STANISLAS Thème

Autour des règles de convergence / divergence

PSI

2020-2021

Soit (u_n) une suite de réels positifs.

Partie I : Règle de condensation de CAUCHY

On suppose que la suite (u_n) est décroissante.

- **1.** Montrer que $\sum u_n$ converge si et seulement si $\sum 2^n u_{2^n}$ converge.
- 2. Retrouver le critère de convergence des séries de RIEMANN.
- 3. Montrer que la série de BERTRAND $\sum \frac{1}{n(\ln n)^{\beta}}$ converge si et seulement si $\beta > 1$.

Partie II : Règle d'ALEMBERT

On suppose que, à partir d'un certain rang, la suite (u_n) ne s'annule pas et qu'il existe $\ell \in \overline{\mathbb{R}}$ tel que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell$.

4. Règle.

- a) Montrer que, si $\ell < 1$, alors $\sum u_n$ converge.
- **b)** Montrer que, si $\ell > 1$, alors $\sum u_n$ diverge.
- **5. Exemples.** Soit x > 0. Étudier la convergence des séries de terme général
 - **a)** $\binom{n+4}{n} x^n$.

b) $\frac{x^n}{x!}$

- c) $n!x^{n^2}$.
- **6. Limites.** Montrer que, lorsque $\ell = 1$ dans le théorème précédent, on ne peut en général pas conclure.

Partie III : Règle de Rabbe-DUHAMEL

On suppose que, à partir d'un certain rang, la suite (u_n) ne s'annule pas et qu'il existe β tel que $\frac{u_{n+1}}{u_n} = 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$.

7. Règle.

- a) Montrer que, si $\beta > 1$, alors $\sum u_n$ converge.
- **b)** Montrer que, si $\beta < 1$, alors $\sum u_n$ diverge.
- **8. Exemples.** Soit $(a,b) \in (\mathbb{R}^*)^2$. Déterminer la nature dess séries de terme général:
 - a) $n! \ln(1+1) \cdots \ln(1+\frac{1}{n})$.
- **b)** $\frac{a(a+1)\cdots(a+n)}{b(b+1)\cdots(b+n)}$
- **9. Limites.** Montrer que, si $\beta = 1$, on ne peut en général pas conclure.

Partie IV : Règle de CAUCHY

On suppose qu'il existe $\lambda \in \overline{\mathbb{R}}_+$ tel que $\lim_{n \to +\infty} \sqrt[n]{u_n} = \lambda$.

- 10. Règle.
 - a) Montrer que, si $\lambda < 1$, alors $\sum u_n$ converge.
 - **b)** Montrer que, si $\lambda > 1$, alors $\sum u_n$ diverge.
- 11. Exemples. Déterminer la nature des séries de terme général :

c) $\frac{n^{\ln n}}{(\ln n)^n}$.

12. Limites. Montrer que, lorsque $\lambda = 1$, on ne peut, en général, pas conclure.

Partie V : Pas de frontière entre divergence et convergence

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels positifs telle que $\sum u_n$ diverge. On note (s_n) la suite de ses sommes partielles, i.e. pour tout entier naturel n non nul, $s_n = \sum_{k=1}^n u_k$.

- 13. Exemples.
- a) Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n}$. Déterminer la nature de $\sum u_n$, puis de $\sum \frac{u_n}{1+nu_n}$
- **b)** Pour tout $n \in \mathbb{N}^*$, on pose $u_n = 1$ s'il existe un entier m tel que $n=2^m-1$ et 0 sinon. Déterminer la nature de $\sum u_n$, puis de $\sum \frac{u_n}{1+nu_n}$
- 14. On suppose dans cette question que la suite (u_n) est à valeurs strictement positives. Montrer que $\sum \frac{u_n}{1+n^2u_n}$ converge

Thème II PSI

6

- **15. a)** Montrer que si $\sum \frac{u_n}{1+u_n}$ converge, alors (u_n) converge vers 0.
 - **b)** Montrer que si (u_n) converge vers 0, alors $\sum \frac{u_n}{1+u_n}$ diverge.
 - c) En déduire la nature de $\sum \frac{u_n}{1+u_n}$.
- **16.** Soit (u_n) une suite de réels positifs et (t_n) la suite des sommes partielles de la série de terme général u_n . Montrer que si (t_n) converge, alors pour tout $\varepsilon > 0$, il existe un entier naturel n_0 tel que pour tous $n \ge n_0$, $p \ge 0$, $|t_{n+p} t_n| \le \varepsilon$.
- **17. a)** Soient $(n,k) \in (\mathbb{N}^*)^2$. Montrer que $\sum_{j=1}^k \frac{u_{n+j}}{s_{n+j}} \geqslant 1 \frac{s_n}{s_{n+k}}$. **b)** En déduire que $\left(\sum \frac{u_n}{s_n}\right)$ diverge.
- **18. a)** Montrer que pour tout entier naturel n,

$$\frac{u_n}{(s_n)^2} \leqslant \frac{1}{s_{n-1}} - \frac{1}{s_n}.$$

b) En déduire que $\sum \frac{u_n}{(s_n)^2}$ converge.

Mathématiciens

ALEMBERT Jean Le Rond d' (17 nov. 1717 à Paris-29 oct. 1783 à Paris). CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux). DUHAMEL Jean-Marie (5 fév. 1797 à St Malo-29 avr. 1872 à Paris). BERTRAND Joseph (11 mar. 1822 à Paris-3 avr. 1900 à Paris). RIEMANN Georg Friedrich Bernhard (17 sept. 1826 à Breselenz-20 juil. 1866 à Selasca).