Benefit

• Reducing on-duty-personnel fatalities in forest fire disasters.

US Wildlands Firefighter fatalities [1]

Related Works

- What's Missing?
 - In [2] (2018):
 - Fire Fighting scenario Stochastic Fire Model.
 - Wind factor is excluded Heterogenous agents are not explored.
 - In [3] (2021):
 - Fire spread monitoring scenario Stochastic fire model Wind factor is included.
 - No Firefighting Heterogenous agents are not explored.

We aim to:

Add an extra layer of realism to a forest firefighting scenario.

Explore heterogenous agents.

• Explore an advanced state-of-the-art MARL algorithm.

Components

• Environment

Agents

Reward System

Environment

• 50x50 2D grid = 2499 trees and 1 refill station.

• Trees' diagonal neighbors are included in the neighbor set.

Neighbor set in [2]

Neighbor set in our work

Environment

• Fire starts at the center point of the grid.

• Stochastic fire spread model with wind direction at angle 50 degrees.

Fire spread in [2]

Fire spread in our work

Environment

- Wind speed added to control the spread of the fire.
 - How many simulation runs before agents start to act.

• ε for a tree to be completely suppressed.

Agents

Multiple heterogenous agents.

 \bullet β for each class of agents to dictate their impact on the fire.

Agents

- Autonomous Ground Vehicles (AGVs):
 - 5x5 view space
 - Step distance = 1
 - Diagonal moves
- Unmanned Aerial Vehicles (UAVs):
 - 11x11 view space
 - Step distance = 10
 - Retardant capacity = 10
- Common capabilities:
 - Memory size of 15 elements.

Reward System

- Penalized when:
 - A tree starts burning.
 - A tree completely burns.

- Rewarded when:
 - Observing a new burning tree.
 - Colliding with the coordinates of a burning tree.
 - Suppressing a burning tree.
 - UAVs ONLY: Refilling from the station if retardant capacity = 0

- Multi-Agent Deep Deterministic Policy Gradient (MADDPG).
 - Extension of the Actor-Critic architecture.

General Actor-Critic Framework [4]

- Multi-Agent Deep Deterministic Policy Gradient (MADDPG).
 - Update rule for the actor network:
 - Obj = Q-Value1 * Action1 + Q-Value2 * Action2 + + Q-ValueN * ActionN
 - Obj = $\sum_{t=0}^{T} Q(st, a_t; \theta) *A(s_t; \theta a)$
 - Update rule for the critic network:
 - Gradient step on the MSE loss function.
 - Loss = (Target Predicted)^2
 - Predicted = Q(current_state, current_action)
 - Target = R + Y*Q(next_state, next_action)

- Multi-Agent Deep Deterministic Policy Gradient (MADDPG).
 - Addition of two extra neural networks:
 - Target Actor Network (A').
 - Target Critic Network (Q').
 - Purpose: Training Stability.
 - Update rule for the target networks:
 - A' = (Tau*A) + (1-Tau)*A'
 - Q' = (Tau*Q) + (1-Tau)* Q'
 - Addition of memory buffer to store and sample experiences for training.

• Multi-Agent Deep Deterministic Policy Gradient (MADDPG).

Our Attention-based Critic Network

Our Actor Network in heterogenous scenarios

• Multi-Agent Deep Deterministic Policy Gradient (MADDPG).

Our MADDPG Framework

Experimenting Scenarios

#	Agents	Wind Speed	Centralized Critic Architecture
Scenario 1	Heterogenous Agents	1	Standard Critic
Scenario 2	Homogenous Agents	1	Standard Critic
Scenario 3	Heterogenous Agents	2	Standard Critic
Scenario 4	Homogenous Agents	2	Standard Critic
Scenario 5	Heterogenous Agents	1	Attention-Based Critic
Scenario 6	Homogenous Agents	1	Attention-Based Critic
Scenario 7	Heterogenous Agents	2	Attention-Based Critic
Scenario 8	Homogenous Agents	2	Attention-Based Critic

- Passing the Global State to the Centralized Critic.
- Passing only the local observations to the Centralized Critic as in [5].

Fixed Training Hyperparameters

- Learning Rate = 0.01
- Tau = 0.05
- Batch Size = 64
- Gamma = 0.95
- Encoded Dimensions = 32

- Homogenous Scenarios: 12 AGVs
- Heterogenous Scenarios: 8 AGVs + 4 UAVs

Evaluation Metrics

• Total accumulated Rewards.

• Total number of trees suppressed.

AGVs vs UAVs performance.

Training Results (Global State Passing)

	Standard Critic			Attention-based Critic				
Aspect	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8
Minimum Normalize d Rewards	0.1874	1	0.79685	0.15594	0	0.55365	0.5565	0.4621
# of trees suppresse d	Max: 39 Min: 0	Max: 49 Min: 0	Max: 51 Min: 0	Max: 39 Min: 0	Max: 42 Min: 0	Max: 56 Min: 0	Max: 43 Min: 0	Max: 39 Min: 0
# of trees suppresse d by AGVs	Max: 37 Min: 0	Max: 49 Min: 0	Max: 50 Min: 0	Max: 39 Min: 0	Max: 42 Min: 0	Max: 56 Min: 0	Max: 43 Min: 0	Max: 39 Min: 0
# of trees suppresse d by UAVs	Max: 6 Min: 0	-	Max: 3 Min: 0	-	Max: 9 Min: 0	+	Max: 1 Min: 0	-

Training Results (Local Observation Passing)

	Standard Critic			Attention-based Critic				
Aspect	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8
Maximum Normalize d Rewards	0.9186	1	0	0.5051	0.38983	0.738983	0.58983	0.522
# of trees suppresse d	Max: 56 Min: 0	Max: 67 Min: 0	Max: 28 Min: 0	Max: 45 Min: 0	Max: 36 Min: 0	Max: 49 Min: 0	Max: 43 Min: 0	Max: 47 Min: 0
# of trees suppresse d by AGVs	Max: 54 Min: 0	Max: 67 Min: 0	Max: 28 Min: 0	Max: 45 Min: 0	Max: 36 Min: 0	Max: 49 Min: 0	Max: 43 Min: 0	Max: 47 Min: 0
# of trees suppresse d by UAVs	Max: 9 Min: 0		Max: 2 Min: 0		Max: 2 Min: 0		Max: 3 Min: 0	