ITSMOre than a UNIVERSITY

Современная теория информации

Лекция 4. Арифметическое кодирование

Содержание лекции

- 💶 Код Шеннона.
- Код Гилберта-Мура.
- Блоковое кодирование.
- Прямая и обратная теоремы кодирования стационарных источников.
- Арифметическое кодирование.

Рассмотрим ансамбль $X=\{1,2,\ldots,M\}$ с вероятностями $\{p_1,p_2,\ldots,p_M\}$. Предположим, что $p_1\geq p_2\geq\cdots\geq p_M$. Для каждого $x\in X$ вычислим *кумулятивную вероятность* как

$$q_1 = 0$$

$$q_i = \sum_{j=1}^{i-1} p_j, i = 2, \dots, M.$$

Кодовое слово Шеннона для x_i – двоичная запись первых $I_i = \lceil -\log p_i
ceil$ бит после запятой двоичного представления q_i .

Пример

X	p(x)	q(x)	I(x)	c(x)
а	0.35	0	2	00
b	0.20	0.35	3	010
С	0.15	0.55	3	100
d	0.1	0.70	4	1011
е	0.1	0.80	4	1100
f	0.1	0.90	4	1110

$$\bar{l} = \sum_{x} p(x)l(x) = 2.95 > H = 2.4016$$

Пример

X	p(x)	q(x)	I(x)	c(x)
а	0.35	0	2	00
b	0.20	0.35	3	010
С	0.15	0.55	3	100
d	0.1	0.70	4	1011
е	0.1	0.80	4	1100
f	0.1	0.90	4	1110

Графическая интерпретация кода Шеннона

$$x = d; q(x) = 0.7$$

Графическая интерпретация кода Шеннона

$$x = d; q(x) = 0.7$$

Графическая интерпретация кода Шеннона

$$x = d; q(x) = 0.7$$

Свойства

- $I_i = \lceil -\log p_i \rceil < -\log p_i + 1$, to $\bar{I} < H + 1$
- Код является префиксным: $l_i = \lceil -\log p_i \rceil \ge -\log p_i, \Rightarrow p_i \ge 2^{-l_i}.$ $j > i, q_j q_i \ge p_i \ge 2^{-l_i}, 2^{-l_i} = 0. \underbrace{00 \dots 01}_{l_i}$

Поэтому $oldsymbol{c}_i$ длины I_i отличается от $oldsymbol{c}_j$ хотя бы в одном из разрядов $1...I_i$.

Пример:
$$q(b) - q(a) = p(a) = 0.35 > 0.25$$
, $I(a) = 2$, $c(a) = 00$ and $c(b) = 01...$

• Код Шеннона требует сортировки вероятностей.

Свойства

- $l_i = \lceil -\log p_i \rceil < -\log p_i + 1$, to $\bar{l} < H + 1$
- Код является префиксным: $l_i = \lceil -\log p_i \rceil \ge -\log p_i, \Rightarrow p_i \ge 2^{-l_i}.$ $j > i, \ q_j q_i \ge p_i \ge 2^{-l_i}, \ 2^{-l_i} = 0.\underbrace{00\ldots 01}_{l_i}$

Поэтому c_i длины l_i отличается от c_j хотя бы в одном из разрядов $1...l_i$.

Пример:
$$q(b) - q(a) = p(a) = 0.35 > 0.25$$
, $I(a) = 2$, $c(a) = 00$ and $c(b) = 01$...

• Код Шеннона требует сортировки вероятностей.

Свойства

- $l_i = \lceil -\log p_i \rceil < -\log p_i + 1$, to $\bar{l} < H + 1$
- Код является префиксным: $l_i = \lceil -\log p_i \rceil \ge -\log p_i, \Rightarrow p_i \ge 2^{-l_i}.$ $j > i, \ q_j q_i \ge p_i \ge 2^{-l_i}, \ 2^{-l_i} = 0. \underbrace{00 \dots 01}_{l_i}$

Поэтому c_i длины l_i отличается от c_j хотя бы в одном из разрядов $1...l_i$.

Пример:
$$q(b) - q(a) = p(a) = 0.35 > 0.25$$
, $I(a) = 2$, $c(a) = 00$ and $c(b) = 01$...

• Код Шеннона требует сортировки вероятностей.

Пример, когда вероятности не отсортированы

X	p(x)	q(x)	I(x)	c(x)
а	0.1	0	4	0000
b	0.3	0.1	2	00
С	0.6	0.4	1	0

Можно избежать сортировки используя код Гилберта-Мура за счёт введения дополнительной избыточности.

Пример, когда вероятности не отсортированы

X	p(x)	q(x)	I(x)	c(x)
а	0.1	0	4	0000
b	0.3	0.1	2	00
С	0.6	0.4	1	0

Можно избежать сортировки используя код Гилберта-Мура за счёт введения дополнительной избыточности.

Код Гилберта-Мура

Рассмотрим ансамбль $X=\{1,2,\ldots,M\},\ \{p(1),p(2),\ldots,p(M)\}.$ Для каждого $x\in X$ вычислим модифицированную кумулятивную вероятность

$$\sigma_i=q_i+\frac{p_i}{2},\ i=1,2,\ldots,M,$$

где $q_1=0,\ q_i=\sum_{j=1}^{i-1}p_j.$ Кодовое слово x_i — это двоичная последовательность, представляющая собой первые

$$I_i = \left\lceil -\log\left(\frac{p_i}{2}\right)\right\rceil$$

бит после запятой в двоичном представлении σ_i .

Код Гилберта-Мура _{Пример}

X	p(x)	q(x)	$\sigma(x)$	I(x)	c(x)
а	0.35	0	0.175	3	001
b	0.20	0.35	0.450	4	0111
С	0.15	0.55	0.625	4	1010
d	0.1	0.70	0.750	5	11000
е	0.1	0.80	0.850	5	11011
f	0.1	0.90	0.950	5	11110

$$\bar{l} = \sum_{x} p(x)l(x) = 3.95 > H = 2.4016$$

Код Гилберта-Мура

ullet Код является префиксным: для $i < j, \sigma_j > \sigma_i$

$$\begin{split} \sigma_{j} - \sigma_{i} &= \sum_{h=1}^{j-1} p_{h} + \frac{p_{j}}{2} - \sum_{h=1}^{i-1} p_{h} - \frac{p_{i}}{2} = \\ &= \sum_{h=i}^{j-1} p_{h} + \frac{p_{j} - p_{i}}{2} \geq \\ &\geq p_{i} + \frac{p_{j} - p_{i}}{2} = \\ &= \frac{p_{j} + p_{i}}{2} \geq \frac{\max\{p_{i}, p_{j}\}}{2} \geq 2^{-\min\{l_{i}, l_{j}\}}, \end{split}$$

где

$$I_m = \left\lceil -\log \frac{p_m}{2} \right\rceil \ge -\log \frac{p_m}{2}.$$

ullet Средняя длина кодового слова: $ar{l} < H + 2$.

Код Гилберта-Мура _{Пример}

X	p(x)	q(x)	$\sigma(x)$	I(x)	c(x)
0	0.1	0.0	0.05	5	00001
1	0.6	0.1	0.4	2	01
2	0.3	0.7	0.85	3	110

Код Гилберта-Мура

Графическая интерпретация

- $X = \{x_1, x_2, x_3\}, p(x_1) = 0.1, p(x_2) = 0.6, p(x_3) = 0.3$
- $q(x_1) = 0, q(x_2) = 0.1, q(x_3) = 0.7$
- $s(x_1) = 0.05, s(x_2) = 0.4, s(x_3) = 0.85$

Рассмотрим кодирование x_2 .

Код Гилберта-Мура

Графическая интерпретация

- $p(x_1) = 0.1, p(x_2) = 0.6, p(x_3) = 0.3$
- $q(x_1) = 0, q(x_2) = 0.1, q(x_3) = 0.7$
- $s(x_1) = 0.05, s(x_2) = 0.4, s(x_3) = 0.85$
- Декодируем кодовое слово 01 или $\hat{s} = 0.25$.

- После округления до $I(x_i)$ разрядов, число $s(x_i) = q(x_i) + p(x_i)/2$ уменьшается не более чем на $p(x_i)/2$, поскольку ошибка округления не больше, чем $2^{-I(x_i)} \le p(x_i)/2$.
- ullet Декодирование: найти x_i , такое что $q(x_i) \leq \hat{s} < q(x_{i+1})$.

Чтобы уменьшить кодовую избыточность мы можем использовать блокове кодирование:

- ① Пусть $x \in X = \{0, 1, \dots, M-1\}$. Последовательность на выходе источника будем кодировать блоками $\mathbf{x} = (x_1, x_2, \dots, x_n)$.
- ② Каждый блок x длины n может рассматриваться как буква нового укрупнённого алфавита из всех комбинаций векторов длины n.
- Применим любой алгорим побуквенного кодирования для укрупнённого алфавита.

Энтропия укрупнённого алфавита:

$$H(X^n) = -\sum_{\mathbf{x} \in X^n} p(\mathbf{x}) \log_2 p(\mathbf{x}).$$

Пусть r_n – избыточность укрупнённого алфавита, тогда $ar{l} = H(X^n) + r_n$. Средние затраты на символ исходного алфавита:

$$\bar{R} = \frac{H(X^n) + r_n}{n} = \frac{H(X^n)}{n} + \frac{r_n}{n}.$$

ullet Для источника без памяти $H(X^n)=nH(X)$ получим:

$$\bar{R} = H(X) + \frac{r_n}{n}$$
.

Если $n \to \infty$, то $\frac{r_n}{n} \to 0$.

ullet Для источника с памятью $H(X^n) \leq nH(X)$, и поэтому $H(X^n) \leq H(X)$

$$\frac{H(X^n)}{n} \le H(X)$$

$$\lim_{n\to\infty}\frac{H(X^n)}{n}=H_\infty(X)$$

Прямая и обратная теоремы кодирования

Theorem

- ullet Обратная: $ar{R} \geq H_{\infty}(X)$
- ullet Прямая: Для любого $\epsilon>0$ существует префиксный код с $ar{R} \leq H_{\infty}(X) + \epsilon$

Доказательство.

- ullet Для укрупнённых символов ${m x} \in X^n$, ${ar l}_n \geq H(X^n)$.
- ullet Для любого n существует код (например, Шеннона), такой что $ar{l}_n \leq H(X^n) + 1.$
- ullet $R_n=ar{l}_n/n\geq H(X^n)/n\geq H_\infty(X)$ для всех n
- ullet Для $n \geq n_0$ и $\epsilon > 0$ $R_n \leq H_\infty(x) + \epsilon$

- **1** Код Хаффмана для укрупнённого алфавита сложно использовать на практике. Если |X|=256, то для n=2 $|X^n|=65536$.
- Код Шеннона сложно использовать, так как он требует сортировки.
- 🧿 Код Гилберта-Мура хорошо подходит для кодирования блоков.
- Арифметическое кодирование является обобщением кода Гилберта-Мура для случая блокового кодирования.

Для $\mathbf{x} \in X^n$ вычислим:

- q(x)
- **3** $\sigma(x) = q(x) + p(x)/2$

Лексикографический порядок

- Пронумеруем все последовательности из Xⁿ в алфавитном (лексикографическом) порядке.
- ② Пусть i наименьший индекс такой, что $x_i \neq y_j$, тогда ${m y}$ лексикографически предшествует ${m x}$ $({m x} \prec {m y})$ если $x_i \prec y_i$.
- apple energy entropy

Лексикографический порядок

Лексикографический порядок

Обозначим $q(\mathbf{x}) = \sum_{\mathbf{y} \prec \mathbf{x}} p(\mathbf{y})$. Эта куммулятивная вероятность может

быть вычислена рекурсивно:

$$q(\mathbf{x}_{1}^{n}) = \sum_{\mathbf{y}_{1}^{n} \prec \mathbf{x}_{1}^{n}} p(\mathbf{y}_{1}^{n}) =$$

$$= \sum_{\mathbf{y}_{1}^{n-1} \prec \mathbf{x}_{1}^{n-1}} \sum_{y_{n}} p(\mathbf{y}_{1}^{n-1}y_{n}) + \sum_{\mathbf{y}_{1}^{n-1} = \mathbf{x}_{1}^{n-1}} \sum_{y_{n} \prec \mathbf{x}_{n}} p(\mathbf{y}_{1}^{n-1}y_{n}) =$$

$$= \sum_{\mathbf{y}_{1}^{n-1} \prec \mathbf{x}_{1}^{n-1}} p(\mathbf{y}_{1}^{n-1}) + \sum_{\mathbf{y}_{1}^{n-1} = \mathbf{x}_{1}^{n-1}} p(\mathbf{y}_{1}^{n-1}) \sum_{y_{n} \prec \mathbf{x}_{n}} p(y_{n}) =$$

$$= q(\mathbf{x}_{1}^{n-1}) + p(\mathbf{x}_{1}^{n-1})q(\mathbf{x}_{n})$$

В итоге получим следующие рекуррентные формулы:

$$q(\mathbf{x}_{[1,n]}) = q(\mathbf{x}_{[1,n-1]}) + p(\mathbf{x}_{[1,n-1]})q(\mathbf{x}_n),$$

$$p(\mathbf{x}_{[1,n]}) = p(\mathbf{x}_{[1,n-1]})p(\mathbf{x}_n).$$

Кодер

Input:
$$M, \{p_1, ..., p_M\}, n, \{x_1, ..., x_n\}$$

1: $q_1 \leftarrow 0$
2: for $i = 2, ..., M$ do
3: $q_i \leftarrow q_{i-1} + p_{i-1}$
4: end for
5: $F \leftarrow 0, G \leftarrow 1$
6: for $i = 1, ..., n$ do
7: $F \leftarrow F + q(x_i)G$
8: $G \leftarrow p(x_i)G$
9: end for

Output: $c \leftarrow$ первые $[-\log G] + 1$ бит двоичной записи F + G/2.

Арифметическое кодирование Пример

Шаг і	Xi	$p(x_i)$	$q(x_i)$	F	G		
0	-	-	-	0,0000	1,0000		
1	b	0,6	0,1	0,1000	0,6000		
2	С	0,3	0,7	0,5200	0,1800		
3	Ь	0,6	0,1	0,5380	0,1080		
4	а	0,1	0,0	0,5380	0,0108		
5	Ь	0,6	0,1	0,5391	0,0065		
6	Длина кодового слова $\lceil -\log G + 1 ceil = 9$						
6	Κομ	довое сл	пово <i>F</i> -	$+ G/2 = 0,5423 \rightarrow$			
	\rightarrow	$\hat{F}=0,5$	541 o 1	00010101			

Графическая интерпретация

Декодер

Input:
$$M, \{p_1, ..., p_M\}, n, \hat{F}$$

1: $q_1 \leftarrow 0$

2: for $i = 2, ..., M$ do

3: $q_i \leftarrow q_{i-1} + p_{i-1}$

4: end for

5: $q_{M+1} \leftarrow 1, S \leftarrow 0, G \leftarrow 1$

6: for $i = 1, ..., n$ do

7: $j \leftarrow 1$

8: while $S + q_{j+1}G < \hat{F}$ do

9: $j \leftarrow j + 1$

10: end while

11: $F \leftarrow F + q_jG$

12: $G \leftarrow p_jG$

13: $x_i \leftarrow j$

14: end for

Пример декодирования

$$X = \{a, b, c\}.$$
 $p_a = 0, 1, p_b = 0, 6, p_c = 0, 3.$ 0100010101

Шаг	S	G	Гипотеза	q(x)	S + qG	Решение	p(x)
			X	' '		X _i	' '
0			100010	$0101 \rightarrow$	$\hat{F} = 0.541$		
			а	0,0	0,0000< F		
1	0,0000	1,0000	Ь	0,1	$0,1000 < \hat{F}$	ь	0,6
			С	0,7	0,7000> Ê		
			a	0,0	$0.1000 < \hat{F}$		
2	0, 1000	0,6000	Ь	0,1	$0,1600 < \hat{F}$	с	0,3
			с	0,7	$0,5200 < \hat{F}$		
			а	0,0	0,5200< F		
3	0,5200	0,1800	Ь	0,1	$0,5380 < \hat{F}$	Ь	0,6
			С	0,7	0,6460> <i>Ê</i>		
4	0.5380	0.1080	а	0,0	$0,5380 < \hat{F}$	_	0.1
4	0,5360	0,1080	Ь	0,1	0,5488> <i>Ê</i>	a	0,1
			a	0,0	$0.5380 < \hat{F}$		
5	0,5380	0,0108	Ь	0,1	$0,5391 < \hat{F}$	Ь	0,6
			с	0,7	0,5456> <i>Ê</i>		

