Devoir à la maison n° 7

À rendre le 29 novembre

I. Injectivité et surjectivité de plusieurs fonctions.

Soit E et F deux ensembles, $f:E\to F$ une application et G un troisième ensemble, ayant au moins deux éléments. On construit deux nouvelles applications :

$$f_*: \left\{ \begin{array}{ccc} E^G & \to & F^G \\ \varphi & \mapsto & f \circ \varphi \end{array} \right. \text{ et } f^*: \left\{ \begin{array}{ccc} G^F & \to & G^E \\ \varphi & \mapsto & \varphi \circ f \end{array} \right..$$

Montrer les équivalences suivantes :

f est injective $\iff f_*$ est injective $\iff f^*$ est surjective.

II. Une égalité.

Soit E et F deux ensembles, $f:E\to F,$ A une partie de E et B une partie de F. Montrer que :

$$f(A \cap f^{\leftarrow}(B)) = f(A) \cap B.$$

III. Un théorème de point fixe.

Soit $f:[0,1] \to [0,1]$ une application croissante. On veut montrer que f possède un point fixe, *i.e.* qu'il existe $t \in [0,1]$ tel que f(t) = t.

- 1) On note $T = \{x \in [0,1] \mid f(x) \leq x\}.$
 - a) Montrer que T possède une borne inférieure, notée t.
 - **b)** Montrer que $f(T) \subset T$.
 - c) Montrer que f(t) minore T.
 - d) Déduire de tout ceci que f(t) = t.
- ${\bf 2)}$ Ce résultat est-il toujours vrai :
 - a) pour $f: [0,1] \rightarrow]0,1]$ croissante?
 - **b)** pour $f: [0,1[\rightarrow [0,1[$ croissante?

- FIN -