Log-binomial Regression Models for HTA Submissions

Chi-Shian Dai

BARDS 2022 Summer Intern University of Wisconsin-Madison

08/24/2022

Team

William Malbecq Shahrul Mt-Isa

Richard Baumgartner

Chi-Shian Dai

Chi-Shian Dai LBC 08/24/2022

Motivation

- Binary Response.
- Goal: Risk ratio, not odds ratio.

	Risk Ratio	Odds Ratio
Model	log-binomial	logistic
Interpretation	✓	X

- Challenge: The log-binomial regression may not converge, especially the dimension is large.
- A simple log-binomial model with a single covariate (treatment) may not be problematic.
- Cross-sectional, and longitudinal study.
- Extreme cases: Dimension is large, and the success rate is low or large.

Agenda

1 Cross-sectional Study

2 Longitudinal Study

3 Summary

Chi-Shian Dai LBC

Agenda

1 Cross-sectional Study

2 Longitudinal Study

Summary

Chi-Shian Dai LBC 08/24/2022

Log-Binomial Models (LB)

- Binary Response: y_i for patient i = 1, ..., n.
- Covariates: x_i for patient i = 1, ..., n.
- Treatment: Trt_i for patient i = 1, ..., n.
- Models: Log link function.

$$\log P(Y_i = 1 | \mathbf{x}_i, Trt) = \alpha Trt + \mathbf{x}_i^{\top} \beta$$

• Risk Ratio:

$$P(Y_i = 1 | \mathbf{x}_i, Trt = 1) / P(Y_i = 1 | \mathbf{x}_i, Trt = 0) = e^{\alpha}$$

MLE:

$$\widehat{\gamma} = \arg\max_{\gamma = (\beta, \alpha)} \ell(\alpha, \beta)$$

$$\ell(\alpha, \beta) = \sum_{i=1}^{n} y_i (\alpha \operatorname{Trt}_i + \mathbf{x}_i^{\top} \beta) + (1 - y_i) \log\{1 - \exp(\alpha \operatorname{Trt}_i + \mathbf{x}_i^{\top} \beta)\}$$

It may not converge.

6/33

Log-binomial Models with Constraints (LBC)

• Add constraints. [3]

$$egin{aligned} \widehat{\gamma} &= rg \max_{\gamma = (eta, lpha)} \ell(lpha, eta) \ & ext{Subject to} \quad lpha \mathit{Trt}_i + oldsymbol{x}_i^ op eta < 0 \quad orall i = 1, \dots, n \ &\equiv P(Y_i = 1 | lpha, eta) < 1 \end{aligned}$$

Conic Programming: Use ROI package in R.[9].

$$\arg\min_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{a}$$
 subject to $b - A\mathbf{x} \in \mathbf{K}$,

where **K** is a cone.

Chi-Shian Dai LBC 08/24/2022 7/33

Adjusted Confidence Intervals

- **1** Calculate $\widehat{\gamma} = (\widehat{\alpha}, \widehat{\beta})$, and the Fisher information matrix $I(\gamma)$.
- 2 Let A be the matrix that collects the rows of the designed matrix X satisfying $\widehat{\alpha} Trt_i + \mathbf{x}_i^{\top} \widehat{\beta} = 0$. (The designed matrix includes both covariates x and treatment Trt.)
- 3 We have the following asymptotic theory [1].

$$\sqrt{n}(\widehat{\gamma} - \gamma) \xrightarrow{d} N(0, \Sigma),$$

where

$$\Sigma = I^{-1} - I^{-1}A'(AI^{-1}A')^{-1}AI^{-1}.$$
 (1)

Chi-Shian Dai LBC 08/24/2022 8/33

Poisson Regression for Risk Ratio

- Ignore that it is binary responses, then apply the Poisson regression with a log link function.
- Pros:
 - It converges. (No boundary issue.)
 - 2 It is easy to implement.
 - 3 It is consistent.
- Cons:
 - The estimated probability can be greater than one.
 - 2 It does not approach Cramér-Rao lower bound.
- Confidence Intervals: Sandwich method.

Chi-Shian Dai 08/24/2022 9/33

Simulation

- Covariates: $\mathbf{X} = (X_1, \dots, X_p)$ i.i.d. Unif (0, 1).
- Treatment: Randomized controlled trial with a probability of 0.5.
- Response:

$$\log P(Y = 1 | X, Trt) = \log(3) Trt + c_0 - \sum_{j=1}^{p} 0.5^p X_j$$

- Methodologies
 - Log-binomial(LB): glm function with binomial family and log link in R.
 - Log-binomial with constraints (LBC): Conic programming. ROI package in R.
 - Poisson Regression: **glm** function with Poisson family and *log* link in **R**.

Chi-Shian Dai 08/24/2022 10 / 33

Convergence Rates

Coverage Probability of 95% Confidence Intervals

Chi-Shian Dai LBC 08/24/2022

Simulated Clinical trial Study

- Clinical trial[4]: To confirm the efficacy of gefapixant for chronic cough.
- A longitudinal study with 3 visits and 730 patients.
- Response: 24-h cough frequency
 Dichotomization: 30% reduction or more in 24-h cough frequency.
- Treatments: Placebo, 15mg, 45mg. (1:1:1)
- Covariates: Sex, Region, Baseline(24-h cough frequency in the first day.)
- Working Models: Look at a single time point. (Cross-sectional Study)

$$logP(Y = 1|X) \sim Trt + Sex + Region + baseline + Region * baseline + baseline^2$$
.

The dimension p = 11.

Chi-Shian Dai LBC 08/24/2022 13/33

Simulated Clinical trial Study

- Generate covariate (Sex, Region, Baseline) follows the marginal distribution given by [4].
- 2 Generate response Y_{ij} j = 1, ..., 3 with the following models and given coefficients.

$$log(Y_{ij}) = log(baseline) + Treatment + Sex + Region + visit + \epsilon_{ij},$$
 (2)

The noise term ϵ_i follows the multivariate normal distribution with mean 0. variance 0.5 and correlation 0.6.

3 Dichotomization: 30% reduction or more in 24-h cough frequency.

Chi-Shian Dai 08/24/2022 14/33

Figure: 24-h cough frequency from simulated data, the error bars are 95% confidence intervals.

Figure: 24-h cough frequency from real data, the error bars are 95% confidence intervals.

Simulated Clinical trial Study

		Visit1		V	'isit2	Visit3	
Trt	Measure	LBC	Poisson	LBC Poisson		LBC	Poisson
15mg	Coverage	0.95	0.95	0.94	0.94	0.95	0.95
	length	0.38	0.38	0.34	0.34	0.31	0.31
45mg	Coverage	0.95	0.96	0.94	0.95	0.93	0.95
	length	0.32	0.32	0.29	0.29	0.26	0.26

Table: 95% confidence interval. The success rate is around 50% \sim 70%.

Method	visit1	visit2	visit3
LB	0.96	0.88	0.67
LBC	1	1	1
Poisson	1	1	1

Table: The convergence rates

Comparison between LBC and Poisson

	LBC	Poisson
Convergence	✓	√
Probability	✓	Χ
Cramér–Rao bound	✓	Χ
Easy Implement	X	\checkmark
Time	Slow	Fast

Summary for Cross-sectional Study

- Log-binomial models provide risk ratio.
- Log-binomial models may not converge. Especially when the dimension p is large or the sample size, n is small.
- Adding constraints is really helpful for the convergence issue.
- Adjusted confidence Intervals for LBC.
- LBC has a better coverage rate for confidence intervals than Poisson regression when the dimension p is large, the success rate mean(Y) is small, or the sample size is small.
- The performances of LBC and Poisson are similar when the dimension p is small, the success rate mean(Y) is large, or the sample size is large.
- In the simulated clinical trial data, LBC is similar to Poisson

Chi-Shian Dai LBC 08/24/2022 18 / 33

Agenda

Cross-sectional Study

- 2 Longitudinal Study
- 3 Summary

Chi-Shian Dai LBC 08/24/2022

Log-Binomial models for Longitudinal Data

- For each patient $i = 1, \dots n$. Repeated measurements: y_{ii} , j = 1, ... m.
- Covariates: x_{ii} with dimension p.
- Generalize estimating equations (GEE) type of log-binomial models.
- Problems with the existing packages. EX: gee and geepack in R.
 - **1** Converge rate is around 1% in the simulation.
 - The correlation structure is not appropriate for binary response data.

