

CRYOGENIC THERMOCOUPLE TABLES

by

Larry L. Sparks, Robert L. Powell, and William J. Hall

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

BOULDER LABORATORIES Boulder, Colorado

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Cryogenics²—Radio Physics²—Radio Engineering²—Astrophysics²—Time and Frequency.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

Analytical Chemistry—Polymers—Metallurgy — Inorganic Materials — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information,³ a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

Building Research—Electronic Instrumentation—Technical Analysis—Product Evaluation—Invention and Innovation—Weights and Measures—Engineering Standards—Vehicle Systems Research.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

Reactor Radiation—Linac Radiation—Applied Radiation—Nuclear Radiation.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C. 20234.

² Located at Boulder, Colorado 80302

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151,

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT NBS REPORT

275.03-2750439

July 1968

9712

CRYOGENIC THERMOCOUPLE TABLES

by

Larry L. Sparks, Robert L. Powell, and William J. Hall

Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

DESCEDING BY BLANK NOT FILMED. PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

		Page
LIST OF FIG	URES	iv
LIST OF TAE	BLES	. vi
Abstract		1
1. Introdu	ction	1
2. Cryosta	at	4
3. Instrum	nentation, Measurement and Materials	6
4. Data Ar	nalysis and Results	10
5. Summa	ry	18
	nces	20
Appendix A	Interim tables and graphs for thermocouple	
	type T, Copper vs constantan	A-1
Appendix B	Interim tables and graphs for thermocouple	
	type E, Chromel vs constantan	B-1
Appendix C	Interim tables and graphs for thermocouple	
	type K, Chromel vs Alumel	C-1
Appendix D	Preliminary tables and graphs for	
	Chromel vs Gold-0.07 atomic	
	percent Iron	D-1
Appendix E	Functional representations and error	
	analysis	E-1

LIST OF FIGURES

		Page
Figure 1.	Thermocouple calibration cryostat .	5
Figure 2.	Thermocouple instrumentation system	7
Figure 3.	Typical Calibration measurement graph	9
Figure 4.	Thermoelectric voltage of Chromel versus gold-0.07 atomic % Fe. Reference junctions at 4, 20, and 76 K.	11
Figure 5.	Thermoelectric voltage of Chromel versus gold-0.07 atomic % Fe. A common reference temperature of zero K	12
Figure 6.	Thermopower of Chromel versus gold-0.07 atomic % Fe. A comparison curve for type T is included	13
Figure 7.	Polynomial coefficients for KP versus Au-0.07 atomic % Fe	16
Figure A-1.	Thermoelectric voltage of thermocouple type T, copper versus constantan	A-2
Figure A-2.	Thermopower of thermocouple type T, copper versus constantan	A-3
Figure A-3.	Thermopower derivative of thermocouple type T, copper versus constantan	A-4
Figure B-I.	Thermoelectric voltage of thermocouple type E, Chromel versus constantan	B-2
Figure B-2.	Thermopower of thermocouple type E, Chromel versus constantan	B-3

List of Figure	es (continued)	Page
Figure B-3.	71	D 4
	E, Chromel versus constantan	B-4
Figure C-1.		
	K, Chromel versus Alumel	C-2
Figure C-2.	Thermopower of thermocouple type K, Chromel	
	versus Alumel	C-3
Figure C-3.	Thermopower derivative of thermocouple type	
	K, Chromel versus Alumel	C-4
Figure D-1.	Thermoelectric voltage of Chromel versus gold-	
	0.07 at. % Fe	D-2
Figure D-2.	Thermopower of Chromel versus gold-0.07	
	at. % Fe	D-3
Figure D-3.	Thermopower derivative of Chromel versus	
	gold-0.07 at. % Fe	D-4
Figure E-1.	Deviations between calculated and experimental	
J	values for thermocouple type T	E-8
Figure E-2.	Deviations between calculated and experimental	
	values for thermocouple type E	E-9
T' T' 2		- ,
Figure E-3.	Deviations between calculated and experimental values for thermocouple type K	E-10
		E-10
Figure E-4.	*	
	values for Chromel versus \underline{Au} -0.07 at. % Fe	E-11

LIST OF TABLES

		Page
Table 1	Thermal conductivity of three thermocouple	-
	materials	3
Table A-1	Thermal voltage, thermopower, and thermo-	
	power derivative for thermocouple type T,	
	copper versus constantan	A- 5
Table B-1	Thermal voltage, thermopower, and thermo-	
	power derivative for thermocouple type E,	
	Chromel versus constantan	B-5
Table C-1	Thermal voltage, thermopower, and thermo-	
	power derivative for thermocouple type K,	
-	Chromel versus Alumel	C- 5
Table D-1	Thermal voltage, thermopower, and thermo-	
	power derivative for thermocouple Chromel	
	versus gold-0.07 at.% iron	D-5
Table E-1	The orthonormal polynomials $F_n(T)$	E-2
Table E-2	Coefficients for a polynomial expansion repre-	
	sentation of the thermocouple data	E-4
Table E-3	Approximate standard deviations (in micro-	
	volts) for various orders of polynomial	
	expansions	E-6
Table E-4	Number of digits necessary in computations	
	to reduce round-off errors below certain	
	limits	E-7
Table E-5	Equivalent voltage errors caused by tempera-	
	ture inaccuracies	E-12

CRYOGENIC THERMOCOUPLE TABLES*

Larry L. Sparks, Robert L. Powell and William J. Hall

Experimental tests between 4 and 280K have been completed on the following thermocouple materials: Chromel, copper, "normal" silver, platinum, silver-28 at. % gold, constantan, Alumel, and gold-(0.02, 0.03, 0.07) at. % Fe. Many thermocouple combinations can be made from the above materials - the four most important being copper vs constantan, Chromel vs constantan, Chromel vs Alumel, and Chromel vs gold-0.07 at. % iron. Results of the last combination are of particular interest for measurements near liquid hydrogen temperatures. The calibration cryostat is described briefly. Special methods of measurement and data analysis have been designed to study and minimize systematic errors. Simple illustrations of these measurement schemes are given. Interim tables and graphs of the thermoelectric voltage and thermopower are given for the four combinations listed above.

Key Words: Cryogenics, gold alloy, thermocouples.

1. Introduction

The rapid expansion of low temperature technology in the last 20 years has created a need for standardized thermocouple calibration tables in the cryogenic temperature range. With the cooperation of the American Society for Testing and Materials and thermocouple manufacturers throughout the country, we have now completed the experimental program that will allow establishment of acceptable standard tables for the materials commonly used at low temperatures. Later these tables will be joined smoothly to the existing high temperature standard tables at the ice point. This will then provide one continuous calibration for each thermocouple type over its entire temperature range of usefulness.

This work was carried out at the National Bureau of Standards under the sponsorship of the National Aeronautics and Space Administration, Space Nuclear Propulsion Office (SNPO-C), Contract R-45.

In addition to the common materials (Chromel, copper, platinum, "normal" silver, constantan, and Alumel, several special materials have been measured. Silver-28 at. % gold was included as a possible replacement for platinum as the reference material below liquid nitrogen temperatures. Three gold-iron alloys were included because they retain a relatively high sensitivity down to, and even below, 10 K.

In 1932 Borelius and co-workers [1] showed that small amounts of transition metals in gold cause high thermopowers at very low temperatures. In the last few years several laboratories have been using various gold-iron alloys as the negative element in thermocouples. The gold-iron alloys are preferable to the previously used gold-cobalt alloys for two

The words Chromel and Alumel are registered trade names. The correct ASA, ASTM, ISA, designations for the relevant thermocouple combinations and materials are as follows:

Type	Elements	Materials, Trade Names
E	EP (+) EN (-)	Chromel, Tophel, T-1 constantan, Advance, Cupron
K	KP (+) KN (-)	Chromel, Tophel, T-1 Alumel, Nial, T-2
. Т	TP (+) TN (-)	copper constantan, Advance, Cupron

Names are usually given in this article because relatively few people are familiar with the designations KP, KN, etc. However, the use of the trade names does not constitute an endorsement of one manufacturer's products. All materials manufacturered in compliance with the established standards are equally suitable.

reasons: 1) they have a higher thermopower at low temperatures, and 2) they are in stable metallurgical solution (unlike the gold-cobalts) and therefore their output does not drift with time or 100 C annealing. The positive element usually has been copper, "normal" silver, or Chromel. We generally recommend the use of Chromel because it has a high positive thermopower in the upper temperature range where the gold-iron thermoelement is no longer strongly negative. This combination has sufficient sensitivity to be useful in the entire range from below 4 to 300 K. An additional advantage of Chromel over copper or "normal" silver is its relatively low thermal conductivity, as shown in table 1 [2].

Table 1.

Thermal Conductivity of Three Thermocouple Materials							
	Thermal Conductivity						
Material	at (10 K) watts m·K	at (273 K) watts m·K					
Cu	870 .	400					
"normal" silver	200	380					
Chromel	4	120					

Until standardized materials and tables become available, users of the gold-iron alloys must perform their own detailed calibrations. Since this is time consuming and expensive, calibrations generally cover only the limited range of the particular experiment. We have now tested three gold-iron alloys against Chromel, platinum, and "normal" silver in the range from 4 to 280 K, but tables in the Appendix are given for only the Chromel vs gold-0.07 atomic percent iron combination.

2. Cryostat

A schematic of our cryostat is shown in figure 1, the critical parts of which are the two inner chambers. They are both surrounded by a high vacuum and a liquid nitrogen bath. The thermal insulation provided by this arrangement allows the use of liquid nitrogen, liquid hydrogen, or liquid helium as the thermocouple reference junction bath. The reference junction for the thermocouples is in the lower chamber. In addition to providing a reference temperature, this bath serves both as a heat sink for all incoming wires and as a source of refrigeration for the upper chamber.

The upper and lower chambers are connected by a tube which provides a wire duct and allows gas conduction between the lower and upper chambers. The variable junctions of the thermocouples are thermally anchored to a large copper block contained in the upper chamber. Refrigeration for the copper block is supplied by gas conduction from the lower chamber and also by conduction along the wires connecting the upper and lower chambers. A stable temperature difference is established between the two thermocouple junctions by balancing the refrigerator power with the power supplied to a heater coil wound on the copper block. Temperature drift of the block during a one-hour run is less than 3 mK.

In order to reduce the heat leak into the upper chamber as much as possible, all incoming wires are thermally tempered at liquid nitrogen temperatures before going into the lower chamber. All wires going into the upper chamber are of course also tempered in the reference cryogen. A thermal shield is between the copper block and the side walls of the upper chamber. An automatic heater control, operating from the output of a thermopile between the block and the shield, controls the temperature of the shield to be within 0.01 K of the block during all runs.

