Определение предела последовательности

- 1. Пусть K множество всех сходящихся последовательностей, а K_1, K_2, \ldots, K_8 — множества всех последовательностей, удовлетворяющих соответственно условиям:
 - 1) $\exists \varepsilon > 0 \ \exists N \ \exists n \ge N : |x_n| < \varepsilon$:
 - 2) $\exists \varepsilon > 0 \ \exists N \ \forall n \ge N : |x_n| < \varepsilon$:
 - 3) $\exists \varepsilon > 0 \ \forall N \ \exists n \ge N : \ |x_n| < \varepsilon$:
 - 4) $\forall \varepsilon > 0 \ \exists N \ \exists n \ge N : |x_n| < \varepsilon$:
 - 5) $\exists \varepsilon > 0 \ \forall N \ \forall n \ge N : |x_n| < \varepsilon$:
 - 6) $\forall \varepsilon > 0 \; \exists N \; \forall n \geqslant N : \; |x_n| < \varepsilon$;
 - 7) $\forall \varepsilon > 0 \ \forall N \ \exists n \ge N : \ |x_n| < \varepsilon$:
 - 8) $\forall \varepsilon > 0 \ \forall N \ \forall n \ge N : |x_n| < \varepsilon$:

Какие из следующих включений верны: а) $K_6 \subset K_2$; b) $K_2 \subset K_6$; c) $K_7 \subset K_2$;

- d) $K_8 \subset K$; e) $K \subset K_8$;
- 2. Доказать по определению сходимости

a)
$$\lim_{n \to \infty} (\sqrt{n} - \sqrt{n-1}) = 0$$
; b) $\lim_{n \to \infty} \frac{3n^2}{n^2 + 4n + 3} = 3$ c) $\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin n!}{n+1} = 0$.

3. Доказать, что последовательности расходятся

a)
$$x_n = (-1)^n$$
, b) $b_n = n^2$; c) $c_n = \sin n$;

- 4. Найти пределы последовательностей.
 - (a) $a_n = q^n$, $q \in \mathbb{R}$; (d) $a_n = \frac{n^2}{2n}$, + обощить результат;
 - (b) $a_n = \sqrt[n]{a}$, a > 0; (e) $a_n = \frac{2^n}{n!}$, + обобщить результат;
 - (c) $a_n = \sqrt[n]{n}$; (f) $a_n = \frac{\ln n}{\sqrt{n}}$, + обощить результат.

Определение предела последовательности

- 1. Пусть K множество всех сходящихся последовательностей, а K_1, K_2, \ldots, K_8 множества всех последовательностей, удовлетворяющих соответственно условиям:
 - 1) $\exists \varepsilon > 0 \ \exists N \ \exists n \ge N : |x_n| < \varepsilon$:

Программная инженерия, ФКН НИУ ВШЭ

- 2) $\exists \varepsilon > 0 \ \exists N \ \forall n \ge N : |x_n| < \varepsilon$:
- 3) $\exists \varepsilon > 0 \ \forall N \ \exists n \ge N : \ |x_n| < \varepsilon$:
- 4) $\forall \varepsilon > 0 \ \exists N \ \exists n \ge N : |x_n| < \varepsilon$:
- 5) $\exists \varepsilon > 0 \ \forall N \ \forall n \ge N : |x_n| < \varepsilon$:
- 6) $\forall \varepsilon > 0 \; \exists N \; \forall n \geqslant N : \; |x_n| < \varepsilon$;
- 7) $\forall \varepsilon > 0 \ \forall N \ \exists n \ge N : \ |x_n| < \varepsilon$:
- 8) $\forall \varepsilon > 0 \ \forall N \ \forall n \ge N : |x_n| < \varepsilon$;

Какие из следующих включений верны: a) $K_6 \subset K_2$; b) $K_2 \subset K_6$; c) $K_7 \subset K_2$;

- d) $K_8 \subset K$; e) $K \subset K_8$;
- 2. Доказать по определению сходимости

a)
$$\lim_{n \to \infty} (\sqrt{n} - \sqrt{n-1}) = 0$$
; b) $\lim_{n \to \infty} \frac{3n^2}{n^2 + 4n + 3} = 3$ c) $\lim_{n \to \infty} \frac{\sqrt[3]{n^2 \sin n!}}{n+1} = 0$.

3. Доказать, что последовательности расходятся

a)
$$x_n = (-1)^n$$
, b) $b_n = n^2$; c) $c_n = \sin n$;

- 4. Найти пределы последовательностей.
 - (a) $a_n = q^n$, $q \in \mathbb{R}$; (d) $a_n = \frac{n^2}{2n}$, + обощить результат;
 - (b) $a_n = \sqrt[n]{a}$, a > 0; (e) $a_n = \frac{2^n}{n!}$, + обобщить результат;
 - (c) $a_n = \sqrt[n]{n}$; (f) $a_n = \frac{\ln n}{\sqrt{n}}$, + обощить результат.