

NATIONAL OPEN UNIVERSITY OF NIGERIAN SCHOOL OF SCIENCE AND TECHNOLOGY END OF SEMESTER EXAMINATION MAY, 2012

CODE: MTH 402 TIME: 3 HOURS

TITLE: GENERAL TOPOLOGY II TOTAL:

70%

CREDIT UNIT: 3

INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE (5) QUESTIONS BEAR FULL MARKS

intersect ta

- 1(a) Prove that the intersection $\tau = \frac{1}{2}$ of topologies $\{\tau_{\alpha}\}$ $\alpha \epsilon \Delta$ on X its itself a topology in X (where Δ is some indexing set)
 -7marks
- 1(b) Let X be a set, and let B be a basis for a topology on τ on X. Show τ equals the collection of all unions of elements of B.

 -7marks
- 2(a) Let B and B' be bases for the topology τ and τ' respectively on X. Show that the following are equivalent.
 - i) τ' is finer than τ
 - ii) For each x ε X and each basis element в ε B such that x ε B, we know that в ε τ by definition and that τ ⊂ τ', by condition (i) therefore β ε τ' -7marks
- 2(b) Let d be a metric on the set X. show that the collection of all ϵ balls $B_d(x, \epsilon)$ for $x \in X$ and $\epsilon > 0$ is a basis for a topology on X, called the metric topology induced by d. -7marks

- 3(a) State the properties under which d is a metric on X, given a function d: $X \times X \to R$, for all x, y, z $\in X$.

 -7marks
- 3(b) Let X and Y be two topological spaces. Let B be the collection of all sets of the form U x V, where U is an open subset of X and V is an open subset of Y i.e. $B = \{ U \times V : U \text{ is open in X and V is open in Y} \}$. Show that B is the basis for a for a topology on X x Y. -14marks

- 4(a) Let Y be a subspace of X. If U is open in Y and Y is open in X.

 Show that U is open in X.

 7marks
- 4(b) Show that the mapping $f: R \to R^+$ defined by $f(x) = e^x$ is a homeomorphism from R to R^+ (Recall that a homeomorpism from one topological space to another is a bijective function f such that f and f^{-1} are both continuous)

 -7marks

- 5(a) Give an example to show that every discrete space is Hausdorff. -2½marks
- 5(b) What does it mean to say that a topological space is Hausdorff?
 -2½marks
- 5(c) Let X be the Hausdorff space, then for all $x \in X$, show that the singleton set $\{x\}$ is closed.

 -9marks
- 6(a) Let X and Y be topological spaces. When is a function $f: X \to Y$ said to be

continuous? 7marks

- 6(b) Let X be the subspace of R given by $X = [0,1] \cup [2,4]$, Define $f: X \to R$ by
 - $f(x) = \frac{1}{1000}$ Prove that f is continuous.

-7marks

- 7(a) Let R be endowed with standard topology. Show that for all $x \in R$, $w = \{ (x \varepsilon, x + \varepsilon) \varepsilon > 0 \}$ is a neighbourhood basis of x.

 -7marks
- 7(b) Let X be a topological space and let $x \in X$. Suppose X is first countable, show that there exist a countable basis of x, say $W = \{ W_n \ n \ge 1 \}$ such that $W_{n+1} \subset W_n$ -7marks