Aeroelasticity and Fuel Slosh

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2014

- Aerodynamic effects of bending and torsion
- Modifications to aerodynamic coefficients
- Dynamic coupling
- Fuel shift and sloshing dynamics

Flight Dynamics 418-419, 549-569, 665-678 Airplane Stability and Control Chapter 19

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/FlightDynamics.html

The Elastic Airplane

Chapter 19, *Airplane Stability and Control*, Abzug and Larrabee

- What are the principal subject and scope of the chapter?
- What technical ideas are needed to understand the chapter?
- During what time period did the events covered in the chapter take place?
- What are the three main "takeaway" points or conclusions from the reading?
- What are the three most surprising or remarkable facts that you found in the reading?

One-Dimensional Model of Aeroelasticity

3

Reduced Aileron Effect Due to Aeroelasticity

 Wing torsion reduces aileron effect with increasing dynamic pressure

Aeroelastic Aileron Effect of Boeing 2707-300 Supersonic Transport Concept

Quasi-Static Aeroelastic Model of Aircraft Dynamics: Residualization

 IF elastic modes are fast compared to rigid modes and are stable

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}_{aircraft} \\ \mathbf{0} \end{bmatrix} \approx \begin{bmatrix} \mathbf{F}_{aircraft} & \mathbf{F}_{elastic}^{aircraft} \\ \mathbf{F}_{elastic}^{elastic} & \mathbf{F}_{elastic} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_{aircraft} \\ \Delta \mathbf{x}_{elastic} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{aircraft} \\ \mathbf{G}_{elastic} \end{bmatrix} \Delta \mathbf{u}_{aircraft}$$

 Residualization reduces <u>aeroelastic</u> model order to <u>rigid-body</u> model order

$$\Delta \dot{\mathbf{x}}_{a} = \mathbf{F}_{a} \Delta \mathbf{x}_{a} - \mathbf{F}_{e}^{a} \mathbf{F}_{e}^{-1} \left[\mathbf{F}_{a}^{e} \Delta \mathbf{x}_{a} + \mathbf{G}_{e} \Delta \mathbf{u}_{a} \right] + \mathbf{G}_{a} \Delta \mathbf{u}_{a}$$
$$= \mathbf{F}'_{a} \Delta \mathbf{x}_{a} + \mathbf{G}'_{a} \Delta \mathbf{u}_{a}$$

Primary Longitudinal Aeroelastic Mode Shapes

7

Aeroelastic Model of Aircraft Dynamics

 Coupled model of rigid-body and elastic dynamics

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}_{aircraft} \\ \Delta \dot{\mathbf{x}}_{elastic} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{aircraft} & \mathbf{F}_{elastic}^{aircraft} \\ \mathbf{F}_{elastic}^{elastic} & \mathbf{F}_{elastic} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_{aircraft} \\ \Delta \mathbf{x}_{elastic} \end{bmatrix}$$
$$+ \begin{bmatrix} \mathbf{G}_{aircraft} \\ \mathbf{G}_{elastic} \end{bmatrix} \Delta \mathbf{u}_{aircraft}$$

Effect of Increasing Coupling of Single Aeroelastic Mode with Short Period Roots

Flight Dynamics, 5.6

9

Effects of Fuselage Aeroelasticity on Lateral-Directional Response to Rudder Step Input

10

Aeroelastic Oscillations

Aeroelastic Problems of the Lockheed Electra

- Prop-whirl flutter, 2 fatal accidents (1959-60)
- Structural modifications made; aircraft remained in service until 1992
- Predecessor of US Navy Orion P-3, still in service

http://www.youtube.com/watch?v=d0fFNWANK5M

Two-Dimensional Model of Aeroelastic Airplane

13

Longitudinal Structural Modes of Boeing 2707-300 Supersonic Transport Concept

Centerline station

B-1 Canards for Ride Control

- Elastic modes cause severe, high-g cockpit vibration during lowaltitude, high-speed flight
- Active canard surfaces reduce amplitude of the oscillations

15

Ultra-Light Aircraft

- Extreme aeroelasticity
- AeroVironment Pathfinder, Centurion, PathfinderPlus (solar-electric)
- · Helios in turbulence

Helios Solar Powered
Aircraft
Experiencing turbulence after taking off on first solar powered flight
July 14, 2001
Dryden
Flight Research Center

The Last Flight of *Helios*

- · June 6, 2003
- 2,320 lb., 247-ft wingspan, 72 control surfaces, differential thrust
- · Change in weight distribution
- · 40-ft tip deflection
- Divergent pitch oscillations, doubling every 8 seconds
- Airspeed > 2.5 x limit

17

Fuel Shift and Slosh

Fuel Shift

- Problem with partially filled fuel tank
- Single wing tank from tip to tip (A4D)
- Slow, quasi-static shift of fuel c. m.
- Rudder step throws fuel to one side, producing a strong rolling moment

Fuel Shift

Fuel Slosh

- Dynamic oscillation of fuel center of mass, wave motion at the fuel's surface
- Pendulum and spherical-tank analogies
- · Problem is greatest when tank is half-full

- Fuselage tank forward of the aircraft's center of mass (A4D)
 - Yawing motion excites oscillatory slosh that couples with *Dutch roll mode*

 Fore-aft slosh in wing-tip tanks coupled with the short period mode (P-80)

Fuel Slosh

- Solution: Fuel-tank baffles
 - Slow down fuel motion
 - Force resonances to higher frequencies due to smaller cavities
 - Wing internal bracing may act as baffle

Problems of Fuel Slosh and Aeroelasticity

- Coupling of non-rigid dynamic modes with rigid-body modes
- · Resonant response
 - Dynamically coupled modes of motion with similar frequencies
 - With light damping, oscillatory amplitudes may become large

Δ :	$\dot{ extbf{X}}_{aircraft}$] [$\mathbf{F}_{aircraft}$	$\mathbf{F}_{elastic}^{aircraft}$	$\mathbf{F}_{slosh}^{aircraft}$	$\int \Delta \mathbf{x}_{aircraft}$	
Δ	$\dot{\mathbf{X}}_{elastic}$	=	$\mathbf{F}_{aircraft}^{elastic}$	$\mathbf{F}_{elastic}$	$\mathbf{F}_{slosh}^{elastic}$	$\Delta \mathbf{x}_{elastic}$	+ G∆u
	A x slosh		$\mathbf{F}^{slosh}_{aircraft}$	$\mathbf{F}_{elastic}^{slosh}$	\mathbf{F}_{slosh}	$\int \int \Delta \mathbf{x}_{slosh}$	

- Coupling between longitudinal and lateral-directional effects
- Nonlinear aerodynamics
- Exacerbated by floating control surfaces, high hinge moments, and high aerodynamic angles

23

Next Time: High Speed and Altitude

Flight Dynamics 470-480 Airplane Stability and Control Chapter 11