(19)

Europäisches Patentamt European Patent Office Office européen des brevets

EP 0 847 147 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
15.03.2006 Bulletin 2006/11

(51) Int Cl.: H04B 7/005 (2008.01)

(11)

H048 7/218 (2006.01)

(21) Application number: 97121324.4

(22) Date of filing: 04.12.1997

(54) Transmission power control method for a CDMA communication system
Verfahren zur Steuerung der Senderleistung für einen CDMA Nachrichtenübertragungssystem

Procédé de contrôle de la puissance d'émission pour un système de communication à AMDC

(84) Designated Contracting States: DE FI FR GB SE

(30) Priority: 06.12.1996 JP 32649396

(43) Date of publication of application: 10.06.1998 Sulletin 1998/24

(73) Proprietor: Hitachi, Ltd.: Tokyo (JP)

(72) Inventors:

 Tsunehara, Katsuhiko Yokohama-shi (JP)

Yano, Takashi
 Tokorozawa-shi (JP)

Doi, Nobukazu
 Hachioji-shi (JP)

» Uta, Takaki Yokohama-shi (JP)

Hasegawa, Kelji
 Higashimurayama-shi (JP)

(74) Representative: Beetz & Partner Steinsdorfstrasse 10 80538 München (DE)

(56) References cited:

WO-A-95/31679 US-A- 5 559 790 WO-A-96/03813

15

36

45

Description

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a code division multiple access mobile communication system and its transmission power control method. More particularly, the present invention relates to a packet communication system and its transmission power control method using reservation based access control.

[0002] In a CDMA method, a plurality of mobile terminals share the same frequency band to communicate with a single base station. Therefore, for example, if mobile terminals A and B transmit modulated signal waves to the base station, the signal (not desired to be received) transmitted by the mobile terminal B interferes with the signal (desired to be received) transmitted by the mobile terminal A, and the communication of the mobile terminal A with the base station is obstructed. The degree of interference depends on the received level of a signal (not desired to be received) at the base station. If the degree of interference becomes large to some level or more, communication between the mobile terminal and base station becomes impossible.

[0003] If the transmission power of each mobile terminal can be controlled to always limit the signal level received at the base station to a minimum necessary reception power, it becomes possible to maximize the number of channels capable of being communicated by the base station. The more the transmission power shifts from the minimum necessary reception power, the less the number of channels capable of being communicated by the base station.

[0004] As transmission power control techniques of CDMA mobile communication, an IS-95 transmission power control method is known described in TIA/EIA/IS-95 which is a standard system of digital cellar phones adopted in North America. The IS-95 transmission power control method will be described in the following.

[0005] Since two way communication is essential for cellular phones, a pair of an uplink traffic channel and a downlink traffic channel is used for the communication between the base station and a mobile terminal. The uplink traffic channel is a channel for transmitting data from a mobile terminal to the base station, and a downlink traffic channel is a channel for transmitting data from the base station to the mobile terminal.

[0006] The base station measures the reception power of data transmitted from each mobile terminal and generates a transmission power control signal in accordance with the measured reception power. If the reception power of data is larger than a target reception power, the base station generates a transmission power control signal "1" for this mobile station. Conversely if the reception power of data is smaller than the target reception power, the base station generates a transmission power control signal "0" for this mobile station. The generated transmission power control signal is inserted into data to be

transmitted from the base station to a mobile terminal, and the transmission data with the transmission power control signal is transmitted to the mobile terminal. The mobile terminal controls to reduce the transmission power if the received transmission power control signal is "1", and to increase it if "0".

[0007] This transmission power control will be described specifically with reference to Fig. 12. Each mobile terminal 1 to n and the base station communicate with each other by using a pair of an uplink traffic channel and a downlink traffic channel. The upper row of each pair represents transmission data of the downlink traffic channel, and the lower row represents transmission data of the uplink traffic channel. The width of transmission data, particularly uplink transmission data, is drawn to correspond to a reception power of the uplink data at the base station.

[0008] When the base station communicates with the mobile terminal 1, it inserts transmission power control signals 132a, 132b, 132c, ... into a downlink traffic channel 130a to the mobile terminal 1. The mobile terminal 1 changes its transmission power of the uplink transmission data in accordance with the transmission power control signal obtained from the received channel 130a. As above, the transmission power control of the mobile terminal 1 is performed by using the downlink traffic channel 130a. Similar transmission power control is performed also for other mobile terminals 2 to n.

[0009] WO 96/03813 discloses a remote transmitter power control in a CDMA communications system. The power control process therein enables a base station communication over a forward packet channel to a mobile radio to control the power of the mobile radio transmitting over a reverse packet channel to the base station. The base station maintains a maximum energy per bit to total interference spectral density ration threshold for the reverse channel as well as a desired threshold that results in a low frame error rate.

SUMMARY OF THE INVENTION

[0010] With advancement of mobile communication techniques, needs of not only a voice communication function (cellar phone) but also a data communication function are becoming large.

[0011] For one way communication typical to data communication, CDMA packet communication systems have been proposed from the viewpoint of efficiently using channels. One proposal of such CDMA packet communication systems is described in "Development on CDMA Packet Mobile Communication System" by Yano, Uta, Hasegawa, and Doi, Communication Society Meeting, the Institute of Electronics, Information and Communication Engineers, B-389 (1996).

5 [0012] Voice communication is two way communication using uplink and downlink traffic channels, whereas data communication is one way communication using only one of uplink and downlink traffic channels. In such

20

25

one way communication, a conventional transmission power control method for cellar phones cannot be adopted because this method is established on the assumption that there is a pair of uplink and downlink traffic channels.

[0013] If a paired downlink channel is provided only for the transmission power control of the uplink traffic channel, one downlink traffic channel is occupied by the transmission power control of only the uplink traffic channel. The use efficiency of traffic channels is lowered.

[0014] To solve this problem, the invention provides a CDMA packet data communication system in which a base station controls the transmission power of each of a plurality of mobile terminals by using a single downlink traffic channel common for all mobile stations.

[9015] The base station measures the received level of data transmitted from each mobile terminal at each channel, and generates a transmission power control signal of each channel in accordance with the measured reception level. The generated transmission power control signals are collected together into a format predetermined for the system, and transmitted to all mobile terminals by using the common channel shared by the mobile terminals.

[0016] Each mobile terminal derives the transmission power control signal of the uplink traffic channel used by the terminal, from the collected transmission power control signals transmitted from the base station, and transmits data at the transmission power changed in accordance with the derived transmission power control signal. [0017] These and other objects, features and advantages of the present invention will become more apparent in view of the following detailed description of the preferred embodiments in conjunction with accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018]

Fig. 1 is a diagram showing the structure of a mobile communication network.

Fig. 2 is a diagram illustrating a packet data communication system using reservation based access control.

Fig. 3 is a diagram showing a first example of the structure of a base station embodying transmission power control of the present invention.

Fig. 4 is a diagram showing the structure of an answer packet.

Fig. 5 is a diagram showing the structure of a unit for measuring a received level of a traffic channel.

Fig. 6 is a diagram showing the structure of a unit for generating a transmission power control signal of a traffic channel.

Fig. 7 is a diagram illustrating insertion of a transmission power control signal between answer packets.

Fig. 8 is a diagram showing a first example of the

structure of a mobile terminal embodying the transmission power control of the invention.

Fig. 9 is a diagram illustrating a transmission power control state of an uplink traffic channel realized by the operations of a base station and mobile terminals according to the present invention.

Fig. 10 is a diagram showing a second example of the structure of a base station embodying the transmission power control of the invention.

Fig. 11 is a diagram showing a second example of the structure of a mobile terminal embodying the transmission power control of the invention.

> Fig. 12 is a diagram illustrating an uplink traffic channel transmission power control method of a conventional portable telephone system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0019] Fig. 1 shows the structure of a mobile communication network applied to the present invention. A public switched telephone network (PSTN) 200 is connected with a fixed terminal 201 such as a telephone and a mobile communication network 202. The mobile communication network 202 is connected with a plurality of base stations 203a, 203b, Each base station 203 communicates with mobile terminals 204a, 204b, in its service area (cell) via radio channels 205.

[0020] In the following, the invention will be detailed by applying it to a CDMA packet communication system using reservation based access control shown in Fig. 2. [0021] In the CDMA packet communication system using reservation based access control, channels shared by a plurality of mobile terminals in the service area include a reservation channel 1 (uplink channel), an answer channel 2 (downlink channel) and a pilot channel 8 (downlink channel). The pilot channel 8 is a channel used for transmitting a pilot signal 9 as a reference signal to each mobile terminal.

[0022] A mobile terminal having a data transmission request transmits a reservation packet 4 at a desired timing by using the reservation channel 1. The base station performs scheduling of received reservation packets. The base station selects (schedules) a channel and a time slot (a time slot 7 is defined in an uplink traffic channel 3) via which each mobile terminal can transmit data, from a plurality of uplink traffic channels 3, In order to transmit the scheduling results to each mobile terminal, the base station generates an answer packet 5 corresponding to the reservation packet. The generated answer packet 5 is transmitted to the corresponding mobile terminal in the area by using the answer channel 2. The mobile terminal identifies the answer packet destined to It from received answer packets 5, and transmits a data packet by using the uplink traffic channel and time slot designated by the base station.

[0023] In the example shown in Fig. 2, the mobile terminal transmitted the reservation packet 4a receives the

25

answer packet 5a transmitted to it, selectively from answer packets transmitted from the base station, and transmits a data packet 6a by using the time slot 7a of the traffic channel 3a designated in the received answer packet 5a.

[0024] With reference to Figs. 3 to 9, a first embodiment will be described which realizes a method of controlling the transmission power of an uplink channel.

[0025] Fig. 3 shows an example of the structure of a base station. A signal received by an antenna 30 is input via a circulator 31 to a reception radio module 32. The reception radio module 32 performs a high/middle frequency reception process to demodulate a signal in a carrier frequency band into a baseband signal. Since the received signal has a plurality of multiplexed channel signals, it is input to an acquisition/despread circuit (33, 42a - 42n) to be spectrum despread.

[0026] A reservation channel output from the reservation channel acquisition/despread circuit 33 is supplied via a signal line 50 to a detector 35 whereat it is detected and then supplied to a decoder 36 whereat an error correction decode process such as Viterbi decoding is performed. A packet interpretation unit 37 interprets the decoded reservation packet to obtain a terminal ID of the mobile terminal which transmitted the reservation packet and the reservation contents such as transmission data, and transfers the reservation contents to an answer packet generator unit 38.

[0027] The reservation packet is also input via a signal line 51 to a unit 39 for measuring the received level of the reservation channel. This unit 39 measures a signal to noise power ratio (SN ratio) of the reservation packet. The measurement result of the received level is compared with a reference reception level by an initial transmission power control signal generator 40. In accordance with this comparison result, a transmission power control signal is generated which designates a transmission power when the mobile terminal starts transmitting a data packet. The generated transmission power control signal is input to an answer packet generator 38.

[0028] In accordance with the reservation contents interpreted by the packet interpretation unit 37 and the transmission power control signal generated by the initial transmission power control signal generator 40, the answer packet generator 38 generates an answer packet. An example of the structure of an answer packet is shown in Fig. 4. A mobile terminal ID is an ID of a mobile terminal which transmitted a reservation packet. This ID is used as a destination of the answer packet. An allocated channel 101 and an allocated slot number 102 indicate an uplink traffic channel and a time slot to be used by the mobile terminal and are designated by the answer packet generator 38. An initial transmission power 103 indicates a transmission power when the mobile terminal starts transmitting data and is designated by the transmission power control signal input from the initial transmission power control signal generator 40. This initial transmission power control signal may designate an increase/

decrease relative to the transmission power when the reservation packet was transmitted, or may be an absolute value (increased/decreased value) of the transmission power, whichever of them is determined by the system. A CRC (Cyclic Redundancy Check) 104 is a code added to the answer packet for error detection/correction. [0029] The answer packet generated in the above manner is input to a coder 47 whereat an error correction coding such as convolutional coding is performed. The coded answer packet is input to a unit 41 for inserting a traffic channel transmission power control signal.

[0030] The other acquisition/despread circuits 42a to 42n provided for a plurality of uplink traffic channels each output a data packet transmitted via each uplink traffic channel. The data packet of each channel is supplied via a signal line 52 to a detector 43a - 43n and a decoder 44a to 44n to be detected and decoded, and the reception data is output from a signal line 54.

[0031] The data packet is also supplied via a signal line 53 to a unit 45 for measuring the received level of the traffic channel. The structure of this unit 45 is shown in Fig. 5. The received level measurement units 45a to 45n corresponding to the uplink traffic channels 53a to 53n measure the received level such as an SN ratio.

[0032] The received level measurement result of each traffic channel is input to a traffic channel transmission power control signal generator 46. The structure of the generator 46 is shown in Fig. 6. Each of the transmission power control signal generators 46a to 46n provided for each uplink traffic channel compares the received level with a target reception level, and generates a transmission power control signal for making the mobile terminal renew the transmission power when it continues data transmission. Similar to the initial transmission power control signal, this renewal designation transmission power control signal is determined by the system. The generated transmission power control signal is input to the unit 41 for inserting the traffic channel transmission power control signal.

[0033] As shown in Fig. 7, the traffic channel transmission power control signal insert unit 41 inserts a common transmission power control signal 111 generated by the traffic channel transmission power control signal generator 46 at a predetermined interval between answer packets 110 input from the answer packet generator 38. The common transmission power control signal 111 is constituted of transmission power control signals 111a to - 111n of respective traffic channels 1 to n.

[0034] In order to suppress a fluctuation of the received level of a data packet, the base station is required to perform a transmission power control of each mobile terminal at a sufficiently high occurrence frequency. The data packet is made of several tens of bits to allow information of some amount to be transmitted at the same time. In contrast, the common transmission power control signal 111 can be made of n bits assuming the same system as IS-95. As shown in Fig. 4, the answer packet can be made sufficiently small relative to the size of a

20

25

30

40

55

data packet. Therefore, as in this embodiment, even if the answer channel and the transmission power control channel are shared, the transmission power control can be performed at a sufficiently high occurrence frequency. If the answer packet and the common transmission power control signal are received by the same channel, the mobile terminal can use a common receiver both for the answer packet and common transmission power control signal. In this manner, the circuit scale of each mobile terminal can be made small.

