LATEX submissions are mandatory. The template for this problem can be found on the Piazza resource page for this course.

Problem 1

- a. If $A^2 = I$, what are possible eigenvalues of A?
- b. If this A is 2×2 and not I or -I, find its trace and determinant.
- c. If the first row of this matrix is (3, -1), what is the second row?

Solution:

Problem 2

- (a) A 2×2 matrix A satisfies $tr(A^2) = 5$ and tr(A) = 3 (where tr(X) denotes the trace of X). Find det(A).
- (b) A 2×2 matrix A has two proportional columns and tr(A) = 5. Find $tr(A^2)$.
- (c) A 2×2 matrix A has det(A) = 5 and positive integer eigenvalues. What is the trace of A?

Solution:

Problem 3

For each of the following statements, prove that it is true or give an example to show it is false. Throughout, A is a complex $m \times m$ matrix unless otherwise indicated.

- a. If λ is an eigenvalue of A and $\mu \in \mathbb{C}$, then $\lambda \mu$ is an eigenvalue of $A \mu I$.
- b. If A is real and λ is an eigenvalue of A, then so is $-\lambda$.
- c. If A is real and λ is an eigenvalue of A, then so is $\overline{\lambda}$.
- d. If λ is an eigenvalue of A and A is non-singular, then λ^{-1} is an eigenvalue of A^{-1} .
- e. If all the eigenvalues of A are zero, then A = 0.
- f. If A is diagonalizable and all its eigenvalues are equal, then A is diagonal.
- g. If A is invertible and diagonalizable, then A^{-1} is diagonalizable.
- h. Matrices A and A^t have the same eigenvalues.

Solution:

Problem 4

Suppose each "Gibonacci" number G_{k+2} is the average of the two previous numbers G_{k+1} and G_k . Then $G_{k+2} = \frac{1}{2}(G_{k+1} + G_k)$. In matrix form this can be written as

$$\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}.$$

- a. Find the eigenvalues and eigenvectors of A.
- b. Find the limit of the matrices A^n as $n \to \infty$.
- c. If $G_0 = 0$ and $G_1 = 1$, which number do the Gibonacci numbers approach?

Solution: