9/21/23, 9:10 PM

question\_marks

Sample Task Questions

#### **Questions with Answer Keys**

MathonGo

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Let  $\alpha$  and  $\beta$  be the roots of the equation  $x^2 + ax + 1 = 0$ ,  $a \neq 0$ . Then the equation whose roots are  $-\left(\alpha + \frac{1}{\beta}\right)$  and

$$(1) x^2 = 0$$

(2) 
$$x^2 + 2ax + 4 = 0$$
 mathongo /// mathongo /// mathongo /// mathongo ///

(3) 
$$x^2 - 2ax + 4 = 0$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$(4) x^2 - ax + 1 = 0$$

If the roots of the quadratic equation 
$$ax^2 + bx + a = 0$$
 are  $\frac{k+1}{2}$  and  $\frac{k+2}{2}$  then the value of  $(a+b+a)^2$  is equal to

If the roots of the quadratic equation  $ax^2 + bx + c = 0$  are  $\frac{k+1}{k}$  and  $\frac{k+2}{k+1}$ , then the value of  $(a+b+c)^2$  is equal to

$$(1) 2b^2 - ac$$

(2) 
$$\Sigma a^2$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

(3) 
$$b_{11}^2$$
  $4ac_{11}$   $ac_{11}$   $ac_{11}$ 

(4) 
$$b^2$$
 -  $2ac$  mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

The possible values of n for which the equation  $nx^2 + (2n-1)x + (n-1) = 0$  has roots of opposite sign is/are given mathongo by

$$\binom{n}{n}$$
 mathongo  $\binom{n}{n}$  mathongo  $\binom{n}{n}$  mathongo  $\binom{n}{n}$  mathongo  $\binom{n}{n}$  mathongo  $\binom{n}{n}$  mathongo  $\binom{n}{n}$ 

$$(3) - 1 < n < 0$$

$$\binom{\prime\prime\prime}{4}$$
  $0 \stackrel{\mathsf{mathongo}}{\circ}$   $\binom{\prime\prime\prime}{n}$  mathongo  $\binom{\prime\prime\prime}{n}$  mathongo  $\binom{\prime\prime\prime}{n}$  mathongo  $\binom{\prime\prime\prime}{n}$  mathongo  $\binom{\prime\prime\prime}{n}$ 

localhost:3002/question 1/10

9/21/23, 9:10 PM question\_marks Sample Task ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo **Questions with Answer Keys** MathonGo 04 mathongo Consider the equation  $x^2 + 2x - n = 0$ , where  $n \in \mathbb{N}$  and  $n \in [5, 100]$ . The number of different values of n so that the given equation has integral roots, is Q5 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo If  $-\pi < \theta < \pi$ , the equation  $(\cos 3\theta + 1)x^2 + (2\cos 2\theta - 1)x + (1 - 2\cos \theta) = 0$  has more than two roots for (1) no value of  $\theta$ (2) one value of  $\theta$ (3) two value of  $\theta$ (4) all values of  $\theta$ **Q6** Let  $\alpha$  and  $\beta$  are the roots of equation  $ax^2 + bx + c = 0$  ( $a \ne 0$ ). If 1,  $\alpha + \beta$ ,  $\alpha\beta$  are in arithmetic progression and mathongo  $\alpha^2 + \beta^2 \cdot 2\alpha^2\beta^2$  ongo //// mathongo //// mathongo - is equal to  $\alpha$ , 2,  $\beta$  are in harmonic progression, then the value of – mathongo /// mathongo /// mathongo (1) 0(2) 0.5 (3) 1<sub>mathongo</sub> ///. mathongo ///. mathongo ///. mathongo ///. mathongo (4) 1.507 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo The number of quadratic equations that are unchanged by squaring their roots is (1) 2

https://www.mathongo.com

mathongo /// mathongo /// mathongo /// mathongo /// mathongo

2/10

localhost:3002/question

Sample Taskingo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

### **Questions with Answer Keys**

MathonGo

(4) 8 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

## 08

If  $\alpha$ ,  $\beta$  are roots of the equation  $x^2 + 5(\sqrt{2})x + 10 = 0$ ,  $\alpha > \beta$  and  $P_n = \alpha^n - \beta^n$  for each positive integer n, then the

walue of  $\left(\frac{P_{17}P_{20}+5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19}+5\sqrt{2}P_{18}^2}\right)$  is equal to mathongo /// mathon

