Chapitre 5

Ensembles et applications.

Sommaire.

1	Ensembles et opérations.
	1.1 Notations
	1.2 Inclusion
	1.3 Parties d'un ensemble et opérations
	1.4 Cardinal d'un ensemble fini
	1.5 Produit cartésien
	1.6 Ensemble des parties d'un ensemble
	1.7 Recouvrement disjoint, partition
2	Applications entre deux ensembles.
	2.1 Définitions
	2.2 Restriction, prolongement
	2.3 Composition
	2.4 Famille d'éléments d'un ensemble
3	Exercices.

Les propositions marquées de \star sont au programme de colles.

1 Ensembles et opérations.

1.1 Notations.

1.1 Notations.

Définition 1: Naïve.

- Un ensemble non vide E est une collection d'objets x appelés éléments.
- On dit d'un élément x de E qu'il **appartient** à E, ce qui se note $x \in E$. Si l'objet x n'est pas un élément de E, on note $x \notin E$.
- On pose qu'il existe un ensemble n'ayant pas d'éléments et que cet ensemble est unique. On l'appelle **ensemble vide** et on note \varnothing . Pour tout objet x, l'assertion " $x \in \varnothing$ " est fausse.
- Signe « = ». Si x et y sont deux éléments d'un ensemble E, on notera x=y si on veut exprimer que x et y sont un seul et même élement de E.

Exemple 2: Ensembles de nombres.

- 1. \mathbb{N} l'ensemble des entiers naturels : $\mathbb{N} = \{0, 1, ...\}$; \mathbb{Z} l'ensemble des entiers relatifs.
- 2. \mathbb{Q} l'ensemble des nombres rationnels $\mathbb{Q} = \{\frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N}^*\}.$
- 3. \mathbb{R} est l'ensemble des nombres réels, \mathbb{R}_+^* celui des réels strictement positifs. On a $\mathbb{R}_+^* =]0, +\infty[$.
- 4. Soit $n \in \mathbb{N}^*$, l'ensemble des entiers compris entre 1 et n s'écrit [1, n]

Comment décrire un ensemble non vide ?

On utilise des accolades, ainsi qu'une description de ses éléments, qui peut prendre deux formes.

• En extension: les éléments sont présentés sous forme de liste, par exemple $\{1,2,3\}$. Signalons que l'ordre n'a pas d'importance : $\{1,2,3\} = \{3,2,1\}$. L'ensemble

$$\{2k,\ k\in\mathbb{N}\}$$

est l'ensemble des entiers naturels pairs, qu'il faut lire $\{0,2,4,\ldots\}$ en comprenant le sens des points de suspension.

• En **compréhension**: on sélectionne dans un autre ensemble, des éléments possédant une certaine propriété. Par exemple, l'ensemble des entiers pairs se note, en compréhension

$$\{n \in \mathbb{N} \mid \exists p \in \mathbb{N} : n = 2p\}$$

Dans la notation en compréhension

$$\{x \in E \mid \mathscr{P}(x) \text{ est vraie}\}$$

on écrit, dans l'ordre et entre accolades

x: l'élément typique, E: l'ensemble de sélection, |: tel que, $\mathscr{P}(x)$: condition de sélection.

Exemple 3

Écrire de deux façon l'ensemble des couples de réels opposés.

Solution:

On l'écrit:

$$\{(x, -x), x \in \mathbb{R}\} = \{(x, y) \in \mathbb{R}^2 \mid x = -y\}$$

Que dire de l'ensemble vide? Si on imagine les ensembles comme des boîtes, il n'est pas difficile d'imaginer l'ensemble vide: c'est une boîte qui ne contient rien. On conviendra que l'assertion

$$\forall x \in \varnothing \ \mathcal{P}(x)$$

est vraie, quelle que soit l'assertion $\mathcal{P}(x)$ énoncée à l'aide de x. Puisqu'il n'y a pas d'éléments dans l'ensemble vide, on peut dire que tous les éléments de l'ensemble vide sont verts. Ils sont aussi bleus à poils durs.

