FCC PART 15.247 EMI MEASUREMENT AND TEST REPORT For

ShenZhen Foscam Intelligent Technology Co., Ltd.

North Wing, 5/F, Block 1, Vision Shenzhen Business Park, No.9 Gaoxin 9th South Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen, 518057, China

FCC ID: ZHHFI9820W

September 13, 2012

This Report Concerns: **Equipment Type: Original Report** Wireless IP Camera Test Engineer: Eric Li Test Engineer Adam Yang of performing Adam Yang the tests: BST12081022Y-1E-3 Report No.: Receive EUT August 31, 2012/ September 3-12, 2012 Date/Test Date: pristing) ong Reviewed By: Christina Deng Shenzhen BST Technology Co.,Ltd. 3F, Weames Technology Building,

Prepared By:

3F,Weames Technology Building, No. 10 Kefa Road,Science Park, Nanshan District,Shenzhen,Guangdong,China

Tel: 0755-26747751 ~ 3

Fax: 0755-26747751 ~ 3 ext.826

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Shenzhen BST Technology Co.,Ltd. This report must not be used by the client to claim product certification,approval,or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

1.	CENI	ERAL INFORMATION	4
1.	1.1.	Report information	
	1.1.	Measurement Uncertainty	
2.		OUCT DESCRIPTION	
4.	2.1.	EUT Description	
	2.1.	Block Diagram of EUT Configuration.	
	2.3.	Support Equipment List	
	2.4.	Test Conditions	
3.		ID LABEL	
4.		RESULTS SUMMARY	
		ications	
5.		EQUIPMENT USED	
6.		17 (I) AND §1.1307 (B) (1), §2.1093 – RF EXPOSURE	
0.			
	6.1. 6.2.	Standard Applicable Test Data	
	6.3.	Test Pata	
7.		O3 - ANTENNA REQUIREMENT	
/•	7.1.	Standard Applicable	
	7.1. 7.2.	Antenna Connector Construction	
8.		77 - CONDUCTED EMISSIONS	
0.	8.1.	Applicable Standard	
	8.2.	Test Procedure	
	8.3.	Conducted Power line Emission Limits.	
	8.4.	Block Diagram of Test Setup	
	8.5.	Conducted Power Line Test Result	
9.	§15.20	99, §15.205, §15.247(D) - SPURIOUS EMISSIONS	
	9.1.	Test Equipment	16
	9.2.	Test Procedure	.16
	9.3.	Radiated Test Setup	.16
	9.4.	Radiated Emission Limit.	
	9.5.	Radiated Emission Test Result	
10.	§15.24	47(A) (2) – 6DB BANDWIDTH TESTING	
	10.1.	Test Equipment	
	10.2.	Test Procedure	
	10.3.	Applicable Standard	
	10.4.	Test Result:Pass.	
11.		47(B) (3) - MAXIMUM PEAK OUTPUT POWER	
	11.1.	Test Equipment	
	11.2.	Test Procedure	
	11.3.	Applicable Standard	
4.6	11.4.	Test Result	
12.	§15.24	47(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	.44

	12.1.	Test Equipment	44
	12.2.	Test Procedure	
	12.3.	Applicable Standard	44
	12.4.	Test Result	44
13.	§15.24	47(E) - POWER SPECTRAL DENSITY	65
	13.1.	Test Equipment	65
	13.2.	Test Procedure	65
	13.3.	Applicable Standard	65
	13.4.	Test Result	65

1. GENERAL INFORMATION

1.1. Report information

- 1.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that BST approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that BST in any way guarantees the later performance of the product/equipment.
- 1.1.2. The sample/s mentioned in this report is/are supplied by Applicant, BST therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.

Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through BST, unless the applicant has authorized BST in writing to do so.

Test Facility -

The test site used to collect the radiated data is located on the address of Shenzhen Certification Technology Service Co., Ltd (FCC Registered Test Site Number: 197647) on 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, shenzhen 518126, China The Test Site is constructed and calibrated to meet the FCC requirements.

1.2. Measurement Uncertainty

Available upon request.

BST FCC ID REPORT: BST12081022Y-1E-3 Page 4/71

2. PRODUCT DESCRIPTION

2.1. EUT Description

Applicant : ShenZhen Foscam Intelligent Technology Co., Ltd.

Address : North Wing, 5/F, Block 1, Vision Shenzhen Business Park,

No.9 Gaoxin 9th South Road, Shenzhen Hi-tech Industrial Park

,

Nanshan District, Shenzhen, 518057, China

Manufacturer : ShenZhen Foscam Intelligent Technology Co., Ltd.

Address : North Wing, 5/F, Block 1, Vision Shenzhen Business Park,

No.9 Gaoxin 9th South Road, Shenzhen Hi-tech Industrial Park

,

Nanshan District, Shenzhen, 518057, China

EUT Description : Wireless IP Camera

Trade Name : FOSCAM

Modulation : 802.11b: DSSS

802.11g/n: OFDM

Wi-fi Frequency

Band

IEEE 802.11b/g: 2412-2462MHz IEEE802.11n HT20: 2412-2462MHz

IEEE802.11n HT40: 2422-2452MHz

Number of : IEEE 802.11b/g: 11 Channels Channels IEEE802.11n HT20: 11 Channels

IEEE802.11n HT40: 7 Channels

Model Number : FI9820W, FI9801W, FI9802W, FI9821W, FI9828W,

FI9826W, FI9829W, FI9806W, FI8909W, FI8916W

Power Supply : DC 5V (Powered by Adapter)

Antenna gain : 0dBi

2.2. Block Diagram of EUT Configuration

Figure 1 EUT SETUP

2.3. Support Equipment List

Table 2 Ancillary Equipment

Name	Model No	S/N	Manufacturer	Used ""
Adapter Input: AC 100-240V, 50-60Hz, 0.5A Output: DC 5V, 2000mA	SAW-0502000		Shenzhen Yingyuan Electronics Co.,Ltd	

2.4. Test Conditions

Temperature: 23~25

Relative Humidity: 50~63 %

After the preliminary test, we found to emit the worst emissions and therefore had been tested under operating condition.

IEEE 802.11b:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT20:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT40:

Channel Low (2422MHz), Channel Mid 2437MHz) and Channel High (2452MHz) with 13Mbpsdata rate were chosen for full testing.

3. FCC ID LABEL

FCC ID: ZHHFI9820W

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesired operation.

Label Location on EUT

EUT View/FCC ID Label Location

4. TEST RESULTS SUMMARY

FCC 15 Subpart C, Paragraph 15.247

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247 (i) , §1.1307 (b) (1), §2.1093	RF Exposure	Pass
§15.203	Antenna Requirement	PASS
§15.207 (a)	Conducted Emissions	PASS
§15.247(d)	Spurious Emissions at Antenna Port	PASS
§15.205	Restricted Bands	PASS
§15.209, §15.205, §15.247(d)	Spurious Emissions	PASS
§15.247 (a)(2)	6 dB Bandwidth	PASS
§15.247(b)(3)	Maximum Peak Output Power	Pass
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	PASS
§15.247(e)	Power Spectral Density	PASS

Statement: The EUT was setup according to ANSI C63.4-2003 and tested according to DTS test procedure of March 23, 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Modifications

No modification was made.

BST FCC ID REPORT: BST12081022Y-1E-3

5. TEST EQUIPMENT USED

Equipment/Facilities	Manufacturer	Model	Serial no.	Date of Cal.	Cal. Interval
3m Semi-Anechoic	Changzhou	EC3048	N/A	May 5, 2012	1 Year
Chamber	Chengyu				
Broadband antenna	SCHWARZBECK	VULB 9168	VULB916 8-438	Aug. 14, 2012	1 Year
Horn antenna	R&S	HF906	10027	Aug. 14, 2012	1 Year
ETS Horn Antenna	ETS	3160	SEL0076	May 8, 2012	1 Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	Apr. 6, 2012	1 Year
Spectrum analyzer	Agilent	E4443A	MY461856 49	Apr. 6, 2012	1 Year
Spectrum analyzer	Agilent	E4440A	MY461873 35	Apr. 6, 2012	1 Year
Spectrum analyzer	Agilent	E4446A	MY453001 03	Apr. 6, 2012	1 Year
Test receiver	R&S	ESCI	100492	Apr. 6, 2012	1 Year
Test receiver	R&S	ESCI	101202	Apr. 6, 2012	1 Year
L.I.S.N.	SCHWARZBECK	NSLK8126	8126466	Apr. 6, 2012	1 Year
L.I.S.N.	SCHWARZBECK	NSLK8126	8126487	Apr. 6, 2012	1 Year
Cable	Resenberger	N/A	NO.1	Apr. 6, 2012	1 Year
Cable	SCHWARZBECK	N/A	NO.2	Apr. 6, 2012	1 Year
Cable	SCHWARZBECK	N/A	NO.3	Apr. 6, 2012	1 Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	Apr. 6, 2012	1 Year
Pre-amplifier	R&S	AFS33-1800 2650-30-8P- 44	SEL0080	Apr. 6, 2012	1 Year

BST FCC ID REPORT: BST12081022Y-1E-3

6. §15.247 (I) AND §1.1307 (B) (1), §2.1093 – RF EXPOSURE

6.1. Standard Applicable

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)				
Liı	Limits for General Population/Uncontrolled Exposure							
0.3–3.0	614	1.63	*(100)	30				
3.0–30	824/f	2.19/f	*(180/f2)	30				
30–300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz

6.2. Test Data

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

S: Power density, in mW/cm²

P: Power input to the antenna, in mW

G: numeric gain of the antenna

R: distance to the center of the antenna, in cm

^{* =} Plane-wave equivalent power density

Maximum peak output power at antenna input terminal (dBm):	<u>18.25</u>
Maximum peak output power at antenna input terminal (mW):	66.83
Prediction distance (cm):	<u>20</u>
Prediction frequency (MHz):	<u>2412</u>
Antenna Gain, typical (dBi):	<u>0</u>
Maximum Antenna Gain (numeric):	<u>1</u>
Power density at predication frequency and distance (mW/cm ²):	0.013
MPE limit for Occupational exposure at predication frequency (mW/cm ²):	<u>1.0</u>

6.3. Test Result

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, Human proximity to the antenna shall not be less than 20cm(8 inches) during normal operation.

7. §15.203 - ANTENNA REQUIREMENT

7.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.2. Antenna Connector Construction

The antenna used for this product is a short metal soldered wire. The antenna is permanently attached. Refer to the product photo.

BST FCC ID REPORT: BST12081022Y-1E-3 Page 12/71

8. §15.207 - CONDUCTED EMISSIONS

8.1. Applicable Standard

The specification used was with the FCC Part 15.207 limits.

8.2. Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

8.3. Conducted Power line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)					
Frequency	Class B				
Range	QP/AV	QP/AV			
(MHz)					
0.15-0.5	79/66	65-56/56-46			
0.5-5.0	73/60	56-46			
5.0-3.0	73/60	60-50			

Note: In the above table, the tighter limit applies at the band edges.

8.4. Block Diagram of Test Setup

8.5. Conducted Power Line Test Result

Pass.

The worst test mode: Wi-Fi TX 802.11b 2437MHz

L line

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.193	9.830	35.160	44.989	-18.919	63.908	QUASIPEAK
2		0.193	9.830	28.380	38.209	-15.699	53.908	AVERAGE
3		0.322	9.805	27.100	36.905	-22.753	59.658	QUASIPEAK
4		0.322	9.805	24.130	33.935	-15.723	49.658	AVERAGE
5		0.455	9.771	26.720	36.491	-20.298	56.789	QUASIPEAK
6	*	0.455	9.771	24.800	34.571	-12.218	46.789	AVERAGE
7		0.906	9.758	18.320	28.079	-27.921	56.000	QUASIPEAK
8		0.906	9.758	15.300	25.059	-20.941	46.000	AVERAGE
9		4.205	9.882	19.870	29.752	-26.248	56.000	QUASIPEAK
10		4.205	9.882	7.160	17.042	-28.958	46.000	AVERAGE
11		6.564	9.968	22.500	32.468	-27.532	60.000	QUASIPEAK
12		6.564	9.968	16.340	26.308	-23.692	50.000	AVERAGE

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.193	9.830	35.040	44.869	-19.037	63.906	QUASIPEAK
2		0.193	9.830	28.170	37.999	-25.907	63.906	AVERAGE
3		0.259	9.826	28.310	38.136	-23.327	61.463	QUASIPEAK
4		0.259	9.826	25.190	35.016	-26.447	61.463	AVERAGE
5		0.322	9.805	25.170	34.975	-24.680	59.655	QUASIPEAK
6		0.322	9.805	21.030	30.835	-28.820	59.655	AVERAGE
7		0.455	9.771	25.010	34.781	-22.002	56.783	QUASIPEAK
8		0.455	9.771	22.790	32.561	-24.222	56.783	AVERAGE
9		4.138	9.892	16.910	26.802	-29.198	56.000	QUASIPEAK
10		4.138	9.892	6.980	16.872	-39.128	56.000	AVERAGE
11		6.564	9.990	21.260	31.251	-28.749	60.000	QUASIPEAK
12		6.564	9.990	14.970	24.961	-35.039	60.000	AVERAGE

9. §15.209, §15.205, §15.247(D) - Spurious Emissions

9.1. Test Equipment

Please refer to section 5 this report.

9.2. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Calibrated Loop antenna is used as receiving antenna for frequencies below 30MHz, Calibrated Bilog antenna is used as receiving antenna for frequencies between 30 MHz and 1 GHz, Calibrated Horn antenna is used as receiving antenna for frequencies above 1000MHz. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Peak detector and Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

Through three orthogonal axes to determine which attitude and equipment arrangement produces the highest emission relative to the limit.

9.3. Radiated Test Setup

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

9.4. Radiated Emission Limit

	Limit					
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	Measurement distance (m)	The final measurement in band 9-90kHz,		
0.009 - 0.490	2400/F(kHz)	/	300	110-490kHz and above 1000MHz is		
0.490 - 1.705	24000/F(kHz)	/	30	performed with		
1.705-30	30	29.5	30	Average detector. Except those		
30 - 88	100	40	3	frequency bands mention above, the		
88 - 216	150	43.5	3	final measurement for frequencies		
216 - 960	200	46	3	below 1000MHz is		
Above 960	500	54	3	performed with Quasi Peak detector.		

Note: (1) RF Voltage (dBuV)=20 log Voltage(uV)

⁽²⁾ In the Above Table, the tighter limit applies at the band edges.

⁽³⁾ Distagnce refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

9.5. Radiated Emission Test Result

Pass.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11b Channel Low 2412MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	1	1	Vertical
_	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	37.860	41.121	-32.879	74.000
7236.000	10.650	36.090	46.740	-27.260	74.000
9648.000	13.337	36.200	49.536	-24.464	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	38.400	44.821	-29.179	74.000
7236.000	11.495	36.500	47.995	-26.005	74.000
9648.000	13.807	36.390	50.196	-23.804	74.000

Average

Detector:

--

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11b Channel Middle 2437MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	1 olulization
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	đВ	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	37.140	40.177	-33.823	74.000
7311.000	11.795	34.630	46.424	-27.576	74.000
9748.000	12.635	35.740	48.375	-25.625	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	37.820	43.631	-30.369	74.000
7311.000	12.630	35.350	47.979	-26.021	74.000
9748.000	13.126	36.210	49.336	-24.664	74.000

Average

Detector:

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60HzTest Mode:802.11b Channel High 2462MHzTest Engineer:Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Confessed Lastor - Lincolnia Lastor - Capito Ecopo - Linipinior Cam						
	Reading	Correct	Result	Limit	Margin	
Frequency	$(dB\mu V/m)$	Factor	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
ı	-	-	-	-	ı	Vertical
_	_	-	_	_	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	36.930	39.787	-34.213	74.000
7386.000	12.127	35.260	47.388	-26.612	74.000
9848.000	12.852	36.410	49.263	-24.737	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	37.410	42.930	-31.070	74.000
7386.000	13.254	35.190	48.444	-25.556	74.000
9848.000	13.367	36.120	49.487	-24.513	74.000

Average

Detector:

--

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60Hz

Test Mode: 802.11g Channel Low 2412MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency (MHz)	Reading (dBμV/m) QP	Correct Factor (dB)	Result (dBμV/m) QP	Limit (dBµV/m) QP	Margin (dB) QP	Polarization
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	đΒ	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	37.230	40.491	-33.509	74.000
7236.000	10.650	35.700	46.350	-27.650	74.000
9648.000	13.337	36.620	49.956	-24.044	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	37.830	44.251	-29.749	74.000
7236.000	11.495	36.110	47.605	-26.395	74.000
9648.000	13.807	35.690	49.496	-24.504	74.000

Average

Detector:

--

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11g Channel Middle 2437MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency (MHz)	Reading (dBμV/m) QP	Correct Factor (dB)	Result (dBμV/m) QP	Limit (dBµV/m) QP	Margin (dB) QP	Polarization
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Correct	Reading	Reading Measurement		Limit
Factor	Level	Level		
dB	dBuV	dBuV/m	dB	dBuV/m
3.038	36.510	39.547	-34.453	74.000
11.795	35.140	46.934	-27.066	74.000
12.635	35.900	48.535	-25.465	74.000
5.812	37.400	43.211	-30.789	74.000
12.630	35.620	48.249	-25.751	74.000
13.126	36.420	49.546	-24.454	74.000
	Factor dB 3.038 11.795 12.635	Factor Level dBuV 3.038 36.510 11.795 35.140 12.635 35.900 5.812 37.400 12.630 35.620	Factor dB Level dBuV Level dBuV/m 3.038 36.510 39.547 11.795 35.140 46.934 12.635 35.900 48.535 5.812 37.400 43.211 12.630 35.620 48.249	Factor dB Level dBuV Level dBuV/m dB 3.038 36.510 39.547 -34.453 11.795 35.140 46.934 -27.066 12.635 35.900 48.535 -25.465 5.812 37.400 43.211 -30.789 12.630 35.620 48.249 -25.751

Average

Detector:

__

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60Hz

Test Mode: 802.11g Channel High 2462MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

	Reading	Correct	Result	Limit	Margin	
Frequency	$(dB\mu V/m)$	Factor	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	đΒ	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	36.990	39.847	-34.153	74.000
7386.000	12.127	34.580	46.708	-27.292	74.000
9848.000	12.852	36.090	48.943	-25.057	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	37.050	42.570	-31.430	74.000
7386.000	13.254	35.510	48.764	-25.236	74.000
9848.000	13.367	36.030	49.397	-24.603	74.000

Average

Detector:

__

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60HzTest Mode:802.11n HT20 Channel Low 2412MHzTest Engineer:Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	37.620	40.881	-33.119	74.000
7236.000	10.650	35.610	46.260	-27.740	74.000
9648.000	13.337	35.410	48.746	-25.254	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	36.810	43.231	-30.769	74.000
7236.000	11.495	35.710	47.205	-26.795	74.000
9648.000	13.807	35.430	49.236	-24.764	74.000

Average

Detector:

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT20 Channel Middle 2437MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading			Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	36.760	39.797	-34.203	74.000
7311.000	11.795	35.420	47.214	-26.786	74.000
9748.000	12.635	36.050	48.685	-25.315	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	36.820	42.631	-31.369	74.000
7311.000	12.630	35.280	47.909	-26.091	74.000
9748.000	13.126	36.450	49.576	-24.424	74.000
Average					

Average

Detector:

--

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60HzTest Mode:802.11n HT20 Channel High 2462MHzTest Engineer:Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	1 olulization
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	38.320	41.177	-32.823	74.000
7386.000	12.127	35.020	47.148	-26.852	74.000
9848.000	12.852	35.960	48.813	-25.187	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	37.230	42.750	-31.250	74.000
7386.000	13.254	35.030	48.284	-25.716	74.000
9848.000	13.367	36.090	49.457	-24.543	74.000

Average

Detector:

--

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60HzTest Mode:802.11n HT40 Channel Low 2422MHzTest Engineer:Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency (MHz)	Reading (dBμV/m) QP	Correct Factor (dB)	Result (dBμV/m) QP	Limit (dBµV/m) QP	Margin (dB) QP	Polarization
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
				_	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4844.000	3.171	37.020	40.191	-33.809	74.000
7266.000	11.162	35.620	46.782	-27.218	74.000
9688.000	12.964	36.530	49.495	-24.505	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4844.000	6.178	37.490	43.668	-30.332	74.000
7266.000	11.982	35.390	47.372	-26.628	74.000
9688.000	13.507	37.830	51.338	-22.662	74.000

Average

Detector:

--

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: F19820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT40 Channel Middle 2437MHz Test Engineer: Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dΒ	dBuV	dBuV/m	dΒ	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	37.390	40.427	-33.573	74.000
7311.000	11.795	35.640	47.434	-26.566	74.000
9748.000	12.635	36.490	49.125	-24.875	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	36.880	42.691	-31.309	74.000
7311.000	12.630	35.280	47.909	-26.091	74.000
9748.000	13.126	36.060	49.186	-24.814	74.000

Average

Detector:

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60HzTest Mode:802.11n HT40 Channel High 2452MHzTest Engineer:Adam Yang

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

	Reading	Correct	Result	Limit	Margin	
Frequency	$(dB\mu V/m)$	Factor	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4904.000	2.914	37.490	40.405	-33.595	74.000
7356.000	11.995	35.190	47.184	-26.816	74.000
9808.000	12.475	35.880	48.355	-25.645	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4904.000	5.530	37.090	42.621	-31.379	74.000
7356.000	13.005	35.360	48.364	-25.636	74.000
9808.000	12.901	36.230	49.131	-24.869	74.000

Average

Detector:

__

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Antenna port conducted spurious emissions

802.11b mode:

Low channel

High channel

802.11n (20M) mode:

802.11n (40M) mode:

10. §15.247(A) (2) – 6DB BANDWIDTH TESTING

10.1. Test Equipment

Please refer to Section 5 this report.

10.2.Test Procedure

- Set EUT in the transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100KHz,VBW RBW,Span=50MHz,Sweep=auto.
- 4. Mark the peak frequency and -6dB(upper and lower)frequency.
- 5. Repeat until all the rest channels are investigated.

10.3. Applicable Standard

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

10.4.Test Result:Pass.

Please refer to the following tables

Channel Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)	Limit (kHz)	Result				
	8	802.11b Mode						
2412	1	12006	> 500	Pass				
2437	1	11981	> 500	Pass				
2462	1	12006	> 500	Pass				
	802.11g Mode							
2412	6	16433	> 500	Pass				
2437	6	16483	> 500	Pass				
2462	6	16508	> 500	Pass				
	802.	.11n (20M) Mode						
2412	6.5	17184	> 500	Pass				
2437	6.5	17384	> 500	Pass				
2462	6.5	17459	> 500	Pass				
	802.11n (40M) Mode							
2412	13	36020	> 500	Pass				
2437	13	36060	> 500	Pass				
2462	13	36060	> 500	Pass				

802.11b Mode:

802.11g Mode:

802.11n (20M) Mode:

802.11n (40M) Mode:

11. §15.247(B) (3) - Maximum Peak Output Power

11.1. Test Equipment

Please refer to Section 4 this report.

11.2.Test Procedure

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz.
- 3. Set VBW 3 MHz.
- 4. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.
- 5. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".
- 6. Trace average 100 traces in power averaging mode.
- 7. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

11.3.Applicable Standard

According to §15.247(b) (3), for systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

BST FCC ID REPORT: BST12081022Y-1E-3 Page 42/71

11.4. Test Result

Pass

802.11b Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2412	1	18.25	30
Mid	2437	1	18.04	30
High 2462		1	18.18	30

802.11g Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2412	6	17.68	30
Mid	2437	6	17.47	30
High	2462	6	17.54	30

802.11n (20M) Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2412	6.5	16.29	30
Mid	2437	6.5	16.16	30
High	2462	6.5	16.23	30

802.11n (40M) Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2422	13.5	15.71	30
Mid	2437	13.5	15.64	30
High	2452	13.5	15.77	30

Page 44/71

12. §15.247(D) – 100 KHZ Bandwidth of Frequency Band Edge

12.1.Test Equipment

Please refer to Section 4 this report.

12.2.Test Procedure

- 1, Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2, Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3, Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Note: For Rdstricted Band

RBW=1MHz VBW=1 MHz

- 4, Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5, Repeat above procedures until all measured frequencies were complete.

12.3. Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

12.4.Test Result

Pass.

