1.5. ОРИЕНТИРАНИ ГРАФИ И ДЪРВЕТА

1. Определение

Графът $G = \langle V, L \rangle$, на който всяка дъга е ориентирана, т.е. единият й край е начален (начало), а другият - краен (край), е *ориентиран граф*. Ориентираната дъга $\vec{x} = (a,b)$, свързваща началото a с края b, се нарича изходяща (излизаща) от върха a и входяща (влизаща) във върха b.

Краен ориентиран граф се състои от крайно множество от елементи, наречени върхове и крайно множество от наредени двойки (a, b) от върхове, наречени насочени дъги. Връх, белязан със знак "-" е начален връх. Множеството от върхове, белязани с "+" са крайни върхове. Началният връх може да бъде също и краен. Върховете понякога се наричат състояния.

Ориентираният граф е двучленна релация R в крайно множество от върхове V, с графика (множество от ориентирани дъги) $L \subset V \times V$, т.е. aRb тогава и само тогава, когато $(a,b) \in L$. Всяка двучленна релация R се представя с ориентиран граф и всеки ориентиран граф е граф, получен от двучленна релация в множеството от неговите върхове.

Пример:

Релацията " \leq " в множеството $V=\{1,2,3\}$ се описва с диаграмата на фиг. 3, която е графично представяне на графа $G=\langle V,L\rangle$, където $L=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 3,3\rangle\}.$

2. Матрица на съседство

Краен ориентиран граф може да се зададе чрез матрицата на съседство. Допуска се, че $G = \langle V, L \rangle$ е ориентиран граф, където $V = \{a_1, a_2,, a_n\}$. Матрицата на съседство за графа $G = \langle V, L \rangle$ е квадратната матрица $M = \{m_{ij}\}$ от n-ти ред, елементите на която се дефинират с израза

$$m_{ij} = egin{cases} 1, \ \mathrm{ako} \left\langle a_i, a_j
ight
angle \in L \ 0, \ \mathrm{ako} \left\langle a_i, a_j
ight
angle
otin L. \end{cases}$$

Ориентиран nът в графа \vec{G} с дължина l се нарича редицата $a_0, \vec{x}_1, a_1, ..., a_{l-1}, \vec{x}_l, a_l$, където \vec{x}_i е ориентирана дъга, изходяща от върха a_{i-1} и входяща във върха a_i . Ако всичко върхове a_i в този път са различни, той формира oтворена oтиентирана верига, която свързва a_0 с a_l . Ако върховете a_0 и a_l съвпадат, пътят формира oтинирани oтикъл. Ако съществува ориентирана верига, която свързва a с b, което се означава $a \Rightarrow b$, се казва, че върхът b е o0 стижим от върха a.

Ориентиран граф с тегла (маркиран граф) върху ребрата е наредена тройка $G = \langle V, L, W \rangle$, където V е множеството от върховете на G; W - множеството от теглата и $L \subset V \times W \times V$ - множеството от ориентирани ребра с тегла.

Пример:

Разглежда се множеството $V = \{3,4,6\}$. Да се определят двучленните релации в V, дефиниращи целочислените функции — най-голям общ делител (НОД) и най-малкото общо кратно (НОК):

$$xR_i y \Leftrightarrow \text{НОД } (x,y) = i \text{ и } x < y \text{ за } i = 1,2,3;$$

 $xR_6 y \Leftrightarrow \text{НОК } (x,y) = 6 \text{ и } x < y;$

$$xR_{12}y \Leftrightarrow \text{ HOK } (x,y) = 12 \text{ и } x < y.$$

НОД между връх 3 и връх $4 \rightarrow 1$; НОД между връх 3 и връх $6 \rightarrow 3$;

```
НОД между връх 4 и връх 6 \to 2;
НОК между връх 3 и връх 4 \to 12;
НОК между връх 3 и връх 6 \to 6;
НОК между връх 4 и връх 6 \to 12.
```

Графът представящ петте релации е представен на фиг. 4. Теглата на графа са индексите i на релациите, в които са двата върха, свързани със съответните дъги (ребра).