Module 18: Magnetic Resonance Spectroscopy

Arnold Bakker

Department of Psychiatry and Behavioral Sciences Division of Psychiatric Neuroimaging Johns Hopkins University School of Medicine

- Precession or spins are in low energy parallel or high energy anti-parallel state.
- To change to a a spin from a low energy state to a high energy state electromagnetic energy is needed
- Frequency needed is known as the Larmor Frequency:

Nucleus or Particle	Gyromagnetic Ratio (γ) in MHz/Tesla
¹ H	42.58
³ He	-32.43
¹³ C	10.71
¹⁹ F	40.05
²³ Na	11.26
³¹ P	17.24
electron	-27,204

 Precessions in high energy state cause small local magnetic field at the nucleus in the opposite direction of the static magnetic field

Chemical shift:

- Change in the resonant frequency that results from a small change in the local magnetic field
- The value of the difference of the resonance frequencies gives information about the molecular group which the nucleus is part of
- Magnetic Resonance Spectroscopy imaging aims to quantify local presence of certain chemical compounds

Chemical shift expressed in Parts per Million

$$\omega_0 = \gamma B_0$$
 \quad \text{Larmor} \quad \text{Gyromagnetic ratio} \text{Strength Mag. Field}

Chemical shift (ppm) =

Change in resonance frequency in Hz

Spectrometer frequency in Mhz

Chemical shift imaging

The value of the difference of the resonance frequencies gives information about the molecular group which the nucleus is part of

Chemical shift imaging

Chemical shift (ppm)

Frequency in sample - Frequency in Tetramethylsilane (TMS)

Spectrometer frequency in Mhz

Chemical shift imaging

Spectra can be obtained from different nuclei. Protons (1H) are most commonly used due to high sensitivity and abundance

- Molecules of interest have low concentration in brain
- Water is abundant thus water signal is much greater than other material
- Water signal must be suppressed
- Chemical Shift Selective (CHESS) suppression presaturates water signal using specific pulse frequency

Water suppression

- Spectra provides detection of brain metabolites
- Area under the curve provides metabolite concentration in brain
- Certain sequences are more sensitive to certain metabolites
- Higher field strength results in greater detection
- Changes in metabolites often precede structural brain changes

Common metabolites

N-acetylaspartate (NAA):

- Highest peak in normal brain
- Marker of neuronal and axonal viability and density
- Decreased concentration is associated with white matter disease, malignant neoplasms

Common metabolites

Creatine (Cr):

- Represents molecules that contain creatine and phosphocreatine
- Marker of energetic systems and intracellular metabolism
- Reduced Cr signal observed in brain tumors

Choline (Cho):

Common metabolites

- Represents choline and choline containing compounds
- Marker of cellular membrane turnover reflecting cellular proliferation
- Increased Cho seen in infarction or inflammation
- Somewhat non-specific

Common metabolites

Lactate (Lac):

- Low peak in normal brain
- Marker of anaerobic metabolism such as cerebral hypoxia, ischemia, seizures, metabolic disorders
- Occurs in cysts, normal pressure hydrocephalus and certain tumors

Common metabolites

Lipids (Lip):

- More difficult to detect.
 Typically two peaks of Lip
- Marker of cellular membrane breakdown or necrosis as in metastases or malignant tumors

Observable Proton Metabolites

ppm	Metabolite	Prop erties
0.9-1.4	Lipids	Products of brain destruction
1.3	Lactate	Product of an aerobic glycolysis
2.0	NAA	Neuronal marker
2.2-2.4	Glutamine/GABA	Neurotransmitters
3.0	Creatine	Energy metabolism
3.2	Choline	Cell membrane marker
3.5	тую-inositol	Glial cell marker, osmolyte hormone receptor mechanisms
1.2	Ethanol	Triplet
1.48	Alanine	Present in meningiomas
3.4&3.8	Glucose	Increased in diabetes
3.8	Mannitol	Rx for increased ICP

Spectroscopy clinically used in brain tumors and metabolic disorders

Spectroscopy used in in research

A case-control proton magnetic resonance spectroscopy study confirms cerebellar dysfunction in benign adult familial myoclonic epilepsy

Table 2 'H-MRS data in BAFME patients and healthy controls

H-MRS ratios of VOIs	¹ H-MRS ratios (Mean ± SD)		Mann-Whitney U-test
	Patients (n=12)	Controls (n=12)	P-value
Frontal cortex			
NAA/Cr	1.421±0.195	1.400±0.246	1.000
NAA/Cho	1.215±0.139	1.267±0.249	0.435
Cho/Cr	1.175±0.171	1.115±0.163	0.817
NAA/(Cr+Cho)	0.642±0.074	0.658±0.114	0.582
Thalamus			
NAA/Cr	1.821±0.263	1.821±0.283	0.862
NAA/Cho	1.911±0.180	1.909±0.396	0.624
Cho/Cr	0.954±0.127	0.988±0.219	0.340
NAA/(Cr+Cho)	0.933±0.097	0.910±0.188	0.977
Cerebellum			
NAA/Cr	1.073±0.138	1.105±0.153	0.386
NAA/Cho	1.165±0.123	1.259±0.198	0.026*
Cho/Cr	0.925±0.109	0.885±0.105	0.083
NAA/(Cr+Cho)	0.559±0.061	0.640±0.121	0.094

Note: * P<0.05 versus controls.

Abbreviations: BAFME, benign adult familial myoclonic epilepsy; 'H-MRS, proton magnetic resonance spectroscopy; Cho, choline; Cr, creatine; NAA, N-acetylaspartate; SD, standard deviation; VOIs, volumes of interest.

Spectroscopy used in in research

Comparison between patient and control groups

- Correlation with structural volume or growth of tumor
- Correlation with white matter integrity
- Correlation with functional state

Correlation between Diffusion Tensor Tractography and proton MR spectroscopy in normal controls*

T. Sato, N. Maruyama, T. Hoshida, K. Minato

Figure 3. Correlations between FA in the right uncinate fasciculus and Cr in the right temporal stem.