FORMULARIO - INVESTIGACIÓN DE OPERACIONES

Llegadas	
Tasa de Llegadas	λ
Prob. de k llegadas en t horas	$P(X = k) = \frac{(\lambda t)^k * \exp^{-\lambda t}}{k!}$
Tiempo promedio entre llegadas	$\frac{1}{\lambda}$
Prob. de que ocurra una llegada en t horas	$P(X \le t) = 1 - \exp^{-\lambda t}$
Prob. de que no ocurran llegadas en las próx. t horas	$\exp^{-\lambda t}$

Servicio	
Tasa de Servicio	μ
Prob. de servir a k personas en t horas	$P(X = k) = \frac{(\mu t)^k * \exp^{-\mu t}}{k!}$
Tiempo promedio entre servicios	$\frac{1}{\mu}$
Prob. de que el servicio se complete en t horas	$P(X \le t) = 1 - \exp^{-\mu t}$
Prob. que el servicio se complete en más de t horas	$\exp^{-\mu t}$

Tiempo en el Sistema \sim Exponencial $(\mu - \lambda)$

$$\mathrm{M/M/1}$$
 $\mathrm{M/M/K}$

$$P_{0} = 1 - \rho$$

$$P_{0} = \frac{1}{\left[\sum_{n=0}^{k-2} \frac{(\rho k)^{n}}{n!}\right] + \frac{(\rho k)^{k-1}}{(k-1)!(1-\rho)}}$$
(2)

$$L_S = \frac{\lambda}{\mu - \lambda}$$
 (3) $P_n = \frac{(\rho k)^n}{n!} P_0 \text{ para } n \le k$ (10)

$$L_{q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)}$$

$$(4)$$

$$P_{n} = \frac{\rho^{n} k^{k}}{k!} P_{0} \text{ para } n > k$$

$$L_{q} = \frac{\rho^{k+1} k^{k-1}}{(k-1)! (1-\rho)^{2}} P_{0}$$

$$(12)$$

$$L_q = \frac{\rho^{k+1} k^{k-1}}{(k-1)! (1-\rho)^2} P_0 \qquad (12)$$

$$W_S = \frac{1}{\mu - \lambda} \tag{5}$$

$$L_S = L_q + \rho k \tag{13}$$

$$W_{q} = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{L_{q}}{\lambda}$$
 (6)
$$W_{q} = \frac{L_{q}}{\lambda}$$
 (14)
$$W_{S} = W_{q} + \frac{1}{\mu} = \frac{L_{s}}{\lambda}$$
 (15)

$$P_W = \frac{\lambda}{\mu}$$
 (7)
$$P_W = \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^k \left(\frac{k\mu}{k\mu - \lambda}\right) P_0$$
 (16)

$$\rho = \frac{\lambda}{\mu} \tag{8}$$