MA270 Analysis 3, Assignment 1

Dyson Dyson

Question 1

Let $f:[0,\infty)\to\mathbb{R}$ be a function such that $\lim_{x\to\infty}f(x)=0,\ f(0)=0,$ and f(1)=1. For each $n\in\mathbb{N},$ let $f_n(x):=f(nx)$ for every $x\in[0,\infty).$

- (a) Show that the sequence (f_n) converges to 0 pointwise but not uniformly.
- (b) Show that for any a>0, we have $\sup_{x\in[a,\infty)}|f_n(x)|\to 0$ as $n\to\infty$ (in such case, we say that f_n converges uniformly to 0 on $[a,\infty)$).

Q1 (a)

We will first show that $f_n \to 0$ pointwise. If x = 0 then $f_n(x) = 0$ for any n, so consider an arbitrary $x_0 \in (0, \infty)$. For any $\varepsilon > 0$, we want to choose an N such that $\forall n \geq N$, $|f(nx_0)| < \varepsilon$.

Since $\lim_{x\to\infty} f(x)=0$, we know that $\forall \varepsilon>0, \exists N_0\in\mathbb{N}$ such that $\forall x\geq N_0, |f(x)|<\varepsilon$.

To apply this above, we just want to choose N such that $nx_0 \ge N_0$, so we choose $N = \lceil N_0/x_0 \rceil$. Then $\forall n \ge N$, we have $|f_n(x_0)| = |f(nx_0)| < \varepsilon$ as required. Therefore $f_n \to 0$ pointwise.

However, $f \not \equiv 0$ because no matter which n we choose, we can find some x such that $f_n(x) \neq 0$. In this case, $x = \frac{1}{n}$, and $f_n(x) = f\left(n\frac{1}{n}\right) = f(1) = 1$. Therefore f does not converge uniformly to 0.

Q1 (b)

Fix some arbitrary a > 0. We want to show that $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall x \in [a, \infty), \ \forall n \geq N, \ |f(nx)| < \varepsilon$. Since $\lim_{x \to \infty} f(x) = 0$, we know that $\forall \varepsilon > 0$, $\exists N_0 \in \mathbb{N}$ such that $\forall x \geq N_0, \ |f(x)| < \varepsilon$.

So we just choose our N such that when n > N, $nx \ge N_0$ for all $x \in [a, \infty)$. So we choose $N = \lceil N_0/a \rceil$. Then the condition is met and therefore f_n converges uniformly on $[a, \infty)$.

Question 2

Study the pointwise and uniform convergence of the sequence $f_n:(0,\infty)\to\mathbb{R}$ defined by $f_n(x)=\frac{\sin(nx)}{n\sqrt{x}}$.

Hint: For uniform convergence, given $n \in \mathbb{N}$, one can analyse the behaviour of $f_n(x)$ separately for $x \in \left[\frac{1}{n}, \infty\right)$ and $x \in \left(0, \frac{1}{n}\right)$. For the analysis in the latter interval, one can consider the function $h: [0, \infty) \to \mathbb{R}$ defined by $h(x) = \frac{\sin x}{x}$ for $x \neq 0$ and h(0) = 1, show that h is bounded on $[0, \infty)$, and make use of this.

I shall conjecture that f_n converges pointwise to 0. To show this, we need to show that

 $\forall \varepsilon > 0, \ \forall x \in (0, \infty), \ \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \ |f_n(x)| < \varepsilon.$

So consider some arbitrary ε and x. Then

$$|f_n(x)| = \left| \frac{\sin(nx)}{n\sqrt{x}} \right|$$

$$= \frac{|\sin(nx)|}{|n\sqrt{x}|}$$

$$= \frac{|\sin(nx)|}{n\sqrt{x}}$$

$$|f_n(x)| < \varepsilon$$

$$\implies |\sin(nx)| < \varepsilon n\sqrt{x}$$

The maximum value of $|\sin(nx)|$ is 1, so as long as $\varepsilon n\sqrt{x} > 1$, we have the desired inequality. That means we can just choose $N = \left\lceil \frac{1}{\varepsilon \sqrt{x}} \right\rceil$.

Since this value of N depends on x, f_n does not converge uniformly to 0 in general. We shall consider f_n separately on the intervals $\left(0, \frac{1}{n}\right)$ and $\left[\frac{1}{n}, \infty\right)$.