Figure 1 Thermocouple calibration cryostat.

Temperature determinations for the variable junction are made with platinum resistance thermometers when operating between 20 and 280 K and with germanium resistance thermometers when operating between 4 and 20 K. Three of each type of thermometer are actually installed in the upper copper block to provide a check on the primary thermometer and for use in the temperature control system. The temperature of the reference bath is calculated from readings of a single calibrated platinum thermometer whenever liquid hydrogen or liquid nitrogen are being used. The pressure of the inner system is manostatically controlled when these cryogens are used. Whenever liquid helium is being used, the inner system is at normal atmospheric pressure, and the bath temperature is then calculated from readings of the vapor pressure.

3. Instrumentation, Measurement and Materials

A block diagram of the measurement system is given in figure 2. The instrumentation is similar to many low level d.c. measurement systems. A six dial potentiometer is used to measure the thermocouple and germanium thermometer voltages. A G2 Mueller bridge that has been thermally isolated from room temperature fluctuations is used to determine the resistance of the platinum thermometers.

Our method of data analysis requires that we be able to intercompare any of the nineteen thermocouple wires. Out of the many possible combinations, 37 were of special importance. They fall into three groups:

1) four primary thermocouple combinations — i.e., Chromel vs constantan, Chromel vs Alumel, copper vs constantan, and Chromel vs gold—0.07 at.

% iron; 2) eleven calibration combinations — e.g., constantan vs reference platinum; and 3) twenty-two intercomparison combinations — e.g., constantan from one manufacturer vs constantan from another manufacturer.

Figure 2 Thermocouple instrumentation system.

Figure 3 is an illustration of a typical set of voltage measurements used to determine the value of a single thermocouple pair — Chromel vs Au-0.07 at. % Fe in this example. In this figure, the letters represent actual voltage measurement paths, e.g., (A) represents the direct reading of Chromel vs gold-iron, (B) represents Chromel vs platinum, etc. The five voltage determinations are combined as follows to yield the calculated value of Chromel vs gold-iron;

Calculated voltage = $\{2(A) + [(B) + (C)] + [(D) + (E)]\}/4$. The (A) reading is given a weight of 2 since it involves only one reading while the others require two readings.

This measurement scheme enables us to convert at least three types of systematic error into random errors. The random errors from these sources can then be included with the other scatter present in the experimental data. The sources of errors accounted for in this manner are operator prejudice, potentiometer dial inconsistencies, and spurious thermal voltages in the lead wires. The effect of any subconscious tendency of the operator to make the data appear repeatable in a sequence of measurements is eliminated from the final calculated value because computation of the final result involves the algebraic combination of five different voltages whose values vary considerably. In addition to eliminating operator prejudice, the five diverse measurements randomize errors associated with inconsistencies in potentiometer dial readings. Inhomogeneities in extension wires cause small spurious voltages that will change whenever temperature gradients along the wires change. Since a set of voltage readings takes many minutes to complete, variations in spurious voltages tend to be randomized by our method of calculation.

Materials included in this set of calibration wires are Chromel, copper, "normal" silver, platinum, silver-28 at. % gold, constantan,

Figure 3 Typical Calibration measurement graph.

Alumel, and three gold-iron alloys (0.02, 0.03, 0.07 at. % Fe in Au). An industry wide sampling was available for the regular commercial materials; therefore, the results for these materials will be acceptable as standards. An industry-wide sampling for the gold-iron alloys was not available, so the results for these alloys must be considered interim.

4. Data Analysis and Results

As mentioned previously, our data are taken using three different liquids in the reference bath. This allows us to cover the range from 4 to 280 K and still maintain temperature control in the upper block. The following temperature spans were used: liquid helium (4 to 26 K), liquid hydrogen (20 to 90 K), and liquid nitrogen (75 to 280 K). Figure 4 shows a least squares approximation to the experimental data for Chromel vs Au-0.07 at. % Fe before the "range shift constants" are applied. Law of Successive Temperatures [3] for thermocouples states: "If two dissimilar homogeneous metals produce a thermal voltage of \mathbf{E}_1 when the junctions are at temperatures T₁ and T₂ and a thermal voltage of E₂ when the junctions are at T_2 and T_3 , the thermal voltage generated when the junctions are at T₁ and T₂ will be E₁ + E₂. " This law allows all of the voltages to be shifted to a common reference temperature. We call those shifts in voltages the "range shift constants," and they are treated as unknown constants in the least squares computer program. The calibration table is made continuous over the entire range by including the necessary shift constants. The final curves for the temperature dependence of the thermal voltage and thermopower of Chromel vs Au-0.07 at. % Fe are shown in figures 5 and 6 respectively.

Since our method of data analysis is quite different from the usual power series expansion, it will be described briefly. The adjusted

Figure 4 Thermoelectric voltage of Chromel versus.

gold-0.07 atomic % Fe. Reference junctions
at 4, 20, and 76K.

Figure 5 Thermoelectric voltage of Chromel versus

gold-0.07 atomic % Fe. A common reference
temperature of zero K.

Figure 6 Thermopower of Chromel versus gold-0.07 atomic % Fe. A comparison curve for type T is included.

experimental values for the voltages of each thermocouple combination are approximated by a series of orthonormal polynomials in the L₂ norm (least squares), that is,

$$E(T) = \sum_{n=1}^{L} A_n F_n(T)$$

where

E = thermocouple potential in microvolts;

T = temperature in degrees kelvin;

L = the highest order for a best fit, different
for different combinations;

A = constants to be determined by the fitting approximation; and

F_n(T) = orthonormal polynomials, orthonormal on the data points over the range of variation of the independent variable, T.

The conditions for orthonormality of $F_n(T)$ are

$$\sum_{i=1}^{N} F_{m}(T)F_{n}(T) = \delta_{mn} \qquad \delta_{mn} = 0 \text{ if } m \neq n$$

$$= 1 \text{ if } m = n$$

where <u>i</u> is summed over the total number of experimental points, <u>N</u>. It should be stressed that the orthonormal polynomials $F_n(T)$ are determined by values of the <u>independent</u> variable T only. The $F_n(T)$ are generated from a truncated power series

$$F_n(T) = \sum_{j=1}^n C_{jn}T^j.$$

Once the $F_n(T)$ are determined, the coefficients A_n are determined by values of the <u>dependent</u> variable E. Therefore, the $F_n(T)$ are the same

for all combinations, but the A are different for each thermocouple combination. The highest order, L, necessary for a best fit is also different for each combination.

A common problem in the numerical analysis of data fitting by polynomials is selection of the proper order for a best fit—an order high enough to represent the data with no loss of precision, but not so high as to introduce mathematical oscillations. This problem is well solved by our method of fitting by orthonormal polynomials. For true physical phenomena, the absolute values of the coefficients A_n decrease with increasing n as n as n or n or n or n noise, the coefficients are random. Therefore, an inspection of a graph of n vs n shows the noise level and the maximum value of n that is useable. In figure 7 such a graph is shown for the thermocouple KP vs n or n or n the first three points are range shift constants. The coefficient for order 7 is accidentally below the noise level of n as n in n that is n and n is n the coefficient for order

The general polynomials $F_n(T)$ and the A_n and L for each thermocouple combination are given in Appendix E. An error analysis is also included in that appendix.

Thermopowers and thermopower derivatives are calculated from the differentiated expressions for thermal voltage.

Calibration tables for the four primary thermocouple systems result from our experimental research and analysis. These include types T, E, K, and Chromel vs \underline{Au} -0.07 at.% Fe. The tables for types T, E, and K are only minor modifications of the interim internal standard tables by Sparks and Powell, which were in turn modified versions of earlier $\begin{bmatrix} 4 & 5 \end{bmatrix}$ work. The analyzed results are given in graphs and tables in Appendices A through D. The three graphs in each appendix represent the thermal voltage E, thermopower $S \equiv dE/dT$, and thermopower

Figure 7 Polynomial coefficients for KP versus

Au-0.07 atomic % Fe.

derivative dS/dT. Most of them are straightforward and need no explanation. However, the bump in the thermopower derivative for type T (fig. A-3) above 270 K causes an exception. The sudden upturn is probably not a true physical phenomenon, but rather a peculiarity of the data fitting caused by a slight error in voltage at the highest experimental temperature. Deviation plots for each type are included in Appendix E.

Since the essential information on the T, E, and K systems is in the literature, [4,5] the remainder of the discussion will be primarily concerned with the Chromel vs Au-0.07 at. % Fe system. The principal reason for the interest shown in the gold-iron alloys has been their relatively high sensitivity in the liquid hydrogen and liquid helium ranges. Another significant property of the Chromel vs Au-0.07 at. % Fe system is its linearity, clearly seen in figure 5. The maximum voltage deviation from linearity is approximately 5 percent of the full scale voltage. This property is very important in applications where a reliable temperature difference is needed, but it is difficult to maintain a suitable reference temperature. Figure 6 represents the thermopower of the Chromel vs Au-0.07 at. % Fe combination. For purposes of comparison the thermopower of type T is shown by the dashed line. The hump in the thermopower is characteristic of all Au-Fe alloys. The position of the hump is affected by the solute concentration and, in general, the high temperature sensitivity increases and the low temperature sensitivity decreases as the iron concentration is increased. [6,7] A theoretical explanation of the high thermoelectric power at low temperatures has not been fully developed. However, the theories of Kasuya, Bailyn, and de Vroomen [8] appear to offer the most reasonable explanations at present.

The estimated inaccuracies in the independent variable (temperature) for our calibrations are 2.2 mK in the helium range, 2.5 mK in the hydrogen range, and 2.0 mK in the nitrogen range. Inaccuracy of the dependent variable (voltage) varies with the thermocouple being used. For example,

for the Chromel vs \underline{Au} -0.07 at.% Fe system the inaccuracies are 0.034 μ V in the liquid helium range, 0.135 μ V in the hydrogen range, and 0.218 μ V in the nitrogen range. A conservative estimate of the total inaccuracies to be found in the calibration of our particular Chromel vs \underline{Au} -0.07 at.% Fe combination is as follows: \pm 10 mK in the range from 4 to 20 K, \pm 12 mK in the range from 20 to 75 K, and \pm 15 mK in the range from 75 to 280 K. The temperature scales being used are the latest proposed international scale $\begin{bmatrix} 9 \\ 1 \end{bmatrix}$ above 20 K and the NBS acoustical scale below 20 K. The inaccuracies given do not include deviations of these temperature scales from the true thermodynamic scale.

