

Department of Electrical and Electronic Engineering

Course Code: EEE301

Section no: 01

Group No. 07

Project on Transformer Construction

Submitted To: Khalid Imtiaz Saad

Students' Name:

1. Habiba Shikha

SID: 2019-1-80-027

2. Tamimul Islam

SID: 2020-1-80-019

3. Shaharaj Kabir Siam

SID: 2020-1-80-070

4. Md. Srabon Islam Ramim

SID: 2020-2-80-046

Date of submission: 22 December, 2022

Link of Activity Log:

https://docs.google.com/spreadsheets/d/18biV527VK4CiK0OTMuTgzOrph2W1t0Y0qTK-jzv3L2I/edit?usp=sharing

Activity Log

Serial	Date	Activity	Description	Participants
1	Nov 14, 2022	The group has been made		
2	Nov 15, 2022	Attending a meeting	We attend to a meeting and take decision about buying bobbin and core	Habiba, Tamim, Siam, Ramim
3	Nov 19, 2022	Going to Market	We supposed to go to the market and buy bobbin	Tamim, Siam, Ramim
4	Nov 22, 2022	Doing the calculation	We had a meeting on our campus and carried the calculation result	Habiba, Tamim, Siam, Ramim
5	Nov 30, 2022	Going to Market	We had bought wire, core, mask tap and other necessary equipment for transformer	Tamim, Siam, Ramim
6	Dec 2, 2022	Build the Transformer	Build our transformer with all the equipment	Habiba, Tamim, Siam, Ramim
7	Dec 14, 2022	Making Procedure & Datasheet	We had called a meeting and made the procedure and datasheet	Habiba, Tamim, Siam, Ramim
8	Dec 19, 2022	Completing the Report	We had called a meeting and made the report	Habiba, Tamim, Siam, Ramim

Calculation for Construction of a Transformer

1. Core Calculation:

Area of Core, A =
$$4.9 \text{ cm} \times 3.3 \text{ cm} = 16.17 \text{ cm}^2$$

= 0.001617 m^2

Operation Frequency, f = 50 Hz

Magnetic Flux Density, $B = 1.2 \text{ Wbm}^{-2}$

Turns Per Voltage,
$$T = \frac{1}{4.44fBA} = \frac{1}{4.44 \times 50 \times 1.2 \times 0.001617} = 2.32 \text{ turns}$$

2. Primary Winding Calculation:

Primary Voltage, $V_1 = 220 \text{ V}$

Primary Current,
$$I_1 = \frac{S}{V_1} = \frac{10}{220} = 0.045 \text{ A}$$

Total Numbers of Turns, $N_1 = T \times V_1 = 2.32 \times 220 = 510.4 \approx 511$ Turns

3. Size of Conductor:

Current Density of Copper = $2.3 Amm^{-2}$

Area =
$$\frac{\text{Current}}{\text{Current density}} = \frac{0.045}{2.3} = 0.0196 \text{ mm}^2 = 0.0000304 \text{ inch}^2$$

From the standard American wire gauge table, we can find the conductor size = 34 gauge

4. Weight estimation of the Winding:

As our bobbin is rectangle, Length of One Turn = 2* (Height + Width)

$$= 2 * (4.9 + 3.3) = 16.4 \text{ cm} = 0.164 \text{ m}$$

Total Length of All Turns of Primary = Length of One Turn × Total Number of Turns of Primary

$$= 0.164 \times 511 = 83.804 \text{ m}$$

Area of Conductor = 0.000031 inch² = 1.999×10^{-8} m²

Volume of Copper Wire = Area of conductor × Length

$$= 1.999 \times 10^{-8} \times 83.804 = 1.68 \times 10^{-6} \,\mathrm{m}^3$$

Density of Copper = 8960 kgm^{-3}

Weight of Primary Conductor = Density \times Volume

$$= 8960 \times 1.68 \times 10^{-6} = 0.015 \ kg$$

5. Secondary Winding Calculation:

Secondary Voltage, $V_2 = 80 \text{ V}$

Secondary Current,
$$I_2 = \frac{S}{V_2} = \frac{10}{80} = 0.125 \text{ A}$$

Total Numbers of Turns, $N_2 = T \times V_2 = 2.32 \times 80 = 185.6 \approx 186$ Turns

6. Size of Conductor:

Current Density of Copper = $2.3 Amm^{-2}$

Area =
$$\frac{\text{Current}}{\text{Current density}} = \frac{0.125}{2.3} = 0.054 \text{ mm}^2 = 0.0000837 \text{ inch}^2$$

From the Standard American Wire Gauge Table, we can find the conductor size = 29 gauge

7. Weight estimation of the Winding:

Length of One Turn = 0.164 m

Total Length of All Turns of Secondary = Length of One Turn \times Total Number of Turns of Secondary = 0.164×186

$$= 30.504 \text{ m}$$

Area of Conductor = $0.0000837 \text{ inch}^2 = 5.4 \times 10^{-8} \text{ m}^2$

Volume of Copper Wire = Area of Conductor × Length

$$= 5.4 \times 10^{-8} \times 30.504 = 1.65 \times 10^{-6} \,\mathrm{m}^3$$

Density of Copper = 8960 kgm^{-3}

Weight of Secondary Conductor = Density \times Volume

$$= 8960 \times 1.65 \times 10^{-6} = 0.015 \ kg$$

Calculation Table for Primary Side

Parameter	Formula	Value	
Power ratting	Given	10VA	
Voltage	Given	220V	
Current	$I_1 = S/V_1$	0.045 A	
Conductor size	Current density = Current Area	0.0000304 inch ²	
Wire gauge	Check from the given Table	34 gauge	
Number of turns	N ₁ = Turns per V × Primary Side Voltage	511 Turns	
Total wire length	Total Length of All Turns in Primary = Length of One Turn × Total Number of Turns of Primary	83.804 m	
Volume of conductor	Volume = Area × Length	1.68×10 ⁻⁶ m ³	
Weight of conductor	Weight = Density × Volume	0.015 kg	

