- 1 Si n tiene divisores distintos de 1 entonces tiene al menos un divisor menor que \sqrt{n}
- 2 Demuestre que el conjunto de números primos es infinito

Supongamos lo contrario. Entonces sea $P=p_1,p_2,...,p_n$ el conjunto de todos los números primos que existen

$$S = (\prod_{i=1}^{n} pi) + 1$$

Con $p_i \in P$

Todo número tiene un divisor primo, entonces existe $p_k \in P$ tal que $p_k|S$ Luego $p_k|S-1$, ya que S-1 es la multiplicación de todos los primos que existen. Entonces $p_k|S$ y $p_k|S-1$ por tanto $p_k|S-(S-1)$, es decir $p_k|1$ lo cual solo es posible si $p_k=1$, pero el 1 no es un número primo. **Contradicción**. Por tanto el conjunto de números primos es infinitos, ya que para cualquier conjunto finito de primos dado existe un número primo que no pertencerá a dicho conjunto.

3 Sea a entero, $a \neq 0$ y c_i entero con $1 \leq i \leq n$. Pruebe que si $a|c_i$, $\forall i$, entonces $a|c_1x_1 + c_2x_2 + ... + c_nx_n$ para $x_1, x_2, ..., x_n$ cualesquiera.

Si $a|c_ientoncesc_i = a * q_i$

$$a|c_1x_1 + c_2x_2 + \dots + c_nx_n$$

 $a|aq_1x_1 + aq_2x_2 + \dots + a_qn_xn$
 $a|a(q_1x_1 + q_2x_2 + \dots + q_nx_n)$

Demostrado

4 Sea $k \in \mathbb{Z}^*$. Demuestra que k divide al producto de k enteros consecutivos