Diseño y simulación de un procesador cuántico superconductor

 $\label{eq:miguel Casanova} \mbox{Departamento de Electrónica y Circuitos}^1, \mbox{Universidad Simón Bolívar}$

2018 September

 $^{^1\}mathrm{I}$ am no longer a member of this department

Índice general

1.	Introducción	2							
2.	Información cuántica								
	2.1. Función de onda	3							
	2.2. Espacio de Hilbert	4							
	2.3. Delta de Kronecker	5							
	2.4. Operadores hermíticos	5							
	2.5. Operadores unitarios	6							
	2.6. Notación de Dirac	6							
	2.7. Producto tensorial	8							
	2.8. Postulados de la mecánica cuántica	9							
	2.9. Matriz densidad	10							
	2.10. Traza parcial	12							
	2.10.1. Comparación con el producto tensorial	13							
	2.11. Entrelazamiento	13							
	2.12. Computación cuántica	14							
	2.12.1. Qubits	14							
	2.12.2. Esfera de Bloch	14							
	2.12.3. Conmutador y anticonmutador	15							
	2.12.4. Matrices de Pauli	15							
	2.12.5. Circuitos cuánticos	16							
	2.12.6. Compuertas cuánticas de un qubit	18							
	2.12.7. Compuertas multiqubit	21							
	2.12.8. Conjuntos universales de compuertas cuánticas	$\frac{-}{24}$							
	2.12.9. El grupo de Clifford	24							
	2.12.10.Criterios de DiVincenzo	24							
	2.13. Fidelidad	25							
	2.14 Medidas provectivas	25							

3.	Sup	erconductividad 2	6				
	3.1. Cuantización macroscópica y superconductividad3.2. La teoría BCS						
	3.3.	Cuantización del flujo magnético y efecto tunel Giaver 3	36				
	3.4.	Efecto Josephson	10				
	3.5.	Componentes de la corriente en las junciones de Josephson . 4	14				
	3.6.	Qubits superconductores	15				
	3.7.	Arquetipos de qubits superconductores	17				
		3.7.1. Qubit de carga	17				
		3.7.2. Qubit de flujo	<u>1</u> 7				
		3.7.3. Qubit de fase	17				
	3.8.		17				
	3.9.	Hamiltonianos multiqubit de transmones	18				
		3.9.1. Acoplamiento capacitivo	18				
		3.9.2. Acoplamiento por el resonador	18				
		3.9.3. Acoplamiento de JJ	19				
		3.9.4. Acoplamiento afinable/calibrable	19				
	3.10.	Compuertas cuánticas en transmones	19				
		3.10.1. El operador de evolución temporal	19				
		3.10.2. Pulsos de microondas	50				
		3.10.3. Régimen rotacional del pulso	50				
		1	50				
		3.10.5. Régimen dispersivo	51				
		3.10.6. Rotaciones X-Y	51				
		3.10.7. Compuerta de entrelazamiento	51				
		3.10.8. Compuertas compuestas	52				
4.	El s	imulador 5	3				
			54				
	4.2.		54				
		F The Francisco F The Francisc	55				
		• • • • • • • • • • • • • • • • • • •	55				
	4.3.		55				
		1	56				
			56				
			56				
			56				
			57				
			57				
			.7				

		4.3.8.	Compuertas cond	dicionales gen	erales								57
		4.3.9.	CP										58
.	A los	onitmo	lo Choven										66
Э.	5.1.		le Grover itmo										71
	5.2.		ión en Wolfram										72
	5.3.		ión en Python										74
	0.0.	Omidia	on ch i y thon				•		•	•	•	•	14
6.	Alg	\mathbf{oritmo}	le Shor										78
	6.1.	Estima	ión de orden .										78
	6.2.	Expan	ón en fracciones	continues .									79
	6.3.	Algorit	no de factorizaci	ón de Shor .									81
	6.4.	Estima	ión de fase										81
	6.5.		ión de orden .										84
	6.6.		ión en Wolfram										88
	6.7.	Simula	ión en Python										94
7.	God	ogle Pa	eRank										98
		7.0.1.	El algoritmo de i	remiendo (pai	rcheo)	gen	era	l .					101
		7.0.2.	nterpretación co	omo una cami	nata a	leat	oria	a .					102
		7.0.3.	Cuantizando las	caminatas ale	eatoria	s.							103
		7.0.4.	Caminata cuánti	ca de Szegedy	у								104
		7.0.5.	PageRank cuánti	ico									105
Α.	Cál	culos d	Hamiltoniano	os									106
			niano de Jaynes										
			niano multiquib	_									
			le microondas										
			rotacional del										
			el pulso sobre el										
			dispersivo										
			nes X-Y										
			rta de entrelaza										
в.	Cálo	culos d	matrices de a	dyacencia									113
C.	Circ	cuitos o	iánticos										114

