DPENCLASSROOMS

Prédiction de revenus

Projet 7 : Effectuer une prédiction de revenus

Contexte

☐ Cibler des nouveaux jeunes clients susceptibles d'avoir de hauts revenus

☐ Stratégie: Créer un modèle pour déterminer le revenu potentiel d'une personne

Analyse des caractéristiques des revenus (Pays, années, quantiles, gdpppp...)

Construction et interprétation du modèle

Jointure des dataframes :

	country	/ear_survey	quantile	nb_quantiles	income	gdpppp	country_name	gini_2004	gini_2006	gini_2007	gini_2008	gini_2009	gini_2010	gini_2011	Population_2008
0	ALB	2008	1	100	728,89795	7297	Albania				30				2947314.0
1	ALB	2008	2	100	916,66235	7297	Albania				30				2947314.0
2	ALB	2008	3	100	1010,916	7297	Albania				30				2947314.0
3	ALB	2008	4	100	1086,9078	7297	Albania				30				2947314.0
4	ALB	2008	5	100	1132,6997	7297	Albania				30				2947314.0
11594	COD	2008	96	100	810,6233	303,19305	Congo, Dem. Rep.	42.2							60411195.0
11595	COD	2008	97	100	911,7834	303,19305	Congo, Dem. Rep.	42.2							60411195.0
11596	COD	2008	98	100	1057,8074	303,19305	Congo, Dem. Rep.	42.2							60411195.0
11597	COD	2008	99	100	1286,6029	303,19305	Congo, Dem. Rep.	42.2							60411195.0
11598	COD	2008	100	100	2243,1226	303,19305	Congo, Dem. Rep.	42.2							60411195.0

11599 rows × 15 columns

Jointure de type left sur data_projet7 sur country

Visualisation des valeurs NA:

Transformation des variables en numérique :

Mission 4

Mission 2

Mission 3

et conclusion

Recherche de valeurs anormales :

Données

	year_survey	quantile	nb_quantiles	income	gdpppp
count	11599.000000	11599.000000	11599.0	11599.000000	1.159900e+04
mean	2007.982757	50.500819	100.0	6069.224260	4.944979e+04
std	0.909633	28.868424	0.0	9414.185972	3.966471e+05
min	2004.000000	1.000000	100.0	16.719418	3.031931e+02
25%	2008.000000	25.500000	100.0	900.685515	2.577000e+03
50%	2008.000000	51.000000	100.0	2403.244900	7.505000e+03
75%	2008.000000	75.500000	100.0	7515.420900	1.838850e+04
max	2011.000000	100.000000	100.0	176928.550000	4.300332e+06

Fiji: Valeur anormale

Recherche de données manquantes :

Groupby country : count nb_quantiles

				quantile	income	gdpppp	nb_quantiles
country	year_survey	country_name	Population_2008				
ALB	2008	Albania	2947314.0	5050	2994.829902	7297.000	100
ARG	2008	Argentina	40080160.0	5050	5847.884654	13220.000	100
ARM	2008	Armenia	2907618.0	5050	1628.382785	5611.000	100

Sélection du nombre de quantile inférieure à 100

				quantile	income	gdpppp	nb_quantiles
country	year_survey	country_name	Population_2008				
LTU	2008	Lithuania	3198231.0	5009	6641.247634	17571.0	99

Remplacement de la valeur par la moyenne entre le quartile 40 et 42

absent

Ajout du coefficient d'élasticité :

	countryname	IGEincome
0	Afghanistan	NaN
1	Albania	0.815874
2	Angola	NaN
3	Argentina	NaN
4	Armenia	NaN
145	Venezuela, RB	NaN
146	Vietnam	0.480000
147	West Bank and Gaza	NaN
148	Yemen, Rep.	NaN
149	Zambia	NaN

	country_name	IGEincome
0	Afghanistan	0.500000
1	Albania	0.815874
2	Angola	0.660000
3	Argentina	0.660000
4	Armenia	0.660000
145	Venezuela, RB	0.660000
146	Vietnam	0.480000
147	West Bank and Gaza	0.500000
148	Yemen, Rep.	0.500000
149	Zambia	0.660000

