10-701: Introduction to Machine Learning

Lecture 1 – Problem Formulation & Notation

Hoda Heidari

8/25/2025

What is Machine Learning?

Machine Learning (A long long time ago...)

Machine Learning (A short time ago...)

Machine
Learning
(Now – literally
yesterday)

Create an infographic illustrating the most promising applications of machine learning today.

Image created

Source: https://chat.openai.com/

Machine Learning – A Brief Timeline

- Early Foundations (1940s–1960s)
 - 1957: Frank Rosenblatt develops the *perceptron*, an early neural network for classification.
- Symbolic AI & the First AI Winter (1970s–1980s)
 - Limitations of perceptrons (Minsky & Papert, 1969) and lack of computing power lead to skepticism and reduced funding
- Statistical & Algorithmic Advances (1980s–1990s)
 - 1986: Rumelhart, Hinton & Williams popularize backpropagation, enabling multi-layer neural networks to learn.
 - 1980s–90s: Emergence of support vector machines (SVMs), decision trees, boosting (AdaBoost), and Bayesian methods.
- The Rise of Data & Kernel Methods (1990s–2000s)
 - · Explosion of digital data + faster computing power.
 - · Kernel methods, ensemble methods, RL
- The Deep Learning Revolution (2010s)
 - 2012: AlexNet (Krizhevsky, Sutskever, Hinton) wins ImageNet competition using GPUs + deep CNNs, igniting the deep learning boom.
 - Reinforcement learning breakthroughs (e.g., DeepMind's AlphaGo in 2016).
- Foundation Models & Generative AI (2020s-present)
 - Rise of transformers (Vaswani et al., 2017) revolutionizes NLP (BERT, GPT).
 - Emergence of foundation models trained on massive datasets for general-purpose use.
 - · Policy, ethics, and responsible AI practices gain prominence due to societal impacts.

What is
Machine
Learning
10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks

- Unsupervised Learning
- Ensemble Methods
- Deep Learning & Generative Al
- Learning Theory
- Reinforcement Learning
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

What is Machine Learning?

Source: https://en.wikipedia.org/wiki/Panzanella

Artificial intelligence

Data science

- Artificial intelligence: Creating machines that can mimic human behavior/cognition
- Data science

- Artificial intelligence: Creating machines that can mimic human behavior/cognition
- Data science: Extracting knowledge/insights from noisy, unstructured data

Source: https://www.sciencedirect.com/topics/physics-and-astronomy/artificial-intelligence

- Artificial intelligence: Creating machines that can mimic human behavior/cognition
- Data science: Extracting knowledge/insights from noisy, unstructured data
- Neutral?

Defining a
Machine
Learning
Problem
(Mitchell, 97)

- A computer program **learns** if its *performance*, *P*, at some *task*, *T*, improves with *experience*, *E*.
- Three components
 - Task, T
 - Performance metric, P
 - Experience, E

Defining a Machine Learning Problem: Example

- Learning to approve loans/lines of credit
- Three components
 - Task, T
 - Performance metric, P
 - Experience, E

Problem Formulation

 Often, the same task can be formulated in more than one way.

Example: Loan applications

- creditworthiness/score (regression)
- probability of default (density estimation)
- loan decision (classification)

What is the structure of our output prediction?

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification

real Regression ordering Ranking

multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete & cont. (e.g. mixed graphical models)

Class Activity

- 1. Select a **task**, T
- 2. Identify **performance measure**, P
- 3. Identify experience, E
- 4. Report ideas back to rest of class

Example Tasks

- Identify objects in an image
- Translate from one human language to another
- Recognize speech
- Assess risk (e.g. in loan application)
- Make decisions (e.g. in loan application)
- Assess potential (e.g. in admission decisions)
- Categorize a complex situation (e.g. medical diagnosis)
- Predict outcome (e.g. medical prognosis, stock prices, inflation, temperature)
- Predict events (default on loans, quitting school, war)

	task, T	performance, P	experience, E
Your Well-			
posed ML Problems			

- Artificial intelligence: Creating machines that can mimic human behavior/cognition
- Data science: Extracting knowledge/insights from noisy, unstructured data
- Neutral

Big Data: A Report on Algorithmic Systems,
Opportunity, and Civil Rights

Executive Office of the President
May 2016

- Artificial intelligence: Creating machines that can mimic human behavior/cognition
- Data science: Extracting knowledge/insights from noisy, unstructured data
- Neutral

OPPORTUNITIES AND CHALLENGES IN BIG DATA

The Assumption: Big Data is Objective

It is often assumed that big data techniques are unbiased because of the scale of the data and because the techniques are implemented through algorithmic systems. However, it is a mistake to assume they are objective simply because they are data-driven.¹³

The challenges of promoting fairness and overcoming the discriminatory effects of data can be grouped into the following two categories:

- 1) Challenges relating to data used as inputs to an algorithm; and
- 2) Challenges related to the inner workings of the algorithm itself.

Learning to diagnose heart disease
 as a (supervised) binary classification task

	features				labels
		Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
data points	\bigcap	Yes	Low	Normal	No
		No	Medium	Normal	No
	/ \	No	Low	Abnormal	Yes
		Yes	Medium	Normal	Yes
O		Yes	High	Abnormal	Yes

Learning to diagnose heart disease
 as a (<u>supervised</u>) binary classification task

	features			labels	
	1	Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
data points		Yes	Low	Normal	No
		No	Medium	Normal	No
	<i>'</i>	No	Low	Abnormal	Yes
		Yes	Medium	Normal	Yes
0		Yes	High	Abnormal	Yes

Learning to diagnose heart disease
 as a (supervised) binary classification task

	features				labels
		Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
S		Yes	Low	Normal	No
data points λ		No	Medium	Normal	No
$g \prec$	' 1	No	Low	Abnormal	Yes
lata		Yes	Medium	Normal	Yes
0		Yes	High	Abnormal	Yes

Learning to diagnose heart disease
 as a (supervised) <u>classification</u> task

Learning to diagnose heart disease

as a (supervised) regression task

	features			targets	
		Family History	Resting Blood Pressure	Cholesterol	Medical Costs
data points		Yes	Low	Normal	\$0
	No	Medium	Normal	\$20	
	No	Low	Abnormal	\$30	
		Yes	Medium	Normal	\$100
0		Yes	High	Abnormal	\$5000

Our first Machine Learning Classifier

 A classifier is a function that takes feature values as input and outputs a label

ماماما

 Majority vote classifier: always predict the most common label in the dataset

features	labels
Family Resting Blood Cho History Pressure	lesterol Heart Disease?
Yes Low Nor	mal No
No Medium Nor	mal No
No Medium Norm No Low Abn Yes Medium Norm	ormal Yes
Yes Medium Nor	mal Yes
Yes High Abn	ormal Yes

Is this a "good" Classifier?

- A classifier is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the dataset

	features			labels	
		Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
S		Yes	Low	Normal	No
data points	No	Medium	Normal	No	
	No	Low	Abnormal	Yes	
	Yes	Medium	Normal	Yes	
0		Yes	High	Abnormal	Yes

Training vs. Testing

- A classifier is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the training dataset (Yes)

set		Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
training dataset 人		Yes	Low	Normal	No
bg ≺	,	No	Medium	Normal	No
nin		No	Low	Abnormal	Yes
ïrai		Yes	Medium	Normal	Yes
-		Yes	High	Abnormal	Yes

Training VS. **Testing**

- A classifier is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the **training** dataset (Yes)
- A test dataset is used to evaluate a classifier's predictions

taset	Fam Hist
dată 	No
st	No
te (Yes

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
No	Low	Normal	No	Yes
No	High	Abnormal	Yes	Yes
Yes	Medium	Abnormal	Yes	Yes

• The **error rate** is the proportion of data points where the prediction is wrong

Training vs. Testing

- A classifier is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the training dataset (Yes)
- A test dataset is used to evaluate a classifier's predictions

aset		Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
data	No	Low	Normal	No	Yes	
test (No	High	Abnormal	Yes	Yes	
te		Yes	Medium	Abnormal	Yes	Yes

• The **test error rate** is the proportion of data points in the test dataset where the prediction is wrong (1/3)

A Typical (Supervised) Machine Learning Routine

• Step 1 – training

Input: a labelled training dataset

Output: a classifier

• Step 2 – testing

Inputs: a classifier, a test dataset

Output: predictions for each test data point

• Step 3 – evaluation

- Inputs: predictions from step 2, test dataset labels
- Output: some measure of how good the predictions are;
 usually (but not always) error rate

Our first Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the training dataset

• This classifier completely ignores the features...

Our first Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the training dataset

ts	
oin	
ď.	\prec
ata	
Ö	

laneis	
	L
Heart Disease?	Predictions
No	Yes
No	Yes
Yes	Yes
Yes	Yes
Yes	Yes

lahels

• The training error rate is 2/5

Our second Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Our second Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
Yes	Low	Normal	No	No
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	Yes
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

• The training error rate is 0!

Is the memorizer learning?

- A classifier is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
Yes	Low	Normal	No	No
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	Yes
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

• The training error rate is 0!

Notation

- Feature space, $\mathcal X$
- ullet Label space, ${\mathcal Y}$
- (Unknown) Target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$
- Training dataset: $\mathcal{D} = \{ \langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$
- Data point: $\langle x^{(i)}, y^{(i)} \rangle = \langle x_1^{(i)}, x_2^{(i)}, ..., x_D^{(i)}, y = c^*(x) \rangle$
- Classifier, $h: \mathcal{X} \to \mathcal{Y}$
- ullet Goal: find a classifier, h, that best approximates c^*

Notation

- Loss function, $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$ are
 - compared to the true labels, $y = c^*(x)$
- Common choices
 - Binary or 0-1 loss (for classification):

$$\ell(y, \widehat{y}) = \mathbf{1}[y \neq \widehat{y}]$$

Squared loss (for regression):

$$\ell(y, \widehat{y}) = (y - \widehat{y})^2$$

• Error rate:

$$Err(h,D) = \frac{1}{N} \sum_{i=1}^{N} \ell(y^{(i)}, \widehat{y}^{(i)})$$

Notation - Practice

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?	\hat{y} Prediction
Yes	Low	Normal	No	Yes
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	No
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

Our second Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote
- The memorizer (typically) does not **generalize** well, i.e., it does not perform well on unseen data points
- In some sense, good generalization, i.e., the ability to make accurate predictions given a small training dataset, is the whole point of machine learning!

Learning Goals

- You should be able to
- Formulate a well-posed learning problem for a realworld task by identifying the task, performance measure, and training experience
- 2. Describe the supervised learning paradigm in terms of the type of data needed, the form of prediction, and the structure of the output prediction
- 3. Explain the difference between memorization and generalization

https://www.cs.cmu.edu/~10701-f25/

This whole website is **required** reading.

Logistics: Course Syllabus