

Méthode pédagogique

- Le cours est proposé sous forme d'enseignement à distance:
- > Live (google meet) à raison de séances de cours hebdomadaires, sur un semestre.
- > Fournitures de supports ppt, pdf, séries TD/TP, (sur Google classroom)

3

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Objectifs

- ▶ Clarifier l'architecture des ordinateurs
- ▶ Comprendre le principe de fonctionnement d'un ordinateur :
- ightarrow comment fonctionne cette machine sur laquelle vous passez des heurs et des heurs

4

Plan du cours

- ► Chapitre I: Représentation de l'information
- ▶ Chapitre II: Architecture de base d'un ordinateur
- ▶ Chapitre III: Le processeur 80x86
- ► Chapitre VI: Langage Assembleur

5

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Introduction

- Les technologies numériques sont maintenant omniprésentes
 - Elles sont le moteur et l'objet de ce qu'on appelle la « révolution numérique »
- ▶ Elles sont basées sur l'interaction entre :
 - Des programmes, aussi appelés logiciels, décrivant des processus de traitement de l'information : biens immatériels
 - Des ordinateurs, capables d'exécuter ces programmes : biens matériels

6

Définition (1)

▶ Ordinateur

- Machine automatique de traitement de <u>l'information</u>
- Déit à un programme formé par des suites d'opérations logiques et arithmétiques

▶ Architecture d'un ordinateur

- ▶ Représente l'organisation des différentes unités de l'ordinateur et leurs interconnexions.
- ➤ Information : élément de connaissance susceptible d'être codé pour être conservé, traité ou communiqué.
 - ☐ Unité de la quantité de l'information: **Bit**
 - > Bit: Binairy digit (chiffre binaire)
 - Pour un chiffre binaire il y a deux valeurs possibles (0,1)
 - ➤ Langage binaire = langage dont l'alphabet se réduit à l'ensemble {0,1}

7

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Définition (2)

➤ le choix du bit due au fait que les ordinateurs utilisés pour le stockage de l'information sont essentiellement des circuits logiques a deux états physiques stables:

Le bit (pas de notation)

Le **Kilo-octet** =
$$2^{10}$$
 = 1024 o (noté 1 **Ko**)

Le **Méga-octet** =
$$2^{20}$$
 = $(1024)^2$ o (noté **1 Mo**)

Le Giga-octet =
$$2^{30} = (1024)^3$$
 o (1 Go)

Le **Téra-octet** =
$$2^{40}$$
 = $(1024)^4$ o (1 To)

8

Représentation de l'information Un ordinateur manipule des données Besoin de coder et représenter ces données, pouvant être: De nature différente Des nombres Des chaînes de caractères Des informations de tout genre De taille différente Taille fixe de X chiffres : numéro de téléphone, code postal ... De taille variable : nom, adresse, texte, film vidéo ...

Codage des nombres: Système de numération • Qu'est-ce qu'un nombre ? • Une quantité • La mesure de quelque chose • Codage des nombres : dans un but de calcul • Sa représentation ? • Les chiffres (symboles) Les briques de bases pour représenter un nombre • Plusieurs bases de codage possibles • Bases les plus utilisées • Pour les êtres humains : base décimale • Pour un ordinateur • Base binaire (2) et dérivées : base hexadécimale (16) ou octale (8)

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

12

Numération et codage

- On a l'habitude de représenter les nombres en base décimale ou base 10.
- ► Ce système est donc composé de 10 symboles (ou chiffres ou digits : 0, 1, 2, 3...9) permettant de coder tous les nombres à partir des puissances de 10.
 - > Les puissance de la base du système
 - Base 10 : 1 (un), 10 (dix), 100 (cent), 1000 (mille), etc.

Exemple:

$$\begin{aligned} & \textbf{101}_{10} = \textbf{1} \times 10^2 + \textbf{0} \times 10^1 + \textbf{1} \times 10^0 \\ & \textbf{101}_2 = \textbf{1} \times 2^2 + \textbf{0} \times 2^1 + \textbf{1} \times 2^0 = 5_{10} \end{aligned}$$

13

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Poids des chiffres

- La position respective des chiffres représente leur **poids** (unité, dizaine, millier,...)
- > l'association de chiffres est appelé nombre.
- > Dans le cas d'un nombre codé en base 10, on parle de nombre décimal.

N _{base b}				
Poids du chiffre	b ⁿ	b ²	b ¹	b^0
Rang du chiffre	N	2	1	0

- 14

Numération et codage

- ▶ Il est important de distinguer le concept de nombre de sa représentation graphique
- La représentation graphique d'un nombre dépend :
 - des symboles utilisées (les chiffres)
 - de la base utilisées (le nombre de chiffres disponibles)
- Un même nombre peut être représenté dans plusieurs bases.
- **Exemple:** le nombre 123 est représenté graphiquement:

```
123 en base 10 (décimal)
1111011 en base 2 (binaire)
173 en base 8 (octale)
7B en base 16 (hexad´ecimale): notation plus économe en place
```

15

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Codage en base B

☐ Pour une base *B*, il y a *B* symboles différents (les chiffres de cette base)

```
    ▶ Base 10 – Décimal
    ▶ 10 symboles [ 0,1,2,3,4,5,6,7,8,9 ]
    ▶ Base 2 – Binaire
    ▶ 2 symboles [ 0,1 ]
    ▶ Base 8 – Octale
    ▶ 8 symboles [ 0,7 ]
    ▶ Base 16 – Hexadécimal
    ▶ 16 symboles [ 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F ]
```

16

Codage en base B

Dans une base B, un entier naturel N s'écrit sous la forme

$$(N)_B = a_n a_{n-1} a_{n-2} ... a_1 a_0$$

- Avec a_x qui est un des B chiffres de la base
- Exemples
 - > Base décimale: 1234
 - De droite à gauche : chiffre des unités, des dizaines, des centaines, des milliers...
 - ➤ Base binaire : 11001
 - > Base hexadécimale : I C04

17

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Base B vers décimal (polynôme)

□ Valeur en décimal (base 10) d'un entier naturel

 $\ll a_n \ a_{n-1} \ ... \ a_1 \ a_0 \gg codé dans une base B$

$$a_nB^n + a_{n-1}B^{n-1} + ... a_1B + a_0$$

- En prenant la valeur décimale de chaque chiffre \mathbf{a}_{x}
- Exemples:
 - $(1234)_{10} = 1 \times 103 + 2 \times 102 + 3 \times 10 + 4$
 - $(11001)_2 = 1 \times 24 + 1 \times 23 + 0 \times 22 + 0 \times 2 + 1 = 16 + 8 + 1 = 25$
 - $(1C04)_{16} = 1 \times 163 + 12 \times 162 + 0 \times 16 + 4$ $= 4096 + 12 \times 256 + 0 + 4 = 7172$

avec A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

I8

Conversion Binaire → Décimal

Exemple:

$$(1 \ 1 \ 0 \ 0 \ 1)_2 = \dots)_{10}$$
?

On additionne les poids associés à chaque symbole

19

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Conversion Hexadécimal → Décimal

Exemple:

$$(B \ 2 \ 2)_{16} = \dots)_{10}$$
?

On additionne les poids associés à chaque symbole

256 16 1

$$16^{2} 16^{1} 16^{0}$$

(B 2 2)₁₆ = Bx256 + 2x16 + 2x1
= 11x256 + 32 + 2
= (2850)₁₀

> 20

Décimal vers base B

- Dn procède par une série de divisions entières par B
- \blacktriangleright Division du nombre décimal N par B : donne une valeur v_0 et un reste r_0
- ▶ On divise v_0 par B : donne v_1 et reste r_1
- \blacktriangleright On recommence pour v_1 et ainsi de suite
- Quand v_x < B, c'est fini</p>
 - Le résultat de la prochaine division donnera 0
- $(N)_B = v_x r_{x-1}...r_1 r_0$

Exercice:

écrire un programme en qui permet de convertir un nombre décimale vers une base B?

2I

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Conversion Décimal → Binaire

Exemple:

$$(55)_{10} = (\ldots)_2$$

On effectue des divisions successives par 2

22

Conversion Décimal \rightarrow Hexadécimale

▶ Exemple : (7172)₁₀ en hexadécimal

Résultat: (1C04)₁₆

23

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Cas particuliers : Conversion du binaire à l'octal/hexadécimal ou inverse

☐ Remarque:

✓ 1 chiffre octal = un groupe de 3 chiffres binaires

✓ 1 chiffre hexadécimal = un groupe de 4 chiffres binaires

Nombre binaire		
Pour Octal	Pour Hexadécimal	
000	0000	
001	0001	
010	0010	
011	0011	
100	0100	
101	0101	
110	0110	
111	0111	
	L	

24

Exemples

- ◆ Exemple : (10110001101)₂ en octal
- On regroupe par groupes de 3 bits : <u>010 110 001 101</u>
 - On rajoute des zéros au début au besoin
- \bullet (010)₂ = 2, (110)₂ = 6, (001)₂ = 1, (101)₂= 5
- \bullet (10110001101)₂ = (2615)₈
- ◆ Exemple : (10110001101)₂ en hexadécimal
- On regroupe par groupes de 4 bits : <u>0101</u> 1000 1101
- \bullet (0101)₂ = 5, (1000)₂ = 8, (1101)₂ = 13
- \bullet (10110001101)₂ = (58D)₁₆

> 25

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Codage des nombres

- On a vu le codage des entiers naturels (uniquement positifs) dans différentes bases
- Mais on doit aussi pouvoir manipuler des
 - Nombres réels
 - Nombres entiers négatifs

> 26

Codage de l'information

- Les informations directement traitées par un ordinateurs sont :
 - des données :

entiers : naturels et <u>relatifs</u>flottants : nombres réels

caractères

 ✓ Le codage de ces trois types est défini par des standard (normes spécifiées par des organisations internationales)

- des instructions :
 - √ leur codage est spécifique à un processeur

27

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Cas des entiers naturels

- Les entiers naturels (positifs ou nuls) sont codés sur un nombre d'octets fixé (1,2 ou 4 octets)
- ▶ Un codage sur n bits permet de représenter tous les nombres naturels compris entre 0 et 2ⁿ -1.
- La représentation en machine est effectuée de la façon suivante :
- ➤ On représente le nombre en base 2 et on range les bits dans les cases mémoires binaires contiguës correspondant à leur poids binaire,

☐ Exemple:

•N= 144)₁₀ représenté par (000000010010000)₂ sur 16 bits

En mémoire nous avons donc :

0 0 0 0 0 0 0 0 1 0 0 1 0 0

28

Cas des entiers relatifs

- ☐ Les nombres entiers relatifs peuvent être positifs ou négatifs.
- ☐ Ils possèdent donc un signe.
- ☐ En machine nous devons également représenter le signe de ces nombres.
 - → Comment représenter des entiers négatifs ??
 - [^] Magnitude signée
 - ^ Complément à 1
 - ^ Complément à 2
 - [^] Biaisée

> 29

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Cas des entiers signée (1)

- Magnitude signée
 - ☐ Réserver un bit pour le signe (le bit le plus à gauche); les autres bits codent la valeur absolue du nombre
 - 0 = « + » et I = « »

 \triangleright pour N bits: valeur signé compris entre – $(2^{n-1}-1)$ et $2^{n-1}-1$

- ☐ Exemple:
 - Représentation de +5 et -5 en valeur signée sur 6 bits
 - +5 **→ 0**00101
- -5 → 100101
- ☐ Inconvenants:
 - Deux représentation pour la valeur 0
 - $+0 \rightarrow 000000$
- $-0 \rightarrow 100000$
- Opérations arithmétiques peu aisées

30

Exemple

- Addition avec l'opposé
- $I_{10} I_{10} = I_{10} + (-1)_{10}$
- $= 00000001_2 + 10000001_2$ Sur 8 bits
- $= 10000010_{2}$
- = (-2) ₁₀!

3I

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Cas des entiers signée (2)

▶ Complément à 1:

Complément à 1 de $x \rightarrow II$ suffit <u>d'inverser</u> chaque bit de $x:0 \rightarrow I$ ou $I \rightarrow 0$

Exemple: représentation de -11)10

> Remarque:

Deux représentations pour 0: 00000000₂ et 11111111₂

32

Exercice ▶ I. Représenter -20)₁₀ en c-à-2 sur 8-bits -20₁₀: Valeur positive =00010100 "Inverser": Complément à 1 11101011 Ajouter 1: 11101100 ▶ 2. I 1000 I l est une représentation en c-à-2 sur 7-bits. Donnez la valeur? C-à-2: Nombre négatif 1100011 "Inverser": 0011100 (Complément à 1) Ajouter 1: Valeur absolue 0011101 = 29Nombre: Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

L'arithmétique binaire

- ▶ La soustraction
 - Addition avec l'opposé (complément à 2)
- **Exemple:**

```
 5 - 2 = 5 + (-2) 
 b = 0101_2 + (1 + compl(10_2)) 
 b = 0101_2 + (1 + 1101_2) 
 b = 0101_2 + 1110_2 
 b = 0011_2 = 3 
Sur 4 bits
```

35

Pr. M. EL BRAK_CI_LSI(S3)_2020/202

Codage de l'information

- Codage des nombres réels:
 - →II existe deux méthodes pour représenter les nombres réels :
 - o Virgule fixe: la position de la virgule est fixe
 - **o Virgule flottante** : la position de la virgule change (dynamique)

36

Virgule fixe

▶ Le cas des Nombres fractionnaires : On multiplie la partie fractionnaire par la base en répétant l'opération sur la partie fractionnaire du produit jusqu'a ce qu'elle soit nulle

Exemple:

Conversion de (54,25)₁₀ en base 2.

Partie entière : $(54)_{10} = (110110)_2$

Partie fractionnaire:

Il en résulte donc que $(54, 25)_{10} = (110110, 010)_2$

37

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Virgule Flottante

Chaque nombre réel peut s'écrire de la façon suivante : N= ± M * b e

- M: mantisse,
- o b: la base,
- o e: l'exposant
- * Exemple:

38

- \circ 15,6 = 0,156 * 10⁺²
- \circ -(110,101)₂ = -(0,110101)₂ * 2⁺³
- $(0,00101)_2 = (0,101)_2 * 2^{-2}$

Dans cette représentation sur n bits :

Signe mantisse	Exposant	Mantisse normalisée
1 bit	p bits	k bits

Représentation de l'information

- Les différents types d'information
 - ☐ Les informations traitées par un ordinateur peuvent être de différents types
 → On distingue:
 - ✓ Les données discrètes,
 - √ Les données continues ou analogiques : Systèmes d'acquisition des données (micros, capteurs, cartes d'acquisition, ...)
- → représentées et manipulées par un ordinateur sous forme binaire

 □ Toute information sera traitée comme une suite de 0 et de 1. (bit) (codage).
- > Le codage est plus spécifiquement appelé:
- √ Codage de l'information pour les informations discrètes
- ✓ <u>Numérisation de l'information</u> pour les informations analogiques.

> 39

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Le codage des informations

- ▶ Le codage d'une information consiste à établir une correspondance entre la représentation externe de l'information et la représentation interne dans la machine qui est une suite de bits
 - > codages alphanumérique

40

Représentation des données

Une valeur, quelle que soit sa nature, doit être représenté en binaire :

Codage des données non numérique

> Codage des caractères :

Plusieurs formats de représentation binaire:

- [^] EBCDIC (Extended Binary-Coded Decimal Interchange Code)
 - Représentation sur 8 bits (256 caractères possibles)
 - [^] Utilisé autrefois sur les mainframes IBM
- ^a ASCII (American Standard Code for Information Interchange)
 - représentation sur 7 bits (pas d'accents)
 - ^ ASCII étendu : sur 8 bits (mais pas normalisé) (ex: OEM, ANSI)
- Unicode : encodage sur 16 bits (65536 possibilités) pour représenter tous les caractères de toutes les langues

42

Codage de l'information

▶ Exemple : Codage d'une image

Image matricielle = matrice de points élémentaires = Plcture ELement = pixel

 Chaque pixel est codé en binaire sur un certains nombre de bits

44

Codage de l'information Image couleur 24 bits Code RVB = Rouge, Vert, Bleu Chaque couleur est codée sur 8 bits La couleur du pixel est l'association des 3 couleurs Chaque pixel est codé sur 24 bits (true color) 303 x 303 x 3 octets = 275 424 octets = 2 203 392 bits Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

► Exercices ► In the second of the second

Exercices

▶ I. Combien de nombre qu'on peut représenter avec n chiffres ? En décimale ? Et en binaire ?

Solution:

- \triangleright En décimal, avec n chiffres, on obtient 10 ° combinaisons possibles, \rightarrow [0 à 10° -1] o Exemple : Avec 3 chiffres, on a 10³ = 1000 combinaisons possibles \rightarrow [000 a 999].
- ► En binaire, avec n bits, on obtient 2^n combinaisons possibles, \rightarrow [0 à 2^n 1] o Exemple : avec 8 bits, on a 2^8 = 256 combinaisons possibles \rightarrow [000000000 a 111111111,] i.e. De [0 a 255].

49

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

Exercices

- 2. Convertir (254)₈ en binaire ?
 - \bullet 2 = (010)₂, 5 = (101)₂, 4 = (100)₂
 - On concatène dans l'autre base ces groupes de 3 bits : (254)₈ = (10101100)₂
 - 3. Convertir (D46C)16 en binaire ?

```
D = 13 = (1101)_2, 4 = (0100)_2, 6 = (0110)_2,
C = 12 = (1100)_2
```

On concatène dans l'autre base ces groupes de 4 bits $(D46C)_{16}$ = $(1101010001101100)_2$

50

Pr. M. EL BRAK_CI_LSI(S3)_2020/2021

A suivre ...

51

Architecture de Base d'un ordinateur

52