Análisis Energy Drink

Frank Casanova

25/1/2022

Cargamos los datos

Cargamos los datos desde la carpeta donde se encuentra el dataset con la función read.table(), mostramos información sobre los datos con la función str() y mostramo los primeros 5 datos con la función head().

```
Beb_Energ = read.table("../data/EnergyDrink", header = TRUE)
str(Beb_Energ)
'data.frame':
               122 obs. of 3 variables:
$ estudio: chr "Informatica" "Mates" "Industriales" "Informatica" ...
 $ bebe : chr "No" "No" "Si" "Si" ...
                "Mujer" "Hombre" "Mujer" "Hombre" ...
$ sexo
head(Beb_Energ)
      estudio bebe
                     sexo
 Informatica
1
                No Mujer
        Mates No Hombre
3 Industriales Si Mujer
4 Informatica
                Si Hombre
5 Industriales
                No
                   Mujer
        Mates
                No Mujer
```

Con la función summary() mostramos las frecuencias absolutas de cada una de las variables del dataset.

```
summary(Beb_Energ)
```

```
estudio bebe sexo
Length:122 Length:122 Length:122
Class:character Class:character Class:character
Mode:character Mode:character Mode:character
```

Podemos crear tablas que nos presenten la informacion en función de sus variables conla función table().

En este caso se muestran informacion en relacion al sexo y la carrera de estudio.

```
table(Beb_Energ$estudio, Beb_Energ$sexo)
```

	Hombre	Mujer
${\tt Industriales}$	25	12
Informatica	37	16
Mates	9	7
Telematica	12	4

Acá se muestra informacion acerca de la acrrea de estudio, el sexo y como tercer parámetro si la persona bebe o no.

table(Beb_Energ\$estudio, Beb_Energ\$sexo, Beb_Energ\$bebe)

, , = No

	Hombre	Mujer
${\tt Industriales}$	19	10
Informatica	30	11
Mates	8	6
Telematica	10	3

, , = Si

	Hombre	Mujer
${\tt Industriales}$	6	2
Informatica	7	5
Mates	1	1
Telematica	2	1

Probando barplot()

Estudiantes de cada carrera según sexo

Estudiantes de cada carrera que beben

Análisis siguiendo el ejemplo de Joanby

Ejemplo final

```
ftable(HairEyeColor)
```

Juntar color de ojos y pelo sin distinguir por sexo

		Sex	Male	${\tt Female}$
Hair	Eye			
${\tt Black}$	${\tt Brown}$		32	36
	Blue		11	9
	Hazel		10	5
	${\tt Green}$		3	2
${\tt Brown}$	${\tt Brown}$		53	66
	Blue		50	34
	Hazel		25	29
	Green		15	14
Red	Brown		10	16

```
Blue
                  10
      Hazel
                  7
                          7
                  7
      Green
                          7
Blond Brown
                  3
                         4
     Blue
                  30
                         64
      Hazel
                  5
                         5
      Green
                   8
                          8
```

```
male = HairEyeColor[, , "Male"]
female = HairEyeColor[, , "Female"]
datos = as.table(male+female)
datos
```

```
Eye
Hair
        Brown Blue Hazel Green
           68
                20
  Black
                       15
  Brown
          119
                84
                       54
                             29
  Red
           26
                17
                       14
                             14
            7
  Blond
                94
                       10
```

Manipulacion de datos

```
dimnames(datos) = list(
  Pelo = c("Negro", "Marron", "Pelirrojo", "Rubio"),
  Ojos = c("Marrones", "Azules", "Pardos", "Verdes"))
datos
```

```
Ojos
Pelo
            Marrones Azules Pardos Verdes
                                        5
  Negro
                  68
                         20
                                15
  Marron
                 119
                         84
                                54
                                       29
                  26
                         17
                                14
                                       14
  Pelirrojo
  Rubio
                   7
                         94
                                10
                                       16
```

Representacion gráfica

mosaicplot(datos, col = "lightblue", main = "Diagrama de mosaico")

Diagrama de mosaico

Datos numéricos

Pasamos a calcular el numero total de individulos

sum(datos)

