GRANIČNE VREDNOSTI FUNKCIJA (teorijske napomene)

Posmatrajmo skup $A \subseteq R$

Tačka a je tačka nagomilavanja skupa A ako u svakoj njenoj okolini postoji bar jedna tačka skupa A različita od a.

Neka je $A \subseteq R$ i $a \subseteq \overline{R}$ tačka nagomilavanja skupa A. Kažemo da funkcija $f: A \to R$ ima **graničnu vrednost** $b \in \overline{R}$ u tački a ako za svaki niz $\{x_n\}_{n \in \mathbb{N}}$ za koji je $x_n \in A \setminus \{a\}$ i $\lim_{n\to\infty} x_n = a$ važi da je $\lim_{n\to\infty} x_n = f(x_n) = b$. Tada pišemo:

$$\lim_{x \to a} f(x) = b$$

Ova definicija poznata je kao Hajneova. Sledeću definiciju dao je Koši: Neka je $A \subseteq R$ i $a \subseteq \overline{R}$ tačka nagomilavanja skupa A. kažemo da je $b \in \overline{R}$ granična vrednost funkcije $f:A\to R$ u tački a i pišemo $\lim_{x\to a}f(x)=b$ ako za svaku okolinu U(b) tačke b postoji okolina U(a) tačke a tako da važi implikacija $(\forall x \in A \setminus \{a\})(x \in U(a) \Rightarrow f(x) \in U(b))$. Naravno, ove dve definicije su ekvivalentne. Kažemo da funkcija f ima beskonačnu graničnu vrednost $+\infty(-\infty)$ u tački $a \in R$ ako za proizvoljno veliki broj M > 0(proizvoljno mali broj M < 0) postoji $\delta > 0$ tako da važi:

$$(\forall x \in A \setminus \{a\})(|x-a| < \delta \Rightarrow f(x) > M)$$

$$i \lim_{x \to a} f(x) = +\infty$$

Odnosno:

$$(\forall x \in A \setminus \{a\})(|x-a| < \delta \Rightarrow f(x) < M)$$

$$i \lim_{x \to a} f(x) = -\infty$$

Ako funkcija f ima graničnu vrednost u tački a, onda je ta granična vrednost jednoznačno odredjena. Neka je $\lim_{x\to a} f(x) = b$ i $\lim_{x\to a} g(x) = c$ gde je $a\in R$ i $b,c\in R$ tada je:

1)
$$\lim_{x \to a} \alpha f(x) = \alpha \lim_{x \to a} f(x) = \alpha b$$
2)
$$\lim_{x \to a} (f(x) \pm g(x)) = b \pm c$$

2)
$$\lim_{x \to a} (f(x) \pm g(x)) = b \pm c$$

3)
$$\lim_{x \to a} [f(x) \cdot g(x)] = b \cdot c$$

4)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}, c \neq 0$$

5)
$$\lim_{x \to a} [f(x)]^k = b^k, k \in Q$$

6)
$$\lim_{x \to a} |f(x)| = |b|$$

Neke važne granične vrednosti:

$$1) \lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$2) \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

3)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

4)
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \log_a e$$
 to jest: $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$

5)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$
 to jest: $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$

Lopitalovo pravilo:

Ako se pri izračunavanju granične vrednosti $\lim_{x\to 0} \frac{f(x)}{g(x)}$ javi neodredjeni oblik $\frac{0}{0}$ ili $\frac{\infty}{\infty}$ tada koristimo pravilo Lopitala (naravno, f(x) i g(x) su diferencijabilne u tački x=a i njenoj okolini, i $g'(a) \neq 0$). Tada je:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \text{ ako opet dobijemo oblik } \frac{0}{0} \text{ ili } \frac{\infty}{\infty} = \lim_{x \to a} \frac{f''(x)}{g''(x)} = \text{ itd.}$$

PAZI: Ne radi se izvod količnika već posebno izvod gore, posebno izvod dole.

Odredjeni izrazi su:

$$\rightarrow \infty \cdot \infty = \infty$$

$$\rightarrow \infty + \infty = \infty$$

$$\rightarrow k \cdot \infty = \infty \quad (k \neq 0)$$

$$\rightarrow \frac{A}{\infty} = 0 \quad (A \text{ je neki broj })$$

$$\rightarrow \frac{A}{0} = \infty \quad (A \text{ je neki broj različit od nule})$$

Neodredjeni izrazi (koji se najčešće javljaju) su:

$$\infty - \infty = ?$$

$$0 \cdot \infty = ?$$

$$\frac{\infty}{\infty} = ?$$

$$\frac{0}{0} = ?$$