Prof. Dr. Rupert Lasser WS 2000/01

Semestralklausur

zur Analysis I

Hinweise: 1) Es sind keine elektronischen Hilfsmittel, wie Taschenrechner, usw, zugelassen. Bitte nicht vergessen handys auszuschalten.

- 2) Die Aufgaben können in beliebiger Reihenfolge bearbeitet werden.
- 3) Die Antworten sind gegebenenfalls ausreichend zu begründen.
- 1. a) Untersuchen Sie, ob die Folgen

$$a_n = \frac{\sqrt{n^2 + 1} + n}{n + 2}, \qquad b_n = n \cdot \ln\left(1 + \frac{1}{\sqrt{n}}\right) \qquad (n \in \mathbb{N})$$

konvergieren und berechnen Sie gegebenenfalls die Grenzwerte.

b) Zeigen Sie, daß die durch $q_1 = 3$, $q_{n+1} = 4 - \frac{1}{q_n}$ rekursiv definierte Folge,

die Abschätzungen (1) $3 \le q_n \le 4$ und (2) $q_{n+1} \ge q_n$ für alle $n \in \mathbb{N}$ erfüllt (mit Induktion).

Zeigen Sie damit, daß die Folge konvergiert, und bestimmen Sie $\lim_{n\to\infty}q_n$.

- 2. a) Zeigen Sie, daß die Reihe $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ konvergiert, und berechnen Sie den Grenzwert.
 - b) Untersuchen Sie, ob die Reihe $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)$ konvergiert.
- 3. a) Bestimmen Sie den Konvergenzradius der Potenzreihe

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n+1}$$
 $(z \in \mathbb{C}).$

- b) Stellen Sie f(z) innerhalb des Konvergenzkreises mit Hilfe von e^z und e^{-z} explizit dar.
- 4. Gegeben seien die drei reellen Zahlen a < b < c. Zeigen Sie, daß die durch

$$f(x) = \frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c}$$

auf $\mathbb{R} \setminus \{a, b, c\}$ definierte Funktion f sowohl im Intervall]a, b[als auch im Intervall]b, c[jeweils mindestens eine Nullstelle besitzt.

Hinweis: Benutzen Sie den Zwischenwertsatz.

5. Bestimmen Sie

$$\lim_{\substack{z \to 0 \\ z \neq 0}} \frac{e^z - 1 - z}{z^2}, \qquad \lim_{\substack{x \to 2 \\ x \in \mathbb{R} \setminus \{2\}}} \frac{\sqrt{2 + x} - \sqrt{3x - 2}}{\sqrt{4x + 1} - \sqrt{5x - 1}}.$$

6. Für $x, y \in \mathbb{R}$ sei $d(x, y) := \sqrt{|x - y|}$. Zeigen Sie, daß (\mathbb{R}, d) ein metrischer Raum ist.