Méthode : Démontrer qu'un ensemble est vide.

Le raisonnement par l'absurde peut être utile : on suppose que l'ensemble n'est pas vide, on prend un élément de l'ensemble, et on cherche une contradiction.

1.2 Inclusion.

Définition 4

Soit A et B deux ensembles. On dit que A est **inclus** dans B, ce que l'on note $A \subset B$, si tout élément de A est un élément de B:

$$\forall x \in A \quad x \in B.$$

On peut faire un lien entre inclusion et implication en écrivant que A est inclus dans B signifie :

$$\forall x \quad x \in A \Longrightarrow x \in B.$$

ceci en écrivant un $\forall x$ sans préciser où x est pris, ce qui n'est pas très bien mais...

Méthode

Pour prouver une inclusion $A \subset B$

- 1. On considère un élément de A ("Soit $x \in A$ ")
- 2. puis on prouve qu'il est dans B (on devra conclure avec "donc $x \in B$ ").

Exemple 5

Justifier que $\mathbb{Z} \subset \mathbb{Q}$ puis que $\mathbb{Q} \not\subset \mathbb{Z}$.

Solution:

Soit $k \in \mathbb{Z}$, $k = \frac{k}{1}$, donc $k \in \mathbb{Q}$, on a $\frac{1}{2} \in \mathbb{Q}$ mais $\frac{1}{2} \notin \mathbb{Z}$.

Ainsi, $\mathbb{Z} \subset \mathbb{Q}$ mais $\mathbb{Q} \not\subset \mathbb{Z}$.

Proposition 6: Transitivité.

Soient A, B, C trois ensembles.

$$(A \subset B \text{ et } \mathscr{B} \subset C) \Longrightarrow A \subset C.$$

Preuve:

Supposons $A \subset B$ et $B \subset C$.

Soit $x \in A$, alors $x \in B$, alors $x \in C$ donc $A \subset C$.

Théorème 7: Double-inclusion.

Soient A et B deux ensembles. On a

$$A = B \iff A \subset B \text{ et } B \subset A.$$

Preuve:

On a:

$$A = B \iff (\forall x, \ x \in A \Longrightarrow x \in B) \text{ et } (\forall x, \ x \in B \Longrightarrow x \in A) \iff A \subset B \text{ et } B \subset A.$$

Méthode

Pour prouver que A = B, on peut prouver les deux inclusions $A \subset B$ et $B \subset A$.

Exemple 8: Prouver une égalité par double-inclusion.

Soient $A = \mathbb{R}_-$ et $B = \{x \in \mathbb{R} : \forall y \in \mathbb{R}_+, y \ge x\}$. Montrer que A = B.

Solution:

Soit $x \in \mathbb{R}_-$, et $y \in \mathbb{R}_+$. On a $x \leq 0$ et $y \geq 0$, donc $x \leq 0 \leq y$ et $x \leq y$. Donc $x \in B$ et $R_- \subset B$.

Soit $x \in B$, on a $x \leq 0$ car $\forall y \in \mathbb{R}_+, \ y \geq x$. Ainsi, $x \in \mathbb{R}_-$. Donc $B \subset \mathbb{R}_-$.

Donc A = B.

1.3 Parties d'un ensemble et opérations.

Définition 9

On appelle **partie** d'un ensemble E tout ensemble A tel que $A \subset E$.

Alternativement, on pourra dire que A est un sous-ensemble de E.

Remarque. Pour tout ensemble E, les ensembles E et \emptyset sont des parties de E.

Définition 10

Soient A et B deux parties d'un ensemble E.

On définit l'intersection de A et B, notée $A \cap B$ et leur réunion $A \cup B$ par

$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$$
 et $A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$

On appelle différence de A et de B, (« A privé de B ») la partie

$$A \setminus B = \{ x \in E \mid x \in A \text{ et } x \notin B \}.$$

On appelle **complémentaire** de A la partie $E \setminus A$. Cet ensemble pourra être noté \overline{A} ou A^C .

