NASA CONTRACTOR REPORT

NASA CR-61383

CASE FILE COPY

ORIFICE IN-FLOW EFFICIENCY TESTS

Volume I: Test Results

Volume II: Application to Shuttle Venting during Entry

By J. Haukohl, J. L. Forkois, and S. J. Robertson Lockheed Missiles and Space Company Huntsville Research & Engineering Center 4800 Bradford Drive Huntsville, Alabama

March 1972

Prepared for

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

1. REPORT NO.		TECHNI	CAL REPORT STANDARD TITLE PAGE
NASA CR-61383	2. GOVERNMENT AC	CESSION NO.	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE			
30511122			5. REPORT DATE March 1972
ORIFICE IN-FLO	OW EFFICIENCY TES	STS	
Volumes I			6. PERFORMING ORGANIZATION CODE
7. AUTHOR (S)			8. PERFORMING ORGANIZATION REPORT
J. Haukohl, J. L. Forkois,	and S. J. Robert	son	STORY OF STREET
9. PERFORMING ORGANIZATION NAME AND		·	10. WORK UNIT NO.
Lockheed Missiles & Space (Company	•	
Huntsville Research & Engir	neering Center		11. CONTRACT OR GRANT NO.
4800 Bradford Drive, Hunts	fille, Alabama		NAS8-26464
12. SPONSORING AGENCY NAME AND ADDR	FCC		13. TYPE OF REPORT & PERIOD COVERED
THE STATE AND ADDR	(23)		
NASA			CONTRACTOR REPORT
Washington, D. C. 20546			
			14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES			
Technical Coordinator: Mr.	D. L. Bacchus,	Aerophysics Di	vision, Aero-Astrodynamics
Laboratory, Marshall Space	riight Center, A	labama	•
16. ABSTRACT			
An investigation was m	ade to develop t	ho oonahdlaa.	for computing internal
Dressures throughout flight	for comparence	ne capability	for computing internal
pressures throughout flight	for compartment	s located with	in space shuttle vehicles.
THE RESOLUTIONS TOT AGUILING	launch vehicle	Compartments b	Agen with the Catumn/Analla
buase of the space program.	Studies genera	ted then got a	precedent for comparement
venting techniques for asce	nding vehicles	This approach	was found to apply to shuttle
vehicles during secent trai	ootomics The	THIS APPLOACH	was round to apply to shuttle
venieres during ascent traj	ectories. The s	nuttle vehicles	s, however, have the further
requirement for repressuriz	ing the compartm	ents during de	scent.
A took program and			
a cest program was con	ducted at the NA	3A-Ames Researd	ch Center 6 x 6-Foot Super-
sourc army ranger to determ	ine orifice effic	ciencies for th	he flow of air into a compart.
ment from a frowing externa	i stream. Measu:	rements were ma	ade over a Mach number rance
or o., to f., for varying o	rifice geometry.	vent orientati	ion went plate thickness
flat plate boundary layer t	hickness and pres	sure ratio acr	ross the vent plate
A computer program ori	ginally developed	i for outflow v	venting was modified for use
ru combarrus combarrment br	essures for infla	ow conditions	Regulte from both the outfloo
and inflow computer program	s are included in	the document	. The Appendices contain the
user's manual and program 1	isting of the in	flow wontine no	rogram. The computer program
results indicate that no spents which will be	ecial provision	.iow venting pr	rogram. The computer program
Ports which will be required	d for outflow was	or inflow vent	scent will be sufficient for
any inflow venting requirement	a tor offition Afi	iting during as	scent will be sufficient for
any management to the state of	-11 La ,		
	······································		
7. KEY WORDS		18. DISTRIBUTION S	STATEMENT
		Unclassi	fied-Unlimited
	•		/2.
			Revender
		E. D. GEISSL	
		Aero-Astrody	namics Laboratory, MSFC
		!	
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLAS	SIF, (of this page)	21. NO. OF PAGES 22. PRICE

Unclassified

274

\$3.00

Unclassified

FOREWORD

This report was prepared by Lockheed-Huntsville Research and Engineering Center for the NASA-George C. Marshall Space Flight Center under Modification 1 of Contract NAS8-26464, "Compartment Venting Analysis and Orifice Flow Tests." Presented are the results of an inflow orifice coefficient test program conducted in the NASA-Ames Research Center six-by-six foot supersonic wind tunnel and the results of work performed to develop the capability of computing internal pressures throughout flight for compartments located within space shuttle vehicles.

The authors acknowledge the contributions made by Mr. A. V. Harris, S&E-AERO-AAV, and Mr. J. B. Baker, Lockheed-Huntsville, who assisted during the entire test phase of the contract; Mr. P. E. Ramsey, S&E-AERO-AAE, for the Orifice flow test; and Mr. D. L. Bacchus, S&E-AERO-AAV, the Contracting Officer's Representative for this contract.

Also acknowledged are the efforts of Mr. F. D. Merriwether, Project Engineer, and Mr. C. Prunty, Supervisor, both of ARO, Inc.

ORIFICE IN-FLOW EFFICIENCY TESTS

VOLUME I: TEST RESULTS

VOLUME I: TABLE OF CONTENTS

Section				Page
	FOR	EWORD		iii
	NOM	ENCLA	TURE	ix
1	INT	RODUCT	ION	1
2	TES	T DESCE	RIPTION	3
	2.1	Descri	ption of Test Facility	3
	2.2	Model	Installation and Description	3
	2.3	Data A	cquisition	5
	2.4		eduction Equations	10
		2.4.4 2.4.5	Wake Rake Pressures	11 12 12 12 13 13
3	PRE	SENTAT	TION AND DISCUSSION OF DATA	15
	3.1	3.1.1 3.1.2 3.1.3	Wake Rake Plate Static Pressure Distributions Orifice Efficiencies	15 16 16 16 16
	3.2	3.2.1 3.2.2 3.2.3	iscussion Traversing Probe Data Wake Rake Data Plate Static Pressure Data	17 17 18 18
		3.2.4 3.2.5	Orifice Efficiency Data Configuration Comparison Data	18 19
4	REF	'ERENCI	ES	21

CONTENTS (Continued)

Appendixes		Page
Α	Traversing Probe Data	A-1
В	Wake Rake Data	B-1
С	Plate Static Pressure Data	C-1
D	Orifice Efficiency Data	D-1
£	Configuration Comparison Data	E-1
F	Output Notation	F-1
G	Test Data Listing	G-1

NOMENCLATURE

Symbol	<u>Definition</u>	Units
A	vent orifice area	in. ²
CONF	configuration number, identifies vent orifice	
CORR	correlate number, identifies one M_{∞} , one plate POS, one CONF, and either one ratio P_p/P_{∞} or one probe height h	
h	traversing probe height from flat plate	in.
K	orifice efficiency (discharge coefficient)	
M	Mach number	
P	pressure	psfa
POS	flat plate distance from tunnel wall	in.
q	dynamic pressure	psfa
R	gas constant, 1716 lb-sec/slug-OR	
Re	Reynolds number per unit length	ft ⁻¹
RUN	run number, identifies one M_{∞} , one plate POS, and one CONF	
SCFM	standard volumetric flow rate	ft ³ /min
T	vent orifice thickness	in.
T	temperature	°R
V	velocity	ft/sec
Greek		
γ	specific heat ratio, 1.4	
μ	viscosity	lb-sec/ft ²
ρ	density	slug/ft ³

NOMENCLATURE (Continued)

Symbol

Definition

Subscripts	
act	actual (measured)
DIT	quantity based on Pt
i	index referring to pressures P ₁ to P ₁₀₂
j	index referring to orifice jet
STD	standard conditions
t, T	total conditions
th	theoretical
tr	traversing probe or vicinity
XL	orifice extension lip
∞	refers to (or is based on) tunnel freestream
1	conditions upstream of a shock wave
2	conditions downstream of a shock wave
9	refers to (or is based on) pressure P9

Section 1 INTRODUCTION

During descent of space shuttle vehicles from high altitudes the buildup of ambient atmospheric pressures will result in crushing loads exerted
across the vehicle skin. To relieve these loads and thereby circumvent structural failure the vehicle compartment must be repressurized during descent
such that the internal compartment pressures effectively counteract the external loads. It is anticipated that this equalization of pressures may be accomplished by allowing external air to flow into the compartments through
strategically located vents. Such vents have been used effectively in the
Saturn/Apollo program to relieve potential bursting loads built up during
ascent, where equalization of pressures was effected by allowing the trapped
internal compartment gases to flow overboard to the reduced ambient pressure
environment. The space shuttle vehicle, however, will require both compartmental depressurization during ascent and repressurization during descent. It is
currently anticipated that a vent-orifice system may be utilized during both
phases of flight (Ref. 1).

The prediction of venting performance of orifices under various external flow conditions requires a knowledge of orifice efficiencies for the conditions under consideration. Adequate outflow orifice efficiency data have been generated for flow conditions corresponding to the anticipated space shuttle ascent trajectory. These data were generated for application to the Saturn vehicle during a test program at NASA-Ames Research Center (Ref. 2). Existing inflow orifice efficiency data were limited, however, to a narrow range of external flow conditions. The test program described here was conducted to provide sufficient inflow data to enable venting analyses to be made for the space shuttle during the descent phase of flight. The pretest report associated with this test is presented in Ref. 3.

Section 2 TEST DESCRIPTION

2.1 DESCRIPTION OF TEST FACILITY

The test program was conducted at the NASA-Ames six-by-six-foot Supersonic Wind Tunnel, which operates on the closed circuit single-return principle. The throat area and location are controlled by an asymmetric, sliding-block nozzle. The test section of the tunnel is 14.4 ft long and 6 ft square in cross section. Tests can be performed at transonic conditions because of the perforated floor and ceiling of the test section.

The test facility data acquisition system allowed raw data to be monitored during the test. The facility has eight vacuum pumps, two of which were used as the vacuum source to pull air through the vent plate orifices. The model could be viewed through two 46-in. diameter clear glass windows located on one side of the test section. The downstream window on the other side was removed and replaced by the flat plate model.

2.2 MODEL INSTALLATION AND DESCRIPTION

The model used for this test consisted basically of a flat plate, Fig. 1, which was traversed into the thick, turbulent boundary layer buildup on the tunnel wall. Maximum boundary layer thickness was obtained when the flat plate was flush with the tunnel wall. Minimum boundary layer thickness was obtained when the flat plate was traversed to a maximum position into the free-stream. Whenever the flat plate was in a position other than flush with the wall a sharp leading edge and side extensions attached to the plate minimized shocks and other undesirable flow effects created by the flow over the flat plate.

Fig. 1 - Schematic of Model Setup

The flat plate was instrumented with static pressure ports in lines parallel with the freestream and a total head rake positioned in line with the orifice. Figure 2 illustrates the static pressure port measurements obtained from the flat plate.

The rake probe measurements are shown numbered on Fig. 3. The rake was located 18.9 in. from the center of the vent orifice. A traversing probe was used to determine the boundary layer thickness at the location of the vent orifice.

Five vent plates having various orifice geometries were used to compose the nine configurations shown in Fig. 4. The configurations were:a 0.75-in. diameter orifice with three depth configurations of 0.063, 0.15 and 0.3 in.; a four-to-one ratio ellipse with two depth configurations of 0.063 and 0.3 in., and one skew orientation configuration of 45 deg; one rectangular orifice with a length-to-width ratio of 18.12; one two-to-one ratio ellipse; and a 0.5 in. diameter circular orifice. The vent plates contained static pressure measurements on the plate surface and a lip static pressure port. The vent port designations are shown on Fig. 5. The lip pressure P_{16} is located just within the orifice, near ports P_{15} and P_{40} .

The vent plates were interchangeable with the plenum chamber. Instrumentation in the plenum chamber included two static pressure measurements, one total pressure measurement and a temperature measurement. Downstream of the plenum chamber the flowmeter system, comprised of three flowmeters in parallel, recorded flow rate measurements.

Reference 3 describes the test model and its measurements in detail.

2.3 DATA ACQUISITION

All data obtained during the inflow orifice efficiency test were initially recorded and reduced by the Ames facility. Subsequent analysis indicated that certain data, such as the bulk of flat plate and wake rake pressures, could be

Fig. 2 - Flat Plate and Port Locations

Fig. 3 - Wake Rake Designations and Locations

8

Fig. 4 - Vent Orifice Descriptions

C

Fig. 5 - Vent Plate and Port Pressure Measurement Designations (Idealized section shows addition of orifice extension.)

dropped from consideration as being largely insignificant and/or invariant. Similarly, certain other data, such as pressure parameters useful in presenting the orifice efficiencies, were added to the output. Thus the raw data were used to recompute a concise set of final data more immediately useful to venting studies than the original lengthy results. In addition, the actual mass flow rates were recomputed using a more accurate table of instrument calibration data.

Notable changes from the scheduled output of the pretest report (Ref. 3) are as follows:

- Plenum pressure P_p is always P_p. Only minor differences were found between P_p and P_p.
- Plenum total pressure P_t was dropped due to the continuously varying flow direction within the plenum chamber.
- The theoretical plenum (orifice) temperatures T_{th}
 on and T_{th}
 were not directly considered during the
 analysis, and therefore dropped.
- A third orifice efficiency, K_{DIT}, was added to the final results. This uses the assumptions of Ref. 4.
- Flat plate, wake rake, and traversing probe pressure data are represented in the figures of Appendixes A, B, and C. They are deleted from the data listing.

2.4 DATA REDUCTION EQUATIONS

Most basic data are obtained through direct conversion of the various instrument outputs. The derived data are obtained from the equations described on the following pages.

2.4.1 Boundary Layer Traversing Probe and Wake Rake Pressures

The total pressure readings for both the probe and rake are corrected for standing shock waves when the freestream flow is locally supersonic. With subscripts 1 and 2 representing conditions upstream and downstream of the shock, respectively, the criterion for this correction is $P_1/P_{t_2} < .5283$. Otherwise no correction is needed.

The solution involves solving the Rayleigh pitot formula,

$$\frac{P_{t_2}}{P_1} = \left[\frac{(\gamma+1) M_1^2}{2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_1^2 - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(1)

for M₁ ahead of the shock; then

$$P_{t_1} = P_{t_2} \left[\frac{(\gamma+1) M_1^2}{(\gamma-1) M_1^2 + 2} \right]^{\frac{-\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_1^2 - (\gamma-1)} \right]^{\frac{-1}{\gamma-1}}$$
(2)

An approximate explicit solution of Eq. (1) was used in the test data reduction.

For the traversing probe, the following substitutions are made in Eqs. (1) and (2):

$$P_1 = P_{\infty} = local upstream static pressure$$

$$P_{t_2} = (P_{tr})_2 = probe reading$$

For the wake rake, these substitutions are

2.4.2 Traversing Probe Local Velocity

$$V_{tr} = \sqrt{\frac{2\gamma R}{\gamma - 1}} T_{\infty} \left[\left(\frac{P_{\infty}}{P_{tr}} \right)^{\gamma} - 1 \right] ft/sec$$
 (3)

where P_{tr} = corrected pressure from above.

2.4.3 Local Flat Plate Mach Number (based on Pg)

$$M_9 = \sqrt{\frac{\frac{2}{\gamma - 1} \left[\left(\frac{P_9}{P_{t_\infty}} \right)^{\gamma} - 1 \right]}$$
 (4)

2.4.4 Actual Mass Flow Rate

$$(\rho AV)_{act} = (SCFM) \frac{\rho STD}{60} slug/sec$$
 (5)

where SCFM = corrected flowmeter output interpolated on calibration curves, ft³/min

 ρ STD = .0023275 slug/ft³

2.4.5 Mass Flow Ratios

These are ratios of mass flow rate per unit area, where the numerator is

$$(\rho V)_{j} = (\rho A V)_{act} / A$$
 (6)

and the denominator is either of the two values

$$(\rho V)_{\infty} = P_{\infty} V_{\infty} / RT_{\infty}$$
 (7)

$$(\rho V)_9 = P_9 M_9 \left[\frac{\gamma}{RT_{t_{\infty}}} \left(1 + \frac{\gamma - 1}{2} M_9^2 \right) \right]^{0.5}$$
 (8)

2.4.6 Orifice Efficiencies

The orifice efficiency is obtained as the ratio of actual (measured) to theoretical (ideal) mass flow rate:

$$K = \frac{(\rho AV)_{act}}{(\rho AV)_{th}}$$
 (9)

Actual flow rate is computed in Eq. (5). Theoretical flow rates are determined by applying the relations for steady, one-dimensional, compressible flow of a perfect gas to the measured conditions across the vent orifice. Several choices are available for the total pressure P_T through the orifice; in all cases the total temperature is set equal to the freestream total temperature T_t .

The general equation is $(\rho AV)_{th} = A P_{T} \left(\frac{P_{p}}{P_{T}}\right)^{\frac{1}{\gamma}} \sqrt{\frac{2\gamma}{(\gamma-1) RT_{t_{\infty}}} \left[1 - \left(\frac{P_{p}}{P_{T}}\right)^{\frac{\gamma-1}{\gamma}}\right]}$ (10)

Two limiting conditions are applied to Eq. (10):

For choked flow, where $P_p/P_T \le 0.5283$, the theoretical flow rate is

$$(\rho AV)_{th} = A P_T \sqrt{\frac{\frac{\gamma+1}{\gamma}}{R T_{t_{\infty}}}}$$
(11)

When the ratio $P_p/P_T \ge 1.0$,

$$(\rho AV)_{th} = 0.0 \tag{12}$$

and the orifice efficiency K is also set equal to zero.

These efficiencies were computed with the following choices for total pressure P_{T} :

- P_T = P₉, and K = K₉. This choice follows Ref. 5. P₉ is a flat plate static pressure located 7.5 inches upstream of the orifice.
 - $P_T = P_{\infty}$, and $K = K_{\infty}$.
 - $P_T = P_{t_{\infty}}$, and $K = K_{DIT}$. This follows Ref. 4.

Section 3 PRESENTATION AND DISCUSSION OF DATA

This section contains a description of the data shown in Appendixes A through E and a discussion of the results. The variables plotted are representative of the overall objectives of the test requirements. Several modifications were made to the test program as presented in the pretest report (Ref. 3). The major modification was the deletion of two vent plate configurations (6 and 7) and the inclusion of vent plate configuration 11. The latter modification was made during the course of the test. The orifice area of configuration 11 was sufficiently small (0.1964 in. 2) for the Ames pump system to attain the desired pressure drop across the orifice.

3.1 DATA PRESENTATION

The test data are presented in Appendixes A through E in plotted form and in Appendix G in tabulated form. Appendix F presents the nomenclature used to define the data in Appendix G.

3.1.1 Traversing Probe

The traversing probe was used to measure total pressure at various distances from the flat plate. The total pressure measurements were converted to velocities using the Rayleigh pitot tube formula. Figures A-1 through A-4 in Appendix A are results of the velocity distributions normalized to the freestream velocity for different Mach numbers compared at the three flat plate positions 0.0, 1.75 and 5.85 in. The boundary layer was assumed to be fully developed at 99% of the freestream velocity. The resulting boundary layer thickness as a function of Mach number for each plate position is presented in Fig. A-5.

3.1.2 Wake Rake

Wake rake pressure distributions representative of the entire range of flows encountered during the test are presented in Appendix B in Figs. B-1 through B-6. The rake, located 18.9 in. aft of the vent area had a total of 23 pitot tubes at heights ranging from 0.04 to 7.0 in. above the flat plate. Each rake tube pressure was nondimensionalized by the freestream total pressure.

3.1.3 Plate Static Pressure Distributions

The plots in Appendix C, Figs. C-1 through C-5, describe the static pressure distributions on the longitudinal axis of the flat plate model in line with the vent orifice. The static pressures are normalized by the tunnel freestream total pressure. The pressure distributions in Appendix C are representative of the maximum suction through the orifices of configurations 1, 2, 9 and 11 at the maximum flat plate boundary layer thickness; i.e., POS = 0.0 in. The pressure distribution associated with configuration 9 on Fig. C-5 is also plotted at the minimum flat plate boundary layer thickness; i.e., POS = 5.85 in.

3.1.4 Orifice Efficiencies

Figures D-1 through D-54 presented in Appendix D are the results of the orifice efficiency test data. The curves on Figs. D-1 through D-27 show the orifice efficiency K_9 , based on local pressure P_9 , versus the local to plenum static pressure ratio P_9/P_p . Each plot includes all Mach numbers run for the specific configuration and flat plate position. The next set of curves, Figs. D-28 through D-54, shows the jet to local mass flow ratio, $(\rho V)_j/(\rho V)_9$, versus the local to plenum pressure ratio for these same configurations.

3.1.5 Configuration Comparisons

Other requirements of the in-venting efficiency test were to determine the effects of varying the vent orifice geometry, vent thickness, vent orientation, and boundary layer thickness. Figures E-1 through E-20 of Appendix E are results of such comparisons. Figures E-1 through E-3 show the effects of variation between the size of circular orifices (0.5 and 0.75 in. diameter) at Mach numbers of 0.7, 1.1 and 1.9 at plate positions of 0.0, 1.75 and 5.85 in. Vent plate thickness effects at various Mach numbers are shown on Figs. E-4 through E-6 for the circular orifice and on Figs. E-7 through E-9 for the orifice of aspect ratio 4:1. Vent orientation with respect to freestream flow direction is compared in Figs. E-10 through E-12 for the vent orifice of aspect ratio 4:1. The next configuration comparisons are aspect ratio effects in Figs. E-13 through E-15. Compared are aspect ratios of 1:1, 2:1 and 4:1 for different Mach numbers at plate positions 0.0, 1.75 and 5.85 in. Finally, Figs. E-16 through E-20 show effects of plate position for several configurations.

3.2 DATA DISCUSSION

The following is a discussion of the overall data trends noted in the test results.

3.2.1 Traversing Probe Data

Data obtained from the traversing probe tests provided the information to define boundary layer thickness over the flat plate as a function of free-stream Mach number for the plate positions investigated during the test. Inspection of Figs. A-1 through A-4 reveals a consistent variation of boundary layer thickness as a function of plate position and Mach number. The results, plotted in Fig. A-5, are compared with the out-flow venting results of Walters (Ref. 2). Good agreement is noted in the comparisons for positions 0.0 and 5.85 in. The wavy trend in the outflow data is not indicated in the inflow data; this fact may be due to the reduced quantity of Mach number data points in the inflow data.

3.2.2 Wake Rake Data

Wake rake measurements of total pressures were included in this test program to provide some indication of the effect of inflow venting on the boundary layer profile downstream of the orifice. Varying the orifice inflow resulted in negligible perturbation of the boundary layer, indicating complete reestablishment of external flow at the rake. Representative data from Configuration 1 are shown in Figs. B-1 through B-6 for various Mach numbers and plate positions.

3.2.3 Plate Static Pressure Data

The effect of inflow venting on static pressure distribution on the flat plate is presented in Appendix C. The dip in the trend prior to the vent port indicates a velocity increase, while the peak following the vent port indicates a velocity decrease. Both the accelerated flow upstream of the orifice and the decelerated flow downstream are due to suction through the orifice. Further downstream the flow returns to the freestream velocity. The static pressure is seen to increase beginning at about 15 in.downstream of the orifice for Mach numbers 1.1 and 1.3. This is probably due to the shock located at the boundary layer rake 18.9 in. downstream of the orifice.

3.2.4 Orifice Efficiency Data

The orifice efficiency data are presented in two forms in Appendix D. The first form shows orifice efficiency plotted versus the ratio of local pressure to plenum pressure using Mach number, configuration, and plate position as parameters. The orifice efficiency K_9 is based on local pressure P_9 , located 7.5 in. upstream of the orifice.

The second set of orifice efficiency data was plotted in the form of jet-to-local mass flow ratio versus local-to-plenum pressure ratio. These curves were included because of their overall smoother trend as compared to the orifice efficiency $K_{\rm q}$.

It was noted that the data curves do not generally achieve zero efficiency or mass flow ratio at a pressure ratio of 1.0. This was especially evident in the data based on P_{∞} as compared to that based on P_{9} , indicating a local boundary layer effect. For this reason, no curves of K_{∞} are included here.

3.2.5 Configuration Comparison Data

Appendix E shows the results of comparing configurations for the effect on orifice efficiency due to varying orifice size, vent plate thickness, vent plate orientation, orifice aspect ratio, and plate position. The comparisons were made with mass flow ratio for Mach numbers 0.7, 1.1 and 1.9 at plate positions of 0.0, 1.75 and 5.85 in. from the tunnel wall.

A comparison in Figs. E-1 through E-3 of the results for circular orifices (0.5 and 0.75 in. diameter) shows that the larger orifice provides the greater efficiency.

A comparison of the circular vent plate thicknesses presented in Figs. E-4 through E-6 shows, in general, that the thinner vent plate is the most efficient. This trend is consistent with one exception on Fig. E-4 at Mach 1.9 and with the maximum boundary layer thickness (position 0.0 in.). The anticipated result is best expressed by Fig. E-5 in which the thickest of the vent plates is the least efficient, while the thinnest vent plate is the most efficient. This same trend is also noted in the elliptical vent plate comparisons of Figs. E-7 through E-9. The result is even more obvious as the Mach number increases.

The comparisons on Figs. E-10 through E-12 are based on orientation of the elliptical vent plate (aspect ratio of 4:1) with respect to the freestream air flow. Orientation of the major axis of the ellipse parallel to the flow direction resulted in higher efficiencies than the 45 deg orientation. No data were taken at intermediate orientation positions. The difference in efficiency for the two orientations increased with Mach number.

The next set of comparisons (Figs. E-13 through E-15) was based on the effects of orifice aspect ratio on inflow. The curves obtained from orifices of approximately equal area and aspect ratios of 1:1, 2:1, and 4:1 show a substantial

increase in efficiency with increasing aspect ratio (major axis parallel to flow direction) and decreasing Mach number.

Figures E-16 through E-20 show effects due to varying flat plate position on configurations 11, 1, 3, 2, and 9. It is seen that varying the plate position has a definite effect on efficiency, especially for the smaller orifices. The lack of consistent trends, however, indicates further analysis is warranted.

Section 4

REFERENCES

- 1. Robertson, S. J., and J. Haukohl, "Space Shuttle Compartment Venting Interim Report," LMSC-HREC D162796, Lockheed Missiles & Space Company, Huntsville, Ala., March 1971.
- Walters, W.P. et al., "Experimental Determination of Generalized Venting Characteristics," NASA CR-61241, Nortronics-Huntsville, Ala., July 1968.
- 3. Haukohl, J., and J. L. Forkois, "Pretest Report for Space Shuttle In-Flow Orifice Coefficient Study for Venting Analysis," LMSC-HREC D225196, Lockheed Missiles & Space Company, Huntsville, Ala., July 1971.
- 4. Dittrich, R. T., and C.C. Graves, "Discharge Coefficients for Combustor-Liner Air-Entry Holes, I-Circular Holes with Parallel Flow," NACA TN 3663, April 1956.
- 5. Kalivretenos, C.A. et al., "Weight Flow Rates Through Circular Holes in a Flat Plate Immersed in a Subsonic or Supersonic Airstream," TR61-125, Naval Ordnance Laboratory, China Lake, Calif., January 1964.

Appendix A TRAVERSING PROBE DATA

Fig. A-1 - Velocity Ratio Profile at Mach 1.891

Fig. A-2 - Velocity Ratio Profile at Mach 1.498

Fig. A-3 - Velocity Ratio Profile at Mach 1,102

Fig. A-4 - Velocity Ratio Profile at Mach 0.700

 6×6 Foot Wind Tunnel as Obtained from the Inflow Venting Test and from Ref. 2 Fig. A-5 - Comparison of Boundary Layer Thickness Over the Test Plate at the Ames

Appendix B
WAKE RAKE DATA

Fig. B-1 - Normalized Pressure Profile of Boundary Layer Rake at M_{∞} = 1.9

Fig. B-2 - Normalized Pressure Profile of Boundary Layer Rake at $M_{\infty} = 1.6$

Fig. B-3 - Normalized Pressure Profile of Boundary Layer Rake at $M_{\infty} = 1.3$

Fig. B-4 - Normalized Pressure Profile of Boundary Layer Rake at M_{∞} = 1.1

Fig. B-5 - Normalized Pressure Profile of Boundary Layer Rake at $M_\infty=0.9$

Fig. B-6 - Normalized Pressure Profile of Boundary Layer Rake at M_{∞} = 0.7 $\,$

Appendix C PLATE STATIC PRESSURE DATA

Fig. C-1 - Static Pressure Effects of Inflow Venting at Different Mach Numbers

Fig. C-2 - Static Pressure Effects of Inflow Venting at Different Mach Numbers

Fig. C-3 - Static Pressure Effects of Inflow Venting at Different Mach Numbers

Fig. C-4 - Static Pressure Effects of Inflow Venting at Different Mach Numbers

Fig. C-5 - Static Pressure Effects of Inflow Venting at Different Mach Numbers

Appendix D ORIFICE EFFICIENCY DATA

Fig. D-1 - Orifice Efficiency vs Pressure Ratio for Configuration 11 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-2 - Orifice Efficiency vs Pressure Ratio for Configuration 11 and Plate Position 1.75 Inches for Various Mach Numbers

F.g. D-3 - Orifice Efficiency vs Pressure Ratio for Configuration 11 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-4 - Orifice Efficiency vs Pressure Ratio for Configuration 1 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-5 - Orifice Efficiency vs Pressure Ratio for Configuration 1 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-6 - Orifice Efficiency vs Pressure Ratio for Configuration 1 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-7 - Orifice Efficiency vs Pressure Ratio for Configuration 4 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-8 - Orifice Efficiency vs Pressure Ratio for Configuration 4 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-9 - Orifice Efficiency vs Pressure Ratio for Configuration 4 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-10 - Orifice Efficiency vs Pressure Ratio for Configuration 10 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-11 - Orifice Efficiency vs Pressure Ratio for Configuration 10 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-12 - Orifice Efficiency vs Pressure Ratio for Configuration 10 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-13 - Orifice Efficiency vs Pressure Ratio for Configuration 3 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-14 - Orifice Efficiency vs Pressure Ratio for Configuration 3 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-15 - Orifice Efficiency vs Pressure Ratio for Configuration 3 and Plate Position 5.85 Inches for Various Mach Numbers

. - . î

Fig. D-16 - Orifice Efficiency vs Pressure Ratio for Configuration 2 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-17 - Orifice Efficiency vs Pressure Ratio for Configuration 2 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-18 - Orifice Efficiency vs Pressure Ratio for Configuration 2 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-19 - Orifice Efficiency vs Pressure Ratio for Configuration 5 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-20 - Orifice Efficiency vs Pressure Ratio for Configuration 5 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-21 - Orifice Efficiency vs Pressure Ratio for Configuration 5 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-22 - Orifice Efficiency vs Pressure Ratio for Configuration 8 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-23 - Orifice Efficiency vs Pressure Ratio for Configuration 8 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-24 - Orifice Efficiency vs Pressure Ratio for Configuration 8 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-25 - Orifice Efficiency vs Pressure Ratio for Configuration 9 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-26 - Orifice Efficiency vs Pressure Ratio for Configuration 9 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-27 - Orifice Efficiency vs Pressure Ratio for Configuration 9 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-28 - Mass Flow Ratio vs Pressure Ratio for Configuration 11 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-29 - Mass Flow Ratio vs Pressure Ratio for Configuration 11 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-30 - Mass Flow Ratio vs Pressure Ratio for Configuration 11 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. 31 - Mass Flow Ratio vs Pressure Ratio for Configuration 1 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-32 - Mass Flow Ratio vs Pressure Ratio for Configuration 1 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-33 - Mass Flow Ratio vs Pressure Ratio for Configuration 1 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-34 - Mass Flow Ratio vs Pressure Ratio for Configuration 4 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-35 - Mass Flow Ratio vs Pressure Ratio for Configuration 4 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-36 - Mass Flow Ratio vs Pressure Ratio for Configuration 4 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-37 - Mass Flow Ratio vs Pressure Ratio for Configuration 10 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-38 - Mass Flow Ratio vs Pressure Ratio for Configuration 10 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-39 - Mass Flow Ratio vs Pressure Ratio for Configuration 10 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-40 - Mass Flow Ratio vs Pressure Ratio for Configuration 3 and Plate Position 0.0 for Various Mach Numbers

Fig. D-41 - Mass Flow Ratio vs Pressure Ratio for Configuration 3 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-42 - Mass Flow Ratio vs Pressure Ratio for Configuration 3 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-43 - Mass Flow Ratio vs Pressure Ratio for Configuration 2 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-44 - Mass Flow Ratio vs Pressure Ratio for Configuration 2 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-45 - Mass Flow Ratio vs Pressure Ratio for Configuration 2 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-46 - Mass Flow Ratio vs Pressure Ratio for Configuration 5 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-47 - Mass Flow Ratio vs Pressure Ratio for Configuration 5 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-48 - Mass Flow Ratio vs Pressure Ratio for Configuration 5 and Plate Position 5.85 Inches for Various Mach Numbers

Fig. D-49 - Mass Flow Ratio vs Pressure Ratio for Configuration 8 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-50 - Mass Flow Ratio vs Pressure Ratio for Configuration 8 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-51 - Mass Flow Ratio vs Pressure Ratio for Configuration 8 and Plate Position 5.85 Inches for Various Mach Number

Fig. D-52 - Mass Flow Ratio vs Pressure Ratio for Configuration 9 and Plate Position 0.0 Inches for Various Mach Numbers

Fig. D-53 - Mass Flow Ratio vs Pressure Ratio for Configuration 9 and Plate Position 1.75 Inches for Various Mach Numbers

Fig. D-54 - Mass Flow Ratio vs Pressure Ratio for Configuration 9 and Plate Position 5.85 Inches for Various Mach Numbers

Appendix E CONFIGURATION COMPARISON DATA

Fig. E-1 - Comparison of Mass Flow Ratio of Circular Orifice Configurations with Different Areas at Plate Position 0.0 Inches

Fig. E-2 - Comparison of Mass Flow Ratio of Circular Orifice Configurations with Different Areas at Plate Position 1.75 Inches

Fig. E-3 - Comparison of Mass Flow Ratio of Circular Orifice Configurations with Different Areas at Plate Position 5.85 Inches.

Fig. E-4 - Comparison of Mass Flow Ratio of Circular Orifice Configurations with Different Thickness at Plate Position 0.0 Inches.

Fig. E-5 - Comparison of Mass Flow Ratio of Circular Orifice
Configurations with Different Thickness at Plate
Position 1.75 Inches.

Fig. E-6 - Comparison of Mass Flow Ratio of Circular Orifice Configurations with Different Thickness at Plate Position 5.85 Inches.

Fig. E-7 - Comparison of Mass Flow Ratio of Elliptic Orifices of Aspect Ratio 4:1 with Different Thickness at Plate Position 0.0 Inches.

Fig. E-8 - Comparison of Mass Flow Ratio of Elliptic Orifices
Aspect Ratio 4:1 with Different Thickness at Plate
Position 1.75 Inches.

Fig. E-9 - Comparison of Mass Flow Ratio of Elliptic Orifices Aspect Ratio 4:1 with Different Thickness at Plate Position 5.85 Inches.

Fig. E-10 - Comparison of Mass Flow Ratio of Elliptic Orifices at Different Orientations at Plate Position 0.0 Inches.

Fig. E-11 - Comparison of Mass Flow Ratio of Elliptic Orifices at Different Orientations at Plate Position 1.75 Inches.

Fig. E-12 - Comparison of Mass Flow Ratio of Elliptic Orifices at Different Orientations at Plate Position 5.85 Inches.

Fig. E-13 - Comparison of Mass Flow Ratio of Elliptic Orifices with Different Aspect Ratios at Plate Position 0.0 Inches.

Fig. E-14 - Comparison of Mass Flow Ratio of Elliptic Orifices with Different Aspect Ratios at Plate Position 1.75 Inches.

Fig. E-15 - Comparison of Mass Flow Ratio of Elliptic Orifices with Different Aspect Ratios at Plate Position 5.85 Inches.

Fig. E-16 - Comparison of Mass Flow Ratio for Configuration 11 at Different Plate Positions

Fig. E-17 - Comparison of Mass Flow Ratio for Configuration 1 at Different Plate Positions

Fig. E-18 - Comparison of Mass Flow Ratio for Configuration 3 at Different Plate Positions

Fig. E-19 - Comparison of Mass Flow Ratio for Configuration 2 at Different Plate Positions

Fig. E-20 - Comparison of Mass Flow Ratio for Configuration 9 at Different Plate Positions

 $\begin{array}{c} \textbf{Appendix} \ \textbf{F} \\ \\ \textbf{OUTPUT NOTATION} \end{array}$

Symbol	Definition	Units
CORR	correlate number; identifies one POS, one CONF, one M, one PP/P	_
CONF	configuration number; identifies vent plate	
POS	flat plate position from tunnel wall	in.
AREA	area of vent plate orifice	in ²
PT	freestream total pressure	lb/ft ²
P	freestream static pressure	lb/ft ²
TT	freestream total temperature	°R
T	freestream static temperature	$^{o}\mathtt{R}$
M	freestream Mach number	
Q	freestream dynamic pressure	lb/ft ²
v	freestream velocity	ft/sec
RU	freestream Reynolds number per foot	ft ⁻¹
P9	flat plate static pressure P ₉ , located 7.5 inches upstream of orifice	lb/ft ²
P9/P	local to freestream static pressure ratio	_
M9	local Mach number based on P9	_
P16	orifice lip static pressure	lb/ft ²
PXL	orifice extension lip static pressure	lb/ft ²
TP	plenum chamber static temperature	o _R
TP/TT	plenum static to freestream total temper- ature ratio	_
PP	plenum chamber static pressure	lb/ft ²
MDOT	mass flowrate through orifice	slug/sec
MVJ	orifice unit area mass flowrate	slug/ft ² -sec
MVINF	freestream unit area mass flowrate	slug/ft ² -sec
MV9	local unit area mass flowrate	slug/ft ² -sec
KINF	inflow orifice coefficient based on free- stream static pressure	_
K9	coefficient based on local static pressure	-
KDIT	coefficient based on freestream total pressure	_

Appendix G
TEST DATA LISTING

KINF .19511 K20163 KDIT .02949	KINF .18267 .18652 .18852 .KDIT	KINF .12402 .12852 KDIT .01868	KINF .09537 .10025 KDIT .01363	KINF .06119 .06668 KDIT	KINF .03281 .03867 KOIT
7N1/W/LVM 04556 04556 WA/LWW 04635 (PT-PP)/(PT-P9) 1.09164	MVJ/MVINF .04265 MVJ/MV9 .04336 (PT-PP)/(PT-P9)	MUJ/MVINF • 02886 MVJ/MV9 • 02933 • (PI-PP)/(PI-P9)	MVJ/MVINF 0.02106 WVJ/MV9 0.02141 (PT-PP)/(PT-P9)	WUJ/WVINF • 01179 • 01200 • 01200 • (PT-PP)/(PT-P9)	MUJ/MVINF • 00496 • 00496 • 00506 • 00506 • 00506 • 00506
(P-PP)/(PT-P) .09793 .09793 (PT-PP)/(PT-P9) .09164 .09164 .09164 .09164	(PT-P)/(PT-P) 09340 (P9-PP)/(PT-P) 08739 (PT-P) 1.09340	(P-PP)/(PT-P) 07672 (P9-PP)/(PT-P9) 077080 (PT-P)/(PT-P)	(P-PP)/(PT-P) 0.05649 (PT-PP)/(PT-P9) 0.5068 (PT-PP)/(PT-P)	(p-pp)/(pq-p) 0.3640 (pq-pp)/(pq-pg) 03339 (pq-pp)/(pq-p)	(P-PP)/(PT-P) 0.1989 (P9-PP)/(PT-P9) 0.1420 (PT-PP)/(PT-P)
P/PD 2.2222 P9/PP 2.1504 P1/PP 14.7031	P/PP 2.1034 P9/PP 2.0381 PT/PP 13.9166	P/PP 1.7568 P9/PP 1.7023 P1/PP	P/PP 1.4646 P9/PP 1.4192 PT/PP 9.6907	P/PP 1.2569 P9/PP 1.2157 P1/PP 8.3144	P/PP 1.1257 P9/PP 1.0903 P1/PP 7.4466
45000 PP/P9 .46503 PP/PT	PP/P .47543 PP/P9 .49066 PP/PT	PP/P -56921 PP/P9 -58745 PP/PT	PP/P .68276 PP/P9 .70463 PP/PT	PP/P • 19560 PP/P9 • 82256 PP/PT	PP/P .88831 PP/P9 .91719 PP/PT
71 350.8 77 1.913 MDOT	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 •6 331.5 /P M9 90 1.912 MD01 •27092-04	TT T -0 331.6 -0 331.6 90 1.912 MDOT -19774-04	11 1 •4 331.9 /P M9 72 1.913 MD01 •11064-04	11 1 -7 332-1 //P M9 85 1-912 MD01 -46544-05
71 567-6 4974 9677 99	568 P9 •96 PP 10•3	11 568.6 99/P 9690 PP	569.0 569.0 99/P 9690 PP	11 569.4 P9/P .9672 PP 184.5 .11	11 569.7 99/P 9685 PP 206.0 .46
232.0 22.0 22.4.5 17.71 2572	232.U 232.U 224.B 224.8 11/11	231.9 231.9 224.7 77/17 19553	4 232.0 232.0 99 224.8 1F/1T .9538 15	231.9 231.9 224.3 1P/TT .9512 18	231.9 29.22 224.0 11/11
1535. 1535. 2672+07 179 543.3	PT 1535. RU *2664+U7 TP 543.5	PT 1534. RU 8063+U7 TP 543.2	PT 1535. RU 80. -2663+U7 TP 542.7	1534. 1534. HU -26594u7 TP 541.6	1534. 1534. RI: -2657+u7 TP 540.8
AHEA .1964 1686.7 PXL PXL	AREA .1964 .0 V 581.3 1688.4 P16 PXL 112.3 .0	AREA .1964 1688.4 PXL	AREA .1964 1088.7 PXL	. 1964 . 1964 . V . U	AKEA .1964 . V 1090. U FXL
581.3 P16 110.4	6 581.3 P16 112.3	6 581.1 P16 135.9	6 581.3 P16 157.2	6 581•1 P16 189•7	6 581.1 P16 209.9
y. v.	20.	. 00 . 00	• 00 • 00	.00 .00	00 •
CORR CONF 257 11 1.892	COKK CONF 258 11 1182	CORK CONF 259 11 1.892	COKR CONF 260 11 1.892	СОКК СОМF 261 11 1.892	СОКИ СОМР 262 11 1.892

KINF .01758 .02748 .00124	KINF .25269 .25598 KDIT .05968	KINF .22563 .22863 .22863 .05332	KINF .18257 .18551 .18551 .04273	KINF .13185 .13498 .13498 .02921	KINF .08436 .08743 KDIT
7NIWA/LVV 0.00191 0.00194 0.00194 1.00389	MVJ/MVINF .07451 mvJ/mv9 .07491 (PT-P9)/(PT-P9)	**************************************	.05332 .05332 MVJ/WV9 .05363 (PT-PF)/(PT-P9)	.03645 .03645 MVJ/WV9 .03668 .03669 (P1-P9)/(PT-P9)	MVJ/WVINF .02031 MVJ/WV9 .02044 (PI-PF)/(PT-P9)
(4-14)/(94-4) 009600 009600 00369 00389 (4-14)/(94-14)	(P-PP)/(PT-P) 17912 (P9-PP)/(PT-P9) 17446 (PT-P)/(PT-P)	(p-pp)/(pt-p) 15756 (p9-pp)/(pt-pg) 15288 (pt-pp)/(pf-p)	(P-PP)/(PT-P) 12562 (P9-PP)/(PT-P9) 1298 (PT-PP)/(PT-P)	(q-fq)/(qq-q) 60487 (q-fq)/(qq-pq) (q-fq)/(qq-fq)	(P-pp)/(PT-p) 0.06142 (P9-pp)/(PT-p9) 0.05686 1.06142
P/PP 1.0570 P9/PP 1.0232 P1/PP 6.9918	P/FP 2.3770 P9/PP 2.3465 PT/PP 10.0649	2.0373 2.0373 2.0106 2.0106 91/PP	P/PP 1.683u p9/PP 1.660A p1/PP 7.1232	P/PP 1.4421 P9/PP 1.4213 P1/PP 6.1024	P/PP 1.2476 p9/PP 1.2302 PT/PP 5.2793
99/9 .94410 99/99 .97728 99/91	PF/P •42069 PP/P9 •42616 PP/PT	PP/P .49065 PP/P9 .49737 PP/PT	PP/P •59405 PP/P9 •60210 PP/P1	99749 •69342 99799 •70360 99791	PP/P .80153 PP/P9 .81285 PP/PT
T T T T T T S T T S T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T S S S S S S S S S S S S	11 17 1 5 570.3 377.6 9 P9/P Ma 9 P9/P 1.606 1 PP MOOT	T T T T 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T T T T T T T T T T T T T T T T T T T
231.9 P9 P9 224.5 IP/TI	9 365.3 361.0 117.11 49572	7 360.3 94 361.5 1P/TT •9575	7 560.3 99 361.4 17/11	360.3 P9 361.0 14/11	360.3 999 361.4 11/11
1534. RU *2655+U7 TP 540.6	FT 1551. KI 81. 2977+07 TP 545.6	1350. 1350. 131 12970-107 179 180.7	PT 1550. RU 72975+U7 1P 545.1	1550. RII -2975+U7 TP 544.7	FT 1550. KU 6972407 1P 1P 544.1
AMEA .1564 0 V 0511.1 1090.2 P16 PXL 222.4 .0	AREA .1964 0 V 654.U 1520.6 F16 FXL	AMFA .1964 .0 V 654.0 1520.8 P16 PXL 1H3.8	AKFA .1964 0 V 654.0 1521.1 P16 FXL 222.9	AME A . 1964 V 1521.1 FXL	AKEA .1964 .0 V b54.0 1521.5 P16 PXL 295.5 .0
0 581.1 716 222.4	6 654.U 716 161.U	0 654.U P16 183.8	654.0 P16 222.9	654.U P16 258.6	654.0 P16 295.5
7. 20. 00.	20.00	.00 .00	.00 .00	80d • 00	.00 •
CORn co.F 263 41 M 1.872	COKn CONF 264 11 1.597	СОКИ СОЦР 2t3 11 М 1.557	СОКК СОЦР 260 41 1.597	CUKR CUIF 261 11 1.557	COKK CONF 260 11 1.597

.05271 .05271 .05698 .05698 .0742	KINF .03389 .03819 KDIT .00360	KINF .26468 .26894 KDIT 09553	KINF .22761 .23135 .08225	KINF .20466 K9 .20876 KDIT .07335	KINF •17529 •17984 KDIT *05938
.00926 .00926 MVJ/WV9 .00931 (PT-PF)/(PT-P9)	**************************************	-10186 -10186 -10234 -10234 -10234 -1-199)	ANJWAINF 0.08768 MYJ/MY9 0.08809 (PT-PL)/(PT-P9)	.07820 .07820 .07820 .07858 .07858 .1.22103	.06332 .06332 .06332 .06362 .06362 (PT-PP)/(PT-P9)
(P-PP)/(PT-P) . 12855 . 12855 (P9-PP)/(PT-P9) . 12831 . 12855	(P-PP)/(PT-P) 0.01546 0.09-PP)/(PT-P9) 0.01213 0.01213 0.01546	(P-PP)/(PT-P) .32369 (P9-PP)/(PT-P9) .31196 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 28894 (P9-PP)/(PT-P9) 27726 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .23256 (P9-PP)/(PT-P9) .22103 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 17395 (PQ-PP)/(PT-P9) 16355 (PT-PP)/(PT-P)
р/рр 1.1017 р9/рр 1.0869 р1/рр	P/PP 1.0526 pg/PP 1.0414 pT/PP 4.4540	P/Pp 2.3429 P9/Pp 2.3058 P1/Pp 6.4917	2.0436 2.0436 2.0105 2.0105 717Pp 5.6552	P/PP 1.6978 P9/PP 1.6695 PT/PP	P/PP 1.4451 P9/PP 1.4223 P1/PP 4.0041
90/4 90773 90/49 92/03 97/91	99/99 .95/04 99/99 .96/126 99/91	PP/P .42682 PP/P9 .43368 PP/PT	99/P .48034 p9/P9 .49734 pp/PT	68899 69899 69899 69899 69899	69198 69198 69799 70311 66797
T1 T T T T T T T T T T T T T T T T T T	11 1 •6 377.9 /P N9 94 1.604 MDOT •52623-05	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 •2 423.3 •9 69 36 1.311 •007 •12141-03	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TT T T T T T T T T T T T T T T T T T T
570 P9 • 98 PP	77 570.6 P9/P .9894 PP P9	TT 566.5 997P 9842 PP	566.2 99/P 9838 99 99 97	565.7 99/P 9833 9P PP 331.6 .10	71 565.8 197.9 984.2 199 369.1 .87
7 246.3 194.4 11/11 9520	366.3 P9 362.4 IP/11 .9506	7 56.53 89 11/41 9686	63.0 563.0 69 553.9 11/11	65.0 P9 553.0 P/1T 1P/1T 9691 3.	562.3 P9 553.4 1P/11 •9680 38
AHFA 1550. 1964 1550. 0 V VIII VIII PAL 151.5 .2972+07 PAL 151.5 .2972+07 PAL 15 PAL 15 PAR	1550. 1550. HII -2971+U7 1P 542.4	FT 1556. •3191+u7 1P 548.7	PT 1558. KU KU 83194+07 1P 548.5	PT 1556. KU 8197+U7 TP 548•2	1558. KU 819 819 819 17 547.7
AHFA 1964 1521.5 PXL 90	AREA .1964 V 1521.7 PXL	AKEA •1964 •1311•1 PXL	AREA .1964 0 V 665.U 1310.U P15 PXL 287.2 .0	AKEA .1964 .1309. V	AMEA .1964 1310.2
654.0 9.450 7.16 335.6	654.0 F16 349.9	665.2 P16	665.U P15 287.2	665.0 P16 335.9	665.2 F16 398.U
7. 000	+00 •00		.00 • 00	00. • 00	900 •
CORN CONF ZEY 11 1.537	CORR CONF 270 11 1.597	COPR CONF 271 11 A 1.300	CORn COMF 272 41 1.299	CUKR CUNF 273 ±1 1.299	COKA CONF 274 11 1.340

KINF 15530 K9 16225 KDIT 04598	KINF .07076 K9 .07646 KDIT	KINF .03407 .04026 .04026 KDIT	KINF .32793 .32433 KDIT .15325	KINF .32318 .32111 KDIT .14988	KINF .28259 .27655 .12429
MVJ/MVINF .04902 MVJ/MV9 .04926 .047-P9) .10273	.01749 .01749 MVJ/NV9 .01757 (PT-PP)/(PT-P9)	MVJ/MVINF .00616 MVJ/MV9 .00619 (PT-PP)/(PT-P9)	MVJ/MVINF • 15448 MVJ/MV9 • 15430 • 15430 (PT-PP)/(PT-P9)	MVJ/MVINF • 15116 • 15109 • 15101 (PT-PP)/(PT-P9)	*12535 *12535 #12535 #12530 *12512 1*29019
(P-PP)/(PT-P) 11337 (P9-PP)/(PT-P9) 10273 (PT-PP)/(PT-P)	(P4-P9)/(P4-P9) .06187 (P4-P9)/(P7-P9) .05246 (P1-P9)/(P1-P) 1.06187	(P-PP)/(PT-P) .03103 (P9-PP)/(PT-P9) .02200 (PT-PP)/(PT-P) 1.03103	(PT-P)/(PT-P) 45849 (PG-PP)/(PT-P9) 47286 47286 101-PP)/(PT-P)	(PT-P)/(PT-P) • 36406 (PT-P9)/(PT-P9) • 37083 • 1-P)/(PT-P)	(P-PP)/(PT-P) 27405 (F9-PP)/(PT-P9) 29019 (PT-PP)/(PT-P)
1.2506 1.2506 1.2292 17Pp 3.4607	P/PP 1.1230 P9/PP 1.1053 PT/PP 3.1116	p/PP 1.0581 p9/PP 1.0416 p1/PP 2.9319	P/PP 2.0946 P9/PP 2.1180 P1/PP 4.4822	P/PP 1.7109 1.7204 1.7204 PT/PP 3.6631	P/PP 1.4563 P9/PP 1.4771 PT/PP 3.1211
PP/P .79964 .PP/P9 .81352 .PP/PT	96/9 .89045 .90477 .90477 .32137	99/P .94505 pp/pg .96007 pp/pt	PP/P .47741 PP/P9 .47215 PP/PT	PP/P •58454 PP/P9 •58126 PP/PT	PP/P .68669 PP/P9 .67701 PP/F1
77 422.9 P9/P M9 .9829 1.312 PP MD07	TT T 565.3 422.5 P9/P Mq .9842 1.312 PP MDOT .7 .24230-04	TT T 565.2 422.4 M9.9/P M9.312 M00T M00T 66317-05	TT T T T T T T T T T T T T T T T T T T	TT T T T T P T P T P P P P P P P P P P	TT T 562.2 452.2 P9/P M9 •0143 1.092 PP M00T •5 •18424-03
653.0 565 67 89 80 553.4 90 1771 850.2	562.3 568 P9 pq 553.4 .99 TP/TT PP	652.3 56 99 PP 553.5 99 1P/TT PP 9644 531.4	724.1 56. 736.2 1.0 736.2 1.0 1P/TT PP	P 528-1 562 P9 P9 P9 732-2 1-00 11/1T PP -9769 425-6	9 727.4 566 P9 P0 737.8 1.00 1717 PP PP 99.5
1554. 1554. NU 3198+U7 1P 546.9	PT 1558. RU .3200+u7 TP TP 546.1	PT 1556. KU .3201+U7 TP 545.1	PT 1556. RII •3204+U7 TP 549•7	PT 1559. HU. •3209+07 TP 549.7	PT 1559. RU •3213+07 1P 549-4
AHEA .1964 1309.3 PXL	.1964 V 1309.7 PXL	AREA .1964 .1309.6 PXL	AREA .1964 1149.9 FXL	AKEA .1964 1149.2 PXL	AKEA .1964 V 1149.6 PXL
665.0 P16 #48.3	665.2 P16 502.2	9 665.2 P16 534.2	6 618.9 P16 348.4	6 618.9 P16 434.0	619.5 619.5 716 500.0
.00	00.	Pos • 00	• 00	.00 • 00	P05 • 00
СОРН СО14F 275 11 11.259	СОКК СОМF 270 11 1.300	COKK CONF 277 11 1.300	CORK CONF 278 11 1.102	СОКИ СОМР 279 11 1.102	CORM CONF 280 11 M 1.103

KINF .23252 .22514 .09099	KINF .16667 .16292 KUIT	KINF .09582 .08813 KDIT .02139	*17929 *37929 *38197 *KDIT	KINF .39439 K9 .39494 KDIT	KINF .34998 .85184 KDIT .19345
**************************************	MVJ/MVINF • 04896 • 04896 • 04895 • 04-14)/(PT-P4)	#2158 #22/mv9 #22/mv9 #02154 (PT-PP)/(PT-P9)	**************************************	WUJWVINF .23274 WWJ/WV9 .23284 (PT-PP)/(PT-P9)	**************************************
(P-PP)/(PT-P) .18646 (P9-PP)/(PT-P9) .20169 (PT-PP)/(PT-P)	(q-79)/(94-9) 08986 09986 (97-99)/(97-9) 1.08986	(q-74)/(qq-q) (04999) (p1-99) (q-14)/(qq-14) (q-14)/(qq-14)	(P-PP)/(PT-P) .72762 (P9-PP)/(PT-P9) .71027 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 59216 (P9-PP)/(PT-P9) • 58940 (PT-PP)/(PT-P)	(Pq-Pp)/(Pq-p) 43882 (Pq-Pp)/(Pq-pg) 43202 (Pq-Pp)/(Pq-p)
P/PP 1.2687 P9/PP 1.2870 P1/PP 2.7100	P/PP 1.1140 P9/PP 1.1194 PT/PP 2.3831	P/PP 1.0604 P9/PP 1.0714 PT/PP 2.2683	2.0099 29/PP 1.9958 1/PP 3.3978	P/PP 1.6978 P9/PP 1.6958 P1/PP 2.8763	P/PP 1.435A 1.435A 1.4311 PT/PP 2.4289
PP/P • 78818 PP/P9 • 77700 PP/PT	PP/P -89764 -89764 -89335 -41963	PP/P •94306 PP/P9 •93332 PP/PT	PP/P .49754 PP/P9 .50105 PP/PT	99/P •58898 99/P •58970 99/PT	69649 69649 69878 69878 69774
11 452.6 7 H H9 44 1.089 MDOT 13480-03	TT T T T T T T T M9 M9 MD T MD T MD T MD	TT T 4 452.6 /P M9 04 1.093 MD0T 31706-04	TT T 55 482.5 7P M9 30 .906 MDOT 33009-03	TT T T T T T T T T T T T M H H H H H H H	11 1 ·8 481.7 /P N9 67 ·903 MD01 ·28479-03
562.1 597P 1.0144 PP 574.9 .13	562.0 99/P 1.0048 PP	11 562.4 P9/P 1.0104 PP	560.5 99/P 9930 PP	TT 560•1 99/P •9988 PP PP	559.8 1977 1996 1997 199 1985.1 .286
729.4 94.627 739.9 17/11 9763	728.8 P9 732.3 1P/TT •9753 6	P 728.8 P9 736.4 1771 •9732 66	913.9 99 907.5 1P/11	P 911.4 P9 910.3 TP/TT •9832 53	913.3 913.3 910.3 1P/TT •9832 63
1556. 1558. 80 3209+07 7P 548.8	PT 1559. RU •3215+07 TP 548.1	PT 1559. RU 83210+07 TP 547.3	PT 1545. RU *3026+07 TP 550.5	PT 1544. RU 8033+07 TP 550.7	PT 1545. RU •3032+07 TP 550•4
AHEA .1964 .1964 1147.0 PXL	AREA .1964 1148.7 PXL	AREA .1964 V 1148.1 PXL	AREA .1964 V 969.0 PXL	AREA .1964 V 970.3 PXL	AREA .1964 V 968.2 PXL
617.8 P16 571.8	6 619.5 P16 657.7	618.4 P16 688.5	6 518.2 P16 457.8	6 519.1 P16 539.1	517.8 P16 640.2
900 •	Pos 00.	• 00	POS • 00	.00 • 00	00 00
11 11 1100	CONF 11 11 1102	CONF 11 11 11 11 11	11 11 900	11 11 902	CONF 11 900
CONK 281 1	CORK 282 1	CORR 283	284 284	285	286 286

KINF .278A5 K9 K9 KDIT KDIT	KINF 17699 K9 18247 KDIT	KINF 12662 K9 12492 KDIT	KINF 444137 444216 KDIT *31802	KINF 44436 44433 44433 KDIT	KINF .44150 K9 .44213 KDIT
. 13867 .2 MVJ/MV9 . 13856 .2 . 13856 .2 (PT-PP)/(PT-P9) . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	.06785 .1 .06785 .1 .06780 .06780 .1 .06780 .1 .14798 .1	.03308 .03308 .03310 .03310 .01-PP)/(PT-P9) .07060	**************************************	.34615 .34615 .4615 .4610 .94610 .7(PT-P9)	.32557 .32557 .WUJ/WV9 .32503 .92503 .17712
(p-pp)/(pt-p) • 30411 (pg-pp)/(pt-p9) • 29591 (pt-pp)/(pt-p)	(P-PP)/(PT-P) 15887 (P9-PP)/(PT-P9) 14798 (PT-PP)/(PT-P)	(q-1q)/(qq-q) 07347 07347 07060 07060 (q-1q)/(qq-1q)	(P-PP)/(PT-P) 1.25161 (P9-PP)/(PT-P9) 1.24132 (PT-PP)/(PT-P) 2.25161	(P-PP)/(PT-P) 1.04266 (P9-PP)/(PT-P9) 1.03799 (PT-PP)/(PT-P) 2.04266	(p-pp)/(pt-p) • 78119 (pg-pp)/(pT-pg) • 77712 • (pT-p)/(pT-p)
P/PP 1.2663 P9/PP 1.2607 PT/PP 2.1419	P/PP 1.1236 P9/PP 1.1163 PI/PP 1.901a	P/Pp 1.0537 pg/Pp 1.0518 pT/Pp 1.7849	P/PP 1.9436 p9/PP 1.9402 p1/PP 2.6976	1.6791 pg/pp 1.6776 pt/pp 2.3304	P/Pp 1.4344 p9/Pp 1.4335 pT/Pp 1.9913
7497 74977 97797 79319 79319	9979 .48997 99769 .49566 PP/PT	99/P • 049U2 99/PQ • 05079 PP/PT	99/P .51450 99/P9 .51542 99/PT	PP/P .59555 pp/po .596UP pp/pt	PP/F .6969a pP/po .69760 PP/PT
11 481.5 72 40 56 904 56 1001	17 •3 481.3 47 •0 007 34 •007 •99160-04	TI T -2 461.0 /P M9 R1 .903 PDOT -48347-04	11 •1 505.4 /P wo 82 •703 MDOT •47471-03	11 6.8 505.2 70 mq 91 .702 4001 4001	11 1 -5 5505.n /P M9 91 -702 MD01 +44407-03
11 559.5 1974 0956 77	77 559.3 pa/p .9934 pp pp	TT 559.2 P9/P .9981 PP R65.6 .483	11 555.1 99/P .9982 PP 74	554.8 997P 9991 9991 99	77 554.5 99/P 9991 PP 783.4 .444
914.0 P9 910.0 117.11	913.4 P9 907.4 17/11	912.1 P9 910.4 1P/TT *9810 RE	1124.u P9 1122.u 147.TT	1124.0 P9 1123.0 (17/11	1124.0 P9 1123.0 (P/TT 7.9910
1546. HH •3036+U7 TP 550.0	1546. 1546. 111 3039407 17 549.2	PT 1545. KI. •3041+07 TP 548.6	FT 1560. RH 17 17 17 17 18	PT 1560. NU 10 -2734+07 TP 549.8	PT 1560. RU 17 17 549.5
.1964 966.0 7 V	A 1964 1964 1864 1864	AKFA 1964 V 965.6 PXL	AKEA 1964 772. V PXL	AKFA .1964 772.3 FXL	AHEA .1964 771.8 PXL
6 512.2 722.9	0 514.0 P16 817.5	0 519.5 P16 869.2	0 386.6 P16 588.1	386.6 P16 673.5	0 385.5 P16 788.8
7 • 000 000	204 000	. uos	405 906		PCS • 00
COKK CO.F 287 41 840 €	СОКИ СОМР 240 — 11 240 — 11 301	COMM CO.F 21 21 41 41 410 490 2	290 11 290 11 	COPH CONF 291 11 291 41 701	COKR CONF 292 11 8

