P002 P003 Out[7]: ProductID P001 P004 P005 P006 P007 P008 P009 P0 CustomerID C0001 0.0 0.0 0.0 0.00 0.0 0.00 0.0 0.0 0.0 (0.0 C0002 0.0 0.0 0.0 382.76 0.0 0.00 0.0 0.0 0.0 363.96 C0003 0.0 1385.2 0.0 0.00 0.0 0.0 0.0 (C0004 0.0 0.0 0.00 0.0 0.00 0.0 293.7 0.0 0.0 C0005 0.0 0.0 0.0 0.00 0.0 0.00 0.0 0.0 0.0 (

5 rows \times 100 columns

```
In [8]: # Step 5.2: Compute cosine similarity between customers based on their produ
# Normalize the data to scale the features
scaler = StandardScaler()
customer_scaled = scaler.fit_transform(customer_pivot)

# Compute cosine similarity
cosine_sim = cosine_similarity(customer_scaled)

# Convert cosine similarity to DataFrame for easier handling
cosine_sim_df = pd.DataFrame(cosine_sim, index=customer_pivot.index, columns
# Display similarity matrix
cosine_sim_df.head()
```

Out[8]:	CustomerID	C0001	C0002	C0003	C0004	C0005	C0006	
	CustomerID							
	C0001	1.000000	-0.048829	-0.061476	-0.079060	-0.051689	-0.064034	0
	C0002	-0.048829	1.000000	-0.035699	-0.051683	-0.023066	-0.033697	-0
	C0003	-0.061476	-0.035699	1.000000	0.040222	0.244296	-0.046598	-0
	C0004	-0.079060	-0.051683	0.040222	1.000000	0.079853	-0.065466	-0
	C0005	-0.051689	-0.023066	0.244296	0.079853	1.000000	-0.032509	-0

 $5 \text{ rows} \times 199 \text{ columns}$

Out[13]:		C0194	C0104	C0020	C0030	C0091	C0071	C0181	C01
	C0001	0.404928	0.374002	0.366609	NaN	NaN	NaN	NaN	N
	C0020	NaN	0.472465	NaN	NaN	NaN	NaN	NaN	N
	C0007	NaN	NaN	0.456615	NaN	NaN	NaN	NaN	l
	C0002	NaN	NaN	NaN	0.404617	0.383778	0.320158	NaN	N
	C0008	NaN	NaN	NaN	NaN	0.260560	NaN	NaN	Ν

 $5 \text{ rows} \times 48 \text{ columns}$

```
In [10]: # Step 6.1: Preparing data for clustering

# Aggregating customer transactions by product category
category_sales = customer_transactions.groupby(['CustomerID', 'Category']).a
    TotalAmountSpent=('TotalValue', 'sum')
).reset_index()

# Pivoting to get customer vs category matrix
```

```
category_pivot = category_sales.pivot_table(index='CustomerID', columns='Cat
# Scaling data for clustering
category_scaled = scaler.fit_transform(category_pivot)
# Display the data
category_pivot.head()
```

Out[10]: Category Books Clothing Electronics Home Decor CustomerID

C0001	114.60	0.00	2827.30	412.62
C0002	0.00	1025.46	0.00	837.28
C0003	0.00	122.36	1385.20	1217.82
C0004	1888.48	0.00	1355.74	2110.66
C0005	0.00	0.00	1180.38	853.86

```
In [14]: # Step 6.2: Applying KMeans clustering
         # Let's test with 5 clusters
         kmeans = KMeans(n clusters=5, random state=42)
         kmeans.fit(category scaled)
         # Add cluster labels to the original data
         category pivot['Cluster'] = kmeans.labels
         # Visualizing the clusters using a scatter plot (2D PCA)
         from sklearn.decomposition import PCA
         pca = PCA(n components=2)
         pca components = pca.fit transform(category scaled)
         plt.figure(figsize=(10,6))
         plt.scatter(pca_components[:, 0], pca_components[:, 1], c=category_pivot['Cl
         plt.title('Customer Segments Visualization')
         plt.xlabel('PCA Component 1')
         plt.ylabel('PCA Component 2')
         plt.show()
         # Calculate DB Index
         db_index = davies_bouldin_score(category_scaled, kmeans.labels )
         print("DB Index: ", db index)
         # Save clustering results to a CSV file
         category pivot.to csv('Anusha Khot Customer Segmentation.csv', index=False)
         # Display final results
         category pivot.head()
```


DB Index: 1.108179281522266

Out[14]:	Category	Books	Clothing	Electronics	Home Decor	Cluster
	CustomerID					
	C0001	114.60	0.00	2827.30	412.62	1
	C0002	0.00	1025.46	0.00	837.28	3
	C0003	0.00	122.36	1385.20	1217.82	3
	C0004	1888.48	0.00	1355.74	2110.66	0
	C0005	0.00	0.00	1180 38	853.86	3

```
In [12]: # Step 7: Save all final outputs as required

# Save clustering results to a CSV file
category_pivot.to_csv('Customer_Segmentation.csv')

# Display final results
category_pivot.head()
```

Out[12]: Category **Books Clothing Electronics Home Decor Cluster** CustomerID C0001 114.60 0.00 2827.30 412.62 1 C0002 0.00 1025.46 0.00 837.28 3 1217.82 C0003 0.00 122.36 1385.20 3 **C0004** 1888.48 0.00 0 1355.74 2110.66 C0005 0.00 0.00 1180.38 853.86 3

This notebook was converted with convert.ploomber.io