1 A Set of Axioms for the Real-Number System

1.1 The field axioms

Axiom 1.1 (Commutative laws) x + y = y + x, xy = yx.

Axiom 1.2 (Associative laws) x + (y + z) = (x + y) + z, x(yz) = (xy)z.

Axiom 1.3 (Distributive law) x(y+z) = xy + xz.

Axiom 1.4 (Existence of identity elements) There exist two distinct real numbers, which we denote by 0 and 1, such that for every real x we have x + 0 = x and $1 \cdot x = x$.

Axiom 1.5 (Existence of identity elements) For every real number x there is a real number y such that x + y = 0.

Axiom 1.6 (Existence of reciprocals) For every real number $x \neq 0$ there is a real number y such that xy = 1.

Theorem 1.1 (Cancellation law for addition) if a + b = a + c, then b = c (In particular, this shows that the number 0 of Axiom 1.4 is unique.)

Theorem 1.2 (Possibility of subtraction) Given a and b, there is exactly one x such that a+x=b. This x is denoted by b-a. In particular, 0-a is written simply -a and is called the negative a.

Theorem 1.3 b - a = b + (-a).

Theorem 1.4 -(-a) = a.

Theorem 1.5 a(b-c) = ab - ac.

Theorem 1.6 $0 \cdot a = a \cdot 0 = 0$

Theorem 1.7 (Cancellation law for multiplication) if ab = ac and $a \neq 0$. then b = c. (In particular, this shows that the number 1 of Axiom 1.4 is unique.)

Theorem 1.8 (Possibility of division) Given a and b with $a \neq 0$, there is exactly one x such that ax = b. This x is denoted by b/a or $\frac{b}{a}$ and is called the quotient of b and a. In particular, 1/a is also written a^{-1} and is called the reciprocal of a.

Theorem 1.9 If $a \neq 0$, then $b/a = b \cdot a^{-1}$.

Theorem 1.10 If $a \neq 0$, then $(a^{-1})^{-1} = a$.

Theorem 1.11 *If* ab = 0, then a = 0 of b = 0.

Theorem 1.12 (-a)b = -(ab) and (-a)(-b) = ab.

Theorem 1.13 (a/b) + (c/d) = (ad + bc)/(bd) if $b \neq 0$ and $d \neq 0$.

Theorem 1.14 (a/b)(c/d) = (ac)/(bd) if $b \neq 0$ and $d \neq 0$.

Theorem 1.15 (a/b)/(c/d) = (ad)/(bc) if $b \neq 0$, $c \neq 0$ and $d \neq 0$.

1.2 The order axioms

Axiom 1.7 If x and y are in \mathbb{R}^+ , so are x + y and xy.

Axiom 1.8 For every real $x \neq 0$, either $x \in \mathbb{R}^+$ or $-x \in \mathbb{R}^+$, but not both.

Axiom 1.9 $0 \notin \mathbb{R}^+$.

Now we can define the symbols <, >, \le , and \ge , called, respectively, less than, greater than, less than or equal to, and greater than or equal to, as follows:

- x < y means that y x is positive;
- x > y means that x < y;
- $x \le y$ means that either x < y or x = y;
- $y \ge x$ means that $x \le y$.

Theorem 1.16 (Trichotomy law) For arbitrary real numbers a and b, exactly one of the three relations a < b, b < a, a = b holds.

Theorem 1.17 (Transitive law) If a < b and b < c, then a < c.

Theorem 1.18 *If* a < b, then a + c < b + c.

Theorem 1.19 If a < b and c > 0, then ac < bc.

Theorem 1.20 If $a \neq 0$, then $a^2 > 0$.

Theorem 1.21 1 > 0.

Theorem 1.22 If a < b and c < 0, then ac > bc.

Theorem 1.23 If a < b, then -a > -b. In particular, if a < 0, then -a > 0.

Theorem 1.24 If ab > 0, then both a and b are positive or both are negative.

Theorem 1.25 If a < c and b < d, then a + b < c + d.

1.3 Integers and rational numbers

Definition 1.1 (Inductive set) A set of real numbers is called an inductive set if it has the following two properties:

- (a) the number 1 is in the set.
- (b) For every x in the set, the number x + 1 is also in the set.

Definition 1.2 (Positive integers) A real number is called a positive integer if it belongs to every inductive set.

1.4 Upper bound of a set, maximum element, least upper bound (supremum)

Definition 1.3 (Least upper bound) A number B is called a least upper bound of a nonempty set S if B has the following two properties:

- (a) B is an upper bound for S.
- (b) No number less than B is an upper bound for S.

Theorem 1.26 Two different numbers cannot be least upper bounds for the same set.

1.5 The least-upper-bound axiom (completeness axiom)

Axiom 1.10 Every nonempty set S of real numbers which is bounded above has a supremum; that is, there is a real number B such that $B = \sup S$.

Theorem 1.27 Every nonempty set S that is bounded below has a greatest lower bound; that is, there is a real number L such that $S = \inf S$.

1.6 The Archimedean property of the real-number system

Theorem 1.28 The set \mathbb{P} of positive integers 1, 2, 3, ... is unbounded above.

Theorem 1.29 For every real x there exists a positive integer n such that n > x.

Theorem 1.30 If x > 0 and if y is an arbitrary real number, there exists a positive integer n such that nx > y.

Theorem 1.31 If three real numbers a, x, and y satisfy the inequalities

$$a \le x \le a + \frac{y}{n}$$

for every integer $n \geq 1$, then x = a.

1.6.1 Fundamental properties of the supremum and infimum

Theorem 1.32 Let h be given positive number and let S be a set of real numbers.

(a) If S has a supremum, then for some x in S we have

$$x > \sup S - h$$
.

(b) If S has an infimum, then for some x in S we have

$$x < \inf S + h$$
.

Theorem 1.33 (Additive property) Given nonempty subsets A and B of \mathbb{R} , let C denote the set

$$C = \{a + b \mid a \in A, b \in B\}.$$

(a) if each of A and B has a supremum, then C has a supremum, and

$$\sup C = \sup A + \sup B.$$

(b) if each of A and B has an infimum, then C has an infimum, and

$$\inf C = \inf A + \inf B.$$

Theorem 1.34 Given two nonempty subsets S and T of \mathbb{R} such that

$$s \leq t$$

for every s in S and every t in T. Then S has a supremum, and T has an infimum, and they satisfy the inequality

$$\sup S \le \inf T$$

1.7 Existence of square roots of nonnegative real numbers

Theorem 1.35 Every nonnegative real number a has a unique nonnegative square root.

Note: if $a \ge 0$, we denote its nonnegative square root by $a^{1/2}$ or by \sqrt{a} . if a > 0. the negative square root is $-a^{1/2}$ or $-\sqrt{a}$.

2 Mathematical Induction, Summation Notation, and Related Topics

2.1 The principle of mathematical induction

Method of proof by induction. Let A(n) be an assertion involving an integer n. We conclude that A(n) is true for every $n \ge n_1$ if we can perform the following two steps:

- (a) Prove that $A(n_1)$ is true.
- (b) Let k be an arbitrary but fixed integer $\geq n_1$. Assume that A(k) is true and prove that A(k+1) is also true

In actual practice n_1 is usually 1. The logical justification for this method of proof is the following theorem about real numbers.

Theorem 2.1 (Principle of mathematical induction) Let S be a set of positive integers which has the following two properties:

- (a) The number 1 is in the set S.
- (b) If an integer k is in S, then so is k + 1.

Then every positive integer is in the set S.

2.2 The well-ordering principle

Theorem 2.2 (Well-ordering principle) Every nonempty set of positive integers contains a smallest member.