### Stochastic epidemic models with inference

Exercise Session 2

Fanny Bergström, Stockholm University June 25, 2024



# Exercise 2.1

# Estimation of $R_0$ (a)

- Assume a homogeneous mixing population and all individuals are **initially susceptible**.
- No prevention measures.
- In case of a large outbreak, we observe that a fraction  $\tilde{\tau}$  get infected.

The estimate of  $R_0$  is given by the observed value:

$$\hat{R}_0 = -\ln(1 - \tilde{\tau})/\tilde{\tau}.$$

1

### Estimation of $R_0$ (b)

Now if we know that a fraction r was **initially immune**, and there were a fraction  $\tau_{overall}$  infected during the outbreak.

- The fraction infected among those initially susceptibles  $\tilde{\tau} = \tau_{overall}/(1-r)$ .
- The estimate of  $R_0$  is now given by

$$\hat{R}_0 = -\ln(1-\tilde{\tau})/(1-r)\tilde{\tau}.$$

### Exercise 2.2

### Estimating parameters: Gaussian observations

- We have *n* observations  $y_i = I(t_i)$  at time points  $t_1, \dots, t_n$  with mean  $\mathbf{E}[y_i; \theta]$ , which is determined by the SIR differential system.
- Least squares estimates  $\theta = (\beta, \gamma)$  minimizing the function

$$l(\theta) = \sum_{i=1}^{n} (y_i - \mathbf{E}[y_i; \theta])^2,$$

corresponds to Maximum Likelihood Estimate for Gaussian observations with

$$I(t_i) \sim N(\mathbf{E}[y_i; \theta]; \sigma^2),$$

with the variance of the observation noise  $\sigma^2$ .

### Estimating parameters: MLE for CSFV Data(1)

# Define the log-likelihood function 11.gauss <- function(theta) { #determine the solution of SIR ODE ... <- lsoda(...) return(sum(dnorm(data, mean =..., sd = 1, log = TRUE))) }.</pre>

## Estimating parameters: MLE for CSFV Data(2)

```
Maximize the log-likelihood and compute MLE

mle <- optim(
#initial values for theta to be optimized over
...,
#log-likelihood function
fn = ll.gauss,
#maximize the function
control = list(fnscale = -1) ).
```