5. Summary

We recommend type E (Chromel vs constantan) thermocouples for general engineering use above liquid hydrogen temperatures. Both elements of this thermocouple have low thermal conductivity and reasonably good homogeneity. This combination may be used over the wide temperature range from the normal boiling point of liquid hydrogen 20 K (the sensitivity is marginal in this region) up to approximately 1000C. For operation below 20 K, Chromel vs Au-0.07 at. % Fe is the most sensitive combination available. The usefulness of this combination is further enhanced by its linear characteristics.

The experimental research done on types T, E, and K qualify the calibration results to be acceptable as national standards; consequently, they will soon be joined to the existing high temperature standard tables to provide calibrations over the entire temperature range of usefulness for each material. The tests on Au-Fe alloys must be continued in order to establish the degree of uniformity between samples of materials from different producers.

An NBS Monograph will be published later with full details on the experimental apparatus, measurement methods, numberical analysis techniques, and thermocouple material characterizations. At that time the tables in the following appendices will be slightly altered so that they will join smoothly at the ice point to the high temperature tables already published. [10]

6. Reference's

- G. Borelius, W. H. Keesom, C. H. Johansson and J. O. Linde,
 Proc. Kon. Akad. Amsterdam 35, 10 (1932).
- 2. G. A. Slack, "Thermal Conductivity of CaF₂, MnF₂, CoF₂, and ZnF₂ Crystals", Phys. Rev. 122, No.5, 1451 (1961).
- 3. D. I. Finch, "General Principles of Thermoelectric Thermometry", <u>Temperature-Its Measurement and Control in Science and Industry</u> (Reinhold, New York, N. Y., 1962), Vol. 3, Part 2.
- 4. R. L. Powell, L. P. Caywood, Jr., and M. D. Bunch, "Low-Temperature Thermocouples", <u>Temperature-Its Measurement</u> and Control in Science and Industry (Reinhold, New York, N. Y., 1962), Vol. 3, Part 2.
- 5. Unpublished data by R. L. Powell and M. D. Bunch, National Bureau of Standards.
- 6. R. Berman, J. C. F. Brock and D. J. Huntley, "Properties of Gold + 0.03 percent (at.) Iron Thermoelements Between 1 and 300 °K and Behavior in a Magnetic Field", Cryogenics 4, 233 (1964).
- 7. D. K. Finnemore, J. E. Ostenson and T. F. Stromberg, "Secondary Thermometer for the 4 to 20°K Range", Rev. Sci. Instr. 36, No. 9, 1369 (Sept. 1965).
- 8. D. K. C. McDonald, <u>Thermoelectricity: An Introduction to the</u>
 Principles (John Wiley & Sons, New York, N. Y., 1962), p.80.
- 9. Private correspondence from Preston-Thomas, NRC, Canada.
 Also see: H. Preston-Thomas and R. E. Bedford, "Practical
 Temperature Scales Between 11K and 273K", Metrologia 4, No.1
 (1968).

References continued

10. H. Shenker, et al., Reference Tables for Thermocouples, NBS

Circular 561, (Gov't. Printing Office, Wash., D.C., 1955);

American Standards Assoc., American Standard for Temperature

Measurement Thermocouples, C 96.1-1964, (Am. Stand. Assoc.,

Pittsburgh, 1964); American Society for Testing and Materials,

Temperature Electromotive Force (EMF) Tables for Thermocouples, E 230-63, (Am. Soc. Test. Mat., Philadelphia, 1963).

Appendix A.

Interim Tables and Graphs for Thermocouple Type T,

Copper vs Constantan.

Figure A-1 Thermoelectric voltage of thermocouple type T, copper versus constantan.

Figure A-2 Thermopower of thermocouple type T, copper versus constantan.

Figure A-3 Thermopower derivative of thermocouple type T, copper versus constantan.

Temp, K	Voltage≖E «V	<u>dE</u> =S dT=S	<u>dS</u> dT wv/K²	Темр.	Voltage≡E 	<u>dE</u> ≡S	dS dT
		417.5	#Y/K	K	4V	₩V/K	μV/K²
1	-0.09	0.147	0.4611	51	343.30	12.345	0.1752
2	0.28	0.586	0.4179	52	355.73	12.519	0.1725
3	1.07	0.985	0.3816	53	368.33	12.690	0.1699
4	2.24	1.351	0.3515	54	381.11	12.859	0.1674
5	3.76	1.690	0.3266	55	394.05	13.025	0.1650
6	5.61	2.006	0.3064	56	407.16	13.189	0.1628
7	7.77	2.304	0.2900	·57	420,43	13.350	0.1607
8	10.21	2.587	0.2770	58	433.86	13.510	0.1586
9 10	12.94	2.859	0.2668	59	447.44	13.668	0.1567
	15.93	3.121	0.2590	60	461.19	13.824	0.1549
11	19.18	3.377	0.2531	61	475.09	13.978	0.1533
12	22.68	3.628	0.2489	62	489,15	14.130	0.1517
13 14	26.43	3.876	0.2459	63	503.35	14.281	0.1502
15	30.43 34.67	4.120	0.2440	64	517.71	14.431	0.1489
15	34.67	4.364	0.2428	65	532.21	14.579	0.1476
16	39.16	4.606	0.2423	66	546.86	14.726	0.1464
17	43.89	4.848	0.2421	67	561.66	14.872	0.1453
18	48.85	5.091	0.2422	68	576.61	15.017	0.1443
19 20	54.07	5.333	0.2425	69	591.70	15.160	0.1434
	59.52	5.576	0.2428	70	606.93	15.303	0.1425
21	65.22	5.818	0.2431	71	622.30	15,445	0.1417
22	71.16	6.062	0.2452	72	637.82	15.587	0.1410
23	77.34	6.305	0.2432	73	653.48	15.727	0.1403
24	83.77	6.548	0.2430	74	669.27	15.868	0.1397
25	90.44	6,791	0.2426	75	685.21	16.007	0.1391
26	97.35	7.033	0.2419	76	701.29	16.146	0.1386
27	104.50	7.274	0.2409	77	717.50	16.284	0.1381
28	111.90	7.515	0.2398	78	733.86	16.422	0.1376
29	119.53	7.754	0.2383	79	750.35	16.559	0.1372
30	127.40	7.991	0.2366	80	766.97	16.696	0.1368
31	135.51	8.227	0.2347	81	783.74	16.833	0.1364
32	143.86	8.461	0.2325	82	800.64	16.969	0.1360
33	152.43	8.692	0.2302	83	817.68	17.105	0.1357
34	161.24	8.921	0.2276	84	834.85	17.241	0.1354
35	170.27	9.147	0.2249	85	852.16	17.376	0.1350
36	179.53	9.371	0.2220	86	869.60	17.511	0.1347
37	189.01	9.591	0.2190	87	887.18	17.645	0.1344
38	198.72	9.809	0.2160	88	904.89	17.779	0.1341
39	208.63	10.023	0.2128	89	922.74	17.913	0.1338
40	218.76	10.234	0.2096	90	940.72	18.047	0.1335
41	229.10	10.442	0.2063	91	958.83	18.180	0.1332
42	239.64	10.647	0.2030	92	977.08	18,314	0.1329
43	250.39	10.848	0.1997	93	995.46	18,446	0.1326
44	261.34	11.046	0.1965	94	1013.97	18.579	0.1324
45	272.48	11.241	0.1932	95	1032.62	18.711	0.1321
46	283.82	11.433	0.1901	96	1051.39	18.843	0.1318
47	295.35	11.621	0.1869	97	1070.30	18.975	0.1315
48 49	307.06	11.807	0.1839	98	1089.34	19.106	0.1312
50	318.96	11.989	0.1809	99	1108.51	19.237	0.1309
~0	331.04	12.168	0.1780	100	1127.82	19.368	0.1306

Table A-1 Thermal voltage, thermopower, and thermopower derivative for thermocouple type T, copper vs constantan.

Temp. K	Voltage≡E «V	<u>dE</u> ≥S dT≥S	۹۲/۲ _۶ مرز		Temp. K	Voltage ≡ E	dE dT=S	4 <u>5</u> 41
101	1147.25	19.498	0.1304		151	۷۷ 2280.58	₩V/K 25.767	₩V/K² 0,1214
102	1166.81	19.629	0.1301		152	2306.40	25.889	0,1212
103	1186.51	19.758	0.1298		153	2332.35	26.010	0.1209
104	1206.33	19.888	0.1295		154	2358.42	26.130	0.1203
105	1226.28	20.017	0.1292		155	2384.61	26.251	0,1205
106 107	1246.37 1266.58	20.147 20.275	0.1290		156	2410.93	26.371	0.1202
108	1286.92	20.275	0.1287		157	2437.36	26,491	0.1200
109	1307.38	20.532	0.1285 0.1282		158	2465.91	26.611	0,1197
110	1327.98	20.660	0.1280		159 160	2490.58 2517.37	26.731 26.850	0.1194 0.1192
111	1348.71	20.788	0.1277		161	2544.28	26.969	0.1189
112	1369.56	20.916	0.1275		162	2571.31	27.088	0.1186
113	1390.54	21.043	0.1273		163	2598.46	27.206	0.1183
114	1411.64	21.170	0.1270		164	2625.72	27.325	0.1181
115	1432.88	21.297	0.1268		165	2653.10	27.442	0.1178
116 117	1454.24 1475.73	21.424 21.551	0.1266 0.1264		166 167	2680.61	27.560	0.1175
118	1497.34	21.677	0.1263		168	2708.22	27.677	0.1172
119	1519.08	21.803	0.1261		169	27 35. 96 2763.81	27.795	0.1169
120	1540.95	21.929	0.1259	-	170	2791.78	27.911 28.028	0.1167 0.1164
121	1562.94	22.055	0.1257		171	2819.87	28,144	0.1161
122	1585.06	22.181	0.1256		172	2848.07	28.260	0.1158
123	1607.30	22.306	0.1254		173	2876.39	28.376	0.1156
124	1629.67	22.431	0.1253		174	2904.82	28.491	0.1153
125	1652.16	22.557	0.1252		175	2933.37	28.606	0.1151
126	1674.78	22.682	0.1250		176	2962.04	28.721	0.1148
127	1697.53	22.807	0.1249		177	2990.81	28.836	0.1146
128	1720.39	22.932	0.1248		178	3019.71	28.950	0.1143
129	1743.39	23.056	0.1247		179	3048.71	29.065	0.1141
130	1766.51	23.181	0.1245		180	3077.84	29.179	0.1139
131	1789.75	23.305	0.1244		181	3107.07	29.292	0.1136
132 133	1813.12	23.430	0.1243		182	3136.42	29.406	0.1134
134	1836.61 1860.23	23.554	0.1242		183	3165.88	29.519	0.1132
135	1883.97	23.678 23.802	0.1241 0.1240		184 185	3195.46	29.632	0.1130
•						3225.15	29.745	0.1128
136	1907.83	23.926	0.1238		186	3254.95	29.858	0.1126
157	1931.82	24.050	0.1237		187	3284.86	29.971	0.1124
138	1955.93	24.1-74	0.1236		188	3314.89	30.083	0.1123
139 140	1980.17 2004.52	24.297 24.420	0.1235 0.1233		189 190	3345.03 3375.28	30.195 30.307	0.1121 0.1119
141	2029.01	24.544	0.1232		191	3405.64	30.419	0.1117
142	2053.61	24.667	0.1230		192	3436.12	30.531	0.1116
143	2078.34	24.790	0.1229		193	3466.71	30.642	0.1114
144	2103.19	24.913	0.1227		194	3497.40	30.753	0.1112
145	2128.17	25.035	0.1226		195	3528.21	30.864	0.1110
146	2153.26	25.158	0.1224		196	3559.13	30.975	0.1108
147	2178.48	25.280	0.1222		197	3590.16	31.086	0.1107
148	2203.82	25.402	0.1220		198	3621.30	31,197	0.1105
149	2229.28	25.524	0.1218		199	3652.56	31.307	0.1103
150	2254.87	25.646	0.1216		200	3683.92	31.417	0.1101

