11 Martingales and information processes

In this exercise you become familiar with the concept of a martingale, and you learn to detect which random times are optional times with respect to a given information process.

Classroom problems

- 11.1 Markov chains and martingales. Invent (or google) an example of an integer-valued stochastic process (X_0, X_1, \dots) which is
 - (a) a Markov chain and a martingale,
 - (b) a Markov chain but not a martingale,
 - (c) a martingale but not a Markov chain,
 - (d) not a martingale nor a Markov chain.

Homework problems

- **11.2** Centered random walk. A random sequence $(S_0, S_1, ...)$ is defined recursively by $S_0 = x_0$ and $S_t = S_{t-1} + X_t$ for $t \ge 1$, where $x_0 \in \mathbb{R}$ and $X_1, X_2, ...$ are independent and identically distributed with a finite mean m.
 - (a) Prove that the centered random walk defined by $\bar{S}_t = S_t mt$ is a martingale with respect to information sequence (x_0, X_1, X_2, \dots) .
 - (b) Is the centered random walk $(\bar{S}_t)_{t\in\mathbb{Z}_+}$ a martingale with respect to itself?
- 11.3 Optional times. If τ_1 and τ_2 are optional times of the information sequence (X_0, X_1, \ldots) , which of the following must be optional times as well? Justify your answers carefully based on the definition of an optional time.

Hint: The formula $1(\tau \le t) = \sum_{s=0}^{t} 1(\tau = s)$ or some of its variants may turn out useful.

- (a) $T_1 = \tau_1 + 6$
- (b) $T_2 = \max(\tau_1 6, 0)$
- (c) $T_3 = \min(\tau_1, \tau_2)$