Esame di Laurea in Informatica

Dipartimento di Matematica "Tullio Levi Civita"

Implementazione di modelli di programmazione matematica per problemi di bin packing

Candidato Daniel Rossi Relatore prof. Luigi De Giovanni

18 Dicembre 2018

Sommario

- 1 Introduzione
- 2 Progetto
- 3 Raggiungimento degli obiettivi
- 4 Consuntivo
- 5 Conclusioni

L'azienda

SOFTWARE SUPPORTO DECISIONALE

- agevolazione degli operatori;
- operatori meno esperti;
- aumento della produttività;
- informazioni sullo stato dei trasporti;
- stima di costi e profitti.

Tool aziendale

L'azienda ha sviluppato un'euristica per l'ottimizzazione dello spazio occupato dalle merci nel cassone del camion.

Proposta di stage

Scopo

Lo scopo dello stage è quello di realizzare dei modelli di programmazione lineare per la risoluzione dello **Strip Packing Problem** da usare per valutare l'euristica aziendale

- 2D: versione 2D;
- 2DR: versione 2D con rotazione;
- 2DRS: versione 2D con rotazione e sequenza di scarico;
- **3D**: versione 3D con rotazione e sovrapposizione.

Packing Problem

Insieme $I = \{1, \ldots, n\}$ di oggetti aventi dimensioni w_i , d_i e h_i . Insieme $J = \{1, \ldots, m\}$ di contenitori di dimensione W, D e H. Per ipotesi $w_i \leq W$, $d_i \leq D$ e $h_i \leq H$.

Obiettivo Bin Packing

Minimizzare il numero di contenitori *J* che riescano a contenere tutti gli oggetti dell'insieme *I*.

Obiettivo Strip Packing

Minimizzare i metri lineari occupati dagli oggetti dell'insieme *I* rispetto la profondità del contenitore.

Modello matematico

Tratto dall'articolo: Solving the 2D bin packing problem by means of a hybrid evolutionary algorithm

min D

s.t.

$$\begin{aligned} l_{ij} + l_{ji} + b_{ij} + b_{ji} &\geq 1 & i < j & i, j \in I \\ y_i - y_j + M_d b_{ij} &\leq M_d - d_i & i, j \in I \\ x_i - x_j + M_w l_{ij} &\leq M_w - w_i & i, j \in I \\ x_i + w_i &\leq W & i \in I \\ y_i + d_i &\leq D & i \in I \\ b_{ij}, l_{ij} &\in \{0, 1\} & i \neq j & i, j \in I \\ x_i, y_i, w_i, d_i &\in \mathbb{R}^+ & i \in I \end{aligned}$$

Tecnologie

Durante lo stage sono state usate le seguenti tecnologie:

Google

Optimization

Tools

Modello 2D e 2DR

Modello 2D:

Punto di partenza

Modello 2DR: Ottimalità della soluzione

Modello 2DRS

Vie di scarico:

Deve essere presente almeno una via di scarico per ciascun pacco

Stabilità della sequenza:

Feature non disponibile nel modello, trascurabile su test con pochi oggetti

Modello 3D

Stabilità degli oggetti:

Garantita sovrapponendo solo un oggetto

Oggetti stackable:

In generale nei test non tutti gli oggetti erano sovrapponibili

Test computazionale

Istanza:

insieme formato dai pacchi da disporre nel contenitore.

Gruppo di istanze:

insieme di istanze accomunate tra loro dal numero di pacchi o dalle loro dimensioni.

Time Limit: 300 secondi

Soluzioni:

- ottime
- best bound

Id	Wa	$w_b \mid d_a$		d_b	
0	0.5	2.45	0.5	2.45	
1	0.5	1.50	0.5	4.00	
2	1.5	2.45	0.5	4.00	
3	0.5	1.50	3.0	4.00	
4	1.5	2.45	3.0	4.00	
5	0.1	1.00	0.1	1.00	
6	0.1	1.00	3.0	4.00	
7	2.0	2.45	3.0	4.00	
8	2.0	2.45	2.0	2.45	
9	0.1	1.00	0.1	4.00	

Risultati 2DR

Ottime	Best	bound
--------	------	-------

Id	#ist	ϵ_r	ϵ_{a}	Time	Id	#ist	ϵ_r	ϵ_a
0	64	3.89	0.23	40.95	0	36	7.35	0.59
1	73	11.90	0.81	31.51	1	27	15.98	1.48
2	76	0.94	0.10	19.76	2	24	0.91	0.17
3	84	12.29	1.26	19.79	3	16	17.26	2.62
4	75	0.00	0.00	27.69	4	25	0.00	0.00
5	73	14.17	0.11	12.58	5	27	16.16	0.21
6	78	6.60	0.47	20.95	6	22	19.40	1.70
7	76	0.00	0.00	36.62	7	24	0.00	0.00
8	81	0.00	0.00	23.70	8	19	0.00	0.00
9	81	10.34	0.45	10.60	9	19	20.58	1.10

$$\bullet$$
 $\epsilon_a = Obj_h - Obj_m$

$$lacksquare$$
 $\epsilon_r = rac{\epsilon_a}{Obj_m} \cdot 100$

Raggiungimento degli obiettivi

4 Modelli ⇒ 4 Macro-obiettivi

- Introduzione di un nuovo macro-obiettivo:
 - Realizzazione modello 2DRS;
- Due variazioni nel corso dello stage:
 - Confronto con l'euristica eseguito dopo la realizzazione dei modelli;
 - Nuove funzioni di verifica dell'euristica sviluppate durante il testing dei modelli.

Realizzazione modello grazie ad una minor durata:

- formazione;
- realizzazione modelli.

Consuntivo

#	Macro-Obiettivi	Ore previste	Ore effettive
1	Modello 2D	96	64
2	Modello 2DR	64	64
3	Modello 2DRS	0	72
4	Modello 3D	64	72
5	Confronto con euristica	24	16

Cause cambiamenti tempistiche:

- Formazione più breve;
- Prototipazione modelli 2D e 2DR pi rapida;
- Testing e sviluppo euristica in parallelo.

Conclusioni

- 1 Tutti gli obiettivi sono stati completati;
- 2 Realizzazione modello non previsto;
- 3 Valutazione positiva dei risultati forniti;
- 4 Importanti conoscenze apprese.

Sviluppi futuri:

- Archiviazione soluzioni modelli;
- Stabilità sequenza;
- Stabilità degli oggetti;
- Sequenza di scarico multilivello
- Unione modelli.