Dans le reste du paragraphe, on allège les énoncés en fixant une fois pour toutes un ensemble E et trois parties A, B, C de E.

Proposition 11: Évidences.

$$A \cup A = A \cap A = A$$

$$A \cup E = E \cup A = E$$

$$A \cap B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup \emptyset = \emptyset \cup A = A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap A = \emptyset$$

$$A \setminus A = \emptyset$$

$$A \setminus B = A$$

$$A \cap B \subset A \subset A \cup B$$

$$A \cap B \subset A \subset A \cup B$$

Proposition 12: Distributivité.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 et $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Preuve:

Soit $x \in E$. On a:

$$x \in A \cap (B \cup C) \iff x \in \text{ et } (x \in B \text{ ou } x \in C) \iff (x \in A \text{ et } x \in B) \text{ ou } (x \in A \text{ et } x \in C) \iff (x \in A \cap B) \text{ ou } (x \in A \cap C) \iff x \in (A \cap B) \cup (A \cap C).$$

Donc $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proposition 13: Lien entre différence et complémentaire.

$$A \setminus B = A \cap \overline{B}$$
.

Preuve:

Soit $x \in E$, $x \in A \setminus B \iff (x \in A \text{ et } x \notin B) \iff (x \in A \text{ et } x \in \overline{B}) \iff x \in A \cap \overline{B}$

Proposition 14: Décroissance du passage au complémentaire.

$$A \subset B \Longrightarrow \overline{B} \subset \overline{A}$$
.

Preuve:

Supposons $A \subset B$. Soit $x \in \overline{B}$, supposons $x \in A$, alors $x \in B$ car $A \subset B$, absurde.

Proposition 15: Formules de De Morgan.

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 et $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Preuve:

Soit $x \in E$. On a:

$$x \in \overline{A \cap B} \iff \operatorname{non}(x \in A \text{ et } x \in B) \iff x \notin A \text{ ou } x \notin B \iff x \in \overline{A} \cup \overline{B}$$

Donc $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Exemple 16

Montrer que $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Solution:

On a $A \setminus (B \cap C) = A \cap (\overline{B \cap C}) = A \cap (\overline{B} \cup \overline{C}) = (A \cap \overline{B}) \cup (A \cap \overline{C}) = (A \setminus B) \cup (A \setminus C)$.

Définition 17: Généralisations : Intersection et union d'une famille de parties.

Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E, indexée par un ensemble I.

• On appelle intersection des A_i , pour i parcourant I l'ensemble ci-dessou:

$$\bigcap_{i \in I} A_i = \{ x \in E : \forall i \in I, \ x \in A_i \}$$

C'est l'ensemble des éléments de E qui appartiennent à tous les A_i .

 \bullet On appelle union des $A_i,$ pour i par courant I l'ensemble ci-dessous:

$$\bigcup_{i \in I} A_i = \{ x \in E : \exists i \in I, \ x \in A_i \}$$

C'est l'ensemble des éléments de E qui appartiennent à au moins un des A_i .

Exemple 18

Pour
$$n \in \mathbb{N}^*$$
, on pose $A_n = [\frac{1}{n}, 1]$. Que valent $\bigcap_{n \in \mathbb{N}^*} A_n$ et $\bigcup_{n \in \mathbb{N}^*} A_n$?

Solution:

Il est clair que $1 \in A_i$ pour tout i, et $A_1 = \{1\}$ donc l'intersection vaut $\{1\}$.

Soit x dans l'union, $\exists n \in \mathbb{N}^* \mid x \in A_n \text{ donc } x \in [\frac{1}{n}, 1] \subset]0, 1].$

Soit $x \in]0,1]$. En posant $n = \lfloor \frac{1}{x} \rfloor + 1$, on a $x \in A_n$ donc x est dans l'union.

