# Extensões e Aplicações do Modelo de Regressão Conway-Maxwell-Poisson para Modelagem de Dados de Contagem

Eduardo Elias Ribeiro Junior Orientação: Prof. Dr. Walmes Marques Zeviani

> Trabalho de Conclusão de Curso - Laboratório B Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

> > 28 de junho de 2016

#### Sumário

- 1. Introdução
- 2. Objetivos
- 3. Materiais e Métodos
- 4. Resultados e Discussões
- 5. Considerações finais

#### 1

# Introdução

## Dados de contagem

# 1 11 111 1111 1111

São variáveis aleatórias aleatórias que representam o número de ocorrências de um evento em um dominío discreto ou contínuo.

Se Y é uma variável aleatória de contagem, y = 0, 1, 2, ...

#### **Exemplos:**

- Número de filhos por casal;
- Número de indivíduos infectados por uma doença;
- Número de posts em uma rede social durante um dia;
- Número de frutos produzidos;
- **.** . .

## Análise de dados de contagem

- Modelos de regressão Gaussianos com dados transformados
  - Dificultam a interpretação dos resultados;
  - Não contemplam a natureza discreta da variável;
  - Não contemplam a relação média e variância;
  - Transformação logarítmica é problemática para valores 0.
- Modelos de regressão Poisson (NELDER; WEDDERBURN, 1972)
  - Fiel a natureza dos dados;
  - Contempla a relação média e variância;
  - Suposição de equidispersão.



Figura 1: Ilustração de processos pontuais que levam a contagens com diferentes níveis de dispersão.

## Distribuições de probabilidades para dados de contagem

Com base em WINKELMANN (2008) e KOKONENDJI (2014)

Tabela 1: Distribuições de probabilidades para dados de contagem

| Distribuição             | Contempla a característica de |                |              |  |  |
|--------------------------|-------------------------------|----------------|--------------|--|--|
| Distribuição             | Equidispersão                 | Superdispersão | Subdispersão |  |  |
| Poisson                  | <b>√</b>                      |                |              |  |  |
| Binomial Negativa        | $\checkmark$                  | $\checkmark$   |              |  |  |
| Inverse Gaussian Poisson | $\checkmark$                  | $\checkmark$   |              |  |  |
| Compound Poisson         | $\checkmark$                  | $\checkmark$   |              |  |  |
| Poisson Generalizada     | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Gamma-Count              | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| COM-Poisson              | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Katz                     | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Poisson Polynomial       | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Double-Poisson           | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Lagrangian Poisson       | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |

## Distribuições de probabilidades para dados de contagem

Com base em WINKELMANN (2008) e KOKONENDJI (2014)

Tabela 1: Distribuições de probabilidades para dados de contagem

| Distribuição             | Contempla a característica de |                |              |  |  |
|--------------------------|-------------------------------|----------------|--------------|--|--|
| Distribuição             | Equidispersão                 | Superdispersão | Subdispersão |  |  |
| Poisson                  | ✓                             |                |              |  |  |
| Binomial Negativa        | $\checkmark$                  | $\checkmark$   |              |  |  |
| Inverse Gaussian Poisson | ✓                             | ✓              |              |  |  |
| Compound Poisson         | $\checkmark$                  | $\checkmark$   |              |  |  |
| Poisson Generalizada     | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Gamma-Count              | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| COM-Poisson              | $\checkmark$                  | ✓              | $\checkmark$ |  |  |
| Katz                     | ✓                             | ✓              | ✓            |  |  |
| Poisson Polynomial       | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Double-Poisson           | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |
| Lagrangian Poisson       | $\checkmark$                  | $\checkmark$   | $\checkmark$ |  |  |

## Distribuição COM-Poisson

Proposta por CONWAY; MAXWELL (1962).

Função massa de probabilidade

$$\Pr(Y = y \mid \lambda, \nu) = \frac{\lambda^{y}}{(y!)^{\nu} Z(\lambda, \nu)}, \qquad Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^{j}}{(j!)^{\nu}}$$
(1)

- Não tem expressão fechada para média e variância;
- Apresenta distribuições bastante conhecidas como casos particulares:
  - ▶ Poisson  $\nu = 1$ ;
  - ▶ Bernoulli  $\nu \rightarrow \infty$ ;
  - Geométrica  $\nu = 0$  e  $\lambda < 1$ .

## Distribuição COM-Poisson



Figura 2: Probabilidades pela distribuição COM-Poisson.

## Relações média-variância



Figura 3: Relações Média e Variância COM-Poisson e Binomial Negativa.

2

# **Objetivos**

## Objetivos gerais

Colaborar com a literatura estatística brasileira, no que diz respeito a dados de contagem:

- Apresentando e explorando o modelo de regressão COM-Poisson;
- Estendendo o modelo para modelagem de excesso de zeros e inclusão de efeitos aleatórios;
- Discutindo o desempenho do modelo via análise de dados reais;
- Disponibilizando os recursos computacionais para ajuste dos modelos, em formato de pacote R.

2

## Materiais e Métodos

#### 3.1

## Materiais e Métodos **Materiais**

## Conjuntos de dados

#### Seis conjuntos de dados analisados:

- Capulhos de algodão sob desfolha artificial;
- Produtividade de algodão sob infestação de Mosca-branca;
- Produtividade de soja sob umidade e adubação potássica;
- Ocorrência de ninfas de Mosca-branca em lavoura de soja;
- Peixes capturados por visitantes de um parque Estadual;
- Número de nematoides em raizes de feijoeiro.

## Conjuntos de dados

#### Seis conjuntos de dados analisados:

- Capulhos de algodão sob desfolha artificial;
- Produtividade de algodão sob infestação de Mosca-branca;
- Produtividade de soja sob umidade e adubação potássica;
- Ocorrência de ninfas de Mosca-branca em lavoura de soja;
- Peixes capturados por visitantes de um parque Estadual;
- ▶ Número de nematoides em raizes de feijoeiro.

## **Recursos Computacionais**

Software R versão 3.3.0. Principais pacotes:

- MASS 7.3.45: ajuste dos modelos binomial negativo;
- pscl 1.4.9: modelagem de excesso de zeros;
- lme4 1.1.12: ajuste dos modelos Poisson com efeito aleatório Normal;
- ▶ bbmle 1.0.18: ajuste de modelos via máxima verossimilhança.

#### 3.2

## Materiais e Métodos **Métodos**

## Estimação via máxima verossimilhança

- Escreva a função de verossimilhança  $\mathcal{L}(\Theta \mid \underline{y})$
- ② Tome seu logaritmo  $\ell(\Theta \mid \underline{y})$
- As estimativas dos parâmetros são

$$\hat{\Theta} = \arg\max_{\Theta} \ell(\Theta \mid \underline{y})$$

- ▶ Algoritmo IWLS (*Interactive Weigthed Leasts Squares*) para os modelos Poisson, Binomial Negativo e Quasi-Poisson.
- Método BFGS para os modelos COM-Poisson.

## Verossimilhança do modelo COM-Poisson

- Reparametrizando  $\phi = \log(\nu)$ 
  - $\phi < 0 \Rightarrow$  Superdispersão
  - $\phi = 0 \Rightarrow$  Equidispersão
  - $\phi > 0 \Rightarrow$  Subdispersão

#### Log-verossimilhança

$$\ell(\phi, \beta \mid \underline{y}) = \sum_{i=1}^{n} y_i \log(\lambda_i) - e^{\phi} \sum_{i=1}^{n} \log(y!) - \sum_{i=1}^{n} \log(Z(\lambda_i, \phi))$$
 (2)

em que  $\lambda_i = e^{X_i \beta}$ , com  $X_i$  o vetor  $(x_{i1}, x_{i2}, \dots x_{ip})$  de covariáveis da i-ésima observação, e  $(\beta, \phi) \in \mathbb{R}^{p+1}$ .

## Verossimilhança do modelo Hurdle COM-Poisson

- ▶  $\underline{\pi} = \frac{\exp(G\gamma)}{1 + \exp(G\gamma)}$  a probabilidade de contagem nula.
- $\underline{\lambda} = \exp(X\beta)$  o parâmetro de locação da distribuição COM-Poisson truncada.

#### Verossimilhança

$$\mathcal{L}(\phi, \beta, \gamma \mid \underline{y}) = \mathbb{1}[\underline{\pi}] \cdot (1 - \mathbb{1}) \left[ (1 - \underline{\pi}) \left( \frac{\underline{\lambda}^{y}}{(y!)^{e^{\phi}} Z(\underline{\lambda}, \phi)} \right) \left( 1 - \frac{1}{Z(\underline{\lambda}, \phi)} \right) \right]$$
(3)

em que 1 é uma função indicadora para y = 0

## Verossimilhança do modelo misto COM-Poisson

$$Y_{ij} \mid b_{i}, X_{ij} \sim \text{COM-Poisson}(\mu_{ij}, \phi)$$
  
$$g(\mu_{ij}) = X_{ij}\beta + Z_ib_i$$
  
$$b \sim \text{Normal}(0, \Sigma)$$

Métodos

#### Verossimilhança

$$\mathcal{L}(\phi, \Sigma, \beta \mid \underline{y}) = \prod_{i=1}^{m} \int_{\mathbb{R}^{q}} \left( \prod_{j=1}^{n_{i}} \frac{\underline{\lambda}^{y}}{(y!)^{e^{\phi}} Z(\underline{\lambda}, \phi)} \right) \cdot (2\pi)^{q/2} |\Sigma| \exp\left(-\frac{1}{2} b^{t} \Sigma^{-1} b\right) db_{i}$$
(4)

*m* : o número de grupos que compartilham do mesmo efeito aleatório; *q* : o número de efeitos aleatórios (intercepto aleatório, inclinação e intercepto aleatórios, etc.); e

 $n_i$ : o número de observações no i-ésimo grupo.

1

# Resultados e Discussões

#### 4.1

## Resultados e Discussões **Pacote R**

## cmpreg: Ajuste de Modelos de Regressões COM-Poisson

Implementação em R de um *framework* para ajuste dos modelos de regressão COM-Poisson, pacote cmpreg.

```
## Pode ser instalado do GitHub
devtools::install_git("https://github.com/JrEduardo/cmpreg.git")
library(cmpreg)
## Regressão (efeitos fixos)
cmp(v ~ preditor, data = data)
## Regressão com componente de barreira
hurdlecmp(y ~ count_pred | zero_pred, data = data)
## Regressão (efeitos aleatórios)
mixedcmp(y ~ count_pred + (1 | ind.ranef), data = data)
```

#### 4.2

## Resultados e Discussões **Produtividade de algodão**

## Experimento

Conduzido na UFGD em casa de vegetação (MARTELLI et al., 2008).

- Objetivo: avaliar o impacto da praga Mosca-branca na produção de algodão;
- Delineamento: inteiramente casualizado com cinco repetições
- Unidade amostral: vaso com duas plantas;
- Covariável experimental:
  - Tempo de exposição das plantas à praga, em dias (dexp);
- Variáveis resposta:
  - Número de capulhos produzidos;
  - Número de estruturas reprodutivas;
  - Número de nós.

## Modelagem

#### Preditores considerados:

- Preditor 1:  $g(\mu_i) = \beta_0$
- ▶ Preditor 2:  $g(\mu_i) = \beta_0 + \beta_1 \text{dexp}_i$
- Preditor 3:  $g(\mu_i) = \beta_0 + \beta_1 \operatorname{dexp}_i + \beta_2 \operatorname{dexp}_i^2$

#### Modelos concorrentes:

- $\triangleright$  Poisson( $\mu_i$ )
- ▶ COM-Poisson( $\lambda_i$ ,  $\phi$ )
- Quasi-Poisson( $\mu_i$ ,  $\sigma^2$ )

## Medidas de ajuste

Tabela 2: Medidas de ajuste para avaliação e comparação

|                                   | Poisson |        |              | C       | COM-Poisson |              | Quasi-Poisson |        |
|-----------------------------------|---------|--------|--------------|---------|-------------|--------------|---------------|--------|
| np                                | $\ell$  | AIC    | $P(>\chi^2)$ | $\ell$  | AIC         | $P(>\chi^2)$ | deviance      | P(> F) |
| Número de capulhos produzidos     |         |        |              |         |             |              |               |        |
| 1                                 | -105,27 | 212,55 |              | -92,05  | 188,09      |              | 20,80         |        |
| 2                                 | -105,03 | 214,05 | 0,4832       | -91,31  | 188,62      | 0,2254       | 20,31         | 0,2296 |
| 3                                 | -104,44 | 214,88 | 0,2782       | -89,47  | 186,95      | 0,0552       | 19,13         | 0,0616 |
| Número de estruturas reprodutivas |         |        |              | _       |             |              |               |        |
| 1                                 | -104,74 | 211,49 |              | -86,41  | 176,82      |              | 16,23         |        |
| 2                                 | -104,27 | 212,54 | 0,3320       | -84,59  | 175,18      | 0,0566       | 15,29         | 0,0622 |
| 3                                 | -104,06 | 214,12 | 0,5157       | -83,73  | 175,47      | 0,1898       | 14,87         | 0,2071 |
| Número de nós da planta           |         |        |              |         | _           |              |               |        |
| 1                                 | -143,79 | 289,59 |              | -120,58 | 245,16      |              | 12,69         |        |
| 2                                 | -143,48 | 290,95 | 0,4253       | -119,03 | 244,06      | 0,0787       | 12,05         | 0,0851 |
| 3                                 | -142,95 | 291,89 | 0,3037       | -116,27 | 240,54      | 0,0188       | 11,00         | 0,0223 |

## Medidas de ajuste

Tabela 2: Medidas de ajuste para avaliação e comparação

|                               | Poisson                           |        |              | C       | COM-Poisson |              | Quasi-Poisson |        |
|-------------------------------|-----------------------------------|--------|--------------|---------|-------------|--------------|---------------|--------|
| np                            | $\ell$                            | AIC    | $P(>\chi^2)$ | $\ell$  | AIC         | $P(>\chi^2)$ | deviance      | P(> F) |
| Número de capulhos produzidos |                                   |        |              |         |             |              |               |        |
| 1                             | -105,27                           | 212,55 |              | -92,05  | 188,09      |              | 20,80         |        |
| 2                             | -105,03                           | 214,05 | 0,4832       | -91,31  | 188,62      | 0,2254       | 20,31         | 0,2296 |
| 3                             | -104,44                           | 214,88 | 0,2782       | -89,47  | 186,95      | 0,0552       | 19,13         | 0,0616 |
| Nún                           | Número de estruturas reprodutivas |        |              |         |             |              |               |        |
| 1                             | -104,74                           | 211,49 |              | -86,41  | 176,82      |              | 16,23         |        |
| 2                             | -104,27                           | 212,54 | 0,3320       | -84,59  | 175,18      | 0,0566       | 15,29         | 0,0622 |
| 3                             | -104,06                           | 214,12 | 0,5157       | -83,73  | 175,47      | 0,1898       | 14,87         | 0,2071 |
| Número de nós da planta       |                                   |        |              |         |             |              |               |        |
| 1                             | -143,79                           | 289,59 |              | -120,58 | 245,16      |              | 12,69         |        |
| 2                             | -143,48                           | 290,95 | 0,4253       | -119,03 | 244,06      | 0,0787       | 12,05         | 0,0851 |
| 3                             | -142,95                           | 291,89 | 0,3037       | -116,27 | 240,54      | 0,0188       | 11,00         | 0,0223 |

## Avaliação da dispersão



Figura 4: Perfis de log-verossimilhança para o parâmetro de precisão da COM-Poisson.

## Avaliação da matriz de covariância



Figura 5: Imagem da matriz de correlação entre os parâmetros do modelo COM-Poisson.

## Valores preditos



Figura 6: Curva dos valores preditos com intervalo de confiança de (95%) como função dos dias de exposição a alta infestação de Mosca-branca.

#### 4.3

## Resultados e Discussões Ocorrência de ninfas de Mosca-branca

## **Experimento**

#### Conduzido na UFGD em casa de vegetação (SUEKANE, 2011).

- Objetivo: avaliar a ocorrência de mosca-branca nas diferentes cultivares de soja;
- Delineamento: blocos casualizados, quatro blocos;
- Unidade experimental: dois vasos com duas plantas;
- Covariáveis experimentais:
  - Indicadora de bloco, I, II, III e IV, (bloco);
  - ▶ Dias decorridos após a primeira avaliação, 0, 8, 13, 22, 31 e 38 dias, (dias);
  - Indicadora de cultivar de soja, BRS 239, BRS 243 RR, BRS 245 RR, BRS246 RR, (cult);
- Variável resposta:
  - Número de ninfas de Mosca-branca nos folíolos dos terços superior, médio e inferior.

### Modelagem

#### Preditores considerados:

- ▶ Preditor 1:  $g(\mu_{ijk}) = \beta_0 + \tau_i + \gamma_j + \delta_k$
- ► Preditor 2:  $g(\mu_{ijk}) = \beta_0 + \tau_i + \gamma_j + \delta_k + \alpha_{jk}$

 $\tau_i$  é o efeito do i-ésimo bloco, i=1,2,3,4  $\gamma_j$  o efeito da j-ésima cultivar, j=1,2,3,4  $\delta_k$  o efeito do k-ésimo nível de dias,  $k=1,2,\ldots,6$  e  $\alpha_{ik}$  o efeito da interação entre a j-ésima cultivar e o k-ésimo nível de dias

#### Modelos concorrentes:

- ▶ Poisson( $\mu_{iik}$ )
- ► COM-Poisson( $\lambda_{ijk}$ ,  $\phi$ )
- ▶ Binomial Negativo( $\mu_{ijk}$ ,  $\theta$ )
- Quasi-Poisson( $\mu_{ijk}$ ,  $\sigma^2$ )

Tabela 3: Medidas de ajuste para avaliação e comparação

| Poisson                  | np       | $\ell$             | AIC                | $2(\text{diff }\ell)$ | diff np | $P(>\chi^2)$ |                  |
|--------------------------|----------|--------------------|--------------------|-----------------------|---------|--------------|------------------|
| Preditor 1<br>Preditor 2 | 12<br>27 | -922,98<br>-879,23 | 1869,96<br>1812,46 | 87,50                 | 15      | 0,0000       |                  |
| COM-Poisson              | np       | $\ell$             | AIC                | 2(diff $\ell$ )       | diff np | $P(>\chi^2)$ | $\hat{\phi}$     |
| Preditor 1<br>Preditor 2 | 13<br>28 | -410,44<br>-407,15 | 846,89<br>870,30   | 6,59                  | 15      | 0,9680       | -3,08<br>-2,95   |
| Binomial Neg.            | np       | $\ell$             | AIC                | 2(diff $\ell$ )       | diff np | $P(>\chi^2)$ | $\hat{	heta}$    |
| Preditor 1<br>Preditor 2 | 13<br>28 | -406,16<br>-400,55 | 838,31<br>857,10   | 11,21                 | 15      | 0,7376       | 3,44<br>3,99     |
| Quase-Poisson            | np       | deviance           | AIC                | F                     | diff np | P(>F)        | $\hat{\sigma}^2$ |
| Preditor 1<br>Preditor 2 | 12<br>27 | 1371,32<br>1283,82 |                    | 0,31                  | 15      | 0,9932       | 17,03<br>19,03   |

Tabela 3: Medidas de ajuste para avaliação e comparação

| Poisson       | np | $\ell$   | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ |                  |
|---------------|----|----------|---------|-----------------|---------|--------------|------------------|
| Preditor 1    | 12 | -922,98  | 1869,96 |                 |         |              |                  |
| Preditor 2    | 27 | -879,23  | 1812,46 | 87,50           | 15      | 0,0000       |                  |
| COM-Poisson   | np | $\ell$   | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{\phi}$     |
| Preditor 1    | 13 | -410,44  | 846,89  |                 |         |              | -3,08            |
| Preditor 2    | 28 | -407,15  | 870,30  | 6,59            | 15      | 0,9680       | -2,95            |
| Binomial Neg. | np | $\ell$   | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{	heta}$    |
| Preditor 1    | 13 | -406,16  | 838,31  |                 |         |              | 3,44             |
| Preditor 2    | 28 | -400,55  | 857,10  | 11,21           | 15      | 0,7376       | 3,99             |
| Quase-Poisson | np | deviance | AIC     | F               | diff np | P(>F)        | $\hat{\sigma}^2$ |
| Preditor 1    | 12 | 1371,32  |         |                 |         |              | 17,03            |
| Preditor 2    | 27 | 1283,82  |         | 0,31            | 15      | 0,9932       | 19,03            |

### Avaliando a dispersão e convergência de Z



Figura 7: Convergência das constantes de normalização e perfil de log-verossimilhança para o parâmetro de precisão da COM-Poisson.

### Valores preditos





Número de dias após o inicío do experimento

Figura 8: Valores preditos com intervalos de confiança (95%).

#### 4.4

### Resultados e Discussões **Peixes capturados**

#### Estudo

Observacional conduzido por biólogos em um Parque Estadual (UCLA, 2015).

- Delineamento: amostragem aleatória.
- Objetivo: modelar o número de peixes capturados pela atividade de pesca esportiva.
- Unidade experimental: grupos de pescadores visitantes do parque.
- Covariáveis mensuradas:
  - Número de pessoas, (np),
  - ► Número de crianças. (nc),
  - ▶ Indicador de campista no grupo, (ca).
- Variável resposta:
  - Número de peixes capturados pelo grupo.

### Modelagem

#### Preditores considerados:

- Preditor 1:  $g(\mu_i) = \beta_0 + \beta_1 \operatorname{ca}_i + \beta_2 \operatorname{np}_i \\ \operatorname{logit}(\pi_i) = \gamma_0 + \gamma_1 \operatorname{ca}_i + \gamma_2 \operatorname{np}_i + \gamma_3 \operatorname{nc}_i$
- Preditor 2:  $g(\mu_i) = \beta_0 + \beta_1 \operatorname{ca}_i + \beta_2 \operatorname{np}_i + \beta_3 \operatorname{nc}_i + \beta_4 (\operatorname{np}_i \cdot \operatorname{nc}_i) \\ \operatorname{logit}(\pi_i) = \gamma_0 + \gamma_1 \operatorname{ca}_i + \gamma_2 \operatorname{np}_i + \gamma_3 \operatorname{nc}_i + \gamma_4 (\operatorname{np}_i \cdot \operatorname{nc}_i)$

#### Modelos concorrentes:

- ▶ Hurdle Poisson( $\pi_i$ ,  $\mu_i$ )
- ▶ Hurdle COM-Poisson( $\pi_i$ ,  $\lambda_i$ ,  $\phi$ )
- ▶ Hurdle Binomial Negativo( $\pi_i$ ,  $\mu_i$ ,  $\theta$ )

Tabela 4: Medidas de ajuste para avaliação e comparação

| Poisson       | np | $\ell$  | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ |               |
|---------------|----|---------|---------|-----------------|---------|--------------|---------------|
| Preditor 1    | 7  | -857,48 | 1728,96 |                 |         |              |               |
| Preditor 2    | 10 | -744,58 | 1509,17 | 225,79          | 3       | 1,1E-48      |               |
| Binomial Neg. | np | $\ell$  | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{	heta}$ |
| Preditor 1    | 8  | -399,79 | 815,58  |                 |         |              | 0,20          |
| Preditor 2    | 11 | -393,72 | 809,44  | 12,14           | 3       | 0,0069       | 0,37          |
| COM-Poisson   | np | $\ell$  | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{\phi}$  |
| Preditor 1    | 8  | -409,85 | 835,71  |                 |         |              | -8,77         |
| Preditor 2    | 11 | -402,30 | 826,59  | 15,12           | 3       | 0,0017       | -3,77         |
|               |    |         |         |                 |         |              |               |

