

SDS 385: Stat Models for Big Data

Lecture 5: Proximal methods

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Proximal methods

You want to minimize functions of the form

$$f(x) = \underbrace{g(x)}_{convex, differentiable} + \underbrace{h(x)}_{convex, nonsmooth}$$

• If h was differentiable, we would use

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

• Here we would use:

$$x_{k+1} = \arg\min_{z} \frac{1}{2\alpha} \underbrace{\|z - (x_t - \alpha \nabla g(x_t))\|^2}_{\text{Stay close to the gradient direction}} + \underbrace{h(z)}_{\text{minimize h}}$$

1

Proximal mapping

• Define:

$$\operatorname{prox}_{\alpha}(x) = \arg\min_{z} \frac{1}{2\alpha} \|x - z\|^2 + h(z)$$

- Proximal GD:
 - Choose initial $x^{(0)}$
 - Repeat, for k = 1, 2, 3

$$x_{k+1} = \mathsf{prox}_{\alpha_k}(x_k - \alpha_k \nabla g(x_k))$$

But, we just turned one minimization into another. And both has h
which is the troublesome part.

Example: Lasso

$$f(\beta) = \frac{1}{2} ||y - X\beta||^2 + \lambda ||\beta||_1$$

• The proximal map is:

$$\begin{aligned} \operatorname{prox}_{\alpha}(\beta) &= \arg\min_{z} \left(\frac{1}{2\alpha} \|\beta - z\|^2 + \lambda \|z\|_1 \right) \\ &= S_{\lambda\alpha}(\beta) \\ [\operatorname{prox}_{\alpha}(\beta)]_i &= \begin{cases} \beta_i - \lambda \alpha & \text{if } \beta_i > \lambda \alpha \\ 0 & \text{if } |\beta_i| \leq \lambda \alpha \\ \beta_i + \lambda \alpha & \text{if } \beta_i < -\lambda \alpha \end{cases} \end{aligned}$$

Lasso

• In this case, the gradient is

$$\nabla g(\beta) = -X^T(y - X\beta)$$

So the update step for Lasso becomes:

$$\beta_{k+1} = S_{\lambda\alpha} \left(\beta_k + \alpha X^T (y - X\beta) \right)$$

 This is the Iterative Soft Thresholding Algorithm (ISTA), due to Beck and Teboule, 2008. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems"

Convergence

- Recall our setup. We are minimizing $g(\beta) + h(\beta)$, where
 - g is convex and differentiable (what you had assumed for gradient and stochastic gradient descent methods)
 - ∇g is L-Lipschitz
 - h(x) is convex.
 - Now if you can compute the proximal operator, then:

Theorem

As long as $\alpha \leq 1/L$,

$$f(\beta^{(k)}) - f(\beta^*) \le \frac{\|\beta^{(0)} - \beta^*\|_2^2}{2k\alpha}$$

You can also add Nesterov's accelerated gradient to this.

FISTA-Fast Iterative Shrinkage-Thresholding Algorithm

- Start with $\beta^{(0)}$
- Compute $v = \beta^{(k-1)} + \frac{k-2}{k+1} (\beta^{(k-1)} \beta^{(k-2)})$
- Compute $\beta^{(k)} = \operatorname{prox}_{\alpha_k}(v \alpha_k \nabla g(v))$
- Handwavy explanation
 - The (k-2)/(k+1) is important.
 - Note this is 1/4 in the beginning, but then increases to 1
 - As we keep getting closer to the optima, the gradient becomes smaller (its zero at the optima)
 - The acceleration basically pushes more and more in this direction if you are close to the optima (more so as $k \to \infty$, where momentum becomes 1.)
- Converges much faster.

Example: matrix completion

Given a matrix $Y \in \mathbb{R}^{m \times n}$ and observed entries $(i, j) \in \Omega$, you want to fill missing entries by solving:

$$\min_{B \in \mathbb{R}^{m \times n}} \frac{1}{2} \sum_{ij \in \Omega} (Y_{ij} - B_{ij})^2 + \lambda ||B||_*$$

• $||B||_*$ is the nuclear norm of B, defined as:

$$||B||_* = \sum_{i=1}^k \sigma_i(B),$$

where k is the rank of B and $\sigma_1(B) \ge \sigma_2(B) \dots$ are the singular values.

• Nuclear norm is a convex approximation of rank, think how you cannot easily minimize ℓ_0 norm, aka the number of nonzero entries, an instead minimize the ℓ_1 norm to induce sparsity in regression problems.

7

Proximal gradient

$$[P_{\Omega}(B)]_{ij} = B_{ij}1((ij) \in \Omega)$$

• So the optimization can also be written as:

$$\min \frac{1}{2} \|P_{\Omega}(Y) - P_{\Omega}(B)\|_F^2 + \lambda \|B\|_*$$

- Gradient of smooth first part: $-(P_{\Omega}(Y) P_{\Omega}(B))$
- Prox function:

$$\operatorname{prox}_{\alpha}(B) = \arg\min_{Z \in \mathbb{R}^{m \times n}} \frac{1}{2\alpha} \|B - Z\|_F^2 + \lambda \|Z\|_*$$

Proximal GD

- We will show that $prox_{\alpha}(B) = S_{\alpha}(B)$, where
- $S_{\alpha}(B)$ is $U\Sigma_{\alpha}V^{T}$, where $B=U\Sigma V^{T}$ and

$$\Sigma_{\alpha}(i,i) = \max(\Sigma_{ii} - \alpha, 0)$$

- First, it is known that the subdifferential of the nuclear norm is given by: $\partial \|Z\|_* = \{UV^T + W : \|W\| \le 1, U^TW = 0, WV = 0\},$ where $U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}$ where $Z = U\Sigma V^T$ where Σ contains the nonzero singular values of Z.
- Now we will show that $0 \in S_{\alpha\lambda}(B) B + \lambda\alpha\partial ||S_{\alpha\lambda}(B)||_*$

Proximal GD

- Take U_0 , V_0 as the singular vectors corresponding to $\sigma_i(B) > \lambda \alpha =: t$.
- Take the remaining singular vectors as U_\perp, V_\perp and the corresponding singular value matrix as Σ_\perp
- $S_t(B) B = -tU_0V_0^T U_{\perp}\Sigma_{\perp}V_{\perp}^T$
- $S_t(B) B + t(U_0V_0^T + W) = tW U_{\perp}\Sigma_{\perp}V_{\perp}^T$
- Taking $W = U_{\perp} \Sigma_{\perp} V_{\perp}^{T} / t$, we see that
 - $U^T W = 0$
 - *WV* = 0
 - $||W|| \le 1$

Proximal GD

- $B_{k+1} = S_{\lambda\alpha}(B + t(P_{\Omega}(Y) P_{\Omega}(B)))$
- This is called the Soft Impute algorithm.
 - Cai et al, "A Singular Value Thresholding Algorithm for Matrix Completion", 2010.
 - Mazumdar et al 2011, "Spectral regularization algorithms for learning large incomplete matrices"

Acknowledgment

Cai et al, "A Singular Value Thresholding Algorithm for Matrix Completion", 2010.