Class 7: Do humans smooth?

To do

- Read Moreton & Pater 2012
- MaxEnt exercise with priors:
 - Run the "double-tweak" case from previous exercise, but this time in MaxEnt Grammar Tool (http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/)
 - Run once ignoring "open constraints" button (will use default values)
 - Run again making a constraints file—use SameConstraintFile.txt in the MaxEnt folder as a basis—but instead of 10,000 for σ^2 use something much smaller, like 0.1
 - Briefly compare and contrast results.

1 Smoothing bias

- We saw that smoothing (a.k.a. regularization) is a way to avoid overfitting:
 - Tell your software to find a model that compromises between fitting the data and staying close to default parameter values
- For regression coefficients or MaxEnt weights, typical default is 0 for everything
- This is all well and good for modeling, but do people do it when learning variation?
- That is, beyond any substantive biases (which Bruce will discuss Thurs.), do human learners have a "smoothing bias" to keep weights small?

Case study I: Martin 2007a, Martin 2011

2 Facts to be accounted for

- English does not allow geminates (long/double consonants) within a morpheme: there can be no minimal pair [hæpi]/[hæppi].
- English does allow geminates in compounds and affixed words: no[nn]egotiable, sou[ll]ess, boo[kk]ase.
- Martin discovered, however, that geminates are less common than would be expected by chance—that is, there are not as many words like *bookcase* as expected:

Compare to legal CC clusters across compound boundary:

200

· Geminates are legal in compounds, but underrepresented

(Martin 2007b)

240

3 Martin's approach

- It's easy to construct a learner that can learn these facts.
- What Martin set out to do was construct a learner that, presented with no trend in compounds, will <u>learn to avoid geminates in compounds anyway</u>.

4 Martin's toy language—contains only 2 sounds

 The training data consists of biconsonantal clusters of [p] and [t], with an optional morpheme boundary:

Cluster	Structure	Number of examples		
pt	monomorpheme	2000		
tp	monomorpheme	2000		
p+t	compound	1000		No bias in
t+p	compound	1000	_	training data
p+p	compound	1000		-
t+t	compound	1000		

 Tautomorphemic geminates [pp], [tt] do not occur in training data, but heteromorphemic geminates occur freely

(Martin 2007b)

5 Constraints available to learner

Structure-sensitive constraints:

*pp no geminates within morpheme

*tp no non-geminate clusters within morpheme *p+p no geminates across morpheme boundary

*t+p no non-geminate clusters across morpheme boundary

Structure-blind constraints:

*p(+)p no geminates

*t(+)p no non-geminate clusters (Martin 2007b)

6 MaxEnt Grammar learned (Martin 2007b version, since weights all non-negative)

		*pp	*tp	*p(+)p	*t(+)p	*p+p	*t+p	score	probability
		weight	weight	weight	weight	weight	weight		
		= 4.01	=0.13	=0.03	=0.00	=0.00	=0.00		
а	pp	*		*				$e^{-4.04} = 0.02$	1%
☞ b	tp		*	! ! !	*	! ! !	! !	$e^{-0.13}=0.87$	31%
С	p+p		 	*		*	i !	$e^{-0.04} = 0.96$	34%
d	t+p				*		*	$e^{-0.00}=1.00$	35%

- pp gets a low score, as expected—because *pp has a big weight
- tp gets a high score, as expected—because *tp has a small weight
- *t*+*p* gets a high score, as expected
- but p+p gets a slightly lower score—because *p(+)p has a non-negligible weight

7 Why does *p(+)p get non-zero weight?

• Recall the form of the Gaussian prior: the learning model is trying to maximize...

$$\ln(probability(\text{data under model})) - \sum_{j=1}^{M} \frac{(w_j - \mu_j)^2}{2\sigma_j^2}$$

- Assume a μ of 0 for all constraints C_i
- The smoothing term uses $(w-0)^2 = w^2$
 - So, it's better to account for data like the absence of *pp* by spreading the responsibility over two constraints—*pp and *p(+)p—than by loading all the blame onto one constraint. (Let's check the math)
- Thus, if there are structure-blind constraints like *p(+)p, generalizations that are true of one type of word (here, monomorphemes) will "leak" onto other types of word (here, compounds).

8 Similar finding in Navajo compounds

(Na-Dene language from the U.S. with about 149,000 speakers [(Lewis 2009)])

• Within a word, sibilants *must* agree—affixes even alternate:

• In compounds, they tend to agree (if in adjacent syllables)

70% agree:

tshe: + ts'in 'tailbone'

k'i: \(\int + 3in + i: \) 'blue beech'

tshé + zéí 'gravel'

30% disagree—by chance, you'd expect 37%-55%

t\(\int + ts'i:n \) 'rib cage'

tshé + t\(\int + t\)'e:? 'amber'

9 Similar finding in Turkish compounds (Martin 2007a only)

- Vowels within a stem tend strongly to agree in backness
- Vowels within a lexicalized compound tend—less strongly but still significantly—to agree

"single-word" (lexicalized) compounds

baş + bakan 'prime minister' 60% agree

ön + ayak 'pioneer' 40% disagree (expect 44%-54%)

- Non-lexicalize ("izafet") compounds have more disharmony than expected
 - Martin speculates that this is because disharmonic compounds are less likely to get lexicalized (become single-word), and thus remain in the izafet class

"izafet" (productive) compounds

bas + ağrı+sı 'headache' 48% agree

deniz + biz + 1 'mermaid' 52% disagree (expect 45%-50%)

10 Summary of Martin's argument

- Learners have available various versions of a markedness constraint: within-word, acrossword, and unspecified
- If you train a learner on data where the constraint holds only within-word...
 - The Gaussian prior says it's better to blame both *PP and *P(+)P [contrary to evidence] rather than just *PP
- Those learners will slightly avoid compounds that violate the constraint
 - Their children now train on data where there's evidence for *P+P too

• Generation after generation, the avoidance grows:

(Martin 2011, p. 765)

Discussion

11 How good are we at frequency matching?

- Suppose your hypothesis is: Learners are very good at learning the degree to which geminates are dispreferred in compounds
- o Discuss: in light of Martin's article, what should the null hypothesis be?

12 A little simulation

- Training files look like this (with freq. column varying)
- all μ =0, all σ^2 =0.5 (very conservative)

			*pp	*tp		*p+p	*t+p	*p(+)p	*t(+)p
			*pp	*tp		*p+p	*t+p	*p(+)p	*t(+)p
in	рр	5	1					1	
	tp	15			1				1
	p+p	3				1		1	
	t+p	1					1		1

- Suppose learners (children, experimental subject) have been exposed to (0.18, 0.39) (circled)
 - and suppose they then show in some tasks a preference for (0.18, 0.39)
 - Is that because they learned what they were exposed to?
 - Or is it because they ignored much of the learning data, treating their input as (0, 0.5), and just smoothed it?

13 How good are we at frequency matching?

- The message I take from this work is that we may want to ask not
 - "Do speakers (or experimental subjects) demonstrate implicit knowledge of the details of the variation they've been exposed to"

but

• "Do they demonstrate such knowledge beyond or counter to what's expected from a rough grasp of the data and then smoothing (or other) bias?"

Case study II: Ryan 2010

14 Tagalog affix order

- A famous case of free variation that's morphological rather than strictly phonological
- CV- reduplication can mark incomplete aspect
- But its position seems to vary, with no apparent difference in meaning

ma-ka-pag-**pa**-pa-bili ~ ma-**ka**-ka-pag-pa-bili 'will be able to have someone buy' ability-telic-transitive-**incomplete**-causative-BUY ~ abil-**incompl**-tel-trans-caus-BUY (p. 759)

• We'll skip over the substance of Ryan's analysis—a set of markedness constraints on affix order

15 Learning simulation

- Learning data limited to just the most-frequent candidate in each case
- Noisy Harmonic Grammar (no explicit smoothing term)
- If left to run long enough, the learner fits the (incorrect) training data
- But if stopped early—a form of smoothing—the learner predicts that other candidates get some probability to
 - Result: a good match to the actual (untrained) frequencies for each candidate

OUTPUT	ACTUAL CORPUS	SEEN BY LEARNER	GENERATED BY LEARNER
ma-red-ka-pag-root	61.8%	100%	69.2%
ma-ka-pag-red-root	38.2%	0%	29.3%
ma-RED-ki-pag-ROOT	99.9%	100%	97.1%
ma-ki-pag-RED-ROOT	0.1%	0%	2.9%

TABLE 5. A closer look at some of the learner's predictions.

