```
In [200]:
import pandas as pd
import numpy as np
import seaborn as sns
from datetime import date
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
In [201]:
import requests
In [202]:
url ='https://covid19.ncdc.gov.ng/'
In [203]:
data_url = requests.get(url)
In [204]:
data_url
Out[204]:
<Response [200]>
In [205]:
covid_data = pd.read_html(data_url.text)
In [206]:
len(covid_data), type(covid_data)
Out[206]:
(1, list)
In [207]:
covid_data = covid_data[0]
In [208]:
```

covid_naijadata = covid_data.iloc[:,0:]

In [209]:

```
covid_naijadata.head()
```

Out[209]:

	States Affected	No. of Cases (Lab Confirmed)	No. of Cases (on admission)	No. Discharged	No. of Deaths
0	Lagos	3224	2600	582	42
1	Kano	883	714	133	36
2	FCT	447	290	143	14
3	Katsina	308	243	51	14
4	Borno	247	111	111	25

In [210]:

```
headers = [line.lower().replace(' ', '_').replace('no._of_cases_(lab_confirmed)','cases
_confirmed').replace('no._of_cases_(on_admission)','cases_on_addmission').replace('.',
'') for line in covid_naijadata.columns]
covid_naijadata.columns = headers
covid_naijadata.head()
```

Out[210]:

	states_affected	cases_confirmed	cases_on_addmission	no_discharged	no_of_deaths
0	Lagos	3224	2600	582	42
1	Kano	883	714	133	36
2	FCT	447	290	143	14
3	Katsina	308	243	51	14
4	Borno	247	111	111	25

In [211]:

```
TOTAL_CONFIRMED_CASES = covid_naijadata.cases_confirmed.sum()
f"The total number of confirmed CORONAVIRUS CASES in Nigeria is {TOTAL_CONFIRMED_CASES}
."
```

Out[211]:

'The total number of confirmed CORONAVIRUS CASES in Nigeria is 7261.'

In [212]:

```
TOTAL_CASES_ON_ADDMISSION = covid_naijadata.cases_on_addmission.sum() f"The total number of CORONAVIRUS CASES on addmission in Nigeria is {TOTAL_CASES_ON_ADD MISSION}."
```

Out[212]:

^{&#}x27;The total number of CORONAVIRUS CASES on addmission in Nigeria is 5033.'

In [213]:

```
TOTAL_NUMBER_OF_DISCHARGED_PERSONS = covid_naijadata.no_discharged.sum()
f"The total number of discharged person from CORONAVIRUS in Nigeria is {TOTAL_NUMBER_OF
_DISCHARGED_PERSONS}."
```

Out[213]:

'The total number of discharged person from CORONAVIRUS in Nigeria is 200 7.'

In [214]:

```
TOTAL_DEATHS = covid_naijadata.no_of_deaths.sum()
f"The total number of death due to CORONAVIRUS in Nigeria is {TOTAL_DEATHS}."
```

Out[214]:

'The total number of death due to CORONAVIRUS in Nigeria is 221.'

In [215]:

```
STATES_AFFECETD = covid_naijadata['states_affected'].value_counts().sum()
f"The total number of states affected by CORONAVIRUS in Nigeria is {STATES_AFFECETD}."
```

Out[215]:

'The total number of states affected by CORONAVIRUS in Nigeria is 35.'

In [221]:

```
plt.figure(figsize=(20,10))
plt.bar(x=covid_naijadata['states_affected'], height = covid_naijadata['cases_confirme
d'],color='red')
plt.xticks(rotation=90, family='Arial', size=14)
plt.title('TOTAL NUMBER OF CONFIRMED CASES BY STATE')
```

Out[221]:

Text(0.5, 1.0, 'TOTAL NUMBER OF CONFIRMED CASES BY STATE')

In [222]:

```
plt.figure(figsize=(20,10))
plt.bar(x=covid_naijadata['states_affected'], height = covid_naijadata['cases_on_addmis
sion'], color='maroon')
plt.xticks(rotation=90, family='Arial', color='black', size=14)
plt.title('TOTAL NUMBER OF ACTIVE CASES BY STATE')
```

Out[222]:

Text(0.5, 1.0, 'TOTAL NUMBER OF ACTIVE CASES BY STATE')

In [218]:

death_view=covid_naijadata[['states_affected', 'no_of_deaths']]

In [220]:

```
plt.figure(figsize=(10,30))
# Create a pie chart
plt.pie(
    # using data total)arrests
    death_view['no_of_deaths'],
    # with the labels being officer names
    labels=death_view['states_affected'],
    # with no shadows
    shadow=False,
    # with the start angle at 90%
    startangle=90,
    )

# View the plot
plt.tight_layout()
plt.show()
```


In [199]:

```
plt.figure(figsize=(20,5))
plt.bar(x=covid_naijadata['states_affected'], height = covid_naijadata['no_discharged'
], color='green')
plt.xticks(rotation=90, family='Arial', color='black', size=14)
plt.title('TOTAL NUMBER OF ACTIVE CASES BY STATE')
```

Out[199]:

Text(0.5, 1.0, 'TOTAL NUMBER OF ACTIVE CASES BY STATE')

In []: