ML ASSIGNMENT 4 Section A

				7777
	- Allowing		Da Pa	te: / / ge No.
		Company Company	1	
b)	Cluster 1	= (3,12)	Cluster L = (8,7)	clusters = (2,13) mean
1	D((21,4	(), (×2:142)) =	x2- x1 + 42-	v.1
The second		1 833	13.667	The state of the s
		(3,12)	(8,7)	(2,13)
	(3,12)	0	10	2
	(3,7)	S	\$2.3	Mar. 7
	(9,6)	12	2	14
	(6,10)	5	5	7
	(8, 7)	10	0	12
	(7,6)	10	2	12
	(2,13)	(22)	12 148	0
	(413)			
	Cluster	1 -> (3,12)	(3,7) (6,10)	1 - 2 -
	Cluster	2 -> (9,6)	(8,7) (7,6)	James III
	Churke	$3 \rightarrow (2,13)$	(she store Size	1 300
	A COU DOD	tion - ik Arg r	nean distance	of a point
		a former tri	of more cer	406 101.11-
	Mann	I have assign	ed it randomy	to one
	B	the clusters) b C Dien	NO.
			- (1 Heration	4.7.4)
	NEW 3 CA	(3+3+6 12+	-7,+10) Cz=	(9+8+7, 1+7+6)
			3 /	(0 (23)
	7	= 4,9.667		(8, 6.33)
-	4=	(2,13)		

(A) F3)		Date: Page N	
e & eluste & e	(4, 8.667)	(8, 6.333)	(2,13)
(3,12)	3.333	10.667	2
(3,7)	3.667	5.667	
(9,6)	8.667	1. 333	14
(8,7)	6. 667	0.667	12
(7,6)	6. 667	1.333	(51.2 12
(2,13)	5. 333	12.667	0
(6,10)	2.333	5.667	(3,5.7.
	2	5	(0).)

Eger-	Cluster 1 ->	(3,7),(6,10)
	cluster 2 ->	(9,6), (8,7), (7,6)
		(3,12), (2,13)

Section B

This is the basis fo cnn and how cnn works. For this particular assignment, we were expected to implement the convolution and the pooling layer.

Convolution Functions:

a) Convolution forward: This function is responsible for performing the convolution window operation on the entire numpy array part by part. In the above figure, the forward operation is carried out by this function in the end it stores the inputs and returns them. Most importantly it returns an output array with magnified last dimension. The input_i is used to extract each sample and do the computation on each. Input_ slice slices for each channel

```
input = np.random.randn(8,3,3,2)
W = np.random.randn(2,2,2,6)
b = np.random.randn(1,1,1,6)
stride = 2
padding = 2
output,input,kernel,bias,stride,padding = convol forward(input, W,b, 2,2)
print(output.shape)
d output, d kernel, d bias = convol backward(output,input,kernel,bias,stride,padding)
print(d_output.shape)
output,input,kernel,bias,stride,padding = convol_forward(d_output, d_kernel,d_bias, 2,2)
print(output.shape)
d_output, d_kernel, d_bias = convol_backward(output,input,kernel,bias,stride,padding)
print(d_output.shape)
input shape: (8, 3, 3, 2)
output shape: (8, 3, 3, 6)
after padding: (8, 7, 7, 2)
i input (7, 7, 2)
(8, 3, 3, 6)
(8, 3, 3, 2)
input shape: (8, 3, 3, 2)
output shape: (8, 3, 3, 6)
after padding: (8, 7, 7, 2)
i input (7, 7, 2)
(8, 3, 3, 6)
(8, 3, 3, 2)
```

b) Convolution backward: This function is responsible for computing the gradients to reduce the loss. It changes the values in the input, kernel and bias array so that in the next iteration we get loss value to be lesser.

Basically we reach the input array again and then make changes to it accordingly in this function. The input_i is used to extract each sample and do the computation on each. Input_ slice slices for each channel

```
[74] np.random.seed(1)
    d_output, d_kernel, d_bias = convol_backward(output,input,kernel,bias,stride,padding)
    print("d_output",d_output.shape)
    print("d_kernel",d_kernel.shape)
    print("d_bias",d_bias.shape)

d_output (8, 3, 3, 2)
    d_kernel (2, 2, 2, 6)
    d_bias (1, 1, 1, 6)
```

c) Convolution Window: This function is the core of the convolution forward function.
 Basically what i have done is that i will take a window that is of same shape as the kernel and then perform the convolution operation for that particular window.
 I will have to do w1x1 + w2x2....wnxn + bias


```
input window : [[-0.37151912 3.16096597]
  [ 0.10995101 -1.91352322]]
kernel : [[0.59982043 0.54938447]
  [1.38378103 0.14834924]]
convolution operation on given window of matrix = 1.3820192434310468
```

the z i get is 1.38 without adding the bias term. In case there is some other example where i am given any bias term for ex bias =1, i simply add 1 to this returned value, i.e. 1.38+1 = 2.38.

d) Zero padding: This function takes as input the greyscale or rgb image pixel array and a padding number and then returns an array that consists of zeros around the pixel array. for ex.

I gave as input a greyscale image array of size 2,2 and now the size after padding =2 becomes 6,6

and in case in input we give 4 dimensions, which we will be normally doing, then the first dimension basically tells us the number of dimensions and rest 3 are the length breadth height as in the above example.

input shape = (10, 4, 4, 2)
padded input shape = (10, 8, 8, 2)

Pooling Layer functions:

a) Creating mask:

This function is used to carry out max pooling efficiently. It takes as input a window from the main input and then returns an output of the same size. This output window has zeroes at all places but a 1 at the index where the maximum element of the input window was present.

For ex. -

```
0.42349435]
[ 0.07734007 -0.34385368  0.04359686 -0.62000084  0.69803203 -0.44712856
  1.2245077 ]
[ 0.40349164  0.59357852 -1.09491185  0.16938243  0.74055645 -0.9537006
 -0.26621851]
[ 0.03261455 -1.37311732  0.31515939  0.84616065 -0.85951594  0.35054598
 -1.31228341]
[-0.03869551 -1.61577235 1.12141771 0.40890054 -0.02461696 -0.77516162
  1.27375593]
0.86334532]]
[[5 0]]
     [[00000000]
mask:
[0000000]
[0 0 0 0 0 0 0]
[0000000]
[0000000]
[1000000]]
```


b) Distribute values - This function is responsible for finding the average of the window in simple words. It takes the input window as a parameter and then return the average

value from that window and then the new window where all values are average.

c) Pooling forward - I first used a of statement to check for which type of pooling to perform. Later in case of max pooling I use the np.max function and for average pooling I use the np.average.first I compute the dimensions of the output. I compute the height and width of the layer using this formula the last dimension for channels remains the same. The input_i is used to extract each sample and do the computation on each. Input_ slice slices for each channel

```
o_dim0 = input.shape[0]
o_dim1 = int((input.shape[1] - f_s)/stride + 1)
o_dim2 = int((input.shape[2] - f_s)/stride + 1)
o_dim3 = input.shape[3]
output = np.zeros([o_dim0, o_dim1, o_dim2, o_dim3])
```


d) Pooling backward - This function is similar to the convolution backward but the inner computation is a little different. In case of max pool we use the masking function and for average the distribute value function is used. In both cases we get the output as same dimensions as the input of forward pooling. The input_i is used to extract each sample and do the computation on each. Input_ slice slices for each channel

```
input = np.random.randn(7,7,3,2)
    output,input, f_s, stride,pool_type = pool_forward(input,2,1,1)
    print("max pooling done")
    d_output = np.gradient(output)
    d_output = np.array(d_output)
    d_output = np.resize(d_output,output.shape)
    print(d_output.shape)
    print(output.shape)
    print(input.shape)
    pb_out = dA_prev = pool_backward(d_output, input, f_s, stride, pool_type)
    print(pb_out.shape)
input shape: (7, 7, 3, 2)
   output shape: (7, 6, 2, 2)
    max pooling done
    (7, 6, 2, 2)
    (7, 6, 2, 2)
    [[0 0]]
    [[1 0]]
    [[1 1]]
    [[1 0]]
    [[1 1]]
```

