

Artificial Vision

- Course 4 -

Chapter 4: Movement and Video Analysis

Dr. Benaliouche Houda

Faculté des nouvelles technologies

Houda.benaliouche@univ-constantine2.dz

Université Constantine 2 2024/2025.

Artificial Vision

- Course 4 -

Chapter 4: Movement and Video Analysis

Dr. Benaliouche Houda

Faculté des nouvelles technologies

Houda.benaliouche@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	/	Master 2	Sciences de Données et Intelligence Artificielle (SDIA)

Summary

Prerequisites

- Mathematical Notions
- Algorithmic Notions

Course Objective

A look into how machines analyze video and track movement

OUTLINE

- ✓ Definition of video analysis
- ✓ Key concept:
 - motion detection
 - object tracking
 - Motion estimation
- ✓ Techniques in movement and video analysis
 - Frame Differencing
 - Background Subtraction
 - Optical Flow
- ✓ Al approaches for movement analysis
- ✓ applications
- √ challenges
- ✓ conclusion

DEFINITION

Video analysis: Extracting actionable insights from video data using computational techniques.

Why movement analysis?

- Understand the dynamics of objects in a scene.
- Enable automation in systems like surveillance, sports analytics, and robotics.

Examples:

Motion detection in home security systems like Ring doorbells or Nest cameras. Sport analytics

robotocs

Key concept

Motion Detection:

- Recognizing areas of motion in video frames.
- Used in alarm systems or intruder detection.

Object Tracking: |

- Maintaining the identity of an object over time in a video.
- Example: player tracking, Tracking a car through traffic,.

Motion Estimation:

- Quantifying the displacement of objects.
- Example: Optical flow to compute pixel-wise motion.

6

Key concept

Key Differences Between Motion Detection and Motion Estimation

Feature	Motion Detection	Motion Estimation
Focus	Whether motion exists.	Quantifying motion
		(speed, direction).
Output	Binary mask or	Motion vectors or
	bounding boxes.	optical flow fields.
Techniques	Frame differencing,	Optical flow, block
	background	matching.
	subtraction.	
Complexity	Low computational	High computational
	cost.	cost.
Applications	Security, surveillance,	Video tracking,
	and alarms.	stabilization, and
		robotics.

Key concept

Comparison of Motion Detection, Motion Estimation, and Object Tracking

Feature	Motion Detection	Motion Estimation	Object Tracking
Focus	Whether motion	Quantifying motion	Maintaining identity
	exists.	(speed, direction).	of objects over time.
Output	Binary mask or	Motion vectors or	Trajectory of objects
	bounding boxes.	optical flow fields.	across frames.
Techniques	Frame differencing,	Optical flow, block	Kalman filter,
	background	matching.	DeepSORT, or
	subtraction.		tracking-by-detection
			methods.
Complexity	Low computational	High computational	Varies (moderate to
	cost.	cost.	high, depending on
			occlusions and
			environment).
Applications	Security, surveillance,	Video tracking,	Sports analytics,
	and alarms.	stabilization, and	traffic monitoring,
		robotics.	and video editing.

Université Constantine 2 © Dr houda Benaliouche

8

• Frame Differencing:

- Compare pixel intensity between consecutive frames to highlight moving regions.
- Example: Detecting motion in a static camera scene.

Background Subtraction:

- Maintain a model of the static background and subtract it from each frame.
- Application: Removing nonrelevant static areas in CCTV footage.

Optical Flow:

- Horn-Schunck or Lucas-Kanade algorithms to detect per-pixel motion.
- Used in analyzing flow direction in drone videos.

Frame Differencing:

Frame Differencing is a fundamental technique in computer vision used for motion detection. It involves comparing consecutive frames (images) in a video sequence to detect changes over time. These changes often correspond to moving objects or regions.

Frame Differencing:

How It Works:

Frame differencing

(example of a forward difference)

- For every pixel in the current frame, subtract the corresponding pixel value in the previous frame.
 - The resulting difference is a new image called a difference frame.
 - - Small differences (e.g., due to noise or slight illumination changes) are ignored by applying a threshold.
 - Pixels with differences above this threshold are marked as 'changed,' often represented as white in the difference frame, while unchanged pixels are black.

Result

 The white regions in the difference frame represent areas of movement

• Frame Differencing: How It Works:

Example:

Scenario:

Consider a security camera monitoring an empty room. A video sequence has the following:

- Frame 1: An empty room.
- Frame 2: A person walks into the room.

1. Original Frames:

- Frame 1: Pixels represent the static scene.
- Frame 2: Pixels representing the person are different from Frame 1.

2. Frame Difference:

- Subtract Frame 1 from Frame 2. The pixels corresponding to the person will appear as white (indicating motion), while the rest will be black.

3. Thresholding:

- Apply a threshold to ignore minor differences like lighting changes.

Frame Differencing:

Simplified Definition = spot the difference game!

Frame Differencing is like playing a 'spot the difference' game between two pictures taken one after the other. Imagine taking a photo of an empty room and then another when someone walks in. You compare the two photos, and wherever you see changes, that's where the person moved. It helps cameras notice movement!

SPOT THE DIFFERENCES!

Background Subtraction:

Background Subtraction is a widely used technique in computer vision to detect moving objects in video streams. It involves separating the foreground (moving objects) from the static background.

Background Subtraction: How It Works:

Background Subtraction::

Example:

Scenario:

Imagine a surveillance camera monitoring a parking lot. The background (empty parking lot) is static, while cars moving through the area are the foreground.

Steps:

- 1. Background Model: The camera learns the empty parking lot as the background.
- 2. New Frame: A car enters the frame.
- 3. Subtraction: The car's pixels differ from the background model.
- 4. Foreground Detection: The car is highlighted as a moving object.

16

Background Subtraction:: Simplified Definition = watching playground

Background Subtraction is like watching a playground and remembering how it looks when no one is there (the background). When kids come in and play, they are easy to spot because they don't match the empty playground. This method helps cameras figure out what's moving and what's not.

Optical Flow:

Optical Flow is a technique in computer vision that estimates the motion of objects, surfaces, or edges between consecutive frames in a video. It measures how the brightness of pixels changes over time, giving us an idea of how objects are moving in a scene.

Optical Flow:

How It Works:

Optical flow

• Optical Flow: Here is an illustration representing Optical Flow, showcasing the motion vectors between two consecutive frames

Al approaches for Movement Analysis

✓ Traditional Approaches:

- ✓ Features like Histogram of Oriented Gradients (HOG) combined with SVMs.
- ✓ Example: Tracking pedestrians using handcrafted features.

✓ Deep Learning Approaches:

- ✓ CNNs: Capture spatial features for object detection.
- ✓ RNNs/LSTMs: Process temporal sequences for activity recognition.
- ✓ Example: OpenPose for pose estimation in sports.

✓ Hybrid approaches:

- ✓ Combination of traditional and deep learning approaches
- learning-based methods have replaced older techniques due to higher accuracy and robustness.

Al approaches for Movement Analysis

Al Approaches for Movement Analysis

Below is a graphical representation of AI approaches used in movement analysis, highlighting their algorithms, techniques, advantages, and weaknesses.

Approaches Table Graphical Representation

Al Approach	Algorithms and	Advantages	Weaknesses
	Techniques		
Traditional	HOG + SVM, KNN,	Uses hand-crafted	Less robust to
Machine Learning	Decision Trees	features; relatively	environmental
		simple.	changes and noise.
Deep Learning	CNNs, RNNs,	Automated feature	Requires large
	LSTMs, YOLO,	extraction, high	datasets and high
	OpenPose	accuracy.	computational
			power.
Hybrid Approaches	Combination of	Balances simplicity	Complex to design
	traditional and	and accuracy.	and implement.
	deep learning		
	methods.		

Applications

•Sports Analytics: Track players for performance evaluation or strategy analysis.

 Example: Hawk-Eye in tennis for tracking ball movement.

•Surveillance Systems: Identify unusual patterns like loitering or theft.

• Example: Smart surveillance systems in airports.

•Autonomous Vehicles: Detect and track pedestrians, vehicles, and traffic signs.

Example: Tesla's autopilot system.

• Example: Using Kinect for gait analysis in stroke patients.

Challenges in Video Analysis

- •Occlusion: Objects getting obscured (e.g., a car passing behind a tree).
- •Complex Motion: Fast, erratic movements, e.g., in sports or drones.
- •Lighting Variations: Poor or changing lighting conditions.
- •Real-Time Requirements: Processing high-resolution videos quickly.

Example:

•Tracking players in a crowded soccer field under varying light conditions.

Visuals:

•Examples of occluded or blurred frames.

Tools and Frameworks

- **1.OpenCV:** Library for motion tracking, background subtraction, and object detection.
- **2.TensorFlow/PyTorch:** Building custom deep learning models for video analysis.
- **3.MediaPipe:** Pre-built solutions for pose estimation, hand tracking, etc.
- **4.NVIDIA DeepStream:** Optimized pipelines for real-time video analytics.

Case Studies

1.Traffic Monitoring System:

- 1. Goal: Identify speeding vehicles.
- 2. Technique: Combine motion tracking with speed calculation from video frames.

2.Pose Estimation in Fitness:

- 1. Goal: Detect incorrect postures during exercise.
- 2. Tools: OpenPose, TensorFlow.

Visuals:

•Screenshots of system outputs for traffic monitoring and pose estimation.

Conclusion

- •Movement and video analysis is central to many cuttingedge technologies.
- Challenges like occlusion and real-time processing require innovative solutions.
- •Future directions: Integration with edge computing and 3D video analysis.

References

- 1. Dana H. Ballard & Christopher M. Brown. Computer Vision Prentice Hall, Inc, 1982
- 2. Robert M. Haralick & Linda G. Shapiro. Computer and Robot Vision, Vol-I, Addison-Wesley Publishing Company, 1992
- 3. Robert M. Haralick & Linda G. Shapiro. Computer and Robot Vision, Vol-II, Addison-Wesley Publishing Company, Inc, 1993
- 4. Linda Shapiro & Azriel Rosen eld. Computer Vision and Image Processing, Academic Press, Inc, 1992
- 5. Berthold Klaus Paul Horn. Robot Vision, MIT Press McGraw-Hill Book Company, 1986
- 6. Robert J. Schalko. Digital Image Processing and Computer Vision, John Wiley & Sons Inc, 1989
- 7. George Stockman and Linda Shapiro. Three Dimensional Computer Vision. Prentice Hall 2000.
- 8. David Marr. Vision, W. H Freeman and Company, NY, 1982
- 9. Rafael C. Gonzalez and Paul Wintz. Digital Image Processing, Third edition, Addison Wesley, MA. (Now with Prentice Hall, eective 1999).
- 10. Ernest Hall. Computer Image Processing and Recognition, second edition, Academic press 1982.
- 11. Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, Vol. 1 & Vol. 2, Academic Press, 1982.
- 12. Robert J. Schalko. Digital Image Processing and Computer Vision: An introduction to theory and implementations, John Wiley & Sons, New York, 1989.
- 13. William K. Pratt. Digital Image Processing, John Wiley & Sons, 1993.