Homework 3 - STAT 5362 Statistical Computing

Sen Yang*

22 September 2018

Abstract

This homework starts with a mathmetical proof of loglikelihood function and corresponding Fisher information of Cauchy distribution with a unknown scale parameter θ . Based on a random sample, I use Newton–Raphson method, Fixed-Point method and Fisher Scoring to estimate the value of θ . Finally, different methods are compared to each other, among which a combination of Fisher scoring and Newton-Raphson method has the most efficient way to do the estimation.

1 Proof in Mathematics

The density function of a Cauchy distribution with a known scale parameter is

$$f(x;\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, x \in R, \theta \in R.$$

Let $X_1, ..., X_n$ be a random sample of size n and $\ell(\theta)$ the log-likelihood function of θ based on the sample. Then,

$$L(\theta) = \prod_{i=1}^{n} \pi [1 + (X_i - \theta)^2]^{-1}$$
$$= \pi^{-n} \prod_{i=1}^{n} [1 + (X_i - \theta)^2]^{-1}.$$

Take logarithm on both sides,

$$\ell(\theta) = -n \ln \pi - \sum_{i=1}^{n} \ln[1 + (X_i - \theta)^2].$$

Take first derivative of θ on both sides,

$$\ell'(\theta) = -2\sum_{i=1}^{n} \frac{\theta - X_i}{1 + (X_i - \theta)^2}.$$

Take second derivative of θ on both sides,

$$\ell''(\theta) = -2\sum_{i=1}^{n} \frac{1 - (\theta - X_i)^2}{[1 + (X_i - \theta)^2]^2}.$$

^{*}sen.2.yang@uconn.edu; M.S. student at Department of Statistics, University of Connecticut.

Then, the Fisher information $I_n(\theta)$ of this sample is

$$I_{n}(\theta) = -E_{\theta}[\ell''(\theta)|\theta]$$

$$= \int_{-\infty}^{\infty} \ell''(\theta)f(x)dx$$

$$= 2n \int_{-\infty}^{\infty} \frac{1 - (\theta - x)^{2}}{[1 + (x - \theta)^{2}]^{2}} \cdot \frac{1}{\pi[1 + (x - \theta)^{2}]}dx$$

$$= \frac{2n}{\pi} \int_{-\infty}^{\infty} \frac{1 - (\theta - x)^{2}}{[1 + (x - \theta)^{2}]^{3}}dx$$

$$= \frac{2n}{\pi} \int_{-\infty}^{\infty} \frac{1 - x^{2}}{[1 + x^{2}]^{3}}dx$$

$$= \frac{4n}{\pi} \int_{0}^{\infty} \frac{1 - x^{2}}{[1 + x^{2}]^{3}}dx.$$

Substituting $u = \frac{1}{1+x^2}$, then $x^2 = \frac{1}{u} - 1$ and $x = (\frac{1}{u} - 1)^{0.5} = (1 - u)^{0.5} u^{-0.5}$. Therefore, $dx = -0.5 \cdot [(1 - u)^{-0.5} u^{-0.5} + (1 - u)^{0.5} u^{-1.5}] du$.

$$I_{n}(\theta) = \frac{4n}{\pi} \left[\int_{0}^{\infty} \frac{1}{[1+x^{2}]^{3}} dx - \int_{0}^{\infty} \frac{x^{2}}{[1+x^{2}]^{3}} dx \right]$$

$$= -\frac{2n}{\pi} \int_{0}^{1} \left[u^{0.5} (1-u)^{1.5} - u^{2.5} (1-u)^{-0.5} \right] du$$

$$= -\frac{2n}{\pi} \left[\int_{0}^{1} u^{0.5} (1-u)^{1.5} du - \int_{0}^{1} u^{2.5} (1-u)^{-0.5} du \right] \quad (Beta integral)$$

