PSY 653 Module 2: Interaction Effects (aka Moderation) Feb 5, 2020

Neil Yetz & Gemma Wallace

Part 1: In-class Demo

Use the "moderation_demo.csv" datafile

dat <- read_csv("moderation_demo.csv")</pre>

Load libraries

```
library(psych)
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.3.0
                      v purrr
                                0.3.3
## v tibble 3.0.0
                   v dplyr
                                0.8.5
## v tidyr
           1.0.2
                      v stringr 1.4.0
## v readr
           1.3.1
                      v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 3.6.3
## Warning: package 'tibble' was built under R version 3.6.3
## Warning: package 'tidyr' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## Warning: package 'forcats' was built under R version 3.6.3
## -- Conflicts -----
## x ggplot2::%+%()
                     masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
library(olsrr)
## Warning: package 'olsrr' was built under R version 3.6.3
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
##
      rivers
Read in data
```

```
## Parsed with column specification:
## cols(
##
     att1 = col double(),
##
     att2 = col_double(),
##
     att3 = col_double(),
##
     att4 = col_double(),
##
     att5 = col double(),
     group1 = col_double(),
##
##
     group2 = col_double(),
##
     out1 = col_double(),
##
     out2 = col_double(),
     out3 = col_double(),
##
##
     out4 = col_double()
## )
```

Get descriptives

```
describe(dat)
```

```
##
                n mean
                        sd median trimmed mad min max range
                                                             skew kurtosis
## att1
            1 692 1.14 1.52
                                0
                                     0.88 0.00
                                                 0
                                                     9
                                                          9
                                                             1.88
                                                                      5.14 0.06
## att2
            2 692 1.94 0.88
                                2
                                     1.88 1.48
                                                             2.14
                                                 1
                                                     9
                                                                     13.31 0.03
            3 692 1.48 1.44
                                     1.30 1.48
                                                          9
                                                             2.73
## att3
                                1
                                                     9
                                                                     11.57 0.05
## att4
            4 692 1.17 1.39
                                     0.98 1.48
                                                     9
                                                             2.88
                                                                     13.43 0.05
                                1
                                                 0
                                     1.06 1.48
            5 692 1.26 1.51
                                                    9
                                                          9 1.09
## att5
                                1
                                                 0
                                                                      1.19 0.06
## group1
            6 692 2.58 1.17
                                2
                                     2.50 1.48
                                                 1
                                                          8 1.56
                                                                      6.06 0.04
## group2
            7 692 1.59 0.49
                                2
                                     1.62 0.00
                                                    2
                                                          1 -0.38
                                                                     -1.86 0.02
                                                 1
                                2
## out1
            8 692 1.39 1.41
                                     1.32 0.00
                                                    9
                                                          9 2.57
                                                                     12.68 0.05
                                                 0
            9 692 1.21 1.55
                                1
                                     0.97 1.48
                                                    9
                                                          9 2.96
## out2
                                                                     12.17 0.06
## out3
           10 692 1.38 1.43
                                2
                                     1.30 0.00
                                                    9
                                                          9 2.62
                                                                     12.54 0.05
                                                 0
                                2
## out4
           11 692 1.39 1.48
                                     1.29 0.00
                                                    9
                                                          9 2.64
                                                                     11.91 0.06
```

Examine correlation between att1 & att3

```
cor(dat$att1, dat$att3)
```

```
## [1] 0.04521701
```

Since the correlation between att1 and att3 is small, there is room for a moderation effect.

```
ggplot(dat, aes(x = att1, y = att3)) +
  geom_smooth(method = "lm")+
  geom_jitter()+
  theme_classic()
```

```
## `geom_smooth()` using formula 'y ~ x'
```


Create the cross product of att1 & att3

```
dat <- mutate(dat, att1att3 = att1*att3)</pre>
```

Run moderated regression in which att1, att3, and att1*att3 predict out4 ## Main Effects model

```
modME <- lm(out4 ~ att1 + att3, data = dat)</pre>
ols_regress(modME)
                           Model Summary
##
## R
                           0.453
                                       RMSE
                                                           1.317
## R-Squared
                           0.206
                                       Coef. Var
                                                          94.839
## Adj. R-Squared
                           0.203
                                       MSE
                                                           1.735
## Pred R-Squared
                           0.179
                                       MAE
                                                           0.905
    RMSE: Root Mean Square Error
    MSE: Mean Square Error
    MAE: Mean Absolute Error
##
##
##
                                   ANOVA
##
##
                   Sum of
##
                  Squares
                                  DF
                                        Mean Square F
                                                                   Sig.
```

##							-					
##	Regression	309.277	2	154.638	89.148	0.0000						
##	Residual	1195.156	689	1.735								
##	Total	1504.432	691									
##							=					
##												
##	# Parameter Estimates											
##												
##	model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper				
##												
##	(Intercept)	0.655	0.080		8.185	0.000	0.498	0.812				
##	att1	0.049	0.033	0.050	1.480	0.139	-0.016	0.114				
##												
##	att3	0.458	0.035	0.448	13.190	0.000	0.390	0.527				

Interaction model

modINT <- lm(out4 ~ att1 + att3 + att1*att3 , data = dat)
ols_regress(modINT)</pre>

#		Model		ry 					
# # R				RMSE	1.31				
# R-Squared		0.213		Coef. Var	94.43	5			
# Adj. R-Squar	ed	0.210		MSE	1.72	0			
# Pred R-Squar				MAE	0.90	7			
#									
# RMSE: Root	Mean Square	Error							
# MSE: Mean S	quare Error								
# MAE: Mean A	bsolute Err	or							
#									
#	ANOVA								
#	Sum of								
#				Mean Square					
п				107.051					
_					02.243	0.0000			
# D = = : J - = - 1	1103.270			1.720					
# Residual									
# Total	1504.432								
# Total	1504.432								

the model Date Ctd Ermon Ctd Date t

##	model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
##								
##	(Intercept)	0.757	0.089		8.539	0.000	0.583	0.931
##	att1	-0.032	0.045	0.041	-0.716	0.474	-0.121	0.056
##	att3	0.393	0.043	0.439	9.210	0.000	0.309	0.477
##	att1:att3	0.049	0.019	0.090	2.628	0.009	0.012	0.085
##								

library(sjPlot)

^{##} Warning: package 'sjPlot' was built under R version 3.6.3

```
## Registered S3 methods overwritten by 'lme4':
##
     method
                                      from
##
     cooks.distance.influence.merMod car
##
     influence.merMod
                                      car
     dfbeta.influence.merMod
##
                                      car
##
     dfbetas.influence.merMod
                                      car
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(sjmisc)
##
## Attaching package: 'sjmisc'
## The following object is masked from 'package:purrr':
##
##
       is_empty
## The following object is masked from 'package:tidyr':
##
##
       replace_na
## The following object is masked from 'package:tibble':
##
##
       add_case
plot_model(modINT, type = "pred", terms = c("att3", "att1"),
           show.intercept = TRUE, se = FALSE)
```

Predicted values of out4

Compare the two models

```
anova(modME, modINT)
## Analysis of Variance Table
##
## Model 1: out4 ~ att1 + att3
## Model 2: out4 ~ att1 + att3 + att1 * att3
    Res.Df
              RSS Df Sum of Sq
                                    F
                                        Pr(>F)
## 1
       689 1195.2
       688 1183.3
## 2
                  1
                        11.877 6.9058 0.008783 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The model that includes the interaction effect accounts (modINT) for a significantly larger amount of variance in out4 compared to the model that only includes the main effects (modME) of the two predictors.

Part 2: Try it yourself

Use the "moderation_sleepdata.csv" datafile In this exmaple, you will examine how sleep hygiene, anxiety, and the interaction between sleep hygiene and anxiety influence how well participants slept.

Read in data

```
sleep_data <- read_csv("moderation_sleepdata.csv")

## Parsed with column specification:
## cols(
## age = col_double(),
## anxiety = col_double(),
## hygiene = col_double(),
## sleep = col_double(),
## lifesat = col_double()
## )</pre>
```

Get descriptives

```
describe(sleep_data)
```

```
##
                            sd median trimmed
                 n mean
                                                mad
                                                      min
                                                            max range skew
             1 600 44.94 12.87
                                45.20
                                      45.12 16.46 20.00 67.80 47.80 -0.10
## anxiety
             2 600
                    3.88 0.90
                                 3.86
                                         3.89 0.93 1.05 6.84 5.79 -0.07
                                 6.05
## hygiene
             3 600
                    5.99 1.57
                                         6.04 1.57 1.68 9.74 8.06 -0.23
## sleep
             4 600 68.88 12.14
                                69.00
                                        69.09 11.86 34.00 99.00 65.00 -0.16
## lifesat
             5 600
                    4.06
                         0.92
                                 4.05
                                         4.04 0.96 1.68 6.61 4.93 0.13
##
          kurtosis
                     se
             -1.140.53
## age
             -0.06 0.04
## anxiety
## hygiene
             -0.29 0.06
## sleep
             -0.17 0.50
## lifesat
             -0.23 0.04
```

Examine correlation between anxiety and hygiene

```
cor(sleep_data$anxiety, sleep_data$hygiene)
```

```
## [1] 0.0888915
```

Since the correlation between the two variables is relatively small, there is room for a moderation effect

Create the cross-product of hygiene and anxiety

```
sleep_data <- mutate(sleep_data, anxiety_hygiene = hygiene*anxiety)</pre>
```

Run moderated regression in which hygiene, anxiety, and hygiene*anxiety predict sleep ### Main effects model

```
slp_mod1 <- lm(sleep ~ hygiene + anxiety, data = sleep_data )
ols_regress(slp_mod1)</pre>
```

		Model Summary						
R					7.915			
R-Squared				Coef. Var				
				MSE	62.644			
Pred R-Square	ed 	0.572		MAE 	6.245	_		
RMSE: Root Mean Square Error								
MSE: Mean Se	quare Error							
MAE: Mean A	bsolute Erro	r						
			ANO					
							_	
Sum of		DF Mean Square		F	Sig			
							_	
Regression	50878.425		2	25439.213	406.092	0.0000		
Residual	37398.448		597	62.644				
Total								
							_	
			_					
Parameter Estimates								
				Std. Beta	t.	Siø	lower	וחוו
						~+6 		
(Intercept)	44.465		1.808		24.596	0.000	40.915	48.0
hygiene	5.791		0.206	0.751	28.071	0.000	5.386	6.1
	0 050			-0.198				

Interaction model

```
slp_mod2 <- lm(sleep ~ hygiene + anxiety + anxiety_hygiene, data = sleep_data )
ols_regress(slp_mod2)</pre>
```

Model Summary

```
## R.
                                      RMSE
                                                         7.893
                          0.761
## R-Squared
                          0.579
                                      Coef. Var
                                                        11.459
## Adj. R-Squared
                          0.577
                                      MSE
                                                        62.297
## Pred R-Squared
                          0.574
                                      MAE
                                                         6.225
##
   RMSE: Root Mean Square Error
  MSE: Mean Square Error
##
  MAE: Mean Absolute Error
##
                                   ANOVA
##
##
                   Sum of
##
                                     Mean Square
                  Squares
                                                                   Sig.
##
                                3
## Regression
                51148.102
                                          17049.367
                                                      273.681
                                                                 0.0000
                37128.771
                                 596
                                            62.297
## Residual
## Total
                88276.873
                                 599
##
                                      Parameter Estimates
                    Beta
##
                                             Std. Beta
            model
                               Std. Error
                                                                             lower
                                                                                       upper
##
       (Intercept)
                     33.424
                                    5.604
                                                          5.964
                                                                   0.000
                                                                            22.418
                                                                                      44.431
##
          hygiene
                     7.587
                                  0.887
                                               0.984
                                                          8.550
                                                                   0.000
                                                                             5.844
                                                                                       9.329
##
                      0.237
                                   1.435
                                                0.018
                                                                   0.869
                                                                            -2.580
                                                                                       3.055
          anxiety
                                                          0.165
                                  0.225
                                                                            -0.909
## anxiety_hygiene
                     -0.468
                                               -0.336
                                                         -2.081
                                                                   0.038
                                                                                      -0.026
```

Compare the two models

```
anova(slp_mod1,slp_mod2)
```

```
## Analysis of Variance Table
##
## Model 1: sleep ~ hygiene + anxiety
## Model 2: sleep ~ hygiene + anxiety + anxiety_hygiene
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 597 37398
## 2 596 37129 1 269.68 4.3289 0.0379 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

At a significance threshold of p<0.05, the model that included the interaction effect (slp_mod2) explained a significantly larger amount of variance in sleep than the model that only tested the main effects of anxiety and sleep hygiene (slp_mod1).