LERNZIELE DYNAMIK

Begriff	Lernziele
Trägheit und Inertialsystem	Trägheitsprinzip von Galilei formulieren Trägheitsprinzip auf Alltagsbeobachtungen anwenden zwischen Inertialsystemen und Nicht-Inertialsystemen unterscheiden Beispiele für vernünftige Inertialsysteme kennen
Masse	statische Messung der (schweren) Masse mit Balkenwaage dynamische Messung der (trägen) Masse mit Luftkissenbahn grundsätzlichen Unterschied zwischen träger und schwerer Masse verstehen (obwohl äquivalent)
Dichte	Dichte eines homogenen Körpers berechnen einfache Rechnungen mit tabellierten Dichten aus der FoTa Dichte eines heterogenen Körpers aus den Dichten der Bestandteile berechnen
Impulserhaltung	Impulse für eine "vorher/nachher-Situation" algebraisch sauber formulieren und mit Impulserhaltung auswerten Rückstossprinzip erklären und anwenden (vgl. Space-Shuttle)
Aktionsprinzip	Impulsänderung beim Kraftstoss bestimmen Grundgleichung der Mechanik in ihren verschiedenen Anwendungen kennen Gewichtskraft als Beispiel eines Kraftgesetzes Faustregel: 100 g erfahren eine Gewichtskraft von 1 N (auf der Erde)
Hooke'sches Gesetz	Verlängerung einer Feder berechnen Grenzen des Hooke'schen Gesetzes erkennen Federkraftmesser beschreiben
Kräftegleichgewicht	resultierende Kraft sowohl graphisch als auch rechnerisch bestimmen einfache Probleme mit Kräftegleichgewicht lösen
Wechselwirkungsprinzip	Wechselwirkungspaare erkennen, korrekt einzeichnen (greifen an verschiedenen Körpern an) Normalkraft ist nicht die Reaktionskraft zur Gewichtskraft! zwischen inneren und äusseren Kräften unterscheiden erklären, was eine Personenwaage anzeigt
Kräfte am Hang	Hangabtriebskraft und senkrechte Komponente der Gewichtskraft berechnen, einfache Beispiele zum Gleichgewicht am Hang lösen Hangbeschleunigung (reibungsfrei) berechnen
Reibungskräfte	Gleitreibungskraft berechnen (Gleitreibungszahl: FoTa T 170) Haftreibungskraft kann beliebigen Wert bis zu einer oberen Grenze annehmen; Maximum berechnen (Haftreibungszahl: FoTa T 170) kritischen Winkel für Rutschen berechnen maximal mögliche Beschleunigung eines Fahrzeugs berechnen (Zweirad-/Vierradantrieb, mit/ohne Anhänger)
Luftwiderstand	Luftwiderstandskraft berechnen (Widerstandsbeiwert: FoTa T 170) Geschwindigkeitsverlauf beim Fallen in Luft skizzieren Grenzgeschwindigkeit für den vertikalen Fall in Luft berechnen

Kreisbewegung	Kreisbewegung ist nur möglich, wenn eine ins Zentrum gerichtete Kraft vorhanden ist; Zentripetalkraft ist nur ein Name für diese Kraft! einfache Berechnungen mit der Zentripetalbedingung
Zehnerpotenzen und Einheitenvorsätze	sicherer Umgang mit Zehnerpotenzen (auch ohne TR) und Einheitenvorsätzen, Umwandlung von einer Form in die andere
Konstante	Wert
Konstante Dichte von Wasser und Luft	Wert $\rho_{\text{Wasser}} = 1'000 \text{ kg/m}^3; \rho_{\text{Luft}} = 1.3 \text{ kg/m}^3 \text{ (bei 20°C)}$