Introduction to Process in Computing Systems

Programs and Processes

- One way to describe the hardware of a computer system is to say that it provides a framework for executing programs and storing files.
- A file is a collection of data that is usually stored on disk, although some files are stored on tape.
 - UNIX treats peripherals as special files, so that terminals, printers, and other devices are accessible in the same way as disk-based files.
- A program is a collection of bytes representing code and data that are stored in a file.
- When a program is started, it is loaded from disk into the main memory (RAM).
- When a program is running, it is called a process.
 Most processes read and write data from files.

Processes

- The concept of process
 - A program in execution
 - The "animated spirit" of a program
 - The entity that can be assigned to and executed on a processor
- The life of a process is bounded by its creation and termination.
- In a typical computer system, it may be running thousands of processes at the same time.

Processes

• In order to be executed by the CPU, the code and data of a process must be located in the main memory.

Figure 3.1 Snapshot of Example Execution (Figure 3.3) at Instruction Cycle 13

Show Processes in Unix

 The Unix command "ps" can display the current processes in the computer.

```
      cuse93: > ps -a
      ... display all processes

      PID TT S TIME COMMAND

      360 console S 0:00 /usr/lib/saf/ttymon

      2434 pts/2 O 0:00 -tcsh

      2431 pts/2 O 0:00 ps -a

      cuse93: > ps -au
      ... display all processes with user info

      USER PID %CPU %MEM SZ RSS TT S START TIME COMMAND

      root 360 0.0 0.1 2987 1504 console S Feb 17 0:00 /usr/lib...

      wlam 2434 0.2 0.1 3302 2354 pts/2 O 17:34:21 0:00 -tcsh

      wlam 2431 0.1 0.2 3421 1456 pts/2 O 17:34:21 0:00 ps -au
```

Major Components of Operating Systems (OS)

- Process management
- Resource management
 - CPU
 - Memory
 - Device
- File system

Process Management

- One major operating system (OS) function is the sharing of limited resources among competing processes.
 - Limited resources in a typical computer system include CPUs, memory, disk space, and peripherals such as printers.
- OS shares CPUs among processes
 - By dividing each second of CPU time into equalsized "slices" (typically 1/10 second) and then allocating them to processes on the basis of a priority scheme.

Process Management

 The operating system usually interleaves the execution of all processes to maximize processor utilization while providing reasonable response time.

CPU Time Slice

 One component in the operating system is called dispatcher which takes care of the interleaving of the execution of the processes.

Trace of a Process (cont'd)

5000	8000	12000
5001	8001	12001
5002	8002	12002
5003	8003	12003
5004	8004 (wait for input	12004
5005	e.g. keyboard) :	12005
5006		12006
5007		12007
5008		12008
5009		12009
5010		12010
5011		12011
(a) Trace of process A	(b) Trace of process B (c) Tra	: ace of process C

5000 = Starting address of program of process A 8000 = Starting address of program of process B 12000 = Starting address of program of process C

Figure 3.2 Traces of Processes of Figure 3.1

Interrupts

- A mechanism by which different processes may interrupt the normal processing of the processor.
- The classes of Interrupts
 - Timer: Generated by a timer within the processor.
 - Input/Output (I/O): Generated by an input/output device.
- Interrupt is an interruption of the normal sequence of execution of the running process.
- After interrupt is completed, the normal program execution is resumed.
- Interrupts are provided primarily to improve processing efficiency.
 - I/O time is substantially slower than CPU processing
 - Avoid CPU waiting for slow I/O devices

100 = Starting address of dispatcher program

shaded areas indicate execution of dispatcher process; first and third columns count instruction cycles; second and fourth columns show address of instruction being executed

A Two-State Process Model

o A *process model* is used to describe the behavior what we want the processes to exhibit.

(b) Queuing diagram

Two-State Process Model

A Two-State Process Model (cont'd)

- Each process must be represented in some way so that OS can keep track of it.
 - current state
 - location in memory
- Each queue item may be:
 - a pointer to a particular process
 - a data block representing a process
- Process creation (Process Spawning):
 - OS may create a process by itself e.g. a user logs on to the system
 - OS may create a process on behalf of an application
 - e.g. requests a file to be printed
 - Application may create process
 e.g. a Web browser creates a process to download a file
- Process termination: Termination request by application, error and fault conditions.

ready running

- The 2-state model does not consider that some processes in the queue may *not* be ready to execute e.g. waiting for I/O, blocked
- I/O operation is much slower than CPU computation

Figure 3.5 Five-State Process Model

A Five-State Process Model (cont'd)

- Running: The process is currently being executed
- Ready: The process is prepared to execute when given the opportunity
- Blocked: The process cannot execute until some event (e.g. I/O read/write) occurs
- New: The process has just been created but has not yet been admitted to the pool of executable processes by the OS.
- Exit: The process has been released from the pool of executable processes by the OS.

Figure 3.6 Process States for Trace of Figure 3.3

Processes and Resources

Figure 3.9 Processes and Resources (resource allocation at one snapshot in time)

OS Functions

- OS controls events within the computer system.
- o Main functions of OS:
 - schedules and dispatches processes for execution by the processor
 - allocates resources to processes
 - responds to requests by user programs for basic services.
- OS manages the use of system resources by processes

Owner of Processes and Files

- Processes and files have an owner and may be protected against unauthorized access.
- UNIX supports a hierarchical directory structure.
- Files and processes have a "location" within the directory hierarchy. A process may change its own location or the location of a file.
- The figure below is an illustration of a tiny UNIX directory hierarchy that contains four files and a process running the "sort" utility.

Sharing Resources

- OS shares memory among processes
 - By dividing the main memory up into thousands of equal-sized "chunks" of memory and then allocating them to processes
 - The chunks of a process are called pages and chunks of memory are called frames

Sharing Memory - Paging

Figure 7.9 Assignment of Process Pages to Free Frames

Sharing Memory - Paging

Figure 7.9 Assignment of Process Pages to Free Frames
SEEM 3460 / ESTR3504

26

Sharing Memory – Page Tables for Paging

- Operating system maintains a page table for each process
 - contains the frame location for each page in the process
 - memory address consist of a page number and offset within the page

Sharing Memory – Page Tables for Paging

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Sharing Resources

- OS shares disk space among users
 - by dividing the disks into thousands of equal-sized "blocks" and then allocating them to users according to a quota system.
 - A single file is built out of one or more blocks.