Expérience numérique : Simulation d'un condensat de Bose-Einstein

Jean-Marc Sac-Epée, institut Elie Cartan de Lorraine, université de Lorraine Philippe Parnaudeau, LJLL, Université Pierre & Marie Curie, CNRS.

Qu'est-ce qu'un condensat?

• Physique classique, théorie de la cinétique des gaz :

Un gaz est un ensemble de Matière dont la densité est si faible que les interactions entre deux atomes sont négligées

Physique Quantique :

Le Principe d'indétermination de Heisenberg ($\Delta x \Delta p \ge h/2$), donc Une particule est un paquet d'ondes.

Cette délocalisation est quantifiée par la longueur d'onde λ thermique de Broglie :

$$\lambda = \frac{\hbar}{\sqrt{2\pi mkT}}$$

Qu'est-ce qu'un condensat?

$$\lambda = \frac{\hbar}{\sqrt{2\pi mkT}}$$

 $T >> T_{C}$ Les atomes se déplacent sous forme désordonnée

$$T \geq T_{C}$$
 Les atomes se déplacent sous forme de petits paquets d'ondes

$$T < T_{\mathcal{C}}$$
 Les paquets d'ondes sont regroupés en un gros « paquet » : condensat de Bose-Einstein

En général, les condensats atomiques sont obtenus expérimentalement à partir de gaz issus de la famille des alcalins (première colonne de la classification périodique), comme le rubidium ou le césium.

Qu'est-ce qu'un condensat?

- Prédiction 1925 par S. Bose et A. Einstein.
- Découverte expérimentale 1995, Prix Nobel en 2001 pour C.E. Wieman, E.A. Cornell, W. Ketterle.

Conditions expérimentales pour obtenir des condensats :

- ✓ Gaz mono-atomique ,
- ✓ Température de l'ordre du nano degré Kelvin,
- ✓ Quelques milliers d'atomes.

Remarque: expériences complexes & coûteuses

Equation de Gross-Pitaevskii adimensionnée

Hypothèses :

- Température très basse
- Collisions à très basse énergie
- Confinement dans un piège magnétique noté $V(\mathbf{x})$
- Moment angulaire ΩL_{Z}

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left(-\frac{1}{2}\Delta + \mathbf{V}(\mathbf{x}) + \beta |\psi(\mathbf{x},t)|^2 - \Omega \mathbf{L}_z\right)\psi(\mathbf{x},t)$$

$$\|\psi(.,t)\|^2 := \int_{\mathbb{R}^3} |\psi(\mathbf{x},t)| d\mathbf{x}^2 = 1 \qquad \mathbf{L}_z = -i(x\partial_y - y\partial_x)$$

Equation de Gross-Pitaevskii adimensionnée

Hypothèse : état stationnaire

$$\psi(\mathbf{x},t) = \mathrm{e}^{-i\mu t}\phi(\mathbf{x})$$

 (\mathcal{U}, ϕ) sont obtenus par résolution d'un problème aux valeurs propres non linéaire tel que :

$$\mu\phi(\mathbf{x}) = \left(-\frac{1}{2}\Delta + \mathbf{V}(\mathbf{x}) + \beta |\phi(\mathbf{x})|^2 - \Omega \mathbf{L}_z\right) \phi(\mathbf{x})$$

Avec:
$$\|\phi\|^2 = \int_{\Re^3} |\phi(\mathbf{x})|^2 d\mathbf{x}$$

Equation de Gross-Pitaevskii adimensionnée

Hypothèse : états stationnaires

$$\mu\phi = \left(-\frac{1}{2}\Delta + \mathbf{V} + \beta|\phi|^2 - \Omega \mathbf{L}_z\right)\phi$$

Qui peut s'écrire également :

$$E(\phi) = \int_{\Re^3} \left[\left(\frac{1}{2} |\nabla \phi|^2 + \mathbf{V} |\phi|^2 + \frac{1}{2} \beta |\phi|^4 - \mathbf{\Omega} \Re(\phi^* \mathbf{L}_z \phi) \right] d\mathbf{x}$$

Si on minimise E, on obtient les états stationnaires nommés : « Ground State »

