微分学及其应用

SDS 高数串讲班 (2024 秋)

崔畅 北京大学化学与分子工程学院 CuiChang2022@stu.pku.edu.cn 2024-12-15 1 极限的计算 2

1 极限的计算

定义 1.1 (ϵ - δ 语言). 给定函数 f(x) 与点 x_0 , 并假设其在去心邻域 $U(x_0)/\{x_0\}$ 上有定义. 若存在 A, 使得: 对于任给的 $\epsilon > 0$, 总存在 $\delta = \delta(\epsilon) > 0$, 使得 $|f(x) - A| < \epsilon$ 对一切 $0 < |x - x_0| < \delta$ 成立, 则我们说函数 f(x) 在点 x_0 处是收敛 (convergent) 的, A 为其极限 (limit). 记作 $\lim_{x \to x_0} f(x) = A$.

• 左极限 $\lim_{x\to x_0^+} f(x)$ 、右极限 $\lim_{x\to x_0^-} f(x)$ 的定义可相应给出.

例题 1.1 (极限的证明). 正弦函数是连续的: $\lim_{x\to x_0} \sin x = \sin x_0$.

定理 1.1 (等价无穷小). 常用的两组等价无穷小:

1.
$$x \sim \sin x \sim \tan x \sim \ln (1+x) \sim \frac{a^x - 1}{\ln a} \sim \frac{(1+x)^\alpha - 1}{\alpha}$$
;

2.
$$x^2 \sim 2(1 - \cos x)$$
.

例题 1.2 (等价无穷小代换). 计算极限

$$\lim_{x \to 0} \frac{(1+x^2)^{\sin x} - 1}{x^3}.$$
 (1)

注记 1.1. 对于指数族无穷小量 $(1+f(x))^{g(x)}-1$, 常用的恒等变形为

$$(1+f(x))^{g(x)} - 1 = \exp\{g(x)\ln(1+f(x))\} - 1$$
$$\sim g(x)\ln(1+f(x)). \tag{2}$$

定理 1.2 (Peano 余项). 一个在点 x_0 处 n 次可微的函数 f(x) 满足

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$
 (3)

例题 1.3 (Taylor 多项式). 计算极限

$$\lim_{x \to 0} \frac{\tan^4 x}{\sqrt{1 - \frac{x \sin x}{2}} - \sqrt{\cos x}}.$$
 (4)

注记 1.2. 分母有理化方法:

$$\frac{1}{\sqrt{a} - \sqrt{b}} = \frac{\sqrt{a} + \sqrt{b}}{a - b}.\tag{5}$$

2 微分的计算 3

定义 1.2 (二元极限的 ϵ - δ 语言). 给定函数 $f(P) \equiv f(x,y)$ 与点 $P_0(x_0,y_0)$, 并假设其在去心邻域 $U(P_0)/\{P_0\}$ 上有定义. 若存在 A, 使得: 对于任给的 $\epsilon > 0$, 总存在 $\delta = \delta(\epsilon) > 0$, 使得 $|f(P) - A| < \epsilon$ 对一切 $0 < |PP_0| \equiv \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$ 的点 P(x,y) 成立, 则我们说函数 f(x,y) 在点 P 处是收敛 (convergent) 的, A 为其极限 (limit). 记作 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$.

• 二元极限若存在,则必须**独立于趋近方向**. 这常用于反证法证明某二元极限 不存在

例题 1.4 (计算二元极限: 等价无穷小代换). 计算

$$\lim_{(x,y)\to(0,0)} \frac{24\cos\sqrt{x^2+y^2}-24+12(x^2+y^2)}{\tan^4\sqrt{x^2+y^2}}.$$
 (6)

例题 1.5 (计算二元极限: 放缩). 计算

$$\lim_{(x,y)\to(0,0)} (x+\sin y)\cos\frac{1}{|x|+|y|}.$$
 (7)

例题 1.6 (证明二元极限不存在). 证明极限

$$\lim_{(x,y)\to(0,0)} \frac{x\sin y}{\sin^2 x + \sin^2 y} \tag{8}$$

不存在.

