AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended)

An azetidine derivative of the general

formula (I)

formula (II) or (III)

$$R^1$$
 R^2
 R^3
 R^3
 R^3
 R^3

where

R1, R2 and R3 independently of one another are H,

C1-C20 alkyl, C3-C8 cycloalkyl, C6-C10 aryl or alkylaryl with C1-C4 alkyl and C6-C10 aryl groups

 $R^4 = H$, C_1 - C_6 alkyl (idene)

 $Z = C_2-C_{25}$ alkylidene, C_5-C_{25} cycloalkylidene, C_6-C_{24} arylene and also

 R^5 and R^6 = H, CH₂OH, C₁-C₄ alkyl, C₆H₅,

$$---(CH_2)_z - \left(-C - \frac{H_2}{C} - \frac{CH}{R^3} \right)_X N$$

$$R^8 = H, CH_3, C_2H_5, C_6H_5$$

 $z = 0 \text{ or } 1$
 $x = 0 \text{ to } 100.$

- 2. (Canceled)
- 3. (Canceled)
- 4. (Currently Amended) A method for producing an azetidine derivative of any one of claims 1 to 3 claim 1, characterized in that wherein a polyamine of the formula NH₂-Z'-NH₂ is reacted with an α , β -unsaturated aldehyde of the formula R'R²-C = CR³-CHO or with an α , β -unsaturated ketone of the formula R'R²C = CR³-COR⁴ in the temperature range from 20 to 150°C, where Z' is

 $C_2\text{-}C_{25}$ alkylidene, $C_5\text{-}C_{25}$ cycloalkylidene, $C_6\text{-}C_{24}$ arylene, and

 R^5 and R^6 = H, CH₂OH, C₁-C₄ alkyl, C₆,H₅,

$$(CH_2)_z$$
 $(CH_2)_z$ $(CH_2)_x$ $(CH_2)_x$

 $R^8 = H_1$, CH_3 , C_2H_5 , C_6H_5

z = 0 or 1

x = 0 to 100

and R1, R2, R3, and R4 possess the above definition.

- 5. (Currently Amended) The method of claim 4, characterized in that <u>wherein</u> the reaction is carried out in the presence of an organic solvent, especially toluene.
- 6. (Currently Amended) The use of an azetidine derivative of any one of claims 1 to 3 claim 1 as a latent curing component for resins having functional groups which are reactive toward amino groups.
- 7. (Currently Amended) The use of claim 6, characterized in that wherein the azetidine derivative of the formula (I) and/or (III) and/or (III) is mixed with the resin to be cured, the azetidine ring is hydrolytically opened by moisture exposure, and the secondary amine formed is caused to react with the reactive functional groups of the resin to be cured.
- 8. (Currently Amended) The use of either of claims 6 and 7 claim 6, characterized in that wherein polyurethanes or polyepoxides and also mixtures thereof are used as resin to be cured.

- 9. (Currently Amended) The use of any one of claims 6 to 8, characterized in that claim 6 wherein the curing component is used an amount of 0.01% to 150% by weight, in particular 0.1% to 20% by weight, based on the amount of the resin to be cured.
- 10. (Currently Amended)

 The use of any one of claims 6 to 9, characterized in that claim 6 wherein the mixture consisting of curing component and resin is cured at a temperature of 5 to 80°C and optionally in the presence of a suitable catalyst.
- 11. (Currently Amended) The use of any one of claims 6 to 10, characterized in that <u>claim 6 wherein</u> the curing component is used in the production of (floor) coatings, sealants, and adhesives.