IoT - Projet Serre connectée

Rapport et documentation

Anthony Coke, Guilain Mbayo, Mehdi Salhi

Contents

Projet	3
Matériel	3
Senseurs	3
Actuateurs	3
Logiciel	3
Architecture	4
Problèmes rencontrés	5

Projet

Ce projet permet de réaliser une serre connectée. Il utilise des composants Arduino pour prendre les mesures et Raspberry pour ingérer et afficher les donnée.

Matériel

Nous utilisons le matériel suivant:

- Arduino MKR Wifi 1010 : exécution du code et connectique wifi
- Arduino MKR IOT Carrier: senseurs et actuateurs
- Raspberry Pi 4b: broker MQTT, base de donnée InfluxDB, interface web de gestion et configuration des appareils

Senseurs

Nous utilisons les senseurs suivants qui permettent de prendre des mesures :

- Arduino MKR IOT Carrier
 - température : HTS221humidité : HTS221lumière : APDS-9960
- humidité du sol : Capacitive Soil Moisture Sensor v1.2
 - connecté à l'Arduino MRK IOT Carrier

Actuateurs

Nous utilisons un actuateur:

• ventilateur: Xilence XPF40.W DC12v 0.05A

Logiciel

Les logiciels suivants sont utilisés :

• InfluxDB 2.71 : base de données

- Telegraf 1.26.3 : ingestion des données au format line protocol depuis le broker MQTT vers la base de donnée InfluxDB
- Mosquitto 2.0.11-1: broker MQTT
- Arduino : code arduino pour récupérer les mesures et communiquer avec le broker MQTT
- NodeJS 16.17.1: serveur web d'administration
 - dépendances :
 - * influxdata/influxdb-client":"^1.33.2"
 - * tailwindcss/forms": "^0.5.3"
 - * body-parser":"^1.20.2"
 - * express":"^4.18.2"
 - * express-requests-logger":"^4.0.0"
 - * mqtt":"^4.3.7"
 - * plotly.js":"^2.24.2"
 - * tailwindcss":"^3.3.2"

Architecture

Les communication entre les clients et le broker s'effectuent de la manière suivante:

• Lorsque un arduino se connecte au réseau, il publie sa configuration initiale sur le topic commander/devices/<device id>/, ou le device id est un identifiant unique basé sur l'adresse MAC de l'appareil.

```
Une configuration peut ressembler à cela: {"deviceUID":"32203593719188","
deviceLocation":"serre_1","measurement interval":3000,"sensors":["
humidity","temperature","light"],"actions":""}
```

- Les arduino s'abonne au topic commander/devices/<device id>/update afin de recevoir les éventuelles modifications de configuration envoyées par le serveur web.
- Le serveur web s'abonne au topic commander/devices/+ afin de recevoir les configurations de tous les client arduino.
- Le serveur web peut publier des modification de configuration pour un arduino. Il publie ces modifications sur le topic commander/devices/<device id>/update.
- Les arduino publie à interval régulier les informations relevées par leurs capteurs sur le topic arduino. Ces informations sont envoyées au format "Line Protocol".
- Le web serveur s'abonne au topic arduino afin de recevoir et traiter les informations relevées par les arduino.

Ci-dessous, un graphique de l'architecture mise en place:

Figure 1: Architecture

Problèmes rencontrés