The RSA Cryptosystem

The Theoretical Basis for RSA Encryption

The RSA algorithm involves 5 numbers: p, q, E, D, and M. As a brief introduction, they are:

- \bullet two different prime numbers, p and q
- two numbers in $\mathbb{Z}_{(p-1)(q-1)}$:
 - the "encoding number", E, which is relatively prime to (p-1)(q-1)
 - the "decoding number", D, which is the multiplicative inverse of E in $\mathbb{Z}_{(p-1)(q-1)}$
- a number in $\mathbb{Z}_p q$ known as the "message number", M
- 1. Do the activity Modular Inverses E must be relatively prime to (p-1)(q-1) in order to have a multiplicative inverse in the system.
- 2. Let p = 3 and q = 5. Then (p-1)(q-1) = 8 and pq = 15. Suppose that we choose E to be 3. (We could choose any number that didn't have a factor of 2 since 2 is the only factor in 8). Find D. D is the multiplicative inverse of E in \mathbb{Z}_8 . Thus, D = 3.
- 3. Sticking with the same p, q, and E (and therefore the same D), complete the table below using the rules of \mathbb{Z}_{15} . What do you notice about the entries of the last row?

$M \mod pq$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$M^E \mod pq$	1	8	12	4	5	6	13	2	9	10	11	3	7	14
$M^{ED} \mod pq$	1	2	3	4	5	6	7	8	9	10	11	12	13	14

The last row is the same as the first row.

4. Google Sheets RSA Cryptosystem Crux Theorem Activity
From the activity, it seems that raising a number to a power, then raising that to the multiplicative
inverse of the previous power, produces the original number.

Theorem 5.1 (RSA Cryptosystem Crux): Suppose that p and q are two distinct prime numbers. Let E be relatively prime to (p-1)(q-1). Then if D is the multiplicative inverse of E in $\mathbb{Z}_{(p-1)(q-1)}$ and if M is any number in \mathbb{Z}_{pq} , it will always be that $M^{ED} \equiv M \mod pq$.

Theorem 5.2: If p and q are distinct prime numbers and M is a positive integer with gcd(M, pq) = 1, then $M^{(p-1)(q-1)} \equiv 1 \mod pq$.

Theorem 5.3: Let p and q be distinct prime numbers, k be a positive integer, and M be a number in \mathbb{Z}_{pq} with $\gcd(M,pq)=1$. Then $M^{1+k(p-1)(q-1)}\equiv M \mod pq$.

Theorem 5.4: Let p and q be distinct primes and E be a number in $\mathbb{Z}_{(p-1)(q-1)}$ such that E is relatively prime to (p-1)(q-1). Then E has a multiplicative inverse in $\mathbb{Z}_{(p-1)(q-1)}$. That is, there exists some D in $\mathbb{Z}_{(p-1)(q-1)}$ such that $D \equiv E^{-1} \mod (p-1)(q-1)$.

5. Find the primes p and q if pq = 14,647 and $\phi(pq) = 14,400$. p and q must be distinct, since pq is not a square. Thus, $\phi(pq) = (p-1)(q-1) = pq - p - q + 1 = 14,400$. Thus, we can make a system of equations to solve for p and q:

$$\begin{cases} pq &= 14,647 \\ pq - p - q + 1 &= 14,400 \end{cases}$$

Thus, p+q-1=247, so p+q=248, so p=248-q. We can plug this back into the first equation, so $(248-q)q=14,647\to 248q-q^2=14,647\to 0=q^2-248q+14,647$. I put this into the quadratic equation to get q=97 or 151. p and q are interchangeable in this equation, so either p=151, q=97, or p=97, q=151.

6. Prove Theorem 5.2 based on what you have already learned (perhaps in a previous section). Let p and q be distinct prime numbers, and let M be a positive integer with gcd(M,pq)=1. According to Euler's Theorem, if m is a positive integer and a is a positive integer with gcd(a,m)=1, then $a^{\phi(m)}\equiv 1 \mod m$. By setting a=M and m=pq, we get $M^{\phi(pq)}\equiv 1 \mod pq$. In the previous section, we also determined that where p and q are distinct primes, $\phi(pq)=(p-1)(q-1)$. Thus, $M^{(p-1)(q-1)}\equiv 1 \mod pq$.

1

- 7. Prove Theorem 5.3 based on what you have already learned. Let p and q be distinct prime numbers, k be a positive integer, and M be a number in \mathbb{Z}_{pq} with $\gcd(M,pq)=1$. $M^{1+k(p-1)(q-1)}=M\times M^{k(p-1)(q-1)}=M\times (M^{(p-1)(q-1)})^k\mod pq$. By theorem 5.2, $M^{(p-1)(q-1)}\equiv 1\mod pq$, so $M\times (M^{(p-1)(q-1)})^k\equiv M\times 1^k\equiv M\mod pq$. Thus, $M^{1+k(p-1)(q-1)}\equiv M\mod pq$.
- 8. Prove Theorem 5.1 (RSA Cryptosystem Crux) based on what you have already learned. Let p and q be two distinct prime numbers, and let E be relatively prime to (p-1)(q-1). By theorem 5.4, there exists a number D that is the multiplicative inverse of E modulo (p-1)(q-1). This means $ED \equiv 1 \mod (p-1)(q-1)$, or ED = k(p-1)(q-1) + 1 for some integer k. Thus, $M^{ED} = M^{k(p-1)(q-1)+1} \equiv M \mod pq$ by theorem 5.3. Thus, $M^{ED} \equiv M \mod pq$.