A Regression-Based Assessment of Revenue Growth Percentages

By: Pedram Bazargani

Data Description: This data consists of 7 columns and 100 rows, listing the top 100 American companies by Revenue (USD), according to the 2023 Fortune 500 list published by Fortune Magazine. The list was scraped off Wikipedia and has a usability score of 10.00 on Kaggle. The data was provided in CSV format and was prepped and cleaned for via the Alteryx Designer Platform. Tools utilized include the Data Cleansing, Select, and Formula tools. The data was then outputed back into csv file format and loaded to this notebook on Google Colab.

Source: https://www.kaggle.com/datasets/claymaker/us-largest-companies

Motivations and Findings: During my undergrad courses in econometrics I learned a lot about building and interpreting regressions. To showcase my obtained technical accumen I searched Kaggle for some fun data I could work with and shortly found this data on 2023 Fortune 500 Companies published by Fortune.

The column I found most interesting was the data on Revenue Growth Percentages. Although I recognize that revenue growth is determined primarily by market conditions, investor sentiments, and numerous finacial metrics, I wanted to see to what extent do the number of employees a company have impact its revenue growth percentage. I further expanded my research to include the Industry and Location columns and also decided to run a few fun statistics regarding the data at the end of this notebook.

My regressions demonstrated that the number of employees have minimal impact on revenue growth percentage. Even though adding categorical variables 'Industry' and 'Headquarters (as State)' to the regression via one-hot encoding did result in a larger goodness of fit indicating possible correlation, ultimately these findings may possibly be inconclusive due to issues of multicollinearity.

```
#Importing Packages; Loading Data; Creating a DataFrame
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

data = pd.read_csv('/content/Fortune500CleanedData.csv')
df = pd.DataFrame(data)
print(df)
```

	Rank	Name	Industry	\
0	1	Walmart	Retail	
1	2	Amazon	Retail and Cloud Computing	
2	3	Exxon Mobil	Petroleum industry	
3	4	Apple	Electronics industry	
4	5	UnitedHealth Group	Healthcare	
		•••	•••	
95	96	Best Buy	Retail	
96	97	BristolMyers Squibb	Pharmaceutical industry	
97	98	United Airlines	Airline	
98	99	Thermo Fisher Scientific	Laboratory instruments	
99	100	Qualcomm	Technology	

	Revenue (USD millions)	Revenue growth	Employees	Headquarters
0	611289	0.067	2100000	Bentonville, Arkansas
1	513983	0.094	1540000	Seattle, Washington
2	413680	0.448	62000	Spring, Texas
3	394328	0.078	164000	Cupertino, California
4	324162	0.127	400000	Minnetonka, Minnesota
				•••
95	46298	0.106	71100	Richfield, Minnesota
96	46159	0.005	34300	New York City, New York
97	44955	0.825	92795	Chicago, Illinois
98	44915	0.145	130000	Waltham, Massachusetts
99	44200	0.317	51000	San Diego, California

[100 rows x 7 columns]

```
#Calculating the correlation between 'Employees' and 'Revenue Growth Percentage (RGP)' correlation_coefficient = df['Employees'].corr(df['Revenue growth'])
```

print(f"Correlation coefficient between number of employees and revenue growth percentages (RGP): {correlation_coefficient:.3f}")

```
# Interpreting the correlation coefficient
if 0.7 <= correlation_coefficient <= 1:</pre>
```

```
interpretation = "strong positive correlation"
elif 0.3 < correlation_coefficient < 0.7:</pre>
   interpretation = "moderate positive correlation"
elif 0 < correlation_coefficient <= 0.3:</pre>
   interpretation = "weak positive correlation"
elif -0.3 < correlation_coefficient <= 0:</pre>
   interpretation = "weak negative correlation"
elif -0.7 < correlation_coefficient <= -0.3:
   interpretation = "moderate negative correlation"
   interpretation = "strong negative correlation"
print(f"There's a {interpretation} between the number of employees and revenue growth percentage.")
print("\n")
print("This suggests that there may be a weak inverse relationship in that companies with more employees may experience a lower RGP and vice '
    Correlation coefficient between number of employees and revenue growth percentages (RGP): -0.230
    There's a weak negative correlation between the number of employees and revenue growth percentage.
    This suggests that there may be a weak inverse relationship in that companies with more employees may experience a lower RGP and vice ve
#Performing simple linear regression (OLS) analysis to understand the impact of the number of employees on RGP
X = df['Employees']
y = df['Revenue growth']
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
print(model.summary())
                          OLS Regression Results
    ______
    Dep. Variable: Revenue growth R-squared:
    Model:
                                OLS Adj. R-squared:
                        Least Squares
    Method:
                                      F-statistic:
                                                                   5.478
                     Sun, 27 Aug 2023
                                                                  0.0213
    Date:
                                      Prob (F-statistic):
                        23:15:28
                                      Log-Likelihood:
                                                                  15.210
    Time:
    No. Observations:
                                100
                                      AIC:
                                                                   -26.42
    Df Residuals:
                                 98
                                      BIC:
                                                                   -21.21
    Df Model:
                           nonrobust
    Covariance Type:
    ______
                 coef std err t P>|t| [0.025 0.975]
    ______
    const 0.2263 0.025 9.155 0.000 0.177 0.275
Employees -1.817e-07 7.76e-08 -2.340 0.021 -3.36e-07 -2.76e-08
    ______
    Omnibus:
                             36.930 Durbin-Watson:
                               0.000 Jarque-Bera (JB):
1.622 Prob(JB):
    Prob(Omnibus):
                                                                  63.683
    Skew:
                                                                1.48e-14
    Kurtosis:
                               5.181 Cond. No.
                                                                3.75e+05
    ______
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    [2] The condition number is large, 3.75e+05. This might indicate that there are
    strong multicollinearity or other numerical problems.
#Plotting the scatter plot with regression line
plt.scatter(df['Employees'], df['Revenue growth'], color='blue', label='Data points')
plt.plot(df['Employees'], predictions, color='red', label='Regression Line')
plt.xlabel('Number of Employees (millions)')
plt.ylabel('Revenue Growth')
plt.title('Relationship between Number of Employees and Revenue Growth')
plt.legend()
plt.show()
С→
```

9.75e-14 5.21e-13

0.005

Relationship between Number of Employees and Revenue Growth

#Performing Polynomial Regression to Capture non-linear relationship df['Employees_squared'] = df['Employees'] ** 2

```
x_poly = df[['Employees', 'Employees_squared']]
x_poly = sm.add_constant(x_poly)
model2 = sm.OLS(y, x_poly).fit()
print("\nPolynomial Regression:\n", model2.summary())
```

Polynomial Regression:

OLS Regression Results

========								
Dep. Varia	ble:	Revenue growth	R-squared:	0.128				
Model:		OLS	Adj. R-squared:	0.110				
Method:		Least Squares	F-statistic:	7.144				
Date:		Sun, 27 Aug 2023	Prob (F-statistic):	0.00128				
Time:		18:21:20	Log-Likelihood:	19.361				
No. Observ	ations:	100	AIC:	-32.72				
Df Residua	ls:	97	BIC:	-24.91				
Df Model:		2						
Covariance	Tyne:	nonrohust						

______ coef std err t P>|t| [0.025 0.975]
 const
 0.2829
 0.031
 9.179
 0.000

 Employees
 -7.053e-07
 1.96e-07
 -3.606
 0.000

 Employees_squared
 3.095e-13
 1.07e-13
 2.898
 0.005
 0.222 0.344 -1.09e-06 -3.17e-07

Kurtosis:	4.890	Cond. No.	7.70e+11					
Skew:	1.414	Prob(JB):	3.37e-11					
Prob(Omnibus):	0.000	Jarque-Bera (JB):	48.228					
Omnibus:	30.989	Durbin-Watson:	2.247					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.7e+11. This might indicate that there are strong multicollinearity or other numerical problems.

```
#Log-Transformed Regression
df['log_Employees'] = np.log(df['Employees'])
```

```
X_log = df['log_Employees']
X_log = sm.add_constant(X_log)
```

model3 = sm.OLS(y, X_log).fit() print("\nLog-transformed Regression:\n", model3.summary())

Log-transformed Regression:

OLS Regression Results

OLS REGRESSION RESULTS								
=======================================								
Dep. Variable:	Revenue growth	R-squared:	0.240					
Model:	OLS	Adj. R-squared:	0.232					
Method:	Least Squares	F-statistic:	30.86					
Date:	Sun, 27 Aug 2023	Prob (F-statistic):	2.38e-07					
Time:	18:23:21	Log-Likelihood:	26.180					
No. Observations:	100	AIC:	-48.36					
Df Residuals:	98	BIC:	-43.15					
Df Model:	1							
Covariance Type:	nonrobust							

	coef	std err	t	P> t	[0.025	0.975]	
const log_Employees	1.1289 -0.0824	0.169 0.015	6.679 -5.555	0.000 0.000	0.793 -0.112	1.464 -0.053	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		34.323 0.000 1.464 5.412	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		2.258 59.977 9.46e-14 103.		

