

Offen im Denken

Master Thesis

on the topic of

Modelling and optimization of ship's fuel consumption using Random Forest Regression (RFR)

Submitted to the Faculty of Engineering of University Duisburg Essen

by

Hibatul Wafi 3021919

Betreuer: M. T. Muhammad Fakhruriza Pradana

1. Gutachter: Prof. Dr.-Ing. B. Noche

2. Gutachter: Prof. Dr. Ucker

Studiengang: ISE General Mechanical Engineering

Studiensemester: Summer semester 2023

Datum: 04.05.2023

Contents

1	Intr	oduction	4	
	1.1	Research Objective, Contributions and Boundary	4	
2	The	oretical Background	7	
	2.1	Literature Review	7	
		2.1.1 Modelling Approach for Ship Operation	7	
		2.1.2 Use of AIS Data for Scientific Research	8	
		2.1.3 Prediction Performance of Random Forest	8	
		2.1.4 Conclusion of Literature Review	9	
	2.2	Tree-based model	9	
		2.2.1 Decision Tree	10	
		2.2.2 Random Forest	12	
		2.2.3 Extra-Trees (Extremely Randomised Trees)	13	
	2.3	Introduction to AIS data	13	
		2.3.1 Current correction	14	
	2.4	Calculation of Fuel Oil Consumption	16	
3	Rese	earch Methodology	17	
	3.1		17	
		3.1.1 Data Preprocessing	18	
	3.2	Feature Selection	18	
	3.3	Modelling	18	
		3.3.1 Model Hyperparameter Optimisation	18	
		3.3.2 Model Validation	18	
		3.3.3 Methodology Application	18	
	3.4	Data Analysis	20	
	3.5	Modelling	23	
	3.6	Predicting STW	24	
4	Result and Discussion			
	4.1	Model Evaluation	26	
5	Summary and Outlook 28			
Re	ferer	ices	29	

LIST OF TABLES

LIST OF TABLES

List of Tables

1	Comparison of tree based model	13
2	Structure of AIS data [31]	15
3	Structure of fused dataset	19
4	Model performance	26
5	Model performance	26

LIST OF FIGURES

LIST OF FIGURES

List of Figures

1	Example of partition space [25]	10
2	Example of partition tree [25]	10
3	Prediction of two Decision tree regression models [12]	11
4	Regularising a Decision Tree regressor [12]	12
5	Scheme of proposed methodology	17
6	Histogram of the features	21
7	Correlation Heat Map	23
8	Correlation Heat Map	27

1 Introduction

The research on efficient ship operation is a direction that is being actively pursued by marine industry stakeholders as efficient ship operations equates to increase in profitability. One of the determining factors is the reduction of Fuel Oil Consumption (FOC). FOC takes up considerable portion in ship's operating cost. This is clearly indicated through findings made by Ronen [1] and Stopford [2]. The former mentioned that FOC consumption of a large ship potentially constitute to 75% of the total ship operating cost while the latter noted that FOC makes up to two-thirds of vessel voyage cost and over one-quarter of vessel's overall cost.

With that, maritime industry stakeholder actively searches for inexpensive approach to reduce FOC. As such, they investigate ways to optimise operational measures as technical solutions are expensive [3]. The operational measures include the inclusion of weather/environmental routing, speed optimisation, trim optimisation and virtual (just-in/time) arrival policy [3]. It is noted by Beşikçi et al. [4] that lowering ship speed will have the greatest impact in fuel economy, reducing the ship speed by 2-3 Knots could halve the operating cost of shipping company [2,5]. Beşikçi et al. further elaborated that the main cause of this is the nonlinear relationship between ship speed and fuel consumption. Ronen [1,6] and Wang et al. [7] approximated that fuel consumption can be derived through third order function of the ship speed.

Due to volatility and ever-increasing bunker fuel price, developing a model that could accurately predict ship speed would be beneficial to forecast the ship's FOC. The model could potentially help maritime industry stakeholder make decisions at the most opportune moment. Data driven i.e., machine learning approaches have been attempted by several authors in different literatures to model fuel consumption and reported good results in its predictive performance [4,8–11]. However, powerful machine learning models are usually unintuitive making it difficult to interpret its decisions [12]. This brings us to Random Forest, a powerful model that offers partial interpretability in their decisions. With this consideration, modelling using Random Forest will be the focus of this thesis.

1.1 Research Objective, Contributions and Boundary

This thesis aims to predict the ship's speed captured by Automatic Identification System (AIS) using random forest regressor. In this study, this speed shall be designated as the ship's Speed Over Ground (SOG). The modelling uses fused hourly data from AIS information of Hammershus Ro-Ro ferry and local meteorological weather data in region of travel. Subsequently, the ship actual speed, which is designated as speed through water (STW), shall be derived from the predicted SOG to enable estimation for fuel consumption over different journey periods. The modelling is performed in Python programming language using machine learning packages sklearn offered by Pedregosa et al. [13].

Using this approach, we shall raise the following research questions (RQs), namely:

- **RQ1**. Is it feasible to fuse AIS data and meteorological data to accurately predict the ship's SOG?
- **RQ2**. During modelling, which parameters have the greatest impact in increasing the model's predictive performance?
- RQ3. During evaluation, what are the performance measures that should be considered to help us gain the most information out of the model's behaviour

To answer the research questions, the following research boundaries are set:

- Random forest has the capability to solve both classification and regression problem. Because the target variable, SOG, is continuous, we will only adopt the regression algorithm of random forest.
- The focus of this work is a detailed study on the performance and possible optimisation configuration of random forest as predictor for the target variable.
 As such, we will not perform exhaustive comparison study between different machine learning models.
- The estimation for fuel consumption shall be done using simple formulation by Ronen [1,6]. This thesis will not consider the more comprehensive method such as the method proposed by Kim et al. [14] as the focus of this work is to estimate the SOG using random forest-
- The Hammershus Ro-Ro ship sails between port of Køge, Rønne, Ystad and Sassnitz. However, we will only consider the journey between port of Køge, Rønne and Ystad as part of the data for the voyage between port of Rønne and Sassnitz are missing.

The use of AIS data provides the following contributions as indicated by Rakke [15]:

- Avoid expenses of purchasing (possibly) unaffordable ship information from online database and shipping companies.
- Independent of commercial parties, as information are available in public domain.

Additionally, this work will provide the following contribution:

Robust modelling approach that requires minimal data pre-processing and minimal model configuration.

The remaining sections of this study is organized as follows. Section 2 include literature review pertaining to relevant past and present research. Theory to random forest will also be discussed in Section 2.2.2. Section 3 discuss the methodology used to develop random forest model used for SOG prediction. The discussion comprises analysis of training data, feature selection and reduction and selection of tree tuning parameter. In Section 4, the model will be evaluated using appropriate performance metrics and their effectiveness will be compared. The summary of this study and reflections of the research process will be discussed in Section 5.

2 Theoretical Background

The literature review in Section 2.1 presents past and present research on utilisation of machine learning method to achieve energy efficient operation. The concept of modelling ship operation using machine learning model is explained in Section 2.1.1. Performance of random forest as predictor in previous research are discussed in Section 2.1.3. Brief conclusion of the literature review is presented in Section 2.1.4.

2.1 Literature Review

2.1.1 Modelling Approach for Ship Operation

The work by Yan et al. [16] provides a thorough review of the different attempts that have been made by different authors to predict different parameters of ship's operation, this includes ship's fuel consumption. Per definition by Haranen et al. [17], the modelling of ship operation is categorised into White Box Model (WBM), Black Box Model (BBM) and Grey Box Model (GBM). Machine learning approach is categorised as BBM, BBM approach is defined as purely data driven approach requiring no prior knowledge about the ship operation. The literature review by Yan et al. [16] indicated that about 42% of the research utilised BBM model based on machine learning approach.

Yan et al. [16] elaborated further in their work, that BBMs in general have a good fitting ability for unseen data. BBMs based on machine learning model are able to generalise better compared to BBMs based on statistical modelling. With increasing amount of data, better generalisation performance and handling noisy of data should be expected in a BBM model. However, for this same reason, the quality of BBM model is highly dependent on data quantity and quality. BBM model are also generally complex making it challenging to analyse and explain. Shipping industry experts also are having difficulty accepting models that violate the domain knowledge.

From the work of Yan et al. [16], it can be concluded that model accuracy and appropriateness is a significant factor that should be considered when modelling. The model should obey shipping domain knowledge and an intuitive model will help shipping experts analyse its accuracy. For this reason, tree-based model will be considered as it is known for its intuitiveness and interpretability [18]. Breiman et al. [19] even claimed that random forest is the "most interpretable" and "most accurate". With that, Section 2.1.3 will focus on predictive performance of random forest against different machine learning model on different data types and data source.

2.1.2 Use of AIS Data for Scientific Research

Apart from its intended use as collision avoidance system AIS data have seen potential usage in the field of scientific research. In the third Green House Gas (GHG) study by Smith et al. [20], uses AIS to estimate global shipping emission inventories. Rakke [15] proposed a methodology termed ECAIS to calculate ship emissions based on the fuel consumption from AIS data. Through Holtrop-Mennen approximation and literature approximation, the ship's power propulsion can be determined which is subsequently used to predict specific fuel consumption. Wen et al. [21] attempted to minimise the Energy Efficiency Operational Indicator (EEOI) using green routing. Recent research by Kim et al. [22] used publicly accessible AIS data, ship static data and environmental data to estimate EEOI without requiring the actual FOC. The study used big data technology as public data are of large capacity. Generally, the study using AIS data is done to achieve independence from the need to use commercial database. The detail of AIS data will be discussed in Section 2.3

2.1.3 Prediction Performance of Random Forest

Majority of the BBM approach based on ML is dominated by ANN [16]. However, there are literatures that considered decision tree-based modelling approach to predict fuel consumption. Some example of decision tree based modelling include Decision Tree (DT), Random Forest (RF) and Extra Tree (ET). Soner et al. [23] implemented tree-based model, which include bagging, random forest (RF), and bootstrap. In their work, they used data captured from onboard sensors of a ferry to predict speed through water and fuel consumption per hour. From the test dataset, the random forest model described root mean square error (RMSE) of 0.34 Knots during its prediction of Speed Through Water (STW). Yan et al. [24] used random forest (RF) model to minimise fuel consumption for a voyage of a dry bulk ship. The model use ship operational data and sea and weather data from noon report and EMCWF. The prediction performance report from this literature reported mean absolute percentage error (MAPE) of 7.91%.

The research by Gkerekos et al. [9] highlighted the performance of different machine learning models to predict ship's fuel consumption per day using both noon data and automated data logging and monitoring (ADLM) system from a bulk carrier. This research concludes that tree based model displayed good prediction performance on both noon data and sensor based data. Using default parameters, RF model obtained R^2 score of 87.55% and 96.26% for noon-data datasets and sensor-based data respectively. It is also noted that it that the data from a 3-month period in ADLM system would be sufficient to create a model with better performance than the model generated by noon data from a collection period of 2.5 year. This literature also concluded that automatic sensor-based data have the potential to increase the model accuracy score, R^2 , by 5 – 7% across different machine learning models.

Li et al. [3] performed more extensive research on the effects of data fusions between

meteorological data, ship voyage data and AIS data on different machine learning models to predict the ship's FOC. This research highlighted the advantage of fusing meteorological data and ship voyage data. The evaluation on different model performance indicated that RF are among preferable model candidate that could be used in commercial scale due to its good prediction capability and robustness against different datasets. The findings in this research reported that R^2 score are above 96% when deployed on the best datasets and achieved R^2 score in range between 74% - 90% over test data. This literature also exhibited the robustness of RF, as it attained the lowest standard deviation at 0.015 of the R^2 score when evaluated against random splits of datasets.

Abebe et al. [10] used different approach in their research by predicting the ship's Speed Over Ground (SOG) instead of FOC. In this work, AIS data and noon-report weather data from 14 tracks and 62 ships are used for the SOG prediction. The observation showed that RF model achieved RMSE of 0.25 knots, while using 489 seconds for training. Decision tree achieved RMSE of 0.36 knots, taking up 52 seconds for training. This shows that RFR outperforms DTR at cost of computational power.

2.1.4 Conclusion of Literature Review

This literature review described the capability of Random Forest Regressor to predict fuel consumptions and ship speed, irrespective of data source and type of data used. Promising results from different performance measures across different literatures indicated the capability random forest model as predictor. As such, this thesis aims to find optimisation possibilities to extract maximum prediction performance from random forest. Due to the nonlinear, third order function estimate of fuel consumption [1,6]. Accurate prediction of ship speed is paramount to ensure optimal ship operation resulting in increase of profitability.

2.2 Tree-based model

Random forest belongs to the family of tree-based model and its functional principle stems from decision tree. Decision tree is a non-parametric model that can perform both classification and regression tasks for discrete variable and continuous variable. It is a powerful algorithm, capable of fitting complex datasets. Tree-based model requires very little to no data pre-processing [12,25]. To grasp the concept of random forest, The principle working of decision tree will be introduced in depth in Section 2.2.1. It is then followed by Section 2.2.2 which presents the principle function behind random forest. Brief explanation for Extra-Trees, method introduced to further improvise random forest, will be presented in Section 2.2.3.

2.2.1 Decision Tree

Decision tree is a white box model¹ [12]. In machine learning sense, this means that the model is intuitive, and the structure of the model is interpretable. Thus, the structure of the model can be analysed in detail. To train Decision Trees, Scikit-Learn [13] uses the *Classification and Regression Tree* (CART) algorithm [18]. Partition space shown by Figure 1 are used to illustrate the decision of CART algorithm. This process can be alternatively represented by the binary tree of Figure 2, observation that satisfies the condition are assigned to the left branch and the opposite is assigned to the right branch. The binary tree representation can be especially helpful when multiple input variables are involved, as the responses can be represented by a single tree [25].

Figure 1: Example of partition space [25] **Figure 2:** Example of partition tree [25]

Now, we need to understand the principle of selection for the feature k_t and threshold t_k . We shall first start with the principle of selection of the threshold t_k . Assuming a case with single feature k and response Y, with m data points. The algorithm starts by looking for possible thresholds. This is determined by calculating the splitting value.². Then, the mean of data points of the left and right partition space is calculated as seen in Figure 3. This step is then followed by calculating the mean squared error (MSE) of each data points in its respective partition space. Subsequently, the MSE from the respective partition space is summed. The process is then recursively repeated until a threshold t_k that produce minimum sum of MSE is determined. This algorithm is defined by the following cost function $J(k, t_k)$. [12]:

¹This is not to be interchanged with the definition described by Haranen et al. [17] regarding modelling of ship operation.

²For example, suppose there are data points at k = [0.2, 0.4], then the splitting value is the value in between, i.e., $t_k = 0.3$

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}} \begin{cases} \text{MSE}_{\text{node}} = \sum_{i \in \text{node}} (\hat{y}_{\text{node}} - y^{(i)})^2 \\ \hat{y}_{\text{node}} = \frac{1}{m_{\text{node}}} \sum_{i \in \text{node}} y^{(i)} \end{cases}$$
(2.1)

Once complete, then the regions is further split into two more regions and this process is recursively continued until a stopping rule is applied. The stopping rule are either when the tree reaches the maximum depth, (This is controlled by the parameter max_depth in $Scikit_Learn$), or when it cannot find a split that can further reduce MSE. This best split also corresponds to the best possible fit to the predicted value. Same principle is also applied when multiple features are present. Consider there are k_t features, then for each respective features $k_1, k_2, ..., k_t$, The MSE for each of the features is calculated using the cost function $J(k, t_k)$. The feature that can *minimise* the cost function will be selected as the root of the tree. The tree is then grown further by recursively repeating this process [12, 25].

Figure 3: Prediction of two Decision tree regression models [12]

While powerful, decision tree unfortunately suffers from overfitting when the model is unconstrained. Decision tree makes very few assumptions regarding the training data. Therefore, it will adapt to the training data and fitting it very closely [12]. Additionally, an individual tree tends to be unstable, when the data is altered, a completely different set of splits might be found [25,26]. Therefore, it is necessary to regularise i.e., restrict the decision tree's freedom during the training. Overfitting could be reduced by controlling how deep the tree can grow through the max_depth parameter. Additionally, setting the amount of minimum number of samples a leaf node has, through min_samples_leaf can alleviate overfitting as well, as shown in Figure 4. However, to address the fundamental drawbacks of decision tree, we shall look into random forest.

Figure 4: Regularising a Decision Tree regressor [12]

2.2.2 Random Forest

To understand random forest, the concept of ensemble method shall first be understood. Ensemble is defined as group of predictors such as classifier or regressor. Predictions are aggregated across multiple predictors, for regression task, the prediction is the average across the predictors. This principle is applied to random forest, a group of decision trees is trained on different random set of training data. For regression task, this means the prediction value is the average of the prediction across the decision trees. Such ensemble of decision trees is called *Random Forest* [19,25,27].

