Métodos III - Cálculo Vectorial

April 24, 2019

2 Teorema de Green

```
Jose A. Hernando

Departamento de Física de Partículas. Universidade de Santiago de Compostela

Marzo 2019

In [1]: import time

print(' Last version ', time.asctime() )

Last version Wed Apr 24 16:14:02 2019
```

2.1 Objectivos

Relación entre la integral de área de una región y la integral de línea de determinados campos vectoriales.

El teorema de Green. Relación entre la integral a lo largo de una curva cerrada de una función vectorial y la integral de la tercera componente del rotacional dentro de la región encerrada.

Demostrar el teorema con dos lemas.

Mostrar algunos ejemplos sencillos.

2.2 Teorema de Green

Relación entre integral de línea de un campo vectorial e integral de superficie. Considera una región, R, en plano (x,y) definida de tipo I:

$${a \le x \le b, y_1(x) \le y \le y_2(x)}$$

donde $y_1(x)$ e $y_2(x)$ son las funciones que limitan la parte inferior y superior de la región. Date cuenta que podemos parametrizar la línea del límite inferior de la región con:

$$x \in [a, b], \mathbf{c_1}(x) = (x, y_1(x))$$

y la superior con:

$$x \in [a, b], \mathbf{c_2}(x) = (x, y_2(x))$$

Observa: En la siguiente figura se muestra el campo $\mathbf{F}(x,y)=(y,0)$ y la elipse de ejes a=2 en x y b=1 en y. Recuerda que el área de elipse es πab .

Observa: En la siguiente figura se muestra cómo podemos definir la región de la elipse de tipo I, y parametrizar las dos curvas que determinan la frontera de la región.

Cálculemos ahora el área de la región:

$$\int_{R} dx dy = \int_{a}^{b} \left[\int_{y_{1}(x)}^{y_{2}(x)} dy \right] dx$$

$$= \int_{a}^{b} \left(y_{2}(x) - y_{1}(x) \right) dx = \int_{a}^{b} y_{2}(x) dx - \int_{a}^{b} y_{1}(x) dx$$

Si calculamos ahora la integral de la función vectorial $\mathbf{F}(x,y)=(y,0)$ a lo largo de $\mathbf{c}_1(x)$,

$$\int_{\mathbf{c}_1} \mathbf{F}(\mathbf{x}) \, \mathrm{d}\mathbf{s} = \int_{\mathbf{c}_1} y \, \mathrm{d}x$$

El elemento vectorial diferencial de arco es:

$$d\mathbf{s} = \dot{\mathbf{c}}(x) dx = (1, \dot{y}_1(x)) dx$$

Y el producto vectorial:

$$\mathbf{F}(\mathbf{x}) d\mathbf{s} \to (y_1(x), 0) (1, \dot{y}_1(x)) dx = y_1(x) dx$$

Por lo tanto:

$$\int_{\mathbf{c}_1} \mathbf{F}(\mathbf{x}) \, d\mathbf{s} = \int_{\mathbf{c}_1} y \, dx = \int_a^b y_1(x) dx$$

Que corresponde al área que hay entre la línea $y_1(x)$ (o \mathbf{c}_1) y el eje y=0, en el intervalo [a,b] de x.

De igual forma, la integral de la función vectorial, $\mathbf{F}(x,y)=(y,0)$, a lo largo de la línea superior, $\mathbf{c}_2(x)$ que da la frontera superior de la región queda:

$$\int_{\mathbf{c}_2} \mathbf{F}(\mathbf{x}) \, d\mathbf{s} = \int_{\mathbf{c}_2} y \, dx = \int_a^b y_2(x) \, dx$$

Si enlazamos la integral de línea de la función vectorial (y,0) a lo largo de $\mathbf{c}_2(x)$ y luego $\mathbf{c}_1(x)$ (en sentido contrario), nos da una integral a lo largo de una curva cerrada, \mathbf{c} , en sentido horario, que corresponde al área de la región, R, encerrada por \mathbf{c} .