Définition 19

Soient A et B deux parties d'un ensemble E. Lorsque $A \cap B = \emptyset$, c'est à dire qu'il n'existe pas d'élément commun à A et B, on dit que A et B sont **disjointes**.

Exemple 20

Pour chacune des situations ci-dessous, donner l'exemple de deux ensembles A et B tels que

- 1. A et B sont distincts mais non disjoints.
- 2. A et B sont disjoints mais non distincts.
- 3. A et B sont disjoints et distincts.
- 4. A et B sont non disjoints et non distincts.

Solution:

- $1. \mathbb{N} \text{ et } \mathbb{R}.$
- $\overline{2}$. \varnothing et \varnothing .
- 3. Les rationnels et les irrationnels.
- $\overline{4}$. \mathbb{R} et \mathbb{R} .

Définition 21

Soit E un ensemble et $(A_i)_{i\in I}$ uen famille de parties de E, indexée par un ensemble I. On dit que cette famille est constituée de parties **deux-à-deux disjointes** si

$$\forall (i,j) \in I^2 \quad i \neq j \Longrightarrow A_i \cap A_j = \varnothing.$$

Exemple 22: Il ne suffit pas à l'intersection d'être vide!

Donner l'exemple d'un ensemble E et de trois parties A, B, C de E telles que $A \cap B \cap C = \emptyset$ et telles que A, B et C sont **non disjointes deux-à-deux**.

Solution:

 $E = \{1\}, A = B = E \text{ et } C = \emptyset.$ L'intersection est vide puisque C l'est, mais $A \cap B \neq \emptyset$.

1.4 Cardinal d'un ensemble fini.

On effleure seulement le sujet ici : un chapitre Dénombrement y sera consacré.

Définition 23: point de vue naïf.

Soit E un ensemble non vide. Il est dit fini s'il a un nombre fini d'éléments.

Ce nombre est appelé **cardinal** de E et noté |E|. On pose que l'ensemble vide est fini et que son cardinal est 0. Un ensemble constitué d'un unique élément est appelé **singleton**.

Un ensemble constitué d'exactement deux éléments est appelé une **paire**.

Proposition 24: La partie et le tout.

Soit E un ensemble fini et $A \subset E$.

- Toute partie A de E est finie et $|A| \leq |E|$.
- ullet Si A et B sont des parties de E, alors

$$A = B \iff A \subset B \text{ et } |A| = |B|$$

1.5 Produit cartésien.

Définition 25

Soient E et F eux ensembles, on appelle **produit cartésien** de E et F et on note $E \times F$ l'ensemble:

$$\{(x,y) \mid x \in E, y \in F\}.$$

Les éléments de $E \times F$ sont appelés **couples**.

Notation

On note $E^2 = E \times E$. Par exemple, $\mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$

Exemple 26

Soient $E = \{1, 2, 3\}$ et $F = \{\lozenge, \heartsuit\}$. Expliciter $E \times F$.

Solution:

 $E \times F = \{(1, \lozenge), (1, \heartsuit), (2, \lozenge), (2, \heartsuit), (3, \lozenge), (3, \heartsuit)\}.$

Définition 27

Soient $E_1,...,E_n$ n ensembles. On appelle produit cartésien de $E_1,...,E_n$ et on note $E_1\times...\times E_n$:

$$\{(x_1,...,x_n) \mid x_1 \in E_1,...,x_n \in E_n\}.$$

Les éléments de $E_1 \times ... \times E_n$ sont appelés n-uplets.

Proposition 28: Égalité de deux n-uplets.

Soient $(x_1,...,x_n)$ et $(y_1,...y_n)$ deux *n*-uplets d'un produit cartésien $E_1 \times ... \times E_n$.

$$(x_1,...,x_n) = (y_1,...,y_n) \iff \forall i \in [1,n], \ x_i = y_i.$$

1.6 Ensemble des parties d'un ensemble.

Définition 29

L'ensemble des parties d'un ensemble E est noté $\mathcal{P}(E)$.

