Κεφάλαιο 5 - Ορθοκανονικοποίηση και μέθοδος Gram-Schmidt

Σ. Δημόπουλος ΜΑΣ029 1 / 11

5.1 Εσωτερικό γινόμενο

Ορισμός

Αν $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, το γινόμενο $\mathbf{u}^T \mathbf{v}$ συμβολίζεται με $\mathbf{u} \cdot \mathbf{v}$ και ονομάζεται εσωτερικό γινόμενο των \mathbf{u}, \mathbf{v} .

Aν
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}, \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}, τότε$$

$$\mathbf{u}^{\mathsf{T}}\mathbf{v} = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = u_1v_1 + u_2v_2 + \ldots + u_nv_n.$$

Σ. Δημόπουλος ΜΑΣ029 2 / 11

Να βρεθεί το εσωτερικό γινόμενο των
$$\mathbf{u}=\begin{pmatrix}2\\-5\\-1\end{pmatrix}$$
, $\mathbf{v}=\begin{pmatrix}3\\2\\-3\end{pmatrix}$.

Σ. Δημόπουλος ΜΑΣ029 3 / 11

Θεώρημα

Έστω $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ και $\lambda \in \mathbb{R}$.

- $\mathbf{0} \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $(\lambda \mathbf{u}) \cdot \mathbf{v} = \lambda (\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (\lambda \mathbf{v})$
- $\mathbf{0} \mathbf{u} \cdot \mathbf{u} \geqslant 0$ και $\mathbf{u} \cdot \mathbf{u} = 0$ αν και μόνο αν $\mathbf{u} = 0$

Σ. Δημόπουλος ΜΑΣ029 4 / 11

Ορισμός

Αν $\mathbf{v} \in \mathbb{R}^n$, το μήκος ή νόρμα του \mathbf{v} είναι η ποσότητα $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$. Αν $\|\mathbf{v}\| = 1$ τότε το \mathbf{v} λέχεται μοναδιαίο $\|\mathbf{v}\| = 1$ τότε το \mathbf{v} λέγεται μοναδιαίο.

• And
$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
, that $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$.

- $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$
- $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|, \ \lambda \in \mathbb{R}$
- Το διάνυσμα $\frac{{\bf v}}{||{\bf v}||}$ είναι πάντα μοναδιαίο και η διαδικασία εύρεσής τους ονομάζεται κανονικοποίηση.

MAΣ029 5 / 11

Να κανονικοποιηθεί το διάνυσμα
$$\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix}$$
.

 Σ . Δημόπουλος MA Σ 029 6 / 11

Έστω $W=\operatorname{Span}\{\mathbf{v}\}$ όπου $\mathbf{v}=\binom{2/3}{1}$. Να βρεθεί βάση του W που να περιέχει μόνο μοναδιαία διανύσματα.

Σ. Δημόπουλος ΜΑΣ029 7 / 11

Ορισμός

 Δ υό διανύσματα $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ λέγονται **κάθετα** ή **ορθογώνια** αν $\mathbf{u} \cdot \mathbf{v} = 0$.

Θεώρημα (Πυθαγόρειο Θεώρημα)

Για δύο κάθετα διανύσματα $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$, ισχύει ότι

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 8 / 11

Ορισμός

Έστω W υπόχωρος του \mathbb{R}^n .

- ① Ένα διάνυσμα $z \in \mathbb{R}^n$ λέγεται **ορθογώνιο** ή **κάθετο** στο W αν είναι κάθετο σε κάθε διάνυσμα του W.
- ② Το σύνολο W^{\perp} όλων των διανυσμάτων που είναι κάθετα στο W λέγεται ορθογώνιο συμπλήρωμα του W.

Σ. Δημόπουλος ΜΑΣ029 9 / 11

Έστω $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$. Αν το \mathbf{u} είναι κάθετο στα $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ τότε το \mathbf{u} είναι κάθετο στο W.

Σ. Δημόπουλος ΜΑΣ029 10 / 11

Παρατήρηση

Αν το W είναι υπόχωρος του \mathbb{R}^n , τότε το W^\perp είναι επίσης υπόχωρος του \mathbb{R}^n .

Σ. Δημόπουλος ΜΑΣ029 11 / 11