Chapter 5. Transceiver Architecture

B. Razavi, RF Microelectronics, Prentice Hall

2008-2 RF IC 공학

범 진 욱

서강대학교 전자공학과

Microelectronics Lab.

Contents

5.1 General Considerations

5.2 Receiver Architectures

- 5.2.1 Heterodyne Receivers
- 5.2.2 Homodyne Receivers
- 5.2.3 Image-Rejection Receivers
- 5.2.4 Digital-IF Receivers
- 5.2.5 Subsampling Receivers

5.3 Transmitter Architectures

- 5.3.1 Direct-Conversion Transmitters
- 5.3.2 Two-Step Transmitters

5.4 Transceiver Performance Tests

5.5 Case Studies

- 5.5.1 Motorola's FM Receiver
- 5.5.2 Philips' Pager Receiver
- 5.5.3 Philips' DECT Transceiver
- 5.5.4 Lucent Technologies' GSM Transceiver
- 5.5.4 Philips' GSM Transceiver

General Considerations

- Constraints
 - Limited spectrum allocated
 - □ 30kHz in IS-54, 200kHz in GSM
 - Limited rate of information: require appropriate coding, compression, bandwidth efficient modulation
- □ Role of transmitters (Tx) and receivers (Rx)
 - Tx
 - narrow-band modulation, amplification, filtering to avoid leakage to adjacent channels
 - Rx
 - Antenna matching
 - Desired channel selection
 - □ Undesired signal rejection
 - Amplification
 - Demodulation
 - □ Error detection and/or correction
 - ☐ Information conditioning and output

General Considerations – Cont.

□ Difficulty of interference rejection

- Example: 900 MHz, 30 kHz BW channel rejection at 60 kHz
- Require extremely high-Q Filter
- Typically high Q filter has high insertion loss

Band and channel

- Band: entire spectrum of a standard (25 MHz in GSM)
- Channel: signal BW of only one user (200 kHz in GSM)
- Band selection

Front-End Band Pass Filter (BPF)

- □ Front-end BPF
 - Finite transition bandwidth
 - out-of-band rejection is critical (~ 30 dB)
 - Higher out-of-band rejection
 - Means higher in-band loss
 - ☐ Higher power amp power loss
 - Loss in BPF
 - □ 2 dB of 1 W is 370 mW
- Choice of BPF filter
 - Trade-off between out-ofband rejection and in-band loss
 - In-band loss being the more critical parameter
 - Practical front-end BPF can only select band

Linearity

Linearity

- IM3 product of in-band interferers may fall in the desired channel
 - ☐ IIP3 of each stage must be sufficiently high
- Nonlinearity is important even if the signal carries information only in phase or frequency
 - ☐ Zero-crossing is corrupted by IM product

Supply voltage rejection

- PA periodically turns on and off to save power
- Large current drawn by PA and finite output impedance of battery
 -> V_{cc} fluctuation and noise
- Require noise immunity and supply rejection of the building blocks

Dynamic Range

- Required DR for the received signal is typically greater than 100dB
 - Input range minimum $\sim \mu V \rightarrow Low$ noise, low cross talk required
- 1W PA and 30dB out-of-band attenuation duplexer
 - $\blacksquare 1 \text{ W PA} \rightarrow 20 \text{ V peak to peak}$
 - Leakage to Rx path ~-26dBm(=30mVpp) at the LNA input
 - Desensitization of LNA (P_{1dB}~-25dBm) and mixer
 - TDD(NADC & GSM) avoids this by offsetting transmit and receive time slots

- With a large dynamic range
 - Automatic Gain Control (AGC)

Contents

5.1 General Considerations

5.2 Receiver Architectures

- 5.2.1 Heterodyne Receivers
- 5.2.2 Homodyne Receivers
- 5.2.3 Image-Rejection Receivers
- 5.2.4 Digital-IF Receivers
- 5.2.5 Subsampling Receivers

