

Grandezas, Unidades e Prefixos do Sistema Internacional de Unidades (SI)

Grandezas e Unidades SI

Grandeza	Unidade		
Nome	Símbolo	Nome	Símbolo
potencial eléctrico	U	volt	V
tensão, diferença de potencial ou queda de potencial	U, E	volt	V
corrente eléctrica	I	ampere	A
energia	W	joule	J
potência	P	watt	W
frequência	f	hertz	Hz
resistência eléctrica	R	ohm	Ω
resistividade	ρ	ohm metro	Ω ·m
capacidade eléctrica	C	farad	F
permitividade	3	farad por metro	F⋅m ⁻¹
coeficiente de auto-indução	L	henry	Н
permeabilidade	μ	henry por metro	$H \cdot m^{-1}$
momento do binário	T	newton metro	N·m

Prefixos SI

Múltiplos

Nome	Símbolo	Factor multiplicador
yotta	Y	$10^{24} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000\$
zetta	Z	$10^{21} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000$
exa	E	$10^{18} = 1\ 000\ 000\ 000\ 000\ 000\ 000$
peta	P	$10^{15} = 1\ 000\ 000\ 000\ 000\ 000$
tera	T	$10^{12} = 1\ 000\ 000\ 000\ 000$
giga	G	$10^9 = 1\ 000\ 000\ 000$
mega	M	$10^6 = 1\ 000\ 000$
quilo	k	$10^3 = 1000$
hecto	h	$10^2 = 100$
deca	da	$10^1 = 10$

Submúltiplos

Nome	Símbolo	Factor multiplicador
deci	d	$10^{-1} = 0.1$
centi	c	$10^{-2} = 0.01$
mili	m	$10^{-3} = 0,001$
micro	μ	$10^{-6} = 0,000\ 001$
nano	n	$10^{-9} = 0,000\ 000\ 001$
pico	p	$10^{-12} = 0,000\ 000\ 000\ 001$
fento	f	$10^{-15} = 0,000\ 000\ 000\ 000\ 001$
ato	a	$10^{-18} = 0,000\ 000\ 000\ 000\ 000\ 001$
zepto	Z	$10^{-21} = 0,000\ 000\ 000\ 000\ 000\ 000\ 001$
yocto	У	$10^{-24} = 0,000\ 000\ 000\ 000\ 000\ 000\ 000\ $

Unidades a Converter ao SI

Nome	Símbolo	Valor correspondente no SI
quilowatt-hora	kWh	3600000J
cavalo-vapor	cv	735,49875W ≅ 735W
horse power (metric)		735,49875W ≅ 735W
cheval vapeur (França)	CV	735,49875W ≅ 735W
pferdestarke (Alemanha)	PS	$735,49875W \cong 735W$
horse power(550ft·lbf/s)	$hp (1hp = 550ft \cdot lbf/s)$	745.69987W ≅ 746W
horse power (electric)		746W
horse power (Reino Unido)		745,7W
onça-força (ounce-force)	ozf	0,27801385N
libra-força (pound-force)	lbf	4,4482216N
polegada (inch)	in, ''	0,0254m
pé (foot)	ft	0,3048m
onça-força polegada (ounce-force inch)	oz·in	0,00706155Nm
rotação por minuto	rot·min ⁻¹ , r.p.m.	0,104720rad.s ⁻¹

1. Corrente Eléctrica, Potencial Eléctrico e Tensão

A corrente eléctrica (I) tem como unidade o ampere (A).

O potencial eléctrico que existe num ponto A (U_A) tem como unidade o volt (V).

A tensão, diferença de potencial ou queda de potencial que existe entre um ponto A e um ponto B (U_{AB}) tem como unidade o volt (V) e é dada por

$$\mathbf{U}_{\mathbf{A}\mathbf{B}} = \mathbf{U}_{\mathbf{A}} - \mathbf{U}_{\mathbf{B}}$$

Um **componente de um circuito eléctrico** tem sempre **dois ou mais terminais**. Num componente de dois terminais, a corrente que entra por um terminal é a mesma que sai pelo outro.

Diz-se (porque é verdade) que...

- uma corrente eléctrica passa num componente de um circuito.
- um potencial eléctrico <u>existe num</u> ponto.
- uma tensão existe entre dois pontos.

Notações:

- Usam-se setas rectas para indicar os sentidos de correntes eléctricas.
- Usam-se setas curvas para indicar os sentidos de tensões (quedas de potencial).

O **sentido verdadeiro da corrente eléctrica** que passa num componente de um circuito eléctrico é o oposto ao do movimento dos electrões que constituem essa corrente.

Em Física, o sentido real da corrente eléctrica que passa num componente de um circuito eléctrico é o do movimento dos electrões que constituem essa corrente; o sentido convencional da corrente eléctrica é o oposto ao desse movimento. Assim, o sentido verdadeiro da corrente eléctrica, usado em Electrotecnia e em Electrónica, coincide com o sentido convencional da corrente eléctrica usado em Física.

O **sentido positivo da corrente eléctrica** que passa num componente é convencionado, podendo coincidir ou não com o sentido verdadeiro da corrente.

O **potencial eléctrico que existe num ponto** só fica determinado se estiver definida uma referência para os potenciais eléctricos. Por definição, o valor do potencial eléctrico de referência é zero.

Pode escolher-se, arbitrariamente, o potencial de qualquer ponto de um circuito eléctrico como referência para os potenciais eléctricos. Em geral, a escolha da referência faz-se por forma a simplificar a análise do circuito.

É frequente usar o potencial da **terra** ou o potencial da **massa** (*chassis*) dos aparelhos eléctricos como referência para os potenciais eléctricos.

O **potencial eléctrico que existe num ponto** tem o valor da tensão existente entre esse ponto e o ponto cujo potencial é usado como referência para os potenciais eléctricos.

O **potencial eléctrico que existe num ponto** depende da referência escolhida para os potenciais eléctricos e pode assumir qualquer valor.

A **tensão** existente entre dois pontos tem um valor que não depende da referência escolhida para os potenciais eléctricos.

O **sentido verdadeiro da tensão** existente entre dois pontos é do ponto de potencial superior para o ponto de potencial inferior.

O **sentido positivo da tensão** existente entre dois pontos é convencionado, podendo coincidir ou não com o sentido verdadeiro da queda de potencial.

Para correntes e tensões **constantes**...

A B	- A seta indica o sentido verdadeiro da corrente que atravessa o componente.
	- Dentro do componente, a corrente vai do terminal A para o terminal B.
	- A corrente que atravessa o componente tem um valor de 10A.
	- A seta indica o sentido positivo da corrente que atravessa o componente.
A -10A B	- Dentro do componente, a corrente vai do terminal B para o terminal A.
	- A corrente que atravessa o componente tem um valor de 10A.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- A seta indica o sentido positivo da corrente que atravessa o componente.
	- Se, dentro do componente, a corrente for do terminal A para o terminal B, então o sentido positivo da corrente coincide com o sentido verdadeiro da corrente e I _{AB} >0.
10V	- A seta indica o sentido verdadeiro da tensão existente entre os terminais A e B do componente.
A B	- O potencial no terminal A é superior ao potencial no terminal B.
	- Entre os terminais existe uma diferença de potencial de 10V.
	- A seta indica o sentido positivo da tensão existente entre os terminais A e B do componente.
-10V	- O potencial no terminal B é superior ao potencial no terminal A.
	- Entre os terminais existe uma diferença de potencial de 10V.
A B	- A seta indica o sentido positivo da tensão existente entre os terminais A e B do componente.
	 Se o potencial no terminal A for superior ao potencial no terminal B, então o sentido positivo da tensão coincide com o sentido verdadeiro da tensão e U_{AB}>0.

<u>Nota</u>: Para manter os desenhos simples, **não se representa o resto do circuito, que está ligado aos terminais A e B**. Sem esse circuito não poderiam existir as correntes representadas.

2. Condutor Ideal

Um **condutor ideal** mantém uma **tensão de 0V entre os seus terminais**, independentemente do valor e do sentido da corrente que o atravessa. Todos os seus pontos estão **sempre ao mesmo potencial**.

Ao ligar um condutor ideal entre dois pontos provoca-se um **curto-circuito** entre esses pontos. Mas **condutor ideal** e **curto-circuito** não são sinónimos, uma vez que é possível provocar um curto-circuito entre dois pontos com um condutor não ideal.

Representação de dois condutores ideais isolados um do outro:

Representação de dois **condutores ideais ligados** um ao outro:

3. Circuito Aberto

Um circuito aberto entre dois pontos é atravessado por uma corrente de 0A, independentemente do valor e do sentido da tensão que existe entre esses pontos.

4. Leis de Kirchoff

4.1 Lei das Correntes

A soma algébrica das correntes que convergem para um ponto é igual à soma algébrica das correntes que divergem desse ponto.

Exemplo:

Nota: nas várias situações representadas as correntes são fisicamente as mesmas.

Algumas consequências da Lei das Correntes:

Se houver apenas dois condutores ligados a um ponto, então a corrente num condutor é a mesma que a corrente no outro condutor.	3A 3A
Se um componente tiver apenas dois terminais, então a corrente que entra por um terminal é a mesma que sai pelo outro.	3A 3A
Se houver apenas dois condutores ligados a um circuito, então a corrente num condutor é a mesma que a corrente no outro condutor.	3A 3A
Se houver apenas um condutor ligado a um ponto, então a corrente nesse condutor é nula.	0A
Se houver apenas um condutor ligado a um circuito, então a corrente nesse condutor é nula.	0A