Měření odporů

1 Úkol měření

- 1. a) Měření malých odporů Ohmovou metodou. Sestavte měřicí obvod dle obr. 1. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Z naměřených hodnot napětí a proudu vypočtěte velikost neznámého odporu $R_{\rm X}$ a stanovte rozšířenou nejistotu měření (pro $k_{\rm R}=2$).
 - b) Měření malých odporů sériovou srovnávací metodou. Zapojte měřicí obvod dle obr. 2. Změřte napětí na etalonu $R_{\rm N}$ a napětí na měřeném odporu $R_{\rm X}$. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Vypočtěte velikost neznámého odporu $R_{\rm X}$ a odvoď te vztah pro nejistotu měření.
 - c) Měření středních odporů převodníkem $R \to U$. Sestavte převodník odpor-napětí s OZ $(U_R = 10 \text{ V}, R_{N1} = 10 \text{ k}\Omega)$ dle obr. 3. Odvoď te přenos převodníku a ověřte jeho funkci. Jako odpor R_X použijte odporovou dekádu. Zdůvodněte, do jaké hodnoty odporu může uvedený převodník měřit.

2 Schéma zapojení

Obrázek 1: Měření malého odporu Ohmovou metodou

Obrázek 2: Měření malého odporu sériovou metodou

Obrázek 3: Převodník R → U

3 Seznam použitých přístrojů

- 1. Laboratorní zdroj Agilent
- 2. Digitální voltmetr HP

4 Teoretický úvod

Při měření malých odporů se uplatňuje i přechodový odpor mezi zdrojem proudu a měřeným odporem. Pro eliminaci tohoto jevu se používá tzv. *čtyřsvorková* metoda. Pro vyloučení jevu termoelektrických jevů, jejich velikost je závislá na směru proudu, měříme oba směry. Následně výsledný odpor vypočítáme jako aritmetický průměr naměřených hodnot. $R_{\rm X} = \frac{\left(R_{\rm X_1} + R_{\rm X_2}\right)}{2}$. Pro měření ohmovou metodou použijeme vzorec $R_{\rm X} = \frac{U}{I}$ a pro měření srovnávací metodou využijeme vzorec $R_{\rm X} = \frac{U_{\rm R_X}}{U_{\rm R_N}} \cdot R_{\rm N}$.

5 Naměřené hodnoty

Naměřené hodnoty jsou níže v tabulkách:

Ohmova metoda			
I(A)	U(V)	$R\left(\mathbf{m}\Omega\right)$	
1	11,3	11,3	
-1	11,7	11,7	
R_{X} = 11, 5 m Ω			

Tabulka 1: Odpor vypočtený Ohmovou metodou

Sériová srovnávací metoda			
$U_{R_{N}}(V)$	$U_{R_{X}}\left(V\right)$	$R_{\rm X}~({\rm m}\Omega)$	
0,876	10,082	11,509	
0,896	10,251	11,441	
R_{X} = 11,475 m Ω			

Tabulka 2: Odpor vypočtený srovnávací metodou

Měření převodníkem U → I			
$U_{\text{out}}\left(\mathbf{V}\right)$	$U_{\rm in}\left(\mathbf{V}\right)$	$R_{\mathbf{X}}(\mathbf{k}\Omega)$	
5	-5,99	11,980	
$R_{\rm X}$ = 11,980 k Ω			

Tabulka 3: Odpor změřený převodníkem $U \to I$

6 Zpracování naměřených hodnot

7 Závěrečné vyhodnocení

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze