pruebas de hipotesis

Diego Rodríguez A00829925

2023-08-24

#Problema 1

```
datos = c(11.0, 11.6, 10.9, 12.0, 11.5, 12.0, 11.2, 10.5, 12.2, 11.8, 12.1, 11.6, 11.7, 11.6, 11.2, 12.0, 11.4, 10.8, 11.8, 10.9, 11.4)
```

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Definir Hipótesis

```
H_0 := \mu = 11.7 \ H_0 := \mu \neq 11.7
```

Estadistico: \bar{x}

Distribucion del estadístico: t de student

$$\mu_{\bar{x}} = 11.7, \, \sigma_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Regla de decisión

```
1 - \alpha = 0.98\alpha = 0.02
```

```
alpha = 0.02
t0 = qt(alpha/2, length(datos)-1)
cat("t0 = ", t0)
```

```
## t0 = -2.527977
```

t* es el número de desviaciones estandar al que \bar{x} está lejos de μ

 H_0 se rechaza si :

$$|t^*| > 2.53$$

valor p es < 0.02

##Paso 3. Análisis de resultados

Tenemos que calcular:

- t^* (qué tan lejos está \bar{x} de μ ")
- valor p (la probabilidad de que \bar{x} esté en las colas de la distribución)

 $C\'alculo\ de\ t_$

```
mean = mean(datos)
cat(mean, "\n")
```

11.48571

```
s = sd(datos)
sm = s/sqrt(length(datos))

te = (mean - 11.7)/sm

cat("t* = ", te)
```

```
## t* = -2.068884
```

Calculo de valor p

```
p_value = pt(te, length(datos)-1)*2
cat("pvalue = ", p_value)
```

```
## pvalue = 0.0517299
```

Conclusiones

- Como valor p es mayor a 0.02, entonces no RH_0
- Como $|\mathbf{t}^*|$ es menor que 2.53, entonces no $\mathbf{R}H_0$

Problema 2

Definir Hipótesis

```
H_0 := \mu <= 15 \ H_1 := \mu > 15
```

Estadistico: \bar{x}

Distribucion del estadístico: distribucion normal

$$\mu_{\bar{x}} \ll 15, \, \sigma_{\bar{x}} = \sigma$$

Regla de decisión

```
\alpha = 0.07
alpha2 = 0.07
Z = abs(qnorm(alpha2))
cat("Z0 = ", Z)
## Z0 = 1.475791
Z^* es el número de desviaciones estandar al que \bar{x} está lejos de \mu
H_0 se rechaza si :
|Z^*| > 1.476
valor p es < 0.07
##Paso 3. Análisis de resultados
Tenemos que calcular:
   • Z^* (qué tan lejos está \bar{x} de \mu")
   • valor p (la probabilidad de que \bar{x} esté en las colas de la distribución)
Cálculo de t_
mean2 = mean(datos2)
cat("Promedio de la poblacion: ", mean2, "\n")
## Promedio de la poblacion: 17
sm = 4
Ze = (mean2 - 15)/(sm/sqrt(length(datos2)))
cat("Z* = ", Ze)
## Z* = 2.95804
library(ggplot2)
x_values \leftarrow seq(15 - 3 *sm, 15 + 3* sm, length.out = 500)
y_values <- dnorm(x_values, 15, sm)</pre>
data_frame <- data.frame(x = x_values, y = y_values)</pre>
# Crear la gráfica
decision_rule_plot <- ggplot(data_frame, aes(x, y)) +</pre>
  geom_line() +
  geom_vline(xintercept = 15 + Z, color = "red", linetype = "dashed",
              size = 1.5, label = "Valor crítico") +
  geom_vline(xintercept = 15 + Ze, color = "green", linetype = "dashed",
```

```
## Warning: Ignoring unknown parameters: label
## Ignoring unknown parameters: label
```

```
# Mostrar la gráfica
print(decision_rule_plot)
```


Calculo de valor p

```
p_value = 1 - pnorm(Ze)

cat("pvalue = ", p_value)
```

```
## pvalue = 0.00154801
```

Conclusiones

- Como valor p es menor a 0.07, entonces RH_0
- Como $|\mathbf{Z}^*|$ es mayor que 1.476, entonces $\mathbf{R}H_0$

Si comparamos el valor del estadístico de prueba Z con el valor crítico Z_0 , observamos que 2.95 > 1.475. Esto significa que el valor del estadístico de prueba cae en la región de rechazo, lo que nos lleva a rechazar la hipótesis nula RH_0 .

Conclusión: Dado que el valor del estadístico de prueba Z cae en la región de rechazo, tenemos evidencia estadística para rechazar la hipótesis nula RH_0 y aceptar la hipótesis alternativa H_1 . Esto significa que, con un nivel de significación del 0.07, los datos proporcionan suficiente evidencia para afirmar que el tiempo promedio es mayor a 15 minutos. Por lo tanto, no estaría justificada la tarifa adicional, ya que hay indicios de que el tiempo promedio es mayor de lo que especifica Fowle Marketing Research, Inc.