Tabela 4: Medidas de ajuste para avaliação e comparação

| Poisson       | np | $\ell$  | AIC     | $2(diff \ell)$  | diff np | $P(>\chi^2)$ |               |
|---------------|----|---------|---------|-----------------|---------|--------------|---------------|
| Preditor 1    | 7  | -857,48 | 1728,96 |                 |         |              |               |
| Preditor 2    | 10 | -744,58 | 1509,17 | 225,79          | 3       | 1,1E-48      |               |
| Binomial Neg. | np | $\ell$  | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{	heta}$ |
| Preditor 1    | 8  | -399,79 | 815,58  |                 |         |              | 0,20          |
| Preditor 2    | 11 | -393,72 | 809,44  | 12,14           | 3       | 0,0069       | 0,37          |
| COM-Poisson   | np | $\ell$  | AIC     | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{\phi}$  |
| Preditor 1    | 8  | -409,85 | 835,71  |                 |         |              | -8,77         |
| Preditor 2    | 11 | -402,30 | 826,59  | 15,12           | 3       | 0,0017       | -3,77         |

### Valores preditos



Figura 9: Valores preditos do número de peixes capturados.

#### 4.5

## Resultados e Discussões **Número de nematoides**

### Experimento

Conduzido no IAPAR em casa de vegetação.

- Objetivo: avaliar a resistência de linhagens de feijoeiro à nematoides;
- Delineamento: inteiramente casualizado com cinco repetições;
- Unidade amostral: alíquota de 1ml da solução de raizes lavadas, trituradas, peneiradas, diluídas em água. Provida por um vaso com duas plantas;
- Covariáveis:
  - ▶ Indicador de linhagem de feijoeiro, A, B, C, ..., S, (cult);
  - Concentração de raiz na solução, (sol);
- Variáveis resposta:
  - Número de nematoides.

### Modelagem

#### Preditores considerados:

- ▶ Preditor 1:  $g(\mu_{ij}) = \beta_0 + b_i$
- ► Preditor 2:  $g(\mu_{ij}) = \beta_0 + \beta_1 \log(\text{sol})_{ij} + b_i$

$$b_i \sim \text{Normal}(0, \sigma^2)$$

i: varia entre as linhagens, i = 1, 2, ..., 19; e j: varia entre as observações dentro das linhagens,  $j = 1, 2, ..., n_i$ .

#### Modelos concorrentes:

- ▶ Poisson( $\mu_{ij}$ )
- ► COM-Poisson( $\lambda_{ij}$ ,  $\phi$ )

Tabela 5: Medidas de ajuste para avaliação e comparação

| Poisson                  | np     | $\ell$             | AIC              | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ |              |                  |
|--------------------------|--------|--------------------|------------------|-----------------|---------|--------------|--------------|------------------|
| Preditor 1<br>Preditor 2 | 2      | -237,20<br>-234,00 | 478,40<br>474,00 | 6,40            | 1       | 0,0114       |              |                  |
| COM-Poisson              | np     | $\ell$             | AIC              | $2(diff \ell)$  | diff np | $P(>\chi^2)$ | $\hat{\phi}$ | $P(>\chi^2)$     |
| Preditor 1<br>Preditor 2 | 3<br>4 | -236,85<br>-233,16 | 479,71<br>474,31 | 7,40            | 1       | 0,0065       | 0,15<br>0,24 | 0,4060<br>0,1935 |

Tabela 5: Medidas de ajuste para avaliação e comparação

| Poisson                  | np     | $\ell$             | AIC              | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ |              |                  |
|--------------------------|--------|--------------------|------------------|-----------------|---------|--------------|--------------|------------------|
| Preditor 1<br>Preditor 2 | 2      | -237,20<br>-234,00 | 478,40<br>474,00 | 6,40            | 1       | 0,0114       |              |                  |
| COM-Poisson              | np     | $\ell$             | AIC              | 2(diff $\ell$ ) | diff np | $P(>\chi^2)$ | $\hat{\phi}$ | $P(>\chi^2)$     |
| Preditor 1<br>Preditor 2 | 3<br>4 | -236,85<br>-233,16 | 479,71<br>474,31 | 7,40            | 1       | 0,0065       | 0,15<br>0,24 | 0,4060<br>0,1935 |

### Avaliação dos perfis de verossimilhança



Figura 10: Perfis de verossimilhança dos parâmetros estimados no modelo COM-Poisson Misto.

