Séparation, purification et caractérisation d'un composé organique

Techniques basées sur les propriétés physico-chimiques des composés

- Séparation d'un solide et d'une phase liquide :
 - Filtration simple ou sur Büchner

Techniques basées sur les propriétés physico-chimiques des composés

- Séparation d'un solide et d'une phase liquide :
 - Filtration simple ou sur Büchner
 - > Séparation de deux solides :
 - Différence de solubilité dans un solvant
 - Différence de température de fusion des 2 solides

Séparation de deux liquides non miscibles

- Décantation:

Soluté dans un solvant : extraction par solvant

Différence de solubilité entre 2 solvants non miscibles

$$X_{aq} \longrightarrow X_{org}$$

$$K_p = \frac{[X] \text{ organique}}{[X] \text{ aqueuse}}$$

K_p = coefficient de partage

$$\mathbf{K_p} = \frac{[]_{\text{organique}}}{[]_{\text{aqueuse}}}$$

$$X_{i} = X_{0} \frac{K_{p}}{n \frac{V_{a}}{V_{o}} + K_{p}} \left(1 - \frac{K_{p}}{n \frac{V_{a}}{V_{o}} + K_{p}}\right)^{i-1} = X_{0} A \left(1 - A\right)^{i-1} 1 \le i \le n$$

$$Rdt_{t} = \frac{K_{p}}{n \frac{V_{a}}{V_{o}} + K_{p}} \sum_{i=1}^{n} \left(1 - \frac{K_{p}}{n \frac{V_{a}}{V_{o}} + K_{p}}\right)^{i-1} = A \sum_{i=1}^{n} (1 - A)^{i-1}$$

quantité de substance transférée de la phase aqueuse à la phase organique à la ième extraction

Rdt rendement total d'extraction après n extractions

X₀ quantité de substance présente dans la phase aqueuse avant extraction

V₀ volume de phase organique

V_a volume de phase aqueuse

n nombre total d'extraction

K_p coefficient de partage

Séparation de deux liquides miscibles :

√ distillation fractionnée

√ chromatographie

✓ distillation fractionnée

Basée sur la différence des températures d'ébullition

✓ distillation fractionnée

Montage de distillation fractionnée

✓ distillation fractionnée

Techniques chromatographiques

Basées sur la différence de distribution des composés d'un mélange entre une phase mobile et une phase stationnaire

Phase mobile: liquide ou gazeuse

Phase stationnaire

II - Techniques chromatographiques

Colonne capillaire

Chromatographie d'adsorption

Chromatographie de filtration sur gel ou d'exclusion

 Molécule trop grosse pour pénétrer dans les pores des billes

Molécule assez petite pour pénétrer dans les pores de la bille

Elution dans le volume mort

Chromatographie d'affinité

Separation principle

Immobilization of the ligand

Adsorbtion of the molecule to be purified on the immobilized ligand

Elution of the molecule to be purified

II - Techniques chromatographiques

III - Analyse élémentaire

- But : déterminer les éléments qui composent un produit et dans quel rapport
 - établissement de la formule brute

$$(C_a H_b N_d P_c...)_n$$
 a, b, d, n : entiers positifs

Méthode : minéralisation par combustion $C_2H_6O \longrightarrow 2CO_2 + 3H_2O$

III - Analyse élémentaire

Schéma d'un appareil pour le dosage carbone - hydrogène

% C =
$$\frac{m_{CO_2} \times 12 \times 100}{44 \times m \text{ échantillon}}$$

% H =
$$\frac{m_{\text{H}_2}O_X 2 \times 100}{18 \times m_{\text{échantillon}}}$$

% H =
$$\frac{\text{m}_{\text{H}_2}\text{Ox 2 x100}}{\text{18 xm}_{\text{\'e}\text{chantillon}}}$$
 % $N = \frac{V_{N_2} \times 28 \times 100}{22,414 \times \left(\frac{T + 273,15}{273,15}\right) \times m_{\acute{e}ch}}$

% O par différence

IV - Détermination de la masse molaire

Propriétés colligatives de solvant

variation de température d'ébullition, de point de fusion (cryoscopie), de tension de vapeur d'un solvant

Choix du solvant, pas d'interaction solvant — soluté

$$\Delta T = K \frac{C}{MM}$$

Loi de Raoult

ΔT : abaissement du point de fusion ou de congélation du solvant (°C ou K)

K: constante cryoscopique du solvant (eau 1,86 kg K mol ⁻¹, benzène 5,09 kg K mol ⁻¹)

C: concentration du soluté (g kg⁻¹)

MM: masse molaire du soluté (g mol⁻¹)

Spectroscopie de masse

Spectrométrie de masse

V - Caractéristiques d'un produit

- Constantes physiques:
 - Aspect (état, couleur..)
 - Température d'ébullition (préciser la pression)
 - Température de fusion (avec un banc Kofler)

V - Caractéristiques d'un produit

- Constantes physiques:
 - Aspect (état, couleur..)
 - Température d'ébullition (préciser la pression)
 - Température de fusion (avec un banc Kofler)
 - Indice de réfraction (préciser la température)
 - Densité (préciser la température)

V - Caractéristiques d'un produit

Caractérisation chimique

Tests chimiques pour mettre en évidence des groupements fonctionnels

Caractérisation physico-chimique Méthodes spectroscopiques

VI - Méthodes spectroscopiques

Interaction des ondes électromagnétiques avec les atomes ou les molécules

Spectroscopie UV-Visible

- Domaine de l'U.V.: 100 à 350 nm
- Domaine du Visible : 350 à 800 nm

Transitions électroniques

➤ Spectroscopie UV-Visible

Loi de Beer-Lambert d.o. = ε .l.c.

➤ Spectroscopie UV-Visible

Influence du nombre de doubles liaisons sur le déplacement des bandes d'adsorption

➤ Spectroscopie Infra-Rouge

- Domaine de l'I.R.: 1 à 300 μm
- Domaine de l'IR utilisé : 2 à 15 μm

Vibrations des liaisons

 (C_4H_8O)

2-méthyl-2-propen-1-ol

