Contents

- Homework 7
- Problem 1
- Problem 2 and 3
- Problem 4
- Problem 5

Homework 7

Juan Alejandro Ormaza October 19 2021 CS375

```
clear all; clc; close all;
format long e
```

Problem 1

```
f_x=@(x) x.^3 - 8;
d_f=@(x) 3*x.^2;

x=linspace(-5,5,100);

figure()
plot(x,f_x(x))
hold on
plot(2,0,'bo')
title('Problem 1');
xlabel('x');
ylabel('y=x^3 - 8');
grid on

fprintf("there is only one zero at x=2\n\n")
```

there is only one zero at x=2

Problem 2 and 3

```
TOL=10^(-10);
x_bisection = my_bisection(f_x,1,4,TOL);
x_newton = my_newton(f_x,d_f,4,TOL);
x_secant = my_secant(f_x,1,4,TOL);
fprintf("the root of the bisection method is %2.14f and it took %3.0f iterations\n\n",x_bisection(end),length(x_bisection));
fprintf("the root of Newton's method is %2.14f and it took %3.0f iterations\n\n",x_newton(end),length(x_newton));
fprintf("the root of the Secant method is %2.14f and it took %3.0f iterations\n\n",x_secant(end),length(x_secant));
```

the root of the bisection method is 2.00000000002910 and it took 35 iteration
the root of Newton's method is 2.000000000000 and it took 8 iterations
the root of the Secant method is 2.000000000000 and it took 11 iterations

Problem 4

```
ek_bisection = abs(x_bisection-2);
ek_newton = abs(x_newton-2);
ek_secant = abs(x_secant-2);
ekl_bisection = circshift(ek_bisection,-1);
ekl_newton = circshift(ek_newton,-1);
ek1_secant = circshift(ek_secant,-1);
bisection_conv = ek1_bisection./ek_bisection;
bisection_conv(length(bisection_conv))=0;
newton_conv = ek1_newton./(ek_newton.^2);
%newton_conv(length(newton_conv))=0;
secant_conv = ek1_secant./(ek_secant.^(1.62));
%secant_conv(length(secant_conv))=0;
iter1=1:1:length(x_bisection);
iter2=1:1:length(x_newton);
iter3=1:1:length(x secant);
fprintf("Bisection method:\n")
fprintf("iteration\t error\t\t convergence rate\n")
fprintf("%3.0f \t %3.12f \t %3.12f\n",[iter1;ek_bisection;bisection_conv])
fprintf("\n")
fprintf("\nNewton's method:\n")
fprintf("iteration\t error\t\t convergence rate\n")
fprintf("%3.0f \t
                    %3.12f \t %3.12f\n",[iter2;ek_newton;newton_conv])
fprintf("\n")
fprintf("\nSecant method:\n")
fprintf("iteration\t error\t\t convergence rate\n")
fprintf("%3.0f \t
                   %3.12f \t %3.12f\n",[iter3;ek secant;secant conv])
fprintf("\n")
```

Bisection	method:	
iteration	error	convergence rate
1	0.500000000000	0.500000000000
2	0.250000000000	0.500000000000
3	0.125000000000	0.500000000000
4	0.062500000000	0.500000000000
5	0.031250000000	0.500000000000
6	0.015625000000	0.500000000000
7	0.007812500000	0.500000000000
8	0.003906250000	0.500000000000
9	0.001953125000	0.500000000000
10	0.000976562500	0.500000000000
11	0.000488281250	0.500000000000
12	0.000244140625	0.500000000000
13	0.000122070312	0.500000000000
14	0.000061035156	0.500000000000
15	0.000030517578	0.500000000000
16	0.000015258789	0.500000000000
17	0.000007629395	0.500000000000
18	0.000003814697	0.500000000000
19	0.000001907349	0.500000000000
20	0.000000953674	0.500000000000
21	0.000000476837	0.500000000000
22	0.000000238419	0.500000000000
23	0.000000119209	0.500000000000
24 25	0.000000059605	0.500000000000
26	0.000000029802	0.500000000000
27	0.000000014901	0.50000000000
28	0.000000007451	0.50000000000
29	0.000000003723	0.50000000000
30	0.000000001883	0.50000000000
31	0.000000000931	0.50000000000
32	0.000000000400	0.50000000000
33	0.000000000233	0.50000000000
34	0.000000000110	0.50000000000
35	0.0000000000029	0.000000000000
0.5	0.0000000000000000000000000000000000000	
Newton's m	ethod:	
iteration	error	convergence rate
1	2.000000000000	0.208333333333
2	0.83333333333	0.318339100346
3	0.221068819685	0.435296037791
4	0.021273536809	0.493001916400
5	0.000223114608	0.499925636500
6	0.000000024886	0.717046602291
7	0.00000000000	0.000000000000
8	0.00000000000	Inf
Secant met		
iteration	error	convergence rate
1	1.000000000000	2.000000000000
2	2.000000000000	0.216890309240
3	0.666666666667	0.815994397306
4	0.423076923077	0.876387440260
5	0.217518135116	0.579055527207
6	0.048917344679	0.667701420151
7 8	0.005029353441	0.662748984007
9	0.000125256065 0.000000315494	0.661541563095 0.672011570641
10	0.000000315494	0.6/20115/0641