Índice de figuras

5.1.	Circuito del algoritmo de Grover, k_{max} desconocido 6	9
5.2.	Interpretación geométrica del operador difusión	1
5.3.	Circuito del algoritmo de Grover	1
5.4.		5
5.5.		6
5.6.		6
5.7.		7
6.1.		7
7.1.	Grafo correspondiente a la matriz de adyacencia (a) de la red	
	E (b) remendada de Google G con $\alpha = \frac{1}{2}$	2

Índice de cuadros

Capítulo 4

El simulador

El simulador se construyó utilizando la librería Qutip 4.2 de Python 3.6. Esta es una librería que incluye varias herramientas para realizar simulaciones de sistemas mecánico cuánticos, entre ellas, un solucionador de ecuaciones maestras. El funcionamiento básico del simulador desarrollado es el siguiente:

- 1. Leer estado inicial
- 2. Construir Hamiltoniano del sistema
- Introducir Hamiltoniano y estado inicial en el solucionador de ecuaciones maestras.
- 4. Retornar solución

De esta manera se simulan las compuertas naturales de los transmones. Luego, a partir de estas se construyen todas las demás compuertas que se necesitaran para construir un conjunto de compuertas cuánticas con el cual poder ejecutar los algoritmos de Grover, Shor y PageRank.

Se simularon dos sistemas distintos, uno de cuatro qubits y otro de ocho qubits. El diseño original era el de cuatro qubits, con él se realizaron las simulaciones del algoritmo de Grover y del PageRank. Sin embargo, el algoritmo de Shor requiere de al menos ocho qubits para factorizar el número compuesto impar más pequeño: el número 15. Posteriormente también se realizo una generalización del simulador para poder trabajar con sistemas de n qubits.

El tipo de acoplamiento entre los qubits elegido es el acoplamiento de tipo bus. De esta manera trabajamos con un único resonador, el cual se puede tracear. Esto reduce significativamente la dimensión del sistema a simular y nos permite tener más qubits. Además, de esta forma, la interación es más directa y basta con la compuerta iSWAP para construir cualquier otra compuerta multiqubits, el cual no sería el caso con qubits acoplados a distintos resonadores, pues se necesitarían compuertas de interacción entre resonadores.

4.1. Parámetros de los sistemas simulados

Se han elegido parámetros típicos de los sistemas de qubits[6].

- 1. Frecuencias de resonancia:
 - a) Resonador: 10GHz
 - b) Qubit 0: 5GHz
 - c) Qubit 1: 6GHz
 - d) Qubit 2: 7GHz
 - e) Qubit 3: 8GHz
 - f) *Qubit 4: 11GHz
 - g) *Qubit 5: 12GHz
 - h) *Qubit 6: 13GHz
 - *i*) *Qubit 7: 14GHz
- 2. Constante de acoplamiento: Todas iguales a 0.1GHz
- 3. Tasas de decaimiento: Todas iguales a 5e-6 (Unidades?)
- 4. Frecuencia de resonancia para iSWAP: 9GHz

*Sólo aplica para el caso del sistema de 8 qubits

4.2. Compuertas simples

Como se vio en el capítulo anterior, en los transmones se puede ejecutar de manera natural las compuertas Rx, Ry e iSWAP. Estas compuertas se implementan en el simulador y es a partir de ellas que se contruyen todas las demás.

