Install and Test Darknet on Ubuntu

2019 - 2020

Ando Ki, Ph.D. adki@future-ds.com

Contents

- What is Darknet
- Building Darknet
- Testing Darknet using Tiny-YOLO
- Darknet profiling
- How to deal with 'gemm_nn'
- Darknet using OpenMP
- Running Tiny-YOLO with USB-CAM
- Running Tiny-YOLO with video stream

What is Darknet

- Darknet is an open source neural network framework written in C and CUDA (C ompute Unified Device Architecture) supporting CPU (Central Processing Unit) and GPU (Graphical Processing Unit) computation.
 - ► Site: https://pireddie.com/darknet/
 - ► GitHub: https://github.com/pjreddie/darknet
 - This version may cause error on Rasbperry Pi while running.
- Alexey's version
 - https://github.com/AlexeyAB/darknet

"Darknet: Open Source Neural Networks in C", Joseph Redmon, http://pjreddie.com/darknet, 2013-2016.

Building Darknet

GPU=0

AVX=0

CUDNN=0

OPENMP=0 IIBSO=0ZED CAMERA=0

CUDNN_HALF=0 OPENCV=1

- Visit
 - https://github.com/AlexeyAB/darknet
- Download
 - make a directory
 - \$ mkdir work && cd work
 - ▶ \$ git clone https://github.com/AlexeyAB/darknet.git
 - \$ mv darknet darknet-alexey
- Modify 'Makefile'
 - cd darknet-alexey
 - \$ vi Makefile
 - set 1 for OpenCV if you installed it.
- Compile
 - \$ make
- At last
 - 'darknet': executable

▶ OpenMP Shared library

▶ ZED_CAMERA

Nvidia CUDA related

x86 Vector related

► GPU, CUDNN, CUDNN_HALF

Multi-core/computer related

► LIBSO 3D camera

► AVX

Darknet usage

- \$./darknet function [function_arguments]
- functions
 - look 'darknet/examples/darknet.c' file and its related C files.
 - detect [cfg_file] [weights_file] [options]
 - detector [train/test/valid] [data_cfg] [cfg_file] [weights_file] [options]
 - yolo [train/test/valid] [cfg_file] [weights_file] [options]
 - cifar [train/test/valid] [cfg_file] [weights_file] [options]
 - \$./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg
 - \$./darknet detector test cfg/coco.data cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg
 - \$./darknet detector test cfg/voc.data cfg/yolo.cfg weights/yolo.weights data/dog.jpg

_

Testing Darknet using Tiny-YOLO (1/2)

- Download weight file
 - \$ cd ~/work/darknet-alexey
 - \$ mkdir weights && cd weights
 - ► for COCO trainval
 - ⇒ \$ wget https://pjreddie.com/media/files/yolov3-tiny.weights
 - for VOC2007+2012
 - wget https://pjreddie.com/media/files/yolov2-tiny-voc.weights
- Run Tiny-YOLO for COCO
 - \$ cd ~/work/darknet-alexey
 - \$./darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg
- Run Tiny-YOLO for VOC
 - \$ cd ~/work/darknet-alexey
 - \$./darknet detector test cfg/voc.data cfg/yolov2-tiny-voc.cfg weights/yolov2-tiny-voc.weights data/dog.jpg

Testing Darknet using Tiny-YOLO (2/2)

Type 'q' on the picture in order to quit.

7

Darknet example for detector

Have a look at 'darknet/examples/darknet.c' file

Darknet & YOLO

(8)

Network configuration file

- Nodes
 - [shortcut]
 - [crop]
 - [cost]
 - [detection]
 - [region]
 - ► [local]
 - ► [conv] or [convolutional]
 - [deconv] or [deconvolutional]
 - [activation]
 - [net] or [network]
 - [crnn]
 - ▶ [gru]
 - ▶ [lstm]
 - [rnn]
 - [conn] or [connected]
 - [max] or [maxpool]
 - [reorg]

[avg] or [avgpool]

- [dropout]
- ► [Irn] or [normalization]
- [batchnorm]
- [soft] or [softmax]
- [route]

https://github.com/cviena/darknet/blob/master/cfg/yolo.cfg

subdivisions=1

[convolutional]

batch_normalize=1 filters=16

activation=leaky

width=416 height=416

channels=3

stride=1

[maxpool]

size=2

nad-1

Darknet & YOLO

(a '

