Számítógépes Hálózatok

6. Előadás: Adatkapcsolati réteg Hálózati réteg

Adatkapcsolati réteg

Alkalmazási
Megjelenítési
Ülés
Szállítói
Hálózati
Adatkapcsolati

Fizikai

- Szolgáltatás
 - Adatok keretekre tördelése: határok a csomagok között
 - Közeghozzáférés vezérlés (MAC)
 - Per-hop megbízhatóság és folyamvezérlés
- □ Interfész
 - Keret küldése két közös médiumra kötött eszköz között
- Protokoll
 - Fizikai címzés (pl. MAC address, IB address)
- Példák: Ethernet, Wifi, InfiniBand

Adatkapcsolati réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

Funkciók:

- Adat blokkok (keretek/frames) küldése eszközök között
- A fizikai közeghez való hozzáférés szabályozása
- Legfőbb kihívások:
 - Hogyan keretezzük az adatokat?
 - Hogyan ismerjük fel a hibát?
 - Hogyan vezéreljük a közeghozzáférést (MAC)?
 - Hogyan oldjuk fel vagy előzzük meg az ütközési helyzeteket?

Közeg hozzáférés vezérlése Media Access Control (MAC)

Mi az a közeg hozzáférés?

- Ethernet és a Wifi is többszörös hozzáférést biztosító technológiák
 - Az átviteli közegen több résztvevő osztozik
 - Adatszórás (broadcasting)
 - Az egyidejű átvitel ütközést okot
 - Lényegében meghiúsítja az átvitelt
- Követelmények a Media Access Control (MAC) protokolljaival szemben
 - Szabályok a közeg megosztására
 - Stratégiák az ütközések detektálásához, elkerüléséhez és feloldásához

- Eddigi tárgyalásaink során pont-pont összeköttetést feltételeztünk.
- Most az adatszóró csatornát (angolul broadcast channel) használó hálózatok tárgykörével foglalkozunk majd.
 - Kulcskérdés: Melyik állomás kapja a csatornahasználat jogát?
- A csatorna kiosztás történhet:
 - statikus módon (FDM, TDM)
 - 2. dinamikus módon
 - a) verseny vagy ütközés alapú protokollok (ALOHA, CSMA, CSMA/CD)
 - b) verseny-mentes protokollok (bittérkép-alapú protokollok, bináris visszaszámlálás)
 - c) korlátozott verseny protokollok (adaptív fa protokollok)

Adatszóró (Broadcast) Ethernet

Eredetileg az Ethernet egy adatszóró technológia volt

 T jelzi a csavart érpárt (Twisted Pair)

repeaterek mind 1. rétegbeli eszközök (csak fizikai)

Vivőjel érzékelés Carrier Sense Multiple Access (CSMA)

- További feltételezés
 - Minden állomás képes belehallgatni a csatornába és így el tudja dönteni, hogy azt más állomás használja-e átvitelre

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor addig vár, amíg fel nem szabadul. Szabad csatorna esetén azonnal küld. (perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

- A terjedési késleltetés nagymértékben befolyásolhatja a teljesítményét.
- Jobb teljesítményt mutat, mint az ALOHA protokollok.

Nem-perzisztens CSMA protokoll

10

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll
- Mohóság kerülése

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor véletlen ideig vár (nem figyeli a forgalmat), majd kezdi előröl a küldési algoritmust. (nem-perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

Jobb teljesítményt mutat, mint az 1-perzisztens CSMA protokoll. (intuitív)

1 1

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Diszkrét időmodellt használ a protokoll

Algoritmus

- Adás kész állapotban az állomás belehallgat a csatornába:
 - a) Ha foglalt, akkor vár a következő időrésig, majd megismétli az algoritmust.
 - b) Ha szabad, akkor p valószínűséggel küld, illetve 1-p valószínűséggel visszalép a szándékától a következő időrésig. Várakozás esetén a következő időrésben megismétli az algoritmust. Ez addig folytatódik, amíg el nem küldi a keretet, vagy amíg egy másik állomás el nem kezd küldeni, mert ilyenkor úgy viselkedik, mintha ütközés történt volna.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

CSMA áttekintés

Nem-perzisztens

<u>CSMA perzisztencia</u> 1-perzisztens

p-perzisztens

Konstans v. változó

Nem-perzisztens:

Átvitel ha szabad Különben: késleltetés, újrapróbáljuk

Idő Foglalt csatorna Kész

1-perzisztens:

