Программирование микроконтроллеров STM32

Модуль часов реального времени

Зачем нужен RTC?

- Задача: отсчитывать каждую секунду
- Решение?

Возможности RTC в STM32

- Поддержка календаря
- Поддержка перевода стрелок в летний период
- Расширенный будильник с поддержкой прерывания
- Таймер включения (wake up timer)
- Корректировка на 60Гц с дополнительного источника тактирования
- Поддержка временных меток по внешнему событию (time stamping)
- 5 бэкап регистров
- Поддержка быстрого удаления содержимого бэкап регистров (tamper detection)

RTC. Батарейное питание

Хранения времени. Регистры. BCD формат

RTC. Включение периферии

- 1. LL_RCC_LSI_Enable()
- **2.** Включение доступа к периферии RTC!! LL_PWR_EnableBkUpAccess()
- 3. LL_RCC_SetRTCClockSource() LL_RCC_RTC_CLKSOURCE_LSI
- 4. LL_RCC_EnableRTC()

RTC. Настройка календаря

Любая настройка модуля часов реального времени начинается с разблокировки регистров

- LL_RTC_DisableWriteProtection(RTC) [0xCA, 0x53 -> RTC_WPR]
- LL_RTC_EnableWriteProtection(RTC) [0xFF -> RTC_WPR]

Включение/выключение режима инициализации:

- LL_RTC_EnableInitMode() [RTC_ISR, Init and status reg]
- LL_RTC_DisableInitMode()
- LL_RTC_IsActiveFlag_INIT() [RTC_ISR]

RTC. Настройка календаря

- LL_RTC_SetAsynchPrescaler() -> [RTC_PRER, prescaler register]
- LL_RTC_SetSynchPrescaler() -> [RTC_PRER]

RTC. Настройка календаря

- LL_RTC_SetHourFormat [RTC_CR]
 - LL_RTC_HOURFORMAT_24HOUR
 - LL RTC HOURFORMAT AMPM
- LL_RTC_DATE_Config [RTC_DR]
 - о День недели, LL RTC WEEKDAY FRIDAY
 - День, 1
 - о Mecяц, LL RTC MONTH MARCH
 - Год, 2019
- LL_RTC_TIME_Config [RTC_TR]
 - Формат, LL_RTC_TIME_FORMAT_AM_OR_24
 - Время, (часы: 11, минуты: 22, секунды: 00)

RTC. Чтение текущего времени

LL_RTC_EnableShadowRegBypass() [RTC_CR]

Преимущества теневых регистров:

• Данные когерентны

Недостатки теневых регистров:

- Данные сбрасываются после сброса
- После выхода из сна нужно вручную запрашивать данные
- Приходится ждать загрузки данных

RTC. Чтение текущего времени

- LL_RTC_IsActiveFlag_RS() [RTC_ISR]
- LL_RTC_TIME_Get()
- LL_RTC_DATE_Get()

Но $f_{APB_CLK} <= f_{RTC_CLK}$ в 7 раз, то прочитать дважды или даже трижды!

RTC. Будильник

- Большое количество условий для срабатывания
- Возможность пробуждать микроконтроллер
- Возможность конфигурации на внешний вывод портов ввода-вывода
- Возможность генерирования прерывания

RTC. Будильник. Настройка

RTC. Будильник. Настройка

LL_RTC_ALMA_SetMask()
LL_RTC_ALMA_ConfigTime()

RTC. Будильник. Маскирование

MSK3	MSK2	MSK1	MSK0	Поведение
0	0	0	0	23:15:07, каждый ПН
0	0	0	1	23:15, Каждый ПН
0	0	1	0	23:XX:07 Каждый ПН

Связь EXTI, NVIC и RTC

RTC. Будильник. Прерывание

Репозиторий

https://github.com/edosedgar/stm32f0_ARM