Topology by James Munkres – Chapter 3 Supplementary Exercises

William Gao

Summer 2024

A partial order \leq on a set X is a relation that satisfies:

- (1) $\alpha \leq \alpha$ for all $\alpha \in X$.
- (2) If $\alpha \leq \beta$ and $\beta \leq \alpha$, then $\alpha = \beta$.
- (3) If $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$.

A *directed set* J is a set with a partial order \leq such that for any $\alpha, \beta \in J$, there exists $\gamma \in J$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

- 1. Show that the following are directed sets:
 - (a) Any simply ordered set under \leq .

SOLUTION. The fact that \leq is a partial order is trivial. Given $x, y \in X$, either $x \leq y$ or $y \leq x$; without loss of generality assume $x \leq y$. Then $y \in X$ satisfies $x \leq y$ and $y \leq y$. \square

(b) The set of all subsets of *S*, ordered by inclusion.

SOLUTION. Every subset is contained in itself. If $A, B \subseteq S$ are such that $A \subseteq B$ and $B \subseteq A$, then A = B. If $A \subseteq B \subseteq C$, then $A \subseteq C$. Now for any $A, B \subseteq S$ clearly S is the desired element. \Box

(c) A collection A of subsets of S that is closed under finite intersection, under reverse inclusion.

SOLUTION. This is a partial order by symmetrical arguments as (b). For any $A, B \in \mathcal{A}$, $A \cap B \in \mathcal{A}$ is clearly contained in both. \square

(d) The collection of all closed subsets of a space *X*, under inclusion.

SOLUTION. This is identical to (c); closed subsets are closed under finite union so the desired set is $A \cup B$. \square

2. $K \subseteq J$ is *cofinal* in J if for every $\alpha \in J$, there exists $\beta \in K$ with $\alpha \preceq \beta$. Show that if J is directed and K is cofinal in J, then K is directed.

SOLUTION. Given $k_1, k_2 \in K$, we also have $k_1, k_2 \in J$ so there exists $\alpha \in J$ with $k_1 \preceq \alpha, k_2 \preceq \alpha$. Then since K is cofinal there exists $\beta \in K$ with $\alpha \preceq \beta$, so by transitivity $k_1 \preceq \beta$ and $k_2 \preceq \beta$. \square

3. Let X be a topological space. A *net* in X is a function from a directed set J to X. The net $(x_{\alpha})_{\alpha \in J}$ converges to $x \in X$ if for every neighbourhood U of x, there exists $\alpha \in J$ such that $\alpha \leq \beta$ implies $x_{\beta} \in U$.

Show that these definitions reduce to the usual ones when $J = \mathbb{N}$.

SOLUTION. The net $(x_n)_{n\in\mathbb{N}}$ converges to $x\in X$ if and only if for every neighbourhood U of x, there exists $\alpha\in\mathbb{N}$ such that $\alpha\preceq\beta$ implies $x_\beta\in U$. $\alpha\preceq\beta$ may be written as $\alpha\leq\beta$. This may be rewritten as the usual criterion that there exists $N\in\mathbb{N}$ such that $N\leq n$ implies $x_n\in U$. \square

- 4. Suppose $(x_{\alpha})_{\alpha \in J} \to x \in X$ and $(y_{\alpha})_{\alpha \in J} \to y \in Y$. Show that $(x_{\alpha} \times y_{\alpha})_{\alpha \in J} \to x \times y \in X \times Y$.
 - **SOLUTION.** For any neighbourhood $U \times V$ of $x \times y$, U is a neighbourhood of x and V is a neighbourhood of y. By convergence, there exist α_x, α_y such that $\alpha_x \preceq \beta$ implies $x_\beta \in U$ and $\alpha_y \preceq \beta$ implies $y_\beta \in V$. Let $\alpha \in J$ be such that $\alpha_x \preceq \alpha$ and $\alpha_y \preceq \alpha$. Then $\alpha \preceq \beta$ implies $\alpha_x \preceq \beta$ and $\alpha_y \preceq \beta$ by transitivity, so $x_\beta \times y_\beta \in U \times V$. \square
- 5. Show that if *X* is Hausdorff, then nets converge uniquely.
 - **SOLUTION.** Suppose X is Hausdorff and $(x_{\alpha})_{\alpha \in J}$ converges to distinct points x and y. Let U, V be disjoint neighbourhoods of x, y. By convergence, there exist $\alpha_x, \alpha_y \in J$ such that $\alpha_x \leq \beta$ implies $x_{\beta} \in U$, and $\alpha_y \leq \beta$ implies $x_{\beta} \in V$. If $\alpha \in J$ is such that $\alpha_x \leq \alpha$ and $\alpha_y \leq \alpha$, then for $\alpha \leq \beta$ we have $x_{\beta} \in U \cap V$, a contradiction. \square
- 6. *Theorem.* Let $A \subseteq X$. Then $x \in \overline{A}$ if and only if there is a net of points in A converging to x.
 - **SOLUTION.** (\Longrightarrow) Consider the collection $\mathcal U$ of all neighbourhoods of x, ordered by reverse inclusion. This is directed by 1(c). If $x \in \overline{A}$, then every neighbourhood U of x intersects A at some point x_U . We claim that $(x_U)_{U \in \mathcal U}$ is a net of points in A converging to x. For every neighbourhood U of x, $U \in \mathcal U$ is such that if $U \preceq V$, then $U \supseteq V$, so $x_V \in V \subseteq U$, as desired.
 - (\Leftarrow) Suppose $(x_{\alpha})_{\alpha \in J}$ is a net of points in A converging to x. By definition, for every neighbourhood U of x there exists $\alpha \in J$ such that $\alpha \preceq \beta \implies x_{\beta} \in U$. Since $\alpha \preceq \alpha$, we have $x_{\alpha} \in U \cap A$, so U intersects A, showing that $x \in \overline{A}$. \square
- 7. *Theorem.* $f: X \to Y$ is continuous if and only if for every net $(x_{\alpha})_{\alpha \in J}$ in X converging to x, the net $(f(x_{\alpha}))_{\alpha \in J}$ converges to f(x).
 - **SOLUTION.** (\Longrightarrow) Suppose $(x_{\alpha})_{\alpha \in J}$ converges to x. Let V be a neighbourhood of f(x); $f^{-1}(V)$ is a neighbourhood of x. Let $\alpha \in J$ be such that $\alpha \preceq \beta$ implies $x_{\beta} \in f^{-1}(V)$. Then $f(x_{\beta}) \in V$, showing that $(f(x_{\alpha}))_{\alpha \in J} \to f(x)$.
 - (\Leftarrow) Given $A \subseteq X$, suppose $x \in \overline{A}$. By 6, there exists a net of points $(x_{\alpha})_{\alpha \in J}$ in A converging to x. By assumption, $(f(x_{\alpha}))_{\alpha \in J}$ is a net of points in f(A) converging to f(x). By 6, $f(x) \in \overline{f(A)}$, showing that $f(\overline{A}) \subseteq \overline{f(A)}$, and thus f is continuous. \square
- 8. Let $f: J \to X$ be a net in X, and $f(\alpha) = x_{\alpha}$. If K is a directed set and $g: K \to J$ is a function satisfying
 - (1) $i \leq j \implies g(i) \leq g(j)$,
 - (2) q(K) is cofinal in J,

then $f \circ g : K \to X$ is a subnet of (x_{α}) . Show that if (x_{α}) converges to x, then so does any subnet.

- **SOLUTION.** For every neighbourhood U of x, there exists $\alpha \in J$ such that $\alpha \preceq \beta \implies f(\beta) \in U$. Since g(K) is cofinal in J, there exists $g(\gamma) \in g(K)$ such that $\alpha \preceq g(\gamma)$. If $\gamma \preceq \beta$, then $g(\gamma) \preceq g(\beta)$, and by transitivity $\alpha \preceq g(\beta)$. Then $f(g(\beta)) \in U$, showing that $f \circ g$ converges to x. \square
- 9. Let $(x_{\alpha})_{\alpha \in J}$ be a net in X. x is an *accumulation point* of (x_{α}) if for every neighbourhood U of x, the set of all α for which $x_{\alpha} \in U$ is cofinal in J.

Lemma. The net $(x_{\alpha})_{\alpha \in J}$ has x as accumulation point if and only if some subnet of (x_{α}) converges to x.

SOLUTION. (\Longrightarrow) Let K be the set of all pairs (α, U) where $\alpha \in J$ and U is a neighbourhood of x containing x_{α} . Define a partial order \preceq on K by $(\alpha, U) \preceq (\beta, V)$ if $\alpha \preceq \beta$ and $U \supseteq V$. Given $(\alpha, U), (\beta, V) \in K$, let $\gamma \in J$ be such that $\alpha \preceq \gamma$ and $\beta \preceq \gamma$. Applying the definition of x as an accumulation point to the neighbourhood $U \cap V$ of x,, there exists $\gamma \preceq \delta$ such that $x_{\delta} \in U \cap V$. This means $(\delta, U \cap V) \in K$. By transitivity, $\alpha \preceq \delta$ and $\beta \preceq \delta$, showing that $(\alpha, U) \preceq (\delta, U \cap V)$ and $(\beta, V) \preceq (\delta, U \cap V)$, and thus K is directed.

Define $g: K \to J$ by $(\alpha, U) \mapsto \alpha$. We verify that if $(\alpha, U) \preceq (\beta, V)$, then $g(\alpha, U) = \alpha \preceq \beta = g(\beta, V)$, and g(K) is cofinal in J because for any $\alpha \in J$, $\alpha \preceq g(\alpha, X)$.