Ensemble methods achieve the best performance when the predictors are as independent to one another. In statistical sense, this can be achieved by reducing correlation among the trees. This can be realised by adding randomness during tree construction process. For this purpose, random forest utilises *bagging* [28] method (short for *bootstrap aggregating*) during the training process. First, bootstrap sample is created, this means that a sample of the dataset is randomly selected and allowed to appear more than once. This sampling technique is referred to as sampling *with* replacement. Once predictors are trained, then the prediction of the new instance is *aggregated* across the predictors. [12, 25, 26]

To add further randomness, random forest involves random selection of input features k that are considered to split the tree. This means that the feature k that will be used to split the tree is selected from this random subset of feature. The selection for the best feature to be used as the root of the tree and its subsequent node, as well as the stopping rule for the tree's growth is similar to that of decision tree. [12,25,26]

These measures introduced in random forest address the tendency of decision tree to overfit. In fact, the instability of decision tree mentioned in Section 2.2.1 is exploited in random forest to gain randomness during construction of the tree. Experience from Hastie et al. [25] shown that random forest requires minimal parameter tun-

ing to achieve satisfactory performance while Kuhn et al. [26] reported that tuning parameter does not have a drastic effect on performance.

However, what random forest gains in predictive performance, loses in interpretability. Random forest is considered as Black Box Model (BBM) [12,29]. ³ The randomness means that it is challenging to analyse and describe the decisions made during the selection of the samples and during the selection of the input features. Nevertheless, the interpretability of a single tree in a random forest still holds. As it is still possible to traverse through the tree to reach the predicted value.

2.2.3 Extra-Trees (Extremely Randomised Trees)

Additionally, extra-trees (Extremely Randomised Trees) is introduced by Geurts et al. [30] to further randomise random forest. The key difference lies on how each split is selected; in extra-trees each tree split is selected in random instead of searching for the best split. This technique saves computational power, as searching for best split is one of the tasks that takes up most computational power [12]. Extra-trees also do not bootstrap the samples, which mean it samples without replacement.

Overview of the tree-based model discussed in Section 2.2.1 and Section 2.2.2 can be summarised in Table 1:

Model	Decision Tree	Random Forest	Extra-Trees
Number of trees	1	Many	Many
Features considered for	All features	Random subset of features	Random subset of features
split at each node			
Bootstrapping	Not applied	Yes	No
Split Rule	Best split	Best split	Random split

Table 1: Comparison of tree based model

2.3 Introduction to AIS data

Automatic Identification System (AIS) is an automated tracking system onboard ships to automatically transmit information about the ship to other ships and coastal authorities. As part of the revised new chapter V of SOLAS⁴ regulation. In 2000, International Maritime Organization (IMO) requires installation of AIS class A equipment on all ships of 300 gross tonnage and upward engaged on international voyages, cargo ships of 500 gross tonnages and upwards not engaged on international voyages and all passenger ships irrespective of size. This requirement is then made compulsory to all ships by 2004. [15,31]

³Again, not to be interchanged with the definition described by Haranen et al. [17] regarding modelling of ship operation.

⁴International convention for the Safety of Lives at Sea

AIS uses Very High Frequency (VHF) with special protocol for communication system for information exchange between the ships. This information will be received by either ships directly, buoys, land based station and satellites. The information transmitted by AIS is distinguished into three different types. **Static information** which is entered into the AIS on installation. **Dynamic information**, which is automatically updated from the ship's sensors connected to AIS and **voyage-related information**, which might need to be manually entered and updated during the voyage. The structure of the AIS data that is relevant to this thesis is summarised in Table 2 [31].

AIS is also further differentiated by its equipment class. The classification is based on the reporting interval and the type of information that is conveyed. **Class A** autonomously report their position within 2-10 seconds interval, depending on the state of ship's movement. The reporting interval is less frequent at 3 minutes, When the ship is at anchor or moored and moving slower than 3 knots. Class A AIS is also capable of sending safety related information, meteorological and hydrological data, electronic broadcast to mariners and marine safety messages. **Class B** reports at longer interval and at a lower power. They can only receive safety related messages, not send them. [15,31]

2.3.1 Current correction

As indicated in Table 2, the speed shown in AIS is the speed over ground (SOG). However, for calculation of ship's fuel consumption, the actual speed i.e. speed through water (STW) is required. This can be achieved by correcting the SOG for the current speed, in consideration of the research by Zhou et al. [32] which shows the impact of current on ship's SOG. This correction is performed by considering the current speed V_c and the direction of the current γ with respect to True North. In principle, STW will be greater than SOG, when the current is moving against the current as the ship tries to compensate for the current to maintain the SOG. Similarly, the STW will be greater than the SOG when the current is moving in the same direction of the ship movement.

To calculate the correction, this study will adopt the methodology proposed by Kim et al. [22] and Yang et al. [33]. The x and y component of SOG can be obtained through vector decomposition using the ship's heading angle α with respect to True North. Similar vector decomposition is also performed for current speed V_{current} , it is resolved with current direction γ with respect to True North:

$$V_{\text{SOG}}^{x} = V_{\text{SOG}} \cdot \sin(\alpha) \tag{2.2}$$

$$V_{\text{SOG}}^{y} = V_{\text{SOG}} \cdot \cos(\alpha) \tag{2.3}$$

$$V_{\text{current}}^{x} = V_{\text{current}} \cdot \sin(\gamma)$$
 (2.4)

$$V_{\text{current}}^{y} = V_{\text{current}} \cdot \cos(\gamma) \tag{2.5}$$

Information Item	Description	
Static		
MMSI	MMSI number of vessel	
Callsign	Callsign of vessel	
Name	Name of the vessel	
IMO	IMO number of the vessel	
Length	Length of vessel	
Width	Width of vessel	
Ship Type	Describes the AIS ship type of this vessel	
Dynamic		
Ship's position	Automatically updated from position sensor con-	
	nected to AIS. Longitude and Latitude.	
Position time stamp in UTC	Automatically updated from ship's main position	
	sensor. Format: DD/MM/YYYY HH:MM:SS	
Course over Ground (COG)	If available, automatically updated from ship's	
	main position sensor connected to AIS.	
Speed Over Ground (SOG)	If available, automatically updated from the po-	
	sition sensor connected to AIS.	
Heading	Automatically updated from the ship's heading	
	sensor connected to AIS	
Navigational status	Navigational status information has to be manu-	
	ally entered by the Officer on Watch (OOW) and	
	changed as necessary. For example : "underway	
	by engines", "engaged in fishing", "at anchor".	
Rate of Turn (ROT)	If available, Automatically updated from the	
	ship's ROT sensor or derived from the gyro.	
Voyage Related		
Ship's draught	To be manually entered at the start of the voy-	
	age using the maximum draft for the voyage and	
	amended as required	
(Hazardous) Cargo Type	Type of cargo from AIS message.	
Destination and ETA	To be manually entered at the start of the voyage	
	and kept up to date as necessary.	