XINF .39871 K9 .39960 KDIT	KINF .23969 .24074 KDIT .11039	KINF 17281 17429 KDIT 06053	KINF •2994: K9 •29165 KDIT	KINF .27186 .26348 .03998	KINF • 18453 K9 • 17655 KDIT
475641 475641 475740 475597 47677(47–79) 1,50572	#VJ/MVINF .11680 MVJ/MV9 .11678 (PT-PP)/(PT-P9) 1.25629	.06268 .06268 MVJ/MV9 .06257 .06257 (PT-P9)	**************************************	.06181 .06181 MVJ/WV9 .06105 (PT-PP)/(PT-P9)	ANJ/MVINF • 03940 • 03940 • 03867 • 03867 • 05470)
(4-79)/(94-9) 50917 50917 (94-79)/(94-99) 50572 (91-79)/(91-9)	(P-PP)/(PT-P) -25917 (P9-PP)/(PT-P9) -25629 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 13532 (P9-PP)/(PT-P9) 13272 (PT-P)/(PT-P)	(P-PP)/(PT-P) .07433 (P9-PP)/(PT-P9) .07488 (P1-PP)/(PT-P)	(p-pp)/(pp-p) .06483 (p9-pp)/(pp-pg) .06950 1.06483	(q-19)/(qq-q) 04977 (pq-pq)/(qq-pq) 05470 (q-19)/(qq-1q)
P/PP 1.2461 P9/PP 1.2450 P1/PP 1.7295	P/PP 1.1118 pg/PP 1.1108 pT/PP 1.5430	P/PP 1.0554 P9/PP 1.0545 P1/PP 1.4649	P/PP 1,7165 P9/PP 1,7593 P1/PP 11,3852	P/PP 1.5739 P9/PP 1.6126 P1/PP 10.4274	P/PP 1.3884 P9/PP 1.4240 P1/PP 9.1921
99/9 99/49 99/89 99/81 99/97	PP/P .89947 PP/PQ .90027 PP/PT	99/P .94751 pp/pq .94835 pp/pt	PP/P •58190 PP/P9 •56842 PP/PT	63534 PP/P9 62011 PP/PT	PP/P .72026 PP/P9 .70181 PP/PT
11 504.7 /P NO NO 91 .702 MNOT MOOT	71 7 •9 504.4 7P 80 91 •702 MDOT .	T 504.1 MQ .707 MDOT 5565-04	11 •9 328.5 /P NO 37 1.877 MOOT	11 -2 329.3 /P M9 46 1.877 MOOT -58273-04	TT T -5 329.5 /P Mo 63 1.875 MDOT -37112-04
11 554-1 594-1 9991 49 902-0 -34	77 0 553.9 9 P9/P 0 .9991 PP 1011.0 .15	77 6 553.5 9 797P 0 .9991 1065.0 .85	TT 563.9 P9/P 1.0237 PP 35.0 .659	71 565.2 P9/P 1.0246 PP 147.4 .582	11 565.5 P9/P 1.0263 PP 167.1 .371
1124.0 1123.0 1123.0 11711	1124.0 P9 1123.0 1771 •9906 10	7 1124.0 1123.0 1123.0 17/17 •9904 106	232.0 29 237.5 237.5 17.41	232.0 292.2 237.7 12/11 9743 14	232.0 232.0 230.1 19/11
1560. Rti *2733+U7 TP 549.3	1560. REG 2739+07 TP .	FT 1560. RU. RU. PT 1560. TP 1560. S48.2	PT 1537. RU -2699+u7 1P 550.3	1537. 1537. KU 407. TP 17	PT 1536. RU 8087+07 1P 550.6
A144 1264 77, V 174, U	AKEA .1964 .77.7 .0	AKEA .1964 770.3 PXL	.1964 .1964 .1081.7 .0		
385.5 P16 902.8	386.6 P16 1015.0	9 385.5 P16 1067.0	9 582.0 P16 135.2	AREA .1964 0 V 582.0 1683.7 P16 PXL 147.1	AKEA .1964 0 v 581.3 1683.3 P16 PXL 164.5 .0
J	y . 00	30 00 00	P05	P0S 1.75	POS 1.75
.7.00	CONF 111 701	11 11 × 7 × 0			
2422	COKA CONF 294 11 A	295 295	COPR CONF 1034 11 M 1.843	COKK CONF 1040 11 1.693	CORK CONF 1041 11 11892

KINF .13118 .12268 .12268 .01561	KINF .08121 K9 .07020 KDIT	KINF .04875 .03613 KDIT	KINF .33711 K9 .33195 KD1T	KINF .25208 .24758 KDIT .06810	KINF .17490 .17068 KDIT
MVJ/MVINF • 02412 MVJ/MV9 • 02381 (PT-PF)/(PT-P9) 1.03693	MVJ/MVINF .01034 MVJ/MV9 .01021 (PI-PF)/(PI-P9) 1.01820	**************************************	MVJ/MVINF •10810 MVJ/MV9 •10746 (PT-PP)/(PT-P9) 1.21350	**************************************	MVJ/HVINF • 05231 MVJ/MV9 • 05200 • 05200 (PT-PP)/(PT-P9)
(4-14)/(4d-4) .03208 .03208 .03709 .03693 .03693 .03208	(PT-PP)/(PT-P) 0.1351 (P9-PP)/(PT-P9) 0.1820 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 00568 00568 (PT-P9)/(PT-P9) 01041 (PT-P)/(PT-P)	(PT-P)/(PT-P) 20642 (P9-PP)/(PT-P9) 21350 (PT-P)/(PT-P)	(P-PP)/(PT-P) 15185 (P9-PP)/(PT-P9) 15862 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 11276 (P9-PP)/(PT-P9) 11930 (PT-PP)/(PT-P)
P/PP 1.219a 199/PP 1.251a PT/PP 8.0705	P/PP 1.0821 P9/PP 1.1101 PT/PP 7.1595	P/PP 1.0329 P9/PP 1.0601 PT/PP 6.8344	2,2226 09/PP 2,2572 01/PP 8,1456	P/PP 1.6797 09/PP 1.7059 01/PP 0.1560	1.4296 1.4296 1.4519 1.4518 5.2392
99/P .81983 99/P9 .79882 PP/PT	92414 92414 99799 90084 97797	PP/P .96810 PP/P0 .94330 PP/PT	99/P .4492 pp/pq .44303 pp/pT	PP/P .59533 PP/P9 .58621 PP/PT	PP/P .69951 PP/P0 .68879 PP/PT
11 1.29.8 .9 327.8 MA 79 MA 70 MA 70 MA 22715-04	TT	TT T T T T T T T T T T T M T T T T T T	71 •4 390.1 79 Na 56 1.48P MRDT •13562-03	11 •4 390.2 /P	TT T .5 .5 .5 .390 .2 Mo
545.9 1.026.3 1.026.3 pp	566.4 p9/p 1.0259 pp pp	TT 566.8 P9/P 1.0263 PP	77 565.4 P9/P 1.0156 PP 190.9	71 565.4 P97P 1.0156 PP 52.6 .10	11 565.5 P9/P 1.0156 PP 296.8 .65
23c.u 29y 23b.1 19/11	7 236.0 89 230.0 12/11 2707 23	232.0 232.0 236.1 1P/1T .9700 22	424.3 99 430.9 17/11 9804	424.3 424.3 99 430.9 1P/TT	7 424.3 P9 430.9 431.41 17/11
1535. *!! *2683+U7 TP 550.3	1535. 1535. RU. 20670407 IP 549.8	PT 1535. KU 8407 17 549.8	PT 1555. RI' •3096+U7 TP 554.3	FT 1555. KU 3095+07 IP 554.1	1555. 1555. HII •3095+u7 1P 553.9
AKEA .1964 0 V 581.3 1084.1 F16 FXL	AREA .1964 0 V 581.3 lod4.9 P16 PXL 212.0 .0	AHEA .1964 0 V 581.3 1685.4 P16 PXL P23.2	AREA .1964 0 V 667.4 1451.1 F16 FXL 192.5 .0	AKEA .1964 0 V 667.4 1451.3 P16 PXL PXL 254.5	AKEA .1964 0 V 0 V b67.4 1451.3 P16 FXL 297.1 .U
0 581.3 F16 189.4	6 581.3 F16 212.0	0 581.3 P16 223.2	667.4 F16 192.5	0 667.4 P16 254.5	6 67.4 716 297.1
P65	00 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	405 1.75	HOS 1.75	CIVE FOS 11 1.75 M 4.59	P05
1.6 ± 1.5 ± 2.5 ±	CONF 11 1.652	CONF 11 M 1-692		1.4.59	
1042 1045 11642 11642	CURK CONF 1043 11 1.692	COKK COMF 1044 11 1.692	1040 11 11 11 11 11 11 11 11 11 11 11 11 11	COKK CCNF 104/ 11 1.499	CORK CONF

KINF .128A7 .89 .12411 KDIT .02852	KINF .07739 .07201 .07201 .01300	KINF .03773 .03282 .03282 .00454	KINF .46106 K9 .46558 .46558	KINF .40913 K9 .41211 KOIT	KINF .35443 K9 .35773 K0IT
AVJ/WVINF 4.03352 WVJ/WV9 4.03332 (PT-PP)/(PT-P9)	#WJ/WVINF • 01528 #WJ/WW9 • 01519 (PT-PP)/(PT-P9)	.00534 .00534 .00531 .00531 (PT-PP)/(PT-P9)	MUJMVINF .21789 MUJMV9 .21815 (PT-P9)/(PT-P9)	MVJ/MVINF • 19182 • 19202 • 19202 • 19202 • 19202 • 19202	**************************************
(4-PP)/(PT-P) •07314 •07-PP)/(PT-P9) •07944 •07944 (PT-PP)/(PT-P)	(PT-P)/(PT-P) .03732 (P9-PP)/(PT-P) .04341 .04341 (PT-P) 1.03732	(PT-P)/(PT-P) 01A04 (P9-PP)/(PT-P) 024 02 (PT-PP)/(PT-P) 1.01A04	(p-pp)/(pT-p) .48244 (pg-pp)/(pT-pg) .46984 (pT-pp)/(PT-p)	(4-79)/(94-9) 37342 (9-79)/(94-99) 36570 1-375-1	(P-PP)/(PT-P) 29104 (P9-PP)/(PT-P9) 28334 (PT-PP)/(PT-P)
P/PP 1.2421 pg/PP 1.2614 pT/PP 4.5521	P/PP 1.1104 P9/PP 1.1277 P1/PP 4.0696	P/PP 1.05U5 P9/PP 1.0668 PT/PP 3.85Un	P/PP 2.2046 p9/PP 2.1832 p1/PP 4.7016	P/FP 1.7411 P9/PP 1.7298 P1/PP 3.7255	P/PP 1.4977 P9/PP 1.4863 P1/PD 3.2060
9/49 . 40509 . 407/40 . 79276 . 797/4	PP/P .90054 PP/P9 .88675 PP/PT	92/92 95192 99/99 93734 97/91	PP/P .45350 PP/P9 .45803 PP/PT	98/9 -57437 -57843 -57849 -57849	99/9 -66767 96/99 -67191 99/91
TT	11 1 •6 390.3 /P M9 56 1.48A MOOT •19165-04	11 •8 390.4 /P Mo 56 1.488 MOOT •66926-05	TT	TT T -5 451.8 /P M9 36 1.107 MD0T -28263-03	11 1 7 7 8-2-5 451.5 M9 37 1.10A MDOT .23500-03
TT 565.8 p9/p 1.0156 pp 741.6 .42	77 565.6 P9/P 1.0156 PP 382.1 .193	71 565.8 P9/P 1.0156 PP 403.9 .669	561.7 1977 1978 1979 1331.8 .326	71 561.5 P9/P • 9936 PP	11 561.2 P9/P . 937 PP 486.6 . 235
424.3 436.9 430.9 17/41	424.3 424.3 430.9 4717 430.9	424.3 424.3 99 430.9 17/11	9 731.5 99 724.4 17/11	9 729.5 99 724.6 11/41	4 720.8 P9 724.2 11/11
FT 1555. RU •3093+u7 TP 553•1	1555. 1555. KU 3094+07 1P 552.4	1555. 1555. 100 100 100 100 100 100 100 100 100 10	FT 1560. HU •3218+U7 TP 556.4	PT 1561. KIJ •3223+07 1P 556.0	PT 1561. RU 63223+U7 1P 556.1
AKEA .1964 1451.7 PXL	AKEA .1964 1451.5 PXL	.1964 1451.7 PXL	AKEA .1964 V 1145.7 PXL	AKEA .1964 .1148.1 .PXL	AKEA .1964 V 1147.7
0 667.4 P16 341.9	0 667.4 P16 380.7	657.4 P16 401.6	0 618.5 716 330.7	620 0 P16 424 0 3	619.5 P16 490.7
P05 1.75	P0S	Pos 1.75	P05	POS 1.75	Pos 1.75
СОКК СО1.F 1050 11 1449	CORK CONF 1051 11 M 1.499	COKK CONF 1052 11 1054 11	CORR CONF 1054 11 M 1.699	COMM CONF 1055 41:	CORK CONF 1050 11 :

KINF .30744 .31208 KDIT .11964	KINF .25344 K9 K01T 07779	KINF 19517 89 19977 KDIT 004552	KINF 57697 89 58163 KDIT 41481	KINF 53517 K9 53972 KDIT 38080	KINF .48147 K9 .48716 KDIT
.12061 .12061 .020/wv9 .12072 .12072 (PT-P9)/(PT-P9)	ANJ/WVINF ANJ/WW PI/WY/WW OT850 OT850 OT950 1,09742	ANJAMVINF 404594 WAJAM94 404594 (PT-P9)/(PT-P9) 1.05233	**************************************	MUJ/MVINF 441564 MVJ/MV9 441351 (PI-PP)/(PT-P9) 2.00022	. 35087 . 35087 . 35087 . 407/4V9 . 40°04 . 172695
(p-pp)/(pt-p) 18388 (pq-pp)/(pt-p9) 17737 (pt-pp)/(pt-p)	(P-PP)/(PT-P) 10137 (PG-PP)/(PT-P9) 109742 (PT-PP)/(PT-P)	(4-19)/(44-4) (65498) (67-49)/(64-64) (65233) 1,05498	(p-pp)/(pt-p) 1.24419 (pq-pp)/(pT-pg) 1.19911 (PT-pp)/(pT-p) 2.24419	(P-PP)/(PT-P) 1.03659 (F9-PP)/(FT-P9) 1.00022 (PT-PP)/(PT-P) 2.03659	(P-PP)/(PT-P) .75828 (P9-PP)/(FT-P9) .72695 (PT-PP)/(PT-P) 1.75828
P/PP 1.2652 09/PP 1.2572 p1/Pp	P/PP 1.1314 pg/PP 1.1268 pT/PP 2.4281	1.0675 p9/Pp 1.0644 pT/Pp 2.2940	P/PP 1.9469 pg/Pp 1.9311 pT/Pp 2.7080	P/PB 1.0840 1.0720 1.6720 1.7PP	P/PP 1.4251 p9/PP 1.4150 p1/PP 1.9859
79040 79040 79542 79542 79542	99/P .88383 pp/pq .88749 pp/pt	07670 .03670 pp/pq .93950 pp/pt	99/9 •51362 99/90 •51777 99/97	9740 -59340 -59776 -59776 -67631	97769 • 70169 • 77674 • 57674
T T T T T Y 129.5 5.13.0 451.5 P9 P9/P P0/P P0/P P0/P P0/P P0/P P0/P P	727.4 560.9 451.0 P9 P9/P vo 724.4 .9959 1.107 HP/TT PP Mr0T -9893 642.9 .11559-03	7 77 7 726.1 560.4 450.4 P9 P9/P Wo 724.0 .9971 1.108 IP/17 PP MOT .9897 660.2 .67666-04	T TT 4 T123.U 555.2 505.2 PQ PQ PQ 1114.U .992U .111 TOWN PN	1122.0 555.0 504.9 pg/p Mo 1114.0 .9929 .712 pp MOOT 12/11 665.0 .56921-03	7 11 4 1121.0 554.7 504.4 1212.0 5929 713 1113.0 6929 713 11741 74 74 74 74 74 74 74 74 74 74 74 74 74
AMFA 1361. 1964 1361. V ALL 1147.7 .3220+U7 FXL TP .0 535.3	1561. RII. •3227+U7 IP 554.9	1361. RH *32304u7 TP 554.6	1562. 1562. 111 12 17 153.6	1564. 1564. 17 17 553.4	1362. RU: 801. 70+07 17 553.0
AHFA .1964 V V 1147.7 FXL	AKEA .1964 0 V F2U-6 1149.2 P16 PXL P41-2 .0	AXFA . 1964 V V 1149.4 FXL	AKEA .1964 774. V 774. C	1964 1964 775.4 75.4	1964 1964 770.2
6 F26.1 P16 571.7	641.20	0 620.6 P16 674.0	а 348.5 Р16 577.U	0 389.5 P16 669.5	0 390•U F16 785•7
1.75	POS 1.75	F05 1.75	P05	FCS 1•25	01.F POS 11 1.75 M M
COKn cont 105/ 11	СОКК СОЦЕ 1050 11 V 1.104	СОКК ССЬЕ 1059 11 1.105	COKK CCNF 1061 11 1061 41 1061 41	COKK COLF 1062 11 M	COKK COLF 1063 11 M

KINF ,42688 ,43556 ,43556 ,43556 ,43556	KINF .33850 .35273 .011 .15563	KINF .23921 .25793 .08236	KINF .25284 .24908 KDIT .03822	KIMF .22947 K9 .22674 KDIT	KINF .18114 .17857 KDIT .02692
**************************************	**************************************	.08510 .08510 MVJ/MV9 .08465 (PT-PP)/(PT-P9)	403/401NF 405904 403/409 605860 60579)/(PT-P9) 1.09141	.05359 .05359 MVJ/WV9 .05327 (PT-PF)/(PT-P9)	AVIVA/LWM . 64159 MVJ/W99 . 04134 . (PT-PP)/(PT-P9)
(P-PP)/(PT-P) .51210 (P9-PP)/(PT-P9) .48166 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 25799 (P9-PP)/(PT-P9) 23266 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 13014 13014 (PT-PP)/(PT-PP) (PT-PP)/(PT-P)	(P-PP)/(PT-P) .08847 (PT-PP)/(PT-P9) .09141 (PT-PP)/(PT-P)	(4-74)/(44-4) .08548 (44-74)/(47-49) .08782 (4-74)/(47-4)	(P-PP)/(PT-P) .06A50 .06A50 (PQ-PP)/(PT-P) 1.06A50
P/PP 1,2493 p9/PP 1,2393 p1/PP 1,7361	P/PP 1.1118 pg/PP 1.1029 PT/PP 1.5450	P/PP 1.0534 P9/PP 1.0459 PT/PP 1.4639	P/PP 1.9871 P9/PP 2.0171 P1/PP 13.1449	P/PP 1,9220 p9/PP 1,9461 PT/PP 12,7197	P/Pe 1.6251 P9/Pp 1.6440 PT/Pe 10.7498
PP/P .80044 PP/Po .80691 PP/PT	09/P 08947 09/P0 001673 09/P7	99/99. • 94/929. • 94/929. • 95/99. • 95/99. • 95/97. • 95/97.	99/P •50323 99/Pq •49575 99/PT	99/P .52005 pp/Pq .51365 pp/pt	PP/P •61535 PP/PO •60427 PP/PT •09302
71 77 554.3 564.5 99/4 20 9920 .711 PP MOOT	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T 553.3 322.5 P9/P M9 1.0151 1.882 PP M0T M0T 116.7 .56197-04	11 554.0 322.0 p9/p NO 1.0121 1.884 pp MDOT 120.6 .50971-04	T1 T 556.0 324.1 99/P MA 1.0116 1.864 PP MD0T
1124.0 199 1115.0 17/11	1124.0 F9 1115.0 1177T .9908 101	7 1124.u 199 1116.U 11771 49909 106	9 231.9 29 235.4 235.4 11/11	4 23.69 234.7 17.71 12.9709	P 231.9 234.0 234.0 1P/1T .9764
1562. RII •2745+47 TP 552.5	1562. 1562. KH: *2745+U7 TP 552.2	1562. NII *2747+07 1P 551.8	FT 1534. KII. *2766+U7 1P 1P 540.9	FT 1534. REI -2761+U7 IP 1P 541.2	1534. KU 81.1 -2747+07 TP 542.9
AHFA •1964 772.8 PXL	AKEA 1964 772 V 772 V 772 U	A A A A A A A A A A A A A A A A A A A	AREA .1964 V 1065.4 FXL	AKEA .1964 .1966. V 1066.4 FXL	AREA .1964 V 1069.5 PYL
0 587.7 P16 896.7	837.7 P16 1012.0	9 387.7 P16 1068.0	581. 118.11	. 551.1 P16 122.8	6 581.1 P16 142.3
P05	755 1.75	POS 1.75	PCS 5.85	POS • 85	. e ह
1004 11 1064 11 M	COMM COMP 1065 11 M	COMM COMF 1060 11 M	COPR CONF 55c 11 M 1.892	CORR COMP 555 11 M 1.872	COKK CCNF 554 11 3 1.852

KINF 14292 K9 14008 KDIT 01988	KINF .11060 K9 .10625 KDIT	KINF .08547 .07804 KDIT .00728	KINF .07453 .06377 KDIT	KINF .30200 .26801 KDIT .07144	KINF .24270 .23158 .23158 .05741
MUJUNF 03072 MVJ/MV9 03053 (PT-PP)/(PT-P9)	MVJ/MVINF .02045 MVJ/MV9 .02030 .021-P9)/(PT-P9)	MVJ/MVINF .01124 MVJ/MV9 .01115 (PT-PP)/(PT-P9)	ANJ/MVINF 0.0749 MVJ/MV9 0.0743 (PT-P9)/(PT-P9)	**************************************	**************************************
(p-p)/(pr-p) • 05096 (p9-pp)/(pT-p9) • 05322 (p1-pp)/(pT-p)	(P-PP)/(PT-P) .03256 (P9-PP)/(PT-P9) .03543 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 01452 (P9-PP)/(PT-P9) 01748 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 00814 (P9-PP)/(PT-P9) 01117 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 17673 (P9-PP)/(PT-P9) • 19471 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 15415 15415 (PT-P9)/(PT-P9) 17159 1715/(PT-P)
P/PP 1.4010 pg/PP 1.4179 p1/PP	P/PP 1.2237 P9/PP 1.2427 P1/PP 8.0950	P/PP 1.0887 P9/PP 1.1066 P1/PP 7.2019	P/PP 1.0479 p9/PP 1.0655 p1/PP 6.931a	2.3278 p9/pp 2.4409 p1/pp 9.8412	P/PP 1.9902 P9/PP 2.085A PT/PP 8.4139
PP/P -71379 -71379 -70528 -10788	PP/P • 81716 PP/P9 • 80467 PP/PT	99/P •91850 99/P9 •90369 99/PT	PP/P .95429 PP/P0 .93851 PP/PT	PP/P •42959 PP/P9 •40968 PP/PT	PP/P .50246 PP/P9 .47943 PP/PT
556.4 324.3 P9/P Mq 1.0121 1.884 PP MD07 5.6 .29166-04	TT T 556.7 524.5 P9/P M9 M9 M0155 1.882 PP M00T M00T M00T M00T M00T M00T M00T M	TT T T P P P P P P P P P P P P P P P P	TT 559.8 P9/P Mo •0168 1.881 PP MOOT	TT T T T T T T T T T T T T T T T T T T	TT T 561.7 372.0 P9/P M9 .0480 1.565 PP MNOT -1 .84590-04
P 232.0 55 P9 P 234.8 1.0 IP/II PP .9756 165.6	231.9 5 P9 235.5 1. P/II P9.	4 231.9 55 99 P0 235.7 1.0 17/TT PP	231.9 55 P9 P1 235.8 1.0 1P/TT PP	366.4 5 P9 384.2 1. IP/TT 9793 157.	9 366.4 5 999.0 1. 19/17 P
1535. RU RU -2746+07 TP 542.8	1534. RII *2743+07 IP 542.7	1534. 1534. KU 80. 179. 179. 542.7	PT 1534. 1811 -2727+U7 TP 543.6	PT 1549. RU •3u37+07 TP 549.5	PT 1549. RU *3034+07 TP 549.5
AREA .1964 1670.U PXL	AMEA .1964	ARFA .1964 V 1671.3 PXL	AREA .1964 V 1673.9 PXL	AKEA .1964 1508.2 PXL	AKEA .1964 V 1506.8 FXL
6 581.3 P16 167.2	6 581.1 P16 193.3	6 581.1 P16 210.1	9 581.1 P16 220.1	653.3 P16 161.5	9 653.3 P16 187.6
P0S 5.85	. 408 5.85	P0S 5.85	P0S 5.85	Pos 5.85	P0S 5.85
CORR CONF 555 11 1.892	CORR CONF 556 41 1.892	CORR CONF 557 11 1.892	CORR CONF 554 11 1.842	CORR CONF 560 11 1.596	CORR CONF 561 11 11.596

KINF .17683 .16770 .16770 KDIT	KINF 13163 12255 12255 1011	KINF .09346 .08345 K9 .08365 .01769	KINF .07691 K9 .06160 KDIT	KINF .05399 .03761 KDIT	KINF .19322 .20064 .20064 .06974
MVJ/MVINF .05161 MVJ/MV9 .05059 (PI-PP)/(PT-P9) 1.14108	.03628 .03628 .03628 .03555 .03555 .10113	.02207 .02207 .02207 .02164 (PT-PP)/(PT-P9)	MVJ/MVINF .01313 MVJ/MV9 .01286 (PT-PF)/(PT-P9)	4.006.7 4.006.7 4.00.0/MV9 4.00664 (PT-P9)/(PT-P9)	MVJ/MVINF - 57436 MVJ/MV9 - 07521 (PT-Pµ)/(PT-P9) 1.26119
(P-PP)/(PT-P) • 12439 (P9-PP)/(PT-P9) • 14108 (PT-PP)/(PT-P) 1 • 12439	(PT-P)/(PT-P) •09361 (P9-PP)/(PT-P9) •11013 (PT-PP)/(PT-P) 1•09361	(P-PP)/(PT-P) 0.5829 (P9-PP)/(PT-P9) 0.074.17 (PT-P) 1.05829	(P-PP)/(PT-P) .02678 (P9-PP)/(PT-P9) .04255 (PT-PP)/(PT-P)	(q-19)/(qq-q) .01377 (q-19)/(qq-pq) .02889 .02889 (q-19)/(qq-19)	(P-PP)/(PT-P) 28754 28754 (PQ-PP)/(PT-P9) 26119 1.28754
P/Pn 1.6708 P9/PP 1.7497 P1/PP 7.0634	P/PP 1.4329 P9/PP 1.5018 P1/PP 6.0579	P/PP 1.2321 P9/PP 1.2910 PT/PP 5.2136	P/PP 1.0947 P9/PP 1.1482 PT/PP 4.6324	P/PP 1.0466 p9/PP 1.0963 p1/PP 4.4286	P/PP 2.0373 P9/PP 1.9620 P1/PP
99/99 -59853 99/99 -57154 99/91	PP/P .69787 PP/P9 .66589 PP/PT	PP/P • 81163 • PP/PG • 77462 • PP/PT	9/49 1346 19/49 19/99 19/99	PP/P •95550 PP/P9 •91217 PP/PT	99084 99084 99769 50970 99797
72 372.2 72 1.565 72 1.565 72 1.66	11 -0 372-3 /P M9 P0 1.565 MD01 -42834-04	11 1 -5 372.5 /P N9 78 1.565 MDOT	11 13.0 •1 373.0 /P Ma P9 1.565 MDOT •15490-04	11 •1 372.9 /p mq /p 1.566 PDOT •79880-05	11 5.0 413.3 7/P M9 3.0 1.32.8 M001 1.10416-03
11 561.9 P9/P 1.0472 PP 219.3 .bn	77 562.0 pg/p 1.0420 PP PP	77 562.5 10,0478 10,0478 PP 297.3 .26	71 563.1 10/10 1.0469 100 100 334.6 .15	71 563.1 1997/P 10475 199 350.0 .798	17 553.0 1977 9630 197 276.0 .104
36c.4 Py 38.7 11/11	960.4 999 384.0 17/41	9 360.3 Py 383.4 11/11 9758 20	360.3 Py 384.4 37.41 97.37	4 360.3 P9 383.7 1P/11	562.3 562.3 P9 541.5 1P/11
1545. 1545. 83032+07 179 549.5	1545. 1545. 103. 103. 17 549.0	1550. KU *3030+67 1P 548.9	FT 1550. RU 83024+07 TP 548.3	PT 1550. KU 3025+07 TP 548.0	PT 1558. RU: •3295+U7 TP 543.5
AHFA .1564 .0 v .0653.3 1505.2 P16 PYL 222.6 .0	.1964 .1964 .1509.4	Ahea .1964 0 V 654.0 1510.7 P16 PXL 297.0 .0	AKEA .1964	AKEA .1964 1511.6 PXL	AREA .1964 .0 V 665.2 1295.4 P16 PXL 274.8 .0
653.4 P16 222.6	653.3 P16 258.5	654.0 P16 297.0	654.0 P16 336.2	6 654.0 P16 350.9	665.2 P16 274.8
, v v v	F05	+05 5 +65	F0S 5•85	. Pos 5.85	ئ 85 85
				1.597	
ССКи СО1.F 562 11 М 1.596	СОКИ СОМР 563 11 1.596	COFK COWF 564 11 1.597	CUKR CUNF 560 41 1.597	CUKR CUMF POS 5to 11 5.85 1.597	COKK CONF 571 11 1.340

KINF .18041 K9 .18995 KDIT	KINF .12224 .12938 .12938 KDIT	KINF • 08123 • 08873 • 02399	KINF .03177 .03925 .03925 KDIT	KINF .01273 .01917 .01917 .00239	KINF .23827 .26046 KDIT .11139
WJ/W/LVW \$00900 WJ/WW \$06900 \$06900 \$06900 \$06900 \$06900 \$060000 \$06000 \$06000 \$06000 \$06000 \$06000 \$06000 \$06000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$060000 \$0600000 \$0600000 \$0600000 \$06000000 \$060000000 \$0600000000 \$060000000000	407MVINF 404395 404,7MV 504438 407-P7)/(PT-P9) 1.14924	MVJ/MVINF .02560 MVJ/MV9 .02585 (PT-P9)/(PT-P9) 1.09266	0.0740 0.0748 0.07755 0.00755 1.03541	MVJ/MVINF .00255 MVJ/MV9 .00258 (PT-PP)/(PT-P9) 1.01660	.11235 .11235 MVJ/MV9 .1392 (PT-PP)/(PT-P9)
(P-P)/(PP-P) (P9-PP)/(PT-P9) (P1-PP)/(PT-P9) (P1-PP)/(P1-P)	(P-PP)/(PT-P) 17091 (P9-PP)/(PT-P9) 14924 (PT-P)/(PT-P) 1,17091	(P-PP)/(PT-P) 11295 (P9-PP)/(PT-P9) 09266 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 05523 • 05523 (P4-PP)/(PT-P9) • 03541 • 05523	(P-PP)/(PT-P) *0.3854 (P9-PP)/(PT-P9) *0.1660 (PT-PP)/(PT-P)	(P-PP)/(PT-P) ,49000 (P9-PP)/(PT-P9) ,38631 (PT-P)/(PT-P)
P/PP 1.0966 1.097PP 1.6272 P1/PP	P/PP 1.4303 P9/PP 1.3861 P1/PP 3.9887	1.2508 p9/Pp 1.2096 p1/Pp 3.4716	7/PP 1.1090 1.07/PP 1.0712 1.078 3.083	P/Pp 1.0734 pg/Pp 1.0321 pT/Pp 2.9771	2.2634 p9/Pp 2.0705 p1/Pp +.8416
94/9 58812 94/49 61156 97/41	PP/P .69626 PP/PQ .72040 PP/PT	00/00 00/00 00/00 00/00 00/01	4/44 90169 90749 93349 74/99	99/6 • 93/64 • 96/72 • 96/72 • 97/74	44182 94182 94799 948394 97797
11 14.0 •5 414.0 /P MO 79 1.330 MOOT •96646-04	T T T T T T T T T T T T T T T T T T T	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71 7 414.2 79 60 59 1.326 MOOT 10440-04	TT T T T T T T T T T T T MO T MO T T 1.329 MD T MD T T 1.329 MD T T T T T T T T T T T T T T T T T T	11 1 •5 449.5 //P Mo 48 1.172 MOOT •16566-03
11 553.5 pg/p .9579 pp .9539	TT 553.9 1997 9665 1997 74	11 554.3 1997 .0670 9 pp	TT 554.7 p9/P .9659 pp	55.55 50.05	TT 558.5 P9/P .0148 PP 9
563.0 583.0 539.9 17711 .9814 33	561.0 99 542.4 1P711 9803 35	4 561.0 99 542.5 17741 9787 44	560.4 P9 541.3 1771 9789 50	541.7 199 540.2 117.11 19757 52	P 72c.6 P9 P9 P60.7 IF/11 32.9875 32.
AKFA 1556. V KU 1294.5 .3290+U7 PYL TP .0 543.2	1158. 1158. KI! 7280-U7 17 543.0	PT 1357. KU: 8281+07 TP 542.5	AREA PT 1964 1558, 0 V KU 065.0 1296.8 .3279+07 P16 FXL TP 503.7 .0 541.9	FT 1556. HU *3279+U7 TP 541.5	PT 1559. KIII 3239407 1P 551.5
AKFA .1964 V 1294.5 PYL	AHEA .1964 .1964 V V b64.7 1297.0 P16 PXL 591.0	ARFA .1964 0 V 664.7 1297.6 P16 PXL 450.2	AKEA .1964 .1964 1292.8 .7XL	AHFA .1964 0 V V 005.5 1298.6 P16 FXL 522.3	AREA .1964 0 V 614.4 1144.1 P16 PXL
6 664.7 716 335.9	6 64.7 716 391.0	0 664.7 P16 450.2	6 665.0 716 503.7	0 665.5 P16 522.3	614.4 F16 320.5
5.85 5.85	5.85	705 5.85	708 5.85	7.05 5.85	705 5.85
1.248	573 11 573 11 1.301	COKA CCNF 5/4 11 1.301	575 11 575 11 1.302	5/0 11 5/0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	570 11 570 11 1.101

KINF .20855 .23078 .E3078 .E017	KINF .18115 K9 .20633 KDIT	KINF •14202 K9 •17463 KDIT •05937	KINF .09595 K9 .14839 KDIT	KINF 07684 K9 15560 KDIT	KINF •31747
407W/UVV 40964A 4099/WV 40999) 40999) 1,30052	.08246 .08246 .08246 .08362 .08362 .01-PP)/(PT-P9)		**************************************	.02334 .02334 .02366 .02366 .02366 .127-PF)/(PT-P9)	. 18937 . 18937 . MVJ/MV9 . 18890 . 187-79).
(PT-P)/(PT-P) .400.99 (PT-PP)/(PT-P9) .30052 (PT-PP)/(PT-P)	(P-PP)/(PT-P) •30736 (P9-PP)/(PT-P9) •21897 (PT-PP)/(PT-P)	(P-PP)/(P1-P) .22642 (P9-PP)/(P1-P9) .13779 (P1-PP)/(P1-P)	(P-PP)/(PT-P) 12933 (P9-PP)/(PT-P9) 004991 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 0.05688 (P9-P9)/(PT-P9) 0.02186 (PT-P)/(PT-P)	(P-PP)/(PT-P) 75463 75463 (P4-P9)/(PT-P9) 71898 (P-T9)/(PT-P)
1.4347 1.4347 1.671 1.671 91/PB	P/PP 1.5418 P9/PP 1.4139 P1/PP 3.3044	P/PP 1.3435 P9/PP 1.2253 PT/PP 2.8666	P/PP 1.1721 pg/PP 1.071u pt/PP	P/PE 1.1243 P9/PP 1.0301 P1/PP 2.4074	P/PP 2.091A P9/PP 2.061A PI/PP 3.5387
PP/F • 54625 PP/PG • 59832 PP/PT	PP/P .64861 .007.00 .707.24 .30263	92/P	PP/P • 45317 • 03332 • 03332 • 09/PT	PP/P •88944 1 PP/PP 1 •07077 1 PP/PT 2	PP/F -478US 2 -485UN 2 -485UN 2 -785959 3
11 4.5 440.8 7/P MG 30 1.171 WD01 *14529-03	11 3.6 4493.3 4.7 12 MPOT 12160-03	71 -9 450.4 /P MO 20 1.17! MOOT -88263-04	TT T T T T T T T T T T T T T T T T T T	449.0 M9 M9 1.171 M001	480.1 MO . 913 POOT
TI 5.84c 19/p 913U pp	77 558.6 1977 171 171 171.8 .121	71 558.9 297P 9120 PP 545.0 .882	559.2 697.4 60141 622.9 .485	TT 0.2 9/P 162 .343	71 7.9 4/6 57
7.05.0 9.4 9.79 3.73.1 17.71.1	727.4 727.4 99 067.1 17.71 •9800 47	732.42 99 967.8 1P/TT •9846 54	730-1 P9 567-4 1771 •9857 622	726.1 55 P9 P 667.1 .9 P7 TT/1	915.5 557 99 PS 90.2 99 14/11 436.6
1159. 1559. 111. 123.394U7 17 551.3	1559. 1559. 181 1840.407 170 550.8	FT 1559. Rt. *3<30+07 TP TP 550.3	1559. 1559. KIII -3235+07 TP 550.1	1559. 1559. 101 3235407 17 1	PT 1545. INC. INC. 170. 170. 1
AHFA 1964 0 V 017.9 1142.4 FI6 FXL 401.2 .0	1146 . 1 . 1 . 1	AKE A .1964 1142.2 ' PXL		Ake A .1964 1145.7 .3 PXL	AKEA .1964 .966. 6
6 617.9 F16 401.2	614.0 716 716	617.9 1 P16 547.0	AKFA .1964 0 V 618.4 1144.U P16 PXL	0 618.9 1 P16 651.4	6 517.8 5 P16 437.5
0.1 5.85 41 5.85 42 0.59	7 F0S	5 + 65 8 + 65	5.85 5.85	. v . v . v . v . v . v . v . v . v . v	204 204 30 30 30 4
563 CONF 563 A1 3 1.059	550 COVE 550 11 1-103	561 11 th	582 11 5 582 11 0 M 1.1υθ	COPH CONF 11 5 563 11 5 M M	COKn CONF + 564 11 5.

KINF .29777 K9 .30319 KDIT .17501	KINF .25656 K9 .26333 KDIT .14412	KINF .18702 .19391 KD17 .09351	KINF 12462 K9 13348 KDIT 004895	KINF .04416 K9 K978 KDIT KDIT	KINF 43492 K9 K9 44120 KDIT
.17650 .17650 .17650 .17614 .17614 (PT-P9)/(PT-P9)	WUJ/MVINF 0.14557 WVJ/MV9 0.14510 (PT-PF)/(PT-P9) 1.43013	**************************************	.04937 .04937 .04937 .04927 .04927 .14602	.0134V .01341 .0134V .01339 .01339 .01799)/(PT-P9)	wvJ/mvInk 34311 wvJ/wv9 33970 (PT-PF)/(PT-P9)
(P-FP)/(PT-P) 60513 (F9-PF)/(PT-P9) 56981 (PT-FP)/(PT-P) 1.60513	(P-PP)/(PT-P) 46497 (P9-PP)/(PT-P9) 43013 (PT-PF)/(PT-P) 1,46497	(P-PP)/(PT-P) .31662 (F9-PP)/(PT-P9) .28762 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 4.17145 4.17145 (P9-PP)/(PT-P9) 4.14602 (PT-P)/(PT-P) 1.17145	(9-79)/(94-9) 904-64 (94-94)/(94-99) 907294 1-191/(94-64)	(P-P)/(PT-P) 1.30414 (P9-PP)/(PT-P9) 1.2239 (PT-P)/(PT-P)
P/Pp 1.7170 pg/Pp 1.6912 p1/Pp 2.9041	P/PP 1.4672 pg/Pp 1.4427 p1/Pp 2.4720	07/40 1.2797 1.2594 1.2594 1.259	P/PP 1.1343 19/PP 1.1169 17/PP 1.9176	P/PP 1.0703 pg/PP 1.0553 PT/PP 1.8130	P/PP 2.0190 p9/Pp 1.9903 p1/Pp 2.8004
PP/F -58212 - PP/PQ -59131 - PP/PT - 34434	68157 99/99 64314 99/97	95/99 .78176 .78176 .79409 .79409 .46278	PP/P .48161 .PP/Po .49532 PP/PT	. 03433 . 03433 . 04763 . 04763 . 55159	49524 49524 60744 60744 69757
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1400.6 M90 •912 PD01	11 4,4 470,8 1/P Ma 145 .913 MOT 13796-03	TT	11 10 10 10 10 10 10 10 10 10	11 •5 503.1 /p mg 55 •716 MOOT •46887-03
11 558.U 99/P 98/5 9P 75 532.n .25	TT 557.8 1977 1978 1983 198	17 557.4 P9/P 9845 PP P15.0	71 556.9 1977 9847 199 805.7 .72	11 557.u 69/P 9486U 94 9268	552.5 997P 9858 9858 PP 97 556.7 .466
4 512.9 P 99.7 7.411 7.912 5.	917.0 99 901.7 901.7 9907 6	914.6 Py 90u.4 1P/11 17/896	913.9 P9 899.9 11/411 9878 81	912.1 P9 899.3 H7/11	1124.0 1124.0 1108.0 17/11
1545. 1545. 881. 3046+u7 1P 553.1	1545. 1545. HI 33440+07 1P 552.6	FT 1545. KII 83049+07 TP 551.6	FT 1545. RE: 3054+07 TP 550.1	FT 1545. RU 83050+07 TP 549.6	1554. 1554. 101. 17. 17. 550.5
AHFA • 1964 • 466 • 8 • 7 XL	AAFA .1964 . 1964 . 1	1564 1964 V 965.2 PXL	. 1964 . 1964 . 1964 . 1971	. 1964 V 967.7 VYL	.1964 .1964 .765.6 .765.6
0 516.2 P16 530.7	0 515.3 716 623.7	0 517.4 F16 714.6	0 514.2 P16 803.9	0 519.5 716 848.3	0 345.5 P16 556.1
705 5.85	F0S 5.85	F05 5•85	7. 5.85	٠ 8 . 8 .	F05
41 41 400 .900	F	11 11 849	11 11 5000	11 11 4902	COLF 41 41 M
ر د د د د د د د د د د د د د د د د د د د	СОК _R 58/	7.40J	592 592	544 544	CCKK 594

KINF .50342 K9 .51285 KDIT .35910	KINF .42160 .43230 .43230 .28330	KINF .31878 .33101 KDIT .19058	KINF •18173 89 •19841 KDIT	KINF .08898 K9 .10601 KDIT .03000	KINF 11711. 71711. 7171. 712032 717.
.39347 .39347 MVJ/MV9 .38926 (PT-PP)/(PT-P9)	*30982 *30982 #VJ/MV9 *30654 (PT-PP)/(PT-P9)	WVJ/WVINF \$20777 WVJ/WV9 \$20534 \$1,47108	**************************************	. 03095 . 03095 . 03064 . 03064 (PT-PP)/(PT-P9)	MVJ/MVZNF .02650 .02650 .MVJ/EV9 .02677 .(PT-P9)/(PT-P9)
(P-PP)/(PT-p) 1.03256 (PT-PP)/(PT-P9) 95578 (PT-PP)/(PT-P)	(q-fq)/(q-q) 77477. (pq-pq)/(pq-pq) 718817. (q-fq)/(q-fq)	(P-PP)/(PT-P) • 52844 (P9-PP)/(PT-P9) • 47108 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .25459 (P9-PP)/(PT-P9) .20485 (PT-PP)/(PT-P)	(P-PF)/(PT-P) 12414 (P9-PP)/(PT-P9) 08426 (PT-PF)/(PT-P)	(9-P9)/(PT-P) • 06307 • 06307 • 05949) • 05949) • 06307
1.6584 p9/Pp 1.6335 p1/Pp 2.2964	P/Pp 1.4362 59/Pp 1.4065 PT/Pp 1.9855	9/Pp 1.257A p9/Pp 1.238A p1/Pp 1.7457	P/PP 1.1096 P9/PP 1.0918 P1/PP	P/Pp 1,0505 P9/Pp 1,0355 PT/Pp 1,457n	P/PP 1.550x 1.99/PP 1.520a PI/PD
09/0 .60293 PP/P9 .61217 PP/P1	94/99 -69920 -70995 -70995 -7096	PP/F • 79502 PP/P9 • 80723 PP/PT	PP/P • 90125 PP/P0 • 91591 PP/PT	99/P •05196 99/P0 •96570 99/P1	PP/P -64505 1 PP/P9 -65756 1 PP/P1 1
11 -3 503.2 7/ MP 49 49 715 MPOT 53705-03	TT T T T T T T T T T T T T T T T T T T	11 1 -9 502.6 /P MO 49 .718 MDOT -28406-03	T1 T T T T T T T T T T T T T T T T T T	TT T T T T T T T T T T T T T T T T T T	730.77 M9 M9 1.005 M001
11 552.3 1997 99849 94	11 552.1 99/P .9849 PP	77 551.9 1977 19849 199 1993.6 .284	~ 0° ac	TT 1.8 9/P 858 .423	7.7 9.79 9.79 810
1126.u P9 1109.u 17/11	1123.u 1123.u 1106.u 14/11	1124.0 1107.0 1107.0 14/17	P 1124.U 55 P9 P 1100.U .9 1-/17 9942 1013.0	1124.0 55 p9 P 1108.0 .9 1771 PP	231.3 56 P9 P 220.9 .9 11/11 149.2
1359. RU *2741+u7 TP 549.8	1559. 1559. 11. 12. 17. 549.8	1560. 1560. RU 2748+U7. TP 549.3	1360. RIII -2753+07 TP 546.7	1559. 1559. KU) -2748+U7 TP 1	1533. RII -2060+U7 TP II
767. V V V V V V V V V V V V V V V V V V V	AKFA • 1964 770.4 PXL • 0	AKEA .1964 769.2 PXL .0	AKE A • 1964 V 776.2 • FXL	AKEA .1964 769.2 . PXL	AKEA .4484 . 4 V 1087.3 .2 PYL
0 384.U P16 680.7	386.3 P16 783.7	0 385.5 P16 492.7	9 396.6 716 1011.0	385.5 P16 1068.0	0 580.2 148.2
FCS 5•85	P05	POS 5.85	P05 5.85 1	F0S 5.85 1	90 • 00 • 1
10 11 20 8 40	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 × 31 × 31 × 31 × 31 × 31 × 31 × 3	LONF 13 10 10 10 10 10 10 10 10 10 10 10 10 10		
0.400 0.400 0.400	54°0	597	5 % o % o % o % o % o % o % o % o % o %	555 11 575 11 π 700	CUKA COMF 2

COFF COLF FOS		AKFA 0 .4464 0 V 581.6 1086.7 716 PXL 167.1 .0	1535. 1535. ***********************************	232.0 220.0 220.0 1P/1T .9516	568.2 09/P .9837 PP 106.9 .41	71 •4 331.5 /P Ma 37 1.900 MOT *41697-04	99/99 •71754 •9/99 •72944 •9/91	1.3934 pg/Pp 1.3709 pT/Pp 9.1851	(P-PP)/(PT-P) 05052 05052 (P2-PP)/(PT-P9) 1.05052	-01942 -01942 -01942 -01959 -01959 -01959 -019746	KINF .09054 .09321 .09321 .01260
Pos 00•		AKEA . 4484 V V 1088.3	1533. RII. -2058+U7 1P 540.3	231.9 231.9 220.4 11/11	569.2 99/P 9849 9 PP 188.3	71 -2 331.8 /P Ma 49 1.901 MOOT -22618-04	90/pd 91199 90/po 92443 90/pt	9/P0 1.2315 99/Pp 1.213n 91/Pp	(9-79)/(99-9) 03351 (99-79)/(97-99) 03074 (9-79)/(97-79)	**************************************	KINF .05649 .05886 KDIT
201 00.	580.5 P165 216.9	AKFA .4464 V 1089.1 PXL	1533. RII *2655+U7 TP 538.4	231.9 P9 227.0 1P/11	77 569.7 09/P .9789 PP PP	TT 7.32-17.7.32-11.7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	99/PP .91721 .99/P9 .937UN .99/PT	1.090x 197/Pp 1.067> PT/Pp 7.2073	(P-PP)/(PT-P) .01476 .01476 .01095 .01095 .01095 .01476	**************************************	KINF .01777 .02057 .02057 .00152
80.	0 580.2 P16 224.2	AKEA .4484 V 1690.9 PXL	1534. RU: *2651+U7 TP 537.9	231.3 P9 225.2 11/11	77 570.1 99/P 978U HP	TT T T T T T T T T T T T T T T T T T T	PP/P .96455 PP/PG .08630 PP/PT	P/PP 1.0368 P9/PP 1.0139 PT/PP 6.8759	(P-PP)/(PT-P) .00629 (P9-PP)/(PT-P9) .00237 .0037 (PT-P)/(PT-P)	**************************************	KINF .00894 .01453 KDIT .00051
.00 • 00	0 580.5 P16 229.4	AHEA . 4464 V 1090.1 PXL	1533. RU 8107 179 179 537.7	7 231.9 22 226.0 226.0 27777	71 570.4 33 99/P 9832 1. A P 629.6 .00000	332.5 RG 1.002 MOOT UOU	9790 99009 99/99 100700 19/99	P/Pp 1.010 n pg/Pp .993n pT/Pp 6.6768	(q-19)/(qq-q) 70177 (pq-pq)/(p1-pq) -010123 -10123 -10123	ANIVM/LVM 00000. 90M/LVM 00000. (94-Tq)/(44-Tq)	KINF • 00000 • 00000 • 00000
.00 • 00	652.7 P16 230.7	AKEA .4484 V 1521.5 PXL	FT 1548. RU 7407 17 17 544.1	965.6 99 962.7 11/11	570 P9 • 99 PP	TT T -6 377.8 /P Na /2 1.603 MOOT -11812-03	PP/P .63184 PP/PG .63/680 PP/PT	P/Pn 1.5827 P9/Pp 1.5701 P1/Pp 6.7013	(P-PP)/(PT-P) 11384 (P9-PP)/(PT-P9) 11111 (PT-PP)/(PT-P)	MUJMVINF • 04421 • 04425 • 04435 • 04-101/(PT-P9)	KINF 15363 89 15525 KOIT

KINF 12534 89 12655 7017	KINF .09125 .09258 .09258 .01760	KINF .05410 .05563 .05563 .00771	KINF .02830 .03018 .03018 KDIT	XINF .00000 .00000 KDIT	KINF .22931 .89 .23376 .07995
.03416 .03416 .03419 .03429 .03429 .1.08815	**************************************	.00963 .00963 .00963 .00965 (PT-PP)/(PT-P9)	**************************************	ANIVW/LVW 00000, WYU/WW 000000, (PT-PQ)/(PT-PQ)	MVU/AVINF • 08526 MVU/WV9 • 28562 (PT-PF)/(F*-P9) 1 • 885
(P-PP)/(PT-P) • 09008 (PQ-PP)/(PT-P9) • 08415 (PT-PP)/(PT-P) 1.09008	(P-PP)/(PT-P) • 06143 • 06143 • 06143 • 06143 • 06143 • 06143 • 06143	(p-pp)/(pj-p) 0.02041 0.02041 0.0276 0.02776 0.02776 1.02941	(P-PP)/(PT-P) *01328 (P9-PP)/(PT-P9) *01165 (PT-PP)/(PT-P)	(PT-P) •00025 (P9-PP)/(PT-P9) •00127 (PT-PP)/(PT-P) 1•00025	(P1-P)/(P1-P) 19773 (P9-PP)/(P1-P9) 18855 (P1-PP)/(P1-P)
1.4116 p9/Pp 1.4035 p1/Pp 5.9807	P/PP 1.2467 P9/PP 1.2410 P1/PP 5.2885	P/Po 1.1052 P9/PP 1.0995 PT/PP	P/FP 1.0449 P9/PP 1.0394 P1/PP	9//PP 1.0008 19//PP .9959 17//PP	P/PP 1,5402 P9/PP 1,5191 P1/PP 4,2720
70942 070942 07175 071757 08771	78/15 • 80115 • 90/19 • 90/17 • 1890	98/PP. 90/81 90/95 90/95 90/95 1354	94796. 945706 194799. 946206 197797	99918 99918 99799 1.00412 99791	90/99. 64/92. 90/99. 65/8/9. 90/97.
11 •7 377.6 /P MO 43 1.602 WDOT •91333-04	11 1 •6 377.9 /P M9 43 1.6402 MD01 •58728-04	TT T T T T T	11 18.1 •1 378.1 /P Ma 48 1.601 MDOT •93162-US	378.2 MC 1.601 MDOT 00	11
11 570-7 1947P 9943 99 99 259-0 -91	77 570.6 99/P 9943 HP 792.9.58	71 570.8 997.9 9948 PP 7330.8 .25	77 571.1 1997.p 9948 PP 949.931	571.2 571.2 79.4 9951 10 99 M	တက
363.0 9.04 9.04 363.5 11/11	P5 365.8 363.5 1P/TT .9516 29	4 365.6 7.363.7 1P/TT .9495 33	7 365.6 99 363.7 11/11 •9468	7 365.6 P9 363.8 17/11	9 561.7 59 99 954.0 97 TI/46
1349. 1349. *2969+U7 TP TP 544.2	1549. 1549. 111 12 17 17 543.2	FT 1545. *2968+u7 TP 542.0	1348. 1348. KU. 2964+U7 TP	1544. 1544. KU 7553+u7 17 540.0	PT 1558. KII *3194+U7 1P 547.0
AKFA 4484 V V 653.5 1524.4 P16 FXL 264.5	AREA .4484 0 V e53.5 1522.6 P16 PXL 294.4	AKEA .44P4 0 V 653.5 1522.6 P16 PXL 330.3 .0	AKEA . 4484 1522 . v	AKEA . 4464 . 1522.3	
653.5 P16 264.5	0 653.5 716 294.4	o 653.5 P16 330.5	6 652.7 7.00 916 349.4	652.7 j	AKEA . 4484 0 V 665.5 1311.5 P16 PXL 364.0 .0
7. 20. 20.	. 00 ° 00 ° 00 ° 00 ° 00 ° 00 ° 00 ° 00	609 • 00	₽08 • 00	204 00 •	804 000
1.00. T. 1.00. I see the see t	COKK CONF 20 1 1.558	COMM COLF 29 1 29 8 1.598	500 CONF 50 1 1.597	COKA CONF 31 1 31 1 31.557	COMM COMF 33 1 1.301

KINF .15248 .15791 KDIT .04558	KINF .09577 .10264 KDIT .02215	KINF • 02854 • 03354 KDIT • 00455	KINF .00000 .00000 .00000 .00000	KINF •31702 •30034 •30034 KDIT •12868	KINF •29241 K9 •27178 KDIT
AVJ/WVINF • 04861 MVJ/MV9 • 04882 (PT-PP)/(PT-P9) 1•10784	*NJ/MVINF *n2363 MVJ/MV9 *n2373 (PT-PP)/(PT-P9)	-WJ/WVINF - 00485 - 00485 - 00487 - 00487 - (PT-PP)/(PT-P9)	-00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000	WUJ/WVINF •12982 WVJ/MV9 •12937 (PT-PP)/(PT-P9)	401/W/LV2 10992 10955 10955 10955 10497
(P-PP)/(P1-P) 11673 (P9-PP)/(P1-P9) 10784 (P1-PP)/(P1-P)	(P-PP)/(PT-P) .06163 (P9-PP)/(PT-P9) .05317 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .02722 (P9-PP)/(PT-P9) .01954 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .00673 (P9-PP)/(PT-P9). 00139 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .20863 .20863 (P9-PP)/(PT-P9) .23888 (PT-PP)/(PT-P)	(PT-PP)/(PT-P) 16357 (PQ-PP)/(PT-P9) 19497 (PT-PP)/(PT-P)
P/PP 1.2511 P9/PP 1.2432 PT/PP 3.4980	1.1227 p9/Pp 1.1067 p1/Pp 3.1141	P/PD 1.0504 p9/PD 1.0366 PT/PP 2.9111	P/PP 1.0121 P9/PP .9975 P1/PP 2.8042	P/F0 1.3144 P9/F0 1.3512 P1/P0 2.8212	P/PP 1.2293 P9/PP 1.2662 P1/PP
PP/P .79295 .00/P9 .80441 .PP/PT	99/99 99/99 90356 99/97 99/97	99/PP .95181 99/PP .96467 PP/PT	98/99 98/99 90/99 10/0553 97/94	PP/F • 76082 PP/P9 • 74011 PP/PT • 35446	PP/P • 41345 PP/P9 • 7897A PP/P1
TT 42%.0 0.1 42%.0 10.1 10.3 11 10.0 11.3 11 11.3 62-03	11 •6 422.p /P NO 58 1.311 MFOT •74691-04	TT 0.0 423.0 7/P MA 67 1.310 MDOT 15330-04	11 9 42.7 9 Mo 10 112.1 112.1 100.000	11 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11 • 0 453.0 • 0 A • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 566-1 997P 9858 9P 9P	565.8 99/P 99/P 9858 PP 500.3 .74	11 566.0 99/P 9867 9P PP	11 565.9 1972 9456 12 12 15556	TT 563.3 99/P 1.0280 PP 551.9 .43	17 563.U P9/P9 1.030U PP
5652 1.162 1.553 1.711 1.9652	4 7.136 79 99 75.05 11/41 5.636	9 562.3 99 554.8 1171 9595 5:	4 562.3 199 554.2 11/11	7 8-357 7-347 7-347 11/41	4 727 49 89 749.5 17.41 55 7079.
PT 1554. RU •3194407 TP 546.4	1554. Ri. •3190+u7 IP 545.2	FT 1556. R() 3195+07 TP 543.1	1558. RIII -3195+07 TP 542.1	1557. 1557. HU *32(11-07 1P 548.9	PT 1557. KI: 63263407 fP 549.9
AKFA .4484 0 V 665.5 1311.5 P16 FXL 446.0 .0	AREA , 4484 N V 065.5 1511.2 P16 FXL 499.4	AREA . 4484 V V 1310.5 FXL	AKEA .4484 V 1316.5 FXL	ΑΚΕΑ . 4484 ο V 618.9 1151.6 P16 PXL 551.9 .0	AKEA .44F4 0 V 616.4 1149.6 F16 FXL 590.4 .0
665.5 P16 446.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 665.2 7 F16 554.1	618.9 P16 551.9	616.4 F16 590.4
200 000	. uo	900 900 900	900 900	200 000	• 00
1.34 LC.17 34 1.36.1	СОКК СОМЕ 30 1 1.301	CUKK CONF 50 1 1.300	CUMM CONF 3/ 1 1.3u0	CORR CONF 50 1 M 1.104	СОКА СОМЕ 34 1 34 1 1.102

KINF .23711 .20505 KDIT .06673	KINF .16831 .12459 .12459 .02996	KINF .00000 .00000 .00000 .00000	KINF .47571 .46936 .46936 .4017	KINF .38626 .89 .38437 KOIT	KINF .29510 K9 .28771 KDIT
.002/WUNF .06723 .06723 .06703 .06703 .111444	MVJ/MVINF • 03019 • 03019 • 03011 • 05022 1 • 05822	MVJ/W/INF 00000. WVJ/WY9 00000. (PT-PP)/(PT-P9)	MVJ/MVINF 224252 MVJ/MV9 624285 (PT-PP)/(PT-P9)	**************************************	.10581 .10581 MVJ/MV9 .10581 (PI-PP)/(PI-P9)
(P=PP)/(PT=P) 018295 (P9=PP)/(PT=P9) 011444 (PT=PP)/(PT=P) 1 08295	(PT-P)/(PT-P) • 03102 (PT-PP)/(PT-PP) • 05R22 • 05R22 • 05R22	(P-PP)/(PT-P) -,02572 (P9-PP)/(PT-P9) 00411 (PT-PP)/(PT-P)	(P-P)/(PT-P) • 32617 • 32617 (PT-P9)/(PT-P9) • 33831 (PT-P)/(PT-P)	(P-PP)/(PT-P) .26451 (P9-PP)/(PT-P9) .27193 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 13602 (P9-PP)/(PT-P9) 14418 (PT-PP)/(PT-P)
p/Pp 1.1041 p9/Pp 1.1395 p1/Pp 2.3587	P/FP 1.0366 P9/PP 1.0670 P1/PP 2.2175	6776 69766 1.0044 77769 2.0757	1,2889 p9/pp p9/pp 1,297n pT/pp 2,1748	P/Pp 1.2266 pg/Pp 1.2369 pT/Pp 2.0800	P/Pe 1.1037 1.1091 1.1091 PT/Pe 1.8661
9/49 40574 407756 77756 79/79	99/9 .96467 99/60 .93729 99/77	99/P 1.0223 1.0223 1.0223 0.095/P 1.08176	PP/P •77583 PP/Pa •77103 PP/PT	99/0 -81393 99/99 -81241 99/97	99/9 • 90604 • 90/60 • 90160 • 53588
11 -2 452.6 /P Mo 21 1.075 MOOT -22555-03	TT T T T 4.8 4.52.1 AG MG	T 452.2 Mo 1.074 MDOT	11 14 481.7 7P 49 62 892 MOOT 80709~03	TT T T T 481.44 A/V MG . 899 MD MOT . 899 MD . 61112-03	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
562.2 p9/p 1.0321 pp	TT 561.8 99/P 1.0293 PP	561.7 45 P9/P 1.0336 1. PP M	11 559.4 P9/P 1.0062 PP	77 559.5 P9/P 1,0019 PP PP	77 559.6 P9/P 1.0049 PP 827.4 .352
726.6 P9 75.22 17.71	7 4.727 7.047 7.047 7.047 7.047	728.8 894 753.4 11/11	914.5 914.5 920.2 17/11	9 12.0 199 913.7 17.71	913.2 913.2 917.7 11/11
155/. 155/. HI' 321u+u7 TP 549.2	PT 1556. KU 7211+U7 TP 548.2	PT 1557, RU *3213+07 TP 545.4	PT 1543. RU 83030+u7 TP 556.6	PT 1544. NII 83034+07 TP 550.3	PT 1544. KII. •3029+07 TP 550.0
AKEA . 4484 V 1148.1 PXL	AKEA . * * * * * * * * * * * * * * * * * * *	AKEA . 4484 . 4484 . 0	A # # # # # # # # # # # # # # # # # # #	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AKEA . 4484 V 57. V PXL
618.4 716 657.9	619.4 P16 691.1	618.4 P16 744.1	516.2 P16 707.2	0 518.3 P16 746.2	6 516.6 P16 835.1
7 • 22 20	00.	201 00.	.00 • 00	P08 • 00	7 . 0 0 2 0
1007 CONF	CORR CONF 4c 1 1.102	CORR CONF 4.5 1 1.101	COKK CONF	СОКА ССПЕ 4 0 1 1 0 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 140 140 140 140 140 140 140 140 140 1

