Problema 2 Na criptografia pós-quântica os reticulados inteiros ("hardlattices") e os problemas a eles associados são uma componente essencial. Um reticulado inteiro pode ser definido por uma matriz $\ L \in \mathbb{Z}^{m imes n} \$ (com $\ m > n$) de inteiros e por um inteiro primo $\ q \geq 3$. O chamado problema do vetor curto (SVP) consiste no cálculo de um vetor de inteiros $e \in \{-1, 0, 1\}^m$ não nulo que verifique a seguinte relação matricial orall i < n , $\sum_{j < m} e_j imes \mathsf{L}_{j,i} \ \equiv \ 0 \mod q$ 1. Pretende-se resolver o SVP por programação inteira dentro das seguintes condições A. Os valores $m\,,\,n\,,\,q\,$ são escolhidos com $\,n>30\,,\,\,|m|>1+|n|\,$ e $\,|q|>|m|\,.\,$ B. Os elementos $L_{j,i}$ são gerados aleatória e uniformemente no intervalo inteiro $\{-d\cdots d\}$ sendo $d\equiv (q-1)/2$. 2. Pretende-se determinar, em primeiro lugar, se existe um vetor e não nulo (pelo menos um dos e_i é diferente de zero). Se existir e pretende-se calcular o vetor que minimiza o número de componentes não nulas. Notas Se $\,x \geq 0$, representa-se por $\,|x|\,$ o tamanho de $\,x\,$ em bits: o menor $\,\ell\,$ tal que $\,x < 2^{\ell}\,$. • Um inteiro x verifica $x\equiv 0 \mod q$ sse x é um múltiplo de q . $x\equiv 0 \mod q$ sse $\exists \, k\in \mathbb{Z}$. $x=q\times k$. Por isso, escrito de forma matricial, as relações que determinam o vetor $\,e
eq 0\,$ são $\left\{ egin{array}{ll} \exists\, e \in \{-1,0,1\}^m \; . \; \exists\, k \in \mathbb{Z}^n \;\; . \;\; e imes \mathsf{L} \; = \; q\, k \ & \exists\, i < n \;\; . \;\; e_i \,
eq 0 \end{array}
ight.$ Resolução do problema Utilização de uma matriz com m linhas e 3 colunas em que os valores das colunas estão dentro do intervalo [-1, 1] e onde os valores de $x_{i,j}$ são 0(False) ou 1(True), com $0 \le i \le m-1$ e $-1 \le j \le 1$. A seguinte expressão, para i = 0 $\sum_{i=-1}^{j<2}\,x_{0,j}\, imes\,\mathsf{j}$ representa o elemento e_0 do vetor e. Assim, obtemos o vetor e a partir da seguinte expressão: $orall_{i < m} \left(e_i = \sum_{i = -1}^{j < 2} \, x_{i,j} \, imes \, \mathsf{j} \,
ight)$ Restrições 1 - Cada linha da matriz tem de ter um e um só valor a 1 Para isso utilizamos a seguinte restrição: $orall_{i < m}(\sum_{i=-1}^{j < 2} x_{i,j}) = 1$ 2 - O vetor nulo não pode ser uma solução Para isso utilizamos a seguinte restrição: $\sum_{i=0}^{i < m} x_{i,0} = m$ 3- Relação de congruência orall i < n , $\sum_{j < m} e_j imes \mathsf{L}_{j,i} \ \equiv \ 0 \mod q$ Para isso utilizamos a seguinte restrição: $orall_{i < n} (\sum_{j=0}^{j < m} (\sum_{t=-1}^{t < 2} x_{j,t} imes t) imes L_{j,i}) = q imes k_i, \hspace{1em} k_i \in \mathbb{Z}$ Em que k toma diferentes valores consoante o i que toma para validar a congruência Minimizar soluções Para minimzar o número de elementos de e não nulos utilizamos a seguinte expressão: \ $\sum_{i=0}^{i < m} x_{i,0}$ $\$ Ou seja, vamos à matriz m e minimizamos a coluna de elementos a 0. Função erastostenes_crive(n) n - limite superior Esta função é utilizada para saber quais os números primos entre 1 e n. In [1]: def erastostenes_crive(n): numeros = [True] * (n + 1)numeros[0] = Falsenumeros[1] = Falseprimos = [] for numero, primo in enumerate(numeros): if primo: primos.append(numero) for i in range(numero * 2, n + 1, numero): numeros[i] = False print(primos) return primos erastostenes_crive(255) pass [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 18 1, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251] Função generate_matrix(m, n, d) m - número de linhas da matriz n - número de colunas da matriz d - inteiro que serve de referência para o intervalo de valores [-d, d] da matriz L Utilizada para gerar uma matriz com m linhas e n colunas com valores entre d e -d. In [2]: **from** random **import** randint def generate_matrix(m, n, d): L = {} for i in range(0, m): $L[i] = \{\}$ for j in range(0, n): random_number = randint(-d,d) $L[i][j] = random_number$ return L Função print_matrix(table, solver) m - matriz a que vamos dar print n - solver passado como parâmetro Utilizada para dar print à matriz resultante. def print_matrix(table, solver): for i in table: for j in table[i]: print(int(solver.Value(table[i][j])), end=" ") print("") Função print_vector(e) e - vetor e passado como parâmetro Utilizada para dar print ao vetor e resultante. def print_vector(e): In [4]: for i in range(0, m): print(e[i], end=" ") In [5]: from ortools.sat.python import cp_model from pysmt.typing import INT def SVP_Matrix(n, m, q, d, L): model = cp_model.CpModel() $e_matrix = {}$ for i in range(0, m): $e_{matrix[i]} = {}$ **for** j **in** range(-1, 2): e_matrix[i][j] = model.NewBoolVar(f'e_matrix[{i}][{j}]') # 1ª condição - Cada linha tem um valor for i in range(0,m): $model.Add(sum([e_matrix[i][j] for j in range(-1,2)]) == 1)$ # 2ª condição - Não há o vetor nulo $model.Add(sum([e_matrix[i][0] for i in range(0,m)]) \le (m-1))$ $k = \{\}$ $max_range = 2**52$ # 3ª condição - condição de congruência for i in range(0,n): k[i] = model.NewIntVar(-1*max_range, max_range, f'k[{i}]') $model.Add(sum(sum(e_matrix[j][t]*t for t in range(-1,2)) *L[j][i] for j in range(0,m)) == k[i]*q)$ # Minimizar o número de componentes não nulas model.Minimize(sum(e_matrix[i][0] for i in range(0, m))) # Cria um solver CP-SAT a solver and solves the model. solver = cp_model.CpSolver() # Invoca o solver com o modelo criado status = solver.Solve(model) # Interpreta os resultados if status == cp_model.OPTIMAL: # conversão da matriz para vetor for i in range(0, m): **for** j **in** range(-1, 2): acc += solver.Value(e_matrix[i][j]) * j e[i] = accprint_matrix(e_matrix, solver) print("") print_vector(e) print('No solution found.') Exemplo 1 In [6]: n = 2 m = 12q = 23 d = (q-1)/2 $L = generate_matrix(m, n, d)$ SVP_Matrix(n, m, q, d, L) 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 -1 1 1 1 -1 1 1 -1 1 -1 1 Exemplo 2 In [7]: n = 3m = 12d = (q-1)/2 $L = generate_matrix(m, n, d)$ SVP_Matrix(n, m, q, d, L) 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 -1 -1 1 1 1 0 1 0 1 -1 -1 Exemplo 3 In [8]: n = 4 m = 16q = 37 d = (q-1)/2 $L = generate_matrix(m, n, d)$ SVP_Matrix(n, m, q, d, L) 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 1 -1 -1 -1 1 Exemplo 4 In [9]: n = 4m = 28q = 47d = (q-1)/2L = generate_matrix(m,n,d) SVP_Matrix(n, m, q, d, L) 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 Exemplo 5 In [10]: n = 5 m = 28q = 37 d = (q-1)/2 $L = generate_matrix(m,n,d)$ SVP_Matrix(n, m, q, d, L) 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 Exemplo 6 In []: n = 6m = 28q = 37 d = (q-1)/2L = generate_matrix(m,n,d)

SVP_Matrix(n, m, q, d, L)