$$H_{R_x} = -\frac{1}{2} \sum_{i} \Delta_{q_i} \sigma_{z_i} + \xi(t) \sigma_{x_{target}}$$

$$\tag{4.1}$$

$$H_{R_y} = -\frac{1}{2} \sum_{i} \Delta_{q_i} \sigma_{z_i} + \xi(t) \sigma_{y_{target}}$$
 (4.2)

$$H_{iSWAP} = \frac{g_1 g_2}{\Delta_{swap}} (\sigma_{+_1} \sigma_{-_2} + \sigma_{-_1} \sigma_{+_2})$$
 (4.3)

4.2.1. Rx y Ry

Estas compuertas se logran realizan un pulso gaussiano de microondas en fase (Rx) o en cuadratura (Ry). Se han elegido pulsos de 10ns de duración, truncados en $\pm 3\sigma$.

$$\xi(t) = A\Pi\left(\frac{t-\mu}{6\sigma}\right) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{4.4}$$

Donde $\mu=5ns,\ \sigma=\frac{5}{3}ns,\ \Pi(t)$ es la función rectangular, $A=\frac{\theta}{N}$ y N=0,9973 es una constante de normalización. De esta manera se tiene el pulso gaussiano truncado deseado de 0ns a 10ns, cuya área bajo la curva sea igual al ángulo θ de la rotación.

4.2.2. iSWAP

Esta compuerta se logra aplicando un campo magnético tal que la frecuencia de resonancia de los dos qubits deseados se mueva a $\omega_{swap} = 9GHz$. Esta interacción se deja durante $\frac{\pi}{2J}$, donde $J = \left|\frac{g_1g_2}{\Delta_{swap}}\right|$ y $\Delta_{swap} = \omega_{swap} - \omega_r$. Esto es, esta interacción se deja por 25ns.

Si se desea realizar la compuerta \sqrt{iSWAP} , se debe dejar la misma interacción por sólo 12.5ns, que es la mitad del tiempo.

4.3. Compuertas compuestas

Las compuertas anteriores forman un conjunto universal de compuertas cuánticas. A partir de secuencias de rotaciones en X e Y se puede formar cualquier rotación sobre cualquier eje de la esfera de Bloch, es decir, se puede realizar cualquier compuerta de un qubit. Con esto y cualquier compuerta de entrelazamiento, en nuestro caso \sqrt{iSWAP} , se tiene un conjunto universal de compuertas cuánticas y se puede realizar cualquier otra compuerta a partir de ellas.

4.3.1. X

Como tenemos $Rx(\theta)$, basta con hacer $\theta = \pi$ para realizar X, módulo una fase global de -i.

$$X = \begin{pmatrix} \cos\left(\frac{\pi}{2}\right) & -i\sin\left(\frac{\pi}{2}\right) \\ -i\sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{pmatrix} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = -i\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{4.5}$$

4.3.2. Y

Como tenemos $Ry(\theta)$, basta con hacer $\theta = \pi$ para realizar Y, módulo una fase global de -i.

$$Y = \begin{pmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
(4.6)

4.3.3. Rz

Esta compuerta se realiza aplicando una transformación a Rx tal que el eje de rotación se rote y coincida con el eje Z. Es decir, el eje X se rota $\pi/2$ alrededor de Y:

$$Rz(\theta) = Ry(\frac{-\pi}{2})Rx(\theta)Ry(\frac{\pi}{2})$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix} (4.7)$$

4.3.4. Z

Ahora, con Rz, se puede realizar Z haciendo $\theta=\pi,$ módulo una fase global de -i.

$$Z = \begin{pmatrix} e^{-i\frac{\pi}{2}} & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix} = \begin{pmatrix} -i & 0\\ 0 & i \end{pmatrix} = -i \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
(4.8)

4.3.5. H

Esta compuerta transforma la base X en la base Z y se realiza con $Ry(\pi/2)$ seguido de X.

$$H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
(4.9)

Sólo que en nuestro caso, X también agrega una fase global de -i.

4.3.6. CNOT

Esta compuerta se realizó siguiendo el esquema de Schuch y Siewert [7]. De esta manera se logra la compuerta CNOT, módulo una fase global de $\frac{-1-i}{\sqrt{2}}$.

4.3.7. SWAP

Esta compuerta se realiza con una secuencia de CNOTs.