5.3 Transmitter Architectures

- 5.3.1 Direct-Conversion Transmitters
- 5.3.2 Two-Step Transmitters

5.4 Transceiver Performance Tests

5.5 Case Studies

- 5.5.1 Motorola's FM Receiver
- 5.5.2 Philips' Pager Receiver
- 5.5.3 Philips' DECT Transceiver
- 5.5.4 Lucent Technologies' GSM Transceiver
- 5.5.4 Philips' GSM Transceiver

Heterodyne Receivers

- □ Signal band is translated to much lower frequency
- Background
 - Filtering a narrow channel that is centered at high frequency and is accompanied by large interferers demands prohibitively high Q
 - Tradeoff between the filter loss and Q
- Simple heterodyne down conversion
 - Mixer (ω_0) : a multiplier
 - converts the signal(ω_1) to $\omega_2 = |\omega_0 \omega_1|$ (downconversion) or $\omega_0 + \omega_1$
 - \square High-side injection : $\omega_0 > \omega_1$
 - □ Low-side injection : $\omega_0 < \omega_1$
 - LPF removes high frequency signal
 - LNA precedes due to the mixer's high NF to lower NF
 - \bullet ω_0 (ω_{LO}): generated by local oscillator
 - \bullet ω_2 (ω_{IF}): called intermediate frequency (IF)

Problem of Image

- Signal at $\omega_1 = \omega_{LO} \omega_{IF}$ and image at $\omega_{im} = \omega_{LO} + \omega_{IF}$ translate to same frequency
- Image power may be much higher than that of desired signal
 - ☐ Image rejection required

Methods of image rejection

- Image rejection filter before mixer
- Image-reject architecture
 - ☐ Hartley architecture
 - Weaver architecture

Image Rejection

Image-reject (IR) filter

- Small loss in desired band
- Large attenuation in image band

Drawback of heterodyning by IR filter

- IR filter : usually passive, external component
 - □ 50ohm impedance
- Require 50ohm output impedance for LNA
 - Need more severe trade-off between gain, NF, stability, and power dissipation

ω_{IF}

Comparison of high IF and low IF

- High IF: minimum image signal, but poor channel selection
- Low IF: great suppression of nearby interferers, but poor image rejection
- trade off between image rejection and channel selection (sensitivity-since image degrades the sensitivity of the receiver – and selectivity

□ Choice of ω_{LO}

- High-side injection $ω_{LO} > ω_{RF}$
- Low-side injection $\omega_{LO} < \omega_{RF}$
- ω_{LO} determined to avoid noise from image band

Problem of half IF

Problem of half IF

- Case 1
 - If $(\omega_{IN} + \omega_{LO})/2$ experience 2^{nd} -order distortion by LNA -> $(\omega_{IN} + \omega_{LO})$
 - LO contains significant 2^{nd} -order harmonics- $> 2 \omega_{LO}$ then
 - $\Box \quad |(\omega_{IN} + \omega_{LO}) 2 \omega_{LO}| = \omega_{IF}$
- Case 2
 - If $(\omega_{IN} + \omega_{LO})/2$ down converts to $\omega_{IF}/2$
 - □ And 2nd-order distortion in the IF band (ex: IF amp), then
 - They fall into band of interest 2 * ω_{IF} /2 = ω_{IF}

Dual-IF Topology

Newly introduce wireless applications

- Operating frequency goes up (900MHz, 1.8GHz, 2,4GHz,etc) with signal bandwidth stays the same (200KHz, 2MHz,etc)
- Ratio [operating frequency/wanted signal bandwidth] goes up
- Harder to use single stage IF receiver

Quadrature Downconversion

- Demodulation at the 2nd IF
 - If 2nd mixer translates the spectrum to zero frequency (base band signal)
 - \square No 2nd IF \rightarrow "Single IF topology"
 - In-phase (I) and Quadrature (Q) components normally at the 2nd mixer

Heterodyne - Summary

Dual-IF topology

- Resolve the trade-off between sensitivity and selectivity issue of simple heterodyne receiver
 - Partial channel selection at progressively lower center frequencies
 - □ Relax required Q
- NF (sensitivity) : critical in the front
- IIP3 (selectivity): critical in the back end
 - □ Relax the IP3 requirement through the progressive compression of interferes

Heterodyne-summary

- Complex
- Many off chip components: expensive, sensitive to external parasitic signals, higher power consumption
- Most reliable reception technique (sensitivity and selectivity wise)

Homodyne Receivers

- □ Homodyne, direct conversion, zero-IF
 - RF spectrum → baseband frequency conversion
 - Simple homodyne
 - Double sideband AM
 - Double sideband
 - (+) and (-) part of spectrum

- Homodyne with quadrature downconversion
 - ☐ FM, QPSK
- Advantage
 - No image
 - No IR filter
 - Simple and cheap
 - ☐ High output impedance of LNA
 - BPF can be replaced by LPF

Homodyne Receiver - Channel Selection

- □ Rejection of out-of-channel interferers
 - Active filter is more difficult than passive filter.
 - Active filter
 - Noise-linearity-power trade-offs

- Out-of-channel suppression
 - Amplifier can be nonlinear
 - ADC moderate dynamic range
 - LPF tight noise-linearity spec
- Amplifier should be linear
 - Relaxed LPF noise requirement
- Amplifier should be linear
 - ADC high linearity and low noise

Homodyne Receiver – DC Offsets

- ☐ Homodyne → Zero-IF
 - Offset voltages at DC corrupt the signal
- Offset voltage generation
 - Self mixing
 - □ LO leakage

Strong interferer

Self-mixing

- □ Gain before ADC
 - 80-100 dB
- LNA/mixer gain
 - 25-30 dB
- Example
 - LO voltage peak-to-peak 0.63 V (0 dBm)
 - 60 dB LO-RF isolation (-60 dBm)
 - Gain of LNA/Mixer 30 dB (-30 dBm)
 - Offset voltage at the output of mixer ~ 10 mV
 - Signal input ~ 30 µVrms
- Problem is severe if self-mixing varies with time
 - LO signal leaks through antenna and reflected back
 - Time-varying offset is difficult to distinguish
- DC offset is not a problem in heterodyne
 - RF≠LO, no DC offset problem
 - IF is selected by BPF.

Solutions for Offset Cancellation DC-Free Coding

- High-pass filter
 - To remove DC component
 - Most of energy is accumulated at DC
 - □ Example: 200 kHz BW, 0-20 Hz removal BER>10⁻⁵
 - Large capacitor required
 - Fast variation of offset voltage cannot be covered.
 - Not a good method
- Modulation such that little energy at DC
 - DC-free coding
 - Suitable for wideband channels
 - Example: DECT, a few kHz with no data there

Solutions for Offset Cancellation Offset Cancellation in a TDMA

Digital offset cancellation

- C stores offset between TDMA bursts.
- TDMA frame: a few ms
 - □ Offset cancellation every a few ms
 - Sufficiently fast
- Thermal noise of S_1 is significant
 - □ kT/C noise
 - \square C₁ should be a large value.
 - Example
 - 1 μV input signal
 - 30 dB gain before offset cancellation, 32 μV
 - Noise $\sqrt{(kT/C)}$, 15 dB below signal (5.6 μ V)
 - $C_1 > 200 \text{ pF } \sqrt{(kT/C)} = 4.5 \text{ } \mu\text{V}$
- Interferer signal is also stored at C₁
 - Interferer signal changes fast
 - Several sampling and averaging

I/Q Mismatch

□ For phase and frequency modulation

- Quadrature mixing is required
- Either RF or LO require 90° shift

- Normally LO 90° shift
- I/Q mismatch
 - Amplitude mismatch for I and Q LO signal
 - □ Phase mismatch for I and Q LO signal
 - ☐ Worse BER

Effect of I/Q Imbalance

Received signal

■
$$a, b = \pm 1$$

$$x_{in}(t) = a\cos\omega_c t + b\sin\omega_c t$$

I and Q phase of LO signal

- ½ for simplification
- ε: amplitude error
- \bullet : phase error

$$x_{LO,I}(t) = 2\left(1 + \frac{\varepsilon}{2}\right)\cos\left(\omega_c t + \frac{\theta}{2}\right)$$

$$x_{LO,Q}(t) = 2\left(1 - \frac{\varepsilon}{2}\right)\sin\left(\omega_c t - \frac{\theta}{2}\right)$$