$$= -\frac{2n}{\pi} \left[\frac{\Gamma(1.5)\Gamma(2.5)}{\Gamma(4)} - \frac{\Gamma(3.5)\Gamma(0.5)}{\Gamma(4)} \right]$$

$$= -\frac{2n}{\pi} \left[\frac{0.375\pi - 1.875\pi}{3!} \right]$$

$$= \frac{n}{2}$$

2 Random Sample and Plot of Loglikelihood against θ

Set the random seed as 20180909 and generate a random sample of size n=10 with $\theta=5$.

```
set.seed(20180909)
rdm_sample <- rcauchy(10, 5, 1)
rdm_sample</pre>
```

```
## [1] 5.327895 5.255225 5.311910 5.666190 7.343252 6.476061 9.140347 ## [8] 3.849958 10.825089 21.291087
```

The plot of loglikelihood function against θ is shown in Figure ??.

```
log_llh <- function(theta, sample_X){
    lsum <- 0
    for (i in 1:length(sample_X)){
        lsum <- lsum + -log(pi) - log(1 + (theta - sample_X[i])^2)
    }
    lsum
}

x <- seq(0, 10, 0.01)
y <- sapply(x, log_llh, sample_X = rdm_sample)
data_l <- as.data.frame(cbind(y, x))
library(ggplot2)
ggplot(data_l, aes(x, y)) + geom_smooth() +
    labs(title = expression(paste("Loglikelihood of sample against ", theta)),
        x = expression(theta), y = "loglikelihood") +
    theme(plot.title = element_text(hjust = 0.5))</pre>
```

Loglikelihood of sample against θ

3 Newton–Raphson method

```
#first derivative of loglikelihood
first_derv <- function(theta, sample_X) {
  first_derv <- 0</pre>
```

```
for (i in 1:length(sample_X)){
    first_derv <- first_derv -2 *</pre>
      ((theta - sample_X[i])/(1 + (theta - sample_X[i])^2))
  }
  first_derv
}
#second derivative of loglikelihood
second_derv <- function(theta, sample_X) {</pre>
  second_derv <- 0
  for (i in 1:length(sample_X)){
    second_derv <- second_derv -2 *</pre>
      ((1-(theta - sample_X[i])^2)/(1 + (theta - sample_X[i])^2)^2)
  }
  second_derv
#Newton-Raphson method
newton <- function(init, pre=1e-50, maxrun=200) {</pre>
  n <- 1
  xt <- init
  while (n<maxrun){
    fx <- first_derv(xt, rdm_sample)</pre>
    fx_d <- second_derv(xt, rdm_sample)</pre>
    if (fx == 0) {break}
    ht \leftarrow -fx/fx_d
    xt1 <- xt + ht
    if (abs(xt1-xt) < pre) {break}</pre>
    xt <- xt1
    n < - n+1
  }
return(c(root = xt, iter = n))
}
init \leftarrow seq(-10, 30, 0.5)
result <- as.data.frame(matrix(0, nrow = length(init), ncol = 3))</pre>
for (i in 1:length(init) ) {
  result[i,1] <- paste("Initial = ", init[i])</pre>
  result[i,2:3] <- newton(init[i])</pre>
}
colnames(result) <- (c("Initial", "Root", "# of iterations"))</pre>
library(pander)
pander(result)
```

Initial	Root	# of iterations
Initial = -10	-1.371e + 61	200
Initial $= -9.5$	-1.329e+61	200
Initial = -9	-1.287e + 61	200
Initial = -8.5	-1.246e + 61	200

Initial	Root	# of iterations
$\frac{1}{1}$ Initial = -8	-1.204e+61	200
Initial = -7.5	-1.162e+61	200
Initial $= -7$	-1.12e+61	200
Initial $= -6.5$	-1.078e + 61	200
Initial $= -6$	-1.036e+61	200
Initial = -5.5	-9.943e+60	200
Initial $= -5$	-9.521e+60	200
Initial $= -4.5$	-9.099e+60	200
Initial $= -4$	-8.676e + 60	200
Initial = -3.5	-8.251e+60	200
Initial $= -3$	-7.826e + 60	200
Initial = -2.5	-7.399e+60	200
Initial $= -2$	-6.972e + 60	200
Initial = -1.5	-6.544e + 60	200
Initial $= -1$	-6.115e + 60	200
Initial = -0.5	-5.686e + 60	200
Initial = 0	-5.257e + 60	200
Initial $= 0.5$	-4.832e+60	200
Initial = 1	-4.413e+60	200
Initial = 1.5	-4.01e+60	200
Initial = 2	-3.651e + 60	200
Initial = 2.5	-3.421e + 60	200
Initial = 3	-3.802e+60	200
Initial = 3.5	4.763e + 61	200
Initial = 4	21.08	200
Initial = 4.5	19.38	200
Initial = 5	5.685	7
Initial $= 5.5$	5.685	5
Initial = 6	5.685	6
Initial $= 6.5$	5.685	9
Initial = 7	1.019e + 61	200
Initial = 7.5	-3.029e+60	200
Initial = 8	20.56	200
Initial = 8.5	19.38	200
Initial = 9	5.685	8
Initial = 9.5	-2.776e+60	200
Initial = 10	19.38	200
Initial = 10.5	5.685	7
Initial = 11	2.358e + 60	200
Initial = 11.5	1.404e + 61	200
Initial = 12	21.08	200
Initial = 12.5	21.08	200
Initial = 13	21.08	200
Initial = 13.5	19.38	200
Initial = 14	19.38	200
Initial = 14.5	19.38	200

Initial	Root	# of iterations
Initial = 15	20.56	200
Initial = 15.5	21.08	200
Initial = 16	21.08	200
Initial = 16.5	20.56	200
Initial = 17	20.56	200
Initial = 17.5	20.56	200
Initial = 18	-8.954e + 59	200
Initial = 18.5	21.08	200
Initial = 19	21.08	200
Initial = 19.5	21.08	200
Initial = 20	21.08	200
Initial = 20.5	19.38	200
Initial = 21	20.56	200
Initial = 21.5	20.56	200
Initial = 22	19.38	200
Initial = 22.5	8.543e + 60	200
Initial = 23	7.181e + 60	200
Initial = 23.5	7.498e + 60	200
Initial = 24	8.079e + 60	200
Initial $= 24.5$	8.727e + 60	200
Initial = 25	9.386e + 60	200
Initial $= 25.5$	1.004e+61	200
Initial = 26	1.067e + 61	200
Initial = 26.5	1.129e + 61	200
Initial = 27	1.189e + 61	200
Initial = 27.5	1.248e + 61	200
Initial = 28	1.305e + 61	200
Initial = 28.5	1.36e + 61	200
Initial = 29	1.414e + 61	200
Initial = 29.5	1.467e + 61	200
Initial = 30	1.519e + 61	200

According to the data and figure, it can be concluded that when initial value is less then 4, the estimation is not accurate. When it is around or a little bit larger than 5, the estimation is very close to the true value. Meanwhile, at some initial points, the estimations are not stable.

4 Improved Newton–Raphson method

By halving the steps, an improved Newton-Raphson method is used to do the estimation.

```
# Improve it by halving the steps
# Improved Newton-Raphson method
newton2 <- function(init, pre=1e-50, maxrun=200) {</pre>
  n <- 1
  xt <- init
  while (n<maxrun){</pre>
    fx <- first_derv(xt, rdm_sample)</pre>
    fx_d <- second_derv(xt, rdm_sample)</pre>
    if (fx == 0) \{break\}
    ht \leftarrow -fx/fx_d
    xt1 \leftarrow xt + ht/2
    if (abs(xt1-xt) < pre) {break}</pre>
    xt <- xt1
    n < - n+1
  }
  return(c(root = xt, iter = n))
```

```
init <- seq(-10, 30, 0.5)
result2 <- as.data.frame(matrix(0, nrow = length(init), ncol = 3))
for (i in 1:length(init) ) {
   result2[i,1] <- paste("Initial = ", init[i])
   result2[i,2:3] <- newton2(init[i])
}
colnames(result2) <- (c("Initial", "Root", "# of iterations"))
library(pander)
pander(result2)</pre>
```

Initial	Root	# of iterations
Initial = -10	-1.887e + 36	200
Initial = -9.5	-1.83e + 36	200
Initial $= -9$	-1.773e + 36	200
Initial = -8.5	-1.716e + 36	200
Initial $= -8$	-1.659e + 36	200
Initial = -7.5	-1.601e + 36	200
Initial $= -7$	-1.544e + 36	200
Initial = -6.5	-1.486e + 36	200
Initial $= -6$	-1.429e + 36	200
Initial $= -5.5$	-1.371e + 36	200
Initial $= -5$	-1.313e + 36	200
Initial $= -4.5$	-1.255e + 36	200
Initial $= -4$	-1.197e + 36	200
Initial = -3.5	-1.139e + 36	200
Initial $= -3$	-1.081e + 36	200
Initial = -2.5	-1.022e + 36	200
Initial $= -2$	-9.636e + 35	200
Initial = -1.5	-9.048e + 35	200
Initial $= -1$	-8.458e + 35	200
Initial $= -0.5$	-7.867e + 35	200
Initial = 0	-7.275e + 35	200
Initial $= 0.5$	-6.686e + 35	200
Initial = 1	-6.101e + 35	200
Initial = 1.5	-5.532e + 35	200
Initial = 2	-5.002e + 35	200
Initial = 2.5	-4.593e + 35	200
Initial = 3	-4.748e + 35	200
Initial = 3.5	4.155e + 36	200
Initial = 4	3.098e + 22	200
Initial = 4.5	3.065e + 35	200
Initial = 5	5.685	51
Initial = 5.5	5.685	49
Initial = 6	5.685	49

Initial	Root	# of iterations
Initial $= 6.5$	5.685	43
Initial = 7	5.685	52
Initial = 7.5	-4.555e + 35	200
Initial = 8	-6.219e + 35	200
Initial = 8.5	2.518e + 35	200
Initial = 9	5.685	52
Initial = 9.5	5.685	54
Initial = 10	3.672e + 30	200
Initial = 10.5	-1.404e + 34	200
Initial = 11	5.685	53
Initial = 11.5	1.219e + 36	200
Initial = 12	1.796e + 35	200
Initial = 12.5	-6.143e + 35	200
Initial = 13	-2.702e+31	200
Initial = 13.5	1.309e + 35	200
Initial = 14	1.952e + 34	200
Initial = 14.5	9.968e + 31	200
Initial = 15	6.606e + 31	200
Initial = 15.5	1.054e + 36	200
Initial = 16	1.391e + 36	200
Initial = 16.5	8.864e + 35	200
Initial = 17	2.746e + 32	200
Initial = 17.5	9.295e + 35	200
Initial = 18	-8.746e + 34	200
Initial = 18.5	9.625e + 28	200
Initial = 19	2.95e + 30	200
Initial = 19.5	1.306e + 29	200
Initial = 20	3.055e + 35	200
Initial = 20.5	3.186e + 35	200
Initial = 21	5.516e + 33	200
Initial = 21.5	-2.126e + 30	200
Initial = 22	7.038e + 32	200
Initial = 22.5	1.15e + 36	200
Initial = 23	1.033e + 36	200
Initial = 23.5	1.093e + 36	200
Initial = 24	1.178e + 36	200
Initial = 24.5	1.269e + 36	200
Initial = 25	1.359e + 36	200
Initial = 25.5	1.447e + 36	200
Initial = 26	1.532e + 36	200
Initial = 26.5	1.614e + 36	200
Initial = 27	1.694e + 36	200
Initial $= 27.5$	1.771e + 36	200
Initial = 28	1.847e + 36	200
Initial = 28.5	1.92e + 36	200
Initial = 29	1.992e + 36	200

Initial	Root	# of iterations
Initial = 29.5	2.062e+36	200
Initial = 30	2.131e+36	200

Compared to the standard Newton-Raphson method, the improved one has a more narrow estimation range. However, obviously on the plot, the estimation is still not stable.

