Codility_

CodeCheck Report: trainingARGS2E-4HQ

Test Name:

Summary Timeline

Check out Codility training tasks

Tasks Details

1. FrogJmp Task Score Correctness Performance
Count minimal number of jumps from position X to Y.

100%

Task description

A small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to a position greater than or equal to Y. The small frog always jumps a fixed distance, D.

Count the minimal number of jumps that the small frog must perform to reach its target.

Write a function:

class Solution { public int solution(int X, int Y,
int D); }

that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.

For example, given:

X = 10

Y = 85

D = 30

Solution

Programming language used:	C#	
Total time used:	1 minutes	•
Effective time used:	1 minutes	•
Notes:	not defined yet	
ask timeline		•
		7
19:06:40	7	7 19:07:21

the function should return 3, because the frog will be positioned as follows:

- after the first jump, at position 10 + 30 = 40
- after the second jump, at position 10 + 30 + 30 = 70
- after the third jump, at position 10 + 30 + 30 + 30= 100

Write an efficient algorithm for the following assumptions:

- X, Y and D are integers within the range [1..1,000,000,000];
- X ≤ Y.

Copyright 2009–2022 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

```
1
     using System;
2
3
     /* Lesson 3.1 - Odd Occurrences in Array
      * Paulo Santos
4
5
      * 24.Nov.2022
6
7
     class Solution {
8
         public int solution(int X, int Y, int D) {
9
10
                       * Check the input
11
12
                      if ((X < 1 || X > 1000000000) ||
13
14
                              (Y < 1 | | X > 1000000000) |
15
                              (D < 1 \mid \mid X > 1000000000))
                              throw new ArgumentException
16
17
18
19
                         Calculate the answer
20
             var ans = ((double)(Y - X) / D);
21
             if (ans != Math.Floor((double)ans))
22
23
                  return (int)(Math.Floor(ans) + 1);
24
25
             return (int)ans;
26
         }
27
     }
```

Analysis summary

The solution obtained perfect score.

Analysis

Detected time complexity: O(1)

ехра	nd all Example tests		
•	example example test	√ OK	
ехра	nd all	Correctness tests	
•	simple1 simple test	√ OK	
•	simple2	✓ OK	
•	extreme_positio	n ✓ OK	
•	small_extreme_j	ump ✓ OK	
expand all Performance tests			
•	many_jump1 many jumps, D = 2	√ OK	
•	many_jump2 many jumps, D = 99	√ OK	
•	many_jump3 many jumps, D = 12	√ OK	
•			

big_extreme_jump maximal number of jumps	✓ OK
small_jumps many small jumps	√ OK