Precalculus Homework Lecture 3

- 1. Use the known values of $\sin 30^\circ, \cos 30^\circ, \sin 45^\circ, \cos 45^\circ, \sin 60^\circ, \cos 60^\circ, \dots$, the angle sum formulas and the cofunction identities to find an exact value (using radicals) for the trigonometric function.
 - (a) The six trigonometric functions of $105^{\circ} = 45^{\circ} + 60^{\circ}$:

• $\sin{(105^{\circ})}$.

answer: $\sqrt{6+\sqrt{2}}$

• $\cos{(105^{\circ})}$. Should your answer be a positive or a negative number?

• tan (105°).

answer: $\sqrt{2} - \sqrt{6}$

answer: $-\sqrt{8}$

• $\cot (105^{\circ})$.

answer: $\sqrt{3}-2$

• $\sec{(105^{\circ})}$.

• $\csc{(105^{\circ})}$.

7.A. O.A. :YOUGUM

answet: $\sqrt{6} - \sqrt{2}$

(b) The six trigonometric functions of $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$:

• $\sin\left(\frac{\pi}{12}\right)$.

answer: $\sqrt{6} - \sqrt{2}$

answer: $\sqrt{2+\sqrt{6}}$

• $\cos\left(\frac{\pi}{12}\right)$. Should $\sin\left(\frac{\pi}{12}\right)$ be larger or smaller than $\cos\left(\frac{\pi}{12}\right)$?

• $\tan\left(\frac{\pi}{12}\right)$.

 $\sqrt{3} + 2$

• $\cot\left(\frac{\pi}{12}\right)$.

• $\sec\left(\frac{\pi}{12}\right)$.

• sec $(\overline{12})$.

• $\csc\left(\frac{\pi}{12}\right)$.

answer: $\sqrt{6} + \sqrt{2}$

answer: $\sqrt{3} + 2$

2. Simplify to a trigonometric function of the angle θ . The answer key has not been proofread, use with caution.

(a) $\sin\left(\frac{\pi}{2} - \theta\right)$.

(b) $\cos\left(\frac{13\pi}{2} - \theta\right)$.

θ nis ποwens

SOS :SOS B

(c) $\tan (\pi - \theta)$

(d) $\cot\left(\frac{3\pi}{2} - \theta\right)$

answer: — tan 6

(e) $\csc\left(\frac{3\pi}{2} + \theta\right)$

answer sec θ

3. Problems 3.c and 3.d are considered challenge problems and will not be tested/quizzed upon. Using the power-reducing formulas, rewrite the expression in terms of first powers of the cosines and sines of multiples of the angle θ .

(a) $\sin^4 \theta$.

Subsect $\frac{8}{1}\cos(4\theta) - \frac{5}{1}\cos(5\theta) + \frac{8}{3}$

(b) $\cos^4 \theta$.

Submet: $\frac{8}{7}\cos(4\theta) + \frac{5}{7}\cos(5\theta) + \frac{8}{3}$

(c) $\sin^6 \theta$.

Buswell sing $\theta = -\frac{32}{4}\cos(\theta\theta) + \frac{16}{3}\cos(\theta\phi) - \frac{32}{4}\cos(\phi\phi) + \frac{16}{4}\cos(\phi\phi)$

(d) $\cos^6 \theta$.

Submodes
$$\cos_\theta \ \theta = \frac{35}{1} \cos \left(\theta \theta \right) + \frac{16}{3} \cos \left(\theta \theta \right) + \frac{35}{12} \cos \left(5 \theta \right) + \frac{16}{2}$$

4. Use the sum-to-product formulas to find all solutions of the trigonometric equation in the interval $[0, 2\pi)$.

Please note that typing a query such as "solve($\sin(x)+\sin(3x)=0$)" at www.wolframalpha.com will provide you with a correct answer and a function plot.

(a) $\sin(x) + \sin(3x) = 0$.

answer:
$$x=0$$
 , π , $\frac{\pi}{2}$, $0=x$: The same $\frac{3\pi}{2}$

(b) $\cos(x) + \cos(-3x) = 0$.

$$\frac{\pi 7}{\hat{L}}$$
 , $\frac{\pi E}{C}$, $\frac{\pi \tilde{L}}{\hat{L}}$, π , $\frac{\pi E}{\hat{L}}$, $\frac{\pi}{C}$, $\frac{\pi}{\hat{L}}$, $\frac{\pi}{\hat{L}}$ = x :Inward

(c) $\sin(x) - \sin(3x) = 0$.

answer
$$\frac{\pi \, 7}{4} \, , \frac{\pi \, 6}{4} \, , \pi \, , \frac{\pi \, 6}{4} \, , \frac{\pi \, 7}{4} \, , 0 = x$$
 . Then we have

(d) $\cos(2x) - \cos(3x) = 0$.

answer
$$x=0$$
 , $\frac{\pi 8}{5}$, $\frac{\pi 6}{5}$, $\frac{\pi}{5}$, $\frac{4}{5}$, $0=x$ Therefore