AlMer v2.1 and Beyond

2025 KMS Spring Meeting

Seongkwang Kim¹ Jincheol Ha² Mincheol Son² Byeonghak Lee¹ Dukjae Moon¹ Joohee Lee³ Sangyub Lee¹ Jihoon Kwon¹ Jihoon Cho¹ Hyojin Yoon¹ Jooyoung Lee²

¹Samsung SDS

²KAIST

³Sungshin Women's University

MPCitH-based Signature

Recent MPCitH

Recent MPCitH-based Signature

Detailed MPCitH

Detailed MPCitH

3. Proof w/ FS
$$\begin{aligned} &\operatorname{Proving} x \cdot y = z \\ &\alpha^{(i)} = \epsilon \cdot x^{(i)} + a^{(i)} \\ &\beta^{(i)} = y^{(i)} + b^{(i)} \\ &\operatorname{Broadcast} \alpha \text{ and } \beta \\ &\operatorname{Check} \sum_i (\epsilon z^{(i)} - c^{(i)} + \alpha b^{(i)} + \beta a^{(i)} - \alpha \beta) = 0 \\ &\operatorname{where} ab = c \end{aligned}$$

$$\begin{split} & \mathsf{PRG}(\mathsf{seed}^{(1)}) = \\ & (w_1^{(1)}, \dots, w_C^{(1)}, a_1^{(1)}, \dots, a_C^{(1)}, b_1^{(1)}, \dots, b_C^{(1)}, c^{(1)}) \\ & \vdots \\ & \mathsf{PRG}(\mathsf{seed}^{(N)}) = \\ & (w_1^{(N)}, \dots, w_C^{(N)}, a_1^{(N)}, \dots, a_C^{(N)}, b_1^{(N)}, \dots, b_C^{(N)}, c^{(N)}) \end{split}$$

2. Multiplication triple generation

4. Party Opening

Choose *i* using FS!

Detailed MPCitH

$$\begin{array}{c} \mathsf{com}^{(1)} \; \mathsf{com}^{(2)} \; \mathsf{com}^{(3)} \; \mathsf{com}^{(4)} \; \mathsf{com}^{(5)} \; \mathsf{com}^{(6)} \; \mathsf{com}^{(7)} \; \mathsf{com}^{(8)} \\ \mathbf{3.} \; \mathsf{Proof} \, \mathsf{w} / \, \mathsf{FS} \\ \mathsf{Proving} \; x_j \cdot y_j = z_j \\ \alpha_j^{(i)} = \epsilon_j \cdot x_j^{(i)} + a_j^{(i)} \\ \beta_j^{(i)} = y_j^{(i)} + b_j^{(i)} \\ \mathsf{Broadcast} \; \alpha_j \; \mathsf{and} \; \beta_j \\ \mathsf{Check} \; \sum_i (\sum_j (\epsilon_j z_i^{(i)} + \alpha_j b_j^{(i)} + \beta_j a_i^{(i)} - \alpha_j \beta_j) - c^{(i)}) = 0 \end{array}$$

where $\sum_{i} a_{i} b_{i} = c$

2. Multiplication triple generation

$$\begin{aligned} & \mathsf{PRG}(\mathsf{seed}^{(1)}) = \\ & (w_1^{(1)}, \dots, w_C^{(1)}, a_1^{(1)}, \dots, a_C^{(1)}, b_1^{(1)}, \dots, b_C^{(1)}, c^{(1)}) \\ \vdots \\ & \mathsf{PRG}(\mathsf{seed}^{(N)}) = \\ & (w_1^{(N)}, \dots, w_C^{(N)}, a_1^{(N)}, \dots, a_C^{(N)}, b_1^{(N)}, \dots, b_C^{(N)}, c^{(N)}) \end{aligned}$$

4. Party Opening

Choose *i* using FS!

