |
| 21.4  | 32,50                               | 2.7920 | 2,19             | 7454    | -1,2099              | 2383   |
| 21.6  | 32,27                               | 2,9044 | 2,01             | 7557    | -1,0986              | .2704  |
| 22.0  | 34 87                               | 3.0207 | 1,84             | 7782    | - 9077               | ,3116  |
| 22.2  | 31.87<br>31.70                      | 3,2628 | 1,69             | 7909    | -,9037<br>-,8213     | 3051   |
| 22.4  | 31,54                               | 3,3002 | 1,42             | 8043    | -,7449               | 5422   |
| 22.6  | 31,40                               | 3,5219 | 1,30             | 8189    | -,6761               | 7062   |
| 22.8  | 31,27                               | 3,0565 | 1,19             | 8347    | +,6135               | 9997   |
| 23.0  | 31.16                               | 3.8068 | 1,09             | 8516    | -,5561               |        |
| 23,2  | 31.65                               | 3,9490 | 1,00             | 8699    | -,5044               | 5,0004 |
| -0,2  | -2,00                               | 0,,,,, | 1100             | 1-0,,   | -12047               | 2,0204 |

|     |       |                |               | • 02         |             |                    |        |
|-----|-------|----------------|---------------|--------------|-------------|--------------------|--------|
| ľ   | RATIO | TOTAL          | STEP          | VAR<br>ERROR | VAR<br>STEP | COVAR              | MITE   |
| ľ   |       |                |               |              |             |                    |        |
| •   | 16.0  | 186.39         | .1876         | 555,52       | ,0132       | -340.1372          | .0345  |
|     | 16.2  | 137,85         | ,2630         | 283,04       | ,6138       | -173,2259          | ,0359  |
|     | 16.4  | 110.95         | .3385         | 170,83       | ,6145       | -104,4742          | 0374   |
| 1   | 16.6  | 93.88          | ,4141         | 114,04       | 6154        | -69,6793           | 0390   |
|     | 16.8  | 82.12          | .4199         | H1,37        | ,0164       | m49.6601           | ,0407  |
| 1   | 17.0  | 73.53          | ,5661         | 60,86        | ,0176       | -37.0894           | 0425   |
| 1   | 17.2  | 67.00          | .6425         | 47.17        | 0191        | <b>28,7089</b>     | .0445  |
|     | 17.4  | 61.88          | .7194         | 37,56        | ,6206       | m22.8142           | ,0405  |
| 1   | 17.6  | 57,77          | ,7966         | 30,58        | ,6225       | -18,5415           | .0487  |
| 1.  | 17.8  | 54.39          | ,8744         | 25,32        | , 6245      | m15,3198           | ,0511  |
|     | 18.0  | 51.59          | .9527         | 21,28        | ,6267       | -12,8491           | ,0936  |
|     | 18.2  | 49.22          | 1.0315        | 18,11        | 10292       | -10,9049           | 0563   |
|     | 18.4  | 47.20          | 1,1111        | 15,56        | 6317        | -9,3428            | 0592   |
| 1-  | 18.6  | 45.46          | 1,1911        | 13,50        | 6347        | -8,0845            | 0623   |
|     | 18.8  | 43.96          | 1.2720        | 11,80        | 6378        | -7.0447            | 0657   |
| 1-  | 19.0  | 42,64          | 1.3538        | 10,38        | ,0411       | -6,1751            | 0694   |
| 1   | 19.2  | 41.47          | 1,4367        | 9,18         | ,0445       | -5,4392            | 0779   |
|     | 19.4  | 40.45          | 1.5202        | 8,17         | ,6484       | -4,8203            | 0626   |
| 1.  | 19.6  | 39.54          | 1,6046        | 7,30         | ,6526       | -4,2928            | 0628   |
|     | 19.8  | 38,73          | 1,6906        | 6,55         | ,0568       | -3,8302<br>-3,4346 | 0437   |
|     | 20.0  | 38.01          | 1.7772        | 5,90         | ,0616       | -3,0846            | 1001   |
| 7   | 20.2  | 37,35<br>36,77 | 1,6655        | 5,33         | 0718        | -2,7780            | 1073   |
|     | 20.4  | 36,24          |               | 4,38         | 6774        | -2,5082            | 1153   |
|     | 20.8  | 35.76          | 2,0460 2,1385 | 3,98         | 0835        | -2,2686            | 1242   |
|     | 21.0  | 35.33          | 2,2331        | 3,63         | 6897        | -2.0530            | 1345   |
|     | 21.2  | 34,94          | 2,3291        | 3,31         | 6966        | -1,8624            | 1461   |
| 1   | 21.4  | 34.58          | 2,4272        | 3,03         | 7038        | -1,6904            | 1594 - |
|     | 21.6  | 34.26          | 2,5269        | 2,78         | 7116        | -1,5379            | 1748   |
| 1   | 21.8  | 33,97          | 2,6295        | 2,54         | 7198        | -1,3978            | 1931   |
|     | 22.0  | 33.70          | 2,7348        | 2,33         | 1284        | -1,2700            | 2149   |
| _   | 22.2  | 33,46          | 2.6422        | 2,14         | 7377        | -1,1561            | 2412   |
|     | 22.4  | 33,24          | 2,9522        | 1,97         | 7478        | -1,0532            | 2733   |
| 1   | 22.6  | 33.04          | 3,0660        | 1,81         | ,7584       | -,9578             | 3145   |
| -   | 22.8  | 32.85          | 3,1827        | 1,06         | ,7698       | 8722               | 3677   |
|     | 23.0  | 32.69          | 3,3029        | 1,53         | 7821        | 7943               | .4398  |
|     | 23.2  | 32.54          | 3,4272        | 1,40         | 7953        | 7230               | 5433   |
| 1,  | 23.4  | 32.40          | 3,5558        | 1,29         | .8094       | -,6581             | ,7041  |
| _   | 23.6  | 32.27          | 3,6896        | 1,19         | . 0245      | -,5978             | 9930   |
|     | 23,3  | 32.16          | 3,8281        | 1,09         | ,8409       | -,5439             | 1,6411 |
| 11- | 24.0  | 32.06          | 3,9724        | 1,00         | , 8585      | -,4948             | 4,5225 |
|     |       |                |               |              |             |                    |        |

1-

|   | 33 |  |
|---|----|--|
| N |    |  |
|   |    |  |

| RATI | O TOTAL  | STEP   | VAR     | VAH    | COVAR      | MTTF    |     |
|------|----------|--------|---------|--------|------------|---------|-----|
|      | FRROR    | S176   | ERROR   | STEP   |            |         |     |
|      |          |        |         |        |            |         |     |
|      |          |        |         |        |            |         | 1   |
| 16.  | 2 469,51 | .0728  | 3756,51 | ,6034  | -2266.1870 | ,0315   |     |
| 16.  |          | .1456  | 938,11  | ,0036  | -565,7329  | ,0327   |     |
| 16.  | 6 167.59 | ,2166  | 416,50  | .0040  | -251.0845  | .0340   | . 1 |
| 16.  | 8 129.98 | .2916  | 233,86  | 0046   | -140,9014  | ,0354   |     |
| 17.  | 0 107.47 | .3646  | 149,31  | ,0053  | -89,8832   | , 4368  |     |
| 17.  | 2 92.51  | .43E2  | 103,38  | .0002  | -62,1731   | 0383    |     |
| 17.  | 4 81.88  | .5118  | 75,69   | 0073   | -45,4670   | .0400   |     |
| 17.  | 6 73.94  | ,5457  | 57,70   | ,6085  | #34,6156   | ,0417   |     |
| 17.  |          | .5999  | 45,40   | .0100  | -27,1976   | ,0435   |     |
| 18.  |          | 7345   | 36,58   | ,5115  | -21,8718   | 0455    |     |
| 18.  | 2 58,96  | .3096  | 30,05   | ,6133  | -17,9360   | 0476    |     |
| 18.  | 4 55,69  | ,8849  | 25,10   | ,6153  | -14,9532   | 0498    |     |
| 18.  | 6 52.94  | 9609   | 21,24   | ,6174  | -12,6255   | 0255    | 1   |
| 18,  | 8 50.61  | 1.0375 | 18,17   | ,0197  | -10.7728   | ,0547   |     |
| 19.  |          | 1.1145 | 15,71   | ,6223  | +9,2871    | ,0575   | -   |
| 19.  |          | 1.1923 | 13,68   | ,6250  | -8.0666    | .0004   |     |
| 19.  | 4 45,37  | 1,2706 | 12,01   | ,0280  | m7.0600    | ,0030   |     |
| 19.  |          | 1,3502 | 10.60   | ,6310  | -6,2075    | ,0071   |     |
| 19.  |          | 1,4302 | 9,41    | 6344   | -5,4924    | 0708    |     |
| 20.  |          | 1,5168 | 8,41    | 6381   | n4,8874    | .0749   | 7   |
| 20.  |          | 1.5930 | 7,53    | .6419  | -4,3582    | 0793    |     |
| 20.  | 4 40.09  | 1.6758 | 6,77    | 6461   | -3,9048    | 0841    |     |
| 20.  |          | 1,7599 | 6,11    | 6504   | #3,5073    | 0895    | -   |
| 20.  |          | 1.8150 | 5,54    | 6551   | -3,1609    | .0953   |     |
| 21.  | 0 38.09  | 1,9314 | 5,03    | 6601   | -2,8550    | 1018    |     |
| 21.  |          | 2.0193 | 4,57    | 0654   | -2,5829    | .1090   |     |
| 21.  | 4 37,05  | 2,1386 | 4,17    | 6710   | -2,3419    | ,1171   |     |
| 21.  | 6 36.60  | 2,1795 | 3,61    | 6769   | +2,1256    | .1252 - | 1   |
| 21.  | 8 36.20  | 2.2922 | 3,48    | 0832   | -1,9312    | ,1365   |     |
| 22.  | 0 35.83  | 2,3361 | 3.19    | 6900   | +1,7595    | , 1481, | 1   |
| 22.  |          | 2.4428 | 2,93    | 5970   | -1,6006    | ,1017   | 1   |
| 22.  | 4 35,19  | 2,5811 | 2,69    | ./046  | -1,4589    | 1773    |     |
| 22,  |          | 2,6913 | 2,47    | 1/127  | -1,3314    | 1955    | =1  |
| 22.  |          | 2.7840 | 2,27    | ,7213  | -1,2155    | ,2172   |     |
| 23.  |          | 2,8897 | 2.09    | ,/304  | -1,1082    | ,2437   | - 4 |
| 23.  |          | 2,9974 | 1.93    | 7403   | m1.0127    | ,2758   |     |
| 23.  | 4 34.02  | 3,1065 | 1,78    | 7507   | 9246       | 3166    |     |
| 23.  | 6 33,84  | 3,2230 | 1,64    | ,7618  | -,8434     | 3699    |     |
| 23.  |          | 3,3408 | 1,51    | 7737   | -,7697     | ,4416   |     |
| 24.  | 0 33,53  | 3,4625 | 1,39    | ,7964  | -,7023     | 5442    | . 1 |
| 24.  |          | 3,5862 | 1,28    | ,8001  | -,6408     | 7024    | -   |
| 24.  | 4 33,27  | 3.7185 | 1,18    | . 0148 | -,5843     | 9799    |     |
| 24.  | 6 33,16  | 3.8542 | 1,09    | , 8305 | -,5321     | 1.6002  | 73  |
| 24.  | 8 33,06  | 3,9947 | 1,00    | ,6475  | -, 4854    | 4,1086  |     |
|      |          |        |         |        |            |         |     |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |        |          |         |                 |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------|----------|---------|-----------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RATIO | TOTAL   | STEP   | VAR      | VAR     | COVAR           | MITE                 |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | FRRUR   | SIZE   | FRPOP    | STEP    |                 | r er mil 2 11 kansen |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | , made  | 3126   | C INI OI | - ' ' ' |                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |        |          |         |                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.0  | 209:40  | .1767  | 646,73   | ,5948   | -384.1749       | ,0323                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 154,55  | .2475  | 329,44   | .5952   | -195,5955       | .0335                |
| 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.2  |         |        |          | 5958    | -117,9960       | 0348                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 124.15  | .3185  | 198,88   |         | 78 7506         |                      |
| 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.6  | 104.88  | .3595  | 132,84   | ,5966   | -78,7595        | ,0362                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.8  | 91.55   | .4608  | 94,84    | ,5976   | m56,1789        | ,0377                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.0  | 81.87   | , 5324 | 70,98    | ,5986   | m41,9919        | ,0392                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.2  | 74,47   | .6042  | 55,02    | ,5998   | <b>~32,5033</b> | ,0409                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.4  | 68,67   | .6764  | 43,84    | .0012   | -25,8586        | .0426                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.6  | 64.00   | ,7485  | 35,70    | ,6027   | m21,0245        | 0445                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.8  | 60.18   | .8217  | 29,60    | ,6044   | -17,3952        | 0465                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.0  | 56.99   | .5950  | 24,90    | ,0063   | -14,6045        | ,0480                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.2  | 54,30   | 9687   | 21,21    | 6085    | m12,4147        | ,0509                |
| T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.4  | 52.00   | 1.0429 | 18,25    | 6107    | -10,6584        | 0533                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.6  |         |        | 15,85    | 0131    | .9.2291         | 0959                 |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.8  | 50.02   | 1.1178 |          |         |                 | 0586                 |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 48,29   | 1,1934 | 13,86    | ,0157   | -8,0493         |                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0  | 46,78   | 1.2696 | 12,21    | ,6184   | +7,0671         | ,0616                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.2  | 45.45   | 1.3465 | 10.82    | ,0215   | -6,2432         | ,0649                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.4  | 44.27   | 1.4242 | 9,64     | 6246    | -5,5400         | ,0684                |
| F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.6  | 43.23   | 1.5027 | 8,63     | ,6281   | -4.9406         | .0721                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.8  | . 42.30 | 1,5816 | 7,76     | ,6320   | n4,4279         | 0762                 |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.0  | 41.45   | 1.6624 | 6,99     | .0357   | -3,9710         | 0807                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.2  | 40.70   | 1.7435 | 6,33     | ,6399   | -3,5000         | ,0456                |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.4  | 40.02   | 1.8260 | 5,74     | .6443   | -3,2332         | .0910                |
| Name of the last o | 21.6  | 39,41   | 1.9095 | 5,23     | ,5490   | -2,9280         | 0909                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.8  | 38.85   | 1.9947 | 4,76     | 6539    | +2,6536         | 1035                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.0  | 38.34   | 2,0609 | 4,35     | ,0591   | -2,4112         | 1107                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.2  | 37,88   | 2,1686 | 3,98     | 6647    | -2,1940         | 1189                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.4  | 37,46   | 2.2577 | 3,65     | 6706    | •1,9993         | 1280 -               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.6  | 37.08   | 2.3485 | 3,35     | 6768    | -1,8242         | 1304                 |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.6  | 36.73   | 2,4410 | 3,08     | 6835    | -1,6658         | 1201                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.0  | 36,41   | 2.5356 | 2,84     | 6905    | +1,5214         | 1537                 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.2  | 36,12   | 2.6318 | 2,61     | 5980    | -1,3915         | 1793                 |
| 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.4  | 35.85   | 2,7302 | 2,41     | 7060    | •1,2733         | 1975                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.6  | 35.61   | 2 8744 | 2,22     | 7143    | -1,1541         | 2196                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         | 2.8314 |          |         |                 | 2457                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.8  | 35.39   | 2.9343 | 2,05     | ,7234   | -1.0667         | .2457                |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.0  | 35.18   | 3.0406 | 1,89     | .7329   | -,9751          | ,2783                |
| 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.2  | 35.00   | 3,1496 | 1,75     | ,7430   | -,8922          | ,3191                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.4  | 34.62   | 3.2514 | 1,62     | ,7539   | -,8168          | 3717                 |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.6  | 34.67   | 3.3766 | 1,49     | .7656   | • ,7477         | ,4425                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.8  | 34,53   | 3.4961 | 1,38     | ,7778   | -,6829          | 5448                 |
| 1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0  | 34.40   | 3.6188 | 1,27     | ,7912   | -,6251          | ,6990                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.2  | 34.27   | 3.7466 | 1,18     | 8.053   | -,5707          | 9707                 |
| II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25,4  | 34,17   | 3,8784 | 1,09     | ,8206   | -,5220          | 1,5463               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25,6  | 34.67   | 4.0157 | 1,00     | ,8369   | -,4768          | 3,7354               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |        |          |         |                 |                      |

I

| RATIO TOTAL STEP YAR STEP VAR STEP COVAR MITE FRIGOR STEP FRIGOR STEP COVAR MITE STEP FRIGOR STEP COVAR MITE STEP FRIGOR STEP COVAR MITE STEP STEP STEP STEP STEP STEP STEP ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |        |         |        |           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|---------|--------|-----------|--------|
| 17.2 527.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RATIO |        |        |         |        | COVAR     | MITF.  |
| 17.4 272.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        | 0121.  |         |        |           |        |
| 17.4 272.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.2  | 527 15 | 0685   | 4351.99 | 5858   | 2549.0763 | 0296   |
| 17.6 197, 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.4  |        |        |         |        |           |        |
| 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 137 49 |        |         |        | -282.6285 |        |
| 18.0 119.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 145.14 |        |         |        | -158.5634 |        |
| 18.2 172 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 119 79 |        | 173.07  |        |           |        |
| 18.4 90.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.2  | 112 94 |        |         |        |           |        |
| 18.6 82.63 .6518 57.00 .903 m39.0505 0365  18.8 75.11 .6216 52.73 .9015 m30.6947 0401  19.0 69.57 .6018 42.51 .9025 m24.7051 0418  19.2 65.12 .7623 34.95 .9044 m20.2799 0436  19.4 61.41 .6332 29.20 .9960 m14.2903 0475  19.8 55.66 .9761 21.19 .9998 m14.2903 0475  20.0 53.36 1.0464 18.32 .0019 m12.2179 0496  20.2 51.42 1.1211 15.98 .0043 m9.1691 0543  20.4 449.70 1.1045 14.04 .0068 m1.323 0569  20.8 46.86 1.3428 11.04 .0125 m2.866 0.997  20.8 46.86 1.3428 11.04 .0125 m2.866 0.997  20.8 46.86 1.3428 11.04 .0125 m2.866 0.997  20.8 46.86 1.4183 9.86 .0155 m2.512 0.060  21.2 44.62 1.4946 8.85 0.187 m4.9976 0.0996  21.4 43.67 1.5717 7.97 .0221 m4.842 0.734  21.6 42.82 1.6492 7.21 .0200 m4.0433 0.775  21.8 42.05 1.7263 6.54 .0288 m3.4485 0.021  22.2 40.73 1.8991 5.42 .0384 m2.9968 0.924  22.4 40.15 1.9713 4.95 .0430 m2.7239 0.984  22.4 40.15 1.9713 4.95 .0430 m2.7239 0.984  22.6 39.64 2.0543 4.54 .6481 m2.4836 1.050  23.2 38.33 2.3126 3.52 .0447 m1.9914 1.297  23.6 37.64 2.4932 2.99 .0772 m1.8826 1.205  23.0 36.73 2.2254 3.82 .0587 m2.0666 1.205  23.2 38.33 2.3126 3.52 .0447 m1.9914 1.297  24.4 36.57 2.8759 2.18 .7077 m1.1197 2.215  24.5 35.66 3.4113 1.48 .7757 m.6635 3.209  25.2 35.8 35.39 3.6481 1.27 .7857 m.6635 3.209  25.2 35.8 35.39 3.6481 1.27 .7857 m.6635 3.209  25.8 35.39 3.6481 1.27 .7857 m.6635 3.209  25.8 35.39 3.6481 1.27 .7859 m.9423 .8000  26.0 35.28 35.39 3.6481 1.27 .7859 m.9423 .8000  26.0 35.18 3.5920 m.9423 .9900  26.0 35.18 3.5920 m.9423 .9900  27.8 36.50 3.5900 m.9400 m.9515 .9900                                                 |       | 90 98  |        | 87.83   |        | -51.2560  | 03/0   |
| 18.8 75.11 6216 52.73 5915 30.6947 0401 19.0 69.59 6918 42.51 5928 324.7051 0418 19.2 65.12 7623 34.95 5944 72.2799 0436 19.4 61.41 6332 29.20 5960 -16.9062 0454 19.4 65.30 9044 24.73 5978 14.2903 0475 19.8 55.66 9761 21.19 5998 14.22179 0456 20.0 53.36 1.0464 18.32 0019 10.5382 0519 20.2 51.42 1.1211 15.98 0013 39.1691 0543 20.4 49.70 1.1045 14.04 0068 80.323 0569 20.6 48.20 1.2482 12.42 0096 -7.0866 0597 20.8 46.66 1.3428 11.04 0125 -6.2819 0028 21.0 45.69 1.4183 9.86 6155 -5.5912 0060 21.2 44.62 1.4946 8.85 0187 -4.9976 0096 21.4 43.67 1.5717 7.97 0221 -4.4842 0734 21.6 42.82 1.6492 7.21 0260 44.0433 0775 21.6 42.82 1.6492 7.21 0260 44.0433 0775 22.0 41.36 1.0663 5.94 6339 -3.3014 0070 22.2 40.73 1.8991 5.42 0384 -2.9968 0924 22.4 40.15 1.9713 4.95 0430 -2.7239 0984 22.4 40.15 1.9713 4.95 0430 -2.7239 0984 22.4 40.15 1.9713 4.95 0430 -2.7239 0984 22.4 40.15 1.9713 4.95 0430 -2.7239 0984 22.4 40.15 1.9713 4.95 0648 -2.7239 0984 22.4 40.15 1.9713 4.95 0648 -2.7239 0984 22.4 40.15 1.9713 4.95 0648 -2.7239 0984 22.4 30.73 1.8991 5.42 0384 -2.9968 0924 22.4 40.15 1.9713 4.95 0648 -2.7239 0984 22.4 30.73 2.3126 3.524 0788 -1.7298 1.105 23.2 38.33 2.3126 3.52 0647 -1.8914 1.297 23.4 37.97 2.4019 3.24 0708 -1.7298 1.401 23.6 37.64 2.4932 2.99 0772 -1.5826 1.520 23.6 37.64 2.4932 2.99 0772 -1.5826 1.520 23.6 37.64 2.4932 2.99 0772 -1.5826 1.520 23.6 37.64 2.4932 2.99 0772 -1.5826 1.520 23.6 37.64 2.4932 2.99 0772 -1.5826 1.520 24.0 37.06 2.6805 2.54 0916 -1.3296 1.513 24.2 36.81 2.7767 2.35 0695 -1.2216 1.995 24.6 36.36 2.9771 2.01 7.66 -1.0279 2.476 24.8 36.16 3.0413 1.48 7.727 -1.5826 1.520 25.2 35.81 3.727 1.60 7.464 -7.7927 3.730 25.4 35.66 3.4113 1.48 7.757 -8.6651 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 25.8 35.39 3.0481 1.27 7.825 -6.6661 5.433 26. |       |        |        |         |        |           |        |
| 19.0 69.57 69.18 42.51 5928 m24.7051 U418 19.2 65.12 7623 34.95 5944 m20.2799 U436 19.4 61.41 6332 29.20 5960 m16.9062 U454 19.8 55.66 9761 21.19 5998 m14.2903 U475 20.0 53.36 1.0464 18.32 5019 m10.5382 U519 20.2 51.42 1.1211 15.98 5014  m20.2799 0543 20.4 49.70 1.1045 14.04 5068 m20.323 U569 20.6 48.20 1.2462 12.42 5096 m7.0866 U597 20.8 46.86 1.3428 11.04 5125 m2.8819 U628 21.0 45.68 1.4183 9.86 5157 m2.7976 U690 21.4 43.67 1.5717 7.97 5221 m4.4842 U734 21.6 42.82 1.6492 7.21 5260 m4.9073 U775 22.0 41.36 1.6063 5.94 5339 m3.3014 U670 22.2 40.73 1.8991 5.42 538  m3.3014 U670 22.2 40.73 1.8991 5.42 538  m3.3014 U670 22.4 40.15 1.9713 4.95 6430 m2.7239 U984 22.6 39.64 2.5543 4.54 6481 m2.4836 1050 m24 23.0 36.73 2.2254 3.82 5587 2.0666 1205 23.2 38.33 2.3126 3.52 5647 m1.8914 1297 23.4 37.97 2.4010 3.24 578  m2.47239 U984 24.0 37.36 2.2254 3.82 5587 2.0666 1205 23.2 38.33 2.3126 3.52 5647 m1.8914 1297 23.4 37.97 2.4010 3.24 578  m2.47239 U984 24.0 37.36 2.6805 2.54 5996 m1.2216 1295 24.4 36.57 2.8759 2.18 7077 m1.1197 2.215 24.6 36.36 2.9771 2.01 7.766 m1.3296 1813 25.2 35.81 3.797 2.4010 3.24 578  m3.2216 1995 24.4 36.57 2.8759 2.18 7077 m1.1197 2.215 24.6 36.36 2.9771 2.01 7.766 m1.3296 1813 25.2 35.81 3.797 1.08 810 7755 m.8635 3209 25.2 35.81 3.797 1.08 810 7767 m.11197 2.215 24.8 36.16 3.0813 1.086 7259 m.9423 2.2400 25.8 35.96 3.1984 1.72 7357 m.8635 3209 25.2 35.81 3.797 1.00 8100 7.766 m.5155 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |        |         |        |           |        |
| 19.2 65.12 7623 34,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 0  | 69 59  |        | 42.51   | 5925   | -24.7051  | 0418   |
| 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 2  | 65 12  |        | 34 95   | 5044   |           | 0436   |
| 19.4 58.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 4  | 61 41  |        | 20 20   |        | -16.9062  | 0454   |
| 19.8   55.66   9761   21.19   5998   12.2179   0496   20.0   53.36   1.0484   18.32   0019   10.5382   0519   20.2   51.42   1.1211   15.98   0043   97.1691   0543   20.4   49.70   1.1045   14.04   0068   80.0323   0569   20.6   48.20   1.2682   12.42   6096   7.0866   0597   20.8   46.86   1.3428   11.04   0125   66.2819   0028   21.0   45.68   1.4183   9.86   6155   55.5912   0060   21.2   44.62   1.4046   8.85   0187   49.976   0090   21.4   43.67   1.5717   7.97   0.221   44.842   0.734   21.6   42.82   1.6492   7.21   0.260   31.6482   0.775   21.8   42.05   1.7263   6.54   0.298   3.6485   0.021   22.0   41.36   1.0063   5.94   6339   3.3014   0.070   22.2   40.73   1.8891   5.42   6384   82.9968   0.924   22.4   40.15   1.9713   4.95   0430   -2.7239   0.884   22.6   39.64   2.0543   4.54   6.6481   0.24836   0.050   0.228   22.6   39.64   2.0543   4.54   6.6481   0.24836   0.050   0.228   22.8   39.64   2.0543   4.54   6.6481   0.24836   1.050   0.228   23.2   38.33   2.3126   3.52   6.647   1.8914   1.297   23.4   37.97   2.4019   3.24   6.708   17.7298   1401   1.23   23.6   37.34   2.5857   2.76   6842   1.4510   1.656   1.205   23.4   37.97   2.4019   3.24   6.708   17.7298   1401   1.296   1.205   23.6   37.34   2.5857   2.76   6842   1.4510   1.656   1.205   23.6   37.34   2.5857   2.76   6842   1.4510   1.656   1.656   1.205   23.6   37.34   2.5857   2.76   6842   1.4510   1.656   1.656   1.657   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   24.4   36.57   2.8759   2.18   7.077   1.1197   2.215   2.4   36.57   2.8759   2.18   7.077   3.577   3.6635   3.209   3.5 | 19 6  |        |        | 24.73   |        | -14.2903  | 0475   |
| 20.0 53.36 1.0484 18.32 0019 =10.5382 0019 20.2 51.42 1.1211 15.98 0043 99.1691 0043 20.4 49.70 1.1945 14.04 0068 =8.0323 0069 20.6 48.20 1.2482 12.42 0096 =7.0866 0097 20.8 46.86 1.3428 11.04 0125 =6.2819 0028 21.0 45.68 1.4183 9.86 0155 =5.5912 0060 21.2 44.62 1.4946 8.85 0187 =4.9976 0096 21.4 43.67 1.5717 7.97 0221 =4.4842 0734 21.6 42.82 1.6492 7.21 0260 =4.0433 0775 21.8 42.05 1.7263 6.54 0298 =3.6485 0021 22.0 41.36 1.8063 5.94 0339 =3.3014 0070 22.2 40.73 1.8991 5.42 0384 =2.9968 0024 22.4 40.15 1.9713 4.95 0430 =2.7239 0084 22.6 39.64 2.0543 4.54 0681 =2.4636 1050 =2.28 39.16 2.1389 4.15 0533 =2.2654 1123 23.0 38.73 2.2254 3.82 0587 =2.0666 1205 =2.38 37.34 2.4019 3.24 0708 =1.7298 1401 23.6 37.64 2.4932 2.99 0772 =1.5826 1020 23.8 37.34 2.5857 2.76 0842 =1.4510 1650 =1.205 =2.44 36.57 2.8759 2.18 7077 =1.1197 2245 24.4 36.57 2.8759 2.18 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 24.2 35.8 37.34 2.5857 2.76 0842 =1.4510 1650 =1.506 2.54 35.52 3.5976 1.37 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 24.2 35.8 37.36 2.8759 2.18 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 2.476 2.8759 2.18 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 2.476 2.8759 2.18 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 2.476 2.8759 2.18 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 2.476 2.8759 2.18 7077 =1.1197 2245 24.6 36.36 2.4771 2.01 7.166 =1.3296 1013 2.476 2.8759 2.18 7077 =1.1197 2.245 2.48 36.16 3.0813 1.86 7259 =9.9423 2.400 2.50 35.96 3.1984 1.72 7357 =8.635 3.209 2.476 2.58 35.39 3.6481 1.72 7357 =8.635 3.209 2.476 2.58 35.39 3.6481 1.72 7357 =8.635 3.209 2.476 2.58 35.39 3.6481 1.27 7.865 =9.9423 2.400 2.400 2.58 35.39 3.6481 1.27 7.865 =9.9423 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.4 | 19 8  |        |        |         |        |           | 0496   |
| 20.2 51.42 1.121 15.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 53 38  |        | 18.32   |        |           | 0519   |
| 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 51 42  | 1 1214 | 15 98   |        | -9.1691   | 0543   |
| 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 49 70  | 1 1045 | 14.04   | 8800   | -8.0323   | 0269   |
| 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 48 20  |        |         |        |           |        |
| 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 46 86  |        | 11.04   |        | -6.2819   |        |
| 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |        | AH P    | 6155   |           | 0060   |
| 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 44 62  | 1 4246 | 8 45    | 0187   | -4.9976   |        |
| 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 43 67  | 1 5747 | 7 97    | 6221   | -4.4842   |        |
| 21.8       42.05       1.7263       6.54       6298       -3.6485       0821         22.0       41.36       1.8063       5.94       6339       -3.3014       0870         22.2       40.73       1.8891       5.42       6384       -2.9968       0924         22.4       40.15       1.9713       4.95       6430       -2.7239       0984         22.6       39.64       2.0543       4.54       6481       -2.4836       1050         22.8       39.16       2.1389       4.15       6533       -2.2654       1123         23.0       36.73       2.2254       3.82       6587       -2.0666       1205         23.2       38.33       2.3126       3.52       6647       -1.8914       1297         23.4       37.97       2.4019       3.24       6708       -1.7298       1401         23.6       37.64       2.4932       2.99       6772       -1.5826       1520         23.8       37.34       2.5857       2.76       6842       -1.4510       1656         24.0       37.06       2.6805       2.54       6916       -1.3296       1813         24.2       36.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 42 82  |        | 7.21    | 6260   |           | 0775   |
| 22.0       41,36       1,8083       5,94       6339       3,3014       0870         22.2       40,73       1,8891       5,42       6384       2,9968       0924         22.4       40,15       1,9713       4,95       6430       -2,7239       0984         22.6       39,64       2,0543       4,54       6481       -2,4836       1050         22.8       39,16       2,1389       4,15       6533       -2,2654       1123         23.0       36,73       2,2254       3,82       6587       -2,0666       1205         23.2       38,33       2,3126       3,52       6647       -1,8914       1297         23.4       37,97       2,4019       3,24       6708       -1,7298       1401         23.6       37,64       2,4932       2,99       6772       -1,5826       1520         23.6       37,34       2,5857       2,76       6842       -1,4510       1656         24.0       37,06       2,6805       2,54       6916       -1,3296       1813         24.2       36,81       2,7767       2,35       6995       -1,2216       1995         24.4       36.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |        | 6.54    | 6298   |           |        |
| 22.2       40.73       1.8891       5.42       6384       #2.9968       U924         22.4       40.15       1.9713       4.95       6430       #2.7239       U984         22.6       39.64       2.0543       4.54       6481       #2.4636       1050         22.8       39.16       2.1389       4.15       6533       #2.2654       1123         23.0       36.73       2.2254       3.82       6587       #2.0666       1205         23.2       38.33       2.3126       3.52       6647       #1.8914       1297         23.4       37.97       2.4019       3.24       6708       #1.7298       1401         23.6       37.64       2.4932       2.99       6772       #1.5826       1520         23.8       37.34       2.5857       2.76       6842       #1.4510       1656         24.0       37.06       2.6805       2.54       6916       #1.3296       1813         24.2       36.81       2.7767       2.35       6995       #1.2216       1995         24.4       36.57       2.8759       2.18       7077       #1.1197       2215         24.6       36.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |        | 5 04    |        | -3.3014   |        |
| 22.4       40.15       1,9713       4,95       6430       +2,7239       0984         22.6       39.64       2,0543       4,54       6481       +2,4836       1050       -         22.8       39.16       2,1389       4,15       6533       +2,2654       1123         23.0       36.73       2,2254       3,82       6587       +2,0666       1205         23.2       38.33       2,3126       3,52       6647       +1,8914       1297         23.4       37.97       2,4019       3,24       6708       +1,7298       1401         23.6       37.64       2,4932       2,99       6772       +1,5826       1520         23.6       37.06       2,6805       2,54       6916       +1,3296       1656         24.0       37.06       2,6805       2,54       6916       +1,3296       1613         24.2       36.81       2,7767       2,35       6995       +1,2216       1995         24.4       36.57       2,8759       2,18       7077       +1,1197       2215         24.6       36.36       2,9771       2,01       7166       +1,0279       2476         24.8 <t< td=""><td></td><td></td><td></td><td>5.42</td><td>6384</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |        | 5.42    | 6384   |           |        |
| 22.6       39.64       2.6543       4.54       6481       #2.4836       1050         22.8       39.16       2.1389       4.15       6533       #2.2654       1123         23.0       36.73       2.2254       3.82       6587       #2.0666       1205         23.2       38.33       2.3126       3.52       6647       #1.8914       1297         23.4       37.97       2.4019       3.24       6708       #1.7298       1401         23.6       37.64       2.4932       2.99       6772       #1.5826       1520         23.8       37.34       2.5857       2.76       6842       #1.4510       1656         24.0       37.06       2.6805       2.54       6916       #1.3296       1813         24.2       36.81       2.7767       2.35       6995       #1.2216       1995         24.4       36.57       2.8759       2.18       7077       #1.1197       2215         24.6       36.36       2.9771       2.01       /166       #1.0279       2476         24.8       36.16       3.0813       1.86       7259       #9423       28000         25.0       35.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |        | 4.95    | 6430   |           |        |
| 22.8       39.16       2.1389       4.15       .9533       -2.2054       .1205         23.0       36.73       2.2254       3.82       .6587       -2.0666       .1205         23.2       38.33       2.3126       3.52       .6647       -1.8914       .1297         23.4       37.97       2.4019       3.24       .9708       -1.7298       .1401         23.6       37.64       2.4932       2.99       .0772       -1.5826       .1520         23.8       37.34       2.5857       2.76       .6842       -1.4510       .1656         24.0       37.06       2.6805       2.54       .9916       -1.3296       .1813         24.2       36.81       2.7767       2.35       .6995       -1.2216       .1995         24.4       36.57       2.8759       2.18       .7077       -1.1197       .2215         24.6       36.36       2.9771       2.01       ./166       -1.0279       .2476         24.8       36.16       3.0413       1.46       ./259      9423       .2800         25.0       35.96       3.1384       1.72       .7357      8635       .3209         25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 39 64  |        | 4.54    |        |           |        |
| 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |        | 4.15    | 6533   |           | 1123   |
| 23.2 38.33 2.3126 3.52 6647 1.8914 1297 23.4 37.97 2.4019 3.24 6708 1.7298 1401 23.6 37.64 2.4932 2.99 6772 1.5826 1520 23.8 37.34 2.5857 2.76 6842 1.4510 1656 24.0 37.06 2.6805 2.54 6916 1.3296 1813 24.2 36.81 2.7767 2.35 6995 1.2216 1995 24.4 36.57 2.8759 2.18 7077 1.1197 2215 24.6 36.36 2.9771 2.01 7166 1.0279 2476 24.8 36.16 3.0813 1.86 7259 19423 2800 25.0 35.96 3.1384 1.72 7357 1.8635 3209 25.2 35.81 3.2779 1.60 74647927 3730 25.4 35.66 3.4113 1.48 75757260 4441 25.6 35.52 3.5276 1.37 76966661 5433 25.8 35.39 3.6481 1.27 78256102 6955 26.0 35.28 3.7727 1.17 79625589 9563 26.2 35.17 3.9020 1.08 81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 36 73  |        | 3.82    |        |           |        |
| 23.4 37.97 2,4019 3,24 ,6708 =1,7298 1401 23.6 37.64 2,4932 2,99 ,6772 =1,5826 1520 23.8 37.34 2,5857 2,76 ,6842 =1,4510 1656 24.0 37.06 2,6805 2,54 ,9916 =1,3296 1813 24.2 36.81 2,7767 2,35 ,6995 =1,2216 1995 24.4 36.57 2,8759 2,18 ,7077 =1,1197 ,2215 24.6 36.36 2,9771 2,01 ,166 =1,0279 ,2476 24.8 36.16 3,0813 1,86 ,7259 =,9423 ,2800 25.0 35.96 3,1384 1,72 ,7357 =,8635 ,3209 25.2 35.81 3,2779 1,60 ,7464 -,7927 ,3730 25.4 35.66 3,4113 1,48 ,7575 =,7260 ,4441 25.6 35.52 3,5276 1,37 ,7696 =,6661 ,5433 25.8 35.39 3,6481 1,27 ,7825 =,6102 ,6955 26.0 35.28 3,7727 1,17 ,7962 =,5589 ,9563 26.2 35.17 3,9020 1,08 ,8109 =,5115 1,5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |        | 3.52    |        |           | 1297   |
| 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |        | 3.24    | 6708   |           | 1401   |
| 23.8 37.34 2.5857 2.76 6842 -1.4510 1656 24.0 37.06 2.6805 2.54 6916 -1.3296 1813 24.2 36.81 2.7767 2.35 6995 -1.2216 1995 24.4 36.57 2.8759 2.18 7077 -1.1197 2215 24.6 36.36 2.9771 2.01 7166 -1.0279 2476 24.8 36.16 3.0813 1.86 72599423 2800 25.0 35.96 3.1984 1.72 73578635 3209 25.2 35.81 3.2779 1.60 74647927 3730 25.4 35.66 3.4113 1.48 75757260 4441 25.6 35.52 3.5276 1.37 76966661 5433 25.8 35.39 3.6481 1.27 78256102 6955 26.0 35.28 3.7727 1.17 79625589 9563 26.2 35.17 3.9020 1.08 81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.6  |        | 2 4932 | 2.99    |        | -1.5826   |        |
| 24.0       37.06       2.6805       2.54       6916       -1.3296       1813         24.2       36.81       2.7767       2.35       6995       -1.2216       1995         24.4       36.57       2.8759       2.18       7077       -1.1197       2215         24.6       36.36       2.9771       2.01       /166       -1.0279       2476         24.8       36.16       3.0813       1.86       7259      9423       2800         25.0       35.96       3.1984       1.72       7357      8635       3209         25.2       35.81       3.2779       1.60       7464      7927       3730         25.4       35.66       3.4113       1.48       /575      7260       4441         25.6       35.52       3.5276       1.37       7696      6661       5433         25.8       35.39       3.6481       1.27       7825      6102       6955         26.0       35.28       3.7727       1.17       7962      5589       9563         26.2       35.17       3.9020       1.08       8109      5115       1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 37 34  | 2 6867 | 2.76    |        |           | 1656   |
| 24.2       36.81       2.7767       2.35       6995       =1,2216       1995         24.4       36.57       2.8759       2.18       7077       =1,1197       2215         24.6       36.36       2.9771       2.01       /166       =1,0279       2476         24.8       36.16       3.0813       1.86       7259       =,9423       2800         25.0       35.96       3.1984       1.72       7357       =,8635       3209         25.2       35.81       3.2779       1.60       7464       -,7927       3730         25.4       35.66       3.4113       1.48       7575       =,7260       4441         25.6       35.52       3.5276       1.37       7696       =,6661       5433         25.8       35.39       3.6481       1.27       7825       =,6102       6955         26.0       35.28       3.7727       1.17       7962       =,5589       9563         26.2       35.17       3.9020       1.08       8109       =,5115       1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        | 2 4805 | 2.54    | . 6916 |           | 1813   |
| 24.4       36.57       2.8759       2.18       7077       m1.1197       2215         24.6       36.36       2.9771       2.01       7166       m1.0279       2476         24.8       36.16       3.0913       1.06       7259       m.9423       2800         25.0       35.96       3.1384       1.72       7357       m.8635       3209         25.2       35.81       3.2979       1.60       7464       m.7927       3730         25.4       35.66       3.4113       1.48       7575       m.7260       4441         25.6       35.52       3.5276       1.37       7696       m.6661       5433         25.8       35.39       3.6481       1.27       7825       m.6102       6955         26.0       35.28       3.7727       1.17       7962       m.5589       9563         26.2       35.17       3.9020       1.08       8109       m.5115       1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 36 81  | 2 7767 | 2.35    | 6995   |           | 1995   |
| 24.6       36.36       2.9771       2.01       /166       -1.0279       2476         24.8       36.16       3.0813       1.86       7259      9423       2800         25.0       35.96       3.1984       1.72       7357      8635       3209         25.2       35.81       3.2779       1.60       7464      7927       3730         25.4       35.66       3.4113       1.48       /575      7260       4441         25.6       35.52       3.5276       1.37       7696      6661       5433         25.8       35.39       3.6481       1.27       7825      6102       6955         26.0       35.28       3.7727       1.17       7962      5589       9563         26.2       35.17       3.9020       1.08       8109      5115       1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 36 57  | 2 3750 | 2.18    |        | -1.1197   |        |
| 24.8       36.16       3.0913       1.86       7259       9423       2800         25.0       35.96       3.1984       1.72       7357       8635       3209         25.2       35.81       3.2779       1.60       7464      7927       3730         25.4       35.66       3.4113       1.48       /575      7260       .4441         25.6       35.52       3.5276       1.37       .7696      6661       .5433         25.8       35.39       3.6481       1.27       .7825      6102       .6955         26.0       35.28       3.7727       1.17       .7962      5589       .9563         26.2       35.17       3.9020       1.08       8109      5115       1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 36 36  | 2 4774 | 2.01    |        | -1.0279   |        |
| 25.0 35.96 3.1984 1.72 .7357 m.8635 3209 25.2 35.81 3.2779 1.60 .74647927 .3730 25.4 35.66 3.4113 1.48 .75757260 .4441 25.6 35.52 3.5276 1.37 .76966661 .5433 25.8 35.39 3.6481 1.27 .78256102 .6955 26.0 35.28 3.7727 1.17 .79625589 .9563 26.2 35.17 3.9020 1.08 .81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 8  | 36 16  | 3 0813 | 1.86    |        | 9423      |        |
| 25.2 35.81 3.2779 1.60 .74647927 .3730<br>25.4 35.66 3.4113 1.48 .75757260 .4441<br>25.6 35.52 3.5276 1.37 .76966661 .5433<br>25.8 35.39 3.6481 1.27 .78256102 .6955<br>26.0 35.28 3.7727 1.17 .79625589 .9563<br>26.2 35.17 3.9020 1.08 .81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 0  | 35 96  |        | 1.72    | 7357   | 8635      |        |
| 25.4 35.66 3.4113 1.48 ,/5757260 ,4441<br>25.6 35.52 3.5276 1.37 ,76966661 ,5433<br>25.8 35.39 3.6461 1.27 ,78256102 ,6955<br>26.0 35.28 3.7727 1.17 ,79625589 ,9563<br>26.2 35.17 3.9020 1.08 ,81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.2  | 35 81  | 3 2272 | 1.60    | 7464   |           |        |
| 25.6 35.52 3.5276 1.37 .76966661 .5433<br>25.8 35.39 3.6481 1.27 .78256102 .6955<br>26.0 35.28 3.7727 1.17 .79625589 .9563<br>26.2 35.17 3.9020 1.08 .81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.4  |        |        | 1.48    |        |           |        |
| 25.8 35.39 3.6481 1,27 ,78256102 ,6955<br>26.0 35.28 3.7727 1,17 ,7962 -,5589 ,9563<br>26.2 35.17 3.9020 1,08 ,8109 -,5115 1,5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.6  | 35.52  |        | 1.37    |        |           |        |
| 26.0 35.28 3.7727 1.17 .7962 -,5589 .9563<br>26.2 35.17 3.9020 1.08 .8109 -,5115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.8  |        |        |         |        |           |        |
| 26.2 35.17 3.9020 1.08 .81095115 1.5090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.0  |        |        | 1.17    |        | 7,5589    |        |
| 26.4 35.07 4.0359 1.00 ,0267 -,4684 3,4366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.2  |        |        | 1.08    |        | P.5115    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |        | 1.00    |        |           | 3.4366 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |        |         |        |           |        |

| RATIO | TOTAL          | STEP    | VAR    | VAR    | COYAR      | MITE    |
|-------|----------------|---------|--------|--------|------------|---------|
|       | ERROR          | STZE    | ERROR  | STEP   | The second |         |
|       |                |         |        |        |            |         |
| 18.0  | 233.74         | ,1669   | 746,38 | ,5780  | -430,9003  | .0303   |
| 18.2  | 172.22         | ,2337   | 380,25 | ,5784  | -219,4196  | . 0314  |
| 18.4  | 138,12         | .3007   | 229,60 | 5789   | -132,4085  | 0326    |
| 18.6  | 116.48         | 3678    | 153,37 | >795   | -88,3817   | 0338    |
| 18.8  | 101.56         | , 435 ú | 109,55 | ,5804  | ,63,0830   | .0551   |
| 19.0  | 90.64          | .5025   | 82,00  | ,5813  | m47,1684   | 0364    |
| 19.2  | 82.34          | ,5702   | 63,63  | ,5823  | n36,5555   | .0378   |
| 19.4  | 75.81          | . 3382  | 50.71  | ,>835  | #29,0917   | ,0394   |
| 19.6  | 70.56          | ,7064   | 41,33  | ,5848  | -23,6762   | ,0410   |
| 19.8  | 66.26          | .7749   | 34,29  | ,5864  | -19,6115   | ,0427   |
| 20.0  | 62.66          | .0438   | 26,86  | . >880 | -16,4784   | .0444   |
| 20.2  | 59.62          | ,9132   | 24,59  | 5897   | +14,0123   | .0464   |
| 20.4  | 57.02          | ,9831   | 21,17  | ,5916  | -12,0364   | .0484   |
| 20.4  | 54.78          | 1,0533  | 18,40  | ,5937  | -10,4369   | .0506   |
| 20,8  | 52.83          | 1.1241  | 16,12  | 5959   | -9,1167    | .0527   |
| 21.0  | 51.11          | 1,1955  | 14,21  | ,5983  | -8,0158    | 0253    |
| 21.2  | 49.61          | 1,2472  | 1.2,61 | .6010  | n7,0975    | 0560    |
| 21.4  | 48.27          | 1.3400  | 11.24  | 6036   | m6,3036    | 0008    |
| 21.6  | 47.08          | 1,4129  | 10,08  | 6066   | -5,6363    | .0039   |
| 21.8  | 46.01          | 1,4872  | 9,07   | ,0096  | -5,0491    | 0672    |
| 22.0  | 45.05          | 1,5619  | 8,19   | .0130  | -4,5441    | 0708    |
| 22.2  | 44.19          | 1,6373  | 7,42   | .0165  | -4,1045    | .0746   |
| 22.4  | 43.41          | 1,7137  | 6.75   | .6203  | #3,7166    | 0788    |
| 22.5  | 42.70          | 1,7911  | 6,15   | 6243   | -3,3731    | 0033    |
| 22.8  | 42.05          | 1.8698  | 5,62   | .028.5 | -3,0651    | .0883   |
| 23.0  | 41.47          | 1,9492  | 5,14   | .0328  | m2,7936    | 0938    |
| 23.2  | 40,94          | 2.0296  | 4,72   | 0375   | -2,5516    | .0998   |
| 23.4  | 40.45          | 2,1115  | 4,34   | ,6424  | -2,3323    | ,1064 - |
| 23.6  | 40.00          | 2.1950  | 3,99   | ,0475  | R2.1329    | ,1139   |
| 23.8  | 39,59          | 2,2796  | 3,68   | ,0530  | -1,9540    | ,1221   |
| 24.0  | 39.22          | 2,3655  | 3,40   | ,6588  | -1.7526    | ,1313   |
| 24.2  | 36,68          | 2.4529  | 3,14   | ,6650  | *1,6458    | ,1417   |
| 24.4  | 38,56          | 2,5424  | 5,90   | ,0714  | -1,5106    | ,1537   |
| 24.6  | 38,27          | 2.6335  | 2,68   | ,6782  | w1.,3877   | ,1073   |
| 24.8  | 35.00          | 2,7267  | . 2,48 | , 6854 | -1,2748    | ,1831   |
| 25.0  | 37,76<br>37,53 | 2,6213  | 2,30   | ,6932  | -1,1733    | ,2014   |
| 25.2  | 37,53          | 2,9186  | 2,14   | ,7013  | -1,0786    | 5235    |
| 25.4  | 37,33          | 3,0180  | 1,98   | ,/099  | -,9920     | 2495    |
| 25.6  | 37,14          | 3,1204  | 1.84   | 7190   | -,9113     | 2618    |
| 25.8  | 36,96          | 3,2250  | 1.70   | ,7287  | -,8382     | 3220    |
| 26.0  | 36,80          | 3,3327  | 1,58   | ,7390  | -,7702     | ,3741   |
| 26.2  | 36,65          | 3,4438  | 1,47   | 7499   | -,7072     | ,4442   |
| 26.4  | 36,52          | 3,5580  | 1,30   | 7616   | -,6495     | 5426    |
| 26.6  | 36,39          | 3,6760  | 1,26   | ,7740  | -,5962     | 6917    |
| 26.8  | 36,28          | 3,7778  | 1,17   | 7874   | +,5473     | 9436    |
| 27.0  | 36.17          | 3,9238  | 1,08   | ,8016  | -,5026     | 1,4569  |
| 27.2  | 36,09          | 4,0550  | 1,00   | ,8168  | -,4608     | 3,1616  |
|       |                |         |        |        |            |         |

-

1

| RATIO  | TOTAL          | STEP   | VAR     | VAR    | COVAR     | MTTF   |
|--------|----------------|--------|---------|--------|-----------|--------|
|        | ERROR          |        |         |        | CUTAN     |        |
|        | 6640%          | SIZE   | ERHOR   | STEP   |           |        |
|        |                |        |         |        |           |        |
|        |                |        |         |        |           |        |
| 18.2   | 588,13         | .0649  | 5000,87 |        | 2848,6846 | ,0279  |
| 18.4   | 303.32         | .1.299 | 1249,57 | , >699 | -711,6779 | 0289   |
| 18.6   | 206.47         | .1949  | 554,70  | ,5702  | -315,7976 | 0299   |
| 18.8   | 161.14         | 2999   | 311,64  | .5707  | -177,3514 | 0310   |
| 10.0   | 132,60         | 3251   | 199,04  | ,5712  | -113,1988 | 0321   |
| 19.2   | 113,95         | 3005   | 137,89  | 5719   | -78,3571  | ,0333  |
| . 10 4 | 110,55         |        |         | 5727   | m57.3752  |        |
| 19.4   | 100.55         | . 4560 | 101.05  | 12/2/  | 47 70792  | ,0345  |
| 19.6   | 90.52          | .5217  | 77.10   | ,5736  | -43,7232  | ,0358  |
| 19,8   | A2.77          | .5476  | 60.70   | ,5746  | +34,3842  | .0372  |
| 20.0   | 76.60          | .6537  | 48,98   | ,5759  | #27,7092  | ,0366  |
| 20.2   | 71.57          | .7202  | 40,30   | , >772 | +22,7636  | ,0402  |
| 20.4   | 67,41          | .7871  | 33,68   | ,5786  | -18,9931  | .0418  |
| 20.6   | 63.91          | 8542   | 28,54   | >901   | -16,0651  | 0435   |
| 20.8   | 50.94          | 9217   | 24,47   | >819   | -13,7450  | 0453   |
| 21.0   | 58.39          | 9897   | 21,18   | ,5837  | -11,8710  | 0472   |
|        | 56 47          |        | 48 49   | 2858   |           | 0493   |
| 21.2   | 56.17          | 1.0586 | 18,49   |        | -10,3428  |        |
| 21.4   | 54,23          | 1.1270 | 16,25   | ,5878  | -9,0666   | ,0515  |
| 21.6   | 52,53          | 1.1961 | 14,39   | ,5903  | m8.0104   | ,0538  |
| 21.8   | 51.02          | 1.2561 | 12,81   | ,5928  | -7,1102   | ,0>63  |
| 22.0   | 49.68          | 1.3368 | 11,46   | , >953 | •6,3377   | ,0990  |
| 22.2   | 48,48          | 1.4081 | 10,29   | ,5981  | -5,6749   | 0619   |
| 22.4   | 47.40          | 1.4799 | 9,29    | 6011   | +5,1039   | 0650   |
| 22.6   | 46.44          | 1,5523 | 8,41    | .0043  | -4,6075   | 0683   |
| 22.8   | 45 56          |        | 7,64    | 6077   | -4,1693   | 0719   |
|        | 45,56          | 1,6257 | 4 04    | 00//   | 7 7708    |        |
| 23.0   | 44.76          | 1.7002 | 6,96    | 6111   | -3,7798   | ,0758  |
| 23.2   | 44.04          | 1,7755 | 0,35    | ,6148  | -3,4360   | ,0000  |
| 23.4   | 43,38          | 1,8515 | 5,81    | ,0188  | -3,1327   | 0646   |
| 23.6   | 42.78          | 1,9287 | 5,33    | 6229   | -2,8588   | 0896 - |
| 23,8   | 42,24          | 2,0068 | 4,90    | ,6273  | -2,6150   | ,0951  |
| 24.0   | 41.74          | 2,0362 | 4,51    | ,6319  | +2,3946   | .1012  |
| 24.2   | 41.28          | 2,1663 | 4,16    | 6369   | -2,1981   | 1079   |
| 24.4   | 40.86          | 2,2460 | 3,84    | 6421   | -2,0189   | 1153   |
| 24.6   | 40.47          | 2,3313 | 3,55    | 6475   | -1,8541   | 1236   |
| 24.8   | 40.11          | 2,4161 | 3,29    | 6532   | -1,7041   | 1329   |
| 25 4   |                |        | 7 05    | 0593   |           | 1433   |
| 25.0   | 39,79          | 2,5019 | 3,05    | 4/54   | #1,5696   |        |
| 25.2   | 39,49<br>39,21 | 2,5899 | 2,82    | ,6656  | -1,4439   | ,1553  |
| 25.4   | 39,21          | 2.6790 | 2,62    | ,6725  | -1,3312   | 1088   |
| 25,6   | 38,95          | 2.7708 | 2,43    | 0795   | -1,2249   | ,1848  |
| 25.8   | 38,72          | 2,8641 | 2,26    | ,6870  | +1,1289   | 2032   |
| 26.0   | 38,50          | 2,9596 | 2.10    | ,6950  | -1,0403   | .2250  |
| 26,2   | 38,30          | 3,0571 | 1,95    | 7035   | -,9593    | 2510   |
| 26.4   | 38,12          | 3,1576 | 1,81    | 7123   | -,8831    | 2833   |
| 26,6   | 37,95          | 3,2605 | 1,68    | 7218   | -,8132    | 3236   |
| 26.8   | 37,79          | 3,3659 | 1,56    | 7319   | 7,7495    | 3748   |
|        |                |        | 1130    |        |           |        |
| 27.0   | 37.65          | 3.4748 | 1,45    | 7429   | -,6895    | .4440  |
| 27.2   | 37.52          | 3.5867 | 1,35    | ,/539  | -,6348    | ,5403  |
| 27.4   | 37,39          | 3.7022 | 1,26    | ,7660  | -,5839    | ,6854  |
| 27.6   | 37,28          | 3,6714 | 1,17    | ,7789  | -,5372    | 9270   |
| 27.8   | 37,18          | 3,2446 | 1.08    | 7927   | -,4941    | 1,4120 |
| 28.0   | 37.08          | 4.6728 | 1.01    | .8074  | -,4540    | 2.0993 |
|        |                |        |         |        |           |        |

| -1    |       |         |        |        |        |           |         |
|-------|-------|---------|--------|--------|--------|-----------|---------|
| 1     | RATIO | TOTAL   | STEP   | VAR    | VAH    | COVAR     | MITE    |
| -     |       | EHHOR   | SIZE   | ERROR  | STEP   |           |         |
|       |       |         |        |        |        |           |         |
| 4.    | 19.0  | 259,41  | ,1581  | 854,73 | ,5625  | -480,3135 | 0286    |
| 1 20  | 19.2  | 190,83  | ,2214  |        | ,5628  | -244,5556 | 0296    |
|       | 19.4  | 152.83  | 2848   | 435,41 | ,5633  | -147,6421 | 0306    |
| L     | 19.6  | 128.70  | 3483   | 175,76 | ,5639  | 90,6137   | 0317    |
| _     | 19.8  | 112.04  | 4120   | 125,53 | ,5646  | 470,3724  | .0320   |
|       | 20.0  | 99,87   | 4758   | 9.4,03 | ,5654  | 452,6668  | 0340    |
|       | 20.2  | 90.59   | 5399   | 72,94  | ,5662  | 40.8057   | 0352    |
| _     | 20.4  | 83,31   | .5041  | 58,19  | ,5673  | -32,5164  | 0365    |
| I     | 20.6  | 77.43   | 6686   | 47,43  | 5684   | #26,4659  | 0379    |
|       | 20.8  | 72,62   | 7333   | 39,37  | 5698   | -21,9405  | 0394    |
|       |       | 68.59   | 7985   |        | ,5712  | 718,4448  | 0409    |
|       | 21.0  | 65.19   |        | 33,15  | 5727   |           | 0426    |
|       | 21.2  | 62,27   | ,8539  | 28,27  | 5744   | #13,5035  | , u443  |
| _11   |       | 50 74   | 9297   | 24,37  | 5742   | -11,7224  | 0461    |
|       | 21.6  | 59.76   | .9958  | 21,19  | ,5762  | -10 2544  | 0481    |
| П     | 21.8  | 57,57   | 1.0623 | 18,58  | ,5782  | m10,2564  | 0481    |
| -     | 22.0  | 55,64   | 1,1296 | 16,39  | 5802   | +9.0243   | ,0502   |
| - 2.1 | 22.2  | 53,94   | 1.1971 | 14,56  | ,5824  | -7,9945   | ,0524   |
|       | 22.4  | 52,43   | 1.2654 | 12,99  | ,5847  | -7 11141  | ,0548   |
| -     | 22.6  | 51.09   | 1.3340 | 11,66  | ,2873  | -6,3642   | ,05/3   |
| 1     | 22.8  | 49,88   | 1.4033 | 10.50  | ,5899  | -5,7163   | ,0000   |
|       | 23.0  | 48.79   | 1.4732 | 9,50   | ,5928  | -5,1527   | ,0629   |
| D     | 23.2  | 47.81   | 1.5440 | 8,62   | ,5957  | 44,6565   | ,0660   |
|       | 23.4  | 46,93   | 1.6150 | 7,85   | ,5991  | -4,2287   | ,0093   |
|       | 23.6  | 46,12   | 1,6874 | 7,16   | 6023   | -3,8421   | ,0730   |
| 11    | 23,8  | 45.37   | 1,7603 | 6,55   | , 5059 | -3,5021   | ,0769   |
| 1     | 24.0  | 44.72   | 1.8341 | 6,01   | ,6097  | -3,1994   | ,0411   |
| Li    | 24.2  | 44,11   | 1.9089 | 5,52   | ,0136  | -2,9268   | ,0458   |
|       | 24.4  | 43.55   | 1,9848 | 5,09   | ,0178  | -2,6811   | 0909 -  |
|       | 24.6  | 43,03   | 2.0618 | 4,69   | ,0221  | -2,4994   | ,0964   |
| L     | 24.6  | 42,56   | 2.1394 | 4,33   | 6268   | -2,2622   | ,1025   |
|       | 25.0  | 42.13   | 2,2188 | 4.01   | ,0316  | -2,0790   | 1092    |
| T     | 25.2  | 41.73   | 2.2792 | 3,71   | ,6367  | 41,9141   | ,1167   |
|       | 25.4  | 41.36   | 2,3808 | 3,44   | ,0421  | -1,7643   | ,1250   |
|       | 25.6  | 41.02   | 2,4640 | 3,19   | ,6478  | -1,5268   | ,1343   |
| F1    | 25.8  | 40.71   | 2,5492 | 2,96   | ,0536  | P1,4984   | ,1449   |
|       | 26.0  | 40,42   | 2,4354 | 2,75   | ,6600  | -1,3831   | ,1569   |
| U     | 26.2  | 40.15   | 2,7231 | 2,56   | ,6667  | #1.2779   | 1704    |
|       | 26.4  | 39,91   | 2.4130 | 2,38   | ,0737  | =1.1796   | 1862    |
|       | 26,6  | 39,68   | 2,9049 | 2,21   | . 0811 | -1,0889   | 2047    |
|       | 26.8  | . 39,47 | 2,9786 | 2,06   | ,6889  | -1.0058   | ,2264   |
| -     | 27.0  | 39,28   | 3,0947 | 1,92   | ,6972  | -,9284    | 2726    |
|       | 27.2  | 39.10   | 3,1928 | 1,79   | ,/060  | -,8578    | ,2843   |
|       | 27.4  | 38,94   | 3,2941 | 1,66   | 7151   | 4,7910    | ,3244   |
| 4.1   | 27.6  | 38,78   | 3,3976 | 1,55   | ,7250  | -,7303    | ,3752   |
|       | 27.8  | 38,64   | 3,5044 | 1,44   | ,7353  | •,6732    | ,4434   |
|       | 28.0  | 36.51   | 3,6141 | 1,34   | ,7464  | -16508    | ,5380   |
| 11    | 28,2  | 38,40   | 3.7272 | 1,25   | ,7582  | • ,5725   | ,6785   |
|       | 28.4  | 38,27   | 3,6441 | 1,16   | 7707   | ×,5273    | ,9119   |
| II    | 28.6  | 38.18   | 3,9649 | 1,08   | ,7940  | -,4859    | 1,3679  |
|       | 28.9  | 38.09   | 4.0902 | 1,01   | ,7981  | -,4469    | 2,7029  |
|       | 29.0  | 38.01   | 4,2198 | ,94    | . 6134 | -,4118    | 45,4114 |
|       |       |         |        |        |        |           |         |

| RATIO | TOTAL  | STEP   | VAR     | VAR       | COVAR    | MITE   |
|-------|--------|--------|---------|-----------|----------|--------|
|       | ERROR  | SIZE   | ERROR   | STEP      |          | 111111 |
|       | EMMO   | 3126   | LANGA   | 3151      |          |        |
|       |        |        |         |           |          |        |
| 19.2  | 652.53 | . 2616 | 5706,73 | . >550-34 | 66,5355  | ,0269  |
| 19.4  | 335.98 | .1232  | 1425,50 |           | 90,7590  | 0273   |
| 19.6  | 230.59 | 1948   | 033,03  |           | 551,0616 | 0282   |
| 19.8  | 177.97 | .2460  | 355,56  |           | 97,0090  | ,0292  |
| 20.0  | 146.47 | .3084  | 227,22  | 5562      | 25,8853  | ,0302  |
| 20.2  | 125,52 | 3703   | 157,48  | ,>568     | 87,1936  | 0312   |
| 20.4  | 110.59 | ,4324  | 115,38  | 5575      | 63,8246  | 0323   |
| 20.6  | 99.45  | 4946   | 88,12   | . >584    | 48,7040  | .0334  |
| 20.8  | 90.80  | 5571   | 69,36   | 5592      | 38,2874  | 0346   |
| 21.0  | 83,93  | 6198   | 55,98   | 5602      | 30,8676  | 0359   |
| 21.2  | 78.33  | .6927  | 46,08   |           | 25,3721  | 0372   |
| 21.4  | 73.69  | 7458   | 38,55   |           | 21.1962  | 0386   |
| 21.6  | 69.79  | .8093  | 32,08   | ,5640     | 17,9391  | ,0401  |
| 21.8  | 66.46  | ,8732  | 28,03   |           | 15,3560  | 0417   |
| 22.0  | 63,61  | ,9373  | 24,28   | ,>671     | 13,2758  | .0434  |
| 22.2  | 61,13  | 1,0017 | 21,21   | >689      | 11,5749  | 0451   |
| 22,4  | 58.96  | 1,0567 | 18,67   | 5708      | 10,1661  | .0470  |
| 22,6  | 57,05  | 1,1321 | 16,53   | 5727      | -8,9807  | 0489   |
| 22.8  | 55.35  | 1,1980 | 14,72   | , >748    | -7,9789  | .0>10  |
| 23.0  | 53.85  | 1,2642 | 13,19   | , >772    | .7,1297  | ,0>33  |
| 23.2  | 52.50  | 1,3312 | 11,86   | 5796      | -6,3929  | .0557  |
| 23.4  | 51,29  | 1,3985 | 10.72   | 5822      | -5,7604  | 0592   |
| 23,6  | 50.19  | 1,4666 | 9,71    | , 5850    | .5,2045  | 0509   |
| 23.8  | 49.20  | 1,5353 | 8,83    | >878      | -4,7174  | ,0638  |
| 24.0  | 48.30  | 1,6051 | 8,05    | , >907    | -4,2826  | ,0670  |
| 24.2  | 47,48  | 1,6752 | 7.37    | ,5940     | -3,9033  | .0704  |
| 24.4  | 46,73  | 1,7462 | 6,75    | ,5973     | -3,5631  | .0740  |
| 24,6  | 46.05  | 1,8179 | 6,20    | 6009      | -3,2611  | 0780   |
| 24.8  | 45,43  | 1,8905 | 5,71    | ,0047     | 9686'2"  | 0623   |
| 25.0  | 44.86  | 1,9639 | 5,27    | ,6087     | -2,7461  | ,0869  |
| 25,2  | 44,33  | 2,0387 | 4,87    | ,6127     | -2,5230  | 0920   |
| 25,4  | 43,84  | 2,1145 | 4,50    | ,6171     | -2,3212  | 0476   |
| 25,6  | 43,40  | 2.1909 | 4,17    | ,6218     | -2,1411  | ,1037  |
| 25,8  | 42.99  | 2,2691 | 3,87    | ,6265     | -1,9725  | ,1105  |
| 26.0  | 42,61  | 2,3478 | 3,59    | ,6317     | -1,8229  | ,1180  |
| 26,2  | 42,26  | 2,4286 | 3,34    | , 6369    | -1,6823  | ,1264  |
| 26.4  | 41,93  | 2,5105 | 3,10    | 6425      | -1,5545  | 1357   |
| 26.6  | 41,64  | 2,5939 | 2,89    | ,6484     | -1,4365  | 1463   |
| 26.8  | 41,36  | 2,6788 | 2,69    | ,0546     | -1,3288  | 1583   |
| 27.0  | 41,10  | 2,7654 | 2,50    | ,0611     | -1,2290  | 1719   |
| 27.2  | 40,87  | 2,8533 | 2,34    | ,6681     | -1,1385  | 1876   |
| 27.4  | 40,65  | 2,9435 | 2,18    | ,6754     | -1,0533  | 2059   |
| 27.6  | 40,44  | 3,0362 | 2,03    | ,6829     | -,9730   | 2279   |
| 27.8  | 46,26  | 3,1302 | 1,89    | 16911     | -,9012   | ,2537  |
| 28,0  | 40.08  | 3,2272 | 1.77    | ,6996     | -,8328   | 2056   |
| 28,2  | 39.92  | 3,3263 | 1,07    | ,7087     | -,7702   | ,3251  |
| 28.4  | 39.78  | 3.4279 | 1,54    | ,7183     | -,7123   | 3754   |
| 28.6  | 39,64  | 3,5325 | 1,43    | ,7284     | -,6583   | ,4421  |
| 28,8  | 39,51  | 3,6404 | 1,34    | ,7391     | -,6075   | 5355   |
| 29.0  | 39,40  | 3,7513 | 1,25    | ,7505     | -,5611   | ,6726  |
| 29.2  | 39,29  | 3,5657 | 1,16    | ,/627     | -,5180   | 8963   |
|       |        |        |         |           |          |        |

|   |   | 70 |
|---|---|----|
| N | - | 39 |
|   |   |    |

| RATIO | TOTAL | STEP   | VAR  | STEP  | COVAR  | MITE    |
|-------|-------|--------|------|-------|--------|---------|
| 29.4  | 39.19 | 3,9840 | 1,08 | ,7756 | -,4781 | 1,3264  |
| 29.6  | 39.10 | 4,1063 |      | ,7893 | -,4411 | 2,4953  |
| 29.8  | 39.01 | 4,2334 |      | ,8039 | -,4065 | 18,9020 |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

3.7743

3,8864

40.51

40,40

40.29

29.6

29.8

30.0

1,33

1,24

1,16

,7321

,7431

.7549

-,5958

.,5506

-,5093

,5315

,6058

. 8001

|                      |                         | N I                        | R 40 |                         |                            |                             |  |
|----------------------|-------------------------|----------------------------|------|-------------------------|----------------------------|-----------------------------|--|
| RATIO                | TOTAL                   | STEP                       | VAR  | STEP                    | COVAR                      | MITE                        |  |
| 30.2<br>30.4<br>30.6 | 40.19<br>40.10<br>40.02 | 4,0024<br>4,1221<br>4,2462 | 1,08 | ,7674<br>,7807<br>,7949 | -,4705<br>-,4348<br>-,4016 | 1,2M73<br>2,3380<br>11,6924 |  |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

|       |                | N             | s 41    | National Carry and Action 19 - 1 - 1 - 1 - 1 | The state of the s |       |
|-------|----------------|---------------|---------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       |                |               |         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| RATIO | TOTAL          | STEP          | VAR     | VAR                                          | COVAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MITE  |
|       | ERROR          | SIZE          | ERHOR   | STEP                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|       |                |               |         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 20.2  | 720.18         | . 0586        | 6467,08 | ,5412                                        | 3499,6596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0251 |
| 20.4  | 370.30         | .1172         | 1615,53 | ,5413                                        | -874,0199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0259 |
| 20.6  | 253,83         | .1758         | 717,65  | ,2416                                        | -388,1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0867 |
| 20.8  | 195,64         | .2345         | 403,13  | ,5419                                        | -217,9623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,0276 |
| 21.0  | 160,61         | ,2933         | 257,64  | ,2424                                        | -139,2361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,0285 |
| 21.2  | 137,62         | .3522         | 178,54  | 5434                                         | -96,4231<br>-70,6041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0304  |
| 21.6  | 108,78         | 4703          | 99,94   | 5442                                         | .53,8881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,0314 |
| 21.8  | 99,21          | 5296          | 78,73   | 5450                                         | 642,4077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0324 |
| 22.0  | 91,59          | 5891          | 63,56   | 5459                                         | #34,2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0335  |
| 22.2  | 85.39          | ,6489         | 52,33   | ,5469                                        | -28,1240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,0347 |
| 22.4  | 80.24          | .7088         | 43,79   | ,5480                                        | m23,5030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0360  |
| 22.6  | 75,92          | ,7690         | 37,16   | ,5492                                        | P19,9147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,0372 |
| 22.8  | 72.24          | ,8294         | 31,90   | >506                                         | •17.0678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0386 |
| 23.0  | 69.06          | ,8901         | 27,65   | ,5520                                        | +14,7666<br>+12,8790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,0400 |
| 23.2  | 66.30          | 1,0127        | 24,16   | ,5535                                        | m11,3219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0416  |
| 23.6  | 61,76          | 1,0746        | 18,85   | ,5569                                        | =10,0109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0448  |
| 23.8  | 59,86          | 1.1369        | 16,80   | 5587                                         | -8,9009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0460  |
| 24.0  | 56,18          | 1,1995        | 15,06   | ,>607                                        | -7,9593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0485  |
| 24.2  | 56,67          | 1.2627        | 13,55   | 5628                                         | -7,1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0505  |
| 24.4  | 55,32          | 1,3260        | 12,26   | ,5651                                        | m6,4463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0527 |
| 24.6  | 54.09          | 1,3904        | 11,12   | ,5674                                        | -5,8271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0550 |
| 24.8  | 52,98          | 1,4551        | 10,12   | ,5699                                        | -5,2883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0574 |
| 25.0  | 51.97<br>51.04 | 1,5205        | 8,46    | 5725<br>5752                                 | =4,8120<br>=4,3903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,0600 |
| 25.4  | 50,20          | 1,6530        | 7,76    | 5781                                         | £4,0152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0657 |
| 25.6  | 49,44          | 1,7197        | 7,15    | 5814                                         | -3,6853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0689  |
| 25.8  | 48.74          | 1,7877        | 6,59    | ,5846                                        | -3,3846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0723  |
| 26.0  | 46,08          | 1,8565        | 6,08    | ,5879                                        | -3,1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0760  |
| 26.2  | 47,49          | 1,9259        | 5,63    | ,5916                                        | -2,8682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0800 |
| 26.4  | 46,94          | 1,9963        | 5,22    | ,5953                                        | -2,6460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0844 |
| 26,6  | 46,43          | 2.0478        | 4,84    | ,5991                                        | -2,4421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,0091 |
| 26.8  | 45,96<br>45,52 | 2,1402        | 4,49    | 6032                                         | -2,2572<br>-2,0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0943  |
| 27.2  | 45,12          | 2,2136 2,2878 | 3,89    | 6121                                         | •1,9349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1061  |
| 27.4  | 44,75          | 2,3630        | 3,63    | 6169                                         | -1,7947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1128  |
| 27.6  | 44.41          | 2,4396        | 3,39    | 6219                                         | -1.6642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1204  |
| 27.8  | 44,69          | 2,5176        | 3,16    | ,6271                                        | m1,5440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1287  |
| 28.0  | 43.79          | 2.5774        | 2,95    | ,6325                                        | -1.4309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1382  |
| 28.2  | 43,51          | 2,6780        | 2,76    | ,6382                                        | -1,3287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,1488 |
| 28.4  | 43,25          | 2,7601        | 2,58    | ,6443                                        | -1,2343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1607  |
| 28.6  | 43.61          | 2,8444        | 2,41    | 6505                                         | +1,1445<br>+1,0631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1745  |
| 29.0  | 42,59          | 3,0171        | 2,11    | 6642                                         | -,9870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2086  |
| 29,2  | 42.40          | 3,1063        | 1,97    | 6716                                         | -,9165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2301  |
| 29.4  | 42,22          | 3,1972        | 1,85    | 6795                                         | -,8518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2556  |
| 29.6  | 42.06          | 3,2909        | 1,/3    | ,0876                                        | -,7898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2871  |
| 29.8  | 41.91          | 3,3864        | 1,62    | 6963                                         | -,7333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3255  |
| 30.0  | 41,77          | 3,4849        | 1,51    | /053                                         | -,6796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3750  |
| 30.2  | 41,63          | 3,5857        | 1,42    | 7150                                         | +,6302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4396  |

| RATIO | TOTAL | STEP   | VAR   | VAR   | COVAR   | MTTF   |
|-------|-------|--------|-------|-------|---------|--------|
|       | ERROR | SIZE   | ERROR | STEP  |         |        |
| 30.4  | 41.51 | 3,6894 | 1,33  | ,7252 | -,5841  | ,5284  |
| 30.6  | 41.40 | 3.7959 | 1,24  | .7360 | -,5415  | 6569   |
| 30.8  | 41.30 | 3,9060 | 1,16  | 7474  | -,5013  | 6033   |
| 31.0  | 41.20 | 4.0198 | 1,08  | ,/595 | -,4637  | 1,2465 |
| 31.2  | 41.11 | 4,1369 | 1,01  | 1724  | m, 4294 | 2,1830 |
| 31.4  | 41.03 | 4,2583 | 95    | 7861  | -,3972  | 8,3415 |
|       |       |        |       |       |         |        |

Column 1 is the ratio  $E(i-1)X_i/EX_i$ 

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL          | STEP           | VAR     | VAR   | COVAR                | MITE    |
|-------|----------------|----------------|---------|-------|----------------------|---------|
|       | ERROR          | SIZE           | ERROR   | STEP  |                      |         |
| 21.0  | 314,73         | .1430          | 1098,00 | ,>350 | -586,8743            | ,0256   |
| 21.2  | 230.94         | 2002           | 559,64  | 5352  | -299,0231            | U264    |
| 21.4  | 184,46         | 2576           | 338,10  | ,5356 | -180,5720            | 0473    |
| 21.6  | 154,95         | ,3150          | 226,01  | >360  | -120,6495            | 0261    |
| 21.8  | 134.54         | ,3725          | 161,43  | ,5365 | -86,1067             | ,0290   |
| 22.0  | 119,63         | ,4302          | 120,96  | ,>371 | m64,4732             | 0299    |
| 22.2  | 108.27         | .4880          | 93,93   | ,5378 | -50.0213             | 0309    |
| 22.4  | 99,34          | ,5458          | 75,01   | ,5387 | -39,9092             | ,0319   |
| 22,6  | 92,14          | ,6040          | 61,19   | ,5396 | -32,5191             | .0330   |
| 22.8  | 86.21          | .6624          | 50.82   | ,5406 | -26,9732             | ,0341   |
| 23.0  | 81.26          | .7209          | 42,83   | ,5416 | +22,7054<br>+19,3532 | 0353    |
| 23.4  | 77.06          | ,7798<br>,8388 | 36,56   | ,5428 | -16,6771             | 0379    |
| 23.6  | 70.37          | 3981           | 27,48   | 5456  | -14.4999             | 0393    |
| 23.8  | 67,65          | 9578           | 24,11   | 5470  | 712,6987             | 0407    |
| 24.0  | 65.26          | 1,0179         | 21,30   | 5485  | +11,1972             | .0422   |
| 24.2  | 63.15          | 1.0783         | 18,94   | ,5502 | n9,9347              | 0438    |
| 24.4  | 61,27          | 1,1391         | 16,94   | ,5520 | +8,8650              | .0456   |
| 24.6  | 59,60          | 1.2000         | 15,23   | ,5541 | .7,9552              | ,0473   |
| 24.8  | 58.08          | 1,2619         | 13,74   | ,>560 | -7,1530              | .0495   |
| 25.0  | 56.73          | 1.3237         | 12,45   | ,5583 | -6,4707              | .0513   |
| 25.2  | 55.50          | 1.3862         | 11,33   | ,5606 | -5,8685              | ,0>34   |
| 25.4  | 54.37<br>53.36 | 1,4497         | 10,32   | ,5628 | •5,3292<br>•4,8632   | 0558    |
| 25.8  | 52,42          | 1,5132         | 8,66    | ,5654 | 64,4438              | 0608    |
| 26.0  | 51,57          | 1,6424         | 7,96    | ,5708 | 64,0720              | .0636   |
| 26.2  | 50,80          | 1,7076         | 7,34    | 5738  | -3,7420              | .0000   |
| 26.4  | 50.08          | 1,7738         | 6,78    | 5769  | +3,4421              | 0698 -  |
| 26.6  | 49.42          | 1,8408         | 6,27    | >801  | -3,1708              | 0733    |
| 26.8  | 48,81          | 1,9066         | 5,81    | ,5835 | -2,9250              | ,0770   |
| 27.0  | 48.24          | 1.9772         | 5,39    | ,5870 | -2,7013              | ,0810   |
| 27.2  | 47.72          | 2,0464         | 5,01    | ,5907 | +2,5002              | 0854    |
| 27.4  | 47.24          | 2,1167         | 4,66    | 15946 | +2,3145              | 0901    |
| 27.6  | 46,60          | 2,1879         | 4,34    | 6031  | +2,1449<br>#1,9916   | 1009    |
| 28.0  | 46,00          | 2,2598         | 3,78    | ,6075 | -1,8480              | 1071    |
| 28.2  | 45.64          | 2,4079         | 3,52    | 6121  | -1.7144              | 1140    |
| 28.4  | 45,31          | 2,4831         | 3,30    | 0172  | -1,5946              | ,1215 . |
| 28.6  | 45.C1          | 2,5599         | 3,08    | 6223  | -1,4822              | .1299   |
| 28.8  | 44.72          | 2,6382         | 2.88    | 6277  | -1,3773              | ,1394   |
| 29.0  | 44,45          | 2.7179         | 2,70    | ,6333 | -1,2803              | ,1500   |
| 29.2  | 44.21          | 2,7987         | 2,53    | ,6393 | -1,1915              | ,1619   |
| 29.4  | 43.98          | 2.8814         | 2,37    | 6455  | -1.1078              | 1756    |
| 29.6  | 43.76          | 2.9656         | 2,22    | ,6520 | -1.0302              | ,1913   |
| 29.8  | 43.57          | 3,0512         | 2,08    | 6590  | -,9591<br>-,8923     | 2094    |
| 30.2  | 43,21          | 3.1389         | 1,83    | 0738  | -,8290               | 2308    |
| 30.4  | 43,05          | 3,3206         | 1,71    | 6819  | +,7712               | 2872    |
| 30.6  | 42.90          | 3.4147         | 1,61    | 6903  | -,7166               | 3255    |
| 30.8  | 42.76          | 3,5113         | 1,51    | 6992  | -,6655               | .3741   |
| 31.0  | 42,63          | 3,6104         | 1,41    | ,/086 | -,6180               | ,4374   |
|       |                |                |         |       |                      |         |

| RATIO | TOTAL | STEP   | YAR   | VAR   | COVAR  | MITE   |
|-------|-------|--------|-------|-------|--------|--------|
|       | ERROR | SIZE   | ERROR | STEP  |        |        |
|       |       |        |       |       |        |        |
| 31.2  | 42.51 | 3,7122 | 1,32  | ,7186 | -,5736 | ,5241  |
| 31.4  | 42.40 | 3.8169 | 1,24  | ,7291 | -,5324 | 6489   |
| 31.6  | 42.30 | 3,9248 | 1,16  | 1/402 | -,4938 | ,6459  |
| 31.8  | 42.21 | 4.0362 | 1,09  | 7519  | -,4576 | 1.2043 |
| 32.0  | 42.12 | 4.1513 | 1.02  | ,/644 | -,4239 | 2,0540 |
| 32.2  | 42.04 | 4.2702 | , 95  | 7776  | -13927 | 6,5840 |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL. | STEP    | VAR           | VAR    | COVAH      | MITE                                    |
|-------|--------|---------|---------------|--------|------------|-----------------------------------------|
|       | ERROR  | SIZE    | ERROR         | STEP   |            | * * * * * * * * * * * * * * * * * * * * |
|       | E.NAUN | 3126    | c n · · · · · | 0,0,   |            |                                         |
|       |        |         |               |        |            |                                         |
| 21.2  | 791.17 | .0558   | 7285,25       | .5285- | 3849,5027  | ,0239                                   |
| 21.4  | 406.34 | .1117   | 1820,61       | , 5286 | -961, 3808 | .0246                                   |
| 21.6  | 278,14 | 1676    | 808,31        | . 5788 | -426,9085  | , 0254                                  |
| 21.8  | 214.14 | ,2236   | 454,24        | ,5291  | -239,8280  | ,0261                                   |
| 22.0  | 175.79 | ,2796   | 250,25        | ,5294  | -153,1667  | ,0269                                   |
| 22.2  | 150.30 | ,3357   | 201,29        | ,5299  | -106,1767  | .0275                                   |
| 22.4  | 132.12 | ,3919   | 147,56        | , >305 | -77,7742   | .0286                                   |
| 22.6  | 118,53 | ,4482   | 112,73        | ,5311  | -59,3744   | 0295                                    |
| 22.8  | 107,99 | .5047   | 88,82         | ,5318  | m46,7362   | ,0305                                   |
| 23.0  | 99.60  | .5614   | 71.74         | ,>326  | -37,7115   | 0315                                    |
| 23.2  | 92.76  | .6182   | 59,08         | , 5335 | -31,0219   | ,0325                                   |
| 23.4  | 87.09  | ,6752   | 49,47         | ,5345  | -25,9491   | .0336                                   |
| 23.6  | 82.30  | 7325    | 41,97         | 5355   | -21,9775   | .0347                                   |
| 23.8  | 78.24  | .7899   | 35,05         | ,5367  | -18,8537   | . 0359                                  |
| 24.0  | 74,72  | ,8478   | 31.24         | ,5379  | -10,3096   | .0372                                   |
| 24.2  | 71.68  | .9057   | 27,33         | ,5393  | -14,2452   | .0365                                   |
| 24.4  | 69.00  | 9642    | 24.07         | ,5407  | -12,5227   | 0399                                    |
| 24.6  | 66,65  | 1.0227  | 21,36         | ,5423  | -11,0920   | .0414                                   |
| 24.8  | 64.55  | 1.0818  | 19.04         | ,5439  | -9,8675    | 0429                                    |
| 25.0  | 62.69  | 1,1409  | 17.09         | ,5458  | -0,8393    | ,0445                                   |
| 25.2  | 61,01  | 1.2008  | 15,39         | .5475  | -7.9406    | .0462                                   |
| 25.4  | 59.50  | 1.2611  | 13,92         | ,5495  | -7,1630    | ,0481                                   |
| 25.6  | 58.13  | 1.3217  | 12,64         | ,5515  | -6,4867    | ,0500                                   |
| 25.8  | 56,89  | 1.3829  | 11,51         | ,5537  | -5,8928    | ,0520                                   |
| 26.0  | 55.77  | 1.4444  | 10,52         | ,5560  | -5,3724    | ,0542                                   |
| 26.2  | 54.74  | 1,5065  | 9,64          | ,5584  | =4,9077    | ,0565                                   |
| 26.4  | 53,81  | 1,5669  | 8,87          | ,5611  | -4,4997    | 0590                                    |
| 26.6  | 52,95  | 1,6321  | 8,17          | ,5638  | -4,1313    | .0616                                   |
| 26.8  | 52,15  | 1,6961  | 7,53          | , 5665 | -3,7971    | ,0044                                   |
| 27.0  | 51,42  | 1,7607  | 6,97          | ,5694  | -3,4979    | . 0074                                  |
| 27.2  | 50.75  | 1.8259  | 0,42          | ,5725  | -3,2280    | ,0707                                   |
| 27.4  | 50,13  | 1,6917  | 5,99          | ,5758  | -2,9840    | 0741                                    |
| 27.6  | 49,55  | 1,9587  | 5,56          | ,2791  | -2,7567    | 0779                                    |
| 27.8  | 49.02  | 2,0261  | 5,17          | ,5827  | m2,5564    | .0819                                   |
| 28.0  | 49,53  | 2.0945  | 4,82          | ,5864  | -2,3700    | ,0863                                   |
| 28.2  | 48,07  | 2,1637  | 4,50          | ,5902  | #2,1999    | ,0911                                   |
| 28.4  | 47.65  | 2,2340  | 4,20          | ,5943  | +2,0429    | 0963                                    |
| 28.6  | 47,25  | 2,3051  | 3,92          | 5985   | £1,8992    | ,1020                                   |
| 28.6  | 46,69  | 2,3774  | 3,67          | ,6030  | -1,7659    | 1062                                    |
| 29.0  | 46.55  | 2,4507  | 3,43          | ,6076  | -1,6431    | ,1151                                   |
| 29,2  | 46,23  | 2,5248  | 3,21          | 0126   | -1,5311    | ,1226                                   |
| 29.4  | 45,94  | 2,6003  | 3,01          | ,6177  | -1,4269    | ,1309                                   |
| .56.9 | 45,66  | 2,6777  | 2,82          | 6229   | -1,3273    | ,1405                                   |
| 29.8  | 45.40  | 2,7559  | 2,65          | 6356   | +1,2368    | ,1510                                   |
| 30.0  | 45,17  | 2,8354  | 2,48          | ,6345  | •1,1532    | 1629                                    |
| 30.2  | 44,94  | 2.9171  | 2,33          | ,0405  | -1,0733    | ,1766                                   |
| 30.4  | 44.73  | 2.9997  | 2,19          | ,6471  | -1,0008    | ,1922                                   |
| 30.6  | 44.54  | 3, 6845 | 2,05          | ,6538  | 7,9317     | ,2104                                   |
| 30.8  | 44.36  | 3,1766  | 1,93          | ,6610  | -,8687     | 2315                                    |
| 31.0  | 44,19  | 3,2590  | 1,61          | 6684   | -,8087     | 2570                                    |
| 31.2  | 44.04  | 3,3494  | 1,70          | ,0762  | -,7528     | ,2876                                   |
|       |        |         |               |        |            |                                         |

| RATIO | TOTAL | SIZE   | VAR<br>ERROR | STEP  | COVAR   | M.TTF  |
|-------|-------|--------|--------------|-------|---------|--------|
| 31.4  | 43.89 | 3.4412 | 1,59         | ,6845 | -17007  | ,3254  |
| 31.6  | 43,76 | 3,5370 | 1,50         | ,6932 | -,6515  | 3734   |
| 31.8  | 43,63 | 3,6345 | 1,40         | ,7023 | -,6057  | 4359   |
| 32:0  | 43.52 | 3,7342 | 1,32         | 7121  | -,5635  | 5199   |
| 32.2  | 43,41 | 3,6372 | 1,24         | ,7223 | +,5235  | 6417   |
| 32.4  | 43.31 | 3.9431 |              | ./331 | -, 4862 | 8312   |
| 32.6  | 43,21 | 4,0523 | 1,16         | 7445  | -,4913  | 1,1680 |
| 32.8  | 43.12 | 4,1648 | 1,02         | 1566  | -,4191  | 1.9260 |
| 33,0  | 43.04 | 4,2812 | ,96          | 7694  | -,3889  | 5,3134 |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL  | STEP   | VAR      | VAR    | COYAH     | MTTF  |
|-------|--------|--------|----------|--------|-----------|-------|
|       | FRROR  | SIZE   | ERROR    | STEP   |           |       |
|       | CHAO.  | 3126   | - Millon | 0,6,   |           |       |
|       |        |        |          |        |           |       |
| 20.0  | 744 40 |        | 4077 40  | bank   | -444 7747 | 0244  |
| 22.0  | 344.42 | .1365  | 1233,80  | ,5226  | -644,3347 | ,0244 |
| 22.2  | 252,42 | 1911   | 623,86   | ,5229  | -328,3043 | 0251  |
| 22.4  | 201,38 | .2458  | 379,94   | , >232 | -198,2683 | .0258 |
| 22.6  | 168,96 | .3006  | 253,94   | ,5235  | -132,4463 | ,0266 |
| 22.6  | 146,58 | . 3555 | 181,51   | ,5240  | -94,6182  | ,0274 |
| 23.0  | 130.21 | .4104  | 136,08   | ,5246  | -70,8916  | 0283  |
| 23.2  | 117.70 | . 4656 | 105,64   | ,5252  | -54,9795  | 0291  |
| 23.4  | 107.88 | ,5208  | 84,36    | 5259   | -43,8679  | ,0301 |
| 23.6  | 99,96  | 5762   | 68,85    | 5267   | -35,7674  | ,0310 |
| 23.5  | 93.44  | 6318   | 57,20    | 2276   | 29,6803   | 0320  |
| 24.0  | 87.99  | 6776   | 45,24    | 5286   | -25,0043  | 0331  |
| 24.2  | 63.38  | 7436   | 41.19    | ,5296  | -21.3234  | 0342  |
| 24.4  | 79.41  | 7998   | 35,55    | ,5307  | -10,3723  | 0353  |
| 24.6  | 75.98  | 8563   | 70 97    |        | -15,9813  | 0365  |
|       |        |        | 30.97    | ,5320  |           | 0474  |
| 24.8  | 73.00  | ,9129  | 27,21    | ,5334  | =14.0192  | ,0378 |
| 25.0  | 70.36  | .9701  | 24,04    | ,5347  | 112,3648  | ,0391 |
| 25.2  | 68.02  | 1.0274 | 21.39    | ,5362  | -10.9821  | .0405 |
| 25.4  | 65,95  | 1.0950 | 19,15    | ,>378  | 79,8095   | ,0420 |
| 25.6  | 64.09  | 1.1431 | 17.22    | ,5395  | -0,8015   | ,0435 |
| 25.8  | 62.42  | 1,2016 | 15,54    | ,5412  | -7,9262   | .0452 |
| 26.0  | 60.91  | 1,2663 | 14,10    | , 5432 | 47,1739   | 0469  |
| 26.2  | 59.55  | 1.3194 | 12.83    | ,5452  | +6,5142   | .0487 |
| 26.4  | 58,30  | 1.3792 | 11,71    | ,5473  | -5,9285   | ,0707 |
| 26.6  | 57.18  | 1.4391 | 10.73    | ,5496  | +5,4177   | .0527 |
| 26.8  | 56.13  | 1.5000 | 9,84     | 5518   | -4,9545   | 0549  |
| 27.6  | 55.19  | 1.5609 | 9,06     | 5543   | -4,5492   | .05/3 |
| 27.2  | 54,32  | 1,6225 | 8,36     | >570   | -4,1844   | 0597  |
| 27.4  | 53.51  | 1,6052 | 7,72     | 5595   | -3,8503   | .0024 |
| 27.6  | 52.77  | 1,7482 | 7,15     | ,5623  | -3,5519   | ,0652 |
| 27.8  | 52.09  | 1.8117 | 6,63     | ,5653  | -3,2834   | .0683 |
| 28.0  | 51,46  | 1.8757 | 6,17     | ,5685  | -3,0413   | 0715  |
| 28.2  | 50.87  | 1.9407 | 5,74     | 5717   | -2,8182   | 0750  |
| 28,4  | 52.37  |        |          | 5751   |           | .0787 |
|       | 50,33  | 2,0064 | 5,35     |        | -2,6146   |       |
| 28.6  | 49.82  | 2.0730 | 4,99     | ,5786  | -2,4273   | ,0824 |
| 28.8  | 49.36  | 2,1403 | 4,66     | ,5823  | -2,2566   | 0872  |
| 29.0  | 48,92  | 2,2085 | 4,35     | ,5862  | =2,0993   | ,0920 |
| 29.2  | 46.51  | 2,2761 | 4.07     | 5901   | -1,9520   | ,0972 |
| 29.4  | 48.14  | 2,3481 | 3,81     | ,5943  | -1,8188   | .1029 |
| 29.6  | 47.79  | 2,4190 | 3,57     | 5988   | -1,6962   | 1091  |
| 29.8  | 47.46  | 2,4913 | 3,35     | ,6034  | -1,5813   | ,1160 |
| 30.0  | 47.16  | 2,5648 | 3,14     | ,6082  | -1,4742   | ,1230 |
| 30.2  | 46.87  | 2,6393 | 2,95     | .0132  | -1,3753   | ,1320 |
| 30.4  | 46.60  | 2,7154 | 2,77     | ,6184  | -1,2822   | ,1414 |
| 30.6  | 46,36  | 2,7727 | 2.00     | ,0239  | 71,1961   | ,1520 |
| 30.8  | 46.12  | 2,8713 | 2,44     | ,6297  | +1:1163   | ,1640 |
| 31.0  | 45.91  | 2,9512 | 2,29     | ,0358  | 71,0423   | 1775  |
| 31.2  | 45.71  | 3,0325 | 2.16     | 6422   | -, 9.733  | 1929  |
| 31.4  | 45.52  | 3,1158 | 2,03     | 0489   | -,9081    | ,2110 |
| 31.0  | 45.35  | 3,2011 | 1,91     | 6558   | -,8467    | 2322  |
| 31.8  | 45.18  | 3.2984 | 1,19     | 6630   | -,7886    | 2576  |
| 32.0  | 45.03  | 3.3772 | 1,68     | 6707   | -,7355    | 2879  |
| 92.0  | 12.00  | 3.3//2 | 1100     | 10,0,  | 41,055    | 150/7 |

| N | : | 4 | 4 |
|---|---|---|---|
|   |   |   |   |

| RATIO | TOTAL | STEP   | VAR<br>ERROR | STEP  | COVAR  | MITE   |
|-------|-------|--------|--------------|-------|--------|--------|
| 32.2  | 44.89 | 3,4680 | 1,58         | ,6789 | -,6862 | ,3249  |
| 32.4  | 44.75 | 3.5614 | 1,49         | 6874  | -,6390 | 3721   |
| 32.6  | 44,63 | 3,6572 | 1,40         | 6963  | -,5949 | ,4333  |
| 32.8  | 44.52 | 3,7555 | 1,31         | ,7057 | -,5539 | ,5157  |
| 33.0  | 44.41 | 3.8564 | 1,23         | ,7157 | m,5155 |        |
| 33.2  | 44,41 | 3,9403 | 1,16         | ,7262 | -,4795 | 6332   |
| 33.4  | 44.22 | 4.0675 | 1,09         | 7373  | -,4457 | 1,1302 |
| 33.6  | 44.13 | 4,1779 | 1.02         | 7490  | -,4143 | 1,8189 |
| 33.A  | 44.05 | 4.2020 | 1,02         | 7614  | -,3849 | 4,5069 |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIC | TOTAL  | STEP    | VAR     | VAR    | COVAR                                   | MTTF   |
|-------|--------|---------|---------|--------|-----------------------------------------|--------|
| W4116 | ERROR  | SIZE    | ERHOR   | STEP   |                                         |        |
|       | LANDIN | 3121.   | LANON   | 316    |                                         |        |
|       |        |         |         |        |                                         |        |
| 22.2  | 865,50 | c 6 7 A | 8162,65 | 5466   | 4216,0646                               | .0228  |
| 22.4  | 443.98 | .0534   | 2039,62 | 5167   | 1053,3010                               | 0235   |
| 22.6  | 303.60 | .1067   | 905,95  | >169   | -467,7587                               | 0241   |
| 22.8  | 233.46 | .1661   | 505 96  | 5171   | -262,6788                               | 0248   |
|       | 191.46 | .2136   | 508,96  | 2174   | -167,8418                               | 0256   |
| 23.0  | 147 54 | .2671   | 325,34  | 5.78   | -116,3168                               | 0263   |
| 23.2  | 163,51 | ,3207   | 225,58  | 5178   | 95 2706                                 | 02/1   |
| 23.4  | 143.60 | .3744   | 165.47  | ,>184  | 85,2799                                 |        |
| 23.6  | 128.70 | .4261   | 126,43  | ,2190  | -65,1146                                | ,0279  |
| 23.3  | 117,15 | ,4821   | 99,64   | ,5196  | -51,2748                                | 0288   |
| 24.0  | 107.94 | .5361   | 80,49   | ,2203  | -41,3805                                | 0296   |
| 24.2  | 100.42 | .5904   | 66,30   | ,2210  | -34,0481                                | 0300   |
| 24.4  | 94.19  | ,0148   | 55,53   | .>219  | -20,4833                                | 0315   |
| 24.6  | 88,95  | ,6993   | 47,15   | ,5558  | -24,1622                                | , 0325 |
| 24.8  | 84.47  | .7542   | 40,48   | , >239 | -20,7136                                | .0335  |
| 25.0  | 60.61  | ,8092   | 35,12   | 5250   | a17,9424                                | 0347   |
| 25.2  | 77.26  | , 8644  | 30,73   | ,5262  | -15,6792                                | 0359   |
| 25.4  | 74.32  | ,9199   | 27,08   | , >275 | 713,7956                                | 0371   |
| 25.6  | 71,72  | 9756    | 24,04   | 5289   | m12,2255                                | . 0384 |
| 25.8  | 69.42  | 1.0317  | 21.46   | ,5304  | m10,8923                                | . 0397 |
| 26.0  | 67.35  | 1.0882  | 19,25   | , >319 | +9,7492                                 | 0411   |
| 26.2  | 65.51  | 1.1449  | 17.36   | 5336   | -8,7740                                 | .0420  |
| 26.4  | 63.34  | 1.2020  | 15,71   | >353   | -7,9227                                 | .0442  |
| 26.6  | 62,33  | 1.2594  | 14,28   | ,53/1  | -7,1858                                 | 0458   |
| 26.8  | 60.96  | 1,3174  | 13,02   | 5390   | -6,5332                                 | 0476   |
| 27.0  | 59.71  | 1.3759  | 11,90   | 5410   | +5,9563                                 | ,0494  |
| 27.2  | 58,57  | 1,4343  | 10,92   | ,>433  | -5,4556                                 | 0514   |
| 27.4  | 57,53  |         | 10.05   | 5455   | -5,0035                                 | 0534   |
|       |        | 1.4935  |         | 5477   | m4,5921                                 | 0557   |
| 27.6  | 56.56  | 1.5537  | 9,25    |        |                                         | ,0580  |
| 27.8  | 55,68  | 1,6138  | 8,55    | ,5502  | -4,2311                                 | ,0000  |
| 28.0  | 54,87  | 1.6748  | 7,91    | ,5527  | -3,9015                                 | .0605  |
| 28.2  | 54.12  | 1.7360  | 7,34    | ,5555  | -3,6080                                 | .0632  |
| 28.4  | 53,42  | 1,7983  | 6,81    | ,5583  | -3,3369                                 | ,0660  |
| 28,0  | 52.78  | 1.8610  | 5,34    | 5612   | -3,0927                                 | .0691  |
| 28.8  | 52,19  | 1.9241  | 5,91    | ,5644  | -2,8719                                 | .0723  |
| 29.0  | 51,63  | 1.9882  | 5,51    | ,5676  | #2,6671                                 | ,0758  |
| 29.2  | 51,12  | 2,0532  | 5,14    | ,5709  | -2,4789                                 | 0796   |
| 29,4  | 50.64  | 2.1188  | 4,81    | ,5744  | -2,3077                                 | 0837   |
| 29.6  | 50,19  | 2,1851  | 4,50    | ,5781  | -2,1500                                 | .0881  |
| 29,8  | 49,78  | 2,2520  | 4,22    | ,5821  | #2,00o2                                 | .0929  |
| 30.0  | 49,39  | 2,3206  | 3,95    | ,5860  | -1,8695                                 | ,0981  |
| 30.2  | 49.03  | 2.3899  | 3,71    | ,5901  | +1,7437                                 | .1038  |
| 30.4  | 48.69  | 2,4598  | 3,48    | ,5946  | +1,6291                                 | ,1100  |
| 30.6  | 48.38  | 2,5300  | 3,27    | 5992   | -1,5226                                 | 1169   |
| 30,8  | 48,08  | 2,6635  | 3,07    | ,6039  | -1,4208                                 | ,1245  |
| 31.0  | 47,81  | 2,6770  | 2,89    | 8800,  | -1,3276                                 | .1329  |
| 31,2  | 47,55  | 2,7520  | 2,71    | ,0140  | -1,2398                                 | 1424   |
| 31.4  | 47.31  | 2,8277  | 2,56    | ,6195  | -1,1600                                 | 1528   |
| 31.6  | 47,09  | 2,9051  | 2,40    | ,0252  | -1,0844                                 | 1047   |
| 31.A  | 46.88  | 2,9641  | 2,26    | ,0311  | -1,0131                                 | 1782   |
| 32.0  | 46,68  | 3,0646  | 2,13    | ,6374  | -,9463                                  | .1938  |
| 32.2  | 46.50  | 3,1466  | 2,00    | 0439   | -,8843                                  | ,2117  |
|       |        |         |         |        | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |        |

| RATIO | TOTAL | STEP   | VAR   | YAR    | COVAR                          | MTTF   |
|-------|-------|--------|-------|--------|--------------------------------|--------|
|       | ERROR | SIZE   | ERROR | STEP   | reing a do as to the transcent |        |
| 32.4  | 46.33 | 3,2303 | 1,89  | .6508  | -,8264                         | ,2326  |
| 32.6  | 46.17 | 3.3160 | 1,78  | .0579  | -,7715                         | 2>76   |
| 32.8  | 46.02 | 3,4038 | 1,67  | ,0654  | -,7195                         | 2679   |
| 33.0  | 45.86 | 3.4933 | 1,57  | 6733   | -,6717                         | 3247   |
| 33.2  | 45.75 | 3,5851 | 1,48  | .0616  | -,6266                         | 3710   |
| 33.4  | 45.63 | 3,6794 | 1,39  | . 6903 | -,5841                         | . 4412 |
| 33.6  | 45.52 | 3.7759 | 1,31  | 6996   | 7,5446                         | 5115   |
| 33,8  | 45,41 | 3,3748 | 1,23  | .7093  | -,5079                         | 0245   |
| 34,0  | 45,31 | 3,9772 | 1,16  | 7195   | -,4726                         | 7995   |
| 34,2  | 45.22 | 4.0821 | 1,09  | 7303   | -,4404                         | 1,0944 |
| 34.4  | 45.14 | 4,1905 | 1.02  | 7417   | -,4097                         | 1,7205 |
| 34,6  | 45.06 | 4.3022 | ,96   | /537   | -,3813                         | 3,8910 |

Column 1 is the ratio  $E(i-1)X_i/EX_i$ 

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO        | TOTAL   | STEP   | VAR            | YAR   | COVAR                | MTTE   |
|--------------|---------|--------|----------------|-------|----------------------|--------|
| 23.0         | 375.39  | .1305  | 1378.70        | ,5111 | <b>-704.1230</b>     | ,0233  |
| 23.2         | 274.85  | 1926   | 702,98         | 5113  | -350,9503            | .0239  |
| 23.4         | 219.05  | ,2351  | 424,73         | ,5116 | -210,7855            | . 0246 |
| 23.6         | 183.61  | 2975   | 283,95         | ,5119 | -144,8668            | ,0253  |
| 23.8         | 159.12  | ,3399  | 203,01         | ,5124 | -103,5208            | ,0260  |
| 24.0         | 141.20  | . 3925 | 152,17         | ,5129 | 477,5431             | ,0268  |
| 24,2         | 127.54  | ,4451  | 118,24         | ,5135 | #60,2136             | ,0276  |
| 24.4         | 116.79  | .4979  | 94,41          | ,5141 | -48,0373             | 0284   |
| 24.6         | 108.11  | 5508   | 77.07          | ,5148 | #39,1790<br>#32,5234 | 0292   |
| 25.0         | 100.97  | ,6572  | 64,05<br>54,02 | ,5164 | 27,4004              | 0311   |
| 25.2         | 89,93   | 7107   | 46,14          | 5173  | -23,3751             | 0320   |
| 25.4         | 85.59   | 7642   | 39,86          | ,5184 | -20,1673             | 0330   |
| 25.6         | 81.83   | 6181   | 34,73          | 5195  | m17,5503             | 0341   |
| 25.8         | 78.54   | . 8722 | 30,51          | ,5206 | -15,3903             | 0352   |
| 26.0         | 15.64   | .9766  | 26,98          | ,5218 | -13,5889             | 0364   |
| 26.2         | 13,64   | .9812  | 24,02          | ,5232 | m12,0796             | 0.576  |
| 26,4         | 70.80   | 1,0360 | 21,51          | ,5247 | -10,7986             | 0389   |
| 26.6         | 68.76   | 1.0911 | 19,36          | ,5262 | ,9,6985              | ,0403  |
| 26.8         | . 66.92 | 1,1467 | 17,49          | ,5278 | -8,7457              | ,0417  |
| . 27.0       | 65.24   | 1.2028 | 15,86          | ,5293 | -7,9086              | 0432   |
| 27.2<br>27.4 | 62.37   | 1,2589 | 14,44          | ,5312 | -7,1882<br>-6,5535   | 0448   |
| 27.6         | 61,11   | 1,3727 | 12,09          | 5349  | .5,985R              | 0482   |
| 27.8         | 59.97   | 1,4301 | 11,11          | ,5370 | -5,4861              | .0501  |
| 28.0         | 58.92   | 1,4877 | 10,24          | 5393  | -5,0454              | .0520  |
| 28.2         | 57.94   | 1,5466 | 9,44           | 5414  | -4,6370              | 0541   |
| 28.4         | 57.06   | 1,6052 | 8,74           | ,5438 | -4,2799              | ,0563  |
| 28.6         | 56.24   | 1,6645 | 8,11           | ,5464 | #3,9569              | 0587   |
| 28.8         | 55.47   | 1.7248 | 7,52           | ,5489 | -3,6580              | ,0012  |
| 29.0         | 54.77   | 1.7851 | 7.00           | ,5515 | n3,3924              | .0639  |
| 29.2         | 54.12   | 1.8461 | 6,52           | ,5545 | -3,1500              | .0667  |
| 29.4         | 53,50   | 1.9083 | 6,08<br>5,68   | 15573 | +2,9236              | 0098   |
| 29.          | 52,94   | 2,0340 | 5,31           | ,5605 | -2,5322              | 0766   |
| 30.0         | 51,93   | 2,0979 | 4,97           | 5670  | -2,3603              | 0804   |
| 30.2         | 51.47   | 2.1625 | 4,65           | >706  | -2,2022              | 0845   |
| 30.4         | 51.05   | 2,2281 | 4,36           | ,5742 | -2,0546              | 0890   |
| 30.6         | 50.65   | 2,2947 | 4.09           | ,5779 | +1,9179              | .0938  |
| 30.8         | 50.28   | 2.3519 | 3,84           | 5819  | *1,7923              | 0990   |
| 31.0         | 49.93   | 2,4296 | 3,62           | ,5862 | +1,6781              | ,1046  |
| 31.2         | 49.61   | 2,4789 | 3,40           | ,5905 | -1,5685              | ,1109  |
| 31.4         | 49,30   | 2.5692 | 3,20           | 5950  | -1,4673              | 1178   |
| 31.8         | 49.02   | 2.6409 | 3,01 2,83      | ,6046 | -1,3713<br>-1,2842   | ,1338  |
| 32.0         | 48.51   | 2,7867 | 2,67           | ,6098 | -1,2027              | ,1431  |
| 32.2         | 48.27   | 2.8522 | 2,51           | ,6150 | •1,1238              | 1536   |
| 32.4         | 48.06   | 2,9361 | 2,37           | ,0207 | -1,0534              | 1055   |
| 37.6         | 47.85   | 3,6161 | 2,23           | ,6265 | -,9851               | .1791  |
| 32.8         | 47,66   | 3.0954 | 2,10           | ,0327 | -,9215               | ,1945  |
| 33.0         | 47.48   | 3,1760 | 1,98           | 6391  | -,8630               | ,2122  |

| RATIO | TOTAL | STEP   | VAR   | VAR   | COVAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MITE   |
|-------|-------|--------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|       | ERROR | SIZE   | ERROR | STEP  | NAME OF THE PERSON OF THE PERS |        |
|       |       |        |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 33.2  | 47.32 | 3.2585 | 1,87  | ,6458 | -,8071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,2331  |
| 53.4  | 47.16 | 3.3431 | 1,76  | ,0528 | -,7540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2580  |
| 33.6  | 47.01 | 3.4294 | 1,66  | .0602 | -17047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2077   |
| 33.8  | 46.88 | 3,5175 | 1,56  | ,6679 | -,6586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,3240  |
| 34.0  | 46.75 | 3.6079 | 1,47  | .6760 | -,6150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3697   |
| 34.2  | 46,63 | 3,7002 | 1,39  | .0846 | -,5748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,4278  |
| 34.4  | 46,52 | 3,7951 | 1,31  | 6936  | -,5366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5059   |
| 34.6  | 46.42 | 3,8927 | 1,23  | .7031 | -,5005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6161   |
| 34.8  | 46.32 | 3,9932 | 1,16  | 7130  | -,4665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7033   |
| 35.0  | 46,23 | 4.0963 | 1,09  | 7235  | -,4348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0636 |
| 35.2  | 46.15 | 4.2026 | 1,03  | 7345  | -,4053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0538 |
| 35,4  | 46.67 | 4,3121 | 97    | ,/463 | -,3777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,4238 |

Column 1 is the ratio  $E(i-1)X_i/EX_i$ 

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL  | STEP   | VAR     | VAR     | COVAR     | MITE   |
|-------|--------|--------|---------|---------|-----------|--------|
|       | ERROR  | SIZE   | ERROR   | STEP    |           |        |
|       |        | •      |         |         |           |        |
|       |        |        |         |         |           |        |
| 23.2  | 943.21 | .0511  | 9101,99 | . >055- | 4600,2636 | ,0218  |
| 23.4  | 483.36 | .1022  | 2274,76 | ,5056=  | 1149,5703 | ,0224  |
| 23.6  | 330,12 | ,1533  | 1009,89 |         | -510,1690 | 0230   |
| 23.8  | 253.66 | .2045  | 567,80  | ,5060   | 290,7948  | ,0237  |
| 24.0  | 177.29 | ,2557  | 362,85  | , >062  | -183,1811 | ,0243  |
| 24.2  | 177.29 | ,3070  | 251,65  | ,5066   | -126,9874 | 0250   |
| 24.4  | 177,74 | 3564   | 184,52  | ,5070   | -93,0554  | 0257   |
| 24.6  | 139,27 | .4099  | 140,99  | ,5075   | -71,0509  | 0264   |
| 24.8  | 126,67 | .4614  | 111.21  | ,5082   | -56,0121  | .02/2  |
| 25.0  | 116,59 | ,5131. | 49,82   | ,5087   | -45,1961  | 0280   |
| 25.2  | 108.39 | .5649  | 74.04   | ,5095   | -37,2239  | 0288   |
| 25.4  | 191.58 | .6174  | 62,01   | ,5102   | -31,1423  | 0297   |
| 25.6  | 95.84  | ,6591  | 52,66   | ,5111   | -26,4193  | , 0306 |
| 25.8  | 90.95  | .7214  | 45,26   | ,5121   | -22,6812  | .0315  |
| 26.0  | 86,73  | 1739   | 39,27   | ,5130   | -19,6551  | 0325   |
| 26.2  | 83.05  | 3268   | 34,36   | ,5140   | m17,1679  | .0336  |
| 26.4  | 79.82  | 8798   | 30,30   | >152    | -15,1159  | 0345   |
| 26.6  | 76,98  | 9330   | 25,90   | ,>164   | m13,3998  | .0358  |
| 26.8  | 74.45  | 9863   | 24,03   | 5178    | m11,9531  | 0369   |
| 27.0  | 72.19  | 1.0400 | 21,58   | >192    | -10,7134  | 0.582  |
| 27.2  | 70.15  | 1.0943 | 19,45   | ,5205   | 9,6342    | .0395  |
| 27.4  | 68.33  | 1.1184 | 17,62   | >222    | -8,7167   | 0409   |
| 27.6  | 96.00  | 1.2032 | 16,02   | ,>238   | -7,9054   | 0423   |
| 27.8  | 65.16  | 1,2581 | 14,62   | , >255  | +7,2017   | .0438  |
| 28.0  | 63.78  | 1,3135 | 13,38   | ,5273   | -6,5751   | .0454  |
| 28.2  | 62,52  | 1,3595 | 12,28   | 5292    | -6,0168   | 0471   |
| 28,4  | 61,37  | 1,4255 | 11,31   | ,>312   | -5,5277   | .0488  |
| 28.6  | 60.30  | 1,4824 | 10,42   | >332    | -5,0000   | 0207   |
| 28.8  | 59.33  | 1,5395 | 9,64    | ,5354   | -4,6839   | ,0527  |
| 29.0  | 58,43  | 1,5768 | 8,93    | ,5378   | -4.3308   | .0548  |
| 29.2  | 57.60  | 1,6551 | 8,29    | ,5400   | -4,0037   | .0570  |
| 29.4  | 56.83  | 1,7138 | 7,71    | ,5425   | -3,7100   | ,0594  |
| 29.6  | 56.11  | 1,7727 | 7,18    | ,5452   | m3,4458   | .0019  |
| 29.8  | 55,45  | 1.8325 | 6,69    | ,5479   | -3,2013   | .0040  |
| 30.0  | 54.83  | 1,6930 | 6,25    | ,5507   | +2,9771   | .0675  |
| 30.2  | 54,25  | 1,9539 | 5,64    | >536    | -2,7735   | 0705   |
| 30.4  | 53.72  | 2.0153 | 5,47    | >568    | -2,5872   | 0738   |
| 30.6  | 53.22  | 2,0776 | 5,13    | ,>600   | #2,4145   | 0774   |
| 30.8  | 52,75  | 2,1411 | 4,81    | 5632    | 2,2523    | .0812  |
| 31.0  | 52.32  | 2,2050 | 4,51    | 5567    | +2,1044   | .0853  |
| 31.2  | 51.91  | 2.2696 | 4,24    | ,5703   | #1,9676   | .0898  |
| 31.4  | 51,53  | 2,3349 | 3,99    | ,5742   | -1,8421   | .0740  |
| 31.6  | 51.17  | 2,4012 | 3,75    | ,5781   | -1,7247   | 0998   |
| 31.8  | 50.84  | 2,4683 | 3,53    | 5823    | -1,6154   | ,1055  |
| 32.0  | 50.53  | 2,5370 | 3,32    | ,5864   | -1,5113   | ,1116  |
| 32.2  | 50.23  | 2.6063 | 3,13    | 5909    | -1,4159   | ,1187  |
| 32.4  | 49,96  | 2,6769 | 2,95    | ,5955   | -1,3260   | ,1263  |
| 32.6  | 49.70  | 2.7479 | 2.78    | .0005   | +1.2445   | ,1546  |
| 32.8  | 49.46  | 2,6207 | 2,62    | ,0056   | -1,1663   | ,1440  |
| 33.0  | 49.23  | 2.8956 | 2,47    | ,6107   | -1,0917   | .1546  |
| 33.2  | 49.02  | 2,9762 | 2,34    | ,0163   | -1,0235   | ,1004  |
|       |        |        |         |         | A         |        |

| TOTAL | STEP    | VAR                                                                                                                                                                                                | VAR                  | COVAR                                                           | MITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR | SIZE    | ERRUR                                                                                                                                                                                              | STEP                 |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         |                                                                                                                                                                                                    |                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         |                                                                                                                                                                                                    |                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48.83 | 3.1.465 | 2.20                                                                                                                                                                                               | .6221                | 9601                                                            | .1796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 1452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 2129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 2334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 2560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 2871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 3228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 3660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |         |                                                                                                                                                                                                    |                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | . 4249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 3,8141  | 1,31                                                                                                                                                                                               | 108/0                |                                                                 | ,5015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47.42 | 3.9101  | 1,23                                                                                                                                                                                               | , 6969               | -,4932                                                          | 6086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47.33 |         |                                                                                                                                                                                                    |                      | -,4610                                                          | 7662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47.24 |         |                                                                                                                                                                                                    |                      |                                                                 | 1,0282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 1,5463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |         |                                                                                                                                                                                                    |                      |                                                                 | 3.0440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 4.4325  | .91                                                                                                                                                                                                | 7510                 | -,3491                                                          | 62,9168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |         | 48.83 3.0465 48.64 3.1251 48.47 3.2047 48.30 3.2658 48.15 3.3691 48.01 3.4538 47.87 3.5405 47.75 3.6297 47.63 3.7206 47.52 3.8141 47.42 3.9101 47.33 4.0083 47.24 4.1096 47.15 4.2139 47.08 4.3714 | ## STZE ERROR  ## 83 | ## STEP ## STEP ## STEP  ## ## ## ## ## ## ## ## ## ## ## ## ## | ## STEP ## STE |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

|       |                |                | • 40    |        |                      |       |
|-------|----------------|----------------|---------|--------|----------------------|-------|
| RATIO | TOTAL          | STEP           | YAR     | VAR    | COVAR                | MTTF  |
|       | ERRUR          | SIZE           | ERROR   | STEP   |                      |       |
|       |                |                |         |        |                      |       |
| 24.0  | 407.74         | .1751          | 1533,91 | ,>003  | -766,9430            | .0222 |
| 24.2  | 296.24         | 1752           | 782,10  | >005   | -390,9612            | .0228 |
| 24.4  | 237.45         | .2253          | 472,47  | ,>007  | -230,0714            | .0234 |
| 24.6  | 198,86         | ,2755          | 315,99  | .>011  | -157,8362            | ,0241 |
| 24.8  | 172.16         | ,3257          | 225,84  | ,5014  | -112,7420            | ,0247 |
| 25.0  | 152.64         | .3761          | 169,33  | ,5019  | -84,4828             | ,0254 |
| 25.2  | 137,75         | 4265           | 131,60  | ,5024  | -65,6191             | 0261  |
| 25.4  | 126.04         | .4770          | 105,13  | ,5030  | -52,3846             | ,0269 |
| 25.6  | 116,56         | .5277          | 85,80   | ,5036  | -42,7116             | 0276  |
| 25.8  | 108,78         | :5765          | 71,35   | ,5043  | 235,4843             | 0284  |
| 26.0  | 102,26         | .6294          | 60,20   | 5051   | -29,9127             | 0302  |
| 26.2  | 96,73          | .6505          | 51,44   | 5068   | +25,5200<br>+22,0162 | 0311  |
| 26.4  | 91,99<br>87,88 | .7319<br>.7832 | 38,74   | >078   | -19,1795             | 0320  |
| 26.6  | 84.29          | 8350           | 34,04   | ,2088  | -16,8266             | 0330  |
| 27.0  | 81.12          | .8869          | 30,13   | 5100   | +14,6711             | 0340  |
| 27.2  | 78,32          | 9389           | 26,84   | 5112   | -13,2288             | 0351  |
| 27.4  | 75,81          | 9914           | 24,03   | ,5124  | -11,8212             | 0363  |
| 27.6  | 73,58          | 1.0440         | 21,63   | 5138   | -10,6248             | 0375  |
| 27.8  | 71.56          | 1.0969         | 19,56   | ,5152  | -9,5912              | 0387  |
| 28.0  | 69.73          | 1,1502         | 17,75   | ,5167  | -8,6871              | .0400 |
| 28.2  | 68.08          | 1.2036         | 16,18   | >183   | -7,9024              | .0414 |
| 28.4  | 66.57          | 1,2570         | 14,79   | ,>200  | +7,2056              | .0428 |
| 28.6  | 65,19          | 1.3123         | 13,55   | ,5216  | -6,5878              | ,0444 |
| 28.8  | 63.92          | 1.3667         | 12,46   | , >234 | +6,0397              | .0460 |
| 29.0  | 62.77          | 1,4213         | 11,50   | ,>255  | ->,5616              | .0476 |
| 29.2  | 61,71          | 1,4767         | 10,62   | ,5275  | -5,1256              | .0494 |
| 29.4  | 60.72          | 1.5325         | 9,83    | ,5296  | -4,7328              | .0513 |
| 29.6  | 59.81          | 1,5891         | 9,12    | ,5317  | -4.3749              | ,0533 |
| 29.8  | 58,96          | 1,6459         | 8,47    | ,5340  | +4,0525              | ,0554 |
| 30.0  | 58,18          | 1,7033         | 7,89    | ,5364  | -3,7598              | ,0>77 |
| 30.2  | 57,46          | 1,7506         | 7,36    | ,5390  | -3,4970              | 0000  |
| 30,4  | 56,78          | 1,6195         | 6,86    | ,5414  | -3,2503              | .0659 |
| 30.6  | 56.15          | 1.6764         | 6,42    | ,5442  | +3,0284              | 0053  |
| 30.8  | 55.57          | 1.9380         | 6,01    | ,5470  | +2,8235              | 2300  |
| 31.0  | 55,02          | 1,9981         | 5,63    | ,5500  | +2,6361              | ,0713 |
| 31.2  | 54,51          | 2.0590         | 5,28    | ,5530  | +2,4628              | 0746  |
| 31.4  | 54.64          | 2,1703         | 4,96    | ,5563  | -2,3037              | 0781  |
| 31.6  | 53,59          | 2,1825         | 4,66    | 15596  | +2,1555              | 0819  |
| 31.8  | 53.18          | 2.2454         | 4,38    | ,5631  | m2,0186              | ,0405 |
| 32.0  | 52.78          | 2.3094         | 4,12    | ,5705  | ×1,7723              | 0953  |
| 32.2  | 52.42          | 2,3739         | 3,89    | 5743   | -1,6599              | 1006  |
| 32.6  | 51.75          | 2,5061         | 3,45    | ,2783  | -1,5562              | 1063  |
| 32.8  | 51.45          | 2,5732         | 3,25    | 5827   | =1,4613              | 1125  |
| 33.0  | 51.17          | 2,6422         | 3,07    | 5869   | -1,3686              | ,1175 |
| 33.2  | 50.90          | 2.7114         | 2,90    | 5916   | -1,2852              | 1270  |
| 33.4  | 50.66          | 2.7817         | 2,74    | ,5965  | -1,2069              | ,1354 |
| 33.6  | 50.42          | 2,8533         | 2,58    | 6015   | -1.1331              | ,1447 |
| 33.8  | 50.20          | 2,9268         | 2,44    | ,0006  | m1,0616              | 1553  |
| 34.0  | 50.00          | 3.0009         | 2,30    | ,0120  | -,9965               | 1670  |
|       |                |                |         |        |                      |       |

| RATIO | TOTAL | STEP   | VAR   | VAR   | COYAR  | MTTF    |
|-------|-------|--------|-------|-------|--------|---------|
|       | ERROR | SIZE   | ERROR | STEP  |        |         |
|       |       |        |       |       |        |         |
| 34.2  | 49.80 | 3,0766 | 2,18  | ,6177 | -,9348 | ,1804   |
| 34.4  | 49.62 | 3.1537 | 2,06  | ,6236 | -,8767 | ,1957   |
| 34.6  | 49,45 | 3,2320 | 1,94  | 6299  | -,8230 | 2131    |
| 34.8  | 49,29 | 3.3122 | 1,84  | 6363  | -,7716 | ,2337   |
| 35.0  | 49.14 | 3,3938 | 1.74  | ,6431 | -,7237 | ,2577   |
| 35.2  | 49.00 | 3,4774 | 1,64  | 6502  | -,6782 | .2866   |
| 35.4  | 48,87 | 3,5631 | 1,55  | ,0576 | -,6350 | 3220    |
| 35.6  | 48.75 | 3.6506 | 1,46  | ,6654 | -,5946 | 3660    |
| 35,8  | 48.63 | 3.7402 | 1.38  | 6735  | -,5566 | 4220    |
| 36.0  | 48,53 | 3,3321 | 1,30  | ,6821 | -,5207 | 4962    |
| 36,2  | 48,42 | 3,9264 | 1,23  | 6911  | -,4868 | 5995    |
| 36,4  | 48,33 | 4,0231 | 1,16  | ,/005 | +,4554 | 7508    |
| 36.6  | 48.24 | 4,1226 | 1,10  | 7105  | -,4256 | 9975    |
| 36.8  | 48.15 | 4,2252 | 1,03  | 1209  | -,3975 | 1,4755  |
| 37,0  | 48.08 | 4.3308 | ,97   | ,/319 | -,3710 | 2,7055  |
| 37.2  | 48.01 | 4.4395 | 92    | 1435  | -,3465 | 18,0390 |

Column 1 is the ratio  $E(i-1)X_i/EX_i$ 

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL   | STEP   | VAR      | VAH    | COVAR              | MTTF   |
|-------|---------|--------|----------|--------|--------------------|--------|
|       | ERROR   | SIZE   | ERROR    | STEP   |                    |        |
|       |         |        |          |        | •                  |        |
|       |         |        |          |        |                    |        |
| 24.2  | 1624.12 | .0490  | 10099.08 |        | 4998,3878          | ,0209  |
| 24.4  | 524.31  | , 3980 | 2524,32  | 4951-  | 1249,1008          | ,0215  |
| 24,6  | 357,81  | ,1471  | 1121,12  | 4952   | -554,7390          | .0220  |
| 24.8  | 2/4,04  | .1901  | 630,17   | 4955   | -311,7258          | 0226   |
| 25.0  | 224,79  | .2453  | 402,82   | ,4957  | -199', 1845        | ,0232  |
| 25.2  | 191,63  | , 2944 | 279,43   | ,4961  | -138,1182          | .0238  |
| 25.4  | 167.97  | .3437  | 204,92   | ,4964  | -101.2297          | ,0245  |
| 25.6  | 150.29  | .3930  | 156,67   | ,4969  | <b>=77.3569</b>    | ,0251  |
| 25.A  | 136,56  | .4124  | 123,52   | 4974   | m60.9481           | . 0254 |
| 26.0  | 125.60  | .4720  | 99,81    | ,4980  | -49,2052           | 0265   |
| 26.2  | 116,67  | ,5416  | 32,28    | ,4986  | -40,5297           | ,0273  |
| 26.4  | 109,25  | .5714  | 68,94    | ,4993  | m33,9285           | ,0281  |
| 26.6  | 102.99  | ,6414  | 58,55    | ,5001  | -28,7833           | 0289   |
| 26.8  | 97.66   | .6915  | 50.32    | ,5009  | -24,7082           | 0297   |
| 27.0  | 93.07   | ,7417  | 43,69    | 5018   | -21,4333           | ,0305  |
| 27.2  | 89.06   | ,7921  | 38,26    | 5028   | -18,7424           | ,0315  |
| 27.4  | 85.54   | ,8428  | 33,75    | ,>038  | +16,5128           | ,0325  |
| 27.6  | 82,43   | 8937   | 29,97    | ,5049  | -14.6426           | 0335   |
| 27.8  | 79.67   | 9447   | 26,78    | ,5061  | -13,0632           | 0345   |
| 28.0  | 77.19   | .9961  | 24,05    | ,5073  | -11,7095           | 0356   |
| 28.2  | 74,97   | 1,0478 | 21,69    | ,5086  | -10,5452           | 0368   |
| 28.4  | 72.96   | 1.0797 | 19.65    | 5099   | •9,5350            | 0380   |
| 28.6  | 71.14   | 1,1519 | 17,88    | 5114   | -8,6568            | 0405   |
| 28.8  | 69.49   | 1,2043 | 16,33    |        | -7,8887<br>-7,2102 | .0419  |
| 29.2  | 67.98   | 1,2571 | 14,95    | ,5146  |                    | .0434  |
| 29.4  | 66.60   | 1,3100 | 42.65    | ,5163  | -6,6116<br>-6,0736 | 0449   |
| 29.6  | 65,34   | 1,3436 | 12,65    | 5198   | -5,5877            | 0465   |
| 29.8  | 64,16   | 1,4177 | 10,81    | 5219   | -5,1638            | .0462  |
| 30.0  | 62,11   | 1,5262 | 10,02    | 5239   | 4,7745             | .0>00  |
| 30.2  | 61.18   | 1,5815 | 9,31     | 5260   | -4,4208            | 0519   |
| 30.4  | 60.33   | 1,6369 | 8,66     | 5282   | +4,1031            | 0539   |
| 30,6  | 59.54   | 1,6930 | 8,07     | ,5305  | -3,8113            | .0560  |
| 30.8  | 58.81   | 1,7496 | 7,53     | 5329   | -3,5459            | 0583   |
| 31.0  | 58.12   | 1,8069 | 7,04     | ,5353  | -3,3011            | .0607  |
| 31,2  | 57,48   | 1,4642 | 6,59     | 5780   | -3,0813            | 0632   |
| 31.4  | 56,69   | 1.9226 | 6,17     | 2407   | -2,8751            | .0660  |
| 31.6  | 56,33   | 1,9814 | 5,79     | 5435   | -2,6866            | 0689   |
| 31.8  | 55,81   | 2,0408 | 5,44     | , 5464 | -2,5124            | .0720  |
| 32.0  | 55.33   | 2.1007 | 5,11     | 5495   | -2,3528            | 0753   |
| 32.2  | 54.87   | 2,1614 | 4,81     | ,5527  | -2,2043            | .0788  |
| 32.4  | 54,44   | 2,2232 | 4,52     | >559   | -2,0636            | 0827   |
| 32.6  | 54.05   | 2,2849 | 4,27     | , >595 | -1,9382            | .0867  |
| 32.8  | 53.67   | 2,3480 | 4,02     | 5630   | -1.8175            | 0912   |
| 33,0  | 53,32   | 2,4119 | 3,79     | ,5667  | m1,7054            | 0961   |
| 33.2  | 52.99   | 2,4764 | 3.58     | ,5707  | -1,6020            | ,1013  |
| 33.4  | 52.68   | 2,5421 | 3,38     | , 5747 | 91,5041            | 1070   |
| 33,6  | 52.38   | 2,6088 | 3,19     | 5788   | 91,4120            | ,1133  |
| 33.8  | 52,11   | 2,6765 | 3,01     | ,2831  | -1,3258            | ,1202  |
| 34.6  | 51.85   | 2,7451 | 2,85     | ,5R77  | +1,2457            | ,1278  |
| 34.2  | 51,61   | 2,8143 | 2,69     | , 5925 | -1,1718            | 1361   |
|       |         |        |          |        |                    |        |

. . ;

| RATIO | TOTAL   | STEP   | VAR   | YAR   | COVAR   | MITF.   |     |
|-------|---------|--------|-------|-------|---------|---------|-----|
|       | ERROR   | SIZE   | ERROR | STEP  |         |         |     |
|       |         |        |       |       |         |         |     |
| 34.4  | 51.38   | 2.8851 | 2,55  | ,5974 | -1,1010 | ,1454   |     |
| 34.6  | 51.17   | 2,9575 | 2,41  | ,6025 | -1.0334 | 1559    |     |
| 34.8  | 50.97   | 3,0304 | 2,28  | 0079  | -,9718  | 1676    |     |
| 35.0  | 50.78   | 3.1053 | 2,15  | 6134  | -,9120  | ,1010   |     |
| 35.2  | 50.60   | 3,1A09 | 2,04  | 6193  | -,8576  | 1959    |     |
| 35.4  | 50.44   | 3,2563 | 1,93  | 6254  | -,8054  | 2133    |     |
| 35.6  | 50.25   | 3,3375 | 1,82  | .0317 | -,7555  | 2338    |     |
| 35.8  | 50.13   | 3,4182 | 1,72  | 6364  | -,7069  | ,2578   |     |
| 36.0  | 50.00   | 3.5006 | 1,63  | ,6453 | -,6650  | 2864    |     |
| 36.2  | 49.87   | 3.5948 | 1,54  | 6526  | -,6238  | 3211    | *** |
| 36.4  | 49,75   | 3.6708 | 1,46  | .6602 | -,5850  | . 3040  |     |
| 36.6  | 49.64   | 3.7590 | 1,38  | 6682  | -,5484  | 4186    |     |
| 36.8  | 49.53   | 3,8494 | 1,30  | .0766 | -,5137  | 4908    |     |
| 37.0  | 49.43   | 3,9423 | 1,23  | 6853  | 4805    | 5910    |     |
| 37.2  | 49,34   | 4.0374 | 1,16  | ,6945 | -,4499  | 7362    |     |
| 37.4  | 49,25 . | 4,1351 | 1,10  | .7042 | 4211    | ,9684   |     |
| 37.6  | 49.17   | 4.2357 | 1,04  | ,7144 | -,3938  | 1,4034  |     |
| 37.8  | 49.09   | 4.3394 | ,98   | ,7251 | -,3681  | 2,5058  |     |
| 38.0  | 49.62   | 4.4461 | ,92   | .7364 | -,3441  | 10,7436 |     |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$\phi\$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL          | STEP   | VAR          | VAR           | COVAR     | MTTF  |
|-------|----------------|--------|--------------|---------------|-----------|-------|
|       | ERROR          | SIZE   | ERROR        | STEP          |           | ,     |
|       |                |        |              |               |           |       |
|       |                |        |              |               |           |       |
| 25.0  | 441.38         | .1201  | 1698,57      | .4902         | -832,0596 | ,0213 |
| 25.2  | 322.58         | ,1681  | 866,34       | .4904         | -424,3369 | .0218 |
| 25.4  | 256,62         | ,2162  | 523,53       | 4906          | -256,3369 | ,0224 |
| 25.6  | 214.69         | ,2644  | 349,95       | 4908          | -171,2654 | ,0230 |
| 25.8  | 185,73         | ,3126  | 250,25       | ,4912         | -122,4238 | ,0236 |
| 26.0  | 164,54         | ,3609  | 157,69       | ,4916         | -91,7763  | ,0242 |
| 26.2  | 148,35         | .4093  | 145,81       | 4920          | -71,2472  | .0248 |
| 26.4  | 135,63         | .4577  | 116,54       | ,4926         | m50,9098  | ,0255 |
| 26.6  | 125,35         | .5063  | 95,18        | ,4932         | -46,4448  | 0262  |
| 26.8  | 116.88         | ,5551  | 79,11        | 4938          | -38,5631  | ,0269 |
| 27.0  | 109.80         | .6039  | . 66,75      | ,4945         | m32,5237  | ,0277 |
| 27.2  | 103,79         | ,6523  | 57,09        | ,4953         | .27,7784  | ,0285 |
| 27,4  | 98.63          | .7020  | 49,32        | ,4961         | -23,9689  | 0293  |
| 27.6  | 94.15          | ,7514  | 42,99        | 4969          | -20,8689  | ,0301 |
| 27.8  | 90.24          | .8008  | 37,81        | ,4979         | -18,3301  | ,0310 |
| 28.0  | 86.79          | .8505  | 33,46        | ,4988         | -16,1985  | ,0320 |
| 28.2  | 83,73          | ,9003  | 29,82        | ,2000         | -14,4175  | ,0329 |
| 28.4  | 81.61          | ,9504  | 26,73        | ,2011         | -12,9037  | 0339  |
| 28.6  | 78.56          | 1.0008 | 24.06        | ,5023         | -11,5931  | .0350 |
| 28.8  | 76,36          | 1.0513 | 21,77        | ,5036         | =10,4747  | .0361 |
| 29.0  | 74.36          | 1.1023 | 19,76        | ,2049         | -9,4888   | .0372 |
| 29.2  | 72.55          | 1,1733 | 18,02        | ,5063         | -8,6370   | ,0384 |
| 29.4  | 70.90          | 1.2047 | 16,48        | 5079          | +7,8860   | 0397  |
| 29.6  | 69.39          | 1.2566 | 15,12        | ,5094         | -7,2155   | ,0410 |
| 29.8  | 68.C1          | 1.3085 | 13,91        | ,5110         | -6,6264   | .0424 |
| 30.0  | 66.74          | 1,3608 | 12,83        | ,5128         | -6,0992   | 0439  |
| 30.2  | 65,57          | 1,4136 | 11,86        | ,5146         | -5,6247   | 0454  |
| 30.4  | 64,48          | 1,4670 | 10,99        | ,5163         | -5,1944   | ,0471 |
| 30.6  | 63,48          | 1,5206 | 10,20        | ,5183         | -4,8089   | 0488  |
| 30.8  | 62,55          | 1,5746 | 9,48         | ,5203         | -4,4597   | ,0506 |
| 31.0  | 61.70          | 1.6286 | 8,84         | ,5725         | -4,1470   | 0525  |
| 31.2  | 60.90          | 1.6836 | 6,25<br>7,71 | ,5247<br>5270 | +3,8563   | 0545  |
| 31.4  | 50.15          | 1.7389 |              | 5294          | +3,5924   | 0566  |
| 31.6  | 59,46<br>56,81 | 1,7949 | 7,21         | 5319          | -3,1281   | 0013  |
| 32.0  | 58,21          | 1,9079 | 6,76         | ,5345         | -2,9243   | 0639  |
| 32.2  | 57.64          | 1,9655 | 5,95         | <b>6777</b>   | +2,7348   | 0066  |
| 32,4  | 57.11          | 2.0232 | 5,60         | ,5401         | £2,5635   | 0095  |
| 32.6  | 56,61          | 2.0822 | 5,26         | 2429          | -2,3996   | 0726  |
| 32.8  | 56,15          | 2,1414 | 4,95         | 5460          | -2,2507   | 0759  |
| 33.0  | 55.72          | 2,2011 | 4,67         | .5493         | -2,1134   | 0795  |
| 33.2  | 55,31          | 2,2617 | 4,40         | 5526          | -1,9843   | 0833  |
| 33,4  | 54.92          | 2,3232 | 4,16         | ,5560         | -1,8637   | 0874  |
| 33,6  | 54.56          | 2,3852 | 3,92         | .5596         | -1,7518   | 0919  |
| 33,8  | 54,22          | 2,4485 | 3,70         | ,5632         | +1,6452   | .0968 |
| 34.0  | 53,90          | 2,5122 | 3,50         | ,5671         | -1,5478   | 1020  |
| 34.2  | 53,60          | 2,5774 | 3,31         | 5709          | -1,4535   | 1078  |
| 34.4  | 53,37          | 2,6431 | 3,13         | 9751          | -1,3670   | ,1141 |
| 34.6  | 53.05          | 2,7093 | 2,96         | . 5795        | -1,2875   | 1208  |
| 54.B  | 52,80          | 2,7771 | 2,80         | . >840        | -1,2110   | 1284  |
| 35.0  | 52,57          | 2,6461 | 2,65         | ,5886         | -1,1384   | 1368  |
|       |                |        |              |               | * *       |       |

| 0 |
|---|
|   |
|   |

| RATIO | TOTAL | STEP   | VAR   | YAR    | COVAR    | MTTF   |  |
|-------|-------|--------|-------|--------|----------|--------|--|
|       | ERRUR | 3126   | ERROR | STEP   |          |        |  |
|       |       |        |       |        |          |        |  |
|       |       |        |       |        |          |        |  |
| 35.2  | 52,35 | 2.9160 | 2,51  | ,5934  | -1,0708  | ,1461  |  |
|       |       |        |       |        |          |        |  |
| 35.4  | 52.14 | 2.9876 | 2,38  | ,5985  | -1.0074  | ,1565  |  |
| 35.6  | 51,94 | 3,0592 | 2,25  | ,0038  | -,9477   | 1082   |  |
| 35.8  | 51.76 | 3,1327 | 2,13  | ,6093  | -,8916   | .1013  |  |
| 36.0  | 51,59 | 3,2075 | 2,02  | ,6151  | -,8386   | 1963   |  |
| 36.2  | 51,43 | 3,2840 | 1,91  | ,0210  | -,7880   | ,2137  |  |
| 36.4  | 51.27 | 3,3619 | 1,81  | 0273   | -,7407   | ,2337  |  |
|       |       |        |       |        |          | 1200/  |  |
| 36.6  | 51.13 | 3,4415 | 1,71  | ,6338  | - 1.6955 | ,2575  |  |
| 36.B  | 50,99 | 3,5228 | 1,62  | .0406  | -,6531   | ,2858  |  |
| 37.0  | 50.87 | 3.6055 | 1,54  | .6477  | -,6136   | 3197   |  |
| 37.2  | 50.75 | 3,6907 | 1,45  | ,0551  | -,5754   | 3024   |  |
| 37.4  | 50.64 | 3,7775 | 1,36  | 6629   | -,5398   | 4160   |  |
| 37.6  | 50.53 | 3.8662 |       | 6711   | -,5067   | 4657   |  |
|       |       |        | 1,30  |        |          |        |  |
| 37.8  | 50.43 | 3.9575 | 1,23  | ,6797  | -,4748   | ,5021  |  |
| 38.0  | 50,34 | 4.0510 | 1,16  | 6887   | 7,4451   | ,7206  |  |
| 38.2  | 50.26 | 4,1475 | 1.10  | . 6981 | -,4164   | ,9434  |  |
| 38.4  | 50.18 | 4,2461 | 1,04  | 1080   | -, 3901  | 1,3421 |  |
| 38.6  | 50.10 | 4,3478 | 98    | 7184   | -, 3651  | 2,3013 |  |
|       |       |        |       | 1201   |          | 7 7461 |  |
| 38.8  | 50.03 | 4,4528 | ,93   | ,1293  | -,3414   | 7,7463 |  |
|       |       |        |       |        |          |        |  |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO        | TOTAL          | STER           | YAR            | VAR    | PAVOD                | MTTF   |
|--------------|----------------|----------------|----------------|--------|----------------------|--------|
| 25.2         | 1198.55        | .0471          | 11165,20       | ,4852= | 5417.0596            | .0201  |
| 25.4         | 567.03         | .0742          | 2/90,53        |        | 1353,7687            | ,0206  |
| 25.6         | 386,61         | .1413          | 1239,46        | 4854   | -601,1754            | ,0211  |
| 25.8         | 296.46         | .1984          | 696,47         |        | -337,6920            | ,0216  |
| 26.0         | 242.46         | ,2356          | 445,32         | ,4858  | -215,8520            | ,0222  |
| 26.2         | 206.50         | .2829          | 308,83         | ,4861  | -149,6256            | .0227  |
| 26.4         | 180,88         | ,3301          | 226,60         | ,4365  | -109,7397            | ,0233  |
| 26.6         | 161,70         | .3775          | 173,24         | ,4869  | -83,8589             | ,0239  |
| 26.8         | 146,81         | .4250          | 136,61         | 4874   | -66,0827             | ,0246  |
| 27.0         | 134,93         | 4725           | 110.42         | ,4879  | r53,3745             | ,0252  |
| 27.2         | 125,25         | .5202          | 91.05          | 4885   | m43,9771             | ,0259  |
| 27.4<br>27.6 | 117.20         | 5679           | 76,30          | 4898   | -36,8231             | ,0266  |
| 27.8         | 110.41         | .6159          | 64,83          |        | -31,2573             | ,0273  |
| 28.0         | 104,62         | .6639          | 55,74<br>48,38 | 4906   | -26,8470             | 0261   |
| 28.2         | 99.62          | 7121           |                | 4913   | -23,2769             | 0297   |
| 28.4         | 91.44          | .7605          | 42,37          | 4931   | -20.3581<br>-17.9443 | 0306   |
| 28.6         | 88.06          | .6091<br>.8577 | 33,23          | 4942   | -15,9284             | 0315   |
| 28.8         | 85.05          | 9007           | 29,69          | 4952   | -14,2103             | 0324   |
| 29.0         | 82,36          | 9558           | 26,68          | ,4963  | -12,7507             | .0334  |
| 29.2         | 79.93          | 1.0053         | 24,07          | 4974   | -11,4849             | .0344  |
| 29.4         | 77.75          | 1.0548         | 21,84          | 4987   | -10,4016             | ,0354  |
| 29.6         | 75,77          | 1.1046         | 19,68          | ,5001  | #9,4527              | 0365   |
| 29.8         | 73,97          | 1.1547         | 18,15          | ,5014  | -8,6167              | ,0377  |
| 30.0         | 72,31          | 1.2054         | 16,62          | >028   | 47,8726              | U389.  |
| 30.2         | 70.60          | 1.2560         | 15,28          | ,5043  | #7,2213              | 0402   |
| 30.4         | 69.42          | 1,3070         | 14,08          | ,5059  | =6,6423              | 0415   |
| 30.6         | 68,14          | 1,3586         | 13,00          | 2075   | e6,1162              | 0429   |
| 30.8         | 66.97          | 1.4101         | 12,04          | ,5093  | ,5,6537              | 0444   |
| 31.0         | 65.69          | 1.4619         | 11,18          | ,>112  | +5,2357              | 0460   |
| 31.2         | 64.88          | 1,5144         | 10,39          | ,5131  | -4,8540              | .0476  |
| 31.4         | 63,94          | 1,5672         | 9.68           | , >151 | -4.5090              | ,0493  |
| 31,6         | 63.07          | 1.6205         | 9,02           | ,2171  | -4,1925              | ,0511  |
| 31.8         | 62.26          | 1.6742         | 8,43           | ,5192  | +3.9050              | ,0530  |
| 32.0         | 61.51          | 1,7285         | 7,88           | ,5214  | #3,6405              | ,0>51  |
| 32.2         | 60,60          | 1.7831         | 7,38           | ,5237  | +3,3996              | ,0572  |
| 32.4         | 60.14          | 1.8363         | 6,92           | ,5261  | m3,1763              | 0595   |
| 32.6         | 59,53          | 1,8936         | 6,50           | ,5287  | 12,9751              | ,0619  |
| 32.8         | 58,95          | 1.9500         | 6,11           | ,5312  | -2,7844              | ,0045  |
| 33.0         | 56.42          | 2.0065         | 5,75           | ,5340  | -2,6122              | ,0672  |
| 33.2         | 57.91          | 2.0642         | 5,41           | .5367  | 2,4476               | .0701  |
| 33.4         | 57.43          | 2.1720         | 5,10           | ,>396  | =2,2963              | 0732   |
| 33,6         | 56.99          | 2.1608         | 4,81           | .5426  | +2,1571              | ,0766  |
| 33.8         | 56.57          | 2,2359         | 4,54           | ,5458  | -2,0280              | .0802  |
| 34.0         | 56,18          | 2,2997         | 4,29           | ,5491  | m1,9074              | ,0840  |
| 34.2         | 55.81          | 2.3601         | 4,05           | ,5526  | *1,7956              | , UH81 |
| 34.6         | 55.46<br>55.13 | 2.4216         | 3,83           | ,5561  | -1,6893<br>-1,5888   | ,0926  |
| 34.8         | 54.63          | 2,4841         | 3,62           | ,5636  | r1,4976              | 1026   |
| 35.0         | 54,53          | 2,6110         | 3,25           | 5675   | -1,4090              | 1064   |
| 35.2         | 54.26          | 2.6759         | 3.07           | 5715   | -1,3267              | 1147   |
|              | -1.5.          | 210,0,         | 3,0,           | 1-17-  | -Tinso.              |        |

