Predictive Analytics, Classification, and Decision Trees

Session Outline

- Introduction to predictive analytics
- Introduction to classification
- Decision Tree Classifier
- Hands-on Lab: Building a decision tree classifier using R

Session Outline

- Introduction to predictive analytics
- Introduction to classification
- Decision Tree Classifier
- Hands-on Lab: Building a decision tree classifier using R

Family and Personal Life

- Location: Microsoft and Nokia predict future location based on cellular phone and location data.
- Friendship and connection: Facebook and LinkedIn
- Love:
 - Match.com: Predict potential matches
 - OkCupid: Which message content is most likely to elicit a response
- Pregnancy: Target predicts customer pregnancy
- Divorce and infidelity: University and clinical researchers can predict this as well!

Direct Marketing

- Cox Communication: Tripled direct mail responses by predicting propensity to buy
- Harrah's Las Vegas: The casino predicts how much a customer will spend over the long term
- Target: Increased revenue 15-30 percent with predictive models
- PREMIER Bankcard: Reduced mailing cost by \$12 million

Telcos, Retail, and More

- Fedex: predicts defection to a competitor with 65-90% accuracy
- Telcos: Optus (Australia), Sprint,
 Telenor(Norway), 2degrees (New Zealand)
- Amazon: 35% sales come from product recommendation

Even In Law Enforcement....

Quick Review

- Supervised Learning
- Unsupervised Learning

Unsupervised Learning

- Unsupervised learning:
 - Target values unknown
 - Training data unlabeled
 - Goal: Discover information hidden in the data
 - May precede supervised learning

Supervised Learning

- Supervised learning:
 - Target values known
 - Training data labeled with target values
 - Goal: Find a way to map attributes to target value
 - Classification & Regression

Session Outline

- Introduction to predictive analytics
- Introduction to classification
- Decision Tree Classifier
- Hands-on Lab: Building a decision tree classifier using R

Decision Tree Application

71

No

datascmencedojo

unleash the data scientist in you

The Classification Task

- Given a collection of records (training set)
 - Two attribute types: predictors and class
 - Find a model to map predictor set to class
 - Class is:
 - Categorical
 - Nominal (almost always)

The Classification Task

- Goal: Assign new records a correct class
 - Training set used to create model
 - **Test set** used to check
 - Predict test set classes to assess correctness
 - Split data into training and test sets
 - **70/30, 60/40, 50/50**

Examples of Classification Tasks

- Marketing: Customer groups to target
- Online: Bot detection in web traffic
- Medical: Predicting tumor cells as benign or malignant
- Finance: Credit card fraud detection
- Document Classification: Categorizing news stories
- Security/Surveillance: Face and fingerprint recognition

Session Outline

- Introduction to predictive analytics
- Introduction to classification
- Decision Tree Learning
- Hands-on Lab: Building a decision tree classifier using R

A Different Decision Tree

					Splitting Attributes
Pid	Sex	Age	Pclass	Survived	
2	Female	38	1	Yes	
3	Female	26	3	Yes	Sex
5	Male	35	3	No	Female Male
7	Male	54	1	No	NEC.
13	Male	20	3	No	YES Pclass
14	Male	39	3	No	1 2, 3
21	Male	35	2	No	Age
24	Male	28	1	Yes	< 29 ≥29
34	Male	66	1	No	YES
54	Female	29	2	Yes	

A Different Decision Tree

Pid	Sex	Age	Pclass	Survived
2	Female	38	1	Yes
3	Female	26	3	Yes
5	Male	35	3	No
7	Male	54	1	No
13	Male	20	3	No
14	Male	39	3	No
21	Male	35	2	No
24	Male	28	1	Yes
34	Male	66	1	No
54	Female	29	2	Yes

There could be more than one tree that fits the same data!

Decision Tree Application

36

71

No

No

Start from the root of tree.

Test Data

Sex	Age	Pclass	Survived
Male	32	2	?

Decision Tree Application

71

No

datascmencedojo

unleash the data scientist in you

How Do We Get A Tree?

- Exponentially many decision trees are possible
- Finding the optimal tree is infeasible
- Greedy methods that find sub-optimal solutions do exist

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - When do we stop?

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test criterion?
 - How to determine the best split?
 - When do we stop?

How to Specify Test Condition?

- Attribute types
 - Nominal
 - Ordinal
 - Continuous
- Order of split
 - 2-way split
 - Multi-way split

Splitting: Nominal Attributes

Multi-way split: As many partitions as distinct values.