Table A-I (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple type T, copper vs constantan.

Temp.	Voltage≡E	<u>dE</u> ≢S	<u>45</u>	Temp.	Voltage≡E	<u>dE</u> ∍s	<u>dS</u>
K	æV	uV/K	WA/K ₅	ĸ	щV	wV/K	#A/K ₅
201 202 203	3715.39 3746.97 3778.66	31.527 31.637 31.746	0.1099 0.1097 0.1094 0.1092	251 252 253 254	5423.15 5459.87 5496.69 5533.62	36.677 36.776 36.874 36.972	0.0985 0.0985 0.0981 0.0978
204 205	3810.46 3842.38	31.856 31.965	0.1092	255	5570.64	37.070	0.0975
206 207 208 209 210	3874.39 3906.52 3938.76 3971.10 4003.56	32.074 32.182 32.291 32.399 32.506	0.1087 0.1084 0.1082 0.1079 0.1076	256 257 258 259 260	5607.75 5644.97 5682.28 5719.69 5757.20	37.167 37.264 37.360 37.456 37.551	0.0971 0.0966 0.0960 0.0954 0.0947
211 212 213 214 215	4036.12 4068.78 4101.56 4134.44 4167.43	32.614 32.721 32.828 32.934 33.040	0.1073 0.1070 0.1067 0.1063 0.1060	261 262 263 264 265	5794.79 5832.49 5870.27 5908.15 5946.12	37.645 37.739 37.831 37.923 38.014	0.0939 0.0931 0.0922 0.0913 0.0903
216 217 218 219 220	4200.52 4233.72 4267.02 4300.43 4333.95	33.146 33.252 33.357 33.462 33.566	0.1056 0.1053 0.1049 0.1046 0.1042	266 267 268 269 270	5984.17 6022.32 6060.56 6098.88 6137.30	38.103 38.193 38.281 38.368 38.455	0.0894 0.0885 0.0877 0.0870 0.0865
221 222 223 224 225	4367.56 4401.29 4435.11 4469.04 4503.07	33.670 33.774 33.877 33.980 34.083	0.1038 0.1035 0.1031 0.1028 0.1024	271 272 273 274 275	6175.79 6214.37 6253.05 6291.80 6330.65	38.541 38.627 38.714 38.802 38.891	0.0863 0.0865 0.0871 0.0884 0.0903
226 227 228 229 230	4537.21 4571.44 4605.78 4640.22 4674.76	34.185 34.287 34.388 34.490 34.591	0.1021 0.1018 0.1015 0.1012 0.1009	276 277 278 279 280	6369.59 6408.62 6447.74 6486.97 6526.31	38.983 39.078 39.178 39.283 39.397	0.0932 0.0972 0.1024 0.1092 0.1178
231 232 233 234 235	4709.40 4744.14 4778.98 4813.93 4848.97	34.691 34.792 34.892 34.992 35.092	0.1006 0.1004 0.1001 0.0999 0.0998			-	
236 237 238 239 240	4884.11 4919.35 4954.69 4990.13 5025.67	35.192 35.291 35.391 35.490 35.589	0.0996 0.0995 0.0994 0.0993 0.0992		,		
241 242 243 244 245	5061.31 5097.05 5132.89 5168.82 5204.86	35.688 35.787 35.886 35.986 36.084	0.0991 0.0991 0.0990 0.0990				
246 247 248 249 250	5240.99 5277.22 5313.55 5349.99 5386.51	36.183 36.282 36.381 36.480 36.579	0.0989 0.0989 0.0988 0.0987 0.0986				

Table A-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple type T, copper vs constantan.

Appendix B.

Interim Tables and Graphs for Thermocouple Type E,
Chromel vs Constantan.

Figure B-1 Thermoelectric voltage of thermocouple type E, Chromel versus constantan.

Figure B-2 Thermopower of thermocouple type E, Chromel versus constantan.

Figure B-3 Thermopower derivative of thermocouple type E, Chromel versus constantan.

Temp. K	Voltage≡E <i>u</i> V	<u>dE</u> ≡S uV/K	dS dT uV/K²	Temp. K	Voltage≡E <i>u</i> V	<u>dE</u> =S d⊺=S	4 <u>45</u> 41 47/K²
1	0.41	0.660	0.4962	51	522.68	19.001	0.3032
2	1.31	1.149	0.4812	52	541.83	19.303	0.3007
3	2.70	1.623	0.4678	53	561.28	19.603	0.2982
4	4.56	2.085	0.4557	54	581.04	19.900	0.2957
5	6.87	2.535	0.4449	55	601.08	20.194	0.2933
6 7 8 9	9.62 12.81 16.43 20.47 24.92	2.975 3.406 3.829 4.244 4.653	0.4353 0.4267 0.4190 0.4122 0.4061	56 57 58 59 60	621.42 642.05 662.97 684.18 705.67	20.486 20.776 21.063 21.348 21.630	0.2908 0.2884 0.2860 0.2836 0.2813
11	29.77	5.057	0.4006	61	727.44	21.911	0.2790
12	35.03	5.455	0.3957	62	749.49	22.188	0.2767
13	40.68	5.848	0.3914	63	771.82	22.464	0.2745
14	46.72	6.238	0.3875	64	794.42	22.737	0.2722
15	53.15	6.623	0.3839	65	817.29	23.008	0.2701
16	59.97	7.005	0.3807	66	840.43	23.277	0.2679
17	67.16	7.385	0.3778	67	863.84	23.544	0.2658
18	74.74	7.761	0.3751	68	887.52	23.809	0.2638
19	82.69	8.135	0.3726	69	911.46	24.072	0.2618
20	91.01	8.506	0.3703	70	935.66	24.333	0.2598
21	99.70	8.876	0.3681	71	960.13	24.592	0.2579
22	108.76	9.243	0.3660	72	984.85	24.849	0.2560
23	118.18	9.608	0.3640	7 3	1009.82	25.104	0.2542
24	127.97	9.971	0.3621	7 4	1035.05	25.357	0.2524
25	138.12	10.332	0.3602	75	1060.54	25.608	0.2506
26	148.64	10.691	0.3584	76	1086.27	25.858	0.2489
27	159.51	11.049	0.3565	77	1112.25	26.106	0.2473
28	170.73	11.404	0.3546	78	1138.48	26.353	0.2456
29	182.31	11.758	0.3528	79	1164.96	26.598	0.2441
30	194.25	12.110	0.3509	80	1191.68	26.841	0.2425
31	206.53	12.460	0.3490	81	1218.64	27.085	0.2410
32	219.17	12.808	0.3470	82	1245.84	27.323	0.2395
33	232.15	13.154	0.3450	83	1273.28	27.562	0.2381
34	245.47	13.498	0.3430	84	1300.96	27.799	0.2367
35	259.14	13.840	0.3409	85	1328.88	28.035	0.2354
36	273.15	14.179	0.3388	86	1357.03	28.270	0.2340
37	287.50	14.517	0.3366	87	1385.42	28.503	0.2327
38	302.19	14.853	0.3344	88	1414.04	28.735	0.2315
39	317.20	15.186	0.3322	89	1442.89	28.966	0.2302
40	332.56	15.517	0.3299	90	1471.97	29.196	0.2290
41	348.24	15.846	0.3276	91	1501.28	29.424	0.2279
42	364.25	16.172	0.3253	92	1530.82	29.652	0.2267
43	380.58	16.496	0.3229	93	1560.59	29.878	0.2256
44	397.24	16.818	0.3205	94	1590.58	30.103	0.2245
45	414.22	17.137	0.3181	95	1620.79	30.327	0.2234
46	431.51	17.454	0.3156	96	1651.23	30.549	0.2223
47	449.13	17.769	0.3131	97	1681.89	30.771	0.2213
48	467.05	18.081	0.3107	98	1712.77	30.992	0.2202
49	485.29	18.390	0.3082	99	1743.87	31.212	0.2192
50	503.83	18.697	0.3057	100	1775.19	31.430	0.2182

Table B-1 Thermal voltage, thermopower, and thermopower derivative for thermocouple type E, Chromel vs constantan.

