Lecture notes: Abstraction of continuous systems

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

November 7, 2019

Outline

This lecture note is mostly based on

- Kloetzer, Marius, and Calin Belta. "A fully automated framework for control of linear systems from LTL specifications." HSCC. Vol. 3927. 2006. APA.
- Habets, L. C. G. J. M., and Jan H. Van Schuppen. "A control problem for affine dynamical systems on a full-dimensional polytope." Automatica 40.1 (2004): 21-35.

Problem statement

• Given a linear system

$$\dot{x} = Ax + a + Bu$$

where b is a constant vector, with polyhedral control constraint U.

- a specification LTL φ over a set of linear predicates in X
- **Compute**: All initial states X_{INIT} and a feedback controller so that the corresponding trajectory, for any initial state in X_{INIT} of the closed-loop system satisfy φ , while staying inside a given full-dimensional polytope P.

Challenge: Infinite-state space transition systems. Require closed-loop satisfaction. Cannot use any existing planning algorithm for discrete systems.

Planning and control framework for continuous systems

Polytopes

A full-dimensional polytope P is defined as the **convex hull** of at least N+1 affinely independent points in \mathbf{R}^N .

def 1: a **convex hull** of a set of points is the smallest **convex set** that containing this set of points.

def 2: a **convex set** is a subset of an affine space that is closed under convex combinations.

A full-dimensional polytope P is defined as the **convex hull** of at least N+1 affinely independent points in \mathbf{R}^N .

Two ways to describe a polytope:

 $m{\cdot}$ \mathcal{H} -polyhedron: The intersection of a finite number of closed half-spaces;

Figure 2.2: The two half-spaces determined by a hyperplane, ${\cal H}$

$$H_{+} = \{x \mid a^{T}x - b \ge 0\}, \quad H_{-} = \{x \mid a^{T}x - b \le 0\}$$

• \mathcal{H} - polytope: A closed \mathcal{H} -polyhedron.

 \bullet $\ensuremath{\mathcal{V}}\xspace$ -polytope: the convex hull of a set of points.

A full dimensional polytope with N+1 vertices and thus N+1 facets is called a full-dimensional **simplex**.

So... how these are related to control?

- Atomic propositions: $x \models p_i$ if $c_i^T x < d_i$, where $c_i \in \mathbf{R}^N$ and $d_i \in \mathbf{R}$. i.e., the truth/false evalution of an atomic proposition define a hyperplane.
- A subset of AP: $x \models \{p_1, p_2\}$ defines a polyhedron.

Labeling function and behavior

where π_i is atomic proposition.

 $\phi(x_0, [0, T], u)$ refers to the trajectory of the continuous system with initial condition x_0 under the control input u(t) over the time interval [0, T]. Let t_0, t_1, \ldots, t_N be times, such that

- $0 = t_0 < t_1 < \cdots < t_N = T$,
- $L(x(t)) = L(x(t_k)), t_k \le t < t_{k+1}, k = 0, ..., N,$
- $L(x(t_k^-)) \neq L(x(t_k^+)), k = 0, ..., N.$

The **discrete behavior**, denoted $Beh(\phi(x_0, [0, T], u))$, is the discrete word $\sigma_0 \sigma_1 \dots \sigma_{N-1} \in \Sigma^*$, where $\sigma_k = L(x(t_k))$.

Labeling function and behavior

Question: What are the trajectories a_1 , a_2 , a_3 , a_4 map to?

Finding the transition systems

- Each polytope can be treated as a discrete state: Two polytopes share the same facet F_{12}
- A transition from polytope 1 to polytope 2 can be **enabled** by finding a controller u_{12} such that: For **any** state x_0 in 1, applying u_{12} enables the trajectory $\phi(x_0, [0, T], u_{12})$ exits through facet F_{12} in some finite time T.
- Otherwise, no transition from 1 to 2.

Finding the transition systems

- Each polytope can be treated as a discrete state: Two polytopes share the same facet F_{12}
- A transition from polytope 1 to polytope 2 can be **enabled** by finding a controller u_{12} such that: For **any** state x_0 in 1, applying u_{12} enables the trajectory $\phi(x_0, [0, T], u_{12})$ exits through facet F_{12} in some finite time T.
- Otherwise, no transition from 1 to 2.

Constructing the transition system = Finding pairwise controllers for all polytopes that sharing facet — **control to facet** problem.

Labeling function and behavior

illustrate the transition system:

Control to facet

Problem: Consider the affine system

$$\dot{x} = Ax + a + Bu$$

on the full-dimensional polytope P,

Let F_j be a facet of P, decide if there exists a feedback controller u = f(x) such that for any $x(0) \in P$,

- \forall *t* ∈ [0, *T*], x(*t*) ∈ P;
- there exists a time T, such that x(T) reaches the facet F_j at a finite time T.
- and $n_j^T \dot{x}(T) > 0$, i.e., the velocity of the system at the time T has a positive component in the normal of facet n_j .

