Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
 confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
 additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

- Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but
 there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire
 or property damage.
 - Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation
 product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any
 other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors.
 - Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

16

H8/3003 Interface

Application Note Renesas Microcomputer

Notice

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Introduction

The H8/300H series are Hitachi-designed high-performance 16-bit single-chip microcomputers incorporating peripheral functions that are optimal for embedded industrial applications. The H8/300H CPU is upward compatible with the H8/300 CPU.

The devices incorporate a CPU, RAM, DMA controller (DMAC), bus controller, timers, serial communication interface (SCI), and other functions that make them suitable for a broad range of applications in small to large systems.

The H8/3003 Interface Application Note gives examples of interfacing between the H8/3003 and peripheral LSIs, and is intended as a helpful reference for users during hardware design.

Although the sample tasks described in this application note have been checked for operation, it is recommended that users carry out their own operational checks before actual use.

Contents

Secti	on 1	Manual Organization	1
1.1	Specifi	cations	1
1.2	Operat	ion	1
1.3	Circuit	Diagrams	1
Secti	on 2	Bus Control Functions	2
2.1	Bus Co	ontroller	2
	2.1.1	Area Byte/Word Control Register (ABWCR)	2
	2.1.2	Area 2-State/3-State Control Register (ASTCR)	3
	2.1.3	Wait Controller Enable Register (WCER)	3
	2.1.4	Wait Control Register (WCR)	4
2.2	Refresl	h Controller	5
	2.2.1	Refresh Control Register (RFSHCR)	5
	2.2.2	Refresh Timer Control Status Register (RTMCSR)	6
	2.2.3	Refresh Timer Constant Register (RTCOR)	6
2.3	Bus Co	ontroller and Refresh Controller Setting Examples	7
Conti	on 3	Interface Evennles	10
3.1		Interface Examples	10
3.1		(HM62832H-45) Interface	10
	3.1.1	Specifications	10
	3.1.2	Operation	12
2.2	3.1.3	Circuit Diagram	14
3.2		M (HN27C256-70) Interface	15
	3.2.1	Specifications	15
	3.2.2	Data Read	17
	3.2.3	Circuit Diagram	18
3.3		M (HD63310RP20) Interface	19
	3.3.1	Specifications	19
	3.3.2	Wait Signal Generator	21
	3.3.3	Data Read/Write	22
	3.3.4	Circuit Diagram	25
3.4	Mask I	ROM (HN62444BNP) Interface	26
	3.4.1	Specifications	26
	3.4.2	Data Read	28
	3.4.3	Circuit Diagram	29
3.5	Dumm	y SRAM (HM65256B-10) Interface	30
	3.5.1	Specifications	30
	3.5.2	Data Read/Write	32
	3.5.3	Refresh Timing.	35
	3.5.4	Circuit Diagram	37

3.6 D	PRAM (I	HM514260-7) Interface	38
	3.6.1	Specifications	38
	3.6.2	Data Read/Write	40
	3.6.3	Refresh	44
	3.6.4	Circuit Diagram	46
3.7	UPP (F	ID63143) Interface	47
	3.7.1	Specifications	47
	3.7.2	Wait Signal Generator	49
	3.7.3	Data Read/Write	50
	3.7.4	Circuit Diagram	54
3.8	PIO (T	MP82C55AP-10) Interface	55
	3.8.1	Specifications	55
	3.8.2	Data Read/Write	57
	3.8.3	Circuit Diagram	59
3.9	RTC (F	HD64610) Interface	60
	3.9.1	Specifications	60
	3.9.2	Data Read/Write	62
	3.9.3	Circuit Diagram	64
3.10	LCD (I	LM032L) Interface	65
	3.10.1	Specifications	65
	3.10.2	E Clock Generator	67
	3.10.3	Data Read/Write	69
	3.10.4	Circuit Diagram	72
Secti	ion 4	AC Characteristics of the H8/3003	73
Secti		Memory AC Characteristics	85
5.1	HM628	332H-45 AC Characteristics	85
5.2		2256HG-70 AC Characteristics	89
5.3	HN624	44BNP AC Characteristics	90
5.4		256B-12 AC Characteristics	92
5.5	HM514	260 AC Characteristics	98
		Peripheral LSI AC Characteristics	
6.1		10RP20 AC Characteristics	
6.2		43 AC Characteristics	
6.3		C55AP-10 AC Characteristics	
6.4		10 AC Characteristics	
6.5	LM032	L AC Characteristics	117

Figures		
Figure 1.1	Organization of the Information in Interface Examples	1
Figure 2.1	Area Byte/Word Control Register (ABWCR)	2
Figure 2.2	Area 2-State/3-State Control Register (ASTCR)	3
Figure 2.3	Wait Controller Enable Register (WCER)	3
Figure 2.4	Wait Control Register (WCR)	4
Figure 2.5	Refresh Control Register (RFSHCR)	5
Figure 2.6	Refresh Timer Control Status Register (RTMCSR)	6
Figure 2.7	Refresh Timer Constant Register (RTCOR)	6
Figure 2.8	Area Map	7
Figure 2.9	Register Settings	9
Figure 3.1	Block Diagram of H8/3003 and HM62832H-45 Interface	10
Figure 3.2	Memory Map	11
Figure 3.3	Read/Write Timing Chart	13
Figure 3.4	Circuit Diagram	14
Figure 3.5	Block Diagram of H8/3003 and HN27C256-70 Interface	15
Figure 3.6	Memory Map	16
Figure 3.7	Read Timing Chart	17
Figure 3.8	HN27C256-70 Interface	18
Figure 3.9	Block Diagram of the H8/3003 and HD63320RP20 Interface	19
Figure 3.10	Memory Map	20
Figure 3.11	Wait Signal Generator	21
Figure 3.12	Wait Timing Chart	21
Figure 3.13	Read Timing Chart	23
Figure 3.14	Write Timing Chart	24
Figure 3.15	Circuit Diagram	25
Figure 3.16	Block Diagram of H8/3003 and HN62444BNP Interface	26
Figure 3.17	Memory Map	27
Figure 3.18	Read Timing Chart	28
Figure 3.19	•	29
-	Block Diagram of H8/3003 and HM65256B Interface	30
Figure 3.21	Memory Map	31
U	Read/Write Timing Chart	34
•	Refresh Timing	36
	Circuit Diagram	37
-	Block Diagram of H8/3003 and HM514260-7 Interface	
-	Memory Map	39
-	Read/Write Timing	43
•	Refresh Timing	45
-	Circuit Diagram	46
-	Block Diagram of H8/3003 and HD63143 Interface	47
•	Memory Map	48
	Wait Signal Generator Circuit	49
5 2		.,

Figure 3.33	Wait Timing Chart	49
Figure 3.34	Read/Write Timing Chart (RAM)	52
Figure 3.35	Read/Write Timing Chart (non-RAM)	53
Figure 3.36	Circuit Diagram	54
Figure 3.37	Block Diagram of H8/3003 and TMP82C55AP Interface	55
	Memory Map	
_	Read/Write Timing Chart	
Figure 3.40	Circuit Diagram	59
_	Block Diagram of H8/3003 and HD64610 Interface	
Figure 3.42	Memory Map	61
_	Read/Write Timing Chart	
Figure 3.44	Circuit Diagram	64
_	Block Diagram of H8/3003 and LM032L Interface	
_	Memory Map	
_	E Clock Generator Circuit	
Figure 3.48	E Clock Timing Chart	68
Figure 3.49	Read Timing Chart	70
Figure 3.50	Write Timing Chart	71
	Circuit Diagram	
Figure 4.1	Timing Waveforms (Basic Bus Timing/2 States)	78
Figure 4.2	Timing Waveforms (Basic Bus Timing/3 States)	79
Figure 4.3	Timing Waveforms (Basic Bus Timing/2 States + 1 Wait)	80
Figure 4.4	Timing Waveforms (DRAM Bus Timing/Read-Write/2 WE Method)	81
Figure 4.5	Timing Waveforms (DRAM Bus Timing/Refresh)	82
Figure 4.6	Timing Waveforms (PSRAM Bus Timing/Read-Write)	83
Figure 4.7	Timing Waveforms (PSRAM Bus Timing/Refresh)	84
Figure 5.1	Output Loading Conditions	85
Figure 5.2	Timing Waveforms (Read)	87
Figure 5.3	Timing Waveforms (Write)	88
Figure 5.4	HN27C256HG-70 Timing Waveforms (Read)	89
Figure 5.5	HN62444BNP Timing Waveforms (Read)	91
Figure 5.6	HM65256B-12 Timing Waveforms (Read)	96
Figure 5.7	HM65256B-12 Timing Waveforms (Write)	97
Figure 5.8	HM65256B-12 Timing Waveforms (Refresh)	97
Figure 5.9	HN5116640 Timing Waveforms (Read)	101
Figure 5.10	HN5116640 Timing Waveforms (Write)	102
Figure 6.1	Timing Waveforms (Read)	105
Figure 6.2	Timing Waveforms (Write)	106
Figure 6.3	Timing Waveforms (RAM Read)	
Figure 6.4	Timing Waveforms (Read other than RAM)	109
Figure 6.5	Timing Waveforms (RAM Write)	110
Figure 6.6	Timing Waveforms (Write other than RAM)	111
Figure 6.7	Timing Waveforms (Read)	113

Figure 6.8	Timing Waveforms (Write)	114
Figure 6.9	Timing Waveforms (Read)	115
Figure 6.10	Timing Waveforms (Write)	116
Figure 6.11	Timing Waveforms (Read)	117
Figure 6.12	Timing Waveforms (Write)	118

Tables		
Table 2.1	Wait Mode Selection	4
Table 2.2	Wait Modes	4
Table 2.3	WCR Settings	8
Table 4.1	Bus Timing (1) (Units: ns)	74
Table 4.2	Bus Timing (2) (Units: ns)	75
Table 4.3	Bus Timing (Refresh Controller) (Units: ns)	76
Table 5.1	Bus Timing (Read)	86
Table 5.2	Bus Timing (Write)	87
Table 5.3	Bus Timing (Read)	89
Table 5.4	Bus Timing	90
Table 5.5	Bus Timing	92
Table 5.6	Bus Timing (Common)	98
Table 5.7	Bus Timing (Read)	99
Table 5.8	Bus Timing (Write)	100
Table 5.9	Bus Timing (Refresh)	100
Table 6.1	Bus Timing	103
Table 6.2	Bus Timing	107
Table 6.3	Bus Timing	112
Table 6.4	Bus Timing (Read)	114
Table 6.5	Bus Timing (Write)	115
Table 6.6	Bus Timing	117

Section 1 Manual Organization

This *H8/3003 Interface Application Note* describes methods of interfacing the H8/3003 with peripheral devices (ROM, RAM, timers LSIs etc.). The information for each example in section 3 is organized as shown in figure 1.1.

Figure 1.1 Organization of the Information in Interface Examples

1.1 Specifications

The specifications section describes the interconnected peripheral device names, circuit specifications of memory maps, etc.

1.2 Operation

The operation section describes circuit operation using timing charts.

1.3 Circuit Diagrams

The circuit diagram section shows the circuitry of interfaces with peripheral devices.

Section 2 Bus Control Functions

2.1 Bus Controller

Depending on the operation mode, the H8/3003 can be set for a maximum address space of 16 Mbytes (modes 3 and 4) or maximum of 1 Mbyte (modes 1 and 2). The maximum address space in the set mode is divided into 8 equal parts, ranging in order from the lower address area 0 through area 7. The access data bus width and number of access states can be set for each area using the bus controller. Wait states can be inserted automatically for interfacing with a slow external device, and the bus cycle can also be extended.

Register setting examples for area settings used in the interface examples are described in this application note. The following registers are used:

- Bus controller's bus width control register (ABWCR)
- Access state control register (ASTCR)
- Wait control register (WCR)
- Wait controller enable register (WCER)

Setting these registers sets the access bus width, number of access states, and presence of wait states for each area. The register functions are described in the following sections.

2.1.1 Area Byte/Word Control Register (ABWCR)

An 8-bit register that sets an 8-bit or 16-bit data bus access space for each area (figure 2.1). Bit 0 corresponds with area 0, and areas 0–7 are controlled by bits 0–7. Setting a bit value to 0 gives a 16-bit data bus access space, and setting to 1 gives an 8-bit data bus access space.

Figure 2.1 Area Byte/Word Control Register (ABWCR)

2.1.2 Area 2-State/3-State Control Register (ASTCR)

An 8-bit register that sets a 2-state or 3-state access space for each area (figure 2.2). Areas 0–7 are controlled by bits 0–7. Setting a bit value to 0 gives a 2-state access space, and a setting of 1 gives a 3-state access space.

Figure 2.2 Area 2-State/3-State Control Register (ASTCR)

2.1.3 Wait Controller Enable Register (WCER)

An 8-bit register that enables/disables WSC operation for external 3-state access space (figure 2.3).

Areas 7–0 are controlled by bits 7–0. Setting a bit value to 0 disables the WSC, and a setting of 1 enables the WSC.

Wait states cannot be inserted for an area set to 2-state access. Therefore, the WCER bits corresponding to a 2-state access space set by the ASTCR have no meaning.

Figure 2.3 Wait Controller Enable Register (WCER)

2.1.4 Wait Control Register (WCR)

The wait control register (figure 2.4) is an 8-bit register that selects the number of wait states and the wait mode. Bits 1 and 0 (WC0 and WC1) specify the number of waits, bits 3 and 2 (WMS1 and WMS0) set wait mode (tables 2.1 and 2.2). Bits 7–4 are reserved bits and are not used.

Figure 2.4 Wait Control Register (WCR)

Table 2.1 Wait Mode Selection

ASTCR	WCER	WCR		
ASTn	WCEn	WMS1	WMS0	Wait Mode
0	_	_	_	Disable
1	0			Pin wait mode 0
1	1	0	0	Programmable wait mode
		0	1	Disable
		1	0	Pin wait mode 1
		1	1	Pin auto-wait mode

Table 2.2 Wait Modes

Wait Mode	Description		
Pin wait mode 0	Wait state can be inserted only by WAIT pin.		
Pin wait mode 1	Normally, the wait state set by WC1/WC0 bits is inserted. Wait state due to WAIT pin can also be inserted.		
Pin auto-wait mode	Insertion of wait states set by WAIT pin and WC1/WC0.		
Programmable wait mode	Wait state set by WC0/WC1 always inserted. Wait state insertion by WAIT pin disabled.		

2.2 Refresh Controller

The H8/3003 has a built-in refresh controller that can be connected directly to a ×16-bit configured DRAM. The refresh controller can also be connected to a PSRAM instead of a DRAM.

The address space that the refresh controller can control is area 3. Modes 1 and 2 (1-Mbyte mode) use a maximum of 128 kbytes, modes 3 and 4 (16-Mbyte mode) use a maximum of 2 Mbytes.

2.2.1 Refresh Control Register (RFSHCR)

RFSHCR is an 8-bit register (figure 2.5) that selects the refresh controller's operation mode. Setting this register enables selection of connecting device (DRAM/PSRAM), use or non-use of refresh, and the selection of access method.

Figure 2.5 Refresh Control Register (RFSHCR)

2.2.2 Refresh Timer Control Status Register (RTMCSR)

RTMCSR is an 8-bit register (figure 2.6) that selects the refresh timer counter input clock.

Figure 2.6 Refresh Timer Control Status Register (RTMCSR)

2.2.3 Refresh Timer Constant Register (RTCOR)

RTCOR is an 8-bit register (figure 2.7) that sets the refresh timer counter's clear cycle.

Refresh timer counter and refresh timer constant register values are continually compared, and the refresh timer counter is cleared when the two values match.

Figure 2.7 Refresh Timer Constant Register (RTCOR)

2.3 Bus Controller and Refresh Controller Setting Examples

Figure 2.8 shows the area map for the interface examples provided in this document.

Figure 2.8 Area Map

The WCR (wait control register) setting differs depending on the connecting device. Table 2.3 lists settings for various devices used with the examples provided in this document.

Table 2.3 WCR Settings

Connecting Device	Wait Mode	Number of Waits	WCR
DPRAM	Pin wait mode	2 states	H'FA
LCD			H'FA
UPP		1 state	H'F9
PIO	Programmable wait mode		H'F1

Figure 2.9 shows register settings to set the areas for the interface examples covered by this application note.

Figure 2.9 Register Settings

Section 3 Interface Examples

3.1 SRAM (HM62832H-45) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.1.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with an SRAM (HM62832H-45) is shown in figure 3.1.

Figure 3.1 Block Diagram of H8/3003 and HM62832H-45 Interface

As shown in figure 3.2, area 1 (H'200000–H'3FFFFF) of the 16-Mbyte memory space is allotted. The area 1 bus controller settings are as follows:

Data bus width: 16 bit busNumber of states: 2 statesWait mode: wait disabled

Figure 3.2 Memory Map

3.1.2 Operation

Data Read/Write: Figure 3.3 shows the read/write timing chart. When directly connecting the H8/3003 and HM62832H-45, check whether the following timing conditions are satisfied:

- H8/3003:
 - t_{ACC1} and t_{ACC3} (read data access times)
 - t_{RDH} (read data hold time)
- HM62832H-45:
 - tDW (data setup time)
 - tDH (data hold time)
 - t_{CW} (chip select time)
 - twp (write pulse width)

Figure 3.3 shows the timing as follows:

• H8/3003:

```
\begin{array}{lll} & - & t_{ACC1} \text{ and } t_{ACC3} \\ & t_{ACC1} & = & t_{ACS} \text{ (max)} \\ & = & 45 \text{ ns} \le 80 \text{ ns} \text{ (H8/3003 } t_{ACC1)} \\ & t_{ACC3} & = & t_{OE} \text{ (max)} \\ & = & 20 \text{ ns} \le 40 \text{ ns} \text{ (H8/3003 } t_{ACC3)} \\ & - & t_{RDH} \\ & t_{RDH} & = & t_{CHZ} \text{ (min)} \\ & = & 0 \text{ ns} \ge 0 \text{ ns} \text{ (H8/3003 } t_{RDH)} \end{array}
```

• HM62832H-45:

```
 t_{DW} \text{ and } t_{DH} 
 t_{DW} = t_{WDS1} \text{ (min)} 
 = 60 \text{ ns} \ge 20 \text{ ns (HM62832H-45 } t_{DW}) 
 t_{DH} = t_{WDH} \text{ (min)} 
 = 20 \text{ ns} \ge 0 \text{ ns (HM62832H-45 } t_{DH})
```

— t_{CW} and t_{WP}

$$t_{CW}$$
 = $T_1 + T_2 + t_{AD}$ (min) - t_{AD} (max)
= $83.3 + 83.3 + 0 - 35$
= 131.6 ns ≥ 25 ns (HM62832H-45 t_{CW})
 t_{WP} = t_{WSW1} (min)
= 55 ns ≥ 25 ns (HM62832H-45 t_{WP})

Figure 3.3 Read/Write Timing Chart

3.1.3 Circuit Diagram

Figure 3.4 Circuit Diagram

3.2 EPROM (HN27C256-70) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.2.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with an EPROM (HN27C256-70) is shown in figure 3.5.

Figure 3.5 Block Diagram of H8/3003 and HN27C256-70 Interface

As shown in figure 3.6, area 0 (H'000000–H'1FFFFF) of the 16-Mbyte memory space is allotted. The area 0 bus controller settings are as follows:

Data bus width: 16 bit busNumber of states: 2 statesWait mode: wait disabled

Figure 3.6 Memory Map

3.2.2 Data Read

Figure 3.7 shows the data read timing chart. When directly connecting the H8/3003 and HN27C256-70, check whether the following timing conditions are satisfied:

- H8/3003:
 - t_{ACC1} and t_{ACC3} (read data access times)
 - t_{RDH} (read data hold time)

Figure 3.7 shows the timing as follows:

• H8/3003:

```
\begin{array}{lll} -- & t_{ACC1} \text{ and } t_{ACC3} \\ & t_{ACC1} &= & t_{CE} \text{ (max)} \\ &= & 70 \text{ ns} \leq 80 \text{ ns} \text{ (H8/3003 } t_{ACC1)} \\ & t_{ACC3} &= & t_{OE} \text{ (max)} \\ &= & 40 \text{ ns} \leq 40 \text{ ns} \text{ (H8/3003 } t_{ACC3)} \\ -- & t_{RDH} \\ & t_{RDH} &= & t_{DOH} \text{ (min)} \\ &= & 5 \text{ ns} \geq 0 \text{ ns} \text{ (H8/3003 } t_{RDH)} \end{array}
```


Figure 3.7 Read Timing Chart

3.2.3 Circuit Diagram

Figure 3.8 HN27C256-70 Interface

3.3 DPRAM (HD63310RP20) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.3.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with a DPRAM (HD63310RP20) is shown in figure 3.9.

Figure 3.9 Block Diagram of the H8/3003 and HD63320RP20 Interface

As shown in figure 3.10, area 4 (H'800000–H'9FFFFF) of the 16-Mbyte memory space is allotted. The area 4 bus controller settings are as follows:

Data bus width: 8 bit bus
Number of states: 3 states
Wait mode: pin wait mode 1
Number of waits: 2 states

Figure 3.10 Memory Map

3.3.2 Wait Signal Generator

Figure 3.11 shows the wait signal generator circuit. Figure 3.12 shows the wait timing chart. When the H8/3003 and HD63310RP20 are connected, read/write from the H8/3003 is not conducted correctly while the HD63310RP20 is performing other processes. Therefore, a wait cycle is inserted in the read/write cycle until the HD63310RP20's READY signal falling edge, effecting a wait period to the end of HD63310RP20 processing.

Figure 3.11 Wait Signal Generator

Figure 3.12 Wait Timing Chart

The WAIT signal is driven low at the falling edge of RDS and WRS. The READY signal is detected at the ϕ clock rising edge, and after detection of low level, the read cycle time is delayed by one clock, the write cycle follows immediately, and the WAIT signal is driven high.