Baseband signal

$$x_{BB,I}(t) = a\left(1 + \frac{\varepsilon}{2}\right)\cos\left(\frac{\theta}{2}\right) - b\left(1 + \frac{\varepsilon}{2}\right)\sin\left(\frac{\theta}{2}\right)$$

$$x_{BB,Q}(t) = -a\left(1 - \frac{\varepsilon}{2}\right)\sin\left(\frac{\theta}{2}\right) + b\left(1 - \frac{\varepsilon}{2}\right)\cos\left(\frac{\theta}{2}\right)$$

Gain Error and Phase Error

- Effect of I/Q mismatch
- Gain Error

Phase Error

- □ Amplitude mismatch < 1 dB</p>
- Phase error <5°</p>
- □ For heterodyne receiver, requirements are relaxed
 - Frequency is lower. Less sensitive to mismatches in parasitics
 - Signals amplified 50-60 dB before I/Q separation
 - More gain required after I/Q separation → gain stage delay
 - Monolithic integration is better than hybrid approach.

Even Order Distortion

- Even order distortion is important in homodyne.
 - Signal near DC

$$y(t) = \alpha_1 x(t) + \alpha_2 x^2(t)$$

$$x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$

$$\alpha_2 A_1 A_2 \cos(\omega_1 - \omega_2) t$$

- 2nd harmonic (even-order harmonic at low frequency)
- \blacksquare RF to IF feedthrough \rightarrow interferer at baseband of signal

Even Order Distortion in FSK or PSK

- PSK or FSK signal with AM
- PSK or FSK signal go through fading or disturbance during transmission

$$x_{in}(t) = (A + \varepsilon \cos \omega_m t)(a \cos \omega_c t + b \sin \omega_c t)$$

- \blacksquare cos ω_m t : low freq. Amplitude modulation
- **2** 2nd order term $(a^2 + b^2)A\varepsilon\cos\omega_m t$
- Even-order distortion demodulates AM
- Mixer 2nd order distortion
 - Mixer RF port also has the same distortion problem
- IP2: 2nd order distortion characterization
 - How small (or large) the 2nd order distortion is
- Differential structure suppresses even order distortion
 - RF component (antenna, duplexers, etc) are single ended.
 - Higher power dissipation than single ended.

Flicker Noise and LO Leakage

- LNA+mixer 30 dB gain: ~ 10 µV signal
 - 1/f noise (low frequency noise) corrupts the signal.
 - Employ large size device to minimize the flicker noise at IF amplification
 - TDMA periodic offset cancellation
 - DC free coding
- LO leakage
 - LO leakage to antenna and received by other users using the same standard
 - FCC (Federal Communication Commission)
 - □ In-band LO radiation requirement ~ -50 to -80 dBm

Image Reject Receiver

- Without image-reject filter, heterodyne is a viable technology. → Image reject receiver
- Shift by 90° operation
 - Multiplication of $G(\omega) = -j \operatorname{sgn}(\omega)$
 - **Example:** $sin(\omega t) \rightarrow -cos(\omega t)$, $cos(\omega t) \rightarrow sin(\omega t)$

- 90° shift: RC-CR network
 - □ Phase shift of Vout1 and Vout2
 - $\pi/2$ -tan⁻¹(RC ω) and tan⁻¹(RC ω) \rightarrow always 90° phase shift

Hartley Architecture

- □ Hartley, 1928
- RF input

$$x(t) = A_{RF} \cos \omega_{RF} t + A_{im} \cos \omega_{im} t$$

After I/Q mixer

$$x_{A}(t) = \frac{A_{RF}}{2} \sin(\omega_{LO} - \omega_{RF})t + \frac{A_{im}}{2} \sin(\omega_{LO} - \omega_{im})t$$

$$x_B(t) = \frac{A_{RF}}{2}\cos(\omega_{LO} - \omega_{RF})t + \frac{A_{im}}{2}\cos(\omega_{LO} - \omega_{im})t$$

