The Real Numbers: Cantor

February 14, 2025

Problem (Week 2, 1.3.7). Prove that if a is an upper bound for A, and if a is also an element of A, then it must be that $a = \sup A$.

Solution.

Let s = sup A. a is an upper bound for A and by definition 1.3.2 (ii) [1] it follows that $s \le a$. However, since s is also an upper bound, definition 1.3.1 [1] implies that $x \le s \ \forall x \in A$. We know $a \in A$, then $a \le s$. The two inequalities are satisfied only if s = a. Hence a = sup A.

Problem (Week 3, 1.6.1). Show that (0,1) is uncountable if and only if \mathbb{R} is uncountable.

Solution.

First I will show that the two sets have the same cardinality - $(0,1) \sim \mathbb{R}$. By definition 1.5.2 [1] the set (0,1) has the same cardinality as \mathbb{R} if there exists a mapping $f:(0,1) \to \mathbb{R}$ that is bijective. By definition 1.5.1 [1] the function $f:(0,1) \to \mathbb{R}$ is a bijection if (i) for any two elements $a_1, a_2 \in (0,1)$ implies $f(a_1) \neq f(a_2)$ in \mathbb{R} (injection) and (ii) given any $b \in \mathbb{R}$, $\exists a \in (0,1)$ s.t. f(a) = b (surjection). One such function is $f(x) = \frac{2x-1}{x(x-1)}$ because we want two vertical asymptotes at 0 and 1 and symmetry at the middle of the interval which means root at 0.5.

(i) Injection: Assume that $f(x_1) = f(x_2)$:

$$\frac{2x_1 - 1}{x_1(x_1 - 1)} = \frac{2x_2 - 1}{x_2(x_2 - 1)}.$$

This is equivalent to:

$$x_2(2x_1 - 1)(x_2 - 1) = x_1(x_1 - 1)(2x_2 - 1)$$

$$2x_2^2x_1 - 2x_1x_2 - x_2^2 + x_2 = 2x_1^2x_2 - 2x_1x_2 - x_1^2 + x_1$$

$$2x_2^2x_1 - 2x_1x_2 - x_2^2 + x_2 = 2x_1^2x_2 - 2x_1x_2 - x_1^2 + x_1$$

$$2x_2^2x_1 - x_2^2 + x_2 = 2x_1^2x_2 - x_1^2 + x_1$$

$$2x_2^2x_1 - 2x_1^2x_2 + x_2 - x_1 = x_2^2 - x_1^2$$
$$2x_2x_1(x_2 - x_1) + (x_2 - x_1) - (x_2 - x_1)(x_2 + x_1) = 0$$
$$(x_2 - x_1)(2x_2x_1 + 1 - x_2 - x_1) = 0$$

Here, one obvious solution is $x_2 = x_1$. To prove the injection, we have to show that there are no solutions that satisfy the following for values of $x_1, x_2 \in (0, 1)$:

$$2x_1x_2 + 1 - x_1 - x_2 = 0.$$

This is equivalent to:

$$x_2 = \frac{x_1 - 1}{2x_1 - 1}.$$

Let's look at the following cases and show that if $x_1 \in (0,1)$ it is impossible for x_2 to be within that interval as well.

Case 1: $\frac{1}{2} < x_1 < 1$. Thus, $-\frac{1}{2} < x_1 - 1 < 0$. $1 < 2x_1 < 2$ and $1 - 1 < 2x_1 - 1 < 2 - 1$. Hence, the numerator is strictly negative and the denominator is strictly positive. This means x_2 must be negative and it is not between (0,1).

Case 2: $0 < x_1 < \frac{1}{2}$. Now let's show that $\frac{x_1-1}{2x_1-1}$ is above 1 for every $0 < x_1 < \frac{1}{2}$:

$$\frac{x_1 - 1}{2x_1 - 1} > 1$$

$$\frac{x_1 - 1}{2x_1 - 1} - \frac{2x_1 - 1}{2x_1 - 1} > 0$$

$$\frac{x_1 - 1 - (2x_1 - 1)}{2x_1 - 1} > 0$$

$$\frac{-x_1}{2x_1 - 1} > 0$$

$$\frac{x_1}{2x_1 - 1} < 0$$

Solving the inequality by the sign-line method, it is satisfied only for $x_1 \in (0, \frac{1}{2})$. This means that the $x_2 > 1$. Hence, we have shown that they are no solutions for the equation $2x_1x_2 + 1 - x_1 - x_2 = 0$ for $x_1, x_2 \in (0, 1)$. Thus, the only possible solution for $f(x_1) = f(x_2)$ for values of $x_1, x_2 \in (0, 1)$ is when $x_1 = x_2$. This concludes the proof of f being an injective function.

(ii) Surjection:

To show the onto property of f, let $y \in \mathbb{R}$. We claim there is some $x \in (0,1)$ such that

$$f(x) = \frac{2x - 1}{x(x - 1)} = y.$$

Rearranging the equation:

$$y = \frac{2x-1}{x(x-1)} \iff y x(x-1) = 2x-1.$$

Distributing the left-hand side gives:

$$yx^2 - yx = 2x - 1 \iff yx^2 - (y+2)x + 1 = 0.$$

Define the continuous polynomial function:

$$G(x) = y x^2 - (y+2) x + 1.$$

We now check G at x = 0 and x = 1:

$$G(0) = 1,$$
 $G(1) = y \cdot 1^2 - (y+2) \cdot 1 + 1 = y - y - 2 + 1 = -1.$

Since G(0) = 1 > 0 and G(1) = -1 < 0 and G is polynomial so it must be continuous, the Intermediate Value Theorem guarantees the existence of some $c \in (0,1)$ such that G(c) = 0. In other words,

$$G(c) = y c^2 - (y+2) c + 1 = 0,$$

SO

$$y = \frac{2c-1}{c(c-1)} = f(c).$$

Hence for any $y \in \mathbb{R}$, we found $c \in (0,1)$ with f(c) = y, proving that f is onto \mathbb{R} . We have shown that there exists a bijective mapping $f:(0,1) \to \mathbb{R}$. This means that $(0,1) \sim \mathbb{R}$. Then if (0,1) is uncountable, it follows that \mathbb{R} is uncountable. I show in 1.5.5.b) that $(0,1) \sim \mathbb{R}$ is equivalent to $\mathbb{R} \sim (0,1)$ and thus, if \mathbb{R} is uncountable, then (0,1) is uncountable.

Problem (1.5.5).

- (a) Why is $A \sim A$ for every set A?
- (b) Given sets A and B, explain why $A \sim B$ is equivalent to asserting $B \sim A$.
- (c) For three sets A, B, and C, show that $A \sim B$ and $B \sim C$ implies $A \sim C$.

Solution.

(a) From Definition 1.5.2 [1], two sets A and B have the same cardinality if there is a function $f: A \to B$ that is both 1–1 (injective) and onto (subjective). An obvious choice is the *identity* function

$$f(x) = x$$
 for all $x \in A$.

- Injective: Suppose $f(x_1) = f(x_2)$. Then $x_1 = x_2$, so f is injective.
- Surjective: For each $y \in A$, we can find some $x \in A$ such that f(x) = y. But if we take x = y, then f(x) = x = y. Thus f is onto.

Hence f is a bijection and $A \sim A$.

- (b) To show that both statements are equivalent, we need to show both directions: if $A \sim B$, then $B \sim A$ and the opposite. Let's first address the forward direction. If $A \sim B$, then $\exists f: A \to B$ and f is bijective. This implies that the inverse function $f^{-1}: B \to A$ is well defined. To show its injectivity, we assume $f^{-1}(y_1) = f^{-1}(y_2)$ for some $y_1, y_2 \in B$. We can represent it as: $x_1 = f^{-1}(y_1) = f^{-1}(y_2) = x_2$. Applying f to both sides: $f(x_1) = f(x_2)$. We have defined $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Thus, $f(x_1) = y_1$ and $f(x_2) = y_2$. We have shown that if $f^{-1}(y_1) = f^{-1}(y_2)$, then $y_1 = y_2$. Therefore, f^{-1} is injective. Since f is onto, then $\forall y \in B$, $\exists x \in A$: f(x) = y. Applying the inverse, we get $f^{-1}(f(x)) = x$, $\forall x \in A$. This means that $\forall x \in A$, we can find $y \in B$. s.t. $f^{-1}(f(x)) = f^{-1}(y) = x$. Hence, f^{-1} is surjective. f^{-1} is both onto and 1-1, then it is bijective. It follows if $A \sim B$, then $B \sim A$. For the reverse direction, if $B \sim A$, then $A \sim B$. In broader terms we have demonstrated that if $f: A \to B$ is bijective, then the inverse function $g^{-1}: A \to B$ is bijective. Let $g: B \to A$. By the same argument as before, the inverse function $g^{-1}: A \to B$ is bijective. Thus, if $B \sim A$, then $A \sim B$. Thus, the \sim relation is symmetric.
- (c) We need to show that there is a bijective function between A and C. Let $g: A \to B$ be a bijection and $f: B \to C$ be a bijection. Then the composition is another function: $h = g \circ f: A \to C$. To show injectivity of h, assume $h(x_1) = h(x_2)$ for some $x_1, x_2 \in A$. However, $h(x) = f(g(x)) \ \forall x \in A$. Then, $h(x_1) = f(g(x_1)) = h(x_2) = f(g(x_2))$. $f: A \to B$ is bijective and thus, injective. This implies if $f(g(x_1)) = f(g(x_2))$, then $g(x_1) = g(x_2)$. Analogically, if $g(x_1) = g(x_2)$, $x_1 = x_2$. Thus, we showed directly given $h(x_1) = h(x_2)$, $x_1 = x_2$. The function $h: A \to C$ is injective. Since f and g are both surjective, then $\forall y \in B, \ \exists x \in A, \ \text{s.t.} \ g(x) = y \ \text{and} \ \forall z \in C, \ \exists y \in B, \ \text{s.t.} \ f(y) = z$. That is, $\forall x \in C, \ \exists x \in A, \ \text{s.t.} \ f(g(x)) = z$. Hence, h is both surjective and injective, thus bijective. Therefore, A and C have the same cardinality. \Box

Problem (1.5.6).

- (a) Give an example of a countable collection of disjoint open intervals.
- (b) Give an example of an uncountable collection of disjoint open intervals or argue that no such collection exists.

Solution.

(a) We can construct a countable collection of disjoint open intervals by taking the intervals between every two consecutive natural numbers:

$$(0,1), (1,2), ..., (n-1,n), ...$$

 $I_n = (n-1,n) \ \forall n \in \mathbb{N}.$

It is obvious that these intervals are non-intersecting since each interval is separated by the integers on the number line. Now, I will demonstrate formally why this collection is countable. Define $f: \mathbb{N} \to \mathcal{S}$ by:

$$f(n) = I_n.$$

- Injectivity: If f(n) = f(m), then (n-1, n) = (m-1, m), so n = m.
- Surjectivity: For every $I_k \in \mathcal{S}$, $f(k) = I_k$.

Since f bijectively maps \mathbb{N} to \mathcal{S} : $\mathbb{N} \sim \mathcal{S}$, and from 1.5.5 we know this is equivalent to $\mathcal{S} \sim \mathbb{N}$, then \mathcal{S} is countable.

(b) Suppose such set \mathcal{T} exists and I_n is one element of \mathcal{T} . Theorem 1.4.3. [1] states that for every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b. That is, $\exists r \in \mathbb{Q}$ s.t. $r \in I_n$. Since every interval I_n in \mathcal{T} contains at least one rational number, we can define a function:

$$f: \mathcal{T} \to \mathbb{Q}, f(I_n) = r_n,$$

where $r_n \in \mathbb{Q}$. The function is injective because no two disjoint intervals can contain the same rational number. Since \mathbb{Q} is countable, the image $f(\mathcal{T})$ is a subset of \mathbb{Q} , then according to Theorem 1.5.7 [1] $f(\mathcal{T})$ is also countable. By the definition of an injective function, \mathcal{T} must also be countable. This contradicts the initial supposition that \mathcal{T} is uncountable. Therefore, there is no uncountable collection of disjoint open intervals in \mathbb{R} .

Problem (1.6.7). Return to the particular functions constructed in Exercise 1.6.6 and construct the subset B that results using the preceding rule. In each case, note that B is not in the range of the function used.

Solution.

Looking at the functions from 1.6.6.a) we have the set $A = \{a, b, c\}$ and the power set P(A). The two injective mappings are $f: A \to P(A)$ for which $f(a) = \{a\}, f(b) = \{b\}, f(c) = \{c\}$ and $g: A \to P(A)$ for which $g(a) = \{b, c\}, g(b) = \{a, c\}, g(c) = \{a, b\}$. Constructing the set $B = \{a \in A: a \notin f(a)\}$ for f would be $B = \emptyset$, because $a \in f(a) = \{a\}$ and the same for f and f and f downward in the mapping f and f downward in the set f down

$$h(1) = \{1\}, h(2) = \{1, 3\}, h(3) = \{4\}, h(4) = \{1, 2, 3, 4\}.$$

The set B in this case is $B = \{2, 3\}$, because $2 \notin h(2)$ and $3 \notin h(3)$.

Problem (1.6.8).

- (a) First, show that the case $a' \in B$ leads to a contradiction.
- (b) Now, finish the argument by showing that the case $a' \notin B$ is equally unacceptable.

Solution.

- (a) Since we have assumed that our function $f:A\to P(A)$ is onto and $B=\{a\in A: a\notin f(a)\}$, then $B\subset A$. There must be some $a'\in A$, s.t. f(a')=B. If $a'\in B$, then by definition of $B, a'\notin f(x)=B$. We get the contradiction that a' is not an element of B, which is a contradiction.
- (b) Assume $a' \notin B$, then $a' \in f(x) = B$, then we get the contradiction that a' must be an element of B which contradicts the supposition. Therefore, $f: A \to P(A)$ is not surjective.

References

[1] S. Abbott. *Understanding Analysis*. Springer, 2015. ISBN: 9781493927135. URL: https://books.google.com/books?id=R2DkzQEACAAJ.