

CIENCIA DE LA COMPUTACIÓN

Biología Molecular Computacional

Laboratorio - 03 Ensamblaje de Fragmentos de ADN

Rodrigo Alonso Torres Sotomayor

CCOMP 9-1

"El alumno declara haber realizado el presente trabajo de acuerdo a las normas de la Universidad Católica San Pablo"

Laboratorio 03: Ensamblaje de Fragmentos de ADN

Desarrollo

Para este trabajo se utilizó el lenguaje de programación C++.

0.1 Secuencia de Consenso

Implemente un algoritmo que, para un conjunto de cadenas encuentre:

- 1. La secuencia de consenso.
- 2. Entre las posibles secuencias de consenso aquella que se aproxime m´as a un tama˜no determinado l.
- 3. Que considere tanto secuencias directas como complemento-reversas

Verificar su funcionamiento para el siguiente conjunto de secuencias considerando que la longitud I de la molécula destino es próxima a 55 pares, y existen secuencias que pueden ser del otro strand (usar complementos reversos).

 f_1 : ATCCGTTGAAGCCGCGGGC

 f_2 : TTAACTCGAGG

 f_3 : TTAAGTACTGCCCG f_4 : ATCTGTGTCGGG

 f_5 : CGACTCCCGACACA

f6: CACAGATCCGTTGAAGCCGCGGG

 f_7 : CTCGAGTTAAGTA f_8 : CGCGGGCAGTACTT

0.2 Subgrafos Acíclicos

Implementar el algoritmo de búsqueda del camino hamiltoniano con linkage t (parámetro), y aplíquelo a las cadenas anteriores definiendo un valor t de acuerdo al nivel de linkage que se pudo evidenciar al buscar la secuencia de mejor consenso. Visualizar el grafo y las secuencias enlazadas junto al string encontrado

0.3 Resultados

La mejor secuencia para obtener el consenso fue una cadena de 48 caracteres. El valot de linkage tuvo que ser pequeño para obtener un mejor consenso, a partir de 3 ya comenzaba a disminuir. Los reusltados se bueden observar en las Figure 1 y 2.

Link del repositorio

https://github.com/RodATS/Molecular.git

```
Cadena 8:
ATCCGTTCAAGCCCACGGGC -> CGACTCCCGACACA -> CACAGATCCGTTGAAGCCGCGGG -> CTCGAGTTAAGTA -> CGCGGGCAGTACTT -> CCTCGAGTTAA-
CGGGCAGTACTTAA -> CCCGACACAGAT -> CCCGGCGCTTCAACGGATCTGTG ->
CAGGATACTGAGG -> GCCCGCGGCTTCAACGGAT -> CCCGCGGCTTCAACGGATCTGTG ->
CAGGATACTGAGG -> GCCCGCGGCTTCAACGGAT ->
CAGGATACTGCCG -> CGACTCCCGACACA -> CGCGGGCAGTACTT -> GCCCGCGGCTTCAACGGAT -> CGGGCAGTACTTAA ->
CAGGATCCCGG -> GCCCGCGGCTTCAACGGAT ->
CAGGATCCCGG -> ACCCGCGGCTTCAACGGAT ->
CAGGATCCCGACACA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATCCCGACACA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGGG ->
CAGGATCCCGACACA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGAT ->
CAGGATCCCGACACA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA ->
CAGGATA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA ->
CAGGATA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> TAAGTACTGCCCGG ->
CAGGATA ->
CAGGATA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> TAAGTACTGCCCGG ->
CAGGATA ->
CAGGATA -> ATCCGTTGAAGCCGCGGGC -> ATCTGTGTCGGG -> TAAGTACTGCCCG -> TACTTAACTCGAG ->
CAGGATA ->
CAGGATA -> ATCCGTTGAAGCCCGGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA -> ATCCGTTGAAGCCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA -> ATCCGTTGAAGCCCGGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA ->
CAGGATA -> ATCCGTTGAAGCCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA -> ATCCGTTGAAGCCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATA ->
CAGGATA ->
CAGGATA ->
CAGGATA ->
CAGGATA ->
CAGGATA ->
CAGGATACTTA -> ATCCGTTGAAGCCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATACTTA -> ATCCGTTGAAGCCCGCGGGC -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATACTTA -> ATCCGTTGAAGCCCGGGGG -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATACTTA -> ATCCGTTGAAGCCCGGGGG -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATACTTA -> ATCCGTTGAAGCCCGGGGG -> ATCTGTGTCGGG -> AAGTACTGCCCGG ->
CAGGATACTTA -> ATCCGTTGAAGCCGGGGG -> ATCTGTGTCGGG -> AAGTACTGCCCGG -> TGGTCCGGAGTCTTAA ->
CAGGATACTTA ->
CAGGATACTTA ->
CAGGATACTTA ->
CAGGATACTTA ->
CAGGAT
```

Figure 1: Todas las combinaciones posibles para encontrar la secuencia de consenso.

```
Secuencia proxima a longitud 55: CACAGATCCGTTGAAGCCGCGGGATCCGTTGAAGCCGCGGGCGCGGGG
Tamaño: 48
Camino Hamiltoneano:
CACAGATCCGTTGAAGCCGCGGG -> ATCCGTTGAAGCCGCGGGC -> CGCGGGCAGTACTT -> GCCCGCGGCTTCAACGGAT -> CACAGATCCGTTGAAGCCGCGGGATCCG
TTGAAGCCGCGGGCCGGGGGG ->
```

Figure 2: Secuencia más proxima a la longitud.