P3 Collaboration and Competition Report

Learning Algorithm

- The algorithm used here is MADDPG which includes two DDPG agents that share the same actor-critic structures. The following picture is the pseudo code of the MADDPG.

Algorithm 1: Multi-Agent Deep Deterministic Policy Gradient for N agents

for episode = 1 to
$$M$$
 do

Initialize a random process \mathcal{N} for action exploration
Receive initial state \mathbf{x}

for $t=1$ to max-episode-length do

for each agent i , select action $a_i=\mu_{\theta_i}(o_i)+\mathcal{N}_t$ w.r.t. the current policy and exploration
Execute actions $a=(a_1,\ldots,a_N)$ and observe reward r and new state \mathbf{x}'

Store $(\mathbf{x},a,r,\mathbf{x}')$ in replay buffer \mathcal{D}
 $\mathbf{x}\leftarrow\mathbf{x}'$

for agent $i=1$ to N do

Sample a random minibatch of S samples $(\mathbf{x}^j,a^j,r^j,\mathbf{x}'^j)$ from \mathcal{D}

Set $y^j=r_i^j+\gamma\,Q_i^{\mu'}(\mathbf{x}'^j,a'_1,\ldots,a'_N)|_{a'_k=\mu'_k(o^j_k)}$

Update critic by minimizing the loss $\mathcal{L}(\theta_i)=\frac{1}{S}\sum_j\left(y^j-Q_i^{\mu}(\mathbf{x}^j,a^j_1,\ldots,a^j_N)\right)^2$

Update actor using the sampled policy gradient:

$$\nabla_{\theta_i} J \approx \frac{1}{S} \sum_j \nabla_{\theta_i} \boldsymbol{\mu}_i(\sigma_i^j) \nabla_{a_i} Q_i^{\boldsymbol{\mu}}(\mathbf{x}^j, a_1^j, \dots, a_i, \dots, a_N^j) \big|_{a_i = \boldsymbol{\mu}_i(\sigma_i^j)}$$

end for

Update target network parameters for each agent i:

$$\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$$

end for end for

Hyperparameters:

replay buffer size	1e6
minibatch size	128
discount factor (GAMMA)	0.99
soft update of target parameters (TAU)	0.01
learning rate of the actor	1e-4
learning rate of the critic	2e-4
L2 weight decay	0
how often to update the network	1
how many training steps in each network update	1
OUNoise noise decay rate (NOISE_DECAY)	0.9999
OUNoise internal setting	mu=0
	theta=0.15
	sigma=0.2
	scale=1.0

- Neural Networks Structure:
 - DDPG Target and Local Actor Structure
 - Input = (batch, state size = 24)
 - self.fc1 = Linear (state size = 24, 256)
 - RELU
 - self.fc2 = Linear (256, 256)
 - RELU
 - self.fc3 = Linear (256, action size = 2)
 - Tanh
 - DDPG Target and Local Critic Structure
 - Input1 = (batch, state size = 24), Input2 = (batch, action size = 2)
 - fcs1 = Linear (state size, 256)
 - RFII
 - Concatenate (output of fcs1, Input2)
 - fc2 = Linear (256 + action size, 256)
 - RFII
 - Fc3 = Linear (256, 128)
 - RELU
 - Fc3 = Linear (128, 1)

Plot of Rewards

Ideas for Future Work

- Can try to use multiple PPO agents to solve the environment
- Can further investigate different network structure such as adding batch normalization layers, dropout layers or deeper linear layers with skip connection.
- Further optimize hyperparameter settings
- In each update step, the training always starts with agent 0 and then agent 1. We can alternate agent 0 and 1 as the first agent which gets trained.