التدريب الصيفي 2021

هندسة النظم و الهندسة الصناعية

الملف الختامي

اعداد المتدرب : عبدالله الشامسي

الملف الختامي يشمل:

١ – عمليات التشغيل : 3

17 : تجارب التشغيل : 17

٣- الاخطاء المتوقعة: 21

22 : دليـل المستخدم : 22

٥- الضميان: 23

عمليات التشغيل

في عمليات التشغيل سنتطرق لما يلي:

١- نبذة عن المشروع: 4

٢- أبعاد الروبوت: 5

٣- أبعاد الحلبة: 12

٤- قوانين التشغيل: 13

٥- وصف لوحة التحكم: 14

7 - تفاصيل عملية التشغيل من ناحية تقنية : 15

- يتكون الروبوت من جزئيين هما المنصة و النراع.
- المنصة هي الجزء الاسفل الحامل للذراع يتم ربط العجلات و محركاتها به و يمكن اضافة بعض الافكار عليها لتصبح اخف ، اكثر دفاعا و غيرها .
- الذراع هو الجزء المتحرك في الروبوت مهمته الأساسية الهجوم يستطيع المتمرس الممتاز استخدامه لدفاع ، يجب ان تكون نهاية الذراع مصممة بشكل يجعلها تستطيع تنفيذ مهمتها الاساسية بشكل ممتاز ويمكن إضافة بعض الافكار له ليصبح اكثر مرونة و اسرع للهجوم او

اولا الصندوق المشار له برقم واحد في الصورة ١ يحتوي الصندوق على:

ال دوينو الابعاد هي: X=75mm, Y=18m, Z=55mm
 الابعاد هي: X=90mm, Y=20mm, Z=60mm

٣. الدرايفر " الابعاد هي: X=50mm, Y=30mm, Z=50mm

٤. البطارية الأول الأبعاد هي: X=100mm, Y=22mm, Z=80mm

ه. البطارية الثانية الابعاد هي: X=150mm, Y=97mm, Z=65mm

لذلك لابد ان تكون ابعاد الصندوق هي : X=270mm, Y=125mm, Z=130mm مع الاخذ ب 25mm زيادة على كل المحاور ، وفي ما يلي توضيح اكثر لتوزيع القطع داخل الصندوق :

Smart Methods الأساليب الذكية

Z=160mm

ثانيا الذراع المشار له برقم ثنين في الصورة 1:

X=122mm , Z=122mm , Y=620 mm

ثالثًا ابعاد البالون المشار له برقم ثلاثة في الصورة ١:

ابعاد البالون ليست الإلزامية فهي لا تؤثر كثيرا

- رابعا قاعدة الروبوت المشار له برقم اربعة في الصورة ١:
 - لابد ان يحمل الجسم الصندوق و الذراع و البالون
- ابعاد الجسم تشمل ما سبق : X=600mm , Y=620mm , Z=500mm
- الارتفاع المشار اللية بمحور ٧هو من بداية القاعدة الى نهاية الذراع ولا يدخل في ذلك ارتفاع القاعدة او جسم الروبوت عن سطح الارض

خامسا بقيت الاجسام المشار لها برقم خمسة في الصورة ١:

اربع عجلات لابد الاخذ بالاعتبار انها المسؤولة عن الارتفاع ايضا ، فالقاعدة تحمل بالأسفل المحركات
 و بعض الاسلاك الكهربائية .

ابعاد الحلبة: الطول X=2.5m العرض Z=2m المساحة الكاملة للحلبة بالمتر مكعب 5

عنده المسافة هي ضعف مساحة الربوتين مما يسمح لهم بالالتفاف على بعضهم .

قوانين التشغيل

- يقوم الروبوت بعمليتين اساسيتين في أي لعبة استراتيجية هما الدفاع و الهجوم.
- عملية الدفاع تتم عن طريق المراوغة او المناورة من اجل حماية البالون الخاص به.
 - عملية الهجوم تتم عن طريق الهجوم بالذراع المتحكم به لتفجير بالون الخصم.
 - يتم ربط نهاية الذراع بأداة تستطيع تفجير بالون الخصم بسهولة.
 - يتم التحكم بالروبوتين المتبارزين عن طريق شخصين اون لاين.
 - قبل الدخول الى الحلبة يجب التأكد من ان الروبوتين من نفس المستوى.
- ٧. يجب تفقد الروبوتات من قبل الحكام باحثين عن ادوات غش مخفية ، يعتبر الروبوت الغاش خاسر.
- ٨. دقيقة كاملة للفريق لتأكد من عمل الروبوت بشكل صحيح مع اعطاء ربع ساعة للصيانة اذا لزم الامر (أي زيادة في الوقت تعتبر انسحاب).
 - ابعاد المتجمهرين و اللاعبين ، وحضور الحكام على الحلبة فقط .
 - ١٠. تعطل الروبوت بعد ذلك يعتبر خسارة .
 - ١١. خروج الروبوت خارج الحلبة خسارة.
 - ٢١. تقسم المبارزة الى شوطين بينهما ربع ساعة استراحة و صيانة .
 - ٣١. تفجر البالون تحت أي سبب يعتبر خسارة .

Smart Methods الأساليب الذكية

 يتم التحم بالروبوت عن طريق النت و استخدام واجهة بسيطة لتحكم .

- تحتوي الواجهة على ازرار التشغيل و الاطفاء في الاسفل.
- تحتوي على ستة مفاتيح انز لاق لكل محرك مفتاح خاص به .
- اقصى درجة لليسار تعني الوضع الاصلي للمحرك زاوية صفر و اقصى درجة لليمين تعني التحرك ١٨٠ درجة .

MOTOR 1				
0		180		
MOTOR 2				
0		:10)		
MOTOR 3				
0	0	110		
MOTOR 4				
0	0	110		
MOTOR 5				
0		10)		
MOTOR 6				
0		110		

IOT

IOT & AI

Al

Electricity

mechanics

عملية التشغيل من ناحية تقنية

IOT

انشاء واجهة او لوحة التحكم وربطها بالأنترنت

IOT & AI

Al

جعل الروبوت نكي بتعرف على الحلبة، المحيط والمهمة

Electricity

اختيار القطعة الكهربائية المناسبة و برمجتها

mechanics

تصميم الاشكال و طباعتها

تجارب التشغيل

في تجارب التشغيل سنتطرق لما يلي:

- الاختبار الوظيفي: 18
- اختبار غير وظيفي: 19
- مشروع اختبار إضافي: 20

الاختبار الوظيفي

هنا خطوات الاختبار:

الجزء الاول:

- ١- اختبار تشغيلي لمحركات الذراع كل واحد على حدة.
 - ٢- اختبار متانة وجودة قطع الذراع.
 - ٣- اختبار الأداة المضافة لذراع.
- ٤- تركيب قطع الذراع و المحركات ثم اختبار الذراع بالكامل.

الجزء الثاني:

- ١- اختبار جودة القاعدة و الصندوق.
- ٢- اختبار تشغيلي للقطع الالكترونية و محركات العجلات كل واحدة على حدة .
 - ٣- اختبار لمدى جاهزية المحركات مع العجلات.
 - ٤- تركيب قطع القاعدة و اختبار ها بالكامل.

الجزء الثالث:

- ١- اختبار مدى عمل الواجهة .
- ۲- اختبار مدى البطء بين الواجهة و الروبوت .

الجزء الرابع:

 تركيب الذراع على القاعدة واختبار الروبوت بشكل كامل .

- اختبار مدى تناسق القطع و المحركات و البرمجة مع بعضها البعض .
- زيادة الوزن بشكل تدريجي لمعرفة اقصى حمل يستطيع الروبوت تحمله.
- اختبار مدى وضوح و سهولة استخدام واجهة التحكم الشخاص لم يسبق لهم استخدامها.
- العمل المتواصل على الروبوت عن طريق مجموعة مختبرين لمعرفة ما مدى الاستمرارية في العمل.

- يتم الاستعانة في هذا الاختبار بروبوت اخر من فريق اخر تم اختباره و هو جاهز للعمل .
- اجراء اختبار عن طريق بداء نزال نموذجي بين الروبوت الجديد و المستعان
 به .
- تسجیل و ملاحظة مدى استطاعة الروبوت على المنافسة و الحركة بمرنة و الالتفاف .

الاخطاء المتوقعة

من خلال تجارب التشغيل السابقة يستطيع المختبر توقع بعض الاخطاء:

قد يحصل تعطل في الانترنت او حصول بعض البطء في العملية نتيجة ضعف الاتصال او كثرة المستخدمين.

في القطع الميكانيكية:

- تركيب القطع و الهيكل بشكل خاطئ .
- قد يحصل تلف في بعض الاجزاء نتيجة حرارة المحركات او احتكاك القطع.
 - يحصل تعليق لبعض المسننات و المفاصل فيجب الحرص على تنظيفها .

في القطع الالكترونية:

- تركيب احد القطع الإلكترونية بشكل خاطئ.
- تلف او احتراق المحركات نتيجة العمل او الحرارة .
- حدوث التماس لكثير من الاجزاء الالكترونية نتيجة اللعب بعنف او الوقوع من حلبة مرتفعة .

دليل المستخدم

- تشغیل الروبوت:
- بعد اخراج الروبوت من الصندوق تأكد من تخليصه من جميع الحمايات كي لا تعيق عمله.
 - افتح مفتاح التشغيل لتشغيل الروبوت.
 - افتح الرابط التالي لدخول على واجهة المستخدم لتحكم بالروبوت
 - index.html/week3/project-smartmethods
 - الاشتراك في المسابقة:
- · بعد معرفة طريقة الاستخدام و الاطلاع على الشروط و القوانين من هذا يمكنك المشاركة .
 - ◊ الاستفسارات الاخرى:

يمكنك التواصل معنى على: (s-m.com.sa) الأساليب الذكية

