Tutorial 7

- 1. Recall from Proposition 8.1.1 that both injections and surjections are closed under composition. In the question, we investigate the converses. Let $f: X \to Y$ and $g: Y \to Z$.
 - (a)* Suppose $g \circ f$ is injective. Prove that f must also be injective. Give an example to show that g need not be injective.
 - (b) Suppose $g \circ f$ is surjective. Prove that g must also be surjective. Give an example to show that f need not be surjective.
 - (c) Give an example where $g \circ f$ is bijective but g and f are both not bijective.
- 2.* Consider a function $f: X \to Y$. Recall from Proposition 7.4.14 that if $f^{-1}: Y \to X$, then $f^{-1} \circ f = \operatorname{id}_X$ and $f \circ f^{-1} = \operatorname{id}_Y$. Here are investigate the converse.

Suppose $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$. Prove that f must be bijective, and that $g = f^{-1}$.

- 3. Let X be a nonempty set and $f: X \to X$ such that $f \circ f = \mathrm{id}_X$.
 - (a) Prove that f is bijective.
 - (b) Determine f^{-1} .

(Hint: You may find Problem 2 helpful.)

4.* Let $k \in \mathbb{Z}^+$. Consider the equivalence relation \equiv_k on \mathbb{Z} from Tutorial 5 Problem 5, where $m \equiv_k n$ if and only if k divides m-n for all $m,n \in \mathbb{Z}$.

Prove that the equivalence classes have the same cardinality.

5. Consider the equivalence relation

$$\mathcal{L} = \{((a,b),(c,d)) \in (\mathbb{R}^2)^2 : a - c = 3(b-d)\}$$

on \mathbb{R}^2 from Tutorial 5 Problem 7. Prove that all the equivalence classes have the same cardinality.

6. Let U be a finite set. Consider the relation

$$R = \{(A, B) \in \mathcal{P}(U) \times \mathcal{P}(U) : \text{there is a bijection from } A \text{ to } B\}$$

on $\mathcal{P}(U)$. What are the equivalence classes?

- 7.* For $a, b \in \mathbb{R}$, define $I_{(a,b)} = \{x \in \mathbb{R} : a < x < b\}$. Give an example of a bijection from $I_{(0,1)}$ to $I_{(-1,1)}$ and another from $I_{(-1,1)}$ to \mathbb{R} . Deduce that $I_{(0,1)}$ and \mathbb{R} have the same cardinality.
- 8. (a) Pick any 7 integers yourself. Find two integers m and n amongst the 7 you chose such that 6 divides m-n.
 - (b) (We now generalize the observation in (a).) Let $k \in \mathbb{Z}^+$. Use the Pigeonhole Principle and the fact that the partition of \mathbb{Z} induced by the equivalence relation \equiv_k from Problem 4 has exactly k components to deduce that, amongst any k+1 integers, there are two whose difference is divisible by k.
- 9.* Prove that a set X is countable if and only if it is empty, or there is a surjection $\mathbb{Z}^+ \to X$. (Hint: You may find ideas from Tutorial 6 Problem 9 useful.)