Proposition 30: Admis pour le moment.

Si E est un ensemble fini à n éléments, $\mathcal{P}(E)$ est fini et a 2^n éléments.

Si $p \in [0, n]$, le nombre de ces parties ayant exactement p éléments est

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}.$$

1.7 Recouvrement disjoint, partition.

Définition 31

Un **recouvrement disjoint** d'un ensemble E est une famille $(A_i)_{i\in I}$ de parties E telle que

- $E = \bigcup_{i \in I} A_i$ (E est la réunion des A_i)
- $\forall i, j \in I \ i \neq j \Longrightarrow A_i \cap A_j = \emptyset$ (les A_i sont deux-à-deux disjoints).

Si de surcroît tous les A_i sont non vides, on dit que c'est une **partition** de E.

Exemple 32

Proposer une partition de $]0, +\infty[$ en trois parties.

Proposer une partition de $]0, +\infty[$ en une infinité de parties.

Solution:

- $1. \]0, +\infty[=]0, 1] \cup]1, 2] \cup]2, +\infty[.$
- $\boxed{2.}]0, +\infty [= \bigcup_{n \in \mathbb{N}^*}]n-1, n].$

2 Applications entre deux ensembles.

Dans ce qui suit, E, F et G sont trois ensembles.

2.1 Définitions.

Définition 33

Une application f de E dans F est un procédé qui à tout élément x de E associe un unique élément dans F, que l'on note f(x). Cet objet est aussi appelé fonction, et décrit à l'aide de la notation

$$f: \begin{cases} E & \to & F \\ x & \mapsto & f(x) \end{cases}$$

L'ensemble E est alors appelé ensemble de départ, et F ensemble d'arrivée.

Soient $x \in E$ et $y \in F$ tels que y = f(x).

On dit que y est l'**image** de x par f, et que x est un **antécédent** de y par f.

Définition 34: Des applications simples à définir.

On appelle application **identité** sur E et on note id_E l'application

$$id_E: \begin{cases} E & \to & E \\ x & \mapsto & x \end{cases}$$

Soit $a \in F$; on appelle application constante égale à a l'application

$$\begin{cases} E & \to & F \\ x & \mapsto & a \end{cases}$$

Notation

L'ensemble des fonctions de E dans F est noté F^E ou bien $\mathcal{F}(E,F)$.

Proposition 35: Égalité de deux fonctions.

Deux applications sont égales si et seulement si elles sont égales en tout point:

$$\forall (f,g) \in (\mathcal{F}(E,F))^2, \quad f=g \iff \forall x \in E, \ f(x)=g(x).$$

2.2 Restriction, prolongement.

Définition 36

Soit $f \in \mathcal{F}(E, F)$ et $A \subset E$.

On appelle **restriction** de f à A, et on note $f_{|A}$ l'application

$$f_{|A}: \begin{cases} A & \to & F \\ x & \mapsto & f(x) \end{cases}$$

Définition 37

Soit A une partie de E et $g \in \mathcal{F}(A, F)$.

On appelle **prolongement** de g sur E toute application f telle que $f_{|A} = g$.

Exemple 38

Soit $g: \mathbb{R}^* \to \mathbb{R}$; $x \mapsto 1$. Définir sur \mathbb{R} deux prolongement de g.

${\bf Solution:}$

On peut prolonger g en $f: \mathbb{R} \to \mathbb{R}; \ x \mapsto 1$ ou $\widetilde{f}: \mathbb{R} \to \mathbb{R} x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{R}^* \\ 42 & \text{sinon} \end{cases}$

2.3 Composition.

Définition 39

Soient $f: E \to F$ et $g: F \to G$ deux applications.

La **composée** de f par g, notée $f \circ g$ est l'application

$$g \circ f : \begin{cases} E & \to & G \\ x & \mapsto & g(f(x)) \end{cases}$$

6

Exemple 40

Soient $f: x \mapsto \ln(x-3)$, $g: x \mapsto \sqrt{x^2-4}$, $h: x \mapsto \sqrt{\ln(x)}$.

