Confidence intervals, hypothesis testing, Monte Carlo, and generalized linear models

Roger Levy

9.S918: Quantitative inference in brain and cognitive sciences

19 February 2025

 A point estimate of a model parameter is one example of a statistic

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

Point estimates we have seen thus far:

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

- Point estimates we have seen thus far:
 - Maximum likelihood estimate

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

- Point estimates we have seen thus far:
 - Maximum likelihood estimate
 - Bayesian posterior mean

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

- Point estimates we have seen thus far:
 - Maximum likelihood estimate
 - Bayesian posterior mean
 - Bayesian posterior mode

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

- Point estimates we have seen thus far:
 - Maximum likelihood estimate
 - Bayesian posterior mean
 - Bayesian posterior mode

Beta-binomial

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

 All of these point estimates discard a lot of information about the shape of the curve that they come from!

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

- Point estimates we have seen thus far:
 - Maximum likelihood estimate
 - Bayesian posterior mean
 - Bayesian posterior mode

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

- All of these point estimates discard a lot of information about the shape of the curve that they come from!
 - Curve shape captures uncertainty about parameter

 A point estimate of a model parameter is one example of a statistic

(Wikipedia: "A statistic...or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose")

- Point estimates we have seen thus far:
 - Maximum likelihood estimate
 - Bayesian posterior mean
 - Bayesian posterior mode

$$\alpha_1 = 3$$

$$\alpha_2 = 3$$

$$r = 5$$

$$n = 6$$

- All of these point estimates discard a lot of information about the shape of the curve that they come from!
 - Curve shape captures uncertainty about parameter
- Credible intervals (Bayesian) and confidence intervals (frequentist) provide a bit more information about this uncertainty

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

• A $(1-\alpha)$ Bayesian credible interval (CI) on parameter π is an interval containing $(1-\alpha)$ of the posterior mass

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

- A $(1-\alpha)$ Bayesian credible interval (CI) on parameter π is an interval containing $(1-\alpha)$ of the posterior mass
- Two common standards for Bayesian CI construction:

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

- A $(1-\alpha)$ Bayesian credible interval (CI) on parameter π is an interval containing $(1-\alpha)$ of the posterior mass
- Two common standards for Bayesian CI construction:

Highest posterior density

Symmetric

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

- A $(1-\alpha)$ Bayesian credible interval (CI) on parameter π is an interval containing $(1-\alpha)$ of the posterior mass
- Two common standards for Bayesian CI construction:

Highest posterior density

Symmetric

Older term: "Bayesian confidence interval"

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

- A $(1-\alpha)$ Bayesian credible interval (CI) on parameter π is an interval containing $(1-\alpha)$ of the posterior mass
- Two common standards for Bayesian CI construction:

Highest posterior density

Symmetric

- Older term: "Bayesian confidence interval"
- Multivariate generalization: interval→region

$$P(\theta|\mathbf{y}) = \frac{P(\mathbf{y}|\theta)P(\theta)}{P(\mathbf{y})}$$

- A $(1-\alpha)$ Bayesian credible interval (CI) on parameter π is an interval containing $(1-\alpha)$ of the posterior mass
- Two common standards for Bayesian CI construction:

Highest posterior density

Symmetric

- Older term: "Bayesian confidence interval"
- Multivariate generalization: interval→region

• For model parameter θ , define a procedure for constructing from data ${\bf y}$ an interval I for possible θ

• For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$

• For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$

• Suppose I repeat my experiment over and over again, each time collecting data \mathbf{y} and constructing $I = \text{Proc}(\mathbf{y})$

- For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$
- Suppose I repeat my experiment over and over again, each time collecting data \mathbf{y} and constructing $I = \text{Proc}(\mathbf{y})$
- If (1α) of these intervals contain the **true value of** θ , then Proc is a method for constructing a (1α) frequentist confidence interval

• For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$

- Suppose I repeat my experiment over and over again, each time collecting data \mathbf{y} and constructing $I = \text{Proc}(\mathbf{y})$
- If $(1-\alpha)$ of these intervals contain the **true value of** θ , then Proc is a method for constructing a $(1-\alpha)$ frequentist confidence interval

Confidence interval for mean μ of a normal distribution

$$\frac{\hat{\mu} - \mu}{\sqrt{S^2/n}} \sim t_{n-1}$$

• For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$

- Suppose I repeat my experiment over and over again, each time collecting data \mathbf{y} and constructing $I = \text{Proc}(\mathbf{y})$
- If $(1-\alpha)$ of these intervals contain the **true value of** θ , then Proc is a method for constructing a $(1-\alpha)$ frequentist confidence interval

