

STB120N4LF6 STD120N4LF6

N-channel 40 V, 3.1 mΩ 80 A DPAK, D²PAK STripFET™ VI DeepGATE™ Power MOSFET

Features

Order codes	V_{DSS}	R _{DS(on)} max	I _D
STB120N4LF6	40 V	$4.0~\text{m}\Omega$	80 A
STD120N4LF6	40 V	4.0 mΩ	80 A

- Logic level drive
- 100% avalanche tested

Application

- Switching applications
 - Automotive

This product is a 40 V N-channel STripFET™ VI Power MOSFET based on the ST's proprietary STripFET™ technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest RDS(on) in all packages.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Packages	Packaging
STB120N4LF6	120N4LF6	D ² PAK	Tape and reel
STD120N4LF6	120N4LF0	DPAK	Tape and reel

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	8
4	Package mechanical data	10
5	Packaging mechanical data	15
6	Revision history	18

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage (V _{GS} = 0)	40	V
V_{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α
I _D	Drain current (continuous) at T _C = 100 °C	80	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α
P _{TOT}	Total dissipation at T _C = 25 °C	110	W
T _{stg}	Storage temperature	-55 to 175	°C
Tj	Operating junction temperature	-55 10 175	

^{1.} Limited by wire bonding

Table 3. Thermal resistance

Symbol	Parameter	Value		Unit
Symbol	ratametei	DPAK	D ² PAK	Ollit
R _{thj-case}	Thermal resistance junction-case max	1.36		°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max (1)	50 35		°C/W

^{1.} When mounted on 1 inch² 2 oz. Cu board.

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AV}	Not-repetitive avalanche current	40	Α
E _{AS} (1)	Single pulse avalanche energy	394	mJ

^{1.} Starting Tj = 25 °C, I_D = 40 A, V_{DD} = 25 V

^{2.} Pulse width limited by safe operating area

2 Electrical characteristics

 $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 5. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$	40	-		V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 20 V V _{DS} = 20 V,Tc = 125 °C		-	1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V		-	±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	-	3	V
D	Static drain-source on	$V_{GS} = 5 \text{ V}, I_D = 40 \text{ A}$		3.6	5.0	mΩ
R _{DS(on)}	resistance	$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$		3.1	4.0	mΩ

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f=1 MHz, V _{GS} = 0 V	-	4300 650 375	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 20 V, I_{D} = 80 A V_{GS} = 10 V (see Figure 14)	-	80 15 15	-	nC nC nC
R _G	Intrinsic gate resistance	f=1 MHz open drain		1.35		Ω

Table 7. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time Rise time	$V_{DD} = 20 \text{ V}, I_D = 40 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	15 95	1	ns ns
t _{d(off)}	Turn-off delay time Fall time	Figure 15	-	125 45	1	ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		80 320	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0	-		1.1	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 80 A, di/dt = 100 A/ μ s, V_{DD} = 32 V, T_{J} = 150 °C Figure 17	-	50 85 3.5		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area

Figure 3. Thermal impedance

Figure 4. **Output characteristics**

6/18

Figure 5. **Transfer characteristics**

Figure 6. Normalized B_{VDSS} vs temperature Figure 7.

Doc ID 16919 Rev 2

AM08969v1 AM08970v1 C (pF) Vgs (V) VDD=20V 12 ID=80A Ciss 10 8 1000 6 Coss 4 Crss 2 100 ____ 0 40 20 60 80 Q_g(nC) 10 V_{DS}(V) 1

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

Figure 12. Source-drain diode forward characteristics

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and products status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

E E/2

L1

D1

THERMAL PAD

SEATING PLANE

COPLANARITY A1

Figure 19. D²PAK (TO-263) drawing

0.25

GAUGE PLANE

0079457_R

a. All dimension are in millimeters

Table 10. DPAK (TO-252) mechanical data

mm				
Dim.		111111	T	
	Min.	Тур.	Max.	
Α	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10		
Е	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40		4.60	
Н	9.35		10.10	
L	1			
L1		2.80		
L2		0.80		
L4	0.60		1	
R		0.20		
V2	0°		8°	

Figure 21. DPAK (TO-252) drawing

0068772_G

b. All dimension are in millimeters

5 Packaging mechanical data

Table 11. D²PAK (TO-263) tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim.	mm		
	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base qty 1000		1000	
P2	1.9	2.1	Bulk qty 1000			
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Table 12. DPAK (TO-252) tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim.	mm		
	Min.	Max.	— Dilli.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

10 pitches cumulative tolerance on tape +/- 0.2 mm

Top cover P0

B0

User direction of feed

Definition of feed

Bending radius

AM08852v2

Figure 23. Tape for D²PAK(TO-263) and DPAK (TO-252)

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
14-Dec-2009	1	First release
23-Feb-2011 2		Document status promoted from preliminary data to datasheet.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18 Doc ID 16919 Rev 2