For any neighbourhood U of x and any $\alpha \in J$, the definition of x as an accumulation point implies that there exists $\beta \in J$ such that $\alpha \preceq \beta$ and $x_{\beta} \in U$. Now $(\beta, U) \in K$, and if $(\gamma, V) \in K$ is such that $(\beta, U) \preceq (\gamma, V)$ then $x_{g(\gamma, V)} = x_{\gamma} \in V \subseteq U$. Hence the subnet $(x_{g(\alpha, U)})_{(\alpha, U) \in K}$ converges to x.

 (\Leftarrow) Suppose some subnet $(x_{g(i)})_{i \in K}$ of $(x_{\alpha})_{\alpha \in J}$ converges to x. For every neighbourhood U of x, there exists $i \in K$ such that $i \preceq j$ implies $x_{g(j)} \in U$. Let A be the set of indices $\alpha \in J$ for which $x_{\alpha} \in U$. We show that A is cofinal in J. Given $\alpha \in J$, if $\alpha \preceq g(i)$ then $g(i) \in A$ is the desired successor. Otherwise since g(K) is cofinal in J, there exists $g(j) \in g(K)$ such that $\alpha \preceq g(j)$. If $j \preceq i$, then $g(j) \preceq g(i)$ and by transitivity $\alpha \preceq g(i)$, so we are in the first case. Otherwise let $k \in K$ be such that $i \preceq k$ and $j \preceq k$; we have $\alpha \preceq g(j) \preceq g(k)$ and $i \preceq k$ implies $g(k) \in A$, so g(k) is the desired successor. \square

10. *Theorem. X* is compact if and only if every net has a convergent subnet.

SOLUTION. (\Longrightarrow) Suppose X is compact and suppose $(x_{\alpha})_{\alpha \in J}$ is a net of points in X with no convergent subnet. By exercise 9, (x_{α}) has no accumulation point, so for every $x \in X$, there exists a neighbourhood U_x of x and $\alpha_x \in J$ such that $\alpha_x \preceq \beta$ implies $x_{\beta} \notin U$.

Clearly $\{U_x\}_{x\in X}$ is an open covering of X, so by compactness it admits a finite subcover U_{x_1},\cdots,U_{x_n} . If $\beta\in J$ is such that $\alpha_{x_i}\preceq\beta$ for each i, then $x_\beta\notin\bigcup_{i=1}^nU_{x_i}$, a contradiction.

(\iff) Suppose every net has a convergent subnet. Let $\mathcal A$ be any collection of closed sets having the finite intersection property. Let $\mathcal B$ be the set of finite intersections of elements in $\mathcal A$, ordered under reverse inclusion. $\mathcal B$ is directed by 1(c). For each $B \in \mathcal B$, B is nonempty; let $x_B \in \mathcal B$. $(x_B)_{B \in \mathcal B}$ admits a subnet $(x_{g(i)})_{i \in K}$ converging to some point x. We claim that $x \in \bigcap_{A \in \mathcal A} A$, which shows that $\mathcal A$ has the

finite intersection property. Indeed, for any $A \in \mathcal{A}$, we naturally have $A \in \mathcal{B}$, so that $x_A \in A$. Now there exists $g(i) \in g(K)$ such that $A \supseteq g(i)$, and thus for any $i \preceq j$, we have $g(i) \supseteq g(j)$. By transitivity, $A \supseteq g(j)$, so $x_{g(j)} \in g(j) \subseteq A$. Hence the tail of $(x_{g(i)})_{i \in K}$ is a sequence of points in A converging to x, so $x \in \overline{A} = A$. Since A was arbitrary, $x \in \bigcap_{A \in A} A$, so X is compact. \square

11. Corollary. Let G be a topological group; let $A, B \subseteq G$. If A is closed and B is compact, then $A \cdot B$ is closed in G.

SOLUTION. We will show $G-A\cdot B$ is open. Suppose $x\in G-A\cdot B$. Recall that $\varphi:G\to G$ defined by $x\times y\mapsto xy^{-1}$ is continuous. We observe that $\{x\}\times B\subseteq \varphi^{-1}(G-A)$; indeed if $x\times b\in \{x\}\times B$ suppose $xb^{-1}\in A$. Then $x\in Ab\subseteq A\cdot B$, a contradiction.

Since B is compact, the tube lemma states that there exists a neighbourhood W of x such that $W \times B \subseteq \varphi^{-1}(G-A)$; that is, for any $u \times v \in W \times B$, $uv^{-1} \notin A$, so $u \notin Av \subseteq AB$. Therefore $x \in W \subseteq G-AB$, showing that AB is closed. \square