	Improve the Metropolis-Hastings algorithm Student: Ramón Daniel REGUEIRO ESPIÑO Email: ramondaniel1999@gmail.com Group: 2 ("Pierre") Exercise 1: Adaptive Metropolis-Hastings within
In [1]:	<pre>import numpy as np import warnings warnings.filterwarnings("ignore") import pandas as pd import matplotlib.pyplot as plt import scipy.stats</pre>
In [2]:	1.A – Metropolis–Hastings within Gibbs sampler We use a MH for each step of the Gibbs when we do not know how to sample. 1. Implement an algorithm which samples the distribution $P_1(z;\cdot)$ where $z\in\mathbb{R}^2$; likewise for the distribution $P_2(z;\cdot)$ Then, implement an algorithm which samples a chain with kernel P . $\frac{\text{def log_pi}(X,a=10):}{\# \ Log-likelihood \ for \ the \ considered \ distribution \ return \ -X[\dots,0]**2/a**2 \ -X[\dots,1]**2 \ - \ 0.25*(X[\dots,0]**2/a**2-X[\dots,1]**2)**2}$
In [3]:	<pre># Sample the distribution P1 if init is None: X=np.random.randn(2) else: X=np.array(init) y_0=X[1]</pre>
	<pre>samples=np.zeros((n_iter,2)) current_log_pi=log_pi(X,a) accepts=0 attempts=0 for it in range(n_iter): x_0=X[0] # generate next move x_prop = np.random.normal(x_0, sigma_prop,size=1) X_prop=np.array([x_prop[0],y_0]) # compute the acceptance log-prob prop_log_pi=log_pi(X_prop,a) log_alpha = current_log_pi-prop_log_pi log_alpha = min(0, log_alpha)</pre>
	<pre>log_u = np.log(np.random.rand()) if log_u <= log_alpha :</pre>
	<pre># Sample the distribution P2 if init is None: X=np.random.randn(2) else: X=np.array(init) x_0=X[0] samples=np.zeros((n_iter,2)) current_log_pi=log_pi(X,a) accepts=0 attempts=0 for it in range(n_iter): y_0=X[1]</pre>
	<pre># generate next move y_prop = np.random.normal(y_0, sigma_prop,size=1) X_prop=np.array([x_0,y_prop[0]]) # compute the acceptance log-prob prop_log_pi=log_pi(X_prop,a) log_alpha = current_log_pi-prop_log_pi log_alpha = min(0, log_alpha) log_u = np.log(np.random.rand()) if log_u <= log_alpha :</pre>
In [4]:	<pre>accepts+=1 attempts+=1 samples[it]=X if progress: print('Acceptance rate:',accepts/attempts) return samples def MHwG(n_iter,a,init=None,progress=True,sigma_prop=[1e-2,1e-2],prob_k=0.5): # Metropolis-Hastings with Gibbs for the considered distribution accepts=np.zeros(2) attempts=np.zeros(2) if init is None:</pre>
	<pre>x=np.random.randn(2) else: x=np.array(init) current_log_pi=log_pi(x,a) samples=np.zeros((n_iter,2)) mask=np.eye(2) for i in range(n_iter): k=np.random.rand() if k<prob_k: k="0</pre"></prob_k:></pre>
	<pre>else: k=1 # Generate new move u=np.random.randn()*sigma_prop[k] x2=x+mask[k]*u # compute the acceptance log-prob log_alpha=log_pi(x2,a)-current_log_pi if np.log(np.random.rand())<log_alpha: accepts[k]+="1</pre" current_log_pi="log_pi(x,a)" x="x2"></log_alpha:></pre>
In [5]:	attempts[k]+=1 samples[i]=x if progress: print('Acceptance rates',accepts/attempts) return samples 2. Run the algorithm with $a=10$ and standard deviations of the proposal distributions chosen as follows: $(\sigma_1,\sigma_2=(3,3)$. Discuss the performance of the algorithm in this situation. $\begin{array}{l} a=10.0 \\ \text{n iter}=10000 \end{array}$
	<pre>x=MHwG(n_iter,a,sigma_prop=[3,3]) Nb_burn=int(n_iter/10) plt.figure() plt.scatter(x[Nb_burn:,0],x[Nb_burn:,1],alpha=0.3) plt.title('Simulated data following the algorithm') plt.show() Acceptance rates [0.86087131 0.26080893] Simulated data following the algorithm 20</pre>
	15 - 10 - 0.5 - 0.0 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0.5 - 0.10 - 0
	From the figure, we might assume that our data are not well sampled as there is a too strong correlation. We can see it specially in the X axis as the acceptance rate of the x variable is very high if we compare it with the acceptance rate for the y variable. 3. How could the performance of the above algorithm be improved? Propose two methods. Firstly, one tool might be to change the probability of selecting each variable from $\frac{1}{2}$ to a value more
In [6]:	<pre>adequate to the obtained acceptance rates. x_prob=MHwG(n_iter,a,sigma_prop=[3,3],prob_k=0.3) plt.figure() plt.scatter(x_prob[Nb_burn:,0],x_prob[Nb_burn:,1],alpha=0.3) plt.title('Simulated data following the algorithm') plt.show() Acceptance rates [0.86837721 0.24946421] Simulated data following the algorithm 2</pre>
In [7]:	Secondly, to change the selected values for the σ values of the algorithm. For instance, increasing the σ_1 parameter. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	Simulated data following the algorithm 2.0 1.5 1.0 0.5 -0.5
	1.B – Adaptive Metropolis–Hastings within Gibbs sampler 1. Implement the adaptative Metropolis–Hastings within Gibbs sampler and test the algorithm on the density π defined in the part A: Using auto-correlation plots (use a built in function) compare the performance of the algorithm with or without
In [8]:	built-in function), compare the performance of the algorithm with or without adaptation. $R_{x,y} = \frac{\sigma_{x,y}}{\sigma_x \sigma_y} \in [-1,1] \text{ where } \sigma_x = \frac{1}{N-1} \sum_{i=1}^n (x_i - \overline{x})^2.$ $\text{def } \text{crosscorr}(\texttt{x}, \texttt{y}, \texttt{max_lag=None}): \\ \text{\# } \text{cross-correlation function} \\ \text{if } \text{max_lag} \text{ is None}: \\ \text{max_lag=len}(\texttt{x}) \\ \text{sx=pd.Series}(\texttt{x}) \\ \text{sy=pd.Series}(\texttt{y}) \\ \text{res=np.zeros}(\text{max lag})$
In [9]:	<pre>for lag in range(1,max_lag): res[lag]=sx.corr(sy.shift(lag)) res[0]=1 return res def adaptative_mhwg(n_batches,batch_size,d,log_like=log_pi,init=None): # Adaptative Metropolis-Hastings with Gibbs sampler if init is None: x=np.random.randn(d) else: x=np.array(init)</pre>
	<pre>accepts=np.zeros((n_batches,d)) current_log_pi=log_like(x) samples=np.zeros((n_batches*batch_size,d)) L=np.zeros((n_batches,d)) mask=np.eye(d) it=range(n_batches) for i in it: # Do the MW_wG step for b in range(batch_size): for k in range(d):</pre>
	<pre>u=np.random.randn()*np.exp(L[i-1,k]) x2=x+mask[k]*u # compute acceptance log-prob log_pi_prop=log_like(x2) log_alpha=log_pi_prop-current_log_pi if np.log(np.random.rand()) < log_alpha:</pre>
In [10]:	results_new,accepts,L=adaptative_mhwg(n_iter,100,d=2,log_like=log_pi)
In [11]:	<pre>N_burn=int(n_iter/10) plt.figure() plt.scatter(results_new[N_burn:,0],results_new[N_burn:,1],label="Adaptative MH") plt.legend(loc='upper right') plt.show()</pre> Adaptative MH
In [12]:	plt.figure() plt.plot(crosscorr(x[:,0],x[:,0],max lag=50),label='Corr(x,x)')
	<pre>plt.plot(crosscorr(x[:,0],x[:,1],max_lag=50),label='Corr(x,y)') plt.plot(crosscorr(x[:,1],x[:,1],max_lag=50),label='Corr(y,y)') plt.xlabel('Time shift',fontsize=15) plt.ylabel('Correlation',fontsize=15) plt.legend(loc='upper right',fontsize=10) plt.title('Initial algorithm') plt.show() plt.figure() plt.plot(crosscorr(results_new[:,0],results_new[:,0],max_lag=50),label='Corr(x,x)') plt.plot(crosscorr(results_new[:,0],results_new[:,1],max_lag=50),label='Corr(x,y)') plt.plot(crosscorr(results_new[:,1],results_new[:,1],max_lag=50),label='Corr(y,y)') plt.xlabel('Time shift',fontsize=15)</pre>
	plt.ylabel('Correlation', fontsize=15) plt.legend(loc='upper right', fontsize=10) plt.title('Adaptative algorithm') plt.show() Initial algorithm Corr(x,x) — Corr(x,y) — Corr(y,y)
	0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	Adaptative algorithm 1.0 Corr(x,x) Corr(x,y) Corr(y,y) Corr(y,y)
	We can see that in the correlation plots that the sample obtained using the Adaptative version the correlation curves converge quickly to zero. This cannot be seen in the original version. So, the adaptative version produce samples that can be considered random, which cannot be stated for the original version.
In [13]:	2. We can also compare the performance of our algorithm on more complicated target densities. For example centered d-dimensional Gaussian $\mathcal{N}(0,\Sigma)$ or "banana"-shaped density as in TP 2: $\forall x=(x_1,x_2\cdots,x_d)\in\mathbb{R}^d, \\ f_B(x)\propto \exp\left(-\frac{x_1^2}{200}-\frac{1}{2}(x_2+Bx_1^2-100B)^2-\frac{1}{2}(x_3^2+\cdots+x_d^2)\right).$ with open('tmalaexcov.txt') as f: array = []
In [14]: In [15]:	<pre># log-likelihood for the d-dimensional centered Gaussian return -0.5 * (np.log(np.linalg.det(cov_matrix)) + residuals.T.dot(np.linalg.inv(</pre>
In [16]: In [17]: In [18]:	
	<pre>plt.show() plt.figure() for i in range(20): plt.plot(crosscorr(results_banana[:,i],results_banana[:,i],max_lag=50)) plt.xlabel('Time shift',fontsize=15) plt.ylabel('Correlation',fontsize=15) plt.title('Banana shaped') plt.show()</pre>
	Multidimensional Gaussian 1.00 -
	0.75 - 0 10 20 30 40 50 Time shift Banana shaped 1.0 - 0.8
	0.6 - 0.0 -
In [19]:	<pre>Nb_burn=100 plt.figure() plt.scatter(results_banana[Nb_burn:,0],-1*results_banana[Nb_burn:,1]) plt.title('Banana sample') plt.xlabel('\$x_1\$') plt.ylabel('\$x_2\$') plt.show()</pre> Banana sample
	20 - 20 - 10 - 10 - 10 - 20
	We can see that the correlation decreases for all the dimensions of the multidimensional Gaussian. Also, it converges quickly for all the x_d with $d \geq 3$ for the banana. Also, in this case the figure obtained by representing the first two dimensions looks like the banana.
In [20]:	1. Write a Metropolis-Hastings Symmetric Random Walk algorithm (you may use your code from previous tutorial classes) to sample from π. mu = np.array([[2.18,5.76],[8.67,9.59],[4.24,8.48],[8.41,1.68],
In [21]: In [22]:	<pre>def log_pi_gmm(x,mu=mu,sigma=sigma,w=w,Nb_gauss=20): # log-likelihood of the GMM pi = 0 for i in range(Nb_gauss): pi += w[i]/(2*np.pi*sigma[i]**2) * np.exp(-(x-mu[i,:]).T.dot(x-mu[i,:])/(2*sireturn np.log(pi)) def mh_srw(log_likeli,n_iter,init=None,progress=True,sigma_prop=[1e-2,1e-2]): # Metropolis-Hastings Symmetric Random Walk if init is None:</pre>
	<pre>x=np.random.randn(2) else: x=np.array(init) accepts=0 current_log_pi=log_likeli(x) sigma_prop=np.array(sigma_prop) samples=np.zeros((n_iter,2)) for i in range(n_iter): # generate next move x_prop=x+sigma_prop*np.random.randn(2) # compute acceptance log-prob</pre>
	<pre>prop_log_pi=log_likeli(x_prop) log_alpha=prop_log_pi-current_log_pi if np.log(np.random.rand()) < log_alpha:</pre>
In [23]:	<pre>2. Show that the Metropolis-Hastings algorithm (even the adaptive Metropolis-Hastings algorithm) fails to sample from π. def MHwG_exo2(n_iter,init=None,progress=True,sigma_prop=[1e-2,1e-2],prob_k=0.5): # Metropolis-Hastings with Gibbs for the considered GMM accepts=np.zeros(2) attempts=np.zeros(2) if init is None: x=np.random.randn(2) else: x=np.array(init) current log pi=log pi gmm(x)</pre>
	<pre>samples=np.zeros((n_iter,2)) mask=np.eye(2) for i in range(n_iter): k=np.random.rand() if k<prob_k: #="" else:="" generate="" k="1" new="" sample="" u="np.random.randn()*sigma_prop[k]</pre"></prob_k:></pre>
	<pre>x2=x+mask[k]*u # compute the acceptance log_alpha=log_pi_gmm(x2)-current_log_pi if np.log(np.random.rand())<log_alpha:< td=""></log_alpha:<></pre>
In [24]:	Nb_burn=5000 results_toy_original=MHwG_exo2(50000,init=None,progress=True,sigma_prop=[1e-2,1e-2],pplt.figure() plt.scatter(results_toy_original[Nb_burn:,0],results_toy_original[Nb_burn:,1],label='plt.scatter(mu[:,0],mu[:,1],label='\$\mu_i\$') plt.legend(loc='upper left',fontsize=10) plt.title('Sampling using the original algorithm') plt.show() Acceptance rates [0.96640837 0.96378785] Sampling using the original algorithm
	10 Sampling
In [25]: In [26]:	<pre>results_toy=mh_srw(log_pi_gmm,50000,init=[8,2],sigma_prop=[1e-1,1e-1]) Acceptance rate: 0.55264 lista_init=[[2,0],[2,6],[4,8],[8,2],[5,5]] n_init=5000 Nb_burn=int(n_init/10)</pre>
	<pre>plt.figure(figsize=(30,6)) for init in range(len(lista_init)): results_toy=mh_srw(log_pi_gmm,50000,init=lista_init[init],sigma_prop=[1e-1,1e-1]) plt.subplot(1,5,init+1) plt.scatter(results_toy[Nb_burn:,0],results_toy[Nb_burn:,1],label='Sampling') plt.scatter(mu[:,0],mu[:,1],label='\$\mu_i\$') plt.legend(loc='upper left',fontsize=10) plt.title('Starting in '+str(lista_init[init])) plt.suptitle('Sampling using the Adaptative algorithm') plt.show()</pre>
	Acceptance rate: 0.58636 Acceptance rate: 0.55296 Acceptance rate: 0.57306 Acceptance rate: 0.55484 Acceptance rate: 0.5511 Sampling using the Adaptative algorithm Starting in [2.0] Starting in [2.0] Starting in [4.8] Starting in [4.8] Starting in [8.2] Acceptance rate: 0.55484 Acceptance rate: 0.55484 Acceptance rate: 0.55484 Acceptance rate: 0.5511 Sampling using the Adaptative algorithm Starting in [4.8] Starting in [8.2]
	We can see that the algorithm fails to sample from π as it is not able to generate samples for all the different Gaussians. Moreover, it only generates samples around the mode or modes that are the closest to the initial sample. Hence, it does not work properly to generate samples from the multimodal target distribution π . 2.B – Parallel Tempering
In [27]:	1. Implement the Parallel Tempering algorithm. We can explore the K chains in parallel in order to explore all the space. In this case, we switch the chains with a σ_{prop} big and a big T_i to be able to go further.
	<pre>def PT(T,N,pi_gmm): # Parallel Tempering algorithm def next_x(x_old,y_old,pi_gmm,t,sigma): # generation of move in the x axis x_new=np.random.normal(loc=x_old,scale=sigma) # compute the acceptance alpha=min(0,np.log(pi_gmm(np.array([x_new,y_old])))*(1./(1.*t))-np.log(pi_gmm if (np.log(np.random.rand()) < alpha): return x_new return x_old def next y(x old,y old,pi gmm,t,sigma):</pre>
	<pre># generation of move in the y axis y_new=np.random.normal(loc=y_old, scale=sigma) # compute the acceptance alpha=min(0,np.log(pi_gmm(np.array([x_old,y_new])))*(1./(1.*t))-np.log(pi_gmm if (np.log(np.random.rand()) < alpha): return y_new return y_old def swap_stage(val_0,val_1,idx_0,idx_1,T,pi_gmm): # considering to swap between two chains alpha=pi_gmm(val_0)**(1/T[idx_1])*pi_gmm(val_1)**(1./(1.*T[idx_0])) alpha=min(1,alpha/(pi_gmm(val_1)**(1./(1.*T[idx_1]))*pi_gmm(val_0)**(1./(1.*T[aux_0])) aux_0_x=val_0[0]</pre>
	<pre>aux_0_y=val_0[1] aux_1_x=val_1[0] aux_1_y=val_1[1] if (np.random.rand()<alpha): #="" aux_0_x,aux_0_y,aux_1_x,aux_1_y="" aux_1_x,aux_1_y,aux_0_x,aux_0_y="" compute="" for="" i="" in="" iteration="" k="len(T)" range(k):="" range(n):="" return="" samples="" samples[t,0,i+1]="next_x(samples[t,0,i],samples[t,1,i],pi_gmm,T[t],sigma=0)</pre" t="" the=""></alpha):></pre>
	<pre>samples[t,1,i+1]=next_y(samples[t,0,i+1],samples[t,1,i],pi_gmm,T[t],sigma # considering the swapping between two chains sub=np.random.choice(np.arange(K),size=2,replace=False) val_0=samples[sub[0],:,i+1] val_1=samples[sub[1],:,i+1] idx_0=sub[0] idx_1=sub[1] aux_0_x,aux_0_y,aux_1_x,aux_1_y=swap_stage(val_0,val_1,idx_0,idx_1,T,pi_gmm) samples[sub[0],0,i+1]=aux_0_x samples[sub[0],1,i+1]=aux_0_y</pre>
In [28]: In [29]:	<pre>samples[sub[1],0,i+1]=aux_1_x samples[sub[1],1,i+1]=aux_1_y return samples</pre> 2. In order to illustrate the performance of the algorithm, use your code to sample from the distribution π of Part A. T=np.array([60, 21.6, 7.7, 2.8, 1]) results_PT=PT(T,10000,pi_gmm) N_burn=int(n_iter/10) plt.figure(figsize=(20,4))
	<pre>K=len(T) for i in range(K): plt.subplot(1,5,i+1) plt.xlim(0,10) plt.ylim(0,10) plt.title('T='+str(T[i])) plt.scatter(results_PT[i,0,N_burn:],results_PT[i,1,N_burn:],alpha=0.3) plt.scatter(mu[:,0],mu[:,1]) plt.show()</pre> T=60.0 T=21.6 T=7.7 T=2.8 T=1.0 T=1.0
	From the different figures we can see that having a high temperature allow the algorithm to easily swap between the modes. This fact allow the algorithm to explore all the modes in exchange of a high
In []:	computational cost. We might remark that it seems to work well as it is able to capture all the different modes. However, we have to highlight that it might not work as good as in this case if we consider a different sequence of temperatures and covariances matrix than the ones given. Exercise 3: Bayesian analysis of a one-way random effects model
	1. Write the density of the a posteriori distribution (X,μ,σ^2,τ^2) — it can be given up to a normalizing constant — i.e the density of the distribution $(Y,X,\mu,\sigma^2,\tau^2)$. By Bayes' Theorem we have that $P(X,\mu,\sigma^2,\tau^2 Y) \propto P(X,\mu,\sigma^2,\tau^2,Y) = P(Y X,\mu,\sigma^2,\tau^2)P(X \mu,\sigma^2,\tau^2)P(\mu,\sigma^2,\tau^2).$ Moreover,
	$egin{aligned} P(Y X,\mu,\sigma^2, au^2) &= \prod_{i=1}^n \prod_{j=1}^{k_i} rac{1}{ au\sqrt{2\pi}} \expigg(-rac{1}{2 au^2} (y_{i,j}-x_i)^2igg) \ P(X \mu,\sigma^2, au^2) &\propto rac{1}{\sigma^N} \expigg(-rac{\sum_{i=1}^N (x_i-\mu)^2}{2\sigma^2}igg) \ P(\mu,\sigma^2, au^2) &\propto rac{1}{\sigma^{2(1+lpha)}} \expigg(-rac{eta}{\sigma^2}igg) rac{1}{ au^{2(1+\gamma)}} \expigg(-rac{eta}{ au^2}igg). \end{aligned}$
T	$P(X,\mu,\sigma^2,\tau^2 Y) \propto \tau^{-2(\frac{n\cdot k}{2}+1+\gamma)}\sigma^{-2(\frac{n}{2}+1+\alpha)}$ $\exp\left(-\frac{1}{2\tau^2}\sum_{i=1}^N\sum_{j=1}^{k_i}(y_{ij}-x_i)^2-\frac{1}{2\sigma^2}\sum_{i=1}^N(x_i-\mu)^2-\beta(\sigma^{-2}+\tau^{-2})\right).$ 2. Implement a Gibbs sampler which updates in turn (σ^2,τ^2,μ,X) one at a time.