Atvitel amint a csatorna szabad Ütközés esetén visszalépés, majd újrapróbáljuk

p-perzisztens:

Atvitel p valószínűséggel, ha a csatorna szabad Különben: várunk 1 időegységet és újrapróbáljuk

CSMA és ALOHA protokollok összehasonlítása

CSMA/CD - CSMA ütközés detektálással (CD = Collision Detection)

- Ütközés érzékelés esetén meg lehessen szakítani az adást.
 ("Collision Detection")
 - Minden állomás küldés közben megfigyeli a csatornát,
 - ha ütközést tapasztal, akkor megszakítja az adást, és véletlen ideig várakozik, majd újra elkezdi leadni a keretét.
- Mikor lehet egy állomás biztos abban, hogy megszerezte magának a csatornát?
 - Az ütközés detektálás minimális ideje az az idő, ami egy jelnek a két legtávolabbi állomás közötti átviteléhez szükséges.

CSMA/CD

 Egy állomás megszerezte a csatornát, ha minden más állomás érzékeli az átvitelét.

 Az ütközés detektálás működéséhez szükséges a keretek hosszára egy alsó korlátot adnunk

Ethernet a CSMA/CD-t használja

CSMA/CD

- Carrier sense multiple access with collision detection
- Alapvetés: a közeg lehetőséget ad a csatornába hallgatásra
- Algoritmus
 - Használjuk valamely CSMA variánst
 - A keret kiküldése után, figyeljük a közeget, hogy történik-e ütközés
 - 3. Ha nem volt ütközés, akkor a keretet leszállítottuk
 - 4. Ha ütközés történt, akkor azonnal megszakítjuk a küldést
 - Miért is folytatnánk hisz a keret már sérült...
 - Alkalmazzuk az bináris exponenciális hátralék módszert az újraküldés során (binary exponential backoff)

CSMA/CD Ütközések

17

- □ Ütközések történhetnek
- Az ütközéseket gyorsan észleljük és felfüggesztjük az átvitelt
- Mi a szerepe a távolságnak, propagációs időnek és a keret méretének?

- Ütközés érzékelésekor a küldő egy ún. "jam" jelet küld
 - Minden állomás tudomást szerezzen az ütközésről
- Binary exponential backoff működése:
 - □ Válasszunk egy $k \in [0, 2^n 1]$ egyenletes eloszlás szerint, ahol n = az ütközések száma
 - □ Várjunk k időegységet (keretidőt) az újraküldésig
 - n felső határa 10, 16 sikertelen próbálkozás után pedig eldobjuk a keretet
- A hátralék idő versengési résekre van osztva

Binary Exponential Backoff

Tekintsünk két állomást, melyek üzenetei ütköztek

- Első ütközés után: válasszunk egyet a két időrés közül
 - A siker esélye az első ütközés után: 50%
 - Átlagos várakozási idő: 1,5 időrés
- Második ütközés után: válasszunk egyet a négy rés közül
 - □ Sikeres átvitel esélye ekkor: 75%
 - Átlagos várakozási idő: 2,5 rés
- Általában az m. ütközés után:
 - □ A sikeres átvitel esélye: 1-2^{-m}
 - \blacksquare Average delay (in slots): 0,5 + $2^{(m-1)}$

- Miért 64 bájt a minimális keretméret?
 - Az állomásoknak elég időre van szüksége az ütközés detektálásához
- Mi a kapcsolat a keretméret és a kábelhossz között?
- t időpont: Az A állomás megkezdi az átvitelt
- t + d időpont: A B állomás is megkezdi az átvitelt
- t + 2*d időpont: A érzékeli az ütközést

Alapötlet: Az A állomásnak 2*d ideig kell küldenie!

CSMA/CD

CSMA/CD három állapota:
 versengés, átvitel és szabad.

