Task 1.

Case number one (1)

- 1. Indicate all the BCNF violations.
 - ABE Gives Us (A,B,C,D,E) Minimum candidate key
 - *ABCE Gives Us* (*A*,*B*,*C*,*D*,*E*) *SuperKey*
 - $AB \rightarrow C$ is non trivial and it's LHS is not a super key, therefore it violates BCNF form

2. Decompose the relations (BCNF)

there were more iterations but this is the final one which contains given FD's

B, D having FD B \rightarrow D.

A, B, C having FD A, $B \rightarrow C$.

A, B, E having FD (none).

C, D, E having FD D, $E \rightarrow C$.

I went with ABE(Canidiate key) because A+B gives us ABCD and E gives us E The minimal cover we get is $ab \rightarrow c$, $de \rightarrow c$, $b \rightarrow d$.

The ab is not a superkey, and it seemed reasonable to split the table into 2 table

$$r1 = a,b,c,d$$

$$r2 = a,b,e$$

or

r1 = b,d

$$r2 = a,b,c$$

3.Indicate all 3NF violations.

It doesn't follow 2NF, there fore it violates 3NF.

4.Decompose the relations (3NF)

B, D having FD B \rightarrow D.

A, B, C having FD A,B \rightarrow C.

C, D, E having FD D, E \rightarrow C.

A, B, E having FD (none).

again I went with ABE(Canidiate key) here.

With that said the table will be split into two with the minimal cover we get using A+B, we get same FD's as BCNF relation decompose:

$$ab \rightarrow c$$
, $de \rightarrow c$, $b \rightarrow d$.

 $AB \rightarrow C$ and with that FD AB is not a superkey

$$r1 = a,b,c,d$$

$$r2 = a,b,e$$

or

$$r1 = b.d$$

$$r2 = a,b,c$$