Geobiology

Microbial contributions to subterranean methane sinks

Journal:	Geobiology
Manuscript ID	GBI-055-2016.R1
Manuscript Type:	Report
Key Words:	methanotrophs, bacteria, caves, radiolysis, biogeochemistry, microbial

SCHOLARONE™ Manuscripts

Microbial contributions to subterranean methane sinks

J. T. Lennon¹*, D. Nguyễn-Thùy², T.M. Phạm³, A. Drobniak⁴, P.H. Tạ², N.Đ. Phạm³, T. Streil⁵, K.D. Webster⁶, A. Schimmelmann⁶

¹ Department of Biology, Indiana University, Bloomington, Indiana, USA

² Faculty of Geology, Vietnam National University, Hanoi, Vietnam

³ Department of Microbiology, Vietnam National University, Hanoi, Vietnam

⁴ Indiana Geological Survey, Indiana University, Bloomington, Indiana, USA

⁵ SARAD GmbH, Dresden, Germany

⁶ Department of Geological Sciences, Indiana University, Bloomington, Indiana, USA

* corresponding author:

Jay T. Lennon

14 Department of Biology

1001 East 3rd Street

16 Indiana University

Bloomington, Indiana 47405

18 812-856-0962

lennonj@indiana.edu

ABSTRACT

Sources and sinks of methane (CH₄) are critical for understanding global biogeochemical cycles and their role in climate change. A growing number of studies have reported that CH₄ concentrations in cave ecosystems are depleted, leading to the notion that these subterranean environments may act as sinks for atmospheric CH₄. Recently, it was hypothesized that this CH₄ depletion may be caused by radiolysis, an abiotic process whereby CH₄ is oxidized via interactions with ionizing radiation derived from radioactive decay. An alternate explanation is that the depletion of CH₄ concentrations in caves could be due to biological processes, specifically oxidation by methanotrophic bacteria. We theoretically explored the radiolysis hypothesis and conclude that it is a kinetically constrained process that is unlikely to lead to the rapid loss of CH₄ in subterranean environments. We present results from a controlled laboratory experiment to support this claim. We then tested the microbial oxidation hypothesis with a set of mesocosm experiments that were conducted in two Vietnamese caves. Our results reveal that methanotrophic bacteria associated with cave rocks consume CH₄ at a rate of 1.3 - 2.7 mg CH₄. m⁻² · d⁻¹. These CH₄ oxidation rates equal or exceed what has been reported in other habitats, including agricultural systems, grasslands, deciduous forests, and Arctic tundra. Together, our results suggest that depleted concentrations of CH₄ in caves are most likely due to microbial activity, not radiolysis as has been recently claimed. Microbial methanotrophy has the potential to oxidize CH₄ not only in caves, but also in smaller-size open subterranean spaces, such as cracks, fissures, and other pores that are connected to and rapidly exchange with the atmosphere. Future studies are needed to understand how subterranean CH₄ oxidation scales up to affect local, regional and global CH₄ cycling.

46 INTRODUCTION

Atmospheric methane (CH₄) is a potent greenhouse gas with rising concentrations that can mainly be attributed to anthropogenic activities (IPCC, 2013; US EPA, 2015). Credible forecasting of global warming by climate models mandates knowledge about the sources and sinks of atmospheric CH₄. One potentially important, but overlooked sink of CH₄ is the oxidation that occurs in subterranean environments. Recent studies have documented that cave ecosystems sometimes have subatmospheric CH₄ concentrations. For example, in a four-year study of St. Michael's Cave in Gibraltar, the CH₄ concentrations of cave air were typically 10-fold below atmospheric levels (Mattey *et al.*, 2013). A similar pattern was documented in a set of Spanish caves with some samples having CH₄ concentrations that were below detection limits suggesting near-complete removal of CH₄ from underground air (Fernandez-Cortes *et al.*, 2015).

