PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-055393

(43) Date of publication of application: 24.02.1998

(51)Int.CI.

G06F 17/60 B23Q 41/08 C21D 9/52 C21D 11/00

(21)Application number: 09-024938

(71)Applicant: KOBE STEEL LTD

07.02.1997 (22)Date of filing:

(72)Inventor: UMEDA TOYOHIRO

NISHIMURA MASARU

(30)Priority

Priority number: 08142656

Priority date: 05.06.1996

Priority country: JP

(54) PRODUCTION PROCESS SIMULATION DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To automatically perform accurate aggregation according to process conditions and lot aggregation conditions and set the process order of products in an aggregate lot according to the attributes of the products by selecting an aggregate lot to be processed by facilities out of an aggregate lot group according to a specific rule.

SOLUTION: A process queue wherein processes in wait states are arrayed in specific order according to used facilities and process conditions is generated and a process queue storage part 5 stores the generated process queue. A lot aggregation part 6 generates aggregate lots for which an aggregating process can be started out of the process wait queue according to lot aggregation conditions. An aggregate lot storage part 7 stores the lots aggregated by a lot aggregation part, 6. Then only an aggregate lot to be processed by facilities is selected out of the aggregate lot group stored in the aggregate lot storage part 7 according to a specific rule.

Consequently, a production schedule for a complicated production line can be generated.

LEGAL STATUS

[Date of request for examination]

21.09.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-55393

(43)公開日 平成10年(1998) 2月24日

(51) Int.Cl. ⁶	識別記号 庁内整理科	\$号 FI	技術表示箇所
G06F 17/60		G06F 15/	'21 R
B 2 3 Q 41/08		B 2 3 Q 41/	08 B
C 2 1 D 9/52	101	C21D 9/	52 1 0 1
11/00		11/	00
		審査請求	未請求 請求項の数5 OL (全 14 頁)
(21)出願番号	特顯平9-24938	(71)出願人 (000001199
		ŧ	株式会社神戸製鋼所
(22)出願日	平成9年(1997)2月7日	į į	兵庫県神戸市中央区脇浜町1丁目3番18号
		(72)発明者 #	梅田 豊裕
(31)優先権主張番号	特願平8-142656	ب ا	兵庫県神戸市西区高塚台1丁目6番5号
(32)優先日	平8 (1996) 6月5日	*	株式会社神戸製鋼所神戸総合技術研究所内
(33)優先権主張国	日本(JP)	(72)発明者 7	西村 勝
		ŧ	栃木県真岡市鬼怒ケ丘15番地 株式会社神
		7	戸製鋼所真岡製造所内
		(74)代理人 =	弁理士 本庄 武男

(54) 【発明の名称】 生産工程シミュレーション装置

(57)【要約】

【課題】 多品種の製品を平行して生産する生産ラインにおいては、作業効率を低下させる生産ライン上の各設備の段取り替え作業をできるだけ行わないように、各設備による処理条件が同一である製品ロットを集約して製造処理を行うが、従来の生産ラインのシミュレーション装置では、ロット集約を行う工程を限定し、ロットの集約方法も同一としなければ生産ラインの物流予測を行うてとはできなかった。

【解決手段】 本発明は、品種及び工程毎に与えられた 工程データ及び各設備における処理条件毎のロットの集 約条件に基づいて、ロットの集約シミュレーションを行 い、工程順序の異なる品種間でロット集約を行ったり、 工程毎に集約方法が異なるロット集約を行う生産ライン の生産スケジュールを仮想実行することを図ったもので ある。

EXPRESS MAIL LABEL NO.: EV 815 583 058 US

【特許請求の範囲】

【請求項1】製品の生産に使用される使用設備等を工程 毎に定めた工程データから選択された使用設備とロット 集約を行うための使用設備上の条件である処理条件が同 一である工程の製品を複数ロット集約し、該ロット集約 された製品を用いた生産スケジュールを仮想的に実行す る生産工程シミュレーション装置において、生産品種毎 の上記使用設備及び上記処理条件を含む上記工程データ を登録する工程データ登録部と、ある条件下でロット集 約を行うための生産物側の条件であるロット集約条件を 10 登録するロット集約条件登録部と、待ち状態にある工程 を上記使用設備、処理条件に従って所定の順に配列した 処理待ち行列を作成する処理待ち行列作成部と、上記作 成された処理待ち行列を格納する処理待ち行列格納部 と、上記処理待ち行列の中から、前記ロット集約条件に 従って集約処理開始可能な集約ロットを複数作成するロ ット集約部と、上記ロット集約部により集約された集約 ロット群を記憶するための集約ロット記憶部と、所定の 規則に基づいて上記集約ロット記憶部に記憶された上記 集約ロット群のうちから、各設備毎に処理を実行すべき 20 上記集約ロットを選択する集約ロット選択部とを具備し てなることを特徴とする生産工程シミュレーション装

【請求項2】上記集約ロット群について仮想実行する仮 想実行部を備え、上記仮想実行の時間経過にしたがっ て、処理の完了したロットを削除するとともに、該完了 したロットと同じ使用設備の工程のうち、待ち状態にあ る工程をロット集約して上配集約ロット記憶部に記憶す るロット補充手段を具備してなる請求項1記載の生産工 程シミュレーション装置。

