

Concise Explanation of Japanese Reference

Published Unexamined Japanese Patent Application: JP-A S63-19149
Title of the Invention: Medical Container and Production Method thereof

The invention claimed in this patent application particularly relates to a medical container that can separately contain, in different compartments, a plurality of components of intravenous hyperalimentation or elemental diet which components are highly reactive with each other, and a method for producing such container.

The container can enclose each of a plurality of solutions and composed of multilayer plastic sheet having at least inner and outer layers. Part of the inner layers is bonded to each other to form a plurality of compartments, into each of which different solution is enclosed. The bonded portions are broken up before use and the solutions are mixed together in the container.

The invention also provides a method for producing such medical container, which comprises forming a container of multilayer plastic sheet, retaining the bonded state between the inner layers in the atmosphere at the temperature at which the inner layers are bonded, and providing a plurality of compartments in the container.

⑤ 日本国特許庁 (JP) ⑥ 特許出願公開
⑦ 公開特許公報 (A) 昭63-19149

⑧ Int. Cl. 4
 A 61 J 1/00
 B 65 D 81/32

識別記号 351
 廷内整理番号 7132-4C
 C-2119-3E

⑨ 公開 昭和63年(1988)1月26日

審査請求 未請求 発明の数 2 (全6頁)

⑩ 発明の名称 医療用容器及びその製造方法

⑪ 特願 昭61-162222
 ⑫ 出願 昭61(1986)7月10日

⑬ 発明者 鈴木 龍夫 東京都町田市小山田桜台1丁目5番地27-302

⑭ 発明者 磯野 啓之介 埼玉県川口市大字安行藤八46番地112

⑮ 出願人 磯野 啓之介 埼玉県川口市大字安行藤八46番地112

明細書

1. 発明の名称

医療用容器及びその製造方法

2. 特許請求の範囲

(1) 接触の薬液をそれぞれ隔離して封入することができる容器であって、前記容器は少なくとも内層と外層を有する合成樹脂製多層シートで構成され、前記内層の一部を接着して複数の室が形成され、それぞれの室に異なる薬液が封入され、使用時に前記接着部を開発し前記薬液を前記容器内で混合することができることを特徴とする医療用容器。

(2) 前記内層の引張強度が前記外層よりも小さいことを特徴とする特許請求の範囲第1項に記載の医療用容器。

(3) 前記外層の肉厚が前記内層の肉厚の2倍以上である特許請求の範囲第1項または第2項に記載の医療用容器。

(4) 合成樹脂製多層シートで容器を形成し、内層

相互が接着する温度の雰囲気中でその容器の一部を熱封体で密着させた状態を保持して接着させ、前記容器に複数の室を作ることを特徴とする医療用容器の製造方法。

(5) 前記合成樹脂製多層シートの内層の引張強度が外層よりも小さいことを特徴とする特許請求の範囲第4項記載の医療用容器の製造方法。

3. 発明の詳細な説明

【産業上の利用分野】

本発明は、医療用容器及びその製造方法に関する。特に、クローズド医療システムに用いられる高カロリー輸液剤やエレメンタルダイエット(以下EDと略す)の成分で互いに反応しやすい成分を複数種入れることでできる流れ得る薬液入り医療用容器及びその製造方法に関する。

【従来の技術】

近年生体に必要な栄養素すべてを経静脈より摂取する高カロリー輸液法がさかんに行われるようになってきた。高カロリー輸液法が適用されるのは、消化管結合不全、消化管通過障害等の経口摂

特許昭63-18149(2)

豆が不十分または不可能な場合、炎症性腸疾患、重症下痢等の経口摂取が好ましくない場合、広範熱傷、多発創症外傷等の経腸補給を上回る高カロリー補給が望まれる場合、肝不全・腎臓不全・糖尿病等の疾患による代謝の特異性を応用する場合などである。

高カロリー輸液法に用いられる高カロリー輸液剤は生体に必要な栄養素をすべて適量含むことが基本である、すなわち、糖質、アミノ酸、主要電解質、微量元素及びビタミンを含む多成分輸液剤になる。しかし、これらのすべてを含む複合液を製品化することは配合性、安定性の面で現在は不可能である。そこで、現在三つの方法が用いられている。