Реализация

• Проблемы:

- Разрядность регистров: Количество бит, необходимое для F и G растёт с каждым умножением на вероятность.
- Задержка: кодовое слово формируется после кодирования последнего символа.

• Решение:

- 🕛 Представить входные вероятности при помощи целых чисел
 - Выдавать старшие разряды кодового слова, которые не будут меняться и сокращать разряды (ренормализовать), необходимые для F and G
- Использовать специальный счётчик "btf" (bits to follow), если старшие разряды кодового слова не определены на данном шаге. (...011111... или ...100000...)
- Результат: 16-битная реализация.

Реализация

• Проблемы:

- ① Разрядность регистров: Количество бит, необходимое для F и G растёт с каждым умножением на вероятность.
- Задержка: кодовое слово формируется после кодирования последнего символа.

• Решение:

- 🚺 Представить входные вероятности при помощи целых чисел.
- ② Выдавать старшие разряды кодового слова, которые не будут меняться и сокращать разряды (ренормализовать), необходимые для F and G
- Использовать специальный счётчик "btf" (bits to follow), если старшие разряды кодового слова не определены на данном шаге. (...011111... или ...100000...)
- Результат: 16-битная реализация.

Реализация

- Обозначим через L (low) регистр, в котором хранится F, через R (range) регистр, в котором хранится G и введем регистр H = L + R (high).
- ullet В начале работы алгоритма $L=0, H=2^b-1$, где b разрядность алгоритма.
- ullet В результате операции $R=p_jR$ регистр R может обнулиться.
- Задача ренормализации держать регистры $H \geq \frac{3}{4}2^b$, $L \leq \frac{1}{4}2^b$, т.е. $R \geq \frac{1}{2}2^b$.

Ренормализация

Анализируем разряды числа $\sigma = L + \frac{R}{2}$.

- **1** $H < \frac{1}{2}2^b$.
 - ▶ Тогда $\sigma < \frac{1}{2}2^b$.
 - Выдаём 0.
 - \vdash $H = H \times 2$, $L = L \times 2$.
- **2** $H \geq \frac{1}{2}2^b$, $L \geq \frac{1}{2}2^b$
 - ▶ Тогда $\sigma > \frac{1}{2}2^b$.
 - Выдаём 1.
 - $H = H \times 2 2^b, L = L \times 2 2^b.$
- - ▶ Тогда $\sigma <> \frac{1}{2}2^b$ (неопределённость).
 - btf = btf + 1
 - $H = H \times 2 \frac{1}{2}2^b, L = L \times 2 \frac{1}{2}2^b.$

