MP*: Intégration sur un intervalle quelconque

Coralie RENAULT

27 novembre 2014

Exercice

Donner la nature de l'intégrale :

$$\int_0^{+\infty} \frac{dx}{1 + x^4 sin^2(x)}$$

Exercice

Donner la nature de l'intégrale :

$$\int_0^{+\infty} |\sin(x)|^x$$

Exercice

Montrer que l'intégrale si-dessous est bien définie la calculer

$$\int_0^{+\infty} \frac{\ln t}{t^2 + a^2} \, \mathrm{d}t$$

où a > 0.

Exercice

- Etudier la nature de : $\int_{\frac{2}{\pi}}^{+\infty} \log(\cos(\frac{1}{t})) dt$ $\int_{0}^{+\infty} \frac{\log(1+t^{\alpha})}{t^{\beta}} dt$

Exercice

Soit $f:[0,+\infty[$ une fonction continue par morceau, positive de carré intégrable. Montrer

$$\int_0^x f(t) dt = o\left(\sqrt{x}\right)$$

Exercice

a) Justifier

$$\int_{1}^{x} \frac{\ln(t+1)}{t} dt \underset{x \to +\infty}{\sim} \frac{1}{2} (\ln x)^{2}$$

b) Etablir qu'il existe $C \in \mathbb{R}$ telle que

$$\int_{1}^{x} \frac{\ln(t+1)}{t} dt = \frac{1}{2} (\ln x)^{2} + C + \varepsilon(x) \text{ avec } \varepsilon(x) \xrightarrow[x \to +\infty]{} 0$$

c) Déterminer un équivalent de la fonction ε en $+\infty$

Exercice

Déterminer un équivalent quand $x \to +\infty$ du terme

$$\int_{x}^{+\infty} e^{-t^2} dt$$

Exercice

Déterminer un équivalent quand $x\to +\infty$ de

$$\int_{e}^{x} \frac{\mathrm{d}t}{\ln t}$$