WSTĘP DO SZTUCZNEJ INTELIGENCJI

Ćwiczenie7 – Sieć Bayesowska

JAKUB KWAŚNIAK 331396

Wstęp

Treść zadania:

Dla zbioru danych o zabójstwach w USA z lat 1980 – 2014

https://www.kaggle.com/datasets/mrayushagrawal/us-crime-dataset wybrać następujące cechy {Victim Sex, Victim Age, Victim Race, Perpetrator Sex, Perpetrator Age, Perpetrator Race, Relationship, Weapon}

Przy pomocy jednej z bibliotek <u>pgmpy</u>, <u>pomegranate</u>, <u>bnlearn</u> wygenerować sieć Bayesowską modelującą zależności pomiędzy tymi cechami. Podpowiedź: należy znaleźć strukturę sieci (structure learning), następnie estymować prawdopodobieństwa warunkowe pomiędzy zmiennymi losowymi (parameter learning).

Zwizualizować i przeanalizować nauczoną sieć - jakie są rozkłady prawdopodobieństw pojedynczych cech, jakie zależności pomiędzy cechami można zauważyć?

Zaimplementować losowy generator danych, który działa zgodnie z rozkładem reprezentowanym przez wygenerowaną sieć.

Użyć generatora do wygenerowania kilku losowych morderstw, podając jako argumenty różne obserwacje.

Wyniki

Eksperyment dla całej bazy danych:

Wygenerowany graf skierowany – znaleziona struktura sieci (połączenia między węzłami – pokazują które cechy/zmienne losowe są zależne od innych), oraz wagi określające prawdopodobieństwo warunkowe pomiędzy zmiennymi losowymi (wartości na krawędziach – wskazują również kierunek zależności, która cecha jest rodzicem, a która dzieckiem)

Network structure:	target	Victim Sex	Victim Age	Relationship	Weapon
source					
Victim Sex	False	False	False	True	
Victim Age	False	False	True	False	
Victim Race	False	False	False	False	
Perpetrator Sex	False	False	False	False	
Perpetrator Age	False	False	False	False	
Perpetrator Race	False	False	False	False	
Relationship	True	False	False	True	
Weapon	False	False	False	False	

Widoczna powyżej jest nauczona struktura sieci gdzie w kolumnie source widoczne są zmienne losowe a nagłówki pozostałych kolumn to targety (zmienne warunkowe). W wierszach zdefiniowane są zależności – jeśli True zmienna losowa z target zależy od zmiennej losowej z source, jeśli False nie zależy

Jak widać dla cechy np. Victim Sex – jest ona zależna od Relashionship, z kolei Weapon zależne jest od Victim Sex oraz Relationship co również potwierdza graf, fragmenty tabel z estymowanym prawdopodobieństwem warunkowym zostały spotokowane do pliku "results_full_db.txt"

Oto 3 otrzymane wyniki dla podanych niepełnych obserwacji, losowane z rozkładem prawdopodobieństwa sieci Bayesa:

```
Niepełne obserwacje: {'Victim Sex': 'Male', 'Perpetrator Age': 30, 'Relationship': 'Wife'}
Otrzymane przewidywania: Victim Age
                                                    34
Victim Race
                       White
Perpetrator Sex
                        Male
Perpetrator Race
                       White
Weapon
                     Shotgun
                    0.002509
Name: 16797, dtype: object
Niepełne obserwacje: {'Victim Age': 20, 'Perpetrator Race': 'Black', 'Weapon': 'Knife'}
Otrzymane przewidywania: Victim Sex
                                                  Female
Victim Race
                          Black
Perpetrator Sex
                           Male
Perpetrator Age
                             39
Relationship
                   Acquaintance
                       0.000977
Name: 9153, dtype: object
Niepełne obserwacje: {'Victim Age': 50, 'Victim Sex': 'Female', 'Perpetrator Race': 'White'}
Otrzymane przewidywania: Victim Race
                                               White
Perpetrator Sex
                       Male
Perpetrator Age
                         69
Relationship
                     Mother
Weapon
                    Handgun
                   0.000013
Name: 311708, dtype: object
```

Obserwacje i wnioski

- 1. Największe prawdopodobieństwo morderstwa zaobserwować można w obrębie jednej rasy
- 2. Rozkład cech "Perpetrator Age" oraz "Victim Age" są rozkładami dyskretnymi o szerokim przedziale wartości przez to mogą pojawić się problemy przy generowaniu krotki z niepełnej obserwacji sieć "zamarza" i nie jest w stanie wygenerować 'query' z metodą bn.inference.fit() nie może określić z jakim prawdopodobieństwem rozłożą się pozostałe cechy dla podanych obserwacji W celu zapobiegnięcia temu należy do każdej obserwacji podawać przynajmniej jednną zmienną losową "... Age" lub zawęzić rozkład dyskretny zmiennych "... Age" np. filtrując dataframe tylko do wartości "... Age" < 30 lub zawężając ilość danych do np. 1/3 wierszy dataframe'u</p>
- 3. Z powodu opisanego wyżej z modelu wygenerowanego przez sieć pracująca na pełnym zbiorze danych nie będziemy w stanie wygenerować krotki dla pustej obserwacji.
- Sieć licząc prawdopodobieństwo warunkowe np. płci ofiary (Victim Sex) pod warunkiem związku z mordercą (Relationship przy czym Relationship(Wife) oznacza, że ofiara była żoną mordercy) przydziela niskie ale nie zerowe prawdopodobieństwo sytuacjom niemożliwym np. P (Victim_Sex(Female) | Relationship(Wife)) = 0.972633781 ale jednocześnie P (Victim_Sex(Male) | Relationship(Wife)) = 0.027366219 (sytuacja teoretycznie niemożliwe, chociaż jest to zbiór danych z USA, więc pewnie i dziwniejsze relacje mogłyby się pojawić)