3.3.3 Data Read/Write

Figure 3.13 shows the data read timing chart and figure 3.14 the write timing chart. When connecting the H8/3003 and HD63310RP20, check whether the following timing conditions are satisfied:

- H8/3003:
 - t_{RDS} (read data setup time)
 - t_{RDH} (read data hold time)
- HD63310RP20:
 - t_{DSW} (data input setup time)
 - t_{DHW} (data input hold time)

During the read cycle, HD63310RP20 data output timing is dependent on the READY signal falling edge. When calculating t_{RDS} , the READY signal falling edge timing becomes important, but as this timing varies widely due to HD63310RP20 operating conditions, t_{RDS} calculation has been performed using α to indicate the time from the READY signal falling edge to the next clock rising edge.

Figure 3.13 shows the timings as follows:

- H8/3003:
 - $t_{RDS} \text{ and } t_{RDH}$ $t_{RDS} = α \text{ (min)} + T_W + T_W + t_{CH} \text{ (min)} t_{DDR} \text{ (max)}$ = 0 + 83.3 + 83.3 + 30 120 $= 76.6 \text{ ns} ≥ 20 \text{ ns (H8/3003 } t_{RDS})$ $t_{RDH} = t_{DHR} \text{ (min)} + t_{DEL1} \text{ (min)}$ = 10 + 0 $= 10 \text{ ns} ≥ 0 \text{ ns (H8/3003 } t_{RDH})$
- HD63310RP20:
 - t_{DSW} and t_{DHW}

```
\begin{array}{lll} t_{DSW} & = & T_2 + T_W \times 2 + t_{CH} \, (\text{min}) + t_{SD} \, (\text{min}) + t_{DEL2} \, (\text{min}) - t_{WSD} \, (\text{max}) + t_{WDS2} \, (\text{min}) \\ & = & 83.3 + 83.3 \times 2 + 30 + 0 + 0 - 35 + 10 \\ & = & 254.9 \, \text{ns} \geq 60 \, \text{ns} \, (\text{HD63310RP20} \, t_{DSW}) \\ \\ t_{DHW} & = & t_{WDH} \, (\text{min}) - t_{DEL2} \, (\text{max}) \\ & = & 20 - 8.5 \\ & = & 11.5 \, \text{ns} \geq 0 \, \text{ns} \, (\text{HD63310RP20} \, t_{DHW}) \end{array}
```


Figure 3.13 Read Timing Chart

Figure 3.14 Write Timing Chart

3.3.4 Circuit Diagram

Figure 3.15 Circuit Diagram

3.4 Mask ROM (HN62444BNP) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.4.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with a mask ROM (HN62444BNP) is shown in figure 3.16.

Figure 3.16 Block Diagram of H8/3003 and HN62444BNP Interface

As shown in figure 3.17, area 2 (H'400000–H'5FFFFF) of the 16-Mbyte memory space is allotted. The area 2 bus controller settings are as follows:

Data bus width: 16 bit busNumber of states: 3 statesWait mode: pin wait mode 0

Figure 3.17 Memory Map

3.4.2 Data Read

Figure 3.18 shows the read timing chart. When directly connecting the H8/3003 and HN62444BNP, check whether the following timing conditions are satisfied:

- H8/3003:
 - t_{ACC2} and t_{ACC4} (read data access times)
 - t_{RDH} (read data hold time)

From figure 3.18, the timings are as follows:

• H8/3003:

```
 t_{ACC2} \text{ and } t_{ACC4} 
 t_{ACC2} = t_{ACE} \text{ (max)} 
 = 120 \text{ ns} \le 160 \text{ ns} \text{ (H8/3003 } t_{ACC2}) 
 t_{ACC4} = t_{OE} \text{ (max)} 
 = 55 \text{ ns} \le 120 \text{ ns} \text{ (H8/3003 } t_{ACC4}) 
 t_{RDH} 
 t_{RDH} = t_{DHO} \text{ (min)} 
 = 0 \text{ ns} \ge 0 \text{ ns} \text{ (H8/3003 } t_{RDH})
```


Figure 3.18 Read Timing Chart

3.4.3 Circuit Diagram

Figure 3.19 Circuit Diagram

3.5 Dummy SRAM (HM65256B-10) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.5.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with a dummy SRAM (HM65256B-10) is shown in figure 3.20.

Figure 3.20 Block Diagram of H8/3003 and HM65256B Interface

As shown in figure 3.21, area 3 (H'600000–H'7FFFFF) of the 16-Mbyte memory space is allotted. The area 3 bus controller settings are as follows:

Data bus width: 16 bit busNumber of states: 3 statesWait mode: pin wait mode 0

• Refresh controller: dummy SRAM mode

Figure 3.21 Memory Map

3.5.2 Data Read/Write

Figure 3.22 shows the read/write timing chart. When connecting the H8/3003 and HM65256B-10, confirm whether the following are satisfied:

- H8/3003:
 - t_{RDS} (read data setup time)
 - t_{RDH} (read data hold time)
- HM65256B-10:
 - t_{DW} (data input setup time)
 - t_{DH} (data input hold time)
 - t_P (chip enable pre-charge time)
 - t_{CE} (chip enable pulse width)
 - t_{RC} (random read/write cycle time)

Figure 3.22 shows the timing as follows:

- H8/3003:
 - t_{RDS} and t_{RDH}

$$\begin{array}{lll} t_{RDS} & = & T_2 + t_{CH} \, (\text{min}) - t_{ASD} \, (\text{max}) - t_{DEL} \, (\text{max}) - t_{OEA} \, (\text{max}) \\ & = & 83.3 + 30 - 35 - 14.8 - 40 \\ & = & 23.5 \, \text{ns} \geq 10 \, \text{ns} \, (\text{H8/3003} \, t_{RDS}) \\ \\ t_{RDH} & = & t_{OHZ} \, (\text{min}) + t_{DEH} \, (\text{min}) \\ & = & 25 + 4 \\ & = & 29 \, \text{ns} \geq 0 \, \text{ns} \, (\text{H8/3003} \, t_{RDH}) \\ \end{array}$$

- HM65256B-10:
 - $t_{DW} \text{ and } t_{DH}$ $t_{DW} = T_2 + t_{CH} (min) t_{WSD} (max) + t_{WDS2} (min)$ = 83.3 + 30 35 + 10 $= 88.3 \text{ ns} \ge 20 \text{ ns} (HM65256B-10 t_{DW})$ $t_{DH} = t_{WDH} (min)$ $= 20 \text{ ns} \ge 5 \text{ ns} (HM65256B-10 t_{DH})$

Figure 3.22 Read/Write Timing Chart

3.5.3 Refresh Timing

Figure 3.23 shows the refresh timing. The HM65256B-10 refresh is conducted by the HM65256B-10's auto-refresh function using the H8/3003's refresh controller. The HM65256B-10 refresh runs at 256 cycles/4 ms, therefore the refresh cycle is $4 \text{ ms}/256 = 15.625 \,\mu\text{s}$.

To satisfy this refresh cycle, the refresh controller drives the REFS signal low every 15.5 μ s (12 MHz/2 \times 93).

Check that the following conditions are satisfied for timing design during refresh:

• HM65256B-10:

— t_{FP} (refresh pre-charge time)

```
\begin{array}{lll} t_{FP} & = & t_{CL} \, (\text{min}) + T_1 + \, t_{RAD2} \, (\text{min}) + t_{DEL} (\text{min}) - t_{RAD3} \, (\text{max}) - t_{DEH} \, (\text{max}) \\ & = & 30 + 83.3 + 0 + 2.5 - 30 - 6.6 \\ & = & 79.2 \, \text{ns} \geq 30 \, \text{ns} \, (\text{HM65256B-10} \, t_{FP}) \end{array}
```

— t_{FAP} (refresh command pulse width).

```
t_{FAP} = T_1 + t_{CH} (min) + t_{RAD3} (min) + t_{DEH} (min) - t_{RAD2} (max) - t_{DEL} (max)
= 83.3 + 30 + 0 + 3 - 30 - 6.3
= 80 ns \geq 80 ns (HM65256B-10 t_{FAP})
```


Figure 3.23 Refresh Timing

3.5.4 Circuit Diagram

Figure 3.24 Circuit Diagram

3.6 DRAM (HM514260-7) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.6.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with a DRAM (HM514260-7) is shown in figure 3.25.

Figure 3.25 Block Diagram of H8/3003 and HM514260-7 Interface

As shown in figure 3.26, area 3 (H'600000-H'7FFFFF) of the 16-Mbyte address space is allotted. The area 3 bus controller settings are as follows:

Data bus width: 16 bit bus
Number of states: 3 states
Wait mode: Pin wait mode 0

• Refresh controller: 2CAS method, 4-Mbit DRAM

Figure 3.26 Memory Map

3.6.2 Data Read/Write

Figure 3.27 shows the read/write timing chart. When directly connecting the H8/3003 and HM514260-7, check that the following are satisfied:

• H8/3003:

- t_{CAC} (CAS access time)
- t_{AA} (address access time)
- t_{RAC} (RAS access time)
- t_{RDH} (read data hold time)

• HM514260-7:

- t_{DS} (data input setup time)
- t_{DH} (data input hold time)
- tRC (random read/write cycle time)
- t_{RP} (RAS pre-charge time)

Since the DRAM uses an address multiplex system, confirm that the following conditions are satisfied:

• HM514260-7:

- t_{ASR} (row address setup time)
- t_{RAH} (row address hold time)
- tASC (column address setup time)
- t_{CAH} (column address hold time)

Figure 3.27 shows the timing as follows:

```
• H8/3003:
```

• HM514260-7:

Figure 3.27 Read/Write Timing

3.6.3 Refresh

Figure 3.28 shows the CAS before RAS timing chart. When directly connecting the H8/3003 to the HM514260-7, check that the following are satisfied.

- HM514260-7:
 - t_{CSR} (CAS setup time)
 - t_{CHR} (CAS hold time)
 - t_{CPN} (CAS pre-charge time)
 - t_{RC} (random read/write cycle)
 - t_{RAS} (RAS pulse width)

Figure 3.28 shows the timing as follows:

• HM514260-7:

```
— t<sub>CSR</sub>, t<sub>CHR</sub>, t<sub>CPN</sub>, t<sub>RC</sub>, and t<sub>RAS</sub>
        t_{CSR} = t_{CSR (min)}
                 = 15 ns \geq 10 ns (HM514260-7 t<sub>CSR</sub>)
        t_{CHR} = T2 + t_{CH (min)} + t_{SD (min)} - t_{RAD2 (max)}
                 = 83.3 + 30 + 0 - 30
                 = 83.3 ns \geq 10 ns (HM514260-7 t<sub>CHR</sub>)
        t_{CPN}
               = t_{CL (min)} + T2 + t_{CH (min)} + t_{ASD (min)} - t_{SD (min)}
                 = 30 + 83.3 + 30 + 0 - 30
                 = 113.3 ns \ge 10 ns (HM514260-7 t<sub>CPN</sub>)
                 = T2 + T3 + t_{CH (min)} + t_{RAD1 (min)} - t_{RAD2 (max)}
        t_{RC}
                 = 83.3 + 83.3 + 30 + 0 - 30
                 = 166.6 ns \geq 130 ns (HM514260-7 t<sub>RC</sub>)
               = T2 + t_{CH (min)} + t_{RAD3 (min)} - t_{RAD2 (max)}
        t_{RAS}
                 = 83.3 + 30 + 0 - 30
                 = 83.3 ns \geq 70 ns (HM514260-7 t<sub>RAS</sub>)
```


Figure 3.28 Refresh Timing

3.6.4 Circuit Diagram

Figure 3.29 Circuit Diagram

3.7 UPP (HD63143) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.7.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with the UPP (HD63143) is shown in figure 3.30.

Figure 3.30 Block Diagram of H8/3003 and HD63143 Interface

As shown in figure 3.31, area 6 (H'C00000–H'DFFFFF) of the 16-Mbyte memory space is allotted. The area 6 bus controller settings are as follows:

Data bus width: 8 bit bus
Number of states: 3 states
Wait mode: pin wait mode 1
Number of waits: 1 state

Figure 3.31 Memory Map

3.7.2 Wait Signal Generator

Figure 3.32 shows the wait signal generator and figure 3.33 the wait timing chart. When the H8/3003 and HD63143 are directly connected, read/write from the H8/3003 is not conducted correctly while the HD63143 is performing other processes. Therefore, a wait cycle is inserted in the read/write cycle until the HD63143's READY signal rising edge, effecting a wait period to the end of HD63143 processing.

The READY signal's level is detected and a WAIT signal generated.

Figure 3.32 Wait Signal Generator Circuit

Figure 3.33 Wait Timing Chart

3.7.3 Data Read/Write

Figure 3.34 shows the read/write timing chart and figure 3.35 shows read/write timing for other than RAM. When connecting the H8/3003 and HD63143, check that the following are satisfied:

- H8/3003:
 - t_{RDS} (read data setup time)
 - t_{RDH} (read date hold time)
- HD63143:
 - twos (write data setup time)
 - twoh (write data hold time)
 - twoDD (write data delay time).

During read cycles other than RAM, the HD63143's data output timing depends on the READY signal falling edge. READY signal falling edge timing is important when computing t_{RDS} . However, READY signal timing differs greatly depending on the operating state of HD63143. Because of this, t_{RDS} calculation is conducted using the time (α) from the READY signal falling edge to the rising edge of next clock.

Figures 3.34 and 3.35, show the timing as follows:

- H8/3003:
 - t_{RDS} and t_{RDH} during RAM read cycle

```
\begin{array}{lll} t_{RDS} & = & t_{CL} \, (\text{min}) + T_2 + T_W + t_{CH} \, (\text{min}) - t_{ASD} \, (\text{max}) - t_{ORDD} \, (\text{max}) \\ & = & 30 + 83.3 + 30 - 35 - 80 \\ & = & 111.6 \, \text{ns} \geq 20 \, \text{ns} \, (\text{H8/3003} \, t_{RDS}) \\ \\ t_{RDH} & = & t_{ORDH} \, (\text{min}) \\ & = & 10 \, \text{ns} \geq 0 \, \text{ns} \, (\text{H8/3003} \, t_{RDH}) \end{array}
```

- t_{RDS} and t_{RDH} at times other than RAM read cycle

```
\begin{array}{rcl} t_{RDS} & = & \alpha \ (\text{min}) + T_W + t_{CH} \ (\text{min}) - t_{RRDD} \ (\text{max}) \\ \\ & = & 0 + 83.3 + 30 - 60 \\ \\ & = & 53.3 \ \text{ns} \geq 20 \ \text{ns} \ (\text{H8/3003} \ t_{RDS}) \\ \\ t_{RDH} & = & t_{ORDH} \ (\text{min}) \\ \\ & = & 10 \ \text{ns} \geq 0 \ \text{ns} \ (t_{RDH}) \end{array}
```

• HD63143:

— twos and twoh

$$t_{WDS} = T_2 + T_W + t_{CH} \text{ (min)} + t_{SD} \text{ (min)} - t_{WSD} \text{ (max)} + t_{WDS2} \text{ (min)}$$

$$= 83.3 + 83.3 + 30 + 0 - 35 + 10$$

$$= 171.6 \text{ ns} \ge 100 \text{ ns} \text{ (HD63143 } t_{WDS)}$$

$$t_{WDH} = t_{WDH} \text{ (min)} - t_{DELH} \text{ (max)}$$

$$= 20 - 8.5$$

$$= 11.5 \text{ ns} \ge 5 \text{ ns} \text{ (HD63143 } t_{WDH)}$$

$$- t_{WDD}$$

VDD

$$t_{WDD} = -t_{DELL} \text{ (min)} - t_{WDS2} \text{ (min)}$$

 $= -0 - 10$
 $= -10 \text{ ns} \le 120 \text{ ns} \text{ (HD63143 t}_{WDD})$

Figure 3.34 Read/Write Timing Chart (RAM)

Figure 3.35 Read/Write Timing Chart (non-RAM)

3.7.4 Circuit Diagram

Figure 3.36 Circuit Diagram

3.8 PIO (TMP82C55AP-10) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.8.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with PIO (TMP82C55AP-10) is shown in figure 3.37.

Figure 3.37 Block Diagram of H8/3003 and TMP82C55AP Interface

As shown in figure 3.38, area 6 (H'C00000–H'DFFFFF) of the 16-Mbyte memory space is allotted. The area 6 bus controller settings are as follows:

Data bus width: 8 bit busNumber of states: 3 states

• Wait mode: programmable wait mode

• Number of waits: 1 state

Figure 3.38 Memory Map

3.8.2 Data Read/Write

Figure 3.39 shows the read/write timing chart. When directly connecting the H8/3003 and TMP82C55AP-10, check whether the following timing conditions are satisfied:

- H8/3003:
 - t_{ACC4} (read data access time)
 - t_{RDH} (read data hold time)
- TMP82C55AP-10:
 - t_{DW} (input data setup time)
 - two (input data hold time)
 - t_{AR} (address setup time during read)
 - t_{AW} (address setup time during write)

From figure 3.39, the timings are as follows:

- H8/3003:
 - $\begin{array}{lll} -- & t_{ACC4} \text{ and } t_{RDH} \\ & t_{ACC4} &= & t_{RD} \text{ (max)} T_W \\ &= & 100 83.3 \\ &= & 16.7 \text{ ns} \le 120 \text{ ns} \text{ (H8/3003 } t_{ACC4}) \\ & t_{RDH} &= & t_{DF} \text{ (min)} \\ &= & 0 \text{ ns} \le 0 \text{ ns} \text{ (H8/3003 } t_{RDH}) \end{array}$
- TMP82C55AP-10:
 - t_{DW} and t_{WD}

$$\begin{array}{lll} t_{DW} & = & T_2 + T_W + t_{CH} \, (\text{min}) + t_{SD} \, (\text{min}) - t_{WSD} \, (\text{max}) + t_{WDS2} \, (\text{min}) \\ & = & 83.3 + 83.3 + 30 + 0 - 35 + 10 \\ & = & 171.6 \, \text{ns} \geq 100 \, \text{ns} \, \, (\text{TMP82C55AP-10} \, t_{DW}) \\ \\ t_{WD} & = & t_{WDH} \, (\text{min}) \\ & = & 20 \, \text{ns} \geq 0 \, \text{ns} \, \, (\text{TMP82C55AP-10} \, t_{WD}) \end{array}$$

— t_{AR} and t_{AW}

$$\begin{array}{lcl} t_{AR} & = & t_{AS1} \text{ (min)} \\ & = & 10 \text{ ns} \geq 0 \text{ ns (TMP82C55AP-10 } t_{AR}) \\ \\ t_{AW} & = & t_{AS2} \text{ (min)} \end{array}$$

= 50 ns ≥ 0 ns (TMP82C55AP-10 t_{AW})

RENESAS

Figure 3.39 Read/Write Timing Chart

3.8.3 Circuit Diagram

Figure 3.40 Circuit Diagram

3.9 RTC (HD64610) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.9.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with a calendar-clock usage device (HD64610) is shown in figure 3.41.

Figure 3.41 Block Diagram of H8/3003 and HD64610 Interface

As shown in figure 3.42, area 5 (H'A00000–H'BFFFFF) of the 16-Mbyte memory space is allotted. The area 5 bus controller settings are as follows:

Data bus width: 8 bit busNumber of states: 3 statesWait mode: pin wait mode 0

Figure 3.42 Memory Map

3.9.2 Data Read/Write

Figure 3.43 shows the read/write timing chart. When directly connecting the H8/3003 and HD64610, check whether the following timing conditions are satisfied:

- H8/3003:
 - t_{ACC4} (read data access time)
 - t_{RDH} (read data hold time)
- HD64610:
 - t_{DW} (input data set time)
 - t_{DH} (input data hold time)

Figure 3.43 shows the timing as follows:

• H8/3003:

```
 t_{ACC4} \text{ and } t_{RDH} 
 t_{ACC4} = t_{OE} \text{ (max)} 
 = 45 \text{ ns} \le 120 \text{ ns (H8/3003 } t_{ACC4}) 
 t_{RDH} = t_{OHZ} \text{ (min)} 
 = 0 \text{ ns} \ge 0 \text{ ns (H8/3003 } t_{RDH})
```

• HD64610:

```
\begin{array}{lll} -- & t_{DW} \text{ and } t_{DH} \\ & t_{DW} & = & T_2 + t_{CH} \text{ (min)} + t_{SD} \text{ (min)} - t_{WSD} \text{ (max)} + t_{WDS2} \text{ (min)} \\ & = & 83.3 + 30 + 0 - 35 + 10 \\ & = & 88.3 \text{ ns} \geq 40 \text{ ns} \text{ (HD64610 } t_{DW}) \\ & t_{DH} & = & t_{WDH} \text{ (min)} \\ & = & 20 \text{ ns} \geq 0 \text{ ns} \text{ (HD64610 } t_{DH}) \end{array}
```


Figure 3.43 Read/Write Timing Chart

3.9.3 Circuit Diagram

Figure 3.44 Circuit Diagram

3.10 LCD (LM032L) Interface

MCU: H8/3003

Function: Mode 4 (16-bit data bus, 16-Mbyte address space)

3.10.1 Specifications

The H8/3003 mode 4 (16-bit data bus, 16-Mbyte address space) interface with LCD (LM032L) is shown in figure 3.45.

Figure 3.45 Block Diagram of H8/3003 and LM032L Interface

As shown in figure 3.46, area 4 (H'800000–H'9FFFFF) of the 16-Mbyte memory space is allotted. The area 4 bus controller settings are as follows:

Data bus width: 8 bit bus
Number of states: 3 states
Wait mode: pin wait mode 1
Number of waits: 2 states

Figure 3.46 Memory Map

3.10.2 E Clock Generator

Figure 3.47 shows the E clock generator and figure 3.48 the E clock timing chart. When connecting the H8/3003 and LM032L, it is necessary to synchronize timing according to the E clock. Therefore, a ϕ clock count is made by decimal counter (74HC4017) to generate the E clock. Also, 9 wait states must be inserted to satisfy the E clock cycle time. With the H8/3003, insertion of more than 3 wait states is under control of the WAIT signal.

