Advanced Computer Vision

Naeemullah Khan

naeemullah.khan@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

KAUST Academy King Abdullah University of Science and Technology

June 15, 2023

Computer Vision

Building artificial systems that process, perceive, and reason about visual data

Computer Vision is Everywhere

Some Applications

Image Classification

Image Retrieval

Object Detection

Ren, He, Girshick, and Sun, 2015

Image Segmentation

Fabaret et al, 2012

Video Classification

Simonyan et al, 2014

Pose Recognition (Toshev and Szegedy, 2014)

10 / 72

Medical Imaging

sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

Image Captioning

Image Generation

"Teddy bears working on new Al research underwater with 1990s technology"

DALL-E 2

Style Transfer

3D Vision

Zhou et al., 3D Shape Generation and Completion through Point-Voxel Diffusion (2021)

Gkioxari et al., "Mesh R-CNN", ICCV 2019

How to represent an image?

- ► Images are represented as Matrices with elements in [0, 255]
- Grayscale images have one channel while RGB images have 3 channels

KAUST Academy Advanced Computer Vision June 15, 2023

⁰https://www.v7labs.com/blog/image-recognition-guide □ ➤ < ② ➤ < ② ➤ < ③ ➤ < ③ ➤ < ③ ➤ < ③ ➤ < ③ ➤ < ③ ➤ < ○ ○

Fully-Connected Neural Networks

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

$$z = W_1 x_1 + W_2 x_2 + \cdots + W_n x_n + b$$

⁰https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Drawbacks of Fully-Connected Neural Networks

► The number of trainable parameters becomes extremely large

Drawbacks of Fully-Connected Neural Networks (cont.)

 Little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of Fully-Connected Neural Networks (cont.)

 Little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of Fully-Connected Neural Networks (cont.)

- ▶ The topology of the input data is completely ignored
- ▶ For a 32×32 image, we have
 - Black and white patterns: $2^{32*32} = 2^{1024}$
 - Grayscale patterns: $256^{32*32} = 256^{1024}$

Convolutional Neural Networks (CNNs)

$$z = W * x_{i,j} = \sum_{a=0}^{m-1} \sum_{b=0}^{n-1} W_{ab} x_{(i+a)(j+b)}$$

- (ロ) (個) (差) (差) (差) の(()

How Convolution Works?

3x32x32 image

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

The **kernel** slides across the image and produces an output value at each position

The **kernel** slides across the image and produces an output value at each position

The **kernel** slides across the image and produces an output value at each position

We convolve multiple kernels and obtain multiple feature maps or **channels**

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Padding

- ▶ Applying Convolution as such reduces the size of the borders.
- ► Sometimes this is not desirable.
- We can pad the border with zeros.

Padding (cont.)

► Same Convolution: Output is the same size as input

Padding (cont.)

► Full Convolution: output size = input size + kernel size - 1

Strided Convolution

ightharpoonup Kernel slides along the image with a step > 1

Strided Convolution (cont.)

ightharpoonup Kernel slides along the image with a step > 1

Pooling

► Compute mean or max over small windows to reduce resolution

Pooling (cont.)

Χ

Single depth slice

У

max pool with 2x2 filters and stride 2

6	8
3	4

- · No learnable parameters
- Introduces spatial invariance

Dilated Convolution

► Kernel is spread out, step > 1 between kernel elements

Activation

- ▶ Just like Fully-Connected Neural Networks, we can apply an activation over convolutional layer outputs
- ► It helps break linearity
- ▶ For example, Rectified Linear Unit (ReLU): $\sigma(x) = \max(0, x)$

Transfer Function

15	20	0	35
18	0	25	100
20	0	25	0
101	75	18	23

ReLU Layer

- ightharpoonup Consider a single layer y = Wx
- ► The following could lead to tough optimazation
 - Inputs x are not centered around zero (need large bias)
 - Inputs x have different scaling per element (entries in W will need to vary a lot)

- ightharpoonup Consider a single layer y = Wx
- ► The following could lead to tough optimazation
 - Inputs x are not centered around zero (need large bias)
 - Inputs x have different scaling per element (entries in W will need to vary a lot)
- **Idea:** Force inputs to be "nicely scaled" at each layer!

44 / 72

► Consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

June 15, 2023

Consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

▶ **Problem:** What if zero-mean, unit variance is too hard of a constraint?

Input:
$$x: N \times D$$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\begin{split} \mu_j &= \frac{1}{N} \sum_{i=1}^N x_{i,j} & \text{Per-channel mean,} \\ \sigma_j^2 &= \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 & \text{Per-channel var,} \\ \hat{x}_{i,j} &= \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} & \text{Normalized x,} \\ y_{i,j} &= \gamma_j \hat{x}_{i,j} + \beta_j & \text{Output,} \\ \text{Shape is N x D} \end{split}$$

Estimates depend on minibatch; can't do this at test-time!

