Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный технологический университет "ФГБОУ ВО МГТУ «СТАНКИН"

Кафедра «Управление и информатика в технических системах

Отчёт по лабораторным работам по дисциплине "Алгоритмы и структуры данных""

Выполнил: Студент группы ИДБ-22-10 Инкин Денис Васильевич Преподаватель: доцент Евдокимов С.А.

Содержание

1	Cop	Сортировка подсчетом					
	1.1	Постановка задачи	3				
	1.2	Описание алгоритма	3				
	1.3	Блок-схема алгоритма	5				
	1.4	Код алгоритма на языке Python	6				
	1.5	График времени сортировки	7				
	1.6	Выводы	8				
	17	Библиография	Q				

1 Сортировка подсчетом

1.1 Постановка задачи

Написать программу сортировки простыми вставками и сравнить ее время выполнения со стандартной функцией qsort. Для сравнения вычисляем время выполнения функции сортировки на массиве целых чисел следующих размеров: 16, 100, 500, 1000, 5000. Для работы программы сортировки генерируем случайные массивы целых чисел:

- \bullet для массивов размерами <=500 элементов числа в интервале [100,1000);
- \bullet для массивов размерами <=500 элементов числа в интервале [1000,10000);

Для проверки программы сравниваем результат работы с коректно отсортированным массивом.

Время работы функции сортировки рассчитываем с точностью до тысячных долей миллисекунд. Например, 0.002, 0.018, 0.377, 1.380, 35.806 мсек.

Для оценки поведения функции сортировки создаем графики в зависимости от числа элементов (N) в массиве:N) в массиве:

- график функции N^2 ;
- график функции $Nlog_2N$;
- график времени работы стандартной функции qsort;
- график времени работы функции сортировки подсчетом;

1.2 Описание алгоритма

Этот алгоритм сортирует записи $R_1,...,R_n$ по ключам $a_1,...,a_n$. После завершения алгоритма величина COUNT[j] определяет положение в записи R_j

Основные шаги алгоритма:

- 1 Установить в счетчиках COUNT[0]-COUNT[N-1] нули.
- 2 Выполнить шаг 3 при i = 0, 1, ..., n-1; затем завершить выполнение процедуры.
- 3 Выполнить шаг 4 при j = i+1, i+2,...,n-1.
- 4 Если $a_i < a_j$, то увеличить COUNT[j] на 1; в противном случае увеличить COUNT[i] на 1.

Формальная запись алгоритма посредством диаграмм Насси-Шнейдермана показана на рис.1.

Результат работы программы на массиве из 16 чисел показан ниже:

Результат работы программы: Сортируется массив из 16 чисел

Исходный массив: 643, 723, 209, 763, 827, 596, 338, 263, 734, 589, 773, 491, 207, 973, 168, 838

Отсортированный массив: 168, 207, 209, 263, 338, 491, 589, 596, 643, 723, 734, 763, 773, 827, 838, 973

Время сортировки: 0.0362 мсек.

1.3 Блок-схема алгоритма

1.4 Код алгоритма на языке Python

```
def count_sort(a):
n = len(a)
res = [0 for i in range(n)]
count = [0 for i in range(n)]
for i in range(n):
    for j in range(i + 1, n):
        if a[i] < a[j]:
            count[j] += 1
        else:
            count[i] += 1

    for i in range(n):
    res[count[i]] = a[i]
    a = res.copy()
    return a</pre>
```

1.5 График времени сортировки

Для оценки поведения функции сортировки создаем графики в зависимости от числа элементов (N) в массиве:

- график функции N^2 ;
- график функции $Nlog_2N$;
- график времени работы стандартной функции qsort;
- график времени работы функции сортировки подсчетом;

				мксек	
Ň		<u>N</u> ^2	N*LOGN	gsort	count_sort
	16	256	64	3.576	27
	100	10000	664	13.828	721
	500	250000	4483	48.160	24964
	1000	1000000	9966	104.90	202056
	5000	25000000	61439	726.46	5123699

1.6 Выводы

Из анализа графиков следует:

- \bullet Сортировка простыми вставками имеет временную сложность $O(N^2)$
- На малом числе элементов массива (N) в массиве время сортировки простыми вставками лучше, чем у функции $Nlog_2N$;

1.7 Библиография

1. Д.Кнут. Искуство программирования для ЭВМ. Сортировка и поиск. Том 3. М.:Мир, Москва, 1978. — 844 с.