Protocolo MSL: PREDIÇÃO DE CASOS DE CHIKUNGUNYA COM O USO DE MACHINE LEARNING: UM ESTUDO DE MAPEAMENTO SISTEMÁTICO DA LITERATURA

A Chikungunya, também conhecida como CHIKV, é uma doença debilitante caracterizada por febre alta e dores intensas nas articulações, causada pelo vírus Chikungunya, um Alphavirus de RNA da família Togaviridae. Sua transmissão ocorre através da picada de mosquitos fêmeas, principalmente Aedes aegypti e Aedes albopictus. A natureza incapacitante da doença e seu potencial de disseminação rápida representam preocupações significativas para a saúde pública global. Nesse sentido, este estudo apresenta um Mapeamento Sistemático da Literatura (MSL), referente ao intervalo temporal entre 2010 a 2024 de estudos que apresentaram técnica de predição relacionados à Chikungunya e/ou arboviroses e em especial no Brasil.

1. Planejamento

Levantamento do estado da arte para a predição de chikungunya.

PICOC

- o **Population:** chikungunya, arboviroses, vetores.
- o Intervention: Artificial Intelligence, Machine Learning, Prediction.
- Comparison:
- Outcome:
- o **Context:** model, approach, technique, method.

2. Questão de pesquisa

• QP1 - quais as técnicas de Machine Learning (ML) relacionadas à predição de arboviroses, com foco na Chikungunya, estudadas durante a última década?

3. Palavras chaves

Systematic Review; Prediction; Machine learning; Chikungunya; Arboviruses; Mapeamento Sistemático; Machine Learning; Artificial Intelligence.

4. String de busca

Estudos de revisão sistemática: (systematic AND review AND (chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning)) e ((artificial AND intelligence) OR (machine AND learning) OR predictive AND arboviruses OR

vector-borne OR chikungunya AND systematic AND review).

Estudos de predição no Brasil: ((brazilian OR brazil) AND (chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning)).

Estudos gerais de predição: ((chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning)).

5. Fontes de dados (indexadores)

- PubMed (https://pubmed.ncbi.nlm.nih.gov/);
- Scopus (http://www.scopus.com).

6. Critérios de elegibilidade

6.1 Critérios de inclusão:

- Estudos que apresentaram algum tipo de técnica de aprendizado de máquina relacionado à chikungunya e/ou arboviroses;
- Estudos que apresentaram algum tipo de técnica de predição para chikungunya especificamente;
- Estudos de revisão sistemática e oriundos das revisões sistemáticas que estudaram predição para arboviroses e/ou chikungunya (técnica *snowballing* [Moher, 2009]).

6.2 Critérios de exclusão:

- Artigos duplicados;
- Não apresenta um modelo, abordagem, técnica ou método para predição de chikungunya e/ou arboviroses com uso de machine learning;
- Estudos não disponíveis para download;
- Não está em inglês ou português:
- Não está no intervalo de 2010 a 2024;
- Não está publicado em conferência, revista, jornal, ou capítulo de livro;
- Estudos de suporte clínico e genético ou de classificação (mosquito ou tipo de arboviroses).
- Técnicas/modelos puramente matemáticos/estatísticos.
- Predição para outras doenças.

7. Digital Libraries Search Strings

	STRING DE BUSCA	TOTAL DE
BASE DE		ARTIGOS
DADOS		EXTRAÍDOS
		DA BASE
DADOS		1

Scopus	TITLE-ABS-KEY (systematic AND review AND (chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning))	08
Scopus	TITLE-ABS-KEY ((artificial AND intelligence) OR (machine AND learning) OR predictive AND arboviruses OR vector-borne OR chikungunya AND systematic AND review)	35
Scopus	TITLE-ABS-KEY ((chikungunya OR dengue OR zika) AND (prediction OR predictive OR machine OR learning) AND sinan) OR ((brazilian OR brazil) AND (chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning)))	17
Scopus	TITLE-ABS-KEY ((chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning))	119
PubMed	(systematic AND review AND (chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning))	05
	((chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning)) Filters: from 2010 - 2024	55
	(((chikungunya OR dengue OR zika) AND (prediction OR predictive OR machine OR learning) AND sinan) OR ((brazilian OR brazil) AND (chikungunya OR arboviruses) AND (prediction OR predictive OR machine AND learning))) Filters: from 2010 - 2024	23
	TOTAL EXTRAÍDO DAS BASES	262
	ARTIGOS DUPLICADOS	94
TOTAL GERAL DE ARTIGOS ÚTEIS SELECIONADOS DAS BASES (Scopus + PubMed)		168
EXCLUÍDO APÓS LEITURA DO TÍTULO E ABSTRATO		15
INCLUÍDOS APÓS LEITURA COMPLETA		13

ACRESCENTADOS NA REVISÃO SISTEMÁTICA ATRAVÉS DA TÉCNICA <i>SNOWBALLING</i>	51
TOTAL DE ARTIGO NA REVISÃO SISTEMÁTICA	64

8. Planilha com as informações extraídas dos artigos

A partir da questão de pesquisa foi criada uma planilha para agrupamento das informações dos artigos aproveitados, conforme abaixo:

- Tipo de estudo;
- Título do trabalho;
- Principal autor;
- Ano de publicação;
- Conferência/Revista;
- Abordagem;
- Técnica.

