FCC RF Test Report

APPLICANT : Bullitt Group

EQUIPMENT: Rugged Smart Phone

BRAND NAME : CAT
MODEL NAME : S60
MARKETING NAME : S60

FCC ID : ZL5S60

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Mar. 03, 2016 and testing was completed on May 30, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 1 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

1190

Report No.: FR630110-01C

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMA	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Pre-Scanned RF Power	9
	2.3	Test Mode	_
	2.4	Connection Diagram of Test System	
	2.5	Support Unit used in test configuration and system	
	2.6	EUT Operation Test Setup	
	2.7	Measurement Results Explanation Example	
3	TES	T RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	15
	3.4	Conducted Band Edges and Spurious Emission Measurement	17
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	38
4	LIST	OF MEASURING EQUIPMENT	39
5	UNC	ERTAINTY OF EVALUATION	40
ΑP	PEND	DIX A. CONDUCTED TEST RESULTS	
ΑP	PEND	DIX B. RADIATED SPURIOUS EMISSION	
ΑP	PEND	DIX C. RADIATED SPURIOUS EMISSION PLOTS	
ΑP	PEND	DIX D. DUTY CYCLE PLOTS	
ΑP	PEND	DIX E. SETUP PHOTOGRAPHS	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 2 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No. : FR630110-01C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR630110-01C	Rev. 01	Initial issue of report	Jun. 06, 2016

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 3 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15 247(d)	Conducted Band Edges		Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.56 dB at 2483.600 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 14.90 dB at 2.262 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 4 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No. : FR630110-01C

1 General Description

1.1 Applicant

Bullitt Group

One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR United Kingdom

1.2 Manufacturer

Compal Electronics, INC.

No. 385, Yangguang St. Neihu District, Taipei City 11491, Taiwan, R.O.C

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	Rugged Smart Phone				
Brand Name	CAT				
Model Name	S60				
Marketing Name	S60				
Sample 1	EUT with Dual SIM				
Sample 2	EUT with Single SIM				
FCC ID	ZL5S60				
	GSM/EGPRS/WCDMA/HSPA/LTE/NFC				
EUT supports Radios application	WLAN 11b/g/n HT20/HT40				
	Bluetooth v4.1 EDR/LE				
EUT Stage	Identical Prototype				

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. All test items are performed on sample 1.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz				
	802.11b : 19.50 dBm (0.0891 W)				
Maximum (Peak) Output Power to	802.11g : 20.58 dBm (0.1143 W)				
Antenna	802.11n HT20 : 19.15 dBm (0.0822 W)				
	802.11n HT40 : 19.81 dBm (0.0957 W)				
	802.11b : 13.90MHz				
00% Occupied Pandwidth	802.11g : 18.35MHz				
99% Occupied Bandwidth	802.11n HT20 : 19.05MHz				
	802.11n HT40 : 36.70MHz				
Antenna Type	802.11b/g/n: PIFA Antenna type with gain 0.41 dBi				
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK)				
Type of Modulation	802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)				

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 5 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Techn	ology Park,				
Toot Site Legation	Kwei-Shan District, Tao Yuan City, Tai	wan, R.O.C.				
Test Site Location	TEL: +886-3-327-3456					
	FAX: +886-3-328-4978					
Test Site No.	Sporton	Site No.				
rest site No.	TH05-HY	CO05-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.				
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,				
Test Site Location	Taoyuan City, Taiwan (R.O.C.)				
rest Site Location	TEL: +886-3-327-0868				
	FAX: +886-3-327-0855				
Took Cita No	Sporton Site No.				
Test Site No.	03CH10-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 6 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 7 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
0400 0400 F MILE	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 8 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

2.4GHz 802.11b mode							
Data Rate (MHz)	1M bps	2M bps	5.5M bps	11M bps			
Peak Power (dBm)	19.50	19.14	19.06	19.19			

2.4GHz 802.11g mode									
Data Rate (MHz)	6M bps	9M bps	12M bps	18M bps	24M bps	36M bps	48M bps	54M bps	
Peak Power (dBm)	20.58	20.35	20.47	20.45	20.44	20.35	20.39	20.31	

2.4GHz 802.11n HT20 mode								
Data Rate (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Peak Power (dBm)	19.15	19.05	18.97	18.97	18.71	18.62	18.59	18.53

2.4GHz 802.11n HT40 mode								
Data Rate (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Peak Power (dBm)	19.81	19.55	19.41	19.47	19.36	19.34	19.04	19.10

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

Test Cases				
AC	Mode 1:	WCDMA Band II Idle + Bluetooth Link + WLAN Link + Camera (Rear) +		
Conducted	Wode 1.	· · ·		
Emission		Earphone + Battery + USB Cable (Charging from Adapter) + SIM 1		

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 9 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 10 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	16G	FCC DoC	N/A	N/A
6.	WLAN AP	D-Link	DIR-865L	KA2IR865LA1	N/A	Unshielded, 1.8 m

2.6 EUT Operation Test Setup

For WLAN function, programmed RF utility, "QRCT" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 1MHz and set the Video bandwidth (VBW) = 3MHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 12 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A of this test report.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 13 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas.
 Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A of this test report.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 14 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 15 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A of this test report.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 16 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 17 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	51~54%
Test Channel :	01	Test Engineer :	PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 18 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	51~54%
Test Channel:	06	Test Engineer :	PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 19 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

 Test Mode :
 802.11b
 Temperature :
 21~25℃

 Test Band :
 2.4GHz High
 Relative Humidity :
 51~54%

 Test Channel :
 11
 Test Engineer :
 PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 20 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

 Test Mode :
 802.11g
 Temperature :
 21~25℃

 Test Band :
 2.4GHz Low
 Relative Humidity :
 51~54%

 Test Channel :
 01
 Test Engineer :
 PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 21 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	51~54%
Test Channel:	06	Test Engineer :	PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 22 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

 Test Mode :
 802.11g
 Temperature :
 21~25℃

 Test Band :
 2.4GHz High
 Relative Humidity :
 51~54%

 Test Channel :
 11
 Test Engineer :
 PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 23 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

