Linear Algebra

Azure 2022

Contents

Contents

1	Day	1: Vectors & Matrices	3
	1.1	Vectors	3
	1.2	Matrices	4
	1.3	System of Equations	6
	1.4	Linear Transformations	10
	1.5	Invertibility	12
2	Day	2: Vector Space	17
	2.1	Span & Independence	17
	2.2	Subspaces: Image & Kernel	19
	2.3	Dimension	20
	2.4	Injectivity & Surjectivity	22
	2.5	Coordinates	24
3	Day	3: Orthogonality	25
1	Day	4. Eigenvectors	26

${f Vectors} \ \& \ {f Matrices}$ 1

1.1 Vectors

Definition 1.1.1: Vector

A vector $\mathbf{x} \in \mathbb{R}^n$

A vector
$$\mathbf{x} \in \mathbb{R}^n$$
:
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = (x_1, x_2, \dots, x_n) \quad \text{where each } x_i \in \mathbb{R}$$
Let $0 \in \mathbb{R}^n$ be $0 = \underbrace{(0, \dots, 0)}_n$. Then for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and scalar $\mathbf{c} \in \mathbb{R}$, define:
$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \quad \mathbf{c} \mathbf{x} = (cx_1, cx_2, \dots, cx_n)$$

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$
 $cx = (cx_1, cx_2, ..., cx_n)$

Also, define the length of x:

||x|| = |x| =
$$\sqrt{x_1^2 + x_2^2 + ... + x_n^2} = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}} \in \mathbb{R}$$

A unit vector is a vector with length 1.

Theorem 1.1.2: Properties of Vectors

For any $x,y,z \in \mathbb{R}^n$ and $c_1,c_2 \in \mathbb{R}$:

(a) Commutativity

$$x + y = y + x$$

Proof

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) = (y_1 + x_1, y_2 + x_2, ..., y_n + x_n) = y + x$$

(b) Addititive Associativity

$$(x + y) + z = x + (y + z)$$

$$(x + y) + z = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) + z$$

$$= (x_1 + y_1 + z_1, x_2 + y_2 + z_2, ..., x_n + y_n + z_n)$$

$$= x + (y_1 + z_1, y_2 + z_2, ..., y_n + z_n) = x + (y + z)$$

(c) Additive Identity

There exists a unique $0_v \in \mathbb{R}^n$ such that for all $x \in \mathbb{R}^n$:

$$0_v + x = x$$

Moreover, $0_v = 0$. This only holds for \mathbb{R}^n and not all vector spaces.

Suppose there are $0_{v_1}, 0_{v_2}$ where $0_{v_1} + x = x$ and $0_{v_2} + x = x$ for all x. Then: $0_{v_1} = 0_{v_2} + 0_{v_1} = 0_{v_1} + 0_{v_2} = 0_{v_2}$

Thus, 0_v must be unique.

Since $0 + x = (0 + x_1, ..., 0 + x_n) = (x_1, ..., x_n) = x$, then $0_v = 0$.

(d) Additive Inverse

For any x, there exists a unique $-x \in \mathbb{R}^n$ such that:

$$x + (-x) = 0_v$$

Moreover,
$$-x = (-1)x$$
.

Proof

Suppose there are
$$(-x)_a$$
, $(-x)_b$ where $x + (-x)_a = 0_v$ and $x + (-x)_b = 0_v$. Then: $(-x)_a = (-x)_a + 0_v = (-x)_a + x + (-x)_b = 0_v + (-x)_b = (-x)_b$

Thus, -x must be unique.

Since
$$(-1)x + x = (-x_1 + x_1, ..., -x_n + x_n) = 0$$
, then $-x = (-1)x$.

(e) Distributivity

$$c_1(x+y) = c_1x + c_1y$$
 $(c_1+c_2)x = c_1x + c_2x$

Proof

$$c_1(x+y) = (c_1x_1 + c_1y_1, ..., c_1x_n + c_1y_n) = (c_1x_1, ..., c_1x_n) + (c_1y_1, ..., c_1y_n) = c_1x + c_1y$$

$$(c_1 + c_2)x = (c_1x_1 + c_2x_1, ..., c_1x_n + c_2x_n)$$

$$= (c_1x_1, ..., c_1x_n) + (c_2x_1, ..., c_2x_n) = c_1x + c_2x$$

(f) Multiplicative Associativity

$$c_1(c_2x) = (c_1c_2)x$$

Proof

$$c_1(c_2)x = (c_1c_2x_1, ..., c_1c_2x_n) = (c_1c_2)x$$

(g) Multiplicative Identity

$$1x = x$$

Proof

$$1x = (1x_1, ..., 1x_n) = (x_1, ..., x_n) = x$$

Theorem 1.1.3: Rescaling to a Unit Vector

Let $x \in \mathbb{R}^n$. Then, $\frac{x}{|x|}$ is a unit vector.

Proof

$$\left|\frac{x}{|x|}\right| = \sqrt{\left(\frac{x_1}{|x|}\right)^2 + \dots + \left(\frac{x_n}{|x|}\right)^2} = \frac{1}{|x|}\sqrt{x_1^2 + \dots + x_n^2} = \frac{1}{|x|}|x| = 1$$

1.2 Matrices

Definition 1.2.1: Matrix

A $m \times n$ matrix $A \in M_{m \times n}(\mathbb{R})$:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 where each $a_{ij} \in \mathbb{R}$

Let $0 \in M_{m \times n}(\mathbb{R})$: be a m × n matrix where the value of all entries are 0.

For $A,B \in M_{m \times n}(\mathbb{R})$ and scalar $c \in \mathbb{R}$, define:

$$A+B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix} \qquad cA = \begin{bmatrix} ca_{11} & ca_{12} & \dots & ca_{1n} \\ ca_{21} & ca_{22} & \dots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \dots & ca_{mn} \end{bmatrix}$$

Theorem 1.2.2: Properties of Matrices

For any A,B,C $\in M_{m\times n}(\mathbb{R})$ and $c_1,c_2\in\mathbb{R}$:

(a) Commutativity

$$A + B = B + A$$

Proof

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix} = \begin{bmatrix} b_{11} + a_{11} & \dots & b_{1n} + a_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} + a_{m1} & \dots & b_{mn} + a_{mn} \end{bmatrix} = B + A$$

(b) Addititive Associativity

$$(A + B) + C = A + (B + C)$$

$$(A + B) + C = \begin{bmatrix} a_{11} + b_{11} + c_{11} & \dots & a_{1n} + b_{1n} + c_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} + c_{m1} & \dots & a_{mn} + b_{mn} + c_{mn} \end{bmatrix} = A + (B + C)$$

There exists a unique $0_M \in M_{m \times n}(\mathbb{R})$ such that for all $A \in M_{m \times n}(\mathbb{R})$:

$$0_M + A = A$$

Moreover, $0_M = 0$. This only holds for $M_{m \times n}(\mathbb{R})$ and not all vector spaces.

<u>Proof</u>

Suppose there are $0_{M_1}, 0_{M_2}$ where $0_{M_1} + A = A$ and $0_{M_2} + A = A$ for all A. Then: $0_{M_1} = 0_{M_2} + 0_{M_1} = 0_{M_1} + 0_{M_2} = 0_{M_2}$

Thus, 0_M must be unique.

Since
$$0 + A = \begin{bmatrix} 0 + a_{11} & \dots & 0 + a_{1n} \\ \vdots & \ddots & \vdots \\ 0 + a_{m1} & \dots & 0 + a_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = A$$
, then $0_M = 0$.

For any A, there exists a unique $-A \in M_{m \times n}(\mathbb{R})$ such that:

$$A + (-A) = 0_M$$

Moreover, -A = (-1)A.

Proof

Suppose there are $(-A)_a$, $(-A)_b$ where $A + (-A)_a = 0_M$ and $A + (-A)_b = 0_M$. $(-A)_a = (-A)_a + 0_M = (-A)_a + A + (-A)_b = 0_M + (-A)_b = (-A)_b$

Thus, -M must be unique.

Since (-1)A + A =
$$\begin{bmatrix} -a_{11} + a_{11} & \dots & -a_{1n} + a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} + a_{m1} & \dots & -a_{mn} + a_{mn} \end{bmatrix} = 0, \text{ then } -A = (-1)A.$$

(e) Distributivity

$$c_1(A+B) = c_1A + c_1B$$
 $(c_1+c_2)A = c_1A + c_2A$

$$c_{1}(A+B) = \begin{bmatrix} c_{1}a_{11} + c_{1}b_{11} & \dots & c_{1}a_{1n} + c_{1}b_{1n} \\ \vdots & \ddots & \vdots \\ c_{1}a_{m1} + c_{1}b_{m1} & \dots & c_{1}a_{mn} + c_{1}b_{mn} \end{bmatrix} = c_{1}A + c_{1}B$$

$$(c_{1}+c_{2})A = \begin{bmatrix} c_{1}a_{11} + c_{2}a_{11} & \dots & c_{1}a_{1n} + c_{2}a_{1n} \\ \vdots & \ddots & \vdots \\ c_{1}a_{m1} + c_{2}a_{m1} & \dots & c_{1}a_{mn} + c_{2}a_{mn} \end{bmatrix} = c_{1}A + c_{2}A$$

(f) Multiplicative Associativity

$$c_1(c_2A) = (c_1c_2)A$$

$$c_1(c_2)A = \begin{bmatrix} c_1c_2a_{11} & \dots & c_1c_2a_{1n} \\ \vdots & \ddots & \vdots \\ c_1c_2a_{m1} & \dots & c_1c_2a_{mn} \end{bmatrix} = (c_1c_2)A$$

(g) Multiplicative Identity

$$1A = A$$

Proof

$$\begin{bmatrix}
1A = \begin{bmatrix} 1a_{11} & \dots & 1a_{1n} \\ \vdots & \ddots & \vdots \\ 1a_{m1} & \dots & 1a_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = A$$

1.3 System of Equations

Definition 1.3.1: Elementary Row Operations

There are three types of elementary row operations:

- (a) Row Multiplication: Multiplying a row by a nonzero scalar
- (b) Row Addition: Add a multiple of a row to another row
- (c) Row Swapping: Swapping two rows

Note that for any elementary row operation, an entry in the i-th column can be be affected by another entry in the i-th column.