Confidence interval for mean μ of a normal distribution

Sample mean

$$\frac{\hat{\mu} - \mu}{\sqrt{S^2/n}} \sim t_{n-1}$$

• For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$

- Suppose I repeat my experiment over and over again, each time collecting data \mathbf{y} and constructing $I = \text{Proc}(\mathbf{y})$
- If $(1-\alpha)$ of these intervals contain the **true value of** θ , then Proc is a method for constructing a $(1-\alpha)$ frequentist confidence interval

Confidence interval for mean μ of a normal distribution

Sample mean

$$\frac{\hat{\mu} - \mu}{\sqrt{S^2/n}} \sim t_{n-1}$$

• For model parameter θ , define a procedure for constructing from data \mathbf{y} an interval I for possible θ $\mathsf{Proc}(\mathbf{y}) = I$

• Suppose I repeat my experiment over and over again, each time collecting data
$$\mathbf{y}$$
 and constructing $I = \text{Proc}(\mathbf{y})$

• If $(1 - \alpha)$ of these intervals contain the **true value of** θ , then Proc is a method for constructing a $(1 - \alpha)$ frequentist confidence interval

Confidence interval for mean μ of a normal distribution

Sample mean

 Hypothesis: a candidate theory/model for the generative process by which data y come into the world

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\mathbf{y}) = \frac{P(\mathbf{y}|H_i)P(H_i)}{P(\mathbf{y})}$$

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\boldsymbol{y}) = \frac{P(\boldsymbol{y}|H_i)P(H_i)}{P(\boldsymbol{y})}$$
 Normalizing constant, not of great interest for present purposes

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\boldsymbol{y}) = \frac{P(\boldsymbol{y}|H_i)P(H_i)}{P(\boldsymbol{y})} \longrightarrow P(\boldsymbol{y}) = \sum_{j=1}^n P(\boldsymbol{y}|H_j)P(H_j)$$
Normalizing constant, not of great and purposes

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\boldsymbol{y}) = \underbrace{P(\boldsymbol{y}|H_i)P(H_i)}_{\text{Normalizing constant, not of great}} \underbrace{P(\boldsymbol{y})}_{\text{Interest for present purposes}} P(\boldsymbol{y}) = \sum_{j=1}^n P(\boldsymbol{y}|H_j)P(H_j)$$

Focus on contribution of data to posterior: Bayes factor

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\boldsymbol{y}) = \frac{P(\boldsymbol{y}|H_i)P(H_i)}{P(\boldsymbol{y})} \longrightarrow P(\boldsymbol{y}) = \sum_{j=1}^n P(\boldsymbol{y}|H_j)P(H_j)$$
Normalizing constant, not of great interest for present purposes

Focus on contribution of data to posterior: Bayes factor

Posterior odds
$$\underbrace{\frac{P(H|\boldsymbol{y})}{P(H'|\boldsymbol{y})}}_{P(H'|\boldsymbol{y})} = \underbrace{\frac{P(\boldsymbol{y}|H)}{P(\boldsymbol{y}|H')}}_{\text{Likelihood ratio Prior odds}}
\underbrace{\frac{P(H|\boldsymbol{y})}{P(H')}}_{P(H')}$$

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\boldsymbol{y}) = \frac{P(\boldsymbol{y}|H_i)P(H_i)}{P(\boldsymbol{y})} \longrightarrow P(\boldsymbol{y}) = \sum_{j=1}^n P(\boldsymbol{y}|H_j)P(H_j)$$
Normalizing constant, not of great interest for present purposes

Focus on contribution of data to posterior: Bayes factor

Posterior odds
$$\underbrace{\frac{P(H|\boldsymbol{y})}{P(H'|\boldsymbol{y})}}_{P(H'|\boldsymbol{y})} = \underbrace{\frac{P(\boldsymbol{y}|H)}{P(\boldsymbol{y}|H')}}_{\text{Likelihood ratio Prior odds}}
\underbrace{\frac{P(H|\boldsymbol{y})}{P(H')}}_{P(H')}$$

Bayesian hypothesis testing

- Hypothesis: a candidate theory/model for the generative process by which data y come into the world
- To compare hypotheses $\{H_i\}$: simply Bayesian inference!

$$P(H_i|\boldsymbol{y}) = \frac{P(\boldsymbol{y}|H_i)P(H_i)}{P(\boldsymbol{y})} \longrightarrow P(\boldsymbol{y}) = \sum_{j=1}^n P(\boldsymbol{y}|H_j)P(H_j)$$
Normalizing constant, not of great interest for present purposes

Focus on contribution of data to posterior: Bayes factor

Posterior odds
$$\frac{P(H|\boldsymbol{y})}{P(H'|\boldsymbol{y})} = \underbrace{P(\boldsymbol{y}|H)}_{P(\boldsymbol{y}|H')} \underbrace{P(H)}_{P(H')}$$
Likelihood ratio Prior odds
$$\frac{P(H|\boldsymbol{y})}{P(H')} = \underbrace{P(\boldsymbol{y}|H)}_{P(H')} \underbrace{P(H')}_{P(H')}$$

