

Екзамен з Лінійної Алгебри

Екзаменаційна робота з Лінійної Алгебри

Студента 2 курсу групи МП-21

Захарова Дмитра

Завдання 1.

1.1. Наведіть приклад симетричного многочлена від трьох змінних, який містить доданок $x_1^4x_2^5$.

Для того щоб навести відповідь на це запитання, сформулюємо означення симетричного многочлена.

Означення. Поліном $P(x_1,x_2,\ldots,x_n)$ називається симетричним, якщо

$$orall \sigma \in S_n: P(x_1, x_2, \ldots, x_n) = P(x_{\sigma_1}, x_{\sigma_2}, \ldots, x_{\sigma_n})$$

3 умови маємо, що наш многочлен має вид $P(x_1,x_2,x_3)=x_1^4x_2^5+R(x_1,x_2,x_3)$ і він має бути симетричним. Отже, нам потрібно, щоб цей многочлен також мав член $x_1^5x_2^4$, бо якщо ми переставимо x_1,x_2 місцями, то повинні отримати той самий результат. Отже, як мінімум, маємо взяти $P(x_1,x_2,x_3)=x_1^4x_2^5+x_1^5x_2^4+$ щось. Проте, ми ще не врахували, що перед нами многочлен від трьох змінних, бо якщо ми, наприклад, візьмемо перестановку $\sigma=\begin{bmatrix}1&2&3\\2&3&1\end{bmatrix}$, то в нас буде

$$P(x_2,x_3,x_1) = x_2^4 x_3^5 + x_2^5 x_3^4
eq x_1^4 x_2^5 + x_1^5 x_2^4 = P(x_1,x_2,x_3)$$

Отже, додамо ще члени $x_1^4x_3^5, x_1^5x_3^4, x_2^4x_3^5, x_2^5x_3^4$, тобто будемо мати

$$P(x_1,x_2,x_3) = x_1^4 x_2^5 + x_1^5 x_2^4 + x_1^4 x_3^5 + x_1^5 x_3^4 + x_2^4 x_3^5 + x_2^5 x_3^4$$

Такий многочлен вже ε симетричним. Давайте для впевненості перервіримо на підстановці (*зауваження*: це не строге доведення) $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$:

$$P(x_2, x_3, x_1) = x_2^4 x_3^5 + x_2^5 x_3^4 + x_2^4 x_1^5 + x_2^5 x_1^4 + x_3^4 x_1^5 + x_3^5 x_1^4$$

Бачимо, що дійсно $P(x_1, x_2, x_3) = P(x_2, x_3, x_1)$.

1.2. Вкажіть старший член цього многочлен в лексикографічному порядку.

Також сформуємо що означає, що деякий моном $x_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$ є старшим членом в поліномі $P(x_1,x_2,\dots,x_n)$.

Означення. Моном $x_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$ є старшим членом в поліномі $P(x_1,x_2,\dots,x_n)$ якщо для будь-якого іншого монома $x_1^{\beta_1}x_2^{\beta_2}\dots x_n^{\beta_n}$ цього полінома виконується

$$(lpha_1>eta_1)ee(lpha_1=eta_1\wedgelpha_2>eta_2)ee\cdotsee(lpha_1=eta_1\wedgelpha_2=eta_2\wedge\cdots\wedgelpha_n>eta_n)$$

Отже, в нашому конкретному випадку старшим членом є $x_1^5x_2^4$. По-перше, ступінь x_1 , що дорівнює 5, є більшою за усі члени окрім $x_1^5x_3^4$. Проте, ступінь x_2 у мономі $x_1^5x_2^4$ дорівнює 4, що вочевидь більше за 0 у випадку $x_1^5x_3^4$. Тобто за лексикографічним порядком $x_1^5x_2^4$ є старшим за $x_1^5x_3^4$.

1.3. Наведіть приклад симетричного многочлена від трьох змінних, старший член якого в лексикографічному порядку дорівнює $x_1^2x_2^2$.

Аби $x_1^2x_2^2$ був старшим членом в лексикографічному порядку многочлена $P(x_1,x_2,x_3)$, додамо ще члени $x_1^2x_3^2,x_2^2x_3^2$, тобто

$$P(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2$$

Вочевидь, це ε симетричним многочленом і член $x_1^2x_2^2$ ε в ньому старшим.

1.4. Сформулюйте та доведіть теорему Вієта для комплексних многочленів.

Теорема. Нехай $T(z) \in \mathbb{C}[z], \ \deg T =: n \in \mathbb{N}$. Запишемо цей многочлен у 2 виглядах (це можна зробити за основною теоремою алгебри):

$$egin{aligned} T(z) &= lpha \prod_{k=1}^n (z-z_k), \ z_j \in \mathbb{C} \ T(z) &= \sum_{k=0}^n eta_k z^k, \ eta_k \in \mathbb{C} \end{aligned}$$

В такому разі

$$\sigma_k(z_1,\ldots,z_n)=(-1)^krac{eta_{n-k}}{eta_n},\;k=\overline{1,n}$$

Доведення. Прирівняємо обидва записи T(z):

$$lpha\prod_{k=1}^n(z-z_k)=\sum_{k=0}^neta_kz^k$$

Прирівняємо коефіцієнти при степенях z зліва і справа. При z^n праворуч маємо β_n , а зліва просто α , тому $\beta_n=\alpha$.

При z^{n-1} праворуч маємо eta_{n-1} , а ліворуч

$$lpha(-z_1-z_2-\cdots-z_n)=-lpha\sum_{k=1}^n z_j=-lpha\sigma_1(z_1,z_2,\ldots,z_n)$$

Отже $lpha\sigma_1(z_1,\ldots,z_n)=eta_{n-1}\implies\sigma_1(z_1,\ldots,z_n)=-rac{eta_{n-1}}{lpha}.$

При z^{n-2} праворуч маємо eta_{n-2} , а ліворуч

$$lpha(z_1z_2+z_1z_3+\cdots+z_1z_n+z_2z_3+\cdots+z_2z_n+\cdots+z_{n-1}z_n)=\ lpha\sum_{i< j}^n z_iz_j=lpha\sigma_2(z_1,z_2,\ldots,z_n)$$

Отже бачимо, що $\sigma_2(z_1,\ldots,z_n)=rac{eta_{n-2}}{lpha}$. Далі знову, акуратно виписуючи суму, ліворуч отримаємо $-\alpha\sum_{i< j< k}^n z_iz_jz_k=-\alpha\sigma_3(z_1,\ldots,z_n)$, що дорівнює eta_{n-3} , отже

$$\sigma_3(z_1,\ldots,z_n)=-rac{eta_{n-3}}{lpha}$$

Продовжуючи далі, в загальному випадку, отримаємо

$$\sigma_k(z_1,\ldots,z_n)=(-1)^krac{eta_{n-k}}{eta_n}$$

Що і потрібно було довести.

Завдання 2.

2.1. Доведіть теорему про опис унітарних операторів в двовимірному дійсному просторі.

Спочатку наведемо визначення, який оператор називають унітарним.

Означення. Нехай E — евклідів простір, $\dim E=:n\in\mathbb{N}$ і маємо деякий лінійний оператор $\mathbf{U}:E\to E$. Цей лінійний оператор ε унітарним, якщо $\mathbf{U}\mathbf{U}^*=\mathbf{U}^*\mathbf{U}=\mathbf{E}$.

Тепер окремо розглядаємо випадок $E=\mathbb{R}^2$. Доведемо теорему про опис унітарних операторів в двовимірному дійсному просторі.

Теорема. Будь-який унітарний лінійний оператор $\mathbf{U}: \mathbb{R}^2 \to \mathbb{R}^2$ можна подати у вигляді

$$\mathbf{U} = egin{bmatrix} \cos \psi & -\sin \psi \ \sin \psi & \cos \psi \end{bmatrix}$$
 aбо $\mathbf{U} = egin{bmatrix} -\cos \psi & \sin \psi \ \sin \psi & \cos \psi \end{bmatrix}$

Доведення. Нехай маємо $\mathbf{e}_1, \mathbf{e}_2 \in E$ — ортонормований базис, $\mathbf{U} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ — матриця оператора в цьому базисі. Запишемо умову $\mathbf{U}\mathbf{U}^* = \mathbf{U}^*\mathbf{U} = \mathbf{E}$:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Тобто маємо умову

$$\begin{cases} a^{2} + b^{2} = 1 \\ ac + bd = 0 \\ c^{2} + d^{2} = 1 \end{cases}$$

Якщо $a^2+b^2=1$, то $\exists \phi\in\mathbb{R}: a=\cos\phi, b=\sin\phi$. Аналогічно для умови $c^2+d^2=1$ маємо, що $\exists \psi\in\mathbb{R}: c=\sin\psi, d=\cos\psi$. Підставивши у друге рівняння, отримаємо

$$\cos \phi \sin \psi + \cos \psi \sin \phi = 0 \implies \sin(\phi + \psi) = 0$$

Тобто ми отримали, що $\phi + \psi = \pi k, k \in \mathbb{Z}$. Розглянемо два випадки:

Випадок 1. $\phi+\psi=2\pi k, k\in\mathbb{Z}$. В такому випадку маємо $\phi=2\pi k-\psi$ і тоді

$$\cos\phi=\cos(2\pi k-\psi)=\cos\psi,\ \sin\phi=\sin(2\pi k-\psi)=-\sin\psi$$

I таким чином наш оператор має вид

$$\mathbf{U} = egin{bmatrix} \cos \psi & -\sin \psi \ \sin \psi & \cos \psi \end{bmatrix}$$

Це ε матрицею повороту на кут ψ проти годинникової стрілки.

Випадок 2. $\phi+\psi=\pi+2\pi k, k\in\mathbb{Z}$. Звідси $\phi=-\psi+\pi+2\pi k, k\in\mathbb{Z}$. Звідси маємо

$$\cos\phi = \cos(-\psi + \pi + 2\pi k) = -\cos\psi, \ \sin\phi = \sin(-\psi + \pi + 2\pi k) = \sin\psi$$

Отже оператор буде мати вигляд

$$\mathbf{U} = egin{bmatrix} -\cos\psi & \sin\psi \ \sin\psi & \cos\psi \end{bmatrix}$$

З'ясуємо, що це за оператор. Знайдемо власні числа, тобто розглянемо характеристичний поліном

$$\chi_{U}(\lambda) = \det egin{bmatrix} -\cos\psi - \lambda & \sin\psi \ \sin\psi & \cos\psi - \lambda \end{bmatrix}$$

Тобто $\chi_U(\lambda)=(\lambda+\cos\psi)(\lambda-\cos\psi)-\sin^2\psi=\lambda^2-\cos^2\psi-\sin^2\psi=\lambda^2-1$ і звідси маємо $\lambda_{1,2}=\pm 1$. Отже, існує ортонормований базис $\mathbf{u}_1,\mathbf{u}_2$, в якому матриця має вид

$$\mathbf{U}_u = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

Що ε оператором симетрії відносно $\mathrm{Lin}\{\mathbf{u}_1\}$.

2.2. Наведіть приклад лінійного оператора в \mathbb{R}^2 , який не ε унітарним.

Насправді, достатньо взяти будь-який оператор ${f T}$, який не можна подати у виді, зазначеному у теоремі в пункті 2.1. Наприклад, нехай ${f T}=egin{bmatrix}1&2\\3&4\end{bmatrix}$. Тоді

$$\mathbf{TT}^* = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix} egin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix} = egin{bmatrix} 5 & 11 \ 11 & 25 \end{bmatrix}
eq \mathbf{E}$$

2.3. Опишіть лінійні оператори в \mathbb{R}^2 , які є одночасно унітарними і самоспряженими.

Введемо означення самоспряженого оператора.

Означення. Оператор $\mathbf{T}:E o E$ ε самоспряженим, якщо $\mathbf{T}=\mathbf{T}^*$ або ж

$$orall \mathbf{x}, \mathbf{y} \in E : \langle \mathbf{T}\mathbf{x}, \mathbf{y}
angle = \langle \mathbf{x}, \mathbf{T}\mathbf{y}
angle$$

Отже, якщо деякий оператор ${f U}$ ${f \varepsilon}$ унітарним, то за означенням

$$\mathbf{U}\mathbf{U}^* = \mathbf{U}^*\mathbf{U} = \mathbf{E}$$

Проте $\mathbf{U}=\mathbf{U}^*$, тому $\mathbf{U}^2=\mathbf{E}$. Розглянемо 2 випадки.

Випадок 1.
$$\mathbf{U} = egin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix}$$
. В такому разі

$$\mathbf{U}^2 = egin{bmatrix} \cos 2\psi & -\sin 2\psi \ \sin 2\psi & \cos 2\psi \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \implies egin{bmatrix} \cos 2\psi = 1 \ \sin 2\psi = 0 \end{bmatrix}$$

Ця умова означає $2\psi=2\pi k, k\in\mathbb{Z} o \psi=\pi k, k\in\mathbb{Z}$. Тому якщо підставити у вираз \mathbf{U} :

$$\mathbf{U} = egin{bmatrix} \cos \pi k & -\sin \pi k \ \sin \pi k & \cos \pi k \end{bmatrix} = egin{bmatrix} (-1)^k & 0 \ 0 & (-1)^k \end{bmatrix}, \ k \in \mathbb{Z}$$

Отже маємо або $\mathbf{U} = \mathbf{E}$, або $\mathbf{U} = -\mathbf{E}$.

Випадок 2.
$$\mathbf{U} = egin{bmatrix} \cos \psi & \sin \psi \\ \sin \psi & -\cos \psi \end{bmatrix}$$
. В такому разі

$$\begin{aligned} \mathbf{U}^2 &= \begin{bmatrix} \cos \psi & \sin \psi \\ \sin \psi & -\cos \psi \end{bmatrix} \begin{bmatrix} \cos \psi & \sin \psi \\ \sin \psi & -\cos \psi \end{bmatrix} \\ &= \begin{bmatrix} \cos^2 \psi + \sin^2 \psi & \cos \psi \sin \psi - \sin \psi \cos \psi \\ \sin \psi \cos \psi - \cos \psi \sin \psi & \sin^2 \psi + \cos^2 \psi \end{bmatrix} = \mathbf{E} \end{aligned}$$

Отже для будь-якої матриці такого виду маємо $\mathbf{U}^2 = \mathbf{E}$.

Висновок: Лінійні оператори в \mathbb{R}^2 , які є одночасно унітарними і самоспряженими можна подати у вигляді

$$\mathbf{U}(\psi) = egin{bmatrix} \cos \psi & \sin \psi \ \sin \psi & -\cos \psi \end{bmatrix}$$

Приклад. Нехай $\psi=\pi/4$. Тоді $\mathbf{U}(\pi/4)=egin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$. Видно, що $\mathbf{U}=\mathbf{U}^*$,

тобто оператор є самоспряженим, а також, вочевидь, унітарним згідно пункту 2.1.

Завдання 3.

3.1. Доведіть, що мінімальний многочлен жорданової клітинки співпадає з її характеристичним многочленом.

Спочатку введемо означення мінімального многочлена.

Означення. Нехай ми маємо матрицю $\mathbf{A} \in F^{n \times n}$. Розглянемо множину \mathcal{P} поліномів $P \in F[X]$ над полем F таких, що $P(\mathbf{A}) = 0$ і старший член яких дорівнює 1. В такому разі мінімальним многочленом $\mu_A \in F[X]$ називають такий многочлен, що

$$\mu_A \in \mathcal{P} \wedge \deg \mu_A = \min\{\deg p \mid p \in \mathcal{P}\}$$

Тобто іншими словами, степінь μ_A мінімальна серед многочленів з \mathcal{P} .

Отже, нам потрібно довести наступне твердження.

Твердження. Нехай маємо жорданову клітинку $\mathbf{J}_n(w) \in F^{n \times n}, w \in F$. В такому разі маємо $\chi_J \equiv \mu_J$, де $\chi_J \in F[\lambda]$ — характеристичний многочлен, $\mu_J \in F[\lambda]$ — мінімальний многочлен.

Доведення. Отже, жорданова клітинка $\mathbf{J}_n(w) \in F^{n imes n}$ за означенням має вид:

$$\mathbf{J}_n(w) = egin{bmatrix} w & 1 & 0 & 0 & \dots & 0 \ 0 & w & 1 & 0 & \dots & 0 \ 0 & 0 & w & 1 & \dots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \dots & w \end{bmatrix}$$

Знайдемо детермінант цієї матриці (це нам знадобиться згодом) і позначимо $\Delta_J(w)$. Отже, розкладемо детермінант за останнім рядком (через Δ_k будемо позначати детермінант правого нижнього кутового мінора розміра k):

$$\Delta_n = w \Delta_{n-1} - \det egin{bmatrix} 0 & \dots \ 0 & \dots \ dots & dots \ 0 & \dots \end{bmatrix}$$

У другої матриці детермінант 0, оскільки маємо стовпець з нулей. Отже, $\Delta_n=w\Delta_{n-1}$ звідси доволі очевидно, що $\Delta_J(w)=w^n$, оскільки $\Delta_1=w$.

Тепер випишемо характеристичний поліном. За означенням $\chi_J(\lambda) = \det(\mathbf{J}_n - \lambda \mathbf{E}) = \det \mathbf{J}_n(w - \lambda) = \Delta_J(w - \lambda)$, тобто $\chi_J(\lambda) = (w - \lambda)^n$, звідки маємо єдине власне число $\lambda = w$ ступеня n.

Отже мінімальний многочлен має вид $\mu_J(X)=(X-w)^k$, де потрібно знайти мінімальне $k=\overline{1,n}$ таке, що $({f J}_n(w)-w{f E})^k=0$. Помітимо, що

$$\mathbf{J}_n(w) - w\mathbf{E} = egin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \ 0 & 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix} =: \mathbf{I}$$

Отже знайдемо
$$\mathbf{I}^2$$
. Маємо $\mathbf{I}^2=\begin{bmatrix}0&0&1&0&\dots&0\\0&0&0&1&\dots&0\\0&0&0&\dots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\dots&0\end{bmatrix}$. Якщо зробити це ще

один раз, то отримаємо

$$\mathbf{I}^3 = egin{bmatrix} 0 & 0 & 0 & 1 & \dots & 0 \ 0 & 0 & 0 & 0 & \dots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Отже, бачимо, що після кожного домноження на ${f I}$ «сходинка» з одиниць зміщується на одну одиницю "праворуч". При цьому довжина зменшується на ${f 1}$. Таким чином, якщо на початку її довжина дорівнювала n-1, то після n-1 кроків отримаємо

$$\mathbf{I}^{n-1} = egin{bmatrix} 0 & 0 & 0 & 0 & \dots & 1 \ 0 & 0 & 0 & 0 & \dots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Тобто в верхньому правому кутку маємо 1, в усіх інших позиціях 0. Таким чином, вочевидь,

$$\mathbf{T}^n = 0$$

Тобто $\{(\mathbf{J}_n(w)-w\mathbf{E})^n=0\}\wedge \{\forall k=\overline{1,(n-1)}: (\mathbf{J}_n(w)-w\mathbf{E})^k\neq 0\}$, звідки ми робимо висновок, що $\mu_J(X)=(X-w)^n$ є мінімальним многочленом.

Отже бачимо, що $\chi_J \equiv \mu_J$.

3.2. Сформулюйте теорему про зв'язок мінімального многочлена лінійного оператора з його жордановою формою.

Теорема. Нехай матриця лінійного оператора ${f A}$ має мінімальний многочлен у вигляді

$$\mu_A(X) = \prod_{k=1}^n (X-\lambda_k)^{eta_k}$$

Причому $\lambda_1,\lambda_2,\ldots,\lambda_n$ попарно різні. В такому разі ступінь $\beta_j\in\mathbb{N},j=\overline{1,n}$ показує максимальний розмір жорданового блоку $\mathbf{J}(\lambda_k)$.

3.3. Наведіть приклад лінійного оператора, у якого характеристичний многочлен дорівнює квадрату (кубу) мінімального.

Нехай характеристичний многочлен дорівнює $\chi_A(\lambda)=(\lambda-2)^2$ і відповідно $\mu_A(X)=X-2$ — мінімальний многочлен. Тоді оскільки $\lambda=2$ — власне число порядку 2, то візьмемо наступну матрицю:

$$\mathbf{A} = egin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}$$

I насправді звідси доволі добре видно, що $\mu_A(X)=X-2$ є мінімальним, оскільки ${f A}-2{f E}=0.$

Для кубу можна аналогічно запропонувати, наприклад:

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

В такому разі характеристичний многочлен, очевидно, $\chi_A(\lambda)=(\lambda-3)^3$, а мінімальний многочлен $\mu_A(X)=X-3$, бо $\mu_A({\bf A})={\bf A}-3{\bf E}=0$.

Можно розглянути більш цікавий випадок. Наприклад, якщо $\chi_A(\lambda)=(\lambda-1)^2(\lambda-2)^2$, то візьмемо відповідно мінімальний многочлен $\mu_A(\lambda)=(\lambda-1)(\lambda-2)$. В такому разі до цього можемо підібрати матрицю

$$\mathbf{A} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 2 \end{bmatrix}$$

Очевидно, що $\chi_A(\lambda)=(\lambda-1)^2(\lambda-2)^2$. Окрім того мінімальний многочлен дійсно $\mu_A(X)=(X-1)(X-2)$, оскільки:

Проте, якщо перемножити, отримаємо

3.4. Сформулюйте критерій діагоналізовності лінійного оператора в термінах коренів мінімального многочлену.

Теорема. Матриця ${f A}$ є діагоналізованою (тобто знайдеться таке перетворення, при

якому матрицю
$${f A}$$
 можна звести до виду $egin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$) тоді і тільки тоді,

коли мінімальний многочлен цієї матриці ${f A}$ має вид

$$\mu_A(X) = \prod_{k=1}^m (X - \lambda_k)$$

де $\lambda_1, \lambda_2, \dots, \lambda_m$ попарно різні. Тобто кратність усіх унікальних власних чисел у мінімальному многочлені дорівнює 1.