If for matrix $A,B \in M_{m \times n}(\mathbb{R})$, there is a sequence of elementary row operations that transforms A to B, then A and B are row equivalent.

Note if there is a sequence that transforms A to B, then performing the sequence in reverse will transform B to A so row equivalence between A and B is the same as row equivalence between B and A.

Definition 1.3.2: Reduced Row-Echelon Form: RREF

The reduced row-echelon form (rref) of matrix $A \in M_{m \times n}(\mathbb{R})$, rref(A) satisfies:

- (a) If a row has nonzero entries, the first nonzero is 1
- (b) If a row has a leading 1, then each row before it has a leading 1
- (c) A column with a leading 1 has 0 for the other entries

or example:

$$\begin{bmatrix}
 ① & 2 & 0 & 1 \\
 0 & 0 & ① & -1 \\
 0 & 0 & 0 & 0
\end{bmatrix}$$

Definition 1.3.3: System of Equations: Augmented Matrix

A m × n system of equations written as a m × (n+1) augmented matrix A $\in M_{m\times(n+1)}(\mathbb{R})$:

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \end{array} \Leftrightarrow A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} & b_1 \\ a_{21} & a_{22} & \ldots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} & b_m \end{bmatrix}$$

If the i-th column of the rref(A) has a leading 1, then x_i is called a pivot variable else it is called a free variable. The rank of a matrix is equal to the number of pivot variables. For example:

$$\begin{bmatrix} \textcircled{1} & 2 & 0 & | & 1 \\ 0 & 0 & \textcircled{1} & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{array}{c} x_1 + 2x_2 = 1 \\ x_3 = -1 \end{array} \quad \Rightarrow \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 + 1 \\ x_2 \\ -1 \end{bmatrix}$$

Note a pivot variable, $\{x_1, x_3\}$, has a fixed value or its value depends on the free variables while the free variables, $\{x_2\}$, can be any value.

Theorem 1.3.4: Gauss-Jordan Elimination: Elementary Row Operations don't change solutions

Let m × n system of equations be the augmented matrix $A \in M_{m \times (n+1)}(\mathbb{R})$. By performing elementary row operations on A to get to rref(A), the solutions are unchanged.

<u>Proof</u>

Suppose the i-th row is multiplied by scalar c.

$$\begin{vmatrix} a_{11} & \dots & a_{1n} & | & b_1 \\ \vdots & \ddots & \vdots & | & \vdots \\ ca_{i1} & \dots & ca_{in} & | & cb_i \\ \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & \dots & a_{mn} & | & b_m \end{vmatrix} \qquad \Rightarrow \qquad \begin{aligned} a_{11}x_1 + \dots + a_{1n}x_n &= b_1 \\ & \dots \\ & ca_{i1}x_1 + \dots + ca_{in}x_n &= cb_i \\ & \dots \\ & a_{m1}x_1 + \dots + a_{mn}x_n &= b_m \end{aligned}$$

If $(x_1^*, ..., x_n^*)$ is a solution, then $a_{i1}x_1^* + ... + a_{in}x_n^* = b_i$ for any $i \in \{1, ..., m\}$: $ca_{i1}x_1^* + \dots + ca_{in}x_n^* = c(a_{i1}x_1^* + \dots + a_{in}x_n^*) = cb_i$

If $(x_1^{/},...,x_n^{/})$ is not a solution, then $a_{i1}x_1^{/}+...+a_{in}x_n^{/}\neq b_i$ for any $i\in\{1,...,m\}$: $ca_{i1}x_1' + \dots + ca_{in}x_n' = c(a_{i1}x_1' + \dots + a_{in}x_n') \neq cb_i$

Thus, row multiplication does not change the solutions. Note c is nonzero since if c = 0, then any $(x_1,...,x_n)$ satisfies $ca_{i1}x_1+ca_{i2}x_2+...+ca_{in}x_n=0=cb_i$ which includes non-solutions.

Suppose the i-th row multiplied by c is added to the j-th row.

$$\begin{bmatrix} a_{11} & \dots & a_{1n} & | & b_1 \\ \vdots & \ddots & \vdots & | & \vdots \\ ca_{i1} + a_{j1} & \dots & ca_{in} + a_{jn} & | & cb_i + b_j \\ \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & \dots & a_{mn} & | & b_m \end{bmatrix} \Leftrightarrow (ca_{i1} + a_{j1})x_1 + \dots + (ca_{in} + a_{jn})x_n = cb_i + b_j \\ \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & \dots & a_{mn} & | & b_m \end{bmatrix}$$

If $(x_1^*, ..., x_n^*)$ is a solution, then $a_{i1}x_1^* + ... + a_{in}x_n^* = b_i$ for any $i \in \{1, ..., m\}$: $(ca_{i1} + a_{j1})x_1^* + \dots + (ca_{in} + a_{jn})x_n^* = c(a_{i1}^* + \dots + a_{in}^*) + (a_{i1}^* + \dots + a_{in}^*) = cb_i + b_j$

If $(x_1^{/},...,x_n^{/})$ is not a solution, then $a_{i1}x_1^{/}+...+a_{in}x_n^{/}\neq b_i$ for any $i\in\{1,...,m\}$: $(ca_{i1} + a_{j1})x_1^{/} + ... + (ca_{in} + a_{jn})x_n^{/} = c(a_{i1}^{/} + ... + a_{in}^{/}) + (a_{j1}^{/} + ... + a_{jn}^{/}) \neq cb_i + b_j$ row addition does not change the solutions

Thus, row addition does not change the solutions.

Suppose the i-th row is swapped with the j-th row. Note row swapping is the same as:

Add i-th row to j-th j'-th = i-th + j-th \Rightarrow

Subtract i-th row by j'-th \Rightarrow i'-th = -j-th

Add i'-th row to j'-th. Multiply the i'-th row by -1 j"-th = i-th i"-th = j-th \Rightarrow Since each step does not change solutions, then row swapping does not change solutions.

Theorem 1.3.5: Row equivalent matrices have the same solutions

If $A,B \in M_{m \times n}(\mathbb{R})$ are row equivalent, then Ax = 0 and Bx = 0 have the same solutions Proof

If A and B are row equivalent, then the augmented matrices $[A \mid 0], [B \mid 0] \in M_{m \times (n+1)}(\mathbb{R})$ are row equivalent. Then, there is a sequence of elementary row operations that transforms $[A \mid 0]$ to $[B \mid 0]$. By theorem 1.3.4, the solutions to $[A \mid 0]$ don't change when transforming to $[B \mid 0]$ so the solutions to $[A \mid 0]$ and $[B \mid 0]$ are the same.

Note Ax,Bx = 0 since if Ax = b where $b \neq 0$ and Ax = c where $c \neq 0$, then performing elementary row operations to change A to B might not change b to c. But if b = 0, then any elementary row operation will keep b as 0 since the entries in b can only be affected by other entries in b which are all 0. Thus, if also c = 0, then $[A \mid 0]$ and $[B \mid 0]$ will be row equivalent.

Theorem 1.3.6: The rref(A) is unique

Let matrix $A \in M_{m \times n}(\mathbb{R})$ be row equivalent to matrix $B, C \in M_{m \times n}(\mathbb{R})$ which are in reduced row-echelon form. Then, B = C.

Proof

Since A is row equivalent to B,C, then by theorem 1.3.5, Ax = 0 and Bx = 0 have the same solutions and Ax = 0 and Cx = 0 have the same solutions. Thus, Bx = 0 and Cx = 0 have the same solutions. The following proof will be a proof by induction.

Suppose A,B,C $\in M_{m\times 1}(\mathbb{R})$. Since B,C are in reduced row-echelon form, then B,C are either:

$$M_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since $M_1x = 0$ is only x = 0 and $M_2x = 0$ is any $x \in \mathbb{R}$ then either B,C = M_1 or B,C = M_2 since Bx = 0 and Cx = 0 has the same solutions. Thus, the base case holds true.

Suppose for some $n \in \mathbb{Z}_+$, any matrix $M \in M_{m \times n}(\mathbb{R})$ in reduced row echelon form is unique. Let $A, B, C \in M_{m \times (n+1)}(\mathbb{R})$ where A is row equivalent to B,C in reduced row echelon form. Let $A_n, B_n, C_n \in M_{m \times n}(\mathbb{R})$ be A,B,C without their (n+1)-th column. Since A is row equivalent to B,C, then A_n is row equivalent to B_n, C_n which are also in reduced row-echelon form since removing the last column of any rref is still a rref. Since $A_n \in M_{m \times n}(\mathbb{R})$ which is row equivalent to reduced row echelon matrices $B_n, C_n \in M_{m \times n}(\mathbb{R})$, then $B_n = \operatorname{rref}(A_n) = C_n$. Thus, the first n columns of B,C are the same. Suppose the B \neq C so only the (n+1)-th column can be different. Then there is a $i \in \{1,...,m\}$ where $b_{i(n+1)} \neq c_{i(n+1)}$. Let $(x_1^*,...,x_{n+1}^*)$ be a solution.

 $b_{i1}x_1 + ... + b_{in}x_n + b_{i(n+1)}x_{n+1} = 0$ $c_{i1}x_1 + ... + c_{in}x_n + c_{i(n+1)}x_{n+1} = 0$ Since $B_n = C_n$, then $b_{ij} = c_{ij}$ for $i = \{1,...,m\}$ and $j = \{1,...,n\}$. Thus, $b_{i(n+1)}x_{n+1} = c_{i(n+1)}x_{n+1}$. Since $b_{i(n+1)} \neq c_{i(n+1)}$, then $x_{n+1} = 0$. Thus, x_{n+1} is a pivot variable so the (n+1)-th column of B,C have a leading 1. Thus, any other entry in the (n+1)-th column is 0. Since B and C are in reduced row-echelon form, then this pivot is right after any other pivots before it since this 1 is in the final column, but since the entries of B_n , C_n are the same, then this 1 is in the same row in C as in B. Thus, the (n+1)-th column of B and C are the same which contradicts the assumption that (n+1)-th column are different. Thus, B = C by induction.

Theorem 1.3.7: Number of Solutions in a System of Equations

Let m × n system of equations be the augmented matrix $A \in M_{m \times (n+1)}(\mathbb{R})$. The system is called consistent if there is at least one solution and inconsistent if there are no solutions.

If the rref(A) contains the row $[0...0 \mid 1]$, then the system has no solutions.

If there is at least one free variable, then there are infinitely many solutions and if all variables are pivots, then there is one solution.

<u>Proof</u>

Since a variable is either a pivot or free variable, then the rref(A) either:

- contains the row $[0...0 \mid 1]$
- doesn't contains the row $[0...0 \mid 1]$ and have all pivot variables
- doesn't contains the row [0...0 | 1], but have all pivot variables

Since $[0...0 \mid 1]$ implies $0 = 0x_1 + ... + 0x_n = 1$, then if rref(A) contains the row $[0...0 \mid 1]$, there cannot be any solution regardless of pivot and free variables since no $\mathbf{x} = (x_1, ..., x_n)$ will satisfy such a row. Now, suppose rref(A) doesn't contains the row $[0...0 \mid 1]$.

Suppose the rref(A) have all pivot variables. Since pivot variables are fixed or depend on free variables which don't exist, then the pivot variables are all fixed and thus, unique.

Suppose the rref(A) has at least one free variable. Then at least one variable can be any real number and thus, there are infinitely many solutions.

Corollary 1.3.8: A unique solution must have as many equation as there are unknowns

Let m × n system of equations be the augmented matrix $A \in M_{m \times (n+1)}(\mathbb{R})$.

If there is a unique solution, then $m \geq n$.

Proof

By theorem 1.3.7, a unique solution must have all pivot variables. If rref(A) has all pivots, then $m \ge n$ else there will be a column without a pivot.

Definition 1.3.9: Homogeneous & Inhomogeneous Equations

A m \times n system of equations:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$ can also be written in matrix form:

$$Ax = b$$
where $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in M_{m \times n}(\mathbb{R}), \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^m$

(a) Closed under Addition: For any $x_1, ... x_k \in \mathbb{R}^n$:

$$A(x_1 + ... + x_k) = Ax_1 + ... + Ax_k$$

(b) Closed under Scalar Multiplication For any $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$:

$$A(cx) = cAx$$

For
$$x_1, ..., x_k \in \mathbb{R}^n$$
 and $c_1, ..., c_k \in \mathbb{R}$:
$$A(c_1x_1 + ... + c_kx_k)$$

$$a_{11}(c_1x_{11} + ... + c_kx_{k1}) + a_{12}(c_1x_{12} + ... + c_kx_{k2}) + ... + a_{1n}(c_1x_{1n} + ... + c_kx_{kn})$$

$$\Leftrightarrow a_{21}(c_1x_{11} + ... + c_kx_{k1}) + a_{22}(c_1x_{12} + ... + c_kx_{k2}) + ... + a_{2n}(c_1x_{1n} + ... + c_kx_{kn})$$

$$...$$

$$a_{m1}(c_1x_{11} + ... + c_kx_{k1}) + a_{m2}(c_1x_{12} + ... + c_kx_{k2}) + ... + a_{mn}(c_1x_{1n} + ... + c_kx_{kn})$$

$$c_1(a_{11}x_{11} + ... + a_{1n}x_{1n}) \qquad c_k(a_{11}x_{k1} + ... + a_{1n}x_{kn})$$

$$= c_1(a_{21}x_{11} + ... + a_{2n}x_{1n}) + ... + c_k(a_{21}x_{k1} + ... + a_{2n}x_{kn}) \Leftrightarrow c_1Ax_1 + ... + c_kAx_k$$

$$...$$

$$c_1(a_{m1}x_{11} + ... + a_{mn}x_{1n}) \qquad c_k(a_{m1}x_{k1} + ... + a_{mn}x_{kn})$$

A Homogeneous equation is in the form:

$$Ax = 0$$
 where $A \in M_{m \times n}(\mathbb{R}), x \in \mathbb{R}^n$, and $0 \in \mathbb{R}^m$

A Inhomogeneous equation is in the form:

$$Ax = b$$
 where $A \in M_{m \times n}(\mathbb{R}), x \in \mathbb{R}^n$, and $b \neq 0 \in \mathbb{R}^m$

Theorem 1.3.10: Relationship between Homogeneous and Inhomogeneous

Let x_0 be a solution to Ax = b. Then any solution x_s of Ax = b:

$$x_s = x_0 + x^*$$

where x^* is a solution to Ax = 0 Proof

Let x_0 be a solution to Ax = b. Suppose x_s be a solution to Ax = b.

$$b = Ax_s = A(x_0 + (x_s - x_0)) = Ax_0 + A(x_s - x_0) = b + A(x_s - x_0)$$

Thus, $A(x_s - x_0) = 0$ so $x^* = x_s - x_0$ is a solution to Ax = 0.

Example

Find the solution(s), (x_1, x_2, x_3, x_4) :

$$x_1 + 2x_3 + 4x_4 = -8$$

$$x_2 - 3x_3 - x_4 = 6$$

$$3x_1 + 4x_2 - 6x_3 + 8x_4 = 0$$

$$-x_2 + 3x_3 + 4x_4 = -12$$

What are the solutions if instead the equations are equal to 0?

$$\begin{bmatrix} 1 & 0 & 2 & 4 & | & -8 \\ 0 & 1 & -3 & -1 & | & 6 \\ 3 & 4 & -6 & 8 & | & 0 \\ 0 & -1 & 3 & 4 & | & -12 \end{bmatrix} \xrightarrow{\text{Add -3(1st) to the (3rd)}} \begin{bmatrix} 1 & 0 & 2 & 4 & | & -8 \\ 0 & 1 & -3 & -1 & | & 6 \\ 0 & 4 & -12 & -4 & | & 24 \\ 0 & -1 & 3 & 4 & | & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 4 & | & -8 \\ 0 & 1 & -3 & -1 & | & 6 \\ 3 & 4 & -6 & 8 & | & 0 \\ 0 & -1 & 3 & 4 & | & -12 \end{bmatrix} \xrightarrow{\text{Add -3(1st) to the (3rd)}} \begin{bmatrix} 1 & 0 & 2 & 4 & | & -8 \\ 0 & 1 & -3 & -1 & | & 6 \\ 0 & 4 & -12 & -4 & | & 24 \\ 0 & -1 & 3 & 4 & | & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 4 & | & -8 \\ 0 & 1 & -3 & -1 & | & 6 \\ 0 & 4 & -12 & -4 & | & 24 \\ 0 & -1 & 3 & 4 & | & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 4 & | & -8 \\ 0 & 1 & -3 & -1 & | & 6 \\ 0 & 1 & -3 & -1 & | & 6 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 3 & | & -6 \end{bmatrix} \xrightarrow{\text{Multiply (4th) by } \frac{1}{3}} \begin{bmatrix} 1 & 0 & 2 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & -2 \end{bmatrix}$$
Thus, the reduced reveals along the form of this restrict.

Thus, the reduced row-echelon form of this matrix:

$$\begin{bmatrix} 1 & 0 & 2 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & | & 4 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The pivot variables are x_1, x_2, x_4 and the free variable is x_3 so the rank is 3.

The solutions to the system of equations are:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2x_3 \\ 3x_3 + 4 \\ x_3 \\ -2 \end{bmatrix} = \begin{bmatrix} -2x_3 \\ 3x_3 \\ x_3 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 0 \\ -2 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 0 \\ -2 \end{bmatrix} = x_3(-2, 3, 1, 0) + (0, 4, 0, -2)$$

Thus, $x_3(-2,3,1,0)$ are the solutions when the equations equal to 0.

1.4 Linear Transformations

Definition 1.4.1: Linear Transformation

Function T: $\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if for any $x,y \in \mathbb{R}^n$ and $c \in \mathbb{R}$:

- (a) Closed under Addition: T(x+y) = T(x) + T(y)
- (b) Closed under Scalar Multiplication: T(cx) = cT(x)

Note for any $x_1,...,x_k \in \mathbb{R}^n$ and $c_1,...,c_k \in \mathbb{R}$:

$$T(c_1x_1 + \dots + c_kx_k) = T(c_1x_1) + T(c_2x_2 + \dots + c_kx_k)$$

$$= c_1T(x_1) + T(c_2x_2) + T(c_3x_3 + \dots + c_kx_k)$$

$$= c_1T(x_1) + c_2T(x_2) + T(c_3x_3) + T(c_4x_4 + \dots + c_kx_k)$$

$$= \dots = c_1T(x_1) + \dots + c_kT(x_k)$$

The standard vectors of \mathbb{R}^n are $e_1,...,e_n \in \mathbb{R}^n$ where:

$$e_i = (0, ..., 0, 1, 0, ..., 0)$$

Theorem 1.4.2: T(0) = 0

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then for $0 \in \mathbb{R}^n$: $T(0) = 0 \in \mathbb{R}^m$

Proof

Let 0_n be the zero vector in \mathbb{R}^n and 0_m be the zero vector in \mathbb{R}^m . Since $0(0_n)=0_n$, then: $\mathrm{T}(0_n)=\mathrm{T}(0(0_n))=0\mathrm{T}(0_n)=0_m$

Theorem 1.4.3: Every Linear Transformation is a Matrix Transformation

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then for any $\mathbf{x} \in \mathbb{R}^n$: $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$

with $A \in M_{m \times n}(\mathbb{R})$ where $A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix}$ is called the standard matrix Proof

Since any
$$\mathbf{x} \in \mathbb{R}^n$$
 is $\mathbf{x} = (x_1, ..., x_n) = x_1 e_1 + ... + x_n e_n$, then:

$$\mathbf{T}(\mathbf{x}) = \mathbf{T}(x_1 e_1 + ... + x_n e_n) = x_1 \mathbf{T}(e_1) + ... + x_n \mathbf{T}(e_n)$$

$$\Leftrightarrow \begin{bmatrix} T(e_1) & T(e_2) & ... & T(e_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \mathbf{A}\mathbf{x}$$

Since T: $\mathbb{R}^n \to \mathbb{R}^m$ and each $e_i \in \mathbb{R}^n$, then each $T(e_i) \in \mathbb{R}^m$. Thus, $A \in M_{m \times n}(\mathbb{R})$.

