

(11)Publication number:

09-145605

(43)Date of publication of application: 06.06.1997

(51)Int.CI.

GO1N 21/21 G01J 4/04 G01N 33/493 GO1N 33/66 GO1N 33/68

(21)Application number: 07-310759

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

29.11.1995

(72)Inventor: KAWAMURA TATSURO

ONISHI HIROSHI

SONODA NOBUO

(54) ANGLE OF ROTATION MEASUREMENT METHOD, POLARIMETER, METHOD AND DEVICE FOR URINE **ANALYSIS**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an urine analysis device with high reliability, miniaturized, and of low cost, by making to-beanalyzed sample transmit the polarized light, applying a magnetic field to the to-be-analyzed sample, and measuring angle of rotation based on change of polarization direction of the generated light. SOLUTION: A light source 1 projects almost parallel lights made by a 180-watt low pressure medium lamp, a band pass filter, lens, and slit, etc. A polarizer 2 transmits only the light of the polarization component parallel to space. A solenoid coil 4 wound around a sample cell 3 applies a magnetic field to the sample cell 3 and tobe-analyzed sample held in it. When current 1A is made to flow to the solenoid coil 4, the magnetic field $H=5 \times 103 \text{A/m}$ is applied. With a current source 5, the current up to $\pm 5A$ can be made to flow to the solenoid coil 4. And, an analyzer 6 is so assigned as to transmit only the light of polarization component vertical to the space. A photo sensor 7 detects the light that the analyzer 6 transmits, and a computer 8 sends command signal to the current source 5, and further records the output signal of the photo sensor 7 for analyzing.

LEGAL STATUS

[Date of request for examination]

11.11.1997

[Date of sending the examiner's decision of rejection]

27.07.1999

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

3072040

[Date of registration]

26.05.2000

[Number of appeal against examiner's decision of

rejection]

11-13466

[Date of requesting appeal against examiner's decision of 24.08.1999 rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Offic

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-145605

(43)公開日 平成9年(1997)6月6日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所	
G01N 21/	21		G01N 2	1/21	A	A	
G01J 4/	04		G01J	4/04	I)	
G01N 33/	493		G01N 3	3/493	1	В	
33/	766		33	3/66	A	A.	
33/	'68	33/68					
			審査請求	未請求	請求項の数14	OL (全 14 頁	
(21)出願番号	特顧平7-310759	特願平7-310759		00000582	000005821		
				松下電器	産業株式会社		
(22)出願日 平成7年(1995		月29日		大阪府門	真市大字門真1	006番地	
		-	(72)発明者	河村 達	鄭		
				大阪府門	真市大字門真1	006番地 松下電器	
				産業株式	会社内		
			(72)発明者	大西 宏			
				大阪府門]真市大字門真1	006番地 松下電器	
				產業株式	公社内		
			(72)発明者	園田 信	雄		
						006番地 松下電器	
				產業株式	C 会社内		
			(74)代理人	弁理士	松田 正道		

(54) 【発明の名称】 旋光度測定方法、旋光計、尿検査方法及び尿検査装置

(57)【要約】

【課題】簡単で髙信頼性の旋光計と試験紙等の消耗品を 使用することなく維持管理が容易な尿検査装置を安価に 実現する事を目的とする。

【解決手段】被検試料3に偏光した光を透過させるとともに、その被検試料3に磁場を印加し、その結果生じる光の偏光方向の変化に基づき、前記被検試料3の旋光度を測定する旋光度測定方法である。被検試料としては尿等が可能である。

【特許請求の範囲】

【請求項1】被検試料に偏光した光を透過させるとともに、その被検試料に磁場を印加し、その結果生じる光の 個光方向の変化に基づき、前記被検試料の旋光度を測定 することを特徴とする旋光度測定方法。

【請求項2】光を投射する単色光源と、前記投射された 光のうち特定方向の偏光成分のみを透過する偏光子と、 被検試料を前記偏光子を透過した光が透過するように保 持するサンブルセルと、前記被検試料に磁場を印加する 手段と、前記磁場を掃引する磁場掃引手段と、前記被検 10 試料を透過した光のうち特定方向の偏光成分のみを透過 する検光子と、前記検光子を透過した光を検知する光セ ンサーと、前記磁場掃引手段の磁場掃引信号と前記光セ ンサーの出力信号に基づいて、前記被検試料の旋光度を 算出する手段とを備えたことを特徴とする旋光計。

【請求項3】前記磁場を掃引する際に、前記磁場を離散 的に変化させた少なくとも2点での前記光センサーの出 力信号から、前記被検試料の旋光度を算出することを特 徴とする請求項2に記載の旋光計。

【請求項4】光を投射する単色光源と、前記投射された 20 光のうち特定方向の偏光成分のみを透過する偏光子と、被検試料を前記偏光子を透過した光が透過するように保持するサンブルセルと、前記被検試料に磁場を印加する手段と、前記磁場を掃引する磁場掃引手段と、前記磁場を掃引する磁場変調手段と、前記被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記磁場変調手段の振動変調信号を参照信号として位相敏感検波するロックインアンプと、前記磁場掃引手段の磁場掃引信号と前記ロックインアンプの出力信号に基づいて、前記被検試料の旋光度を算出する手段とを備えたことを特徴とする旋光計。

【請求項5】光を投射する単色光源と、前記投射された 光のうち特定方向の偏光成分のみを透過する偏光子と、 被検試料を前記偏光子を透過した光が透過するように保 持するサンプルセルと、前記被検試料に磁場を印加する 手段と、前記磁場を振動変調する磁場変調手段と、前記 被検試料を透過した光のうち特定方向の偏光成分のみを 透過する検光子と、前記検光子を回転する検光子回転手 段と、前記検光子を透過した光を検知する光センサー と、前記光センサーの出力信号を前記磁場変調手段の振 動変調信号を参照信号として位相敏感検波するロックイ ンアンプと、前記検光子回転手段の回転信号と前記ロッ クインアンプの出力信号に基づいて、前記被検試料の旋 光度を算出する手段とを備えたことを特徴とする旋光 計。

【請求項6】光を投射する単色光源と、前記投射された 検光子と、前記検光子を透過した光を検知する光センサ 光のうち特定方向の偏光成分のみを透過する偏光子と、 っと、前記光センサーの出力信号を前記磁場変調手段の 前記偏光子を透過した光の偏光方向を振動変調する偏光 50 振動変調信号を参照信号として位相敏感検波するロック

変調手段と、被検試料を前記偏光子を透過した光が透過するように保持するサンプルセルと、前記被検試料に磁場を印加する手段と、前記磁場を掃引する磁場掃引手段と、前記被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記偏光変調手段の振動変調信号を参照信号として位相敏感検波するロックインアンプと、前記磁場掃引手段の磁場掃引信号と前記ロックインアンプの出力信号に基づいて前記被検試料の旋光度を算出する手段とを備えたことを特徴とする旋光計。

