PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

5. Symplectic quotient singularities

Problem 5.1. Consider the representation space $\operatorname{Rep}(Q, \delta)$ for cyclic quiver Q with r+1 vertices and the corresponding morphism $\mu : \operatorname{Rep}(Q, \delta) \to \mathfrak{gl}(\delta)$. Describe the irreducible components of $\mu^{-1}(0)$. Show that the codimension of each is r, and that each contains a free $\operatorname{GL}(\delta)$ -orbit.

Exercise 5.1. Let A be a commutative associative unital algebra.

- (1) Let A be equipped with a bracket $\{\cdot,\cdot\}$. Show that $\{1,a\}=0$ for all $a\in A$.
- (2) Show that if a_1, \ldots, a_k are generators of A, then there is at most one bracket $\{\cdot, \cdot\}$ with given $\{a_i, a_j\}$. Show that this bracket satisfies the Jacobi identity for all a, b, c, if it does so for all a_i, a_j, a_k .
- (3) Finally, prove that if $A = \mathbb{C}[a_1, \ldots, a_k]$, then a bracket exists for any values of $\{a_i, a_j\}$ as long as $\{a_i, a_j\} = -\{a_j, a_i\}$.

Exercise 5.2. We can choose a basis $x_1, \ldots, x_n, y_1, \ldots, y_n$ in V so that $\omega(x_i, x_j) = \omega(y_i, y_j) = 0, \omega(y_i, x_j) = \delta_{ij}$. Let us identify S(V) with $\mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Then the bracket $\{\cdot, \cdot\}$ induced by ω is given by the formula

$$\{f,g\} = \sum_{i=1}^{n} \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i} - \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i}.$$

Exercise 5.3. Check that $\{\cdot,\cdot\}$ on $A=\operatorname{gr} \mathcal{A}$ is well-defined and is indeed a Poisson bracket.