

北京航空航天大學

本模板由北航计算机学院 Someday 开发 本模板供所有用户免费使用,勿做商用

学院: 计算机学院

本模板作者: Someday

联系作者: somedayjiayi@163.com

二〇一七年七月

摘要

万万没想到。

Abstract

lalalalala.

目录

第一章 公式和中文字体 和谐共处	1
第一节 LaTeX 公式	1
第二节 中文字体设置	1
第三节 对齐方式	1
第二章 图片与 TeX 子文件 信手拈来	1
第一节 图片	2
第二节 引用 Tex 子文件	2
	3
第一节 表格	3
第四章 未完待续	3
第五章 代码片 程序员的最爱	4

第一章 公式和中文字体 和谐共处

公式和中文字体和谐共处。

第一节 LaTeX 公式

$$\begin{split} S &= \iint\limits_{\Sigma} 1 \, ds = \int_{0}^{\pi} d\theta \int_{0}^{2\pi} r^{2} sin(\theta) d\phi \\ &= \int_{0}^{\pi} d\theta \int_{0}^{2\pi} sin(\theta) \left(\frac{1}{5} sin(\theta m) sin(n\phi) + 1\right)^{2} d\phi \\ &= \frac{4 sin(\pi m) sin^{2}(\pi n)}{5n - 5m^{2}n} - \frac{(8m^{2} + cos(2\pi m) - 1) sin(4\pi n)}{200 \left(4m^{2} - 1\right)n} + \frac{\pi \left(8m^{2} + cos(2\pi m) - 1\right)}{50 \left(4m^{2} - 1\right)} + 4\pi \\ &= \left(\frac{8m^{2}}{50 \left(4m^{2} - 1\right)} + 4\right) \pi \end{split}$$

第二节 中文字体设置

默认就是宋体。

调用黑体: 黑体写在这里 调用楷体: 楷体写在这里 调用仿宋: 仿宋写在这里

第三节 对齐方式

居中文本第一行居中文本第二行

右对齐第一行 右对齐第二行

第二章 图片与 TeX 子文件 信手拈来

图片与 TeX 子文件信手拈来。

第一节 图片

第二节 引用 Tex 子文件

***** 以下内容均为引用部分 *****

)解: : 根据和差化积
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\therefore \sin \sqrt{x+k} - \sin \sqrt{x} = 2 \cos \frac{\sqrt{x+k} + \sqrt{x}}{2} \sin \frac{\sqrt{x+k} - \sqrt{x}}{2}$$

(1) 解: ::根据和差化积
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

:: $\sin \sqrt{x + k} - \sin \sqrt{x} = 2 \cos \frac{\sqrt{x + k} + \sqrt{x}}{2} \sin \frac{\sqrt{x + k} - \sqrt{x}}{2}$
:: $\lim_{x \to +\infty} \sin \sqrt{x + k} - \sin \sqrt{x} = \lim_{x \to +\infty} 2 \cos \frac{\sqrt{x + k} + \sqrt{x}}{2} \sin \frac{\sqrt{x + k} - \sqrt{x}}{2}$

$$= \lim_{x \to +\infty} \cos \frac{\sqrt{x+k} + \sqrt{x}}{2} \left(\sqrt{x+k} - \sqrt{x} \right)$$

$$\mathbb{Z}\lim_{x\to+\infty}\sqrt{x+k}-\sqrt{x}=0, \mathbb{E}\ 0\leqslant\left|\cos\frac{\sqrt{x+k}+\sqrt{x}}{2}\right|\leqslant1$$

$$\lim_{x \to +\infty} \sin \sqrt{x+k} - \sin \sqrt{x} = \lim_{x \to +\infty} \cos \frac{\sqrt{x+k} + \sqrt{x}}{2} \left(\sqrt{x+k} - \sqrt{x} \right) = 0$$

(2)解:设

$$a_k = \begin{cases} b_1 - b_n & k = 1, \\ b_k - b_{k-1} & 2 \leqslant k \leqslant n \end{cases}$$

∴可以满足
$$\sum_{k=1}^{n} a_k = 0$$
, 设定 $b_0 = b_n$

$$\therefore \lim_{x \to +\infty} \sum_{k=1}^{n} a_k \sin \sqrt{x+k} = \lim_{x \to +\infty} \sum_{k=1}^{n} b_k - b_{k-1} \sin \sqrt{x+k}$$

$$=\lim_{x\to+\infty}-\sum_{k=1}^{n-1}b_i\big(\sin\sqrt{x+k+1}-\sin\sqrt{x+k}\big)-b_n\big(\sin\sqrt{x+1}-\sin\sqrt{x+k}\big)$$

$$\lim_{x \to +\infty} \sum_{k=1}^{n} \sin \sqrt{x+k} = 0$$

***** 以上内容均为引用部分 *****

第三章 表格 提升逼格

搞科研怎么能没有表格?

第一节 表格

关于表格的各种样式,请使用百度大法。

表 1: 设置表格总长

		77 - 24
Start	End	Character Block Name
3400	4DB5	CJK Unified Ideographs Extension A
4E00	9FFF	CJK Unified Ideographs

第四章 未完待续

目前该模板基本可以应付日常论文写作需要,

尤其是对于我航学子,你们看看这个模板,是不是似曾相识,(尤其是能不能过冯如 杯格式审查)。

限于精力,更多高级功能,请待作者再择良辰,Someday有朝一日还会回来。

第五章 代码片 程序员的最爱

代码片永远是程序员的最爱, 支持语法高亮, 用法不妨百度。

```
#include < iostream >
using namespace std;
int main()
{
   return 0;
}
```