Two hypotheses have been put forth to explain the pattern of CH_4 depletion in subterranean environments. First, CH_4 is a carbon and energy source that can be used by methanotrophic bacteria. Although methanotrophic bacteria were found in Movile Cave in Romania (Hutchens *et al.*, 2004), microbiological surveys of methane oxidizing bacteria in caves are sparse (Jones & Macalady, 2016) and to the best of our knowledge, direct estimates of CH_4 oxidation in caves are non-existent. Instead, inferences about methanotrophy in caves have been made based on evidence from stable isotopes and thermodynamic considerations (Pohlman 2011). For example, an inverse relationship between CH_4 concentrations and CH_4 carbon stable isotope ratios (i.e., $\delta^{13}C$) was considered a diagnostic signature of methanotrophy in St. Michael's cave in Gibraltar (Mattey *et al.*, 2013). A second and more recent hypothesis is that CH_4 depletion in subterranean ecosystems is due to radiolysis. This abiotic mechanism of CH_4 oxidation was developed to help explain low CH_4 concentrations in a poorly ventilated cave that

had a high density of ions, but no recoverable methanotrophic bacteria (Fernandez-Cortes *et al.*, 2015). An inverse correlation between the concentration of CH_4 and ions in cave air was provided as evidence that α -particles and induced ionization from radioactive decay (*via* radon and daughter nuclides) may contribute to the removal of CH_4 from subterranean environments (Fernandez-Cortes *et al.*, 2015).

In this study, we test the relative importance of biotic and abiotic mechanisms that have been put forward to explain low concentrations of CH₄ observed in cave ecosystems. First, we develop theoretical expectations in an effort to constrain the rates of radiolytic CH₄ oxidation. Second, we present results from a controlled laboratory experiment aimed at quantifying the effect of ionizing radiation on the rate of CH₄ oxidation. Third, we discuss findings from a set of field mesocosm experiments in Vietnamese caves to quantify the methanotrophic potential of cave microbial communities.

RESULTS AND DISCUSSION

Weak theoretical support for the importance of radiolytic CH₄ oxidation — The following thought experiments reveal that radiolysis is a process that should contribute minimally to CH₄ oxidation in subterranean environments on short (i.e., daily) time scales as has been recently claimed (Fernandez-Cortes *et al.*, 2015). We arrive at this conclusion based on the imbalance between the large number of CH₄ molecules and the comparatively small number of radioactive decay events that are typical in cave air.

Ionizing radiation in the air of subterranean limestone-based ecosystems is derived predominantly from α -particles that are associated with radon decay (Cigna, 2005; Alvarez-Gallego *et al.*, 2005). These α -particles could lead to the oxidation of CH₄ *via* different

mechanisms. For example, radiolysis could result from the direct collision of α -particles with CH₄ molecules. In this case, an α -particle splits a CH₄ molecule, which triggers a subsequent exothermic oxidation reaction of ions and radicals with atmospheric oxygen. However, with a decay rate of \sim 35,000 ²²²Rn atoms per second in a cubic meter of air, as measured in a Spanish cave (Fernandez-Cortes *et al.*, 2015), it would take nearly 50 million years to eliminate 2 ppmv of CH₄ as a result of direct collision between α -particles and CH₄ molecules.

A more likely mechanism occurs when radiogenic energy interacts with water molecules and other major chemical constituents of cave air and thus produces ions and radicals that enter secondary chemical reactions with CH₄. For example, radiolysis of water vapor via radon decay could generate hydroxyl radicals (•OH) that act to remove CH₄. However, if every α-decay at 35,000 Bg m⁻³ generates 4.3 · 10⁵ ions and radicals (Fernandez-Cortes et al., 2015), it would still require more than 100 years to eliminate 2 ppmv of CH₄. While there are reports of ionizing radiation reaching extremely high levels (155,000 Bq m⁻³; Hyland and Gunn, 1994; Field, 2007), radon concentrations in caves are generally much lower. A global survey of caves revealed that radon concentrations are lognormally distributed with an average of about 2,500 Bq m⁻³ (Cigna, 2005). Based on this value, we calculate that it would take almost 20,000 years to oxidize 2 ppmy of CH₄. Likely, this overestimates the potential for radiolytic CH₄ oxidation since the calculations unrealistically assume that all •OH selectively react with CH₄. It is worth noting that our calculations do not take into account non-atmospheric sources of CH₄ (geologically sourced natural gas ascending along faults into caves, or methanogenesis within or above caves), nor do we attempt to model other complexities such as atmosphere-cave air exchange. Rather, our goal was to generate first-order approximations for the potential rates of radiolytic CH₄ oxidation. Based on this, we conclude that radiolysis is a kinetically constrained process that is unlikely to

act as a daily CH₄ sink in subterranean ecosystems (Fernandez-Cortes *et al.*, 2015). More detail regarding the assumptions and calculations that were used to arrive at our predictions can be found in the Supplementary Information.

Weak experimental support for the importance of radiolytic CH₄ oxidation — We conducted a laboratory experiment to test the predictions from our theoretical calculations regarding radiolytic CH₄ oxidation. Briefly, we placed 7.08 g uranium metal powder in a Petri dish on the bottom of a humid polyethylene bag containing 43 L of air with an elevated CH₄ concentration (23.5 ppmv). The radioactivity inside the closed bag containing depleted uranium was approximately 2.5 · 10⁶ Bg m⁻³. This level is 70-fold higher than the natural radiation reported in Spanish cave air (Fernandez-Cortes et al., 2015) and exceeds the radiation that would be found in caves having the highest reported radon concentrations in the world (Hyland & Gunn 1994; Cigna, 2005; Field, 2007). Yet, in the presence of strong ionizing radiation, CH₄ was lost from the system at the slow rate of 0.197 ± 0.0005 (\pm standard error) ng CH₄·m⁻³·d⁻¹, which was indistinguishable from the diffusive loss of CH₄ from polyethylene control bags lacking uranium (one-sample *t*-test: $t_6 = -0.97$, P = 0.37, Fig.1). Qualitatively, these findings support our theoretical predictions and provide experimental evidence that ionizing radiation has a minimal effect on CH₄ oxidation rates over short (i.e., daily) time scales. More detail concerning experimental procedures can be found in Supplementary Information.

Strong experimental support for the importance of biotic CH₄ oxidation — We conducted a field mesocosm experiment to test whether or not microbial methanotrophy has the potential to act as a daily sink for CH₄ in caves. Our experiments were conducted in two caves located on

low-altitude, coastal karst of Cát Bà Island in northern Vietnam. Hoa Cương cave is on the north end of Cát Bà Island and in limestone of the Carboniferous-lower Permian Bắc Sơn (or Đá Mài) Formation, while Minh Châu cave is located on the southern part of Cát Bà Island in siliceous limestone of the late Devonian-early Carboniferous Phô Hàn Formation (Tong-Dzuy &Vu. 2011: Fig. 2). At the time of sampling, these fairly well ventilated caves had low radon concentrations (75 - 115 Bg m⁻³), temperatures of 19 - 21 °C, and relative humidities ranging between 85 - 95 % depending on the airflow and location within the cave. In both caves, we deployed 200-L polyethylene bags filled with cave air and containing limestone rocks that were collected from inside the cave. Half of these mesocosms (n = 3) were treated with a 10 wt% bleach solution (sodium hypochlorite) to inhibit microbial activity ("dead") while the other mesocosms ("live") were treated with an equal volume of water (n = 3). After incubating in situ overnight, we measured CH₄ concentrations with a Gasmet DX-4030 FTIR analyzer. CH₄ concentrations in the dead mesocosms were indistinguishable from the control mesocosms (no cave rocks) and the cave air (one-sample t-tests, P > 0.52, Fig. 3). In contrast, we observed an 87 % \pm 0.047 % (mean ± SEM) reduction of CH₄ concentrations. Our results suggest that biological processes have the potential to deplete atmospheric levels of CH₄ (2 ppmv) via methanotrophy on a daily basis, while radiolysis could take hundreds or millions of years to do the same.

From our experimental data, we estimate that the rate of CH₄ oxidation associated with cave rocks was between 1.3 and 2.7 mg CH₄ · m⁻² · d⁻¹. To the best of our knowledge, these are the first direct measurements of biological CH₄ oxidation in a cave ecosystem. The magnitude of these rates equals or exceeds the rates of CH₄ oxidation that have been reported in soils from agricultural systems, grasslands, mature forests, and Arctic tundra (Whalen & Reeburgh, 1990; Suwanwaree & Robertson, 2005; von Fischer *et al.*, 2009). This comparison is noteworthy

because caves maintain relatively constant temperatures thoughout the year, while soils in midto-high latitudes often experience lower temperatures during the winter season, which results in reduced rates of CH₄ oxidation (e.g., Groffman *et al.*, 2006). As such, future studies should integrate methanotrophic activity over annual time scales to better assess the magnitude and stability of subterannean ecosytems as CH₄ sinks.

Our experiments revealed that methanotrophic bacteria were abundant in the biofilms that were associated with Vietnamese cave rocks. We conducted quantitative PCR assays on DNA extracted from rocks that were incubated in the live mesocosms using primers that targeted the particulate methane monoxygenase (pmoA) gene, which is responsible for bacterial CH₄ oxidation (see Supplementary Information for more detail). From this, we recovered 1.0 · 10⁴ to 1.5 · 10⁴ pmoA gene copies per gram of rock biofilm. When standardized by 16S rRNA gene copy number, we estimate that the relative abundance of methanotrophs in the cave biofilms ranged from 0.16 to 1.48 % of the microbial community. Despite recent global-scale efforts to survey the diversity of microbial communities from a wide range of habitats, reports of methane oxidizing bacteria from cave ecosystems are scarce. For example, using cultivation-independent approaches, no sequences closely matching known methanotrophs were recovered from the Frasassi Cave complex in central Italy (Macalady et al., 2006). Methanotrophs were recovered from some, but not all Spanish caves (Fernandez-Cortes et al., 2015). In limestone caves of Kartchner Caverns, Arizona (USA), a single sequence was recovered that was closely related to Methylocella, which is a facultative methanotroph (Ortiz et al., 2013). Similarly, only one sequence from the walls of a karstic cave in Slovenia was closely related to *Methylococcus*, which is an obligate methanotroph (Pašič et al., 2010). In contrast, the presence and activity of methanotrophs was documented in water and mat samples collected from Movile Cave using

stable isotope probing (SIP), but this system is unique because it is supplied with CH₄ from an underground anoxic water body. Nevertheless, researchers tracked ¹³C-labeled CH₄ into the DNA of bacteria that were closely related to known methanotrophs such as *Methylomonas*, *Methylococcus*, and *Methylocystis/Methylosinus* (Hutchens *et al.*, 2004). In a recent study of the semi-arid Wellington Caves in Australia, up to 16% of the 16S rRNA gene sequences recovered from surface soils belonged to groups of known methanotrophs (McDonough *et al.*, 2016). The high relative abundance of methanotrophs in these systems suggests that microbially mediated CH₄ oxidation should be important in at least some caves. Given their potential role in consuming subterranean CH₄, more studies are needed to characterize the diversity and activity of methanotrophs in a wider range of cave ecosystems.

In the methane-depleted Castañar Cave in Spain, the importance of methanotrophy was ruled out based on the assumption that bacteria would not be able to meet their metabolic demands for maintenance and growth (Fernandez-Cortes *et al.*, 2015). However, this critical argument overlooks important ecophysiological features of microorganisms in natural ecosystems. First, many caves are considered oligotrophic habitats that are characterized by energy limitation (Jones & Macalady, 2016). However, growing evidence suggests that many microorganisms can tolerate extreme energy limitation on timescales ranging from centuries to millennia (Hoehler & Jørgensen, 2013) owing to life-history strategies such as dormancy (Lennon & Jones, 2011). Second, microorganisms in nature are commonly challenged with "feast or famine" conditions. For example, the supply of CH₄ to cave habitats varies through time depending on the source of CH₄, seasonality, ventilation, microclimatic conditions, and geography. It is well documented that there are high affinity methanotrophs that are adapted to living on trace concentration of CH₄ (Bull *et al.*, 2000). It is also likely that there are

methanotrophic bacteria in caves that are adapted to fluctuations in CH₄ concentrations, which are not captured with synoptic sampling.

Conclusion — Although ionizing radiation can accumulate in poorly vented, deep recesses of some caves, this is neither necessary nor sufficient to explain the observation of CH₄ depletion in cave ecosystems (e.g., Mattey et al., 2013; Fernandez-Cortes et al., 2015). In this study, we present theoretical and experimental lines of evidence suggesting it is unlikely that radiolytically induced CH₄ oxidation serves as a significant mechanism for rapid depletion of CH₄ in cave air as has recently been reported (Fernandez-Cortes et al., 2015). Rather, our results support the hypothesis that bacterial methanotrophy alone has the potential to significantly oxidize CH₄ in caves, and perhaps other smaller-size open subterranean spaces, such as cracks, fissures, and other pores that are connected to the atmosphere. Rapid rates of CH₄ oxidation have led to speculation that subterranean habitats could be managed in cost-effective ways to mitigate industrial emissions of CH₄ (Fernandez-Cortes et al., 2015) especially since karst landforms make up 10-20% of the continental landforms (Palmer, 1991). However, our understanding of CH₄ dynamics in subterranean ecosystems is limited. Only a small number of caves in a handful of locations have been studied thus far. More information is needed from diverse geographical, geological, and biological settings before the importance of subterranean CH₄ sinks can be assessed on local, regional, and global scales as has been done in other ecosystems (e.g., Oh et. al., 2016).

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of

 Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences

Division under Award Number DE-SC0006978; the National Science Foundation (1442246 to

J.T.L); the U.S. Army Research Office (W911NF-14-1-0411 to J.T.L.); the Indiana University

Office for the Vice President of International Affairs; the Indiana University College of Arts and
Sciences; and the Indiana University Provost's Travel Award for Women in Science. We thank

G. Etiope and J.H. Pohlman for constructive feedback on an earlier version of this manuscript

and G. Crouch for discussions about radiation physics. In addition, we thank B. K. Lehmkuhl for
technical support, along with Minh Schimmelmann and Bùi Thị Việt Hà for logistical support.

Corresponding data and code for this manuscript can be found at

https://github.com/LennonLab/radiolyticCH4.

242	REFERENCES
244	Alvarez-Gallego M, Garcia-Anton E, Fernandez-Cortes A, Cuezva S, Sanchez-Moral S. (2005)
	High radon levels in subterranean environments: monitoring and technical criteria to
246	ensure human safety (case of Castañar cave, Spain). Journal of Environmental
	Radioactivity 145, 19–29.
248	Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of
	atmospheric methane oxidizing bacteria in soil. Nature 405, 175-178.
250	Cigna AA (2005) Radon in caves. International Journal of Speleology 34, 1–18.
	Fernandez-Cortes A, Cuezva S, Alvarez-Gallego M, Garcia-Anton E, Concepcion P, Benavente
252	D, Jurado V, Saiz-Jimenez C, Sanchez-Moral S (2015) Subterranean atmospheres may
	act as daily methane sinks. Nature Communications 6, 7003.
254	Field MS (2007) Risks to cavers and cave workers from exposures to low-level ionizing α
	radiation from ²²² Rn decay in caves. <i>Journal of Cave and Karst Studies</i> 1, 207–228.
256	Groffman PM, Hardy JP, Driscoll CT, Fahey TJ (2006) Snow depth, soil freezing, and fluxes of
	carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change
258	Biology 12 , 1748–1760.
	Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nature
260	Reviews Microbiology 11, 83–94.
	Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell CJ (2004) Analysis of
262	methanotrophic bacteria in Movile Cave by stable isotope probing. Environmental
	Microbiology 6, 111–120.
264	Hyland R, Gunn J (1994) International comparison of cave radon concentrations identifying the
	potential alpha radiation risks to British cave users. <i>Health Physics</i> 67 , 176–179.

