

IEL – protokol k projektu

Petr Vitula xvitulp00

15. prosince 2023

Obsah

1	Příklad 1	2
	1.1 Výpočet odporu R_{ekv} a proudu I	2
	1.2 Výpočet U_{R2} a I_{R2}	
	1.3 Dosazení	5
2	Příklad 2	6
	2.1 Výpočet R_i	6
	2.2 Výpočet U_i	7
	2.3 Výpočet proudu a napětí na R_6	7
	2.4 Dosazení	8
3	Příklad 3	9
4	Příklad 4	10
5	Příklad 5	11
6	Shrnutí výsledků	12

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Výpočet odporu R_{ekv} a proudu I

- 1) Zjednodušení sériově zapojených zdrojů: ${\cal U} = {\cal U}_1 + {\cal U}_2$
- 2) Zjednodušení paralelně zapojených rezistorů: $R_{56}=\frac{R_5\cdot R_6}{R_5+R_6}$
- 3) Zjednodušení sériově zapojených rezistorů: $R_{78}=R_7+R_8\,$

Transfigurace trojúhelník na hvězdu

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3}$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3}$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3}$$

Zjednodušení sériově zapojených rezistorů: $R_{B56}=R_B+R_{56},\,R_{C4}=R_C+R_4$

Zjednodušení paralelně zapojených rezistorů: $R_{B56C4} = \frac{R_{B56} \cdot R_{C4}}{R_{B56} + R_{C4}}$

Zjednodušení paralelně zapojených rezistorů: $R_{ekv} = R_A + R_{B56C4} + R_{78}$

Výpočet celkového proudu v obvodu

$$I = \frac{U}{R_{ekv}}$$

Výpočet U_{R2} a I_{R2}

Zpětné dopočítání proudu a napětí R_2

Napřed vypočítáme napětí U_{B56C4} a U_{78} . Poté proud ve spodní větvi I_{C4} . Díky tomuto proudu si můžeme dopočítat napětí U_{R4} Jako poslední krok dosadíme do $U_{R2} = U - U_{R4} - U_{78}$.

V poslední řadě dopočítáme proud $I_{R2} = \frac{U_{R2}}{R_2}.$

Dosazení

$$U = U_1 + U_2 = 125 + 65 = 190V$$

$$R_{56} = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{300 \cdot 800}{300 + 800} = 218.1818\Omega$$

$$R_{78} = R_7 + R_8 = 330 + 250 = 580\Omega$$

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} = \frac{510 \cdot 500}{510 + 500 + 550} = 163.4615\Omega$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} = \frac{510 \cdot 550}{510 + 500 + 550} = 179.8077\Omega$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} = \frac{500 \cdot 550}{510 + 500 + 550} = 176.2821\Omega$$

$$R_{B56} = R_B + R_{56} = 179.8077 + 218.1818 = 397.9895\Omega$$

$$R_{C4} = R_C + R_4 = 176.2821 + 250 = 426.2821\Omega$$

$$R_{B56C4} = \frac{R_{B56} \cdot R_{C4}}{R_{B56} + R_{C4}} = \frac{397.9895 \cdot 426.2821}{397.9895 + 426.2821} = 205.8251\Omega$$

$$R_{ekv} = R_A + R_{B56C4} + R_{78} = 163.4615 + 205.8251 + 580 = 949.2866\Omega$$

$$I = \frac{U}{R_{ekv}} = \frac{190}{949.2866} = 0.2002A$$

$$U_{B56C4} = R_{B56C4} \cdot I = 205.8251 \cdot 0.2002 = 41.1960V$$

$$U_{78} = R_{78} \cdot I = 580 \cdot 0.2002 = 116.0872V$$

$$U_{RA} = R_A \cdot I = 163.4615 \cdot 0.2002 = 32.7169V$$

$$I_{B56} = \frac{U_{B56C4}}{R_{B56}} = \frac{205.8251}{397.9895} = 0.1035A$$

$$I_{C4} = \frac{U_{B56C4}}{R_{B56}} = \frac{205.8251}{397.9895} = 0.1035A$$

$$I_{C4} = \frac{U_{B56C4}}{R_{C4}} = \frac{205.8251}{426.2821} = 0.0966A$$

$$U_{R4} = I_{C4} \cdot R_4 = 0.0966 \cdot 250 = 24.1600V$$

$$U_{R2} = U - U_{R4} - U_{78} = 190 - 24.1600 - 116.0872 = \frac{49.7528V}{500}$$

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{49.7528}{500} = \frac{0.0995A}{500}$$

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	100	50	310	610	220	570

Výpočet R_i

V obvodu vyzkratujeme zdroj a odstraníme rezistor R_6 . Následně spočítame napětí mezi svorkami, kde byl původně rezistor R_6 .

$$R_{23} = R_2 + R_3$$

$$R_{123} = \frac{R_1 \cdot R_{23}}{R_1 + R_{23}}$$

$$R_{1234} = R_{123} + R_4$$

$$R_{12345} = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5}$$

$$R_i = R_{12345}$$

Výpočet U_i

Zahájíme výpočet R_{ekv} pomocí kterého budeme schopni se dále dopočítat k I_x a U_i .

$$R_{45} = R_4 + R_5$$

$$R_{2345} = \frac{R_{23} \cdot R_{45}}{R_{23} + R_{45}}$$

$$R_{ekv} = R_1 + R_{2345}$$

$$I_x = \frac{U}{R_{ekv}}$$

$$U_{2345} = U - U_{R1} = U - (R_1 \cdot I_x)$$

$$I_{45} = \frac{U_{2345}}{R_{45}}$$

$$U_i = I_{45} \cdot R_5$$

Výpočet proudu a napětí na R_6

Máme hodnoty U_i a R_i , takže můžeme podle Ohmova zákona snadno spočítat I_{R1} a U_{R1} .

$$I_{R6} = \frac{U_i}{R_i + R_6}$$

$$U_{R6} = R_6 \cdot I_{R6}$$

Dosazení

$$\begin{split} R_{23} &= R_2 + R_3 = 310 + 610 = 920\Omega \\ R_{123} &= \frac{R_1 \cdot R_{23}}{R_1 + R_{23}} = \frac{50 \cdot 920}{50 + 920} = \frac{46000}{970} = 47.4227\Omega \\ R_{1234} &= R_{123} + R_4 = 47.4227 + 220 = 267.4227\Omega \\ R_{12345} &= \frac{R_{1234} \cdot R_5}{R_{1234} + R_5} = \frac{267.4227 \cdot 570}{267.4227 + 570} = \frac{152430,939}{837.4227} = 182.0239\Omega \\ R_i &= 182.0239\Omega \\ R_{45} &= R_4 + R_5 = 220 + 570 = 790\Omega \\ R_{2345} &= \frac{R_{23} \cdot R_{45}}{R_{23} + R_{45}} = \frac{920 \cdot 790}{920 + 790} = \frac{726800}{1710} = 425.0292\Omega \\ R_{ekv} &= R_1 + R_{2345} = 50 + 25.0292 = 475.0292\Omega \\ I_x &= \frac{U}{R_{ekv}} = \frac{100}{475.0292} = 0.2105A \\ U_{2345} &= U - (R_1 \cdot I_x) = 100 - (50 \cdot 0.2105) = 89.4743V \\ I_{45} &= \frac{U_{2345}}{R_{45}} = \frac{89.4743}{790} = 0.1133A \\ U_i &= I_{45} \cdot R_5 = 0.1133 \cdot 570 = 64.5574V \\ I_{R6} &= \frac{U_i}{R_i + R_6} = \frac{64.5574}{182.0239 + 100} = \underline{0.2289A} \\ U_{R6} &= R_6 \cdot I_{R6} = 100 \cdot 0.2289 = \underline{22.8908V} \end{split}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
\mathbf{E}	135	0.55	0.65	52	42	52	42	21

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
F	2	3	12	10	170	80	150	90	65

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
	В	40	10	20	16
_					

fig/Pr5.pdf

Shrnutí výsledků

Příklad	Skupina	$V {y}$ sledky			
1	F	$U_{R2} = 49.7528V$	$I_{R2} = 0.0995A$		
2	В	$U_{R6} = 0.2289A$	$I_{R6} = 22.8908V$		
3	Е	$U_{R4} =$	$I_{R4} =$		
4	F	$ U_{C_2} =$	$\varphi_{C_2} =$		
5	В	$i_L =$:		