Devoir surveillé nº6: bilan trimestriel

Exercice 1. /11

Soit f la fonction dérivable, définie sur l'intervalle $]0; +\infty[$ par

$$f(x) = e^x + \frac{1}{x}.$$

1. Étude d'une fonction auxiliaire

(a) Soit la fonction g dérivable, définie sur $[0; +\infty[$ par

$$g(x) = x^2 e^x - 1.$$

Étudier le sens de variation de la fonction g sur $[0; +\infty[$ puis calculer la limite de g en $+\infty$.

- (b) Démontrer qu'il existe un unique réel α appartenant à $[0; +\infty[$ tel que $g(\alpha)=0.$
- (c) Vérifier que α appartient à l'intervalle [0, 70; 0, 71].
- (d) On considère la fonction seuil suivante ci-dessous dans le langage Python. On rappelle que la fonction exp du module math (que l'on suppose importé) désigne la fonction exponentielle.

Quelle est la valeur renvoyée à l'appel de la fonction seuil(0.001)? Interpréter ce résultat dans le contexte de l'exercice.

(e) Déterminer le signe de g(x) sur $[0; +\infty[$.

2. Étude de la fonction f

- (a) Calculer la limite de f en 0 puis interpréter graphiquement le résultat.
- (b) Calculer la limite de la fonction f en $+\infty$.
- (c) On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$. Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$.
- (d) En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle $[0; +\infty[$.
- (e) Démontrer que la fonction f admet pour minimum le nombre réel $m = \frac{1}{\alpha^2} + \frac{1}{\alpha}$.

Nom:

Exercice 2. /5

On considère un cube ABCDEFGH d'arête de longueur 1. On se place dans le repère orthonormal (A ; \overrightarrow{AB} ; \overrightarrow{AD} ; \overrightarrow{AE}).

On considère les points $I\left(1;\frac{1}{3};0\right)$, $J\left(0;\frac{2}{3};1\right)$, $K\left(\frac{3}{4};0;1\right)$ et L(a;1;0) avec a un nombre réel appartenant à l'intervalle [0;1].

Les parties A et B sont indépendantes.

Partie A

- 1. Déterminer une représentation paramétrique de la droite (IJ).
- 2. Démontrer qu'une représentation paramétrique de la droite (KL) est :

$$\begin{cases} x = \frac{3}{4} + t' \left(a - \frac{3}{4} \right) \\ y = t' , t' \in \mathbb{R} \\ z = 1 - t' \end{cases}$$

3. Démontrer que les droites (IJ) et (KL) sont sécantes si, et seulement si, $a = \frac{1}{4}$.

Partie B

Dans la suite de l'exercice, on pose $a = \frac{1}{4}$. Le point L a donc pour coordonnées $(\frac{1}{4}; 1; 0)$.

- 1. Démontrer que le quadrilatère IKJL est un parallélogramme.
- 2. Construire la section du cube par le plan (IJK).

Cet exercice est un questionnaire à choix multiples constitué de quatre questions; chacune comporte quatre réponses, une seule est exacte. On notera sur la copie uniquement la lettre correspondant à la réponse choisie.

Un lecteur d'une bibliothèque est passionné de romans policiers et de biographies. Cette bibliothèque lui propose 150 romans policiers et 50 biographies.

40% des écrivains de romans policiers sont français et 70% des écrivains de biographies sont français.

Le lecteur choisit un livre au hasard parmi les 200 ouvrages.

1. La probabilité que le lecteur choisisse un livre d'un écrivain français est :

a. 0,9

b. 0,7 **c.** 0,475

d. 0,4

2. La probabilité que le lecteur ait choisi un roman policier sachant que l'écrivain est français est:

a. $\frac{4}{150}$

b. $\frac{12}{19}$ **c.** 0,3

d. 1

3. Le lecteur est venu 20 fois à la bibliothèque; la probabilité qu'il ait choisi au moins un roman policier est:

a. $1-0.25^{20}$ **b.** 20×0.75 **c.** 0.75×0.25^{20} **d.** $1-0.75^{20}$

4. Le lecteur est venu n fois à la bibliothèque.

Soit n_0 la plus grande valeur de n pour laquelle la probabilité que ce lecteur a toujours emprunté un roman policier est supérieure à 0,01.

On peut affirmer que:

a. $n_0 = 15$ **b.** $n_0 = 16$ **c.** $n_0 = 17$ **d.** $n_0 = 11$