KINF .18354 K9 .17290 KDIT	KINF .00000 .00000 KDIT	KINF .49753 K9 .49753 KDIT	KINF .26932 K9 .26458 K0IT	KINF .00000 K9 .00000 .0011	KINF 19937 89 19983 KDIT
TNI/MVINA +0470. 404/LVM 904/P09 (P1-P9)/(P4-I9)	ANJ/MVINF 00000 MVJ/MW 00000 00000 (PQ-FQ)/(PG-FQ)	.23900 .23900 .23900 .23902 .23902 .23502 .1.25057	MVJ/MVINF • 09439 • 09439 • 09453 • 07-P9) • 13134	MUJ/WVINF MUJ/WV9 MVJ/WV9 . 00325 . 00325 . 09309	**************************************
(P-PD)/(PT-P) .06582 (P9-PP)/(PT-P9) .07484 (PT-PP)/(PT-P) 1.06582	(q-79)/(qq-q) (00,000) (pq-q)/(p1-pg) (p1-q)/(q1-q) (q-79)/(q1-q)	(P-PP)/(PT-P) -25057 (P9-PP)/(PT-P9) -25057 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 12615 (P9-PP)/(PT-P9) 1334 (PT-P)/(PT-P)	(4-74)/(44-4) 00000 00000 (4-74)/(44-74) 00691 (4-74)/(44-74)	(4-74)/(44-4) 6.9237 (64-74)/(44-64) 19321 (4-74)/(47-74)
1.047a 1.047a 1.053a 1.773a	97.68 99.68 99.79 99.76 91.79	P/Pe 1.107u p9/Pp 1.107u p1/Pp 1.536n	P/PP 1.0515 09/PP 1.0534 PI/PP 1.4597	9/Pp .9965 p9/Pp .9973 p1/Pp 1.3821	P/Pp 1.4232 P9/Pp 1.2221 P1/Pp 8.1174
9000 9000 9000 9000 9000 9000 9000 900	1.00318 pp/pa 1.00241 pp/pt .59301	9/99 97.09. 97.09 90.509. 14/99	95/02 95102 95/02 94933 97/97	1,00356 1,00356 1,00267 19797 1,2354	PP/P .81754 PP/Po .81824 PP/PT
11 559.4 461.3 99/P M9 0058 .896 PP M01	71 71 71 72 72 759.4 481.3 79.7 700.8 .900.7 79.7 70.0 70.0	TI T555.0 555.0 907.0 0000 700 PP MOOT 00 74390-03	11 T T T T T T T T T T T T T T T T T T	11 1 5 551.6 502.5 597.6 690 690 690 690 690 690 690 690 690 69	TT T 564.1 564.1 328.5 P97P MO PP
912.0 55 p9 p0 917.3 1.01 p7 TT/91	912.7 55 P9 P1 913.4 1.41 P7 P782 915.6	. 4 1124.U 55 1124.U 1.0 1124.U 1.0 14/11 PP	TT P TT 1123.U 554.8 P9/P P9/P P9/P P9/P P9/P PP P	77 1124.0 551.6 P9 P9/P 1125.U 1.0009 11/17 19/71 1128.0 .1	231.3 566 231.3 567 231.1 99 12717 99
1544. 1544. 3035+07 1P 548.9	1544. 1544. RII *3034+07 IP I	PT 1559. RH: -2728+U7 TP 1 549.0	1559. KII. 2732+u7 1 P 1	1559. 1559. KII 17749407	1535. 1535. 161 161 17 16
444 444 444 444 444 444 444 444 444 44	AKEA . 4484 V 967.8 PXL	AKEA . 4484 V 771.4 PXL	AKEA . 4444 V 772.2 Pyl	AKEA . 44F4 769.1 PXL	AKEA . 4464 V 1081.7 · FYL
6 518.3 P16 671.6	6 517.5 P16 921.2	385.5 P16 1617.0	386.3 P16 1073.0	0 385.5 P16 1129.0	6 586.2 P16 188.7
7 • 20 0	.00 • 00	204 200	P0S • 00	.00	HCS 1.75
COKK CCKF 4/ 1 M .901	40 CONF 40 LONE 1 E DUP.	COPR LONF Su 1 M M	СОКК СО14F 51 1 8 м	COMM CONF 54 1 M •760	COKh CONF 852 1

KINF .15272 K9 .14993 KDIT	KINF • 08215 • 07393 • 00481	KINF .24751 K9 .24386 KDIT .06612	KINF .20510 .20093 .20093 .05190	KINF .15437 K9 .14984 KDIT	KINF •10762 •10158 •10158 •01871
**************************************	MVJ/MVINF .00743 MVJ/W9 .00740 (PT-P9)/(PT-P9)		40000 406099 400090 40000 40000	7070% 0.04077 0.04077 0.04057 0.04057 0.04090	**************************************
(P-PP)/(PT-P) 01627 (P9-PP)/(PT-P9) 01689 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 0.0652 (P9-PP)/(PT-P9) 0.00007 (PT-P)/(PT-P)	(P-PP)/(PT-P) 14071 (P9-PP)/(PT-P9) 14578 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 11037 (P9-PP)/(PT-P) 11570 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 07624 • 077624 • (PT-PP)/(PT-P) • 07624	(q-pp)/(pq-p) .03794 (pq-pp)/(pq-pq) .04283 (p1-pp)/(pq-p)
P/PP 1.1006 p9/PP 1.104u PT/PP 7.281a	1.036n 297PP 1.047n 217PP	P/Pe 1.599a n9/Pp 1.618a p1/Pp 5.8635	p/Pp 1.4167 p9/Pp 1.4347 p1/Pp 5.1920	P/PP 1.2550 pg/Pp 1.2700 p1/Pp 4.5992	4786 1.1125 19789 1.1264 17789 4.0771
90/90 90/90 90/90 90/550 90/97	96,36 96,36 99,99 955,17 97,41	PP/P .62503 PP/Pa .61775 PP/PT	99/9 .10587 PP/PP .19700 .19260	PP/P • 79684 PP/Po • 78683 PP/PT	99/9 • 49889 99/99 • 88/81 99/91
TT T T T T T T T T T T T T T T T T T T	TT T -6 329.0 /P Mo R6 1.886 MDOT -15997-04	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TT T T T T T	11 1 •9 389•1 /P Mo 77 1•490 MDOT •11691-03	11 1 •6 388.9 /P Mo P5 1.490 MOOT •61396-04
11 564.3 pg/p 1.0034 pp 210.8 .45	TT 564.6 P9/P 1.0086 PP	TT 563.9 P9/P 1.0118 PP PP	564.6 10.097 1.0127 19.0127	563.9 99/P 1.0127 PP 338.1 .116	11 563.6 P9/P 1.0125 PP 381.4 .613
7 235.9 235.8 27711 9729	232.0 . 232.0 . 99 . 534.0 . 9718	424.3 424.3 129.3 429.3 11/11	424.3 424.3 94.7 429.7 11/11	424.3 424.3 199.7 11/11 9810	424.3 424.3 P9 429.6 1P/TT
7.7 1535. HI -2693+u7 TP 549.0	PT 1535. HU -2692+U7 FP 548.7	PT 1555. RU 3107+07 1P 554.4	PT. 1555. RI. -3107+07 TP 554.0	PT 1555. RI: •3107+07 TP 553+2	AKEA PT .4484 1555. 0 V KU KU 667.4 1448.9 .3109+07 P16 PXL TP 380.6 .0 551.4
Anf A 	AKEA .4484 6 V 541.3 1682.1 P16 FXL 222.2	AKEA .44f4 G V 667.4 1449.3 P16 PXL 264.4 .0	AMFA .4484 0 V 0 V 0 V 0 D67.4 1445.3 P16 PXL P295.1 .0	AKFA . 4454 1449. V PXL	A
0 581.3 F16 211.3	6 541.3 P16 222.2	6 67.4 P16 P16 264.4	0 667.4 716 299.1	667.4 P16 337.3	667.4 P16 380.6
705 1.75	P05	F05	P05	P05	HOS 1.75
CURN CUNF 853 1 M 1.692	COR: CONF 854 1 1.892	СОКА СОМР ВЪЗ 1 1.479	COKK CONF 850 1	CORA CONF 85/ 1	СОКК СОМЕ ВЪВ 1 1.459

. 04049 . 04049 . 03598 . 0411	KINF •38815 ×9 •39117 ×0117	KINF .33039 .89 .33693 KDIT	KINF -26522 -27168 -27168 -08100	KINF .21788 .22704 .22704 .05375	KINF .53672 .54641 .54641 .32987
MVJ/MVINF •00565 MVJ/MV9 •00562 (PT-PP)/(PT-P9) 1.02230	**************************************	MVJ/MVINF • 13273 MVJ/MV9 • 13293 (PT-PF)/(PT-P9)	MVJ/MVINF .08165 MVJ/MV9 .08174 (PT-PP)/(PT-P9)	MUJ/WINF • 05419 MUJ/WV9 • 16424 (PI-PP)/(PI-P9)	ANIWA/WW 1984 5. 1984/WW 1855. 1947-191/(49-19)
(q-pq)/(qq-q) .01751 .01754 (pq-pq)/(pq-pd) .01751	(PT-P)/(PT-P) 427901 (P9-PP)/(PT-P9) 427335 (PT-PP)/(PT-P) 1,27901	(Pq-P)/(Pq-p) 19677 (Pq-Pp)/(Pq-pg) 18761 (P1-Pp)/(Pq-p)	(P-P)/(PT-P) 10017 10017 (P9-P9)/(PT-P) 10017	(P-PD)/(PT-P) .06203 .06203 (PT-PP)/(PT-P) .05682 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 57523 (P1-PP)/(PT-P9) • 54337 (P1-PP)/(PT-P)
9/PP 1.0489 99/PP 1.0621 91/PP 3.8443	P/Pe 1.4692 P9/PP 1.4617 P1/PP 3.1509	P/Pp 1.2881 pg/Pp 1.276a pT/Pp 2.7523	P/Pp 1.1295 p9/Pp 1.1239 p1/Pp 2.4224	1.0764 1.0764 1.0702 1.0702 91746	P/Po 1.2872 p9/Pp 1.2769 p1/Pp 1.7865
99/P .95333 PP/PP .04157 PP/PT	72764 -68064 -68412 -79797	PP/P .77633 PP/P9 .78320 PP/PT	PP/P • A8535 PP/PQ • A8975 PP/H1	99/P .92913 PP/P9 .03439 PP/PT	9PP/0 -77687 -78314 -78314 -55974
11 1 •5 38A.A /P Ma 25 1.490 MNOT •16199-04	TT T T T	TT T T T T T T T T T T T T T T T T T T	11 11 1 1 M9	11 -7 450.2 7P Mo 44 1.107 MOOT 18242-03	11 •9 503.3 PP MO 01 • 11240-02
563 P9 1.01 PP 404.5	559 99 •99 PP PP	559 29 49 49 566.8	559 64 64 64 0*****************************	559 P9 •99 PP PP	552 P9 • 99 PP PP
424.4 99 429.6 11/11	727.4 P9 723.7 123.1	730.1 P9 723.7 1P/TT	727.4 P9 P9 723.8 12711	720.1 pg 724.0 724.0	112.0 1115.0 1115.0 117.11
1555. 1855. 1817 18 18 551.0	1560. 1560. RU 7234+U7 TP 555.7	PT 1560. KU. 3235+07 TP 555.3	PT 1560. RU -3236+U7 TP 554.9	1560. 1560. 111 123235+07 17 554.2	PT 1560. Kill -2747+07 TP 552.0
A1FA . 4 4 8 4 1 4 4 0 V 1 7 X C . 0	AKEA .4484 0 V 620.6 1148.3 P16 PXL 498.6 .0	AKEA .4484 1145.4 PXL		AXFA . 44P4 1147. V PXL	AKEA . 4484 776.8 PXL
0 667.4 P16 403.5	6 620.6 716 498.6	619.5 P16 562.9	AKEA .4484 0 V 620.6 1148.0 P16 PXL 640.4 .0	620.1 P16 673.9	386.6 P16 E69.6
HOS 1.75	POS 1.75	Pos 1.75	P05	P05	P05
CORR CONF 859 1 1.499	СОКИ СОЛЕ Вец 1 1.104	CORN CONF BEL 1 1.101	COKK CCNF 86z 1 1.104	СОКК СОМР ВВЭ 1 1.103	COKK CONF BEH 1 BEH N

KINF .47118 .48065 .48065	KINF •34782 ×9 •36450 ×DIT	KINF -25864 K9 -28378 KDIT -08638	KINF -26774 K9 -26774 KDIT	KINF -24619 K9 -24207 KDIT -03376	KINF •19105 K9 •19059 KDIT
ANIVW/LVM 6.30493 0.804/LVM 0.80330 0.404-19)/(99-19)	**************************************	.08903 .08903 MVJ/MV9 .08857 (PT-P9)/(PT-P9)	.05894 .05894 .05894 .05894 .05894 .07-P9)/(PT-P9)	.05203 .05203 MVJ/MV9 .05180 .05180 (PT-PP)/(PT-P9)	**************************************
(PT-P)/(PT-P) •52018 (P9-PP)/(PT-P) •48944 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 25459 • 25459 • 25469 • 22646 • 7 (PT-PP)/(PT-P)	(q-pp)/(pq-p) 12156 1256 (pq-pp)/(pq-pg) 109888 (p1-pp)/(pq-p)	(q-19)/(qq-q) .05559 (pq-pq)/(pq-pq) .05559 (q-1q)/(pq-pd)	(P-PP)/(PT-P) 0.04806 0.04909 0.04984 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 03116 • 03116 • 03132 • 03132 • 03132 • 03132
P/PP 1.252a pg/PP 1.242a pT/PP 1.7387	P/PP 1.1096 p9/Pp 1.0997 p1/Pp 1.5400	P/Pp 1.0495 P9/Pp 1.0411 P1/Pp 1.4566	P/PP 1.4506 P9/Pp 1.4506 PT/PP	P/Pp 1.3674 1.3874 1.3804 1.7Pp	P/PP 1,2121 19/PP 1,213 1,213 1,7PP
PP/P -79829 PP/PQ -80466 PP/PT	90125 90125 90700 90934 99797	99/9 • 95285 • 96/179 • 96/134 • 99/91	PP/P •68930 PP/P9 •68039 PP/FT	73130 -73130 -73130 -72445 -72445 -11096	PP/P •R2500 1 PP/P0 • 82429 1 PP/PT
TT .1 501.0 7.4 Mo 20 .710 MOOT *95386-03	T1 T •5 500.3 /P Mo 11 •711 MDOT •52686-03	11 •2 500.0 /0 Mo 20 •710 MDOT •27904-03	11 •5 327.7 /P M9 00 1.889 M001 M001	11 -8 327.9 -9 MO 95 1.883 MOOT -11237-03	11 •3 327.7 /P Mo 09 1.891 MOOT •74931-64
77 551.1 1 297.0 1 49920 1 49 1 49	71 0 549.5 9 P9/P 9 .9911 PP	77 0 549.2 9 897.9 0 9920 107.0	77 561.5 P9/P 1.000 PP 159.8 .126	77 541.8 1979 11.0095 11.0095	562-3 P9/P 1.0009 PP 191-4 .749
1124.0 89 1115.0 17/71	1124. 1114. 12/11	1124.0 129 1115.0 1171 •9985 10	4 231.8 P9 231.8 231.8 17.41	232.6 P9 234.8 1771 9765 17	232.0 292.2 232.2 1P/TT -9751 19
1360. 1360. 111. 2757+07 17P 550.3	1564. 1564. RI: 2768+u7 TP 549.0	1560. 1560. 2770+07 179 548.4	1527. 1527. HI! 700467 1F 548.7	1533. RIII -2710+07 TP 548.6	1535. RU -2707+07 TP 548.3
AHFA 44F4 769.7 7XL 7XL	AREA . 4484 V 768.5 PXL	AKFA .4484 768.3 PXL		AKEA . 4484 1677.2 . PXL	
346.6 P16 495.8	346.6 P16 1011.0	386.6 P16 P16	AKEA .4484 0 V 579.0 1676.1 P16 FXL 161.2 .0	0 081.6 1 P16 169.7	AKEA .4484 0 V 581.3 1678.7 P16 PXL 192.3 .0
PCS 1.75	P05	P05	Pos 5.85	7 5 6 6 5 8 5	F0S 5.85
CO. 7.				-,	4,
COK 86/	CORK CONF 869 1	COKR CONF 870 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CORK COMF 810 1 M 1.689	COKK CONF 81/ 1 1.890	СОКН ССИF 810 1 1.892

KINF •17726 •17541 •17541 •01476	KINF •14688 •13838 KDIT	KINF .00000 .00000 .00000	KINF .34883 K9 .33177 KDIT	KINF .30704 K9 .28829 KDIT	KINF •23936 ×9 •21874 KDIT •04552
-02280 -02280 -02280 -02279 -02279 -02279	######################################	**************************************	-0.0994 -0.09994 -0.09827 -0.09827 -0.09827 -0.09927	**************************************	
(P-PP)/(PT-P) 01381 01381 (P9-PP)/(PT-P9) 01405 (PT-P)/(PT-P)	(PT-P) 0.004.83 (P9-Pi)/(PT-P9) 0.00545 1.004.83	(P-FP)/(PT-P) 00583 (F9-PF)/(PT-P9) 00545 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 1117 (P9-PP)/(PT-P9) 12494 (PT-P)/(PT-P)	(P-P)/(PT-P) .09059 .09059 .09059 .10448 .109059 1.09059	(P-PF)/(PT-p) .05909 (P9-PP)/(PT-P9) .07184 (PT-PF)/(PT-p)
P/PP 1.0841 p9/PP 1.0855 PT/PP 7.1729	P/PP 1.0279 P9/PP 1.0315 PT/PP 6.8011	9//9 •9683 99//99 •97/19 91//99	P/Pp 1.5614 P9/Pp 1.6232 P1/Pp 6.6113	9//P 1.4156 1.4156 1.4737 PT/PP 6.0031	P/Pp 1.2362 09/Pp 1.2838 01/Pp
99/p .92241 pp/po .92122 pp/pt .13941	97,984 97,784 99,799 96,950 97,71	PP/P 1.03276 PP/P9 1.03054 PP/PT .15600	PP/P .64046 PP/Po .61607 PP/PT	9/49 • 70643 • PP/Pa • 67876 • PP/PT	99/PP
11 328.1 562.9 328.1 997P MA 1.0013 1.891 PP MOOT 4.0 .49146-04	11	TT T T T T T T T T T T T T T T T T T T	TT T T T T 169.8 377.2 Mg	11 45 76 80 80 80 80 80 80 80 80 80 80	TT
232.0 56, P9 p0 232.3 1.00 1P/TT PP	p 232.0 565 Py pq 232.0 1.01 1P/TT pp .9705 225.7	77 232.0 564.1 P9 P97P 232.5 1.0022 1P/TT PP •9702 239.6 .2	71 366.3 59.8 97 380.8 10.396 1171 99 99	71 365.5 569.5 P9 P9/P 386.4 1.0408 1P/TT PP 49802 258.2 .2	66.3 569 P9 P9 P9 P9 F1.03 F1.03 F2.06.3
1535. RII -2702+U7 TP 1 547.8	1535. Rti -2698+U7 IP I	1535. KII *2694+07 TP IP	PT 1551. KII -2979+U7 IP IF 558.8 .5	1550. 1550. RII 72977+U7 17 17 558.3 .9	PT 1551. 30 RI 1 22404b7 1P 1P/TI 557.5 .9781
AKEA . 4444 V V 1679.8 TXL	AKEA .4484 V 1680.8 PXL	AKEA .4484 0 V V 581.3 1081.5 P16 PXL P42.9 .0		AKEA . 4484 1520.6 • PXL	AKEA . 4484 V 1520.0 · PXL . 0 . 0
9 581.3 P16 213.2	6 581.3 P16 223.0	6 581.3 P16 242.9	AKEA .4484 0 .4484 V 654.0 1520.2 P16 PXL 233.5 .0	653.3 1 P16 256.3	0 0 54.U J P16 296.U
201. 88. 88.	P05	P0S 5.85	HOS 5.85	F05	705 5.85
CURA CONT 81y 1 1 3 8 4 7	COKK CONF 82u 1 1.852	СОКИ СОМЕ 821 1 1 1.892	СОКК СОМF Ф26 1 5 1.597	СОКК СОМР 823 1 5 М 1.598	COKK CONF 824 1 5 1.557

KINF .19467 K9 .16306 KDIT	KINF .20664 K9 .14320 KD1T	KINF .27268 .29539 .29539 .09806	KINF .23936 .25894 KDIT .08559	KINF •11544 K9 •13716 KDIT •03469	KINF •05909 89 •06720 □017
MVJ/MVINF 0.0.437 MVJ/MV9 0.03378 (PT-PP)/(PT-P9)	**************************************	**10459 ***10459 ************************************	ANIVW/LVM * 09131 * 093131 * 09317 * (94-74)/(97-14)	.03700 .03700 MVJ/MV9 .03775 .03775 1.08072	. 01469 . 01469 . 01498 . 01498 . 01478 . 15772(.1
(PT-P) (PT-P) (PT-P9) (PT-P9) (PT-P) (PT-P) (PT-P)	(PT-P)/(PT-P) • 01056 (P9-PP)/(PT-P) • 02231 • 07-PP)/(PT-P)	(P-PP)/(PT-P) 25115 (P9-PP)/(PT-P9) 20434 (PT-PP)/(PT-P)	(P-PP)/(PT-P) -23390 (P9-PP)/(PT-P9) -19164 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 11861 (P9-PP)/(PT-P9) 908072 (PT-PP)/(PT-P)	(P-PP)/(PT-P) *06273 (P9-PP)/(PT-P9) *02772 *02772
P/PP 1.1032 p9/PP 1.1476 p1/PP 4.6785	P/PP 1.0357 P9/PP 1.0738 P1/PP	P/PP 1.8059 P9/PP 1.6811 P1/PP 5.0145	9/Pp 1,7115 09/Pp 1,6036 P1/Pp 4,7532	P/PP 1.267n P9/Pp 1.1861 P1/Pp 3.5187	P/PP 1.1256 p9/PP 1.057u p1/PP 3.127u
90/99 90/43 90/79 17138 90/71	99/9 96587 99/99 93130 99/97	PP/P • \$5376 PP/P9 • \$9484 PP/PT	99/9 •58430 99/99 •62360 99/97	PP/P • 78925 PP/P0 • 84169 PP/PT	99/9 •88843 99/99 •94574 99/97
77 •3 377-4 //P MO 02 1.572 MDOT •91904-04	11 1.5 377.8 1/P Ma 171 1.572 MOOT .61085-04	TT T T T 9.9 423.4 No 1 .33070-03	77 •6 423.2 70 70 Mnot Mnot •28870-03	11 4.3 422.0 7/P MO 177 1.34A MOOT 11704-03	TT T T T T T T T T T T T T T T T T T T
570.3 6970 1.0402 1.0402 99	77 570-5 99/P 1-0371 PP 353-8 -61	77 566.9 697P 9309 PP	71 7 566.6 99/P 1 9370 PP 328.2 .28	11 566.3 997P 9377 PP 443.4 .117	77 566.0 P9/P .9394 PP
365.5 99 380.5 11/41	366.3 99 379.9 11/11	561.8 99 523.0 1P/1T .9862 3	9 561.7 P9 526.3 1P/1T .9852 35	561.8 P9 520.6 1P/TT .9809 44	561.1 P9 527.1 1P/11
1550. NU *2972+U7 TP 555.5	1550. 1550. RII •2972+U7 TP 555.0	PT 1560. RU *3193+U7 TP 559.1	PT 1560. RII •3195+U7 IP 558.2	PT 1560. RU •3198+07 TP 555.5	PT 1559. RU *3190+U7 TP 1
AXFA . 4474 V V V V V V V V V V V V V V V V V V V	AKFA • 4464 1521•5 PXL • 0		AKEA . 44.84 1312.8 PYL PYL	АНЕА . 44Р4 1312.4 . PXL	AKEA . 4484 1316.0 · PXL
653.3 P16 333.4	654.U P16 351.9	AKEA .44A4 0 V 666.7 1313.1 P16 PXL 316.5 .0	666.5 1 P16 331.9	666.7 1 P16 440.5	665.8 1 P16 501.9
P05 5.85	P0S 5.85	5.65 5.65	P0S 5.85	P0S	
СОКК СОЦЕ 823 1 1.598	СОКА СОМБ 826 1 1.557	СОНИ СО1/F #2/ 1 1.3u2	СОКК СОМF 820 1 1 1.302	COKK CUNF 830 1 5 1.302	СОКИ ССИР 831 1 5 1 302

KINF .00136 .00000 KDIT	KINF •30347 K9 •34942 KDIT	KINF .29177 .33797 KDIT .13206	KINF .23416 K9 K9 29402 KDIT	KINF .17388 .27623 KDIT	KINF 14380 89 60741 KDIT 04120
AUJ/MVINF .00026 .0027 .00027 .00027 .00027 .000909	MUJ/MVINF .14118 MVJ/MV9 .14356 (PT-PP)/(PT-P9)	**************************************	**************************************		.04155 .04155 .04155 .04222 .04222 (PT-PP)/(PT-P9)
(4-pp)/(pq-p) .03562 .03562 (pq-pp)/(pq-pq) 00039 00762 03562	(P-PP)/(PT-P) 34243 (P9-PP)/(PT-P9) 23506 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 31263 (P9-PP)/(PT-P9) • 21321 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .22131 (P9-PP)/(PT-P9) .12857 (PT-P)/(PT-P)	(P-PP)/(PT-P) 13564 (P9-PP)/(PT-P9) 04926 (PT-P)/(PT-P) 1.13564	(P-PP)/(PT-P) 0.846 (PQ-PP)/(PT-P9) 0.00445 (PT-PP)/(PT-P)
P/Pp 1.067u pg/Pp .9992 p1/Pp	P/PD 1.6342 P9/PD 1.4732 PT/PD 3.4861	P/Pp 1.557a pg/Pp 1.411k p1/Pp 3.341q	P/Pp 1.3395 p9/Pp 1.2135 p1/Pp 2.8737	P/PP 1.1831 n9/PP 1.072n P1/PP 2.5333	P/PF 1.1097 p9/PP 1.0061 p1/PP 2.3783
98/88 93/88 98/99 1.00076 79/97	PP/P .41193 PP/Pq .67881 PP/PT	PP/P .64194 PP/P9 .70843 PP/PT	74653 PP/PQ • 82409 PP/PT • 34795	99/P . 84521 99/Po . 93/85 99/PT	99/90 90/15 99/93 99/93 99/67
TT 425.7 425.7 425.7 99/P wo 9362 1.348 PP	TT	TT T 563.2 455.0 P9/P Wo MOOT T 1.182 PP MOOT T.52-03	TT T 563.0 450.7 P97P Mo 9059 1.182 P0	TT 562.9 452.00 P97P Mc 0.0061 1.180 PP MD0T MD0T 0.20383-03	TT 452.4 562.4 452.4 NO
562.4 P9 526.5 1771 526.5	730.8 89 P9 658.8 17/11	726.7 726.7 P9 658.5 17711 9886 466.	726.7 5 P9 656.3 • 127.11 • 9883 542•	726.1 5 P9 059.7 • 1P/TT 9865 615.	4 27.4 562 4.727 4.4 562 4.4 655.5
1559. 1559. 1819 1819 1819 1819 182 182 183	1554. 1559. 1194-u7 119	1359. 1359. 111 17 17 556.8	1559. 1559. 811. 17. 17. 556.4	1559. 1559. 1507+07 17	PT 1559. KU 63211+07 1P 553.6
AKFA 0 .44.P4 0 V 0 bb5.3 1310.0 F16 PXL 521.7 .0	AKEA .4464 0 V 617.9 1147.9 P16 PXL 449.0 .0	AKEA .4464 0 V 620.0 1151.6 P16 FXL 464.9 .0	AKEA . 4484 V 1151.3 V FXL	AKEA . 4464 V V V 1149.5	44464 44464 1149999
0 665.3 F16 521.7	617.9 P16 449.0	620.0 P16 464.9	620.0 P16 542.3	618.9 P16	0 619.5 P16 651.6
	705 5.85	F0S 5 • 85	F0S 5.85	P05 5.85	P0S 5. 85
CURR CCIAT 834 1 1.300	COFR CONF 830 1 1.099	CUMM CONF 830 1 1.104	COMM CONF 834 1 1 104	COKK COLF 840 1 1	CORK CONF 841 1 :

**************************************	KINF .30499 .31538 .15306	.18966 .20314 .K9 K9 .E011	KINF .10659 .12023 .03286	KINF ,50434 K9 ,52255 KDIT	KINF 47112 K9 K017 28032
MVJ/MVINF 0.20402 WVJ/MV9 0.20352 (PT-PF)/(PT-P9) 1.42512	AVJ/MVINF •15429 MVJ/MV9 •15404 (PT-PP)/(PT-P9)	MVJ/WVINF • 07490 MVJ/WV9 • 07471 • 07471 • 07471 • 14483	**************************************	**************************************	WJZ::VINF .30501 .30501 .4013/ .40137 (PT-PF)/(PT-PF)
(P-PP)/(PT-P) 45759 (PT-PP)/(PT-P9) 42512 42512 (PT-PP)/(PT-P9)	(PT-P)/(PT-P) • 32043 (P9-PP)/(PT-P9) • 29305 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 17002 (P9-PP)/(PT-P9) 14483 (PT-PP)/(PT-P)	(q-19)/(qq-q) 0.09927 (pq-pq)/(pq-pq) 0.0530 1.09927	(q-pp)/(pp-p) •62174 (p9-pp)/(pp-pg) •55417 (pp-ps)/(pp-p)	(P-PP)/(PT-P) •\$2078 (P9-PP)/(PT-P9) •#5755 (PT-PP)/(PT-P)
P/PD 1.4620 P9/PD 1.4398 PT/PD 2.4744	1,2850 p9/pp 1,2670 p1/pp 2,1782	9/Pp 1.1333 P9/Pp 1.1160 PT/Pp 1.9171	1.0738 1.0738 1.0580 1.0580 17.09	P/Pp 1.3184 p9/Pp 1.2961 p1/Pp 1.8305	9/PP 1.2546 pg/Pp 1.2334 p1/Pp 1.7435
99/89. 68359. 69/80. 69653. 98/97.	PP/P .77766 PP/PG .78925 PP/PT	99/P • 88240 • 89604 • 99/PT	PP/P • 93125 PP/Po • 9452 PP/PT	PP/F •75840 PP/P0 •77152 PP/P1	99/9 • 79706 • 81077 • 81077 • 87356
7	TT T T T T T T T T T T T T T T T T T T	77 7 -2 482.0 /P 50 48 -914 MDOT -24942-03	11 1 •1 481.0 VP NO 52 •914 PPOT •11036-03	11 1 •5 50°, P //P PO 131 •720 MPOT •10830-02	TT T •2 505.4 /P Mo 31 •721 MDOT •95216-03
11 540.6 1974 9842 98	77 560.3 99/P •9853 9P 709.3 •51	77 560.2 99/P 9848 PP PP 985.9	TT 560.1 99/P 9852 9P 99 850.6 .11(TT 555.5 P9/P . 9831 PP PP 853.3 .106	T1 555.2 P9/P .9831 PP PP
414.0 944.0 494.0 494.0 17/11	912.1 99 896.7 11/41 9913 7	4 813.3 99.4 99.4 17/41 8 7092,	913.4 913.4 P9 899.9 1F/11 88	1125.0 P9 1106.0 1771 9957 R	1124.0 P9 1105.0 14/17 9950 R9
FT 1546. RII •3029+U7 1P 556.4	1545. 1545. 110. 170. 170. 170. 170. 170. 170. 170	FT 1545. RU 83030+07 TP 555.0	PT 1546. RU RU 7P TP 553.0	PT 1562. RII -2732+U7 TP 553-1	PT 1562. KU 2730+U7 TP 552.4
A 4 A 2 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4	AKFA 4484 V 970.6 FXL	4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 8	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4464 4464 772.7 PXL	AKEA 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 518.2 P16 624.6	0 519.5 F16 713.4	517.8 P16 602.4	519.0 F16 F50.4	0 387.U P16 853.2	0 387.7 P16 893.2
FUS 5.85	P05	F0S 5.85	۳0s ده.د	P05	705 5.85
7.00 P.	CONF.	CONT. 3	COL*F 1 1 2 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CONF 1 1 1 1 1 1 1	CONF 1 1 702
00 K	COKA 845	COK SECTION SECTION SE	2000 x 400 c 440 c c 440 c c c	CCC # # # # # # # # # # # # # # # # # #	CO # 7

NF 171 171 181 117	Z W X & W L 4 V V V V V V V V V V V V V V V V V V	NF 663 00 111	шыбы⊨б	k w O +	u
XINF .30871 K9 .33881 KDIT	.18535 .18535 .22883 .KDIT .06424	KINF • 01663 • 00000 • KDTT • 00325	20695 20695 20811 8011	KINF .15251. .15334 .15334 .02089	KINF .09359 .09460 KDIT
WUJ/WVINF • 15252 MWJ/WW9 • 15076 (PT-P9)/(PT-P9)	MVJ/MVINF .06642 MVJ/WV9 .06557 (PT-PP)/(PT-P9)	**************************************	*VJ/WVINF .04633 MVJ/WV9 .04643 (PT-PF)/(PT-P9)	MUJWINF 0.3227 WUJWY9 0.0333 (PT-PP)/(PT-P9)	MUJ/WVINF 0.1647 MVJ/WV9 0.1650 1.02911 1.02801
(P-PP]/(PT-P) - 26773 (P9-PP)/(PT-P9) - 21225 (PT-PP)/(PT-P) 1.26773	(PT-P)/(PT-P) 13212 (PT-PP)/(PT-P) 08279 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 0.3864 0.07-P9)/(PT-P9) 0.0218 (PT-PP)/(PT-P)	(d-1d)/(dd-d) 05090 060-1d)/(dd-bd) 15050 (d-1d)/(dd-1d)	(4-19)/(44-4) .0431 .04731 .04774 (4-19)/(44-19) .1.04831	(P-PP)/(PT-P) 02865 (P9-PP)/(PT-P9) 02801 (PT-PP)/(PT-P)
P/Pc 1,1162 pg/Pp 1,0964 pT/Pp 1,5501	P/PP 1.0545 P9/PP 1.0357 P1/PP 1.4671	р/Ре 1.0154 г9/Ре .9991 рТ/Ре 1.4134	9/FB 1.5075 99/FP 1.5016 9.9740	9/40 1.3722 09/Pp 1.3680 01/Pp 9.0760	P/PP 1.1917 09/PP 1.1876 PI/PP 7.882a
99/6 99/91 99/99 91/94 99/91	7P/7 .04831 PP/P0 .9655 PP/P1 .68161	98485 98485 PP/P0 100001 PP/P1	9/99 9/8/36 9/9/90 9/9/97	0444 -72876 	PP/P •83915 PP/Pa •84206 PP/PT
11 -8 505.1 17P MO 122 .721 MOOT 47626-03	11 -6 504.6 /P NO 22 .723 MOOT -20744-03	11 •3 504.3 /P M9 40 •722 MDOT •10285-04	TT T T T 4.8 327.5 No	TT T -5 327.0 70 1.894 MDOT -69553-04	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
77 9, 554.8 9, 99/2 0, 9822 9, 9, 1007.0	71 0 554.6 9 P9/P 0 .9822 PP PP	77 0 554.3 9 P97/P 0 .9840 PP	77 561.8 99/P .9961 pp 153.0 .99	11 562.5 1979 9970 99 169.0 .69	11 563.U 99/P 99/6 9P 9P
1124. 1104. 1771 1957	1122.0 P9 1102.0 1104.0 11771 •9948 10	9.211 99. 1104.U 1177 9931 11	232.0 232.0 29 231.1 (P/17 .9603	4 231.9 99 231.2	231.9 231.9 P9 231.1 P/1T 9572 10
1561. 1561. 181. 2739+07 17 552-4	1561. HII •2741+U7 TP 551.7	1562. 1562. Kill 2747+07 1P 550.5	1535. 1535. KI! 27694u7 1P 539.5	PT 1534. RIII -2703+u7 TP 539.7	PT 1534. RIII •2700+u7 fP 558.9
4474 4474 775.3 775.3 776.0	AHEA 44644 774 C 774 C	AKEA . 44P4 774.9	AKEA .4484 V 1070.2 FXL 152.6	AMFA .4484 0 V 581.1 1679.2 P16 PXL 161.0 163.5	AKEA .4484 0 V 581.1 1680.0 F16 PXL 190.5 190.9
9 347.7 7.16 1004.0	о Зне.2 Р16 1063.0	0 389.3 P16 1102.0	0 581.3 F16 152.2	0 581.1 P16	0 581.1 F16 190.5
5 65 5 65	+05 • 65	FCS 5-85	500 •	.00 .00	• 00
1 840 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COKA CONF 849 1 849 1 703	COKN CONF BSu 1 A A A A A A A A A A A A A A A A A A A	CUKK CUNF 61 4 1+692	CUFN CONF 82 4 1.892	СОКК СОМЕ ВЗ 4 1.692

KINF .06397 .06567 KDIT	**************************************	KINF •16672 •16281 KDIT •03815	KINF .15031 . K9 .14733 . KDIT	KINF .14856 .14488 .02779	KINF .08586 .08101 KOIT
**************************************	#WJ/MVINF #00317 #WJ/MV9 #00317 (PT-PP)/(PT-P9)	4760 4760 MVJ/MV9 404723 40479)/(PT-P9)	AUJWVINF • 04 052 MVJ/MV9 • 04 032 • 07 - 07 / 1909	**************************************	.01390 .01390 .01390 .01384 .01384 .01384
(P-PP)/(PT-P) 01044 (P9-PP)/(PT-P9) 00990 (PT-P)/(PT-P)	(P-PP)/(PT-P) .00461 (P9-PP)/(PT-P9) .00399 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 10891 (P9-PP)/(PT-P9) 11504 (PT-P)/(PT-P)	(P-PP)/(PT-P) .09651 (P9-PP)/(PT-P) .09047 (PT-P)/(PT-P)	(P-PP)/(PT-P) • 0552 (P9-PP)/(PT-P9) • 05965 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 02382 • 02782 • 02686 • 02686 (PT-PP)/(PT-P) 1.02382
P/PD 1.0621 P9/PD 1.0591 P1/PD 7.0270	P/PP 1.0264 p9/PP 1.023n p1/PP 6.7906	P/PP 1.5421 P9/PP 1.5694 P1/PP 6.5194	P/PP 1.388n p9/PP 1.4041 p1/Pp 5.873u	4/Pp 1.2234 P9/Pp 1.2351 P1/Pp 5.1770	P/Pp 1.083u P9/Pp 1.093a 1.584u
97/9 99/135 99/90 99/420 14/21	99/9 • 97/413 99/90 • 97750 99/97	99/p .63717 .15339	72045 92/45 97/90 71200 92/47	PP/P *81736 PP/Po *80963 PP/PT	РР/Р •923U1 РР/Ра •9142R РР/РТ
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TT T T T T 5.84.8 A P9/F NO MO MO MO T MO T T T T T T T T T T T T	11 564.8 374.1 99/P M9 1.0177 1.584 PP MOOT	11 564.9 374.1 p9/p wo i.n117 1.589 pp Mnot po 10901-03	17 565.1 374.2 997P Ma 1.0096 1.591 PP MOOT	565.2 374.3 P9/P Ma 1.0096 1.591 PP MOOT 8.1 .37375-04
231.9 P9 231.4 19711 .9539 21	231.9 231.9 231.1 17.71	360.4 (99 372.9 1.4607 237.	7565.3 56 P9 P 370.0 1.0 1P/11 PP	7 360.3 56 Py P 369.8 1.0 17/17 9589 299.4	7 366.3 56 Py P 369.8 1.0 17/17 9570 338.1
1534. RE: 811. 119 137.6	PT 1534. KU 70 17 536.9	1549. 1549. RU RU 11-07 TP 542.6	1550. 1550. RII •3012+07 TP 542.7	FT 155υ. RU •3υ11+07 TP T	FT 1550. RH •3u10+u7 FP 1 540.9
ARFA • 44 P4 1680 • 8 FXL 212 • 9	AHEA . 4484 1081.5 776	AHEA .4484 1513.0 PXL 233.9	AKFA .4484 0 V 654.0 1514.0 · FIL FYL 255.9 259.6	AKEA . 44P4 1514.0 PXL 295.1	
581.1 P16 213.4	6 531.1 P16 222.4	653.03 P.16 234.36	654.0 716 255.9	0 654.0 1 716 295.6	AKEA .4484 0 V 654.0 1514.4 P16 P7L 334.0 334.4
800 00	P0S • 00	.00 .00	.00 • 00	800 000	200 •
1.642	CORR CONF 85 4 M M 1.892	COKH CONF ho 4 1.556	СОКК CONF 8/ 4 M 1.597	CORR CONF Ho 4 1.597	CORR CONF 85 4 8 1 1.557

KINF .07750 .06558 .06558 KOIT	.21430 .21430 .21786 .01770	KINF .18532 .18891 .06228	KINF .15282 .15725 .15725 KDIT	KINF .11484 .12305 .02479	KINF •05711 ×9 •06731 •00838
ANJWALLVW 0.0002 MAUJWWQ 0.00699 (PT-PF)/(PT-P9)	- 08019 - 08019 - 0804/WW - 08047 - 08047 - 08049)/(PT-P9)	MVJ/MVINF 0.05641 MVJ/MV9 0.06664 (PT-PP)/(PT-P9)	WJ/WVINF • 04745 WJ/WV9 • 04760 (PT-PF)/(PT-P9)	MVJ/MVINF • 02643 MVJ/MV9 • 02653 • 07-PF)/(PT-P9)	ANIUM/LVM 90.00.00 90M/LVM 90.00.00 10.00.00 7.00.00 10.00.00
(4-74)/(4-4) 00700. (94-74)/(4-64) 00908. 070700.	(P-PP)/(PT-P) 20302 (PQ-PP)/(PT-P9) 19485 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 16873 (P9-PP)/(PT-P9) 16115 (PT-PP)/(PT-P)	(PT-P)/(PT-P) **10847 (PT-P9)/(PT-P9) **10172 (PT-P9)/(PT-P) **10847	(P-PP)/(PT-P) (P9-PP)/(PT-P9) (PT-PP)/(PT-P9) (PT-PP)/(PT-P)	(q-79)/(pq-q) 0229, 0229, (pq-pq)/(pq-pq) 01637 01239,
P/PP 1.0232 P9/PP 1.0324 PT/PP 4.3254	P/PP 1.5596 P9/PP 1.5407 P1/PP 4.315a	9/Pp 1.4261 P9/Pp 1.4094 PT/Pp 3.951*	P/PP 1.2377 09/PP 1.2241 01/PP 3.4295	P/FP 1.1028 P9/PP 1.0894 P1/PP 3.0555	P/PD 1.0423 P9/PD 1.0304 P1/PD
PP/P .97735 .96/PQ .96/PC .97/PT	964121 964121 96749 64905 96797	9749 •70123 97/99 •70943 97/99	90/93 90/93 90/40 91/67 99/91	99/6 •90681 99/99 •91791 99/91	99/9 •95945 99/90 •97/91 99/91
11 74.5 545.5 374.6 p9/p wo 1.0090 1.590 pp MDOT 358.1 .18873-04	7 TT 563.1 421.0 MO 79/P MO 99/P 1.421.0 PG	T T 563.3 421.0 094/P 0984 1.309 PP PP	TT TT 5.82 1.820.9 P9/P P9/P P0	11 563.4 421.0 P9/P Ma .9879 1.300 PP MOOT	TT T 563.5 421.2 PO.7 421.2 PO.7 421.3 PO.7 PO.7 PO.7 PO.7 PO.7 PO.7 PO.7 PO.7
360.4 99.7 369.7 1P/11	963.0 999 550.4 17/11 37111 3	7 562.3 PY 555.4 17/11 .9714	9 562.3 99 256.2 17/41 405.4	562.3 P9 555.5 1P/11	62.3 552.3 555.9 17.71
1549. 1849. 1811 3006+07 17 539.7	1558. 1558. All 3217+U7 1P 546.8	1554. 1554. Kii *3215+07 TP 547.2	PT 1558. MU •3∠10+U7 IP 546.5	HT 1558. KII •3215+U7 1P 1	PT 1558. KB -3213+U7 1F 1
AKEA .4484 V 1514.0 FXL 355.2	AKEA .4484 6 V 665.0 1306.4 F16 PML 355.7 362.3	AKFA .44F4 V 1507.4 PXL 585.4	AKEA .44P4 1307.2 . FXL	AKEA . 444F4 0 V 6655.2 1307.4 • FIS FXL 501.4 504.8	ARFA .4484 0 V V 665.2 1307.7 • P16 PXL 534.9 536.3
653.3 P16 353.0	665.0 F16 355.7	9 665.2 716 387.1	0 665.2 716 448.8	665.2 F16 501.4	665.2 P16 534.9
20. 20.	Pos • 00	7 . 0 3	200 ·	703 00•	P0S • 00
1,546 1.00.4 4 4 1,546 1.00.4	CORR CONF 92 4 1.299	COPR COMF 4 42 4 1.308	COKK CO.F. 94 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	COKK CONF 95 4 1.340	СОКК СОЛР 90 4 М 1.300

KINF 30787 789 29037 7011	KINF -29096 -27415 KDIT -10977	KINF -23924 K9 -20255 -20255 -20255	KINF •16571 K9 •12828 KDIT •02992	KINF .55266 .54090 .54090 .8011	KINF 18990 K9 18537 KDIT 8371
7, 74	• • •	<i>d d</i> _ 0	11. 12.	x	KINF .38990 .38537 KDIT
**************************************	MVJ/MVINF •11065 MVJ/MV9 •11034 (PT-PF)/(PT-P9)		**************************************	**************************************	.18527 .18527 .18527 .18541 .18541 (PI-P9)
(P-PP)/(PT-P) -21627 (P9-PP)/(PT-P9) -25074 (PT-PP)/(PT-P)	(PT-P) •16454 (P9-PP)/(PT-P9) •19448 (PT-PP)/(PT-P) 1•16454	(PT-P)/(PT-P) .07073 (P9-PP)/(PT-P9) .10180 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 03194 (PT-PP)/(PT-P9) 05457 (PT-PP)/(PT-P)	(P1-p)/(P1-p) .34194 (P1-pp)/(P1-pg) .36289 (P1-pp)/(P1-p)	(P-PP)/(PT-P) • 26A98 • 26A98 (PT-PP)/(PT-P) • 27725 • 27725 • 27725 • 27725 • 27725
P/PP 1.3277 p9/PP 1.3694 p1/PP 2.842a	P/PP 1.2364 p9/PP 1.2671 p1/PP 2.64U6	9/P0 1.0877 99/P0 1.1224 91/P0 2.3275	1.0377 1.0377 1.0377 1.0670 1.0630 1.7700	P/Pp 1,3091 pg/Pp 1,323n pT/Pp 2,2131	P/PD 1.2299 P9/PP 1.2355 PT/PD
9/49 75319 9/49 73027 74/49 75178	99/66 80866 99/90 78920 99/97	99/99 901938 99/99 99/75 99/97	7976 • 96367 • 9477 • 9477 • 45187	9749 •76367 97,90 •7558 197,99	99/9 •81306 99/99 •80941 99/97
11 4. 451.6 70 MO 770.1 CI 7007 42859-03	TT T T T T T T T T T T T T T T T T T T	TT T T T T T T T T T T T T T T T T T T	TT T T T T V5).u NO	TT	TT T T T T T T T T T T T T T T T T T T
561.4 p9/p p0/p1 1.0315 pp	561.0 597.0 1.0247 1.0247 PP	560.7 597P 1.0321 PP 669.4 .21	11 560.7 99/P 1.0244 PP	77 559.2 P9/P 1.0106 PP 698.1 .953	77 558.6 99/P 1.0045 PP 741.1 .618
7 728.1 79 751.0 17/11	730.1 P94 740.1 717.1 9791	726.1 P99 751.5 17/11	9 4,297 99 74747 7 2579,	913.9 P9 923.6 IP/TT •9843 6	911.5 P9 915.0 11/41
1559. 1559. 81 3219+u7 17 549.4	1559. 1559. 1817. 170. 170. 170. 180.3	1556. 1556. 181. 170 170 548.7	PT 1559. RIII -3223+07 1P 547.9	1345. אלפונ אלונו אלונו 17 550.4	1545. 1545. RII •3044+U7 TP I
AHF A . 44F4 V 1147.8 PXL 543.7	AKFA • 4484 V 1145.9 PYL 587.8	AKFA • 44 Pt V 1147.3 7XL 664.4	AKEA 	AHFA • 4454 V 967.8 FXL	AKEA .4464 V969.U . PXL 732.9
618.9 716 545.2	6 618.4 716 585.1	614.9 P16 662.4	0 616.9 711.9	6 514.2 F16 F91.0	0 519.1 P16 726.0
200. 200.	. 00 00	00 •	7 • 0 2 0 5	800 ·	F08
CUKK CUNF 90 4 1.102	CORR CONF 95 4 1.100	100 4 100 4 1.102	104 4 104 4 1.101	102 4 102 4 900	CORR CONF 103 4 4 4 4 4

KINF .25403 K9 .24920 KDIT	KINF .14780 .15430 .15430 .03415	KINF 48755 789 48755 7017 722091	KINF -20167 K9 -20448 KDIT -02814	KINF •16844 K9 •17343 KDIT •02064	KINF -09982 K9 10538 KDIT 100964
ANJUM/LVM +0900+ PUM/LWW +0900+ +0917(PT-P9)	MVJ/W/INF 0.03432 9/W/J/WW 0.03431 1.04888	MVJ/MVINF .23352 MVJ/MV9 .23354 (PT-PP)/(PT-P9)	04357 04357 04357 04357 04374 04374 1,05040		MVJ/WVINF .0.489 MVJ/WV9 .01998 .01998 (PT-PP)/(PT-29)
(P-PP)/(PT-P) *13274 (P9-PP)/(PT-P9) *13869 (PT-PP)/(PT-PP)	(P-PP)/(PT-P) .05351 .05351 (PT-PP)/(PT-P) .04488 (PT-PP)/(PT-P)	(P-PP)/(PT-P) -24A85 -24A85 -24A85 -24A85 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .05193 (P9-PP)/(PT-P9) .05040 (PT-PP)/(PT-P)	(q-14)/(qq-4) 0.03464 (pq-14)/(qq-pq) 0.3257 (q-14)/(qq-14)	(q-79//PT-9) (09-70)/(09-90) (09-70)/(09-90) (01723 (07-10)
p/pn 1.1011 pg/pp 1.1051 pT/ps 1.8627	P/PP 1.0366 P9/PP 1.0354 PT/PP 1.7605	P/PP 1.1062 P9/PP 1.1062 P1/PP 1.5329	P/Po 1.4138 P9/Po 1.4022 P1/Po 9.3826	P/Pp 1.2414 pg/Pp 1.2275 pT/Pp	P/Pp 1,1213- pg/Pp 1,1087 rT/Pp 7,4190
99/0 90/18 90/49 90/91 53685	PP/F • 96241 • 96578 • 96578 • 96603	97/6 • 90/400 • 90/400 • 90/400 • 97/97	99/9 •70731 99/99 •71316 99/91	PP/P • 40552 PP/P0 • 81465 PP/PT	PP/P •89161 PP/Pa •90192 PP/PT
11 558.4 480.5 99/P 80 0036 .897 PP 8001	77 480.0 pg/p ya .9969 .905 PP MD07	TT T 558.9 568.6 P9/P N9 0000 6990 PP M00T M00T N00T N00T N00T N00T N00T N00T	TT T T T T T T T T T T T T T T T T T T	TT T T T T T T T	TT T 552.4 322.n 99/P Ma .9888 1.890 PP MNOT
912.7 912.7 915.0 1 117.11	911.5 99 900.7 11/41	1125.U 5 P9 1125.U 1 IP/TT 9913 1017.	4 55. 89 pq 225.4 99 94 17.41	231.9 55 P9 P0 P229.3 .91 P717 186.8	4 232.0.555 99 PO 229.4.396 94 TIVAI
1544. 1544. 161. 3040+07 17 549.4	1545. 1545. RU •3047+U7 1P 548.3	PT 1559. RI: -2733+U7 TP 549.1	1535. 1535. HII 17 17 540.9	PT 1534. RU RU 2777767 TP 540.4	PT 1535. RU 80773407 TP 540.2
Ahf A . 4464 V V 7 967.0 PYL 623.5	AKEA • 4444 V68.0 V7816 FYL	AKEA .44f4 0 V 384.8 769.6 P16 FXL 1014.0 1012.0	AKFA . 4484 V 1062.1 FYL 164.3	AKFA .4484 1063.0 LXL 184.7	AKEA . 44K4 V V 581.3 1564.1 · P16 PXL 207.6 206.2
6 517.5 F16 R29.3	6 514.1 P16 870.9	0 384.8 P16 1014.0	9 580.2 716 165.2	0 581•1 F16 185•6	е 541•3 Р16 207•6
7 · 20	2 ·	FUS • 60	۲۰۲۶ ۲۰۱۵ ۲۰۱۵ ۳۵ ۲۰۱۵ ۲۰۱۵	F05	POS 1.75
7.01 tol.	105 4 105 4 105 4	100 th	COKH CONF 873 4 M 1.893	CORA CONF 874 4 1.892	COKn CONF 875 4 1 1.892

KINF .06449 .07484 .07484	KINF .24921 K9 .24502 KDIT	KINF •19888 •19453 KDIT •05071	15043 .15043 .14562 .14562 .03418	KINF .09864 .09180 KOIT	KINF .05322 K9 .04718 KDIT
**************************************	.07911 .07911 .07911 .07867 .07867 .15803	MVJ/MVINF • 05960 MVJ/MV9 • 05928 (PT-PF)/(PT-P9)	WUJWVINF 0.04017 WUJWWY 0.03995 0.03047 1.08447	**************************************	MVJ/WVINF • 00785 • 00780 • 00781 • 00781 • 02525
(P-PP)/(PT-P) • 00714 (PP-PP)/(PT-P9) • 00529 • 01529 • 01529 • 01529 • 01529	(P-PP)/(PT-P) • 15168 (P9-PP)/(PT-P9) • 15803 • 15168	(P-PP)/(PT-P) 11365 (P9-PP)/(PT-P9) 11959 (PT-PP)/(PT-P)	(9-79)/(97-p) 07462 (9-74)/(97-99) 08447 107462	(p-pp)/(pt-p) (03573 (pq-pp)/(pt-p) (pt-pp)/(pt-p) 1,03573	(P-PP)/(PT-P) 0.1972 2.707, (PT-PP) 0.02525 1.01972
1,0418 1,0418 19749 1,0310 17749 6,8914	P/Pp 1.6784 pg/Pp 1.7029 PT/Pp 6.1511	P/PP 1.4344 p9/PP 1.4547 p1/PP 5.2569	P/PP 1.2651 P9/PP 1.2832 P1/PP 4.6363	P/PP 1.1052 P9/PP 1.1214 PT/PP 4.0505	P/PP 1.0555 09/PP 1.0706 PI/PP 3.8662
97/90 • 05/90 • 06/90 • 06/93 • 14/11	99/P .59580 99/PQ .58722 T9/PD	97179. 697149 96/90 68743 96/97	99/9 .79048 99/99 .77928 .21569	99/P •9047¢ 99/P9 •89155 99/P1	99/P
11 553.6 322.7 99/P 20 9897 1.898 PP MD01	77 7 7 7 7 7 99.8 80.9 80.1 80.0 80.0 80.0 80.0 80.0 80.0 80.0	TT T 553.6 382.0 M9.0141 1.480 MOT	TT T 554.0 382.3 F.90 P9.7 T T T T T T T T T T T T T T T T T T T	554.3 382.4 P9/P M9 1.0148 1.489 PP MOOT	554.9 382.9 p97.p ma 1.0144 1.480 pp mnot
231.9 P9 229.5 17/11 19754 222	424.3 99 P9 430.5 1 1P/TT	#24.3 #24.3 #30.3 1 #7/11 .9850 295	424.3 424.3 Py 430.4 1 17717 •9841 335	424.3 55 P9 P P30.6 1.0 PVIT PP	424.3 554 424.3 554 Pp po 430.4 1.0. 19/17 PP 49775 402.0
1534. 1534. Kli 2764+U7 TP 540.0	1555. RI: •316e+u7 TP 544.6	1556. 1556. RUI 83184+U7 TP 545.3	FT 1555. RI: •3181+u7 TP 545.2	PT 1555. RU •3180+07 TP 542.8	PT 1555. KU 3174+U7 IP 542.4
AKFA . 44P4 0 V 581.1 1065.9 P16 FXL	AKFA 4484 0 V 667.4 1435.6 Pln FYL 254.9 255.4	AKEA .44F4 6 V 667.4 1436.0 P16 PXL 293.0 294.0	AMFA .44P4 R V 667.4 1436.6 P16 PXL 335.8 336.6	A # # # # # # # # # # # # # # # # # # #	AKEA .4484 0 V 0 V 0 V 7667.4 1437.7 P16 PXL 399.9 398.5
9 581.1 P16 222.8	0 667.4 P1n 254.9	667.4 P16 293.0	م 667.4 116 335.8	0 667.4 F16 382.7	0 667.4 P16 399.9
F0S	7 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	P0S	P05	PUS
1.65% LONE 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	СОКА СОМР В// 4 В 1.459	COMR CONF 870 4 1.499	COKK CONT 874 4 1.444	CUKK COLF 680 4 1.499	COKK CONF 861 4 1-499

KINF •34280 •34761 KDIT *15447	KINF -292A1 K9 -29873 KDIT 11713	KINF -24773 K9 -25034 KDIT	KINF 20509 89 21511 KDIT 05103	KINF .46262 K9 .47039 KDIT	KINF •43026 •44095 KDIT *25588
.15575 .15575 MVJ/MV9 .15588 (PT-PP)/(PT-P9)	.11806 .11806 .MVJ/MV9 .11821 .(PT-PP)/(PT-P9)	**************************************	. 05147 .4 . 05147 .4 . 05147 .4 . 05150 .6 . 05150 .1 . 05708 .6	WVJ/WVINF .31754 .4 MVJ/MV9 .31586 .4 (PT-PP)/(PT-P9)	. 27867 .4 w.//wv9 . 27682 .4 . 27682 .4 . 40270 .2
(P-PP)/(PT-P) . 30100 (P9-PP)/(PT-P9) . 28994 (PT-PP)/(PT-P) (F	(P-PP)/(PT-P)	(P-PP)/(PT-P) • 10299 (P9-PP)/(PT-P9) • 10162 (PT-PP)/(PT-P) (P'	(q-79)/(q-9) • 06318 • 06318 • 05709 • 05709 • 0719)/(qq-79)	(P-PP)/(PT-P) •61674 (P9-PP)/(PT-P9) •58404 (PT-PP)/(PT-P) 1•61674	(P-PP)/(PT-P) .52028 .52028 (P9-PP)/(PT-P9) .48270 (PT-PP)/(PT-P) 1.52028
P/Po 1.5182 P9/PP 1.5034 P1/PD 3.2394	р/рь 1.2921 19/рь 1.2804 17/Ро 2.7617	P/Pp 1.134a pg/Pp 1.1320 p1/Pp 2.4436	P/PP 1.0777 P9/PP 1.0764 P1/PP 2.3074	P/PP 1.3145 1.3049 1.3039 P1/PP 1.8243	P/PD 1.250a 1.250a 1.2386 1.7329
99/5 •65869 99/99 •66515 99/97	9/99 57.75 9/99 78099 1/99	PP/P • A8122 PP/Pa • A8341 PP/PT	99/9 .02769 .9340F .99/97 .43335	PP/F •76077 PP/P9 •76691 PP/PT	99/47 99447 99/99 91/935 99/91
TT 552.8 4445.1 P9/P MO P003 1.167 P MOOT 9 .52686-03	TT • 6 445 ° 6 //P MO 10 1 • 1 0 P MOOT • 39974 – 0 3	TT .9 u44.1	11 -6 -6 -7 -8 -8 -11 -17 -17 -17 -17	11	TT
730.1 552.8 Py p9/p 723.0 .0903 12/11 pp	729.4 552 P9 pq 722.8 .99 TT PP	4.0 552 P9 P9 2.2 .99 4P PP	26.1 552 P9 po 23.3 999 T PP 4 675.6	24.0 547 P9 P9 15.0 .99 T PP 4 855.1	7 60 0 54 70 0 60 70 0 60 70 0 60
1558. RU *3280+07 TP 548.5	1559. RE •3284+u7 TP IF/ 548.1 •99	PT 1559. 72 RII •3286+U7 72 TP 19/TT 548.1 .9913	7 . 1559. 7	1560. 11 1560. 11 10 17 17 19 19 19	PT 1560. 112 Rt. 111 .2781+U7 111 IP 1P/TT 545.8 .9984
Akfa . 44f4 0 V V 517.3 1136.4 P16 PYL 486.0 483.0	AHFA .44944 0 V 0 V 018-9 1136-4 F16 FXL 562-0 568-9	AHEA .4464 0 V 0 V 0621.1 1143.4 P16 PXL 641.3 646.0		AKEA .44P4 V V 760.8 PXL 649.0	AKEA . 44.F4 704.6 .2 7XL
		621.1 P16 641.3	AKEA .4484 0 V V t16.9 1130.9 F16 PXL b76.0 072.2	386.6 P16 654.4	385.1 P16 698.3
7, 705 4 1,75 9	F F0S	PCS 1.75	PCS 1.75	7 F POS	4 1.75 4 1.75
COKA COLF 85. 8	СОКИ СОЛЕ ВКЭ 4 1-101	СОКК СОЛЕ 463 4 1-107	COKA CONF 840 4 1.102	COKR CONF BEG # 1	COKN CONF Bby 4.1