[1] 592

colSums(datos)

Marrones Azules Pardos Verdes 220 215 93 64

rowSums(datos)

Negro Marron Pelirrojo Rubio 108 127 71

```
round(prop.table(colSums(datos)),3)

Marrones Azules Pardos Verdes
   0.372   0.363   0.157   0.108

round(prop.table(rowSums(datos)),3)
```

```
        Negro
        Marron Pelirrojo
        Rubio

        0.182
        0.483
        0.120
        0.215
```

Representacion gráfica

Frecuencias relativas de colores de ojos


```
barplot(prop.table(rowSums(datos)),
        col = c("#000000", "#693a0f", "#c24c29", "#c4c278"),
        main = "Frecuencias relativas\n de colores de cabello",
        ylim = c(0,0.5))
```


Freuencias relativas globales y marginales

```
round(prop.table(datos), 3)
          Ojos
Pelo
           Marrones Azules Pardos Verdes
              0.115 0.034 0.025 0.008
 Negro
 Marron
              0.201 0.142 0.091 0.049
 Pelirrojo
              0.044 0.029 0.024 0.024
 Rubio
              0.012 0.159 0.017 0.027
round(prop.table(datos, margin = 1),3)
          Ojos
Pelo
           Marrones Azules Pardos Verdes
 Negro
              0.630 0.185 0.139 0.046
 Marron
              0.416 0.294 0.189 0.101
 Pelirrojo
              0.366 0.239 0.197 0.197
 Rubio
              0.055 0.740 0.079 0.126
round(prop.table(datos, margin = 2),3)
```

Ojos

Pelo	Marrones	Azules	Pardos	Verdes
Negro	0.309	0.093	0.161	0.078
Marron	0.541	0.391	0.581	0.453
Pelirrojo	0.118	0.079	0.151	0.219
Rubio	0.032	0.437	0.108	0.250

Calculando todas las frecuencias con la funcion crosstable().

library(gmodels)
CrossTable(datos)

Cell Contents

						-
1					N	١
Chi-squa	are	e (coı	ntrib	oution	
1		N	/	Row	Total	
1		N	/	Col	Total	
1	N	/	Ta	able	Total	
						-

Total Observations in Table: 592

	Ojos				
Pelo	Marrones	Azules	Pardos	Verdes	Row Total
Negro	68	20	15	5	108
	19.346	9.421	0.228	3.817	
	0.630	0.185	0.139	0.046	0.182
	0.309	0.093	0.161	0.078	
	0.115	0.034	0.025	0.008	I
Marron	119	84	54	29	286
	1.521	3.800	1.831	0.119	
	0.416	0.294	0.189	0.101	0.483
	0.541	0.391	0.581	0.453	
	0.201	0.142	0.091	0.049	I
Pelirrojo	26	17	14	14	71
	0.006	2.993	0.726	5.211	
	0.366	0.239	0.197	0.197	0.120
	0.118	0.079	0.151	0.219	
	0.044	0.029	0.024	0.024	I
Rubio	7	94	10	16	127
	34.234	49.697	4.963	0.375	
	0.055	0.740	0.079	0.126	0.215
	0.032	0.437	0.108	0.250	
	0.012	0.159	0.017	0.027	I

	0.372	0.363	0.157	0.108	l I
Column Total	220	215	J 93	l 64	l 592 l

Representacion gráfica de frecuencias relativas

Frecuencias relativas de colores de cabello en cada color de ojos


```
barplot(prop.table(datos, margin = 2),
    main="Frecuencias relativas de colores\n de ojo en cada color de cabellos",
    legend.text = c("Marrones", "Azules", "Pardos", "Verdes"),
    beside = T,
    col = c("brown", "lightblue", "orange3", "greenyellow"),
    ylim = c(0,0.6))
```


Otra posibles solucion apra la elaboracion del segundo gráfico de frecuencias relativas y así evitar digitar la leyenda, podemos hallar la transpuesta t() de la prop.table().

Frecuencias relativas de colores de ojo en cada color de cabellos

