Algorithmique avancée : quelques mots sur les algorithmes génétiques (pour le projet)

Marin Bougeret

IUT Montpellier

Problème abordé dans le projet

Problème de la Collecte de Pièces dans une Grille (CPG):

- instance $\mathcal{I} = (p, c_d, k)$:
 - un plateau rect. p où chaque case contient 0 ou 1 pièce
 - ullet une coordonnée de départ dans le plateau c_d
 - un nombre de pas k autorisés
- sortie : une solution s est une séquence $s=(c_0,\ldots,c_k)$ de k+1 coordonnées telle que
 - $c_0 = c_d$ (on doit partir de c_d)
 - c_{i+1} est voisine de c_i (mvt h, b, g ou d à chaque étape)
- but : maximiser f(s), nombre de pièces ramassées en suivant s
- pour s = ((2,1),(2,2),(2,1),(1,1),(0,1))
- f(s) = 2
- $opt(\mathcal{I}) = 3$

Problème abordé dans le projet

- CPG est un problème dit d'optimisation (vs "trier un tableau", ou "décider si un graphe est eulérien" (pb de décision))
- un algorithme A est dit exact ssi pour toute instance \mathcal{I} , $f(A(\mathcal{I})) = opt(\mathcal{I})$ (A calcule une solution optimale)
- CPG est difficile, au sens où on a peu d'espoir d'avoir un algorithme exact de complexité polynomiale

Approches possibles face à un problème d'optimisation difficile

- résolution exacte, mais en temps exponentiel (brute force, ...)
- résolution approchée (en temps polynomial) :
 - avec garantie de performance (algorithmes d'approximation : prouver par ex que $f(A(\mathcal{I})) \geq \frac{opt(\mathcal{I})}{2}$)
 - sans garantie de performance : heuristiques

- algorithme ad-hoc (par exemple, algorithme de type glouton qui à chaque étape va vers la pièce restante la plus proche)
- méta-heuristiques (algorithmes qui fonctionnent pour toute une famille de problèmes):
 - abstraire le problème : le voir comme un ensemble de solutions à "explorer"
 - définir maintenant des algorithmes d'exploration

- instance $\mathcal{I} = ...$
- sortie : une sol. s = (x, y)
- but : maximiser f(x, y)

- algorithme ad-hoc (par exemple, algorithme de type glouton qui à chaque étape va vers la pièce restante la plus proche)
- méta-heuristiques (algorithmes qui fonctionnent pour toute une famille de problèmes):
 - abstraire le problème : le voir comme un ensemble de solutions à "explorer"
 - définir maintenant des algorithmes d'exploration

Hill Climbing

- étant donné une notion de voisinage (qui dépend du pb)
- partir d'un point, puis tant que possible prendre meilleur voisin

- algorithme ad-hoc (par exemple, algorithme de type glouton qui à chaque étape va vers la pièce restante la plus proche)
- méta-heuristiques (algorithmes qui fonctionnent pour toute une famille de problèmes):
 - abstraire le problème : le voir comme un ensemble de solutions à "explorer"
 - définir maintenant des algorithmes d'exploration

Hill Climbing

- ici : en partant de la croix, suit la trajectoire bleue
- pb : peut rester bloqué dans un maximum local (qui n'est pas forcement un maximum global)

- algorithme ad-hoc (par exemple, algorithme de type glouton qui à chaque étape va vers la pièce restante la plus proche)
- méta-heuristiques (algorithmes qui fonctionnent pour toute une famille de problèmes):
 - abstraire le problème : le voir comme un ensemble de solutions à "explorer"
 - définir maintenant des algorithmes d'exploration

Algorithmes génétiques

 étant donnés des mécanismes de croisement, mutation etc. (dépendent du pb)

- algorithme ad-hoc (par exemple, algorithme de type glouton qui à chaque étape va vers la pièce restante la plus proche)
- méta-heuristiques (algorithmes qui fonctionnent pour toute une famille de problèmes):
 - abstraire le problème : le voir comme un ensemble de solutions à "explorer"
 - définir maintenant des algorithmes d'exploration

Algorithmes génétiques

 partir d'une population initiale, la faire évoluer "nbgen" fois, et garder la meilleure solution de la dernière génération

Observation

La nature résout des problèmes d'optimisation!

Exemple

Considérons une espèce animale fixée.

- on définit une fonction de "fitness" d'un individu fit(i) qui mesure à quel point i est adapté à son environnement (fit(i) grand \(\Leftrigorapprox\) i est bien adapté à son environnement)
- la "nature" cherche donc à maximiser la fitness (en découvrant comment ajuster différents paramètres : longueur jambes, écartement des yeux, ...) génération après génération

Observation

La nature résout des problèmes d'optimisation!

Exemple

Considérons une espèce animale fixée.

- Les outils pour calculer la génération suivante sont
 - croisement (production d'un individu qui "hérite" de caractéristique de ses deux parents)
 - mutation
 - sélection (les individus de grande fitness ont plus de chance d'être sélectionnés)

Idée

Appliquer ce schéma d'optimisation à son problème (CPG, ..)

Ingrédients nécessaires

On suppose qu'on dispose d'une notion d'individu, qui sait

- calculer sa solution associée (un individu représente une solution)
- se croiser avec un autre individu pour calculer un fils
- se muter
- évaluer sa fitness

ldée

Appliquer ce schéma d'optimisation à son problème (CPG, ..)

(Méta)-algorithme génétique

```
solution AlgoGen(I){ //I instance
  nbgen = 100; //nb de generations
  pop = creer population initiale
  repeter (nbgen) fois{
    pop = calculerNext(pop); //à partir de
        selections, croisements et mutations
  }
  best = selectionner individu dans pop de
    meilleure fitness
  sol = calculer solution associee à best
}
```

ldée

Appliquer ce schéma d'optimisation à son problème (CPG, ..)

Conclusion

Pour appliquer le méta algorithme génétique à son problème, il faut donc

- 4 définir la notion d'individu, ainsi que
 - calcul de sa solution associée
 - croisement avec un autre individu pour calculer un fils
 - mutation
 - évaluation de la fitness d'un individu
- définir un algorithme pour calculerNext (à partir de sélections, croisements et mutations)

Problème de maximisation d'une fonction

- instance: $\mathcal{I} = (f, a, b)$ $(f \text{ de } [a, b] \subseteq \mathbb{N} \to \mathbb{R})$
- sortie: une solution est un entier s dans [a, b]
- but : maximiser f(s)

1) Définition de la notion d'individu

Par exemple, on définit un individu comme un entier $s \in [a, b]$

- calculer sa solution associée : rien à faire
- ullet croiser s_1 avec s_2 : on définit $s_{\mathit{fils}} = \lfloor \frac{s_1 + s_2}{2} \rfloor$
- se muter : on définit $s_{mut} = s + 1$ ou $s_{mut} = s 1$ (en tirant au hasard) (sauf si s = a ou b alors faire +1 ou -1 seulement)
- evaluer sa fitness : on définit fit(s) = f(s)

2) Définition de calculerNext(pop)

- but : étant donné la génération courante "pop", calculer une génération suivante
- outils :
 - sélection (selon la fitness)
 - croisements
 - mutations
- plusieurs schémas classiques existent!
- détaillons un schéma possible (utilisé dans le projet)

2) Définition de calculerNext(pop) : v1 de calculerNext du projet

- pour tout $i \in pop$, soit $p_i = \frac{fit(i)}{S}$ (avec $S = \sum_i fit(i)$, et avec fit(i) > 0)
- on définit une méthode "individu selection(pop)" qui sélectionne au hasard un individu de pop, de telle sorte que proba(i selectionné) = p; (méthode dit de la roulette)

2) Définition de calculerNext(pop) : v1 de calculerNext du projet

Puis:

- commencer par ajouter un individu de fitness maximum
- répéter |pop| 1 fois:
 - sélection de deux parents à la roulette
 - calcul du croisement
 - calcul de la mutation (avec faible proba)

ldée

Appliquer ce schéma d'optimisation à son problème (CPG, ..)

Conclusion

Pour appliquer le méta algorithme génétique à son problème, il faut donc

- FAIT! définir la notion d'individu, ainsi que
 - calcul de sa solution associée
 - croisement avec un autre individu pour calculer un fils
 - mutation
 - évaluation de la fitness d'un individu
- PAIT! définir un algorithme pour calculerNext (à partir de sélections, croisements et mutations)

ldée

Appliquer ce schéma d'optimisation à son problème (CPG, ..)

Conclusion

Pour appliquer le méta algorithme génétique à son problème, il faut donc

- FAIT! définir la notion d'individu, ainsi que
 - calcul de sa solution associée
 - croisement avec un autre individu pour calculer un fils
 - mutation
 - évaluation de la fitness d'un individu
- 2 FAIT! définir un algorithme pour calculerNext (à partir de sélections, croisements et mutations)

Démo via l'application de Fabien Moutarde (attention : son implémentation des points 1 et 2 peut être différente, mais peu importe!)

Problème CPG

- instance $\mathcal{I} = (p, c_d, k)$
- sortie : une solution s est une séquence $s=(c_0,\ldots,c_k)$ de k+1 coordonnées tq ..
- but : maximiser f(s), nombre de pièces ramassées en suivant s

1) Définition de la notion d'individu

Par exemple, on définit un individu comme une séquence de k pas (qui reste dans le plateau), où un pas $\in \{h, b, g, d\}$.

- calcul de la solution associée s(i): pour l'ex du slide 2, avec i = (d, g, h, h), on obtient s(i) = s
- croisement de i_1 avec i_2 : mélange des chaînes + normalisation (cf td)
- mutation : échange de deux caractères + normalisation (cf td)
- évaluation de la fitness : on définit $fit(i_1) = 1 + 10 * f(s(i))$

Problème CPG

- instance $\mathcal{I} = (p, c_d, k)$
- sortie : une solution s est une séquence $s=(c_0,\ldots,c_k)$ de k+1 coordonnées tq ..
- but : maximiser f(s), nombre de pièces ramassées en suivant s

2) Définition de calculerNext(pop) : v1 de calculerNext du projet

Commet avant!

Conclusion

Bilan du projet

Résumé du travail demandé :

- coder plusieurs types d'individus
- pour chaque type d'individu, coder plusieurs mut/croisements
- coder plusieurs algorithmes de "calculNext"

But final : trouver la combinaison donnant les meilleurs résultats possibles! (essayer de battre le glouton..)

Conclusion

Remarques sur les algorithmes génétiques

Difficulté pour avoir un bon algorithme génétique : ajuster les nombreux degrés de libertés :

- pour la population initiale : partir d'individus "random" ?
 (mais plusieurs façons de les génerer..), d'individus calculés avec un autre algorithme ?
- pour calculNext :
 - pour la selection, d'autres méthodes que la roulette existent (et ne pas être trop élitiste car de mauvais individus peuvent s'avérer intéressants plus tard..)
 - on peut séparer croisements/mutations, ajuster la probabilité de mutation,..

Conclusion

Remarques sur les algorithmes génétiques

Difficulté pour avoir un bon algorithme génétique : ajuster les nombreux degrés de libertés :

- pour les individus :
 - de nombreux codages sont possibles
 - même pour un codage, on peut envisager plusieurs notions de mutation/croisement
- pour les paramètres de l'algo (|pop| et nbgen), on a envie que les deux soient grands, mais pas possible (trop long)..