Semaine 17

Suites récurrentes, dénombrement

Sujet 1 : Raphaël Etaix

.

Ex. 17.1 Soit $u \in \mathbb{R}^{\mathbb{N}}$ définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = u_n - u_n^2$.

Pour quelle valeur de u_0 u est-elle convergente?

Calculer la limite de la suite lorsqu'elle existe suivant la valeur de u_0 .

Sujet 2 : Amine Barouri

.

Ex. 17.2 Soit u la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \sqrt{4 - 3u_n}$.

- 1) On suppose que $u_0 = 1$. Que peut-on dire de la suite u?
- 2) On suppose que $u_0 \neq 1$. Montrer que la suite n'est pas définie à partir d'un certain rang.

Sujet 3: Florian Guette

.

Ex. 17.3 Soit u définie par $u_0 \in \left]0; \frac{\sqrt{5}-1}{2}\right[$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 - u_n^2$.

Étudier la suite u, notamment sa convergence.

Sujet 4 : Exos supplémentaires

Ex. 17.4 Soit $r \in \mathbb{K}^*$ (ici $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

On pose $R = r + \frac{1}{r}$ et pour tout entier $n \in \mathbb{N}$, $U_n = r^n + \frac{1}{r^n}$.

- 1) Montrer que si $R \in \mathbb{N}$ alors, pour tout entier $n \in \mathbb{N}$, $U_n \in \mathbb{N}$.
- 2) Soit $n \in \mathbb{N}$. Exprimer U_{n+2} en fonction de R, U_n et U_{n+1} .
- 3) Refaire la question 1) par récurrence double.
- 4) Montrer que pour tout entier $n, U_n = P_n(R)$ où P_n est un polynôme.
- 5) Donner un exemple d'*irrationnel (réel)* r tel que $R = r + \frac{1}{r}$ est entier. Écrire la propriété de la question 1) pour ce réel.
- 6) Même question mais on veut r complexe non réel (et $r \neq \pm i$).

Ex. 17.5 (Cor.) Étant donné $(n, p) \in \mathbb{N}^2$, combien de chemins du quadrillage \mathbb{N}^2 joignent (0, 0) à (n, p) sans aucun pas vers la gauche ou vers le bas?