266	IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group
	I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds.
268	Stockner TF et al.) Cambridge University Press, Cambridge, United Kingdom and New
	York, NY, USA, 1535 pp.
270	Jones DS, Macalady JJ (2016) The snotty and the stringy: Energy for subsurface life in caves. In:
	(Hurst, C.J., ed.) Their World: A Diversity of Microbial Environments. Advances in
272	Environmental Microbiology, vol. 1, chapter 5, pp. 203–224.
	Lennon JT, Jones SE (2011) Microbial seed banks: ecological and evolutionary implications of
274	dormancy. Nature Reviews Microbiology 9, 119–130.
	Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006)
276	Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave
	system, Italy. Applied and Evironmental Microbiology 72 5596-5609.
278	Mattey DP, Fisher R, Atkinson TC, Latin J-P, Durrel R, Ainsworth M, Lowry D, Fairchild IJ
	(2013) Methane underground air in Gibraltar karst. Earth and Planetary Science Letters
280	374 , 71–80.
	McDonough LK, Iverach CP, Beckmann S, Manefield M, Rau GC, Baker A, Kelly BFJ (2016)
282	Spatial variability of cave-air carbon dioxide and methane concentrations and isotopic
	compositions in a semi-arid karst environment. Environmental Earth Sciences 75, 700.
284	Oh Y, Stackhouse B, Lau MCY, Xu X, Trugman AT, Moch J, Onstott TC, Jørgensen CJ,
	D'Imperio L, Elberling B, Emmerton CA, St. Louis VL, Medvigy D (2016) A scalable
286	model for methane consumption in arctic mineral soils. Geophysical Research Letters

DOI: 10.1002/2016GL069049.

- Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA, Soderlund CA, Pryor BM, Pierson LS, Maier RM (2013) Profiling bacterial diversity and taxonomic
 composition on speleothem surfaces in Kartchner Caverns, AZ. *Microbial Ecology* 65, 371–383.
 Palmer AN (1991) Origin and morphology of limestone caves. *Geological Society of America Bulletin* 103, 1–21.
- Pašič L, Kovče B, Sket B, Herzog-Velikonja B (2010) Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. *FEMS Microbiology Ecology* 71 50–60.
 - Pohlman JW (2011) The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia **677**, 33-51.
- Suwanwaree P, Robertson GP (2005) Methane oxidation in forest, successional, and no-till agricultural ecosystems: effects of nitrogen and soil disturbance. *Soil Science Society of America Journal* **69**, 1722–1729.
- Tong-Dzuy T, Vu K (Eds.) (2011) Stratigraphic Units of Vietnam (Second Edition Revised and updated). Vietnam National University Publisher, Hanoi. MS: 69-KHTN-2011.
- 304 US EPA (US Environmental Protection Agency) (2015) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013.
 - von Fischer JC, Butters G, Duchateau PC, Thelwell RJ, Siller R (2009) In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress. *Journal of Geophysical Research* **114**, G01015.
 - Whalen SC, Reeburgh WS (1990) Consumption of atmospheric methane by tundra soils. *Nature* **346**, 160–62.

FIGURE CAPTIONS

Fig. 1. Rates of methane (CH₄) oxidation were not significantly affected by ionizing radiation. We conducted a laboratory experiment where we tracked the concentration of CH₄ in a polyethylene bag containing air and ionizing radiation from a source of uranium metal powder (black line, n = 1) to the concentration of CH₄ in control bags without an added source of ionizing radiation (grey lines, n = 7). We attribute the slow loss of CH₄ in all trials to gas

diffusion through polyethylene bags.

Fig. 2. Map of Vietnam (left) and Cát Bà Island (right) indicating the location of Hoa Cuong and Minh Châu caves where the field mesocosm experiments were conducted to evaluate the importance of biological CH₄ oxidation.

Fig. 3. Field mesocosm experiments in two Vietnamese caves support the biological methane (CH₄) oxidation hypothesis. Control mesocosms contained no cave rocks and provided an estimate for the diffusive loss of CH₄; "dead" mesocosms contained cave rocks that were treated with a 10 wt% bleach solution; "live" mesocosms contained cave rocks and a volume of water (150 mL) equivalent to the volume of bleach used in the "dead" treatment. The dashed horizontal lines correspond to the CH₄ concentrations in the Hoa Curong and Minh Châu caves on Cát Bà Island, northern Vietnam.

Figure 1 165x120mm (150 x 150 DPI)

Figure 2 155x90mm (150 x 150 DPI)

Figure 3 165x76mm (150 x 150 DPI)