Network configuration file

- [net] node
 - batch: how many images are in each batch to average the loss over?
 - subdivisions: into how many sub-batches shall each batch be divided to handle images in each sub-batch in parallel?
 - height, width: input size of the network
 - channels: number of components, e.g., color components
 - momentum: learning parameters
 - learning_rate: base learning rate
 - policy: change learning rate after the corresponding steps
 - steps: need to have as many steps as scale
 - scales: re-scale the current learning rate by the correponding factor once the number of steps is reached
 - max_batches: max number of "iterations"
 - i_snapshot_iteration: snapshow the learned weights after every k "iterations"

- [convolutional] node
 - filters: number of filters, i.e., kernels
 - size: size of filter, e.g., 3 means 3x3 filter
 - stride: number of stride
 - pad: number of padding, e.g., 1
 - activation: specify activation function
- [maxpool] node
 - size: size of filter
 - stride: number of stride
- [connected] node
 - output: number of output of fully connected network
 - activation: activation function
- [detection] node or [region] node
 - lasses: number of classes, e.g., 20 for pascal voc (l.classes)
 - coords: bounding boxes -> 4 parameters (l.n)
 - side: number of cell in x and y direction
 - num: number of predicted boxes per cell

Darknet & YOLO

Convolutional Imaxpool Size=2 Filters=128 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Stride=2 Stride=1 Str	Network configuration file							
	tiny-yolo.cfg layer	width=416 height=416 channels=3 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2	batch_normalize=1 filters=64 size=3 stride=1 pad=1 pad=1 gate=1 pad=1 size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=3 stride=1 size=3 stride=1 size=3 stride=1	size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=1 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1	size=1 stride=1 pad=1 filters=425 activation=linear [region] anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828 bias_match=1 classes=80 coords=4 num=5 softmax=1 jitter=.2 rescore=0 object_scale=5 noobject_scale=1 class_scale=1 coord_scale=1 absolute=1			

Network visualizer

- https://github.com/lutzroeder/netron
- https://lutzroeder.github.io/netron/

13

Contents

- What is Darknet
- Building Darknet
- Testing Darknet using Tiny-YOLO
- Darknet profiling
- How to deal with 'gemm_nn'
- Darknet using OpenMP
- Running Tiny-YOLO with USB-CAM
- Running Tiny-YOLO with video stream

Darknet profiling (1/2)

- 'gprof' 사용
 - ▶ 컴파일 단계에서 '-pg' 선택자 사용
 - ▶ 프로그램 수행 결과로 'gmon.out' 파일 생성
 - ▶ 'gprof' 프로그램으로 분석
- 1) 'Makefile'의 'CFLAGS'에 '-pg' 추가
 - ► CFLGAS+=-pg
- 2) 'make' 실행
 - \$ make clean && make GPROF=1
- 3) run
 - \$./darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg
- 4) 'aprof' 실행
 - \$ gprof darknet gmon.out > gprof.txt
- 5) 'gprof.txt' 파일 검토
 - ▶ \$ head -20 gprof.txt

GPU=0
CUDNN=0
CUDNN_HALF=0
OPENCV=1
AVX=0
OPENMP=0
LIBSO=0
ZED_CAMERA=0
GPROF=0
...
ifeq (\$(GPROF), 1)
CFLAGS+=-pg
endif
...

15

Darknet profiling (2/2)

BLAS: Basic Linear Algebra Subprograms

- Level1: vector-vector operations
 - V= V + s x V
- Level2: matrix-vector operations
 - \vee V = V + A x V
- Level3: matrix-matrix operations
 - \triangleright C = C + A x B

Level	Data Move ment	Floating-Point Ope rations	Example
Level 1	O(N)	O(N)	DDOT
Level 2	O(N²)	O(N²)	DGEMV
Level 3	O(N²)	O(N³)	DGEMM

Ubuntu 16.04 / 64-bit on x86_64 / Intel Core i7-37770 CPU @ 3.4GHz x 8 / 16GigaByte

10

BLAS packages

- OpenBLAS
 - www.openblas.net
- Intel MKL (Math Kernel Library)
 - Commercial and optimized for Intel CPU
 - \$ source /opt/ntel/mkl/bin/mklvars.sh intel64
- ATLAS

How to deal with 'gemm_nn'(1/3)

80 96 12 28 14 160 16 192 208 224 240 256 212 288 304 320 336 352 368 384

```
Use optimized GEMM in 'src/gemm.c'
                                src/gemm.c
                                                    Change 'Makefile'
                                                                                    Makefile
                                              OPENBLAS=0
                                              ifeq ($(OPENBLAS), 1)
COMMON+=-DOPENBLAS
                                              CFLAGS+=-DOPENBLAS -I/opt/OpenBLAS/include LDFLAGS+=/opt/OpenBLAS/lib/libopenblas.a
  endif
                                           gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
                                            }
#endif
```

