$8in x = \frac{e^{in} - e^{-in}}{2i}$ $cos x = \frac{e^{in} + e^{-in}}{2}$ -> Continuous Time Periodic Signal -> Continuous " Appoundic " → Discrete 11 Periodic 11 $g(ect(t)) \iff \frac{gin(\pi f)}{\pi f} = sinc(\pi f)$ Apeniodic Signal Continuous Time Periodic Signal. Ar n(t) = A sin (2Tfo t) t. fo:= Fundamental frequency fo = 1 To ->Time Poriod. Any periodic signal, can supresented $\mathcal{X}(t) = \sum_{K=-\infty}^{\infty} C_K e^{\int_0^2 T K f_0 t}$ founder Multiply both sides by e-1271 fot & integrate over one period $\int_{\Omega} \chi(t) e^{-\int_{2\pi}^{2\pi} f t} dt = \int_{K=-\infty}^{\infty} C_{K} e^{\int_{2\pi}^{2\pi} K f t} e^{-\int_{2\pi}^{2\pi} f t} dt.$ $RHS = \int_{K=-\infty}^{\infty} C_{K} e^{\int_{2\pi}^{2\pi} K f t} dt.$ $t_{0} = \int_{K=-\infty}^{\infty} C_{K} e^{\int_{2\pi}^{2\pi} K f t} dt.$ Case I:- K=R.

RHS = $\int_{K=-\infty}^{\infty} C_K e^{\int_{2\pi}^{2\pi}(K-2)} dt$. $= \int_{K=-\infty}^{\infty} C_k e^{\int_{2\pi}^{2\pi}(K-2)} dt = C_k \int_{0}^{\infty} dt = C_k \int_{0}^{\infty} dt = C_k \int_{0}^{\infty} dt$ Now $\int_{2\pi}^{\infty} 2\pi (t) e^{\int_{2\pi}^{2\pi} l \int_{0}^{\infty} t} dt = C_k \int_{0}^{\infty} dt$ Ce = i fortp

20(t) e-j2Thfotolt.

Case II:
$$K \neq L$$
 $t \neq T$
 t

 $\mathcal{H}(t) = C_0 + \sum_{K=1}^{\infty} |C_K| e^{-\int_0^2 R_K} e^{-\int_0^2 \pi K f_0 t} + \sum_{K=1}^{\infty} |C_K| e^{\int_0^2 \pi K f_0 t}$

$$g(t) = a_0 + \sum_{K=1}^{\infty} |G_K| \left[e^{-\int_{2\pi K}^{2\pi K} \int_{0}^{1} t + \Theta_K} \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^{1} t + \Theta_K) \right]$$

$$= a_0 + 2 \sum_{K=1}^{\infty} |G_K| \left[\cos (2\pi K \int_{0}^$$

 $P_{X} = \frac{1}{\sqrt{p}} \int_{0}^{\infty} |\chi(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |\chi(k)|^{2} dt$ Whether time or spectrum domain. power is going to be the same. Analysis $e_{\kappa} = \frac{1}{7} \int_{\mathcal{R}} \kappa(t) e^{-\frac{1}{2}\pi\kappa f_0 t} dt$ $C_{K} = \frac{1}{T_{p}} \int_{-T_{p}/2}^{T_{p}/2} \chi(t) e^{-\frac{t^{2}}{2}T_{p}} \kappa_{f}^{ot} dt = \frac{1}{T_{p}} \int_{-T_{p}/2}^{T_{p}/2} e^{-\frac{t^{2}}{2}T_{p}} \kappa_{f}^{ot} dt$ $= \underbrace{A}_{1p} \left[\underbrace{e^{-\int_{2\pi}^{2\pi} K f_{0} t}}_{-\int_{2\pi}^{2\pi} K f_{0}} \right]_{-T/2}^{T/2} = \underbrace{A}_{Tp} \left[\underbrace{e^{-\int_{2\pi}^{2\pi} K f_{0}} T_{2}^{2}}_{-\int_{2\pi}^{2\pi} K f_{0}} \right]_{-T/2}^{T/2}$ $=\frac{A}{Tp}\left[\frac{Sin\left(2\pi\kappa f_{0}T/2\right)}{\pi\kappa f_{0}}\right]=\left[\frac{AT}{Tp}\frac{Sin\left(\pi\kappa f_{0}T\right)}{\pi\kappa f_{0}T}\right]$ $C_{K} = AT \ sinc (\pi \kappa f_{0}T)$ $C_{K} = AT \ sin (\pi \kappa f_{0}T) = 0$ $C_{K} = AT \$ d & sin (TKfort) d TIKfOT. $C_{K}|_{K=0} = \frac{AT}{f_{p}} \cos \left(\pi K f_{0}T\right) = \frac{AT}{f_{p}} = C_{0}$ $C_{W} = AT \sin \left(\pi K f_{0}T\right) \qquad \text{Spectourm}$ $C_{W} = AT \sin \left(\pi K f_{0}T\right) \qquad \text{Spectourm}$ T: lobe width. 0=±mT. TIKfOT = IMT having zero value

Effects of 7 & Tp on Spectrum

4 -> When To is fixed.

If we inecease T, then I decreases and hence the spectrum contracts.

If we decrease T, then I increases and honce The spectrum widens.

No. of components also inculases when T decue as ls

 \rightarrow When. T is fixed.

If we increase to, then spectral lines come; closer enough.

If we decrease to then spectral lines go. for from each other.

Worst Scenario. Spectrum looks continuous.

Continuous Time Aporiodic Signal

Aparodic 1. x(t) Signal. TP/2 0. Infinitically periodic: - Periodic with infinite period

R (t) = ∑ CK es2Tr Kfot

 $\chi_{p}(t) = \sum_{K=-\infty}^{\infty} C_{K} e^{\int_{2}^{2}\pi K f_{0}t}.$ $C_{K} = \frac{1}{T_{p}} \int_{-T_{p}/2}^{T_{p}/2} \chi_{p}(t) e^{-\int_{2}^{2}\pi K f_{0}t} dt.$

 $C_{R} = \frac{1}{7} \int_{0}^{1/2} \chi(t) e^{-\int_{0}^{2} \pi V_{0}^{2} t} dt$

To fx(t) e-j2TKfit oft.

. Fourier Representation of Aperiodic Signal. Aperiodic. TA/2

1 xp(t) -TP/2 TP/2

Analysis
Expression
$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$
Analysis
$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K} = \frac{1}{T_{p}} \times (K) e^{\frac{1}{2} \ln t} dt$$

$$C_{K}$$

Ex
Apreniodic.

-T/2

7 (t)

2 t.

Spectrum of F.T. of signal. $X(f) = \int_{0}^{\infty} x(t) \cdot e^{-\int_{0}^{2\pi} ft} dt$ $= \int_{0}^{\pi} A e^{-\int_{0}^{2\pi} ft} dt.$

 $= A \left[\frac{e^{-\int_{2\pi}^{2\pi} f t} \int_{-T_{2}}^{T_{2}}}{-\int_{2\pi}^{2\pi} f} \right]_{-T_{2}}^{T_{2}}$ $= A \left[e^{-\int_{2\pi}^{2\pi} f t} \int_{-T_{2}}^{T_{2}} -e^{\int_{2\pi}^{2\pi} f t} \int_{-T_{2$

 $X(f) = A sin (\pi f.T)$

⇒ T↑, lobe width J.

or f = 0 X(f) = 0/0By applying L-Hospitals rule.

 $X(f) = AT \cos(\pi f T) \pi T$ $= AT \cos(\pi f T)$

X(0) = AT

 $X(f) = \int_{AT} AT$, f = 0 $AT \sin \pi f T$, $f \neq 0$

 $\Pi f T = \pm m T T$ $f = \pm \frac{m}{T}$

