Vector spaces

ROB 501

Necmiye Ozay

- Vector space over a field
 - Theorem relating bases and dimension for finite dimensional vector spaces
 - Representations of vectors
 - Change of basis matrix
 - Linear operators (if time)
 - Matrix representations of linear operators

Course Announcements

- Midterm exam is on October 25, from 6:30pm-9pm (in-person exam)
- Final exam is on December 19 (+/- 12 hours).
 Take home exam. Details (duration, etc.) are being sort out. Make sure you have good internet connection on that date.

Recap

- Last week we defined:
 - Linear combinations
 - Linear independence (of finite and infinite sets)
 - Subspaces
 - Span
 - Basis
 - Dimension

Dimension

The maximal number of elements in any linearly independent set of vector in $(\mathcal{X}, \mathcal{F})$, is called the **dimension** of $(\mathcal{X}, \mathcal{F})$.

Basis

A set of vectors $\underline{\underline{B}}$ in $(\mathcal{X}, \mathcal{F})$ is a basis if

- 1. B is linearly independent
- 2. $span\{B\} = \mathcal{X}$

Theorem: In an n – dimensional vector space $\underline{\mathbf{ANY}}$ set of n linearly independent vectors is a basis.

Theorem: In an n – dimensional vector space ANY set of n linearly independent vector is a basis.
Proof: Let $(\mathcal{X}, \mathcal{F})$ be n -dimensional and let $\{v^1, \ldots, v^n\}$ be a linearly independent set.
To Show: $\forall x \in \mathcal{X}, \exists \alpha_1, \dots, \alpha_n \in \mathcal{F} \text{ such that } x = \alpha_1 v^1 + \dots + \alpha_n v^n $
How: Because $(\mathcal{X}, \mathcal{F})$ is n -dimensional, $\{x, v^1, \dots, v^n\}$ is linearly dependent. Otherwise the dim $\mathcal{X} > n$ which it isn't Hence, $\exists \beta_0, \beta_1, \dots, \beta_n \in \mathcal{F}$, NOT ALL ZERO, such that $\beta_0 x + \beta_1 v^1 + \dots + \beta_n v^n = 0$.
1) by defin of dimension 2) by defin of bieing linearly dependent.
Claim: Bo # 0 Proof of the claim: Assume by contradiction that Bo=
then, 1) At least one of B_1, \dots, B_n is non-term. 2) $B_1 \times 1 + B_1 \times 1 = 0$ (this is 2)
1) and 2) Hogether imply 31,, und is linearly dependent —> contradiction Bo # 0

Theorem: In an n – dimensional vector space $\underline{\mathbf{ANY}}$ set of n linearly independent vectors is a basis.

Proof: Let $(\mathcal{X}, \mathcal{F})$ be n-dimensional and let $\{v^1, \ldots, v^n\}$ be a linearly independent set.

To Show: $\forall x \in \mathcal{X}, \exists \alpha_1, \dots, \alpha_n \in \mathcal{F} \text{ such that } x = \alpha_1 v^1 + \dots + \alpha_n v^n$, i.e., $\chi = \operatorname{Span} \{v'_1, v''\}$

How: Because $(\mathcal{X}, \mathcal{F})$ is n-dimensional, $\{x, v^1, \dots, v^n\}$ is linearly dependent. Otherwise, the $\dim \mathcal{X} > n$ which it isn't. Hence, $\exists \beta_0, \beta_1, \dots, \beta_n \in \mathcal{F}$, NOT ALL ZERO, such that

$$\beta_0 x + \beta_1 v^1 + \ldots + \beta_n v^n = 0.$$

Claim: $\beta_0 \neq 0$

Proof: Suppose that $\beta_0 = 0$. Then

- 1. At least one of β_1, \ldots, β_n is non-zero
- 2. $\beta_1 v^1 + \ldots + \beta_n v^n = 0$

1 and 2 above, imply that $\{v^1, \ldots, v^n\}$ is linearly dependent, which is a contradiction. Hence

