

이론, 실습, 시뮬레이션 💯 디지털 논리회로 깨정3판

Chapter 05. 불 대수

학습목표 및 목차

- 기본 논리식의 표현 방법을 이해할 수 있다.
- 불 대수의 법칙을 이해하고 복잡한 논리식을 간소화할 수 있다.
- 논리회로를 논리식으로, 논리식을 논리회로로 표현할 수 있다.
- 곱의 합(SOP)과 최소항(minterm) 및 합의 곱(POS)과 최대항 (maxterm)의 개념을 이해하고 이를 활용할 수 있다.

- 01. 기본 논리식의 표현
- 02. 불 대수 법칙
- 03. 논리회로의 논리식 변환
- 04. 논리식의 회로 구성
- 05. 불 대수식의 표현 형태
- 06. 불 대수 법칙을 이용한 논리식의 간소화

01 기본 논리식의 표현

■ 기본적인 불 대수식은 AND, OR, NOT을 이용하여 표현

출력을 1로 만들려는 경우 출력 논리식

- AND식은 곱셈의 형식으로 표현하고, OR 식은 덧셈의 형식으로 표현
- NOT식은 Ā 또는 A´로 표현
- 완전한 논리식은 입력 항목들의 상태에 따른 출력을 결정하는 식

A=0 and B=1 일 때 출력을 1로 만들려는 경우 출력 논리식 $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B$ $F=\overline{A}B+\overline{A}B$

01 기본 논리식의 표현

■ 1입력 논리식, 2입력 논리식, 3입력 논리식

1입력	논리식	29	2입력 논리식		3입력 논리식			
입력	출력	입	력	출력		입력		출력
A	F	A	В	F	A	В	\boldsymbol{C}	F
0	$F = \overline{A}$	0	0	$F = \overline{A}\overline{B}$	0	0	0	$F = \overline{A}\overline{B}\overline{C}$
1	F = A	0	1	$F = \overline{A}B$	0	0	1	$F = \overline{A} \overline{B} C$
		1	0	$F = A\overline{B}$	0	1	0	$F = \overline{A} B \overline{C}$
		1	1	F = AB	0	1	1	$F = \overline{A}BC$
					1	0	0	$F = A \overline{B} \overline{C}$
					1	0	1	$F = A \overline{B} C$
					1	1	0	$F = AB\overline{C}$
					1	1	1	F = ABC

01 기본 논리식의 표현

❖ 2입력 논리식 예

입	력	출력
\boldsymbol{A}	В	F
0	0	1
0	1	1
1	0	1
1	1	0

A=0 또는 B=0일 때, 1을 출력하는 논리식

$$F = \overline{A} + \overline{B}$$

A=1이거나 (B=0이고 C=1)일 때, 1을 출력하는 논리식

❖ 3입력 논리식 예

$$F = A + \overline{B} C$$

	입력							
A	В	C	A=1	\overline{B}	C	$\overline{B} C$	$A + \overline{B}C$	
0	0	0		1			0	
0	0	1		1	1	1	1	
0	1	0					0	
0	1	1			1		0	
1	0	0	1	1			1	
1	0	1	1	1	1	1	1	
1	1	0	1				1	
1	1	1	1		1		1	

■불 대수 공리(Boolean Algebra Axioms)

P1	A = 0 or A = 1
P2	$0 \cdot 0 = 0$
Р3	1 · 1 = 1
P4	0 + 0 = 0
P5	1 + 1 = 1
P6	$1 \cdot 0 = 0 \cdot 1 = 0$
P7	1 + 0 = 0 + 1 = 1

■불 대수 법칙

기본법칙

1. A+0=0+A=A	2. $A \cdot 1 = 1 \cdot A = A$	3. <i>A</i> +1=1+ <i>A</i> =1
4. $A \cdot 0 = 0 \cdot A = 0$	5. A+A=A	$6. A \cdot A = A$
$\overline{}$ 7. $A + \overline{A} = 1$	$8. A \cdot \overline{A} = 0$	$\stackrel{=}{9}$. $\stackrel{=}{A}$

교환법칙(commutative law)

$$10. A + B = B + A$$

11.
$$AB=BA$$

결합법칙(associate law)

12.
$$(A + B) + C = A + (B + C)$$

13.
$$(AB) C = A (BC)$$

분배법칙(distributive law)

14.
$$A(B+C) = AB + AC$$

15.
$$A + BC = (A+B)(A+C)$$

드모르간의 정리(De Morgan's theorem)

16.
$$\overline{A+B} = \overline{A}\overline{B}$$

17.
$$\overline{AB} = \overline{A} + \overline{B}$$

흡수 법칙(absorptive law)

$$18. A + AB = A$$

19.
$$A(A+B) = A$$

합의의 정리(consensus theorem)

20
$$AB + BC + \overline{AC} = AB + \overline{AC}$$

21.
$$(A+B)(B+C)(\overline{A}+C) = (A+B)(\overline{A}+C)$$

쌍대성(duality) : 불 대수 공리나 기본 법칙에서 좌우 한 쌍에서 0과 1을 서로 바꾸고 동시에 '•'과 '+'를 서로 바꾸면 다른 한 쪽이 얻어지는 성질

■ 진리표를 이용한 분배 법칙 *A+BC=(A+B)(A+C)의 증명*

A B C	좌측식		우측식			
H D C	$B \cdot C$	$A+B\cdot C$	A+B	A+C	(A+B)(A+C)	
0 0 0	0	0	0	0	0	
0 0 1	0	0	0	1	0	
0 1 0	0	0	1	0	0	
0 1 1	1	1	1	1	1	
1 0 0	0	1	1	1	1	
1 0 1	0	1	1	1	1	
1 1 0	0	1	1	1	1	
1 1 1	1	1	1	1	1	
		1			^	

—동일한 결과·

■ 진리표를 이용한 드모르간의 정리 증명

A B		A+B	좌측식		우측식
А	A B	$A \mid D$	$\overline{A+B}$	A B	$\overline{A} \cdot \overline{B}$
0	0	0	1	1 1	1
0	1	1	0	1 0	0
1	0	1	0	0 1	0
1	1	1	0	0 0	0

■ 드모르간 정리의 일반식

3항 드모르간 정리	$\overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$ $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$
4항 드모르간 정리	$\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ $\overline{A \cdot B \cdot C \cdot D} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$
일반식	$\overline{A_1 + A_2 + A_3 + \dots + A_n} = \overline{A_1} \overline{A_2} \overline{A_3} \cdots \overline{A_n}$ $\overline{A_1 A_2 A_3 \cdots A_n} = \overline{A_1} + \overline{A_2} + \overline{A_3} + \dots + \overline{A_n}$

■ 드모르간의 정리 예제

$$\overline{A+B+C} = \overline{\overline{(A+B)}}\overline{C} = (A+B)\overline{C} = A\overline{C} + B\overline{C}$$

$$\overline{\overline{A} + B} + \overline{C \cdot D} = \overline{\overline{A} + B} \cdot \overline{\overline{C} \cdot D} = (\overline{A} + B)CD = \overline{A}CD + BCD$$

$$\overline{(A+B)\cdot\overline{C}\cdot\overline{D}+E+\overline{F}} = \overline{(A+B)\cdot\overline{C}\cdot\overline{D}}\cdot\overline{E}\cdot\overline{F} = (\overline{A+B}+\overline{C}+\overline{D})\cdot\overline{E}\cdot F$$
$$= (\overline{A}\cdot\overline{B}+C+D)\cdot\overline{E}\cdot F = \overline{A}\overline{B}\overline{E}F + C\overline{E}F + D\overline{E}F$$

$$\overline{\overline{AB}(CD + \overline{E}F)(\overline{AB} + \overline{CD})} = \overline{\overline{AB}} + \overline{(CD + \overline{E}F)} + \overline{(\overline{AB} + \overline{CD})}$$

$$= AB + (\overline{CD}\overline{\overline{E}F}) + \overline{\overline{ABCD}}$$

$$= AB + (\overline{C} + \overline{D})(E + \overline{F}) + ABCD$$

$$= AB + \overline{C}E + \overline{C}F + \overline{D}E + \overline{D}F + ABCD$$

03 논리회로의 논리식 변환

원래의 회로에 게이트를 거칠 때마다 게이트의 출력을 적어주면서 한 단계씩 출력 쪽으로 나아가면 된다.

03 논리회로의 논리식 변환

04 논리식의 회로 구성

■ AND, OR, NOT을 이용하여 논리식으로부터 회로를 구성 (AND-OR로 구성된 회로)

$$\overline{A}B + A\overline{B} + BC$$

04 논리식의 회로 구성

■ 논리식의 2가지 기본 형태

04 논리식의 회로 구성

1. 곱의 합과 최소항

- ■곱의 합(Sum of Product, SOP)
 - SOP의 구성은 1 단계는 AND항(곱의 항, product term)으로 구성되고, 2 단계는 OR 항(합의 항, sum term)으로 만들어진 논리식

■ 최소항(Minterm)

- 최소항 : 표준 곱의 항
- 표준 곱의 항이란 함수에 모든 변수를 포함하고 있음
- 예: 4변수 *A*, *B*, *C*, *D*일 때:

■ 진리표로부터 최소항식을 표현하는 방법

입	출력	
A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

 $(A=0 \text{ AND } B=1) \text{ OR } (A=1 \text{ AND } B=0) \text{ OR } (A=1 \text{ AND } B=1) 일 때, F=1이다. 또는 <math>\overline{A}B=1 \text{ OR } A\overline{B}=1 \text{ OR } AB=1 \text{ QUI, } F=10$ 다.

$$f = \overline{AB} + A\overline{B} + AB$$

■ 2변수 최소항의 표현 방법

A	В	최소항	기호
0	0	$\overline{A}\overline{B}$	m_0
0	1	$\overline{A}B$	m_1
1	0	$A\overline{B}$	m_2
1	1	A B	m_3

입력		출력		
\overline{A}	В	F		
0	0	0	m_0	
0	1	1	m_1	
1	0	1	m_2	
1	1	1	m_3	

$$F(A,B) = \overline{AB} + A\overline{B} + AB$$
$$= m_1 + m_2 + m_3$$
$$= \sum m(1, 2, 3)$$

■ 3변수 최소항의 표현 방법

A B C	최소항	기호
0 0 0	$\overline{A} \overline{B} \overline{C}$	m_0
0 0 1	$\overline{A} \overline{B} C$	m_1
0 1 0	$\overline{A} B \overline{C}$	m_2
0 1 1	$\overline{A} B C$	m_3
1 0 0	$A \overline{B} \overline{C}$	m_4
1 0 1	$A \overline{B} C$	m_{5}
1 1 0	$A B \overline{C}$	m_{6}
1 1 1	A B C	m_{7}

■ 3변수 최소항의 표현 예

ABC	F	최소항	기호
0 0 0	1	$\overline{A}\overline{B}\overline{C}$	m_0
0 0 1	1	\overline{ABC}	m_1
010	0	$\overline{A}B\overline{C}$	m_2
0 1 1	1	$\overline{A}BC$	m_3
100	0	$A\overline{B}\overline{C}$	m_4
1 0 1	1	$A\overline{B}C$	m_5
110	0	$AB\overline{C}$	m_6
1 1 1	1	ABC	m_7

$$F(A,B,C) = \sum m(0,1,3,5,7)$$
$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

$$\overline{F}(A,B,C) = \sum m(2,4,6)$$

$$= \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

$$F(A,B,C) = \sum m(0,1,3,5,7) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$
$$= \overline{\overline{F}} = \overline{\sum m(2,4,6)} = \overline{\overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}}$$

$$\overline{F}(A,B,C) = \sum m(2,4,6) = \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$
$$= \overline{\sum m(0,1,3,5,7)} = \overline{\overline{A}B\overline{C} + \overline{A}BC + \overline{A}BC + ABC}$$

■ 4변수 최소항의 표현 방법

ABCD	최소항	기호	ABCD	최소항	기호
0 0 0 0	$\overline{A} \overline{B} \overline{C} \overline{D}$	m_0	1000	$A \overline{B} \overline{C} \overline{D}$	m_8
0001	$\overline{A} \overline{B} \overline{C} D$	m_1	1001	$A \overline{B} \overline{C} D$	m_9
0 0 1 0	$\overline{A} \overline{B} C \overline{D}$	m_2	1010	$A \overline{B} C \overline{D}$	m_{10}
0 0 1 1	$\overline{A} \overline{B} C D$	m_3	1011	$A \overline{B} C D$	m_{11}
0 1 0 0	$\overline{A} B \overline{C} \overline{D}$	m_4	1 1 0 0	$A B \overline{C} \overline{D}$	m_{12}
0 1 0 1	$\overline{A} B \overline{C} D$	m_5	1 1 0 1	$A B \overline{C} D$	m_{13}
0 1 1 0	$\overline{A} B C \overline{D}$	m_6	1110	$A B C \overline{D}$	m_{14}
0 1 1 1	$\overline{A} B C D$	m_7	1111	A B C D	m_{15}

$$F(A, B, C, D) = \sum m(0, 1, 5, 9, 11, 15)$$

$$F = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}CD + ABCD$$

2. 합의 곱과 최대항

- 합의 곱 구성 : 1 단계는 OR항(합의 항, sum term)으로 구성되고, 2 단계는 AND항(곱의 항, product term)으로 만들어진 논리식.
- 모든 변수를 포함하는 OR항을 맥스텀(maxterm) 또는 최대항이라 한다.
- 예: 4변수 *A*, *B*, *C*, *D*일 때:

최대항의 예 $\overline{A} + B + C + \overline{D}$ A + B + C + D

합의 A(A+C) A A+B A+B

■ 최대항 표형 방법

AB	최대항	기호
0 0	A + B	M_{0}
0 1	$A + \overline{B}$	M_{1}
1 0	$\overline{A} + B$	M_{2}
11	$\overline{A} + \overline{B}$	M_{3}

<2변수인 경우>

4 D C	그! 다!! 중!	71 =
ABC	최대항	기호
0 0 0	A + B + C	M_{0}
0 0 1	$A + B + \overline{C}$	M_{1}
0 1 0	$A + \overline{B} + C$	M_{2}
0 1 1	$A + \overline{B} + \overline{C}$	M_{3}
100	$\overline{A} + B + C$	M_{4}
1 0 1	$\overline{A} + B + \overline{C}$	M_{5}
110	$\overline{A} + \overline{B} + C$	M_{6}
111	$\overline{A} + \overline{B} + \overline{C}$	M_{7}

<3변수인 경우>

ABCD	최대항	기호	ABCD	최대항	기호
0 0 0 0	A + B + C + D	M_0	1000	$\overline{A} + B + C + D$	M_8
0 0 0 1	$A + B + C + \overline{D}$	M_1	1 0 0 1	$\overline{A} + B + C + \overline{D}$	M_9
0010	$A + B + \overline{C} + D$	M_2	1010	$\overline{A} + B + \overline{C} + D$	M_{10}
0 0 1 1	$A + B + \overline{C} + \overline{D}$	M_3	1011	$\overline{A} + B + \overline{C} + \overline{D}$	M_{11}
0 1 0 0	$A + \overline{B} + C + D$	M_4	1100	$\overline{A} + \overline{B} + C + D$	M_{12}
0 1 0 1	$A + \overline{B} + C + \overline{D}$	M_5	1 1 0 1	$\overline{A} + \overline{B} + C + \overline{D}$	M_{13}
0110	$A + \overline{B} + \overline{C} + D$	M_6	1110	$\overline{A} + \overline{B} + \overline{C} + D$	M_{14}
0 1 1 1	$A + \overline{B} + \overline{C} + \overline{D}$	M_7	1111	$\overline{A} + \overline{B} + \overline{C} + \overline{D}$	M_{15}

<4변수인 경우>

[Example]

$$F(A,B) = (A+B)(A+\overline{B})(\overline{A}+B)$$
$$= M_0 \cdot M_1 \cdot M_2$$
$$= \prod M(0,1,2)$$

입력	출력
A B	F
0 0	0
0 1	0
1 0	0
1 1	1

3. 최소항과 최대항의 관계

- 최소항은 출력이 1인 항을 SOP로 나타낸 것이고, 최대항은 출력이 0인 항을 POS로 나타낸 것이다.
- 최소항과 최대항은 상호 보수의 성질을 가진다.

ABC	F	$ar{F}$	최소항	기호	최대항	기호	관 계
0 0 0	0	1	$\overline{A}\overline{B}\overline{C}$	m_0	A + B + C	M_0	$M_0 = \overline{m_0}$
0 0 1	1	0	\overline{ABC}	m_1	$A+B+\overline{C}$	M_1	$M_1 = \overline{m_1}$
010	1	0	$\overline{A}B\overline{C}$	m_2	$A + \overline{B} + C$	M_2	$M_2 = \overline{m}_2$
0 1 1	1	0	$\overline{A}BC$	m_3	$A + \overline{B} + \overline{C}$	M_3	$M_3 = \overline{m}_3$
100	1	0	$A\overline{B}\overline{C}$	m_4	$\overline{A} + B + C$	M_4	$M_4 = \overline{m}_4$
1 0 1	1	0	$A\overline{B}C$	m_5	$\overline{A} + B + \overline{C}$	M_5	$M_5 = \overline{m}_5$
1 1 0	0	1	$AB\overline{C}$	m_6	$\overline{A} + \overline{B} + C$	M_6	$M_6 = \overline{m_6}$
1 1 1	0	1	ABC	m_7	$\overline{A} + \overline{B} + \overline{C}$	M_7	$M_7 = \overline{m_7}$

$$F(A,B,C) = \sum m(1,2,3,4,5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}}$$

$$= \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}}$$

$$= \overline{(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+C)(\overline{A}+B+\overline{C})}$$

$$= \overline{\prod M(1,2,3,4,5)}$$

$$= \overline{\prod M(1,2,3,4,5)}$$

$$= \overline{\prod M(0,6,7)}$$

$$= \overline{\sum m(0,6,7)}$$

$$\overline{F}(A,B,C) = \sum m(0,6,7)$$

$$= \overline{A}\overline{B}\overline{C} + AB\overline{C} + ABC$$

$$= \overline{\overline{A}}\overline{B}\overline{\overline{C}} + \overline{AB}\overline{C} + \overline{AB}\overline{C}$$

$$= \overline{\overline{A}}\overline{B}\overline{\overline{C}} \cdot \overline{AB}\overline{\overline{C}} \cdot \overline{AB}\overline{C}$$

$$= \overline{(A+B+C)(\overline{A}+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})}$$

$$= \overline{\prod M(0,6,7)}$$

$$\overline{F}(A,B,C) = \sum m(0,6,7) = \overline{\prod M(0,6,7)} = \prod M(1,2,3,4,5) = \overline{\sum m(1,2,3,4,5)}$$

■ (1)식을 간소화하는 과정

1)
$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

2)
$$\overline{A}B + A\overline{B} + ABC$$

3)
$$\overline{A}B + A\overline{B} + AC$$

4)
$$\overline{A}B + A\overline{B} + BC$$

$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C + ABC = (\overline{A}B\overline{C} + \overline{A}BC) + (A\overline{B}\overline{C} + A\overline{B}C) + ABC$$

$$= \overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C) + ABC$$

$$= \overline{A}B \cdot 1 + A\overline{B} \cdot 1 + ABC$$

$$= \overline{A}B + A\overline{B} + ABC$$

■ (1)식을 간소화하는 과정

$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + A\overline{B}C$$

$$= (\overline{A}B\overline{C} + \overline{A}BC) + (A\overline{B}C + A\overline{B}C) + (ABC + A\overline{B}C)$$

$$= \overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C) + AC(B + \overline{B})$$

$$= \overline{A}B \cdot 1 + A\overline{B} \cdot 1 + AC \cdot 1$$

$$= \overline{A}B + A\overline{B} + AC$$

$$\overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$

$$= (\overline{ABC} + \overline{ABC}) + (A\overline{BC} + A\overline{BC}) + (ABC + \overline{ABC})$$

$$= \overline{AB}(\overline{C} + C) + A\overline{B}(\overline{C} + C) + BC(A + \overline{A})$$

$$= \overline{AB} \cdot 1 + A\overline{B} \cdot 1 + BC \cdot 1$$

$$= \overline{AB} + A\overline{B} + BC$$

■ (2)식을 간소화하는 과정

1)
$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

2)
$$\overline{A}B + A\overline{B} + ABC$$

3)
$$\overline{A}B + A\overline{B} + AC$$

4)
$$\overline{A}B + A\overline{B} + BC$$

$$A(\overline{A} + B) = A\overline{A} + AB = 0 + AB = AB$$
$$A + \overline{A}B = (A + \overline{A})(A + B) = 1 \cdot (A + B) = A + B$$

$$\overline{A}B + A\overline{B} + ABC = \overline{A}B + A(\overline{B} + BC) = \overline{A}B + A(\overline{B} + B)(\overline{B} + C)$$