KINF .32160 .33805 KDIT	KINF .24611 K9 .27057 KDIT	KINF .15768 .14334 KDIT .02252	KINF .12555 .11221 KDIT .01729	*INF *10466 *08880 *MDIT	KINF .08240 K9 .05958 KDIT
*15830 *15830 MVJ/MV9 *15725 (PT-PF)/(PT-P9)	**************************************	MVJ/MVINF .03487 MVJ/MV9 .03367 (PT-PP)/(PT-P9)	.02671 .02671 .02671 .02578 .02578 .106282	**************************************	.01068 .01068 .010709 .01030 (PT-PF)/(PT-P9)
(P-PP)/(PT-P) •26498 (P9-PP)/(PT-P9) •23371 (PT-PP)/(PT-P)	(Pq-PP)/(PT-P) (Pq-PP)/(PT-P9) (Pq-PP)/(PT-P) (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 05684 • 071-P9)/(PT-P9) • 07014 • 071-PP)/(PT-P)	(P-PP)/(PT-P) • 04-19 • 04-19 • 06-82 • 06-82 • 06-82 • 04-19	(q-P)/(Pq-P) 0.03.17 0.04-PQ)/(Pq-PQ) 0.04-PQ)/(Pq-P) 0.03.17	(P-PP)/(PT-P) 01404 (P9-PP)/(PT-P9) 02735 (PT-PP)/(PT-P)
P/Pr 1.1137 P9/Pp 1.1029 P1/Pp 1.5430	P/Po 1.0485 P9/Pp 1.0401 P1/Pp 1.4552	P/Pp 1.471u P9/Pp 1.574u P1/Pp 9.7646	P/Pp 1,381a pg/Pp 1,4812 pT/Pp 9,1423	P/Pn 1.2281 P9/Pp 1.3189 P1/Pp 8.1045	P/PP 1.0859 P9/PP 1.1651 P1/PP 7.2066
04/90 04/40 04/40 04/41 04/41	PP/P • 95374 PP/P0 • 96143 PP/P1	PP/P •67964 PP/P9 •635/P9 •63515 PP/P1	PP/P •72371 PP/po •67511 PP/PT	PP/P •81427 PP/P9 •75821 •PF/PT	PP/P -9208F PP/PP -8581P PP/FT
TT .5 497.0 .5 497.0 /P Mc .710 MC .710 MOOT .49663-03	TT T •3 497.4 //P M9 20 •710 MD07	11 1 •1 326.2 /P MQ 00 1.450 MDOT •75182-04	77 326.8 1.7 326.8 1.9 20 1.847 MOOT	11 • 0 327.2 //P Mo 39 1.844 MOOT •42147-04	11 126.8 •1 326.8 //P M9 31 1.848 MD07 •23018-04
77 546.5 9 P9/P 0 9902 1011.0 49	71 0 546.3 9 p9/p 0 .0920 PP 1072.0 .26	77 560.1 1970 1.0700 PP 157.2 .75	71 560.7 99/P 1.0720 99 107.9 .576	11 561.0 99/P 1.0739 PP 189.4 .421	77 561-1 99/P 1-0731 PP 213-0 -2301
1126. 1115. 1777. 1982	1124. 1115. 12717 19980	231.3 P9 247.5 1P/TT .UNUU 15	7 232.u 89 246.7 11/11	245.0 P9 249.8 17/11	231.3 P9 246.2 1 1P/TT
1360. NH •2782+U7 TP 545.5	PT 1560. RI 17 17 18 545.2	1535. 1535. HU: 7717+U7 179	PT 1535. NIII 1535. PT 174U7 TP 17	PT 1535. RH RH 7P TP	рт 1535. Ки 17
AMFA 4484 764.5 781	ARFA .4484 760.3 PXL 1069.0	AKFA .44F4 V 1675.8 PXL 156.6			AKEA .4484 V 1077.3 .: PXL 210.2
0 385.1 P16 1012.0	ANFA .4484 0 V 0 586.6 760.3 Plb PXL 1067.0 1069.0	580.2 P16 157.1	Ant A . 4484 V 541.3 1676.4 P16 PXL 169.6 169.3	AhfA .4484 0 V 591.6 1675.7 P16 PXL 188.2 189.1	560.2 1 F16 210.4
765 1.75	7 4 4 4 4 75 4 4 4 75	5.85 85	F05	P0S	P05
	7. 4.1.0.7.			•,	
2 2 2 2 3	CORA COMP 891 4 892 4 107.	COFK CONF 761 4 762 4	COKn CONF 763 4 1.442	СОКИ СОМЕ 784 4 М 1.890	СОКК СОМF 785 4 М 1.893

KINF .07827 .04208 .KDIT	KINF •15301 K9 •14863 KDIT •03578	KINF 13623 89 13026 KDIT 02996	KINF •10311 ×9 •09604 KDIT •01975	KINF .07583 K9 .06633 KDIT	KINF .06270 K9 .04589 KDIT
MVJ/MVINF 0.00659 MVJ/MV9 0.00633 (PT-PV)/(PT-P9)	**************************************	MVJ/MVINF .03733 MVJ/MV9 .03690 (PT-PP)/(PT-P9)	MVJ/WVINF • n2465 MVJ/MV9 • n2433 (pT-PP)/(pT-P9)	**************************************	MVJ/MVINF 10690 MV.//WV9 190681 1,1978
(P-PP)/(PP-P) 00560 (P9-PP)/(PT-P9) 011976 (PT-P)/(PT-P) 1.00560	(P-PP)/(PT-P) 11861 (P9-PP)/(PT-P9) 12853 (PT-PP)/(PT-P)	(q-fq)/(qq-q) .09172 (pq-pq)/(pT-pq) .10150 .10150 .10172	(q-fq)/(qq-q) 0.06023 0.06024 0.07027 0.07027 1.06023	(P-PP)/(PT-P) .02889 (P9-PP)/(PT-P9) .03819 (PT-PP)/(PT-P) 1.02889	(q-fa)/(qq-d) 0.01048 (pq-pq)/(pT-pq) 0.01078 (pT-pq)/(qT-q)
P/Pp 1.0326 p9/Pp 1.1134 p1/Pp 6.8527	P/PP 1.6166 09/PP 1.6645 01/PP 6.8342	p/Po 1.4196 pg/Pp 1.4602 pT/Pp 5.9938	P/Pp 1,2417 pg/Pp 1,2794 p1/Pp 5,2542	1.103n p9/Pp 1.1340 p1/Pp p1/Pp	P/Fn 1.035n 1.035 1.065 PT/Pn 4.379a
9979 • 06844 997/99 • 89816 997/97	.61742 .61742 .60079 .60079	70444 •70444 •68485 •68485 •7771	PP/P • 01535 • 05/40 • 78166 • PP/PT	99/P .90663 99/P9 .88114 P9/PT	99/p .96615 99/po .9384P 99/pT
11 326.0 14 Mo 17 Mo 10 Mo 11 Mo 11 Mo 11 Mo	77 7 6.3 375.2 70 83 83 1.577 8701 811994-03	11 •3 375.2 /P M9 86 1.576 MD01 •10044-03	11 1 -5 375.1 79 80 03 1.577 MDOT -66215-0u	71 ·9 375.4 /p wo R9 1.578 MOT *35952-04	TI •8 375.3 /P MO 95 1.577 MOOT •18525-04
71 561.3 99/P 1.0783 PP 224.0 .143	566.3 p9/p 1.0283 pp pp	71 566.3 P9/P 1.0286 PP PP 258.6 .106	77 566.5 P9/P 1.0303 PP PP	77 566.9 10.0289 10.0289 10.0289 10.035	77 566.8 P9/P 1.0295 PP PP 353.9 .18
231.5 29.5 245.4 17.71	7 367.1 P9 377.5 11/11	367.1 P9 377.6 17/11	366.3 P9 57.04 11/11	366.3 P9 376.9 11/41	366.3 P9 377.1 11/11
1535. RII. -27094u7	FT 1550. RH -3605+07 TP 555.4	FT 1550. RI: •3005+b7 TP 555.1	ρτ 1550. HU •3001+υ7 TP 554.7	FT 1550. KIII 29984u7 TP 553.5	FT 1350. RU RU 197-107
AHEA 	AHFA • 44¢4 0 054.6 1515.3 F16 FXL 228.2 227.7	AKEA .4484 0 V 654.6 1515.3 P16 FXL 258.8 258.2	AKEA .4464 0 V 654.0 1510.0 P16 PXL 295.9 290.0	AKEA .4484 0 V 654.0 1516.6 P16 PXL 332.6 333.8	AKFA ,44P4 0 V 654.0 1516.4 P16 PXL 356.7 357.2
0 580.2 F16 224.1	654.6 71.6 716.2	654.6 P16 258.8	654.0 P16 295.9	654.0 P16 332.6	654.0 F16 356.7
FCS 5.85	۲05 8•85	POS 5.85	705 5.65	708 5.85	705 5.85
750 COST	COKR CONF 787 4 1.596	СОКК СОМР 785 4 1.596	СОКК СОНР 769 4 1.597	CONF CONF 790 4 1.597	СОКК СОМР 791 4 1.597

KINF .15193 .16019 .16019 KD11	KINF .13842 K9 .14689 KDIT	KINF .10166 .11261 .03475	KINF .06131 K9 .07249 KDIT	KINF .02691 .03999 .03999 .00618	KINF .01047 .02445 .02445
MVJ/MVINF • N5845 MVJ/MV9 • 0.05935 1.7799)	MVJ/MVINF .05297 MVJ/MV9 .05377 (PT-P9)/(PT-P9)	ANJVW/LVW 0.3696 0.03760 0.3766 (PT-PP)/(PT-P9)	WJ/WVINF •01939 WY/VWY •01974 •1977 1•07841	MVJ/MVINF .0058 .0058 .00570 .007-07 .007-09)	MVJ/MVINF .00207 MYJ/MV9 .00210 (PT-PP)/(PT-P9)
(4-79)/(74-64) •25840 •25840)/(76-64) •258499 •25840	(PT-P)/(PT-P) -23607 (PT-PP)/(PT-P9) -20287 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 017707 01707 01707 013478 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 11378 (P9-PP)/(PT-P9) 07941 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 06n30 (P9-PP)/(PT-P9) • 07-PP)/(PT-P) 1•06n30	(P-P9)/(P-P) (P9-P9)/(P1-P9) (P1-P9)/(P1-P) (P1-P9)/(P1-P)
0,745 1,8422 09,749 1,7533 01,76	P/PP 1.7160 pg/PP 1.6323 PI/PP	P/Pp 1.4491 pg/Pp 1.363A pT/Pp 3.985>	P/Pp 1.2492 pg/Pp 1.1774 pT/Pp 3.4391	1.118n p9/Pp 1.053> p1/Pp p1/Pp 3.0747	P/PP 1.0702 P9/PP 1.012a P1/PP 2.9413
92/94 24/28 92/96 57/036 92/97	PP/P .58276 .00/PQ .41264 .21058	PP/P .69010 PP/P9 .73325 PP/P7	99/9 .40053 99/90 .44/94 97/97	PP/P .89447 PP/P9 .94050 PP/P1	4744 43434 44749 64749 64791 74761
T T 421.4 •6 421.4 M Mo 17 1.836 MNOT 1.8557-03	TT T •8 421.5 /P Wo 12 1.336 MPOT •16803-03	11	11 •0 420.x 90 420.x 925 1.330 MOOT	71 •1 422.5 /P MO 20 1.33A MDOT •20919-04	11 1 •9 420.°° /P M°° 64 1.334 MDOT •65772-05
11 563.8 p9/p .9517 pp	11 563.8 99/P .9512 PP 328.5 .16	77 563.8 1997 9412 99 791.7.11	564.0 99/P 9425 PP PP 453.9 .61	400	71 561.9 19/P 10/P 10/P 10/P 10/P 10/P 10/P 10/P 10
563.7 59.7 536.5 11/11	563.7 563.7 P9. 536.2 11/11 9856 3	567.0 99 534.2 19/11	567.0 567.0 P9 534.4 1771	67.6 69 89 534.7 11/41 507.5	666.9 99 530.5 1P/11 .9754 52
1561. 1561. KH 3619+u7 TP 555.8	PT 1560. KU *3216+U7 1P 555.7	1561. 1561. HI. •3220+07 TP 555.5	1561. RIII *7217+U7 fP 554.5	FT 1561. RII *3218+07 TP 551.4	PT 1558. KH •3228407 1P 548.1
ARFA 0 .44R4 066.9 13Ub.U P16 PXL 307.1 3U6.2	AKFA ,4484 0 V 665.8 1367.2 P16 PXL 329.0 329.0	АКF А . 44я4 3 1304.4 5 БУК	AKEA .4464 0 V 665.6 1304.4 P16 PXL 455.7 453.9		
	665.8 P16 329.0	ր 666.3 P16 390.9	665.6 655.6 F16	AHFA .44P4 0 V 666.3 1304.7 P16 PXL 509.8 508.2	AKEA .4464 0 V 664.5 1301.2 P16 PXL 529.4 531.5
** PCS *** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ 5 + 85	F05		4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	π 4 Σ 4 100S 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COKK CG.F	COKR CONF 795 4 1.299	COFR CONF 79/ 4 1.295	COKK CONF 790 4 1.295	СОКК СОМ 799 4 1.295	CORX CONF BOU 4 1.294

#INF .12529 #9 .14157 #D17	KINF 17120 1996 1996 KDIT	KINF .16336 .20267 .RDIT	12028 12028 12028 13884 8011 04268 11968 6468	KDIT .03446 .30171 K9 .30752 K9 .30752 .16995
MVJ/MVINF • 05835 • 05835 • 05928 • 05928 • 05928 • 1-PP)/(PT-P9)	.07825 .07825 .072/299 .075959 .071–199)	MVJ/MVINF • 06821 MVJ/MV9 • 06928 (PT-PP)/(PT-P9)	TWU/W/W • 04298 WU/JW 904370 04372 1.05313 1.05313 1.05313 WU/W/W • 03476 • 03476	1,00532 1,00532 1,00532 1,135 1,009 1,009 1,45093
(P-PP)/(PT-P) .35424 (P9-PP)/(PT-P9) .25502 (PT-PP)/(PT-P) 1.35524	(P-PP)/(PT-P) .31224 (P9-PP)/(PT-P9) .21101 (PT-PP)/(PT-P)	(p-pp)/(pp-p) \$72174 \$22174 (pg-pp)/(pp-p) \$13239 (pT-pp)/(pp-p)	(q-fq)/(qq-q) 14336 14336 (p-pq)/(pT-pq) (p1-pq)/(pT-pq) (p-pq)/(pT-pq) (p-pq)/(pT-pq) 26200	(P-PP)/(PF-P) (P-PP)/(PT-P) (PT-PP)/(PT-P) (PT-PP)/(PT-P)
P/Pp 1.6866 1.5324 1.5324 71/Pp 3.6195	P/PP 1,550n by/Pp 1,402a bj/Pp 3,3114	P/Pp 1.3407 p9/Pp 1.2195 p1/Pp 2.8771	P/Pb 1.1930 1.0777 1.0777 1.17Pb 2.539u P/Pb 1.1100 1.0073	2.3794 P/PP 1.5015 194820 1.4820 1.4820 2.5511
99/P •\$9989 •\$9760 •\$5962 •\$9/PT	99/8 64516 99/90 71289 99/91	9779 74588 99790 • 82003 92797	97821 97821 97821 97794 97794 9779 9779 9779 9799	.42027 .42027 .66601 .67474 .79190
TT T 561.4 451.4 P9/P M9 P9/P M9 PP M0 M00T PP M00T M00T M00T M00T M00T	TT 751.5 99.79 Mo 9050 1.170 PP MDOT 472.0 .26371-03	561.6 451.5 P9/P Mo .9096 1.170 PP MOOT	7. 17 7. 1961.8 452.7 7. 1967.9 452.7 1. 17 7. 1561.7 8. 1967.9 8. 1967.9 9.	7.3 .1170 559.7 " 17 9.79 0871 1780.
720.8 P9 662.1 IP/TT •9881 u.3	731.6 P9 662.1 IF/1T	726.6 99 66.9 1771 9870 54	734.3 734.3 19711 19711 19807 730.2 730.2 730.2	911.7 911.7 99.9 11.71 9936 60
PT 1564. RI- 81- 3230+07 1P 554.7	1363. RI: 81: 32294u7 IP 555.0	1364. 1364. 3229+U7 fP 554.3	FT 1563. *3224+07	+ * = C
AKFA 0 .4464 0 V 021.8 1149.7 716 PYL 433.6 432.0	AKFA .44F4 0 V 620.8 1147.2 P16 PXL 475.3 473.9	AXFA . 44 P4 1145.0 125.0 545.1	AKEA . 4454 V V 619.7 1145.1 P16 PXC 615.2 016.1 AMEA . 4494 620.7 1146.2	
0 621.8 F16 433.6	0 620.8 P16 475.3	621.8 P16 546.1	619.7 P16 F16 F15.2 615.2	651.6 0 521.5 716 607.2
5 + 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	705 5.85	P05	5.45 5.45 5.85 5.85	P0S 5.85
CORR CONF BUI 4	COMM COMF BUZ 4 N 1.101	COPR COLF BILD 4 1.104	COMM CONF 804 4 1.098 1.098 1.098 1.102	COKK CONF 80/ 4

XINF .25061 .25855 .25855 .011	KINF .13622 .14431 .14431 .05424	**************************************	KINF .26391 K9 .29113 KDIT	KINF .12273 K9 .15152 KDIT	KINF 18863 K9 19360 KDIT
.12656 .12656 MVJ/MV9 .12623 (PT-PP)/(PT-P9)	WUJWVINF .05471 WUJJWV9 .05457 (PI-PP)/(PI-P9)	.02806 .02806 .02806 .02801 .02801 .07-P9)/(PT-P9)	*13017 *13017 *13017 *12853 *12853 (PT-P9)/(PT-P9)	MVJ/MVINF • 04395 MVJ/WV9 • 04342 • 07342 • 07342 • 07342	AVJ/WVINF 0.04245 WVJ/MV9 0.04286 0.04797) 1.05803
(4-74)/(44-4) • 31437 (4-74)/(44-49) • 29299 • 29299 • 29299 • 29299	(P-PP)/(PT-P) 17692 (P9-PP)/(PT-P) 15445 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 10351 109-PP)/(PT-PP) 98413 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .26651 (P9-PP)/(PT-P9) .20870 (PT-PP)/(PT-P) 1.26651	(P-PP)/(PT-P) 13212 13212 (P9-PP)/(PT-P9) 08279 (PT-PP)/(PT-P) 1.13212	(PT-P)/(PT-P) • 06144 (P9-PP)/(PT-P9) • 05803 • 05803 1 • 06144
P/Po 1.2856 P9/Pp 1.268n PT/Pp 2.1825	P/PP 1.140a P9/PP 1.1254 P1/PP	P/PP 1.078n 99/PP 1.0645 PI/PP	P/Pe 1.1162 pg/Pe 1.0953 pT/Pe 1.5521	1.054u p9/Pp 1.035k p1/Pp p1/Pp	9/Pp 1.5267 pg/Pp 1.4990 pT/Pp 10.0967
00/04 -77788 -78867 -78867 -45810	99/6 • 17656 99/90 • 8863 99/91	92766 92766 93740 93741 9774	99/9 .89591 pp/pq .01294 pp/pt	90/69 94/840 90/90 96558 97/91	PP/P .65502 PP/PG .66711 PP/PT
77 481.2 77 481.2 77 81.2 63 .916 MDOT 442305-03	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 to to 15 to 160.00 Mod 75 0.916 MOOT 100.00 Mod 160.00 Mod 160.	7. T.	11 •0 504.1 NO 82 •72 MOT 13756-03	TT T T T T T T T T T T T T T T T T T T
559.7 99/P 9863 9863 98710.5.42	11 559.6 99/P 9864 PP PP	11 559.5 P9/P 9875 PP P46.4 933	77 0 554.4 9 99/4 0 9813 1007.0 .407	71 0 554.0 9 997P 0 9822 0 PP 1006.0 137	71 546.3 P9/P .9819 PP
913.0 90.5 90.5 90.7 11/11	913.0 94 99 500.6 17/17 9902 RC	912.4 99.1.0 901.0 1P/TT	1124.0 124.0 1103.0 127.1 1990 100	1124.0 P9 1104.0 1104.0 1777 •9953 105	231.9 P9 227.7 11/11
1550. REI 3040+U7 TP 555.1	PT 1550. Kti 3046+u7 TP 554.1	PT 1550. KII. •3049+47 TP 552.8	FT 1563. REI REI TF UT 17 TF 1	PT 1563. NU	PT 1534. RII *2679+07 TP 545.3
AHFA • 44 P4 V V V V V V V V V V V V V V V V V V V	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AKEA • 44P4 V 971.7 FXL 845.9			AKEA . 4464 0 V 541.1 1684.9 · P16 PXL 145.9 146.2
0 521.1 P16 709.6	521.1 716.00.6	521.9 P16 845.4	AKEA .44,84 0 V 384.8 773.9 F16 FXL	AKEA .4484 0 V 398.8 773.6 F16 PYL	о 541.1 Р16 145.9
บ. ช.ช. ช.ช.	F05	۲05 5•85	F0S 5•85	F05 5.85	900 900
	F 3 X E	F 4 2 4			
COKA COAF	20 80 40 40	2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	COKH CCNF 814 4 814 4 8 703	COPR COLF 815 4 4 4 8 7 6 3	CUKK CUKF 132 10 M 1.892

KINF .11888 K9 .12308 KDIT	KINF • 07024 • 07429 • 07429 • 0017	KINF .05069 .06068 KDIT	**************************************	KINF .15919 .15867 .03664	KINF .14460 .14468 .14468 .03091
MVJ/MVINF 0.02494 0.02518 0.02518 0.02518 0.04-19)	MVJ/MVINF 0.1236 MVJ/MV9 0.1248 (PT-PP)/(PT-P9)	**************************************	ANIVW/LVM 00000 00000 00000 00000 (pq-tq)/(qq-tq)	.04572 .04572 MVJ/MV9 .04567 (PT-PP)/(PT-P9)	ANJ/WVINF .03857 MV./MV9 .03857 (PT-P)/(HT-P9)
(P-PP)/(PT-P) 04692 04692 (PT-PP)/(PT-P9) 04356 (PT-PP)/(PT-P)	(PT-P)/(PT-P) (PT-P)/(PT-P) (PT-PP)/(PT-P) (PT-PP)/(PT-P)	(4-74)/(74-4) 01014 01014)/(74-74)/ 00704 017-74)/(74-74)	(d-14)/(dd-4) 8000.00.00.00.00.00.00.00.00.00.00.00.00	(p-pp)/(pp-p) 11261 (pq-pq)/(pq-pq) 11346 (pp-pd)/(pp-pd)	(q-19)/(qq-q) • 08338 • 09-pq)/(pq-pq) • 08329 • 08338 1• 08338
9/40 1.3577 09/89 1.3331 01/80	P/F0 1.1917 P9/FP 1.1711 P1/PP 7.8828	P/Pp 1.0604 p9/Pp 1.0421 p1/Pp 7.0142	1.0022 p9/Pp p9/Pp .9866 p1/Pp 6.6292	p/Pp 1.5721 pg/Pp 1.576n p1/Pp 6.6524	P/Pp 1.358A p9/Pp 1.3685 p1/Pp 5.7922
73457 73457 75/11 75/11 PP/PT	.83915 .83915 .85388 .85388 .12686	9/99 94:308 99/99 9596: 79/99	99784 99784 99784 1.01358 9777	PP/P 63600 PP/PQ 63453 PP/TQP	99/9 73/55 99/90 73/75 92/71
11	11 330.6 -1 330.6 /P M9 28 1.903 MD01 -26533-04	TT T T T T T T T T T T T T T T T T T T	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 2 377.0 2 377.0 89 1.595 MD01 12252-03	TT T •3 377.0 97 1.597 MOOT MOOT
77 566.6 P9/P • 9819 PP 170.8 • 53	567-1 1-797-1 1-997-998-8 1998-8	567.9 997.9 9828 99 99	TT 568.1 99/P .9845 PP PP	77 569.2 P97P 1.0025 PP	569.3 99/P 9997 997 99
231.9 P9 P277.7 14/11	231.9 P9 227.9 11/11	4 231.9 79, 227.9 11/41 2.9542	231.9 29.2 228.3 19/11	366.3 99.3 367.2 147.11	960.3 99.3 160.2 177.11
1534. RU *2678+U7 TP 544.8	1534. 1534. KII 2673+U7 TP 543.6	PT 1534. HI! -2669+07 TP TP 541.9	PT 1534. KH -2666+U7 TP 541.3	FT 1550. Ru. Ru2981+U7	PT 1550. RH -25A1+07 TP 1
AKFA . 4484 V 1685.1 PXL 167.6	AHEA .4484 V 1686.1 FXL 192.7	AREA . 4484 V 1087.2 PXL 214.7	AKEA • 4+84 1687.7 FXL	AKFA . 44P4 1519.8 PXL 226.9	AKEA .4484 0 V 054.0 1519.8 P16 FXL 262.7 262.6
9 581.1 P16 167.4	581.1 P16 191.9	6 581.1 F16 213.6	6 581.1 916 228.2	0 654.U P16 228.7	0 654.0 P16 262.7
7 • 000	Pos • 60	. 00 •	.00 .00	.00 .00	.00 • 00
133 10 133 10 10 10 10	СОКК СОЛЕ 134 10 М 1.892	COKK CONF 135 10 M 1.852	COKK COMF 130 10 M 1.892	CORR CONF 137 40 M 1.597	CORK CONF 13d 10 1.597

139 ±0 M 1.597	9	54°C	A4444 44444 V 0 V 0561 U-454	1550. 1550. 118 12960+07	:	5.92.5 97.99 97.99	<i>F</i> . ←	97/99		(4-14)/(94-4) .05500 (94-14)/(94-64)	AUJ/WVINF 0.03045 MVJ/MV9 0.03048	KINF 13181. K9 K9
	Ň	294.7	7×15	947.0	.9605 3	рр 301.2 .81	MD07 .81591-04	PP/PT .19432	рт/Рр 5.1461	(PT-PP)/(PT-P) 1.05500	(PT-PP)/(PT-P9) 1.05428	KDIT .02441
	P05		AKEA 4484	нт 1550.	4 367.1	TT 569.6	T 377.5	9749	9/40 1,082	(q-T4)/(qq-q)	WVJ/MVINF	A INI
1.595	9	53.7 7.85	0 V 653.7 1510.9	141 -2978+U7	99 367.2	1.0003	***	92,75 92,75	P9/PP 1.0825	(p9-pp)/(pT-pg)	97#7CVM 6VM/CVM	.07181
	ñ	335.9	335.5	545.1	570		.31081-04	.21a84	4.5696	(PT-PP)/(PT-P) 1.02359	(PT-PY)/(PT-P9) 1.02367	KDIT.
COMM COMF F	Pos		AMEA	- 4 - 4 - 5		TT	⊢ (d/dd	dd/d	(d-1d)/(dd-d)	HNIAM/CVA	KINF
		5. 5. 5.		.0551 HH! 711+#799.	9.000 64 9.44£	0.0/c q/pq	E.7/F	.97702 99/99	1.0235 p9/Pp	(6d-Td)/(dd-6d)	.00611 MVJ/WV9	.067n8 89
	i ii	P16		17	•	֓֞֜֝֜֜֜֝֓֜֜֜֝֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֡֓֡֓֡֓֜֜֡֓֡֓֡֓֡֡֡֓֡֓֡֡֡֓֡֡֡֡֡֓֜֡֡֡֡֡֓֡֡֡֡֡֓֜֡֡֡֡֡֓֜֡֡֡֡֓֜֡֡֡֡֓֜֝	MOON	19/97 T4/94	1.0207 PT/PP	*00624 *CPT-PP)/(PT-P)	.00612 (PT-P4)/(PT-P9)	.07146 KDIT
	5		•		V F	91. 7.166	•1634/=04	•23045	4.3394	1.00709	1.00624	.00489
	F05		AMFA	J :	a. (#	۲	d/dd	a4/4	(d-1d)/(dd-d)	NIVM/UVM	X
_		G		1558.	561.7 P9	570.5 P9/P	4. 5.0 5.0 5.0	.64412 PP/Po	1.552k P9/PP	#9002.	. n8019	.21506
1.301	č	65•5 1 P16		.3163+U7 TP	550.3	4060°	1.30A	.65037	1,5374	19417	4408U*	.21792
	ň	350.3	352.2	552.0	.9676 3	361.я ,25	.25247-03	.2322	4.3062	1.20064	1.19417	.07520
CORK CONF P	F05		AKF A	i	3	11	۰	95/0	ad/q	(d-1d)/(dd-d)	#ZI>#Z	X
	9	c	* >	1556.	561.6 Pq	570.7 P9/P	424.5 MO	.70584 007.00	1.4168	.16613	, n6552	.18360
1.300	99	664.4 1 P16	1315.9 PXL		553.8 12/11	.9861 PP	1.310	.7157A .7157A	1.3971	(94-14)/(44-64)	909/C/W	к9 •18796
	e.	388.3	391.2		696		.20601-03	.25476	3,9254	1.16613	(PI-PP)/(PT-P9) 1.15705	KDIT .06145
COKK CONF F	F0S		AKEA	F 7	<u>a</u> .	11 0	⊢ (d/dd	ad/d	(d-1d)/(dd-d)	MVJ/MVINF	KINF
		C		1364 K!	563.1 P9	569.9 9764	425.7 Ma	. A0305 PP/P9	1.2452 p9/Pp	11102 (P9-P9)/(P9-P9)	• 04555 4 17450	.14551
1.301	9	-		.3176+U7 fP	555.3 IP/TT	.9861 PP	1.311 MDOT	**1433 PP/PT	1.228n pT/Pp	(PT-19)/(PT-19)	9VM/LVM 47840.	15082
	ਤ \$	0.944	****	550.9	.9667 45	452.2 .14	14 304-02				こが ユー・エン・フ・コー・エン	KUIT

KINF .10651 .11393 KDIT .02290	KINF • 04236 K9 • 05180 KDIT	KINF .30303 .89 .28221 .KDIT	KINF .28546 .26239 .26239 .10620	KINF .23595 .20079 .0017 .06546	KINF .16169 K9 .13520 KD1T
MVJ/MVINF • n2442 MVJ/MV9 • n2451 (PT-PF)/(PT-P9)	**************************************	MVJ/WVINF .12660 MVJ/MV9 .12603 (PT-PF)/(PT-P9)	MVJ/MVINF .10710 MVJ/MV9 .10668 (PI-PP)/(PT-P9)	.06602 .06602 .002/WV9 .06575 .06575 .11488	.03170 .03170 .03170 .03164 .03164 .1, (PT-P9)
(P-PF)/(PT-P) 05216 05216 (PT-PP)/(PT-PP) 04525 (PT-PF)/(PT-P)	(P-PP)/(PT-P) (P9-PP)/(PT-P9) (PT-P)/(PT-P) 1.0298	(P-PP)/(PT-P) .22131 (P9-PP)/(PT-P9) .26534 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 16272 (P1-PP)/(PT-PP) 19423 (PT-PP)/(PT-P)	(Pq-Pq)/(Pq-pd) (Pq-Pq)/(Pq-pd) (Pq-Pq)/(Pq-pd) (Pq-Pd)/(Pq-pd)	(P-PP)/(PT-P) 03734 (PQ-PP)/(PQ-PP) 015436 (PT-P)/(PT-P)
p/Pp 1.102n P9/Pp 1.089n P1/Pp 3.056a	P/PP 1.0424 1.0284 PT/PP 2.8897	P/PP 1.336A p9/PP 1.389A p1/PP 2.8587	P/Pp 1.2261 29/Pp 1.2707 2.6294	P/Pp 1,101n p9/Pp 1,1399 p1/Pp 2,3575	P/PP 1.0444 P9/PP 1.0636 P1/PP 2.2342
99/P • 00748 99/PQ • 91824 99/PT	92928 92928 97249 97242 99/97	PP/F •74805 PP/Po •71954 PP/PT •34981	. A1431 PP.431 PP.430 . 78697 PP.471	PP/P • 90/825 PP/P9 • 87729 PP/PT	95744 94759 94718 94718
11 425.3 72 425.3 79 M9 77158-04	77 -2 424.6 /P NG 65 1.310 MPOT -20969-04	TT T T T T	11	11 1 •3 454.0 /P KO 53 1.074 MOOT •22112-03	TT T T T T T T T T T T T T T T T T T T
11 569.2 99/P 9883 PP 77	77 568.2 197P 9865 7P 7P 539.5 .20	77 564.9 99/P 1.0396 PP 745.7 .424	7.7 564.5 197.9 1.034.7 1.034.7 1.034.7 592.9 .358	11 564.3 P9/P 1.0353 PP 661.3 .221	7.7 5.63.7 99/P 1.0184 PP 697.8 .106
7 563.1 199 556.5 14/11 .9649	562.4 19711 19711 19711	7 99 758.4 17/11	726.1 P9 753.4 1771	726.1 P9 753.8 1771 •9793 66	7 720.00 742.02 742.02 717.11
1562. 1562. KU. *318U+U7 1P 549.2	1559. RH •3180+07 TP 547.0	FT 1560. HU *3193+U7 TP 553.5	PT 1559. RU: -3196+67 TF 553.2	1559. 1559. 81. 3197+07 TP 552.6	PT 1559. KH 3203+U7 TP 551.2
AKFA . 4484 V 1315.1 PXL 504.6	AKEA .4484 V V V 1513.0 PXL 537.4	AHFA .4484 V 1150.7 PXL 537.8	AMFA .44P4 6 V 016-9 1151.U P16 PXL 581-9 577.4	AHEA . 4464 1150.9 PXL c54.4	
667.2 7.72 716 504.0	6 665-3 P16 535-5	0 619•0 P16 537•1	6 616.9 P16 581.9	618.9 P16 655.1	AMEA .4424 0 V 619.5 1150.4 P16 PXL 691.6 693.5
+05 000	. 00 00	900 900	P0S • 00	7 • 0 0 0 0	00
СОИК СО18 145 10 10 10 М	COPH CONF	СОНИ СОИF 147 10 М 1.101	COKH CONF 140 10 M 1.102	СОКи ССИР 149 10 М	СОКК СОМF 152 10 М 1.102

KINF .43741 .42506 KDIT .22590	KINF .35217 .35761 .KDIT	KINF .25000 K9 .24549 KDIT	KINF .17978 .15279 .03497	A 1 N N N N N N N N N N N N N N N N N N	KINF .20547 .20547 K9 KDIT .06551
78793 %2793 MV/VMV %22640 %1747) (47-79)	MVJ/MVINF 17150 MVJ/MV9 17134 (PT-PP)/(PT-P9)	MVJ/MVINF .08741 MVJ/MV9 .08752 (PI-PP)/(PT-P9)	MVJ/MVINF .n3511 MV.J/WV9 .n3516 (PT-PF)/(PT-P9)	AUJ/WVINF • 1562A WWJ/MW9 • 15634 (PT-PP)/(PT-P9)	MUJW/LVM • 06730 • 06730 • 06737 • (PI-PP)/(PI-P9)
(P-PP)/(PT-P) • 34R30 (P9-PP)/(PP9) • 37R26 (PT-PP)/(PT-P) 1•34R30	(P-PP)/(PT-P) -28745 (P9-PP)/(PT-P9) -27618 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .12003 (P9-PP)/(PT-P9) .13436 (PT-PP)/(PT-P)	(4-74)/(74-4) 0.3736 0.04-74)/(72-99) 0.05/52 0.07-70/(71-4)	(P-PP)/(PT-P) 23799 (P9-PP)/(PT-P9) 23516 (PT-PP)/(PT-P)	(P9-PP)/(PT-P) 10959 (P9-PP)/(PT-P9) 10959 (PT-PP)/(PT-P)
P/PP 1,3190 pg/PP 1,3390 pT/PP 2,2385	P/Pb 1.2496 p9/Pp 1.2419 p1/Pp 2.1177	P/PD 1.090a P9/PD 1.100u P1/PD 1.8475	P/Pp 1.0265 pg/Pp 1.0360 pT/Pp 1.7305	1.102n 1.102n 1.101n 1.101n 1.5304	P/PP 1.0447 P9/PP 1.0447 PT/PP 1.4521
9/99 9/20 9/99 9/46 19/99	PP/F • 80028 • PP/P0 • PP/P1 • 47220	97/P • 91674 97/P9 • 90877 97/P7	PP/P .97416 PP/Pu .96455 PP/PT	7900. 00747 008740 90878 19799	99/9 •95726 99/90 •95726 99/91
11 1483.00 P9/P MO P9/P MO P9/P MO P8/P MO PP MOOT PP	T T T T 7 T 7 T 7 463.7 463.9 40.0 40.0 FP PD	TT T T T T PO T T T M PO T PO T PO T PO	560.5 482.3 P97P Mo 1.0100 .891 PP MOOT 9.7 .11686-03	11 555.9 506.0 99/P Mo •9991 .702 PP MOOT	TT T 555.7 505.7 509.7 Mo
912.2 92.0 920.0 920.0 1171 94 9431 691.1	912.6 56 P9 P9 P9 907.2 .9 P1771 PP	912.8 56 99 P 920.8 1.0 1P/TT PP	913.3 56 913.3 56 922.4 1.0 97717 PP	9 1124.u 55 124.u 59 1123.u 69 11717 1920.u	ρ 1123.U 55 P9 P 1123.U 1.0 14717 9905 1075.0
1347. 1347. 3018+07 1P 553.2	PT 1547. RE: •3025+07 TP 552.9	1546. RI) *3027+U7 TP 552.1	FT 1545. RH •3U28+U7 TP 551.5	PT 1561. KI! 70732+U7 TP 550.9	PT 1561. RU 81: -2730+07 TP 550.4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AKEA • 44.84 971.8 736.5	44 44 44 44 44 44 44 44 44 44 44 44 44	AMEA . 4484 V 960.8 FXL	AKEA . 4484 774.0 PXL 1015.0	
6 519.5 716 679.1	0 519.9 724.8	9 518.7 P16 826.9	517.8 P16 P16 883.8	0 387.7 P16 1013.0	AKEA .4484 0 V 388.5 774.9 P16 FXL 1072.0 1076.0
00.	200 000	2004 000	• 00	400 • 00	200 000 000
1007 100 100 100 100 100 100 100 100 100	COLAF AU AU AU AU AU	100. 100.	7.00 1.00 5.00 5.00	1015 10 10 102	COMF 10 10 703
155 153	154 154	СОКН ССМЕ 150 10 м	150	154 154	CORR CONF 160 10 M

KINF .19514 .18730 .18730 .02646	KINF 16019 K9 15034 KDIT	KINF 13828 K9 12419 K0111	KINF .05992 .04297 .04297 .00291	KINF .23142 .22619 .22619 .06173	KINF .19349 .18792 KDIT
ANIVW/LVM 4.04099 9.040/WV 9.04050 1.04079)/(PT-P9)	-02937 -02937 -02901 -02901 -19950-1	**************************************	**************************************	**************************************	WUJ/WVINF • n5759 WUJ/WV9 • n5719 (PI-PP)/(PT-P9)
(d-Tq)/(dq-q) 0,4719 0,4719 (pq-pq)/(pq-pq) 0,05154 (q-Tq)/(qq-Tq)	(q_Tq)/(qq_q) .03184 .03184 (pq_Tq)/(qq_q) .03184	(q-fq)/(qq-q) .01680 (pq-pq)/(p1-p9) .02095 (p1-p)/(p1-p)	(P-PP)/(PT-P) • 00445 (PT-PP)/(PT-P) • 00870 • 01479)/(PT-P)	(P9-PF)/(PT-P) • 14119 (P9-PP)/(PT-P9) • 14011 (PT-PF)/(PT-P)	(P-PP)/(PT-P) (P9-PP)/(PT-P9) (PT-PP)/(PT-P9) (PT-PP)/(PT-P)
P/Pp 1.3635 pg/Pp 1.3954 pT/Pp 9.0662	1.2193 1.2495 1.2495 1.7Pp	P/Pp 1.1046 p9/Pp 1.1299 pT/Pp 7.330s	P/PB 1.0257 P9/PP 1.0501 P1/PB 6.8071	P/Pp 1.606a p9/Pp 1.636u p1/Pp 5.904a	P/Pp 1.4225 09/Pp 1.4487 01/Pp
99/9 •73342 99/90 •71665 99/97 •11030	PP/P .A2011 PP/P0 .A0034 PP/PT	PP/P •90532 PP/P0 •98504 PP/PT	9749 •07492 •07790 •95274 •95749	PP/F .62237 PP/PO .61110 PP/FT	470300 *70300 *69027 \$9027 \$97.01
7.2 324.7 7.2 324.7 7.4 1.880 34 1.880 MDOT	11 •7 324.6 /P Ma 47 1.879 MNOT •63397-04	77 1.0 325.0 1/P M9 29 1.879 MDOT 41985-04	11 -7 -7 -9 -97375-05	11 •4 386.4 /p Mo Rt 1.48P MOOT •20858-03	TT T
11 557-2 P97P 1.0234 PP PP	77 557.7 197.7 1.0247 4P 189.2 .63:	77 558.0 1979 1.0229 PP PP	558.7 99.7 1.0238 1.0238 9.0 225.5 .973	71 560.4 P9/P 1.0184 PP 263.7 .208	71 560.6 P9/P 1.0184 PP 297.3 .165
230.7 1947 236.1 1771 4354	230.7 P9 236.4 17/11 17/31	231.3 236.6 236.6 11/11 .9708 20	231.3 231.3 230.8 230.8 1P/11	422.9 422.9 430.7 1771 •9804 26	422.9 422.9 430.7 430.7 430.7 430.7 430.7
1534. RD *2735+U7 TP 543.5	1534. RE: 82732407 1P 542.7	1535. RUI -2731+U7 TP 541.7	1535. RH 844 -2726+u7 TP 541.4	71 1554. KH 3130+07 TP 549.4	71 1554. RI: •3128+U7 TP 549.2
A4F4 .44F4 0 .47 579.9 1072.7 P16 FXL 167.6 160.1	AHEA .4484 9 V 579.9 lo73.4 P16 PXL 189.1 188.7	AMEA .4484 0 V 580.2 1672.7 P16 PXL 206.1 222.5	AMFA 		
6 579.9 P16 167.6	6 579.9 P16 189.1	580.2 F16 206.1	0 540.2 F16 222.7	AKEA .44F4 0 V 667.0 1446.2 P16 PXL 258.5 259.2	AKEA .4444 0 V 067.0 1440.4 P16 PXL 293.0 294.0
UNF PCS 10 1.75 10 1.75 10 1.75	P05	.0.4F POS 10 1.75 M 893	Juf POS 10 1.75 M	PGS 1.75	P05
СОРИ СОЛЕ 937 40 В 1.695	COKK CONF 940 10 1.845	СОКК LO14F 941 10 М 1.893	СОКИ СОИР 942 10 М 1.893	COKR CONF 944 10 3 M 1.5u1	COKR COMF POS 945 10 1.75 M 1.501

KINF .15124 . K9 .14477 KDIT	KINF 10392 K9 09472 KDIT	KINF .06099 .04962 KDIT	KINF .02458 .01723 .01723 .00185	KINF .31976 .89 .32224 KDIT	KINF .31644 .31938 KDIT .14084
MVJ/WVINF . n3985 MVJ/WV9 . n3956 . (PT-P9)/(PT-P9)	-0.04/LVU -0.01990 -0.01990 -0.01976 -0.01979)/(PT-P9)	ANJWINE 0.0754 WALLWY 0.0749 (PT-PF)/(PT-P9)	MVJ/MVINF .00217 MVJ/MV9 .00216 (PT-P4)/(PT-P9)	**************************************	######################################
(PT-P)/(PT-P) 07586 (PP-PP)/(PT-P9) 08352 (PT-PP)/(PT-P)	(PT-P)/(PT-P) • 03483 (P9-PP)/(PT-P) • 04230 • 04230 • 04230 • 04230 • 04230	(4-74)/(74-4) 01362 (4-74)/(74-69) 02074 (4-74)/(74-74)	(P-PP)/(PT-P) • 00681 • 01799 • 01398 • 01799 • 01799 • 01890	(P-PP)/(PT-P) -29666 (P9-PP)/(PT-P9) -29060 (PT-PP)/(PT-P)	(4-79)/(97-4) -28618 (49-89)/(87-89) -27924 (87-80)/(87-8)
P/PP 1.254¢ p9/PP 1.2787 p1/PP	P/PP 1.1027 P9/PP 1.1239 P1/PP 4.0522	P/Pp 1.0379 P9/Pp 1.0572 P1/Pp 3.8135	P/Pp 1.0185 P9/Pp 1.0378 PT/Pp 3.7428	P/Po 1.5109 p9/Pp 1.5029 p1/Pp	1.482a 1.482a 1974p 1.4737 1774p
99/99 •79715 • 79/90 • 78232 • 79/97	9/99 90/83 99/99 98/97 79/99	96759 96759 96759 96791 97791	98170 98170 98786 96356 97747	0/04 • 66146 • 04/00 • 6654 • 14/00 • 10031	99/8 •67440 •67450 •67450 99/91
71 •9 306.7 7/P 30 89 1.488 MOOT •11441-03	77 62 346.90 79 WG 92 1.446 MD07 57115-04	71 7 •5 387.1 /P No R7 1.48A MFOT •21647-04	71	TT	11 •6 449.6 /P MO 38 1.106 MD01 MD01 47787-03
540 P9 1•11 PP PP 337•1	561 P9 1.01 PP PP	561 P9 1.01 PP PP	562.0 562.0 99/P 1.0189 pp	558.6 99/P 99/P 9946 99	558.6 99/P 99/P 9938 9 PP
7 20.24 20.99 430.99 17.71	422-9 42-9 799 431-0 17.71	422.4 42.54 94 94.04 17.41	422.9 92.99 930.9 430.9	728.1 P9 724.2 1971 9909	728.8 99 724.3 17/17 4902
1554. 1554. 3126+07 179 548.7	1554. 1554. 81. 3124+U7 179 546.3	1554. 1554. 111 1222+07 17 545.7	71 1554. RI: A114+07 TP 546.0	1554. 1554. RI: 3234+U7 TP 553.5	1556. 1556. RU *3238+U7 TP 553.1
Ant A . 44F4 0 V 667.U 1446.7 F16 FXL 333.7 332.9	AKFA • 4484 1447 · 1 7 × 1 575 · 2	AKEA .4484 V 1447.5 PXL +02.9	AKEA . 44F4 V 1446.2 PXL		
0 667.U F16 333.7	6 667.0 716 380.8	AKEA .4484 0 .4484 V 667.0 1447.5 P16 PXL 405.1 402.9	667.0 P16 262.1	ARFA .4484 0 .4484 0 0 1145.2 P16 FXL 479.0 478.7	AHEA .4484 0 V 618.4 1144.3 F16 PXL 482.6 480.1
-01.75 10 1.75 10 5.11	P05 1.75	DNF POS 10 1.75 M M Sout	Jul 1.75		
CUPH CONF 940 10 1051	CORR CONF 947 10 M 1.501	СОКи СОМР 940 до М 1.501	СОКИ СОЦР 94У 10 М 1.501	СОКИ СОМЕ РОS 951 10 1.75 М 1.102	CORR CONF POS 952 10 1.75 p 1.101

KINF .277A5 .28146 .011	KINF .22714 .23520 .E3520 .E3520	KINF .19367 .20442 KDIT .04908	KINF 44396 79 45108 7017	KINF .40492 .79 .41221 KDIT	**************************************
MVJ/MVINF .11122 MVJ/MV9 .11133 (PT-PF)/(PT-P9)	.07.04/WINF .07189 MVJ/WV9 .07193 (PT-PP)/(PT-P9)	494949 404949 4047/W 904951 1.05850	ANIVM/LVM .30966. 9VM/LVM 930819 (PI-P)/(PI-P9)	**************************************	MVJ/MVINF .15426 MVJ/MV9 .15352 (PT-PF)/(PT-P9) 1.25364
(P-PP)/(PT-P) • 19484 (P9-PP)/(PT-P9) • 18883 (PT-PP)/(PT-P) 1.19484	(PT-P)/(PT-P) 10653 (PQ-PP)/(PT-P) 09857 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 06571 (P9-PP)/(PT-P9) 05855 (PT-PP)/(PT-P)	(p-pp)/(pq-p) .64724 (p1-pp)/(p1-pg) .61377 (p1-p)/(p1-p)	(4-19)/(94-9) 6316, (94-7-)/(94-99) 48914 (97-19)/(94-19)	(q-19)/(qq-q) 26157, (pq-pq)/(qq-pq) 33464, (q-19)/(qq-1q)
P/PP 1.2855 p9/PP 1.2781 p1/Pp 2.7507	P/PD 1.1374 1.1281 1.1281 PT/PD 2.4272	P/Po 1.0805 p9/Pp 1.0722 p1/Pp 2.305a	P/FP 1.3324 P9/PP 1.3217 P1/PP 1.8450	P/PP 1.2486 19/PP 1.2397 17/PP 1.7299	P/Pp 1.1113 P9/Pp 1.1034 P1/Pp 1.5369
9/49 97779 9/49 78/43 1/49	07/90 .87910 .98/40 .98/44 .41200	0/4d .92549 .04/4d .43264 .74/4d	90/99 .75053 .90/99 .75658 .57147	00/00 00/00 00/00 00/00 00/00 00/01	99989 99989 901625 901625
11 •5 449.u /P Mc 42 1.10F MFOT •37442-03	17 •6 449.p /P NO 18 1.104 MNOT -24190-03	11 •5 449.P /P Ma 23 1.106 MDOT •16655-03	TT T T T T T T T T T T T T T T T T T T	11 •3 504.1 /P Mo 29 •707 MDOT •81558-03	TT T *9 504.0 /P Ma *29 *705 MOOT
11 5-8-5 99/4 0942 99 566-4	85.00 60.00 60.00 60.00	558.5 P9/P • 9923 PP PP 166	11 553.7 P9/P •9920 PP PP PP	11 553.3 997.9 9929 901.8	
726.1 726.1 723.9 17.71	730.1 P9 724.1 1P/11	730.1 P9 724.5 17.71 •9880	7 1126.0 199 1117.0 1971 19942 841	1120.0 P9 1116.0 11717 .9948 901	1126.U 552 P9 P9 1120.U .90 14717 • 9949 1015.0
1556. 1556. 13234-UT 17P 552.9	1558. RII •3230+U7 IP 552.2	1554. 1554. 1411 3236+U7 17P 551.8	1560. 1560. 1811 1736+07 17 17 18	156u. 156u. RIII -2735+u7 IP 550.4	PT 1560. H! -2736+07 TP 550.1
AKFA .44P4 0 V V +18.9 1145.0 P16 PXL 562.4 562.1	AKFA . 44P4 0 V 617-3 1142.4 P16 PXL 641.7 033.3	AKFA .4464 0 V 017.3 1142.4 P16 PXL 674.4 065.4	AKFA • 4484 769.50 PXL 042.51	АнЕА . 44.64 V 768.1 . РХЦ	
6 18.9 F16.9 F16 562.4	6 F17.3 P16 641.7	0 017.3 P16 674.4	345.1 P16 840.3	384.0 P16 693.6	АКЕА , 44444 0 V 343.6 767.0 P16 PXL
1. T. C. S.	POS 1.75	10 1.75 M	P0S	POS 1.75	
COP: α CO1.F 930 α Δ10 M 1.102	COKR CONF 954 10 1009	1.074 LC14F	СОКИ СО16 РОS 95/ 10 1.75 м .659	СОКК СОИF 950 10 1 М 698	СОКК СОМF POS 959 10 1.75 М 7897

KINF .23801 K9 .25701 KDIT	KINF .16746 .16532 KDIT .02467	KINF .12058 .11803 KDIT	KINF .08358 K9 .08071 KDIT	KINF .06534 .06026 KOIT	KINF .09425 .09426 .06768 .00354
	WVJ/MVINF • 03811 WVJ/WV9 • 03789 • 03789) 1 • 06642	.02547 .02547 .02547 .02531 .02531 .05022	MUJUNINF 0.11562 MUJUNV9 0.1150 (PT-PP)/(PT-P9)	AVJ/WVINF 0.0030 MVJ/WV9 .00825 (PT-PP)/(PT-P9)	MVJ/MVINF .00546 MVJ/MV9 .00543 (PT-PL)/(PT-P9)
(P-PP)/(PT-P) • 12933 (P9-PP)/(PT-P9) • 10A84 (PT-PP)/(PT-P) 1.12933	(PT-P)/(PT-P) • 06420 (PQ-PP)/(PT-P9) • 06642 • 06420 1• 06420	(P-PP)/(PT-P) 04796 (PT-PP)/(PT-P) 05002 (PT-P)/(PT-P)	(P-PP)/(PT-P) .03343 (P4-PP)/(PT-P) .03598 (PT-P)/(PT-P)	(P-PD)/(PD-P) 01345 (P9-PD)/(PT-P) 01587 (PT-P)/(PT-P)	(q-19)/(qq-q) 00261 00261 (pq-pq)/(qq-pq) 00009 100261
1.0524 09/49 09/49 1.0448 PT/P6	P/PP 1.5637 pg/PP 1.5819 p1/PP 10.3439	P/PP 1.3681 p9/PP 1.3847 pT/PP 9.0442	P/Pp 1.2300 pg/Pp 1.2470 pT/Pp 8.1369	P/Pp 1.081k p9/Pp 1.0961 p1/Pp 7.1502	P/Pp 1.0149 1.0289 1.0289 pT/Pp 6.7090
99/4 95/31 99/40 95710 99/97	PP/F .6395n PP/Po .63214 PP/PT	9/49 9/2007 12/20 11/67	99/6 • 81242 • 90/70 • 80134 • 50/71	99/9 .92454 99/90 .91234 99/97	PP/P .98534 PP/Po .07193 PP/PT
11 1 552.7 503.7 99/P MO .0929 .706 PP MDOT	TT T T DAG 1	TT T T T T T T T T T T T T T T T T T T	11 1 569.3 331.0 P9/P AD 1.0138 1.882 PP MOOT	TT T T T T P P P P P P P P P P P P P P	TT T T T DAG.4 332.0 Ma No T.882 T.882 PP MOT NOT R.5.11697-04
1127.0 p.9 1119.0 11771 .994R 1071	231.9 29 234.6 234.6 1 17/11	23.29 5 29.12 234.7 1. 17.77 4 1.000	623.9 P9 P9 235.1 1 P7 17 1	231.9 56 23.0 59 235.0 1.0 19/17 1000 214.4	231.9 5 P9 235.1 1. 235.1 1. 19/17 P
1360. Rti 62730+U7 fp 549.8	1534. 1534. 111 12679+u7	PT 1533. RU: 7P TP	1533. 1533. 114 17402. 179	PT 1533. KH KH 7P TP	1533. 1533. 181: 2050+07 1P
AKEA • 4484 V 766.7 FXL 1069.0	ARFA . 4 4 F 4 V 10 H 4 . 9 7 X L 140 . 7	AKEA . 4484 V 1088.3 PXL	AMEA . 44F4 0 V 580.5 lebs.6 P16 PXL 187.1 180.7	Ahea . 4484 V 1684.3 PXL 213.2	AKEA .4484 V 1088.8 PXL 223.8
ი 383•3 P16 1069•0	0 581•1 P16 147•5	0 580.5 P16 168.6	6 580.5 716 187.1	6 580.5 716 214.3	0 580.5 P16 224.2
U.F PGS 1U 1.75 M M577	JUF POS 10 5.85 M	3 . v 8 . v	708 808 808	۲0S ۲۰۴5	P.65 5.65
СОНК СОЛР 960 10 М	CUKA CUMF 690 10 M 1.492	CONF CONF 700 10	СОКА СОNF 701 10 1.651	COKH CONF 702 10 M 1.891	CONF CONF 705 10 10891

xINF .14836 x9 .14277 x017	KINF .12679 .12066 .MDIT	KINF .10814 K9 .10030 KDIT	KINF .05602 .04836 .04836 .00790	KINF .05340 K9 .04049 KDIT	KINF 15697 K9 16486 KDIT
ANIVMVINA A.4.327 W.J.WV9 A.4.264 (PT-PP)/(PT-P9)	AUVA/VAM 0.3469 0.04/MV9 0.3423 0.10191	VJ/MVINF • n2577 VJ/MV9 • n2542 • n2542 1• n7031	MUJ/WVINF 0.0986 MVJ/WV9 0.00972 (PI-PP)/(PI-P9)	WUJ/WVINF • 00656 WVJ/WV9 • 00647 (PT-PF)/(PT-P9)	**************************************
(P-PP)/(PT-P) 12415 12415 (P9-PP)/(FT-P9) 13597 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .09115 .09115 (PT-PP)/(PT-P) .10197 (PT-P)/(PT-P)	(P-PP)/(PT-P) 05972 (P9-PP)/(PT-P9) 07731 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 02867 029-P)/(PT-P9) 03894 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 1131A (PT-PP)/(PT-P9) 102321 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .26n68 (P9-PP)/(PT-P9) .22017 (PT-PF)/(PT-P)
1.6703 1.6703 1.7271 1.7271 7.0750	1.4164 09/Po 1.461 01/Po 5.9838	P/Pp 1.2392 pg/Pp 1.2788 pT/Pp 5.2434	1.1020 p9/Pp p9/Pp 1.1371 p1/Pp	P/Pn 1.0445 p9/Pp 1.0776 p1/Pp 4.4197	P/Pp 1.8554 pg/Pp 1.7714 pT/Pp 5.1366
7,447 99,400 99,700 57,899 99,791	05/0 -70606 -70606 -680,0 -680,0 -16712	99/0 -80/699 	90748 90748 60749 87940 97740	9979 • 95741 • 92802 • 99797	99/P •53886 99/Pe •56446 99/FT
77 77 77 7950 970 970 970 970 970 970 970 970 970 97	TT T T T T T T 570.4 377.0 0 99.4 1.575	77 77 77 77 79 79 79 79 79 79 79 79 79 7	TT 77.5 277.00 P9/P 30 P9/P 7.519 P.575 P.00 P.00 P.00 P.00 P.00 P.00 P.00 P.0	11 70.4 770.4 777.9 7977 7777 7 7017 7 17551-00	TT 7.2 424.0 99/P Mo 0547 1.333 PON 0 .19071-03
365.6 94 576 95 77.9 377.9 1.02 97 74 1.02	360.4 571 360.4 571 270.1 1.0. 14717 450.0	360.3 576 99 99 378.0 1.03 17/17 0000 295.6	77 360.4 570.5 69 69/P 376.1 1.0319 11/17 PP 16/000 332.5 22	17 4 360.3 570.4 199 P9/P 37.5 1.0317 19 PP	17 562.3 567.2 99 99/P 530.0 .0547 11/41 9888 303.0 .19
1348. HII -29684U7 IP	1548. HI: -2970+07 1P 1	1356. 1356. 113 141 1 TP	FT 1549. RI RI 10707040	1550. 1550. RI' 17072407	1357. KEI KEI 184.07 11P H
4484 4484 V 1521.3 V Z 17.7	AKFA .4484 1526.7 FXL	AKFA .44P4 V 1521.1 . PXL	АКЕА . 4444 0 V 653.3 1520.7 . P16 FYL 330.3 .331.1	AKFA .4484 A V 654.0 1521.5 • P16 PXL 350.7 349.4	AAKA . 444A4 1611.0 V
652.7 P16 217.3	ინეკა ნეკა გამ გამ	0 654•U P16 291•2	653.3 P16 330.3	0 654.U P16 356.7	664.2 P16 299.9
Cort PCS 10 5-65 M	POS 5.85	705 5•85	P0S 5.85	PCS 5.85	F0S 5. 85
705 10 AU M 1.557	COPH CONF 700 10 H 1.596	COMM CONF 76/ 10 M 1.597	CORR CONF 704 10 8 1.596	1.597	CUPR CONF 711 10 1 M 1+299

