Observing K2-138 to better constrain the planetary radius gap ASTR 581 APO Proposal

Tom Wagg 101

¹Department of Astronomy, University of Washington, Seattle, WA, 98195

(Received August 12, 2022)

1. SCIENCE JUSTIFICATION

The observed planetary radius gap indicates a dearth of planets around $1.5-2.0R_{\oplus}$ (Fulton et al. 2017; Fulton & Petigura 2018). Figure 1 shows the figure from Fulton et al. (2017) demonstrating the radius gap, which also indicates the typical uncertainty in the individual measurements. Previous work has suggested that this gap may be a result of photo-evaporation of planetary atmospheres (Owen & Wu 2017) or other core-power massloss mechanisms (Gupta & Schlichting 2019, 2020). It is additionally possible that the magnetic fields of planets could affect the location of this radius gap (Owen & Adams 2019) or even planetessimal impacts (Wyatt et al. 2020). Therefore the exact location of this gap is crucial in better understanding planetary formation mechanisms.

The range of proposed theories and effects is indicative of the lack of precision in the measurement of the radius gap. The typical uncertainties on the planetary radii are such that the exact location of gap cannot currently be strongly stated (Gandolfi et al. 2019). We propose to improve the measurement of this gap through the use of multi-transiting systems (systems with multiple transiting exoplanets). The advantage of this method is simple, each exoplanet is transiting the same star and this breaks several degeneracies present in single-transiting systems. The presence of multiple transiting planets allows one to better constrain the stellar radius, mass and other parameters and thus the planetary parameters, in particular the radii, as well.

We propose to use APO to observe the multitransiting system K2-138 (see Table 1). First thought to contain 5 transiting exoplanets (Christiansen et al. 2018), it is now confirmed to have a near-resonant

Corresponding author: Tom Wagg tomwagg@uw.edu

Figure 1. Figure 8 from (Fulton et al. 2017), showing the observed radius gap. Note the typical uncertainty of the measurements.

chain of 6 transiting exoplanets (Hardegree-Ullman et al. 2021). The many transiting planets with reasonably short orbital periods around a relatively bright makes this system ideal for better constraining the radius gap. K2-138 has been previously observed and characterised by other studies, which have focussed on general follow-up spectroscopy (Lopez et al. 2019) and investigating the composition of the planets (Acuña et al. 2022). We seek to confirm and improve the transit timing of the innermost planets in the system, which will transit during our designated timeslot.

Property	Value
Right Ascension	23h15m47.77s
Declination	$-10^{\circ} 50' 59.06''$
V-band Magnitude	12.25
Stellar Type	K1V
Distance	202 pc

Table 1. Properties of the proposed target star KS-138

Observations from APO will help to characterise the lightcurve of K2-138, in particular the transit timing for planets KS-138b and KS-138c, and therefore directly contribute to improving our measurement of the planetary radius gap.

2. PROPOSED OBSERVATIONS

Timing—We propose to observe two transits of K2-138 on 2022-09-18 and 2022-09-19 by K2-138c and K2-138b respectively using ARCTIC in order to better characterise the lightcurve. In particular, we aim to focus on the ingress and egress of the transit. The transit durations are 1.95 and 2.34 hours respectively and we need to observe the flux for 30 minutes prior to and after the transit. We therefore request two half-nights that include the transits (see Table 2).

Figure 2. Proposed transit observation for K2-138. Airmass over time for two separate observing nights. Grey shaded regions indicate sunset and twilight times. Orange shaded region indicates transit period and orange line represents the time of mid-transit.

Planet	Transit Date	Ingress	Mid-Transit	Egress
KS-138c	2022-09-18	05:56	06:54	07:53
KS-138b	2022-09-19	06:27	07:26	08:24

Table 2. Transit information for planets around KS-138 in UTC

Observing plan—We intend to use to narrow-band ARC-TIC H- α filter¹ for our observations of these transits. We will use this filter in order to prevent saturation that can occur when using broadband filters with a star of this magnitude². We will observe with a cadence of 2 minutes and an exposure time of 3-5 seconds, using the default medium readout time of 25 seconds³. Since one of the main purposes of these observations is to better characterise the lightcurve and the exact timing of the transits, we will increase the cadence to 30 seconds for 20 minutes around the ingress and egress of the transits, using the fast readout time of 11 seconds (see Table 3).

Setting	Value		
	Regular	Ingress/Egress	
Exposure Time	3-5 seconds	3-5 seconds	
Filter	H - α	H - α	
Readout time	25 seconds	11 seconds	
Cadence	2 minutes	30 seconds	

Table 3. ARCTIC Settings for observations. We increase use the ARCTIC fast readout time and increase the cadence for 20 minutes around transit ingress and egress in order to better characterise transit timing variations.

Calibrations—Since we are using a narrowband $(H-\alpha)$ filter for these observations, we will use the bright quartz lamp to take flats prior to our observations⁴. We shall take several flats, median combine the results and then apply them to our final image to account for different quantum efficiency in the CCD pixels. We will not apply dark subtraction to our images since ARCTIC guidelines suggest against this for exposure times shorter than 30 seconds⁵. We will still however use bias frames to account for fixed-pattern noise in the detector.

¹http://filters.apo.nmsu.edu/index.php

 $^{^2 \}rm https://www.apo.nmsu.edu/arc35m/Instruments/ARCTIC/ <math display="inline">\#3p6$

³https://www.apo.nmsu.edu/arc35m/Instruments/ARCTIC/ #3p1

⁴https://www.apo.nmsu.edu/arc35m/Instruments/ARCTIC/ #4p2

 $^{^5 \}rm https://www.apo.nmsu.edu/arc35m/Instruments/ARCTIC/ <math display="inline">\#4p3$

APO Proposal 3

Figure 3. Airmass over time for different potentially observable multi-transiting systems. Different panels correspond to different observing nights. Shaded grey regions indicate twilight times and sunset.

3. ALTERNATIVE OBSERVATIONS

[Note: I don't think this section belongs in a real proposal but I investigated other things I wanted to share what I'd done haha]

We considered several multi-transiting systems for this proposal, taking into account the constraints of both whether the system is observable during the allotted time period and whether it is transitting. As we show in Figure 3, of the five systems that we considered, only Kepler-1972 (Leleu et al. 2022) and K2-138 were observable for a significant fraction of time. Unfortunately none of the planets in the Kepler-1972 transit during the given time period and hence we selected K2-138 as our target.

We did additionally consider whether we could use ARCES to perform high-resolution spectroscopy of either system whilst out of transit in case the transit time periods were unavailable. However, both systems have expected radial velocities of the order of $\sim 1\,\mathrm{km\,s^{-1}}$. We find that this would be too low for ARCES to resolve since its resolution is R=31500 and this implies that the minimum resolvable radial velocity would be

$$\Delta v_{\rm min} = \frac{c}{R} \approx \frac{3 \times 10^5 \,\mathrm{km \, s^{-1}}}{31500} \approx 10 \,\mathrm{km \, s^{-1}}.$$
 (1)

It may be possible that we could use ARCES to investigate particular spectral lines that would indicate the stars' metallicities, surface gravities or stellar activity levels. However, we lack the experience for reducing these spectra and hence focus on imaging instead.

REFERENCES

Acuña, L., Lopez, T. A., Morel, T., et al. 2022, A&A, 660, A102, doi: 10.1051/0004-6361/202142374

Christiansen, J. L., Crossfield, I. J. M., Barentsen, G., et al. 2018, AJ, 155, 57, doi: 10.3847/1538-3881/aa9be0

Fulton, B. J., & Petigura, E. A. 2018, AJ, 156, 264, doi: 10.3847/1538-3881/aae828

Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109, doi: 10.3847/1538-3881/aa80eb

Gandolfi, D., Fossati, L., Livingston, J. H., et al. 2019, ApJL, 876, L24, doi: 10.3847/2041-8213/ab17d9

Gupta, A., & Schlichting, H. E. 2019, MNRAS, 487, 24, doi: 10.1093/mnras/stz1230 2020, MNRAS, 493, 792, doi: 10.1093/mnras/staa315
Hardegree-Ullman, K. K., Christiansen, J. L., Ciardi, D. R., et al. 2021, AJ, 161, 219, doi: 10.3847/1538-3881/abeab0

Leleu, A., Delisle, J. B., Mardling, R., et al. 2022, A&A, 661, A141, doi: 10.1051/0004-6361/202142822

Lopez, T. A., Barros, S. C. C., Santerne, A., et al. 2019, A&A, 631, A90, doi: 10.1051/0004-6361/201936267

Owen, J. E., & Adams, F. C. 2019, MNRAS, 490, 15, doi: 10.1093/mnras/stz2601

Owen, J. E., & Wu, Y. 2017, ApJ, 847, 29, doi: 10.3847/1538-4357/aa890a

Wyatt, M. C., Kral, Q., & Sinclair, C. A. 2020, MNRAS, 491, 782, doi: 10.1093/mnras/stz3052