Evolving Parameterized Prompt Memory for Continual Learning

Muhammad Rifki Kurniawan¹, Xiang Song¹, Zhiheng Ma³, Yuhang He², Yihong Gong^{1,2}, Qi Yang⁴, Xing Wei¹

- ¹School of Software Engineering, Xi'an Jiaotong University
- ²College of Artificial Intelligence, Xi'an Jiaotong University
- ³Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
- ⁴School of Computer Science and Technology, Xi'an Jiaotong University

Training 1: These are {cat, dog}

Test-time 1: What is this [img] among {cat, dog}?

Training 2: These are {tiger, elephant}

Test-time 2: What is this [img] among {cat, dog, tiger, elephant}?

Continual Learning from Pre-trained

Existing CL From Pre-trained

Two-Stage 60 - 50.83% 50 - 40 - 20 - 10 - ER ER (two-staged)

Image from [1].

iCaRL

ER + Two-Stage

ER

Best w/o two-stage

SCR

From Full-tuning CL to Parameter Efficient CL

[1] K. Y. Lee, Y. Zhong, and Y. X. Wang, "Do Pre-Trained Models Benefit Equally in Continual Learning?" in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2023, pp. 6485-6493.

Learning To Prompt In Continual Learning

Architecture of Common Prompt-based CL (L2P, DualPrompt, S-Prompt) Learning Classifier in Isolation (Not backward Compatible)

Continual Learning from Pre-trained

Method	Prompt Selection	Dynamically Expand?	Backward Compatible?	Additional Params M	Additional Params %
L2P	Discrete	✓	×	0.89	1.21
DualPrompt	Discrete	✓	×	0.95	1.28
CODA-P	Continuous	✓	×	3.84	1.25
EvoPrompt	Continuous	×	J	0.29	0.69

Ours, Evolving Prompt (EvoPrompt):

- Continuous prompting
- Non-expanded prompt memory
- Backward-compatible classifier

Parameterized Prompt Memory

$$\mathbf{p}_{b} = f_{\mathbf{W}^{(b)}} \left(q\left(x \right); \mathbf{W}^{(b)} \right),$$

$$= \underbrace{\text{ReLU} \left(q\left(x \right) \cdot \mathbf{W}^{(b,k)} \right) \cdot \mathbf{W}^{(b,v)},}_{}$$

Query-key matching → Prompt Coefficient

How to learn this memory without catastrophic forgetting?

AAAI 2024

Evolving Prompt Memory via Incremental Fusion

Alignment:

$$\hat{\mathbf{W}}_{f,\ell}^t \leftarrow \operatorname{diag}\left(\frac{1}{\beta_\ell}\right) \mathbf{P}_\ell \mathbf{W}_{f,\ell}^t \mathbf{P}_{\ell-1} \operatorname{diag}\left(\frac{1}{\beta_{\ell-1}}\right)$$

Fusion:

$$\mathbf{W}_{g,\ell}^{t+1} \leftarrow \lambda_{\ell} \hat{\mathbf{W}}_{f,\ell}^{t} + (1 - \lambda_{\ell}) \mathbf{W}_{g,\ell}^{t},$$

Solving optimal transport (OT) problem:

$$\mathbf{P}_{\ell} = \min_{\mathbf{P}_{\ell} \in \mathbb{R}_{+}^{N_{\ell} \times N_{\ell}}} \operatorname{tr}\left(\mathbf{P}_{\ell}^{T} \mathbf{D}_{\ell}\right) = \operatorname{OT}\left(\alpha_{\ell}, \beta_{\ell}, \mathbf{D}_{\ell}\right),$$
s.t. $\mathbf{P}_{\ell} \mathbf{1}_{\ell} = \alpha_{\ell}, \ \mathbf{P}_{\ell}^{T} \mathbf{1}_{n} = \beta_{\ell},$

Evolving Prompt Memory via Incremental Fusion

Attribution-aware aggregation momentum:

Computing local task-specific attribution and global attribution:

$$\Omega_{\ell(j)}^t = \frac{1}{|\mathcal{X}^t|} \sum_{x_i^t \in \mathcal{X}^t} \operatorname{RELU}\left(f_{n_{\ell(j)}}\left(x_i^t\right)\right), \forall i, \hat{y}_i = y_i,$$

$$\text{Task-specific attribution} \qquad \Omega_{\ell(j)} = \max\left(\Omega_{\ell(j)}, \Omega_{\ell(j)}^t\right),$$

$$\text{Global attribution} \qquad \text{Global attribution}$$

AAAI 2024

Compositional Classifier Initialization (CCI)

Prototypical attention:

$$\varphi_{new} = PA = Softmax \left(\frac{d \left(\boldsymbol{\mu}_{new}, \boldsymbol{\mu}_{old} \right)}{\tau} \right) \boldsymbol{\varphi}_{old},$$

Extending PA into multi-head:

$$egin{aligned} arphi_{new} &= \operatorname{MPA}\left(oldsymbol{\mu}_{new}, oldsymbol{\mu}_{old}, oldsymbol{arphi}_{old}
ight) \ &= \operatorname{Concat}\left(\operatorname{PA}_1\left(oldsymbol{\mu}_{new,1}, oldsymbol{\mu}_{old,1}, oldsymbol{arphi}_{old,1}
ight), \ &\ldots, \operatorname{PA}_k\left(oldsymbol{\mu}_{new,k}, oldsymbol{\mu}_{old,k}, oldsymbol{arphi}_{old,k}
ight)
ight). \end{aligned}$$

Empirical Results on Class Incremental Learning

• Split CIFAR-100: 50,000 training images, 1,000 testing images, 100 classes.

	Split CIFAR-100							
Method	5 St	eps	10 S	teps	20 S	teps	Avg	Avg
	Acc.(↑)	Forget. (\downarrow)	Acc.(↑)	Forget. (\downarrow)	Acc.(↑)	Forget. (\downarrow)	Acc.(\u00e7)	Forget. (\downarrow)
FT-seq	73.17 ± 0.75	$2.95{\scriptstyle~ \pm 0.56}$	62.77 ± 2.30	20.73 ± 2.05	55.97 ± 2.95	$32.74{\scriptstyle~\pm 2.97}$	63.97 (+0.00)	18.81 (-0.00)
LP-seq	71.69 ± 0.61	$\boldsymbol{1.36} \pm 0.27$	66.90 ± 0.53	13.08 ± 0.32	60.98 ± 0.74	21.27 ± 1.20	66.52 (+2.55)	11.90 (-6.91)
NME-seq	78.30	7.70	78.33	1.14	78.33	2.68	78.32 (+14.35)	$3.84 \ (-14.97)$
L2P	86.53 ± 0.14	$7.67{\scriptstyle~ \pm 0.20}$	84.97 ± 8.21	$8.21{\scriptstyle~ \pm 0.22}$	83.39 ± 0.41	10.18 ± 0.24	84.96 (+20.99)	$8.69_{-10.12)}$
DualPrompt	88.26 ± 0.33	$5.72{\scriptstyle~ \pm 0.43}$	86.83 ± 0.37	$6.21{\scriptstyle~ \pm 0.35}$	84.11 ± 0.45	$8.75{\scriptstyle~ \pm 0.38}$	86.40 (+22.43)	$6.89 _{(-11.92)}$
ESN	88.09 ± 0.21	$5.18{\scriptstyle~ \pm 0.13}$	85.96 ± 0.14	$4.54{\scriptstyle~ \pm 0.35}$	$82.71_{\pm 0.51}$	$6.44{\scriptstyle~ \pm 0.31}$	85.59 (+21.62)	5.39 (-13.42)
CODA-P-S	88.90 ± 0.26	$\overline{6.29}_{\pm0.27}$	86.33 ± 0.25	$6.29{\scriptstyle~ \pm 0.52}$	81.71 ± 0.47	$9.41{\scriptstyle~ \pm 0.22}$	85.65 (+21.68)	7.33 (-11.48)
CODA-P	89.16 ± 0.26	6.08 ± 0.33	87.31 ± 0.14	$5.95{\scriptstyle~ \pm 0.41}$	81.69 ± 0.38	$9.85{\scriptstyle~ \pm 0.58}$	86.05 (+22.08)	$7.29 {\scriptstyle (-11.52)}$
EvoPrompt-S	88.69 ± 0.16	$9.93{\scriptstyle~\pm0.22}$	87.95 ± 0.13	$2.38{\scriptstyle~ \pm 0.14}$	84.98 ± 0.36	$3.42{\scriptstyle~ \pm 0.39}$	87.20 (+23.23)	5.24 (-13.57)
EvoPrompt	88.97 ± 0.41	10.12 ± 0.35	87.97 ± 0.30	2.60 ± 0.42	84.64 ± 0.14	3.98 ± 0.24	87.19 (+23.22)	5.57 (-13.24)
Upper-bound†	90.85 ± 0.12	-	90.85 \pm 0.12	-	90.85 ± 0.12	-	90.85	-

+1.15% Acc -2.05% Forget

• Split ImageNet-R: 24,000 training images, 6,000 testing images, 200 classes.

		Split ImageNet-R						
Method	5 Sto	eps	10 S	teps	20 S	teps	Avg	Avg
	Acc.(↑)	Forget. (\downarrow)	Acc.(↑)	Forget. (\downarrow)	$Acc.(\uparrow)$	Forget. (\downarrow)	Acc.(↑)	Forget. (\downarrow)
FT-seq	61.41 ± 0.38	$5.76{\scriptstyle~ \pm 0.48}$	50.28 ± 2.29	24.28 ± 1.73	39.25 ± 0.90	40.38 ± 0.77	50.31 (+0.00)	23.48 (-0.00)
LP-seq	59.83 ± 0.33	$1.50{\scriptstyle~\pm0.41}$	55.30 ± 0.12	$7.85_{\ \pm 0.10}$	51.97 ± 0.34	13.87 ± 0.21	53.64 (+3.33)	7.74 (-15.74)
NME-seq	61.06	6.64	61.40	0.76	61.76	2.89	61.41 (+11.10)	$3.43 \ (-20.05)$
L2P	66.63 ± 0.33	$6.65{\scriptstyle~ \pm 0.38}$	64.05 ± 0.39	$10.05{\scriptstyle~ \pm 0.26}$	60.34 ± 0.17	$14.44{\scriptstyle~ \pm 0.61}$	63.67 (+13.36)	10.38 (-13.10)
DualPrompt	71.06 ± 0.35	$4.19{\scriptstyle~ \pm 0.25}$	69.71 ± 0.25	$5.44{\scriptstyle~ \pm 0.12}$	66.26 ± 0.46	$8.74{\scriptstyle~ \pm 0.33}$	69.01 (+18.70)	6.12 (-17.36)
ESN	73.42 ± 0.40	$3.79{\scriptstyle~ \pm 0.55}$	71.07 ± 0.29	$4.99{\scriptstyle~\pm0.49}$	64.77 ± 0.71	$6.65{\scriptstyle~\pm1.24}$	69.75 (+19.44)	5.14 (-18.34)
CODA-P-S	73.80 ± 0.40	$\overline{5.56}$ ± 0.64	71.95 ± 0.41	$5.92{\scriptstyle~ \pm 0.35}$	69.67 ± 0.35	$6.23{\scriptstyle~ \pm 0.40}$	71.81 (+21.50)	5.90 (-17.58)
CODA-P	73.77 ± 0.48	$6.60{\scriptstyle~ \pm 0.52}$	$72.42_{\pm 0.40}$	$6.26{\scriptstyle~ \pm 0.61}$	70.18 ± 0.43	$5.53{\scriptstyle~\pm 0.21}$	72.12 (+21.81)	6.13 (-17.35)
EvoPrompt-S	76.79 ± 0.23	$9.84_{\ \pm 0.15}$	76.22 ± 0.16	$2.33_{\ \pm 0.24}$	$74.68{\scriptstyle~ \pm 0.51}$	$2.70_{\ \pm 0.19}$	75.90 (+25.59)	4.96 (-18.52)
EvoPrompt	77.16 ± 0.18	9.89 ± 0.30	76.83 ± 0.08	2.78 ± 0.06	$74.41_{\pm 0.23}$	$2.56{\scriptstyle~\pm0.22}$	$76.13\ (+25.82)$	5.08 (-18.40)
Upper-bound†	79.13 ± 0.18	-	79.13 ± 0.18	-	79.13 ± 0.18	-	79.13	-

+4.01% Acc -1.05% Forget

Empirical Results on Domain Incremental Learning

- Total:
 - fixed 50 classes
 - 11 domains
 - 120,000 images
- Training: 8 domains
- Testing: 3 unseen domains
- Metrics using final accuracy.

Method	Test Acc. (↑)	Δ Acc. (\uparrow)	_
NME-seq	78.20	+00.00	
EWC †	74.82 ± 0.60	-3.38	
LwF [†]	75.45 ± 0.40	-2.75	
$L2P^{\dagger}$	78.33 ± 0.06	+0.13	
S-iPrompts [‡]	83.13 ± 0.51	+4.93	
S-liPrompts [‡]	89.06 ± 0.86	+10.86	
ESN [‡]	91.80 ± 0.31	+13.60	
EvoPrompt-S	94.77 ± 0.50	+16.57	-
EvoPrompt	95.27 ± 0.15	+17.07	+3.47% Acc
Upper-bound	91.32 ± 0.23	-	_
	AAAI 2024		-

Empirical Results on Online Continual Incremental

• The model encounters the samples in a single pass, technically with epoch set to 1.

Method	Split CIFAR-100 $Acc.(\uparrow) Forget.(\downarrow)$		Split Ima	geNet-R Forget.(↓)	
FT-seq L2P DualPrompt ESN CODA-P-S CODA-P	$\begin{array}{c} 35.39 \pm 1.00 \\ 80.49 \pm 0.28 \\ 82.17 \pm 0.34 \\ 74.17 \pm 1.14 \\ 79.46 \pm 0.06 \\ 81.07 \pm 0.38 \end{array}$	32.98 ± 1.53 8.74 ± 0.44 7.52 ± 0.21 10.59 ± 1.39 11.92 ± 1.27 10.10 ± 0.84		11.22 ± 0.71 6.54 ± 0.34 4.40 ± 0.62 $ 6.09\pm1.18$ 5.42 ± 0.87	
EvoPrompt EvoPrompt	84.23 ± 0.57 84.72 ± 0.94	1.64 ± 0.29 0.89 ± 0.72 +3.65% A -9.21% F		3.82 ±0.24 3.66 ±0.36 +7.58% Acc -1.76% Fors	

- Ours is better on knowledge transfer thus improve consolidation
- Key components for knowledge transfer: 1) WPM init from RPM 2) Compositional classifier initialization.

Further Analysis – Assignment Diversity and Recency Bias

- Coefficient variability is dataset-dependent.
- Incremental fusion maintains parameter balance, ensuring general solutions, and mitigating recency bias.

Further Analysis – Stability Gap

- No stability gap is observed in either random or CCI.
- CCI exhibits stable performance, **smooth transitions** between tasks, and an **accelerated assimilation** of current knowledge

Further Analysis – Representation Compactness and Discriminativeness

- CCI producing more compact intra-class structure.
- CCI maintains equilibrium in inter-class margins, resulting in smaller inter-class distances, thereby improving backward compatibility.

Thank You

github.com/MIV-XJTU/EvoPrompt

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTE OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES