Теория вероятностей. Лекция двадцать пятая Марковские очереди

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

24.04.2019

Стационарные марковские цепи с конечным числом состояний

Пусть у случайного процесса X_t время дискретно $(t \in \mathbb{N} \cup \{0\})$, конечное число значений $\{1,2,\ldots,r\}$ и выполнено свойство Маркова

$$\mathbb{P}(X_{t+1}|X_t, X_{t-i_1}, \dots, X_{t-i_n}) = \mathbb{P}(X_{t+1}|X_t),$$

и вероятности $\mathbb{P}(X_{t+1}|X_t)$ не зависят от t.

Теорема. Распределения $\mu_t \stackrel{\triangle}{=} (\mathbb{P}(X_t = 1), \dots, \mathbb{P}(X_t = r))$ связаны через матрицу переходов

$$Q = (q_{ij})_{i,j=1,\dots,r} \stackrel{\triangle}{=} (\mathbb{P}(X_k = j | X_{k-1} = i))_{i,j=1,\dots,r}$$

$$\mu_1 = \mu_0 Q, \ \mu_k = \mu_{k-1} Q, \ \mu_k = \mu_0 Q^k \quad \forall k \in \mathbb{N}.$$

Эргодичность

Определение. Стохастическая матрица $Q = (q_{ij})_{i,j=1,2,...,r}$ называется эргодической, если все её элементы положительны

Теорема. Пусть матрица переходов Q эргодична. Тогда найдется такая строка μ_* , что $\mu_*Q=\mu_*$ и распределения μ_0Q^n сходятся к μ_* для любого начального распределения μ_0 ; в частности, других стационарных распределений, помимо μ_* , у нее нет.

Для доказательства потребуется почти очевидный:

Принцип Банаха. Если в полном метрическом пространстве $\mathbb Y$ с метрикой d, оператор $A: \mathbb Y \to \mathbb Y$ сжимающий (для некоторого $\beta \in (0,1)$ $d(Ax_1,Ax_2) \leq \beta d(x_1,x_2)$), то существует единственный элемент $x_* \in \mathbb Y$ такой, что $Ax_* = x_*$, причем $d(A^kx,x_*) \to 0$ при $k \to \infty$, более того $d(A^kx,x_*) \leq \beta^k d(x,x_*)$.

Доказательство

Обозначим $a^+\stackrel{\triangle}{=} \max\{a,0\},\ a^-\stackrel{\triangle}{=} \min\{a,0\}$ для всех $a\in\mathbb{R}$. Достаточно доказать, что в некоторой метрике оператор $p\mapsto pQ$ сжимающий. Введем метрику d на $\{(p_1,\ldots,p_r)\,|\, p_1,\ldots p_r\geq 0, p_1+\ldots+p_r=1\}$ по правилу: для всех $p'=(p'_1,\ldots,p'_r),\ p''=(p''_1,\ldots,p''_r)$

$$d(p',p'') \stackrel{\triangle}{=} \frac{1}{2}(|p'_1-p''_1|+\ldots+|p'_r-p''_r|) = \sum_i (p'_i-p''_i)^+.$$

По условию найдется $\alpha>0$ такое, что $q_{ij}\geq \alpha$ для всех i,j. Пусть J- множество тех j, для которых элемент $(p'Q-p''Q)_j$ положителен. Заметим, что J не может содержать все индексы. Следовательно, $\sum_{j\in J}q_{ij}\leq 1-\alpha$.

Имеем, что

$$d(p'Q, p''Q) = \sum_{i \in J} \sum_{i} q_{ij} (p'_i - p''_i) \le \sum_{i} (p'_i - p''_i)^+ \sum_{i \in J} q_{ij} \le (1 - \alpha) d(p', p'').$$

Осталось сослаться на принцип Банаха.

