

Outline

- > Introduction to Mobile Robot
- Control & Decision Paradigms
- Control & Decision Architecture

Introduction to Mobile Robot

- Definition of Mobile Robot
- Turtlebot2 Structure
- Turtlebot2 Base
- Turtlebot2 Operating System
- Turtlebot2 Simulator: Gazebo

Definition of Mobile Robot

 A mobile robot is an automatic machine that is capable of locomotion.

Turtlebot2

Links of learning materials:

https://www.ncnynl.com/archives/201609/786.html

Link of Turtlebot package on ROS website:

http://wiki.ros.org/Robots/TurtleBot

Turtlebot2 Structure

Turtlebot2 Base

Turtlebot2 Operating System

Turtlebot2 Simulator: Gazebo

Outline

> Introduction to Mobile Robot

- Control & Decision Paradigms
- Control & Decision Architectures

Control & Decision Paradigms

- Mathematical Model
- System Diagram
- Classical Paradigm
- Reactive Paradigm
- Hybrid Paradigm
- Potential Field Method

Mathematical Model

System Diagram

Classical / Hierarchical Paradigm

- 70's
- Focus on automated reasoning and knowledge representation
- STRIPS (Stanford Research Institute Problem Solver): Perfect world model, closed world assumption
- Find boxes and move them to designated position

Classical Paradigm: Horizontal Decomposition

Reactive / Behavior-based Paradigm

- No models: The world is its own, best model
- Easy successes, but also limitations
- Investigate biological systems

Reactive Paradigm: Vertical Decomposition

Characteristics of Reactive Paradigm

- Situated agent, robot is integral part of the world.
- No memory, controlled by what is happening in the world.

 Tight coupling between perception and action via behaviors.

 Only local, behavior-specific sensing is permitted (egocentric representation).

Behaviors

 a direct mapping of sensory inputs to a pattern of motor actions that are then used to achieve a task.

 serve as the basic building block for robotics actions, and the overall behavior of the robot is emergent.

 support good software design principles due to modularity.

Hybrid Deliberative/Reactive Paradigm

- Combines advantages of previous paradigms
 - World model used for planning
 - Closed loop, reactive control

Level 0: Avoid

Level 1: Wander

Level 2: Follow Corridor

Potential Field Methodologies

- Treat robot as particle acting under the influence of a potential field
- Robot travels along the derivative of the potential
- Field depends on obstacles, desired travel directions and targets
- Resulting field (vector) is given by the summation of primitive fields
- Strength of field may change with distance to obstacle/target

Primitive Potential Fields

Corridor Following With Potential Fields

- Level 0 (collision avoidance)
 is done by the repulsive fields of detected obstacles.
- Level 1 (wander) adds a uniform field.

Level 2 (corridor following)
 replaces the wander field by three fields (two
perpendicular, one uniform).

Characteristics of Potential Fields

Suffer from local minima

- Backtracking
- Random motion to escape local minimum
- Procedural planner s.a. wall following
- Increase potential of visited regions
- Avoid local minima by harmonic functions

Characteristics of Potential Fields

- No preference among layers
- Easy to visualize
- Easy to combine different fields
- High update rates necessary
- Parameter tuning important

Reactive Paradigm

Representations?

Good software engineering principles?

Easy to program?

Robustness?

Scalability?

Outline

> Introduction to Mobile Robot

- Control & Decision Paradigms
- Control & Decision Architectures

Control & Decision Architectures

COROS Architecture and Development Framework

Control and Decision Architecture

Software Architecture

COROS Architecture (Multi-agent System)

Control & Decision Architecture

Software Architecture

Discussion

- Imagine you want your robot to perform navigation tasks, which approach would you choose?
- What are the benefits of the behavior based paradigm?

Which approaches will win in the long run?

HW1 (Due Next Tuesday 12AM)

How to generate uniform, perpendicular, attractive, repulse, tangential forces for a robot and obstacles with known positions?

 Please simulate the above force fields, and plot the vector force fields.

 Please simulate the motions of a robot for given those force fields.