Sieci komputerowe

Adresowanie IPv6

Wykład 6 — Adresowanie IP

Marta Szarmach Zakład Telekomunikacji Morskiej Wydział Elektryczny Uniwersytet Morski w Gdyni

03.2022

Adresowanie IPv6

Plan prezentacji

- Adresowanie IP
 - Rola
 - Budowa
 - Konfiguracja
- Adresowanie IPv4
 - Budowa
 - Adres sieci i rozgłoszeniowy
 - Rodzaje adresów
 - Podział sieci na podsieci
- Adresowanie IPv6
 - Zapis
 - Rodzaje adresów
- Systemy numeryczne

1. Adresowanie IP

Rola, budowa, konfiguracja

1.1 Adresowanie IP. Rola

Definicia

Adresowanie IP ma na celu przydzielenie urządzeniom sieciowym właściwych adresów warstwy sieciowej, tak, by urządzenia mogły komunikować się ze sobą nawet nie będąc w ramach jednej lokalnej sieci

Adresowanie IPv6

Adresy IP, w przeciwieństwie do adresów MAC, nie są przydzielane na stałe, można je w każdej chwili zmodyfikować.

1.2 Adresowanie IP. Budowa

Adres IP składa się z dwóch części:

 Części sieci, która jest identyfikatorem sieci, do której należy host (wszystkie hosty w ramach jednej sieci muszą mieć identyczne wartości w części sieci swoich adresów IP)

Adresowanie IPv6

 Części hosta, która jednoznacznie identyfikuje konkretnego hosta w ramach danej sieci

Od ilości bitów w części hosta zależy ilość hostów, jaką może objąć dana podsieć:

Ilość hostów = $2^{\text{liczba bitów w części hosta}} - 2$

1.2 Adresowanie IP. Budowa

Router na podstawie części sieci adresu IP dowiaduje się, do której sieci należy docelowe urządzenie i jak poprowadzić routing — lecz sam adres IP nie jest wystarczający, konieczne jest jeszcze wskazanie maski sieciowej.

Adresowanie IPv6

Definicia

Maska sieciowa jest binarnym ciągiem o takiej samej długości, co adres IP; tam, gdzie w masce znajduje się bit 1, odpowiadający mu bit należy do części sieci, a te bity, które w masce przyjmują wartość 0, należą do części hosta.

1.2 Adresowanie IP. Budowa

Przykład

Adres IP dziesiętnie:

192.168.0.100

Maska sieciowa dziesiętnie:

255.255.255.0

Maska sieciowa binarnie:

11111111.111111111.11111111.00000000

Adres IP binarnie:

11000000.10101000.00000000.01100100

część sieci

część hosta

Adresowanie IPv6

1.3 Adresowanie IP. Konfiguracja

Podstawowa konfiguracja adresu IP sprowadza się do wskazania:

- adresu IP przydzielanego urządzeniu,
- maski sieciowej,
- adresu IP bramy domyślnej, ewentualnie serwera DNS.

```
Microsoft Windows [Version 10.0.22000.556]
(c) Microsoft Corporation. Wszelkie prawa zastrzeżone.

C:\Users\marta>ipconfig
Windows IP Configuration
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix :
Link-local IPv6 Address . . : fe80::cdd4:8d56:b522:f05a%6
IPv4 Address . . : 192.168.1.9
Subnet Mask . . . : 255.255.255.0
Default Gateway . . : 192.168.1.1
```

2. Adresowanie IPv4

Budowa, adres sieci i rozgłoszeniowy, rodzaje adresów, podział sieci na podsieci

2.1 Adresowanie IPv4. Budowa

 Adres IPv4 składa się z 32 bitów, najczęściej grupowanych w 4 grupy po 8 bitów (oktety) i zapisywane dziesiętnie

Przykład

192.168.0.100

 Maska sieciowa również składa się z 32 bitów. Często zapisywana jest w skróconej wersji (jako prefiks) poprzez podanie samej ilości jedynek

Przykład

Maska dziesiętnie: 255.255.255.0

Maska binarnie: 111111111.11111111.11111111.00000000

Alternatywny zapis: /24

2.1 Adresowanie IPv4. Budowa

Ważne: Wartość 0 w masce nie może znajdować się wewnątrz ciągu jedynek (maska nieciągła). Poprawne oktety, jakie może przyjąć maska:

Przykład

```
0. \Leftrightarrow 00000000 \Rightarrow .0
```

 $.10000000 \Rightarrow .128$

 $.111111000 \Rightarrow .248$

Adresowanie IPv6

 $.110000000 \Rightarrow .192$ $.111000000 \Rightarrow .224$

 $.111111100 \Rightarrow .252$ $.111111110 \Rightarrow .254$

 $.11110000 \Rightarrow .240$

 $.1111111111 \Rightarrow .255$

2.2 Adresowanie IPv4. Adres sieci i rozgłoszeniowy

Definicja

Adres sieci jest to adres IP, w którym w części hosta znajdują się same zera; stanowi identyfikator całej sieci

Adres sieci, do której należy dany host, otrzymuje się poprzez wykonanie operacji binarnej AND na adresie IP i masce sieciowej:

Przykład

Adres IP dziesiętnie: Maska sieciowa dziesiętnie:

192.168.0.100 255.255.255.0

Adres IP binarnie: 11000000.10101000.00000000.01100100 AND

Adres sieci: 192.168.0.0

2.2 Adresowanie IPv4. Adres sieci i rozgłoszeniowy

Definicja

Adres rozgłoszeniowy jest to adres IP, w którym w części hosta znajdują się same jedynki; pakiet wysłany pod ten adres trafia do wszystkich pozostałych urządzeń w sieci

Adres rozgłoszeniowy otrzymuje się poprzez wykonanie operacji binarnej OR na adresie IP i odwróconej masce sieciowej:

Przykład

Adres IP dziesiętnie: Maska sieciowa dziesiętnie:

192.168.0.100 255.255.255.0

Odwrócona maska: 00000000.00000000.00000000.111111111

Adres IP binarnie: 11000000.10101000.00000000.01100100 OR

Rezultat: $11000000.10101000.00000000.111111111 \Rightarrow$

Adres rozgłoszeniowy: 192.168.0.255

2.2 Adresowanie IPv4. Adres sieci i rozgłoszeniowy

Oprócz adresu rozgłoszeniowego, istotne z punktu widzenia administarowa sieciowego są jeszcze 2 adresy IP w każdej sieci:

• Adres pierwszego hosta — o 1 większy niż adres sieciowy (np. 192.168.0.1)

Adresowanie IPv6

• Adres ostatniego hosta — o 1 mniejszy niż adres rozgłoszeniowy (np. 192.168.0.254)

Najczęściej właśnie te adresy nadawane są urzędzeniom sieciowym (interfeisom na routerze czy vlan0 na switchu).

Ważne: żadne urządzenie sieciowe nie może mieć na interfejsie skonfigurowaneo adresu IP będącego adresem sieci albo rozgłoszeniowym!

2.3 Adresowanie IPv4. Rodzaje adresów

Istnieją pewne specjalne, zarezerwowane do pewnych celów adresy IP:

- Adresy pętli zwrotnej (loopback, localhost) 127.0.0.0 /8
- Pula adresów, z której automatycznie przydziela sobie adres interfejs sieciowy w przypadku braku połączenia z serwerem DHCP — 169.254.0.0 /16
- Adresy prywatne, do wykorzystania jedynie w ramach sieci lokalnych (nieprzekazywane przez router do Internetu, o ile nie zostaną stranslowane na adresy publiczne):
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0 192.168.255.255

Adresowanie IPv6

Definicia

Podział sieci na podsieci umożliwia wydzielenie z jednej (większej) sieci określonej ilości mniejszych sieci poprzez wydłużenia oryginalnej maski sieciowej.

Część bitów dotychczas należących do części hosta zostaje dołączona do części sieci (mniej bitów w części hosta ⇒ mniej hostów w podsieci)

Trochę historii — klasy adresów IP

- Historycznie, podział sieci na podsieci był ograniczony, stosowano klasy adresów IP i od tego, do której klasy należały adresy, zależała długość maski podsieci, na które można było podzielić daną sieć
- Klasowość nie pozwalała na dostosowywanie wielkości podsieci do zapotrzebowania — wiele adresów IP marnowało się

Trochę historii — klasy adresów IP

- Klasa A adresy zaczynające się binarnie od 0XXXXXXX (0.0.0.0-127.255.255.255) — maska /8
- Klasa B adresy zaczynające się binarnie od 10XXXXXX (128.0.0.0-191.255.255.255) — maska /16
- Klasa C adresy zaczynające się binarnie od 110XXXXX (192.0.0.0-223.255.255.255) — maska /24

Istniały jeszcze 2 klasy z niezdefiniowanymi długościami masek:

- Klasa D adresy zaczynające się binarnie od 1110XXXX (224.0.0.0-239.255.255.255) — do komunikacji multicastowej (np. telewizja IPTV)
- Klasa E adresy zaczynające się binarnie od 1111XXXX (240.0.0.0-255.255.255.255) — do celów eksperymentalnych

Adresowanie IPv6

2.4 Adresowanie IPv4. Podział sieci na podsieci

Podział bezklasowy CIDR (Classless Inter-Domain Routing)

Obecnie maski sieciowe nie są narzucone z góry — można dobrać je według zapotrzebowania, a w ramach jednej sieci mogą istnieć podsieci z różnymi maskami (VLSM, ang. *Variable Length Subnet Mask*)

- Możemy tak dobrać maskę wydłużyć część sieci o tyle bitów — aby móc podzielić sieć na określoną liczbę podsieci o równej wielkości Liczba podsieci = 2^{liczba bitów, o które wydłużono część sieci}
- Można tak dobrać maskę dla każdej z podsieci, aby obejmowała optymalną liczbę hostów

Podział sieci na równe podsieci

Przykład

Adres sieci: 192.168.0.0 **Maska sieciowa**: 255.255.255.0

Podział na: 2 podsieci

Ilość bitów, o które należy wydłużyć maskę: 1 (bo $2 = 2^1$)

Maska podsieci (nowa): 255.255.255.128

Adresy podsieci: 192.168.0.0/25 i 192.168.0.128/25

Adresowanie IPv6

2.4 Adresowanie IPv4. Podział sieci na podsieci

Podział sieci na dopasowane podsieci

Przykład

Adres sieci: 192.168.0.0 **Maska sieciowa**: 255.255.255.0

Podsieć ma zawierać: 20 hostów

Ilość bitów w części hosta, aby objąć 20 hostów: 5

(bo $2^5 = 32 > 20$)

Maska podsieci (nowa): 255.255.255.224

Adres przykładowej podsieci: 192.168.0.32 /27

3. Adresowanie IPv6

Adresowanie IPv6

Zapis, rodzaje adresów

 Adres IPv6 składa się z 128 bitów, najczęściej grupowanych w 8 grup po 16 bitów, zapisywane szesnastkowo i oddzielanych dwukropkami:

Adresowanie IPv6

Przykład

2001:0db8:0000:0000:0000:0000:1428:47ac

 Bloki zawierające same zera można zastąpić jednym zerem lub podwójnym dwukropkiem (tylko raz w całym adresie!)

Przykład

Alternatywne zapisy adresu:

2001:0db8:0:0:0:1428:47ac

2001:0db8::1428:47ac

 Maska sieciowa również składa się z 128 bitów, lecz najczęściej zapisywana jest za pomocą prefiksu (np. /7)

3.2 Adresowanie IPv6. Rodzaje adresów

Rodzaje adresów IPv6:

Link-local

- fe80:: /8
- Wykorzystywane lokalnie, w jednym segmencie sieci
- Obowiązkowe

Unique local

- fc00:: /7
- Odpowiedniki adresów prywatnych IPv4

Adresowanie IPv6

Global unicast

- Odpowiedniki adresów publicznych IPv4
- Adresy pozostałe

3.2 Adresowanie IPv6. Rodzaje adresów

Specialne adresy IPv6:

- ::1 /128 adres petli zwrotnej localhost
- 2001:7f8::/32 adresy dla punktów wymiany ruchu międzyoperatorskiego

Adresowanie IPv6

- 2001:db8::/32 do przykładów i dokumentacji
- ff00::/8 adresy multicastowe

3.2 Adresowanie IPv6. Rodzaje adresów

Adresy umożliwiające mapowanie IPv6 — IPv4:

Adresowanie IPv6

• ::ffff:0:0 /64

Przykład

Adres IPv4: 192.168.0.100

Adres zmapowany na IPv6: ::ffff:c0a8:0064

• 2002:: /24 — sieć 6to4, pakiety IPv6 są umieszczone wewnątrz pakietów IPv4

Przykład

Adres IPv4: 192.168.0.100

Adres zmapowany na IPv6: 2002::ffff:c0a8:0064

Adresowanie IPv6

4. Systemy numeryczne

Jako że w zagadnieniach adresacji IP korzystamy z konwersji liczb pomiędzy różnymi systemami liczbowymi (dziesiętny — binarny), warto przypomnieć sobie 3 najważniejsze systemy:

Adresowanie IPv6

System dziesiętny

- Podstawę stanowi liczba 10:
 - $234 = 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
- Wykorzystywane cyfry: 0,1,2,3,4,5,6,7,8,9
- Zastosowanie: adres IPv4, "naturalny" system dla ludzi

4. Systemy numeryczne

System binarny

- Podstawę stanowi liczba 2:
 - $1100_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 8 + 4 = 12$
- Wykorzystywane cyfry: 0,1
- Zastosowanie: maska sieciowa, elektronika i informatyka

System szesnastkowy

Podstawę stanowi liczba 16:

$$0xA8 = 10 \cdot 16^1 + 8 \cdot 16^0 = 160 + 8 = 168$$

- Wykorzystywane cyfry: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Zastosowanie: adres MAC, adres IPv6