第5章 刚体的定轴转动

- 5-1 刚体以 60r/min 的转速绕 z 轴做匀速转动(α 沿 z 轴正方向). 设某时刻刚体上 一点 ρ 的位置矢量为r=3i+4j+5k,其单位为" 10^{-2} m",若以" 10^{-2} m · s⁻¹"为速 度单位,则该时刻 p 点的速度为(
 - (A) v = 94.2i + 125.6j + 157.0k (B) v = -25.1i + 18.8j
- - (C) v = -25.1i 18.8i
- (D) v = 31.4k
- 5-2 有一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度 ω 。转动,此时有一质量为 m 的人站在转台中心. 随后人 沿半径向外跑去,当人到达转台边缘时,转台的角速度为(
 - (A) $\frac{J}{I+mR^2}\omega_0$

(B) $\frac{J}{(J+m)R^2}\omega_0$

(C) $\frac{J}{mR^2}\omega_0$

- (D) ω_0
- 5-3 如图所示, A、B 为两个相同的绕着轻绳的定滑轮. A 滑轮挂一质量为 M 的物体, B 滑轮受拉力 F,而且 F=Mg. 设 A、B 两滑轮的角加速度分别为 β_A 和 β_B ,不计滑轮 轴的摩擦,则有(

- (B) $\beta_{\rm A} > \beta_{\rm B}$
- (C) $\beta_A < \beta_B$
- (D) 开始时 $\beta_A = \beta_B$,以后 $\beta_A < \beta_B$

题 5-3图

5-4 一飞轮的转动惯量为 J,在 t=0 时角速度为 $ω_0$,此后飞轮经历制动过程,阻力矩 M的大小与角速度 ω 的平方成正比,比例系数 k>0,当 $\omega=\omega_0/3$ 时,飞轮的角加速度 $\beta =$,从开始制动到 $\omega = \omega_0/3$ 时,所经过的时间 t =

- 5-5 一个滑轮,半径为 10 cm,转动惯量为 $1.0 \times 10^{-2} \text{kg}$ · m²,有一变力 $F = 0.50 t + 0.30 t^2 (\text{N})$ 沿切线方向作用在滑轮的边沿上,滑轮所受力矩为______N · m. 如果滑轮最初处于静止状态,则在 3.0 s 后的角速度为______ rad/s.
- 5-6 一个圆柱体,质量为 M,半径为 R,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止. 现有一质量为 m、速度为 v 的子弹,沿圆周切线方向射入圆柱体边缘. 子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度 = ______. (已知圆柱体绕固定轴的转动惯量 $J = \frac{1}{2}MR^2$)
- 5-8 —人手执两个哑铃,两臂平伸坐在以 ω_0 角速度旋转的转轴处,摩擦可不计,现突然将两臂收回,转动惯量为原来的 $\frac{1}{4}$ 倍,则收臂后的转动动能是收臂前的______倍.
- **5-9** 如图,滑块 A,重物 B 和滑轮 C 的质量分别为 $m_A = 50 \,\mathrm{kg}$, $m_B = 200 \,\mathrm{kg}$ 和 $m_C = 15 \,\mathrm{kg}$, 滑轮半径为 $R = 0.10 \,\mathrm{m}$, $J_0 = m_C R^2/2$, 滑块 A 与桌面之间,滑轮与轴承间均无摩擦,绳质量可不计,绳与滑轮间无相对滑动. 求滑块 A 的加速度及滑轮两边绳中的张力.

题 5-9 图

5-10 以力 F 将一块粗糙平面紧压在轮上,平面与轮之间的滑动摩擦系数为 μ ,轮的初角速度为 ω_0 ,问转过多少角度时轮停止转动? 已知轮的半径为 R,质量为 m,可视为匀质圆盘,转动惯量为 $J=mR^2/2$;轴的质量忽略不计;压力 F 均匀分布在轮面上.

CUGP

5-11 滑轮对中心轴的转动惯量为 J,半径为 R,物体的质量为 m,弹簧的劲度系数为 k,斜面的倾角为 θ ,物体与斜面间光滑,系统从静止状态释放,且释放时弹簧无伸长(如图所示),求物体下滑 x 距离时的速率.

题 5-11 图

- 5-12 一质量为 m、半径为 R 的匀质薄圆盘,可绕光滑的水平轴 O 在竖直平面内自由转动,如图所示,圆盘相对于轴的转动惯量为 $3mR^2/2$,开始时,圆盘静止在竖直位置上,当它转动到水平位置时,求:
 - (1) 圆盘的角加速度;
 - (2) 圆盘的角速度;
 - (3) 圆盘中心 O 点的加速度.

题 5-12 图

CUGP

5-13 质量分别为 *m* 和 2*m*,半径分别为 *r* 和 2*r* 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9*mr*²/2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为 *m* 的重物,如图所示,求盘的角加速度的大小.

- 5-14 质量为 m,长为 l 的匀质木棒可绕 O 轴自由转动,转动惯量为 $J=ml^2/3$,开始时木棒铅直悬挂,现在有一只质量为 m 的小猴以水平速度 v_0 抓住棒的一端(如图),求:
 - (1) 小猴与棒开始摆动时的角速度;
 - (2) 小猴与棒摆到最大高度时,棒与铅直方向的夹角.

题 5-14 图

CUGP

- 5-15 如图所示,一质量为m,长为l 的匀质细杆,以O点为轴,从静止在与竖直方向成 θ 。 角处自由下摆,到竖直位置时与光滑桌面上一质量为也为m 的静止物块(可视为质点)发生弹性碰撞,已知杆对O轴的转动惯量为 $ml^2/3$.求:
 - (1)棒开始转动时的角加速度;
 - (2)棒转到竖直位置碰撞前的角速度 ω_1 及棒中央点 C 的速度;
 - (3)碰撞后杆的角速度 ω_2 和物块的线速度 v_2 .

题 5-15 图

5-16 如图所示单摆和直杆等长 l,等质量 m,悬挂于同一点 O,摆锤拉到高度 $h_0(h_0 \le l)$ 放开,与静止的直杆做弹性碰撞,已知直杆绕 O点的转动惯量 $J = ml^2/3$,求碰撞后其直杆下端可上升的最大高度 h.

题 5-16 图

CUGP

**5-17 一长为l的匀质细杆,可绕通过中心O的固定水平轴在铅垂平面内自由转动(转动惯量为 $ml^2/12$),开始时杆静止于水平位置. 一质量与杆相同的昆虫以速率 v_0 垂直落到距O点l/4处的杆上,昆虫落下后立即向杆的端点爬行,如图所示. 若要使杆以匀角速度转动,试求昆虫沿杆爬行的速率.

题 5-17 图