Question 1:

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer:

Optimal value of alpha

The optimal value of alpha for ridge regression is 2 and for lasso regression is 0.0004.

Change in the model if alpha is doubled for ridge regression

If alpha is doubled for ridge regression, the training and test R² score and MSE decrease slightly, and the coefficients of the predictors mostly shrink towards O as shown below.

Model		alpha = 2			alpha = 4	
Performance Metrics		Metric	Ridge		Metric	Ridge2
Metrics	0	Training R^2 score	0.856429	0	Training R^2 score	0.842981
	1	Test R^2 score	0.861327	1	Test R^2 score	0.848442
	2	Training MSE	0.002387	2	Training MSE	0.002611
	3	Test MSE	0.002418	3	Test MSE	0.002643
Coefficients		Predictor Ridge Coefficient			Predictor Ridge2 Coefficier	
	0	Const	-0.121706	0	Const	-0.050179
	1	LotFrontage	0.001386	1	LotFrontage	0.014507
	2	LotArea	0.089549	2	LotArea	0.066271
	3	OverallQual	0.281841	3	OverallQual	0.277002
	4	OverallCond	0.107045	4	OverallCond	0.097475
	5	YearBuilt	0.129952	5	YearBuilt	0.128402
	6	BsmtFinSF1	0.102536	6	BsmtFinSF1	0.089240
	7	BsmtFinSF2	0.031371	7	BsmtFinSF2	0.028640
	8	BsmtUnfSF	0.015669	8	BsmtUnfSF	0.017196
	9	1stFlrSF	0.119318	9	1stFlrSF	0.116271
	10	GrLivArea	0.327560	10	GrLivArea	0.276978

Change in the model if alpha is doubled for lasso regression

If alpha is doubled for lasso regression, the training and test R^2 score and MSE decrease slightly, and the coefficients of the predictors mostly shrink towards O as shown below.

Model	alpha = 0.0004			alpha = 0.0008		
Performance Metrics		Metric	Lasso		Metric	Lasso2
Metrics	0	Training R^2 score	0.836460	0	Training R^2 score	0.821692
	1	Test R^2 score	0.856155	1	Test R^2 score	0.836113
	2	Training MSE	0.002719	2	Training MSE	0.002965
	3	Test MSE	0.002509	3	Test MSE	0.002858
Most	Predictor Lasso Coefficient			Predictor La	sso2 Coefficient	
important Predictors	0	Const	0.004569	0	Const	0.055977
Predictors	1	LotFrontage	0.000000	1	LotFrontage	0.000000
	2	LotArea	0.000000	2	LotArea	0.000000
	3	OverallQual	0.313672	3	OverallQual	0.337074
	4	OverallCond	0.099272	4	OverallCond	0.071840
	5	YearBuilt	0.127440	5	YearBuilt	0.118812
	6	BsmtFinSF1	0.054670	6	BsmtFinSF1	0.014812
	7	BsmtFinSF2	0.004124	7	BsmtFinSF2	0.000000
	8	BsmtUnfSF	-0.000000	8	BsmtUnfSF	-0.000000
	9	1stFlrSF	0.089430	9	1stFlrSF	0.055071
	10	GrLivArea	0.358186	10	GrLivArea	0.315076

Most important predictors after the change is implemented

Model	Ridge		Lasso			
Most		Predictor	Ridge2 Coefficient		Predictor	Lasso2 Coefficient
Important	3	OverallQual	0.277002	3	OverallQual	0.337074
Predictors	10	GrLivArea	0.276978	10	GrLivArea	0.315076
	5	YearBuilt	0.128402	5	YearBuilt	0.118812
	13	GarageArea	0.126881	13	GarageArea	0.116014
	9	1stFlrSF	0.116271	4	OverallCond	0.071840
	4	OverallCond	0.097475	0	Const	0.055977
	6	BsmtFinSF1	0.089240	9	1stFlrSF	0.055071
	19	Condition2_PosN	-0.084326	17	MSZoning_RL	0.027469
	2	LotArea	0.066271	6	BsmtFinSF1	0.014812
	17	MSZoning_RL	0.055317	18	MSZoning_RM	-0.012565
	15	MSZoning_FV	0.050302	28	RoofMatl_WdShake	-0.000000

Question 2:

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

1. The optimal value of lambda for **ridge regression is 2** and for **lasso regression is 0.0004**. For these values of lambda, ridge regression has better values of training and test R^2 score and MSE.

