Chapter 1: Summerize the Data with Median and Quartiles

- The median and the quartiles provide another way to describe center and spread.
- The median M is the midpoint of a distribution, the number such that half of the observations are smaller and the other half are larger. To find the median of a distribution
 - Arrange all observations in order of size, from smallest to largest.
 - If the number of observations n is odd, the median M is the center of observation in the ordered list. Find the location of median by counting $\frac{n+1}{2}$ observations up from the bottom of the list.
 - If the number of observations n is even, the median M is the average of the two center observations in the ordered list. The location of the median is between $\frac{n}{2}$ and $\frac{n}{2}+1$ from the bottom of the list

Chapter 1: Summerize the Data with Median and Quartiles

- We use the first and the third quantiles to mark off the middle for each half of the observations.
- The first quartile Q_1 is the median of the observations whose position in the ordered list is to the left of the location of the overall median. The overall median is **not** included in the observations considered to be to the left of the overall median.
- The third quartile Q_3 is the median of the observations whose position in the ordered list is to the right of the location of the overall median. The overall median is **not** included in the observations considered to be to the left of the overall median.

Odd Number Observations Example

Hank Aaron's 23 home run counts are 10 12 13 20 24 26 27 29 30 32 34 34 38 39 39 40 40 44 44 44 44 45 47

Even Number Observations Example

Barry Bonds's 22 home run counts are

5 16 19 24 25 25 26 28 33 33 34 34 37 37 40 42 45 45 46 46 49 73

The Five-number summary

The five-number summary of a distribution consists of the smallest observation, the first quartile, the median, the third quartile, and the largest observation, written in offder from smallest to largest. In symbols, the finve-number summary is

Minimum
$$Q_1$$
 M Q_3 Maximum (Q_0) (Q_1)

Whiskers Location in Boxplot

- The upper whisker is located at the value of an observation which is the greatest value in the sample that is less than or equal to $Q_3+1.5IQR$
- The lower whisker is located at the value of an observation which is the smallest value in the sample that is greater than or equal to $Q_1-1.5IQR$

Anatomy of a box plot

Boxplot Example

Hank Aaron's 23 home run counts are 32 34 34

Hank

Boxplot Example

Barry Bonds's 22 home run counts are

5	16	19	24	25	25	26	28	33	33	34
34	37	37	40	42	45	45	46	46	49	73

Barry

Boxplot Example

Suppose Barry Bonds's one of home run counts 73 is a typo, the true home run counts is 76. Then Barry Bonds's 22 home run counts called **BarryTrue** are 40 42

BarryTrue

Sid-by-side Boxplot Example

Now we plot the boxplot side-by-side for Hank, Barry and BarryTrue

