

Running Spark on a High-Performance Cluster using RDMA Networking and NVMe Flash

Patrick Stuedi, IBM Research

Hardware Trends

community our target target

	2010	2017	2017
Storage	100 MB/s	1000 MB/s	10 GB/s
	100ms	200us	50us
Network	1Gbps	10Gbps	100Gbps
	50us	20us	2us
CPU	~3GHz	~3GHz	

User-Level APIs

Remote Data Access

Let's Use it!

Case Study: Sorting in Spark

Experiment Setup

- Total data size: 12.8 TB
- Cluster size: 128 nodes
- Cluster hardware:
 - DRAM: 512 GB DDR 4
 - Storage: 4x 1.2 TB NVMe SSD
 - Network: 100GbE Mellanox RDMA

Flash bandwidth per node matches network bandwidth

How is the Network Used?

What are the Problems?

- Spark uses legacy networking and storage APIs: no kernel-bypass
- Spark itself introduces additional I/O layers: Netty, serializer, sorter, etc.

Example: Shuffle (Map)

Example: Shuffle (Map)

Example: Shuffle (Map+Reduce)

Example: Shuffle (Map+Reduce)

How can we fix this?

- Not just for shuffle
 - Also for broadcast, RDD transport, inter-job sharing, etc.
- Not just for RDMA and NVMe hardware
 - But for any possible future high-performance I/O hardware
- Not just for co-located compute/storage
 - Also for resource disaggregation, heterogeneous resource distribution, etc.
- Not just improve things
 - Make it perform at the hardware limit

The CRAIL Approach

Thank You.

The CRAIL Approach