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Let  $\alpha$ ,  $\beta$  are the roots of the quadratic equation  $2x^2 - 5x + 1 = 0$ . If  $S_n = (\alpha)^{2n} + (\beta)^{2n}$  then find the value of  $4S_{2021} + S_{2019}$ 

mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo Q10

If  $f(x) = \prod_{k=1}^{999} (x^2 - 47x + k)$ , then product of all real roots of f(x) = 0 is

- (1) 550!thongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- (4) 999!thongo /// mathongo /// mathongo /// mathongo /// mathongo

Q11

If  $-3 < \frac{x^2 - \lambda x - 2}{x^2 + x + 1} < 2$  for all  $x \in R$ , then the value of  $\lambda$  belongs to

(1) (-1,7) mathongo /// mathongo /// mathongo /// mathongo /// mathongo

(2)(-6,2)

(3)(-1,2)

/ mathongo ///. mathongo ///. mathong<sup>MathonGo</sup>nathongo ///. mathongo ///. mathongo ///. https://www.mathongo.com

localhost:3002/question 3/10

# Sample Task ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo



## **Questions with Answer Keys**

### MathonGo

Q12

For the equation 
$$\begin{vmatrix} x^2 - 2x - 3 \end{vmatrix} = b$$
, which of the following statements is true?

(1) For 
$$b < 0$$
, there are no solutions

(2) For 
$$b = 0$$
, there are three solutions

(4) For b = 4, there are four solutions

(3) For 
$$0 < b < 4$$
, there are two solutions

Q13

If a, b, c are real numbers satisfying the condition 
$$a + b + c = 0$$
, then the roots of the quadratic equation

$$3ax^2 + 5bx + 7c = 0$$
 are athongo ///. mathongo ///. mathongo ///. mathongo

$$_{
m Q14}^{\prime\prime\prime}$$
 mathongo  $\,^{\prime\prime\prime\prime}$  mathongo  $\,^{\prime\prime\prime\prime}$  mathongo  $\,^{\prime\prime\prime\prime}$  mathongo  $\,^{\prime\prime\prime\prime}$  mathongo

If 
$$a + b + c > \frac{\pi}{4}$$
 and the equation  $ax^2 + 2bx - 5c = 0$  has non-real complex roots, then

(1) 
$$a > 0$$
,  $c > 0$  mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Sample Task



/// mathongo /// math Questions

### **Questions with Answer Keys**

MathonGo

If the graph of the function  $y = (a - b)^2 x^2 + 2(a + b - 2c)x + 1$  ( $\forall a \neq b$ ) is strictly above the x-axis, then

- (1) a < b < c

- (2) a < c < b
- (3) b < a < c

Q16

The quadratic equations  $x^2 - 6x + a = 0$  and  $x^2 - cx + 6 = 0$  have one root in common. The other roots of the first

- equation and the second equation are integers in the ratio 4:3. Then the common root is

- (1)4

- (4) 1

The value of k for which both the roots of the equation  $4x^2 - 20kx + (25k^2 + 15k - 66) = 0$  are less than 2, lies in

- $(4) (-\infty, -1)$  mathongo

The range of a for which the equation  $x^2 + ax - 4 = 0$  has its smaller root in the interval (-1, 2) is

MathonGo

https://www.mathongo.com

localhost:3002/question 5/10

## **Questions with Answer Keys**

## MathonGo

$$(3) (0, \infty)$$

## Q19

If 
$$f(x)$$
 is a polynomial of degree four with the leading coefficient one satisfying  $f(1) = 1$ ,  $f(2) = 2$  and  $f(3) = 3$ 