[0035] It is also possible to transmit the common transmission power control signal at a transmission power larger than that of the answer packet in order to reliably perform the transmission power control.

[0036] The answer packet and common transmission power control signal are spectrum spread by a spreader 48 for answer channel. The spectrum spread answer packet and common transmission power control signal are multiplexed with other downlinks by an adder 58, modulated from the baseband signal into a signal in the carrier frequency band by a transmission radio module 49, and transmitted from the antenna 30 via the circulator 31.

[9037] An example of the structure of a mobile terminal is shown in Fig. 8.

[9038] The operation of transmitting a reservation packet from a mobile terminal will be described.

[0039] A signal received by an antenna 60 is input via a circulator 61 to a reception radio module 62. The reception radio module 62 performs a high/middle frequency reception process to demodulate a signal in the carrier frequency band into a baseband signal. A pilot signal output from an acquisition/despread circuit 150 for pilot channel is input to a unit 151 for measuring a received level. This unit 151 measures the received level (e.g., SN ratio) of the pilot signal. The measurement result of the received level is input to a reservation channel gain calculator 152 which determines the transmission power of a reservation packet in accordance with the received level of the pilot signal.

[0040] In the mobile communication system provided with independent pilot channels, the pilot signal is transmitted from the base station always at a constant transmission power level. Therefore, if an SN ratio of the received pilot signal is large, it is conceivable that the mobile terminal is near at the base station so that the reservation channel gain calculator 152 calculates a small gain. Conversely, if an SN ratio of the received pilot signal is small, it is conceivable that the mobile terminal is far from the base station so that the reservation channel gain calculator 152 calculates a large gain. In order to determine the transmission power of a reservation packet in the above manner, another signal different from the pilot signal may be used so long as it allows the mobile terminal to know the transmission power of the base station. For example, the pilot signal whose transmission power is determined by the system or a control signal transmitted with the transmission power value can satisfy the

above conditions.

[0041] Next, an operation will be described in which a mobile terminal transmitted a reservation packet to the base station receives an answer packet transmitted from the base station.

[0042] An answer packet output from the despread circuit 63 for answer channel is detected with a detector and subjected to an error correction/decode process such as Viterbi decoding. With the above processes, it becomes possible to obtain the information of an allocated traffic channel and an allocated time slot contained in the answer packet. An initial transmission power holder 125 holds an initial transmission power signal contained in the answer packet, and inputs the initial transmission power signal to a data channel gain calculator 124 which calculates a gain so that a data packet can be transmitted at a transmission power designated by the initial transmission power signal. The calculated gain is set as the gain of a variable gain amplifier 68.

[0043] The data packet transmitted from the mobile terminal is amplified by the variable gain amplifier 68 at the gain designated by the data channel gain calculator 124. The amplified signal is modulated from the baseband signal into a signal in the carrier frequency band by a transmission radio module 69 and transmitted from the antenna 60 via the circulator 61.

[0044] Next, transmission power control while a mobile terminal transmits a data packet to the base station will be described.

[0045] A transmission power correction unit 123 derives the common transmission power control signal from a signal of the answer channel processed by the answer channel acquisition/despread circuit 63 and detector 64. The transmission power correction unit 123 selects a transmission power control signal of the uplink traffic channel now in use by its mobile terminal, from the common transmission power control signal. For example, in the example shown in Fig. 7, the mobile terminal transmitting a data packet by using the transmission channel 1 selects its transmission power control signal 111a. The selected transmission power control signal is input to the gain calculator 124 which calculates a gain so that a data packet can be transmitted at a transmission power designated by the transmission control signal, and thereafter renews the gain of the variable gain amplifier 68. The amplified signal is modulated by the transmission radio module 69 from the baseband signal into a signal in the carrier frequency band, and transmitted from the antenna 60 via the circulator 61.

[0046] Fig. 9 illustrates the state of transmission power control realized by the above operations of the base station and a mobile terminal.

[0047] The base station inserts common transmission power control signals 142a, 142b, 142c, ... into a common answer channel shared by mobile terminals in the area and transits them. The common transmission power control signal 142 contains transmission power control signals for the respective traffic channels 1 to n. Each of

25

30

the mobile terminals 1 to n transmitting data packets 1 to n to the base station derives the transmission power control signal of the traffic channel now in use by the mobile terminal, from the common transmission power control signals 142a, 142b, 142c, In accordance with the derived transmission power control signal, the mobile terminal changes the transmission power of the data packet.

[0048] In the state shown in Fig. 9, the width of a data packet is drawn to correspond to the receive level of the data packet at the base station. For example, in the uplink traffic channel 1, the mobile terminal controls the transmission power such that the transmission powers are increased, reduced, and increased in response to the reception of the common transmission power control signals 142a, 142b, and 142c.

[0049] While a data packet is not transmitted by a mobile station, the transmission power control signal is neglected. The transmission power control signal is also neglected if it is received before a lapse time (called "control delay time") necessary for measuring the received level of a data packet at the base station after the mobile terminal transmitted the data packet. The reason for this is a possibility that the transmission power control information received before the lapse of the control delay time may be a transmission power control information of a data packet transmitted by another mobile terminal and erroneous control to be made.

[0050] With the above operations, it becomes possible for the base station to perform transmission power control of the uplink traffic channels 1 to n by using the common control channel shared by mobile terminals,

[0051] This first embodiment has the structure suitable for data communication, particularly for one way data communication. Two way data communication is performed in some case. In this case, the transmission power control signal may be contained in data of a downlink traffic channel. In the following, a mobile communication system of the second embodiment will be described which is suitable for two way communication and has a simple circuit structure, particularly of a mobile terminal. [0052] Fig. 10 shows an example of the structure of a base station according to the second embodiment.

[0053] In Fig. 10, like constituent elements to those of the base station of the first embodiment are represented by identical reference numerals. The operation of the base station when a reservation packet is received is similar to the first embodiment.

[0054] The base station operates in the manner similar to the first embodiment to decode a received data packet and obtain reception data from the signal line 54. The unit 45 for measuring the received level of a traffic channel and the traffic channel transmission power control signal generator 46 generate transmission power control signals of respective uplink traffic channels.

[0055] In the second embodiment, if a mobile terminal transmits and receives a data packet to and from the base station by using an uplink traffic channel I and a

downlink traffic channel k, the base station inputs the transmission power control signal of the uplink traffic channel i to the traffic channel transmission power control signal insert unit 59 of the downlink traffic channel k to insert the transmission power control signal into the data packet.

[0056] The operation will be detailed by taking as an example the case wherein the base station transmits a data packet by using a downlink traffic channel n to a mobile terminal which transmits a data packet to the base station by using an uplink traffic channel 1. In this case, the transmission power control signal of the uplink traffic channel 1 generated by the traffic channel transmission power control signal generator 46 is input to a traffic channel transmission power control signal insert unit 59n of the downlink transmission channel n. The traffic channel transmission power control signal insert unit 59n inserts the transmission power control signal in the data packet. This data packet is spectrum spread by the spreader 57n and multiplexed with other channel signals by the adder 58. The multiplexed signal is modulated by the transmission radio module 49 from the baseband signal into a signal of the carrier frequency band, and transmitted from the antenna 30 via the circulator 31.

