

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-336586

(43)公開日 平成10年(1998)12月18日

(51)Int.Cl.⁶

H 04 N 5/92
5/937
7/32

識別記号

F I

H 04 N 5/92
5/93
7/137

H
C
Z

審査請求 未請求 請求項の数22 O.L (全 15 頁)

(21)出願番号 特願平9-147846

(22)出願日 平成9年(1997)6月5日

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 澤田 貴章

東京都府中市東芝町1番地 株式会社東芝
府中工場内

(72)発明者 竹内 陽一郎

東京都府中市東芝町1番地 株式会社東芝
府中工場内

(74)代理人 弁理士 鈴江 武彦 (外6名)

(54)【発明の名称】 画像処理装置および画像処理方法

(57)【要約】

【課題】 フレーム間予測を用いている動画像圧縮方式により符号化された動画像ファイルを固定のレートで送出し、再生を行う計算機システムにおいて、通常再生の動画像ファイルを用いて、さらにサイズの小さなトリックプレイ用動画像ファイルを作成すること、およびトリックプレイ再生時のビットレートを調整可能となるようなトリックプレイ用動画像ファイルを作成すること。

【解決手段】 フレーム間予測を用いている動画像圧縮方式により符号化された動画像ファイルを固定のレートで送出し、再生を行う計算機システムにおいて、この動画像ファイルから早送り、または逆早送りのためのファイルを作成する際に、早送りの場合動画像の先端から、逆早送りの場合動画像ファイルの終端から順番にIピクチャを抽出し、Iピクチャの情報を削り、削ったIピクチャに0パディングを入れ、指定された再生時のビットレートを画像ファイルのヘッダに格納することによりトリックプレイ用動画ファイルを作成する。

【特許請求の範囲】

【請求項1】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを、具備することを特徴とする画像処理方法。

【請求項2】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようにするためのバッファ制御情報を作成するステップと、前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定するステップとを、具備することを特徴とする画像処理方法。

【請求項3】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、前記作成されたフレーム間順方向予測画像データを前記

フレーム内符号化画像データ間に挿入するステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを、具備することを特徴とする画像処理方法。

【請求項4】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、前記作成されたフレーム間順方向予測画像データを前記

フレーム内符号化画像データ間に挿入するステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、前記フレーム間順方向予測画像データが挿入された動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようにするためのバッファ制御情報を作成するステップと、前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定するステップとを、具備することを特徴とする画像処理方法。

【請求項5】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを、具備することを特徴とする画像処理方法。

【請求項6】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、

前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成するステップと、

前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定するステップとを、

具備することを特徴とする画像処理方法。

【請求項7】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、

前記抽出したフレーム内符号化画像データから情報を削減するステップと、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、

前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、

前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入するステップと、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを、

具備することを特徴とする画像処理方法。

【請求項8】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法において、

前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、

前記抽出したフレーム内符号化画像データから情報を削減するステップと、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、

前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、

前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入するステップと、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、

前記フレーム順方向予測画像データが挿入された動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成するステップと、

前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定するステップとを、

具備することを特徴とする画像処理方法。

【請求項9】 前記抽出するステップは、前記動画像データの早送りの場合、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出することを特徴とする請求項1又は2又は3又は4記載の画像処理方法。

【請求項10】 前記抽出するステップは、前記動画像データの逆早送りの場合、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出することを特徴とする請求項5又は6又は7又は8記載の画像処理方法。

【請求項11】 前記情報を削減するステップは、前記フレーム内符号化画像データの離散コサイン変換(DCT)演算時にDC成分からDCT係数を削減することを特徴とする請求項1又は2又は3又は4又は5又は6又は7又は8又は9又は10記載の画像処理方法。

【請求項12】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを、

具備することを特徴とする画像処理装置。

【請求項13】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、

前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、

前記パディング符号を入れた動画像データを再生する際

に、再生のスタート及びランダムアクセスが適切に行われるようにするためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを、
具備することを特徴とする画像処理装置。

【請求項14】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、

前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを、
具備することを特徴とする画像処理装置。

【請求項15】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、

前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、

前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、

前記フレーム間順方向予測画像データを挿入した動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようにするためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを、
具備することを特徴とする画像処理装置。

【請求項16】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを、
具備することを特徴とする画像処理装置。

【請求項17】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、

前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようするためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを、
具備することを特徴とする画像処理装置。