4.3.8. Compuertas condicionales generales

Barenco et al [1] demostraron que con la compuerta CNOT y compuertas de un qubit se puede realizar cualquier compuerta condicional bipartita de la siguiente manera:

$$CU = IdxCCNOTIdxBCNOTIdxA (4.10)$$

Donde CXBXA = U y CBA = 1.

Siguiendo este esquema se construyó: CRy, CRz y CH.

Barenco et al. también presentan un método para agregar más qubits de control a una compuerta condicional:

CIRCUITO

De esta manera se construyó: CCRy, CCCRy, CCRz y CCCRz. También se contruyó parcialmente de esta manera la compuerta de Toffoli, CCCNOT y CCCCNOT, sin embargo, debido a la fase global que queda al contruir X, Y y Z a partir de Rx, Ry y Rz, hace falta una componente adicional para poder construir estas compuertas. Esto ocurre porque la fase global también queda condicionada y deja de ser global. Para ilustrar mejor este detalle, tomemos como ejemplo el caso de Toffoli. Siguiendo el esquema anterior se llega a:

$$Toffoli' = e^{\pi/8} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 & 0 & 0 & -i & 0 \end{pmatrix}$$

$$(4.11)$$

En lugar de:

$$Toffoli = e^{\phi} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$(4.12)$$

Barenco et al. proponen métodos alternativos para lograr aproximaciones de esta compuerta, pero todas ellas introducen fases locales (sólo que de π en lugar de $-\pi/2$), lo cual convierte a la compuerta en una completamente distinta. Es por esto que he desarrollado la compuerta de fase condicional y un método para eliminar la fase local que introduce la compuerta Toffoli'.

4.3.9. CP

Rz y la compuerta de cambio de fase P son completamente equivalentes cuando actuan como compuertas de un qubit, pues la única diferencia entre ellas es una fase global. Sin embargo, cuando se condicionan, dejan de ser equivalentes.

$$P_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} = e^{i\theta/2} Rz(\theta) \tag{4.13}$$

$$CRz(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & e^{-i\theta/2} & 0\\ 0 & 0 & 0 & e^{i\theta/2} \end{pmatrix}$$
(4.14)

$$CP_{\theta} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & e^{i\theta} \end{pmatrix} \neq e^{i\theta/2} CRz(\theta)$$

$$(4.15)$$

Se puede construir un sistema de ecuaciones linealmente independientes con las fases introducidas por $Rz(\theta_1) \otimes \mathbb{1}$, $\mathbb{1} \otimes Rz(\theta_2)$, $CRz_1(\theta_3)$ y $CRz_0(\theta_4)$, donde CRz_0 y CRz_1 son la compuerta CRz con el qubit de la partición 1 y el qubit de la partición 0 como target, respectivamente.

$$CRz_{0}(\theta_{4})CRz_{1}(\theta_{3})(\mathbb{1}\otimes Rz(\theta_{2}))(Rz(\theta_{1})\otimes\mathbb{1}) = \begin{pmatrix} e^{i(-\theta_{1}-\theta_{2})/2} & 0 & 0 & 0\\ 0 & e^{i(-\theta_{1}+\theta_{2}-\theta_{4})/2} & 0 & 0\\ 0 & 0 & e^{i(\theta_{1}-\theta_{2}-\theta_{3})/2} & 0\\ 0 & 0 & 0 & e^{i(\theta_{1}+\theta_{2}+\theta_{3})/2} \end{pmatrix}$$

$$(4.16)$$

Donde se quiere que:

$$(-\theta_1 - \theta_2)/2 = \phi$$

$$(-\theta_1 + \theta_2 - \theta_4)/2 = \phi$$

$$(\theta_1 - \theta_2 - \theta_3)/2 = \phi$$

$$(4.17)$$

$$(4.18)$$

$$(\theta_1 + \theta_2 + \theta_3 + \theta_4)/2 = \phi + \theta \tag{4.20}$$
(4.21)

