Serie 4

"Besprechung": Donnerstag, 2.4

- **4.1.** Sei $Y \in C^1(J; \mathbb{R}^{d \times d})$ eine Fundamentalmatrix für das lineare System y' = A(t)y. Zeigen Sie:
 - a) Die Matrixfunktion $X \in C^1(J; \mathbb{R}^{d \times d})$ ist genau dann eine Fundamentalmatrix, wenn es eine reguläre Matrix $B \in \mathbb{R}^{d \times d}$ gibt mit X(t) = Y(t)B für alle $t \in J$.
 - b) Die Matrix $X(t) := Y(t)(Y(t_0))^{-1}$ ist eine Hauptfundamentalmatrix.
- **4.2.** Seien $X \in C^1(J; \mathbb{R}^{d \times d})$ und $Y \in C^1(J; \mathbb{R}^{d \times d})$.
 - a) Zeigen Sie die Produktregel

$$\frac{d}{dt}(XY) = \left(\frac{d}{dt}X\right)Y + X\left(\frac{d}{dt}Y\right)$$

- b) Falls X(t) für jedes $t \in J$ invertierbar ist, dann ist die Abbildung $t \mapsto (X(t))^{-1}$ in $C^1(J; \mathbb{R}^{d \times d})$. Geben Sie $(X^{-1})'$ an.
- c) Sei Y eine Fundamentalmatrix für das lineare System y' = A(t)y. Welche Differentialgleichung wird von Y^{-1} erfüllt?
- 4.3. Betrachten Sie das lineare System

$$y' = A(t)y,$$
 $A(t) = \begin{pmatrix} 3t - 1 & 1 - t \\ t + 2 & t - 2 \end{pmatrix}$

Geben Sie ein Fundamentalsystem an. Hinweis: eine Lösung ergibt sich aus dem Ansatz $y_1(t) = y_2(t)$.

4.4. Seien $A, B \in \mathbb{R}^{d \times d}$ mit AB = BA. Zeigen Sie:

$$e^{A+B} = e^A e^B = e^B e^A$$

Zeigen Sie: $e^{(s+t)A} = e^{sA}e^{tA}$ für $s, t \in \mathbb{R}$.

- **4.5.** Im allg. gilt nicht $e^{A+B} = e^A e^B$. Geben Sie ein Gebenbeispiel an.
- **4.6.** Definieren Sie die matrixwertige Funktion $Z(t) = e^{\int_0^t A(s) ds}$ (hier ist $A \in C(\mathbb{R}; \mathbb{R}^{d \times d})$). Zeigen Sie: Man kann nicht erwarten, daß Z eine Fundamentalmatrix für

$$y' = A(t)y$$

ist. Geben Sie Bedingungen an, unter denen Z eine Fundamentalmatrix ist.

- **4.7.** Zeigen Sie für $A \in \mathbb{R}^{d \times d}$:
 - $\mathbf{a)} \quad \det e^A = e^{\operatorname{tr} A}$
 - **b**) $e^{A^{\top}} = (e^A)^{\top}$
 - c) Falls A schiefsymmetrisch ist, dann ist e^{tA} orthogonal und det $e^{tA} = 1$.
 - d) Sei $A \in C^1(J; \mathbb{R}^{d \times d})$ punktweise schiefsymmetrisch, d.h. $A(t)^{\top} = -A(t)$ für alle $t \in J$. Zeigen Sie: Jede Lösung y von y' = A(t)y erfüllt: die Funktion $t \mapsto ||y(t)||_2$ ist konstant auf J.