Sample Taskingo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

, then 
$$\left[\frac{f(-1)+f(5)}{f(0)+f(4)}\right]$$
 (where  $[\cdot]$  represents the greatest integer function) is equal to

## Q20

Sum of the squares of all integral values of a for which the inequality  $x^2 + ax + a^2 + 6a < 0$  is satisfied for all

$$x \in (1,2)$$
 must be equal to thougo /// mathongo /// mathongo /// mathongo /// mathongo

(2)89

The equations  $kx^2 + x + k = 0$  and  $kx^2 + kx + 1 = 0$  have exactly one root in common for

$$(1) k = -\frac{1}{2}, 1$$

(1) 
$$k = -\frac{1}{2}$$
 1 mathongo /// mathongo /// mathongo /// mathongo /// mathongo

localhost:3002/question

## **Questions with Answer Keys**

## MathonGo

- (2) k  $\cong$  qthongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- (3)  $k_{\overline{mat}|\overline{2}}$  ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Sample Task ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

- $(4) k = \frac{1}{2}$ /// mathongo
- Q22 mathongo /// mathongo /// mathongo /// mathongo /// mathongo

If the quadratic equations  $k(6x^2+3)+rx+2x^2-1=0$  and  $6k(2x^2+1)+px+4x^2-2=0$  have both the roots common, then 2r - p is equal to

- (1) 0
- (2) 1 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (4) None of these

**Q23** 

- If  $\alpha$ ,  $\beta$  and  $\gamma$  are the roots of the equation  $x^3 13x^2 + 15x + 189 = 0$  and one root exceeds the other by 2, then the value of  $|\alpha| + |\beta| + |\gamma|$  is equal to \_\_\_\_\_\_ mathongo \_\_\_\_\_ mathongo \_\_\_\_\_ mathongo
- (1) 23 nathongo /// mathongo /// mathongo /// mathongo /// mathongo
- (2) 17mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- (3) 13
- (4) 19 nathongo /// mathongo /// mathongo /// mathongo /// mathongo
- mathongo /// mathongo /// mathongo /// mathongo /// mathongo

If equations  $x^2 + ax + b = 0$   $(a, b \in R)$  &  $x^3 + 3x^2 + 5x + 3 = 0$  have two common roots, then value of  $\frac{b}{a}$  is equal

- to, mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- mathongo /// mathongo /// mathong mathongo /// mathongo /// mathongo https://www.mathongo.com

Sample Taskingo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///





#### **Questions with Answer Keys**

MathonGo

025 mathongo | mathong

If x is rational and  $4\left(x^2 + \frac{1}{x^2}\right) + 16\left(x + \frac{1}{x}\right)$  athongo mathongo ma

mathongo //// mathongo

- (1)4
- (2) 3 mathongo | /// mathongo
- (3) 2<sub>mathongo</sub> ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (4) 1
- Q26 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

The sum of all real values of x satisfying the equation  $(x^2 - 5x + 5)^{x^2 + 4x - 60} = 1$  is

- (2)5
  - (3) 3 mathongo ///. mathongo ///. mathongo ///. mathongo
  - (4) 4
  - Q27 mathongo /// mathongo /// mathongo /// mathongo /// mathongo

If  $\alpha$  and  $\beta$  are the real roots of  $(\log_x 10)^3 - (\log_x 10)^2 - 6(\log_x 10) = 0$ , then the value of  $\left| \frac{1}{\log_{10} \alpha \beta} \right|$  is

Q28 mathongo //// mathongo //// mathongo //// mathongo //// mathongo

The sum of the roots of the equation  $2^{(33x-2)} + 2^{(11x+2)} = 2^{(22x+1)} + 1$  is

- $(1) \frac{1}{11}$ 2nathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo  $(2) \frac{1}{11}$
- (3) mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

https://www.mathongo.com



localhost:3002/question 9/10

9/21/23, 9:10 PM question\_marks



localhost:3002/question 10/10