| 122 |   |    |
|-----|---|----|
| N   | - | 51 |
| IN  | - | 21 |

| RATIO | TOTAL | STEP   | VAR<br>ERROR | STEP  | COVAR   | MITE   |     |
|-------|-------|--------|--------------|-------|---------|--------|-----|
|       |       |        |              |       |         |        |     |
| 35.4  | 54.00 | 2,7416 | 2,91         | ,5758 | -1,2499 | ,1215  |     |
| 35.6  | 53,76 | 2.8084 | 2,76         | ,5803 | -1,1772 | ,1290  |     |
| 35.8  | 53,53 | 2,8764 | 2,61         | ,5849 | -1,1086 | ,1574  |     |
| 36.0  | 53,31 | 2,9455 | 2,48         | 5896  | +1,0435 | ,1467  |     |
| 36.2  | 53,11 | 3.0153 | 2,35         | ,5947 | -,9837  | ,1569  |     |
| 36.4  | 52.42 | 3.9871 | 2,23         | ,5998 | -,9252  | ,1087  |     |
| 36.6  | 52,74 | 3,1595 | 2,11         | 6052  | -,8713  | ,1017  |     |
| 36.8  | 52,57 | 3,2336 | 2,00         | ,0108 | -,8199  | 1967   |     |
| 37.0  | 52,41 | 3,3085 | 1,90         | ,6168 | -,7726  | 2136   |     |
| 37.2  | 52,26 | 3,3854 | 1,80         | 6229  | -,7267  | 2336   |     |
| 37.4  | 52.12 | 3,4638 | 1.70         | 6293  | -,6835  | 2>69   |     |
| 37.6  | 51,99 | 3,5438 | 1,62         | 6360  | -,6427  | 2146   |     |
| 37,8  | 51,87 | 3,6257 | 1,53         | 6429  | -,6037  | 3184   |     |
| 38.0  | 51.75 | 3,7095 | 1,45         | 6502  | -,5669  | 3601   |     |
| 38.2  | 51,64 | 3,7947 | 1,37         | 6579  | -,5329  | 4120   |     |
| 38.4  | 51,54 | 3.8824 | 1,30         | 6659  | -,5001  | 4804   |     |
| 38.6  | 51.44 | 3,9723 | 1,23         | 6742  | -,4691  | 5/36   |     |
| 38.8  | 51.35 | 4.0644 | 1,17         | 6829  | -,4399  | 7673   |     |
| 39.0  | 51.26 | 4.1568 | 1,10         | 6922  | -,4127  | 9142   |     |
| 39.2  | 51.18 | 4,2561 | 1,04         | 7018  | -,3866  | 1,2848 |     |
| 39,4  | 51.11 | 4.3559 | 199          | 7119  | -,3623  | 2,1223 |     |
| 39.6  | 51.04 |        | 107          | 1726  | -,3394  | 5,8816 | 100 |
| 47.0  | 27,04 | 4.4588 | ,93          | 1,650 | -10077  | 2,0010 |     |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO TOTAL STEP VAR STEP COVAR MITTE ERROR STEP  26.0 476.40 .1155 1874.04 .4806 -900.2390 .0204 26.2 347.83 .1517 975.33 4808 -486.7869 .0209 .26.4 276.48 .2679 >777.40 .481.0 -277.2057 .0214 26.6 231.14 .2542 .386.15 .481.2 -169.3289 .0220 .276.6 .231.14 .2542 .386.15 .481.2 -169.3289 .0220 .276.2 .70 .176.66 .3370 .207.08 .461.0 -132.4966 .0225 .27.2 .199.36 .3370 .207.08 .461.0 -99.9.2551 .0231 .27.2 .199.36 .3370 .207.08 .461.0 -99.9.2551 .0231 .27.2 .199.36 .3370 .207.08 .461.0 -99.2551 .0231 .27.2 .199.36 .3370 .207.08 .461.0 -99.4.2 .77.1579 .0247 .27.4 .145.58 .4400 .126.64 .478.8 .61.61.29 .0243 .27.6 .134.43 .4668 .105.03 .4633 .50.2632 .0249 .27.8 .125.27 .5135 .87.37 .4839 .41.7821 .0256 .27.2 .20 .117.68 .6745 .57.375 .4845 .35.2335 .0228 .22.2 .111.08 .6774 .631.05 .4852 .30.0860 .0270 .286.4 .105.49 .6745 .55.51 .4866 .29.933 .0277 .28.6 .100.63 .7219 .47.52 .4867 .22.6353 .0227 .28.6 .100.63 .7219 .47.52 .4867 .22.6353 .0227 .28.6 .100.63 .7219 .47.52 .4867 .22.6353 .0225 .20.0 .20.4 .8170 .37.01 .4885 .17.5863 .0301 .20.0 .20.4 .8170 .37.01 .4885 .17.5863 .0301 .20.2 .20.4 .80.37 .9127 .20.58 .4906 .14.216 .0319 .20.4 .80.37 .9127 .20.58 .4906 .14.216 .0319 .20.5 .20.6 .837 .9127 .20.58 .4906 .14.216 .0319 .20.5 .20.6 .837 .9127 .20.58 .4906 .14.216 .0319 .20.5 .20.6 .837 .9127 .20.58 .4906 .13.259 .03.0 .20.0 .79.14 .10.083 .21.90 .4995 .10.3259 .0348 .30.0 .79.14 .10.083 .21.90 .4995 .21.3359 .0370 .30.6 .70.22 .22 .22.2 .27.55 .10.44 .9904 .79.22 .94.337 .03.55 .30.6 .70.22 .22 .22.2 .27.55 .10.44 .9904 .70.22 .20.0 .30.8 .70.22 .22 .22.55 .10.44 .9904 .70.22 .20.0 .30.8 .70.22 .22 .22.55 .10.44 .9904 .70.22 .20.0 .30.6 .70.22 .20.0 .20.5 .10.50 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .20.5 .2  | *      |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| 26.0 476.40 .1155 1874.04 ,4806 *900.2390 0204 26.2 347.83 .1517 955.33 4808 *458.7869 0209 26.4 276.48 2679 577.40 4810 *277.2057 0214 26.6 231.14 2542 386.15 4812 *165.3289 0260 26.8 199.81 3006 276.17 4810 *132.4968 0229 27.0 176.66 33470 207.08 4619 *99.251 0241 27.2 159.36 3934 160.99 4824 *77.1579 0247 27.4 145.58 4400 128.64 4828 *61.6129 0243 27.6 134.43 4868 105.03 4833 *50.2632 0249 27.0 117.59 5804 73.75 4845 *35.235 0263 28.2 111.08 6774 53.05 4852 *30.0960 0270 28.4 105.49 6745 54.51 4860 *22.9935 0277 28.6 100.63 7219 47.52 4867 *22.6353 0285 28.6 100.63 7219 47.52 4867 *22.6353 0285 28.8 96.39 7694 41.80 4876 *19.8865 0293 28.9 92.64 8170 37.01 4885 *17.8663 0361 29.4 86.37 9127 29.58 4906 *14.0216 0343 29.6 83.7 1 9611 26.64 4916 *12.6048 0348 30.0 79.14 1.0803 21.90 4895 *13.660 0343 30.0 79.14 1.0803 21.90 4996 *8.5958 0370 30.6 73.73 1.2057 16.78 4996 *8.5958 0370 30.6 73.73 1.2057 16.78 4994 -7.2278 0349 31.6 66.26 1.5089 10.57 5099 *4.6994 7.2278 0349 32.4 63.57 1.3661 16.29 4966 *8.5958 0370 32.6 63.71 9.1060 24.10 4927 *11.3552 0338 30.2 77.17 1.1071 19.97 4952 *9.037 0.359 30.6 73.73 1.2057 16.78 4994 7.2278 0349 31.6 66.26 1.5089 10.57 5099 *4.5915 0.449 32.4 63.67 1.5089 10.57 5099 *4.5915 0.449 32.4 63.67 1.5089 10.57 5099 *4.5915 0.449 32.4 63.67 1.4065 12.22 5043 *2.909 *4.4915 0.449 32.4 63.62 1.5089 10.57 5099 *4.5915 0.449 32.4 63.62 1.5089 10.57 5099 *4.5915 0.449 32.4 63.62 1.5089 10.57 5099 *4.5915 0.449 32.4 63.7 1.4065 12.22 5043 *2.9044 0.044 32.8 62.15 1.7186 8.06 5159 3.36861 0.049 32.8 62.15 1.7186 8.06 5159 3.36861 0.049 32.9 68.3 1.566 5.66 5.57 5.334 *2.2435 0.025 33.4 60.27 1.9154 6.27 5.355 5.354 6.285 3.9990 0.017 32.6 65.32 1.5664 5.57 5.337 *2.2665 0.738 34.4 59.7 4 2.2770 4.42 5.293 5.4491 0.001 33.4 60.27 1.9154 6.27 5.293 5.4491 0.002 33.4 60.27 1.9154 6.27 5.293 5.4491 0.002 33.4 60.27 1.9154 6.27 5.293 5.4491 0.002 33.4 60.27 1.9154 6.27 5.293 5.4491 0.002 33.6 59.7 2 1.906 5.556 5.334 2.2435 0.007 34.2 58.2 1.506 5.569 5.364 5.369 5.309 0.001 35.6 55.7 2.58  | PATTA  | TOTAL  |        | VAR     | WAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COVAR          | MTTF  |
| 26.0 476.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAILU  |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 26. 2 347, 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | EKKUN  | SIZE   | ENNON   | 3166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |       |
| 26. 2 347, 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 26. 2 347, 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 26.4 276.48 2679 577,40 4810 -277,2057 U114 26.6 231.14 2542 386.15 4812 -115,3289 0220 26.8 199.81 3006 276.17 4816 -132,4968 0225 27.0 176.86 3470 207.08 4816 -132,4968 0225 27.0 176.86 3470 207.08 4816 -17.1579 0243 27.2 159.36 3934 160,99 4824 -77.1579 0243 27.4 145,58 4400 128,64 4828 -61,6129 0243 27.6 134.43 4868 105,03 4853 -50,2632 0249 27.8 125.27 5335 87.37 4839 -41,7821 0256 28.0 117.59 5004 73,75 4845 -35,2335 0256 28.4 105.49 6745 54.51 4866 -25,9935 0270 28.4 105.49 6745 54.51 4866 -25,9935 0270 28.4 105.49 6745 54.51 4866 -25,9935 0270 28.8 90.39 76.94 41,80 4876 -19,8865 0293 29.0 92.64 8170 37.01 4885 -17,5663 0.501 29.2 89.33 8648 33,00 4895 -15,6600 0.310 29.2 89.33 8648 33,00 4895 -15,6600 0.310 29.4 86.37 9127 29.58 4906 -14,0216 0.311 9.2 48.6 1.31 1.0096 24.10 4927 -11,3852 0.338 30.2 57.3 48.5 1.561 1.0096 24.10 4927 -11,3852 0.338 30.2 77.17 1.1071 19.97 4952 -9,437 0.359 0.348 30.8 72.22 1.2555 15.44 4994 -7,2278 0.349 30.8 72.22 1.2555 15.44 4994 -7,2278 0.349 31.2 69,55 1.3859 1.316 1.2057 16.78 4980 -7,8700 0.882 31.0 6.26 1.5089 10.57 0.999 4.5099 0.948 31.2 69,55 1.3859 13.18 9026 -0,1441 0.920 31.2 69,55 1.3859 13.18 9026 -0,1441 0.920 31.2 69,55 1.3859 13.18 9026 -0,1441 0.920 31.2 69,55 1.3859 13.18 9026 -0,1441 0.920 31.4 68.37 1.4065 12.2 9.043 -9.043 10.999 32.4 63.6 2.1 5.569 10.57 9.099 -9.099 3.3 0.449 31.2 69,55 1.5664 9.86 9.998 4.5511 0.4999 32.4 63.6 2.1 5.7719 7.56 9.182 33.10 0.999 33.2 0.0499 32.4 63.6 2.1 5.7719 7.56 9.182 33.10 0.999 33.2 0.0499 33.2 60.2 1.5559 10.44 9.994 -7.2278 0.994 33.2 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.4 60.2 1.5659 10.57 9.098 4.9915 0.065 33.5 60.5 2.5166 3.55 9.562 1.5368 0.091 0.993 33.5 6.55 7.5 2.5809 33.6 60.0 1.4482 10.3 33.5 6.55 7.5 2  | 26.0   | 476.40 | .1155  | 1874.04 | ,4806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |       |
| 26.6 231.14 2542 386.15 4812 -185,3289 0220 26.8 199.81 3006 276.17 4816 -132,4966 0225 27.0 176.66 3470 207.08 4819 99,2951 0231 27.2 159.36 3934 160,99 4824 -77,1579 0247 27.4 145,58 4400 128,64 4828 64,6129 0248 27.6 134.43 4868 105.03 4833 -50,2632 0249 27.8 125,27 5335 87,37 4839 -41,7821 0256 28.0 117,59 5004 73,75 4845 -35,2335 0263 28.2 111.68 6274 63,05 4852 -30,060 0270 28.4 105.49 6745 54,51 4860 -22,9335 0277 28.6 100.63 7219 47,52 4867 -22,6353 0265 28.8 96.39 7684 41,80 4876 -19,8865 0293 29.0 92.64 8170 37,01 4885 -17,5863 0301 29.4 86.37 9127 29,58 4906 -14,0216 0310 29.4 86.37 9127 29,58 4906 -14,0216 0310 29.4 86.37 9127 29,58 4906 -14,0216 0319 29.6 83.71 9611 26,64 4916 -12,6048 0348 30.0 79.14 1.0503 21,90 4939 +10,3259 0348 30.0 79.14 1.0503 21,90 4939 +10,3259 0348 30.0 79.14 1.0503 21,90 4939 +10,3259 0348 30.0 79.14 1.0503 21,90 4939 +10,3259 0348 30.6 73,73 1,2057 16,78 4980 -7,8700 0382 30.8 72.22 1.2555 16,78 4980 -7,8700 0382 31.6 67,28 1,4574 11,36 29,496 8,5958 0370 31.6 67,28 1,4574 11,36 29,496 8,5958 0370 31.6 67,28 1,4574 11,36 29,496 -8,5958 0370 31.6 67,28 1,4574 11,36 29,496 -8,5958 0370 32.4 68,37 1,4065 12,22 20,64 4994 -7,2276 0394 31.6 67,28 1,4574 11,36 2061 -5,2693 0449 31.6 60.26 1,4574 11,36 2064 29,441 0299 32.4 63,67 1,4065 12,22 20,43 -5,0640 0447 31.8 60.26 1,4574 11,36 2064 -5,2693 0449 31.8 60.27 1,9354 6,27 2,959 -3,2661 0278 33.6 69,72 1,9354 6,27 2,959 -3,2661 0278 33.6 69,72 1,9354 6,27 2,959 -3,2661 0278 33.6 69,72 1,9354 6,27 2,959 -3,2661 0278 34.4 57,64 2,2167 4,68 30,59 -2,6585 0051 33.6 59,72 1,9007 5,91 2280 -2,6585 0051 33.6 59,72 1,9007 5,91 2280 -2,6585 0051 33.7 59,21 2,0466 5,57 2,537 -2,2470 0678 34.4 57,64 2,2767 4,42 2,425 11,936 0088 35.6 55,75 2,8043 3,96 2491 -1,7308 0888 35.6 55,75 2,8043 3,19 2640 -1,3664 1090                                                                                                                                                                                                                                         |        |        |        | 955,33  | ,4808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -458,7869      |       |
| 26.6 231.14 2542 386.15 4812 -169.3289 0220 27.0 176.66 3006 276.17 4816 -132.4968 0225 27.0 176.66 3370 207.08 4619 99.2951 0231 27.4 145.58 4400 128.64 4828 61.6129 0249 27.6 134.43 4868 105.03 4833 -50.2632 0249 27.8 125.27 5335 87.37 4839 -41.7821 0256 28.0 117.59 5004 73.75 4845 -35.2335 0263 28.2 111.68 6274 63.05 4852 -30.0660 0270 28.4 105.49 6745 54.51 4860 -22.6353 0265 28.8 100.63 7219 47.52 4867 -22.6353 0265 28.8 96.59 7694 41.80 4876 -19.8655 0293 29.0 92.64 8170 37.01 4865 -17.5863 0.001 29.2 89.33 4648 33.00 4895 -15.6600 0310 29.4 86.37 9127 29.58 4906 -14.0216 0310 29.4 86.37 9127 29.58 4906 -14.0216 0310 29.6 83.71 9611 26.64 4916 -12.6048 0348 30.0 79.14 1.0503 21.90 4939 -10.3259 0348 30.0 79.14 1.0503 21.90 4939 -10.3259 0348 30.0 79.14 1.0503 21.90 4939 -10.3259 0348 30.6 73.73 1.2057 16.78 4980 -7.8700 0.882 30.8 72.22 1.2555 1.3859 13.18 2006 -6.6590 0407 31.2 6.63 1.3564 14.25 29.966 -8.5588 0.370 30.6 73.73 1.2057 16.78 4980 -7.8700 0.882 31.6 67.28 1.4574 11.36 29.966 -8.5588 0.370 31.6 67.28 1.4574 11.36 29.968 -8.5588 0.370 31.6 67.28 1.4574 11.36 29.968 -8.5588 0.370 32.6 62.86 1.7186 8.06 2138 200 -4.8210 0.499 32.6 63.52 1.6655 8.60 2138 3.9990 0.917 32.6 63.62 1.4574 11.36 2064 2.994 33.6 60.27 1.9354 6.27 2.998 3.9980 -7.8700 0.882 33.6 67.2 1.4574 11.36 2.9098 -4.5511 0.481 32.8 62.15 1.7719 7.55 2.9098 -4.5511 0.481 32.8 62.15 1.7719 7.56 2.88 3.9990 0.917 32.6 63.86 1.7186 8.06 2.7598 3.9490 0.917 32.6 63.86 1.7186 8.06 2.7598 3.9490 0.917 33.6 67.7 28 1.4574 11.36 2.9098 4.5511 0.481 32.8 62.15 1.7719 7.56 2.883 3.9990 0.917 33.6 67.7 28 1.4574 11.36 2.9098 4.5511 0.481 32.8 62.15 1.7719 7.56 2.883 3.9990 0.917 33.6 67.7 28 1.4574 11.36 2.9098 4.5511 0.481 32.8 62.15 1.7719 7.56 2.883 3.9990 0.917 33.6 69.72 1.9907 5.91 2.280 2.2658 3.0991 33.6 69.72 1.9907 5.91 2.280 2.2658 3.0991 33.6 69.72 2.1036 5.25 3.334 2.261 0.978 34.4 57.64 2.2167 4.68 3.55 3.999 0.917 34.4 57.64 2.2167 4.68 3.55 3.999 0.919 35.2 56.36 2.4570 3.75 5.950 3.960 0.9144482 1.034                         | 26,4   | 276,48 | .2079  | 577,40  | ,4810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |       |
| 26.8 199.81 3006 276.17 4816 -132,4468 0225 27.0 176.66 3J70 207.08 4819 -99.2951 0231 27.2 199.36 3934 160,99 4824 -77.1579 0237 27.4 145.58 4400 126.64 8828 e61.6129 0243 27.6 134.43 4868 105.03 4833 -50.2632 0249 27.8 125.27 5335 87.37 4839 -41.7821 0256 28.0 117.59 5004 73.75 4845 -35.2335 0263 2029 28.2 111.68 6274 63.05 8852 -30.0560 0270 28.4 105.49 6745 54.51 4860 -25.9935 0277 28.6 100.63 7.719 47.52 4867 -22.6353 0.65 28.8 96.39 7.694 41.80 4876 -19.8865 0293 29.0 92.64 8170 37.01 4885 -17.5863 0301 22.4 86.37 9127 29.58 4906 -14.0216 0319 22.4 86.37 9127 29.58 4906 -14.0216 0319 22.4 86.37 9127 29.58 4906 -14.0216 0319 23.6 27.7 17.1 1.071 19.97 4952 -9.4037 0359 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.6 79.14 1.0503 21.90 4927 -11.3852 0338 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4384 30.0 4  | 26.6   | 231.14 | .2542  | 386,15  | ,4812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |       |
| 27.0 176 66 3470 207.08 4819 999.2951 0231 27.4 145.58 4400 128.64 4828 e61.6129 0243 27.6 134.43 4868 105.03 4833 *50.2632 0249 27.8 125.27 5.335 87.37 4839 +41.7821 0256 28.0 117.59 50.04 73.75 4845 -35.2335 0263 28.2 111.08 6774 63.05 4852 -30.0560 0270 28.4 105.49 6745 54.51 4860 -25.9935 0277 28.6 100.63 7219 47.52 4867 -22.6353 0265 28.8 96.99 7694 41.80 4876 -19.8655 0293 29.0 92.64 8170 37.01 4885 -17.5663 0.0101 29.4 86.37 9127 29.58 4906 -14.0216 0.010 29.4 86.37 9127 29.58 4906 -14.0216 0.010 29.6 83.71 9611 26.64 4916 -12.6048 0.048 30.0 79.14 1.0563 21.90 4939 -10.3259 0.038 30.0 79.14 1.0563 21.90 4939 -10.3259 0.038 30.0 79.14 1.0563 21.90 4939 -10.3259 0.038 30.0 79.14 1.0563 21.90 4939 -10.3259 0.048 30.6 73.73 1.2057 16.78 4980 -7.8700 0.082 30.8 72.22 1.2555 1.44 4994 -7.2276 0.093 31.6 67.28 1.3559 13.18 9026 -6.6590 0.0407 31.2 69.55 1.3559 13.18 9026 -6.6590 0.0407 31.2 69.55 1.3559 13.18 9026 -6.640 0.0410 32.4 68.37 1.4065 12.22 5043 *5.8640 0.034 31.6 67.28 1.4574 11.36 5064 9.96 *8.5588 0.070 32.4 63.6c 1.5689 10.57 7.979 4.815 0.0460 32.4 63.6c 1.5689 10.57 7.979 4.815 0.0460 33.6 67.28 1.5664 9.86 9.998 4.5911 0.0499 32.4 63.6c 1.5689 10.57 7.979 4.815 0.0499 32.4 63.6c 1.5689 10.57 7.979 4.8915 0.0499 32.4 63.6c 1.5689 10.57 7.979 4.8915 0.0499 32.4 63.6c 1.7186 8.06 9.159 3.36861 0.036 33.6 67.2 1.907 5.91 9.216 4.2310 0.091 33.6 67.7 2.9354 6.27 9.997 5.91 9.280  .2.6585 0.051 33.7 59.21 2.0066 5.77 9.979 4.482 0.001 33.4 60.27 1.9354 6.27 9.999 3.32661 0.078 34.4 57.84 2.2167 4.68 9.86 9.998 4.5911 0.060 33.4 60.27 1.9354 6.27 9.999 9.205 3.2261 0.078 34.4 57.84 2.2167 4.68 9.86 9.998 4.2911 0.060 33.4 60.27 1.9354 6.27 9.990 9.205 3.2261 0.078 34.4 57.84 2.2167 4.68 9.96 9.999 1.13684 9.0001 35.4 50.70 2.3365 4.18 9.55 9.562 1.15363 0.088 35.5 55.75 2.5809 3.366 9.991 1.1368 0.088 35.6 55.75 2.5809 3.366 9.991 1.13684 1.090                               | 26.8   | 199.81 |        | 276,17  | .4816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -132,4968      | .0225 |
| 27, 2 159, 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.0   | 176 86 |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -99.2951       | .0231 |
| 27.4 145.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.2   | 159.36 | 3934   | 160.99  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -77.1579       | .0237 |
| 27, 6 134, 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.4   | 145 58 |        | 128.64  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -61.6129       |       |
| 27.8 125.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 6   | 134 43 | 4868   | 105.03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 28.0 117.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 8   | 125 27 |        | 87 37   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 28.2 111.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 0   | 117 50 |        | 73 75   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0263  |
| 28.4 105.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.2   |        | 4074   | 47 25   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0270  |
| 28.6 100.63 7219 47.52 4867 -22.6353 0285 28.8 96.39 7694 41.80 4876 19.8865 0293 29.0 92.64 8170 37.01 4885 17.5863 0301 29.2 89.33 .6648 33.00 4895 -10.6600 0310 29.4 86.37 9127 29.58 4906 -14.0216 0319 29.6 63.71 9611 26.64 4916 12.6048 0328 29.3 61.31 1.0096 24.10 4927 -11.3852 0338 30.0 79.14 1.0503 21.90 4939 -10.3259 0348 30.0 79.14 1.0503 21.90 4939 -10.3259 0348 30.2 77.17 1.1071 19.97 4952 -9.4037 0359 30.4 75.38 1.1561 18.29 4966 -8.5958 0370 30.6 73.73 1.2057 16.78 4980 -7.8700 0382 31.0 70.83 1.3054 14.25 2010 -6.6590 0407 31.2 69.55 1.3559 13.18 2026 -6.1441 0420 31.4 68.37 1.4065 12.22 2043 -5.6040 0434 31.6 67.28 1.4574 11.36 2010 -6.6590 0407 31.8 66.26 1.5089 10.57 2014 -5.6040 0434 31.8 66.26 1.5089 10.57 2014 -4.9310 0499 32.4 63.62 1.5664 9.86 2013 -3.9490 0217 32.4 63.62 1.5664 9.86 2013 -3.9490 0217 32.6 62.86 1.7186 8.06 2138 -3.9490 0217 32.6 62.86 1.7186 8.06 2159 -3.2861 0236 32.8 62.15 1.7719 7.56 2182 -3.36861 0236 33.8 59.21 1.9907 5.91 2280 -2.6585 0651 33.4 60.27 1.9354 6.27 2254 92.8315 0625 33.6 59.72 1.9907 5.91 2280 -2.6585 0651 33.7 59.21 2.0466 5.57 2334 -2.2355 0707 34.2 58.27 2.1605 4.96 23365 4.18 2457 0.138 -3.9490 001 34.4 57.84 2.2167 4.68 233 -2.0727 0.772 34.6 57.44 2.2770 4.42 2425 31.9420 0678 35.6 55.70 2.3363 3.96 2491 -1.7308 0888 35.6 55.77 2.3963 3.96 2497 -1.7308 0888 35.6 55.77 2.3963 3.96 2497 -1.7308 0888 35.6 55.77 2.3963 3.96 2497 -1.7308 0888 35.6 55.77 2.5809 3.36 5.000 -1.3664 1.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20,2   | 111.00 | 102/4  | 53,02   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05 0075        |       |
| 28.8 96.39 76.94 41.80 48.76 19.88.65 0.293 29.0 92.64 81.70 37.01 48.85 17.58.63 0.301 29.2 89.33 86.48 33.00 48.95 11.66.00 0.310 29.4 86.37 91.27 29.58 49.06 -14.0216 0.319 29.6 83.71 96.11 26.64 49.16 -12.60.48 0.328 30.0 79.14 1.05.03 21.90 49.27 -11.38.52 0.338 30.0 79.14 1.05.03 21.90 49.27 -11.38.52 0.338 30.2 77.17 1.10.71 19.97 49.52 -9.40.37 0.35.9 30.6 73.73 1.20.57 16.78 49.80 -7.87.00 0.38.2 30.8 72.22 1.25.55 15.44 49.94 -7.22.78 0.394 31.0 70.83 1.30.54 14.25 20.10 -6.65.90 0.40.7 31.2 69.55 1.35.59 13.18 20.26 -6.14.41 0.42.0 31.4 68.37 1.40.65 12.22 20.44.9 20.45.9 0.44.9 31.6 60.26 1.45.74 11.36 20.66 20.44.9 20.43.4 25.06.9 20.44.9 21.8 20.44.9 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,4   | 105,49 |        | 34,31   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 102// |
| 29.0 92 64 8170 37,01 4885 =17,5863 0301 29.2 89.33 8648 33,00 4895 =15,6600 0310 29.4 86,37 9127 29.58 4906 =14,0216 0319 29.6 83.71 9611 26,64 4916 =12,6048 0328 29.3 81,31 1,0096 24,10 4927 =11,3852 0338 30.0 79,14 1,0503 21,90 4939 =10,3259 0348 30.2 77,17 1,1071 19,97 4952 =9,4037 0359 30.4 75,38 1,1561 18,29 4966 =8,5958 0370 30.6 73,73 1,2057 16,78 4880 -7,8700 0382 30.8 72,22 1,2555 15,44 4994 -7,2278 0394 31.0 70,83 1,3054 14,25 5010 =6,6590 0407 31.2 69,55 1,3559 13,18 5026 =6,1441 0420 31.4 68,37 1,4065 12,22 5043 5,5644 0434 -31.2 69,55 1,3559 13,18 5026 =6,1441 0420 31.4 68,37 1,4065 12,22 5043 5,5644 0434 -31.8 66,26 1,5089 10,57 5079 #4,8915 0465 32.2 64,44 1,6132 9,19 5116 =4,2310 0499 32.4 63,62 1,6655 8,60 5159 #3,6864 0536 32.8 62,15 1,7186 8,06 5159 #3,6864 0536 32.8 62,15 1,7719 7,56 5182 #3,4471 0556 33.4 60,27 1,9354 6,27 5254 #3,0194 0001 33.4 60,27 1,9354 6,27 5254 #3,0194 0001 33.4 60,27 1,9354 6,27 5254 #3,0194 0001 33.4 60,27 1,9354 6,27 5254 #3,0194 0001 33.4 60,27 1,9354 6,27 5254 #3,0194 0001 33.4 57, 64 2,2167 4,68 5393 #2,0727 077 34.2 58,27 2,1605 4,96 5364 #2,2056 0738 34.4 57,84 2,2167 4,68 5393 #2,0727 077 34.6 57,44 2,2770 4,42 5425 #1,9521 0608 35.6 57,66 2,3365 4,18 5457 #1,8369 0647 35.6 55,75 2,5809 3,36 5600 #1,4482 1034 35.6 55,75 2,5809 3,36 5600 #1,4482 1034 35.6 55,75 2,5809 3,36 5600 #1,4482 1034 35.8 55,47 2,6438 3,19 5640 #1,3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20,0   | 100,03 |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·22,0333       | 0203  |
| 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20,0   | 90,39  |        | 41,00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,10000       |       |
| 29.4 86.37 9127 29.58 4906 -14,0216 0319 29.6 83.71 9611 26.64 4916 12,0046 0328 30.0 79.14 1.0063 21.90 4939 -10,3259 0348 30.0 77.17 1.1071 19.97 4952 -9,4037 0359 30.6 73.73 1.2057 16.78 4980 -7,8700 0382 30.8 72.22 1.2555 15.44 4980 -7,8700 0382 30.8 72.22 1.2555 15.44 4994 -7,2278 0394 31.0 70.83 1.3054 14.25 5010 -6.6590 0407 31.2 69.55 1.3559 13.18 5026 -6.1441 0420 31.4 68.37 1.4065 12.22 5043 -5,0840 0434 31.6 67.28 1.4574 11.36 5061 75.2693 0449 31.8 66.26 1.5089 10.57 5079 -4.8915 0465 32.0 65.32 1.5604 9.86 5098 -4.5511 0481 32.4 63.62 1.6555 8.60 5138 -3,9490 0517 32.6 62.86 1.7186 8.06 5138 -3,9490 0517 32.6 62.86 1.7186 8.06 5138 -3,9490 0517 32.8 62.15 1.7719 7.56 5162 -3,4471 0556 32.8 62.15 1.7719 7.56 5162 -3,4471 0556 33.0 61.48 1.8258 7.09 5205 -3,2261 0578 33.4 60.27 1.9354 6.27 5254 -2,8315 0625 33.6 59.72 1.9907 5.91 5280 -2,6585 0738 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.0 58.72 2.1036 5.25 5334 -2,3435 0707 34.4 57.84 2.2167 4.68 5393 -2,0727 0772 34.6 57.44 2.2770 4.42 5425 -1,5363 0981 35.6 55.75 2.5809 3.36 5415 5600 -1,4462 1034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.0   | 92,64  |        | 37,01   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ,0301 |
| 29.6 83.71 9611 26.64 4916 -12,048 0328 29.8 81.31 1.0096 24.10 4927 -11,3852 0338 30.0 79.14 1.0503 21.90 4939 -10.3259 0348 30.2 77.17 1.1071 19.97 4952 -9.4037 0359 30.4 75.38 1.1561 18.29 4966 -8.5958 0370 30.6 73.73 1.2057 16.78 4980 -7.8700 0382 30.8 72.22 1.2555 15.44 4994 -7.2278 0394 31.0 70.83 1.3054 14.25 2010 -6.6590 0407 31.2 69.55 1.3559 13.18 2026 26.1441 0420 31.4 68.37 1.4065 12.22 2043 -5.0840 0434 31.6 67.28 1.4574 11.36 2061 -6.1441 0420 31.8 60.26 1.5089 10.57 2079 -4.8915 0465 32.0 65.32 1.5604 9.86 2098 -4.5511 0481 32.2 64.44 1.032 9.19 2016 -4.1210 0489 32.4 63.62 1.6655 8.60 2138 -3.9490 0217 32.6 62.86 1.7186 8.06 2138 -3.9490 0217 32.6 62.86 1.7186 8.06 2138 -3.9490 0217 32.6 62.86 1.7186 8.06 228 -3.0194 0001 33.4 60.27 1.9354 6.27 228 -3.0194 0001 33.4 60.27 1.9354 6.27 228 -3.0194 0001 33.4 60.27 1.9354 6.27 228 -3.0194 0001 33.6 59.72 1.9007 5.91 220 -3.2261 0278 33.6 59.72 1.9007 5.91 220 -2.6585 0651 34.0 58.72 2.1036 5.25 2334 -2.3435 0707 34.2 58.27 2.1036 5.25 2334 -2.3435 0707 34.4 57.84 2.2167 4.68 2393 -2.0727 0772 34.6 57.44 2.2770 4.42 2.425 -1.9527 0772 34.6 57.44 2.2770 4.42 2.425 -1.9521 0808 35.4 56.05 2.5166 3.55 2562 -1.5367 0981 35.6 55.75 2.5809 3.36 2400 -1.4482 1034 35.8 55.47 2.6438 3.19 2640 -1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.2   |        |        | 33,00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.4   | 86,37  | ,9127  |         | ,4906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |       |
| 29.8 61.31 1.0096 24.10 4927 -11.3852 0.338 30.0 79.14 1.0563 21.90 4939 r10.3259 0.348 36.2 77.17 1.1071 19.97 4952 -9.4037 0.359 30.4 75.38 1.1561 18.29 4966 -8.5958 0.370 30.6 73.73 1.2057 16.78 4980 -7.8700 0.382 30.8 72.22 1.2555 15.44 4994 -7.278 0.394 31.0 70.83 1.3054 14.25 0010 -6.6590 0.407 31.2 69.55 1.3559 13.18 0.026 -6.1441 0.420 31.4 68.37 1.4065 12.22 5043 -5.6840 0.449 31.6 67.28 1.4574 11.36 0.061 75.2693 0.449 31.8 66.26 1.5089 10.57 0.079 -4.8915 0.465 32.0 65.32 1.5604 9.86 0.098 -4.5511 0.881 32.2 64.44 1.0132 9.19 0.116 -4.2310 0.499 32.4 63.62 1.6655 8.60 0.138 -3.9490 0.517 32.6 62.86 1.7186 8.06 0.159 -3.9490 0.517 32.8 62.15 1.7719 7.56 0.162 -3.9400 0.517 33.0 61.48 1.8256 7.09 0.205 -3.2261 0.538 33.2 60.85 1.6805 6.66 0.228 -3.0194 0.001 33.4 60.27 1.9354 6.27 0.528 -3.0194 0.001 33.6 59.72 1.9907 5.91 0.280 -2.6585 0.051 33.6 59.72 1.9364 6.27 0.576 0.578 -2.4970 0.678 34.0 58.72 2.1036 5.25 0.334 -2.3435 0.707 34.2 58.27 2.1036 5.25 0.334 -2.3435 0.707 34.2 58.27 2.1036 5.25 0.334 -2.3435 0.707 34.4 57.84 2.2167 4.68 0.393 -2.0727 0.772 34.6 57.44 2.2770 4.42 0.425 0.1936 0.047 35.6 56.70 2.3365 4.18 0.457 0.1386 0.048 35.6 55.75 2.5809 3.36 0.400 -1.4482 1.034 35.8 55.47 2.6438 3.19 0.600 -1.4482 1.034 35.8 55.47 2.6438 3.19 0.600 -1.4482 1.034 35.8 55.47 2.6438 3.19 0.600 -1.4482 1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 83.71  | .9611  | 26,64   | ,4916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12,6048       |       |
| 30.0 79.14 1.0583 21.90 4939 1.0,3259 0348 30.2 77.17 1.1071 19.97 4952 -9.4037 0359 30.6 73.73 1.2057 16.78 4980 -7.8700 0382 30.8 72.22 1.2555 15.44 4994 -7.2278 0394 31.2 69.55 1.3559 13.18 50.2 6.141 0420 31.4 68.37 1.4065 12.22 5043 -5.6840 0434 31.6 67.28 1.4574 11.36 5061 75.2693 0449 31.8 66.26 1.5089 10.57 5079 4.8915 0465 32.2 64.44 1.0132 9.19 5116 -4.2310 0499 32.4 63.62 1.6655 8.60 5159 -3.6861 0536 32.8 62.15 1.7719 7.56 5182 -3.4471 0556 32.8 62.15 1.7719 7.56 5182 -3.4471 0556 32.8 62.15 1.7719 7.56 5182 -3.4471 0556 33.0 61.48 1.8258 7.09 5205 -3.2261 0578 33.2 60.85 1.6805 6.66 5228 -3.0194 0001 33.4 60.27 1.9354 6.27 5254 -2.8315 0625 33.6 59.72 1.9075 5.91 5.280 -2.4970 0678 33.6 59.72 1.9056 5.25 5334 -2.4970 0678 33.6 59.72 1.9056 5.25 5334 -2.4970 0678 33.6 59.72 1.9056 5.25 5334 -2.4970 0678 34.2 58.27 2.1036 5.25 5334 -2.3435 0707 34.2 58.27 2.1036 5.25 5334 -2.3435 0707 34.2 58.27 2.1036 5.25 5334 -2.3435 0707 34.2 58.27 2.1036 5.25 5334 -2.3435 0049 35.4 57.84 2.2167 4.68 5393 -2.0727 0772 34.6 57.44 2.2770 4.42 5425 -1.9527 0772 34.6 57.44 2.2770 4.42 5425 -1.9527 0772 34.6 57.44 2.2770 3.75 5562 -1.5365 0981 35.6 55.75 2.5809 3.36 50.40 -1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 29.8 | 61,31  | 1.0096 |         | ,4927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11,3852       | ,0338 |
| 30.2 77.17 1.1071 19.97 4952 -9.4037 0.559 30.4 75.38 1.1561 18.29 4966 -8.5958 0.970 30.6 73.73 1.2057 16.78 4980 -7.8700 0.582 30.8 72.22 1.2555 15.44 4994 -7.2278 0.994 31.0 70.83 1.3054 14.25 >0.10 -6.6590 0.407 31.2 69.55 1.3559 13.18 >0.26 -6.1441 0.420 31.4 68.37 1.4065 12.22 >0.43 -5.6840 0.434 31.6 67.28 1.4574 11.36 >0.161 -5.2693 0.449 31.8 66.26 1.5089 10.57 >0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.0   | 79.14  | 1,0583 |         | . 4939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10.3259       | .0348 |
| \$0.4 75.38 1.1561 18.29 4966 -8.5958 0.370 30.6 73.73 1.2057 16.78 4980 -7.8700 0.882 30.8 72.22 1.2555 15.44 4994 -7.2278 0.394 31.0 70.83 1.3054 14.25 2010 -6.6590 0.407 31.2 69.55 1.3559 13.18 2026 -6.1441 0.420 21.4 68.37 1.4065 12.22 20.43 -5.6840 0.434 21.6 67.28 1.4574 11.36 20.6 -6.70 2.8 1.4574 11.36 20.6 -6.70 2.8 1.5664 2.5 2.2 20.43 -5.6840 0.449 21.8 66.26 1.5689 10.57 20.79 -4.8915 0.465 22.0 65.32 1.5664 9.86 20.98 -4.5511 0.481 22.2 64.44 1.6132 9.19 2116 -4.2310 0.499 22.4 63.62 1.5655 8.60 21.38 -3.9490 0.517 22.6 62.86 1.7186 8.06 21.59 2.3 4.4471 0.556 22.8 62.15 1.7719 7.56 21.82 -3.4471 0.556 22.8 62.15 1.7719 7.56 21.82 -3.4471 0.556 23.0 61.48 1.8256 7.09 20.5 -3.2261 0.578 23.0 61.48 1.8256 7.09 20.5 -3.2261 0.578 23.6 60.85 1.6805 6.66 22.8 -3.0194 0.001 23.4 60.27 1.9354 6.27 2.554 -2.8315 0.025 23.6 59.72 1.9907 5.91 2.80 -2.6585 0.551 2.34 2.58 2.7 2.1036 5.25 2.334 -2.3435 0.707 2.4970 0.578 23.6 59.72 2.1036 5.25 2.334 -2.3435 0.707 2.4970 0.578 23.6 57.44 2.2770 4.42 2.4970 0.578 23.6 57.44 2.2770 4.42 2.4770 2.425 -1.8369 0.447 2.55 2.56.36 2.4570 3.75 2.562 -1.6305 0.933 2.564 5.575 2.5809 3.36 2.4570 3.75 2.5809 0.933 2.564 5.575 2.5809 3.36 2.4570 3.75 2.5809 0.933 2.564 5.55.75 2.5809 3.36 2.4570 3.75 2.5809 3.36 2.4570 3.75 2.5809 3.36 2.4570 3.75 2.5809 3.36 2.4570 3.75 2.5809 3.36 2.4570 3.75 2.5809 3.36 2.4570 3.75 2.5809 3.36 2.4570 3.75 2.560 0.933 2.564 2.5565 0.933 2.564 2.5565 0.933 2.564 2.5565 0.933 2.564 2.5565 0.933 2.564 2.5565 0.933 2.564 2.5565 0.933 2.564 2.5560 0.933 2.564 2.5560 0.933 2.564 2.5560 0.933 2.564 2.5560 0.933 2.564 2.5560 0.933 2.564 2.5560 0.933 2.564 2.5560 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0.933 2.5640 0 |        |        | 1.1071 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9.4037        | .0359 |
| 30.6 73.73 1.2057 16.78 4980 -7.8700 0382 30.8 72.22 1.2555 15.44 4994 -7.2278 0394 31.0 70.83 1.3054 14.25 2010 -6.6590 0407 31.2 69.55 1.3859 13.18 2026 -6.1441 0420 31.4 68.37 1.4065 12.22 2043 -5.6840 0434 31.6 67.28 1.4574 11.36 2061 -5.2693 0449 31.8 66.26 1.5089 10.57 2079 44.8915 0465 32.0 65.32 1.5664 9.86 2098 -4.5511 0481 32.2 64.44 1.6132 9.19 2116 -4.2310 0499 32.4 63.62 1.6655 8.60 2138 -3.9490 0217 32.6 62.86 1.7186 8.06 2159 33.6861 0236 32.8 62.15 1.7719 7.56 2182 33.4471 0256 32.8 62.15 1.7719 7.56 2182 33.4471 0256 33.0 61.48 1.8256 7.09 2025 -3.2261 0278 33.2 60.85 1.6805 6.66 228 33.0194 0001 33.4 60.27 1.9354 6.27 2254 32.8315 0625 33.6 59.72 1.9907 5.91 2280 22.6585 0651 33.6 59.72 1.9354 6.27 2254 32.8315 0625 33.6 59.72 1.9366 5.25 2334 22.8435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2334 22.3435 0707 34.2 58.27 2.1605 4.96 2336 22.4970 0078 34.4 57.84 2.2770 4.42 2.270 4.42 2.270 0078 34.6 57.44 2.2770 4.42 2.270 0049 35.0 56.70 2.3963 3.96 2491 31.7308 0888 35.2 56.36 2.4570 3.75 25809 3.46 240 1.3664 1.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        | 1.1561 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 30.8 72.22 1.2555 15.44 4994 -7.2278 0394 31.0 70.83 1.3054 14.25 5010 -6.6590 0407 31.2 69.55 1.3559 13.18 5026 -6.1441 0420 31.4 68.37 1.4065 12.22 5043 -5.6840 0434 31.6 67.28 1.4574 11.36 5061 75.2693 0449 31.8 66.26 1.5089 10.57 5079 #4.8915 0465 32.0 65.32 1.5664 9.86 5098 -4.5511 0481 32.2 64.44 1.0132 9.19 5116 #4.2310 0499 32.4 63.62 1.6655 8.60 5159 #3.6861 0536 32.8 62.15 1.77186 8.06 5159 #3.6861 0536 32.8 62.15 1.7719 7.56 5182 #3.4471 0556 33.0 61.48 1.8256 7.09 5205 #3.2261 0578 33.2 60.85 1.6805 6.66 5228 #3.0194 0601 33.4 60.27 1.9354 6.27 5254 #2.8315 0625 33.6 59.72 1.9907 591 5280 #2.6585 0651 33.7 59.21 2.0466 5.57 5307 #2.4970 0678 34.0 58.72 2.1036 5.25 5334 #2.3435 0707 34.2 58.27 2.1605 4.96 5364 #2.2056 0738 34.4 57.84 2.2167 4.68 5393 #2.0727 0772 34.6 57.44 2.2770 4.42 5425 #1.9521 0508 34.8 57.06 2.3365 4.18 5457 #1.8369 0847 35.0 56.70 2.3363 3.96 5491 71.7308 0888 35.2 56.36 2.4570 3.75 5526 #1.6305 0981 35.4 56.05 2.5166 3.55 5562 #1.5363 0981 35.6 55.75 2.5809 3.36 5000 #1.4482 1034 35.8 55.47 2.6436 3.19 2640 #1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |        | 16.78   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| \$1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        | 1.2555 | 15.44   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 31.2       69.55       1.3559       13.18       >026       6.1441       0.420         31.4       68.37       1.4065       12.22       5043       -5.6840       0.434         31.6       67.28       1.4574       11.36       >061       -5.2693       0.449         31.8       66.26       1.5689       10.57       >0079       -4.8915       0.465         32.0       65.32       1.5664       9.86       >098       -4.5511       0.481         32.2       64.44       1.6132       9.19       >116       -4.2310       0.499         32.4       63.62       1.6655       8.60       >138       -3.9490       0.517         32.6       62.86       1.7186       8.06       >159       -3.6861       0.56         32.8       62.15       1.7719       7.56       >182       -3.4471       0.56         33.0       61.48       1.68256       7.09       >205       -3.2261       0.78         33.2       60.85       1.6805       6.66       >228       -3.0194       0.001         33.4       60.27       1.9354       6.27       >254       -2.8315       0.025         33.6       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |        | 14.25   | the state of the s |                | 0407  |
| 31.4 68,37 1,4065 12,22 5043 +5,6840 0449 31.6 67.28 1,4574 11,36 5061 75,2693 0449 31.8 66.26 1,5089 10.57 5079 84,8915 0465 32.0 65.32 1,5604 9,86 5098 84,5511 0481 32.2 64.44 1.6132 9,19 5116 8,28310 0499 32.4 63.62 1,6655 8,60 5138 3,9490 0517 32.6 62.86 1,7186 8,06 5159 83,6861 0536 32.8 62.15 1,7719 7,56 5182 83,4471 0556 33.0 61,48 1,8256 7,09 5205 83,2261 0578 33.2 60.85 1,6805 6,66 5228 83,0194 0601 33.4 60.27 1,9354 6,27 5,754 82,8315 0625 33.6 59,72 1,9907 5,91 5280 82,8315 0625 33.6 59,72 1,9907 5,91 5280 82,6585 0651 33.7 59,21 2,0466 5,57 5307 82,4970 0678 34.0 58.72 2,1036 5,25 5334 82,2056 0738 34.4 57,84 2,2167 4,68 5393 82,0727 0772 34.6 57,44 2,2770 4,42 5425 81,9521 0808 34.8 57,06 2,3365 4,18 5457 81,8369 0847 35.0 56.70 2,3963 3,96 5491 71,7308 0888 35.4 56.05 2,5166 3,55 5526 81,5363 0933 35.4 56.05 2,5166 3,55 5526 81,5363 0933 35.4 56.05 2,5166 3,55 5562 81,5363 0933 35.4 56.05 2,5166 3,55 5562 81,5363 0933 35.4 56.05 2,5166 3,55 5562 81,5363 0933 35.6 55.75 2,5809 3,36 5600 81,4482 1034 35.8 55.47 2,6438 3,19 5640 81,3664 10990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        | 13.18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 31.6 67.28 1,4574 11,36 5061 75,2693 0449 31.8 66.26 1,5089 10,57 5079 m4,8915 0465 32.0 65.32 1,5604 9,86 5098 m4,5511 0481 32.2 64.44 1,0132 9,19 5116 m4,2310 0499 32.4 63.62 1,6655 8,60 5138 -3,9490 0517 32.6 62.86 1,7186 8,06 5159 m3,6861 0536 32.8 62.15 1,7719 7,56 5182 m3,4471 0556 33.0 61,48 1,8256 7,09 5205 m3,2261 0578 33.2 60.85 1,6805 6,66 5228 m3,0194 0601 33.4 60.27 1,9354 6,27 5254 m2,8315 0625 33.6 59.72 1,9907 5,91 5280 m2,6585 0651 33.7 59,21 2,0466 5,57 5307 m2,4970 0678 34.0 58,72 2,1036 5,25 5334 m2,2355 0707 34.2 58,27 2,1605 4,96 5364 m2,2056 0738 34.4 57,84 2,2167 4,68 5393 m2,0727 0772 34.6 57,44 2,2770 4,42 5425 m1,9521 0808 35.2 56.70 2,3963 3,96 5491 m1,7308 0887 35.4 56.05 2,5166 3,55 556 m1,6305 0933 35.4 56.05 2,5166 3,55 5560 m1,4482 1034 35.8 55.75 2,5809 3,36 5600 m1,4482 1034 35.8 55.75 2,5809 3,36 5600 m1,4482 1034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 68 37  | 4 4065 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 31.8 66.26 1,5089 10.57 5079 m4,8915 0465 32.0 65.32 1.5604 9,86 5098 m4,5511 0481 32.2 64.44 1.0132 9.19 5116 m4.2310 0499 32.4 63.62 1.6655 8.60 5138 m3,9490 0517 32.6 62.86 1.7186 8.06 5159 m3.6861 0536 32.8 62.15 1.7719 7.56 5162 m3.4471 0556 33.0 61.48 1.8256 7.09 5205 m3.2261 0578 33.2 60.85 1.6805 6.66 5228 m3.0194 0001 33.4 60.27 1.9354 6.27 5254 m2.8315 0025 33.6 59.72 1.9907 5.91 5280 m2.6585 0651 33.6 59.72 1.9907 5.91 5280 m2.6585 0651 33.6 59.72 1.9907 5.91 5280 m2.6585 0678 34.0 58.72 2.1036 5.25 5334 m2.3435 0707 34.2 58.27 2.1036 5.25 5334 m2.7727 0772 34.6 57.44 2.2770 4.42 5425 m1.9521 0808 34.8 57.06 2.3365 4.18 5457 m1.8369 0847 35.0 56.70 2.3963 3.96 5491 m1.7308 0888 35.2 56.36 2.4570 3.75 5526 m1.6305 0837 35.4 56.05 2.5166 3.55 5562 m1.6305 0981 35.6 55.75 2.5809 3.36 5600 m1.4482 1034 35.8 55.47 2.6438 3.19 5640 m1.3664 10990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        | 1 4674 | 11 36   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 32.0 65.32 1.56C4 9.86 5098 -4.5511 0481 32.2 64.44 1.6132 9.19 5116 -4.2310 0499 32.4 63.62 1.6655 8.60 5138 -3.9490 0517 32.6 62.86 1.7186 8.06 5159 -3.6861 0536 32.8 62.15 1.7719 7.56 5162 -3.4471 0556 33.0 61.48 1.8256 7.09 5205 -3.2261 0578 33.2 60.85 1.6805 6.66 5228 -3.0194 0001 33.4 60.27 1.9354 6.27 5754 -2.8315 0625 33.6 59.72 1.9907 5.91 5280 -2.6585 051 33.6 59.72 1.9907 5.91 5280 -2.4970 0678 34.0 58.72 2.1036 5.25 5334 -2.3435 0707 34.2 58.27 2.1605 4.96 5364 -2.2056 0738 34.4 57.84 2.2167 4.68 5393 -2.0727 0772 34.6 57.44 2.2770 4.42 5425 -1.9521 0508 34.8 57.06 2.3365 4.18 5457 -1.8369 0847 35.0 56.70 2.3963 3.96 5491 -1.7308 0888 35.2 56.36 2.4570 3.75 5526 -1.5363 0981 35.4 56.05 2.5166 3.55 5562 -1.5363 0981 35.6 55.75 2.5809 3.36 5600 -1.4482 1034 35.8 55.47 2.6438 3.19 5640 -1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        | 10 57   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 32.2       64.44       1.0132       9.19       >116       -4.2310       0.499         32.4       63.62       1.6655       8.60       >138       -3.9490       0.17         32.6       62.86       1.7186       8.06       >159       -3.6861       0.56         32.8       62.15       1.7719       7.56       >182       -3.4471       0.56         33.0       61.48       1.8256       7.09       >205       -3.2261       0.578         33.2       60.85       1.6805       6.66       >228       -3.0194       0.01         33.4       60.27       1.9354       6.27       >754       -2.8315       0.025         33.6       59.72       1.9907       5.91       >280       -2.4585       0.051         33.8       59.21       2.0466       5.57       >307       -2.4970       0.078         34.0       58.72       2.1036       5.25       >334       -2.3435       0.707         34.2       58.27       2.1605       4.96       >334       -2.2056       0.738         34.4       57.84       2.2167       4.68       >393       -2.0727       0.772         34.6       57.06 </td <td></td> <td></td> <td></td> <td>10,57</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        | 10,57   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 32.4       63.62       1.6655       8.60       >138       -3,9490       0517         32.6       62.86       1.7186       8.06       >159       -3,6861       0736         32.8       62.15       1.7719       7.56       >182       -3,4471       056         33.0       61.48       1.8256       7.09       >205       -3,2261       0578         33.2       60.85       1.6805       6.66       >228       -3.0194       0601         33.4       60.27       1.9354       6.27       >254       +2.8315       0625         33.6       59.72       1.9907       5.91       >280       +2.4970       0678         34.0       58.72       2.1036       5.57       >337       +2.4970       0678         34.0       58.72       2.1605       4.96       >364       +2.2056       0738         34.4       57.84       2.2167       4.68       >393       +2.0727       0772         34.6       57.44       2.2770       4.42       >425       +1.9521       0408         35.0       56.70       2.3963       3.75       >4526       +1.5363       0447         35.4       56.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.0   |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 32.6       62.86       1,7186       8,06       >159       3,6861       0236         32.8       62.15       1,7719       7,56       >162       3,4471       0256         33.0       61,48       1,8256       7,09       >205       \$3,2261       0278         33.2       60,85       1,6805       6,66       >228       \$3,0194       0001         33.4       60,27       1,9354       6,27       >254       \$2,8315       0025         33.6       59,72       1,9907       5,91       >280       \$2,4970       0678         34.0       58,72       2,1036       5,25       >334       \$2,3435       0707         34.2       58,27       2,1605       4,96       >364       \$2,2056       0738         34.4       57,84       2,2157       4,68       >393       \$2,0727       0772         34.6       57,44       2,2770       4,42       >425       \$1,9521       008         34.8       57,06       2,3365       4,18       >457       \$1,8369       0447         35.0       56,70       2,3963       3,96       >491       \$1,7308       0888         35.4       56,05       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.2   |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 0400         |       |
| 32.8       62.15       1.7719       7.56       >182       *3,4471       0>56         33.0       61.48       1.8256       7.09       >205       *3,2261       0>78         33.2       60.85       1.6805       6.66       >228       *3,0194       0001         33.4       60.27       1.9354       6.27       >254       *2,8315       0025         33.6       59.72       1.9907       5.91       >280       *2,4970       0078         34.0       58.72       2.1036       5.25       >334       *2,3435       0707         34.2       58.27       2.1605       4.96       >364       *2,2056       0738         34.4       57.84       2.2167       4.68       >393       *2,0727       0772         34.6       57.44       2.2770       4.42       >425       *1,9521       008         34.8       57.06       2.3365       4.18       >457       *1,8369       0047         35.0       56.70       2.3963       3.96       >491       *1,7308       0888         35.2       56.36       2.4570       3.75       >5526       *1,5363       0981         35.6       55.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |        | 0,011   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 33.0       61,48       1,8256       7,09       5205       3,2261       0578         33.2       60,85       1,6805       6,66       5228       3,0194       0001         33.4       60,27       1,9354       6,27       5254       92,8315       0025         33.6       59,72       1,9907       5,91       5280       -2,6585       0051         33.6       59,21       2,0466       5,57       5307       -2,4970       0678         34.0       58,72       2,1036       5,25       5334       -2,3435       0707         34.2       58,27       2,1605       4,96       5364       -2,2056       0738         34.4       57,84       2,2167       4,68       5393       -2,0727       0772         34.6       57,44       2,2770       4,42       5425       -1,9521       0808         34.8       57,06       2,3365       4,18       5457       -1,4369       0847         35.0       56,70       2,3963       3,96       5491       -1,7308       0888         35.2       56,36       2,4570       3,75       5562       -1,5363       0981         35.6       55,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 33.2 60.85 1.6805 6.66 228 43.0194 0.001 33.4 60.27 1.9354 6.27 228 42.8315 0.025 33.6 59.72 1.9907 5.91 2280 42.6585 0.051 33.8 59.21 2.0466 5.57 2307 42.4970 0.078 34.0 58.72 2.1036 5.25 2334 42.3435 0.707 34.2 58.27 2.1605 4.96 2364 42.2056 0.738 34.4 57.84 2.2167 4.68 2393 42.0727 0.772 34.6 57.44 2.2770 4.42 2425 71.9521 0808 34.8 57.06 2.3365 4.18 2457 71.8369 0847 35.0 56.70 2.3963 3.96 2491 41.7308 0888 35.2 56.36 2.4570 3.75 2562 41.5363 0.981 35.6 55.75 2.5809 3.36 2600 41.4482 1034 35.8 55.47 2.6438 3.19 2640 41.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        | 1.//19 | 1,20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ,0220 |
| 33.4 60.27 1.9354 6.27 5254 52.8315 0625 33.6 59.72 1.9907 5.91 5280 62.6585 0651 33.8 59.21 2.0466 5.57 5307 62.4970 0678 34.0 58.72 2.1036 5.25 5334 62.3435 0707 34.2 58.27 2.1605 4.96 5364 62.2056 0738 34.4 57.84 2.2167 4.68 5393 62.0727 0772 34.6 57.44 2.2770 4.42 5425 61.9521 0808 34.8 57.06 2.3365 4.18 5457 61.8369 0847 35.0 56.70 2.3963 3.96 5491 61.7308 0888 35.2 56.36 2.4570 3.75 5526 61.6305 0933 35.4 56.05 2.5166 3.55 5562 61.5363 0981 35.6 55.75 2.5809 3.36 5600 61.4462 1034 35.8 55.47 2.6438 3.19 5640 61.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.0   | 01,48  | 1,8250 | 1,09    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P3,2201        | ,05/8 |
| 33.6 59.72 1.9907 5.91 5280 -2.6585 0651 33.8 59.21 2.0466 5.57 5307 -2.4970 0678 34.0 58.72 2.1036 5.25 5334 -2.3435 0707 34.2 58.27 2.1605 4.96 5364 -2.2056 0738 34.4 57.84 2.2167 4.68 5393 -2.0727 0772 34.6 57.44 2.2770 4.42 5425 -1.9521 0808 34.8 57.06 2.3365 4.18 5457 -1.8369 0847 35.0 56.70 2.3963 3.96 5491 -1.7308 0888 35.2 56.36 2.4570 3.75 5526 -1.6305 0933 35.4 56.05 2.5166 3.55 5562 -1.5363 0981 35.6 55.75 2.5809 3.36 5600 -1.4462 1034 35.8 55.47 2.6438 3.19 5640 -1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.2   | 00,85  | 1,6805 | 0,00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>43,0194</b> |       |
| 34.0     58.72     2,1036     5,25     5334     -2,3435     0707       34.2     58.27     2,1605     4,96     5364     -2,2056     0738       34.4     57.84     2,2167     4,68     5393     -2,0727     0772       34.6     57.44     2,2770     4,42     5425     51,9521     0808       34.8     57.06     2,3365     4,18     5457     51,8369     0847       35.0     56.70     2,3963     3,96     5491     51,7308     0888       35.2     56.36     2,4570     3,75     5526     51,6305     0933       35.4     56.05     2,5166     3,55     5562     51,5363     0981       35.6     55.75     2,5809     3,36     5600     51,4482     1034       35.8     55.47     2,6438     3,19     5640     51,3664     1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33,4   | 60,27  | 1.9354 | 6,27    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92,8315        |       |
| 34.0     58.72     2,1036     5,25     5334     -2,3435     0707       34.2     58.27     2,1605     4,96     5364     -2,2056     0738       34.4     57.84     2,2167     4,68     5393     -2,0727     0772       34.6     57.44     2,2770     4,42     5425     51,9521     0808       34.8     57.06     2,3365     4,18     5457     51,8369     0847       35.0     56.70     2,3963     3,96     5491     51,7308     0888       35.2     56.36     2,4570     3,75     5526     51,6305     0933       35.4     56.05     2,5166     3,55     5562     51,5363     0981       35.6     55.75     2,5809     3,36     5600     51,4482     1034       35.8     55.47     2,6438     3,19     5640     51,3664     1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.6   | 59,72  | 1,9907 | 5,91    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,6585        |       |
| 34.0     58.72     2,1036     5,25     5334     -2,3435     0707       34.2     58.27     2,1605     4,96     5364     -2,2056     0738       34.4     57.84     2,2167     4,68     5393     -2,0727     0772       34.6     57.44     2,2770     4,42     5425     51,9521     0808       34.8     57.06     2,3365     4,18     5457     51,8369     0847       35.0     56.70     2,3963     3,96     5491     51,7308     0888       35.2     56.36     2,4570     3,75     5526     51,6305     0933       35.4     56.05     2,5166     3,55     5562     51,5363     0981       35.6     55.75     2,5809     3,36     5600     51,4482     1034       35.8     55.47     2,6438     3,19     5640     51,3664     1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.5   | 59,21  | 2,0466 | 5,57    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 34.2       58.27       2,1605       4,96       5364       2,2056       0738         34.4       57.84       2,2167       4,68       5393       2,0727       0772         34.6       57.44       2,2770       4,42       5425       1,9521       0008         34.8       57.06       2,3365       4,18       5457       1,8369       0047         35.0       56.70       2,3963       3,96       5491       71,7308       0088         35.2       56.36       2,4570       3,75       5526       71,6305       0733         35.4       56.05       2,5166       3,55       5562       71,5363       0781         35.6       55.75       2,5809       3,36       5600       71,4482       1034         35.8       55.47       2,6438       3,19       2640       71,3664       1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.0   | 28,72  | 2,1036 | 5,25    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 34.4     57.84     2.2167     4.68     5393     +2.0727     0772       34.6     57.44     2.2770     4.42     5425     1.9521     0808       34.8     57.06     2.3365     4.18     5457     1.8369     0847       35.0     56.70     2.3963     3.96     5491     -1.7308     0888       35.2     56.36     2.4570     3.75     5526     +1.6305     0933       35.4     56.05     2.5166     3.55     5562     +1.5363     0981       35.6     55.75     2.5809     3.36     5600     +1.4482     1034       35.8     55.47     2.6438     3.19     2640     +1.3664     1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.2   | 58,27  | 2,1605 | 4,96    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,2056        | ,0738 |
| 34.6     57.44     2.2770     4.42     5425     1.9521     0808       34.8     57.06     2.3365     4.18     5457     1.8369     0847       35.0     56.70     2.3963     3.96     5491     71.7308     0888       35.2     56.36     2.4570     3.75     5526     71.6305     0933       35.4     56.05     2.5166     3.55     5562     71.5363     0981       35.6     55.75     2.5809     3.36     5600     71.4482     1034       35.8     55.47     2.6438     3.19     2640     71.3664     1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34,4   | 57.84  | 2,2167 | 4,68    | ,5393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +2,0727        | 07/2  |
| 34.8 57.06 2.3365 4.18 5457 1.8369 0847 35.0 56.70 2.3963 3.96 5491 -1.7308 0888 35.2 56.36 2.4570 3.75 5526 -1.6305 0933 35.4 56.05 2.5166 3.55 5562 -1.5363 0981 35.6 55.75 2.5809 3.36 5600 -1.4482 1034 35.8 55.47 2.6438 3.19 5640 -1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.6   | 57.44  | 2.2770 | 4,42    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91,9521        |       |
| 35.0 56.70 2.3963 3.96 5491 -1.7308 0888 35.2 56.36 2.4570 3.75 5526 -1.6305 0933 35.4 56.05 2.5166 3.55 5562 -1.5363 0981 35.6 55.75 2.5809 3.36 5600 -1.4482 1034 35.8 55.47 2.6438 3.19 5640 -1.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.8   | 57.06  |        | 4,18    | ,5457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,8369        |       |
| 35.2 56.36 2.4570 3.75 5526 -1,6305 0.733<br>35.4 56.05 2.5166 3.55 5562 -1,5363 0.781<br>35.6 55.75 2.5809 3.36 5600 -1,4482 1034<br>35.8 55.47 2.6438 3.19 5640 -1,3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.0   | 56.70  | 2.3963 | 3.96    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,7308        |       |
| 35.4 56.05 2.5166 3.55 562 41.5363 0981<br>35.6 55.75 2.5809 3.36 5600 41.4482 1034<br>35.8 55.47 2.6438 3.19 5640 41.3664 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.2   | 56.36  | 2.4570 | 3.75    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
| 35.6 55.75 2.5809 3.36 ,5600 +1,4482 ,1034<br>35.8 55.47 2.6438 3.19 ,5640 +1,3664 ,1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.4   | 56.05  | 2.5166 | 3.55    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.5363        |       |
| 35.8 55.47 2.6438 3.19 ,2640 -1,3664 ,1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.6   | 55.75  |        | 3.36    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.4482        |       |
| 36.0 55,20 2,7080 3,02 ,5680 -1,2877 1153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |        | 3.19    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | .1090 |
| 11,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 55 20  |        | 3.02    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0   | ,-0    | 7,7000 | 3102    | 1-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-4//          |       |