Temp. K	Voltage≌E <i>u</i> V	dE d₹=S uV/K	d\$ dT uY/K²	Temp. K	Voltage≡E #V	dE dT=S uV/K	dS dT dV/K²
101	1806.73	31.648	0.2172	151	3642.12	41.423	0'.1760
102	1838.49	31.865	0.2162	152	3683.63	41.599	0.1754
103	1870.46	32.081	0.2153	153	3725.31	41.774	0.1747
104	1902.65	32.295	0.2143	154	3767.18	41.948	0.1741
105	1935.05	32.509	0.2134	155	3809.21	42.122	0.1734
106 107 108 109	1967.67 2000.50 2033.54 2066.79 2100.25	32.722 32.934 33.145 33.355 33.565	0.2125 0.2115 0.2106 0.2097 0.2088	156 157 158 159 160	3851.42 3893.80 3936.35 3979.08 4021.97	42.295 42.467 42.639 42.811 42.981	0.1728 0.1722 0.1716 0.1709 0.1703
111	2133.92	33.775	0.2079	161	4065.04	43.151	0.1697
112	2167.79	53.981	0.2070	162	4108.28	43.321	0.1692
113	2201.88	34.187	0.2062	163	4151.68	43.490	0.1686
114	2236.17	34.393	0.2053	164	4195.26	43.658	0.1680
115	2270.66	34.598	0.2044	165	4239.00	43.825	0.1674
116 117 118 119	2305.36 2340.27 2375.37 2410.68	34.802 35.005 35.207 35.408 35.609	0.2035 0.2027 0.2018 0.2009 0.2001	166 167 168 169 170	4282.91 4326.98 4371.22 4415.63	43.993 44.159 44.325 44.491	0.1668 0.1663 0.1657 0.1651
120 121 122 123 124	2446.19 2481.90 2517.81 2553.91 2590.22	35.809 36.007 36.205 36.402	0.1992 0.1984 0.1975 0.1967	171 172 173 174	4460.21 4504.94 4549.84 4594.91 4640.14	44.655 44.820 44.984 45.147 45.309	0.1646 0.1640 0.1635 0.1629 0.1624
125	2626.72	36.599	0.1958	175	4685.53	45.471	0.1618
126	2663.41	36.794	0.1950	176	4731.08	45.633	0.1613
127	2700.30	36.989	0.1942	177	4776.79	45.794	0.1607
128	2737.39	37.182	0.1933	178	4822.67	45.954	0.1601
129	2774.67	37.375	0.1925	179	4868.70	46.114	0.1596
130	2812.14	37.567	0.1917	180	4914.90	46.274	0.1590
131	2849.80	37.759	0.1909	181	4961.25	46.432	0.1585
132	2887.66	37.949	0.1901	182	5007.76	46.590	0.1579
133	2925.70	38.139	0.1893	183	5054.43	46.748	0.1573
134	2963.94	38.328	0.1885	184	5101.26	46.905	0.1567
135	3002.36	38.516	0.1877	185	5148.24	47.061	0.1562
136	3040.97	38.703	0.1869	186	5195.38	47.217	0.1556
137	3079.76	38.890	0.1861	187	5242.67	47.373	0.1550
138	3118.75	39.075	0.1854	188	5290.12	47.527	0.1544
139	3157.91	39.260	0.1846	189	5337.73	47.681	0.1538
140	3197.27	39.445	0.1838	190	5385.49	47.835	0.1532
141	3236.80	39.628	0.1831	191	5433.40	47.988	0.1526
142	3276.52	39.811	0.1823	192	5481.46	48.140	0.1520
143	3316.42	39.993	0.1816	193	5529.68	48.292	0.1514
144	3356.51	40.174	0.1809	194	5578.05	48.443	0.1508
145 146 147 148 149	3396.77 3437.22 3477.84 3518.64 3559.62 3600.78	40.355 40.534 40.713 40.892 41.070 41.247	0.1802 0.1795 0.1787 0.1781 0.1774 0.1767	195 196 197 198 199 200	5626.56 5675.23 5724.05 5773.02 5822.13 5871.40	48.593 48.743 48.893 49.041 49.189 49.336	0.1502 0.1495 0.1489 0.1483 0.1477 0.1470

Table B-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple type E, Chromel vs constantan.

Temp.	Voltage≡E	<u>dE</u> ≖S	₫ <u>₹</u>	Temp.	Voltage≡E	<u>dE</u> #S	<u>dS</u> dT
K	щV	uV/K	uV/K2	K	ĽΥ	#V/K	uV/K2
201	5920.81	49.483	0.1464	251	8566.06	56.133	0.1225
202	5970.36	49.629	0.1458	252	8622.25	56.255	0.1220
203	6020.06	49.775	0.1451	253	8678.57	56.377	0.1215
204	6069.91	49.919	0.1445	254	8735.01	56.498	0.1210
205	6119.90	50.064	0.1439	255	8791.56	56.619	0.1204
206	6170.04	50.207	0.1432	256	8848.24	56.739	0.1198
207	6220.32	50.350	0.1426	257	8905.04	56.858	0.1191
208	6270.74	50.492	0.1420	258	8961.96	56.977	0.1184
209	6321.30	50.634	0.1413	259	9019.00	57.095	0.1177
210	6372.01	50.775	0.1407	260	9076.15	57.212	0.1169
211	6422.85	50.915	0.1401	261	9133.42	57.329	0.1161
212	6473.84	51.055	0.1395	262	9190.81	57.445	0.1152
213	6524.96	51.194	0.1389	263	9248.31	57.559	0.1143
214	6576.22	51.333	0.1383	264	9305.93	57.673	0.1134
215	6627.63	51.471	0.1377	265	9363.66	57.786	0.1124
216	6679.17	51.608	0.1371	266	9421.50	57.898	0.1114
217	6730.84	51.745	0.1366	267	9479.45	58.009	0.1105
218	6782.66	51.882	0.1360	268	9537.51	58.119	0.1093
219	6834.61	52.017	0.1355	269	9595.69	58.227	0.1082
220	6886.69	52.152	0.1349	270	9653.97	58.335	0.1071
221	6938.91	52.287	0.1344	271	9712.36	58.442	0.1060
222	6991.27	52.421	0.1339	272	9770.85	58.547	0.1049
223	7043.75	52.555	0.1334	273	9829.45	58.651	0.1038
224	7096.38	52.688	0.1329	274	9888.15	58.755	0.1028
225	7149.13	52.821	0.1324	275	9946.96	58.857	0.1018
226	7202.02	52.953	0.1320	276	10005.87	58.958	0.1009
227	7255.04	53.085	0.1315	277	10064.88	59.059	0.1001
228	7308.19	53.216	0.1311	278	10123.98	59.159	0.0994
229	7361.47	53.347	0.1306	279	10183.19	59.258	0.0989
230	7414.88	53.477	0.1302	280	10242.50	59.356	0.0985
251 232 233 234 235	7468.42 7522.09 7575.89 7629.83 7683.88	53.607 53.737 53.866 53.995 54.124	0.1298 0.1295 0.1291 0.1287 0.1284				
236 237 238 239 240	7738.07 7792.39 7846.83 7901.40 7956.10	54.252 54.380 54.507 54.634 54.761	0.1280 0.1277 0.1273 0.1270 0.1267				
241 242 243 244 245	8010.92 8065.87 8120.95 8176.15 8231.48	54.888 55.014 55.140 55.265 55.390	0.1263 0.1260 0.1257 0.1253 0.1250				
246 247 248 249 250	8286.93 8342.51 8398.21 8454.04 8509.99	55.515 55.639 55.763 55.887 56.010	0.1246 0.1242 0.1238 0.1234 0.1230				

Table B-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple type E, Chromel vs constantan.

Appendix C.

Interim Tables and Graphs for Thermocouple Type K,

Chromel vs Alumel.

Figure C-1 Thermoelectric voltage of thermocouple type K, Chromel versus Alumel.

Figure C-2 Thermopower of thermocouple type K,
Chromel versus Alumel.

Figure C-3 Thermopower derivative of thermocouple type K, Chromel versus Alumel.

Temp.	Voltage≡E «V	dE dT≈S uV/K	<u>dS</u> dT <u>dV/K</u> 2	Temp.	Vo!tage≡E #V	<u>dE</u> =S 47/K	47/K ²
1	0.30	0.382	0.1559	51	276.73	10.940	0:2066
2	0.77	0.541	0.1627	52	287.77	11.146	0:2056
3	1.39	0.707	0.1689	53	299.02	11.351	0:2045
4	2.18	0.879	0.1748	54	310.47	11.555	0:2035
5	3.15	1.056	0.1801	55	322.13	11.758	0:2024
6 7 8 9	4.30 5.63 7.15 8.86 10.78	1.239 1.426 1.618 1.814 2.014	0.1851 0.1897 0.1939 0.1978 0.2013	56 57 58 59	333.99 346.05 358.31 370.77 383.43	11.960 12.161 12.360 12.559 12.757	0.2013 0.2003 0.1993 0.1982 0.1972
11	12.89	2.217	0.2045	61	396.28	12.953	0.1962
12	15.21	2.423	0.2075	62	409.33	13.149	0.1952
13	17.74	2.631	0.2101	63	422.58	13.544	0.1942
14	20.48	2.843	0.2124	64	436.02	13.557	0.1932
15	23.42	3.056	0.2146	65	449.65	13.750	0.1922
16	26.59	3.272	0.2164	66	463.48	13.922	0.1912
17	29.97	3.489	0.2181	67	477.50	14.113	0.1903
18	33.57	3.708	0.2195	68	491.70	14.302	0.1894
19	37.38	3.928	0.2207	69	506.10	14.491	0.1884
20	41.42	4.149	0.2218	70	520.69	14.679	0.1875
21	45.68	4.371	0.2227	71	535.46	14.866	0.1866
22	50.17	4.594	0.2234	72	550.42	15.053	0.1857
23	54.87	4.818	0.2239	73	565.56	15.238	0.1849
24	59.80	5.042	0.2245	74	580.89	15.422	0.1840
25	64.96	5.267	0.2246	75	596.41	15.606	0.1832
26	70.34	5.491	0.2247	76	612.11	15.789	0.1823
27	75.94	5.716	0.2248	77	627.99	15.971	0.1815
28	81.77	5.941	0.2247	78	644.05	16.152	0.1807
29	87.82	6.165	0.2245	79	660.29	16.332	0.1799
30	94.10	6.390	0.2242	80	676.71	16.512	0.1791
31	100.60	6.614	0.2239	81	693.31	16.690	0.1784
32	107.33	6.837	0.2234	182	710.09	16.868	0.1776
33	114.28	7.061	0.2229	83	727.05	17.046	0.1769
34	121.45	7.283	0.2223	84	744.18	17.222	0.1761
35	128.84	7.505	0.2217	85	761.49	17.398	0.1754
36 37 38 39	136.46 144.29 152.35 160.63 169.12	7.727 7.947 8.167 8.386 8.604	0.2210 0.2202 0.2194 0.2186 0.2177	86 87 88 89	778.98 796.64 814.47 832.48 850.66	17.575 17.747 17.921 18.094 18.266	0.1747 0.1740 0.1733 0.1726 0.1719
41	177.84	8.821	0.2168	91	869.01	18.438	0.1712
42	186.77	9.038	0.2159	92	887.53	18.608	0.1706
43	195.91	9.253	0.2149	93	906.23	18.779	0.1699
44	205.27	9.468	0.2139	94	925.09	18.948	0.1693
45	214.85	9.681	0.2129	95	944.13	19.117	0.1686
46	224.63	9.893	0.2119	96	963.33	19.286	0.1680
47	234.63	10.105	0.2109	97	982.70	19.453	0.1674
48	244.84	10.315	0.2098	98	1002.23	19.620	0.1667
49	255.26	10.524	0.2088	99	1021.94	19.787	0.1661
50	265.89	10.733	0.2077	100	1041.81	19.952	0.1655

Table C-1 Thermal voltage, thermopower, and thermopower derivative for thermocouple type K, Chromel vs Alumel.