**************************************	KINF .10091 .10894 .10894 .03380	KINF .07048 .07904 KDIT	KINF .02785 .03698 .KDIT	KINF .00238 .00591 KDIT .00038	.19513 .19513 .22076 .KDIT
WUJ/WVINF . 05154 . 05154 . 05231 . 05231 (PT-P4)/(PT-P9)	MVJ/MVINF • 03609 MVJ/MV9 • 03656 (PT-PF)/(PT-P9)	.02228 .02228 .02228 .02256 .02256 .1917/(PI-P9)	401/M/LV** 6.00660 MVJ/WV9 6.00670 107(PT-PP)	**************************************	MVJ/WVINF .09117 MVJ/WV9 .09258 (PT-PP)/(PT-P9)
(4-74)/(74-4) .23510 (4-74)/(74-89) .19494 (4-74)/(74-79)	(P-PP)/(PP-P) 16780 16780 (PP-PP)/(PP-P) (PI-PP)/(PI-P)	(P-PP)/(PT-P) 11394 (PQ-PP)/(PT-P9) 09418 (PT-PP)/(PT-P)	(p-pp)/(pt-p) 0.5631 (pq-pp)/(pt-pg) 0.3106 (pt-pp)/(pt-p)	(Pq-Pp)/(Pq-p) (Pq-Pp)/(Pq-pg) (Pq-Pp)/(Pq-pg) (Pq-Pp)/(Pq-p)	(P-PP)/(PT-P) •35°54 (P9-PP)/(PT-P9) •25441 (PT-PP)/(PT-P)
P/FP 1.6935 P9/FP 1.6100 P1/FP 4.6815	P/Pp 1.426n pg/Pn 1.3630 pT/Pp 3.9644	1.2539 1.2539 1.2012 1.7012 21.7823	P/Po 1.1110 pg/Pp 1.0627 p1/Pp 3.0815	P/Pp 1.0523 P9/Pp 1.0084 PT/Pp 2.9225	P/Pe 1.6774 pg/Pp 1.5230 PT/Pp 3.5833
99/99 .59049 .62078 .62078 .21361	99/0 •70128 99/10 •733/21 99/91	98/80 .79750 98/80 .83253 98/81	90012 90012 904100 94100 92452	90/04 05/027 09/09 09163 09/07	PP/F • \$9411 PP/Po • \$5620 PP/PT
77	TI T T T T T T T T T T T T T T T T T T	11	11 4.4 423.6 7.4 423.6 6. 1.333.6 10.04 2.0868-04	TT .9 422.7 /P .vo	11 •9 454.8 17 40 11.17 MOOT •30508-01
566.9 po/p .9512 pp	71 566.7 99/P 99/565 99 993.0	77 5.66.5 47.90 97.90 97	71 566.4 09/P 0566 PP 505.6 .20	TT 565.9 p9/P .9583 Pp	11 564.9 P9/P .0084 PP 434.8 .305
530.1 530.1 11/11 580.1	7 560.4 536.0 17/41 35	561.0 P9 537.4 1P/TT .9815 44	561.7 99 537.3 1771 9772 50	9 561.0 199 537.6 1771 53	729.4 729.4 94 966.0 11771 430
1554. 1554. 31844U7 17P 559.4	1554. 1554. HU *3187+U7 TP 557.9	FT 1550. HI: *3189+U7 TP 556.0	PT 1558. RI' 8192+07 TP 553.5	PT 1556. RI: 3193+U7 TP 552.7	1554. 1554. RI: •3189407 TP 559.3
AHFA • 44F4 V 1310.0 FXL 327.6	AKEA . 4484 V 1312.8 FXL 389.8	AHEA . 4484 V 1511.7 PXL 442.8		ANFA .4484 V 1311.0 •	
64.7 P16 325.8	0 065.0 716 339.1	664.7 71.00 716 443.9	AKFA . 4484 0 V 6-65.5 1311.8 F16 PXL 502.4 499.0	664.7 1 P16 528.7	AKEA .4464 0 V 617.8 1149.8 P16 PXL 422.7 426.4
10 5.45 20 5.45 3 8.45	POS 5.85	۲05 8.85	₩ 5.85	₽ 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8 • 8	F0S
СОКК СОМF 712 10 М 1.298	CURA CONF 714 10 P	CORK CONF 715 10 t 1.341	СОКК СОМЕ 710 10 t М 1.301	СОКК СОЛЕ 717 10 5 М 1.301	COMM CONF POS 710 10 5.85 M 1.100

KINF 18159 20883 KO KO 108226	xINF .15794 .19765 .KDIT .06622	KINF .10118 K9 .15869 KDIT .03428	KINF .08358 .31164 .02368	KINF .25948 .26505 KDTT .14714	KINF .22278 .22988 .22988 .11081
		- 0.04/MVINF 0.03457 0.04/WV9 0.03510 0.04610/(PT-P9)	MUJWVINF • n2388 MVJ/WV9 • n2424 (PT-P4)/(PT-P9)	4 4 8 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MVJ/WVINF .1181 MVJ/WV9 .11153 (PI-PF)/(PT-P9)
(P-PF)/(PT-P) 31207 (P9-PP)/(PT-P9) 2167# (PT-PF)/(PT-P)	(PT-P)/(PT-P) .22459 (P9-PP)/(PT-P9) .1345 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 12832 (PQ-PP)/(PT-P9) 014410 (PT-PP)/(PT-P)	(q-14)/(q-4) 0.08425 (pq-pq)/(pq-pq) 0.0058 (p1-pq)/(pq-pd)	(4-19)/(94-9) 48877 (4-19)/(91-199) 45808 (1-19)/(191-19)	(4-79)/(97-9) (31491) (49-79)/(97-99) (28738) (71-79)/(97-9)
1,5531 p9/Pp 1,4142 pT/Pp 3,3255	P/PP 1,3470 p9/PP 1,2202 p1/PD 2,8700	1,1723 09/Pp 1,0695 01/Pp 2,5149	P/PB 1.106u n9/PB 1.007k PT/PB 2.3689	1.5122 097PP 1.4901 017PP 2.5601	1.2785 F9745 F9746 1.2594 01770
47447. 64467 99/49 70709 79/97	74187 99/90 91055 74/97 34843	9/94 \$85303 \$9/99 \$9/99 \$7/98	9/46 90346 99/46 99/47 14/29	. 46120 . 46120 . 47109 . 49101	PP/P .78218 PP/P0 .79393 PP/PT
11 1 1 1 564.4 4.54.1 MA 10/4 10/6 1.176 PM 7 MA 10/4	TT 564.5 454.0 PQ/P PQ PQ 9052 1.17 PP MOOT	T TT 564.3 453.8 APA.3 453.8 APA.4 ATI.1 E919. TOM TOWN FOLSO.9 APA.5 AP	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	77 262.4 463.0 P9/P Mo -9854 .914 PP PD07	T1 T T T T T T T T P T T P T T T T T T T
726.1 P99 e63.0 IP/IT	732.2 P9 P6 P662.0 1P/TT 9880 543	726.7 P9 663.0 17/11	728.1 56 P9 P U63.1 .9 P/1T P9888 658.1	4 216.0 56 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	912.7 94 99 99.5 99.5 99.5 99.5 99.5 99.5 99.
1359. RII *3196+U7 IP 558.9	1359. 1359. 101 101 17 17 17	PT 1559. RH 3198+U7 TP 556.9	1559. RB: -3199+07 FP F	1544, 1544, 141, 174, 177, 1558,6	1544. 1544. 81. 3014+07 17
AHFA .44P4 V 1151.0 FXL 465.9	AMFA .44894 V E17.9 1147.8 F16 FXC 537.7 539.7	AKEA .4484 0 V 0 V 620.0 1152.7 P16 PXL 516.0 015.4	AKFA .4484 V 1150.5 FXL e51.1	AKEA . 44664 971. 4 PXL	AKEA • 44 F4 V V 970.2 FXL 713.1
618.9 F16 465.2	6 617.9 7.16 537.1	620.0 P16 616.0	614.9 P16 653.4	518.5 F16 594.9	6 617.5 708.7
01.4 P0S 10 5.85 M M	FCS FE FCS A 10 5.85	F05	F05 5.85	P05 5.85	ئ 85 85
COKK COLF 713 10 1.102	CORK CONF 720 10 1.098	СОКК СОМЕ 721 10 М 1.104	COKK CCIAF 722 10 M 1.102	COAN COLF 724 10 M	CORR CONF 725 10 M

KINF 8 .11324 9 .12168 0 .12168) KDIT 9 .04371	KINF 0.04615 9 05231 1 KDIT	.23440 .23440 .25357 .25357 .10928	# KINF 11179 13170 13170 13170 13170	KINF .21630 .22810 KDIT .03071	KINF 16058 17290 KDIT
ANT/MVINF • 04408 MVJ/MV9 • 04400 • 07-P9)/(PT-P9)	WJ/WVINF • 01400 WJ/MV9 • 01398 • 6179)/(PI-P9)	MUJ/WINF • 11590 MUJ/WW9 • 11461 (PT-P9)/(PT-P9)	**************************************	MVJ/MVINF 0,04743 MVJ/MV9 0,04743) 1,04891	MUJWVINF 0.03203 MUJWVW 0.03256 (PT-P9)
(PT-P)/(PT-P) • 16458 (PQ-PP)/(PT-PP) • 13929 (PT-PP)/(PT-P) • 16458	(PT-P)/(PT-P) •09449 (PT-P)/(PT-P9) •07196 (PT-P)/(PT-P)	(P-PP)/(PT-P) .26728 (P9-PP)/(PT-P9) .21951 (PT-PP)/(PT-P)	(4-19)/(44-4) 13426 16-19)/(41-4) 19375 113426	(9-79)/(97-p) 05-88 05-89 (99-pp)/(97-p9) 04-891 1.05488	(P-PP)/(PT-P) 04012 (P9-PP)/(PT-P9) 03432 03437 (PT-P)/(PT-P)
1.1285 p9/rp 1.1100 p1/pp 1.907n	9/Pp 1.0702 99/Pp 1.0546 01/Pp 1.8127	P/Pp 1.1151 p9/Pp 1.0962 p1/Pp 1.5454	7/P0 1.0547 09/P0 1.0397 01/P0 1.458A	p/Pe 1.4440 n9/Pe 1.398a e1/Pn 9.5514	P/Pn 1.290s n9/Pn 1.249n P1/Pp 8.530a
90/0 8863° 90/10 90/01 90/91	PP/F .03446 PP/P0 .04826 PP/P1	90/0 89680 90/00 91/057 90/97	94849 94849 04749 165216 19761	PP/F .69211 PP/Po .71492 PP/PT	97,490 .774,90 .80,00 .79,74
11 •9 483.6 /p NO 47 •01u MDOT •14654-03	71 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	547.8 5.716. 716. MOOT	11 •5 507,0 /0 60 •11 •12 •12 •12 •12 •12 •12 •12	TT T T T T T T T T T T T T T T T T T T	11 1 •8 331.0 /P Mg R5 1.012 MOOT
71 561.9 09/P 0847 PP 809.5 .14	71 541.7 pq/p oqfq p pq cs2.3 .46	7T u 556.9 9 p9/p 0 .9849 pp 1008.0 .359	TT U 556.5 9 00/P U .9858 PP 1068.0 .12	77 547.5 99/P • 9681 PP 160.5 •10	77 547.8 99/P 90685 94 797.68.
4 913.3 P9 899.3 1F/TT	912.1 P9 B90.8 HP/11 .9484	9 1124.0 P9 1107.0 11/11 -9953 100	1120.u P9 1110.u 1717.tr	231.9 29.59 224.5 17/11	231.9 231.9 224.6 1P/1T .9616 17
ANE A 1544. 44444 1544. V KII 970.1 •3017+07 FYL IP 506.6 556.7	1545. 1545. 171 177 179 1855.4	AKFA PT .44F4 1558. V KII 771.7 .2712+U7 FXL TP 1004.0 554.3	1556. 1556. HI: 704407 TP	1533. 1533. KIII 71P 17 17 546.0	AMFA PT .4463 1533. 0 V HI 540.5 1680.3 .2667407 P16 PXL 1P 177.3 .0 546.0
27. 27. 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ahfa . 44P4 V 971.8 PXL d51.6	ARFA . 4484 V 771.7 PXL 1004.0		AKFA .4463 0 V 580.5 1685.8 P16 PXL 162.2 .0	AHFA .4463 V 1080.3 FXL
0 517.8 P16 F04.7	0 514.5 F16 852.9	AHFA .4444 V 384.4 771.7 F16 FXL 1614.0 1004.0	AKEA .4464 0 v 382.9 765.4 P16 PXL 1070.0 1065.0	0 580.5 P16 162.2	6 580.5 P16 177.3
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	F0S 5.85	705 5.45	۲05 که۰د		000.
100 mm				CONF 3 3 1.891	1.441
בייי ביייי בייי בי	COKK CCMF 727 10 10 10 10 10 10 10 10 10 10 10 10 10	730 10 M	СОКК СОNF 731 10 М	СОКК СОМР 220 3 М 1.891	СОКА СОМЕ 221 В 1.491

KINF .06076 .07319 .07319 .00594	KINF .04341 K9 .06678 KDIT	KINF .24671 K9 .24644 KDIT	KINF .19281 .19159 KDIT .04311	KINF .12160 .12052 KDIT	KINF .06996 .06996 .06724 KDIT
.00919 .00919 MVJ/WV9 .00936 (PI-PP)/(PT-P9) 1.01358	**************************************	**************************************	MVJ/WVINF . n5061 . n5069 . n5058 . n5058 (P1-PF)/(P1-P9)	ANJ/MVINF • 0.2307 • 0.2307 • 0.2305 • 0.24-19) • 0.3473	MVJ/MVINF .01020 MVJ/MV9 .01018 (PT-PF)/(PT-P9)
(P-PP)/(PT-P) 011988 01988 (PT-PP)/(PT-P9) (PT-PP)/(PT-P)	(P-PP)/(PT-P) 01076 (PQ-PP)/(PT-P9) 00450 (PT-PP) 1.01076	(P-PP)/(PT-P) 11554 (P9-PP)/(PT-P9) 11584 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 07502 (P9-PP)/(PT-P9) • 07607 (PT-PP)/(PT-P) 1.07502	(4-19)/(44-4) .03409 (49-40)/(41-49) .03473 .103409	(P-PP)/(PT-P) .01923 (P9-PP)/(PT-P9) .02085 (PT-PP)/(PT-P) 1.01923
P/Pp 1.1261 p9/Pp 1.0867 pT/Pp 7.468u	P/Po 1.0644 09/Pp 1.0272 pT/Pp 7.0548	p/Fp 1.4435 n9/Pp 1.4445 pT/Pp 5.2789	P/Ps 1.249n 1.249n 1.2521 1.2521 4.5667	P/PP 1.1000 P9/PP 1.1019 P1/PP P1/PP	P/Pp 1.053n pg/Pp 1.058u pT/Pp 3.857u
99/8 88802 92/70 92/25 97/97	0/40 03/47 09/40 07/57 09/67	97/99 69291 97/99 69242 97/97 18943	PP/P . #0/61 PP/Pa . 79#54 PP/PT		04,86 04,86 09,445 09,445 09,57
7.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 4 9 7 7 7 1 4 4 9 7 7 7 1 8 7 0 0 7 7 1 3 4 - 0 3	7 7 7 7 7 7 7 7 9 9 0 0 0 0 0 0 0 0 0 0	71 •5 390.p /P M9 17 1.498 M001 *65587-04	71 •7 391•1 //P No u2 1•u95 PROT *29609=0u
11 568.5 9979 9650 99	568 99 96 99 17.3	566.4 p9/p 1.0007 pp pp	17 566.3 997P 1.0026 9P 339.7 .14	77 566.5 97.9 1.0017 99 365.1 .65	566.7 p9/p 1.0042 pp
4 6.15,5 99 2.25,2 11/11 .9566	7 1.43 2002 2007 11/41 2.6545	424.3 Py 424.0 17/11 2.5687	424.3 425.4 17.71 14.86	423.0 p. 424.3 141.3 17171	424.3 P94 420.1 (P/1T
1534. 1534. KU KU 715. 176 543.8	1533. 1533. 1817. 18 542.9	7.7 1556. RII •3084+07 17P 546•7	1556. 1556. 3085407 19 19 548.5	FT 1553. RD RD *3083+u7 TP TP	1553. 1553. 161. 17 17 17 545.2
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AKFA .4463 0 V 540.2 1040.8 P16 FXL 217.9	AMEA 44463 6 V 0066.5 1451.9 P16 FXL 294.4	AREA . 4463 V 1451.7 FXL	A + + + + + + + + + + + + + + + + + + +	
0 580.2 P16 206.2	6 540.2 716 217.9	666.5 P16 294.4	6 666.5 716 535.0	666.3 P16 383.4	AREA .4463 A V C65.5 1452.0 P16 P7L 402.0 .0
	NO. 00.	v 0	• 00 • 00	*00 *00	P05 • UB
200 3 222 3 224 3 1.693	COKA CC.45 ZZO 3 3 1.443	224 324 34 34 34 34 34 34 34 34 34 34 34 34 34	225 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CUKA LCINE 220 3 1.459	22/ 3 22/ 3 1.448

FALL 100000000000000000000000000000000000	KINF .30844 .28820 .28820 .08647	KINF .17558 .15875 .15875 .04027	KINF .30530 .30530 .30530 .011	KINF .23060 .21854 .03011	KINF .19241 .17834 .17834 .02222
*13A83 *13A83 MVJ/MV9 *13A58 (PT-PF)/(PT-P9)	MVJ/MVINF .08717 WVJ/WV9 .08702 (PT-PF)/(PT-P9)	**************************************	MUJ/MVINF • 10697 MUJ/MV9 • 10702 • 10702 • 10702	WUJWVINF .04637 WUJ/WV9 .04574 (PT-P9)/(PT-P9)	MVJ/MVINF 03407 MVJ/MV9 03378 (PT-PL)/(PT-P9)
(P-PP)/(PT-P) .1995 (F9-PP)/(PT-P9) .21104 (PT-PP)/(PT-P)	(PT-P)/(PT-P) • 08225 (PT-P9)/(PT-P9) • 08546 1• 08225	(4-74)/(74-4) 05300 (94-74)/(74-69) 06569 1.05300	(P-PP)/(PT-P) .12615 (P9-PP)/(PT-P9) .12615 (PT-PP)/(PT-P)	(q-pq)/(pq-p) .04101 .04101 (pq-pq)/(pq-pq) .04599 (p1-pq)/(pq-pd)	(d-19)/(dq-q) .02947 .0247 (pq-pq)/(pq-pq) (d-19)/(dq-1q) 74920.1
P/FD 1.295n P9/FD 1.3085 PT/FD 2.7701	P/Pp 1.1032 09/Pp 1.1184 PT/Pp 2.3585	P/Pe 1.0647 pg/Pe 1.0792 pT/Pe 2.2848	P/Pp 1.0514 pg/Pp 1.0514 pT/Pp 1.4593	P/Pr 1.296n 1.296n 1.330u 1.730u 1.78p 8.514n	P/Pp 1.1971 pg/Pp 1.2300 pT/Pp 7.8850
99/9 •77223 •76426 •76426 •90/91	PP/P • 90642 • 97/P3 • 89415 • 42401	99/P .03026 .09/P0 .92662 pP/P1	98/107 98/107 98/107 98/107 14/197	98/6 • 77160 • 98/60 • 75167 • 98/87	9794 •83534 98794 •81342 98747
TT	TT T 562.5 bb2.5 ma	562.0 451.0 P9/P Mo 1.0136 1.093 PP MDOT	TT T 55.50 P97.00 P97.00 P97.00 P01.00 P01.0	71 563.4 320.1 99/P Ma .0265 1.870 PP MOUT	TT T 543.7 329.0 Ma Ma 1.874 1.871 PP
720.8 5 P9 73c.4 1. 17/11 P	720.4 5 P9 730.4 1. PVTT 9 1.717 660.	726.0 5 P9 735.9 1. 1777 9 681.	9 1124.U 1124.U 1174.U 19915 1069	7 833.8 84 99 94 10.045 97 97 10.041	753.2 56 233.2 56 233.0 1.0 1771 PP
1559. RU •3267+U7 1P 552.2	1554. Hti 1574. 177 178	1558. 1558. 110 1213+U7 17 550.9	1560. 1560. 117 179 179 170.8	PT 1536. RII 82705+U7 TP 752.0	
A 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AMFA .4463 V 1147.9	ΑΚΕΑ . 4463 ο V 619.4 1150.3 P16 PXL 680.6 .0	AKEA . 4463 V 772.8 V 772.8	AKEA FT. 4463 1536. V NII 1077.9 .2705+U7 FXL TP .0 552.0	AKEA FT. • 4463 1536. V KII 1088.3 • 2716+U7 PXL FP • U 551.5
0 618.4 716 551.8	614.4 P16 642.0	619.4 P16 680.6	0 336.6 716 110701.0	0 582.8 P16 178.4	6 588.7 P16 192.2
• 00	904 00•	70S	00. 00.	705 1.75	F FCS
COKR CONF 220 3 1.101	COKh COMF 229 3 1.101	CURA CO.F 230 3 1.104	CONT CONF 235 3 3 4	COPR COLF 969 3 1	СОКК СОМР 990 3-1 1.899

KINF 12750 89 10796 KDIT 01011	KINF .05569 .05882 KDIT .00285	KINF 25116 K9 24472 KDIT 06488	KINF 12528 K9 12124 KDIT .03066	KINF .16800 K9 .16055 KDIT	KINF .09442 .08590 .08590 KDIT
.0155A . .0155A . .0155A . .01537 . .01537 . (PT-PP)/(PT-P9)	. 00439 . 00439 . MVJ/MV9 . 00433 . (PT-P9) . 1.01019	.07619 .07619 .MVJ/MV9 .07567 .(PT-P9) 1.12625	.03601 .03601 .03601 .03576 .03576 .01-PP)/(PT-P9)		.01752 .01752 MVJ/KV9 .01740 (PT-P)/(PT-P9)
(P-PP)/(FT-P) -0.1236 (P9-PP)/(PT-P9) -0.1736 (PT-PP)/(PT-P) 1.01236	(P4-P9)/(P4-P9) 0.00.00.00.00.00.00.00.00.00.00.00.00.0	(P-PP)/(PT-P) • 11487 (P9-PP)/(PT-P9) • 12625 (PT-PP)/(PT-P) 1•11487	(4-74)/(44-4) 19405 (44-44)/(44-44) 10559 1074-14)/(44-14)	(P-PP)/(PT-P) 07050 07050 (PT-PP)/(PT-PP) 07786 (PT-PP)/(PT-P)	(q-Pq)/(Pq-pd) 03248 (pq-pq)/(pq-pq) 03956 (q-pq)/(pq-pd)
P/Pp 1.6742 pg/Pp 1.1034 pT/Pp 7.0751	9/PD 1.0284 09/PD 1.0584 PT/PD 6.7860	P/Pp 1.4615 19/Pp 1.4862 PT/Pp 5.3439	P/Pe 1.3526 e9/Pn 1.3771 e.9491	P/Pn 1.230s p9/Pp 1.252a p1/Pp 4.4991	P/Pp 1.0945 n9/Pp 1.1143 p1/Pp 4.0046
03/096 19/09/09/09/09/09/09/09/09/09/09/09/09/09	.07248 .07248 .04486 .04486 .14736	PP/P 6842u PP/PC 67253 PP/PT	99/99 •73020 99/90 •72614 •9/77	96/6 • 1271 99/90 • 79824 99/97	97.70 .01.365 pp/po .497.39 pp/pt
71 ·9 329.1 /P Ma 74 1.871 WDOT	11 -8 329.4 /p wo 92 1.871 MNOT -94235-05	TT .9 380.3 /P .Mo .74 1.485 MOT .21750-03	71 •1 389.4 /P 80 81 1.485 MOOT •10284-03	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 •3 389•6 //P Mon P1 1•485 MOT •50036-04
71 563.9 p97.P 1.0274 pp	77 564.8 p9/p 1.0292 pp pp	77 563.9 19/P 1.0174 P P P P P P P P P P P P P P P P P P P	TT 564.1 pg/p 1.0181 Pp 314.2 .10	71 564.2 99/P 1.0181 PP 345.4 .12	11 564.3 pg/p 1.01P1 pp 388.3 .50
4 235.5 89 239.0 239.0 17741	7 232.6 199 239.4 11/11 9726 22	4 425.0 P9 #32.4 17/41 9839 29	4 425.U 99 436.7 12711 9844 33	4 425.0 P4 P9 432.7 T1/41 34 4853	4 0.425.0 899 7.36.7 117.41
1536. 1536. KII 62701407 17 1	1535. RI) -26924u7 TP I	PT 1554. KU *3105+U7 TP TP 554.8	PT 1555. RU *3106+U7 TP 555.3	PT 1554. KII •3102+07 TP 554.8	1555. 1555. Allo4+U7 1P 551.8
	AKEA .4463 1081.3 · FXL	AKEA .4463 1447.7 •		AHEA . 4463 1448. V V PXL	AKEA .4463 0 V 667.6 1449.3 P16 PXL 384.5 .0
Akfa .4463 v v 582.5 1579.6 Pin PXL 213.5	6 583.6 1 F16 223.4	666.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ARFA .4463 6 V V F67.6 1440.9 P16 PXL 313.9 .0	0 066.7 P16 342.5	667.6 716 384.5
+ F0S	7 8 X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F05	PCS 1.75	F05	ች POS 3 1•75 8
СОКК СОМ 991 3 1 1.889	СОКК СОМР 996 3 3 1.890	СОКК СОМР 994 3 1.497	COKK CONF 995 3 3 1.498	COKh CONF 990 3 11-497	СОКК СОМ 997 3 М 1.498

.05225 .05225 .04329 .06329	KINF 38678 89 39336 KDIT	KINF .36557 K9 .37101 .14514	KINF .29101 K9 .29718 K01T	*124710 *24710 *89 *25425 *DIT	KINF .23192 K9 .26509 KOIT .03933
.00582 MVJ/WV9 .00677 .00677 (PT-PP)/(PT-P9)	HVJ/MVINF • 16460 MVJ/MV9 • 16474 • 167-79) 1. 22460	**************************************	TWINYLWM 0.0800, 0.0800, 0.0800, 0.091, 1.09413	WUJ/WVINF • 06669 • 06669 • 06669 • 07-PP)/(PT-P9)	**************************************
(PT-P)/(PT-P) 01522 (P9-PP)/(PT-P9) 02233 (PT-PP)/(PT-P)	(PT-P)/(PT-P) (P3-P436 (P4-P4)/(P4-P4) (PT-P4)/(PT-P) (P7-P436	(P-PP)/(PT-P) .19465 (P9-PP)/(PT-P) .18778 (PT-P)/(PT-P) 1.19465	(P-PP)/(PT-P) 0.0961 (P9-PP)/(PT-P9) 0.09413 (PT-P)/(PT-P)	(4-79)/(24-9) .06027 .0607-99) (27-79)/(24-79) .1.06027	(P-PP)/(PT-P) 02807 02807 (PT-PP)/(PT-P) (PT-PP)/(PT-P)
1,0422 p9/pp 1,0615 pT/pp 3,8131	P/Pp 1.3617 P9/Pp 1.3494 PT/Pp 2.904a	P/P0 1.2849 P9/PP 1.2764 P1/P0 2.7486	P/Pp 1.1271 n9/Pn 1.1210 nT/Pp 2.4156	P/Pb 1.074* pg/Pb 1.0701 PI/Pb 2.3064	P/PD 1.0334 09/Pn 1.0255 01/PD 2.2208
7/94 04/94 04/90 04/94 14/94	73440 •73440 •74100 •74100 •74100	77427 09/90 17427 17420 17440 19/92	98727 98727 98780 98144 98744 98741	.03086 .03086 .03047 .07047	99/P •06774 99/Pq •07510 99/FT
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TT 561.3 452.1 P9/P MO .991u 1.107 PP MOT 536.7 .55041-03	TT 7 561.0 451.5 9974 Mo .9934 1.107 PP MOOT 567.2 .48943-03	7 T T T T 1	560.3 450.4 4,00.3 450.9 99.0 401 1.100 4 401 1.100 700 405.0 .20292-0.203	11 560.1 450.1 99.7 No .9924 1.111 pp Mn07
7 255.0 99 432.9 1771 435.4	730.8 P9 724.4 17/11	726.8 P9 724.0 17/11 .9923 S6	727.4 P9 724.0 72171	726.1 P9 723.3 127.1 •9907 67	725.4 P9 719.9 117.11
1355. 1355. 141 53103407 17 550.7	PT 1559. NH: -3217+U7 TP TP 556.7	1559. 1559. NU. 3220-07 TP 556.7	1559. 1559. 11: 17: 17: 556.0	1559. REI *3227+07 TP	FT 1559. RE *3230+07 TP 554.0
AHFA 0 4463 0 V 667.6 1449.4 FIG FXL	ANEA 0 .463 V 017.9 1145.3 P16 FXL 528.8	AREA .4463 V V V V V V V V V V V V V V V V V V V	AREA .4463 0 V 019.5 1146.1 F16 FXL 633.1 .0		
_	0 617.9 P16 528.8	618.4 558.4	6 619.5 716 633.1	AKEA .4463 0 4463 V 619.5 1148.4 P16 PXL 666.9 .0	AMEA .4463 0 V 0 620.0 1149.1 P16 PXL 697.4 .0
# # # # # # 70 % W # 10 % W #	ቶ & & ጀ ያ ያ ያ	ноs 1.75	P05	7 + FOS 4 1 • 75	مر کا ع 1.75 م کا
COKK CCI.F 440 S 8 M M 1.448	COKA CONF 1860 3 1009 1009	СОКК СОМF 1001 3 1.101	COKK COWF 1002 3 1.103	100+ COUF	COKh CONF 1065 3 M 1.105

KINF .51242 K9 .52141 KD11	KINF .45819 .47003 .24098	KINF .37149 .38908 KDIT	KINF .24823 .27661 .27661 .07382	KINF .18899 .16580 .KDTT	KINF 11778 89 .09629 KDIT
AUJANUIHE .33531 MAUJAW9 .33568 .43369 (PT-PP)/(PT-P9) 1.50541	AVJ/MVINF .25889 WW/L/W9 .25767 (PT-P9)/(PT-P9)	WUJ/WVINF .16397 WJ/WW9 .16295 (PT-PF)/(PT-P9)	407W1NF 407573 407/WV9 407526 407-7097 1432	AUJUNZINF ONGO 1000 MUZUNV9 ONGO 1000 OFT-00) (PT-00)	ANLWALWA • N2173 • N2WV • N2077 • (PT-P9)/(PT-P9)
(4-74)/(74-4) 53341 1,45-4)/(74-64) 650547 (4-74)/(74-74)	(PT-P)/(PT-P) .36636 (P9-PP)/(PT-P9) .34163 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .20690 (P9-PP)/(PT-P9) .18510 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 09404 (PT-PP)/(PT-P9) • 07432 • 07437 1•09404	(4-14)/(44-4) .05241 (4-4-4)/(41-49) .06983 (4-14)/(41-4)	(P-P)/(P-P) (P9-P)/(PT-P9) (P1-PP)/(PT-P) (P1-PP)/(PT-P)
1,2557 pg/km 1,246a nT/kp	p/Pp 1.1644 pg/Pp 1.1562 pT/Pp 1.6132	P/PP 1.0871 19/PP 1.0792 1.5072	1,0379 n9/Pp 1,0365 p1/Pp 1,4404	P/P2 1.4140 p9/P0 1.5430 pT/P0 9.3300	P/PB 1.2214 09/PP 1.3344 PI/PB 8.0822
99/9 79/90 99/90 90/90 14/90	9/99 9/82 99/40 9/849 19/90	99/6 • 92/69 • 92/69 • 99/97 • 66:46	4/44 62530. 62749 74/49. 74/49	PP/C .7047° .04/75 .06/175 .10717	PP/E .81846 .02/Po .74031 .07/PT
11 15 17 504.7 504.7 504.9 wo and	TT T 564.5 bsq.0 b9/p wa. 4929 .707 pp M00T w00T	TT T T T T T T 554.0 504.7 MA 40929 .704 PD T T T T T T T T T T T T T T T T T T	11 553.7 504.3 99.9 .700 99.9 .700 99 .	TT	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1194.0 P.4 1181.0 11/11	1126.0 P9 1116.0 11/71	7 1125.0 1117.0 1177.0 19771 9973 1035.	1124.U P9 1116.U HZ/TT	23.85. 29. 253.8 10. 17.171	231.9 5 P4 253.3 1. P/11 9756 189.
1560. 1560. 181 18 19 553.4	1560. 1560. KH *2732+07 1P 553.0	1564. RII *2732+47 IP 552.5	1560. 1560. 181. 17 18 552.0	1534. 1534. 1813. 179 179 553.4	AKFA PT
A + + + + + + + + + + + + + + + + + + +	A # # # # # # # # # # # # # # # # # # #	AKFA . 4463 V 769.7 PXL	AKFA 4463 770 V 770 S	AHEA .4463 V V 1683.6 FXL	AKFA . 4463 V V 1084.9 FXL
0 382.4 F16 F97.0	م د . دهن ۲۵۵۰ و ۲۵۵	0 384.8 P16 1035.0	385.5 115.5 1161.0	0 541.6 P16 165.8	0 541.1 F16 191.8
705 1.75	7 75 75 9	ቸ & Σ 2 1 • 7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ቶ POS ነ 1.75 ነዕ	F05 5•85	F0S
1007 1007 1007 1007	COKn CONF	100.5 100.5 3 100.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1010 3 1010 3	CCKK LCUNF 634 3 1.690	1.652 B

KINF .07741 .05262 K9 .05262	KINF .07271 K9 .03616 KDIT	*INF .17826 .17225 .KDIT .04550	KINF .13615 .12953 .12953 .03096	KINF .08511 .07925 .07925 .01457	KINF • 04664 • 03850 KDIT • 00556
MUJ/WVINF -011004 MUJ/WV9 -00959 (PT-PP)/(PT-P9)	.00600 .00600 MVJ/WV9 .00573 (PT-PP)/(PT-P9)	ANJ/WVINF ANJ/WV9 WV/WV9 ONSSO9 (PT-PP)/(PT-P9)	7.3637 0.3637 0.04/Vw 0.3606 0.0617 1.08783		.00654 .00654 .00654 .00646 (PT-PF)/(PT-PQ)
(P-PP)/(PT-P) .11405 (P9-PP)/(PT-P9) .03115 .03115 .11405	(P_PP)/(PT_P) 00537 (P9-PP)/(PT-P) 02>24 (PT-PP)/(PT-P)	(P9-P)/(P7-P) 11367 (P9-PP)/(P7-P) 12302 (P7-P)/(P7-P)	(4-P9)/(PT-P) -07867 -(PT-PP)/(PT-P9) -018783 -17867 -17867	(PT-P)/(PT-P) (P3-P4) (P1-P9) (P1-P9) (P1-P) (P1-P) (P1-P)	(P-PP)/(PT-p) .01770 .01770 (P9-PP)/(PT-P9) .02624 (PT-PP)/(PT-P)
9/PP 1.UR59 09/PP 1.1873 01/PP 7.2019	P/Pr 1.0312 p9/Pp 1.1271 o1/Pp 6.8391	P/Pp 1.4334 pg/Pp 1.4652 pT/Pp 5.2466	P/Pp 1.2647 py/Pp 1.2931 p1/Pp 4.6280	p/Pp 1.1150 P9/Pp 1.133* PT/Pp 4.0825	P/Pn 1.0495 p9/Pp 1.0727 p1/Pp
4/44 9/44 14/44 14/44 13/44	99/9 • 06974 • 09/99 • 88726 • 09/97	7/47676767676767676767676767676767676767	79071 79071 69790 77340 79797	.89654 PP/Po .88230 .97/PT	94/6 •95246 \$12/40 •93/21 \$17/40
3.50.0 8.0 1.835 8007 420-00	11 •5 320,9 79 80 1000 •12794-04	11 • 4 390.0 / 4 390.0 22 1.483 MOOT • 15209-03	71 •3 390.8 /P	77 •5 391•n /P wo 60 1•467 POOT •48695=00	11 •4 390.0 /P MO 22 1.443 MOOT *18611-011
71 566.5 2074 1.0934 PP 13.0 .21	566.5 pc/p 1.0930 pp	71 566.4 Po/4 1.0222 Pp	71 566.3 p9/P 1.0024 PP 735.5 .103	71 566.5 99/P 1.016U PP 380.4 .486	11 566.4 pq/p 1.0222 pp
25.1FS 20.1FS 20.25 20.2	231.3 10.9 252.0 17.71	424.3 69 833.7 11/411	424.5 424.5 99 433.8 11/11	424.5 P9 P3 431.1 IP/11 .9771 38	424.3 424.3 99 433.7 11/11
1534. NH 28574+07 IP 552.2	1534. RU: 72075+U7 170 55U-5	FT 1553. KU *3085+07 TP 555.6	FT 1553. NH: ***********************************	1353. 1353. RH •3084+07 TP 553.5	PT 1554. MI: •3085+07 fP 552.2
AKFA . 4463 1085. V PXL	AKFA .4463 V V 1085.3	AHEA 4463 0 V 666.5 1451.7 P16 PXL 295.9 .0	ANFA .4463 0 V 656.5 1451.5 P16 P16 P26 235.0 .0		
0 586.2 F16 210.5	222.6	666.5 P16 295.9	0 656.5 P16 335.0	AHFA • 4463 0 V 0 bb6.5 1451.9 F16 FXL 777.3 .0	AHFA .4463 0 V 666.5 1451.7 716 PYL 400.3 .0
PCS 5 • 65	45 POS	705 5.85	۲05 ک•85		5 FOS
	1.655	4. 8 & & & & & & & & & & & & & & & & & &		••	
СОКА СО1.F 630 В 8 1.652	CUMM CUMF 63/ 3 7 1.693	633 1.	640 3 640 3 1.447	COPA CONF 641 3 1.498	COMM COMF 642 3 1.474

KINF .24983 .29145 KDIT .11130	KINF .22544 .2729 .27729 .09449	KINF .14007 K9 .21251 KDJT	KINF .09471 K9 .24954 KDIT .02740	KIPE -88080 -93731 -45530	KINF .36647 .39675 .39675 .16983
71704/UV 11223 11223 MVU/WV9 11388 (PT-P9) 19369	ANJWAJUM • 19520 • WAJWA • 19665 • PT-P9)/(PT-P9)	ANJWAINF •04930 •04930 •05050 •05050 •05050 •05050 •05050 •05050	ANJ/WVINF • 0.2764 MVJ/WV9 • 0.2603 • 0.27-P9) 1.01175	48863 48863 WVJ/WY 948260 107577)/(14-19)	401/W/LVW 77971. 77971. 904/LVW 17793. (PT-P9)/(PT-P9)
(P-PP;/(PT-P) 28675 (P9-PP)/(PT-P9) 19369 (PT-PP)/(PT-P)	(p-pp)/(p1-p) 22872 22872 (pq-pp)/(p1-pg) 13895 1-pp)/(p1-p)	(P-PP)/(PT-P) 13794 (PT-P9)/(PT-P9) 05515 (PT-PP)/(PT-P)	(q-pp)/(pq-q) .08A37 (pq-pq)/(p-pq) .01175 (p-pp)/(pq-p)	(4-74)/(74-4) • 34954 (4-74)/(71-49) • 39604 • 7497/(71-4)	(P-PP)/(PT-P) .26*16 (P9-PP)/(PT-P9) .21586 (PT-PP)/(PT-P) 1.26*16
P/Fn 1.4831 p9/Pp 1.3518 pT/Pp 3.168n	1.3494 1.3494 1.2297 1.2297 2.8767	1.185n p9/Pp 1.079a p1/Pp 2.526a	1.1122 1.1122 1.0101 1.1101 27.742	7/PD 1.1569 1.1367 1.1367 1.6054	1.1141 n9/Pp 1.0972 b1/Pp
97/74 67425- 99/90 73977 97/97	74111 11470 11170 11470 14763	984347 984347 98749 98791 98781	.89900 .89900 .08420 .08421	PD/F .86441 pp/po .87848 pp/pT	9976 .99760 .91130 .91139
562.1 452.6 P97.P Mo 1.114 1.174 PP MOT 1914 3.37469-03	11 562.4 453.0 p9/p wo .9108 1.173 pp MOOT	562.2 459.9 567.2 459.9 9 90/P NO 9 112 1.172 PP MOOT	562.2 459.2 pa/p wo .0135 1.174 pp wor 654.0 .92226-04	11 555.1 505.6 997P %0 9840 .710 PP MOT	T T T T T T T T T T T T T T T T T T T
7.257 4.257 4.49 4.40 11.71	730.8 P9.067 P9.060.0 P7/11	730.67 94.85 94.865.9 17.741 6.868.8	727.4 99 66.50 11741	1124.0 54.1 1106.0 117.1 1.7959 q	1123.0 P9 1100.0 11/11 .9957 10
AKFA PT .4463 1556. V KII 1147.0 .3209+U7 FXL TP .0 556.5	PT 1558 - RU *3209+07 TP 556*1	1556, 1556, RI 3210+07 17 554.5	PT 1558. RI TP 7P 553.3	1360. Rt. -2727+U7 1P 552.8	PT 1560. RU -2735407 IF 552.5
AKEA . 4463 1147.0 . V	A4463 4463 V V V 7 Y V C	AHFA .4463 V 1146.4 PXL	AXFA . 4463 1146. V . 7XL	AHEA .4463 771.5 rxL	AHEA .4463 775.4 PXL
0 617.8 616 489.2	617.9 P16 543.4	617.9 P16	616.4 P16 651.9	385.5 P16 967.4	387.4 P16 1106.0
COPR CC. F PCS 64+ 3 5-85 1-100	СОКК СОМЕ РОS 645 3 5.85 12029	CORM COLF PCS 640 3 5.85 M 1.099	CORK CONF PUS 64/ 35.65 1.102	СОКК СОМР РСS 651 35.85 М .700	CORN CONF PCS 652 3 5.85 7 507.

KINF .12615 K944 KDIT	KINF .27223 .29193 .0117	KINF .260R2 K9 .274R2 KDIT .03102	KINF .10726 .11828 .KDIT .00941	KINF • 03438 • 04884 • KDIT	KINF •00000 •00000
**************************************	.05519 .05519 .05519 .05611 .05611 .05631 .05633	MVJ/WVINF .04792 MVJ/WV9 .04838 (PT-PP)/(PT-P9)	**************************************	.00325 .00325 MVJ/MV9 .00328 (PT-PP)/(PT-P9)	#WI/WWINE 00000 #WI/WW 00000
(PT-p)/(PT-p) 13532 (P9-pp)/(PT-p9) 019272 (PT-pp)/(PT-p)	(P-PP)/(PT-P) 0.04213 (P9-PP)/(PT-P9) 0.03633 (PT-PP)/(PT-P)	(P9-P9)/(P1-P) 03200 (P9-P9)/(P1-P9) 02469 (P1-P9)/(P1-P)	(P-PP)/(PT-P) 01550 (PQ-PP)/(PT-P9) 01270 (PT-PP)/(PT-P)	(q-19)/(pq-q) 0.0014 (pq-pp)/(pq-p9) 0.0352 (pq-p)/(pq-p)	(q-T4)/(q-4) (00-64) (64-T4)/(qq-64)
p/pn 1.0554 p9/pp 1.0394 p1/pp 1.464a	P/PP 1.31Un P9/PP 1.2688 PT/PP 8.667u	1,2191 p9/Pp 1,1971 p1/Pp 8,0662	P/Pr 1.0954 P9/Pr 1.0784 P1/Pr 7.2474	P/Po 1.041a P9/Pp 1.02U7 PT/Pp	P/Pp 1.027n pg/Pp 1.0051
99/9 94751 99/70 96/906 99/91	PP/P .76336 PP/PQ .78816 PP/PT	99/9 82026 92/96 83538 99/91	.91293 .91293 .92732 .92732 .97/94	99/9 •95990 99/90 •97975 99/97	99/90 99/90 99/71
7 505.1 77 °00 49 °718 MPOT 14179-03	TT T T T T T T T T T T T T T T T T T T	TT	TT T •5 328.4 /P Mo 45 1.902 MDOT •31081-04	11 •6 329.1 17	7329.4 329.4 Mo Mo MOOT
77 0 554.7 9 99/P 0 9849 0 PP 1065.0 .14	552.2 99/P 9685 9685 PP	71 562.7 99/P 9819 PP 190.3 .102	80 ° 4 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6	37 (7)	71 565.1 97.9 9789
1124.0 P9 1107.0 1271 19711	P 232.0 P9 224.7 IP/II	232.0 29.9 227.8 19711	232.0 299 228.4 11/11	4 231.9 56 99 pq 227.2 .9; 11/4T 9534 222.6	231.9 29 227.0
1360. NE RIT TP 551.1	1535. RU *2707+07 TP 542.3	PT 1535. KU 8U 7T TP 542.0	1535. RU -2699+u7 TP 540.6	PT 1534. RU -2690+U7 TP T	PT 1534. RII •2687+u7
AHFA 4463 772.2 772.2	AKEA .4450 V 1078.7	AKEA .4450 1679.2	AREA .4450 1080.5 .V.	AKEA .4450 1082.3 . PXL	AREA .4450 V 1083.1 .
386.6 P16 1051.0	0 581.3 P16 175.8	581 0 P16 1886	6 581.3 716 209.4	0 581.1 1 P16 217.8	a 581.1 1 P16
Pos 5.85	Pos 00.	.00 • 00	Pos 00	Pos 000	Pos 000
CORR CONF 653 3	CORR CONF 53 2 1.092	CORR CONF 54 2 M 1.892	CORR CONF 55 2 M 1.892	CORR CONF 56 2 M 1.892	CORR CONF 57 2 M 1.892

KINF .18812 K9 .19402 KD17	14589 14589 15121 15121 101992	KINF .07794 K9 .08642 KDIT	KINF .00000 K9 .00000 KDIT	KINF ,30159 K9 .31173 KD1T	KINF .28078 .89 .29115 .08299
**************************************	.02/MVINF .02486 MVJ/MV9 .02493 (PI-PP)/(PI-P9)	**************************************	INIVM/LV** 00000 00000 00000 00000 00000 100000000	**************************************	ANIVM/LVM 0.08849 9.00/LWW 0.08886 0.00-10411
(q-pp)/(pp-p) 0349A 0349A (pp-pp)/(pp-pg) 03279 (pp-pp)/(pp-p)	(PT-P)/(PT-P) .02670 (PT-PP)/(PT-P9) .02479 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .01039 (P9-PP)/(PT-P9) .00843 (PT-PP)/(PT-P)	(P-pp://pt-p) .00135 (P9-pp://pt-p9) .00135	(q-f9)/(qq-q) 134.16 134.69 (pq-fq)/(qq-pq) 124.69 (pq-fq)/(qq-fq)	(p-pq)/(pq-pd) (pq-pq), (pq-pq)/(pq-pq) (pq-pd)/(pq-pd) (ppd)/(ppd-pd)
1.1274 p9/Pp 1.1197 p1/Pp	1.094u p9/4u p9/4u p9/4u p9/4p p1.087a p1/pp 4.631n	P/Pp 1.0347 p9/Pp 1.0282 pT/Pp 4.3785	1.0044 97/40 99/40 9981 1981 1.2501	P/PD 1.3116 1.2920 1.2920 FT/PD 3.6342	P/Pc 1.2561 n9/Pc 1.2321 p1/Pc 3.4639
00/00 00/00 00/00 00/01 00/01	01473 01474 04/40 01925 01926 01517	9/24 96642 97/20 97/25 97/25	99563 99563 99760 1.00192 99797 23520	9/00 .76240 pp/po .7737 .97516	9976 • 79993 • 1147 • 1147 • 58870
11 17 1 -8 375.4 7P MO 32 1.602 MOOT 96244-04	11 •8 375.4 /p ido 40 1.60! MPOT •66261-04	11 1 •2 375.6 /P wo 37 1.601 MDOT •22754-00	7375.7 2.0 1.64.1 MOOT	11 5.6 421.80 7.0 MO 51 1.811 MDOT 51721-08	11
71 566.8 997P 9932 99 324.9	77 566.8 997,9 999.0 99	17 567.2 9979 997 19 99 354. n.\$28	77 567.2.37 99.47 10.000 10.0000	11 563.6 997P 9851 PP	11 563.5 99.7 9858 99
7 360.3 P9 363.8 17/11	360.3 364.1 14/11 .9559	4 350.3 P9 364.0 1P/TT *952n 35	60.3 60.3 70.4 16777 16777	62.3 69.3 553.9 1771 4725 42	4 562.3 P9 554.3 11/11
1550. Kri *2994+u7 1P 543.3	11550. RE: 72998407 17P 541.8	1350. RI -2996+U7 TP 540.0	1350. 1350. KI! 2995+U7 1P 539.2	Akfa PT .4450 1550. 0 V WII 665.2 1307.9 .3212+07 P16 FXL TP 427.1 .0 548.1	1558. 1558. KII. •3213+U7 TP 544.1
AMFA 0 .4450 0 V 054.0 1516.6 P16 FXL 319.0 .0	АКЕР • 4450 1010 V гото	AKFA .4450 0 V 654.0 1517.0 F16 PXL 536.1 .0	AKFA .4450 0 V c54.0 1517.2 P16 PXL 351.3 .0	AKFA .4450 V 1307.9 FXL	AKFA .4450 0 V 665.2 1307.7 F16 FXL 446.1 .0
0 654.U P16 319.0	6 654.8 P16 323.8	654.0 654.0 F16 536.1	0 854.0 P16 351.3	665.2 P16 427.1	0 665.2 F16 446.1
7 • 0 3 9	800 000	• 00	909 • 00	20 00 00	2004 000
COKA COMP 2000 2 2000 2 1.557	COKE CONF	COPic CONF 60 2 1.597	COKR COI.F 61 2 M 1.597	COPR CONF 6∠ 2 M 1.3uU	CORR CORF 63 2 1.300

KINF 14773 K9 *15943 KDIT	KINF .06805 .079 K9 .0757 KDIT	. 00000 . 00000 . 00000 . 00000	KINF 40315 89 36813 8011	KINF .39316 K9 .33374 KOIT	KINF .22520 .89946 .18946 .04137
**************************************	.01207 .01207 MVJ/WV9 .01212 (PT-PP)/(PT-P9)	-00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -000000	*14363 *14363 *14310 *14310 (PT-PF)/(PT-P9)	4.0429 4.0429 4.07/WV 4.0389 4.0399 1.10214	ANJ/WVINF . 04169 . 04163 . 04163 (PI-PP)/(PI-PS)
(P-PP)/(PT-P) .05715 (P9-PP)/(PT-P9) .04862 (PT-PP)/(PT-P)	(PT-P)/(PT-P) (PQ-PP)/(PT-P9) (PT-PP)/(PT-P9) 1.02983	(q-Tq)/(qq-q) 01205 01206 (q-Tq)/(qq-pq) (q-Tq)/(qq-Tq)	(p-pp)/(pt-p) 14238 (pg-pp)/(pt-pg) 17632 (pt-pc)/(pt-p) 1.14238	(P-PP)/(PT-P) (P9-PP)/(PT-P9) (P1-PP)/(PT-P) (P1-PP)/(PT-P)	(p-pq)/(pq-pd) 03312 03312 (pq-pq)/(pq-pd) 04751 (p-pd)/(pq-pd)
1.1124 p9/Pp 1.0964 p1/Po 3.0827	P/Pp 1,055° 1,0407 PI/Pp 2,9254	p/pp 1.021s pg/pp 1.0069 pT/pp 2.8312	1.1944 1.1944 1.233 0T/PB 2.5590	P/P5 1.0867 1.1234 1.1234 PI/P6 2.3310	P/Pn 1.0392 n9/Pp 1.0555 pT/Pp 2.223n
99/6 89/81 99/00 91195 97/71	90/99 90/710 90/90 96/94 70/97	07/866 07/866 09/70 09314 09/77	97/99 • 83723 • 97/23 • 81049 • 87/64	. 0126 0126 00790 089019 00761	9/49
11 5.5.5.4 421.5 5.9.4.7.1 6.0.4.1.3.11 7.0.4.110.99-03	17 563.9 421.4 pa/p wo .9858 1.311 pp Mnot	TT 563.8 421.4 P9/P Mo •9854 1.311 PP MDOT	TT T T T EST.2 EST.1 451.2 % % % % % % % % % % % % % % % % % % %	TT	7.7 T T T T T T T T T T T T T T T T T T
56.3 56.9 56.9 56.9 56.9 59.9 59.9 59.9 59.9	4 562.3 59 99 954.3 97 11/11 532.6	562.3 56. P9 P 554.1 .91 IP/IT PP	727.4 56 P9 P9 P751.4 1.01.7 P711 P99.0	726.1 560.9 P9 P9/P 751.3 1.0319 P1/11 PP P	720.8 560.6 P9 P9/P P9/P P9/P P9/P P9/P P9/P PP/P PP/P PP/P P9/P P
1056. NI: •3213+U7 IP FP 546.0	1556. 1556. Mi 3211+07 TP 543.9	1358. 1358. 1811 1707 1707 1707 1707 1707 1707 1707	1559. RE: 3221+07 TP 551.1	FT 1559. RI: •3222+U7 TP 558.4	1559. 1559. 13227+07 17
AHFA 44°0 V V 1307.7	AXF A	AKEA • 4450 0 V 665.2 1308.0 P16 PXL 535.3 • 0	AKEA . 4450 V V 014.5 1148.5 FIE FXE	AMFA . 4450 . 1147.5 . VXL	AKFA .4450 0 V 619.5 1147.2 · P16 PXL 701.6
665.2 F16 485.1	0 665.2 P16 510.8	0 665.2 P16 535.3	0 014.5 F16 647.8	6 618.9 P16 660.4	6 619.5 701.6
. 00 . 00	. 00 ·	000 000	00 ·	501 00.	201 50
CUhn ccist 64 2 7 1 3 0 0	COKA CONF 65 2 7 3 4 3 4 0 0 0	COKA COMP 6c 2 2 2 1.3co	COMM COMF 67 2 1.103	1.100 PE	СОК _М СО ₁₄ F 67 2 1.102

**************************************	84911 84911 83228 83228 8011	42612 42612 43079 43079 4011	KINF .34403 .89 .33133 .09189	**************************************	######################################
ANJWVINF 00000: MVJ/WV9 00000: 100000: 100010:	**************************************	15731 15731 MV.J/W9 15721 15724 (PT-P9)/(PT-P9)	402/40 40248 402/449 40256 40256 1,07897	ANIVW/LV: 90000. 904/LVM 90000. (94-Tq)/(44-Tq)	.13818 .13818 .13818 .13825 .13825 .12184
(P-PP)/(PT-P) -0.02804 (P9-PP)/(PT-P9) 0.00610 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 24480 (PQ-PP)/(PT-P9) 25550 (PT-P)/(PT-P) 1.24380	(4-19)/(44-4) 14557 (49-47)/(41-49) 14196 (4-19)/(41-45)	(q-79)/(qq-q) (q-70), (pq-pq), (p4-pq), (q-79)/(qq-1q), (q-70),	(q-1q)/(qq-q) (q-10)/(qq-pq) (q-1q)/(qq-1q) (q-1q)/(qq-1q) 48963	(q-pp)/(pq-p) 12184 (pq-pq)/(pq-pq) 12184 (p1-pp)/(p1-p)
9/49 9690 99/49 1.0065 61/48	1.2034 09/PD 1.2121 61/PD 2.0384	P/Pp 1.1110 09/Pp 1.1095 01/Pp 1.8809	1,052° 1,052° 1,057° 1,157° 1,778°	64/4 69/60 69/40 64/7 1,0817	P/Fn 1.049n n9/Pn 1.049u p1/Fn 1.4552
4/44 0050.1 04/40 72/40 14/44	97.09 . 83.08.4 . 97.00 . 825.00 . 197.01	90/99 99/99 90/132 90/97 53169	99/P .049k1 .04/c0 .04/b7 .55227	1.00790 1.00790 1.00220 1.00220 7.177	7/24 • 05249 • 05246 • 05246 • 14/74
451.2 %c 1.071 Mnot 000	11 6.1 480.0 179 80 170 8045 170 12861-02	TT T T T T T T T T T T T T T T T T T T	11 0. 0.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	T 47°, F F C 6897 MNOT UNU	T T T T T T T T T T T T T T T T T T T
7T 560.8 45 99/P 1.034/ 1. M	550.1 550.1 1.0070 1.0070 1.0070	77 558.4 4/29 4/20 44 728.0	TT 558.0 697P 1.0039 pn pn R88.7 .30	11 557.7 47 99/P 1.00%6 • P P P	71 0 553.4 9 897P 0 1.0000 PP 42
726.1 099 750.3 11/11	912.1 912.1 P.9 910.5 11/91 9462	914.0 P9 912.0 912.0 17.41	914.6 F9 918.2 117.71 9857 86	911.5 P9 910.6 910.6 17.741	1125.0 P9 1125.0 127.1 9920 107
1559. 1559. 3223+u7 1P 546.9	1545. 1545. RI *3042+u7 IP 551.4	1546. 1546. 71' 3044+U7 1P 550.5	1345. 1545. KU: 71 1P 1P 18	1545. 1545. HU 3050407 176 547.6	1560. RI. 62741+07 179 649.0
44450 1147, V 1247, V	44	A 144 50 V V 967 . U TXY	A 4 5 5 0 2 6 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A 450 V 450 V V V V V V V V V V V V V V V V V V V	AHFA .4450 770.3 PXL
614.9 F16 747.7	6 514.5 757.5	0 514.2 F16 621.2	0 517.4 716 657.2	0 519.1 F16 915.2	6 345.9 P16 1672.0
200	200 200 200	504 00•	* 00 •	204 39•	000
1.102	11 2 1 1 2 2 4 4 5 2 4 5 2 5 4 5 5 5 5 5 5 5 5 5	100 A CONF	750 CC	COPH CONF 74 2 2002	СОКН СОМР 7/ 2 М •700

CORA CO.F 70 B M	204	9 386.6 P16 1124.0	ARFA 4450 771 771 7XL	1560. 1560. HII. 5744-U7	1124.0 1126.0 1126.0 11771	1127.n .Ununu	504.7.2 8.4 8.4 8.690 8.000	1.00267 1.00267 PP/PG 1.00080 PP/PT	9471 99771 99779 9991 1.3842	(P-PP)/(PT-P) 00488 0049(PT-P9) (PT-PP)/(PT-P) (PT-PP)/(PT-P)	ANIVA/LV1 00000. QV4/LVM 00000. (94-T9)/(49-T9)	* INF .00000 .00000 .00000 .00000
COKK COIF BY/ B BY/ B 1.E94	ਜ 75 2 1 • 75 4		AKEA .4450 0 V 5HH.H 1685.9 P16 PXL 191.7 .0	1535. 1535. 181. 28578+07 17 551.9	231.3 231.3 232.1 11/11	566.4 P97P 1.0035 PP PP 195.3 .107	TT T T T T T T T T T T T T T T T T T T	99/pg 98/pg 98/pg 98/pt 12723	P/Pr 1.1843 P9/Pp 1.1844 PT/Pr 7.8597	(4-79)/(94-9) (97-90) (99-99)/(97-99) (97-99)/(97-9) 1.02761	**************************************	KINF .29239 .28924 .KDIT
СОКН СОМР 890 2 890 8 М	POS 1.75	·	AKFA • 4450 0 V 581.3 1084.9 P16 PXL PXL PXC PXC 009.8	PT 1535. RU -2680+U7 TP 550-1	232.0 P9 233.7 11/11	71 566.4 10073 10073 Pp	71 •4 330.1 /P FG 73 1.887 MDOT •65124-04	90948 90948 99790 99797 99797	1.0995 09/Pp 1.1076 01/Pp 7.2749	(4-79)/(94-9) 0.01612 (49-49)/(41-99) 0.01744 (4-79)/(41-2)	ANIVW/LV» 40506. 40050. 604050. (90474)/(90474)	KINF .22148 .21309 KDIT
СОКК СОМР 859 2 2 859 2 1.692	POS 1.75	541.3 F16 F22.8	AKEA . 4450 V 1055.9	1535. 1535. KU 7075+U7 1P 544.0	232.0 232.0 233.0 1271 1973 23	77 567.1 P9/P 1.0043 Pr	11 •1 330.5 /p .co u3 1.880 PNOT •18847-04	99/P	P/PP 1.0404 pg/PP 1.0451 pT/PP 6.8865	(4-74)/(74-4) •00698 (49-74)/(74-64) •00776 •00776 1-00698	#NJ/#VINF #NOMB# #WJ/WY \$ 00883 (PT-P9)/(JPT-P9)	KINF .09460 .0946 .08981 .00572
COFF CONF 960 2 1.449	P05	666.3 P16 312.3	AKEA .445U 0 V 666.3 145U.0 P16 PXL 312.3 .0	1253. 1253. 13097+07 17 555.1	423.6 Py Py 430.1 IP/11 .9832	71 564.0 P9/P 1.0153 PP 316.4 .283	11 • 6 380.5 /P Mo 53 1.480 MOOT • 28379-03	74693 74693 97469 73564 99797	P/Pn 1.338n p9/Pp 1.359n p1/Pp 4.9063	(4-P9)/(P1-P) • 09492 (P9-P9)/(P1-P9) • 10186 1-(P1-P9) 1-09492	WVJ/WVINF 009993 WVJ/WV9 00933 (PT-P9)	KINF .35126 .89 .34131 .08500
COKN CONF 901 2 1.498	75 1.75	664.5 F16 337.3	AKFA • 4450 0 V 666.5 1448.9 F16 FXL 337.3 .0	1554. 1554. RI: *3101+u7 TP 555.3	424.3 424.3 1930.4 117.11 1971.5	11 564.2 P9/P 1.0144 PP 340.5 .214	11 1 -2 389.u 7P Mo 44 1.480 MOOT	99/9 • 40250 • 79112 • 79112 • 79111	P/PD 1.2461 09/PD 1.2640 01/PD 4.5630	(PT-P)/(PT-P) .07418 (P9-PP)/(PT-P9) .08n01 (PT-PP)/(PT-P)	.07556 .07556 .07570, .07511 .07511 (PI-PF)/(PI-PG)	KINF .288A4 K9 .27904 KDIT

r 6	և թո գ-o ⊨ գո	* > 0 0 = 0	N. 		
KINF .15916 .14676 .14676 .X01T	7017 06823 0003 00040 001000	46857 46857 47529 47529 KDIT	KINF .39660 .40439 .4011.	KINF .29346 .30921 KDIT	KINF .56816 .58142 KDJT
MVJ/MVINF .03051 MVJ/WV9 .03030 .07-PP)/(PT-P9)	MVJ/WVINF .00961 .00961 .00956 .00956 .1,02295	MUJ/WVINF • 18435 MVJ/WV9 • 18444 (PI-PP)/(PI-P9)	412688 12688 12689 12693 11097 110475	**************************************	.34912 .34912 .24712 .34713 (PI-PP)/(PI-P9)
(P-PP)/(PT-P) .03u8R (P9-PP)/(PT-P9) .04133 (PT-PP)/(PT-P)	(PT-P)/(PT-P) •01788 •01789 (PT-P9)/(PT-P9) •02295 •02795 •17895 •1788	(q-74)/(qq-q) 18522 (pq-1q)/(qq-p4) 17898 (p1-p)/(qq-p4)	(P-PP)/(PT-P) 10940 (PQ-PP)/(PT-P9) 10475 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 0.05522 (PQ-PP)/(PT-P9) 0.15A33 (PT-PP)/(PT-P)	(p-pp)/(pt-p) 45218 (pq-pp)/(pt-pq) 42275 (pt-pp)/(pt-p)
P/PP 1,1024 09/PP 1,1204 PT/PP 4,0374	P/PP 1.050n P9/PD 1.063n PT/PP 3.8456	P/PP 1.268n 19/PP 1.260u PT/PP 2.7151	P/PP 1.1427 p9/PP 1.1372 p1/PP 2.4466	P/Pc 1.0AU1 P9/Pp 1.0721 P1/Pc 2.3083	P/PD 1.2121 pg/PD 1.2024 bf/PD 1.6812
9/49 9(07) 90/70 99/49 97/40 74/60	97,99 96,539 97,99 93,999 17,999	9/49 9/8963 9/897 9/897 19/49	0P/0 • 87515 • 87636 • 67637	1/2d 02584 0400 04357 0407 04352	PP/F . A25.00 . PD/PO . A3106 PP/PT
71 •4 76 M0 65 1.487 M00 *86735-04	77 5.2 389.3 7/2 30 32 1.480 MOT 27331-00	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11 •4 450.8 /p ×0 ×0 52 1.10 ×001 ×001 •42322=03	11 0.5 451.0 70 Mo 70 1.107 7017 7007	11 1.1 493.7 7.20 20 .700 10012-02
564 P9 1.01 PP	564 P9 1.01 FP 404.1	550 99 99 99 77	560.4 1977 1997 1998 1998	560 99 99 99 94	542.1 542.1 997.0 9920 99 927.3
424.4 424.4 424.4 11.711 7578.	7 6.454 99 90 90 11/41	726.1 P94 723.7 17.11 9918	728.1 Py 724.6 117.11	724.5 69 724.1 127.11	1124.0 0.4011 1115.0 17777
KifA 17 4450 1554. N V KII F16.5 1448.9 •3101+U7 F16 FXL TP 577.4 •0 552.2	AKFA 1354. 4450 1354. 0 V Kli cbb.5 1448.7 .3102407 Plb PXL TP 394.7 .0 544.8	AMFA FT	AMFA PT	ARFA PT 44450 1559. 0 V KII 619.0 1146.0 3222407 P16 PXL TP 649.6 .0 554.7	AKEA PT .4450 1559. V V KU: 762.3 .28124U7 PXL TP .0 541.7
44.50 44.50 V V V V V V V V	AKFA • 4450 V 1448.7	AKFA . 4450 V V 114/.5 PXL	AKFA .4450 V 1146.8	AKEA .4450 V 1146.0	AKEA • 4450 762.3 FXL
6 66.5 116 377.4	C re6.5 F16.3	614.9 F16 579.5	612.00 716 727.7	619.0 P16 649.6	0 385.5 P16 919.7
2 1 75 2 1 75 8 8 8 8	POS 1.75	ች 205 1. 165 205	P05	P0S	P05
1.4 4 8	COKH COMP 9(1) 2 1.498	COPA CONF POS 905 2 1.75 M 1.102	СОКи СОЦЕ 907 2 1.102	СОКК СОМF 908 2	893 CONF.

######################################	(pT-Pv)/(pT-pq) 1.06774
	<u>а</u>
(4-19)/(44-9) 3-55-06 3-26-7 3-26-7 3-13-4 (4-19)/(41-9) 3-13-3-4 (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9) (4-19)/(41-9)	(PT-PP)/(PT-P) 1.05656
1.1105 1.1105 1.1106 1.1106 1.10907 1.090	5.1924
90,00 90	1925e
TT T T T T T T T T T T T T T T T T T T	MD07
111 4.0 544.4 9 99/P 711 7 99/P 7 11169. 0 99/P 7 1 10159 99/P 7 1 10154 9 99/P 9 99/P 9 11.0168 9 99/P 9 11.0168 9 99/P 9 11.0168 9 99/P 9 11.0168 9 99/P 1 1 1.0342 9 99/P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PP 98.5 •13
7. 25.2 7.	
AMEA 1261.407 114.4 115.0 116.	1P 556.0
AHEA OCTO OCTO OCTO OCTO OCTO OCTO OCTO OC	
287.1 1010.0 1010.0 345.1 1067.0 541.3 577.9 6 53.5 116 277.9	F16 298.5
# 1 x x y	
COFA COLF 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

#INF .16804 K9 .14560 .02362	KINF 11292 08762 08762 01167	.24713 .26673 .26685 .08425	*INF *16124 **9 **18056 ************************************	KINF .04674 .05992 KDIT .01045	KINF .00903 K9 .01389 KDIT
AND/WOINF • 0.2947 • 0.2409 • 0.2909 • 0.2409) • 0.3838	ANJUN/LVW • 11456 WVJ/WV9 • 11437 (PT-P9)/(PT-P9)	ANJ/WVINF • 0.09801 • 0.02/WV9 • 0.09105 • 0.04-P9)	#WJ/WVINF • N5132 #WJ/WV9 • N5201 (PI-PF)/(PI-P9)	.01115 .01115 .01129 .01129 (PT-PF)/(PT-P9)	ANJ/WVINF ANJ/WWY ANJ/WYY ANJ/WYYYY ANJ/WYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
(4-19)/(94-6) 7,2847 7,2847 (4-19)/(11-19) 1,3838 1,0247 1,02447	(q-pp)/(pt-p) .01462 (pq-pp)/(pt-pg) .02457 .0457 .1.01462	(P-PP)/(PT-P) 17739 (P9-PP)/(PT-P9) 14762 (PT-PP)/(PT-P)	(P=PP)/(PT=P) 11623 (PQ=PP)/(FT=PQ) 01019 (PT=PC)/(PT=P)	(q-Tq)/(nq-q) 7050, 7050, (pq-Tq)/(nq-pq) (q-Tq)/(nd-Tq) 70570,	(PT-P)/(PT-P) 0.040.02 (PT-P9)/(PT-P9) 0.01647 (PT-P)/(PT-P)
P/Pn 1.1013 pg/Pp 1.1353 pT/Pn 4.6603	p/Fn 1.0496 n9/Fp 1.0825 p1/Fp 4.4413	1,4556 1,4556 1,3889 17,400	1,2597 09/PD 1,2063 01/PD 3,4941	1.1120 pg/pp 1.068u pT/pp 3.0907	P/PD 1.0764 ng/PD 1.0322 nT/PD 2.9858
99/60. 00/800 09/90 09/84 14/94	3/34 77520. 304/40 77749. 14/40.	0/49 .68701 .07,99 .71097 .74,99	79384 79384 98789 19797 79789	7/44 7/44 04/44 74/44 74/44	90/69 • 02/86 • 06/77 • 06/77 • 06/77
11 375.2 pa/p //a 1.0308 1.574 pp MOT	77 75.0 566.9 375.0 70/7 1.0314 1.576 700 MOOT 749.0 .38810-04	11 564.4 429-9 00 499-9 0542 1.33:4 HDD MOOT	17 5.44.2 421.5 pq/p . 95/b 1.35 qq 100M qq 445.9 .16124-03	T TT	T T 564.1 421.3 00.47 05.458 1.330 1.00.4 2.1.1.57682.05
4 340.3 94 377.6 11/11 9772	366.3 99 377.6 1771 3	563.0 94 94 537.8 11/11 39864	561.7 59 99 537.9 11741	7 0.100 P9 538.0 17711 7.470.	9 19 19 19737-9 19732 5
1550. 1050. RI 3000+07 TP 553.7	1350. 1350. Kl: 22998+07 FP 551.8	PT 1558. RI: .3200+U7 TP 556.7	1558. 1558. RU *32119+U7 TP TP	FT 1554. RI. •3209+U7 TP 550.0	AKEA PT .4450 1558. V KU 1309.9 .3210+07 FXL FP .0 549.0
AHFA .4450 0 V 654.0 1516.2 F16 FXL 329.5	Art A .4450 7 V 65400 1510.6 Fin FXL	AKEA .4450 V 1307.2 FXL	AXEA . 4450 . 4450 . V . V . C	AHFA .445U V 131U.0 PXL	AKEA .4450 V 1309.9 FXL
0 654 • U 746 329 • h	6.54 0.45 0.46 0.46 0.66	0 654.7 P16 386.3	665.5 716 716 444.4	0 665.7 P16 489.5	6 665.7 716 491.0
700× 83 × 85	v S S S S S	FCS • 85	204 59.45	POS 5•85	705 5.85
1,000 COLY COLY COLY COLY COLY COLY COLY COLY	COFA COIF 764 2 1.547	СОР. СО. F 763 2 2 3.6298	766 2 2 3 1 3 5 0 1	COKK CONF 76/ R 1.302	COKK COMF 760 2 1.302

KINF .31254 .38767 KDIT .13028	KINF .22997 K9 .35890 KDIT .07871	KINF .15115 .46044 .KOIT	KINF .22906 .24302 KDIT KDIT	KINF .07854 K9 .08896 KDIT	KINF .18635 K9 .19067 KDIT
WUJ/WVINF .13136 WUJ/WV9 .13337 (PT-PF)/(PT-P9)	ANJ/W/LVM 0.07941 MVJ/KV9 0.0858 0.049-TQ)/(PT-P9)	004396 004396 MVJ/MV9 004463 (PI-PP) 1.00871	**************************************	**************************************	MVJ/MVINF . n4234 MVJ/MV9 . n4272 (PT-PP)/(PT-PS)
(P-PP)/(PT-P) .22532 (P9-PP)/(PT-P9) .13441 (PT-PP)/(PT-P)	(4-74)/(74-4) 13147 (4-74)/(74-69) 14-74)/(74-74) 15-13147	(Pq-Pq)/(Pq-Pd) • 08774 • 09-Pq)/(Pq-Pq) • 00871 • 0977 • 0877 • 0877	(P-PP)/(PT-P) 17116 (P9-PP)/(PT-P9) 14905 (PT-PP)/(PT-P) 17116	(P-PP)/(PT-P) • 09930 (P9-PP)/(PT-P9) • 07562 1• 09930	(P-PP)/(PT-P) .06443 (P9-PP)/(PT-P9) .06126 (PT-PP)/(PT-P)
P/PD 1.3440 09/PP 1.2217 PT/PD 2.8708	P/PP 1.1765 p9/PP 1.0724 P1/PP 2.5202	P/PP 1.1113 19/PP 1.0119 PI/PP 2.3794	P/Pp 1.135n 19/Pp 1.119a PT/Pp	P/PP 1.0736 1.0736 1.0573 1.8148	P/PP 1.5669 P9/PP 1.5405 P1/PP
74404 74404 7477 74185 74185 74833	99/98 • 84988 • 93/89 • 93/94 • 39670	PP/P • 89988 • PP/Pa • 98824 • PP/PT	98/104 98/104 98/299 98/297	99/6 •93145 99/99 •94/582 99/97	PP/P -63821 PP/P0 -64912 PP/P1 -09648 1
77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	17 452.7 49 Ma 11 1.17A MDOT *26407-03	77 452,7 7 452,7 76 1,176 MDOT 14633-03	TT T 7 7 7 7 7 7 7 7 9 7 9 9 9 9 9 9 9 9	11 470.5 1 470.5 10 M9 40 014 M001 80924-04	17 4.5 330.4 17P Ma 32 1.903 MD01 90151-04
77 542.9 1947 19090 1990 1990	562.7 597 997 9111 PP 618.2 .26	562.7 562.7 99/P 9106 PP 655.2 .14	557.2 P97.2 9866 PP RU3.6 .301	557 99 98 99	567.5 P97.9 9832 PP
9 4.4.57 863.0 17.71	9 127.4 1990 11/41	726.1 726.1 P9 663.0 TP/TT •9845 65	P 912.1 P9 899.9 IP/IT *9903 AU	914.6 999 900.7 11/11	231.9 221.9 228.0 17.11 .9572 14(
PT 1558. RU 3204+U7 TP 557.0	PT 1558. RU *3205+U7 TP 556.5	1559, 1559, KU 3209+u7 TP 554.0	PT 1546. RU •3056+07 TP 551.6	PT 1546. RU *3051+07 TP 549.5	PT 1534. RU -2671+07 IP 1P 543.2
AKFA • 4450 1147. V FXC	AKEA .4450 1149.2 PXL	ARFA .4450 0 V 618.9 1149.2 P16 PXL 619.1 .0	ARFA .4450 V 967.6 PXL	AREA .4450 V 964.9 PXL	AREA .4450 .1686.7 . PXL
617.8 F16 540.7	о 610.6	618.9 P16 619.1	0 519.5 P16 775.1	6 517.4 P16 627.6	6 581.1 1 P16 213.6
5 8 8 8	Pos 5.85	Pos 5.85	P0S 5.85	80 80 80 80 80 80 80 80 80 80 80 80 80 8	S 0
CORR CONF 769 2 1.100	CORR CONF 770 2 1.102	CORR CONF 771 2 1-102	CORR CONF 773 2	CORR CONF 774 2 1	CORR CONF 113 5 1 1 4 9 2

KINF 11499 K9 11889 KDIT	KINF •07318 K9 •07752 KDIT	KINF .05591 K9 .06452 KOIT	MINF .00000 .00000 .00000 .00000	KINF •18653 K9 •18725 KDIT •05009	KINF •16309 •16259 •16259 • KDIT
MVJ/MVINF • 02406 • 02406 • 02428 • 02428 • 07-PP)/(PT-P9)	.01261 .01261 .01261 .01272 . .01272 . (P1-PP)/(PT-P9)	MVJ/MVINF .00674 .00674 .00680 .00680 (PT-PP)/(PT-P9)	* 45666*	**************************************	. 04851 . 04851 . 0487 . 04848 . 07-P9)/(PT-P9)
(F-PP)/(PT-P) .04654 (P9-PP)/(PT-P9) .04334 (P1-PP)/(PT-P)	(PT-P) ((PT-P) (02717) (P9-P9) ((P9-P9) (P1-P9) ((P1-P) (P1-P) ((P1-P)	(q-14)/(qq-q) 01197 (pq-pq)/(pq-pq) 00895 (q-14)/(qq-14)	(P-PP)/(PT-P) • 00261 (P9-P)/(PT-P9) • 000046 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .13662 (P9-PP)/(PT-P9) .13884 (PT-PP)/(PT-P)	(P1-p)/(P1-p) •11039 (P9-p)/(P1-p9) •11118 (P1-pp)/(P1-p)
P/PP 1.3538 P9/PP 1.3304 PT/PP 8.9550	P/PP 1.1801 P9/PP 1.1602 PT/PP 7.8077	P/PP 1.0721 P9/PP 1.0541 PT/PP 7.0933	P/PP 1.0149 P9/PP .9974 P1/PP 6.7133	P/PP 1.5730 P9/PP 1.5811 P1/PP 5.7668	P/PP 1.4157 P9/PP 1.4184 P1/PP 5.1818
73868 79769 75165 PP/PT	PP/P .84741 PP/P9 .86190 PP/PT	PP/P .93276 PP/P9 .94,871 PP/PT	PP/P .98534 PP/P9 1.00263 PP/PT	99/P .63574 99/P9 .63246 99/P1	PP/P •70634 PP/P9 •70501 PP/PT
11 1 •6 330.8 /P M9 28 1.903 MD01 •51235-04	11 1 •0 331.0 /P M9 32 1.903 MD01 •26852-04	TT T 8.5 331.3 9/P M9 332 1.903 PDOT *14338-04	1 331.5 M9 1.903 MDOT 000	11 1 •3 391•3 /P M9 52 1•496 MD01 •16684-03	11 1 •3 391•5 /P M9 19 1•497 MD0T •13756-03
17 567.6 99/P .9828 PP	11 568.0 P9/P .9832 PP P9	71 568.5 P9/P .9832 PP	11 568.8 33 P9/P 9828 1. PP R	567.3 P9/P 1.0052 PP 269.3 .16	567.3 P9/P 1.0019 PP PP 299.7 .13
231.9 P9 227.9 14/11	232.0 P9 228.1 1P/1T 9539	P 232.0 P9 226.1 IP/TT 2.	4 231.9 199 227.9 11/11 29497	423.6 423.6 P9 425.8 17/11 2637 26	424.3 424.3 P9 425.1 12/11
1534. 1534. 10. 2671+07 17 542.6	PT 1535. KU! •2670+07 TP 541.8	FT 1535. RU RU -2666+U7 TP 540.9	PT 1534. RU 80. 2663+U7 TP 540.2	PT 1553. RU 8078407 TP 17 546.7	FT 1553. 611 •3079+07 1P 7F
AKEA .4450 V 1686.7 FXL	AREA . 4450 . V V V TXL . C	AMEA .4450 V 1687.9 PXL	AKEA . 4450 1686.4 PXL	AREA .4450 .4450 .0 1453.4 PXL	
9 581.1 P16 216.3	6 581.3 P16	9 581.3 P16 221.1	9 581.1 P16 231.5	666.3 P16 372.3	AKEA .4450 .9 V 666.5 1452.8 P16 PXL 383.4
7 • 20 20	2004 200	.00 .00	000	900 • 00	900 900
114 CONF	COKK CONF 115 5	CORK CONF 110 5	CORM CONF 117 5 1.692	CURM CONF 110 55 1.459	CORM CONF

KINF •13718 •13677 KGT7 KDIT	KINF .0R290 .0R239 .0R239 .01359	*1018 *05291 *9 *05212 *011	KINF 30884 K9 30996 KDIT	KINF .31964 K9 .29471 KDIT	KINF .23576 .20478 .06130
403549 403549 4047499 403547 404799) 1407250	WUJMVINF •01596 •01596 •01596 •01596 (PI-PF)/(PI-P9)	7000. 00677 000/1/2009 000677 00617/(PT-P9)	ANJ/WVINF •13013 •13014 •13013 (PT-PF)/(PT-PF)	.12092 .12092 .12092 .12041 .12041 (PT-PF)/(PT-P9)	.06182 .06182 .06182 .06164 .06164 (P[-PP]/(PT-P9)
(PT-P)/(PT-P) 07203 07203 (PT-P9)/(PT-P9) 07250 07250 107250	(PT-P)/(PT-P) 0.03526 0.09-PP)/(PT-P9) 0.03572 0.03572 0.03572 0.03526	(P-PP)/(PT-P) 0.1462 (P9-PP)/(PT-P9) 0.1507 (PT-PP)/(PT-P)	(P-PP)/(PT-P) -22770 -22770 (PT-PP)/(PT-P9) -22564 (PT-PP)/(PT-P)	(p-pp)/(pt-p) .16610 (pg-pp)/(pt-pg) .20201 (pt-pp)/(pt-p)	(4-19)/(aq-q) 0690. (6q-14)/(dq-p4) (4-14)/(dq-1d) 19690.
1.2370 P9/PP 1.2385 P1/PP 4.5277	1.1035 P9/PP 1.1048 P1/PP +.0390	P/PP 1.0405 p9/PP 1.0417 PT/PP 3.8082	P/PP 1.3511 Pg/PP 1.3405 PI/PP 2.8929	P/PP 1.2304 P9/PP 1.2753 PI/PP 2.6363	1.0865 1.0865 1.1149 1.1149 1.776
PP/P .80839 PP/P9 .80744 PP/PT	PP/P •90620 •90513 •90513 •24759	99/6 96111 99/19 95998 99/91	99/9 • 74015 99/99 • 74157 99/71	61078 921078 92789 978410 99791	9/44 • 92/04() • 89/44 • 7/44 • 42944
71 •5 391.7 74 NO NDOT *1064-63	11 • 8 391.9 • 7.9 • 12 1.447 • 15239-04	11 •0 392•0 /p N9 12 1•497 MDOT •19183=04	T1 T T T T T T T T T T T T T T T T T T	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 T T T T T T T T T T T T T T T T T T
267 pod 1.00 pp	567 Pc 1.00 PP 584.5	568 P9 1.00 FP 4U7.8	563 P9 94 PP 94.853	563 P90-1 P90-1	563 1 PP 1 PP FP FP
424. F 424. IF/11	424.3 424.3 74 74 424.8 424.8 1771	7 6.424 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7 7	728.1 Py 720.7 11711 • 97408	720.0 720.0 753.0 753.0	727.4 4.075. 740.4 740.4 9.9765
1353. RU *307/+07 IP 545.4	AKFA 1553. 6 V NH: 6 The PXE 1954.07 7.05 PXE FXE FXE FYE FXE FXE FXE FXE FXE FXE FXE FXE FXE FX	71 1055. 101 107 107 107 107 107 107 107 107 107	1359. 1359. 10. 17. 18. 555.6	AREA PT	AKEA FT 4450 1555. 6 V KII FT 1150.5 .3267+07 P16 FXL FP 551:1
AMF A. 44% U. 6 44% U. 6 44% U. 74% U	AKFA • 4450 V V 541 FXL			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6 6.45.5 7.10 397.1	eer ee Free 4	AKE A . 4450 0 V 666.5 1453.7 716 PXL 415.8	AMEA .445U 0.17.9 115U.U F16 FXL 662.U .0	717 717 717 797 797	619.51 P16 730.6
7 • 25 25	7 • 0 3 V =	201 00.	00 ·	705 000	20. 00.
160 LCut 160 S 1.458	CCHN CCNF 121 5 1.131 1.131	122 5 124 5 1.478	120 51 120 51 120 51 13102	ССИК ССЦЕ 124 S	120 5 120 5 120 5 1103

KINF .20269 .14699 KDIT	KINF .55943 K9 .55943 KDIT	KINF .23994 .23994 .23994 KDIT	.18125 .17804 .17804 .02346	KINF •15287 K9 •14965 KDIT •01838	KINF • 08936 • 08220 • 0811
WVJ/MVINF •03846 WVJ/WV9 •03830 (PI-PF)/(PI-P9)	MVJ/MVINF .26421 MVJ/MV9 .26435 (P1-PP)/(P1-P9)	MVJ/MVINF .08053 MVJ/MV9 .08058 (PT-PP)/(PT-P9)	ANIVM/LVV • 03708 • 03708 • 03690 • 071–19) • 0449)	MVJ/MVINF .02840 MVJ/MV9 .02823 (PI-PP)/(PI-P9)	MVJ/MVINF .01102 MVJ/WV9 .01095 (PT-PP)/(PT-P9)
(F-PP)/(PT-P) 03481 (P9-PP)/(PT-P9) 06853 (PT-PP) 1.03481	(P-PP)/(PT-P) .24138 (P9-PP)/(PT-P9) .24138 (PT-PP)/(PT-P)	(p-pp)/(pr-p) 11521 (p9-pp)/(pr-pg) 11521 (pr-pp)/(pr-p)	(q-fq)/(qq-q) 04329 04329 (pq-pq)/(qq-qq) 04498 (pq-fq)/(qq-q)	(9-79)/(94-9) (9350) (99-69)/(91-99) (93446)/(91-19) (91-79)/(91-19)	(P-PP)/(PT-P) 01259 (P9-PP)/(PT-P9) 01493 (PT-PP)/(PT-P)
P/PP 1.0413 P9/PP 1.0787 PT/PP 2.2275	P/PP 1.1029 P9/PP 1.1029 P1/PP 1.5294	P/PP 1.0465 P9/PP 1.0465 P1/PP 1.4498	P/PP 1.3245 P9/PP 1.3345 P1/PP 8.7707	P/PP 1.2270 P9/PP 1.2370 P1/PP 8.1164	P/PP 1.0763 P9/PP 1.0903 P1/PP 7.1382
90/04 96/035 90/02 92/02 90/44	97,94 790,657 99,799 79,797 19,797	PP/P .95560 PP/P9 .95560 PP/PT	PP/P .75616 PP/P9 .74936 PP/PT	PP/P .81501 PP/P9 .80838 PP/PT	92910 92910 92719 91720 92/91
11	TT .0 506.4 .0 506.4 /P .700 MDOT .81612-03	11 T •6 506.1 /P M9 00 •699 MD01 •24869=03	11 1 -6 330.6 /P M9 91 1.887 MDOT .78808-04	11 1 -2 331.2 /P M9 R2 1.886 MD01 -60432-04	TI T
562 P9 1.03 PP PP	556 P9 1•00 PP PP 020•0	555 P9 1.00 PP 076.0	567 P9 1•00 PP PP	568.2 P9/P 1.0082 PP 169.0 .6(568.2 997P 1.013U PP 214.9 .2
728.8 69 755.0 117.11	1125.0 125.0 1125.0 1125.0 16/11	1126.0 P9 1120.0 1777T •9905	231.3 P9 233.4 233.4	231.9 29.02 29.02 233.4 71741	231.3 P9 P9 234.3 1P/11
PT 1559. RII •3200+U7 IP 550.3	PT 1560. RU 2724+U7 1P 551.1	PT 1560. KU 2725+U7 TP 550.3	PT 1534. RU -2668+U7. 1P 554.0	PT 1534. KU 40 2066+07 TP 553.8	PT 1534. RU 80. 70. TP 552.9
AKEA . 4450 . 4450 V 1148.6 FAL	AKEA .4450 772.1 FXL	AKEA • 4450 V 770.8 PXL	AHEA .4450 1087.0 PXL	AKEA . 4450 V 1687.7 PXL	AKEA .445U 1688.1 PXL
618.4 P16 738.2	385.4 Pie 1084.U	385.1 P16 1124.U	9 580.2 F16 220.5	6 581.1 716 218.3	9 580.2) P16 225.7
7 • 20 0	7 . 200	P05 • 00	P0S	H05	F POS
120 F	129 5 129 5 4 700	130 130 5	010 S	COKK CONF 911 5	CONK CONF 912 5 1

KINF .05905 K9 .04998 KDIT	KINF .22537 .22141 .06095	KINF 18091 7701 7701 7017	14063 14063 789 13609 KDIT	60381 60381 60 60801 6011	KINF .03862 .03386 .03386 KDIT
AVJ/MVINF 00513 MVJ/WV9 00509 (PT-P9)/(PT-P9)	MVJ/MVINF .07164 MVJ/MV9 .07126 (PT-PP)/(PT-P9)	ANIVM/LVW 05397 WU/LWY 05369 (PT-P9)/(PT-P9)	MVJ/WVINF • 03698 MVJ/WV9 • 03678 • 03678 (PT-P9)/(PT-P9)	.01852 .01852 .01852 .01842 .01842 .01842 .104267	400/40/10/40/10/40/40/40/40/40/40/40/40/40/40/40/40/40
(P-PP)/(PT-P) 00599 00599 (PT-PP)/(PT-P9) (PT-PP)/(PT-P) 1.00599	(P-PP)/(PT-P) 15336 (P9-PP)/(PT-P9) 15941 (PT-P)/(PT-P)	(P-PF)/(PT-P) -11170 (P9-PP)/(PT-P9) -11743 (PT-P)/(PT-P)	(q-Tq)/(qq-q) 	(q-1q)/(qq-q) 0.3732 (pq-pq)/(pt-pq) 0.4267 (q-1q)/(qq-1q)	(P-PP)/(PT-P) 0.1785 (P9-PP)/(PT-P9) 0.2337 (P1-PP)/(PT-P)
1.034A pg/pp pg/pp 1.0486 p1/pp 6.8452	p/pp 1.6911 pg/pp 1.7146 p1/Pp 6.1977	P/PP 1.4238 p9/PP 1.4433 p1/PP 5.2181	P/PP 1.2513 P9/PP 1.2647 P1/PP 4.5857	P/PP 1.1104 P9/PP 1.1256 P1/PP 4.0696	1.05u1 pg/kp 1.0650 1.0650 p1/kp 3.8547
99/P .96636 .95,62 .95,62 PP/PT	PP/P -59133 PP/P9 -58322 PP/PT	PP/P .70233 PP/P9 .69286 PP/PT	PP/P .79920 PP/P9 .78824 PP/PT	PF/P .90/54 pp/r9 .88840 pp/pT	95/21 95/21 95/21 93/87 97/97
11 -6 331.4 7P M9 34 1.883 501 10910-04	11 •9 390.5 /P M9 39 1.489 MD01 *20353-03	11 ·9 390.5 /P M9 37 1.489 MD01 *15333-03	11 •3 390.7 /P M9 39 1.489 FDOT •10503-03	11 1 •9 390.4 /P M9 37 1.469 PDOT •52620-04	T1 -9 390.3 /P M9 44 1.490 MDUT -15432-04
568.6 597P 1.0134 PP 224.1 .109	1.1 565.9 Po/P 1.0139 FP -250.9 .203	TT 565.9 Po/P 1.0137 PP 298.0 .153	566 P9 1•01 PP PP	11 565.9 1977 1.0137 FP 362.1 .52	T1 565.9 P9/P 1.0144 PP
7 7 831.9 794 635.0 19711	424.5 424.5 430.6 14/11 29837	424.3 424.3 199.1 18/11 18/11	424.3 424.3 P5.3 430.2 17/11 3	424.5 424.5 924 430.1 12/11	7 423.0 49 7.429.7 11/41
1534. RC: RC: 2064+U7 TP	AMFA FT 4450 1555. 0 V MIS 667.4 1451.9.3092407 P16 FXL FP FX	AMEA PT	PT 1555. RU 3040+07 TP 555.6	FT 1555. RU RU 3093+07 1P 554.5	AKEA FT -4450 1555. 0 KI 667.2 1452.5 -3091+07 P16 FXL TP 411.2 .0 553.9
ARFA .4450 1088. V PXL	AHFA .4450 1451.9 .7KL	AXEA .4450 1451.9	AREA .4450 .9 V b67.4 1452.3 P16 PXL 380.7	AMEA .4450 . 4451 . V . 667.4 1451.7 . P16 . FXL 399.7	AKEA .4450 1456 V 1456.5 FXL
6 541.1 P16 232.9	0 667.4 7156 375-3	0 66/.4 P16 384.3	667.4 P16 346.1	667.4 P16 399.7	667.2 P16 411.2
705 1.75	HOS 1.75	P05	ቸ ወጀ ቅ 20 ተ 20 ተ 20 ተ	P05	P05
COFA CONF POS 915 5 1.75 1.892	CCFR CCNF 915 5 1-499	СОКК СОМЕ 910 5 11499	COKK CONF POS 91/ 5 1.75 8 1.459	7100 CONT 910 CONT 10494	СОКК СОМ РОS 919 5 1.75 N 1.500

. 354 354 354 356 356 356 356 356 356 356 356 356 356	KINF .32132 .32872 .52872 .12669	KINF .25969 .26927 .26927 .08284	22040 .22040 .22699 .05503	48500 48500 49280 40280 4011	KINF • 46023 • 47186 • 47186 • 27185
415646 415646 404/LW9 415657 (PT-P9) 1.26115	.12771 .12771 .MVJ/W9 .12790 .12790 (PT-P9)/(PT-P9)	MVJ/WVINF • NB354 MVJ/WV9 • NB362 (Pl-PP)/(PT-P9)	AVA/WVINF • 05548 WVJ/WV9 • 05553 • 05553 1 • 05983	AUJWALUM 32425 32425 WAJZWV9 32288 (PT-P9)/(PT-P9)	ANUM/UM .29594 .29594 .29370 .29370 .47248
(P-PD)/(PT-P) -26811 (L9-PP)/(PT-P9) -26115 (PT-P)/(PT-P) 1.26811	(p-pp)/(pt-p) 19086 (pg-pp)/(pt-pg) 18064 (pt-pp)/(pt-p)	(p-p)/(p-p) 11084 (p9-pp/(p1-p9) 10222 (p1-p)/(p1-p)	(P-P)/(PT-P) .06378 (P4-P)/(PT-P9) .05983 (P1-P)/(P1-P)	(p-pp)/(pt-p) .57162 (pg-pp)/(pt-pg) .54337 (pt-pp)/(pt-p)	(P-PP)/(PT-P) .50963 (PQ-PP)/(PT-P9) .47248 .47248 .47248 1.50963
1.4435 p9/Pp 1.4344 p1/Pp 3.0978	1.2780 p9/Pp 1.2654 p1/Pp 2.7348	P/PP 1.1448 P9/PP 1.1346 P1/PP 2.4513	9/PP 1.0787 99/PP 1.0742 PT/PP 2.3135	1.2857 1997PP 1.2766 177PP 1.7856	P/PP 1.2401 P9/PP 1.2330 P1/PP 1.7291
99/P 64974 99/P9 64715 99/PT	78245 78245 79749 79025 79797 36566	PP/P • P7351 PP/P9 • A8137 PP/P1	9479 • 92700 94799 • 93097 14799	96/99 97777. 96/99 78333 96/93	PP/P .80249 PP/FG .81041 PP/FT
127.4 562.5 452.3 127.4 562.5 452.3 122.4 9937 1.109 127.1 PP MOT 19925 503.9 52148-03	T T T T 4 7.24.5 562.0 452.2 P9 P9/P M9 7.22.3 .9901 1.110 HP/IT FP PP **POT*** **POT** **P	728.1 561.5 451.7 P P P P P P P P P P P P P P P P P P P	T T T T T T 7 2 2 451.2 451.3 P9 P9/P P9/P P9/P P9/P P9/P P9/P P9/P	T T T 1124.0 554.6 504.9 P9 P9/P PO 1116.0 .9929 .7019 PNTT PP PO PNOT 9980 R74.2 .10050-02	T TT 4 1125.0 554.1 504.6 P9 P9/P T0 1117. 9902 111 PP P P P P P P P P P P P P P P P P P P
1361. 41. 32134U7 17	1561. HH •3219+U7 TP	HT 1559. HH •3218+U7 TP 1	F1 1560. KI! •3224+U7 1P	PT 1564. RU -2740+07 1P 553.5	1361. RII. 1777-407 19
AKFA . 4450 . 1150 v . 2 v v	AAMEA . 4450 . v . 1140.0 . V . FXL	AMEA .4450 1146.0 .	AREA . 4450 V 1149.5 . PXL	AKEA .4450 773.1 · PXL	AKEA . 4450 770.7 PXL
626.6 P16 F35.6	0 626.1 716 674.3	6 618.9 P16 703.1	0 620.6 713.9	987.7 7.8 7.685.9	6 585.9 P16 1006.0
m² v x 4. 2.1 1.705 2.00 ± 4.	PCS 1.75	P05	P0S	F05	1.75
СОКМ ССИБ 962 5 1.104	СОКК СОЛР 923 5 11102	COPA CONF 920 5 1.102	CCKK CCINF POS 927 5 1.75 M 1.104	1007 CONF 929 5 929 6	COKh COLF 930 59 8 600

KINF • 34824 • 36657 KDIT • 15996	KINF .26139 .28313 .08803	KINF .19253 .18826 KOIT	KINF •11309 •10910 KDIT •01367	KINF .08218 K9 .07567 KDIT	KINF .00531 K9 .07276 KDIT
.16916 .16916 MVJ/MV9 .16813 (PT-PP)/(PT-P9) 1.22646	HVJ/MVINF 0.09079 MVJ/LWV9 0.09036 0.091-11 0.10360	MVJ/MVINF .04255 MVJ/MV9 .04222 (PT-PP)/(PT-P9)	AVJ/MVINF .02112 MVJ/WV9 .02097 (PT-P9)/(PT-P9)	ANJ/MVINF • 01049 MVJ/WV9 • 01042 • 01042 (PT-PP)/(PT-P9)	ANIWA/LVM .00772 .00749 .00767 .00767 .1,00901
(P-PP)/(PT-P) -25747 (P9-PP)/(PT-P9) -22646 (PT-P)/(PT-P) 1.25747	(P-PP)/(PT-P) .12385 (P9-PP)/(PT-P9) .10360 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 05671 (P9-PP)/(PT-P9) • 05956 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 03341 0342 (P4-PP)/(PT-P) 103341 103341	(PT-P)/(PT-P) 01359 (P9-PP)/(PT-P9) 01609 (PT-P)/(PT-P)	(P-PP)/(PT-P) .00653 (P9-PP)/(PT-P9) .00901 (PT-PP)/(PT-P)
P/PP 1.1105 P9/PP 1.0996 PT/PP 1.5394	P/PP 1.0505 P9/PP 1.0430 P1/PP 1.4579	P/PP 1.4676 P9/PP 1.4898 P1/PP 9.7145	P/PP 1.2309 P9/PP 1.2484 P1/PP 8.1423	p/Pp 1.0826 P9/Pp 1.0976 PT/Pp 7.1615	P/PP 1.0380 P9/PP 1.0524 P1/PP 6.8666
97/40 90/63 90/64 90/64 90/67	95196 95196 95/196 95878 97/97	99/9 •68137 99/99 •67/121 99/91	PP/P -81242 PP/P9 -80102 PP/PT	92767 92367 92769 911110 97777	96335 96335 95023 95023 97,47
11 •4 503.1 /P M9 02 •710 MD01 •52470-03	11 1 -6 501.4 /P M9 29 .709 MD01 -28199-03	323.8 323.8 1.882 MDOT 333-04	11 1 •5 324.4 /P M9 42 1.883 MD0T •45411-04	11 1 •1 324.8 /P M9 38 1.883 MDOT •22550-04	11 1 •5 324.9 70 M9 38 1.883 MD01 •16589-04
71 9 552.4 9 P9/P 0 9902 0 PP	77 9 550.6 9 99/P 0 9929 1070.0 .26	77 555.8 P9/P 1.0151 PP 57.6 .91	11 556.5 P9/P 1.0142 PP	17 557.1 9979 1.0138 PP PP	77 557.5 P9/P 1.0138 PP PP
1126. 1115. 1215. 1971.	1124.0 P9 1116.0 1777 -9965 10	231.3 231.3 234.8 1P/TT -9763	231.9 231.9 235.2 1P/TT 1747	231.9 231.9 235.1 1P/1T •9736 21	231.9 231.9 235.1 1P/TT 9735 22
. PT 1561. RU RU *275u+u7 TP 551.6	1560. RUI -2761+U7 TP 549.8	PT 1531. KU 62744+07 17 542.6	PT 1534. RU 80. 2744+07 TP 542.4	PT 1534. HU. •2739+U7 TP 542.4	PT 1534. RU -2738+U7 TP 542.7
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AHEA .4450 V 765.4 PXL	AREA .445U V 1668.7 FXL	AREA .4450 V 1670.3 PXL	AKEA • 4450 V V 1671•3 PXL	
386.2 P16 1084.0	0 386.6 P16 1111.U	6 579.6 P16 225.5	581.1 P16 219.9	6 581.1 P16 229.9	AKEA .4450 0 V 581.1 1671.5 P16 PXL 233.7 .0
P05	P05	P05 5.85	P05 5.85	P0S 5.85	7 8 8 8 8 8
750 0 2 6 .	CONF 5 5 7 01	COKh COMF 737 5 1.892	1 . 8 4 3 M		
6936 936	COKK 935	COKh 737	CORM CONF 73d 5	СОКК СОNF 739 S 1.892	CORR CONF 740 5 1.892

15734 15734 19 79 15442 KDIT	# MINF 13531 8 13084 * 13084 * * * * * * * * * * * * * * * * * * *	KINF .11808 .11242 KDIT .02638	KINF .0A377 .076n9 KDIT	KIME .06758 .05827 KDIT .00916	KINF -21717 -246#1 KDIT -09977
ANJWAINF 0.5020 WAVAV9 9.04/48 04988 1.16415)	ANJ/WVINF • AND	AVJ/WVINF .03098 WVJ/WV9 .03073 .03073 .0341	**************************************	**************************************	4.104.204 4.104.8.204.9.9.4.204.9.4.204.9.4.4.4.9.9.4.4.4.9.9.4.4.4.9.9.4.4.4.9.9.4.4.4.9.9.4.4.4.9.9.4.4.4.9.9.4
(p-pp)/(pp-p) 15683 (p9-pp)/(pp-py) 16415 (p1-pp)/(pp-p)	(P-PP)/(PP-P) 41134 (PP-PP)/(PT-P9) 412138 (PT-PP)/(PT-P)	(P-Pr)/(PT-P) 07486 (P9-PP)/(PT-P9) 08341 (PT-PF)/(PT-P)	(p-pr)/(pr-p) .03606 (pa-pp)/(pr-p9) .04411 (pr-pr)/(pr-p) 1.03606	(P-pE)/(PT-p) .02321 (P9-pp)/(PT-pq) .03153 (PT-pE)/(PT-p)	(P-PE)/(PT-P) • 13599 (PG-PP)/(FT-P9) • 23887 (PT-PE)/(PT-P)
P/FP 1.7130 P9/FP 1.7416 P1/FP 6.2596	P/PP 1.4202 P9/PP 1.4508 P1/P0 5.2202	1.2447 p9/pp p9/pp 1.2749 p1/pp 4.5703	P/PD 1.1061 P9/PD 1.1208 PT/PP 4.0485	P/FP 1.065a 1.0847 1.0847 1.7FP 3.9010	1.0163 p9/Pp 1.47/Pp 71/Pp 3.46U7
99/6 68376 99/49 57417 99/41	PP/P .70115 PP/P0 .68643 PP/PT	PD/P .80185 PP/P9 .78440 PP/PT	90408 90408 90740 88591 90771	9888 98885 98885 91855 98787	4/44 61773 4/49 67873 19/49
11 365.2 .9 365.2 /P Ruhe 47 1.485 MOUT	11 • 0 305•1 /p	11 •3 345.3 /P M9 10 1.484 MDOT •88552-04	11 9 385.6 79 80 70 1.444 7001 46531-04	11 3 326.0 77 NO 14 1.483 POCT *50718-04	11 4,444 a. 4/ 4/ 10,175 10,07 10,07 10,07 10,07 10,07 10,07
557 pq 1.01 FP	558 1.02 1.02 1.02	558 1.02 1.02 1.02	11 556.9 7/0/0 1.0201 74 343.6 .4	559 69 1.02 7.02 398.1	557 50 60 60 70 70
425.0 65.0 7436.1 17711 •9615	7 424.3 74 7435.4 11/711 *\$806	424.4 64.424.4 7 433.6 433.6 11771	424.54 43.42 43.00 43.00 43.00 717.71	424.5 40.424 430.4 430.4 711/71	7.00.00 F.V. 06.00.00 11.7.11
1353. 1354. 3150+67 17 17 17 547.6	PT 1553. RE RE PT 15 15 15 15 15 15 15 15 15 15 15 15 15	FT 1353. NU 83146+U7 1P 546.6	F1 1555. RIV *3140+67 FP FP 5+5-8	1553. 1553. 1338+u7 16 545.7	1056. 1056. 11 12 12 15
AMEA • 4450 1440.1 FXL	ANEA .4450 0 V 666.5 1440.9 FIC FXL 389.5		AXFA . 4450 V V 1447.2	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AXFA • 4450 • 44
6 1.665.1 7.16 3.74.5	3 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	AMFA .4450 0 V 666.5 1441.2 P16 FXL 296.8	665.5 **********************************	0 60f.5 P16 414.1	617.3 617.3
FCS 5.85	τυν τυν 20 20 20 20 20 20 20 20 20 20 20 20 20	ν υ τ υ τ	200 c c c c c c c c c c c c c c c c c c	7.05 8.05 8.55	7.55 4.85 4.85
74.4 1.4 1.4 1.4 2.7 1	74.6 D	CCKA CCLAP (4.0 3) 1.448	744 51 14438	COFA CC147 740 5 740 5 14448	COKA CUNF 747 5 1.101

KINF .17850 .22050 .K9 .07445	KINF .12963 .19938 .19938 KDIT	KINF •10860 89 •29231 KDIT •03237	KINF .29137 K9 .31731 K017 .13456	KINF .13796 .16375 .16375 .04680	KINF .24270 K9 .25770 KDIT
-07501 -07501 -07501 -07620 -07620 -0767 -0767 -07601	MVJ/MVINF 0.04601 WVJ/MV 0.4673 (PT-PP)/(PT-P9)	ANJ/WVINF .03262 MVJ/WV9 .03313 (PT-PP)/(PT-P9)	MVJ/MVINF .14247 MVJ/MV9 .14083 (PT-PF)/(PT-P9)	4WJ/WW 04830 6W4/LVM 9.04782 (PT=PP)/(PT=P9)	######################################
(P-PP)/(PT-P) -22579 (P9-PP)/(PT-P9) -13595 (PT-PP)/(PT-P)	(P9-PP)/(PT-P) 14074 (P9-PP)/(PT-P9) 015458 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 09445 (P9-PP)/(PT-P9) 01196 (PT-PP)/(PT-P)	(P-PP)/(PT-P) -26087 (P9-PP)/(PT-P9) -21099 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 12586 (P9-PP)/(PT-P9) 08609 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 05171 • 05171 • 04545 • 04545 • 04545 • 1-05171
P/PP 1.3451 P9/PP 1.2243 P1/PP 2.8734	P/PP 1.1885 P9/PP 1.0791 P1/PP 2.5276	1.119A P9/PP 1.0164 P1/PP 2.3880	P/PP 1.1132 P9/PP 1.0953 PT/PP 1.5472	P/PP 1.0515 P9/PP 1.0366 P1/PP 1.4611	P/PP 1.4071 P9/PP 1.36Un PT/PP 9.28U1
07/0 07/341 09/79 081682 09/71	PP/P .4142 PP/P9 .92673 PP/PT	9979 .99303 99779 .98345 97797	PP/P • 89831 PP/P9 • 91296 PP/PF	95098 95098 96474 96474 9774 98441	PP/P -71066 -71066 -73532 -737312 -1076
11 448.9 7P M9 01 1.175 MDOT *25075-03	TT 449.6 .7 449.6 /P M9 79 1.173 MDOT	TT T T W9.2 M9 P M9	TT T •3 501.8 /P M9 39 •720 MD0T •44179-03	11 •0 501.6 /P M9 57 •718 MD01 •14993-03	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
557.6 9976 9101 9901 99	557.7 7.752 99/P 9079 94	11 557.7 99/P 9077 94	77 0 551.3 9 P9/P 0 .9839 PP PP	551 P9 9 9	567.4 P97.4 P965 9665 PP
728.4 9.457 8.663.3 11/11	732.1 P9 664.7 HP/TT .9855 61	730.1 P9 662.7 1P/11	7 1121.0 P9 1103.0 1P/TT •9951 100	1122.0 P9 1106.0 1747 9942 1067	232.6 232.6 224.8 17/11 9558 16
1557. RU *3244+u7 TP 550.3	PT 1557. RU 3241+U7. TP 549.6	PT 1557. KU KU *3241+07 TP 548.8	PT 1558. KU 40754407 TP 548.6	PT 1559. RU 8U -2758+07 TP 547.8	PT 1534. RU *2674+U7 TP 542.3
AKEA .4450 0 V 618.4 1143.4 P16 FXL 653.4 .0	AREA .4450 V 1140.1 PXL	AKEA .4450 V 1141.7 PXL	AKEA • 4450 770.8 PXL	AREA •4450 770.6 PXL	AREA .4450 V 1685.4 PXL 167.5
	9 616.7 716 681.1	617.3 P16 693.1	9 386.7 916 1073.0	0 387.U P16 1104.0	6 581.6 766.6
7. 3. 5. 3. 5. 3. 5. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	+05 5.85	F05	5.85 5.85	8. 85.	P05 • 00
1.101	1.097		CO277	••	CONF 8 8 1.890
144 CONF	CORR CONF 744 5 1.047	CURK CONF 750 5 1.099	755 755	CONK CONF 750 5	COHM CONF 182 8 1.890

KINF .16475 .17848 .17848 .02105	KINF .08837 K9 .10486 KDIT .00873	KINF .04102 K9 .05657 KDIT	KINF .20987 K9 .21500 KDIT .04578	KINF .18879 K9 .19568 KDIT .03645	KINF .12309 K9 .13208 KDIT
MUJUMYINF 0.03248 WUJUMY 9.03304 (PT-PP)/(PT-P9) 1.03275	MUJ/WINF .01348 MUJ/WV9 .01371 (PT-PP)/(PT-P9)	.00506 .00506 .00508 .00503 .00517 (PT-PF)/(PT-P9)	**************************************	**************************************	.02211 .02211 .02211 .0221 .0222 .0222
(4-14)/(44-4) • 03877 • 014-19)/(44-14) • 03275 • 04-14)/(44-14)	(P-PP)/(PT-P) • 02027 • (PT-PP)/(PT-P9) • 01427 • 01427 • 01427 • 01427 • 01427	(PT-P)/(PT-P) 01260 01260 (PT-P)/(PT-P) 01260 1.01260	(PT-P)/(PT-P) .08920 (P9-PP)/(PT-P9) .08452 .08452 (PT-P)/(PT-P)	(P-PF)/(PT-P) • 06136 (P9-PP)/(PT-P9) • 05680 • 07-PP)/(PT-P)	(PT-P)/(PT-P) •03004 (PQ-PP)/(PT-P9) •02596 (PT-PP)/(PT-P)
P/PP 1.2773 P9/PP 1.2356 P1/PP 8.4294	P/PP 1.1280 p9/PP 1.0907 pT/PP 7.4442	1.0759 1.0759 1.0398 17.0953	P/PP 1.4038 P9/PP 1.3843 P1/PP 5.9310	P/PP 1.2467 pg/PP 1.2293 PT/PP 5.2671	P/PP 1.1073 P9/PP 1.0931 PT/PP 4.6762
7876 78289 98769 680933 98767	PP/P .88650 PP/P9 .91685 PP/PT	98949 98949 96174 96174 9797	PP/P •71234 PP/P9 •72239 PP/PT	PP/P .80213 PP/P9 .81345 PP/PT	90311 99311 99799 91485 99791
11 330.5 566.6 330.5 P9/P M9 .9673 1.912 PP MD0T	71 77 568.0 331.3 99/P M9 .9669 1.912 PP MD07 06.2 .28731-04	568.6 331.7 P9/P M9 .9665 1.912 PP M00T	TT T 568.2 376.4 P9/P M9 .9861 1.605 PP MDOT	11 568.6 376.7 997P M9 9861 1.605 PP MD01	T1 T568.8 376.8 P9/P M9 .9872 1.605 PP MD0T
232.6 P9 225.0 1P/TT 9552 182	232.6 P9 224.9 IP/1T .9495 206	232.6 232.6 P9 224.8 1P/TT .9442 216	9 365.4 P9 361.3 1P/TT •9600 261	4 365.4 P9 361.3 IP/11 .9587 293	9 366.4 P9 361.7 IP/IT
1535. RU *2679+U7 TP 17	PT 1535. RU RU TP TP 539.3	PT 1534. RU *2666+07 TP 1	PT 1548. RII -2986+U7 TP 1	PT 1546. RU -2983+U7 TP I	PT 1548. RU .2982+07 TP
AREA . 4450 1084.1 FXL 186.4	AKEA .4450 . 4450 V 1686.1 FXL	AKEA .4450 V 1087.2 PXL 216.9	AREA .4450 0 V 653.3 1517.7 P16 PXL 262.6 264.1	AKEA . 4450 V 1518.3 PXL 294.4	AREA .4450 9 V 653.3 1518.5 P16 PXL 328.7 329.4
0 581.6 P16 183.5	6 581.6 P16 205.9	0 581.6 P16 216.6	653.3 P16 262.6	653.3 P16 294.4	653.3 P16 328.7
7 • 00 00	.00 •00	.00	.00 • 00	P0S • U0	P05
CORK CONF 184 B 1.890	COMM COMF 183 8 1.890	COKA CONF 184 8 1.890	COKK CONF 185 8 1.596	СОКК СОNF 180 В 1.596	CUKK CONF 187 8 1.596

KINF .07584 .08810 KOIT	KINF .26054 .26771 .08573	KINF .22725 .23528 KDIT .06797	KINF .13655 .14775 KDIT	KINF .06630 .07748 KDIT	KINF .32259 .31666 .011
MVJ/MVINF .01000 MVJ/MV9 .01005 (PI-PP)/(PI-P9)	MVJ/MVINF .09138 .09138 .09178 (PT-PF)/(PT-P9)	-07242 -07242 -07274 -07274 -107701	MVJ/MVINF • 03269 MVJ/MV9 • 03285 • 03285 (PI-PP)/(PI-P9)	MUJ/WVINF *01171 WUJ/WV9 *01175 (PT-PP)/(PT-P9)	*13092 *13092 *13092 *13077 *(PT-PP)/(PT-P9)
(4-74)/(74-4) 01531 01531 (4-74)/(74-79) 01129 101531	(P-PP)/(PT-P) 15598 (P9-PP)/(PT-P9) 14629 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 11650 (P9-PP)/(PT-P9) 10770 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 05755 05759)/(PT-P9) 04868 1-P)/(PT-P)	(P-PP)/(PT-P) .02952 (P9-PP)/(PT-P9) .02142 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .20131 (P9-PP)/(PT-P9) .21073 (PT-PP)/(PT-P)
P/PP 1.0520 P9/PP 1.0385 P1/PP 4.4473	P/PP 1.3806 P9/PP 1.3599 P1/PP 3.8203	P/PP 1.2589 pg/Pp 1.2413 pT/Pp 3.4817	P/PP 1.1131 P9/PP 1.0965 P1/PP 3.0783	P/PP 1.0553 P9/PP 1.0404 P1/PP 2.9289	P/PP 1.2911 P9/PP 1.3024 P1/PP 2.7372
90/90 95/060 90/99 96295 90/97	PP/P .72435 PP/P9 .73533 PP/PT	98/9432 98/32 98/62 98/97 98/22	PP/P .89840 PP/Pa .91201 PP/PT	94759 94759 94759 96113 97797	99/9 •77453 99/49 •76784 99/61
7. 376.7 /P M9 72 1.605 MD01 .26590-04	11 422.5 -1 422.5 /P M9 51 1.310 PD01 -28663-03	11	11	11 1 •8 421.9 /P M9 59 1.312 MD01 •36720-04	11 1 •4 452.9 /P M9 87 1.087 MD01 •43657-03
568 P9 • 98 PP	565 P9 • 98 PP PP	564 P9 •98 PP	564 P9 •98 PP PP	564.8 99/P 9859 9859 PP 531.6 •3	11 561.4 99/P 1.0087 PP 569.2 .4
360.4 P9 P9 361.7 1P/TT .9515	562.3 P9 553.9 1P/TT	563.0 999 555.1 1771 •9685	563.0 P9 P9 P9 P9 17/11 •9664	561.0 P99 553.1 1P/TT	734.9 734.9 741.3 14711 .9818
PT 1545. RU .2983+67 TP 541.1	1556. 1556. KU *3198+U7 1P 547.2	PT 1557. RU RU 71 TP TP 547.0	FT 1557. KU 63203+U7 1P 1P 545.8	PT 1557. RU 801-07 1P 544.5	FT 1558. KU 83213407 1P 551.2
AKEA .4450 Q V 653.3 1514.3 P16 PXL 347.2 347.9	AKEA .4450 V 1308.7 FXL 409.8	AREA .4450 0 V 665.0 1360.6 P16 PXL 446.8 440.2	AKEA . 4450 V 1308.6 PXL 506.4	AKEA . 4450 1509 V FXL 532.1	AMEA . 4450 1141.1 PXL 562.6
653.3 P16 347.2	664.2 P16 406.2	0 665.U P16 446.R	665.0 P16 501.5	664.7 P16 535.1	615.7 P16 559.8
.00 .00 .00		.00 .00	000	.00 .00	P05 • 00
180 B	COKK CONF 184 8 1.249	CORA CONF 190 A 1.299	CORK CONF 191 8 1.299	COPH CONF 19c 8 M 1.3u1	CORK CONF 194 8 1.094

.32144 .32144 .30169 .09183	KINF .20301 K9 .18855 KDIT .05091	KINF .75393 .75175 KDIT	KINF .56032 KG .56129 KDI	KINF .35754 .35601 KDIT .13101	KINF .21784 .22035 KDIT .05967
MVJ/MVINF . 09260 MVJ/MV9 . 09242 . 09242 (PT-PP)/(PT-P9)	MVJ/MVINF .05134 MVJ/WV9 .05126 (PI-PP)/(PI-P9)	.37146 .37146 MVJ/NV9 .37141 (PT-PP)/(PT-P9)	MVJ/WVINF ,24935 MVJ/WV9 ,24945 (PI-PF)/(PT-P9) 1,22609	*13205 *13205 MVJ/WV9 *13216 (PT-PP)/(PT-P9)	ANIVM/LVV 90600. 90600. 90600. (eq-rq),(qq-rq)
(P-PP)/(PT-P) • 08581 • 09581 • 096857 (PT-PP)/(PT-P)	(Ppp)/(PT-p) • 06427 • 07527 • 07527 • 07527 • 07527	(P-PP)/(PT-P) 29565 (P9-PP)/(PT-P9) 29792 (PT-PP)/(PT-P)	(p-pp)/(pt-p) .22706 (pq-pp)/(pt-pg) .22609 (pt-p)/(pt-p)	(PT-P)/(PT-P) • 14599 (P9-Pl)/(PT-P9) • 14745 (PT-P)/(PT-P)	(q-19)/(qq-q) .07685 (pq-pq)/(qq-pq) .07497 (q-19)/(qq-1q)
P/FP 1.1080 P9/PP 1.1227 PT/PP 2.3667	P/PP 1.0791 P9/PP 1.0917 P1/PP 2.3107	P/PP 1.2554 P9/PP 1.2569 PT/PP 2.1193	P/PP 1.1860 P9/PP 1.1853 P1/PP 2.0049	P/PP 1.1127 P9/PP 1.1137 P1/PP	P/PP 1.0558 P9/PP 1.0546 17/PP
99/9 90252 99/99 89068 99/97	92666 92666 99799 91597 99771	PP/P •79655 PP/P9 •79559 PP/PT	PP/P • 84320 • 84366 • PP/PT	99/9 -89870 -89791 -89791 -53055	94712 94712 99,799 94,426 99,71
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TT T T T P M9 M9 M9 MD0T MD0T MD0T T 1.093	17 T 4.3 481.6 79 M9 12 .897 MDOT 12279-02	11 1 •9 481.0 /P M9 95 •900 MD01 •82542-03	TT T 480.6 .7 480.6 /P M9 09 .901 MD0T	T T T T T T T T T T T T T T T T T T T
561 P9 1.01 PP 658.3	560.9 P9/P9 710011 PP	559.3 P9/P 1.0012 PP 729.0 .12	11 558.9 P9/P .9995 PP 770.6 .82	58.7 558.7 P9.7 1.0009 PP PP	11 558.5 P9/P •9988 PP PP
729.4 739.1 1971 1971 19811	728.1 P9 735.6 1271	915.2 919.9 916.3 117.41	913.9 913.9 94 913.4 11/41 7	912.1 992.9 912.9 1P/TT	915.2 915.2 914.1 1P/TT 9851 8
1554. 1554. KIJ 32184u7 17 550.4	1559. 1559. RU 3222+07 TP 550.0	PT 1545. KU 8033+07 TP 551.6	PT 1545. RU 3040+u7 IP 15	PT 1545. KU KU 3044+07 TP T	PT 1545. KI. •3u38+u7 TP I
AKEA .4450 1145.9 1145.9 PXL 633.2	AKEA .4450 V V 1147.5 PXL PXL	AKEA •4450 965.9 PXL 726.9	AHEA .4450 V 967.5 • PXL 770.2	AKEA .4450 V 969.2 V PXL B24.6	AREA .4450 V 965.2 · PXL 876.4
617.8 P16 934.4	0 618.9 P16 658.9	0 516.6 P16 716.8	6 518.2 P16 764.6	6 519.5 P16 826.5	9 516.6 P16 871.5
. 00	F08.	.00 .00	200 000	. 00. 00.	\$00 00
1955 B	100km CONF	COKK COLF 19/ A M 898	7.00.00 B B 0.00.00	. 9 c 2	0 × 8 × 8 × 8
5 "	3 4	, 1	190 190	СОК 199	COKA 20u

LOWF POS AKEA 8 .00 .4450 M 9 V -659 385.1 769.5 P16 PXL 1072.0 1074.0	CO4F POS 8 .00 M .00 699 385.1 7 1114.0 11	. CONF POS 8 1.75 M 1.890 581.6 16 P16 179.9 1	CURK CONF FOS 44450 963 8 1.75 44450 M 9 V 1.890 581.6 1081.6 P16 PXL 191.6 192.6	СОКМ СОМР РОS 964 8 1.75 0 0 М 1.892 581.3 164 P16	СОКН CONF POS 965 8 1.75 1.852 581.3 166 P16 223.8 22
AKEA 1560. V KIJ 769.5 .2737+U7 PXL TP U74.0 549.5	AKEA PT .4450 .4450 .V RII 768.7 .2744+U7 PXL TP 1111.0 547.8	AREA FT4450 1534. V HU 1681.0 -2693+U7 PXL TP 180.3 551.7	AHEA PT -4450 1534. V RU 081.6 .2691+07 PXL TP 192.6 551.8	AHEA PT •4450 1535. V RU 1683.8 .2684+07 PXL TP 212.6 549.2	AKEA PT .4450 1535. V KU 1084.4 .2082+U7 PXL TP 221.2 548.0
1126.0 553 P9 P9 1125.0 1.00 19/17 PP	1126.0 552 P9 P9 1126.0 1.00 FP/TT PP	232.6 564 P9 P9 237.8 1.02 IP/TT PP	232.6 564 P9 P9 238.2 1.02 1971 PP	232.0 565 P9 P9 237.0 1.02 11/17 PP	232.0 566 P9 P9 P9 237.1 1.02 1P/TT PP
TT T T T 6.99 MD MDOT 30662-03	11	11	11 •9 329.5 /P M9 41 1.874 MD01 •87990-04	11 •6 329.7 /P M9 16 1.878 MD01 •34968-04	11 •1 329.9 /P M9 20 1.878 MD01 •71386-05
95293 1. 95293 1. 99729 p. 95293 1. PP/PT p.	99,99,99,99,99,99,99,99,99,99,99,99,99,	PP/P .78031 1.2 PP/P9 P9 .76325 1.3 PP/PT PT	PP/P P/PP •82846 1.2071 PP/P P9/PP •80898 1.236P PP/PT P1/PP •12562 7.9606	PP/P P/PP -93147 1.0736 PP/PP P9/PP -91161 1.0967 PP/PF P1/PP	99/9 9/99 -97371 1.0270 99/99 99/99 -95276 1.0496 99/91 91/99
P/PP (P-PP)/(PT-P) .0494 (P9-PP)/(PT-P9) .0494 (P1-PP)/(PT-P9) PI/PP (PT-PP)/(PT-P) .4539 1.12212	P/PP (P-PP)/(PT-P) 1.0144 .03687 199/PP (P9-PP)/(PT-P9) 1.0144 .03687 PT/PP (PT-PP)/(PT-P)	P/PP (P-PP)/(PT-P) 1.2815 .03927 99/PP (P9-PP)/(PT-P9) 1.3102 .04343 PT/PP (PT-PP)/(PT-P) 8.4518	P/PP (P-PP)/(PT-P) 1.2071 .03066 199/PP (P9-PP)/(PT-P9) 1.2361 .03511 1.030606 1.03066	P/PP (P-PP)/(PT-P) •0736 •01220 •097P (P9-PP)/(PT-P9) •01610 •1032	(dd-1d)
(P-PP)/(PT-P) -12212 P9-PP)/(PT-P9) -12212 (PT-PP)/(PT-P)	(PT-P)/(PT-P) .03687 9-PP)/(PT-P9) .03687 PT-PP)/(PT-P)				
.09912 .09912 MVJ/WY .09919 (PT-PP)/(PT-P9)	MVJ/MVINF .02952 MVJ/WV9 .02953 (PT-PP)/(PT-P9)	MVJ/MVINF .05209 MVJ/MV9 .05152 (PT-PP)/(PT-P9)	MVJ/MVINF .04116 MVJ/MV9 .04067 (PT-PP)/(PT-P9)	MVJ/MVINF .01639 MVJ/MV9 .01621 (PT-PP)/(PT-P9)	ANJUM/LUM *00335 MVL/WW *00331 *(PT-P9)/(PT-P9)
28731 28731 28731 8011 8015	15289 15289 15289 15289 102923	KINF .26312 .25093 KDIT	KINF .22774 .21349 .02669	KINF .134A3 .11770 .01061	KINF .04341 K9 .03206 K0IT

KINF .31183 K9 .30438 KDIT .07894	KINF .22358 .21428 KDIT .04958	KINF .12884 K9 .11764 KDIT	**************************************	KINF 41093 K9 41830 KDIT 16919	KINF .39661 K9 .40070 KDIT
MVJ/MVINF .09280 MVJ/MV9 .09228 (PI-PP)/(PT-P9)	405828 405828 405828 402786 405786 1408065	. NZJMVINF . N2438 . N247MV9 . 02421 (PT-PP)/(PT-P9)	.00667 .00667 .00667 .00667 .00669) .006479)	MVJ/MVINF .17055 MVJ/MV9 .17071 .17071 .1-20705	.15251 .15251 MVJ/HVV .15256 .1526) (PT-PP), (PT-P9)
(P-PP)/(PT-P) 11085 (P9-PP)/(PT-P9) 11717 (PT-P) 111085	(4-14)/(4c-4) 70737. 707-64)/(64-64) 608065 (4-14)/(4c-14) 74670.1	(q-fq)/(qq-q) .03390 (pq-fq)/(qq-pq) .04100 (q-fq)/(qq-fq)	(PT-P)/(PT-P) 0.1726 (P9-PP)/(PT-P9) 0.02433 (PT-PP)/(PT-P)	(9-19)/(94-9) -21637 -21637 -20705 -20705 -20705 -20705 -21637	(q-p)/(pp-p) 174.18 (pq-p)/(pp-p) (pq-p)/(pp-p) (q-p)/(pp-p)
P/PP 1.42UN P9/PP 1.4415 PT/PP 5.2095	P/PP 1.2432 P9/PP 1.2652 P1/PP 4.5532	P/PP 1.0992 P9/PP 1.1192 P1/PP 4.0259	P/PP 1.0462 p9/PP 1.0674 p1/PP 3.8389	1.3249 1.3249 1.3133 1.759	P/PP 1.2503 P9/PP 1.2451 PT/PP 2.6870
07/04/20 07/420 04/04/04/04/04/04/04/04/04/04/04/04/04/0	PP/P .80438 PP/P9 .79041 PP/P1	PP/P .90973 PP/P9 .89352 PP/P1	95404 95404 95489 93682 97672	75479 75479 99/49 76146 99/91	PP/P .79983 PP/P9 .80316 PP/PT
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 390.1 M9 1.486 MDOT MDOT	TT T T T T	11 •9 390.5 7P M9 84 1.486 MOOT •18924-04	11 -2 451.9 7P M9 12 1.106 MDOT -56876-03	11 1 -2 451.0 /P M9 59 1.109 MD07 .50810-03
565 P9 1.01 PP	77 565.2 P9/P 1.0177 PP 41.3 .165	77 565.5 P9/P 1.0181 PP 386.0 .693	71 565.9 P9/P 1.0184 FP 404.8 .189	71 561.2 Pq/P •9912 PP PP 551.6 .56	71 561.2 P9/P .9959 PP 580.2 .50
423.6 Py 430.6 HV11 .9812	424.3 P9 431.6 1P/11 -9795 3	424.3 424.3 932.0 432.0 19/11 .9726 3	424.3 P9 432.1 17/11	730.8 P9 724.4 1771 •9918 5	725.4 725.4 722.4 722.4 11.71
1354. 1354. 3095+07 17 554.6	PT 1554. kU 3094+t/7 TP 553.6	PT 1554. KU 3093+07 TP 550.0	PT 1554. KU 3090+07 TP 547.6	PT 1559. RU *3219+07 TP 556.6	PT 1559. RU 3221+U7 1P 556.4
AKEA •4450 V 1451.7 PXL 695.6	AKEA .4450 0 V 666.5 1450.2 P16 PXL 337.6 335.3	AKEA .4450 0 V 666.5 1450.4 P16 PXL 379.8 379.6	AKEA .4450 0 V 666.5 1450.9 P16 PXL 395.4 596.7	AREA . 4450 V 1145.1 PXL 545.4	AKEA .4450 0 V 620.U 115U.2 P16 PXL 575.U 574.3
0 67.2 716 294.6	ი 666-5 P16 337-6	0 666.5 P16 379.8	0 666.5 P16 395.4	6 617.9 P16 545.1	620.0 P16 575.0
7. FOS 8 1.75 0.0	POS 1.75	P05	POS 1.75	POS 1.75	P05
1.500 A 1.500 B 1.500	СОКК СОМР 960 8 1.498	COKK CONF Yby B 1.498	CORR CONF 970 8 1.498	СОКК СОМР 978 8 1.099	СОНН CONF 979 8 1.105

KINF .32793 K9 .33268 KDIT	KINF 26410 89 27814 KDTT 06641	KINF .52637 K9 53585 K011	KINF 43841 89 45136 KDIT 21973	KINF 36924 K9 38738 KDIT 15284	KINF 31728 89 74072 711196
. 10126 . 10126 . MVJ/MV9 . 10132 . (PT-PP)/(PT-P9)	MVJ/MVINF .06692 .06692 .06700 .06700 .1.05786	. 34003 . 34003 . 34003 . 33806 . 407-P9)	MVJ/MVINF .23496 .23496 .234961 .23361 .1.29819	.16022 .16022 MVJ/MV9 .15932 .15932 .17793	**************************************
(PT-P)/(PT-P) • 10080 • 10080 • 10764 • 10080 • 10080	(P-PP)/(PT-P) • 06462 (P9-PP)/(PT-P9) • 05786 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 51540 (P9-PP)/(PT-P9) (P1-PP) (P1-PP) (P1-PP)	(PT-P)/(PT-P) .32207 (P9-PP)/(PT-P9) .29819 (PT-PP)/(PT-P)	(P1-P)/(P1-P) •19954 (P9-PP)/(P1-P9) •17793 (P1-PP)/(P1-P)	(P-PP)/(PT-P) 13761 (P9-PP)/(PT-P9) 11712 (PT-PP)/(PT-P)
P/PP 1.1305 p9/PP 1.1268 p1/PP 2.4251	P/PP 1.0793 P9/PP 1.0715 P1/PP 2.3066	P/PP 1.2466 P9/PP 1.2397 P1/PP 1.7310	P/PP 1.1421 Pg/PP 1.1340 PT/PP 1.5833	P/PP 1.0834 P9/PP 1.0761 PT/PP 1.5039	P/PP 1.0563 P9/PP 1.048A PT/PP 1.4657
00/P 08455 00/P9 08748 09/PT	92653 92653 9279 93331 92791	PP/P • RON89 • RO662 • PP/PT	PP/P .87558 PP/P9 .88184 PP/PT	9799 • 92267 99799 • 92927 P9797	94667 94667 99799 95345 97797
T 450.8 -7 450.8 // M9 67 1.106 MDOT .33772-03	TT T T T W H	11 •3 505.9 /P M9 29 •707 MD01 •10503-02	11 1 .8 505.4 /P M9 29 .707 MD01 .72610-03	TT T T T T	11 1 •4 504.9 /P M9 29 •708 MD01 •35864-03
TT 560.7 99/9 9967 99 94	11 560.8 99/P 9927 99 70 675.9 .223	11 555.3 P97P •9929 PP PP -105	11 554.8 P9/P 9929 PP PP 985.9	71 0 554.6 9 P97P 0 .9929 0 PP	71 0 554.4 9 P9/P U .9929 PP 1065.0 .356
726.7 P9 724.3 724.3 IP/TI .9916 64	729.5 P9 724.2 17/41 67	1126.u 1126.u 1110.U 1177T 9969	P 1126.0 1118.0 17/71 1971 98	P 1125.0 P9 1117.0 P/TT •9968 103	P 1125.0 1117.0 14/11 .9969 100
FT 1559. HII •3220+U7 TP 556.0	PT 1559. RU *3224+07 TP 555.5	FT 1561. HU KU TP 7P 553.6	FT 1561. RU RU -2730+U7 TP TP 553.2	PT 1561. KU *2734+U7 1P 552.8	PT 1561. HU -2735+07 TP 552.7
AAKEA . 4450 114 4 50 7 2 4 8 6 8 8 6 8	AREA . 4450 V 1146.5 PXL 673.3	AKEA .4450 770.6 PXL 891.6	AREA .4450 V 770.2 PXL 982.2		
620.0 P16 638.7	619.0 P16 671.9	385.1 P16 889.1	385.1 P16 982.8	AREA .4450 0 V 385.9 771.0 P16 PXL 1034.0 1035.0	AKEA .4450 0 V 385.9 770.9 P16 PXL 1060.0 1063.0
ก็ช ≭ ÷ 207 • ± 208 • ±	HOS 1.75	1.75	POS 1.75	A 1.75	POS 1.75
COKR COLF 9H0 B 1.104	CURA CONF 981 8 1.101	CUKK CONF 963 8	COKK CONF 984 8 8 8 8 699	CUKK CONF 985 8 M	COKK CCNF 980 8

KINF .21685 K9 .24908 KDIT	KINF .22536 .19517 KDIT .02980	KINF .19676 .16296 KDIT .02321	.12234 .12234 .08669 .01063	KINF 15195 15195 106053 100602	KINF .20541 K9 .19540 KD1T
**************************************	MVJ/MVINF • 04598 MVJ/MV9 • 04416 (PT-PP)/(PT-P9) 1.05853	**************************************	**************************************	**************************************	-05607 -05607 -05607 -05534 -05534 -057-09)/(PT-P9)
(P-PP)/(PT-P) •07586 (P9-PP)/(PT-P9) •05643 (PT-PP)/(PT-P) 1.07586	(P-PP)/(PT-P) • 04292 (P9-P2)/(PT-P9) • 05853 (PT-P)/(PT-P) 1.04292	(q-fq)/(qq-q) .03131 .03131 (pq-fq)/(qq-q) .03131	(q-fq)/(qq-q) 01520 (p9-pq)/(qf-pg) 03094 (q-fq)/(qq-fq)	(q-fq)/(qq-q) .00292 (pq-pq)/(pf-pq) .01879 (pf-fq)/(qq-fq)	(q-fq)/(qq-q) 09037 (pq-pq)/(qq-pq) 10117 (pq-pq)/(qq-pd)
p/pp 1.0302 p9/pp 1.0229 pT/pp 1.4286	P/PP 1.3164 P9/PP 1.4250 P1/PP 8.6870	P/PP 1.2134 P9/PP 1.3133 P1/PP 8.0282	P/PP 1.0933 P9/PP 1.1871 PT/PP 7.2337	p/pp 1.0167 pg/pp 1.1056 pT/Pp 6.7266	P/PP 1.4108 P9/PP 1.4554 PT/PP 5.9570
9/99 97/67 99/99 97/62 19/97	9P/P •75967 •PP/P9 •70175 •PP/P1	PP/P .82414 PP/P9 .76145 PP/PT	PP/P .91466 PP/P9 .84240 PP/PT	98362 98362 99799 90448 99797	7040 • 7080 • 80799 • 68709 • 16787
71 1 •2 504.7 7P M9 29 •708 MDOT •18428-03	17 •2 323.8 79 M9 25 1.839 MD0T •99160-04	11 1 •1 324•1 /P M9 23 1•840 MD01 •77158=04	TT T T T T T T T T T T T T T T T T T T	TT T T T T T T T T T T T T T T T T T T	11 .8 372.°° /P M9 16 1.574 MD01 .15015-03
TT 54.2 9 P9/P 1092.0 186	555.2 P9/P 1.0825 PP PP 176.7 .993	11 556.1 99/P 1.0823 PP 177.	TT 558.2 P9/P 1.0858 PP PP	558 P9 1.08 PP	TT 562.8 P9/P 1.0316 PP 260.2 .156
1125.0 PP 1117.0 1117.0 117.0 19964 109	232.6 P9 251.8 IP/IT .9822 17	232.0 P9 251.1 (P/TT .9795 15	232.0 29 251.9 (P/11	232.0 P9 252.3 (P/11	P 367.1 P9 376.7 IP/11 •9829 26
1560. 1560. KU 2736+U7 TP 552.2	1535. 1535. KU 2756+U7 1P 545.3	PT 1535. KII 811 17 18 544.7	PT 1535. KU 4U -2734+U7 TP 545.3	PT 1535. RU 107 17 17 544.6	PT 1550. RU 3030+07 TP 553.2
AKEA • 4450 V 776.8 PXL 1093.0	AREA .4450 V 1667.U PXL 171.5	AKEA .4450 V 1669.5 PXL 190.3	AREA .4450 1072.4 PXL 210.5	AHEA .4450 V 1673.3 PXL 222.4	AKEA .4450 0 V 654.6 1510.6 P16 PXL 258.7 259.4
0 385.9 P16 1092.0	0 581.6 P16 172.3	0 581.3 P16 191.3	6 581.3 P16 211.5	9 581.3 P16 223.1	654.6 P16 258.7
# 105 # 1.75	204 88.85 85	F0S 5.85	F0S	5•85 5	P0S 5.85
CORR CONF 981 B	COMR CONF 657 8 1.890	CORR CONF 658 8 1.692	CUKK CONF 655 8	COKK CONF	COKK CONF

KINF 17639 16421 KDIT 03407	KINF .12144 .10399 .10399 .KDIT	KINF • 07390 K9 • 05329 KDIT • 00655	KINF • 00000 • 00000 • 00000	KINF .22735 .25863 .25863 .07903	KINF 19681 7981 79912 7017
AVJ/WVINF .04245 MVJ/WV9 .04191 (PI-PP)/(PI-P9)	MVJ/WVINF .02093 MVJ/WV9 .02065 (PT-PF)/(PT-P9) 1.03783	**************************************	MVJ/MVINF .00000 MVJ/WV9 .00000 .00000 1.00435	MVJ/MVINF .08421 MVJ/MV9 .08635 (P1-P9)/(P1-P9)	MVJ/MVINF .07075 .0703/WV9 .07258 .07259) .111878
(PQ-PP)/(PT-P) .06137 (PQ-PP)/(PT-P9) .07170 (PT-PP)/(PT-P) 1.06137	(4-79)/(94-9) 02739 (94-99)/(91-99) 03783 1.02739	(P9-PP)/(PT-P) (P9-PP)/(PT-P9) (P1-PP)/(PT-P) (P1-P) (P1-P)	(q-pq)/(pq-pd) -,00558 (pq-pq)/(pT-pq) -,00435 -,00435 -,00435 -,00435 -,00435	(P-PP)/(PT-P) 19211 (P9-PP)/(PT-P9) 14090 (PT-P)/(PT-P)	(P-PP)/(PT-P) 16964 (P9-PP)/(PT-P9) 11878 (PT-PP)/(PT-P)
P/PP 1.2465 P9/PP 1.2852 PT/PP 5.2632	P/PP 1.0968 P9/PP 1.1324 P1/PP 4.6310	P/PP 1.0353 P9/PP 1.0680 P1/PP 4.3711	9,429 9,823 99,799 1,0136 91,799	P/PP 1.5112 P9/PP 1.3918 PT/PP 4.1725	P/PP 1.4244 P3.106 P1/PP 3.9259
PP/P .80223 PP/P9 .778U7 PP/PT	99/P .91174 .99/P9 .88311 .99/PT	pp/p .96595 pp/p9 .93636 pp/pt	1.01798 1.01798 1.007799 1.00779 1.00779 1.00779	99/P •66170 99/P9 •71849 99/PT	99/99 •10207 •99/99 •76299 99/91
11 373.0 /P M9 11 1.575 MD0T	77 -5 373.4 /P M9 24 1.574 MD0T.	11 •9 373.6 /P M9 16 1.574 MD01 •21831-04	7 373.8 89 1.574 MDOT	TT T T T T Y 21.00 /P M9 10 1.357 M00T M00T .26514-03	T1 T T T T M9 M9 M0
77 563.0 P9/P 1.0311 PP	563.5 P9/P 1.0324 PP 334.7 .56	86. 80.0 80.0 80.0	564.1 37 P9/P 1.0319 1. P P P P P P P P P P P P P P P P P P P	11 562.7 99.7P .9210 9P 373.4 .266	563.1 99/P 9202 9P PP 396.6 .22
9 1.756 19 2.076 11/41 1.9819	9 367.1 P9 379.0 17/11	367.1 P9 378.7 1 1P/TT -9725 354	9 367.1 P9 378.8 1P/11 .9672 3	64.3 699 519.7 1P/11	564.9 99 P9 519.8 17/11 9869 39
155u. 155u. KII 3029+u7 TP 552.8	PT 1550. KU 33024+67 TP 550.8	PT 1550. KU 3022+07 TP 548.4	PT 1550. KII 3020+u7 1P 545.6	PT 1558. KII *3219+U7 TP 556.2	PT 1557. RII •3215+07 TP 555•7
AKFA .4450 V 1510.8 PXL 292.6	AKEA .4450 V 1511.6 PXL 328.2	AREA .4450 0 V 654.6 1512.0 P16 PXL 349.4 347.8	AKEA .4450 0 V 654.6 1512.4 P16 PXL 366.3 366.9	AREA .4450	AREA .4450 V 1304.1 PXL .95.9
0 654.6 P16 291.4	654.6 P16 332.6	654.6 P16 349.4	654.6 P16 366.3	664.5 P16 360.8	664.2 P16 394.5
7.05 5.85 5.85	P05 5.85	P0S 5•85	F0S 5.85	۲05 5•85	P0S 5.85
			•,	•,	
1.546	COKK CONF 665 8 1.596	СОКА СОМР 660 8 1.596	СОКК СОМР 66/ 8 1.596	СОКК СОNF ФБУ В М	СОКК СОNF 670 М 1.296

KINF • 12201 K9 • 15766 KDIT • 03582	03679 03679 08693 00603 00810	KINF .015A8 .00000 KDIT	KINF .29765 K9 .35468 KDIT	KINF .26431 K9 .32055 KDIT	KINF .20076 .89 .30481 .06884
403417 403417 404/2009 403914 407-77/(77-79)	ANJWVINF • 00863 • 00865 • 00885 • 00995 1.00935	MVJ/WVINF .00311 MVJ/WV9 .00318 (PT-PF)/(PT-P9)	MVJ/MVINF .12933 MVJ/MV9 .13129 .13129) (PT-P9)/(PT-P9)	MUJ/MVINF 11102 MVJ/MV9 11271 (PT-PP)/(PT-P9)	ANJWALLWH 0.06948 WALLWY 0.0704 0.0704 1.05301
(p-pp)/(pr-p) 11050 11050 (p9-pp)/(pr-pg) 06290 (pr-pp)/(pr-p) 1.11050	(P-PP)/(PT-P) ,05488 (P9-PP)/(PT-P9) ,00935 (P1-PP)/(PT-P) 1,05488	(p-pp)/(pt-p) .03675 .03679 (pq-pq)/(pt-pg) .00781 .00781/(pt-p)	(Ppp)/(PTp) 25373 (P9-pp)/(PTpq) 16456 (PTpp)/(PTp)	(PP)/(P1-P) -22722 (P9-PP)/(P1-P9) -14268 (P1PP)/(P1-P)	(p-pp)/(pt-p) 13237 13237 (pq-pq)/(pt-pq) 05301 (pt-pp)/(pt-p)
1.2416 pg/pp pg/pp 1.1437 pT/pp 3.4279	P/PP 1.1068 P9/PP 1.0190 P1/PP 3.0525	9/PP 1.0691 09/PP .9847 PI/PP 2.9485	P/PP 1.4100 Pg/PP 1.2863 PT/PP 3.0258	P/PP 1.3562 p9/PP 1.24U2 PT/PP 2.9236	P/PP 1.1795 P9/PP 1.0773 P1/PP 2.5358
99/99 .80542 99/99 .87437 99/91	PP/P •90352 PP/P9 •98135 PP/PT •32760	PP/P .93539 PP/P9 1.01557 PP/PT .33915	70923 70923 PP/P9 77744 PP/PT	PP/P .73737 PP/P9 .80632 PP/PT	PP/P .84780 PP/P9 .92824 PP/PT
11 11 1 563.2 421.4 P97P M9 •9211 1.357 PP MD01 •5 .12013-03	TT T 563.2 421.5 P9/P M9 .9207 1.357 PP MDOT .4 .27172-04	TT T 563.6 421.8 99.7 M9 .9210 1.356 PP MDOT .4 .97750-05	TT T 562.8 452.5 P9/P M9 .9123 1.177 PP MDOT 99.43013-03	TT T T T T T T T T T T T T T T T T T T	11 1 562.4 452.0 P9/P P9 •9133 1.177 PP PD01
564.3 P9 519.8 1P/11 .9840 454	564.9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	64.9 56 94.9 56 19. 9 520.3 99 17/17 528.4	P 726.U 56 P9 P 662.3 .9 P711 P P	722.7 P9 P 660.9 .9 17/11 532.9	724.7 56 P9 P 661.9 .9 17/11 614.4
1558. RU •3215+U7 TP 554.2	FT 1558. KU *3215+U7 TP 549.7	FT 1556. RU .3212+07 TP 546.2	PT 1558. RU 807-07 1P 557-9	PT 1554. KU *3210+07 1P 556.9	1558. 1558. HU 3209+07 1P 555.9
AHEA .4450 0 V 664.5 1305.0 P16 PXL 453.2 445.5	AKEA .4450 1304.1 PXL 492.3	AHEA .4450 V 1304.6 PXL 517.5	AREA .4450 .1151.1 PXL 504.2	AREA . 4450 V V 1154.5 PXL 536.2	AREA .4450 1151.5 PXL 608.5
664.5 P16 453.2	664.2 P16 496.8	664.2 P16 520.9	619.4 P16 505.5	621.1 P16 519.2	619.4 P16
5.85 5.85	۲05 5•85	P0S 5.85	P0S 5.85	P0S 5.85	۶۰ و د د د د د د د د د د د د د د د د د د د
CURR CONF 671 8 1.297	СОКН СОNF 672 8 1.296	COMM CONF 674 8 1.296	COKK CONF 670 8 1.104	СОКН СОМР 677 8 1.108	CORK CONF 679 8 1.105

.15023 .15023 .85307 .85307 .04483	KINF -62461 K9 -64318 KDIT	KINF •36929 •38150 •K9 •KDIT	KINF •18383 K9 •19710 KDIT	KINF 06651 K9 07584 KDIT	KINF -45981 K9 K9 49670 KDIT
NVJ/MVINF 0.04523 NVJ/MV9 0.04593 (PT-PP)/(PT-P9)	.33386 .33386 .001/29 .3321 (PT-P9)/(PT-P9)	MVJ/MVINF .18376 .MVJ/MV9 .18338 (PT-PP)/(PT-P9) 1.28023	. 07282 . 07282 . MVJ/MV9 . 07263 . (PT-PP)/(PT-P9) 1.14547	MVJ/MVINF .01990 .01990 .01985 .01985 .(PT-P9)/(PT-P9)	WUJ/WVINF .22952 .4 .22952 .4 .22703 .4 .22494 .5
(P-PP)/(PT-P) .09500 .09500 (PT-PP)/(PT-P9) .01584 (PT-PP)/(PT-P)	(PT-p)/(PT-p) .37831 (P9-Pp)/(PT-p9) .34859 (PT-Pp)/(PT-p)	(P-PP)/(PT-P) .30529 (P9-PP)/(PT-P9) .28023 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 17120 (P9-PP)/(PT-P9) 14547 (PT-PP)/(PT-P)	(P-PP)/(PT-P) .09150 .09150 .06830 .06883 (PT-PP)/(PT-P)	(P-PP)/(PT-P) -27315 (P9-PP)/(PT-P9) -22494 (PT-PP)/(PT-P)
P/PP 1.1222 P9/PP 1.0220 P1/PP 2.4087	P/PP 1.3536 P9/PP 1.3330 P1/PP 2.2844	P/PP 1.2693 P9/PP 1.2521 PT/PP 2.1515	P/PP 1.1343 P9/PP 1.1167 PT/PP 1.9186	P/PP 1.0676 P9/PP 1.0519 PT/PP 1.8060	P/PP 1.1169 P9/PP 1.1001 1.5451
PP/P • 891U9 PP/PQ • 97A5N PP/PT	73875 •73875 PP/P9 •75017 PP/PT	99/9 78782 99/99 79869 19879	PP/P • A8162 PP/P9 • 89553 PP/PT	99/P •93671 •95/P9 •95/E6 •95/P7	99/9 -89530 99/99 -90901 99/97
11 452-1 -4 452-1 /P	T1 T •0 442.0 /P M9 48 •914 MD07 •11033-02	11 1 • 9 441.5 7P M9 64 • 915 MD01 • 60774-03	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 504.7 .7 504.7 /P M9 49 .714 MD01 .70837-03
562 P9 •91 PP	560.0 99/P 9848 PP 674.7 .11	11 559.9 99/P 9864 PP	71 559.7 P9/P 9845 PP 805.8 .24(559 • 98 • 98 • 5	71 0 553.7 9 P9/P 0 .9849 PP 1009.0 .708
725.4 P4 P60.6 P711 9872	913.5 913.5 99 99.49 117.41	911.5 913.5 P9 899.1 FP/TT 0000	914.0 99.6 899.8 1771	913.3 913.3 99.9 11741	1127.0 P9 1110.0 17771
PT 1557. KU •3204+u7 TP 555.2	1544. 1544. 181 3030+07 1P	PT 1545. RU 83035+07 TP 00	PT 1546. RU 83035+U7 TP	1545. RU 8033407	PT 1559. RH 2729+U7 1 P
AKEA .4450 V 1150.6 PXL 627.5	AREA .4450 V 968.5 PXL 663.0	AREA . 4450 V 970.1 PXL 694.8	AREA .4450 V 968.2 PXL 799.8	AKEA .4450 V968.1 . PXL B52.6	AKEA .4450 V 767.5 • PXL 1003.0
618.9 P16 625.7	6 517.8 P16 665.0	6 519.1 P16 709.6	6 518.2 716 803.6	6 517.8 P16 859.4	6 383.3 P16 1004.0 1
F05 86 85 85	P0S 5.85	70S 5.85	P0S 5.85	P0S 5.85	F0S 5.85 7.
CCCK CCNF 680 3 1.104	9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONF B B B B B	FNOO B B B B B B B B B B B B B B B B B B	CONF 8 8 • 9u0	
* 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	COKK	CORR 68.6	COX 66 6	C0XX 684 4 4	CORR CONF

KINF .13778 .16866 .10875	KINF .39513 .49 .41700 .41700 .05613	KINF .27493 K9 .30131 KDIT	KINF • 19402 • 228 K9 • KD17 • 01909	KINF .02317 .03340 .03340 .00178	*10294
AVJ/WJNF • 04388 • 04389 • 04349 • 04349) • 1,06652	MVJ/MVINF .08685 MVJ/WV9 .08835 (PT-PP)/(PT-P9)	MVJ/WVINF .05237 WVJ/WY9 .05331 (PT-PP)/(PT-P9)	MVJ/MVINF • 0.2944 MVJ/MV9 • 0.2995 • (PT-PP) / (PT-P9)	4027W 400274 400279 40279 60279 100550	MVJ/MVINF .12101 MVJ/MV9 .12104 (PT-PP)/(PT-P9)
(P-PP)/(PT-P) 10321 (P9-PP)/(PT-P9) 06652 (PT-PP)/(PT-P)	(P-P)/(P-P) .05550 (P-P9)/(P-P9) .04938 (P-P)/(P-P) 1.05550	(P-P)/(PT-P) .03525 .03525 (P9-PP)/(PT-P9) .02909 (PT-P)/(PT-P)	(P-P)/(PT-P) .02006 (P9-PP)/(PT-P9) .01429 (PT-P)/(PT-P) 1.02006	(P-P)/(PT-P) .01153 (P9-PP:/(PT-P9) .00550 (PT-P)/(PT-P) 1.01153	(P-PP)/(PP-P) 16000 (P9-PP)/(PP-P9) 15979 (PT-P)/(PP-P)
P/PP 1.0417 P9/PP 1.0278 PT/PP 1.4458	P/PP 1.4547 P9/PP 1.4069 P1/PP 9.647a	p/PP 1.2468 p9/PP 1.2048 PT/PP 8.2473	P/PP 1.1264 P9/PP 1.0906 P1/PP 7.4286	1.0692 097Pp 1.0332 PT/PP 7.067a	1.7439 pg/pp pg/pp 1.7431 pT/pp 6.3936
9749 .95996 .97799 .97295 .97797	PP/P .68742 PP/P9 .71177 PP/PT	PP/P .80207 PP/P9 .82999 PP/PT	PP/P .88779 PP/P9 .91696 PP/PT	93532 993532 99799 96787 99797	9747 \$7342 \$7749 \$7769 \$1749
11 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	327.2 M9 1.915 MDOT 682-04	TT T •5 327.9 64 1.914 MDOT •43268-04	11 •0 328.4 /P M9 82 1.911 M001 •24355-04	TT T T T T T T T T T T T T T T T T T T	TT T -2 387.8 /P Mo 95 1.499 MDOT 13305-03
77 0 553.2 9 P9/P 0 .9867 PP	11 561.8 P9/P .9671 PP 59.0 .71	TT 562.5 P9/P .9664 PP PP	563 P9 PP PP	TT 564.0 P9/P .9664 PP	11 562.2 P9/P .9995 PP PP
1124.0 P9 1109.0 IP/IT .0000 10	231.3 P9 223.7 11/11	231.9 231.9 224.1 1P/TT .9669 18	232.6 29.2 225.2 1P/11	231.9 P9 224.1 1P/TT .9601 23	4 423.6 423.6 99 423.4 1F/1T 9728
1560. 1560. 119 119	1534. 1534. RU 2706+u7 IP 544.6	FT 1534. RU 803-07 17 543-9	PT 1534. RU 803-07 1P 543-2	PT 1533. HU -2692+07 TP 17 541.5	PT 1553. KU 63115+U7 TP 546.9
	AREA .1719 V 1678.3 PXL	AREA .1719 V 1679.2 PXL	AREA .1719 V 1678.8 PXL	.1719 V 1680.7 PXL	AREA .1719 .0 V 666.3 1446.9 P16 PXL 235.7 .0
AHEA .4450 9 V 386.6 771.1 P16 PXL 1072.0 1070.0	6 580.2 P16 159.0	581.1 P16 187.1	6 581.6 P16 205.6	6 580.5 P16 219.7	666.3 P16 235.7
705 5.85		• 000	. 00 •	.00 00	Pos • 00
CORR CONF 691 B	COPR CONF 235 9 1.893	CORR CONF 230 9 1.892	COKR CONF 237 9 M 1.890	CONF CONF 23d 9 1.691	COKH CONF 239 9 11.499

.36429 .36429 .36429 .09309	KINF .35454 K9 .35516 K0IT	KINF .26153 K9 .26424 KDIT	**************************************	KINF .46454 .45831 KDIT	KINF .49239 .48432 KDIT
**************************************	#WJ/MVINF • 09322 #WJ/WW • 09326 • 091-09) • 071-09)	MVJ/MVINF • 05252 MVJ/WV9 • 05256 (PT-PP)/(PT-P9)	MVJ/MVINF • 02144 • 021446 • 02146 • 071-PP)/(PT-P9)	MVJ/MVINF .21834 MVJ/WV9 .21802 (PT-PP)/(PT-P9)	MVJ/MVINF .22078 MVJ/WV9 .22042 (PT-PP)/(PT-P9)
(P-PP)/(PT-P) 11466 (P9-PP)/(PT-P9) 11466 (PT-P)/(PT-P)	(P9-PP)/(P1-P) (P9-PP)/(P1-P9) (P1-PP)/(P1-P) (P1-P)/(P1-P)	(P-PP)/(PT-P) 03877 (PQ-PP)/(PT-P9) 03794 (PT-P)/(PT-P)	(PT-P)/(PT-P) (01937 (P9-PP)/(PT-P9) (P1-PP)/(PT-P) (P1-P)	(PT-P)/(PT-P) • 38085 (P9-PP)/(PT-P) • 39617 (PT-P)/(PT-P)	(P-PP)/(PT-P) -28458 -28458 (P9-PP)/(PT-P9) -29742 (PT-PP)/(PT-P)
1.4463 p9/PP 1.4403 p1/PP 5.2805	P/PP 1.2518 P9/PP 1.2509 PT/PP 4.5922	P/PP 1.1151 P9/PP 1.1127 PT/PP 4.0841	1.0545 1.0545 pg/pp 1.0538 pt/pp 3.8686	P/PP 1.7646 P9/PP 1.7867 P1/PP 3.7724	P/PP 1.4777 P9/PP 1.4941 P1/PP 3.1564
96/429 .69429 .69429 .69429 .18938	79467 .79487 .79799 .79943 .79776	99/P .89677 99/P9 .89868 PP/PT	94430 94430 994497 94497 99791	92/9 •\$6668 92/99 •\$5970 92/97	.67672 PP/P9 .66920 PP/PT
17 17 562.2 387.8 p9/P	71 T 562.4 368.0 997P M9 .9993 1.500 PP MDOT	11 562.4 388.1 P97.9 M979 1.500 PP M901 3800 PP M901 B901 PP M901 B901 PP M901	17 T 562.9 388.2 P9/P M9 .9993 1.500 PP MDOT	TT 559.5 450.3 P97.P M9 1.0125 1.091 PP M00T 413.0 .28151-03	TT T 558.7 449.8 P9.7 Ma 1.0112 1.091 PP MOOT 493.6 .28479-03
423.6 99, P9 423.6 1P/1T .9723	423.6 P9 423.3 127.11 19712 3:	424.3 1 423.4 1 127.1 19700 36	423.6 P9 423.3 1P/TT	P 728.8 P9 737.9 1P/TT .9825 41	9 729.4 P9 737.6 T9/11 19/11 49
FT 1553. ************************************	PT 1554. RU HU 3115+U7 TP 546.2	PT 1554. KU •3115+U7 TP 545.5	PT 1554. RU *3113+U7 TP 544.7	PT 1558. KU KU 3231+U7 TP 549.7	PT 1558. RU 83236+U7 TP 1
AHEA .1719 V 1446.9 PXL	AREA .1719 V 1448.2 PXL	AREA .1719 1446.5 PXL	AREA .1719 V 1448.6 PXL	.1719 .1719 V 1145.1 PXL	AKEA .1719 .1143.5 PXL
6 666.3 716 291.5	0 667.2 716 339.3	666.5 P16 385.8	0 667.2 P16 404.9	618.4 P16 387.7	617.8 P16 484.3
400 000 000	200 •	Pos • 00	.00 • 00	.00 .00	.00 .00
CURR CONF	COKR CONF 241 9 1.500	CORR COMF 242 9 1.498	COMR CONF 24.3 9 1.500	СОКК СОМР 245 9 1.101	CUKH CONF 246 9

* INF * 45502 * 44862 * 44862 * 5011	KINF .39147 .57053 KDIT .11922	KINF .32972 .29976 .0111	KINF .51849 K9 .51754 KDIT	KINF .54628 .54685 .54685 .39089	KINF .66522 K9 .66522 KDIT
*18024 *18024 **18024 **18004 (PI-PF)/(PI-PF) 1**19545	.12027 .12027 .12027 .12002 (PI-PF)/(PI-P9)	ANJ/W/LVW •0770. •07/WV9 •07693 •07-14)/(49-14)	.40820 .40820 .40893 .40893 (PT-PF)/(PT-P9)	**************************************	49130 49130 49130 49157 49157 (PT-P)/(PT-P9) 1.78828
(4-4)/(44-4) (49-4), (49-4)/(41-49) (4-19)/(41-49) (4-19)/(41-49)	(q-Tq)/(qq-q) 09945 09945 (pq-Tq)/(qq-pq) 11244 (q-Tq)/(q4-Tq)	(q-fq)/(qq-q) 0.05418 (pq-pq)/(pT-pq) 0.06437 (pq-fq)/(qq-fq)	(P-PP)/(PT-P) 1.17087 (P9-PP)/(PT-P9) 1.18088 (P1-PP)/(PT-P) 2.17087	(P-pp)/(P1-p) 1.05704 (PQ-py)/(LT-pg) 1.05230 (PT-pp)/(PT-p) 2.05704	(PT-P)/(PT-P) • 78828 • 7828 • 78428 • 78428 • 78428 1• 78828
1.2747 1.2747 1.2827 1.1769	1.1281 59/Pp 1.1431 51/Pp 2.4163	P/PP 1.0659 py/PP 1.0799 PT/PP 2.2831	P/PP 1.8321 pg/PP 1.8354 PT/PP 2.5428	1.683a p9/PD 1.6824 p1/PD 2.3308	1.4384 ng/rp 1.4384 p1/rp 1.9946
92/44 174451 94/49 77058 19/44	4,444 4,444 6,444 7,444 7,444	93914 93914 92604 92604 97771	9799 94499 94489 94489 94791 93835	4/ad 04/ad 04/ad 14/ad 14/ad	99/99. 695/90. 695/0 74/97.
1559. 720.1 549.4 449.7 F. P.	727.4 554.0 448.9 1356. 727.4 554.0 448.9 181. 737.4 1.0135 1.042 19 12711	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FT TT T T T T T T T T T T T T T T T T T	1360. 1127.0 551.7 502.8 RI PS POVP KG. -2/40+07 1125.0 .0991 .690 TP IP/11 PP PPOT 546.2 .9937 609.3 .51227-03	1560, 1125.0 551.3 502.1 R1 PY P97P VO -2754+07 1125.0 1.0000 .700 1P 1P/11 PP PROT 544.0 .9940 762.1 .58874-03
ANEA .1719 0 7 0 0 7 0 116-9 1144.9 .34 P16 P16 P16	Anth .1719 .1719 .1719 .10.4.4.4.36 .10.56	Ant A 1719 1719 1719 1716 1716 1716 10 5	AREA .1719 6 7 0 344.6 /76.4 .27 P16 FXL 549.6 .0 5.	АНЕ А 1119 0 V 0 V 384.4 767.1 .2 P16 PXL D25.3 .0 5	ANFA .1719 .1719 .1719 .116 .116 .116 .116 .10 5
+00 +00 -00 -01 -01	PCS • 0 P • 6 1	.00 .00 .10	207 • 00 • 00 • 00 • 00 • 00 • 00 • 00 •		.00. .00. 34.
1.105 K	24.0 4.00.4 24.0 9.0 7. 1.102	CUMN COINF 249 9 1.102	251 CONT. CONT. 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20km COMP 202 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	בטא בכטא פרב פרב פרב פרב פרב פרב פרב פרב פרב פרב

KINF 62645 62369 FCIT 37341	44239 44239 44801 8011	KINF .38572 K9 .38572 KD1T	KINF -52819 -50028 -50028 -50028 -50028	KINF .51200 .47096 KDIT	KINF -24394 -20846 -20846 -20846 -01799
AUJWAINE • 40596 • 40596 • 40573 • 40573 • 1-1-19)	######################################	.14095 .14095 MVJ/WV9 .14102 (PT-P9)/(PT-P9)	AVJ/WVINF 10571 10571 WVJ/WV9 10429 (PI-PF)/(PI-P9)	40000000000000000000000000000000000000	401/MVINF 0.02779 0.04/LVM 0.02/45 0.02/45 0.02/45 0.02/45 0.01490
(4-19)/(44-4) -52374 (4-19)/(44-64) -53073 (4-19)/(41-14)	(4-19)/(94-4) 25229 (49-44)/(41-49) 25806 (4-19)/(44-19) 1.25229	(4-19)/(qq-q) 4.13793 4.13793 (49-49)/(qq-pq) 4.13793 4.13793	(q-19)/(qq-q) 04.056 04.056 04.057 04.057 04.057 04.057 04.057 04.057	(q-fq)/(qq-q) 2820. 82820. (pt-pq)/(pt-pq) 03369 (q-fq)/(qq-fq)	(q-fq)/(qq-q) ,01061 (pq-pq)/(pT-pq) ,01490 ,01490 1.01061
1.2570 pg/rp 1.2592 p1/rp 1.7477	P/FP 1.1085 19/FP 1.1105 1.5385	1.0563 1.0563 1.0563 1.0563 PI/PP	P/PP 1.2958 P9/PP 1.3305 P1/PP d.5862	1.1886 1.1886 19749 1.2235 17749 7.8575	P/PP 1.0631 P9/PP 1.0885 P1/PP 7.0249
7,44 .7954 .794,94 .794,13 .777,13	9/99 9/97 99//99 \$2000 14/99	9749 • 94467 • 94667 • 94667 • 19799	99/9 •77173 • 99/90 • 75158 • 99/+1	94,131 94,131 94,130 91,740 97,727	9/94 94/49 99/40 16/70 14/27
1 17 4 1122.0 551.0 5.01.4 4 4 4 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T TT 4 1124.0 556.9 561.7 7,1029 pq/p 4,690 1120.0 1.0018 690 P/TIT pp 7590 1124.0 -28443-63	T. T. T. 4 2-1125-U 550-7 5011.4 PS POAT 100 1125-U 1.000U .700 MOOT PP MOOT 125-U 1.000 MOOT 125-U 1.005-0.3	231.3 568.4 331.1 P9 PG/P MQ 237.5 1.0268 1.876 IP/II PP MDOT *9782 178.5 .86735-04	T T T T T C31.5 68.7 331.6 P9 P9/P NO E36.7 1.0293 1.473 P/LT FP NOT P/LT FP NOT P/LT P/LT FP NOT P/LT P/LT P/LT P/LT P/LT P/LT P/LT P/L	71 T 231.9 568.5 331.4 P9 PO/F WO 237.4 1.0237 1.876 IF/II PP MOOT 9747 218.1 .22625-Uu
1560. 1560. 16 17 17 17 18	1560. 1560. 181 2758407 179 179	1360. KI RI 170.27544U7	1533. 1533. 111 12062+U7 11 PT	1533. 1533. 1504.07 179	1533. 1533. 181 181 16 1 554.1
AHFA •1719 /71.6 • FXL	AMF A . 1714 / 1714 / 1714 / 1714 / 1716 / 1	AXE A . 1 . 1 . 1 . 1 . 1 . 1	AHEA .1719	AREA . 1734 V 1697.8 FXL	AKEA .1719 0 V 540.5 1647.3 F16 FXL
8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 386.6 716 1010.0	685 985 987 0.000	6 530.2 74.4 179.6	6890.5 P16 195.0	642.5 716
7 • 0.5 V 5	7 • 00 0	V = .	FCS	P05	PCS 1.75
4.22 4.45 4.45 5.04.	СОРК ССМ ССЭ 9 ССЭ 101	25c 9 25c 9 20u.	1015 1015 1 + 64 &	СОКК СОИF 1014 9 1.891	СОКК ССИР 1015 9 9 1.691

KINF 12315 12315 69304 KDIT 00580	KINF • 60626	KINF .56864 .55230 KDIT	KINF .50403 K9 .48556 KDIT	KINF •33102 K9 •30919 KDIT •05592	KINF .05105 .04456 .04456 .00619
ANIVM/LVV • 00895 • 00895 • 00883 • 00883 • 00919	MVJ/WVINF .19126 .19126 MVJ/WV9 .19007 (PT-P9)/(PT-P9)	.16841 .16841 MVJ/MV9 .16723 (PT-PP)/(PT-P9)	.13309 .13309 MVJ/WV9 .13228 (PT-PP)/(PT-P9)	MVJ/MVINF •06574 WVJ/W9 •06535 (PT-PF)/(PT-P9)	MVJ/MVINF .00728 MVJ/WV9 .00723 .00723 (PI-PP)/(PI-P9)
(P-PP)/(PT-P) 00415 (P9-PP)/(PT-P9) 00919 (PT-P)/(PT-P)	(PT-P)/(PT-P) • 14503 • 14-P9)/(PT-P9) • 15197 • 17-P9)/(PT-P)	(4-79)/(9c-9) 10873 (99-p3)/(97-99) 11624 (PT-p)/(97-p)	(q-rq)/(qc-q) .07619 (pq-pq)/(cq-pq) .08272 .08272 .07619	(q-rq)/(qq-q) .03781 .03781 (pq-pq)/(pq-pq) .04363 (q-rq)/(qq-rq)	(P-PP)/(PT-P) .01834 (P9-PP)/(PT-P9) .02424 (PT-PP)/(PT-P)
1.0238 p9/pp 1.0525 p1/pp 6.7682	P/PP 1.6305 pg/PP 1.6567 PT/PP 5.9777	P/PP 1.4082 P9/PP 1.4335 PT/PP 5.1629	1.2542 19789 10.2743 17789 4.5906	P/PP 1.1121 P9/PP 1.1286 PT/PP 4.0772	P/PP 1.0513 P9/PP 1.0674 P1/PP 3.8479
97/99 .97/671 99/99 .95/08 14/72	PP/P .61331 PP/P9 .60362 PP/PT	9/94 01010. 9/99 69759 19/99	79731 97,9731 97,99 97,99 97,91	9979 • 89920 98789 • 88602 99797	PP/P .95121 PP/P9 .93684 PP/PT
11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	567.4 391.4 P9/P M9 1.0161 1.48P PP MD07 9.8 .20931-03	TT 7567.5 391.5 P9/P M9 0179 1.487 PP MD0T PP A03	TT T T T P T P P P P P P P P P P P P P	TT T T T T T T T T T T T T T T T T T T	11 567.9 392.0 P9/P . M9 .0153 1.487 PP . MOOT
231.9 231.9 238.4 1 17711 3727 226	423.6 P9 430.4 1 1P/II	P 423.6 P9 431.2 1 IP/TT •9840 300	P 424.3 P9 +31.1 1 19/11 -	P 423.6 P9 429.9 1 IP/II 380	P 424.3 P9 P9 H30.8 1 IP/TT 403
PT 1533. RU -2662+U7 1P 553.2	1553. 1553. KU 3077+u7 1P 558.8	FT 1553. RU RU 3076+07 TP 558.4	FT 1553. KU *3077+07 TP 558.1	PT 1553. RU •3076+07 TP 556.8	PT 1553. HU •3U74+U7 TP 555.0
AHEA .1719 .1719 V 1687.5 PXL	AKEA .1719 V 1453.6 FXL	AKEA 1719 1453.8	AREA .1719 V 1453.2 PXL	AKEA .1719 1453.8 PXL	AREA .1719 V 1453.7 PXL
	0 666.3 P16 247.6	6666.3 P163	0 666.5 P16 337.3	666.3 P16 382.3	0 666.5 P16 399.2
ъ 1.75 ч 1.75 г	75 1 • 75	P05	P0S	ноs 1.75	P05
CORR CGIF 1010 9 1.691	101a 9 101a 9 1.449	1014 CONF 1014 9 1.449		1.00 m	CONF 9 9 498
1010	СОКК 101а 1	1019 1019	CORA CONF 1020 9 1.448	CORA CONF 1021 9 1.499	СОНН 1022 1

KINF -69314 K9 -70150 KD11	KINF .66591 .66766 .6766 .29760	KINF 65209 K9 66044 KDIT	KINF .61271 Kg KG KDIT .18611	KINF •58701 K9 60641 KDTT •14130	KINF .71213 .71760 .71760 .51185
42546 42546 MVJ/WV9 142581 (PI-PP)/(PI-P9)	.29998 .29998 .2707499 .38035 .107127	**************************************	. 18760 . 18760 . 18760 . 18779 . 18779 (PI-PP)/(PI-P9)	.14250 . 14250 . MVJ/MV9 . 14261 . (PT-PF)/(PT-P9)	. 55927 . 55927 . W.J/WV9 . 55667 (PT-PF)/(PT-P9)
(P-PP)/(PT-P) • 36589 (P9-PP)/(PT-P9) • 35360 (PT-P)/(PT-P)	(P-PP)/(PT-P) • 28745 (Pa-PP)/(PT-P9) • 27127 • (PT-PP)/(PT-P)	(P-PP)/(PT-P) 19274 (PQ-PP)/(PT-P9) 18686 (PT-PP)/(PT-P)	(PT-P)/(PT-P) .09881 (PT-PP)/(PT-PP) .09288 (PT-PP)/(PT-P) 1.09881	(p-ps)/(pt-p) .n5A85 .n5A85 (pq-pq)/(pt-pq) .n5A92 1.n5A85	(P-PP)/(PI-P) 1.14394 (P9-PP)/(PT-P9) 1.10539 (PI-PP)/(PT-P)
P/PP 1.705° pg/PP 1.6880 p1/PP 3.6336	1.4766 19706 19709 1.4574 1777 3.1437	P/PD 1.2818 P9/PP 1.2745 P1/PP 2.7436	P/PP 1.1269 P9/PP 1.1200 P1/PP 2.4114	P/PP 1.0724 P9/PP 1.0679 P1/PP 2.3034	P/PD 1.406.3 Pg/PP 1.7854 2.5036
59634 PP/F0 59242 PP/F1	00/0 67631 00/00 68614 00/01	78018 78018 78060 78460 78761	98784 98736 98790 98790 98761	07040 03245 09740 03645 09777 09115	2,700 th 1,700 th 1,7
T T T T 5.62.9 453.5 P97.9 P97.0 P97	71 71 562.6 453.6 9977 30 9857 1.188 77 797 7907	11	T TT 562.2 452.4 45.9 49.9 49.1 40.1 46.1 64.6 46.1 64.6 46.1 64.6 46.1 54.6 46.1 54.6 46.1 54.6 46.1 54.6 46.1	T TT T	T1. T 555.6 506.0 997. vo .c929 .710 PP MOOT
730.00 P9 723.3 14711 •9938 4	732.0 Py 724.3 124.3 127.11	727.4 P9 725.3 725.3 11741	726.1 726.1 723.0 11/11	725.4 Py 726.3 726.3	1123.0 Py 1113.0 P/1T
.1557. RIII .3201+U7 IP 559.4	1354. 1354. 117. 117. 118. 126.	1557. 188. 3207407 1P 18	1558. 1558. KU KU 7211407 16	FT 1556. RH -3215+07 1P 557.4	1560. NH: -2730+07 FP 555.0
1119. 0 1719. V V V V V V V V V V V V V V V V V V V	1719 1719 144.11 174.11	ARFA 1719 0 V 0 V 0 V 0 1149,U 715 PXL 555.5	AKEA .1719 0 V 012.9 1140.9 PIG PXE	AKEA .1719 .0 V 620.0 1151.1 PPE PE	AMEA 1719 774.0 •
0 115.1 116 395.5	610°.2 P16.2 475.2	618.4 F18.4 556.6	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 675.1	
12 × 8	7. FCS	F0S 1 • 75	7 7 705 1.75 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4F FCS.	7 PCS 9 1 • 75
1020 COLF	1020 9 1020 9 1040 1	COPA CGNP PGS 1027 9 1.75 M 1.102	102c 9 102c 9 1.10d	COKK CONF 1024 4 1105 1105	105ε 9 1.75 305ε 9 1.75 205ε

KINF .60978 .70576 .70576 .0111	KINF .66951 .67826 .67826 .45072	KINF .64358 .65517 .65517 .8011	KINF .59362 .61941 KD17	.52811 .52811 .56944 .KDIT	KINF .54698 .53744 .53744 .07979
ANIVA/LVA PA649 PAVA/LVA POWA/LVA	AU)VVINF 49249 49249 489489 467-Tq)/(74-Tq)	AUVA/LVA 41472 41472 WV/LVA 941279 (PT-PP)/(PT-P9)		-18844 -18844 	**************************************
(P-PP)/(PT-P) 1.03945 (P9-PP)/(PT-P9) 1.0070 (PT-PP)/(PT-P) 2.03945	(P-PP)/(PT-P) 78032 (P9-PP)/(PT-P9) 74439 (PT-PP)/(PT-P)	(q-19)/(pq-q) 51423, 51429)/(p1-pq) 48694, (p1-q)/(p1-p) 1451428	(4-19)/(44-4) .25229 (49-49)/(41-49) .26697 (41-49)/(41-4)	(q-fq)/(qq-q) £13n73 (pq-pq)/(pT-pq) 11n36 (p1-pq)/(qq-fq)	(p-pp)/(PT-p) .06186 (pq-pp)/(pT-py) .06431 (PT-p)/(PT-p)
1.6756 1.6756 1.6637 1.6637 2.3256	P/FP 1.4361 pg/Pp 1.4246 pT/Pp 1.9949	P/PP 1.2492 P9/PP 1.2403 P1/PP 1.7337	P/PP 1.1085 09/PP 1.0996 07/PP 1.5385	7/FP 1.0534 py/PP 1.0450 p1/PP 1.4620	9779 1.5344 99779 1.5523 91779
0.00% b. 0.0	69635 097,00 007,00 007,0197 097,01	90/99 .80053 90/90 .80627 90/91	00014 00014 00047 00047 01714 00047	9499 94949 94749 94749 14749	45250 45250 467260 44426 67741
1124.0 555.2 505.5 Fy Po/P PO 1115.0 .9929 .769 12/11 PP PP PPOI -5984 670.8 .65182-03	T TT T T T T T T T T T T T T T T T T T	1124.0 554.6 505.0 pg/p kg pg/p 700 pg/p y pg/p pg/p pg/p pg/p pg/p pg/p pg	T T T T T T 1 121.2 504.6 504.6 Po/p No 1115.0 0.000 0.011 Point P	T T T T T T T T T T T T T T T T T T T	T T T T T 24.0 52.4 324.0 po/P vc vc 235.4 1.0129 1.887 PV/L PV VCT VCT VCT VCT VCT VCT VCT VCT VCT VC
1560. Rds. *2732+07 1P 554.3	1266. 1266. 11 127504.7 17 554.1	1560. RI: RI: FP TP TP	1560. RI. -2730+07 1P 553.0	1360. 1360. -2730+07 1P 552.6	1535. REI -2759+07 1F 1F 544.3
Ant b. 1719 v. 772 v. 577 v. 577 v. 54 v.	Ane 4 . 1719 . V . 726 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .	AMEA . 1719 . 772.1 . PXL	AMEA .1719 .77.8 FXL	1714 1714 770.6	AKFA .1719 .1719 .V .V .V .V .FXL .UV .U.
547.6 F16 F18.1	247.4 P16 749.8	346.6 P16 B74.7	0 336.6 916 1107.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	521.4 F11.1
1033 9 1.75	1034 9 1.75 1034 9 1.75	CCFR CCHF FUS 1030 9 1.75 N . 701	СОН _Н СО1, F PUS 1030 9 1.75 М	1037 CO.F PCS 1037 9 1.75	CCFR CCNF PCS 603 9 5.85 1.692

KINF .48847 K9 .47650 KDIT	KINF •37031 K9 •35447 KDIT	KINF .30259 .28464 KDIT	KINF •29006 •23218 KDIT •01482	KINF .39604 K9 .38396 KDIT	KINF •39446 •38231 •8017
**************************************	**************************************	MVJ/MVINF .04268 MVJ/MV9 .04241 (PT-PP)/(PT-P9)	**************************************	MVJ/MVINF .12605 MVJ/MV9 .12473 (PT-PP)/(PT-P9)	.12267 .12267 .12267 .12155 .12155 (PT-PF)/(PT-P9)
(4-14)/(4-4) .05234 (9-14)/(44-64) .05534 (1-14)/(41-6)	(P-PP)/(PT-P) 03139 (P9-PP)/(PT-P9) 03441 (PT-P)/(PT-P)	(P-PP)/(PT-P) 01696 (P9-PP)/(PT-P9) 01923 (PT-PP)/(PT-P)	(P-PP)/(PT-p) •00492 (P9-PP)/(PT-p9) •00770 (PT-PP)/(PT-P)	(P-PP)/(PT-P) • 15434 (P9-PP)/(PT-P9) • 16643 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 13316 (P9-PP)/(PT-P9) 14339 (PT-PP)/(PT-P)
P/Pp 1.4164 P9/Pp 1.4389 PT/PP 9.3712	P/PP 1.2140 P9/PP 1.2339 P1/PP 8.0324	PPP 1.1053 P9/PP 1.1191 P1/PP 7.3130	P/PP 1.0264 P9/PP 1.0443 P1/PP 6.8027	P/PP 1.6965 P9/PP 1.7433 P1/PP 6.2095	P/PP 1.5485 P9/PP 1.5854 PT/PP 5.6679
7070 •70603 PP/P9 •69495 PP/PT	PP/P •82371 PP/P9 •81043 PP/PT	90474 90474 PP/P9 -89357 PP/PT	97240 97240 977240 95754 95754 97700	99/9 •58944 99/99 •57362 99/91	00/04 -64577 -64577 -63076 -63076 -17643
11 345.3 (1) 849.5 59 1.882 MDOT 87832-04	71 T T T T T T T T T T T T T T T T T T T	11 1 325.9 70	11 ·6 326.3 /P M9 55 1.882 MD01 ·18961-04	11 · B 346.5 / P M9 76 1.479 MD01 •13896-03	11 •3 366.7 /P M9 38 1.462 MD01
558-1 99/P 1-0159 PP 163-8 - 87	558.8 99/P 1.0164 PP 191.1 .56	559.1 P9/P 1.0125 PP PP 209.9 .353	77 559.6 P9/P 1.0155 PP 225.5 .189	560.0 P9/P 1.0276 PP 250.1 .138	560.3 P9/P 1.0238 PP 274.0 .135
232.0 99 235.7 17.71 9760	232.0 P9 235.8 11/11	232.0 P9 234.9 234.9 1P/TT	231.9 P9 235.5 IP/TT •9709 22	424.3 426.0 436.0 12/11	424.3 99 94.4 11/41 75 5807
1535. Kti 42734+07 TP 544.7	PT 1535. KU *2730+U7 1P 544.1	PT 1535. KU *2728+07 TP 544.0	PT 1534. KU -2722+07 TP 543.5	PT 1553. HU •3133407 TP 549.7	1553. RU *31304u7 TP
AHEA .1/19 V 1072.6 FXL	AKEA .1719 .1719 .1075.6	АНЕА •1719 V 1674-1 РХС	AKEA •1719 V 1675-1 •	AHEA •1719 1443.5 • FXL FXL	
6 581.3 P16 159.0	6 581.3 P16 186.2	6 581.3 P16 211.5	6 581.1 P16 225.3	666.5 1 P16 227.9	AKEA .1719 0 V 666.5 1443.8 P16 PXL 257.1 .0
201. 8.8.	705 5.85	Pos 5.85	5 .85	5.85 85	
CURR CONF 610 9 1.652	COHR CONF 611 9 1.692	СОКК СОNF 612 9 М 1.492	COKR CONF 613 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	614 9 t	COMP CONF 615 9 5 1.498

