TP4: Illustration de théorèmes du cours avec R

Exercice 1 Soit $\{X_1,...,X_n\}$ un échantillon de loi normale $\mathcal{N}(\mu,\sigma^2)$.

- 1. On suppose dans un premier temps que σ est connu.
 - (a) Calculer l'estimateur du maximum de vraisemblance $\hat{\mu}_n$ de l'espérance μ et l'information de Fisher du modèle.
 - (b) Trouver un intervalle de confiance exact de μ à 0.95.
 - (c) À l'aide de R, simuler 100 fois $\hat{\mu}_{500}$ avec un μ quelconque et $\sigma^2 = 1$. Combien de fois μ est dans votre intervalle de confiance?
- 2. Soit $\hat{\sigma}^2$ l'estimateur du maximum de vraisemblance de σ^2 .
 - (a) Calculer $\hat{\sigma}^2$.
 - (b) On admet que

$$\frac{\sqrt{n}}{\hat{\sigma}}(\hat{\mu}_n - \mu) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1). \tag{1}$$

En déduire un intervalle de confiance asymptotique à 0.95 de $\hat{\mu}_n$ lorsque σ^2 est inconnu.

- (c) À l'aide de R, simuler 100 fois $\hat{\mu}_{500}$ avec un μ et σ quelconques. Combien de $\hat{\mu}_{500}$ sont dans votre intervalle de confiance?
- (d) À l'aide d'un histogramme, confirmer (1).

Exercice 2 Soit $\{X_1, ..., X_n\}$ un échantillon de loi uniforme $\mathcal{U}([0, \theta])$. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta}_{EMV}$ de θ , puis l'estimateur par la méthode des moments $\hat{\theta}_m$ de θ . Comparer à l'aide d'un plot la vitesse de convergence des deux estimateurs. Commenter.