	Metric	MLR	Ridge	Lasso
0	Training R^2 score	0.917092	0.856429	0.836460
1	Test R^2 score	0.839921	0.861327	0.856155
2	Training MSE	0.001379	0.002387	0.002719
3	Test MSE	0.002792	0.002418	0.002509

2. However, as shown below the lasso regression model performs automatic variable selection (by setting some coefficients to zero) and gives more insight into the variables that influence SalePrice, which is the goal of the business.

	Predictor	MLR Coefficient	Ridge Coefficient	Lasso Coefficient
0	const	-1.275276	-0.121706	0.004569
1	LotFrontage	0.064078	0.001386	0.000000
2	LotArea	0.145675	0.089549	0.000000
3	OverallQual	0.213836	0.281841	0.313672
4	OverallCond	0.118025	0.107045	0.099272
5	YearBuilt	0.133879	0.129952	0.127440
6	BsmtFinSF1	0.350758	0.102536	0.054670
7	BsmtFinSF2	0.054501	0.031371	0.004124
8	BsmtUnfSF	0.074481	0.015669	-0.000000
9	1stFlrSF	0.069237	0.119318	0.089430
10	GrLivArea	0.516287	0.327560	0.358186

3. Therefore, I have selected the Lasso regression model for the analysis.

Question 3:

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer:

I've created the lasso model after excluding the five most important predictor variables of the original model in section 9.2 of the Jupyter Notebook and the 5 most important predictor variables in the new model are given below.

	Predictor	Lasso3 Coefficient
6	1stFlrSF	0.584448
3	BsmtFinSF1	0.247707
0	Const	0.191422
7	KitchenAbvGr	-0.144834
10	MSZoning_FV	0.134904
8	Functional	0.114928

- 1stFlrSF: Sale price increases when 1stFlrSF (first floor square feet) increases
- BsmtFinSF1: Sale price increases when BsmtFinSF1 (Type 1 finished square feet) increases
- KitchenAbvGr: Sale price decreases when KitchenAbvGr increases
- MSZoning_FV: Sale price is higher when MSZoning takes the value FV (Floating Village Residential)
- Functional: Sale price increases when functionality increases

Question 4:

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

Robust and generalisable models

- A model is said to be robust and generalisable when it is able to make accurate predictions on unseen data after training on training data.
- In order to make sure that a model is robust and generalisable, we need to ensure that it learns the correct patterns from training data and does not underfit or overfit the training data.
- An underfitting model will have high bias and an overfitting model will have high variance. Thus, ensuring that the model is robust and generalisable involves balancing the bias and variance to maximise performance on unseen data.

Making linear regression models robust and generalisable

- Linear regression models in which the number of observations (n) is not much greater than the number of predictors (p) tend to have high variance after training and generally overfit the training data
- We can improve such models using regularisation, which decreases variance at the cost of a small increase in bias.
- Regularisation is of main types:
 - l1 regularisation (Lasso) adds the l1 norm of the model as a penalty to the cost function, and
 - l2 regularisation (Ridge) adds the l2 norm of the model as a penalty to the cost function.
- Both types of regularisation techniques tend to shrink the model coefficients towards zero and improve performance on unseen data.

<u>Implications on accuracy</u>

Since regularisation reduces overfitting, the accuracy of the model on training data decreases and its accuracy on unseen data increases.