Arithmetic Logic Unit (ALU) -Introduction to Computer (計算機概

Winston H. Hsu (徐宏民) National Taiwan University, Taipei

November 7, 2022

Office: R512, CSIE Building

Communication and Multimedia Lab (通訊與多媒體實驗室) The majority of the slides are from http://winstonhsu.info

the textbook

Administrative Matters

- Today's lecture section
 - Section 5.1 5.3 in [Harris] except prefix adder, 5.2.7

Arithmetic Logic Unit (ALU)

ALU combines a variety of mathematical and logical operations into a single unit and forms the heart of most computer systems.

F _{2:0}	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

5-<3> IC, Fall 2022 – Winston Hsu

Topics

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

Introduction

- Digital building blocks:
 - Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
 - Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes

IC, Fall 2022 – Winston Hsu

1-Bit Adders

Half Adder

$$S = C_{out} = C$$

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\begin{array}{ll} \mathsf{S} & = \mathsf{A} \oplus \mathsf{B} \\ \mathsf{C}_{\mathsf{out}} & = \mathsf{A}\mathsf{B} \end{array}$$

Full Adder

C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

7 IC, Fall 2022 – Winston Hsu

Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Symbol

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

IC, Fall 2022 – Winston Hsu

Ripple-Carry Adder Delay

$$t_{\text{ripple}} = Nt_{FA}$$

where t_{FA} is the delay of a full adder

10

Carry-Lookahead Adder

Compute carry out (C_{out}) for k-bit blocks using generate and propagate signals

- Some definitions:
 - Column *i* produces a carry out by either *generating* a carry out or propagating a carry in to the carry out
 - Generate (G_i) and propagate (P_i) signals for each column:
 - Column i will generate a carry out if A_i AND B_i are both 1.

$$G_i = A_i B_i$$

Column *i* will propagate a carry in to the carry out if A_i OR B_i is 1.

$$P_i = A_i + B_i$$

The carry out of column $i(C_i)$ is:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

IC, Fall 2022 – Winston Hsu

Carry-Lookahead Addition

- **Step 1:** Compute G_i and P_i for all columns
- **Step 2:** Compute *G* and *P* for *k*-bit blocks
- **Step 3:** C_{in} propagates through each k-bit propagate/generate block

Carry-Lookahead Adder

A3 B3 A2 B2 A1 B1 A0 B0

1-bit Full Adder Adder Adder

S3 93 C3 P2 92 C2 P1 91 C1 P0 90

4-bit Carry Look Ahead PG GG

• Example: 4-bit blocks $(G_{3:0}$ and $P_{3:0})$: \overline{c}_{4}

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

 $P_{3:0} = P_3 P_2 P_1 P_0$
 $C_3 = G_{3:0} + P_{3:0} C_{in}$

· Generally,

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_j))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_i = G_{i:j} + P_{i:j} C_{j-1}$$

13 IC, Fall 2022 – W<u>inston Hsu</u>

32-bit CLA with 4-bit Blocks

Carry-Lookahead Adder Delay

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

- $-t_{pq}$: delay to generate all P_i , G_i (in parallel)
- t_{pg_block} : delay to generate all $P_{i:j}$, $G_{i:j}$ (in parallel)
- $t_{
 m AND_OR}$: delay from $C_{
 m in}$ to $C_{
 m out}$ of final AND/OR gate in k-bit CLA block
- An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

15 <u>IC, Fall 20</u>22 – Winston Hsu

Adder Delay Comparisons

- Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders
 - CLA has 4-bit blocks
 - 2-input gate delay = 100 ps; full adder delay = 300 ps

$$t_{ripple}$$
 = Nt_{FA} = 32(300 ps)
= 9.6 ns
 t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1) t_{AND_OR} + kt_{FA}
= [100 + 600 + (7)200 + 4(300)] ps
= 3.3 ns
 t_{PA} = t_{pg} + $\log_2 N(t_{pg_prefix})$ + t_{XOR}
= [100 + $\log_2 32(200)$ + 100] ps
= 1.2 ns

Subtracter

$$Y = A - B = A + B' + 1$$

(+1 can be with $C_{in} = 1$)

Symbol

Implementation

17 IC, Fall 2022 – Winston Hsu

Comparator: Equality

Symbol

Implementation

Comparator: Less Than

Computing A-B and looking at the sign of the results. If the result is negative, the sign bit is 1.

