1.Consider the data set and perform the Apriori Algorithm and FP algorithm support:3 and confidence=50%

Customer ID	Transaction ID	Items Bought
1	0001	$\{a,d,e\}$
1	0024	$\{a,b,c,e\}$
2	0012	$\{a, b, d, e\}$
2	0031	$\{a, c, d, e\}$
3	0015	$\{b, c, e\}$
3	0022	$\{b,d,e\}$
4	0029	$\{c,d\}$
4	0040	$\{a,b,c\}$
5	0033	$\{a,d,e\}$
5	0038	$\{a,b,e\}$

Input:

- @relation dataset
- @attribute a{true,false}
- @attribute b{true,false}
- @attribute c{true,false}
- @attribute d{true,false}
- @attribute e{true,false}
- @data

true false false true true true true true false true true true false true true true false true true false true true false true false true false true false true false true false true true false true true false true true false false true true false false true true true true false false true true true false false false true

output:

FPGROWTH:

APRIORI ALGORITHM:

2.Consider the data set and perform the Apriori Algorithm and FP algorithm support:3 and confidence=50%

Consider the market basket transactions shown in the above table.

- (a) What is the maximum number of association rules that can be extracted from this data (including rules that have zero support)?
- (b) What is the maximum size of frequent itemsets that can be extracted (assuming minsup > 0)?

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

Apriori algorithm:

Fp growth algorithm:

3. Bayes classification and descion tree (using training and test data)

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes _.
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

Input:

@relation decision_tree

@attribute age{young,middle,old}

@attribute income{low,medium,high}

@attribute student{yes,no}

@attribute Creit_rating{fair,excellent}

@attribute class{yes,no}

@data

young high no fair no
young high no excellent no
middle high no fair yes
old medium no fair yes
old low yes fair yes
old low yes excellent no
middle low yes excellent yes
young medium no fair no
young low yes fair yes
old medium yes fair yes
young medium yes excellent yes
middle medium no excellent yes
middle high yes fair yes
old medium no excellent no

output:

tree:

4. Analysis the dataset "diabetes. csv" how the diabetes trend is for different age people, using linear regression and multiple regression.

Input:

```
data<-read.csv("C:/Users/Hari Naidu/Desktop/POM/download papers/diabetes.csv") data relation<-lm(data$Age~data$Outcome) relation relation<-lm(data$Age~data$Outcome+data$BMI)
```

relation

output:

5.Implement using WEKA for the given Suppose a database has five transactions. Let min $\sup 50\%(2)$ and min con f = 80%.

Transactions	Items
T1	(M, O, N, K, E, Y)
T2	(D, O, N, K, E, Y)
T3	(M, A, K, E)
T4	(M, U, C, K, Y)
T5	(C,O,O,K,I,E)

- Find all frequent item sets using Apriori algorithm
- Also draw FP-Growth Tree

Input:

Apriori algorithm:

Fpgrowth algorithm:

6. Prediction of Categorical Data using Decision Tree Algorithm through WEKA using any datasets. a) Tree b) Preprocess c) Logistic

Output:

Tree:

Preprocessor:

Logistic:

7.Create the dataset using ARFF file format:

Transaction ID	Items
T1	Hot Dogs, Buns, Ketchup
T2	Hot Dogs, Buns
T3	Hot Dogs, Coke, Chips
T4	Chips, Coke
T5	Chips, Ketchup
T6	Hot Dogs, Coke, Chips

a. Find the **frequent itemsets** and generate **association rules** on this. Assume that minimum support threshold (s = 33.33%) and minimum confident threshold (c = 60%). b. List the various rule generated by apriori and FP tree algorithm, mention wheather accepted or rejeted.

Input:

- @relation hotdogs
- @attribute hotdogs {t,f}
- @attribute buns {t,f}
- @attribute ketchup {t,f}
- @attribute coke{t,f}
- @attribute chips \{t,f\}
- @data
- tttff
- ttfff

```
tfftt
ffftt
fftft
tfftt
```

output:

apriori algorithm:

Fp growth:

8.Prediction of Categorical Data using Rule base classification and decision tree classification through WEKA using any datasets. Compare the accuracy using two algorithm and plot the graph

Input:

@relation decision_tree

@attribute age{young,middle,old}

@attribute income{low,medium,high}

@attribute student{yes,no}

@attribute Creit rating{fair,excellent}

@attribute class{yes,no}

@data

young high no fair no
young high no excellent no
middle high no fair yes
old medium no fair yes
old low yes fair yes
old low yes excellent no
middle low yes excellent yes
young medium no fair no
young low yes fair yes
old medium yes fair yes
young medium yes excellent yes
middle medium no excellent yes
middle high yes fair yes
old medium no excellent no

Output:

Rule based classification:

Decision tree:

