Programació Lineal i Entera, curs 2012-13 2on curs Grau en Estadística UB-UPC Primer control de laboratori

NOM ALUMNE:

	Temps estimat	Punts	Correcció	Material	legio "ij	let A	
Apartat a)	15min	2.5 pt					
Apartat b)	15min	2.5 pt		Tot el	material	usat	a
Apartat c)	30min	2.5 pt		laborator	i		
Apartat d)	30min	2.5 pt					

EXERCICI 1. (Pengeu els fitxers .sas de l'apartat a), b) i d) al campus digital:

Considereu el següent cas del problema Coalco estudiat a classe:

Cost de transport (€/Tm)	Client 1	Client 2	Cost de producció (∉Tm)	Capacitat mensual mina (Tm)	Contingut en cendra	Contingut en sulfur	Contingut en nitrats
Mina 1	4	6	10	200	10%	4%	1%
Mina 2	9	6	55	100	5%	9%	0.7%
Mina 3		2	80	80	3%	2%	0.5%
Demanda mes (Tm)	150	110	Conti	ngut maxim:	7%	8%	0.9%

Taula 1: Coalco (2) a)

- a) (2.5 pts) Resoleu aquest problema amb OPTMODEL i indiqueu:
 - i. El valor òptim de les tones transportades de cada mina a cada client, i el cost total.
 - ii. El conjunt \mathcal{B}^* , \mathcal{N}^* i el vector r^* de la forma estàndar del problema resolt.
- b) (2.5 pts) Suposeu ara que es vol modificar el model de la Taula 1 de forma que el contingut màxim de cada component del carbó depengui del clients segons les dades següents:

Client	Contingut màxim cendra	Contingut maxim sulfur	Contingut maxim nitrats
1	8%	5%	1%
2	6%	7%	0.7%

Taula 2: Coalco(2) b

Obtingueu el valor òptim de les tones transportades de cada mina a cada client, i el cost total amb OPTMODEL. És profitós per l'empresa Coalco el canvi introduït?

Tornem al problema de la Taula 1. L'extracció de carbó a cadascuna de les tres mines passa per tres operacions bàsiques: arranc, càrrega i transport. Les hores de cadascuna de les operacions necessàries per extreure una tona de carbó a les diferents mines i el total d'hores de cada operació de que disposa Coalco són:

1937 15 S. W.	Operació				
h/Tm	Arranc	Càrrega	Transport		
Mina 1	10	11	8		
Mina 2	10	13	6		
Mina 3	25	20	16		
Total disponible mes (h)	3.300	3.600	2.200		

Taula 3: Coalco(2) c

- c) (2.5 pts) Obtingueu la formulació matemàtica totalment parametritzada de les constriccions que cal afegir al model de l'apartat a) per tal d'assegurar que l'extracció de carbó a les tres mines no supera el total d'hores de que disposa Coalco per extracció, càrrega i transport.
- d) (2.5 pts) Incorporeu les constriccions formulades a l'apartat anterior al codi OPTMODEL de l'apartat a) i trobeu el valor òptim de les tones transportades de cada mina a cada client, i el cost total amb OPTMODEL.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

SOLUCIÓ EXERCICI 1.

a) Els unics canvis entre el model Coalco i Coalco(2) a) afecten al valor dels parèmetres. Aixó vol dir que tant el model matemàtic com el codi codi OPTMODEL són els mateixos. Només cal canviar el valor numèric d'alguns paràmetres:

```
Paràmetres fitxer Coalco(2)_a.sas
set <string> C ={'cendra', 'sulfur', 'nitrats'};
number nM = 3;
number nC = 2;
number t{ 1..nM , 1..nC } = [4 6
                                    9 6
                                    1 2];
number p{ 1..nM } = [ 10 55 80];
number b{ 1..nM } = [ 200 100 80];
number al\{ 1..nM, C \} = [ 0.10 0.04 0.01 ]
                                   0.05 0.09 0.007
                                   0.03 0.02 0.005];
number almax{ C } =
                                [ 0.07 0.08 0.009];
number d{ 1..nC } = [150 110];
Resultats:
                                         Solution Summary
                               Solver
                                                       Dual Simplex
                               Objective Function
                                                         Cost_total
                               Solution Status
                                                            Optimal
                               Objective Value
                                                        11137.142857
                               Iterations
                               Primal Infeasibility
                                                        1.561251E-17
                               Dual Infeasibility
                                                                  0
                               Bound Infeasibility
                                                                  0
                       [1]
                              [2]
                                     X.LB
                                               X.SOL
                                                           X.RC
                                                                    X.STATUS
                                              85.714
                                                        -0.0000
                                        0
                                              44.000
                                                         0.0000
                                        0
                                               0.000
                                                         2.1429
                               2
                                        0
                                              66.000
                                                        -0.0000
                                                                   В
                                        0
                                              64.286
                                                        -0.0000
                                        0
                                               0.000
                                                         3.0000
                    Capacitat.
                                  Capacitat.
                                                Capacitat.
                                                               Capacitat.
                                                                             Capacitat.
                                        BODY
                                                        UB
                                                                    DUAL
                                                                             STATUS
                   -1.7977E308
                                     129.714
                                                       200
                                                                       0
                                                                             В
             2
                   -1.7977E308
                                      66.000
                                                       100
                                                                             В
                   -1.7977E308
                                      64.286
                                                        80
                                                                             В
                       Demanda.
                                   Demanda.
                                                              Demanda.
                                                                           Demanda.
                                       BODY
                                                Demanda.UB
                                                                  DUAL
                                                                           STATUS
                [1]
                             LB
                            150
                                        150
                                               1.79769E308
                                                                 42.714
                                                                           U
                            110
                                        110
                                               1.79769E308
                                                                 43.000
                                                                           U
                          Contingut.
                                        Contingut.
                                                      Contingut.
                                                                    Contingut.
                                                                                   Contingut
       [1]
              [2]
                                  LB
                                              BODY
                                                              UB
                                                                          DUAL
                                                                                   STATUS
              cendra
                         -1.7977E308
                                           0.00000
                                                               0
                                                                        -957.14
              nitrats
                         -1.7977E308
                                          -0.17143
                                                               0
                                                                          0.00
                                                                                   В
        1
              sulfur
                         -1.7977E308
                                          -7.28571
                                                               0
                                                                           0.00
        2
              cendra
                         -1.7977E308
                                          -0.00000
                                                               0
                                                                        900.00
        2
              nitrats
                         -1.7977E308
                                          -0.08800
                                                               0
                                                                           0.00
        2
              sulfur
                         -1.7977E308
                                                               0
                                                                           0.00
```

Informació sobre la solució:

- \mathcal{B}^* : x_{11} , x_{12} , x_{22} , x_{31} , folgues cons. Capacitat, folgues Contingut[1,nitrats], Contingut[1,sulfur], Contingut[2,nitrats], Contingut[2,sulfur].
- $\begin{cases} \mathcal{N}^*: & x_{21} & x_{32} & x_{\text{Demanda}[1]} & \text{Demanda}[2] & \text{Contingut}[1, \text{cendra}] & \text{Contingut}[2, \text{nitrats}] \\ r^{*'} = \begin{bmatrix} 2.1429 & 3.0 & 42.714 & 43.0 & 957.14 & 900.0 \end{bmatrix} \end{cases}$
- b) En aquest cas només cal modificar el paràmetre $\overline{\alpha}$ (almax) per fer que depengui tant de la component com del client (fitxer Coalco(2)_b.sas):

Modificació del	ls paràmet	tres:					
Per a cada client contingut màxim carbó mescla (T	n compone	$nt k \in C$	$\overline{\alpha}$	$\overline{\alpha}_{jk}, j = 1$ $= \begin{bmatrix} 0.08 \\ 0.06 \end{bmatrix}$	$\frac{n^{c}}{0.05}$, $k \in 0.05$	∈ <i>C</i> 0.01] 0.007]	<pre>number almax{ 1nC, C } =[0.08 0.05 0.01 0.06 0.07 0.007];</pre>
Modificació del	l model de	progra	mació li	neal			
Continguts màxims:		$(\alpha_{ik} - 1)$	$- \bar{\alpha}_{jk} \big) x_{ij}$ $= 1, \dots,$		sum{	i in 1.	nt { j in 1nC, k in C} : .nM } -almax[j,k])*X[i,j] <= 0;
Solució:	497	.08 ⁽⁸⁾	2000	A. Office	- Alloi	line"	
	\$ J.	0,	100 N	Solution	Summary	. 90,	- 1 /5 / · .
			olver			Simplex	
				Function	Co	st_total	
			olution S			Optimal	
			jective			11190	190, 140, 160, 160, 1
		It	erations			7	72° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		2010	.d			04045 40	
				easibility	4.42	22461E-16	716 Jan 1910
				sibility asibility		0	E. 102, 102,
		ВС	Juliu IIII e	asinitity		U	
	38 [1]	[2]	X.LB	X.SOL		X.RC	X.STATUS
	1/0	1	0	96.6667	-7.32	238E - 15	В
	1	2	0	42.2222		675E-16	В
	2	1.00	0	36.6667	3.50	009E-15	B
	2	2	0	4.4444	0.00	000E+00	B de la companya del companya de la companya del companya de la co

El cost total d'extracció i transport amb el canvi introduït és de $z^* = 11.190$ € mentre que cost sense el canvi era de ≈ 11.137€. Veiem doncs com aquest canvi encareix els costos totals en 53€

1.3787E-14

-6.2450E-16

16.6667

63.3333

c) i d) Cal modificar el model matemàtic i la implementació de la següent forma (fitxer Coalco(2)_a.sas):

Paràmetres:		
Conjunt d'operacions	$O = \{arranc, c\`arrega, transport\}$	<pre>set<string> O={'arranc','carrega','transport'};</string></pre>
Hores necessàries per extreure una tona	$h_{ik}, i = 1, \dots, n^{M}, k \in \mathcal{O}$ $H = \begin{bmatrix} 10 & 11 & 8 \\ 10 & 13 & 6 \\ 25 & 20 & 16 \end{bmatrix}$	<pre>number h{1nM, O} = [10 11 8 10 13 6 25 20 16];</pre>
Hores totals disponibles	$h_k^T, k \in \mathcal{O},'$ $h^T = [3300 3600 2200]$	number hT{O} = [3300 3600 2200];

Constriccions:

Hores total operacions

$$\sum_{i=1}^{n^M} h_{ik} \sum_{j=1}^{n^C} x_{ij} \le h_k^T, k \in \mathcal{O}$$

```
con Operacio{ k in O }:
sum{ i in 1..nM }
h[i,k]*sum{ j in 1..nC }X[i,j] <= hT[k];</pre>
```

Solució:

Solution Summary

Dual Simplex
Cost_total
Optimal
11210
5
0
0

[1]	[2]	X.LB	X.SOL	X.RC	X.STATUS
1	1	0	76	0	В
1.0	2	0	44	0	В
2	1000	0	34	0	В
2	2	0	66	0	В
3	5° 1 /	0	40	0	В
3	2	0	. 0	6	- 100

	Capacitat.	Capacitat.	Capacitat.	Capacitat.	Capacitat.
[1]	LB	BODY	UB	DUAL	STATUS
1	-1.7977E308	120	200	0	В
2	-1.7977E308	100	100	0	В
3	-1.7977E308	40	80	0	В

	Demanda.	Demanda.		Demanda.	Demanda.
[1]	LB	BODY	Demanda.UB	DUAL	STATUS
§ 1	150	150	1.79769E308	45.889	U
2	110	110	1.79769E308	44.889	U

		Contingut.	Contingut.	Contingut.	Contingut.	Contingut.
[1]	[2]	LB	BODY	UB	DUAL	STATUS
1	cendra	-1.7977E308	-0.000	0	-988.89	L
1.50	nitrats	-1.7977E308	-0.152	0	0.00	В
1	sulfur	-1.7977E308	-5.100	0	0.00	В
2	cendra	-1.7977E308	-0.000	0	-888.89	L A
2	nitrats	-1.7977E308	-0.088	0	0.00	В
2	sulfur	-1.7977E308	-1.100	0	0.00	В

transport	-1.7977E308	2200	2200	-0.27778	L	
carrega	-1.7977E308	3420	3600	0.00000	В	
arranc	-1.7977E308	3200	3300	0.00000	В	
[1]	Operacio.LB	BODY	UB	DUAL	STATUS	
	Operacio.	Operacio.	operacio.	Operacio.		