Business/Use Case

- After performing the in-depth analysis of MongoDB, those functions will be demonstrated on other hand picked stocks.
- The process here is streamlined to pull the important information and best models for each stock in the demonstration.

Forecasting Growth on Other Stocks

- Used examples of both positive and negative growth stocks
- They include:
 - 1. MongoDB (MDB)
 - MongoDB experienced significant growth over the last 3 years with the continued rise in the value of data. Could the models catch large spikes in growth?
 - 2. American Airlines (AAL)
 - The airline industry has suffered due to recent events. Want to analyze what the next few months may look like for one major airline.
 - 3. Amazon (AMZN)
 - One of the most popular big tech companies which should be a safe bet to invest in.
 - 4. General Electric (GE)
 - GE has been on a steady decline over the years. Using this stock as an example of potentially negative or no growth.
 - 5. Intel (INTC)
 - Intel has seen a lot of competition in the tech market as well. Looking at how it may continue to be affected.
 - 6. Tesla (TSLA)
 - A very popular stock experiencing significant growth. Would be interesting to analyze other data sources such as social media and review its impact on this stock's price.

```
In [1]: from Functions import *

In [2]: # Container Variables for Results
    stocks = ['American Airlines', 'Amazon', 'General Electric', 'Intel', 'Tesla', 'MongoDB']
    models = []

In [3]: aal = pd.read_csv('Data/AAL.csv')
    amzn = pd.read_csv('Data/AMZN.csv')
    ge = pd.read_csv('Data/GE.csv')
    intc = pd.read_csv('Data/INTC.csv')
    tsla = pd.read_csv('Data/MongoDB.csv')
```

American Airlines

ARIMA Test RMSE: 8.924438661392783

Best Model

```
In [4]: best_aal = best_model(aal, plotting=True)
    models.append(best_aal)

Returns: p, d, q
    ARIMA Test RMSE: 11.365709622494357
    Returns: p, d, q
```

Auto Arima Test RMSE: 6.493396172773847 Auto Arima Test RMSE: 6.0916688635104 Prophet Test RMSE: 28.199373463885628 Logged Prophet Test RMSE: 14.747956256682585

Daily Price over Time Original Model 40 35 30 20 15 10 2019-09 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01

Date

ROI: 1.68 %

Best Model: Logged_Auto_ARIMA

best_aal.head()

Out[5]:	-	ARIMA	${\bf Logged_ARIMA}$	Auto_ARIMA	Logged_Auto_ARIMA	Prophet	Logged_Prophet	Best_Model	Best_RMSE	Expected_60day_Growth(%)
	0	11.37	8.92	6.49	6.09	28.2	14.75	Logged_Auto_ARIMA	6.09	1.68

Amazon

Best Model

In [6]: best_amzn = best_model(amzn,plotting=True)
 models.append(best_amzn)

Returns: p, d, q

ARIMA Test RMSE: 335.37145274496186

Returns: p, d, q

ARIMA Test RMSE: 936.7865112799977 Auto Arima Test RMSE: 333.2338199023155 Auto Arima Test RMSE: 933.7324232003156 Prophet Test RMSE: 746.3832855026207 Logged Prophet Test RMSE: 1918.6492756259152

ROI: 3.73 % Best Model: Auto_ARIMA

General Electric

Best Model

```
best_ge = best_model(ge,plotting=True)
In [7]:
         models.append(best_ge)
```

Returns: p, d, q ARIMA Test RMSE: 74.04947673615601

Returns: p, d, q ARIMA Test RMSE: 55.01813299395058 Auto Arima Test RMSE: 74.04480837067062 Auto Arima Test RMSE: 55.07069358965366 Prophet Test RMSE: 97.25108398415385 Logged Prophet Test RMSE: 59.02979594648951

Returns: p, d, q

ROI: -3.23 % Best Model: Logged_ARIMA

Intel

Best Model

```
best_intc = best_model(intc,plotting=True)
In [8]:
         models.append(best_intc)
```

Returns: p, d, q ARIMA Test RMSE: 6.487104285918575

Returns: p, d, q ARIMA Test RMSE: 5.794795624994909 Auto Arima Test RMSE: 7.977109747974804 Auto Arima Test RMSE: 7.985860625638707 Prophet Test RMSE: 6.442102234468254

Logged Prophet Test RMSE: 6.2586874254655305

Returns: p, d, q

Tesla

Best Model

```
best_tsla = best_model(tsla,plotting=True)
In [9]:
         models.append(best_tsla)
```

Returns: p, d, q ARIMA Test RMSE: 319.78347341876986

Returns: p, d, q ARIMA Test RMSE: 210.92099542311496 Auto Arima Test RMSE: 138.17489392543104 Auto Arima Test RMSE: 225.7631349763984 Prophet Test RMSE: 254.49099160733334 Logged Prophet Test RMSE: 1098.8272205362439

ROI: -147.13 % Best Model: Auto_ARIMA

In [10]: # The best auto_arima model here appears off, using the next best model
base_model(tsla,exog=True,logged=True,plotting=True, full=True, roi=True)

Returns: p, d, q

Out[10]: <statsmodels.tsa.statespace.sarimax.SARIMAXResultsWrapper at 0x22fd8c05e80>

Findings

adding Mongo DB to results

In [11]:

