Problem set 5, ORF525

Bachir El khadir

April 12, 2016

1 Q1

1.1

```
load('Wikipedia.RData')
first.names <- data.frame(name=dat$name[1:3], profession=c("actor", "jurist", "physicist"))
first.names</pre>
```

Table 1: First 3 names
Name Profession

Michel Che actor
Hossein Modarressi jurist
Xiao-Gang Wen physicist

Run script 1

Table 2: Dimensions
Number of individuals Number of words

812 6910

- words <- colnames(dtm.mat.raw)</pre>
- words.occurence <- colSums(dtm.mat.raw)</pre>
- top.ten <- t(words[order(words.occurence, decreasing=T)[1:10]])</pre>

Table 3: Most used words the and univers for was his from has with new

hist(words.occurence, probability=T, xlim=c(1, 1000), breaks=1000)

Histogram of words.occurence

Figure 1: Histogram

round(t(quantile(words.occurence, probs = c(0, 25, 50, 75, 100)/100)))

1.2

```
source("script2_HW6.R")
words <- colnames(dtm.mat)
words.occurence <- colSums(dtm.mat)
top.ten <- t(words[order(words.occurence, decreasing=T)[1:10]])</pre>
```

Table 5: Most used words with reparametrization she her music econom law scienc mathemat new histori research

1.3

```
words <- colnames(dtm.mat.raw)
words.occurence <- colSums(dtm.mat.raw)
top.ten <- t(words[order(words.occurence, decreasing=T)[1:10]])</pre>
```

1.4

```
ben.id <- which(dat$name == "Ben Bernanke")
#dat[ben.id,]</pre>
```

ben shalom bernanke brnki brnangkee born december 13 1953 is an american economist at the brookings institution who served two terms as chairman of the federal reserve the central bank of the united states from 2006 to 2014 during his tenure as chairman bernanke oversaw the federal reserves response to the late 2000s financial crisis before becoming federal reserve chairman bernanke was a tenured professor at princeton university and chaired the department of economics there from 1996 to september 2002 when he went on public service leavefrom 2002 until 2005 he was a member of the board of governors of the federal reserve system proposed the bernanke doctrine and first discussed the great moderation the theory that traditional business cycles have declined in volatility in recent decades through structural changes that have occurred in the international economy particularly increases in the economic stability of developing nations diminishing the influence of macroeconomic monetary and fiscal policybernanke then served as chairman of president george w bushs council of economic advisers before president bush nominated him to succeed alan greenspan as chairman of the united states federal reserve his first term began february 1 2006 bernanke was confirmed for a second term as chairman on january 28 2010 after being renominated by president barack obama his second term ended february 1 2014 when he was succeeded by janet yellen

```
ben.id <- which(dat$name == "Ben Bernanke")
top.ten <- function(row) order(row, decreasing=T)[1:10]
list(1:10,
colnames(dtm.mat)[top.ten(dtm.mat[ben.id,])],
colnames(dtm.mat.raw)[top.ten(dtm.mat.raw[ben.id,])])</pre>
```

Table 8: Most common word dtm.mat.raw rank dtm.mat 1 bernank chairman 2 bernank reserv 3 chairman feder 4 feder reserv 5 term term 6 bush econom 7 bush succeed 8 econom februari 9 second janet volatil 10 tenur

1.5

```
# Renormalize
dtm.mat.norm <- t(quick.norm(t(dtm.mat), mod=1))

# K-means algorithm
bibrary(akmeans)
set.seed(10)</pre>
```

```
res <- norm.sim.ksc(dtm.mat.norm, k=8)
list(1:8, res$size)</pre>
```

Table 9: Clusters size

~~_	•		CLOCLE	~
$^{\mathrm{c}}$	lus	er	size	
		1	64	-
		2	71	
		3	55	
		4	205	
		5	117	
		6	52	
		7	109	
		8	139	

```
top.words.in.cluster <- function(i){
   individuals <- which(res$cluster == i)
   words <- colnames(dtm.mat.raw)
   count <- colSums(dtm.mat.raw[individuals, ])
   top.25 <- t(words[order(count, decreasing=T)[1:25]])

c(i,top.25)
}
sapply(1:8, top.words.in.cluster)</pre>
```

OD 11	10		0 -	1	•	1	1 .
Table	1111	Lon	・ソコ	words	110	Aach	cluster
Table	TO.	100	40	words	111	cacii	CIUSTEI

