Engineering Exploration

Semester I

Course Code 116U06L106

October 2022 to February 2023

Lecture 3

Last Lecture

Module 2 Engineering Design Process

- Graduate Attributes
- Domains of Projects
- Features of Engineering Project
- Engineering Design Process

- Fundamental elements of the design process
 - Identify the Problem
 - Research the Problem
 - Develop Possible Solutions
 - Choose Best Solution
 - Construct Prototype
 - Test and Evaluate Solution
 - Communicate and Document Solution
 - Redesign

Identify the Problem

- Which problem are you trying to solve?
- Identify and describe the issue and the ultimate objective

- What do you want to accomplish?
- What are the requirements?
- Are there any limitations?
- Who is the customer?

Engineering Design: Key Concepts

Research the Problem

- Collect all information pertinent to the problem:
 - → Is the problem is real and accurate
 - → Is there is a really need of new solution or has the problem is already solved
 - → What are the existing solution to the problem
 - → What is the wrong with existing solution
 - → What are the right way to solve the problem
 - → What are companies who are working on the same problem
 - → What are economic factors governing the solution
 - → How much people will pay for the solution

Develop Possible Solutions

- → Brainstorm
- → Be creative
- → Think outside the box
- → Multiple solutions to the same problem

Choose Best Solution

- Analyze design solutions based on the following factors:
 - Functional analysis will it function the way it should?

Choose Best Solution (Contd...)

- Ergonomics/ease of use how easy/hard is it for humans to interactions with design?
- Safety is this a safe design?
- Mechanical/Strength Analysis will the mechanical components hold up during operation?
- Electrical System Analysis how about the electrical components?
- Manufacturability/Testability Can the design be made and tested with resources at hand?

Let us design a CHAIR

TV Remote Control and Mobile phone holder

VS.

Construct Prototype

- Prototypes may not be fully tested or may not work or operate as intended
- Purpose: Test the design under solution under real Conditions

http://www.youtube.com/watch?v=yyZtBYG0QOg

Gaming Chair | Tinkercad tinkercad.com

Gungstol- Rocking chair | Tinkercad tinkercad.com

Dining Chair (arm) | Tinkercad tinkercad.com

Ergonomic Chair | Tinkercad tinkercad.com

Solid Cylinders, TinkerCad Tutorial ... youtube.com

simple chair | Tinkercad tinkercad.com

TINKERCAD CHAIR DESIGN - YouTube youtube.com

My 3D Chair Design | Tinkercad tinkercad.com

Test and Evaluate Solution

- Design tests to tell you the following:
 - → What works?
 - → What doesn't work?
 - → What can be fixed?
 - → What has to be redesigned?

- Communicate/Document Solution Performance
 - Record:
 - Details of design
 - Manufacturing methods
 - Testing results
- Redesign
 - Design is an iterative process!
 - Redesign solution based on results

Examples

List few examples (Product/services) where you have seen innovations in past few years?

List few examples (Product/services) which was failed in last few years?

Engineering Design Process: Define 5 Ws

- Who is the client and target audience?
 (Size, nature, characteristics)
- What design solution is the client thinking for?
 (Product, service, web, video)
- When will the design be needed and for how long? (Project timescales)
- Where will be the design be used? (Media, location, country)
- Why does the client think a design solution is required?
- How will the solution be implemented

Example of Active Toy

- 1 Need Statement: "Active Toy"
- 2. Designers: **Group of the students**
- 3. Clients: **Toy Company**
- 4. Users: Children

In order to understand what client and user wants, designer needs to do the following

- Ask questions
- Brainstorming

Answers to those questions help the designer to establish client's objectives, identify constraints and establishing functions in the initial phases of design

Example of Active Toy

- 1. How will the toy be used (Entertainment / Learning)?
- 2. How much can it cost?
- 3. What age group of children is a targeted user?
- 4. What does active mean?
- 5. What other features is expected?

Identify client's objective

Identify Constraints

- 1. What's the maximum weight that a toy can be?
- 2. What shape and materials can the toy be made of?
- 3. What can be the size of the toy?

Establish functions

- 1. How should the device interact with child?
- 2. What learning is expected for children?
- 3. What entertainment is expected for children?

Brainstorming and basic literature survey

Observation and from Lit.Survey	Requirements
1. Based on the weight of other toys and the weight that a child can easily carry	The toy's total weight should not exceed 400 gms
2. A child starts identifying alphabets, numbers and colours beginning from 2 years	Toy most suitable for the age group of 2-4 years
3. Based on the cost of competing products in the market	Cost of the toy should lie within the range of Rs 300 to Rs 700

Problem Statement

"Design a toy for 2 to 4 years children which is simple to operate safe and nontoxic. Cost of the toy should range between Rs.300/- to Rs 700/-. Shape of the toy should not have sharp edges and weight of the toy should not exceed 400 gms"

Activity

Time given 10 min

- Within your Team Assign roles as Customer and Designer (half students each)
- Let the Customer group specify what is their need (some rational for making a product defining age group of customer)
- Designers should ask questions such that they will
 - Understand the desire
 - Identify functionality
 - Identify constraints

