Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{P G}{4\pi R^2} = \frac{EIRP}{4\pi R^2} = \frac{E^2 D^2}{120\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

EIRP = equivalent isotropically radiated power

E = field strength of fundamental emission

D = distance when measured field strength

Field strength of fundamental emission:	44.3 [dBµV/m]	
Field strength of fundamental emission:	164 [μV/m]	
Measured distance of fundamental emission:	3 [m]	
Antenna gain(typical):	-63.50 [dBi]	
Equivalent isotropically radiated power:	0.0000081 [mW]	
Prediction distance:	20 [cm]	
Prediction frequency:	13.56 [MHz]	
MPE limit for uncontrolled exposure at prediction frequency:	0.97 [mW/cm^2]	

Power density at prediction frequency: 0.0000000017 [mW/cm^2]

0.000000017 [W/m^2]

Maximum allowable antenna gain: 24.1 [dBi]

Margin of Compliance: 87.6 [dB]