5 Fixed-Point Iterations

```
fix_pnt <- function(init, alpha, pre=1e-50, maxrun=200) {
   n <- 1
   x <- init
   while (n<maxrun){</pre>
```

```
fx <- first_derv(x, rdm_sample)</pre>
    if (fx == 0) {break}
    Gx \leftarrow x + alpha*fx
    if (abs(Gx-x) < pre) {break}</pre>
    x <- Gx
    n < - n+1
 return(c(root = x, iter = n))
}
init <- seq(-10, 30, 0.5)
alpha \leftarrow c(1, 0.64, 0.25)
result3 <- as.data.frame(matrix(0, nrow = length(init), ncol = 7))</pre>
for (i in 1:length(init) ) {
 result3[i,1] <- paste("Init.=", init[i])</pre>
  result3[i,2:3] <- fix_pnt(init[i], alpha[1])</pre>
  result3[i,4:5] <- fix_pnt(init[i], alpha[2])</pre>
  result3[i,6:7] <- fix_pnt(init[i], alpha[3])</pre>
colnames(result3) <- c("Initial", paste("Root (alpha=",alpha[1],")"),</pre>
                         paste0("# of iterations (alpha=",alpha[1],")"),
                         paste0("Root (alpha=",alpha[2],")"),
                         paste0("# of iterations (alpha=",alpha[2],")"),
                         paste0("Root (alpha=",alpha[3],")"),
                         paste0("# of iterations (alpha=",alpha[3],")") )
library(pander)
pander(result3, style="rmarkdown", split.table=Inf, split.cells=Inf)
```

	Root	# of				
	(alpha=	iterations	Root	# of iterations	Root	# of iterations
Initial	1)	(alpha=1)	(alpha=0.6	64) (alpha=0.64)	(alpha=0.2	25) (alpha=0.25)
Init.= -10	4.087	200	7.454	200	5.685	65
Init.= -9.5	9.548	200	5.151	200	5.685	62
Init.= -9	4.087	200	5.991	200	5.685	60
Init.= -8.5	6.486	200	6.991	200	5.685	60
Init.= -8	9.548	200	5.411	200	5.685	59
Init.= -7.5	4.087	200	7.396	200	5.685	57
Init.= -7	6.486	200	5.285	200	5.685	56
Init.= -6.5	6.486	200	5.309	200	5.685	54

f iterations bha=0.25) 51 52 48 49 46
51 52 48 49
52 48 49
48 49
49
46
10
45
44
43
42
41
42
40
41
38
36
37
38
36
35
35
37
36

	Root	# of				
Initial	(alpha= 1)	iterations (alpha=1)		# of iterations (alpha=0.64)		# of iterations (alpha=0.25)
$\frac{\text{Initial}}{\text{Init.}=}$	9.548	200	7.057	200	$\frac{\text{(aipiia=0.25)}}{5.685}$	34
5 5	3.040	200	1.001	200	0.000	01
Init.= 5.5	6.486	200	7.31	200	5.685	34
Init.= 6	4.087	200	5.372	200	5.685	33
Init.= 6.5	4.087	200	5.583	200	5.685	36
$\begin{array}{c} \text{Init.} = \\ 7 \end{array}$	4.087	200	5.218	200	5.685	35
Init.= 7.5	4.087	200	5.185	200	5.685	35
$ \begin{array}{c} \text{Init.} = \\ 8 \end{array} $	4.087	200	6.979	200	5.685	38
Init.= 8.5	4.087	200	7.551	200	5.685	37
$ \begin{array}{c} \text{Init.} = \\ 9 \end{array} $	6.486	200	6.287	200	5.685	35
Init.= 9.5	6.486	200	6.322	200	5.685	40
Init.= 10	6.486	200	4.995	200	5.685	39
Init.= 10.5	6.486	200	4.957	200	5.685	39
Init.= 11	6.486	200	4.951	200	5.685	42
Init.= 11.5	6.486	200	5.199	200	5.685	37
Init.= 12	4.087	200	4.988	200	5.685	43
Init.= 12.5	9.548	200	5.988	200	5.685	42
Init.= 13	9.548	200	6.138	200	5.685	42
Init.= 13.5	9.548	200	7.712	200	5.685	45
Init.= 14	9.548	200	5.265	200	5.685	46
Init.= 14.5	4.087	200	5.194	200	5.685	47
Init.= 15	4.087	200	7.1	200	5.685	48
Init.= 15.5	4.087	200	7.727	200	5.685	49

	Root	# of				
T:4:-1	(alpha=	iterations	Root	# of iterations		# of iterations
Initial	1)	(alpha=1)) (alpha=0.64)	, - ,	(alpha=0.25)
Init.= 16	6.486	200	5.567	200	5.685	48
Init.= 16.5	6.486	200	4.96	200	5.685	50
Init.= 17	6.486	200	5.96	200	5.685	53
Init.= 17.5	9.548	200	7.676	200	5.685	53
Init.= 18	9.548	200	5.303	200	5.685	53
Init.=	4.087	200	7.617	200	5.685	57
18.5 Init.=	6.486	200	5.127	200	5.685	61
19 Init.=	6.486	200	7.641	200	5.685	64
19.5 Init.=	4.087	200	7.491	200	5.685	67
20 Init.=	6.486	200	7.287	200	5.685	72
20.5 Init.=	6.486	200	5.08	200	5.685	78
21 Init.=	4.087	200	5.203	200	5.685	78
21.5 Init.=	4.087	200	7.406	200	5.685	77
22 Init.=	9.548	200	6.821	200	5.685	79
22.5 Init.=	9.548	200	5.985	200	5.685	80
23 Init.=	6.486	200	5.385	200	5.685	82
23.5 Init.=	9.548	200	5.497	200	5.685	83
24 Init.=	9.548	200	7.528	200	5.685	86
24.5 Init.=	9.548	200	7.374	200	5.685	85
25 Init.=	4.087	200	4.956	200	5.685	87
25.5 Init.=	6.486	200	7.23	200	5.685	90
26 Init.= 26.5	4.087	200	7.173	200	5.685	90

	Root	# of				
	(alpha=	iterations	Root	# of iterations	Root	# of iterations
Initial	1)	(alpha=1)	(alpha=0.6	64) (alpha=0.64)	(alpha=0.2	(alpha=0.25)
Init.=	6.486	200	5.334	200	5.685	91
27						
Init.=	6.486	200	5.562	200	5.685	95
27.5						
Init.=	4.087	200	7.728	200	5.685	95
28						
Init.=	9.548	200	5.039	200	5.685	97
28.5	0.400	200	= 0.1	200	× 00×	0.0
Init.=	6.486	200	7.31	200	5.685	98
29	4.007	200	6 969	200	F 60F	100
Init.=	4.087	200	6.862	200	5.685	100
$\begin{array}{c} 29.5 \\ \text{Init.} = \end{array}$	9.548	200	5.56	200	5.685	102
30	3.040	200	0.00	200	0.000	102

According to the plot, by using 3 different α , we get 3 estimations with different performance. The smaller the α is, the faster and accurate the estimation is converging.