Section C

Section C

- a) dataset loading done
- b) replaced the ? to nan values using the np.nan . later to confirm the nan value counts. The below 4 features contain more than 40% nan values. These features were hence dropped.

```
30 PARENI 5

[7] df = df.replace(" ?",np.nan)
   df2 = df2.replace(" ?",np.nan)

• df
```

```
0] df.isnull().sum()
   df2.isnull().sum()
   AAGE
                0
                0
   ACLSWKR
   ADTIND
                0
   ADTOCC
                0
   AHGA
                0
   AHRSPAY
                0
                0
   AHSCOL
   AMARITL
                0
   AMJIND
                0
                0
   AMJOCC
                0
   ARACE
                0
   AREORGN
                0
   ASEX
   AUNMEM
                0
                0
   AUNTYPE
   AWKSTAT
                0
                0
   CAPGAIN
                0
   CAPLOSS
                0
   DIVVAL
   FILESTAT
                0
   GRINREG
                0
               14
   GRINST
                0
   HHDFMX
                0
   HHDREL
   MIGMTR1
            1906
   MIGMTR3
            1906
   MIGMTR4
              1906
   MIGSAME
              0
   MIGSUN
              1906
   NOEMP
               0
   PARENT
                0
               162
   PEFNTVTY
   PEMNTVTY
               134
   PENATVTY
   PRCITSHP
               0
                0
   SEOTR
               0
   VETQVA
   VETYN
                0
   WKSWORK
                0
   YEAR
                0
   dtype: int64
```

```
# #59856

df = df.drop(['MIGMTR1','MIGMTR3','MIGMTR4','MIGSUN'],axis=1)

df2 = df2.drop(['MIGMTR1','MIGMTR3','MIGMTR4','MIGSUN'],axis=1)
```

c) From the dataset description I checked for the numerical values and further performed the bins operation on them.

I separated them into 4 different labels each.

I computed the mode of each column and then replaced the nan values with the mode


```
[28] for i in df.columns[df.isna().any()]:
      mode=df[i].mode()[0]
       df[i].fillna(mode,inplace=True)
       df2[i].fillna(mode,inplace=True)
[29] print(df.isna().sum())
     print(df2.isna().sum())
    CAPGAIN
              0
    CAPLOSS
    DIVVAL
               0
     FILESTAT 0
     GRINREG
              0
     GRINST
                0
    HHDFMX
                0
    HHDREL
    MIGSAME
     NOEMP
     PEFNTVTY
                0
     PEMNTVTY
     PENATVTY
     PRCITSHP
     SEOTR
     VETQVA
     VETYN
     WKSWORK
                0
     YEAR
     dtype: int64
```

I performed one hot encoding and then on the obtained df performed Pca Using Pca the number of features were reduced to 35.

For the general population dataset the optimal k value is 21 as post that the value is decreasing almost linearly

For the more than 50k dataset, the optimal k value is 16 and the reason remains the same.

d) For k median clustering I used the pyclustering library and later plotted these graphs for k values from 10 to 24

- e) I have simultaneously performed all the computations on the more than 50k dataset too hence done above
- f) Overrepresentation is the representation of a group of data points that differ substantially higher from the representation of other data points. The cluster number 1,3,5,8,9,13,18 are over represented in the general population dataset while the cluster 2,4,6,10,11,12 14,15 are over represented in the 50k dataset than in general population dataset. Post this I performed the

inverse Pca on the datasets for these particular overrepresented features.