Tecnologias Multimédia

Manuela Pereira 1 de Junho de 2018

Cada questão de escolha múltipla vale 0.4 valores. Nestas questões cada resposta errada será descontada em 25% (ou seja, 0.1 valores).

Qualquer fraude implica a reprovação imediata da disciplina.

Não é permitido o uso de calculadora.

Número	Nome
1. Indi	que qual das seguintes afirmações é verdadeira:
0	A entropia H exprime o número máximo de bits por símbolo necessários para a codificação ideal de um determinado alfabeto.
0	Seja X uma variável aleatória com 8 concretizações possíveis $\{a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8\}$. Neste caso a entropia máxima será de $log_2(8)$.
0	A entropia tal como a incerteza é mínima quando os estados possíveis são equiprováveis. Um código é ótimo se a sua largura média for inferior ao valor da entropia.
2. Indi	que qual das seguintes afirmações é verdadeira:
\circ	Se um código é unicamente descodificavel então ele é instantâneo.
\circ	Se um código é unicamente descodificavel e satisfaz a condição de prefixação então ele é ótimo
0	Se um código é unicamente descodificavel e satisfaz a condição de prefixação então é um código instantâneo.
\circ	Se um código satisfaz a condição de prefixação então ele é ótimo.
3. Indi	que qual das seguintes afirmações é verdadeira:
0	Seja X uma variável aleatória com 2^N concretizações possíveis e C_1 um código instantâneo ótimo com largura L . Existe um código não instantâneo com largura inferior a L .
0	Seja X uma variável aleatória com 2^N concretizações possíveis e C_1 um código instantâneo ótimo com largura $L.$ $L \leq N.$
0	Seja X uma variável aleatória com 2^N concretizações possíveis e C_1 um código instantâneo ótimo com largura $L.$ $L \geq N.$
\circ	Um código é ótimo se a sua largura média for inferior ao valor da entropia.
4. Con dade	sidere uma fonte de probabilidades $(\frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \frac{2}{15}, \frac{2}{15})$. Indique qual das seguintes opções é vereira:
0	O código de Huffman para codificar esta fonte tem tamanhos de código $l_m = (2, 2, 2, 3, 3)$ O código de Huffman para codificar esta fonte é o código $\{11, 10, 00, 110, 111\}$. O código de Huffman canónico para codificar esta fonte é o código $\{11, 10, 110, 111\}$. A largura de código desta fonte é $L = 3.2$.

5	. Considere os seguintes códigos: • $C1 = \{0, 10, 110, 1110, 1111\}$ • $C3 = \{00, 11\}$
	• $C2 = \{1, 10, 11\}$ • $C4 = \{00, 10, 01, 11\}$
	Indique qual das seguintes opções é verdadeira:
	○ C1, C3 e C4 podem ser códigos de Huffman.
	○ C1 e C4 podem ser códigos de Huffman.
	Obedecem todos à regra de prefixo.
	○ C3 e C4 podem ser códigos de Huffman.
6	. Considere uma fonte de probabilidades $(\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12})$. Indique qual das seguintes opções é verdadeira:
	\bigcirc Um código de Shannon para codificar esta fonte tem tamanhos de código $l_m=(2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$
	\bigcirc Um código de Shannon para codificar esta fonte é o código $\{1,011,010,001,0001,0000\}$.
	O código de Shannon definido para codificar esta fonte é único.
	\bigcirc A largura do código de Shannon definido para codificar este fonte é inferior a $L=2.$
7	. Indique qual das seguintes afirmações está correta:
	A transformada de cor de RGB para YUV permite uma redução dos coeficientes de luminância visto que o nosso olho é menos sensível a alterações deste.
	O A transformação de RGB para YUV4:2:0 não provoca perdas.
	O A transformação de RGB para YUV4:2:0 permite reduzir o número de coeficientes a codificar
	A transformação de RGB para YUV4:2:0 e a transformação de RGB para YUV4:2:2 permite a mesma redução de coeficientes a codificar.
8	. Indique qual das seguintes afirmações é verdadeira:
	Quanto mais variações existirem numa imagem menos coeficientes DCT são necessários para a representar.
	○ A DCT permite reduzir a redundância temporal.
	○ A transformada DCT provoca perdas perceptuais.
	○ A DCT permite organizar os coeficientes por frequências.
9	. Indique qual das seguintes afirmações é verdadeira:
	 No JPEG, a transformada DCT permite a compactação da energia do sinal em poucos coefi- cientes.
	○ O JPEG usa quantização uniforme.
	\bigcirc No JPEG a transformação de RGB para YUV4:4:4 permite passar de $3\times N\times M$ coeficientes para $\frac{3\times N\times M}{2}.$
	O No JPEG a tabela de quantização usada para os coeficientes da luminância possui, normal- mente, valores superiores aos da tabela de quantização usados para a crominância.
10	. (0.5 valores) Indique qual das seguintes afirmações é verdadeira:
	\bigcirc A codificação entropica ou estatística é que provoca as perdas de qualidade no codec JPEG.
	Após a DCT os coeficientes AC são linearizados e lidos segundo uma sequência em zigzag que os ordena por ordem crescente de frequência.
	O No JPEG a técnica de "Run Length" é usada nos DC.
	O JPEG não usa codificação de Huffman.

