Lógica CC

Univ. do Minho - Lic. em Ciências da Computação

2º teste 19 de dezembro de 2024

- 1. Apresente, sem justificar, um tipo de linguagem L e uma fórmula de tipo L que represente a seguinte frase: «todo o número que é múltiplo dum número par é ele próprio par». (1 valor)
- 2. Seja L o tipo de linguagem $(\{c, f\}, \{R\}, \mathcal{N})$ com $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 1$ e $\mathcal{N}(R) = 2$. Seja ainda E a estrutura de tipo L $(\mathbb{N}_0, \overline{})$ tal que $\overline{c} = 0$, \overline{f} é a função $\mathbb{N}_0 \to \mathbb{N}_0$ que a cada n faz corresponder 2n e \overline{R} é a relação de menor ou igual em \mathbb{N}_0 .
 - a) Indique, sem justificar, um L-termo t, uma L-fórmula atómica φ_1 e uma L-fórmula não atómica φ_2 . (1,5 valores)
 - b) Indique, justificando, o conjunto das variáveis substituíveis por x_0 na fórmula $\forall x_0 (R(x_0, x_1) \to \exists x_2 R(x_0, f(x_2))).$ (1,5 valores)
 - c) Seja a_{ind} a atribuição em E tal que $a_{ind}(x_i) = i$, para todo o $i \in \mathbb{N}_0$. Calcule $(\exists x_0(\neg R(x_0,c) \land R(x_0,f(x_1))))[a_{ind}]_E$. (1,5 valores)
 - d) Mostre que $\forall x_0 (R(c, x_0) \rightarrow R(f(c), f(x_0)))$ é válida em E. (1,5 valores)
 - e) Diga, justificando, se é verdade que $\models \forall x_0 (R(c, x_0) \rightarrow R(f(c), f(x_0)))$. (1,5 valores)
- 3. Considere o tipo de linguagem ARIT.
 - a) Indique, sem justificar, uma atribuição a na estrutura standard E_{Arit} tal que

$$(\forall x_0 ((s(0) < x_0) \to \exists x_1 (x_1 < x_2 \land x_2 < x_0))) [a] = 1.$$
 (0,5 valores)

- b) Seja $\Gamma = \{x_2 < x_1, \neg x_1 < x_2, \forall x_0 (\neg x_0 < x_2)\}$. Indique, sem justificar, uma fórmula $\varphi \in \Gamma$ tal que $\{x_1 < x_2, \varphi\}$ é um conjunto satisfazível. (0,5 valores)
- 4. Apresente uma derivação em DN que mostre que $\vdash \forall x (\varphi \land \psi) \rightarrow (\forall x \varphi \land \forall x \psi)$. (0,5 valores)