

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

EM basic

Basics of deformation, elasticity, and finite elements

Yuanming Hu

MIT CSAIL

June 15, 2020

Overview

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

FEM basic

Simulating elastic materials is a lot of fun!

- Cool visual effects
- Not too hard to implement (using Taichi (Demos))
- Base of other materials (viscoelastic, elastoplastic, viscoplastic...)

Recommended reading

- 1 The classical FEM method and discretization methodology by *Eftychios Sifakis*¹
- 2 The Material Point Method for Simulating Continuum Materials by Chenfanfu Jiang et al.²

¹E. Sifakis and J. Barbic (2012). "FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction". In: *Acm siggraph 2012 courses*, pp. 1–50.

²C. Jiang et al. (2016). "The material point method for simulating continuum materials". In: *ACM SIGGRAPH 2016 Courses*, pp. 1–52.

Table of Contents

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticit

Deformation

2 Elasticity

FEM basics

Deformation

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

Deformation map ϕ : a (vector to vector) function that relates rest material position and deformed material position.

$$\mathbf{x}_{\mathrm{deformed}} = \phi(\mathbf{x}_{\mathrm{rest}})$$

Deformation gradient ${f F}$

$$\mathbf{F} := rac{\partial \mathbf{x}_{ ext{deformed}}}{\partial \mathbf{x}_{ ext{rest}}}$$

Deformation gradients are translational invariant

 $\phi_1 = \phi(\mathbf{x}_{\mathsf{rest}})$ and $\phi_2 = \phi(\mathbf{x}_{\mathsf{rest}}) + \mathbf{c}$ have the same deformation gradients!

Deform/rest volume ratio $J = \det(\mathbf{F})$

Table of Contents

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

TENA II.

Deformation

② Elasticity

FEM basics

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

FEM basics

Hyperelasticity

Hyperelastic materials: materials whose stress–strain relationship is defined by a **strain energy density function**

$$\psi = \psi(\mathbf{F})$$

Intuitive understanding: ψ is a potential function that penalizes deformation.

"Stress": the material's internal elastic forces.

"Strain": just replace it with deformation gradients ${f F}$ for now.

Be careful

We use ψ as the strain energy density function and ϕ as the deformation map. They are completely **different**.

Stress tensor

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

FEM basics

Stress stands for internal forces that infinitesimal material components exert on their neighborhood.

Based on our need, we use different measures of stress

- The First Piola-Kirchhoff stress tensor (PK1): $\mathbf{P}(\mathbf{F}) = \frac{\partial \psi(\mathbf{F})}{\partial \mathbf{F}}$ (easy to compute, but in rest space)
- Kirchhoff stress: τ
- ullet Cauchy stress tensor: σ (symmetric, because of conservation of angular momentum)

Relationship: $\tau = J\sigma = \mathbf{P}\mathbf{F}^T$ $\mathbf{P} = J\sigma\mathbf{F}^{-T}$ Traction $\mathbf{t} = \sigma^T\mathbf{n}$.

Intuition of $\mathbf{P} = J\sigma \mathbf{F}^{-T}$: \mathbf{F}^{-T} compensates for material deformation. (Note that it's \mathbf{F}^{-T} instead of \mathbf{F}^{-1} since we transform the normal \mathbf{n} instead of \mathbf{x} .)

Elastic moduli (isotropic materials)

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

FEM basic

- Young's modulus $E = \frac{\sigma}{\varepsilon}$
- Bulk modulus $K = -V \frac{dP}{dV}$
- Poisson's ratio $v \in [0.0, 0.5)$ (Auxetics have negative Poisson's ratio)

Lamé parameters:

- ullet Lamé's first parameter μ
- Lamé's second parameter λ (aka. shear modulus, denoted by G)

Useful conversion formula:

$$K = \frac{E}{3(1-2v)}$$
 $\lambda = \frac{Ev}{(1+v)(1-2v)}$ $\mu = \frac{E}{2(1+v)}$

Hyperelastic material models

Basics of deformation. elasticity, and finite elements

Yuanming Hu

Elasticity

Popular ones in graphics:

- Linear elasticity (small deformation only)
- Neo-Hookean:

•
$$\psi(\mathbf{F}) = \frac{\mu}{2} \sum_{i} [(\mathbf{F}^{T} \mathbf{F})_{ii} - 1] - \mu \log(J) + \frac{\lambda}{2} \log^{2}(J).$$

• $\mathbf{P}(\mathbf{F}) = \frac{\partial \psi}{\partial \mathbf{F}} = \mu(\mathbf{F} - \mathbf{F}^{T}) + \lambda \log(J)\mathbf{F}^{-T}$

•
$$\mathbf{P}(\mathbf{F}) = \frac{\partial \psi}{\partial \mathbf{F}} = \mu(\mathbf{F} - \mathbf{F}^T) + \lambda \log(J)\mathbf{F}^{-T}$$

- (Fixed) Corotated:
 - $\psi(\mathbf{F}) = \mu \sum_{i} (\sigma_i 1)^2 + \frac{\lambda}{2} (J 1)^2$. σ_i are singular values of \mathbf{F} .
 - $\mathbf{P}(\mathbf{F}) = \frac{\partial \psi}{\partial \mathbf{F}} = 2\mu(\mathbf{F} \mathbf{R}) + \lambda(J 1)J\mathbf{F}^{-T}$

More details: The Material Point Method for Simulating Continuum Materials³

³C. Jiang et al. (2016). "The material point method for simulating continuum materials". In: ACM SIGGRAPH 2016 Courses, pp. 1-52.

