Chapter 3: Boundary-Value Problems in Electrostatics: II

We first cover some special functions commonly used in physics, with an emphasis on their properties.

See Secs. 3.2, 3.5, & 3.6 or M&W (Ch. 7) for their derivations. Highly recommended handbooks:

- 1. Gradshteyn & Ryzhik, "Table of Integrals, Series, and Products".
- 2. Abramowitz & Stegun, "Handbook of Mathematical Functions".

3.2 Legendre Equation and Legendre Polynomials

Legendre Equation: range for most phys. problems

$$\frac{d}{dx}[(1-x^2)\frac{du}{dx}] + \nu(\nu+1)u = 0, \qquad -1 \le x \le 1$$
 (3.10)

The Legendre eq. often appears in physics problems in spherical coordinates. It has the solution: $u(x) = AP_{\nu}(x) + BQ_{\nu}(x)$,

where $\begin{cases} P_{\nu}(x) \text{ is the } \underline{\text{Legendre function of the 1st kind.}} \\ Q_{\nu}(x) \text{ is the } \underline{\text{Legendre function of the 2nd kind.}} \end{cases}$ (3.11)-(3.14)

3.2 Legendre Equation and Legendre Polynomials (continued)

Rewrite
$$\begin{cases} \frac{d}{dx} \left[(1 - x^2) \frac{du}{dx} \right] + v(v+1)u = 0 & -1 \le x \le 1 \\ u(x) = AP_v(x) + BQ_v(x) & [P_v, Q_v: \text{ linearly indep.}] \end{cases}$$
(3.10)

 $Q_{\nu}(x)$ diverges as $x \to \pm 1$ (p. 97, bottom). Hence, Q_{ν} appears in physics problems only when $x = \pm 1$ are outside the region of interest.

$$P_{\nu}(x)$$
 $\begin{cases} \text{is finite for } |x| < 1 \text{ and } x = 1 \\ \text{diverges at } x = -1 \text{ unless } \nu \text{ is an integer} \end{cases}$ (see p. 105)

 \Rightarrow If the region of interest includes x = -1, the condition that $P_{\nu}(x)$ be finite at x = -1 requires ν to be an integer (denoted by l).

The form of the Legendre eq. is unchanged if $v \to -v - 1$. Hence, $P_{-v-1}(x) = P_v(x) \Rightarrow$ When v = l (an integer), negative l is redundant. Thus, $l = 0, 1, 2 \cdots$ for which $P_l(x)$ becomes a polynomial (next page).

Note: In physics, the argument x of $P_{\nu}(x)$ and $Q_{\nu}(x)$ is usually real and in the range $-1 \le x \le 1$. In mathematics, the argument z of $P_{\nu}(z)$ and $Q_{\nu}(z)$ is in general complex (z = x + iy). ν is also in general a complex number (See Gradshteyn & Ryzhik, Secs. 8.7-8.9).

Legendre Polynomial:
$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$
, $l = 0, 1, 2... (3.16)$

Lengendre polynomials $P_2(x)$ - $P_5(x)$ Abramowitz & Stegun, p. 780

Second Lengendre functions $Q_0(x)$, $Q_1(x)$, and $Q_2(x)$ Abramowitz & Stegun, p. 339

3.2 Legendre Equation and Legendre Polynomials (continued)

The set
$$P_l(x)$$
 is orthogonal: $\int_{-1}^{1} P_{l'}(x) P_l(x) dx = \frac{2}{2l+1} \delta_{l'l}$ (3.21)

It is complete in index $l \Rightarrow \text{Any function } f(x)$ can be expanded as

$$f(x) = \sum_{l=0}^{\infty} A_l P_l(x) [-1 \le x \le 1]$$
 (3.23)

See (A.13-17) for general rules on "orthogonality" & "completeness".

3.5 Associated Legendre Functions and the Spherical Harmonics

Associated Legendre Equation:

$$\frac{d}{dx}[(1-x^2)\frac{du}{dx}] + [v(v+1) - \frac{m^2}{1-x^2}]u = 0, \text{ for } -1 \le x \le 1 \quad (3.9)$$

It has the solution: $u(x) = AP_{\nu}^{m}(x) + BQ_{\nu}^{m}(x)$, where

$$\begin{cases} P_{\nu}^{m} \text{ is the } \underline{\text{associated Legendre function of the 1st kind.}} \\ Q_{\nu}^{m} \text{ is the associated Legendre function of the 2nd kind.} \end{cases} (3.50)$$

Properties of P_{ν} , Q_{ν} , P_{ν}^{m} , and Q_{ν}^{m} can be found in Gradshteyn & Ryzhik (Secs. 8.7-8.9) and Abramowitz & Stegun (Ch. 8).

3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

 $u(x) = AP_{\nu}^{m}(x) + BQ_{\nu}^{m}(x)$ Rewrite

 $Q_{\nu}^{m}(x=\pm 1)$ diverges. Q_{ν}^{m} appears in physics problems only when $x = \pm 1$ is outside the region of interest (Q_v, Q_v^m) not used in Jackson).

 $P_{\nu}^{m}(x)$ is finite on the interval $-1 \le x \le 1$ only when

$$\begin{cases} v \text{ is zero or a positive integer } (v = l = 0, 1, 2...) \text{ and } \\ m = -l, -(l-1), ..., -1, 0, 1, ..., (l-1), l \end{cases}$$
 [p. 107]

i.e. $u(x) = P_l^m(x)$ with l = |m|, |m|+1, ...[Assume m is a fixed integer] Under these conditions, we have

$$P_l^m(x) = \frac{(-1)^m}{2^l l!} (1 - x^2)^{\frac{m}{2}} \left(\frac{d}{dx}\right)^{l+m} (x^2 - 1)^l$$
 (3.50)

$$\int P_l^0(x) = P_l(x)$$

with the properties:
$$\begin{cases} P_l^0(x) = P_l(x) \\ P_l^m(-x) = (-1)^{l+m} P_l^m(x) \\ P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x) \\ \int_{-1}^1 P_{l'}^m(x) P_l^m(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'} \end{cases}$$
(3.51)

$$\int_{-1}^{1} P_{l'}^{m}(x) P_{l}^{m}(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'}$$
 (3.52)

3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

The set $P_l^m(x)$ is complete in index l, i.e. any function f(x) can

be expanded as
$$f(x) = \sum_{l=|m|}^{\infty} C_l P_l^m(x) \begin{bmatrix} -1 \le x \le 1 \\ m : \text{ a fixed integer} \end{bmatrix}$$

Question: Why is $P_l^m(x)$ complete in index l (not m)? See (A.20).

Spherical Harmonics $Y_{lm}(\theta, \varphi)$:

$$Y_{lm}(\theta,\varphi) \equiv \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}, \qquad (3.53)$$

where l = 0 or a positive integer; m = -l, -(l-1),..., 0,..., (l-1), l

 $Examples: \begin{cases} Y_{0,0}(\theta,\varphi) = \sqrt{\frac{1}{4\pi}} \\ Y_{1,-1}(\theta,\varphi) = \sqrt{\frac{3}{8\pi}}\sin\theta e^{-i\varphi} \\ Y_{1,0}(\theta,\varphi) = \sqrt{\frac{3}{4\pi}}\cos\theta \\ Y_{1,1}(\theta,\varphi) = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\varphi} \end{cases}$

3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

Properties of spherical harmonics:

Rewrite the spherical harmonics:

$$Y_{lm}(\theta, \varphi) \equiv \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta) e^{im\varphi} [(3.53)]$$

(i) Using the orthogonality relation,

$$\int_{-1}^{1} P_{l'}^{m}(x) P_{l}^{m}(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'}$$
(3.52)

we can show that the spherical harmonics are orthonormal, i.e

$$\int d\Omega Y_{l'm'}^*(\theta,\varphi)Y_{lm}(\theta,\varphi) = \delta_{ll'}\delta_{mm'}, \qquad (3.55)$$
where
$$\int d\Omega = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta = \int_0^{2\pi} d\varphi \int_{-1}^1 d\cos\theta$$

3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

(ii) The set $Y_{lm}(\theta, \varphi)$ is complete, i.e. any function $g(\theta, \varphi)$ can be

expanded as
$$g(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{lm} Y_{lm}(\theta, \varphi)$$
 (3.58)

Multiply both sides by $Y_{lm}^*(\theta, \varphi)$, integrate over θ, φ , and make use of $\int d\Omega Y_{l'm'}^*(\theta, \varphi) Y_{lm}(\theta, \varphi) = \delta_{ll'} \delta_{mm'}$ [(3.55)].

$$\Rightarrow A_{lm} = \int d\Omega Y_{lm}^*(\theta, \varphi) g(\theta, \varphi)$$

Sub. A_{lm} into (3.58) gives the following expression for $g(\theta, \varphi)$:

$$g(\theta, \varphi) = \int d\Omega' \left[\sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi) \right] g(\theta', \varphi')$$

$$\Rightarrow \sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi) = \delta(\varphi - \varphi') \delta(\cos \theta - \cos \theta')$$
 (3.56)

Note: 1. This is a 2-D example of the general relation in (2.35).

2. (3.56) [as (2.35)] shows that an infinite sum of smooth functions $Y_{lm}^*(\theta', \varphi')Y_{lm}(\theta, \varphi)$ can add up to a singularity as θ , $\varphi \to \theta'$, φ' .

(iii) Other properties of $Y_{lm}(\theta, \varphi)$:

$$\begin{cases} Y_{l,-m}(\theta,\varphi) = (-1)^m Y_{lm}^*(\theta,\varphi) \\ Y_{l,0}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos\theta) \end{cases}$$

This can be seen from the definition of $Y_{lm}(\theta, \varphi)$:

$$Y_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$
 (3.53)

and the relations:

$$P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x)$$

$$P_l^0(x) = P_l(x)$$
(3.51)

9

3.6 Addition Theorem for Spherical Harmonics

The <u>addition theorem</u> for spherical harmonics is derived on pp. 110-111. Here we write the theorem without derivation:

$$P_{l}(\cos \gamma) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi),$$
where (θ, φ) , (θ', φ') are directions of \mathbf{x} , \mathbf{x}' ,
$$\begin{bmatrix} \mathbf{x}' \\ \theta' \end{bmatrix}$$
(3.62)

respectively. γ is the angle between $\mathbf{x} & \mathbf{x}'$.

Setting l = 1 in (3.62) gives

$$\begin{split} P_{1}(\cos\gamma) &= \frac{4\pi}{3} \big[Y_{1,-1}^{*}(\theta', \varphi') Y_{1,-1}(\theta, \varphi) \\ &+ Y_{1,0}^{*}(\theta', \varphi') Y_{1,0}(\theta, \varphi) \\ &+ Y_{1,1}^{*}(\theta', \varphi') Y_{1,1}(\theta, \varphi) \big] \end{split}$$

Using
$$P_1(\cos \gamma) = \cos \gamma$$
, $Y_{1,-1} = \sqrt{\frac{3}{8\pi}} \sin \theta e^{-i\varphi}$, $Y_{1,0} = \sqrt{\frac{3}{4\pi}} \cos \theta$,

and $Y_{1,1} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi}$, we obtain a useful expression:

$$\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\varphi - \varphi'). \tag{1}_{10}$$

Bessel Functions (see Sec. 3.7)

The Bessel eq. often appears in physics problems in cyclidrical

coordinates. It has the form
$$\frac{d^2u}{dx^2} + \frac{1}{x}\frac{du}{dx} + \left(1 - \frac{v^2}{x^2}\right)u = 0$$
 (3.77)

with the solutions
$$\begin{cases} J_{\nu}(x) \colon & \text{Bessel function of the 1st kind} \\ N_{\nu}(x) \colon & \text{Bessel function of the 2nd kind} \end{cases} (3.82)$$

$$(3.85)$$

From $J_{\nu}(x)$ and $N_{\nu}(x)$, we may define the <u>Hankel functions</u>:

$$\begin{cases} H_{V}^{(1)}(x) = J_{V}(x) + iN_{V}(x) \\ H_{V}^{(2)}(x) = J_{V}(x) - iN_{V}(x) \end{cases}$$
(3.86)

and the <u>modified Bessel functions</u> of the 1st kind (I_{ν}) and 2nd kind (K_{ν}) . I_{ν} and K_{ν} are Bessel functions of imaginary argument.

$$\begin{cases} I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) & I_{\nu}(x) & & K_{\nu}(x) \text{ are solus. of } (3.77) \\ K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} H_{\nu}^{(1)}(ix) & & \text{with } x \to ix \text{ (used in Sec. 3.11)} \end{cases}$$
(3.100)

Properties of these funcs. can be found on pp. 112-116, Gradshteyn & Ryzhik (Secs. 8.4-8.5), and Abramowitz & Stegun (Ch. 9).

Bessel Equation (continued)

interest.

& Stegun)

In
$$\frac{d^2u}{dx^2} + \frac{1}{x}\frac{du}{dx} + (1 - \frac{v^2}{x^2})u = 0$$
 [(3.77)], replacing x with $k\rho$ gives a 2nd form of the Bessel eq.: $\frac{d^2u}{d\rho^2} + \frac{1}{\rho}\frac{du}{d\rho} + (k^2 - \frac{v^2}{\rho^2})u = 0$ (3.75)

with the solution: $u(\rho) = AJ_{\nu}(k\rho) + BN_{\nu}(k\rho)$. Assume the following

b.c.'s:
$$\begin{cases} 1: u(0) = \text{finite} \Rightarrow B = 0; \\ 2: u(a) = 0 \Rightarrow J_{\nu}(ka) = 0 \Rightarrow ka = x_{\nu n}, \ n = 1, 2, 3 \cdots, \text{ where} \\ x_{\nu n} \text{ is the } n\text{-th root of } J_{\nu}(x) = 0 \text{ (see p. 114).} \\ \Rightarrow J_{\nu}(k\rho) = J_{\nu}(k_{\nu n}\rho), \text{ where } k_{\nu n} \equiv x_{\nu n}/a, \ n = 1, 2, 3 \cdots \end{cases}$$

The
$$J_{\nu}(k_{\nu n}\rho)$$
 set are

Why the factor ρ here? See (A.22)

orthogonal:
$$\int_{0}^{a} J_{\nu}(k_{\nu n'}\rho) J_{\nu}(k_{\nu n}\rho) \rho d\rho = \frac{a^{2}}{2} [J_{\nu+1}(\underline{k_{\nu n}a})]^{2} \delta_{n'n} \quad (3.95)$$

complete: $f(\rho) = \sum_{n=1}^{\infty} C_{n} J_{\nu}(k_{\nu n}\rho)$ for any $f(\rho)$

(3.96)

Questions: 1. (3.96) regards $J_{\nu}(k_{\nu n}\rho)$ as a complete set, but p.114 says " $\sqrt{\rho} J_{\nu}(k_{\nu n}\rho)$ form an orthogonal set". Any inconsistency? See (A.22). 2. Why are $J_{\nu}(k_{\nu n}\rho)$ orthogonal/complete in index n (not ν)? See (A.23).

3.1 Laplace Equation in Spherical Coordinates

(We will first cover Appendix A before going into this section)

Laplace eq. in spherical coordinates (see Jackson, back cover):

$$\nabla^{2}\phi(\mathbf{x}) = \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (r\phi) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \phi}{\partial \varphi^{2}} = 0$$
Let $\phi(\mathbf{x}) = \frac{U(r)}{r} P(\theta) Q(\varphi)$

$$\Rightarrow PQ \frac{d^{2}U}{dr^{2}} + \frac{UQ}{r^{2} \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dP}{d\theta} \right) + \frac{UP}{r^{2} \sin^{2} \theta} \frac{d^{2}Q}{d\varphi^{2}} = 0$$

Multiply by $\frac{r^2 \sin^2 \theta}{UPQ}$ The φ -dependence is isolated within this term, so this term must be a constant. Let it be $-m^2$.

$$\Rightarrow \sin^2 \theta \left[\underbrace{\frac{1}{U} r^2 \frac{d^2 U}{dr^2}}_{=V(V+1)} + \underbrace{\frac{1}{P \sin \theta} \frac{d}{d\theta}}_{\text{loss of } \theta} (\sin \theta \frac{dP}{d\theta}) \right] + \underbrace{\frac{-m}{U}}_{Q} \frac{d^2 Q}{d\phi^2} = 0$$
 (3.3)

Dividing all terms by $\sin^2 \theta$, we see that the

r-dependence is isolated within this term. So this term must be a constant. Let it be v(v+1).

3.1 Laplace Equation in Spherical Coordinates (continued)

Rewrite
$$\sin^2 \theta \left[\frac{v(+1)}{U} + \frac{1}{P \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dP}{d\theta} \right) \right] + \frac{v(-1)}{Q} \frac{d^2Q}{d\theta^2} = 0 [(3.3)]$$

The equation for
$$Q(\varphi)$$
 is: $\frac{d^2Q}{d\varphi^2} + m^2Q = 0$ an eigenvalue problem (3.4)

$$\Rightarrow Q = e^{im\varphi}, e^{-im\varphi}$$
The equation for $P(\theta)$ is
$$m \text{ is to be determined from the b.c.}$$

$$(3.5)$$

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP}{d\theta} \right) + \left[\nu(\nu+1) - \frac{m^2}{\sin^2\theta} \right] P = 0$$
 (3.6)

Let $x = \cos \theta$, then the equation takes the form of the associated Legendre equation:

$$\frac{d}{dx}(1-x^2)\frac{dP}{dx} + \left[\nu(\nu+1) - \frac{m^2}{1-x^2}\right]P = 0 \quad \begin{bmatrix} \text{an eigenvalue} \\ \text{problem} \end{bmatrix} \quad (3.9)$$

$$\Rightarrow P = \begin{cases} P_{\nu}^{m}(x) \\ Q_{\nu}^{m}(x) \end{cases} = \begin{cases} P_{\nu}^{m}(\cos \theta) \\ Q_{\nu}^{m}(\cos \theta) \end{cases} \qquad \text{from the b.c.}$$

15

3.1 Laplace Eq. in Spherical Coordinates (continued)

Rewrite
$$\sin^2 \theta \left[\frac{v(+1)}{U} + \frac{1}{P \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dP}{d\theta} \right) \right] + \frac{v(-1)}{Q} \frac{d^2 Q}{d\phi^2} = 0 [(3.3)]$$

The equation for
$$U(r)$$
 is: $\frac{d^2U}{dr^2} - \frac{v(v+1)}{r^2}U = 0$ (3.7)
$$\Rightarrow U = r^{v+1}, r^{-v} \Rightarrow \frac{U}{r} = r^{v}, r^{-v-1}$$
Since v is determined from the b.c. for (3.6), this is not an eigenvalue problem

$$\Rightarrow U = r^{\nu+1}, r^{-\nu} \Rightarrow \frac{U}{r} = r^{\nu}, r^{-\nu-1}$$

an eigenvalue problem.

Thus, $\nabla^2 \phi(\mathbf{x}) = 0$

Thus,
$$\nabla^2 \phi(\mathbf{x}) = 0$$
 an eigenvalue prob
$$\Rightarrow \phi = \begin{cases} r^{\nu} \\ r^{-\nu-1} \end{cases} \begin{cases} P_{\nu}^{m}(\cos \theta) \\ Q_{\nu}^{m}(\cos \theta) \end{cases} \begin{cases} e^{im\varphi} \\ e^{-im\varphi} \end{cases},$$
 ere each bracket represents a linear

(2)

where each bracket represents a linear combination of the two functions inside

[because $\nabla^2 \phi(\mathbf{x}) = 0$ is linear and homogeneous].

Note: (2) is the solution of $\nabla^2 \phi(\mathbf{x}) = 0$ without consideration of b.c.'s. ν and m in (2) are arbitrary constants until we apply the b.c.'s.

3.3 Boundary-Value Problems with **Azimuthal Symmetry**

Problem 1: Find ϕ inside 2 hemispheres held at opposite potentials (This will result in $E = \infty$ at r = a and $\theta = \pi/2$, hence unrealistic.)

$$\nabla^{2}\phi = 0, \quad \phi(a,\theta) = \begin{cases} +V, & 0 \le \theta < \frac{\pi}{2} \\ -V, & \frac{\pi}{2} < \theta \le \pi \end{cases}$$

$$\phi = \begin{cases} r^{V} \\ r^{-V-1} \end{cases} \begin{cases} P_{V}^{m}(\cos\theta) \\ Q_{V}^{m}(\cos\theta) \end{cases} \begin{cases} e^{im\varphi} \\ e^{-im\varphi} \end{cases}$$

$$\phi = \begin{cases} r^{\nu} \\ r^{-\nu - 1} \end{cases} \begin{cases} P_{\nu}^{m}(\cos \theta) \\ Q_{\nu}^{m}(\cos \theta) \end{cases} \begin{cases} e^{im\phi} \\ e^{-im\phi} \end{cases}$$

- (i) ϕ is indep. of φ . $\Rightarrow m = 0$
- (ii) ϕ is finite at $\theta = 0$ and π .
- \Rightarrow Eigenvalue prob. in θ [see (A.18)]
- $\Rightarrow v = l = 0, 1, 2, \dots$ and drop Q_{v}^{m}
- (iii) ϕ is finite at r = 0. \Rightarrow drop $r^{-\nu-1}$

$$\Rightarrow \phi(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos\theta)$$

Note:

- 1. $P_{\nu}(-1) \rightarrow \infty$ unless ν is an integer (p.105.)
- 2. There is no negative lbecause $P_{-l-1}(x) = P_l(x)$.
- 3. $Q_{\nu}(x) \rightarrow \infty \text{ as } x \rightarrow \pm 1.$

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued

b.c.
$$\phi(r = a, \theta) = \sum_{l} A_{l} a^{l} P_{l}(\cos \theta) = \begin{cases} +V, & 0 \le \theta < \frac{\pi}{2} & \phi(r = a, \theta) \\ -V, & \frac{\pi}{2} < \theta \le \pi \end{cases}$$

$$\int_{-1}^{1} P_{l}(x) P_{l'}(x) dx = \frac{2}{2l+1} \delta_{ll'} \quad (3.21) \qquad \frac{\frac{\pi}{2}}{-V} \xrightarrow{\pi} \theta$$

$$\Rightarrow \int_{-1}^{1} P_{l}(\cos \theta) \phi(r = a, \theta) d \cos \theta = A_{l} a^{l} \int_{-1}^{1} P_{l}^{2}(\cos \theta) d \cos \theta = A_{l} a^{l} \frac{2}{2l+1}$$

$$\Rightarrow A_{l} = \frac{V}{a^{l}} \frac{2l+1}{2} \left[\int_{0}^{1} P_{l}(\cos \theta) d \cos \theta - \int_{-1}^{0} P_{l}(\cos \theta) d \cos \theta \right]$$

$$= \begin{cases} \frac{V}{a^{l}} \frac{\left(-\frac{1}{2}\right)^{\frac{l-1}{2}} \left(2l+1\right) \left(l-2\right)!!}{2\left(\frac{l+1}{2}\right)!}, & \text{for odd } l \end{cases}$$

$$\Rightarrow \phi(r, \theta) = V \left[\frac{3}{2} \frac{r}{a} P_{l}(\cos \theta) - \frac{7}{8} \left(\frac{r}{a}\right)^{3} P_{3}(\cos \theta) + \cdots \right], \quad r \le a \qquad (3.36)$$

To find
$$\phi$$
 for $r > a$, replace $\left(\frac{r}{a}\right)^l$ in (3.36) by $\left(\frac{a}{r}\right)^{l+1}$ [see (2.27)]

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Problem 2: A conducting sphere of radius a with net charge Q is in a uniform \mathbf{E}_0 (= $E_0\mathbf{e}_z$). Find ϕ ($r \ge a$) and σ on the surface.

$$\rho = 0 \Rightarrow \phi = \begin{cases} r^{\nu} \\ r^{-\nu - 1} \end{cases} \begin{cases} P_{\nu}^{m}(\cos \theta) \\ Q_{\nu}^{m}(\cos \theta) \end{cases} \begin{cases} e^{im\phi} \\ e^{-im\phi} \end{cases} \xrightarrow{\text{metal sphere}} + \frac{r}{\theta} \xrightarrow{\text{metal sphere}} + \frac{r}{\theta} \xrightarrow{\text{metal sphere}}$$

- (i) ϕ is indep. of φ . $\Rightarrow m = 0$
- (ii) ϕ is finite at $\theta = 0$ and π . \Rightarrow Eigenvalue prob. in θ [see (A.18)]

$$\Rightarrow v = l = 0, 1, 2, ... \text{ and drop } Q_v^m$$

$$\Rightarrow \phi(r, \theta) = \sum_{l=0}^{\infty} [A_l r^l + B_l r^{-(l+1)}] P_l(\cos \theta)$$
This term gives
$$E_0 \text{ (external field)}$$
b.c.: As $r \to \infty$, $\phi = -E_0 r \cos \theta + \frac{Q}{4\pi \varepsilon_0 r} = -E_0 z + \frac{Q}{4\pi \varepsilon_0 r}$
external field far field of net chrage Q

Thus,
$$\begin{cases} P_1(\cos\theta) = \cos\theta \Rightarrow A_1 = -E_0, \ A_{l\neq 1} = 0 \\ P_0(\cos\theta) = 1 \Rightarrow B_0 = \frac{Q}{4\pi\varepsilon_0} \ (B_{l\neq 0} \text{ yet to be determined}) \end{cases}$$

Question: The b.c. shows $\phi \to \infty$ as $z \to \infty$. What's the reason?

19

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

$$\Rightarrow \phi(r,\theta) = -E_0 r \cos \theta + \frac{Q}{4\pi\varepsilon_0 r} + \sum_{l=1}^{\infty} \underbrace{B_l r^{-(l+1)} P_l(\cos \theta)}_{\text{Combine the } P_1(\cos \theta) = \cos \theta}_{\text{term here with } -E_0 r \cos \theta}.$$

$$\Rightarrow \phi(r = a) = const.$$

$$\Rightarrow \phi(r = a) = (-E_0 a + \frac{B_1}{a^2}) \underbrace{\cos \theta}_{\text{vary}} + \underbrace{\frac{Q}{4\pi\varepsilon_0 a}}_{\text{viry with } \theta} + \sum_{l=2}^{\infty} \underbrace{\frac{B_l}{b^2} a^{-(l+1)}}_{\text{vary with } \theta} \underbrace{P_l(\cos \theta)}_{\text{vary with } \theta}$$
For $\phi(r = a) = const.$ (i.e. indep. of θ), we must have
$$B_1 = E_0 a^3 \text{ and } B_{l \ge 2} = 0$$

$$\Rightarrow \phi(r,\theta) = -E_0 r \cos \theta + \underbrace{\frac{Q}{4\pi\varepsilon_0 r}}_{\text{due to induced } \sigma} + \underbrace{\frac{A^3}{r^2} \cos \theta}_{\text{or induced } \sigma} + \underbrace{\frac{Q}{4\pi a^2}}_{\text{loss } \theta}$$

$$\begin{cases} E(\text{inside}) = 0 \\ \& \text{ Gauss's law} \end{cases} \Rightarrow \sigma = -\varepsilon_0 \frac{\partial \phi}{\partial r}|_{r=a} = 3\varepsilon_0 E_0 \cos \theta + \underbrace{\frac{Q}{4\pi a^2}}_{\text{loss } \theta} \text{ [see (1.22)]}$$

Questions: 1. The field inside the sphere due to σ is $-\mathbf{E}_0$. Why?

2. Why is Q uniformly distributed? (See the prob. in Sec. 2.3). $_{20}$

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Problem 3: Find ϕ of $\nabla^2 \phi = -4\pi \delta(\mathbf{x} - \mathbf{x}')$ in infinite space.

First, assume the point source lies on the z-axis at a distance r'from the origin and divide the space into 2 regions: r < r' and r > r'.

