A mean field model for the interactions between firms on the markets of their inputs

Quentin Petit¹

Joint work with Yves Achdou², Guillaume Carlier³ and Daniela Tonon⁴

¹Université Paris-Dauphine and EDF R&D
²Université de Paris Cité and Sorbonne Université
³Université Paris-Dauphine
⁴Università degli Studi di Padova

Introduction

The model and the main results

Numerical simulations

Motivation

Focusing on one sector of activity, firms have interactions between them

- 1. Through the competition when they sell their production.
- 2. Through the competition when they buy factors of production such as labour or workspace for instance.
- 3. Through contacts which create externalities.

..

- ⇒ We focus on modelling the second point.
 - → It allows us to link several markets.

Some references

MFG theory:

- Lasry and Lions 2006—2007
- Huang, Malhamé and Caines 2006 2007
- Carmona and Delarue 2018
- Cardaliaguet, Delarue, Lasry and Lions 2019
- Lions 2006 2022
- ...

MFG price formation model:

- Trading: Lachapelle et al. 2016, Cardaliaguet and Lehalle 2018
- Energy market: Gomes and Saúde 2018—2021
- Exhaustible resources: Guéant et al. 2011
- Growth theory: Achdou et al. 2022
- ...

The general assumptions are

 There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable

- There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable
- Heterogeneity among firms comes from capital

- There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable
- Heterogeneity among firms comes from capital
- Firms use factors of production such as labour, workspace, energy, raw materials,...

- There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable
- Heterogeneity among firms comes from capital
- Firms use factors of production such as labour, workspace, energy, raw materials,...
- Each firm has a negligible impact on markets

- There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable
- Heterogeneity among firms comes from capital
- Firms use factors of production such as labour, workspace, energy, raw materials,...
- Each firm has a negligible impact on markets
- Interaction between firms takes place via prices

- There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable
- Heterogeneity among firms comes from capital
- Firms use factors of production such as labour, workspace, energy, raw materials,...
- Each firm has a negligible impact on markets
- Interaction between firms takes place via prices
- The equilibrium is reached when supply matches demand for the factors of production

The general assumptions are

- There is one sector in the economy with a (very) large number of firms which are rational and indistinguishable
- Heterogeneity among firms comes from capital
- Firms use factors of production such as labour, workspace, energy, raw materials,...
- Each firm has a negligible impact on markets
- Interaction between firms takes place via prices
- The equilibrium is reached when supply matches demand for the factors of production

The outputs are

- The unit prices of the production factors
- The distribution of the firms' capital
- The investment strategy of firms

For a given firm, the dynamics of its capital k(t) is given by

$$\frac{dk}{dt}(t) = F(k(t), \ell(t)) - w \cdot \ell(t) - \delta k(t) - c(t), \quad \forall t \geq 0$$

where

• $d \in \mathbb{N}^*$ is the number of factors of production or inputs

6

For a given firm, the dynamics of its capital k(t) is given by

$$\frac{dk}{dt}(t) = F(k(t), \ell(t)) - w \cdot \ell(t) - \delta k(t) - c(t), \quad \forall t \ge 0$$

where

- $d \in \mathbb{N}^*$ is the number of factors of production or inputs
- $F: \mathbb{R}_+ \times \mathbb{R}^d_+ \to \mathbb{R}^d_+$ is the production function

For a given firm, the dynamics of its capital k(t) is given by

$$\frac{dk}{dt}(t) = F(k(t), \ell(t)) - w \cdot \ell(t) - \delta k(t) - c(t), \quad \forall t \ge 0$$

where

- $d \in \mathbb{N}^*$ is the number of factors of production or inputs
- $F: \mathbb{R}_+ \times \mathbb{R}^d_+ \to \mathbb{R}^d_+$ is the production function
- $w \in (0, +\infty)^d$ is the collection of the unit prices of the factors of production

ŝ

For a given firm, the dynamics of its capital k(t) is given by

$$\frac{dk}{dt}(t) = F(k(t), \ell(t)) - w \cdot \ell(t) - \delta k(t) - c(t), \quad \forall t \ge 0$$

where

- $d \in \mathbb{N}^*$ is the number of factors of production or inputs
- $F: \mathbb{R}_+ \times \mathbb{R}^d_+ \to \mathbb{R}^d_+$ is the production function
- $w \in (0, +\infty)^d$ is the collection of the unit prices of the factors of production
- $\ell(t) \in \mathbb{R}^d$ stands for the quantities of inputs at time t

For a given firm, the dynamics of its capital k(t) is given by

$$\frac{dk}{dt}(t) = F(k(t), \ell(t)) - w \cdot \ell(t) - \delta k(t) - c(t), \quad \forall t \ge 0$$

where

- $d \in \mathbb{N}^*$ is the number of factors of production or inputs
- $F: \mathbb{R}_+ \times \mathbb{R}^d_+ \to \mathbb{R}^d_+$ is the production function
- $w \in (0, +\infty)^d$ is the collection of the unit prices of the factors of production
- ullet $\ell(t) \in \mathbb{R}^d$ stands for the quantities of inputs at time t
- $\delta \ge$ 0 is the depreciation rate of capital

For a given firm, the dynamics of its capital k(t) is given by

$$\frac{dk}{dt}(t) = F(k(t), \ell(t)) - w \cdot \ell(t) - \delta k(t) - c(t), \quad \forall t \geq 0$$

where

- $d \in \mathbb{N}^*$ is the number of factors of production or inputs
- $F: \mathbb{R}_+ \times \mathbb{R}^d_+ \to \mathbb{R}^d_+$ is the production function
- $w \in (0, +\infty)^d$ is the collection of the unit prices of the factors of production
- ullet $\ell(t) \in \mathbb{R}^d$ stands for the quantities of inputs at time t
- $\delta \ge$ 0 is the depreciation rate of capital
- $c(t) \ge 0$ stands for the consumption of the owner of the firm at time t

6

$$u(\kappa) = \sup_{c(t), \, \ell(t)} \int_0^{+\infty} U(c(t)) e^{-\rho t} dt$$
subject to
$$\begin{cases} c, \ell \in L^1_{\text{loc}}(0, +\infty), & k \in W^{1,1}_{\text{loc}}(0, +\infty), \\ (c, k, \ell) : & c \geq 0, \quad \ell \geq 0, \\ k \geq 0, & k(0) = \kappa, \end{cases}$$

where

• $\kappa > 0$ is the initial capital

7

$$u(\kappa) = \sup_{c(t), \, \ell(t)} \int_0^{+\infty} U(c(t)) e^{-\rho t} dt$$
subject to
$$\begin{cases} c, \ell \in L^1_{\text{loc}}(0, +\infty), & k \in W^{1,1}_{\text{loc}}(0, +\infty), \\ (c, k, \ell) : & c \geq 0, \quad \ell \geq 0, \\ k \geq 0, & k(0) = \kappa, \end{cases}$$

where

- $\kappa > 0$ is the initial capital
- $U:(0,+\infty)\to\mathbb{R}$ is a utility function

$$u(\kappa) = \sup_{c(t), \, \ell(t)} \int_0^{+\infty} U(c(t)) e^{-\rho t} dt$$
subject to
$$\begin{cases} c, \ell \in L^1_{\text{loc}}(0, +\infty), & k \in W^{1,1}_{\text{loc}}(0, +\infty), \\ (c, k, \ell) : & c \geq 0, \quad \ell \geq 0, \\ k \geq 0, & k(0) = \kappa, \end{cases}$$

where

- $\kappa > 0$ is the initial capital
- $U:(0,+\infty)\to\mathbb{R}$ is a utility function
- $\rho > 0$ is the discount rate

$$u(\kappa) = \sup_{c(t), \, \ell(t)} \int_0^{+\infty} U(c(t)) e^{-\rho t} dt$$
subject to
$$\begin{cases} c, \ell \in L^1_{\text{loc}}(0, +\infty), & k \in W^{1,1}_{\text{loc}}(0, +\infty), \\ (c, k, \ell) : c \geq 0, & \ell \geq 0, \\ k \geq 0, & k(0) = \kappa, \end{cases}$$

where

- $\kappa > 0$ is the initial capital
- $U:(0,+\infty)\to\mathbb{R}$ is a utility function
- $\rho > 0$ is the discount rate
- we impose $k \ge 0$

