Object Detection

Cats and dogs

Задачи компьютерного зрения

Нас интересует эта задача

Instance Semantic Classification Object Segmentation Segmentation + Localization Detection GRASS, CAT, CAT DOG, DOG, CAT DOG, DOG, CAT TREE, SKY Multiple Object No objects, just pixels Single Object This image is CC0 public domain

Задача: object detection

Задача состоит в определении местонахождения объектов на картинке и их класс. Местонахождение объекта в задачах object detection определяется через координаты четырехугольной рамки (bounding box) внутри которой располагается наш объект. Соответственно разметка каждого объекта на картинке имеет вид

```
("class_label" , "xmin", "ymin", "xmax", "ymax")
("class_label" ,"x", "y", "width", "height") где x, y центр рамки
```

Популярные датасеты на чем обычно обучают модели

PASCAL VOC

Метрики: как сравнивают модели?

IoU = Area of Overlap Detected box

Area of Union Object

Detected box

Нужные данные до метрик

IoU - Intersection over Union

Precision: TP(correct class and IoU >= Threshold) FP – one of two fails

Метрики:

AP (Average Precision)

mAP(mean Average Precision)

AP не просто средний как обычно считают в задачах классификации, а считается немного сложнее

Метрики: АР и мАР

Чтобы понять AP нам нужно построить график precision vs recall. Точность модели считается хорошей если мы держим на высоком уровне precision при увеличении recall.

$$egin{aligned} \mathsf{A}^- & \mathsf{\Pi} \\ \mathsf{AP} &= \int_0^1 p(r) dr \end{aligned}$$
 площадь под графиком:

Чтобы облегчить калькуляцию мы сглаживаем precision до максимума precision с следующего справа от recall:

$$AP = \sum (r_{n+1} - r_n) p_{interp}(r_{n+1})$$
$$p_{interp}(r_{n+1}) = \max_{\tilde{r} \ge r_{n+1}} p(\tilde{r})$$

mAP - средний AP всех классов. Нужно не забывать про IoU >= Threshold который определяет как будет считаться precision. Поэтому результатах алгоритмов детекции указывают какой **threshold** был использован для расчета: mAP@.5 mAP@.95 соответственно threshold 0.50 и 0.95

Есть и другая калькуляция mAP (COCO mAP) где варьируют threshold . mAP@[0.5:0.05:0.95] где шагом 0,05 считаем AP и усредняют результаты по threshold и по всем классам. Но мы не используем это метрику.

Выбор алгоритма:

Если зайти на сайт paper_with_code можно увидеть очень много реализаций, у которых точность высокая.

Но мой выбор пал на два алгоритма: Yolov5s и EfficientDet D0. Причина в том что оба алгоритма заявляют о быстрой скорости детекции при этом имея хорошую точность.

Object Detection on COCO test-dev

Семейства архитектур Yolo

Основная новизна Yolo на тот момент:

Single Stage Detection - в отлиции от Faster-RCNN где алгоритм состоял из 2 частей как ROI Polling и Classifier, смотрел на картинку один раз.

Есть алгоритм SSD который тоже один раз использует картинку. В SSD модель выбирает для клетки ancor box наибольшей IoU старается приблизиться максимально groundtruth bbox. На том же месте Yolo выдает несколько вариантов bbox-а, из них выбирает максимум IOU и на нем обучается, исключая через non max suppresion.

YOLOv*

YOLOv2:

- Batch normalization
- Anchor boxes (Надо понимать что ancorbox не sliding window который идет по картинке и детектит объект. А наоборот мы сперва прогнозируем центр объекта и от него отталкиваясь подбираем ancorbox).
- Darknet-19 architecture

YOLOv3:

- FPN (Feature Pyramid Network) используя 3 прогноза на 3 слоях сети дал возможность детектировать очень маленькие объекты
- Перевели прогноз класса на задачу классификации

YOLOv4:

- Использовали Path aggregation network (PAN) и spatial pyramid pooling (SPP) layer как часть Neck соединяющий backbone c head
- Bag of freebies увеличивает точность не увеличивая скорость детекции
- Bag of specials значительно увеличивает точность при небольшой потере в скорости

YOLOv5

YOLOv5

Основная новизна:

- PyTorch вместо Darknet(C)
- мозаичная аугментация
- автообучение anchor-ов

Efficient Det D0

- Новая методика feature fusiona BiFPN (a bidirectional feature pyramid network)
- Compound scaling (width, depth, or resolution)
- Model Scaling (не только backbone но и части FPN и head)

Figure 2: Feature network design – (a) FPN [20] introduces a top-down pathway to fuse multi-scale features from level 3 to $7(P_3 - P_7)$; (b) PANet [23] adds an additional bottom-up pathway on top of FPN; (c) NAS-FPN [8] use neural architecture search to find an irregular feature network topology and then repeatedly apply the same block; (d) is our BiFPN with better accuracy and efficiency trade-offs.

Figure 3: EfficientDet architecture – It employs EfficientNet [36] as the backbone network, BiFPN as the feature network

YOLOv5s vs EfficientDet D0

Как видно на графике YOLOv5s более точный чем EfficientDetD0 и быстрее по скорости inference-a.

Inference YOLOv5 (not trained on our dataset)

Ниже результаты детекции. Как видно разметка наших картинок отличается и берет только лицевую часть животных(красная) когда с YOLOv5 объект целиком детектится - зеленая рамка), . Если посчитаем точность такой модели то уверенно могу сказать что она будет низкой. Придется до-обучать модель на наших картинках и разметках.

Results YOLOv5s (trained on cats and dogs)

Я разделил датасет на 72% 8% 20% для train, val, test. Для обучения использовал pre-trained weights от MS COCO Dataset. Я выбрал YOLOv5s т.к. у меня возникли проблемы с CUDA и cudnn, пришлось обучаться на CPU, и YOLOv5s не такая большая. Ниже результаты до-обученной модели на 2 классах:

Validating runs/train/siemence_cat_dogs2/weights/best.pt... Fusing layers...

YOLOv5s summary: 157 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs

Class	Images	Instances	Р	R	mAP50	mAP.5:.95
all	295	295	0.974	0.982	0.991	0.813
cat	295	99	0.985	0.99	0.994	0.86
dog	295	196	0.964	0.974	0.988	0.765

Results saved to runs/train/siemence_cat_dogs2

Fusing layers...

YOLOv5s summary: 157 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs test: Scanning /home/temir/Documents/Kaggle/Siemense/data/test.cache... 738 imag

Class	Images	Instances	Р	R	mAP50	mAP.5:.95
all	738	738	0.988	0.983	0.99	0.842
cat	738	237	0.996	0.987	0.993	0.883
dog	738	501	0.98	0.978	0.987	0.801

Speed: 0.7ms pre-process, 76.8ms inference, 0.4ms NMS per image at shape (32, 3, 640, 640) Results saved to runs/val/exp 738 labels saved to runs/val/exp/labels

Results YOLOv5s (trained on cats and dogs)

Results YOLOv5s (inference img size 256x256) x5 on speed

test: Scanning /home/temir/Documents/Kaggle/Siemense/data/test.cache... 738 imag

Class	Images	Instan	ces	P R	mAP50	mAP0.5:0.95	5
all	738	738	0.967	0.957	0.975	0.773	
cat	738	237	0.977	0.975	0.985	0.815	
dog	738	501	0.957	0.939	0.966	0.732	

Speed: 0.1ms pre-process, 14.3ms inference, 0.3ms NMS per image at shape (32, 3, 256, 256)

Results saved to runs/val/exp3

738 labels saved to runs/val/exp3/labels

Доп. задача: Найти все изображения с данной породой

Для этой задачи использовал библиотеку DeepImageSearch

Главное идея алгоритма:

- Берем наши картинки прогоняем через VGG16(weights='imagenet') и берем результаты последнего fully_connected_layer. Это будет как info векторизация.
- Все это сохраняем в meta pkl файле в нормализованном виде.
- Для поиска нам нужно сперва выбрать картинки кота чью породу ищем. И задаем сколько близких картинок нам нужно.
- Далее когда запускаем поиск мы заново делаем векторизацию нужной картинки кота.
- Для поиска схожих векторов используем библиотеку: Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point.
- Далее выдаем результаты.

Результаты DeepImageSearch

		Similar Result Found		1
				D.
W.				
2				-
	6			
	P			
3.5				
				26
				1
2				
	9,			1
				TO SE
			8	0