	\bigcirc	No JPEG sem perdas a DCT é efetuada após o calculo do preditor, que combina o valor dos vizinhos para formar uma previsão de uma amostra.
	0	No JPEG hierárquico é codificada uma imagem com o dobro da resolução da original e as diferenças com as de menor resolução.
	\bigcirc	O JPEG progressivo permite uma visualização progressiva em qualidade.
	\bigcirc	O JPEG hierárquico permitem descodificar uma imagem com diferentes qualidades.
12.	Indi	que qual das seguintes afirmações está correta:
	0	Em vídeo temos o mesmo tipo de redundância que tínhamos em imagem, por isso apenas e efetuada a codificação independente de cada uma das frames.
	\bigcirc	A codificação temporal tira proveito da redundância espacial.
	0	Uma frame P é calculada a partir da frame I ou P que lhe precede, usando vetores de movimento e cálculo de diferenças.
	0	Na codificação temporal compensada em movimento tenta-se compensar as diferenças devidas as mudanças de cena.
13. Ind		que qual das seguintes afirmações está correta:
	\bigcirc	Para o cálculo de uma frame B usa-se duas frames I posteriores.
	\circ	${\bf A}$ compressão temporal compensada em movimento obriga a juntar a informação referente ao tamanho dos blocos.
	\bigcirc	Para o cálculo de uma frame P usa uma frame I ou B precedente.
	\circ	Na compressão temporal tenta-se identificar as informações redundantes no tempo, mesmo se elas mudaram de lugar no espaço.
14.	Indi	que qual das seguintes afirmações está correta:
	0	As frames I ou Intra , permitem a maior taxa de compressão. As frames B ou bidirecionais são as mais complexas a codificar, visto que usam codificação
		bidirecional.
	_	A compressão temporal permite aumentar a taxa de compressão, graças às frames I ou Intras As frames B são calculadas usando as frames I ou B precedentes.
15.	Indi	que qual das seguintes afirmações está correta:
	\circ	O MPEG-2 permite mais perfis de codificação do que o MPEG-1.
	0	O MPEG-2 permite ter imagens ou áudios sintetizados.
	\bigcirc	O MPEG-1 usa apenas codificação temporal unidirecional.
	\circ	No MPEG-4 tenho vetores de movimento referentes a objetos , mas não a blocos como acontecia com o MPEG2.
16.	Indi	que qual das seguintes afirmações está correta:
	\circ	Uma imagem HDR pode ser visualizada diretamente num monitor LDR.
	0	Uma imagem HDR pode ser gerada a partir de qualquer imagem LDR.
	\bigcirc	Uma imagem HDR comporta mais informação do que aquela que pode ser visualizada num monitor LDR.
	\bigcirc	Uma imagem HDR apresentará as mesmas cores independentemente de ser visualizada num monitor LDR ou num monitor HDR.

11. Indique qual das seguintes afirmações é verdadeira:

- 17. (0.4 valores) Considere a mensagem "GOOD". Codifique-a usando a codificação aritmética. Considere os símbolos ordenados por ordem alfabética.
- 18. Considere que uma fonte gera símbolos {'espaço', D, I, K, S} com a seguinte distribuição:

Símbolos	Probabilidades
'espaço'	0.15
D	0.15
I	0.4
K	0.15
S	0.15

- (a) (0.2 valores) Calcule o código de Huffman canónico adequado para a codificação dos símbolos gerados por esta fonte.
- (b) (0.2 valores) Descodifique a sequência "0000101111001011000", sabendo que foi usado o código calculado na alínea anterior.
- (c) (0.2 valores) Qual o débito necessário para representar 1000 símbolos gerados por esta fonte e codificados com o seu código de Huffman?
- (d) (0.2 valores) Quanto gastaria a mais se usasse um codificar de Shannon?
- 19. (0.4 valores) Descodifique a sequancia "00010000010001101010101010101010100" sabendo que foi codeficada usando um codificador LZW cujo dicionário tem tamanho 16 e tem inicialmente os símbolos $\{A, D, Y\}$,