$$\oint_{c} (y,0) d\mathbf{s} = \oint_{\mathbf{c}} y dx = \int_{\mathbf{c}_{2}} y dx - \int_{\mathbf{c}_{1}} y dx$$
$$= \int_{a}^{b} y_{2}(x) - \int_{a}^{b} y_{1}(x) dx = \int_{R} dx dy$$

Ejercicio: Verifica que la integral de la función vectorial $\mathbf{F}(x,y) = (0,x)$ a lo largo de la frontera, $\mathbf{c}(y)$, en sentido anti-horario, de una región, R, de (x,y) parametrizada de tipo II, es igual al área de R.

$$\oint_{\mathbf{c}} (0, x) \, d\mathbf{s} = \oint_{\mathbf{c}} x \, dy = \int_{R} dx dy$$

Teorema de Green Teorema: La integral del campo vectorial, $\mathbf{F}(x,y) = (F_x(x,y), F_y(x,y))$, con $F_x(x,y), F_y(x,y)$ con derivadas primeras continuas en una región, R, a lo largo de una línea frontera, \mathbf{c} de la región R en sentido anti-horario es:

$$\oint_{\mathbf{c}} \mathbf{F}(x,y) \, d\mathbf{s} = \oint_{\mathbf{c}} F_x(x,y) \, dx + F_y(x,y) \, dy = \int_{R} \left(\frac{\partial F_y(x,y)}{\partial x} - \frac{\partial F_x(x,y)}{\partial y} \right) \, dx \, dy$$

Lema: Sea una función vectorial, $\mathbf{F}(x,y) = (F_x(x,y),0)$ con $F_x(x,y)$ con derivadas primeras continuas en una región, R; la integral de \mathbf{F} a lo largo de una línea frontera, \mathbf{c} , de R en sentido anti-horario es:

$$\oint_{\mathbf{c}} \mathbf{F}(x,y) \, d\mathbf{s} = \oint_{\mathbf{c}} F_x(x,y) \, dx = \int_{R} -\frac{F_x(x,y)}{\partial y} dx dy$$

Consideremos que definimos la región de tipo I, con dos líneas frontera, parametrizadas en función de x en el intervalo [a,b].

$$\{a \le x \le b, \ y_1(x) \le y \le y_2(x)\}$$

con:

$$\mathbf{c}_1(x) = (x, y_1(x)), x \in [a, b]$$

$$\mathbf{c}_2(x) = (x, y_2(x)), x \in [a, b]$$

La integral (nota el cambio de signo):

$$\int_{R} \frac{\partial F_{x}(x, y)}{\partial y} dxdy = \int_{a}^{b} \left[\int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial F_{x}(x, y)}{\partial y} dy \right] dx$$

$$= \int_{a}^{b} F_{x}(x,y) \Big|_{y_{1}(x)}^{y_{2}(x)} dx = \int_{a}^{b} F_{x}(x,y_{2}(x)) dx - \int_{a}^{b} F_{x}(x,y_{1}(x)) dx$$

Por otro lado, la integral en la línea $\mathbf{c}_2(x)$ de la función vectorial $\mathbf{F}(x,y)=(F_x(x,y),0)$ es:

$$\int_{\mathbf{c}_2} \mathbf{F}(x,y) \, d\mathbf{s} = \int_{\mathbf{c}_2} (F_x(x,y),0) \, d\mathbf{s} = \int_{\mathbf{c}_2} F_x(x,y) \, dx$$

Como en el caso anterior:

$$ds = \dot{c}_2(x) dx = (1, \dot{y}_2(x)) dx$$

Y por lo tanto

$$\int_{\mathbf{c}_2} (F_x(x,y),0) \, d\mathbf{s} = \int_a^b (F_x(x,y_2(x)),0) \, (1,\dot{y}_2(x)) \, dx = \int_a^b F_x(x,y_2(x)) \, dx$$

que corresponde al primer término de la integral anterior de área.

