Pokok Bahasan Bab 6 Beberapa Distribusi Peluang Kontinu

Probabilitas & Statistika

Materi yang Dibahas:

- 1. Distribusi Uniform Kontinu
- 2. Distribusi Normal
- 3. Distribusi Gamma
- 4. Distribusi Eksponensial
- 5. Distribusi Chi-Squared

Tim Penyusun

Judhi Santoso Harlili Dwi H. Widyantoro

Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Ciri/Sifat untuk Menyatakan Distribusi Variabel Random.

- 1. Aplikasi kejadian eksperimen random, X
- 2. Fungsi distribusi peluang (fdp):
 diskrit = fungsi mass,
 kontinu = fungsi distribusi peluang
- 3. Grafik histogram fdp
- 4 . Mean/Rataan, $E(X) = \mu$
- 5. Variansi , $E(X_i \mu)^2 = \sigma^2$
- 6. Parameter
- Mean dan variansi tergantung parameternya

Distribusi Uniform Kontinu

Variabel random X menyatakan suatu kejadian yang mempunyai nilai diantara selang A, B. Fungsi densitas dari variabel random uniform kontinu X pada selang [A, B] adalah

$$f(x; A, B) = \frac{1}{B - A}, A \le x \le B$$

= 0 untuk x yang lain

Rataan dan variansi dari distribusi uniform kontinu

$$\mu = \frac{(A+B)}{2}$$
 dan $\sigma^2 = \frac{(B-A)^2}{12}$

Contoh 1

Sebuah ruang konferensi dapat disewa untuk rapat yang lamanya tidak lebih dari 4 jam. Misalkan *X* adalah variabel random yang menyatakan waktu rapat, yang mempunyai distribusi uniform.

- 1. Tentukan fungsi densitas peluang dari X.
- 2. Tentukan peluang suatu rapat berlangsung 3 jam atau lebih.

Jawab 1

Menurut rumus di atas fungsi densitas peluang dari
 X adalah

$$f(x) = \frac{1}{4}, 0 \le x \le 4$$
$$= 0 \text{ untuk } x \text{ yang lain}$$

•
$$\Pr[X \ge 3] = \int_{3}^{4} (\frac{1}{4}) dx = \frac{1}{4}$$

Distribusi Normal

Variabel random X berdistribusi normal umumnya menyatakan kejadian error, atau jumlah dari beberapa kuantitas. Kurva dari distribusi normal mempunyai bentuk yang simetri, seperti pada gambar berikut:

Gambar 5.1.1 Kurva Distribusi Normal

Sifat-Sifat Kurva Normal

- Modus, adalah suatu titik yang terletak pada sumbu x di mana kurva mempunyai nilai maksimum, yaitu $x = \mu$, artinya nilai modus = nilai rata-rata.
- Kurva berbentuk simetri terhadap sumbu tegak pada $x = \mu$
- Kurva mempunyai titik balik pada $x = \mu \pm \sigma$
- Kurva mendekati sumbu datar secara asimtotik ke dua arah (kiri/kanan) berawal dari μ
- Luas daerah di bawah kurva adalah 1

Rataan & Variansi Distribusi Normal

Fungsi densitas dari variabel random normal X, dengan rataan μ dan variansi σ^2 adalah

$$n(x; \mu, \sigma) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right) e^{-\frac{1}{2}\left[\frac{(x-\mu)}{\sigma}\right]^2}, -\infty < x < \infty$$

di mana π = 3.14159... dan e = 2.71828...

- Rataan dan variansi distribusi Normal,
- rataan = μ dan variansi = σ^2

Transformasi ke Kurva Normal Standar

 Untuk menghitung luas daerah di bawah kurva menjadi kurva normal standar transformasi berikut:

$$Z = \frac{(X - \mu)}{\pi}$$

 $Z = \frac{(X - \mu)}{\sigma}$ Dengan transformasi di atas, dapat dihitung:

$$P(x_{1} < X < x_{2}) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right) \int_{x_{1}}^{x_{2}} e^{-\frac{1}{2}\left[\frac{(x-\mu)}{\sigma}\right]^{2}} dx$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right) \int_{z_{1}}^{z_{2}} e^{-\left(\frac{z^{2}}{2}\right)} dz$$

$$= \int_{z_{1}}^{z_{2}} e^{-\left(\frac{z^{2}}{2}\right)} dz = P(z_{1} < Z < z_{2})$$

Distribusi Normal Standar

Fungsi densitas dari variabel random normal standar X,

$$n(x) = \left(\frac{1}{\sqrt{2\pi}}\right) e^{-\frac{1}{2}[x]^2}, -\infty < x < \infty$$

- Rataan dan variansi distribusi Normal standar
- rataan = μ = σ dan variansi = σ ²=1

Contoh 6.2

Diberikan distribusi normal standard, hitunglah daerah di bawah kurva yang dibatasi:

- sebelah kanan z = 1.84
- antara $z = -1.97 \, \text{dan} \, z = 0.86$

Jawab 6.2

- Luas sebelah kanan = 1 luas sebelah kiri z = 1.84 (dilihat dari tabel).
 Dari tabel luas sebelah kiri = 0.9671, jadi Luas sebelah kanan = 1 0.9671 = 0.0329
- Luas daerah antar batas tersebut adalah luas batas kanan dikurangi dengan luas dari batas kiri, sehingga diperoleh o.8051 - o.0244 = o.7807

Daerah Example 6.2

Tabel Distribusi Normal

Table A.3 Areas under the Normal Curve

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
1.9	0.9713	0.9719	0.9720	0.9732	0.9130	0.9744	0.9750	0.9750	0.9701	0.9707

Contoh 6.4

Diberikan distribusi normal dengan μ = 50 dan σ = 10, hitunglah peluang x terletak antara 45 dan 62.

Jawab 6.4

Nilai z yang bersesuaian dengan x tersebut adalah:

$$z_1 = \frac{(45-50)}{10} = -0.5 \text{ dan } z_2 = \frac{(62-50)}{10} = 1.2$$

Sehingga

$$P(45 < X < 62) = P(-0.5 < Z < 1.2)$$

= $P(Z < 1.2) - P(Z < -0.5)$
= $0.8849 - 0.3085 = 0.5764$

Example 6.11

Sebuah mesin pembuat resistor dapat memproduksi resistor dengan ukuran rata-rata 40 ohm dengan standard deviasi 2 ohm.
Misalkan ukuran tersebut mempunyai distribusi normal, tentukan peluang resistor mempunyai ukuran lebih dari 43 ohm.

Jawab 6.11

Lakukan transformasi terlebih dulu:

$$Z = \frac{(43 - 40)}{2} = 1.5$$

sehingga dapat dihitung:

$$P(X > 43) = P(Z > 1.5) = 1 - P(Z < 1.5)$$

= 1 - 0.9332 = 0.0668

Aproksimasi Normal untuk Binomial

Dari bagian sebelumnya, distribusi Poisson digunakan untuk aproksimasi peluang Binomial ketika *n* membesar dan *p* sangat dekat ke o atau 1. Kedua distribusi tersebut adalah diskrit.

Dalam bagian ini distribusi kontinu Normal digunakan untuk aproksimasi Binomial bilamana *n* cukup besar dan *p* tidak harus dekat ke nilai o atau 1.

Teorema

Jika X adalah variabel random binomial dengan rataan $\mu = np$ dan variansi $\sigma^2 = npq$, maka bentuk limit dari distribusi dari:

$$Z = \frac{(X - np)}{\sqrt{npq}}$$

bilamana $n \to \infty$ adalah distribusi normal standard n(z; 0, 1)

Figure 6.23: Normal approximation of b(x; 15, 0.4) and $\sum_{x=7}^{9} b(x; 15, 0.4)$.

b(x; 15, 0.4)

$$\mu = np = (15)(0.4) = 6$$
 and $\sigma^2 = npq = (15)(0.4)(0.6) = 3.6$.

- Tabel A.1 \rightarrow P(X = 4) = b(4; 15, 0.4) = 0.1268,
- Histogram: x=4, pendekatan x1=3.5 dan x2=4.5 (continuity correction)

$$z_1 = \frac{3.5 - 6}{1.897} = -1.32$$
 and $z_2 = \frac{4.5 - 6}{1.897} = -0.79$.

Binomial dengan pendekatan normal:

$$P(X = 4) = b(4; 15, 0.4) \approx P(-1.32 < Z < -0.79)$$

= $P(Z < -0.79) - P(Z < -1.32) = 0.2148 - 0.0934 = 0.1214.$

Example 6.16

Dalam soal ujian ada 200 pertanyaan *multiple choice*, ada 4 jawaban dan hanya satu yang benar. Berapakah peluang menebak dan benar sebanyak 25 sampai 30 dari 80 jawaban yang benar?

Jawab 6.16 (1)

Peluang jawaban yang benar adalah p = 1/4. Jika X menyatakan variabel random dari jawaban yang benar, maka

$$P(25 \le X \le 30) = \sum_{x=25}^{30} b(x; 80, 1/4)$$

Menggunakan aproksimasi kurva normal dengan

$$\mu = np = (80)(1/4) = 20$$

dan

$$\sigma = \sqrt{npq} = \sqrt{(80)(1/4)(3/4)} = 3.873$$

Jawab 6.16(2)

Dengan aproksimasi normal, perlu ditentukan batas-batasnya yaitu $x_1 = 24.5$ dan $x_2 = 30.5$. Nilai variabel z yang bersesuaian adalah:

$$z_1 = (24,5 - 20) / 3,873 = 1,16$$
dan

$$z_2 = (30,5 - 20) / 3,873 = 2,71$$

Jawab 6.16 (3)

Sehingga dapat dihitung:

$$P(25 \le X \le 30) = \sum_{x=25}^{30} b(x;80,1/4)$$

$$\approx P(1.16 < Z < 2.71)$$

$$= P(X < 2.71) - P(X < 1.16)$$

$$= 0.9966 - 0.8770$$

$$= 0.1196$$

Fungsi Gamma

Definisi fungsi gamma dan nilainya

$$Gamma(\alpha) = (\alpha-1)!$$

$$Gamma(1) = 1$$

$$\Gamma(\infty) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

Distribusi Gamma

Variabel random kontinu X mempunyai distribusi **gamma**, dengan parameter α dan β , jika fdp-nya diberikan:

$$f(x) \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, x \ge 0 \\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

Rataan dan variansi dari distribusi gamma adalah $\mu=\alpha\beta$ dan $\sigma^2=\alpha\beta^2$

Grafik Distribusi Gamma

Aplikasi Distribusi Gamma

- Teori antrian
- Reliabilitas/ keandalan sistem
- Time between arrival at service facilities
- Time to failure
- Distribusi Gamma mempunyai 2 parameter (α,β)
- α: menyatakan banyak kejadian
- β: menyatakan rata-rata waktu antar kejadian

Distribusi Eksponensial

Variabel random kontinu X mempunyai distribusi **eksponensial** dengan parameter β , jika fdp-nya:

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta}, x \ge 0\\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

Distribusi Eksponensial = Distribusi Gammma untuk kasus dengan α = 1

Rataan dan variansi distribusi eksponensial adalah

$$\mu = \beta$$
 dan $\sigma^2 = \beta^2$

Dist. Eksponensial – Poisson (1)

Misalkan distribusi Poisson dengan parameter λ , dimana λ adalah rata-rata jumlah event dalam satu satuan waktu. Misalkan X adalah variabel random yang menyatakan panjang selang waktu dimana event pertama terjadi. Dengan distribusi Poisson, peluang tidak ada event sampai selang waktu t adalah

$$p(0; \lambda t) = \frac{e^{-\lambda t} (\lambda t)^0}{0!} = e^{-\lambda t}$$

Dist. Eksponensial – Poisson (2)

Peluang panjang selang waktu event pertama terjadi sampai melewati x sama dengan peluang tidak ada event Poisson.

Fungsi distribusi kumulatif dari X adalah:

$$P(0 \le X \le x) = 1 - P(X \ge x) = 1 - e^{-\lambda x}$$

Fungsi densitas adalah turunan fungsi diatas:

$$f(x) = \lambda e^{-\lambda x}$$

Merupakan fdp distribusi eksponesial dengan $\lambda=1/\beta$

Contoh soal 6.17

Suatu sistem terdiri dari tipe komponen tertentu yang mempunyai umur sampai rusak dalam tahun dinyatakan dalam T. Variabel random T dapat dimodelkan dengan distribusi eksponensial waktu sampai kerusakan β = 5. Jika terdapat 5 buah komponen dipasang pada sistem, tentukan peluang sekurang-kurangnya 2 komponen masih berfungsi sampai akhir tahun ke-8.

Jawaban 6.17 (1)

Peluang komponen masih berfungsi hingga akhir tahun ke 8 adalah

$$P(T > 8) = \frac{1}{5} \int_{8}^{\infty} e^{-t/5} dt = e^{-8/5} \approx 0.2$$

Jawaban 6.17(2)

Misalkan X adalah jumlah komponen yang masih berfungsi hingga akhir tahun ke-8, maka dengan distribusi binomial

$$P(X \ge 2) = \sum_{x=2}^{5} b(x; 5, 0.2)$$

$$=1-\sum_{x=0}^{1}b(x;5,0.2)=1-0.7373=0.2627$$

Contoh soal 6.18

Suatu panggilan telepon datang pada papan switching mengikuti proses Poisson, dengan ratarata 5 panggilan datang tiap menit. Tentukan peluang hingga 1 menit terjadi sebelum 2 panggilan telepon datang.

Jawaban

Proses Poisson dapat diterapkan dengan menunggu 2 event Poisson terjadi mempunyai distribusi Gamma dengan β = 1/5 dan α = 2. Misalkan X adalah selang waktu sebelum 2 panggilan telpon datang. Peluangnya adalah

$$P(X \le x) = \int_0^x \frac{1}{\beta^2} x e^{-x/\beta} dx$$

$$P(X \le 1) = 25 \int_0^1 x e^{-5x} dx$$

$$= \left[1 - e^{-5(1)}(1+5)\right] = 0.96$$

Distribusi Chi-Squared

Variabel random kontinu X mempunyai distribusi **chi- square**, dengan derajat kebebasan v, jika fdp-nya:

$$f(x) \begin{cases} \frac{1}{2^{v/2}\Gamma(v/2)} x^{v/2-1} e^{-x/2}, x > 0 \\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

dengan v bilangan positif.

Rataan dan variansi dari distribusi chi-squared

$$\mu = v \operatorname{dan} \sigma^2 = 2v$$

Distribusi Lognormal

Variabel random kontinu mempunyai distribusi **lognormal**, jika variabel random Y = ln(X) mempunyai distribusi normal dengan rataan μ dan simpangan baku σ dan fdp-nya :

$$f(x) \begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-[\ln(x) - \mu]^2/(2\sigma^2)}, x \ge 0\\ 0, \text{ jika } x < 0 \end{cases}$$

Rataan dan variansi dari distribusi lognormal

$$E(x) = e^{\mu + \frac{\sigma^2}{2}} \operatorname{dan} Var(X) = e^{2\mu + \sigma^2} \cdot (e^{\sigma^2} - 1)$$

Figure 6.29: Lognormal distributions.

Distribusi Weibull

Variabel random kontinu X distribusi **Weibull**, dengan parameter α dan $\beta \ge o$, jika fdp-nya :

$$f(x) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, x > 0 \\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

Rataan dan variansi dari distribusi Weibull

$$\mu = \alpha^{1/\beta} \Gamma \left(1 + \frac{1}{\beta} \right) \, \mathrm{dan}$$

$$\sigma^{2} = \alpha^{-2/\beta} \left\{ \Gamma \left(1 + \frac{2}{\beta} \right) - \left[\Gamma \left(1 + \frac{1}{\beta} \right) \right]^{2} \right\}$$

PR

Bab 6: #41, 55

