Nonregular Languages – the Pumping Lemma

Consider

```
C = \{a^n b^n \mid n \ge 0\}= \{\epsilon, ab, aabb, aaabbb, aaaaabbbbb\}
```

Intuitively: must remember *how far* the center point is from the start to accept the string:

But FAs has only finite memory, and the center can be arbitrarily far from the start.

Pigeonhole Principle

To prove formally that there is no DFA that accepts we need:

The Pigeonhole Principle: If A and B are finite sets and |A| > |B| then there is no 1-1 function from A to B, i.e., if we assign each element of A (the "pigeons") to an element of B (the "pigeonholes") eventually we must put more than one pigeon in the same hole.

Proof that *C* is not regular

The proof is by contradiction. Suppose C is regular. Then there is a DFA M such that C = L(M).

- Let s = number of states in M.
- Given a^nb^n for n > s, M must be in some state p more than once while the a's are scanned, by the pigeonhole principle.
- Partition a^nb^n into x, y, and z, where y is the string of a's scanned between two times state p is entered. Let i = |y|.

Observe: We can leave out y or repeat y any number of times and end up in the same state. But then for any $k \geq 0$, $a^{n+(k-1)i}b^n \in L(M)$! E.g., $a^{n-i}b^n \in L(M)$.

The Pumping Lemma

Theorem: Let A be a regular language. Then there is a number p (the "pumping length" of A) such that for every string w in L such that $|w| \geq p$, we can break w into three strings, w = xyz, such that:

- 1. $xy^kz \in A$ for each $k \ge 0$.
- 2. $y \neq \epsilon$ and
- 3. $|xy| \leq p$

Proof of the Pumping Lemma

- Let p be the number of states in the finite automaton $M=(Q,\Sigma,\delta,q_0,F)$ which accepts A. Let $w=w_1w_2...w_n$ be a string of length $n\geq p$. Let $r_1...r_{n+1}$ be the sequence of states M enters into while processing w.
- By the Pigeonhole Principle, two of the states among the first p+1 states are the same. Call the first r_j and the second r_l .
- - Let $x = w_1...w_{j-1}$, $y = w_j...w_{l-1}$, $z = w_l...w_n$.
 - We can easily verify each of the conditions of the lemma.

Proving a language L is not regular

The Pumping Lemma gives a condition that must be satisfied by every regular language. How can we use it to show a language is *not* regular?

Contrapositive: L is not regular if for every $n \geq 0$, there exists a string $w \in L$, $|w| \geq n$, such that for every decomposition of w into xyz with $|xy| \leq n$, there is some $k \geq 0$ such that $xy^kz \notin L$.

Example 1

$$A = \{a^r b^s \mid r \ge s\}$$

We are given $n \geq 0$.

We pick $w = a^n b^n$.

Now we are given a decomposition xyz of w with the following properties: for $|xy| \le n$ and $y \ne \epsilon$.

• Since $|xy| \le n$, it *must* be the case that $xy = a^j$ for some $j \ge 0$. Since $y \ne \epsilon$, it *must* be the case that $y = a^i$ with i > 0.

We pick k=0. The string $xy^0z=a^{n-i}b^n\notin L$ since there are more b's than a's. (Pumping down)

Using closure properties

Theorem: The class of languages accepted by finite automata is closed under

- 1. union;
- 2. concatenation;
- 3. star;
- 4. complementation;
- 5. intersection.
- 6. reversal

Example 2

 $L = \{w \in \{a,b\}^* \mid w \text{ has an equal number of } a's \text{ and } b's\}$

If L is regular then $L \cap L(a^*b^*)$ is regular, since the regular languages are closed under intersection. But $L \cap L(a^*b^*) = \{a^nb^n \mid n \geq 0\}$. which we already showed is not regular, giving a contradiction.

Or using the pumping lemma

How to pick a string:

Example 3

$$L = \{ww \mid w \in \{0,1\}^*\}$$

Example 4

$$L = \{010^n 1^n \mid n \ge 0\}$$

More than one case for the decomposition.