List 6

Michał Balcerek Computer Simulations of Stochastic Processes

04.2022

1 Codifference as a measure in infinite variance case

Let us define the codiffence between random variables X and Y in the following way:

$$\tau_{X,Y} = \log\left(\mathbb{E}\exp(i(X-Y))\right) - \log\left(\mathbb{E}\exp(iX)\right) - \log\left(\mathbb{E}\exp(-iY)\right). \tag{1}$$

Formula (1) can be considered as a linear combination that includes log values of X - Y, X and -Y's characteristic functions.

Problem 1. Implement the code for a codifference measure given by formula (1). Use the standard estimator for characteristic function.

Problem 2. Implement Cholesky method of simulation of multivariate normal distribution for given expectation vector and covariance matrix.

Problem 3. Let us consider a normal random vector $\mathbf{Z} = [X, Y]'$ with mean and covariance matrix

$$\mu_{\mathbf{Z}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad and \quad Cov_{\mathbf{Z}} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix},$$
(2)

Calculate the codifference for marginals of vector \mathbf{Z} . Compare its value with the covariance between the marginals of \mathbf{Z} .

Problem 4. Verify that the codifference is symmetrical in case of model in Problem 3, that is $\tau_{X,Y} = \tau_{Y,X}$.

Problem 5. Calculate the codifference and covariance for marginals of two-dimensional α -stable vector for different $\alpha \in (0,2]$ and the spectral measure as follows:

- a) indepedent symmetric marginals:
 - $\gamma_1 = 0.25 \ at \ \mathbf{s}_1 = (1,0),$
 - $\gamma_2 = 0.25 \ at \ \mathbf{s}_2 = (0, 1),$
 - $\gamma_3 = 0.25 \ at \ \mathbf{s}_3 = (-1, 0),$

•
$$\gamma_4 = 0.25 \ at \ \mathbf{s}_4 = (0, -1).$$

b) symmetric spectral measure:

•
$$\gamma_1 = 0.25 \ at \ \mathbf{s}_1 = (\sqrt{2}/2, \sqrt{2}/2),$$

•
$$\gamma_2 = 0.25 \ at \ \mathbf{s}_2 = (-\sqrt{2}/2, \sqrt{2}/2),$$

•
$$\gamma_3 = 0.25 \ at \ \mathbf{s}_3 = (-\sqrt{2}/2, -\sqrt{2}/2),$$

•
$$\gamma_4 = 0.25$$
 at $\mathbf{s}_4 = (\sqrt{2}/2, -\sqrt{2}/2)$.