第5章循环控制

——嵌套循环

本节要讨论的主要问题

- 嵌套循环是如何执行的?
- 如何设计嵌套循环的程序?

开始 输入 n i = 1, p = 1否 i <= n? 是 p = p * ii = i + 1输出i的阶乘 结束 C语言程序设计

循环实现累加累乘

计算并输出n!

```
#include <stdio.h>
                                   1*2
int main()
                                   1*2*3
                                   1*2*3*4
                                   1*2*3*4*5
  int i, n;
  long p = 1;
                                   1*2*3*4*5*6*7*8
                                   1*2*3*4*5*6*7*8*9
  printf("Please enter n:");
  scanf("%d", &n);
  for (i=1; i<=n; i++)
       p = p * i;
  printf("%ld\n", p);
  return 0;
```

开始 输入 n i = 1, p = 1否 i <= n? 是 p = p * i输出i的阶乘 i = i + 1输出i的阶乘 结束 C语言程序设计

循环实现累加累乘

计算并输出1!, 2!, 3!,..., n!

```
#include <stdio.h>
                                   1*2
int main()
                                   1*2*3
                                   1*2*3*4
                                   1*2*3*4*5
  int i, n;
  long p = 1;
                                   1*2*3*4*5*6*7*8
                                   1*2*3*4*5*6*7*8*9
  printf("Please enter n:");
  scanf("%d", &n);
  for (i=1; i<=n; i++)
       p = p * i;
  printf("%ld\n", p);
  return 0;
```

开始 输入 n i = 1, p = 1, sum = 0否 i <= n? 是 p = p * isum = sum + pi = i + 1输出 sum 结束 C语言程序设计

循环实现累加累乘

计算并输出1!,+ 2!,+ 3!, ... ;+ n!

```
#include <stdio.h>
                                  1*2
int main()
                                  1*2*3
                                  1*2*3*4
                                  1*2*3*4*5
  int i, n;
  long p = 1; sum = 0;
                                  1*2*3*4*5*6*7*8
                                  1*2*3*4*5*6*7*8*9
  printf("Please enter n:");
  scanf("%d", &n);
  for (i=1; i<=n; i++)
       p = p * i;
       sum = sum + p;
  printf("sum = %ld\n", sum);
  return 0;
```

开始 输入 n i = 1, p = 1, sum = 0否 i <= n? 是 p = p * isum = sum + pi = i + 1输出 sum 结束 C语言程序设计

循环实现累加累乘

前后项 有关

- 利用前项计算后项
- sum = sum + p

```
1
1*2
1*2*3
1*2*3*4
1*2*3*4*5
1*2*3*4*5*6
1*2*3*4*5*6*7
1*2*3*4*5*6*7*8
1*2*3*4*5*6*7*8*9
```

$$i! = (i-1)!*i$$

前后项 无关

- 单独计算累加项p
- sum = sum + p

$$i! = 1 \times 2 \times 3 \times ... \times i$$


```
第5章 循环控制
                 开始
                输入 n
              i = 1, sum = 0
                              否
                i <= n?
                = 1, p = 1
                 <= i?
                p = p^*
             sum = sum + p
                i = i + 1
               输出 sum
                 结束
C语言程序设计
```

```
#include <stdio.h>
                               嵌套循环
int main()
                             (Nested Loop)
   int i, j, n;
                                     1*2*3
   long p, sum = 0;
                                     1*2*3*4
                                     1*2*3*4*5
   printf("Input n:");
                                     1*2*3*4*5*6
                                     1*2*3*4*5*6*7*8
   scanf("%d", &n);
                                     1*2*3*4*5*6*7*8*9
   for (i=1; i<=n; i++)
       p = 1;
       for (j=1; j<=i; j++)
       sum = sum + p;
   printf("sum = %ld\n", sum);
   return 0;
                 嵌套循环是如何执行的?
```

计算并输出1! + 2! + 3! ... + n!