【請求項3】各設備での前後の処理条件の組み合わせに より決まる段取り替え時間を予め登録しておく段取り替 え時間登録部を備え、上記所定の規則が、各設備におけ る上記段取り替え時間がより小さい上記集約ロットを選 択する規則である請求項1記載の生産工程シミュレーシ ョン装置。

【請求項4】上記所定の順が、待ち状態にある製品の待 ち時間の長さ、及び/若しくは上記製品の属性に基づい て定められたものである請求項1~3のいずれかに記載 の生産工程シミュレーション装置。

【請求項5】上記工程データ登録部に登録された工程デ ータが、各工程に対して択一的な複数の処理条件を含ん でなる請求項1~3のいずれかに記載の生産工程シミュ レーション装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、生産工程シミュレ ーション装置に係り、詳しくは処理条件、ロット集約条 件に合致したロット集約を適正且つ自動的に行うことが できる生産工程シミュレーション装置に関するものであ 50 る工程の製品を複数ロット集約し、酸ロット集約された

る。

[0002]

【従来の技術】近年のように多品種の製品を平行して生 産する生産ラインでは、一般に製品を製造する場合の処 理条件は、設備及び生産工程毎に異なり、ある設備にお いて1種類の条件のみで処理を続けることは少ない。同 一設備において処理条件が変化する場合は、一般に段取 り替え作業を行う必要が生じるが、煩雑な段取り替え作 業は,作業者の負担を増大させるだけでなく, 設備効率 を著しく低下させる。とのため、多品種を扱う製造ライ ンでは工程・設備毎に同種の処理条件の処理工程を複数 まとめた上で、これらを連続して処理することにより、 段取り替え作業を削減するロット集約が実施されてい る。とのような多品種の製品を平行して生産する生産ラ インの生産スケジュールを仮想的に実行して、より適切 なスケジュールを抽出するシミュレーション装置に関す る技術としては、例えば、特公平7-109601号公 報に記載の技術が知られている。上記公知文献に記載の 技術では、製品の品種及び工程毎にロット集約が可能で あるか、集約したロットを再度分割する必要があるかを 示すロット統合及び分割の可否を、予めシミュレーショ ン実行者が生産計画に基づいて指定することにより、あ る工程では、幾つかの個別のロットを集約して処理を行 い,他の工程では,一度まとめた集約ロットを個別のロ ットに再分割し、個別ロット単位で処理を行うというよ うな、実際の生産ラインにおいてみられるロットの分割 ・統合という概念を生産スケジュール作成の際のシミュ レーションに取り入れたものである。

2

[0003]

30

40

【発明が解決しようとする課題】しかし、上記公知文献 に記載の技術は、ロットの統合の可能性を人間が予め判 断して格納しておくものであるため、すべての工程につ いてその都度、人間が介在して判断せねばならず、極め て繁雑な処理が要求されるものであった。また、統合さ れるロット内での製品の処理順序については、製品の投 入日等のわずかな情報しか考慮されておらず、例えば厚 さや幅等の製品の属性に基づくような詳細な処理順序の 設定を行うことができなかった。本発明は、このような 従来の技術における課題を解決するために、生産工程シ ミュレーション装置を改良し、処理条件、ロット集約条 件に応じて的確なロット集約を自動的に行うと共に、製 品の属性に応じて、集約されるロット内での製品の処理 順を設定することのできる生産工程シミュレーション装 置を提供することを目的とするものである。

[0004]

【解決するための手段】上記目的を達成するために本発 明は、製品の生産に使用される使用設備等を工程毎に定 めた工程データから選択された使用設備とロット集約を 行うための使用設備上の条件である処理条件が同一であ

製品を用いた生産スケジュールを仮想的に実行する生産 工程シミュレーション装置において、生産品種毎の上記 使用設備及び上記処理条件を含む上記工程データを登録 する工程データ登録部と、ある条件下でロット集約を行 うための生産物側の条件であるロット集約条件を登録す るロット集約条件登録部と、待ち状態にある工程を上記 使用設備、処理条件に従って所定の順に配列した処理待 ち行列を作成する処理待ち行列作成部と、上記作成され た処理待ち行列を格納する処理待ち行列格納部と、上記 処理待ち行列の中から,前記ロット集約条件に従って集 10 約処理開始可能な集約ロットを複数作成するロット集約 部と、上記ロット集約部により集約された集約ロット群 を記憶するための集約ロット記憶部と、所定の規則に基 づいて上記集約ロット記憶部に記憶された上記集約ロッ ト群のうちから、各設備毎に処理を実行すべき上配集約 ロットを選択する集約ロット選択部とを具備してなると とを特徴とする生産工程シミュレーション装置として構 成されている。このように処理条件毎にロットの集約条 件を設定することが可能であるため、処理条件と、ロッ ト集約条件に合致した最適なロット集約を自動的に行う ことができる。また、上記集約ロット群について 仮想 実行する仮想実行部を備え、上記仮想実行の時間経過に したがって、処理の完了したロットを削除するととも に、該完了したロットと同じ使用設備の工程のうち、待 ち状態にある工程をロット集約して上記集約ロット記憶 部に記憶するようにすれば、時間的に連続なロット集約 シミュレーションを行うことができ、実際の生産状態に 即した生産スケジュールをたてることが可能となる。ま た、例えば、上記所定の規則を、上記各設備における段 取り替え時間がより小さい上記集約ロットを選択するよ 30 は、予め工程データ及びロット集約条件並びに段取り替 うに定めれば、作業効率を尊重したロットの集約を行う ことができる。 さらに、上記所定の順を、例えば、待ち 状態にある製品の待ち時間の長さ、及び/若しくは上記 製品の属性に基づいて定めるようにしてもよい。この場 合, ロット集約条件毎に、上記所定の順を、製品の待ち 時間の長さに基づいて定めたり、上記製品の例えば厚 さ、幅といった属性に基づいて定めることにより、集約 されるロット内の製品の処理順序を詳細かつ自動的に決 定することができる。さらに、上記工程データ登録部に 登録された工程データに、各工程に対して択一的な複数 の処理条件を含めれば、ある使用設備に対しては処理条 件に自由度のある製品が混在した複雑な生産ラインの生 産スケジュールを作成することができる。

[0005]

【発明の実施の形態】以下添付図面を参照して、本発明 の実施の形態につき説明し、本発明の理解に供する。 尚. 以下の実施の形態は、本発明を具体化したものであ って、本発明の技術的範囲を限定する性格のものではな い。ととに図1は、本発明の一実施の形態に係る生産工 程シミュレーション装置0の俄略構成を示す機能ブロッ 50 ール種R、とロール種R、との2種類が登録されてい

ク図、図2は、生産工程シミュレーション装置0の動作 手順を示すフローチャート図、図3は、生産工程シミュ レーション装置0に係る工程データを示す図表, 図4 は、設備と処理条件別のロット集約条件を示す図表、図 5は、生産工程シミュレーション装置0に係る設備毎の 前後の処理条件に対する段取り替え時間を示す図表、図 6は、シミュレーション開始時点での仕掛かり製品群の 一例を示す図表、図7は、シミュレーション開始時点で の処理条件別の処理待ち行列の一例を示す図表. 図8 は、集約ロットの選択状態を示す図表、図9は、選択さ れた集約ロット内の製品の処理順序を示す図表、図10 は、生産工程シミュレーション装置0の集約ロット割り 付け結果を示す図、図11は、更新された仕掛かり工程 群の一例を示す図表、図12は、次のシミュレーション での処理条件別の処理待ち行列を示す図表, 図13は, 生産工程シミュレーション装置0のシミュレーション時 刻更新後の集約ロットの割り付け例を示す図である。図 1に示す如く、本実施の形態に係る生産工程シミュレー ション装置のは、例えば、金属の圧延工場における物流 20 シミュレーション装置であり、工程データ登録部1、ロ ット集約条件登録部2, 段取り替え時間登録部3, 前回 処理条件記憶部4,処理待ち行列格納部5,ロット集約 部6,集約ロット記憶部7,段取り替え時間決定部8, 処理順序設定部9, 仮想実行部10, 仕掛かり工程更新 部(補充手段に相当) 11, シミュレーション開始時刻 更新部12より構成されている。

【0006】以下、本発明の一実施の形態に係る生産工 程シミュレーション装置0の動作の詳細を説明する。図 2に示すように、生産工程シミュレーション装置0で え時間の登録が行われる(S1)。とこで、上配工程デ ータは、生産ライン上の各設備における処理条件、例え ば板厚、板幅といった製品の属性、及び処理時間を製品 の品種及び工程毎に定めるもので, 工程データ登録部1 に登録される。図3は上記工程データの一例である。図 3に示した例では製品の品種が、A、B、及びCの3種 類存在し、各品種により通過工程、即ち、使用設備やそ の使用順序が異なる。使用設備は上記3種の品種に共有 されており、圧延機、焼鈍設備(バッチ処理、連続処 理),スリッター(幅割り機),表面処理設備及び梱包 機から構成されている。処理条件は、例えば、圧延機に おいては圧延ロールの表面形状(ロール種R、、 R,), 幅割り機においてはパイトの幅(1250mm, 900mm),焼鈍設備においては炉内の雰囲気温度(2 00度、300度)、表面処理設備においては塗料の種 類(P₁, P₂)というように、各設備の使用条件を示 す。尚、ロット集約を行わず1製品づつ処理する梱包機 は特に処理条件を指定されていない。また、図3に示さ れる、例えば品種Aの工程1においては、処理条件にロ

る。これは、品種Aの工程1では、ロール種R、とロー ル種R、のいずれか一方で圧延を行うことを示してい る。さらに,処理時間がそれぞれ15分,20分とある のは、使用するロールにより処理時間が異なることを表 している。同様に、品種Bの工程4でも、ロール種R、 とR、とのいずれかが使用可能であり、品種Bの工程6 では、焼鈍時間が異なっており、焼鈍温度を200度、 若しくは300度のいずれにも設定可能であることを示 している。このように、処理条件は、製品の品種(A. B, C)が異なっても、処理条件が同じであれば、ロッ ト集約が可能であることを示すもので、ロット集約を行 うための設備上の条件である。

【0007】また、上記ロット集約条件は、ある設備に おいてある処理条件下でロット集約を行う際の生産物側 の条件であり、ロット集約条件登録部2に登録される。 図4は上記ロット集約条件の一例を示す。図4では、設 備・処理条件別に、集約するロット内での製品の処理順 を設定する処理順キー、ロット集約する際の最小本数及 び最大本数、並びに上記最小本数揃うまで、例えば圧延 されるコイル等の処理工程を仕掛かり待ちとして待機さ 20 せる最大待ち時間が与えられている。ことで、処理順キ ーとは、図3の工程データに含まれる製品の属性等のキ ーとなる条件名と、ソートの方向を表すコードとを有し ており、例えば、圧延機のロール種R,では、条件名= 「板幅」であり、方向コード=「一」と示されている。 との2つの指定により、ロール種R、の製品は、板幅の 小さくなる順、すなわち板幅の広いものから狭いものへ と順に圧延されることが規定される。同様に、幅割り機 では、条件名=「板厚」であり、方向コード=「+」と 示されており、幅割り機については、板厚の薄いものか 30 スケジュールが抽出される。尚、処理番号は、例えば工 **ら厚いものへと順に処理することが規定されている。** 尚、表面処理設備では、処理順キーは「なし」を記され ているが、これは処理順を製品の属性等のキーを用いて 特に指定しないことを意味する。また、図4における最 小本数とは、コイルが少なくとも指定本数揃うまではそ の処理条件での操業を行わない本数で、最大本数とは同 一処理条件において、連続して処理を行うことのできる コイルの最大本数である。また、ロット集約条件は設備 ・処理条件が同一の場合に行われ、最大待ち時間を経過 したコイルを含む場合は最小本数未満でもロット集約さ れるという例外条件を含む。また、図4には設備毎の処 理形態も示されており、「単」とある設備はロット集約 されたコイルを1本づつ処理する設備で、「バッチ」と あるのは同時に複数本数のコイルを処理できる設備であ る。従って、上記処理順キーは、「バッチ」タイプの設 備には適用されない。尚、上記設備毎の処理形態は上記 したロット集約には関係しない。図5は段取り替え時間 登録部3 に記憶された設備毎の段取り替え時間の一例を 示す図表である。段取り替え時間は、各設備における前 回集約ロットの処理条件(前回処理条件記憶部4 に記憶 50 が存在するが、ロット集約条件の最大本数が4本である

されている。)と今回集約ロットの処理条件の組み合わ せにより設定される。このため、1つの集約ロット内で は、段取り替えは行われない。従って、適正にロット集 約が行われば、段取り替え時間が短縮されることとな る。この実施例は、このような段取り替え時間を最短に しうるロット集約を可能とするシミュレーション装置を 提供することを目的としている。尚、ここでは、ロット 集約を行わない梱包機についても10分の段取り替え時 間が設定されているが、これはロット1本の処理を行う 毎に10分の段取り替え時間が必要なことを示してい

【0008】次に、生産ラインにおいて待ち状態にある 仕掛かり工程を使用設備、処理条件を勘案して並び変え た処理待ち行列が処理待ち行列格納部5 に格納される (S2)。処理待ち行列を作成するために、まずシミュ レーション開始時点での仕掛かり製品群を格納する。図 6は、仕掛かり製品群の一例である。図6における仕掛 かり製品群には品種、仕掛かり工程及び仕掛かり工程に 到着した時刻が登録されている。ととで、到着時刻はシ ミュレーション開始時刻を0とした相対時刻で表現され ている。との仕掛かり製品群に示された各製品の品種と 工程を基に、図3における工程データから使用設備と処 理条件が参照され、処理待ち行列格納部5に処理番号が 登録される。図6の理解を容易にするため、右側2列に 使用設備と処理条件を併記しておく。この場合、同一の 処理条件では到着時刻の早い順(待ち時間の長い順)に 登録される。この実施の形態では、各工程に到着した製 品について、到着時刻、使用設備、及びその時の処理条 件を入力するだけで、後記する処理手順により、適正な 程データに格納された板厚、板幅といった製品の属性等 に基づいて定められた順番で処理待ち行列格納部5 に格 納されてもよい。図6の仕掛かり製品群に対して、上記 方法で登録した待ち行列の一例を図7に示す。図7に示 すように、処理待ち行列格納部5には、処理待ち行列が 使用設備及び処理条件の組み合わせの順に並べられ、且 つ、待ち時間(到着時刻から判断される)の長いものか ら順に図6における処理番号が登録されている。図7に おいて、製品番号3、4及び26は、それぞれ2つの待 ち行列に登録されているが、これは可能な処理条件(図 3参照)が2種類存在するためである。次に、図7に示 す処理待ち行列に対し、図4で示したロット集約条件に 従い、ロット集約部6によりロット集約を行うと共に、 ロット集約した製品を集約ロット記憶部7 に記憶させる (S3)。図8(a)は集約ロット記憶部7に記憶され た集約ロットの一例を示す。未集約の(集約条件に合致 しない)仕掛かり工程は記入されていない。図7に示し た処理条件別の処理待ち行列例では、例えば、圧延機の ロール種R, は8本の仕掛かり工程(処理番号1~8)

ため (図4参照), 図8 (a) に示した処理条件別の仕 掛かり工程では、到着の早い工程から4本のみ(処理番 号1~4) 集約されている。また、圧延機のロール種R ,の仕掛かり工程は6本であり、ロット集約条件の最小 本数(8本)未満であるが、処理番号9と処理番号10 の仕掛かり待ち時間は65分であり、ロール種R、の最 大待ち時間, 60分を越えているため, 処理番号9.1 0が3, 4, 11, 及び12を伴ってロット集約され る。

【0009】次に、上記集約されたロットに対し、図5 に示した設備毎の段取り替え時間及び、各設備における 前回の処理条件を記憶する前回処理条件記憶部4に記憶 された前回処理条件を参照し、段取り替え時間決定部8 により各集約ロットを処理するために必要な段取り替え 時間が演算される(S4)。例えば、図8(a)におけ る圧延機の処理条件、ロール種R、の段取り替え時間 は、15分である。図8(a)に示したロット集約例 は、集約条件を満たすロット集約の一例である。実際の 圧延工程等では、これよりはるかに多くの工程の組み合 わせが発生する結果、その各場合における段取り替え時 間も上記工程の組み合わせに対応して多数発生する。そ のため、この実施の形態では、上記多くのロット集約例 について仮想実行(シミュレーション)し、その時の段 取り替え時間が演算され、段取り替え時間の最も短いも のが選択される(S5)。このように、段取り替え時間 の最短化等,所定のルールに基づいて設備毎に処理すべ き集約ロットを選択するのが、集約ロット選択部であ り、この例では、仮想実行部10がこれに該当する。 尚、選択のルールは他にも種々考えられる。図8(b) は、選択された集約ロットの一例を示す。次に、上記選 30 択された集約ロットに対して、既に図3に示した工程デ ータに含まれる板厚、板幅といった製品の属性と、図4 に示したロット集約条件に含まれる処理順キーとに基づ いて、ロット内の製品の処理順序が処理順序設定部9に よりあらためて設定される(S6)。ととで、図9は選 択された集約ロットに対して設定された処理順序の一例 である。例えば、処理順キーが指定されている圧延機の ロール種R、は、処理順キーが「板厚;-」であるた め、板厚の大きい製品の順($3 \rightarrow 4 \rightarrow 1 \rightarrow 2$)に処理が 行われる。処理順キーが設定されていない場合、及び製 品属性が同じ場合には、との例では、到着時刻の早い順 に処理される。尚, 処理待ち行列格納部5に処理番号を 格納する時に、製品の処理順を設定するのと、選択され た集約ロットに対して、ロット内での製品の処理順を設 定するのは、本質的に同じである。更に、選択された集 約ロットに対する段取り替え時間及び処理時間が、仮想 実行部10及び処理順序設定部9の結果を参照して各設 **備に割りつけられる(S7)。続いて、選択された集約** ロットを処理するために用いられた各設備における処理 条件により前回処理条件記憶部4が更新される。割り付 50 る。さらに、集約ロット内での製品の処理順序を詳細に

け時に用いる各ロットの処理時間はロットを構成する製 品の品種と工程から図3に示した工程データを参照して 計算される。図10は、図8(b)に示した選択された ロット集約例を仮想実行するための、各設備毎の処理時 間と段取り替え時間の割り付け例である。本実施の形態 において、焼鈍設備にあるようにバッチ処理設備では、 製品,処理番号17,18及び19は並列して割りつけ られている。以上で、最初に処理される集約ロット及び その割り付けが完了すると、次に処理すべき集約ロット の選択手順に移行するために、仮想実行の推移につれ て、仕掛かり工程更新部11により、今回のシミュレー ションで、集約、選択された仕掛かり工程を図7に示す 処理待ち行列から消去し、仮想実行上のその時点で集約 条件を満たす集約ロットを作成し、新たに待ち行列格納 部5 に格納する(S8)。上記仮想実行により、図6に 示す工程が次工程に遷移した仕掛かり工程群例を図11 に示す。さらに、図11の工程仕掛かり状態における更 新された処理待ち行列例を図12に示す。図12におい て、品種Bの処理番号1及び2は、工程4(圧延機)に 遷移しており、この工程では、処理条件としてロール種 R、とR、とを択一的に選択することが可能である。そ のため、ロール種R、とR、の2つの待ち行列に上記処 理番号1及び2は登録される。

【0010】次に、シミュレーション開始時刻更新部1 2によりシミュレーション時刻を更新する(S9)。本 実施の形態においては、全設備のなかで、次の処理開始 がもっとも早く可能となる設備の処理開始可能時刻を次 のシミュレーション時刻とした。図10から分かるよう に、この例では表面処理設備が時刻60分において完了 し、次にもっとも早く処理開始可能となるので、シミュ レーション時刻は60分に更新される。以後、更新され たシミュレーション時間のもとでロット集約→選択→割 り付け→更新を繰り返す。60分に更新されたシミュレ ーション時刻においては、表面処理設備のみが空いてお り処理開始が可能であるので、表面処理の中から次に処 理可能な工程を選択する。との場合、ロット集約は、塗 料P、(処理番号13,及び14)と塗料P、(処理番 号32)が集約条件を満たし、これらのうち段取り替え 時間が最も短いのは、前回処理条件と同じ塗料P、(段 取り替え時間=0)であるため、塗料P,が次の表面処 理設備の処理条件として選択される。処理番号23,2 6及び処理番号17、18、19はシミュレーション時 刻60分において未到着であるので、ロット集約の対象 から除かれている。尚、図13は、シミュレーション時 刻、60分において選択された処理番号13、14を割 りつけた例を示す。このように、本実施の形態に係る生 産工程シミュレーション装置では、多品種の製品のロッ ト集約を行う場合でも、処理条件と、ロット集約条件に 合致した最適なロット集約を自動的に行うことができ

設定することができる。さらに、処理条件に自由度のあ る製品が混在する複雑な生産工程においても、適正な生 産スケジュールを自動的に作成することができる。

[0011]

【実施例】上記した本発明の一実施の形態に係る生産工 程シミュレーション装置0では、処理を実行すべき集約 ロットの選択を、段取り替え時間が最小となるように行 ったが、到着時刻の早い製品を優先するように行っても よい。このような生産工程シミュレーション装置も本発 明における生産工程シミュレーション装置の一例であ る。また、上記実施の形態では、集約ロットの選択を、 集約ロットを仮想実行することにより行っているが、仮 想実行なしに、例えば、集約ロット毎の段取り替え時間 を計算するだけでもよい。また、上記実施の形態では、 生産工程シミュレーション装置0により、金属の圧延工 場における工程を集約し、該ロット集約された工程を用 いた生産スケジュールを仮想実行したが、他の様々な生 産ラインのロット集約に生産工程シミュレーション装置 を適用してもよい。このような生産工程シミュレーショ ン装置も本発明における生産工程シミュレーション装置 20 る。 の一例である。

[0012]

【発明の効果】上記のように、本発明は、製品の生産に 使用される使用設備等を工程毎に定めた工程データから 選択された使用設備とロット集約を行うための使用設備 上の条件である処理条件が同一である工程の製品を複数 ロット集約し、該ロット集約された製品を用いた生産ス ケジュールを仮想的に実行する生産工程シミュレーショ ン装置において、生産品種毎の上記使用設備及び上記処 理条件を含む上記工程データを登録する工程データ登録 30 部と、ある条件下でロット集約を行うための生産物側の 条件であるロット集約条件を登録するロット集約条件登 録部と、待ち状態にある工程を上記使用設備、処理条件 に従って所定の順に配列した処理待ち行列を作成する処 理待ち行列作成部と、上記作成された処理待ち行列を格 納する処理待ち行列格納部と、上記処理待ち行列の中か ら、前記ロット集約条件に従って集約処理開始可能な集 約ロットを複数作成するロット集約部と、上記ロット集 約部により集約された集約ロット群を記憶するための集 約ロット記憶部と、所定の規則に基づいて上記集約ロッ ト記憶部に記憶された上記集約ロット群のうちから、各 設備毎に処理を実行すべき上記集約ロットを選択する集 約ロット選択部とを具備してなることを特徴とする生産 工程シミュレーション装置として構成されている。との ため、各設備に到着した製品について、その到着時間、 使用設備、処理条件をオペレータが、又は、自動的に入 力するだけで処理条件、ロット集約条件に合致したロッ ト集約を正確且つ自動的に行うことができる。さらに、 上記集約ロット群について仮想実行する仮想実行部を備 え、仮想実行時間の経過にしたがって、処理の完了した 50 1・・・工程データ登録部

仕掛かり工程を削除すると共に、該完了した仕掛かり工 程と同じ使用設備の工程のうち、待ち状態にある工程を ロット集約の対象に加えるようにすれば、時間的に連続 にロット集約を行うことができ、実際の生産状態に即し た生産スケジュールを作成することができる。また、各 設備における集約ロットの選択を段取り替え時間が最小 となるように行えば、作業効率を重視したロット集約を 仮想的に実現することができる。さらに、上記所定の順 を、例えば、待ち状態にある製品の待ち時間の長さ、及 10 び/若しくは上記製品の属性に基づいて定めるようにし てもよい。この場合、ロット集約条件毎に、上記所定の 順を、製品の待ち時間の長さに基づいて定めたり、上記 製品の例えば厚さ、幅といった属性に基づいて定めると とにより、集約されるロット内の製品の処理順序を詳細 かつ自動的に決定することができる。さらに、上記工程 データ登録部に登録された工程データに、各工程に対し て択一的な複数の処理条件を含めれば、ある使用設備に 対しては処理条件に自由度のある製品が混在した複雑な 生産ラインの生産スケジュールを作成することができ

