CÁLCULO INFINITESIMAL 1 Guía de Trabajos Prácticos Nº 1 Límites - Continuidad - Asíntotas

A. Graficar las siguientes funciones:

1)
$$F(x) = \frac{2}{3}x + 1$$

1)
$$F(x) = \frac{3}{3}x + 1$$

2) $G(x) = \begin{cases} \frac{3}{2}x - 2 \sin x \neq 0 \\ 4 \sin x = 0 \end{cases}$
6) $P(x) = \frac{x}{x}$
7) $S(x) = \frac{x(x+1)}{(x+1)}$
8) $T(x) = \frac{x(x-1)(x+2)}{(x-1)(x+2)}$

3)
$$L(x) = \frac{(\frac{2}{3}x + 1)(x - 2)}{(x - 2)}$$

4)
$$M(x) = \frac{(\frac{2}{3}x+1)(x+1)}{(x+1)}$$

5)
$$Q(x) = \frac{x^2}{x}$$

$$6) \qquad P(x) = \frac{x^3}{x}$$

7)
$$S(x) = \frac{x(x+1)}{(x+1)}$$

8)
$$T(x) = \frac{x(x-1)(x+2)}{(x-1)(x+2)}$$

9)
$$N(x) = \frac{x}{x}$$

10)
$$W(x) = \frac{x+1}{x+1}$$

Para cada función, que está dada por su gráfico, B. encuentre una fórmula que le corresponda.

11)

12)

13)

14)

15)

C. Compare las siguientes parejas de funciones (trace los gráficos. ¿Son iguales?)

16)
$$F(x) = x$$

$$G(x) = \frac{x^2}{x}$$

16)
$$F(x) = x$$
; $G(x) = \frac{x^2}{x}$
17) $F(x) = x$; $G(x) = \frac{x(x-2)}{(x-2)}$

18)
$$F(x) = \frac{x^2}{x}$$
; $G(x) = \frac{x^3}{x^2}$

D. Determine a partir del gráfico:

19)

a)
$$F(1) =$$

b)
$$\lim_{x \to 1} F(x) =$$

c) $\dot{\epsilon}$ Es F continua en x = 1?

20)

a)
$$F(2) =$$

b)
$$\lim_{x \to 2} F(x) =$$

c) $iEs\ F\ continua\ en\ x=2$?

21)

a)
$$F(3) =$$

b)
$$\lim_{x \to 3} F(x) =$$

22)

a)
$$F(4) =$$

b)
$$\lim_{x \to 4^{-}} F(x) =$$

c)
$$\lim_{x \to 4^{+}} F(x) =$$

d) ¿Existe Lím
$$F(x) = ?$$

 $x \rightarrow 4$

e) $\angle Es F$ continua en x = 4?

23)

a)
$$F(5) =$$

a) Lím
$$F(x) = x \rightarrow 5^-$$

b)
$$\lim_{x \to 5^+} F(x) =$$

c)¿Es F continua en x = 5?

E. En cada valor indicado de x, calcule lo pedido

b) Lim
$$F(x) = x \rightarrow a$$

b) Lim
$$F(x) = x \rightarrow b$$

26) a)
$$F(c) =$$

b)
$$\lim_{X\to C} F(x) =$$

27) a)
$$F(d) =$$

b) Lim
$$F(x) = x \rightarrow d$$

28) a)
$$F(h) =$$

b) Lim
$$F(x) = x \rightarrow h$$

F. Calcular lo pedido en cada ejercicio:

29)
$$F(x) = x^2 + 3$$

- a) F(1)
- b) Lím $F(x) = x \rightarrow 1$

30)
$$G(x) = \begin{cases} 2x + 5 & \text{si } x \neq 2 \\ 3x - 1 & \text{si } x = 2 \end{cases}$$

- a) G(2) =
- b) $\lim_{x \to 2} G(x) =$
- c) G(1) =
- d) $\lim_{x \to 1} G(x) =$
- e) ¿Es G continua en X=2?
- f) ¿Es G continua en X=1?

31)
$$M(x) = \begin{cases} x + 3 & \text{si} & x > 1 \\ 2x - 1 & \text{si} & x < 1 \\ 3 + x & \text{si} & x = 1 \end{cases}$$

- a) M(1) =
- b) Lím $M(x) = x \rightarrow 1^+$
- c) Lím $M(x) = x \rightarrow 1^-$
- d) Lím M(x) = $x \rightarrow 1$
- **e)** M(2) =
- f) Lím M(x) = $x\rightarrow 2^+$

g) Lím M(x) =
$$x\rightarrow 2^-$$

- h) Lím M(x) = $x \rightarrow 2$
- i) ¿Es M continua en x=1?
- j) ¿Es M continua en x=2?

