Math 220 Section 108 Lecture 17

3rd November 2022

Source: https://personal.math.ubc.ca/~PLP/auxiliary.html

Introduction to Equivalence Classes

Definition (Definition 9.3.3 of PLP)

Given an equivalence relation \mathbf{R} defined on a set A, we define the equivalence class of $x \in A$ (with respect to \mathbf{R}) to be the set of elements related to x:

$$[x] = \{ y \in A : y \mathbf{R} x \}.$$

Example

Let R be the equivalence relation on \mathbb{N} where xRy iff x and y have the same last digit (in base 10). Find [0] and [1].

Answer:

$$\label{eq:continuous} \begin{split} [0] &= \{10, 20, 30, 40, \dots\}, \text{ and} \\ [1] &= \{1, 11, 21, 31, \dots, 91, 101, \dots\}. \end{split}$$

Q4. 2014WT1 final exam

2. A relation R on \mathbb{Z} is defined by aRb if $7a^2 \equiv 2b^2 \pmod{5}$. $7a^2 = 5n + 9b^2$ $7a^2 - 2b^2 = 5n$ (a) Prove that \mathbf{R} is an equivalence relation.

(b) Determine the distinct equivalence classes [0] and [1], simplify your answer as much as possible.

(a) leftenive Consider a= b 50, $7a^2 - 2a^2 = 5a^2$ So, R's reflexive

Transitive let arb& bRc s_0 , $7a^2-2b^2=5n$ 762-202=5m, Ym & Z -0 So, adding (1+(1) 3) 7a2-2c2=5(n+m+b2)

So, H's equivalent selection

symmetric Consider aRb So, 7a2-2b2=51 $2h^2 - 7a^2 = -5n$ 762-702= 5(-n+562) 762 - 202 = 5(-n+567562) 8 hence bla so, R's symme tric

5 | 7a2-2c2, "702-22EZ arc & heme Rie toancitive <u>چ</u>و,

(Continued 1/2)

(Continued) 2. **R** on \mathbb{Z} is defined by $a\mathbf{R}b$ if $7a^2 \equiv 2b^2 \pmod{5}$.

- (a) Prove that \boldsymbol{R} is an equivalence relation.
- (b) Determine the distinct equivalence classes [0] and [1].

(b) If aro, then
$$7a^2 = 0 \pmod{5}$$

So, $5 \mid 7a^2$

So, $5 \mid a^2 \iff 5 \mid a \text{ or } 5 \mid a$

So, $5 \mid a^2 \iff 5 \mid a \text{ or } 5 \mid a$

[0] = $\{5k \mid k \in \mathbb{Z}\}$

If ari, then $7a^2 = 2 \pmod{5}$

So, $a^2 = 1 \pmod{5}$

So, $a^2 = 1 \pmod{5}$

Si, $5 \mid a \cdot 1 \text{ or } 5 \mid a + 1$
 $[1] = \{5k - 1 \mid k \in \mathbb{Z}\} \cup \{5j + 1 \mid j \in \mathbb{Z}\}$

(Continued 2/2)

- (Continued) 2. **R** on \mathbb{Z} is defined by $a\mathbf{R}b$ if $7a^2 \equiv 2b^2 \pmod{5}$.
- (a) Prove that R is an equivalence relation.
- (b) Determine the distinct equivalence classes [0] and [1].

Old final question

3. Let R be a relation on \mathbb{R} defined as

$$\mathbf{R} = \{(a, b) : \cos^2(a) + \sin^2(b) = 1\}.$$

- (a) Prove that R is an equivalence relation.
- (b) For $\theta \in \mathbb{R}$, write the equivalence class $[\theta]$.

Hint: For part (b), you can try to visualize it on the unit circle.

(Continued 1/2)

- (Continued) 3. Define: $\mathbf{R} = \{(a, b) \in \mathbb{R} \times \mathbb{R} : \cos^2(a) + \sin^2(b) = 1\}.$
- (a) Prove that R is an equivalence relation.
- (b) For $\theta \in \mathbb{R}$, write the equivalence class $[\theta]$.

(Continued 2/2)

- (Continued) 3. Define: $\mathbf{R} = \{(a, b) \in \mathbb{R} \times \mathbb{R} : \cos^2(a) + \sin^2(b) = 1\}.$
- (a) Prove that ${\it R}$ is an equivalence relation.
- (b) For $\theta \in \mathbb{R}$, write the equivalence class $[\theta]$.

Partitions

Definition (Definition 9.3.11 of PLP)

A **partition** of a set A is a collection \mathcal{P} of non-empty subsets of A, so that,

- if $x \in A$, then there exists $X \in \mathcal{P}$ so that $x \in X$, and if $X, Y \in \mathcal{P}$, then either $X \cap Y = \emptyset$ or X = Y.
- if $X, Y \in \mathcal{P}$, then either $X \cap Y = \emptyset$ or X = Y. No overlap & Set A E Filis

Theorem (Theorem 9.3.12 of PLP)

Let **R** be an equivalence relation on A. The set of equivalence classes of **R** forms a partition of A. That is, $\mathcal{P} = \{[x] \mid x \in A\}$ is a partition of A.

Example

Define the equivalence relation **R** on \mathbb{N} such that $a\mathbf{R}b$ if $a \equiv b \pmod{2}$.

Note that

$$[1] = \{1,3,5,7,\dots\} \quad \text{ and } \quad [2] = \{2,4,6,\dots\}.$$

The partition of \mathbb{N} arising from **R** is

$$\mathcal{P} = \{[1],[2]\} = \Big\{\{1,3,5,7,\dots\},\{2,4,6,\dots\}\Big\}.$$

Partitions

- 4. Determine the partitions of $\mathbb N$ to which the following equivalence relations $\mathcal R$ correspond:
- (a) $\mathcal{R} = \mathbb{N} \times \mathbb{N}$.
- (b) $\mathcal{R} =$ The smallest possible equivalence relation on \mathbb{N} .

Continued

(Continued) 4. Determine the partitions of $\mathbb N$ to which the following equivalence relations $\mathcal R$ correspond:

- (a) $\mathcal{R} = \mathbb{N} \times \mathbb{N}$.
- (b) $\mathcal{R} =$ The smallest possible equivalence relation on \mathbb{N} .

Partitions

5. Suppose \mathcal{P} is a partition of a set A. Define a relation \mathbf{R} on A where $x\mathbf{R}y$ if $x,y\in X$ for some $S\in \mathcal{P}$. Prove \mathbf{R} is an equivalence relation on A.

(Continued)

(Continued) 5. Suppose \mathcal{P} is a partition of a set A. Define a relation \mathbf{R} on A where $x\mathbf{R}y$ if $x,y\in X$ for some $S\in \mathcal{P}$. Prove \mathbf{R} is an equivalence relation on A.

Modular arithmetic

- 6. Fix a natural number n. Define aRb if $n \mid (a b)$. We write this as $a \equiv b \pmod{n}$; note that this is an equivalence relation.
- (a) For $a, b \in \mathbb{N}$, show that if $x \in [a]$ and $y \in [b]$, then $x y \in [a b]$.
- (b) Assume that n = p, a prime. Show that for $x \in [a]$, where $[a] \neq [0]$, there exists an integer d such that $xd \in [1]$.

Continued

- (Continued) 6. Fix a natural number n. Define $a \equiv b \pmod{n}$ if $n \mid (a b)$.
- (a) For $a, b \in \mathbb{N}$, show that if $x \in [a]$ and $y \in [b]$, then $x y \in [a b]$.
- (b) Assume that n = p, a prime. Show that for $x \in [a]$, where $[a] \neq [0]$, there exists an integer d such that $xd \in [1]$.