Code No: 131AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May/June - 2019 MATHEMATICS-II

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks) Find L[Sint Cost]. 1.a) [2] State convolution theorem b) [3] Evaluate $\int x^3 \sqrt{1-x} dx$. c) [2] Evaluate $\int_{0}^{2} \sqrt{\sec \theta} d\theta$. d) [3] e) Find the limits after changing the order for [2]

- f) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$. [3]
- g) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then find $div \overline{r}$. [2]
- h) State Gauss's Divergence theorem. [3]
- i) If S is any closed surface enclosing a volume V and $\overline{F} = x\overline{i} + 2y\overline{j} + 3z\overline{k}$ then find $\iint \overline{F} \cdot \overline{n} ds$. [2]
- j) If $\phi = x^2 + y^2 + z^2 3xyz$ then find $curl(grad\phi)$. [3]

PART-B

(50 Marks)

2. Find the Laplace transform of the saw toothed wave of period T, given $f(t) = \frac{k}{T}t$, when 0 < t < T.

OR

3. Using Laplace transform, solve $(D^2 + 4D + 5)y = 5$, given that y(0) = 0, y'(0) = 0. [10]

Prove that $\frac{\beta(p,q+1)}{q} = \frac{\beta(p+1,q)}{p} = \frac{\beta(p,q)}{p+q}$ where p > 0, q > 0. [10]

- Prove that $\Gamma\left(\frac{1}{2}\right)\Gamma(2n) = 2^{2n-1}\Gamma(n)\Gamma(n+\frac{1}{2})$. [10]
- Evaluate $\int_{-\infty}^{1} \int_{-\infty}^{x^2} e^{y/x} dy dx.$
 - Evaluate the integral by changing the order of integration $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dxdy$. b) [5+5]

- Find by triple integration, the volume of the solid bounded by the co-ordinate planes x=0, 7. y=0, z=0 and the plane x+y+z=1.
- Find the values of a and b so that the surfaces ax^2 byz = (a+2)x and $4x^2y+z^3 = 4$ may intersect orthogonally at the point (1, -1, 2). [10] 8.

- the angle of intersection of the spheres $x^2 + y^2 + z^2 = 29$ 9. and $x^{2} + y^{2} + z^{2} + 4x - 6y - 8z - 47 = 0$ at the point (4, -3, 2). [10]
- Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} 2xy\overline{j}$ taken round the rectangle bounded by 10. the lines $x = \pm a$, y = 0, y = b. [10]

Verify Green's theorem for $\int \left[(3x^2 - 8y^2) dx + (4y - 6xy) dy \right]$ where 'C' is the region 11. bounded by x = 0, y = 0, x + y = 1.

---00O00---