Temp.	-	dE dT=S	<u>dS</u> dT	•	Temp.	-	dE dT=S	dS dT
ĸ	μV	#V/K	#V/K2		K	μV	#A\K	#V/K2
101	1061.84	20.118	0.1649		151	2261.72	27.636	0.1357
102	1082.04	20.282	0.1643		152	2289.42	27.772	0.1351
103 104	1102.41 1122.93	20.446 20.610	0.1637 0.1631		153 154	2317.26 2345.23	27.906 28.041	0.1345
105	1143.62	20.772	0.1625		155	2373.34	28.174	0.1333
106	1164.48	20.935	-0.1619		156	2401.58	28.307	0.1327
107	1185.49	21.096	0.1613		157	2429.96	28.440	0.1321
108	1206.67	21.257	0.1607		158	2458.46	28.572	0.1315
109	1228.01	21.418	0.1602		159	2487.10	28.703	0.1309
110	1249.51	21.578	0.1596		160	2515.87	28.833	0.1303
111	1271.16	21.737	0.1590		161	2544.77	28,963	0.1297
112 113	1292.98 1314.95	21.896 22.054	0.1584 0.1579		162 163	2573.79 2602.95	29.093 -29.222	0.1291 0.1285
114	1337.09	22.211	0.1573		164	2632.24	29.350	0.1278
115	1359.38	22.368	0.1567		165	2661.65	29.477	0.1272
116	1381.82	22.525	0.1561		166	2691.19	29.604	0.1266
117	1404.43	22.681	0.1556		167	2720.86	29.730	0.1260
118 119	1427.18 1450.10	22.836 22.991	0.1550 0.1544		168 169	2750.65 2780.57	29.856 29.981	0.1254 0.1248
120	1473.16	23.145	0.1538		170	2810.61	30.106	0.1241
121	1496.39	23.298	0.1533		171	- 2840.78	-30.229	0.1235
122	1519.76	23.451	0.1527		172	2871.07	30.353	0.1229
123	1543.29	23.604	0.1521		173	2901.49	30.475	0.1223
124 125	1566.97 1590.80	23.756 23.907	0.1516 0.1510		174 175	2932.02 2962.68	30.597 30.719	0.1217 0.1210
125	1550.60	23,507						
126	1614.78	24.058	0.1504		176	2993.46	30.839	0.1204 0.1198
127 128	1638.91 1663.20	24.208 24.357	0.1498 0.1493		177 178	3024.36 3055.38	30.959 31.079	0.1192
129	1687.63	24.506	0.1487		179	3086.52	31,198	0.1185
130	1712.21	24.655	0.1481		180	3117.77	31.316	0.1179
131	1736.94	24.802	0.1475		181	3149,15	31.433	0.1173
132	1761.81	24.950	0.1470		182	3180.64	31.550	0.1166
133	1786.84	25.096	0.1464 0.1458		183 184	3212.25 3243.97	31.667 31.782	0.1160 0.1154
1 34 1 3 5	1812.01 1837.32	25.242 25.388	0.1452		185	3275.81	31.898	0.1147
						**** 7 77	3 2 012	0.1141
136 137	1862.78 1888.39	25.533 25.677	0.1446 0.1441		186 187	3307.77 3339.84	32.012 32.126	0.1135
138	1914.14	25.821	0.1435		188	3372.02	52.239	0.1128
139	1940.03	25.964	0.1429		189	3404.32	32.351	0.1122
140	1966.06	26.107	0.1423		190	3436.72	32.463	0.1116
141	1992.24	26.249	0.1417		191	3469.24	32.575	0.1109
142	2018.56	26.390 26.531	0.1411 0.1405		192 193	3501.87 3534.61	32.685 32.795	0.1103 0.1097
143 144	2045.02 2071.62	26.671	0.1399		194	3567.46	32.905	0.1090
145	2098.37	26.811	0.1593		195	3600.42	33.013	0.1084
146	2125.25	26,950	0.1387		196	3633.49	33.121	0.1077
147	2152.26	27.088	0.1381		197	3666.66	33.229	0.1071
148 149	2179.42 2206.72	27.226 27.363	0.1375 0.1370		198 199	3699.95 3733.33	33.335 33.442	0.1064 0.1058
150	2234.15	27.500	0.1364		200	3766.83	33.547	0.1052
- •								

Table C-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple type K, Chromel vs Alumel.

Temp,	Voltage≡E	<u>dE</u> ≖S	<u>d\$</u>	Temp.	Voltage≖E	<u>dE</u> ≡S	dS d⊺
ĸ	ΨV	uY/K	KV/K2	K	щ¥	≝ V/K	uV/K²
201	3800,43	33.652	0.1045	-251	5600.01	38.058	0.0717
202	5834,13	33.756	0.1039	252	5638.10	38.129	0.0710
203	3867,94	33.860	0.1032	253	5676.26	38.200	0.0703
204	3901,85	33.962	0.1026	254	5714.50	38.270	0.0696
205	3935,86	34.065	0.1019	255	5752.80	38.339	0.0690
206	3969.98	34.166	0.1013	256	5791.18	38.407	0.0683
207	4004.20	34.267	0.1006	257	5829.62	38.475	0.0676
208	4038.51	34.367	0.0999	258	5868.13	58.543	0.0669
209	4072.93	34.467	0.0993	259	5906.70	38.609	0.0661
210	4107.45	34.566	0.0986	260	5945.34	38.675	0.0654
211	4142.06	34.664	0.0980	261	5984.05	38.740	0.0647
212	4176.78	34.762	0.0973	262	6022.82	38.804	0.0639
213	4211.59	34.859	0.0967	263	6061.66	38.868	0.0632
214	4246.49	34.955	0.0960	264	6100.56	38.931	0.0624
215	4281.50	35.051	0.0954	265	6139.52	38.993	0.0616
216	4316.60	35.146	0.0947	266	6178.54	39.054	0.0608
217	4351.79	35.240	0.0940	267	6217.63	39.114	0.0600
218	4387.08	35.334	0.0934	268	6256.77	39.174	0.0591
219	4422.46	35.427	0.0927	269	6295.97	39.232	0.0582
220	4457.93	35.520	0.0921	270	6335.24	39.290	0.0573
221	4493.50	35.611	0.0914	271	6374.55	39.347	0.0564
222	4529.15	35.702	0.0907	272	6413.93	39.403	0.0554
223	4564.90	35.793	0.0901	273	6453.36	39.458	0.0544
224	4600.74	35.883	0.0894	274	6492.84	39.512	0.0534
225	4636.67	35.972	0.0888	275	6532.38	39.565	0.0523
226	4672.68	36.060	0.0881	276	6571.97	39.616	0.0512
227	4708.79	36.148	0.0874	277	6611.62	39.667	0.0501
228	4744.98	36.235	0.0868	278	6651.31	39.716	0.0489
229	4781.25	36.321	0.0861	279	6691.05	39.765	0.0476
230	4817.62	36.407	0.0855	280	6730.84	39.812	0.0463
231 232 233 234 235	4854.07 4890.60 4927.22 4963.93 5000.71	36.492 36.577 36.661 36.744 36.826	0.0848 0.0842 0.0835 0.0828 0.0822				
236 237 238 239 240	5037.58 5074.53 5111.56 5148.67 5185.86	36.908 36.989 37.070 37.150 37.229	0.0815 0.0809 0.0802 0.0796 0.0789				
241 242 243 244 245	5223.12 5260.47 5297.90 5335.40 5372.97	37.308 37.386 37.463 37.540 37.616	0.0783 0.0776 0.0770 0.0763 0.0756				
246 247 248 249 250	5410.63 5448.36 5486.16 5524.04 5561.98	37.691 37.766 37.840 37.913 37.986	0.0750 0.0745 0.0737 0.0730 0.0723				

Table C-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple type K, Chromel vs Alumel.

Appendix D.

Preliminary Tables and Graphs for Chromel vs Gold-0.07

Atomic Percent Iron

Figure D-1 Thermoelectric voltage of Chromel versus gold-0.07 at. % Fe.

Figure D-2 Thermopower of Chromel versus gold-0.07 at. % Fe.

Figure D-3 Thermopower derivative of Chromel versus gold-0.07 at.% Fe.