10

【図面の簡単な説明】

【図1】本発明の一実施の形態に係る生産工程シミュレ ーション装置0の概略構成を示す機能プロック図。

【図2】生産工程シミュレーション装置0の動作手順を 示すフローチャート図。

【図3】生産工程シミュレーション装置0に係る工程デ ータの一例を示す図表。

【図4】生産工程シミュレーション装置0 に係るロット 集約条件の一例を示す図表。

【図5】生産工程シミュレーション装置0に係る段取り 替え時間の一例を示す図表。

【図6】シミュレーション開始時点での仕掛かり製品群 の一例を示す図表。

【図7】シミュレーション開始時点での処理条件別の処 理待ち行列の一例を示す図表。

【図8】集約ロットの選択状態を示す図表。

【図9】生産工程シミュレーション装置0の集約ロット 割り付け結果を示す図。

【図10】選択された集約ロット内での製品の処理順序 を示す図表。

【図11】更新された仕掛かり工程群の一例を示す図

【図12】シミュレーション時刻更新後の処理条件別の 処理待ち行列を示す図表。

【図13】生産工程シミュレーション装置0のシミュレ ーション時刻更新後の集約ロットの割り付け例を示す 図.

【符号の説明】

0・・・生産工程シミュレーション装置

11

2・・・ロット集約条件登録部

3 · · · 段取り替え時間登録部 4 · · · 前回処理条件記憶部

5・・・処理待ち行列格納部

6・・・ロット集約部

7・・・集約ロット記憶部

*8・・・段取り替え時間決定部

9 · · · 処理順序設定部

10 · · · 仮想実行部

11・・・仕掛かり工程更新部

12・・・シミュレーション開始時刻更新部

*

[図1]

[図3]

品種A

工程	使用数像	処理条件	処理時間[分]	板厚[mm]	极幅[mm]
ı	圧延機 ·	ロール程RI	15	8.0	1450
		ロール科R2	20	<u> </u>	
2	パッチ境質	300度	120	8.0	1450
3	圧延機	ロール種R2	15	0,4	1450
4	圧延機	ロール程R2	20	0.2	1450
5	連続規範	200度	30	0.2	1450
6	福割り機	₩1250mm	30	0.2	1250
7	表面処理	塗料PI	20	0.2	1250
- 8	相包機	-	60	0.2	1250

品積B

DD (DLD)						
工程	使用設備	処理条件	処理時間(分)	板厚[mm]	板幅(mm	
1	パッチ焼鈍	300度	120	1.2	1000	
2	圧延機	ロール独R1	20	0.6	1000	
3	圧延機	・ロール復R1	30	0.3	1000	
4	圧延微	ロール程RI	30	0.1	1000	
		ロール祖R2	30]		
5	幅割り機	₩3900mm	30	0.1	900	
6	連続挽鈍	200度	40	0.1	900	
		300度	30			
7	表面処理	选料PI	20	0.1	900	
8	細包機	_	60	- 0.1	900	

品植C

工程	使用設備	処理条件	処理時間[分]	板厚[mm]	板幅[mm]
11	連統烧鈍	300度	20	0.8	1500
2	圧延機	ロール種Ri	10	0.6	1500
3	圧延機	ロール 性 R2	20	0.3	1500
4	経動り機	#1250mm	30	0.3	1250
5	パッチ焼鈍	200度	120	0.3	1250
6	表面处理	塗料P2	20	0.3	1250
7	相包機		60	0.3	1250

【図4】

設備名	处理影戲	処理条件	処理順キー		最小本数	最大本数	最大待ち時間
圧延機	南	ロール様R1	板厚	-	2	4	60 /3
		ロール植R2	极惧		8	12	60分
幅割り機	単	#1250mm	板厚	_+	3	上限なし	1205
		福900mm	板厚	+	3	上限なし	90分
パッチ焼鈍 パッチ	200度	なし		1	3	_	
		300度	tel		2	3	180 /)
連接燒鈍	単	200度	板幅	T -	5	10	60分
		300度	板帽	T -	3	10	60 /3
安顶处理	単	俭料P1	なし			3	
		逾科P2	Œ L	T	1	3	-
相包機	典		なし	1	1	l .	_

【図5】

胶偏名	前回处理条件	今回処理条件	段取り時間[分]		
圧延機	ロール植R1	ロール和R1	15		
		ロール租R2	30		
	ロール程R2	ロール柱R1	15		
	•	ロール和R2	10		
幅割り機	#⊑1250mm	幅1250mm	0		
		₩900mm	20		
	\$500mm	程1250mm	20		
		‡≣900mm	0		
パッチ焼鈍	200度	200度	10		
		、300度	60		
	300度	200度	90		
		300度	10		
连統烷鈍	200度	200度	0		
		300度	30		
	300度	200度	60		
		300度	0		
表面处理	查料P1	姓科P1	0		
		逾料P2	01		
	检料P2	益料P1	10		
<u> </u>		途料P2	0		
相包機		<u> </u>	30 ·		