【請求項7】前記磁場を掃引する際に、前記磁場を離散的に変化させた少なくとも2点での前記ロックインアンプの出力信号から、前配被検試料の旋光度を算出するととを特徴とする請求項4、又は6に記載の旋光計。

【請求項8】前記検光子を回転する際に、前記検光子を 離散的に回転させた少なくとも2点での前記ロックイン アンプの出力信号から、前記被検試料の旋光度を算出す ることを特徴とする請求項5に記載の旋光計。

【請求項9】光を投射する単色光源と、前記投射された光のうち特定方向の偏光成分のみを透過する偏光子と、被検試料を前記偏光子を透過した光が透過するように保持するサンブルセルと、前記被検試料に磁場を印加する手段と、前記磁場を振動変調する磁場変調手段と、前記被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記磁場変調手段の振動変調信号を参照信号として位相敏感検波するロックインアンブ1と、前記光センサーの出力信号を前記磁場変調手段の振動変調信号の2倍の周波数の信号を参照信号として位相敏感検波するロックインアンプ2の出力信号で規格化することによって前記被検試料の旋光度を算出する手段とを備えことを特徴とする旋光計

【請求項10】尿に偏光した光を透過させるとともに、その被検試料に磁場を印加し、その結果生じる光の偏光方向の変化に基づき、前記被検試料の旋光度を測定することによって、前記尿の検査を行なうことを特徴とする尿検査方法。

【請求項11】光を投射する単色光源と、前記投射された光のうち特定方向の偏光成分のみを透過する偏光子と、尿を前記偏光子を透過した光が透過するように保持するサンプルセルと、前記尿に磁場を印加する手段と、前記磁場を掃引する磁場積引手段と、前記磁場を掃引する際に前記磁場を振動変調する磁場変調手段と、前記尿を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記磁場変調手段の振動変調信号を参照信号として位相敏感検波するロック

インアンプと、前記磁場掃引手段の磁場掃引信号と前記 ロックインアンプの出力信号に基づいて、前記尿の旋光 度を算出し、これを旋光性物質の濃度に換算する手段と を備えたことを特徴とする尿検査装置。

【請求項12】前記磁場を掃引する際に、前記磁場を離 散的に変化させた少なくとも2点での前記ロックインア ンプの出力信号から、前記尿の旋光度を算出することを 特徴とする請求項11に記載の尿検査装置。

【請求項13】 旋光度を測定する際に、被検試料と、旋 光度が既知の参照試料を測定し、参照試料の測定値で、 被検試料の測定値を補正することによって被検試料の旋 光度を決定することを特徴とする請求項2~9のいずれ かに記載の旋光計。

【請求項14】尿を検査する際に、尿と、旋光度が既知 の参照試料を測定し、参照試料の測定値で、尿の測定値 を補正することによって尿の旋光度を決定して尿を検査 する特徴とする請求項11又は12に記載の尿検査装

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、溶液における、溶 質の同定、純度検定、濃度決定等に使用可能な旋光計と 尿検査装置に関するものである。例えば、果糖、ショ 糖、グルコース等の水溶液濃度を検知する旋光検知型糖米

 $I = T \times I_{\bullet} \times (COS\theta)^{2}$

ててで.

T :被検試料の透過率

1。:被検試料への入射光強度

なお、サンプルセル、検光子の透過、参照損失は無視し

【0006】日の変化即ち検光子126の回転に伴い、 π/2 Cとに I が最小になる消光点が現れる。

【0007】次に被検試料が旋光性を示しその旋光度= αの場合は、図13の点線で示され、(式2)の様にな

[0008]

【数2】

 $I = T \times I_{o} \times (COS(\theta - \alpha))^{2}$ (式2) これからわかる様に、旋光性を示さない被検試料に比べ をコンピュータ127によって見いだすことによって、 旋光度を測定することができる。

【0009】この例の場合、変調成分が存在しないた め、光センサー126の出力信号のS/Nがあまり良く なく、消光点の位置を正確には、把握しにくい。従っ ※

 $I = T \times I_0 \times (COS(\theta - \alpha + \delta \times SIN(\omega \times t)))$ (式3)

ととで、

t:時間

図15においては、消光点付近即ち $\theta = \pi/2$ なので、 $CO\theta$ を次の(式4)の様に表現できる。

* 度計として実現可能で有る。又、特に尿中のグルコー ス、蛋白質等の旋光性物質の濃度を検査する尿検査装置 として利用する場合、その高信頼性、小型、低価格等の

特徴から実用性が高く、また、試験紙等の消耗品が不要 なため、広く普及が期待される。

[0002]

【従来の技術】従来の旋光計の1例を図12に示す。

【0003】図12において、121は、ナトリウムラ ンプ、バンドパスフィルター、レンズ、スリット等によ 10 って構成された略平行光を投射する光源で、波長589 nmのナトリウムのD線を投射する。122は偏光子、 123は被検試料を保持するサンプルセル、124は検 光子、125は検光子124を回転する検光子ローテー ター、126は光センサー、127は検光子ローテータ -125を制御しかつ光センサー126の信号を記録解 析するコンピュータである。

【0004】との従来例の原理を図13を用いて以下に 説明する。図13において、横軸は偏光子122と検光 子126の光軸の相対角度 θ、縦軸は光センサー126 20 に到達する光の強度 [即ち光センサー126の出力信号 である。実線は、被検試料が旋光性を示さない場合で、 θ と Iの関係は以下の(式1)に示される。

[0005]

【数1】

(式1)

※ て、αが小さい被検試料を高精度に測定することは難し

【0010】そこで、消光点の位置の把握精度を向上す るために、図14に示した構成を有するものが使用され 30 る。図14において、121~127は前例で示した物 と全く同じである。141は偏光方向を振動させる光フ ァラデー変調器である。142は光ファラデー変調器1 41を駆動する信号発生器である。143は光センサー 126の出力信号を光ファラデー変調器の振動変調信号 を参照信号として位相敏感検波するロックインアンプで ある。本例の動作原理を図15を用いて以下に説明す

【0011】図15において、横及び縦軸は図13と同 じく、それぞれ、θとΙで、消光点付近を拡大して示し て、消光点がαずれる。この様に、消光点の位置のずれ 40 ている。光ファラデー変調器141によって、偏光方向 を振幅=δ、角周波数ωで振動変調する。この時の [は (式2)より、次の(式3)の様に示される。

[0012]

【数3】

[0013] 【数4】 $\theta = \pi/2 + \beta$

(式4)

