	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^+lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$ au_1^{\#1}{}_{lpha}$	$\tau_{1}^{#2}$ α
$\sigma_1^{\sharp 1} \dagger^{lpha eta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\sigma_1^{\sharp_1} \dagger^{lpha}$	0	0	0	$\frac{1}{k^2 \left(-r_1 + 2 r_3 + r_5 \right)}$	$\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 - 2 r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$
$\sigma_1^{\!\scriptscriptstyle \#2}\dagger^lpha$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 - 2 r_3 - r_5)}$	$\frac{\frac{1}{-r_1+2r_3+r_5} + \frac{6k^2}{t_1}}{2(k+2k^3)^2}$	0	$\frac{i (6 k^2 (r_1 - 2 r_3 - r_5) - t_1)}{\sqrt{2} k (1 + 2 k^2)^2 (r_1 - 2 r_3 - r_5) t_1}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{\frac{1}{-r_1+2r_3+r_5} + \frac{6k^2}{t_1}}{(1+2k^2)^2}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}lpha}^{$ #1}	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lpha}$	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u> </u>
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

Source constraints				
SO(3) irreps	#			
r ₀ ^{#2} == 0	1			
$r_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 \bar{\imath} k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	5			
Total #:	16			

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{\alpha\beta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_{0}^{\#1}$
$\omega_{0}^{\#1}$ †	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	-t ₁

 $\tau_{0^{+}}^{\#1} \ \tau_{0^{+}}^{\#2} \ \sigma_{0^{-}}^{\#1}$

0

0

0

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $k^2 t_1$

 $k^2 r_1 + \frac{t_1}{2}$

0

 $\tau_{0}^{\#1}$ †

 $\sigma_{0}^{\#1}$ †

Unitarity conditions $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$