Esto se logra tomando:

$$\theta_1 = \theta/4$$
(4.22)
 $\theta_2 = \theta/4$
(4.23)
 $\theta_3 = \theta/2$
(4.24)
 $\theta_4 = \theta/2$
(4.25)
(4.26)

$$CRz_{0}(\theta_{4})CRz_{1}(\theta_{3})(\mathbb{1}\otimes Rz(\theta_{2}))(Rz(\theta_{1})\otimes\mathbb{1}) = \begin{pmatrix} e^{i(-\theta)/4} & 0 & 0 & 0\\ 0 & e^{i(-\theta)/4} & 0 & 0\\ 0 & 0 & e^{i(-\theta)/4} & 0\\ 0 & 0 & 0 & e^{i3\theta/4} \end{pmatrix} = e^{-\theta/4} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}$$

$$(4.27)$$

```
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from scipy.stats import norm
from qutip import *
def gaussianpulse(x,ts,tf):
    s = (tf-ts)/6
    m = (ts+tf)/2
    return (np.heaviside(x-m+3*s,1)-np.heaviside(x-m-3*s,1)) \
            *norm.pdf(x, loc = m, scale = s)/0.997300204
def squarepulse(x,ts,tf):
    s = (tf-ts)/6
    m = (ts+tf)/2
    return (np.heaviside(x-m+3*s,1)-np.heaviside(x-m-3*s,1))/(6*s)
def plot_drive_expect(res,args):
    tlist = res.times
    if args == 0:
        fig, axes = plt.subplots(1, 1, sharex=True, figsize=(12,4))
        axes.plot(tlist, np.real(expect(qop('n',0), res.states)), \
                    'b', linewidth=2, label="qubit 0")
        axes.plot(tlist, np.real(expect(qop('n',1), res.states)), \
                    'g', linewidth=2, label="qubit 1")
        axes.plot(tlist, np.real(expect(qop('n',2), res.states)), \
                    'c', linewidth=2, label="qubit 2")
        axes.plot(tlist, np.real(expect(qop('n',3), res.states)), \
                    'm', linewidth=2, label="qubit 3")
        axes.set_ylim(0, 1)
        axes.set_xlabel("Time (ns)", fontsize=16)
        axes.set_ylabel("Occupation probability", fontsize=16)
        axes.legend()
    else:
        fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8))
```

```
axes[0].plot(tlist, np.array(list(ksi_t(tlist,args))) / (2*np.pi), \
                        'b', linewidth=2, label="drive envelope")
        axes[0].set_ylabel("Energy (GHz)", fontsize=16)
        axes[0].legend()
        axes[1].plot(tlist, np.real(expect(qop('n',0), res.states)), 'b', \
                        linewidth=2, label="qubit 0")
        axes[1].plot(tlist, np.real(expect(qop('n',1), res.states)), 'g', \
                        linewidth=2, label="qubit 1")
        axes[1].plot(tlist, np.real(expect(qop('n',2), res.states)), 'c', \
                        linewidth=2, label="qubit 2")
        axes[1].plot(tlist, np.real(expect(qop('n',3), res.states)), 'm', \
                        linewidth=2, label="qubit 3")
        axes[1].set_ylim(0, 1)
        axes[1].set_xlabel("Time (ns)", fontsize=16)
        axes[1].set_ylabel("Occupation probability", fontsize=16)
        axes[1].legend()
    fig.tight_layout()
# Parametros del sistema
N = 50
wr = 10.0 * 2 * np.pi
wq = np.array([5.0 * 2 * np.pi, 6.0 * 2 * np.pi, 7.0 * 2 * np.pi, \
               8.0 * 2 * np.pi
wq_swap = 9 * 2 * np.pi
g = np.array([0.1 * 2*np.pi, 0.1 * 2*np.pi, 0.1 * 2*np.pi])
D = wq - wr
D_swap = wq_swap - wr
chi = g**2 / abs(wr-wq)
kappa = 0.001
gamma = np.array([5e-6, 5e-6, 5e-6, 5e-6])
```

```
# cavity operators
a = destroy(N)
# a = tensor(destroy(N), qeye(2), qeye(2), qeye(2), qeye(2))
n = a.dag() * a
Id_r = qeye(N)
def qop_part(operator, target):
    if target == 0:
        qop_dict = {'sm' : destroy(2), 'sp' : (destroy(2)).dag(),
                    'sx' : sigmax(), 'sy' : sigmay(), 'sz' : sigmaz(),
                    'n' : (destroy(2)).dag() * destroy(2)}
        return qop_dict[operator]
    else:
       return qeye(2)
def qop(operator, target):
   return tensor(qop_part(operator, target-0), qop_part(operator, \
