Теория типов

Михайлов Максим

26 сентября 2021 г.

Оглавление

Лекці	ия 1	7 сентября	2
1	Лям	бда-исчисление	2
	1.1	Определение	2
		Булево исчисление	
		Числа	
		Типизированное лямбда-исчисление	
		Y -комбинатор и противоречивость нетипизированного λ -исчисления .	
Лекция 2		14 сентября	6
2	Форт	мализация $\overline{\lambda}$ -исчисления	6
Лекці	ия 3	21 сентября	10
3	Прос	сто-типизированное λ -исчисление	10
	3.1	Исчисление по Карри	11
	3.2	Исчисление по Чёрчу	12

Лекция 1

7 сентября

1 Лямбда-исчисление

То, чем мы будем заниматься, можно назвать прикладной матлогикой.

В рамках курса матлогики мы рукомахательно рассмотрели изоморфизм Карри-Ховарда, в этом курсе мы его формализуем. Мы затронем систему типов Хиндли-Милнера (*Haskell*) и язык Arend, основанный на гомотопической теории типов.

1.1 Определение

В 20-30х годах XX века Алонзо Чёрчем была создана альтернатива теории множеств как основе математики — лямбда-исчисление. Основная идея — выбросить из языка все, кроме вызова функций.

В лямбда исчислении есть три конструкции:

- Функция (абстракция): $(\lambda x.A)$
- Применение функции (аппликация): (АВ)
- Переменная (атом): x

Большими буквами начала латинского алфавита мы будем обозначать термы, малыми буквам конца — переменные. λ жадная, как \forall и \exists в исчислении предикатов. Аппликация идёт слева направо, т.е. $\lambda p.p$ F $T=\lambda p.((p\ F)\ T)$

Вычисление происходит с помощью β -редукции, его мы определим позже, общее понимание у нас есть из вводной лекции функционального программирования.

1.2 Булево исчисление

Определим булево исчисление в λ -исчислении:

- $T := \lambda x. \lambda y. x$ истина
- $F \coloneqq \lambda x. \lambda y. y$ ложь
- Not $:= \lambda p.p F T$

Not
$$F \to_{\beta}$$

 $((\lambda x.\lambda y.y) F) T \to_{\beta}$
 $(\lambda y.y) T \to_{\beta} T$

• And $:= \lambda a. \lambda b. a \ b \ F$

And берёт свой второй аргумент, если первый аргумент истина и ложь иначе.

Апd использует идею карринга — функция от 2 аргументов есть функция от первого аргумента, возвращающая другую функцию от второго аргумента. Например, в выражении " $((+)\ 2)\ 3$ " $((+)\ 2)$ это функция, которая прибавляет к своему аргументу 2.

1.3 Числа

Числа в лямбда-исчислении кодируются **нумералами Чёрча**. Это только один из способов кодировки, есть и другие. Общая идея — число n применяет данную функцию к данному аргументу n раз.

- $0 = \lambda f.\lambda x.x$
- $1 = \lambda f. \lambda x. f x$
- $3 = \lambda f. \lambda x. f(f(f(x)))$
- $\overline{n+1} = \lambda f. \lambda x. f(\overline{n} f x)$
- $(+1) = \lambda n. \lambda f. \lambda x. n \ f \ (f \ x)$ функция инкремента.
- $(+) = \lambda a.\lambda b.b \ ((+) \ \overline{1}) \ a.b$ раз прибавляет единицу к a.
- $(\cdot) = \lambda a.\lambda b.a ((+) b) \overline{0}$: a раз прибавляет b к 0.

Ходят легенды, что Клини изобрел декремент у зубного врача под действием наркоза. Существует много способов определить декремент различных степеней упоротости.

Рассмотрим декремент, основанный на следующей идее: пусть есть упорядоченная пара $\langle a,b\rangle$ и функция $(*):\langle a,b\rangle\mapsto\langle b,b+1\rangle$. Тогда применив (*) n раз к $\langle 0,0\rangle$ и взяв первый элемент, возьмём первый элемент пары.

 $^{^{1}}$ Аналогично для n аргументов.

Упорядоченная пара определяется следующим способом:

$$MkPair = \lambda a. \lambda b. (\lambda p. p \ a \ b)$$

Можно потрогать эмулятор лямбда-исчисления 1сі, будет полезно для домашних заданий.

1.4 Типизированное лямбда-исчисление

Лямбда-исчисление для нас будет просто языком программирования. Для начала мы его типизируем, потому что нетипизированное лямбда-исчисление противоречиво.

Пусть у каждого выражения A есть тип τ , что обозначается $A:\tau$. Также используется некоторый контекст с переменными и их типами, обозначаемый M. Все вместе это записывается как $M \vdash A:\tau$, что напоминает исчисление предикатов.

1.5 Y-комбинатор и противоречивость нетипизированного λ -исчисления

Мы хотим, чтобы \to_{β} сохраняло значения, т.к. иначе мы вообще не можем говорить о равенстве термов.

Определение. $Y \coloneqq \lambda f.(\lambda x.f~(x~x))(\lambda x.f~(x~x)) - Y$ -комбинатор, для него верно $Yf \approx f(Yf)$. Такое свойство называется "быть комбинатором неподвижной точки", т.е. он находит неподвижную точку функции: A такое, что f(A) = A.

Пусть мы добавили бинарную операцию (\supset) — импликацию с некоторыми аксиомами. Оказывается, что доказуемо любое A. Мы это докажем на последующих лекциях.

Y-комбинатор полезен тем, что позволяет реализовывать рекурсию.

Пример. Запишем факториал в неформальном виде:

Fact =
$$\lambda n$$
.If (IsZero n) $\overline{1}$ (Fact $(n-1) \cdot n$)

На самом деле Fact есть неподвижная точка функции

$$\lambda f.\lambda n.$$
If (IsZero n) $\overline{1}$ ($f(n-1)\cdot n$)

по определению неподвижной точки функции. Тогда Fact это

$$Y(\lambda f.\lambda n. \text{If (IsZero } n) \ \overline{1} \ (f \ (n-1) \cdot n))$$

У нас появляется проблема: есть выражения, которым мы не можем приписать значение, например

$$Y(\lambda f.\lambda x.f (\text{Not } x))$$

Эта проблема происходит из-за того, что наш язык слишком мощный — мы написали решатель любых уравнений, даже тех, у которых нет решения. Логичный выход из этой ситуации — запретить то, из-за чего у нас возникают проблемы. Как запретить Y? Оказывается, это позволяют сделать типы — они будут делить выражения на добропорядочные и недобропорядочные.

Лекция 2

14 сентября

2 Формализация λ -исчисления

Определение. **Пред**- λ -**терм** определяется индуктивно как одно из:

- 1. x переменная
- 2. (L L) применение
- 3. $(\lambda x.L)$ абстракция

Почему пред- λ -терм? Мы не хотим различать $\lambda x.x$ и $\lambda y.y.$

Определение. α -эквивалентность — обозначается $A =_{\alpha} B$ и выполняется, если 1 :

- 1. $A \equiv x, B \equiv x$ одна и та же переменная
- 2. $A \equiv P Q, B \equiv R S, P =_{\alpha} R, Q =_{\alpha} S$
- 3. $A \equiv \lambda x.P, B \equiv \lambda y.Q$ и существует t новая переменная, такая что $P[x \coloneqq t] =_{\alpha} Q[y \coloneqq t]$

Определение. Свобода для подстановки: $A[x \coloneqq B]$, никакое свободное вхождение переменной в B не станет связанным.

Определение (λ -терм). Множество всех λ -термов это $\Lambda/_{=_{\alpha}}$

Определение (β -редекс). Выражение вида ($\lambda x.A$) B

Определение (β -редукция). Обозначается $A \to_{\beta} B$ и выполняется, если выполняется одно из:

1.
$$A \equiv P\ Q, B \equiv R\ S$$
 и либо $P \to_{\beta} R$ и $Q =_{\alpha} S$, либо $P =_{\alpha} R$ и $Q =_{\alpha} S$.

¹ И только если.

2.
$$A \equiv \lambda x.P, B \equiv \lambda x.Q$$
 и $P \rightarrow_{\beta} Q$

3.
$$A \equiv (\lambda x.P) \; Q, B \equiv P[x \coloneqq Q]$$
 и Q свободно для подстановки.

Определение. Придуман Моисеем Шейнфинкелем.

 $I := \lambda x.x - \text{Identität}^2$

Определение.