 Ahhoz, hogy minden ütközést észleljünk szükséges:

$$T_f \ge 2T_{pg}$$

- ahol T_f egy keret elküldéséhez szükséges idő
- és T_{pg} a propagációs késés A
 és B állomások között

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d(s)
 - 10 Mbps Ethernet
 - Pr A keretméret és a kábelhossz változik a gyorsabb szabványokkal... Aza
 - Min_keret = N
 - * 2 * távolság (m) / fényseb. (m/s)
- □ Azaz a kábel össx
 - Távolság = min_ke
- * fénysebesség /(2 * ráta)

sség

 $(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$

Minimális keretméret

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d(s)
 - ... de mi az a d? propagációs késés, melyet a fénysebesség ismeretében ki tudunk számolni
 - Propagációs késés (d) = távolság (m) / fénysebesség (m/s)
 - Azaz:
 - □ Min_keret = ráta (b/s) * 2 * távolság (m) / fényseb. (m/s)
- Azaz a kábel összhossza
 - □ Távolság = min_keret * fénysebesség /(2 * ráta)

$$(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$$

Kábelhossz példa

```
min_keret*fénysebesség/(2*ráta) = max_kábelhossz
(64B*8)*(2*108mps)/(2*10Mbps) = 5120 méter
```

- Mi a maximális kábelhossz, ha a minimális keretméret 1024 bájtra változik?
 - 81,9 kilométer
- Mi a maximális kábelhossz, ha a ráta 1 Gbps-ra változik?
 - □ 51 méter
- Mi történik, ha mindkettő változik egyszerre?
 - □ 819 méter

- Maximum Transmission Unit (MTU): 1500 bájt
- □ Pro:
 - Hosszú csomagokban levő biz hibák jelentős javítási költséget okozhatnak (pl. túl sok adatot kell újraküldeni)
- □ Kontra:
 - Több bájtot vesztegetünk el a fejlécekben
 - Összességében nagyobb csomag feldolgozási idő
- Adatközpontokban Jumbo keretek
 - 9000 bájtos keretek

MOTIVÁCIÓ

- az ütközések hátrányosan hatnak a rendszer teljesítményére
 - hosszú kábel, rövid keret
- a CSMA/CD nem mindenhol alkalmazható

FELTÉTELEZÉSEK

- N állomás van.
- Az állomások 0-ától N-ig egyértelműen sorszámozva vannak.
- Réselt időmodellt feltételezünk.

Alapvető bittérkép protokoll

- Egy helyfoglalásos megoldás

alapvető bittérkép eljárás

Működés

- Az ütköztetési periódus N időrés
- Ha az i-edik állomás küldeni szeretne, akkor a i-edik versengési időrésben egy 1-es bit elküldésével jelezheti. (adatszórás)
- A versengési időszak végére minden állomás ismeri a küldőket. A küldés a sorszámok szerinti sorrendben történik meg.

Bináris visszaszámlálás protokoll 1/2

 alapvető bittérkép eljárás hátrány, hogy az állomások számának növekedésével a versengési periódus hossza is nő

Működés

- Minden állomás azonos hosszú bináris azonosítóval rendelkezik.
- A forgalmazni kívánó állomás elkezdi a bináris címét bitenként elküldeni a legnagyobb helyi értékű bittel kezdve. Az azonos pozíciójú bitek logikai VAGY kapcsolatba lépnek ütközés esetén. Ha az állomás nullát küld, de egyet hall vissza, akkor feladja a küldési szándékát, mert van nála nagyobb azonosítóval rendelkező küldő.

```
A HOSZT (0011) 0 - - - -

B HOSZT (0110) 0 - - - -

1 0 1 0

C HOSZT (1010) 1 0 1 1

D HOSZT (1011) 1 0 1 1

D kerete
```

Bináris visszaszámlálás protokoll 2/2

□ **Következmény:** a magasabb címmel rendelkező állomásoknak a prioritásuk is magasabb az alacsonyabb című állomásokénál

MOK ÉS WARD MÓDOSÍTÁSA

- Virtuális állomás címek használata.
- Minden sikeres átvitel után ciklikusan permutáljuk az állomások címét.

	Α	В	С	D	E	F	G	Н
Kezdeti állapot	100	010	111	101	001	000	011	110

Idő

Korlátozott versenyes protokollok

30

- Cél: Ötvözni a versenyhelyzetes és ütközésmentes protokollok jó tulajdonságait.
- korlátozott versenyes protokoll Olyan protokoll, amely kis terhelés esetén versenyhelyzetes technikát használ a kis késleltetés érdekében, illetve nagy terhelés mellett ütközésmentes technikát alkalmaz a csatorna jó kihasználása érdekében.

SZIMMETRIKUS PROTOKOLLOK

Adott résben k állomás verseng, minden állomás p valószínűséggel adhat. A csatorna megszerzésének valószínűsége: $kp(1-p)^{k-1}$.

$$P(\text{siker optimális } p \text{ mellett}) = \left(\frac{k-1}{k}\right)^{k-1}$$

Azaz a csatorna megszerzésének esélyeit a versenyhelyzetek számának csökkentésével érhetjük el.

