Context

Adaboost

Loss function

Additive models Stagewise modeling On loss

Exp. Ic

boosting Gradients Concerns

On Gradient Boosting Machines a.k.a. A Tale of Boosting

Hari A Ravindran

June 16, 2017

Context Introduction

Adaboost

Loss function

Additive models Stagewise modeling On loss

Gradients
Concerns

• Enormous data sets are the norm nowadays.

Context Introduction

Loss functions

Additive models Stagewise modeling On loss Exp. loss

- Enormous data sets are the norm nowadays.
- Can scale software to fit a collection of linear and/or GLMs; however, predictive power suffers.

Context Introduction

- Loss functions
 Additive models
 Stagewise
 modeling
 On loss
 Exp. loss
- Gradient boosting Gradients Concerns The algorithm

- Enormous data sets are the norm nowadays.
- Can scale software to fit a collection of linear and/or GLMs; however, predictive power suffers.
- Need arose for general purpose tools that scale well to bigger problems.

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- Enormous data sets are the norm nowadays.
- Can scale software to fit a collection of linear and/or GLMs; however, predictive power suffers.
- Need arose for general purpose tools that scale well to bigger problems.
- Enter: Random forests and boosting. Both represent the fitted model by a sum of regression trees.

Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient
boosting
Gradients
Concerns

• Random forest Grow many deep regression trees to 'randomized' versions of the training data.

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- Random forest Grow many deep regression trees to 'randomized' versions of the training data.
 - Basic mechanism: Variance reduction by averaging.

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- Random forest Grow many deep regression trees to 'randomized' versions of the training data.
 - Basic mechanism: Variance reduction by averaging.
- Boosting Repeatedly grow shallow trees to the residuals.
 Then build up an additive model consisting of additive trees.

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- Random forest Grow many deep regression trees to 'randomized' versions of the training data.
 - Basic mechanism: Variance reduction by averaging.
- Boosting Repeatedly grow shallow trees to the residuals.
 Then build up an additive model consisting of additive trees.
 - <u>Basic mechanism</u>: Bias reduction (though some flavours have to deal with variance reduction as well).

- Random forest Grow many deep regression trees to 'randomized' versions of the training data.
 - Basic mechanism: Variance reduction by averaging.
- Boosting Repeatedly grow shallow trees to the residuals.
 Then build up an additive model consisting of additive trees.
 - <u>Basic mechanism</u>: Bias reduction (though some flavours have to deal with variance reduction as well).
- Both methods inherit most of the good attributes of trees.

Adaboost

• The idea of boosting first conceived in 1980's.

Context

Adaboost

Additive models Stagewise modeling On loss Exp. loss

- The idea of boosting first conceived in 1980's.
 - Is weakly learnability equivalent to strong learnability? by Kearns and Valiant (ACM Symposium on the Theory of Computing 1989)

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- The idea of boosting first conceived in 1980's.
 - Is weakly learnability equivalent to strong learnability? by Kearns and Valiant (ACM Symposium on the Theory of Computing 1989)
- Adaboost.M1 (Adaptive boosting) due to Freund and Schapire in 1997.

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- The idea of boosting first conceived in 1980's.
 - Is weakly learnability equivalent to strong learnability? by Kearns and Valiant (ACM Symposium on the Theory of Computing 1989)
- Adaboost.M1 (Adaptive boosting) due to Freund and Schapire in 1997.
- Adaboost developed for the two-class classification problem, where response coded as -1/1.

Adaboost

• One class represented by +1; other by -1.

Context Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- One class represented by +1; other by -1.
- Let each training sample have the same starting weight. If N samples, observation weights $w_i = 1/N$, where $i = 1, 2, \ldots, N$.

Context Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- One class represented by +1; other by -1.
- Let each training sample have the same starting weight. If N samples, observation weights $w_i = 1/N$, where $i = 1, 2, \ldots, N$.
- For m=1 to M do:
 - Fit a classifier $G_m(x)$ to training samples using weights w_i .

Context Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- One class represented by +1; other by -1.
- Let each training sample have the same starting weight. If N samples, observation weights $w_i = 1/N$, where $i = 1, 2, \ldots, N$.
- For m=1 to M do:
 - Fit a classifier $G_m(x)$ to training samples using weights w_i .
 - Compute the misclassification error (err_m) .

- One class represented by +1; other by -1.
- Let each training sample have the same starting weight. If N samples, observation weights $w_i = 1/N$, where $i = 1, 2, \dots, N$.
- For m=1 to M do:
 - Fit a classifier $G_m(x)$ to training samples using weights w_i .
 - Compute the misclassification error (err_m) .
 - Compute the mth stage value given by $\alpha_m = \log ((1 \text{err}_m) / \text{err}_m)).$

- One class represented by +1; other by -1.
- Let each training sample have the same starting weight. If N samples, observation weights $w_i = 1/N$, where $i = 1, 2, \dots, N$.
- For m=1 to M do:
 - Fit a classifier $G_m(x)$ to training samples using weights w_i .
 - Compute the misclassification error (err_m) .
 - Compute the mth stage value given by $\alpha_m = \log ((1 \text{err}_m) / \text{err}_m)).$
 - Set $w_i \leftarrow w_i \cdot \exp\left[\alpha_m \cdot I(y_i \neq G_m(x_i))\right]$, for $i = 1, 2, \dots, N$.

- One class represented by +1; other by -1.
- Let each training sample have the same starting weight. If N samples, observation weights $w_i = 1/N$, where $i = 1, 2, \ldots, N$.
- For m=1 to M do:
 - Fit a classifier $G_m(x)$ to training samples using weights w_i .
 - Compute the misclassification error (err_m) .
 - Compute the *m*th stage value given by $\alpha_m = \log ((1 \text{err}_m) / \text{err}_m)$.
 - Set $w_i \leftarrow w_i \cdot \exp \left[\alpha_m \cdot I(y_i \neq G_m(x_i))\right]$, for $i = 1, 2, \dots, N$.
- \bullet Output $G(x) = \mathrm{sign} \left[\sum\limits_{m=1}^{M} \alpha_m G_m(x) \right].$

Questions

Context

Introductio Adaboost

Loss function

Additive model Stagewise modeling On loss Exp. loss

Gradient boosting Gradients Concerns The algorithm • Where does the expression for α_m come from? Motivation?

Questions

Context Introduction Adaboost

Loss function

Additive models Stagewise modeling On loss Exp. loss

- Where does the expression for α_m come from? Motivation?
- Can we extend Adaboost to other problems? How?

Questions

Context Introductior Adaboost

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- Where does the expression for α_m come from? Motivation?
- Can we extend Adaboost to other problems? How?
- How are we going to re-envision boosting?

Boosting fits an additive model

Context Introducti

Loss function

Additive models Stagewise modeling On loss

Exp. k

boosting
Gradients
Concerns

• Boosting fits an additive expansion in a set of elementary 'basis' functions.

Boosting fits an additive model

Context Introductio

Loss functions
Additive models
Stagewise
modeling

Gradient boosting Gradients Concerns The algorithm

- Boosting fits an additive expansion in a set of elementary 'basis' functions.
- Additive expansion A basis function expansion of the form

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

where $b(x; \gamma) \in \mathbb{R}$ are 'simple' functions of x, characterized by set of parameters γ_m .

- Boosting fits an additive expansion in a set of elementary 'basis' functions.
- Additive expansion A basis function expansion of the form

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

where $b(x; \gamma) \in \mathbb{R}$ are 'simple' functions of x, characterized by set of parameters γ_m .

• Can think of a tree as an additive expansion.

How are additive models fit?

Additive models

• By minimizing a loss function averaged over the training data.

How are additive models fit?

Context

Additive models Stagewise modeling On loss

On loss Exp. los

Gradient boosting Gradients Concerns The algorithm

• By minimizing **a** loss function averaged over the training data.

Loss function minimization

$$\min_{\{\beta_m, \gamma_m\}} \sum_{i=1}^N L\left(y_i, \sum_{m=1}^M \beta_m b(x; \gamma_m)\right)$$

How are additive models fit?

Context Introduction

Loss function

Additive models Stagewise modeling On loss Exp. loss

Gradient boosting Gradients Concerns The algorithm

- By minimizing a loss function averaged over the training data.
- Loss function minimization

$$\min_{\{\beta_m, \gamma_m\}} \sum_{i=1}^N L\left(y_i, \sum_{m=1}^M \beta_m b(x; \gamma_m)\right)$$

ullet Formidable problem in optimization. Also, what does L(y,f(x)) look like?

Context

Introduction Adaboost

_oss functior

Additive models Stagewise modeling

Evp. le

Ехр. к

Gradie

Gradien

Concern

Concerns The algorithm • Initialize $f_0(x) = 0$.

Context

Introduction Adaboost

_oss functior

Additive models Stagewise modeling

Evp. le

Ехр. к

Gradie

Gradien

Concern

Concerns The algorithm • Initialize $f_0(x) = 0$.

Context

Adaboost

Loss functions
Additive models
Stagewise
modeling
On loss

Gradien boostin

ooosting Gradients Concerns The algorithm

- Initialize $f_0(x) = 0$.
- For m=1 to M do:
 - Compute

$$(\beta_m, \gamma_m) = \arg\min_{\{\beta, \gamma\}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma))$$

.

Stagewise modeling

- Initialize $f_0(x) = 0$.
- For m=1 to M do:
 - Compute

$$(eta_m, \gamma_m) = \arg\min_{\{eta, \gamma\}} \sum_{i=1}^N L\left(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)\right)$$

• Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Kinds of loss functions

On loss

Squared error loss (regression)

$$L(y, f(x)) = \frac{1}{2} [y - f(x)]^2$$

Kinds of loss functions

C<mark>onte</mark>xt Introducti

Loss functions
Additive models
Stagewise
modeling
On loss

Gradient
boosting
Gradients
Concerns
The algorithm

• Squared error loss (regression)

$$L(y, f(x)) = \frac{1}{2} [y - f(x)]^2$$

• Absolute loss (regression)

$$L(y, f(x)) = |y - f(x)|$$

Squared error loss (regression)

$$L(y, f(x)) = \frac{1}{2} [y - f(x)]^2$$

Absolute loss (regression)

$$L(y, f(x)) = |y - f(x)|$$

Deviance (classification)

$$L(y, p(x)) = -\sum_{k=1}^{K} I(y = G_k) \log p_k(x)$$

Exponential loss and Adaboost

Context Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient boosting Gradients Concerns The algorithm

Consider
$$L(y, f(x)) = \exp(-y f(x))$$
.

• For exponential loss functions, additive modeling fitting involves dealing with

$$(\alpha_m, G_m) = \arg\min_{\{\alpha, G\}} \sum_{i=1}^N w_i^m \exp\left(-\alpha y_i G(x_i)\right)$$

Exponential loss and Adaboost

Context Introduction

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient boosting Gradients Concerns The algorithm

Consider
$$L(y, f(x)) = \exp(-y f(x))$$
.

 For exponential loss functions, additive modeling fitting involves dealing with

$$(\alpha_m, G_m) = \arg\min_{\{\alpha, G\}} \sum_{i=1}^N w_i^m \exp\left(-\alpha \, y_i \, G(x_i)\right)$$

• **Key idea** Adaboost.M1 is equivalent to forward stagewise additive modeling using the exponential loss function.

Exponential loss and Adaboost (contd.)

Context Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient boosting Gradients Concerns The algorithm The loop in the Adaboost algorithm can be interpreted as:

• Fitting a classification tree to minimize weighted misclassification error, for any value of α .

Exponential loss and Adaboost (contd.)

Context Introduction

Additive models
Stagewise
modeling
On loss
Exp. loss
Gradient

Exp. loss
Gradient
boosting
Gradients
Concerns
The algorithm

The loop in the Adaboost algorithm can be interpreted as:

- Fitting a classification tree to minimize weighted misclassification error, for any value of α .
- Given G, estimating α using some algebra and differentiation, resulting in the same expression as in the Adaboost algorithm.

Why exponential loss?

Context
Introductio

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient boosting Gradients Concerns The algorithm For a -1/+1 classification problem, the exponential loss function approximates the binomial loss function (i.e., deviance or cross-entropy).

Why exponential loss?

Context Introductio

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- For a -1/+1 classification problem, the exponential loss function approximates the binomial loss function (i.e., deviance or cross-entropy).
- The additive expansion produced by Adaboost via the exponential loss function estimates

$$\frac{1}{2}\log\frac{\Pr\left(Y=1|x\right)}{\Pr\left(Y=-1|x\right)}$$

Why exponential loss?

Context Introductio

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient boosting Gradients Concerns The algorithm

- For a -1/+1 classification problem, the exponential loss function approximates the binomial loss function (i.e., deviance or cross-entropy).
- The additive expansion produced by Adaboost via the exponential loss function estimates

$$\frac{1}{2}\log\frac{\Pr(Y=1|x)}{\Pr(Y=-1|x)}$$

 Exponential loss is quite sensitive to changes in estimated class probabilities.

Boosting trees

Exp. loss

Formally express a tree as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j),$$

where
$$\Theta = \{R_j, \gamma_j\}$$
.

Boosting trees

C<mark>onte</mark>xt Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

Gradient boosting Gradients Concerns The algorithm • Formally express a tree as

$$T(x; \Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j),$$

where
$$\Theta = \{R_j, \gamma_j\}.$$

The boosted tree model is a sum of such trees,

$$f_M(x) = \sum_{m=1}^{M} T(x; \Theta_m),$$

induced in a forward stagewise manner.