Figure 3.47 E Clock Generator Circuit

Figure 3.48 E Clock Timing Chart

3.10.3 Data Read/Write

Figures 3.49 and 3.50 show the read/write timing chart. When connecting the H8/3003 and LM032L, check that the following are satisfied:

- H8/3003:
 - t_{RDS} (read data setup time)
 - t_{RDH} (read data hold time)
- LM032L:
 - PW_{EH} (enable pulse width)
 - t_{DSW} (read data access time)
 - t_H (write access time)
- · E clock:
 - tCYC (enable cycle time).

From figure 3.49 and 3.50, the timings are as follows:

- H8/3003:
 - t_{RDS} and t_{RDH}

```
\begin{array}{lll} t_{RDS} &=& t_{CL} \, (\text{min}) + T_W \times 9 + t_{CH} \, (\text{min}) - t_{DEL1} \, (\text{max}) - t_{DEL2} (\text{max}) - t_{DDR} \, (\text{max}) \\ &=& 30 + 83.3 \times 9 + 30 - 46 - 30 - 320 \\ &=& 413.7 \, \text{ns} \geq 10 \, \text{ns} \, (\text{H8/3003} \, t_{RDS}) \\ \\ t_{RDH} &=& t_{DEL1} \, (\text{min}) + t_{DEL2} \, (\text{min}) + t_{H} \, (\text{min}) - t_{ASD} \, (\text{max}) \\ &=& 0 + 0 + 30 - 30 \end{array}
```

- Determine for LM032L:
 - PW_{FH} and t_{CYC} from the following equations:

 $= 0 \text{ ns} \ge 0 \text{ ns} (H8/3003 t_{RDS})$

```
\begin{array}{lll} \text{PW}_{\text{EH}} &=& t_{\text{CL}} \, (\text{min}) + T_{\text{W}} \times 9 + t_{\text{CH}} \, (\text{min}) + t_{\text{DEL1}} \, (\text{min}) + t_{\text{DEL2}} \, (\text{min}) - t_{\text{DEL1}} \, (\text{max}) - t_{\text{DEL2}} \\ & (\text{max}) \\ &=& 30 + 83.3 \times 9 + 30 + 0 + 0 - 46 - 30 \\ &=& 733.7 \, \, \text{ns} \geq 450 \, \, \text{ns} \, (\text{LM032L PW}_{\text{EH}}) \\ \\ t_{\text{CYC}} &=& t_{\text{CYC}} \times 12 \\ &=& 83.3 \times 12 \\ &=& 1000 \, \, \text{ns} \geq 1000 \, \, \text{ns} \, (\text{LM032L } t_{\text{CYC}}) \end{array}
```

— t_{DSW} and t_H from the following equations:

```
\begin{array}{lll} t_{DSW} & = & T_2 + T_W \times 7 + t_{CH} \text{ (min)} + t_{DEL1} \text{ (min)} + t_{DEL2} \text{ (min)} - t_{WSD} \text{ (max)} + t_{WSD2} \text{ (min)} \\ & = & 83.3 + 83.3 \times 7 + 30 + 0 + 0 - 30 + 10 \\ & = & 676.4 \text{ ns} \ge 195 \text{ ns} \text{ (LM032L } t_{DSW)} \end{array}
```

```
\begin{array}{ll} t_{H} & = & t_{CL} \, (\text{min}) + T_{W9} \, + t_{CH} \, (\text{min}) + t_{ASD} \, (\text{min}) + t_{WDH} \, (\text{min}) - t_{DEL1} \, (\text{max}) - t_{DEL2} \\ & (\text{max}) \\ & = & 30 + 83.3 + 30 + 0 + 20 - 46 - 30 \\ & = & 87.3 \, \text{ns} \geq 20 \, \text{ns} \, (\text{LM}032L \, t_{H}) \end{array}
```


Figure 3.49 Read Timing Chart

Figure 3.50 Write Timing Chart

3.10.4 Circuit Diagram

Figure 3.51 Circuit Diagram

Section 4 AC Characteristics of the H8/3003

Table 4.1 lists bus timing under various conditions within the H8/3003.

Table 4.1 Bus Timing (1) (Units: ns)

	A*1			Condition B* ²						
		8 MHz		10 MHz		12 MHz		16	MHz	
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	
Clock cycle time	t _{cyc}	125	500	100	500	83.3	500	62.5	500	
Clock low pulse width	t _{CL}	40	_	40	_	30	_	20	_	
Clock high pulse width	t _{CH}	40	_	40	_	30	_	20	_	
Clock rise time	t _{CR}	_	20	_	10	_	10	_	10	
Clock fall time	t _{CF}	_	20	_	10	_	10	_	10	
Address delay time	t _{AD}	_	60	_	40	_	35	_	30	
Address hold time	t _{AH}	25	_	20	_	15	_	10	_	
Address strobe delay time	t _{ASD}	_	60	_	40	_	35	_	30	
Write strobe delay time	t _{WSD}	_	60	_	40	_	35	_	30	
Strobe delay time	t _{SD}	_	60		40	_	35	_	30	
Write data strobe pulse width 1	t _{WSW1*} 3	85	_	70	_	55	_	35	_	
Write data strobe pulse width 2	t _{WSW2} *3	150	_	120	_	95	_	65	_	
Address setup time 1	t _{AS1}	20	_	15	_	10	_	10	_	
Address setup time 2	t _{AS2}	80	_	65	_	50	_	40	_	
Read data setup time	t _{RDS}	50	_	20	_	20	_	20	_	
Read data hold time	t _{RDH}	0	_	0	_	0	_	0	_	
Write data delay time	t _{WDD}	_	75	_	65	_	60	_	60	
Write data setup time 1	t _{WDS1}	90	_	75	_	60	_	35	_	
Write data setup time 2	t _{WDS2}	15	_	10	_	10	_	5	_	
Write data hold time	t _{WDH}	25	_	20	_	20	_	20	_	
Read data access time 1	t _{ACC1*} 3	_	110	_	100	_	80	_	55	
Read data access time 2	t _{ACC2*} 3	_	230	_	200	_	160	_	115	

Condition

Notes: 1. Condition A: V_{CC} = 2.7–5.5 V, AV_{CC} = 2.7–5.5 V, V_{CC} = 2.7–AV_{CC}, V_{SS} = AV_{SS} = 0 V, ϕ = 2–8 MHz, Ta = -20 to +75°C (normal specification), Ta = -40 to +85°C (wide temperature range specification)

^{2.} Condition B: Vcc = $5.0 \text{ V} \pm 10\%$, AVcc = $5.0 \text{ V} \pm 10\%$, Vref = 4.5–AV_{CC}, V_{SS} = AV_{SS} = 0 V, ϕ = 2–16 MHz, Ta = -20 to +75°C (normal specification), Ta = -40 to +85°C (wide temperature range specification)

^{3.} See note 3 following table 4.2

Table 4.2 Bus Timing (2) (Units: ns)

		Α	<u>.</u> *1	Condition B*2						
		8 N	ИHz	10 MHz		12 MHz		16 MHz		
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	
Read data access time 3	t _{ACC3} *3	_	55	_	50	_	40	_	25	
Read data access time 4	t _{ACC4} *3	_	160	_	150	_	120	_	85	
Precharge time	t _{PCH} *3	85	_	70	_	55	_	40	_	
Wait setup time	t _{WTS}	40	_	35	_	25	_	25	_	
Wait set hold time	t _{WTH}	10	_	10	_	5	_	5		
Bus request setup time	t _{BRQS}	40	_	40	_	40	_	40	_	
Bus acknowledge delay time 1	t _{BACD1}	_	60	_	50	_	40	_	30	
Bus acknowledge delay time 2	t _{BACD2}	_	60	_	50	_	40	_	30	
Bus floating time	t _{BZD}	_	70	_	60	_	50	_	40	

Condition

Notes: 1: Condition A: $V_{CC} = 2.7-5.5 \text{ V}$, $AV_{CC} = 2.7-5.5 \text{ V}$, $V_{ref} = 2.7-AV_{CC}$, $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2-8 \text{ MHz}$, $V_{ref} = 2.7-AV_{ref}$ (wide temperature range specification)

- 2: Condition B: V_{CC} = 5.0 V ±10%, AV_{CC} = 5.0 V ±10%, V_{CC} , V_{SS} = AV_{SS} = 0 V, ϕ = 2–16 MHz, V_{CC} = 20 to +75°C (normal specification), V_{CC} = 4.5–40 to +85°C (wide temperature range specification)
- 3: During 8-MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{ACC1} &= 1.5 \times t_{CYC} - 78 \text{ (ns)} t_{WSW1} = 1.0 \times t_{CYC} - 40 \text{ (ns)} \\ t_{ACC2} &= 2.5 \times t_{CYC} - 83 \text{ (ns)} t_{WSW2} = 1.5 \times t_{CYC} - 38 \text{ (ns)} \\ t_{ACC3} &= 1.0 \times t_{CYC} - 70 \text{ (ns)} t_{PCH} = 1.0 \times t_{CYC} - 40 \text{ (ns)} \\ t_{ACC4} &= 2.0 \times t_{CYC} - 90 \text{ (ns)} \end{split}$$

During-10 MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{ACC1} &= 1.5 \times t_{CYC} - 50 \text{ (ns)} \\ t_{WSW1} &= 1.0 \times t_{CYC} - 30 \text{ (ns)} \\ t_{ACC2} &= 2.5 \times t_{CYC} - 50 \text{ (ns)} \\ t_{WSW2} &= 1.5 \times t_{CYC} - 30 \text{ (ns)} \\ t_{ACC3} &= 1.0 \times t_{CYC} - 50 \text{ (ns)} \\ t_{PCH} &= 1.0 \times t_{CYC} - 30 \text{ (ns)} \\ t_{ACC4} &= 2.0 \times t_{CYC} - 50 \text{ (ns)} \end{split}$$

During-12 MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{ACC1} &= 1.5 \times t_{CYC} - 45 \text{ (ns)} t_{WSW1} = 1.0 \times t_{CYC} - 28 \text{ (ns)} \\ t_{ACC2} &= 2.5 \times t_{CYC} - 48 \text{ (ns)} t_{WSW2} = 1.5 \times t_{CYC} - 30 \text{ (ns)} \\ t_{ACC3} &= 1.0 \times t_{CYC} - 43 \text{ (ns)} t_{PCH} = 1.0 \times t_{CYC} - 28 \text{ (ns)} \\ t_{ACC4} &= 2.0 \times t_{CYC} - 47 \text{ (ns)} \end{split}$$