Merging Results into a Data Frame

```
best_mongo = best_model(mdb)
          models.append(best_mongo)
         Returns: p, d, q
         ARIMA Test RMSE: 92.10970700146592
         Returns: p, d, q
         ARIMA Test RMSE: 58.08241838017868
         Auto Arima Test RMSE: 92.40403475573405
         Auto Arima Test RMSE: 58.022142322809934
         Prophet Test RMSE: 65.78887755293908
         Logged Prophet Test RMSE: 369.84401898575334
         ROI: 17.41 %
         Best Model: Logged_Auto_ARIMA
          full_data = models[0].copy()
In [12]:
          for i in range(1,len(models)):
In [13]:
              full_data = full_data.append(models[i])
          full_data
In [14]:
            ARIMA Logged_ARIMA Auto_ARIMA Logged_Auto_ARIMA Prophet Logged_Prophet
                                                                                              Best_Model Best_RMSE Expected_60day_Growth(%)
Out[14]:
         0
             11.37
                             8.92
                                         6.49
                                                            6.09
                                                                    28.2
                                                                                  14.75 Logged_Auto_ARIMA
                                                                                                               6.09
                                                                                                                                       1.68
```

	ARIMA	Logged_ARIMA	Auto_ARIMA	Logged_Auto_ARIMA	Prophet	Logged_Prophet	Best_Model	Best_RMSE	Expected_60day_Growth(%)
0	335.37	936.79	333.23	933.73	746.38	1918.65	Auto_ARIMA	333.23	3.73
0	74.05	55.02	74.04	55.07	97.25	59.03	Logged_ARIMA	55.02	-3.23
0	6.49	5.79	7.98	7.99	6.44	6.26	Logged_ARIMA	5.79	2.33
0	319.78	210.92	138.17	225.76	254.49	1098.83	Auto_ARIMA	138.17	-147.13
0	92.11	58.08	92.4	58.02	65.79	369.84	Logged_Auto_ARIMA	58.02	17.41

```
In [15]: full_data['Stocks']=stocks
  full_data['Expected_60day_Growth(%)'] = full_data['Expected_60day_Growth(%)'].astype(float)
  table = full_data.set_index('Stocks')
  table.head()
```

138.17

Out[15]:		ARIMA	Logged_ARIMA	Auto_ARIMA	Logged_Auto_ARIMA	Prophet	Logged_Prophet	Best_Model	Best_RMSE	Expected_60day_Growth(%)
	Stocks									
	American Airlines	11.37	8.92	6.49	6.09	28.2	14.75	Logged_Auto_ARIMA	6.09	1.68
	Amazon	335.37	936.79	333.23	933.73	746.38	1918.65	Auto_ARIMA	333.23	3.73
	General Electric	74.05	55.02	74.04	55.07	97.25	59.03	Logged_ARIMA	55.02	-3.23
	Intel	6.49	5.79	7.98	7.99	6.44	6.26	Logged_ARIMA	5.79	2.33

225.76

In [18]: table.loc['Tesla','Expected_60day_Growth(%)'] = 17.01
table.head()

Tesla 319.78

Out[18]: ARIMA Logged_ARIMA Auto_ARIMA Logged_Auto_ARIMA Prophet Logged_Prophet Best_Model Best_RMSE Expected_60day_Growth(%) Stocks **American Airlines** 11.37 8.92 6.49 6.09 28.2 14.75 Logged_Auto_ARIMA 6.09 1.68 335.37 936.79 333.23 933.73 746.38 1918.65 Auto_ARIMA 333.23 3.73 Amazon 74.05 55.02 97.25 59.03 -3.23 **General Electric** 74.04 55.07 Logged_ARIMA 55.02 Intel 6.49 5.79 7.98 7.99 6.44 6.26 Logged_ARIMA 5.79 2.33 **Tesla** 319.78 210.92 138.17 225.76 254.49 1098.83 Auto_ARIMA 138.17 17.01

254.49

1098.83

Auto_ARIMA

138.17

-147.13

210.92

In [19]: table.reset_index()

Out	110	
Out	1 1 1	

	Stocks	ARIMA	Logged_ARIMA	Auto_ARIMA	Logged_Auto_ARIMA	Prophet	Logged_Prophet	Best_Model	Best_RMSE	Expected_60day_Growth(%)
0	American Airlines	11.37	8.92	6.49	6.09	28.2	14.75	Logged_Auto_ARIMA	6.09	1.68
1	Amazon	335.37	936.79	333.23	933.73	746.38	1918.65	Auto_ARIMA	333.23	3.73
2	General Electric	74.05	55.02	74.04	55.07	97.25	59.03	Logged_ARIMA	55.02	-3.23
3	Intel	6.49	5.79	7.98	7.99	6.44	6.26	Logged_ARIMA	5.79	2.33
4	Tesla	319.78	210.92	138.17	225.76	254.49	1098.83	Auto_ARIMA	138.17	17.01
5	MongoDB	92.11	58.08	92.4	58.02	65.79	369.84	Logged_Auto_ARIMA	58.02	17.41

Results

- Tesla has the highest growth in 60 days with MongoDB a close second.
- Prophet never performed the best, but came close in a few instances
- I think parameters in prophet can be improved to better fit the data