Problem 3: Bessel recurrence vs. floating point

a) Please check problem3_a.pyFor z = 20, we have the following result

```
value=-0.160341
                          error=0
n=3.
      value=-0.0989014
                          error=1.82415e-15
n=4.
      value=0.130671
                          error=2.12408e-16
n=5.
      value=0.15117
                          error=3.67211e-16
      value=-0.055086
                          error=7.55788e-16
n=6.
n=7,
      value=-0.184221
                          error=3.01328e-16
n=8.
      value=-0.0738689
                          error=5.63611e-16
n=9.
      value=0.125126
                          error=2.21821e-16
n=10, value=0.186483
                          error=1.48837e-16
n=11, value=0.0613563
                          error=4.52367e-16
n=12, value=-0.118991
                          error=2.33259e-16
n=13, value=-0.204145
                          error=0
n=14, value=-0.146398
                          error=7.5836e-16
n=15, value=-0.000812069 error=1.10948e-13
n=16, value=0.14518
                          error=1.91181e-16
n=17, value=0.2331
                          error=1.19072e-16
n=18, value=0.25109
                          error=6.63242e-16
n=19. value=0.218862
                          error=1.26818e-15
n=20, value=0.164748
                          error=5.05419e-16
n=21, value=0.110634
                          error=2.2579e-15
n=22, value=0.0675829
                          error=3.69621e-15
n=23, value=0.0380487
                          error=1.82369e-16
n=24, value=0.0199291
                          error=3.13361e-15
n=25, value=0.00978117
                          error=1.95089e-15
n=26. value=0.00452381
                          error=1.91733e-15
n=27, value=0.00198074
                          error=6.56848e-16
n=28, value=0.000824178
                          error=1.31549e-16
n=29, value=0.000326963
                          error=1.65799e-15
n=30, value=0.000124015
                          error=2.40418e-15
n=31, value=4.50828e-05
                          error=1.05215e-15
n=32, value=1.57413e-05
                          error=5.81145e-15
n=33, value=5.28924e-06
                          error=6.50179e-14
n=34, value=1.71324e-06
                          error=3.26306e-14
n=35. value=5.35784e-07
                          error=4.86134e-14
n=36, value=1.62001e-07
                          error=4.06847e-14
n=37, value=4.74202e-08
                          error=2.76307e-14
n=38, value=1.34536e-08
                          error=4.67277e-14
n=39, value=3.70356e-09
                          error=4.55629e-14
n=40, value=9.90239e-10
                          error=5.53409e-14
n=41. value=2.57401e-10
                          error=3.9969e-14
n=42, value=6.51039e-11
                          error=1.07203e-14
n=43. value=1.60356e-11
                          error=5.21885e-14
n=44, value=3.84926e-12
                          error=2.64419e-14
```

```
n=45, value=9.01145e-13 error=2.00571e-14
n=46, value=2.05887e-13 error=3.53113e-14
n=47, value=4.59366e-14 error=3.95662e-14
n=48, value=1.00149e-14 error=4.25353e-14
n=49, value=2.13469e-15 error=4.85951e-14
n=50, value=4.45104e-16 error=2.37046e-14
```

b) Please check problem3_b.py For z = 20, we have the following result

For $z = 20$, we have the following result		
n=2,	value=-0.160341	error=0
n=3,	value=-0.0989014	error=1.82415e-15
n=4,	value=0.130671	error=2.12408e-16
n=5,	value=0.15117	error=7.34421e-16
n=6,	value=-0.055086	error=2.26736e-15
n=7,	value=-0.184221	error=4.51993e-16
n=8,	value=-0.0738689	error=1.8787e-15
n=9,	value=0.125126	error=4.43641e-16
n=10,	value=0.186483	error=5.9535e-16
n=11,	value=0.0613563	error=2.26184e-15
n=12,	value=-0.118991	error=5.83146e-16
n=13,	value=-0.204145	error=2.7192e-16
n=14,	value=-0.146398	error=1.51672e-15
n=15,	value=-0.000812069	error=1.96662e-13
n=16,	value=0.14518	error=3.82361e-16
n=17,	value=0.2331	error=2.38143e-16
n=18,	value=0.25109	error=2.21081e-16
n=19,	value=0.218862	error=5.07271e-16
n=20,	value=0.164748	error=1.17931e-15
n=21,	value=0.110634	error=2.50878e-16
n=22,	value=0.0675829	error=1.64276e-15
n=23,	value=0.0380487	error=5.65343e-15
n=24,	value=0.0199291	error=1.63644e-14
n=25,	value=0.00978117	error=6.01228e-14
n=26,	value=0.00452381	error=2.5117e-13
n=27,	value=0.00198074	error=1.19524e-12
n=28,	value=0.000824178	error=6.37739e-12
n=29,	value=0.000326963	error=3.77686e-11
n=30,	value=0.000124015	error=2.4639e-10
n=31,	value=4.50828e-05	error=1.75942e-09
n=32,	value=1.57413e-05	error=1.36796e-08
n=33,	value=5.28924e-06	error=1.15281e-07
n=34,	value=1.71324e-06	error=1.0488e-06
~ =		4 00044 0=

n=35, value=5.3579e-07 error=1.02644e-05

```
n=36, value=1.62019e-07
                        error=0.000107724
n=37, value=4.74775e-08 error=0.00120889
n=38, value=1.36483e-08 error=0.0144685
n=39, value=4.38591e-09 error=0.184244
n=40, value=3.45678e-09 error=2.49086
n=41, value=9.44122e-09
                        error=35.6791
n=42, value=3.52522e-08 error=540.476
n=43, value=1.38618e-07
                        error=8643.39
n=44, value=5.60806e-07 error=145691
n=45, value=2.32893e-06 error=2.58441e+06
n=46, value=9.91936e-06 error=4.81786e+07
n=47, value=4.33001e-05 error=9.42606e+08
n=48, value=0.000193591 error=1.93304e+10
n=49, value=0.000885938 error=4.1502e+11
n=50, value=0.00414751
                        error=9.31806e+12
```

- c) the truncation error in (1) due to loss of precision caused by cancellation cannot be bounded anymore when n reaches round 30
- d) Yes. When we calculate the result from 50, the number have less precision bits than it needs in the computer. Then we used the number with bits lost to do the calculation. The error will be accumulated during computing and then the precision would definitely lost. (Please check problem3_d.py)