How to deal with 'gemm_nn'(1/3)

- Use optimized GEMM in 'src/gemm.c'
- Change 'Makefile'

```
... Makefile
... Makefile
... Makefile
... Makefile
...
```

2

How to deal with 'gemm_nn'(2/3)

- Install OpenBLAS
 - \$ sudo apt-get install libopenblas-dev
- \$ make clean && make OPENBLAS=1 \
- GPROF=1
- \$./darknet detect cfg/yolov3-tiny.cfg \
- weights/yolov3-tiny.weights data/dog.jpg
- \$ gprof darknet gmon.out > gprof.txt
- \$ head -20 gprof.txt

		bi@	raspberryp	oi: ~/work/	darknetAle	exeyAB • ^
File E	dit Tabs	Help				
	pberrypi]	gprof dar head -20		.out > gp	rof.txt	
		s as 0.01	seconds.			
	umulative			self	total	
time	seconds	seconds	calls	ms/call	ms/call	name
31.07	0.55	0.55				sgemm_kernel_L4_M4_22
21.47	0.93		1	380.00	380.00	
13.56	1.17		8845488	0.00	0.00	rand_uniform
10.17	1.35		13	13.85	32.31	make_convolutional_layer
3.95	1.42					sgemm_tcopy_L4_M4_20
3.39	1.48		9	6.67		
2.82	1.53	0.05	1	50.00	50.00	
2.82	1.58	0.05				blas_thread_server
2.26	1.62	0.04				inner_thread
1.69	1.65	0.03	761	0.04	0.04	mat_to_image
1.69	1.68	0.03				sgemm_kernel_L4_M4_100
1.13	1.70	0.02				sgemm_kernel_L2_M4_22
1.13	1.72	0.02				sgemm_kernel_L4_M4_20
1.13	1.74	0.02				sgemm_ncopy_L4_M4_20
0.56	1.75	0.01	13	0.77	0.77	add_bias
[pi@ras	pberrypi					

- use 'fim' to see the result
- \$ fim predect.png

2

Make a long story short

- Get Darknet-AlexeyAB version and modify (for Raspberry Pi Raspbian case)
 - \$ cd ~/work/codes/darknet-projects
 - \$ git clone https://github.com/AlexeyAB/darknet.git
 - \$ mv darknet darknet-alexey-blas
 - \$ cd darknet-alexey-blas
 - \$ patch Makefile < ../patch_Makefile.txt</p>
 - \$ patch src/gemm.c < ../patch_gemm.txt</p>
 - \$ make
 - \$./darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg
 - \$ fim predect.png

Darknet using OpenMP

- OpenMP will use multi-thread
 - Install OpenMP
 - \$ sudo apt-get update
 - \$ sudo apt-get install libomp-dev
- Simply set 'OPENMP' 1
- It can be run along with other options.
 - ▶ OPENCV
 - OPENBLAS
 - GPROF

GPU=0 CUDNN=0 CUDNN_HALF=0 OPENCV=1 AVX=0 **OPENMP=1** LIBSO=0 ZED_CAMERA=0

27

What is OpenCV

- OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library.
 - ► https://opencv.org
- What OpenCV can do :
 - 1. Read and Write Images.
 - Detection of faces and its features.
 - 3. Detection of shapes like Circle, rectangle etc in a image.
 - 4. Text recognition in images. (number of car license plate)
 - 5. Modifying image quality and colors
 - 6. Developing Augmented reality apps.
 - 7. Controlling camera
- Which Language it supports :
 - ▶ 1. C++
 - 2. Android SDK
 - 3. Java
 - 4. Python
 - 5. C (Not recommended)

Installing OpenCV on Ubuntu

- If OpenCV is not installed yet, do as follows. (You need root password.)
 - ▶ \$ sudo apt-get install libopency-dev python-opency ffmpeg
- Set 'OPENCV' macro '1' in Makefile
 - do not forget to run 'make clean' in order to remove old files.

29

Run YOLO with OpenCV

- Run darknet with yolo configuration with OpenCV.
 - \$./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/horses.jpg

Type 'q' on the picture in order to quit.

Running Tiny-YOLO with USB-CAM

\$./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights -c 0

3

Running Tiny-YOLO with video stream

\$./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights video.mp4

