MODELOS ESTOCÁSTICOS Exámenes

Junio 2020 - 1ª Sesión

Enunciado 1 (Modelo de cola con clientes impacientes). En una oficina, en el instante que consideramos inicial, t = 0, hay un servidor atendiendo a un cliente y dos clientes esperando en cola. El orden de la cola es el siguiente: primero está C_1 y detrás C_2 . Tan pronto el servidor quede libre, el cliente que esté primero en la cola pasará a ser atendido y el segundo pasará a la primera posición de la cola.

Pero los clientes son impacientes y no están dispuestos a esperar en cola todo el tiempo que sea necesario hasta que llegue su turno, sino que tienen ciertas restricciones. Así, el cliente C_1 no está dispuesto a esperar en la cola más de un tiempo aleatorio T_1 , de manera que si transcurre ese tiempo sin haber pasado a ser atendido, C_1 abandonará la cola. Análogamente, el cliente C_2 esperará en cola hasta que haya transcurrido un tiempo aleatorio T_2 ; transcurrido ese tiempo, si antes no ha pasado a ser atendido, también abandonará la cola.

Los clientes, una vez han sido servido o han abandonado la cola, salen inmediatamente de la oficina.

Supongamos que las variables T_1, T_2 son independientes y tienen distribución exponencial de parámetro λ_1 y λ_2 , respectivamente; que el tiempo de servicio de cada cliente es exponencial de parámetro $\lambda > 0$ y que todas estas variables son independientes:

Cuestión 1. Calcular la probabilidad de que C_1 sea atendido.

Cuestión 2. Hallar la distribución del tiempo que tarda en salir de la oficina. Comprobar el resultado de la cuestión anterior.

Cuestión 3. Calcular la probabilidad de que C_2 sea atendido.

Solución:

Cuestión 1. Sea T el tiempo que tarda el servidor en atender al cliente que está actualmente siendo atendido. La probabilidad de que C_1 sea atendido es igual a la probabilidad de que no se marche antes de que termine el servidor de atender al cliente actual. Se tiene entonces que

$$P\{C_1 \text{ atendido}\} = P\{T \le T_1\}.$$

Teniendo en cuenta la independencia de estas variables aleatorias y sus respectivas distribuciones, se tiene que

$$\{C_1 \text{ at.}\} = P\{T \le T_1\} = \int_0^\infty f_T(t) \overline{F}_{T_1}(t) dt = \int_0^\infty \lambda e^{-\lambda t} e^{-\lambda_1 t} dt = \frac{\lambda}{\lambda + \lambda_1}.$$

Cuestión 2. Mantenemos la nomenclatura de la cuestión anterior y añadimos T^* , que hace referencia al tiempo que tarda el servidor en atender a C_1 en caso de que este sea atendido. Llamaremos también S_1 al tiempo que tarda C_1 en salir de la oficina.

- Si C_1 llega a ser atendido, se tiene que $S_1 = T + T^*$
- Si C_1 se va sin ser atendido se tiene que $S_1 = T_1$.

MODELOS ESTOCÁSTICOS Exámenes

Tenemos entonces que para todo $t \ge 0$ es

$$P\{S_1 \le t\} = P\{C_1 \text{ at.}\}P\{S_1 \le t \mid C_1 \text{ at.}\} + P\{C_1 \text{ no at.}\}P\{S_1 \le t \mid C_1 \text{ no at.}\} =$$

$$= P\{C_1 \text{ at.}\}P\{T + T^* \le t \mid T \le T_1\} + P\{C_1 \text{ no at.}\}P\{T_1 \le t \mid T_1 < T\}.$$

Se tiene que $T+T^* \mid T \leq T_1$ tiene la misma distribución que $\min\{T,T_1\}$. Esta distribución es exponencial de parámetro $\lambda + \lambda_1$. Por ser T^* independiente de T y T_1 , se tiene entonces que la distribución de $T+T^* \mid T \leq T_1$ es la de la suma de dos exponenciales de parámetros $\lambda + \lambda_1$ y λ . Por tanto, se tiene que para $t \geq 0$ se verifica

$$\begin{split} P\{T+T^* \leq t \mid T \leq T_1\} &= P\{\min\{T,T_1\} + T^* \leq t\} = \int_0^t \lambda e^{-\lambda s} (1 - e^{-(\lambda + \lambda_1)(t-s)}) \, ds = \\ &= 1 - \left(1 + \frac{\lambda}{\lambda_1}\right) e^{-\lambda t} + \frac{\lambda}{\lambda_1} e^{-(\lambda + \lambda_1)t}. \end{split}$$

Análogamente, se tiene que

$$P\{T_1 \le t \mid T_1 < T\} = P\{\min\{T_1, T\} \le t\} = 1 - e^{-(\lambda + \lambda_1)t}.$$

Concluimos entonces que

$$P\{S_{1} \leq t\} = \frac{\lambda}{\lambda + \lambda_{1}} \left[1 - \left(1 + \frac{\lambda}{\lambda_{1}} \right) e^{-\lambda t} + \frac{\lambda}{\lambda_{1}} e^{-(\lambda + \lambda_{1})t} \right] + \frac{\lambda_{1}}{\lambda + \lambda_{1}} \left[1 - e^{-(\lambda + \lambda_{1})t} \right] =$$

$$= 1 - \frac{\lambda}{\lambda + \lambda_{1}} \left(1 + \frac{\lambda}{\lambda_{1}} \right) e^{-\lambda t} + \left(\frac{\lambda}{\lambda + \lambda_{1}} \frac{\lambda}{\lambda_{1}} - \frac{\lambda_{1}}{\lambda + \lambda_{1}} \right) e^{-(\lambda + \lambda_{1})t} =$$

$$= 1 - \frac{\lambda}{\lambda_{1}} e^{-\lambda t} - \left(1 - \frac{\lambda}{\lambda_{1}} \right) e^{-(\lambda + \lambda_{1})t}.$$

