Learning from zero...

Some issues you might face

Laurence Moroney, Google

Steps to take

- Get as many examples of shoes as possible
- 2. Train using these examples
- 3. Profit!

Steps to take

- Get as many examples of shoes as possible
- 2. Train using these examples
- 3. Profit!

```
Training accuracy: .920
Training accuracy: .935
Training accuracy: .947
Training accuracy: .961
Training accuracy: .977
Training accuracy: .995
Training accuracy: 1.00
```

Steps to take

- Get as many examples of shoes as possible
- 2. Train using these examples
- 3. Profit?

Data

The network 'sees' everything. Has no context for measuring how well it does with data it has never previously been exposed to.

Data Validation Data

The network 'sees' a subset of your data. You can use the rest to measure its performance against previously unseen data.

Data Validation Data Test Data

The network 'sees' a subset of your data. You can use an unseen subset to measure its accuracy while training (validation), and then another subset to measure its accuracy after it's finished training (test).

Data Validation Data

Accuracy: 0.920 Accuracy: 0.800

Test Data

Data

Validation Data

Test Data

Accuracy: 0.999

Accuracy: 0.920

Accuracy: 0.800

Data

Validation Data

Test Data

Accuracy: 0.942

Accuracy: 0.930

Accuracy: 0.925


```
data = tf.keras.datasets.mnist
 training_images, training_labels),
                                     val_images, val_labels) = data.load_data()
training_images = training_images / 255.0
val_images = val_images / 255.0
model = tf.keras.models.Sequential(
    [tf.keras.layers.Flatten(input_shape=(28,28)),
     tf.keras.layers.Dense(20, activation=tf.nn.relu),
     tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
```

import tensorflow as tf

model.fit(training_images, training_labels, epochs=20)

validation_data=(val_images, val_labels)

model.fit(training_images, training_labels,

epochs=20)

```
model.fit(training_images, training_labels,
        validation_data=(val_images, val_labels),
        epochs=20)
```

model.evaluate(test_images, test_labels)

Quiz!