[0057] An example of a mobile terminal of the second embodiment is shown in Fig. 11.

[0058] In Fig. 11, like constituent elements to those of the mobile terminal of the first embodiment shown in Fig. 8 are represented by identical reference numerals. A switch 70 is connected to 70a to perform similar operations to the first embodiment, if the mobile terminal transmits a reservation packet, receives an answer packet transmitted from the base station, or only transmits a data packet to the base station (one way communication).

[0059] Next, the operation (two way communication) will be described in which a mobile terminal transmits and receives a data packet to and from the base station. In this case, the switch 10 is turned to 70b side.

[0080] A data packet is received via the antenna 60, circulator 61 and reception radio module 62, and subjected to a reception process by the traffic channel acquisition/despread circuit 63b and detector 64. The data packet output from the detector is subjected to error correction/decoding by the decoder 65 to obtain reception data from the signal line 68. The data packet is also input to the transmission power correction unit 123 which derives the transmission power control signal inserted in the data packet and inputs it to the traffic channel gain calculator 124. The traffic channel gain calculator 124 calculates a gain of the variable gain amplifier 68 to renew the gain, similar to the first embodiment.

[0061] With the base station and mobile terminals having the above structures and operating in the above manner, it becomes possible for a mobile terminal to perform transmission/reception of a data packet to/from the base station and reception of transmission power control by the base station, by using either the answer channel or traffic channel. Therefore, it is sufficient if only the mobile

30

40

terminal has one set of a detector and a decoder, and so the circuit scale of the mobile terminal can be prevented from becoming large.

[0062] In the above embodiments, the invention has been applied to a mobile communication system of a reservation based access control scheme in which a base station transmits a transmission power control signal to each mobile terminal by using an answer channel. The invention is also applicable to a channel other than the answer channel if it is a common channel shared by mobile terminals. Namely, if a system uses a common channel shared by mobile terminals, the base station can perform transmission power control of a plurality of mobile terminals by transmitting transmission power control signals via the single common channel. Obviously, a channel dedicated to transmission power control may be provided to perform transmission power control of mobile terminals by transmitting transmission power control signals from the base station by using this dedicated channel.

Claims

 A transmission power control method for a spectrum spreading communication system which performs communication between a base station (203) and a plurality of mobile terminals (204) by using a plurality of channels, wherein:

said plurality of channels includes first channels (3) allocated to said mobile terminals for transmitting a data packet to said base station and a second channel (140) used by said base station to transmit a control signal to said plurality of mobile terminals, said second channel being shared by said plurality of mobile terminals; said base station measures the reception level of a signal received at each of said first channels, generates a transmission power control signal in accordance with the reception level, and transmits said transmission power control signal of each of said first channels via said second channel; and each of said plurality of mobile terminals re-

each of said plurality of mobile terminals receives said transmission power control signal destined thereto at said second channel, and controls the transmission power of a signal to be transmitted via a corresponding one of said first channels in accordance with said received transmission power control signal.

2. The method according to claim 1, wherein each of said first channels is allocated to each of said plurality of mobile terminals, said base station uses third channels for transmitting data packets to said plurality of mobile terminals, and either a pair of said first channel and said third channel or only said first channel is allocated by said base station to said plurality of mobile terminals.

The method according to claim for 2, wherein each of said plurality of mobile stations transmits a reservation packet representative of a transmission request for a data packet; said base station receives said reservation packet, generates an initial transmission power control signal (103) in accordance with the reception level of said reservation packet, and transmits said initial transmission power control signal to a corresponding one of said plurality of mobile terminals via said secand channel, said initial transmission power control signal being contained in an answer packet indicating a first channel via which said corresponding mobile terminal transmits said data packet; and said corresponding mobile terminal starts transmitting said data packet at a transmission power corresponding to said initial transmission power control signal contained in said answer packet.

The method according to claim 3, wherein:

said base station measures the reception level of said data packet transmitted from each of said plurality of mobile terminals, generates a transmission power control signal in accordance with said reception level of the data packet, and transmits a common transmission power control signal containing the transmission power control signals of a plurality of traffic channels; and each of said plurality of mobile terminals receives said common transmission power control signal, derives the transmission power control signal of the transmission packet via which said data packet was transmitted, from said common transmission power control signal, and controls the transmission power of another data packet in accordance with said derived transmission power control signal.

5. The method according to claim 4, wherein when each of said plurality of mobile terminals receives said common transmission power control signal, said mobile terminal neglects said common trans-mission power control signal if a lapse time from when said data packet starts being transmitted exceeds a predetermined limit time.

The method according to claim 4, wherein a transmission power of said control signal is known in advance at each of said plurality of mobile terminals.

 A spectrum spreading communication system for performing communication between a base station (203) and a plurality of mobile terminals (204) via a plurality of channels, wherein:

30

25

said plurality of channels include uplink traffic channels for transmitting a data packet from each mobile terminal to said base station, a reservation channel for transmitting a reservation packet representative of a traffic channel allocation request from each mobile terminal to said base station, and an answer channel for transmitting an answer packet indicating an uplink traffic channel via which a data packet is transmitted from said base station to each mobile terminal; and

a common transmission power control signal is transmitted via said answer channel, said common transmission power control signal containing a transmission power control signal of said uplink traffic channel.

8. The system according to claim 7, wherein:

said answer packet contains an ID of a corresponding mobile terminal which transmitted said reservation packet, information of said uplink traffic channel allocated by said base station, and initial transmission power control information indicating a transmission power when said data packet starts being transmitted; and said initial transmission power control information is generated in accordance with a reception power of said reservation packet at said base station.

- The system according to claim 7, wherein said common transmission power control signal is inserted in said answer channel at a predetermined interval.
- 10. A base station (203) for communicating with a plurality of mobile terminals (204) by spectrum spreading, comprising:

a reception circuit (33, 42) for receiving a signal transmitted from each of said plurality of mobile terminal;

a unit (39, 45) for measuring the reception level of said received signal;

a generator (40, 46) for generating a transmission power control signal in accordance with said measured reception level of said signal; and a transmission circuit (38, 41, 47, 48) for transmitting said generated transmission power control signal to said plurality of mobile terminals via a common channel (140) used by said base station to transmit a control signal to said plurality of mobile terminals.

11. The base station (203) according to claim 15, comprising:

another reception circuit for receiving a reserva-

tion packet representative of a transmission request for a data packet to be transmitted from each of said plurality of mobile terminals.

- 12. The base station according to claim 11, wherein said transmission circuit transmits an answer packet indicating a traffic channel via which each mobile terminal transmits said data packet, said answer packet being generated after the interpretation of said reservation packet received by said another reception circuit, and being transmitted via said common channel
- The base station according to claim 12, further comprising:

a unit for measuring the reception level of said received reservation packet; and a reservation channel transmission power control signal generator for generating an initial trans-mission power control signal in accordance with said measured reception level of said reservation packet,

wherein said initial transmission power control signal is contained in said answer packet.

