CS1699: Lecture 23: Security Testing

Tools for Security Testing

nmap valgrind Nessus

CS1699: Lecture 23: Security Testing

Tools for Security Testing

nmap valgrind Nessus John the Ripper

Remember...

It's about risks. Before developing a security plan, think about the costs and benefits.

Introduction

"On a scale of 1 to 10, this is an 11." -Bruce Schneier, Harvard Fellow, author of Practical Cryptography, Applied Cryptography, Cryptography Engineering, Schneier on Security, more..

Security testing is hard.

- 1. Adversaries actively seeking to defeat
- 2. You need to protect all doors; they only need to find one open one 3. Can be absolutely catastrophic if defects are not found

Pittsburgh is actually a big city for computer

CERT

Security was not a big deal in the early computing world...

Late '60s - Early '80s

The '80s -> Security Goes Mainstream

1988 - The Year It All Changed

Cracking computers is big business.

"Nihil tam munitum quod nan expugnari pecunia possit" -Cicero

"No fort is so strong that money cannot take it."

Security testing is one of the most technically challenging fields of testing, and is also growing very quickly.

Carol @Carols10cents

Following

- View translation
- ♣ Reply ★ Retweet ★ Favorite · · · More

"On a scale of 1 to 10, this is an 11."

-Bruce Schneier, Harvard Fellow, author of Practical Cryptography, Applied

Cryptography, Cryptography Engineering, Schneier on Security, more..

Security testing is hard.

- 1. Adversaries actively seeking to defeat security
- 2. You need to protect all doors; they only need to find one open one
- 3. Can be absolutely catastrophic if defects are not found

Pittsburgh is actually a big city for computer security!

CERT

Security was not a big deal in the early computing world...

Late '60s - Early '80s

The '80s -> Security Goes Mainstream

1988 - The Year It All Changed

Nowadays...

Cracking computers is big business.

"Nihil tam munitum quod non expugnari pecunia possit" -Cicero

"No fort is so strong that money cannot take it."

Security testing is one of the most technically challenging fields of testing, and is also growing very quickly.

Information Security

Security service needs to p (the InfoSec or CIA Triad):

Confidentiality Authentication Integrity

Confidentiality

Only authorized users may read data.

Integrity

Availability

Systems are available for authorized parties to read from and write to.

Kinds of Security Attacks

- -> Interruption (attack on availability, e.g. pulling plug from network switch)
- -> Interception (attack on confidentiality; eavesdropping)
- -> Modification (attack on integrity; modifying data)
- -> Fabrication (attack on integrity; making up data)

Passive vs Active Attacks

- > Vulnerability: identified weakness of a
- -> Exploit: (aka "sploit") Technique or mechanis used to compromise a system

Kinds of mulicious code:

- * Bacteria program that consumes system resources (e.g. fork
- bomb)

 * Logic bomb code within a program which executes an
- mouthorized function

 1 Trapdoor secret undocumented access to a system or app
- Trojan home system that pretends to be another

 * Virus replicates itself WITH human intervention

 * Worm replicates itself WITHOUT human intervention

 * Zombie malicious code which is triggered (e.g., time of day,

- * Zoember measures poses writen is transpersed to a promote command;

 RAT Remote Administration Tool (e.g. BackOnfice)

 * Bat network collection of Joinbies controlled by moster
 * Spyware surreptiously monitors your extines

 * DOS (Denial of Service) attacks (s.g. via LDIC)

- * Ftrewalls
 * Operating System Permissions
 * CDNs
- Well-written code

CRYPTOGRAPHY

Cryptography (crypco) is absolutely vital to the modern-infrastructure of the web, especially public-key

cryptography.

If we ever lose this, we're stuck.

Security service needs to provide three qualities (the InfoSec or CIA Triad):

Confidentiality
Authentication
Integrity

Confidentiality

Only authorized users may read data.

Integrity

Only authorized parties can write data.

Availability

Systems are available for authorized parties to read from and write to.

Kinds of Security Attacks

- -> Interruption (attack on availability, e.g. pulling plug from network switch)
- -> Interception (attack on confidentiality; eavesdropping)
- -> *Modification* (attack on integrity; modifying data)
- -> Fabrication (attack on integrity; making up data)

Passive vs Active Attacks

- -> Passive: eavesdropping, monitoring, traffic analysis
- -> Active: modification or creation of data

- -> Vulnerability: identified weakness of a controlled system
- -> Exploit: (aka "sploit") Technique or mechanism used to compromise a system

Kinds of malicious code:

- * Bacteria program that consumes system resources (e.g. fork bomb)
- * Logic bomb code within a program which executes an unauthorized function
 - * Trapdoor secret undocumented access to a system or app
 - * Trojan horse system that pretends to be another
 - * Virus replicates itself WITH human intervention
 - * Worm replicates itself WITHOUT human intervention
 - * Zombie malicious code which is triggered (e.g. time of day, remote command)
 - * RAT Remote Administration Tool (e.g. BackOrifice)
 - * Bot network collection of zombies controlled by master
 - * Spyware surreptiously monitors your actions
 - * DOS (Denial of service) attacks (e.g. via LOIC)

Protections:

- * Firewalls
- * Operating System Permissions
- * CDNs
- * Well-written code

CRYPTOGRAPHY

Cryptography (crypto) is absolutely vital to the modern infrastructure of the web, especially public-key cryptography.

Public-Key Cryptography

If we ever lose this, we're stuck.

Common Attacks and How to Test Them

Broken Authentication

Session ID exposed; "change my p/w"

Try to guess passwords/info Check for unencrypted session IDs Cross-Site Scripting (XSS)

Insecure Object References

http://bank.com/?account=9844 http://bank.com/?account=9845

Security Misconfiguration

Default passwords IPS, packet filtering, etc. not running Insecure machine on secure network

SOCIAL ENGINEERING!

Injection (e.g. SQL injection)

Test your inputs! Static analysis; ensure inputs are sanitized Use Haskell or another type-safe language

Broken Authentication

Session ID exposed; "change my p/w"

Try to guess passwords/info
Check for unencrypted session IDs

Cross-Site Scripting (XSS)

Insecure Object References

http://bank.com/?account=9844

http://bank.com/?account=9845

Security Misconfiguration

Default passwords
IPS, packet filtering, etc. not running
Insecure machine on secure network

Insecure Storage

Victim enters credit card number in form

Malicious insider steals 4 million credit card numbers

Error handler logs CC details because merchant gateway is unavailable

Logs are accessible to all members of IT staff for debugging purposes

Buffer Overruns

Smashing the Stack

SOCIAL ENGINEERING!

Remember...

It's about risks. Before developing a security plan, think about the costs and benefits.

CS1699: Lecture 23: Security Testing

Tools for Security Testing

nmap valgrind Nessus John the Ripper

Remember...

It's about risks. Before developing a security plan, think about the costs and benefits.