Ground State solution

- Existence de la solution :
 - R. Seiringer « Gross-Pitaevskii theory of the rotating Bose gas », Comm. Math. Phys. 2002.
 - Bao et.al « Ground, symetric and central vortex states in rotating Bose-Einstein condensates », Comm. Math. Sci 2005

L' existence du « ground state » dépend d'un rapport entre $|\Omega|$ et la forme de V(x)

Méthode numérique

Descente de gradient :

$$\mu \phi = \left(-\frac{1}{2} \Delta + \mathbf{V} + \beta |\phi|^2 - \Omega \mathbf{L}_z \right) \phi$$

Soit:

$$\begin{cases}
\frac{\partial \mathbf{v}}{\partial \tau}(\mathbf{x}, \tau) = -\nabla E(\mathbf{v}) \\
\nabla E(\mathbf{v}) = \left(-\frac{1}{2}\Delta + \mathbf{V} + \beta |\mathbf{v}|^2 - \Omega \mathbf{L}_z\right)\mathbf{v}
\end{cases}$$

$$v(\mathbf{x},\tau) \leftarrow \frac{v(\mathbf{x},\tau)}{\|v(.,\tau)\|_{L_2}} \qquad \|v(\mathbf{x},0)\|_{L_2} = 1 \qquad \phi(\mathbf{x}) = \lim_{(\tau \to \infty)} v(\mathbf{x},\tau)$$

9

Méthode numérique

Descente de gradient

$$\frac{\partial \mathbf{v}}{\partial \tau} = -\left(-\frac{1}{2}\Delta + \mathbf{V} + \beta |\mathbf{v}|^2 - \Omega \mathbf{L}_z\right) \mathbf{v}$$

Euler semi-implicite

$$\frac{\boldsymbol{v}^{n+1}-\boldsymbol{v}^{n}}{\Delta \tau}=\frac{1}{2}\Delta \boldsymbol{v}^{n+1}-\boldsymbol{V}\boldsymbol{v}^{n+1}-\boldsymbol{\beta}|\boldsymbol{v}^{n}|^{2}\boldsymbol{v}^{n+1}-\boldsymbol{\Omega}\boldsymbol{L}_{z}\boldsymbol{v}^{n+1}$$

$$\begin{cases}
\mathbf{A} \mathbf{v}^* = \mathbf{b} \\
\mathbf{v}^{n+1} = \frac{\mathbf{v}^*}{\|\mathbf{v}^*\|}
\end{cases}$$

$$\mathbf{A} = \left(\frac{\mathbf{I}}{\Delta \tau} - \frac{1}{2}\Delta + \mathbf{V} + \beta |\mathbf{v}^n|^2 - \Omega \mathbf{L}_z\right) \qquad \mathbf{b} = \frac{\mathbf{v}^n}{\Delta \tau}$$

11/12/2013 Journée FF++

Méthode numérique

Descente de gradient améliorée

$$\mathbf{A} = \left(\frac{\mathbf{I}}{\Delta \tau} - \frac{1}{2}\Delta + \mathbf{V} + \beta |\mathbf{v}^n|^2 - \Omega \mathbf{L}_z\right)$$

Les opérateurs « Laplacien » et « Rotationnel » sont discrétisés à l'aide de FFT.

X. Antoine et R. Duboscq (J. Comput. Phys 2013) proposent d'utiliser une méthode de Krylov (BiCGStab) et un pré-conditionnement de A tel que le problème à résoudre devienne :

$$(\mathbf{I} + \mathbf{P}\mathbf{A}_{TF})\mathbf{v}^* = \mathbf{P}\mathbf{b}$$

$$\mathbf{P} = \left(\frac{\mathbf{I}}{\Delta \tau} + \mathbf{V} + \beta |\mathbf{v}^n|^2\right)^{-1} \qquad \mathbf{A}_{TF} = -\frac{1}{2}\Delta - \Omega \mathbf{L}_z$$

Mise en œuvre :

Avantages: Facile à implémenter. Fortran, programmation hybride(MPI-OpenMP) pour le cas 3D et OpenMP pour le cas 2D; Bon passage à l'échelle; Robuste;

Inconvénients:

Rapide.

