Московский физико-технический институт (Государственный университет) Факультет управления и прикладной математики

Моделирование многофазных реагирующих фильтрационных течений с равновесными химическими реакциями.

Выпускная квалификационная работа на степень бакалавра

студента 373 группы

Гринина Виктора Олеговича

Содержание

1	Введение	3					
2	Математическая модель	3					
	2.1 Уравнения химических реакций	3					
	2.2 Конкретные химические реакции	5					
3	В Численный метод и программный модуль						
4	Результаты	7					

1 Введение

В настоящей работе рассматриваются многофазные фильтрационные течения, в которых наряду с реакциями с конечной кинетикой присутствуют равновесные химические реакции. Для описания данного процесса используются система уравнений, описывающая многофазное фильтрационное течение, и система уравнений, описывающая процесс установления химического равновесия. Системы решаются последовательно на каждом шаге по времени. Сначала, с помощью симулятора многофазных фильтрационных течений, решается первая из них. Полученные результаты используются в качестве начальных приближений для второй системы.

Цель работы заключалась в написании модуля для решения задачи о фазовом равновесии и добавлении его к имеющемуся программному комплексу, для проведения численных экспериментов.

2 Математическая модель

2.1 Уравнения химических реакций

Основными уравнениями, которые описывают течение многофазной многокомпонентной среды являются уравнения балансов количества вещества и энергии, имеющие вид

$$\frac{\partial N_i}{\partial t} + \operatorname{div} \mathbf{Q}_i = \mathbf{S}_i,$$
$$\frac{\partial E}{\partial t} + \operatorname{div} \mathbf{J} = \mathbf{R}.$$

Здесь N_i — молярные концентрации компонент, E — плотность энергии среды. Химические реакции учитываются в математической модели течения многофазной многокомпонентной среды в виде источников количества вещества S_i и энергии R.

Для реакций с конечной скоростью обычно используется закон Арениуса, когда скорость реакции пропорциональна концентрациям реагирующих веществ в степенях их стехеометрических коэффициентов. В случае равновесной химической реакции вместо скорости реакции имеется равновесное соотношение

$$F(N_i) = 0,$$

выражающее собой равенство скоростей прямой и обратной химической реакции.

Если записать равновесную химическую реакцию в виде

$$\sum \nu_i X_i \rightleftharpoons 0,$$

где X_i — реагирующие вещества, а ν_i — их стехеометрические коэффициенты в реакции, то для такой реакции принимается верным закон действующих масс:

$$K = \prod_{i} N_i^{\nu_i}.$$

Здесь предполагается, что ν_i для продуктов реакции положительны, а для реагентов — отрицательны. В качестве функции F для данной реакции можно взять

$$F = \ln K + \sum \nu_i \ln N_i.$$

Пусть в силу некоторых причин, например из-за переноса продуктов реакции течением, данное равновесие оказалось нарушено. Пусть начальные концентрации N_i^0 . Тогда из-за данной реакции концентрации изменяются по закону

$$\Delta N_i = \xi \nu_i.$$

где ξ — величина, характеризующая глубину реакции, одинаковая для всех участвующих компонент.

Задача определения нового равновесия заключается в поиске такого значения ξ , что $F(N_i)=0$. При этом, можно сделать очевидное обобщение

на случай нескольких реакций

$$N_i = N_i^0 + \sum_{j=1}^M \xi_j \nu_{i,j}$$

$$F_j(N_i) = \ln(K_j) + \sum_{j=1}^M \nu_{i,j} \ln N_i = 0$$

2.2 Конкретные химические реакции

При проведении расчётов использовалась следующая система химических реакций

$$R1: OH^- + H^+ \rightleftharpoons H_2O$$
,

$$R2: \operatorname{HCO}_{3}^{-} + \operatorname{H}^{+} \rightleftharpoons \operatorname{H}_{2}\operatorname{O} + \operatorname{CO}_{2},$$

$$R3: \operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 + \operatorname{Ca}^{2+}.$$

Эта система может быть записана в матрично-векторной форме $SY \rightleftharpoons 0$, где

$$S = \begin{vmatrix} -1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & -2 & 1 \end{vmatrix}, \quad Y = \begin{vmatrix} OH^- \\ HCO_3^- \\ CaCO_3 \\ H_2O \\ CO_2 \\ H^+ \\ Ca^{2+} \end{vmatrix}$$

Или в виде таблицы Мореля

	H ₂ O	H^{+}	CO_2	Ca ²⁺	$\lg K$
OH-	1	-1	0	0	-14
HCO_3^-	1	-1	1	0	-5.928
CaCO ₃	1	-2	1	1	-8.094

3 Численный метод и программный модуль

Для решения системы, которая описывает установление химического равновесия, использовался метод Ньютона. Были рассмотренные различные способы записи данной системы и был выбран оптимальный.

Запишем приведённую раньше систему в матричной форме

$$\mathbf{F}(\boldsymbol{\xi}) = \ln \mathbf{K} + V^T \ln \left(\mathbf{N}^0 + V \boldsymbol{\xi} \right) = 0$$

Продифференцируем эту функцию по $\boldsymbol{\xi}$

$$\frac{\partial \mathbf{F}}{\partial \boldsymbol{\xi}} = V^T \operatorname{diag}^{-1} (\mathbf{N}^0 + V\boldsymbol{\xi}) V$$

Метод Ньютона принимает вид

$$\boldsymbol{\xi}^{k+1} = \boldsymbol{\xi}^k - \alpha^{(k)} [V^T \operatorname{diag}^{-1}(\mathbf{N}^0 + V\boldsymbol{\xi})V]^{-1} (\ln \mathbf{K} + V^T \ln (\mathbf{N}^0 + V\boldsymbol{\xi})) \quad (1)$$

Для обычного метода Ньютона параметр α следует брать равным единице, однако итерации с $\alpha^{(k)}=1$ могут привести к попаданию в область нефизических значений. В этом случае можно делать лишь часть шага метода Ньютона, выбирая параметр α из промежутка [0,1].

При применении данного метода для численных расчётов возникает несколько проблем. Нужно выбирать начальное приближение $\boldsymbol{\xi}^0$ так, чтобы выражение под логарифмом было неотрицательным $\mathbf{N}^0 + V\boldsymbol{\xi} \geqslant 0$. Для чего нужно решать систему неравенств. Кроме того на каждой итерации следует задавать параметр $\alpha^{(k)} \in [0,1]$ так, чтобы неравенства системы не нарушались. Однако даже тогда метод может не давать результатов. Концентрации реагирующих веществ могут отличаться на порядки. В результате, некоторые вещества практически исчезают в ходе выполнения алгоритма. Так как все вычисления производятся на компьютере с конечной точностью, то в какой-то момент дальнейший счёт становится невозможным.

Перепишем систему в другом виде, для этого введём дополнительные переменные

$$\mathbf{p} = \ln\left(\mathbf{N}^0 + V\boldsymbol{\xi}\right)$$

При этом получаем расширенную систему

$$\begin{cases} \mathbf{F} = \ln \mathbf{K} + V^T \mathbf{p} = 0, \\ \exp(\mathbf{p}) = \mathbf{N}^0 + V \boldsymbol{\xi}; \end{cases}$$

$$\begin{cases} \ln \mathbf{K} + V^T \mathbf{p} = 0, \\ \mathbf{N}^0 + V \boldsymbol{\xi} - \exp(\mathbf{p}) = 0; \end{cases}$$

Эта система полностью эквивалентна исходной. Её можно записать в виде $\mathbf{\Phi}(\mathbf{x})=0,$ где $\mathbf{x}=[\boldsymbol{\xi},\mathbf{p}]$

Тогда метод Ньютона принимает вид

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^{(k)} \left(\frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}} \right)^{-1} \mathbf{\Phi}(\mathbf{x}^k) \quad (2)$$

где

$$\frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}} = \begin{vmatrix} 0 & V^T \\ V & -\operatorname{diag}(\exp(\mathbf{p})) \end{vmatrix}$$

Использование метода Ньютона переписанного в такой форме, уже не встречает проблем, характерных предыдущей версии. Как показывает эксперимент он сходится из любого начального приближения, при любых начальных концентрациях. Кроме того в данном случае можно выбрать $\alpha^{(k)} = 1$, что обеспечивает большую скорость сходимости.

Модуль, реализующий метод Ньютона в такой форме, был включён в симулятор многофазных фильтрационных течений.

4 Результаты

Приведём результаты расчётов системы из трёх химических реакций

 $R1: OH^- + H^+ \rightleftharpoons H_2O,$

 $R2: \operatorname{HCO}_3^- + \operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2,$

 $R3: \operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 + \operatorname{Ca}^{2+}.$

Будем считать, что начальные концентрации всех ионов равнялась ну-

лю и вектор концентраций химических веществ имел вид

$$\mathbf{N_0^T} = [0, 0, 1, 1, 1, 0, 0]$$

Для метода Ньютона записанного в форме (1) начальное приближение искомых глубин реакции выбираем так, чтобы выполнялось условие ${f N}^0+V{m \xi}\geqslant 0$. Пусть например

$$\boldsymbol{\xi}_0^T = [-0.5, -0.7, 0.5]$$

Расчёты дают следующие результаты для концентраций веществ

Табл. 1. Концентрации веществ и выбираемый параметр на соответствующей итерации метода Ньютона записанного в форме (1).

	OH-	HCO_3^-	$CaCO_3$	$\mathrm{H}_{2}\mathrm{O}$	CO_2	H^{+}	Ca ²⁺	α
1	0	0	1	1	1	0	0	0.08
2	0.5	0.7	0.5	0.3	0.8	0.06	0.2	0.06
4	0.12	0.75	0.60	0.51	0.63	0.09	0.39	0.06
8	$7.8 \cdot 10^{-3}$	$6.4\cdot10^{-1}$	$6.9\cdot10^{-1}$	$6.6\cdot10^{-1}$	$6.6\cdot10^{-1}$	$3.4\cdot10^{-2}$	$3.1\cdot 10^{-1}$	0.06
16	$1.5 \cdot 10^{-5}$	$3.6\cdot10^{-1}$	$8.2\cdot10^{-1}$	$8.2\cdot10^{-1}$	$8.2\cdot10^{-1}$	$3.3\cdot 10^{-3}$	$1.8\cdot 10^{-1}$	0.09
30	$9.3 \cdot 10^{-10}$	$8.1 \cdot 10^{-2}$	$9.5 \cdot 10^{-1}$	$9.5\cdot10^{-1}$	$9.5 \cdot 10^{-1}$	$2.3\cdot 10^{-5}$	$4.1\cdot10^{-2}$	0.88

Видим что в результате химических реакций концентрации исходных веществ немного уменьшаются, в результате чего образуются все входящие в реакции ионы. Причём концентрация иона ОН⁻ настолько мала, что после 30 — итерации метод Ньютона прерывается из-за погрешностей машинных вычислений.

Для расширенной системы как уже говорилось α выбирается равным единице. Начальные значения ξ_i можно выбрать произвольными. Пусть они будут таким же как в предыдущем случае.

Табл. 2. Концентрации веществ на соответствующей итерации метода

Ньютона записанного в форме (2).

	OH-	HCO_3^-	CaCO ₃	H ₂ O	CO_2	H^{+}	Ca ²⁺
1	0	0	1	1	1	0	0
2	0.7	1.9	0.3	0.8	0.5	1.0	1.0
4	$6.0 \cdot 10^{-9}$	1.7	3.6	4234.8	2.3	$7\cdot 10^{-3}$	2.2
8	$2.6 \cdot 10^{-9}$	$2.6\cdot 10^{-1}$	$8.7\cdot10^{-1}$	78.1	$8.7\cdot10^{-1}$	$3.1\cdot10^{-4}$	$1.5 \cdot 10^{-1}$
12	$7.6 \cdot 10^{-10}$	$8.6\cdot10^{-2}$	$9.6\cdot10^{-1}$	2.1	$9.6\cdot10^{-1}$	$2.7\cdot 10^{-5}$	$4.3 \cdot 10^{-2}$
16	$5.9 \cdot 10^{-10}$	$6.7\cdot10^{-2}$	$9.7\cdot 10^{-1}$	$9.7\cdot10^{-1}$	$9.7\cdot 10^{-1}$	$1.6\cdot 10^{-5}$	$3.4\cdot 10^{-2}$

Метод Ньютона записанный в форме (2) сходится. При этом требуется меньшее количество итераций.