14. A mobile terminal (204) for communicating with a base station (203) by spectrum spreading, comprising:

> a reception circuit (63) for receiving a transmission power control signal transmitted from said base station via a common channel (140) used by said base station to transmit a control signal to a plurality of mobile terminals;

> a calculator (124) for calculating a gain in accordance with a transmission power control signal destined to the mobile terminal and derived from said common transmission power control signal; and

a transmission circuit (68, 69) for transmitting a data packet at a transmission power corresponding to said calculated gain.

- 15. The mobile terminal (204) according to claim 14, wherein said first reception circuit receives an answer packet transmitted from said base station, said answer packet indicating a traffic channel via which the mobile terminal transmits a data packet, and said transmission circuit transmits said data packet via said traffic channel designated by said answer packet.
- 18. The mobile terminal according to claim 15, wherein said answer packet includes an initial transmission power control signal, said calculator calculates a

40

gain to be used at the start of transmission in accordance with said initial transmission power control signal, and said transmission circuit starts transmitting said data packet at a transmission power corresponding to said calculated gain to be used at the start of transmission.

 The mobile terminal according to claim 15, further comprising:

a second reception circuit for receiving a control signal transmitted from said base station, a transmission power of said control signal being known in advance by the mobile terminal;

a unit for measuring the reception level of said control signa; and

a reservation channel gain calculator for calculating a reservation packet gain in accordance with the reception level of said measured control signal, said reservation packet gain being used for transmitting a reservation packet representative of a transmission request for said data packet.

wherein said transmission circuit transmits said reservation packet at a transmission power corresponding to said reservation packet gain.

 The mobile terminal (204) according to claim 14, wherein:

the first reception circuit receives an answer packet transmitted from said base station, said answer packet indicating a traffic channel via which the mobile terminal transmits a data packet;

a second reception circuit is provided for receiving said data packet containing said transmission power control signal transmitted from said base station;

a switch is provided for switching a connection to a gain calculator between said first reception circuit and said second reception circuit; and said transmission circuit transmits said data packet at a transmission power corresponding to the gain calculated by said gain calculator via the traffic channel designated by said answer packet,

wherein said gain calculator calculates the gain in accordance with said common transmission power control signal or said transmission power control signal derived from said data packet.

19. The mobile terminal according to claim 18, wherein said switch connects said first reception circuit to said gain calculator while the mobile terminal per-forms one way communication, and connects said second reception circuit to said gain calculator while the mobile terminal performs two way communication.

- 5 20. The mobile terminal according to claim 18, wherein said answer packet includes an initial transmission power control signal, said gain calculator calculated a gain to be used for the start of transmission in accordance with said initial transmission power control signal, and said transmission circuit starts transmitting said data packet at a transmission power corresponding to said calculated gain to be used for the start of transmission.
- 5 21. The mobile terminal according to claim 18, wherein a transmission power of said control signal is known in advance by the mobile terminal; further comprising:

a unit for measuring the reception level of said control signal; and

a reservation channel gain calculator for calculating a reservation packet gain in accordance with the reception level of said measured control signal, said reservation packet gain being used for transmitting a reservation packet representative of a transmission request for said data packet,

30 wherein said transmission circuit transmits said reservation packet at a transmission power corresponding to said reservation packet gain.

35 Patentansprüche

 Übertragungsleistungs-Steuerungsverfahren für ein spektrum-erweiterndes Kommunikationssystem, das ausführt Kommunikation zwischen einer Basisstation (203) und mehreren mobilen Geräten (204) unter Verwendung mehrerer Kanäle, wobei:

die Kanäle mehrere erste Kanäle (3) aufweisen, die den mobilen Geräten zugeordnet sind, zum Übertragen eines Datenpakets an die Basisstation, und einen zweiten Kanal (140), der durch die Basisstation verwendet wird, um ein Steuerungssignal an die mobilen Geräte zu übertragen, wobei sich die mobilen Geräte den zweiten Kanal teilen;

die Basisstation den Empfangspegel eines Signals misst, das auf jedem der ersten Kanäle empfangen wird, ein Übertragungsleistungssteuerungssignal nach Maßgabe des Empfangspegels erzeugt und das Übertragungsleistungssteuerungssignal für jeden der ersten Kanäle über den zweiten Kanal überträgt; und jedes mobile Gerät das ihm zugedachte

20

Übertragungsleistungssteuerungssignal auf dem zweiten Kanal empfängt und die Übertragungsleistung für ein über einen entsprechenden der ersten Kanäle zu übertragendes Signal nach Maßgabe des empfangenen Übertragungsleistungssteuerungssignals steuert.

- 2. Verfahren nach Anspruch 1, bei dem jeder der ersten Kanäle jedem der beweglichen Geräte zugeordnet ist, die Basisstation dritte Kanäle nutzt, um Datenpakete an die mobilen Geräte zu übertragen, und entweder ein Paar eines ersten Kanals und eines dritten Kanals oder lediglich der erste Kanal durch die Basisstation den mobilen Geräten zugeordnet wird.
- Verfahren nach Anspruch 1 oder 2, bei dem jedes bewegliche Gerät ein Reservierungspaket überträgt, das eine Übertragungsanfrage für ein Datenpaket darstellt;

die Basisstation das Reservierungspaket empfängt, ein anfängliches Übertragungsleistungssteuerungssignal (103) nach Maßgabe des Empfangspegels des Reservierungspakets erzeugt und das anfängliche Übertragungsleistungssteuerungssignal an das entsprechende mobile Gerät über den zweiten Kanal überträgt.

wobel das anfängliche Übertragungsleistungssteuerungssignal sich in einem Antwortpaket befindet, das einen ersten Kanal angibt, über den das entsprechende mobile Gerät das Datenpaket überträgt; und das entsprechende mobile Gerät die Übertragung des Datenpakets mit einer Übertragungsleistung entsprechend dem anfänglichen Übertragungsleistungssteuerungssignal im Antwortpaket beginnt.

4. Verfahren nach Anspruch 3, bei dem:

die Basisstation den Empfangspegel des von den beweglichen Geräten übertragenen Datenpakets misst, nach Maßgabe des Empfangspegels des Datenpakets ein Übertragungsleistungssteuerungssignal erzeugt und ein gemeinsames Übertragungsleistungssteuerungssignal überträgt, das die Übertragungsleistungsteuerungssignale für mehrere Verkehrskanäle enthält; und

jedes mobile Gerät das gemeinsame Übertragungsleistungssteuerungssignal empfängt, aus dem gemeinsamen Übertragungsleistungssteuerungssignal das Übertragungsleistungssteuerungssignal des Übertragungspakets, über das das Datenpaket gesendet wurde, herleitet, und die Übertragungsleistung eines anderen Datenpakets nach Maßgabe des hergeleiteten Übertragungsleistungssteuerungssignals steuert.

