Algèbre linéaire avancée II printemps 2021

Série 13

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit $A \in \mathbb{C}^{n \times n}$. Montrer qu'il existe un polynôme $m_A(x) \in \mathbb{C}[x] \setminus \{0\}$ de degré minimal et dont le coefficient du monôme dominant est 1 tel que $m_A(A) = 0$. De plus, montrer que $m_A(x)$ est unique.

Le polynôme $m_A(x)$ est appelé le polynôme minimal de A.

Exercice 2. Soit $U \in \mathbb{Z}^{n \times n}$ une matrice unimodulaire.

- i) Montrer que U^{-1} est aussi unimodulaire.
- (ii) Montrer que $\mathbb{Z}^n=\{Uz\mid z\in\mathbb{Z}^n\}$, c'est-à-dire que U est un automorphisme sur \mathbb{Z}^n .

Exercice 3. Soit $U \in \mathbb{Z}^{n \times n}$ une matrice unimodulaire. Montrer qu'il existe un $m \in \mathbb{N}_{\geq 0}$ et des matrices E_i , $i \in \{1, \ldots, m\}$ tels que

- i) chaque E_i représente une opération élémentaire unimodulaire (cf. définition 6.4),
- ii) on a $U=E_1\cdot E_2\cdots E_m$.

Exercice 4. Montrer que le système Ax = 0 a une solution $0 \neq z^* \in \mathbb{Z}^n$ pour chaque matrice $A \in \mathbb{Z}^{m \times n}$ avec m < n.

Exercice 5. Trouver toutes les solutions entières de

$$Ax=egin{pmatrix} 5&1&3\4&10&2 \end{pmatrix}x=egin{pmatrix} 1\2 \end{pmatrix}$$
 , $x\in\mathbb{Z}^3.$

et de

$$Bx=egin{pmatrix} 8&-7&-10\-6&15&12 \end{pmatrix}x=egin{pmatrix} 4\6 \end{pmatrix},\,x\in\mathbb{Z}^3.$$

Exercice 6. Montrer que d dans le lemme 6.6 est le gcd de la première ligne de A. En d'autres mots, montrer le lemme suivant.

<u>Lemme.</u> Soit $A \in Z^{m \times n}$ une matrice en nombres entiers de plein ligne rang, alors il existe une matrice unimodulaire $U \in \mathbb{Z}^{n \times n}$, tel que la première ligne de AU est de la forme $(d,0,\ldots,0)$ où $d=\gcd(a_{1,1},a_{1,2},\ldots,a_{1,n})$.

Exercice 7. (*) Soit $G=\begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{Z}^{2 \times 2}$ un matrice symétrique, unimodulaire, et définie positive. Montrer qu'il existe une matrice unimodulaire U telle que $G=U^\intercal U$.

Indication: Regarder ac. Si $ac \geq 2$, est-ce qu'il y a une matrice unimodulaire U t.q. $U^\intercal G U = \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix}$ avec $0 \leq b' < b$?