Proposition 40.11. (Convexity and first derivative) Let $f: \Omega \to \mathbb{R}$ be a function differentiable on some open subset Ω of a normed vector space E and let $U \subseteq \Omega$ be a nonempty convex subset.

(1) The function f is convex on U iff

$$f(v) \ge f(u) + df(u)(v - u)$$
 for all $u, v \in U$.

(2) The function f is strictly convex on U iff

$$f(v) > f(u) + df(u)(v - u)$$
 for all $u, v \in U$ with $u \neq v$.

See Figure 40.6.

Figure 40.6: An illustration of a convex valued function f. Since f is convex it always lies above its tangent line.

Proof. Let $u, v \in U$ be any two distinct points and pick $\lambda \in \mathbb{R}$ with $0 < \lambda < 1$. If the function f is convex, then

$$f((1 - \lambda)u + \lambda v) \le (1 - \lambda)f(u) + \lambda f(v),$$

which yields

$$\frac{f((1-\lambda)u + \lambda v) - f(u)}{\lambda} \le f(v) - f(u).$$

It follows that

$$df(u)(v-u) = \lim_{\lambda \to 0} \frac{f((1-\lambda)u + \lambda v) - f(u)}{\lambda} \le f(v) - f(u).$$