

# The multivariate normal distribution

# Julien Gagneur

Prof. for Computational Molecular Medicine Technical University of Munich

www.gagneurlab.in.tum.de

To understand the genetic basis of gene regulation and its implication in diseases



#### An important distribution

- The multivariate normal distribution (MVN, also called multivariate Gaussian) is the multivariate generalization of the normal distribution
- It often arises due to the central limit theorem
- It is the workhorse of a large set of statistical methods
- This lecture overviews its most important properties



Multivariate Normal Distribution (source: Wikipedia)

#### **Definition**

 We consider the joint distribution of p scalar random variables

$$\mathbf{x} = (x_1, ..., x_p)^{\top}$$

MVN probability density

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Mean vector

$$\boldsymbol{\mu} = (\mu_1, ..., \mu_p)^{\top}$$

Covariance matrix

$$\sigma_{i,j} = E[(x_i - \mu_i)(x_j - \mu_j)]$$
$$= \rho_{i,j}\sigma_i\sigma_j$$

#### Special case: Independent Gaussian variables

 For MVNs, Pearson correlation = 0 is equivalent to independence

$$\rho_{i,j} = 0 \iff x_i \perp \!\!\!\perp x_j$$

• Independent univariate Gaussian can be jointly modeled as:

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$oldsymbol{\Sigma} = \left( egin{array}{cccc} \sigma_1^2 & & & & & \ & \sigma_2^2 & & & & \ & & \ddots & & \ & & & \sigma_n^2 \end{array} 
ight)$$

# **Density**

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$



1,000 random draws with

$$\boldsymbol{\mu} = (3,2)^{\top} \quad \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

# Surfaces of equi-likelihood are ellipsoids

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Squared Mahalonobis distance

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$



1,000 random draws with

$$\boldsymbol{\mu} = (3,2)^{\top} \quad \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

# **Eigendirections of the covariance**

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Squared Mahalonobis distance

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

- The covariance matrix is symmetric positive definite
- The axes are the eigendirections of the covariance



1,000 random draws with

$$\boldsymbol{\mu} = (3,2)^{\top} \quad \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

#### Independence of transformed coordinates

- Eigenvalues  $\lambda_1 > ... > \lambda_p$
- Eigenvectors  $\mathbf{u}_1,...,\mathbf{u}_p$
- Transformed coordinates  $y_i = \mathbf{u}_i^{ op}(\mathbf{x} oldsymbol{\mu})$
- MVN and independence

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_p \end{pmatrix})$$

 This transformation is used in data analysis (Principal Component Analysis), even for non-Gaussian data



#### Conclusion

$$\bullet \quad \text{MVN probability density} \quad \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Geometry

Transformed variables

Details in Bishop, CM. 2007 (Springer)
 Pattern Recognition and Machine Learning

