Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 5 Вариант: 11

Студент гр. Р3213 Преподаватель Поленов К.А.

Санкт-Петербург 2025

Цель работы

Лабораторная работа №5 «Интерполяция функции».

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Лабораторная работа состоит из двух частей: вычислительной и программной. № варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Для исследования использовать:

- многочлен Лагранжа;
- многочлен Ньютона;
- многочлен Гаусса.

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- Вычислить значения функции для аргумента X₁ (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- Вычислить значения функции для аргумента X₂ (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
- b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- с) на основе выбранной функции, из тех, которые предлагает программа, например, sin x. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- Сформировать и вывести таблицу конечных разностей;
- Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

Варианты заданий для вычислительной части

Таблица 1

	х	у	№ варианта	X_1	X_2
	0,25	1,2557	1	0,251	0,402
_ [0,30	2,1764	6	0,512	0,372
	0,35	3,1218	11	0,255	0,405
Таблица	0,40	4,0482	16	0,534	0,384
aon	0,45	5,9875	21	0,272	0,445
_	0,50	6,9195	26	0,551	0,351
	0,55	7,8359	31	0,294	0,437

Методы для реализации в программе:

- 1 Многочлен Лагранжа,
- 2 Многочлен Ньютона с разделенными разностями.3 Многочлен Ньютона с конечными разностями,
- 4 Многочлен Гаусса.

Таблица 2. Методы в программе

№	Метод	№	Метод	№	Метод
варианта		варианта		варианта	
1	1, 2, 3	10	1, 2, 3	19	1, 2, 3
2	1, 2, 4	11	1, 2, 3	20	1, 2, 4
3	1, 2, 3	12	1, 2, 4	21	1, 2, 3
4	1, 2, 3	13	1, 2, 3	16	1, 2, 3
5	1, 2, 4	14	1, 2, 4	23	1, 2, 4
6	1, 2, 3	15	1, 2, 3	24	1, 2, 3
7	1, 2, 3	16	1, 2, 3	25	1, 2, 3
8	1, 2, 4	17	1, 2, 4	26	1, 2, 4
9	1, 2, 4	18	1, 2, 3	16	1, 2, 4

Вычислительная реализация задачи

3. M. K. X. rencum b reboir nalobune onyregue, unnep $t = (X_1 - X_0) = 0,255 - 0,25 = 0,005 = 0,1$ No(x) = yo + tayo + 2! 4 yo + (t-1)(t-2) 3yo + + \frac{t(t-1)(t-2)(t-3)}{4!} \frac{4}{2}\text{0} + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!} \frac{5}{2}\text{0} + + 0,1(-0,9)(-1,9)(-2,9)(-3,9) 5! (-4,1297)+ 10,1(-0,3)(-1,4)(-2,9)(-3,9)(-4,9)(-10,10,10,37=1,34877+ +(-0,0235684) +(-0,0665573) +(-0,13417) = = 1,34877-0,2242957=1,1244743

Код программы

https://github.com/bilyardvmetro/CompMathLab5

Листинг программы


```
><4 go setup calls>
Выберите способ задания исходных данных:

1: Ввод с клавиатуры

2: Ввод из файла

3: На основе выбранной функции

Ваш выбор (1-3): 1

Введите точку х для интерполяции: 0.255

Введите точку х для интерполяции (пары х у, разделенные пробелом). Напишите 'quit' для завершения:

Узел (х у) или 'quit': 0.35 3.1218

Узел (х у) или 'quit': 0.35 3.1218

Узел (х у) или 'quit': 0.44 4.0482

Узел (х у) или 'quit': 0.50 6.9195

Узел (х у) или 'quit': 0.55 7.8359

Узел (х у) или 'quit': quit

| Узлы интерполяции: [0.25, 1.26), (0.30, 2.18), (0.35, 3.12), (0.40, 4.05), (0.45, 5.99), (0.50, 6.92), (0.55, 7.84)]

Точка для интерполяции: 0.26

--- Результаты интерполяции ---

Многочлен Лагранма: Р(0.26) = 1.122520

Таблица разделенных разностей (козфициенты для многочлена Ньютона):

f[x_i...]: 1.2557 2.1764 3.1218 4.0482 5.9875 6.9195 7.8359

Многочлен Ньютона (разд. разн.): Р(0.26) = 1.122520
```

Таблица Х	конечных р У	азностей: Δ^1 Y	Δ^2 Y	Δ^3 Υ	Δ^4 Υ	Δ^5 Y	Δ^6 Υ	
0.25	1.26	0.92	0.02	-0.04	1.08	-4.13	10.19	
0.30	2.18	0.95	-0.02	1.03	-3.05	6.06		
0.35	3.12	0.93	1.01	-2.02	3.01			
0.40	4.05	1.94	-1.01	0.99				
0.45	5.99	0.93	-0.02					
0.50	6.92	0.92						
0.55	7.84							
Многочле	н Ньютона	(кон. разн	.): P(0.26)) = 1.12252	20			

