Отчёт по лабораторной работе №5 Генераторы синусоидальных колебаний с кварцевой стабилизацией

Плюскова Н.А. Б04-004

17 сентября 2023 г.

1. Результаты эксперимента

1.1 Резонансный усилитель

Соберем схему, показанную на рис.1:

Рис. 1: Схема резонансного усилителя

Напряжения U_{out_1} , U_{out} связаны теоретическим соотношением:

$$\beta = \frac{U_{out_1}}{U_{out}} = \frac{C_3}{C_3 + C_4} \approx \frac{1}{7}$$

При проведении эксперимента получили значения $U_{out_1} \approx 201$ мВ, $U_{out} \approx 1638$ мВ. Таким образом, практическое значение несильно отличается:

$$\beta = \frac{U_{out_1}}{U_{out}} \approx \frac{1}{8}$$

С помощью конденсатора с переменной емкостью добиваемся частоты колебаний $f_p=1~\mathrm{M}\Gamma$ ц.

На резонансной частоте f_p снимем амплитудную характеристику усилителя (см. рис.2):

U_{in} , мВ	K
10	4,96
20	4,91
30	4,92
40	4,92
50	4,93
60	4,95
70	4,95
80	5,02
90	5,03
100	5,04
200	4,95
300	4,55
400	3,81
500	3,18

Таблица 1: Амплитудная характеристика усилителя

Рис. 2: Амплитудная характеристика усилителя

Соединив накоротко эмиттеры транзисторов, измерим резонансный коэффициент усиления: K=3.5

Снимем зависимость коэффициента усиления от частоты входного сигнала при амплитуде $U_{in}=80~\mathrm{mB}$ (см. puc.3):

f ,М Γ ц	K
1,00	10,11
1,60	0,71
1,30	1,34
1,10	4,37
1,20	1,96
1,06	7,31
1,07	6,07
1,05	8,98
0,98	6,73
0,99	8,18

Таблица 2: Зависимость коэффициента усиления от частоты входного сигнала

Рис. 3: Зависимость K(f)

Получим, что $\Delta f_{0,7} \approx 80$ к Гц. Откуда получим добротность: $Q = \frac{f_p}{\Delta f_{0,7}} = 12,5$

1.2 Кварцевый генератор с использованием последовательного резонанса кварца

Соберем схему, изображенную на рис.4:

Рис. 4: Схема установки кварцевого генератора

Измерим амплитуду выходного колебания $U_{out} = 7{,}36$ В, что сходится с ожидаемым значением $U_{out} = 7.25 \text{ B}$

Восстановим схему кварцевого генератора, включив между эмиттерами кварцевый резонатор вместо резистора R.

После расстройки LC-контура путем добавления конденсатора $\Delta C=15$ пФ измерим изменения частоты колебаний Δf без кварца и Δf_{κ} с кварцем:

$$\Delta f = 3 \Gamma$$
ц

$$\Delta f_{\kappa} = 16554 \ \Gamma$$
ц

Откуда из соотношения $\frac{\Delta f_{\rm K}}{\Delta f}=\frac{Q}{Q_{\rm K}}$ находим $Q_{\rm K}=9\cdot 10^5$ Восстановим настройку контура в резонанс. Для этого включим последовательно конденсатор $C_s=121$ пФ. Получим $\Delta f_{\rm K}=25$ Гц. Из формулы $\frac{\Delta f_{\rm K}}{\Delta f}=\frac{C_{\rm K}}{2C_s}$ определим $C_{\rm K}=120$ $6 \cdot 10^{-15}$ пФ. Остальные параметры найдем расчетным путем:

$$L_{\rm k} = \frac{1}{4\pi^2 f_{\rm k}^2 C_{\rm k}} = 4.19 \Gamma {\rm H}$$

$$\rho_{\rm k} = \sqrt{\frac{L_{\rm k}}{C_{\rm k}}} = 2\pi f_{\rm k} L_{\rm k} = \frac{1}{2\pi f_{\rm k} C_{\rm k}} = 2.65 \cdot 10^7 {\rm MOm}$$

$$r_{\rm k} = \frac{\rho_{\rm k}}{Q_{\rm k}} = 29.4 {\rm Om}$$

Снимем зависимость частоты генерируемых колебаний от напряжения $U_{\rm n_2}$:

$U_{\mathbf{n}_2}, \mathbf{B}$	f , М Γ ц
8	1,001540
9	1,000935
10	1,000435
11	0,999763
12	0,998848

Таблица 3: Зависимость частоты генерируемых колебаний с кварцем от входного напряжения

Снимем аналогичную зависимость для генератора без кварца:

U_{π_2} , B	f , М Γ ц
8	1,00044
9	1,00041
10	1,00004
11	1,00038
12	1,00035

Таблица 4: Зависимость частоты генерируемых колебаний без кварца от входного напряжения