METRIC SPACES

2.15 Definition

A set X is said to be a metric space if two points a and b in X associate a real number function d(p,q) such that

```
egin{aligned} Non-negativity: & d(p,q)>0 \ if \ p 
eq q, d(p,p)=0; \ Symmetry: & d(p,q)=d(q,p); \ Triangle \ Inequality: & d(p,q) \leq d(p,r)+d(r,q), for \ any \ r \in X. \end{aligned}
```

Any function with these three properties is called a distance function, or a metric.

2.16 Definition

The **unit ball** is a set defined by

$$\{\mathbf{x} \in R^n | d(\mathbf{x}, 0) \le 1\}$$

2.17 Definition

Let X be a metric space, all points and sets mentioned below are elements and subsets of X.

- 1. A **neighborhood** of p is a set $N_r(p)$ consisting of all q such that d(p,q) < r,for some r > 0. The number r is called the radius of $N_r(p)$. (random r)
- 2. A point p is a *limit point* of the set E if *every* neighborhood of p contains a point $q \neq p$ such that $q \in E$.(no one but myself). $i.e. \forall r > 0, N_r(p) \cap E \neq \emptyset$
- 3. If $p \in E$ and p is not a limit point of E, then p is called an **isolated point** of E.
- 4. A point is an *interior point* of E if there is a neighborhood N of p such that $N \subset E$. $i.e. \exists r > 0, N_r(p) \subseteq E$.
- 5. E is closed if **every limit point** of E is a point of E.
- 6. E is open if every point of E is a **interior point**. $\forall p \in E, \exists r > 0, s. t. N_r(p) \subseteq E$.
- 7. The **complement** of E,denoted by E^c , is the set of all points $p \in X$ such that $p \notin E$.
- 8. E is *perfect* if E is closed and if every point of E is a limit point of E.
- 9. E is **bounded** if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- 10. E is *dense* in X if every point of X is a limit point of E,or a point of E(or both).

Notice that an interior point is not necessarily a limit point.

2.18 Facts

Let X be a metric space, all points and sets mentioned below are elements and subsets of X.

- 1. If E is open, E^c is closed;
- 2. If E is closed, E^c is open.

Proof:

1.We need to show that if p is a limit point of E^c then $p \in E^c$.

Let p be a limit point, $i.e. \forall r > 0, N_r(p) \cap E^c \neq \varnothing$.

$$\therefore \forall p \in E, \forall r > 0, N_r(p) \text{ dosen't } \subseteq E.$$

Therefore p is not an interior point of E. However, every point in E is an interior point. $i. e. p \notin E, p \in E^c$.

2.The statement is equivalent to "If E is not open,then E^c is not closed",which is trivial.

Since E is not open,that is $\exists p \in E, \forall r > 0, s.t. N_r(p) \cap E^C \neq \varnothing$.

Therefore E^c is not closed.

2.19 Facts

Let A_n , B_n be a open set and a closed set which are both subsets of a metric space X. (n = 1, 2, 3...)

- $$\begin{split} &1. \cup_{i=1}^n A_n \text{ is open.} \cup_{i=1}^n B_n \text{is closed.} \cap_{i=1}^n A_n \text{is open,} \cap_{i=1}^n B_n \text{is closed.} \\ &2. \cup_{i=1}^\infty A_n \text{ is open.} \cup_{i=1}^\infty B_n \text{ is closed.} \\ &3. \cap_{i=1}^\infty A_n \text{ may NOT be open.} \cup_{i=1}^\infty B_n \text{ may NOT be closed.} \end{split}$$

2.20 Theorem

If p is a limit point of a set E, then every neighbourhood of p contains **infinitely** many points of E.

Corollary

A finite point set has no limit points.

Hence, a finite set is closed.

2.22 Theorem

Let $\{E_n\}$ be a (finite or infinite)collection of sets E_{lpha} . Then $(\cup_{lpha} E_{lpha})^c = \cap_{lpha} (E_{lpha}^c)$

2.23 Definition

If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E, then the *closure* of E is the set $\overline{E} = E \cup E'$.

2.24 Theorem

If X is a metric space and $E \subset X$, then

- (a) \overline{E} is closed,
- (b) $\overline{E}=E$ if and only if E is closed,
- (c) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

2.25 Definition

If E is a metric space and E is a closed set, E is perfect if and only if $E^\prime=E$.