Binary split: Divide values into two subsets.
 Need to find optimal partitioning.

Splitting: Ordinal Attributes

Multi-way split: As many partitions as distinct values.

 Binary split: Divides values into two subsets. Need to find optimal partitioning.

What about this split?

Splitting: Continuous Attributes

- Discretize: transform to ordinal categorical attribute
 - Static "bucket" once at the beginning
 - Dynamic "bucket" at each node
 - Equal interval bucketing
 - Equal frequency bucketing (percentiles)
 - Clustering
 - Sweep Consider all possible splits
 - Can be more computationally intensive

Splitting on Continuous Attributes

Binary Split

Multi-way Split

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test criterion?
 - How to determine the best split?
 - When do we stop?

C₁: Dead C₂: Survived

What is The Best Split?

Before Splitting: 10 records of class 1, 10 records of class 2

Which test condition is the best?

C₁: Dead C₂: Survived

What is The Best Split?

- Greedy approach:
 - Homogeneous class distribution preferred
- Need a measure of node impurity:

C₁: 5 C₂: 5

Non-homogeneous

High degree of impurity

C₁: 9 C₂: 1

Homogeneous

Low degree of impurity

Measures of Node Impurity

- Gini Index
- Entropy
- Misclassification error

C₁: Dead C₂: Survived

Impurity Measure: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

- p(j | t) is the relative frequency of class j at node t
- Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying least interesting information n_c =number of classes
- Minimum (0.0) when all records belong to one class, implying most interesting information

C_1	0
C_2	6
Gini=0.000	

C ₁	1
C ₂	5
Gini=0.278	

Gini=0.444	
C_2	4
C_1	2

Gini=	0.500
C_2	3
C_1	3

C₁: Dead C₂: Survived

Impurity Measure: GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Impurity Measure: GINI

When a node p is split into k partitions (children), the quality of split is computed as:

$$GINI(split, p) = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,

n_i = number of records at child i,n = number of records at node p

Impurity Measure: Computing

C₁: Dead C₂: Survived

GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought after

	Parent
C_1	6
C ₂	6
Gini = 0.500	

Gini(N ₁)
$= 1 - (5/7)^2 - (2/7)^2$
= 0.408

Gini(
$$N_2$$
)
= 1 - (1/5)²- (4/5)²
= 0.320

	N ₁	N ₂
C_1	5	1
C ₂	2	4
Gini=0.371		

Gini(B?, Parent) = 7/12 * 0.408 +5/12 * 0.320 = 0.371

Impurity Measure: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

- p(j | t) is the relative frequency of class j at node t
- Maximum: records equally distributed
- Minimum: all records belong to one class

C₁: Dead C₂: Survived

Impurity Measure: Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log_2 p(j | t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0$

P(C1) = 2/6 P(C2) = 4/6

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Impurity Measure: Information

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

- Node p is split into k partitions
- n_i is number of records in partition i
- Measures Reduction in Entropy
- Choose split that maximizes GAIN
- Tends to prefer splits with large number of partitions

Impurity Measure: Information

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

- Node p is split into k partitions
- n_i is the number of records in partition i
- Penalizes GAIN metric for extra splits
- Counters tendency towards many splits

Impurity Measure: Classification Error

Classification error at a node t:

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Maximum: records are equally distributed
- Minimum: all records belong to one class
- Similar to information gain
 - Less sensitive for > 2 or 3 splits
 - Less prone to overfitting

C₁: Dead C₂: Survived

Impurity Measure: Classification Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C_1	0
C ₂	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Error = 1 - max(2/6, 4/6) = 1 - 4/6 = 1/3$

Tree Induction

- Greedy strategy
 - Split based attribute test that optimizes a criterion
- Issues
 - How to split the records
 - What attribute test criterion?
 - How to determine the best split?
 - When do we stop?

Sample Stopping Criteria

- All the records belong to the same class
- All the records have similar attribute values
- Fixed termination
 - Number of Levels
 - Number in Leaf Node

Decision Trees - PROS

Intuitive

Easy interpretation for small trees

Non parametric:

 Incorporate both numeric and categorical attributes

Fast

- Once rules are developed, prediction is rapid
- Robust to outliers

Decision Trees - CONS

Overfitting

Must be trained with great care

Rectangular Classification

 Recursive partitioning of data may not capture complex relationships

QUESTIONS

Session Outline

- Introduction to predictive analytics
- Introduction to classification
- Decision Tree Classifier
- Hands-on Lab: Building a decision tree classifier using R