AlMer v1.0

AlMer v2.0

$$\begin{array}{l} \textbf{2. Multiplication triple generation} \\ \\ \textbf{PRG}(\textbf{seed}^{(1)}) = \\ (w_1^{(1)}, \dots, w_C^{(1)}, a_1^{(1)}, \dots, a_C^{(1)}, b_1^{(1)}, \dots, b_C^{(1)}, c^{(1)}) \\ \vdots \\ \textbf{PRG}(\textbf{seed}^{(N)}) = \\ (w_1^{(N)}, \dots, w_C^{(N)}, a_1^{(N)}, \dots, a_C^{(N)}, b_1^{(N)}, \dots, b_C^{(N)}, c^{(N)}) \\ \end{array}$$

Advantage & Limitation

Advantage & Limitation

- Advantages
 - 1. Short key size
 - 2. Security only relies on symmetric primitives
 - 3. Most efficient among schemes relying only on symmetric primitives
- Limitations
 - 1. Modest performance
 - 2. Relatively new primitive
 - * But multiple cryptanalysts have admitted that AIM2 is secure against state-of-the-art cryptanalytic techniques.

Security

- Security of AIMer is reduced to preimage resistance of AIM2
- Conventional symmetric key cryptanalysis cannot be applied to AIM2
 - Single input-output assumption
- We prevent algebraic attacks with the utmost effort
 - Sufficient security margin despite of radical assumption
 - We brute-forced all the derivable quadratic system of AIM2
 - All the attacks done for symmetric primitives with large S-boxes are considered

Security

Scheme	Туре	#Var	Variables	(#Eq, Deg)		Comp	olexity
	.,,,,			(" = 4, = 58)	k	d_{reg}	Time (bits)
AIM2-I	S_1	n	t_1	(n, 60)	-	-	-
	S_2	2n	t_1 , t_2	(3n,2)	62	15	207.9
	S_{quad}	3n	x , t_1 , t_2	(12n, 2)	0	16	185.3
AIM2-III	S_1	n	x	(2n, 114)	-	-	-
	S_2	2n	t_1 , t_2	(3n, 2)	100	20	301.9
	S_{quad}	3n	x, t_1, t_2	(12n, 2)	0	22	262.4
AIM2-V	S_1	n	x	(2n, 172)	-	-	-
	S_2	2n	t_2 , z	(n,2) + (2n,38)	253	30	513.5
	S_3	3n	t_1, t_2, t_3	(6n, 2)	2	47	503.7
	S_{quad}	4n	x , t_1 , t_2 , t_3	(18n, 2)	9	32	411.4

Performance

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)			Time (cycle)		
Scheme	sk	pk	sig	KeyGen	Sign	Verify
Dilithium	2,528	1,312	2,420			
Falcon	1,281	897	666			
SPHINCS+-f	64	32	17.1 <mark>K</mark>			
HAETAE	1,408	992	1,474			
NCC-Sign-tri	2,400	1,760	2,912			
MQ-Sign-LR	161K	328 <mark>K</mark>	134			
ĀĪMer-f	48	32	¯ 5 ,888 ¯			

SUPERCOP result (Zen 4), Category 1 or 2, median speed

Performance

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)			Time (cycle)			
Scheme	sk	pk	sig	KeyGen	Sign	Verify	
Dilithium	2,528	1,312	2,420	62K	149K	70K	
Falcon	1,281	897	666	15.6M*	331K*	63K*	
SPHINCS+-f	64	32	17.1 <mark>K</mark>	1.23M*	5.65 M *	6.26M*	
HAETAE	1,408	992	1,474	437K	1.13M	100K	
NCC-Sign-tri	2,400	1,760	2,912	197K	295K	196K	
MQ-Sign-LR	161K	328 <mark>K</mark>	134	5.60 M *	67K*	35K*	
AlMer-f	48	32	5,888	40K	889K	898K	

^{*} Not intend to be constant-time SUPERCOP result (Zen 4), Category 1 or 2, median speed

History: AlMer vo.9 (Oct. 2022)

History: AlMer vo.9 (Oct. 2022)

Al	gorithm	Implementation	Security		
Symmetric	Protocol	-			
AIM	BN++	C standalone	Birthday-bound		

History: AlMer v1.0 (Jun. 2023)

Algorithm Symmetric Protocol		Implementation	Security
AIM	BN++	C standalone	Birthday-bound
	Merge hash	AVX2	-
	Domain sep.		