Input:
$$x: N \times D$$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \text{shape is D}$$

$$\begin{split} \hat{x}_{i,j} &= \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} & \text{Normalized x,} \\ \text{Shape is N x D} \\ y_{i,j} &= \gamma_j \hat{x}_{i,j} + \beta_j & \text{Output,} \\ \text{Shape is N x D} \end{split}$$

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$\mu_j = ext{(Running)}$$
 average of values seen during training

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{\text{(Running)}}{\text{values seen during training}}$$

Per-channel var, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathbf{Var}[x^{(k)}]}}$$

Batch Normalization for **fully-connected** networks

$$\begin{array}{ccc} \mathbf{x} \colon \mathbf{N} \times \mathbf{D} \\ \text{Normalize} & \downarrow \\ \boldsymbol{\mu}, \boldsymbol{\sigma} \colon \mathbf{1} \times \mathbf{D} \\ \mathbf{y}, \boldsymbol{\beta} \colon \mathbf{1} \times \mathbf{D} \\ \mathbf{y} &= \mathbf{y}(\mathbf{x} - \boldsymbol{\mu}) / \boldsymbol{\sigma} + \boldsymbol{\beta} \end{array}$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

- Advantages:
 - Makes deep networks much easier to train!
 - Improves gradient flow
 - Allows higher learning rates, faster convergence
 - Networks become more robust to initialization
 - Acts as regularization during training
 - Zero overhead at test-time: can be fused with conv!

Advantages:

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Disadvantages:
 - Behaves differently during training and testing: this is a very common source of bugs!

Convolutional Neural Networks

Components of a CNN

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Most Notable CNNs

- ► AlexNet [Krizhevsky et al. 2012]
- ▶ VGGNet [Simonyan and Zisserman, 2014]
- ► InceptionNet (GoogLeNet) [Szegedy et al., 2014]
- ► ResNet [He et al., 2015]

AlexNet

- ► First big improvement in image classification
- Made use of CNN, pooling, dropout, ReLU and training on GPUs.
- 5 convolutional layers, followed by max-pooling layers; with three fully connected layers at the end

VGGNet

- ➤ Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer
- ▶ But deeper, more non-linearities and lesser parameters
- ▶ 13 or 16 conv layers with 3 fully-connected layers. Most params in the fully connected layer

InceptionNet

- ► Going Deep: 22 layers
- Only 5 million parameters! (12x less than AlexNet and 27x less than VGGNet)
- ► Introduced efficient "Inception module"
- ► Introduced "bottleneck" layers that use 1x1 convolutions to reduce feature channel size and computational complexity

InceptionNet (cont.)

► Inception module: design a good local network topology (network within a network) and then stack these modules on top of each other

Inception module

- ► Very deep networks using residual connections
- ► 152-layer model for ImageNet
- ► Stacked Residual Blocks

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

► What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

▶ 56-layer model performs worse on both test and training error

▶ What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

- ▶ 56-layer model performs worse on both test and training error
- ▶ The deeper model performs worse, but it's not caused by overfitting!

► Fact: Deep models have more representation power (more parameters) than shallower models.

- ► Fact: Deep models have more representation power (more parameters) than shallower models.
- ► **Hypothesis:** The problem is an optimization problem, deeper models are harder to optimize

June 15, 2023

- ► Fact: Deep models have more representation power (more parameters) than shallower models.
- ► **Hypothesis:** The problem is an optimization problem, deeper models are harder to optimize
- **Solution:** Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

- ► Fact: Deep models have more representation power (more parameters) than shallower models.
- **Hypothesis:** The problem is an optimization problem, deeper models are harder to optimize
- **Solution:** Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

ImageNet

- ► The most extensive data for Image Classification
- ▶ 3 RGB channels from 0 to 255
- ▶ 14,197,122 images
- ▶ 1000 classes

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

71 / 72

References

These slides have been adapted from

- ► Fei-Fei Li, Yunzhu Li & Ruohan Gao, Stanford CS231n: Deep Learning for Computer Vision
- Assaf Shocher, Shai Bagon, Meirav Galun & Tali Dekel, WAIC DL4CV Deep Learning for Computer Vision: Fundamentals and Applications
- ► Justin Johnson, UMich EECS 498.008/598.008: Deep Learning for Computer Vision
- ► Sander Dieleman, Deepmind: Deep Learning Lecture Series 2020