

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

Gerwin Klein, June And Ponick, Miki Tanaka, Johannes Åman Pohjola https://tut372022m

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

程序代写代做 CS编程辅导

→ Equations and Te

- → Confluence and T
- 🛱 of reduction systems
- → Term Rewriting in

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Applying a Rewrite Rule

程序代写代做 CS编程辅导

- \rightarrow $l \longrightarrow r$ applicable [s]if there is substitute σ I=s
- \rightarrow Result: $t[\sigma \ r]$ → Equationally: t 💷 🕏

WeChat: cstutorcs **Example:**

Rule: OAssignment Project Exam Help

Term: a + (0 + (b + c))Email: tutorcs@163.com Substitution: $\sigma = \{n \mapsto b + c\}$

Result: QQ+749389476

Conditional Term Rewriting

程序代写代做 CS编程辅导

Rewrite rules can be

is **applicable** to term t[s] with σ if

 $\rightarrow \sigma I = s$ and WeChat: cstutorcs

 $\rightarrow \sigma P_1, \ldots, \sigma P_n$ are provable by rewriting Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Rewriting with Assumptions

程序代写代做 CS编程辅导

Last time: less assumptions in rewriting.

Cale I non-termination.

Example:

Assignment Project Exam Help

Preprocessing

程序代写代做 CS编程辅导

Preprocessing (remeating or maximal simplification power:

$$A = False$$

$$A \Rightarrow A \Rightarrow B$$

$$A \land B \Rightarrow A, B$$

∀W.eChat: estutArca

$$A \mapsto A = True$$

Assignment Project Exam Help

Example:

QQ: 749389476

$$p \Longrightarrow q = T_{\text{full}} = T_{\text{res}} / \text{tores} / \text{com}$$
 $s = T_{\text{rue}}$

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Case splitting with simp

程序代写代做 CS编程辅导

WeChat: cstutorcs

 $P \text{ (case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b)$ Assignment Project Exam Help $(e - 0 \rightarrow P, a) \land (\forall n, e - Suc , n \rightarrow P, b)$

 $(e = 0 \longrightarrow P \ a) \land (\forall n. \ e = Suc \ n \longrightarrow P \ b)$ **Email:** tutores@163.com **Manually:** apply (simp split: nat.split)

QQ: 749389476

Similar for any data type t: **t.split** https://tutorcs.com

Congruence Rules

程序代写代做 CS编程辅导

congruen re about using context

Example: in $P \longrightarrow \bigcap_{\mathbf{P}} \bigcap_{\mathbf{P}} \bigcap_{\mathbf{P}} \mathbf{d}$ use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators i expresse with conditional rewriting.

Example: Email: tutorcs@163.com $[P = P'; P' \Longrightarrow Q = Q'] \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$ Read: to simplify $P \Longrightarrow Q'$

- → first simplify P tohetps://tutorcs.com
- \rightarrow then simplify Q to Q' using P' as assumption
- ightharpoonup the result is $P' \longrightarrow Q'$

More Congruence

程序代写代做 CS编程辅导

Sometimes useful, but automatically (slowdown):

conj_cong:
$$\llbracket P = P' \Longrightarrow P = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-e

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then Weishat) cstutoreshen u else v)

Prevent rewriting insides igenment Prevent Fexam Help

if_weak_cong: Email: tutorcs@163.com

$$b = c \Longrightarrow$$
 (if b then x else y) = (if c then x else y)
QQ: 749389476

- → declare own congruence rules with [cong] attribute
- → delete with [cong del] https://tutorcs.com
- → use locally with e.g. apply (simp cong: <rule>)

Ordered rewriting

程序代写代做 CS编程辅导

Problem: $x + y \longrightarrow \mathbb{R}$ es not terminate

Solution: use perm les only if term becomes

lexicografic maller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

WeChat: cstutorcs

For types nat, int etc:

• lemmas add_ac sortignment Project Exam Help

• lemmas mult_aq_sort jany product 63 com

Example: apply (simp: add) = add =

AC Rules

程序代写代做 CS编程辅导

Example for associative rules:

Associative: $(y \odot z)$

Commutative: x = x

These 2 rules alone **Property** (not confluent).

Example: $(z \odot x)$ We Chat: v stutores

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x)$ So $(y \odot v) = v \odot (x \odot (y \odot z))$

We need: AC rule mail: typoscs $= 63 \cdot \text{cm} \cdot z$

If these 3 Rules are present for an AC operator Isabelle will order terms correctly

程序代写代做 CS编程辅导

Demo

WeChat: cstutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Back to Confluence

程序代写代做 CS编程辅导

Last time: confluence in general is undecidable.

But: confluence for systems is decidable!

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Assignment Project Exam Help

Example:

Rules: (1)
$$f \times a$$
 (2) $g \times b$ (3) $f (g \times z) \rightarrow b$

Critical pairs: QQ: 749389476

$$(1)+(3) \qquad \{x \mapsto g, z\} \text{ tutores.com} \qquad f(gz) \xrightarrow{(3)} b$$

$$(3)+(2) \qquad \{z \mapsto y\} \qquad b \xleftarrow{(3)} \qquad f(gy) \xrightarrow{(2)} fb$$

Completion

程序代写代做 CS编程辅导

(1)
$$f \times \longrightarrow \bigoplus_{z \in \mathcal{Z}} y \longrightarrow b$$
 (3) $f (g z) \longrightarrow b$

But it can be made confluent by adding rules!

WeChat: cstutorcs How: join all critical pairs

Assignment Project Exam Help

Example:

Example: Email: tutorcs@163.com
$$(1)+(3) \quad \{x \mapsto g \ z\} \quad a \stackrel{(1)}{\longleftarrow} \quad f \ (g \ z) \stackrel{(3)}{\longrightarrow} b$$
shows that $a = b$ (because $a \stackrel{(3)}{\longleftarrow} b$), so we add $a \longrightarrow b$ as a rule

https://tutorcs.com

This is the main idea of the Knuth-Bendix completion algorithm.

程序代写代做 CS编程辅导

Demo: Waldmeister Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Orthogonal Rewriting Systems

程序代写代做 CS编程辅导

Definitions:

A **rule** $l \longrightarrow r$ is **left** no variable occurs twice in l.

A rewrite system is rif all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

WeChat: cstutorcs

Orthogonal rewritens yet con a treaconfluent

Email: tutorcs@163.com

Application: functional programming languages

QQ: 749389476

We have learned today ...

程序代写代做 CS编程辅导

→ Conditional term

S (1)

- → Congruence rules
- → AC rules
- → More on confluence

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476