7

Hamilton-Jacobi equation

Given $w \in (0, +\infty)^d$, the optimal control problem leads to the HJ equation

$$\rho u(k) = H(k, u'(k))$$

with the state constraint boundary condition

$$D_qH(0,u'(0))\geq 0$$

where $H:[0,+\infty)\times\mathbb{R}\to\mathbb{R}\cup\{+\infty\}$ is given by

$$H(k,q) = \sup_{c \ge 0, \ \ell \in [0,+\infty)^d} \{ U(c) + q (F(k,\ell) - w\ell - \delta k - c) \}$$
$$= \sup_{c \ge 0} \{ U(c) - cq \} + f(k)q$$

with
$$f(k) = \sup_{\ell \in [0,+\infty)^d} \{F(k,\ell) - w\ell\} - \delta k$$
.

Hamilton-Jacobi equation

Given $w \in (0, +\infty)^d$, the optimal control problem leads to the HJ equation

$$\rho u(k) = H(k, u'(k))$$

with the state constraint boundary condition

$$D_q H(0, u'(0)) \geq 0$$

where $H:[0,+\infty)\times\mathbb{R}\to\mathbb{R}\cup\{+\infty\}$ is given by

$$H(k,q) = \sup_{c \ge 0, \ \ell \in [0,+\infty)^d} \{ U(c) + q (F(k,\ell) - w\ell - \delta k - c) \}$$
$$= \sup_{c \ge 0} \{ U(c) - cq \} + f(k)q$$

with
$$f(k) = \sup_{\ell \in [0,+\infty)^d} \{F(k,\ell) - w\ell\} - \delta k$$
.

If u is smooth enough, the investment policy is $D_qH(k, u'(k))$.

Continuity equation

Given the optimal policies of the firms, the distribution of capital solves the continuity equation

$$\frac{d}{dk}\left(D_qH\left(\cdot,\frac{\partial u}{\partial k}(\cdot)\right)m(\cdot)\right)(k)=\eta(k,u(k))-\nu m(k), \qquad \forall k>0$$

where

- $\nu > 0$ is the death rate of firms
- $\eta:(0,+\infty)\times\mathbb{R}\to[0,+\infty)$ is a function which models the creation of new firms
 - The second variable takes into account the level of utility: external investors can decide to enter the game only if the level of utility is high enough.

9

Market clearing conditions

We deduce that the individual demand for the different inputs is given by

$$-D_w f(k) \in \mathbb{R}^d$$

Market clearing conditions

We deduce that the individual demand for the different inputs is given by

$$-D_w f(k) \in \mathbb{R}^d$$

The collection of unit prices $w \in (0, +\infty)^d$ must satisfy the law of the supply and demand, i.e.

$$S(w) = -\int_0^{+\infty} D_w f(k) dm(k)$$

where $S:[0,+\infty)^d\to [0,+\infty)^d$ is given and models the supply of factors of production.

The stationary system

$$\rho u(k) = H(k, u'(k))$$

$$\frac{d}{dk} (D_q H(\cdot, u'(\cdot)) m(\cdot)) (k) = \eta(k, u(k)) - \nu m(k)$$

$$S(w) = -\int_0^{+\infty} D_w f(k) dm(k)$$

completed with the following conditions:

"
$$D_q H(0, u'(0)) \ge 0$$
"
$$\int_0^{+\infty} dm(k) = \frac{1}{\nu} \int_0^{+\infty} \eta(k, u(k)) dk$$

Definition

An equilibrium is a triplet (u, m, w) solution to the system above where the HJ equation is satisfied in the viscosity sense and the continuity equation in the sense of distributions.

We assume that d=1, $F(k,\ell)=Ak^{\alpha}\ell^{1-\alpha}$, $U(c)=\ln(c)$.

We assume that d=1, $F(k,\ell)=Ak^{\alpha}\ell^{1-\alpha}$, $U(c)=\ln(c)$.

In this case, there are explicit formulas for the Hamiltonian and the solutions of both the HJ and continuity equations.

We assume that d=1, $F(k,\ell)=Ak^{\alpha}\ell^{1-\alpha}$, $U(c)=\ln(c)$.

In this case, there are explicit formulas for the Hamiltonian and the solutions of both the HJ and continuity equations.

Finding the MFG equilibria boils down to solving

$$S(w) = \frac{1}{\nu - b(w)} \left(\frac{A(1 - \alpha)}{w} \right)^{\frac{1}{\alpha}} \int_{0}^{+\infty} \kappa \eta(\kappa) d\kappa$$

where
$$b(w) = Cw^{-\frac{1-\alpha}{\alpha}} - \delta - \rho$$
.

We assume that d=1, $F(k,\ell)=Ak^{\alpha}\ell^{1-\alpha}$, $U(c)=\ln(c)$.

In this case, there are explicit formulas for the Hamiltonian and the solutions of both the HJ and continuity equations.

Finding the MFG equilibria boils down to solving

$$S(w) = \frac{1}{\nu - b(w)} \left(\frac{A(1-\alpha)}{w} \right)^{\frac{1}{\alpha}} \int_0^{+\infty} \kappa \eta(\kappa) d\kappa$$

where
$$b(w) = Cw^{-\frac{1-\alpha}{\alpha}} - \delta - \rho$$
.

Theorem

If $w\mapsto S(w)$ is a continuous and non decreasing function, non identically 0 such that S(0)=0 and if $\int_0^\infty \kappa\eta(\kappa)d\kappa<+\infty$, then there exists a unique solution of the MFG system.

Remarks

We deduce that

Remarks

We deduce that

• the investment policy is

$$D_qH(k,u'(k))=\tilde{C}k.$$

This is known as Gibrat's law in economics.

Remarks

We deduce that

• the investment policy is

$$D_qH(k,u'(k))=\tilde{C}k.$$

This is known as Gibrat's law in economics.

if η(·) has a compact support then the right tail of the distribution m(·) decays like a power of k.
 This is known as Pareto's law in economics.

A decreasing return to scale model

A decreasing return to scale model

We assume that $d \ge 1$ and the production has decreasing return to scale.

We assume that $d \ge 1$ and the production has decreasing return to scale.

In this case, the HJ equation is

$$\rho u(k) = \sup_{c \ge 0} \{ U(c) + u'(k) (f(k) - c) \} = H(k, u'(k))$$

We assume that $d \ge 1$ and the production has decreasing return to scale.

In this case, the HJ equation is

$$\rho u(k) = \sup_{c \ge 0} \{ U(c) + u'(k) (f(k) - c) \} = H(k, u'(k))$$

Classical results cannot be applied because the Hamiltonian H(k, q) is singular: it is only defined for $q \ge 0$ and may blow up for q = 0

We assume that $d \ge 1$ and the production has decreasing return to scale.

In this case, the HJ equation is

$$\rho u(k) = \sup_{c \ge 0} \{ U(c) + u'(k) (f(k) - c) \} = H(k, u'(k))$$

Classical results cannot be applied because the Hamiltonian H(k, q) is singular: it is only defined for $q \ge 0$ and may blow up for q = 0

We use a different approach:

• Using monotonicity properties of $H(\cdot,\cdot)$ and applying a shooting method, we prove the existence of solutions $u(\cdot) \in C^1(0,+\infty)$

We assume that $d \ge 1$ and the production has decreasing return to scale.

In this case, the HJ equation is

$$\rho u(k) = \sup_{c \ge 0} \{ U(c) + u'(k) (f(k) - c) \} = H(k, u'(k))$$

Classical results cannot be applied because the Hamiltonian H(k, q) is singular: it is only defined for $q \ge 0$ and may blow up for q = 0

We use a different approach:

- Using monotonicity properties of $H(\cdot,\cdot)$ and applying a shooting method, we prove the existence of solutions $u(\cdot) \in C^1(0,+\infty)$
- Concerning uniqueness, we can prove a verification theorem

We prove that there exists a critical value $\kappa^* > 0$ such that the optimal investment of a firm with capital k, namely $D_qH(k,u'(k))$, satisfies

$$D_q H(k, u'(k)) > 0,$$
 for $0 < k < \kappa^*,$
 $D_q H(k, u'(k)) < 0,$ for $\kappa^* < k < +\infty.$

We prove that there exists a critical value $\kappa^* > 0$ such that the optimal investment of a firm with capital k, namely $D_qH(k,u'(k))$, satisfies

$$D_q H\left(k, u'(k)\right) > 0,$$
 for $0 < k < \kappa^*,$
 $D_q H\left(k, u'(k)\right) < 0,$ for $\kappa^* < k < +\infty.$

This is known as the golden rule of accumulation of capital in economics.

We prove that there exists a critical value $\kappa^* > 0$ such that the optimal investment of a firm with capital k, namely $D_qH(k,u'(k))$, satisfies

$$D_q H\left(k, u'(k)\right) > 0,$$
 for $0 < k < \kappa^*,$
 $D_q H\left(k, u'(k)\right) < 0,$ for $\kappa^* < k < +\infty.$

This is known as the golden rule of accumulation of capital in economics.

Furthermore, there exists $\epsilon > 0$ and M > 0 such that

$$|\kappa^* - k| \le \epsilon \Rightarrow |D_q H(k, u'(k))| \le M |\kappa^* - k|$$

We prove that there exists a critical value $\kappa^* > 0$ such that the optimal investment of a firm with capital k, namely $D_qH(k,u'(k))$, satisfies

$$D_q H\left(k, u'(k)\right) > 0,$$
 for $0 < k < \kappa^*,$
 $D_q H\left(k, u'(k)\right) < 0,$ for $\kappa^* < k < +\infty.$

This is known as the golden rule of accumulation of capital in economics.

Furthermore, there exists $\epsilon > 0$ and M > 0 such that

$$|\kappa^* - k| \le \epsilon \Rightarrow |D_q H(k, u'(k))| \le M |\kappa^* - k|$$

 \Rightarrow the firms' capital takes an infinite time to reach κ^*

The continuity equation admits a unique solution in the distributional sense (with no Dirac mass at κ^*) which belongs to $C^1((0,\kappa^*)\cup(\kappa^*,+\infty))$.

The continuity equation admits a unique solution in the distributional sense (with no Dirac mass at κ^*) which belongs to $C^1((0,\kappa^*)\cup(\kappa^*,+\infty))$.

Theorem (the decreasing return to scale case)

Under some technical assumptions, if

- the supply function admits a convex potential, i.e. there exists a strictly convex function $\Phi:(0,+\infty)\to\mathbb{R}$, C^1 regular, such that $D_w\Phi=S$,
- and that there exist a continuous density $\hat{\eta}$ with compact support in \mathbb{R}_{+}^{*} and $\hat{c} \geq 1$ satisfaying

$$\frac{1}{\hat{c}}\hat{\eta}(k) \leq \eta(k,u) \leq \hat{c}\hat{\eta}(k), \quad \forall k \geq 0, \ \forall u \in \mathbb{R},$$

then there exists an equilibrium.

Sketch of proof.