9. Referências

- Aburas HM, Cetiner BG, Sari M (2010) "Dengue confirmed-cases prediction: a neural network model", Expert Syst Appl 37(6):4256–4260
- Ambelu A, Mekonen S, Koch M, Addis T, Boets P, Everaert G, Goethals P (2014) "The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies", (Diptera: Simuliidae) in the Gilgel Gibe watershed in southwest Ethiopia. PLoS One 9(11):e112221
- Appice A, Gel YR, Iliev I, Lyubchich V, Malerba D. (2020) "A multi-stage machine learning approach to predict dengue incidence: a case study in Mexico", IEEE Access. 8:52713–25. 10.1109/ACCESS.2020.2980634
- Arefin SE, Heya TA, Zaber DM (2021) "Predictive analysis of chikungunya", arXiv preprint arXiv:2101.03785
- Arowolo MO, Adebiyi M, Adebiyi A, Okesola O (2020) "PCA model for RNA-Seq malaria vector data classification using KNN and decision tree algorithm", In: 2020 International conference in mathematics, computer engineering and computer science (ICMCECS), pp 1–8. IEEE
- Arowolo MO, Adebiyi MO, Adebiyi AA, Olugbara O (2021) "Optimized hybrid investigative based dimensionality reduction methods for malaria vector using KNN classifier", Journal of Big Data 8(1):1–14

- Baghbanzadeh M, Kumar D, Yavasoglu SI, Manning S, Hanafi-Bojd AA, Ghasemzadeh H, Haque U (2020) "Malaria epidemics in India: role of climatic condition and control measures", Sci Total Environ 712:136368
- Baquero OS, Santana LMR, Chiaravalloti-Neto F (2018) "Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models." PLoS ONE. 13:e0195065. 10.1371/journal.pone.0195065
- Barros PH, Lima BG, Crispim FC, Vieira T, Missier P, Fonseca B (2018) "Analyzing social network images with deep learning models to fight zika virus", In: International conference image analysis and recognition, pp 605–610. Springer, Cham
- Brasier AR, Ju H, Garcia J, Spratt HM, Victor SS, Forshey BM, Venezuelan Dengue Fever Working Group (2012) "A three-component biomarker panel for prediction of dengue hemorrhagic fever", Am J Trop Med Hygiene 86(2):341–348
- Burlina PM, Joshi NJ, Ng E, Billings SD, Rebman AW, Aucott JN (2019) "Automated detection of erythema migrans and other confounding skin lesions via deep learning", Comput Biol Med 105:151–156
- Burlina PM, Joshi NJ, Mathew PA, Paul W, Rebman AW, Aucott JN (2020) "AI-based detection of erythema migrans and disambiguation against other skin lesions", Comput Biol Med 125:103977
- Caicedo-Torres W, Paternina-Caicedo Á, Pinzón-Redondo H, Gutiérrez J (2018) "Differential diagnosis of dengue and chikungunya in colombian children using machine learning", In: Ibero-American conference on artificial intelligence, pp 181–192. Springer, Cham
- Chakraborty T, Chattopadhyay S, Ghosh I. (2019) "Forecasting dengue epidemics using a hybrid methodology", Phys A Stat Mech Appl. (2019) 527:121266. 10.1016/j.physa.2019.121266
- Coroian M, Petrić M, Pistol A, Sirbu A, Domşa C, Mihalca AD (2020) "Human West Nile Meningo-encephalitis in a highly endemic country: a complex epidemiological analysis on biotic and abiotic risk factors", Int J Environ Res Public Health 17(21):8250
- Cortes F. et al., (2018) "Time series analysis of dengue surveillance data in two Brazilian cities", Acta Trop., vol. 182, pp. 190–197. 2024-01-16. Disponível: https://doi.org/10.1016/j.actatropica.2018.03.006
- Chumpu R, Khamsemanan N, Nattee C. (2019) "The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014", PLoS ONE. 14:e0226945. 10.1371/journal.pone.0226945