2 微分的计算

2.1 一元函数微分学

定义 2.1 (微分). 设函数 f(x) 在点 x_0 的邻域内有定义. 若对任意增量 Δx , 相应的函数增量都可写为

$$\Delta y \equiv f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x), \tag{9}$$

其中 A 为常数, 则称 f(x) 在点 x_0 处**可微** (differentiable), 其**微分** (differential) 记为 $dy \equiv A dx$, 表示函数增量的线性近似.

定理 2.1 (可微与可导). 实数域上一元函数可微等价于可导.

- 导数与微分的关系: dy = f'(x) dx.
- 微分操作 dy 可以看成是考察在自变量 dx 发生"微小变化"时函数 f(x) 值的变化;
- 求导操作 $\frac{d}{dx}$ 可以看成是对函数 f(x) 施加的一种运算 (或映射).

2 微分的计算 4

例题 2.1 (一阶微分的形式不变性). 计算函数

$$f(x) = 2\arctan\frac{x^2 - 1}{\sqrt{2}x} - \ln\frac{x^2 - \sqrt{2}x + 1}{x^2 + \sqrt{2}x + 1}$$
(10)

的导函数.

2.2 多元函数微分学

定义 2.2 (偏导数、全微分). n 元函数 $f(x_1, \dots, x_n)$ 关于自变量 x_k 的**偏导数** (partial deriavtive) 定义为

$$\frac{\partial f(x_1, \dots, x_n)}{\partial x_k} \equiv \lim_{\delta \to 0} \frac{f(x_1, \dots, x_k + \delta, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{\delta}; \quad (11)$$

而其全微分 (total differential), 若存在, 定义为函数增量的线性近似

$$df(x_1, \dots, x_n) \equiv \sum_{k=1}^n A_k dx_k,$$
(12)

$$\Delta f(x_1, \dots, x_n) = \mathrm{d}f(x_1, \dots, x_n) + o\left(\sqrt{\sum_{k=1}^n (\Delta x_k)^2}\right). \tag{13}$$

定理 2.2 (偏导数与全微分的关系). 若函数 f 在点 (x_1, \dots, x_n) 处可微, 则其在该点处的偏导数一定存在, 且

$$df(x_1, \dots, x_n) = \sum_{k=1}^n \frac{\partial f(x_1, \dots, x_n)}{\partial x_k} dx_k.$$
 (14)

例题 2.2 (全微分的形式不变性). 设 $f: \mathbb{R} \to \mathbb{R}$ 和 $g: \mathbb{R} \to \mathbb{R}$ 都有连续的二阶导函数. 对于任意 $x \in \mathbb{R}, y \in \mathbb{R}$, 当 $x \neq 0$ 时, 定义

$$h(x,y) = xg\left(\frac{y}{x}\right) + f\left(\frac{y}{x}\right),\tag{15}$$

计算 $x^2h_{xx}(x,y) + 2xyh_{xy}(x,y) + y^2h_{yy}(x,y)$.

定义 2.3 (梯度). 函数 $f(x_1, \dots, x_n)$ 的梯度 (gradient) 定义为

$$\nabla f \equiv \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right).$$
 (16)

定理 2.3. 梯度的方向为函数变化最"快"的方向.

例题 2.3 (梯度的计算). 求三元函数 $f(x,y,z) = \left(\frac{2x}{z}\right)^y$ 在点 $\left(\frac{1}{2},1,1\right)$ 处下降最快的方向上的单位向量.

2 微分的计算 5

2.3 Taylor 多项式的计算

定理 2.4 (一元函数的局部 Taylor 公式). 设函数 f(x) 在点 x_0 的邻域内有定义, 且在点 x_0 处有 n 阶导数 $(n \in \mathbb{N}_+)$. 则对 x_0 附近的任意点 x 都成立

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n,$$
(17)

其中, Peano 余项 $R_n = o((x - x_0)^n)$.

