$$S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \mathcal{B} - \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi + \eta} \qquad S_{T} = \frac{\mu \phi}{\mu \phi} \qquad S_{T}$$

 $h_{i} = \begin{bmatrix} a_{i} & \ddots & \vdots \\ \vdots & \eta & \vdots \\ \neg & \uparrow & \uparrow \end{bmatrix} \cdot \begin{bmatrix} \sum C_{i} & \frac{\pi}{2} \eta & A_{i} & \frac{\pi}{2} \eta & S_{i} & \frac{\pi}{2} \eta & A_{i} & A_{i$

Part 4: Taxes and Equity

Table 12-17The following table shows the marginal tax rates for unmarried individuals for two years.

2009		2010	
On Taxable Income	The Tax Rate is	On Taxable Income	The Tax Rate is
\$0 to \$15,000	10%	Over \$0	20%
\$15,000 to \$40,000	15%	- 1	
\$40,000 to \$75,000	20%		
\$75,000 to \$120,000	25%	1	
Over \$120,000	30%		

- 10. Suppose one goal of the tax system was to achieve vertical equity. While people may disagree about what is "equitable," based on the marginal tax rates given for the two years, which of the following statements is true?
 - a. Vertical equity is possible in both years.
 - b. Vertical equity is possible in 2009 but not in 2010.
 - c. Vertical equity is not possible in 2009 but is possible in 2010.
 - d. Vertical equity is not possible in either year.

Share
$$i = \frac{\int \prod_{d \neq i} F\left(\left[\frac{1-T_{i}}{1-T_{i}}\right]^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{2} \cdot \left(\frac{A_{i}}{1+T_{i}}\right)^{1/2} \cdot a_{i}\right) \cdot f(a_{i}) da_{i}}{\sum_{k} \int \prod_{j \neq k} F\left(\left[\frac{1-T_{i}}{1-T_{i}}\right]^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{2} \cdot \left(\frac{A_{i}}{1+T_{i}}\right)^{1/2} \cdot a_{i}\right) \cdot f(a_{i}) da_{i}}$$

$$\int \prod_{j \neq k} F\left(\left[\frac{A_{i}}{1-T_{i}}\right]^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{1/2} \cdot a_{i}\right) \cdot f(a_{i}) da_{i}}$$

$$\int \prod_{j \neq i} F\left(\left[\frac{A_{i}}{A_{j}}\right]^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{2} \cdot A_{i}\right) \cdot f(a_{i}) da_{i}}$$

$$\int \prod_{j \neq i} F\left(\left[\frac{A_{i}}{A_{j}}\right]^{2} \cdot \left(\frac{1+T_{i}}{1+T_{i}}\right)^{2} \cdot \left(\frac{A_{i}}{1+T_{i}}\right)^{2} \cdot A_{i}\right) \cdot f(a_{i}) da_{i}}$$

$$E_{i} = \int \prod_{j \neq i} \frac{1}{A_{i}} \int \prod_{j \neq i} \frac{1}{A_{i}} \int \prod_{j \neq i} \frac{1}{A_{i}} \int \prod_{j \neq i} f(a_{i}) da_{i}}{\sum_{i \neq i} \int \prod_{j \neq i} A_{i}} \int \prod_{j \neq i} f(a_{i}) da_{i}}$$

$$E_{i} = \int \prod_{j \neq i} \frac{1}{A_{i}} \int \prod_{j \neq i} \frac{1}{A_{i}} \int \prod_{j \neq i} f(a_{i}) da_{i}}{\sum_{i \neq i} \int \prod_{j \neq i} A_{i}} \int \prod_{j \neq i} f(a_{i}) da_{i}}$$