Section 4: Oaxaca-Blinder Decomposition

Introduction to Econometrics, Fall 2017

Zhaopeng Qu

12/4/2017

Contents

Install Packages	1
E9.1 Average Hourly Earnings (AHE) and Age	-
Oaxaca-Blinder Decomposition	

Install Packages

E9.1 Average Hourly Earnings (AHE) and Age

```
cps08 <- read_dta("~/Dropbox/NJU/Teaching/2017Fall/Econometrics/SW_Datasets/cps08.dta")</pre>
summary(cps08)
        ahe
##
                         year
                                     bachelor
                                                      female
## Min. : 2.003 Min. :2008
                                  Min. :0.000 Min. :0.0000
## 1st Qu.:12.019 1st Qu.:2008 1st Qu.:0.000 1st Qu.:0.0000
## Median :16.827
                   Median :2008
                                  Median :0.000
                                                 Median :0.0000
## Mean :18.976 Mean :2008 Mean :0.481
                                                  Mean :0.4326
## 3rd Qu.:23.558
                   3rd Qu.:2008
                                  3rd Qu.:1.000
                                                  3rd Qu.:1.0000
                   Max. :2008
## Max. :82.418
                                  Max. :1.000
                                                  Max. :1.0000
##
        age
## Min.
         :25.00
## 1st Qu.:27.00
## Median :30.00
## Mean :29.58
## 3rd Qu.:32.00
## Max. :34.00
library(sandwich)
library(lfe)
attach(cps08)
fit1 <- lm(ahe ~ age + female + bachelor)
cov1 <- vcovHC(fit1, type = "HC")</pre>
robust.se1 <- sqrt(diag(cov1))</pre>
# log value of ahe
cps08$lnahe <- log(ahe)
fit2 <- lm(cps08$lnahe ~ age + female + bachelor)</pre>
cov2 <- vcovHC(fit2, type = "HC")</pre>
robust.se2 <- sqrt(diag(cov2))</pre>
```

• age squred

```
cps08$agesq <- age^2
fit3 <- lm(cps08$lnahe ~ age + I(age^2) + female + bachelor)
cov3 <- vcovHC(fit3, type = "HC")
robust.se3 <- sqrt(diag(cov3))</pre>
```

• Interactions: femalebachelor and femaleage

```
cps08$fxb <- female * bachelor
cps08$fxa <- female * age
cps08$bxa <- bachelor * age

fit4 <- lm(cps08$lnahe ~ age + I(age^2) + female + bachelor + fxb, data = cps08)
cov4 <- vcovHC(fit4, type = "HC")
robust.se4 <- sqrt(diag(cov4))

fit5 <- lm(lnahe ~ age + I(age^2) + female + bachelor + fxa, data = cps08)
cov5 <- vcovHC(fit5, type = "HC")
robust.se5 <- sqrt(diag(cov5))

fit6 <- lm(cps08$lnahe ~ age + I(age^2) + female + bachelor + bxa, data = cps08)
cov6 <- vcovHC(fit6, type = "HC")
robust.se6 <- sqrt(diag(cov6))</pre>
```

• using "stargazer" to produce a publishing-quality table

```
library(stargazer)
stargazer(fit1, fit2, fit3, fit4, fit5, fit6, type = "latex", se = list(robust.se1,
    robust.se2, robust.se3, robust.se4, robust.se5, robust.se6), header = FALSE,
    style = "qje", no.space = TRUE, df = FALSE, notes.align = "l", notes.append = FALSE)
```

Oaxaca-Blinder Decomposition

• Native v.s Foreign

```
library(oaxaca)
data("chicago")
chicago$real.wage <- exp(chicago$ln.real.wage)</pre>
results <- oaxaca(formula = real.wage ~ age + female + LTHS + +some.college +
    college + advanced.degree | foreign.born | LTHS + +some.college + college +
    advanced.degree, data = chicago, R = 1000)
results$twofold$overall
            weight coef(explained) se(explained) coef(unexplained)
## [1,] 0.0000000
                        1.6165339
                                       0.6902127
                                                          1.399040
## [2,] 1.0000000
                         0.1822482
                                       0.7104507
                                                          2.833326
## [3,] 0.5000000
                         0.8993911
                                       0.5679411
                                                          2.116183
## [4,] 0.5690691
                         0.8003263
                                       0.5724691
                                                          2.215248
## [5,] -1.0000000
                        1.3557222
                                       0.5106738
                                                          1.659852
## [6,] -2.0000000
                         0.9525717
                                       0.5238267
                                                          2.063003
        se(unexplained) coef(unexplained A) se(unexplained A)
## [1,]
              0.9368588
                              1.399040e+00
                                                 9.368588e-01
## [2,]
              0.8737907
                               0.000000e+00
                                                 0.000000e+00
## [3,]
              0.8078351
                               6.995202e-01
                                                 4.684294e-01
```

Table 1:

	ahe		lnahe		lnahe	lnahe
	(1)	(2)	(3)	(4)	(5)	(6)
age	0.585***	0.027***	0.081*	0.081*	0.093**	0.073*
	(0.037)	(0.002)	(0.043)	(0.043)	(0.043)	(0.043)
$I(age^2)$			-0.001	-0.001	-0.001	-0.001
			(0.001)	(0.001)	(0.001)	(0.001)
female	-3.664***	-0.186***	-0.186***	-0.220***	0.313***	-0.184***
	(0.208)	(0.011)	(0.011)	(0.015)	(0.110)	(0.011)
bachelor	8.083***	0.428***	0.428***	0.398***	0.427^{***}	-0.065
	(0.213)	(0.011)	(0.011)	(0.015)	(0.011)	(0.110)
fxb				0.069***		
				(0.022)		
fxa					-0.017***	
					(0.004)	
bxa						0.017***
						(0.004)
Constant	-0.636	1.876^{***}	1.085^{*}	1.100^*	0.803	1.327^{**}
	(1.083)	(0.056)	(0.635)	(0.635)	(0.637)	(0.639)
N	7,711	7,711	7,711	7,711	7,711	7,711
\mathbb{R}^2	0.200	0.201	0.201	0.202	0.203	0.203
Adjusted R^2	0.199	0.200	0.200	0.201	0.202	0.202
Residual Std. Error	9.072	0.469	0.469	0.469	0.469	0.469
F Statistic	641.492***	644.876***	484.078***	389.703***	392.217***	392.171***

Notes:

^{***}Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

```
## [4,]
              0.8049324
                                6.028898e-01
                                                   4.037214e-01
## [5,]
              0.6436121
                                9.445705e-01
                                                   3.652813e-01
                                4.840572e-14
## [6,]
              0.8056315
                                                   3.964910e-14
        coef(unexplained B) se(unexplained B)
                  0.0000000
                                     0.000000
## [1,]
## [2,]
                  2.8333261
                                     0.8737907
## [3,]
                  1.4166630
                                     0.4368954
## [4,]
                  1.6123582
                                     0.4972473
## [5,]
                  0.7152816
                                     0.2819896
## [6,]
                  2.0630026
                                     0.8056315
```

• Plot Figure 1

