Problem Set #1

Measure Theory, Jan Ertl Alex Weinberg¹

Solution 1. (1.3)

- 1. Suppose $s \in \mathbb{R}$ open. So $s \in \mathbb{G}_1$ by definition. Take $s^c \in \mathbb{R}$ is close by properties of open/closed sets.
 - $\Rightarrow s^c \notin \mathbb{G}_1$ by definition of \mathbb{G}_1
 - \Rightarrow not closed under complements. So G1 is not a sigma-algebra.
- 2. WTS: G2 algebra
 - $\varnothing \in (a,b] \Rightarrow \varnothing \in \mathbb{G}_2$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))$ So then $\bigcup_j^M A_j = \bigcup_j^M (\bigcup_{i=1}^{N_j} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))) \in \mathbb{G}_2$

So G2 is an algebra.

- 3. WTS: G3 sig-alg
 - $\varnothing \in (a,b] \Rightarrow \varnothing \in \mathbb{G}_3$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))$ So then $\bigcup_j^{\infty} A_j = \bigcup_j^{\infty} (\bigcup_{i=1}^{\infty} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))) \in \mathbb{G}_3$

So, G3 is a sigma algebra

Solution 2. (1.7)

Suppose \mathcal{A} is an algebra. WTS: $\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$

Solution 3. (1.10) i) \varnothing

Solution 4. (1.17)

Solution 5. (1.18)

Solution 6. (1.20)

¹worked with Arpan Chakrabarti and Arushi Saksena