МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 3

по дисциплине «Операционные системы»

T	Исследование от				
I ema.	исс пеловяние о	пганизании	VIII SERIEBUG	основнои	паматью
I CIVICI.	HICCHODAIINC O	DI AIIMJAHMI	VIII DUI CIIII II	OCHODIION	Hamma Dive

Студент гр.9383	 Поплавский И
Преподаватель	 Ефремов М.А

г. Санкт-Петербург 2021 г.

1. Постановка задачи

1.1. Цель работы:

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается нестраничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

1.2. Сведения о функциях и структурах данных управляющей программы

Функции управляющей программы

Имя функции	Описание функции	
TETR_TO_HEX	Функция шаблона, приведенного в	
	методических указаниях. Функция	
	переводит половину байта в	
	шестнадцатеричную систему.	
BYTE_TO_HEX	Функция шаблона, приведенного в	
	методических указаниях. Байт в	
	регистре AL переводится в два	
	символа шестнадцатеричного числа	
	в регистре АХ.	
WRD_TO_HEX	Функция шаблона, приведенного в	
	методических указаниях. Функция	
	переводит в шестнадцатеричную	

	систему счисления 16-ти разрядное
	число.
BYTE_TO_DEC	Функция шаблона, приведенного в
	методических указаниях. Функция
	переводит в десятичную систему
	счисления.
PRINT	Функция выводит сообщение на
	экран.
GET_AVAILABLE_MEMORY	Функция определяет количество
	доступной памяти и вызывает
	функцию для вывода результата на
	экран.
GET_EXTENDED_MEMORY	Функция определяет размер
	расиренной памяти и вызывает

	функцию для вывода результата на
	экран.
GET_MCB_DATA	Функция получает информацию о
	каждом МСВ блоке.
GET_MCB_ADDRESS	Функция определяет адрес
	расположения МСВ блока.
GET_MCB_TYPE	Функция определяет типа МСВ
	блока
GET_PSP_ADDRESS	Функция определяет сегментный
	адрес PSP
GET_MCB_SIZE	Функция определяет размер участка
	в параграфах

Структура данных управляющей программы

Имя	Тип	Назначение
AVAILABLE_MEM	db	Вывод строки 'Available memory (В):
EXTENDED_MEM	db	Вывод строки 'Extended memory (KB):
TABLE_TITLE	db	Вывод строки ' MCB Adress MCB Type
		PSP Address Size SC/SD '

1.3. Последовательность действий, выполняемых утилитой

- 1) Определение и вывод количества доступной памяти
- 2) Определение и вывод размера расширенной памяти
- 3) Определение и вывод информации о МСВ блоках

2. Ход работы

2.1. Был написан программный модуль типа .COM, который выбирает и распечатывает информацию о количестве доступной памяти, размере расширенной памяти, о блоках управления памятью.

```
: N>L3_1.COM
Available memory (B): 648912
Extended memory (KB): 15360
 MCB Type | PSP Address | Size | SC/SD |
                0008
                             16
     4D
     4D
                0000
                             64
     4D
                0040
                            256
     4D
                0192
                            144
     5A
                0192
                         648912
                                  L3_1
```

Рисунок 1 - Программный модуль L3 1.COM

2.2. Написанный на первом шаге программный модуль был изменен таким образом, чтобы программа освобождала память, которую она не занимает. Для этого использовалась функция 4Ah прерывания int 21. В результате был создан новый блок, который обозначен, как пустой участок.

```
C:\>L3_2.COM
Available memory (B): 648912
Extended memory (KB): 15360
 MCB Type | PSP Address | Size | SC/SD |
                0008
     4D
                             16
                0000
                             64
     4D
     4D
                0040
                            256
     4D
                0192
                            144
     4D
                0192
                          13232
                                  L3_2
     5A
                0000
                         635664
                                  66ў ў666
```

Рисунок 2 - Программный модуль L3_2.COM

2.3. Программный модуль был изменен таким образом, чтобы после освобождения памяти, программа запрашивала 64Кб памяти. Для этого использовалась функция 48Н прерывания int 21h. В результате был создан еще один блок, который занимает 65536 байт (64 Кб).

```
: N>L3_3.COM
Available memory (B): 648912
Extended memory (KB): 15360
| MCB Type | PSP Address | Size | SC/SD |
                 0008
                              16
     4D
                 0000
                              64
     4D
                 0040
                             256
                 0192
     4D
                             144
     4D
                 0192
                           13344
                                   L3_3
     4D
                 0192
                          65536
                                   L3_{3}
     5A
                 0000
                         570000
```

Рисунок 3 - Программный модуль L3 3.COM

2.4. Программный модуль был изменен таким образом, чтобы запрос 64 Кб памяти осуществлялся до освобождения памяти. В результате выполнения данной программы на экран было выведено сообщение об ошибке, возникшей из-за того, что вся память уже была выделена под программу и выделение еще 64Кб памяти не возможно. После чего происходит освобождение памяти, которую программа не занимает.

```
C:\>L3_4.COM
Available memory (B): 648912
Extended memory (KB): 15360
Memory allocation error
 MCB Type | PSP Address | Size | SC/SD |
                 0008
                             16
     4D
                 0000
                             64
                 0040
     4D
                            256
     4D
                 0192
                            144
                 0192
                                  L3_4
     4D
                          13888
                 0000
                         635008
                                    Um Um
```

Рисунок 4 - Программный модуль L3_4.COM

3. Ответы на контрольные вопросы.

3.1. Что означает «доступный» объем памяти?

Ответ: Доступный объем памяти – это максимальный объем памяти, выделенный программе операционной системой.

3.2. Где МСВ блок Вашей программы в списке?

Ответ: Для программы, реализованной на первом шаге, блок MCB расположен в конце списка.

Для программы, реализованной на втором шаге, блок MCB расположен в предпоследней строке списка. Последнюю строку списка занимает блок, обозначенный, как пустой участок.

Для программы, реализованной на третьем шаге, блок MCB расположен в пятой строке списка. После него расположены блок памяти, выделенной по запросу и свободный блок памяти.

Для программы, реализованной на четвертом шаге, блок MCB расположен в предпоследней строке списка. Последнюю строку списка занимает блок, обозначенный, как пустой участок.

3.3. Какой размер памяти занимает программа в каждом случае?

Ответ:

Учитывая Memory Control Block получим:

L3_1.COM: 648912-144= 648768 байт.

L3_2.COM: 648912-635664-16-144=13088 байт.

 $L3_3.COM$: 648912-570000-65536-2*16-144=13200 байт.

L3_4.COM: 648912-635008-16-144=13744 байт.

Заключение

В процессе выполнения данной лабораторной работы были исследованы структуры данных и работа функций управления памятью ядра операционной системы.