Bayes Factor:
$$\frac{P(\boldsymbol{y}|H)}{P(\boldsymbol{y}|H')}$$

Interpreting Bayes Factors

$$K = \frac{P(\boldsymbol{y}|H)}{P(\boldsymbol{y}|H')}$$

log ₁₀ <i>K</i>	K	Strength of evidence	
0 to 1/2	1 to 3.2	Not worth more than a bare mention	
1/2 to 1	3.2 to 10	Substantial	
1 to 2	10 to 100	Strong	
> 2	> 100	Decisive	

Once again the case of the bent coin

Once again the case of the bent coin

$$H_1: P(\pi|H_1) = \begin{cases} 1 & \pi = 0.5\\ 0 & \pi \neq 0.5 \end{cases}$$

Once again the case of the bent coin

$$H_1:P(\pi|H_1)=\left\{egin{array}{ll} 1 & \pi=0.5 \ 0 & \pi
eq0.5 \end{array}
ight.$$
 "The coin is fair"

Once again the case of the bent coin

$$H_1: P(\pi|H_1) = \begin{cases} 1 & \pi = 0.5 \\ 0 & \pi \neq 0.5 \end{cases}$$

"The coin is fair"

$$H_3: P(\pi|H_3) = 1 \quad 0 \le \pi \le 1$$

Once again the case of the bent coin

$$H_1: P(\pi|H_1) = \begin{cases} 1 & \pi = 0.5 \\ 0 & \pi \neq 0.5 \end{cases}$$

"The coin is fair"

$$H_3: P(\pi|H_3) = 1$$
 $0 \leq \pi \leq 1$ "The coin is not fair"*

Once again the case of the bent coin

$$H_1:P(\pi|H_1)=\left\{egin{array}{ll} 1 & \pi=0.5 \ 0 & \pi
eq0.5 \end{array}
ight.$$
 "The coin is fair"

$$H_3: P(\pi|H_3) = 1$$
 $0 \leq \pi \leq 1$ "The coin is not fair"*

Once again the case of the bent coin

$$H_1:P(\pi|H_1)=\left\{egin{array}{ll} 1 & \pi=0.5 \ 0 & \pi
eq0.5 \end{array}
ight.$$
 "The coin is fair"

$$H_3: P(\pi|H_3) = 1$$
 $0 \leq \pi \leq 1$ "The coin is not fair"*

$$P(\mathbf{y}|H_1) = {6 \choose 4} \pi^4 (1-\pi)^2 = {6 \choose 4} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^2 = 0.23$$

Once again the case of the bent coin

$$H_1:P(\pi|H_1)=\left\{egin{array}{ll} 1 & \pi=0.5 \ 0 & \pi
eq0.5 \end{array}
ight.$$
 "The coin is fair"

$$H_3: P(\pi|H_3) = 1$$
 $0 \le \pi \le 1$ "The coin is not fair"*

$$P(\mathbf{y}|H_1) = \binom{6}{4} \pi^4 (1-\pi)^2 = \binom{6}{4} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^2 = 0.23$$

$$P(\mathbf{y}|H_3) = \int_{\pi} P(\mathbf{y}|\pi) P(\pi|H_3) d\pi = \int_0^1 \binom{6}{4} \pi^4 (1-\pi)^2 \frac{P(\pi|H_3)}{1} d\pi = \binom{6}{4} B(5,3) = 0.14$$

Once again the case of the bent coin

$$H_1:P(\pi|H_1)=\left\{egin{array}{ll} 1 & \pi=0.5 \ 0 & \pi
eq0.5 \end{array}
ight.$$
 "The coin is fair"

$$H_3: P(\pi|H_3)=1$$
 $0\leq \pi \leq 1$ "The coin is not fair"*

$$P(\mathbf{y}|H_1) = \binom{6}{4} \pi^4 (1-\pi)^2 = \binom{6}{4} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^2 = 0.23$$

$$P(\mathbf{y}|H_3) = \int_{\pi} P(\mathbf{y}|\pi) P(\pi|H_3) d\pi = \int_{0}^{1} \underbrace{\binom{6}{4} \pi^4 (1-\pi)^2}_{P(\mathbf{y}|H_3)} \frac{P(\pi|H_3)}{1} d\pi = \binom{6}{4} B(5,3) = 0.14$$

$$P(\mathbf{y}|H_3) = \int_{\pi} P(\mathbf{y}|\pi) P(\pi|H_3) d\pi = \int_{0}^{1} \underbrace{\binom{6}{4} \pi^4 (1-\pi)^2}_{P(\mathbf{y}|H_3)} \frac{P(\pi|H_3)}{1} d\pi = \binom{6}{4} B(5,3) = 0.14$$

$$\frac{P(\mathbf{y}|H_1)}{P(\mathbf{y}|H_3)} = \frac{0.23}{0.14}$$
$$= 1.64$$

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!\scriptscriptstyle A}$ within which H_0 is **nested**

ullet Choose a TEST STATISTIC T that you'll compute from data

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!\scriptscriptstyle A}$ within which H_0 is **nested**

