

AVALIAÇÃO DO SISTEMA DE MEDIÇÃO - TIMON 2.5

Laboratório de Robótica e Sistemas Autônomos - RoSA

Jéssica Lima Motta Leonardo Mendes de Souza Lima Miguel Felipe Nery Vieira Vinícius José Gomes de Araujo Felismino

Introdução

Este documento tem como objetivo analisar o sistema de medição de dados coletados durante os testes realizados na etapa de corrida de revezamento do desafio 2.5C, utilizando o método de análise de variância (ANOVA).

Coleta dos Dados

Foram realizados 3 testes consecutivos em 4 máquinas diferentes, exibidas na Tabela 1.

Tabela 1: Máquina utilizadas por operador

	Máquina 1	Máquina 2	Máquina 3	Máquina 4
Nome	Jéssica	Leonardo	Miguel	Vinícius
Processador	i7-950H	FX 6300	i7-4790	i7-8550U
Memória	8 GB RAM	$4~\mathrm{GB}~\mathrm{RAM}$	$16~\mathrm{GB}~\mathrm{RAM}$	8 GB RAM
GPU	GTX 1660 Ti	GTX 750 Ti	GT 730	GeF MX150

Cada operador tornou-se responsável em registrar o tempo que cada robô Darwin-OP levava para realizar o seu percurso na corrida de revezamento. Os dados medidos encontram-se exibidos na Tabela 2.

Tabela 2: Dados Medidos por Operadores

Máquina	Robô	Teste	Tempo (s)	Máquina	Robô	Teste	Tempo (s)
1	1	1	62.210	3	1	1	66.589
1	1	2	67.055	3	1	2	67.673
1	1	3	65.496	3	1	3	66.132
1	2	1	68.529	3	2	1	68.500
1	2	2	64.352	3	2	2	63.283
1	2	3	67.405	3	2	3	68.312
1	3	1	68.063	3	3	1	64.767
1	3	2	69.005	3	3	2	69.628
1	3	3	64.155	3	3	3	63.055
1	4	1	66.685	3	4	1	66.536
1	4	2	65.966	3	4	2	66.139
1	4	3	67.553	3	4	3	68.835
2	1	1	66.311	4	1	1	62.480
2	1	2	67.995	4	1	2	65.503
2	1	3	65.864	4	1	3	64.498
2	2	1	67.928	4	2	1	69.168
2	2	2	62.444	4	2	2	63.142
2	2	3	66.577	4	2	3	67.336
2	3	1	65.796	4	3	1	65.806
2	3	2	68.764	4	3	2	68.634
2	3	3	66.984	4	3	3	62.443
2	4	1	66.772	4	4	1	67.633
2	4	2	64.137	4	4	2	65.668
2	4	3	68.172	4	4	3	67.806

Para avaliar a precisão do sistema de medição foi realizado um estudo de Repetibilidade e Reprodutibilidade (R&R) do sistema. Esse estudo compara a variação do sistema de medição com a variação total do processo. Se a variação do sistema de medição for grande em relação à variação das peças, o sistema provavelmente não proverá informações úteis e consequentemente não poderá fazer a distinção correta entre as mesmas.

Interpretação dos resultados obtidos

Para o cálculo dos componentes de variância é utilizado o procedimento ANOVA. A Tabela 3 exibe os graus de liberdade (Df), soma dos quadrados (Sum Sq), média dos quadrados (Mean Sq), valor da distribuição F, e o P-valor para cada uma das fontes.