- 5. Verfahren nach Anspruch 4, bei dem dann, wenn die mobilen Geräte das gemeinsame Übertragungsleistungsleistungssteuerungssignal empfangen, die Endgeräte das gemeinsame Übertragungsleistungssteuerungssignal außer Acht lassen, wenn die verstrichene Zeit seit dem Beginn des Aussendens des Datenpakets eine bestimmte Grenzzeit überschritten hat.
- 6. Verfahren nach Anspruch 4, bei dem jedes mobile Gerät vorab die Übertragungsleistung des Steuerungssignals kennt.
 - Spektrum-erweiterndes Kommunikationssystem zum Vornehmen von Kommunikation zwischen einer Basisstation (203) und mehreren mobilen Geräten (204) über mehrere Kanäle, bei denen:

die Kanäle Aufwärtsverkehr-Kanäle aufweisen zum Übertragen eines Datenpakets von den mobilen Geräten zur Basisstation, einen Reservierungskanal zum Übertragen eines Reservierungspakets, das eine Verkehrskanalzuordnungsanfrage derstellt, von den mobilen Geräten an die Basisstation, und einen Antwortkanal zum Übertragen eines Antwortpakets, das einen Aufwärtsverkehr-Kanal angibt, über den ein Datenpaket von der Basisstation an die mobilen Geräte übertragen wird, und über dem Antwortkanal ein gemeinsames Übertragungsleistungssteuerungssignal übertragen wird, das ein Übertragungsleistungssteuerungssignal für den Aufwärtsverkehr-Kanal enthält.

35 8. System nach Anspruch 7, bei dem:

das Antwortpaket eine ID eines entsprechenden mobilen Geräts enthält, das das Reservierungspaket aussandte, Information zum Aufwärtsverkehr-Kanal, der durch die Basisstation zugeordnet wurde, und anfängliche Übertragungsleistungssteuerungsinformation, die eine Übertragungsleistung beim Beginn des Übertragens des Datenpakets anzeigt; und

die anfängliche Übertragungsleistungssteuerungsinformation nach Maßgabe einer Empfangsleistung des Reservierungspakets an der Basisstation erzeugt wird.

- 50 9. System nach Anspruch 7, bei dem das gemeinsame Übertragungsleistungssteuerungssignal in vorbestimmten Zeitintervallen in den Antwortkanal eingefügt wird.
- 55 10. Basisstation (203) zur Kommunikation mit mehreren mobilen Geräten (204) mittels Spektrumserweiterung, mit:

35

45

einer Empfangsschaftung (33, 42) zum Empfangen eines von den mobilen Geräten gesendeten Signals;

einer Einheit (39, 45) zum Messen des Empfangspegels des empfangenen Signals;

einem Generator (40, 46) zum Erzeugen eines Übertragungsleistungssteuerungssignals nach Maßgabe des gemessenen Empfangspegels des Signals; und

einer Übertragungsschaltung (38, 41, 47, 48) zum Übertragen des erzeugten Übertragungsleistungssteuerungssignals an die mobilen Geräte über einen gemeinsamen Kanai (140), der von der Basisstation zur Übertragung eines Steuerungssignals an die mobilen Geräte verwendet wird.

11. Basisstation (203) nach Anspruch 10, mit:

einer weiteren Empfangsschaltung zum Empfangen eines Reservierungspakets, das eine Übertragungsanfrage für ein Datenpaket darstellt, das von den mobilen Geräten zu übertragen ist.

- 12. Basisstation nach Anspruch 11, bei der die Übertragungsschaltung ein Antwortpaket überträgt, das einen Verkehrskanal angibt, über den die mobilen Geräte das Datenpaket übertragen, wobei das Antwortpaket nach der Auswertung des Reservierungspakets, das von der anderen Empfängsschaltung empfangen wurde, erzeugt wird und über den gemeinsamen Kanal übertragen wird.
- 13. Basisstation nach Anspruch 12, mit:

einer Einheit zum Messen des Empfangspegels des empfangenen Reservierungspakets; und einem Generator für ein Übertragungsleistungssteuerungssignal für einen Reservierungskanal zum Erzeugen eines anfänglichen Übertragungsleistungssteuerungssignals nach Maßgabe des gemessenen Empfangspegels des Reservierungspakets,

wobei das anfängliche Übertragungsleistungssteuerungssignal im Antwortpaket enthalten ist.

 Mobiles Gerät (204) zur Kommunikation mit einer Basisstation (203) durch Spektrumserweiterung, mit:

einer Empfangsschaltung (63) zum Empfangen eines Übertragungsleistungssteuerungssignals, das von der Basisstation über einen gemeinsamen Kanal (140) ausgesendet wurde, der durch die Basisstation zum Aussenden eines Steuerungssignals für mehrere mobile Ge-

räte verwendet wird:

Verstärkung.

paket bestimmt ist.

einem Rechner (124) zum Berechnen einer Verstärkung nach Maßgabe eines Übertragungsleistungssteuerungssignals, das für das mobile Gerät vorgesehen ist und das aus dem gemeinsamen. Übertragungsleistungssteuerungssignal hergeleitet wurde; und eine Übertragungsschaltung (68, 69) zum Übertragen eines Datenpakets mit einer Übertragungsleistung entsprechend der berechneten

15. Mobiles Gerät (204) nach Anspruch 14, bei dem die erste Empfangsschaltung ein Antwortpaket empfängt, das von der Basisstation übertragen wurde, wobei das Antwortpaket einen Verkehrskanal angibt, über den das mobile Gerät ein Datenpaket überträgt, und die Übertragungsschaltung das Datenpaket über-

den Verkehrskanal überträgt, der durch das Antwort-

- 16. Mobiles Gerät nach Anspruch 15, wobei das Antwortpaket ein anfängliches Übertragungsleistungssteuerungssignal enthält und der Rechner eine Verstärkung berechnet, die bei Beginn der Übertragung zu verwenden ist, nach Maßgabe des anfänglichen Übertragungsleistungssteuerungssignals, wobei die Übertragungsschaltung die Übertragung des Datenpakets mit einer Übertragungsleistung beginnt, die der berechneten Verstärkung zur Verwendung beim Beginn der Übertragung entspricht.
- 17. Mobiles Gerät nach Anspruch 15, mit:

einer zweiten Empfangsschaltung zum Empfangen eines Steuerungssignals, das von der Basisstation übertragen wurde, wobei die Übertragungsleistung des Steuerungssignals im beweglichen Gerät vorab bekannt ist; einer Einheit zum Messen des Empfangspegels des Steuerungssignals; und einem Reservierungskanal-Verstärkungsrechner zum Berechnen der Verstärkung für ein Reservierungspaket nach Maßgabe des Empfangspegels des gemessenen Steuerungssignals, wobei die Reservierungspaketverstärkung zur Übertragung eines Reservierungspakets verwendet wird, das eine Übertragungsanfrage für das Datenpaket darstellt,

wobei die Übertragungsschaltung das Reservierungspaket unter einer Übertragungsleistung nach Maßgabe der Reservierungspaketverstärkung überträgt.

18. Mobiles Gerät (204) nach Anspruch 14, bei dem:

15

25

45

die erste Empfangsschaltung ein Antwortpaket empfängt, das von der Basisstation übertragen wurde, wobei das Antwortpaket einen Verkehrskanal angibt, über den das mobile Gerät ein Datenpaket überträgt:

eine zweite Empfangsschaltung vorgesehen ist zum Empfangen des Datenpakets mit dem Übertragungsleistungssteuerungssignal, das von der Basisstation übertragen wurde;

ein Schalter vorgesehen ist zum Schalten einer Verbindung zu einem Verstärkungsrechner zwischen der ersten Empfangsschaltung und der zweiten Empfangsschaltung; und

die Übertragungsschaltung das Datenpaket mit einer Übertragungsleistung überträgt entsprechend der vom Verstärkungsrechner berechneten Verstärkung über den Verkehrskanal, der durch das Antwortpaket bestimmt wird,

wobei der Verstärkungsrechner die Verstärkung nach Maßgabe des gemeinsamen Übertragungsleistungssteuerungssignals oder des Übertragungsleistungssteuerungssignals, das aus dem Datenpaket hergeleitet wurde, berechnet.