5-<19>
IC, Fall 2022 – Winston Hsu

Arithmetic Logic Unit (ALU)

F _{2:0}	Function
000	A & B
001	A B
010	A+B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

ALU Design

ALU combines a variety of mathematical and logical operations into a single unit and forms the heart of most computer systems.

$\mathbf{F}_{2:0}$	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

5-<21> IC, Fall 2022 – Winston Hsu

Set Less Than (SLT) Example

 Configure 32-bit ALU for SLT operation: A = 25 and B = 32

Set Less Than (SLT) Example

- Configure 32-bit ALU for SLT operation: A = 25 and B = 32
 - A < B, so Y should be 32-bit representation of 1 (0x00000001)
 - $-F_{2:0} = 111$
 - F_2 = 1 (adder acts as subtracter), so 25 32 = -7
 - -7 has 1 in the most significant bit $(S_{31} = 1)$
 - $F_{1:0}$ = 11 multiplexer selects $Y = S_{31}$ (zero extended) = 0×000000001 .

5-<23> IC, Fall 2022 – Winston Hsu

Shifters

Logical shifter: shifts value to left or right and fills empty spaces with 0's

- Ex: 11001 >> 2 =

- Ex: 11001 << 2 =

 Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb) (for multiplying and dividing signed numbers).

Ex: 11001 >>> 2 =

- Ex: 11<mark>0</mark>01 <<< 2 =

 Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end

- Ex: 11001 ROR 2 =

- Ex: 11<mark>0</mark>01 ROL 2 =

Shifters

Logical shifter >> :

- -Ex: 11001 >> 2 = 00110
- -Ex: 11001 << 2 = 00100

Arithmetic shifter >>> :

- -Ex: 11001 >>> 2 = **11**110
- -Ex: 11001 <<< 2 = 00100

Rotator:

- -Ex: 11001 ROR 2 = 01110
- -Ex: 11001 ROL 2 = 00111

25 IC, Fall 2022 – Winston <u>H</u>su

Shifter Design

Shifters as Multipliers, Dividers

- $A << N = A \times 2^{N}$
 - **Example:** $00001 << 2 = 00100 (1 \times 2^2 = 4)$
 - **Example:** $11101 << 2 = 10100 (-3 \times 2^2 = -12)$
- $A >>> N = A \div 2^{N}$
 - **Example:** $01000 >>> 2 = 00010 (8 \div 2^2 = 2)$
 - **Example:** $10000 >>> 2 = 11100 (-16 \div 2^2 = -4)$

IC, Fall 2022 – Winston Hsu

Multipliers

- Partial products formed by multiplying a single digit of the multiplier with multiplicand (realized by AND)
- Shifted partial products summed to form result

Decimal Binary multiplicand 230 0101 **x** 42 multiplier **x** 0111 460 0101 partial (shift left) + 920 0101 products 0101 9660 + 0000 0100011 result $230 \times 42 = 9660$ $5 \times 7 = 35$

4 x 4 Multiplier

29 IC, Fall 2022 – Winston Hsu

Number Systems

- Numbers we can represent using binary representations
 - Positive numbers
 - Unsigned binary
 - Negative numbers
 - Two's complement
 - Sign/magnitude numbers
- What about fractions?

Numbers with Fractions

- Two common notations:
 - Fixed-point: binary point fixed
 - Floating-point: binary point floats to the right of the most significant 1

31 IC, Fall 2022 – Winston Hsu

Fixed-Point Numbers

• 6.75 using 4 integer bits and 4 fraction bits:

01101100
0110.1100
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand

Fixed-Point Number Example

 Represent 7.5₁₀ using 4 integer bits and 4 fraction bits.

IC, Fall 2022 – Winston Hsu

Fixed-Point Number Example

Represent 7.5₁₀ using 4 integer bits and 4 fraction bits.

01111000

Fixed-Point Number Example

- Representations:
 - Sign/magnitude
 - Two's complement
- Example: Represent -7.5₁₀ using 4 integer and 4 fraction bits
 - Sign/magnitude:
 - Two's complement:

35 IC, Fall 2022 – Winston Hsu

Fixed-Point Number Example

- · Representations:
 - Sign/magnitude
 - Two's complement
- Example: Represent -7.5₁₀ using 4 integer and 4 fraction bits
 - Sign/magnitude:

11111000

– Two's complement:

1. +7.5: 01111000 2. Invert bits: 10000111 3. Add 1 to lsb: + 1

10001000

Floating-Point Numbers

- · Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:

$$273 = 2.73 \times 10^{2}$$

• In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

- M = mantissa
- -B = base
- − E = exponent
- In the example, M = 2.73, B = 10, and E = 2

37 IC, Fall 2022 – Winston Hsu

Floating-Point Numbers

 Example: represent the value 228₁₀ using a 32-bit floating point representation

We show three versions –final version is called the IEEE 754 floating-point standard

Floating-Point Representation (1/3)

1. Convert decimal to binary (don't reverse steps 1 & 2!):

$$228_{10} = 11100100_2$$

2. Write the number in "binary scientific notation":

$$11100100_2 = 1.11001_2 \times 2^7$$

- 3. Fill in each field of the 32-bit floating point number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

1 bit	8 bits	23 bits
0	00000111	11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

39 IC, Fall 2022 – Winston Hsu

Floating-Point Representation (2/3)

- First bit of the mantissa is always 1:
 - $-228_{10} = 11100100_2 = 1.11001 \times 2^7$
- So, no need to store it: implicit leading 1
- Store just fraction bits in 23-bit field

_			
	0	00000111	110 0100 0000 0000 0000 0000
1	<u>bit</u>	8 bits	23 bits

Sign Exponent Fraction

Floating-Point Representation (3/3)

- *Biased exponent*: bias = 127 (01111111₂)
 - Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

$$127 + 7 = 134 = 0 \times 10000110_{2}$$

 The IEEE 754 32-bit floating-point representation of 228₁₀

1 bit	8 bits	23 bits
0	10000110	110 0100 0000 0000 0000 0000

Sign Biased Exponent

Fraction

in hexadecimal: 0x43640000

41 IC, Fall 2022 – Winston Hsu

Floating-Point Example

Write -58.25₁₀ in floating point (IEEE 754)

Floating-Point Example

Write -58.25₁₀ in floating point (IEEE 754)

1. Convert decimal to binary:

Write in binary scientific notation:

$$1.1101001 \times 2^{5}$$

Fill in fields: 3.

Sign bit: 1 (negative)

8 exponent bits: $(127 + 5) = 132 = 10000100_2$ 23 fraction bits: 110 1001 0000 0000 0000 0000

8 bits 23 bits 1 bit

100 0010 0 110 1001 0000 0000 0000 0000 1

Sign **Exponent Fraction**

in hexadecimal: 0xC2690000

IC, Fall 2022 – Winston Hsu

Floating-Point: Special Cases

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

Floating-Point Precision

- Single-Precision:
 - 32-bit
 - 1 sign bit, 8 exponent bits, 23 fraction bits
 - bias = 127
- Double-Precision:
 - 64-bit
 - 1 sign bit, 11 exponent bits, 52 fraction bits
 - bias = 1023

45 IC, Fall 2022 – Winston Hsu

Floating-Point: Rounding

- Overflow: number too large to be represented
- · Underflow: number too small to be represented
- · Rounding modes:
 - Down
 - Up
 - Toward zero
 - To nearest
- Example: round 1.100101 (1.578125) to only 3 fraction bits

Down: 1.100Up: 1.101Toward zero: 1.100

- To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5

is)

Floating-Point Addition

- 1. Extract exponent and fraction bits
- 2. Prepend leading 1 to form mantissa
- 3. Compare exponents
- 4. Shift smaller mantissa if necessary
- 5. Add mantissas
- 6. Normalize mantissa and adjust exponent if necessary
- 7. Round result
- 8. Assemble exponent and fraction back into floatingpoint format

47 IC, Fall 2022 – Winston Hsu

Floating-Point Addition Example

Add the following floating-point numbers:

0x3FC00000

0x40500000

Floating-Point Addition Example

1. Extract exponent and fraction bits

1 bit	8 bits	23 bits
0	01111111	100 0000 0000 0000 0000 0000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
1 bit	8 bits 10000000	23 bits 101 0000 0000 0000 0000 0000

