ГУАП

КАФЕДРА № 14

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ				
ПРЕПОДАВАТЕЛЬ				
старший преподаватель		Н. И. Синёв		
должность, уч. степень, звание	подпись, дата	инициалы, фамилия		
ОТЧЕТ (О ЛАБОРАТОРНОЙ РАБО	OTE № 2		
рі шиспециі	Ε ΠΠα ΓΕΡΡΗΛΙΛΟΡΙΙΑ Η	ЕППУ ШИСЕП		
БЫЧИСЛЕПИИ	Е ДЛЯ БЕЗЗНАКОВЫХ Ц	EJIDIA MMCEJI		
	по курсу:			
ПРОГРАММИРОВАНИЕ НА ЯЗЫКАХ АССЕМБЛЕРА				
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ гр. № 1245	19.03.	24 Г. С. Куранов		
-	подпись, дата	инициалы, фамилия		

Постановка задачи

Вариант: 19

Вычислить значение выражения для знаковых чисел:

$$Y = (2A^3 - 4A^2) / B^2$$

Исходный код

.global _main

.align 2

main:

mov x0, #5 //ввод A

mov x1, #2

mul x2, x1, x0 // 2*A

mul x2, x2, x0 // 2*A*A

mul x0, x2, x0 // 2*A^3

mul x1, x1, x2 // 4A^2

sub x0, x0, x1 // $2*A^3 - 4A^2$

mov x1, #-2 // ввод В

mul x1, x1, x1 // B^2

sdiv x2, x0, x1 $//y = (A + B)/C^2$

mul x3, x1, x2 //C^2 * X2

sub x3, x0, x3 //A+B - X3

str x2, [sp] //сохраняем (store) число в стековый регистр

str x3, [sp, #8] //сохраняем (store) число в стековый регистр + 8 байт смещение adr x0, output str //загружаем адрес строки в x0

bl printf //вызываем С-функцию вывода

mov x0, #0

то Х16, #1 //системный вызов 1 завершает программу

svc #0x80 //вызываем системную функцию с номером 1

output str:

.asciz "Output value: %d, %d\n"

Тестирование

1) В ручную:

A	В	Целая часть	Дробная часть
-3	5	-3	-15
-6	-3	-64	0
5	-2	37	2

Таблица 1 – Результаты подсчетов

Подсчеты:

1.
$$A = -3, B = 5$$

```
Y = (2*(-3)^3 - 4*(-3)^2) / 5^2 = (2*-27 - 4*9)/25 = (-54 - 36)/25 = -3, 25*-3 - 15 = -15
2.  A = -6, B = -3
Y = (2*(-6)^3 - 4*(-6)^2) / (-3)^2 = (2*-216 - 4*36)/9 = -576/9 = -64, -576 + 64*9 = -576
+ 576 = 0
3.  A = 5, B = -2
Y = (2*5^3 - 4*5^2) / (-2)^2 = (2*125 - 4*25)/16 = 150 / 4 = 37, 150 - 4*37 = 150 - 148
```

2) С помощью программы:

```
.global _main
.align 2
_main:
   mov x0, #-3 //ввод А
   mov x1, #2
   mul x2, x1, x0 // 2*A
   mul x2, x2, x0 // 2*A*A
   mul x0, x2, x0 // 2*A^3
   mul x1, x1, x2 // 4A^2
   sub x0, x0, x1 // 2*A^3 - 4A^2
   mov x1, #5
                 // ввод В
   mul x1, x1, x1 // B^2
   sdiv x2, x0, x1 //y = (A + B)/C^2
   mul x3, x1, x2 //C^2 * X2
   sub x3, x0, x3 //A+B - X3
   str x2, [sp] //сохраняем (store) число в стековый регистр
    str x3, [sp, #8] //сохраняем (store) число в стековый регистр + 8 байт смещение
   adr x0, output_str //загружаем адрес строки в х0
   bl _printf //вызываем С-функцию вывода
   mov x0, #0
   mov X16, #1 //системный вызов 1 завершает программу
    svc #0x80 //вызываем системную функцию с номером 1
output_str:
   .asciz "Output value: %d, %d\n"
```

Рисунок 1 - Результат работы программы со значениями А и В = -3, 5

```
🔼 Assembler 〉 🚞 Assembler 〉 🕒 lab_1_my 〉 No Selection
    .global _main
    .align 2
    _main:
        mov x0, #-6 //ввод А
        mov x1, #2
        mul x2, x1, x0 // 2*A
         mul x2, x2, x0 // 2*A*A
         mul x0, x2, x0 // 2*A^3
         mul x1, x1, x2 // 4A^2
         sub x0, x0, x1 // 2*A^3 - 4A^2
         mul x1, x1, x1 // B^2
         sdiv x2, x0, x1 //y = (A + B)/C^2
         mul x3, x1, x2 //C^2 \times X2
         sub x3, x0, x3 //A+B - X3
         str x2, [sp] //сохраняем (store) число в стековый регистр
         str x3, [sp, #8] //сохраняем (store) число в стековый регистр + 8 байт смещение
         adr x0, output_str //загружаем адрес строки в x0
         bl _printf //вызываем С-функцию вывода
         mov X16, #1 //системный вызов 1 завершает программу
         svc #0x80 //вызываем системную функцию с номером 1
     output_str:
         .asciz "Output value: %d, %d\n"
```

Рисунок 2 - Результат работы программы со значениями A и B = -6, -3

```
1 .global _main
     .align 2
   3 _main:
         mov x0, #5 //ввод А
         mov x1, #2
         mul x2, x1, x0 // 2*A
         mul x2, x2, x0 // 2*A*A
         mul x0, x2, x0 // 2*A^3
         mul x1, x1, x2 // 4A^2
         sub x0, x0, x1 // 2*A^3 - 4A^2
         mov x1, #-2 // ввод В mul x1, x1, x1 // В^2
         sdiv x2, x0, x1 //y = (A + B)/C^2
         mul x3, x1, x2 //C^2 * X2
         sub x3, x0, x3 //A+B - X3
         str x2, [sp] //сохраняем (store) число в стековый регистр
         str x3, [sp, #8] //сохраняем (store) число в стековый регистр + 8 байт смещение
         adr x0, output_str //загружаем адрес строки в x0
bl _printf //вызываем С-функцию вывода
         mov x0, #0
         mov X16, #1 //системный вызов 1 завершает программу
         svc #0x80 //вызываем системную функцию с номером 1
     output_str:
         .asciz "Output value: %d, %d\n"
```

Рисунок 3 - Результат работы программы со значениями A и B = 5, -2

3) Выводы

В результате данной лабораторной работы мне удалось разработать программу на языке программирования Assembler, которая подсчитывала значение выражения с заданными параметрами, при этом теперь все вычисления работают с знаковыми числами . Также были проверены все 3 теста, которые были решены вручную, и результаты работы программы совпадают с просчитанными вручную, поэтому лабораторная работа выполнена успешно, цели ЛР достигнуты.