Shashank Singh

sss1@andrew.cmu.edu

21-373 Honors Algebraic Structures, Fall 2011 Assignment 6

Due: Monday, October 24

Exercise 36: Let R be an integral domain equipped with such functions V and W. Let non-zero $\xi, \eta \in R$. Since, $\forall y \in R$, $\eta \in R$

Suppose $a, b \in R$, with $b \neq 0$. Let $y \in R$ such that y minimizes V(by), so that W(b) = V(by). By construction of V, $\exists q_*, r_1 \in R$ such that $ay = byq_* + r_1$, and either $r_1 = 0$ or $r_1 \neq 0$ and $V(r_1) < V(by)$. Since $r_* = (a - qb)y$, $\exists r_* \in R$ such that $r_* = r_*y$. Thus, since R is an integral domain, so that the multiplicative cancellation property holds, $a = q_*b + r_*$. Furthermore, either $r_* = 0$ or $r_* \neq 0$ and $W(r_*) \leq W(r_*y) = W(r_1) \leq V(r_1) < V(by) \leq W(b)$.

Exercise 37: Let R be a commutative unital ring.

i. For some $n \in \mathbb{N}$, let $a_1, a_2, \ldots, a_n \in R$ be nilpotent. Then, for each $i \in \mathbb{N}$ with $1 \le i \le n$, letting $p_i = 0 + 0x + 0x^2 + \ldots + a_ix^i + \ldots + 0x^n = a_ix^n$, p_i is also nilpotent (since x commutes with the elements of the ring, so that, if, for some $m \in \mathbb{N}$ with $n \ge 1$, $a_i^m = 0$, then $p_i^m = \left(a_ix^i\right)^m = a_i^mx^{im} = 0x^{im} = 0$). Furthermore, since it was shown in the previous assignment that the sum of two nilpotent elements is also nilpotent, by a simple induction on n, it is shown that $a_1x + a_2x^2 + \ldots + a_nx^n = \sum_{i=1}^n p_i$ is also nilpotent. Furthermore, since 1 is a unit, it follows from the result of part ii. that $1 + a_1x + \ldots a_nx^n$ is a unit.

ii. Suppose $P = a_0 + a_1 x + \ldots + a_n x^n$ is a unit in R[x]. Then, $\exists P^{-1} \in R[x]$ such that $PP^{-1} = P^{-1}P = 1$. Thus, $PP^{-1} = a_0P^{-1} + x(a_1 + a_2 x + \ldots + a_n x^{n-1})P^{-1}$. Since the multiplicative identity is 1, which has no terms containing x, $PP^{-1} = a_0P^{-1} = a_0b_0 + xa_0(b_1 + b_2 x + \ldots + b_n x^{n-1})$, where $b_0 + b_1 x + \ldots + b_n x^n = P^{-1}$, so, similarly, $PP^{-1} = a_0b_0 = b_0a_0 = 1$. Thus, $b_0 = a_0^{-1}$, so a_0 is a unit.

For n=0, clearly a_1,a_2,\ldots,a_n are vacuously nilpotent. Suppose, as an inductive hypothesis, that, for some $n\in\mathbb{N}$, if $P=a_0+a_1x+\ldots+a_nx^n$ is a unit in R[x], then, a_1,\ldots,a_n are nilpotent in R. Suppose, moreover, that $P_2=P+a_{n+1}x^{n+1}$ is a unit in R. Then, $\exists P_2^{-1}\in R[x]$ such that $P_2^{-1}P_2=P_2P_2^{-1}=1$. Then $P_2P_2^{-1}=PP_2^{-1}+a_{n+1}x^{n+1}P_2^{-1}$. Since no term of PP_2^{-1} can be of degree $n+1+deg(P_2^{-1})$, and the coefficient of x^{n+1} in $P_2P_2^{-1}$ must be 0, a_{n+1} must be nilpotent. Furthermore, $a_{n+1}P_2^{-1}=0$, so $PP_2^{-1}=1$. Therefore, P is a unit in R[x], and thus, by the inductive hypothesis, a_1,\ldots,a_n are nilpotent.

Lemma: Suppose u is a unit in R and x is nilpotent in R. Then, a = u + x is a unit. **Proof:** Let u be a unit in R and let x be nilpotent in R. Then, $\exists u^{-1} \in R$ such that $uu^{-1} = u^{-1}u = 1$, and $\exists n \in \mathbb{N}$ such that $x^n = 0$. Let a = u + x, and let $a^{-1} = c^n \left(\sum_{i=0}^{n-1} (-x)^i u^{n-(i+1)} \right)$. Then, as is shown by induciton on n, $a^{-1}a = aa^{-1} = (u+x)c^n \left(\sum_{i=0}^{n-1} (-x)^i u^{n-(i+1)} \right) = 1$. Therefore, a is a unit.

Suppose a_0 is a unit in R and a_1, \ldots, a_n are nilpotent in R. Then, by the result of part i., $a_1x + a_2x^2 + \ldots + a_nx^n$ is nilpotent in R[x], so, by the above lemma, $a_0 + a_1x + \ldots + a_nx^n$ is a unit.

Thus, $a_0 + a_1 x + \ldots + a_n x^n$ is a unit in R[x] if and only if a_0 is a unit in R and a_1, \ldots, a_n are nilpotent in R.

Exercise 39: i. Let $x, y \in \mathbb{Z}$, such that $x^3 = y^2 + 2$. Clearly, x and y have the same parity (in the sense of even and odd), as, otherwise, x^3 and $(y^2 + 2) \equiv y^2$ would be different (mod 2). Suppose, for sake of contradiction, that x and y are both even. Then, for some $n, m \in \mathbb{Z}$, $x^3 = 8n^3$ and $y^2 = 4m^2$, so that $x^3 \equiv 0 \pmod{4}$, and yet $y^2 + 2 \equiv 2 \pmod{4}$. This is impossible if indeed $x^3 = y^2 + 2$, so x and y are both odd.

Exercise 40: Let R be a unital ring.

i. Let P be a prime ideal, and let A be an ideal. Suppose, for n=1, that $A^n \subseteq P$. Then, clearly, $A=A^n \subseteq P$. Suppose, as an inductive hypothesis, that, for some $n \in \mathbb{N}$, in $A^n \subseteq P$, then $A \subseteq P$. Suppose, furthermore, that $A^{n+1} \subseteq P$. Since P is a prime ideal, A is an ideal, and $A^{n+1} = A^n A$, either $A^n \subseteq P$, or $A \subseteq P$. By the inductive hypothesis, in the former case, $A \subseteq P$. In the latter case, trivially, $A \subseteq P$. Thus,

Exercise 41: i. Let J be a prime ideal of a commutative ring R.

Suppose $j \in Rad(J)$. Then, $\exists n \in \mathbb{N}$ such that $j^n \in J$. Since R is commutative, (j) = jR. Thus, also since R is commutative, $(j)^n \subseteq j^nR$. Therefore, $(j)^n \subseteq J$. Since (j) is an ideal, by the result of Exercise 40 i., then, $(j) \subseteq J$. Therefore, since $j \in (j)$, $j \in J$.

Suppose $j \in J$. Then, for n = 1, $n \in \mathbb{N}$ and $j^n = j \in J$, so $j \in Rad(J)$. Thus, Rad(J) = J.

ii. Suppose $R = \mathbb{Z}$, let J be an ideal of R, and let $I = \bigcap_{A \in S} A$, where S is the set of prime ideals of R which contain J. Note that it shown in class that the ideals of \mathbb{Z} are precisely those subsets $I \subseteq \mathbb{Z}$ of the form $m\mathbb{Z}$, where $m \in \mathbb{N}$ (and furthermore, I is a prime ideal if and only if m is prime).

Suppose $j \in Rad(J)$. Then, for some $n \in \mathbb{N}$, $j^n \in J$, so that, for any $A \in S$, $j^n \in A$. Thus, $j \in Rad(A)$, so, since A is a prime ideal, and thus, by the result of part i., A = Rad(A), $j \in A$.

Suppose, on the other hand, that $j \in I$. Let $m \in \mathbb{N}$ such that $J = m\mathbb{Z}$, and let p_1, p_2, \ldots, p_k , for some $k \in \mathbb{N}$, be the prime factorization of m. Clearly, the prime ideals containing J are $p_1\mathbb{Z}, p_2\mathbb{Z}, \ldots, p_n\mathbb{Z}$. Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ be the multiplicities of p_1, p_2, \ldots, p_k , respectively, and let $n = \max\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$. Then, m divides j^n , so $j^n \in m\mathbb{Z} = J$. Therefore, $j \in Rad(J)$.

Thus, $\cap_{A \in S} A = Rad(J)$.

Exercise 42: If an element $P = q_0 + q_1 x + ... \in \mathbb{Q}[[x]]$ is of the form $\frac{A}{B}$ for some $A, b \in \mathbb{Z}[[x]]$, then it is not the case that, $\forall i \in \mathbb{N}$, $q_i = \frac{1}{i!}$. For, suppose, for sake of contradiction, that it were the case that, $\forall i \in \mathbb{N}$, $q_i = \frac{1}{i!}$, so that $P \in \mathbb{Q}$, and yet $P = \frac{A}{B}$ for $A, B \in \mathbb{Z}$. Then, letting $A = a_0 + a_1 x + ..., B = b_0 + b_1 x + ...$, BP = A; i.e., $\forall k \in \mathbb{N}$, $a_k = \sum_{i=0}^k b_i q_{k-i} = \sum_{i=0}^k \frac{b_k}{(k-i)!}$. However, multiplying by (k-1)! and subtracting all but one term of the summation gives $\frac{b_0}{k} = (k-1)! a_k - \sum_{i=1}^k b_i \frac{(k-1)!}{(k-i)!}$. Since, for $i \geq 1$, (k-i)! divides (k-1)! and $b_i \in \mathbb{Z}$, every term of the summation is an integer, so that the right hand side for the equation is an integer, $\forall k \in \mathbb{N}$. However, clearly, since, for $k = b_0 + 1$, k does not divide b_0 , the left hand side is not always an integer. This is a contradiction, so P is not of the form $\frac{A}{B}$ for $A, B \in \mathbb{Z}[[X]]$.

Since there exists an element $P \in \mathbb{Q}[[x]]$ (so that, consequently, P is in the field of fractions of $\mathbb{Q}[[x]]$), such that P is not in the field of fractions of $\mathbb{Z}[[x]]$, the field of fractions of $\mathbb{Z}[[x]]$ is strictly smaller than the field of fractions of $\mathbb{Q}[[x]]$.