| RATIO TOTAL STEP VAR STEP  36.2 54.95 2.7726 2.87 5767 =1.1460 1296 36.4 54.72 2.8387 2.72 5767 =1.1460 1296 36.6 54.49 2.9062 2.58 5811 =1,0791 1380 36.8 54.28 2.9742 2.45 5858 =1.0176 1472 37.0 54.09 3.0433 2.32 5908 =.9598 1575 37.2 53.90 3.1136 2.20 59609051 1689 37.4 53.72 3.1853 2.09 00138528 1820 37.6 53.56 3.2585 1.98 60688031 1969 37.7 53.40 3.3326 1.88 61267571 2138 38.0 53.26 3.4087 1.79 61857123 2.337 38.2 53.12 3.4087 1.79 61857123 2.337 38.2 53.12 3.4055 1.70 62496715 2564 38.4 52.99 3.5448 1.61 63146313 2842 38.6 52.66 3.6453 1.52 63825941 3172 38.6 52.75 3.7274 1.45 64545592 3574 39.0 52.64 3.6118 1.37 6529 5256 4087 39.4 52.44 3.9866 1.23 66884635 5055 39.6 52.35 4.0772 1.17 67744353 6931 39.8 52.27 4.1701 1.11 68644087 8869 40.0 52.19 4.2655 1.05 69583836 1.2285 40.4 52.05 4.4647 94 71603372 4.7844                                                                                                                                                                                                                   |       |       |                                         |       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------|-------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ### SIZE FROR STEP  36.2 54.95 2.7726 2.87 .5723 -1.2156 .1221  36.4 54.72 2.8387 2.72 .5767 -1.1460 .1296  36.6 54.49 2.9062 2.58 .811 -1.0791 .1380  36.8 54.28 2.9742 2.45 .858 -1.0176 .1472  37.0 54.09 3.0433 2.32 .59089598 1.575  37.2 53.90 3.1136 2.20 .59609051 .1689  37.4 53.72 3.1853 2.09 .00138528 .1820  37.6 53.56 3.2585 1.98 .60688031 .1969  37.8 53.40 3.3326 1.88 .61267571 .2138  38.0 53.26 3.4087 1.79 .61857123 .2337  38.2 53.12 3.4955 1.70 .62496715 .2564  38.4 52.99 3.5648 1.61 .63146313 .2842  38.6 52.86 3.6453 1.52 .63825941 .3172  38.8 52.75 3.7274 1.45 .64545592 .5574  39.0 52.64 3.6118 1.37 .65295256 .4087  39.1 52.44 3.9866 1.23 .66884635 .5655  39.6 52.35 4.0772 1.17 .67744353 .6931  39.8 52.27 4.1701 1.11 .68644087 .8089  40.0 52.19 4.2655 1.05 .69583836 1.2285  40.0 52.19 4.2655 1.05 .69583836 1.2285  40.0 52.19 4.2655 1.05 .69583836 1.2285  40.0 52.12 4.3639 .99 .70563594 1.9761                                                                                                                           | RATIO | TOTAL | STEP                                    | . VAR | VAR    | COVAR   | MITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36.2 54.95 2.7726 2.87 5723 -1.2156 1221 36.4 54.72 2.8387 2.72 5767 -1.1460 1296 36.6 54.49 2.9062 2.58 5811 -1.0791 1380 36.8 54.28 2.9742 2.45 5858 -1.0176 1472 37.0 54.09 3.0433 2.32 59089598 1575 37.2 53.90 3.1136 2.20 59609051 1689 37.4 53.72 3.1853 2.09 60138528 1820 37.6 53.56 3.2585 1.98 60688031 1969 37.7 53.40 3.3326 1.88 61267571 2138 38.0 53.26 3.4087 1.79 61857123 2337 38.2 53.12 3.4855 1.70 62496715 2564 38.4 52.99 3.5448 1.61 63146313 2842 38.6 52.86 3.6453 1.52 63825941 3172 38.8 52.75 3.7274 1.45 64545592 3574 39.0 52.64 3.6118 1.37 65295256 4087 39.2 52.54 3.8981 1.30 66074938 4751 39.4 52.44 3.9866 1.23 66884635 5655 39.6 52.35 4.0772 1.17 67744353 6931 39.8 52.27 4.1701 1.11 68644087 8869 40.0 52.19 4.2655 1.05 69583836 1.2285 40.0 52.12 4.3639 99 70563594 1.9761                                                                                                                                                                                                                                                    |       |       |                                         |       |        |         | The second of th |
| 36.4 54.72 2.8387 2.72 5767 1.1460 1296 36.6 54.49 2.9062 2.58 5811 1.0791 1380 36.8 54.28 2.9742 2.45 5858 1.0176 1472 37.0 54.09 3.0433 2.32 59089598 1575 37.2 53.90 3.1136 2.20 59609051 1689 37.4 53.72 3.1853 2.09 60138528 1820 37.6 53.56 3.2585 1.98 60688031 1969 37.8 53.40 3.3326 1.88 61267571 2138 38.0 53.26 3.4087 1.79 61857123 2337 38.2 53.12 3.4955 1.70 62496715 2564 38.4 52.99 3.5648 1.61 63146313 2842 38.6 52.86 3.6453 1.52 63825941 3172 38.8 52.75 3.7274 1.45 64545592 5574 39.0 52.64 3.6118 1.37 65295256 4087 39.2 52.54 3.8981 1.30 66074938 4751 39.4 52.44 3.9866 1.23 66884635 5655 39.6 52.35 4.0772 1.17 67744353 6931 39.8 52.27 4.1701 1.11 68644087 8869 40.0 52.19 4.2655 1.05 69583836 1.2285 40.2 52.12 4.3639 99 70563594 1.9781                                                                                                                                                                                                                                                                                                |       |       | • • • • • • • • • • • • • • • • • • • • |       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36.4 54.72 2.8387 2.72 5767 1.1460 1296 36.6 54.49 2.9062 2.58 5811 1.0791 1380 36.8 54.28 2.9742 2.45 5858 1.0176 1472 37.0 54.09 3.0433 2.32 59089598 1575 37.2 53.90 3.1136 2.20 59609051 1689 37.4 53.72 3.1853 2.09 60138528 1820 37.6 53.56 3.2585 1.98 60688031 1969 37.8 53.40 3.3326 1.88 61267571 2138 38.0 53.26 3.4087 1.79 61857123 2337 38.2 53.12 3.4955 1.70 62496715 2564 38.4 52.99 3.5648 1.61 63146313 2842 38.6 52.86 3.6453 1.52 63825941 3172 38.8 52.75 3.7274 1.45 64545592 5574 39.0 52.64 3.6118 1.37 65295256 4087 39.2 52.54 3.8981 1.30 66074938 4751 39.4 52.44 3.9866 1.23 66884635 5655 39.6 52.35 4.0772 1.17 67744353 6931 39.8 52.27 4.1701 1.11 68644087 8869 40.0 52.19 4.2655 1.05 69583836 1.2285 40.2 52.12 4.3639 99 70563594 1.9781                                                                                                                                                                                                                                                                                                |       |       |                                         |       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36.6       54.49       2.9062       2.58       >811       *1.0791       1380         36.8       54.28       2.9742       2.45       >858       *1.0176       1472         37.0       54.09       3.0433       2.32       >908       *9598       1575         37.2       53.90       3.1136       2.20       >960       *9051       1689         37.4       53.72       3.1853       2.09       6013       *8528       1820         37.6       53.56       3.2585       1.98       6068       *8031       1969         37.8       53.40       3.3326       1.88       6126       *7571       2138         38.0       53.26       3.4087       1.79       6185       *7123       2337         38.2       53.12       3.4055       1.70       6249       *6715       2564         38.4       52.99       3.5443       1.61       6314       *6313       2842         38.6       52.86       3.6453       1.52       6382       *5941       3172         38.8       52.75       3.7274       1.45       6454       *5592       3574         39.0       52.64       3.6118         |       |       | 2.7726                                  |       | ,5723  | -1,2156 | ,1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36.6       54.49       2,9062       2,58       58.11       -1,0791       1380         36.8       54.28       2,9742       2,45       5858       -1,0176       1472         37.0       54.09       3,0433       2,32       5908       -,9598       1575         37.2       53.90       3,1136       2,20       5960       -,9051       1089         37.4       53.72       3,1853       2,09       6013       -,8528       1320         37.6       53.56       3,2585       1,98       6068       -,8031       1769         37.8       53.40       3,3326       1,88       6126       -,7571       2138         38.0       53.26       3,4087       1,79       6185       -,7123       2337         38.2       53.12       3,4955       1,70       6249       -,6715       2564         38.4       52.99       3,5448       1,61       6314       -,6313       2842         38.6       52.75       3,7274       1,45       6454       -,5592       3574         39.0       52.64       3,6118       1,37       6529       -,5256       4087         39.4       52.44       3,9 |       |       | 2.8387                                  | 2,72  | ,5767  | -1,1460 | 1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36.8       54.28       2,9742       2,45       5858       -1,0176       1472         37.0       54.09       3,0433       2,32       5908       -,9598       1575         37.2       53.90       3,1136       2,20       5960       -,9051       1089         37.4       53.72       3,1853       2,09       0013       -,8528       1820         37.6       53.56       3,2585       1,98       0068       -,8031       1969         37.8       53.40       3,3326       1,88       6126       -,7571       2138         38.0       53.26       3,4087       1,79       6185       -,7123       2337         38.2       53.12       3,4087       1,70       6249       -,6715       2564         38.4       52.99       3,5448       1,61       6314       -,6313       2842         38.6       52.86       3,6453       1,52       6382       -,5941       3172         39.0       52.64       3,6118       1,37       6529       -,5256       4087         39.4       52.44       3,9866       1,23       6688       -,4635       5055         39.6       52.35       4,077 | 36,6  | 54.40 | 5.9065                                  | 2,58  | , 5R11 | -1,0791 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37.0       54.09       3.0433       2.32       5908       -9598       1575         37.2       53.90       3.1136       2.20       5960       -9051       1689         37.4       53.72       3.1853       2.09       6013       -8528       1820         37.6       53.56       3.2585       1.98       6068       -8031       1969         37.8       53.40       3.3326       1.88       6126       -7571       2138         38.0       53.26       3.4087       1.79       6185       -7123       2337         38.2       53.12       3.4855       1.70       6249       -6715       2564         38.4       52.99       3.5448       1.61       6314       -6313       2842         38.6       52.86       3.6453       1.52       6382       -5941       3172         39.0       52.64       3.6118       1.37       6529       -5256       4087         39.2       52.54       3.8981       1.30       6607       -,4938       4751         39.4       52.44       3.9866       1.23       6688       -,4635       5055         39.8       52.27       4.1701           | 36.8  | 54.28 | 2,9742                                  | 2,45  | 5858   | -1.0176 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37.2       53.90       3.1136       2.20       5960      9051       1689         37.4       53.72       3.1853       2.09       0013      8528       1820         37.6       53.56       3.2585       1.98       0068      8031       1969         37.8       53.40       3.3326       1.88       6126      7571       2138         38.0       53.26       3.4087       1.79       6185      7123       2537         38.2       53.12       3.4055       1.70       6249      6715       2564         38.4       52.99       3.5448       1.61       6314      6313       2842         38.6       52.86       3.6453       1.52       6382      5941       3172         38.8       52.75       3.7274       1.45       6454      5592       3574         39.0       52.64       3.6118       1.37       6529      5256       4087         39.2       52.54       3.8981       1.30       6688      4635       5055         39.4       52.44       3.9866       1.23       6688      4635       5055         39.8       52.27       4.1701                                     | 37.0  | 54.09 |                                         |       |        | 9598    | 1575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37.4       53.72       3.1853       2.09       0013      8528       1520         37.6       53.56       3.2585       1.98       0068      8031       1969         37.8       53.40       3.3326       1.88       6126      7571       2138         38.0       53.26       3.4087       1.79       6185      7123       2337         38.2       53.12       3.4055       1.70       6249      6715       2564         38.4       52.99       3.5448       1.61       6314      6313       2842         38.6       52.86       3.6453       1.52       6382      5941       3172         38.8       52.75       3.7274       1.45       6454      5592       3574         39.0       52.64       3.6118       1.37       6529      5256       4087         39.2       52.54       3.8981       1.30       6607      4938       4751         39.4       52.44       3.9866       1.23       6688      4635       5055         39.8       52.27       4.1701       1.11       6864      4087       8869         40.0       52.12       4.2655                                     | 37.2  | 53.90 |                                         | 2.20  | . >960 | 9051    | 1089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37.6       53.56       3.2585       1.98       6068      8031       1.969         37.8       53.40       3.3326       1.88       6126      7571       2138         38.0       53.26       3.4087       1.79       6185      7123       2337         38.2       53.12       3.4055       1.70       6249      6715       2564         38.4       52.99       3.5440       1.61       6314      6313       2842         38.6       52.86       3.6453       1.52       6382      5941       3172         38.8       52.75       3.7274       1.45       6454      5592       3574         39.0       52.64       3.6118       1.37       6529      5256       4087         39.2       52.54       3.8981       1.30       6607      4938       4751         39.4       52.44       3.9866       1.23       6688      4635       5055         39.6       52.35       4.0772       1.17       6774      4353       6931         39.8       52.27       4.1701       1.11       6864      4087       8869         40.0       52.19       4.265                                     | 37.4  |       |                                         |       |        | 8528    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37.8       53.40       3.3326       1.88       6126      7571       2138         38.0       53.26       3.4087       1.79       6185      7123       2337         38.2       53.12       3.4055       1.70       6249      6715       2564         38.4       52.99       3.5440       1.61       6314      6313       2842         38.6       52.86       3.6453       1.52       6382      5941       3172         38.8       52.75       3.7274       1.45       6454      5592       3574         39.0       52.64       3.6118       1.37       6529      5256       4087         39.2       52.54       3.8981       1.30       6607      4938       4751         39.4       52.44       3.9866       1.23       6688      4635       5055         39.6       52.35       4.0772       1.17       6774      4353       6931         39.8       52.27       4.1701       1.11       6864      4087       8869         40.0       52.19       4.2655       1.05       6958      3836       1.2285         40.2       52.12       4.36                                     | 37.6  | 53.56 | 3.2585                                  | 1.98  |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38.0       53.26       3.4087       1.79       6185      7123       2337         38.2       53.12       3.4055       1.70       6249      6715       2564         38.4       52.99       3.5440       1.61       6314      6313       2842         38.6       52.86       3.6453       1.52       6382      5941       3172         38.8       52.75       3.7274       1.45       6454      5592       3574         39.0       52.64       3.6118       1.37       6529      5256       4087         39.2       52.54       3.8981       1.30       6607      4938       7751         39.4       52.44       3.9866       1.23       6688      4635       5055         39.6       52.35       4.0772       1.17       6774      4353       6931         39.8       52.27       4.1701       1.11       6864      4087       8869         40.0       52.19       4.2655       1.05       6958      3836       1.2285         40.2       52.12       4.3639       99       7056      3594       1.9761                                                                         | 37.8  |       |                                         | 1.88  |        | 7571    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38.2       53.12       3.4955       1.70       6249      6715       2564         38.4       52.99       3.5448       1.61       6314      6313       2842         38.6       52.86       3.6453       1.52       6382      5941       3172         38.8       52.75       3.7274       1.45       6454      5592       3574         39.0       52.64       3.6118       1.37       6529      5256       4087         39.2       52.54       3.8981       1.30       6607      4938       7751         39.4       52.44       3.9866       1.23       6688      4635       5055         39.6       52.35       4.0772       1.17       6774      4353       6931         39.8       52.27       4.1701       1.11       6864      4087       8869         40.0       52.19       4.2655       1.05       6958      3836       1.2285         40.2       52.12       4.3639       99       7056      3594       1.9781                                                                                                                                                          | 38.0  | 53 26 |                                         | 1.79  | 6185   |         | 2337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38,4 52,99 3,5648 1,61 6314 -6313 2842 38,6 52,86 3,6453 1,52 6382 -5941 3172 38,8 52,75 3,7274 1,45 6454 -5592 3574 39,0 52,64 3,6118 1,37 6529 -5256 4087 39,2 52,54 3,8981 1,30 6607 -4938 4751 39,4 52,44 3,9866 1,23 6688 -4635 5655 39,6 52,35 4,0772 1,17 6774 -4353 6931 39,8 52,27 4,1701 1,11 6864 -4087 8869 40,0 52,19 4,2655 1,05 6958 -3836 1,2285 40,2 52,12 4,3639 99 7056 -3594 1,9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 53 12 |                                         | 1.70  |        |         | 2564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38.6 52.86 3.6453 1.52 6382 -5941 3172 38.8 52.75 3.7274 1.45 6454 -5592 3574 39.0 52.64 3.6118 1.37 6529 -5256 4087 39.2 52.54 3.8981 1.30 6607 -4938 4751 39.4 52.44 3.9866 1.23 6688 -4635 5655 39.6 52.35 4.0772 1.17 6774 -4353 6931 39.8 52.27 4.1701 1.11 6864 -4087 8869 40.0 52.19 4.2655 1.05 6958 -3836 1.2285 40.2 52.12 4.3639 99 7056 -3594 1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 4  | 52 99 | 3 5448                                  | 1 61  |        | - 6313  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38.8     52.75     3.7274     1.45     6454    5592     .3574       39.0     52.64     3.6118     1.37     .6529    5256     .4087       39.2     52.54     3.8981     1.30     .6607    4938     .4751       39.4     52.44     3.9866     1.23     .6688    4635     .5655       39.6     52.35     4.0772     1.17     .6774    4353     .6931       39.8     52.27     4.1701     1.11     .6864    4087     .8869       40.0     52.19     4.2655     1.05     .6958    3836     1.2285       40.2     52.12     4.3639     .99     .7056    3594     1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 6  | 52 86 |                                         | 1 52  | 6382   | - 5044  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39.0     52.64     3.6118     1.37     6529     -5256     4087       39.2     52.54     3.8981     1.30     6607     -,4938     4751       39.4     52.44     3.9866     1.23     6688     -,4635     5655       39.6     52.35     4.0772     1.17     6774     -,4353     6931       39.8     52.27     4.1701     1.11     6864     -,4087     8869       40.0     52.19     4.2655     1.05     6958     -,3836     1.2285       40.2     52.12     4.3639     99     7056     -,3594     1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38 8  | 52 75 |                                         | 1 45  | 6464   | - 5502  | 101/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 39.2     52.54     3.8981     1.30     .6607    4938     .4751       39.4     52.44     3.9866     1.23     .6688    4635     .5055       39.6     52.35     4.0772     1.17     .6774    4353     .6931       39.8     52.27     4.1701     1.11     .6864    4087     .8869       40.0     52.19     4.2655     1.05     .6958    3836     1.2285       40.2     52.12     4.3639     .99     .7056    3594     1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0  |       |                                         | 1177  | 6500   | 5056    | 4087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 39.4     52.44     3.9866     1.23     6688    4635     5655       39.6     52.35     4.0772     1.17     6774    4353     6931       39.8     52.27     4.1701     1.11     6864    4087     8869       40.0     52.19     4.2655     1.05     6958    3836     1.2285       40.2     52.12     4.3639     .99     .7056    3594     1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.0  |       |                                         |       | 6407   | 4079    | 7067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 39.6 52.35 4.0772 1.17 67744353 6931<br>39.8 52.27 4.1701 1.11 68644087 8869<br>40.0 52.19 4.2655 1.05 69583836 1.2285<br>40.2 52.12 4.3639 99 70563594 1.9761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.2  |       |                                         |       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39.8 52.27 4.1701 1.11 68644087 8869<br>40.0 52.19 4.2655 1.05 69583836 1.2285<br>40.2 52.12 4.3639 99 70563594 1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39,4  |       |                                         |       | ,0088  |         | ,2055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40.0 52.19 4.2655 1.05 69583836 1.2285<br>40.2 52.12 4.3639 99 .70563594 1.9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.6  | 22,35 |                                         |       | 0//4   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40.2 52.12 4.3639 99 70563594 1.9/81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 52,27 |                                         |       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 52,19 |                                         |       | ,6958  |         | 1,2285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40.4 52.05 4,4647 ,94 ,7160 -,3372 4.7844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       | 4.3639                                  |       | .7056  | -,3594  | 1.9/81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.4  | 52,05 | 4,4647                                  | ,94   | .7160  | -,3372  | 4,7844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL          | STEP   | VAR      | VAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COVAR    | MITE   |
|-------|----------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
|       | ERROR          | SIZE   | FRPOR    | STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        |
|       |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |
| 26.2  | 1196.12        | .0453  | 12289,67 | ,4759+58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48.4652  | ,0193  |
| 26.4  | 611,31         | .6906  | 3071,63  | 4760-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0198   |
| 26.6  | 416,47         | 1359   | 1364,42  | 4761 -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0202   |
| 26.8  | 319.16         | 1813   | 767,19   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64,9527  | ,0207  |
| 27.0  | 260.78         | .2267  | 490,31   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33,1318  | 0212   |
| 27.2  | 221,95         | ,2721  | 340,14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61,6733  | .0217  |
| 27.4  | 194,26         | .3176  | 249.59   | 4771 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18,5853  | 0223   |
| 27.6  | 173.53         | .3632  | 190,81   | 4775 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90,6149  | .0228  |
| 27,8  | 157,43         | ,4088  | 150,48   | 4779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71,4161  | 0234   |
| 28.0  | 144,60         | 4546   | 121,66   | 4764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57,7039  | 0240   |
| 28.2  | 134,12         | 5004   | 100,32   | 4789 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47,5435  | ,0246  |
| 28.4  | 125.42         | . 5463 | 84,10    | 4795 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39,8262  | 0253   |
| 28.6  | 116.08         | .5923  | 71,48    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33,8230  | 0259   |
| 28.8  | 111,60         | 6365   | 61,45    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.0452  | ,0266  |
| 29.0  | 106.39         | 6948   | 53,37    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25,2037  | 0275   |
| 29.2  | 101.68         | .7312  | 46,77    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22,0631  | 0281   |
| 29.4  | 97.53          | .7779  | 41.26    | 4831 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19,4401  | 0289   |
| 29.6  | 93.87          | .8247  | 36,67    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.2572  | . 0297 |
| 29.8  | 90.61          | .8716  | 32,79    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15,4097  | .0305  |
| 30.0  | 87.68          | 9188   | 29,46    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13,8249  | ,0314  |
| 30.2  | . 85.06        | .9661  | 26,61    | 4870 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12,4663  | 0323   |
| 30.4  | 82.69          | 1.0136 | 24,14    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,2941  | 0332   |
| 30.6  | 80.54          | 1.0612 | 21,99    | the same of the sa | 10,2718  | .0342  |
| 30.8  | 78,57          | 1.1094 | 20,08    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9,3649  | .0352  |
| 31.0  | 76.79          | 1.1578 | 18,40    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8,5634  | .0363  |
| 31,2  | 75.15          | 1,2060 | 16,93    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .7 .8676 | 0374   |
| 31.4  | 73.63          | 1.2550 | 15,00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7,2348  | 0386   |
| 31.6  | 72.25          | 1,3039 | 14,43    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6,6766  | 0398 - |
| 31.8  | 70.95          | 1,3536 | 13,35    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6,1635  | 0411   |
| 32.0  | 69.78          | 1,4030 | 12,41    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5,7156  | .0425  |
| 32.2  | 68,68          | 1.4530 | 11,54    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5,3043  | 0439   |
| 32.4  | 67,65          | 1.5034 | 1.0,75   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.9306  | .0454  |
| 32.6  | 66,70          | 1,5544 | 10,03    | ,5046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,5800   | .0470  |
| 32.8  | 65,62          | 1.8053 | 9,38     | ,5067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4,2796  | 0486   |
| 33.0  | 64.99          | 1,6569 | 8,78     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3,9945  | 0503   |
| 33.2  | 64,22          | 1,7088 | 8,23     | ,2107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3,7332  | 0522   |
| 33.4  | 63.49          | 1.7613 | 7,72     | >128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3,4921  | 0541   |
| 33.6  | 62,62          | 1,8140 | 7,26     | ,>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3,2733  | 0562   |
| 33.8  | 62,18          | 1,8673 | 6,83     | ,2174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3,0691  | .0583  |
| 34.0  | 61.59          | 1.9211 | 6,43     | 5198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,8799   | 0006   |
| 34.2  | 61.03          | 1,9752 | 6,06     | ,5223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2,7000  | 0630   |
| 34.4  | 60.50          | 2,0305 | 5,71     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,5400  | .0057  |
| 34.6  | 60.01          | 2.0458 | 5,40     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,3897  | U084   |
| 34.8  | 59.55          | 2.1414 | 5.10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,2515  | 0713   |
| 35.0  | 59,11          | 2,1782 | 4,82     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,1184  | 0744   |
| 35.2  | 58,70          | 2.2556 | 4,56     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,9941  | 0778   |
| 35.4  | 58.31          | 2,3129 | 4,32     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,6825   | ,0813  |
| 35.6  | 57 95          | 2,3718 | 4,09     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,7731  | 0852   |
| 35.8  | 57.95<br>57.60 | 2,4308 | 3,87     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,6731  | 0894   |
| 36.0  | 57.28          | 2,4906 | 3,67     | 5494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,5792   | ,0938  |
| 36.2  | 56.97          | 2,5519 | 3,46     | 5529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,4881  | 0987   |
| 00.2  |                | 213,11 | 31,7"    | 12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 10,0,  |

| RATIO                | TOTAL<br>ERROR          | STEP                          | VAR                  | YAR                     | COVAR                        | MITE                     |
|----------------------|-------------------------|-------------------------------|----------------------|-------------------------|------------------------------|--------------------------|
| 36.4                 | 56.68<br>56.41          | 2,6130<br>2,6759              | 3,30                 | ,5567                   | •1,4059<br>•1,3252           | 1039                     |
| 36.8                 | 56,15<br>55,91          | 2.7391                        | 2,97                 | 5645<br>5688            | *1,2511<br>*1,1622           | 1159                     |
| 37.2<br>37.4<br>37.6 | 55.08<br>55.46<br>55.25 | 2,8685<br>2,9344<br>3,0020    | 2,68<br>2,55<br>2,42 | ,5730<br>,5776<br>,5822 | *1,1151<br>*1,0535<br>*,9931 | ,1302<br>,1384<br>,1477  |
| 37.8<br>38.0<br>38.2 | 55.06<br>54.88<br>54.71 | 3,0703<br>3,1399<br>3,2102    | 2,30<br>2,18<br>2,07 | 5921<br>5974            | -,9375<br>-,8644<br>-,8354   | 1579<br>1695<br>1822     |
| 38.4                 | 54.55<br>54.39          | 3.2 <sup>4</sup> 22<br>3.3557 | 1,97                 | 6029                    | 7,7882                       | 2137                     |
| 38.8<br>39.0<br>39.2 | 54.25<br>54.11<br>53.99 | 3,4304<br>3,5066<br>3,5847    | 1,78<br>1,69<br>1,60 | 6145<br>6206<br>6270    | -,7005<br>-,6602<br>-,6213   | 2332<br>2559<br>2832     |
| 39.4<br>39.6<br>39.8 | 53,87                   | 3.6639                        | 1,52                 | 0337                    | -,5856<br>-,5510             | 3154<br>3554<br>4058     |
| 40.0                 | 53.64<br>53.54<br>53.45 | 3.8284<br>3.9131<br>4.0001    | 1,37<br>1,30<br>1,23 | 6480<br>6557<br>6636    | -,5182<br>-,4880<br>-,4588   | 5560                     |
| 40.4                 | 53.36<br>53.28<br>53.20 | 4.0893<br>4.1809<br>4.2748    | 1.17                 | 6720<br>6807<br>6899    | -,4313<br>-,4049<br>-,3803   | ,6780<br>,8648<br>1,1806 |
| 41.0                 | 53,12<br>53,05          | 4.3713                        | 1,00                 | 7095                    | -,3570<br>-,3349             | 1,8368<br>4,0674         |

Column 1 is the ratio E(i-1)X, /EX,

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

|       | /                                                   |        |         |                     |                |                          |
|-------|-----------------------------------------------------|--------|---------|---------------------|----------------|--------------------------|
| DATIO | TOTAL                                               | CTCD   | VAR     | VAR                 | COVAR          | MITF                     |
| RATIO | TOTAL A                                             | STEP   |         |                     | YUYAN          | the second of the second |
|       | EEROR                                               | SIZE   | FRHOR   | STEP                |                |                          |
|       |                                                     |        |         |                     |                |                          |
|       |                                                     |        |         |                     |                |                          |
| 27 .  | 542 74                                              | 4440   | 2050 30 | 4716                | -070 6879      | .0196                    |
| 27.0  | 512.71                                              | ,1112  | 2059,30 |                     | -970,6839      |                          |
| 27.2  | 374.07                                              | ,1557  | 1050.08 | 4716                | -494,8811      | .0201                    |
| 27.4  | 297 13                                              | ,2002  | 634,83  | .4720               | -299,1215      | 0205                     |
| 27.6  | 248 21                                              | 2448   | 424,50  | 4722                | -199,9413      | 0210                     |
| 27 4  | 297, 13<br>248, 21<br>214, 40<br>189, 65<br>170, 74 | ,2446  | 307 60  |                     | 142 0400       | 0215                     |
| 27.8  | 214.40                                              | 2394   | 303,62  | .4725               | -142,9609      | 0215                     |
| 20.0  | 189.65                                              | .3341  | 227,12  | 4778                | -107,1728      | .0221                    |
| 28.2  | 170 74                                              | 3788   | 176,97  | 4732                | .83,2333       | 0226                     |
| 28 4  | 155 87                                              | 4236   | 141.45  | 4736                | -66,4939       | 0232                     |
| 28,4  | 155.87                                              | .4730  | 115 54  | 17744               | 64 0740        |                          |
| 28.6  | 143.85                                              | .4586  | 115.54  | 4741                | -54,2742       | 0238                     |
| 28.8  | 133.96                                              | ,5135  | 96,14   | 4746                | -45,1323       | 0244                     |
| 29.0  | 125.66                                              | ,5587  | 81,15   | 4752                | -38,0634       | 0250                     |
| 20 2  | 116,62                                              | .6039  | 69,39   | 4758                | -32,5105       | 0255                     |
| 20 4  | 110.02                                              | , 600  | 50 00   | 4765                | 28 0600        | 0263                     |
| 29.2  | 112.58                                              | 6492   | 59,99   |                     | -28,0900       | ,0203                    |
| 29.0  | 107,33                                              | ,6947  | 52,34   | .4772               | -24,4806       | 0270                     |
| 29.8  | 102,75                                              | ,7403  | .46,04  | ,4780               | -21,5124       | ,0277                    |
| 30.0  | 98.70                                               | 7860   | 40,79   | 4788                | -19,0360       | 0285                     |
|       | 05 40                                               | 0704   | 74 75   | 4796                | 46 0472        | 0292                     |
| 30.2  | 95.10                                               | ,8321  | 36,35   | 17790               | -10,9432       |                          |
| 30.4  | 91.90                                               | ,6781  | 32,60   | 4806                | m15,1752       | 0301                     |
| 30.6  | 89.02                                               | ,9243  | 29,39   | .4816               | -13,6612       | .0309                    |
| 30.8  | 86.43                                               | .9768  | 26,60   | .4827               | -12,3484       | 0318                     |
|       | . 64 07                                             |        | 24 47   | 4837                |                | .0327                    |
| 31.0  | 64,07                                               | 1.0176 | 24,17   |                     | -11,1996       |                          |
| 31.2  | 81.93                                               | 1.0545 | 22,05   | ,4849               | +10,2037       | ,0336                    |
| 31.4  | 79.98                                               | 1,1116 | 20,19   | 4861                | -9,3249        | ,0346                    |
| 31.6  | 78.20                                               | 1.1588 | 18,54   | .4874               | ,8,5527        | .0357                    |
|       | 74 66                                               | 4 0067 | 17 07   | 4886                | -7,8545        | 0367                     |
| 31.8  | 76.55                                               | 1.2067 | 17,07   |                     |                |                          |
| 32.0  | 75.05                                               | 1,2544 | 15,76   | .4901               | <b>#7.2423</b> | ,0379                    |
| 32.2  | 73,65                                               | 1,3028 | 14,58   | ,4915               | -6,6850        | .0391                    |
| 32.4  | 72,37                                               | 1.3510 | 13,54   | 4931                | e0,1936        | 0403 -                   |
| 30 4  |                                                     |        | 12 67   | 4946                | -5,7389        | .0416                    |
| 32.6  | 71,17                                               | 1,4000 | 12,57   |                     |                |                          |
| 32.8  | . 70,06                                             | 1,4491 | 11,71   | 4962                | 05,3314        | ,0430                    |
| 33.0  | 69.04                                               | 1,4965 | 10,92   | 4979                | -4,9620        | ,0444                    |
| 33.2  | 68.07                                               | 1,5465 | 10.20   | ,4996               | -4,6222        | ,0459                    |
| 33.4  | 67,19                                               | 1,5761 | 9,56    | ,5017               | -4,3211        | .0474                    |
|       | 44 75                                               |        | 0 05    |                     | 4 0770         |                          |
| 33.6  | 66.35                                               | 1.6490 | 8,95    | ,5034               | <b>44.0330</b> | . 0491                   |
| 33.8  | 65,57                                               | 1,6996 | 8,40    | ,5055               | •3,7777        | 0509                     |
| 34.0  | 64.84                                               | 1.7510 | 7,89    | ,5076               | -3,5384        | .0527                    |
| 34,2  | 64.15                                               | 1,8027 | 7,43    | ,2098               | -3,3179        | .0546                    |
| 74.4  | 47 54                                               | 4,002  | 4 00    | 54.0                | -3 4407        | 0>67                     |
| 34.4  | 63,51                                               | 1,8551 | 6,99    | ,5119               | +3,1123        |                          |
| 34.6  | 62,91                                               | 1,9075 | 0,74    | ,5143               | -2,9258        | 0588                     |
| 34.8  | 62.34                                               | 1,9606 | 6,22    | ,5167               | -2,7510        | ,0611                    |
| 35.0  | 61,81                                               | 2.0143 | 5,67    | , >192              | -2,5880        | 0036                     |
| 35 0  | 41 71                                               | 0 0444 | 5 55    | 5218                | -2,4371        | .0662                    |
| 35.2  | 61,31                                               | 2,0664 | 5,55    |                     |                |                          |
| 35.4  | 60.83                                               | 2,1733 | 5,24    | ,5245               | 02,2949        | .0669                    |
| 35.6  | 60.38                                               | 2,1788 | 4,96    | ,5272               | 72,1615        | 0719                     |
| 35,8  | 59.97                                               | 2,2343 | 4,70    | ,5302               | -2,0407        | 0750                     |
| 46    | 50 57                                               |        | 4 48    |                     |                |                          |
| 36.0  | 59.57                                               | 2.2914 | 4,45    | ,5330               | -1,9220        | 0784                     |
| 36.2  | 59.20                                               | 2.3461 | 4,22    | ,5362               | -1,8163        | ,0819                    |
| 36.4  | 58,84                                               | 2,4062 | 4.00    | ,5393               | -1,7130        | .0458                    |
| 36.6  | 58.51                                               | 2.4644 | . 79    | ,5428               | -1,6193        | 0899                     |
| 35.8  | 56.20                                               | 2,5239 | 3,60    | ,5461               | -1,5286        | .0944                    |
| 03,6  | 57.00                                               |        | 3,00    | , , , , , ,         | 4112500        | 0407                     |
| 37.0  | 57,90                                               | 2,5838 | 3,42    | 5497                | +1,4443        | 0993                     |
|       |                                                     |        |         | 2 4 5 1 4 ± 1 1 1 1 |                |                          |

| RATIO | TOTAL | STEP<br>S12E | VAR<br>ERROR | STEP  | COVAR   | MITE   |
|-------|-------|--------------|--------------|-------|---------|--------|
| 37.2  | 57.62 | 2.6450       | 3,24         | ,5533 | *1.3632 | ,1046  |
| 37.4  | 57,35 | 2,7065       | 3,08         | ,5572 | -1,2889 | ,1102  |
| 37.6  | 57.10 | 2,7690       | 2,93         | 12612 | -1,2180 | 1164   |
| 37.8  | 56.86 | 2.6325       | 2,78         | ,5653 | +1,1507 | ,1233  |
| 38.0  | 56.64 | 2.8970       | 2,64         | ,5696 | -1,0872 | ,1306  |
| 38.2  | 56.43 | 2,9623       | 2,51         | ,5740 | -1,0276 | ,1390  |
| 38.4  | 56.23 | 3.0284       | 2,39         | ,5787 | -,9719  | ,1480  |
| 38.6  | 56.04 | 3.0963       | 2,27         | ,5834 | -,9170  | ,1563  |
| 38.8  | 55,86 | 3,1649       | 2,16         | ,5884 | -,8662  | 1697   |
| 39.0  | 55.69 | 3.2345       | 2,06         | ,5936 | -,8186  | ,1824  |
| 39.2  | 55.53 | 3,3059       | 1,95         | ,5989 | -,7720  | ,1972  |
| 39.4  | 55,39 | 3,3760       | 1,36         | ,0045 | -,7256  | ,2136  |
| 39.6  | 55,24 | 3,4521       | 1.77         | ,0103 | -,6876  | ,2331  |
| 39,8  | 55.11 | 3.5273       | 1,58         | ,0163 | -,6486  | ,2556  |
| 40.0  | 54,98 | 3,6039       | 1,60         | ,6227 | -,6120  | ,2820  |
| 40.2  | 54,87 | 3,6822       | 1,52         | ,6293 | 5770    | , 3139 |
| 40.4  | 54.75 | 3,7623       | 1,44         | ,0361 | -,5437  | ,3529  |
| 40.6  | 54,65 | 3.6441       | 1,37         | ,6433 | -,5121  | 4017   |
| 40.8  | 54.55 | 3,9279       | 1,30         | .6507 | 4820    | ,4646  |
| 41.0  | 54.45 | 4.0137       | 1,23         | ,6585 | -,4534  | ,5488  |
| 41.2  | 54.37 | 4.1015       | 1,17         | .6666 | - 4265  | ,6064  |
| 41.4  | 54,28 | 4,1913       | 1,11         | 6752  | 7,4014  | ,8405  |
| 41.6  | 54,21 | 4,2837       | 1.05         | .0841 | -,3774  | 1,1333 |
| 41.8  | 54,13 | 4,3786       | 1,00         | 6935  | -,3545  | 1,7216 |
| 42.0  | 54.06 | 4.4760       | ,95          | ,/033 | -,3332  | 3,4762 |

Column 1 is the ratio E(i-1)X,/EX,

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TUTAL          | ETEP   | VAR            | VAR            | COVAR                  | MITE   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------------|----------------|------------------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERROR          | SIZE   | ERROR          | STEP           |                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |        |                |                |                        |        |
| 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1287.24        | .0436  | 13486,44       | .4672          | -6300.7309             | ,0186  |
| 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 657.37         | .0873  | 3370,81        | ,4673          | -1574,6860             | .0150  |
| 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 447,49         | .1310  | 1497,22        | ,4674          | -699,2888              | .0195  |
| 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 342,65         | .1747  | 841,62         | .4675          | -392,9991              | ,0199  |
| 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 279,81         | .2184  | 538,18         | ,4678          | -251,2332              | ,0204  |
| 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 237,95         | .2622  | 373,27 273,91  | 4680           | -174,1811<br>-127,7665 | 0209   |
| 28,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 185.77         | .3160  | 209,40         | 4686           | •97,6248               | 0219   |
| 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168.45         | 3938   | 165,25         | ,4690          | -77,0084               | 0224   |
| 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154.59         | 4379   | 133,55         | 4694           | -62,1936               | ,0229  |
| 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143.31         | .4320  | 110,20         | ,4699          | -51,2895               | 0235   |
| 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 133,92         | ,5262  | 92,38          | ,4704          | -42,9604               | ,0241  |
| 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126.00         | ,5705  | 78,51          | .4710          | -36,4805               | ,0247  |
| 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.23         | .6150  | 67,51          | ,4716          | -31,3399               | .0253  |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113.39         | ,6595  | 58,64          | 4722           | =27,1972               | 0260   |
| 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108,30         | .7342  | 51,39<br>45,38 | ,4730<br>,4737 | -23,8094               | 0266   |
| 30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.87          | 7940   | 40.33          | ,4745          | -18,6445               | 0281   |
| 30.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.35          | .8390  | 36,08          | 4754           | -16,6600               | .0288  |
| 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.20          | .8943  | 32,44          | ,4764          | -14,9601               | .0295  |
| 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.35          | .9299  | 29,29          | 4773           | -13,4906               | 0304   |
| 31.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.78          | 9755   | 26,58          | ,4783          | -12,2256               | .0313  |
| 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.45          | 1.0214 | 24,21          | ,4794          | -11,1143               | ,0322  |
| 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.33          | 1.0674 | 22,13          | .4805          | -10,1453               | ,0331  |
| 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.38<br>79.61 | 1.1138 | 20,29          | 4816           | +9,2838<br>+8,5304     | 0340   |
| 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77,97          | 1,1602 | 17,22          | 4842           | -7,8523                | .0361  |
| 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.46          | 1.2539 | 15,93          | 4856           | -7,2503                | 0372 - |
| 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.07          | 1,3612 | 14,76          | ,4870          | 96,7043                | .0383  |
| 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73,78          | 1,3487 | 13,71          | .4885          | -6,2149                | .0395  |
| 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72,57          | 1,3970 | 12,74          | ,4899          | -5,7633                | .0407  |
| 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.47          | 1.4447 | 11,59          | ,4916          | -5,3690                | 0420   |
| 33,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.42          | 1.4737 | 11,10          | 14931          | 74,9948                | 0434   |
| 33,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69,47          | 1.5420 | 10,39          | 4950           | 4,6687                 | 0445   |
| 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68,56          | 1,5917 | 9,72           | 4987           | -4,3554<br>-4,0814     |        |
| 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66,93          | 1.6909 | 8,57           | 5005           | -3,8193                | 0479   |
| 54.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66,19          | 1.7411 | 8.06           | ,5026          | -3,5821                | .0513  |
| 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.50          | 1,7917 | 7,59           | ,5047          | -3,3638                | .0532  |
| 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64,84          | 1,8432 | 7,15           | ,5067          | +3,1567                | ,0551  |
| 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64.23          | 1.8947 | 6,74           | ,5090          | +2,9691                | ,0572  |
| 35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63,65          | 1,9468 | 6,37           | ,5113          | -2,7933                | 0594   |
| 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.11          | 1,9990 | 5,69           | ,5138          | #2,6334<br>#2,4782     | 0617   |
| 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62.12          | 2,0525 | 5,39           | ,5162          | =2,3393                | .0567  |
| 36.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61.66          | 2.1600 | 5,10           | 5215           | -2,2056                | 0695   |
| 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61,23          | 2.2147 | 4,83           | ,5242          | -2,0811                | 0/24   |
| 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.83          | 2.2698 | 4,58           | ,>271          | -1,9659                | .0756  |
| 36.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.45          | 2,3757 | 4,35           | ,5300          | -1,8567                | 0789   |
| 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.09          | 2.3824 | 4,12           | .2331          | -1.7536                | ,0825  |
| 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59,74          | 2,4397 | 3,91           | ,5362          | -1,6568                | 10864  |
| The state of the s |                |        |                |                |                        |        |

| RATIO | TOTAL | STEP   | VAR<br>ERROR | VAR   | CQVAR   | MTTE    |
|-------|-------|--------|--------------|-------|---------|---------|
|       |       |        |              |       |         |         |
| 37.4  | 59.42 | 2.4776 | 3,72         | ,5395 | *1,5663 | .0906   |
| 37.6  | 59,12 | 2,5559 | 3,53         | ,5430 | -1,4824 | 0950    |
| 37.6  | 58,83 | 2,6153 | 3,36         | 5465  | -1,4016 | 0998    |
| 38.0  | 58,56 | 2,6755 | 3,19         | >501  | -1,3254 | 1051    |
| 38.2  | 58,30 | 2,7463 | 3,04         | 5540  | -1,2543 | 1107    |
| 38.4  | 58.06 | 2,7778 | 2 10         | ,>580 |         | 1169    |
| 38.6  |       |        | 2,89         |       | -1,1875 |         |
|       | 37.62 | 2,8511 | 2,74         | ,5619 | -1,1214 | ,1238   |
| 38.8  | 57.61 | 2,9242 | 2,61         | ,5663 | +1,0624 | ,1311   |
| 39.0  | 57,40 | 2,9891 | 2,49         | ,5706 | -1,0040 | ,1394   |
| 39.2  | 57.21 | 3.0346 | 2,37         | ,5751 | -,9498  | ,1484   |
| 39.4  | 57.02 | 3.1216 | 2,25         | ,5798 | -,8973  | ,1587   |
| 39,6  | 56,84 | 3,1894 | 2,14         | ,2847 | -,8483  | .1700   |
| 39.8  | 56,68 | 3.2579 | 2,04         | 5899  | -,8029  | ,1825   |
| 40.0  | 56,53 | 3,3281 | 1,94         | ,5951 | -,7587  | 1969    |
| 40.2  | 56.38 | 3.3997 | 1,85         | ,6006 | -,7107  | ,2135   |
| 40.4  | 56.24 | 3,4725 | 1,76         | ,0063 | -,6769  | ,2325   |
| 40.6  | 56.11 | 3,5470 | 1.67         | ,0122 | -,6385  | ,2549   |
| 40.8  | 55,98 | 3,6227 | 1,59         | ,6184 | -,6026  | ,2011   |
| 41.0  | 55,86 | 3,7001 | 1,51         | .6248 | -,5683  | 3127    |
| 41.2  | 55,76 | 3.7787 | 1,44         | ,0316 | -,5367  | 3504    |
| 41.4  | 55.65 | 3.8595 | 1,37         | 6386  | -,5056  | 3984    |
| 41.6  | 55,55 | 3,9420 | 1,30         | 6459  | - 4765  | 4594    |
| 41.8  | 55.46 | 4,0264 | 1,23         | 6535  | -,4489  | 5400    |
| 42.0  | 55.37 | 4,1129 | 1,17         | ,0615 | -,4227  | 6525    |
| 42.2  | 55.29 | 4.2016 | 1,11         | 6698  | - 3977  | 8157    |
| 42.4  | 55.21 | 4.2925 | 1,06         | 6785  | -,3742  | 1,0929  |
| 42.6  | 55,14 | 4.3858 | 1.00         | 6876  | -,3520  | 1,6220  |
| 42.8  | 55.07 | 4,4817 | ,95          | 6972  | -,3309  | 3,0916  |
| 43.0  | 55.01 | 4.5861 | 90           | 7072  | -,3112  |         |
|       | ,01   | 4,5001 | 1,0          | 1,015 | -10115  | 26,0159 |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| PATIO | TOTAL  | STEP   | VAR     | VAR    | COYAR     | MTTF   |
|-------|--------|--------|---------|--------|-----------|--------|
| RATIO |        |        |         |        | - YOYAC   |        |
|       | ERROR  | SIZE   | ERROR   | STEP   |           |        |
|       |        |        |         |        |           |        |
|       |        |        |         |        |           |        |
| 28.0  | 550.43 | .1072  | 2256,19 | ,4631- | 1044.4417 | ,0189  |
| 28.2  | 401,27 | .1501  | 1150,25 | ,4632  | -532,3402 | 0193   |
| 28.4  | 318,47 | ,1931  | 695,16  |        | -321,6234 | 0197   |
| 28.6  | 265.88 | .2360  | 465,03  |        | -215,1026 | ,0202  |
| 28.8  | 229.51 | .2790  | 332,64  |        | -153,8161 | ,0207  |
| 29.0  | 262.88 | 3721   | 249,54  |        | -115,3440 | ,0211  |
| 29.2  | 182.53 |        | 107 05  | 4645   | #89,5959  | ,0216  |
|       |        | .3652  | 193,95  |        |           | 0222   |
| 29.4  | 166,51 | .4084  | 154,98  | ,4649  | e71,5529  | 0222   |
| 29.6  | 153.58 | ,4517  | 126,64  | ,4653  | m58,4305  | . 0227 |
| 29.8  | 142,91 | 4751   | 105,34  | ,4658  | -48,5668  | 0232   |
| 30.0  | 133,99 | ,5385  | 88,97   | ,4663  | m40,9937  | ,0238  |
| 30.2  | 126,42 | .5820  | 76,11   | ,4669  | -35,0420  | . 0244 |
| 30.4  | 119.90 | , 5257 | 65,79   | 4675   | -30,2565  | 0250   |
| 30.6  | 114,25 | ,6695  | 57,42   | 4682   | -26,3886  | , U256 |
| 30.8  | 109.30 | .7134  | 50.52   | 4689   | -23,1924  | . 0263 |
| 31.0  | 104.94 | 7374   | 44,77   | 4697   | -20,5333  | 0270   |
| 31.2  | 101.06 | .8017  | 39,91   | 4704   | -18,2823  | 0277   |
| 31,4  | 97,60  | 8460   | 35 80   | 4713   | -16,3791  | 0284   |
| 31.4  |        |        | 35,80   |        | -14 7500  |        |
| 31.6  | 94,49  | ,6904  | 32,28   | ,4722  | -14,7500  | ,0292  |
| 31.8  | 91.69  | .9350  | 29,23   | 4732   | -13,3403  | 0300   |
| 32.0  | 89,15  | ,9799  | 26,58   | 4742   | -12,1112  | ,0308  |
| 32.2  | 86,84  | 1.0249 | 24,26   | 4752   | -11,0382  | 0316   |
| 32.4  | 84.72  | 1.0704 | 22,20   | ,4762  | -10,0851  | ,0325  |
| 32.6  | 82,79  | 1,1158 | 20,40   | ,4774  | -9,2531   | ,0335  |
| 32.8  | 81.01  | 1,1615 | 18,79   | 4786   | -8,5078   | . 0344 |
| 33.0  | 79.39  | 1,2073 | 17,37   | 4799   | -7,8501   | .0354  |
| 33,2  | 77,87  | 1,2537 | 16,07   | 4812   | -7,2484   | 0365   |
| 33.4  | 76.47  | 1,3001 | 14,91   | 4825   | -6.7142   | 0376   |
| 33.6  | 75.19  | 1,3465 | 13,88   | 4841   | -6,2373   | 0387   |
| 33.8  | 73,99  | 1,3935 | 12,93   | 4855   | -5,7984   | 0399   |
| 34.0  | 72.86  |        | 12 07   | 4871   | -5,3985   |        |
| 34.0  |        | 1,4409 | 12,07   |        |           | ,0412  |
| 34.2  | 71.83  | 1.4984 | 11,29   | .4887  | -5,0379   | ,0425  |
| 34.4  | 70.84  | 1,5367 | 10,56   | 4902   | -4,6988   | . 0438 |
| 34.6  | 69.94  | 1.5047 | 9,91    | ,4921  | -4,3996   | ,0453  |
| 34.8  | 69.09  | 1,6331 | 9,30    | ,4939  | -4.1227   | ,0468  |
| 35.0  | 68,29  | 1,6823 | 8,74    | ,4957  | -3,8623   | ,0484  |
| 35.2  | 67.54  | 1.7318 | 8,22    | 4976   | -3,6230   | ,0501  |
| 35.4  | 66,84  | 1,7813 | 7,75    | ,4997  | m3,4070   | 0>18   |
| 35.6  | 66,18  | 1,8315 | 7.31    | ,5017  | -3,2024   | .0537  |
| 35.6  | 65,55  | 1,8821 | 6,90    | ,5039  | -3,0136   | ,0556  |
| 36.0  | 64.97  | 1.9329 | 6,53    | ,5062  | -2,8406   | 0577   |
| 36.2  | 64.42  | 1,9845 | 6,17    | >0.85  | -2.0761   | .0599  |
| 36.4  | 63.90  | 2,0364 | 5,84    | 5109   | +2,5241   | 0622   |
| 36.6  | 63.41  | 2.0890 | 5,53    | 5133   | -2,3810   | 0046   |
| 36.8  |        | 2,1422 | F 24    | 5158   | -2,2470   | 0672   |
| 37 0  | 62,94  | 2 1057 | 5,24    |        | -2 1003   |        |
| 37.0  | 62.50  | 2,1957 | 4,97    | ,5185  | +2,1223   | .0700  |
| 37.2  | 62.69  | 2,2495 | 4,71    | ,5213  | -2.0071   | 0729   |
| 37.4  | 61.70  | 2,3041 | 4,47    | ,5241  | -1,8980   | 0761   |
| 37.6  | 61.34  | 2,3593 | 4,25    | ,5271  | -1,7950   | 0794   |
| 37.8  | 60.99  | 2,4152 | 4,04    | ,5302  | -1,6983   | Un30   |
| 38,0  | 60,66  | 2,4715 | 3,84    | ,5334  | -1,6082   | 0869   |
|       |        |        |         |        | ****      |        |

| RATIC | TOTAL | STEP     | VAR   | VAR   | COYAR   | MITE    |
|-------|-------|----------|-------|-------|---------|---------|
|       | ERROR | SIZE     | ERROR | STEP  |         |         |
|       |       |          |       |       |         |         |
| 38.2  | 60.34 | 2,5289   | 3,65  | ,5366 | -1,5212 | ,0910   |
| 38.4  | 60.05 | 2.5968   | 3,47  | ,5400 | -1,4401 | ,0755   |
| 38.6  | 59,77 | 2.6455   | 3,30  | ,5435 | -1,3633 | ,1003   |
| 38.8  | 59,50 | 2.7049   | 3,14  | ,5471 | m1,2910 | ,1055   |
| 39.0  | 59,25 | 2.7654   | 2,99  | ,5508 | -1,2215 | ,1112   |
| 39.2  | 59.01 | 2,8267   | 2,85  | ,5546 | m1,1558 | ,1175   |
| 39.4  | 58.79 | 2.8887   | 2,71  | ,5586 | -1,0941 | ,1245   |
| 39.€  | 58,57 | 2,9514   | 2,58  | ,5628 | -1,0364 | ,1316   |
| 39.8  | 58,37 | 3.0150   | 2,46  | ,5672 | -,9821  | 1397    |
| 40.0  | 58.18 | 3.0799   | 2,34  | ,5717 | -,9295  | ,1488   |
| 40.2  | 58.00 | 2.1462   | 2,23  | ,5763 | -,8787  | ,1590   |
| 40.4  | 57,83 | 3,2131   | 2,12  | ,5811 | -,8315  | .1702   |
| 40.6  | 57,67 | 3.2312   | 2,02  | ,5861 | -,7868  | ,1028   |
| 40.6  | 57.51 | . 3.3505 | 1,93  | ,5913 | -,7442  | ,1971   |
| 41.0  | 57,37 | 3,4208   | 1,64  | ,5968 | -,7043  | ,2133   |
| 41.2  | 57,23 | 3,4926   | 1,75  | ,0024 | -,6659  | ,2320   |
| 41.4  | 57,10 | 3.5660   | 1,66  | ,6082 | -,6290  | ,2540   |
| 41.6  | 56,98 | 3,6409   | 1,58  | ,6142 | -,5938  | . 2400  |
| 41.8  | 56.87 | 3.7169   | 1,51  | ,6206 | -,5612  | ,3105   |
| 42.0  | 56.76 | 3,7948   | 1,44  | 6272  | -,5296  | . 3481  |
| 42.2  | 56.65 | 3.8742   | 1,37  | 6341  | -,4999  | 3943    |
| 42.4  | 56,56 | 3,9556   | 1,30  | ,6412 | -,4714  | ,4538   |
| 42.6  | 56.47 | 4.0387   | 1,24  | ,6487 | -,4445  | ,5317   |
| 42.8  | 56,38 | 4,1239   | 1,17  | ,0564 | -,4190  | 6391    |
| 43.0  | 56,30 | 4,2114   | 1,12  | ,6645 | -,3944  | , 1985  |
| 43.2  | 56,22 | 4.3006   | 1,06  | ,6731 | -,3716  | 1,0507  |
| 43,4  | 56,15 | 4,3926   | 1,01  | 0819  | -,3496  | 1,5312  |
| 43,6  | 56.08 | 4.4868   | ,96   | ,0912 | -,3292  | 2.7456  |
| 43.8  | 56,02 | 4,5837   | ,91   | 7010  | -,3096  | 12,7050 |

