Devoir Sur Table n°3 – Durée : 4h

L'utilisation de la calculatrice, des feuilles/notes de cours ou d'exercices est interdite.

La présentation, la rédaction, la clarté et la précision des raisonnements entreront dans l'appréciation de la copie. Les résultats non encadrés/soulignés/surlignés ne seront pas pris en compte.

Exercice 1 : Alea Iacta, Victoria Certa! ("Le sort en est jeté, la victoire est certaine")

1. Echauffement. Soit $N \in \mathbb{N}^*$ fixé.

On lance N fois d'affilée un dé équilibré à N faces, numérotées de 1 à N.

- (a) Déterminer (en justifiant!) la probabilité d'obtenir "1" au moins une fois au cours des N lancers.
- (b) Justifier ou débunker (= infirmer) les maximes suivantes :
 - Développement personnel à deux sous : Si tes chances de succès sont d'une sur un million, essaye un million de fois et tu seras forcément vainqueur!
 - "Règle des 63%": Si tes chances de succès sont d'une sur un million, essaye un million de fois et tu auras environ 63% de chance d'être vainqueur... (On donne pour cela la valeur de $e^{-1} \simeq 0,37$)

Dans la suite de l'exercice, on considère une succession illimitée d'épreuves, qui peuvent chacune se solder par un succès ou bien un échec. Pour tout $k \in \mathbb{N}^*$, on note :

 A_k = "Obtenir un succès à la k-ème épreuve", $p_k = P(A_k) \in]0,1[$,

 B_k = "Obtenir au moins un succès au cours des k premières épreuves".

C= "Ne jamais obtenir de succès (sur la succession illimitée d'épreuves)".

On suppose que chaque épreuve est totalement indépendante des autres.

On souhaite montrer que sous des hypothèses raisonnables sur les probabilités p_k de succès à chaque épreuve, on a P(C) = 0, c'est à dire qu'on a 100% de chance de finir par obtenir un succès.

- 2. (a) Montrer que pour tout $n \in \mathbb{N}^*$, $P(B_n) = 1 \prod_{k=1}^n (1 p_k)$.
 - (b) Justifier que pour tout $n \in \mathbb{N}^*$, $C \subset \overline{B_n}$ et en déduire une majoration de P(C) à l'aide des p_k .
- 3. Dans cette question, on suppose que chaque épreuve a la même probabilité de succès :

$$(\mathcal{H}_1): \forall k \in \mathbb{N}^*, \ p_k = p \text{ avec } p \in]0,1[.$$

Démontrer que sous l'hypothèse (\mathcal{H}_1) , on a P(C) = 0.

- 4. On considère à présent l'hypothèse plus générale suivante : (\mathcal{H}_2) : $\lim_{n \to +\infty} \sum_{k=1}^{n} p_k = +\infty$.
 - (a) Justifier que l'hypothèse (\mathcal{H}_1) implique l'hypothèse (\mathcal{H}_2) .
 - (b) Montrer que les suites $(p_k)_{k\in\mathbb{N}^*} = (1-\frac{1}{2^k})_{k\in\mathbb{N}^*}$ et $(p_k)_{k\in\mathbb{N}^*} = (\ln(1+\frac{1}{k}))_{k\in\mathbb{N}^*}$ satisfont l'hypothèse (\mathcal{H}_2) mais pas l'hypothèse (\mathcal{H}_1) .
 - (c) A l'aide d'une étude de fonction appropriée, montrer : $\forall x \in]-1,+\infty[,\ \ln(1+x)\leqslant x]$ puis en déduire que pour tout $n \in \mathbb{N}^*$, $\ln(P(\overline{B_n})) \leqslant -\sum_{k=1}^n p_k$.
 - (d) Démontrer que sous l'hypothèse (\mathcal{H}_2) , on a P(C)=0
- 5. Pour finir, on considère les probabilités de succès : $\forall k \in \mathbb{N}^*, \ p_k = \frac{1}{(k+1)^2}$.

 (a) A l'aide de l'inégalité $p_k \leqslant \frac{1}{k(k+1)}$ et d'un télescopage,
 - montrer que cette suite $(p_k)_{k\in\mathbb{N}^*}$ ne satisfait pas l'hypothèse (\mathcal{H}_2) .
 - (b) Déterminer explicitement l'expression de $P(B_n)$ en fonction de $n \in \mathbb{N}^*$. On admet que $P(C) = \lim_{n \to +\infty} P(\overline{B_n})$. En déduire que, cette fois, $P(C) = \frac{1}{2} \neq 0$.

Exercice 2 : Etude de deux suites implicites

Pour tout $\alpha \in \mathbb{R}^*$, on définit la fonction f_{α} sur \mathbb{R}_+^* par l'expression :

$$\forall x \in \mathbb{R}_+^*, \ f_\alpha(x) = x^{1-x^\alpha} = e^{(1-x^\alpha)\ln(x)}.$$

1. (a) Pour $\alpha \in \mathbb{R}^*$ et $x \in \mathbb{R}_+^*$, rappeler la définition de x^{α} , puis donner les valeurs des limites

$$\lim_{x \to 0^+} x^{\alpha} \text{ et } \lim_{x \to +\infty} x^{\alpha}.$$

(On distinguera deux cas selon la valeur de α)

- (b) Pour quels valeurs de $\alpha \in \mathbb{R}^*$ la fonction f_α est-elle prolongeable par continuité en 0 ?
- (c) Déterminer $\lim_{x\to +\infty} f_{\alpha}(x)$ selon la valeur de $\alpha\in\mathbb{R}^*$.
- 2. On suppose que $\alpha < 0$. Montrer que $\lim_{x \to +\infty} \frac{f_{\alpha}(x) x}{x^{\alpha+1} \ln(x)} = -1$.

Dans toute la suite, on s'intéresse au cas particulier où $\alpha = n \in \mathbb{N}^*$. On étudie donc f_n définie par :

$$\forall x \in \mathbb{R}_+^*, \ f_n(x) = x^{1-x^n} = e^{(1-x^n)\ln(x)}.$$

- 3. (a) Montrer que pour tout $n \in \mathbb{N}^*$, la fonction f_n est strictement croissante sur]0,1[et strictement décroissante sur $]1,+\infty[$. Etablir son tableau de variations complet.
 - (b) Justifier que pour tout $n \in \mathbb{N}^*$,

Il existe un unique
$$u_n \in]0,1[$$
 tel que $f_n(u_n)=\frac{1}{2},$

Il existe un unique
$$v_n \in]1, +\infty[$$
 tel que $f_n(v_n) = \frac{1}{2}$.

- 4. Etude assistée par Python. (On recopiera l'intégralité des programmes sur sa copie.)
 - (a) Définir en Python une fonction f qui prend en entrée un entier $n \in \mathbb{N}^*$ et un réel x et :
 - Affiche un message d'erreur si x < 0,
 - Renvoie la valeur 0 si x = 0,
 - Renvoie la valeur de $f_n(x)$ si x > 0.
 - (b) Compléter le programme suivant pour que l'appel de l'instruction approx_u(n) renvoie un encadrement de la valeur de u_n à 10^{-2} près, déterminé à l'aide de la méthode de dichotomie.

(c) Proposer une fonction similaire, notée cette fois approx_v, pour calculer un encadrement de la valeur de v_n à 10^{-2} près.

Valeurs numériques :

```
L'instruction approx_u(300) renvoie le couple : (0.4990234375, 0.5)
```

L'instruction approx v(300) renvoie le couple : (1.0087890625, 1.017578125)

On cherche à confirmer la conjecture numérique des valeurs de $\lim_{n\to+\infty}u_n$ et $\lim_{n\to+\infty}v_n$ par une étude rigoureuse.

- 5. (a) Montrer que pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$, $f_{n+1}(x) \leqslant f_n(x)$. (Distinguer les cas $x \leqslant 1$ et $x \geqslant 1$)
 - (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante et que la suite $(v_n)_{n\in\mathbb{N}^*}$ est décroissante. Que peut-on conclure quant à la nature de ces suites?
- 6. (a) Montrer que pour tout $n \in \mathbb{N}^*$, on a en fait $u_n \in]0, \frac{1}{2}[$.
 - (b) En déduire que $\lim_{n\to+\infty} (u_n)^n = 0$, puis déterminer la valeur de $\lim_{n\to+\infty} u_n$.
- 7. Déterminer la valeur de $\lim_{n\to+\infty} v_n$. (On pourra raisonner par l'absurde)

Exercice 3 : Le jeu du Double-Face

On effectue une succession de lancers d'une pièce de monnaie particulière. À chaque lancer, la pièce atterrit :

- Sur Pile avec probabilité $p \in]0,1[$
- Sur Face avec probabilité $(1-p) \in]0,1[$.

