Extramaterial: Formler och räkneregler · 1MA020

Vilhelm Agdur¹

¹vilhelm.agdur@math.uu.se

31 januari 2023

I detta dokument ligger en samling av viktiga resultat och räkneregler, sammanfattade utan bevis.

Den tolvfaldiga vägen

	Generellt f	Injektivt f	Surjektivt <i>f</i>
Bägge särskiljbara	Ord ur X av längd n x^n	Permutation ur X av längd n $\frac{x!}{(x-n)!}$	Surjektion från N till X $x! {n \atop x}$
Osärskiljbara objekt	Multi-delmängd av X av storlek n $\binom{n+x-1}{n}$	Delmängd av X av storlek n $\binom{x}{n}$	Kompositioner av n av längd x $\binom{n-1}{n-x}$
Osärskiljbara lådor	Mängdpartition av N $\mathrm{i} \leq x$ delar $\sum_{k=1}^{x} {n \brace k}$	Mängdpartition av X i $\leq x$ delar av storlek 1 1 om $n \leq x$, 0 annars	Mängdpartition av N i x delar $\begin{Bmatrix} n \\ x \end{Bmatrix}$
Bägge osärskiljbara	Heltalspartition av $n \text{ i} \leq x$ delar $p_x(n+x)$	Sätt att skriva n som summan av $\leq x$ ettor 1 om $n \leq x$, 0 annars	Heltalspartitioner av n i x delar $p_x(n)$

Räkneregler för genererande funktioner

Lemma 1 (Räkneregler för genererande funktioner). *Antag att vi har en följd* $\{a_k\}_{k=0}^{\infty}$, med genererande funktion F_a . Då gäller det att

1. För varje $j \geq 1$ är

$$\sum_{k=j}^{\infty} a_k x^k = \left(\sum_{k=0}^{\infty} a_k x^k\right) - \left(\sum_{k=0}^{k=j-1} a_k x^k\right) = F_a(x) - \sum_{k=0}^{k=j-1} a_k x^k$$

2. För alla $m \ge 0$, $l \ge -m$ gäller det att

$$\sum_{k=m}^{\infty} a_k x^{k+l} = x^l \left(\sum_{k=m}^{\infty} a_k x^k \right) = x^l \left(F_a(x) - \sum_{k=0}^{m-1} a_k x^k \right)$$

3. Det gäller att²

$$\sum_{k=0}^{\infty} k a_k x^k = F_a'(x).$$

 $^{^2}$ Denna räkneregel kan förstås generealiseras till att högre potenser av k motsvarar högre derivator – och om vi istället delar med någon potens av k får vi primitiva funktioner till den genererande funktionen.