Study	Confounding Variable(s)	Data Set	Analysis	Results
Basili et al [BBM96]	None factored in	Eight student projects written in C++	Univariate linear regression. Multivariate logistic regression	Finds that LCOM is not a significant predictor of fault-proneness while the remainder of the CK metrics are.
Tang et al [TKC99]	None factored in	Three small/medium commercial systems written in C++	Logistic regression	RFC and WMC strong predictors for fault-proneness
Emam et al [EEBGR99]	Class size (LOC)	One medium- sized commercial project	Logistic regression	After controlling for size, only CBO was an indicator of fault-proneness
Cartwright & Shepperd [CS00]	None factored in	commercial project	Linear regression	Found the inheriting classes were more defect prone (identified as classes having a DIT or NOC > 0)
Subramanyam & Krishnan [SK03]	None factored in	One large commercial project written in C++ and Java	Linear regression	CBO, DIT, WMC predictive of fault-proneness
Xu et al [XHC08]	Class size (LOC)	One medium- sized government project written in C++	Neural networks	CBO, RFC and WMC are reliable metrics for defect estimation finding that overall
Malhotra & Jain [MJ12]	None factored in	One medium/large- sized FLOSS project written in Java	Logistic regression and machine learning techniques	Machine learning models comparable in performance to linear models. Found that CBO, LCOM, RFC and WMC not to be significant predictors of fault-proneness. The rest of the CK metrics were indicators.