Chi-Shian Dai 08/24/2022 20 / 33

Review: Generalize estimating equations

• Find $\widehat{\beta}$ solve the following equations.

$$\sum_{i}^{n} \nabla \mu_{i}(\boldsymbol{\beta})^{\top} V_{i}^{-1}(\boldsymbol{\beta}) \{ \mathbf{y}_{i} - \mu_{i}(\boldsymbol{\beta}) \} = 0,$$
 (3)

- $\mu_i(\beta) = (\mu_{i1}(\beta), \dots, \mu_{im}(\beta))$ is the estimator for $\mathbf{y}_i = (y_{i1}, \dots, y_{im})$,
- $\mu_{ii}(\boldsymbol{\beta}) = P(y_{ij} = 1 | \boldsymbol{x}_{ii}^{\top} \boldsymbol{\beta}) = \exp(\boldsymbol{x}_{ij}^{\top} \boldsymbol{\beta}),$
- V_i is the variance of $\mathbf{y}_i \boldsymbol{\mu}_i(\boldsymbol{\beta})$

Questions:

- How to add constraints to (3)?
- 2 How to estimate V_i .

Chi-Shian Dai LBC 08/24/2022 21/33

GEE-types of LBC

• If we have constant estimates \widehat{V}_i for $V_i(\beta^*)$, we have the following constrained GEE

$$\widehat{eta} = \arg\min_{eta} \sum_{i}^{n} \{ oldsymbol{y}_{i} - oldsymbol{\mu}_{i}(eta) \}^{ op} \widehat{V}_{i}^{-1} \{ oldsymbol{y}_{i} - oldsymbol{\mu}_{i}(eta) \},$$
 subject to $oldsymbol{x}_{ij}^{ op} oldsymbol{eta} < 0 \quad orall i,j.$

- **1** Ignore the longitudinal structure. Get $\widehat{\beta}_0$ by the standard LBC.
- 2 Use $\hat{\beta}_k$ to estimate \hat{V}_i .
- **3** Get the new estimate $\hat{\beta}_{k+1}$ from the above constrained GEE.
- 4 Repeat step 2 and step 3 until $\widehat{\beta}_k$ reaches the stopping rule.

Chi-Shian Dai LBC 08/24/2022 22/33

How to estimate V_i ?

- To get \widehat{V}_i , we need to estimate the correlation structure $Cor(y_{ii}, y_{ik}|\widehat{\beta}).$
- In GEE, people consider a constant correlation structure. That means $Cor(y_{ii}, y_{ik} | \hat{\beta})$ is constant w.r.t. patient i. Ex: package **gee** and **geepack** in **R**.
- The constant correlation structure is not appropriate for binary response since the domain for $Cor(y_{ij}, y_{ik}|\beta)$ is not (-1,1).

$$-\sqrt{\frac{P_{j}P_{k}}{(1-P_{j})(1-P_{k})}} \leq Cor(y_{ij},y_{ik}) \leq \frac{\min\{P_{j},P_{k}\}-P_{j}P_{k}}{\sqrt{P_{j}P_{k}(1-P_{j})(1-P_{k})}},$$

• Estimate $p(y_{ii}y_{ik} = 1|\widehat{\beta})$.

Chi-Shian Dai LBC 08/24/2022 23 / 33

Estimate Joint distribution

- Assume that the binary responses $(Y_{i1}, ..., Y_{im})$ comes from dichotomizing a multivariate normal distribution with an exchangeable correlation.
- We have the estimated marginal probability \widehat{p}_{ij} .
- **1** Find the normal quantiles q_{ij} .

$$P(Z < q_{ij}) = \widehat{p}_{ij}$$

2 Joint probability would be

$$P(Y_{ij}Y_{ik} = 1|\widehat{p}_{ij}, \widehat{p}_{ik}) = P(Z_1 < q_{ij}, Z_2 < q_{ik}|\rho),$$

where (Z_1, Z_2) is a bivariate normal distribution with mean 0, variance 1, covariance ρ .

3 Find MLE for ρ .

Chi-Shian Dai LBC 08/24/2022 24/33

Adjusted Confidence Intervals:

- \bullet Calculate sandwich covariance Σ .
- Find the adjusted covariance by substitute sandwich covariance with I in (1).

$$\Sigma_{adjust} = \Sigma - \Sigma A' (A \Sigma A')^{-1} A \Sigma.$$

Chi-Shian Dai LBC 08/24/2022 25 / 33

Simulation for Longitudinal Data

- Methodologies:
 - GEE type of log-binomial with constraints(LBC): We have a function call "fit.lbc.gee".
 - GEE type of Poisson regression: geeglm function in the package geepack with an exchangeable correlation.
- Covariates: $X = (X_1, ..., X_p)$ i.i.d. Unif (0, 1).
- Treatment:

$$T_k \sim Ber(0.5)$$

08/24/2022 26 / 33

Simulation for Longitudinal Data

Generate response Y_{ij} j = 1, ..., m

1 For j = 1, ..., m, calculate the probabilities.

$$\log P_{ij} = \log p(Y_{ij} = 1 | T_i, \mathbf{X}_i)$$

= $aT_i - \log(3) - c - X_{i1} - 0.5X_{i2}$,

2 Calculate the quantiles q_{ii} of probabilities P_{ii} form the standard normal distribution.

$$p(Z \leq q_{ij}) = P_{ij}$$
.

- **3** Generate multivariate normal distribution (Z_1, Z_2, \dots, Z_m) with mean 0, variance 1, $Cov(Z_i, Z_i) = 0.6$.
- **4** Let $Y_{ii} = 1$ if $Z_{ii} \leq q_{ii}$, otherwise $Y_{ii} = 0$.

Chi-Shian Dai LBC 08/24/2022 27 / 33

95% confidence intervals

	Mean(Y)=		13%		23%		31%	
n			LBC	Poi	LBC	Poi	LBC	Poi
200	visit1	bias	0.02	0.02	0.02	0.02	0.01	0.02
		Coverage	0.96	0.96	0.89	0.94	0.85	0.95
	visit5	bias	0.03	0.03	0.02	0.02	-0.02	0.03
		Coverage	0.95	0.95	0.95	0.95	0.93	0.95
300	visit1	bias	0.03	0.03	0.00	0.00	-0.00	0.01
		Coverage	0.94	0.94	0.91	0.94	0.84	0.96
	visit5	bias	0.02	0.02	0.01	0.01	-0.03	0.02
		Coverage	0.95	0.95	0.95	0.95	0.93	0.95

Table: 95% confidence intervals, p = 2, m = 5.

Chi-Shian Dai LBC 08/24/2022 28/33

Relative Mean Square Error

Mean Square Error(MSE):

$$\frac{1}{T} \sum_{j=1}^{I} (\text{Estimated log risk ratio at simulation j} - \text{True log risk ratio})^2$$

Relative Mean Square Error(%):

$$\frac{\textit{MSE(Poisson)} - \textit{MSE(LBC)}}{\textit{MSE(LBC)}} \times 100$$

n		Mean(Y)=13%	Mean(Y)=23%	Mean(Y)=31%
200	visit1	-0.36	-0.01	-0.21
	visit5	0.69	1.53	2.55
300	visit1	0.08	0.67	-0.91
	visit5	0.21	3.99	0.47

Table: Relative Mean Square Error (%)

Chi-Shian Dai LBC 08/24/2022 29/33

Simulated Clinical trial Study: Confidence Intervals

Working Models:

$$logP(Y = 1) \sim Trt + Sex + Region + baseline + visit + Trt * visit + baseline * visit.$$

		visit1		visit2		visit3	
Trt		LBC	Poi	LBC	Poi	LBC	Poi
15mg	Bias	0.01	0.01	0.01	0.01	0.01	0.02
15mg	Coverage	0.93	0.95	0.94	0.94	0.93	0.94
45mg	Bias	-0.00	0.01	-0.02	0.00	-0.03	0.00
45mg	Coverage	0.93	0.96	0.92	0.93	0.90	0.94

Table: 95% confidence intervals

Chi-Shian Dai LBC 08/24/2022 30 / 33

Summary

Longitudinal Study

- Develop a recursive algorithm for the GEE-type log-binomial models.
- It solves the convergence issue of the existing packages.
- We consider a non-constant correlation structure.
- In the simulation, LBC-GEE, and Poisson-GEE are consistent. However, in some cases, the coverage rates of LBC-GEE are not satisfactory. We need to find a better way to estimate the variance.
- LBC-GEE has a smaller mean square error than Poisson-GEE.
- In the simulated clinical trial study, LBC-GEE has a considerable bias.

