

Global Temperature Anomaly Prediction & Analysis Dashboard

Scenario:

As a Data Science Intern, you are tasked with developing an end-to-end machine learning pipeline that predicts global temperature anomalies based on historical data. The project will include building a predictive model using **Machine Learning (ML)**, deploying it with **Streamlit**, and visualizing the results using **Tableau/Power BI**. The objective is to create a comprehensive tool that allows users to analyze global temperature anomalies, make future predictions, and visually explore climate trends.

Dataset Description:

This dataset provides **monthly temperature anomalies** from 1880 to the present, with each row representing a different year. The temperature anomalies are compared to a long-term baseline (typically the 20th-century average) and are measured in **degrees Celsius**.

Columns in the Dataset:

- 1. Year: The year of observation.
- 2. Month Columns (Jan-Dec): The temperature anomaly for each month (from January to December).
- 3. J-D: The annual mean temperature anomaly (based on all 12 months of the year).
- 4. **D-N:** The **December to November** temperature anomaly.
- 5. Seasonal Columns (DJF, MAM, JJA, SON):
 - DJF: Winter temperature anomaly (December, January, February).
 - MAM: Spring temperature anomaly (March, April, May).
 - JJA: Summer temperature anomaly (June, July, August).
 - o **SON:** Fall temperature anomaly (September, October, November).

Tools and Technologies:

- Python (for data processing and machine learning)
 - Pandas and NumPy (data manipulation)
 - Scikit-learn (machine learning)
 - Matplotlib, Seaborn (visualization)
 - Statsmodels (statistical modeling)
- Streamlit (for deployment as an interactive web application)
- Tableau/Power BI (for advanced visualizations and dashboards)
- PyCharm (IDE for coding)

^{**}NOTE: Late Submission will have an effect on their scores, no extension will be given**

Project Phases:

Phase 1: Data Exploration and Preprocessing

1. Data Loading:

- o Load the global temperature anomaly dataset into a Pandas DataFrame.
- Inspect the data for consistency, null values, and proper formats.

2. Data Cleaning:

- o Handle missing values in the dataset (e.g., forward fill, imputation).
- o Remove any rows with extreme outliers or duplicates if necessary.
- o Ensure all temperature anomaly columns are in numeric format.

3. Feature Engineering:

- Create new columns for yearly moving averages (e.g., 5-year moving average) to capture long-term trends.
- o Extract time-based features, such as **year**, **month**, and **season**.
- Encode seasonal information into categorical variables for machine learning models.
- Normalize or scale the data to prepare it for training.

Phase 2: Exploratory Data Analysis (EDA)

1. Visualizing Trends:

- Create time series plots to show the global temperature anomaly trends over time.
- Compare temperature anomalies for different months and seasons using line plots.
- Plot the distribution of temperature anomalies to understand how anomalies have evolved over the years.
- Use a correlation heatmap to explore relationships between different months and seasonal temperature anomalies.

2. Insights from EDA:

- Identify key trends such as the overall warming of the planet.
- Determine if certain months or seasons have experienced more pronounced warming or cooling.
- Look for any patterns in the temperature anomaly distribution (e.g., outliers, spikes, or dips).

3. Advanced Visualizations (Tableau/Power BI):

- Import the processed dataset into Tableau or Power BI to create interactive visualizations.
- Develop a dashboard that shows:
 - Yearly temperature anomaly trends.
 - Seasonal temperature anomaly comparisons.
 - Temperature anomaly predictions (once the model is built).

Example Visuals:

- Heatmap of monthly temperature anomalies.
- o Interactive graphs for season-to-season temperature variations.
- Line plots comparing actual vs predicted temperature anomalies.

Phase 3: Machine Learning Model Development

1. Model Selection:

- Choose appropriate machine learning algorithms for predicting temperature anomalies, such as:
 - Linear Regression (for a simple baseline model)
 - Random Forest Regressor (for capturing non-linear patterns)
 - XGBoost (for better performance on large datasets)

2. Data Splitting:

- Split the data into training and testing sets (80% training, 20% testing).
- Perform cross-validation to avoid overfitting and improve model generalization.

3. Model Training:

- Train your machine learning model using the training data.
- Evaluate the model performance on the test data using metrics like Mean
 Absolute Error (MAE), Mean Squared Error (MSE), and R-squared.
- Fine-tune the model using hyperparameter optimization (e.g., grid search or random search).

4. Model Evaluation:

- Compare model performance (Linear Regression, Random Forest, and XGBoost) to identify the best-performing model.
- Visualize model performance using residual plots and prediction vs. actual plots.

Phase 4: Model Deployment with Streamlit

1. Deploying the Model:

- Create a Streamlit app to deploy the trained model for making future temperature anomaly predictions.
- o Build a simple user interface where users can:
 - Input a year and retrieve the predicted temperature anomaly for that year.
 - View a plot comparing the predicted vs actual temperature anomalies over time.

2. Interactive Features:

- Add interactive elements like sliders to select years, dropdowns for selecting months/seasons, and date pickers.
- o Include a section displaying insights based on the model predictions, such as:
 - How much the temperature anomaly is expected to change in the next few years.
 - The model's confidence in its predictions.

Phase 5: Final Reporting and Dashboard (Tableau/Power BI)

1. Interactive Dashboard:

- Develop an interactive dashboard using **Tableau** or **Power BI** that provides an overview of the global temperature anomaly analysis and predictions.
- Use the following components:
 - Line charts to show yearly trends.
 - Heatmaps for month-to-month and season-to-season comparisons.
 - Forecast charts that show predictions made by the model.

2. Key Insights:

- Highlight trends such as significant warming, cooling, or seasonal shifts in temperature.
- Include insights from the machine learning model, like predicted anomalies for the upcoming years.

Phase 6: Documentation and Final Presentation

1. Code Documentation:

 Properly document the code with comments, explanations, and assumptions made throughout the process.

DATA SCIENCE with OESON LEARNING

 Create a **README file** with clear instructions on how to run the code, use the Streamlit app, and interact with the dashboard.

2. Final Report:

- o Write a final report summarizing the entire project:
 - Data Preprocessing steps.
 - Key findings from Exploratory Data Analysis.
 - Model Development and evaluation results.
 - **Deployment** using Streamlit.
 - Key insights gained from the project and how they can be used to understand climate trends.

3. Presentation:

- Prepare a PowerPoint presentation or Jupyter Notebook walkthrough to present your project to stakeholders.
- o Include visualizations, model evaluation results, and demonstrate how users can interact with the Streamlit app and Tableau/Power BI dashboard.

Deliverables:

- 1. Python Code
- 2. Streamlit App
- 3. Dashboard (Tableau/Power BI): Links and Screenshot of Dashboard in presentations
- 4. Final Report and Presentation
- 5. LinkedIn Post (Separate File Added for Reference)