- 一、任务:请按照所给定的机组热力系统图,采用矩阵法的下述三个基本方程及其相关的热 经济性计算公式,进行机组及发电厂的热力计算:
 - 1) 实际热力系统汽水分布状态通用矩阵方程
 - 2) 矩阵形式的内部功分析方程
 - 3) 工质吸热量分析方程

二、研究对象:

- 1) 锅炉: HG-1900/25.4-YM4 型超临界、一次再热直流锅炉。
- 2) 汽轮机: N600-24.2/566/566 型超临界、三缸四排汽、单轴凝汽式汽轮机。
- 3) 回热系统:系统共有八级不调节抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。一至七级回热加热器(除除氧器外)均装设了疏水冷却器。三台高压加热器均内置蒸汽冷却器。汽轮机的主凝结水由凝结水泵送出,依次流过凝结水精处理装置、轴封加热器、四台低压加热器,进入除氧器。给水由汽动给水泵升压,经三级高压加热器加热,最终进入锅炉。三台高压加热器的疏水逐级自流至除氧器;四台低压加热器的疏水逐级自流至凝汽器热井。

机组原则性热力系统图如下:

三、已知条件:

1、汽轮机参数

(1) 额定功率: Pe=600MW;

- (2) 主蒸汽参数: p₀=24.2MPa, t₀=566°C;
- (3) 过热器出口蒸汽压力 25.4 MPa, 温度 570℃;
- (4) 再热蒸汽参数: 热段: p_{rh}=3.602MPa, t_{rh}=566°C;

冷段: p'rh=4.002MPa, t'rh=301.9°C;

(5)排汽参数: p_c=5kPa, x_c=0.94

2、回热系统参数

(1) 机组各级回热抽汽参数见表 1;

表 1 回热加热系统原始汽水参数

项目	单位	H1	H2	НЗ	H4	Н5	Н6	Н7	Н8
抽汽压力	MPa	5.899	4.002	1.809	0.9405	0.3871	0.1177	0.05757	0.01544
抽汽温度	°C	351.2	301.9	457.0	363.2	253.8	128.2	x=1.0	x=0.98
抽汽管道压损	%	3	3	3	5	5	5	5	5
加热器上端差	°C	-2	-1	-1	-	2	2	2	2
加热器下端差	°C	5.6	5.6	5.6	-	5.6	5.6	5.6	-

- 注: 忽略加热器和抽汽管道散热损失
 - (2)给水泵出口压力: p_{pu} =29.21MPa,给水泵效率: η_{pu} =0.9;
 - (3)除氧器至给水泵高度差: H_{pu} =22m;
 - (4)小汽轮机排汽压力: $p_{cx}=7kPa$, 小汽轮机机械效率: $\eta_{mx}=0.99$, 排汽干度: $x_{cx}=1$;
 - (5)凝结水泵出口压力: p'pu=1.724Mpa;
 - (6)高加水侧压力取给水泵出口压力,低加水侧压力取凝结水泵出口压力;

3、锅炉参数

锅炉效率: η_b=93%。

4、其他数据

- (1)汽轮机高压缸进汽节流损失: δp_1 =3%, 中低压连通管压损 δp_3 =1%;
- (2)轴封加热器压力: p_{sg} =98kPa;
- (3)机组各门杆漏汽、轴封漏汽等小汽水流量及参数见表 2

表 2 各小汽水流量数据

序号	符号	来源点	汇入点	流量份额(×10 ⁻⁴)	
1	A	高压缸门杆	高压缸排汽	3.09	
2	В	高压缸门杆	轴封加热器	0.88	
3	D	高压缸轴封	E/高压缸排汽	128.76	
4	Е	D	中压缸	100.88	
5	Н	高压缸排汽	轴封供汽母管	3.89	
6	L	高压缸轴封	中低压连通管	49.84	
7	M	高压缸轴封	轴封供汽母管	6.19	
8	N	高压缸轴封	轴封加热器	0.62	
9	P	中压缸轴封	轴封供汽母管	5.61	
10	R	中压缸轴封	轴封加热器	0.56	
11	S	轴封供汽母管	低压缸轴封	$\alpha_{\rm H} + \alpha_{\rm M} + \alpha_{\rm P} = 15.69$	
12	Т	低压缸轴封	轴封加热器	6.97	
13	v	中区红批汽	小海松和	通过给水泵能量平衡	
	X	中压缸排汽	小汽轮机	计算	

- (4)补水温度: tma=20°C;
- (5)全厂汽水损失: Di=0.015Db (锅炉蒸发量);
- (6)汽轮机组机械效率: $\eta_{\rm m}$ =0.99, 发电机效率: $\eta_{\rm g}$ =0.99;
- (7)厂用电率: $\varepsilon = 0.045$;
- (8)标准煤低位发热量: qi=29270kJ/kg。

四、计算内容要求:采用矩阵法

- ① 整理出各级加热器的抽汽放热量 q、疏水放热量 γ 、给水焓升 τ 。
- ② 采用绝对量和相对量,分别计算主系统和实际系统的各级抽汽量及抽汽系数、汽轮机输出功、循环吸热量;
- ③ 计算各级抽汽效率,并分析其变化趋势;
- ④ 计算机组的热耗率、循环热效率、汽耗率
- ⑤ 计算全厂发电热效率、发电标准煤耗率及热耗率
- ⑥ 计算全厂供电热效率、供电标准煤耗率及热耗率

- ⑦ 当有纯热量 $\triangle Q_1$ =1000kJ/h 利用于 1 号高加时,计算并分析机组的发电热经济性指标。
- ⑧ 当有带工质热量入系统时(自定,算一级进或出即可)计算并分析机组的发电热经济性指标。