【図7】

設備名	集約処理条件				品牌	っ行列	y .		_
圧延微	ロール和RI	1	2	3	4	5	6	7	8
	ロール被R2	9	10	.3.	4	111	12	+	
幅割り機	福 1250mm	13	14	15			1	- †	
	\$≣900mm	16						_	_
バッチ接鈍	200度	17	18	19	20		T	1	
	300度	21	22			\neg	T	1	_
連稅規範	200E	23	24	25	26		T	十	_
	300度	27	26	28		1	1	\dashv	
表面处理	途料P1	29	30	31	\cdot	1	-	_	_
	资料P2	32				\neg	$\overline{}$	+	_
相包操	-	33	34			一	 i	+	

: 処理条件が複数の製品管子

【図6】

製品費号	品種	工程	到着時刻 [分]	使用設備・	処理条件
1	В	3	-20	DC/TO EX. THE '	ロール相R1
. 2	В	3	-20		G = Walki
3	A	1	-15	1	ri - u Stru - Cha
4		1		i	ロール種RI/R2
5	A B		-15		
		2	-10		
6	В	2	-10		ロール祖RI
7	_C	2	-5	庄延楼	
8	·C	2	-5		
9	Α.	3	-65		
10	_A_	3	-65		
11	C	3	5		ロール程R2
12	С	3	-5		
13	Α_	6	-20	[
14	A	_6	-15		韓数1250
15	С	4	-15	幅割り機	
16	В	5	-10		福900
17	С	5	-10		
18	С	5	-10		
19	С	5	-8		200度
20	С	5	-5	バッチ焼鈍	
21	Α	2	-5		
22	В	1	-5	<u></u>	300度
23	В	6	-60		
24	A	5	-60		200度
25	A	5	-20]	
26	В	6	-10	運动烧鈍	200度/300度
27	C	. 1	-20]	
28	C	1	-5	<u> </u>	300度
29	A	7	-18		
30	В	7	-15]	选料P1
31	В	7	-10	表面処理	
32	С	6	-15		途料P2
33	_ A	8	-3		
34	С	7		梅包機	

[図9]

設備名	集的処理条件		処理		処理成キー		
圧延機	ロール種RI	3	4	ı	2	板厚	Τ-
		0.8(mm)	0.8(mm)	0.2(ത്തു	0.3(mm)		
福割り機	幅 1250mm	13	14	15		板摩	1
		0.2(mm)	0.2[mm]	0.3[uup]			1
パッチ焼鈍	200度	17	18	19		なし	
連設烧鈍	200度	24	25	23	26	板帽	1-
		1450[mm]	1450(mm)	900(mm)	900[mm]		1
表面处理_	並料PI	29	30	31		なし	\top
梱包機	_	33				なし	1

【図8】

設備名	前回処理条件	集約処理条件			77	集机	,		段取り時間
圧延機	ロール種Ri	ロール種RI	3	2	. 3	4			15分
		ロール積R2	9	10	3	4	H	12	30分
輻射り機	幅 1250mm	福1250mm	13	14	15				0分
		#2900mm							
パッチ焼鈍	200度	200度	17	18	19				10分
		300度	21	22					60 /3
速校烫篼	300度	200度	23	24	25	26			605
		300度							
表面処理	塗料P1	全科P1	29	30	31				057
		独科P2	32						10分
相包機			33						10分

(a)

設備名	前回处理条件	集約処理条件		2	17 }	集約	段取り時間
庄廷位	ロール稜RI	ロール種R1	1	2	3	4	15分
		ロール租R2					
幅割り機	韓 1250mm	#1250mm	13	14	15	\neg	05
		#≅900mm					
パッチ焼鈍	200度	200度	17	18	19		10分
		300度		T		\neg	
連続換鈍	300度	200度	23	24	25	26	60 3)
		300度		\neg		\neg	
表面処理	途料Pl	金料PI	29	30	31		0分
		盤科P2					
相包機		_	33		Ī		10分

(b)

[図12]

数信名	処理条件			32	品件	ち行	9 9	
圧延機	ロール種R1	5	6	7	8	u	2	
	ロール種R2	9	10	11	12		2	
福割り後	₩1250mm	24	25					
	#2900mm	16						
バッチ焼鈍	200度	20	15					
	300度	21	N	3	4			Г
建筑统统	200 <i>S</i> E							
	300度	27	28					Π
表面処理	选料P1	13	14	23	26			
	资料P2	32	17	18	19			
相包機		33	34	29	30	31		

]: 選移した製品

] : 処理条件が複数の製品番号

【図10】

製取り替え時間

【図13】

经取り替え時間

【図11】

製品番号	88	工程	到着時刻 [分]
1	В	4	75
2	В	4	105
3	A	2	30
4	Α.	2	45 .
5	В	2	-10
6	В	2	-10
7	С	2	-5
8	С	2	5
9	A	3	-65
10	Α	3	-65
11	С	3	-5
12	С	3	-5
13	A	7	30
14	A	7	60
15	С	5	90
16	В	5	-10
17	С	6	130
18	Ċ	_ 6	130
19	С	6	130
20	С	5	-5
21	_ A	· 2	-5
22	В	1	-5
23	В	7	160
24	A	6	90
25	_ A	6	120
26	В	7	200
27	С	1	-20
28	С	1	-5
29		8	20
30	В	В	40
31	В	8	60
32	С	6	-15
33	. A	終丁	70
34	C	7	0

□ :更新されたデータ