①市販の高カロリー輸液用基本液を用いる。高濃度ブドウ糖液に主要電解質が配合された液で、使用時アミノ酸を混合し、ビタミン及び不足な電解質を添加する。

②市販の高張ブドウ糖液とアミノ酸液を混合又は両方を連絡して投与する。

- 3 -

③高カロリー輸液基本液又はブドウ糖液を各自に専用調剤室で作成する。

いずれにしても、高カロリー輸液用基本液又は高張ブドウ糖液にアミノ酸液を使用時に混合して患者に投与するわけである。

【発明が解決しようとする問題点】

従来ブドウ糖アミノ酸を配合して一液調剤とし容器に封入すると、高温蒸気滅菌時及び保存時にブドウ糖とアミノ酸との間で反応が起こり輸液剤が着色していた。このため、上述したように現在のところブドウ糖とアミノ酸のように互いに反応しやすい成分を含む薬液を混合して一液調剤とすることができず、これらの薬液を使用時に混合して患者に投与していた。このように、使用時に混合するという操作は、調剤ミスを起こす可能性があり、また混合時の汚染等の問題ある。

本発明は、互いに反応しやすい成分を含む薬液を安定した状態で瓶詰及び長期保存できる医療用容器及びその製造方法を提供することにある。

【問題点を解決するための手段】

- 4 -

本発明は、複数の室をそれぞれ隔離して封入することができる容器であって、前記容器は少なくとも内層と外層を有する合成樹脂製多層シートで構成され、前記内層の一部を接着して複数の室が形成され、それぞれの室に異なる薬液が封入され、使用時に前記接着部を剥離し前記薬液を前記容器内で混合することができる医療用容器を提供することにある。

また本発明は、合成樹脂製多層シートで容器を形成し、内層相互が接着する温度の雰囲気中でその容器の一部を保持体により密着させた状態を保持して接着させ、前記容器に複数の室を作ることを特徴とする医療用容器の製造方法を提供することにある。

【作用】

前述したように、互いに反応する成分を含む薬液を一液調剤にしておくと、被封時及び長期保存時に薬液が変色或は変質してしまうので、使用時に混合する必要がある。この混合時に調剤ミスや汚染等の問題が発生していた。かかる問題を解決

するためには、複数の室を有する容器を形成し、それぞれの室に互いに反応しやすい成分を含む薬液を隔離して所定量を封入しておき、使用時にこれらの複数の室を互いに連通させて容器内で前記薬液を混合することにより上空問題を解決することができる。

容器を多層シートで作製し、容器の一部を接着して複数の室を形成する。容器を多層シートで構成することにより、この接着部に剥離させる方向に力を加えると、外層を破壊することなく接着している内層を破壊して各室を連通させることができるを見出した。さらに、内層の引張強度を外層より小さくすることにより、また外層の肉厚を内層の内厚の2倍以上にすることにより、一層確実に外層を破壊することなく使用者している内層を破壊できることを見出した。

また、容器部を複数の室に分けるための接着部を形成するとき、内層相互が接着する温度の雰囲気中でその容器の一部を保持体により密着させた状態を保持して接着させることにより、外層を確

- 5 -

- 6 -

特許第63-19149(3)

接着することなく接着している内層を破壊することができることを見出した。

【実施例】

次に、本発明を図面に基づいて具体的に説明する。

本発明の医療用容器の一例を第1図及び第2図に示す。医療用容器1の容器部2は、その外層7が合成樹脂で形成され、その内層8には外層7よりも引張強度の小さい合成樹脂で形成されている多層構造のインフレーション成形によって得たチューブ状のシートの両端開放を熱溶着し、更に容器部の一部12を接着することによって得たものである。また、排出口部3は、その内層9が合成樹脂で形成され、その外層10には容器部の外層7および排出口部の内層9よりも低い融点を有する合成樹脂が接着されている。一方の接着端部4には、医療用容器1を堅封するための接着口5及び薬液注入口11が設けられ、他方の接着端部6には、排出口部3が挿入溶着されている。接着端部6に排出口部3を熱溶着するとき、排出口部3の外層10

が内層9及び容器部の内層8と外層7よりも融点が低いので、外部よりの加熱により内層9が先に溶融し、容器部2と排出口部3は、容易にかつ確実に溶着することができる。

さらに第3図に示すように、排出口部3は、その外層40にはリング状等の突起部41を有することが好ましい。すなわち、接着端部6に排出口部3を挿入溶着するとき、より確実に確実に溶着することができるからである。

容器部2の外層7としては、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、塩素化ポリエチレン、ポリプロピレン、オレフィン系エラストマー、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂等を用いることができる。好ましくは、柔軟性に優れ引張強度の大きな直鎖状低密度ポリエチレンを用いるのが好ましい。また容器部2の内層8としては、外層7より引張強度の小さい低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、軟質ポリ塗化ビ

- 7 -

- 8 -

ニル樹脂等を用いることができる。ただし、外層7との組み合わせを考慮する必要がある。

これらの多層シートの厚みは、0.1～0.5mm好ましくは0.2～0.4mmとすることができる。0.1mm以下であると接着強度が悪くなり破損の危険性が増大する。また、0.5mm以上であると柔軟性と透明性が悪くなる。また、容器部の外層7と内層8の接着性が悪いときには、外層7と内層8の間に中間層として接着層を有する多層シートを用いることもできる。

排出口部3は二色成形法にて作製することができる。排出口部3の内層9には、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリエステル系樹脂、ポリアミド系樹脂等を用いることができる。排出口部3の外層10は、低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-酢酸ビニル共重合体等を用いることができる。さらに、排出口部3の外層10は、容器部2の内層8と同じ合成樹脂を用いることにより、容器部2と排出口部3を容

易にまた確実に熱溶着することができる。

また、排出口部の内層9と外層10の接着性が悪いとき等には、内層9と外層10の間に中間層として接着層を有する三色成形により、排出口部3を作製することができる。

また本発明の医療用容器は、上述の合成樹脂の押出成形によって得られた多層ラミネートシート二枚を重ね合わせ、その周縁部を熱溶着することによって得ることができる。

このようにして得られた容器は、第4図に示すように、容器部の一部12を両側から金属やセラミックスや合成樹脂等で作製された保持体13で保持して内層を互いに密着させ、室21と室22に隔離される。次に、排出口部3と薬液注入口11より、互いに反応する成分を含む薬液をそれぞれの室21、22に分離して注入し、排出口部3と薬液注入口11を封入する。保持体13により室21および室22内の両液が混合しないようにしたままで高圧蒸気滅菌する。この滅菌時の加熱により、保持体13で保持されていた部分は接着されるので、滅菌後は持

- 9 -

- 10 -

特許明63-19149(4)

持体13を取り除いても接着部12の内面相互は接着されており、室21と室22の蒸液はそれぞれ隔離された状態を保つことができる。また、容器の一部12を保持体13で扶持し金体を加温して接着させてから、蒸液を注入することもできる。

この蒸液入り容器は、慣用時に室21と室22に封入されている医薬を混合して使用される。容器部の両面を保持し、接着部12を剝離する方向（第2図のA方向）に引っ張り室21と室22を連通させ、それぞれの蒸液を容器部2内で混合する。次に、排出口部3に蒸液セットのピン針を挿入し、通常の輸液手技に基づいて患者に薬液を投与する。

接着部12の剝離を更に容易にするためには、接着部12を変曲点を有する曲線あるいは屈曲部を有する組分（この屈曲部も変曲点の範囲に入れる）で構成される形状にするのが好ましい。例えば、接着部を第4図に示すような一個の変曲点14（屈曲部）を有するV字状にすることにより、容器部の中央部を保持し接着部を剝離する方向に引っ張れば変曲点14から容易に接着部を剝離することが

- 11 -

できる。更に、接着部を第5図、第6図に示すような形状125、126にすることができる。（変曲点を有する曲線で構成される接着部は図示せず）

また、第6図に示すように、室621、室622、室623と三室を有する容器を作製することもできる。

また、隔離されている各室に、凍結乾燥されたED粉末と滅菌水、あるいは抗生物質の粉末と生理食塩水を封入することもできる。

実施例1

直鎖状低密度ポリエチレン（商品名：ニボロン-1、東洋曹達工業製、密度：0.925 g/cm³）と低密度ポリエチレン（商品名：ペトロセン、東洋曹達工業製、密度：0.917 g/cm³）を用いて、低密度ポリエチレンが内層になるよう共押出成形によるインフレーションチューブを作製した。外側の直鎖状低密度ポリエチレンの層の厚みは250 μm 内側の低密度ポリエチレンの層の厚みは50 μm であった。また、排出口部と蒸液注入口を高密度ポリエチレン（商品名：ニボロンハード、

- 12 -

東洋曹達工業製、密度：0.968 g/cm³）と低密度ポリエチレン（商品名：ペトロセン、東洋曹達工業製、密度：0.917 g/cm³）を用いて二色成形により作製した。排出口部及び蒸液注入口の外側の低密度ポリエチレンの層の厚みは50 μm であった。次に、インフレーションチューブの一方の端部を二色成形により作製した蒸液注入口を挿入溶着し、さらに懸垂口を設けた。他方の端部は、二色成形により作製した排出口部を挿入溶着し、容器を作製した。

この容器の中央近傍部位をV字状の裁断体で扶持し容器部を二室に分け、蒸液注入口よりブドウ糖を注入し蒸液注入口を封入した。次に、排出口部よりアミノ酸液を注入し排出口部を封入した。

この蒸液入り容器を保持体で保持したまま、

110°Cで60分間高圧蒸気滅菌した。滅菌後、蒸液入り容器から保持体を取り除き、この蒸液入り容器を激しく振動させたが、容器内のブドウ糖液とアミノ酸液は混合されなかった。

次に、この蒸液入り容器の接着部近傍の容器部

を保持し、接着部を剝離させる方向に引っ張ると接着部は剝離し、容器内のブドウ糖液とアミノ酸液が混合された。

比較例1

直鎖状低密度ポリエチレン（商品名：ニボロン-1、東洋曹達工業製、密度：0.925 g/cm³）を用いて、インフレーションチューブを作製した。このインフレーションチューブの厚みは300 μm であった。また、排出口部と蒸液注入口を高密度ポリエチレン（商品名：ニボロンハード、東洋曹達工業製、密度：0.960 g/cm³）と低密度ポリエチレン（商品名：ペトロセン、東洋曹達工業製、密度：0.917 g/cm³）を用いて二色成形により作製した。排出口部及び蒸液注入口の外側の低密度ポリエチレンの層の厚みは50 μm であった。次に、インフレーションチューブの一方の端部を二色成形により作製した蒸液注入口を挿入溶着し、さらに懸垂口を設けた。他方の端部は、二色成形により作製した排出口部を挿入溶着し、更に容器部の中央をヒートシールにより溶着して二

- 14 -

特許第63-18149(5)

窓を有する容器を作製した。

この容器の薬液注入入口よりブドウ糖を注入し薬液注入入口を封入した。次に、排出口部よりアミノ酸液を注入し排出口部を封入した。

この薬液入り容器を110°Cで60分間高圧蒸気滅菌した。

次に、この薬液入り容器の中央の接着部近傍の容器壁を保持し、接着部を剥離せん方向に引っ張ると接着部は破壊され、容器内のブドウ糖液とアミノ酸液は容器より漏出した。

【発明の効果】

以上述べたように、本発明の医療用容器は以下に示す利点を有する。

①互いに反応しやすい成分を含む薬液を一つの容器に分離して保存でき、使用時に容易にその容器内で混合できるので調剤ミスや汚染の危険性がない。

②容器部の内層は、その外層より引張強度が小さいので、接着部を破壊することなく接着部を剥離できる。

- 15 -

4. 図面の簡単な説明

第1図は本発明の医療用容器の第一実施例を示す正面図、第2図は同実施例のI—Iの縦断面図、第3図は排出口部の他の実施例を示す部分断面図、第4図は第一実施例の接着部を作製する方法を示す斜視図、第5図は本発明の第二実施例を示す正面図、第6図は本発明の第三実施例を示す正面図である。

- 1…医療用容器、 2…容器部、 3…排出口部
- 4…接着部、 5…薬液注入口、 6…接着部
- 7…容器部の外層、 8…容器部の内層
- 9…排出口部の内層、 10…排出口部の外層
- 11, 11'…薬液注入入口、 13…保持体
- 12, 125, 126…接着部、 14…突起部
- 21, 22, 621, 622, 623…室
- 33…排出口部、 39…排出口部の内層
- 40…排出口部の外層、 41…突起部
- A…接着部を剥離する方向

特許出願人 錦磨容之介

- 16 -

第1図

第2図

特開昭63-19149(6)

第4図

第3図

- 3. 排出口部
- 4. 融着培養部
- 5. 感受口
- 11. 薬液注入入口
- 13. 狹持体
- 21. 室
- 22. 底
- 33. 排出口部
- 39. 排出口部の内周
- 40. 排出口部の外壁
- 41. 突起部

第5図

第6図

- 3. 排出口部
- 5. 感受口
- 125, 126. 締合部
- 11, 11'. 薬液注入入口
- 21, 22, 621, 622, 623. 室