Calculation Table for Secondary Side

Parameter	Formula	Value	
Power ratting	Given	10VA	
Voltage	Given	80V	
Current	$I_2 = S/V_2$	0.125 A	
Conductor size	Current density = Current Area	0.0000837 inch ²	
Wire gauge	Check from the given Table	29 gauge	
Number of turns	N ₁ = Turns per V × Primary Side Voltage	186 Turns	
Total wire length	Total Length of All Turns in Primary = Length of One Turn × Total Number of Turns of Primary	30.504 m	
Volume of conductor	Volume = Area × Length	1.65×10 ⁻⁶ m ³	
Weight of conductor	Weight = Density × Volume	0.015 kg	

Calculations of verification of the transformer

Verify the turns ratio and Apparent power of the transformer at various loads.

Objective: The objective of this project is to design and construct a transformer according to proper specification and verification of the design.

Theory: Transformers operate on the principles of Faraday's law of electromagnetic induction and mutual induction. A transformer core has two coils, a primary coil and a secondary coil. The primary core receives electrical energy from a power source and couples this energy to the secondary winding by means of a changing magnetic field. Turns ratio of transformer means the ratio of Primary turns to secondary turns.

To calculate turns ratio (a) we use the formula,

$$a = \frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{i_2}{i_1}$$

And to verify Apparent Power (S) we use the formula, $S = V_1 i_1 = V_2 i_2$.

Procedure:

- 1. Connect the transformer's primary side with a variable AC source and secondary side with resistive load of 600Ω and an AC voltmeter.
- 2. Supply 220V in primary side and measure the output voltage and current in secondary side. Tabulate the value of voltages in Table-01.
- 3. Follow the same process for 2400 Ω , 1600 Ω , 1200 Ω , 960 Ω , 685 Ω , 600 Ω , 480 Ω and 400 Ω resistive load and measure primary side voltage and secondary side voltage. Tabulate the value of voltages in Table-01.
- 4. Calculate Turns ratio and apparent power from Table-01 using primary and secondary side voltage.
- 5. Disconnect the transformer from resistive load and switch off the power supply.
- 6. Repeat the same process (Step 1 Step 4) for inductive load, tabulate the voltages in Table-02 and measure turns ratio from the Table.
- 7. Repeat the same process (Step 1 Step 4) for capacitive load, tabulate the voltages in Table-03 and measure turns ratio from the Table.

Students' Name	Habiba Shikha, Tamimul Islam, Shahraj Kabir Siam, Md Srabon Islam Ramim				
Students' ID	2019-1-80-027, 2020-1-80-019, 2020-1-80-070, 2020-2-80-046				
Section	01				
Group Number	07				
Date	19 December 2022				
Instructor's Signature	Sal (a/12/22				

Table-1: Recorded values for resistive load.

Table-1: Recorded values for resistive load.									
$Load(\Omega)$	Primary Voltage (V _I)	Primary Current (i ₁)	Secondary Voltage (V ₂)	Secondary Current (i ₂)	Turns Ratio (a)	Apparent Power (S)			
∞ .									
400									
480									
600				0105	2.70	9.9			
685	550	0.35	79	0.125	2.75	7.2			
960	250	0.325		0.09					
1200	550	0.36	80	0.07	2.75	5.6			
1600	550	0.35	30	0.05	2.75				
2400	220	0.30	79	0.04	2048	3.16			

Table-2: Recorded values for Inductive load.

$Load(\Omega)$	Primary Voltage (V ₁)	Primary Current (i ₁)	Secondary Voltage (V ₂)	Secondary Current (i ₂)	Turns Ratio (a)	Apparent Power (S)
400			(- 2)	(-2)		
480						
600 .						
685						
960	220	0130	78	0.085	218	6.63
1200	220	0.30	79	0.07	2.78	5.53
1600	220	0.29	80	0.055	2.75	4.4
2400	220	0.30	80	0.03	2.75	219

Table-3: Recorded values for capacitive load.

Load(Ω)	Primary Voltage (V ₁)	Primary Current (i ₁)	Secondary Voltage (V ₂)	Secondary Current (i ₂)	Turns Ratio (a)	Apparent Power (S)
400					(3)	(5)
480						
600						
685	220	0.26	80	0:13	2.75	10.04
960	220	0.25	81	0.095	2.72	
1200	220	0.25	80	0.075	2.75	6
1600	220	0.25	81	0.055	2.72	4.45
2400	220	0.26	81	0.03	2.72	

Discussion: In this experiment, we learned how to calculate and built a transformer under given requirements. From our testing, we found that we got our desired output voltage and turns ratio but we haven't got our desired current. At no load, our LT side current was also higher than our calculation. The loss of the flux in the core could be the reason for drawing a large exciting current. The higher resistance of the copper we used also could be a reason for the loss.