Goal: Be able to compute the maximum and minimum of a differentiable function on a closed and bounded

domain. be a fer defined on a domain D an absolute (or global) maximum at c if $f(c) \ge f(x)$ for $x \in D$. an absolute mus when $f(c) \leq f(x)$ Who Max. PABS Mbn Theorem (The Extreme Valve Theorem) Let f be defined a closed interval I = [aib]) If f is continuous, then an absolute maxmin on (ab) If f is differentiable, the absolute maximin can only occur at (ii) X= b (iii) A critical number

Exi find the Maximum and minimum value of
$$f(x) = x^3 - 3x^2 + 1$$
 on $[-\frac{1}{2}, 4]$

Decate any critical numbers $f'(x) = 3x^2 - (\alpha x) = 3x(x-2) \stackrel{\text{set}}{=} 0 \Rightarrow x=0.12$

2) Compare the y values at the crit. numbers and endpoints x Min $x = x = 1$ (1) $x = x = 1$ (2) $x = x = 1$ (2) $x = x = 1$ (3) $x = x = 1$ (4) $x = x = 1$ (4) $x = x = 1$ (5) $x = x = 1$ (6) $x = x = 1$ (7) $x = x = 1$ (8) $x = x = 1$ (9) $x = x = 1$ (17) $x = x = 1$ (18) $x = x = 1$ (19) $x = x = 1$ (19

 $=4x(x+1)(x-1) \stackrel{set}{=} 0 \Rightarrow x=-\frac{1}{101}$ Only care about x=01

2 Make table Contral Conclusion: f has a min value of while f has a max value of Ex3/Repeat for f(x)= sunx + cosx on [0, 3] 1 Cr.t. Nums $f'(x) = \cos x - \sin x \stackrel{\text{Set}}{=} 0$ $\cos x = \sin x$ tanx = 1 May 21.366 Conclusion: f obtais a max of 12 at x=4 while fobtains a min of a for only has one critical value

Thus, f has an absolute mun at x = -1[provided the Lomain 6 (-210)] We can't say anything about a max Ex6 $y=\frac{1}{(4x^2+3)}$ on the interval [-1,1] $y' = -\frac{1}{(4x^2+3)^2} (8x) \stackrel{\text{Set}}{=} 0 \Rightarrow \boxed{\chi=0}$ -1 -3 0 f'(2) <0 By the 1st demartine test, y has a local max at X=0. Thus, an absolute max. Without further works we can't say if there is