- 19. Mobiles Gerät nach Anspruch 18, bei dem der Schalter die erste Empfangsschaltung mit dem Verstärkungsrechner verbindet, während das mobile Gerät Kommunikation in eine Richtung durchführt, und die zweite Empfangsschaltung mit dem Verstärkungsrechner verbindet, wenn das mobile Gerät Kommunikation in zwei Richtungen vornimmt.
- 20. Mobiles Gerät nach Anspruch 18, wobei das Antwortpaket ein anfängliches Übertragungsleistungssteuerungssignal aufweist, der Verstärkungsrechner eine Verstärkung berechnet, die für den Beginn der Übertragung nach Maßgabe des anfänglichen Übertragungsleistungssteuerungssignals zu verwenden ist, und die Übertragungsschaltung die Übertragung des Datenpakets mit einer Übertragungsleistung beginnt, die der berechneten Verstärkung zur Verwendung für den Beginn der Übertragung entspricht.
- 21. Mobiles Gerät nach Anspruch 18, bei dem eine Übertragungsleistung des Steuerungssignals vorab im mobilen Gerät bekannt ist, mit:

einer Einheit zum Messen des Empfangspegels des Steuerungssignals; und einem Reservierungskanal-Verstärkungsrechner zum Berechnen einer Reservierungspaketverstärkung nach Maßgabe des Empfangspegels des gemessenen Steuerungssignals, wobei die Reservierungspaketverstärkung zum Übertragen eines Reservierungspakets verwendet wird, das eine Übertragungsanfrage für

das Datenpaket darstellt,

wobei die Übertragungsschaltung das Reservierungspaket mit einer Übertragungsleistung entsprechend der Reservierungspaketverstärkung überträgt.

Revendications

 Un procédé de contrôle de la puissance d'émission pour un système de communication à étalement de spectre qui établit

une communication entre une station de base (203) et une pluralité de stations mobiles (204) en utilisant une pluralité de canaux, dans laquelle:

ladite pluralité de canaux inclut des premiers canaux (3) attribués auxdites stations mobiles pour transmettre un paquet de données vers ladite station de base et un second canal (140) utilisé par ladite station de base pour transmettre un signal de contrôle vers ladite pluralité de stations mobiles, ledit second canal étant partagé par ladite pluralité de stations mobiles;

ladite station de base mesure le niveau de réception d'un signal reçu à chacun desdits premiers canaux, génère un signal de contrôle de la puissance d'émission selon le niveau de réception et transmet ledit signal de contrôle de la puissance d'émission de chacun desdits premiers canaux via ledit second canal; et

chacune de ladite pluraiité de stations mobiles reçoit ledit signal de contrôle de la puissance d'émission destiné à celles-ci au niveau dudit second canal et contrôle la puissance d'émission d'un signal devant être transmis via l'un desdits premiers canaux correspondant selon ledit signal de contrôle de la puissance d'émission reçu.

- 2. Le procédé selon la revendication 1, dans lequel chacun desdits premiers canaux est attribué à chacune de ladite pluralité de stations mobiles, ladite station de base utilise des troisièmes canaux pour transmettre des paquets de données vers ladite pluralité de stations mobiles, et soit une paire constituée desdits premiers canaux et dudit troisième canal soit uniquement ledit premier canal est attribué par ladite station de base à ladite pluralité de stations mobiles.
- 3. Le procédé selon la revendication 1 ou 2, dans lequel chacune de ladite pluralité de stations mobiles transmet un paquet de réservation représentatif d'une demande de transmission pour un paquet de données; ladite station de base reçoit ledit paquet de réservation, génère un signal de contrôle de la puissance d'émission initial (103) selon le niveau de réception

35

40

45

dudit paquet de réservation et transmet ledit signal de contrôle de la puissance d'émission initial vers l'une de ladite pluralité de stations mobiles correspondante via ledit second canal, ledit signal de contrôle de la puissance d'émission initial étant contenu dans un paquet de réponse indiquant un premier canal par le biais duquel ladite station mobile correspondante transmet ledit paquet de données; et ladite station mobile correspondante commence à transmettre ledit paquet de données à une puissance d'émission correspondant audit signal de contrôle de la puissance d'émission initial contenu dans ledit paquet de réponse.

4. Le procédé selon la revendication 3, dans lequel:

ladite station de base mesure le niveau de réception dudit paquet de données transmis à partir de chacune de ladite pluralité de stations mobiles, génère un signal de contrôle de la puissance d'émission selon tedit niveau de réception du paquet de données, et transmet un signal de contrôle de la puissance d'émission commun contenant les signaux de contrôle de la puissance d'émission d'une pluralité de canaux de trafic; et

chacune de ladite pluralité de stations mobiles reçoit ledit signal de contrôle de la puissance d'émission commun, dérive le signal de contrôle de la puissance d'émission du paquet de transmission par le biais duquel le paquet de données a été transmis, à partir dudit signal de contrôle de la puissance d'émission commun, et contrôle la puissance d'émission d'un autre paquet de données selon ledit signal de contrôle de la puissance d'émission dérivé.

- 5. Le procédé selon la revendication 4, dans lequel lorsque chacune de ladite pluralité de stations mobiles reçoit ledit signal de contrôle de la puissance d'émission commun, ladite station mobile néglige ledit signal de contrôle de la puissance d'émission commun si une durée d'intervalle à partir du moment où ledit paquet de données commence à être transmis dépasse une limite de temps prédéterminée.
- Le procédé selon la revendication 4, dans lequel une puissance d'émission dudit signal de contrôle est connue à l'avance à chacune de ladite pluralité de stations mobiles.
- Un système de communication à étalement de spectre permettant d'établir une communication entre une station de base (203) et une pluralité de stations mobiles (204) via une pluralité de canaux, dans lequel:

ladite pluralité de canaux inclut des canaux de

trafic de liaison montante permettant de transmettre un paquet de données à partir de chaque station mobile jusqu'à ladite station de base, un canal de réservation permettant de transmettre un paquet de réservation représentatif d'une demande d'attribution de canal de trafic à partir de chaque station mobile vers ladite station de base, et un canal de réponse permettant de transmettre un paquet de réponse indiquant un canal de trafic de liaison montante par le biais duquel un paquet de données est transmis à partir de ladite station de base vers chaque station mobile; et

un signal de contrôle de la puissance d'émission commun est transmis via ledit canal de réponse, ledit signal de contrôle de la puissance d'émission commun contenant un signal de contrôle de la puissance d'émission dudit canal de trafic de liaison montante.