【請求項18】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、

前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを、具備することを特徴とする画像処理装置。

【請求項19】 フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、

前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、

前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、

前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、

前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、

前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、

前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、

前記フレーム間順方向予測画像を挿入した動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようにするためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを、

具備することを特徴とする画像処理装置。

【請求項20】 前記抽出手段は、前記動画像データの早送りの場合、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出することを特徴とする請求項12又は13又は14又は15記載の画像処理装置。

【請求項21】 前記抽出手段は、前記動画像データの逆早送りの場合、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出することを特徴とする請求項16又は17又は18又は19記載の画像処理装置。

【請求項22】 前記削減手段は、前記フレーム内符号化画像データの離散コサイン変換(DCT)演算時にDC成分からDCT係数を削減することを特徴とする請求項12又は13又は14又は15又は16又は17又は18又は19又は20又は21記載の画像処理装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 この発明は、フレーム間予測を用いて動画像を圧縮することにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置及び方法に関し、特に早送りや逆早送り等のいわゆるトリックプレイを実現する画像処理装置および方法に関する

する。

【0002】

【従来の技術】 現在フレーム間予測を用いている動画像圧縮方式により符号化を行う技術の主流となっているものに、MPEG2(Moving Picture Experts Group)国際標準規格がある。通常、MPEG2による動画像処理システムでは、図7に示したように、ビデオテープ101等に記録されている動画像データ、またはビデオカメラ102等を使用して得たリアルタイムな動画像データ103を、専用のエンコーダシステム104により符号化(エンコード)し、動画像ファイル104として外部記憶装置へ格納する。そして格納した動画像ファイル104を専用のデコーダシステム105により復号化を行って再生してテレビ106等により表示する。この場合、動画像ファイル104からデコーダシステム105へのデータ送出手法は、固定レートまたは可変レートの2通りが存在する。従来、MPEG2のシステムで、トリックプレイ(早送り、逆早送り等)を実現する場合、次の2つの方法が用いられている。

20 【0003】 第1の方法は、予めトリックプレイ用の動画像データをテープ等に用意しておき、それらの動画像データをエンコーダによりエンコードし、MPEG2のトリックプレイ動画像ファイルを作成するという方法がある。しかしながら、この方法では、事前にトリックプレイ用の動画像データを作成し、これを更にMPEG2の画像データにエンコードするという労力と時間のかかる作業を要する問題点があった。

【0004】 第2の方法は、MPEG2のエンコーダを使用してエンコードされた通常再生の動画像ファイルを用いて、デコード時にトリックプレイ再生を行う方法である。例えば図8に示すように、通常プレイの動画像ファイル111をデコードする際に、MPEG2のデコーダシステム112へ送出したフレーム情報のうちフレーム内符号化画像(I-picture)のみ、あるいは、フレーム内符号化画像とフレーム間順方向予測画像(P-picture)のみを対象にデコードを行い、早送りを実現する方法である。

【0005】

【発明が解決しようとする課題】 しかしながら、この方法では、特に固定レートでの送出の場合、正常な早送り動作を実現するためには、デコード時における画像データの探索及びバッファ管理等の複雑な処理が必要となる。また、現在のMPEG2準拠のデコーダにはそのような特別な機能をもたないものもあり、すべての場合において、使用できる方法ではない。

【0006】 この発明は、上記実情に鑑みなされたものであり、通常に再生可能な動画像データを用いて、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行うシステムに適用して、適切にトリックプレイを実現可能

な動画像データを得ることのできる画像処理装置および方法を提供することである。

【0007】

【課題を解決するための手段】この発明の請求項1に係わる画像処理方法は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを具備することを特徴とする。

【0008】また、この発明の請求項12に係わる画像処理装置は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを具備することを特徴とする画像処理装置。これによつて、動画像データの先頭側から順にフレーム内符号化画像データのみが抽出され、この抽出されたフレーム内符号化画像データの情報が削減され、削減したフレーム内符号化画像データに対し指定された再生時のビットレートとなるようにパディング符号を挿入し、指定された再生時のビットレートの設定がなされ、早送り再生を可能とする。

【0009】この発明の請求項2に係わる画像処理方法は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようにするためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを具備することを特徴とする。これにより動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報が作成され、前記動画像データの各フレームヘッダに設定され、ランダムアクセスによる早送りが可能となる。

ア制御情報を生成するステップと、前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定するステップとを具備することを特徴とする。

【0010】この発明の請求項13に係わる画像処理装置は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを具備することを特徴とする。これにより動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報が作成され、前記動画像データの各フレームヘッダに設定され、ランダムアクセスによる早送りが可能となる。

【0011】この発明の請求項3に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入するステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを具備することを特徴とする。

【0012】この発明の請求項14に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足

するようにパディング符号を各フレーム内符号化画像データに入るパディング手段と、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを具備することを特徴とする。これによって、動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データが作成され、作成されたフレーム間順方向予測画像データが前記フレーム内符号化画像データ間に挿入され、早送り等のトリックプレイ速度が制御される。

【0013】この発明の請求項4に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入るステップと、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入するステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、前記フレーム順方向予測画像データが挿入された動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成するステップと、前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定することを特徴とする。

【0014】この発明の請求項15に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの先頭側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入るパディング手段と、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、前記作成されたフ

レーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、前記フレーム間順方向予測画像データを挿入した動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを具備することを特徴とする。これにより、動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成され、前記動画像データの各フレームヘッダに設定され、ランダムアクセスによる早送り等のトリックプレイがなされると共に、動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データが作成され、作成されたフレーム間順方向予測画像データが前記フレーム内符号化画像データ間に挿入され、早送り等のトリックプレイ速度が制御される。

20 【0015】この発明の請求項5に係わる画像処理方法は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入るステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを具備することを特徴とする。

【0016】また、この発明の請求項16に係わる画像処理装置は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入るパディング手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを具備することを特徴とする画像処理装置。これによつて、動画像データの末尾側から順にフレーム内符号化画像データのみが抽出され、この抽出されたフレーム内符号化画像データの情報が削減され、削減したフレーム内符号化画像データに対し指定された再生時のビットレートとなるようにパディング符号を挿入し、指定された再生時のビットレートの設定がなされ、早送り再生を可能

40

50

とする。

【0017】この発明の請求項6に係わる画像処理方法は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成するステップと、前記作成したバッファ制御情報を、前記動画像データの各フレームヘッダに設定するステップとを具備することを特徴とする。

【0018】この発明の請求項17に係わる画像処理装置は、フレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、前記パディング符号を入れた動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するバッファ情報設定手段とを具備することを特徴とする。これにより動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報が作成され、前記動画像データの各フレームヘッダに設定され、ランダムアクセスによる早送りが可能となる。

【0019】この発明の請求項7に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記パディング符号が挿入され

た動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入するステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップとを具備することを特徴とする。

【0020】この発明の請求項18に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段とを具備することを特徴とする。これによって、動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データが作成され、作成されたフレーム間順方向予測画像データが前記フレーム内符号化画像データ間に挿入され、早送り等のトリックプレイ速度が制御される。

【0021】この発明の請求項8に係わるフレーム間予測を用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理方法であって、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出するステップと、前記抽出したフレーム内符号化画像データから情報を削減するステップと、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるステップと、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成するステップと、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入するステップと、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定するステップと、前記フレーム順方向予測画像データが挿入された動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようになるためのバッファ制御情報を作成するステップと、前記作成したバッファ

制御情報を、前記動画像データの各フレームヘッダに設定するステップとを具備することを特徴とする。

【0022】この発明の請求項1-9に係わるフレーム間予測用いて動画像圧縮を行うことにより符号化された動画像データを固定レートで送出し、再生を行う画像処理装置において、前記動画像データの末尾側から順にフレーム内符号化画像データのみを抽出する抽出手段と、前記抽出したフレーム内符号化画像データから情報を削減する削減手段と、前記情報を削減したフレーム内符号化画像データが指定された再生時のビットレートを満足するようにパディング符号を各フレーム内符号化画像データに入れるパディング手段と、前記パディング符号が挿入された動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データを作成する予測画像作成手段と、前記作成されたフレーム間順方向予測画像データを前記フレーム内符号化画像データ間に挿入する挿入手段と、前記指定された再生時のビットレートを当該動画像データのヘッダに対し設定する再生レート設定手段と、前記フレーム間順方向予測画像データを挿入した動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようとするためのパシファ制御情報を作成し、前記動画像データの各フレームヘッダに設定するパシファ情報設定手段とを具備することを特徴とする。これにより、動画像データを再生する際に、再生のスタート及びランダムアクセスが適切に行われるようとするためのパシファ制御情報が作成され、前記動画像データの各フレームヘッダに設定され、ランダムアクセスによる早送り等のトリックプレイがなされると共に、動画像データにおけるフレーム内符号化画像データ間に挿入するためのフレーム間順方向予測画像データが作成され、作成されたフレーム間順方向予測画像データが前記フレーム内符号化画像データ間に挿入され、早送り等のトリックプレイ速度が制御される。

【0023】

【発明の実施の形態】以下、図面を参照してこの発明の一実施形態について説明する。MPEG 2による画像圧縮では、画像データに対しDCT (Discrete Cosine Transform、離散コサイン変換) を施し、量子化を行う。すなわち、図1に示すように、入力画像(原画像)121は、まず 8×8 画素のブロックに分割される。このブロック単位にDCT回路123によりDCT演算を行い、得られたDCT係数をDC成分(直流成分)およびAC成分(交流成分)で独立して量子化回路125により量子化する。量子化に用いる量子化テーブル129は輝度信号用量子化テーブルと色差信号用量子化テーブルとで構成される。量子化したDCT係数のうち、DC係数は、直前のブロックのDC係数を予測値とした差分値をエントロピー符号化回路127により符号化する。残りのAC成分は、ブロック内でジグザグスキャンによつ

て並び替えた後、回路127により符号化する。上記DCTにより変換前にランダムに分布していた画素値(例えば輝度)が、DCT変換後は低周波項に大きな値が集中する。したがって、高周波項を落とす(取り除く)操作をすれば画像データを圧縮することができる。

【0024】図2はこの発明における第1の実施の形態に係わる画像処理装置を示すシステムブロック図である。この実施の形態においては、MPEG 2準拠のエンコーダによりエンコードされた通常再生用ファイル201の動画像データを抽出手段202、フレーム内情報削除手段203、パディング手段204、および再生レート設定手段206を用いて処理する。上記において抽出手段202は、動画像データの先頭側または末尾側から順にIピクチャ(フレーム内符号化画像データ)のみを抽出する。フレーム内情報削除手段203は、抽出手段により抽出された各Iピクチャの情報を削減し、各Iピクチャのサイズを小さくする。パディング手段204は、フレーム内情報削除手段203から出力されたIピクチャに対し、指定されたビットレートに合わせて任意のパディング符号('0')を埋め込む。再生レート設定手段は、パディング手段204により出力された動画像データの再生時における復号化の際にパシファのオーバフローまたはアンダーフローが生じないように、再生レートを求め、この再生レートを当該画像データのヘッダに対し設定する。

【0025】以上の通りに構成された画像処理装置の動作を説明する。抽出手段202は、早送り用動画像ファイルの作成ならばファイル201の先頭から抽出を開始し、逆早送り用動画像ファイルの作成ならばファイル201の最後から抽出を始める。フレーム内情報削除手段203は抽出手段202により抽出された各Iピクチャの情報を削減し、各Iピクチャのサイズを小さくする。フレーム内情報の削減方法については、MPEG 2では、前述したDCT演算を行った際に得られるDCT係数を削ることにより得られる。DCT係数はマクロブロック毎に求められる。このDCT係数はDC成分とAC成分とに分けられ、それぞれ独立して量子化される。ここではDC成分のうち低周波に相当する係数の一部を残し、高周波に相当する係数は削減する。係数削減の仕方については、例えば全マクロブロックから均等に削減するとかあるいはマクロブロック毎に削減する数を変えるようにすればよい。あるいは、DCT係数の少ないブロックに対しては削減せず、DCT係数が多いブロックから削減するよう構成してもよい。次にパディング手段204によりパディングを行う。レート設定手段206は指定のビットレートを動画像ファイルのヘッダに設定する。以上のような一連の処理によりトリックプレイ用動画像ファイルを作成する。

【0026】ここで、抽出したIピクチャに対しパディング符号を入れる理由を説明する。通常再生用ファイル

201の動画像データは、エンコード時にG O P (IピクチャとIピクチャとの間) 単位でピクチャのトータルサイズがほぼ同一となっている。これは、デコード処理するために、画像出力側で保持するバッファにおいてオーバーフローまたはアンダーフローが生じないようにするためである。デコード処理と出力側バッファ内のデータ量の関係は、縦軸をバッファ内のデータ量として、横軸を時刻とした図3に示される。すなわち、図3に示されるように、各ピクチャは一定の時間tの間隔でデコード処理されるので、G O P単位でピクチャのトータルサイズがほぼ等しければバッファ内のデータ量も安定しやすいことが判る。以下詳述する。

【0027】一定のレートでコード化されたビットストリームはビデオバッファリングペリファアイヤ (V B V) を介して介挿された制約に適合しなければならない。V B Vはエンコードの出力に概念的に接続される仮想的デコーダである。コード化されたデータはバッファから取り出される。エンコーダは、V B Vの入力バッファがオーバーフローあるいはアンダーフローを起きないようにビットストリームを生成する必要がある。V B Vとビデオエンコーダは同じクロック周波数ならびに同じピクチャレートを有し、同期して動作する。V B VはサイズBの入力バッファを有し、サイズBはシーケンスヘッダのvbv_buffer_size フィールドで与えられる。

【0028】V B V入力バッファは初め空である。入力バッファに最初のピクチャコードに先行するすべてのデータおよびピクチャスターとコード自身を格納した後、入力バッファにはビデオビットストリームのvbv_delay フィールドにより規定された時間だけビットストリームが格納される。そのバッファにもっとも長く保持されていた画像のすべての画像データが瞬時に取り除かれる。次に、各ピクチャインターバルの後、その時点でもっとも長く保持されていた画像の画像データが瞬時に取り除かれる。このため、付属ピクチャデータはピクチャスターコードの直前のシーケンスヘッダおよびG O P層データ並びにピクチャデータエレメントおよびトレーリングスタッフィングビットまたはバイトを有する。ビデオシーケンス内の最初のコード化されたピクチャの場合、シーケンスヘッダの直前にゼロのスタッフィングビットまたはスタッフィングバイトもピクチャデータに含まれる。V B Vバッファはピクチャデータを取り出す直前および取り出した直後にチェックされる。V B Vをチェックするたびに、そのバッファの容量はゼロビットとBビットの間になければならない。この場合Bはシーケンス

$$I \text{ ピクチャのサイズ (ビット)} = Rate$$

Rate : 指定ビットレート (bbs)

Hdr_sz: ヘッダのサイズ (ビット)

IV_TIME: ピクチャの表示間隔 (秒)

(1) 式からわかるように、指定されたビットレートにピクチャ表示間隔を乗算し、その値からヘッダのサイズ

ヘッダ内のvbv_buffer_size により示されるV B Vバッファのサイズである。これがビデオストリーム全体の要件である。これらの要件に適合させるために、(n+1) 番目のコード化された画像 d_{n+1} は次式を満足しなければならない。

$$d_{n+1} > B_n + (2R/P) - B$$

$$d_{n+1} \leq B_n + (R/P)$$

但し、 $n \geq 0$

10 B はvbv_buffer_size により与えられるV B V受信バッファサイズ

B_n は時間t_n 後のバッファ容量 (単位ビット)

R はビットレート (単位ビット/秒)

P は1秒あたりの通常のピクチャ数

t_n はn番目にコード化されたピクチャがV B Vバッファから取り出されたときの時間である。

【0029】ところが、この発明では、Iピクチャのみを抽出している。すると、もともとIピクチャのサイズは固定ではないので、そのままでは、デコード処理量にばらつきが生じ、バッファのオーバーフロー及びアンダーフローが起りやすい状態となる。この状態が図4に示されており、Iピクチャのサイズが一定ではないので、デコード処理量が安定せず、遂にはアンダーフローを生じることがある。そこで、この発明では、この状態を防ぐために抽出したIピクチャにパディングを施すのである。

【0030】次に、パディングの詳細を説明する。述したように、パディング処理は指定のビットレートで再生した場合に正常なデコード動作が行われるようにするために、すべてのIピクチャにパディングを行う。すなわち、パケットデータ長を一定にするためにダミーデータ (例えば「0」) をIピクチャに埋め込む。図5はM P E G 2画像データの階層構成を示す。図5に示すようにM P E G 2画像データはシーケンス層、G O P層、ピクチャ層、スライス層、マクロブロック層、およびプロック層から構成される。M P E G 2のE S (Elementary Stream) の仕様では、スライス層の始まりを示す開始コードの前に任意の数の0の挿入が許されている。したがって、Iピクチャのこの部分に指定されたビットレートに合わせて任意のパディングデータを埋め込む。指定のビットレートで再生した際に正常なデコード動作を行えるようにするために、パディングによりIピクチャのサイズを調節する。このときのサイズの計算は以下の式に従う。

