COL352 HW 1

Contents

1	Problem 1	1
2	Problem 2	1
3	Problem 3	1
4	Problem 4	1
5	Problem 5	1
6	Problem 6	2

1 Problem 1

Let $x, y, z \in \Sigma^*$. We say that z is a shuffle of x and y if the characters in x and y can be interleaved, while maintaining their relative order within x and y, to get z. Formally, if |x| = m and |y| = n, then |z| must be m + n, and it should be possible to partition the set $\{1, 2, \ldots, m + n\}$ into two increasing sequences, $i_1 < i_2 < \cdots < i_m$ and $j_1 < j_2 < \cdots < j_n$, such that $z[i_k] = x[k]$ and $z[j_k] = y[k]$ for all k.

Given two languages $L_1, L_2 \subseteq \Sigma^*$, define shuffle $(L_1, L_2) = \{z \in \Sigma^* \mid z \text{ is a shuffle of some } x \in L_1 \text{ and some } y \in L_2\}$. Prove that the class of regular languages is closed under the shuffle operation.

2 Problem 2

Let L_1 be a regular language and L_2 be any language (not necessarily regular) over the same alphabet Σ . Prove that the language $L = \{x \in \Sigma^* \mid x \cdot y \in L_1 \text{ for some } y \in L_2\}$ is regular. Do this by mathematically defining a DFA for L starting from a DFA for L_1 and the language L_2 .

3 Problem 3

Prove that the class of regular languages is closed under inverse homomorphisms. That is, prove that if $L \subseteq \Gamma^*$ is a regular language and $f: \Sigma^* \to \Gamma^*$ is a homomorphism, then $f^{-1}(L) = \{x \in \Sigma^* \mid f(x) \in L\}$ is regular. Do this by mathematically defining a DFA for $f^{-1}(L)$ starting from a DFA for L and the function f.

4 Problem 4

Prove that the class of regular languages is closed under homomorphisms. That is, prove that if $L \subseteq \Sigma^*$ is a regular language, then so is $f(L) = \{f(x) \mid x \in L\}$. Here, it is advisable to informally describe how you will turn a DFA for L into an NFA for f(L).

5 Problem 5

Prove that if $L \subseteq \Sigma^*$ is a regular language then the language $L_0 = \{x \subseteq \Sigma^* \mid x \cdot rev(x) \in L\}$ is also regular, where rev(x) is the reverse of string x. Here, instead of constructing an NFA for L_0 directly, it could be more convenient to use the already proven closure properties. For example, it might be better to write L_0 as a union of a finite collection of languages, and then construct an NFA for each language in that collection.

Proof. Since L is regular, there must be a DFA $D=(Q,\Sigma,\delta,q_0,A)$ that recognizes it. Consider the NFA $N=(Q,\Sigma,\Delta,A,\{q_0\})$, where $\Delta=\{(q',a,q)\mid \delta(q,a)=q',q\in Q,a\in A\}$, which recognizes rev(L) as done in class.

Now consider the NFA $N'=(Q\times Q,\Sigma,\Delta',\{q_0\}\times A,\{(q,q)\mid q\in Q\}),$ where Δ' is defined as $\{((q,q'),a,(q'',q'''))\mid \delta(q,a)=q''\wedge (q',a,q''')\in \Delta\wedge q,q',q'',q'''\in Q\wedge a\in \Sigma\}.$

6 Problem 6

Design an algorithm that takes as input the descriptions of two DFAs, D_1 and D_2 , and determines whether they recognize the same language.