Optical Flow and Mode Selection for Learning-based Video Coding

Paper ID: 113

Théo LADUNE^{1,2}, Pierrick PHILIPPE¹, Wassim HAMIDOUCHE², Lu ZHANG², Olivier DÉFORGES²

 $^1{
m Orange\ Labs},\ {
m France} \ --\ ^2{
m INSA\ Rennes},\ {
m France}$ theo.ladune@orange.com

IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Sept. 2020

Introduction

Successive frames of a video are highly correlated

Two successive frames of a video

- Video codecs save rate by sending x_t with inter frame coding
 - 1. Computing $\tilde{\mathbf{x}}_t$, a prediction of \mathbf{x}_t , based on already received frames and motion information
 - 2. Transmitting only the **prediction error**: $r = \mathbf{x}_t \tilde{\mathbf{x}}_t$

• Learning-based codecs^{1,2,3} implement inter frame coding with

¹Lu et al., DVC: an end-to-end deep video compression framework, CVPR 19

²Liu et al., Learned video compression via joint spatial-temporal correlation exploration

³Djelouah et al., Neural inter-frame compression for video coding, ICCV 19

- Learning-based codecs^{1,2,3} implement inter frame coding with
 - 1. One Auto-Encoder (AE) to compute and convey the ${\color{red}optical}$ flow ${\color{red}v}$

¹Lu et al., DVC: an end-to-end deep video compression framework, CVPR 19

²Liu et al., Learned video compression via joint spatial-temporal correlation exploration

³Djelouah et al., Neural inter-frame compression for video coding, ICCV 19

- Learning-based codecs^{1,2,3} implement inter frame coding with
 - 1. One Auto-Encoder (AE) to compute and convey the optical flow v
 - 2. Interpolation of a reference frame to perform motion compensation

¹Lu et al., DVC: an end-to-end deep video compression framework, CVPR 19

²Liu et al., Learned video compression via joint spatial-temporal correlation exploration

³Djelouah et al., Neural inter-frame compression for video coding, ICCV 19

- Learning-based codecs^{1,2,3} implement inter frame coding with
 - 1. One Auto-Encoder (AE) to compute and convey the optical flow ${f v}$
 - 2. Interpolation of a reference frame to perform motion compensation
 - 3. One AE to perform residual (prediction error) coding

¹Lu et al., DVC: an end-to-end deep video compression framework, CVPR 19

²Liu et al., Learned video compression via joint spatial-temporal correlation exploration

³Djelouah et al., Neural inter-frame compression for video coding, ICCV 19

- Learning-based codecs^{1,2,3} implement inter frame coding with
 - 1. One Auto-Encoder (AE) to compute and convey the ${\color{blue} {\sf optical}}$ flow ${\color{blue} {\sf v}}$
 - 2. Interpolation of a reference frame to perform motion compensation
 - 3. One AE to perform residual (prediction error) coding

- Drawbacks
 - **Separate training** of both AEs with proxy metrics
 - No mode competition unlike classical codecs (intra/inter/skip)
 - Residual coding not the best mixture of \mathbf{x}_t and $\tilde{\mathbf{x}}_t$

Drawback	Contributions
No mode competition	
Residual coding	
Separate training	

Ladune et al.

Drawback	Contributions
No mode competition	MOFNet: Pixel-wise mode competition Coding vs. Skip $(\tilde{\mathbf{x}}_t \text{ copy})$
Residual coding	
Separate training	

Ladune et al.

Drawback	Contributions
No mode competition	MOFNet: Pixel-wise mode competition Coding vs. Skip ($\tilde{\mathbf{x}}_t$ copy)
Residual coding	CodecNet: arbitrary mixture of \mathbf{x}_t and $\tilde{\mathbf{x}}_t$
Separate training	

Drawback	Contributions
No mode competition	MOFNet: Pixel-wise mode competition Coding vs. Skip $(\tilde{\mathbf{x}}_t \text{ copy})$
Residual coding	CodecNet: arbitrary mixture of \mathbf{x}_t and $\tilde{\mathbf{x}}_t$
Separate training	Skip mode fosters optical flow learning → enable end-to-end training

Drawback	Contributions
No mode competition	MOFNet: Pixel-wise mode competition Coding vs. Skip $(\tilde{\mathbf{x}}_t \text{ copy})$
Residual coding	CodecNet: arbitrary mixture of \mathbf{x}_t and $\tilde{\mathbf{x}}_t$
Separate training	Skip mode fosters optical flow learning \rightarrow enable end-to-end training

• Perform on par with HEVC on a P-frame coding task

Introduction

Proposed system

Visualisation

4 Results

MOFNet architecture: standard AE with hyperprior (AE-HP)¹

¹Minnen et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NIPS 18

MOFNet architecture: standard AE with hyperprior (AE-HP)¹

¹Minnen et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NIPS 18

MOFNet architecture: standard AE with hyperprior (AE-HP)¹

• Prediction: $\tilde{\mathbf{x}}_t = w(\hat{\mathbf{x}}_{t-1}, \mathbf{v})$, with $\left\{ \begin{array}{l} \mathbf{v} \in \mathbb{R}^{2 \times H \times W} \text{ the optical flow,} \\ w \text{ a bilinear warping} \end{array} \right.$

¹Minnen et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NIPS 18

MOFNet architecture: standard AE with hyperprior (AE-HP)¹

- Prediction: $\tilde{\mathbf{x}}_t = w(\hat{\mathbf{x}}_{t-1}, \mathbf{v})$, with $\left\{ \begin{array}{l} \mathbf{v} \in \mathbb{R}^{2 \times H \times W} \text{ the optical flow,} \\ w \text{ a bilinear warping} \end{array} \right.$
- $\alpha \in [0,1]^{H \times W}$ arbitrates **2 coding modes** $\left\{\begin{array}{l} \text{Transmission by CodecNet} \\ \text{Skip mode } (\textit{Prediction copy}) \end{array}\right.$

¹Minnen et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NIPS 18

Proposed system – CodecNet implementation

ullet CodecNet is an AE-HP which conveys the areas selected by lpha

Proposed system – CodecNet implementation

ullet CodecNet is an AE-HP which conveys the areas selected by lpha

ullet Perform conditional coding: complex non-linear mixture of $old x_t$ and $old x_t$

Proposed system – CodecNet implementation

ullet CodecNet is an AE-HP which conveys the areas selected by lpha

- Perform conditional coding: complex non-linear mixture of \mathbf{x}_t and $\tilde{\mathbf{x}}_t$
- Supplementary transform to extract useful features from $\tilde{\mathbf{x}}_t$

Proposed system

- MOFNet & CodecNet are combined to obtain the complete system
- Two competing coding modes
 - $oldsymbol{lpha}$ close to 0 corresponds to Skip mode
 - ullet lpha close to 1 corresponds to Conditional coding

Proposed system – Training

- End-to-end training with rate distortion cost
 - No dedicated loss term for α or \mathbf{v} : $\mathcal{L}_{\lambda} = \mathrm{D}(\mathbf{x}_{t}, \hat{\mathbf{x}}_{t}) + \lambda \left(R_{m} + R_{c}\right)$
- CLIC20 P-frame test conditions¹
 - Quality metric is MS-SSIM i.e. $D(\mathbf{x}_t, \hat{\mathbf{x}}_t) = 1 \text{MS-SSIM}(\mathbf{x}_t, \hat{\mathbf{x}}_t)$
 - Reference frame is assumed **lossless**: $\hat{\mathbf{x}}_{t-1} = \mathbf{x}_{t-1}$

¹Challenge on Learned Image Compression, www.compression.cc, CVPR 20

- Introduction
- Proposed system
- 3 Visualisation
- 4 Results

Input frames $(\mathbf{x}_{t-1}, \mathbf{x}_t)$

Optical flow v

Reference frame $\hat{\mathbf{x}}_{t-1}$

Prediction $\tilde{\mathbf{x}}_t = w(\hat{\mathbf{x}}_{t-1}, \mathbf{v})$

Coding mode selection lpha

Skip part $(1-lpha)\odot ilde{ t x}_t$

Coding part $\alpha \odot \mathbf{x}_t$

System output
$$\hat{\mathbf{x}}_t = c(\alpha \odot \mathbf{x}_t, \alpha \odot \tilde{\mathbf{x}}_t) + (1 - \alpha) \odot \tilde{\mathbf{x}}_t$$

CodecNet rate $R_c = 0.022 \ bpp$

MOFNet rate $R_m = 0.019 \ bpp$

- ullet MOFNet learns a coding mode selection lpha and an optical flow ${f v}$
- The training is driven by a simple rate-distortion loss
 - Skip mode presence is an incentive to learn a relevant optical flow

- Introduction
- 2 Proposed system
- Visualisation
- 4 Results

Results – Experimental conditions

- This work follows the CLIC20 P-frame coding test conditions
 - Quality metric is MS-SSIM
 - Rate target is around 0.075 bpp
 - CLIC20 P-frame validation set
- Two experiments carried out
 - 1. Proposed system vs. **HEVC low-delay P**
 - 2. **Ablation** study to assess the benefits of skip mode and conditional coding → **Results available in the paper**

Results – Proposed system vs. HEVC

- Proposed system performs on par with HEVC low-delay P
- It proves the possibility of learning a relevant optical through a mere
 RD-cost

Conclusion

- This paper introduces a new end-to-end inter-frame coding scheme based on 2 Auto-Encoders
 - MOFNet: transmit an optical flow and a coding mode selection
 - CodecNet: perform conditional coding of a frame given its prediction
- The proposed coding scheme implements competition between CodecNet and Skip mode
 - Enable optical flow learning without dedicated loss
 - Improve performance, making it competitive with HEVC
- Future work: adapt the system to handle several reference frames to achieve better coding efficiency