Chapter8. Architecture & Components

2019年12月10日 14:07

NOTE TAKING AREA

Computer basic

Components of a computer: I/O device, memory, CPU (control circuits, registers, instruction decoder, arithmetic and local circuits (ALU), clock).

- Computer architecture: user's view. Instruction set, visible registers, memory management table structure, exception handling model.
- <u>Computer organization: user-invisible implement of architecture. Pipeline structure, transparent cache, table-walking hardware, translation look-aside buffer.</u>

Computer architecture

I/O can be integrated within the memory system.

Von Neumann system: has a von Neumann architecture, follow the von Neumann operating sequence.

CPU components: ALU, registers, datapaths, multiplexers & demultiplexers, sequential circuits, clock.

ALU circuit design

Y - Inputs, the digits of B

Design of large combinational circuits: modular methods (cell technique, used by ARM7), convert to a sequential circuit.

ALU adder design

Example of addition and carry flag:

3 2 1 0	← Bit number
0 1 1 0	Addend (digits of A)
0 0 1 1	Augend (digits of B)
0 1 1 0	Carry to next column
1 0 0 1	Sum

The carry flag would be set if MSB column is carry.

Taking each column separately: LSB column, next column (<u>carry out</u> from previous column & <u>carry in</u> from this column).

Ripple carry adder design (block diagram): half adder & full adder.

Disadvantage of ripple carry adder design is delay.

Carry out logic: use G and P, G = 1 if A = 1 & B = 1, P = 1 if $A = 1 \mid B = 1$. ARM1 uses ripple carry, ARM2 uses look-ahead, ARM6 uses carry out.

ALU logic function design

Logic functions can be combined in the same circuit as **ripple carry adder**. ARM2 needs a separate logic function block:

Function selection (fs) decides the operation.

ARM6 separate addition and logic circuits as well:

XOR gates can give 1's complement of input (invert signal).

Other arithmetic functions

Subtraction uses 2's complement addition, or uses 1's complement addition with carry in to 1.

Multiplication circuits: add each partial product into a total as it is formed.

Matrix multiplier: adding each partial sum generated by adder.

Need 32*32 AND gates and 31 adders for 32 bit numbers. Sequential implementation of multiplier: shift and add.

Need 32*32 AND gates and 31 adders for 32 bit numbers.

Booth's algorithm: improved rule.

Initialization

- 1. Set a running total, T, to zero
- 2. Put the multiplier in a special register M
- 3. Set a carry bit, Cin, to 0
- 4. Set a cycle counter, N, to 0

THIS is the LOOP ENTRY point

- Take the two LSBs of M, call this value B and add value of C_{in} to B
- 6. Next action is one of
 - i. if $C_{in} + B = 000_2$, do nothing and set $C_{out} = 0$.
 - ii. if C_{in} + B = 001₂, left shift the multiplicand 2N places & add this to running total T, set C_{out} = 0
 - iii. if C_{in} + B = 010₂, left shift the multiplicand 2N+1 places & add this to running total T, set C_{out} = 0
 - iv. if C_{in} + B = 011₂, left shift the multiplicand 2N places & subtract this from running total T, set C_{out} = 1
 - v. if C_{in} + B =100₂, do nothing and set C_{out} = 1.
- 7. Add 1 to N and copy Cout to Cin.
- 8. Right shift M two places (discarding bits shifted out)
- If not dealt with all bits of multiplier go back to step 5.

Replacing *3 by *(4-1) and can be completed in N/2 cycle. The action in N-th cycle table:

\mathbf{C}_{in}	Multiplier	LSL#	ALU	C_{out}
0	×00 ₂	-	A+0	0
0	×01 ₂	2N	A+B	0
0	×10 ₂	(2N+1)	A+B	0
0	×11 ₂	2N	A–B	1
1	×00 ₂	2N	A+B	0
1	×01 ₂	(2N+1)	A+B	0
1	×10 ₂	2N	A–B	1
1	×11 ₂	-	A+0	1

Booth's algorithm also support negative numbers.

