Prisoners' Dilemma: The Story

- Invented by Merrill Flood & Melvin Dresher in 1950s
- Studied in game theory, economics, political science
- Two criminals have been caught
- They cannot communicate with each other
- If both confess, they will each get 10 years
- If one confesses and accuses other:
 - confessor goes free
 - accused gets 20 years
- If neither confesses, they will both get 1 year on a lesser charge

Prisoners' Dilemma Payoff Matrix

		Bob	
		cooperate	defect
A	cooperate	-1, -1	-20, 0
Ann	defect	0, -20	-10, -10

- defect = confess, cooperate = don't
- payoffs < 0 because punishments (losses)

Ann's "Rational" Analysis (Dominant Strategy)

		Bob	
		cooperate	defect
A	cooperate	-1, -1	-20, 0
Ann	defect	0, –20	-10, -10

- if cooperates, may get 20 years
- if defects, may get 10 years
- :., best to defect

Bob's "Rational" Analysis (Dominant Strategy)

		Bob	
		cooperate	defect
A	cooperate	-1, -1	-20, 0
Ann	defect	0, –20	[-10, -10]

- if he cooperates, may get 20 years
- if he defects, may get 10 years
- :., best to defect

Suboptimal Result of "Rational" Analysis

- each acts individually rationally ⇒ get 10 years (dominant strategy equilibrium)
- "irrationally" decide to cooperate ⇒ only 1 year

Summary

- Individually rational actions lead to a result that all agree is less desirable
- In such a situation you cannot act unilaterally in your own best interest
- Just one example of a (game-theoretic) dilemma
- Can there be a situation in which it would make sense to cooperate unilaterally?
 - Yes, if the players can expect to interact again in the future

The Iterated Prisoners' Dilemma

and Robert Axelrod's Experiments

Iterated Game

- In simulation, the endpoint of the game is unknown to the players, making it essentially an infinitely iterated game
- Each player has a memory of the previous three or more) rounds on which to base his strategy
- Strategies are deterministic for a given history h
 players will always make the same move
- With 4 possible configurations in each round and a history of 3, each strategy is comprised of 4³ = 64 moves

Axelrod's Experiments (1984)

- Intuitively, expectation of future encounters may affect rationality of defection
- Various programs compete for 200 rounds
 - encounters each other and self
- Each program can remember:
 - its own past actions
 - its competitors' past actions
- 14 programs submitted for first experiment

IPD Payoff Matrix

		В		
		cooperate	defect	
A	cooperate	3, 3	0, 5	
A	defect	5, 0	1, 1	

Indefinite Number of Future Encounters

- Cooperation depends on expectation of indefinite number of future encounters
- Suppose a known finite number of encounters:
 - No reason to C on last encounter
 - Since expect D on last, no reason to C on next to last
 - And so forth: there is no reason to C at all

Analysis of Some Simple Strategies

- Three simple strategies:
 - ALL-D: always defect
 - ALL-C: always cooperate
 - RAND: randomly cooperate/defect
- Effectiveness depends on environment
 - ALL-D optimizes local (individual) fitness
 - ALL-C optimizes global (population) fitness
 - RAND compromises

Expected Scores

↓ playing ⇒	ALL-C	RAND	ALL-D	Average
ALL-C	3.0	1.5	0.0	1.5
RAND	4.0	2.25	0.5	2.25
ALL-D	5.0	3.0	1.0	3.0

Result of Axelrod's Experiments

- Winner is Rapoport's TFT (Tit-for-Tat)
 - cooperate on first encounter
 - reply in kind on succeeding encounters
- Second experiment:
 - 62 programs
 - all known TFT was previous winner
 - TFT wins again

Expected Scores

\downarrow playing \Rightarrow	ALL-C	RAND	ALL-D	TFT	Avg
ALL-C	3.0	1.5	0.0	3.0	1.875
RAND	4.0	2.25	0.5	2.25	2.25
ALL-D	5.0	3.0	1.0	1+4/ <i>N</i>	2.5+
TFT	3.0	2.25	1-1/N	3.0	2.3125-

N = #encounters

The Genetic Algorithm

The Model

- Darwinian Survival of the Fittest
- Genetic representation of entities
- Fitness function
- Select most fit individuals to reproduce
- Mutate
- Traits of most fit will be passed on
- Over time, the population will evolve to be more fit, optimal

GA's and the Prisoner's Dilemma

- Population: 100 individuals
- Chromosome: 64-bit string representing a strategy
- A bit: a choice between the Cooperate or Defect move played for a specific configuration of past moves

- Individuals = strategies
- How to encode a strategy by a string?

