Tutorial 4

Q1. Write Newman projections for all three staggered conformations of 2,2-dimethylpentane, looking down the C3-C4 bond. Select the most stable conformation.

2,2-dimethylpentane

- Q2. For 2,2-dimethylpentane, write one Newman projection looking down the C2-C3 bond. Explain why the view down the C3-C4 bond (in the question above) is more informative in identifying the best conformation.
- Q3. Consider 2-bromobutane (shown). Sighting along the C2-C3 bond and using Newman projections, answer the following questions using the data provided in the table below.

Interaction	kcal-mol ⁻¹
H,H eclipsed	1.0
H,CH ₃ eclipsed	1.4
CH ₃ ,CH ₃ eclipsed	2.6
H,Br eclipsed	1.7
CH ₃ ,Br gauche	0.9
CH ₃ ,CH ₃ gauche	0.9
CH ₃ ,Br eclipsed	3.8

- a. Draw the most stable conformer and calculate the total interaction energy.
- b. Draw the least stable conformer and calculate the total interaction energy.
- Q4. Consider the molecule 1,2-dichloroethane and answer the following questions.
 - (a) Draw Newman projections for all eclipsed conformations formed by rotation from 0° to 360° about the C-C bond.
 - (b) Which eclipsed conformation(s) has the lowest energy? Which will have the highest energy?