Logistic regression

Hastie, Tibshirani, Friedman Ch 4.4 Kevin Murphy Ch. 8

> CS 6140 Machine Learning Professor Olga Vitek

February 6, 2017

Generative vs discriminative models

- Goal: predict Y
 - Bayes rule:

$$p(Y|\mathbf{X}) = \frac{p(Y) \cdot p(\mathbf{X}|Y)}{p(\mathbf{X})}$$

- Generative classifiers
 - Specify prior probability of p(Y)
 - Assume conditional distribution p(X|Y)
 - Use Bayes rule to derive the posterior p(Y|X)
 - Example: Linear discriminant analysis
- Discriminative classifiers
 - Estimate the posterior the posterior p(Y|X)
 - Do not assume the distribution on ${f X}$
 - **Example:** Y binary: logistic regression

Probability Distribution of a Binary Outcome Y

- In many situations, the response variable has only two possible outcomes
 - Disease (Y = 1) vs Not diseased (Y = 0)
 - Employed (Y = 1) vs Unemployed (Y = 0)
- Response is binary or dichotomous
- Can model response using Bernoulli dist

$$egin{array}{c|c} Y_i & \mbox{Probability} \\ \hline 1 & \mbox{Pr}\{Y_1=1\}=\pi_i \\ 0 & \mbox{Pr}\{Y_1=0\}=1-\pi_i \\ \hline \end{array}$$

- $\bullet \ E\{Y_i\} = \pi_i$
- $Var\{Y_i\} = \pi_i(1 \pi_i)$

Goal: express $E\{Y\}$ as function of a covariate X

• The simple regression is not appropriate

$$E\{Y_i\} = \beta_0 + \beta_1 X_i$$

It violates several assumptions:

- (1) Does not enforce the constraint $0 \le E\{Y_i\} \le 1$ is
- (2) Non-normal (binary) distribution of $\varepsilon \mid X$:

When
$$Y_i=0$$
 : $\varepsilon_i=0-\beta_0-\beta_1X_i$
When $Y_i=1$: $\varepsilon_i=1-\beta_0-\beta_1X_i$

(3) Non-constant variance

$$Var\{Y_i\} = \pi_i(1 - \pi_i) = (\beta_0 + \beta_1 X_i)(1 - \beta_0 - \beta_1 X_i)$$

Solution: a Generalized Linear Model

A generalized linear model is

$$E\{Y_i\} = g(\beta_0 + \beta_1 X_i), \text{ or }$$

 $g^{-1}(E\{Y_i\}) = \beta_0 + \beta_1 X_i$

where g is a sigmoid function in (0,1).

- g is called the *mean response function*
- $-\ g^{-1}$ is called the *link function*
- A choice of g produces different models
 - -g(t) = Identity $\rightarrow Iinear regression$
 - $-g(t) = \Phi(t) = \text{standard Normal CDF}$ $\rightarrow \text{probit regresison}$
 - $-g(t) = \frac{\exp(t)}{1 + exp(t)} = \text{CDF of the logistic distrib.}$ $\rightarrow \text{logistic regresison}$

Motivation for Probit Regression: Latent Variable

- Assume that the binary response is guided by a non-observed continuous variable
- Example: linear model for blood pressure:

$$bp = \beta_0 + \beta_1 age + \varepsilon$$

Only observe

$$Y = \left\{ \begin{array}{l} \text{1 (disease), if blood pressure} > c \\ \text{0 (healthy), if blood pressure} \leq c \end{array} \right.$$

$$\Pr\{Y = 1\}$$

$$= \Pr\{bp > c\} = \Pr\{\beta_0 + \beta_1 age + \varepsilon > c\}$$

$$= \Pr\{\varepsilon < \beta_0 + \beta_1 age - c\}$$

$$= \Pr\{\frac{\varepsilon}{\sigma} < \frac{\beta_0 - c}{\sigma} + \frac{\beta_1}{\sigma} age\}$$

$$= \Pr\{z < \beta'_0 + \beta'_1 age\}$$

$$= \Phi(\beta'_0 + \beta'_1 age)$$

Logistic Response Function and Logistic Regression

A sigmoidal response function

$$E\{Y_i\} = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$
$$= \frac{1}{1 + \exp(-\beta_0 - \beta_1 X_i))}$$

- A monotonic increasing/decreasing function
- Explicit functional form
- Restricts $0 \le E(Y_i) \le 1$
- Example of a nonlinear model
- Logit link function

$$\log\left(\frac{E\{Y_i\}}{1 - E\{Y_i\}}\right) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \beta_0 + \beta_1 X_i$$

Sigm($\beta_1 x_1 + \beta_2 x_2$)

K. Murphy, Fig 8.1

Probability Distribution of Y in Logistic Regression

• Y_i are independent but not identically distributed Bernoulli random variables

$$Y_i \overset{ind}{\sim} \text{Bernoulli}(\pi_i) \text{ where}$$

$$\pi_i = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$

- note no more error term!
- \bullet Probability density of Y_i

$$f(Y_i) = \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}$$

- Least Squares Estimates are inappropriate
 - use maximum likelihood for parameter estimation

Estimation by Maximum Likelihood

• $Y_i \overset{ind}{\sim} \mathsf{Bernoulli}(\pi_i)$ where

$$\pi_i = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$

• Log likelihood: $\log_e(L) =$

$$= \log \left\{ \prod_{i=1}^{n} \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i} \right\}$$

$$= \sum_{i=1}^{n} Y_i \log(\pi_i) + \sum_{i=1}^{n} (1 - Y_i) \log(1 - \pi_i)$$

$$= \sum_{i=1}^{n} Y_i \log(\frac{\pi_i}{1 - \pi_i}) + \sum_{i=1}^{n} \log(1 - \pi_i)$$

$$= \sum_{i=1}^{n} Y_i (\beta_0 + \beta_1 X_i) - \sum_{i=1}^{n} \log(1 + \exp(\beta_0 + \beta_1 X_i))$$

MLEs do not have closed forms

Equivalent specification: Binomial distribution

- Change in notation
 - Data: (Y_{ij}, n_i, X_i) , $i = 1, 2, \dots, c$
 - $-X_i$: predictor for observation i
 - n_i : # of Bernoulli trials in observation i

$$-Y_i' := \sum_{j=1}^{n_i} Y_{ij}$$

- Model:

$$Y_i' \overset{ind}{\sim} Binomial(n_i, \pi_i), \text{ where}$$

$$\pi_i = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$

• Log-Likelihood: $\log_e(L) =$

$$= \log \prod_{i=1}^{c} \left\{ \binom{n_i}{Y_i'} \pi^{Y_i'} (1 - \pi_i)^{n_i - Y_i'} \right\}$$

$$= \sum_{i=1}^{c} \left\{ Y_i' \log(\pi_i) + (n_i - Y_i') \log(1 - \pi_i) + \log \binom{n_i}{Y_i'} \right\}$$

$$= \sum_{i=1}^{c} \left\{ Y_i' \log \frac{\pi_i}{1 - \pi_i} + n_i \log(1 - \pi_i) + \log \binom{n_i}{Y_i'} \right\}$$

Equivalence of Bernouilli and Binomial Models

 Binomial Log-Likelihood equals Bernouilli Log-Likelihood, up to a constant:

$$\log_{e}(L)^{Binomial} =$$

$$= \sum_{i=1}^{c} \left\{ Y_{i}' \log(\pi_{i}) + (n_{i} - Y_{i}') \log(1 - \pi_{i}) \right\} + constant$$

$$= \sum_{i=1}^{c} \left\{ \sum_{j=1}^{n_{i}} Y_{ij} \log(\pi_{i}) + (n_{i} - \sum_{j=1}^{n_{i}} Y_{ij}) \log(1 - \pi_{i}) \right\} + constant$$

$$= \sum_{i=1}^{c} \sum_{j=1}^{n_{i}} \left\{ Y_{ij} \log(\frac{\pi_{i}}{1 - \pi_{i}}) + \log(1 - \pi_{i}) \right\} + constant$$

$$= \log_{e}(L)^{Bernouilli} + constant$$

 Both models lead to same parameter estimates and inferences, but have different deviances.

Summaries of prediction/classification

- Results over multiple score cutoffs are summarized in a Receiver Operating Characteristic (ROC) curve
- ullet Vary c, and for all c plot sensitivity vs 1-specificity. Evaluate models by area under the curve.
- Area = $1 \rightarrow$ perfect classification Area = $.5 \rightarrow$ random classification.

Fawcett, "An introduction to ROC analysis". *Pattern Recognition Letters*, 2005

In	ıst#	Class	Score	Inst#	Class	Score		
	1	p	.9	11	p	.4		
	2	p	.8	12	n	.39		
	3	n	.7	13	p	.38		
	4	p	.6	14	n	.37		
	5	p	.55	15	n	.36		
	6	p	.54	16	n	.35		
	7	n	.53	17	p	.34		
	8	n	.52	18	n	.33		
	9	p	.51	19	p	.30		
	10	n	.505	20	n	.1		
1			1 1		- - - - - - - - - - 	.30 .1		
0.9	i '	'	1 1	1 1	.3 *	34 L33 _		
0.8	38 37 36 35							
0.7			*.4 *					
			.51 .505 **					
ositive 0.5	 - *	54 .53 ×	¦ .52 -×					
True positive rate 70 9.0		55						
0.3		.6						
0.2	.8 **	.7						
	.9 *							
ļ	O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 False positive rate							

Fawcett, "An introduction to ROC analysis". Pattern Recognition Letters, 2005

Automatic Variable Selection

• Exhaustive search. Minimize:

$$-2 \log_e L(\mathbf{b})$$

$$AIC_p = -2 \log_e L(\mathbf{b}) + 2p$$

$$BIC_p = -2 \log_e L(\mathbf{b}) + p \log_e(n)$$

- Heuristic search
 - forward selection; backward elimination; stepwise selection
- Statistical regularization
 - Negative log-likelihood penalized with ridge, lasso, elastic net etc

Variable Selection Should be Done as Part of Cross-Validation

- Example from Simon et al., JNCI, 2003.
- Simulated data with no structure
 - 20 observations with random labels
 - 6,000 possible but unrelated predictors
 - Repeated 200 times
- Estimated predictive accuracy using
 - no cross-validation
 - selecting features on full dataset, then using cross-validation
 - selecting features at each step of cross-validation

Variable Selection Should be Done as Part of Cross-Validation

Example from Simon et al., JNCI, 2003.

Conclusion

 Incorporating selection of predictors within the cross-validation procedure is key

More than 2 groups: conditional multinomial distributions

•
$$Y|X = x \sim Multinomial(n_{i+}, \pi_1(x), \dots, \pi_J(x))$$

ullet X - predictor; Y - multinomial response with J categories

	(
Row	1		J	Total
1	$\pi_{11} \\ (\pi_{1 1})$		$\pi_{1J} \ (\pi_{J 1})$	π_{1+}
:	:	:	:	:
I	$\pi_{I1} \ (\pi_{1 I})$	• • •	$\pi_{IJ} \ (\pi_{J I})$	π_{I+}
Total	π_{+1}	• • •	π_{+J}	π_{++}

• Consider the new notation:

$$\pi_j(X) = P(Y = j | X = x), \sum_{j=1}^J \pi_j = 1$$

If Y is ordered, we can also be interested in cumulative probabilities:

$$P_j(X) = P(Y \le j | X = x)$$

Baseline-Category Logistic Regression

Data:

$$(y_{ij}, x_i); y_{ij} = I_{\{y_i = j\}}; \sum_{j=1}^{J} y_{ij} = 1;$$

 $j = 1, \dots, J, i = 1, \dots, n$

ullet The model describes the effects of covariates X on the J-1 logits.

$$\log \frac{\pi_j(X)}{\pi_1(X)} = \alpha_j + \beta_j X, \ j = 2, ..., J$$

- An arbitrary category (j = 1 or j = J) is chosen as the baseline category
- Each other category j is paired with the baseline to build a logistic model
- Separate set of parameters eta_j for each π_j
- Separate linear relationship between X and $log rac{\pi_j(X)}{\pi_1(X)}$
- Values of β_j depend on the baseline

