

Tópicos de Geometria e Topologia

LISTA 7

Bruno Sant'Anna 7 de abril de 2024

Um complexo de cadeias é uma sequência $\mathcal{E} = \{(V_p, \partial_p); \partial_p : V_p \to V_{p-1}\}$ onde cada V_j é um espaço vetorial e ∂_j é um mapa linear de modo que $\partial_{p-1} \circ \partial_p = 0$ para todo p. Definimos os subespaços

 $Z_p(\mathcal{E}) := \ker(\partial_p)$, o espaço dos ciclos de dimensão p $B_p(\mathcal{E}) := \operatorname{im}(\partial_{p+1})$, o espaço das fronteiras de dimensão p

O p-ésimo grupo de homologia do complexo $\mathcal E$ é o espaço quociente

$$H_p(\mathcal{E}) = \frac{Z_p(\mathcal{E})}{B_p(\mathcal{E})}$$

- a. Mostre que a sequencia $\mathcal{E}^* = \{(V_p^*, \mathbf{d}^p)\}$ é um complexo de cocadeias, onde V_p^* denota o espaço dual de V_p e \mathbf{d}^p denota o operador transposto de ∂_{p+1} , ou seja, para cada $\phi \in V_p^*$, $\mathbf{d}^p(\phi) \in V_{p+1}^*$ é o funcional que associa o vetor v ao número $\phi(\partial_{p+1}v)$
- b. Considere o mapa bilinear

$$b: V_p^* \times V_p \to \mathbf{R}$$
$$(\phi, v) \mapsto \phi(v)$$

mostre que b induz o homomorfismo

$$B: H^p(\mathcal{E}^*) \times H_p(\mathcal{E}) \to \mathbf{R}$$

 $([\phi], [v]) \mapsto \phi(v)$

e que a fórmula acima define isomorfismo $K: H^p(\mathcal{E}^*) \to H_p(\mathcal{E})^*$

$$\mathcal{E}: \cdots \longleftarrow V_{p-1} \stackrel{\partial_p}{\longleftarrow} V_p \stackrel{\partial_{p+1}}{\longleftarrow} V_{p+1} \longleftarrow \cdots$$

$$\mathcal{E}^*: \cdots \longrightarrow V_{p-1}^* \stackrel{\mathrm{d}^{p-1}}{\longrightarrow} V_p^* \stackrel{\mathrm{d}^p}{\longrightarrow} V_{p+1}^* \longrightarrow \cdots$$

a. Queremos mostrar que $\mathbf{d}^p \circ \mathbf{d}^{p-1} = 0$. Com efeito, seja $\phi \in V_{p-1}^*$ e $v \in V_{p-1}$. Utilizado a definição de \mathbf{d}^p temos

$$d^{p} \circ d^{p-1}(\phi)(v) = d^{p}(d^{p-1}(\phi))(v)$$

$$= d^{p-1}(\phi)(\partial_{p+1}v)$$

$$= \phi(\partial_{p} \circ \partial_{p+1}v)$$

Porem, \mathcal{E} é um complexo de cadeias, então $\partial_p \circ \partial_{p+1} = 0$, logo

$$d^p \circ d^{p-1}(\phi)(v) = \phi(0)$$

e ϕ é um funcional linear, portanto

$$d^p \circ d^{p-1} = 0$$

b. De fato, restrigindo b a $Z_p(\mathcal{E}^*) \times Z^p(\mathcal{E})$, queremos mostrar que $b(\phi, v) = 0$ quando $\phi \in B_p(\mathcal{E}^*)$ e $v \in B^p(\mathcal{E})$. Com efeito, seja $\psi \in V_p^*$ e $w \in V_p$ tal que $\phi = \mathrm{d}^{p-1}\psi$ e $v = \partial_{p+1}w$.

$$\begin{split} b(\phi, v) &= \phi(\mathrm{d}^{p-1}\psi, \partial_{p+1}w) \\ &= \mathrm{d}^{p-1}\psi(\partial_{p+1}w) \\ &= \psi(\partial_p \circ \partial_{p+1}w) \\ &= \psi(0) \\ &= 0 \end{split}$$

Por fim precisamos verificar que existe um isomorfismo (de espaços vetoriais) entre $H^p(\mathcal{E}^*)$ e $H_p(\mathcal{E})^*$. De fato, defina $K: H^p(\mathcal{E}^*) \to H_p(\mathcal{E})^*$ de forma que $K([\phi])([v]) = B([\phi], [v])$, com $v \in V_p$. Dessa forma, K é um isomorfismo. Primeiramente, pela definição de B é direto que K é linear.

Para verificar a injetividade seja $[\phi] \in \ker K$, queremos mostrar que $[\phi] = 0$. De fato,

$$0 = K([\phi])(v) = B([\phi], [v]) = \phi(v)$$

como isso é válido para todo $v \in V_p$, ϕ deve ser a transformação nula. Então $[\phi] = 0$.

Para verificar a sobrejetividade, precisamos mostrar que dado $\phi \in H_p(\mathcal{E})^*$ existe um $[\psi] \in H^p(\mathcal{E})^*$ tal que $K([\psi]) = \phi$. Com efeito,

$$\phi(v) = K([\psi])(v) = \psi(v)$$

para todo $v \in V_p$, ou seja, $[\psi] = [\phi]$.

Portanto, K é um isomorfismo.