Feature Selection

BA810: Supervised Machine Learning

Nachiketa Sahoo

Recap

- 1. Load and explore data, training-test split
- 2. Consider cleaning and transformations
- 3. Create pipelines
- 4. Evaluate various predictive models
- 5. Finetune hyperparameters of the most promising model (Grid, Random, Bayesian)
- 6. Estimate error on unused test-data

Course Map (Topics)

- 1. Introduction to Machine Learning
- 2. General predictive models
 - Regression and classification
- 3. Model tuning and selection
- 4. End-to-end Machine Learning process
- 5. Specific predictive models
 - Support Vector Machines, Decision Tree, Ensembles
- 6. Managing class imbalance in practice

Feature Selection

- Why?
 - Improve prediction (models with fewer features are less susceptible to noise)
 - Improve Interpretability
- How?
 - 1. Best subset selection
 - 2. Forward/backward stepwise selection
 - 3. Simpler strategies
- Quick detour to approximate estimation of test error ...

Approximate Estimation of Test Error

- Why?
 - Cross validation estimates through out of sample prediction, but computationally costly
- How to approximate?
 - Adjust in-sample error (obtained for free during training) for number of parameters
- For linear regression
 - $C_p = \frac{1}{n}(RSS + 2d\hat{\sigma}^2)$, same as another general criterion AIC
 - d: number of features, $\hat{\sigma}$: estimated standard deviation of the error
 - BIC = $\frac{1}{n}$ (RSS + $\log(n) d\hat{\sigma}^2$),
 - Adjusted $R^2=1-\frac{\frac{RSS}{n-d-1}}{\frac{TSS}{n-1}}$, contrast to $R^2=1-\frac{RSS}{TSS}$ Where $RSS=\sum_i (y_i-\hat{y})^2$ and $TSS=\sum_i (y_i-\bar{y})^2$

Best Subset Selection

Evaluate all possible models using the d features.

- 1. Start with the null model $(M_0 : predicts mean of y)$
- 2. For k = 1, 2, ..., d:
 - 1. Fit all possible models that use exactly k predictors
 - 2. Pick the best model per \mathbb{R}^2 (or cross validation) and call it M_k
- 3. Select the best model from M_0 , ..., M_d per either cross validation error, C_p , AIC, BIC or adjusted R^2

Forward Stepwise Selection

Add the best next feature given the features included already.

- 1. Start with the null model (predicts mean of y)
- 2. For k = 0, 1, ..., d 1:
 - 1. Fit d k possible models that add only 1 predictors
 - 2. Pick the best model per \mathbb{R}^2 (or cross validation) and call it M_k
- 3. Select the best model from M_0 , ..., M_d per either cross validation error, C_p , AIC, BIC or adjusted R^2

Backward Stepwise Selection

Remove the next least contributing feature given the rest.

- Start with the full model (with all features in it)
- 2. For k = d, d 1, ..., 1:
 - 1. Fit k possible models each removing a separate predictor
 - 2. Pick the best model per \mathbb{R}^2 (or cross validation) and call it M_k
- 3. Select the best model from M_0, \dots, M_d per either cross validation error, C_p, AIC, BIC or adjusted \mathbb{R}^2

Comparisons

- Best subset
 - Finds the best of all possible subset of features
 - Slow, can overfit ("multiple comparison problem" when comparing large number of models)
- Forward stepwise search
 - Fast, less likely to overfitting, can be used for linear regression with d > n
 - Need not find the best subset, can miss feature groups that complement
- Backward stepwise search
 - Fast, less likely to overfitting, **cannot** be used for linear regression with d>n
 - Need not find the best subset, but less likely to miss pairs that complement

Simpler Strategies

For when we have too many (>50) features

- Eliminate hopeless features
 - >50% missing
 - All have same value (VarianceThreshold)
- Assess each feature independently
 - Reduces the number of cases to evaluate
 - Select those most related to outcomes
 - F-statistic, mutual information, chi-square, ...
- Important features as given by a model
 - Importance: magnitude of coefficient in linear models, or gain measure in decision tree
 - For linear model choose methods such as Lasso that promote turn features off (promote sparsity)
 - Fit once, pick the top K features
 - Could tune K by grid search

- Recursive Feature Elimination
 - Builds on model-based selection
 - 1. Estimate the model with all features, remove the least "important"
 - 2. Repeat until desired number of features remain

Alt:

- Measure CV error after step 1.
- Eliminate features until one remains.
- Pick the number of features (and corresponding features) that leads to the smallest CV error.

These get progressively slower.

Summary

- Weed out the hopeless features
- If sequential feature selection is computationally feasible, go ahead
- Else, see the best among the simpler strategy that is feasible as an intermediate pass

Announcements

- Provide team feedback by tomorrow (11/16) noon
- Next class: support vector machines
 - Andrew Ng's course video on SVM
 - No class on (11/22) next Wednesday (Thanksgiving)
- More Datacamp chapters post break
 - Plan ahead