 $\beta_0 = 0$ cannot hold. Completing the proof, we write

The proof, we write
$$\begin{aligned}
\beta_0 x &= -\beta_1 v^1 - \ldots - \beta_n v^n \\
x &= \left(\frac{-\beta_1}{\beta_0}\right) v^1 \times \cdots + \left(\frac{-\beta_n}{\beta_0}\right) v^n \\
\vdots &\alpha_1 &= \frac{-\beta_1}{\alpha_0}, \ldots, \alpha_n &= \frac{-\beta_n}{\alpha_0}
\end{aligned}$$
Side question

why $\frac{\beta_1}{\beta_0} \in \mathcal{F}$

inverse $\frac{\beta_1}{\beta_0} \in \mathcal{F}$
 $\frac{\beta_1$

Proposition Let $(\mathcal{X}, \mathcal{F})$ be a vector space and suppose that $B = \{b^1, b^2, \cdots\}$ is a basis for $(\mathcal{X}, \mathcal{F})$. Let $x \in \mathcal{X}$ and suppose that

$$x = \underbrace{\alpha_1 b^1 + \dots + \alpha_k b^k} \quad ()$$

and

$$\underline{x} = \bar{\alpha}_1 b^1 + \dots + \bar{\alpha}_k b^k \qquad (2)$$

Then, $\alpha_i = \bar{\alpha}_i$ for all $1 \leq i \leq k$.

Then,
$$\alpha_i = \bar{\alpha}_i$$
 for all $1 \le i \le k$.

$$0 = \mathbf{X} - \mathbf{X} = (\alpha, b' + \dots + \alpha_k b^k) - (\alpha, b' + \dots + \alpha_k b^k)$$
(1) (1)

$$\mathbf{O} = (\alpha_1 - \overline{\alpha}_1)b^1 + \dots + (\alpha_k - \overline{\alpha}_k)b^k$$

Note that b',..., b' are linearly independent (because they are in B and B (s a basis).

(because they are in B and B) (s a basis).

Proposition Let $(\mathcal{X}, \mathcal{F})$ be a vector space and suppose that $B = \{b^1, b^2, \cdots\}$ is a basis for $(\mathcal{X}, \mathcal{F})$. Let $x \in \mathcal{X}$ and suppose that

$$x = \alpha_1 b^1 + \dots + \alpha_k b^k$$

and

$$x = \bar{\alpha}_1 b^1 + \dots + \bar{\alpha}_k b^k$$

Then, $\alpha_i = \bar{\alpha}_i$ for all $1 \leq i \leq k$.

Proof:

$$0 = x - x = (\alpha_1 b^1 + \dots + \alpha_k b^k) - (\bar{\alpha}_1 b^1 + \dots + \bar{\alpha}_k b^k)$$
$$= (\alpha_1 - \bar{\alpha}_1)b^1 + \dots + (\alpha_k - \bar{\alpha}_k)b^k$$

Because $\{b^1, \dots, b^k\} \subset B$ implies that $\{b^1, \dots, b^k\}$ is linearly independent, we deduce that $\alpha_i - \bar{\alpha}_i = 0$ for all $1 \leq i \leq k$.

Representations of Vectors

Let (X, T) be an n-dimensional vector space. Let $V = \frac{8}{5}v^{1}$, v^{n} be a basis. And let $x \in X$ for representation

Of x wrt basis V

[X]

- :: EF

Representations of Vectors

Example: $\mathcal{F} = \mathbb{R}$, $\mathcal{X} = \{2 \times 2 \text{ matrices with real coefficients}\}$

Basis 1:
$$v^1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $v^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $v^3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $v^4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Basis 2: $w^1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $w^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $w^3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $w^4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 $w = \{ w', \omega^2, \omega^3, \omega^4 \}$

