Listas de control de acceso en routers CISCO

Álvaro González Sotillo

22 de abril de 2019

Índice

1.	LISTAS DE CONTROL DE ACCESO	1
2.	PROCESAMIENTO DE ACL	2
3.	COMANDOS ÚTILES	3
4.	ACL ESTANDAR	4
5.	ACL AMPLIADAS	5
6.	PROCESO DE DEFINICIÓN DE ACLS	6
7.	Práctica	8
8.	Referencias 1	10

1. LISTAS DE CONTROL DE ACCESO

- Las ACL son listas con reglas.
 - Cada regla define una condición que puede cumplir un paquete
 - Cada regla define una acción (permit, deny) a ejecutar sobre el paquete que cumpla su condición
 - Siempre hay una regla al final que desecha cualquier paquete
- Se identifican por un número
 - Estándar:
 - o 1 a 99
 - o 1300 a 1999
 - Ampliadas:
 - o 100 a 199
 - o 2000 a 2699
- En versiones recientes de IOS (11.2) se pueden usar también nombres de ACL
- Una interfaz puede tener una ACL asociada en cada sentido

- Entrada de paquetes (Inbound)
- Salida de paquetes (Outbound)

2. PROCESAMIENTO DE ACL

- Al llegar un paquete
 - 1. Si la interfaz no tiene ACL de entrada, se acepta
 - 2. Si tiene ACL, se revisan las reglas de la lista
 - a) Se comprueban en orden
 - b) Si alguna deniega el paquete, se rechaza
 - c) Si alguna acepta el paquete, se acepta
 - d) Si ninguna se aplica al paquete, se rechaza
- Antes de enviar un paquete
 - 1. Si la interfaz no tiene ACL de salida, se envía
 - 2. Si tiene ACL, se revisan las reglas de la lista
 - a) Se comprueban en orden
 - b) Si alguna deniega el paquete, se desecha
 - c) Si alguna acepta el paquete, se envía
 - d) Si ninguna se aplica al paquete, se desecha

3. COMANDOS ÚTILES

- Una vez creada una ACL (más adelante) es necesario
 - $\bullet\,$ Asignar y desasignar ACL a interfaces
 - Borrar y consultar ACL creadas

3.1. Borrar una ACL

no access-list <numero>

3.2. Mostrar las ACL existentes

show ip access-list

3.3. ACL asociadas a una interfaz

show ip interface <interfaz>

Es necesario mirar el apartado Inbound y Outbound

3.4. Asociar una ACL a una interfaz

interface <interfaz>
ip access-group <numero ACL> <out o in>

3.5. Eliminar una ACL de una interfaz

interface <interfaz>
no ip access-group <numero ACL> <in o out>

4. ACL ESTANDAR

access-list access-list-number {permit|deny}
{host|source source-wildcard|any}.

- Solo hacen referencia a las direcciones IP de origen.
- Se puede especificar:
 - Una Red: Se especifica con IP y WILDCARD (no IP y máscara). El WILDCARD es la máscara de red con ceros y unos invertidos.
 - o Ejemplo: La red 192.168.1.0/24 se especifica como 192.168.1.0 0.0.0.255
 - Una dirección IP: Las siguientes especificaciones son equivalentes
 - 0 192.168.1.1
 0 192.168.1.1 0.0.0.0
 - Todas las direcciones: Las siguientes especificaciones son equivalentes
 - o any
 o 0.0.0.0 255.255.255.255

Ejemplo: No dejes pasar el tráfico con origen en la red 192.168.1.0/8

access-list 10 deny 192.168.1.0 0.0.0.255

4.1. Ejercicio

Se desea que la red 10.0.0.0/15 no sea enrutada, excepto el equipo 10.0.1.1, que es del administrador.

4.2. Solución propuesta al ejercicio

- 1. Se elige un número libre de ACL (en este caso, el 1).
- 2. Se introducen en orden todas las regas de la ACL
- 3. Se recomienda hacer explícita la regla final de denegación.
- 4. El resultado sería el siguiente:
- Permitir el host 10.0.1.1

```
access-list 1 permit host 10.0.1.1
```

■ Prohibir la red 10.0.0.0/15

```
access-list 1 deny 10.0.0.0 0.1.255.255
```

■ Permitir el resto de redes

```
access-list 1 permit any
```

■ Explicitar la regla final de denegación (va a estar de todas formas, pero ayuda a no olvidarse de ella)

```
access-list 1 deny any
```

Asociar esta ACL a la interfaz de entrada de la red 10.0.0.0/15

```
interface Fa0/0 ip access-group 1 in
```

5. ACL AMPLIADAS

Pueden hacer referencia a otras características del paquete:

- Dirección de origen y destino
- Protocolo ICMP, TCP o UDP
- Puerto
- Conexión previamente establecida

5.1. Operadores (para puertos TCP/UDP)

$\operatorname{Operador}$	$\operatorname{Significa}$
eq	= igual
lt	< Menor
ne	No igual
gt	> Mayor

5.2. IP

```
access-list access-list-number [dynamic dynamic-name [timeout minutes]]
{deny | permit} protocol
source source-wildcard destination destination-wildcard
[precedence precedence] [tos tos] [log | log-input]
[time-range time-range-name][fragments]
```

Ejemplo: Prohíbe el tráfico hacia la red 172.16.0.0/12

```
access-list 101 deny ip any 172.16.0.0 0.0.15.255
```

5.3. Protocolo de mensajes de control de Internet (ICMP)

5.4. Protocolo de control de transporte (TCP)

```
access-list access-list-number [dynamic dynamic-name [timeout minutes]]
{deny | permit} tcp
source source-wildcard [operator [port]]
destination destination-wildcard [operator [port]] [established]
[precedence precedence] [tos tos] [log | log-input]
[time-range time-range-name][fragments]
```

Ejemplo: Permite el protocolo **TCP** desde la red 172.16.3.0/24 con puerto de origen 21 hacia la red 172.16.1.0/24

```
access-list 101 permit tcp 172.16.3.0 0.0.0.255 eq 21 172.16.1.0 0.0.0.255
```

Ejemplo: Permite la comunicación **TCP** hacia la red 10.0.0.0/8 si ya se ha establecido conexión (la red 10.0.0.0/8 es la que tiene el cliente)

```
access-list 102 permit tcp any 10.0.0.0 0.0.255 established
```

5.5. Protocolo de datagrama de usuario (UDP)

```
access-list access-list-number [dynamic dynamic-name [timeout minutes]]
{deny | permit} udp
source source-wildcard [operator [port]]
destination destination-wildcard [operator [port]]
[precedence precedence] [tos tos] [log | log-input]
[time-range time-range-name][fragments]
```

6. PROCESO DE DEFINICIÓN DE ACLS

- Para definir las ACL de un router es necesario
 - Determinar las interfaces del router
 - Por cada interfaz:

- o Determinar qué tráfico será permitido
- o Determinar qué tráfico debe ser prohibido
- o Ordenar las reglas para que no entren en conflicto (generalmente, de más concreta a más general)
- Es posible que se generen reglas redundantes
 - o Pueden eliminarse, teniendo en cuenta que el tráfico prohibido es mejor eliminarlo cuanto antes de la red

6.1. Ejercicio

- Un router une las redes 192.168.1.0/24 (LAN) y 172.16.1.0/24 (DMZ). Se desea que:
 - Los usuarios de la LAN no puedan realizar PING hacia la DMZ.
 - El tráfico UPD está permitido por el puerto 53 (DNS)
 - Las únicas conexiones TCP permitidas entre LAN y DMZ serán las que tengan origen en la LAN.

(Fichero PKT)

6.2. Planteamiento

Interfaz Fa0/0 (LAN)

	Entrada		Salida
X	PING (ICMP)	X	PING (ICMP)
V	$DNS \; (UDP \; con \; destino \; 53)$	V	$DNS \; (UDP \; con \; origen \; 53)$
V	TCP si se ha establecido desde la LAN	V	$TCP\ si\ se\ ha\ establecido\ desde\ la\ LAN$
		X	TCP si es una conexión entrante de la DMZ
$\mid X$	Todo	X	Todo

Interfaz Fa0/1 (DMZ)

	Entrada		Salida
X	PING (ICMP)		PING (ICMP)
V	$DNS \; (UDP \; con \; origen \; 53)$	V	DNS (UDP con destino 53)
V	TCP si se ha establecido desde la LAN	V	TCP
X	Todo	X	Todo

- En el planteamiento anterior hay bastante redundancia, así que pueden agruparse muchas de esas reglas.
 - Basta con prohibir ICMP en una sola interfaz, en un solo sentido
 - Basta con controlar el tráfico TCP en una sola interfaz
 - Basta con controlar el tráfico DNS en una sola interfaz

6.3. Solución propuesta

Esta ACL debe colocarse en la tarjeta de la LAN, sentido inbound.

```
access-list 100 deny icmp any any access-list 100 permit udp any any eq domain access-list 100 permit tcp any any access-list 100 deny ip any any interface Fa0/0 ip access-group 100 in
```

Esta ACL debe colocarse en la tarjeta de la LAN, sentido outbound

```
access-list 101 permit udp any eq 53 any access-list 101 permit tcp any any established access-list 101 deny ip any any interface Fa0/0 ip access-group 101 out
```

7. Práctica

Fichero PKT inicial (adjunto al PDF) Enlace al fichero PKT inicial

- La LAN puede acceder completamente a los servidores de la DMZ
- La LAN puede acceder a Internet al servicio HTTP, HTTPS y DNS.
- Todo internet puede acceder al servicio HTTP y HTTPS del servidor web de la DMZ.
- El administrador remoto puede acceder a cualquier servicio de la LAN y la DMZ.
- Todo lo demás está prohibido
 - En particular, conexiones entrantes de Internet a la LAN o a Oracle
- Router
 - Internet: Fa9/0 8.0.0.1/8
 - DMZ: Fa1/0 100.0.0.14/28
 - LAN: Fa0/0 192.168.1.254/24
- Servidor Web:
 - DMZ: 100.0.0.1/28
- Administrador remoto:
 - 8.0.0.200

8. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex