Lecture 25: p-value, randomized tests, and confidence sets

The choice of a level of significance α is usually somewhat subjective.

In most applications there is no precise limit to the size of T that can be tolerated.

Standard values, such as 0.10, 0.05, or 0.01, are often used for convenience.

For most tests satisfying

$$\sup_{P \in \mathcal{P}_0} \alpha_T(P) \le \alpha. \tag{1}$$

a small α leads to a "small" rejection region.

It is good practice to determine not only whether H_0 is rejected or accepted for a given α and a chosen test T_{α} , but also the smallest possible level of significance at which H_0 would be rejected for the computed $T_{\alpha}(x)$, i.e.,

$$\hat{\alpha} = \inf \{ \alpha \in (0,1) : T_{\alpha}(x) = 1 \}.$$

Such an $\hat{\alpha}$, which depends on x and the chosen test and is a statistic, is called the p-value for the test T_{α} .

Example 2.29. Consider the problem in Example 2.28. Let us calculate the *p*-value for $T_{c_{\alpha}}$. Note that

$$\alpha = 1 - \Phi\left(\frac{\sqrt{n}(c_{\alpha} - \mu_0)}{\sigma}\right) > 1 - \Phi\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}\right)$$

if and only if $\bar{x} > c_{\alpha}$ (or $T_{c_{\alpha}}(x) = 1$). Hence

$$1 - \Phi\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}\right) = \inf\{\alpha \in (0, 1) : T_{c_\alpha}(x) = 1\} = \hat{\alpha}(x)$$

is the *p*-value for $T_{c_{\alpha}}$. It turns out that $T_{c_{\alpha}}(x) = I_{(0,\alpha)}(\hat{\alpha}(x))$.

With the additional information provided by p-values, using p-values is typically more appropriate than using fixed-level tests in a scientific problem.

However, a fixed level of significance is unavoidable when acceptance or rejection of H_0 implies an imminent concrete decision.

In Example 2.28, the equality in (1) can always be achieved by a suitable choice of c. This is, however, not true in general.

We need to consider randomized tests.

Recall that a randomized decision rule is a probability measure $\delta(x,\cdot)$ on the action space for any fixed x.

Since the action space contains only two points, 0 and 1, for a hypothesis testing problem, any randomized test $\delta(X, A)$ is equivalent to a statistic $T(X) \in [0, 1]$ with $T(x) = \delta(x, \{1\})$ and $1 - T(x) = \delta(x, \{0\})$.

A nonrandomized test is obviously a special case where T(x) does not take any value in (0,1).

For any randomized test T(X), we define the type I error probability to be $\alpha_T(P) = E[T(X)]$, $P \in \mathcal{P}_0$, and the type II error probability to be $1 - \alpha_T(P) = E[1 - T(X)]$, $P \in \mathcal{P}_1$. For a class of randomized tests, we would like to minimize $1 - \alpha_T(P)$ subject to (1).

Example 2.30. Assume that the sample X has the binomial distribution $Bi(\theta, n)$ with an unknown $\theta \in (0, 1)$ and a fixed integer n > 1.

Consider the hypotheses $H_0: \theta \in (0, \theta_0]$ versus $H_1: \theta \in (\theta_0, 1)$, where $\theta_0 \in (0, 1)$ is a fixed value.

Consider the following class of randomized tests:

$$T_{j,q}(X) = \begin{cases} 1 & X > j \\ q & X = j \\ 0 & X < j, \end{cases}$$

where j = 0, 1, ..., n - 1 and $q \in [0, 1]$. Then

$$\alpha_{T_{i,q}}(\theta) = P(X > j) + qP(X = j) \qquad 0 < \theta \le \theta_0$$

and

$$1 - \alpha_{T_{i,q}}(\theta) = P(X < j) + (1 - q)P(X = j) \qquad \theta_0 < \theta < 1.$$

It can be shown that for any $\alpha \in (0,1)$, there exist an integer j and $q \in (0,1)$ such that the size of $T_{j,q}$ is α .

Confidence sets

 ϑ : a k-vector of unknown parameters related to the unknown population $P \in \mathcal{P}$ C(X) a Borel set (in the range of ϑ) depending only on the sample X If

$$\inf_{P \in \mathcal{D}} P(\vartheta \in C(X)) \ge 1 - \alpha,\tag{2}$$

where α is a fixed constant in (0,1), then C(X) is called a *confidence set* for ϑ with level of significance $1-\alpha$.

The left-hand side of (2) is called the *confidence coefficient* of C(X), which is the highest possible level of significance for C(X).

A confidence set is a random element that covers the unknown ϑ with certain probability.

If (2) holds, then the *coverage probability* of C(X) is at least $1 - \alpha$, although C(x) either covers or does not cover ϑ whence we observe X = x.

The concepts of level of significance and confidence coefficient are very similar to the level of significance and size in hypothesis testing.

In fact, it is shown in Chapter 7 that some confidence sets are closely related to hypothesis tests.

Consider a real-valued ϑ .

If $C(X) = [\underline{\vartheta}(X), \overline{\vartheta}(X)]$ for a pair of real-valued statistics $\underline{\vartheta}$ and $\overline{\vartheta}$, then C(X) is called a confidence interval for ϑ .

If $C(X) = (-\infty, \overline{\vartheta}(X)]$ (or $[\underline{\vartheta}(X), \infty)$), then $\overline{\vartheta}$ (or $\underline{\vartheta}$) is called an upper (or a lower) confidence bound for ϑ .

A confidence set (or interval) is also called a set (or an interval) estimator of ϑ , although it is very different from a point estimator (discussed in §2.4.1).