 \square Rewriting x_A

$$x_A(t) = -\frac{A_{RF}}{2}\sin(\omega_{RF} - \omega_{LO})t + \frac{A_{im}}{2}\sin(\omega_{LO} - \omega_{im})t$$

After 90° shift

$$x_C(t) = \frac{A_{RF}}{2} \cos(\omega_{RF} - \omega_{LO})t - \frac{A_{im}}{2} \cos(\omega_{LO} - \omega_{im})t$$

Combine B and C

$$x_{IF}(t) = A_{RF} \cos(\omega_{RF} - \omega_{LO})t$$

Graphical Analysis of Hartley Receiver

Hartley Receiver in Practice

- \square 90° shift $\rightarrow \pm 45$ ° shift
- Drawback: sensitive to mismatches
 - LO mismatch: cancellation is incomplete.

Mismatch Sensitivity

Mismatch effect

At A and B

$$x_{A}(t) = \frac{A_{RF}A_{LO}}{2}\sin(\omega_{LO} - \omega_{RF})t + \frac{A_{im}A_{LO}}{2}\sin(\omega_{LO} - \omega_{im})t$$

$$cos\omega_{LO}t$$

$$Cos\omega_{LO}t$$

$$Cos\omega_{LO}t$$

$$x_{B}(t) = (A_{LO} + \varepsilon) \frac{A_{RF}}{2} \cos[(\omega_{LO} - \omega_{RF})t + \theta] + (A_{LO} + \varepsilon) \frac{A_{im}}{2} \cos[(\omega_{LO} - \omega_{im})t + \theta]$$

At C

$$x_{C}(t) = A_{LO} \left[\frac{A_{RF}}{2} \cos(\omega_{RF} - \omega_{LO})t - \frac{A_{im}}{2} \cos(\omega_{LO} - \omega_{im})t \right]$$

Signal and image

$$x_{sig}(t) = \frac{A_{RF}(A_{LO} + \varepsilon)}{2} \cos[(\omega_{LO} - \omega_{RF})t + \theta] + \frac{A_{RF}A_{LO}}{2} \cos((\omega_{LO} - \omega_{im})t)$$

$$x_{im}(t) = (A_{LO} + \varepsilon) \frac{A_{im}}{2} \cos[(\omega_{LO} - \omega_{RF})t + \theta] - \frac{A_{LO}A_{im}}{2} \cos((\omega_{LO} - \omega_{im})t)$$

Image Rejection Ratio (IRR)

■ Image-to signal ratio at the output

$$\frac{P_{im}}{P_{sig}}\bigg|_{out} = \frac{A_{im}^2}{A_{RF}^2} \frac{(A_{LO} + \varepsilon)^2 - 2A_{LO}(A_{LO} + \varepsilon)\cos\theta + A_{LO}^2}{(A_{LO} + \varepsilon)^2 + 2A_{LO}(A_{LO} + \varepsilon)\cos\theta + A_{LO}^2}$$

- □ Image-to-signal ratio at the input = A_{im}^2/A_{LO}^2
- □ Image Rejection Ratio (IRR)

$$IRR = \frac{(A_{LO} + \varepsilon)^2 - 2A_{LO}(A_{LO} + \varepsilon)\cos\theta + A_{LO}^2}{(A_{LO} + \varepsilon)^2 + 2A_{LO}(A_{LO} + \varepsilon)\cos\theta + A_{LO}^2} \approx \frac{(\Delta A/A)^2 + \theta^2}{4}$$

- □ IRR ~ 30-40 dB from
 - Gain mismatch ($\triangle A$) ~ 0.2-0.6 dB
 - Phase mismatch (θ) 1-5°

Bandwidth of RC-CR Network

\square $\triangle A/A$ at f_o - $\triangle f$

$$\frac{\frac{1}{sC}}{R + \frac{1}{sC}}, \frac{R}{R + \frac{1}{sC}}$$

$$\frac{\frac{SRC - 1}{sRC + 1}}{\frac{1}{sRC + 1}} = sRC - 1 \sim \Delta \omega RC = \frac{\Delta \omega}{\omega_o}$$

Gain Mismatch from 90° phase shift

- □ Equal gain only at $\omega_{IF} = 1/RC$
- □ R, C can vary with temperature or process.

$$\frac{\Delta A}{A} = \frac{(R + \Delta R)(C + \Delta C)\omega - 1}{\sqrt{1 + (R + \Delta R)^2(C + \Delta C)^2\omega^2}} / \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

□ In the vicinity of ω_{IF} , RC ω =1

$$\frac{\Delta A}{A} \approx \frac{\Delta R / R + \Delta C / C}{\sqrt{2 + \Delta R / R + \Delta C / C}} \div \frac{1}{\sqrt{2}} \approx \frac{\Delta R}{R} + \frac{\Delta C}{C}$$

- \triangle R/R=0.2, IRR= 20 dB
- \square Frequency deviation \rightarrow Gain mismatch
- Required image rejection: 60-70 dB
 - Additional image attenuation from front-end filter possible
- Problems of Hartley architecture
 - Matching requirements are more stringent than those in homodyne receivers.
 - LPF cannot suppress strong interferer → Higher linearity adder required.
 - Loss and noise problem of 90° shift

Weaver Architecture

90° shift in Hartley architecture → second IQ mixer in Weaver architecture

Graphical Analysis of Weaver Architecture

Problem of secondary image in Weaver architecture

- □ Secondary image is not cancelled
- \square $2\omega_2 \omega_{in} + 2\omega_1 \rightarrow 2\omega_2 \omega_{in} + \omega_1$ (image with respect to ω_2)

Weaver Summary

- Weaver Architecture
 - To solve secondary image problem
 - ☐ Final downconversion to DC
 - \square $\omega_1 \pm \omega_2 = \omega_{in}$
 - Incomplete image rejection due to gain and phase mismatch → Problem for both Hartley and Weaver
 - No gain imbalance from RC 90° phase shift network, but secondary image problem

Digital-IF Receivers

- In the dual-IF heterodyne architecture
 - Low frequency operation can be performed in digital domain → digital-IF architecture
 - No I and Q mismatch problem

Sampling IF

- ADC related problems
 - Very small ADC input
 - <100 mV before ADC</p>
 - High sampling speed
 - ☐ For IF 50 to 200 MHz, sampling rate 100 to 400 MHz
 - High dynamic range >14 bits
- Sampling IF architecture
 - ADC: sample-and-hold circuits
 - Downconversion
 - \blacksquare f_{IF} - f_{S}
 - digitized downconverted signal

Subsampling Receivers

- Normally RF ~ LO, IF ~0
- Very low rate sampling of RF
 - Narrow band signal → only a small change
- \square Bandpass signal with bandwidth $\triangle f$
 - Sampled by a rate equal to or greater than 2∆f
 - Low frequency conversion
- No high LO required
- Drawback
 - Aliasing of noise

Contents

5.1 General Considerations

5.2 Receiver Architectures

- 5.2.1 Heterodyne Receivers
- 5.2.2 Homodyne Receivers
- 5.2.3 Image-Rejection Receivers
- 5.2.4 Digital-IF Receivers
- 5.2.5 Subsampling Receivers

5.3 Transmitter Architectures

- 5.3.1 Direct-Conversion Transmitters
- 5.3.2 Two-Step Transmitters

5.4 Transceiver Performance Tests

5.5 Case Studies

- 5.5.1 Motorola's FM Receiver
- 5.5.2 Philips' Pager Receiver
- 5.5.3 Philips' DECT Transceiver
- 5.5.4 Lucent Technologies' GSM Transceiver
- 5.5.4 Philips' GSM Transceiver

Transmitter Architectures

- Role of Transmitter
 - Modulation
 - Upconversion
 - Power amplification
- Analog or digital FM system

- Base band signal directly modulates the carrier generated by VCO
- Output spectrum depends on the amplitude and bandwidth of the modulating signal as well as the modulation index
- Thus base band signal is first conditioned through filtering and/or variable-gain stage ->compensate for variations in VCO characteristics (VCO must be stabilized by a feedback loop)

Digital Phase Modulation Systems

- Data pulse must be shaped to minimize ISI and/or limit the signal BW
- Pulse shaping in analog domain requires bulky filters
 - Shaping by a combination of digital and analog technique
- Base band pulse shaping

Baseband Pulse Shaping in GMSK

☐ GMSK

$$x_{GMSK}(t) = A\cos[\omega_c t + \phi_k(t)]$$

$$\phi_k(t) = \int \sum h(t) * p(t - kT) dt$$

- h(t): impulse response of Gaussian filter
- Digital implementation of filter proves more accurate than an analog counterpart

Cross-talk Issue

lue Induced by phase and gain mismatch of I and Q path

$$\begin{aligned} v_I &= V_0 \sin \omega_{in} t & v_Q &= V_0 \cos \omega_{in} t \\ v_{out}(t) &= V_0 \sin \omega_{in} t \sin \omega_{LO} t + V_0 \cos \omega_{in} t \cos \omega_{LO} t \\ &= V_0 \cos (\omega_{in} - \omega_{LO}) t \end{aligned}$$

Under mismatch

$$\begin{aligned} v_{out}(t) &= V_0 \sin \omega_{in} t \sin \omega_{LO} t + V_0 (1+\varepsilon) \cos \omega_{in} t \cos(\omega_{LO} t + \theta) \\ &\approx \frac{V_0}{2} [1 + (1+\varepsilon) \cos \theta] \cos(\omega_{in} - \omega_{LO}) t - \frac{V_0}{2} (1+\varepsilon) \sin \theta \sin(\omega_{LO} - \omega_{in}) t \\ &+ \frac{V_0}{2} [-1 + (1+\varepsilon) \cos \theta] \cos(\omega_{in} + \omega_{LO}) t - \frac{V_0}{2} (1+\varepsilon) \sin \theta \sin(\omega_{LO} + \omega_{in}) t \end{aligned}$$

■ Measure of I/Q imbalance

$$\frac{Power|_{(\omega_{LO} + \omega_{in})}}{Power|_{(\omega_{LO} - \omega_{in})}} \cong \frac{1 - (1 + \varepsilon)\cos\theta + \varepsilon}{1 + (1 + \varepsilon)\cos\theta + \varepsilon}$$

□ Crosstalk can be negligible if above yields -30dB

PA/Antenna Interface

- □ Transmitter → duplex filter or TDD switch → antenna
- Loss of duplex filter ~ 2 to 3 dB
 - 30 to 50 % loss
 - 1 W power amplifier (PA) \rightarrow more than 300 mW loss
- Loss of TDD switch ~ 0.5 to 1 dB
 - Better efficiency than FDD

Direct Conversion Transmitters

Direct conversion

RF frequency = LO frequency

BPF after mixer to suppress harmonics

Mixer noise is less critical

Since baseband signal is sufficiently strong

Drawback

 Disturbance of LO by the power amplifier – injection pulling

Alleviating LO pulling

- Offset LO frequency
 - Carrier frequency is equal to $ω_1+ω_2$ far from either $ω_1$ or $ω_2$

Two-Step Transmitters

□ Two-step architecture

Circumventing the problem of LO pulling

Advantages

- Since I/Q modulation performed at lower frequencies, I/Q matching is superior
 - ☐ Less crosstalk
- Channel filter may be used at the 1st IF to limit the transmitted noise and spurs in adjacent channel

Difficulty

- 2nd BPF require 50-60dB rejection
 - ☐ Require off-chip component

Contents

5.1 General Considerations

5.2 Receiver Architectures

- 5.2.1 Heterodyne Receivers
- 5.2.2 Homodyne Receivers
- 5.2.3 Image-Rejection Receivers
- 5.2.4 Digital-IF Receivers
- 5.2.5 Subsampling Receivers

5.3 Transmitter Architectures

- 5.3.1 Direct-Conversion Transmitters
- 5.3.2 Two-Step Transmitters

5.4 Transceiver Performance Tests

5.5 Case Studies

- 5.5.1 Motorola's FM Receiver
- 5.5.2 Philips' Pager Receiver
- 5.5.3 Philips' DECT Transceiver
- 5.5.4 Lucent Technologies' GSM Transceiver
- 5.5.4 Philips' GSM Transceiver

Transceiver Performance Tests

- Sensitivity NF requirements
 - MDS: minimum detectable signal
 - GSM standard
 - □ Required MDS -120 dBm
 - SNR 9-12dB for 10⁻³ BER
 - P_{mds} =-174dBm+10logB+NF+SNR
 - NF= 7-10 dB
- □ A common test examines the response of the system to blocking signals by measuring
 - □ In-band intermodulation
 - Out-of-band intermodulation
 - Second-order intermodulation
 - Cross modulation
 - □ Reciprocal mixing (char 7)

Transceiver Performance Tests

Receiver Requirements

- In-band intermodulation (a)
 - \Box C/(N+I) > 9 dB
 - ☐ C: carrier, N: noise,

I: intermodulation

- Out-of-band and secondorder intermodulation (b)
 - \Box C/(N+I) > 9 dB
- Cross modulation (c)
 - \Box C/(N+I) > 9 dB

Unwanted emissions

- Wireless standard and FCC regulation require "modulation mask".
- ACP: adjacent channel power
- IS-54: ACP -26dBc
- IS-95: ACP -42dBc

Contents

5.1 General Considerations

5.2 Receiver Architectures

- 5.2.1 Heterodyne Receivers
- 5.2.2 Homodyne Receivers
- 5.2.3 Image-Rejection Receivers
- 5.2.4 Digital-IF Receivers
- 5.2.5 Subsampling Receivers

5.3 Transmitter Architectures

- 5.3.1 Direct-Conversion Transmitters
- 5.3.2 Two-Step Transmitters

5.4 Transceiver Performance Tests

5.5 Case Studies

- 5.5.1 Motorola's FM Receiver
- 5.5.2 Philips' Pager Receiver
- 5.5.3 Philips' DECT Transceiver
- 5.5.4 Lucent Technologies' GSM Transceiver
- 5.5.4 Philips' GSM Transceiver

Motorola FM single-chip receiver MC3362

- Walkie-talkie, firstgeneration cordless phone
 - No LNA used for simplicity
- Dual IF Conversion
 - 50MHz→10.7MHz → 455kHz
- 25 external components
- 2V supply voltage, 5 mA
- □ 20dB SNR for 0.7µV_{rms} input

Philips UAA2080T single-chip receiver

- ☐ Homodyne:470MHz LO generated by 78.3MHz crystal x3
- 30 external components
- □ 2V, 3mA
- -125dBm sensitivity for BER=0.03, 1.2kb/s

Philips's DECT Receiver

- Dual IF receiver
 - 1880-1900MHz $\rightarrow 110$ MHz $\rightarrow 9.8$ MHz
- □ Direct-conversion transmitter
 - Open-loop GFSK modulation
- PA pulling effect on VCO locking

Lucent GSM

- Receiver
 - 890-915MHz(TX),935-960MHz(RX) \rightarrow 71MHz
- □ Transmitter
 - Direct conversion
 - LO: addition of VCO1 and VCO2 to avoid VCO pulling
- IQ LO generation by divide-by-4
- □ 2.7V 60mA

Philips GSM chip Set

- \square 890-915MHz(TX),935-960MHz(RX) \rightarrow 400MHz
- □ Variable gain LNA +21 to -38 dB
- □ 1300MHz LO1

Receiver Architectures

· AMPS (Advanced Mobile Phone Services)

 NADC (North American Digital Standard) -USDC

• GSM (Global System for Mobile Comm.)

• IS-95 (Interim Standard 95)

DECT (Digital European Cordless Telephone)