Temp.	Voltage≡E	<u>dE</u> ≠S	<u>dS</u>	Temp.	Voltage≡E	<u>dE</u> ≠S	<u>dS</u>
K	ď۷	#V/K	#A/Ks	K	щV	#4/K	#A/Ks
1	7.86	8.645	1.5000	51	785.00	16.402	0.0476
2	17.21	10.035	1.2833	52	801.42	16.450	0.0484
3	27.86	11.220	1.0917	53	817.89	16.498	0.0492
4	39.59	12.226	0.9231	54	834.42	16.548	0.0497
5	52.26	13.073	0.7749	55	850.99	16.598	0.0502
6 7 8 9	65.69 79.78 94.40 109.45 124.86	13.782 14.369 14.852 15.243 15.555	0.6454 0.5325 0.4345 0.3499 0.2772	56 57 58 59 60	867.61 884.29 901.01 917.79 934.61	16.648 16.699 16.750 16.801 16.852	0.0505 0.0508 0.0509 0.0510 0.0510
11	140.54	15.801	0.2151	61	951.49	16.903	0.0509
12	156.44	15.989	0.1625	62	968.42	16.953	0.0508
13	172.50	16.128	0.1183	63	985.40	17.004	0.0507
14	188.68	16.228	0.0814	64	1002.43	17.055	0.0505
15	204.94	16.293	0.0509	65	1019.51	17.105	0.0503
16	221.26	16.331	0.0262	66	1036.64	17.155	0.0501
17	237.60	16.347	0.0064	67	1053.82	17.205	0.0498
18	253.95	16.346	-0.0091	68	1071.05	17.255	0.0495
19	270.29	16.330	-0.0209	69	1088.33	17.304	0.0493
20	286.60	16.305	-0.0295	70	1105.66	17.354	0.0490
21	302.89	16.272	-0.0354	71	1123.03	17.402	0.0487
22	319.15	16.235	-0.0389	72	1140.46	17.451	0.0484
23	335.36	16.195	-0.0406	73	1157.94	17.499	0.0481
24	351.54	16.154	-0.0406	74	1175.46	17.547	0.0478
25	367.67	16.114	-0.0394	75	1193.03	17.595	0.0476
26	383.77	16.076	-0.0371	76	1210.65	17.642	0.0473
27	399.82	16.040	-0.0339	77	1228.31	17.689	0.0470
28	415.85	16.008	-0.0301	78	1246.03	17.736	0.0467
29	431.84	15.980	-0.0258	79	1263.79	17.783	0.0464
30	447.81	15.957	-0.0212	80	1281.59	17.829	0.0461
31	463.76	15.938	-0.0164	81	1299.44	17.875	0.0458
32	479.69	15.924	-0.0115	82	1317.34	17.921	0.0456
33	495.61	15.915	-0.0065	83	1335.29	17.966	0.0453
34	511.52	15.911	-0.0017	84	1353.28	18-011	0.0450
35	527.43	15.912	0.0031	85	1371.31	18.056	0.0447
36	543.35	15.917	0.0077	86	1389.39	18.101	0.0444
37	559.27	15.927	0.0121	87	1407.51	18.145	0.0441
38	575.20	15.941	0.0163	88	1425.68	18.189	0.0438
39	591.15	15.960	0.0203	89	1443.89	18.233	0.0435
40	607.12	15.982	0.0239	90	1462.14	18.276	0.0432
41	623.12	16.007	0.0273	91	1480.44	18.319	0.0429
42	639.14	16.036	0.0305	92	1498.78	18.362	0.0426
43	655.19	16.068	0.0334	93	1517.16	18.404	0.0422
44	671.28	16.103	0.0360	94	1535.59	18.446	0.0419
45	687.40	16.140	0.0383	95	1554.06	18.488	0.0416
46 47 48 49 50	703.56 719:76 736.00 752.29 768.62	16.180 16.221 16.264 16.309 16.355	0.0404 0.0422 0.0439 0.0453 0.0465	.96 97 98 99	1572.56 1591.11 1609.70 1628.34 1647.01	18.529 18.570 18.611 18.651 18.691	0.0412 0.0409 0.0405 0.0402 0.0398

Table D-1 Thermal voltage, thermopower, and thermopower derivative for thermocouple Chromel vs gold-0.07 at.% iron.

Temp.	Voltage#E	dE dT=S	d∑ dĭ dS		Temp.	_	dE dT=S	dS d⊺,
K	μV	u ∀/K	#A/K		K	«Y	#V/K	μV/K²
101 102	1665.72 1684.47	18.731 18.770	0.0394 0.0391		151 152	2644.69 2665.02	20.320 20.346	0.0263 0.0261
103	1703.26	18.809	0.0387		153	2685.38	20.372	0.0259
104 105	1722.09 1740.95	18.848	0.0383		154	2705.76	20.398	0.0257
		18.886	0.0380		155	2726.18	20.423	0.0255
106 107	1759.86 1778.80	18.924 18.961	0.0376 0.0372		156 157	2746.61 2767.07	20.449	0.0253
108	1797.78	18.998	0.0368		158	2787.56	20.474 20.499	0.0251 0.0249
109	1816.80	19.035	0.0365		159	2808.07	20.524	0.0246
110	1835.85	19.071	0.0361	-	160	2828.61	20.548	0.0244
111	1854.94	19.107	0.0357		161	2849.17	20.573	0.0242
11 <u>2</u> 113	1874.06 1893.22	19.143 19.178	0.0354 0.0350		162	2869.75	20.597	0.0240
114	1912.42	19.213	0.0347		163 164	2890.36 2910.99	20.621 20.644	0.0237 0.0235
115	1931.65	19.247	0.0343		165	2931.65	20.668	0.0233
116	1950.91	19.281	0.0340		166	2952.33	20.691	
117	1970.21	19.315	0.0337		167	2973.03	20.714	0.0230 0.0228
811	1989.54	19.349	0.0333		168	2993.76	20.736	0.0226
119 120	2008.91 2028.31	19.382 19.415	0.0330 0.0327		169 170	3014.50	20.759	0.0223
						3035.27	20.781	0.0221
121 122	2047.74 2067.20	19.447 19.480	0.0324 0.0321		171	3056.06	20.803	0.0219
123	2086.70	19.512	0.0319		172 173	3076.88 3097.71	20.825 20.846	0.0216 0.0214
124	2106.23	19.543	0.0316		174	3118.57	20.867	0.0212
125	2125.78	19.575	0.0313		175	3139.45	20.888	0.0209
126	2145.37	19.606	0.0311		176	3160.35	20.909	0.0207
127 128	2165.00 2184.65	19.637 19.668	0.0308 0.0306		177	3181.27	20.930	0.0205
129	2204.33	19.698	0.0304		178 179	3202.21	20.950	0.0203
130	2224.04	19.728	0.0301		180	3223.17 3244.15	20.970 20.990	0.0201 0.0199
131	2243.79	19.758	0.0299					
132	2263.56	19.788	0.0297		181 182	3265.15 3286.17	21.010 ° 21.030	0.0197 0.0195
133	2283.36	19.818	0.0295		183	3307.21	21.049	0.0193
134 135	2303.20 2323.06	19.847 19.876	0.0293 0.0291		184	3328.27	21.068	0.0191
					185	3349.34	21.088	0.0190
136	2342.95	19.905	0.0289		186	3370.44	21.106	0.0188
137 138	2362.87 2382.82	19.934 19.963	0.0288 0.0286		187	3391.56	21.125	0.0187
139	2402.80	19.991	0.0284		188 189	3412.69 3433.85	21.144	0.0185
140	2422.80	20.020	0.0282		190	3455.02	21.162 21.180	0.0184 0.0182
	2442.83	20.048	0.0281		191	3476.21	21,199	0.0181
142	2462.90	20.076	0.0279		192	3497.41	21.217	0.0180
143 144	2482.99 2503.10	20.104 20.131	0.0277 0.0275		193	3518.64	21.235	0.0178
145	2525.25	20.159	0.0274		194 195	3539.88 3561,14	21.252 21.270	0.0177 0.0176
146	2543.42	20.186	0.0272					
147	2563.62	20.213	0.0270		196 197	3582.42 3603.72	21.288 21.305	0.0175 0.0174
148	2583.85	20.240	0.0268		198	3625.03	21.322	0.0174
149 150	2604.10	20.267	0.0267		199	3646.36	21.340	0.0172
100	2624.38	20.293	0.0265		200	3667.71	21.357	0.0171

Table D-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple Chromel vs gold-0.07 at.% iron.

Temp.	Voltage#E	<u>dE</u> ≢S	dS dT	Temp.	Voltage≡E	<u>dE</u> #S	<u>dS</u>
K	٧V	#V/K	wV/K ²	K	μV	#V/K	#V/K2
201	3689.08	21.374	0.0170	251	4775.99	22.040	0.0104
202	3710.46	21.391	0.0169	252	4798.03	22.050	0.0103
203	3731.86	21-408	0.0168	253	4820.09	22.060	0.0102
204	3753.27	21.424	0.0167	254	4842.15	22.071	0.9100
205	3774.71	21.441	0.0166	255	4864.23	22.081	0.0099
206	3796.16	21.457	0.0164	256	4886.31	22.090	0.0097
207	3817.62	21.474	0.0163	257	4908.41	22.Ý00	0.0094
208 209	3839.10 3860,60	21.490	0.0162	258	4930.51	22.109	0.0091
210	5882.12	21.506	0.0161	259	4952.63	22.118	0.0088
210		21.522	0.0159	260	4974.75	22,127	0.0085
211	3903.65	21.538	0.0158	261	4996.88	22,135	0.0081
212	3925.19	21.554	0.0157	262	5019,03	22,143	0.0076
213	3946.75	21.569	0.0155	263	5041.17	22.150	0.0072
214	3968.33	21.585	0.0154	264	5063.32	22.157	0.0067
215	3989.92	21.600	0.0152	265	5085.48	22.164	0.0062
216	4011.53	21.615	0.0150	266	5107.64	22.170	0.0057
217	4033.15	21.630	0.0148	267	5129.82	22.175	0.0053
218	4054.79	21.645	0.0147	268	5152.00	22.180	0.0049
219	4076.44	21.659	0.0145	269	5174.18	22,185	0.0046
220	4098.11	21.674	0.0143	270	5196.37	22.190	0.0044
221	4119.79	21.688	0.0141	271	5218.56	22.194	0.0044
222	4141.49	21.702	0.0139	272	5240.75	22.198	0.0046
223	4163.19	21.716	0.0137	273	5262.96	22.203	0.0052
224	4184.92	21.729	0.0135	274	5285.16	22.209	0.0052
225	4206.65	21.743	0.0133	275	5307.37	22.216	0.0075
226	4228.40	21.756	0.0131	276	5330 S0	22.224	
227	4250.17	21.769	0.0129	277	5329.59 5351.83	22.224	0.0095
228	4271.94	21.782	0.0127	278	5374.06	22.235 22.248	0.0122
229	4293.73	21.794	0.0125	279	5396.32	22.266	0.0157
230	4315.53	21.807	0.0123	280	5418.60	22.290	0.0204 0.0262
231	4337.34	21.819	0.0121				
232	4359.17	21.831	0.0120				
233	4381.00	21.843	0.0118				
234	4402.85	21.855	0.0117				
235	4424.71	21.866	0.0115				
236	4446.59	21.878	0.0114				
237	4468.47	21.889	0.0113				
238	4490.36	21.900	0.0112				
239	4512.27	21.911	0.0111				
240	4534.19	21.922	0.0110				
241	4556.11	21.933	0.0109				
242	4578.05	21.944	0.0109				
243	4600.00	21.955	0.0108				
244	4621.96	21.966	0.0107				
245	4643.94	21.977	0.0107				
246	4665.92	21.987	0.0107				
247	4687.91	21.998	0.0106				
248	4709.91	22.009	0.0106				
249	4731.93	22.019	0.0105				
250	4753.95	22.030	0.0105				

Table D-1 (Cont.) Thermal voltage, thermopower, and thermopower derivative for thermocouple Chromel vs gold-0.07 at.% iron.

Appendix E.

Functional Representations and Error Analyses

As described in the "Data Analysis and Results" section, the thermal voltage can be represented by

$$E(T) = \sum_{n=1}^{L} A_n F_n(T),$$

where the orthonormal polynomials $F_n(T)$ are given by

$$F_n(T) = \sum_{j=1}^n C_{jn} T^j.$$

The $F_n(T)$ (up to n = 14) are given in table E-I to twelve significant figures and are in a form convenient for rapid computation and minimum round-off error. Sometimes, but not always (as explained next), all fourteen functions are required to obtain a best fit.

In general, the more complex the shape of a curve, the more terms are required in an expansion. The curve for type K is relatively simple; only 10 polymonials are required. Curves for type T and KP vs Au-7 Fe are more complex; they require 14 polymonials. Type E is intermediate; 12 polynomials are needed. All of the necessary coefficients, A, for each of the four thermocouple combinations are given in table E-2. The numbers are all given with sufficient digits so that no significant precision is lost in the final calculation.

For most computers, double precision constants and software are required in the program if the final calculations are to retain all of the precision inherent in the experimental data. If the full array of functions and constants are used with a double precision program, then the resultant standard deviation of the data fits are 0.06, 0.11, 0.07, and 0.10 microvolts for Types T, E, K, and KP vs Au-7 Fe respectively.

```
更-2
```

```
F(1) = 2.62699813461*10^3 T
F(2) = [3.21644939212*10^5 T - 1.11693281748*10^2]T
F(3) = [(3.58986173360*10^7 T - 1.55665286232*10^4)T
    + 1.81137186628*10<sup>-2</sup> 1T
F(4) = [([5.34727798756*10^{-9}T - 3.0497824803]*10^{-6}]T + 5.54625790795*10^{-4})T - 3.3463[223797*10^{-2}]T
F(5) = [([(6.07093013715*10^{-11}T - 4.27373422008*10^{-8})T]]
    + 1.07117698644*10^{-5}1T - 1.13757942812*10^{-3})T + 4.64537228886*10^{-2}1T
F(6) = [([(8.82359212161*10^{-13}T - 7.28186199261*10^{-10}]T]
    + 2.24765904282*10^{-7})T - 3.18943408270*10^{-5}1T + 2.05429286434*10^{-3})T
    -5.17871198112*10^{-2}1T
F(7) = [(f(f(1.33824082457*10^{-14}T - 1.32030883347*10^{-11})T]
    + 5.13280189141*10^{-9}1T + 9.93378385912*10^{-7})T + 9.92080547172*10^{-5}1T
    -4.75674883206*10^{-3})T + 8.88149787156*10^{-2}T
F(8) = [([([(1.91122488586*10^{-16}T + 2.16756712456*10^{-13}]T + 1.00341211234*10^{-10})T + 2.43627392132*10^{-8}]T + 3.31519537388*10^{-6})T
    -2.49826333327*10^{-4}1T + 9.57847982898*10^{-3})T - 1.50658460622*10^{-1}1T
F(9) = I(I(I(2.92664884243*10^{-18}T - 3.70219405097*10^{-15})T
    + 1.95708484602*10^{-12}]T - 5.60572545443*10^{-10})T + 9.43371886071*10^{-8}]T - 9.45983561819*10^{-6})T + 5.47473023495*10^{-4}]T - 1.67836957950*10^{-2})T
    + 2.24869753823*10^{-1} 1T
```

Table E-1 The orthonormal polynomials $F_n(T)$.

```
F(10) = [([([([(3.95801534382*10^{-20}T - 5.60568859106*10^{-17})T
   + 3.38786223933*10^{-14})T - 1.13998063262*10^{-11}]T + 2.33700771017*10^{-9})T - 3.00187384267*10^{-7}]T + 2.39434643671*10^{-5})T - 1.13590924597*10^{-3}]T
   + 2.93458112010*10^{-2})T - 3.46535708754*10^{-1}1T
F(11) = [([([([([(5.3851673660]*10^{-22}T - 8.32331470995*10^{-19})T
    + 5.56674670636*10^{-16}1T - 2.11051706773*10<sup>-13</sup>)T + 4.99234280040*10<sup>-11</sup>1T
    -7.64420856213*10^{-9})T + 7.61267444043*10^{-7}1T - 4.83150710271*10^{-5})T
   + 1.86327527031*10^{-3}1T + 4.00410161322*10^{-2})T + 4.09499105085*10^{-1}1T
+ 1.03886749337*10^{-17})T + 4.44101985907*10^{-15}1T + 1.20800316490*10^{-12})T
   - 2.18094014408*10^{-10}]T + 2.64618560604*10^{-8})T - 2.13895663004*10^{-6}]T + 1.11909300262*10^{-4})T - 3.59443137275*10^{-3}]T + 6.49353202556*10^{-2})T
   + 5.70479386855*10-11T
+ 1.87043885148*10^{-19}1T - 8.87601372259*10^{-17})T + 2.72632243976*10^{-14}1T
   - 5.67999046167*10^{-12})T + 8.17908913314*10^{-10})T - 8.14274313875*10^{-8})T + 5.51731174858*10^{-6})T - 2.46158777788*10^{-4})T + 6.84002302040*10^{-3}]T
   -1.08288591279*10^{-1})T + 8.46075126398*10^{-1}1T
F(14) = f(f(f(f(f(f(1.8534)453474*10^{-27}T - 3.6608)8)4236*10^{-24})T
   + 3.23482126555*10^{-21})T - 1.68761557726*10^{-18}1T + 5.77754988256*10^{-16})T
    -1.36460361321*10^{-13}]T + 2.27598282316*10<sup>-11</sup>)T - 2.69808964571*10<sup>-9</sup> ]T
   + 2.25818509834*10^{-7})T - 1.30847059620*10^{-5}1T + 5.06916388647*10^{-4})T
    -1.24180968293*10^{-2}1T + 1.76154785795*10^{-1})T - 1.253532296151T
```

COEFFICIENT	ТҮРЕ Т	TYPE E	TYPE K	KP VS AU-7FE
A(1-)	10673•443	16803.061	11244•712	7823.267
A(2)	1947 - 355	2969.647	2175.001	433+939
A(3)	-158.544	-405.095	-297•946	-82.121
A(4)	44.522	65.071	5•299	-16+055
A(5)	-34•697	-22.933	-4+617	21+929
A(6)	10.896	3.050	-0.622	-8+975
A(7)	-0•253	1.794	2•145	0.008
A(8)	-2.966	-1.910	-1.907	4.704
A(9)	2.053	0.284	0.745	-6+097
A(10)	-1.085	0.131	-0+271	6.441
A(11)	-0.055	-0.720		-4•328
A(12)	0.467	0.437		2.494
A(13)	-0.568			-1.283
A(14)	0.464			0.496

Table E-2 Coefficients for a polynomial expansion representation of the thermocouple data.

However, any functional representation can be simplified at the cost of an increased standard deviation for the data fit. Again the standard deviation for any given order depends on the thermocouple type. In table E-3 are listed the approximate standard deviations for each order of polynomial expansion between 4 and the maximum number (14, 12, 10, or 14 respectively). It can be clearly seen that if, for example, only 1 microvolt precision is desired, then the order is usually about halved, to 7, 6, 5, or 11 respectively.

Computer economies can also be obtained by reducing the number of digits carried, by changing from double to single precision. Since there is no uniformity in what constitutes single or double precision (single can mean from about 8 to 12 decimal digits), we have tabulated the errors caused by using various different numbers of digits in computations. For full table reproduction precision (0.01 microvolt), 38 binary bits (12 decimal digits) must be carried for type T or KP vs Au-7 Fe thermocouples; 33 binary bits (10 decimal) for type E; and 26 binary (8 decimal) for type K. Table E-4 indicates the number of binary bits and decimal digits necessary to obtain various given precisions. values in the table presume, of course, that a sufficient number of polynomials are used to eliminate any error that would be caused by using too low an order of fit. Since all large computers carry at least 24 binary bits in single precision, errors were not calculated for any fewer bits than that. The tables in Appendices A through D were calculated using 72 binary bits (22 decimals).

The deviations between calculated and experimental values of voltage are given in figures E-1 through E-4. Note that the deviations are in nanovolts.

NUMBER OF	ДРР	ROXIMATE S	TANDARD DE	POINTION
COEFFICIENTS	TYPE T	TYPE E	TYPE K	KP VS AU-7FE
4	9	13	1.5	6
5	7	5	0 • 9	5
6	2	0•6	0 • 5	2
7	0 • 8	0.5	0 • 4	1.9
8	0+6	0•4	0.38	1.7
9	0 • 4	0•2	0.15	1+5
10	. 0•2	. 0.17	0.07	1•4
11	0.15	0.15		1.0
12	0.13	0+11		0 • 6
13	0.10	,		0•3
14	0.06			0.10

Table E-3 Approximate standard deviations (in microvolts) for various orders of polynomial expansions.

Table E-4

Number of digits necessary in computations to reduce round-off errors below certain limits

		Nur	ber of D	igits Nece	ssary fo	r Thermoo	couple	
Error Criteria	Type T		Type E		Type K		KP vs Au-7 Fe	
	binary	decimal	binary	decimal	binary	decimal	binary	decimal
Full table precision <0.01µV	38	12	33	10	26	8	38	12
Approx. exp. error <0.1 µV	35	11	29	9	2 4	8	35	11
<1 µV	32	10	24	. 8	24	8	32	10
<50 μ V	24	8					24	8

Figure E-1 Deviations between calculated and experimental values for thermocouple type T.

Figure E-2 Deviations between calculated and experimental values for thermocouple type E.

Figure E-3 Deviations between calculated and experimental values for thermocouple type K.

Figure E-4 Deviations between calculated and experimental values for Chromel versus

<u>Au-0.07 at.</u>% Fe.

In addition to the errors caused by imprecisions of data fitting, other errors can be introduced by inaccuracies in measurement of the independent variable, temperature. These are approximately 2.2 mK between 4 and 20 K, 2.5 mK between 20 and 75 K, and 2.0 mK between 75 and 280 K. The equivalent voltage inaccuracies, given in table E-5, will depend on the sensitivities of each thermocouple type in each temperature range. Only above about 80 K do the temperature errors cause greater equivalent voltage errors than does the curve fitting.

Table E-5

Equivalent voltage errors caused by temperature inaccuracies

Temperature	Voltage Inaccuracies (in microvolts) for Thermocouple			
Range	Type T	Туре E	Type K	KP vs Au-7Fe
LHe	0.01	0.02	0.01	0. 03
LH ₂	0.06	0.09	0.06	0.14
LN ₂	0.30	0.46	0.31	0. 22

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151

Order NBS publications from:
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

Difference in price is due to extra cost of foreign mailing.

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

OFFICIAL BUSINESS