FFT + moment angulaire -> CL périodique Choix de Δau

Condition initiale

Choix de la condition initiale important.

Bao et.al « Ground, symetric and central vortex states in rotating Bose-Einstein condensates », Comm. Math. Sci 2005

Hypothèse: Terme non linéaire fort $\beta |v^n|^2$, avec $\beta \ge 10$

Régime de Thomas-Fermi

$$v_{0}(\mathbf{X}) = \frac{\mathbf{v}_{g}^{tf}(\mathbf{X})}{\|\mathbf{v}_{g}^{tf}\|}, \quad \mathbf{v}_{g}^{tf}(\mathbf{X}) = \begin{cases} \sqrt{\frac{\mu_{g}^{tf} - \mathbf{V}(\mathbf{X})}{\beta}} \\ 0 & \mathbf{V}(\mathbf{X}) = (\sum_{i=1,n} \gamma_{i} x_{i}^{2}), \quad n = 2 \text{ (cas2D), 3 (cas3D)} \end{cases}$$

$$\mu_{g}^{tf} = \begin{cases} \frac{1}{2} \sqrt{4\beta \gamma_{1} \gamma_{2} / \pi}, \text{ pour le cas 2D} \\ \frac{1}{2} (15\beta \gamma_{1} \gamma_{2} \gamma_{3} / 4\pi)^{\frac{2}{3}}, \text{ pour le cas 3D} \end{cases}$$
13

Condition initiale

$$\boldsymbol{v}_{0}(\mathbf{x}) = \frac{\boldsymbol{v}_{g}^{tf}(\mathbf{x})}{\|\boldsymbol{v}_{g}^{tf}\|}, \boldsymbol{v}_{g}^{tf}(\mathbf{x}) = \begin{cases} \sqrt{\frac{\mu_{g}^{tf} - \mathbf{V}(\mathbf{x})}{\beta}} \\ 0 \end{cases} \qquad \mu_{g}^{tf} = \begin{cases} \frac{1}{2}\sqrt{4\beta\gamma_{1}\gamma_{2}/\pi}, \text{ pour le cas 2D} \\ \frac{1}{2}(15\beta\gamma_{1}\gamma_{2}\gamma_{3}/4\pi)^{\frac{1}{2}}, \text{ pour le cas 3D} \end{cases}$$

$$\gamma_1 = \gamma_2 = 1$$
.

$$\beta = 100.$$

$$\beta = 1000$$
.

$$\beta = 10000$$
.

11/12/2013 Journée FF++

Résolution: 256x256

Résolution: 512x512

Efficacité du code en 2D OpenMP

Ne pas mettre OpenMP à la poubelle

		Mono	1 2	2	4	8	16 3	2 64	12	28
	mpi	2175	1220	609	345	236	117	58	2 9	13
	CG	2175	790	381	234	195	103	74	69	41
UV-100	FG	2175	785	384	236	194	131	309	514	4 475
	Ideal	2175	1087	543	271	135	33	16	8	4

#cœurs	mpi	omcg	omfg
2	190,45	189,30	190,81
4	125,12	123,75	124,65
8	120,00	119,39	120,32
16	60,05	59,80	142,62
32	30,21	30,02	225,70
64	15,32	15,18	235,45
128	6,16	6,12	185,05
256	1,03	1,78	35,91
512	0,64	1,47	5,56
1024	0,54 0,56	4,12	10,72

UV-2000

11/12/2013

Version 3D: MPI/OpenMP

Le moment angulaire nous oblige à ce découpage

Inconvénient : MPI pure Nombre processus == Nz!

Solution: Open MP + architecture SMP +Cluster!

Version optimisée d'OpenMP.

Version avec OpenACC.

Bibliothèque(s) obligatoire(s) (2D): FFTW. (3D): FFTW, MPI.

Option pour IO: ADIOS/HDF5

Journée FF+

 $\beta = 1671,68 ; \Omega = 1.01$

 $\beta = 1671,68 \; ; \; \Omega = 1.08$

 $\beta = 1671,68 ; \Omega = 1.11$

