Devoir Sur Table n°1 – Corrigé

Exercice 1 : Récurrence et produits

- 1. On a $u_1 = (1 + \frac{1}{2})u_2$ donc $u_1 = \frac{3}{2}u_2$ c'est à dire $u_2 = \frac{2}{3}u_1$ donc $u_2 = \frac{2}{3}$. Puis $u_2 = (1 + \frac{1}{4})u_3$ donc $u_2 = \frac{5}{4}u_3$ c'est à dire $u_3 = \frac{4}{5}u_2$ donc $u_2 = \frac{8}{15}$.
- 2. Montrons par récurrence que pour tout $n \ge 2$, $u_n = \frac{P_n}{Q_n}$.

 <u>Initialisation</u>: On a bien $u_2 = \frac{2}{3} = \frac{P_2}{Q_2}$ car $P_2 = 2$ et $Q_2 = 3$.

<u>Hérédité</u>: Soit $n \ge 2$ fixé. Supposons que $u_n = \frac{P_n}{Q_n}$ et montrons que $u_{n+1} = \frac{P_{n+1}}{Q_{n+1}}$.

On sait que $u_n = \left(1 + \frac{1}{2n}\right) u_{n+1}$ c'est à dire $\frac{P_n}{Q_n} = \frac{2n+1}{2n} \times u_{n+1}$.

On a donc $u_{n+1} = \frac{P_n}{Q_n} \times \frac{2n}{2n+1} = \frac{P_n \times 2n}{Q_n \times (2n+1)}$.

Or:
$$P_n \times 2n = \prod_{i=1}^{n-1} (2i) \times (2n) = \prod_{i=1}^{n} (2i) = P_{n+1}$$

et:
$$Q_n \times (2n+1) = \prod_{i=1}^{n-1} (2i+1) \times (2n+1) = \prod_{i=1}^{n} (2i+1) = Q_{n+1}$$
.

On a donc montré $u_{n+1} = \frac{P_{n+1}}{Q_{n+1}}$, ce qui achève la récurrence.

- 3. Soit $n \ge 2$ fixé.
 - (a) On calcule : $P_n = \prod_{i=1}^{n-1} (2i) = 2^{n-1} \prod_{i=1}^{n-1} i = \boxed{2^{n-1}(n-1)!}$
 - (b) Il faut remarque que

$$P_n \times Q_n = \left(2 \times 4 \times \ldots \times (2n-2)\right) \times \left(3 \times 5 \times \ldots \times (2n-1)\right) = 2 \times 3 \times \ldots \times (2n-1)$$

$$\operatorname{donc} \left[P_n \times Q_n = (2n-1)!\right].$$

(c) On a
$$P_n \times Q_n = (2n-1)!$$
 donc $Q_n = \frac{(2n-1)!}{P_n}$ c'est à dire $Q_n = \frac{(2n-1)!}{2^{n-1}(n-1)!}$.

4. Soit $n \ge 2$. On a vu en question 2. que $u_n = \frac{P_n}{Q_n}$.

En remplaçant par les expressions que l'on a déterminé, on obtient :

$$u_n = P_n \times \frac{1}{Q_n} = 2^{n-1}(n-1)! \times \frac{2^{n-1}(n-1)!}{(2n-1)!} = \frac{(2^{n-1})^2((n-1)!)^2}{(2n-1)!}.$$

Ainsi, finalement : $u_n = \frac{4^{n-1}((n-1)!)^2}{(2n-1)!}$.

Exercice 2 : Etude de deux bijections

1. L'expression $f(t) = \ln\left(\frac{1+t}{1-t}\right)$ est bien défini si et seulement si :

$$t \neq 1 \text{ et } \frac{1+t}{1-t} > 0 \Longleftrightarrow (1+t>0 \text{ et } 1-t>0) \text{ ou } (1+t<0 \text{ et } 1-t<0) \Longleftrightarrow -1 < t < 1$$

Ainsi le domaine de définition de f est I =]-1,1[

On considère ainsi, dans la suite, l'application $f: I \to \mathbb{R}$.

2. Ne pas oublier d'importer la bibliothèque numpy!

```
import numpy as np
def f(t):
    if -1 < t and t < 1:
        y = np.log( (1+t)/(1-t) )
        return y
    else:
        print("Erreur !")</pre>
```

3. Montrons que $f:]-1,1[\to \mathbb{R}$ est bijective et déterminons f^{-1} . Soit $y \in \mathbb{R}$ fixé. Pour tout $x \in]-1,1[$, on a les équivalences :

$$y = f(x) \iff y = \ln\left(\frac{1+x}{1-x}\right) \iff e^y = \frac{1+x}{1-x} \iff (1-x)e^y = 1+x$$
$$\iff e^y - xe^y = 1+x \iff e^y - 1 = x(1+e^y) \iff x = \frac{e^y - 1}{e^y + 1}.$$

Ceci montre que
$$\boxed{ f \text{ est bijective et } f^{-1}: \begin{array}{ccc} \mathbb{R} & \to &]-1,1[\\ y & \mapsto & \frac{e^y-1}{e^y+1} \end{array}. }$$

4. Montrons que $g: \begin{array}{ccc}]\frac{1}{2}, +\infty[& \to &]-\infty, 1[\\ x & \mapsto & 4x(1-x) \end{array}$ bijective et déterminons g^{-1} .

Soit $y \in]-\infty, 1[$ fixé. Pour tout $x \in]\frac{1}{2}, +\infty[$, on a les équivalences suivantes :

$$y = g(x) \iff y = 4x(1-x) \iff y = 4x - 4x^2 \iff 4x^2 - 4x + y = 0.$$

On résout cette équation polynomiale (d'inconnue x).

Le discriminant est $\Delta = (-4)^2 - 4 \times 4y = 16 - 16y = 16(1 - y) > 0$ car y < 1.

L'équation admet donc les deux solutions réelles

$$x_1 = \frac{4 - \sqrt{16(1 - y)}}{8} = \frac{1 - \sqrt{1 - y}}{2}$$
 et $x_2 = \frac{4 + \sqrt{16(1 - y)}}{8} = \frac{1 + \sqrt{1 - y}}{2}$.

Or, on cherche ici exclusivement une solution $x \in]\frac{1}{2}, +\infty[$.

Puisque $\sqrt{1-y} > 0$ (car y < 1), il est clair que $x_1 < \frac{1}{2}$ et $x_2 > \frac{1}{2}$.

 x_2 est donc la seule solution qui convient.

Pour conclure les équivalences, on obtient : $y = g(x) \iff x = \frac{1 + \sqrt{1 - y}}{2}$.

5. Pour que h(x) = f(g(x)) ait un sens, il faut que $x \in]\frac{1}{2}, +\infty[$ et que $g(x) \in]-1, 1[$. Etudions la fonction g sur l'intervalle $]\frac{1}{2}, +\infty[$. g y est dérivable et :

$$\forall x \in]\frac{1}{2}, +\infty[, g'(x) = 4 - 8x = 8(\frac{1}{2} - x) < 0.$$

Ainsi, on obtient facilement le tableau de variations :

x	1/2	$+\infty$
g(x)	1	$-\infty$

D'après le TVI, on voit qu'il existe un unique $\alpha \in]1/2, +\infty[$ tel que $g(\alpha) = -1$. On aura alors $g(x) \in]-1,1[$ exactement sur l'intervalle $]\frac{1}{2},\alpha[$. Déterminons pour finir la valeur de ce α . On résout pour cela l'équation :

$$g(x) = -1 \iff 4x - 4x^2 = -1 \iff 4x^2 - 4x - 1 = 0.$$

Le discriminant est $\Delta = 16 + 16 = 2 \times 16 > 0$.

On a donc deux solutions : $x = \frac{4 \pm \sqrt{2 \times 16}}{8} = \frac{1 \pm \sqrt{2}}{2}$

et on conserve seulement celle qui est supérieur à 1/2, soit $\alpha = \frac{1+\sqrt{2}}{2}$.

Conclusion : le domaine de définition de $h = f \circ g$ est $]\frac{1}{2}, \alpha[$, avec $\alpha = \frac{1+\sqrt{2}}{2}$.

6. On peut s'épargner des calculs car on a déjà déterminé les réciproques de f et g. On a $h:]\frac{1}{2}, \alpha[\to \mathbb{R}$. Pour tous $y \in \mathbb{R}$ et $x \in]\frac{1}{2}, \alpha[$, on a les équivalences :

$$y = h(x) \Longleftrightarrow y = f(g(x)) \Longleftrightarrow f^{-1}(y) = g(x) \Longleftrightarrow x = g^{-1}(f^{-1}(y))$$

(Essentiellement, on a $h = f \circ g$ donc on retrouve $h^{-1} = g^{-1} \circ f^{-1}$.)

Ainsi h est bijective, et sa réciproque $h^{-1}: \mathbb{R} \to]\frac{1}{2}, \alpha[$ est donnée par :

$$\forall y \in \mathbb{R}, \ h^{-1}(y) = g^{-1}(f^{-1}(y)) = g^{-1}\left(\frac{e^y - 1}{e^y + 1}\right) = \frac{1 + \sqrt{1 - \frac{e^y - 1}{e^y + 1}}}{2}$$
$$= \frac{\sqrt{e^y + 1} + \sqrt{e^y + 1 - (e^y - 1)}}{2\sqrt{e^y + 1}} = \frac{\sqrt{e^y + 1} + \sqrt{2}}{2\sqrt{e^y + 1}}$$

Ainsi, on obtient bien : $\forall y \in \mathbb{R}, \ h^{-1}(y) = \frac{\sqrt{2} + \sqrt{1 + e^y}}{2\sqrt{1 + e^y}}$.

Exercice 3: Formule d'Abel pour le calcul de somme

1. (a) On calcule:

$$\sum_{k=1}^{n-1} a_k (b_{k+1} - b_k) + \sum_{k=1}^{n-1} (a_{k+1} - a_k) b_{k+1} = \sum_{k=1}^{n-1} \Big(a_k (b_{k+1} - b_k) + (a_{k+1} - a_k) b_{k+1} \Big) = \sum_{k=1}^{n-1} \Big(a_{k+1} b_{k+1} - a_k b_k \Big).$$

On reconnait une somme télescopique, qui vaut $a_nb_n - a_1b_1$.

Ainsi:
$$\sum_{k=1}^{n-1} a_k (b_{k+1} - b_k) + \sum_{k=1}^{n-1} (a_{k+1} - a_k) b_{k+1} = a_n b_n - a_1 b_1.$$

 $(b) \ \ Il \ suffit \ de \ "passer" \ la \ deuxième \ somme \ de \ l'autre \ côt\'e \ de \ l'\'egalit\'e \ pour \ obtenir \ la \ formule \ d'Abel :$

$$\sum_{k=1}^{n-1} a_k (b_{k+1} - b_k) = (a_n b_n - a_1 b_1) - \sum_{k=1}^{n-1} (a_{k+1} - a_k) b_{k+1}.$$

2. (a) La formule d'Abel (en choisissant $a_k = k$ et $b_k = (-1)^k$) donne :

$$T_n = \sum_{k=1}^{n-1} k \left((-1)^{k+1} - (-1)^k \right) = n(-1)^n - (-1) - \sum_{k=1}^{n-1} (k+1-k)(-1)^{k+1}$$

$$= (-1)^n n + 1 - \sum_{k=1}^{n-1} (-1)^{k+1} = (-1)^n n + 1 + \sum_{k=1}^{n-1} (-1)^{k+2}$$

$$= (-1)^n n + 1 + \sum_{k=1}^{n-1} (-1)^k = (-1)^n n + 1 + \frac{-1 - (-1)^n}{2}$$

$$= (-1)^n n + 1 - \frac{1}{2} - \frac{(-1)^n}{2} = (-1)^n n + \frac{1 - (-1)^n}{2}$$

Ainsi
$$T_n = (-1)^n n + \frac{1 - (-1)^n}{2}$$

(b) Par ailleurs,

$$T_n = \sum_{k=1}^{n-1} k \left((-1)^{k+1} - (-1)^k \right) = \sum_{k=1}^{n-1} k (-1)^k ((-1) - 1) = \boxed{-2 \sum_{k=1}^{n-1} (-1)^k k}.$$

On note ensuite que $\sum_{k=1}^{n-1} (-1)^k k = \sum_{k=1}^n (-1)^k k - (-1)^n n = S_n - (-1)^n n$.

Il en résulte que $T_n = -2(S_n - (-1)^n n)$ soit $T_n = -2S_n + 2(-1)^n n$

(c) On vient de voir que $T_n = -2S_n + 2(-1)^n n$ donc $S_n = -\frac{1}{2}T_n + (-1)^n n$. En rempla !ant T_n par son expression du 2.(a):

$$S_n = -\frac{1}{2}\left((-1)^n n + \frac{1 - (-1)^n}{2}\right) + (-1)^n n = \boxed{\frac{(-1)^n n}{2} + \frac{(-1)^n}{4} - \frac{1}{4}}$$

- 3. (a) $A_n(1) = \sum_{k=1}^{n-1} k = \boxed{\frac{(n-1)n}{2}}$
 - (b) Soit $x \neq 1$. On a:

$$(x-1)A_n(x) = (x-1)\sum_{k=1}^{n-1} kx^k = \sum_{k=1}^{n-1} k(x-1)x^k = \sum_{k=1}^{n-1} k(x^{k+1} - x^k).$$

On applique la formule d'Abel (avec $a_k = k$ et $b_k = x^k$) pour obtenir :

$$(x-1)A_n(x) = \sum_{k=1}^{n-1} k(x^{k+1} - x^k) = (nx^n - x) - \sum_{k=1}^{n-1} (k+1-k)x^{k+1}$$

$$= (nx^n - x) - \sum_{k=1}^{n-1} x^{k+1} = (nx^n - x) - \sum_{i=2}^n x^i$$

$$= (nx^n - x) - \frac{x^2 - x^{n+1}}{1 - x} = (nx^n - x) + \frac{x^2 - x^{n+1}}{x - 1}$$

$$= \frac{(x-1)(nx^n - x) + x^2 - x^{n+1}}{x - 1}$$

$$= \frac{nx^{n+1} - x^2 - nx^n + x + x^2 - x^{n+1}}{x - 1}$$

$$= \frac{(n-1)x^{n+1} - nx^n + x}{x - 1}.$$

Il reste à diviser cela par (x-1) pour obtenir : $A_n(x) = \frac{(n-1)x^{n+1} - nx^n + x}{(x-1)^2}$

```
def somme_A(n,x):
    a = (n-1) * x **(n+1) - n *x**n + x
    b = (x-1)**2
    return (a/b)
```

*** Fin du sujet ***