## Simulação de Sistemas Embarcados

Drone: FCU+FIRMWARE+MAVROS+GAZEBO





## Aula de hoje

- Complexidade de sistemas Ciber-físicos
- FCU: Pixhawk
- Firmware: PX4
- Middleware e pacotes: ROS + MAVROS
- Protocolo de Comunicação: MAVLINK
- Simulador de sistemas físicos: GAZBO





### Das aulas anteriores...



 Vimos que um sistema embarcado exige um controle de tempo real com diversas informações de sensores para atuadores e entre scripts de automação.

#### Mas como implementar isso?

 Tudo isso precisa ser processado de forma DETERMINÍSTICA, em TEMPO REAL e em processadores (controladores) DEDICADOS.

#### **Alguns Desafios**

- Scirpts de automação podem ser previstos para ODDs muito idealizados
- Sistema operacional pode travar
- Firwmare/Configurações/Pacotes podem conter bugs

# Confiabilidade em Complexos





## ODD: Operational Design Domain

"Condições operacionais sob as quais um determinado sistema de automação de direção, ou recurso do mesmo, é especificamente projetado para funcionar, incluindo, mas não limitado a, restrições ambientais, geográficas e de horário do dia e/ou a presença ou ausência de certas características do tráfego, ou da via".

https://www.sae.org/standards/content/j3259/



• Em um projeto complexo como um drone não é muito difícil configurar alguma coisa errada, o que pode levar a acidentes

#### Case Real:

"Em 2019 instalamos um Lidar unidirecional para medir a altitude do drone até 12m para depois trocar para o Barômetro em altitudes maiores. Porém, a configuração do Lidar no firmware falhou. O sensor estava instalado mas, não configurado provocando a perda de referência do drone e queda".





#### PX4 Quadrotor

Open 3D View

Open PID Analysis

1.05 km

15.9 km/h

93.3 km/h

Airframe:

Quadrotor x (4011) PX4 FMU V5 (V500)

Hardware:
Software Version:

v1.9.2 (10690587)

DJI F450 w/ DJI ESCs

OS Version:

NuttX, v7.28.0

Estimator: EKF2

Logging Start **?**: 29-09-2019 11:29

Logging Duration: 0:03:57

Vehicle Life

Flight Time:

Vehicle UUID:

1 hours 24 minutes 44 seconds

Distance:

Max Altitude Difference: 197 m

Average Speed: Max Speed:

Max Speed Horizontal: 60.2 km/h

Max Speed Up: 20.4 km/h Max Speed Down: 91.4 km/h

Max Speed Down:

Max Tilt Angle: 174.4 deg
Max Rotation Speed: 1253.8 deg/s

Average Current:

20.2 A

Max Current:

51.5 A



Casa comum com 1 geladeira,1 chuveiro, algumas lampadas ligados. Aproximadamente 40A





## Exemplos de outros problemas

#### Antena

- Perda de pacotes
- o perda de potência (distância)
- Direção da antena e região de máxima transmissão de potência

#### Câmera

- Espelhos: Criam objetos com velocidade que não existem na vida real
- Superfícies reflexivas: cegam câmera
- Vidros: Obstáculos não detectáveis







## FCU-Flight Unit Control: Pixhawk





### xCU: x Unit Control

Este processador/controlador dedicado a aplicação de sistemas embarcados é o xCU

- (x Control Unit), onde x pode ser:
  - Engine ECU (automóveis)
  - Flying FCU (tudo que voa)
  - Ventilator VCU (ventilador Inspire)





### VCU: Ventilator Unit Control





## FCU: Flight Unit Control

A pixhawk é uma FCU comumente usada em drones. Ela pode rodar o firmware PX4 sobre o Nuttx: sistema operacional de tempo real (RTOS)

Operating Systems

Firmware

Hardware

OS: Nuttx (RTOS)

Firwmare: PX4

FCU: PIXHAWK



## FIrmware: PX4





### Firmware:PX4

- A PX4 é um Firmware de piloto automático open-source amplamente utilizado para drones
  - o Como é organizado?
    - Modularizado (Reactive Manifesto, uORB (publish/subscriber))
    - Módulos independentes
      - Podem ser trocados
      - Evita bugs por substituição de drivers/hardwares





### Firmware:PX4

https://github.com/SkyRa ts/psi3442/tree/master/C urso2023/4a aula





## Middleware e pacotes: ROS + MAVROS





#### **MAVROS**

Rospackge: Interliga ROS e PX4



## Protocolo de Comunicação: MAVLINK





### MAVLINK

#### Protocolo de comunicação leve para UAV.



#### WIFI CONFIG AP RESPONSE

Apps

Middleware

**Drivers** 

[Enum] Possible responses from a WIFI CONFIG AP message

| Value | Field Name                             | Description                                                                             |
|-------|----------------------------------------|-----------------------------------------------------------------------------------------|
| 0     | WIFI_CONFIG_AP_RESPONSE_UNDEFINED      | Undefined response. Likely an indicative of a system that doesn't support this request. |
| 1     | WIFI_CONFIG_AP_RESPONSE_ACCEPTED       | Changes accepted.                                                                       |
| 2     | WIFI_CONFIG_AP_RESPONSE_REJECTED       | Changes rejected.                                                                       |
| 3     | WIFI_CONFIG_AP_RESPONSE_MODE_ERROR     | Invalid Mode.                                                                           |
| 4     | WIFI_CONFIG_AP_RESPONSE_SSID_ERROR     | Invalid SSID.                                                                           |
| 5     | WIFI_CONFIG_AP_RESPONSE_PASSWORD_ERROR | Invalid Password.                                                                       |





## Simulador de sistemas físicos: GAZBO



## SITL: Software in the loop

Emula FCU+SCRITPS+GroundControl+Mundo Físico (Gazebo)