BST FCC ID REPORT: BST12081022Y-1E-3

Conducted test

802.11b Mode:

802.11g Mode:

802.11n (20M) Mode:

802.11n (40M) Mode:

Radiated test

24°C Date of Test: September 10, 2012 Temperature: Wireless IP Camera Humidity: 55% EUT: FI9820W Model No.: Power Supply: AC 120V/60Hz

Test Mode: 802.11b Channel Low 2412MHz Polarization: **HORIZONTAL**

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	61.807	30.622	-12.193	74.000	31.185	PK
2		*	2412.080	91.983	60.803	N/A	N/A	31.180	PK

2411.915 80.755 49.575 N/A N/A 31.180 ΑV

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11b Channel Low 2412MHz Polarization: VERTICAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Test Mode:

Date of Test: September 10, 2012 Temperature: 24°C EUT: Wireless IP Camera Humidity: 55% FI9820W Power Supply: AC 120V/60Hz Model No.: 802.11b Channel High 2462MHz **HORIZONTAL**

Polarization:

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11b Channel High 2462MHz Polarization: VERTICAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Radiated test

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11g Channel Low 2412MHz Polarization: HORIZONTAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

47.725

2. The average measurement was not performed when the peak measured data under the limit of average detection.

31.181

AV

2407.460

78.906

Test Mode:

Date of Test:September 10, 2012Temperature:24°CEUT:Wireless IP CameraHumidity:55%Model No.:FI9820WPower Supply:AC 120V/60Hz

Polarization:

VERTICAL

802.11g Channel Low 2412MHz

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11g Channel High 2462MHz Polarization: HORIZONTAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11g Channel High 2462MHz Polarization: VERTICAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Radiated test

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.:FI9820WPower Supply:AC 120V/60HzTest Mode:802.11n HT20 Channel Low 2412MHzPolarization:HORIZONTAL

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	60.995	29.810	-13.005	74.000	31.185	PK
2		*:	2408.120	90.148	58.967	N/A	N/A	31.181	PK

No	Flag	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Type	
			(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)			
1			2390.000	47.660	16.475	-6.340	54.000	31.185	AV	
2	31	*	2416.535	76.507	45.325	N/A	N/A	31.182	AV	

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT20 Channel Low 2412MHz Polarization: VERTICAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT20 Channel High 2462MHz Polarization: HORIZONTAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT20 Channel High 2462MHz Polarization: VERTICAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT40 Channel Low 2422MHz Polarization: HORIZONTAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT40 Channel Low 2422MHz Polarization: VERTICAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Date of Test: September 10, 2012 Temperature: 24°C

EUT: Wireless IP Camera Humidity: 55%

Model No.: FI9820W Power Supply: AC 120V/60Hz

Test Mode: 802.11n HT40 Channel High 2452MHz Polarization: HORIZONTAL

Note: 1. Measurement Level = Reading Level + Correct Factor.

Test Mode:

Date of Test: September 10, 2012 Temperature: 24°C EUT: Wireless IP Camera Humidity: 55% FI9820W Power Supply: AC 120V/60Hz Model No.: 802.11n HT40 Channel High 2452MHz **VERTICAL**

Polarization:

Note: 1. Measurement Level = Reading Level + Correct Factor.

13. §15.247(E) - Power Spectral Density

13.1. Test Equipment

Please refer to Section 4 this report.

13.2.Test Procedure

- 1,Set EUT in the transmitting mode.
- 2,Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3,Set the spectrum analyzer as RBW=3kHz,VBW=10kHz,Span=300kHz,Sweep=100s.
- 4, Record the max. reading
- 5, Repeat the above procedure until the measurements for all frequencies are completed.

13.3.Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

13.4.Test Result

PASS

Channel Frequency (MHz)	Data Rate (Mbps)	PSD (dBm/3kHz)	Limit (dBm/3kHZ)	RESULT				
	802.11b Mode							
2412	1	-4.21	8	Compliant				
2437	1	-4.10	8	Compliant				
2462	1	-4.81	8	Compliant				
		802.11g Mode						
2412	6	-17.34	8	Compliant				
2437	6	-16.33	8	Compliant				
2462	6	-17.45	8	Compliant				
	8	802.11n (20M) Mode	2					
2412	6	-17.87	8	Compliant				
2437	6	-17.19	8	Compliant				
2462	6	-18.01	8	Compliant				
	802.11n (40M) Mode							
2412	6	-20.50	8	Compliant				
2437	6	-19.96	8	Compliant				
2462	6	-18.70	8	Compliant				

BST FCC ID REPORT: BST12081022Y-1E-3

802.11b Mode:

802.11g Mode:

802.11n (20M) Mode:

802.11n (40M) Mode:

