enunciato

$\sqrt{2}$ è un numero irrazionale

cioè $\sqrt{2}$ **non** si può esprimere come rapporto tra due numeri naturali $m \operatorname{ed} n \pmod{n \neq 0}$

$$\sqrt{2} \neq \frac{m}{n} \quad \text{con } m, n \in N \text{ ed } n \neq 0$$

dimostrazione

dimostrazione			
Con un ragionamento per assurdo , neghiamo la tesi e supponiamo che $\sqrt{2}$ sia un numero razionale, cioè che esistano due numeri naturali m ed n (con $n \neq 0$) tali che $\sqrt{2}$ sia uguale al loro rapporto.	$\sqrt{2} = \frac{m}{n}$		
Eleviamo al quadrato primo e secondo membro. (ciò è corretto perché entrambi i membri sono quantità positive)	$2 = \frac{m^2}{n^2}$		
Moltiplichiamo entrambi i membri per n^2 .	$2 \cdot n^2 = \frac{m^2}{n^2} \cdot n^2$		
Semplifichiamo n^2 al secondo membro. L' uguaglianza così ottenuta è falsa perché il primo membro contiene il "2" un numero dispari di volte mentre il secondo membro contiene il "2" un numero pari di volte. Infatti:	$2 \cdot n^2 = m^2$		
Il primo membro è formato dal prodotto di un "2" con n^2 . Quest'ultimo è un numero naturale elevato al quadrato e, in quanto tale, contiene il "2" un numero pari di volte <i>(vedi l'osservazione in basso)</i> . Quindi, in totale, il primo membro contiene il "2" un numero dispari di volte.	$2 \cdot n^2$ contiene il 2 un numero dispari di volte		
Il secondo membro m^2 , essendo un numero naturale elevato al quadrato, contiene il "2" un numero pari di volte <i>(vedi l'osservazione in basso)</i> .	m^2 contiene il 2 un numero pari di volte		
Dunque, l'uguaglianza che si ottiene negando la tesi è falsa ; ciò vuol dire che la tesi non può essere negata, quindi deve essere necessariamente vera e, pertanto: $\sqrt{2}$ è un numero irrazionale	$2 \cdot n^2 \neq m^2 \rightarrow \sqrt{2} \neq \frac{m}{n}$		

La dimostrazione sopra riportata è attribuita ad **Ippaso** di Metaponto seguace di Pitagora vissuto nel V secolo a.c.

osservazione			
Mostriamo, con degli esempi, che l'esponente di un numero naturale elevato al quadrato è sempre un numero pari. Ciò vuol dire che il quadrato di un numero naturale contiene nei suoi fattori primi il " 2 " un numero pari di volte.	numero naturale	numero al quadrato	quante volte è contenuto il " 2"
	2	4 = 2 ²	2
	3	$9 = 3^2$	0
	4	16 = 24	4
	8	$64 = 2^{6}$	6
	10	$100 = 2^2 \cdot 5^2$	2