Ī	j	内循环p (累加项)	外循环sum 旧值	外循环sum 新值
1	1	1(1!)	0	1
2	1	1		
	2	2(2!)	1	3
3	1	1		
	2	2		
	3	6(3!)	3	9
4	1	1		
	2	2		
	3	6		
	4	24(4!)	9	33

```
#include <stdio.h>
                         嵌套循环的执行过程
int main()
   int i, j, n;
                                        1*2
                                        1*2*3
   long p, sum = 0;
                                        1*2*3*4
                                        1*2*3*4*5
   printf("Input n:");
                                        1*2*3*4*5*6
                                        1*2*3*4*5*6*7*8
   scanf("%d", &n);
                                        1*2*3*4*5*6*7*8*9
   for (i=1; i<=n; i++)
        p = 1;
        for (j=1; j<=i; j++)
                                          sum = sum + 1!
           ; f * g = g
                                          sum = sum + 2!
                                          sum = sum + 3!
        sum = sum + p;
                                          sum = sum + 4!
   printf("sum = %ld\n", sum);
   return 0;
```

嵌套循环的设计

- 实例——输出九九乘法表
- 由内到外
 - 先考虑每一行中的数据如何输出
 - 再考虑如何输出这样的多个行

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

输出九九乘法表

第1步考虑如何输出第m行的9个数

 1
 2
 3
 4
 5
 6
 7
 8
 9

 2
 4
 6
 8
 10
 12
 14
 16
 18

 3
 6
 9
 12
 15
 18
 21
 24
 27

 4
 8
 12
 16
 20
 24
 28
 32
 36

 5
 10
 15
 20
 25
 30
 35
 40
 45

 6
 12
 18
 24
 30
 36
 42
 48
 54

 7
 14
 21
 28
 35
 42
 49
 56
 63

 8
 16
 24
 32
 40
 48
 56
 64
 72

 9
 18
 27
 36
 45
 54
 63
 72
 81

1	1*2	1*3	1*4	1*5	1*6	1*7	1*8	1*9
2	2*2	2*3	2*4	2*5	2*6	2*7	2*8	2*9
3	3*2	3*3	3*4	3*5	3*6	3*7	3*8	3*9
4	4*2	4*3	4*4	4*5	4*6	4*7	4*8	4*9
5	5*2	5*3	5*4	5*5	5*6	5*7	5*8	5*9
6	6*2	6*3	6*4	6*5	6*6	6*7	6*8	6*9
7	7*2	7*3	7*4	7*5	7*6	7*7	7*8	7*9
8	8*2	8*3	8*4	8*5	8*6	8*7	8*8	8*9
9	9*2	9*3	9*4	9*5	9*6	9*7	9*8	9*9

n

第2步考虑如何输出9个 这样的行

第5章 循环控制 开始 m = 1m <= 9?n = 1否 n <= 9? 输出 m*n的值 n = n + 1输出换行符 m = m + 1结束 C语言程序设计

输出九九乘法表

```
#include <stdio.h>
int main()
                           控制变量不能同名
  int m, n;
  for (m=1; m<10; m++)
      for (n=1; n<10; n++)
         printf("%4d", m*n);
      printf("\n");
  return 0;
                          次数×外循环次数
```

输出九九乘法表

如何输出下三角的九九乘法表?

```
1*2
                                  1*2*3
        16
                                  1*2*3*4
10
    15
        20
                                  1*2*3*4*5
        24
            30
                36
                                  1*2*3*4*5*6
            35
                42
        28
                    49
                                  1*2*3*4*5*6*7
16
    24
        32
            40
                48
                    56
                         64
                                  1*2*3*4*5*6*7*8
18
        36
                 54
                     63
                             81
                                  1*2*3*4*5*6*7*8*9
```


讨论

如何输出上三角的九九乘法表?

```
1 2 3 4 5 6 7 8 9

4 6 8 10 12 14 16 18

9 12 15 18 21 24 27

16 20 24 28 32 36

25 30 35 40 45

36 42 48 54

49 56 63

64 72

81
```