Define for every $w \in (0, +\infty)^d$,

$$\begin{split} T_{\lambda} &(\textbf{\textit{w}}) = \operatorname{argmin} \Big\{ \Phi (\cdot) \\ &+ \int_{\mathbb{R}_{+}} (f(k, \cdot) + \delta k) \left((1 - \lambda) d \hat{\eta}(k) + \lambda d m(k, \textbf{\textit{w}}) \right) \Big\}, \end{split}$$

where $m(\cdot, w)$ is the distribution of capital.

- 1. Observe that if $w = T_1(w)$, then it defines an equilibrium (first order condition).
- 2. Observe that T_0 is a constant function

$$\Rightarrow$$
 given \hat{w} , $w_0 = T_0(\hat{w})$ satisfies $w = T_0(w)$.

3. Establish the continuity of T_{λ}

Sketch of proof.

Define for every $w \in (0, +\infty)^d$,

$$\begin{split} T_{\lambda}(\textbf{\textit{w}}) &= \operatorname{argmin} \Big\{ \Phi(\cdot) \\ &+ \int_{\mathbb{R}_{+}} (f(\textbf{\textit{k}}, \cdot) + \delta \textbf{\textit{k}}) \left((1 - \lambda) d \hat{\eta}(\textbf{\textit{k}}) + \lambda d \textbf{\textit{m}}(\textbf{\textit{k}}, \textbf{\textit{w}}) \right) \Big\}, \end{split}$$

where $m(\cdot, \mathbf{w})$ is the distribution of capital.

- 4. Establish a priori bounds independant of λ for the solutions of $w = T_{\lambda}(w)$.
- 5. Use Brouwer degree theory to conclude that there exists a solution to $w = T_1(w)$.
 - ⇒ There exists an equilibrium.

Simulations: linking the rental and labour markets

We assume that:

Simulations: linking the rental and labour markets

We assume that:

The production function is of Cobb-Douglas type

$$F(k,(\ell_1,\ell_2)) = Ak^{\alpha}\ell_1^{\beta_1}\ell_2^{\beta_2} \quad \forall k \in \mathbb{R}_+, \ \forall (\ell_1,\ell_2) \in \mathbb{R}_+^2$$

- The utility function $U(\cdot) = \ln(\cdot)$
- The supply functions are of the form (logistic functions)

$$K/(1+e^{-r(w_i-w_0^i)})$$
 $(i=1,2)$

where w_1 is the wages and w_2 the rental price

• The source term $\eta(\cdot)$ is a Gaussian function

Simulations: linking the rental and labour markets

We assume that:

The production function is of Cobb-Douglas type

$$F(k,(\ell_1,\ell_2)) = Ak^{\alpha}\ell_1^{\beta_1}\ell_2^{\beta_2} \quad \forall k \in \mathbb{R}_+, \ \forall (\ell_1,\ell_2) \in \mathbb{R}_+^2$$

- The utility function $U(\cdot) = \ln(\cdot)$
- The supply functions are of the form (logistic functions)

$$K/(1+e^{-r(w_i-w_0^i)})$$
 $(i=1,2)$

where w_1 is the wages and w_2 the rental price

- The source term $\eta(\cdot)$ is a Gaussian function
- ⇒ We find an equilibrium using a numerical method similar to the one developed in Achdou et al. 2022.

