PATENT CLAIMS

Docket No. RUTHERFORD-018-PROV

CLAIMS

Note: While claims are not required for provisional applications, these preliminary claims are included to establish the scope of the invention for the MWRASP (Total) defensive cybersecurity platform.

What is claimed is:

INDEPENDENT CLAIMS

- **1.** A quantum-inspired decision engine for the MWRASP (Total) defensive cybersecurity platform, comprising:
 - a processing system deliberately configured to operate at logical error rates between 0.1% and 1%, wherein said error rates are 100 to 10,000 times higher than fault-tolerant quantum computing standards;

wherein said deliberate error acceptance is a designed feature rather than a limitation;
wherein said configuration enables sub-10 millisecond end-to-end threat response latency;
wherein said system provides real-time protection for critical infrastructure using defensive
AI agents.

- 2. A method for quantum-inspired cybersecurity threat detection within the MWRASP (Total) framework, comprising:
 deliberately accepting logical error rates between 0.1% and 1% as a design principle;
 trading computational accuracy for response speed to achieve sub-10 millisecond latency;
 coordinating defensive AI agents using quantum-enhanced decision making;
 wherein the error acceptance enables 1000-fold latency reduction compared to fault-tolerant quantum systems.
- 3. A three-tier adaptive error mitigation system for cybersecurity applications, comprising:

 a first tier accepting up to 5% error rate for threats requiring sub-millisecond response;

 a second tier accepting up to 1% error rate for threats requiring 1-5 millisecond response;

 a third tier accepting up to 0.1% error rate for threats requiring 5-10 millisecond response;

 wherein the system dynamically selects the appropriate tier based on threat criticality.

DEPENDENT CLAIMS

4. The system of claim 1, further comprising:

tensor network approximations with bond dimensions capped at 64; retention of only the top 10% of singular values during decomposition; wherein said approximations reduce computational complexity from exponential to polynomial while maintaining 99% threat detection accuracy.

5. The system of claim 1, further comprising:

a predictive quantum state cache storing pre-computed representations of at least 1 million cybersecurity threat signatures;

compression algorithms achieving 100x size reduction with acceptable 5% fidelity loss; interpolation mechanisms for generating approximate states for novel threats.

6. The system of claim 1, wherein the processing system comprises:

a room-temperature photonic quantum co-processor;

silicon photonic circuits operating at 300K;

gate operations with 95% fidelity optimized for speed over precision;

wherein cryogenic cooling requirements are eliminated.

7. The system of claim 1, further comprising:

a defensive AI agent orchestration platform;

hierarchical command structure with quantum-enhanced decision-making;

graduated response protocols based on quantum-calculated confidence scores;

coordination of distributed defense within the 10-millisecond response window.

8. The method of claim 2, further comprising:

pre-computing quantum states during system idle time;

caching compressed state representations;

```
achieving O(1) state retrieval instead of O(2^n) state preparation; eliminating 50-90% of traditional quantum algorithm runtime.
```

9. The method of claim 2, wherein deliberately accepting error rates comprises:

implementing distance-3 repetition codes requiring only 3 physical qubits per logical qubit; performing single-cycle syndrome extraction; utilizing majority voting instead of maximum likelihood decoding; bypassing error correction entirely for ultra-critical threats.

10. The system of claim 3, further comprising:

hardware-accelerated syndrome extraction ASICs;

neural network decoders using INT8 quantization;

adaptive code selection switching between distance-3 and distance-7;

wherein total error correction adds less than 100 nanoseconds latency.

11. The system of claim 1, wherein the MWRASP (Total) integration comprises:

Mathematical Woven tensor network processing;

Responsive Adaptive threat detection;

Swarm Platform AI agent coordination;

Total enterprise protection framework;

wherein all components operate within the sub-10 millisecond constraint.

15. The system of claim 7, wherein the AI agent architecture comprises: 1-3 Strategic Commander AI Agents; 10-20 Threat Assessment AI Agents; 10-20 Vulnerability Analysis AI Agents; 5-10 Response Coordination AI Agents; 100-500 Tactical Execution AI Agents; wherein all agents operate within the MWRASP (Total) framework. 16. A quantum-inspired computing system occupying a previously unpatented parameter space, wherein: logical error rates range from 0.1% to 1% versus 10^-15 for fault tolerance; end-to-end latency remains below 10 milliseconds versus seconds/minutes; power consumption stays under 1 kilowatt versus 20-25kW; operating temperature maintains 300K versus 15mK; wherein said parameter space provides practical advantage for time-critical applications. **20.** A method for optimizing quantum-inspired computation for minimal latency, comprising: identifying minimum acceptable accuracy for cybersecurity applications; systematically reducing quantum state fidelity to said minimum; eliminating error correction overhead below accuracy threshold; approximating quantum operations within accuracy bounds;

wherein latency reduces by a factor proportional to error rate increase.

CLAIM DEPENDENCIES CHART

Independent Claims: 1, 2, 3, 16, 18, 20

Claim $1 \rightarrow$ Claims 4, 5, 6, 7, 11

Claim $2 \rightarrow \text{Claims } 8, 9$

Claim $3 \rightarrow \text{Claim } 10$

Claim $4 \rightarrow \text{Claim } 12$

Claim $5 \rightarrow \text{Claim } 13$

Claim $6 \rightarrow \text{Claim } 14$

Claim $7 \rightarrow \text{Claim } 15$

Claim $16 \rightarrow \text{Claim } 17$

Claim $18 \rightarrow \text{Claim } 19$

CLAIM SCOPE ANALYSIS

Broadest Claims

• Claims 1, 2, 20: Cover the fundamental accuracy-latency trade-off concept

Medium Scope Claims

• Claims 3, 16, 18: Specific implementation architectures

Narrowest Claims

• Claims 4-15, 17, 19: Detailed technical specifications

NOTE FOR NON-PROVISIONAL FILING

These preliminary claims should be refined and expanded for the non-provisional application to include:

- Additional independent claims for each major subsystem
- More detailed dependent claims covering variations
- Method claims for each system claim
- Apparatus claims for specific hardware implementations
- Computer-readable medium claims for software aspects

END OF CLAIMS

Docket No.: RUTHERFORD-018-PROV

Page 1 of 3