	Table 10: Top 25 words in each cluster								
1	2	3	4	5	6	7	8		
she	physic	she	she	music	polit	$_{ m she}$	she		
econom	theori	her	polit	she	her	her	her		
her	$\mathbf{mathemat}$	team	econom	her	she	econom	law		
theori	she	coach	law	play	modern	literatur	then		
develop	her	play	her	polit	jewish	mathemat	board		
physic	field	band	program	perform	philosophi	review	play		
comput	prize	season	board	team	war	journal	develop		
mathemat	theoret	their	polici	orchestra	econom	editor	human		
law	quantum	music	affair	festiv	visit	english	career		
advanc	music	assist	educ	record	california	law	washington		
california	develop	record	former	econom	european	theolog	name		
engin	string	head	committe	mathemat	german	critic	team		
geolog	known	high	social	theori	yale	languag	use		
polit	comput	jersey	offic	compos	their	teach	foundat		
press	philosophi	album	develop	symphoni	advanc	write	into		
then	then	citi	journal	prize	press	taught	mani		
area	use	theolog	appoint	london	histor	cultur	were		
had	california	career	secur	visit	germani	theori	won		
join	engin	design	washington	ensembl	historian	press	citi		
use	mani	game	foundat	physic	physic	former	had		
astronomi	under	had	join	law	recent	human	but		
career	general	hockey	elect	press	under	music	journal		
church	medal	began	assist	program	comput	prize	sever		
best	high	more	dure	comput	later	scholar	jersey		
						articl			

```
p <- c(0, 1, 25, 50, 75, 100)
quantile.words.in.cluster <- function(i){
    individuals <- which(res$cluster == i)
    words <- colnames(dtm.mat.raw)
    count <- colSums(dtm.mat.raw[individuals, ])
    count <- count[count > 0]
    q <- quantile(count, probs=p/100)
    c(i, round(q))
}
cbind(c("Cluster", paste(p, "%", sep="")), sapply(1:8, quantile.words.in.cluster))</pre>
```

Table 11: Quantiles in each cluster

Cluster	1	2	3	4	5	6	7	8
0%	1	1	1	1	1	1	1	1
1%	1	1	1	1	1	1	1	1
25%	1	1	1	1	1	1	1	1
50%	2	2	2	2	2	2	2	2
75%	4	4	4	6	4	3	4	5
100%	80	110	89	223	234	47	144	110

2 Q2

$$\begin{split} \log P(X, \psi) &= \sum_{i} P(X_{i}; \psi) \\ &= \sum_{i} \sum_{j} P(X_{i}, Z_{i} = j; \psi) \\ &= \sum_{i} \sum_{j} \gamma_{ij}^{(t)} \frac{\log P(X_{i}, Z_{i} = j; \psi)}{\gamma_{ij}^{(t)}} \qquad (\gamma_{ij}^{(t)} = P(Z_{i} = j | X_{i}; \psi^{(t)})) \\ &\geq \sum_{i,j} \gamma_{ij}^{(t)} \frac{\log P(X_{i}, Z_{i} = j; \psi)}{\gamma_{ij}^{(t)}} \\ &= \sum_{i,j} \gamma_{ij}^{(t)} \log P(X_{i}, Z_{i} = j; \psi) + cte \\ &= \sum_{i,j} \gamma_{ij}^{(t)} \log \eta_{j} e^{-\frac{||X_{i} - \theta_{j}||_{2}^{2}}{2\sigma_{j}^{2}}} + cte \\ &= \sum_{i} (\sum_{j} \gamma_{ij}^{(t)}) \log \eta_{j} - \sum_{i} \gamma_{ij}^{(t)} \frac{||X_{i} - \theta_{j}||_{2}^{2}}{2\sigma_{j}^{2}} + cte \end{split}$$

With

$$\gamma_{ij}^{(t)} = \frac{\eta_j^{(t)} p_{\theta_j^{(t)}}(X_i)}{\sum_k \eta_k^{(t)} p_{\theta_k^{(t)}}(X_i)} = \frac{\eta_j^{(t)} e^{-\frac{||X_i - \theta_j||_2^2}{2\sigma_j^2}}}{\sum_k \eta_k^{(t)} e^{-\frac{||X_i - \theta_k||_2^2}{2\sigma_k^2}}} \xrightarrow[\sigma_{ij}]{} \left\{ \begin{array}{l} 1 & \text{if } \theta_j \text{ is the closest center to } X_i \\ 0 & \text{o.w.} \end{array} \right. := I(\theta_j, X_i)$$

2.0.1 Finding η

 $\max_{\eta} \to \sum_{j} (\sum_{i} \gamma_{ij}^{(t)}) \log \eta_{j} \text{ under the constraint } \sum_{j} \eta_{j} = 1 \text{ Lagragian: } L(\eta, \lambda) = \sum_{j} (\sum_{i} \gamma_{ij}^{(t)}) \log \eta_{j} + \lambda (1 - \sum_{j} \eta_{j}) - \partial_{\eta_{j}} L = 0 \implies \sum_{i} \gamma_{ij}^{(t)} = \lambda \eta_{j} - \sum_{j} \eta_{j} = 1 \implies \lambda = \sum_{ij} \gamma_{ij}^{(t)} = n - \lambda = \sum_{ij} \gamma_{ij}^{(t)} = 1 - \lambda = 0$

$$\eta_j^{(t+1)} = \frac{\sum_i \gamma_{ij}^{(t)}}{n} \to \frac{\#\{\text{number of } x_i \text{ close to } \theta_j\}}{n}$$

2.0.2 Finding θ, σ

$$L(\theta, \sigma) = -\sum_{ij} \gamma_{ij}^{(t)} \frac{||X_i - \theta_j||_2^2}{2\sigma_j^2} - \partial_{\theta_j} L = 0 \implies \sum_i \gamma_{ij}^{(t)} \frac{X_i - \theta_j}{\sigma_j^2} = 0, -$$

$$\theta_j = \frac{\sum_i \gamma_{ij}^{(t)} X_i}{\sum_i \gamma_{ij}^{(t)}} \rightarrow \frac{\sum_i I(\theta_j^{(t)}, X_i) X_i}{\sum_i I(\theta_j^{(t)}, X_i)}$$

3 Q3

3.1

Notation:

 $\alpha_i(t) = P(X_1, \dots X_t, Z_t = i) \ \beta_i(t) = P(X_{t+1}, \dots X_n | Z_t = i) \ \gamma_i(t) = P(Z_t = i | X) \ p_j(x)$ the density of $\mathcal{N}(\mu_j, \Sigma_j)$ Markov property:

$$P(X, Z|\psi) = \eta_{Z_1} \prod_{t=1}^{n} A_{z_{t-1}q_t} p_{z_t}(X_t)$$

So:

$$Q(\psi, \psi^{old}) = \sum_{Z \in [0, k-1]^n} \log P(X, Z | \psi) P(X, Z | \psi^{old})$$

$$= \sum_{Z \in [0, k-1]^n} \log \eta_{Z_1} P(X, Z | \psi^{old}) + \sum_{Z} \left(\sum_{t=2}^n \log A_{Z_{t-1} Z_t} \right) P(X, Z | \psi^{old}) + \sum_{Z} \left(\sum_{t=2}^n \log p_{Z_t}(X_t) \right) P(X, Z | \psi^{old})$$

$$f_1(n)$$

We can optimze each one of the $f_r, r = 1 \dots 3$ independently.

•
$$f_1(\eta) = \sum_{Z_1} \log \eta_{Z_1} \sum_{Z_2,...,Z_n} P(X, Z_1, ..., Z_n | \psi^{old}) = \sum_j \log \eta_j P(X, Z_1 = j | \psi^{old})$$

We maximize f_1 under the constraint that $\sum_j \eta_j = 1$. Noting λ the lagrage multiplier, the first order condition gives: $\frac{1}{\eta_j} P(X, Z_1 = j | \psi^{old}) = \lambda \ \forall j = 0 \dots k-1$, eg $\eta_j \propto P(X, Z_1 = j | \psi^{old}) \propto P(Z_1 = j | X, \psi^{old})$. Since the η_j sum up to one:

$$\eta_j \leftarrow \frac{P(Z_1 = j | X, \psi^{old})}{\sum_r P(X, Z_1 = r | X, \psi^{old})}$$

• We maximize

$$f_2(A) = \sum_{t=2}^{n} \sum_{Z_{t-1}, Z_t} \log A_{Z_{t-1}, Z_t} \left(\sum_{Z_1 \dots Z_{t-2}, Z_{t+1}, \dots Z_n} P(X, Z | \psi^{old}) \right)$$
$$= \sum_{t=2}^{n} \sum_{Z_{t-1} = s, Z_t = r} \log A_{s,r} P(X, Z_{t-1} = s, Z_t = r | \psi^{old})$$

Under the constraint that for all s, $\sum_r A_{sr} = 1$ In a similar way, KKT condition give

$$A_{sr} \leftarrow \frac{\sum_{t=2}^{n} P(Z_{t-1} = s, Z_t = r | X, \psi^{old})}{\sum_{j=0}^{k-1} \sum_{t=2}^{n} P(Z_{t-1} = s, Z_t = j | X, \psi^{old})}$$