For first number (N1): S = 0, E = 127, F = .1

For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

N1: 1.1

N2: 1.101

49 IC, Fall 2022 – Winston Hsu

Floating-Point Addition Example

- 3. Compare exponents 127 128 = -1, so shift N1 right by 1 bit
- 4. Shift smaller mantissa if necessary shift N1's mantissa: 1.1 >> 1 = 0.11 (× 2¹)
- 5. Add mantissas

$$0.11 \times 2^{1} + 1.101 \times 2^{1} - 10.011 \times 2^{1}$$

Floating Point Addition Example

- 6. Normalize mantissa and adjust exponent if necessary $10.011 \times 2^1 = 1.0011 \times 2^2$
- 7. Round result

 No need (fits in 23 bits)
- 8. Assemble exponent and fraction back into floatingpoint format

$$S = 0$$
, $E = 2 + 127 = 129 = 10000001_2$, $F = 001100$..

Sign	Exponent	Fraction
0	10000001	001 1000 0000 0000 0000 0000
1 bit	8 bits	23 bits

in hexadecimal: 0x40980000

51 IC, Fall 2022 – Winston Hsu

Counters

- · Increments on each clock edge
- Used to cycle through numbers. For example,
 - 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Example uses:
 - Digital clock displays
 - Program counter: keeps track of current instruction executing

Symbol Implementation

Shift Registers

- · Shift a new bit in on each clock edge
- · Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

53 IC, Fall 2022 – Winston Hsu

Shift Register with Parallel Load

- When Load = 1, acts as a normal N-bit register
- When Load = 0, acts as a shift register
- Now can act as a serial-to-parallel converter (S_{in} to $Q_{0:N-1}$) or a parallel-to-serial converter ($D_{0:N-1}$ to S_{out})

Memory Arrays

- Efficiently store large amounts of data
- 3 common types:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)
- M-bit data value read/ written at each unique N-bit address

55 IC, Fall 2022 – Winston Hsu

Array

Data

Address N

Memory Arrays

- · 2-dimensional array of bit cells
- · Each bit cell stores one bit
- *N* address bits and *M* data bits:
 - -2^N rows and M columns
 - Depth: number of rows (number of words)
 - Width: number of columns (size of word)
 - Array size: depth \times width = $2^N \times M$

Memory Array Example

• $2^2 \times 3$ -bit array

• Number of words: 4

• Word size: 3-bits

• For example, the 3-bit word stored at address 10 is 100

57 IC, Fall 2022 – Winston Hsu

Memory Arrays

Memory Array Bit Cells

59 IC, Fall 2022 – Winston Hsu

Memory Array Bit Cells

Memory Array

- Wordline:
 - like an enable
 - single row in memory array read/written
 - corresponds to unique address
 - only one wordline HIGH at once

Type of Memory

- Random access memory (RAM): volatile
- Read only memory (ROM): nonvolatile

RAM: Random Access Memory

- Volatile: loses its data when power off
- Read and written quickly
- Main memory in your computer is RAM (DRAM)

Historically called *random* access memory because any data word accessed as easily as any other (in contrast to sequential access memories such as a tape recorder)

63 IC, Fall 2022 – Winston Hsu

ROM: Read Only Memory

- Nonvolatile: retains data when power off
- Read quickly, but writing is impossible or slow
- Flash memory in cameras, thumb drives, and digital cameras are all ROMs

Historically called *read only* memory because ROMs were written at manufacturing time or by burning fuses. Once ROM was configured, it could not be written again. This is no longer the case for Flash memory and other types of ROMs.

Types of RAM

- DRAM (Dynamic random access memory)
- SRAM (Static random access memory)
- Differ in how they store data:
 - DRAM uses a capacitor
 - SRAM uses cross-coupled inverters
 - SRAM和DRAM的差異在於,DRAM得隨時充電,而SRAM儲存 記憶不必作自動充電的動作,會出現充電動作的唯一時刻是有寫 入動作時。如果沒有寫入的指令,在SRAM裏不會有任何東西被 更動,這也是它為什麼被稱為靜態的原因。SRAM的優點是它比 DRAM快得多。缺點則是它比DRAM貴許多,通常被採用來作為 快取記憶體(Cache Memory)。

65

IC, Fall 2022 – Winston Hsu