History: AlMer v1.0 (Sep. 2023)

	Algorithm	Implementation	Security		
Symmetric	Protocol	implementation	Security		
AIM	BN++	C standalone	Birthday-bound		
Attack	Merge hash	AVX2			
AIM2	Domain sep.				

History: AlMer v2.0 (Feb. 2024)

Algorithm Symmetric Protocol		Implementation	Security
Symmetric AIM Attack AIM2	Protocol BN++ Merge hash Domain sep. Half salt Prehashing	C standalone AVX2 ARM64	Birthday-bound Full-bound

History: AlMer v2.0 (Feb. 2024)

History: AlMer v2.0 (Feb. 2024)

Scheme	λ	n	ℓ	e_1	e_2	e_3	e_*
AIM-III	128 192	128 192	_	5	27 29	-	5 7
AIM-V	256	256	3	3	53	7	5

Scheme	λ	n	ℓ	e_1	e_2	e_3	e_*
AIM2-I AIM2-III AIM2-V	128 192 256		2	17	91 47 141	- - 7	3 5 3

History: AlMer v2.0 (Feb. 2024)

History: AlMer v2.1 (Aug. 2024)

Algorithm Symmetric Protocol		Implementation	Security	
•			D: 11 1 1	
AIM	BN++	C standalone	Birthday-bound	
Attack	Merge hash	AVX2	Full-bound	
AIM2	Domain sep.	ARM64 + SHA3		
	Half salt	ARM Cortex-M4		
	Prehashing	PQClean		
	, and the second	Constrained mem.		
		TIMECOP		

Lesson Learned from Standardization

- Conservative security first
 - Old security assumption preferred
 - Simple security proof preferred

Lesson Learned from Standardization

- Conservative security first
 - Old security assumption preferred
 - Simple security proof preferred
- So many people are needed than expected
 - Algorithm makers, cryptanalysts, (quantum) provable security experts, side-channel analysts, implementation experts on many different platforms, languages, and protocols, ...

Lesson Learned from Standardization

- Conservative security first
 - Old security assumption preferred
 - Simple security proof preferred
- So many people are needed than expected
 - Algorithm makers, cryptanalysts, (quantum) provable security experts, side-channel analysts, implementation experts on many different platforms, languages, and protocols, ...
- Proper marketing required
 - If security, efficiency, and simplicity of my scheme is the best, then anything does not matter
 - Otherwise, where can my scheme fit into?
 - Protocol (TLS, IPSec, SSH, DNSSEC), security assumption (lattice, isogeny, MQ, code), constrained resources, ...

Relaxed Vector Commitment for

Shorter Signatures

(Eurocrypt 2025)

Vector Commitment

Vector Commitment

Vector Commitment

Vector Semi-Commitment

- 1. Halved commitment size
- 2. GGM tree \rightarrow correlated GGM tree

- 1. Halved commitment size
- 2. GGM tree \rightarrow correlated GGM tree

- 1. Halved commitment size
- 2. GGM tree \rightarrow correlated GGM tree
- 3. Random oracle model \rightarrow ideal cipher model

- 1. Halved commitment size
- 2. GGM tree → correlated GGM tree
- 3. Random oracle model \rightarrow ideal cipher model

Performance

Scheme	pk	sig	Sign	Verify
	(B)	(B)	(Kc)	(Kc)
Dilithium2	1,312	2,420	162	57
SPHINCS ⁺ -128f*	32	17,088	38,216	2,158
SPHINCS+-128s*	32	7,856	748,053	799
SDitH-Hypercube-gf256	132	8,496	20,820	10,935
FAEST-128f	32	6,336	2,387	2,344
FAEST-128s	32	5,006	20,926	20,936
AIMer-v2.0-128f	32	5,888	788	752
AIMer-v2.0-128s	32	4,160	5,926	5,812
rAlMer-128f	32	4,848	421	395
rAlMer-128s	32	3,632	2,826	2,730

^{*: -}SHAKE256-simple

Thank you!

Check out our website!

Attribution

- Illustrations at the very beginning was created using fontawesome latex package (https: //github.com/xdanaux/fontawesome-latex).
- SUPERCOP result can be found in https://bench.cr. yp.to/results-sign/amd64-hertz.html.