Table of Contents

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

FEM basics

Deformation

2 Elasticity

3 FEM basics

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticit

FEM basics

The finite element method

Finite element method: Galerkin discretization scheme that builds discrete equations using weak formulations of continuous PDEs. (More details later in this course.)

Figure: A solution to a discretized partial differential equation, obtained with FEM (source: Wikipedia)

Linear tetrahedral (triangular) FEM

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticit

FEM basics

Linear tetrahedral finite elements (for elasticity) assume the deformation map ϕ is affine and thereby deformation gradient F is constant within a single tetrahedral element:

$$\mathbf{x}_{\mathsf{deformed}} = \mathbf{F}\mathbf{x}_{\mathsf{rest}} + \mathbf{p}.$$

For every element e, its elastic potential energy

$$U(e) = \int_{e} \psi(\mathbf{F}(\mathbf{x}))\mathbf{x} = V_{e}\psi(\mathbf{F}_{e}).$$

Question: how to compute $\mathbf{F}_e(\mathbf{x})$?

Basics of

deformation. elasticity, and

finite elements

Yuanming Hu

Computing F_{e} in linear triangular finite elements (1)

Recall that

In 2D triangular elements (3D would be tetrahedral elements), assuming the rest

FEM basics

positions of the vertices are a_{rest} , b_{rest} , c_{rest} and deformed positions are

 $a_{deformed}, b_{deformed}, c_{deformed}$. Since within an linear triangular element F is

constant, we have

Let's eliminate **p**:

 $(\mathbf{a_{deformed}} - \mathbf{c_{deformed}}) = \mathbf{F}(\mathbf{a_{rest}} - \mathbf{c_{rest}})$

 $(b_{deformed} - c_{deformed}) = F(b_{rest} - c_{rest})$

 $a_{deformed} = Fa_{rest} + p$

 $\mathbf{b}_{\mathsf{deformed}} = \mathbf{F} \mathbf{b}_{\mathsf{rest}} + \mathbf{p}$

 $c_{deformed} = Fc_{rest} + D$

 $\mathbf{x}_{\mathsf{deformed}} = \mathbf{F}\mathbf{x}_{\mathsf{rest}} + \mathbf{p}.$

(3)

(1)

(2)

(4)

(5)

Computing F_e in linear triangular finite elements (2)

Basics of deformation. elasticity, and finite elements

Yuanming Hu

FEM basics

 $(\mathbf{a_{deformed}} - \mathbf{c_{deformed}}) = \mathbf{F}(\mathbf{a_{rest}} - \mathbf{c_{rest}})$ $(\mathbf{b}_{deformed} - \mathbf{c}_{deformed}) = \mathbf{F}(\mathbf{b}_{rest} - \mathbf{c}_{rest})$

Note that $\mathbf{F}_{2\times 2}$ now has four linear constraints (equations).

 $\mathbf{B} = [\mathbf{a}_{\mathsf{rest}} - \mathbf{c}_{\mathsf{rest}} | \mathbf{b}_{\mathsf{rest}} - \mathbf{c}_{\mathsf{rest}}]^{-1}$

= DB

 $D = [a_{deformed} - c_{deformed}] b_{deformed} - c_{deformed}]$

(10)

(6)

(8)

(9)

(B is constant through out the physical process. Therefore it should be

pre-computed.)

Explicit linear triangular FEM simulation

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

FEM basics

Recall the Semi-implicit Euler (aka. symplectic Euler) time integration

$$\mathbf{v}_{t+1,i} = \mathbf{v}_{t,i} + \Delta t \frac{\mathbf{f}_{t,i}}{m_i}$$

$$\mathbf{x}_{t+1,i} = \mathbf{x}_{t,i} + \Delta t \mathbf{v}_{t+1,i}$$

Note that $\mathbf{x}_{t,i}$ and $\mathbf{v}_{t,i}$ are stored on the **vertices** of finite elements (triangles/tetrahedrons).

$$\mathbf{f}_{t,i} = -\frac{\partial U}{\partial \mathbf{x}_i} = -\sum_e \frac{\partial U(e)}{\partial \mathbf{x}_i} = -\sum_e V_e \frac{\partial \psi(\mathbf{F}_e)}{\partial \mathbf{F}_e} \frac{\partial \mathbf{F}_e}{\partial \mathbf{x}_i} = -\sum_e V_e \mathbf{P}(\mathbf{F}_e) \frac{\partial \mathbf{F}_e}{\partial \mathbf{x}_i}$$

Don't want to compute $\mathbf{P}(\mathbf{F}_e)$? Use Taichi's AutoDiff system.

Implicit linear triangular FEM simulation

Basics of deformation, elasticity, and finite elements

Yuanming Hu

Deformation

Elasticity

FEM basics

Recall backward Euler time integration:

$$\left[\mathbf{I} - \Delta t^2 \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} (\mathbf{x}_t)\right] \mathbf{v}_{t+1} = \mathbf{v}_t + \Delta t \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_t)$$
(11)

Want implicit time integration? Compute force differentials $\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = -\frac{\partial^2 \psi}{\partial \mathbf{x}^2}$.

Question: in both explicit and implicit schemes, how to compute m_i ? Use mass lumping (or any other convenient approximation you want...)