RIAJUDDIN _ Master Theoroem Solution

1.
$$T(n) = 3T(n/2) + n$$
 $\phi(n^{\log_3 2}) = \phi(n)$

2.
$$T(n) = 64T(n/8) - n^2(\log n)$$
 ----> Not Applicable

3.
$$T(n) = 2nT(n/2) + n^n$$
 -----> Not Applicable

4.
$$T(n) = 3T(n/3) + n/2$$
 ----> $\phi(n^{\log_3 3} \log^{1/2+1} n) = \phi(n \log n)$.

5.
$$T(n)=7T(n/3)+n^2-\cdots> \phi(n^d)=\phi(n^2)$$
.

Solution...

1)
$$T(n) = 3T(n/2) + n$$
.

Here a=3,b=2 as per master theorem case -3 $\phi(n^{\log b}a)$ if a>(b^d) the time complexity for is $\phi(n^{\log_3 2}) = \phi(n)$.

2)
$$T(n) = 64T(n/8)-n^2(log n)$$
.

In this case master theorem will not apply.

3)
$$T(n) = 2nT(n/2)+n^n$$
.

In this case a is not constant so master theorem will not apply.

4)
$$T(n) = 3T + (n/3) + n/2$$
.

Here a=3,b=3,d=2 as per master theorem case -2 \emptyset (nlog_b^a log ^{k+1}n) the time complexity for is \emptyset (nlog₃³ log^{1/2+1}n) = \emptyset (nlogn).

5)
$$T(n) = 7T(n/3) + n^2$$

Here a=7,b=2 as per master theorem case -1 $\phi(n^d)$ if a<(b^d) the time complexity for is $\phi(n^d) = \phi(n^2)$.