Since the source is on the boundary (r = r'), we have $\nabla^2 \phi = 0$ in each region, both having

the solution:
$$\phi = \begin{cases} r^{\nu} \\ r^{-\nu-1} \end{cases} \begin{cases} P_{\nu}^{m}(\cos \gamma) \\ Q_{\nu}^{m}(\cos \gamma) \end{cases} \begin{cases} e^{im\varphi} \\ e^{-im\varphi} \end{cases}$$

- (i) ϕ is indep. of φ . $\Rightarrow m = 0$
- (ii) ϕ is finite at $\gamma = 0$ and $\pi . \Rightarrow \nu = l = 0, 1, 2, ...$ and drop Q_{ν}^{m}

(iii)
$$\phi$$
 is finite at $\gamma = 0$ and $\pi . \Rightarrow v = l = 0, 1, 2, ...$ and dro

(iii) ϕ is finite
$$\begin{cases} \text{at } r = 0. & \Rightarrow \text{drop } r^{-l-1} \text{ in region } r < r' \\ \text{as } r \to \infty. & \Rightarrow \text{drop } r^l \text{ in region } r > r' \end{cases}$$

$$\Rightarrow \phi = \begin{cases} \sum_{l=0}^{\infty} A_l r^l P_l(\cos \gamma), & r < r' \\ \sum_{l=0}^{\infty} B_l \frac{1}{r^{l+1}} P_l(\cos \gamma), & r > r' \end{cases}$$

21

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

The formal method to solve for A_l and B_l (hence obtain the solution for all x) is to match the b.c. at r = r' (as will be done in Sec. 3.9). Here we obtain A_l and B_l by exploiting the fact that we already know the solution is $\phi = 1/|\mathbf{x}-\mathbf{x}'|$ [(1.31)]. So, by the uniqueness theorem, we have

$$\phi = \frac{1}{\left|\mathbf{x} - \mathbf{x}'\right|} = \begin{cases} \sum_{l=0}^{\infty} A_l r^l P_l(\cos \gamma) &, r < r' \\ \sum_{l=0}^{\infty} B_l \frac{1}{r^{l+1}} P_l(\cos \gamma) &, r > r' \end{cases}$$

For $\gamma = 0$, we have $P_l(1) = 1$ and $|\mathbf{x} - \mathbf{x}'| = |r - r'|$. Hence,

$$\frac{1}{|r-r'|} = \begin{cases} \sum_{l=0}^{\infty} A_l r^l & , \ r < r' \\ \sum_{l=0}^{\infty} B_l \frac{1}{r^{l+1}} & , \ r > r' \end{cases}$$

$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^3 + \cdots$$
Let $n = -1$, $x = 1$, and $y = r/r'$ or r'/r .

$$\Rightarrow \frac{1}{|r-r'|} = \begin{cases} \frac{1}{r'-r} = \frac{1}{r'} \frac{1}{1-\frac{r}{r'}} \stackrel{\downarrow}{=} \frac{1}{r'} \sum_{l=0}^{\infty} \left(\frac{r}{r'}\right)^{l} = \sum_{l=0}^{\infty} \frac{r^{l}}{r'^{l+1}} = \sum_{l=0}^{\infty} A_{l} r^{l}, \quad r < r' \\ \frac{1}{r-r'} = \frac{1}{r} \frac{1}{1-\frac{r'}{r}} = \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^{l} = \sum_{l=0}^{\infty} \frac{r^{l}}{r^{l+1}} = \sum_{l=0}^{\infty} B_{l} \frac{1}{r^{l+1}}, \quad r > r' \end{cases}$$

$$\Rightarrow A_l = \frac{1}{r'^{l+1}}; B_l = r'^l$$

$$\Rightarrow \frac{1}{\left|\mathbf{x}-\mathbf{x}'\right|} = \begin{cases} \sum_{l=0}^{\infty} \frac{r^{l}}{r'^{l+1}} P_{l}(\cos\gamma), & r < r' \\ \sum_{l=0}^{\infty} \frac{r'^{l}}{r^{l+1}} P_{l}(\cos\gamma), & r > r' \end{cases}$$

point
$$x'$$
 source x' y

or
$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \gamma), \text{ [two equations in one]}$$
 (3.38)

where $r_{<}(r_{>})$ is the smaller (larger) of r and r'.

23

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Rewrite
$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \gamma).$$

Rewrite $\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \gamma),$ point source source Note which is derived with the point source located on the z-axis (upper figure). Note that each term on the RHS of (3.38) is a

smooth function of **x** satisfying $\nabla^2 \phi(\mathbf{x}) = 0$ in regions r > r' and r < r', but they add up to a sigularity as \mathbf{x} approaches \mathbf{x}' from any direction.

The RHS of (3.38) depends only on

- (1) the magnitudes (r, r') of **x** and **x'**
- (2) the angle (γ) between **x** and **x**' which suggests that we may convert (3.38) into a general form which holds for the point source at an arbitrary point (lower figure).

The general form may be readily obtained xby way of the addition theorem (next page).

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

So, we started with a physics problem (the potential of a point source in infinite space), but ended up with a mathematical relation in (3.70).

Question: Why write a simple function $\phi = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$ in such a complicated form? (See next problem.)

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Problem 4: Find the potential due to total charge q, which is uniformly distributed on a circular ring of radius a.

Let
$$\rho(\mathbf{x}) = K\delta(\theta - \alpha)\delta(r - c)$$
 in spherical coordinates

$$q = \int \rho(\mathbf{x})d^{3}x$$

$$= K \int \delta(\theta - \alpha)\delta(r - c) r^{2} \sin \theta dr d\theta d\varphi$$

$$= 2\pi Kc^{2} \sin \alpha$$

$$\Rightarrow K = \frac{q}{2\pi c^{2} \sin \alpha}$$

$$\Rightarrow \rho(\mathbf{x}) = \frac{q}{2\pi c^{2} \sin \alpha} \delta(\theta - \alpha)\delta(r - c)$$

$$= \frac{q}{2\pi c^{2}} \delta(\cos \theta - \cos \alpha)\delta(r - c)$$

$$\delta[f(x)] = \frac{\delta(x - a)}{|f'(\alpha)|}$$

$$\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathbf{v}} \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x' \qquad \frac{1}{|\mathbf{x} - \mathbf{x}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{r_{<}^l}{r_{>}^{l+1}} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi)$$

$$= \frac{q}{2\pi\varepsilon_0 c^2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \int_{\mathbf{v}} r'^2 dr' d\cos\theta' d\varphi' \begin{bmatrix} \frac{r_{<}^l}{r_{>}^{l+1}} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi) \\ \vdots \delta(\cos\theta' - \cos\alpha) \delta(r' - c) \end{bmatrix},$$
where $Y_{lm}(\theta', \varphi') = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta') e^{im\varphi'} [(3.53)]$

$$\text{Use } \int_0^{2\pi} e^{im\varphi'} d\varphi' = \begin{cases} 0, & \text{if } m \neq 0 \\ 2\pi, & \text{if } m = 0 \end{cases} \text{ and } P_l^{m=0}(\cos\theta') = P_\ell(\cos\theta')$$

$$\Rightarrow \phi(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0 c^2} \sum_{l=0}^{\infty} \int_0^{\infty} r'^2 dr' \int_{-1}^{1} d\cos\theta' \left[\frac{r_{<}^l}{r_{>}^{l+1}} P_l(\cos\theta') P_l(\cos\theta) \\ \vdots \delta(\cos\theta' - \cos\alpha) \delta(r' - c) \right]$$

$$= \frac{q}{4\pi\varepsilon_0} \sum_{l=0}^{\infty} \int_{r_{<}^{l+1}}^{\infty} P_l(\cos\alpha) P_l(\cos\theta)$$

Jackson uses a slightly different method to derive this. See p.103. 27

3.4 Behavior of Fields in a Conical Hole or **Near a Sharp Point**

Consider a "conical hole" or "sharp point" with a conducting boundary ($\phi = 0$). Assume the region of interest is source-free.

$$\nabla^{2}\phi = 0 \Rightarrow \phi = \begin{cases} r^{V} \\ r^{-V-1} \end{cases} \begin{cases} P_{V}^{m}(\cos\theta) \\ Q_{V}^{m}(\cos\theta) \end{cases} \begin{cases} e^{im\phi} \end{cases}$$
 Conical hole
$$Q_{V}^{m}(\cos\theta) \begin{cases} e^{-im\phi} \\ e^{-im\phi} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{V} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole
$$\phi = 0 \qquad \begin{cases} r^{T} \\ r^{T} \end{cases}$$
 Conical hole

- (i) Geometry and b.c. indep. of φ (by assumption) $\Rightarrow m=0$
- (ii) $Q_{\nu}^{m}(\cos\theta)$ diverges at $\theta = 0$ ($\cos\theta = 1$).

$$\Rightarrow$$
 drop $Q_{\nu}^{m}(\cos\theta) \Rightarrow \phi = \begin{Bmatrix} r^{\nu} \\ r^{-\nu-1} \end{Bmatrix} P_{\nu}(\cos\theta)$

Note: $P_{\nu}(x)$ diverges at x = -1 unless $\nu = \text{integer}$. However, our region of interest is $0 \le \theta < \pi$.

- \Rightarrow cos $\theta = -1$ is outside the region of interest.
- $\Rightarrow v$ is not required to be an integer.

3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

Rewrite:
$$\phi = \begin{Bmatrix} r^{\nu} \\ r^{-\nu-1} \end{Bmatrix} P_{\nu}(\cos \theta)$$

(iii) ϕ is finite at r = 0.

$$\Rightarrow \begin{cases} (a) \text{ demand } v > 0 \text{ and drop } r^{-\nu-1} \Rightarrow \phi = r^{\nu} P_{\nu}(\cos \theta) \\ \text{or (b) demand } -\nu - 1 > 0 \text{ and drop } r^{\nu} \Rightarrow \phi = r^{-\nu-1} \underbrace{P_{\nu}(\cos \theta)}_{=P_{-\nu-1}(\cos \theta)} \\ \Rightarrow \phi = r^{-\nu-1} P_{-\nu-1}(\cos \theta) \end{cases}$$

 \Rightarrow Either option (a) or option (b) gives $\phi = r^{\nu} P_{\nu}(\cos \theta), \ \nu > 0$

(iv)
$$\phi = 0$$
 at $\theta = \beta \Rightarrow P_{\nu}(\cos \beta) = 0 \Rightarrow \nu = \nu_{1}, \nu_{2}, \nu_{3}, \dots (\nu > 0)$

$$\begin{array}{c}
r \to 0 \\
\hline
r \to 0
\end{array}$$
eigenvalue
$$\Rightarrow \phi(r, \theta) = \sum_{k=1}^{\infty} A_{k} r^{\nu_{k}} P_{\nu_{k}}(\cos \theta) \stackrel{?}{\approx} A_{1} r^{\nu_{1}} P_{\nu_{1}}(\cos \theta), \\
\hline
\nu_{1}: \text{smallest eigenvalue}$$
(3.44)

Question: Is $P_{V_k}(\cos \theta)$ a complete set in the region $0 \le \theta \le \beta$? Yes.

: b.c. $P_{V}(\cos \beta) = 0$ makes the operator in (3.9) Hermitian [see (A.12)]. Note: $P_{V_k}(\cos \theta)$ is a set specific to and most useful for this problem.

3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

$$r \to 0 \Rightarrow \begin{cases} E_r = -\frac{\partial \phi}{\partial r} \approx -\frac{\partial}{\partial r} A_1 r^{\nu_1} P_{\nu_1}(\cos \theta) \\ = -\nu_1 A_1 r^{\nu_1 - 1} P_{\nu_1}(\cos \theta) \propto r^{\nu_1 - 1} \\ E_\theta = -\frac{1}{r} \frac{\partial \phi}{\partial \theta} \approx -\frac{1}{r} \frac{\partial}{\partial \theta} A_1 r^{\nu_1} P_{\nu_1}(\cos \theta) \\ = A_1 r^{\nu_1 - 1} \sin \theta P'_{\nu_1}(\cos \theta) \propto r^{\nu_1 - 1} \\ \sigma = -\varepsilon_0 E_\theta(\theta = \beta) \quad [\mathbb{E}(\theta > \beta) = 0, \sec (1.22)] \\ \approx -A_1 \varepsilon_0 r^{\nu_1 - 1} \sin \beta P'_{\nu_1}(\cos \beta) \propto r^{\nu_1 - 1} \end{cases}$$

$$v_1 \text{ vs } \beta \text{ under} \\ P_{\nu_1}(\cos \beta) = 0 \end{cases} \begin{cases} v_1 > 1, \text{ if } \beta < 90^\circ \\ v_1 = 1, \text{ if } \beta = 90^\circ \\ v_1 < 1, \text{ if } \beta > 90^\circ \end{cases}$$

Discussion:

1. If
$$\beta < 90^{\circ}$$
 (conical hole, $v_1 > 1$), $E \& \sigma \to 0$ as $r \to 0$.

3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

Rewrite
$$\begin{cases} E_r \propto A_1 r^{\nu_1 - 1} \\ E_\theta \propto A_1 r^{\nu_1 - 1} \\ \sigma \propto A_1 r^{\nu_1 - 1} \end{cases} \text{ as } r \to 0$$

$$\begin{cases} P_{\nu_1} (\cos \beta) = 0 \\ P_{\nu_1} (\cos \beta) = 0 \\ 0 & 90^{\circ} & 180^{\circ} \beta \end{cases}$$

2. If $\beta > 90^{\circ}$ (sharp point, $\nu_1 < 1$), $E \& \sigma \to \infty$ as $r \to 0$.

Large E-field (> 3×10^4 V/cm) can cause the air to break down to form a conducting path for the sharp point (e.g. lightning rod) to discharge slowly & continuously.

3. Rewrie
$$\phi(r,\theta) = \sum_{k=1}^{\infty} A_k r^{\nu_k} P_{\nu_k}(\cos \theta) [(3.44)] \phi_s(\theta)$$

To draw conclusions 1 & 2 above, we only need $A_1 \neq 0$, which requires the b.c. $\phi(r = a, \theta) \neq 0$. So,

$$\phi(r=a,\theta) = \sum_{k=1}^{\infty} A_k a^{\nu_k} P_{\nu_k}(\cos\theta),$$

$$\vdots P_{\nu_k}(\cos\theta) \text{ are linearly indep. See}$$

which can be used to determine all A_k in (3.44). Ch. 2, Eqs. (3a,b).

32

Question: If $\phi(r = a, \theta) = 0$ for all θ , then $A_k = 0$ for all k. Why?

3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

Question: At the sharp point $(r \to 0)$, $E \to \infty$. Is this physical? Since atoms are finite in size, the lightning rod can't be perfectly sharp. Hence, ϕ is finite at the tip. On a clear day with a small $\Delta \phi$ between the ground the clouds, the lightning rod will not discharge.

A physical picture of the lightning rod

3.7 Laplace Equation in Cylindrical Coordinates

Laplace eq. in cylindrical coordinates (see Jackson, back cover):

$$\nabla^{2}\phi(\mathbf{x}) = 0 \Rightarrow \frac{\partial^{2}\phi}{\partial\rho^{2}} + \frac{1}{\rho}\frac{\partial\phi}{\partial\rho} + \frac{1}{\rho^{2}}\frac{\partial^{2}\phi}{\partial\varphi^{2}} + \frac{\partial^{2}\phi}{\partial z^{2}} = 0$$
Let $\phi(\mathbf{x}) = R(\rho)Q(\phi)Z(z)$

$$\begin{cases} \frac{\partial^{2}Z}{\partial z^{2}} - k^{2}Z = 0 \Rightarrow Z = e^{\pm kz} \\ \frac{\partial^{2}Q}{\partial\varphi^{2}} + v^{2}Q = 0 \Rightarrow Q = e^{\pm iv\phi} \end{cases}$$

$$\Rightarrow \begin{cases} \frac{\partial^{2}R}{\partial\rho^{2}} + \frac{1}{\rho}\frac{\partial R}{\partial\rho} + \left(k^{2} - \frac{v^{2}}{\rho^{2}}\right)R = 0 \\ \Rightarrow R = J_{v}(k\rho) + N_{v}(k\rho) \text{ (see pp. 112-116 or lecture notes p. 13).} \end{cases}$$

$$\Rightarrow \phi = \begin{cases} J_{v}(k\rho) & \begin{cases} e^{iv\phi} & \begin{cases} e^{kz} \\ N_{v}(k\rho) \end{cases} e^{-iv\phi} \end{cases} = e^{-kz} \end{cases}$$

 $(N_{\nu}(\kappa\rho))(e^{-\kappa\varphi})(e^{-\kappa\varphi})$

3.8 Bounday-Value Problems in Cylindrical Coordinates

Example 1: Potential inside a charge-free cylinder (see figure) with b.c.'s: $\phi(z = L) = V(\rho, \varphi)$ and $\phi = 0$ on other surfaces.

$$\nabla^{2}\phi(\mathbf{x}) = 0 \Rightarrow \phi = \begin{cases} J_{v}(k\rho) \\ N_{v}(k\rho) \end{cases} \begin{cases} e^{iv\phi} \\ e^{-iv\phi} \end{cases} \begin{cases} e^{kz} \\ e^{-kz} \end{cases}$$

$$(i) \ Z(z) = Ae^{kz} + Be^{-kz}$$

$$\phi = 0 \ \text{at} \ z = 0 \ \Rightarrow Z(0) = 0 \Rightarrow B = -A$$

$$\Rightarrow Z(z) = A\left(e^{kz} - e^{-kz}\right) = A' \sinh kz$$

$$\phi = 0$$

(ii) $\phi(\varphi) = \phi(\varphi + 2\pi)$ $\Rightarrow v = m = \text{integer}$ This is an eigenvalue problem in φ and ρ , but not in z. Why?

(iii) ϕ is finite at $\rho = 0$. \Rightarrow drop $N_m(k\rho) \Rightarrow R = J_m(k\rho)$

(iv)
$$\phi = 0$$
 at $\rho = a \Rightarrow J_m(ka) = 0$

$$\Rightarrow k = k_{mn} = \frac{x_{mn}}{a}, \ n = 1, 2, 3...$$
where x_{mn} is the *n*-th root of $J_m(x) = 0$.

3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

Thus, we expand the solution as follows

$$\phi(\rho, \varphi, z) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(k_{mn}\rho) \sinh(k_{mn}z) \cdot (A_{mn}\sin m\varphi + B_{mn}\cos m\varphi) \phi = 0$$

(v)
$$\phi(\rho, \varphi, z = L) = V(\rho, \varphi)$$

$$\Rightarrow V(\rho, \varphi) = \sum_{m,n} J_m(k_{mn}\rho) \sinh(k_{mn}L)$$

$$\cdot (A_{mn} \sin m\varphi + B_{mn} \cos m\varphi)$$

Operate both sides with $\int_0^{2\pi} d\varphi \int_0^a \rho d\rho J_m(k_{mn}\rho) \begin{cases} \sin m\varphi \\ \cos m\varphi \end{cases}$ and

make use of the orthogonal properties of $\sin m\varphi$ and $\cos m\varphi$, and

the relation:
$$\int_0^a J_m(k_{mn'}\rho) J_m(k_{mn}\rho) \rho d\rho = \frac{a^2}{2} [J_{m+1}(k_{mn}a)]^2 \delta_{n'n}$$
 (3.95)

$$\Rightarrow \begin{cases} A_{mn} \\ B_{mn} \end{cases} = \frac{2 \operatorname{cosech}(k_{mn}L)}{\pi a^2 J_{m+1}^2(k_{mn}a)} \int_0^{2\pi} d\varphi \int_0^a \rho d\rho V(\rho, \varphi) J_m(k_{mn}\rho) \begin{cases} \sin m\varphi \\ \cos m\varphi \end{cases}$$

Note: Use $\frac{1}{2}B_{0n}$ for the m=0 term in the $\phi(\rho, \varphi, z)$ series .

35

3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

Example 2: Potential in the charge-free semi-infinite space $z \ge 0$

subject to the b.c.
$$\begin{cases} \phi(\rho, \varphi, z = 0) = V(\rho, \varphi) \\ \phi(\rho \to \infty, \varphi, z \to \infty) = 0 \end{cases}$$

$$\nabla^2 \phi(\mathbf{x}) = 0 \Rightarrow \phi = \begin{cases} J_{\nu}(k\rho) & e^{i\nu\varphi} \\ N_{\nu}(k\rho) & e^{-i\nu\varphi} \end{cases} \begin{cases} e^{kz} \\ e^{-kz} \end{cases}$$

- (i) ϕ remains finite as $z \to \infty$. \Rightarrow drop $e^{kz} \Rightarrow Z(z) = Ae^{-kz}$
- (ii) $\phi(\varphi) = \phi(\varphi + 2\pi) \implies v = m = \text{integer}$
- (iii) ϕ is finite at $\rho = 0$. \Rightarrow drop $N_m(k\rho) \Rightarrow R = J_m(k\rho)$

(iv)
$$\phi = 0$$
 at $\rho \to \infty \implies J_m(k \cdot \infty) = 0 \implies \begin{cases} \text{Continuous eigenvalue } k; \\ k \text{ series } \to k \text{ integral} \end{cases}$

$$\Rightarrow \phi(\rho, \varphi, z) = \sum_{m=0}^{\infty} \int_{0}^{\infty} dk e^{-kz} J_{m}(k\rho) \left[A_{m}(k) \sin m\varphi + B_{m}(k) \cos m\varphi \right]$$
(3.106)

Rewrite (3.106) with variable k changed to k':

$$\phi(\rho, \varphi, z) = \sum_{m=0}^{\infty} \int_{0}^{\infty} dk' e^{-k'z} J_{m}(k'\rho)$$
$$\cdot [A_{m}(k') \sin m\varphi + B_{m}(k') \cos m\varphi]$$

(v)
$$\phi(\rho, \varphi, z = 0) = V(\rho, \varphi)$$

$$\Rightarrow V(\rho,\varphi) = \sum_{m=0}^{\infty} \int_{0}^{\infty} dk' J_{m}(k'\rho) [A_{m}(k')\sin m\varphi + B_{m}(k')\cos m\varphi]$$

Operating both sides with $\int_0^{2\pi} d\varphi \int_0^{\infty} \rho d\rho J_m(k\rho) \begin{cases} \sin m\varphi \\ \cos m\varphi \end{cases}$ and making use of the orthogonal properties of $\sin m\varphi$ and $\cos m\varphi$, and the relation: $\int_0^{\infty} x J_m(kx) J_m(k'x) dx = \frac{1}{k} \delta(k-k')$ (3.108)

$$\Rightarrow \begin{cases} A_m(k) \\ B_m(k) \end{cases} = \frac{k}{\pi} \int_0^{2\pi} d\varphi \int_0^{\infty} \rho d\rho V(\rho, \varphi) J_m(k\rho) \begin{cases} \sin m\varphi \\ \cos m\varphi \end{cases}$$
(3.109)

For
$$m = 0$$
, use $\frac{1}{2}B_0(k)$ in series (3.106).

3.9 Expansion of Green Functions in Spherical Coordinates

The Green function for an electrostatic potential problem with Dirichlet b.c.'s satisfies

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$

with $G(\mathbf{x}, \mathbf{x}') = 0$ for \mathbf{x} on the boundary surface.

Question: Jackson p.120 states the b.c. as " $G(\mathbf{x}, \mathbf{x}') = 0$ for either \mathbf{x} or \mathbf{x}' on the boundary surface." Why?

Case 1: Green function in infinite space

In Sec. 1.10, we have the solution:

$$G(\mathbf{x},\mathbf{x}') = \frac{1}{|\mathbf{x}-\mathbf{x}'|},$$

which can be expanded in spherical coordinates as (Sec. 3.3)

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi) \quad [(3.70)]$$

image

Case 2: Green function outside a conducting sphere

By the method of images, we have obtained the Green function in Sec. 2.6,

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} - \frac{a}{x' |\mathbf{x} - \frac{a^2}{x'^2} \mathbf{x}'|} \quad [(2.16)]$$

The first term in (2.16) is expanded in (3.70).

$$\frac{a}{\mathbf{x}' \left| \mathbf{x} - \frac{a^2}{\mathbf{x}'^2} \mathbf{x}' \right|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{a\left(\frac{a^2}{r'}\right)^l}{r'r^{l+1}} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi)$$

$$\Rightarrow G\left(\mathbf{x}, \mathbf{x}'\right) = 4\pi \sum_{l,m} \frac{1}{2l+1} \left[\frac{r_{<}^l}{r_{>}^{l+1}} - \frac{1}{a} \left(\frac{a^2}{rr'}\right)^{l+1} \right] Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi) \quad (3.114)$$

3.9 Expansion of Green Functions in Spherical Coordinates (continued)

Case 3: Green function inside a spherical shell

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}') \text{ [inhomogeneous D.E. by (A.3)]} \quad G = 0$$

with homogeneous b.c.'s G(r = a & b) = 0 [by (A.4)]

We will now solve the problem by a systematic method: method of expansion.

Write $\delta(\mathbf{x} - \mathbf{x}')$ in spherical coordinates,

$$\delta(\mathbf{x} - \mathbf{x}') = \frac{1}{r^2} \delta(r - r') \delta(\varphi - \varphi') \delta(\cos \theta - \cos \theta'),$$

where r', θ', φ' (arbitrary constants) are coordinates of the source (x').

Apply
$$\delta(\varphi - \varphi')\delta(\cos\theta - \cos\theta') = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi) [(3.56)]$$

$$\Rightarrow \delta(\mathbf{x} - \mathbf{x}') = \frac{1}{r^2} \delta(r - r') \sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi)$$
(3.117)

Note: In (3.117), we have decomposed a "unit point charge" into an infinite number of spherical "charge layers", all of which have smooth charge distributions [with $Y_{lm}(\theta, \varphi)$ dependence] on the r = r' surface.

$$\Rightarrow \nabla^{2}G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$

$$= -4\pi\frac{1}{r^{2}}\delta(r - r')\sum_{l=0}^{\infty}\sum_{m=-l}^{l}Y_{lm}^{*}(\theta', \phi')Y_{lm}(\theta, \phi)$$
variable constant constant variables

The RHS of (4) suggests that we try the following form for $G(\mathbf{x}, \mathbf{x}')$:

$$G(\mathbf{x}, \mathbf{x}') = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} g_l(r, r') \underbrace{Y_{lm}^*(\theta', \phi') Y_{lm}(\theta, \phi)}_{\text{same as RHS of (4)}}$$
 Why not $g_{lm}(r, r')$? (5)

Sub. (5) into LHS of (4). Note $Y_{lm}(\theta, \varphi) \propto P_l^m(\cos \theta) e^{im\varphi}$ and use

$$\begin{cases}
\frac{d^{2}}{d\varphi^{2}}e^{im\varphi} = -m^{2}e^{im\varphi} & Y_{lm} \text{ is complex, but } \sum_{m=-l}^{l}Y_{lm} \text{ is real.} \\
\left[\frac{1}{\sin\theta}\frac{d}{d\theta}(\sin\theta\frac{d}{d\theta}) - \frac{m^{2}}{\sin^{2}\theta}\right]P_{l}^{m}(\cos\theta) = -\ell(\ell+1)P_{l}^{m}(\cos\theta) \quad [(3.6)]
\end{cases}$$

$$\Rightarrow \nabla^{2}G(\mathbf{x},\mathbf{x}') = \frac{1}{r}\frac{\partial^{2}}{\partial r^{2}}(rG) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial G}{\partial\theta}) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}G}{\partial\varphi^{2}} - \frac{-m^{2}G}{r^{2}}$$

$$= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[\frac{1}{r}\frac{d^{2}}{dr^{2}}[rg_{l}(r,r')] - \frac{\ell(l+1)}{r^{2}}g_{l}(r,r')\right]Y_{lm}^{*}(\theta',\varphi')Y_{lm}(\theta,\varphi) \quad (6)$$

3.9 Expansion of Green Functions in Spherical Coordinates (continued)

Equate the RHS of (4) and (6). $Y_{lm}(\theta, \varphi)$'s are orthogonal, hence linearly indep. [lectures notes, Ch. 2, Eqs. (3a,b)]. Thus, the coefficients of each $Y_{lm}(\theta, \varphi)$ term on the RHS of (4) and (6) are equal.

$$\Rightarrow \frac{1}{r} \frac{d^2}{dr^2} \left[r g_l(r, r') \right] - \frac{l(l+1)}{r^2} g_l(r, r') = -\frac{4\pi}{r^2} \delta(r - r'), \tag{3.120}$$

which turns out to be an equation indep. of the index m.

To solve (3.120), divide the space into $a \le r < r'$ and $b \ge r > r'$. In each region, (3.120) reduces to

$$\frac{1}{r} \frac{d^2}{dr^2} [rg_l(r,r')] - \frac{l(l+1)}{r^2} g_l(r,r') = 0$$

$$\Rightarrow g_l(r,r') = \begin{cases} Ar^l + Br^{-l-1}, & a \le r < r' \\ A'r^l + B'r^{-l-1}, & b \ge r > r' \end{cases}$$
We will use 4 b.c.'s to determine A, B, A' , and B' . But first note

We will use 4 b.c.'s to determine A, B, A', and B'. But first note: If a = 0, B must be set to 0 for $g_l(r, r')$ to be finite at r = 0. (7)

b.c. (i):
$$g_l(r = a, r') = 0 \implies g_l(r, r') = A(r^l - \frac{a^{2l+1}}{r^{l+1}}), \quad a \le r < r'$$

If a = 0, this term does not exist [see (7)].

b.c. (ii):
$$g_l(r = b, r') = 0 \implies g_l(r, r') = B'(\frac{1}{r^{l+1}} - \frac{r^l}{b^{2l+1}}), \quad b \ge r > r'$$

b.c. (iii): $g_l(r,r')$ is continuous at r=r'. Physical reason: E is finite at r=r'. $\Rightarrow \phi$ [or $g_l(r,r')$] is continuous.

Thus,
$$A(r'^{l} - \frac{a^{2l+1}}{r'^{l+1}}) = B'(\frac{1}{r'^{l+1}} - \frac{r'^{l}}{b^{2l+1}})$$

$$\Rightarrow \frac{A}{B'} = \frac{\frac{1}{r'^{l+1}} - \frac{r'^{l}}{b^{2l+1}}}{r'^{l} - \frac{a^{2l+1}}{r'^{l+1}}} \Rightarrow \begin{cases} A = C(\frac{1}{r'^{l+1}} - \frac{r'^{l}}{b^{2l+1}}) \\ B' = C(r'^{l} - \frac{a^{2l+1}}{r'^{l+1}}) \end{cases}$$

$$\Rightarrow g_{l}(r, r') = \begin{cases} C(\frac{1}{r'^{l+1}} - \frac{r'^{l}}{b^{2l+1}})(r^{l} - \frac{a^{2l+1}}{r'^{l+1}}), & a \le r < r' \\ C(r'^{l} - \frac{a^{2l+1}}{r'^{l+1}})(\frac{1}{r^{l+1}} - \frac{r^{l}}{b^{2l+1}}), & b \ge r > r' \end{cases}$$

$$= C(r_{<}^{l} - \frac{a^{2l+1}}{r_{<}^{l+1}})(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}}) \xrightarrow{r_{<}(r_{>}): \text{ smaller (larger) of } r \& r'} (3.122)$$

3.9 Expansion of Green Functions in Spherical Coordinates (continued)

We need one more condition to get the remaining constant C in

$$g_l(r,r') = C\left(r_<^l - \frac{a^{2l+1}}{r_<^{l+1}}\right)\left(\frac{1}{r_>^{l+1}} - \frac{r_>^l}{b^{2l+1}}\right) \ [(3.122)]$$

Rewrite
$$\frac{1}{r} \frac{d^2}{dr^2} \left[rg_l(r, r') \right] - \frac{l(l+1)}{r^2} g_l(r, r') = -\frac{4\pi}{r^2} \delta(r-r')$$
 [(3.120)]

b.c. (iv): Physically, $E_r (\propto \frac{d}{dr} g_l)$ is discontinuous across the charge layer at r = r'. Mathematically, we integrate (3.120) from $r' - \varepsilon$ to $r' + \varepsilon$ ($\varepsilon \to 0$) to bring out the meaning of $\delta(r - r')$, hence the E_r discontinuity.

Multiply (3.120) by
$$r$$
 and integrate across r'

$$\Rightarrow \frac{d}{dr} [rg_{l}(r,r')]_{r'+\varepsilon} - \frac{d}{dr} [rg_{l}(r,r')]_{r'-\varepsilon} = -\frac{4\pi}{r'}$$

$$\Rightarrow -\frac{C}{r'} [1 - (\frac{a}{r'})^{2l+1}] [l + (l+1)(\frac{r'}{b})^{2l+1}]$$

$$use_{(3.122)} - \frac{C}{r'} [(l+1) + l(\frac{a}{r'})^{2l+1}] [1 - (\frac{r'}{b})^{2l+1}] = -\frac{4\pi}{r'}$$

$$\Rightarrow C = \frac{4\pi}{(2l+1)[1 - (\frac{a}{b})^{2l+1}]}$$

Sub.
$$C$$
 into $g_{l}(r,r') = C\left(r_{<}^{l} - \frac{a^{2l+1}}{r_{<}^{l+1}}\right)\left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}}\right)\left[(3.122)\right]$

$$\Rightarrow g_{l}(r,r') = \frac{4\pi}{(2l+1)\left[1 - \left(\frac{a}{b}\right)^{2l+1}\right]}\left(r_{<}^{l} - \frac{a^{2l+1}}{r_{<}^{l+1}}\right)\left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}}\right)$$

$$\Rightarrow G(\mathbf{x},\mathbf{x}') = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} g_{l}(r,r')Y_{lm}^{*}(\theta',\varphi')Y_{lm}(\theta,\varphi) \quad [(5)]$$

$$= 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{Y_{lm}^{*}(\theta',\varphi')Y_{lm}(\theta,\varphi)}{(2l+1)\left[1 - \left(\frac{a}{b}\right)^{2l+1}\right]}\left(r_{<}^{l} - \frac{a^{2l+1}}{r_{<}^{l+1}}\right)\left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}}\right) \quad (3.125)$$
If $a = 0$, this term does not exist [see (7)].

Limiting case 1: $a = 0 \& b \rightarrow \infty$, (3.125) \Rightarrow (3.70)

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi) \quad [(3.70)]$$

Limiting case 2: $a \neq 0 \& b \rightarrow \infty$, (3.125) \Rightarrow (3.114)

$$G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{l,m} \frac{1}{2l+1} \left[\frac{r_{<}^{l}}{r_{>}^{l+1}} - \frac{1}{a} \left(\frac{a^{2}}{rr'} \right)^{l+1} \right] Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi) \quad [(3.114)]$$

3.10 Solution of Potential Problems with the Spherical Green Function Expansion

Example 1: Potential inside a charge-free sphere of radius b subject to the b.c. $\phi(r = b) = V(\theta, \varphi)$

Since we already have the Green function [(3.125)] for this problem (inhomogeneous due to the b.c.), it is convenient to use the formal solution derived in Sec. 1.10:

$$\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \underbrace{\rho(\mathbf{x}')}_{=0} G(\mathbf{x}, \mathbf{x}') d^3 x' - \varepsilon_0 \oint_{\mathcal{S}} \phi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}, \mathbf{x}') da' \ [(1.44)]$$

There is no charge inside.

$$\Rightarrow \qquad \phi(\mathbf{x}) = -\frac{1}{4\pi} \oint_{S} \phi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}, \mathbf{x}') da' \tag{8}$$

Note: $\frac{\partial}{\partial n'}$ is a derivative along $\mathbf{n'}$. In deriving (1.44), $\mathbf{n'}$ is required to be \perp to the boundary surface and pointing outward from the region of interest. So we have $\frac{\partial}{\partial n'} = \frac{\partial}{\partial r'}$ for this example.

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Rewrite
$$\phi(\mathbf{x}) = -\frac{1}{4\pi} \oint_{S} \phi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}, \mathbf{x}') da'$$
 [(8)], where

$$G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{Y_{lm}^{*}(\theta', \varphi')Y_{lm}(\theta, \varphi)}{(2l+1)\left[1 - \left(\frac{a}{b}\right)^{2l+1}\right]} \left(r_{<}^{l} - \frac{a^{2l+1}}{r_{<}^{l+1}}\right) \left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}}\right)$$

For this example, a = 0, $r_{>} = r'(=b)$, and $r_{<} = r(\le b)$, hence

$$G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{l,m} \frac{1}{2l+1} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi) r^l \left(\frac{1}{r'^{l+1}} - \frac{r'^l}{b^{2l+1}} \right)$$

$$\Rightarrow \frac{\partial G}{\partial r'} = 4\pi \sum_{l,m} \frac{1}{2l+1} Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi) r^l \left(-\frac{l+1}{r'^{l+2}} - \frac{lr'^{l-1}}{b^{2l+1}} \right)$$

$$\Rightarrow \frac{\partial G}{\partial n'}\Big|_{r'=b} = \frac{\partial G}{\partial r'}\Big|_{r'=b} = -\frac{4\pi}{b^2} \sum_{l,m} \left(\frac{r}{b}\right)^l Y_{lm}^*(\theta', \varphi') Y_{lm}(\theta, \varphi) \tag{9a}$$

$$\phi(\mathbf{x}')|_{s} = \phi(r'=b) = V(\theta', \varphi') \qquad V(\theta', \varphi') \qquad b da' \qquad (9b)$$

$$da' = b^{2} d\Omega' \qquad (9c)$$

$$da' = b^2 d\Omega' \tag{9c}$$

Sub. (9a-c) into $\phi(\mathbf{x}) = -\frac{1}{4\pi} \oint_{S} \phi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}, \mathbf{x}') da'$ [(8)], we get

$$\phi(\mathbf{x}) = \sum_{l,m} \left[\int V(\theta', \varphi') Y_{lm}^*(\theta', \varphi') d\Omega' \right] \left(\frac{r}{b} \right)^l Y_{lm}(\theta, \varphi)$$
(3.128)

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Example 2: Potential due to a uniformly charged ring of radius a and total charge Q located on the x-y plane inside a grounded conducting sphere of radius b

In spherical coordinates, the x-y plane is the $\theta = \pi/2$ (or $\cos \theta = 0$) plane. The charge exists only at r = a on the $\cos \theta = 0$ plane. Hence, $\rho(\mathbf{x})$ can be written as

$$\rho(\mathbf{x}) = \frac{Q}{2\pi a^2} \delta(r - a) \delta(\cos \theta)$$

The potental is given by

$$\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \rho(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') d^3 x' - \frac{1}{4\pi} \oint_{\mathcal{S}} \underbrace{\phi(\mathbf{x}')}_{=0} \frac{\partial}{\partial n'} G(\mathbf{x}, \mathbf{x}') da' \quad [(1.44)]$$

No inner conductor in this problem \Rightarrow (3.125) reduces to

$$G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} Y_{lm}^{*}(\theta', \varphi') Y_{lm}(\theta, \varphi) r_{<}^{l} \left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}} \right)$$
(10)

Symmetry in $\varphi \implies m = 0$. Hence,

$$Y_{lm}(\theta,\varphi) \rightarrow Y_{l0}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos\theta)$$

$$\Rightarrow G(\mathbf{x}, \mathbf{x}') = \sum_{l=0}^{\infty} P_l(\cos \theta') P_l(\cos \theta) r_{<}^l \left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^{l}}{b^{2l+1}} \right)$$

Sub. (11) and
$$\rho(\mathbf{x}) = \frac{Q}{2\pi a^2} \delta(r - a) \delta(\cos \theta)$$

into $\phi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \int d^3x' \rho(\mathbf{x}') G(\mathbf{x}, \mathbf{x}')$, we obtain

$$\phi(\mathbf{x}) = \frac{Q}{8\pi^2 \varepsilon_0 a^2} \int r'^2 dr' d\cos\theta' d\phi' \begin{bmatrix} \delta(r'-a)\delta(\cos\theta') \\ \sum\limits_{l=0}^{\infty} P_l(\cos\theta') P_l(\cos\theta) r_<^l (\frac{1}{r_>^{l+1}} - \frac{r_>^l}{b^{2l+1}}) \end{bmatrix}$$

$$Q = \sum\limits_{l=0}^{\infty} P_l(0) P_l(\cos\theta) r_l^l (\frac{1}{l} - \frac{r_>^l}{b^{2l+1}})$$
(2.120)

$$= \frac{Q}{4\pi\varepsilon_0} \sum_{l=0}^{\infty} P_l(0) P_l(\cos\theta) r_{<}^l \left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^l}{b^{2l+1}} \right)$$
(3.130)

where $r_{<}(r_{>})$ is the smaller (larger) of r and a.

49

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Example 3: Potential due to a uniformly charged line of length 2b and total charge Q located on the z-axis inside a grounded conducting sphere of radius b.

In spherical coordinates, the charge exists only at $\theta = 0$ and π (or $\cos \theta = \pm 1$). Hence,

$$\rho(\mathbf{x}) = \frac{Q}{2b} \frac{1}{2\pi r^2} \left[\delta(\cos\theta - 1) + \delta(\cos\theta + 1) \right]$$

Question: Is this a unformly charged line? (Yes. See Prob. 1 below) The potential is given by

$$\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \rho(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') d^3 x' - \frac{1}{4\pi} \oint_{\mathcal{S}} \underbrace{\phi(\mathbf{x}')}_{=0} \frac{\partial}{\partial n'} G(\mathbf{x}, \mathbf{x}') da' \quad [(1.44)]$$

No inner conductor + symmetry in $\varphi \Rightarrow G(\mathbf{x}, \mathbf{x}')$ is the same as (11):

$$G(\mathbf{x}, \mathbf{x}') = \sum_{l=0}^{\infty} P_l(\cos \theta') P_l(\cos \theta) r_{<}^l \left(\frac{1}{r_{>}^{l+1}} - \frac{r_{>}^l}{b^{2l+1}} \right)$$
(11)

Sub. (3.132) and (11) into
$$\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int_{V} \rho(\mathbf{x}') G(\mathbf{x}, \mathbf{x}') d^3 x'$$
,

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

we obtain $\phi(\mathbf{x}) = \frac{Q}{8\pi\varepsilon_0 b} \int r'^2 dr' d\cos\theta' d\phi' \left| \frac{\frac{\partial(\cos\theta - 1) + \partial(\cos\theta + 1)}{2\pi r'^2}}{\sum_{l=0}^{\infty} P_l(\cos\theta') P_l(\cos\theta) r_<^l(\frac{1}{r^{l+1}} - \frac{r_>^l}{b^{2l+1}})} \right|$

$$= \frac{Q}{8\pi\varepsilon_0 b} \sum_{l=0}^{\infty} \left[P_l(1) + P_l(-1) \right] P_l(\cos\theta) \underbrace{\int_0^b r_<^l \left(\frac{1}{r_>^{l+1}} - \frac{r_>^l}{b^{2l+1}} \right) dr'}_{7}$$
(3.133)

By L'Hospital's rule, the l = 0 term is given by $\ln(\frac{b}{r})$ (see p. 124).

$$P_l(-1) = (-1)^l$$
 and $P_l(1) = 1 \implies \text{Odd } l \text{ terms cancel.} \implies \text{Let } l = 2j.$

$$\Rightarrow \phi(\mathbf{x}) = \frac{Q}{4\pi\varepsilon_0 b} \left\{ \ln(\frac{b}{r}) + \sum_{j=1}^{\infty} \frac{4j+1}{2j(2j+1)} \left[1 - \left(\frac{r}{b}\right)^{2j} \right] P_{2j}(\cos\theta) \right\}$$
(3.136)

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Problem 1: Show the charge density in (3.132):

$$\rho(\mathbf{x}) = \frac{Q}{2b} \frac{1}{2\pi r^2} \left[\delta(\cos \theta - 1) + \delta(\cos \theta + 1) \right]$$
where $\delta(\mathbf{x}) = \frac{Q}{2b} \frac{1}{2\pi r^2} \left[\delta(\cos \theta - 1) + \delta(\cos \theta + 1) \right]$
where $\delta(\mathbf{x}) = \frac{Q}{2b} \frac{1}{2\pi r^2} \left[\delta(\cos \theta - 1) + \delta(\cos \theta + 1) \right]$

represents a unifomly charged line along z.

Solution: The total charge is

Solution: The total charge is
$$\int \rho(\mathbf{x})d^3x = \frac{Q}{2b} \int_0^b r^2 dr \int_{-1}^1 d\cos\theta \int_0^{2\pi} d\phi \frac{\delta(\cos\theta - 1) + \delta(\cos\theta + 1)}{2\pi r^2}$$

$$= \frac{Q}{2b} \left[\int_0^b dr \int_{-1}^1 d\cos\theta \underbrace{\delta(\cos\theta - 1)}_{\theta = 0, +z - \text{axis}} + \int_0^b dr \int_{-1}^1 d\cos\theta \underbrace{\delta(\cos\theta + 1)}_{\theta = \pi, -z - \text{axis}} \right]$$

$$= \frac{Q}{2b} \int_{-b}^{b} dz \Rightarrow \text{Each } dz \text{ contributes equally} \Rightarrow \text{uniform distribution}$$

Question: We have let $\int_{-1}^{1} d\cos\theta \ \delta(\cos\theta \pm 1) = 1$. But $\cos\theta$ does not cross -1 or 1. Why is the integral equal to 1?

Answer: This issue can be resolved by a limiting procedure, i.e. letting

$$\rho(\mathbf{x}) = \frac{Q}{2b} \frac{1}{2\pi r^2} \cdot \lim_{\varepsilon \to 0} \left\{ \delta[\cos\theta - (1 - \varepsilon)] + \delta[\cos\theta + (1 - \varepsilon)] \right\}$$

3.11 Expansion of Green Functions in Cylindrical Coordinates

Consider the Green equation in infinite space:

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$
, with $G(\mathbf{x}, \mathbf{x}') = 0$ as $|\mathbf{x}| \to \infty$

We just obtained the solution in spherical coordinates $[(3.125), a \rightarrow 0, b \rightarrow \infty]$. We now solve it in cylindrical coordinates in the same way, but in *infinite* space.

Write
$$\delta(\mathbf{x} - \mathbf{x}') = \frac{1}{\rho} \delta(\rho - \rho') \delta(\varphi - \varphi') \delta(z - z')$$

with
$$\begin{cases} \delta(\varphi - \varphi') = \frac{1}{2\pi} \sum_{m = -\infty}^{\infty} e^{im(\varphi - \varphi')} \begin{bmatrix} \text{A special case of } (2.35): \\ \sum_{n=1}^{\infty} U_n^*(\xi') U_n(\xi) = \delta(\xi - \xi') \end{bmatrix} \\ \delta(z - z') = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ik(z - z')} \\ = \frac{1}{\pi} \int_0^{\infty} dk \cos\left[k(z - z')\right] \begin{bmatrix} \text{An extension of } (2.35) \\ \text{to continuous index } k. \\ \text{Also, see } (6) \text{ of Ch. 2.} \end{bmatrix}$$

$$\Rightarrow \nabla^2 G(\mathbf{x}, \mathbf{x}') = -\frac{2}{\pi} \frac{\delta(\rho - \rho')}{\rho} \sum_{m = -\infty}^{\infty} \int_0^{\infty} dk e^{im(\varphi - \varphi')} \cos\left[k(z - z')\right]$$
(12)

3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

Since $e^{im\varphi}$ and e^{ikz} are complete sets, we may expand $G(\mathbf{x}, \mathbf{x}')$ in variables φ and z (*Note*: Eigenvalue k is continuous)

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{2\pi} \frac{1}{\pi} \sum_{m=-\infty}^{\infty} \int_0^{\infty} dk g_m(k, \rho, \rho') e^{im(\varphi - \varphi')} \cos[k(z - z')] \quad (3.140)$$

where the coefficient $g_m(k, \rho, \rho')$ depends on m, k, ρ and ρ' , but only ρ is treated as a variable. Sub. (3.140) into (12) gives

$$\frac{1}{2\pi^{2}} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dk \left(\frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right) \\
\cdot g_{m}(k, \rho, \rho') e^{im(\varphi - \varphi')} \cos[k(z - z')] \\
= -\frac{2}{\pi} \frac{\delta(\rho - \rho')}{\rho} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dk e^{im(\varphi - \varphi')} \cos[k(z - z')] \\
\text{On the LHS, } \frac{\partial^{2}}{\partial \varphi^{2}} \rightarrow -m^{2}, \frac{\partial^{2}}{\partial z^{2}} \rightarrow -k^{2}, \frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} \\
\Rightarrow \left[\frac{1}{\rho} \frac{d}{d\rho} \rho \frac{d}{d\rho} - \left(k^{2} + \frac{m^{2}}{\rho^{2}}\right)\right] g_{m}(k, \rho, \rho') = -\frac{4\pi}{\rho} \delta(\rho - \rho') \tag{3.141}$$

In regions
$$\rho < \rho' \& \rho > \rho' : \left[\frac{1}{\rho} \frac{d}{d\rho} \rho \frac{d}{d\rho} - \left(k^2 + \frac{m^2}{\rho^2} \right) \right] g_m(k, \rho, \rho') = 0$$

$$\Rightarrow g_m(k, \rho, \rho') = \begin{cases} AI_m(k\rho) + BK_m(k\rho), & \rho < \rho' \\ A'I_m(k\rho) + B'K_m(k\rho), & \rho > \rho' \end{cases} \begin{bmatrix} \text{See Jackson,} \\ (3.98) - (3.101) \end{bmatrix}$$

- (i) g_m is finite at $\rho = 0$. $\Rightarrow B = 0$
- (ii) g_m is finite as $\rho \to \infty$. $\Rightarrow A' = 0$
- (iii) g_m is continuous at $\rho = \rho'$.

$$\Rightarrow AI_m(k\rho') = B'K_m(k\rho')$$

$$\Rightarrow \frac{A}{B'} = \frac{K_m(k\rho')}{I_m(k\rho')} \Rightarrow \begin{cases} A = CK_m(k\rho') \\ B' = CI_m(k\rho') \end{cases} \chi \qquad \varphi \qquad \varphi$$

$$\Rightarrow g_m(k, \rho, \rho') = \begin{cases} CK_m(k\rho')I_m(k\rho), & \rho < \rho' \\ CI_m(k\rho')K_m(k\rho), & \rho > \rho' \end{cases}$$
$$= CI_m(k\rho_<)K_m(k\rho_>)$$

Modified Bessel functions I_m , K_m

55

3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

(iv) Rewrite
$$\left[\frac{1}{\rho}\frac{d}{d\rho}\rho\frac{d}{d\rho}-(k^2+\frac{m^2}{\rho^2})\right]g_m(k,\rho,\rho') = -\frac{4\pi}{\rho}\delta(\rho-\rho')$$
 (3.141)

Multiply (3.141) by ρ and integrate form $\rho' - \varepsilon$ to $\rho' + \varepsilon$ ($\varepsilon \to 0$).

$$\Rightarrow \frac{dg_m}{d\rho}\Big|_{\rho'+\varepsilon} - \frac{dg_m}{d\rho}\Big|_{\rho'-\varepsilon} = -\frac{4\pi}{\rho'} \quad [g_m = CI_m(k\rho_<)K_m(k\rho_>)] \quad (3.143)$$

$$\Rightarrow Ck \big[I_m(k\rho') K'_m(k\rho') - K_m(k\rho') I'_m(k\rho') \big] = -\frac{4\pi}{\rho'}$$

$$\Rightarrow Ck\big[I_m(k\rho')K_m'(k\rho') - K_m(k\rho')I_m'(k\rho')\big] = -\frac{4\pi}{\rho'}$$
Wronskian
$$\text{Gradshteyn & Ryzhik, Sec. 8.474}$$
Use W[I_m(x), K_m(x)] = I_m(x)K_m'(x) - I_m'(x)K_m(x) = -\frac{1}{x} (3.147)

$$\Rightarrow Ck(\frac{-1}{k\rho'}) = -\frac{4\pi}{\rho'} \Rightarrow C = 4\pi \Rightarrow g_m(k,\rho,\rho') = 4\pi I_m(k\rho_<) K_m(k\rho_>)$$

Sub. $g_m(k, \rho, \rho')$ into (3.140), we obtain the solution for $G(\mathbf{x}, \mathbf{x}')$:

$$\Rightarrow G(\mathbf{x}, \mathbf{x}') = \frac{2}{\pi} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dk e^{im(\varphi - \varphi')} \cos[k(z - z')] I_{m}(k\rho_{<}) K_{m}(k\rho_{>})$$

Since $G(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$, by the uniqueness theorem, we have

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{2}{\pi} \sum_{m = -\infty}^{\infty} \int_0^{\infty} dk e^{im(\varphi - \varphi')} \cos\left[k\left(z - z'\right)\right] I_m(k\rho_<) K_m(k\rho_>) \quad (3.148)$$

3.12 Eigenfunction Expansion for Green Functions

Eigenfunction Expansion of Green Function in 3 Dimensions:

We have obtained the Green function for the Poisson eq. by the method of eigenfunction expansion in 2 dim. [e.g. (3.118), in θ , φ]. Here, we develop a general technique to obtain the Green function by eigenfunction expansion in 3 dim. Consider the Green function for a general inhomogeneous D.E. with homogeneous b.c.'s:

$$\nabla^{2}G(\mathbf{x}, \mathbf{x}') + [f(\mathbf{x}) + \lambda]G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$
a given real function
a given constant
$$(3.156)$$

We shall solve (3.156) by expanding $G(\mathbf{x}, \mathbf{x}')$ and $\delta(\mathbf{x} - \mathbf{x}')$ in eigenfunctions of a related problem formulated as follows.

an eigenvalue to be determined by the b.c., not the same
$$\lambda$$
 as in (3.156)
$$\nabla^2 \psi(\mathbf{x}) + [f(\mathbf{x}) + \lambda] \psi(\mathbf{x}) = 0 \tag{3.153}$$

with the same boundary surface and homogeneous b.c. as for (3.156).

3.12 Eigenfunction Expansion for Green Functions (continued)

Rewrite
$$\nabla^2 \psi(\mathbf{x}) + [f(\mathbf{x}) + \lambda] \psi(\mathbf{x}) = 0$$
 [(3.153)]

Assume b.c.'c make $[\nabla^2 + f(\mathbf{x})]$ a *Hermitian* operator [see (A.11), (A.12)], and $\psi_n(\mathbf{x})$ are the 3-D (normalized) eigenfunctions, we have

$$\int_{\mathcal{V}} \psi_m^*(\mathbf{x}) \psi_n(\mathbf{x}) d^3 x = \delta_{mn} \quad [\text{see (A.13)}]$$
 (3.155)

and ψ_n form a *complete* set [see (A.17)] with *real* eigenvalues λ_n .

Write
$$G(\mathbf{x}, \mathbf{x}') = \sum_{n} a_n(\mathbf{x}') \psi_n(\mathbf{x})$$
 (3.157)

Sub. (3.157) and
$$\delta(\mathbf{x} - \mathbf{x}') = \sum \psi_n^*(\mathbf{x}')\psi_n(\mathbf{x})$$
 [see (2.35)] into
$$\nabla^2 G(\mathbf{x}, \mathbf{x}') + [f(\mathbf{x}) + \lambda]G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}') [(3.156)], \text{ we obtain}$$

$$\sum a_n(\mathbf{x}') \{\nabla^2 \psi_n(\mathbf{x}) + [f(\mathbf{x}) + \lambda]\psi_n(\mathbf{x})\} = -4\pi\sum \psi_n^*(\mathbf{x}')\psi_n(\mathbf{x})$$

$$\psi_n \text{ satisfies } \nabla^2 \psi_n(\mathbf{x}) + [f(\mathbf{x}) + \lambda_n]\psi_n(\mathbf{x}) = 0, \qquad \text{Question : Have we made use of}$$

$$\Rightarrow \sum_n a_n(\mathbf{x}')(\lambda - \lambda_n)\psi_n(\mathbf{x}) = -4\pi\sum_n \psi_n^*(\mathbf{x}')\psi_n(\mathbf{x}) \qquad \int \delta(\mathbf{x} - \mathbf{x}')d^3x = 1?$$

$$\Rightarrow a_n(\mathbf{x}') = 4\pi\frac{\psi_n^*(\mathbf{x}')}{\lambda_n - \lambda} \Rightarrow G(\mathbf{x}, \mathbf{x}') = 4\pi\sum_n \frac{\psi_n^*(\mathbf{x}')\psi_n(\mathbf{x})}{\lambda_n - \lambda} \qquad (3.160)$$

$$\Rightarrow a_n(\mathbf{x}') = 4\pi \frac{\psi_n^*(\mathbf{x}')}{\lambda_n - \lambda} \Rightarrow G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{n} \frac{\psi_n^*(\mathbf{x}')\psi_n(\mathbf{x})}{\lambda_n - \lambda}$$
(3.160)

3.12 Eigenfunction Expansion for Green Functions (continued)

We now specialize (3.156) to the Green function for the Poisson

eq., i.e.
$$\nabla^2 G(\mathbf{x}, \mathbf{x}') + [\underbrace{f(\mathbf{x})}_0 + \underbrace{\lambda}_0] G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$

Example 1: Green function for a rectangular box $\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$
with $G(\mathbf{x}, \mathbf{x}') = 0$ at
$$\begin{cases} x = 0 \text{ and } a \\ y = 0 \text{ and } b \\ z = 0 \text{ and } c \end{cases}$$
Consider the corresponding eigenvalue problem [(3, 153) with