Chi-Shian Dai 08/24/2022 31/33

Summary

Cross-Sectional Study

- Log-binomial models may not converge. Especially when the dimension p is large or the sample size, n is small.
- Adding constraints is really helpful for the convergence issue.
- Adjusted confidence Intervals for LBC.
- LBC has a better coverage rate for confidence intervals than Poisson regression when the dimension p is large, the success rate mean(Y) is small, or the sample size is small.

Chi-Shian Dai LBC 08/24/2022 32 / 33

Thank you

References I

- [1] Bernardo Borba de Andrade and Joanlise Marco de Leon Andrade. "Some results for maximum likelihood estimation of adjusted relative risks". In: *Communications in Statistics-Theory and Methods* 47.23 (2018), pp. 5750–5769.
- [2] Yihan Li et al. "Analyzing longitudinal binary data in clinical studies". In: *Contemporary Clinical Trials* (2022), p. 106717.
- [3] Ji Luo, Jiajia Zhang, and Han Sun. "Estimation of relative risk using a log-binomial model with constraints". In: *Computational Statistics* 29.5 (2014), pp. 981–1003.
- [4] Lorcan P McGarvey et al. "Efficacy and safety of gefapixant, a P2X3 receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): results from two double-blind, randomised, parallel-group, placebo-controlled phase 3 trials". In: *The Lancet* 399.10328 (2022), pp. 909–923.

References II

- [5] Myunghee Cho Paik. "The generalized estimating equation approach when data are not missing completely at random". In: *Journal of the American Statistical Association* 92.440 (1997), pp. 1320–1329.
- [6] N Rao Chaganty and Harry Joe. "Efficiency of generalized estimating equations for binary responses". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66.4 (2004), pp. 851–860.
- [7] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. "Analysis of semiparametric regression models for repeated outcomes in the presence of missing data". In: *Journal of the american statistical association* 90.429 (1995), pp. 106–121.

Chi-Shian Dai LBC 08/24/2022 33/33

References III

- [8] Florian Schwendinger, Bettina Grün, and Kurt Hornik. "A comparison of optimization solvers for log binomial regression including conic programming". In: *Computational Statistics* 36.3 (2021), pp. 1721–1754.
- [9] Stefan Theußl, Florian Schwendinger, and Kurt Hornik. "ROI: an extensible R optimization infrastructure". In: (2019).
- [10] Ming Wang. "Generalized estimating equations in longitudinal data analysis: a review and recent developments". In: Advances in Statistics 2014 (2014).
- [11] Fang Xie and Myunghee Cho Paik. "Generalized estimating equation model for binary outcomes with missing covariates". In: *Biometrics* (1997), pp. 1458–1466.

Stopping Rule for LBC-GEE

- In theory, $\widehat{\beta}_k$ is consistent for every k.
- There is around 3% in the simulation that it diverges. $\widehat{\beta}_k$ are stable in the early steps. To deal with it, we consider an "Early-stop".
- Early-stop: Stop if the difference between $\widehat{\beta}_k$ and $\widehat{\beta}_{k+1}$ is huge. Then, return $\widehat{\beta}_k$.
- No-stop: It reaches the maximal iteration number (20).

n	Case	%
200	No-Stop	0.03
	Converge	0.96
	Early-stop	0.01
300	No-Stop	0.01
	Converge	0.98
	Early-stop	0.01
600	No-Stop	0.01
	Converge	0.97
	Early-stop	0.02

Table: A simulation with p = 10, m = 5.

 Chi-Shian Dai
 LBC
 08/24/2022
 33/33

95% Confidence Intervals lengh

Figure: Length of 95% confidence intervals.

ROI package

- ROI: R Optimization Infrastructure
- Provides an extensible infrastructure to solve optimization problems in a consistent way.
- User: Can easily apply different solvers.

Back to the current slide.

Chi-Shian Dai LBC 08/24/2022 33/33

Conic Programming

Conic:

$$\arg\min_{\mathbf{x}} \mathbf{x}^{\top} a$$
 subject to $b - A\mathbf{x} \in \mathbf{K}$,

where K is a cone.

Back to the current slide.

Sandwich Method

- It is a way to estimate standard deviation for the solution of estimating equations.
- It is consistent as long as the estimating equation is correct.
- Poisson Regression for Risk Ratio: The model is not correct, but the estimating equation(a derivative of the log-likelihood function) is correct.

Back to the current slide.

Chi-Shian Dai LBC 08/24/2022 33/33

Distribution of True Risk Ratio

Boxplots of the Bias

Boxplots

Method