Further performance improvements: adds 5 32 bit numbers together (carry save).

• Carry propagate: identical to a ripple carry adder.

• Carry save: passes carry value onto the next adder stage.

Production length: n $bit \times m$ bit = (n + m - 1) bit or (n + m) bit.

ARM support long unsigned production *UMULL* and signed *SMULL*.

ARM multiplier uses Booth's algorithm with a dedicated carry save adder to complete a 32 bit multiplication in 5 cycles.

If there are leading 0, the computation can complete less than 5 cycles.

CUE COLUMN

Finite state machine of von Neumann system

The most complex part is execution stage. Fetch -> decode -> execute.

With 3 internal registers (ACC, IR, PC), 12 bit address space, instructions are 16 bits long with 4 bit opcode and 12 bit address word.

The control logic: everything else (decode, control, etc.) use <u>FSM approach</u>.

Execution sequence of MU0:

- a) Fetch Instruction from Memory [PC]
- b) PC = PC + 1
- c) Decode Instruction

d) Get Operand(s) from: Memory {LDA, ADD, SUB} IR (S) {JMP, JGE, JNE} Acc (STO, ADD, SUB)

- e) Perform Operation
- f) Write Result to:

Acc {LDA, ADD, SUB} PC {JMP, JGE, JNE} Memory (STO)

The MU0 instruction set:

Instruction	Opcode	Effect
LDA S	0000	$ACC := mem_{16}[S]$
STO S	0001	$mem_{16}[S] := ACC$
ADD S	0010	$ACC := ACC + mem_{16}[S]$
SUB S	0011	$ACC := ACC - mem_{16}[S]$
JMP S	0100	PC := S
JGE S	0101	if $ACC \ge 0 PC := S$
JNE S	0110	if ACC !=0 PC := S
STP	0111	stop

MU0 datapath example:

MU0 ALU logic for 1 bit:

ARM7 CPU architecture

The architecture details:

With internal registers, address register and register bank.
3 internal datapaths: A bus, B bus, ALU bus.
Additional ALU functionality: multiplier, barrel shifter, adder, logic functions.

One bit full adder circuit

Α	В	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum =
$$(A \oplus B) \oplus Cin$$

Cout = A.B + A.Cin + B.Cin

ARM1 ripple-carry adder circuit:

$$Cout = \overline{\overline{G}.(\overline{P} + \overline{Cin})}$$

ARM2 4-bit carry look-ahead:

G = 1 if (A + B) > 15, P = 1 if (A + B) = 15

Carry look-ahead example:

For example adding 0xF570D4C2 to 0x86A3089B (with Cin = 0):

The sum is 0x7C13DD5D with Cout = 1.

ARM6 carry select adder:

Further reduce using carry select scheme, produces 2 result: A+B and A+B+1.

The 32 bit adder carry select adder diagram (with max 3 propagation delay):

A further example, use 32 bit carry select adder: For example adding 0xF570D4C2 to 0x86A3089B:

The sum is 0x7C13DD5D with Cout = 1.

The performance comparison of 3 adders:

Size of adder	Ripple carry	Look ahead	Carry select
4 bits	4	1	1
8 bits	8	2	1
16 bits	16	4	2
32 bits	32	8	3
64 bits	64	16	4

ARM2 ALU function codes

Note that the table given in Furber (Table 4.1) is incorrect.

Also in Furber Fig. 4.12, the NB (not B) bus should be B bus and the ALU output is inverted (nALU).

	fs5	fs4	fs3	fs2	fs1	fs0	ALU output
	0	0	0	1	0	0	A and B
	0	0	1	0	0	0	A and not B
	0	0	1	0	0	1	A xor B
	0	1	0	1	1	0	A plus not B
Ť.							plus carry
ŧ	0	1	1	0	0	1	A plus B plus
Ν.							carry
)	1	1	1	0	0	1	not A plus B
							plus carry
	0	0	0	0	0	0	A
ĺ	0	0	0	0	0	1	A or B
ľ	0	0	0	1	0	1	В
	0	0	1	0	1	0	not B
	0	0	1	1	0	0	zero

Example of sequential multiplier

$$200_{10} \times 100_{10}$$
 = 1100 $1000_2 \times 0110 \ 0100_2$

In each step, one bit of the multiplier 0110 0100₂ is selected.

If the bit is logic 1 the multiplicand, $1100 \ 1000_2$ is shifted left and added to the running total.

LSL	Multiplier	ALU	Running total
0	×0	A+0	0000 0000 0000 0000
1	×0	A+0	0000 0000 0000 0000
2	×1	A+B	0000 0011 0010 0000
3	×0	A+0	0000 0011 0010 0000
4	×0	A+0	0000 0011 0010 0000
5	×1	A+B	0001 1100 0010 0000
6	×1	A+B	0100 1110 0010 0000
7	×0	A+0	0100 1110 0010 0000

Example of Booth's algorithm

$$200_{10} \times 100_{10} = ...0000 \ 1100 \ 1000_2 \times ...0000 \ 0110 \ 0100_2$$

The multiplier, $0110\ 0100_2$ is broken into 2 bit blocks and depending upon the value of the bits, one of four actions are implemented.

The multiplicand, 1100 1000₂, is shifted and added onto the running total.

N	C _{In}	Multiplier	LSL	ALU	C _{out}	Running total
0	0	×00 ₂	-	A+0	0	0000 0000 0000 0000 0000 0000 0000 0000
1	0	×01 ₂	#2	A+B	0	0000 0000 0000 0000 0000 0011 0010 0000
2	0	×10 ₂	#5	A+B	0	0000 0000 0000 0000 0001 1100 0010 0000
3	0	×01 ₂	#6	A+B	0	0000 0000 0000 0000 0100 1110 0010 0000

In which A is the running total, initially to be 0, B is multiplicand instead of LSB 2 bits of multiplier.

Another complex example:

 $100_{10} \times 743_{10} = ...0000\ 0110\ 0100_2 \times ...0010\ 1110\ 0111_2$

N	C_{ln}	Multiplier	LSL	ALU	C _{out}	Running total
0	0	×11 ₂	#0	A–B	1	1111 1111 1111 1111 1111 1111 1001 1100
1	1	×01 ₂	#3	A+B	0	0000 0000 0000 0000 0000 0010 1011 1100
2	0	×10 ₂	#5	A+B	0	0000 0000 0000 0000 0000 1111 0011 1100
3	0	×11 ₂	#6	A–B	1	1111 1111 1111 1111 1111 0110 0011 1100
4	1	×10 ₂	#8	А–В	1	1111 1111 1111 1111 1001 0010 0011 1100
5	1	×00 ₂	#10	A+B	0	0000 0000 0000 0001 0010 0010 0011 1100

Carry save and carry propagation example

Carry propagation adder example:

In the following example X = 00110110, Y = 01001101 and Z = 00011011. This structure suffers the same problem as the ripple carry adder; multiple propagation delays.

Carry save adder example:

If X = 00110110, Y = 01001101 and Z = 00011011 then the partial sum S = 01101000 & the partial carry C = 00011011. C is left shifted once and added to S; (S + 2C) = 10011110.

SUMMARIES

- 1. Computer basic: computer architecture and computer organization;
- 2. Computer architecture and components;
- 3. ALU circuit design for adder, logic, subtraction, and multiplication.

- o Adder: ripple carry, look-ahead, carry out;
- Logic: same as ripple carry adder or separate;
 Subtraction: use complements;
- o Multiplication: matrix multiplier, sequential multiplier (Booth's algorithm), and product length.