# Scaling

Feature scaling in machine learning is one of the most critical steps during the pre-processing of data before creating a machine learning model. Scaling can make a difference between a weak machine learning model and a better one. Machine learning algorithms like linear regression, logistic regression, neural network, etc. that use gradient descent as an optimization technique require data to be scaled. Distance algorithms like KNN, K-means, and SVM are most affected by the range of features. This is because behind the scenes they are using distances between data points to determine their similarity. Tree-based algorithms, on the other hand, are fairly insensitive to the scale of the features.

The most common techniques of feature scaling are Normalization and Standardization. Normalization is used when we want to bound our values between two numbers, typically, between [0, 1] or [-1, 1]. While Standardization transforms the data to have zero mean and a variance of 1, they make our data unitless.



## **Imports**

```
import numpy as np
import pandas as pd
```

#### Read CSV File

```
In [2]: df = pd.read_csv('Salaries_Encoded.csv', index_col=0)
In [3]: df.head()
```

Out[3]: BasePay OvertimePay OtherPay Benefits Year\_2012 Year\_2013 Year\_2014

#### BasePay OvertimePay OtherPay Benefits Year\_2012 Year\_2013 Year\_2014 ld ld **2** 155966.02 245131.88 137811.38 0.0 0 0 0 **3** 212739.13 106088.18 16452.60 0.0 0 77916.00 56120.71 198306.90 0.0 0 0 0 **5** 134401.60 9737.00 182234.59 0.0 **6** 118602.00 8601.00 189082.74 0.0 0 0 0

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 101716 entries, 2 to 148621
Data columns (total 7 columns):

| #                            | Column      | Non-Null Count  | Dtype   |  |  |  |  |  |
|------------------------------|-------------|-----------------|---------|--|--|--|--|--|
|                              |             |                 |         |  |  |  |  |  |
| 0                            | BasePay     | 101716 non-null | float64 |  |  |  |  |  |
| 1                            | OvertimePay | 101716 non-null | float64 |  |  |  |  |  |
| 2                            | OtherPay    | 101716 non-null | float64 |  |  |  |  |  |
| 3                            | Benefits    | 101716 non-null | float64 |  |  |  |  |  |
| 4                            | Year_2012   | 101716 non-null | int64   |  |  |  |  |  |
| 5                            | Year_2013   | 101716 non-null | int64   |  |  |  |  |  |
| 6                            | Year_2014   | 101716 non-null | int64   |  |  |  |  |  |
| dtypes: float64(4), int64(3) |             |                 |         |  |  |  |  |  |

In [5]:

df.describe()

memory usage: 6.2 MB

| Yea    | Year_2013     | Year_2012     | Benefits      | OtherPay      | OvertimePay   | BasePay       |       |
|--------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| 101716 | 101716.000000 | 101716.000000 | 101716.000000 | 101716.000000 | 101716.000000 | 101716.000000 | count |
| 0      | 0.239530      | 0.231960      | 17784.721382  | 3269.793674   | 4367.986505   | 66039.414888  | mean  |
| 0      | 0.426799      | 0.422085      | 17294.099478  | 7692.445042   | 10652.098794  | 42944.744270  | std   |
| 0      | 0.000000      | 0.000000      | 0.000000      | -7058.590000  | -0.010000     | 6.040000      | min   |
| 0      | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 32171.617500  | 25%   |
| 0      | 0.000000      | 0.000000      | 18236.795000  | 624.000000    | 0.000000      | 64436.695000  | 50%   |
| 0      | 0.000000      | 0.000000      | 32730.600000  | 3486.000000   | 3393.670000   | 94864.125000  | 75%   |
| 1      | 1.000000      | 1.000000      | 96570.660000  | 342802.630000 | 245131.880000 | 319275.010000 | max   |
| •      |               |               |               |               |               |               | 4     |

### **Feature Selection**

```
In [6]: X = df.drop('BasePay', axis=1)
y = df['BasePay']
```

# Train Test Split

```
In [7]:
    from sklearn.model_selection import train_test_split
```

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.3, random\_state=101

#### Standardization

Standardization is a scaling technique where the values are centered around the mean with a unit standard deviation. This means that the mean of the attribute becomes zero and the resultant distribution has a unit standard deviation.

$$x_{scaled} = rac{x-mean}{sd}$$

Standardization can be helpful in cases where the data follows a Gaussian distribution. However, this does not have to be necessarily true. Also, unlike normalization, standardization does not have a bounding range. So, even if you have outliers in your data, they will not be affected by standardization.

```
In [8]:
           from sklearn.preprocessing import StandardScaler, MinMaxScaler
 In [9]:
           standard = StandardScaler()
In [11]:
           X train.head()
Out[11]:
                  OvertimePay OtherPay Benefits Year_2012 Year_2013 Year_2014
               ld
           58135
                          0.0
                                   0.00 28818.13
                                                                            0
          108345
                                                        0
                                                                  1
                          0.0
                                  40.04
                                            0.00
                                                                            0
           29909
                          0.0
                                 259.00
                                            0.00
           65485
                          0.0
                                   0.00
                                         2450.59
                                                        1
                                                                  0
                                                                            0
           35252
                           0.0
                                   0.00
                                            0.00
In [14]:
           X_train_scaled = standard.fit_transform(X_train)
In [15]:
           X_test_scaled = standard.transform(X_test)
In [19]:
           print(X_train_scaled[:5])
          [[-0.41058129 -0.42008418 0.64179953 1.82487558 -0.56023702 -0.56715949]
           [-0.41058129 -0.41489784 -1.02543986 -0.54798256 1.78495881 -0.56715949]
           [-0.41058129 -0.38653614 -1.02543986 -0.54798256 -0.56023702 -0.56715949]
           [-0.41058129 -0.42008418 -0.88366383 1.82487558 -0.56023702 -0.56715949]
           [-0.41058129 -0.42008418 -1.02543986 -0.54798256 -0.56023702 -0.56715949]]
```

#### **Normalization**

Normalization is a scaling technique in which values are shifted and rescaled so that they end up ranging between 0 and 1. It is also known as Min-Max scaling. This scaler is sensitive to outliers.

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Normalization is good to use when you know that the distribution of your data does not follow a Gaussian distribution. This can be useful in algorithms that do not assume any distribution of the data like K-Nearest Neighbors and Neural Networks.

```
In [20]:
           # Min Max Scaler
In [21]:
           min_max = MinMaxScaler()
In [22]:
           X_train_scaled = min_max.fit_transform(X_train)
In [23]:
           X_test_scaled = min_max.transform(X_test)
In [24]:
           X train.head()
Out[24]:
                   OvertimePay OtherPay
                                         Benefits Year_2012 Year_2013 Year_2014
               ld
            58135
                           0.0
                                    0.00 28818.13
                                                         1
                                                                   0
                                                                             0
           108345
                           0.0
                                   40.04
                                             0.00
                                                         0
                                                                   1
                                                                             0
            29909
                           0.0
                                  259.00
                                            0.00
                                                                   0
                                                                             0
                           0.0
                                                         1
                                                                   0
                                                                             0
            65485
                                    0.00
                                          2450.59
            35252
                           0.0
                                    0.00
                                            0.00
                                                                             0
In [29]:
           print(X_train_scaled[:5])
           [[5.76210327e-08 2.01753998e-02 3.15982516e-01 1.00000000e+00
             0.00000000e+00 0.00000000e+00]
            [5.76210327e-08 2.02898452e-02 0.00000000e+00 0.00000000e+00
             1.00000000e+00 0.00000000e+00]
            [5.76210327e-08 2.09156934e-02 0.00000000e+00 0.00000000e+00
             0.00000000e+00 0.00000000e+00]
            [5.76210327e-08 2.01753998e-02 2.68700153e-02 1.00000000e+00
             0.00000000e+00 0.00000000e+00]
            [5.76210327e-08 2.01753998e-02 0.00000000e+00 0.00000000e+00
             0.00000000e+00 0.00000000e+00]]
```

Now, X\_train\_scaled, X\_test\_scaled, y\_train and y\_test can be used in Machine Learning models.