Pour tout $k \in \mathbb{N}^*$, on note F_k l'évènement "Obtenir face au k-ième lancer".

Un joueur joue au jeu du Double-Face : pour gagner il faut obtenir Face deux fois de suite. Le jeu s'arrête alors. Pour tout $n \in \mathbb{N}^*$, on note G_n l'évènement "Le joueur gagne au n-ième lancer". On souhaite déterminer l'expression de $P(G_n)$ pour tout $n \in \mathbb{N}^*$.

- 1. (a) Que vaut $P(G_1)$? Exprimer G_2 et G_3 en fonction des évènements $(F_k)_{k\geqslant 1}$ et en déduire $P(G_2)$ et $P(G_3)$ en fonction de p.
 - (b) Justifier que $(\overline{F_1}, F_1 \cap F_2, F_1 \cap \overline{F_2})$ est un système complet d'événements.
 - (c) En déduire que pour tout $n \in \mathbb{N}^*$, $P(G_{n+2}) = p P(G_{n+1}) + p(1-p) P(G_n)$. On justifiera les valeurs des probabilités conditionnelles mises en jeu dans le raisonnement.
- 2. Calculs à l'aide de Python. (On recopiera l'intégralité des programmes sur sa copie.)
 - (a) Compléter le script suivant pour que la fonction valeur (p,n) renvoie la valeur de $P(G_n)$ lorsqu'on lui fournit $p \in]0,1[$ et $n \in \mathbb{N}^*$ en entrée.

```
def valeur(p,n):
    u = .....; v = ......
    for k in ...........:
        w = p * v + p * (1-p) * u
        u = ...
        v = ...
        v = ...
    return u
```

(b) Compléter le script suivant pour que la fonction vecteur (p,n) renvoie le vecteur $U = [P(G_1), P(G_2), \dots, P(G_n)]$ lorsqu'on lui fournit $p \in]0,1[$ et $n \in \mathbb{N}^*$ en entrée.

```
def vecteur(p,n) :
    U = .....; U[0] = ...; U[1] = ...
    for k in .....:
        U[k] = .....
return U
```

- 3. On introduit la fonction polynomiale définie par : $\forall x \in \mathbb{R}, \ f(x) = x^2 px p(1-p)$.
 - (a) Sans chercher à les calculer, montrer que f admet deux racines réelles distinctes r_1 et r_2 satisfaisant $-1 < r_1 < 0 < r_2 < 1$.
 - (b) Justifier que $(1-r_1)(1-r_2) = (1-p)^2$.
- 4. (a) A l'aide de la relation du 1.(c), montrer que pour tout $n \in \mathbb{N}^*$,

$$P(G_n) = \frac{(1-p)^2}{r_2 - r_1} \Big((r_2)^{n-1} - (r_1)^{n-1} \Big).$$

- (b) Dans cette question seulement, on se place dans le cas d'une pièce équilibrée : $p = \frac{1}{2}$. Déterminer les valeurs de r_1 et r_2 puis l'expression de $P(G_n)$ en fonction de $n \in \mathbb{N}^*$.
- 5. On note C l'évènement "Le jeu du Double-Face ne prend jamais fin".
 - (a) Justifier que C n'est pas l'évènement impossible.
 - (b) Justifier que pour tout $n \in \mathbb{N}^*$, $\bigcup_{k=1}^n G_k \subset \overline{C}$. En déduire une majoration de P(C) en fonction des probabilités $P(G_k)$.
 - (c) Montrer que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n P(G_k) = 1 \frac{(r_2)^n (1-r_1) (r_1)^n (1-r_2)}{r_2 r_1}$.
 - (d) Montrer enfin que P(C) = 0.

*** Fin du sujet ***

3