Données finales :

	country	year_survey	quantile	nb_quantiles	income	gdpppp	country_name	gini_2004	gini_2006	gini_2007	gini_2008	gini_2009	gini_2010	gini_2011	Population_2008	IGEincome
0	ALB	2008	1	100	728.89795	7297.00000	Albania	NaN	NaN	NaN	30.0	NaN	NaN	NaN	2947314.0	0.815874
1	ALB	2008	2	100	916.66235	7297.00000	Albania	NaN	NaN	NaN	30.0	NaN	NaN	NaN	2947314.0	0.815874
2	ALB	2008	3	100	1010.91600	7297.00000	Albania	NaN	NaN	NaN	30.0	NaN	NaN	NaN	2947314.0	0.815874
3	ALB	2008	4	100	1086.90780	7297.00000	Albania	NaN	NaN	NaN	30.0	NaN	NaN	NaN	2947314.0	0.815874
4	ALB	2008	5	100	1132.69970	7297.00000	Albania	NaN	NaN	NaN	30.0	NaN	NaN	NaN	2947314.0	0.815874
11595	COD	2008	96	100	810.62330	303.19305	Congo, Dem. Rep.	42.2	NaN	NaN	NaN	NaN	NaN	NaN	60411195.0	0.707703
11596	COD	2008	97	100	911.78340	303.19305	Congo, Dem. Rep.	42.2	NaN	NaN	NaN	NaN	NaN	NaN	60411195.0	0.707703
11597	COD	2008	98	100	1057.80740	303.19305	Congo, Dem. Rep.	42.2	NaN	NaN	NaN	NaN	NaN	NaN	60411195.0	0.707703
11598	COD	2008	99	100	1286.60290	303.19305	Congo, Dem. Rep.	42.2	NaN	NaN	NaN	NaN	NaN	NaN	60411195.0	0.707703
11599	COD	2008	100	100	2243.12260	303.19305	Congo, Dem. Rep.	42.2	NaN	NaN	NaN	NaN	NaN	NaN	60411195.0	0.707703

Mission 1 Mission 2 Mission 3 Mission 4 et conclusion

Années des données utilisées :

Données

Nombre de pays : 116

year_	survey
2004	100
2006	500
2007	1500
2008	7599
2009	1200
2010	600
2011	100

Population couverte par l'analyse :

$$\frac{Pop_{\acute{e}tude}}{Pop_mondiale} = \frac{6.2 \times 10^9}{6.7 \times 10^9} =$$
91. **7** %

Type de quantiles :

Diversité des pays en terme de revenus :

Données

Distribution de revenu différente entre chaque pays : diversité

Courbe de Lorenz pour chaque pays choisi :

Plus d'inégalité de revenus pour certains pays : Brésil et équateur

Mission 2 Mission 3 et conclusion

Evolution de l'indice de Gini au fil des années :

Mission 1

Données

Evolution de l'indice de Gini différente pour chaque pays

Classement des pays par indice de Gini :

Pays avec l'indice de Gini le plus faible

Données

Azerbaijan	26.600000
Czech Republic	26.528571
Slovak Republic	26.371429
Denmark	26.200000
Slovenia	24.557143

Pays avec l'indice de Gini le plus élevé

South Africa Central African Republic	63.200000 56.200000
Honduras	55.357143
Guatemala	54.600000
Brazil	54.600000

⋄15⋄

Position 80/116

Préparation des données pour la mission 3 :

Calcul de l'indice de Gini à l'aide de la courbe de lorenz

Présentation des fonctions nécessaires :

def generate_incomes(n, pj):

Données

Génération : d'un grand nombre de réalisation, de la variable ln_y_parent et du terme d'erreur selon une loi normale

def distribution(counts, nb_quantiles):
def conditional_distributions(sample, nb_quantiles):

Estimation de la distribution conditionnelle de c_i_child (comptage de la combinaison c_i_child et c_i_parent, division nb individu compté et nb total pour chaque quantile parent)

def quantiles(l, nb_quantiles):
def compute quantiles(y child, y parents, nb quantiles):

Génération de c_i_child et c_i_parent à partir de y_child et y_parents

def proba_cond(c_i_parent, c_i_child, mat):

Détermination de la probabilité de c_i_parent avec c_i_child et la distribution conditionnelle

Création d'un nouvel échantillon à partir de nos données finales :

Création de 499 clones pour chaque individu

	country	country_name	c_i_child	y_child	pj	Gj				
0	ALB	Albania	1	728.89795	0.815874	0.321410				
1	ALB	Albania	2	916.66235	0.815874	0.321410				
2	ALB	Albania	3	1010.91600	0.815874	0.321410				
3	ALB	Albania	4	1086.90780	0.815874	0.321410				
4	ALB	Albania	5	1132.69970	0.815874	0.321410				
5788395	COD	Congo, Dem. Rep.	96	810.62330	0.707703	0.459403				
5788396	COD	Congo, Dem. Rep.	97	911.78340	0.707703	0.459403				
5788397	COD	Congo, Dem. Rep.	98	1057.80740	0.707703	0.459403				
5788398	COD	Congo, Dem. Rep.	99	1286.60290	0.707703	0.459403				
5788399	COD	Congo, Dem. Rep.	100	2243.12260	0.707703	0.459403				
5800000 rows x 6 columns										

Création de 499 clones pour chaque individu

Attribution des classes :

Données

```
def loop(n,nb_quantiles,pj_pays):
    y_child,y_parents=generate_incomes(n,pj_pays)
    sample=compute_quantiles(y_child,y_parents,nb_quantiles)
    cd=conditional_distributions(sample,nb_quantiles)
    return cd
```

pays_list=data_final['country'].unique()

Stockage des noms des pays

Génération d'une boucle pour la détermination de y_parents et la distribution conditionnelle


```
for pays in pays_list:
    pj=data_final.loc[data_final['country']==pays,'pj'].iloc[0]
    proba=loop(n,nb_quantiles,pj)

for i in range(100):
    proba_i=proba[i]
    quantiles_p=np.random.choice(element, 500, p = proba_i)
    quantiles_total.append(quantiles_p)

quantiles_parents_final=[j for quantile in quantiles_total for j in quantile]
data final=pd.concat([data final,pd.Series(quantiles parents final)],axis=1)
```

Génération des probabilités avec le coefficient d'élasticité puis des quantiles parents

Données nécessaires pour la mission 4 :

	country	country_name	y_child	pj	Gj	In_y_child	c_i_parent
0	ALB	Albania	728.89795	0.815874	0.321410	6.591534	7
1	ALB	Albania	728.89795	0.815874	0.321410	6.591534	11
2	ALB	Albania	728.89795	0.815874	0.321410	6.591534	2
3	ALB	Albania	728.89795	0.815874	0.321410	6.591534	12
4	ALB	Albania	728.89795	0.815874	0.321410	6.591534	42
5799995	ZAF	South Africa	82408.55000	0.677000	0.682949	11.319444	89
5799996	ZAF	South Africa	82408.55000	0.677000	0.682949	11.319444	97
5799997	ZAF	South Africa	82408.55000	0.677000	0.682949	11.319444	100
5799998	ZAF	South Africa	82408.55000	0.677000	0.682949	11.319444	38
5799999	ZAF	South Africa	82408.55000	0.677000	0.682949	11.319444	17

Représentation des revenus en fonction du pays :

Les revenus sont plus élevés pour la France, l'Islande et les USA

Vérification de la loi normale :

