Stochastic Line Search

by Philip Kenneweg, Leonardo Galli, Tristan Kenneweg and Barbara Hammer

What is Stochastic Line Search

- Method to find optimal learning rate
- Key idea:
 - Take a step along the gradient direction
 - 2. compute the loss
 - 3. if loss did not reduce (enough) try different lr

Advantages

- No learning rate tuning anymore
- Faster convergence
- Better generalization performance (surprisingly)

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

	HOW OFTEN YOU DO THE TASK —					
	50/ _{DAY}	5/DAY	DAILY	MEEKLY	MONTHLY	YEARLY
1 SECOND	1 DAY	2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
HOW 1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
TIME 5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
SHAVE 30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 Hours
1 HOUR		IO MONTHS	2 MONTHS	10 DAYS	2 DAYS	5 HOURS
6 HOURS				2 MONTHS	2 WEEKS	1 DAY
1 DAY					8 WEEKS	5 DAYS

Disadvantages

- Uses more compute
 - -a lot more for un-optimized approaches
 - -about 1 extra forward pass per loss computation/step for our implementation
- Can not easily incorporate human expert knowledge

Challenges

- Where to start checking for reasonable learning rate?
- How much reduction in loss is reasonable?
- Many more implementation details

Solutions (existing)

Lipschitz Line Search criterion:

$$f_k(w_k) - f_k(w_k + \eta_k d_k) \ge c \cdot \eta_k ||\nabla f_k(w_k)||^2,$$

Loss reduction

Gradient norm

- Guaranteed to converge with SGD (under some assumptions) if step size is lowered until this criterion is fullfilled
- Can be extended to Armijo Line Search for adaptive optimizers (Adam, Adagrad etc)

Solutions (existing)

- Initial Step size for the search is the last step size.
- To facilitate growing learning rates, double Ir every n(in practice 300) steps.

Our Idea

- Adapt learning rates per Layer.
- Evaluate this and the Armijo approach combined with Adam on modern architectures. (Transformers)

Math

Change:

$$f_k(w_k) - f_k(w_k + \eta_k d_k) \ge c \cdot \eta_k ||\nabla f_k(w_k)||^2,$$

To:

$$f_k(w_k + \eta_k^{(l)} \bar{d}_{k,l}) \le f_k(w_k) - c \cdot \eta_k^{(l)} ||\nabla f_k(w_k)^{(l)}||^2,$$
$$\bar{d}_{k,l} := (0, \dots, d_k^{(l)}, \dots, 0)$$

Actually not quite correct, but correct one would need 2 forward passes per check → too expensive

Results small Dataset

Results

Results

- PLASLS and ADAMSLS perform a lot better than ADAM or SGD even with ADAMs tuned learning rate schedule.
- PLASLS does not significantly outperform ADAMSLS
- → this was a very short summary of the IJCNN paper

New Idea

 We saw during training that the learning rate is mostly determined by a small percentage of batches which lower it significantly.

New Idea

So smoothing seems to make intuitive sense.

Math

$$f_k(w_k) - f_k(w_k + \eta_k d_k) \ge c \cdot \eta_k ||\nabla f_k(w_k)||^2,$$
 (3)

We call $f_k(w_k) - f_k(w_k + \eta_k d_k)$ the decrease h_k and $||\nabla f_k(w_k)||^2$ the sufficient decrease s_k . Now we apply exponential smoothing to both term i.e.:

$$\hat{h}_k = \hat{h}_{k-1} \cdot \beta + h_k \cdot (1 - \beta)$$

$$\hat{s}_k = \hat{s}_{k-1} \cdot \beta + s_k \cdot (1 - \beta)$$
(4)

resulting in smoothed values \hat{h}_k and \hat{s}_k representing the average decrease of the loss with our current step size and the average sufficient decrease. Resulting in Eq. 5

$$\hat{h}_k \ge c \cdot \eta_k \cdot \hat{s}_k,\tag{5}$$

Problem

- Lowering step size has no immediate effect on h since f(w_k + n_k*d_k) is dependend on step size n_k. Impractical to recompute.
 - → but this is actually not a problem, just makes changes in step size take place over a longer period in time

Experiments

- Experiments on a variety of architectures:
- CNN ResNet34
- Transformers BERT
- MLPs 2 hidden layers
- ? something missing ?

Results CNN

Cifar100

Cifar10

Results CNN

TinyImageNet

step_size0 group: testresnetlayer_adam_bert_1cycle0.0_c0.1_beta0.99

group: testresnetlayer_adamsls_bert_1cycle0.0_c0.5_beta0.99
group: testresnetlayer_oladamsls_bert_1cycle0.0_c0.3_beta0.99

le-5

Step

10k 20k 30k 40k 50k 60k

Results Transformer

Results MLP

Mnist with 2 hidden layers:

More interesting Ideas & TODOs:

More interesting Ideas & TODOs:

Theory

 Some theoretical results: learning rate and batch size should be related. We see the same proportionality as predicted for our implementation: Ir ~ sqrt(batch_size) for

adaptive optimizers

Theory

 Network size to learning rate relation could also easily be looked at.

Graphs are fine but metrics are better?

- Some metric to evaluate optimizers?
- Intuition:
- Should be similar to area under the curve just for loss.
- Should be logarithmic (i.e. halving of loss is valued the same)

$$L = \frac{\sum_{t} \log(l_t)}{\hat{t}}$$

Theory

- Some theoretical proofs would be nice for example:
- more robustness towards noise induced by the batch size. Will still be limited.
- At the moment all proofs for SLS convergence assume no noise induced by batch size.

Thank you for listening

Questions?

