Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе $N\!\!\!^{\circ}2$

по дисциплине «Математическая статистика»

Выполнила студентка группы 5030101/20202

Чинь Тхи Тху Хоай

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2025

Содержание

1	Пос	станов	ка з	ада	.чи									•			•		•	•		•	•	3
2	Teo	рия .																						3
	2.1	Боксп	ЛОТ	Тьк	ЭКИ																			3
		2.1.1	Оп	реде	елені	ие																		3
		2.1.2	Оп	исан	ние																			3
		2.1.3	Пос	стрс	ени	е.																		3
	2.2	Teope	тиче	ская	я вер	гкос	НОС	ть :	вы	бро	сов													4
3	Пре	ограмм	лная	ı ре	али	зац	,ия																	4
4	Рез	зультат	ъ .																					5
	4.1	Боксп	ЛОТ	Тьк	ЭКИ																			5
	4.2	Доля	выбј	poco	в.																			6
	4.3	Teope	тиче	ская	я вер	TROC	тнос	ть	вы	бро	сов								•				•	7
5	Обо	сужден	ние																					7
6	Пр	иложе	ние																					8

1 Постановка задачи

Для 4 распределений:

- 1. N(x, 0, 1) нормальное распределение
- 2. C(x, 0, 1) распределение Коши
- 3. P(k, 10) распределение Пуассона
- 4. $U(x, -\sqrt{3}, \sqrt{3})$ расномерное распределение

Задание:

- 1. Сгенерировать выборки размером 20, 100 и 1000 элементов.
- 2. Построить бокс-плоты Тьюки.
- 3. Определить число выбросов, занести в таблицу.
- 4. Обсудить вид бокс-плотов и отнештельное число выбросов при изменении мощности выборки.

2 Теория

2.1 Боксплот Тьюки

2.1.1 Определение

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей

2.1.2 Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.

2.1.3 Построение

Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего квартиля и полутора межквартильных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$
(1)

где X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 — третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

2.2 Теоретическая вероятность выбросов

Встроенными средствами языка программирования Python можно вычислить теоретические первый и третий квартили распределений (Q_1^T и Q_3^T соответственно). По формуле (1) можно вычислить теоретические нижнюю и верхнюю границы уса (X_1^T и X_2^T соответственно). Выбросами считаются величины x, такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(2)

Теоретическая вероятность выбросов для непрерывных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T))$$
(3)

где $F(X) = P(x \le X)$ - функция распределения. Теоретическая вероятность выбросов для дискретных распределений

$$P_B^T = P(x < X_1^T) + P(x > x_2^T) = (F(X_1^T) - P(x = X_1^T)) + (1 - F(X_2^T))$$
(4)

где $F(X) = P(x \le X)$ - функция распределения

3 Программная реализация

Лабораторная работа выполнена на языке Python 3.12.6 в среде разработки Visual Studio Code. Использовались дополнительные библиотеки:

- 1. scipy статические распределения и функции
- 2. seaborn посроение графиков, визуализация
- 3. matplotlib построение графиков
- 4. math использование математических функций

В приложении находится ссылка на GitHub репозиторий с исходныи кодом.

4 Результаты

4.1 Боксплот Тьюки

Рис. 1: Нормальное распределение

Рис. 2: распределение Коши

Рис. 3: распределение Пуассона

Рис. 4: равномерное распределение

4.2 Доля выбросов

Округление доли выбросов:

Выборка случайна, поэтому в качестве оценки рассеяния можно взять дисперсию пуассоновского потока: $D_n \approx \sqrt{n}$

Доля $p_n=\frac{D_n}{n}=\frac{1}{\sqrt{n}}$ Доля $n=20:p_n=\frac{1}{\sqrt{20}}$ - примерно 0.2 или 20%Для $n=100:p_n=\frac{1}{\sqrt{100}}$ - примерно 0.1 или 10%

Для $n=1000: p_n=\frac{1}{\sqrt{1000}}$ - примерно 0.03 или 3%

Исходя из этого можно решить, сколько знаков оставлять в доле выброса.

Выборка	Доля выбросов	P_B^T
Normal n=20	0.024	0.007
Normal n=100	0.015	0.007
Normal n=1000	0.009	0.007
Cauchy n=20	0.154	0.156
Cauchy n=100	0.186	0.156
Cauchy n=1000	0.175	0.156
Poisson n=20	0.023	0.008
Poisson n=100	0.015	0.008
Poisson n=1000	0.009	0.008
Uniform $n=20$	0.002	0
Uniform $n=100$	0.0004	0
Uniform n=	0	0

Таблица 1: Доля выбросов

4.3 Теоретическая вероятность выбросов

Распределение	Q_1^T	Q_3^T	X_1^T	X_2^T	P_B^T
Нормальное распределение	-0.674	0.674	-2.698	2.698	0.007
Распределение Коши	-1	1	-4	4	0.156
Распределение Пуассона	8	12	2	18	0.008
Равномерное распределение	-0.866	0.866	-3.464	3.464	0

Таблица 2: Теоретическая вероятность выбросов

5 Обсуждение

По данным, приведенным в таблице, можно сказать, что чем больше выборка (в нашем случае для 1000 элементов), тем ближе доля выбросов будет к теоретической оценке. Снова доля выбросов для распределения Коши значительно выше, чем для остальных распределений. Для распределений: нормального, Пуассона погрешность при большой выборке составила не более 2 процентов. При увеличении выборки равномерное распределение показывает стремительный рост к теоретической оценке - выбросы практически не наблюдаются.

Ящики с «усами» в удобной форме показывает многие важные характеристики выборки, такие как медиана, первый и третий квартили и другие. Исходня из которых можно делать выводы касательно природы входных данных, распределений.

6 Приложение

Код программы GitHub URL:

https://github.com/Akira1707/Math-Statistic/tree/main/Lab2