

Relatório de Física Geral II – Prática

QUEDA LIVRE

Engenharia Informática 1º ano

Elementos do grupo:

Diogo Castanho nº 42496

Luís Miguel nº 42119

Nuno Andrade nº 42130

Omar Balboa nº 41895

Docente: Miguel Araújo

1.Objetivo

Determinar a o valor da aceleração gravítica, a partir dos valores obtidos dos tempos em segundos, em que a esfera leva pra cair, desde a altura inicial até as distâncias escolhidas.

2.Introdução

A queda livre é o movimento de um corpo que, partindo do repouso e desprezando a resistência do ar, está sujeito, apenas à interação gravítica.

Esta observação foi feita pelo Galileu, concluindo que desprezando a resistência do ar, todos os corpos soltos num mesmo local caem com uma mesma aceleração, quaisquer que sejam suas massas. Essa aceleração é denominada aceleração gravítica (), sendo que a única força que atua sobre o corpo é a força gravítica ().

Os corpos apenas sujeitos à força gravítica chamam-se graves e dizem-se em queda livre, independentemente do facto de estarem a cair ou a subir.

Experiência

Consideremos a montagem experimental da figura 1. Uma esfera (m) metálica presa a um eletroíman é libertada. A passagem da esfera pelos sensores 1 e 2 associados a um cronómetro aciona o início e o fim da contagem de tempo, respetivamente.

Figura 1

A equação do movimento uniformemente acelerado unidimensional da esfera que cai livremente, devido ao campo gravítico, passando pelos **photogates** A e B, pode escrever-se: yB = yA. $t + \frac{1}{2}$. g. t^2 ou $\Delta y = vA$. $t + \frac{1}{2}$. g. t^2

onde yA é a posição da esfera ao passar no sensor 1, no início da contagem do tempo (t=0), vA é a velocidade nesse instante inicial, g é a aceleração gravítica e yB é a posição da esfera ao passar pelo sensor 2, no instante t, h é o espaço percorrido pela esfera entre os dois photogates durante o intervalo de tempo t.

3. Material Utilizado

Para a realização deste trabalho experimental foram utilizados alguns materiais de modo a auxiliar na determinação dos dados.

1. Fita Métrica

- é um instrumento de medida usada para medir distâncias

2. Dois photogates com cronometro incluido

- um dispositivo que mede o tempo entre eventos que interrompem um raio infravermelho.

3. Suporte para lançar os pesos

4. Fonte de alimentação

- é um equipamento usado para alimentar cargas elétricas

5. Eletroíman

- O eletroíman (português brasileiro) ou eletroíman (português europeu) (AO 1945: eletroíman) é um dispositivo que utiliza corrente elétrica para gerar um campo magnético, semelhantes àqueles encontrados nos ímãs naturais

4.Procedimento

- 1 Preparar uma montagem experimental como na figura 1.
- 2 Mantendo Fixo o **photogate** A e variando a posição do **photogate** B, obter para a mesma **velocidade inicial vA**, diferentes pares de valores experimentais $(\Delta y/t, t)$, e anotando cada valor obtido numa tabela relacionado o tempo em segundo e a distância em metros para cada momento do experimento.

5.Dados

Tabela distância Tempo

Y(m)	t(s)	Y/t
0,275	0.158	1.74
0.395	0.202	1.96
0.420	0.212	1.98
0.530	0.247	2.15
0.545	0.252	2.52

6.Tratamento dos dados

A partir dos dados obtido e da análise feita ao gráfico é possível obter os seguintes dados:

Equação: Y = 4.489*X+1.036

Declive: m = 4.489

Aceleração: $g = 4.489 * 2 = 8.978 \text{ m/s}^2$

7. Conclusão

Com termino do trabalho obtivemos o valor a aceleração gravítica como sendo 8.978 m/s², embora na nossa experiência os valores estejam um pouco fora do comum (deveriam ser a = 9.8m/s2), o que se dá devido a estarmos perante ao modelo experimental que suscita alguns erros.