- Choose a TEST STATISTIC T that you'll compute from data
- Pre-data, divide range of T into ACCEPT/REJECT regions

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- Choose a TEST STATISTIC T that you'll compute from data
- Pre-data, divide range of T into ACCEPT/REJECT regions

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS ${\cal H}_{\!A}$ within which ${\cal H}_0$ is **nested**

- ullet Choose a TEST STATISTIC T that you'll compute from data
- ullet Pre-data, divide range of T into <code>ACCEPT/REJECT</code> regions

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- ullet Choose a TEST STATISTIC T that you'll compute from data
- Pre-data, divide range of T into ACCEPT/REJECT regions

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- ullet Choose a TEST STATISTIC T that you'll compute from data
- Pre-data, divide range of T into ACCEPT/REJECT regions

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- Choose a TEST STATISTIC T that you'll compute from data
- ullet Pre-data, divide range of T into <code>ACCEPT/REJECT</code> regions

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- ullet Choose a TEST STATISTIC T that you'll compute from data
- ullet Pre-data, divide range of T into <code>ACCEPT/REJECT</code> regions

$$H_0$$
 is... Accept H_0 Reject H_0

True Correct decision (prob. $1-\alpha$) Type I error (prob. α)

False Type II error (prob. β) Correct decision (prob. $1-\beta$)

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- Choose a TEST STATISTIC T that you'll compute from data
- ullet Pre-data, divide range of T into <code>ACCEPT/REJECT</code> regions

	Accept H_0	Reject H_0	Significance level
H_0 is	Correct decision (prob. $1 - \alpha$) Type II error (prob. β)	Type I error (pro Correct decision (

 The Neyman–Pearson paradigm: Formulate two hypotheses about generative process underlying the data

NULL HYPOTHESIS H_0

ALTERNATIVE HYPOTHESIS $H_{\!A}$ within which H_0 is **nested**

- ullet Choose a TEST STATISTIC T that you'll compute from data
- Pre-data, divide range of T into <code>ACCEPT/REJECT</code> regions

$$H_0$$
 is... True H_0 is... True H_0 is... True H_0 is... True H_0 is... H_0 is.

• Unbiased parameter estimates from a size-N sample:

$$\hat{u} = \bar{x}$$

$$\hat{\sigma} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \triangleq 1$$

• Unbiased parameter estimates from a size-N sample:

$$\hat{\mathcal{U}} = \overline{\bar{X}}$$
 Sample mean $\hat{\sigma} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \triangleq 1$

The Gaussian, or normal, distribution

• Unbiased parameter estimates from a size-N sample:

$$\hat{\mu} = \overline{\bar{x}}$$
 Sample mean $\hat{\sigma}$

$$r = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \triangleq s$$
 Sample standard deviation

The *t*-test: three variants

- One sample (Student's) test: Does the underlying population mean of a sample differ from zero?
- Two-sample test (unpaired): do the underlying population means of two samples differ from one another?

William Sealy Gosset, a.k.a. Student

 Two-sample test (paired): You have a sample of individuals from the population and take measurements from each member of the sample in two different conditions. Do the underlying population means in the two conditions differ from one another?

• Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

Test statistic:
$$t = \frac{x}{s/\sqrt{n}}$$

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

Test statistic:
$$t = \frac{\bar{x}}{s/\sqrt{n}}$$

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

standard deviation

Test statistic: $t = \frac{\bar{x}}{\sqrt{n}}$ Remember: Sample (S) \sqrt{n}

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

- Null hypothesis H_0 : the mean of the normally-distributed population underlying a sample is taken is $\mu=0$
- Alternative hypothesis H₁: $\mu \neq 0$ (two tailed; generally preferred) or $\mu > 0$ (one tailed; generally dispreferred)

Assumptions: samples 1 and 2 are each iid normal

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H $_{ t 0}$: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)
- If we assume that the two underlying populations have equal variance ("Student's" t-test):

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)
- If we assume that the two underlying populations have equal variance ("Student's" t-test):

$$t = \frac{\bar{x_1} - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \quad \text{where} \quad s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)
- If we assume that the two underlying populations have equal variance ("Student's" t-test):

$$t = \frac{\bar{x_1} - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$standard \ deviation$$

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)
- If we assume that the two underlying populations have equal variance ("Student's" t-test):

$$t_{\text{-distributed w/}} = \frac{\bar{x_1} - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}}$$

$$t_{\text{-distributed w/}} = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}}$$