### Imagem da matriz de covariância



Figura 11: Imagem da matriz de covariância entre os parâmetros do modelo COM-Poisson.

### Valores preditos



Figura 12: Valores preditos nos modelos de efeitos mistos.

#### 4.6

# Resultados e Discussões **Discussões**

Discussões

- ► Similaridade entre inferências via modelo Quasi-Poisson e COM-Poisson;
- Desempenho do modelo Binomial Negativo;
- Interpretação dos parâmetros nos modelos baseados na COM-Poisson;
- Problemas numéricos para determinação da matriz hessiana no modelo Hurdle COM-Poisson;
- Procedimentos computacionalmente intensivos na avaliação da verossimilhança no caso COM-Poisson de efeitos aleatórios;
- Não ortogonalidade observada (empírica) entre os parâmetros de locação e de precisão no modelo COM-Poisson; e
- $\blacktriangleright$  Comportamento simétrico dos perfis de log-verossimilhança para o parâmetro  $\phi$  da COM-Poisson.

#### 5

## Considerações finais

#### Conclusões

#### Aplicação do modelo COM-Poisson:

- Resultados similares aos providos pela abordagem semi-paramétrica via quasi-verossimilhança;
- A não ortogonalidade entre os parâmetros de locação e precisão no modelo COM-Poisson se mostra como característica da distribuição;
- A simetria nos perfis de verossimilhança do parâmetro de precisão também; e
- ► A avaliação da constante de normalização é uma dificuldade computacional do modelo.

#### Conclusões

#### Análise de dados de contagem:

- Modelo Poisson inadequado na maioria das aplicações, mostrando que a suposição de equidispersão é de fato restritiva;
- Modelos alternativos ao Poisson devem ser empregados na análise de dados de contagem; e
- Sugere-se o modelo COM-Poisson como alternativa totalmente paramétrica e bastante flexível.

#### **Trabalhos futuros**

- Estudar reparametrizações do modelo COM-Poisson;
- Avaliar aproximações da constante de normalização;
- Realizar estudos de simulação para avaliar a robustez do modelo;
- Implementar o modelo COM-Poisson inflacionado de zeros; e
- ▶ Implementar o modelo COM-Poisson com efeitos aleatórios dependentes.

### Publicização



https://github.com/JrEduardo/cmpreg https://github.com/JrEduardo/tccDocument

















#### Referências

CONWAY, R. W.; MAXWELL, W. L. A queuing model with state dependent service rates. **Journal of Industrial Engineering**, v. 12, p. 132—136, 1962.

KOKONENDJI, C. C. Over- and Underdisperson Models. In: **Methods and applications of statistics in clinical trials: Planning, analysis, and inferential methods**. Traducao. [s.l: s.n.]. p. 506–526.

MARTELLI, T. et al. **Influência do ataque de mosca-branca Bemisia tabaci Biotipo B, nos índices de produtividade do algodoeiro**Uberlândia- MGXXII Congresso Brasileiro de Entomologia, 2008.

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. **Journal of the Royal Statistical Society. Series A (General)**, v. 135, p. 370–384, 1972.

SUEKANE, R. DISTRIBUIÇÃO ESPACIAL E DANO DE MOSCA-BRANCA Bemisia tabaci (GENNADIUS, 1889) BIÓTIPO B NA SOJA. PhD thesis—[s.l.] Universidade Federal da Grande Dourados, 2011.

UCLA, S. C. G. Data Analysis Examples, 2015. Disponível em:

<http://www.ats.ucla.edu/stat/dae/>

WINKELMANN, R. Econometric Analysis of Count Data. Traducao. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 342