

planetmath.org

Math for the people, by the people.

proof of continuous functions are Riemann integrable

 ${\bf Canonical\ name} \quad {\bf ProofOfContinuousFunctionsAre Riemann Integrable}$

Date of creation 2013-03-22 13:45:34 Last modified on 2013-03-22 13:45:34

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 7

Author paolini (1187)

Entry type Proof

Classification msc 26A42

Recall the definition of Riemann integral. To prove that f is integrable we have to prove that $\lim_{\delta\to 0^+} S^*(\delta) - S_*(\delta) = 0$. Since $S^*(\delta)$ is decreasing and $S_*(\delta)$ is increasing it is enough to show that given $\epsilon > 0$ there exists $\delta > 0$ such that $S^*(\delta) - S_*(\delta) < \epsilon$.

So let $\epsilon > 0$ be fixed.

By Heine-Cantor Theorem f is uniformly continuous i.e.

$$\exists \delta > 0 \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{b - a}.$$

Let now P be any partition of [a,b] in $C(\delta)$ i.e. a partition $\{x_0 = a, x_1, \ldots, x_N = b\}$ such that $x_{i+1} - x_i < \delta$. In any small interval $[x_i, x_{i+1}]$ the function f (being continuous) has a maximum M_i and minimum m_i . Since f is uniformly continuous and $x_{i+1} - x_i < \delta$ we have $M_i - m_i < \epsilon/(b-a)$. So the difference between upper and lower Riemann sums is

$$\sum_{i} M_{i}(x_{i+1} - x_{i}) - \sum_{i} m_{i}(x_{i+1} - x_{i}) \le \frac{\epsilon}{b - a} \sum_{i} (x_{i+1} - x_{i}) = \epsilon.$$

This being true for every partition P in $C(\delta)$ we conclude that $S^*(\delta) - S_*(\delta) < \epsilon$.