

Présentation du cours de mathématiques appliquées 1

Bénédicte Le Bailly, benedicte.lebailly@heh.be

Bachelier en Informatique et systèmes, Bloc 1, Quadri 1

UE Mathématiques appliquées 1, 30h, 3 ects

AA1 : Mathématiques

30h, 3 ects

100%

Théorie: 20h (Lundi, 10h30 à 12h30 (2/09A), du 25/09/23 au 27/11/23)

Exercices: 10h

appliquées 1

Groupe 1 : 5 séances de 2h à partir du 15/11 (LE BAILLY)

Groupe 2:5 séances de 2h à partir du 29/09 (LE BAILLY)

Groupe 3: 5 séances de 2h à partir du 11/10 (LE BAILLY)

Groupe 4 : 5 séances de 2h à partir du 23/10 (CARLIER)

Groupe 5 : 5 séances de 2h à partir du 27/10 (CARLIER)

Examen écrit d'exercices à cahiers fermés et sans calculatrice

Suites du cours

Bachelier en Informatique et systèmes, Bloc1, Quadri 2

UE Mathématiques appliquées 2, 40h, 4 ects

AA1: Mathématiques appliquées 2 (CARLIER) 40h, 4 ects

100%

Bachelier en Informatique et systèmes, Bloc2, Quadri 1

UE Sciences appliquées, 54h, 6 ects

AA1: Mathématiques et statistiques appliquées (CARLIER)	30h, 3 ects	50%
AA2 : Physique appliquée (MICHIELS)	24h, 3 ects	50%

Bachelier en Informatique et systèmes, Bloc2, Quadri 2

UE Mathématiques appliquées à l'informatique, 25h, 2 ects

AA1 : Mathématiques appliquées à l'informatique (CHAPELLE)

24h, 2 ects

100%

Plan du cours de mathématique appliquée 1 Théorie 20h

- A. Opérations élémentaires sur les nombres réels
- B. Relations, fonctions
- C. Fonctions du premier degré (droites)
- D. Fonctions du second degré (paraboles)
- E. Fonctions trigonométriques
- F. Fonctions exponentielles et logarithmiques
- G. Calcul matriciel

Ensembles de nombres (p.1)

Conventions de notation (p.1)

$$\mathbb{N}_{0} = \mathbb{N} \setminus \{0\} = \{1, 2, 3, ...\} \\
\mathbb{Z}_{0} = \mathbb{Z} \setminus \{0\} = \{..., -3, -2, -1, 1, 2, 3, ...\} \\
\mathbb{Q}_{0} = \mathbb{Q} \setminus \{0\} \\
\mathbb{R}_{0} = \mathbb{R} \setminus \{0\} \\
\mathbb{R}^{+} = \{x \in \mathbb{R} : x \geq 0\} \\
\mathbb{R}^{-} = \{x \in \mathbb{R} : x \leq 0\} \\
\mathbb{R}^{+}_{0} = \{x \in \mathbb{R} : x > 0\} \\
\mathbb{R}^{-}_{0} = \{x \in \mathbb{R} : x < 0\}$$

$$\mathbb{Z} \setminus \{-1,1\} = \{\dots, -3, -2, 0, 2, 3, \dots\}$$

 $\mathbb{R}_0 \setminus \{1,2\}$ représente l'ensemble de tous les nombres réels non nuls sauf les naturels 1 et 2

Opérations sur les fractions (p.2)

Toute fraction $\frac{a}{b}$ est le quotient de deux nombres réels a et b, a est appelé le **numérateur** et b le **dénominateur** (\neq 0).

•
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 , $b, d \neq 0$ $\frac{1}{3} + \frac{2}{5} = \frac{11}{15}$, $\frac{1}{3} - \frac{2}{5} = -\frac{1}{15}$

•
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
 , $b, d \neq 0$ $\frac{1}{3} \cdot \frac{2}{5} = \frac{2}{15}$

•
$$\frac{a}{b}$$
: $\frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$, $b, c, d \neq 0$ $\frac{1}{3}$: $\frac{2}{5} = \frac{5}{6}$

•
$$\frac{a}{b} = \frac{c}{d}$$
, b , $d \neq 0$ \Rightarrow $ad = bc$ $\frac{1}{3} = \frac{x}{6} \Rightarrow 3x = 6 \Leftrightarrow x = 2$

Produits remarquables (p.2)

•
$$(a+b)^2 = a^2 + 2ab + b^2$$

•
$$(a-b)^2 = a^2 - 2ab + b^2$$

• $a^2 + b^2$ ne se factorise pas

•
$$a^2 - b^2 = (a - b)(a + b)$$

•
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

•
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

•
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

•
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

Puissances à exposants entiers : définitions (p.2)