Закон больших чисел для конечной марковской цепи

Введем случайные величины:

 u_i^n , равная числу моментов $t \in \{1,\dots,n\}$ таких, что $X_t = i$, и u_{ij}^n , равная числу моментов $t \in \{1,\dots,n\}$ таких, что $X_{t-1} = i$, $X_t = j$. **Теорема**. Пусть у марковской цепи переходная матрица $Q = (q_{ij})_{i,j=1,2\dots,r}$ эргодична, а $\pi = (\pi_i)_{i=1,2\dots,r}$ — стационарное распределение, тогда $\frac{\nu_i^n}{n} \stackrel{P}{\to} \pi_i, \frac{\nu_{ij}^n}{n} \stackrel{P}{\to} \pi_i q_{ij}$, то есть для всех $\varepsilon > 0$

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\frac{\nu_{i}^{n}}{n} - \pi_{i}\right| \geq \varepsilon\right) = 0, \qquad \lim_{n\to\infty} \mathbb{P}\left(\left|\frac{\nu_{ij}^{n}}{n} - \pi_{i}q_{ij}\right| \geq \varepsilon\right) = 0.$$

Подумать: без условия эргодичности теорема, вообще говоря, неверна. Подумать: единственности стационарного распределения также недостаточно.

Подумать: в последующем доказательстве много арифметики, сумм и т.п., но напрямую конечность матрицы Q (как и эргодичность) нигде не используется, значит условие ослабить можно...

Докажем $\frac{\nu_i^n}{n} \xrightarrow{P} \pi_i$, случай $\frac{\nu_{ij}^n}{n} \xrightarrow{P} \pi_i q_{ij}$ аналогичен.

Введем $\chi_i^t \stackrel{\triangle}{=} 1_{X_{t=i}}$. Теперь $\nu_i^n = \sum_{t=1}^n \chi_i^t$.

Пусть $q_{li}^{(t)}$ — вероятность того, что X_t = i при условии X_0 = l.

Тогда $Q^t = (q_{ij}^{(t)})_{i,j=1,\dots,r}.$ Согласно предыдущей теореме имеем, что

 $q_{li}^{(t)}=\pi_i+eta_{li}^t$, $\mathbb{E}\chi_i^t=\sum_{l=1}^r p_l q_{li}^{(t)}=\pi_i+d_i^t$, где $|eta_{li}^t|,|d_i^t|\leq c\lambda^t$ для некоторых положительных $\lambda<1,c>1$.

Откуда, $\mathbb{E}\chi_i^t o \pi_i$, $\mathbb{E}\nu_i^t/n o \pi_i$, и для всех натуральных t_1,t_2 $(t_1 < t_2)$

$$q_{li}^{(t_1)}q_{ii}^{(t_2-t_1)} - \mathbb{E}\chi_i^{t_1}\mathbb{E}\chi_i^{t_2} \leq (\pi_i + \beta_{li}^{t_1})(\pi_i + \beta_{ii}^{t_2-t_1}) - (\pi_i + d_i^{t_1})(\pi_i + d_i^{t_2})$$

$$\leq |\beta_{li}^{t_1}| + |\beta_{ii}^{t_2-t_1}| + |d_i^{t_1}| + |d_i^{t_2}| + |\beta_{li}^{t_1}\beta_{ii}^{t_2-t_1}| + |d_i^{t_1}d_i^{t_2}|$$

$$\leq 3c^2(\lambda^{t_1} + \lambda^{t_2-t_1}).$$

Оценим $D
u_i^n$. Имеем, из $u_i^n = \sum_{t=1}^n \chi_i^t$, $\mathbb{E} \chi_i^t = \sum_{l=1}^r p_l q_{li}^{(t)}$

$$D\nu_{i}^{n} = \mathbb{E}\left(\sum_{t=1}^{n} (\chi_{i}^{t} - \mathbb{E}\chi_{i}^{t})\right)^{2}$$

$$= \sum_{t=1}^{n} \mathbb{E}(\chi_{i}^{t} - \mathbb{E}\chi_{i}^{t})^{2} + 2\sum_{t_{1} < t_{2}} \mathbb{E}(\chi_{i}^{t_{1}} - \mathbb{E}\chi_{i}^{t_{1}})(\chi_{i}^{t_{2}} - \mathbb{E}\chi_{i}^{t_{2}})$$

$$\leq n + 2\sum_{t_{1} < t_{2}} \sum_{l=1}^{r} p_{l} \left(q_{li}^{(t_{1})} q_{ii}^{(t_{2}-t_{1})} - \mathbb{E}\chi_{i}^{t_{1}} \mathbb{E}\chi_{i}^{t_{2}}\right)$$

$$\leq n + 6c^{2} \sum_{t_{1} < t_{2}} \sum_{l=1}^{r} p_{l} (\lambda^{t_{1}} + \lambda^{t_{2}-t_{1}})$$

$$\leq n + 6c^{2} \sum_{t_{1}} \left(n\lambda^{t_{1}} + \frac{\lambda}{1-\lambda}\right) \leq n + \frac{6c^{2}n\lambda}{1-\lambda}.$$

Теперь для каждого $\varepsilon > 0$ применим неравенство Чебышева:

$$\mathbb{P}\left(\left|\frac{\nu_i^n}{n} - \pi_i\right| \ge \varepsilon\right) \le \mathbb{P}\left(\left|\nu_i^n - \mathbb{E}\nu_i^n\right| \ge \varepsilon n\right) \le \frac{D\nu_i^n}{\varepsilon^2 n^2} \le \frac{1 + \frac{6c^2\lambda}{1-\lambda}}{\varepsilon^2 n} \to 0.$$

Марковские цепи с непрерывным временем

Пусть $t \in [0, +\infty)$ — непрерывное время, X_t принимает значения в $\{1, \ldots, r\}$.

Случайный процесс X_t называется марковской цепью с непрерывным временем (марковской очередью), если для всех $t_1 < t_2 < \ldots < t_n < \tau$ и всех $i_1,\ldots,i_n,j\in\{1,\ldots,r\}$

$$\mathbb{P}(X_{\tau} = j | X_{t_n} = i_n, X_{t_{n-1}} = i_{n-1}, \dots, X_{t_1} = i_1) = \mathbb{P}(X_{\tau} = j | X_{t_n} = i_n).$$

Пусть $P(t_1,t_2)=(p_{ij}(t_1,t_2))_{i,j=1,\dots,r}$ при $t_2>t_1$, где $p_{ij}(t_2,t_1)=\mathbb{P}(X_{t_2}=j|X_{t_1}=i).$ Тогда $P(t_1,t_3)=P(t_1,t_2)P(t_2,t_3)$ при $t_3>t_2>t_1$ в силу

$$p_{ij}(t_1, t_3) = \mathbb{P}(X_{t_3} = j | X_{t_1} = i) = \sum_{l=1}^r p_{il}(t_1, t_2) p_{lj}(t_2, t_3).$$

Однородные марковские цепи

В дальнейшем мы сосредоточим свое внимание на однородных марковских цепях.

Марковская цепь называется однородной, если $P(t_1, t_2)$ зависит лишь от разности $t_2 - t_1$.

Всюду далее рассматриваем однородные цепи. Потому переобозначим P, всюду вместо $P(t_1,t_2)$ будем писать $P(t_2-t_1)$. Тогда получим полугруппу $\{P(t)|t\in[0,\infty)\}$ в силу

$$P(\tau_1 + \tau_2) = P(\tau_1)P(\tau_2), P(0) = I;$$

здесь $I=(\delta_{ij})_{i,j=1}^r$, где $\delta_{ij}=1$ при i=j, и 0 в противном случае. Подумать: отображение P может оказаться разрывным, может оказаться непрерывным, но недифференцируемым (1 балл за каждый).

Стационарное распределение

Также, как и в случае дискретного времени, можно ввести понятие стационарного распределения.

Распределение вероятностей $\pi = (\pi_1, \dots, \pi_r)$ называется стационарным, если $\pi P(t) = \pi$ для всех t.

Теорема Стационарное распределение у однородной цепи с непрерывной (по t) матрицей P всегда существует.

Доказательство первое. Свести к случаю дискретного времени с шагом

1/n и перейти к пределу.

Доказательство второе. [С-но; 0,5 баллов] Заметить, что сумма элементов матрицы P(t) – I равна нулю, она вырождена, то есть для собственного числа, равного 1, матрица P(t) имеет собственный вектор-строку $\pi(t)$. Осталось убедиться, что эта строка распределение, и устремить $t = 1/n \downarrow 0$.

Генератор полугруппы

Положим $Q=(q_{ij})_{i,j=1,\dots,r}$, где $q_{ij}=\lim_{t\downarrow 0}\frac{p_{ij}(t)-\delta_{ij}}{t}$. Матрицу Q называют матрицей Колмогорова или инфинитезимальной матрицей переходных вероятностей.

Отметим свойства матрицы Колмогорова (если эти пределы существуют).

Предложение. Пусть матрица Q — матрица Колмогорова. Тогда

- $lack q_{ij} \geq 0$ для $i \neq j$; [следует из $rac{p_{ij}(t)}{t} o q_{ij}$ для $i \neq j$ и неравенства $p_{ij}(t) \geq 0$.]
- $\sum_{j} q_{ij} = 0;$ [достаточно продифференцировать равенство $p_{i1}(t) + \ldots + p_{ir}(t) = 1$].
- lacksquare [C-но; 0,5 баллов] распределение π стационарно тогда и только тогда, когда πQ = 0.

Уравнение Колмогорова

Предложение. Если все пределы в определении Q существуют, то P(t) дифференцируема во всех точках и выполнены равенства

$$\frac{dP(t)}{dt}$$
 = $P(t)Q$ (прямое уравнение Колмогорова),

$$\frac{dP(t)}{dt}$$
 = $QP(t)$ (обратное уравнение Колмогорова).

Подумать: оказалось, что мы можем найти все вероятности (и в прошлом тоже!), решая линейное дифуравнение, простейший объект. Более того,

решение уравнения Колмогорова может быть найдено как $P(t) = \exp(tQ)$, где $\exp(A)$ — матричная экспонента:

$$\exp(A) = I + A + \frac{1}{2}A^2 + \frac{1}{3!}A^3 + \dots + \frac{1}{n!}A^n + \dots$$

Подумать: подставьте, заодно проверите почему ряд сходится...

Доказательство предложения

Для дифференцируемости P(t) справа заметим, что из $P(t+h) = P(t) \cdot P(h) \cdot P(h)$

$$P(t+h) - P(t) = P(t)(P(h) - I)$$
 следует

$$\lim_{h\downarrow 0} \frac{P(t+h)-P(t)}{h} = P(t)\lim_{h\downarrow 0} \frac{P(h)-I}{h} = P(t)Q,$$

Переходя к пределу при $h \downarrow 0$ в

$$P(t-h) - P(t) = -P(t-h)(P(h)-I) \to 0$$
, помимо $P(t-h) \to P(t)$, имеем дифференцируемость слева:

$$\lim_{h\downarrow 0} \frac{P(t-h) - P(t)}{-h} = \lim_{h\downarrow 0} P(t-h) \lim_{h\downarrow 0} \frac{P(h) - I}{h} = P(t)Q.$$

Прямое уравнение Колмогорова показано.

