Feature Preprocessing: Transformatio

- In [1]:
- 1 import numpy as np
- 2 **import** pandas **as** pd
- In [2]:
- 1 data=pd.read_csv('titanic.csv')
- 2 data.head()

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
	1 2	1	3	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
;	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	fema l e	35.0	1	0	113803	53.1000	C12
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na
4											•

4

Root Transformation

```
In [5]: 1 data['sqr_Fare']=data['Fare']**(1/4)
2 data['sqr_Fare'].skew()
```

Out[5]: 0.5196788882063811

Out[4]: 4.787316519674893

Logarithmic Transformation

Out[6]: -2.4100496984507678

Reciprocal transformation

Out[7]: 7.523650082079874

BoxCox

The Box-Cox transformation is defined as:

 $(X^{**}\lambda - 1)/\lambda$

where Y is the response variable and λ is the transformation parameter. λ varies from the transformation, all values of λ are considered and the optimal value for a given variable selected.

in Date a scille in a Rama.