Nome, Cognime, Numero di Matricola:

- 1. Non sono ammessi appunti, libri di testo, calcolatrici né l'uso del computer (al di fuori di exam.net)
- 2. Spiegare il procedimento ed i calcoli eseguiti, e giustificare ogni risposta. La valutazione terrà conto della presentazione: leggibilità, grammatica, sintassi, ordine, chiarezza, capacità di sintesi.
- 3. La **coerenza**, in matematica, conta più della correttezza: una risposta giusta con giustificazione sbagliata viene valutata ≤ 0 (< 0 se la risposta è incoerente con quanto asserito precedentemente).
 - 4. Per gli esercizi da 1 a 5, riportare la risposta sintetica nella colonna centrale della tabella sottostante.
 - 5. Il tempo a disposizione è due ore e mezzo.

Per gli esami on-line: assicurarsi di scannerizzare esclusivamente la bella copia, in formato verticale.

Esercizio	Risposta sintetica	Valutazione	
1.a		2	1
1.b		3	
1.c		1	78
1.d		2	
2.a		3	1
2.b		3	79
2.c		3	
3.a		4	
3.b		i	7 9
3.c		2	\
3.d		2	J
4.a		3	
4.6		3	78'
4.c		2	

Esercizio 1. Si consideri il gruppo simmetrico S_6 .

- a) Determinare le strutture cicliche degli elementi di ordine due e tre.
- b) Determinare le cardinalità delle classi di coniugio degli elementi di ordine due.
- c) Determinare, se esistono, due sottogruppi H_1, H_2 distinti di S_6 isomorfi al gruppo di Klein V. È possibile scegliere H_1, H_2 in modo tale che $H_1 \cap H_2 = \{Id\}$?.
- **d)** Determinare, se esistono, sottogruppi K_1, K_2 di S_6 isomorfi a $\mathbb{Z}_9, \mathbb{Z}_3 \times \mathbb{Z}_3$, rispettivamente.

e) de 7= Ca--7k 1 me scutture f. ZE So come poro Letto de cicle fisguh; rimlter less.in (las., elle) = 2 offer 3. Si hour confindente le le 219, 2²1², 2³ e 3², 31³ b) Se 7 e d typ 214, e ume the spositione e quouf bliens treplene sue elemt Su set Lupre $|C_2| = |6| = 15$ Cozer de top 2212 ellen dohlum Scepten du elemt su bei C pi due la gresto modo contromo il delle punterni cercete (12)(34) = (34)(12)

16\ (1\

Dureque (Cz = (2)(2) = 15-3=45 Se uper 20 de tip 23 si procedo ceme rel coro 2 une la bhium blider ((12)(34)(56) = (12)(56)(361=efc --) $|C_2| = {\binom{6}{2}} {\binom{6}{4}} = 15.6 = 15$ c) Possions prendere H, = d ld, (12), (34), (12) (34) } W2 - 2 (d, (13), (24), (13)(24) } d) non e' possible ælento tradue 3 in 26, pende il M.C. M & Sottoriusien de d 1,2,3,4,5,64 e poi 9. $<(123),(456)>= Z_3 \times Z_3$

3

Esercizio 2. Sia
$$G=GL(2,\mathbb{R})$$
 e $H=\left\{\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\in G \mid ac \neq 0 \right\}$. Provare che:

- a) H è un sottogruppo non normale di G.
- **b)** Sia $= \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R} \right\}$. Dimostrare che $N \cong (\mathbb{R}, +)$.
- c) Dimostrare che $H/N \cong \mathbb{R}^* \times \mathbb{R}^*$, ove \mathbb{R}^* è il gruppo moltiplicativo dei numeri reali non nulli

cle
$$AB^{\prime}EH$$
. So $A=\begin{pmatrix} eb \\ oc \end{pmatrix}$
 $B=\begin{pmatrix} AB^{\prime}EH \\ ob \end{pmatrix}$
 $B=\begin{pmatrix} AB^{\prime}EH \\ ob \end{pmatrix}$
 $AB^{\prime}=\begin{pmatrix} AB^{\prime}EH \\ ob \end{pmatrix}$
 AB

b) Cuera devien (: N-> R)

(15) = b; chiramente (e)

bivies ca j no lite 4

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 - 5x_3 \\ 2x_2 - x_4 \\ 2x_3 \\ x_4 \end{pmatrix}.$$

- a) Determinare la matrice B di f rispetto a $\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \right\}$ presa come base di partenza e di arrivo in \mathbb{R}^4 .
- b) Determinare gli autovalori di B.
- c) Discutere la diagonalizzabilità di L_B .
- d) Determinare, se possibile, basi $\mathcal{B}_1, \mathcal{B}_2$ di \mathbb{R}^4 rispetto alle quali la matrice di f è diagonale.

e) Le metrice d' f vigetto de la bose s'hardon
$$\mathcal{E}$$

i $A = \begin{pmatrix} 1 & 2 & -5 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 2 & 0 \end{pmatrix}$

Cen Me muto d' har e $\mathbb{N} = \mathcal{E}(\mathsf{Idp}^q)\mathcal{E}$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Cerche d' $B = \mathbb{N}'AD = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

(a) $A = \mathbb{N}'AD = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

(b) $A = \mathbb{N}'AD = \mathbb{N}'AD = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 &$

$$= \begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ -3 & -4 & 1 & 1 \end{pmatrix}$$

e) Ac B sew simili, put hem ple stemi cento volori: poide Ac trimpolore superie, phi entovelori sono pt de vent Loposli 1, 2; c) Si he Ma(1) = Ma(2) = 2,

ene eng(1) = 1 , put. La c Lp mu

Sono Siop colv Ha Wi.

S) Se prentem com box ℓ ℓ ℓ quella fruita delle calo une ℓ ℓ ℓ ℓ quella chiono de ℓ ℓ ℓ ℓ = ℓ ℓ .

Esercizio 4. Nello spazio vettoriale V dei polinomi a coefficienti reali di grado minore o uguale a 3, si considerino i sottospazi

$$U = \{p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \mid a_1 - a_3 = a_2 = a_0 = 0\}, \quad W = \langle t^2 + t, t^3 + 1 \rangle.$$

- a) Determinare basi per U, W.
- **b)** Determinare una base per U + W e specificare se $U + W = U \oplus W$.
- c) Completare la base di U + W trovata ad una base di V.

Esercizio 5.

- 1. Dare la definizione di indipendenza lineare per un insieme finito $\{t_1, \ldots, t_w\}$ di vettori in uno spazio vettoriale R su un campo F.
- 2. Sia V uno spazio vettoriale di dimensione finita su un campo K e sia $f \in End_K(V)$. Dimostrare che autovettori per f relativi a autovalori distinti sono linearmente indipendenti.
- 3. Dimostrare che non esiste un operatore lineare su \mathbb{R}^3 per cui (1,1,1,1), (2,-1,6,0) siano autovettori di autovalore 3 e (3,0,7,1) siano autovettore di autovalore -2.

12. So redeno i tosti censististi.

3. Se mi toll geretore f enististe,

posto V1 = (1,1,1,1, V2 = (2,4,6,0))

V3 (3,0,7,1) j del punto 2

V1+V2 e V3 dovrettes enere

Sintormete en Herder. une V1+2=V3