                    target-1), qop_part(operator, target-2), \
                    qop_part(operator, target-3))
#c_ops = [np.sqrt(gamma[0]) * qop('sm', 0), np.sqrt(gamma[1]) * \
            qop('sm', 1), np.sqrt(gamma[2]) * qop('sm', 2), \
            np.sqrt(gamma[3]) * qop('sm', 3)]
c_{ops} = []
def ksi_t(t, args):
    return args['A'] * gaussianpulse(t,args['ts'],args['tf'])
def ksi_tm(t, args):
    return args['A'] * gaussianpulse(t,args['ts'],args['tf']) * \
            np.exp(-1j*args['w']*(t-args['ts']))
def ksi_tp(t, args):
    return args['A'] * gaussianpulse(t,args['ts'],args['tf']) * \
            np.exp(1j*args['w']*(t-args['ts']))
def ksiS_t(t, args):
   return args['A'] * squarepulse(t,args['ts'],args['tf'])
```

```
def ksiS_tm(t, args):
    return args['A'] * np.exp(-1j*args['w']*(t-args['ts']))
def ksiS_tp(t, args):
    return args['A'] * np.exp(1j*args['w']*(t-args['ts']))
def Rx(psi0, target, theta):
    tlist = np.linspace(0, 10, 200)
    wd = wq[target]
    Dr = wr-wd
    Dq = wq-wd
    Hsyst = 0
    for i in range(4):
        Hsyst = Hsyst - Dq[i]*qop('sz',i)/2
    H_t = [[qop('sx',target)/2, ksi_t], Hsyst]
    args = {'A' : theta, 'ts' : 0, 'tf' : 10, 'w' : wq[target]}
    res = mesolve(H_t, psi0, tlist, c_ops, [], args = args)
    # plot_drive_expect(res,args)
    return res
def Ry(psi0, target, theta):
    tlist = np.linspace(0, 10, 200)
    wd = wq[target]
    Dr = wr-wd
    Dq = wq-wd
    Hsyst = 0
    for i in range(4):
        Hsyst = Hsyst - Dq[i]*qop('sz',i)/2
    H_t = [[qop('sy',target)/2, ksi_t], Hsyst]
```

```
args = {'A' : theta, 'ts' : 0, 'tf' : 10, 'w' : wq[target]}
    res = mesolve(H_t, psi0, tlist, c_ops, [], args = args)
    # plot_drive_expect(res,args)
    return res
def Rz(psi0, target, theta):
    res = Ry(psi0, target, np.pi/2)
    res = Rx(res.states[-1], target, theta)
    return Ry(res.states[-1], target, -np.pi/2)
def X(psi0, target):
    return Rx(psi0, target, np.pi)
def Y(psi0, target):
    return Ry(psi0, target, np.pi)
def Z(psi0, target, theta):
    return Rz(psi0, target, np.pi)
def H(psi0, target):
    res = Ry(psi0, target, np.pi/2)
    return X(res.states[-1], target)
def sqrtiSWAP(psi0, target1, target2):
    wqt1 = wq[target1]
    wq[target1] = wq_swap
    wqt2 = wq[target2]
    wq[target2] = wq_swap
    D = wq - wr
    J = np.abs(g[target1] * g[target2] * (D[target1] + D[target2]) / \
        (D[target1] * D[target2]))/2
    tf = np.pi/(4*J)
    tlist = np.linspace(0, tf, 250)
```

```
Hsyst = g[target1]*g[target2] * (qop('sp',target1)*qop('sm',target2) \
        + qop('sm',target1)*qop('sp',target2)) / (D_swap)
   res = mesolve(Hsyst, psi0, tlist, c_ops, [])
   wq[target1] = wqt1
   wq[target2] = wqt2
   D = wq - wr
    args = {'A' : 0, 'ts' : 0, 'tf' : tf, 'w' : wq[target1]}
    # plot_drive_expect(res,args)
   return res
def iSWAP(psi0, target1, target2):
    wqt1 = wq[target1]
   wq[target1] = wq_swap
   wqt2 = wq[target2]
   wq[target2] = wq_swap
   D = wq - wr
   J = np.abs(g[target1] * g[target2] * (D[target1] + D[target2]) / \
        (D[target1] * D[target2]))/2
    tf = np.pi/(2*J)
   tlist = np.linspace(0, tf, 500)
   Hsyst = g[target1]*g[target2] * (qop('sp',target1)*qop('sm',target2) \
        + qop('sm',target1)*qop('sp',target2)) / (D_swap)
   res = mesolve(Hsyst, psi0, tlist, c_ops, [])
   wq[target1] = wqt1
   wq[target2] = wqt2
   D = wq - wr
    args = {'A' : 0, 'ts' : 0, 'tf' : tf, 'w' : wq[target1]}
```

```
# plot_drive_expect(res,args)
    return res
def CNOT(psi0, control, target):
    res = H(psi0, target)