• We maximize

$$f_{3}(\mu, \Sigma) = \sum_{t=2}^{n} \sum_{Z_{t}=j} \log p_{j}(X_{t}) \sum_{Z_{i}, i \neq t} P(X, Z | \psi^{old})$$

$$= \sum_{t=2}^{n} \sum_{Z_{t}=j} \log p_{j}(X_{t}) P(X, Z_{t} | \psi^{old})$$

$$\propto -\sum_{Z_{t}=j} \sum_{t=2}^{n} \underbrace{P(X, Z_{t}=j | \psi^{old})}_{\gamma_{jt}} \left((X_{t} - \mu_{j})' \Sigma_{j}^{-1} (X_{t} - \mu_{j}) + \log(|\Sigma_{j}|) \right)$$

$$\propto -\sum_{Z_{t}=j} tr \left(\sum_{j} \sum_{t} \gamma_{jt} (X_{t} - \mu_{j})' (X_{t} - \mu_{j}) + \sum_{j} \left(\sum_{t} \gamma_{jt} \right) \log(|\Sigma_{j}|) \right)$$

First order conditions:

•
$$0 = \frac{\partial}{\partial \mu_j} f_3 \implies \sum_t \gamma_{jt} (\mu_j - X_t)' \Sigma_j^{-1} = 0 \implies \mu_j = \frac{\sum_t \gamma_{jt} X_t}{\sum_t \gamma_{jt}}$$

•
$$0 = \frac{\partial}{\partial \Sigma_j^{-1}} f_3 \implies 2S_j - diag(S_j) + \gamma(2\Sigma_j - diag(\Sigma_j)) = 0 \implies 2(\gamma \Sigma_j - S_j) = diag(\gamma \Sigma_j - S_j) \implies \Sigma_j = \frac{S_j}{\gamma}$$

As a conclusion:

$$\Sigma_j \leftarrow \frac{\sum_t P(X, Z_t = j | \psi^{old})(X_t - \mu_j)'(X_t - \mu_j)}{\sum_t P(X, Z_t = j | \psi^{old})}$$
$$\mu_j \leftarrow \frac{\sum_t P(X, Z_t = j | \psi^{old})X_t}{\sum_t P(X, Z_t = j | \psi^{old})}$$

3.2 Condition on $Z_i, X_{i+1} \dots X_n$ is independent from $X_1, \dots X_i$, so: $\alpha(Z_i)\beta(Z_i) = P(X_1, \dots X_i, Z_i|\psi)P(X_{i+1}, \dots X_n|Z_i, P(X_i, Z_i|\psi))$

$$P(Z_i|X_1, \dots X_n, \psi) = \frac{P(X, Z_i|\psi)}{P(X|\psi)}$$
$$= \frac{P(X, Z_i|\psi)}{\sum_j P(X, Z_i = j|\psi)}$$
$$\propto \alpha(Z_i)\beta(Z_i)$$

$$\begin{split} &P(X_{i}|Z_{i},\psi)\sum_{Z_{i=1}=r}\alpha(Z_{i-1})P(Z_{i}|Z_{i-1}=r,\psi)\\ &=\sum_{Z_{i-1}=r}P(X_{i}|Z_{i},\psi)P(X_{1},\ldots X_{i-1},Z_{i-1}=r|\psi)P(Z_{i}|Z_{i-1}=r,\psi)\\ &=\sum_{Z_{i-1}=r}P(X_{1},\ldots X_{i-1},Z_{i-1}=r|\psi)P(Z_{i}|Z_{i-1}=r,X_{1},\ldots X_{i-1},Z_{i-1}=r\psi)P(X_{i}|Z_{i},X_{1},\ldots X_{i-1},Z_{i-1}=r,\psi)\\ &(\text{Markov property})\\ &=\sum_{Z_{i-1}=r}P(X_{1},\ldots X_{i-1},X_{i},Z_{i-1}=r,Z_{i})\\ &=\alpha(Z_{i}) \end{split}$$

$$\beta(Z_i) = P(X_{i+1} \dots X_n | Z_i)$$

$$= \sum_{Z_{i+1}} P(X_{i+1} \dots X_n | Z_i, Z_{i+1}) P(Z_{i+1} | Z_i)$$

$$= \sum_{Z_{i+1}} P(X_{i+2} \dots X_n | Z_i, Z_{i+1}) P(X_{i+1} | Z_{i+1}) P(Z_{i+1} | Z_i)$$

$$= \sum_{Z_{i+1}} \beta(Z_{i+1}) P(X_{i+1} | Z_{i+1}) P(Z_{i+1} | Z_i)$$