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)
- If we assume that the two underlying populations have equal variance ("Student's" t-test):

$$t = \frac{\bar{x_1} - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{r_1 - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{r_1 - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{r_1 - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{r_1 - r_2}{s_1 - r_2} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{r_1 - r_2}{s_1 - r_2} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{r_1 - r_2}{s_1 - r_2} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

 If we do not assume that the two underlying populations have equal variance ("Welch's" t-test):

- Assumptions: samples 1 and 2 are each iid normal
- Null hypothesis H₀: $\mu_1 = \mu_2$
- Alternative hypothesis H₁: $\mu_1 \neq \mu_2$ (two-tailed); $\mu_1 > \mu_2$ (one-tailed; generally dispreferred)
- If we assume that the two underlying populations have equal variance ("Student's" t-test):

$$t = \frac{\bar{x_1} - \bar{x_2}}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ where } s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n} + n_2 - 2}$$

$$t = \frac{s_p}{s_p \sqrt{1/n_1 + 1/n_2}} \text{ Pooled sample standard deviation}$$

 If we do not assume that the two underlying populations have equal variance ("Welch's" t-test):

$$= \frac{\bar{x_1} - \bar{x_2}}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$
t-distributed with a complex number of degrees of freedom whose formula can easily be looked up

Assumptions:

• In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale

Assumptions:

• In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale

- In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale
- The difference between measurements is iid normal

- In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale
- The difference between measurements is iid normal
- (Sufficient condition: paired measurements are **bivariate normal** a distr. we haven't yet covered)

- In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale
- The difference between measurements is iid normal
- (Sufficient condition: paired measurements are bivariate normal a distr. we haven't yet covered)
- **H₀:** $\mu_1 = \mu_2$; **H₁:** $\mu_1 \neq \mu_2$ (2-tailed) or $\mu_1 > \mu_2$ (1-tailed; generally dispreferred)

- In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale
- The difference between measurements is iid normal
- (Sufficient condition: paired measurements are bivariate normal a distr. we haven't yet covered)
- H₀: $\mu_1 = \mu_2$; H₁: $\mu_1 \neq \mu_2$ (2-tailed) or $\mu_1 > \mu_2$ (1-tailed; generally dispreferred)
- Strategy: take within-unit difference scores and apply a 1-sample t-test!

- In a sample of **units** from a population; for each unit we have two **measurements** $\langle x_1, x_2 \rangle$ on the same scale
- The difference between measurements is iid normal
- (Sufficient condition: paired measurements are bivariate normal a distr. we haven't yet covered)
- H₀: $\mu_1 = \mu_2$; H₁: $\mu_1 \neq \mu_2$ (2-tailed) or $\mu_1 > \mu_2$ (1-tailed; generally dispreferred)
- Strategy: take within-unit difference scores and apply a 1-sample t-test!

The likelihood ratio test

The likelihood ratio test

• The likelihood ratio:

$$\Lambda^* = rac{\max \operatorname{Lik}_{H_0}(oldsymbol{y})}{\max \operatorname{Lik}_{H_A}(oldsymbol{y})}$$

• The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \dfrac{\max \operatorname{Lik}_{H_0}(oldsymbol{y})}{\max \operatorname{Lik}_{H_A}(oldsymbol{y})}$$

• The likelihood ratio:

$$\Lambda^* = \dfrac{\max \operatorname{Lik}_{H_0}(oldsymbol{y})}{\max \operatorname{Lik}_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of H_0

Data likelihood under MLE of ${\cal H}_{\!A}$

The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \dfrac{\max \operatorname{Lik}_{H_0}(oldsymbol{y})}{\max \operatorname{Lik}_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of H_A

• The deviance is (asymptotically) χ^2 -distributed with degrees of freedom equal to diff. in # model parameters

The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \underbrace{\max_{\mathbf{Lik}_{H_0}(oldsymbol{y})}^{\max_{\mathbf{Lik}_{H_0}(oldsymbol{y})}}_{\mathbf{max}\,\mathbf{Lik}_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of $\mathcal{H}_{\!\scriptscriptstyle A}$

• The **deviance** is (asymptotically) χ^2 -distributed with **degrees of freedom** equal to diff. in # model parameters

$$G^2 \stackrel{\text{def}}{=} -2\log \Lambda^*$$

The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \underbrace{\max_{\mathbf{Lik}_{H_0}(oldsymbol{y})}^{\max_{\mathbf{Lik}_{H_0}(oldsymbol{y})}}_{\mathbf{max}\,\mathbf{Lik}_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of ${\cal H}_{\!\scriptscriptstyle A}$

