Maior Dúvida da Aula Linear Regression

Equação Normal

- 1. Entendi como funciona a descida do gradiente e a equação normal, porém como saber qual a melhor ferramenta para o nosso problema? Quando utilizar cada uma?
- 2. Existe um limite de dados que as pessoas consideram o gradiente descendente melhor do que a equação normal?

Regressão Polinomial

- 3. Não entendi a vantagem de executar o modelo com muitos graus. Seria para validar a importância das variáveis combinadas?
- 4. A função de custo da regressão polinomial é convexa?

Perguntas Gerais

- 5. Não entendi muito bem o que significa o Batch Size. Ele é uma parte dos exemplos de treino? Mas, se fosse assim, ele não seria um Mini-Batch?
- 6. Sobre o tamanho dos batches, há algum consenso de quanto ele deveria ser? Digo em termos de ordem de magnitude (10, 100, 1000, 10000, ...).
- 7. Quando estamos trabalhando em problemas de regressão linear/regressão polinomial existe um protocolo indicado para transformar os dados categóricos em numéricos?

Categorical/Nominal Variables

Size (feet ²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Color x_5	Price (\$) in 1000's <i>y</i>
2104	5	1	45	blue	460
1416	3	2	40	white	232
1534	3	2	30	pink	315
852	2	1	36	green	178

https://analyticsindiamag.com/a-complete-guide-to-categorical-data-encoding https://www.kaggle.com/code/arashnic/an-overview-of-categorical-encoding-methods/notebook

Perguntas Gerais

- 8. Durante a normalização, a ideia é que a entrada fique entre 0,5 e -0,5 mapeando ao valor real: Exemplo da casa é tirar 1000 e dividir por 2000. Tem problema na instanciação do modelo se minha feature nesse caso saia desse intervalo, que nesse caso seria uma casa com mais de 2000 m²?
- 9. What metric is the best to measure error between RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error)?

Logistic Regression Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886/MO444, September 6, 2022

Today's Agenda

- ____
- Logistic Regression
 - Classification
 - Hypothesis Representation
 - Decision Boundary
 - Cost Function
 - Simplified Cost Function and Gradient
 - Multiclass Classification

Classification

Spam Filtering

Bad Cures fast and effective! - Canadian *** Pharmacy #1 Internet Inline Drugstore Viagra Cheap Our price \$1.99 ...

Good Interested in your research on graphical models - Dear Prof., I have read some of your papers on probabilistic graphical models. Because I ...

Classification

Email: Spam / Not Spam?

Content Video: Sensitive / Non-sensitive?

Skin Lesion: Malignant / Benign?

Classification

Email: Spam / Not Spam?

Content Video: Sensitive / Non-sensitive?

Skin Lesion: Malignant / Benign?

 $y \in \{0,1\}$ 0: "Negative Class" (e.g., Benign skin lesion) 1: "Positive Class" (e.g., Malignant skin lesion)

$$h_{\theta}(x) = \theta^T x$$

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If
$$h_{\theta}(x) < 0.5$$
, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If
$$h_{\theta}(x) < 0.5$$
, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If $h_{\theta}(x) < 0.5$, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If
$$h_{\theta}(x) < 0.5$$
, predict " $y = 0$ "

$$h_{\theta}(x) = \theta^T x$$

If
$$h_{\theta}(x) \ge 0.5$$
, predict " $y = 1$ "

If
$$h_{\theta}(x) < 0.5$$
, predict " $y = 0$ "

Classification: y = 0 or y = 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Hypothesis Representation

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1+e}$$

Sigmoid Function Logistic Function

Interpretation of Hypothesis Output

$$h_{\rho}(x)$$
 = estimated probability that $y = 1$ on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0 \mid x;\theta) + P(y = 1 \mid x;\theta) = 1$$

 $P(y = 1 \mid x;\theta) = 1 - P(y = 0 \mid x;\theta)$

Tell patient that 70% chance of tumor being malignant

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

Logistic Regression

$$h_{\theta}(x) = g(\theta^{\mathrm{T}} x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

$$g(z) \ge 0.5$$
 when $z \ge 0$

$$g(z) < 0.5 \text{ when } z < 0$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$x_1 + x_2 \ge 3$$
Sender Avilla Avandar MC225 MC444

$$-3 \quad 1 \quad 1$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

$$-3 \quad 1 \quad 1$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

y = 0, $x_1 + x_2 < 3$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Decision Boundary

$$x_1 + x_2 = 3$$
$$h_{\theta}(x) = 0.5$$

$$y = 0$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$
 $x_1 + x_2 \ge 3$

y = 0, $x_1 + x_2 < 3$

Non-linear Decision Boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 $x_1^2 + x_2^2 \ge 1$

Non-linear Decision Boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$

$$x_1^2 + x_2^2 \ge 1$$

Non-linear Decision Boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$
 $x_1^2 + x_2^2 \ge 1$

Today's Agenda

- ____
- Logistic Regression
 - Classification
 - Hypothesis Representation
 - Decision Boundary
 - Cost Function
 - Simplified Cost Function and Gradient
 - Multiclass Classification

Training set: $\{(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), ..., (x^{(m)},y^{(m)})\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}} \qquad x \in \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \quad x_{0} = 1, y \in \{0, 1\}$$

How to choose parameters θ ?

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost
$$(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$$

Cost Function

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
Logistic

$$Cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$$
 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Cost Function

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Logistic regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^2$$
 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Derivative of Logistic Function

$$g(z) = \frac{1}{1 + \mathrm{e}^{-z}}$$

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{0 \cdot (1 + e^{-z}) - 1 \cdot (-e^{-z})}{(1 + e^{-z})^2} \quad \text{(quotient rule)}$$

$$= \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \left(\frac{1}{1 + e^{-z}}\right) \left(1 - \frac{1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$
₃₉

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\begin{aligned} \operatorname{Cost} &= 0 \text{ if } y = 1, \, h_{\theta}(x) = 1 \\ \operatorname{But as} & h_{\theta}(x) \longrightarrow 0 \\ \operatorname{Cost} & \longrightarrow \infty \end{aligned}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1 \mid x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Simplified Cost Function and Gradient Descent

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y\log(h_{\theta}(x)) - (1-y)\log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y\log(h_{\theta}(x)) - (1-y)\log(h_{\theta}(x))$$

$$y = 1$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost
$$(h_{\theta}(x), y) = -y \log(1 - h_{\theta}(x))$$

 $y = 0$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ : $\min_{\theta} J(\theta)$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ : $\min_{\alpha} J(\theta)$

To make a new prediction given new x: Output $h_{\theta}(x) = \frac{1}{1 + \alpha^{-\theta^T x}}$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

} (simultaneously update θ_j for j = 0, 1, ..., n)

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

$$\begin{aligned} & \text{Want } \min_{\theta} J(\theta) \colon \\ & \text{repeat } \{ & & & \underbrace{\frac{1}{m}} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ & \theta_j := \theta_j - \alpha \boxed{\frac{\partial}{\partial \theta_j}} J(\theta) \\ & \text{} \} \text{ (simultaneously update } \theta_j \text{ for } j = 0, \ 1, \ ..., \ n) \end{aligned}$$

https://math.stackexchange.com/questions/477207 /derivative-of-cost-function-for-logistic-regression

Want
$$\min_{\theta} J(\theta)$$
:

repeat {

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update θ_i for j = 0, 1, ..., n)

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want
$$\min_{\theta} J(\theta)$$
:

$$h_{\theta}(x) = \theta^{T}x \rightarrow h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

} (simultaneously update θ_j for j = 0, 1, ..., n)

Algorithm looks identical to linear regression!

Multiclass Classification: One-us-all

Classification

Email tagging: Work, Friends, Family

$$y = 1 \qquad y = 2 \qquad y = 3$$

Skin Lesion: Melanoma, Carcinoma, Nevus, Keratosis

$$y = 1 \qquad \qquad y = 2 \qquad \qquad y = 3 \qquad \qquad y = 4$$

Video: Pornography, Violence, Gore scenes, Child abuse

Binary Classification

Multi-class Classification

One-us-All (One-us-Rest)

Class 2:

$$h_{\theta}^{(i)}(x) = P(y=i \mid x;\theta)$$
 (i=1,2,3)

One-us-All (One-us-Rest)

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i.

One a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 4.3
- Probabilistic Machine Learning: An Introduction, Chap. 10

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 3
- http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes1.pdf