6 Fisher Scoring and Newton-Raphson method

```
# Fisher Scoring
fisher <- function(init, pre=1e-10, maxrun=200) {</pre>
  n <- 1
  Ix < -10/2
  xt <- init
  while (n<maxrun){</pre>
    fx <- first_derv(xt, rdm_sample)</pre>
    if (fx == 0) \{break\}
    xt1 \leftarrow xt + fx/Ix
    if (abs(xt1-xt) < pre) {break}</pre>
    xt <- xt1
    n <- n+1
  }
  return(c(root = xt, iter = n))
init <- seq(-10, 30, 0.5)
result4 <- as.data.frame(matrix(0, nrow = length(init), ncol = 5))</pre>
```

Initial	Root(Fisher Scoring)	# of iterations(Fisher Scoring)	Root(Newton- Raphson)	# of iterations (Newton-Raphson)
Initial = -10	5.685	47	5.685	2
Initial = -9.5	5.685	44	5.685	2
Initial $=$ -9	5.685	42	5.685	2
Initial = -8.5	5.685	40	5.685	2
Initial = -8	5.685	39	5.685	2
Initial = -7.5	5.685	37	5.685	2
Initial = -7	5.685	36	5.685	2
$\begin{array}{c} \text{Initial} = \\ -6.5 \end{array}$	5.685	33	5.685	2
Initial = -6	5.685	31	5.685	2
$\begin{array}{c} \text{Initial} = \\ -5.5 \end{array}$	5.685	30	5.685	2
$\begin{array}{c} \text{Initial} = \\ -5 \end{array}$	5.685	29	5.685	2
Initial = -4.5	5.685	27	5.685	2
Initial = -4	5.685	25	5.685	2
$\begin{array}{c} \text{Initial} = \\ -3.5 \end{array}$	5.685	24	5.685	2
Initial = -3	5.685	23	5.685	2

-				
	Root(Fisher	# of iterations(Fisher	Root(Newton-	# of iterations
Initial	Scoring)	Scoring)	Raphson)	(Newton-Raphson)
Initial =	5.685	21	5.685	2
-2.5				
Initial =	5.685	21	5.685	2
-2				
Initial =	5.685	19	5.685	2
-1.5				
Initial =	5.685	18	5.685	2
-1				_
Initial =	5.685	17	5.685	2
-0.5	× 00×	4 -	× 00×	2
Initial $= 0$	5.685	17	5.685	2
Initial =	5.685	15	5.685	2
0.5	F COF	1.4	F COF	0
Initial $= 1$	5.685	14	5.685	2
Initial =	5.685	15	5.685	2
1.5	r cor	1.4	F 60F	0
Initial $= 2$	5.685	14	5.685	$\frac{2}{2}$
Initial = 2.5	5.685	12	5.685	2
$ \begin{array}{c} 2.5 \\ \text{Initial} = 3 \end{array} $	5.685	12	5.685	2
Initial = 3 $Initial = 3$	5.685	12	5.685	$\frac{2}{2}$
3.5	0.000	11	0.000	2
Initial $= 4$	5.685	12	5.685	2
Initial = 4 $Initial = 4$	5.685	11	5.685	$\overset{2}{2}$
4.5	0.000	11	0.000	2
Initial $= 5$	5.685	11	5.685	2
Initial =	5.685	10	5.685	2
5.5	0.000	10	3.000	_
Initial = 6	5.685	11	5.685	2
Initial =	5.685	$\frac{1}{12}$	5.685	$\frac{1}{2}$
6.5				
Initial = 7	5.685	12	5.685	2
Initial =	5.685	13	5.685	2
7.5				
Initial = 8	5.685	13	5.685	2
Initial =	5.685	14	5.685	2
8.5				
Initial = 9	5.685	15	5.685	2
Initial =	5.685	17	5.685	2
9.5				
Initial =	5.685	17	5.685	2
10				
Initial =	5.685	18	5.685	2
10.5				

