

Handson Technology

Data Specs

JGB37-550 High Torque DC Gear Motor

JGB37-550 is a high quality DC gear motor available in a wide range of RPM configurations, ideal for linear motion control, DIY project and robotics application.

SKU: <u>EMH1192</u>

Specifications:

• Motor type: JM37-550.

• Operating voltage: 6 ~15V.

• Free-run speed: Refer to Table-1.

• Free-run current: 1.1A@12V.

• Stall current: 20A@12V.

• Rated Torque: Refer to Table-1.

• Gear ratio: Refer to Table-1.

• Gear Type: All Metal.

• Shaft Diameter: Ø6mm D-Shape.

• Gear Box size L: 19 mm.

• Weight: 300g.

Mechanical Dimension:

Unit: mm

Table-1:

Model No	SKU	RPM (No Load)	Gear Ratio	Gear Box Length (L)	Rated Torque
				mm	
GM37-550-S2650	FAM1027	2650@12V	1:6.3	19.0	2Kg.cm
GM37-550-S1650	FAM1035	1650@12V	1:10	19.0	3Kg.cm
GM37-550-S550	FAM1028	550@12V	1:30	21.5	9Kg.cm
GM37-550-S180	FAM1030	180@12V	1:90	24.0	27Kg.cm
GM37-550-S110	FAM1031	110@12V	1:150	26.5	35Kg.cm

Application Example:

Application Note: Useful Motor/Torque Equations

Force (Newtons)

 $F = m \times a$

m = mass (kg)

a = acceleration (m/s2)

Motor Torque (Newton-meters)

 $T = F \times d$

F = force (Newtons)

d = moment arm (meters)

Power (Watts)

 $\overline{P} = I \times V$

I = current (amps)

V = voltage (volts)

 $P = T \times \omega$

T = torque (Newton-meters)

 ω = angular velocity (radian/second)

Unit Conversions

Length (1 in = 0.0254 m)

Velocity (1 RPM = 0.105 rad/sec)

Torque (1 in-lb = 0.112985 N-m)

Power (1 HP = 745.7 W)

Example 1

Determine if the following motor can be used to lift a 5-kg load using a 0.5-m lever arm.

Merkle-Korff Gearmotor specifications

Stall Torque = 40 in-lb Stall Current = 3.5 amps

Solution

Convert Stall Torque from in-lb to N-m

1 in-lb = 0.112985 N-m

 $40 \text{ in-lb} = 40 \times 0.112985 \text{ N-m} = 4.5194 \text{ N-m}$

Calculate the Force required to lift the 5-kg load

 $F = m \times a = 5 \text{ kg} \times 9.81 \text{ m/s} = 49.05 \text{ N}$

Calculate the Torque required to lift the Force with the lever arm

 $T = F \times d = 49.05 \text{ N} \times 0.5 \text{ m} = 24.525 \text{ N-m}$

We cannot perform the lift with this set-up, because the stall torque is smaller than the torque required for the lift. We must either shorten the length of the lever arm, or we must choose another motor with a higher stall torque to perform this operation.

Example 2

Using the same motor as in Example 1 with a 12-V power supply:

- a) Calculate the power used by the motor to rotate a 5-kg load at 50 RPM using a 3-inch lever arm.
- b) Calculate the current draw from the battery to perform this operation.

Solution

Convert inches to meters:

1 in = 0.0254 m

3 in = 0.0762 m

Calculate the Force required to lift the 5-kg load:

 $F = m \times a = 5 \text{ kg} \times 9.81 \text{ m/s} = 49.05 \text{ N}$

Calculate the Torque required for this operation:

 $T = F \times d = 49.05 \text{ N} \times 0.0762 \text{ m} = 3.738 \text{ N-m}$

Note- This toque is lower than the motor's stall torque, so this operation is possible using the specified motor, mass, and lever arm

Convert RPM to radians/second:

1 RPM x 2π rad/rev x 1 min/60 sec = 0.105 rad/sec

 $\omega = 50 \text{ rev/min x } 0.105 \text{ rad/sec/RPM} = 5.25 \text{ rad/sec}$

Calculate the Power required for this operation:

 $P = T \times \omega = 3.738 \text{ N-m} \times 5.25 \text{ rad/sec} = 19.622 \text{ W}$

Calculate the Current draw from the battery (use the supply voltage in this calculation):

I = P/V = 19.622 W/12 V = 1.635 Amps

Note- This current is smaller than the maximum allowable current draw of the motor.

Example 3

Determine the motor torque necessary to power the robot drive wheels.

Solution

The following approach is merely one way to solve this problem. Several exist.

Assume the robot will be powered by two powered drive wheels and supported by two freely rotating caster wheels. Robot weight is denoted by W and for this simple example we'll assume the weight is distributed evenly over all 4 wheels, as shown in Figure 1 below.

Thinking logically about the problem, we could model the robot as having 4 of the identical caster wheels (Figure 2) and the force required to propel the robot is simply the force needed to start the robot moving (this could be measured empirically with a force scale). The problem is we haven't yet built the robot so testing it in this manner is not an option. We need to calculate the force (and hence motor torque) required to move the robot **before** we build anything.

Looking closer at the caster wheel we can see the actual friction that must be overcome to put the robot in motion. Fw is the friction force between the wheel and the floor and Fa is the friction force between the wheel and the axle. Tw and Ta are the respective torques between the wheel and floor and the wheel and axle.

 $Fa = W/2 * \mu a$

Ta = Fa * Ra

 $Fw = W/2 * \mu w$

Tw = Fw * Rw

Tw is the *maximum* torque the wheel can transmit to the ground before it slips.

Our goal is to find a realistic range for Tm, the motor torque.

As calculated above, Tw would be the *maximum* amount of torque the motor could transfer to the ground before the wheel begins to slip (ie Tm, max).

Typically, we desire $\mu w > \mu a$, so the wheel does not slip/slide across the floor, but rather rolls. We can easily look up the μa value for the axle/wheel materials in contact. Knowing μa and the weight of the vehicle, Fa can be computed. This is the *minimum* amount of force we would have to provide at the wheel/axle interface to overcome the friction between the two. To relate the computed axle force Fa to the *minimum* amount of

wheel torque required to move the robot, we would use the "virtual radius" of the wheel/axle combination, which is computed as follows:

$$Rv = Rw - Ra$$

This is the fictitious radius about which Fa would act to rotate the wheel about the tangent point in contact with the ground at any instant, as shown in Figure 4 below.

Therefore our equation for the *minimum* amount of torque the motor must transfer to the ground before the wheel begins to roll (thus causing the robot to move) would be:

Tm (min = Fa * Rv = Fa * (Rw - Ra))

In summation, Tm, $\min \le \text{Tm} \le \text{Tm}$, $\max \text{ or alternatively, Fa} * (\text{Rw} - \text{Ra}) \le \text{Tm} \le \text{Fw} * \text{Rw}$

Motors, Fans and Accessories Selection

40x40x10 mm DC Brushless Cooling Fan

Ultra quiet powerful brushless DC fan, quiet sleevebearing design. Specialized design, professional made, stable performance. Operating Temperature: -10

C to +60C. Long Life Expectancy.

GA12-N20 Geared Mini DC Motor

This is a DC Mini Metal Gear Motor, ideal for making robots. Light weight, high torque and low RPM. Fine craftsmanship, durable, not easy to wear. Widely used on

boat, model car, robotic, home appliances, linear motion control.

EMH-1071 GDT4010S12B RM 6.50 EMH-1176 **GA12-N20** RM 18.50

30x30x10 mm DC Brushless Cooling Fan

Ultra quiet powerful brushless DC fan, quiet sleevebaring design. Specialized design, professional made, stable performance. Operating Temperature: -10 C to +60C. Long Life Expectancy.

Nema23 Bipolar/Unipolar Stepper Motor 1.0A

A stepper motor to satisfy all your 3D-Printer, robotics, Linear Motion projects needs! This 6-wire uni-polar/bipolar stepper motor has 1.8° per step for smooth motion and a nice holding torque.

EMH-1179 23HS2610 RM 110.00 **EMH-1070** GDT3010S12B **RM 7.50**

1.2A Nema 17 Stepper Motor

A stepper motor to satisfy all your 3D-Printer, robotics, Linear Motion projects needs! This 4-wire bipolar stepper has 1.8° per step for smooth motion and a nice holding torque.

1.7A Nema 17 Stepper Motor

A stepper motor to satisfy all your 3D-Printer, robotics, Linear Motion projects needs! This 4-wire bipolar stepper has 1.8° per step for smooth motion and a nice holding torque.

EMH-1016 42HS40-1204D **RM 44.50** EMH-1181 17HS-4401SD RM 47.00

RM 7.40

SG90 Tower Pro Gear Micro Servo Motor

Tiny and lightweight with high output power. Servo can rotate approximately 180 degrees (90 in each direction). Good for beginners who want to make stuff move without

building a motor controller with feedback & gear box.

TPSG90S

Nema-17 Planetary Geared Stepper Motor

This high precision NEMA17 Stepper motor has an integrated Planetary Gearbox with 1:5.18 gear ratio, the resolution can reach 0.35° step angle.

EMH-1173 42BYGP40P RM 185.00

EMH-1140

Web Resources:					
•	68mm High Grip Rubber Wheel for Robotics Car				
•	Hex Motor Shaft Coupler for Robotic Wheel				
•	Right Angle Bracket for JGB37 Gear Motor				
	10	www.handsontec.com			
_	10	WWW.IIGHGOOHGG.GOH			

Handsontec.com

We have the parts for your ideas

HandsOn Technology provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer. Information, education, inspiration and entertainment. Analog and digital, practical and theoretical; software and hardware.

Hands *On* Technology support Open Source Hardware (OSHW) Development Platform.

Learn: Design: Share

www.handsontec.com

The Face behind our product quality...

In a world of constant change and continuous technological development, a new or replacement product is never far away – and they all need to be tested.

Many vendors simply import and sell without checks and this cannot be the ultimate interests of anyone, particularly the customer. Every part sell on Handsotec is fully tested. So when buying from Handsontec products range, you can be confident you're getting outstanding quality and value.

We keep adding the new parts so that you can get rolling on your next project.

Breakout Boards & Modules

Connectors

Electro-Mechanical Parts

Engineering Material

Mechanical Hardware

Electronics Components

P

Power Supply

Arduino Board & Shield

Tools & Accessory