ととで、

50 | B | ≪ 1

との(式4)を(式3)に代入すると次の(式5)が導 * 【0014】 出される。 * 【数5】

 $I = T \times I_o \times (SIN(\beta - \alpha + \delta \times SIN(\omega \times t)))$ ' (式5)

今、被検試料の旋光度、及び振動変調の振幅を小さい、 ** $\{0015\}$ 即 $5+\alpha+*(1, \delta*(1, \delta*(1,$

(式6)の様に近似される。

 $I = T \times I_{o} \times (\beta - \alpha + \delta \times S I N (\omega \times t))^{2}$ $= T \times I_{o} \times ((\beta - \alpha)^{2} + 2 \times (\beta - \alpha) \times \delta \times S I N (\omega \times t))^{2})$ $+ (\delta \times S I N (\omega \times t))^{2})$ $= T \times I_{o} \times ((\beta - \alpha)^{2} + 2 \times (\beta - \alpha) \times \delta \times S I N (\omega \times t))^{2})$ $+ (\delta^{2}/2 \times (1 - COS (2 \times \omega \times t)))^{2})$

これより、光センサーの出力信号 I には、角周波数 0 (直流)、ω、2×ωの各信号成分が存在することがわかる。これは、図15を見ても明かである。この I を振動変調信号を参照信号としてロックインアンプで位相敏★

 $S = T \times I_o \times 2 \times (\beta - \alpha) \times \delta$

このSは、 $\beta = \alpha$ の時のみ、ゼロになりここが消光点である。検光子を回転させる即ち β を掃引して、Sがゼロになるときの β が旋光度 α である。

【0017】以上の様に、偏光方向を変調することによって、この変調周波数成分の信号のみを光源強度、電源の揺らぎ、輻射等のノイズから分離して、選択的に取り出すことができ、S/Nの高い信号Sを得ることができる。このSから、正確に消光点を見いだすことができ、高精度に旋光度αを測定できる。

【0018】他方、尿中のグルコース、蛋白質等の従来の検査方法としては、試薬等を尿に浸し、これの呈色反応を分光測定機等によって観測する方法があった。ただし、この方法では、試験紙等の消耗品が必要であった。しかし、上記の高精度旋光計を用いて、尿の旋光度を測定すると、尿中の旋光性物質であるグルコース、蛋白質の様に低濃度で存在している物質の旋光度を検知でき、これからそれらの濃度を算出できる。これによって、消耗品無しで尿のグルコース、蛋白質濃度の検査が可能になる。

[0019]

【発明が解決しようとする課題】しかしながら上記のような従来の方法においては、変調器や検光子の回転手段が必要になり、装置が複雑になる欠点があった。これに 40よって、低価格化、高信頼性化に限界が生じた。

【0020】本発明は、このような従来の課題を考慮して、高信頼性、小型、低価格の旋光計及び尿検査装置を提供することを目的とする。

[0021]

【課題を解決するための手段】請求項1の本発明は、被検試料に偏光した光を透過させるとともに、その被検試料に磁場を印加し、その結果生じる光の偏光方向の変化に基づき、前記被検試料の旋光度を測定することを特徴とする旋光度測定方法である。

★ 感検波すると、角周波数ω成分すなわち次の(式7)に 示すSを取り出すことができる。

(式6)

[0016]

【数7】.

(式7)

【0022】請求項2の本発明は、光を投射する単色光源と、前記投射された光のうち特定方向の偏光成分のみを透過する偏光子と、被検試料を前記偏光子を透過した光が透過するように保持するサンプルセルと、前記被検試料に磁場を印加する手段と、前記磁場を掃引する磁場掃引手段と、前記被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記磁場掃引手段の磁場掃引信号と前記光センサーの出力信号に基づいて前記被検試料の旋光度を算出する手段とを備えた旋光計である

【0023】請求項3の本発明は、前記磁場を掃引する 際に、前記磁場を離散的に変化させ少なくとも2点での 前記光センサーの出力信号から、前記被検試料の旋光度 を算出する請求項2に記載の旋光計である。

【0024】請求項4の本発明は、光を投射する単色光源と、前配投射された光のうち特定方向の偏光成分のみを透過する偏光子と、被検試料を前記偏光子を透過した光が透過するように保持するサンブルセルと、前記被検試料に磁場を印加する手段と、前記磁場を掃引する磁場掃引手段と、前記磁場を掃引する際に前記磁場を振動変調する磁場変調手段と、前記被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記磁場変調手段の振動変調信号を参照信号として位相敏感検波するロックインアンプと、前記磁場掃引手段の磁場掃引信号と前記ロックインアンプの出力信号に基づいて前記被検試料の旋光度を算出する手段とを備えた旋光計である。

【0025】請求項5の本発明は、光を投射する単色光源と、前記投射された光のうち特定方向の偏光成分のみを透過する偏光子と、被検試料を前記偏光子を透過した50 光が透過するように保持するサンプルセルと、前記被検

6

7

試料に磁場を印加する手段と、前記磁場を振動変調する 磁場変調手段と、前記被検試料を透過した光のうち特定 方向の偏光成分のみを透過する検光子と、前記検光子を 回転する検光子回転手段と、前記検光子を透過した光を 検知する光センサーと、前記光センサーの出力信号を前 記磁場変調手段の振動変調信号を参照信号として位相敏 感検波するロックインアンプと、前記検光子回転手段の 回転信号と前記ロックインアンプの出力信号に基づいて 前記被検試料の旋光度を算出する手段とを備えた旋光計 である。

【0026】請求項6の本発明は、光を投射する単色光源と、前記投射された光のうち特定方向の偏光成分のみを透過する偏光子と、前記偏光子を透過した光の偏光方向を振動変調する偏光変調手段と、被検試料を前記偏光子を透過した光が透過するように保持するサンブルセルと、前記被検試料に磁場を印加する手段と、前記磁場を掃引する磁場掃引手段と、前記被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記偏光変調手段の振動変調信号を20参照信号として位相敏感検波するロックインアンプの出力信号に基づいて前記被検試料の旋光度を算出する手段とを備えた旋光計である。

【0027】請求項7の本発明は、前記磁場を掃引する際に、前記磁場を離散的に変化させ少なくとも2点での前記ロックインアンプの出力信号から、前記被検試料の旋光度を算出する請求項4又は6に記載の旋光計である。

【0028】請求項8の本発明は、前記検光子を回転す 30 る際に、前記検光子を離散的に回転させ少なくとも2点での前記ロックインアンプの出力信号から、前記被検試料の旋光度を算出する請求項5に記載の旋光計である。

【0029】請求項9の本発明は、光を投射する単色光 源と、前記投射された光のうち特定方向の偏光成分のみ を透過する偏光子と、被検試料を前記偏光子を透過した 光が透過するように保持するサンプルセルと、前記被検 試料に磁場を印加する手段と、前記磁場を振動変調する 磁場変調手段と、前記被検試料を透過した光のうち特定 方向の偏光成分のみを透過する検光子と、前記検光子を 40 透過した光を検知する光センサーと、前記光センサーの 出力信号を前記磁場変調手段の振動変調信号を参照信号 として位相敏感検波するロックインアンプ1と、前記光 センサーの出力信号を前記磁場変調手段の振動変調信号 の2倍の周波数の信号を参照信号として位相敏感検波す るロックインアンプ2と、前記ロックインアンプ1の出 力信号を前記ロックインアンプ2の出力信号で規格化す ることによって前記被検試料の旋光度を算出する手段と を備えた旋光計である。

【0030】請求項10の本発明は、尿に偏光した光を 50

透過させるとともに、その被検試料に磁場を印加し、その結果生じる光の偏光方向の変化に基づき、前記被検試料の旋光度を測定することによって、前記尿の検査を行なうことを特徴とする尿検査方法である。

【0031】請求項11の本発明は、光を投射する単色 光源と、前記投射された光のうち特定方向の偏光成分の みを透過する偏光子と、尿を前記偏光子を透過した光が 透過するように保持するサンプルセルと、前記尿に磁場 を印加する手段と、前記磁場を掃引する磁場掃引手段

と、前記磁場を掃引する際に前記磁場を振動変調する磁場変調手段と、前記尿を透過した光のうち特定方向の偏光成分のみを透過する検光子と、前記検光子を透過した光を検知する光センサーと、前記光センサーの出力信号を前記磁場変調手段の振動変調信号を参照信号として位相敏感検波するロックインアンプと、前記磁場掃引手段の磁場掃引信号と前記ロックインアンプの出力信号に基づいて前記尿の旋光度を算出してれを旋光性物質の濃度に換算する手段とを備えた尿検査装置である。

【0032】請求項12の本発明は、前記磁場を掃引する際に、前記磁場を離散的に変化させ少なくとも2点での前記ロックインアンプの出力信号から、前記尿の旋光度を算出する請求項11に記載の尿検査装置である。

【0033】請求項13の本発明は、旋光度を測定する際に、被検試料と、旋光度が既知の参照試料を測定し、参照試料の測定値で、被検試料の測定値を補正することによって被検試料の旋光度を決定する請求項2~9のいずれかに記載の旋光計である。

【0034】請求項14の本発明は、尿を検査する際 に、尿と、旋光度が既知の参照試料を測定し、参照試料 の測定値で、尿の測定値を補正することによって尿の旋光度を決定して尿を検査する請求項11又は12に記載の尿検査装置である。

[0035]

【発明の実施の形態】本発明は、以下に述べる原理を利用している。

【0036】媒質中に光を伝搬させ、その伝搬方向に磁場を印加すると、光の偏光方向が伝搬に従って回転する。この現象を光ファラデー効果と呼んでいる。この光ファラデー効果は、次の(式8)で表される。

40 [0037]

【数8】a=V×H×L

(式8)

ててで.

a: 偏光方向の回転角度 [分]

V:媒質のベルデの定数 [分/A]

H:磁場[A/m]

L:伝搬距離[m]

co(38)のVは、媒質、光の波長、温度によって異なる。各種の媒質のVの1例を(表1)に示す。

[0038]

【表1】

8

温度=20℃	V (×10 ⁻²) [分/A]	波長=589nm
水	1.645	
クロロホルム	2.06	
アセトン	1.42	
水晶	2.091	
フリントガラス	4.85	

【0039】との光ファラデー効果を利用したものに、 従来の技術で用いられている光ファラデー変調器があ る。これは、棒状のフリントガラスにソレノイドコイル を巻きこれに電流を流すことによって磁場を印加して、 磁場方向に伝搬する光の偏光方向を変調するものであ る。ソレノイドコイルに流す電流を制御することによっ て、自由に変調することができる。

【0040】この様に、光ファラデー効果によって、媒 質に磁場を印加すると、偏光方向を変調することができ る。これは、(表1)からもわかるように、溶媒とし て、広く使用される水、クロロホルム、アセトン等にお いても同じである。従って、被検試料が溶解している溶 液に磁場を印加すると、この溶液自身が光ファラデー効 果によって、溶液中を伝搬する光の偏光方向を回転させ る。すなわち、被検試料を保持しているサンプルセルビ とに磁場を印加すれば、とのサンプルセル及び磁場印加 手段が光ファラデー変調器として機能する。ことでの、 磁場印加手段としては、光の伝搬方向に磁場を印加する ソレノイドコイル、磁石等がある。この磁場を変調する には、ソレノイドコイルに流す電流を変調するか、磁石 30 と被検試料までの距離を変調することで、可能になる。 【0041】上記の様に、サンプルセルに磁場を印加し て、この磁場を振動変調することによって、偏光方向を 振動変調することができ、従来の技術と同様に旋光度を 測定することができる。

【0042】また、磁場を掃引、すなわち磁場を特定の 強度から特定の強度まで変化(磁場の極性の変化も含 む) させると、偏光方向を回転させることができる。こ れによって、検光子を回転させた場合と同じ効果を得る。 子を回転した時の消光点のずれを、検光子の角度で直読 していたが、本実施の形態においては、磁場を掃引した 時の消光点のずれを、例えば電流で読み取りこれを磁場 へさらに角度へ換算することによって、被検試料の旋光 度を測定することができる。これは、実質的には、被検 試料の旋光性物質によって生じた旋光度と、印加磁場に よる光ファラデー効果による偏光方向の回転角が一致す る磁場を検知していることになる。

【0043】との磁場の掃引は、必ずしも強度を連続的 に変化させることのみならず、離散的に変化させること 50 旋光計を実現することができる。

も含んでいる。偏光方向の回転に伴う、光センサーの出 力信号の変化特性が既知なため、少なくとも2点で測定 し、これらの測定値から、内挿又は外挿し旋光度を算出 することが可能で、これは、特に測定時間の短縮に有効 である。

【0044】次に、長期反復的な使用によりサンプルセ ルの光の透過面が汚染された場合について説明する。と の時、この汚染が旋光性を示さない物質によってなされ ていれば、実質的に(式l)におけるTが減少したこと 20 に相当し、消光点の位置が不明確になり、測定精度が悪 化する。この場合(式2)の1の変化割合(θ に対す る)や、(式7)のSの傾き(Bに対する)が減少す る。従って、Tが既知の参照試料を測定し、これらの減 少量から、汚染量を検知することが可能である。この汚 染量が特定の値を越えた時に、サンプルセルの洗浄又は 交換を指示することができる。なお、この時は、必ずし も参照試料を設ける必要はなく、Tの最小値が既知の被 検試料の測定結果から汚染量を検知しても良い。

【0045】一方、との汚染が旋光性物質によってなさ れていれば、(式2)のI、(式7)のSは、それぞれ θ、β方向に平行移動する。これにより、消光点の位 置、即ち測定された旋光度もとの移動分だけずれる。と の移動分は、汚染物質による旋光度で、被検試料による 旋光度に単純に加算される。従って、あらかじめ旋光度 が既知の参照試料を測定し、この測定値と既知の旋光度 の差を算出し、この差で被検試料の測定値を補正する。 これによって、汚染物質によって生じた誤差を補償する ことができる。

【0046】との様に、旋光度が既知の参照試料を測定 ことが可能になる。即ち、従来の技術においては、検光 40 することによって、サンプルセルの汚染による誤差を補 償することができる。従って、長期反復使用におけるサ ンプルセルの洗浄又は交換時期を、透過面の透過率が低 下して特定値に到達するまで大幅に延長することがで き、維持管理が容易になる。特に、家庭用尿検査装置と して使用する場合、この維持管理の容易性が普及を大き く促進する。

> 【0047】以上の様に、サンプルセルに磁場を印加す ることで、これを光ファラデー変調器として機能させる ととにより、簡単な構成で、小型、低価格かつ高精度の

【0048】又、サンプルセル中に尿を入れ、これに磁 場を印加することで、尿の旋光度を測定することがで き、尿中のグルコース、蛋白質等の濃度を検査する尿検 査装置を実現することができる。これは、消耗品が不要 で、維持管理が容易で、高信頼性、小型、低価格等の特 徴から実用性が極めて高い。

【0049】(実施の形態1)第1の実施の形態につい て、図1及び図2を用いて以下に詳細に説明する。

【0050】図1において、1は180Wの低圧ナトリ ウムランプ、バンドパスフィルター、レンズ、スリット 等によって構成された略平行光を投射する光源で、波長 589nmのナトリウムのD線を投射する。2は偏光子 で、紙面に平行な偏光成分の光のみを透過する。3は被 検試料を保持する円筒形のガラス製のサンプルセルで、 実質光路長は300mmである。4はサンプルセル3の 周囲に巻かれたソレノイドコイルで、サンプルセル3と これに保持された被検試料に磁場を印加する。この磁場 は、光の伝搬方向に実質的に均質に印加され、ソレノイ ドコイル3に流す電流に比例する。具体的には、ソレノ イドコイル3に電流1Aを流すと、磁場H=5×10' A/mを印加する。5は電流源で、ソレノイドコイル4 に±5Aまでの電流を流すことができる。6は検光子 で、紙面に垂直な偏光成分の光のみを透過するように配 置する。7は検光子6を透過した光を検知する光センサ ーで、8は電流源5に指令信号を発しかつ光センサー7 の出力信号を記録解析するコンピュータである。

【0051】この本実施の形態の作用を以下に説明す *

 $\alpha = [\alpha] / 10000 \times L \times C$

ととで、

L: 伝搬距離=サンプルセルの光路長=0.3[m] C:水溶液濃度=500[mg/d1]

(式9) より、α ≒ 1° になる。

【0056】次に、光ファラデー効果による偏光方向の 回転角度を(式8)から算出すると、以下のようにな

> $a = 1.645 \times 10^{-2} \times 1.2 \times 10^{4} \times 0.3$ =59.22[分]≒1*

以上から、被検試料の旋光度と光ファラデー効果による 回転角度が一致することを確認した。

【0059】更に、本実施の形態を用いて、温度=20 40 ℃、濃度=250, 750, 1000mg/dlのショ 糖水溶液の旋光度を測定し、この結果を図3に示す。図 3において、横軸は濃度、縦軸は消光点になる電流」で ある。との図3から線形性も実証した。

【0060】従来の技術においては、検光子を回転した 時の消光点のずれを、検光子の角度を直読することによ り、被検試料の旋光度を測定していた。一方、本実施の 形態においては、磁場を掃引した時即ち電流を掃引した 時の消光点のずれを、電流で読み取りこれを上記の様に *る。コンピュータ8が電流源5に指令信号を発し、ソレ ノイドコイル4に流す電流を-5~5Aまで掃引する。 この時の光センサー7の出力信号を示したのが図2であ る。図2において、横軸は、ソレノイドコイル4に流す 電流 J、縦軸は光センサー7の出力信号(任意値)を示 している。

【0052】実線は、被検試料として旋光性を示さない 純水を測定した場合である。 偏光子2と検光子6の相対 角度が $\pi/2$ のため、Jがゼロの時が消光点である。と 10 れは、被検試料である純水に磁場が印加されず光ファラ デー効果による偏光方向の回転が起こらない状態であ る。Jを変化させると、従来例において、検光子を回転 させた時と同様に光センサー7の出力信号が(式1)に 従って変化する。ただし、本実施の形態においては、J が(式4)の8に相当する。

【0053】一方、図2の点線は、被検試料として、温 度=20℃、濃度=500mg/dlのショ糖水溶液を 測定した場合である。 J = 2. 4 A の時が消光点であ る。即ち、実線を+2.4A幅平行移動した曲線になっ 20 ている。この消光点のずれ幅が被検試料の旋光度に相当 する。このことを次に定量的に確認する。

【0054】ショ糖の比旋光度 [a]は589nmの光 に対して、20℃の水溶液において、 [α] =66.5 'である。従って、これによる旋光度=α'は(式9) に表される。

[0055]

【数9】

(式9)

※【0057】ソレノイドコイル4の特性からJ=2.4 30 Aの時、磁場H=1.2×10'A/mとなる。これ と、(表1)に示した水のベルデの定数Vから(式8) により、(式10)のようになる。

[0058]

【数10】

(式10)

旋光度を測定する。なお、この磁場の掃引は、必ずしも 強度を連続的に変化させる必要はなく、離散的に変化さ せても良い。偏光方向の回転に伴う、光センサーの出力 信号の変化特性が(式2)様に既知なため、少なくとも 2点で測定し、とれらの測定値から、内挿又は外挿し旋 光度を算出することができ、特に測定時間の短縮に有効 である。

【0061】以上のように本実施の形態によれば、被検 試料に磁場を印加し、その磁場を掃引することにより、 検光子の回転手段が不要になり、高信頼性、小型、低価 格の旋光計を実現でき、その実用的効果は極めて大き

磁場へさらに角度へ換算することによって、被検試料の 50 【0062】(実施の形態2)本発明の第2の実施の形

態を、図4を用いて説明する。

【0063】図4において、1,2、5、6、7、8は 第1の実施の形態で使用したものと同じ物である。3' は、基本構造は第1の実施の形態のサンブルセル3と同 じであるが、実質光路長が50mmである。4'も、基 本構造は第1の実施例のソレノイドコイル4と同じで、 電流1Aを流すと、磁場H=5×10³A/mを印加す る。9は信号発生器で、振動変調信号を電流源5に供給 する。電流源5はこの振動変調信号を振動変調電流信号 畳し、これをソレノイドコイル3に供給する。本実施の 形態では、1.3KHzの変調信号を振幅=0.02A の振動変調電流信号に変換して、ソレノイドコイル3に 供給している。10はロックインアンブで、信号発生器 9の振動変調信号を参照信号として、光センサー7の出 力信号を位相敏感検波する。このロックインアンプ10 の出力信号は(式6)の光センサー7の出力信号の角周 波数ω成分に相当する、即ち、(式7)に示したSであ る。従って、とのSがゼロになる時が消光点である。

【0064】次に図5を用いて本形態例の動作を説明す 20 る。コンピュータ8が電流源5に指令信号を発し、ソレノイドコイル4に流す電流を-1.5~1.5Aまで掃引する。この時のロックインアンプ10の出力信号を示したのが図5である。図5において、横軸は、ソレノイドコイル4に流す電流J、縦軸はロックインアンプ10の出力信号(任意値)を示している。

【0065】実線は、被検試料として旋光性を示さない 純水を測定した場合で、Jがゼロの時が消光点である。 これは、被検試料である純水に磁場が印加されず光ファ ラデー効果による偏光方向の回転が起こらない状態であ 30 る。Jを変化させると、(式4)における、βすなわち 検光子を回転させた時と同様にロックインアンプ10の 出力信号Sが変化する。

【0066】一方、図5の点線は、被検試料として、温度=20℃、濃度=250mg/d1のショ糖水溶液を測定した場合である。J=1.21Aの時が消光点である。即ち、実線を+1.21A幅平行移動した直線になっている。との消光点のずれ幅が被検試料の旋光度に相当する。とれも、第1の実施の形態同様に定量的に確認する。

【0067】ショ糖による旋光度 α は(式9)より、 α = [α] \angle 10000×0.05×250 \Rightarrow 0.0831 である。

【0068】次に、光ファラデー効果による偏光方向の回転角度aを(式8)から算出すると、以下のようになる。

【0069】ソレノイドコイル4'の特性からJ=1. 21Aの時、磁場H=6.05×10'A/mとなる。 これと、(表1)に示した水のベルデの定数Vから a=1.645×10⁻²×6.05×10⁴×0.05 14

≒4.976[分]≒0.083° 以上から、被検試料の旋光度と光ファラデー効果による

回転角度が一致するととを確認した。

【0070】更に、本実施の形態を用いて、温度=20 ℃、濃度=50、100、150、250mg/dlのショ糖水溶液の旋光度を測定し、この結果を図6に示す。図3において、横軸は濃度、縦軸は消光点になる電流Jである。この図6から線形性も実証した。

【0072】なお、本実施の形態では、磁場の掃引範囲に消光点が存在したが、図5及び(式7)のように、磁場即ち電流Jに対してロックインアンプ10の出力信号 Sが直線的に変化するため、掃引範囲内にに消光点が存在しない場合でも、外挿することによって旋光度を算出できることは明かである。又、このJとSの関係が直線であることから、必ずしも連続的に掃引する必要はなく、少なくとも2点での測定結果から、内挿又は外挿することによって、旋光度を算出できる。これによって測定時間の短縮も可能になる。

【0073】次に、本実施の形態おいて未洗浄で長期放置され透過面が汚染されたサンプルセルを使用して、純水を被検試料として測定した。この場合、J=0.02 Aの時に消光点を示した。これから、サンブルセルの透過面の汚染物質による旋光度dは(式8)、(表1)から

 $d=1.645\times10^{-2}\times10^{2}\times0.05$ $\div0.082[分] \div1.4\times10^{-3}$

となる。このサンプルセルで測定する時は、測定値から dを差し引くことによって補正できる。上記の様に、長 期反復使用する場合でも、旋光度が既知な参照試料も測 定して、この測定値で、被検試料の測定値を補正するこ とにより高精度の測定が可能となる。この操作によっ

40 て、サンブルセルの洗浄又は交換時期は、透過面の透過 率が低下し特定値に至るまで延長することができる。

【0074】以上のように本形態例によれば、被検試料に磁場を印加し、その磁場を振動変調しながら掃引する ことにより、検光子の回転手段が不要になり、高精度、 高信頼性、小型、低価格、かつ維持管理が容易な旋光計 が実現でき、その実用的効果は極めて大きい。

【0075】また、本形態例は第1の実施の形態よりも、高精度に測定できるので、濃度の小さい溶液の旋光度の測定も可能である。また、より光路長の小さい被検50 試料の測定も可能になるので、装置の小型化にも寄与す

る。

【0076】(実施の形態3)本発明の第3の実施の形態を、図7を用いて説明する。

【0077】図7において、1~10は第2の実施例で使用したものと同じ物である。11は検光子ローテーターで、コンピュータ8の指令に基づいて検光子6を回転する。

【0078】本実施の形態例においては、電流源5は信号発生器9の1.3KHzの変調信号を振幅=0.02 Aの振動変調電流信号に変換して、ソレノイドコイル3 に供給しているが、電流は掃引しない。

【0079】本実施の形態においてもロックインアンプ10の出力信号は(式6)の光センサー7の出力信号の角周波数ω成分に相当する、即ち、(式7)に示したSである。従って、このSがゼロになる時が消光点である。

【0080】本実施の形態の動作は、以下のとうりである。コンピュータ8が検光子ローテーター11に指令信号を発し、検光子6を回転させる。この検光子6の角度を横軸に、ロックインアンブ10の出力信号Sを縦軸に 20とると、図5と同じ様な直線が得られる。この時のロックインアンブ10の出力信号Sがゼロになる検光子6の角度を見いだす。この角度が被検試料の旋光度に相当する。

【0081】本実施の形態を用いて、第2の実施の形態 同様、温度=20℃、濃度=50,100,150,2 50mg/d1のショ糖水溶液の旋光度を測定し、図6 と同様の結果を得た。

【0082】従来の技術においては、光ファラデー変調器によって偏光方向を振動変調しながら検光子を回転し、ロックインアンプカ信号すなわちSがゼロになるときの検光子の角度を直読することにより、被検試料の旋光度を測定していた。一方、本実施の形態例においては、被検試料に磁場を印加し、この磁場を振動変調して、ロックインアンプ10の出力信号Sがゼロになる検光子の角度を直読することによって、被検試料の旋光度を測定する。又、この検光子の角度とSの関係が直線であることから、必ずしも連続的に掃引する必要はなく、少なくとも2点での測定結果から、内挿又は外挿することによって、旋光度を算出できることは、実施の形態2と同様である。

【0083】以上のように本実施の形態によれば、被検 試料に磁場を印加し、その磁場を振動変調することによ り、光ファラデー変調器が不要になり、高精度、高信頼 性、小型、低価格、かつ維持管理が容易な旋光計が実現 でき、その実用的効果は極めて大きい。

【0084】なお、本実施の形態例も第2の実施の形態 同様、第1の実施の形態よりも、高精度に測定できるの で、濃度の小さい溶液の旋光度の測定も可能である。ま た。より光路長の小さい被検試料の測定も可能になるの で、装置の小型化にも寄与する。

【0085】(実施の形態4)本発明の第4の実施の形態を、図8を用いて説明する。

【0086】図8において、 $1\sim10$ は第2の実施の形態で使用したものと同じ物である。12は光ファラデー変調器で信号発生器9の1. 3 KH $_2$ の振動変調信号に基づいて、偏光方向を振幅1. 4×10^{-3} で振動変調する。電流源5はコンピュータ8の指令に基づいて、ソレノイドコイル3に供給する電流を掃引する。ロックインアンブ10は、信号発生器9の振動変調信号を参照信号として、光センサー7の出力信号を位相敏感検波する。このロックインアンブ10の出力信号は(式6)の光センサー7の出力信号の角周波数 ω 成分に相当する、即ち、(式7)に示したSである。従って、このSがゼロになる時が消光点である。

【0087】次に本実施の形態例の動作を説明する。コンピュータ8が電流源5に指令信号を発し、ソレノイドコイル4に流す電流を-1.5~1.5Aまで掃引する。この時、横軸にソレノイドコイル4に流す電流J、縦軸にロックインアンブ10の出力信号(任意値)を示すと、図5と全く同じ直線が得られた。従って、第2の実施の形態と同様に、被検試料の旋光度と光ファラデー効果による回転角度が一致することが確認できた。

【0088】更に、本実施の形態例を用いて、温度=20℃、濃度=50,100,150,250mg/d1のショ糖水溶液の旋光度を測定し、図6と同様の結果を得た。これから線形性も実証した。

【0089】なお、本実施の形態でも、磁場即ち電流Jに対してロックインアンプ10の出力信号Sが直線的に30変化するため、必ずしも連続的に掃引する必要はなく、少なくとも2点での測定結果から、内挿又は外挿することによって、旋光度を算出できるのは、第2の実施の形態と同様である。これによって測定時間の短縮も可能になる。

【0090】以上のように本実施の形態によれば、光ファラデー変調器によって偏光方向を微小振幅で振動変調し、被検試料に磁場を印加し、その磁場を掃引することにより、検光子の回転手段が不要になり、高精度、高信頼性、小型、低価格、かつ維持管理が容易な旋光計が実 現でき、その実用的効果は極めて大きい。

【0091】また、本実施の形態例は第2の実施の形態 同様、第1の実施の形態よりも、高精度に測定できるの で、濃度の小さい溶液の旋光度の測定も可能である。ま た、より光路長の小さい被検試料の測定も可能になるの で、装置の小型化にも寄与する。

【0092】なお、本実施の形態では偏光方向の変調を 光ファラデー変調器を用いて行ったが、偏光子2をビエ ゾ素子によって、微小振動回転させても同様の効果が得 られることは言うまでもない。

た、より光路長の小さい被検試料の測定も可能になるの 50 【0093】(実施の形態5)本発明の第5の実施の形

態を、図9を用いて説明する。

【0094】図9において、2~10は第2の実施の形 態で使用したものと同じ物である。13は半導体レーザ 光源で、波長=830nm、強度=10mWの略平行光 を投射している。電流源5は信号発生器9の1、3KH zの変調信号を振幅=0.02Aの振動変調電流信号に 変換して、ソレノイドコイル4' に供給しているが、電 流は掃引しない。14はロックインアンプでいわゆる2 Fモードで動作しており、信号発生器9の変調信号の2 倍の周波数の信号を参照信号として、光センサー7の出 10 力信号を位相敏感検波している。即ち、(式6)におけ る2×ω成分を取り出している。コンピュータ8によっ て、ロックインアンプ10の出力信号をロックインアン プ14の出力信号で規格することによって、被検試料の 旋光度を算出している。この原理を以下に述べる。

【0095】ロックインアンプ10の出力信号は(式 7) に示されたSに相当する。このSは、本実施の形態 例の様に β を固定した場合、T, I, δ が一定の場 合、 α のみ関数であるので、Sから旋光度 α を一意的に 算出できる。ただし、現実的には、被検試料の透過率の 20 違い、サンプルセルの透過窓の汚れ等によりTは変化す る。又、同時に光源強度のゆらぎからI。も変化するこ とから、このSのみからは、高精度の旋光度測定は不可 能である。

【0096】そこで、ロックインアンプ14の出力信号 を利用する。ロックインアンプ14の出力信号をS'と すると次の(式11)のようになる。

[0097]

【数11】

 $S' = T \times I_0 \times \delta^2 / 2$ (式11)

この(式11)で(式7)を除する即ち規格化すると、 次に(式12)に示すXが得られる。

[0098]

【数12】

 $X = 4/\delta \times (\beta - \alpha)$ (式12)

このXはT及びI。を含まないため、これから高精度に 旋光度αを決定することができる。

【0099】次に、本実施の形態例を用いて、温度=2 0°C、濃度=25,50,75,100mg/dlのゲ ルコース水溶液の旋光度を測定した。この手順を以下に 40 述べる。

【0100】まず、純水を被検試料として測定し、検光 子6の角度を微調してXをゼロにする。この時、純水の 旋光度 $\alpha = 0$ であるので、 $\beta = 0$ に調整したことにな る。この状態で、上記の被検試料を測定し、横軸に濃度 を、縦軸にXの絶対値を表しすと図10になる。ゼロを 通るαに比例した直線になる。これから、本実施の形態 例によって、旋光度が測定できることが実証できた。な お、あらかじめ、 $\beta = 0$ に調整したが、これは測定の際 に、被検試料の旋光度の大小、正負を直感的に把握する 50 ら、正確にそのグルコース濃度を反映していることにな

ためだけに行った操作で、必ずしもこの必要はない。

【0101】以上のように本実施の形態によれば、被検 試料に磁場を印加し、その磁場を振動変調し、光センサ - 7 の出力信号の振動変調周波数成分を、その振動変調 周波数の2倍に周波数成分で規格化することにより、高 精度、高信頼性、小型、低価格の旋光計を実現でき、そ の実用的効果は極めて大きい。

【0102】また、本実施の形態は、第2の実施の形態 と違い、電流源5によるソレノイドコイル4'に供給す る電流を掃引する必要ない。従って、ソレノイドコイル 4' に適当な抵抗を直列に接続し、これを直接商用交流 100V電源に接続することによって、電流を電源周波 数で変調できる。これで、電流源5が実現できる。ロッ クインアンプが2つ必要になるが、電流源5を大幅に簡 素化することが可能なため、電流源5とロックインアン ブのコストによっては、第2の実施の形態よりも低価格 で提供できる場合もある。

【0103】なお、本発明では、消光点の位置を基準 に、旋光度を測定したが、(式2)の関係を満たしてい ることから、最明点等ある特定の1点を基準にしても良 い。この際、光センサー、ロックインアンプの直線性、 安定性などを考慮して、最適点を設定する。

【0104】(実施の形態6)第6の実施の形態につい て、図11を用いて以下に詳細に説明する。

【0105】本実施の形態においては、第2の実施の形 態で説明した旋光計で尿を被検試料として測定し、以下 の様にグルコース濃度即ち尿糖を検査した。なお、本実 施の形態では、サンプルセルとして実質光路長L=10 0mmのものを使用した。

【0106】まず、本旋光計のグルコースに対する特性 の確認のために、検量線の作成を行う。20℃の純水 と、この純水を溶媒とし濃度が20、100、200、 300、500mg/dlのグルコース水溶液を調合 し、これらを被検試料として旋光度を測定した。この結 果を図11の白丸に示す、ここで、横軸はグルコース濃 度、縦軸はソレノイドコイル4' に流す電流から換算さ れた旋光度を表す。この結果は、グルコースの589n mの光に対する20℃の水溶液における比旋光度 [α] =50 から、(式9)を用いて計算された結果と一致

【0107】次に、あらかじめ尿分析装置によって、グ ルコース濃度が50mg/dl以下、尿中蛋白質である アルブミンの濃度が10mg/d1以下と判定された尿 の旋光度を測定した。更に、この尿を溶媒とし、濃度が 20、100、200、300、500mg/d1のグ ルコース溶液を調合した、即ち人工的に糖尿を作成し、 これらの旋光度を測定した。この結果を図11の黒丸に 示す。この人工的糖尿の旋光度(黒丸)は、検量線から 1. 5×10⁻¹ 平行移動した直線で表されるととか

(10)

る。

【0108】この尿の旋光度は1.5×10⁻¹ であった。これは尿中に存在するグルコースとアルブミンによる旋光度が単純に加算されたものである。アルブミンの589nmの光に対する20℃の水溶液における比旋光度 [α]は−60°で、これと(式9)から、この尿のアルブミンによる旋光度Arの範囲は以下の様に計算される

19

 $[0109] - 60/10000 \times 0. 1 \times 10 = -6$ $\times 10^{-3}$ $\leq A r \leq 0$

これから、グルコースによる旋光度Guの範囲は以下の 様に計算される。

[0110]

1. 5×10⁻² · ≦Gu≦2. 1×10⁻² · CのGuから(式9)によりグルコース濃度Cgの範囲は次の様に計算される。

【0111】30≦Cg≦42 mg/d1 これは、あらかじめ分析した結果と一致する。

【0112】更に、尿分析装置によって、グルコース濃度が300mg/d1以上、アルブミン濃度が10mg 20/d1以下と判定された尿の旋光度を測定した。この結果、この尿の旋光度は2.2×10⁻¹ を示し、上記と同様にグルコース濃度Cgは次の範囲にあると判定できた。

【0113】440≦Cg≦452 mg/d1 これも、あらかじめ分析した結果と一致する。

【0114】 Cとで、例えばアルブミン濃度が正常値、即ちおよそ10mg/d1以下である尿を検査する場合、尿糖値の異常を300mg/d1以上に設定した時、旋光度が 1.5×10^{-1} 以上の時を、異常と判 30定すれば、12mg/d1程度の誤差しか生じないことになる。

【0115】本実施の形態においても、第2の実施の形態同様、磁場を必ずしも連続的に掃引する必要はなく、少なくとも2点での測定結果から、内挿又は外挿することによって、尿の旋光度を算出できる。これによって測定時間の短縮も可能になる。また、日常的に尿検査を実施し、サンブルセルが汚染された場合でも、旋光度が既知な参照試料も測定して、この測定値で、被検試料の測定値を補正することにより高精度の測定が可能となる。この操作によって、サンブルセルの洗浄又は交換時期は、透過面の透過率が低下し特定値に至るまで延長することができる。特に、家庭用尿検査装置として使用する場合、その維持管理の容易性による普及促進効果は極めて大きい。

【0116】以上のように本実施の形態によれば、試験 紙等の消耗品を使用することなく、アルブミン濃度が正 常値の尿のグルコース濃度を検査することができ、その 実用的効果は極めて大きい。

20

【0117】なお、本実施の形態においては、アルブミン濃度がグルコース濃度に比べて小さい尿のグルコース 濃度を検査する場合について述べたが、グルコース濃度 がアルブミン濃度に比べて小さい尿のアルブミン濃度を 検査するととも上記の方法で可能である。

10 [0118]

【発明の効果】以上説明した様に、本発明によれば、高信頼性、小型、低価格の旋光計及び、消耗品が不要なメンテナンスフリーで、かつ高信頼性、小型、低価格の尿検査装置を実現でき、その実用的効果は極めて大きい。 【図面の簡単な説明】

【図1】本発明の第1の実施の形態の構成図

【図2】本発明の第1の実施の形態における説明図

【図3】本発明の第1の実施の形態における説明図

【図4】本発明の第2の実施の形態の構成図

【図5】本発明の第2の実施の形態における説明図

【図6】本発明の第2の実施の形態における説明図

【図7】本発明の第3の実施の形態の構成図

【図8】本発明の第4の実施の形態の構成図

【図9】本発明の第5の実施の形態における構成図

【図10】本発明の第5の実施の形態における実験結果を示すグラフ

【図11】本発明の第6の実施の形態における説明図

【図12】従来の旋光計を示す図

【図13】従来の旋光計の原理を説明する図

【図14】従来の旋光計を示す図

【図15】従来の旋光計の原理を説明する図 【符号の説明】

1 光源

2 偏光子

3、3' サンプルセル

4、4' ソレノイドコイル

5 電流源

6 検光子

7 光センサー

40 8 コンピュータ

9 信号発生器

10 ロックインアンプ

11 検光子ローテーター

12 光ファラデー変調器

13 半導体レーザ

光センサーの出力信号

【図1】

【図2】

800 1000

[図3]

5

3

2

1

200

400

ショ精運度 (mg/dl)

600

センサーの出力信号 表別。[A]

[図4]

ショ糖温度 (電を/d1)

[図13]

[図12]

(消光点)

【図14】

