

© Growth curve for Chlamydomonas reinhardtii

Joao Vitor Molino¹

¹University of Zürich

Works for me

This protocol is published without a DOI.

Joao Vitor Molino University of Zürich

ABSTRACT

This protocols describe the steps required for obtain a growth curve of *Chlamydomonas reinhardtii* and fluorescent protein expression of mVenus and mCherry.

PROTOCOL CITATION

Joao Vitor Molino 2020. Growth curve for Chlamydomonas reinhardtii. **protocols.io** https://protocols.io/view/growth-curve-for-chlamydomonas-reinhardtii-bpvbmn2n

KEYWORDS

Growth curve, Chlamydomonas, Absorbance, 96 well plate

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Nov 19, 2020

LAST MODIFIED

Nov 19, 2020

PROTOCOL INTEGER ID

44675

DISCLAIMER

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

ABSTRACT

This protocols describe the steps required for obtain a growth curve of *Chlamydomonas reinhardtii* and fluorescent protein expression of mVenus and mCherry.

Material

- TAP media or other (How to prepare TAP media <u>here</u>)
- Erlenmeyer flask
- Orbital shaker
- Light source
- 96 well plate, Black Frame, Clear bottom (Ex:

 Elmer Catalog #6005020

Plate reader Settings

2 Reading are performed in a Black 96 well plate with clear bottom.

Absorbance set to **750 nm** .

Fluorescence set as the Table below.

	Excitation (nm)	Emission (nm)	Gain	Optics position
Chlorophyll	440	680	70	bottom
mVenus	500	530	120	bottom
mCherry	583	613	150	bottom

Inocullum 2w 5d

3 Innoculate **□1 mL** of the cells from a culture in stationary phase (**☉ 120:00:00** to **☉ 168:00:00**)in an

■100 mL erlenmeyer flask containing ■50 mL of TAP media.

- 1. Place the flask in a \triangleq 150 rpm, 25°C ,1cm of orbit with \blacksquare 80 μ mol/m2s of incident white light (
- □60 μmol/m2s to □120 μmol/m2s works)
- 2. Take a initial sample 100 µl of culture and measure it in the plate reader according to the settings above.
- 3. During **() 168:00:00** take samples at least once a day.
- 4. The final culture can be used for further test, as dry cell weight (DCW) determination.

Frequent sampling increase data quality, but it is advice to not remove more than 10% of culture in sampling during the entire procedure. Technical replicates are advice for each time point.

All culturing conditions are set initially, and can be change accordingly to the experiment goal.

All culturing conditions are set initially, and can be change accordingly to the experiment goal.

Example of DCW protocol.

- 3.1 Analytical balance with high precision (The higher the precision the better. For example a balance with a 0.1mg readability, could account to approximately 10% error alone in a measurement of 1mL sample of a culture at 1g/L)
 - Microcentrifugal tubes
 - Microcentrifuge
 - 1. Label microcentrifugal tubes

- 3.2 2. Dry the tubes at $890 \, ^{\circ}\text{C}$, $\odot \text{Overnight}$
 - 3. Cool tubes at § Room temperature for © 00:30:00
 - 4. Record the weight of the tubes
- 3.3 1. Harvest 2 mL of culture in a previously weighted tube
 - 2. Centrifuge the sample at **20000 rcf, 25°C, 00:01:00**
 - 3. Carefully remove the supernatant by pipetting
 - 4. Wash the cells with ddH20, and centrifuge the sample at **20000 rcf, 25°C, 00:01:00**
 - 5. Carefully remove the supernatant by pipetting
 - 6. Dry the tubes at § 90 °C , © Overnight
 - 7. Cool tubes at & Room temperature for © 00:30:00
 - 8. Record the weight of the tubes
 - 9. Subtract the initial tube weight to achieve the dry cell weight