MB84256A-70/-70L/-70LL/-10/-10L/-10LL CMOS 256K-BIT LOW POWER SRAM

32,768 WORD x 8-BIT CMOS STATIC RANDOM ACCESS MEMORY WITH DATA RETENTION

The Fujitsu MB84256A is a 32,768-word by 8-bit static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single +5V power supply is required.

The MB84256A is ideally suited for use in microprocesser systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

Organization: 32,768 x 8 bits

Fast access time: 70 ns max. (MB84256A-70/-70L/-70LL) (MB84256A-10/-10L/-10LL) 100 ne may

Completely static operation: No clock required

TTL compatible inputs/outputs

Three state outputs

Single +5V power supply, ±10% tolerance

Low power standby:

CMOS level: 5.5 mW max. 0.55 mW max. (MB84256A-70/-10)

(MB84256A-70L/-70LL/-10L/-10LL)

TTL level: 16.5 mW max.

(MB84256A-70/-70L/-70LL/-10/-10L/-10LL)

Data retention: 2.0V min.

Standard 28-pin Plastic Packages:

DIP (600mil) Skinny DIP (300 mil) MB84256A-xx(L/LL)P MB84256A-xx(L/LL)P-SK MB84256A-xx(L/LL)PF

TSOP (normal bend) TSOP (reverse bend) MB84256A-xx(L/LL)PFTN MB84256A-xx(L/LL)PFTR

ABSOLUTE MAXIMUM RATINGS (see NOTE)

SOP

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage	V _{IN}	-0.5 to V _{CC} +0.5	٧
Output Voltage	V _{VO}	-0.5 to V _{CC} +0.5	٧
Temperature Under Bias	T _{BIAS}	-10 to +85	°c
Storage Temperature	T _{STG}	-40 to +125	°c

Permanent device damage may occur if the above Absolute Maximum Ratings NOTE: are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ASTIC PACKAGE DIP-28P-M04 SOP PACKAGE; See Page 5-14 TSOP PACKAGE; See Page 5-15, 5-16 PIN ASSIGNMENT 28 🗖 Vcc 27 🗀 WE A₁₂ 26 A A 13 25 🏳 A₈ 24 🏳 🗛 A₅ 5 24 | A9 23 | A11 22 | OE 21 | A10 20 | CS1 19 | I/O₈ 18 | I/O₇ 17 | I/O₆ 16 | I/O₅ 15 | I/O₄ 6 A_3 7 TOP VIEW A2 10 1/01 11 1/02 12 1/03 13

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

GND [

Copyright @1992 by FUJITSU LIMITED

CAPACITANCE (TA = 25°C, f = 1MHz)

Parameter	Symbol	Min	Тур	Max	Unit
VO Capacitance (VI/O = 0V)	CI/O			8	ρF
Input Capacitance (VIN = 0V)	CIN			7	рF

RECOMMENDED OPERATING CONDITION

(Referenced to GND)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	٧
Ambient Temperature	TA	0		70	°C

DC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parsmeter	Symbol	Test Condition	MB84256A-70/-10		MB84256A-70L/-70LL /-10L/-10LL		Unit	
				Min	Max	Min	Max	
0 t 0 t 0		İsaı	CS ≥ Vcc-0.2V		1		0.1	mA
Standby Supply Curre	HT.	I _{SB2}	SB2 CS = V _{IH}		3		3	mA
Active Supply Current		lcc1	V _{IN} = V _{IH} or V _{IL} , CS = V _{IL} I _{OUT} = 0mA		50		50	mA
Operating Supply -70		Ι.	Cycle = Min.		80		80	mA
Current	-10	lccs	I _{OUT} = 100%		70		70	<u> </u>
Input Leakage Curren	t	ել	V _{IN} = 0V to V _{CC}	-1	1	-1	1	μА
Output Leakage Curre	o nt	lıvo	V _{VO} = 0V to V _{CC} \overline{CS} = V _{IH} or \overline{OE} = V _{IH} or \overline{WE} = V _{IL}	-1	1	-1	1	μА
Input High Voltage		V _{IH}	•	2.2	V _{CC} +0.3	2.2	V _{CC} +0.3	٧
Input Low Voltage		V _{IL}		-3.0 °	0.8	-3.0 °	8.0	٧
Output High Voltage		V _{OH}	I _{OH} = -1.0mA	2.4		2.4		٧
Output Low Voltage		Vol	I _{OL} = 2.1mA		0.4		0.4	٧

Note: All voltages are referenced to GND.