Si calculamos entonces la integral del campo $\mathbf{F}(x,y) = (F_x(x,y),0)$ en dirección horaria de la curva cerrada, \mathbf{c} , que es la frontera de R, y que corresponde a integrar en \mathbf{c}_2 y luego en \mathbf{c}_1 (en sentido opuesto), esto es, en sentido horario, obtenemos:

$$\oint_{\mathbf{c}} \mathbf{F}(x,y) \, d\mathbf{s} = \int_{\mathbf{c}_2} \mathbf{F}(x,y) \, d\mathbf{s} - \int_{\mathbf{c}_1} \mathbf{F}(x,y) \, d\mathbf{s}$$
$$= \int_a^b F_x(x,y_2(x)) \, dx - \int_a^b F_x(x,y_1(x)) \, dx$$

Si consideramos el sentido anti-horario, implica un cambio de signo en el lado derecho de la igualdad:

$$\oint_{\mathbf{c}} (F_x(x,y),0) \, d\mathbf{s} = \int_{R} -\frac{\partial F_x(x,y)}{\partial y} dx dy$$

Ejercicio: Verificar el siguiente lema

Lema: La integral de la función vectorial $\mathbf{F}(x,y) = (0,F_y(x,y))$ a lo largo de la curva **c**, que limita una región R, en sentido anti-horario es:

$$\oint_{c} \mathbf{F}(x,y) \, d\mathbf{s} = \oint_{c} F_{y}(x,y) \, dy = \int \frac{\partial F_{y}(x,y)}{\partial x} dx dy$$

Con la demostración de ambos lemas, queda demostrado el teorema de Green.

Corolario: La integral en sentido anti-horario de la función vectorial $\mathbf{F}(x,y) = (-y,x)/2$ a lo largo de la línea frontera **c** de una región *R* corresponde a su área:

El término que aparece en el teorema de Green es:

$$\left(\frac{\partial F_y(x,y)}{\partial x} - \frac{\partial F_x(x,y)}{\partial y}\right) = \frac{1}{2} + \frac{1}{2} = 1$$

Por lo tanto:

$$\oint_C \frac{1}{2}(-y,x) \, d\mathbf{s} = \oint_C -\frac{y}{2} \, dx + \frac{x}{2} dy = \int_R dx dy$$

Ejercicio: Verificar el teorema de Green con la función vectorial $\mathbf{F}(x,y)=(x,y)$ en el disco de radio unidad.

El término de la derecha del teorema de Green es:

$$\frac{\partial F_y(x,y)}{\partial x} - \frac{\partial F_y(x,y)}{\partial x} = 0$$

Para la parametrización de la circunferencia, en sentido anti-horario:

$$t \in [0,2\pi), \ \mathbf{c}(t) = (\cos t, \sin t)$$

La integral de línea:

$$\oint_{\mathbf{c}} (x, y) \, d\mathbf{s} = \int_{0}^{2\pi} (\cos t, \sin t) \left(-\sin t, \cos t \right) dt = 0$$

Teorema de la divergencia. Vamos a considerar la integral de una función vectorial de dos dimensiones, $\mathbf{F}(\mathbf{x})$, a través de una línea, $\mathbf{c}(t)$.

Dado el elemento vectorial diferencial de arco d**s** = (dx, dy), en vez de calcular el productor escalar del campo a lo largo de la trayectoria, $\mathbf{F}(x,y)$ d**s**, lo calculamos a través de ella, normal a ella, $\mathbf{F}(x,y)$ d**n**, donde, d**n** es normal a d**s**, pero con igual módulo, que damos por: d**n** = (dy, -dx).

Esto es:

$$\int_{\mathbf{c}} \mathbf{F}(x,y) \, d\mathbf{n} = \int_{\mathbf{c}} F_x(x,y) \, dy - F_y(x,y) \, dx$$

Que podemos calcular a partir de la parametrización de la curva: $\mathbf{c}(t) = (x(t), y(t))$, con $t \in [t_0, t_1]$.

$$d\mathbf{n} = (dy, -dx) \rightarrow (\dot{y}(t), -\dot{x}(t)) dt$$

Por lo tanto:

$$\int_{\mathbf{c}} \mathbf{F}(x,y) \, d\mathbf{n} = \int_{t_0}^{t_1} \left(F_x(x(t), y(t)), \, F_y(x(t), y(t)) \right) \, (\dot{y}(t), -\dot{x}(t)) \, dt$$

Si aplicamos el teorema de Green a una curva cerrada recorrida en sentido anti-horario:

$$\oint_{\mathbf{c}} \mathbf{F}(x,y) \, d\mathbf{n} = \int_{\mathbf{c}} F_x(x,y) \, dy - F_y(x,y) \, dx = \int_{R} \left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} \right) dx dy$$

que se denomina teorema de la divergencia.