- $K = \lambda x.\lambda y.x$
- $\Omega = \omega \omega$
- $\omega = \lambda x.x \ x$

Пример.

Определение. R обладает ромбовидным свойством (diamond), если для любых a,b,c, таких что:

- 1. aRb, aRc
- 2. $b \neq c$

существует d: bRd и cRd.

 Π ример. > на $\mathbb Z$ не ромбовидно: для a=3,b=2,c=1 выполнено условие, но ∄d. > на $\mathbb R$ ромбовидно.

² Тождество (с немецкого)

Определение (β -редуцируемость). Рефлексивное, транзитивное замыкание отношения \rightarrow_{β} , обозначается \rightarrow_{β} .

Теорема 1 (Чёрча-Россера). β -редуцируемость обладает ромбовидным свойством.

Определение. $\rightrightarrows_{\beta}$ — параллельная β -редукция, выполняется если:

- 0. $A =_{\alpha} B$
- 1. $A \equiv P Q, B \equiv R S \text{ if } P \Rightarrow_{\beta} R \text{ if } Q \Rightarrow_{\beta} S.$
- 2. Аналогично β -редукции.
- 3. Аналогично β -редукции.

Лемма 1. (\Rightarrow_{β}) обладает ромбовидным свойством.

Лемма 2. Если R обладает ромбовидным свойством, то R^* обладает ромбовидным свойством.

Доказательство. Две индукции.

Лемма 3. $(\Rightarrow_{\beta}) \subseteq (\twoheadrightarrow_{\beta})$

Доказательство теоремы Чёрча-Россера. Заметим, что:

- 1. $(\Longrightarrow_{\beta})^* \subseteq (\twoheadrightarrow_{\beta})$ из леммы
- 2. $(\twoheadrightarrow_{\beta}) \subseteq (\rightrightarrows_{\beta})^*$ из определения
- 3. Т.к. $(\Longrightarrow_{\beta})^*$ обладает р.с., то и $(\twoheadrightarrow_{\beta})$ обладает р.с.

Спедствие 1.1. У λ -выражения существует не более одной нормальной формы.

Доказательство. Пусть A имеет две нормальные формы: $A \to_{\beta} B, A \to_{\beta} C$ и $B \neq_{\alpha} C$. Тогда есть $D: B \to_{\beta} D$ и $C \to_{\beta} D$. Противоречие.

Определение. Нормальный порядок редукции — редуцируем самый левый редекс.

Теорема 2. Если нормальная форма существует, она может быть получена нормальным порядком редукции.

Примечание. Нижеследующее объяснение — с практики.

Рассмотрим $Y f =_{\beta} f (Y f) =_{\beta} f (f (Y f)) =_{\beta} \dots$ Можно считать, что у f сколько угодно аргументов, первый аргумент можно считать указателем на свой рекурсивный вызов.

Пример. Числа Фибоначчи:

```
fib a b n =
   if n = 0 then a
   else fib b (a + b) (n - 1)
```

Здесь решение уравнения заметано под ковер, в λ -исчислении оно видно:

$$\mathsf{Fib} = \lambda f. \lambda a. \lambda b. \lambda n. (\mathsf{IsZero}\ n)\ a\ (f\ f\ a\ (a+b)\ (n-1))$$

Здесь f передается само себе, чтобы иметь ссылку на себя для рекурсивного вызова. Для работы Fib нужно дать его самому себе: Fib Fib $1\ 1\ 10$.

Лекция 3

21 сентября

В λ -исчислении можно сделать:

- 1. Целые числа, где $\langle a,b \rangle \leftrightarrow a-b$
- 2. Рациональные числа в виде дробей
- 3. Матлогику?

Попытки сделать матлогику всегда приводили к парадоксам.

Оказывается, нельзя относиться к любому выражению как к логическому.

Обозначение. ⊃ — импликация

Пример. Рассмотрим комбинатор $\Phi_A =_{\beta} A \supset \Phi_A$. Это $Y(\lambda f.\lambda a.a \supset f(a)$.

Добавим аксиому $(A\supset (A\supset B))\supset (A\supset B).$ Если такой аксиомы нет, то теория грустная.

Мы также хотим, чтобы если $X =_{\beta} Y$, то $X \supset Y$.

Каким-то образом мы получим парадокс.

3 Просто-типизированное λ -исчисление

Определение (типовые переменные).