Corollary 1.4.4: Linear Transformation: Scaling

Let T: $\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation where for any $x \in \mathbb{R}^n$, the T(x) = cx for some $c \in \mathbb{R}$. Then:

$$T(\mathbf{x}) = \begin{bmatrix} c & 0 & \dots & 0 \\ 0 & c & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & c \end{bmatrix} \mathbf{x}$$

Proof

By theorem 1.4.3,
$$T(x) = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix} x$$
. Since $T(e_1) = ce_1$, then:
$$\begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix} = \begin{bmatrix} ce_1 & ce_2 & \dots & ce_n \end{bmatrix} = \begin{bmatrix} c & 0 & \dots & 0 \\ 0 & c & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & c \end{bmatrix}$$

Example

Let T: $\mathbb{R}^4 \to \mathbb{R}^4$ scales all $x \in \mathbb{R}^4$ by 2. Find T. Verify T((-1,2,1,3)) = (-2,4,2,6)

$$T(x) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} x \qquad T(\begin{bmatrix} -1 \\ 2 \\ 1 \\ 3 \end{bmatrix}) = \begin{bmatrix} 2*(-1)+0*2+0*1+0*3 \\ 0*(-1)+2*2+0*1+0*3 \\ 0*(-1)+0*2+2*1+0*3 \\ 0*(-1)+0*2+0*1+2*3 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 2 \\ 6 \end{bmatrix}$$

Corollary 1.4.5: Linear Transformation: 2D Rotation

Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Suppose for any $x \in \mathbb{R}^n$, the T rotates x counterclockwise by an angle of θ . Then:

$$T(x) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} x$$

Proof

By theorem 1.4.3, $T(x) = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix} x$. Since T rotates any $x \mathbb{R}^2$ counterclockwise by an angle of θ , then:

$$T(e_1) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
 $T(e_2) = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$

Example

Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ rotate all $x \in \mathbb{R}^2$ by $\frac{\pi}{6}$ radians = 30° degree counterclockwise. Find T. Find $\cos(75^\circ)$ and $\sin(75^\circ)$.

$$T(x) = \begin{bmatrix} \cos(\frac{\pi}{6}) & -\sin(\frac{\pi}{6}) \\ \sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) \end{bmatrix} x = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} x$$

Note $75^{\circ} = 45^{\circ} + 30^{\circ}$ so apply T on the unit vector at 45° which is $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$

$$T(\begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}) = \begin{bmatrix} \frac{\sqrt{3}\sqrt{2}}{2} + -\frac{1}{2}\frac{\sqrt{2}}{2} \\ \frac{1}{2}\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{6}-\sqrt{2}}{4} \\ \frac{\sqrt{6}+\sqrt{2}}{4} \end{bmatrix} = \begin{bmatrix} \cos(75^{\circ}) \\ \sin(75^{\circ}) \end{bmatrix}$$

1.5 Invertibility

Definition 1.5.1: Product of Linear Transformations

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ and S: $\mathbb{R}^m \to \mathbb{R}^t$ be linear transformations. Then for any $x \in \mathbb{R}^n$: (ST)x = S(Tx)

is a linear transformation where ST: $\mathbb{R}^n \to \mathbb{R}^t$

Let
$$x_1, x_2 \in \mathbb{R}^n$$
 and $c_1, c_2 \in \mathbb{R}$.
 $(ST)(c_1x_1 + c_2x_2) = S(T(c_1x_1 + c_2x_2)) = S(c_1T(x_1) + c_2T(x_2))$
 $= c_1S(T(x_1)) + c_2S(T(x_2)) = c_1(ST)(x_1) + c_2(ST)(x_2)$

Theorem 1.5.2: Product of Linear Transformations are Matrix Transformations

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ with T(x) = Ax and S: $\mathbb{R}^m \to \mathbb{R}^t$ with S(y) = By be linear transformations where A = $\begin{bmatrix} A_1 & A_2 & \dots & A_n \end{bmatrix}$ for $A_i \mathbb{R}^m$. Then for any x $\in \mathbb{R}^n$: (ST)x = (BA)x

where
$$BA = \begin{bmatrix} BA_1 & BA_2 & \dots & BA_n \end{bmatrix}$$

<u>Proof</u>

$$(ST)x = B(Tx) = B(Ax) = B(\begin{bmatrix} A_1 & \dots & A_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix})$$

$$= B(x_1A_1 + \dots + x_nA_n) = x_1BA_1 + \dots + x_nBA_n = \begin{bmatrix} BA_1 & \dots & BA_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Example

Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ rotate all $x \in \mathbb{R}^2$ by $\frac{\pi}{6}$ radians = 30° degree counterclockwise, then scale by 2. Find T.

The 30° degree counterclockwise rotation is $\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ and the scale by 2 transformation is

 $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ as noted by examples under corollary 1.4.4 and 1.4.5.

$$T(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} x = \begin{bmatrix} 2\frac{\sqrt{3}}{2} + 0\frac{1}{2} & 2(-\frac{1}{2}) + 0\frac{\sqrt{3}}{2} \\ 0\frac{\sqrt{3}}{2} + 2\frac{1}{2} & 0(-\frac{1}{2}) + 2\frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

Theorem 1.5.3: Properties of Matrix Products

(a) Associativity: For $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{t \times m}(\mathbb{R})$, $C \in M_{s \times t}(\mathbb{R})$: (CB)A = C(BA)

Proof

Let $\mathbf{x} \in \mathbb{R}^n$: $(CB)A\mathbf{x} = (CB)(A_1x_1 + \dots + A_nx_n) = CBA_1x_1 + \dots + CBA_nx_n = CBA\mathbf{x} = C(BA)\mathbf{x}$

(b) Distributivity: For $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{m \times n}(\mathbb{R})$, $C \in M_{t \times m}(\mathbb{R})$: C(A+B) = CA + CB

<u>Proof</u>

Let
$$x \in \mathbb{R}^n$$
:

$$C(A+B)x = C((A_1 + B_1)x_1 + \dots + (A_n + B_n)x_n)$$

$$= C((A_1x_1 + \dots + A_nx_n) + (B_1x_1 + \dots + B_nx_n))$$

$$= (CA_1x_1 + \dots + CA_nx_n) + (CB_1x_1 + \dots + CB_nx_n)$$

$$= CAx + CBx = (CA+CB)x$$

(c) Distributivity: For $A \in M_{t \times m}(\mathbb{R})$, $B \in M_{t \times m}(\mathbb{R})$, $C \in M_{m \times n}(\mathbb{R})$: (A+B)C = AC + BC

Proof

Let
$$x \in \mathbb{R}^n$$
:
 $(A+B)Cx = (A+B)(C_1x_1 + ... + C_nx_n)$
 $= (A+B)C_1x_1 + ... + (A+B)C_nx_n$
 $= (AC_1x_1 + ... + AC_nx_n) + (BC_1x_1 + ... + BC_nx_n)$
 $= ACx + BCx = (AC+BC)x$

(d) Scalar Multiplication: For $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{t \times m}(\mathbb{R})$ and $c \in \mathbb{R}$: (cB)A = c(BA) = B(cA)

<u>Proof</u>

Let
$$x \in \mathbb{R}^n$$
:
 $(cB)Ax = (cB)(A_1x_1 + ... + A_nx_n) = cBA_1x_1 + ... + cBA_nx_n = c(BA)x$
 $= BcA_1x_1 + ... + BcA_nx_n = B(cA)x$

Definition 1.5.4: Identity Matrix

The n × n identity matrix $I_n \in M_{n \times n}(\mathbb{R})$:

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Definition 1.5.5: Elementary Row Operations are Matrix Transformations

Elementary Row Operations as matrix are called elementary matrices.

Let $A \in M_{m \times n}(\mathbb{R})$. Then each elementary matrix $B \in M_{m \times m}(\mathbb{R})$ where:

Row Multiplication: Multiplying the i-th row by k

$$\mathbf{B} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{2} & \dots & \mathbf{i} & \dots & \mathbf{m} \\ \mathbf{1} & \mathbf{1} & 0 & \dots & 0 & \dots & 0 \\ \mathbf{2} & 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{i} & 0 & 0 & \dots & k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{m} & 0 & 0 & \dots & 0 & \dots & 1 \end{bmatrix}$$

Row Addition: Adding the k times the j-th row to the i-th row

$$B = \begin{bmatrix} 1 & 2 & i & j & m \\ 1 & 1 & 0 & \dots & 0 & \dots & 0 \\ 2 & 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ i & 0 & 0 & \dots & 1 & \dots & k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ j & 0 & 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ m & 0 & 0 & \dots & 0 & \dots & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 2 & j & i & m \\ 1 & 1 & 0 & \dots & 0 & \dots & 0 \\ 2 & 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ j & 0 & 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ i & 0 & 0 & \dots & k & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ m & 0 & 0 & \dots & 0 & \dots & 1 \end{bmatrix}$$
ow Swapping: Swapping the i-th and i-th row

Row Swapping: Swapping the i-th and j-th row

$$B = \begin{bmatrix} 1 & 2 & i & j & m \\ 1 & 1 & 0 & \dots & 0 & \dots & 0 \\ 2 & 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ i & 0 & 0 & \dots & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ j & 0 & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ m & 0 & 0 & \dots & 0 & \dots & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 2 & j & i & m \\ 1 & 1 & 0 & \dots & 0 & \dots & 0 \\ 2 & 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ j & 0 & 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ i & 0 & 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ m & 0 & 0 & \dots & 0 & \dots & 1 \end{bmatrix}$$

$$\text{BA is the matrix after the elementary row operation is applied to A.}$$

Then, BA is the matrix after the elementary row operation is applied to A.