Adaptív fabejárási protokoll 1/2

Történeti háttér

- 1943 Dorfman a katonák szifiliszes fertőzöttségét vizsgálta.
- 1979 Capetanakis bináris fa reprezentáció az algoritmus számítógépes változatával.

Működés

- 0-adik időrésben mindenki küldhet.
 - Ha ütközés történik, akkor megkezdődik a fa mélységi bejárása.
- A rések a fa egyes csomópontjaihoz vannak rendelve.
- Ütközéskor rekurzívan az adott csomópont bal illetve jobb gyerekcsomópontjánál folytatódik a keresés.
- Ha egy bitrés kihasználatlan marad, vagy pontosan egy állomás küld, akkor a szóban forgó csomópont keresése befejeződik.

Következmény

Minél nagyobb a terhelés, annál mélyebben érdemes kezdeni a keresést.

Adaptív fabejárás példa

Az adatkapcsolati réteg "legtetején"...

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- □ Bridging, avagy hidak
 - Hogyan kapcsoljunk össze LANokat?
- □ Funkciók:
 - Keretek forgalomirányítása a LANok között
- □ Kihívások:
 - Plug-and-play, önmagát konfiguráló
 - Esetleges hurkok feloldása

Visszatekintés

35

Az Ethernet eredetileg adatszóró technológia volt

□ Több állomás = több ütközés = káosz

LAN-ok összekapcsolása

- Kérdés: lehetne-e az egész Internet egy bridge-ekkel összekötött tartomány?
- Hátrány: a bridge-ek sokkal komplexebb eszközök a hub-oknál
 - Fizikai réteg VS Adatkapcsolati réteg
 - Memória pufferek, csomag feldolgozó hardver és routing (útválasztó) táblák szükségesek

Bridge-ek (magyarul: hidak)

- Az Ethernet switch eredeti formája
- □ Több IEEE 802 LAN-t kapcsol össze a 2. rétegben
- Célok
 - □ Ütközési tartományok számának csökkentése
 - Teljes átlátszóság
 - "Plug-and-play," önmagát konfiguráló
 - Nem szükségesek hw és sw változtatások a hosztokon/hub-okon
 - Nem lehet hatással meglévő LAN operációkra

Bridge-ek (magyarul: hidak)

- Az Ethernet switch eredeti formája
 - 1. Keretek továbbítása
 - 2. (MAC) címek tanulása
 - 3. Feszítőfa (Spanning Tree) Algoritmus (a hurkok kezelésére)
 - Nem szükségesek hw és sw változtatások a hosztokon/hub-okon
 - Nem lehet hatással meglévő LAN operációkra

Keret Továbbító Táblák

Minden bridge karbantart egy továbbító táblát (forwarding table)

Címek tanulása

40

- Kézi beállítás is lehetséges, de...
 - Időigényes
 - Potenciális hiba forrás
 - Nem alkalmazkodik a változásokhoz (új hosztok léphetnek be és régiek hagyhatják el a hálózatot)
- □ Ehelyett: tanuljuk meg a címeket
 - Tekintsük a forrás címeit a különböző portoko kereteknek --- képezzünk ebből egy tábláza

Töröljük a régi bejegyzéseket

			MAC cím	Port	Kor	
00 00 00 00 00 4			00:00:00:00:AA	1	0 minutes	
00:00:00:00:AA	4		00:00:00:00:0BB	2	0 minutes	
	Port 1	Port 2	00.00.00	.00.00.RI		

Címek tanulása

41

- Kézi beállítás is lehetséges, de...
 - Időigényes
 - Potenciális hiba forrás
 - Nem alkalmazkodik a változásokhoz (új hosztok léphetnek be és régiek hagyhatják el a hálózatot)
- □ Ehelyett: tanuljuk meg a címeket
 - Tekintsük a forrás címeit a különböző portokon beérkező kereteknek --- képezzünk ebből egy táblázatot

		MAC cím	Port	Kor
00.00.00.00.00.44		00:00:00:00:AA	1	0 minutes
00:00:00:00:AA		00:00:00:00:00:BB	2	0 minutes
Port 1	Port 2	00:00:00:	00.00.88	.

- <Src=AA, Dest=DD>
- Ez megy a végtelenségig
 - Hogyan állítható meg?
- Távolítsuk el a hurkokat a topológiából
 - A kábelek kihúzása nélkül
- 802.1 (LAN) definiál egy algoritmust feszítőfa fépítéséhez és karbantartásához, mely mentén lehetséges a keretek továbbítása

- □ Egy gráf éleinek részhalmaza, melyre teljesül:
 - Lefed minden csomópontot
- Nem tartalmaz köröket □ Továbbá a struktúra egy fa-gráf

A 802.1 feszítőfa algoritmusa

11

- Az egyik bride-et megválasztjuk a fa gyökerének
- 2. Minden bridge megkeresi a legrövidebb utat a gyökérhez
- 3. Ezen utak unióját véve megkapjuk a feszítőfát
- A fa építése során a bridge-ek egymás között konfigurációs üzeneteket (Configuration Bridge Protocol Data Units [BPDUs]) cserélnek
 - A gyökér elem megválasztásához
 - A legrövidebb utak meghatározásához
 - A gyökérhez legközelebbi szomszéd (next hop) állomás és a hozzá tartozó port azonosításához
 - A feszítőfához tartozó portok kiválasztása

Gyökér meghatározása

- Kezdetben minden állomás feltételezi magáról, hogy gyökér
- Bridge-ek minden irányba szétküldik a BPDU üzeneteiket:

Bridge ID

Gyökér ID Út költség a gyökérhez

- A fogadott BPDU üzenet alapján, minden switch választ:
 - Egy új gyökér elemet (legkisebb ismert Gyökér ID alapján)
 - Egy új gyökér portot (melyik interfész megy a gyökér irányába)
 - Egy új kijelölt bridge-et (a következő állomás a gyökérhez vezető úton)

Feszítőfa építése

- A bridge-ek lehetővé teszik hogy növeljük a LAN-ok kapacitását
 - Csökkentik a sikeres átvitelhez szükséges elküldendő csomagok számát
 - Kezeli a hurkokat
- A switch-ek a bridge-ek speciális esetei
 - Minden port egyetlen egy hoszthoz kapcsolódik
 - Lehet egy kliens terminál
 - vagy akár egy másik switch
 - Full-duplex link-ek
 - Egyszerűsített hardver: nincs szükség CSMA/CD-re!
 - Különböző sebességű/rátájú portok is lehetségesek

Kapcsoljuk össze az Internetet

- □ Switch-ek képességei:
 - MAC cím alapú útvonalválasztás a hálózatban
 - Automatikusan megtanulja az utakat egy új állomáshoz
 - Feloldja a hurkokat
- Lehetne a teljes internet egy ily módon összekötött tartomány?

NEM

- Nem hatékony
 - Elárasztás ismeretlen állomások megtalálásához
- Gyenge teljesítmény
 - A feszítőfa nem foglalkozik a terhelés elosztással
 - Hot spots
- Nagyon gyenge skálázhatóság
 - Minden switch-nek az Internet összes MAC címét ismerni kellene a továbbító táblájában!
- Az IP fogja ezt a problémát megoldani...

Hálózati réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati **Fizikai**

- Szolgáltatás
 - Csomagtovábbítás
 - Útvonalválasztás
 - Csomag fragmentálás kezelése
 - Csomag ütemezés
 - Puffer kezelés
- Interfész
 - Csomag küldése egy adott végpontnak
- Protokoll
 - Globálisan egyedi címeket definiálása
 - Routing táblák karbantartása
- □ Példák: Internet Protocol (IPv4), IPv6

Forgalomirányító algoritmusok

51

DEFINÍCIÓ

A hálózati réteg szoftverének azon része, amely azért a döntésért felelős, hogy a bejövő csomag melyik kimeneti vonalon kerüljön továbbításra.

- A folyamat két jól-elkülöníthető lépésre bontható fel:
 - 1. Forgalomirányító táblázatok feltöltése és karbantartása.
 - Továbbítás.

ELVÁRÁSOK

helyesség, egyszerűség, robosztusság, stabilitás, igazságosság, optimalitás és hatékonyság

ALGORITMUS OSZTÁLYOK

- 1. Adaptív algoritmusok
 - A topológia és rendszerint a forgalom is befolyásolhatja a döntést
- 2. Nem-adaptív algoritmusok
 - offline meghatározás, betöltés a router-ekbe induláskor

Forgalomirányító algoritmusok

KÜLÖNBSÉGEK AZ EGYES ADAPTÍV ALGORITMUSOKBAN

- Honnan kapják az információt?
 - szomszédok, helyileg, minden router-től
- 2. Mikor változtatják az útvonalakat?
 - meghatározott másodpercenként, terhelés változásra, topológia változásra
- 3. Milyen mértékeket használnak az optimalizáláshoz?
 - távolság, ugrások (hops) száma, becsült késleltetés

Optimalitási elv

Ha **J** router az **I** router-től **K** router felé vezető optimális útvonalon helyezkedik el, akkor a J-től a K-ig vezető útvonal ugyanerre esik.