- Čuk E, Gams M, Možek M, Strle F, Čarman VM, Tasič JF (2014) "Supervised visual system for recognition of erythema migrans, an early skin manifestation of lyme borreliosis", Strojniški vestnik J Mech Eng 60(2):115–123
- Damos P, Tuells J, Caballero P (2021) "Soft computing of a medically important arthropod vector with autoregressive recurrent and focused time delay artificial neural networks", Insects 12(6):503
- Doni AR, Sasipraba T. (2020) "LSTM-RNN based approach for prediction of dengue cases in India. Ingénierie des Systémes d'Information", 25:327–35. 10.18280/isi.250306
- Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ (2021) "Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs", Comput Struct Biotechnol J 19:3051–3057
- Elijorde FI, Clarite DS, Gerardo BD, Byun Y. (2016) "Tracking and prediction of dengue outbreak using cloud-based services and artificial neural network", Int J Multimedia Ubiquit Eng. 11:355–66. 10.14257/ijmue.2016.11.5.33
- Farooqi W, Ali S (2013) "A critical study of selected classification algorithms for dengue fever and dengue hemorrhagic fever", In: 2013 11th international conference on frontiers of information technology, pp 140–145). IEEE
- Gambhir S, Malik SK, Kumar Y (2018) "The diagnosis of dengue disease: an evaluation of three machine learning approaches", Int J Healthcare Inf Syst Inf IJHISI 13(3):1–19
- Hossain MS, Sultana Z, Nahar L, Andersson K (2019) An intelligent system to diagnose chikungunya under uncertainty", J Wireless Mobile Networks Ubiquitous Comput Depend Appl 10(2):37–54
- Husin NA, Mustapha N, Sulaiman N, Yaacob R, Hamdan H, Hussin M. (2016) "Performance of hybrid GANN in comparison with outbreaks standalone models on dengue outbreak prediction", J Comput Sci. (2016) 12:300–6. 10.3844/jcssp.2016.300.306
- Jayaraj VJ, Avoi R, Navindran G, Dhesi BR, Yusri U. (2019) "Developing a dengue prediction model based on climate in Tawau, Malaysia", Acta Trop. 197:105055. 10.1016/j.actatropica.2019.105055
- Kaur, I., Sandhu, A.K. and Kumar, Y. (2022) "Artificial Intelligence Techniques for Predictive Modeling of Vector-Borne Diseases and its Pathogens: A Systematic Review", Archives of Computational Methods in Engineering, http://dx.doi.org/10.1007/s11831-022-09724-9.

- Kondeti PK, Ravi K, Mutheneni SR, Kadiri MR, Kumaraswamy S, Vadlamani R, Upadhyayula SM (2019) "Applications of machine learning techniques to predict filariasis using socio-economic factors", Epidemiol Infect, p 147
- Kuo, Chao-Yang, et al. "Improving Dengue Fever Predictions in Taiwan Based on Feature Selection and Random Forests." BMC Infectious Diseases, vol. 24, no. S2, 20 Mar. 2024, https://doi.org/10.1186/s12879-024-09220-4.
- Laureano-Rosario AE, Duncan AP, Mendez-Lazaro PA, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale J, Muller-Karger FE (2018) "Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of Yucatan, Mexico and San Juan, Puerto Rico", Trop Med Infect Dis 3(1):5
- Lima C. L. et al. (2022) "Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review", Front. Public Health, vol. 10. Disponível: https://doi.org/10.3389/fpubh.2022.900077
- Lopez-Montenegro LE, Pulecio-Montoya AM, Marcillo-Hernandez GA. (2019) "Dengue cases in Colombia: mathematical forecasts for 2018-2022", MEDICC Rev. 21:38–45. 10.37757/MR2019.V21.N2-3.8
- M. S. Rahman et al.,(2021) "Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach", One Health, vol. 13, p. 100358.
- O. Man, T. L. Fuller, J. I. Rosser e K. Nielsen-Saines, (2022). "Re-emergence of arbovirus diseases in the State of Rio de Janeiro, Brazil: The role of simultaneous viral circulation between 2014 and 2019", One Health, p. 100427.
- Moher, David, et al. "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement." Annals of internal medicine 151.4 (2009): 264-269.
- Mokammel Hossain Tito, et al. Predictive Modeling of Global Vector-Borne Diseases: Leveraging Machine Learning for Intervention Strategies. 28 Jan. 2024, https://doi.org/10.1109/icetsis61505.2024.10459646.
- Mussumeci E, Codeso Coelho F. Large-scale multivariate forecasting models for Dengue LSTM versus random forest regression. Spatial Spatio Temp Epidemiol. (2020) 35:100372. doi: 10.1016/j.sste.2020.100372
- Nakvisut A, Phienthrakul T. (2018) "Two-step prediction technique for dengue outbreak in Thailand", In: 2018 International Electrical Engineering Congress (iEECON). Krabi: p. 1–4. 10.1109/IEECON.2018.8712258
- Parselia E, Kontoes C, Tsouni A, Hadjichristodoulou C, Kioutsioukis I, Magiorkinis G, Stilianakis NI (2019) "Satellite earth observation data in epidemiological modeling of

- malaria, dengue and West Nile virus: a scoping review", Remote Sensing 11(16):1862
- Pineda-Cortel MRB, Clemente BM, Nga PTT. (2019) "Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data", Asian Pac J Trop Med. 12:60–6. 10.4103/1995-7645.250838
- Pham DN, Aziz T, Kohan A, Nellis S, Jamil JbA, Khoo JJ, et al.. (2018) "How to efficiently predict dengue incidence in Kuala Lumpur", In: 2018 Fourth International Conference on Advances in Computing, Communication Automation (ICACCA). Subang Jaya p. 1–6. 10.1109/ICACCAF.2018.8776790
- Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M, et al. (2015) "Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam." Acta Trop. 141:88–96. 10.1016/j.actatropica.2014.10.005
- Polwiang S. (2020) "The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)", BMC Infect Dis. 20:208. 10.1186/s12879-020-4902-6
- Rishickesh R, Shahina A, Nayeemulla Khan A (2019) "Prediction of West Nile virus using ensemble classifiers", Int J Eng Adv Technol IJEAT, pp 2249–8958
- Sajana T, Narasingarao MR (2018) "Majority voting algorithm for diagnosing of imbalanced malaria disease", In:International conference on ISMAC in computational vision and bio-engineering, pp 31–40. Springer, Cham
- Salim Gulab Shaikh, et al. "Hybrid Machine Learning Method for Classification and Recommendation of Vector-Borne Disease." Journal of Autonomous Intelligence, vol. 7, no. 2, 25 Dec. 2023, https://doi.org/10.32629/jai.v7i2.797.
- Saptarini NGAPH, Dillak RY, Pakan PD. (2018) "Dengue haemorrhagic fever outbreak prediction using Elman Levenberg neural network and genetic algorithm", In: 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT). Makassar: p. 188–91. 10.1109/EIConCIT.2018.8878529
- Shashvat K, Basu R, Bhondekar P, Kaur A. (2019) "An ensemble model for forecasting infectious diseases in India", Trop Biomed. 36:822–32.
- Silva C. C. et al. (2022) "Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics", Res. Biomed. Eng., Disponível: https://doi.org/10.1007/s42600-022-00202-6
- Soliman M, Lyubchich V, Gel YR. (2020) "Ensemble forecasting of the Zika space-time spread with topological data analysis. Environmetrics." 31:e2629. 10.1002/env.2629
- Tek FB, Dempster AG, Kale I (2010) "Parasite detection and identification for automated thin blood film malaria diagnosis", Comput Vis Image Underst 114(1):21–32

- Telang H, Sonawane K (2020) "Effective performance of bins approach for classification of malaria parasite using machine learning", In: 2020 IEEE 5th international conference on computing communication and automation (ICCCA), pp 427–432. IEEE
- Teng Y, Bi D, Xie G, Jin Y, Huang Y, Lin B, et al.. (2017) "Dynamic forecasting of Zika epidemics using Google Trends", PLoS ONE. 12:e0165085. 10.1371/journal.pone.0165085
- Thiruchelvam L, Asirvadam VS, Dass SC, Daud H, Gill BS. (2017) "K-step ahead prediction models for dengue occurrences", In: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). Kuching: p. 541–6. 10.1109/ICSIPA.2017.8120671
- Tran A, Sudre B, Paz S, Rossi M, Desbrosse A, Chevalier V, Semenza JC (2014) "Environmental predictors of West Nile fever risk in Europe", Int J Health Geogr 13(1):1–11
- Verma S, Sharma N (2018). "Statistical models for predicting chikungunya incidences in India", In: 2018 First international conference on secure cyber computing and communication (ICSCCC), pp 139–142. IEEE.
- Wang B, Deveson ED, Waters C, Spessa A, Lawton D, Feng P, Li Liu D (2019) "Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks", Sci Total Environ 668:947–957
- Widiyaningtyas T, Zaeni IAE, Jamilah N (2020) "Diagnosis of fever symptoms using naive bayes algorithm", In: Proceedings of the 5th international conference on sustainable information engineering and technology, pp 23–28
- Xu J, Xu K, Li Z, Meng F, Tu T, Xu L, Liu Q (2020) "Forecast of dengue cases in 20 chinese cities based on the deep learning method", Int J Environ Res Public Health 17(2):453
- Young SG, Tullis JA, Cothren J (2013) "A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus", Appl Geogr 45:241–249
- Zhao N, Charland K, Carabali M, Nsoesie EO, Maheu-Giroux M, Rees E, et al.. (2020) "Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia", PLoS Neglect Trop Dis. 14:e0008056. 10.1371/journal.pntd.0008056