Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 4

"Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере на примере метода ближайших соседей"

ИСПОЛНИТЕЛЬ:
Студент группы ИУ5-21М
Коростелёв В. М.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю. Е.

Москва – 2019

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью трех подходящих для задачи метрик.
- 5. Постройте модель и оцените качество модели с использованием кросс-валидации. Проведите эксперименты с тремя различными стратегиями кросс-валидации.
- 6. Произведите подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации.
- 7. Повторите пункт 4 для найденного оптимального значения гиперпараметра К. Сравните качество полученной модели с качеством модели, полученной в пункте 4.
- 8. Постройте кривые обучения и валидации.

Выполнение

Загрузка датасета

Выбранный набор: Classifying wine varieties (https://www.kaggle.com/brynja/wineuci).

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import learning_curve, validation_curve
from sklearn.model_selection import KFold, RepeatedKFold, LeaveOneOut, LeavePOut, Shuff
leSplit, StratifiedKFold
from sklearn.model_selection import cross_val_score, cross_validate
from sklearn.metrics import roc_curve,confusion_matrix, roc_auc_score, accuracy_score,
balanced_accuracy_score

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

plt.style.use('ggplot')

import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
# Загрузить набор данных
data = pd.read_csv('Wine.csv', sep=";")

# Распечать первые 5 строк фрейма данных
data.head()
```

Out[2]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenois	Flavanoids	Nonflavanoid phenols	P
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
4										•

In [3]:

Список колонок с типами данных data.dtypes

Out[3]:

Class	int64
Alcohol	float64
Malic acid	float64
Ash	float64
Alcalinity of ash	float64
Magnesium	int64
Total phenols	float64
Flavanoids	float64
Nonflavanoid phenols	float64
Proanthocyanins	float64
Color intensity	float64
Hue	float64
OD280/OD315 of diluted wines	float64
Proline	int64
dtype: object	

```
In [4]:
```

```
# Проверим на наличие пустых значений
for col in data.columns:
    print('{} - {}'.format(col, data[data[col].isnull()].shape[0]))
Class - 0
Alcohol - 0
Malic acid - 0
Ash - 0
Alcalinity of ash - 0
Magnesium - 0
Total phenols - 0
Flavanoids - 0
Nonflavanoid phenols - 0
Proanthocyanins - 0
Color intensity - 0
Hue - 0
OD280/OD315 of diluted wines - 0
Proline - 0
In [5]:
data.shape
Out[5]:
(178, 14)
```

Разделите выборки на обучающую и тестовую

```
In [6]:
```

```
X = data.drop('Class',axis=1).values
y = data['Class'].values
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42, str
atify=v)
print('X_train: {} y_train: {}'.format(X_train.shape, y_train.shape))
print('X_test: {} '.format(X_test.shape, y_test.shape))
X_train: (124, 13) y_train: (124,)
X_test: (54, 13) y_test: (54,)
```

Обучение модели ближайших соседей

Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью трех подходящих для задачи метрик.

In [7]:

```
# Setup arrays to store training and test accuracies
neighbors = np.arange(1,14)
len(neighbors)
```

Out[7]:

13

Обучение при различном количестве соседей

In [8]:

```
# Вернуть новый массив заданной формы и типа без инициализации записей.
train_accuracy = np.empty(len(neighbors))

test_accuracy = np.empty(len(neighbors))

for i,k in enumerate(neighbors):
    # Настройка классификатора Кпп с К соседями
    knn = KNeighborsClassifier(n_neighbors=k)

# Обучить модель
knn.fit(X_train, y_train)

# Вычислить точность на тренировочном наборе
train_accuracy[i] = knn.score(X_train, y_train)

# Вычислить точность на тестовом наборе
test_accuracy[i] = knn.score(X_test, y_test)
```

In [9]:

```
# Построить набор
plt.title('k-NN Varying number of neighbors')
plt.plot(neighbors, test_accuracy, label='Testing Accuracy')
plt.plot(neighbors, train_accuracy, label='Training accuracy')
plt.legend()
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.show()
```

k-NN Varying number of neighbors

Изучение работы KNeighborsClassifier

In [10]:

```
# Setup a knn classifier with k neighbors
knn = KNeighborsClassifier(n_neighbors=10)
```

In [11]:

```
#Fit the model
knn.fit(X_train,y_train)
```

Out[11]:

In [12]:

```
\begin{tabular}{ll} \# \textit{Get accuracy. Note: In case of classification algorithms score method represents accuracy. \\ &knn.score(X\_test,y\_test) \end{tabular}
```

Out[12]:

0.7407407407407407

In [13]:

```
#import classification_report
from sklearn.metrics import classification_report

y_pred = knn.predict(X_test)
print(classification_report(y_test,y_pred))
```

		precision	recall	f1-score	support
	1 2	0.88 0.88	0.83 0.67	0.86 0.76	18 21
	3	0.52	0.73	0.61	15
micro av	g	0.74	0.74	0.74	54
macro av	g	0.76	0.74	0.74	54
weighted av	g	0.78	0.74	0.75	54

Точность

In [14]:

```
cl1_1 = KNeighborsClassifier(n_neighbors=7)
cl1_1.fit(X_train, y_train)
target1_1 = cl1_1.predict(X_test)
accuracy_score(y_test, target1_1)
```

Out[14]:

Матрица неточностей

In [15]:

```
y_pred = knn.predict(X_test)
confusion_matrix(y_test,y_pred)
pd.crosstab(y_test, y_pred, rownames=['True'], colnames=['Predicted'], margins=True)
```

Out[15]:

Predicted	1	2	3	AII
True				
1	15	0	3	18
2	0	14	7	21
3	2	2	11	15
All	17	16	21	54

ROC-кривая

In [16]:

```
y_pred_proba = knn.predict_proba(X_test)[:,1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba, pos_label=2)

plt.plot([0,1],[0,1],'k--')
plt.plot(fpr,tpr, label='Knn')
plt.xlabel('fpr')
plt.ylabel('tpr')
plt.ylabel('tpr')
plt.title('Knn(n_neighbors=7) ROC curve')
plt.show()
```


Кросс-валидация

```
In [17]:
param grid = {'n neighbors':np.arange(1,14)}
knn = KNeighborsClassifier()
knn_cv= GridSearchCV(knn,param_grid,cv=5)
knn_cv.fit(X_train,y_train)
Out[17]:
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30, metr
ic='minkowski',
           metric params=None, n jobs=None, n neighbors=5, p=2,
           weights='uniform'),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid={'n_neighbors': array([ 1,  2,  3,  4,  5,  6,  7,  8,
9, 10, 11, 12, 13])},
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring=None, verbose=0)
In [18]:
knn_cv.best_score_
Out[18]:
0.7419354838709677
In [19]:
knn_cv.best_params_
Out[19]:
{'n_neighbors': 4}
K-fold
Данная стратегия работает в соответствии с определением кросс-валидации.
Каждой стратегии в scikit-learn ставится в соответствии специальный класс-итератор, который может
быть указан в качестве параметра су функций cross val score и cross validate.
```

```
In [20]:
```

```
Out[20]:
```

```
array([0.86111111, 0.77777778, 0.61111111, 0.71428571, 0. ])
```

```
In [21]:
```

```
# Усредненное значение метрики ассигасу для 5 фолдов
np.mean(scores)
```

Out[21]:

0.5928571428571429

In [22]:

Out[22]:

```
{'fit_time': array([0.00300288, 0.00100183, 0.00206447, 0.00100303, 0.0010
 'score time': array([0.01648736, 0.01761508, 0.00815129, 0.0072 , 0.00
718951]),
 'test_precision': array([1.
                                   , 1.
                                               , 1.
                                                           , 0.72533333,
 'train_precision': array([0.82446207, 0.80090285, 0.84426486, 0.79604422,
0.87889383]),
 'test recall': array([0.86111111, 0.77777778, 0.61111111, 0.71428571, 0.
]),
 train recall': array([0.82394366, 0.8028169 , 0.84507042, 0.7972028 , 0.
88111888]),
 'test f1': array([0.92537313, 0.86944752, 0.75862069, 0.71080409, 0.
 'train f1': array([0.82296931, 0.80124489, 0.84424307, 0.7894962 , 0.8712
87451)}
```

Leave One Out (LOO)

В тестовую выборку помещается единственный элемент (One Out). Количество фолдов в этом случае определяется автоматически и равняется количеству элементов.

Данный метод более ресурсоемкий чем KFold.

Существует эмпирическое правило, что вместо Leave One Out лучше использовать KFold на 5 или 10 фолдов.

In [23]:

```
loo = LeaveOneOut()
loo.get_n_splits(X)

for train_index, test_index in loo.split(X):
    y_train, y_test = y[train_index], y[test_index]
```

Repeated K-Fold

In [24]:

Обучение с оптимальным К

In [25]:

```
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42, str
atify=y)
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(X_train,y_train)
knn.score(X_test,y_test)
```

Out[25]:

0.7407407407407407

Построение кривых обучения

In [26]:

```
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train sizes, train scores, test scores = learning curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")
    plt.legend(loc="best")
    return plt
```

In [27]:

Out[27]:

<module 'matplotlib.pyplot' from 'c:\\users\\vovan\\virtualenvs\\tensorflo w\\lib\\site-packages\\matplotlib\\pyplot.py'>

Построение кривой валидации

In [28]:

```
def plot_validation_curve(estimator, title, X, y,
                          param_name, param_range, cv,
                          scoring="accuracy"):
    train_scores, test_scores = validation_curve(
        estimator, X, y, param_name=param_name, param_range=param_range,
        cv=cv, scoring=scoring, n_jobs=1)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.title(title)
    plt.xlabel(param_name)
   plt.ylabel("Score")
    plt.ylim(0.0, 1.1)
    1w = 2
    plt.plot(param_range, train_scores_mean, label="Training score",
                 color="darkorange", lw=lw)
    plt.fill_between(param_range, train_scores_mean - train_scores_std,
                     train scores mean + train scores std, alpha=0.2,
                     color="darkorange", lw=lw)
    plt.plot(param_range, test_scores_mean, label="Cross-validation score",
                 color="navy", lw=lw)
    plt.fill_between(param_range, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.2,
                     color="navy", lw=lw)
    plt.legend(loc="best")
    return plt
```

In [29]:

Out[29]:

<module 'matplotlib.pyplot' from 'c:\\users\\vovan\\virtualenvs\\tensorflo w\\lib\\site-packages\\matplotlib\\pyplot.py'>

