Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 64)	1792
max_pooling2d (MaxPooling2D)	(None, 31, 31, 64)	Θ
conv2d_1 (Conv2D)	(None, 29, 29, 128)	73856
max_pooling2d_1 (MaxPooling 2D)	(None, 14, 14, 128)	Θ
dropout (Dropout)	(None, 14, 14, 128)	Θ
conv2d_2 (Conv2D)	(None, 12, 12, 64)	73792
max_pooling2d_2 (MaxPooling 2D)	(None, 6, 6, 64)	Θ
flatten (Flatten)	(None, 2304)	Θ
dropout_1 (Dropout)	(None, 2304)	Θ
dense (Dense)	(None, 7)	16135

Total params: 165,575 Trainable params: 165,575 Non-trainable params: 0

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 16)	448
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 31, 31, 16)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	4640
max_pooling2d_1 (MaxPooling 2D)	(None, 14, 14, 32)	Θ
dropout (Dropout)	(None, 14, 14, 32)	Θ
conv2d_2 (Conv2D)	(None, 12, 12, 64)	18496
max_pooling2d_2 (MaxPooling 2D)	(None, 6, 6, 64)	Θ
flatten (Flatten)	(None, 2304)	Θ
dropout_1 (Dropout)	(None, 2304)	Θ
dense (Dense)	(None, 7)	16135

Total params: 39,719 Trainable params: 39,719 Non-trainable params: 0

BASIC MODEL

ACCURACY

KERAS TUNER MODEL

LOSS

With the data obtained, we can observe that thanks to using Keras Tuner we considerably improve the results of our classifier, at the cost of spending time doing the grid search to get the optimal parameters.