Consider the corresponding eigenvalue problem [(3.153) with $f(\mathbf{x})$ = 0 and $\lambda \to k^2$]: $\nabla^2 \psi(\mathbf{x}) + k^2 \psi(\mathbf{x}) = 0$ with the same b.c.'s

Let
$$\psi(\mathbf{x}) = X(x)Y(y)Z(z) \Rightarrow \underbrace{\frac{1}{X} \frac{d^2 X}{dx^2}}_{-k_l^2} + \underbrace{\frac{1}{Y} \frac{d^2 Y}{dy^2}}_{-k_m^2} + \underbrace{\frac{1}{Z} \frac{d^2 Z}{dz^2}}_{-k_n^2} + k^2 = 0$$

$$\Rightarrow \begin{cases} X(x) = Ae^{ik_l x} + Be^{-ik_l x} & \text{with } k^2 = k_l^2 + k_m^2 + k_n^2 \\ Y(y) = Ce^{ik_m y} + De^{-ik_m y} & \text{with } k^2 = k_l^2 + k_m^2 + k_n^2 \\ Z(z) = Ee^{ik_n z} + Fe^{-ik_n z} \end{cases}$$

59

3.12 Eigenfunction Expansion for Green Functions (continued)

b.c.
$$\begin{cases} X(x) = 0 \text{ at } x = 0 & \& a \\ Y(y) = 0 \text{ at } y = 0 & \& b \Rightarrow \end{cases} \begin{cases} k_l = \frac{l\pi}{a}, \ l = 1, 2, \cdots \\ k_m = \frac{m\pi}{b}, \ m = 1, 2, \cdots \end{cases} \begin{cases} X = \sin\frac{l\pi x}{a} \\ Y = \sin\frac{m\pi y}{b} \end{cases}$$

$$Z(z) = 0 \text{ at } z = 0 & \& c \end{cases} \begin{cases} k_l = \frac{l\pi}{a}, \ l = 1, 2, \cdots \\ k_m = \frac{m\pi}{b}, \ m = 1, 2, \cdots \end{cases} \begin{cases} X = \sin\frac{l\pi x}{a} \\ Y = \sin\frac{m\pi y}{b} \end{cases}$$

$$Z = \sin\frac{n\pi z}{c} \end{cases}$$

$$\Rightarrow k^2 = k_{lmn}^2 = \pi^2 \left(\frac{l^2}{a^2} + \frac{m^2}{b^2} + \frac{n^2}{c^2} \right)$$

$$\Rightarrow \psi(\mathbf{x}) = \sqrt{\frac{8}{abc}} \sin\frac{l\pi x}{a} \sin\frac{m\pi y}{b} \sin\frac{n\pi z}{c} \end{cases}$$

$$Sub. \ \psi(\mathbf{x}) \text{ into } G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{j} \frac{\psi_{j}^{*}(\mathbf{x}')\psi_{j}(\mathbf{x})}{\lambda_{j} - \lambda}$$

$$Z = \sin\frac{n\pi z}{b} \end{cases}$$

$$Z = \sin\frac{n\pi z}{c} \end{cases}$$

$$Z = \sin\frac{n\pi z}{c}$$

$$Z = \sin\frac{n\pi z}$$

3.12 Eigenfunction Expansion for Green Functions (continued)

Example 2: Green function for infinite space

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}') \text{ with } G(\mathbf{x}, \mathbf{x}') = 0 \text{ as } |\mathbf{x}| \to \infty$$

Instead of treating it as an eigenvalue problem (as in Jackson), we use the Fourier transform. Let the Fourier transform of $G(\mathbf{x}, \mathbf{x}')$ be

$$G(\mathbf{k}, \mathbf{x}') = \frac{1}{(2\pi)^{3/2}} \int G(\mathbf{x}, \mathbf{x}') e^{-i\mathbf{k}\cdot\mathbf{x}} d^3x \begin{bmatrix} 3-\text{D extension of } (2.45) \\ \mathbf{x}' \text{ is treated as a } const. \end{bmatrix}$$

Then, the Fourier transform of $\nabla G(\mathbf{x}, \mathbf{x}')$ is

$$\frac{1}{(2\pi)^{3/2}} \int \nabla G(\mathbf{x}, \mathbf{x}') e^{-i\mathbf{k}\cdot\mathbf{x}} d^3 x$$

$$= \frac{1}{(2\pi)^{3/2}} \int (\frac{\partial}{\partial x} \mathbf{e}_x + \frac{\partial}{\partial y} \mathbf{e}_y + \frac{\partial}{\partial z} \mathbf{e}_z) G(\mathbf{x}, \mathbf{x}') e^{-i\mathbf{k}\cdot\mathbf{x}} d^3 x$$
[integrate by parts and use $G(\pm \infty, \mathbf{x}') = 0$]
$$= \frac{1}{(2\pi)^{3/2}} \int i\mathbf{k}G(\mathbf{x}, \mathbf{x}') e^{-i\mathbf{k}\cdot\mathbf{x}} d^3 x = i\mathbf{k}G(\mathbf{k}, \mathbf{x}') \tag{14a}$$

Similarly, the Fourier transform of $\nabla^2 G(\mathbf{x}, \mathbf{x}')$ is

$$\frac{1}{(2\pi)^{3/2}} \int \nabla^2 G(\mathbf{x}, \mathbf{x}') e^{-i\mathbf{k}\cdot\mathbf{x}} d^3 x = -k^2 G(\mathbf{k}, \mathbf{x}')$$
(14b)

3.12 Eigenfunction Expansion for Green Functions (continued)

The Fourier transform of $\delta(\mathbf{x} - \mathbf{x}')$ is

$$\frac{1}{(2\pi)^{3/2}} \int \delta(\mathbf{x} - \mathbf{x}') e^{-i\mathbf{k}\cdot\mathbf{x}} d^3x = \frac{1}{(2\pi)^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{x}'}$$

Thus, Fourier transforming both sides of $\nabla^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$ gives $-k^2 G(\mathbf{k}, \mathbf{x}') = -4\pi \frac{1}{(2\pi)^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{x}'}$

$$\Rightarrow G(\mathbf{k}, \mathbf{x}') = \frac{2}{(2\pi)^{1/2}} \frac{e^{-i\mathbf{k}\cdot\mathbf{x}'}}{k^2}$$
 [solution in **k**-space]

A Fourier inverse transform [(2.44)] gives the solution in \mathbf{x} -space:

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{(2\pi)^{3/2}} \int G(\mathbf{k}, \mathbf{x}') e^{i\mathbf{k}\cdot\mathbf{x}} d^3k = \frac{1}{2\pi^2} \int \frac{e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}}{k^2} d^3k$$

Question: Does $G(\mathbf{x}, \mathbf{x}')$ contain any more or less information than $G(\mathbf{k}, \mathbf{x}')$?

Since $G(\mathbf{x}, \mathbf{x}') = 1/|\mathbf{x} - \mathbf{x}'|$, by the uniquess theorem, we get another mathematical identity for $1/|\mathbf{x} - \mathbf{x}'|$ in infinite space [in addition to

(3.70) & (3.148)]:
$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{2\pi^2} \int d^3k \, \frac{e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{x}')}}{k^2}$$
(3.164)

Solution of Inhomogeneous D. E. by the Green Function Method:

To show the usefulness of the 3-D Green function just obtained, we consider an inhomogeneous linear D.E. [see (A.2) & (A.6)]:

$$\nabla^2 u(\mathbf{x}) + [f(\mathbf{x}) + \lambda]u(\mathbf{x}) = -4\pi S(\mathbf{x})$$
 distributed source (15)

wth homogeneous b.c.'s We have shown that the solution for

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') + [f(\mathbf{x}) + \lambda] G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$$
(3.156)

is
$$G(\mathbf{x}, \mathbf{x}') = 4\pi \sum_{n} \frac{\psi_n^*(\mathbf{x}')\psi_n(\mathbf{x})}{\lambda_n - \lambda},$$
 (3.160)

where $\psi_n(\mathbf{x})$ is the eigenfunction of $\nabla^2 \psi_n(\mathbf{x}) + [f(\mathbf{x}) + \lambda_n] \psi_n(\mathbf{x}) = 0$.

By the principle of linear superposition [cf. (1.3) & (1.5), Ch. 1],

we get the solution:
$$u(\mathbf{x}) = \int_{\mathcal{V}} G(\mathbf{x}, \mathbf{x}') S(\mathbf{x}') d^3 x'$$
 (16)

We may verify (16) to be the solution if we operate both sides of (16) with $\nabla^2 + f(\mathbf{x}) + \lambda$ and apply (3.156) to the RHS.

Note: If $\lambda = \lambda_n$, there is no solution unless $\int_V \psi_n^*(\mathbf{x}) S(\mathbf{x}) d^3 x = 0$.

63

Appendix A. Eigenvalue Problem

(Ref.: Mathews and Walker, "Math. Meth. of Phys.," 2nd Ed., Ch. 9) **Terminology and Definitions:**

(i) Linear differential operator: L is a linear differential operator if

$$L(au_1 + bu_2) = aLu_1 + bLu_2$$
 (A.1)

(u_1 and u_2 : arbitrary functions; a and b: arbitrary constants.)

Examples of linear L: $\frac{d^n}{dx^n}$, $\frac{d}{dx}p(x)\frac{d}{dx}-q(x)$

(ii) Linear D.E.: The D.E. is linear if it can be put in the form:

$$\sum_{n=0}^{N} f_n(x) \frac{d^n u}{dx^n} = g(x) \quad [f_n(x), g(x): \text{ given functions}], \tag{A.2}$$

in which the dependent variable u in all terms is of the 1st or 0 degree (only $u^0 \& u$; no u^2 , u^3 , etc). 3-D example: $\nabla^2 \phi = -\rho/\varepsilon_0$

(iii) Homogeneous linear D.E.: The above equation with g(x) = 0, i.e.

$$\sum_{n=0}^{N} f_n(x) \frac{d^n u}{dx^n} = 0 \quad \text{[All terms 1st degree in } u \text{] 3-D example : } \nabla^2 \phi = 0$$

$$\Rightarrow$$
 If each u_n $(n = 1, 2, \dots)$ satisfies the D. E., so does $\sum a_n u_n$. $(A.3)_{64}$

(iv) Homogeneous b.c.:

If u satisfies the b.c., so does au (examples on next page). (A.4)

(v) Homogeneous linear boundary-value problem:

Here, the word "problem" refers to a D.E. with a "region of interest" and "b.c.'s".

A homogeneous linear boundary-value problem is a problem governed by a homog. and linear D.E. with homog. b.c.'s.

1. If
$$u$$
 is a solution (i.e. it satisfies the "homog. linear D.E." and "homog. b.c's"), so is au .

2. If there are multiple solutions u $(n-1, 2, ...)$ any linear

 \Rightarrow { 2. If there are multiple solutions u_n ($n = 1, 2, \dots$), any linear (A.5) combination of u_n (i.e. $\sum a_n u_n$) is also a solution.

Note: A problem can be inhomogeneous because either the b.c. or the D.E. is inhomogeneous (M&W, p. 218 and p. 268). (A.6) *Example*: The prob. in Sec. 2.9 is inhomogeneous due to the b.c. 65

Appendix A. Eigenvalue Problem (continued)

Formulation of an Eigenvalue Problem:

real function with $h(x) \ge 0$

An eigenvalue problem involving the differential operator* consists of [see M&W, Eq. (9.9)]

a linear homog. D.E. of the form + homog. b.c.'s of the form (A.7) $Lu(x) = \lambda h(x)u(x), \ a \le x \le b$ u(a) = 0 & u(b) = 0or u'(a) = 0 & u'(b) = 0L: linear differential operator λ : eigenvlue or u(a) = u(b) & u'(a) = u'(b)*u* : eigenfunction or u(a) & u(b) are finite (i.e. h(x): density function, a given any finite number, not a single *fixed* number)

*There are also eigenvalue problems which involve the matrix or integral operator (see M&W, pp. 261-262).

Definition of Hermitian Operator:

L is a Hermitian operator if

$$\int_{a}^{b} u_{1}^{*}(x) L u_{2}(x) dx = \left[\int_{a}^{b} u_{2}^{*}(x) L u_{1}(x) dx \right]^{*}, \tag{A.8}$$

where u_1 and u_2 are arbitrary functions obeying the homog. b.c.'s.

Example 1:
$$L = \frac{d^2}{dx^2}$$
 (A.9)

is Hermitian if
$$u_1^* \frac{du_2}{dx} \Big|_a^b = 0 \& u_2 \frac{du_1^*}{dx} \Big|_a^b = 0$$
 (A.10)

e.g.
$$u_{1,2}(a) = 0$$
 or $\frac{du_{1,2}}{dx}\Big|_{a} = 0$ plus $u_{1,2}(b) = 0$ or $\frac{du_{1,2}}{dx}\Big|_{b} = 0$.

Proof:
$$\int_{a}^{b} u_{1}^{*}(x) \frac{d^{2}}{dx^{2}} u_{2}(x) dx = u_{1}^{*} \frac{du_{2}}{dx} \Big|_{a}^{b} - \int_{a}^{b} \frac{du_{1}^{*}}{dx} \frac{du_{2}}{dx} dx$$

integration by parts integration by parts
$$= -u_2 \frac{du_1^*}{dx} + \int_a^b u_2 \frac{d^2}{dx^2} u_1^* dx = \left[\int_a^b u_2^* \frac{d^2}{dx^2} u_1 dx \right]^* \Rightarrow \text{Satisfy (A.8)}$$

Appendix A. Eigenvalue Problem (continued)

Example 2:
$$L = \frac{d}{dx} p(x) \frac{d}{dx} - q(x)$$
 [Sturm-Liouville differential operator] (A.11)

is Hermitian if the b.c.'s on u(x) & u'(x) or boundary values of p(x)

result in
$$u_1^* p \frac{du_2}{dx} \Big|_a^b = 0$$
 & $u_2 p \frac{du_1^*}{dx} \Big|_a^b = 0$ (A.12)

Proof:
$$\int_{a}^{b} u_{1}^{*} L u_{2} dx = \int_{a}^{b} u_{1}^{*} \frac{d}{dx} (p \frac{d}{dx} u_{2}) dx - \int_{a}^{b} q u_{1}^{*} u_{2} dx$$

integration by parts
$$= u_1^* p \frac{d}{dx} u_2 \Big|_a^b - \int_a^b \frac{du_2}{dx} p \frac{du_1^*}{dx} dx - \int_a^b q u_1^* u_2 dx$$
integration by parts
$$= -u_2 p \frac{d}{dx} u_1^* \Big|_a^b + \int_a^b u_2 \frac{d}{dx} (p \frac{d}{dx} u_1^*) dx - \int_a^b q u_1^* u_2 dx$$

$$= \left[\int_a^b u_2^* L u_1 dx \right]^* \Rightarrow \text{Satisfy (A.9)}$$

Note: (A.11) is a differential operator commonly found in physics.