Homoscédasticité : équivalence des variances

Test levene

p-value =0.0

HO: Les variances de population sont égales

Ha: Au moins une des variances est différente

p value < 0.05: Il y a une différence entre les variances dans la population

Distribution équivalente entre les échantillons

Test Kruskal-Wallis

p-value =0.0

HO: La médianes des populations sont égales

Ha: Les médianes des populations sont différentes p value < 0.05: Au moins un échantillon est différent

Normalité : distribution normale

Test shapiro

p-value =0.0

HO: L'échantillon est normalement distribué

Ha: <u>L'échantillon</u> n'est pas normalement distribué

p value < 0.05): L'échantillon ne suit pas une loi normale

Aucune des conditions de l'ANOVA paramétrique est remplie

ANOVA non paramétrique

Corrélation entre les deux variables

Régression linéaire :

Méthode statistique de prédiction

Une variable (X) expliquée est modélisée par une fonction affine d'une autre variable (y)

Technique d'analyse

OLS: Ordinary Least Squares

		ULS R	egress	ion Res	uits		
Dep. Vari	iable:	у с	hild	R-squa	red:		0.496
Model:			OLS	Adj. R	-squared:		0.496
Method:		Least Squ	ares	F-stat	istic:		2.858e+06
Date:	I	ved, 21 Jul :	2021	Prob (F-statistic):	0.00
Time:		06:5	6:07	Log-Li	kelihood:		-5.9310e+07
No. Obser	rvations:	580	9999	AIC:			1.186e+08
Df Residu	uals:	579	9997	BIC:			1.186e+08
Df Model:			2				
Covariand	e Type:	nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
const	1.192e-09	14.699	8.11	e-11	1.000	-28.809	28.809
mj	1.0000	0.000	2234	.874	0.000	0.999	1.001
Gj	2.237e-10	33.529	6.67	'e-12	1.000	-65.715	65.719
Omnibus:		7299082	 .828	Durbin	 -Watson:		0.001
Prob(Omni	ibus):	0	.000	Jarque	-Bera (JB):	210	3715018.034
Skew:	•	6	.739	Prob(J	B):		0.00
Kurtosis:		95	. 322	Cond.	No.		1.18e+0

Comparaison de la différence entre les points du data set et les prédictions afin de mesurer l'erreur

Anova sur la régression linéaire entre le revenu et le pays :

OLS Regression Resi				
Dep. Variable:	y_child	R-squared:	0.492	<u>L</u>
Model:	OLS	Adj. R-squared:	0.492	
Method:	Least Squares	F-statistic:	4887.	Explique à 50%
Date:	Thu, 22 Jul 2021	Prob (F-statistic):	0.00	la variabilité
Time:	07:18:21	Log-Likelihood:	-5.9362e+06	des revenus à
No. Observations:	580000	AIC:	1.187e+07	5.55 . 5 . 5 . 5 . 5 . 5
Df Residuals:	579884	BIC:	1.187e+07	partir du pays
Df Model:	115			
Covariance Type:	nonrobust			

HO: Les variables sont indépendantes

Ha: Les variables sont dépendantes

p value < 0.05 : Les moyennes sont significativement différentes entres les pays

Dépendance du pays de l'individu et du revenu

Mission 4 Données Mission 1 Mission 2 Mission 3 conclusion

Test sur les résidus :

Résidus : différence entre la valeur observée et la valeur prédite du modèle

Test Kolmogorov-Smirnov

p-value =0.0

Normalité: distribution normale

et

HO: Les échantillons suivent une distribution normale

Ha: Les échantillons ne suivent pas une distribution normale

p value < 0.05): Les échantillons ne suivent pas une loi normale

Les résidus ne suivent pas une loi normale

Test sur les résidus :

Test d'homoscédasticité

Test Goldfeld et Quandt

p-value =0.98

HO: Les échantillons possèdent une variance égales

Ha: Les échantillons possèdent des variances différentes

p value > 0.05 : Il y a homoscédasticité des résidus

Test de corrélation

Test Durbin-Watson

r =2.00

HO: Les résidus ne sont pas auto-corrélés

Ha: Les résidus sont auto-corrélés

p value = 2): Il n'y a pas d'auto-corrélation

Régression linéaire de y_child sur le revenu moyen du pays et Gj

Mission 4 et conclusion

Régression linéaire de ln(y_child) sur le ln(mj) et Gj :