Tabela 3: ANOVA com Dois Fatores com Interação

	Df	Sum Sq	Mean SQ	F value	Pr(>F)
Robô	3	137.67	45.89	37.216	2.12e-05
Máquina	3	4.31	1.44	1.165	0.376
Robô:Máquina	9	11.10	1.23	0.963	0.487
Repetibilidade	32	40.95	1.28		
Total	47	194.02			

Caso o P-valor seja maior do que 0.05, o termo será considerado estatisticamente irrelevante. Desta forma, como o P-valor de Robô:Máquina é igual a 0.487, é gerada a Tabela 4 desconsiderando a interação. O elevado p-valor de Máquina (0.348) indica que essa fonte do sistema não é estatisticamente significativa e portanto pode ser desconsiderada caso haja o interesse em reduzir a variabilidade do sistema de medição (COMO..., 2020). Pode-se verificar também a quantidade de graus de liberdade disponível para estimar a repetibilidade do medidor, sendo recomendado um valor que esteja de 30 a 45 e no nosso caso igual a 41.

Tabela 4: ANOVA com Dois Fatores sem Interação

	Df	Sum Sq	Mean	F Value	Pr>F
Robô	3	137.67	45.89	36.147	1.37 e-11
Máquina	3	4.31	1.44	1.131	0.348
Repetibilidade	41	52.05	1.27		
Total	47	194.02			

A tabela 5, chamada Gage R&R, temos a coluna de componentes da variância (Varcomp) e a coluna que representa o percentual de contribuição da variância do respectivo componente (%Contrib). Nota-se que a soma da repetibilidade com a reprodutibilidade corresponde a um total de 25.66% de variabilidade do sistema e isso permite concluir que o sistema de medição pode está comprometido, uma vez que, este percentual deveria ser muito pequeno. O %Contrib peça a peça é de 74.34% e é responsável pela maior parte da variabilidade do sistema, quanto maior esse valor mais facilmente o sistema conseguiria distinguir as peças.

A %Contrib é baseada nas estimativas dos componentes da variância. Cada valor em Varcomp é dividido pela variação total e depois multiplicado por 100 (ESTUDOS..., 2020).

Tabela 5: Gage R&R

	Varcomp	%Contrib
Total Gage R&R	1.28339665	25.66
—Repetibilidade	1.26949803	25.38
—Reprodutibilidade	0.01389862	0.28
Máquina	0.01389862	0.28
Peça a Peça	3.71826828	74.34
Variação Total	5.00166493	100

A tabela 6 nos fornece a referência final para aprovar ou rejeitar o sistema de medição. Esta tabela informa os valores calculados para as fontes de variação, desvios padrão e variáveis do estudo. Para encontrar os valores que estão na coluna variável do estudo, seguimos a recomendação da *Automotive Industry Action Group* (AIAG): multiplicamos o valor do desvio padrão por 6 em uma distribuição normal, já que dentro de 6 desvios padrão estão certa de 99,73% dos dados (ESTUDOS..., 2020). Por fim, a coluna %Var do estudo divide a variável do estudo pela variação total para descobrir quanto da variação do sistema de medição representa da variação total do sistema. Abaixo da tabela, o número de categorias distintas informa quantas categorias diferentes o sistema de medição foi capaz de discriminar de acordo com as variações apresentadas.

Tabela 6: Avaliação das medições

	Desvio padrão	Var do estudo	%Var do estudo
Total Gage R&R	1.1328710	6.7972259	50.66
—Repetibilidade	1.1267200	6.7603202	50.38
—Reprodutibilidade	0.1178924	0.7073545	5.27
Máquina	0.1178924	0.7073545	5.27
Peça a Peça	1.9282812	11.5696870	86.22
Variação Total	2.2364402	13.4186414	100

Número de categorias distintas - 2

Para que o sistema de medição seja considerado aceitável, é esperado que o mesmo possua valor menor que 10% em seu Gage R&R. O sistema de medição analisado neste documento está acima de 50% em seu Gage R&R total, logo, é classificado como inaceitável e deve ser melhorado. É recomendado pela AIAG que o numero de categorias distintas seja maior ou igual a 5 para uma ideal diferenciação. O valor calculado de 2, é considerado insuficiente.

A Figura 1 representa o gráfico dos componentes da variação onde cada agrupamento de barras representa uma origem de variação. A altura das barras, representa percentualmente, o quanto cada componente é responsável. As barras azuis representam o percentual de contribuição para a variação geral e as rosas a contribuição para a variação no estudo.

