Set-up

Throughout this session, consider the values of m, d given by your birthday (in the form m/d/Y). For instance, if you were born today, then m = 10 and d = 8.

Consider a triangle $\triangle ABC$ that has angles with degree values $\alpha = 4 \max(m, d) - 2 \min(m, d) + 6$, and $\beta, \gamma \in \mathbb{N}$.

Exploration Stage

Problem 1 (10 pts—all or nothing). Describe the set \mathcal{B} that contains all the possible values of β (in degrees) for the triangle $\triangle ABC$ that you have just constructed. Use set-builder notation, rather than listing its elements.

Problem 2 (10 pts—all or nothing). Once an angle $\beta \in \mathcal{B}$ has been chosen, there is only one possible value for the remaining angle γ . Find a formula for γ in terms of m, d and β .

Planning and Delivery

Problem 3 (20 pts). Prove that in your triangle $\triangle ABC$ with angles (in degrees) with values $\beta, \gamma \in \mathbb{N}$, and $\alpha = 4 \max(m, d) - 2 \min(m, d) + 6$, if β is even, then γ is also even.

P Q

Start by completing the following step-by-step table, before you put your proof into words.

Statement	Reason (Fact)
$P = "\beta \text{ is even."}$	hypothesis
$\exists b \in \mathbb{N}, \beta = 2b$	Definition of even (natural) number
:	<u>:</u>
·	·
$\gamma = 2c \text{ for } c = \cdots$	
$Q = $ " γ is even."	Definition of even number

Problem 4 (20 pts). For the same triangle, prove that if β is odd, then γ is also odd.

Problem 5 (40 pts). Write a proof of the following proposition.

Proposition. In any right triangle with integer-valued angles (in degrees), the non-right angles have the same parity.