		OLS Reg	gression Re	sults			- II \ 70 0/ I I III /
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Th	ln_y_chi C Least Squar nu, 22 Jul 20 07:18: 58000 57999	DLS Adj. nes F-sta 221 Prob 446 Log-L 200 AIC: 297 BIC:	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.729 0.729 7.793e+06 0.00 -6.3181e+06 1.264e+07 1.264e+07	Explique à 73% la variabilité des revenus enfants à partir du revenu moyen et le Gini
	coef	std err	t	P> t	[0.025	0.975]	
const ln_mj Gj	0.4961 0.9864 -1.6523	0.003 0.000 0.004	170.994 3651.055 -471.886	0.000 0.000 0.000	0.490 0.986 -1.659	0.502 0.987 -1.645	Toutes les variables sont significatives
Omnibus: Prob(Omnibus): Skew: Kurtosis:		372790.5 0.0 -0.0 5.6	000 Jarqu 081 Prob(,		0.001 1752378.640 0.00 116	Plus de multicolinéarité : les variables apportent toute une information différente

Ce modèle prédit le revenu en prenant en compte toutes les variables

Mission 4 et conclusion

Régression linéaire de y_child sur le mj, Gj et le c_i_parent :

Données

Ce modèle prédit le revenu sans prendre en compte l'indice de Gini

Mission 4 et conclusion

Régression linéaire de ln(y_child) sur le ln(mj), Gj et le c_i_parent :

Ce modèle prédit le revenu en prenant en compte toutes les variables

Test sur les résidus des différentes régressions :

p-value =0.0

Normalité : distribution normale

p-value =0.0

p-value =0.0

Ha: Les échantillons ne suivent pas une distribution normale

p value < 0.05): Les échantillons ne suivent pas une loi normale

Test sur les résidus des différentes régressions :

Test d'homoscédasticité

1ère Régression

Test Goldfeld et Quandt

p-value =0.99

2^{ème} Régression

Test Goldfeld et Quandt

p-value =2 e-10

3^{ème} Régression

Test Goldfeld et Quandt

p-value =0.99

4ème Régression

Test Goldfeld et Quandt

p-value =0.99

HO: Les échantillons possèdent des variances égales

Ha: Les échantillons possèdent des variances différentes

Vérification que les erreurs restent constantes peu importe la valeur que prend la variable explicative

Suppression des outliers :

Suppression des outliers:

Quantiles d'une loi Normale

Détermination du Z-score : sélection des scores < 3

Amélioration de la normalité

	Mission 4
lission 3	et
	conclusion

	Variance totale expliquée	Variable significative	Multicolinéarité
1 ^{ère} Régression	50 %	Mj	Oui
2 ^{ème} Régression	73 %	Const, In(Mj), Gj	Non
3 ^{ème} Régression	52 %	Const, Mj, Gj, c_i_parent	Oui
4ème Régression	78 %	Const, In(Mj), Gj, c_i_parent	Non

- ☐ La 4^{ème} régression linéaire a permis **d'expliquer 78 % de la variabilité** des revenus
- ☐ L'expression en logarithme a permis d'améliorer le modèle et diminuer la multicolinéarité
- ☐ L'ajout de la classe parent a amélioré la variance expliquée

Données

☐ L'ensemble des variables ne permettent pas d'expliquer à 100 % la variabilité de revenu

Mission 3

Mission 4 et conclusion

Le fait de vivre dans un pays plus inégalitaire favorise plus de personnes qu'il en défavorise?

coef

const -0.0546

ln_mj 0.9863

Gj -1.6522

c_i_parent 0.0109

Données

- ☐ Plus le Gini augmente plus il y a une inégalité
- Gini : coefficient négatif

Merci pour votre attention