Table 2: Structure of AIS data [31]

Then the resulting equation to determine STW, including the current compensation, is given by:

$$V_{\text{STW}}^{x} = V_{\text{SOG}}^{x} - V_{\text{current}}^{x} \tag{2.6}$$

$$V_{\text{STW}}^{y} = V_{\text{SOG}}^{y} - V_{\text{current}}^{y} \tag{2.7}$$

$$V_{\text{STW}} = \sqrt{(V_{\text{STW}}^{x})^2 + (V_{\text{STW}}^{y})^2}$$
 (2.8)

2.4 Calculation of Fuel Oil Consumption

3 Research Methodology

In this chapter the methodology used to develop random forest model will be discussed. The details of fusion between AIS data, ECMWF and CMEMS data source used for training the model will be presented in Section 3.1. Suitable methodology application during data pre-processing will be described in Section 3.1.1. The selection for appropriate, domain knowledge based, feature selection will be explained in Section 3.2. The selection of the most optimal model hyperparameter for different tree-based model will be explained in Section 3.3.1. To validate the model's generalisation capability, statistical performance measure is used. The underlying principle is elaborated in Section 3.3.2. Summary of methodology application in this study is summarised in Section 3.3.3 and visually represented in figure Figure 5.

Figure 5: Scheme of proposed methodology

3.1 Data Acquisition

For the purpose of model training, 2021 AIS data from Ro-Ro ferry ship Hammershus is collected. The shore-based AIS data is made available by Danish Maritime Authority which tracked her journey between ports of Køge, Rønne, Ystad and Sassnitz and structured according to Table 2. The AIS data is fused with weather data from ECMWF⁵ with temporal resolution of 1 hour at granularity of 0.25° (longitude) x 0.25° (latitude), data from ECMWF provides information for wind, waves and seawater temperature. The information for current is obtained from CMEMS⁶ with temporal resolution of 3 hours at granularity of 0.25° (longitude) x 0.25° (latitude).

⁵European Centre for Medium-Range Weather Forecast

⁶Copernicus Marine Environment Monitoring Service

The resulting fusion resulted in dataset with temporal resolution of 1 hour. Some information static information from the AIS data are excluded before further data preprocessing, this includes ship's MMSI, Callsign, Name, IMO and Navigational Status. Additionally, information of the ship's Rate of Turn (ROT) is not available in this case. The weather information is synchronised so that the wind, waves, seawater temperature and sea current belongs to the same weather grid with same temporal resolutions.

Through vector decomposition, information of Northward and Eastward wind velocity is converted to absolute wind speed and wind direction with respect to True $North, \varphi$. Similarly, information of Northward and Eastward current Velocity is converted to absolute current speed and current direction with respect to True North γ .

Additional information is then added to the dataset. True direction information is added to gain information of the effect of weather direction with respect to ship's beam. As such, from information based on True North such as: wind direction, current direction, swell direction, wind wave direction and true wave direction, are converted to information on true direction and added to the dataset. The initial structure have 32 features, 9 AIS feature and 23 weather features. The structure of the initial dataset i.e. before data preprocessing and feature selection, is summarised in Table 3

- 3.1.1 Data Preprocessing
- 3.2 Feature Selection
- 3.3 Modelling
- 3.3.1 Model Hyperparameter Optimisation
- 3.3.2 Model Validation
- 3.3.3 Methodology Application
 - Two data sources are imported. AIS_weather_H_ok2_copy.csv and AIS_weather_h_rename_copy.csv. The information from the latter comma delimited file will be used for calculating the ship Speed Through Water (STW). The information required is the true north current direction. Which is obtained from the vector component of the Northward and Southward current.
 - This dataframe will be merged with the main dataframe from the file AIS_weather_H_ok2_copy.csv.
 - Omission of the journey data between Ronne and Sassnitz
 - SOG threshold is applied to omit ship mooring and maneuvering to accurately represent the ship's steady state operation [4, 9, 10, 33]. This threshold is selected as 5 knots according to [10]

Feature	Unit
AIS data	'
Position Time Stamp	DD/MM/YYYY HH:MM:SS
Latitude	deg.
Longitude	deg.
Width	m
Length	m
SOG	knot
COG	deg.
Heading	deg.
Draught	m
Weather Data (0.5° Granularity)	
Wind Speed	m/s
True North Wind Direction φ	m/s
Temperature above oceans	K
Air Density above oceans	kg/m³
Maximum Wave Height	m
Swell Direction	deg.
Wind Wave Direction	deg.
Swell Period	deg.
Wind Wave Period	sec
Wave Direction	deg.
Wave Period	sec.
Sea Surface Temperature	K
Combined Wind Wave Swell Height	m
Swell Height	m
Wind Wave Height	m
Surface Pressure	Ра
Current Speed	m/s
True North Current Direction γ	m/s
True Wind Direction	deg.
True Current Direction	deg.
True Swell Direction	deg.
True Wind Wave Direction	deg.
True Wave Direction	deg.

 Table 3: Structure of fused dataset

• The AIS data from June is filtered. This data will be used as validation data to check the model's performance.

