Prova 1

Probabilidade Wyara Vanesa Moura e Silva

Primeiro Semestre 2022

Questão 1

Seja X uma variável aleatória com função de probabilidade de parâmetros $\theta > 0$ dada por

$$\mathbb{P}(\mathbf{X} = k) = \frac{e^{-\theta}\theta^k}{4k!}(1 + \alpha k), \quad k = 0, 1, 2, \dots$$

Se α é constante positiva.

1. Calcular o valor de α .

Solução:

$$\sum_{k=0}^{\infty} \mathbb{P}(\mathbf{X} = k) = 1$$

$$\sum_{k=0}^{\infty} \frac{e^{-\theta}\theta^k}{4k!} + \sum_{k=0}^{\infty} \alpha k \cdot \frac{e^{-\theta}\theta^k}{4k!} = 1$$

$$\frac{1}{4} \sum_{k=0}^{\infty} \frac{e^{-\theta}\theta^k}{k!} + \frac{\alpha}{4} \sum_{k=0}^{\infty} k \cdot \frac{e^{-\theta}\theta^k}{k!} = 1$$

$$\alpha \cdot \sum_{k=1}^{\infty} \cdot \frac{e^{-\theta}\theta^k}{(k-1)!} = 3$$

$$\alpha \cdot e^{-\theta} \cdot \theta \cdot \sum_{k=1}^{\infty} \cdot \frac{\theta^{k-1}}{(k-1)!} = 3$$

$$\alpha \cdot e^{-\theta} \cdot \theta \cdot \left\{ 1 + \frac{\theta}{1!} + \frac{\theta^2}{2!} + \frac{\theta^3}{2!} + \ldots \right\} = 3$$

$$\alpha \cdot e^{-\theta} \cdot \theta \cdot e^{\theta} = 3$$

$$\alpha = \frac{3}{\theta}$$

2. Provar que podemos escrever

$$\mathbb{P}(\mathbf{X} = k) = \frac{1}{4}\mathbb{P}(\mathbf{Y} = k) + \frac{3}{4}\mathbb{P}(\mathbf{T} = k).$$

onde \mathbf{Y} e \mathbf{Z} tem distribuição de Poisson de parâmetros θ e ademais $\mathbf{T} = 1 + \mathbf{Z}$. Pode usar que se \mathbf{W} é Poisson de parâmetro θ , então

$$\mathbb{P}(\mathbf{W} = k) = \frac{e^{-\theta} \theta^k}{k!}, \quad k = 0, 1, 2, \dots$$

Solução:

$$\mathbb{P}(\mathbf{X} = k) = \frac{1}{4} \cdot \frac{e^{-\theta}\theta^k}{k!} + \frac{3}{4} \cdot \frac{k}{\theta} \cdot \frac{e^{-\theta}\theta^k}{k!}$$
$$= \frac{1}{4} \cdot \frac{e^{-\theta}\theta^k}{k!} + \frac{3}{4} \cdot \frac{e^{-\theta}\theta^{k-1}}{(k-1)!}$$

 $\mathbf{Z} \sim \text{Poisson } (\theta).$

$$\mathbb{P}(\mathbf{Z} = k) = \frac{e^{-\theta}\theta^k}{k!}$$

$$\mathbb{P}(\mathbf{T} = k) = \mathbb{P}(\mathbf{Z} + 1 = k) = \mathbb{P}(\mathbf{Z} = k - 1) = \frac{e^{-\theta}\theta^{k-1}}{(k-1)!}$$

$$\mathbb{P}(\mathbf{X} = k) = \frac{1}{4} \cdot \mathbb{P}(\mathbf{Y} = k) = \frac{3}{4} \cdot \mathbb{P}(\mathbf{T} = k)$$

mistura de poisson simples será uma poisson deslocada.

Questão 2

Seja X uma variável aleatória geométrica com parâmetro p.

$$\mathbb{P}(\mathbf{X} = k) = p(1-p)^{k-1}, \quad 0$$

Encontrar

1. Uma fórmula para $\mathbb{P}(\mathbf{X}=k|\mathbf{X}>a)$, com $k\in\mathbb{N},\ a\in\mathbb{R}$ e a>0. Solução:

$$\sum_{k=0}^{\infty} \mathbb{P}(\mathbf{X} = k) = \sum_{k=0}^{\infty} p(1-p)^{k-1} = 1$$

$$\sum_{k=0}^{\infty} (1-p)^{k-1} = \frac{1}{p}$$

$$1 + (1-p) + (1-p)^2 + (1-p)^3 + \dots = \frac{1}{p}$$

$$\frac{1}{1 - (1-p)} = \frac{1}{p}$$

$$\mathbb{P}(\mathbf{X} = k | \mathbf{X} > a) = \frac{\mathbb{P}(\mathbf{X} = k; \mathbf{X} > a)}{\mathbb{P}(\mathbf{X} > a)} = \begin{cases} 0, & \text{se } k < a \\ \frac{\mathbb{P}(\mathbf{X} = k)}{\mathbb{P}(\mathbf{X} > a)}, & \text{se } k > a \end{cases}$$

