

CHOLESKY DECOMPOSITION (or Cholesky Factorization)

```
for (i = 0; i < _PB_N; ++i)</pre>
 x = A[i][i];
 for (j = 0; j \le i - 1; ++j)
   x = x - A[i][j] * A[i][j];
 p[i] = 1.0 / sqrt(x);
 for (j = i + 1; j < PB_N; ++j)
   x = A[i][j];
   for (k = 0; k \le i - 1; ++k)
     x = x - A[j][k] * A[i][k];
   A[j][i] = x * p[i];
```


Example of data dependencies of a single column on a 5x5 matrix. Green elements are the active elements for each iteration, which directly depend on the yellow elements, indirectly on the pink ones, and not dependent of the blue ones.

Sequential Benchmarking

```
Performance counter stats for './cholesky_acc':
```

```
cache-references
    361.898.961
                                                    6,706 % of all cache refs
    24.269.269
                    cache-misses
   922,929,941
                    cycles
 1.087.772.189
                    instructions
                                                    1,18 insn per cycle
<not supported>
                    branches
                    faults
            581
              0
                     migrations
```

0,629194695 seconds time elapsed

Possible solution:

- **Vectorize** the problem
- Manipulate the memory init and access

PARALLELIZED VERSION 1

```
static void kernel cholesky(int n,
                            DATA TYPE POLYBENCH 1D(p, N, n),
                            DATA TYPE POLYBENCH 2D(A, N, N, n, n))
   DATA TYPE x;
   for (i = 0; i < PB N; ++i)
       x = A[i][i];
        #pragma omp parallel for reduction(-:x)
        for (j = 0; j \le i - 1; ++j)
           x = x - A[i][j] * A[i][j];
       p[i] = 1.0 / sqrt(x);
       #pragma omp parallel for private(x, k)
        for (j = i + 1; j < PB N; ++j)
            x = A[i][j];
            #pragma omp simd reduction(-:x)
            for (k = 0; k \le i - 1; ++k)
                x = x - A[j][k] * A[i][k];
            A[j][i] = x * p[i];
```

Exec time: ~14s

PARALLELIZED VERSION 2

```
static void opt kernel cholesky(int n,
                            DATA TYPE POLYBENCH 1D(p, N, n),
                           DATA TYPE POLYBENCH 2D(A, N, N, n, n))
  int i, j, k;
  DATA TYPE x:
    for (i = 0; i < PB N; ++i) {
        p[i] = 1 / sqrt(A[i][i] - p[i]);
        #pragma omp parallel for private(j, k, x)
        for (j = i + 1; j < PB N; j++) {
            x = A[i][j];
            #pragma omp simd reduction(-:x)
            for (k = 0; k \le i - 1; ++k)
                x = x - A[j][k] * A[i][k];
            A[j][i] = x * p[i];
            p[j] += A[j][i] * A[j][i];
```

Exec time: ~13s

AMDAHL'S LAW COMPARISON

Benchmark:

Dataset = EXTRALARGE

Sequential execution time = 32 sec

Amdahl's Law:

$$speedup = \frac{1}{(1-p) + \frac{p}{n}}$$

Amdahl's Law -> n = 4 p = 90%

Expected SpeedUp = 3x

Parallelized Version:

Parallel Execution time = 13 sec

Achieved SpeedUp = 2,46x

CONCLUSIONS

Let's analyze the results obtained in detail:

