Fouille et classement d'ensembles fermés dans des données transactionnelles de grande échelle

Thèse préparée au sein de l'équipe SLIDE du LIG pour le titre de Docteur de l'Université de Grenoble, présentée par

Martin Kirchgessner

Sous la direction de Sihem Amer-Yahia et Vincent Leroy

Le projet Datalyse

Collaboration avec le Groupe Les Mousquetaires, acteur majeur de la grande distribution en France et en Europe.

Objectif: étudier les habitudes d'achat.

Méthode : fouille d'associations entre items.

Exemples:

Algues nori, Wasabi, Sauce Soja \rightarrow Riz à Suhis

Nord, < 35 ans, Homme \rightarrow Sodas

"de grande échelle"

Sur l'année 2013:

- 290,734,163 tickets
- 222,228 produits
- 9,267,961 clients
- 1884 magasins à travers la France

Distribution en longue traine

Support(item) = Nombre de transactions contenant cet item.

Distribution en longue traine

Anatomy of the long tail: ordinary people with extraordinary tastes, Goel, Broder, Gabrilovich, Pang @ WSDM'10

Problematiques de la recherche d'associations significatives

- Couverture
 - ▶ Etudier les associations concernant *n'importe quel* item
- Passage à l'échelle
 - Analyser des millions de transactions
- Qualité
 - Indiquer les associations remarquables

Contributions

- Couverture et passage à l'échelle
 - ► Fouille item-centrée avec TopPI
- Qualité
 - Comparaison des mesures de qualité avec CAPA

Fouille item-centrée avec TopPI

Itemsets fréquents et longue traine

Itemsets fréquents et longue traine

Itemsets fréquents et longue traine

Support(P)	Р	
861 304	Emmental rapé, Crème fraîche 30%	
793 310	Emmental rapé, 10 Oeufs	
747 539	Sucre en poudre, Farine	
652 493	Emmental rapé, Beurre	
616 696	Sucre en morceaux, Sucre en poudre	
597 144	Emmental rapé, Lardons fumés	
549 742	Emmental rapé, Jambon	
542 979	Emmental rapé, Sucre en morceaux	
508 593	Emmental rapé, Soda 1.5L	
481 942	Emmental rapé, Huile de tournesol	
	•••	

Fouille item-centrée avec TopPI

- Fouille item-centrée ?
- 2 Etat de l'art
- L'algorithme
- Expériences
- Distribuer TopPI sur MapReduce

TopPI: An Efficient Algorithm for Item-Centric Mining. Kirchgessner, Leroy, Termier, Amer-Yahia, Rousset @ DaWaK'16 p.19-33

TopPI: An Efficient Algorithm for Item-Centric Mining.

Leroy, Kirchgessner, Termier, Amer-Yahia — à paraître dans Information Systems.

Fouille item-centrée

Une nouvelle sémantique pour la fouille d'itemsets

t₁ : Camembert, Saucisses, Compté, Chèvre long, Salade mélangée, Sucre en morceaux

t₂ : Brandade de morue, Boite 6 oeufs, Désodorisant, Lessive, Emmental rapé

 $t_3: \ \textit{Haricot vert, Boxer, Nettoyant à moquette, Mouchoirs, Salade m\'elang\'ee}$

Une nouvelle sémantique pour la fouille d'itemsets

t₁ : Camembert, Saucisses, Compté, Chèvre long, Salade mélangée, Sucre en morceaux

t₂ : Brandade de morue, Boite 6 oeufs, Désodorisant, Lessive, Emmental rapé

t₃ : Haricot vert, Boxer, Nettoyant à moquette, Mouchoirs, Salade mélangée

Résultats :

top(Emmental rapé)

Support	Itemset
	Emmental rapé
861 304	Emmental rapé, Crème fraîche
	Emmental rapé, 10 Oeufs
652 493	Emmental rapé, Beurre
597 144	Emmental rapé, Lardons fumés

. (C \ 1 \

top(Creme cnoc.)		
Support	Itemset	
	Crème choc.	
58569	Crème choc., Crème à la vanille	
32701	Crème choc., Emmental rapé 200g	
30451	Crème choc., Cola 1.5L	
29671	Crème choc., Beurre doux	

top(Riz à sushis)

Support	Itemset
14887	Riz à sushis
5935	Riz à sushis, Algues nori
3669	Riz à sushis, Vinaigre de riz
1843	Riz à sushis, Algues nori, Vinaigre de riz
1762	Riz à sushis, Wasabi

Méthodes existantes

Méthodes existantes

Par post-processing

- Fouiller tous les itemsets fréquents (minsup = 2),
- 2 Insérer chaque itemset dans les top(i) concernés.

Méthodes existantes

Par post-processing

- Fouiller tous les itemsets fréquents (minsup = 2),
- 2 Insérer chaque itemset dans les top(i) concernés.

Par pre-processing (méthode de référence)

Pour chaque item i:

- **1** Instanciation de $\mathcal{D}[i] = \{t \in \mathcal{D} | i \in t\}$
- ② Exécution de TFP sur $\mathcal{D}[i]$, qui produit directement top(i).

Mining top-k frequent closed patterns without minimum support.

Han, Wang, Lu, Tzvetkov @ ICDM'02

① Obtenir tous les top(i) en une exécution

- Obtenir tous les top(i) en une exécution
- ② Un parcours intelligent du treillis des itemsets

LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. Uno, Kiyomi, Arimura @ FIMI'04

- Obtenir tous les top(i) en une exécution
- Un parcours intelligent du treillis des itemsets
- **3** Limite la fouille aux itemsets potentiellement dans un top(i)

- Obtenir tous les top(i) en une exécution
- Un parcours intelligent du treillis des itemsets
- **3** Limite la fouille aux itemsets potentiellement dans un top(i)
- Répartition des branches entre les threads

Discovering closed frequent itemsets on multicore.

Négrevergne, Termier, Méhaut, Uno @ HPCS'10

TopPI, un algorithme rapide

Temps d'exécution (k = 50)

Données	$ \mathcal{I} $	$ \mathcal{D} $	Taille	Temps
Tickets	222, 228	290, 734, 163	24GB	4 min.
Tickets, par client	222, 228	9, 267, 961	13.3GB	11 min.
LastFM	1, 206, 195	1,218,831	277MB	2 min.
WebDocs	5, 267, 656	1,692,082	1.4GB	8 heures

Environnement expérimental :

- 32 threads en parallèle
- 128 GB de RAM

TopPI, distribué sur cluster MapReduce

Plus de CPUs pour l'énumération d'itemsets.

TopPI, distribué sur cluster MapReduce

Plus de CPUs pour l'énumération d'itemsets.

Pas de calculs redondants

- ullet L'ensemble des items ${\mathcal I}$ est partitionné en ${\it groupes}$: un par machine.
- Chaque machine produit une partition des résultats

TopPI, distribué sur cluster MapReduce

Plus de CPUs pour l'énumération d'itemsets.

Pas de calculs redondants

- ullet L'ensemble des items ${\mathcal I}$ est partitionné en groupes : un par machine.
- Chaque machine produit une partition des résultats

Pas de calculs inutiles

- Complétion des top(i) en deux étapes
- Conserve l'efficacité de l'élagage

TopPI sur cluster MapReduce

Sur le cluster "edel" de Grid5000.

WebDocs, k = 10:

- 4570s avec 32 machines (8 threads chacune)
- 2641s avec 64

TopPI sur cluster MapReduce

Supermarket, k = 1000.

TopPI sur cluster MapReduce

Supermarket, k = 1000, temps CPU cumulé passé à la fouille

TopPI

- Une sémantique adaptée aux longues traines
 - Un (unique) paramètre, k
 - Résultats complets et organisés intuitivement (par item)
 - ► Applicable dans différents domaines (Web, grande distribution, ...)
- Un algorithme qui passe à l'échelle
 - Sur serveur multi-coeurs
 - Sur cluster MapReduce
 - Elaguage très efficace de l'espace des solutions
- Utilisation industrielle
 - https://github.com/slide-lig/TopPI

CAPA: Comparative Analysis of PAtterns

Le bruit du tri par fréquence

Sur 290 millions de tickets :

k	support(P)	P
1	581042	Crème au chocolat
2	58569	Crème au chocolat, Crème à la vanille
3	32701	Crème au chocolat, Emmental rapé 200g
4	30451	Crème au chocolat, Cola 1.5L
5	29671	Crème au chocolat, Beurre doux
6	29376	Crème au chocolat, Emmental rapé 3x70g
7	24869	Crème au chocolat, Emmental rapé 200g Marque B
8	23032	Crème au chocolat, Lait 1/2 écrémé
9	19929	Crème au chocolat, Lait 6x1L
10	16547	Crème au chocolat, Pâte feuilletée

Trier des règles d'association

39 mesures de qualité dans la littérature.

- Sont-elles vraiment différentes ?
- Laquelle choisir? Pour la grande distribution?
- Comment simplifier l'évaluation par des experts ?

Interestingness Measures for Data Mining: A Survey. Geng, Hamilton, ACM Computer Surveys, 2006

Association Rule Interestingness Measures: Experimental and Theoretical Studies. Lenca, Vaillant, Meyer, Lallich, Quality Measures in Data Mining, 2007

Beyond Support and Confidence: Exploring Interestingness Measures for Rule-Based Specification Mining. Le, Lo @ SANER'15

La méthode CAPA

Comparative Analysis of PAtterns

- Comparaison automatique des mesures

 → distingue des familles de mesures donnant des classements
 similaires.
- Validation empirique, où les chargées d'étude marketing comparent les familles de classements.

Testing Interestingness Measures in Practice: A Large-Scale Analysis of Buying Patterns. Kirchgessner, Leroy, Amer-Yahia, Mishra @ DSAA'16

Comparaison automatique des mesures

Définition de cibles d'étude

Contraintes sur les ensembles $A \rightarrow B$

Comparaison automatique des mesures

- Définition de cibles d'étude
- Pouille des associations correspondantes

$A \rightarrow B$	support(A)	$support(A \cup B)$
$\{35-49\} o Patisserie indus.$	66 811 806	22 270 602
$\{35-49\} \rightarrow Boissons$	66 811 806	16 513 795
$\{35-49,F\} \rightarrow Patisserie indus.$	45 267 831	15 089 277
$\{F\} o Epicerie$ sucrée	205 330 640	112 931 852
$\{>64, F, Rhône-Alpes \} \rightarrow Crèmerie$	6 649 289	4 255 545
	•	

- Définition de cibles d'étude
- Pouille des associations correspondantes
- Classement d'après les 39 mesures

Confiance			
$\{>65, F, Aube\} \rightarrow Dairy$			
$\{>65, F, Aveyron\} \rightarrow Dairy$			
$ \{ > 65, F, Val de Marne \} \rightarrow Dairy $			
$ \{>65, F, Seine S^t Denis\} \rightarrow Dairy $			
$\{>65, F, Haute Saone\} \rightarrow Dairy$			
$\{>65, F, Meuse\} \rightarrow Dairy$			
$\{>65,*,Aube\} o Dairy$			
$ \{ > 65, F, Haute Vienne \} \rightarrow Dairy $			
$\{>65, F, Maine et Loire\} \rightarrow Dairy$			
$\{>65,*,Val\;de\;Marne\} o \mathit{Dairy}$			

```
\begin{array}{c} \textbf{Piatetsky-Shapiro} \\ \{*,*, \, \mathsf{Nord}\} \rightarrow \textit{Liquids} \\ \{*,*, \, \mathsf{Nord}\} \rightarrow \textit{Soft drinks} \\ \{*,*, \, \mathsf{Nord}\} \rightarrow \textit{Beers} \\ \{*,*, \, \mathsf{Nord}\} \rightarrow \textit{Spreads} \\ \{*,F, \, \mathsf{Nord}\} \rightarrow \textit{Soft drinks} \\ \{*,F, \, \mathsf{Nord}\} \rightarrow \textit{Imported beers} \\ \{*,F, \, \mathsf{Nord}\} \rightarrow \textit{Liquids} \\ \{*,F, \, \mathsf{Nord}\} \rightarrow \textit{Beers} \\ \{*,*, \, \mathsf{Finistere}\} \rightarrow \textit{Butters} \\ \{*,F, \, \mathsf{Garonne}\} \rightarrow \textit{Drugstore} \end{array}
```

