Satisfiability with Equivalences in Agreement

Krasimir Georgiev

September 12, 2016

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

- ▶ refinement if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_e$
- ▶ global agreement if it forms a chain, that is $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$ for some permutation ν of [1,e]
- ▶ local agreement if the equivalence classes of any point form a chain, that is for any $a \in A$ there is some permutation ν of [1,e] such that $E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}$

equivalence class of E_1

equivalence class of E_2

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

- ▶ refinement if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_e$
- ▶ global agreement if it forms a chain, that is $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$ for some permutation ν of [1,e]
- ▶ local agreement if the equivalence classes of any point form a chain, that is for any $a \in A$ there is some permutation ν of [1,e] such that $E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}$

A sequence E_1, E_2, \dots, E_e of equivalence relations on A is in:

- ▶ refinement if $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_e$
- ▶ global agreement if it forms a chain, that is $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$ for some permutation ν of [1,e]
- ▶ local agreement if the equivalence classes of any point form a chain, that is for any $a \in A$ there is some permutation ν of [1,e] such that $E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \cdots \subseteq E_{\nu(e)}$

equivalence class of E_1

equivalence class of E_2

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- $ightharpoonup \mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ► a ∈ {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- ightharpoonup if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- ightharpoonup if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- if p = 0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- if p = 0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- $ightharpoonup \mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

$\mathcal{L}_{p}^{v}e\mathrm{E}_{\mathsf{a}}$

- ► L is the first-order predicate logic with equality featuring only unary and binary predicate symbols
- v bounds the number of variables
- e specifies the number of built-in equivalence symbols
- ightharpoonup a \in {refine, local, global} specifies an agreement condition
- ightharpoonup if p=0 only constantly many additional unary predicate symbols are allowed
- lacktriangleright if p=1 only additional unary predicate symbols are allowed

- $ightharpoonup \mathcal{L}_1$ is the monadic fragment
- lacksquare $\mathcal{L}_0 1\mathrm{E}$ is the fragment of a single equivalence
- $ightharpoonup \mathcal{L}^2 2E_{\text{local}}$ is the two-variable fragment of two equivalences in local agreement

Goal

In this work, we investigate the *computational complexity* of the *satisfiability* for the *monadic* and the *two-variable fragment* in the presence of *equivalences in agreement*.

Reductions

Refinement is the easiest condition to work with, so we define polynomial time reductions to its satisfiability problem:

$$\begin{split} & \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{global}} \leq_{\mathrm{m}}^{\mathrm{PTIME}} \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{refine}} \\ & \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{local}} \leq_{\mathrm{m}}^{\mathrm{PTIME}} \mathrm{SAT}\text{-}\mathcal{L}^{\nu}_{\rho} e \mathrm{E}_{\mathsf{refine}}. \end{split}$$

Central to these reductions is the notion of *levels*.

Levels

The *level sequence* L_1, L_2, \ldots, L_e of a sequence E_1, E_2, \ldots, E_e of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq e \}.$$

Levels

The *level sequence* L_1, L_2, \ldots, L_e of a sequence E_1, E_2, \ldots, E_e of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq e \}.$$

Remark

The level sequence is a sequence of equivalence relations on A in refinement.

equivalence class of E_1

equivalence class of E_2

Levels

The *level sequence* L_1, L_2, \ldots, L_e of a sequence E_1, E_2, \ldots, E_e of equivalence relations on A in local agreement is defined by:

$$L_m = \bigcap \{ E_{i_1} \cup E_{i_2} \cup \cdots \cup E_{i_m} \mid 1 \leq i_1 < i_2 < \cdots < i_m \leq e \}.$$

Remark

The level sequence is a sequence of equivalence relations on A in refinement.

equivalence class of L_1

equivalence class of L_2

Monadic Fragments

It is known that

- ▶ $SAT-\mathcal{L}_1$ is in NEXPTIME [Löwenheim 1915] and is NEXPTIME-hard
- ▶ $SAT-\mathcal{L}_01E$ is PSPACE-complete
- ▶ $SAT-\mathcal{L}_02E$ is undecidable [Janiczak 1953]

Monadic Fragments

It is known that

- $ightharpoonup {
 m SAT-}{\cal L}_1$ is in NEXPTIME [Löwenheim 1915] and is NEXPTIME-hard
- ▶ $SAT-\mathcal{L}_01E$ is PSPACE-complete
- ▶ $SAT-\mathcal{L}_02E$ is undecidable [Janiczak 1953]

We show that

- ▶ SAT- \mathcal{L}_1 1E is N2EXPTIME-complete
- ▶ In general, SAT- \mathcal{L}_1e E $_{\mathsf{refine}}$ is N(e+1)EXPTIME-complete for $e \geq 1$

Monadic Fragments

We show that

- ▶ $SAT-\mathcal{L}_11E$ is N2EXPTIME-complete
- ▶ In general, SAT- $\mathcal{L}_1e\mathrm{E}_{\mathsf{refine}}$ is $N(e+1)\mathrm{ExpTIME}$ -complete for $e \geq 1$

Approach: "work at the quantifier rank level of abstraction"

- ▶ for the upper bound, we use Ehrenfeucht-Fraïssé games to bound the size of a minimal model of a satisfiable formula
- for hardness, we reduce a version of the domino tiling problem to satisfiability