 Test Mode :
 802.11n HT20
 Temperature :
 21~25℃

 Test Band :
 2.4GHz Low
 Relative Humidity :
 51~54%

 Test Channel :
 01
 Test Engineer :
 PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 24 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	51~54%
Test Channel :	06	Test Engineer :	PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 25 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

 Test Mode :
 802.11n HT20
 Temperature :
 21~25℃

 Test Band :
 2.4GHz High
 Relative Humidity :
 51~54%

 Test Channel :
 11
 Test Engineer :
 PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 26 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

 Test Mode :
 802.11n HT40
 Temperature :
 21~25℃

 Test Band :
 2.4GHz Low
 Relative Humidity :
 51~54%

 Test Channel :
 03
 Test Engineer :
 PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 27 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	51~54%
Test Channel:	06	Test Engineer :	PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 28 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	51~54%
Test Channel :	09	Test Engineer :	PH Yang

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 29 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 30 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;

Report No.: FR630110-01C

- (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 31 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C of this report.

3.5.7 Duty Cycle

Please refer to Appendix D of this report.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C of this report.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 32 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)	
(MHz)	Quasi-Peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 33 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 34 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	22~23 ℃
Test Engineer :	Kai-Chun Chu	Relative Humidity :	42~43%
Test Voltage :	120Vac / 60Hz	Phase :	Line
	WCDMA Band II Idle + Bluetooth Link + WLAN Link + Camera (Rear) + Earphone		

Final Result : Quasi-Peak

Frequency	Quasi-Peak	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.502000	40.2	Off	L1	19.6	15.8	56.0
0.854000	40.3	Off	L1	19.6	15.7	56.0
1.006000	41.0	Off	L1	19.7	15.0	56.0
1.190000	35.2	Off	L1	19.7	20.8	56.0
2.054000	38.3	Off	L1	19.6	17.7	56.0
2.182000	38.4	Off	L1	19.6	17.6	56.0
2.262000	41.1	Off	L1	19.6	14.9	56.0
3.398000	37.3	Off	L1	19.7	18.7	56.0
18.030000	36.8	Off	L1	20.6	23.2	60.0
19.342000	37.9	Off	L1	20.7	22.1	60.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 35 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	Mode 1	Temperature :	22~23℃℃
Test Engineer :	Kai-Chun Chu	Relative Humidity :	42~43%%
Test Voltage :	120Vac / 60Hz	Phase :	Line

Function Type: WCDMA Band II Idle + Bluetooth Link + WLAN Link + Camera (Rear) + Earphone + Battery + USB Cable (Charging from Adapter) + SIM 1

Final Result : Average

•	i illai Nesult . Average								
	Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)		
	0.502000	31.0	Off	L1	19.6	15.0	46.0		
	0.854000	28.3	Off	L1	19.6	17.7	46.0		
	1.006000	28.4	Off	L1	19.7	17.6	46.0		
	1.190000	25.5	Off	L1	19.7	20.5	46.0		
	2.054000	28.3	Off	L1	19.6	17.7	46.0		
	2.182000	27.7	Off	L1	19.6	18.3	46.0		
	2.262000	29.5	Off	L1	19.6	16.5	46.0		
	3.398000	26.5	Off	L1	19.7	19.5	46.0		
	18.030000	26.4	Off	L1	20.6	23.6	50.0		
	19.342000	27.7	Off	L1	20.7	22.3	50.0		

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 36 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

Test Mode :	Mode 1	Temperature :	22~23 ℃				
Test Engineer :	Kai-Chun Chu	Relative Humidity :	42~43%				
Test Voltage :	120Vac / 60Hz	Phase :	Neutral				
Function Type	WCDMA Band II Idle + Bluetooth Link + WLAN Link + Camera (Rear) + Earphone						
Function Type :	+ Battery + USB Cable (Charging from Adapter) + SIM 1						

Final Result : Quasi-Peak

Frequency (MHz)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.502000	38.1	Off	N	19.6	17.9	56.0
1.054000	36.0	Off	N	19.6	20.0	56.0
2.158000	39.8	Off	N	19.6	16.2	56.0
3.398000	34.9	Off	N	19.7	21.1	56.0
16.422000	36.8	Off	N	20.5	23.2	60.0
17.726000	39.7	Off	N	20.6	20.3	60.0
19.062000	40.9	Off	N	20.7	19.1	60.0

Final Result : Average

Frequency	Average			Corr.	Margin	Limit
(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)
0.502000	29.7	Off	N	19.6	16.3	46.0
1.054000	25.3	Off	N	19.6	20.7	46.0
2.158000	26.2	Off	N	19.6	19.8	46.0
3.398000	23.5	Off	N	19.7	22.5	46.0
16.422000	24.4	Off	N	20.5	25.6	50.0
17.726000	27.3	Off	N	20.6	22.7	50.0
19.062000	28.3	Off	N	20.7	21.7	50.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 37 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No.: FR630110-01C

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Report No.: FR630110-01C

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1132003	300MHz~40GHz	Aug. 12, 2015	May 12, 2016 ~ May 16, 2016	Aug. 11, 2016	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1126017	300MHz~40GHz	Aug. 12, 2015	May 12, 2016 ~ May 16, 2016	Aug. 11, 2016	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	May 12, 2016 ~ May 16, 2016	Nov. 22, 2016	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 11, 2016~ May 12, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 26, 2015	May 11, 2016~ May 12, 2016	Aug. 25, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	May 11, 2016~ May 12, 2016	Dec. 01, 2016	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Mar. 27, 2016 ~ May 30, 2016	Sep. 01, 2016	Radiation (03CH10-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Nov. 16, 2015	Mar. 27, 2016 ~ May 30, 2016	Nov. 15, 2016	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D	35413	30MHz~1GHz	Jan. 13, 2016	Mar. 27, 2016 ~ May 30, 2016	Jan. 12, 2017	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1325	1GHz ~ 18GHz	Sep. 30, 2015	Mar. 27, 2016 ~ May 30, 2016	Sep. 29, 2016	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY53270078	1GHz~26.5GHz	Nov. 13, 2015	Mar. 27, 2016 ~ May 30, 2016	Nov. 12, 2016	Radiation (03CH10-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1902246	1GHz~18GHz	Nov. 16, 2015	Mar. 27, 2016 ~ May 30, 2016	Nov. 15, 2016	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz ~ 44GHz	Oct. 15, 2015	Mar. 27, 2016 ~ May 30, 2016	Oct. 14, 2016	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Mar. 27, 2016 ~ May 30, 2016	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Mar. 27, 2016 ~ May 30, 2016	N/A	Radiation (03CH10-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170576	18GHz ~ 40GHz	Apr. 15, 2016	Mar. 27, 2016 ~ May 30, 2016	Apr. 14, 2017	Radiation (03CH10-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY55420170	N/A	Mar. 10, 2016	Mar. 27, 2016 ~ May 30, 2016	Mar. 09, 2017	Radiation (03CH10-HY)
Preamplifier	MITEQ	JS44-180040 00-33-8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Mar. 27, 2016 ~ May 30, 2016	Jun. 01, 2016	Radiation (03CH10-HY)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 39 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No. : FR630110-01C

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5.50
Confidence of 95% (U = 2Uc(y))	5.50

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : 40 of 40
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report No. : FR630110-01C

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S60 Page Number : A1 of A1
Report Issued Date : Jun. 06, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

A1 - DTS Part

Test Engineer:	PHYang	Temperature:	21~25	°C
Test Date:	2015/5/12~5/16	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
11b	1Mbps	1	1	2412	13.90	9.04	0.50	Pass		
11b	1Mbps	1	6	2437	13.90	9.00	0.50	Pass		
11b	1Mbps	1	11	2462	13.85	8.56	0.50	Pass		
11g	6Mbps	1	1	2412	18.25	16.42	0.50	Pass		
11g	6Mbps	1	6	2437	18.35	16.44	0.50	Pass		
11g	6Mbps	1	11	2462	18.30	16.44	0.50	Pass		
HT20	MCS0	1	1	2412	18.95	17.64	0.50	Pass		
HT20	MCS0	1	6	2437	19.00	17.64	0.50	Pass		
HT20	MCS0	1	11	2462	19.05	17.64	0.50	Pass		
HT40	MCS0	1	3	2422	36.70	35.60	0.50	Pass		
HT40	MCS0	1	6	2437	36.50	35.20	0.50	Pass		
HT40	MCS0	1	9	2452	36.60	35.28	0.50	Pass		

TEST RESULTS DATA Peak Power Table

	2.4GHz Band									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
11b	1Mbps	1	1	2412	19.50	30.00	0.41	19.91	36.00	Pass
11b	1Mbps	1	6	2437	19.22	30.00	0.41	19.63	36.00	Pass
11b	1Mbps	1	11	2462	19.16	30.00	0.41	19.57	36.00	Pass
11g	6Mbps	1	1	2412	20.58	30.00	0.41	20.99	36.00	Pass
11g	6Mbps	1	6	2437	20.45	30.00	0.41	20.86	36.00	Pass
11g	6Mbps	1	11	2462	20.37	30.00	0.41	20.78	36.00	Pass
HT20	MCS0	1	1	2412	19.15	30.00	0.41	19.56	36.00	Pass
HT20	MCS0	1	6	2437	18.82	30.00	0.41	19.23	36.00	Pass
HT20	MCS0	1	11	2462	19.02	30.00	0.41	19.43	36.00	Pass
HT40	MCS0	1	3	2422	19.46	30.00	0.41	19.87	36.00	Pass
HT40	MCS0	1	6	2437	19.81	30.00	0.41	20.22	36.00	Pass
HT40	MCS0	1	9	2452	19.35	30.00	0.41	19.76	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

	2.4GHz Band									
Mod.	Data Rate	NTX	СН.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)				
11b	1Mbps	1	1	2412	0.13	16.97				
11b	1Mbps	1	6	2437	0.13	16.86				
11b	1Mbps	1	11	2462	0.13	16.75				
11g	6Mbps	1	1	2412	0.65	11.99				
11g	6Mbps	1	6	2437	0.65	11.81				
11g	6Mbps	1	11	2462	0.65	11.58				
HT20	MCS0	1	1	2412	0.63	9.98				
HT20	MCS0	1	6	2437	0.63	9.85				
HT20	MCS0	1	11	2462	0.63	9.73				
HT40	MCS0	1	3	2422	1.22	10.15				
HT40	MCS0	1	6	2437	1.22	10.43				
HT40	MCS0	1	9	2452	1.22	10.38				

TEST RESULTS DATA Peak Power Density

	2.4GHz Band								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
11b	1Mbps	1	1	2412	-5.99	0.41	8.00	Pass	
11b	1Mbps	1	6	2437	-5.27	0.41	8.00	Pass	
11b	1Mbps	1	11	2462	-5.51	0.41	8.00	Pass	
11g	6Mbps	1	1	2412	-13.05	0.41	8.00	Pass	
11g	6Mbps	1	6	2437	-13.52	0.41	8.00	Pass	
11g	6Mbps	1	11	2462	-14.85	0.41	8.00	Pass	
HT20	MCS0	1	1	2412	-14.97	0.41	8.00	Pass	
HT20	MCS0	1	6	2437	-15.67	0.41	8.00	Pass	
HT20	MCS0	1	11	2462	-16.37	0.41	8.00	Pass	
HT40	MCS0	1	3	2422	-17.32	0.41	8.00	Pass	
HT40	MCS0	1	6	2437	-18.15	0.41	8.00	Pass	
HT40	MCS0	1	9	2452	-18.01	0.41	8.00	Pass	

Appendix B. Radiated Spurious Emission

Test Engineer :	Tsung Lee and Donny Tang	Temperature :	23~25°C
rest Engineer .	, , ,	Relative Humidity :	45~48%

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		2364	51.35	-22.65	74	52.07	27.14	5.39	33.25	318	51	Р	Н
		2390	40.69	-13.31	54	41.29	27.23	5.39	33.22	318	51	Α	Н
	*	2412	105.35	-	-	105.87	27.28	5.42	33.22	318	51	Р	Н
	*	2412	102.23	-	-	102.75	27.28	5.42	33.22	318	51	Α	Н
802.11b													Н
CH 01													Н
2412MHz		2386.95	50.72	-23.28	74	51.34	27.23	5.39	33.24	123	58	Р	V
2412111112		2388.75	40.67	-13.33	54	41.29	27.23	5.39	33.24	123	58	Α	V
	*	2412	103.04	ı	-	103.56	27.28	5.42	33.22	123	58	Р	٧
	*	2414	99.97	1	-	100.49	27.28	5.42	33.22	123	58	Α	٧
													٧
													V
		2349.24	51.74	-22.26	74	52.56	27.1	5.33	33.25	321	53	Р	Н
		2389.65	40.74	-13.26	54	41.36	27.23	5.39	33.24	321	53	Α	Н
	*	2437	105.61	-	-	106.03	27.37	5.42	33.21	321	53	Р	Н
	*	2437	102.37	1	-	102.79	27.37	5.42	33.21	321	53	Α	Η
000 441		2484.04	51.54	-22.46	74	51.8	27.46	5.46	33.18	321	53	Р	Η
802.11b CH 06		2483.8	41.29	-12.71	54	41.55	27.46	5.46	33.18	321	53	Α	Η
2437MHz		2374.35	50.91	-23.09	74	51.57	27.19	5.39	33.24	151	55	Р	<
2437 WITIZ		2358.33	40.67	-13.33	54	41.45	27.14	5.33	33.25	151	55	Α	٧
	*	2437	103.85	-	-	104.27	27.37	5.42	33.21	151	55	Р	٧
	*	2437	100.61	ı	-	101.03	27.37	5.42	33.21	151	55	Α	V
		2498.6	51.7	-22.3	74	51.91	27.5	5.46	33.17	151	55	Р	V
		2483.52	41.11	-12.89	54	41.37	27.46	5.46	33.18	151	55	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

SPORTON LAB. FCC RF Test Report

	*	2462	101.88	-	-	102.23	27.41	5.44	33.2	279	351	Р	Н
	*	2462	98.64	-	-	98.99	27.41	5.44	33.2	279	351	Α	Н
		2497.56	52.48	-21.52	74	52.69	27.5	5.46	33.17	279	351	Р	Н
		2483.88	41.38	-12.62	54	41.64	27.46	5.46	33.18	279	351	Α	Н
000 441													Н
802.11b													Н
CH 11 2462MHz	*	2462	103.3	-	-	103.65	27.41	5.44	33.2	100	58	Р	V
2402WII 12	*	2462	100.07	-	-	100.42	27.41	5.44	33.2	100	58	Α	٧
		2487	52	-22	74	52.26	27.46	5.46	33.18	100	58	Р	٧
		2484.32	41.44	-12.56	54	41.7	27.46	5.46	33.18	100	58	Α	V
													V
													V
	1. No	o other spuriou	s found.										
Remark		·		Daalcaad	A	ait lin a							
	2. Al	l results are PA	35 against	reak and	Average III	nit iinė.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4824	47.45	-26.55	74	69.02	31.46	7.58	60.61	100	0	Р	Н
													Н
													Н
802.11b													Н
CH 01		4824	50.77	-23.23	74	72.34	31.46	7.58	60.61	100	0	Р	V
2412MHz													V
													V
													V
		4872	44.98	-29.02	74	66.24	31.56	7.7	60.52	100	0	Р	Н
		7309	40.82	-33.18	74	56.08	36.18	9.49	60.93	100	0	Р	Н
000 445													Н
802.11b CH 06													Н
2437MHz		4872	48.24	-25.76	74	69.5	31.56	7.7	60.52	100	0	Р	V
2437 WII IZ		7309	39.55	-34.45	74	54.81	36.18	9.49	60.93	100	0	Р	V
													V
													V
		4926	46.5	-27.5	74	67.33	31.66	7.93	60.42	100	0	Р	Н
		7386	39.88	-34.12	74	55.17	36.37	9.53	61.19	100	0	Р	Н
802.11b													Н
CH 11													Н
2462MHz		4926	49.65	-24.35	74	70.48	31.66	7.93	60.42	100	0	Р	V
2-102111112		7386	39.8	-34.2	74	55.09	36.37	9.53	61.19	100	0	Р	V
													V
	1												V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		2389.74	51.24	-22.76	74	51.86	27.23	5.39	33.24	330	55	Р	Н
		2389.92	41.86	-12.14	54	42.46	27.23	5.39	33.22	330	55	Α	Н
	*	2412	101.93	-	-	102.45	27.28	5.42	33.22	330	55	Р	Н
	*	2412	94.17	-	-	94.69	27.28	5.42	33.22	330	55	Α	Н
802.11g													Н
CH 01												_	Н
2412MHz		2326.38	51.45	-22.55	74	52.33	27.05	5.33	33.26	125	60	Р	V
		2389.83	41.32	-12.68	54	41.92	27.23	5.39	33.22	125	60	Α	V
	*	2412	99.53	-	-	100.05	27.28	5.42	33.22	125	60	Р	V
	*	2412	91.82	-	-	92.34	27.28	5.42	33.22	125	60	Α	V
													V
													V
		2353.83	52.02	-21.98	74	52.8	27.14	5.33	33.25	320	45	Р	Н
		2385.06	41.19	-12.81	54	41.85	27.19	5.39	33.24	320	45	Α	Н
	*	2437	101.55	-	-	101.97	27.37	5.42	33.21	320	45	Р	Н
	*	2437	93.87	-	-	94.29	27.37	5.42	33.21	320	45	Α	Н
		2499.6	51.83	-22.17	74	52.04	27.5	5.46	33.17	320	45	Р	Н
802.11g		2483.56	41.92	-12.08	54	42.18	27.46	5.46	33.18	320	45	Α	Н
CH 06 2437MHz		2357.16	51.25	-22.75	74	52.03	27.14	5.33	33.25	105	58	Р	V
2437 WITIZ		2376.69	40.94	-13.06	54	41.6	27.19	5.39	33.24	105	58	Α	V
	*	2437	100.48	-	-	100.9	27.37	5.42	33.21	105	58	Р	V
	*	2437	92.75	-	-	93.17	27.37	5.42	33.21	105	58	Α	V
		2486.68	51.17	-22.83	74	51.43	27.46	5.46	33.18	105	58	Р	V
		2484.12	41.58	-12.42	54	41.84	27.46	5.46	33.18	105	58	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

	*	2462	102.18	-	_	102.53	27.41	5.44	33.2	315	50	Р	Н
	*	2462	94.49	_		94.84	27.41	5.44	33.2	315	50	A	Н
		2483.8	56.54	-17.46	74	56.8	27.46	5.46	33.18	315	50	P	н
		2483.68	44.34	-9.66	54	44.6	27.46	5.46	33.18	315	50	Α	Н
		2400.00	44.54	-9.00	J-1	77.0	27.40	3.40	33.10	313	30		н
802.11g													н
CH 11	*	2462	99.59	_		99.94	27.41	5.44	33.2	360	356	Р	V
2462MHz	*	2462	91.92	_		92.27	27.41	5.44	33.2	360	356	A	V
					- 74			5.46	33.18		356	P	V
		2483.52	57.25	-16.75		57.51	27.46			360			
		2483.56	43.13	-10.87	54	43.39	27.46	5.46	33.18	360	356	Α	V
													V
													V
Remark	1. No	o other spurious	s found.										
	2. Al	l results are PA	SS against	Peak and	Average lin	nit line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11g (Harmonic @ 3m)

(MHz)		Limit									Pol.
(MHz)		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
4824	39.19	-34.81	74	60.76	31.46	7.58	60.61	100	0	Р	Н
											Н
											Н
											Н
4822	41.75	-32.25	74	63.32	31.46	7.58	60.61	100	0	Р	V
											V
											V
											V
4872	37.64	-36.36	74	58.9	31.56	7.7	60.52	100	0	Р	Н
7309	39.08	-34.92	74	54.34	36.18	9.49	60.93	100	0	Р	Н
											Н
											Н
4872	38.43	-35.57	74	59.69	31.56	7.7	60.52	100	0	Р	V
7309	39.97	-34.03	74	55.23	36.18	9.49	60.93	100	0	Р	V
											V
											٧
4926	36.7	-37.3	74	57.53	31.66	7.93	60.42	100	0	Р	Н
7386	39.47	-34.53	74	54.76	36.37	9.53	61.19	100	0	Р	Н
											Н
											Н
4926	38.33	-35.67	74	59.16	31.66	7.93	60.42	100	0	Р	V
7386	40.62	-33.38	74	55.91	36.37	9.53	61.19	100	0	Р	V
											V
											V
•											
	4872 7309 4872 7309 4926 7386 4926 7386	4872 37.64 7309 39.08 4872 38.43 7309 39.97 4926 36.7 7386 39.47 4926 38.33 7386 40.62 . No other spurious found.	4872 37.64 -36.36 7309 39.08 -34.92 4872 38.43 -35.57 7309 39.97 -34.03 4926 36.7 -37.3 7386 39.47 -34.53 4926 38.33 -35.67 7386 40.62 -33.38	4872 37.64 -36.36 74 7309 39.08 -34.92 74 4872 38.43 -35.57 74 7309 39.97 -34.03 74 4926 36.7 -37.3 74 7386 39.47 -34.53 74 4926 38.33 -35.67 74 7386 40.62 -33.38 74 . No other spurious found.	4872 37.64 -36.36 74 58.9 7309 39.08 -34.92 74 54.34 4872 38.43 -35.57 74 59.69 7309 39.97 -34.03 74 55.23 4926 36.7 -37.3 74 57.53 7386 39.47 -34.53 74 54.76 4926 38.33 -35.67 74 59.16 7386 40.62 -33.38 74 55.91	4872 37.64 -36.36 74 58.9 31.56 7309 39.08 -34.92 74 54.34 36.18 4872 38.43 -35.57 74 59.69 31.56 7309 39.97 -34.03 74 55.23 36.18 4926 36.7 -37.3 74 57.53 31.66 7386 39.47 -34.53 74 54.76 36.37 4926 38.33 -35.67 74 59.16 31.66 7386 40.62 -33.38 74 55.91 36.37	4872 37.64 -36.36 74 58.9 31.56 7.7 7309 39.08 -34.92 74 54.34 36.18 9.49 4872 38.43 -35.57 74 59.69 31.56 7.7 7309 39.97 -34.03 74 55.23 36.18 9.49 4926 36.7 -37.3 74 57.53 31.66 7.93 7386 39.47 -34.53 74 54.76 36.37 9.53 4926 38.33 -35.67 74 59.16 31.66 7.93 7386 40.62 -33.38 74 55.91 36.37 9.53	4872 37.64 -36.36 74 58.9 31.56 7.7 60.52 7309 39.08 -34.92 74 54.34 36.18 9.49 60.93 4872 38.43 -35.57 74 59.69 31.56 7.7 60.52 7309 39.97 -34.03 74 55.23 36.18 9.49 60.93 4926 36.7 -37.3 74 57.53 31.66 7.93 60.42 7386 39.47 -34.53 74 54.76 36.37 9.53 61.19 4926 38.33 -35.67 74 59.16 31.66 7.93 60.42 7386 40.62 -33.38 74 55.91 36.37 9.53 61.19	4872 37.64 -36.36 74 58.9 31.56 7.7 60.52 100 7309 39.08 -34.92 74 54.34 36.18 9.49 60.93 100 4872 38.43 -35.57 74 59.69 31.56 7.7 60.52 100 7309 39.97 -34.03 74 55.23 36.18 9.49 60.93 100 4926 36.7 -37.3 74 57.53 31.66 7.93 60.42 100 7386 39.47 -34.53 74 54.76 36.37 9.53 61.19 100 4926 38.33 -35.67 74 59.16 31.66 7.93 60.42 100 7386 40.62 -33.38 74 55.91 36.37 9.53 61.19 100	4872 37.64 -36.36 74 58.9 31.56 7.7 60.52 100 0 7309 39.08 -34.92 74 54.34 36.18 9.49 60.93 100 0 4872 38.43 -35.57 74 59.69 31.56 7.7 60.52 100 0 7309 39.97 -34.03 74 55.23 36.18 9.49 60.93 100 0 4926 36.7 -37.3 74 57.53 31.66 7.93 60.42 100 0 7386 39.47 -34.53 74 54.76 36.37 9.53 61.19 100 0 7386 40.62 -33.38 74 55.91 36.37 9.53 61.19 100 0	4872 37.64 -36.36 74 58.9 31.56 7.7 60.52 100 0 P 7309 39.08 -34.92 74 54.34 36.18 9.49 60.93 100 0 P 7309 39.97 -34.03 74 55.23 36.18 9.49 60.93 100 0 P 7309 39.97 -34.03 74 55.23 36.18 9.49 60.93 100 0 P 7309 39.97 -34.03 74 57.53 31.66 7.93 60.42 100 0 P 7386 39.47 -34.53 74 54.76 36.37 9.53 61.19 100 0 P 7386 38.33 -35.67 74 59.16 31.66 7.93 60.42 100 0 P 7386 40.62 -33.38 74 55.91 36.37 9.53 61.19 100 0 P

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		2389.65	50.76	-23.24	74	51.38	27.23	5.39	33.24	300	50	Р	Н
		2390	41.21	-12.79	54	41.81	27.23	5.39	33.22	300	50	Α	Н
	*	2412	100.05	-	-	100.57	27.28	5.42	33.22	300	50	Р	Н
	*	2412	92.15	-	-	92.67	27.28	5.42	33.22	300	50	Α	Н
802.11n													Н
HT20													Н
CH 01		2361.84	50.9	-23.1	74	51.68	27.14	5.33	33.25	123	57	Р	V
2412MHz		2389.92	41.28	-12.72	54	41.88	27.23	5.39	33.22	123	57	Α	V
	*	2412	97.9	-	-	98.42	27.28	5.42	33.22	123	57	Р	V
	*	2412	90.16	-	-	90.68	27.28	5.42	33.22	123	57	Α	V
													V
													V
		2389.02	52.09	-21.91	74	52.71	27.23	5.39	33.24	322	59	Р	Н
		2388.12	41.17	-12.83	54	41.79	27.23	5.39	33.24	322	59	Α	Н
	*	2437	100.68	-	-	101.1	27.37	5.42	33.21	322	59	Р	Н
	*	2437	91.82	-	-	92.24	27.37	5.42	33.21	322	59	Α	Н
802.11n		2496.68	51.43	-22.57	74	51.64	27.5	5.46	33.17	322	59	Р	Н
HT20		2486	41.76	-12.24	54	42.02	27.46	5.46	33.18	322	59	Α	Н
CH 06		2333.85	51.09	-22.91	74	51.97	27.05	5.33	33.26	100	59	Р	V
2437MHz		2364.54	41.15	-12.85	54	41.86	27.14	5.39	33.24	100	59	Α	V
	*	2437	99.06	-	-	99.48	27.37	5.42	33.21	100	59	Р	V
	*	2437	91.25	-	-	91.67	27.37	5.42	33.21	100	59	Α	V
		2485.44	51.4	-22.6	74	51.66	27.46	5.46	33.18	100	59	Р	V
		2487.24	41.69	-12.31	54	41.95	27.46	5.46	33.18	100	59	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

							ı			ı	1	1	
	*	2462	100.04	-	-	100.39	27.41	5.44	33.2	315	52	Р	Н
	*	2462	92.32	-	-	92.67	27.41	5.44	33.2	315	52	Α	Н
		2483.76	55.09	-18.91	74	55.35	27.46	5.46	33.18	315	52	Р	Н
		2483.56	43.12	-10.88	54	43.38	27.46	5.46	33.18	315	52	Α	Н
802.11n													Н
HT20													Н
CH 11	*	2462	98.01	-	-	98.36	27.41	5.44	33.2	100	60	Р	V
2462MHz	*	2462	90.31	-	-	90.66	27.41	5.44	33.2	100	60	Α	V
		2484.28	53.93	-20.07	74	54.19	27.46	5.46	33.18	100	60	Р	V
		2483.92	42.93	-11.07	54	43.19	27.46	5.46	33.18	100	60	Α	V
													V
-													V
		1		1			1	1	1	1	1		l

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/
		4824	34.97	-39.03	74	56.54	31.46	7.58	60.61	100	0	Р	Н
													Н
802.11n													Н
HT20													Н
CH 01		4824	38.32	-35.68	74	59.89	31.46	7.58	60.61	100	0	Р	V
2412MHz													V
													V
													V
		4874	33.94	-40.06	74	55.2	31.56	7.7	60.52	100	0	Р	Н
		7311	39.96	-34.04	74	55.22	36.18	9.49	60.93	100	0	Р	Н
802.11n													Н
HT20													Н
CH 06		4874	35	-39	74	56.26	31.56	7.7	60.52	100	0	Р	٧
2437MHz		7311	40.15	-33.85	74	55.41	36.18	9.49	60.93	100	0	Р	V
													V
													٧
		4924	35.4	-38.6	74	56.23	31.66	7.93	60.42	100	0	Р	Н
		7386	39.88	-34.12	74	55.17	36.37	9.53	61.19	100	0	Р	Н
802.11n													Н
HT20													Н
CH 11		4924	36.29	-37.71	74	57.12	31.66	7.93	60.42	100	0	Р	V
2462MHz		7386	39.3	-34.7	74	54.59	36.37	9.53	61.19	100	0	Р	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B9 of B15

2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		2371.92	50.79	-23.21	74	51.45	27.19	5.39	33.24	323	57	Р	Н
		2333.49	41.84	-12.16	54	42.72	27.05	5.33	33.26	323	57	Α	Н
	*	2422	97.22	-	-	97.69	27.32	5.42	33.21	323	57	Р	Н
	*	2422	89.8	-	-	90.27	27.32	5.42	33.21	323	57	Α	Н
802.11n		2485.4	51.96	-22.04	74	52.22	27.46	5.46	33.18	323	57	Р	Н
HT40		2484.56	42.78	-11.22	54	43.04	27.46	5.46	33.18	323	57	Α	Н
CH 03		2332.77	51.58	-22.42	74	52.46	27.05	5.33	33.26	108	58	Р	٧
2422MHz		2327.73	41.81	-12.19	54	42.69	27.05	5.33	33.26	108	58	Α	٧
	*	2422	95.32	-	-	95.79	27.32	5.42	33.21	108	58	Р	٧
	*	2422	87.75	-	-	88.22	27.32	5.42	33.21	108	58	Α	٧
		2485.96	51.21	-22.79	74	51.47	27.46	5.46	33.18	108	58	Р	٧
		2485.4	42.65	-11.35	54	42.91	27.46	5.46	33.18	108	58	Α	٧
		2388.03	51.36	-22.64	74	51.98	27.23	5.39	33.24	320	51	Р	Н
		2358.87	42.05	-11.95	54	42.83	27.14	5.33	33.25	320	51	Α	Н
	*	2437	96.84	-	-	97.26	27.37	5.42	33.21	320	51	Р	Н
	*	2437	89.53	-	-	89.95	27.37	5.42	33.21	320	51	Α	Н
802.11n		2484.52	51.37	-22.63	74	51.63	27.46	5.46	33.18	320	51	Р	Н
HT40		2483.56	43.53	-10.47	54	43.79	27.46	5.46	33.18	320	51	Α	Н
CH 06		2362.83	51.17	-22.83	74	51.95	27.14	5.33	33.25	100	58	Р	V
2437MHz		2381.55	42.19	-11.81	54	42.85	27.19	5.39	33.24	100	58	Α	V
	*	2437	95.75	-	-	96.17	27.37	5.42	33.21	100	58	Р	V
	*	2437	87.84	-	-	88.26	27.37	5.42	33.21	100	58	Α	V
		2485.48	52.26	-21.74	74	52.52	27.46	5.46	33.18	100	58	Р	V
		2483.8	42.85	-11.15	54	43.11	27.46	5.46	33.18	100	58	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

		2324.49	51.07	-22.93	74	51.95	27.05	5.33	33.26	311	45	Р	Н
		2360.49	41.9	-12.1	54	42.68	27.14	5.33	33.25	311	45	Α	Н
	*	2452	96.96	-	-	97.35	27.37	5.44	33.2	311	45	Р	Н
	*	2452	89.46	-	-	89.85	27.37	5.44	33.2	311	45	Α	Н
802.11n		2484.08	59.01	-14.99	74	59.27	27.46	5.46	33.18	311	45	Р	Н
HT40		2483.6	48.44	-5.56	54	48.7	27.46	5.46	33.18	311	45	Α	Н
CH 09		2386.68	50.85	-23.15	74	51.47	27.23	5.39	33.24	100	57	Р	V
2452MHz		2384.34	41.87	-12.13	54	42.53	27.19	5.39	33.24	100	57	Α	V
	*	2452	95.93	-	-	96.32	27.37	5.44	33.2	100	57	Р	V
	*	2452	88.23	-	-	88.62	27.37	5.44	33.2	100	57	Α	V
		2483.68	58.04	-15.96	74	58.3	27.46	5.46	33.18	100	57	Р	V
		2483.64	46.24	-7.76	54	46.5	27.46	5.46	33.18	100	57	Α	V

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

Ant. 1 802.11n HT40	(MHz) 4844	(dBµV/m)	Limit	Line	Level	_	_		_		1	1
802.11n		(dBµV/m)			Levei	Factor	Loss	Factor	Pos	Pos	Avg.	
	4844		(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		33.66	-40.34	74	55.05	31.49	7.7	60.58	100	0	Р	Н
	7266	39.32	-34.68	74	54.58	36.11	9.46	60.83	100	0	Р	Н
HT40												Н
												Н
CH 03	4844	34.49	-39.51	74	55.88	31.49	7.7	60.58	100	0	Р	V
2422MHz	7266	39.65	-34.35	74	54.91	36.11	9.46	60.83	100	0	Р	V
												V
												V
	4874	34.72	-39.28	74	55.98	31.56	7.7	60.52	100	0	Р	Н
	7311	38.78	-35.22	74	54.04	36.18	9.49	60.93	100	0	Р	Н
802.11n												Н
HT40												Н
CH 06	4874	35.2	-38.8	74	56.46	31.56	7.7	60.52	100	0	Р	V
2437MHz	7311	39.89	-34.11	74	55.15	36.18	9.49	60.93	100	0	Р	V
												V
												V
	4904	35.29	-38.71	74	56.3	31.63	7.82	60.46	100	0	Р	Н
	7356	39.89	-34.11	74	55.17	36.3	9.51	61.09	100	0	Р	Н
802.11n												Н
HT40												Н
CH 09	4904	36.32	-37.68	74	57.33	31.63	7.82	60.46	100	0	Р	V
2452MHz	7356	39.93	-34.07	74	55.21	36.3	9.51	61.09	100	0	Р	V
												V
												V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B12 of B15

Emission below 1GHz

2.4GHz WIFI 802.11n HT40 (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		31.08	23.16	-16.84	40	29.79	25.54	0.65	32.82	-	-	Р	Н
		162.03	20.95	-22.55	43.5	35.47	16.84	1.33	32.69	-	-	Р	Н
		277.86	19.17	-26.83	46	30.82	19.32	1.76	32.73	-	-	Р	Н
		601	26.37	-19.63	46	31.32	25.51	2.57	33.03	ı	-	Р	Н
		744.5	29.1	-16.9	46	31.75	27.38	2.91	32.94	-	-	Р	Н
		941.9	31.52	-14.48	46	30.28	29.8	3.29	31.85	100	25	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
802.11n													Н
HT40		59.16	32.12	-7.88	40	51.62	12.32	0.93	32.75	100	57	Р	V
LF		162.03	21.32	-22.18	43.5	35.84	16.84	1.33	32.69	-	-	Р	V
		260.85	19.05	-26.95	46	30.26	19.76	1.76	32.73	-	-	Р	V
		384	25.9	-20.1	46	34.57	22.02	2.13	32.82	-	-	Р	V
		536.6	25.58	-20.42	46	31.65	24.42	2.47	32.96	-	-	Р	V
		941.9	31.32	-14.68	46	30.08	29.8	3.29	31.85	-	-	Р	V
													V
													V
													V
													V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B13 of B15

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not					
	exceed the level of the fundamental frequency.					
!	Test result is over limit line.					
P/A	Peak or Average					
H/V	Horizontal or Vertical					

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix C. Radiated Spurious Emission Plots

Test Engineer :	Tsung Lee and Donny Tang	Temperature :	23~25°C
rest Engineer.	Tsung Lee and Donny rang	Relative Humidity :	45~48%

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11b CH06 2437MHz - R 1 Horizontal Vertical Peak : 03CHI0-HY request; (unit) : FCC CLASS-B (AV6) 3m HORN 9I20D-HF HORIZONTAL : BRW:1000,000KHz VBW:0.300KHz SWT:Auto : Peak : 630II0-01 :10 : 03CH10-HY
: FCC CLASS-B (AV6) 3m HORN 91200-HF VERTICAL
: RBW:1000.000KHz VBW:0.300KHz SWT:Auto
: Peak
: 630110-01 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11b CH11 2462MHz 1 Vertical Horizontal Peak : 03CH10-HY
: FCC CLASS-B (AV6) 3m HORN 91200-HF VERTICAL
: RBW:1000.000KHz VBW:0.300KHz SWT:Auto
: Peak
: 630110-01
: 11 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11g (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11g CH06 2437MHz - R 1 Horizontal Vertical Peak : 03CHI0-HV request; (Mirt)
: FCC CLASS-B (AV6) 3m HORN 9120D-HF HORIZONTAL
: RBW:1000.000KHz VBW:L000KHz SWT-Au10
: Peak
: 630110-01
: 13 : 03CH10-HY
: FCC CLASS-B (AV6) 3m HORN 91200-HF VERTICAL
: RBW:1000.000KHz VBW:1.000KHz SWT:Auto
: Peak
: 630110-01 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11g CH11 2462MHz 1 Vertical Horizontal Peak : 03CHI0-HV request; (Mirz)
: FCC CLASS-B (AV6) 3m HORN 9120D-HF HORIZONTAL
: RBW:1000.000KHz VBW:L000KHz SWT-Au10
: Peak
: 630110-01
: 14 : 03CHI0-HY
: FCC CLASS-B (AVG) 3m HORN 9120D-HF VERTICAL
: RBW:1000.000KHz VBW:1.000KHz SWT:Auto
: Peak
: 630110-01
: 14 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11n HT20 CH06 2437MHz - R 1 Horizontal Vertical Peak : 03CHI0-HY request; (wirt)
: FCC CLASS-B (AV6) 3m HORN 9120D-HF HORIZONTAL
: RBW:1000,000KHz VBW:1,000KHz SWT:Auto
: Peak
: 630110-01
: 16 : 03CH10-HY
: FCC CLASS-B (AV6) 3m HORN 91200-HF VERTICAL
: RBW:1000.000KHz VBW:1.000KHz SWT:Auto
: Peak
: 630110-01 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11n HT20 CH11 2462MHz 1 Horizontal Vertical Peak : 03CHI0-HV request; (Mirz)
: FCC CLASS-B (AV6) 3m HORN 9I20D-HF HORIZONTAL
: RBW:1000.000KHz VBW:L000KHz SWT-Au10
: Peak
: 630110-01
: 17 : 03CH10-HY
: FCC CLASS-B (AV6) 3m HORN 91200-HF VERTICAL
: RBW:1000.000KHz VBW:1.000KHz SWT:Auto
: Peak
: 630110-01
: 17 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11n HT40 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m **ANT** 802.11n HT40 CH06 2437MHz - L 1 Horizontal Vertical Peak : 03CH10-HY : requescy (wirz)
: FCC CLASS-B (AV6) 3m HORN 9120b-HF HORIZONTAL
: RBW:1000000KHz VBW:3.000KHz SWT:Auto
: Peak
: 630110-01
: 19 : 03CHI0-HV Prequency (until)
: FCC CLASS-B (AV6) 3m HORN 9120D-HF VERTICAL
: RBW:1000.000KHz VBW:3.000KHz SWT:Auto
: Peak
: 6301I0-01
: 19 Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

WIFI 802.11b (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No. : FR630110-01C

WIFI 802.11g (Harmonic @ 3m)

CC RF Test Report No.: FR630110-01C

Report No. : FR630110-01C

WIFI 802.11n HT20 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

: C26 of C32

Report No. : FR630110-01C

WIFI 802.11n HT40 (Harmonic @ 3m)

Emission below 1GHz

2.4GHz WIFI 802.11n HT40 (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
802.11b	97.14	8160	0.12	300Hz
802.11g	86.08	1360	0.74	1kHz
2.4GHz 802.11n HT20	86.49	1280	0.78	1kHz
2.4GHz 802.11n HT40	75.45	630	1.59	3kHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR630110-01C

Date: 9.MAY.2016 16:08:16

802.11g

Date: 9.MAY.2016 16:14:16

Report No.: FR630110-01C

802.11n HT20

Date: 9.MAY.2016 16:22:59

802.11n HT20

Date: 12.MAY.2016 17:09:43