Écrire chacune comme la composée de deux fonctions "simples" (en précisant les ensembles de départ et d'arrivée).

Solution:

Notons $\varphi: x \mapsto x - 3, \ \psi: x \mapsto x^2 - 4.$

On a $f = \ln \circ \varphi$ de $]3, +\infty[$ vers \mathbb{R} .

On a $g = \sqrt{\cdot} \circ \psi$ de $]-\infty,-2] \cup [2,+\infty[$ vers \mathbb{R}_+ .

On a $h = \sqrt{\cdot} \circ \ln \operatorname{de} [1, +\infty[\operatorname{vers} \mathbb{R}_+.$

Exemple 41

- 1. La composée de deux fonctions monotones de même monotonie est croissante.
- 2. La composée de deux fonctions monotones, de monotonies contraires, est décroissante.

Proposition 42: L'identité est neutre pour la composition

Si $f \in \mathcal{F}(E, F)$, alors

$$id_F \circ f = f$$
 et $f \circ id_E = f$.

Proposition 43: Associativité de la composition.

Si $f:E\to F,\,g:F\to G$ et $h:G\to I,$ alors

$$(h \circ g) \circ f = h \circ (g \circ f)$$

2.4 Famille d'éléments d'un ensemble.

Définition 44

Soient E et I deux ensembles.

Une famille d'éléments de E indexée par I est une fonction $a: I \to E$.

Pour $i \in I$, on note $a_i = a(i)$. La famille des a est alors notée $a = (a_i)_{i \in I}$.

L'ensemble des familles d'éléments de E indexées par I sera noté E^{I} .

L'idée : a_i est un élément de E «étiqueté» par une étiquette i prise dans I.

Définition 45

On appelle **suite** d'éléments de E une famille d'éléments de E indexée par \mathbb{N} .

Proposition 46: admis

Soit $f: E \to E$ et $a \in E$. Alors il existe une unique suite $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ telle que

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N} : u_{n+1} = f(u_n) \end{cases}$$

3 Exercices.

Exercice 1: $\Diamond \Diamond \Diamond$

Soient A, B deux parties d'un ensemble E. Établir que

$$A \setminus (A \setminus B) = A \cap B$$
 et $A \setminus (A \cap B) = A \setminus B = (A \cup B) \setminus B$.

Solution:

On a:

$$A \setminus (A \setminus B) = A \cap \overline{(A \cap \overline{B})} = A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B)$$
$$= A \cap B$$

D'autre part :

$$A \setminus (A \cap B) = A \cap \overline{(A \cap B)} = A \cap (\overline{A} \cup \overline{B}) = (A \cap \overline{A}) \cup (A \cap \overline{B}) = A \cap \overline{B}$$
$$= A \setminus B$$

Et:

$$(A \cup B) \setminus B = (A \cup B) \cap \overline{B} = (A \cap \overline{B}) \cup (B \cap \overline{B}) = A \cap \overline{B}$$
$$= A \setminus B$$

Exercice 2: $\Diamond \Diamond \Diamond$

Soient A, B, C, D quatre parties d'un ensemble E, telles que

$$E = A \cup B \cup C$$
, $A \cap D \subset B$, $B \cap D \subset C$, $C \cap D \subset A$.

Montrer que $D \subset A \cap B \cap C$.

Solution:

Soit $x \in D$, on sait que $x \in E$. Alors $x \in A$ ou $x \in B$ ou $x \in C$.

- \odot Si $x \in A$, alors $x \in A \cap D$, donc $x \in B$.
- \odot Si $x \in B$, alors $x \in B \cap D$, donc $x \in C$.
- \odot Si $x \in C$, alors $x \in C \cap D$, donc $x \in A$.

On en déduit que $x \in A \cap B \cap C$.

Ainsi, $D \subset A \cap B \cap C$.

Exercice 3: $\Diamond \Diamond \Diamond$

Démontrer que

$$\mathbb{R} = \left\{ x \in \mathbb{R} \mid \exists a \in \mathbb{R}_+^* \; \exists b \in \mathbb{R}_-^* : x = a + b \right\}.$$

Solution:

On note $A = \{x \in \mathbb{R} \mid \exists a \in \mathbb{R}_+^* \; \exists b \in \mathbb{R}_-^* : x = a + b\}$

 \odot Montrons que $\mathbb{R} \subset A$.

Soit $x \in \mathbb{R}$.

 \circ Si $x \le 0$, On pose a = 1 et b = x - 1, ainsi x = a + b donc $x \in A$.

 \circ Si x > 0, On pose a = x + 1 et b = -1, ainsi x = a + b donc $x \in A$.

Dans tous les cas $x \in A$, on en conclut que $\mathbb{R} \subset A$.

 \odot Montrons que $A \subset \mathbb{R}$.

Soit $x \in A$, alors il existe $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_-^*$ tels que x = a + b.

Or $a + b \in \mathbb{R}$, donc $x \in \mathbb{R}$. On en conclut que $A \subset \mathbb{R}$.

Exercice 4: ♦♦♦

Soit $n \in \mathbb{N}^*$ et A_1, A_2, \dots, A_n n parties de E telles que

$$A_n = E$$
 et $A_1 \subset A_2 \subset \cdots \subset A_n$.

On pose $B_1 = A_1$ et pour $k \in [2, n]$, on pose $B_k = A_k \setminus A_{k-1}$.

Prouver que $(B_k)_{1 \le k \le n}$ est un recouvrement disjoint de E.

Solution:

Soit $x \in E$. Alors $x \in A_n$. Il existe alors k le plus petit entier tel que $x \in A_k$. Ainsi, $x \in B_k$ puisque $x \in A_k \land x \notin A_{k-1}$ par définition de k.

On en déduit que tout élément de E appartient à au moins un (B_k) .

Montrons maintenant que tout élément de E appartient aussi au plus à un B_k .

Soit $x \in E$. Supposons qu'il existe $i, j \in [1, n]$ tels que i < j et $x \in B_i$ et $x \in B_j$.

Or, puisque $x \in B_j$ et i < j, $x \notin A_i$. De plus, puisque $x \in B_i$, $x \in A_i$ ce qui est absurde.

Ainsi, tout élément de E appartient au plus à un (B_k) .

 $(B_k)_{1 \le k \le n}$ est donc un recouvrement disjoint de E.

Exercice 5: ♦♦♦

Soit E un ensemble et A,B deux parties de E. Démontrer que

$$B \subset A \iff (\forall X \in \mathcal{P}(E) \quad (A \cap X) \cup B = A \cap (X \cup B)).$$

Solution:

Supposons $B \subset A$ et soit $X \in \mathcal{P}(E)$. On a:

$$(A\cap X)\cup B=(A\cup B)\cap (X\cup B)=A\cap (X\cup B)$$

Supposons $(\forall X \in \mathcal{P}(E) \quad (A \cap X) \cup B = A \cap (X \cup B)).$

On a $B \in \mathcal{P}(E)$, donc:

$$(A \cap B) \cup B = A \cap (B \cup B) \iff (A \cup B) \cap B = A \cap B$$

 $\iff (A \cup B) = A$
 $\iff B \subset A$

Exercice 6: ♦♦♦

Expliciter les ensembles

$$A = \bigcap_{n \in \mathbb{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right] \quad \text{et} \quad B = \bigcup_{n \in \mathbb{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right].$$

Solution:

A est l'ensemble vide, puisque l'intersection est commutative, on peut prendre n = 1 et n = 10, par exemple, et remarquer que leur intersection est nulle, ce qui se propage à toutes les intersections.

Montrons que B est l'ensemble]0,1] par double inclusion.

 \odot Montrons que $B \subset]0,1]$.

Soit $x \in B$. Il existe $n \in \mathbb{N}^*$ tel que $\frac{1}{n+1} \le x \le \frac{1}{n}$. Ainsi, $0 < x \le 1$. Donc $x \in]0,1]$.

 \odot Montrons que $[0,1] \subset B$.

Soit $x \in]0,1]$. Il existe $n \in \mathbb{N}^*$ tel que $n+1 \ge \frac{1}{x} \ge n$. Donc que $\frac{1}{n+1} \le x \le \frac{1}{n}$.

Ainsi $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$ et donc $x \in B$.

On en conclut que B =]0, 1].

Exercice 7: ♦♦♦ Différence symétrique.

Soient E un ensemble et A, B deux parties de E, on définit

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

- 1. Montrer que la réunion définissant $A\Delta B$ est disjointe.
- 2. Montrer que $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- 3. Montrer que $\overline{A}\Delta \overline{B} = A\Delta B$.
- 4. Simplifier $A\Delta E$, $A\Delta \varnothing$, $A\Delta A$, $A\Delta \overline{A}$.
- 5. (*) Résoudre l'équation $A\Delta X = \emptyset$, d'inconnue $X \in \mathcal{P}(E)$.

Solution:

1. Considérons l'intersection :

$$(A \setminus B) \cap (B \setminus A) = (A \cap \overline{B}) \cap (B \cap \overline{A})$$
$$= A \cap (B \cap \overline{B}) \cap \overline{A}$$
$$= \varnothing$$

2. On a :

$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap (\overline{A} \cup \overline{B})$$
$$= \overline{A} \cap (A \cup B) \cup (A \cup B) \cap \overline{B}$$
$$= (\overline{A} \cap B) \cup (A \cap \overline{B})$$
$$= A\Delta B$$

3. On a :

$$(\overline{A}\setminus \overline{B})\cup (\overline{B}\setminus \overline{A})=(\overline{A}\cap B)\cup (\overline{B}\cap A)=(B\cap \overline{A})\cup (A\cap \overline{B})=(B\setminus A)\cup (A\setminus B)=A\Delta B$$

4. On a :

- $A\Delta E = (A \cup E) \setminus (A \cap E) = E \setminus A = E \cap \overline{A}$.
- $A\Delta\varnothing = (A\cup\varnothing)\setminus (A\cap\varnothing) = A\setminus\varnothing = A$.
- $A\Delta A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset$.
- $\bullet \ A\Delta \overline{A} = (A \cup \overline{A}) \setminus (A \cap \overline{A}) = E \setminus \emptyset = E$

5. Soit $X \in \mathcal{P}(E)$. On a :

$$A\Delta X=\varnothing\iff (A\setminus X)\cup (X\setminus A)=\varnothing\iff A\setminus X=\varnothing\text{ et }X\setminus A=\varnothing\iff X\subseteq A\text{ et }A\subseteq X\iff X=A$$

Exercice 8: ♦♦♦ Paradoxe de Russel.

Supposons qu'il existe un ensemble de tous les ensembles et notons le \mathcal{E} .

Considérons alors l'ensemble des ensembles n'appartenant pas à eux-mêmes :

$$y = \{x \in \mathcal{E} \mid x \notin x\}.$$

Démontrer que $y \in y \iff y \notin y$.

Solution:

Supposons que $y \in y$. Montrons que $y \notin y$.

On a que $y \in y$. Or tout élément de y n'appartient pas à lui-même.

Ainsi, $y \notin y$.

Supposons que $y \notin y$. Montrons que $y \in y$.

y est un ensemble, donc $y \in \mathcal{E}$. De plus, $y \notin y$ par supposition.

Ce sont les deux conditions nécessaires pour appartenir à y.

Ainsi, $y \in y$.

On a bien montré que $y \in y \iff y \notin y$.

Cela est absurde, ainsi les ensemble $\mathcal E$ et y ne peuvent pas exister.