8. Le système selon la revendication 7, dans lequel:

ledit paquet de réponse contient un numéro d'identification d'une station mobile correspondante qui a transmis ledit paquet de réservation, les informations dudit canal de trafic de liaison montante attribué par ladite station de base, et les informations de contrôle de la puissance d'émission initiales indiquant une puissance d'émission quand ledit paquet de données commence à être transmis; et

lesdites informations de contrôle de la puissance d'émission initiales sont générées selon une puissance de réception dudit paquet de réservation à ladite station de base.

- Le système selon la revendication 7, dans lequel ledit signal de contrôle de la puissance d'émission commun est inséré dans ledit canal de réponse à un intervalle prédéterminé.
- 10. Une station de base (203) permettant de communiquer avec une pluralité de stations mobiles (204) par étalement de spectre, comprenant:

un circuit de réception (33, 42) permettant de recevoir un signal transmis à partir de chacune de ladite pluralité de stations mobiles;

une unité (39, 45) permettant de mesurer le niveau de réception dudit signal reçu (1);

un générateur (40, 46) permettant de générer un signal de contrôle de la puissance d'émission selon ledit niveau de réception mesuré dudit signal (1);

un circuit de transmission (38, 41, 47, 48) permettant de transmettre ledit signal de contrôle de la puissance d'émission généré vers ladite pluralité de stations mobiles via un canal com-

25

45

50

mun (140) utilisé par ladite station de base pour transmettre un signal de contrôle vers ladite pluralité de stations mobiles.

 La station de base (203) selon la revendication 15, comprenant:

> un autre circuit de réception permettant de recevoir un paquet de réservation représentatif d'une demande de transmission pour un paquet de données devant être transmis à partir de chacune de ladite pluralité de stations mobiles.

- 12. La station de base selon la revendication 11, dans l'aquelle ledit circuit de transmission transmet un paquet de réponse indiquant un canal de trafic par le biais duquel chaque station mobile transmet ledit paquet de données, ledit paquet de réponse étant généré après l'interprétation dudit paquet de réservation reçu par ledit autre circuit de réception, et étant transmis via ledit canal commun.
- La station de base selon la revendication 12, comprenant également:

une unité permettant de mesurer le niveau de réception dudit paquet de réservation reçu; et un générateur de signal de contrôle de la puissance d'émission du canal de réservation permettant de générer un signal de contrôle de la puissance d'émission initial selon ledit niveau de réception mesuré dudit paquet de réservation,

dans lequel ledit signal de contrôle de la puissance d'émission initial est contenu dans ledit paquet de réponse.

14. Une station mobile (204) permettant de communiquer avec une station de base (203) par étalement de spectre, comprenant:

un circuit de réception (63) permettant de recevoir un signal de contrôle de la puissance d'émission transmis à partir de ladite station de base via un canal commun (140) utilisé par ladite station de base pour transmettre un signal de contrôle vers une pluralité de stations mobiles; un calculateur (124) permettant de calculer un gain selon un signal de contrôle de la puissance d'émission destiné à la station mobile et dérivé dudit signal de contrôle de la puissance d'émission commun; et

un circuit de transmission (68, 69) permettant de transmettre un paquet de données à une puissance d'émission correspondant audit gain calculé. La station mobile (204) selon la revendication 14, dans laquelle

ledit premier circuit de réception reçoit un paquet de réponse transmis à partir de ladite station de base, ledit paquet de réponse indiquant un canal de trafic par le biais duquel la station mobile transmet un paquet de données, et

ledit circuit de transmission transmet ledit paquet de données via ledit canal de trafic désigné par ledit paquet de réponse.

- 16. La station mobile selon la revendication 15, dans laquelle ledit paquet de réponse inclut un signal de contrôle de la puissance d'émission initial, ledit calculateur calcule un gain devant être utilisé au début de la transmission selon ledit signal de contrôle de la puissance d'émission initial, et ledit circuit de transmission commence à transmettre ledit paquet de données à une puissance d'émission correspondant audit gain calculé devant être utilisé au début de la transmission.
- La station mobile selon la revendication 15, comprenant également:

un second circuít de réception permettant de recevoir un signal de contrôle transmis à partir de ladite station de base, une puissance d'émission dudit signal de contrôle étant connue à l'avance par la station mobile;

une unité permettant de mesurer le niveau de réception dudit signal de contrôle; et

un calculateur de gain du canal de réservation permettant de calculer un gain du paquet de réservation seion le niveau de réception dudit signal de contrôle mesuré, ledit gain du paquet de réservation étant utilisé pour transmettre un paquet de réservation représentatif d'une demande de transmission pour ledit paquet de données,

dans lequel ledit circuit de transmission transmet ledit paquet de réservation à une puissance d'émission correspondant audit gain du paquet de réservation.

18. La station mobile (204) selon la revendication 14, dans laquelle:

> le premier circuit de réception reçoit un paquet de réponse transmis par ladite station de base, ledit paquet de réponse indiquant un canal de trafic par le biais duquel la station mobile transmet un paquet de données;

> un second circuit de réception est fourni pour recevoir ledit paquet de données contenant ledit signal de contrôle de la puissance d'émission transmis par ladite station de base;

un commutateur est fourni pour commuter une connexion avec un calculateur de gain entre ledit premier circuit de réception et ledit second circuit de réception; et

ledit circuit de transmission transmet ledit paquet de données à une puissance d'émission correspondant au gain calculé par ledit caiculateur de gain via le canal de trafic désigné par ledit paquet de réponse,

dans lequel ledit calculateur de gain calcule le gain selon ledit signal de contrôle de la puissance d'émission commun ou ledit signal de contrôle de la puissance d'émission dérivé dudit paquet de données.

19. La station mobile selon la revendication 18, dans laquelle ledit commutateur connecte ledit premier circuit de réception audit calculateur de gain tandis que la station mobile établit une communication uni-directionnelle, et connecte ledit second circuit de réception audit calculateur de gain tandis que la station mobile établit une communication bidirectionnelle.

20. La station mobile selon la revendication 18, dans laquelle ledit paquet de réponse inclut un signal de contrôle de la puissance d'émission initial, ledit calculateur de gain a calculé un gain devant être utilisé pour le début de la transmission selon ledit signal de contrôle de la puissance d'émission initial, et ledit circuit de transmission commence à transmettre ledit paquet de données à une puissance d'émission correspondant audit gain calculé devant être utilisé pour le début de la transmission.

21. La station mobile selon la revendication 18, dans laquelle une puissance d'émission dudit signal de contrôle est connue à l'avance par la station mobile; comprenant également:

une unité permettant de mesurer le niveau de réception dudit signal de contrôle; et un calculateur de gain du canal de réservation permettant de calculer un gain du paquet de réservation selon le niveau de réception dudit signal de contrôle mesuré, ledit gain du paquet de réservation étant utilisé pour transmettre un paquet de réservation représentatif d'une demande de transmission pour ledit paquet de données,

dans lequel ledit circuit de transmission transmet ledit paquet de réservation à une puissance d'émission correspondant audit gain du paquet de réservation. 10

15

25

30

35

40

45

50

55

FIG. I

FIG. 2

FIG. 3

FIG. 8

FIG. 9

TRANSMISSION POWER CONTROL SIGNAL
TRANSMISSION POWER CONTROL

FIG. 10

FIG. II

FIG. 12