【0031】

$$\times IV_TIME - Hdr_sz \dots (1)$$

を減算した値がIピクチャのサイズとして求まる。この求めたIピクチャのサイズに基づいて上述したパディング手段により0パディングを施す。

【0032】通常再生用ファイルにおいては、エンコード時にG O P (IピクチャとIピクチャの間) 単位でビ

クチャのトータルサイズがほぼ同じとなっている。これは、デコード処理するために画像出力側で保持するバッファがオーバフローまたはアンダーフローを起さないようにするためである。以上のようにして、パディング処理が施された動画像データが中間ファイル205に作成される。

【0033】上記中間ファイル205の動画像データは、早送りまたは逆早送りに係わるトリックプレイ用の動画像データのフレーム構造を有する。この動画像データは抽出したIピクチャにパディング処理を施し、サイズを一定に揃えることによりデコード処理量が一定化することを狙ったものであるが、これだけでは不十分である。すなわち、通常再生用ファイル201の動画像データからIピクチャのみを抽出したことにより、ピクチャ数は減少し、GOPも変化している。そこで、バッファ内のデータ量を安定させるためには、再生時のビットレートを再計算し、これを動画像データのヘッダに対し設定する再生レート設定手段206が設けられる。

【0034】この場合のビットレートは次式により計算される。

$$\text{再生レート (bps)} = (I_{sz} + Hdr_{sz}) / IV_TIME \dots (2)$$

上記(2)式において、

I_{sz} ; Iピクチャのサイズ(ビット)

Hdr_{sz} ; シーケンスヘッダのサイズ(ビット)

IV_TIME ; ピクチャ表示間隔(秒)

従って、図6に示されるようにパディング処理が施された状態のIピクチャのサイズ(各Iピクチャと同一)とシーケンスヘッダSHのサイズとの和を、再生時のピクチャ表示間隔(固定)で除算した値が、シーケンスヘッダSHに設定されるわけである。

【0035】上記のようにしてトリックプレイ用動画像ファイル207に早送り用または逆早送り用の動画像データが作成蓄積される。このトリックプレイ用動画像ファイル207における早送りまたは逆早送り用の動画像データを、例えば図11に示したデコーダシステム105によりデコードし再生することによりテレビジョン受像機106に早送り再生された動画像が表示される。このとき、上記式(2)により求められた再生レートによる再生が行われる結果、同一のデータ量の各フレーム

(ヘッダ及びIピクチャ)が同一の再生レートにより再生され、図7に示すごとくバッファ内のデータ量を安定化することができる。

【0036】図8はこの発明における第2の実施の形態に係わる画像処理装置を示すシステムブロック図である。図8に示す実施形態はトリックプレイの倍速率を変える場合のトリックプレイ用動画像ファイル308を作成するもので、図2に示した第1の実施の形態に係わる画像処理装置に対して、予測画像作成手段305および

Iピクチャのサイズ(ビット)

$$= \text{Rate} \times (P_{num} + 1) / IV_TIME - (P_{sz} \times P_{num} + Hdr_{sz})$$

フレーム内順方向予測符号化画像挿入手段303が設けられている点に対して相違している。上記予測画像作成手段305は、抽出手段302により出力された動画像データにおけるIピクチャ(フレーム内符号化画像データ)間に挿入するためのPピクチャ(フレーム間順方向予測画像データ)を作成する。また、フレーム間順方向予測符号化画像挿入手段303は、上記予測画像作成手段305により作成されたPピクチャをIピクチャ間に挿入する。

【0037】このように構成された画像処理装置の動作を説明する。まず第1の実施の形態と同様に抽出手段302により通常再生用動画像ファイル301からIピクチャを取り出す。このとき、早送りの場合には、動画像データの先頭側から、また逆早送りの場合には動画像データの末尾側からIピクチャを取り出すことは、第1の実施の形態と同様である。抽出手段302により抽出されたIピクチャに基づき、予測画像作成手段305は、Iピクチャ間に挿入するためのPピクチャを作成する。ここにPピクチャは動き予測に関するデータを何ら有さないものなので、Pピクチャの再生画像としては直前のIピクチャと同じものが表示される。

【0038】フレーム間順方向予測符号化画像挿入手段303は、Iピクチャと次のIピクチャとの間に、予測画像作成手段305により作成されたPピクチャを挿入する。ここに、挿入するPピクチャの数は、倍速率(倍率)により変えられ、例えば入力手段303Aにより所望の倍速率が設定される。挿入するPピクチャの数を変えることで、Iピクチャの処理される時間間隔が変わり、倍速率を変えることができる。

【0039】ここで、トリックプレイの倍率と挿入するPピクチャの数の関係について以下に述べる。上述したように、MPEG2では、Iピクチャと次のIピクチャとの間のピクチャ数、つまりGOP(Group of Picture)のサイズが固定であれば、そのサイズの比率がそのままトリックプレイの倍率となる。例えば、ストリームGOPの大きさをmとする。ここでn倍速の早送りファイルを作成するために挿入するPピクチャ数は、次の式(3)で求められる。

$$\text{【0040】挿入Pピクチャ数} = m / n \dots (3)$$

【0040】但し、この式(3)の値は整数である。上記のようにしてPピクチャを挿入した後、次にフレーム内情報削減手段304によりIピクチャのDCT係数を削減する。そして指定したビットレートで再生した際に正常にデコード動作するように、パディング手段306によりIピクチャのサイズを調節する。このときにIピクチャのサイズは、以下の式(4)により求める。

【0041】

Rate: 指定ビットレート(bps)
 P_sz : p ピクチャのサイズ(ビット)
 Hdr_sz : headerのサイズ(ビット)
 P_num : 挿入するp ピクチャ数
 IV_TIME : ピクチャ表示間隔(秒)

以上のようにして、中間ファイル307には、通常再生用ファイル301の動画像データからIピクチャのみを抽出し、Iピクチャと次のIピクチャとの間に、予測画像作成手段305により作成されたPピクチャを挿入した動画像データが中間ファイル307に記憶される。つぎに、再生レート設定手段308は、中間ファイル307の動画像データに対し、バッファ内のデータ量を安定させるために、再生レートを以下の式(5)により計算し、これをシーケンスヘッダSHに設定する。

$$\text{再生レート(bps)} = \frac{(I_{sz} + P_{sz} \times P_{num} + Hdr_{sz})}{IV_TIME} \dots (5)$$

I_sz ; Iピクチャのサイズ(ビット)
 P_sz ; Pピクチャのサイズ(ビット)
 P_num ; 挿入するPピクチャ数
 Hdr_sz ; ヘッダのサイズ(ビット)
 IV_TIME ; ピクチャ表示間隔(秒)

上記のようにして、トリックプレイ用動画像ファイル309に早送りまたは逆早送り用の動画像データが作成蓄積される。このトリックプレイ用動画像ファイル309における早送りまたは逆早送り用の動画像データを、例えば図11に示すデコーダシステム105によりデコードし再生することによりテレビジョン受像機106には早送りまたは逆早送り再生された動画像が表示されることになる。このとき、上記式(5)により求められた再生レートによりIピクチャとPピクチャが再生される。この結果、図9に示すようにバッファ内のデータ量がある範囲で一定量だけの変動を繰り返すようになる。なお、図9はPピクチャを2個挿入した場合である。

【0042】以上述べたようにしてDCT係数の高周波成分の数を調節することにより、特定のビットレートで再生可能、そして消費ディスク容量が少ない可変倍率のトリックプレイ動画像ファイルを作成することができる。

【0043】図10はこの発明における第3の実施の形態に係わる画像処理装置を示すシステムブロック図である。この実施の形態は、再生時にランダムアクセスが可能な動画像データをトリックプレイ用動画像ファイル410に得ることができる。この構成に係わる画像処理装置の動作を説明する。通常再生用動画像ファイル401の動画像データから抽出手段402によりIピクチャを抽出し、このIピクチャに基づき予測画像作成手段405において、Iピクチャ間に挿入するためのPピクチャを作成し、フレーム内順方向予測画像挿入手段403が、上記予測画像作成手段405により作成されたP

… (4)

ピクチャをIピクチャと次のIピクチャとの間に挿入する。次に、フレーム内情報削減手段404によりIピクチャのDCT係数を削減し、パディング手段406によりパディングを施し、中間ファイル407を得る。次に、バッファ制御情報格納手段408により、ランダムアクセス時にバッファ内のデータ量を調節するために必要とされる情報(vbv delay)をピクチャ毎に求めこれを各ピクチャのヘッダへ設定する。MPEGの規格によれば、このvbv delayは以下のとくに規定されている。

【0044】vbv_delay--16ビットの符号なし整数。ビットレートが固定の動作の場合、vbv_delayを用いてピクチャのデコードの開始時にデコーダのバッファがoverflowあるいはunderflowを起こさないようにデコーダバッファの初期占有率を設定する。vbv_delayは初期の空の状態から目標とするビットレートRで現在のピクチャがバッファから除去される直前の正しいレベルまでVBVバッファを満たすのに必要な時間を計測する。vbv_delayの値はVBVがピクチャ開始コードの最終バイトを受け取った後待たなければならない90KHzシステムクロックの期間の数である。

$$vbv_delay_n = 90\ 000 * B_n * / R$$

但し $n > 0$

B_n * はピクチャnをバッファから除去する直前であってGOP層データと、シーケンスヘッダデータと、ピクチャnのデータエレメントの直前のpicture_start_codeを除去した後のビットで測定されたVBV占有率。Rは1秒間あたりのビット数で表わされるビットレート。シーケンスヘッダ内のbit_rateフィールドより符号化された丸め値よりもむしろ完全に正確なビットレートがVBVモデルのエンコーダにより使用される。固定でないビットレート動作の場合、vbv_delayは16進FF FFの値を有する。

【0045】例えある動画像において途中から再生しようとした場合を考える。最初は、出力側のバッファには何のデータも入っていない状態であるので、そのままでは再生できない。したがって、適度な量のデータがバッファ内に溜まるまでデコーダはデコード処理を待たなければならない。その待ち時間に直接関係する値がvbv delayである。vbv delayの値の計算は、ピクチャの流れおよび再生レートに依存しているので、Iピクチャのみを抽出したトリックプレイ動画像ファイルの場合、以前の値のままでは、ランダムアクセス時に正常に動作しない(バッファのアンダーフローあるいはオーバーフローが起きる)。したがって、ピクチャ毎にvbv delayを再計算し、新たに設定を行う。これにより、トリックプレイ動画像ファイルをランダムアクセスする際にバッファ内のデータ量を正しく調節でき、正常動作が可能となる。

【0046】そして、再生レート設定手段409により

第2の実施の形態と同様に再生レートを計算する。これにより、トリックプレイ用動画像ファイル410には、先頭側または末尾側から抽出されたIピクチャと作成されたPピクチャと、再生レート設定手段409により設定された再生レートを有するシーケンスヘッダSHとかなり、ピクチャのピクチャ層のヘッダにバッファ制御情報設定手段408により設定されたvbw delayを有する動画像データが蓄積されていることになり、この動画像データをランダムアクセスする際には、上記vbw delayに基づきバッファ内の初期データ量を正しく調節でき、早送り又は逆早送りの正常動作が可能となる。

【0047】

【発明の効果】以上述べたように、この発明によれば、フレーム間予測を用いている動画像圧縮方式により符号化された動画像ファイルを固定のレートで送出し、再生を行う計算システムにおいて、通常再生の動画像ファイルを用いて、さらにサイズの小さなトリックプレイ用動画像ファイルを作成すること、および、トリックプレイ再生時のビットレートを調整可能となるようなトリックプレイ用動画像ファイルを効率的に作成することができる。

【図面の簡単な説明】

【図1】MPEG2による画像圧縮の原理を示すブロック図。

【図2】この発明における第1の実施の形態に係わる画像処理装置を示すシステムブロック図。

【図3】デコード処理と出力側バッファ内のデータ量との関係示すグラフ。

【図4】バッファのアンダーフローが生じたことを示す状態図。

【図5】MPEG2画像データの階層構成を示す図。

【図6】本発明の第1の実施の形態に係わる画像処理装置によりパディングされた動画像データの構成を示す図。

【図7】本発明の第1の実施の形態に係わる画像処理装置により作成された動画像データを再生する場合のバッファ内データ量の変位を示す図。

【図8】本発明の第2の実施の形態に係わる画像処理装置を示すシステムブロック図。

10 【図9】本発明の第2の実施の形態に係わる画像処理装置により作成された動画像データを再生する場合のバッファ内データ量の変位を示す図。

【図10】本発明の第3の実施の形態に係わる画像処理装置を示すシステムブロック図。

【図11】MPEG2による動画再生の流れを示す図。

【図12】従来のトリックプレイの実現方法を示す図。

【符号の説明】

201、301、401…通常再生用動画像ファイル

202、302、402…抽出手段

203、304、404…フレーム内情報削除手段

204、306、406…パディング手段

205、307、407…中間ファイル

206、308、409…再生レート設定手段

207、309、410…トリックプレイ用動画像ファイル

303、403…フレーム間順方向予測符号化画像挿入手段

303A…入力手段

305、405…予測画像作成手段

30 408…バッファ制御情報格納手段

【図1】

【図7】

【図2】

【図3】

【図5】

【図12】

【図4】

【図6】

【図9】

【図8】

【図10】

【図11】