3.4 Data Analysis

- The features are represented in a histogram plot. For the feature Current speed, anomaly is detected. Certain spike is detected around 0.01 0.03 m/s. Reasons unknown. The data is retained, including the spike, until a definitive answer can be found.
- OPEN QUESTION: What is the necessity of feature standardization / normalization? Normalization is required for ANN as model training requires the value between 0 and 1. But in case of RFR, there is no such requirement. Through testing, data standardization also does not seem to improve the model's performance.

- The correlation of the features against SOG are determined. It is found that :
 - Draught
 - Course Over Ground (COG)
 - heading
 - Wind Speed
 - Current Speed
 - True Current direction

Have relatively stronger correlation to SOG compared to other features, albeit the correlation is a weak one

- The correlation between the features is displayed using the following the heat map. From the heat map it can be observed that between these features:
 - Waveheight and wind wave swell height
 - Waveheight and wind wave height
 - Windwaveswellheight and wave period

Have a strong correlation between each other.

- Open topic:
 - Feature reduction is possible, [10] suggested high feature correlation filter, the filter suggest that two features which has a high correlation (> 90%) is to be combined into a single feature. But the author is unsure whether this combination is physically sensible. Hence, this filter is yet to be applied for feature reduction.
 - Some of these features can be connected through wave equations, but the author has not found an equation which could relate these features.
- The random forest regressor could not function when NaN values are present. With that, the missing values are filled in using the imputer function. The missing values are filled in by means of KNN.

Figure 7: Correlation Heat Map

3.5 Modelling

- The data is split into 80:20 ratio. But considering the validation data, it is split into approximately 73:18:9.
- The model is then trained using Random Forest Regression (RFR). Additional training is also performed using Decision Tree Regressor (DTR). DTR model performance will be used as a benchmark as it is also a tree-based modelling method with similar methodology to RFR.
- The computational time of DTR is significantly faster than RFR Model Evaluation

3.6 Predicting STW

- The ship's Speed Through Water STW can be calculated using vector component of the SOG and current speed. The direction used will be according to True North. [33,34]
- SOG represents the speed of the ship with reference to the ground, while the STW represent the ship's speed with reference to water.
- SOG also can be termed by the ship's speed that is captured by the GPS, and does not consider any effect of the current
- This means that the ship's STW will be greater than the ship's SOG when there is current moving against the ship's movement direction and vice versa
- The vector decomposition can be defined from the following equations, which is based on the equation by [33]:
 - The ship's SOG V_g can be decomposed into V_g^x and V_g^y , which represents the x and y components of the SOG respectively using the ship's course heading (COG) β with respect to True North:

$$V_{\sigma}^{x} = V_{\sigma} \sin(\beta) \tag{3.1}$$

$$V_g^y = V_g \cos(\beta) \tag{3.2}$$

– To consider the effect of sea current. The current speed V_c will also be decomposed to x and y components respectively using the current direction γ with respect to True North:

$$V_c^x = V_g \sin(\gamma) \tag{3.3}$$

$$V_c^y = V_g \cos(\gamma) \tag{3.4}$$

– from here the ship' STW V_{wx} and V_{wy} component can be found from the following equation:

$$V_w^x = V_g^x - V_c^x \tag{3.5}$$

$$V_w^y = V_g^y - V_c^y \tag{3.6}$$

 The magnitude of the STW can be readily obtained from the following vector synthesis

$$V_w = \sqrt{(V_w^x)^2 + (V_w^y)^2}$$
 (3.7)

• This principle is applied to the following Python script. 3.3

```
# Convert SOG from [Knots] to [m/s]
4
          dfprog["vgms"] = dfprog["sog_pred"]/1.9438
5
6
          # Convert the angles from [Degrees] to [Radians]
          rad_gamma = np.deg2rad(dfprog["gamma"])
9
          rad_cog = np.deg2rad(dfprog["cog"])
10
          # Decomposition in x-component
12
          dfprog["vgx"] = dfprog["vgms"] * np.sin(rad_cog)
13
          dfprog["vcx"] = dfprog["curspeed"] * np.sin(rad_gamma)
14
          dfprog["stw_x"] = (dfprog["vgx"] - dfprog["vcx"])
15
16
          # Decomposition in y-component
17
18
          dfprog["vgy"] = dfprog["vgms"] * np.cos(rad_cog)
19
          dfprog["vcy"] = dfprog["curspeed"] * np.cos(rad_gamma)
dfprog["stw_y"] = (dfprog["vgy"] - dfprog["vcy"])
20
21
          \mbox{\tt\#} 
 Vector synthesis and reconversion to [Knots] from [m/s]
23
24
          25
26
27
28
```

4 Result and Discussion

The result of the research is discussed in this chapter. This comprises model validation and how different statistical metrics are used to analyze the model's performance.

4.1 Model Evaluation

The model are tested against four metrics, namely:

- R^2 : Indicate model fit. Best Score = 1
- Explained Variance EV: Indicate amount of variance in model. Best Score = 1
- Mean Absolute Error MAE: Indicate how much error a model makes in its prediction. Best Score = 0
- Root Mean Square Error RMSE: Same as MAE, more sensitive to outlier. Best Score = 0
- Median Absolute Error MAD : Check robustness against outlier. Best Score = 1

The result is summarized in the following table

Model	RFR	DTR	LR
R^2	0.9328181446941499	0.8526085810220092	1
EV	0.932872958708872	0.8526260247615258	2
MAE	0.5546347329650284	0.8108982427834758	3
RMSE	0.7095480848510665	1.5566896535262504	4
MAD	0.38484635910000087	0.5475717149999983	5

Table 4: Model performance

Model	RFR	DTR	LR
R^2	0.9328181446941499	0.8526085810220092	1
EV	0.932872958708872	0.8526260247615258	2
MAE	0.5546347329650284	0.8108982427834758	3
RMSE	0.7095480848510665	1.5566896535262504	4
MAD	0.38484635910000087	0.5475717149999983	5

Table 5: Model performance

5 Summary and Outlook

In this chapter the summary of this research will be discussed. This section includes reflections of the research process and presents any possible suggestions and recommendations in this line of research. This chapter concludes this thesis.