- 核心思想是**以多项式近似表达函数**, 其近似误差可根据 $|R_n|$ 进行估计.
- 几组常用的局部 Taylor 公式:

$$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k} + o(x^{n}),$$
 (18)

$$e^{x} = \sum_{k=0}^{n} \frac{1}{k!} x^{k} + o(x^{n}), \tag{19}$$

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n), \tag{20}$$

- 三角函数的 Taylor 公式可由 Euler 恒等式 $e^{i\theta} = \cos \theta + i \sin \theta$ 推导出.

例题 2.4 (局部 Taylor 公式). 设正整数 $n \geq 2$. 求出

$$f(x) = \frac{1 - 2x + 5x^2}{(1 - 2x)(1 + x^2)} \tag{21}$$

在 x=0 点的 2n+1 阶局部 Taylor 公式.

定理 2.5 (多元函数的局部 Taylor 公式). n 元函数的 k 阶局部 Taylor 公式

$$f(x_1^{(2)}, \dots, x_n^{(2)}) = \sum_{i=0}^k \left((x_i^{(2)} - x_i^{(1)}) \frac{\partial}{\partial x_i} \right)^i f(x_1^{(1)}, \dots, x_n^{(1)}) + o(\rho^n), \quad (22)$$

其中,

$$\rho \equiv \sqrt{\sum_{j=0}^{n} (x_i^{(2)} - x_i^{(1)})^2}.$$
 (23)

例题 2.5. 求二元函数 $f(x,y) = \arctan \frac{y}{x}$ 在点 (2,2) 处的二阶 Taylor 多项式.

2.4 极值与最值

定理 2.6 (一元函数的单调性). 若函数 f(x) 在区间 [a,b] 上连续, 在 (a,b) 上可导, 则 f(x) 在 [a,b] 上单调递增的充要条件是 $f'(x) \ge 0$ 对任意 $x \in (a,b)$ 成立.

定理 2.7 (一元函数的 Fermat 极值定理). 设 f(x) 在 (a,b) 上可导. 若 x_0 为 f(x) 的一个极值点,则 $f'(x_0) = 0$. 即: 极值点必然是稳定点.

- 此为极值点的**一阶必要条件**. 随后, 通过分析 f(x) 在各区间上的单调性, 即可从稳定点中找出极值点.
- 综合比较极值点与不可导点、区间端点处的函数值,即可给出最值.

例题 2.6 (一元函数的最值). 求出闭区间 [-1,1] 上的一元函数 $f(x) = x^{\frac{2}{3}} - (x^2 - 1)^{\frac{1}{3}}$ 达到最小值的所有 [-1,1] 上的点.

定理 2.8 (多元函数的极值充分条件). n 元函数 f(P) 在点 P_0 处取极大值的充分条件为:

- $df(P_0) = 0;$
- $\stackrel{\text{def}}{=} \sum_{i=1}^{n} |dx_i| \neq 0$ 时, $d^2 f(P_0) < 0$.

极小值的条件可类推.

例题 2.7 (多元函数的非约束极值). 求函数 $z = \sin x \sin y \sin (x + y)$ 的极值.

定理 2.9 (Lagrange 乘子法). 函数 $z = f(P) \equiv f(x_1, \dots, x_n)$ 在约束条件 $\phi_i(P) = 0 (i = 1, \dots, m, m < n)$ 下的极值问题, 等价于 Lagrange 函数

$$\mathcal{L}(P; \lambda) \equiv f(P) + \sum_{i=1}^{m} \lambda_i \phi_i(P)$$
 (24)

的非约束极值问题.

例题 2.8 (多元函数的约束极值). 在给定的半球内作出具有最大体积的内接长方体.

3 用微分学研究几何图形

3.1 直线与平面

定义 3.1 (平面的法向量). 给定平面 Σ 的一般式方程: Ax + By + Cz + D = 0 或点法式方程: $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$, 则它的一个法向量 (normal vector) 为 (A, B, C). 法向量垂直于平面 Σ 内的任意一个向量.

例题 3.1 (平面束). 求过点
$$P(1,-2,0)$$
 且过直线 $l: \begin{cases} 2x-y+z=3, \\ x+2y-z+1=0 \end{cases}$ 的平面.

定义 3.2 (直线的方向向量). 给定直线 l 的标准方程:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c},\tag{25}$$

则它的一个**方向向量** (direction vector) 为 (a,b,c). 方向向量共线于直线 l 上的任意一个向量.

例题 3.2 (直线-直线的位置关系). 已知直线

$$l_1: \begin{cases} x + 2y + 5 = 0, \\ 2y - z - 4 = 0 \end{cases}$$
 (26)

和直线

$$l_2: \begin{cases} y = 0, \\ x + z = 2. \end{cases}$$
 (27)

- 1. 判断 l_1, l_2 的位置关系;
- 2. 求 l_1, l_2 的公垂线的方程.

注记 3.1. 位置关系的两个要素:

- 延展取向, 由方向向量、法向量的位置关系判断;
- 交集, 由两个图形的联立方程组判断.

3.2 曲面的切平面与法线

定理 3.1 (曲面的法向量). 曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处的一个法向量 (垂直于所有切向量) 为 $(F_x,F_y,F_z)\big|_{(x_0,y_0,z_0)}$.

例题 3.3 (曲面的切平面与法线). 求曲面 $z = x + 2y + \ln(1 + x^2 + y^2)$ 在点 (0,0,0) 处的切平面与法线.

3.3 曲线的切线与法平面

定理 3.2 (曲线的切向量). 曲线 x = x(t), y = y(t), z = z(t) 在点 x_0, y_0, z_0 处的一个切向量为 $(x'(t), y'(t), z'(t))|_{(x_0, y_0, z_0)}$.

例题 3.4 (曲线的切线与法平面). 在曲线 $C: x = t, y = t^2, z = t^3$ 上求一点 P, 使得曲线 C 在点 P 处的切线平行于平面 x + 2y + z = 4.

4 用微分学研究方程、不等式

4.1 方程实根的存在性

定理 4.1 (零点定理). 设函数 y = f(x) 在闭区间 [a,b] 上连续, 且 f(a)f(b) < 0, 则存在 $\xi \in (a,b)$ 使得 $f(\xi) = 0$.

例题 4.1 (函数零点的存在性). 设函数 f(x) 在 [a,b] 上连续, 实数 $t_1,t_2>0$, 则至少有一点 $\xi\in[a,b]$, 使得 $t_1f(a)+t_2f(b)=(t_1+t_2)f(\xi)$.

定理 4.2 (Rolle 定理). 设函数 y = f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b) 上可导, 且 f(a) = f(b), 则存在 $\xi \in (a,b)$ 使得 $f'(\xi) = 0$.

• 通过构造适当的辅助函数, 可以由 Rolle 定理出发推导出 Lagrange 中值 定理与 Cauchy 中值定理.

例题 4.2 (微分中值的存在性: Lagrange 中值定理). 任给 $x \in \mathbb{R}$, 存在 $\theta(x) \in (0,1)$, 满足方程

$$\arctan x = \frac{x}{1 + (\theta(x))^2 x^2}.$$
 (28)

例题 4.3 (微分中值的存在性: 相异中值). 已知函数 f(x) 在 [0,1] 上连续, 在 (0,1) 上可导, 且 f(0) = 0, f(1) = 1. 证明:

- 1. 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
- 2. 存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.

4.2 方程与隐函数

定理 4.3 (一元隐函数存在定理). 设二元函数 F(x,y) 满足下述三个条件:

- 1. 在点 (x_0, y_0) 的邻域内有定义;
- 2. 偏导数 $\frac{\partial F}{\partial x}$ 与 $\frac{\partial F}{\partial y}$ 在点 (x_0, y_0) 的邻域内连续;
- 3. 偏导数 $\frac{\partial F}{\partial y}\Big|_{(x_0,y_0)} \neq 0$.

则存在一个邻域 $U_{\delta}(x_0) \equiv (x_0 - \delta, x_0 + \delta)$, 在该邻域上可以唯一地定义隐函数 y = f(x), 满足如下两个属性:

- 1. 几何属性: 曲线 y = f(x) 过点 (x_0, y_0) , 且始终位于平面点 (x_0, y_0) 的一个 邻域内;
- 2. 光滑属性: 函数 y = f(x) 在邻域 $U_{\delta}(x_0)$ 上可导.