• The **deviance** is (asymptotically) χ^2 -distributed with **degrees of freedom** equal to diff. in # model parameters

$$G^2 \stackrel{\text{def}}{=} -2\log \Lambda^*$$

The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \underbrace{ \max \operatorname{Lik}_{H_0}(oldsymbol{y})}_{\max \operatorname{Lik}_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of ${\cal H}_{\!\scriptscriptstyle A}$

• The **deviance** is (asymptotically) χ^2 -distributed with **degrees of freedom** equal to diff. in # model parameters

$$G^2 \stackrel{\text{def}}{=} -2\log \Lambda^*$$

$$G^{2} = -2\log \frac{\left(\frac{1}{2}\right)^{30}}{\left(\frac{2}{3}\right)^{20} \left(\frac{1}{3}\right)^{10}} \approx 3.4$$

• The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \underbrace{\max_{\mathbf{Lik}_{H_0}(oldsymbol{y})}^{\max_{\mathbf{Lik}_{H_0}(oldsymbol{y})}}_{\mathbf{max}\,\mathbf{Lik}_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of $\mathcal{H}_{\!\scriptscriptstyle A}$

• The deviance is (asymptotically) χ^2 -distributed with degrees of freedom equal to diff. in # model parameters

$$G^2 \stackrel{\text{def}}{=} -2\log \Lambda^*$$

$$G^{2} = -2\log \frac{\left(\frac{1}{2}\right)^{30}}{\left(\frac{2}{3}\right)^{20} \left(\frac{1}{3}\right)^{10}} \approx 3.4$$

The likelihood ratio:

Data likelihood under MLE of H_0

$$\Lambda^* = \underbrace{\max_{H_0}(oldsymbol{y})}_{\max_{H_A}(oldsymbol{y})}$$

Data likelihood under MLE of $H_{\scriptscriptstyle A}$

• The **deviance** is (asymptotically) χ^2 -distributed with degrees of freedom equal to diff. in # model parameters

$$G^2 \stackrel{\text{def}}{=} -2\log \Lambda^*$$

Simulation and approximate computation

Simulation and approximate computation

- All the statistical analysis that I've shown you so far has involved exact computation using analytic expressions
- This is facilitated by:
 - Strong assumptions regarding the data generating process (e.g., iid normal data for t-tests); and/or
 - Conjugate priors for Bayesian inference (e.g., Beta prior for Bernoulli/binomial data)
- But often, exact computation is not possible
- Solution: use more computationally intensive methods that don't rely on these strong assumptions. Examples:
 - Bootstrapped confidence intervals
 - Nonparametric statistical tests
 - Monte Carlo methods (today)

Monte Carlo methods, or "probabilistic simulation"

- Generally speaking:
 - 1. Define a domain of possible inputs
 - 2. Generate *n* iid random inputs from a probability distribution on the domain
 - 3. Perform a deterministic computation on each randomly generated input
 - 4. Aggregate the results of the deterministic computation
- As n grows larger, the simulated result approaches the true value

Monte Carlo methods, or "probabilistic simulation"

- Generally speaking:
 - 1. Define a domain of possible inputs
 - 2. Generate *n* iid random inputs from a probability distribution on the domain
 - 3. Perform a deterministic computation on each randomly generated input
 - 4. Aggregate the results of the deterministic computation
- As n grows larger, the simulated result approaches the true value

Simple example of Monte Carlo

 Suppose I want to do a two-sample t-test but my data aren't normally distributed

How bad will this be for my t-test????

```
library(ggplot2)
 2
    library(tidyverse)
 3
 4
    # Manually compute Student t-statistic
 5 \cdot f \leftarrow function(seed, N=100, shape=9, scale=0.5)
      set.seed(seed)
 6
      y1 <- rgamma(N, shape=shape, scale=scale)
 8
      y2 <- rgamma(N, shape=shape, scale=scale)
      s_p \leftarrow sqrt((var(y1) + var(y2)) / 2)
      t_{statistic} \leftarrow (mean(y1) - mean(y2)) / (s_p*sqrt(2/N))
10
      return(t_statistic)
11
12 - }
13
14
    N <- 100
15
    Ts <- sapply(1:10000,f)
16
17
    t_reference \leftarrow tibble(x=seq(-4,4,by=0.01),t=dt(x,df=2*(N-1)))
18
19
    qaplot(data=tibble(t=Ts),aes(x=t)) +
20
      geom_density() +
21
      geom_line(data=t_reference,aes(x=x,y=t),color="green",linetype="dashed")
```

```
library(ggplot2)
 2
    library(tidyverse)
 3
 4
    # Manually compute Student t-statistic
    f <- function(seed, N=100, shape=9, scale=0.5) {
      set.seed(seed)
 6
                                                                Reproducibility!
      y1 <- rgamma(N, shape=shape, scale=scale)
 8
      y2 <- rgamma(N, shape=shape, scale=scale)
      s_p \leftarrow sqrt((var(y1) + var(y2)) / 2)
      t_{statistic} \leftarrow (mean(y1) - mean(y2)) / (s_p*sqrt(2/N))
10
      return(t_statistic)
11
12 - }
13
14
    N <- 100
15
    Ts <- sapply(1:10000,f)
16
17
    t_reference \leftarrow tibble(x=seq(-4,4,by=0.01),t=dt(x,df=2*(N-1)))
18
19
    qaplot(data=tibble(t=Ts),aes(x=t)) +
20
      geom_density() +
21
      geom_line(data=t_reference,aes(x=x,y=t),color="green",linetype="dashed")
```

```
library(ggplot2)
 2
    library(tidyverse)
 3
    # Manually compute Student t-statistic
 4
    f <- function(seed, N=100, shape=9, scale=0.5) {
      set.seed(seed)
 6
                                                                Reproducibility!
      y1 <- rgamma(N, shape=shape, scale=scale)
      y2 <- rgamma(N,shape=shape,scale=scale)</pre>
 8
      s_p \leftarrow sqrt((var(y1) + var(y2)) / 2)
      t_{statistic} \leftarrow (mean(y1) - mean(y2)) / (s_p*sqrt(2/N))
10
      return(t_statistic)
11
12 - }
13
                            Monte Carlo simulation
14
    N < -100
15
   Ts <- sapply(1:10000,f)
16
17
    t_reference \leftarrow tibble(x=seq(-4,4,by=0.01),t=dt(x,df=2*(N-1)))
18
19
    qaplot(data=tibble(t=Ts),aes(x=t)) +
20
      geom_density() +
21
      geom_line(data=t_reference,aes(x=x,y=t),color="green",linetype="dashed")
```

```
library(ggplot2)
 2
    library(tidyverse)
 3
    # Manually compute Student t-statistic
 4
    f <- function(seed, N=100, shape=9, scale=0.5) {
      set.seed(seed)
 6
                                                               Reproducibility!
      y1 <- rgamma(N, shape=shape, scale=scale)
      y2 <- rgamma(N,shape=shape,scale=scale)</pre>
 8
      s_p \leftarrow sqrt((var(y1) + var(y2)) / 2)
      t_{statistic} \leftarrow (mean(y1) - mean(y2)) / (s_p*sqrt(2/N))
10
11
      return(t_statistic)
12 - }
13
                            Monte Carlo simulation
14
    N < -100
15
   Ts <- sapply(1:10000,f)
                                           Compare against Student's t distribution
16
    (t_reference <- tibble(x=seq(-4,4,by=0.01),t=dt(x,df=2*(N-1)))
17
18
19
    qaplot(data=tibble(t=Ts),aes(x=t)) +
20
      geom_density() +
21
      geom_line(data=t_reference,aes(x=x,y=t),color="green",linetype="dashed")
```


 The t distribution is still a pretty good approximation of the distribution of the t statistic, even when the underlying distribution is gamma!

- The t distribution is still a pretty good approximation of the distribution of the t statistic, even when the underlying distribution is gamma!
- This exemplifies what is meant when people say that the t test is robust to deviations from normality

Our motivation: Bayesian posterior inference

$$P(\theta | \mathbf{y}, I) = \frac{P(\mathbf{y} | \theta, I)P(\theta | I)}{P(\mathbf{y} | I)}$$

• Sometimes P(y | I) can't be calculated exactly. Example

Bernoulli data with non-conjugate prior:

$$P(\pi) \propto \begin{cases} \pi(1-\pi)e^{-\pi^2} & \pi \in [0,1] \end{cases}$$
0 otherwise

Posterior after observing 2 heads, 2 tails:

In simple cases like this, we can numerically approximate the integral:

Our motivation: Bayesian posterior inference

$$P(\boldsymbol{\theta}|\mathbf{y},I) = \frac{P(\mathbf{y}|\boldsymbol{\theta},I)P(\boldsymbol{\theta}|\boldsymbol{I})}{P(\mathbf{y}|\boldsymbol{I})}$$
 Model parameters

• Sometimes P(y | I) can't be calculated exactly. Example

Bernoulli data with non-conjugate prior:

$$P(\pi) \propto \begin{cases} \pi(1-\pi)e^{-\pi^2} & \pi \in [0,1] \end{cases}$$
0 otherwise

Posterior after observing 2 heads, 2 tails:

In simple cases like this, we can numerically approximate the integral:

Our motivation: Bayesian posterior inference

$$P(\boldsymbol{\theta}|\mathbf{\hat{y}},I) = \frac{P(\mathbf{y}\,|\,\boldsymbol{\theta},I)P(\boldsymbol{\theta}\,|\,\boldsymbol{\hat{I}})}{P(\mathbf{y}\,|\,I)}$$
 Background knowledge

• Sometimes P(y | I) can't be calculated exactly. Example

Bernoulli data with non-conjugate prior:

$$P(\pi) \propto \begin{cases} \pi(1-\pi)e^{-\pi^2} & \pi \in [0,1] \end{cases}$$
0 otherwise

Posterior after observing 2 heads, 2 tails:

In simple cases like this, we can numerically approximate the integral:

Our motivation: Bayesian posterior inference

Observed data $P(\theta | \mathbf{y}, I) = \frac{P(\mathbf{y} | \theta, I)P(\theta | \mathbf{I})}{P(\mathbf{y} | I)}$ Model parameters

Background knowledge

• Sometimes P(y | I) can't be calculated exactly. Example

Bernoulli data with non-conjugate prior:

 $P(\pi) \propto \begin{cases} \pi(1-\pi)e^{-\pi^2} & \pi \in [0,1] \\ 0 & \text{otherwise} \end{cases}$

Posterior after observing 2 heads, 2 tails:

In simple cases like this, we can numerically approximate the integral:

Our motivation: Bayesian posterior inference

Observed data $P(\theta|\mathbf{y},I) = \frac{P(\mathbf{y}\,|\,\theta,I)P(\theta\,|\,\mathbf{I})}{P(\mathbf{y}\,|\,I)}$ Model parameters

Background knowledge

• Sometimes P(y | I) can't be calculated exactly. Example

Bernoulli data with non-conjugate prior:

 $P(\pi) \propto \begin{cases} \pi(1-\pi)e^{-\pi^2} & \pi \in [0,1] \\ 0 & \text{otherwise} \end{cases}$

Posterior after observing 2 heads, 2 tails:

$$P(\pi) \propto \begin{cases} \pi^3 (1-\pi)^3 e^{-\pi^2} & \pi \in [0,1]^{\frac{2}{6}} \\ 0 & \text{otherwise} \end{cases}$$

No closed form!

In simple cases like this, we can numerically approximate the integral:

Markov chain Monte Carlo

- However, we can often take samples from the posterior even when we can't compute normalized probabilities
- One general and widely used approach: Markov chain Monte Carlo (MCMC)
- MCMC is a mathematically principled random walk on a non-negative function, directed toward regions where the function takes on a larger value

 Asymptotically, the random walk gives us samples from in proportion to the height of the function

MCMC for posterior sampling

We use the unnormalized form of the posterior:

$$P(\theta \mid \mathbf{y}, I) \propto P(\mathbf{y} \mid \theta, I)P(\theta \mid I)$$

- We run MCMC and then treat the chain of values as samples from the posterior
- The full set of samples is not iid (nearby values on the chain are correlated), but methods exist for estimating "effectively" how many independent samples we have

Stan, HMC, and NUTS

- There are many different MCMC algorithms (e.g., Metropolis, Gibbs Sampling)
- We will use the probabilistic programming language Stan for Bayesian inference about model parameters
- Stan uses an algorithm called Hamiltonian Monte Carlo (HMC) with the No U-Turn Sampler (NUTS)

 This algorithm tends to be particularly efficient for many problems we'll face

 Define the generative model you assume underlies the data you want to analyze

- Define the generative model you assume underlies the data you want to analyze
- 2. Choose a prior distribution for your model parameters θ

- 1. Define the generative model you assume underlies the data you want to analyze
- 2. Choose a prior distribution for your model parameters θ
- 3. Encode the model structure and prior in a Stan program

- 1. Define the generative model you assume underlies the data you want to analyze
- 2. Choose a prior distribution for your model parameters θ
- 3. Encode the model structure and prior in a Stan program
- 4. Provide the data Y you want to analyze, and ask Stan to sample from the posterior $P(\theta \mid Y, I) \propto P(Y \mid \theta) P(\theta \mid I)$ (often written as $P(\theta \mid Y) \propto P(Y \mid \theta) P(\theta)$, i.e. eliding I)

- 1. Define the generative model you assume underlies the data you want to analyze
- 2. Choose a prior distribution for your model parameters θ
- 3. Encode the model structure and prior in a Stan program
- 4. Provide the data Y you want to analyze, and ask Stan to sample from the posterior $P(\theta \mid Y, I) \propto P(Y \mid \theta) P(\theta \mid I)$ (often written as $P(\theta \mid Y) \propto P(Y \mid \theta) P(\theta)$, i.e. eliding I)

- 1. Define the generative model you assume underlies the data you want to analyze
- 2. Choose a prior distribution for your model parameters θ
- 3. Encode the model structure and prior in a Stan program
- 4. Provide the data Y you want to analyze, and ask Stan to sample from the posterior $P(\theta \mid Y, I) \propto P(Y \mid \theta) P(\theta \mid I)$ (often written as $P(\theta \mid Y) \propto P(Y \mid \theta) P(\theta)$, i.e. eliding I)