During 16-MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{ACC1} &= 1.5 \times t_{CYC} - 39 \text{ (ns)} t_{WSW1} = 1.0 \times t_{CYC} - 28 \text{ (ns)} \\ t_{ACC2} &= 2.5 \times t_{CYC} - 41 \text{ (ns)} t_{WSW2} = 1.5 \times t_{CYC} - 28 \text{ (ns)} \\ t_{ACC3} &= 1.0 \times t_{CYC} - 38 \text{ (ns)} t_{PCH} = 1.0 \times t_{CYC} - 23 \text{ (ns)} \\ t_{ACC4} &= 2.0 \times t_{CYC} - 40 \text{ (ns)} \end{split}$$

Table 4.3 Bus Timing (Refresh Controller) (Units: ns)

		A*1		Condition B*2						
		8 1	MHz	10 MHz		12 MHz		16 MHz		
Item	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	
RAS delay time 1	t _{RAD1}	_	60	_	30	_	30	_	30	
RAS delay time 2	t _{RAD2}	_	60	_	30	_	30	_	30	
RAS delay time 3	t _{RAD3}	_	60	_	30		30		30	
Row address hold time	t _{RAH*} 3	25	_	20	_	15	_	15	_	
RAS precharge time	t _{RP*} 3	85	_	70	_	55	_	40	_	
CAS to RAS precharge time	t _{CRP*} 3	85	_	70	_	55	_	40	_	
CAS pulse width	t _{CAS}	110	_	40	_	40	_	40	_	
RAS access time	t _{RAC*} 3	_	160	_	150	_	120		85	
Address access time	t _{AA}	_	105	_	55	_	55	_	55	
CAS access time	t _{CAC*} 3	_	50		50	_	40	·-	25	
Write data setup time 3	t _{WDS3}	75	_	40	_	40	_	40	_	
CAS setup time	t _{CSR*} 3	20	_	15	_	15	_	15	_	
Read strobe delay time	t _{RSD}	_	60	_	30	_	30	_	30	

Condition

Notes: 1. Condition A: V_{CC} = 2.7–5.5V, AV_{CC} = 2.7–5.5V, V_{CC} = 2.7–A V_{CC} , V_{SS} = AV_{SS} = 0 V, ϕ = 2–8 MHz, Ta = –20 to +75°C (normal specification), Ta = –40 to +85°C (wide temperature range specification)

- 2. Condition B: $Vcc = 5.0 \text{ V} \pm 10\%$, $AVcc = 5.0 \text{ V} \pm 10\%$, $Vref = 4.5 AV_{CC}$, $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 16 \text{ MHz}$, $Ta = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification), $Ta = -40 \text{ to } +85^{\circ}\text{C}$ (wide temperature range specification)
- 3. During 8-MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{RAH} &= 0.5 \times t_{CYC} - 38 \text{ (ns) } t_{CAC} = 1.0 \times t_{CYC} - 75 \text{ (ns)} \\ t_{RAC} &= 2.0 \times t_{CYC} - 90 \text{ (ns) } t_{CSR} = 0.5 \times t_{CYC} - 43 \text{ (ns)} \\ t_{RP} &= t_{CRP} = 1.0 \times t_{CYC} - 40 \text{ (ns)} \end{split}$$

During 10-MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{RAH} &= 0.5 \times t_{CYC} - 30 \text{ (ns) } t_{CAC} = 1.0 \times t_{CYC} - 50 \text{ (ns)} \\ t_{RAC} &= 2.0 \times t_{CYC} - 50 \text{ (ns) } t_{CSR} = 0.5 \times t_{CYC} - 35 \text{ (ns)} \\ t_{RP} &= t_{CRP} = 1.0 \times t_{CYC} - 30 \text{ (ns)} \end{split}$$

During 12-MHz operation the following times are dependent on the clock cycle time as indicated:

$$\begin{split} t_{RAH} &= 0.5 \times t_{CYC} - 27 \text{ (ns) } t_{CAC} = 1.0 \times t_{CYC} - 43 \text{ (ns)} \\ t_{RAC} &= 2.0 \times t_{CYC} - 47 \text{ (ns) } t_{CSR} = 0.5 \times t_{CYC} - 27 \text{ (ns)} \\ t_{RP} &= t_{CRP} = 1.0 \times t_{CYC} - 28 \text{ (ns)} \end{split}$$

During 16-MHz operation the following times are dependent on the clock cycle time as indicated.

$$\begin{split} t_{RAH} &= 0.5 \times t_{CYC} - 16 \text{ (ns) } t_{CAC} = 1.0 \times t_{CYC} - 38 \text{ (ns)} \\ t_{RAC} &= 2.0 \times t_{CYC} - 40 \text{ (ns) } t_{CSR} = 0.5 \times t_{CYC} - 16 \text{ (ns)} \\ t_{RP} &= t_{CRP} = 1.0 \times t_{CYC} - 23 \text{ (ns)} \end{split}$$

Figure 4.1 Timing Waveforms (Basic Bus Timing/2 States)

Figure 4.2 Timing Waveforms (Basic Bus Timing/3 States)

Figure 4.3 Timing Waveforms (Basic Bus Timing/2 States + 1 Wait)

Figure 4.4 Timing Waveforms (DRAM Bus Timing/Read-Write/2 WE Method)

Figure 4.5 Timing Waveforms (DRAM Bus Timing/Refresh)

Figure 4.6 Timing Waveforms (PSRAM Bus Timing/Read-Write)

Figure 4.7 Timing Waveforms (PSRAM Bus Timing/Refresh)

Section 5 Memory AC Characteristics

5.1 HM62832H-45 AC Characteristics

Measuring Conditions:

• $V_{CC} = 5 \text{ V} \pm 10\%$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$

• Input pulse level: V_{SS} to 3.0 V

• Input rise/fall time: 5 ns

• I/O timing reference level: 1.5 V

• Output load: see figure 5.1

Figure 5.1 Output Loading Conditions

Table 5.1 Bus Timing (Read)

		HM62832H-25		HM62832H-35		HM62832H-45		
Item	Symbol	Min	Max	Min	Max	Min	Max	Units
Read cycle time	t _{RC}	25	_	35	_	45	_	ns
Address access time	t _{AA}	_	25	_	35	_	45	ns
Chip select access time	t _{ACS}	_	25	_	35	_	45	ns
CS output set time	t _{CLZ*}	5	_	5	_	5	_	ns
Output enable access time	t _{OE}	_	12	_	15	_	20	ns
Output enable/output set time	t _{OLZ*}	0		0		0	_	ns
Chip deselect/output floating time	t _{CHZ*}	0	12	0	15	0	20	ns
Output disable/output floating time	t _{OHZ*}	0	12	0	15	0	20	ns
Output hold time	t _{OH}	5	_	5	_	5	_	ns

Note: Transition is measured at ±200 mV from the high impedance voltage due to load circuit (B) (figure 5.1). This parameter is not measured for all items but is a sample value.

Figure 5.2 Timing Waveforms (Read)

Table 5.2 Bus Timing (Write)

		HM62832H-25		HM62832H-35		HM62832H-45		
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit s
Write cycle time	t _{WC}	25	_	35	_	45	_	ns
Chip select time	t _{CW}	15	_	20	_	25	_	ns
Address valid time	t _{AW}	20	_	30	_	40	_	ns
Address setup time	t _{AS}	0	_	0	_	0	_	ns
Write pulse time	t _{WP}	15	_	20	_	25	_	ns
Address hold time	t _{WR}	0	_	0	_	0	_	ns
Output disable/output floating time	t _{OHZ*}	0	12	0	15	0	20	ns
WE/output floating time	t _{WHZ*}	0	12	0	15	0	20	ns
Input data set time	t _{DW}	12	_	15	_	20	_	ns
Input data hold time	t _{DH}	0	_	0	_	0	_	ns
WE output set time	t _{OW}	5	_	5	_	5	_	ns

Note: Transition is measured at ±200 mV from the high impedance voltage due to load circuit (B) (figure 5.1). This parameter is not measured for all items but is a sample value.

Notes: 1. Write conducted during the overlap (t_{WP}) when \overline{CS} is low and \overline{WE} is low.

- 2. t_{WR} specified for the end of the write cycle from whichever transition comes earlier, the \overline{WE} or \overline{CS} high transition.
- 3. I/O pin in output mode during this period. At this time, a data input signal of inverse phase to the output must not be applied.
- 4. When the $\overline{\text{CS}}$ low transition occurs simultaneously with $\overline{\text{WE}}$ low transition or after it, output stays at high impedance.
- 5. $\overline{OE} = V_{IL}$
- 6. Drive $\overline{\text{WE}}$ or $\overline{\text{CS}}$ high during address transition.

Figure 5.3 Timing Waveforms (Write)

5.2 HN27C256HG-70 AC Characteristics

Table 5.3 Bus Timing (Read)

		HN270	HN27C256HG-70		HN27C256HG-85	
Item	Symbol	Min	Max	Min	Max	Units
Access time	t _{ACC}	_	70	_	85	ns
CE/output delay time	t _{CE}		70		85	ns
OE/output delay time	t _{OE}	_	40	_	45	ns
Output disable delay time	t _{DF*}	0	30	0	30	ns
Data output hold time	t _{OH}	5	_	5	_	ns

Note: t_{DF} defined as the condition when the release state is reached and the output level can no longer be referenced.

Figure 5.4 HN27C256HG-70 Timing Waveforms (Read)

5.3 HN62444BNP AC Characteristics

Table 5.4 Bus Timing

Item	Symbol	Min	Max	Units
Cycle time	t _{RC}	120	_	ns
Nibble cycle time	t _{NC}	70	_	ns
Address access time	t _{AA}	<u> </u>	120	ns
Nibble address access time	t _{NA}	_	70	ns
CE access time	t _{ACE}	_	120	ns
OE access time	t _{OE}		55	ns
Address/output hold time	t _{DHA}	0	_	ns
CE/output hold time	t _{DHC}	0	<u> </u>	ns
OE/output hold time	t _{DHO}	0	" —	ns
CE/output floating time	t _{CHZ*}	_	40	ns
OE/output floating time	t _{OHZ*}		40	ns
CE/output set time	t _{CLZ}	5	_	ns
OE/output set time	t _{OLZ}	5	_	ns

Note: t_{CHZ} and t_{OHZ} are specified as times until output reaches the release state, and are not determined by output voltage level.