Let memory depth of previous moves=1
 Fix a canonical order of cases:

	AB
– Case 0:	CC
– Case 1:	DC
– Case 2:	CD
– Case 3:	D D

e.g. strategy encoding (for A): 'CDCD'

Outcome: (C) or Cooperate

Encoding a strategy for IPD.

String Position	Represented History	Move
0	ccccc	С
1	CCCCCD	D
2	CCCCDC	D
3	CCCCDD	D
4	CCCDCC	С
5	CCCDCD	С
6	CCCDDC	С
7	CCCDDD	D
8	CCDCCC	С
9	CCDCCD	D
10	CCDCDC	D
11	CCDCDD	D
12	CCDDCC	D
13	CCDDCD	D
14	CCDDDC	С
15	CCDDDD	С
16	CDCCCC	С
17	CDCCCD	С
18	CDCCDC	D
19	CDCCDD	С
20	CDCDCC	С
21	CDCDCD	D
22	CDCDDC	D
23	CDCDDD	С
24	CDDCCC	С
25	CDDCCD	С
26	CDDCDC	D
27	CDDCDD	С
28	CDDDCC	D
29	CDDDCD	С
30	CDDDDC	С
31	CDDDDD	D

String Position	Represented History	Move
32	DCCCCC	D
33	DCCCCD	С
34	DCCCDC	D
35	DCCCDD	D
36	DCCDCC	С
37	DCCDCD	С
38	DCCDDC	D
39	DCCDDD	D
40	DCDCCC	D
41	DCDCCD	С
42	DCDCDC	С
43	DCDCDD	С
44	DCDDCC	С
45	DCDDCD	D
46	DCDDDC	D
47	DCDDDD	С
48	DDCCCC	С
49	DDCCCD	D
50	DDCCDC	С
51	DDCCDD	С
52	DDCDCC	С
53	DDCDCD	С
54	DDCDDC	D
55	DDCDDD	D
56	DDDCCC	C
57	DDDCCD	С
58	DDDCDC	D
59	DDDCDD	D
60	DDDDCC	С
61	DDDDCD	С
62	DDDDDC	D
63	DDDDDD	С

GA's and PD

- Fitness: Each player competes against every other for 64 consecutive rounds, and a cumulative score is maintained
- Selection: Roulette Wheel selection
- Reproduction: Random point crossover with replacement
- Mutation rate 0.001
- Generations: 1,000 generations

Tit for Tat (TFT)

- The action chosen is based on the opponent's last move.
 - On the first turn, the previous move cannot be known, so always cooperate on the first move.
 - Thereafter, always choose the opponent's last move as your next move.

Key Points of Tit for Tat

- Nice; it cooperates on the first move.
- Regulatory; it punishes defection with defection.
- Forgiving; it continues cooperation after cooperation by the opponent.
- Clear; it is easy for opponent to guess the next move, so mutual benefit is easier to attain.

Tit for Two Tat (TF2T)

- Same as Tit for Tat, but requires two consecutive defections for a defection to be returned.
 - Cooperate on the first two moves.
 - If the opponent defects twice in a row, choose defection as the next move.

Key Points of Tit for Two Tat

- When defection is the opponent's first move,
 this strategy outperforms Tit for Tat
- Cooperating after the first defection causes the opponent to cooperate also. Thus, in the long run, both players benefit more points.

Suspicious Tit for Tat (STFT)

- Always defect on the first move.
- Thereafter, replicate opponent's last move.

- Key Points of Suspicious Tit for Tat
 - If the opponent's first move is defection, this strategy outperforms Tit for Tat
 - However, it is generally worse than Tit for Tat.
 - The first move is inconsequential compared to getting stuck in an infinite defection loop.

Free Rider (ALLD)

Always choose to defect no matter what the opponent's last turn was.

 This is a dominant strategy against an opponent that has a tendency to cooperate.

Always Cooperate (ALLC)

 Always choose to cooperate no matter what the opponent's last turn was.

- This strategy can be terribly abused by the Free Rider Strategy.
 - Or even a strategy that tends towards defection.

- Use and compare different optimization methods or combination of methods (GA, hill climbing, tabu search, exhaustive search...) to find the best possible strategies.
- Try different parameters of the optimization methods (like population size or mutation probability for GA)
- Try different memory depth: 3, 4, 5...
- Try to compete against human designed strategies.
- Compared the obtained strategies with TFT, TF2T or STFT