Целочисленная реализация на MATLAB

```
function y=int arithm encoder(x,q);
% x is input data sequence.
% a is cumulative distribution (model)
% y is binary output sequence
% Constants
k=16:
R4=2^(k-2); R2=R4*2; R34=R2+R4; % half, quarter, et
                                  % Precision
% Initialization
Low=0:
             % I nw
High=R-1:
             % High
htf=0:
             % Bits to Follow
y=[]:
             % code sequence
% Encoding
for i=1:length(x):
  Range=High-Low+1:
  High=Low+fix(Range*g(x(i)+1)/g(m))-1:
  Low=Low+fix(Range*q(x(i))/q(m));
  % Normalization
  while 1
    if High<R2
      v=[v 0 ones(1.btf)]; btf=0;
      High=High*2+1: Low=Low*2:
      if Low>=R2
         v=fv 1 zeros(1.btf)1; btf=0;
         High=High*2-R+1; Low=Low*2-R;
         if Low>=R4 & High<R34
           High=2*High-R2+1: Low=2*Low-R2:
           htf=htf+1:
         معام
           hreak-
         end;
      end:
    ond:
  end: % while
end; % for
% Completina
if I owe B4
  y=[y 0 ones(1,btf+1)];
 y=[y 1 zeros(1,btf+1)];
end:
```

```
function x=int arithm decoder(v.g.n):
% y is binary encoded data sequence,
% a is cumulative distribution (model)
% x is output sequence
% n is number of messages to decode
% Constants
k=16; R4=2^(k-2); R2=R4*2; R34=R2+R4; R=2*R2;
m=length(q);
% Start decoding. Reading first k bits
Value=0; y=[y zeros(1,k)]:
for ib=1:k
  Value=2*Value+v(ib):
end:
% Initialization
Low=0; High=R-1;
% Decodina
for i=1:n
  Range=High-Low+1:
  aux=fix(( (Value-Low+1)*q(m)-1)/Range);
  i=1; % message index
  while q(i+1)<=aux, i=i+1; end;
  High=Low+fix(Range*q(i+1)/q(m))-1;
  Low=Low+fix(Range*q(i)/q(m));
  % Normalization
  while 1
    if High-R2
       High=High*2+1: Low=Low*2:
       ib=ib+1;
       Value = 2*Value+v(ib):
    oleo
       if I ow>=B2
         High=High*2-R+1; Low=Low*2-R;
         ih-ih-1:
         Value = 2*Value-R+y(ib);
        if Low>=R4 & High<R34
           High=2*High-R2+1; Low=2*Low-R2;
           ib=ib+1:
           Value = 2*Value-R2+v(ib):
        oleo
           break:
         ond:
      end:
    end
  end: % while
                        4 D > 4 D > 4 D > 4 D >
end: % for
```

1:
$$T \leftarrow R \times p(x_t)$$

2:
$$R \leftarrow R - T$$

3: if
$$x_t = 1$$
 then

4:
$$L \leftarrow L + R$$

5:
$$R \leftarrow T$$

6: end if

7: *call* Ренормализация

1:
$$T \leftarrow R \times p(x_t)$$

2:
$$R \leftarrow R - T$$

3: if F < R then

4:
$$x_t = 0$$

5: **else**

6:
$$L \leftarrow L + R$$

7:
$$R \leftarrow T$$

8:
$$x_t = 1$$

9: end if

10: *call* Ренормализация

Ренормализация

```
1: while R < 2^{b-2} do
      if L > 2^{b-1} then
         WriteOnes(1)
 3:
 4:
          WriteZeros(bits to follow), bits to follow \leftarrow 0
         I \leftarrow I - 2^{b-1}
       else if L < 2^{b-2} then
 6:
          WriteZeros(1)
7:
          WriteOnes(bits to follow), bits to follow \leftarrow 0
8:
       else
 9:
          bits to follow \leftarrow bits to follow + 1
10:
         L \leftarrow L - 2^{b-2}
11:
    end if
12:
      L \leftarrow L \ll 1 \ R \leftarrow R \ll 1
13:
14: end while
```

Реализация без умножений

После ренормализации регистр R находится в интервале:

$$\frac{1}{2}2^{b-1} \le R < 2^{b-1}.$$

Поэтому умножением может быть аппроксимировано следующим образом:

$$T = R \times \hat{\rho}_t \approx \alpha 2^{b-1} \times \hat{\rho}_t,$$

где $\alpha \in [\frac{1}{2},...,1)$. Для улучшения точности M-coder квантует интервал $[\frac{1}{2}2^{b-1};2^{b-1})$ равномерно на 4 интервала. Затем, для каждого из четырёх интервалов результат умножения $R \times \hat{p}_s$ помещается в таблицу $TabRangeLPS[s][\Delta]$, состоящую из 64×4 значений.