assim,

$$\mathbb{P}(\mathbf{X} > a) = \sum_{k=\lfloor a \rfloor + 1} \mathbb{P}(\mathbf{X} = k)
= \sum_{k=\lfloor a \rfloor + 1} p(1-p)^{k-1}
= p \left\{ \left[(1-p)^{\lfloor a \rfloor} + (1-p)^{\lfloor a \rfloor + 1} + (1-p)^{\lfloor a \rfloor + 2} + \ldots \right] \right\}$$

$$= p(1-p)^{\lfloor a \rfloor} \left[(1-p)^{\lfloor a \rfloor} + (1-p) + (1-p)^2 + \ldots \right]$$

$$= p(1-p)^{\lfloor a \rfloor} \cdot \frac{1}{p}$$

$$= (1-p)^{\lfloor a \rfloor}$$

portanto,

$$\mathbb{P}(\mathbf{X} = k | \mathbf{X} > a) = \begin{cases} 0, & \text{se } k < a \\ \frac{p(1-p)^{k-1}}{(1-p)^{\lfloor a \rfloor}}, & \text{se } k > a \end{cases}$$

2. O valor de $\mathbb{P}(\mathbf{X}=10|\mathbf{X}>2\pi)$, para p=1/2. Solução:

$$p = 1, a = 2\pi e k = 10$$

$$\mathbb{P}(\mathbf{X} = 10 | \mathbf{X} > 2\pi) = \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)^{10-1-6} = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

Questão 3

Seja X variável aleatória exponencial de parâmetro $\theta > 0$ e m uma constante positiva, então

$$f_X(x) = \theta e^{-\theta x}, \quad x > 0.$$

Definimos

$$Z := \min\{X, m\} = X1(X \le m) + m1(X > m), m > 0$$

Onde 1(.) é a função indicadora.

1. Encontrar a função de distribuição de ${\bf Z},$ é uma mistura? Solução:

$$\mathbf{Z} = \begin{cases} \mathbf{X}, & \text{se } \mathbf{X} \leq m \\ m, & \text{se } \mathbf{X} > m \end{cases}$$

$$\mathbb{P}(\mathbf{Z} = m) = \mathbb{P}(\mathbf{X} > m) = e^{-\theta m}$$

$$F_{\mathbf{Z}}(z) = \mathbb{P}(\min{\{\mathbf{X}; m\} \leq z\}}$$

$$= 1 - \mathbb{P}(\min{\{\mathbf{X}; m\} > z\}} = 1 - [\mathbb{P}(\mathbf{X} > z, m > z)]$$

 $\mathbb{P}(\mathbf{Y} = m) = 1$: variável degenerada (constante), \mathbf{X} e \mathbf{Y} são independentes.

$$= 1 - [\mathbb{P}(\mathbf{X} > z, \mathbf{Y} > z)] \qquad = 1 - [\mathbb{P}(\mathbf{X} > z) \cdot \mathbb{P}(\mathbf{Y} > z)]$$

$$F_{\mathbf{Z}}(z) = 1 - [\mathbb{P}(\mathbf{X} > z) \cdot \mathbb{P}(\mathbf{Y} > z)]$$

$$\mathbb{P}(\mathbf{Y} > z) = \mathbb{P}(m > z) = \begin{cases} 1 & \text{se } m > z \\ 0 & \text{se } m \le z \end{cases}$$

Assim,

$$F_{\mathbf{Z}}(z) = 1 - e^{-\theta z} \cdot \mathbb{1}(z < m)$$

sim, é uma mistura.

2. Se for uma mistura, indicar as componentes da mistura. Fazer um desenho da função de distribuição de ${\bf Z}$.

Solução:

Questão 4

Dada a variável aleatória \mathbf{X} e a constante a > 0, com densidade

$$f_{\mathbf{X}}(x) = \begin{cases} a/2, & \text{se } -1 < x \le 0 \\ \frac{a}{2}e^{-x}, & \text{se } x > 0 \end{cases}$$

1. Encontrar o valor da constante a. Solução:

$$\frac{a}{2} + \int_0^\infty \frac{a}{2} e^{-x} dx = 1$$

$$\frac{a}{2} + \frac{a}{2} \int_0^\infty e^{-x} dx = 1$$

$$a = 1$$

2. Encontrar a função de distribuição e função de densidade da variável aleatória $\mathbf{Y} = \mathbf{X}^2$. Solução:

$$F_{\mathbf{Y}}(y) = F_{\mathbf{X}}(\sqrt{y}) - F_{\mathbf{X}}(\sqrt{-y}); \quad y > 0.$$

$$f_{\mathbf{Y}}(y) = \frac{1}{2\sqrt{y}} \left[f_{\mathbf{Y}}(\sqrt{y}) + f_{\mathbf{Y}}(\sqrt{-y}) \right]; \qquad y > 0.$$

$$0 < y < 1;$$
 $f_{\mathbf{Y}}(y) = \frac{1}{2\sqrt{y}} \cdot \left[\frac{1}{2}e^{-\sqrt{y}} + \frac{1}{2}\right]$

$$y \ge 1;$$
 $f_{\mathbf{Y}}(y) = \frac{1}{2\sqrt{y}} \cdot \frac{1}{2}e^{-\sqrt{y}} + 0$