2. Преобразование признаков

Преобразование признаков

- 1. Задача понижения размерности
- 2. Метод главных компонент и SVD
- 3. Manifold learning

Как выглядит обучающая выборка

Fisher's Iris Data

Sepal length +	Sepal width 🔺	Petal length +	Petal width +	Species +
5.0	2.0	3.5	1.0	I. versicolor
6.0	2.2	5.0	1.5	I. virginica
6.2	2.2	4.5	1.5	I. versicolor
6.0	2.2	4.0	1.0	I. versicolor
6.3	2.3	4.4	1.3	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
5.0	2.3	3.3	1.0	I. versicolor
4.5	2.3	1.3	0.3	I. setosa
5.5	2.4	3.8	1.1	I. versicolor
5.5	2.4	3.7	1.0	I. versicolor
4.9	2.4	3.3	1.0	I. versicolor
6.7	2.5	5.8	1.8	I. virginica
5.7	2.5	5.0	2.0	I. virginica
6.3	2.5	5.0	1.9	I. virginica
6.3	2.5	4.9	1.5	I. versicolor
4.9	2.5	4.5	1.7	I. virginica

Что хотелось бы уметь

- Визуализировать обучающую выборку, когда признаков больше трёх
- Уменьшать количество признаков, переходя к новым, более информативным

Визуализируем выборку

Iris Data (red=setosa,green=versicolor,blue=virginica)

Более сложный случай

Что делать, если признаков еще больше?

Случайная проекция для рукописных цифр

Проблемы «лишних признаков»

Если признаки сильно коррелированы, то у многих методов машинного обучения будут проблемы (например, из-за неустойчивости обращения матрицы ковариаций, где это нужно)

Principal Component Analysis 1

Идея 1: давайте выделять в пространстве признаков направления, вдоль которых разброс точек наибольший (они кажутся наиболее информативными)

РСА (интерпретация 1)

Пример: eigenfaces

Рукописные цифры: проекция на главные компоненты

РСА (интерпретация 2)

Идея 2: давайте строить проекцию выборки на линейное подпространство меньшей размерности. А выбирать его так, чтобы квадраты отклонений точек от проекций были минимальны.

РСА (интерпретация 2)

original data space

РСА (интерпретация 3)

Идея 3. Переход в базис, в котором матрица ковариаций диагональна

РСА (интерпретация 4)

Приблизим исходную матрицу признаков произведением двух матриц:

$$X \approx U \cdot V^T$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^T|| \rightarrow min$$

РСА: как сделать?

- Центрируем выборку (из каждого признака вычитаем среднее значение), получаем матрицу X с новыми значениями признаков
- Делаем SVD-разложение матрицы X: $X \approx A \cdot \Lambda \cdot B^T$

Выбираем $U = A \cdot \Lambda$, V = B

SVD

SVD = Singular Vector Decomposition (сингулярное разложение матриц)

Позволяет получить наилучшее приближение исходной матрицы X матрицей X' ранга k.

Применяется для снижения размерности пространства признаков.

SVD

SVD: пример

SVD: пример

SVD: пример

Геометрический смысл SVD

А что, если линейных преобразований признаков мало?

- Идея 1: объекты могут лежать в пространстве признаков на поверхности малой размерности.
- Идея 2: эта поверхность может быть нелинейной.

Manifold learning: t-SNE

t-SNE embedding of the digits (time 23.50s)

3. Матричные разложения

Матрица рейтингов

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

Матрица рейтингов

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Кол 	3		4	5
Кол ұ Петя				4
Ваня		5	3	3

Матрица рейтингов

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Кол į я Петя	3		4	5
Петя				4
Ваня		5	3	3

$$x_{ij} \approx \langle u_i, v_j \rangle$$

 u_i - «интересы пользователей»

 v_i - «параметры фильмов»

"SVD" в машинном обучении

$$\sum_{i,j} \left(x_{ij} - \left\langle u_i, v_j \right\rangle \right)^2 \to min$$

 u_i - «профили» объектов

 v_i - «профили» исходных признаков

Матрица частот слов и SVD

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	3	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

Матрица частот слов и SVD

j

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	(3)	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

Матрица частот слов и SVD

j

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	(3)	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

$$x_{ij} \approx \langle u_i, v_j \rangle$$

 u_i - «темы» документов

 v_i - «темы» слов

Еще немного про обозначения

$$x_{ij} \approx \langle u_i, v_j \rangle$$

Еще немного про обозначения

 $x_{ij} \approx \langle u_i, v_j \rangle$

Еще немного про обозначения

$$x_{ij} \approx \langle u_i, v_j \rangle$$

Еще немного про обозначения

Еще немного про обозначения

$$x_{ij} \approx \langle u_i, v_j \rangle$$

$$\begin{bmatrix} u_i & v_j \\ v_i \end{bmatrix}$$

$$x_{ij} \approx u_i^T v_j$$

Аналогия с матрицей признаков

В линейных моделях:

$$< w, x_i > = w^T x_i$$

Какие обозначения встречаются

$$X \approx UV^T$$

$$X \approx PQ^T$$

$$X \approx WH$$

$$X \approx \Phi \Theta$$

Оптимизационная задача

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

Градиентный спуск (GD)