    res = Rz(res.states[-1], target, -np.pi/2)
    res = Rz(res.states[-1], control, -np.pi/2)
    res = iSWAP(res.states[-1], control, target)
    res = H(res.states[-1], control)
    res = iSWAP(res.states[-1], control, target)
    res = Rx(res.states[-1], target, np.pi/2)
    res = iSWAP(res.states[-1], control, target)
    res = Rx(res.states[-1], control, np.pi/2)
    res = iSWAP(res.states[-1], control, target)
    return Rx(res.states[-1], target, np.pi/2)
def CRy(psi0, control, target, theta):
    res = Ry(psi0, target, theta/2)
    res = CNOT(res.states[-1],control,target)
    res = Ry(res.states[-1],target,-theta/2)
    return CNOT(res.states[-1],control,target)
def CRz(psi0, control, target, theta):
    res = Rz(psi0, target, theta/2)
    res = CNOT(res.states[-1],control,target)
    res = Rz(res.states[-1], target, -theta/2)
    return CNOT(res.states[-1],control,target)
def SWAP(psi0, target1, target2):
    res = CNOT(psi0, target1, target2)
    res = CNOT(res.states[-1], target2, target1)
    return CNOT(res.states[-1], target1, target2)
def CH(psi0, control, target):
    res = Ry(psi0, target, np.pi/4)
    res = CNOT(res.states[-1], control, target)
    return Ry(psi0, target, -np.pi/4)
def CP(psi0, control, target, theta, b = 0b11):
```

```
if b == 0b00:
        res = Rz(psi0, control, -3*theta/4)
        res = Rz(res.states[-1], target, -3*theta/4)
        res = CRz(res.states[-1], control, target, theta/2)
        res = CRz(res.states[-1], target, control, theta/2)
    elif b == 0b01:
        res = Rz(psi0, control, -3*theta/4)
        res = Rz(res.states[-1], target, 5*theta/4)
        res = CRz(res.states[-1], control, target, -3*theta/2)
        res = CRz(res.states[-1], target, control, theta/2)
    elif b == 0b10:
        res = Rz(psi0, control, theta/4)
        res = Rz(res.states[-1], target, theta/4)
        res = CRz(res.states[-1], control, target, -3*theta/2)
        res = CRz(res.states[-1], target, control, theta/2)
    elif b == 0b11:
        res = Rz(psi0, control, theta/4)
        res = Rz(res.states[-1], target, theta/4)
        res = CRz(res.states[-1], control, target, theta/2)
       res = CRz(res.states[-1], target, control, theta/2)
   return res
def Toffoli(psi0, control1, control2, target):
    res = H(psi0, target)
   res = CRz(res.states[-1], control2, target, -np.pi/2)
   res = CNOT(res.states[-1], control1, control2)
   res = CRz(res.states[-1], control2, target, np.pi/2)
   res = CNOT(res.states[-1], control1, control2)
   res = CRz(res.states[-1], control1, target, -np.pi/2)
   res = H(res.states[-1], target)
    return CP(res.states[-1], control1, control2, -np.pi/2, b = 0b11)
def CCRz(psi0, control1, control2, target, theta):
    res = CRz(psi0, control2, target, theta/2)
   res = CNOT(res.states[-1], control1, control2)
   res = CRz(res.states[-1], control2, target, -theta/2)
```

```
res = CNOT(res.states[-1], control1, control2)
    return CRz(res.states[-1], control1, target, theta/2)
def CCRy(psi0, control1, control2, target, theta):
    res = CRy(psi0, control2, target, theta/2)
   res = CNOT(res.states[-1], control1, control2)
   res = CRy(res.states[-1], control2, target, -theta/2)
   res = CNOT(res.states[-1], control1, control2)
   return CRy(res.states[-1], control1, target, theta/2)
def CCP(psi0, control1, control2, target, theta, b = 0b11):
   res = CP(psi0, control2, target, theta/2, b = b)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
   res = CNOT(res.states[-1], control1, control2)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