References

[1] D. Ronen. The effect of oil price on containership speed and fleet size. *Journal of the Operational Research Society*, 62(1):211–216, 2011. doi:10.1057/jors. 2009.169. 4, 5, 9

- [2] Stopford. The organization of the shipping market. page 47, 2009. 4
- [3] Xiaohe Li, Yuquan Du, Yanyu Chen, Son Nguyen, Wei Zhang, Alessandro Schönborn, and Zhuo Sun. Data fusion and machine learning for ship fuel efficiency modeling: Part i voyage report data and meteorological data. *Communications in Transportation Research*, 2:100074, 2022. doi:10.1016/j.commtr. 2022.100074. 4, 8
- [4] E. Bal Beşikçi, O. Arslan, O. Turan, and A. I. Ölçer. An artificial neural network based decision support system for energy efficient ship operations. *Computers & Operations Research*, 66:393–401, 2016. doi:10.1016/j.cor.2015.04.004. 4, 18
- [5] N. Wijnolst, Tor Wergeland, and Kai Levander. *Shipping Innovation*. IOS Press, 2009. 4
- [6] David Ronen. The effect of oil price on the optimal speed of ships. *The Journal of the Operational Research Society*, 33(11):1035, 1982. doi:10.2307/2581518. 4, 5, 9
- [7] Shuaian Wang and Qiang Meng. Sailing speed optimization for container ships in a liner shipping network. *Transportation Research Part E: Logistics and Transportation Review*, 48(3):701-714, 2012. URL: https://www.sciencedirect.com/science/article/pii/S1366554511001554, doi: 10.1016/j.tre.2011.12.003.4
- [8] Miyeon Jeon, Yoojeong Noh, Yongwoo Shin, O-Kaung Lim, Inwon Lee, and Daeseung Cho. Prediction of ship fuel consumption by using an artificial neural network. *Journal of Mechanical Science and Technology*, 32(12):5785–5796, 2018. URL: https://link.springer.com/article/10.1007/s12206-018-1126-4, doi:10.1007/s12206-018-1126-4.4
- [9] Christos Gkerekos, Iraklis Lazakis, and Gerasimos Theotokatos. Machine learning models for predicting ship main engine fuel oil consumption: A comparative study. *Ocean Engineering*, 188:106282, 2019. doi:10.1016/j.oceaneng. 2019.106282. 4, 8, 18
- [10] Misganaw Abebe, Yongwoo Shin, Yoojeong Noh, Sangbong Lee, and Inwon Lee. Machine learning approaches for ship speed prediction towards energy efficient shipping. *Applied Sciences*, 10(7):2325, 2020. doi:10.3390/app10072325. 4, 9, 18, 22

[11] Young-Rong Kim, Min Jung, and Jun-Bum Park. Development of a fuel consumption prediction model based on machine learning using ship in-service data. *Journal of Marine Science and Engineering*, 9(2):137, 2021. doi: 10.3390/jmse9020137. 4

- [12] Aurélien Géron. *Hands-on machine learning with Scikit-Learn, Keras, and Ten- sorFlow: Concepts, tools, and techniques to build intelligent systems / Aurélien Géron.* O'Reilly, Sebastopol, CA, second edition edition, 2019. 3, 4, 9, 10, 11, 12, 13
- [13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikitlearn: Machine learning in python. *Journal of Machine Learning Research*, 12(85):2825–2830, 2011. URL: http://jmlr.org/papers/v12/pedregosa11a.html. 4, 10
- [14] Ki-Su Kim and Myung-Il Roh. Iso 15016:2015-based method for estimating the fuel oil consumption of a ship. *Journal of Marine Science and Engineering*, 8(10):791, 2020. doi:10.3390/jmse8100791. 5
- [15] Stian Glomvik Rakke. Ship emissions calculation from AIS. PhD thesis, NTNU. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2410741. 5, 8, 13, 14
- [16] Ran Yan, Shuaian Wang, and Harilaos N. Psaraftis. Data analytics for fuel consumption management in maritime transportation: Status and perspectives. *Transportation Research Part E: Logistics and Transportation Review*, 155:102489, 2021. URL: https://www.sciencedirect.com/science/article/pii/S1366554521002519, doi:10.1016/j.tre.2021.102489. 7, 8
- [17] Michael Haranen, Pekka Pakkanen, Risto Kariranta, and Jouni Salo. White, grey and black-box modelling in ship performance evaluation. 2016. URL: https://www.researchgate.net/publication/301355727_White_Grey_and_Black-Box_Modelling_in_Ship_Performance_Evaluation. 7, 10, 13
- Η. Friedman, [18] Leo Breiman, Jerome Richard A. Olshen, and Charles J. Stone. Classification And Regression Trees. Routledge, 2017. https://www.taylorfrancis.com/books/mono/10.1201/ 9781315139470/classification-regression-trees-leo-breiman, doi:10.1201/9781315139470.7,10
- [19] Leo Breiman. Random forests. *Machine Learning*, 45(1):5-32, 2001. URL: https://link.springer.com/article/10.1023/a:1010933404324, doi:10.1023/A:1010933404324. 7, 12
- [20] T. W. P. Smith, J. P. Jalkanen, B. A. Anderson, J. J. Corbett, J. Faber, S. Hanayama, E. O'Keeffe, S. Parker, L. Johansson, L. Aldous, C. Raucci, M.

