Exercise 6

Lorenzo Vigo

Optimization: 1^{st} November 2021

Exercise 6. To be delivered before 2-XI-2021 as: Ex06-YourSurname.pdf Consider the conjugate gradient method applied to the minimization of

$$f(x) = \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

where A is a positive definite and symmetric matrix. Show that the iterate \mathbf{x}^k minimizes f over

$$x^{0}+ < v^{0}, Av^{0}, ..., A^{k-1}v^{0} >$$

where $\mathbf{v}^0 = \nabla f(\mathbf{x}^0)$, and $\langle v^0, A\mathbf{v}^0, ..., A^{k-1}\mathbf{v}^0 \rangle$ is the subspace generated by $v^0, A\mathbf{v}^0, ..., A^{k-1}\mathbf{v}^0$

Following the Conjugate Gradient Method Theorem seen in class, we know that the method will start at x^0 and move along $z^1,...,z^k$ such that $(z^j)^T\nabla f(x^j)=(z^j)^T\nabla f(x^k)=0, j=1,...,k$. This means that the method minimizes f over $x^0+< z^1,...,z^k>$.

All we need to prove is that $\langle z^1,...,z^k \rangle \subset \langle v^0,Av^0,...A^{k-1}v^0 \rangle$. Following the choice of the conjugate directions shown in class, we know that:

$$z^1 = -\nabla f(x^0) = -v^0$$

Therefore $z^1 \in < v^0, Av^0, ..., A^{k-1}v^0 >$. Let's suppose we have already generated $z^1, ..., z^m$ for 1 < m < k such that $z^i \in < v^0, Av^0, ..., A^{k-1}v^0 >$ for i = 1, ..., m. We know that, for a specific β :

$$z^{m+1} = -\nabla f(x^m) + \beta z^m$$

As we are supposing that $z^i \in \langle v^0, Av^0, ..., A^{k-1}v^0 \rangle$ for i = 1, ..., m, we just need to prove that $\nabla f(x^m)$ is included in the same generated space.

We should note that when A is positive definite and symmetric:

$$\nabla f(x) = Ax - b$$

Therefore:

$$\nabla f(x^{m}) = Ax^{m} - b$$

$$\nabla f(x^{m}) = A(x^{m-1} + \alpha_{m}z^{m}) - b$$

$$\nabla f(x^{m}) = (Ax^{m-1} - b) + \alpha_{m}Az^{m}$$
...
$$\nabla f(x^{m}) = (Ax^{0} - b) + \sum_{j=1}^{m} \alpha_{j}Az^{j}$$

$$\nabla f(x^{m}) = \nabla f(x^{0}) + \sum_{j=1}^{m} \alpha_{j}Az^{j}$$

$$\nabla f(x^{m}) = v^{0} + \sum_{j=1}^{m} \alpha_{j}Az^{j}$$

$$(1)$$

We can now state that $f(x^m) \in \langle v^0, Av^0, ..., A^{k-1}v^0 \rangle$, which proves the property given in the exercise.