Polynomial Reduction — Solving Homogeneous Equation — Example — 1

Example 1: Solve the following recurrence equation using the polynomial reduction method:

$$t_n - 3t_{n-1} + 2t_{n-2} = 0 \ for \ n > 0$$
 $t_0 = 0$
 $t_1 = 1$

Solution:

Let $t_n = r^n$ be a solution of this second – order recurrence equation.

Then we have
$$: r^n - 3r^{n-1} + 2r^{n-2} = 0$$

If so, let us divide the entire equation by r^{n-2} seeing we have t_{n-2} .

$$\Rightarrow \frac{r^n}{r^{n-2}} - 3 \times \frac{r^{n-1}}{r^{n-2}} + 2 \times \frac{r^{n-2}}{r^{n-2}} = 0$$

$$\Rightarrow r^{n-(n-2)} - 3 \times r^{n-1-(n-2)} + 2 \times r^{n-2-(r-2)} = 0$$

$$\Rightarrow r^2 - 3 \times r^1 + 2 \times r^0 = 0$$

$$\Rightarrow r^2 - 3r + 2 = 0$$

By middle term factor we can get the roots:

$$\Rightarrow r^2 - 2r - r + 2 = 0$$

$$\Rightarrow r(r-2)-1(r-2)=0$$

$$\Rightarrow$$
 $(r-2)(r-1)=0$

$$i.e., r-2=0 \Longrightarrow r=2 \ and \ r-1=0 \Longrightarrow r=1$$
.

Hence r is 2 and 1.

Therefore, the roots of this characteristic equation are 2 and 1.

Since, the roots are distinct, hence Case 1 of Theorem is applicable. Therefore, the general solution can be given as follows:

$$t_n = c_1 2^n + c_2 1^n$$

One can verify the correctness of this solution by substituting these 2^n or 1^n in the original equation.

Let us substitute 2^n in the original to get the following equations:

$$r^n - 3r^{n-1} + 2r^{n-2} = 0,$$

Substituting 2^n on the above equation, we get:

$$\Rightarrow 2^n - 3 \times 2^{n-1} + 2 \times 2^{n-2}$$

$$\Rightarrow 2^n - 3 \times 2^{n-1} + 2^{n-2+1}$$

$$\Rightarrow 2^n - 3 \times 2^{n-1} + 2^{n-1}$$

$$\Rightarrow 2^n + 2^{n-1} \times (-3+1)$$

$$\Rightarrow 2^n + 2^{n-1} \times (-2)$$

or,
$$2^n - 2 \times 2^{n-1}$$

or,
$$2^n - 2^{n-1+1}$$

or,
$$2^n - 2^n$$

or, 0

Similarly, one can also verify by substituting $\mathbf{1}^n$ in the original equation and check that is a correct solution:

$$r^n - 3r^{n-1} + 2r^{n-2} = 0,$$

Substituting 1^n on the above equation, we get:

$$\Rightarrow 1^{n} - 3 \times 1^{n-1} + 2 \times 1^{n-2} = 0$$

 $Taking\ Left-Hand-Side:$

 \Rightarrow 1 - 3 \times 1 + 2 \times 1 , as anything power of 1 results 1 only.

$$\Rightarrow$$
 1 - 3 + 2

$$\Rightarrow$$
 3 - 3 = 0

In this original solution $t_n = c_1 2^n + c_1 1^n$, only the values of the constant c_1 and c_2 are unknown.

For determining these values , substitute n=0 and n=1 in the general equation $t_n=c_12^n+c_21^n$ to get the following equations:

$$t_0 = c_1 2^0 + c_2 1^0 = c_1 + c_2$$

 $\Rightarrow c_1 + c_2 = 0$

and,

$$t_1 = c_1 2^1 + c_1 1^1 = 2c_1 + c_2$$
,
 $\Rightarrow 2c_1 + c_2 = 1$

The initial values t_0 and t_1 are already given in the problem as initial conditions. The obtained equations are as follows:

$$\therefore c_1 + c_2 = 0$$

$$2c_1 + c_2 = 1$$

$$(-)$$
 $(-)$ $(-)$

$$-c_1+0 = -1$$

 $-c_1 = -1$ or $c_1 = 1$ and replacing $c_1 = 1$ in equation $(c_1 + c_2 = 0)$ we get:

$$1+c_2=0 \Rightarrow c_2=-1.$$

Hence $c_1 = 1$ and $c_2 = -1$.

Substituting these values in the general equation, one gets the following:

$$t_n = c_1 2^n + c_2 1^n$$

 $t_n = 1 \times 2^n + (-1) \times 1^n$
 $= 2^n - 1^n$

The solution $2^n - 1^n$ is the solution of the recurrence equation with respect to the initial condition.