Em um bom sistema de medição, a maior parte de variação está em *Part-to-Part*(Peça a Peça). No nosso caso, há uma grande variação atribuída ao percentual do sistema de medição (G.R&R) e por isso será necessário corrigir o sistema de medição.

Figura 1: Componentes da variação

Components of Variation

Já na figura 2 podemos verificar a amplitude da amostra por operador. Observe que segundo a tabela 1 temos quatro operadores diferentes e é exatamente isto que encontra-se disposto aqui. Cada ponto representa a diferença entre a maior e a menor leitura observada para cada uma das três medições realizadas em cada robô. Embora haja um certo padrão comportamental entre os quatro gráficos, valores muito distantes como o do robô 1 no operador 2 indicam a existência de dificuldades nesta medição.

Figura 2: Amplitude da Amostra por Máquina

Figura 3: Média da amostra por máquina

x Chart by appr

Na Figura 3 é plotada a média das medições com o mesmo intuito do gráfico exibido na Figura 2. Mas neste caso a média é utilizada. Neste gráfico estão exibidas as médias do tempo para cada robô. Podemos observar que há um comportamento similar entre as máquinas 2 e 3, porém as máquinas 1 e 4 exibem médias diferentes do que se esperava para o sistema.

Na seção tempo_r by robo_r exibida na figura 4 encontram-se distribuídas em torno do ponto central (média) as leituras efetuadas para cada robô, sendo traçada uma reta ligando estas médias. Pode-se notar que existem alguns pontos distantes do ponto central, o que pode significar um erro de medição, uma medição ruim ou errada.

Figura 4: Tempo por Robô

tempo_r by robo_r

Figura 5: Tempo por máquina

tempo_r by maquina_r

Na Figura 5 cada um dos testes têm distribuídos em torno da linha azul central (a média) as leituras efetuadas. Note que as leituras se distribuem em torno das leituras em azul, o que significa que estão muito distantes do alvo o que representa um erro de leitura, uma leitura ruim ou errada. As medidas de tempo encontradas para cada um dos operadores encontram-se exibidos nesse gráfico, onde cada valor encontrado é representado por um círculo e uma reta passa por seus valores médios. Quanto menor o ângulo entre cada uma das máquinas melhor para o sistema, pois significa que não há grande diferença entre as capacidades de operação das máquinas.

Figura 6: Média da amostra por máquina

robo r:maquina r Interaction

Na seção 6 está apresentada uma junção dos gráficos exibidos na Figura 3 a fim de fazer uma comparação entre as médias encontradas para cada robô. É usado para checar se existe uma relação entre máquina e um robô específico. Caso alguma máquina tenha

uma dificuldade com algum tipo de robô, será possível observar uma discrepância entre as linhas em determinado robô. No gráfico apresentado, verifica-se que há muita diferença entre cada máquina.

Conclusão

O valor encontrado na porcentagem de variação do estudo classifica o sistema de medição como inaceitável e a não conformidade com o numero de categorias distintas também é um fator que contribui negativamente com os resultados encontrados nos levando a concluir que algum dos operadores deve ter cometido algum erro durante as suas medições. É recomendada como possível solução a retomada dos dados com realização de novos testes.

REFERÊNCIAS

COMO Planejar, Analisar e Interpretar os Resultados de um Estudo de Gage RR Expandido. 2020. https://www.minitab.com/pt-br/Published-Articles/Como-Planejar, -Analisar-e-Interpretar-os-Resultados-de-um-Estudo-de-Gage-R-R-Expandido/>, note = Accessed: 2020-07-20. Citado na página 3.

ESTUDOS de medição para dados contínuos. 2020. https://www.minitab.com/uploadedFiles/Documents/sample-materials/FuelInjectorNozzles-PT.pdf, note = Accessed: 2020-07-20. Citado 2 vezes nas páginas 3 e 4.