Реализация M-coder¹

1:
$$\Delta \leftarrow (R-2^{b-2}) \gg (b-4)$$

2:
$$T \leftarrow TabRangeLPS[s][\Delta]$$

3:
$$R \leftarrow R - T$$

4: if
$$x_i \neq MPS$$
 then

5:
$$L \leftarrow L + R$$

7: if
$$s = 0$$
 then

8: MPS
$$\leftarrow$$
! MPS;

10:
$$s \leftarrow TransStateLPS[s]$$

12:
$$s \leftarrow TransStateMPS[s]$$

- 13: end if
- 14: call Renormalization procedure

Байтовая ренормализация (range coder) для недвоичного 2 и двоичного 3 алфавита

1: while
$$(L \oplus (L+R)) < 2^{24}$$
 or $R < 2^{16}$ do 2: PUTBYTE $(L \gg 24)$ 3: $R \leftarrow R \ll 8$ $(L \oplus (L+R)) \geq 2^{24}$ then 4: $L \leftarrow L \ll 8$ 3: $R \leftarrow (!L+1) \wedge (2^{16}-1)$ 5: else if $R < 2^{16}$ then 6: $R \leftarrow (!L+1) \wedge (2^{16}-1)$ 7: PUTBYTE $(L \gg 24)$ 6: $R \leftarrow R \ll 8$ 8: $R \leftarrow R \ll 8$ 9: $R \leftarrow R \ll 8$ 10: end if

²D.Subbotin, "Carryless Rangecoder," 1999.

³E.Belyaev, K.Liu, M.Gabbouj, Y.Li, An efficient adaptive binary range coder and its VLSI architecture // IEEE Trans. on Circuits and Systems for Video Technology, 2015, a.e.

Двоичное арифметическое кодирование Сложность

$$C_A = \frac{\alpha_A \cdot N + \beta_A \cdot B}{N}, C_R = \frac{\alpha_R \cdot N + \frac{1}{8} \cdot \beta_R \cdot B}{N},$$

 α — сложность обновления регистров R и L, β — сложность ренормализации, N — количество входных двоичных символов, B — длина сжатого потока в битах:

$$B = N \cdot \Big(h(p) + r(p)\Big).$$

Предположим, что $lpha_{A}pproxeta_{A}pproxlpha_{R}pproxeta_{R}$, тогда

$$\frac{C_A(p) - C_R(p)}{C_A(p)} \approx \frac{\frac{7}{8} \cdot h(p)}{1 + h(p)} \in [0, ..., 0.4375].$$

Сложность4

⁴E.Belyaev, A.Veselov, A.Turlikov and Kai Liu, Complexity analysis of adaptive binary arithmetic coding software implementations // The 11th International Conference on Next Generation Wired/Wireless Advanced Networking, 2011

Кодирование Марковского источника с s=1

$$H(\omega) = \pi_0 \cdot H(s_0) + \pi_1 \cdot H(s_1),$$

$$\pi_0 = \frac{p(0|1)}{p(0|1) + p(1|0)}, \pi_1 = \frac{p(1|0)}{p(0|1) + p(1|0)}.$$

$$H(s_0) = -p(0|0) \cdot \log_2 p(0|0) - p(1|0) \cdot \log_2 p(1|0),$$

$$H(s_1) = -p(1|1) \cdot \log_2 p(1|1) - p(0|1) \cdot \log_2 p(0|1).$$

Контекстное кодирование двоичного марковского источника с $\mathit{s}=1$

Input:
$$M=2,\{p(1|0),p(1|1),\},\ n,\ \{x_1,...,x_n\},s_0=0$$
1: for $i=1,...,n$ do
2: if $s_{i-1}=0$ then
3: $p(x_t)\leftarrow p(1|0)$
4: else
5: $p(x_t)\leftarrow p(1|1)$
6: end if
7: $T\leftarrow R\times p(x_t)$
8: $R\leftarrow R-T$
9: $s_i\leftarrow 0$
10: if $x_t=1$ then
11: $L\leftarrow L+R,\ R\leftarrow T$
12: $s_i\leftarrow 1$
13: end if
14: $call$ Ренормализация
15: end for

Кодирование Марковского источника с s=2

Кодирование недвоичного алфавита при помощи древовидной бинаризации

Кодирование недвоичного алфавита при помощи унарной бинаризации

n	unar(n)
1	1
2	01
3	001
4	0001
5	00001
n	0001
	n-1