Figure 5.5 HN62444BNP Timing Waveforms (Read)

5.4 HM65256B-12 AC Characteristics

Table 5.5 Bus Timing

	Sym-	HM65	256B-10	HM65256B-12		HM65	256B-15	HM65		
Item	bol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Random read/write cycle time	t _{RC}	160	_	190	_	235	_	310	_	ns
SC mode read/write cycle time	t _{RSC}	55	_	65	_	80	_	105	_	ns
Chip enable access time	t _{CEA}	_	100	_	120	_	150	_	200	ns
Address access time	t _{AA}	_	50		60	_	75		100	ns
Output enable access time	t _{OEA}		40		50		60		75	ns
Chip disable output delay (high Z)			25		25		30		35	ns
Chip enable/ output delay (low Z)		30	_	30	_	35	_	40	_	ns
Output enable/ output delay (low Z)	t _{OLZ}	10		10		10		10		ns
Output disable/ output delay (high Z)	t _{OHZ}	_	25	_	25	_	30	_	35	ns
Chip enable pulse width	t _{CE}	100n	4m	120n	4m	150n	4m	200n	4m	S
Chip enable pre-charge time	t _P	50	_	60	_	75	_	100	_	ns

Table 5.5 Bus Timing (cont)

	Sym-	HM6	5256B-10	HM65	256B-12	HM6	5256B-15	HM6	5256B-20	
Item	bol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Address setup time	t _{AS}	0	_	0	_	0	_	0	_	ns
Row address hold time	t _{RAH}	20		20		25		30		ns
Column address hold time	t _{CAH}	100		120		150		200		ns
Read com- mand setup time	t _{RCS}	0		0		0		0		ns
Read com- mand hold time	t _{RCH}	0	_	0	_	0	_	0	_	ns
Output enable hold time	t _{OHC}	0		0		0		0		ns
Output enable/ chip enable delay time	t _{OCD}	0		0		0		0		ns
Output hold time (from column address)	t _{OH}	5	<u> </u>	5		5		10	<u> </u>	ns
Write com- mand pulse width	t _{WP}	25	_	25	_	30	_	35	_	ns
Chip enable time	t _{CW}	100	_	120	_	150	_	200		ns
Column address setup time (for write)	t _{ASW}	0	_	0	_	0	_	0	_	ns
Column address hold time (after write)	t _{AHW}	0		0	<u> </u>	0	_	0	_	ns

Table 5.5 Bus Timing (cont)

		Sym-	HM652	256B-10	HM652	256B-12	HM652	256B-15	HM65	256B-20	
Input data Input data Input data Input data Input data Input data Input disable/tow Input	Item	-	Min	Max	Min	Max	Min	Max	Min	Max	Units
hold time (after write) Solution of the content of the profession of the content of the profession of the profession of the content of the profession o		ett _{DW}	20	_	20	_	25	_	30	_	ns
output delay (low Z) Write enable/ t _{WHZ} — 25 — 25 — 30 — 35 ns output delay (high Z) Transition t _T 3 50 3 50 3 50 3 50 ns time (rise/fall) Refresh com-t _{RFD} com-t _{RFD} prediction for the standard delay time Refresh pre- t _{FP} 30 — 30 — 30 — 30 — 30 — ns charge time Refresh com-t _{FAP} 80 10000 80 10000 80 10000 80 10000 80 10000 ns mand pulse width (autorefresh) Auto-refresh t _{FC} cycle time 160 — 190 — 235 — 310 — ns mand pulse width (self-refresh) Refresh set t _{FRS} 160 — 190 — 235 — 310 — ns time (self-refresh)	hold time	t _{DH}	0	_	0	_	0	_	0	_	ns
output delay (high Z) Transition t _T 3 50 3 50 3 50 3 50 ns time (rise/fall) Refresh com-t _{RFD} com-t _{RFD} 50 — 60 — 75 — 100 — ns mand delay time Refresh pre- t _{FP} 30 — 30 — 30 — 30 — ns charge time Refresh com-t _{FAP} 80 10000 80 10000 80 10000 80 10000 ns mand pulse width (auto-refresh) Auto-refresh t _{FC} 160 — 190 — 235 — 310 — ns cycle time Refresh com-t _{FAS} mand pulse width (self-refresh) Refresh set t _{FRS} 160 — 190 — 235 — 310 — ns time (self-refresh)	output delay		5	_	5	_	5	_	5		ns
time (rise/fall) Refresh com-t _{RFD} and delay time 50 — 60 — 75 — 100 — ns Refresh pre- t _{FP} charge time 30 — 30 — 30 — ns Refresh com-t _{FAP} mand pulse width (autorefresh) 80 10000 80 10000 80 10000 80 10000 ns Auto-refresh t _{FC} cycle time 160 — 190 — 235 — 310 — ns Refresh com-t _{FAS} mand pulse width (self-refresh) 10000 — 10000 — 10000 — ns Refresh set t _{FRS} teffesh set t _{FRS} stime (self-refresh) 160 — 190 — 235 — 310 — ns	output delay		_	25	_	25	_	30	_	35	ns
mand delay time Refresh pre- t _{FP} charge time 30 — 30 — 30 — ns Refresh com-t _{FAP} swidth (autorefresh) 80 10000 80 10000 80 10000 80 10000 ns Auto-refresh t _{FC} cycle time 160 — 190 — 235 — 310 — ns Refresh com-t _{FAS} mand pulse width (self-refresh) 10000 — 10000 — 10000 — ns Refresh set t _{FRS} 160 — 190 — 235 — 310 — ns time (self-refresh)			3	50	3	50	3	50	3	50	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mand delay	n-t _{RFD}	50	_	60	_	75	_	100		ns
mand pulse width (autorefresh)		t _{FP}	30		30	_	30	_	30		ns
cycle time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mand pulse width (auto-	1-t _{FAP}	80	10000	80	10000	80	10000	80	10000	ns
mand pulse width (self-refresh) Refresh set $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		t _{FC}	160	_	190	_	235	_	310		ns
time (self-refresh)	mand pulse width (self-	n-t _{FAS}	10000		10000	_	10000	_	10000	_	ns
Refresh cyclet _{REF} — 4 — 4 — 4 ms	time (self-	t _{FRS}	160	_	190	_	235	_	310	_	ns
	Refresh cycl	et _{REF}		4	_	4	_	4	_	4	ms

Notes: 1. Measuring conditions ($V_{CC} = 5 \text{ V } \pm 10\%$, Ta = 0 to +70°C)

Input pulse level = 2.4 V, 0.4 V

Input rise and fall time = 5 ns

Input timing reference level = 2.2 V, 0.8 V

Output reference level = V_{OH} = 2.0 V, V_{OL} = 0.8 V

Output load = 1TTL + 100 pF (including jig and scope)

2. t_{CHZ} , t_{OHz} and, t_{WHZ} are specified as times when output has reached open circuit condition.

- 3. Sample value under conditions of tr = 5 ns for t_{CLZ} , t_{OLZ} , and t_{OW} . This value is not measured for all items.
- 4. Write is conducted in the overlap when \overline{CE} and \overline{WE} are low.
- 5. When $\overline{\text{CS}}$ low occurs simultaneously with $\overline{\text{WE}}$ low or after it, output stays at high impedance.
- 6. When an input signal of inverse phase to the output is applied in the write cycle, \overline{OE} or \overline{WE} must disable the output buffer prior to applying data to the device. Then data input must be floated before the output buffer's \overline{OE} or \overline{WE} is asserted.
- 7. V_{IH} (min) and V_{IL} (max) are input signal measurement timing reference levels. Therefore, the transition time is measured between V_{IH} and V_{IL} .
- 8. Standby for $100 \mu s$ or more after power on, and add at least 8 initialize cycles.
- When self-refresh ends, fix \overline{CE} and \overline{OE} High during self-refresh set time (t_{FRS}) to reset self-refresh operation in RAM. When conducting an auto-refresh following a self-refresh, drive \overline{OE} low on completion of t_{FRS} at the start of auto-refresh.

Figure 5.6 HM65256B-12 Timing Waveforms (Read)

Figure 5.7 HM65256B-12 Timing Waveforms (Write)

Figure 5.8 HM65256B-12 Timing Waveforms (Refresh)

5.5 HM514260 AC Characteristics

Table 5.6 Bus Timing (Common)

			14260A-7 S4260A-7	_	14260A-8 S4260A-8		14260A-10 S4260A-10	
Item	Symbol	Min	Max	Min	Max	Min	Max	Units
Random read/write cycle	t _{RC}	130	_	150	_	180	_	ns
RAS precharge time	t _{RP}	50	_	60	_	70	_	ns
RAS pulse width	t _{RAS}	70	10000	80	10000	100	10000	ns
CAS pulse width	t _{CAS}	20	10000	30	10000	25	10000	ns
Row address setup time	t _{ASR}	0	_	0		0		ns
Row address hold time	t _{RAH}	10	_	10	_	15	_	ns
Column address setup time	t _{ASC}	0	_	0	_	0	_	ns
Column address hold time	t _{CAH}	15	_	15	_	20	_	ns
RAS CAS delay time	t _{RCD}	20	50	20	60	25	75	ns
RAS column address delay time	t _{RAD}	15	35	15	40	20	55	ns
RAS hold time	t _{RSH}	20	_	20	_	25	_	ns
CAS hold time	t _{CSH}	70	_	80		100	_	ns
CAS RAS precharge time	t _{CRP}	15	_	15	_	15	_	ns
OE/data input delay time	t _{ODD}	20	_	20	_	25	_	ns
OE delay time from data input	t _{DZO}	0		0		0	_	ns
CAS delay time from data input	t _{DZC}	0	_	0		0	_	ns
Transition time (rise/fall)	t _T	3	50	3	50	3	50	ns
Refresh cycle	t _{REF}	_	8	_	8	_	8	ms
Refresh cycle (L version)	t _{REF}	_	128		128	_	128	ms

Note: Measuring Conditions (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0V)

Input rise and fall time = 5 ns

Input timing reference level = 2.4 V, 0.8 V

Output load = 2 TTL + C_L (100 pF) (including jig and scope)

Table 5.7 Bus Timing (Read)

		HM514260A-7 HM51S4260A-7			14260A-8 S4260A-8		14260A-10 S4260A-10		
Item	Symbol	Min	Max	Min	Max	Min	Max	Units	
Access time from RAS	t _{RAC}	_	70	_	80	_	100	ns	
Access time from CAS	t _{CAC}		20	_	20	_	25	ns	
Access time from address	t _{AA}	_	35	_	40	_	45	ns	
Access time from OE	t _{OAC}	_	20	_	20	_	25	ns	
Read command setup time	t _{RCS}	0	_	0	_	0		ns	
Read command hold time (for CAS)	t _{RCH}	0	_	0	_	0		ns	
Read command hold time (for RAS)	t _{RRH}	0	_	0	_	0		ns	
Column address/RAS read time	t _{RAL}	35	_	40	_	45	_	ns	
Output buffer turn-off time	t _{OFF1}	0	15	0	15	0	20	ns	
Output buffer turn-off time (for OE)	t _{OFF2}	0	15	0	15	0	20	ns	
CAS/data input delay time	t _{CDD}	15	_	15	_	20	_	ns	

Table 5.8 Bus Timing (Write)

			4260A-7 S4260A-7		14260A-8 S4260A-8		14260A-10 S4260A-10	
Item	Symbol	Min	Max	Min	Max	Min	Max	Units
Write command setup time	t _{WCS}	0	_	0	_	0	_	ns
Write command hold time	t _{WCH}	15	_	15		20		ns
Write command pulse width	t _{WP}	10	_	10	_	20	_	ns
Write command/RAS	S t _{RWL}	20	_	20	_	25		ns
Write command/CAS read time	S t _{CWL}	20	_	20	_	25		ns
Data input setup time	t _{DS}	0	_	0	_	0	_	ns
Data input hold time	t _{DH}	15	_	15	_	20	_	ns
CAS/OE delay time	t _{COD}	_	0	_	0	_	0	ns

Table 5.9 Bus Timing (Refresh)

			4260A-7 S4260A-7		M514260A-8 HM514260A-10 N51S4260A-8 HM51S4260A-10		HM514260A-10 HM51S4260A-10	
Item	Symbol	Min	Max	Min	Max	Min	Max	Units
CAS setup time (CAS before RAS refresh cycle)	t _{CSR}	10	_	10	_	10	_	ns
CAS hold time (CAS before RAS refresh cycle)	t _{CHR}	10		10		10	_	ns
RAS precharge/CAS hold time	S t _{RPC}	10	_	10	_	10	_	ns
Normal mode/CAS precharge time	t _{CPN}	10	_	10	_	10	_	ns

Figure 5.9 HN5116640 Timing Waveforms (Read)

Figure~5.10~HN5116640~Timing~Waveforms~(Write)

Section 6 Peripheral LSI AC Characteristics

6.1 HD63310RP20 AC Characteristics

Table 6.1 Bus Timing

Num-				HD63	310RP20	
ber	Item		Symbol	Min	Max	Units
1	Address setup time (A0-A	(9)	t _{AS}	0	_	ns
2	Address hold time (A0-A9	9)	t _{AH}	0	_	ns
3	Address setup time (RS)		t _{ASRS}	0	_	ns
4	Address hold time (RS)		t _{AHRS}	15	_	ns
5	Address setup time (AS)		t _{ASAS}	40	_	ns
6	Address hold time (AS)		t _{AHAS}	0	_	ns
7	AS input Low pulse width		t _{ASLW}	40	_	ns
8	AS setup time		t _{ASS}	0	_	ns
9	READY delay time (during	g read)	t _{RYRD}	_	*1	ns
10	READY release time (duri	ng read)	t _{RYRH}	0	60	ns
11	Data output delay time	Direct addressing mode	t _{DDR}		120	ns
		Indirect addressing/FIFO mode		_	170	ns
11A	Access time *2	Direct addressing mode	t _{ACC}	_	200	ns
		Indirect addressing/FIFO mode		_	250	ns
12	Data output hold time		t _{DHR}	10	_	ns
13	Data output 3-state off time	е	t _{DTOF}	_	60	ns
14	Data output 3-state on time	е	t _{DTON}	_	60	ns
15	READY delay time (during	g write)	t _{RYWD}	_	*1	ns
16	READY release time (duri	ng write)	t _{RYWH}	0	60	ns
17	Data input setup time		t _{DSW}	60	_	ns
18	Data input hold time		t _{DHW}	0	_	ns

Table 6.1 **Bus Timing (cont)**

Num-				HD63	310RP20	
ber	Item		Symbol	Min	Max	Units
19	RDS hold time	Direct addressing mode	t _{RDSH}	120	_	ns
		Indirect addressing/FIFO mode		170	_	ns
20	WRS hold time	Other than FIFO mode	t _{WRSH}	120	_	ns
		During FIFO mode	_	170	_	ns
21	RDS recovery time		t _{RRC}	70	_	ns
22	WRS recovery time		t _{WRC}	70	_	ns
23	$\overline{RDS} imes \overline{WRS}$ recovery ti	me	t _{RWRC}	70	_	ns
24	$\overline{\text{WRS}} \times \overline{\text{RDS}}$ recovery ti	me	t _{WRRC}	70	_	ns

- Notes: 1. The READY signal is for synchronization, and the output delay time varies according to the access request state of both ports. For example, if a read request is sent out from two ports simultaneously, one waits for request accepted, a wait is generated, and READY assert is late.
 - 2. Timing when two ports are not accessed simultaneously.

Figure 6.1 Timing Waveforms (Read)

Figure 6.2 Timing Waveforms (Write)

6.2 HD63143 AC Characteristics

Table 6.2 Bus Timing

Item		Symbol	Min	Тур	Max	Units
Oscillator stable time		t _{RC}	_	_	20	ms
Operating frequency		f _{opr}	1.0		4.0	MHz
Output clock frequency		f _{CLK}	_	f _{opr} × 2		MHz
Output clock high level pulse width		t _{CWH}	55	_	_	ns
Output clock low level pulse width		t _{CWL}	55		_	ns
Output clock rise time		t _{Cr}	_		10	ns
Output clock fall time		t _{Cf}	_	_	10	ns
Address setup time		t _{AS}	30	<u> </u>	_	ns
Address hold time		t _{AH}	5	_	_	ns
Delay time from $\overline{\text{CS}}$ low to READY low (ex RAM)	ccluding	t _{CRD1}	_	_	60	ns
Delay time from $\overline{\rm DS}$ low to READY high	UDR (UPC)*	t _{WAIT}	_	_	3	μs
	Others		_	_	750	ns
Delay time from $\overline{\rm DS}$ high to READY low		t _{CRD2}	_	_	80	ns
DS high pulse width		t _{DWH}	80	_	_	ns
R/W setup time		t _{RS}	10	_	_	ns
R/W hold time		t _{RH}	5	_	_	ns
Read data delay time (RAM)		t _{RDD}	_	_	140	ns
Delay time from READY high to read data		t _{RRDD}	_		60	ns
Delay time from $\overline{\text{OE}}$ to read data		t _{ORDD}	_	_	80	ns
Read data hold time		t _{RDH}	10	_	<u> </u>	ns
Time from OE high to read data hold		t _{ORDH}	10	_	_	ns
Write data delay time		t _{WDD}	_	_	120	ns
Write data setup time		t _{WDS}	100	<u> </u>	<u> </u>	ns
Write pulse hold time from READY high		t _{WH}	120	<u> </u>	_	ns
Write pulse low width (RAM)		t _{WWL}	100			ns
Write data hold time		t _{WDH}	5			ns
READY turn-off time from CS high		t _{RTO}	_		50	ns

Note: Inverse proportion to f_{opr} when $f_{opr} = 4$ MHz.

Figure 6.3 Timing Waveforms (RAM Read)

Figure 6.4 Timing Waveforms (Read other than RAM)

Figure 6.5 Timing Waveforms (RAM Write)

Figure 6.6 Timing Waveforms (Write other than RAM)

6.3 TMP82C55AP-10 AC Characteristics

Table 6.3 Bus Timing

		AP-	2/AM-2	AP-10)/AM-10
Symbol	Item	Min	Max	Min	Max
t _{AR}	Address setup time against RD falling edge	0	_	0	_
t _{RA}	Address hold time against RD rising edge	0		0	_
t _{RR}	RD pulse width	160	_	150	_
t _{RD}	Delay time from $\overline{\text{RD}}$ falling edge to definite data output	_	140	_	100
t _{DF}	Time from RD rising edge until data bus floating	0	40	0	40
t _{RV}	Time from RD or WR rising edge to the next RD/WR rising edge	200	_	150	_
t _{AW}	Address setup time against WR falling edge	0		0	_
t _{WA}	Address hold time against WR rising edge	0	_	0	_
t _{WW}	WR pulse width	120		120	_
t _{DW}	Bus data setup time against WR rising edge	100		100	_
t _{WD}	Bus data hold time against WR rising edge	0	_	0	_
t _{WB}	Time from WR rising edge to definite data output		350		350
t _{IR}	Port data setup time against RD falling edge	0		0	_
t _{HR}	Port data hold time against RD rising edge	0	_	0	_
t _{AK}	ACK pulse width	300	_	300	_
t _{ST}	STB pulse width	350		350	_
t _{PS}	Port data setup time against STB rising edge	0	_	0	_
t _{PH}	Port data hold time against STB rising edge	150	_	150	_
t _{AD}	Time from ACK falling edge to definite data output	_	300	_	300
t _{KD}	Time from ACK rising edge until port (mode 2, port A) is floating	25	250	20	250
t _{WOB}	Delay time from WR rising edge to OBF falling edge	_	300	_	300
t _{AOB}	Delay time from \overline{ACK} falling edge to \overline{OBF} rising edge	_	350	<u>—</u>	350
t _{SIB}	Delay time from STB falling edge to IBF rising edge	<u> </u>	300	<u>—</u>	300
t _{RIB}	Delay time from $\overline{\text{RD}}$ rising edge to IBF falling edge	_	300		300

Table 6.3 Bus Timing (cont)

		AP-2/AM-2		AP-10	D/AM-10
Symbol	Item	Min	Max	Min	Max
t _{RIT}	Delay time from $\overline{\text{RD}}$ falling edge to INTR falling edge	_	400	_	400
t _{SIT}	Delay time from STB rising edge to INTR rising edge		300		300
t _{AIT}	Delay time from \overline{ACK} rising edge to INTR rising edge		350		350
t _{WIT}	Delay time from WR falling edge to INTR falling edge		450		450

Figure 6.7 Timing Waveforms (Read)

Figure 6.8 Timing Waveforms (Write)

6.4 HD64610 AC Characteristics

Unless otherwise specified: $V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide temperature range specification).

Table 6.4 Bus Timing (Read)

Item	Symbol	Min	Max	Unit s
Read cycle time	t _{RC}	85	_	ns
Address access time	t _{AA}	_	85	ns
Chip select access time	t _{ACS}	_	85	ns
Output enable access time	t _{OE}	_	45	ns
Output hold time	t _{OH}	10	_	ns
Chip select/output set time	t _{CLZ}	10	_	ns
Output enable/output set time	t _{OLZ}	5	_	ns
Chip deselect/output floating	t _{CHZ}	0	35	ns
Output disable/output floating	t _{OHZ}	0	35	ns

Figure 6.9 Timing Waveforms (Read)

Table 6.5 Bus Timing (Write)

Item	Symbol	Min	Max	Unit s
Write cycle time	t_{WC}	85	_	ns
Chip select time	t _{CW}	75	_	ns
Address valid time	t _{AW}	75		ns
Address setup time	t _{AS}	0	_	ns
Write pulse width	t _{WP}	60	_	ns
Address hold time	t _{WR}	10	_	ns
WE/output floating	t _{WHZ}	0	35	ns
Input data set time	t _{DW}	40	_	ns
Input data hold time	t _{DH}	0	_	ns
Output disable/output floating	t _{OHZ}	0	35	ns
WE/output set time	t _{OW}	5	_	ns

Figure 6.10 Timing Waveforms (Write)

6.5 LM032L AC Characteristics

Table 6.6 Bus Timing

Item	Symbol	Min	Тур	Max	Unit s
Enable cycle time	t _{cyc}	1.0	_	_	μs
Enable pulse width	PW_{EH}	450	_	_	ns
Enable rise/fall time	t _{Er} , t _{Ef}	_	_	25	ns
RS and R/W setup time	t _{AS}	140	_	_	ns
Data delay time	t _{DDR}	_	_	320	ns
Data setup time	t _{DSW}	195	_	_	ns
Hold time	t _H	20	_	_	ns

Figure 6.11 Timing Waveforms (Read)

Figure 6.12 Timing Waveforms (Write)