   res = CP(res.states[-1], control2, target, -theta/2, b = b)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
   res = CNOT(res.states[-1], control1, control2)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
    return CP(res.states[-1], control1, target, theta/2, b = b)
def CCNOT(psi0, control1, control2, target):
    return Toffoli(psi0, control1, control2, target)
def Z(psi0, target):
    res = Ry(psi0, target, np.pi)
    return Rx(res.states[-1], target, -np.pi)
def mZ(psi0, target):
   res = Ry(psi0, target, np.pi)
    return Rx(res.states[-1], target, np.pi)
def CCCNOT(psi0, control1, control2, control3, target):
    res = H(psi0, target)
   res = CCRz(res.states[-1], control2, control3, target, -np.pi/2)
   res = CNOT(res.states[-1], control1, control2)
```

```
res = CCRz(res.states[-1], control2, control3, target, np.pi/2)
   res = CNOT(res.states[-1], control1, control2)
   res = CCRz(res.states[-1], control1, control3, target, -np.pi/2)
   res = H(res.states[-1], target)
   res = CP(res.states[-1], control2, control3, -np.pi/4)
   res = CNOT(res.states[-1], control1, control2)
    res = CP(res.states[-1], control2, control3, np.pi/4)
    res = CNOT(res.states[-1], control1, control2)
    return CP(res.states[-1], control1, control3, -np.pi/4)
def CCCRy(psi0, control1, control2, control3, target, theta):
    res = CRy(psi0, control3, target, theta/2)
    res = CCNOT(res.states[-1], control1, control2, control3)
    res = CRy(res.states[-1], control3, target, -theta/2)
    res = CCNOT(res.states[-1], control1, control2, control3)
    return CCRy(res.states[-1], control1, control2, target, theta/2)
def CCCRz(psi0, control1, control2, control3, target, theta):
   res = CRz(psi0, control3, target, theta/2)
   res = CCNOT(res.states[-1], control1, control2, control3)
   res = CRz(res.states[-1], control3, target, -theta/2)
   res = CCNOT(res.states[-1], control1, control2, control3)
   return CCRz(res.states[-1], control1, control2, target, theta/2)
def CCCP(psi0, control1, control2, control3, target, theta, b = 0b11):
    res = CP(psi0, control3, target, theta/2, b = b)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
        res = X(res.states[-1], control2)
    res = CCNOT(res.states[-1], control1, control2, control3)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
        res = X(res.states[-1], control2)
   res = CP(res.states[-1], control3, target, -theta/2, b = b)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
        res = X(res.states[-1], control2)
    res = CCNOT(res.states[-1], control1, control2, control3)
    if b == 0b00 or b == 0b01:
        res = X(res.states[-1], control1)
```

res = X(res.states[-1], control2)
return CCP(res.states[-1], control1, control2, target, theta/2, b = b)

Bibliografía

- [1] Adriano Barenco, Charles H. Bennet, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, Jhon A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. *Physical Review A*, 1995.
- [2] Sttiwuer Díaz-Solórzano. Esquemas de medidas. QIC, 2014.
- [3] Rudolf Gross and Achim Marx. Applied superconductivity: Josephson effect and superconducting electronics. Walther-Meißner-Institut, 2005.
- [4] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature*, 525:73–76, 2015.
- [5] G. Wendin. Quantum information processing with superconducting circuits: a review. *IOP Science*, 2017.
- [6] Alexandre Blais, Jay Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. *Physical Review A*, 2007.
- [7] Norbert Schuch and Jens Siewert. Natural two-qubit gate for quantum computation using the xy interaction. *Physical Review A*, 2003.