Problem 5

10

11

0.000000000000

0.000000000000

Inf

Published with MATLAB® R2021a

Juan A. Ormaza CS375: HW7

October 19 2021

4. What is the rate of convergence that you observe for each method? Explain your reasoning for your observed convergence rate. Remember the numerical data may be a bit noisy.

-Bisection method

let
$$\delta_0 = b - a$$
 $7 | \chi_{+}$
 $\delta_1 = \frac{1}{2} \delta_0$
 $\delta_2 = \frac{1}{2} \delta_1 = \frac{1}{4} \delta_0$

$$\frac{S_n}{S_0} = \left(\frac{1}{2}\right)^N$$

$$\frac{7}{2} |x_4 - C_n| \le (b_n - a_n)/2 = \left(\frac{1}{2}\right)^{n+1} \delta_0$$

$$\frac{|e_{n+1}|}{|e_{n}|} = \frac{(\frac{1}{2})^{n+1}}{(\frac{1}{2})^{n}} = (\frac{1}{2})$$

5 Convergence rate agrees with results in mattab code.

- Newton's method

$$\left(\frac{f(x_k)}{f'(x_k)} - x_k\right) + x_{2k} + (x_k - x_k)^2 \left(\frac{1}{2}\right) \frac{f''(s)}{f'(x_k)} = 0$$

$$\frac{|x_{k}-x_{k+1}|}{|x_{k}-x_{k}|^{2}}=\left(\frac{1}{2}\right)\left|\frac{f'(s)}{f'(x_{k})}\right|$$

 $\frac{1}{|x_{k}-x_{k+1}|} = \frac{1}{2} \frac{f''(s)}{f'(x_{k})}$ when $f'(x_{k}) \neq f'(r)$ convergence rate diverges $f'(x_{k}) \neq f'(r)$ because denominator $f'(x_{k}) \neq f'(r)$

-Bisection Method

G Converges with r=1.62 will also diverge as Xx > Xx because denominator becomes 0.

Prove what the general convergence behavior of Newton's method to when used to find cube roots with

f(x) = x3-a

tor any number $a \in \mathbb{R}$, $a \neq 0$. You may use any existing convergence theorems in the textbook or from the slides, and make assumptions like howing a "suitable starting quess"

 $f'(x) = 3x^{2}$ f'(x) = 6x $\left(\frac{1}{2}\right) = 6x$ $\left(\frac{1}{2}\right) = 6x$

as the interval $x_{k} \leq x_{k} \leq x_{k}$ gets smaller $x \approx x_{k} \approx x_{k}$ Where $x = \sqrt[3]{a}$ and $a \neq 0$

We thus find that lim lexul EC

is always bounded. Thus, in this case we find that there is always a constant C such that

 $(\frac{1}{2})\frac{6 \cdot x}{3 x^2}$ Is always bounded as long as $x = \sqrt[3]{a}$ and $a \neq 0$

for example with a=8 x=2

and $\binom{1}{2} \cdot \frac{6(2)}{3(4)} = \frac{1}{2}$ which (without the noise) was close to the magnitude of $\frac{|\mathbf{k}_{k+1}|}{|\mathbf{k}_{m}|^{2}}$ found in Mathab.

6) What is the convergence rate of Newton's method If a=0? Explain.

The convergence rate at a=0 is undefined and will rause the method to dwerge because there will be a 0 at the denominator.

(1/2) 3(0) & dweiges