Plan Manuscript

Marius Duvillard

16 juillet 2024

Table des matières

1	Résumé				
2	Intr	Introduction Générale			
	2.1	Contex	tte général	3	
		2.1.1	Contexte Industriel	3	
		2.1.2	Fabrication du combustible de fission	3	
		2.1.3	Broyeur à boulet	3	
		2.1.4	Régimes d'écoulement	3	
		2.1.5	Méthodes de mesures	3	
		2.1.6	Concept de Jumeau Numérique	3	
		2.1.7	Objectif : Appliquer assimilation de données à ces modèles	3	
3	Assimilation de données				
	3.1	Appro	ches stochastiques	3	
		3.1.1	Modèle stochastique du système	3	
		3.1.2	Probability formula	3	
		3.1.3	Estimation	3	
	3.2	Filtre Bayésien			
		3.2.1	Filtre particulaire	4	
		3.2.2	Formulation variationnelle (3DVar)	4	
		3.2.3	Méthodes Hybrides - RML	4	
	3.3	Filtre o	de Kalman	4	
		3.3.1	Filtre de Kalman d'Ensemble	4	
4	Modélisation physique (Méthodes particulaires)				
	4.1	Métho	de de simulation des écoulements granulaires dans un tam-		
		bour e	n rotation	4	
	4.2	Présen	tation DEM	4	
	4.3	Métho	de SPH	4	
	4.4	Métho	de MPM-PIC	4	
	4.5	Métho	de VM \rightarrow Problème fluide incompressible et similarité avec		
		SPH /	VIC et MPM	4	

5	Assimilation de données par correction des intensités de parti- cule Méthodes particulaires et assimilation de données 6.1 Assimilation de données par alignement des particules par intégration				
6					
	de champ de vitesse	4			
	6.2 Focus approximation des méthodes particulaires	5			
	6.3 Schéma de remaillage	5			
	6.4 Focus problème VM				
	6.5 Filtres adaptés	5			
7	Data Assimilation par alignement de champs				
8	Conclusion				

1 Résumé

2 Introduction Générale

- 2.1 Contexte général
- 2.1.1 Contexte Industriel
- 2.1.2 Fabrication du combustible de fission

```
-; quick - voir Giraud : p.1-6 - voir Orozco : p.3-9
```

2.1.3 Broyeur à boulet

−¿ quick (paragraph) - Orozco?

2.1.4 Régimes d'écoulement

−; quick (paragraph) ou mettre dans simulaiton du broyeur? - voir pouliquen.pdf - voir Orozco

2.1.5 Méthodes de mesures

−¿ quick (paragraph) - voir Bastien + dossier mesures

2.1.6 Concept de Jumeau Numérique

–¿ quick (paragraph) - voir session FJOH

2.1.7 Objectif : Appliquer assimilation de données à ces modèles

- Présenter la thèse

3 Assimilation de données

3.1 Approches stochastiques

3.1.1 Modèle stochastique du système

Inspiré de 3.4.2 de Asch, et Carpentier p.41

3.1.2 Probability formula

3.1.3 Estimation

Carpentier, chapitre 2, pages 27-36 Asch pages 78-82 Evensen 2.1.7 inférence bayésienne

3.2 Filtre Bayésien

Carpentier page 42 Asch page 91 Evensen 2.2

3.2.1 Filtre particulaire

3.7 de Asch CoursEC section 5

- 3.2.2 Formulation variationnelle (3DVar)
- 3.2.3 Méthodes Hybrides RML
- 3.3 Filtre de Kalman
- 3.3.1 Filtre de Kalman d'Ensemble

Bocquet, Lecture 2 CoursEC 7.2

4 Modélisation physique (Méthodes particulaires)

title

4.1 Méthode de simulation des écoulements granulaires dans un tambour en rotation

- voir Arseni 2020 - voir EFEM - Mishra / Orozco / Chong / Chandra / Zuo / Zhu - Présenter les méthodes continues et discrètes (voir cours PARTICLES) dans une perspective d'assimilation de données

- 4.2 Présentation DEM
- 4.3 Méthode SPH
- 4.4 Méthode MPM-PIC
- 4.5 Méthode VM \rightarrow Problème fluide incompressible et similarité avec SPH / VIC et MPM
- 5 Assimilation de données par correction des intensités de particule
- 6 Méthodes particulaires et assimilation de données
- 6.1 Assimilation de données par alignement des particules par intégration de champ de vitesse

-¿ choix d'une formulation in ensemble space à partir des mesures

6.2 Focus approximation des méthodes particulaires

 $-\dot{\iota}$ approximation et regression

6.3 Schéma de remaillage

− ¿Redistribution

6.4 Focus problème VM

-¿ Cas test

6.5 Filtres adaptés

7 Data Assimilation par alignement de champs

8 Conclusion