(p.774)

• <u>Conclusion</u>: the speaker doesn't need to track detailed variation rates; just needs to note the main trends, and not fit too closely

What about the reverse bias?

16 Simplicity bias?

- A Gaussian prior likes to spread responsibility among multiple constraints
- Bruce pointed out that the opposite prior—dependent on square roots of weights, say—would be a "simplicity bias", in the sense that weight prefers to be heaped onto a small number of constraints
- Is there any evidence for this?

17 Phonologization, from Hayes 1999

- Many factors affect how much aerodynamics favors voicing vs. voicelessness (see Ohala 1983, Westbury & Keating 1986) (Hayes p. 8)
 - place of articulation: fronter closure → bigger oral chamber → more room for the air
 → airflow across glottis encouraged for longer
 - closure duration: as time passes during the closure, more air pressure in oral chamber
 → airflow across glottis discouraged
 - being after a nasal: nasal leak and velar pumping encourage airflow
 - <u>being phrase/utterance-final</u>: subglottal pressure is lower → airflow across glottis discouraged
- Hayes constructs the following "difficulty landscape" using an aerodynamic model (Keating 1984):
 - 0 means there's no problem having voicing; bigger numbers mean it's difficult.
- (2) Landscape of Difficulty for Voiced Stops: Three Places, Four Environments

- The thing is, there is no language that draws the line at 25. Instead, languages draw vertical or horizontal lines that partly contradict the phonetics:
 - *g (as in Dutch): ignores the fact that initial [g] is easier than post-obstruent [d]
- This can lead to seeming markedness contradictions in the corners:
 - *p (as in Arabic): even in geminates, you get only [bb], not *[pp]
 - *VoicedGeminate (as in non-loan Japanese): only [pp], not *[bb]

18 Hayes's proposed solution

- The learner...
 - ...compiles a difficulty map like the above
 - ...constructs constraints according to templates (*[α F], *[α F][β G], *[α F, β G], etc.)
 - ..evaluates constraints according to how often they correctly predict that one item in the map is harder than another
 - e.g., *g: correct about g/[-son]___ vs. d/[-son]___, wrong about g/#__ vs. d/[-son]___
 - collect % of pairs for which prediction is correct
 - ...to be accepted, a constraint must do better on the above test than all its "neighbors" that are equally or less complex
 - constraints are neighbors if they differ in just one symbol (whatever counts as a symbol in your theory).
 - e.g., *[coronal, +voice] and *[dorsal, +voice] are neighbors, equally complex
 - *g and *#g are neighbors; *g is less complex than *#g
- Result: The learner adds complex constraints only if they justify themselves. constraints like *[dorsal, +voice] and *[+nasal][-voice], but nothing more complex.

19 What kind of bias is this?

Simplicity or share-the-burden?

Suppose that the difficulty scores above were reflected in actual variation (training file below)—what will a learner draw from such data?

			"(col	lumn" constr	raints]	"row" cons	ıstraints					"ce	ll" constrai	nts					ļ
		ر	$\overline{\mathcal{A}}$	$\overline{}$							_										
	T		*d	*a	*I-son][+voice	1 *#[+voice	1 *[+	+son,-nas][+voice]	*[+nas][+voice	*[-son]b	*#b	*[+son,-nas]b	*[-son]d	*#d	*[+son,-nas]d	*[+nas]d	*[-son]a	*#a	*[+son,-nas]g	*[+nas]g	Ident
[-son]b	b	57 1	1	_ = ,	[60.1][1.0.22]	1	1	3011, 1.001[110.22]	[11.00][110.22]	1	1	[1001] 1001	[00]_	,, c.	[100.1, 1.00]	[,,,,,,],	[00]8	"8	[100.1, 1.00]	[αο]8	100.11
	р	43				1															1
#b	b	77 1		<u> </u>		1	1				1										
	р	23	\square'	┌'																	1
[+son,-nas]b	<u>b</u>	90 1	<u> </u>	҆—′				1		 '		1									<u> </u>
	р	10	<u></u>	҆—′		'			<u> </u>	<u> </u>											1
[+nas]b	b	100 1	1 1	҆—′		'				<u> </u>		1									
	р	0		—'		<u> </u>			 	<u> </u>	\perp		<u> </u>								1
[-son]d	d	50	1	⊢'	<u> </u>	1	<u> </u>		 '	 '	<u> </u>		1								1
	t	50	<u> </u>	—'		 '	4		 '		 		<u> </u>								1
#d	d	73	1	—'	1	1'	1		 '	 	<u> </u>		<u> </u>	1							\perp
	_t	27	$\perp \!\!\! \perp \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	—'		 '			+	 	₩										1
[+son,-nas]d	d	80	1	—′		 '		1	+				<u> </u>		1						4
	_t'	20	+	—'	1	 '	+		+	 	-		 								1
[+nas]d	d	100	1	—'	+	+'	+		1	+	₩		 			1					+
,	t	0	+	<u> </u>	.——	 '	+		+	 	-		 								1
[-son]g	g	48	+	1	 	1 '	+-		 	 	+		 				1				+
ш-2	K	52 65	+	1		+	4		<u> </u>	 	+							4			+ '
#g	<u>g</u>	35	+	٣	 	+"	+		<u> </u>	 	+	+						1			+
[+son,-nas]g	<u> </u>	70	+	1	,	+'	+		,	 	+	+							1		+
[+3011,-1143]9	<u>9</u>	30	+	一		+'	+	-			+-	+							1		1
[+nas]g	a	100	+	1		+	+	+		<u>, </u>	+-	+								1	+ 1
Tildojg	k	0	$\uparrow \uparrow$	\Box		†	+	+	-			† †									1

20 Results

Recall training:

- What would this picture have to look like so that any horizontal line separates some contexts from other (and doesn't distinguish place)?
- So that any horizontal line separates some places from others (and doesn't distinguish context)?

Results with effectively no prior ($\sigma^2 = 10,000$) "row" and "column" constraints only

- Hayes was making the simplifying assumption that resulting grammars would have an invariable ranking.
- Discuss how this is different.

Results with effectively no prior ($\sigma^2 = 10,000$)—perfect learning

There are enough constraints to fit the data perfectly.

- Unfortunately, I don't have the software to impose a square-root prior.
- o But what might we expect, in light of the row/column-constraints-only results?

21 Wrap-up

- Even with no substantive (e.g., phonetically driven) bias, a smoothing term still holds the learner back from perfectly fitting the data.
- <u>Martinian leakage</u>: If there are most context-specific and more general constraints, trends will leak from the context they start in (e.g., monomorphemes) into others (e.g., compounds)
- Ryanian variationogenesis: Learners exposed to non-varying data, if they don't fit too closely, will (generally) invent some variation.
 - Related case that I spared you because most of you heard it in phonology seminar last year: A learner trained on only the most "basic" stress data for Tagalog two-syllable reduplication matches the observed pattern of variation for the non-basic cases pretty well.
- ⇒ When we observe detailed patterns of variation, we should ask how close they are to a reasonable null hypothesis.

22 Coming up

• Formal and substantive biases on variation: articulatory ease, perceptual similarity, formal simplicity...

Reference

Lewis, M. Paul (ed.). 2009. *Ethnologue: languages of the world*. 16th ed. Dallas, TX: SIL International.

Martin, Andrew. 2007a. The evolving lexicon. University of California, Los Angeles Ph.D. Dissertation.

Martin, Andrew. 2007b. Grammars leak: how categorical phonotactics can cause gradient phonotactics. Poster presentation. Paper presented at the Workshop on Variation, Gradience and Frequency in Phonology, Stanford University.

Martin, Andrew. 2011. Grammars leak: modeling how phonotactic generalizations interact within the grammar. *Language* 87(4). 751–770.

Ryan, Kevin M. 2010. Variable affix order: grammar and learning. *Language* 86(4). 758–791. (13 April, 2012).