Properties of Eigenvalue Problem with Hermitian Operator:

1. L is Hermitian $\Rightarrow \lambda_n$'s are real and u_n 's are orthogonal (A.13)

Proof: Let u_i , u_j be eigenfunctions belonging to eigenvalues

$$\lambda_i$$
, λ_j , respectively, i.e.
$$\begin{cases} Lu_i = \lambda_i hu_i \\ Lu_j = \lambda_j hu_j \end{cases}$$

Then, $Lu_i = \lambda_i h u_i \Rightarrow \int_a^b u_i^* Lu_i dx = \lambda_i \int_a^b u_i^* u_i h dx$

Use the Hermitian property of L

Use the Hermitian property of
$$L$$
 real
$$LHS = \int_{a}^{b} u_{j}^{*} L u_{i} dx \stackrel{\downarrow}{=} \left[\int_{a}^{b} u_{i}^{*} L u_{j} dx \right]^{*} = \left[\lambda_{j} \int_{a}^{b} u_{i}^{*} u_{j} h dx \right]^{*} = \lambda_{j}^{*} \int_{a}^{b} u_{i} u_{j}^{*} h dx$$

$$\Rightarrow (\lambda_{i} - \lambda_{j}^{*}) \int_{a}^{b} u_{i} u_{j}^{*} h dx = 0 \quad [h \ge 0]$$
(A.14)

$$\Rightarrow \begin{cases} i = j \Rightarrow \lambda_i - \lambda_i^* = 0 & \& \lambda_j - \lambda_j^* = 0 \Rightarrow \lambda_i & \& \lambda_j \text{ are real.} \\ i \neq j \Rightarrow u_i & \& u_j \text{ are orthogonal in the sense } \int_a^b u_i u_j^* h dx = 0 \end{cases}$$
 (A.15)

Note the presence of the density function h(x)

 \Rightarrow With (A.13-15), no need to prove (3.19) on p.98 & (3.94) on p.115.

Appendix A. Eigenvalue Problem (continued)

2. The eigenvalue problem is a *linear* and *homog*. boundary-value problem. \Rightarrow If u_n 's are solutions, $\sum a_n u_n$ is also a solution. (A.16)

3. If
$$L$$
 is Hermitian, u_n form a complete set. (A.17)

The following quotes, though not proofs, make this very clear.

Jackson, p.68: "All orthonormal sets of functions normally occurring in mathematical physics have been proved to be complete."

M&W, p.265: "It is possible to expand any function, obeying the appropriate conditions, in a series of eigenfunctions. That is, the eigenfunctions of a Hermitian operator form a complete set under very general conditions. We shall not prove this property here but it is in fact true for all the commonly encountered differential eqs. in physics."

See M&W p.173 for the meaning of "appropriate conditions", which principally apply to functions in mathematics. In physics, we may simply say that a complete set of eigenfunctions can represent any function. They are thus powerful building blocks of physical quantities.

Appendix A. Eigenvalue Problem (continued)

Examples: Here we examine some previous problems in the context of an eigenvalue problem.

of an eigenvalue problem.

Example 1:
$$\frac{d^2X}{dx^2} = -\alpha^2X$$
, b.c.'s: $X(0) = X(a) = 0$

$$\Rightarrow X(x) = Ae^{i\alpha x} + Be^{-i\alpha x}$$
b.c.'s
$$\begin{cases} X(0) = 0 \Rightarrow B = -A \Rightarrow X(x) = A(e^{i\alpha x} - e^{-i\alpha x}) = A'\sin\alpha x \\ X(a) = 0 \Rightarrow \alpha = \alpha_n = \frac{\pi n}{a}, \ n = 1, 2, \dots \ [\alpha_n: eigenvalues] \end{cases}$$

$$\Rightarrow \sin\alpha_n x \ (n = 1, 2, \dots) \text{ form a set of eigenfunctions.}$$

b.c.'s
$$\begin{cases} X(0) = 0 \Rightarrow B = -A \Rightarrow X(x) = A(e^{i\alpha x} - e^{-i\alpha x}) = A' \sin \alpha x \\ X(a) = 0 \Rightarrow \alpha = \alpha_n = \frac{\pi n}{a}, \ n = 1, 2, \dots \quad [\alpha_n: eigenvalues] \end{cases}$$

 $\Rightarrow \sin \alpha_n x \ (n = 1, 2, ...)$ form a set of eigenfunctions.

Note the following general properties of an eigenvalue problem:

- a. The D.E. & b.c.'s are both homogeneous. ⇒ Each eigenfunction $(\sin \alpha_n x)$ multiplied by any constant A_n is still a solution.
- b. Eigenvalues $(\alpha_n = n\pi/a)$ are determined by the b.c.'s.
- c. d^2/dx^2 is Hermitian \Rightarrow All eigenvalues α_n are real.
- d. d^2/dx^2 is Hermitian \Rightarrow The set of $\sin \alpha_n x$ are orthogonal.
- e. d^2/dx^2 is Hermitian \Rightarrow The set of $\sin \alpha_n x$ are complete, i.e. any function f(x) can be expanded as as $f(x) = \sum_{n=1}^{\infty} A_n \sin \alpha_n x$

71

72

Appendix A. Eigenvalue Problem (continued)

Example 2: Eigenvalue problem involving the Legendre equation (Jackson Sec. 3.2 and 3.4, M&W Sec. 7.1)

$$\frac{d}{dx}[(1-x^2)\frac{du}{dx}] + v(v+1)u = 0 \ [(3.10)], \ -1 \le x \le 1, \begin{cases} u(-1) = \text{finite} \\ u(1) = \text{finite} \end{cases} (A.18)$$

This is an eigenvalue problem of the form:

$$\underbrace{\left[\frac{d}{dx}p(x)\frac{d}{dx}-q(x)\right]}_{L}u(x) = \lambda h(x)u(x)$$
Whether *L* is Hermitian depends on the form of *L* and the b.c.'s.

Ouestion: 1. Is L Hermitian?

For L to be Hermitian, we need $u_i^*(x)p(x)\frac{du_j(x)}{dx}\Big|_{x=0}^1 = 0$ [(A.12)].

(A.12) is satisfied here because $p = 1 - x^2 = 0$ at $x = \pm 1$ although $u_{i,j}(\pm 1) = \text{finite } (\neq 0).$

2. What is the eigenvalue? Strictly, $-\nu(\nu+1)$ is the eigenvalue. But we shall loosely call ν an eigenvalue (see M&W, p.262).

Rewrite

$$\frac{d}{dx}\left[(1-x^2)\frac{du}{dx}\right] + v\left(v+1\right)u = 0, -1 \le x \le 1, \begin{cases} u(-1) = \text{finite} \\ u(1) = \text{finite} \end{cases}$$
(A.18)

(A.18) has the solution (lecture notes, p. 1):

$$u(x) = AP_{V}(x) + BQ_{V}(x)$$

b.c.'s " $u(x = \pm 1)$ = finite" require B = 0 and $v = l = 0, 1, 2 \cdots$

Thus, the solution is $u(x) = P_l(x)$ with l = 0, 1, 2,...

Since L is Hermitian, the set u(x) are orthogonal in the sense:

$$\int_{a}^{b} u_{i}(x)u_{j}^{*}(x)h(x)dx = 0, \quad \text{if } i \neq j \text{ [(A.15)]}$$

So, with
$$h(x) = 1$$
, we have $\int_{-1}^{1} P_{l'}(x) P_{l}(x) dx = \frac{2}{2l+1} \delta_{l'l}$ (3.21)

Eigenfunctions of a Hermitian operator form a complete set.

 $\Rightarrow P_l(x)$ is complete in index ℓ , i.e. any function f(x) can be expanded

as
$$f(x) = \sum_{l=0}^{\infty} A_l P_l(x) \quad [-1 \le x \le 1]$$
 (A.19)
(3.23)

73

Appendix A. Eigenvalue Problem (continued)

Example 3: Eigenvalue problem involving the associated Legendre equation (Jackson Sec. 3.5, M&W Sec. 7.1)

$$\frac{d}{dx} \left[(1 - x^2) \frac{du}{dx} \right] + \left[v \left(v + 1 \right) - \frac{m^2}{1 - x^2} \right] u = 0 \left[(3.9) \right], -1 \le x \le 1, \begin{cases} u(-1) = \text{finite} \\ u(1) = \text{finite} \end{cases}$$

A question arises as to whether ν or m is the eigenvalue. This can be resolved by putting the equation in the eigenvalue problem format:

For the same reason as in Example 2,
$$L$$
 here is a Hermitian operator.

Thus, ν is the eigenvalue, which is to be determined from b.c.'s.

The associated Legendre eq. has the solution (lecture notes, p. 4):

$$u(x) = AP_{\nu}^{m}(x) + BQ_{\nu}^{m}(x)$$
. For $u(x = \pm 1) = \text{finite}$, we require $B = 0$,

$$v = l = 0, 1, 2 \dots, \text{ and } m = -l, -(l-1)\dots -1, 0, 1, \dots, (l-1), l. \text{ Thus,}$$

$$u(x) = P_l^m(x) \text{ with } l = |m|, |m|+1, |m|+2,...$$

Rewrite
$$u(x) = P_l^m(x)$$
 with $l = |m|, |m|+1, |m|+2,...$

Since the operator L is Hermitian, l is the eigenvalue, and $P_l^m(x)$ is the eigenfunction, $P_l^m(x)$ is orthogonal in index ℓ (not m). Thus, with the density function h(x) = 1, we have

$$\int_{-1}^{1} P_{l'}^{m}(x) P_{l}^{m}(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'}$$
(3.52)

Also, because of the Hermitian property of the operator L, $P_l^m(x)$ is complete in eigenvalue index ℓ , i.e. any function f(x) can be expanded as

$$f(x) = \sum_{l=|m|}^{\infty} C_l P_l^m(x)$$
 [see M&W, p.175.] (A.20)

75

Appendix A. Eigenvalue Problem (continued)

Example 4: Eigenvalue problem involving the Bessel equation (Jackson Secs. 3.7 and 3.8; M&W Sec. 7.2)

$$\frac{d^2u}{d\rho^2} + \frac{1}{\rho} \frac{du}{d\rho} + (k^2 - \frac{v^2}{\rho^2})u = 0 \text{ [(3.75)]}, \ 0 \le \rho \le a, \text{ b.c. } \begin{cases} u(0) = \text{finite} \\ u(a) = 0 \end{cases}$$

This equation can be written:
$$\frac{d}{d\rho}\rho \frac{du}{d\rho} + (k^2\rho - \frac{v^2}{\rho})u = 0$$
 (A.21)

Again, we have the question as to whether k or ν is the eigenvalue. Putting (A.21) in the format:

$$[\underbrace{\frac{d}{d\rho} p(\rho) \underbrace{\frac{d}{d\rho} - q(\rho)}_{\rho}] u(\rho) = \lambda h(\rho) u(\rho) = 0,}_{\rho}$$

$$[\underbrace{\frac{d}{d\rho} p(\rho) \underbrace{\frac{d}{d\rho} - q(\rho)}_{\rho}] u(\rho) = \lambda h(\rho) u(\rho) = 0,}_{-k^2, \text{ eigenvalue}}$$

we see that k is the eigenvalue.

As shown on. p. 13 of lecture notes, $\frac{d^2u}{d\rho^2} + \frac{1}{\rho}\frac{du}{d\rho} + (k^2 - \frac{v^2}{\rho^2})u = 0$ has the solution $u(\rho) = AJ_v(k\rho) + BN_v(k\rho)$.

Appendix A. Eigenvalue Problem (continued)

Rewrite
$$\begin{cases} \frac{d^2u}{d\rho^2} + \frac{1}{\rho} \frac{du}{d\rho} + (k^2 - \frac{v^2}{\rho^2})u = 0, & 0 \le \rho \le a, \\ u(\rho) = AJ_v(k\rho) + BN_v(k\rho) \end{cases}$$

$$u(0) = \text{finite} \Rightarrow B = 0.$$

$$u(a) = 0 \Rightarrow J_v(ka) = 0,$$

$$u(b) = \text{finite} \Rightarrow \frac{J_0(x)}{J_1(x)}$$

$$u(c) = \frac{J_0(x)}{J_1(x)}$$

$$u(0) = \text{finite} \Rightarrow B = 0.$$

$$u(a) = 0 \Rightarrow J_{\nu}(ka) = 0,$$

eigenvalues (and eigenfunctions):

$$k = k_{vn}, n = 1, 2, 3 \cdots,$$

where $k_{\nu n}a = x_{\nu n}$ and $x_{\nu n}$ is the *n*-th root of $J_{\nu}(x) = 0$ (see p. 114).

L is Hermitian. $\Rightarrow J_{\nu}(k_{\nu n}\rho)$ are orthogonal in index *n*:

$$\int_{0}^{a} J_{\nu}(k_{\nu n'}\rho) J_{\nu}(k_{\nu n}\rho) \rho d\rho = \frac{a^{2}}{2} [J_{\nu+1}(k_{\nu n}a)]^{2} \delta_{n'n}$$
 (A.22)

$$\int_{0}^{a} J_{\nu}(k_{\nu n'}\rho) J_{\nu}(k_{\nu n}\rho) \rho d\rho = \frac{a^{2}}{2} [J_{\nu+1}(\underline{k_{\nu n}a})]^{2} \delta_{n'n}$$
(A.22)
$$\underbrace{(3.95)}_{\text{density function, see (A.15)}}$$
and complete in eigenvalue index n : $f(\rho) = \sum_{n=1}^{\infty} C_{n} J_{\nu}(k_{\nu n}\rho)$ (A.23)
$$\underbrace{(3.95)}_{77}$$