First, consider f_n only on the interval $(0, \frac{1}{n})$. We shall first consider $h: [0, \infty) \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{\sin x}{x} & \text{otherwise} \end{cases}$$

The function h is bounded above and below by ± 1 . To show this, we want to

show that $\forall x \in [0, \infty)$,

$$|h(x)| \le 1$$

$$\left|\frac{\sin x}{x}\right| \le 1$$

$$\frac{|\sin x|}{|x|} \le 1$$

$$|\sin x| \le |x|$$

This is a well-known fact for $x \ge 0$, which is exactly where h is defined. Therefore $-1 \le h(x) \le 1$.

This should help with studying the uniform convergence of f_n . We can note that

$$f_n(x) = h(nx) \frac{x}{\sqrt{x}}$$

but unfortunately, I don't know where to go from here.

Question 3

For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be a Riemann integrable function. Suppose that the sequence (f_n) converges uniformly to a function $f : [0,1] \to \mathbb{R}$. Let (g_n) be the sequence defined by $g_n = f_{n+3} - f_n$. Prove that the limit $\lim_{n \to \infty} \int_0^1 g_n$ exists and calculate this limit.

$$\lim_{n \to \infty} \int_0^1 g_n = \lim_{n \to \infty} \int_0^1 (f_{n+3}(x) - f_n(x)) \, dx$$

$$= \lim_{n \to \infty} \int_0^1 f_{n+3}(x) \, dx - \lim_{n \to \infty} \int_0^1 f_n(x) \, dx$$

$$= \int_0^1 \lim_{n \to \infty} f_{n+3}(x) \, dx - \int_0^1 \lim_{n \to \infty} f_n(x) \, dx \qquad (*)$$

$$= \int_0^1 f(x) \, dx - \int_0^1 f(x) \, dx$$

$$= 0$$

Note that we're only allowed to move the limits inside the integrals on line (*) because f_n converges to f uniformly. A weaker notion of convergence would not allow for this.

Question 4

Let $g:[0,1]\to\mathbb{R}$ be a continuous function. For each $n\in\mathbb{N}$, let $g_n:[0,1]\to\mathbb{R}$ be defined by $g_n(x)=\frac{x}{1+nx^2}g(x)$. Show that $\int_0^1g_n(x)\;\mathrm{d}x\to 0$ as $n\to\infty$.

Hint: One can start by showing that the sequence of functions $h_n:[0,1]\to\mathbb{R}$ defined by $h_n(x)=\frac{x}{1+nx^2}$ converges uniformly to 0.

Consider the sequence of functions $h_n: [0,1] \to \mathbb{R}$ defined by $h_n(x) = \frac{x}{1 + nx^2}$. For h_n to converge uniformly to 0, we need

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \ \forall x \in [0,1], \ |h_n(x)| < \varepsilon.$$

A bit of simple manipulation tells us that

$$|h_n(x)| < \varepsilon$$

$$\left|\frac{x}{1+nx^2}\right| < \varepsilon$$

$$\frac{|x|}{|1+nx^2|} < \varepsilon$$

$$\frac{|x|}{1+nx^2} < \varepsilon$$

$$|x| < \varepsilon(1+nx^2)$$

$$|x| < \varepsilon + \varepsilon nx^2$$

$$\frac{|x| - \varepsilon}{\varepsilon x^2} < n$$

needs to hold for all x. Since $x \in [0,1]$, the left hand side is maximised when x=1, so we need $n>\frac{1-\varepsilon}{\varepsilon}$ and therefore we choose $N=\left\lceil\frac{1-\varepsilon}{\varepsilon}\right\rceil$. Therefore $h_n \rightrightarrows 0$.

Now we want to consider $\lim_{n\to\infty}\int_0^1g_n(x)\,\mathrm{d}x$. Since h_n converges uniformly and g is continuous, g_n converges uniformly. Therefore we can move the limit inside the integral and instead consider

$$\int_0^1 \lim_{n \to \infty} g_n(x) \, dx = \int_0^1 \lim_{n \to \infty} (h_n(x)g(x)) \, dx$$
$$= \int_0^1 \left(\lim_{n \to \infty} h_n(x)\right) g(x) \, dx$$
$$= \int_0^1 0g(x) \, dx$$
$$= 0$$