Example 2.31. Let $X_1, ..., X_n$ be i.i.d. from the $N(\mu, \sigma^2)$ distribution with an unknown $\mu \in \mathcal{R}$ and a known σ^2 .

Suppose that a confidence interval for $\vartheta = \mu$ is needed.

We only need to consider $\underline{\vartheta}(\bar{X})$ and $\overline{\vartheta}(\bar{X})$, since the sample mean \bar{X} is sufficient.

Consider confidence intervals of the form $[\bar{X} - c, \bar{X} + c]$, where $c \in (0, \infty)$ is fixed.

Note that

$$P\left(\mu \in [\bar{X}-c,\bar{X}+c]\right) = P\left(|\bar{X}-\mu| \leq c\right) = 1 - 2\Phi\left(-\sqrt{n}c/\sigma\right),$$

which is independent of μ .

Hence, the confidence coefficient of $[\bar{X}-c,\bar{X}+c]$ is $1-2\Phi\left(-\sqrt{n}c/\sigma\right)$, which is an increasing function of c and converges to 1 as $c\to\infty$ or 0 as $c\to0$.

Thus, confidence coefficients are positive but less than 1 except for silly confidence intervals $[\bar{X}, \bar{X}]$ and $(-\infty, \infty)$.

We can choose a confidence interval with an arbitrarily large confidence coefficient, but the chosen confidence interval may be so wide that it is practically useless.

If σ^2 is also unknown, then $[\bar{X} - c, \bar{X} + c]$ has confidence coefficient 0 and, therefore, is not a good inference procedure.

In such a case a different confidence interval for μ with positive confidence coefficient can be derived (Exercise 97 in §2.6).

This example tells us that a reasonable approach is to choose a level of significance $1 - \alpha \in (0,1)$ (just like the level of significance in hypothesis testing) and a confidence interval or set satisfying (2).

In Example 2.31, when σ^2 is known and c is chosen to be $\sigma z_{1-\alpha/2}/\sqrt{n}$, where $z_a = \Phi^{-1}(a)$, the confidence coefficient of the confidence interval $[\bar{X} - c, \bar{X} + c]$ is exactly $1 - \alpha$ for any fixed $\alpha \in (0,1)$.

This is desirable since, for all confidence intervals satisfying (2), the one with the shortest interval length is preferred.

For a general confidence interval $[\underline{\vartheta}(X), \overline{\vartheta}(X)]$, its length is $\overline{\vartheta}(X) - \underline{\vartheta}(X)$, which may be random.

We may consider the expected (or average) length $E[\overline{\vartheta}(X) - \underline{\vartheta}(X)]$.

The confidence coefficient and expected length are a pair of good measures of performance of confidence intervals.

Like the two types of error probabilities of a test in hypothesis testing, however, we cannot maximize the confidence coefficient and minimize the length (or expected length) simultaneously.

A common approach is to minimize the length (or expected length) subject to (2).

For an unbounded confidence interval, its length is ∞ .

Hence we have to define some other measures of performance.

For an upper (or a lower) confidence bound, we may consider the distance $\overline{\vartheta}(X) - \vartheta$ (or $\vartheta - \underline{\vartheta}(X)$) or its expectation.

Example 2.32. Let $X_1, ..., X_n$ be i.i.d. from the $N(\mu, \sigma^2)$ distribution with both $\mu \in \mathcal{R}$ and $\sigma^2 > 0$ unknown.

Let $\theta = (\mu, \sigma^2)$ and $\alpha \in (0, 1)$ be given.

Let \bar{X} be the sample mean and S^2 be the sample variance.

Since (\bar{X}, S^2) is sufficient (Example 2.15), we focus on C(X) that is a function of (\bar{X}, S^2) . From Example 2.18, \bar{X} and S^2 are independent and $(n-1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1} .

Since $\sqrt{n}(\bar{X} - \mu)/\sigma$ has the N(0,1) distribution,

$$P\left(-\tilde{c}_{\alpha} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \tilde{c}_{\alpha}\right) = \sqrt{1 - \alpha},$$

where $\tilde{c}_{\alpha} = \Phi^{-1}\left(\frac{1+\sqrt{1-\alpha}}{2}\right)$ (verify).

Since the chi-square distribution χ^2_{n-1} is a known distribution, we can always find two constants $c_{1\alpha}$ and $c_{2\alpha}$ such that

$$P\left(c_{1\alpha} \le \frac{(n-1)S^2}{\sigma^2} \le c_{2\alpha}\right) = \sqrt{1-\alpha}.$$

Then

$$P\left(-\tilde{c}_{\alpha} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \tilde{c}_{\alpha}, c_{1\alpha} \le \frac{(n-1)S^2}{\sigma^2} \le c_{2\alpha}\right) = 1 - \alpha,$$

or

$$P\left(\frac{n(\bar{X} - \mu)^2}{\tilde{c}_{\alpha}^2} \le \sigma^2, \frac{(n-1)S^2}{c_{2\alpha}} \le \sigma^2 \le \frac{(n-1)S^2}{c_{1\alpha}}\right) = 1 - \alpha.$$
 (3)

The left-hand side of (3) defines a set in the range of $\theta = (\mu, \sigma^2)$ bounded by two straight lines, $\sigma^2 = (n-1)S^2/c_{i\alpha}$, i = 1, 2, and a curve $\sigma^2 = n(\bar{X} - \mu)^2/\tilde{c}_{\alpha}^2$ (see the shadowed part of Figure 2.3).

This set is a confidence set for θ with confidence coefficient $1-\alpha$, since (3) holds for any θ .