

Example. Prove that any subset of cardinality n+1

Example. Prove that any subset of cardinality n+1 of the set $\{1, 2, \dots, 2n\}$

Solution.

Denote the subset,

Solution.

Denote the subset, A :=

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{$

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{

f
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{

f : I \rightarrow
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{

f : I \to B,
```

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}$ $f : I \to B$,

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \}$ $f : I \to B$,

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$ $f : I \to B$,

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$

 $f: I \to B$, defined,

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$

$$I := \{1, 2, \dots, n, n+1\}$$

$$B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$$

 $f: I \to B, \text{defined}, f(i) = [a_i]$

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j)
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i]
```

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, ..., n, n + 1\}$ $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$ $f : I \to B$, defined, $f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\}$

```
Denote the subset, A := \{a_1, a_2, ..., a_{n+1}\}

I := \{1, 2, ..., n, n + 1\}

B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j]
```

```
Denote the subset, A := \{a_1, a_2, ..., a_{n+1}\}

I := \{1, 2, ..., n, n + 1\}

B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B
```

```
Denote the subset, A := \{a_1, a_2, ..., a_{n+1}\}

I := \{1, 2, ..., n, n + 1\}

B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides b.

```
Denote the subset, A := \{a_1, a_2, ..., a_{n+1}\}

I := \{1, 2, ..., n, n + 1\}

B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, ..., 2n\}$ has a pair, a, b, so that a divides of 3 b.

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

```
Denote the subset, A := \{a_1, a_2, \dots, a_{n+1}\}

I := \{1, 2, \dots, n, n+1\}

B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}

f : I \to B, defined, f(i) = [a_i]

f cannot be injective,

so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B

i.e. a_i divides a_j
```

know each other.

```
Denote the subset, A := \{a_1, a_2, ..., a_{n+1}\}
I := \{1, 2, \dots, n, n+1\}
B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\
f: I \to B, \text{defined}, f(i) = [a_i]
f cannot be injective,
so f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_i] \in B
i.e. a_i divides a_i
```

know each other.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$

 $I := \{1, 2, \dots, n, n+1\}$

 $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$

 $f: I \to B, \text{defined}, f(i) = [a_i]$

f cannot be injective,

so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_i] \in B$

i.e. a_i divides a_i

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n, n+1\}$$

$$B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$$

i.e. a_i divides a_i

Solution.

Denote the set,

know each other.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$

$$I := \{1, 2, \dots, n, n+1\}$$

$$B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$$

i.e. a_i divides a_i

Solution.

Denote the set, A :=

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

$$I := \{1, 2, \dots, n, n+1\}$$

$$B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$$

$$f: I \to B, \text{defined}, f(i) = [a_i]$$

f cannot be injective,

so
$$f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$$

i.e. a_i divides a_i

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n, n+1\}$
 $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n, n+1\}$
 $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\}$

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set,
$$A := \{a_1, a_2, \dots, a_6\}$$

 a_1 either knows or does not know
 $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle) Assume a_1 knows $\{b_1, b_2, b_3\}$

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle) Assume a_1 knows $\{b_1, b_2, b_3\}$ If any b_i, b_j

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n, n+1\}$
 $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle) Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$

the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not *b*.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other,

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle) Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_j\}$ form the triple.

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n, n+1\}$
 $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_i\}$ form the triple. Otherwise.

know each other.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective. so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other

know each other.

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other,

then $\{a_1, b_i, b_i\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other,

then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example.

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other,

then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices,

Solution.

Denote the subset,
$$A := \{a_1, a_2, \dots, a_{n+1}\}$$

 $I := \{1, 2, \dots, n, n+1\}$
 $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other,

then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge

Solution.

Denote the subset,
$$A := \{a_1, a_2, ..., a_{n+1}\}$$

 $I := \{1, 2, ..., n, n + 1\}$
 $B := \{\{1, 2\}, \{2, 4\}, ..., \{n, 2n\}\}$
 $f : I \to B$, defined, $f(i) = [a_i]$
 f cannot be injective,
so $f(i) = f(j) \iff [a_i] = \{a_i, a_j\} = [a_j] \in B$
i.e. a_i divides a_j

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$

If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue.

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$

If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Show that there are three vertices

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$

If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_j\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Show that there are three vertices so that the edges joining each pair of them

Solution.

Denote the subset, $A := \{a_1, a_2, ..., a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}\$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$

If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_i\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Show that there are three vertices so that the edges joining each pair of them are of the same colour.

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_i\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Show that there are three vertices so that the edges joining each pair of them are of the same colour.

Solution.

Solution.

Denote the subset, $A := \{a_1, a_2, \dots, a_{n+1}\}$ $I := \{1, 2, \dots, n, n+1\}$ $B := \{\{1, 2\}, \{2, 4\}, \dots, \{n, 2n\}\}$ $f: I \to B, \text{defined}, f(i) = [a_i]$ f cannot be injective, so $f(i) = f(j) \iff [a_i] = \{a_i, a_i\} = [a_i] \in B$ i.e. a_i divides a_i

Example. Prove that any subset of cardinality n+1 of **Example.** In a group of 6 people, there is either a subset the set $\{1, 2, \ldots, 2n\}$ has a pair, a, b, so that a divides of 3 who know each other, or a subset of 3 who do not know each other.

Solution.

Denote the set, $A := \{a_1, a_2, ..., a_6\}$ a_1 either knows or does not know $\{b_1, b_2, b_3\} \subset \{a_2, \dots, a_6\}$ (pigeonhole principle)

Assume a_1 knows $\{b_1, b_2, b_3\}$ If any $b_i, b_i \in \{b_1, b_2, b_3\}$ know each other, then $\{a_1, b_i, b_i\}$ form the triple.

Otherwise, none among $\{b_1, b_2, b_3\}$ know each other and form the triple

Example. Consider a graph with 6 vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Show that there are three vertices so that the edges joining each pair of them are of the same colour.

Solution. Same as above