Metody optymalizacji. Lista $2\,$

Piotr Berezowski, 236749 3 maja 2020

1 Zadanie 1

1.1 Opis zadania

Opisany w zadaniu problem należy sformułować w postaci zadania programowania całkowitoliczbowego. Następnie korzystając pakietu JuMP rozwiązać problem przy użyciu solvera GLPK lub Cbc.

Chcemy zebrać dane liczbowe na temat m różnych cech populacji. Dane zapisane są w chmurze w n różnych miejscach. Czas potrzebny na przeszukanie i-tego miejsca jest równy T_i . Zakładamy, że czas ten nie zależy od liczby odczytywanych cech. Dane dotyczące każdej z cech mogą znajdować się w kilku miejscach. Chcemy wyznaczyć zbiór miejsc, które trzeba przeszukać, aby zebrać informacje o wszystkich cechach jednocześnie minimalizując całkowity czas potrzebny na odczytanie tych cech.

1.2 Model

Zdefiniujmy zbiór n serwerów jako $S = \{1, 2, ..., m\}$, oraz zbiór m cech jako $C = \{1, 2, ..., n\}$. Niech $T_j, j \in S$, oznacza czas potrzebny na przeszukanie j-tego serwera. Niech $q_{ij}, i \in C, j \in S$ przyjmuje wartość 1 jeśli dane dotyczące i-tej cechy znajdują się na j-tym serwerze. W przeciwnym przypadku $q_{ij} = 0$.

1.2.1 Zmienne decyzyjne

Zmienne decyzyjne określające które serwery należy przeszukać definiujemy jako:

$$x_j = \begin{cases} 1, & \text{jeśli serwer } j \text{ będzie przeszukany} \\ 0, & \text{w przeciwnym przypadku} \end{cases}, \text{ gdzie } j \in S$$

1.2.2 Ograniczenia

Ograniczenia modelują następujące sytuacje:

• Należy odczytać informacje dotyczące wszystkich cech:

$$\sum_{i \in S} x_j q_{ij} \geqslant 1, \ i \in C$$

• Binarność zmeinnych decyzyjnych:

$$x_i \in \{0, 1\}, j \in S$$

1.2.3 Funkcja celu

Funkcja celu przyjmuje postać:

$$\sum_{j \in S} x_j T_j$$

1.3 Rozwiązanie

Implementacja modelu wraz z przykładowymi danymi znajduje się w pliku zad1.jl.

Rozwiązano problem dla następujących danych:

• Ilość cech: 7

• Ilość serwerów: 6

• Czasy odczytu dla kolejnych serwerów: 1, 2, 5, 2, 4, 10

• Wartości q_{ij}:

	1	2	3	4	5	6	S
1	1	0	0	1	0	0	
2	0	1	0	0	1	0	
3	0	0	1	0	0	1	
4	1	0	0	1	0	0	
5	0	1	0	0	1	0	
6	0	0	1	0	0	1	
7	0	0	0	0	0	1	
$\overline{\mathbf{C}}$							

Tabela 1: Macierz q

Dla podanych danych minimalny czas przeszukiwania serwerów jest równy 13. Należy przeszukać serwery: 1,2 i 6.

2 Zadanie 2

2.1 Opis zadania

Opisany w zadaniu problem należy sformułować w postaci zadania programowania całkowitoliczbowego. Następnie korzystając pakietu JuMP rozwiązać problem przy użyciu solvera GLPK lub Cbc.

Niech P_{ij} będzie j-tym podprogramem obliczania funkcji i należącym do biblioteki podprogramów ($i \in \{1, \ldots, m\}$, $j \in \{1, \ldots, n\}$). Podprogram P_{ij} zajmuje r_{ij} komórek pamięci i potrzeba na jego wykonanie t_{ij} jednostek czasu. Dla zadanego zbioru funkcji I, $I \subseteq \{1, \ldots, m\}$ należy ułożyć program P obliczający zbiór tych funkcji, w taki sposób, żeby zajmował on nie więcej niż M komórek pamięci, oraz jego czas wykonania był minimalny.

2.2 Model

2.2.1 Zmienne decyzyjne

 \bullet Zmienne określające czy podprogram P_{ij} wchodzi w skład programu P:

$$x_{ij} = \begin{cases} 1, & \text{jeśli podprogram } P_{ij} \text{ należy do programu } P \\ 0, & \text{w przeciwnym przypadku} \end{cases}, i \in \{1, \dots, m\}, \ j \in \{1, \dots, n\}$$

2.2.2 Ograniczenia

Ograniczenia modelują następujące sytuacje:

• Wybieramy tylko jeden podprogram dla każdej funkcji obliczanej w P:

$$\sum_{j \in \{1, \dots, n\}} x_{ij} = 1, \ i \in I$$

 \bullet Maksymalne zużycie pamięci nie może przekroczyć wartości M:

$$\sum_{i \in \{1,\dots,m\}} \sum_{j \in \{1,\dots,n\}} x_{ij} r_{ij} \leqslant M$$

• Binarność zmiennych decyzyjnych:

$$x_{ij} \in \{0,1\}, i \in \{1,\ldots,m\}, j \in \{1,\ldots,n\}$$

2.2.3 Funkcja celu

Funkcja celu przyjmuje postać:

$$\sum_{i \in \{1,\dots,m\}} \sum_{j \in \{1,\dots,n\}} x_{ij} t_{ij}$$

2.3 Rozwiązanie

Implementacja modelu wraz z przykładowymi danymi znajduje się w pliku zad2.jl.

Rozwiązano problem dla następujących danych:

- Ilość funkcji w bibliotece: m=5
- Ilość podprogramów obliczających poszczególne funkcje: $n=4\,$
- Wartości r_{ij} :

	1	2	3	4
1	10	1	1	2
2	2	2	3	1
3	2	3	1	1
4	2	3	1	1
5	2	3	1	1

Tabela 2: Wartości $r_{ij}, i \in \{1, \dots, 5\}, j \in \{1, \dots, 4\}$

• Wartości t_{ij} :

	1	2	3	4
1	1	4	5	2
2	1	2	2	5
3	4	2	5	6
4	4	2	5	6
5	4	2	5	6

Tabela 3: Wartości $t_{ij}, i \in \{1, \dots, 5\}, j \in \{1, \dots, 4\}$

- Maksymalna dostępna ilość pamięci dla programu: M=10
- Zbiór funkcji z których składa się program $P{:}\ I=\{1,2,3,4,5\}$

Dla podanych danych otrzymano rozwiązanie:

Funkcja	Podprogram			
1	4			
2	1			
3	2			
4	1			
5	3			

Tabela 4: Rozwiązanie zadania. Całkowity czas programu jest równy 14.

3 Zadanie 3

3.1 Opis zadania

Opisany w zadaniu problem należy sformułować w postaci zadania programowania całkowitoliczbowego. Następnie korzystając z pakietu JuMP rozwiązać problem przy użyciu solvera GLPK lub Cbc.

Dany jest zbiór zadań $Z=1,\ldots,n$, które mają być wykonywane na trzech procesorach P_1,P_2 i P_3 . Zakładamy, że:

- każdy procesor może wykonywać w danym momencie tylko jedno zadanie,
- każde zadanie musi być wykonywana najpierw na procesorze P_1 następnie na procesorze P_2 i na końcu na procesorze P_3 ,
- kolejność wykonywania zadań na wszystkich trzech procesorach jest taka sama

Dla każdego zadania $i \in Z$ są zadane czasy trwania a_i, b_i oraz c_i odpowiednio na procesorach P_1, P_2 i P_3 . Wszystkie dane są dodatnimi liczbami całkowitymi. Każdy harmonogram jest jednoznacznie określony przez pewną permutację $\pi = (\pi(1), \ldots, \pi(n))$ zadań należących do zbioru Z. Niech $C_{\pi(k)}$ oznacza czas zakończenia k-go zadania na procesorze P_3 dla permutacji π . Celem jest wyznaczenie permutacji π takiej, że:

$$C_{\max} = C_{\pi(n)} \to \min$$

.

3.2 Model

Niech $P = \{P_1, P_2, P_3\}$ będzie zbiorem procesorów. Niech t_{pj} określa czas trwania zadania j na procesorze p, wtedy $t_{P_1j} = a_j$, $t_{P_2j} = b_j$ oraz $t_{P_3j} = c_j$. Niech B będzie bardzo dużą liczbą.

3.2.1 Zmienne decyzyjne

Wprowadźmy następujące zmienne:

• Zmienne określające moment rozpoczęcia j-tego zadania na i-tym procesorze:

$$x_{ij} \geqslant 0, i \in P, j \in Z$$

 \bullet Zmienne pomocnicze określające czy zadanie ijest wykonywane przed zadaniem $j\colon$

$$y_{ij} = \begin{cases} 1, & \text{jeśli zadanie } i \text{ jest wykonywane przed zadaniem } j \\ 0, & \text{w przeciwnym przypadku} \end{cases}, i \in Z, j \in Z, i \neq j$$

 \bullet Zmienna pomocnicza modelująca moment zakończenia ostatniego zadania na procesorze $P_3\colon$

$$M \geqslant 0$$

3.2.2 Ograniczenia

Ograniczenia modelują następujące sytuacje:

• Zachowanie kolejności procesorów - zadanie musi zostać wykonane na poprzednim procesorze, aby mogło być liczone na kolejnym:

$$x_{P_1j} + t_{P_1j} \le x_{P_2j}, \ j \in Z,$$

 $x_{P_2j} + t_{P_2j} \le x_{P_3j}, \ j \in Z$

 Zadania nie nakładają się - każdy procesor może obliczać jedno zadanie w tym samym czasie:

$$x_{pi} - x_{pj} + By_{ij} \ge t_{pj}, \ p \in P, \ i \in Z, \ j \in Z$$

 $x_{pj} - x_{pi} + B(1 - y_{ij}) \ge t_{pi}, \ p \in P, \ i \in Z, \ j \in Z$

• Ograniczenia modelujące wartość zmiennej $M = \max_{i \in \mathbb{Z}} x_{P_3i} + t_{P_3i}$:

$$x_{P_3j} + d_{P_3j} \leqslant M, j \in \mathbb{Z}$$

• Binarność zmiennych pomocniczych y_{ij} :

$$y_{ij} \in \{0,1\}, i \in Z, j \in Z, i \neq j$$

3.2.3 Funkcja celu

Funkcja celu przyjmuje postać:

M

3.3 Rozwiązanie

Implementacja modelu wraz z przykładowymi danymi znajduje się w pliku zad3.jl.

Rozwiązano problem dla następujących danych:

- Ilość zadań: n=5
- Czasy wykonania zadań na poszczególnych procesorach:

	1	2	3	4	5	\mathbf{Z}
P_1	1	2	3	4	5	
P_2	2	3	4	3	2	
P_3	1	2	3	1	2	
P						

Tabela 5: Wartości $t_{ij}, i \in P, j \in Z$

Dla podanych danych otrzymano rozwiązanie: $\pi = (2, 4, 3, 1, 5)$