• 当 F(x,y) = 0 满足隐函数定理时,根据全微分 dF(x,y) = 0 解得隐函数求导法则

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(x_0,y_0)} = -\frac{F_x(x_0,y_0)}{F_y(x_0,y_0)}.$$
(29)

例题 4.4 (隐函数求导法则). 求 \mathbb{R}^2 中曲线

$$e^{xy} + xy + y^2 = 2 (30)$$

在点(0,1)处的切线方程.

例题 4.5 (隐函数的存在性). 对任意给定的实数 k, 存在点 0 的开邻域 U,W 与唯一的函数 $y = f(x), x \in U, y \in W$ 满足方程

$$e^{kx} + e^{ky} - 2e^{x+y} = 0. (31)$$

例题 4.6 (化显为隐). Legendre 多项式

$$P_n(x) \equiv \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left((x^2 - 1)^n \right) \tag{32}$$

满足方程 $0 = (1 - x^2)P_n''(x) - 2xP_n'(x) + a_nP_n(x)$, 求 a_n .

例题 4.7 (多元隐函数). 设 $F(x,y,z) = x^3 + (y^2 - 1)z^3 - xyz$.

- 1. 证明: 存在 \mathbb{R}^2 中点 (1,1) 的一个邻域 D 以及 D 上的唯一隐函数 z=z(x,y) 满足 $F(x,y,z(x,y))\equiv 0, z(1,1)=1.$
- 2. 求出在点 (1,1) 处函数 z(x,y) 的值减少最快的方向上的单位向量 E.
- 3. 设 \mathbb{R}^3 中平面 x + 2y 2z = 1 的 z 分量为正的法向量记为 N, 向量 (E, 0) 是 \mathbb{R}^3 中的向量, 求出 N 和 (E, 0) 的夹角余弦.

注记 4.1. 多元隐函数存在定理: 若验证得到 $\frac{\partial F}{\partial z}\Big|_{(x_0,y_0,z_0)} \neq 0$, 则对应的隐函数导数可由方程 $0 = \mathrm{d}F(x,y,z)$ 解出:

$$\begin{cases}
\frac{\partial z}{\partial x}\Big|_{(x_0, y_0, z_0)} &= -\frac{F_x(x_0, y_0, z_0)}{F_z(x_0, y_0, z_0)}, \\
\frac{\partial z}{\partial y}\Big|_{(x_0, y_0, z_0)} &= -\frac{F_y(x_0, y_0, z_0)}{F_z(x_0, y_0, z_0)}.
\end{cases}$$
(33)

4.3 基于中值与有界性的不等式问题

定理 4.4 (Lagrange 中值定理). 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 上可导, 则至少存在一点 $\xi \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{b - a} = f'(\xi). \tag{34}$$

例题 4.8 (Lagrange 中值). 函数 $y = \arctan x$ 具有 Lipschitz 连续性:

$$|\arctan a - \arctan b| \le |a - b|.$$
 (35)

定理 4.5 (Taylor 中值定理). 设函数 f(x) 在点 x_0 的邻域内有定义, 且在包含 x_0 的某区间 (a,b) 内存在 n+1 阶导数. 则对 x_0 附近的任意点 x 都成立

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n,$$
 (36)

其中, 总存在介于 x_0 与 x 之间的点 ξ , 使得

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \tag{37}$$

这称为 Lagrange 余项.

例题 4.9 (Taylor 中值; 有界定理). 设函数 f(x) 具有二阶导数,且 f'(0) = f'(1), $|f''(x)| \le 1$. 证明: 当 $x \in (0,1)$ 时,

$$|f(x) - f(0)(1-x) - f(1)x| \le \frac{x(1-x)}{2}.$$
 (38)

4.4 基于最值与单调性的不等式问题

例题 4.10 (一元不等式). 当 x > 0 时,

$$\left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{1}{x}\right)^{x+1}.$$
 (39)

例题 4.11 (多元不等式; 约束极值). 给定正数 x_1, \dots, x_n , 证明**平均值不等式**:

$$\sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k,$$
(40)

等号成立当且仅当 $x_1 = \cdots = x_n$.