Adaptive Quantum State Tomography with Neural Networks

Yihui Quek*

arxiv 1812.06693

Joint work with Stanislav Fort* and Hui Khoon Ng

^{*} These two authors contributed equally

Quantum State Tomography

Adaptive Quantum Tomography

Problem: Expensive to prepare states for measurements.

Solution: Minimize measurements by choosing them

adaptively based on past information.

On (k+1)-st iteration:

Adaptive <u>Bayesian</u> Quantum

arXiv: 1107.0895 Tomography

Weight updates

Weights = prior probabilities

Resampling/particle updates

After a while, weight distribution becomes sharply peaked $\begin{array}{c} w_3 \\ w_1 \\ \hline \end{array}$ Resampling Re-initialize particles with uniform weights $\frac{1}{3} \frac{1}{3}$

Final state estimate

$$\hat{\rho} = \int \rho dp (\rho | \mathcal{D})$$

$$\approx \sum_{i} w_{i} \rho_{i}$$

ABQT in more detail

- Basic idea: modified particle filter
- Weight decay problem → resampling, costly
 - Metropolis-Hastings algorithm (need to compute extensive probabilities)
 - Runtime for 100 particles, 1000 copies measured~ 4 hr
- Adaptivity: optimizing an entropy decrease heuristic
 - Maximizing mutual information between the label of bank states and the outcome of the next POVM

Our solution

Off-the-shelf deep learning architectures don't work for our purposes!

During training: simulate POVM

During deployment: experimenter supplies physical measurements

Within the RNN cell

 Takeaway: If you have an expensive function, approximate it with a neural network.

- Input: old particle bank $\{
 ho_i, w_i\}$
- 1. Update weights using NN $w_i \leftarrow w_i'$
- 2. Update particles using NN $\rho_i \leftarrow \rho_i'$
- 3. (optional) Output new POVM configuration lpha'

Within the RNN cell

• Stage 1: update weights astageateupstianta pearticles

Stage III: measurement adaptivity

Stage I: update weights

Stages II and III

Different paradigm from ABQT

In NA-QST:

- Weights not interpreted as probabilities. No
 Bayesian weight updates → no weight decay.
- NN learns own similarity metric to propose weight updates and resampling.
- Resampling is fast!
- Measurement adaptivity step influences earlier steps of weight updates and resampling, as they are trained using same signal.

Results

- With our rapid algorithm, we were able to perform experiments to understand the limits of usefulness of measurement adaptivity.
- Compared performance of NA-QST against ABQT and standard tomography implemented on same platform.
- Performance metric: Scaling of Bures distance with number of copies of true state measured.

Numerical experiments

- Parameters of variation:
 - **Reconstruction algorithm:** `Standard' quantum tomography, ABQT or NA-QST
 - **Type of single-qubit POVM:** two (basis POVMs), three, four or six legs per subspace
 - Adaptive or random measurements
 - **Size of particle bank:** more particles means finer sampling and a higher quality approximation

Part I: Adaptivity with SIC-POVMs

 Adaptive algorithms vs non-adaptive ones for SIC-POVMs: no difference in performance!

Part I: When is adaptivity helpful?

- Only for basis POVMs
- With >4 legs, adaptivity makes no difference

Part II: ABQT vs NA-QST (basis POVMs)

Reconstruction accuracy 2 qubits, Basis POVM

- Tweakable parameter for ABQT: Number of particles. More particles = better approximation of posterior.
- NA-QST with 100 particles performs comparably to ABQT with 10, 100, 1000 particles, but runs significantly faster!

Part III: Computation time for adaptive algorithms

Discussion

- NA-QST is fast, accurate and flexible can be easily retrained for specific applications (lowrank states, etc).
- Huge potential for machine learning to solve design problems in experimental physics (for instance 1706.00868)
- Method can be extended to other modified particle filter algorithms.

Collaborators

Stanislav Fort

PhD student at Stanford /

Al Resident at Google Al

Twitter: @stanislavfort

Email: sfort1@stanford.edu

Hui Khoon Ng Assistant Professor, CQT

Email: cqtnhk@nus.edu.sg