DESCRIPTIVE STATISTICS: APPLICATIONS

Pavan Kumar A
Senior Project Engineer
Big Data Analytics Team
CDAC-KP

Introduction To Data Cleaning

- Data Wrangling is the process of transforming raw data into consistent data that can be analyzed.
- Data cleaning is one of the primary pain points of data science.
- Data Scientists spend 80% of data analysis time in cleaning data.[1]

Source: https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

RAW DATA

- Raw data can be hard to understand, even for those with advanced technical skills.
- In order to make this data easily understandable and user-friendly, it must be pre-processed and prepared for actual analysis.
- Causes of Poor data quality
 - Data entry errors
 - False values for variables
 - Heaping data
 - Application errors or Coding errors
 - Incomplete or outdated data
 - Differences in data representation among data sources
- Problems associated with dirty data
 - Invalid reports resulting in wrong interpretation

STEPS: DATA CLEANING

- Data cleaning is basically done in two steps **DETECTION** and **CORRECTION**.
- Some of them includes following
 - Missing data coded as "999"
 - The 'not applicable' or 'blank' coded as "0"
 - Reduplication
 - COLUMN SHIFT data for one variable column was entered under the adjacent column
 - Logic checks
- Support of Domain expert is also needed for data cleaning.

- Most of the errors will be detected using **Descriptive Statistics**
- Descriptive Statistics are of three types
 - Summary Statistics
 - Tabular Statistics
 - Graphical Statistics
- Summary Statistics
 - Min and Max
 - Mean
 - Median
 - Variance
 - SD (Standard Deviation)

Descriptive Statistics: Summary Analysis

- Look at minimum and maximum values (range) for descriptive statistics
- Look for Likeliness of the value in terms of range or z-score
- Look at Mean, Median and Standard Deviation
- Example 1:

Descriptive Statistics

AV 1+10 0000 WINE	N	Minimum	Maximum	Mean	Std. Deviation
ACPRVF	64	2.30	64.30	13.4625	9.2661
ACPRVM	64	.90	99.90	10.2531	12.5751
Valid N (listwise)	64				

Source: http://www.tulane.edu/~panda2/Analysis2/datclean/stats_with_errors.html

- **ACPRVF:** Females low arm circumference in cm's (age<5 yrs)
- **ACPRVM:** Males low arm circumference in cm's (age<5 yrs)

Descriptive Statistics : Graphical Analysis (Histogram)

Source: http://www.tulane.edu/~panda2/Analysis2/datclean/stats_with_errors.html

- Descriptive Statistics : Graphical Analysis (Scatter Plot)
- Some errors appears only when it is compared with two variables.
- Outliers are one of those to look at.

Scatterplot: Prevalence of low arm

circumference for males and females

Scatterplot of Acute Prevalence Low AC

Males versus Females

- Descriptive Statistics : Tabular Analysis (Frequency)
 - Frequencies help to locate the 'dirty' data (Unequal distribution) among the entered variables.
 - Example 2: Baby ages

- Logic Checks
 - We can often detect errors in data simply by seeing if the responses are logical.
 - Example
 - We would expect to see 100% of responses, not 110%.
 - Issuing driving license for the age group <18

ERROR CORRECTION

- 1. Categorize the values like <=60% and >=60%-100% and assign the values 0 and 1 respectively. (This eliminates the unexpected ranges)
- 2. Outliers set to "missing" if the errors are very less

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
ACPRVF	63	2.30	29.20	12.6556	6.7006
V alid N (listwise)	63				

3. Best way: Outliers set to "MEAN" (for multiple variable analysis) for normal distribution of the data values.

THANK YOU!!!!