Get normal vector by...

Equation of a Plane

To determine a plane \mathcal{P} , we need a point $P(x_1,y_1,z_1)$ on \mathcal{P} and a normal vector $\mathbf{n} = [a,b,c]$ that is orthogonal to \mathcal{P} .

The normal form of the equation of a plane is

$$\mathbf{n}\cdot(\mathbf{x}-\mathbf{p})=0$$

The general form of the equation of a plane is

$$ax + by + cz + d = 0$$

Two planes in space with normal vectors $\mathbf{n_1}$ and $\mathbf{n_2}$ are either parallel or intersect in a line.

They are parallel iff their normal vectors are.

They are perpendicular iff their normal vectors are.

 $\mathbf{3} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ (x, y, z) (x_0, y_0, z_0)

*Used for calculating shaft height and mouse x,y height

Get cross product with three points of the facet

 (c_x, c_y, c_z) (b_x, b_y, b_z) (a_x, a_y, a_z)

1.

I want z-value of a point on a plane. I have the x and y-values. I do this by...