# Deep Learning - Project 3

Submitted by - Paritosh Goel, Muhammad Tahir



## **Set of Experiments**

| No of Layers | No of nodes<br>in Each<br>layer | Activation<br>Function<br>used | Batch Size<br>and Epochs              | Accuracy                     | Other parameters                                                                                          |
|--------------|---------------------------------|--------------------------------|---------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1            | 125                             | Relu,<br>Softmax               | Batch Size -<br>2000 ,<br>Epochs - 50 | Test<br>accuracy:<br>0.81538 | kernel_initiali<br>zer='he_norm<br>al')<br>optimizer='sg<br>d'<br>loss='categori<br>cal_crossentr<br>opy' |
| 2            | 125, 125                        | Relu, Relu,<br>Softmax         | Batch Size -<br>2000 ,<br>Epochs - 50 | Test<br>accuracy:<br>0.3846  | kernel_initiali<br>zer='he_norm<br>al')<br>optimizer='sg<br>d'<br>loss='categori<br>cal_crossentr<br>opy' |
| 1            | 125                             | Relu,<br>Softmax               | Batch Size -<br>2000 ,<br>Epochs - 50 | Test<br>accuracy:<br>0.871   | kernel_initial<br>izer='rando<br>m_uniform'')                                                             |
| 1            | 125                             | Relu,<br>Softmax               | Batch Size -<br>500 , Epochs<br>- 50  | Test<br>accuracy:<br>0.88    | kernel_initial<br>izer='rando<br>m_uniform'')                                                             |
| 1            | 125                             | Relu,Softmax                   | Batch Size -<br>500 , Epochs<br>- 100 | Test<br>accuracy:<br>0.886   | kernel_initiali<br>zer='random_<br>uniform"                                                               |
| 1            | 125                             | Tanh,<br>Softmax               | Batch Size -<br>500 , Epochs<br>- 100 | Test<br>accuracy:<br>0.840   | kernel_initiali<br>zer='random_<br>uniform"                                                               |
|              | 125                             | Tanh,                          | Batch Size -                          | Test                         | optimizer='R                                                                                              |

| 1 |     | Softmax          | 500 , Epochs<br>- 10                  | accuracy:<br>0.931         | MSprop', loss='categori cal_crossentr opy' |
|---|-----|------------------|---------------------------------------|----------------------------|--------------------------------------------|
| 1 | 125 | Tanh,<br>Softmax | Batch Size -<br>500 , Epochs<br>- 100 | Test<br>accuracy:<br>0.925 | Loss = 'mean_squa red_error'               |

#### **Procedure Description:**

Train on 3900 samples, validate on 975 samples, testing on 1625 samples

Most accurate Accuracy on Test Data - 93%

**Epoch 100/100** 

val\_loss: 0.0115 - val\_acc: 0.9251

No of Layers - 1

Size of layer - 125 nodes

Activation Function used - Tanh for the first layer and Softmax for the last layer

Batch Size - 500

Epochs - 10

Optimizer - RMSprop

Loss - categorical crossentropy

Weight Initialization Scheme - random\_uniform

Activation functions - Tanh for the first layer, Softmax for the output layer

It was seen that changing the optimizer to RMSprop increased the accuracy to this value.

Epoch size - 10

Images wrongly classified - 6 (instead of 6, classified to 4)

model = Sequential() # declare model

model.add(Dense(125, input\_shape=(28\*28,), kernel\_initializer='random\_uniform')) # first layer model.add(Activation('tanh'))

model.compile(optimizer='RMSprop',

loss='mean\_squared\_error',
metrics=['accuracy'])
history = model.fit(X\_train, Y\_train,validation\_data = (X\_val, Y\_val),epochs=10,batch\_size=500)

Plot



## **Confusion Matrix -**



Model Performance - Accuracy - 93%

### Visualization

Predicted [1.78811] F5edict@d4[3148854 F5edict@d4[3



6 is wrongly classified as 4