MTH 201 -- Calculus Module 6A: The Chain Rule

October 12-13, 2020

Agenda for today

- Polling activity over Daily Preparation + Q&A time
- Activity: Practice with composites and the Chain Rule
- Q/A + Feedback time

The fundamental algebraic structure of the function

$$f(x)=\sqrt{x}+rac{x^2}{x+1}$$
 is

Sum

Product

Quotient

Composite

Which of these functions is fundamentally a composite? Select all that apply.

$$f(x) = rac{x}{x^2+1}$$

$$f(x) = \left(rac{x}{x+1}
ight)^3$$

$$f(x) = \sin(x^2)$$

$$f(x) = \sin^2(x)$$

$$f(x) = x^2 \sin(x)$$

The function $y=\sin^2(x)$ is fundamentally a composite, of the form y=f(g(x)). In this case,

$$f(x)=x ext{ and } g(x)=\sin^2(x)$$
 $f(x)=\sin(x) ext{ and } g(x)=x^2$
 $f(x)=x^2 ext{ and } g(x)=\sin(x)$
 $f(x)=x^2 ext{ and } g(x)=\sin(x^2)$

To find the derivative of $y=\sqrt{x^2+1}$:

Simplify $\sqrt{x^2+1}$ to x+1 then use the Power and Sum/Difference Rules

Write $y = (\sqrt{x}) \cdot (x^2 + 1)$, then use the Product Rule

Take the derivative of $y = x^2 + 1$ and plug in \sqrt{x} to the result

Take the derivative of $y = \sqrt{x}$ and plug in $x^2 + 1$ to the result

Take the derivative of $y = \sqrt{x}$ and plug in $x^2 + 1$ to the result, then multiply by the derivative of $x^2 + 1$

Take the derivative of $y=x^2+1$ and plug in \sqrt{x} to the result, then multiply by the derivative of \sqrt{x}

Practice with composites and the Chain Rule (Jamboard)

To find the derivative of $y=e^{x^2-1}$:

Use the basic rule for the derivative of e^x to get $y' = e^{x^2-1}$

Write $y = e^x \cdot (x^2 - 1)$, then use the Product Rule

Take the derivative of $y = x^2 - 1$ and plug in e^x to the result

Take the derivative of $y = e^x$ and plug in $x^2 - 1$ to the result

Take the derivative of $y = x^2 + 1$ and plug in e^x to the result, then multiply by the derivative of $e^x x$

Take the derivative of $y = e^x$ and plug in $x^2 - 1$ to the result, then multiply by the derivative of $x^2 - 1$

In the followup, you'll be looking at *combinations* of the rules you've learned. When differentiating $y=x^2e^{x^2-1}$, which differentiation rule would be used *first*?

Basic/elementary rules for power and exponential functions

Sum/Difference Rule

Product Rule

Quotient Rule

Chain Rule

