Planche 1.

Question de cours 1. Soit I et J deux intervalles de \mathbb{R} . Montrer que si $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ sont continues et que $f(I) \subset J$, alors $g \circ f$ est continue sur I.

Question de cours 2. Est que toute fonction $f: I \to \mathbb{R}$ continue sur I est telle que :

$$\forall \epsilon > 0, \exists \alpha > 0 : \forall x, y : |x - y| \le \alpha \Rightarrow |f(x) - f(y)| < \epsilon$$

Exercice 1. E(x) désigne la partie entière de x. Etudier la continuité de la fonction suivante définie sur \mathbb{R} par :

$$f(x) = E(x) + \sqrt{x - E(x)}$$

Planche 2.

Question de cours 1. Démontrer le théorème des gendarmes.

Question de cours 2. Soit I et J deux intervalles de $\mathbb R$ et deux fonctions $f:I\to\mathbb R$ et $g:J\to\mathbb R$ tels que $f(I)\subset J$. Supposons que $g\circ f$ est continue. Alors est ce que f est continue sur f. Est ce que f est continue sur f ? Est ce que f est continue sur f ?

Exercice 1. Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ continues en 0 telles que :

$$\forall x, y \in \mathbb{R}, f(\frac{x+y}{3}) = \frac{f(x) + f(y)}{2}$$

Planche 3.

Question de cours 1. Soit $a \in \overline{I}$ et $f: I \to \mathbb{R}$ telle que $f(x) \to l$ en a. Soit m et M deux réels. Montrer que si M majore f au voisinage de a, alors $l \leq M$. Est ce que si f(x) < M au voisinage de a, alors l < M?

Question de cours 2. Peut-on prolonger par continuité en 0 et en -1 l'application

Exercice 1. Calculer:

$$\lim_{x \to +\infty} x E(1/x) \text{ et } \lim_{x \to 0} x E(1/x)$$

Solutions - Planche 1.

Question de cours 1. Utilisons le caractère séquentielle. Soit a_n une suite de I qui tend vers $a \in I$. Alors comme f est continue en a, alors $f(a_n) \to f(a)$. $f(a_n)$ est alors une suite de J (car $f(I) \subset J$) et f(a) aussi. Donc comme g est continue en f(a), $g(f(a_n)) \to g(f(a))$. Donc $g \circ f$ est continue en tout point de I donc est continue sur I.

On peut aussi faire avec des voisinages ou avec des ϵ .

Question de cours 2. Soit f continue sur I. Alors

$$\forall x \in I, \forall \epsilon > 0, \exists \alpha : |x - y| \le \alpha \Rightarrow |f(x) - f(y)| \le \epsilon$$

La question est donc : est ce qu'on peut permuter le "pour tout" et le "il existe"? Et bien non pas toujours. En effet si on prend la fonction $f(x) = x^2$ sur \mathbb{R} . L'idée est qu'elle varie trop à l'infini. Supposons que f vérifie la propriété. Soit $\epsilon = 2$. Alors il existe α tel que dès que $|x - y| \le \alpha$ alors $|x^2 - y^2| \le 2$. Le plus simple pour chercher une contradiction est de prendre le plus gros écart possible entre x et y. On pose donc $y = x + \alpha$. Reste à trouver un x qui donne la contradiction. On veut que :

$$u^2 - x^2 > 2$$

Or $y^2 - x^2 = (y - x)(y + x) = \alpha(2x + \alpha) = 2x\alpha + \alpha^2$. Donc si on prend $x = \frac{2}{\alpha}$, on a bien $y^2 - x^2 = 4 + \alpha^2 > 2$. D'où f ne vérifie pas la propriété. On a donc trouvé un contre-exemple et la propriété n'est donc pas vrai pour toutes les fonctions.

Exercice 1. Pour montrer que f est continue sur \mathbb{R} on distingue les cas en fonction de la où on se place.

 $\diamond f$ est continue en tout point non entier : sur $\mathbb{R} - \mathbb{Z}$.

 \diamond Il faut donc regarder si la fonction est continue aux points $a \in \mathbb{Z}$. Soit donc $a \in \mathbb{Z}$. On va calculer la limite à gauche et à droite. Il faut vérifier que ces deux limites valent $f(a) = a + \sqrt{0} = a$.

Commencons en a^+ . Comme $E(x) \to a$ en a^+ , alors par continuité de la racine on a :

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} E(x) + \sqrt{x - E(x)} = \lim_{x \to a^+} a + \sqrt{a - a} = a = f(a)$$

Maintenant en a^- . $\lim_{x\to a^-} E(x) = a-1$. Donc par continuité de la racine, on a :

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} E(x) + \sqrt{x - E(x)} = \lim_{x \to a^{-}} a - 1 + \sqrt{a - (a - 1)} = a - 1 + 1 = a = f(a)$$

Finalement, f est continue en a.

Donc f est continue sur \mathbb{R} . Notons que l'argument de la continuité de la racine est fondamental et est souvent oublié.

Solutions - Planche 2.

Question de cours 1. Montrons juste le cas en ∞ avec la méthode ϵ -esque.

Soit f, g, h trois fonctions sur I contenant ∞ tels que $f \leq g \leq h$ et $\lim_{x \to \infty} f(x) = l$ et $\lim_{x \to \infty} h(x) = l$. Montrons que $\lim_{x \to \infty} f(x) = l$.

Soit $\epsilon > 0$. Il existe M tel que $\forall x > M$, $f(x) \in [l - \epsilon, l + \epsilon]$. Il existe aussi N tel que $\forall x > N$, $h(x) \in [l - \epsilon, l + \epsilon]$. On pose alors $K = \max(M, N)$. On a alors $\forall x > K$, $l - \epsilon < f(x) \le g(x) \le h(x) < l + \epsilon$. Donc $h(x) \in [l - \epsilon, l + \epsilon]$. Alors $\lim_{x \to \infty} h(x) = l$.

Question de cours 2. Il s'agit de la réciproque au théorème : f continue et g continue implique $g \circ f$ continue.

Aucun de résultats proposés ne sont vrais. Par exemple prenons g constante et f non continue (comme la partie entière). Alors $g \circ f$ est constante donc continue mais f n'est pas constante. Maintenant si g non continue (comme la partie entière) et que f est constante (donc continue). Alors $g \circ f$ est constante donc continue mais g n'est pas constante.

Exercice 1. Dans tout exercice où la question est ouverte (du genre quelles sont les ... ?) on commence par trouver des exemples de tels objets. Les premières fonctions à tester sont : la fonction nulle, les fonctions constantes, l'identité, les polynômes, ... Ici il est clair que toutes les fonctions constantes marchent. On va montrer que ce sont les seules.

 \diamond Soit f qui vérifie la propriété proposée. L'idée principale est que $f(\frac{x+y}{3})$ est l'image d'un point qui est plus petit que x ou y donc on se rapproche de 0. Prenons un cas particulier de l'équation : on pose x=y. On fixe alors $x \in \mathbb{R}$:

$$f(\frac{2}{3}x) = f(x)$$

Par récurrence immédiate, on a donc pour tout n (en remplacant x par $\frac{2}{3}x$):

$$f((\frac{2}{3})^n x) = f(x)$$

Or $(2x/3)^n \to 0$ quand n tend vers l'infini. Par continuité de f, $f((\frac{2}{3})^n x)$ tend donc vers f(0). Par unicité de la limite, on a donc f(x) = f(0). Et ceci est vraie pour tout x. D'où f est constante.

Solutions - Planche 3.

Question de cours 1. Supposons que l > M. On pose $\epsilon = (l-M)/2$. Alors $l - \epsilon > M$. Or comme $\lim_{x \to a} f(x) = l$. Il existe x proche de a tel que $f(x) \in [l - \epsilon, l + \epsilon]$. Donc $f(x) \ge l - \epsilon > M$. Or $f(x) \le M$. Il y a contradiction. Donc $l \le M$.

Remarque : faire un dessin aide à comprendre ce qu'il se passe.

On trouve aisément un contre-exemple en prenant $f(x) = -e^{-x}$. Car $\lim_{x\to\infty} f(x) = 0$. Or f(x) < 0.

Question de cours 2. Pour pouvoir prolonger par continuité, il faut que la fonction tendent vers la même à gauche et à droite et que cette limite soit finie. Or $\sin(x)/x = \frac{\sin(x) - \sin(0)}{x - 0} \to \sin'(0) = \cos(0) = 1$ et de même $\ln(1+x)/x \to 1$. Ceci est vraie à gauche et à droite. Donc f est prolongeable par continuité en f.

Par contre en -1 ce n'est pas possible car $\ln(1+x)/x$ diverge.

Exercice 1. En $+\infty$ d'abord. Pour $x \ge 2$, E(1/x) = 0. Donc pour tout $x \ge 2$, xE(1/x) = 0. Donc $xE(1/x) \to 0$ en $+\infty$.

⇒ Regardons maintenant en 0. Attention il faut distinguer les limites à gauche et à droite en 0 car on est pas sûr a priori que la fonction est continue en 0.

Commencons par 0^+ . Par définition de la partie entière, on a : $1/x - 1 < E(1/x) \le 1/x$. Donc comme $x \ge 0$ on a :

$$1 - x < xE(1/x) \le 1$$

Ainsi par théorème des gendarmes on a : $xE(1/x) \rightarrow 1$ en 0^+ De même en 0^- on a :

$$1 \le xE(1/x) < 1 - x$$

Donc de même $xE(1/x) \to 1$ en 0⁻.

Finalement, $\lim_{x\to 0} xE(1/x) = 1$.

En plus on peut dire que la fonction est prolongeable par continuité en 0.