Explora: Cómo es la integral de los campos a lo largo y a través de la espira cuadrada centrada en el origen. Dibuja por ejemplo los siguientes campos: $\mathbf{F}(x,y)=(\pm x,\pm y)/2$ y $\mathbf{F}(x,y)=(\pm y,\pm x)/2$

Apéndices *Ejercicio*: Verifica el teorema de Green para el campo, $\mathbf{F}(x,y)=(y,x^2)$ en la región definida como: $\{0\leq x\leq 1,\ x^2\leq y\leq x\}$.

```
In [8]: xrange = (-0., 1., 15)
       trange = (0., 1., 50)
              = lambda x, y: y
       Ey
               = lambda x, y: x*x
       fx
               = lambda x : x
        fy1
               = lambda x
                            : x*x
       fy2
               = lambda x
                            : x
       gf.quiver2d(Ex, Ey, xrange, xrange);
       gf.line2d(fx, fy1, trange, newfig = False);
       gf.line2d(fx, fy2, trange, newfig = False);
```


1) Calculamos

$$\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \to 2x - 1$$

Luego:

$$\int_{R} \left(\frac{\partial F_{y}}{\partial x} - \frac{\partial F_{x}}{\partial y} \right) dx dy \to \int_{0}^{1} \left[\int_{x}^{x^{2}} (2x - 1) dy \right] dx$$

$$= \int_{0}^{1} (2x - 1) y \Big|_{x}^{x^{2}} dx = \int_{0}^{1} (2x - 1) (x - x^{2}) dx$$

$$= \int_{0}^{1} (-2x^{3} + 3x^{2} - x) dx = \left(-\frac{x^{4}}{2} + x^{3} - \frac{x}{2} \right) \Big|_{0}^{1} = 0$$

2) Parametrizamos la línea frontera inferior $c_1(x)$ y superior $c_2(x)$:

$$\mathbf{c}_1(x) = (x, x^2), \ \dot{\mathbf{c}}_1(x) = (1, 2x), \ x \in [0, 1]$$

 $\mathbf{c}_2(x) = (x, x), \ \dot{\mathbf{c}}_2(x) = (1, 1), \ x \in [0, 1]$

2i) La integral del campo, $\mathbf{F}(x,y)=(y,x^2)$ a lo largo de \mathbf{c}_1 es:

$$\int_{\mathbf{c}_1} \mathbf{F} \, d\mathbf{s} \to \int_0^1 (x^2, x^2) \, (1, 2x) \, dx = \int_0^1 x^2 + 2x^3 dx = \left(\frac{x^3}{3} + \frac{x^4}{2} \right) \Big|_0^1 = \frac{5}{6}$$

2ii) La integral del campo a lo largo de c_2 es:

$$\int_{\mathbf{c}_2} \mathbf{F} \, d\mathbf{s} \to \int_0^1 (x, x^2) (1, 1) \, dx = \int_0^1 x + x^2 dx = \left(\frac{x^2}{2} + \frac{x^3}{3} \right) \Big|_0^1 = \frac{5}{6}$$

2iii) La integral del campo a lo largo de c_1 y luego c_2 (en sentido contrario), de tal forma que recorrarmos la frontera, c, en sentido antihorario es:

$$\oint_{\mathbf{c}} \mathbf{F} \, d\mathbf{s} = \int_{\mathbf{c}_1} \mathbf{F} \, d\mathbf{s} - \int_{\mathbf{c}_2} \mathbf{F} \, d\mathbf{s} = \frac{5}{6} - \frac{5}{6} = 0$$