- Définition de cibles d'étude
- Fouille des associations correspondantes
- Classement d'après les 39 mesures
- Comparaison des classements avec 4 distances
 - Coefficient de Spearman
 - ightharpoonup au de Kendall
 - Overlap@20
 - NDCC : Normalized Discounted Correlation Coefficient

NDCC

- Calcul inspiré de NDCG
- Favorise les classements similaires en tête

- Définition de cibles d'étude
- Pouille des associations correspondantes
- 3 Classement d'après les 39 mesures
- Omparaison des classements avec 4 distances

- Définition de cibles d'étude
- Fouille des associations correspondantes
- 3 Classement d'après les 39 mesures
- Omparaison des classements avec 4 distances
- Segroupement hiérarchique

Coefficient de Spearman

au de Kendall

Overlap@20

NDCC

Résultat de la comparaison automatique : 5 familles

Etude empirique

Etude empirique

Capacité d'attention

- 10 à 20 premiers résultats
- les derniers, aussi !

Etude empirique

Capacité d'attention

- 10 à 20 premiers résultats
- les derniers, aussi !

Préfèrences :

- Généralement, G_1 et G_2 (mesures favorisant la confiance)
- Pour une cible donnée, G₃ et G₄

```
L'important est de différencier \{cr\`{e}me\ vanille,\ emmental\ rap\'{e}\}\rightarrow cr\`{e}me\ au\ chocolat\ (conf.\ 32\%) et \{cr\`{e}me\ vanille}\rightarrow cr\`{e}me\ au\ chocolat\ (conf.\ 31\%)
```

CAPA: généralisation

- 39 mesures de qualité, mais des classements similaires
- Première étude du genre pour la grande distribution
 - Le classement par confiance reste plebiscité
 - La mesure de Piatetsky-Shapiro retire bien le bruit des "stars"
- Méthode applicable à d'autres domaines

Conclusion

Conclusion

TopPI

- Un paramètre et des résultats intuitifs
- Analyse 300 millions de tickets en quelques minutes
 - ▶ 47000 par Agrawal & Srikant en 1994 avec APriori
- Speedup linéaire, version distribuée

CAPA

- Bonne présentation des résultats
- Permet de choisir un post-traitement

TopPI: An Efficient Algorithm for Item-Centric Mining. Kirchgessner, Leroy, Termier, Amer-Yahia, Rousset @ DaWaK'16 p.19-33

TopPI: An Efficient Algorithm for Item-Centric Mining. Leroy, Kirchgessner, Termier, Amer-Yahia — à paraître dans Information Systems.

Testing Interestingness Measures in Practice: A Large-Scale Analysis of Buying Patterns. Kirchgessner, Leroy, Amer-Yahia, Mishra @ DSAA'16

• Production des top-par-item avec TopPI, $k \in [100; 500]$

top(i)	Support	
i	1000	
a,i	800	
i,j	600	
a,b,i	500	
a,g,i	400	
a,g,z	200	

- Production des top-par-item avec TopPI, $k \in [100; 500]$
- Transformation en règle d'association

$A \rightarrow$	В	support(A)	$support(A \cup B)$
а	i	240000	800
j	i	2000	600
a,b	i	220000	500
a,g	i	800	400

- Production des top-par-item avec TopPI, $k \in [100; 500]$
- Transformation en règle d'association
- Re-classement (par confiance ou Piatetsky-Shapiro)

$A \rightarrow$	В	support(A)	$support(A \cup B)$	Confiance
a,g	i	800	400	50%
j	i	2000	600	30%
а	i	240000	800	0.3%
a,b	i	220000	500	0.2%

- Production des top-par-item avec TopPI, $k \in [100; 500]$
- Transformation en règle d'association
- Re-classement (par confiance ou Piatetsky-Shapiro)
- **4** Affichage des top-n, $n \in [10; 50]$

$A \rightarrow$	В	support(A)	$support(A \cup B)$	Confiance
a,g	i	800	400	50%
j	i	2000	600	30%

Couverture de TopPI des top-n par p-value sur LastFM

Vers l'analyse en ligne

Systèmes d'analyse en mémoire : production de top(i) à la demande.

- 128GB dans un seul serveur
- Apache Spark

Exploitation des retours utilisateur

Apprentissage automatique des classements