- α, β, γ атомарные
- τ, σ составные

2 традиции:

1. Исчисление по Чёрчу

2. Исчисление по Карри

Мы сначала рассмотрим исчисление по Карри.

3.1 Исчисление по Карри

Типизация:
$$\Gamma \vdash A : \tau, \Gamma = \{x_1 : \tau_1, x_2 : \tau_2 \dots \}$$

Правила:

1.
$$\frac{1}{\Gamma, x_1 : \tau_1 \vdash x_1 : \tau_1} Ax.$$

2.
$$\frac{\Gamma \vdash A : \sigma \to \tau \qquad \Gamma \vdash B : \sigma}{\Gamma \vdash A B : \tau}$$

3.
$$\frac{\Gamma, x : \tau \vdash A : \sigma}{\Gamma \vdash \lambda x . A : \tau \to \sigma}$$

Пример.

$$\lambda f^{\alpha \to \alpha} \cdot \lambda x^{\alpha} \cdot f(fx) : (\alpha \to \alpha) \to \alpha \to \alpha$$

Подгоним доказательство под результат:

$$\frac{f : \alpha \to \alpha \vdash f : \alpha \to \alpha}{f : \alpha \to \alpha} \frac{\overline{\Gamma \vdash f : \alpha \to \alpha} \quad \overline{\Gamma \vdash x : \alpha}}{\Gamma \vdash f : x : \alpha}$$

$$\frac{f : \alpha \to \alpha, x : \alpha \vdash f (f : x) : \alpha}{f : \alpha \to \alpha \vdash \lambda x. f (f : x) : \alpha \to \alpha}$$

$$\overline{\lambda f. \lambda x. f (f : x) : (\alpha \to \alpha) \to (\alpha \to \alpha)}$$

Теорема 3. Если $\Gamma \vdash A : \tau$, то любое подвыражение имеет тип.

Доказательство. По индукции по длине.

База. Это правило 1.

Переход. Пусть любое выражение длиной < n символов обладает искомым свойством. Покажем искомое для A: |A| = n. Рассмотрим варианты того, по какому правилу доказана типизируемость A:

- 1. Второе правило: B и C короче A, следовательно для них искомое верно.
- 2. Третье правило: аналогично для x, B

Теорема 4 (Subject reduction, о редукции). Если $\Gamma \vdash A : \sigma$ и $A \twoheadrightarrow_{\beta} B$, то $\Gamma \vdash B : \sigma$

Доказательство. Скучно.

Самая интересная часть: рассмотрим $A \to_{\beta} B$. Случаи:

- 1. $\lambda x.A \rightarrow \lambda x.B$ индукция
- 2. *А В* индукция
- 3. $(\lambda x.A) B \to A[x := B]$

По теореме о типизации подвыражений, $(\lambda x^{\tau \to \sigma}.A^{\sigma})\ B^{\tau}:\sigma.$ Кроме того, доказывается $(A[x\coloneqq B]):\sigma.$

Лемма 4. Если $\Gamma, x: \tau \vdash A: \sigma, \Gamma \vdash B: \tau, \text{ то } \Gamma \vdash A[x \coloneqq B]: \sigma$

Теорема 5 (Чёрча-Россера). Если $\Gamma \vdash M : \sigma$ и существуют $N,P:M \twoheadrightarrow_{\beta} N,M \twoheadrightarrow_{\beta} P$, то найдется такой S, что $\Gamma \vdash S : \sigma$ и $N \twoheadrightarrow_{\beta} S$ и $P \twoheadrightarrow_{\beta} S$

3.2 Исчисление по Чёрчу

Язык:

- *x* переменная
- *А В* аппликация
- $\lambda x^{\tau}.P$ абстракция

 $\it Oбозначение.$ Когда нужно различить исчисления, будем писать $\vdash_{\tt Y}$ или $\vdash_{\tt K}$

Теорема 6. Если контекст Γ и выражение P типизируется, то $\Gamma \vdash_{\operatorname{q}} P : \sigma$

Пример.

 $\vdash_{\mathsf{K}} \lambda x.x : \alpha \to \alpha$

 $\vdash_{\mathsf{K}} \lambda x.x : \beta \to \beta$

 $\vdash_{\mathsf{q}} \lambda x^{\sigma}.x:\sigma\to\sigma$