Column 1 is the ratio E(i-1)X,/EX,

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and \$\phi\$: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO        | TOTAL   | STEP           | VAR              | VAR    | COVAR                 | MTTF   |
|--------------|---------|----------------|------------------|--------|-----------------------|--------|
|              | ERROR   | SIZE           | ERROR            | STEP   |                       |        |
|              |         |                |                  |        |                       |        |
| 28.2         | 1381.47 | . 5421         | 14743,30         | ,4589- | 6765,4178             | .0179  |
| 28.4         | 704.99  | .0942          | 3685.01          | .4590= | 1690.8573             | .0183  |
| 28.6         | 479.57  | .1264          | 1636,88          |        | -750,9398             | .0187  |
| 28.8         | 366.97  | .1686          | 920.22           |        | -422.0807             | ,0191  |
| 29.0         | 299.44  | .2108          | 588,37           |        | -269,7834             | ,0196  |
| 29.2         | 254.51  | .2530          | 408,26           | 4596   | -187 11490            | .0200  |
| 29.4         | 222.45  | ,2953          | 299,60           |        | -137,2834             | 0205   |
| 29.6         | 198.46  | ,3376          | 229,13<br>190,73 | ,4602  | -104,9587<br>c82,7414 | 0209   |
| 30.0         | 179,61  | .3800<br>.4225 | 146,10           | 4609   | -66,8433              | 0219   |
| 30.2         | 152.78  | 4650           | 120,54           | 4614   | -55,1179              | 0225   |
| 30.4         | 142,68  | 5077           | 101.05           | 4618   | .46,1696              | 0230   |
| 30.6         | 134.19  | 5503           | A5,96            | 4624   | -39,2515              | 0235   |
| 30.8         | 126.91  | 5931           | 73,93            | ,4630  | +33,7331              | ,0241  |
| 31.0         | 120,62  | ,6366          | 64,23            | 4636   | -29,2765              | , 9247 |
| 31.2         | 115.13  | 6791           | 56,28            | 4642   | -25.6308              | 0253   |
| 31.4         | 110.32  | .7223          | 49,71            | 4649   | +22,6147              | .0260  |
| 31.6         | 106,06  | .7655          | 44,21            | ,4657  | F20,0919              | 0266   |
| 31.8         | 102.26  | .8069          | 39,54            | ,4664  | -17,9504              | .0273  |
| 32.0         | 98.85   | ,8526          | 35,55            | .4672  | -16,1159              | 0880   |
| 32.2         | 95.79   | .8964          | 32,12            | ,4681  | -14,5456              | .0880  |
| 32.4         | 93.62   | .9403          | 29,16            | ,4690  | -13,1841              | .0295  |
| 32.6         | 90.50   | .9844          | 26,56            | 4700   | -11,9927              | ,0303  |
| 32.0         | 38,27   | 1,0285         | 24,30            | ,4711  | -10,9592              | .0311  |
| 33.0         | 84.20   | 1.0731         | 22,29            | 4721   | +10,0349<br>+9,2213   | 0320   |
| 33.4         | 82.43   | 1.1625         | 20,51            | 4745   | -8,4958               | 0338   |
| 33.6         | 80.79   | 1.2079         | 17,50            | 4756   | .7.8373               | 0348 - |
| 33,8         | 79.29   | 1.2531         | 16,23            | ,4770  | -7,2573               | 0358   |
| 34.0         | 77.88   | 1,2996         | 15,07            | 4782   | -6,7248               | 0369   |
| 34.2         | 76.59   | 1.3448         | 14.04            | 4790   | .0,2507               | 0380   |
| 34.4         | 75.39   | 1.3966         | 13,10            | ,4812  | -5,8250               | .0391  |
| 34.6         | 74,26   | 1,4371         | 12,24            | ,4826  | +5,4292               | 0403   |
| . 34.8       | 73.21   | 1.4342         | 11,45            | ,4841  | -5,0641               | .0416  |
| 35.0         | 72,23   | 1.5310         | 10,74            | .4858  | -4,7391               | 0429   |
| 35.2         | 71.31   | 1,5784         | 10,07            | ,4875  | -4,4365               | 0443   |
| 35.4         | 70.45   | 1.6263         | 9,47             | 4891   | -4.1567               | ,0457  |
| 35.6         | 69.64   | 1.6744         | 8,91             | 4909   | -3,9003               | 0472   |
| 35.B<br>36.0 | 68.89   | 1,7227         | 8,39<br>7,91     | 4928   | +3,6651               | ,0488  |
| 36.2         | 68.18   | 1,7714         | 7,47             | 4968   | +3,4474               | 0505   |
| 36.4         | 66.88   | 1,8698         | 7,06             | 4990   | -3,0592               | 0541   |
| 36.6         | 66,29   | 1,9201         | 6,67             | 5011   | -2,8814               | 0561   |
| 36.8         | 65.73   | 1.9704         | 6,32             | ,5034  | +2,7199               | ,0581  |
| 37.0         | 65.20   | 2.0213         | 5,98             | 5057   | -2,5672               | 0603   |
| 37.2         | 64.70   | 2.0728         | 5,67             | 0800   | +2,4237               | .0627  |
| 37.4         | 64.23   | 2,1243         | 5,39             | ,5104  | -2,2894               | 0651   |
| 37.6         | 63.78   | 2.1772         | 5.10             | ,5130  | -2,1645               | .0677  |
| 37.8         | 63,36   | 2,2793         | 4,35             | ,5157  | -2,0492               | 0705   |
| 38.0         | 62,97   | 2,2831         | 4,61             | , >185 | -1,9400               | .0734  |
| 38.2         | 62,58   | 2,3376         | 4,37             | ,5575  | -1,8336               | .0760  |
|              |         |                |                  |        |                       |        |



| RATIO | TOTAL | STEP   | YAR   | VAR   | COVAR   | MITE   |
|-------|-------|--------|-------|-------|---------|--------|
|       | ERROR | SIZE   | FRHUR | STEP  |         |        |
| 70 4  | 40.07 |        |       | 5010  |         | 0700   |
| 38.4  | 62.23 | 2.3720 | 4,16  | ,5242 | -1,7371 | ,0799  |
| 38.6  | 61.89 | 2,4476 | 3,95  | ,5271 | -1.6437 | ,0836  |
| 38.8  | 61,57 | 2,5035 | 3,76  | ,5303 | -1,5571 | ,0574  |
| 39.0  | 61.27 | 2,5596 | 3,58  | ,>336 | -1,4772 | ,0915  |
| 39.2  | 60.98 | 2.6173 | 3,41  | ,5369 | -1,3983 | ,0960  |
| 39.4  | 60,71 | 2,6754 | 3,25  | ,2403 | -1,3248 | ,1009  |
| 39.6  | 60.45 | 2.7341 | 3,09  | ,5439 | +1.2558 | ,1061  |
| 39.8  | 60.20 | 2.7935 | 2,95  | ,5477 | #1.1907 | ,1117  |
| 40.0  | 59,97 | 2.8536 | 2,81  | ,5516 | 11,1296 | 1178   |
| 40.2  | 59.75 | 2.9153 | 2,68  | ,5555 | 71,0692 | ,1246  |
| 40.4  | 59,54 | 2.9776 | 2,55  | ,5595 | -1.0129 | .1321  |
| 40.6  | 59.35 | 3.0403 | 2,43  | ,5639 | -,9610  | ,1401  |
| 40.A  | 59.16 | 3.1045 | 2,32  | ,5683 | -,9100  | ,1491  |
| 41.0  | 58,98 | 3,1698 | 2,21  | ,5728 | -,8615  | ,1592  |
| 41.2  | 58,81 | 3,2360 | 2,11  | ,5776 | -,8158  | 1703   |
| 41.4  | 58.66 | 3,3030 | 2,01  | ,5826 | -,7732  | 1827   |
| 41.6  | 58.51 | 3.3715 | 1,92  | ,5A77 | -,7319  | 1469   |
| 41.8  | 58,36 | 3,4414 | 1,83  | ,5929 | -,6921  | 2132   |
| 42.0  | 58,23 | 3.5124 | 1,74  | 5985  | -,6547  | 2318   |
| 42.2  | 58.10 | 3,5847 | 1,66  | ,0042 | -,6194  | 2534   |
| 42.4  | 57,98 | 3,6585 | 1,58  | ,0101 | -,5854  | 2789   |
| 42.6  | 57,87 | 3.7337 | 1,50  | 6163  | +,5532  | 3092   |
| 42.8  | 57.76 | 3,8103 | 1,43  | 6228  | 5230    | 3456   |
| 43.0  | 57,65 | 3,8868 | 1,36  | 6296  | -,4939  | 3911   |
| 43.2  | 57.56 | 3,9688 | 1,30  | 6366  | -,4664  | 4484   |
| 43.4  | 57.47 | 4.0508 | 1,24  | 6439  | -,4402  | ,5237  |
| 43.6  | 57.39 | 4,1348 | 1,18  | 0515  | -,4149  | 6277   |
| 43,8  | 57.31 | 4,2206 | 1,12  | 6595  | 9,3915  | 7761   |
| 44.0  | 57.23 | 4.3088 | 1,06  | ,6677 | -,3688  | 1,0146 |
| 44,2  | 57,16 | 4,3990 | 1,01  | .0764 | -,3477  | 1,4440 |
| 44.4  | 57.09 | 4,4919 | 96    | 6854  | -,3273  | 2,4851 |
| 44.6  | 57.03 | 4,5871 | ,91   | 6949  | -,3082  | 8,3549 |
| 17,0  | -7,00 | 413017 | 1,7   | 1414, | - Judos | 410041 |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and  $\phi$ : in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL  | STEP           | VAR<br>ERROR | VAR    | COVAR                | MTTF .  |
|-------|--------|----------------|--------------|--------|----------------------|---------|
| 29.0  | 589.35 | 1035           | 2462,10      | .4550- | 1119,7692            | .0182   |
| 29.2  | 429,42 | .1449          | 1255,93      |        | -571.1641            | 0186    |
| 29,4  | 340.61 | 11964          | 759,22       | 4553   | -345,1895            | 0190    |
| 29.6  | 284.14 | .2279          | 507,71       | ,4555  | -230,7611            | .0194   |
| 29.8  | 245.15 | .2694          | 363,25       | ,4558  | -165,0625            | ,0198   |
| 30.0  | 216,52 | .3110          | 272,43       | ,4560  | -123,7327            | ,0203   |
| 30.2  | 194.72 | .3525          | 211,86       | ,4564  | -96,1856             | .0207   |
| 30.4  | 177,53 | .3942          | 169,35       | ,4567  | -76,8498             | ,0212   |
| 30.6  | 163.62 | .4360          | 138,34       | .4571  | -62,7323             | .0217   |
| 30.8  | 152.18 | ,4778          | 115,12       | ,4575  | -52,1689             | .0222   |
| 31.0  | 142.61 | .5197          | 97,27        | 4580   | +44.0566             | ,0227   |
| 31.2  | 134,46 | .5617          | 83,20        | 4585   | -37,6533             | ,0233   |
| 31.4  | 127.45 | .0039          | 71.92        | 4591   | -32,5189             | ,0238   |
| 31.6  | 121.37 | .6461          | 62,77        | 4597   | -28,3593             | .0244   |
| 31.8  | 116.06 | .6863          | 55,26        | 4604   | -24,9442             | ,0250   |
| 32.2  | 111.36 | ,73c8<br>,7733 | 48,96        | 4618   | -22,0762<br>-19,6790 | 0263    |
| 32.4  | 103,48 | 8160           | 39,19        | 4625   | -17,6345             | 0269    |
| 32.6  | 100.12 | 8590           | 35,32        | 4633   | -15,8712             | 0276    |
| 32.8  | 97.10  | .9020          | 32,00        | .4642  | -14,3612             | 0284    |
| 33.0  | 94,37  | 9451           | 29,11        | 4651   | -13,0489             | 0291    |
| 33.2  | 91,83  | 9884           | 26,57        | .4661  | -11,8958             | 0299    |
| 33.4  | 89.60  | 1.0321         | 24,34        | ,4670  | -10,8777             | ,0307   |
| 33.6  | 87,52  | 1.0757         | 22,37        | ,4681  | -9,9831              | ,0315   |
| 33.8  | 85,61  | 1.1196         | 20,62        | ,4692  | -9.1887              | .0324   |
| 34.0  | 83,84  | 1.1638         | 19,05        | ,4703  | 98,4724              | , 0333  |
| 34.2  | 82,21  | 1,2082         | 17,64        | ,4715  | -7,8353              | ,0342   |
| 34.4  | 79.30  | 1.2529         | 16,37        | 4727   | -7,2563<br>-6,7462   | ,0352 - |
| 34.8  | 78.00  | 1.3426         | 15,25        | 4755   | +6,2748              | 0362    |
| 35.0  | 76.78  | 1,3981         | 13,26        | 4768   | -5,8431              | 0384    |
| 35.2  | 75.65  | 1,4338         | 12,40        | 4782   | -5,4516              | 0395    |
| 35.4  | 74.65  | 1,4795         | 11,63        | 4798   | -5,1005              | .0407   |
| 35.6  | 73.61  | 1,5259         | 10,90        | 4813   | -4,7716              | .0420   |
| 35.8  | 72,69  | 1,5722         | 10,25        | ,4830  | -4,4745              | ,0435   |
| 36.0  | 71,83  | 1.6189         | 9,64         | ,4848  | -4,2006              | .0447   |
| 36.2  | 71,01  | 1,6564         | 9.07         | 4864   | 93,9416              | .0461   |
| 36.4  | 70.24  | 1,7137         | 8,56         | ,4883  | -3,7085              | 0477    |
| 36.6  | 69.52  | 1,7617         | 8,07         | ,4901  | -3,4890              | 0493    |
| 36.8  | 68,85  | 1.8097         | 7,63         | 4921   | *3,2895              | ,0509   |
| 37.2  | 67,60  | 1,8586         | 7,21         | 4941   | -3,0982<br>-2,9233   | ,0527   |
| 37.4  | 67.04  | 1,9570         | 6,83         | 4983   | -2,7610              | ,0546   |
| 37.6  | 66.50  | 2.0069         | 6,13         | >005   | -2,6077              | 0586    |
| 37 .H | 66.00  | 2.0570         | 5,82         | ,5029  | -2,4673              | 0000    |
| 38.0  | 65,52  | 2.1079         | 5,52         | ,>053  | -2,3326              | 0631    |
| 38.2  | 65,06  | 2,1592         | 5,24         | ,5078  | -2,2075              | 0656    |
| 38.4  | 64,63  | 2.2112         | 4,98         | ,>102  | -2,0885              | .0682   |
| 38.6  | 64.23  | 2.2632         | 4,73         | 5129   | -1,9793              | .0710   |
| 38.8  | 63.84  | 2,3165         | 4,50         | ,5156  | -1,8729              | ,0739   |
| 39.0  | 63,48  | 2.3696         | 4,28         | , >185 | -1,7766              | ,0771   |

| RATIO | TOTAL | STEP   | VAR   | YAR    | COVAR   | MITE   |
|-------|-------|--------|-------|--------|---------|--------|
|       | EKAOA | SIZE   | FRROR | STEP   |         |        |
| 39.2  | 63,13 | 2,4238 | 4,08  | ,5213  | -1,6834 | .0804  |
| 39.4  | 62.80 | 2.4782 | 3,88  | , 2244 | -1,5970 | .0840  |
| 39.6  | 62.49 | 2.5336 | 3.70  | , >275 | -1,5141 | .0879  |
| 39.8  | 62.19 | 2.3499 | 3,52  | ,5306  | -1,4347 | 0920   |
| 40.0  | 61.92 | 2,6461 | 3,36  | ,>340  | -1,3624 | 0464   |
| 40.2  | 61,65 | 2.7040 | 3,20  | ,5374  | -1,2905 | 1015   |
| 40.4  | 61.40 | 2,7616 | 3,05  | ,5410  | -1.2259 | ,1064  |
| 40.6  | 61.16 | 2.8209 | 2,91  | ,5446  | -1,1620 | 1121   |
| 40.8  | 60,93 | 2,4300 | 2.78  | ,5484  | -1,1022 | 1183   |
| 41.0  | 60.72 | 2,9411 | 2,65  | , >524 | -1.0457 | ,1250  |
| 41.2  | 69.52 | 3.0025 | 2,53  | ,5564  | -,9919  | ,1325  |
| 41.4  | 60,32 | 3,0649 | 2.41  | ,2606  | -,9408  | ,1404  |
| 41.6  | 60.14 | 3.1284 | 2.30  | ,5650  | -,8916  | ,1494  |
| 41.8  | 59,96 | 3.1930 | 2,19  | ,5694  | -,8446  | ,1594  |
| 42.0  | 59.80 | 3,2581 | 2,09  | ,5742  | -,0013  | 1/03   |
| 42.2  | 59,65 | 3,3245 | 2,00  | ,>790  | -,7595  | ,1427  |
| 42.4  | 59.50 | 3,3923 | 1,90  | ,5840  | -,7192  | ,1969  |
| 42.6  | 59,36 | 3,4611 | 1,82  | ,5893  | -,6813  | ,2128  |
| 42.8  | 59,23 | 3,5310 | 1,73  | ,5947  | -,6454  | ,2310  |
| 43.0  | 59.10 | 3,6027 | 1,65  | ,6003  | -,6104  | ,2525  |
| 43.2  | 58,98 | 3,6754 | 1,57  | .6062  | -,5777  | .2775  |
| 43.4  | 58,87 | 3,7494 | 1,50  | ,6125  | -,5469  | , 5069 |
| 43.6  | 58.76 | 3.8254 | 1,43  | ,0186  | -,5167  | ,3431  |
| 43.8  | 58,66 | 3,9026 | 1,36  | ,6252  | -,4867  | 3871   |
| 44.0  | 58,57 | 3,9816 | 1,30  | ,0321  | -,4616  | ,4431  |
| 44.2  | 58.48 | 4.0625 | 1,24  | ,6392  | -,4359  | ,5160  |
| 44.4  | 58,39 | 4.1452 | 1,18  | ,6466  | -14114  | ,6153  |
| 44.6  | 58.31 | 4.2297 | 1,12  | .0544  | -,3864  | 7568 - |
| 44.8  | 58.24 | 4.3164 | 1.07  | ,0626  | -,3666  | ,9768  |
| 45.0  | 58,17 | 4.4055 | 1,02  | ,6710  | -,3454  | 1,3716 |
| 45.2  | 58.10 | 4.4967 | 97    | ,6798  | -,3256  | 2,2638 |
| 45.4  | 58.63 | 4.5904 | 192   | ,6890  | -,3068  | 6,2316 |
|       |       |        |       |        |         |        |

Column 1 is the ratio E(i-1)X,/EX,

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between II and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

Column 7 is the normed MTTF and in order to obtain the actual value the entry should be multiplied by T.

Software Burney Burney

| RATIO | TOTAL          | STEP   | VAR         | VAR    | COVAR                | MTTF  |
|-------|----------------|--------|-------------|--------|----------------------|-------|
|       | ERROR          | SIZE   | ERROR       | STEP   |                      |       |
|       | ENNO           | 3126   | E IIII O II | - 1    |                      |       |
|       |                |        |             |        |                      |       |
| 29.2  | 1479.26        | .0407  | 16075,64    | .4511= | 7251,2774            | .0173 |
| 29.4  | 754.27         | .0814  | 4016,17     |        | 1011,1695            | ,0177 |
| 29.6  | 512.82         | ,1721  | 1784,71     | 4512   | -804,8155            | .0160 |
| 29.8  | 392.11         | .1628  | 1003.05     |        | -452,1975            | ,0184 |
| 30.0  | 319.80         | .2036  | 641,64      |        | -289,2209            | ,0189 |
| 30.2  | 271,62         | ,2444  | 445,13      |        | -200,5770            | 0192  |
| 30.4  | 237,25         | .2852  | 326,66      |        | -147 -1360           | ,0197 |
| 30.6  | 211.53         | .3261  | 249,81      |        | -112,4709            | ,0201 |
| 30.8  | 191,56         | .3670  | 197,16      | 4526   | -88,7375             | 0206  |
| 31.0  | 175.60         | .4080  | 159,42      | 4530   | m71,7114             | ,0210 |
| 31.2  | 162,58         | ,4491  | 131,53      | ,4534  | -59,1294             | ,0215 |
| 31.4  | 151,75         | .4902  | 110.29      | 4538   | 49,5472              | .0220 |
| 31.6  | 142.61         | .5315  | 93,77       | ,4542  | -42,0932             | 0225  |
| 31.8  | 134,60         | .5728  | 60,67       | 4547   | -36,1851             | 0230  |
| 32.0  | 128,06         | ,6142  | 70,11       |        | -31,4238<br>-27,5291 | 0241  |
| 32.2  | 122.18         | .6557  | 61,47       | 4559   |                      | 0247  |
| 32.4  | 117.61         | ,6973  | 54.30       | 4572   | m24,2958             | 0253  |
| 32.6  | 112,43         | 7390   | 48,29       | 4579   | -21,5845             | 0259  |
| 32.8  | 108,34         | .7810  | 43,18       | 4587   | -19,2801<br>-17,3356 | 0266  |
| 33.0  | 134,70         | .8229  | 33,86       | 4595   | -15 6455             | 0273  |
| 33,2  | 101.40         | ,8551  | 35,12       | 4603   | n15,6455             | 0280  |
| 33.4  | 98.42          | .9074  | 31,88       | ,4612  | -12,9085             | 0287  |
| 33.8  | 95.71<br>93.25 | 9925   | 26,58       | 4622   | -11,7951             | 0294  |
| 34.0  | 90.98          | 1.0354 | 24,39       | 4631   | m10,8059             | 0302  |
| 34.2  | 88,91          | 1,0784 | 22,44       | 4642   | -9,9297              | 0310  |
| 34,4  | 87.01          | 1.1215 | 20,72       | 4653   | -9,1551              | 0310  |
| 34.6  | 85,25          | 1,1648 | 19,18       | 4664   | -8,4597              | 0327  |
| 34.8  | 83,62          | 1,7064 | 17,79       | 4676   | e7,8334              | .0336 |
| 35.0  | 82,11          | 1,2523 | 16,53       | 4688   | -7.2660              | 0345  |
| 35.2  | 80.71          | 1,2963 | 15,40       | 4701   | -6,7561              | .0355 |
| 35.4  | 79,40          | 1.3408 | 14,37       | ,4713  | +0,2898              | 0366  |
| 35,6  | 78,19          | 1,3352 | 13,44       | 4727   | -5,8717              | 0376  |
| 35.8  | 77.06          | 1,4301 | 12,58       | ,4741  | -5,4845              | 0367  |
| 36.0  | 75.99          | 1.4754 | 11,79       | ,4755  | -5,1289              | 0399  |
| 36.2  | 75,00          | 1,5208 | 11,07       | 4770   | -4,8054              | ,0411 |
| 36.4  | 74.07          | 1,5661 | 10,42       | ,4788  | m4,5138              | .0424 |
| 36.6  | 73.20          | 1,6122 | 9,81        | ,4803  | -4,2370              | 0437  |
| 36.8  | 72,37          | 1,6585 | 9,24        | ,4820  | -3,9841              | ,0451 |
| 37.6  | 71.60          | 1.7052 | 8,72        | ,4838  | -3,7490              | 0469  |
| 37.2  | 70.87          | 1.7522 | 8,24        | .4856  | -3,5318              | ,0481 |
| 37.4  | 70.19          | 1,7994 | 7,79        | ,4875  | -3,3308              | 0497  |
| 37.6  | 69,54          | 1,8472 | 7,37        | ,4894  | -3,1422              | 0514  |
| 37.6  | 68,93          | 1,5954 | 6,98        | 4914   | -2,9662              | ,0531 |
| 38.0  | 68,35          | 1,9439 | 6,62        | 4935   | -2,8030              | 0550  |
| 38.2  | 67,80          | 1,9929 | 6,27        | 4956   | -2,6491              | ,0570 |
| 38.4  | 67.29          | 2.0420 | 5,96        | 4979   | -2,5082              | 0990  |
| 38.6  | 66.80          | 2.0919 | 5,66        | ,>002  | -2,3731              | ,0613 |
| 38.8  | 66.34          | 2.1421 | 5,38        | ,5026  | -2,2478              | 0636  |
| 39.0  | 65.49          | 2.1930 | 5,11        | ,5050  | -2,1265<br>-2,0193   | 0086  |
| 37.7  | 05,4"          | 2,2440 | 7,00        | ,-0,0  |                      | 10000 |

| RATIO | TOTAL | STEP<br>SIZE | VAR  | STEP         | COVAR   | MITF   |
|-------|-------|--------------|------|--------------|---------|--------|
| 39.4  | 65.10 | 2.2760       | 4,63 | ,5102        | -1,9129 | ,0/14  |
| 39.6  | 64,72 | 2.3485       | 4,40 | ,5128        | -1,8132 | ,0744  |
| 39.8  | 64,37 | 2.4014       | 4,20 | ,5156        | -1,7202 | 0776   |
| 40.6  | 64.04 | 2,4545       | 4.00 | ,5186        | -1.6341 | .0609  |
| 40.2  | 63.71 | 2.5092       | 3,61 | ,5214        | r1,5460 | 0.845  |
| 40.4  | 63,42 | 2.5632       | 3,64 | ,5247        | -1,4724 | ,0683  |
| 40.6  | 63.13 | 2.6187       | 3,47 | ,5278        | -1,3971 | 0925   |
| 40.8  | 62,66 | 2.6749       | 3,31 | ,5311        | -1,3257 | ,0969  |
| 41.0  | 62,60 | 2.7318       | 3,15 | ,5344        | -1,2562 | .1018  |
| 41.2  | 62,35 | 2.7893       | 3,01 | ,5380        | -1,1948 | ,1069  |
| 41.4  | 62,12 | 2.8472       | 2,87 | .5417        | -1,1355 | ,1125  |
| 41.6  | 61.90 | 2.9966       | 2,74 | ,5454        | -1,0771 | ,118/  |
| 41.6  | 61.69 | 2.9663       | 2,62 | ,5493        | -1.0230 | ,1253  |
| 42.0  | 61.49 | 3.0275       | 2,50 | ,5532        | -,9700  | 1327   |
| 42.2  | 61.30 | 3.6888       | 2,39 | 5574         | -,9215  | 1407   |
| 42.4  | 61.12 | 3.1515       | 2,28 | ,5617        | -,6743  | 1565   |
| 42.6  | 60,95 | 3,2153       | 2,18 | ,5661        | -,8292  | 1704   |
| 42.8  | 60.79 | 3,2796       | 2.08 | 5708<br>5756 | -,7872  | 1026   |
| 43.0  | 60.64 | 3,3453       | 1,98 | 5805         | -,7074  | 1967   |
| 43.4  | 60.35 | 3,4124       | 1,81 | 5856         | -,6706  | 2125   |
| 43.6  | 60.22 | 3,4804       | 1.73 | >910         | -,6359  | 2304   |
| 43.8  | 60,10 | 3.6200       | 1,65 | 5965         | -,6022  | 2715   |
| 44.0  | 59,98 | 3,6918       | 1,57 | .0023        | -,5703  | 2760   |
| 44.2  | 59.87 | 3,7652       | 1,50 | 6082         | -,5396  | 3054   |
| 44.4  | 59.77 | 3,8398       | 1,43 | ,0145        | -,5109  | 3403   |
| 44,6  | 59,67 | 3.9161       | 1,36 | 0210         | -,4835  | 3833   |
| 44.8  | 59,57 | 3,9941       | 1,30 | 6276         | -,4569  | 4380   |
| 45.0  | 59.48 | 4.6737       | 1,24 | 6346         | -,4320  | 5082   |
| 45.2  | 59.40 | 4.1553       | 1.18 | ,6419        | -,4081  | .0034  |
| 45.4  | 59.32 | 4.2386       | 1,13 | 6495         | -,3855  | 7382   |
| 45.6  | 59.24 | 4,3241       | 1,07 | , 6574       | -,3638  | ,9462  |
| 45.8  | 59,17 | 4.4116       | 1,02 | ,6657        | -,3434  | 1,3046 |
| 46.0  | 59,11 | 4,5014       | ,97  | ,6743        | -,3240  | 2.0737 |
| 46.2  | 59.04 | 4,5935       | ,92  | ,6833        | -,3056  | 4,9350 |
|       |       |              |      |              |         |        |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

| RATIO | TOTAL                      | STEP   | VAR .   | VAR     | COVAR    | MITE   |
|-------|----------------------------|--------|---------|---------|----------|--------|
|       | CHAON                      | 31213  | Z.W.O   |         |          |        |
| 30.0  | 629.71<br>458.53<br>363.49 | .1000  | 2680.47 | .4474-1 | 198,6596 | ,0175  |
| 30.2  | 458,53                     | .1401  | 1367,24 | 4475 -  | 611,3529 | ,0179  |
| 30.4  | 363,49                     | 11ª01  | 020,00  | 4477 -  | 369,5852 | 0163   |
| 30.6  | 303.02                     | .2203  | 552.74  | .4478 - | 247.0182 | ,0187  |
| 30.8  | 261.25                     | .2604  | 395,48  | ,4481 - | 176,6999 | ,0191  |
| 31.0  | 230.64                     | .3065  | 296,66  | 4483 -  | 132,4880 | ,0195  |
| 31.2  | 247.29                     | .3407  | 230,72  |         | 103,0024 | 0199   |
| 51.4  | 188.86                     | .3910  | 184,38  | ,4489   | -82,2666 | ,0204  |
| 31.6  | 174.01                     | .4213  | 150,75  | ,4493   | m67,2359 | ,0208  |
| 31.8  | 161.73                     | .4618  | 125.41  | ,4497   | m55,8923 | ,0213  |
| 32.0  | 151.45                     | . 2023 | 105,91  | .4501   | m47,1669 | ,0218  |
| 32.2  | 142.74                     | .5428  | 90,65   | ,4506   | #40,3505 | ,0223  |
| 32.4  | 135,24                     | ,5034  | 78,40   | ,4511   | m34,8731 | 0228   |
| 32.6  | 128.72                     | .6242  | 68,43   | ,4516   | m30,4121 | .0233  |
| 32.8  | 123.02                     | .6650  | 60,25   | 4523    | -26,7514 | 0239   |
| 33.0  | 117.99                     | .7060  | 53,40   | 4529    | -23,6879 | .0244  |
| 33.2  | 113,52                     | 7470   | 47,65   |         | -21,1184 | 0250   |
| 33.4  | 109,52                     | ,7882  | 42,75   | 4543    | -18,9277 | 0256   |
| 33.6  | 105.92                     | ,9297  | 38,54   | 4549    | -17,0396 | 0262   |
| 33.8  | 102.66                     | 6711   | 34,92   | 4558    | -15,4250 | .0269  |
| 34,0  | 99.73                      | 9128   | 31,77   | 4566    | -14,0126 | 0276   |
| 34.2  | . 27.07                    | ,9544  | 29,03   | .4575   | -12,7896 | .0283  |
| 34.4  | 94.62                      | 9963   | 26,60   | 4584    | -11,7037 | 0290   |
| 34.6  | 92,38                      | 1.0384 | 24,45   | 4594    | -10,7439 | 0297   |
| 34.A  | 90.31                      | 1.0908 | 22,53   | 4604    | -9,8865  | 0305   |
| 35.0  | 88.41                      | 1,1234 | 20,82   | .4614   | -9,1207  | .0313  |
| 35.2  | 86.65                      | 1,1661 | 19,29   | .4624   | -6,4357  | .0322  |
| 35.4  | 85.03                      | 1,2090 | 17,92   | 4636    | .7,8208  | 0330   |
| 35.6  | 83.52                      | 1,2521 | 16,67   | .4647   | -7,2657  | .0340  |
| 35.8  | 82,13                      | 1,2952 | 15,56   | .4661   | -6,7706  | 0349   |
| 36.0  | 86,81                      | 1,3390 | 14,53   | 4673    | -6,3057  | 0.359  |
| 36.2  | 79.59                      | 1.3927 | 13,60   | 4686    | -5,8916  | 0369   |
| 36.4  | 76,45                      | 1,4269 | 12,74   | 4700    | -5,5089  | . 0380 |
| 36.6  | 77.38                      | 1,4713 | 11,96   | ,4714   | -5,1584  | .0391  |
| .36.2 | 76.38                      | 1.5158 | 11,24   | 4729    | ±4,8402  | ,0403  |
| 37.0  | 75,45                      | 1,5606 | 10,58   | ,4744   | -4,5455  | ,0415  |
| 37.2  | 74.57                      | 1,6057 | 9,97    | ,4761   | £4,2746  | .0428  |
| 37.4  | 73,73                      | 1.6514 | 9,40    | 4776    | -4,0194  | .0441  |
| 37.6  | 72.96                      | 1.6968 | 8,89    | 4795    | -3,7906  | . 0455 |
| 37.8  | 72.22                      | 1.7431 | 8,40    | 4812    | -3,5710  | 0469   |
| 38.0  | 71.52                      | 1.7997 | 7,94    | ,4830   | -3,3692  | . 0485 |
| 38.2  | 70.87                      | 1.6364 | 7,53    | ,4849   | -3,1833  | 0501   |
| 38.4  | 70.25                      | 1,6838 | 7.13    | 4868    | -3,0063  | ,0518  |
| 38.6  | 69.67                      | 1.9310 | 6.77    | .4889   | -2,8461  | ,0535  |
| 38,8  | 69,11                      | 1,9752 | 6,42    | ,4909   | -2,6914  | 0554   |
| 39.0  | 68,59                      | 2.0279 | 6,17    | \$930   | -2,5463  | ,0>74  |
| 39.2  | 68.10                      | 2.0763 | 5.80    | ,4953   | +2,4145  | 0595   |
| 39.4  | 67.63                      | 2.1255 | 5,51    | ,4976   | m2,2888  | ,0617  |
| 39.6  | 67,18                      | 2,1754 | 5,24    | ,5000   | -2,1694  | 0640   |
| 39.8  | 66,76                      | 2,2258 | 4,99    | ,5024   | -2,0565  | 0065   |
| 40.0  | 66,35                      | 2,2767 | 4,75    | ,5049   | -1,9501  | ,0691  |
|       |                            |        |         |         |          |        |

| RATIO | TOTAL | STEP   | VAR   | VAR    | COVAR    | MTTF    |
|-------|-------|--------|-------|--------|----------|---------|
|       | ERROR | SIZE   | ERHOR | STEP   |          |         |
|       |       |        |       |        |          |         |
| 40.2  | 65.97 | 2.3280 | 4,53  | ,5074  | -1,8505  | ,0719   |
| 40.4  | 65.61 | 2.3796 | 4.32  | ,5102  | -1,7577  | .0749   |
| 40.6  | 65,27 | 2,4321 | 4,11  | >129   | -1,6683  | 0780    |
| 40.8  | 64.95 | 2.4847 | 3,93  | ,5158  | -1,5859  | .0813   |
| 41.0  | 64.64 | 2.5381 | 3,75  | ,5168  | -1,5072  | 0849    |
| 41.2  | 64,35 | 2,5921 | 3,58  | ,>219  | +1,4323  | .0487   |
| 41.4  | 64.07 | 2.6470 | 3,41  | ,5250  | -1,3604  | 0929    |
| 41.6  | 63.80 | 2.7030 | 3,26  | .5282  | -1,2908  | .0974   |
| 41.8  | 63.55 | 2,7588 | 3,11  | 5316   | *1,2279  | 1921    |
| 42.0  | 63.31 | 2,8160 | 2,97  | 5350   | F1.1658. | ,1074   |
| 42.2  | 63.08 | 2,6736 | 2,84  | 5386   | +1,1079  | ,1130   |
| 42.4  | 62,87 | 2.9317 | 2,71  | ,5424  | +1,0536  | ,1190   |
| 42.6  | 62.66 | 2.9969 | 2,59  | 5462   | -1,0012  | ,1257   |
| 42.8  | 62.46 | 3.0512 | 2,48  | >502   | -,9508   | ,1330   |
| 43.0  | 62,28 | 3,1121 | 2,37  | ,5543  | - 9033   | 1410    |
| 43.2  | 62.10 | 3,1740 | 2,26  | >585   | -,8581   | 1498    |
| 43.4  | 61.94 | 3,2367 | 2,16  | ,>630  | -,8151   | 1595    |
| 43.6  | 61,78 | 3,3010 | 2,06  | ,5674  | -,7.727  | 1706    |
| 43.8  | 61.63 | 3.3655 | 1,97  | ,5722  | -,7345   | 1025    |
| 44.0  | 61.46 | 3.4319 | 1,88  | .5770  | -,6962   | ,1965   |
| 44.2  | 61,35 | 3.4988 | 1,80  | 5821   | -,6610   | 2119    |
| 44.4  | 61.22 | 3,5673 | 1,72  | ,5874  | -,6266   | 2299    |
| 44.6  | 61.10 | 3,6371 | 1,64  | ,5928  | -,5938   | ,2507   |
| 44.8  | 60,58 | 3.7077 | 1,57  | , >985 | 7,5633   | ,2745   |
| 45.0  | 60,87 | 3.7801 | 1,50  | ,6043  | -,5336   | 3032    |
| 45.2  | 60.77 | 3,6540 | 1,43  | .6104  | -,5051   | 3378    |
| 45.4  | 60,67 | 3,9292 | 1,36  | ,0168  | -,4783   | 3798    |
| 45.6  | 60,58 | 4,0062 | 1,30  | 6233   | -,4525   | ,4528 - |
| 45.8  | 60.49 | 4,6847 | 1,24  | .6302  | -,4281   | ,5008   |
| 46.0  | 60,41 | 4,1651 | 1,18  | 6373   | 7,4048   | 5920    |
| 46.2  | 60.33 | 4,2472 | 1,13  | 6447   | -,3826   | ,7204   |
| 46.4  | 60.25 | 4,3313 | 1,08  | ,6525  | -,3616   | ,9137   |
| 46,6  | 60.18 | 4,4175 | 1,02  | 0605   | -,3415   | 1,2425  |
| 46.8  | 60.12 | 4,5061 | ,98   | ,6689  | -,3222   | 1,9238  |
| 47.0  | 60.05 | 4.5966 | ,93   | ,6777  | -,3043   | 4,0970  |
|       |       |        |       |        |          |         |

Column 2 is the estimate for the total error content

Column 3 is the normed estimate for step size: in order to determine the actual estimate for the step size, the entry in this column should be divided by the total observation time T.

Column 4 is the approximate standard deviation of the estimate of the total error content.

Column 5 is the normed standard deviation of the estimate of the step size: in order to obtain the actual standard deviation the entry in this column should be divided by the total time T.

Column 6 is the normed covariance between N and 4: in order to obtain the actual estimated covariance the entry should be divided by T.

## Appendix III FORMULAS FOR THE GEOMETRIC DE-EUTROPHICATION PROCESS

Summarized here are formulas for this process which can be evaluated when the two parameters D and k are found. The parameter can be solved by the equation:

$$\frac{\sum i k^{i-1} \chi_i}{\sum k^{i-1} \chi_i} = \frac{n+1}{2}$$
III-1

With this value of  $k(\hat{k})$ , the value of D can be determined through the equation:

$$\hat{D} = \frac{n}{\hat{k}^{1-1}X_1}$$

The estimate for the MTTF at the end of test is

$$M_2 = \hat{D}_k^{n}$$

The estimate of purification percentage is

$$\hat{P}_2 = (1 - \hat{k}^n)100$$
 III-4

The variance and covariances are given by

Var 
$$\hat{D} = D^2 \frac{2(2n-1)}{n(n+1)}$$

Var  $\hat{k} = k^2 \frac{12}{n(n^2-1)}$ 

III-6

Covar 
$$(\hat{D}, \hat{k}) = -Dk \frac{6}{n(n+1)}$$

For evaluation D and k would be used.