

Resumen-Tema-4.pdf

ferluque

ESTADÍSTICA DESCRIPTIVA E INTROD A LA PROBABILIDAD

1º Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Ciencias
Universidad de Granada

destagate can wold

saboteas a tu propia persona? cómo?? escríbelo **aquí** y táchalo

manual de instrucciones: escribe sin filtros y una vez acabes, táchalo (si lo compartes en redes mencionándonos, te llevas 10 coins por tu cara bonita)

Tema 4

Probabilidad condicionada

Sea (Ω, A, P) un espacio probabilístico arbitrario y A un suceso $(A \in A)$, con P(A) > 0. Sea otro suceso $B \in A$, se define la **probabilidad de** B **condicionada a** A como:

$$P(B|A) = rac{P(B \cap A)}{P(A)}$$

De esto se obtiene:

$$P(A \cap B) = P(A)P(B|A)$$
 si $P(A) > 0$

$$P(A \cap B) = P(B)P(A|B)$$
 si $P(B) > 0$

Teorema de la probabilidad compuesta o Regla de la multiplicación

Sean $A_1,A_2,\ldots,A_n\in \mathrm{A}$ con $P([\cap_i A_i])>0$, entonces:

$$P([\cap_i A_i]) = P(A_1)P(A_2|A_1)\dots P[A_n|\cap_i^{n-1} A_i]$$

Teorema de la probabilidad total

Sea $\{A_n\}_{n\in\mathbb{N}}\subset A$ una partición de Ω con $P(A_n)>0$, $\forall n\in\mathbb{N}$. Sea B un suceso de A, entonces:

$$P(B) = \sum_{n=1}^{\infty} P(A_n) P(B|A_n)$$

Regla de Bayes o de la probabilidad inversa

Con las mismas condiciones del teorema de la probabilidad total:

$$P(A_n|B) = rac{P(B|A_n)P(A_n)}{\sum_{n \in \mathbb{N}} P(B|A_n)P(A_n)}$$

Independencia de sucesos

- 1. Si $P(B|A) \neq P(B)$, es decir, el hecho de que ocurra A, modifica la probabilidad de que ocurra B. Diremos que B depende de A, pudiendo A, **favorecer** a B (si P(B|A) > P(B)), o **desfavorecer** a B (si P(B|A) < P(B))
- 2. Si P(B|A) = P(B), entonces se dice que el suceso B es independiente del suceso A.

Caracterización

B es independiente de $A \iff P(A \cap B) = P(A)P(B)$

Proposición: Si A y B son independientes:

- $A y \bar{B}$ son independientes
- \bar{A} y B son independientes
- \bar{A} y \bar{B} son independientes

Independencia dos a dos

Sea $\mathcal U$ una familia de sucesos y $(\Omega, \mathcal A, P)$ un espacio probabilístico tal que $\mathcal U \subset \mathcal A$, sus sucesos son **independientes dos a dos** si:

 $\forall A, B \in \mathcal{U}, \ A \neq B, A \text{ y } B \text{ son independientes}$

Independencia Mutua

Del mismo modo, los sucesos de $\mathcal U$ son **mutuamente (completamente o totalmente) independientes** o simplemente **independientes** si para toda subcolección finita $\{A_1,A_2,\ldots,A_n\}$ de sucesos distintos de $\mathcal U$, se verifica:

$$P(A_{i1}\cap A_{i2}\cap\ldots\cap A_{ik})=\prod_{j=1}^k P(A_{ij})$$