Necessary condition

Furthermore, we aim to find a piecewise affine control

$$u = Fx + g, \quad F \in \mathbf{R}^{m \times N}, \quad , g \in \mathbf{R}^{m}.$$

Closed-loop dynamics:

Necessary condition

Proposition:

Let P be a full-dimensional polytope with vertices v_1,\ldots,v_M , $M\geq N+1$, with facets F_1,\ldots,F_K , let V_i be the set of vertices of the facets F_i , and W_j be the set of facets for which v_j is a vertex. If the problem of exiting facet F_1 is solvable, then there exists $u_1,\ldots,u_M\in U$ such that

- for all $v_j \in V_1$:
 - $n_1^T(Av_j + Bu_j + a) > 0;$
 - $\text{ for all } F_i \in W_j \setminus \{F_1\}, \ n_i^T(Av_j + Bu_j + a) \leq 0.$
- ② for all $v_j \in V \setminus V_1$:
 - for all $F_i \in W_j$, $n_i^T(Av_j + Bu_j + a) \leq 0$.

Interpreting the condition

- for all $v_i \in V_1$:
 - $n_1^T(Av_i + Bu_i + a) > 0;$
 - of or all $F_i \in W_j \setminus \{F_1\}$, $n_i^T(Av_i + Bu_i + a) \le 0$.
- ② for all $v_i \in V \setminus V_1$:
 - for all $F_i \in W_j$, $n_i^T(Av_j + Bu_j + a) \le 0$.

Sufficient condition

Theorem: Let P be a full-dimensional polytope with vertices $v_1, \ldots, v_M, M \ge N+1$, with facets F_1, \ldots, F_K , let V_i be the set of vertices of the facets F_i , and W_j be the set of facets for which v_j is a vertex. If there exists a Lipschitz function $f: P \to U$ such that

- **1** $\forall x \in P, n_1^T(Ax + Bf(x) + a) > 0;$
- ② $\forall i = \{2, ..., K\}, \forall x \in F_i: n_i^T(Ax + Bf(x) + a) \le 0$ proof:

Controller design

First, a property of polytope: there exists a piecewise-affine function $\xi:P\to \Lambda$ where Λ is a convex set defined by

$$\Lambda = \{(\lambda_1, \dots, \lambda_M) \in [0, 1]^{N+1} \mid \sum_{j=1}^{N+1} \lambda_j = 1\}$$

For any $x \in P$,

$$x = \sum_{i=1}^{N+1} \xi(x)_j v_i$$

$$x = \frac{3}{2} \frac{3i(x)V_i}{i!}$$

$$\int_{V_2}^{V_1} \frac{3i(x)V_i}{i!}$$

$$\int_{V_2}^{V_2} \frac{3i(x)V_i}{i!}$$

$$\forall i \notin I. \quad \forall x \in F_{i}, \quad \eta_{i}^{T}(Ax + B \nmid x) + \alpha) \leq 0$$

$$\eta_{i}^{T}(A \stackrel{?}{\underset{i=1}{\stackrel{}}{\underset{i=1}{\stackrel{i=1}{\stackrel{}}{\underset{i=1}{\stackrel{\atop{i=1}}{\underset{i=1}{\stackrel{}}{\underset{i=1}{\stackrel{}}{\underset{i=1}{\stackrel{}}{\underset{i=1}{\stackrel{}}{$$

Controller design

idea: A polytope can be triangulated into simplex. Every point in a simplex can be represented as linear combination of its vertices.

Controller design

Controller generated from the necessary condition: if $x = \sum_{j=1}^{N+1} \xi_j(x) v_j$, for each vertex v_j , there is a control input u_j that satisfies the constraints.

$$f(x) = \sum_{j=1}^{N+1} \xi_j(x) u_j$$

proof: For every state x, there exists $\xi_j(x)$ such that $x = \sum_{j=1}^{N+1} \xi_j(x) v_j$.

$$n_{1}^{T}(Ax + Bf(x) + a)$$

$$= n_{1}^{T}(A\sum_{j=1}^{N+1} \xi_{j}(x)v_{j} + B\sum_{j=1}^{N+1} \xi_{j}(x)u_{j} + \sum_{j=1}^{N+1} \xi_{j}(x)a)$$

$$= n_{1}^{T}(A\sum_{j=1}^{N+1} \xi_{j}(x)v_{j} + B\sum_{j=1}^{N+1} \xi_{j}(x)u_{j} + \sum_{j=1}^{N+1} \xi_{j}(x)a)$$

From necessary to sufficient conditions.

Abstraction of transition system

- Partitioning the state space using atomic propositions defined hyperplanes.
- For each polytope, for each facet of the polytope, decide the existance of a control-to-facet controller.
- **3** A transition between Π_i and Π_j is enabled if there exists a control-to-facet controller u_{ij} for facet F_{ij} , belonging to Π_i and Π_j .
- Construct the transition system with all enabled transitions.
- If there exists a path in the TS to satisfy the specification there exists a piecewise continuous controller to satisfy the specification in the original continuous system.