Notes:

print(model.summary())

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
#Adding Categorical variables 'Industry' and 'Headquarters (as State)' to Regression for a Richer model
df['State'] = df['Headquarters'].str.split(', ').str[-1]

#One-hot encoding for 'Industry' and 'State'
industry_dummies = pd.get_dummies(df['Industry'], drop_first=True, prefix='Industry')
state_dummies = pd.get_dummies(df['State'], drop_first=True, prefix='State')

df_encoded = pd.concat([df, industry_dummies, state_dummies], axis=1)
X = df_encoded[['Employees'] + list(industry_dummies.columns) + list(state_dummies.columns)]
X = sm.add_constant(X)
y = df['Revenue growth']

model = sm.OLS(y, X).fit()
```

OLS Regression Results

Dep. Variable:	Revenue growth	R-squared:	0.863				
Model:	OLS	Adj. R-squared:	0.644				
Method:	Least Squares	F-statistic:	3.932				
Date:	Sun, 27 Aug 2023	Prob (F-statistic):	9.59e-06				
Time:	22:39:13	Log-Likelihood:	111.96				
No. Observations:	100	AIC:	-99.92				
Df Residuals:	38	BIC:	61.60				
Df Model:	61						
Covariance Type:	nonrobust						

		=======	=======	=======	========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1242	0.189	-0.658	0.515	-0.506	0.258
Employees	1.376e-07	1.21e-07	1.138	0.262	-1.07e-07	3.82e-07
Industry Aerospace and defense	-0.1811	0.140	-1.293	0.202	-0.465	0.102
Industry Agriculture cooperative	0.0789	0.155	0.510	0.613	-0.234	0.392
Industry Agriculture manufacturing	-0.0460	0.133	-0.329	0.744	-0.329	0.237
Industry Airline	0.5251	0.084	6.230	0.000	0.354	0.696
Industry Apparel	0.0811	0.110	0.735	0.467	-0.142	0.305
Industry Automotive	0.1481	0.114	1.304	0.200	-0.082	0.378
Industry Automotive and Energy	0.3030	0.139	2.175	0.200	0.021	0.585
Industry Automotive industry	0.0722	0.113	0.637	0.528	-0.157	0.302
Industry Beverage	-0.2248	0.138	-1.633	0.111	-0.503	0.054
Industry Chemical industry	-0.0332	0.119	-0.279	0.781	-0.273	0.207
Industry Conglomerate	-0.1111	0.087	-1.277	0.209	-0.287	0.065
Industry_Consumer products Manufacturing	-0.0817	0.142	-0.575	0.569	-0.369	0.206
Industry Electronics industry	-0.1411	0.143	-0.989	0.329	-0.430	0.148
Industry Financial	-0.0218	0.098	-0.222	0.826	-0.220	0.177
Industry Financial services	-0.0918	0.137	-0.670	0.507	-0.369	0.186
Industry Financials	-0.0931	0.053	-1.764	0.086	-0.200	0.014
Industry Food Processing	0.2793	0.144	1.938	0.060	-0.012	0.571
Industry Food Service	0.1349	0.139	0.970	0.338	-0.147	0.416
Industry Food industry	-0.0890	0.100	-0.894	0.377	-0.290	0.113
Industry Health	-0.1521	0.139	-1.093	0.281	-0.434	0.130
Industry Health Insurance	-0.2702	0.208	-1.302	0.201	-0.690	0.150
Industry Healthcare	-0.0708	0.102	-0.696	0.490	-0.277	0.135
Industry Infotech	0.7260	0.184	3.942	0.000	0.353	1.099
Industry Insurance	-0.1432	0.066	-2.172	0.036	-0.277	-0.010
Industry Laboratory instruments	-0.0115	0.150	-0.077	0.939	-0.315	0.292
Industry Logistics	-0.3482	0.197	-1.770	0.085	-0.747	0.050
Industry Machinery	-0.0777	0.140	-0.555	0.582	-0.361	0.205
Industry Media	0.0035	0.143	0.025	0.980	-0.286	0.293
Industry Petroleum industry	0.2898	0.062	4.639	0.000	0.163	0.416
Industry Petroleum industry and Logistics	0.6412	0.184	3.487	0.001	0.269	1.013
Industry Pharmaceutical industry	-0.1865	0.067	-2.800	0.008	-0.321	-0.052
Industry Retail	-0.1404	0.073	-1.915	0.063	-0.289	0.008
Industry_Retail and Cloud Computing	-0.3732	0.241	-1.548	0.130	-0.861	0.115
Industry_Technology	-0.1043	0.067	-1.558	0.128	-0.240	0.031
Industry_Telecom Hardware Manufacturing	-0.1730	0.142	-1.218	0.231	-0.460	0.114

Industry_Telecommunications	-0.2665	0.110	-2.419	0.020	-0.490	-0.043
Industry_Transportation	-0.0993	0.136	-0.731	0.469	-0.375	0.176
State_California	0.3207	0.204	1.572	0.124	-0.092	0.734
State_Connecticut	0.4217	0.261	1.618	0.114	-0.106	0.949
State_D.C.	0.4131	0.239	1.728	0.092	-0.071	0.897
State_Florida	0.3663	0.241	1.523	0.136	-0.121	0.853
State Georgia	0.2392	0.207	1.157	0.254	-0.179	0.658

Potential Issues

Food Processing Chemical industry

Petroleum industry and Logistics

This multivariable regression can result in Multicollinearity where two or more variables are highly correlated. It is important to note that adding irrelevant variables to a regression model often causes the coefficient estimates to become less precise, therefore losing precision in the overall model.

Fun Statistics on 2023 Fortune 500 Company Data