32) Sea F(x) =
$$\begin{vmatrix} 2x^2 + 3x & \text{si} & x \neq 2 \\ 4x + 2a & \text{si} & x = 2 \end{vmatrix}$$

F es continua. Halle $a \in \Re$

33) Sea F(x) =
$$\begin{vmatrix} 2 x^3 + x & \text{si } x > 1 \\ 4x + a & \text{si } x = 1 \\ x^3 + bx + 2a & \text{si } x < 1 \end{vmatrix}$$

F es continua en \Re . Halle a y b $\in \Re$

34)
$$\lim_{x\to 0} \frac{x^2 + x}{x + 1} =$$

35)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x + 3} =$$

36)
$$\lim_{x\to 2} \frac{x^3 + 3x}{x^2 - 4} =$$

37)
$$\lim_{X \to -1} \frac{x^3 + x^2 + x + 1}{x^2 - x - 2} =$$

38)
$$\lim_{x\to 1} \frac{x^3 + x - 2}{x^3 - x^2 - x + 1} =$$

G. Cuando exista el límite indicar su valor. Si no existe o es un caso de indeterminación, consígnelo.

39)
$$(+\infty)^2$$

46)
$$(0)^{\infty}$$

47)
$$(\pi / e)^0$$

48)
$$(\pi / e)^{-\infty}$$

44)
$$(\infty)^{\infty}$$

H. Calcular

50)
$$\lim_{X \to +\infty} 0.2^{X} =$$
51)
$$\lim_{X \to -\infty} 0.2^{X} =$$
52)
$$\lim_{X \to \infty} 0.2^{X} =$$

$$\begin{array}{ccc}
\text{51)} & \text{Lim } 0.2^{X} = \\
& & \times \to -\infty
\end{array}$$

52)
$$\lim_{X \to \infty} 0.2^{X} =$$

53)
$$\lim_{X \to 0} \frac{1}{x^{X}} =$$

54)
$$\lim_{X\to 0^+} \frac{1}{3^X} =$$

55)
$$\lim_{X\to 0^{-}} \frac{1}{3^{X}} =$$

56)
$$\lim_{X \to +\infty} 2^X =$$

57)
$$\lim_{X \to \infty} 2^X =$$

58)
$$\lim_{X \to -\infty} 2^X =$$

I. Calcular

59)
$$\lim_{x \to \infty} \frac{2x^2 + 3x + 4}{3x^2 + 5x - 2} =$$

60)
$$\lim_{x \to \infty} \frac{3x^3 + 5x^2 + 6}{2x + 7x^4 + 5x^2} =$$

61)
$$\lim_{x \to \infty} \frac{5x^2 + 7x + 8x^4}{3x^5 + 6x - 2} =$$

62)
$$\lim_{x \to +\infty} \frac{3x^2 + 7x}{4x^2 + 5x} =$$

63)
$$\lim_{x \to 0} \frac{3x^2 + 7x}{4x^2 + 5x} =$$

64)
$$\lim_{x \to \infty} \frac{5x^7 + 6x^4}{7x^8 + 8x^5} =$$

J. Resolver:

65) La función

$$f(x) = \begin{cases} 2x^2 + 3x + a & \text{si } x \ge 1 \\ 4x^3 + bx^2 + ax & \text{si } x < 1 \end{cases}$$

es continua en x=1 (y en todo \Re) Halle los valores de a y b (reales)

- 66) Supongamos que F es una función continua para x = 2.
 - a) ¿Está F definida en x = 2?
 - b) Si F(2) = 7 ¿puede afirmarse algo sobre Lím F(x)? $x \rightarrow 2$
 - c) ¿Es cierto que si $x \to \frac{\pi}{2}$ entonces Sen(x) \to 1?

K. Halle asíntotas (todas)

67)
$$f(x) = \frac{(x+2)(x+3)(x-1)}{(x+3)(x+5)}$$

68)
$$F(x) = \frac{(x-2)(x+4)(x-1)}{(x-2)(x+5)}$$

69)
$$F(x) = 2x + 3 + \frac{1}{x^2 + 8}$$

70)
$$F(x) = \frac{x^3}{x^2 + 1}$$

71)
$$F(x) = \frac{1}{x-4}$$

72)
$$F(x) = 5 + \frac{2}{x^2}$$

73)
$$F(x) = e^{X}$$

74)
$$F(x) = \frac{8 - x^3}{2 - x}$$

75)
$$F(x) = \frac{x+2}{x^2 - 2x}$$

76)
$$F(x) = \frac{x^3 - 2x^2 - 8x}{x^4 + 3x + 2}$$

L. Calcular los siguientes límites:

77)
$$\lim_{X\to 0^+} |x|$$

78)
$$\lim_{x\to 0^{-}} |x|$$

79)
$$\lim_{x\to 0} |x|$$

80)
$$\lim_{x\to 0^+} [x]$$

81)
$$\lim_{x \to 0^{-}} [x]$$

82)
$$\lim_{x\to 0} [x]$$

83)
$$\lim_{x \to 0^+} \frac{x}{|x|}$$

84)
$$\lim_{x\to 0^{-}} \frac{x}{|x|}$$

85)
$$\lim_{x\to 0} \frac{x}{|x|}$$

86)
$$\lim_{x\to 0} |x| + [x]$$