Consider:

$$X = \begin{bmatrix} 5 & 3 \\ 1 & 4 \end{bmatrix}$$

$$[x]_{v} = ? \qquad [x]_{w} = ?$$

$$x = \begin{bmatrix} 5 & 3 \\ 1 & 4 \end{bmatrix} = 5 v' + 3 v^{2} + 1 \cdot v^{3} + 4 \cdot v''$$

$$\begin{bmatrix} x \end{bmatrix}_{v} = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \in \mathbb{R}^{k}$$

$$x = \begin{bmatrix} 5 & 3 \\ 1 & 4 \end{bmatrix} = 5 \omega' + 2 \omega^{2} + 1 \omega^{3} + 4 \omega''$$

$$\begin{bmatrix} x \end{bmatrix}_{w} = \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix} \in \mathbb{R}^{k}$$

Facts:

1. Addition of vectors in $(X, T) \iff$

Addition of representations (7",7)

 $\forall x, y \in X$ $[x+y]_{\mathbf{v}} = [x]_{\mathbf{v}} + [y]_{\mathbf{v}}$

2. Same for scalar multiplication:

 $\forall x \in X, \forall x \in \mathcal{F} \quad [xx]_{\mathbf{v}} = x[x]_{\mathbf{v}}$

3. Once you fix a basis, any n-dimensional vector space (X, T) "looks like" (Th, F)

Ex: $X = P_3(t) = S$ all polynomials w/ real coefficients w/ degree ≤ 33

 $u = \frac{2}{3}$, t, t^2 , t^3 is a basis for $(P_3(t), R)$

Consider $P_{1}(t) = t + 2t^{2} + 3t^{3} \in \mathbb{F}_{3}(t)$ $P_{1}(t) = t + 2t^{2} + 3t^{3} \in \mathbb{F}_{3}(t)$ $P_{2}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $\frac{1}{42.u^{3}+9.u^{4}}$ $P_{1}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $\frac{1}{42.u^{3}+9.u^{4}}$ $P_{2}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{2}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{3}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{3}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{4}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{4}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{4}(t) = t + 2t^{2} + 3t^{3} = 0.u^{1} + 1.u^{2}$ $P_{5}(t) = t + 2t^{2} + 3t^{3} = 0.u^{2} + 1.u^{2}$ $P_{5}(t) = t + 2t^{2} + 3t^{3} = 0.u^{2} + 1.u^{2}$ $P_{5}(t) = t + 2t^{2} + 3t^{3} = 0.u^{2} + 1.u^{2} + 1.u^{2} = 0.u^{2} + 1.u^{2} + 1.u^{2} = 0.u^{2} + 1.u^{2} + 1.u^{2} = 0.u^{2} + 1.u^{2} +$

Change of Basis Matrix

• We are given a finite dimensional vector space $(\mathcal{X}, \mathcal{F})$ and two bases $\{u\} = \{u^1, u^2, \dots, u^m\}$ and $\{\bar{u}\} = \{\bar{u}^1, \bar{u}^2, \dots, \bar{u}^m\}$.

$$\alpha = [x]_u = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix} \longleftrightarrow x = \alpha_1 u^1 + \dots + \alpha_m u^m \qquad \bar{\alpha} = [x]_{\bar{u}} = \begin{bmatrix} \bar{\alpha}_1 \\ \vdots \\ \bar{\alpha}_m \end{bmatrix} \longleftrightarrow x = \bar{\alpha}_1 \bar{u}^1 + \dots + \bar{\alpha}_m \bar{u}^m$$

Theorem: There exists an invertible $n \times n$ matrix P with coefficients in \mathcal{F} such that $\forall x \in \mathcal{X}$

$$[x]_{\bar{u}} = P \cdot [x]_u.$$

$$[x]_{\bar{u}} = [x]_{\bar{u}}.$$

$$\overline{\alpha} = \left[\begin{array}{c} x \\ \overline{\alpha} \end{array} \right] \overline{\alpha} = \left[\begin{array}{c} \sum_{i=1}^{N} \alpha_i \cdot u^i \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1}^{N} \alpha_i \left[\begin{array}{c} u^i \\ \overline{\alpha} \end{array} \right] \overline{\alpha} \\ = \sum_{i=1$$

