Measure Theory and Integration

Luc Veldhuis

11 September 2017

Story for next 2 weeks

- Definition
- Properties
- Examples (Lebesque measure)

Definition

X a space, $\mathcal A$ a σ -algebra

 (X,\mathcal{A}) measure space

A measure on $\mathcal A$ is a map, $\mu:\mathcal A\to [0,\infty)$ which suffices

- $\bullet \ \mu(\emptyset) = 0$
- ② If $A_1, A_2, A_3, \dots \in \mathcal{A}$ pairwise disjoint, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ (countable additivity from last week)

The triple (X, A, μ) is called a **measure space**.

Examples of measures

- ① Dirac measure δ_x , $x \in X$, $\delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & x \notin X \end{cases}$ Also called 'point mass at x'
- (X, A), |A| = the number of elements in A. 'Counting measure'
- **③** $\mathbb{N} = \{0, 1, 2, \dots\}$. Let P_k , $k = 0, 1, 2, \dots$ $P_k \ge 0$, $\sum_{k=1}^{\infty} P_k = 1$. $A \subseteq \mathbb{N}$: $P(A) = \sum_{k \in A} P_k$. 'Probability'

Hope

 (\mathbb{R},\mathbb{B}) with \mathbb{B} the Borel σ -algebra.

 $\lambda: \mathbb{B} \to [0,\infty]$ such that $\lambda([a,b]) = b-a$ for $b \geq a$.

- Existence?
- Uniqueness?

Countable additivity

If $A_1,A_2,A_3,\dots\in\mathcal{A}$ pairwise disjoint, then $\mu(\bigcup_{i=1}^\infty A_i)=\sum_{i=1}^\infty \mu(A_i)$. Countable or finite. Why not uncountable? Using λ , a single point has measure 0, but the uncountable union has measure 1. That does not work

Properties of a measure

 (X, \mathcal{A}, μ) measure space.

1 A ⊆ B ⇒ $\mu(A) \ge \mu(B)$, because $B = A \cup (B \setminus A)$ with \cup is the disjoint union.

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

$$A \subseteq B$$
, $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) - \mu(A)$

$$μ(A ∪ B) + μ(A ∩ B) = μ(A) + μ(B) (μ(A ∪ B) = μ(A) + μ(B) – μ(A ∩ B)) Proof: A ∪ B = (A ∩ B) ∪ (A \ B) ∪ (B \ A) μ(A∪B) + μ(A∩B) = μ(A∩B) + μ(A \ B) + μ(B \ A) + μ(A ∩ B) μ(B \ A) + μ(A ∩ B) = μ(B) μ(A \ B) + μ(A ∩ B) = μ(A)$$

• $\mu(A \cup B) \le \mu(A) + \mu(B)$ (sub additivity) Extend to $\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$

Theorem

 (X,\mathcal{A}) measureable space. $\mu:\mathcal{A}\to [0,\infty)$ is a measure if and only if:

- 2 $\mu(A \cup B) = \mu(A) + \mu(B)$
- If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ and $\bigcup_{i=1}^{\infty} A_i = A$, then $\mu(A) = \lim_{i \to \infty} \mu(A_i)$. 'Continuity from below'. Notation $A_i \uparrow A$. $A = \lim A_i$.

(We can change the limit from inside to outside the measure)

Hance, countable additivity can be replaced with continuity from below.

Why not continuity from above?

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$

$$A = \bigcap_{i=1}^{\infty} A_i$$

$$\mu(A) \neq \lim_{i \to \infty} \mu(A_i)$$

Counter example

 $\ensuremath{\mathbb{N}}$ conting measure

$$A_i = \{i, i+1, \dots\}, |A_i| = \infty$$

$$A_i \downarrow \infty$$
, so $|\infty| = 0$.

Proof of theorem

Assume μ is a measure.

- Trivial
- Trivial
- 3 Take $A_1 \subseteq A_2 \subseteq A_3 \subseteq ... \uparrow A$ Let $B_1 = A_1$, $B_2 = A_2 \subseteq A_1$, ..., $B_k = A_k \subseteq A_{k-1}$ B_i pairwise disjoint $A_k = \bigcup_{j=1}^{\infty} B_j$ so $\bigcup_{i=1}^{\infty} A_i = \bigcup_{j=1}^{\infty} B_j$ So $\mu(A) = \mu(\bigcup_{j=1}^{\infty} B_j) = \sum_{j=1}^{\infty} \mu(B_j) = \lim_{k \to \infty} \sum_{j=1}^{k} \mu(B_j)$ $\lim_{k \to \infty} \sum_{j=1}^{k} \mu(B_j) = \lim_{k \to \infty} = \mu(B_1 \cup ... \cup B_k) = \lim_{k \to \infty} \mu(A_k)$

Proof (continued)

Converse: Suppose 1, 2 and 3 are true.

We need to show that μ is countably additive.

So let B_1, B_2, \ldots be pairwise disjoint.

Let
$$A_k = B_1 \cup \cdots \cup B_k$$
.

$$A_k \uparrow A = \bigcup_{k=1}^{\infty} A_k = \bigcup_{j=1}^{\infty} B_j$$

$$\mu(A) = \lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \sum_{j=1}^k \mu(B_j) = \sum_{j=1}^\infty \mu(B_j)$$

A is countable additive.

Alternatives for statement 3

- **3** μ is continuous from above $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$, $A = \bigcap A_i$. $\mu(A) = \lim_{i \to \infty} \mu(A_i)$
- **3** Implied by last item. If $A_k \downarrow \emptyset$, then $\mu(A_k) \rightarrow \infty$

Addendum

If $\mu(A) < \infty \ \forall A \in \mathcal{A}$, then all 3 statements can be interchanged.

Proof sketch of addendum

We have:

Finite measure $\mu \leftrightarrow 1, 2, 3$ (shown)

 $3' \rightarrow 3''$ (trivial)

Finite measure $\rightarrow 3'$

To show: $3'' \rightarrow 3$ (1)

Finite measure $\mu \leftrightarrow 3'$ (2)

- Suppose $A_k \uparrow A$ then $A \setminus A_k \downarrow \emptyset$ Then $\mu(A \setminus A_k) = \mu(A) - \mu(A_k) \to 0$ because μ is finite. So $\mu(A) = \mu(A_k)$
- ② Suppose $A_k \downarrow A$ then $A_1 \setminus A_k \uparrow A_1 \setminus A$ So $\mu(A_1 \setminus A_k) \rightarrow \mu(A_1 \setminus A)$ $\mu(A_1) - \mu(A_k) \rightarrow \mu(A_1) - \mu(A)$ So $\mu(A_k) \rightarrow \mu(A)$

Theorem

 μ a measure

$$\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$$
 (sub additivity)

Proof

$$B_k = A_1 \cup \dots \cup A_k$$

$$B_k \uparrow \bigcup_{i=1}^{\infty} A_i = A$$
So
$$\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{k \to \infty} \mu(B_k) \le \lim_{k \to \infty} \sum_{i=1}^{k} \mu(A_i) = \sum_{k=1}^{\infty} \mu(A_i)$$