KINF .40234 X9 .38588 KDIT	KINF .37663 K9 .35654 KDIT	KINF .32077 .29207 KDIT .05577	KINF .15903 K9 .13468 KDIT	KINF .45500 K9 .50314 KDIT	KINF 45883 K9 52094 KDIT 20651
MVJ/MVINF .12022 MVJ/MV9 .11899 (PT-PP)/(PT-P9)	MUJ/WVINF 09991 MVJ/WV9 09898 (PI-PP)/(PI-P9)	MVJ/MVINF • 06556 MVJ/WV9 • 06499 (PT-P9)/(PT-P9)	MVJ/MVINF .02343 MVJ/MV9 .02323 (PT-P9)/(PT-P9) 1.02766	421369 421369 4213709 421674 421674 (47-49) 1,29178	MVJ/WVINF -20825 MVJ/WV9 -21117 (PT-PP)/(PT-P9)
(PT-P) 11225 (P9-P)/(PT-P9) (P1-P)/(PT-P) (PT-P)/(PT-P)	(q-14)/(qq-4) 01717 01719 (p1-49)/(qq-69) (q14)/(qd-14)/	(p-pp)/(pt-p) 04038 (pq-pp)/(pt-pg) 04920 04920 (pT-p)/(pt-p)	(P-PP)/(PT-P) 01965 (P9-PP)/(PT-P9) 02766 (PT-PP)/(PT-P) 1.01965	(P-PP)/(PT-P) .38684 (P9-PP)/(PT-P9) .29178 (PT-PP)/(PT-P)	(PT-P)/(PT-P) .30495 (P9-PF)/(PT-P9) .21914 (PT-PP)/(PT-P)
P/PP 1.4257 P9/PP 1.4640 PT/PP 5.2184	P/PP 1.2583 P9/PP 1.2888 PT/PP 4.6056	P/PP 1.1206 P9/PP 1.1458 P1/PP 4.1085	P/FP 1.0552 P9/FP 1.0771 P1/FP 3.8647	P/PP 1.7930 P9/PP 1.6421 PT/PP 3.8427	P/PP 1.5385 P9/PP 1.4142 PT/PP 3.3043
70139 70139 68304 68304 70771	79472 99/472 99/69 77589 99/91	PP/P •89235 PP/P9 •87278 PP/PT	99/P 94768 99/P9 92842 99/PT	99/P •55774 •60898 •26023	92/99 64999 92/99 70711 92/97
TT T T T T T T T T T T T T T T T T T T	TT T T T T T T T T T T T T T T T T T T	TT T 561.2 561.2 387.2 M9 M9 1.484 MD0T MD0T 72137-04	TT 561.5 387.5 P9/P M9 .0207 1.484 PP MD0T	TT T559.2 P9/P M9 •9159 1.173 PP MD0T *7 .27564-03	TT T 559.6 449.8 P9/P M9.9192 1.171 PP M0T M0T 7.26837-03
424.3 426.3 435.7 1 17/11 .9802 297	424.3 P9 434.6 11/11	P 423.6 56 P9 P9 P 433.1 1.0 [P/IT PP .9768 378.0	424.3 56 P9 P P33.1 1.0 P/1T PP •9740 402.1	727.4 55 P9 P 666.2 .9 IP/11 PP	725.4 55 P9 P 666.8 .9 P7141
FT 1553. ***********************************	1553. 1553. HII •3124+67 TP 548.8	PT 1553. KU KU .3122+07 TP TP 548.2	PT 1554. RU KU 7122+07 TP TP 546.9	FT 1559. RUI - 3235+07 TP TP 552.3	FT 1554. RU 83232+07 TP 552.3
AREA .1719 .0 V 666.5 1444.2 P16 PYL 283.7 .0	AREA •1719 •1719 •1719 •0	ARFA •1719 V 1445•7 PXL	AKEA .1719 1445.3 PXL	AREA .1719 1146.6	AHEA .1719 . 1719 620.0 1148.7 P16 PXL 443.0 .0
0 666.5 716 283.7	0 666.5 P16 335.3	666.3 P16 381.1	0 666.5 F16 403.3	ր 619.5 P16 366. 6	6 620. 0 P16 443.0
7	5.85 85	F0S	P05	7.85 85	P0S 5.85
00k2 CUFF 616 9	COMA CONF 617 9 1.498	CUKK CONF 618 9 1.499	CORK CONF 619 9 1.498	COKR CONF 621 9 1.103	COMM CONF 622 9 1.105

KINF .45574 K9 .54928 KDIT	KINF •37265 ×9 ×9 ×94949 ×DIT	KINF • 32781 K9 • 71338 KDIT • 09893	KINF •50925 K9 •51799 KDIT •36660	KINF •53863 ×9 •54843 KDIT	KINF •57628 K9 •60148 KDIT •34324
MVJ/MVINF • 18978 • 19242 • 19242 (PT-PP)/(PT-P9)	MVJ/MVINF .12720 MVJ/MV9 .12887 (PT-PP)/(PT-P9)	MVJ/MVINF .09975 MVJ/MV9 .10120 (PT-PP)/(PT-P9)	MVJ/MVINF .40090 MVJ/MV9 .39642 (PI-PP)/(PI-P9)	MVJ/MVINF • 42053 MVJ/MV9 • 41610 (PT-PP)/(PT-P9)	**************************************
(P-PP)/(PT-P) -22027 -22027 (PT-P9)/(PT-P9) -14068 (PT-PP)/(PT-P)	(PT-P)/(PT-P) 12793 (P9-PP)/(PT-P9) 05465 (PT-PP)/(PT-P)	(4-74)/(74-7) 09727 (79-74)/(79-74) 01894 (4-79)/(74-74)	(P-PP)/(PT-P) 1.17087 (P9-PP)/(PT-P9) 1.08480 (PT-PP)/(PT-P)	(P-PP)/(PT-P) 1.05229 (P9-PP)/(PT-P9) 97528 (PT-PP)/(PT-P)	(P-PP)/(PT-P) •52248 (PQ-PP)/(PT-P) •45890 (PT-PP)/(PT-P)
P/PP 1.5384 P9/PP 1.2312 P1/PP 2.8745	P/FP 1.1725 P9/PP 1.078A P1/PP 2.5206	P/PP 1.1242 P9/PP 1.0260 PT/PP 2.4014	P/PP 1.8335 P9/PP 1.8041 P1/PP 2.5453	P/PP 1.690a P9/PP 1.6652 P1/PP 2.3472	P/PP 1.2542 P9/PP 1.233n P1/PP
PP/P • 74717 • PP/P9 • 81223 • PP/PT	99/P .45290 99/P9 .92696 99/PT	PP/P • R8950 PP/P9 • 97461 PP/P1	.54541 PP.P9 -55430 -55430 PP.P7	PP/P •59145 PP/P9 •60054 PP/PT	99/9 •79733 98/99 •81104 99/97
15 449.7 75 449.7 79 M9 99 1.171 MDOT .24460-03	TT	TT T •6 450.5 /P M9 27 1.173 MDOT •12857-03	11 •1 503.6 /P M9 40 •719 MD01 •47952-03	11 -8 503.3 /P M9 49 .718 MD0T -50316-03	77 •5 503.1 /P M9 31 •720 #D07 •44738-03
7T 559.55 1977 9199 PP PP	559.6 99/P 9201 9201 97 618.1 .16	71 559.6 P9/P •9127 pp	553 • 98 • 98 P P S	71 552.8 P9/P .9849 PP PP	11 552.5 99/P 9831 9P 9P
7255.44 P4 P4 P67.43 P771	724.7 724.7 666.8 17/11	4.427 99.7 7.653.7 11/41	1123.0 P9 1105.0 11/1T •9955 61	P 1123.0 P9 1106.0 117.11 •9955 66	1124.0 P9 1105.0 TP/TT
1558. 1558. KI) 3233+U7 1P 551.A	PT 1550. RU •3230+U7 TP 550.7	FT 1554. RU *3229+U7 TP 550.4	PT 1559. RU -2743+U7 TP 550.6	PT 1559. RII -2745+u7 TP 550.3	PT 1560. RII -2749+u7 TP 549.4
AHEA 1719 V 1146.5 FXL	AKE A .1719 V 1148.5 PXL	AHFA .1719 V 1144.4 PXL	AHEA .1719 771.1 PXL	AKEA .1719 V 770.8 .	AKEA .1719 V 770.7 · PXL
620.0 620.0 716 530.3	619.4 P16 616.9	0 617.8 P16 650.6	0 386.3 F16 548.8	386.3 P16 P16	386.6 786.6 866.8
201. 800. 800.	F0S 5.85	FCS 5+85	Pos 5.85	Pos 5.85	ም POS የ 85 የ 85 የ 85
1.105	ССИК СОИР 624 9 1.105	CUKN CONF 625 9 1.100	СОКК СОКР 627 9 М	COMM CONF 620 9 701	CORR CONF 630 9 M

KINF 41461 44852 KDIT	KINF 30391 89 35879 KDIT
ANIUM/LVM • 20420 • 20160 • 20185 • 20185 • 20185 • 20185	.11080 .11080 .11080 .0040 .10968 .10967 (97-P9)
(P-PP)/(PT-P) ,26484 (P9-PP)/(PT-P9) ,21758 (PT-PP)/(PT-P) 1,26484	(q-Tq)/(qq-q) 13730 (pq-Tq)/(qq-pq) 10411 (q-Tq)/(qq-Tq)
P/Pp 1.1153 1.0984 1.0984 PT/Pp 1.5507	1.0564 P9/PP 1.0405 P1/PP 1.4675
PP/P .89661 PP/P9 .91041 PP/PT	94657 94657 99/90 96112 96777
TT T 3.0 552.3 502.7 P9 P9/P M9 3.0 9848 .720 PP MD01 1006.0 .24460-03	7 T T T T T T T T T T T T T T T T T T T
1122.0 P9 1105.0 TP/IT .9933 1006	1123 1106 1106 117 9928
1560. RU. 2750+07 1P 548.6	PT 1560. RU .2754+07 TP 548.1
AREA .1719 771.5 PXL	AREA .1719 .771.4
387.0 F16 996.4	987.4 P16 1070.0
5.85 85 85	CONF POS 9 5.85 M
CORR CONF 631 9 702	CORR CONF 632 9 M

ORIFICE IN-FLOW EFFICIENCY TESTS

VOLUME II: APPLICATION TO SHUTTLE VENTING DURING ENTRY

VOLUME II - TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	1
2 .	INFLOW ORIFICE EFFICIENCY TEST	2
	2.1 Test Description 2.2 Test Results and Discussion	2 3
3	OUTFLOW VENTING COMPUTER PROGRAM	13
	3.1 Outflow Computer Program Description3.2 Outflow Computer Program Results	13 14
4	INFLOW VENTING COMPUTER PROGRAM	17
	4.1 Inflow Computer Program4.2 Inflow Computer Program Results	17 19
5	CONCLUSIONS AND RECOMMENDATIONS	24
6	REFERENCES	26
APPENDIXES		
A	INFLOW VENTING COMPUTER PROGRAM USER'S MANUAL	A-1
	A.1 Applications	A-1
	A.2 Input Requirements	A-1
	A.3 Restrictions	A- 3
	A.4 Input Listing Sample	A-3
R	DROCR AM LISTING	B-1

NOMENCLATURE

Symbol .		Units
	vent area	in ²
C _p	specific heat at constant pressure	Btu/lbm-mole-OR
C _v	specific heat at constant volume	Btu/lbm-mole-OR
h	enthalpy of gas	Btu/1bm-mole
K	orifice efficiency	dimensionless
М	Mach number	dimensionless
m	mass of gas	slug
m	mass flow rate	slug/sec
P	pressure	lb/ft ²
Ė	time rate of change of pressure	lb/ft ² /sec
R	gas constant (1716 for air)	ft-1b/slug- OR
t	time	sec
T	temperature	°R
v	compartment volume	ft ³
Greek		
γ	ratio of specific heats = C_p/C_v	dimensionless
ρ	gas density	slug/ft ³
Subscripts		
c	denotes compartment	
p	denotes compartment or plenum chamber	
1	denotes starting condition of time step	
2	denotes end condition of time step	
0	denotes total conditions	
∞	denotes local external conditions	
j	denotes orifice jet conditions	

Section 1 INTRODUCTION

During descent of space shuttle vehicles from high altitudes the buildup of ambient atmospheric pressures will result in crushing loads exerted across the vehicle skin. To relieve these loads and thereby circumvent structural failure, the vehicle compartments must be repressurized during descent such that the internal compartment pressures effectively counteract the external loads. It is anticipated that this equalization of pressures may be accomplished by allowing external air to flow into the compartments through strategically located vents. Such vents have been used effectively in the Saturn/Apollo program to relieve potential bursting loads built up during ascent, where equalization of pressures was effected by allowing the trapped internal compartment gases to flow overboard to the reduced ambient pressure environment. The space shuttle vehicle, however, will require both compartment depressurization during ascent and repressurization during descent. It is currently anticipated that a vent-orifice system may be utilized during both phases of flight (Ref. 1).

The prediction of venting performance of orifices under various external flow conditions requires a knowledge of orifice efficiencies for the conditions under consideration. Adequate outflow orifice efficiency data have been generated for flow conditions corresponding to the anticipated space shuttle ascent trajectory. These data were generated for application to the Saturn vehicle during a test program at NASA-Ames Research Center (Ref. 2). Inflow orifice efficiency data have been limited, however, to a narrow range of external flow conditions.

The purpose of the investigation described in this report is to provide sufficient inflow orifice efficiency data and to develop the computer program capability to enable compartment venting analyses to be made for the space shuttle during the descent phase of flight.

Section 2 INFLOW ORIFICE EFFICIENCY TEST

2.1 TEST DESCRIPTION

A test program was undertaken to determine orifice efficiencies for the flow of air into a compartment from a flowing external stream. The test program was conducted at the NASA-Ames 6 x 6-Foot Supersonic Wind Tunnel during a two-week period (20 September 1971 through 1 October 1971). This particular wind tunnel was selected because hardware was available from a previous test program for outflow venting which was conducted in this same wind tunnel (Ref. 2). The hardware was designed to fit into the window of the Ames 6 x 6-foot tunnel, and only minor modifications of the test hardware were required. Also, the Mach number range capability of the tunnel, 0.6 to 2.2, fell within a major portion of the anticipated shuttle descent trajectory Mach number range (Ref. 1).

The test model consisted basically of a flat plate which was designed to traverse into a boundary layer created by the turbulent air buildup on the tunnel wall. Other pertinent components of the model include a vent plenum, a traversing probe plenum and interchangeable vent plates with variously shaped orifices. The vent plenum with the interchangeable vent plates allowed for air removal by means of a vacuum system. The measured mass flow through the orifice and pressure measurements on the flat plate and plenum chamber supplied information necessary to calculate the orifice flow coefficient. The traversing probe plenum supplied information on boundary layer thickness over the vent port location.

A Mach number range of 0.7 to 1.9 was used during the test along with a tunnel total pressure of 1584 psfa. Other parameters varied were orifice geometry, vent plate thickness, vent orientation, flat plate boundary layer thickness and pressure ratio across the vent plate.

Data obtained from the test include three calculated inflow orifice efficiencies based on freestream static and total pressure and a plate static pressure port located 7.5 inches upstream of the vent port. Other data obtained include traversing probe data to define boundary layer thickness, boundary layer rake data at a location 18.9 inches downstream of the vent port, and flat plate static pressure data to define the longitudinal pressure distribution along the centerline of the flat plate. This test program and the experimental results are described in detail in the pretest and test reports (Refs. 3 and 4).

2.2 TEST RESULTS AND DISCUSSION

Inflow orifice efficiencies were obtained as three distinct coefficients differing in the choice of total pressure through the orifice. These were:

- K₉, based on local static pressure P₉ (7.5 inches upstream of orifice). This follows the method of Kalivretenos, Ref. 5.
- \bullet K_{∞}, based on freestream static pressure, P_{∞}.
- K_{DIT} , based on freestream total pressure, $P_{t\infty}$. This follows the method of Dittrich, Ref. 6.

A comparison of K_9 and K_∞ is shown in Fig. 1 for a circular orifice of 0.75 inch diameter and a maximum boundary layer thickness (plate position 0.0). The curves of constant Mach number are uniformly spaced and convergent for K_9 , but shift relative to each other for K_∞ . This was due to appreciable differences between the static pressures P_9 and P_∞ in general. Figure 2 shows the ratio P_9/P_∞ as a function of Mach number and plate position for several orifice configurations, obtained for zero or near-zero inflow venting. These unexpected large differences are not easily accounted for, but possible contributing factors may include the plate supporting structure and blockage alleviation system being located on the same wall as, and downstream of, the pressure port used to determine P_∞ .

In any case, the consistently smoother trends for K_9 and other parameters based on P_9 encouraged data analysis to be concentrated on results

Fig. 1 - Comparison of Orifice Efficiency vs Pressure Ratio for a 0.75 Inch Diameter Circular Orifice Using Local Static Pressure P9 and Freestream Static Pressure P_{∞} as Orifice Total Pressure.

Fig. 2 - Variation of Local-to-Freestream Static Pressure Ratio with Mach Number of Three Orifice Configurations at Three Plate Positions

using this local pressure P_9 rather than P_{∞} .

Results of this test are compared with those of the two major inflow venting references used, Kalivretenos and Dittrich, in Figs. 3 through 6. The notations of both are changed to the common form used here. Figure 3 reproduces the data of Kalivretenos for various circular orifices. The coefficients are plotted against a flow parameter, $(P_9 - P_p)/(P_{t_\infty} - P_9)$, where P_p is the compartment static pressure. Results of the present study are plotted in Fig. 4 in a similar fashion, although the range of flow parameter achieved is much lower due to reduced absolute pressure levels and equipment limitations.

Figure 5 reproduces the Dittrich data for a circular orifice where the coefficient is based on total freestream pressure, and the flow parameter is $(P_{t_{\infty}} - P_{p})/(P_{t_{\infty}} - P_{q})$. Results of the present test are shown in Fig. 6; again, the flow parameter range is small.

These figures show some marked differences. In Figs. 3 and 4, for example, the trends with increasing Mach number for a constant value of flow parameter are exactly opposite. Figures 5 and 6 indicate a similar discrepancy.

Differences are also noted in general conclusions. Both references conclude that boundary layer thickness effects on orifice efficiency are negligible while this study found considerable variation with plate position, if not boundary layer thickness directly; however, the boundary layer in Dittrich was on the order of 0.1 inch thick while present results are for thicknesses up to 4.5 inches.

No analysis of these discrepancies was attempted here. Known differences among the three tests were total pressure magnitude, boundary layer thickness, sheer facility size, and possible instrument error. The inconsistencies appear sufficiently great to warrant further study.

Fig. 3 - Orifice Efficiency vs Flow Parameter for Circular Orifices, from Kalivretenos et al. (Ref. 5)

Fig. 4 - Orifice Efficiency vs Flow Parameter for 0.75 in. Diameter Orifice Using Assumptions of Kalivretenos, et al.(Ref. 5)

Fig. 5 - Orifice Efficiency vs Flow Parameter for 0.75 in Diameter Circular Orifice, from Dittrich et al. (Ref. 6). Orifice Thickness is 0.040 in.

Fig. 6 - Orifice Efficiency vs Flow Parameter for 0.75 in, Diameter Circular Orifice Using Assumptions of Dittrich et al. (Ref. 6). Orifice Thickness is 0.063 in.

Figure 7 shows another parameter chosen to represent venting efficiency, the ratio of orifice to local external mass flow rate, $(\rho V)_j/(\rho V)_g$. This parameter was also used in presenting the test results in Ref. 3.

A summary of the data trends from the inflow test program gives the following results in terms of flow efficiency:

- Orifice efficiency is primarily a function of external flow velocity and pressure ratio across the orifice. It increases with decreasing external velocity and with increasing external-to-chamber pressure ratio.
- Efficiency increases with increasing orifice area.
- Efficiency increases with decreasing wall thickness.
- Efficiency increases with increasing orifice aspect ratio (long axis aligned with external flow direction).
- Efficiency is maximized for orifice aspect ratios greater than one when the major axis is aligned parallel with external flow direction.
- Efficiency is affected by boundary layer thickness, but the degree of effect has not been analyzed. It is noted that increasing orifice size reduces the effects.

The effects on orifice efficiency due to geometry are probably linked with viscous phenomena and blockage at the downstream orifice edge. An entering stream tube is constricted by the upstream boundary layer and the downstream orifice wall; only the latter boundary can be controlled. Geometry changes such as decreased wall thickness and increased flow entry length (by a larger, longer, or more closely aligned orifice) all contribute towards a larger entry area and hence more efficient flow.

Fig. 7 - Mass Flow Ratio vs Pressure Ratio for a 0.75 Inch Diameter Circular Orifice

Section 3 OUTFLOW VENTING COMPUTER PROGRAM

A computer program originally developed by Jump and Henson (Ref. 7) serves as the basis for both the inflow and outflow venting programs used in this report. Basic features of the outflow program are described below, as are results for a typical space shuttle ascent trajectory.

3.1 OUTFLOW COMPUTER PROGRAM DESCRIPTION

The procedure used in Ref. 7 to calculate compartment pressure time histories from vehicle launch is a numerical operation. The program produces calculations for given time steps beginning from launch until the atmospheric ambient pressure reaches essentially vacuum conditions.

Compartment pressures are calculated by use of a numerical procedure which works as follows:

- The change of mass in the compartment between time steps is calculated from the isentropic relation P_{c}/ρ_{c}^{γ} = constant after "guessing" the compartment pressure at the end of the time step.
- The calculated change of mass is balanced against the average mass flow rate through the vent port for the same time interval as established by the continuity equation, determining a second value of compartment pressure. Outflow orifice efficiencies obtained from the data of Ref. 2 are used in these computations.
- If the pressures are equal, within an allowed error range, then the program advances to the next time step.
- If the pressures are not equal, then a new compartment pressure is "guessed" and the procedure is repeated.

3.2 OUTFLOW COMPUTER PROGRAM RESULTS

A typical space shuttle ascent trajectory is illustrated in Fig. 8. The outflow program was run using this trajectory information and outflow orifice efficiency data for a 4:1 ratio elliptical orifice. Results of several such runs are shown in Fig. 9. The graph shows the skin differential pressure as a function of time from launch for a compartment volume of 3000 ft³ and orifices of area 50, 75 and 150 in². These calculations were based on the assumption that the local external pressure is identical to the freestream ambient pressure. The curves show that an orifice area to compartment volume ratio of 0.0166 in²/ft³ must be maintained to keep the skin differential pressure within assumed design limits of 1.0 psi. (Ref. 1).

Fig. 8 - Typical Space Shuttle Booster Trajectory Data

Fig. 9 - Skin Differential Pressure as a Function of Time for a Typical. Ascent Trajectory

Section 4 INFLOW VENTING COMPUTER PROGRAM

4.1 INFLOW COMPUTER PROGRAM

The basic outflow venting computer program written by Jump and Henson (Ref. 7) was modified to calculate inflight compartment pressures during inflow venting. The program was designed to handle one compartment with up to four vent orifices. The present version of the program does not allow for outflow venting, and hence is limited to descent trajectories. Future versions will incorporate both inflow and outflow capabilities.

The program utilizes a numerical calculation procedure in the solution of the following equations:

The equation of state applied to the gas inside the compartment is

$$P_{C} = \frac{R}{V} m T \tag{1}$$

The time rate of change of the compartment pressure, therefore, is

$$\dot{P}_{c} = \frac{R}{V} \frac{d}{dt} (mT)$$
 (2)

The rate of energy flow into the compartment is the product of the mass flow rate and the local total enthalpy. This energy flow rate is equated to the time rate of increase in the compartment internal energy as follows:

$$\dot{m}h_{o} = C_{v} \frac{d}{dt} (mT)$$
 (3)

Combining Eqs. (2) and (3) and employing the definition of total enthalpy as $h_0 = C_p T_0$ yields the rate of change of the compartment pressure:

$$\dot{P}_{c} = \frac{RT_{o}}{V} \dot{m} \tag{4}$$

The numerical calculation corresponding to Eq. (4), assuming linear variation of all parameters over a small time increment Δt , is

$$P_{c_2} = P_{c_1} + \Delta t \left[\frac{\gamma R}{V}\right] \left[\frac{T_{o_1} + T_{o_2}}{2}\right] \left[\frac{\dot{m}_1 + \dot{m}_2}{2}\right]$$
 (5)

where the subscripts 1 and 2 refer, respectively, to conditions at the beginning and end of the time interval Δt . The values of T_0 are those of the local external total temperature.

Parameters known at the beginning of the time step include the following:

$$P_{c_1}$$
, Δt , γ , R , V , T_{o_2} , T_{o_1} , P_{∞_2} , \dot{m}_1

A tentative calculation of \dot{m}_2 is made by assuming a value for the compartment pressure P_{c_2} equal to P_{c_1} .

The mass flow through the orifice at the end of any time step Δt is

$$\dot{\mathbf{m}}_{2} = K_{2} A P_{\infty_{2}} \left(\frac{P_{c_{2}}}{P_{\infty_{2}}}\right)^{1/\gamma} \sqrt{\frac{2\gamma}{(\gamma-1)RT_{o_{2}}}} \left[1 - \left(\frac{P_{c_{2}}}{P_{\infty_{2}}}\right)^{\gamma-1}\right]$$
(6)

The term K_2 is the experimentally obtained orifice efficiency at the end of Δt and is a function of P_{c_2}/P_{∞_2} and M_{∞_2} . A more detailed explanation and derivation of Eq. (6) is presented in Refs. 3 and 4.

The assumed value of P_{C_2} is used in Eq. (6) to determine a flow rate \dot{m}_2 which is then substituted in Eq. (5) to recompute a new value P'_{C_2} . The iteration cycle reduces the difference between P_{C_2} and P'_{C_2} to an allowable error, and the next time step is begun.

When there are several mass flow sources (vents), Eq. (6) is employed separately for each; the mass flow rates \dot{m}_1 and \dot{m}_2 of Eq. (5) are the summations over all sources. The values of T_{0_1} and T_{0_2} in Eq. (5), however, are weighted averages of all sources according to orifice area.

Appendix A is a user's manual describing the applications, restrictions, and input requirements of the program including a listing of sample input data. Appendix B is a listing of the complete inflow program.

4.2 INFLOW COMPUTER PROGRAM RESULTS

A set of compartment pressure histories was generated using the inflow computer program with inputs of the booster descent trajectory of Fig. 8 and experimental orifice efficiency data. These computed pressure histories are presented in Fig. 10 for a compartment of 3000 ft volume and for elliptical vents of 4:1 aspect ratio with areas of 10 and 50 in 2.

As in the outflow venting case, the local external flow conditions are assumed to be identical to freestream conditions. The vent area to compartment volume ratio of 0.0166 in $^2/ft^3$ (50 in orifice) applied to the descent trajectory shows a peak pressure differential of only 0.2 psi as compared to the 1.0 psi for the same vent orifice in the outflow venting case. The orifice area of 10 in is representative of a typical minimum equivalent leakage area for a spacecraft compartment volume of 3000 ft. The minimum equivalent leakage area was obtained from Saturn flight vehicle AS-504 data as published in Ref. 8. The interstage compartment equivalent leakage area was determined by pressurizing the vehicle and monitoring the compartment pressure. The area corresponding to the equivalent leak rate was then termed the equivalent leakage area. As seen in Fig. 10, the maximum pressure differential of the compartment, assuming a minimum equivalent leakage area, is about 1 psi.

Figure 11 traces the compartment pressure histories during descent for vent areas of 10 and 50 in². Figure 12 shows the corresponding compartment temperature histories. Note that a peak compartment temperature of about 350° F occurs at about 520 sec descent flight time for the 50 in² orifice. Afterward, the temperature drops to a level of about 150 to 175° F which it maintains during the remaining descent. At the time of peak compartment temperature, the compartment pressure is at the extremely low level of about 0.2 psi, which is probably insufficient to support any appreciable heat transfer to components located within the compartment.

Fig. 10 - Skin Differential Pressure as a Function of Time for a Typical Descent Trajectory

Fig. 11 - Compartment Pressure History During Typical Descent

Fig. 12- Compartment Temperature History During Typical Descent

Section 5 CONCLUSIONS AND RECOMMENDATIONS

This investigation reveals, on the basis of computer calculated results, that shuttle compartment venting during the ascent phase of the trajectory is significantly more critical than compartment venting during the descent trajectory. This conclusion is based on a comparison of calculated compartment pressures for ascent and descent trajectories. The study further revealed that sufficient inflow venting is likely to occur during shuttle reentry on leakage alone. This conclusion is based on the assumptions that the leakage rates of shuttle compartments are comparable to that on Saturn vehicles for a given compartment volume, and that a crush load differential pressure of 1.0 psi across compartment walls is within the spacecraft design stress limits. The vent ports required to vent the compartment gases during ascent, therefore, should be sufficient for any inflow venting requirements during descent.

Although the computed compartment temperatures during descent do not appear to be excessive, it is recommended that the vent ports be located on the backside of the vehicle, as it is oriented during descent, where cooler external air temperatures are expected. It is also recommended that further study be made of the severity of the thermal environment.

An investigation should be made to determine the extent of structural vibration and panel flutter assuming the crush load pressure differential across the vehicle skin that is expected to occur during the descent trajectory. If the structural design requirements are such that a positive outward pressure differential across the vehicle skin must be maintained, then the compartments must be pressurized during reentry by some means. One method would be to pressurize the compartments by releasing gas from bottles stored on the shuttle vehicle. This method obviously results in a

severe payload penalty. Another method would be to utilize scoops for forcing air into the compartments.

The compartment venting calculations presented in the example of this report are based on the assumption that the local external flow conditions are identical with the freestream conditions. Venting studies on the final shuttle design configuration should be based on actual local conditions at the vent port. These local conditions may be established by wind tunnel tests.

Section 6

REFERENCES

- 1. Robertson, S. J., and J. Haukohl, "Space Shuttle Compartment Venting Final Report," LMSC-HREC D162796, Lockheed Missiles & Space Company, Huntsville, Ala., March 1971.
- 2. Walters, W.P. et al., "Experimental Determination of Generalized Venting Characteristics," NASA CR-61241, Northrop Nortronics, Huntsville, Ala., July 1968.
- 3. Haukohl, J., and J.L. Forkois, "Inflow Venting Orifice Efficiency Test Report," LMSC-HREC D225598, Lockheed Missiles & Space Company, Huntsville, Ala., January 1972.
- 4. Haukohl, J., and J.L. Forkois, "Pretest Report for Space Shuttle Inflow Orifice Coefficient Study for Venting Analysis," LMSC-HREC D225196, Lockheed Missiles & Space Company, Huntsville, Ala., July 1971.
- 5. Kalivretenos, C. A. et al., "Weight Flow Rates Through Circular Holes in a Flat Plate Immersed in a Subsonic or Supersonic Airstream," TR61-125, Naval Ordnance Laboratory, China Lake, Calif., January 1964.
- 6. Dittrich, R.T., and C.C. Graves, "Discharge Coefficients for Combustor-Liner Air-Entry Holes, I-Circular Holes with Parallel Flow," NACA TN 3663, April 1956.
- 7. Jump, R. A., and V. K. Henson, "In-Flight Venting of Launch Vehicle Compartments," R-AERO-IN-30-65, Marshall Space Flight Center, Ala., 29 November 1965.
- 8. The Boeing Company, "Environmental Control System Performance Handbook, AS-504," Boeing Document 5-9600-H-102, October 1968.

Appendix A

INFLOW VENTING COMPUTER PROGRAM USER'S MANUAL

Appendix A

A.1 APPLICATIONS

The inflow venting program may be used for any situation of inflow venting, although it was specifically designed for descent trajectories of space vehicles. A single compartment with up to four external vents can be analyzed. Vents may have zero area, which can represent a location on the compartment wall where pressure differential calculations are needed. Also, one vent area change is allowed during the analysis. If the inflow discharge coefficient data input is not in a useful table form, a subroutine is called to interpolate and extrapolate the data into a uniform table.

A.2 INPUT REQUIREMENTS

The input data consist of initial conditions, local parameter histories, and inflow orifice efficiency data. These are read in as follows:

Card Set	<u>Variable</u>	Format
1	NC, NV, NT	313
	where NC = 1 (single compartment) NV = number of vents (1,2,3 or 4) NT = number of local parameter time cards	
2	TT(L2), TP(L1, L2), TR(L1, L2), TV(L1, L2), TMACH(L1, L2)	5E14.8
	where TT(L2) = flight time, sec TP(L1, L2) = local static pressure, psia TR(L1, L2) = local density, slug/ft ³ TV(L1, L2) = local velocity, ft/sec TMACH(L1, L2) = local Mach number	
	NOTE: NT cards are read in for each of NV vents. All time points must be the same for each vent.	

ard Set		Variable	Format
3		M1, N, M	313
	where	M1 = number of input table pressure ratios (and efficiencies) per Mach number N = number of Mach number inputs M = number of pressure ratios to be tabulated per Mach number	
	NOTE:	If M = 0, the input table is already of adequate length and in the required form with the same pressure ratios for each Mach number. Otherwise, a nonlinear interpolation develops a uniform pressure ratio table for all Mach numbers.	
4		DOX, DX2	2F10.5
	where	DOX = initial pressure ratio of table DX2 = pressure ratio increment	
5		X1(I), $PXZ(I,K)$, $PY(I,K)$	3F10.5
	where	<pre>X1(I) = Mach number PXZ(I, K) = pressure ratio (compartment to PY(I, K) = orifice efficiency</pre>	external)
(5A)		X1(I), X2(NR), Y(I, NR)	3F10.5
	(replac	ces card sets 4 and 5 when $M = 0$)	
	where	<pre>X1(I) = Mach number X2(NR) = pressure ratio Y(I, NR) = orifice efficiency</pre>	
6		VOLL, PL, TL	3F-10.5
	where	VOLL = compartment volume, ft ³ PL = initial compartment pressure, psfa TL = initial compartment temperature, ^O R	
7		AH(L1)	E14.8
	where	AH(L1) = vent area, in ²	
8		T, DT, TM, TC	4E14.8
	where	T = starting time of analysis, sec DT = time increment, sec TM = stopping time, sec TC = time at which vent area change occurs, sec	
NOTE:	T 224 TC -	must coincide with specific local data times.	T) (

NOTE: T and TC must coincide with specific local data times. TM may be anytime during the flight. If no area change is used, TC may be left blank.

Card Set

Variable

Format

9

KC, AH(KC)

I2, E14.8

(used only when area change is made)
where KC = vent for which area is changed
AH(KC) = new vent area, in²

A.3 RESTRICTIONS

The program limitations basically involve the relation between compartment and external pressures. Analysis begins with compartment pressure either equal to external pressure (equilibrium), or less than external pressure; the latter case must be interpreted as the instantaneous opening of all vents at the starting time since the initial condition is zero venting everywhere.

During the analysis, compartment pressure may not exceed any local external pressure. This is required since provision for outflow venting is not made in the program. Thus a short re-ascent in the trajectory is allowable only if the pressure differential immediately prior to this re-ascent is large enough to ensure inflow throughout. This cannot be determined beforehand; if an outflow situation results from the trajectory, then the time point of changeover must be found and all data at this instant may be input as the initial conditions for the outflow program (Ref. 7). Future versions of the venting program will encompass both inflow and outflow.

The possibility of outflow venting may also exist for multiple vents which have considerably different local flow conditions; it is conceivable that different vents may involve inflow and outflow simultaneously. Again, no allowance is made for this and the outflow program must be coordinated with the analysis.

A.4 INPUT LISTING SAMPLE

A sample input data set is presented below for a single-vent, constant area analysis. Section A.2 describes these in detail.

```
.2100000n+n3
                  ·20800000-03
                                 .57646311-07
                                                 ·11379400+05
                                                                .12463000+02
   ·22000000+03
                  *13800000-03
                                  -35154894-07
                                                 ·11289900+05
                                                                .12772000+02
   E0+000007ES.
                  •69000000-04
                                  .22983295-07
                                                 +11267700+05
                                                                .12747000+02
   .2562000n+03
                  ±690000000-04
                                  .14409167-07
                                                 -11242200+05
                                                                .12718000+02
   .2600000n+03
                  ·69000000-04
                                 ·14553837-07
                                                 +11239900+05
                                                                .12715000+02
   .2644000n+03
                  •69000000-04
                                  ·15084294-07
                                                 +11238400+05
                                                                .12714000+02
   *36000000+03
                  ·11390000-01
                                  ·19771614-05
                                                 +10207600+05
                                                                -94340000+01
   ·37000000+03
                  ·19790000-01
                                 .34653370~05
                                                 .94479000+04
                                                                ·88300000+01
   E0+0000008E.
                  .29720000-01
                                  .53865592-05
                                                 ·87516000+04
                                                                .82980000+01
   *39000000+n3
                  ·37780000-01
                                 .69596081-05
                                                 ·80752000+04
                                                                77310000+01
   .3992000n+n3
                  ·40480000-01
                                 .75151423-05
                                                 ·74442000+04
                                                                .71480000+01
   •40000006+63
                  .40480000-01
                                 .75151423-05
                                                 ·73893000+04
                                                                .70990000+01
   ·41000000+03
                  ·40140000-01
                                 .74399137-05
                                                 +66724000+04
                                                                -64040000+01
   E0+00000054.
                  .39370000-01
                                 .72913855-05
                                                ·59131000+04
                                                                ·56710000+01
   .4300000n+n3
                  ·39030000-01
                                 ·71949386-05
                                                 •51011000+04
                                                                ·48910000+01
   .44C00000+D3
                  ·40000000-01
                                 .74119441-05
                                                 ·44234000+04
                                                                +42450000+n1
   +4500000n+03
                  .42910000-01
                                 .79954478-05
                                                +38764000+04
                                                                37310000+01
   ▲49000000+03
                  .95340000-01
                                 .18961460-04
                                                ·23342000+04
                                                                .23210000+01
   •500000nn+03
                  ·12950000+00
                                 -26465029-04
                                                ·20605000+04
                                                                .20630000+01
   *5100000A+03
                  ·17940000+00
                                 .36890938-04
                                                ·17909000+04
                                                                ·18100000+01
   ·52000000+03
                  ·19508000+00
                                 .52085200-04
                                                .15649000+04
                                                                ·15908000+01
   -53000000+03
                  .22129000+00
                                 ·72720000=04
                                                +13692900+04
                                                                ·13958000+01
   ◆55000000+03
                  •48430000+00
                                 ·13300027-03
                                                +10164000+04
                                                                • 10400000+01
   *56000000+03
                                 .17399020-03
                  *81060000+00
                                                ·83270000+03
                                                                86000000+00
   .5672000n+03
                  ·949400000+00
                                 -20446742-03
                                                •61560000+03
                                                                ·63600000+00
   ·57000000+03
                  ·10070000+01
                                 .21623394-03
                                                •66150000+03
                                                                •68300000+00
   ·57130000+03
                  ·10370000+01
                                 .22259944-03
                                                +68180000+03
                                                                70400000+00
   •58000000+03
                  ·12910000+01
                                 .27738128-n3
                                                •83430000+03
                                                                86200000+00
   •50000000+03
                  +17510000+c1
                                 .37604645-03
                                                •94650000+03
                                                               •97800000+ng
   •6800000A+03
                 +40877500+01
                                 .85198700-03
                                                .94148200+03
                                                               ·96840200+00
  ·78000000+03
                  •51130000+01
                                 ·10087381-02
                                                -40680000±03
                                                               •4030000p+nn
  •79000000+03
                 ·52540000+01
                                 ·10316925-02
                                                ·41610000+03
                                                               •41100000+00
  •Bannongh+n3
                 .54580000+01
                                 ·10636164-02
                                                ·43780000+03
                                                               +43100000+n0
  •1107400n+04
                 ·10110000+02
                                 .17524401-02
                                                ·33430000+03
                                                               •31000000+ng
 22 18
(SAMPLE FOR ONE MACH NUMBER ONLY)
   1.=0000
               * 00000
                          - 55804
   1.50000
               •05000
                          .56194
   1.50000
               .10000
                          .55498
   1.50000
               . 15000
                          . 44797
               .20000
   1.50000
                          APPER.
   1.50000
               . 25000
                          .53462
   1.=0000
               .30000
                          - 52666
   1.40000
               -35000
                          . 51741
   1.40000
               .40000
                          .50622
   1.50000
               •45000
                          .49300
   1.50000
               -50000
                          .47004
   1.50000
               . 55000
                          44508
               •60000
   1.50000
                          .44907
   1.50000
               •65000
                          43299
   1.50000
               . 70000
                          .40997
   1.50000
               .75000
                          - 38494
   1.50000
               .80000
                          APOPE.
   1.50000
               .85000
                          . 30595
   1.40000
               .90000
                          . 23995
   1.50000
               .95000
                          . 14605
   1.50000
               -98000
                         .07000
   1.50000
              1.00000
                          -00000
3000.
 80.0
470.0
                   10.0
                                  1100.0
```

Appendix B
PROGRAM LISTING

```
C----SHUTTLE DESCENT INVENTING
C----GENERAL SINGLE COMPARTMENT, FOUR VENT INVENTING PROGRAM
      OUTVENTING IS NOT ALL OWAPLE
      ONE VENT AREA CHANGE IS ALLOWED
      INITIAL CONDITION IS ZERO VENTING EVERYWHERE
C
(
      PRINT 999
  OOO FORMAT (1H1)
      PRINT 032
  932 FORMAT(29H DEFINITION OF OUTPUT SYMBOLS//
     14H DMC12X45HINSTANTANEOUS MASS FLOW RATE INTO COMPARTMENT3X10H(SLU
     34H DMJ12X41HINSTANTANEOUS MASS FLOW RATE THROUGH VENT3X10H(SLUG/SE
     4C)/
                                                          1)
     62H K14X40HDISCHARGE COFFFICIENT
      PRINT 933
  933 FORMAT(6H MACHU10X20HVFNT JET MACH NUMBER/
     23H MC13X19HMASS IN COMPARTMENT3X7H(SLUGS)/
     63H PC13X20HCOMPARTMENT PRESSURE3X8H(LB/IN2)/
     76H MUZML13X42HJET TO LOCAL MASS FLOW PER UNIT AREA RATIO)
      PRINT 034
  934 FORMAT(/
     13H PL13X31HLOCAL PRESSURE AT VENT LOCATION3X8H(LB/IN2)/
     35H RC 11X23HCOMPARTMENT GAS DENSITY3X10H(SLUG/FT3)/
     43H TC13X27HCOMPARTMENT GAS TEMPERATURE3X6H(DEGR)/
     55H TIME11X11HFLIGHT TIME3X5H(SEC)/
                                           3X5H(IN2)/7H VOLUME .
     610H VENT AREA6X BHPER VENT+
            12x18HCOMPARTMENT VOLUME3x5H(FT3))
      DIMENSION TT(50) . TP(4.50) . TR(4.50) . TV(4.50) . TMACH(4.50)
      DIMENSION BP(4) + BR(4) + BV(4) + RH(4) + VH(4) + AMACH(4)
      DIMENSION AH(A). FH(4).
      DIMENSION SRH(4) + SVH(4) + SEH(4) + WH(4)
      DIMENSION Y(35.35) .X1(35) .X2(35)
      DIMENSION PY(35+35)+PX2(35+35)+X2X(35)+Y1(35)
      DIMENSION BTT1(4) BTT2(4) DMJ(4)
  ----READ IN AND PRINT TRAJECTORY DATA
      PRINT 999
      PRINT 750
  750 FORMAT(16H TRAJECTORY DATA//)
      READ RO4.NC.NV.NT
  AC4 FORMAT(313)
      DO 120 L1=1+NV
      PRINT 755.L1
  755 FORMAT(/5H VENT+13+26H LOCAL EXTERNAL, CONDITIONS//12X8HTIME+SEC4X+
     113HPRESSURE .PSIA3X14HDENSITY.SL/FT32X15HVFLOCITY.FT/SEC6X11HMACH N
     PLIMBED/)
      00 120 L2=1.NT
      READ 801.TT(L2).TP(L1.L2).TR(L1.L2).TV(L1.L2).TMACH(L1.L2)
  PO1 FORMAT(5F14.8)
      WRITE(6.760) TT(L2).TP(L1.L2).TR(L1.L2).TV(L1.L2).TMACH(L1.L2)
  760 FORMAT(3X5F17.6)
  120 TP(L1.L2)=TP(L1.L2)*144.
```

C----READ IN AND PRINT VENTING EFFICIENCY DATA

```
READ RO4.MI.N.M
       IF(M)836,836,837
  BBK M=M1
      DO BAR I=1 N
      DO 838 NP=1.M
  838 PEAD 805, X1(1), X2(NR), Y(1,NR)
  ROS FORMAT(AF10.5)
      GO TO 401
  837 CONTINUE
      READ ROSIDOXIDX2
      DO 400 I=1.N
      DO 7 K=1.M1
      READ 805.X1(1).PX2(1.K).PY(1.K)
      Y1(K)=PY(1.K)
    7 X2Y(K)=PX2([•K)
      START=DOX
      DO 10 NP=1.M
      X2(ND) = START
      CALL TARINT(1+3+1+M1+X2X+X2(NR))
      CALL TABINT (2+3+0+0+Y1+Y(I+NR))
   10 START=START+DX2
  400 CONTINUE
  401 CONTINUE
      DRINT 000
      PRINT 926
  926 FORMAT (51H TABLE OF DISCHARGE COEFFICIENTS
      PRINT ARA
  ARR FORMAT(1H )
      DO 8 1=1.N
      PRINT 022. X1(1)
  922 FORMAT(//6H MACHL2XF10.3.8X5HPC/PL8X4HK
      DO 8 NIR=1.M
    A PRINT 021.X2(NR).Y(I.NR)
  921 FORMAT(22XF10.3.2XF12.5)
      PRINT 000
      G=1.4
      PRN = (1 • + (G - 1 • )/2 • ) ** (-G /(G - 1 • ))
      GC=1716.
      FYP=(1.-G)/G
    2 READ(5.805) VOLL.PL.TL
      PRINT 910.VOLL
  910 FORMAT(19H COMPARTMENT VOLUME2XF10.5/)
      RL=PI / (GC *TL)
      WL =RI *VOLL
      DO 105 L.1=1+NV
      READ ACT+AH(L1)
      PRINT 931.L1.AH(L1)
  931 FORMAT ( 10H VENT AREAI2.3XE10.5)
  105 AH(L1)=AH(L1)/144.
      PRINT ARA
      PRINT ARA
 ----READ IN TIME INFORMATION
      READ ROI.T.DT.TM.TC
      DO 807 LS=1.NT
      IF(T-TT(L5))897,898,897
  897 CONTINUE
  ASA CONTINUE
C----CREATE AND PRINT INITIAL OUTPUT
```

```
PRINT OUR T
  905 FORMAT( /5H TIME4XE12.5)
       PL 1=PL /144.
       DWI = O
    12 PRINT 906.PLI.PL.TL.WL.DWL
  906 FORMAT (3H PC6XE12.5.3X2HRC6XE12.5.3X2HTC6XE12.5.3X2HMC6XE12.5
      1.3x3HDMC5xE12.5)
       PRINT APA
       STM1=0.
       AHT=n.
       DO 111 L1=1.NV
       RP(L1)=TP(L1+L5)
       BR(L1)=TR(L1.L5)
       PV(L_{\uparrow})=TV(L_{\downarrow}L_{\uparrow})
       PTT1(L1)=BP(L1)/GC/BR(L1)*(1++(G-1+)/2+*TMACH(L1+L5)**2)
       STM1=STM1+PTT1(L1)*AH(L1)
       \Delta HT = \Delta HT + \Delta H(L1)
      PH(L1)=PL
      XV(1.1)=.0
      VH(L.1)=.0
      P=BP(11)/144.
      DP=(RP(L1)-PL)/144.
       IF(AH(L1))100+100+101
  100 PRINT 901.L1.P.DP
  901 FORMAT(9X5H VENT12.8X2HPL6XE12.5.3X5HPL-PC3XE12.5)
      GO TO 111
  101 P=PL/RP(L1)
      CALL PIVLP(IR,TMACH(L1,L5),X1,N,R,X2,M,Y,XK)
      FH(L1)=XK
      PRINT 902.L1.P.DP.P
  902 FORMAT (9X5H VENT12.8X2HPL6XE12.5.3X5HPL-PC3XE12.5.3X5HPC/PL3X
     1F12.5)
  310 RM=.n
      XL=TMACH(L1.LS)
      PRINT 903.XL.RM.XK
  903 FORMAT (24X5HMACHL3XE12.5.3X5HMJ/ML3XE12.5.
                                                                       ЗΧ
     11HK7yF12.5)
  110 PRINT 904.XV(L1).DWL
  904 FORMAT (24X5HMACHJ3XF12.5.3X3HDMJ5XE12.5)
  111 CONTINUE
      IF(AHT) 311.311.312
  311 TTM1=0.
      GO TO 313
  312 TTM1=STM1/AHT
  313 CONTINUE
C----INTERPOLATE BOUNDARY CONDITIONS FOR NEXT TIME POINT
      J=3
      K=0
   13 T=T+NT
      KS=K+1
      DO 113 LI=KS.NT
      IF(T-TT(L1))14+112+112
  112 K=K+1
  113 CONTINUE
   14 CONTINUE
      IF(K=(J+1)/2) 16+15+15
   15 TF(K+J/2-NT)17+18+18
   16 N7=1
```

```
GO TO 19
   17 N7=K-(J-1)/2
       GO TO 19
   19 N7=NT-J+1
   10 CONTINUE
      DO 114 11=1.NV
       \LambdaMACH(I I)=• \cap
      PP((1)=.0
      되모([ 1 )= • 0
  114 PV(L1)=.0
      PRINT ARA
      DO 115 | 3=1.J
      NIL.1=N17+L.3-1
      C=1 •
      DO 201 L4=1.J
      NL 2=N7+L4-1
       IF (NI 1-NL2)200.201.200
  200 C=C*(T-TT(NL2))/(TT(NL1)-TT(NL2))
  201 CONTINUE
      DO 202 L1=1.NV
       AMACH(L1)=AMACH(L1)+C*TMACH(L1.NL1)
       PP(L_1)=PP(L_1)+C*TP(L_1*NL_1)
      PR(L_1)=PR(L_1)+C*TR(L_1*NL_1)
      PV(L_1)=PV(L_1)+C*TV(L_1*NL_1)
  202 CONTINUE
  115 CONTINUE
      P=100.
       STMP=0.
      DO 117 L1=1.NV
      PTT2(L1)=BP(L1)/GC/BR(L1)*(1.+(G-1.)/2.*AMACH(L1)**2)
      STM2=STM2+BTT2(L1)*AH(L1)
       IF(P-BP(L1)) 117,117,116
  116 P=BP(11)
  117 CONTINUE
       IF(AHT) 314,314,315
  314 TTM2=0.
      GO TO 316
  315 TTM2=STM2/AHT
  316 CONTINUE
C----SET UP PRESSURE DIFFERENTIALS AND STARTING PRESSURE
      PPO=(P-PL)/3.
      DPL I=DDO
      PL 1=Pl
      K1=1
   20 CONTINUE
      DWLI= O
C----ITERATE FOR COMPARTMENT VENTING SOLUTION
      しかに"=レルロ
      00 123 | 1=1.NV
      TF(AH(L1)) 133+133+75
   75 PHI=DLI
      REPLIAND(L1)
      TF(P-1.)76.76.77
   77 PHI=RD([])
      D=1.
   76 CONTINUE
      CALL PIVLP(IR + AMACH(L1) + X1 + N + R + X2 + M + Y + XK)
      IF(R-PPN) 118+110+119
```

```
119 PHI=
               PP(L1) *PPN
   110 PR=PHI/RP(L1)
       PRR=DP**FXP
       PHI=PHI/GC/PTT2(L1)*PPR
       XV(L1)=SORT(2./(G-1.)*(PRR-1.))
       VHI=VV(L1) *SORT(G*GC*STT2(L1)/PRR)
       SPH([ 1 ) = PHI
       SVH(| 1)=VHI
       SFH(| 1)=XK
       DMJ(L1) = PHI * VHI * XK * AH(L1)
       WH(L1)=((RH(L1)*VH(L1)*EH(L1))+(RHI*VHI*XK))*AH(L1)*DT/2.
       DWL = DWI + WH(L1)
   133 CONTINUE
       DPL=PLI-(PL+DWL*G*GC/2./VOLL*(TTM1+TTM2))
       GO TO (46.46.55.57).K1
   45 IF(ARS (DPL)-.00144)47.47.49
   47 GO TO (57,48).K1
   48 K1=3
       GO TO 52
   49 GO TO (50,51),K1
   50 K1=2
      PLIS=PLI
      DPLS=DPL
      PLI=PLI+DPLI
      60 TO 20
   51 IF(APS (DPLS)/DPLS+ABS (DPL)/DPL)53.52.53
   52 DPLI=DPL*(PLI-PLIS)/(DPLS-DPL)
      PLIS=PLI
      PLI=DLI+DPLI
      DPLI=DPLI/2.
      DPLS=DPL
      GO TO 20
   53 IF(ARS (DPLS)-ABS (DPL))54.57.50
   54 DPLI=-DPLI/2.
      GO TO FO
   55 IF(ARS (DPLS)-ARS (DPL))56.57.57
   56 K1=4
      PLI=DLIS
      GO TO SO
C----SET DATA FOR NEXT INTERVAL
   57 CONTINUE
      PL=Pt 1
      ME=MI +DME
      TTM1=TTM2
      DMC=0.
      DO 134 L1=1.NV
      IF(AH(L1)) 134+134+139
  130 RH(L1)=SPH(L1)
      VH(L1)=SVH(L1)
      FH(L1) = SFH(L1)
      DMC=DMC+DMJ(L1)
  134 CONTINUE
C----PRINT OUTPUT DATA
  317 PRINT ONS.T
   AS REWL/VOLL
      TL=PL/(GC *R)
      PI=PI /144.
      PRINT OUG. PI.P.TL .WL. DMC
```

```
PRINT ARA
    DO 140 L1=1.NV
    P=BP(1 1)/144.
    PP = (PP(1,1) - PL) / 144
    TE(AH(L1)) 137,137,138
137 PRINT ONI-LI-P . DP
    GO TO 140
138 CONTINUE
    R=PL/RP(LT)
    PRINT 902+11+P+DP+R
136 RM = RH(L1)*VH(L1)
                         /(BR(L1)*BV(L1) )*FH(L1)
    PPINT 903.AMACH(L1).RM.SEH(L1)
135 PRINT 904.XV(L1).DMJ(L1)
140 CONTINUE
    IF(T-TC) 141.142.141
142 READ 908.KC.AH(KC)
908 FORMAT(12.F14.8)
    PRINT 000-KC.AH(KC)
909 FORMAT(///5X15H....VENT AREA I2.12H CHANGED TO E12.5.6H SQ IN//)
    AH(KC)=AH(KC)/144.
    AHT=A.
    DO 103 L.1=1.NV
143 AHT=AHT+AH(L1)
141 CONTINUE
    IF (T-TM) 13.66.66
SE CONTINUE
   PRINT 000
AUTS DOE
```

 Γ NID

```
SUBROUTINE BIVLP(IFRR .X . XT . N . Y . YT . M . ZT . Z)
   ---THIS SUBROUTINE USES TABLE LOOKUP TO FIND A DEPENDENT
      VARIABLE AS A FUNCTION OF TWO INDEPENDENT VARIABLES.
\mathbf{C}
C
         IERR IS AN ERROR FLAG. WHEN NOT EQUAL ZERO = ERROR
         Y IS ARGUMENT OF FIRST INDEPENDENT VARIABLE
\overline{\phantom{a}}
         XT IS MATRIX
                        OF FIRST INDEPENDENT VARIABLE
                                                               X(I) \cdot I = 1 \cdot N
            IS NO. VALUES OF FIRST INDEPENDENT VARIABLE
             IS ARGUMENT OF SECOND INDEPENDENT VAR.
\overline{\phantom{a}}
         YT IS MATRIX
                          OF SECOND INDEPENDENT VAR.
                                                              M + 1 = L + (L)Y
             IS NO. VALUES OF SECOND INDEPENDENT VAR.
         ZT IS MATRIX OF DEPENDENT VAR. Z(I_{\bullet}J)=Z(X(I)_{\bullet},Y(J)_{\bullet})
           IS DEPENDENT VAR. ANSWER
      DIMENSION XT(35), YT(35), 7T(35,35)
       1F(YT(1)-X)3.3.2.25
    3 CONTINUE
       IF(YT(1)-Y)4.4.25
    4 CONTINUE
      DO 8 1=2.N
       IF(XT(I)-X)8,10,10
    A CONTINUE
       IF(XT(N)-X)25,101,101
  101 T=N
   10 NHI=1
      NI.O=I-1
      X1=XT(NLO)
      X2=XT(NHI)
      DO 22 J=2.M
       IF(YT(J)-Y)22+16+16
   22 CONTINUE
       IF(VT(M)-V)25.100.100
  100 J=M
   16 MHI=J
      MLO=J-1
      Y1=YT(MLO)
      Y2=YT(MHI)
      700=7T(NLO.MLO)
      701=7T(NLO.MHI)
      710=7T(NHI+M_0)
      711=7T(NH[ • MH])
      V1 = 700 + (700 - 710) * (X - X1) / (X1 - X2)
      V2=701+(701-711)*(X-X1)/(X1-X2)
      7=V1+(V1-V2)*(Y-Y1)/(Y1-Y2)
      IEBB=0
      見与すいの材
   25 IERR=1
----FRROD IN DATA
      RETURN
```

FND

```
SUBROUTINE TARINT (KK.NIP.NTS.NTE.TAB.ARG)
 C----TABINT . . . . DETERMINES FROM TABLED DATA THE CORRELATIVE VALUE OF
                   THE PRESCRIBED ARGUMENT BY MEANS OF THE LAGRANGE INTER-
 C
 C
                   POLATION FQUATION
       CALL TARINT (KK.NIP.NTS.NTF.TAR.ARG)
 C
           KONTROL KONSTANT. 1-SEARCH. COMPUTES COEFFICIENTS
 C
 \overline{\phantom{a}}
                               2-APPLY. COMPUTES INTERPOLATED VALUES
\mathsf{C}
                               3-FXTRACT. OUTPUTS COFFFICIENTS
C
                              4-SUPPLY. COMPUTES COEFFICIENTS FOR MISSING
\mathbf{C}
                                         TABLE VALUES
C
                              5-ZERO + COMPUTES COEFFICIENTS FOR ZERO VALUE
       NIP KK=1 - 5 NUMBER INTERPOLATION POINTS TO BE USED. 2 OR GREATER
C
                     BUT LESS THAN OR EQUAL TO 10 OR (NTE-NTS+1) WHICHEVER
                     IS SMALLER
       NTS KK=1.4.5 1 OR GREATER. INITIAL TABLE INDEX AND STARTING POINT
C
\mathbf{C}
                                    OF SEARCH
C
                     O OR LESS.
                                    (MUST FOLLOW AN INITIAL CALL WITH NTS=1
C
                                    OR GREATER.) INTIAL TABLE POSITION RE-
C
                                    MAINS AS PREVIOUSLY DEFINED BUT SEARCH
\mathbf{C}
                                    RESUMES AT TABLE INDEX OF LAST SEARCH
                                   TERMINATION
      NTE KK=1.4.5 TERMINAL TABLE INDEX AND CUT-OFF POINT OF SEARCH
С
\mathbf{C}
                    TABLE INDEX MINUS ONE
      TAB KK=1.4.5 INDEPENDENT TABLE VARIABLE (SINGLY INDEXED FOR TABLE
C
C
                    POSITION
C
                    DEPENDENT TABLE VARIABLE (SINGLY INDEXED FOR TABLE
           KK=2
C
                    POSITION)
C
                    NAME DESIRED FOR COEFFICIENTS (SINGLY INDEXED FOR
           KK=3*
                    COEFFICIENT NUMBER)
\mathbf{c}
      ARG KK=1
                    ARGUMENT OF INDEPENDENT VARIABLE
C
                    NAME DESIRED FOR INTERPOLATED DEPENDENT VARIABLE
           KK=2*
C
                    VALUE OF INDEPENDENT TABLE VARIABLE FOR WHICH DEPEN-
          KK=4*
                    DENT TABLE VARIABLE IS TO BE COMPUTED
C----* DENOTES OUTPUT DATA
      DIMENSION TAR(1).
                              COFF(10)
      CO TO (1.17.20.1.22).KK
C----SEARCH AND SUPPLY PORTION OF INTERPOLATION
    1 IF(NIP.GT.NTE-NTS+1)GO TO 99
      FIGN=1.
      IF (NTS) 4.4.3
    3 NTSS=NTS
      1 1S=NTS
      GO TO 5
    4 NTS=1 15
   5 IF(TAR(NTSS)-TAR(NTSS+1)) 7.7.6
   6 SIGN=-1.
   7 DTAR= . 1*SIGN*(TAR(NTF)-TAR(NTSS))
      IF(SIGN*(ARG-(TAR(NTSS)-DTAR))) 9.8.8
   A IE(SIGN*(ARG-(TAB(NTE)+DTAB))) 10.10.9
   O WRITE( 6.000) ARG. TAR (NTSS) . TAR (NTF)
 900 FORMAT(1H .E15.8.23H OUTSIDE RANGE OF TABLE.E16.8.3H TO.E16.8.25H
    1RY MORE THAN 10 PER CENT)
  10 00 100 L1=L15+NTF
     IF(SIGN*(ARG-TAR(L1))) 11.100.100
 100 CONTINUE
  11 L15=[1-1
     IF(L19-(NIP+1)/2) 13.12.12
  19 IF(L1S+NIP/2-NTF) 14+15+15
```

```
13 NSP=NTSS
       GO TO 16
    14 NSP=1 19-(NIP-1)/2
       IF (NCP-NTSS) 13.16.16
    15 NSP=NTF-NIP+1
    16 DO 101 L1=1.NIP
       NL.1=NSP+L1-1
       C=1.
       DO SOR LR=1.NIP
       NL2=NSP+L2-1
       IF(L1.FQ.L2)GO TO 203
       IF (APG-TAB(NL2))202+201+202
   201 IF(KK.FQ.4)GO TO 203
   202 C=C*(ARG-TAP(NL2))/(TAP(NL1)-TAB(NL2))
   203 CONTINUE
   101 COFF(L1)=C
       KC=1
      RETURN
C----APPLY PORTION OF INTERPOLATION
   17 IF(KC.GT.O)GO TO 19
   IP WRITE(
              6.800)
  BOO FORMAT(1H .30HCOFFFICIENTS WERE NOT COMPUTED)
      RETURN
   10 ARG=.0
      DO 108 L1=1.NIP
      NL 1=NCP+L1-1
  102 ARG=ARG+COFF(L1)*TAB(NL1)
      RETURN
C----EXTRACT INTERPOLATION COFFFICIENTS
   20 IF(KC) 18.18.21
   21 DO 103 L.1=1.NIP
  103 TAB(11)=COFF(L1)
      NTF=NCP-1
      PETUDN
C----SEEK ZERO TARLE POSITION
   22 ARG= 0
      NSD=NTE-1
      00 105 L1=1.NSP
      IF(TAB(L1)/ABS(TAB(L1))-TAB(L1+1)/ABS(TAB(L1+1)))105+104+105
  104 L15=[1+1
     GO TO 11
  105 CONTINUE
     WRITE( 6.801)
 801 FORMAT(1H .22HNO ZERO TABLE POSITION)
     KC=0
     PETUDN
  OO WRITE
              6,000)
 999 FORMAT (1H1+68HNUMBER OF INTERPOLATION POINTS GREATER THAN TABLE TO
    1 PF INTERPOLATED)
     STOD
     FND
```