Transformações Modelagem Pipeline de renderização

Iluminação (Shading)

Transformação Câmera

Recorte

Projeção

Rasterização

Visibilidade

Adaptação e melhoramentos de uma aula sobre o mesmo assunto (MIT - EECS 6.837 Durand and Cutler)

•

Transformações Modelagem

Iluminação (Shading)

Transformação Câmera

Recorte

Projeção

Rasterização

Visibilidade

- ✓ Objetos definidos no seu próprio sistema de coordenadas
- ✓ Transformações de modelagem orientam os modelos geométricos num sistema comum de coordenadas (UNIVERSO)

Transformações Modelagem

Iluminação (Shading)

Transformação Câmera

Recorte

Projeção

Rasterização

Visibilidade

√ Vértices iluminados de acordo com as propriedades geométricas e de material

✓ Modelo de Iluminação Local

3

Modelo de Iluminação

Objetivo principal

Cálculo de iluminação nos vértices baseando-se na posição, orientação e características das superfícies e fontes de luz que as iluminam

Posteriormente Modelos de Sombreamento

Cálculo de iluminação nos demais pixels que compõe o triângulo a partir das cores nos vértices

Considerações Iniciais

- Um comprimento de onda apenas (monocromático)
- Fontes de luz pontuais (uma direção basicamente)
- Uma fonte de luz apenas

5

Reflexão Difusa Ideal

- Luz refletida igualmente em todas as direções
- Exemplos: giz, quadro-negro, algumas tintas

- Reflexão difusa
 - a rugosidade da superfície diminui a possibilidade de reflexão da luz incidente numa direção de reflexão "preferencial"
- Superfícies difusoras perfeitas
 - luz é refletida igualmente em todas as direções
 - intensidade da luz refletida modelada matematicamente
 - Lei de Lambert, superfícies Lambertianas

Lei dos Cossenos de Lambert

 Intensidade da reflexão difusa é proporcional ao cosseno do ângulo entre a fonte de luz e a normal à superfície

Computacionalmente...

- $I_d = I_p \cdot k_d \cdot \cos \theta$
- cos θ = (n . l)
 Produto escalar dos 2
 vetores NORMALIZADOS
- I_p = intensidade da fonte de luz
- k_d = coeficiente de quão difuso é o objeto [0,1]

9

Reflexão Difusa - Exemplos

Kd= 0.4 Kd= 0.55 Kd= 0.7 Kd= 0.85 Kd= 1
menos difuso mais difuso

Vetor Normal

- Fundamental nos cálculos de iluminação
- Em OpenGL

 Consistência na especificação (apontando "para fora" ao percorrer os vértices em sentido anti-horário)

Exemplo

Aproximando o Vetor Normal

- Cálcula-se para as faces e após, média das faces encontra a normal do vértice
- Para uma face: produto vetorial de vetores a partir das arestas

Atenuação da Fonte de Luz

Fator de atenuação da fonte de luz (f_{att})

Incorpora dependência em relacão à distância da fonte

d=1 d=1.375 d=1.75 d=2.125 d=2.5

$$\frac{1}{k_c + k_l d + k_q d^2}$$

kc=kl=0, kq=1

kc=kl=0.25, kq=0.5

kc=0, kl=1, kq=0

Atenuação Atmosférica

- Modificação da intensidade calculada de acordo com distância
- Modificação determinada por fatores de escala (s_f e s_b) que indicarão a combinação da intensidade com uma cor escolhida

$$C'_{obj} = s_0 C_{obj} + (1-s_0) C_{atms}$$

$$s_0 = s_b + \frac{(z_0 - z_b)(s_f - s_b)}{z_f - z_b}$$

15

Atenuação Atmosférica

$$z = 1$$

$$z = 0.77$$

$$z = 0.55$$

$$z = 0.32$$

$$z = 0.09$$

Distância da luz é constante

Ip=1.0;

kd = 0.9;

zf=1.0; zb=0.0; sf=1.0; sb=0.1

Reflexão Especular Ideal

 Efeito visual que devolve a energia luminosa numa direção preferencial

- Depende da posição do observador
- ângulo de incidência
 ângulo de reflexão

Qual a cor do reflexo especular??

highlight

Reflexão Especular não-ideal

Reflexão apresenta distribuição ao redor da direção ideal

Reflexão Especular não-ideal

- Modelo empírico simples proposto por Phong [1975]*
- A reflexão especular varia pouco ao redor da direção especular pura

*Phong tem duas contribuições importantes em CG. Esta é a primeira. A outra está relacionada com Modelo de Iluminação para polígonos, veremos adiante.

19

Computacionalmente...