Traut, S. Ettinger, D. Nelissen, D. S. Lee, S. Ng, A. Agrawal, J. J. Winebrake, M. Hoen, S. Chesworth, and A. Pandey. Third imo greenhouse gas study 2014. 2015. URL: https://research.manchester.ac.uk/en/publications/third-imo-greenhouse-gas-study-2014. 8

- [21] Yuanqiao Wen, Xiaoqiao Geng, Lichuan Wu, Tsz Leung Yip, Liang Huang, and Dingyong Wu. Green routing design in short seas. *International Journal of Shipping and Transport Logistics*, 9(3):371, 2017. doi:10.1504/IJSTL.2017. 083474. 8
- [22] Seong-Hoon Kim, Myung-Il Roh, Min-Jae Oh, Sung-Woo Park, and In-Il Kim. Estimation of ship operational efficiency from ais data using big data technology. International Journal of Naval Architecture and Ocean Engineering, 12:440–454, 2020. URL: https://www.sciencedirect.com/science/article/pii/S2092678220300091, doi:10.1016/j.ijnaoe.2020.03.007. 8, 14
- [23] Omer Soner, Emre Akyuz, and Metin Celik. Use of tree based methods in ship performance monitoring under operating conditions. *Ocean Engineering*, 166:302-310, 2018. URL: https://www.sciencedirect.com/science/article/pii/S0029801818314446, doi:10.1016/j.oceaneng.2018.07.061.8
- [24] Ran Yan, Shuaian Wang, and Yuquan Du. Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship. *Transportation Research Part E: Logistics and Transportation Review*, 138:101930, 2020. doi:10.1016/j.tre.2020.101930. 8
- [25] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. *The elements of statistical learning: Data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman.* Springer series in statistics. Springer, New York, 2nd ed. edition, 2009. doi:10.1007/b94608. 3, 9, 10, 11, 12
- [26] Max Kuhn and Kjell Johnson. *Applied predictive modeling*. Springer, New York, 2013. 11, 12, 13
- [27] Tin Kam Ho. Random decision forests. In *Proceedings of 3rd International Conference on Document Analysis and Recognition*, pages 278–282 vol.1, 1995. doi:10.1109/ICDAR.1995.598994. 12
- [28] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996. URL: https://link.springer.com/article/10.1007/bf00058655, doi:10. 1007/BF00058655. 12
- [29] Michael Affenzeller, Bogdan Burlacu, Viktoria Dorfer, Sebastian Dorl, Gerhard Halmerbauer, Tilman Königswieser, Michael Kommenda, Julia Vetter, and Stephan Winkler. White box vs. black box modeling: On the performance of deep learning, random forests, and symbolic regression in solving regression problems. pages 288–295. Springer, Cham, 2020. URL: https://link.springer.com/chapter/10.1007/978-3-030-45093-9_35, doi:10.1007/978-3-030-45093-9{\textunderscore}35.13

[30] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. *Machine Learning*, 63(1):3–42, 2006. URL: https://link.springer.com/article/10.1007/s10994-006-6226-1, doi:10.1007/s10994-006-6226-1.13

- [31] International Maritime Organization. Revised guidelines for the onboard operational use of shipborne automatic identification systems (ais), 25/06/2023. URL: https://www.imo.org/en/OurWork/Safety/Pages/AIS.aspx. 2, 13, 14, 15
- [32] Yang Zhou, Winnie Daamen, Tiedo Vellinga, and Serge Hoogendoorn. *AIS data analysis for the impacts of wind and current on ship behavior in straight waterways*. 2017. 14
- [33] Liqian Yang, Gang Chen, Jinlou Zhao, and Niels Gorm Malý Rytter. Ship speed optimization considering ocean currents to enhance environmental sustainability in maritime shipping. *Sustainability*, 12(9):3649, 2020. doi: 10.3390/su12093649. 14, 18, 24
- [34] Yang Zhou, Winnie Daamen, Tiedo Vellinga, and Serge P. Hoogendoorn. Impacts of wind and current on ship behavior in ports and waterways: A quantitative analysis based on ais data. *Ocean Engineering*, 213:107774, 2020. doi:10.1016/j.oceaneng.2020.107774. 24

Declaration in lieu of oath

I hereby solemnly declare that I have independently completed this work or, in the case of group work, the part of the work that I have marked accordingly. I have not made use of the unauthorised assistance of third parties. Furthermore, I have used only the stated sources or aids and I have referenced all statements (particularly quotations) that I have adopted from the sources I have used verbatim or in essence.

I declare that the version of the work I have submitted in digital form is identical to the printed copies submitted.

I am aware that, in the case of an examination offence, the relevant assessment will be marked as 'insufficient' (5.0). In addition, an examination offence may be punishable as an administrative offence (Ordnungswidrigkeit) with a fine of up to €50,000. In cases of multiple or otherwise serious examination offences, I may also be removed from the register of students.

I am aware that the examiner and/or the Examination Board may use relevant software or other electronic aids in order to establish an examination offence has occurred

I solemnly declare that I have made the previous statements to the best of my knowledge and belief and that these statements are true and I have not concealed anything.

I am aware of the potential punishments for a false declaration in lieu of oath and in particular of the penalties set out in Sections 156 and 161 of the German Criminal Code (Strafgesetzbuch; StGB), which I have been specifically referred to.

Section 156 False declaration in lieu of an oath

Whoever falsely makes a declaration in lieu of an oath before an authority which is competent to administer such declarations or falsely testifies whilst referring to such a declaration incurs a penalty of imprisonment for a term not exceeding three years or a fine.

Section 161 Negligent false oath; negligent false declaration in lieu of oath

(1) Whoever commits one of the offences referred to in Sections 154 to 156 by negligence incurs a penalty of imprisonment for a term not exceeding one year or a fine. (2) No penalty is incurred if the offender corrects the false statement in time. The provisions of Section 158 (2) and (3) apply accordingly.

The provisions of Section	The provisions of Section 138 (2) and (3) apply accordingly.		
Place,date	Signature		