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

$$\frac{\partial Q}{\partial u_i} = \sum_{\tilde{i},j} \frac{\partial}{\partial u_i} \left(\langle u_{\tilde{i}}, v_j \rangle - x_{\tilde{i}j} \right)^2 = \sum_j 2(\langle u_i, v_j \rangle - x_{ij}) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} =$$

$$=\sum_{i}2ig(ig\langle u_{i},v_{j}ig
angle-x_{ij}ig)v_{j}$$
 $arepsilon_{ij}=ig(ig\langle u_{i},v_{j}ig
angle-x_{ij}ig)$ - ошибка на x_{ij}

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \sum_j \varepsilon_{ij} v_j$$

Стохастический градиентный спуск (SGD)

GD:

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \sum_j \varepsilon_{ij} v_j$$

$$v_j^{(t+1)} = v_j^{(t)} - \eta_t \sum_{i}^{j} \varepsilon_{ij} u_i$$

SGD:

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \varepsilon_{ij} v_j$$

$$v_j^{(t+1)} = v_j^{(t)} - \eta_t \varepsilon_{ij} u_i$$

Для случайных і, ј

Плюсы и минусы SGD

- +Простота реализации
- +Сходимость
- Медленно сходится
- Сложность выбора шага градиентного спуска (γ_t и η_t)
- При константном шаге сходится очень медленно

Идея ALS

$$Q \rightarrow \min_{u_i, v_j}$$

Повторяем до сходимости:

$$\frac{\partial Q}{\partial u_i} = 0 \qquad \qquad \frac{\partial Q}{\partial v_j} = 0 \qquad \qquad v_j$$

Выписываем шаг в ALS

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

$$\frac{\partial Q}{\partial u_i} = \sum_j 2(\langle u_i, v_j \rangle - x_{ij})v_j = 0 \qquad \sum_j v_j \langle v_j, u_i \rangle = \sum_j x_{ij}v_j$$

$$\sum_{j} v_{j} v_{j}^{T} u_{i} = \sum_{j} x_{ij} v_{j} \qquad \left(\sum_{j} v_{j} v_{j}^{T}\right) u_{i} = \sum_{j} x_{ij} v_{j}$$

ALS: итоговый алгоритм

Повторяем по случайным і, ј до сходимости:

$$\left(\sum_{j}v_{j}v_{j}^{T}\right)u_{i}=\sum_{j}x_{ij}v_{j}$$
 размение системы линейных уравнений) $\left(\sum_{i}u_{i}u_{i}^{T}\right)v_{j}=\sum_{i}x_{ij}u_{i}$ руј

Регуляризация

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 + \alpha \sum_{i} ||u_i||^2 + \beta \sum_{j} ||v_j||^2 \to \min_{u_i, v_j}$$

 α и β - небольшие положительные числа (0.001, 0.01, 0.05)

Модель прогнозирования

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3	?	4	5
Петя				4
Ваня		5	3	3

Модель прогнозирования

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3	?	4	5
Петя				4
Ваня		5	3	3

$$x_{ij} \approx \langle u_i, v_j \rangle$$

 u_i - «интересы пользователей»

 v_i - «параметры фильмов»

Отличия в задаче рекомендаций

	Вечернее платье	Поднос для писем	iPhone 6s	Шуба D&G
Маша	1		1	
Юля	1	1		1
Вова		1	1	
Коля	1	?	1	
Петя		1	1	
Ваня			1	1

Почему нужно что-то менять

			Поднос для писем	iPhone 6s	Шуба D&G
	Маша	1		1	
	Юля	1	1		1
	Вова		1	1	
i	Коля	1	?	1	
	Петя		1	1	
	Ваня			1	1

$$x_{ij} = 1 \approx \langle u_i, v_j \rangle$$

$$\sum_{i,j:x_{ij}\neq 0} (\langle u_i, v_j \rangle - x_{ij})^2 \to min$$

Почему нужно что-то менять

	Вечернее платье	Поднос для писем	iPhone 6s	Шуба D&G
Маша	1		1	
Юля	1	1		1
Вова		1	1	
Кол 	1	?	1	
Петя		1	1	
Ваня			1	1

$$\chi_{ij} = 1 \approx \langle u_i, v_j \rangle
\sum_{i,j:\chi_{ij}\neq 0} (\langle u_i, v_j \rangle - \chi_{ij})^2 \rightarrow min$$

$$u_i = \frac{1}{\sqrt{d}}(1 \quad \cdots \quad 1)$$

$$v_j = \frac{1}{\sqrt{d}}(1 \quad \cdots \quad 1)$$

Explicit u implicit

Explicit feedback

Есть положительные и отрицательные пример (например, низкие и высокие оценки фильмов, лайки и дислайки и т.д.)

Implicit feedback

Есть только положительные (покупки, просмотры, лайки) или только отрицательные примеры (дислайки)

Implicit matrix factorization

$$\sum_{i,j} w_{ij} (\langle u_i, v_j \rangle - x_{ij})^2 \to min$$

Сумма по всем индексам (не только по известным элементам матрицы)

 w_{ij} принимает большие значения для $x_{ij} \neq 0$ и значительно меньшие для $x_{ij} = 0$

Популярный метод: Implicit ALS

$$\sum_{i,j} w_{ij} (\langle u_i, v_j \rangle - x_{ij})^2 \to min$$

$$w_{ij} = 1 + \alpha |x_{ij}|$$
 $\alpha = 10, 100, 1000$

 u_i , v_i оцениваем с помощью ALS

4. Векторные представления (embeddings)

Bag of words

Проблемы BoW

- Огромное число признаков
- Семантически близкие «cute» и «lovely» не связаны
- Нужно много данных, чтобы выучить хорошую модель

Похожие слова

- «cute» и «lovely» синонимы
- Для компьютера это разные строки
- Как понять, что они похожи?

Похожие слова

- «cute» и «lovely» синонимы
- Для компьютера это разные строки
- Как понять, что они похожи?

- На основе данных
- Слова со схожим смыслом часто идут в паре с одними и теми же словами
- У них похожие контексты

Дистрибутивная семантика

Term-context matrix

	C1	C2	C3	C4	C5	C6	C7
dog	5	0	11	2	2	9	1
cat	4	1	7	1	1	7	2
bread	0	12	0	0	9	1	9
pasta	0	8	1	2	14	0	10
meat	0	7	1	1	11	1	8
mouse	4	0	8	0	1	8	1

Term-context matrix

	dog	cat	computer	animal	mouse
dog	0	4	0	2	1
cat	4	0	0	3	5
computer	0	0	0	0	3
animal	2	3	0	0	2
mouse	1	5	3	2	0

Векторные представления слов

Хотим каждое слово представить как вещественный вектор:

$$w \to \vec{w} \in \mathbb{R}^d$$

Какие требования?

- Размерность d должна быть не очень велика
- Похожие слова должны иметь близкие векторы

word2vec

$$\sum_{i=1}^n \sum_{\substack{j=-k\\j\neq 0}}^k \log p(w_{i+j} \mid w_i) \to \max,$$

где вероятность вычисляется через soft-max:

$$p(w_i \mid w_j) = \frac{\exp(\langle \vec{w}_i, \vec{w}_j \rangle)}{\sum_{w} \exp(\langle \vec{w}, \vec{w}_j \rangle)}$$

(сумма в знаменателе — по всем словам из словаря)

word2vec

Figure 1: A simple CBOW model with only one word in the context

Самый популярный пример с word2vec

(Mikolov et al., NAACL HLT, 2013)

Особенности представлений

- Скалярное произведение векторов хорошо отражает похожесть слов по контекстам, в которых встречаются
- king man ≈ queen woman
- Moscow Russia ≈ London England
- Перевод: one uno + four ≈ quatro
- Хорошее признаковое описание текста среднее арифметическое представлений слов текста

CBOW и Skip-gram

Word2Vec и обучение с учителем

- Проблема мешка слов слишком большое количество признаков
- Средний word2vec-вектор позволяет получить компактное признаковое описание
- При размерности вектора 100-500 можно обучать композиции деревьев

Word2Vec → Everything2Vec

Word2Vec и матричные разложения

 $PMIig(w_i,c_jig)$ - совместная встречаемость w_i и c_j

Word2Vec и матричные разложения

 $PMIig(w_i,c_jig)$ - совместная встречаемость w_i и c_j

Измеряется так:

$$PMI(w_i, c_j) = \ln \frac{p(w_i)p(c_j)}{p(w_i, c_j)}$$

Word2Vec и матричные разложения

 $PMIig(w_i,c_jig)$ - совместная встречаемость w_i и c_j

Измеряется так:

$$PMI(w_i, c_j) = \ln \frac{p(w_i)p(c_j)}{p(w_i, c_j)}$$

Оказывается (Levi, NIPS 2014), Word2Vec выполняет матричное разложение матрицы, заполненной числами $PMI(w_i, c_j) - \ln k$ (k – количество примеров в Negative Sampling)

Общая идея эмбеддингов

- 1. Есть объекты, для которых вам нужно обучить векторные представления v_i
- 2. Из каких соображений обучать представления формулируется *оптимизационной задачей,* составленной из неких разумных соображений
- 3. Оптимизационная задача решается некоторым методом численной оптимизации (например, SGD)

1. Задача кластеризации

2. Понижение размерности

3. Матричные разложения

4. Векторные представления

План