•
$$a^0 = 1$$

Exemple:
$$10^0 = 2^0 = (-8)^0 = 1$$

•
$$a^1 = a$$

Exemple :
$$12^1 = 12$$

• $a^n = a.a.a.$... a $(n \text{ fois}, n \in \mathbb{N}_0)$

Exemple: $3^4 = 3.3.3.3 = 81$, $\pi^2 = \pi$. π

•
$$a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$$

•
$$a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$$
 Exemple: $3^{-4} = \frac{1}{3^4} = \frac{1}{81}$

$$\bullet \quad 0^n = 0 \quad (n \in \mathbb{N}_0)$$

•
$$0^n = 0$$
 $(n \in \mathbb{N}_0)$ Exemple: $0^3 = 0^{100} = 0$

Puissances à exposants entiers : propriétés (p.3)

•
$$(a.b)^m = a^m. b^m$$

Exemple:
$$(2.3)^3 = 2^3 \cdot 3^3 = 216$$

$$\bullet \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Exemple:
$$\left(\frac{4}{7}\right)^2 = \frac{4^2}{7^2} = \frac{16}{49}$$

•
$$(a^m)^n = a^{m.n}$$

Exemple:
$$(10^2)^3 = 10^6$$

$$\bullet$$
 $a^m \cdot a^n = a^{m+n}$

Exemple:
$$2^3 \cdot 2^2 = 2^5 = 32$$

•
$$\frac{a^m}{a^n} = a^m \cdot a^{-n} = a^{m-n}$$

Exemple:
$$\frac{2^3}{2^4} = 2^{-1} = \frac{1}{2}$$

Opérations arithmétiques élémentaires -> Exercice p.5

Soient $a, b, c \in \mathbb{R}_0^+$, $n \in \mathbb{N}$, $\alpha \in \mathbb{Z}_0$.

- 1. Calculer $10^4 \cdot 10^{-2}$, $(10^3)^{-4}$, $(-5)^0$
- 2. Écrire les expressions suivantes avec des exposants positifs

apressions survantes avec des exposants position
$$a^2 \cdot a^{-4}$$
, $\frac{a^{-5}}{b^{-5}}$, $(0.1)^{-5}$, 5^{-4} , 10^{-6}

Simplifier les expressions suivantes :

$$(a^2b^3c^{-2})^{-1}$$

$$\left(\frac{a \ b \ c}{a^{3}k^{2}a^{3}}\right)$$

$$\sqrt[8]{a^6} \cdot \sqrt[12]{a^5} \cdot \sqrt[6]{a} , \qquad \frac{\sqrt[4]{4a^4}}{\sqrt[3]{2a}}$$
animateur des fractions suivantes :
$$\sqrt{20} - 2\sqrt{10} - 1 \qquad \sqrt{2}$$

$$4. \quad \frac{a^2}{b} \cdot \sqrt[n]{\frac{a}{b}}; \quad b \cdot \sqrt[3]{a^2} .$$

$$5. \quad a \cdot \sqrt[3]{a}; \quad \sqrt[6]{2} \cdot \sqrt[3]{a^2} .$$

$$6. \quad \frac{1}{a}; \quad \frac{\sqrt{5}}{b}; \quad 6^5 .$$

7. Rendre rationnel le dénominateur des fractions suivantes :

$$\frac{\sqrt{20} - 2\sqrt{10} - 1}{\sqrt{5}}, \frac{\sqrt{2}}{2 - 2\sqrt{2}} = 6. \frac{1}{3}; \frac{\sqrt{5}}{2}; 6^5.$$

Simplifier les expressions suivantes :

(a)
$$\frac{2^{n+1}}{(2^n)^{n-1}} : \frac{4^{n+1}}{(2^{n-1})^{n+1}}$$

$$10^{-6}$$
 | 1. 10^2 ; 10^{-12} ; 1.

ions suivantes:
$$\left(\frac{a^2b^3c^{-2}}{a^3b^2c}\right)^{-1} , \qquad \frac{a^{-2\alpha}}{a^{3\alpha}} , \qquad 2^{\alpha} \cdot 2^{1-\alpha}$$

$$2. \qquad \frac{1}{a^2} ; \qquad \frac{b^5}{a^5} ; \qquad 10^5 ; \qquad \frac{1}{5^4} ; \qquad \frac{1}{10^6} .$$

$$3. \qquad \frac{ac^3}{b} ; \qquad \frac{1}{a^{5\alpha}} ; \qquad 2 .$$

4.
$$\frac{a^2}{b} \cdot \sqrt[n]{\frac{a}{b}}; \quad b \cdot \sqrt[3]{a^2}.$$

5.
$$a \cdot \sqrt[3]{a}$$
; $\sqrt[6]{2} \cdot \sqrt[3]{a^2}$

$$\frac{1}{3}$$
; $\frac{\sqrt{5}}{2}$; 6^5 .

7.
$$\frac{10-10\sqrt{2}-\sqrt{5}}{5}$$
; $\frac{-\sqrt{2}-2}{2}$;

(b)
$$\left(\sqrt{a\sqrt[5]{a^8}}\right)^4 = 8$$
. (a) $\frac{1}{4}$; (b) $a^5 \cdot \sqrt[5]{a}$;

14-09-23

Racines niémes d'un nombre réel : définitions (p.3)

La racine n-ième ($n \in \mathbb{N}_0$) d'un nombre réel $a \in \mathbb{R}$ est le réel b dont la n-ième puissance est a:

$$b = \sqrt[n]{a} \Leftrightarrow b^n = a$$

• Si *n* est pair et $a \ge 0$, alors $\sqrt[n]{a}$ existe.

- Exemple : $\sqrt[4]{16} = 2$ puisque $2^4 = 16$
- Si *n* est pair et a < 0, alors $\sqrt[n]{a}$ n'existe pas dans \mathbb{R} . Exemple : $\sqrt{-2} \not\equiv$
- Si *n* est impair et $a \ge 0$, alors $\sqrt[n]{a}$ existe.

- Exemple: $\sqrt[3]{8} = 2$ puisque $2^3 = 8$
- Si *n* est impair et a < 0, alors $\sqrt[n]{a}$ existe et est notée $-\sqrt[n]{-a}$.

Exemple:
$$\sqrt[3]{-8} = -\sqrt[3]{8} = -2$$
 puisque $(-2)^3 = -8$

Racines niémes d'un nombre réel : propriétés (p.3)

 $(a, b \in \mathbb{R}^+ \text{ et } m, n \in \mathbb{N}_0 \setminus \{1\})$:

•
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

Exemple:
$$\sqrt[3]{24} = \sqrt[3]{8}$$
. $\sqrt[3]{3} = 2 \cdot \sqrt[3]{3}$

•
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 $(b \neq 0)$ Exemple: $\sqrt{\frac{3}{2}} = \frac{\sqrt{3}}{\sqrt{2}}$

Exemple:
$$\sqrt{\frac{3}{2}} = \frac{\sqrt{3}}{\sqrt{2}}$$

$$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

Exemple:
$$\sqrt[3]{49} = (\sqrt[3]{7})^2$$

•
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n.m]{a}$$

Exemple:
$$\sqrt[3]{\sqrt{3}} = \sqrt[6]{3}$$

$$^{n}\sqrt{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}$$

Exemple:
$$\sqrt{13} \neq \sqrt{4} + \sqrt{9}$$

Pas de radicaux au dénominateur!!! (p.4)

$$\sqrt{a} \cdot \sqrt{a} = a$$
 , $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$.

Si le dénominateur de la fraction est de la forme $a\sqrt{b}$, on multiplie alors numérateur et dénominateur de la fraction par \sqrt{b} .

Ainsi,
$$\frac{1+\sqrt{8}}{3\sqrt{2}} = \frac{(1+\sqrt{8}).\sqrt{2}}{3\sqrt{2}.\sqrt{2}} = \frac{\sqrt{2}+4}{6}$$
.

Si le dénominateur de la fraction est de la forme $\sqrt{a} + \sqrt{b}$, on multiplie alors numérateur et dénominateur de la fraction par $\sqrt{a} - \sqrt{b}$, qu'on appelle **binôme conjugué** du binôme $\sqrt{a} + \sqrt{b}$.

Ainsi,
$$\frac{1}{\sqrt{2}+\sqrt{5}} = \frac{\sqrt{2}-\sqrt{5}}{(\sqrt{2}+\sqrt{5}).(\sqrt{2}-\sqrt{5})} = \frac{\sqrt{2}-\sqrt{5}}{-3} = -\frac{\sqrt{2}-\sqrt{5}}{3}$$
.

Puissances à exposants rationnels (p.4)

Par définition, nous posons pour $a \in \mathbb{R}^+$ et $m, n \in \mathbb{N}_0$ $(n \neq 1)$:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 et $a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$.

Ainsi,
$$2^{\frac{3}{4}} = \sqrt[4]{2^3}$$
 et $3^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{3^2}}$.