Következmény

Az összes forrásból egy célba tartó optimális utak egy olyan fát alkotnak, melynek a gyökere a cél. Ezt nevezzük *nyelőfá*nak.

Legrövidebb út alapú forgalomirányítás

ALHÁLÓZAT REPREZENTÁCIÓJA

Az alhálózat tekinthető egy gráfnak, amelyben minden router egy csomópontnak és minden él egy kommunikációs vonalnak (link) felel meg. Az éleken értelmezünk egy $w\colon E\to\mathbb{R}^+_0$ nem-negatív súlyfüggvényt, amelyek a legrövidebb utak meghatározásánál használunk.

- \Box G=(V,E) gráf reprezentálja az alhálózatot
- \square P útvonal súlya: $w(P) = \sum_{e \in P} w(e)$

Távolságvektor alapú forgalomirányítás

- □ Dinamikus algoritmusoknak 2 csoportja van:
 - távolságvektor alapú illetve (distance vector routing)
 - kapcsolatállapot alapú (link-state routing)

- <u>Távolságvektor alapú</u>: Minden router-nek egy táblázatot kell karbantartania, amelyben minden célhoz szerepel a legrövidebb ismert távolság, és annak a vonalnak az azonosítója, amelyiken a célhoz lehet eljutni. A táblázatokat a szomszédoktól származó információk alapján frissítik.
 - Elosztott Bellman-Ford forgalomirányítási algoritmusként is nevezik.
 - ARPANET eredeti forgalomirányító algoritmusa ez volt. RIP (Routing Information Protocol) néven is ezt használták.

Távolságvektor alapú forgalomirányítás Elosztott Bellman-Ford algoritmus

KÖRNYEZET ÉS MŰKÖDÉS

- Minden csomópont csak a közvetlen szomszédjaival kommunikálhat.
- Aszinkron működés.
- Minden állomásnak van saját távolság vektora. Ezt periodikusan elküldi a direkt szomszédoknak.

A kapott távolság vektorok alapján minden csomópont új táblázatot állít

C állomás DV táblája

Cél	Ktsg.
Α	5
В	2
D	2
Е	4
F	1

- Nincs bejegyzés C-hez
- Kezdetben csak a közvetlen szomszédokhoz van info
 - Más célállomásokköltsége = ∞
- Végül kitöltött vektort kapunk

Distance Vector Initialization

Node A

Dest.	Cost	Next
В	2	В
С	7	С
D	∞	

Node B

Dest.	Cost	Next
Α	2	Α
С	1	С
D	3	D

Initialization:

2. **for all** neighbors V **do**

3. if V adjacent to A

4. D(A, V) = c(A, V);

5. els

6. $D(A, V) = \infty;$

else

Node C

Dest.	Cost	Next
Α	7	Α
В	1	В
D	1	D

Node D

Dest.	Cost	Next
Α	∞	
В	3	В
С	1	С

Distance Vector: 1st Iteration

Distance Vector: End of 3rd Iteration

Elosztott Bellman-Ford algoritmus – példa

Time

Távolság vektor protokoll – Végtelenig számolás problémája (count to infinity)

Példa - Count to Infinity Problem

Elosztott Bellman-Ford algoritmus – Végtelenig számolás problémája

PROBLÉMA

- A "jó hír" gyorsan terjed.
- A "rossz hír" lassan terjed.
- Azaz ciklusok keletkezhetnek.
- Lehetséges megoldás:
 - "split horizon with poisoned reverse": negatív információt küld vissza arról a szomszédjának, amit tőle "tanult". (*RFC 1058*)

Split horizon with Poisoned Reverse

65

- Ha C B-n keresztül irányítja a forgalmat A állomáshoz
 - \square C állomás B-nek D(C, A) = ∞ távolságot küld
 - Azaz B állomás nem fog C-n keresztül irányítani az A-ba menő forgalmat

D

Node B

Node C

D	С	N
Α	5	В
В	1	В

C

N

60

Köszönöm a figyelmet!