Expected Value

7/7/2006

Definition

• Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by

$$E(X) = \sum_{x \in \Omega} x \, m(x) \; ,$$

provided this sum converges absolutely.

ullet We often refer to the expected value as the *mean*, and denote E(X) by $\mu.$

Let an experiment consist of tossing a fair coin three times. Let X denote the number of heads which appear. What is E(X)?

Suppose that we toss a fair coin until a head first comes up, and let X represent the number of tosses which were made. What is E(X)?

Suppose that we flip a coin until a head first appears, and if the number of tosses equals n, then we are paid 2^n dollars. What is the expected value of the payment?

Let T be the time for the first success in a Bernoulli trials process. Then we take as sample space Ω the integers $1,\ 2,\ \dots$ and assign the geometric distribution

$$m(j) = P(T = j) = q^{j-1}p$$
.

Thus,

$$E(T) = 1 \cdot p + 2qp + 3q^{2}p + \cdots$$

$$= p(1 + 2q + 3q^{2} + \cdots)$$

$$= \frac{1}{p}$$

Expectation of a Function of a Random Variable

• Suppose that X is a discrete random variable with sample space Ω , and $\phi(x)$ is a real-valued function with domain Ω . Then $\phi(X)$ is a real-valued random variable. What is its expectation?

Suppose an experiment consists of tossing a fair coin three times. Find the expected number of runs.

X	Y
HHH	1
HHT	2
HTH	3
HTT	2
THH	2
THT	3
TTH	2
TTT	1

Theorem. If X is a discrete random variable with sample space Ω and distribution function m(x), and if $\phi: \Omega \to \mathbb{R}$ is a function, then

$$E(\phi(X)) = \sum_{x \in \Omega} \phi(x) m(x) ,$$

provided the series converges absolutely.

The Sum of Two Random Variables

Theorem. Let X and Y be random variables with finite expected values. Then

$$E(X+Y) = E(X) + E(Y) ,$$

and if c is any constant, then

$$E(cX) = cE(X) .$$

Sketch of the Proof

Suppose that

$$\Omega_X = \{x_1, x_2, \ldots\}$$

and

$$\Omega_Y = \{y_1, y_2, \ldots\} .$$

$$E(X + Y) = \sum_{j} \sum_{k} (x_{j} + y_{k}) P(X = x_{j}, Y = y_{k})$$

$$= \sum_{j} \sum_{k} x_{j} P(X = x_{j}, Y = y_{k})$$

$$+ \sum_{j} \sum_{k} y_{k} P(X = x_{j}, Y = y_{k})$$

$$= \sum_{j} x_{j} P(X = x_{j}) + \sum_{k} y_{k} P(Y = y_{k}).$$

The Sum of A Finite Number of Random Variables

Theorem. The expected value of the sum of any finite number of random variables is the sum of the expected values of the individual random variables.

Let Y be the number of fixed points in a random permutation of the set $\{a,b,c\}$. Find the expected value of Y.

	\overline{X}		\overline{Y}
\overline{a}	b	\overline{c}	3
a	c	b	1
b	a	c	1
b	c	a	0
c	a	b	0
c	b	a	1

Bernoulli Trials

Theorem. Let S_n be the number of successes in n Bernoulli trials with probability p for success on each trial. Then the expected number of successes is np. That is,

$$E(S_n) = np .$$

Independence

If X and Y are independent random variables, then

$$E(X \cdot Y) = E(X)E(Y) .$$

A coin is tossed twice. $X_i=1$ if the ith toss is heads and 0 otherwise. What is $E(X_1\cdot X_2)$?

Consider a single toss of a coin. We define the random variable X to be 1 if heads turns up and 0 if tails turns up, and we set Y=1-X. What is $E(X\cdot Y)$?

Conditional Expectation

If F is any event and X is a random variable with sample space $\Omega = \{x_1, x_2, \ldots\}$, then the conditional expectation given F is defined by

$$E(X|F) = \sum_{j} x_{j} P(X = x_{j}|F) .$$

Theorem. Let X be a random variable with sample space Ω . If F_1, F_2, \ldots, F_r are events such that $F_i \cap F_j = \emptyset$ for $i \neq j$ and $\Omega = \bigcup_j F_j$, then

$$E(X) = \sum_{j} E(X|F_{j})P(F_{j}) .$$

Martingales

• Let S_1, S_2, \ldots, S_n be Peter's accumulated fortune in playing heads or tails. Then

$$E(S_n|S_{n-1}=a,\ldots,S_1=r)=\frac{1}{2}(a+1)+\frac{1}{2}(a-1)=a$$
.

- Peter's expected fortune after the next play is equal to his present fortune.
- We say the game is fair. A fair game is also called a martingale.

Problem

In the roulette game in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

Problem

You have 80 dollars and play the following game. An urn contains two white balls and two black balls. You draw the balls out one at a time without replacement until all the balls are gone. On each draw, you bet half of your present fortune that you will draw a white ball. What is your expected final fortune?

Problem

Let X be the first time that a *failure* occurs in an infinite sequence of Bernoulli trials with probability p for success. Let $p_k = P(X = k)$ for $k = 1, 2, \ldots$ Show that $p_k = p^{k-1}q$ where q = 1 - p. Show that $\sum_k p_k = 1$. Show that E(X) = 1/q. What is the expected number of tosses of a coin required to obtain the first tail?