Así, la función de distribución del tiempo que pasa el cliente C_1 en la oficina viene dada por

$$F(S_1) = 1 - \frac{\lambda}{\lambda_1} e^{-\lambda t} - \left(1 - \frac{\lambda}{\lambda_1}\right) e^{-(\lambda + \lambda_1)t} \text{ para } t \ge 0,$$

que es la mixtura de dos exponenciales de parámetros λ y $\lambda + \lambda_1$ con pesos $\frac{\lambda}{\lambda_1}$ y $1 - \frac{\lambda}{\lambda_1}$, respectivamente.

Cuestión 3. Para calcular la probabilidad de que C_2 sea atendido observamos que

- Si C_1 llega a ser atendido, entonces C_2 será atendido si $T + T^* \le T_2$.
- Si C_1 no llega a ser atendido, entonces C_2 será atendido si $T \le T_2$.

Observamos que

$$P\{C_2 \text{ at. } | C_1 \text{ at.}\} = P\{T + T^* \le T_2 | T \le T_1\},$$

MODELOS ESTOCÁSTICOS Exámenes

donde volvemos a observar que $T \mid T \le T_1$ tiene la distribución de $\min\{T, T_1\}$, que es exponencial de parámetro $\lambda + \lambda_1$. Usando cálculos del apartado anterior, se tiene que

$$P\{C_2 \text{ at. } | C_1 \text{ at.}\} = P\{T + T^* \le T_2 | T \le T_1\} = P\{\min\{T, T_1\} + T^* \le T_2\} =$$

$$= \int_0^\infty \lambda_2 e^{-\lambda_2 t} \left(1 - \frac{\lambda}{\lambda_1} e^{-\lambda t} - \left(1 - \frac{\lambda}{\lambda_1}\right) e^{-(\lambda + \lambda_1)t}\right) dt = 1 - \frac{\lambda_2}{\lambda_1} \left(\frac{\lambda}{\lambda + \lambda_2} + \frac{\lambda_1 - \lambda}{\lambda + \lambda_1 + \lambda_2}\right).$$

Por otra parte, se tiene que

$$P\{C_2 \text{ at. } | C_1 \text{ no at.}\} = P\{T \le T_2 | T_1 < T\}$$

donde $T \mid T_1 < T$ tiene la misma distribución que $\max\{T, T_1\}$, y viene dada por

$$P\{\max\{T, T_1\} \le t\} = (1 - e^{-\lambda t})(1 - e^{-\lambda_1 t}) = 1 - e^{-\lambda t} - e^{-\lambda_1 t} + e^{-(\lambda + \lambda_1)t}.$$

Condicionando ahora por T_2 se llega a que

$$P\{C_2 \text{ at. } | C_1 \text{ no at.}\} = P\{T \le T_2 | T_1 < T\} =$$

$$= \int_0^\infty \lambda_2 e^{-\lambda_2 t} (1 - e^{-\lambda t} - e^{-\lambda_1 t} + e^{-(\lambda + \lambda_1) t}) dt = 1 - \frac{\lambda_2}{\lambda + \lambda_2} - \frac{\lambda_2}{\lambda_1 + \lambda_2} + \frac{\lambda_2}{\lambda + \lambda_1 + \lambda_2}.$$

Por tanto, se tiene que

$$P\{C_2 \text{ at.}\} = P\{C_1 \text{ at.}\} P\{C_2 \text{ at.} \mid C_1 \text{ at.}\} + P\{C_1 \text{ no at.}\} P\{C_2 \text{ at.} \mid C_1 \text{ no at.}\} =$$

$$= \frac{\lambda}{\lambda + \lambda_1} \left(1 - \frac{\lambda_2}{\lambda_1} \left(\frac{\lambda}{\lambda + \lambda_2} + \frac{\lambda_1 - \lambda}{\lambda + \lambda_1 + \lambda_2} \right) \right) + \frac{\lambda_1}{\lambda + \lambda_1} \left(1 - \frac{\lambda_2}{\lambda + \lambda_2} - \frac{\lambda_2}{\lambda_1 + \lambda_2} + \frac{\lambda_2}{\lambda + \lambda_1 + \lambda_2} \right) =$$

$$= 1 - \frac{\lambda}{\lambda + \lambda_1} \frac{\lambda_2}{\lambda_1} \left(\frac{\lambda}{\lambda + \lambda_2} + \frac{\lambda_1 - \lambda}{\lambda + \lambda_1 + \lambda_2} \right) - \frac{\lambda_1 \lambda_2}{\lambda + \lambda_1} \left(\frac{1}{\lambda + \lambda_2} + \frac{1}{\lambda_1 + \lambda_2} - \frac{1}{\lambda + \lambda_1 + \lambda_2} \right).$$

Teniéndose entonces que

$$P\{C_2 \text{ at.}\} = 1 - \frac{\lambda}{\lambda + \lambda_1} \frac{\lambda_2}{\lambda_1} \left(\frac{\lambda}{\lambda + \lambda_2} + \frac{\lambda_1 - \lambda}{\lambda + \lambda_1 + \lambda_2} \right) - \frac{\lambda_1 \lambda_2}{\lambda + \lambda_1} \left(\frac{1}{\lambda + \lambda_2} + \frac{1}{\lambda_1 + \lambda_2} - \frac{1}{\lambda + \lambda_1 + \lambda_2} \right)$$