UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

Miloš P. Miković

ALGORITMI ZA REŠAVANJE PROBLEMA NAJKRAĆE ZAJEDNIČKE NADNISKE

master rad

Mentor:
dr Aleksandar Kartelj, docent Univerzitet u Beogradu, Matematički fakultet
Članovi komisije:
dr Vladimir FILIPOVIĆ, redovni profesor Univerzitet u Beogradu, Matematički fakultet
dr Stefan Mišković, docent Univerzitet u Beogradu, Matematički fakultet
Datum odbrane:

Naslov	\mathbf{master}	rada:	Algoritmi	za	rešavanje	problema	najkraće	zajedničk	e nadni-
ske									

Rezime:

 $\mathbf{Ključne}$ reči: optimizacija, pretraga bima, analiza sekvenci

Sadržaj

1	Uvod	1
	1.1 Problem najkraće zajedničke nadniske	1
2	Razrada	3
3	Zaključak	4
Bi	bliografija	5

Glava 1

Uvod

1.1 Problem najkraće zajedničke nadniske

U ovom poglavlju formalno ćemo definisati PNZN, ali pre toga uvešćemo potrebnu notaciju koja će biti korišćena u nastavku teksta. Konačna azbuku sastoji se od konačnog broja slova i označavaćemo je sa Σ . Svaka konačna reč $\omega = \omega(1)\omega(2)...\omega(n)$ sastoji se od konačnog broja slova azbuke gde $\omega(j) \in \Sigma$ predstavlja j-to slovo reči $\omega \in \Sigma^*$. Duzinu reči ω označavaćemo sa $|\omega|$, praznu reč sa ε i važi da $|\varepsilon| = 0$. U skladu sa uvedenom notacijom $|\Sigma|$ predstavlja kardinalnost azbuke. Sa $\omega \trianglerighteq \alpha$ označavaćemo broj pojavljivanja slova α u reči ω ($\omega(1)\omega(2)...\omega(n) \trianglerighteq \alpha = \sum_{1 < i < n, \omega(i) = \alpha} 1$). Reč koja se dobija dodavanjem slova α na početak reči ω označavaćemo sa $\alpha\omega$ (takođe ćemo pisati $\omega = \alpha\omega'$), slično reč koja se dobija skidanjem slova α sa početka reči ω sa

 $^{^1\}mathrm{U}$ nastavku teksta PNZN ćemo koristiti kao skraćenicu za problem najkraće zajedničke nadniske

 $\omega|_{\alpha}$. Brisanje slova α sa početka svake reči u zadatom skupu, u skladu sa uvedenom notacijom definišemo kao $\{\omega_1, \omega_2, ..., \omega_n\}|_{\alpha} = \{\omega_1|_{\alpha}, \omega_2|_{\alpha}, ..., \omega_n|_{\alpha}\}.$

Neka važi da $\omega_1,\omega_2\in\Sigma^*$, za reč ω_1 kažemo da je supersekvenca reči ω_2 u oznaci $\omega_1\succ\omega_2$ ako važi sledeća rekurzivna definicija [1]:

$$\omega_{1} \succ \varepsilon \triangleq \text{Tačno}$$

$$\varepsilon \succ \omega_{2} \triangleq \text{Netačno}, \text{ Ako } \omega_{2} \neq \varepsilon$$

$$\alpha\omega_{1} \succ \alpha\omega_{2} \triangleq \omega_{1} \succ \omega_{2}$$

$$\alpha\omega_{1} \succ \beta\omega_{2} \triangleq \omega_{1} \succ \beta\omega_{2}, \text{ Ako } \alpha \neq \beta$$

$$(1.1)$$

Zapravo, $\omega_1 \succ \omega_2$ označava da se svi simboli iz ω_2 nalaze u ω_1 u datom redosledu, ali ne nužno uzastopno. Na primer, za datu azbuku $\Sigma = \{a, c, t, g\}$, važi $agcatg \succ act$. Sada možemo formalno definisati PNZN.

Glava 2

Razrada

Glava 3

Zaključak

Bibliografija

- [1] Antonio J. Fernandez Christian Blum, Carlos Cotta and Francisco Gallardo. A Probabilistic Beam Search Approach to the Shortest Common Supersequence Problem. In *Lecture Notes in Computer Science*, 2007.
- [2] Garey and Johnson. Shortest common supersequence. on-line at: https://www.csc.kth.se/~viggo/wwwcompendium/node165.html.

Biografija autora

Vuk Stefanović Karadžić (Tršić, 26. oktobar/6. novembar 1787. — Beč, 7. februar 1864.) bio je srpski filolog, reformator srpskog jezika, sakupljač narodnih umotvorina i pisac prvog rečnika srpskog jezika. Vuk je najznačajnija ličnost srpske književnosti prve polovine XIX veka. Stekao je i nekoliko počasnih mastera. Učestvovao je u Prvom srpskom ustanku kao pisar i činovnik u Negotinskoj krajini, a nakon sloma ustanka preselio se u Beč, 1813. godine. Tu je upoznao Jerneja Kopitara, cenzora slovenskih knjiga, na čiji je podsticaj krenuo u prikupljanje srpskih narodnih pesama, reformu ćirilice i borbu za uvođenje narodnog jezika u srpsku književnost. Vukovim reformama u srpski jezik je uveden fonetski pravopis, a srpski jezik je potisnuo slavenosrpski jezik koji je u to vreme bio jezik obrazovanih ljudi. Tako se kao najvažnije godine Vukove reforme ističu 1818., 1836., 1839., 1847. i 1852.