Predicted Probability

• Since
$$\pi_j(X) = \pi_1(X)e^{\alpha_j + \beta_j X}$$
 and $\sum_{j=1}^J \pi_j(X) = 1$

$$\begin{cases} \pi_1(X) = \frac{1}{1 + \sum_{k=2}^J \exp(\alpha_k + \beta_k X)}, \quad j = 1 \\ \pi_j(X) = \frac{\exp(\alpha_j + \beta_j X)}{1 + \sum_{k=2}^J \exp(\alpha_k + \beta_k X)}, \quad j = 2, 3, \dots, J \end{cases}$$

- ullet Same denominator for all j
- ullet For J=2 an ordinary logistic regression
- Can be viewed as a classification model
 - the observation is assigned to the category with the highest predicted probability
 - can plot ROC curves for a particular category versus all other categories combined

Max. Likelihood Estimation

Since

$$\pi_1(x_i) = [1 + \sum_{j=2}^{J} exp(\alpha_j + \beta_j x_i)]^{-1} \text{ and } y_{i1} = (1 - \sum_{j=2}^{J} y_{ij}),$$

contribution of (y_{ij}, x_i) to the log-likelihood is:

$$l_{i} = log \left[\prod_{j=1}^{J} \pi_{j}(x_{i})^{y_{ij}} \right]$$

$$= \sum_{j=2}^{J} y_{ij} \log \pi_{j}(x_{i}) + \left(1 - \sum_{j=2}^{J} y_{ij} \right) \log \pi_{1}(x_{i})$$

$$= \sum_{j=2}^{J} y_{ij} \log \frac{\pi_{j}(x_{i})}{1 - \sum_{k=2}^{J} \pi_{k}(x_{i})} + log \pi_{1}(x_{i})$$

$$= \sum_{j=2}^{J} y_{ij} (\alpha_{i} + \beta_{j}x_{i}) - log \left[1 + \sum_{j=2}^{J} exp(\alpha_{i} + \beta_{j}x_{i}) \right]$$

ullet Maximize $\sum\limits_{i=1}^{I} l_i$ with respect to $lpha_j$ and eta_j

Multinomial Vs Binary Logistic Regression

•
$$\log \frac{\pi_j(X)}{\pi_1(X)} = \alpha_j + \beta_j X, \ j = 2, ..., J$$

- Can we fit separate J-1 logistic regressions for J-1 response categories vs baseline?
 - Same model in principle
- Separate-fitting ML parameter estimates
 - Differ from the joint-fitting ML estimates
 - Tend to have larger standard errors
 - Loss of efficiency is minor when the baseline is the most common category

Example: Dose Response

- Row='dose'; column='response'
- View 'dose' as a categorical predictor
 - introduce 3 indicators for predictors
- View 'dose' as a continuous predictor
 - assign scores to categories on an arbitrary scale
- More R examples: Venable & Ripley p. 203

Example: Dose Response 'Dose' Viewed as Categorical

```
library(nnet)
fit1 <- multinom(response ~ as.factor(dose), weights=count,
  data=x)
> summary(fit1)
Coefficients:
  (Intercept) ...(dose)1 ...(dose)2 ...(dose)3
1 - 0.8586335 \quad 0.03194971 \quad -0.2864809 \quad -1.5161958
2 -0.2488754 0.16185828 0.4536705 0.3794879
                          0.5810140 0.5055581 0.2615807 0.5641507
3 -0.2063195 0.18526707
4 -0.6117850 0.14178037
Std. Errors:
  (Intercept) ...(dose)1
                          ...(dose)2 ...(dose)3
   0.2386396
1
               0.3541205
                           0.3887204
                                       0.5746170
                           0.2827264 0.2869711
              0.2867909
2
   0.1966936
3 0.1943777 0.2826526 0.2759257 0.2797853
4 0.2195434
               0.3199468
                           0.3212239
                                       0.3095891
```

Residual Deviance: 2443.166

AIC: 2475.166

Plot Predicted Probabilities

Predicted probabilities

Example: Dose Response 'Dose' Viewed as Continuous

AIC: 2465.145

Predicted probabilities