- $I_s = I_p \cdot k_s \cdot (\cos \alpha)^q$
- cos α = (r . v)
 Produto escalar dos vetores
 NORMALIZADOS
- I_p = intensidade da fonte de luz
- k_s = coeficiente de quão especular é o objeto [0,∞...], na prática algumas centenas

Expoente especularidade Phong

21

Reflexão Especular

Como calcular R?

Todos vetores unitários

$$R = N \cos q + S$$

 $S = N \cos q - L$

$$R = 2 N \cos q - L$$

$$\cos q = (N \cdot L)$$

$$R = 2N (N.L) - L$$

23

Luz Ambiente

- Fonte de luz sem direção específica. Aproxima (muito mal...) as múltiplas reflexões entre as superfícies presentes no ambiente
- · Objetos tem iluminação própria
- · Conhecida como luz ambiente
 - $-I = I_a.K_a$
 - I_a intensidade da luz ambiente
 - K_a coeficiente de reflexão ambiente

Componente Ambiente

Ia=Ip=1.0, Kd=0.4

25

Luz Ambiente

Aqui não tem componente difusa...

Múltiplas Fontes de Luz

- Existindo m fontes de luz, basta somarmos os termos de cada fonte de luz
- Qual um problema em potencial desta abordagem??

Qual a solução de OpenGL? "...the color values are clamped to the range [0,1]." (Red book, p. 205)

27

Colocando tudo junto...

Considerando vetores normalizados e **m** fontes de luz:

$$I = I_a k_a + \sum \{ I_{pm} [k_d(N.L) + k_s(R.V)^q] \}$$

Colocando tudo junto...

agora com cores

$$I_{\lambda} = I_{a\lambda} k_{a\lambda} + \sum \{I_{pm\lambda} [k_{d\lambda} (N.L) + k_{s\lambda} (R.V)^q]\}$$

$$\lambda = (R,G,B)$$

Calculamos 3 vezes a equação acima, uma vez para cada canal

29

E OpenGL? Materiais

Parâmetro	Default	Significado
GL_AMBIENT	(0.2, 0.2, 0.2, 1.0)	Cor ambiente do material
GL_DIFFUSE	(0.8, 0.8, 0.8, 1.0)	Cor difusa do material
GL_AMBIENT_AND_DIFFUSE		Cor ambiente e difusa do material
GL_SPECULAR	(0.0, 0.0, 0.0, 1.0)	Cor especular do material
GL_SHININESS	0.0	Expoente Phong
GL_EMISSION	(0.0, 0.0, 0.0, 1.0)	Cor emissão do material

Materiais

```
GLfloat material_diffuse = { 1, 0, 0, 1 };
GLfloat material_specular = { 1, 1, 1, 1 };
GLfloat material_shininess = { 100 };

glMaterialfv(GL_FRONT, GL_DIFFUSE, material_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, material_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, material_shininess);

Pode ser um de GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
```

Materiais

```
glColorMaterial (GLenum face, GLenum mode);
```

Utilizado para forçar um parâmetro de material ser o mesmo que a cor atual. Necessita ser habilitado com glEnable. Altera vários objetos ao mesmo tempo.

```
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glColor3f(0.2, 0.5, 0.8);
/* draw some objects here */
glColor3f(0.9, 0.0, 0.2);
/* draw other objects here */
glDisable(GL COLOR MATERIAL);
```

E OpenGL? Fontes de Luz

Parâmetro	Default	Significado
GL_AMBIENT	(0.0, 0.0, 0.0, 1.0)	Cor ambiente da luz
GL_DIFFUSE	(1.0, 1.0, 1.0, 1.0)	Cor difusa da luz
GL_SPECULAR	(1.0, 1.0, 1.0, 1.0)	Cor especular da luz
GL_POSITION	(0.0, 0.0, 1.0, 0.0)	Posição da fonte

Indica se a fonte de luz é direcional ou não 0 indica raios de luz paralelos 1 indica uma posição no espaço

Número de Fontes

 The number of lights depends on the implementation, but at least eight lights are supported. They are identified by symbolic names of the form GL LIGHTi where

```
0 < i < GL MAX LIGHTS
```

35

E OpenGL? Fontes de Luz

```
GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glEnable(GL_LIGHTO);
```

Outros Tipos de Fontes

- Spot
 - GL SPOT DIRECTION
 - GL SPOT EXPONENT
 - GL SPOT CUTOFF

Specifies the intensity distribution of the light. Higher spot exponents result in a more focused light source, regardless of the spot cutoff angle

glLightf(GL LIGHT0, GL SPOT CUTOFF, 45.0);

Fator de Atenuação

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0); glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0); glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5); $\frac{1}{k_c + k_c d + k_c d^2}$

Limitações

- Número de fontes de luz
- Bloqueio de luz não existe (alguém falou em sombras??)