= $\overline{A}B + A \cdot 1 \cdot (\overline{B} + C) = \overline{A}B + A\overline{B} + AC$

$$\overline{A}B + A\overline{B} + ABC = B(\overline{A} + AC) + A\overline{B} = B(\overline{A} + A)(\overline{A} + C) + A\overline{B}$$

= $B \cdot 1 \cdot (\overline{A} + C) + A\overline{B} = \overline{A}B + A\overline{B} + BC$

■ 간소화하는 과정 예

$$F(A,B,C) = \sum m(0,1,3,5,7)$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

$$= \overline{A}\overline{B}(\overline{C} + C) + \overline{A}C(\overline{B} + B) + AC(\overline{B} + B)$$

$$= \overline{A}\overline{B} + \overline{A}C + AC$$

$$= \overline{A}\overline{B} + C(\overline{A} + A)$$

$$= \overline{A}\overline{B} + C$$

$$\overline{F}(A,B,C) = \overline{\sum} m(0,1,3,5,7) = \sum m(2,4,6)$$

$$= \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

$$= B\overline{C}(\overline{A} + A) + A\overline{C}(\overline{B} + B)$$

$$= B\overline{C} + A\overline{C} = (A + B)\overline{C}$$

■ 2변수로 나타낼 수 있는 모든 경우

A	В	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

■ 2변수로 나타낼 수 있는 모든 경우의 논리식

$F_0 = 0$	$F_1 = AB$	$F_2 = A\overline{B}$	$F_3 = A$
$F_4 = \overline{A}B$	$F_5 = B$	$F_6 = \overline{A}B + A\overline{B}$	$F_7 = A + B$
$F_8 = \overline{A}\overline{B}$	$F_9 = \overline{AB} + AB$	$F_{10} = \overline{B}$	$F_{11} = A + \overline{B}$
$F_{12} = \overline{A}$	$F_{13} = \overline{A} + B$	$F_{14} = \overline{A} + \overline{B}$	$F_{15} = 1$

• n개의 입력 변수가 있을 때 진리표의 행의 개수는 2^n 개이며, 2^{2^n} 개의 서로 다른 함수가 존재

$$n=2$$
 $2^{2^2}=16$

$$n=3$$
 $2^{2^3}=2^8=256$

$$n=2$$
 $2^{2^2} = 16$ $n=3$ $2^{2^3} = 2^8 = 256$ $n=4$ $2^{2^4} = 2^{16} = 65536$

A	В	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

$$F_3 = A\overline{B} + AB = A(\overline{B} + B) = A$$

$$F_5 = \overline{A}B + AB = (\overline{A} + A)B = B$$

$$F_7 = \overline{AB} + A\overline{B} + AB = (\overline{A} + A)B + A(\overline{B} + B) = A + B$$

$$F_{10} = \overline{AB} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B}$$

$$F_{11} = \overline{AB} + A\overline{B} + AB = (\overline{A} + A)\overline{B} + A(\overline{B} + B) = A + \overline{B}$$

$$F_{12} = \overline{AB} + \overline{AB} = \overline{A}(\overline{B} + B)\overline{B} = \overline{A}$$

$$F_{13} = \overline{AB} + \overline{AB} + \overline{AB} + AB = \overline{A}(\overline{B} + B) + (\overline{A} + A)B = \overline{A} + B$$

$$F_{14} = \overline{AB} + \overline{AB} + \overline{AB} = \overline{A}(\overline{B} + B) + (\overline{A} + A)\overline{B} = \overline{A} + \overline{B}$$

학습목표 및 목차

- 기본 논리식의 표현 방법을 이해할 수 있다.
- 불 대수의 법칙을 이해하고 복잡한 논리식을 간소화할 수 있다.
- 논리회로를 논리식으로, 논리식을 논리회로로 표현할 수 있다.
- 곱의 합(SOP)과 최소항(minterm) 및 합의 곱(POS)과 최대항 (maxterm)의 개념을 이해하고 이를 활용할 수 있다.

- 01. 기본 논리식의 표현
- 02. 불 대수 법칙
- 03. 논리회로의 논리식 변환
- 04. 논리식의 회로 구성
- 05. 불 대수식의 표현 형태
- 06. 불 대수 법칙을 이용한 논리식의 간소화

감사합니다 ☺