```
#Which industries are most represented in the top 20 companies by revenue?
industry_counts = df['Industry'].value_counts()
print("Industries most represented in top 20: ")
print(industry_counts)
print('\n')
#Which companies have the highest and lowest revenue growth?
max_growth_company = df.loc[df['Revenue growth'].idxmax()]['Name']
min_growth_company = df.loc[df['Revenue growth'].idxmin()]['Name']
max_growth_value = df.loc[df['Revenue growth'].idxmax()]['Revenue growth']
min_growth_value = df.loc[df['Revenue growth'].idxmin()]['Revenue growth']
print(f"\nCompany with highest revenue growth: {max_growth_company} with a growth rate of {max_growth_value * 100:.2f}%")
print(f"Company with lowest revenue growth: {min_growth_company} with a growth rate of {min_growth_value * 100:.2f}%")
#Which companies have the highest and lowest employee counts?
max_employees_row = df.loc[df['Employees'].idxmax()]
min_employees_row = df.loc[df['Employees'].idxmin()]
max_employees_company = max_employees_row['Name']
max_employees_count = max_employees_row['Employees']
min_employees_company = min_employees_row['Name']
min_employees_count = min_employees_row['Employees']
print(f"Company with most employees: {max_employees_company} with {max_employees_count:,} employees")
print(f"Company with least employees: {min_employees_company} with {min_employees_count:,} employees")
#What is the average revenue and revenue growth for companies headquartered in different states?
df['State'] = df['Headquarters'].str.split(', ').str[1]
average_revenue_by_state = df.groupby('State')['Revenue (USD millions)'].mean()
average_growth_by_state = df.groupby('State')['Revenue growth'].mean()
print("\nAverage revenue by state:")
print(average_revenue_by_state)
print("\nAverage revenue growth by state:")
print(average_growth_by_state)
    Industries most represented in top 20:
    Financials
    Retail
    Petroleum industry
    Technology
    Pharmaceutical industry
    Healthcare
    Insurance
    Conglomerate
     Telecommunications
    Airline
    Transportation
    Food industry
    Health Insurance
    Financial
```

Machinery	1
Agriculture manufacturing	1
Aerospace and Defense	1
Telecom Hardware Manufacturing	1
Agriculture cooperative	1
Apparel	1
Infotech	1
Automotive and Energy	1
Aerospace and defense	1
Food Service	1
Logistics	1
Consumer products Manufacturing	1
Retail and Cloud Computing	1
Media	1
Beverage	1
Financial services	1
Automotive	1
Automotive industry	1
Health	1
Electronics industry	1
Laboratory instruments	1
Name: Industry, dtype: int64	

Company with highest revenue growth: TD Synnex with a growth rate of 97.20% Company with lowest revenue growth: Wells Fargo with a growth rate of 0.50%

Company with most employees: Walmart with 2,100,000 employees Company with least employees: StoneX Group with 3,605 employees

Average revenue by state:

State

Arkansas 332285.500000
California 142740.000000
Connecticut 117269.000000
Cook County 51412.000000
D.C. 100108.000000
Florida 58776.333333

Colab paid products - Cancel contracts here

✓ 0s completed at 6:06 PM

×