Data from INSEE

Secteur d'activité	Nombre d'entreprises	Salariés (en EQTP) (1)	Chiffre d'affaires hors taxes (en millions d'euros)	Valeur ajoutée hors taxes (en millions d'euros)	Frais de personnel (en millions d'euros) (2)	Exportations (en millions d'euros)	Salariés / Nombre entreprises
Hébergement-restauration	258 278	842 788	104 859	45 175	34 371	2 086	3.263104
Hébergement	51 354	198 113	29 223	12 536	8 428	763	3.857791
Restauration	206 924	644 675	75 636	32 639	25 943		3.115516
Information et communication	134 700	758 065	203 851	95 794	62 175	31 021	5.627803
Édition, audiovisuel et diffusion	41 934	243 836	69 973	27 833	19 771	12 800	5.814757
Télécommunications	2 986	142 923	57 870	28 514	11 209	3 795	47.864367
Activités informatiques et services d'information	89 780	371 307	76 009	39 447	31 195	14 427	4.135743
Activités immobilières	213 534	218 697	85 161	43 777	13 766	1 317	1.024179
Activités scientifiques et techniques ; services administratifs et de soutien	690 420	1 802 620	337 567	179 189	140 117	41 475	2.610904
Activités scientifiques et techniques	5 875	38 313	7 556	2 156	3 079	3 525	6.521362
Activités juridiques, comptables, de gestion, architecture, ingénierie, contrôle et analyses	362 947	684 820	146 234	79 453	58 401	21 131	1.886832
Autres activités spécialisées, scientifiques et techniques	120 294	128 092	29 651	12 504	9 509	3 762	1.064825
Services administratifs et de soutien	201 304	951 395	154 126	85 075	69 128	13 057	4.726160
Autres activités de services	365 522	337 112	55 519	23 619	15 899	2 013	0.922276
Arts, spectacles et activités récréatives	144 033	121 092	30 426	12 182	7 419	1 101	0.840724
Autres activités de services	221 489	216 020	25 094	11 437	8 480	912	0.975308
Total	1 662 454	3 959 281	786 958	387 554	266 328	77 913	2.381588

Table: Characteristics of mainly market services by activity in 2018

Parameters in the simulation

Parameter	Test			
d	2			
α	0.21			
(β_1,β_2)	(0.71,0.05)			
δ	0.07			
ν	0.1			
ρ	0.1			
Α	0.93.10 ⁴			
$S_{labour}(w)$	$\frac{6.5}{1 + \exp(2.10^{-4}(w - 7.10^4))}$			
$S_{workspace}(p)$	100			
$\eta(k)$	$\frac{\nu}{\sqrt{2\pi}9.10^4} e^{-\frac{(k-3.10^5)^2}{2(9.10^4)^2}}$			

Table: The parameters of the simulation.

Simulations: linking the office rental and labour markets

At the equilibrium, the wages is 8.13×10^4 Euro/year and the rental price is 391 Euro/(year. m^2).

Simulations: linking the office rental and labour markets

At the equilibrium, the wages is 8.13×10^4 Euro/year and the rental price is 391 Euro/(year. m^2).

	Test	INSEE
Annual prod. / Nb of firms (in 10 ⁴ Euro)		66.4
Tot. payroll / Nb of firms (in 10 ⁴ Euro)		47.1
Nb of Employees / Nb of firms		5.81
Annual prod. / Nb of Employees (in 10 ⁴ Euro)		11.4
Tot. payroll / Nb of Employees (in 10 ⁴ Euro)		8.11

Table: Comparative table

The distribution of capital

Figure: Distribution of capital m

The value function

Figure: Value function u

Sensitivity with respect to the labour supply

We consider that

$$S_{labour}(w) = \frac{K}{1 + e^{-r(w - w_0)}}.$$

Figure: The wage level (pink) and the rental price (orange)

• We have exhibit an explicit solution in the special case of constant return to scale.

- We have exhibit an explicit solution in the special case of constant return to scale.
 - Uniqueness can be establish in this case.
- In a general case we have proved the existence of equilibria under reasonable assumptions, and we have carried out numerical simulations

- We have exhibit an explicit solution in the special case of constant return to scale.
 - Uniqueness can be establish in this case.
- In a general case we have proved the existence of equilibria under reasonable assumptions, and we have carried out numerical simulations
- For more details, see the preprint:

A mean field model for the interactions between firms on the markets of their inputs

and the PhD manuscript:

Mean field games and optimal transport in urban modelling

Open problems and perspectives

Open problems and perspectives

1. Take into account interactions via controls

Open problems and perspectives

- 1. Take into account interactions via controls
- 2. Introduce noise in the dynamics of capital

Open problems and perspectives

- 1. Take into account interactions via controls
- 2. Introduce noise in the dynamics of capital
- 3. Extend the theory to evolutive models

Thank you for your attention.