Jose Antonio Lozano

Intelligent Systems Group
Departamento de Ciencias de la Computación e Inteligencia Artificial
Universidad del País Vasco–Euskal Herriko Unibertsitatea

Métodos Matemáticos en Ciencias de la Computación, 2009

Organización del tema

Introducción

Algoritmos Evolutivos en Problemas Multiobjetivo

Organización del tema

1 Introducción

Algoritmos Evolutivos en Problemas Multiobjetivo

El problema a resolver

min(max)
$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$$
 $\mathbf{x} \in \Omega$
sujeto a
$$g_i(\mathbf{x}) \ge b_i \qquad i = 1, 2, \dots, m$$
$$h_i(\mathbf{x}) = c_i \qquad j = 1, 2, \dots, s$$

El problema a resolver

min(max)
$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$$
 $\mathbf{x} \in \Omega$
sujeto a
$$g_i(\mathbf{x}) \geq b_i \qquad i = 1, 2, \dots, m$$
$$h_j(\mathbf{x}) = c_j \qquad j = 1, 2, \dots, s$$

• ¿Cómo se soluciona este problema?

El problema a resolver

min(max)
$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$$
 $\mathbf{x} \in \Omega$ sujeto a

$$g_i(\mathbf{x}) \ge b_i$$
 $i = 1, 2, ..., m$
 $h_i(\mathbf{x}) = c_i$ $j = 1, 2, ..., s$

- ¿Cómo se soluciona este problema?
- ¿Qué es una solución a este problema?

El conjunto de Pareto

Un vector v = (v₁,..., v_n) domina otro vector
 u = (u₁,..., u_n) (en el caso de minimización) y se escribe
 v ≤ u si

$$\forall i \in \{1, 2, ..., n\} \quad v_i \leq u_i \text{ y } \exists j \text{ tal que } v_j < u_j$$

 Dado un problema de optimización multiobjetivo llamamos conjunto de Pareto (P_{set}) al conjunto de soluciones no dominadas

$$\mathcal{P}_{set} = \{ \boldsymbol{x} | \ \exists \boldsymbol{y} \ \text{tal que } \boldsymbol{f}(\boldsymbol{y}) \leq \boldsymbol{f}(\boldsymbol{x}) \}$$

El frente de Pareto

• Denominamos frente de Pareto a la imagen del conjunto de Pareto (\mathcal{P}_{front}):

$$\mathcal{P}_{front} = \{ \mathbf{f}(\mathbf{x}) | \forall \mathbf{x} \in \mathcal{P}_{set} \}$$

Ejemplo de frente de Pareto

Evaluación de algoritmos multiobjetivo

Problematica y medidas

• ¿Cómo evaluar el resultado de un algoritmo multiobjetivo?

Evaluación de algoritmos multiobjetivo

Problematica y medidas

- ¿Cómo evaluar el resultado de un algoritmo multiobjetivo?
- Características deseables de una solución:
 - Soluciones en el conjunto de Pareto
 - Soluciones distribuidas uniformemente
 - Soluciones en los bordes

Organización del tema

Introducción

Algoritmos Evolutivos en Problemas Multiobjetivo

Pseudocódigo

Hallar la población inicial P_0 hasta condición_parada = TRUE hacer
repetir $\frac{n}{2}$ veces
Elegir aleatoriamente dos individuos de la población P_k Cruzar los dos individuos con probablidad p_c Mutar los dos individuos resultantes con probabilidad p_m Introducir los dos nuevos individuos en la población P_k' Seleccionar n individuos de $P_k' \cup P_k$ para obtener P_{k+1} Devolver la mejor solución

Pseudocódigo

Hallar la población inicial P_0 hasta condición_parada = TRUE hacer
repetir $\frac{n}{2}$ veces
Elegir aleatoriamente dos individuos de la población P_k Cruzar los dos individuos con probablidad p_c Mutar los dos individuos resultantes con probabilidad p_m Introducir los dos nuevos individuos en la población P_k' Seleccionar n individuos de $P_k' \cup P_k$ para obtener P_{k+1} Devolver la mejor solución

Diseño de un algoritmo genético multiobjetivo

Componentes a considerar

- Asignación de función fitness (ranking de los individuos)
- Mantenimiento de la diversidad
- Elitismo

Diseño de un algoritmo genético multiobjetivo

Estrategias para ordenar los individuos

- Basados en agregación
 - Se establecen ciertos pesos sobre las funciones objetivos
 - Los pesos se modifican cada vez que se van a seleccionar dos individuos
- Basados en criterio
 - La selección se realiza a cada paso basándose en uno de los objetivos
 - La elección del objetivo puede ser aleatoria, propuesta por el experto, etc..
- Basados en la propiedad de Pareto
 - Número de individuos que dominan a uno dado
 - Número de individuos dominados por uno dado
 - Dividir la población en frentes de Pareto y utilizar el ranking del frente al que se pertenece como función

Diseño de un algoritmo genético multiobjetivo

Estrategias para mantener la diversidad

- Incorporar diversidad en el proceso de selección:
 - Métodos de kernel
 - Métodos del vecino más cercano
 - Métodos de histogramas