Propriétés $(a, b \in \mathbb{R}^+ \text{ et } p, q \in \mathbb{Q})$:

- $(a.b)^p = a^p. b^p$
- $\bullet (a^p)^q = a^{p.q}$
- $a^p \cdot a^q = a^{p+q}$

Exemple:
$$\frac{x^{\frac{7}{3}} y^{-\frac{3}{2}} \sqrt{y}}{x^2} = \frac{\sqrt[3]{x}}{y}. \quad (\rightarrow \text{Exercices page 5})$$

Opérations arithmétiques élémentaires -> Exercice p.5

Soient $a, b, c \in \mathbb{R}_0^+$, $n \in \mathbb{N}$, $\alpha \in \mathbb{Z}_0$.

- 1. Calculer $10^4 \cdot 10^{-2}$, $(10^3)^{-4}$, $(-5)^0$
- 2. Écrire les expressions suivantes avec des exposants positifs

$$a^2 \cdot a^{-4}$$
 , $\frac{a^{-5}}{b^{-5}}$, $(0.1)^{-5}$, 5^{-4} , 10^{-6}

Simplifier les expressions suivantes :

ions suivantes:
$$\left(\frac{a^2b^3c^{-2}}{a^3b^2c}\right)^{-1} , \qquad \frac{a^{-2\alpha}}{a^{3\alpha}} , \qquad 2^{\alpha} \cdot 2^{1-\alpha}$$
 2.
$$\frac{1}{a^2}; \quad \frac{b^5}{a^5}; \quad 10^5; \quad \frac{1}{5^4}; \quad \frac{1}{10^6} .$$
 3.
$$\frac{ac^3}{b}; \quad \frac{1}{a^{5\alpha}}; \quad 2 .$$

5. Calculer

7. Rendre rationnel le dénominateur des fractions suivantes :

$$\frac{\sqrt[8]{a^6} \cdot \sqrt[12]{a^5} \cdot \sqrt[6]{a}}{\sqrt[3]{a^5}} \cdot \sqrt[6]{a}, \qquad \frac{\sqrt[4]{4a^4}}{\sqrt[3]{2a}}$$
minateur des fractions suivantes:
$$\frac{\sqrt{20} - 2\sqrt{10} - 1}{\sqrt{5}}, \qquad \frac{\sqrt{2}}{2 - 2\sqrt{2}}$$
6. $\frac{1}{3}$; $\frac{\sqrt{5}}{2}$; 6⁵.

Simplifier les expressions suivantes :

(a)
$$\frac{2^{n+1}}{(2^n)^{n-1}} : \frac{4^{n+1}}{(2^{n-1})^{n+1}}$$

(b)
$$\left(\sqrt{a\sqrt[5]{a^8}}\right)^4 = 8$$
. (a) $\frac{1}{4}$; (b) $a^5 \cdot \sqrt[5]{a}$;

7.
$$\frac{10 - 10\sqrt{2} - \sqrt{6}}{5}$$
; $\frac{\sqrt{2} - 2}{2}$

7.
$$\frac{10-10\sqrt{2}-\sqrt{5}}{5}$$
; $\frac{-\sqrt{2}-2}{2}$;

1. 10^2 ; 10^{-12} ; 1.

Puissances à exposants rationnels

Question d'examen:

En supposant que les expressions utilisées ci-dessous soient bien définies, montrer que

a)
$$\sqrt[5]{a^4}$$
 $\sqrt[10]{a^3}$ $\sqrt{a} = a \sqrt[5]{a^3}$

$$b)\frac{3-\sqrt{7}}{3+\sqrt{7}} = 8 - 3\sqrt{7}$$

c)
$$\frac{5^{(x^2)}}{25^x}$$
 : $\frac{(5^{2x})^{(x-1)}}{5^{(x^2)}}$ = 1

Puissances à exposants rationnels : qcm

Question 1(Opérations arithmétiques): En supposant que $a \in \mathbb{R}_0^+$, évaluer l'expression $(\sqrt[3]{a^2})^5$:

- a) $a^7 \sqrt{a}$
- \longrightarrow b) $a^3 \sqrt[3]{a}$
 - c) $a^{\frac{2}{15}}$
 - d) $a^{\frac{3}{10}}$

Binôme conjugué : qcm

Question 5 (Binôme conjugué): En supposant que $a \in \mathbb{R}$, évaluer l'expression $\frac{a-\sqrt{5}}{2+\sqrt{5}}$.

a)
$$\frac{a}{2} - 1$$

$$\rightarrow$$
 b) $(\sqrt{5}-2)a+2\sqrt{5}-5$

c)
$$\frac{a-\sqrt{5}}{9}$$

d)
$$(2-\sqrt{5})a-2\sqrt{5}+5$$