Аналогично,

$$\lim_{h \downarrow 0} \frac{P(t+h) - P(t)}{h} = \lim_{h \downarrow 0} \frac{P(h) - I}{h} \cdot P(t) = QP(t),$$

$$\lim_{h \downarrow 0} \frac{P(t-h) - P(t)}{h} = \lim_{h \downarrow 0} \frac{P(h) - I}{h} \lim_{h \downarrow 0} P(t-h) = QP(t).$$

Стационарная марковская цепь из уравнения Колмогорова. Доппостроения

Пусть даны $P(t) = \exp(tQ)$, p^0 — некоторое начальное распределение. Определим случайные величины ξ , τ_i^n и η_i^n , $i \in \{1,\dots,r\}$, $n \in \mathbb{N}$ правилами.

- **①** ξ принимает значения $\{1, ..., r\}$ в силу p^0 ;
- \bullet τ_i^n случайная величина на $[0,\infty)$ с распределением $Exp(-q_{ii})$;
- ullet все случайные величины ξ , au_i^n и η_i^n независимы.

Здесь ξ определяет начальное состояние, τ_i^n и η_i^n — время от (n-1)-го до n-го прыжка и состояние после n-го прыжка, если после (n-1)-го прыжка было состояние i,

Стационарная марковская цепь из уравнения Колмогорова. Формулировка

Положим $\xi^0 \stackrel{\triangle}{=} \xi$, $\theta^0 \stackrel{\triangle}{=} 0$, а затем, если ξ^{n-1} и θ^{n-1} построены, примем:

$$\theta^n \stackrel{\triangle}{=} \theta^{n-1} + \tau^n_{\xi^{n-1}}, \ \xi^n = \eta^n_{\xi^{n-1}}.$$

Предложение $[1 \ {\rm балл}]$ Случайный процесс X_t , заданный правилами $X_t \stackrel{\triangle}{=} \xi^{n-1}$ при $t \in [\theta^{n-1}, \theta^n)$, является однородной марковской цепью с непрерывным временем с начальным распределением p^0 и матрицей переходов $P(t) = \exp(tQ)$.

Пример. Постановка

Предположим, что у нас есть r устройств (серверов), каждый из которых может обработать не более одного запроса. Если все серверы загружены, запрос не обрабатывается (никогда), запросы поступают независимо. Вероятность поступления каждого запроса определяется экспоненциальным распределением с параметром λ , время обработки запроса также случайно и распределено экспоненциально с параметром μ . Серверы также независимы.

В качестве моделирующей марковской цепи выберем цепь, в которой X_t равно количеству занятых серверов, т.е. $X_t \in \{0,1,\ldots,r\}$. Заметим, что если все серверы свободны, то вероятность того, что придет запрос, распределена экспоненциально с параметром λ , если i серверов заняты, то вероятность того, что хоть один сервер освободится, распределена также экспоненциально с параметром $i\mu$.

Пример. Матрица Колмогорова

Получаем матрицу Колмогорова $(Q = (q_{ij})_{i,j=0,\dots,r})$

с еще не найденными $\gamma(i)$. Воспользовавшись $\sum_i q_{ij}$ = 0, имеем

Пример. Стационарное распределение

решая $\pi Q = 0$, имеем $\pi = C(1, \lambda/\mu, \lambda^2/2\mu^2, \lambda^3/6\mu^3, \ldots, \lambda^{r-1}/(r-1)!\mu^{r-1}, \lambda^r/r!\mu^r)$. Тогда для единственного стационарного распределения $\pi_i = \frac{(\lambda/\mu)^i/i!}{\sum_{i=0}^r (\lambda/\mu)^j/j!}$.

На пять минут...

- 1. Привести пример регулярного и нерегулярного семейства распределений (см. формулировку неравенства Рао-Крамера).
- 2. Пусть X_k независимы и принимают значения 1,-1 с вероятностью 1/2 каждое. Можно ли утверждать, что последовательность случайных величин $X_0, \frac{X_1+X_0}{2}, \frac{X_2+X_1}{2}, \frac{X_3+X_2}{2}, \dots$ марковская? Аналогичный вопрос про $X_0, X_1X_0, X_2X_1X_0, X_3X_2X_1X_0, \dots$