PREDMET: Programiranje II

Datum: 10.5.2024.

Rješenje semestralnog ispita

(GRUPA II)

1. Napišite funkciju F koja u vidu formalnog parametra prima vektor v sastavljen od n realnih brojeva a_1, a_2, \dots, a_n , a kao rezultat računa i vraća vrijednost sljedećeg izraza

$$\sqrt{a_1 + \sqrt{a_2 + \sqrt{\dots + a_n}}}$$

U slučaju da su elementi vektora v takvi da je potkorjena veličina manja od nule, funkcija treba baciti izuzetak. Obavezno predvidite i hvatanje eventualno bačenih izuzetaka iz funkcije. U glavnom programu (**main funkciji**) treba pisati nešto poput sljedećeg

```
int main() {
  int n; std::vector<double>v(n); for(int i(0);i<n;i++)std::cin>>v[i];
  std::cout<<F(v);
  return 0;
}</pre>
```

Rezultati na izlazu trebaju biti zaokruženi na 5 decimala. Ispod se nalaze primjeri testiranja tako da za date ulaze trebate dobiti željene izlaze.

	ULAZ	IZLAZ
n	Elementi vektora \pmb{v}	Izlaz iz funkcije F
5	100 2 -38 4 54	Podkorijena velicina je
		negativna.
6	1 4 9 90 3 77	1.9709
10	9.1 8.3 7.5 5.2 6.1 2.2 1.1 9.9 1.5 2.1	3.5346

Izgled ispravnog testiranja kroz web aplikaciju za drugi test iz gornje tabele izgleda kao na slici ispod:

Rješenje.

```
#include <iostream>
#include <vector>
#include <cmath>
#include<iomanip>
double F(std::vector<double> v) {
    double suma(0);
    int i(v.size() - 1);
    while (i >= 0) {
        suma += v[i];
        if (suma < 0) throw std::domain_error("Podkorijena velicina je negativna.");
        suma = std::sqrt(suma);</pre>
```

```
i--;
}
    return suma;
}
int main() {
    try {
        int n; std::cin >> n; std::vector<double>v(n); for (int i(0); i <
n; i++)std::cin >> v[i];
        std::cout<<std::setprecision(5)<<F(v);
}
    catch (std::domain_error poruka) {
        std::cout << poruka.what();
}
</pre>
```

2. Napišite funkciju f sa tri parametra tako da prvi parametar bude neki cijeli broj n. Funkcija treba formirati dva nova broja koji se sastoje respektivno od prostih i složenih cifara polaznog broja, u istom redoslijedu u kojem se nalaze u polaznom broju n. Novoformirane brojeve smjestite redom u drugi m i treći k parametar funkcije f. Na primjer, ukoliko se kao prvi parametar zada broj 123456789, u drugi i treći parametar treba da se redom smjeste brojevi 2357 i 14689. Znak broja trebate ignorisati, odnosno isti efekat se dobija ukoliko se kao prvi parametar zada broj -123456789. Glavnu funkciju "main" napišite tako da se sa tastature može unijeti cijeli broj n, te pozvati funkcija f. Ispod se nalaze ulazi, kao i odgovarajući izlazi koje trebate dobiti.

ULAZ	IZLAZ	
n	m	k
123456789	2357	14689
-1234567	2357	146
24681012	22	468101
13355779	335577	19
22446642	222	44664

Dakle, sa tastature se treba samo unijeti vrijednost broja n. Neposredno nakon poziva funkcije f, ispisati na ekranu sadržaj drugog i trećeg parametara funkcije f.

Rješenje.

```
#include <iostream>
#include <cmath>
bool jel_prost(int n){
 if(n <= 1)return false;</pre>
for (int i(2); i*i \le n; ++i) if (n\%i == 0) return false;
return true;
void f(long int n, long int& parni, long int& neparni) {
    int suma1(0), suma2(0);
    n = std::abs(n);
    while (n != 0) {
        if (jel prost(n % 10)) {
            suma1 += n % 10;
            suma1 *= 10;
        }
        else {
            suma2 += n % 10;
            suma2 *= 10;
        n /= 10;
    suma1 = suma1 / 10;
    suma2 = suma2 / 10;
    int sumax(0), sumay(0);
    while (suma1 != 0) {
        sumax += suma1 % 10;
```

```
sumax *= 10;
suma1 /= 10;
}
while (suma2 != 0) {
    sumay += suma2 % 10;
    sumay *= 10;
    suma2 /= 10;
}
parni = sumax / 10;
neparni = sumay / 10;
}
int main() {
    long int n, x, y;
    std::cin >> n;
    f(n, x, y);
    std::cout<<x<<" "<<y;
    return 0;
}</pre>
```

3. Napišite generičku funkciju f, koja kao parametar prima dva objekta tipa std::set, tj. dva skupa A i B, čiji su elementi istog tipa, a koja kao rezultat vraća novi skup C istog tipa kao i skupovi A i B, koji predstavlja simetričnu razliku skupova A i B. Simetrična razlika se definira kao skup koji sadrži one i samo one elemente koji se nalaze ili u jednom, ili u drugom skupu, ali ne u oba skupa istovremeno. Na primjer, ukoliko se skupovi $A = \{4,0,12,6,10,-4\}$ i $B = \{4,11,6,-4,-5\}$ proslijede funkciji f, ona kao rezultat treba vratiti skup $C = \{-5,0,10,11,12\}$. Glavnu funkciju "main" napišite tako da se sa tastature mogu unijeti prirodni projevi n_a i n_b , te n_a elemenata skupa A i n_b elemenata skupa B. Ispod se nalaze **ulazi**, kao i odgovarajući **izlazi** koje trebate dobiti.

		IZLAZ		
n_a	Elementi skupa A	n_b	Elementi skupa <i>B</i>	Izlaz iz funkcije f
6	4 0 12 6 10 -4	6	4 11 6 -4 -5 1000	-5 0 10 11 12 1000
4	1 2 3 4	6	-10 2 3 90 5 1	-10 4 5 90
5	1.1 3.1 2.3 -4.9 9.9	7	1.2 2.3 -3.1 -4.1 6.7 1.1 5.2	-4.9 -4.1 -3.1 1.2 3.1 5.2 6.7 9.9

Dakle, sa tastature se prvo unosi broj elemenata n_a skupa A, pa zatim se unose elementi skupa A, isto važi i za skup B. Također, sadržaj skupa C = f(A, B) se treba ispisati na ekranu i on predstavlja izlaz funkcije f.

Rješenje.

```
#include <iostream>
#include <set>
using namespace std;
template<typename tip>
bool nalazi se(const set<tip>& s, tip a) {
 for (auto it(s.begin()); it != s.end(); it++)if (*it == a)return true;
    return false;
template <typename tip>
set<tip>f(const set<tip>& s1, const set<tip>& s2) {
set<tip> razlika;
    for (auto it(s1.begin()); it != s1.end(); it++)if (!nalazi se(s2,
*it))razlika.insert(*it);
    for (auto it(s2.begin()); it != s2.end(); it++)if (!nalazi se(s1, *it))
razlika.insert(*it);
    return razlika;
int main() {
    int na(0); std::cin >> na; set<double>A;
    for (int i(0); i < na; i++) {
     double x; std::cin >> x; A.insert(x);
```

```
int nb(0); std::cin>>nb; set<double>B;
for(int i(0);i<nb;i++) {
   double x; std::cin >> x; B.insert(x);
}
set<double> C=f(A, B);
for (auto it(C.begin()); it != C.end(); it++) cout << *it << " ";
return 0;
}</pre>
```