Boosting trees (contd.)

Exp. loss

We want to solve

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

where
$$\Theta_m = \{R_{jm}, \gamma_{jm}\}.$$

Boosting trees (contd.)

Context Introducti

Loss function

Additive models Stagewise modeling On loss

Exp. loss

Gradient boosting Gradients Concerns We want to solve

$$\hat{\Theta}_{m} = \arg\min_{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}(x_{i}) + T(x_{i}; \Theta_{m})\right)$$

where
$$\Theta_m = \{R_{jm}, \gamma_{jm}\}.$$

ullet To simplify: we want to minimize L(f) with respect to f, where f(x) is constrained to be a sum of trees, and

$$L(f) = \sum_{i=1}^{N} L(y_i, f(x_i)).$$

Gradients and steepest descent

Context

Adaboost

Additive models Stagewise modeling

On loss Exp. los

Gradien

Gradients

Concerns The algorithm • How do we numerically optimize

$$\hat{\mathbf{f}} = \arg \, \min_{\mathbf{f}} L(\mathbf{f}),$$

where
$$\mathbf{f} = \{f(x_1), f(x_2), \dots, f(x_N)\}$$
?

Gradients

How do we numerically optimize

$$\hat{\mathbf{f}} = \arg\, \min_{\mathbf{f}} L(\mathbf{f}),$$

where
$$\mathbf{f} = \{f(x_1), f(x_2), \dots, f(x_N)\}$$
?

• **Answer** Use the method of steepest descent – an iterative procedure where the function f is approximated by moving the direction of the negative gradient $(-\mathbf{g}_m)$, where the components of \mathbf{g}_m are

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

Context

Introduction Adaboost

Loss function

Additive models Stagewise modeling On loss

boosting
Gradients
Concerns

• Steepest/gradient descent is a greedy strategy.

Context

Additive models Stagewise modeling On loss Exp. loss

- Steepest/gradient descent is a greedy strategy.
- At each step, maximal reduction in the loss function is sought.

Context

Loss function:

Additive models Stagewise modeling On loss Exp. loss

- Steepest/gradient descent is a greedy strategy.
- At each step, maximal reduction in the loss function is sought.
- This is done by effectively going down the direction of the negative gradient.

C<mark>onte</mark>xt Introducti

Loss functions
Additive models
Stagewise
modeling
On loss
Exp. loss

- Steepest/gradient descent is a greedy strategy.
- At each step, maximal reduction in the loss function is sought.
- This is done by effectively going down the direction of the negative gradient.
- Danger of overfitting! Want to evaluate loss function everywhere, not just at training values.

Gradient tree boosting algorithm for regression

The algorithm

• Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.

Gradient tree boosting algorithm for regression

Context

Adaboost

Loss functions

Additive models Stagewise modeling On loss

Gradien boosting

Gradients Concerns

The algorithm

- Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- For m=1 to M do:

$$\bullet \ \ \text{Compute} \ r_{im} = - \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f(x_i) = f_{m-1}(x_i)}$$

- Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- For m=1 to M do:
 - $\bullet \ \ \text{Compute} \ r_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f(x_i) = f_{m-1}(x_i)}$
 - Approximate the targets r_{im} by using a regression tree giving terminal regions R_{jm} .

- Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- For m=1 to M do:

$$\bullet \ \ \text{Compute} \ r_{im} = - \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f(x_i) = f_{m-1}(x_i)}$$

- Approximate the targets r_{im} by using a regression tree giving terminal regions R_{jm} .
- $\bullet \ \ \mathsf{Compute} \ \gamma_{jm} = \arg \, \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right)$

- Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- For m=1 to M do:

• Compute
$$r_{im} = -\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f(x_i)=f_{m-1}(x_i)}$$

- Approximate the targets r_{im} by using a regression tree giving terminal regions R_{jm} .
- $\bullet \ \ \mathsf{Compute} \ \gamma_{jm} = \arg \, \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right)$
- Update $f_m(x) = f_{m-1}(x) + \sum_j \gamma_{jm} \, I(x \in R_{jm})$

- Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- For m=1 to M do:

• Compute
$$r_{im} = -\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f(x_i)=f_{m-1}(x_i)}$$

- Approximate the targets r_{im} by using a regression tree giving terminal regions R_{jm} .
- $\bullet \ \ \mathsf{Compute} \ \gamma_{jm} = \arg \, \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right)$
- Update $f_m(x) = f_{m-1}(x) + \sum_j \gamma_{jm} \, I(x \in R_{jm})$
- Output $\hat{f}(x) = f_M(x)$.