Definition 1.5.6: Invertibility

Linear Transformation T: $\mathbb{R}^n \to \mathbb{R}^m$ is invertible if there exist a linear transformation S: $\mathbb{R}^m \to \mathbb{R}^n$ such that for all $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$:

$$(ST)x = x$$
 $(TS)y = y$

Suppose T(x) = Ax where $A \in M_{m \times n}(\mathbb{R})$ and S(y) = By where $B \in M_{n \times m}(\mathbb{R})$.

Then if the property above holds true:

$$BAx = (ST)x = x = I_{n \times n}x$$
 $ABy = (TS)y = y = I_{m \times m}x$
 $BA = I_{n \times n}$ $AB = I_{m \times m}$

If A is invertible, then $B = A^{-1}$ is the inverse transformation of A.

Note if A is invertible, then A^{-1} is invertible since there is a A where $AA^{-1} = I_{m \times m}$ and $A^{-1}A = I_{n \times n}$ by the invertibility of A.

If $A \in M_{n \times n}(\mathbb{R})$, then A is called a square matrix.

Theorem 1.5.7: Only Square Matrices can be Invertible

Let $A \in M_{m \times n}(\mathbb{R})$ and $B \in M_{n \times m}(\mathbb{R})$ such that $n \neq m$.

Then, either $AB \neq I_{m \times m}$ or $BA \neq I_{n \times n}$.

Proof

Suppose n < m. Then for any $x \in \mathbb{R}^n$, by corollary 1.3.8, By = x does not have a unique $y \in \mathbb{R}^m$ so either y does not exist or there are infinitely many y.

If y does not exist, then for ABy = Ax, the y does not exist so AB $\neq I_{m \times m}$ else y = Ax. If By = x has infinitely many y, then there are y_1, y_2 where $y_1 \neq y_2$ such that B $y_1 = x = By_2$ so AB $\neq I_{m \times m}$ else $y_1 = ABy_1 = ABy_2 = y_2$ contradicting $y_1 \neq y_2$. Thus, AB $\neq I_{m \times m}$.

Suppose n > m. Then for any $y \in \mathbb{R}^m$, by corollary 1.3.8, Ax = y does not have a unique $x \in \mathbb{R}^n$ so either x does not exist or there are infinitely many x.

If x does not exist, then for BAx = By, the x does not exist so BA $\neq I_{n\times n}$ else x = By. If Ax = y has infinitely many x, then there are x_1, x_2 where $x_1 \neq x_2$ such that $Ax_1 = y = Ax_2$ so BA $\neq I_{n\times n}$ else $x_1 = BAx_1 = BAx_2 = x_2$ contradicting $x_1 \neq x_2$. Thus, BA $\neq I_{n\times n}$.

Theorem 1.5.8: Determining Invertibility

 $A \in M_{n \times n}(\mathbb{R})$ is invertible if and only if $\operatorname{rref}(A) = I_{n \times n}$

Proof

Let A be invertible. Suppose $\operatorname{rref}(A) \neq I_{n \times n}$. Then there is at least one free variable.

Then for any $y \in \mathbb{R}^n$, by theorem 1.3.7, Ax = y has infinitely many $x \in \mathbb{R}^n$ since $x = I_{n \times n} x$ $= A^{-1}Ax = A^{-1}y$ must exist due to the existence of A^{-1} by the invertibility of A. But then, there are x_1, x_2 where $x_1 \neq x_2$ such that $Ax_1 = y = Ax_2$ so $AA^{-1} \neq I_{n \times n}$ else $x_1 = A^{-1}Ax_1 = A^{-1}Ax_2 = x_2$ contradicting the invertibility of A. Thus, $\operatorname{rref}(A) = I_{n \times n}$.

Let $\operatorname{rref}(A) = I_{n \times n}$. Take the augmented matrix $[A \mid I_{n \times n}]$.

Since $\operatorname{rref}(A) = I_{n \times n}$, then there is a sequence of elementary row operations that transforms A into $I_{n \times n}$ and thus, transform $[A \mid I_{n \times n}] = [I_{n \times n} \mid B]$ for some $B \in M_{n \times n}(\mathbb{R})$. Note

 $[A \mid I_{n \times n}] \Leftrightarrow Ax = I_{n \times n}y$ $[I_{n \times n} \mid B] \Leftrightarrow I_{n \times n}x = By$ (BA)x = B(Ax) = By = x $(AB)y = A(By) = Ax = y \Rightarrow A^{-1} = B$

Corollary 1.5.9: Invertible $n \times n$ matrices have Rank n

 $A \in M_{n \times n}(\mathbb{R})$ is invertible if and only if rank(A) = n

Proof

By theorem 1.5.8, A is invertible \Leftrightarrow rref(A) = $I_{n \times n} \Leftrightarrow$ A has n pivots (i.e. rank(A) = n).

Corollary 1.5.10: Invertible Matrices have unique solutions

 $A \in M_{n \times n}(\mathbb{R})$ is invertible if and only if for any $y \in \mathbb{R}^n$, there is a unique $x \in \mathbb{R}^n$ where: Ax = y

Thus, A is invertible if and only if Ax = 0 has the trivial solution, x = 0.

Proof

Suppose A is invertible. Then by corollary 1.5.9, rank(A) = n so A has n pivots. Then for augmented matrix, $[A \mid y]$, by theorem 1.3.7, there is one unique solution.

Suppose for any $y \in \mathbb{R}^n$, there is a unique $x \in \mathbb{R}^n$ where Ax = y. Then by theorem 1.3.7, A has n pivots so rank(A) = n. Then by corollary 1.5.9, A is invertible.

Suppose A is invertible. Since A0 = 0, then the only solution to Ax = 0 is x = 0.

Suppose Ax = 0 has only x = 0. Then, rref(A) has n pivots so rank(A) = n. Thus, by corollary 1.5.9, A is invertible.

Theorem 1.5.11: AB = $I_{n \times n}$ implies BA = $I_{n \times n}$

For A,B $\in M_{n\times n}(\mathbb{R})$, let AB = $I_{n\times n}$. Then A,B are invertible where: $A^{-1} = B$ $B^{-1} = A$

Proof

Let $x \in \mathbb{R}^n$ be such that Bx = 0. Then, $x = I_{n \times n}x = ABx = B0 = 0$.

Then by corollary 1.5.10, B is invertible so B^{-1} exist where $B^{-1}B = I_{n \times n}$ and $BB^{-1} = I_{n \times n}$. $A = AI_{n \times n} = AI_{n \times n} = ABB^{-1} = I_{n \times n}B^{-1} = B^{-1}$

Since B is invertible, then $A = B^{-1}$ is invertible so $A^{-1}A = I_{n \times n}$ and $AA^{-1} = I_{n \times n}$.

$$A^{-1} = A^{-1}I_{n \times n} = A^{-1}AB = I_{n \times n}B = B$$

Theorem 1.5.12: Invertibility Equivalences

Let $A \in M_{n \times n}(\mathbb{R})$. Then the following are equivalent:

- (a) A is invertible
- (b) $\operatorname{rref}(A) = I_{n \times n}$
- (c) rank(A) = n
- (d) For any $y \in \mathbb{R}^n$, then Ax = y has a unique solution x
- (e) Ax = 0 has only the trivial solution x = 0

Proof

$$(a) \Leftrightarrow \begin{cases} (b) & \text{theorem } 1.5.8 \\ (c) & \text{corollary } 1.5.9 \\ (d) & \text{corollary } 1.5.10 \\ (e) & \text{corollary } 1.5.10 \end{cases}$$

Theorem 1.5.13: Product of Invertible Matrices is Invertible

Let $A,B \in M_{n \times n}(\mathbb{R})$ be invertible. Then, AB is invertible where: $(AB)^{-1} = B^{-1}A^{-1}$

Proof

Since A and B are invertible, then there are
$$A^{-1}, B^{-1} \in M_{n \times n}(\mathbb{R})$$
 such that:
 $A^{-1}A = I_{n \times n} \qquad AA^{-1} = I_{n \times n} \qquad B^{-1}B = I_{n \times n} \qquad BB^{-1} = I_{n \times n}$
Then AB is invertible since $(AB)^{-1}$ exist as $(AB)^{-1} = B^{-1}A^{-1}$:
 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_{n \times n}B = B^{-1}B = I_{n \times n}$
 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_{n \times n}A^{-1} = AA^{-1} = I_{n \times n}$

Example

Let T:
$$\mathbb{R}^4 \to \mathbb{R}^4$$
 be T(x) = Ax where A =
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 11 \\ 3 & 7 & 14 & 25 \\ 4 & 11 & 25 & 50 \end{bmatrix}$$
. Find $T^{-1}(1, 1, -1, -6)$.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 2 & 4 & 7 & 11 & | & 0 & 1 & 0 & 0 \\ 3 & 7 & 14 & 25 & | & 0 & 0 & 1 & 0 \\ 4 & 11 & 25 & 50 & | & 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & | & -2 & 1 & 0 & 0 \\ 0 & 3 & 13 & 34 & | & -4 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -7 & -22 & | & 7 & 0 & -2 & 0 \\ 0 & 0 & 1 & 3 & | & -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & | & -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & | & -2 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & | & 7 & -5 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 1 & 2 & -3 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & -6 & 9 & -5 & 1 \\ 0 & 1 & 0 & 0 & | & 9 & -1 & -5 & 2 \\ 0 & 0 & 1 & 0 & | & -5 & -5 & 9 & -3 \\ 0 & 0 & 0 & 1 & | & 1 & 2 & -3 & 1 \end{bmatrix} = A^{-1} \Rightarrow A \text{ is invertible}$$

$$T^{-1}(1, 1, -1, -6) = A^{-1}(1, 1, -1, -6) = (2, 1, -1, 0)$$

2 Vector Space

2.1 Span & Independence

Definition 2.1.1: Vector Space

V is a vector space over \mathbb{K} if for any $u,v,w \in V$ and $a,b \in \mathbb{K}$:

(a) Commutativity

$$u + v = v + u$$

(b) Addititive Associativity

$$(u + v) + w = u + (v + w)$$

(c) Additive Identity

There exists a unique $0_v \in V$ such that for all $v \in V$:

$$0_v + v = v$$

(d) Additive Inverse

For any v, there exists a unique $-v \in V$ such that:

$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}_v$$

(e) Distributivity

$$a(u+v) = au + av \qquad (a+b)u = au + bu$$

(f) Multiplicative Associativity

$$a(bu) = (ab)u$$

(g) Multiplicative Identity

$$1u = u$$

Theorem 2.1.2: $0v = 0_v$, $a0_v = 0_v$, (-1)v = -v

Let V be a vector space where $v \in V$. Then:

$$0v = 0_v$$
 $a0_v = 0_v$ (-1) $v = -v$

Proof

Since
$$0v = (0+0)v = 0v + 0v$$
, then:

$$0_v = 0v + (-0v) = 0v + 0v + (-0v) = 0v + 0_v = 0v$$

Since $a0_v = a(0_v + 0_v) = a0_v + a0_v$, then:

$$0_v = a0_v + (-a0_v) = a0_v + a0_v + (-a0_v) = a0_v + 0_v = a0_v$$

Since
$$0_v = 0v = (-1+1)v = (-1)v + 1v = (-1)v + v$$
, then:

$$-v = 0_v + (-v) = (-1)v + v + (-v) = (-1)v + 0_v = (-1)v$$

Definition 2.1.3: Linear Combination, Span, and Independence

 $\mathbf{x} \in \mathbb{R}^n$ is a linear combination of $v_1, ..., v_k \in \mathbb{R}^n$ if there are $c_1, ..., c_k \in \mathbb{R}$ such that:

$$\mathbf{x} = c_1 v_1 + \dots + c_k v_k$$

The span of $v_1, ..., v_k \in \mathbb{R}^n$ is the set of all linear combinations of $v_1, ..., v_k$.

Also, $v_1, ..., v_k \in \mathbb{R}^n$ are linearly independent if none of the v_i are linear combinations of the other v_i 's. Else, $v_1, ..., v_k$ are linearly dependent.

Theorem 2.1.4: Remove Linearly dependent vectors to get Linearly independence

Let $\mathbf{u} \in \mathbb{R}^n$ be a linear combination of $v_1, ..., v_k \in \mathbb{R}^n$. Then:

$$span(v_1, ..., v_k) = span(v_1, ..., v_k, u)$$

Thus, by removing vectors that are linear combinations (i.e. linearly dependent vectors), then the resulting set of vectors will be linearly independent and the span is unaffected.

Proof

Since u is a linear combination of $v_1, ..., v_k$, then there are $c_1, ..., c_k \in \mathbb{R}$ such that:

$$\mathbf{u} = c_1 v_1 + \dots + c_k v_k$$

Let u_1 be a linear combination of $v_1, ..., v_k$, u. Then there are $a_1, ..., a_k, a \in \mathbb{R}$ such that:

$$u_1 = a_1v_1 + \dots + a_kv_k + au = a_1v_1 + \dots + a_kv_k + a(c_1v_1 + \dots + c_kv_k) = (a_1 + ac_1)v_1 + \dots + (a_k + ac_k)v_k$$

Thus, $u_1 \in \text{span}(v_1, ..., v_k)$ so $\text{span}(v_1, ..., v_k, \mathbf{u}) \subset \text{span}(v_1, ..., v_k)$.

Let u_2 be a linear combination of $v_1, ..., v_k$. Then there are $b_1, ..., b_k \in \mathbb{R}$ such that:

$$u_2 = b_1 v_1 + \dots + b_k v_k = [(b_1 - c_1)v_1 + \dots + (b_k - c_k)v_k] + [c_1 v_1 + \dots + c_k v_k]$$

= $(b_1 - c_1)v_1 + \dots + (b_k - c_k)v_k + u$

Thus, $u_2 \in \text{span}(v_1, ..., v_k, \mathbf{u})$ so $\text{span}(v_1, ..., v_k) \subset \text{span}(v_1, ..., v_k, \mathbf{u})$.

Theorem 2.1.5: Condition for Linear Independence

 $v_1,...,v_k \in \mathbb{R}^n$ are linearly independent if and only if the only solution $(c_1,...,c_k)$:

$$c_1v_1 + \dots + c_kv_k = 0$$

is
$$c_1 = ... = c_k = 0$$
.

Note regardless of $v_1, ..., v_k$, any $c_1v_1 + ... + c_kv_k = 0$ holds true when $(c_1, ..., c_k) = 0 \in \mathbb{R}^k$.

 $(c_1,...,c_k)=0$ is called the trivial solution. Any $(c_1,...,c_k)\neq 0$ is a nontrivial solution.

Proof

Suppose $v_1, ..., v_k \in \mathbb{R}^n$ are linearly independent.

Then for any v_i , there are no $c_1, ..., c_{i-1}, c_{i+1}, ..., c_k \in \mathbb{R}$ such that:

$$v_i = c_1 v_1 + \dots + c_{i-1} v_{i-1} + c_{i+1} v_{i+1} + \dots + c_k v_k$$

Thus, there are no $(c_1, ..., c_{i-1}, c_i = -1, c_{i+1}, ..., c_k)$ such that:

$$0 = c_1 v_1 + \dots + c_{i-1} v_{i-1} + c_i v_i + c_{i+1} v_{i+1} + \dots + c_k v_k$$

The statement holds true if the equation was multiplied by any non-zero number. Thus, any $(c_1, ..., c_k)$ where at least one c_i is not 0 is not a solution. Since $(c_1, ..., c_k) = 0$ is a solution for $c_1v_1 + ... + c_kv_k = 0$, then for linearly independent $v_1, ..., v_k$, then $(c_1, ..., c_k) = 0$.

Suppose the solution, $(c_1, ..., c_k)$, to $c_1v_1 + ... + c_kv_k = 0$ is only $(c_1, ..., c_k) = 0$.

Suppose there is a linearly dependent vector, v_i . Then there are $a_1, ..., a_{i-1}, a_{i+1}, ..., a_k$ where:

$$v_i = a_1 v_1 + \dots + a_{i-1} v_{i-1} + a_{i+1} v_{i+1} + \dots + a_k v_k$$

$$0 = a_1 v_1 + \dots + a_{i-1} v_{i-1} + \dots + a_i v_{i+1} + \dots + a_k v_k$$

Thus, $(a_1, ..., a_{i-1}, -1, a_{i+1}, ..., a_k)$ is a solution to $c_1v_1 + ... + c_kv_k = 0$ contradicting that $(c_1, ..., c_k) = 0$. Thus, there are no linearly dependent vectors.

Theorem 2.1.6: Extending the Span of Linearly independent vectors

Let $v_1, ..., v_k \in \mathbb{R}^n$ be linearly independent. If $v \in \mathbb{R}^n$ is not in the span $(v_1, ..., v_k)$, then $v_1, ..., v_k, v$ are linearly independent.

Proof

Let $c_1, ..., c_k, c \in \mathbb{R}$ be such that $c_1v_1 + ... + c_kv_k + cv = 0$. Suppose $c \neq 0$. Then:

$$c_1v_1 + \dots + c_kv_k = -cv$$
 \Rightarrow $v = \frac{-c_1}{c}v_1 + \dots + \frac{-c_k}{c}v_k$

Then, v is a linear combination of $v_1, ..., v_k$ and thus, v is in the span $(v_1, ..., v_k)$ which is a contradiction. Thus, c = 0. Then:

$$0 = c_1 v_1 + \dots + c_k v_k + cv = c_1 v_1 + \dots + c_k v_k$$

Since $v_1, ..., v_k$ are linearly independent, then each $c_1 = ... = c_k = 0$. Thus, $(c_1, ..., c_k, c) = 0$ so $v_1, ..., v_k, v$ are linearly independent.

2.2 Subspaces: Image & Kernel

Definition 2.2.1: Subspaces

 $V \subset \mathbb{R}^n$ is a subspace of \mathbb{R}^n if:

(a) Zero Vector Existence

 $0 \in V$

(b) Closed under Addition: If $v_1, v_2 \in V$, then:

 $v_1 + v_2 \in V$

(c) Closed under Scalar Multiplication: If $v \in V$ and $c \in \mathbb{R}$, then:

 $cv \in V$

Theorem 2.2.2: Union of Subspaces's Condition for Subspace

Let $U, V \subset \mathbb{R}^n$ be subspaces. Then, $U \cup V$ is a subspace if and only if $U \subset V$ or $V \subset U$. <u>Proof</u>

Suppose $U \cup V$ is a subspace. Suppose $U \not\subset V$ and $V \not\subset U$. Then there is a $u \in U$ where $u \not\in V$ and a $v \in V$ where $v \not\in U$. Thus, $u,v \in U \cup V$, but $u+v \not\in U$ since $v \not\in U$ and $u+v \not\in V$ since $u \not\in V$. Thus, $u+v \not\in U \cup V$ contradicing V is a subspace. Thus, $U \subset V$ or $V \subset U$.

If $U \subset V$, then $U \cup V = V$ is a subspace. If $V \subset U$, then $U \cup V = U$ is a subspace.

Theorem 2.2.3: Intersection of Subspaces is a Subspace

Let $U, V \subset \mathbb{R}^n$ be subspaces. Then, $U \cap V$ is a subspace.

Proof

Let $x,y \in U \cap V$ and $a,b \in \mathbb{R}$. Then $x,y \in U,V$. Since U and V are subspaces, then $ax+by \in U,V$. Thus, $ax+by \in U \cap V$ so $U \cap V$ is a subspace.

Definition 2.2.4: Image and Kernel

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation T(x) = Ax.

The image of T is the set of all $Ax \in \mathbb{R}^m$ where $x \in \mathbb{R}^n$:

$$\operatorname{im}(T) = \operatorname{im}(A) = \{ A(x) \mid x \in \mathbb{R}^n \}$$

The kernel of T is the set of all $x \in \mathbb{R}^n$ such that Ax = 0:

 $ker(T) = ker(A) = \{ x \mid Ax = 0 \}$

Theorem 2.2.5: Im(A) is a Subspace that spans the columns of A

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation T(x) = Ax.

Then, im(A) is a subspace and im(A) = span(A).