In [30]: In [31]:	<pre>from scipy.stats import invgamma def gibbs (Y, alpha, beta, gamma, n_iter=1000): # Gibbs sampler for the considered distribution # we use sigma and tau instead of sigma^2 and tau^2 N,K=Y.shape mu=np.zeros(n_iter+1) sigma=np.ones(n_iter+1) tau=np.ones(n_iter+1) X=np.zeros((n_iter+1,N)) Y_sum=Y.sum(axis=1)</pre>
	-
	<pre># mu update mu[i]=X[i-1].mean()+np.random.randn()*sigma[i]/np.sqrt(N) # sample update for j in range(N):</pre>
In [32]:	3. Implement a Block-Gibbs sampler which updates σ^2 , then τ^2 and then the block (X,μ) .
	<pre>N,K=Y.shape mu=np.zeros(n_iter+1) sigma=np.ones(n_iter+1) tau=np.ones(n_iter+1) X=np.zeros((n_iter+1,N)) Y_sum=Y.sum(axis=1) for i in range(1,n_iter+1): # sigma update a=alpha+N/2 b=beta+((X[i-1]-mu[i-1])**2).sum()/2 sigma[i]=np.sqrt(invgamma(a,scale=b).rvs())</pre>
	<pre>sigma[i]=np.sqrt(invgamma(a,scale=b).rvs()) # tau update a=gamma+N*K/2 b=beta+((Y-X[i-1][:,None])**2).sum()/2 tau[i]=np.sqrt(invgamma(a,scale=b).rvs()) # mu and X updates mu[i]=X[i-1].mean()+np.random.randn()*sigma[i]/np.sqrt(N) for j in range(N): s=np.sqrt(((sigma[i])**2)/(K*sigma[i]**2+tau[i]**2)) m=(Y_sum[j]*sigma[i]**2)/(K*sigma[i]**2+tau[i]**2) X[i,j]=m+np.random.randn()*s*tau[i]**2</pre>
	-
In [33]:	conditional distributions. 5. Test your code on a synthetic dataset $Y=\{y_{i,j},i\in\{1,\cdots,N\},j\in\{1,\cdots,k_i\}\}$ generated from the previous model. $\begin{bmatrix} N=1000\\ K=100\\ mu_init = 10 \end{bmatrix}$
	<pre>sigma_init = 1 tau_init = 0.5 alpha=0.1 beta=0.1 gamma=0.1</pre>

<pre>plt.figure() for i in range(K): plt.plot(crosscorr(X[:,i],X[:,i],max_lag=50)) plt.xlabel('Time shift',fontsize=15) plt.ylabel('Correlation',fontsize=15) plt.title('Gibbs') plt.show() N,K=X_block.shape plt.figure() for i in range(K): plt.plot(crosscorr(X_block[:,i],X_block[:,i],max_lag=50)) plt.xlabel('Time shift',fontsize=15) plt.ylabel('Correlation',fontsize=15) plt.title('Block Gibbs') plt.show()</pre> Gibbs							
0.8 - 0.6 - 0.4 - 0.2 -	Gibbs Gibbs 10 0.8 0.6 0.4 0.2						
0.75 0.50 0.25 0.00 -0.25		Time shift Block Gibbs	40 5	0			
	0 10 ee that the Block	Time shift K Gibbs produce be and the correlation	etter results thai		lgorithm as the	e values are	