Example: $(\mathcal{X}) = \{2 \times 2 \text{ matrices with real coefficients}\}_{\mathcal{X}} \mathcal{F} = \mathbb{R}.$

$$\overline{u} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \leftarrow \overline{u} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

We have the following relations:

$$\bar{\alpha} = P\alpha, P_i = [u^i]_{\bar{u}}, \quad \alpha = \bar{P}\bar{\alpha}, \bar{P}_i = (\bar{u}^i)_u, \quad \bar{P}^{-1} = P, \quad P^{-1} = \bar{P}$$

Typically, compute the easier of P or \bar{P} , and compute the other by inversion. For this example, we choose to compute \bar{P}

$$\bar{P}_{1} = [\bar{u}^{1}]_{u} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} e^{-\frac{1}{2}}$$

$$\bar{P}_{2} = [\bar{u}^{2}]_{u} = \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}$$

$$\bar{P}_{3} = [\bar{u}^{3}]_{u} = \begin{bmatrix} 0\\1\\-1\\0\\0 \end{bmatrix}$$

$$\bar{P}_{4} = [\bar{u}^{4}]_{u} = \begin{bmatrix} 0\\0\\0\\0\\1 \end{bmatrix}$$

$$\bar{Q} = [-\frac{1}{2}]_{u} + [-$$

Therefore,
$$\bar{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and $P = \bar{P}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & .5 & .5 & 0 \\ 0 & .5 & -.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

What if we did it the other direction?

$$P_{1} = [u^{1}]_{\bar{u}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P_{2} = [u^{2}]_{\bar{u}} = \begin{bmatrix} 0 \\ .5 \\ .5 \\ 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0.5 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + .5 \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P_{3} = [u^{3}]_{\bar{u}} = \begin{bmatrix} 0 \\ .5 \\ -.5 \\ 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0.5 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - .5 \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P_{4} = [u^{4}]_{\bar{u}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
Therefore,
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & .5 & .5 & 0 \\ 0 & .5 & -.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \bar{P} = P^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Representation example from like lecture:

$$x = \begin{bmatrix} 5 & 3 \\ 1 & 4 \end{bmatrix} \qquad [x]_u = \begin{bmatrix} 5 \\ 3 \\ 1 \\ 4 \end{bmatrix} \qquad [x]_{\bar{u}} = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 4 \end{bmatrix} \qquad [x]_{\bar{u}} = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 4 \end{bmatrix}$$

Check that the P we computed works in relating the two representations (it works for any x)

OFFICE HOURS.

Fact: For any SCX,

Span(S) is a subspace of X.

And it is the smallest subspace

that contains S.

$$\begin{bmatrix} x \end{bmatrix}_{\alpha} = \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha}$$

$$= \begin{bmatrix} x \\ x \end{bmatrix}_{\alpha} \begin{bmatrix} x \\$$

$$X=\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \in S_{d1}$$
 (since $x \in S_{cd1}$, we know $X_1+--+X_1=0$)

$$x \in \mathbb{R}$$

$$x = \alpha \times = \begin{bmatrix} \alpha \times_{i} \\ \vdots \\ \alpha \times_{n} \end{bmatrix} = \begin{bmatrix} x_{i} \\ \vdots \\ x_{n} \end{bmatrix}$$

 $\sum X_i = X \sum X_i$

is $x + \overline{x} \in S_{(f)}$ meaning

does $x + \overline{x} = y$ satisfy Ay = b? $Ay = A(x+\overline{x}) = Ax + A\overline{x}$

Step 1: Take x & Span (S, US2), and show x & Span(S,) + Span (S2). (shows Span(S, US2) C Span(S,)+Span(S))

Step 2:

Step 2:

Take yE Span(S,) + Span(S2), and

show yE Span (S,VS2) (shows

span(S,) + Span(S2) C Span

(1011(1)