^{-3.0}V min. for pulse width less than 20 ns.(VIL min. = -0.3V at DC level.)

AC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

READ CYCLE *1

Parameter	Symbol		'0/-70L/-70LL	MB84256A-1	Unit	
		Min	Max	Min	Mex	0
Read Cycle Time	t _{RC}	70		100		ns
Address Access Time *2	taa		70		100	ns
CS1 Access Time *3	tacs		70		100	ns
Output Enable to Output Valid	†OE		35		40	ns
Output Hold from Address Change	фн	20		20		ns
Chip Select to Output Low-Z *4	*cLZ	10		10		ns
Output Enable to Output Low-Z *4	b LZ	5		5		
Chip Select to Output High-Z *4	tcHZ		25		40	ns
Output Enable to Output High-Z *4	tонz		25		40	

READ CYCLE TIMING DIAGRAM *1

Note: *1 WE is high for Read cycle.

*2 Device is continuously selected, CS = OE = VIL.

*3 Address valid prior to or coincident with CS transition low.

*4 Transition is measured at the point of ±500mV from steady state voltage with specified Load II in Fig. 2.

WRITE CYCLE *1*2

Parameter	Symbol	MB84256A-7	'0/-70L/-70LL	MB84256A-1	Unit	
Parameter	Зутос	Min	Max	Min	Max	Onk
Write Cycle Time *3	twc	70		100		ns
Address Valid to End of Write .	t _{AW}	50		80		ns
Chip Select to End of Write	t _{CW}	50		80		ns
Data Valid to End of Write	t _{DW}	25		40		ns
Data Hold Time	t _{DH}	0		0		ns
Write Pulse Width	t _{WP}	50		60		ns
Address Setup Time	tas	0		0	<u> </u>	ns
Write Recovery Time *4	twR	5		5		ns
WE to Output Low-Z *5	t _{WLZ}	5		5		ns
WE to Output High-Z *5	twnz		25		40	ns

WRITE CYCLE TIMING DIAGRAM *1 *2

Note: *1 If OE, CS are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

- *2 If CS goes high simultaneously with WE high, the output remains in high impedance state.
- *3 All write cycle are determined from last address transition to the first address transition of the next address.
- *4 tWR is defined from the end point of WRITE Mode..
- $^{*}5$ Transition is measured at the point of $\pm 500 \text{mV}$ from steady state voltage with specified Load I in Fig. 2.

WRITE CYCLE TIMING DIAGRAM *1 *2

Note: *1 If OE, CS are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

^{*2} If CS goes high simultaneously with WE high, the output remains in high impedance state.

^{*3} All write cycle are determined from last address transition to the first address transition of the next address.

^{*4} tWR is defined from the end point of WRITE Mode..

^{*5} Transition is measured at the point of ±500mV from steady state voltage with specified Load II in Fig. 2.

DATA RETENTION CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter Data Retention Supply Voltage *1		Symbol	Min	Тур	Max	Unit
		VDR	2.0		5.5	٧
	Standard				1.0	mA
Data Retention Supply Current *2	L-Version	IDR		1.0	50	
	LL-Version			1.0	50 * 3	μΑ
Data Retention Setup Time		tDRS	0			ns
Operation Recovery Time		tR	tRC			ns

Note: *1 CS ≥ VDR -0.2V

*2 VDR = 3.0V, CS ≥ VDR -0.2V

*3 IDR = 5 μ A max. at VDR = 3.0V, TA = 40°C

DATA RETENTION TIMING

TIPICAL CHARACTERISTICS CURVES

TIPICAL CHARACTERISTICS CURVES (Continued)

PACKAGE DIMENSIONS

(Suffix: P)

PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued) (Suffix: PFTN)

PACKAGE DIMENSIONS (Continued)