		# of		
	Root(Fisher	iterations(Fisher	Root(Newton-	# of iterations
Initial	Scoring)	Scoring)	Raphson)	(Newton-Raphson)
Initial = 11	5.685	17	5.685	2
Initial =	5.685	20	5.685	2
11.5	0.000	20	0.000	-
Initial =	5.685	20	5.685	2
12	0.000	20	0.000	2
Initial =	5.685	21	5.685	2
12.5	0.000	21	0.000	-
Initial =	5.685	21	5.685	2
13	0.000	21	0.000	2
Initial $=$	5.685	22	5.685	2
	9.009	22	5.065	Δ
13.5	r cor	0.0	F COF	0
Initial =	5.685	23	5.685	2
14	F 60F	0.5	F 60F	9
Initial =	5.685	25	5.685	2
14.5	× 00×	2.6	× 00×	2
Initial =	5.685	26	5.685	2
15				
Initial =	5.685	27	5.685	2
15.5				
Initial =	5.685	29	5.685	2
16				
Initial =	5.685	30	5.685	2
16.5				
Initial =	5.685	33	5.685	2
17				
Initial =	5.685	35	5.685	2
17.5				
Initial =	5.685	36	5.685	2
18				
Initial =	5.685	40	5.685	2
18.5				
Initial =	5.685	43	5.685	2
19				
Initial =	5.685	47	5.685	2
19.5				
Initial =	5.685	51	5.685	2
20		<i>7</i> –	- 000	_
Initial =	5.685	59	5.685	2
20.5	0.000	30	0.000	-
Initial =	5.685	64	5.685	2
21	0.000	υī	0.000	<u> </u>
Initial =	5.685	65	5.685	2
21.5	0.000	00	0.000	<i>2</i>
41.0				

Initial	Root(Fisher Scoring)	# of iterations(Fisher Scoring)	Root(Newton- Raphson)	# of iterations (Newton-Raphson)
Initial = 22	5.685	67	5.685	2
${\rm Initial} =$	5.685	68	5.685	2
22.5 Initial = 23	5.685	69	5.685	2
Initial = 23.5	5.685	70	5.685	2
Initial = 24	5.685	72	5.685	2
Initial = 24.5	5.685	73	5.685	2
$ \begin{array}{c} \text{Initial} = \\ 25 \end{array} $	5.685	76	5.685	2
$ \begin{array}{c} \text{Initial} = \\ 25.5 \end{array} $	5.685	77	5.685	2
Initial = 26	5.685	79	5.685	2
$ \begin{array}{r} \text{Initial} = \\ 26.5 \end{array} $	5.685	81	5.685	2
$ \begin{array}{c} \text{Initial} = \\ 27 \end{array} $	5.685	83	5.685	2
Initial $=$ 27.5	5.685	85	5.685	2
Initial = 28	5.685	87	5.685	2
$ \begin{array}{c} \text{Initial} = \\ 28.5 \end{array} $	5.685	90	5.685	2
$ \begin{array}{c} \text{Initial} = \\ 29 \end{array} $	5.685	90	5.685	2
$ \begin{array}{r} \text{Initial} = \\ 29.5 \end{array} $	5.685	94	5.685	2
$ \begin{array}{r} 23.5 \\ \text{Initial} = \\ 30 \end{array} $	5.685	96	5.685	2

```
# plot

result4_plot <- cbind(init, result4)

colnames(result4_plot)[c(3,5)] <- c("y1","y2")

ggplot(result4_plot, aes(init)) +

geom_point(aes(y = y1, colour = "var0")) +

geom_point(aes(y = y2, colour = "var1")) +

labs(title = expression(paste("Root vs. ", theta)),</pre>
```


According to the plot, it is obvious that the combined method of refining the Fisher Scoring estimate by using Newton-Raphson method is much better.

7 Comments

By the comparision of these several methods, we can conclude when we have a initial value around the true value, the Newton-Raphson method would give a good estimation. Otherwise, this method shows to be very unstable. For fixed-point method, we need a relatively small parameter α to get a decent estimation. By combining Newton-Raphson method and Fisher scoring method, we finally get a stable, accurate algorithm to do the estimation. In addition, when paying attention to the number of iterations, we can find the last method is also the fastest one.