CS605 26 March 2025 A language is co-T-R if it is the complement A language is decidable iff it is Turing-recognizable and co-Turing-recognizable. We will prove both directions to prove this First we prove that if a long is doc. than it is I-r and co-I-r. The former is true by definition. The latter is true for the following reason. If we take a TM that decides a land and modify. it so when it rejects, we accept, then this machine recognises the complement of the language proving the oranginal lang. is co-T-R. Socondly, we prove that if a lang is T-r and wo-T-r then it is decidable. Let A be such a language. Let M, be the Recogniser for A. Let M2 be the Recogniser for A. Construct M as follows.

M = "On input w: 1. Run M, on w and M2 on w, in papallel. 2. If M, accepts, occept, If M2 occepts, reject."

M is guaranteed to helt. M accepts words in A and rejects words w not in A. So M decides A. This proves that A is decidable.

Our proof was completely general and weeks for any A that is T-r and w-T-R. Combining these two proofs proves the "if and only if" property of this theorem. The HALTS is T-r but not co-T-r (i.e. HALTS is outside T-r). Proof

The proof that HALTS is T-r was done

earlier. (Recap: N="On input (M, w):

The proof that

I. Run Mon w.

HALTS is not T-r (equivalently 2. Accept." N is a

that HALTS is not co-T-r) is recognisen fore

or follows.

Let's assume to create a contradiction,

that HALTS is TC Novi and it Till 122 that HALTS is T-r. Now, according to Thm 4.22 this means that HALTS is decidable. A contradiction, because we have already proved HALTS is indecidable. Therefore HALTS must not be T-r (equivalently HALTS must not be co-T-r. dec.
HALTS

EQTM

EQTM

Mapping Reductions

A *reduction* is a way of converting one problem to another problem in such a way that a solution to the second problem can be used to solve the first problem.

For example, suppose that you want to find your way around a new city. You know that doing so would be easy if you had a map. Thus you can reduce the problem of finding your way around the city to the problem of obtaining a map of the city.

The following are further examples of reducibilities. The problem of traveling from Boston to Paris reduces to the problem of buying a plane ticket between the two cities. That problem in turn reduces to the problem of earning the money for the ticket. And that problem reduces to the problem of finding a job.

Reducibility also occurs in mathematical problems. For example, the problem of measuring the area of a rectangle reduces to the problem of measuring its length and width. The problem of solving a system of linear equations reduces to the problem of inverting a matrix.

Reducibility plays an important role in classifying problems by decidability and later in complexity theory as well. When A is reducible to B, solving A cannot be harder than solving B because a solution to B gives a solution to A. In terms of computability theory, if A is reducible to B and B is decidable, A also is decidable. Equivalently, if A is undecidable and reducible to B, B is undecidable. This last version is key to proving that various problems are undecidable.

In short, our method for proving that a problem is undecidable will be to show that some other problem already known to be undecidable reduces to it.

MAPPING REDUCIBILITY

Roughly speaking, being able to reduce problem A to problem B by using a mapping reducibility means that a computable function exists that converts instances of problem A to instances of problem B. If we have such a conversion function, called a *reduction*, we can solve A with a solver for B. The reason is that any instance of A can be solved by first using the reduction to convert it to an instance of B and then applying the solver for B. A precise definition of mapping reducibility follows shortly.

DEFINITION 5.17

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational problems by languages.

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** of A to B.

The following figure illustrates mapping reducibility.

FIGURE **5.21** Function f reducing A to B

A mapping reduction of A to B provides a way to convert questions about membership testing in A to membership testing in B. To test whether $w \in A$, we use the reduction f to map w to f(w) and test whether $f(w) \in B$. The term mapping reduction comes from the function or mapping that provides the means of doing the reduction.

If one problem is mapping reducible to a second, previously solved problem, we can thereby obtain a solution to the original problem. We capture this idea in the following theorem.

THEOREM **5.22**

If $A \leq_{m} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- **2.** Run M on input f(w) and output whatever M outputs."

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus M accepts f(w) whenever $w \in A$. Therefore N works as desired.

and rejects f(w) wherever w & A

The following corollary of Theorem 5.22 has been our main tool for proving undecidability.

COROLLARY 5.23

If $A \leq_{m} B$ and A is undecidable, then B is undecidable.

3	Prove that the problem associated with language A_{TM} defined below is undecidable. You are given that HALT = $\{: M \text{ is a Turing machine and } M \text{ halts on } w\}$ is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.	
	The language L_3 is defined as $A_{TM} = \{ < M, \ w >: M \text{ is a TM that accepts } w \}.$	
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value.	
Pro	<u>of</u>	
We	will use a mapping reduction to prove the reduction	
	. HALT ≤ A _{TM}	
Ass	sume that A _{TM} <u>.</u> is decidable.	
The	e transition function f that maps instances of HALT to instances of	
. A	A _{TM} is given by TM F given by the following pseudocode.	
F=	"On input < M, w	
1	L. Construct the following N given by the following pseudocode.	
	N = "On input u:	
_	1. Run M on w	
	2. Accept	
	2. Output < N, u <u>3</u> >."	
No	w, <n, td="" u<=""></n,>	
ele	ment ofHALT	
So,	using f and the assumption that A_{TM} $_1$ is decidable, we can decide $$ HALT $$ $$	
A c	ontradiction.	
The	erefore, A_{TM} $_1$ is undecidable. (This also means that the complement of	
	A_{TM} 1 is undecidable; the complement of any undecidable language is itself undecidable.)	
	V	

As explained by Theorem 5.22 above