<u>Proof</u>

Since $Ax = A_1x_1 + ... + A_nx_n$ for $x = (x_1, ..., x_n) \in \mathbb{R}^n$ where $A_1, ..., A_n$ are the columns of A: $im(A) = \{ Ax \mid x \in \mathbb{R}^n \} = \{ x_1A_1 + ... + x_nA_n \mid x_1, ..., x_n \in \mathbb{R} \} = span(A_1, ..., A_n)$

Since A0 = 0, then $0 \in \text{im}(A)$. Let $u, v \in \text{im}(A)$ and $a, b \in \mathbb{R}$.

Then there are $a_1, ..., a_n \in \mathbb{R}$ and $b_1, ..., b_n \in \mathbb{R}$ such that:

 $u = a_1 A_1 + ... + a_n A_n$ $v = b_1 A_1 + ... + b_n A_n$

Thus, $au+bv = (aa_1 + bb_1)A_1 + ... + (aa_n + bb_n)A_n \in \text{span}(A_1, ..., A_n) = \text{im}(A)$.

Theorem 2.2.6: ker(A) is a Subspace

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation T(x) = Ax. Then, $\ker(A)$ is a subspace.

Proof

Since A0 = 0, then $0 \in \ker(A)$. Let $x_1, x_2 \in \ker(A)$ and $a,b \in \mathbb{R}$ so $Ax_1 = Ax_2 = 0$.

Then, $A(ax_1 + bx_2) = aA(x_1) + bA(x_2) = a0 + b0 = 0$ so $ax_1 + bx_2 \in ker(A)$.

Theorem 2.2.7: Relationship between the Kernel and Linear Independence

Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation T(x) = Ax where $A = \begin{bmatrix} A_1 & \dots & A_m \end{bmatrix}$. Then, $A_1, ..., A_m$ are linearly independent if and only if $ker(A) = \{0\}$.

Proof

Note
$$Ax = \begin{bmatrix} A_1 & \dots & A_m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = x_1 A_1 + \dots + x_m A_m = 0$$
. Let A_1, \dots, A_m be linearly independent.

Then, the only solution to $\overline{x_1}A_1 + ... + x_mA_m = 0$ is $(x_1, ..., x_n) = 0$ so $\ker(A) = \{0\}$.

Suppose $\ker(A) = \{0\}$. Then, the only solution to $x_1A_1 + ... + x_mA_m = Ax = 0$ is x = 0. By theorem 2.1.5, $A_1, ..., A_m$ are linearly independent.

2.3 Dimension

Definition 2.3.1: Basis & Dimension

Let set $V \subset \mathbb{R}^n$ be subspace of \mathbb{R}^n . If $v_1, ..., v_k \in \mathbb{R}^n$ are linearly independent and span V (i.e. $\operatorname{span}(v_1, ..., v_k) = V$), then $v_1, ..., v_k$ form a basis for V.

The dimension of V, $\dim(V)$, is the number of vectors in a basis of V.

Since $e_1, ..., e_n$, are linearly independent and any $x \in \mathbb{R}^n$, is $x = x_1e_1 + ... + x_ne_n$ so $\operatorname{span}(e_1,...,e_n)=\mathbb{R}^n$, then $\dim(\mathbb{R}^n)=n$. $e_1,...,e_n$ are called the standard basis vectors.

Theorem 2.3.2: # linearly independent vectors in $V \leq \#$ vectors that span V

Let $v_1,...,v_m \in V$ be linearly independent and $u_1,...,u_k \in V$ span V, then m \leq k Proof

Let
$$A = \begin{bmatrix} v_1 & \dots & v_m \end{bmatrix} \in M_{n \times m}(\mathbb{R})$$
 and $B = \begin{bmatrix} u_1 & \dots & u_k \end{bmatrix} \in M_{n \times k}(\mathbb{R})$. Since $\operatorname{im}(B) = \operatorname{span}(B)$
= V, then for $v_1, \dots, v_m \in V$, there are $c_1, \dots, c_m \in \mathbb{R}^k$ such that $v_i = Bc_i$:

 $A = \begin{bmatrix} v_1 & \dots & v_m \end{bmatrix} = \begin{bmatrix} Bc_1 & \dots & Bc_m \end{bmatrix} = B\begin{bmatrix} c_1 & \dots & c_m \end{bmatrix} = BC$ where $C \in M_{k \times m}(\mathbb{R})$ Thus, if Cx = 0, then Ax = BCx = B0 = 0 so $ker(C) \subset ker(A)$. Since $v_1, ..., v_m \in V$ be linearly independent, then by theorem 2.2.7, $\ker(A) = \{0\}$ so $\ker(C) = \{0\}$. Since Cx = 0 has a unique solution x = 0, then by corollary 1.3.8, $k \ge m$.

Corollary 2.3.3: The dimension is unique

Suppose $v_1, ..., v_m \in V$ and $u_1, ..., u_k \in V$ are bases for V, then $\dim(V) = m = k$ <u>Proof</u>

Since $v_1, ..., v_m$ and $u_1, ..., u_k$ are bases, then $v_1, ..., v_m$ and $u_1, ..., u_k$ are linearly independent and span V. By theorem 2.3.2, $m \le k$ and $k \le m$ so m = k.

Theorem 2.3.4: Linear combinations of a Basis are unique

Let $v_1, ..., v_k \in \mathbb{R}^n$ form a basis for $V \subset \mathbb{R}^n$.

Then for any $v \in V$, there are unique $(c_1, ..., c_k)$ such that:

$$\mathbf{v} = c_1 v_1 + \dots + c_k v_k$$

Proof

Since $v_1, ..., v_k$ form a basis for V, then $V = \text{span}(v_1, ..., v_k)$. Then for any $v \in V$, then $v \in V$ $\operatorname{span}(v_1,...,v_k)$. Thus, there are $c_1,...,c_k \in \mathbb{R}$ such that $\mathbf{v}=c_1v_1+...+c_kv_k$.

Let $a_1, ..., a_k \in \mathbb{R}$ such that $\mathbf{v} = a_1 v_1 + ... + a_k v_k$. Then:

$$0 = (c_1 - a_1)v_1 + \dots + (c_k - a_k)v_k$$

Since $v_1, ..., v_k$ form a basis for V, then $v_1, ..., v_k$ are linearly independent. Thus, by theorem 2.1.5, $c_i - a_i = 0$ for $i = \{1,...,k\}$ so $c_i = a_i$ for $i = \{1,...,k\}$. Thus, $(c_1,...,c_k)$ must be unique.

Theorem 2.3.5: Connection between Span, Linear Independence, and Basis

Let $V \subset \mathbb{R}^n$ where $\dim(V) = m$. Then, $m \leq n$ and:

- (a) If $u_1, ..., u_k \in V$ are linearly independent, then $k \leq m$
- (b) For $u_1, ..., u_k \in V$, if span $(u_1, ..., u_k) = V$, then $k \ge m$
- (c) $u_1, ..., u_m \in V$ are linearly independent if and only if $\operatorname{span}(u_1, ..., u_m) = V$

Proof

Since $\dim(V) = m$, then there are $v_1, ..., v_m \in \mathbb{R}^n$ that are linearly independent and span V. Then for any $v \in V$, there are $c_1, ..., c_m$ where:

$$\mathbf{v} = c_1 v_1 + \dots + c_m v_m \iff \begin{bmatrix} v_1 & \dots & v_m \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix} = \mathbf{v} \iff \mathbf{A}\mathbf{c} = \mathbf{v} \quad \text{where } \mathbf{A} \in M_{n \times m}(\mathbb{R})$$

By theorem 2.3.4, c is unique. Since $A \in M_{n \times m}(\mathbb{R})$, then by corollary 1.3.8, $n \ge m$.

Let $u_1, ..., u_k$ be linearly independent. Since $v_1, ..., v_m$ span V, then by theorem 2.3.2, $k \leq m$.

Let $u_1, ..., u_k$ span V. Since $v_1, ..., v_m$ are linearly independent, then by theorem 2.3.2, m $\leq k$

Suppose $u_1, ..., u_m \in V$ are linearly independent. Let $v \in V$. If $v \notin \text{span}(u_1, ..., u_m)$, then by theorem 2.1.6, $u_1, ..., u_m, v$ are linearly independent contradicting that $m+1 = \dim(V) = m$. Thus, any $v \in V$ is $v \in \text{span}(u_1, ..., u_m)$ so $V \subset \text{span}(u_1, ..., u_m)$. Since $\text{span}(u_1, ..., u_m) \subset V$, then $\text{span}(u_1, ..., u_m) = V$.

Suppose span $(u_1, ..., u_m) = V$. Suppose there are $c_1, ..., c_m$ where not all $c_i = 0$ such that: $c_1u_1 + ... + c_mu_m = 0$

If there is one $c_i \neq 0$, then $c_i u_i = c_1 u_1 + ... + c_m u_m = 0$ implies $u_i = 0$ which is a dependent vector. Thus, there are at least two $c_i \neq 0$. Then, $u_i = \frac{-c_1}{c_i} u_1 + ... + \frac{-c_{i-1}}{c_i} u_{i-1} + \frac{-c_{i+1}}{c_i} u_{i+1} + ... + \frac{-c_m}{c_i} u_m$ where at least one $c_{j\neq i} \neq 0$ so u_i is a dependent vector. So there are less than m independent vectors contradicting that $\mathbf{m} = \dim(\mathbf{V}) < \mathbf{m}$. Thus, all $c_i = 0$ so $u_1, ..., u_m$ are independent.

Theorem 2.3.6: Determining Basis for Im(A) using rref

Let $A = \begin{bmatrix} v_1 & \dots & v_k \end{bmatrix} \in M_{n \times k}(\mathbb{R})$ where each $v_i \in \mathbb{R}^n$. Then the v_i that are linearly independent are the columns in rref(A) which contain pivots.

Then the v_i that are linearly independent are the columns in rref(A) which contain pivots Thus, such v_i form a basis for im(A).

Proof

By theorem 2.2.5, im(A) = span(A) = span($v_1, ..., v_k$). Suppose the i-th column of rref([A | 0]) does not contain a pivot. Then, Ax = 0 where $x \in \mathbb{R}^k$ has a free variable at x_i so ker(A) has nonzero solutions. Thus, by theorem 2.2.7, $v_1, ..., v_k$ are linearly dependent. But, if all columns without pivots are removed are removed from rref(A) to make B, then Bx = 0 has only pivots and thus, by theorem 1.3.7, there is a unique solution and since B0 = 0, then ker(B) = $\{0\}$ and thus, the columns with pivots are linearly independent.

If v_i are linearly dependent, then the sequence of elementary row operations to transform A into rref(A) transform the entries of the i-th column into 0 except possibly the first entry and thus, the i-th column does not have a pivot. By theorem 2.1.4, removing linearly dependent vectors will not change the span(A) = span($v_1, ..., v_k$) = im(A) so the resulting vectors with pivots will be linearly independent and span im(A) and thus, form a basis for im(A).

Corollary 2.3.7: dim(im(A)) = rank(A)

For any $A \in M_{m \times n}(\mathbb{R})$: $\dim(\operatorname{im}(A)) = \operatorname{rank}(A)$

Proof

Let $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}$ where $A_i \in \mathbb{R}^m$. By theorem 2.3.6, the A_i that form a basis for $\operatorname{im}(A)$ are columns that contain pivots so $\dim(\operatorname{im}(A))$, the number of vectors in a basis for $\operatorname{im}(A)$ is the same as the number of pivots in $\operatorname{rref}(A)$, $\operatorname{rank}(A)$.

Theorem 2.3.8: Rank-Nullity Theorem

For any $A \in M_{m \times n}(\mathbb{R})$, the dim(ker(A)) is called the nullity of A where: dim(im(A)) + dim(im(A)) = n

Proof

Note the number of free variables + the number of pivot variables = n.

By corollary 2.3.7, the number of pivot variables, rank(A) = dim(im(A)).

If the i-th column doesn't have a pivot, then the solutions to Ax = 0 are linear combinations of a vector v_i with 1 in the i-th row and 0 in any j-th row where the j-th column doesn't have a pivot so each v_i is linearly independent and span $\ker(A)$. Thus, the number of free variables is equal to the number of v_i , $\dim(\ker(A))$, so $\dim(\operatorname{im}(A)) + \dim(\operatorname{im}(A)) = n$.

2.4 Injectivity & Surjectivity

Definition 2.4.1: Injectivity and Surjectivity

Let T: V \rightarrow W be a linear transformation.

T is injective if for any $w \in T(V) = im(T)$, there is a unique $v \in V$ such that T(v) = wT is surjective if for any $w \in W$, there is a $v \in V$ such that T(v) = w

Theorem 2.4.2: Connection between Invertibility, Injectivity, and Surjectivity

Let T: $\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation where T(x) = Ax.

Then, T is invertible if and only if T is injective and surjective.

Proof

Suppose T is invertible. Let $y \in \mathbb{R}^n$. Then, by theorem 1.5.12, there is a unique $x \in \mathbb{R}^n$ such that Ax = T(x) = y. Thus, T is injective and surjective.

Suppose T is injective and surjective. Since T is surjective, then for any $y \in \mathbb{R}^n$, there is a $x \in \mathbb{R}^n$ such that Ax = T(x) = y. Since T is injective, then x is unique. Then, by theorem 1.5.12, T is invertible.

Theorem 2.4.3: Connection between Invertibility, Span, and Linear Independence

Let T: $\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation T(x) = Ax where $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}$.

Then, T is invertible if and only if $A_1, ..., A_n$ are linearly independent and span \mathbb{R}^n .

<u>Proof</u>

Suppose T is invertible. By theorem 1.5.12, for any $y \in \mathbb{R}^n$, there is a unique $x \in \mathbb{R}^n$ where Ax = y. Thus, $\operatorname{span}(A_1, ..., A_n) = \operatorname{im}(A)$. Since $\dim(\mathbb{R}^n) = n$, then $A_1, ..., A_n$ span \mathbb{R}^n , then by theorem 2.3.5, $A_1, ..., A_n$ are linearly independent.

Theorem 2.4.4: Injectivity \Leftrightarrow Surjectivity

Let T: $\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation where T(x) = Ax where $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}$. Then, T is surjective if and only if T is injective.

Proof

Suppose T is surjective. Then for any $y \in \mathbb{R}^n$, there is a $x \in \mathbb{R}^n$ where Ax = T(x) = y. Thus, $\operatorname{span}(A_1, ..., A_n) = \operatorname{im}(A) = \mathbb{R}^n$. Since $\dim(\mathbb{R}^n) = n$, then by theorem 2.3.5, $A_1, ..., A_n$ are linearly independent. By theorem 2.4.3, T is invertible, then by theorem 2.4.2, T is injective.

Suppose T is injective. Then for any $y \in \text{im}(A)$, there is a unique $x \in \mathbb{R}^n$ where Ax = T(x) = y. Suppose there is a linearly dependent A_i . Then there are $c_1, ..., c_{i-1}, c_{i+1}, c_n$ where at least one $c_i \neq 0$ such that $A_i = c_1A_1 + ... + c_{i-1}A_{i-1} + c_{i+1}A_{i+1} + ... + c_nA_n$. Then:

$$Ax = x_1 A_1 + \dots + x_n A_n$$

 $=(x_1+x_ic_1)A_1+...+(x_{i-1}+x_ic_{i-1})A_{i-1}+(x_{i+1}+x_ic_{i+1})A_{i+1}+...+(x_n+x_ic_n)A_n$ If $x_i \neq 0$, then $\mathbf{x}=(x_1,...,x_n)$ is not the only solution to $\mathbf{y}=\mathbf{A}\mathbf{x}$ contradicting that \mathbf{x} is unique. Thus, $x_i=0$. Similarly, if any other A_j is linearly dependent, then $x_j=0$. Thus, $\mathbf{A}\mathbf{x}=x_1A_1+...+x_nA_n=x_{i_1}A_{i_1}+...+x_{i_k}A_{i_k}$ where $A_{i_1},...,A_{i_k}$ are the A_i that are linearly independent. Thus, for $\mathbf{A}\mathbf{x}=0$, then each $x_{i_1}=0$. Since then all $x_i=0$, then no A_i is linearly dependent so $A_1,...,A_n$ are linearly independent. By theorem 2.4.3, T is invertible, then by theorem 2.4.2, T is surjective.

Theorem 2.4.5: Invertibility Equivalences Extended

Let T: $\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation where T(x) = Ax where $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}$. Then the following are equivalent:

- (a) A is invertible
- (b) $\operatorname{rref}(A) = I_{n \times n}$
- (c) rank(A) = n
- (d) For any $y \in \mathbb{R}^n$, then Ax = y has a unique solution x
- (e) Ax = 0 has only the trivial solution x = 0 (i.e $ker(A) = \{0\}$)
- (f) $A_1, ..., A_n$ are linearly independent
- (g) $\operatorname{im}(A) = \operatorname{span}(A_1, ..., A_n) = \mathbb{R}^n$
- (h) T is injective
- (i) T is surjective

Proof

$$\begin{cases} (b), (c), (d), (e) & \text{theorem 1.5.12} \\ (f) & \text{theorem 2.4.3 and 2.3.5}. \\ (a) \Rightarrow (f) \text{ only needs 2.4.3, but (a)} \Leftarrow (f) \text{ needs 2.4.3, 2.3.5} \\ (g) & \text{theorem 2.4.3 and 2.3.5} \\ (a) \Rightarrow (g) \text{ only needs 2.4.3, but (a)} \Leftarrow (g) \text{ needs 2.4.3, 2.3.5} \\ (h) & \text{theorem 2.4.2 and 2.4.4} \\ (a) \Rightarrow (h) \text{ only needs 2.4.2, but (a)} \Leftarrow (h) \text{ needs 2.4.2, 2.4.4} \\ (i) & \text{theorem 2.4.2 and 2.4.4} \\ (a) \Rightarrow (i) \text{ only needs 2.4.2, but (a)} \Leftarrow (i) \text{ needs 2.4.2, 2.4.4} \\ \end{cases}$$

Example

Let T:
$$\mathbb{R}^4 \to \mathbb{R}^4$$
 be $T(x) = Ax = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1 \end{bmatrix} x$.

Find if T is invertible, im(T), dim(im(T)), ker(T), and dim(ker(T)).

$$\begin{bmatrix} A \mid I_{4\times 4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & -1 & | & 0 & 1 & 0 & 0 \\ 3 & 4 & -6 & 8 & | & 0 & 0 & 1 & 0 \\ 0 & -1 & 3 & 1 & | & 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & -1 & | & 0 & 1 & 0 & 0 \\ 0 & 4 & -12 & -4 & | & -3 & 0 & 1 & 0 \\ 0 & -1 & 3 & 1 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 2 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -3 & -1 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & | & -3 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & | & 0 & 1 & 0 & 1 \end{bmatrix} \Rightarrow \text{rref}(A) \neq I_{4\times 4} \Rightarrow A \text{ is not invertible}$$

Since the 1st and 2nd column have pivots, then (1,0,3,0) and (0,1,4,-1) form a basis for im(T). $im(T) = c_1(1,0,3,0) + c_2(0,1,4,-1)$ for $c_1, c_2 \in \mathbb{R}$ where (1,0,3,0), (0,1,4,-1) form a basis for im(T) so dim(im(T)) = 2

To find ker(T), (aka solving Ax = 0 for x), replace the right matrix by a column with all 0 entries:

$$\begin{bmatrix} 1 & 0 & 2 & 4 & | & 0 \\ 0 & 1 & -3 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \Leftrightarrow x_1 + 2x_3 + 4x_4 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2x_3 - 4x_4 \\ 3x_3 + x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\ker(T) = x_3(-2, 3, 1, 0) + x_4(-4, 1, 0, 1) \quad \text{for } x_3, x_4 \in \mathbb{R}$$

$$\text{where } (-2, 3, 1, 0), (-4, 1, 0, 1) \quad \text{form a basis for } \ker(T) \text{ so } \dim(\ker(T)) = 2$$

2.5 Coordinates

3 Orthogonality

4 Eigenvectors

REFERENCES

References

[1] Otto Bretscher, Linear Algebra with Applications (4th Edition), ISBN-13: 978-0321796974