Д. Условие коммутативности потоков. Пусть \pmb{A}, \pmb{B} – векторные поля на многообразии M.

Т е о р е м а. Два потока A^t, B^s коммутируют тогда и только тогда, когда скобка Пуассона соответствующих векторных полей [A, B] равна нулю.

Д о к а з а т е л ь с т в о . Если $A^tB^s\equiv B^sA^t$ то по лемме 1 $[\pmb{A},\pmb{B}]=0$ Если $[\pmb{A},\pmb{B}]=0$ то по лемме 1 для любой функции φ в любой точке x

$$\varphi(A^t B^s x) - \varphi(B^s A^t x) = o(s^2 + t^2), \quad s \to 0, t \to 0$$

Мы покажем, что отсюда вытекает $\varphi(A^tB^sx)=\varphi(B^sA^tx)$ при доста- точно малых s и t.

Применяя это соотнощение к локальным координатам $(\varphi=x_1,\,\ldots,\,\varphi=x_n)$, получим $A^tB^s\equiv B^sA^t$,

Рассомтрим прямоугольник $0\leqslant t\leqslant t_0,\, 0\leqslant s\leqslant s_0$ (рис. 170) на плоскости (t,s). Каждому пути, ведущему из (0,0) в (t_0,t_0) и состоящему из конечного числа отрезков координатных направлений, сопоставим произведение преобразований потоков A^t и B^s .

