

AERONAUTICAL ENGINEER

Milan · Italy

🛘 (+39) 3426310876 | 🚾 antonio.pucc@gmail.com | 🌴 antoniopucciarelli.github.io | 🖸 antoniopucciarelli | 🛅 Antonio Pucciarelli | 💆 @antoniopuccil

Summary_

In 2017 I moved from Salerno to Milano with the intent of building my career in the aerospace field. I started the MSc pointing to have a good comprehension of internal and external flow physics, so I decided to create a personalized learning track based on CFD, turbomachinery design and flows modeling. Over the next few years, I intend to develop as aerospace engineer in the field of turbomachinery analysis, modeling and optimization. I am also interested in external aerodynamics, its modeling and the study of aeroelastic effects. During my training program at von Karman Institute for fluid dynamics, I worked on a novelty method based on machine learning adapted to turbomachinery. Currently I am working on extending this method to all the possible types of turbomachines in order to generate a universal designing tool.

Education

von Karman Institute for Fluid Dynamics

SHORT TRAINING PROGRAM · TURBOMACHINERY & MACHINE LEARNING

2022 - 2023

Sint-Genesius-Rode, Belgium

Politecnico di Milano

Milano, Italy 2021 - 2023

MASTER DEGREE IN AERONAUTICAL ENGINEERING · AERODYNAMICS & PROPULSION TRACK BACHERLOR DEGREE IN AEROSPACE ENGINEERING

2017 - 2020

Projects

datablade Milano, Italy

PRIVATE PROJECT May 2023 - present

- Continuation of my MSc thesis work

- Extention of the capabilities of the program to LPT and compressors
- GUI generation

Machine Learning for Turbomachinery • Master Thesis

Sint-Genesius-Rode, Belgium

SHORT TRAINING PROGRAM · VON KARMAN INSTITUTE FOR FLUID DYNAMICS

Oct 2022 - Nov 2022 Feb 2023 - Apr 2023

- von Karman Institute in-house program (developed from scratch)
- 2D airfoil database generation
- Machine learning adapted to turbomachinery blades

Aerospace Control Systems

https://github.com/antoniopucciarelli/controlPRJ

CONTROL DYNAMICS May 2022 - Jun 2022

- System dynamics study
- Stability analysis
- System uncertainties analysis
- Controllers design

SPACECRAFT PROPULSION

Liquid Rocket Engine: Design, Analysis and Simulation

https://antoniopucciarelli.github.io/assets/pdf/spacePropulsionPRJ.pdf

Milano, Italy

Milano, Italy

Spacecraft Propulsion

May 2022 - May 2022

- Tanks, combustion chamber and nozzle design
- Unsteady firing simulation with NASA CEA wrapping
- Monte Carlo analysis of the thrust with respect to the uncertainties related to the manufacturing process

Solid Rocket Motor: Firing Test Data Analysis and Simulation

https://github.com/antoniopucciarelli/spacePropulsionFlipped

Salerno, Italy

Apr 2022 - May 2022

- Vieille's law computation from firing test pressure traces

- Ballistic simulation of a solid rocket engine with different nozzles
- Monte Carlo analysis of the firing time with respect to the uncertainties on the Vieille's law

October 12, 2023 Antonio Pucciarelli · Résumé

Axial Compressor Preliminary Design Salerno, Italy https://github.com/antoniopucciarelli/turboLIB TURBOMACHINERY Mar 2022 - May 2022 - Mean line design - Pressure losses modeling - Non isentropic radial equilibrium study - 3D blade shape design - Python library - turboLIB **Combustion Chamber Modeling** Milano, Italy https://github.com/antoniopucciarelli/CFDprj CFD · FLUID DYNAMICS & COMBUSTION MODELING Oct 2021 - Jan 2022 - 2D & 3D analysis of an hydrocarbon combustion in a combustion chamber using the finite volume method - Unsteady compressible reactive simulation in OpenFOAM - Finite volume method analysis of the problem: topology, solution procedure and solvers - Spray modeling in a finite volume method code - Wall surface analysis in a finite volume method code - Turbulence modeling **EnelX Value Proposition: Sketch, Analysis and Validation** Milano, Italy https://antoniopucciarelli.github.io/assets/pdf/HTSprj.pdf HIGH-TECH STARTUP Sep 2021 - Jan 2022 - Value proposition generation - Validation of the value proposition and business model Injector Study and Liquid Jet Break Up in Liquid Rocket Engines Milano, Italy https://antoniopucciarelli.github.io/assets/pdf/LRE.pdf COMBUSTION May 2021 - Jun 2021 Liquid rocket engine analysis - Liquid jet break-up qualitative analysis and implication in the combustion chamber Weissinger Method: Study, Analysis and Coding Milano, Italy https://github.com/antoniopucciarelli/aeroWEISS AERODYNAMICS Dec 2020 - Jan 2021 - Incompressible study of the flow over 3D wings using a horseshoe vortex based method - Analysis of the 3D drag on a wing for a potential flow - Ground effect study - Matlab program - aeroWEISS Hess-Smith Method: Study, Analysis and Coding Milano, Italy https://github.com/antoniopucciarelli/aeroHS AERODYNAMICS Jun 2020 - Jan 2021 - Potential flow study using the Hess-Smith model based on vortex/sources/sinks distribution over an airfoil - Analysis of the interaction between two airfoils in tandem - Ground effect analysis - Fortran program - aeroHS **Satellite Orbital Transfer Analysis** Milano, Italy https://antoniopucciarelli.github.io/assets/pdf/IAMSprj.pdf ORBITAL DYNAMICS May 2020 - Jun 2020 - Study and generation of three orbital transfers for a satellite - Comparison the three sketched orbital maneuver **Canard Wing: Modeling and Analysis** Milano, Italy STRUCTURAL DYNAMICS May 2020 - Jun 2020 - Canard wing mesh generation and load application in FEMAP Results computation using NASTRAN - Static analysis under loading - Free modes analysis RL10-A33A: Modeling, Study and Analysis https://antoniopucciarelli.github.io/assets/pdf/RL10.pdf Milano, Italy https://github.com/antoniopucciarelli/NHE AEROSPACE PROPULSION Nov 2019 - Jun 2020 - Analysis and reverse engineering design of the Pratt & Whitney liquid rocket engine - 1D heat exchange simulation of the nozzle in Matlab - NHE

Paper Publication Sint-Genesius-Rode, Belgium

RESEARCHER · VON KARMAN INSTITUTE FOR FLUID DYNAMICS

Oct 2023 - present

• Working with Prof. Sergio Lavagnoli on writing a paper on *Data Driven Design Methods in Turbomachinery*. This paper will be published by Elsevier. The content of this work is a slight extension of my thesis work.

Skills____

Programming Python, Fortran, C/C++, Matlab, ŁTEX, CMake, GNUplot

Programs OpenFOAM, NASTRAN, openscad, xFOIL, NASA CEA, xflr5, Femap, SolidWorks, SolidEdge, Inventor

Languages_

Italian Native

English Full Proficiency · writing, speaking, listening

Norwegian Basic knowledge · self-taught

Marks____

Master degree • Aeronautical engineering	120 CFU	27.26 / 30
• Aerodynamics	10 CFU	27/30
Aerospace control systems	6 CFU	30 / 30
• Aerospace structures	10 CFU	27 / 30
• Aircraft engines	6 CFU	25 / 30
• Airclait engines • Airplane performace and dynamics	10 CFU	27 / 30
Combustion in thermochemical propulsion	8 CFU	28 / 30
Computational techniques for thermochemical propulsion	8 CFU	30 / 30
• High-tech startups: creating and scaling up I	6 CFU	26 / 30
Numerical modeling of differential problems	6 CFU	30L / 30
• Turbomachinery B	8 CFU	28 / 30
• Turbolitaciniery B • Turbulence: physics and modeling	8 CFU	26 / 30
• Space propulsion B	6 CFU	26 / 30
Structural dynamics and aeroelasticity	10 CFU	25 / 30
Degree in Aeronautical Engineering - Thesis with Opposer	20 CFU	25 / 30
begree in Aeronauticat Engineering - Mesis with Opposer	20 01 0	
Bachelor degree • Aerospace engineering	180 CFU	27.23 / 30
∘ Analisi e geometria 1	10 CFU	27 / 30
∘ Analisi e geometria 2	10 CFU	29 / 30
∘ Calcolo numerico ed elementi di analisi	10 CFU	27 / 30
o Dinamica di sistemi aerospaziali	8 CFU	27 / 30
∘ Elettrotecnica e elettronica applicata	10 CFU	27 / 30
∘ Fisica tecnica	10 CFU	27 / 30
∘ Fluidodinamica	10 CFU	21/30
∘ Fondamenti di automatica	8 CFU	28 / 30
∘ Fondamenti di chimica	7 CFU	24 / 30
∘ Fondamenti di fisica sperimentale	12 CFU	27 / 30
 Fondamenti di meccanica del volo atmosferico 	5 CFU	28 / 30
∘ Fondamenti di meccanica strutturale	10 CFU	26 / 30
 Fondamenti di sperimentazione aerospaziale 	6 CFU	20/30
∘ Impianti e sistemi aerospaziali	8 CFU	25 / 30
∘ Informatica	6 CFU	25 / 30
 Introduzione all'analisi di missioni aerospaziali 	2 CFU	30 / 30
∘ Istituzioni di ingegneria aerospaziale	8 CFU	26 / 30
∘ Meccanica aerospaziale	10 CFU	27 / 30
∘ Metodi di rappresentazione tecnica	7 CFU	29 / 30
∘ Modellazione di strutture aerospaziali	6 CFU	22 / 30
∘ Propulsione aerospaziale	7 CFU	23 / 30
∘ Tecnologie e materiali aerospaziali	7 CFU	24 / 30
 Prova finale di analisi di missioni aerospaziali 	1 CFU	30 / 30
 Prova finale di propulsione aerospaziale 	1 CFU	30L/30
 Prova finale di tecnologie e material aerospaziali 	1 CFU	24 / 30