BIOSTAT 651 Notes #6: GLM: Inference

- Lecture Topics:
 - o Nested models
 - Hypothesis testing
- Text (Dobson & Barnett, 3rd Ed.): Chapter 5

GLM: Basic Set-Up

• Canonical exponential family,

$$f(y_i; \theta_i, \phi) = \exp \left\{ \frac{Y_i \theta_i - b(\theta_i)}{a(\phi)} + c(Y_i, \phi) \right\}$$

• Key quantities:

$$E[Y_i] = \mu_i$$

$$V(Y_i) = v(\mu_i)a(\phi)$$

$$g(\mu_i) = \eta_i$$

$$\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

• Connecting parameters:

$$\mu_{i} = b'(\theta_{i})$$

$$V(Y_{i}) = b''(\theta_{i})a(\phi)$$

$$v(\mu_{i}) = b''(\theta_{i}) = \frac{\partial \mu_{i}}{\partial \theta_{i}}$$

• Under canonical link $(\eta_i = \theta_i)$:

$$v(\mu_i) = \frac{1}{g'(\mu_i)}$$

Comparison of Nested Models

- Suppose we wish to compare the fit of two models
 - o Full model:

$$\eta_i = \mathbf{x}_{i1}^T \boldsymbol{\beta}_1 + \mathbf{x}_{i2}^T \boldsymbol{\beta}_2$$

• Reduced model:

$$\eta_i = \mathbf{x}_{i2}^T \boldsymbol{\beta}_2$$

where $\mathbf{x}_i^T = (\mathbf{x}_{i1}^T, \mathbf{x}_{i2}^T)$ and $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^T, \boldsymbol{\beta}_2^T)^T$ are $q \times 1$ vectors, with $q = q_1 + q_2$

- The above-listed models are nested
 - reduced model contains proper subset of full model's covariates
- Testing the null hypothesis

$$H_0: \boldsymbol{\beta}_1 = \mathbf{0} \text{ (vs } H_1: \boldsymbol{\beta}_1 \neq \mathbf{0})$$

Hypothesis Testing: Example 1

- Example: Suppose that the impact of a treatment (Z_i) on Y_i is of interest, with age (A_i) and bodymass index (B_i) serving as adjustment covariates. The n patients in the study are randomized to receive treatment $(Z_i = 1)$, or not $(Z_i = 0)$.
 - Since Z_i was randomly generated, the investigators may be interested in whether A_i and B_i are actually worth including in the model.
 - Full model:

$$\eta_i = \beta_0 + \beta_1 Z_i + \beta_2 A_i + \beta_3 B_i$$

- Reduced model:

$$\eta_i = \beta_0 + \beta_1 Z_i$$

• Implies the hypothesis test,

 $H_0: \beta_2 = \beta_3 = 0$ versus

 $H_1: \beta_2 \neq 0 \cup \beta_3 \neq 0$

Hypothesis Testing: Example 2

- Example: As a continuation of the previously-described study, a follow-up study is carried out in which all patients received treatment, although the dose (D_i) differed substantially across patients. The dose/response relationship is of chief interest and, although parsimony is a goal, the investigators are willing to work with more complicated models.
 - Two models that the investigator might compare are

$$\eta_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2 + \beta_3 D_i^3$$

$$\eta_i = \beta_0 + \beta_1 D_i$$

• Hypothesis test,

$$H_0: \beta_2 = \beta_3 = 0$$
 versus

$$H_1: \beta_2 \neq 0 \cup \beta_3 \neq 0$$

Hypothesis Testing: Nested Models

- Note that the hypothesis testing methods we will study in this lecture related to nested models
 - full model contains each of the reduced model's covariates, plus some additional factors
- e.g., Referring back to the previous examples, the models

$$\eta_i = \beta_0 + \beta_1 D_i + \beta_2 A_i
\eta_i = \beta_0 + \beta_1 Z_i + \beta_2 A_i + \beta_3 B_i$$

are not nested

Hypothesis Testing: General Set-Up

• The model (GLM) is given by,

$$egin{array}{lll} eta_i &=& \mathbf{x}_{i1}^T oldsymbol{eta}_1 + \mathbf{x}_{i2}^T oldsymbol{eta}_2 \ oldsymbol{eta}_1 &=& egin{bmatrix} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{bmatrix} \ \mathbf{x}_i^T &=& [\mathbf{x}_{i1}^T, \mathbf{x}_{i2}^T] \end{array}$$

where β_j is a $q_j \times 1$ vector (j = 1, 2), with $q = q_1 + q_2$

- Hypothesis of interest:
 - $\circ H_0: \boldsymbol{\beta}_1 = \mathbf{d} \text{ versus}$

$$H_1: \boldsymbol{\beta}_1 \neq \mathbf{d}$$

- \circ often, we will set $\mathbf{d} = \mathbf{0}$
- We use the above general framework for the three tests we will now describe:
 - Wald test
 - Score test
 - Likelihood ratio test

Wald Test

- For the Wald test, fit the full model i.e., unrestricted MLE of $(\boldsymbol{\beta}_1^T, \boldsymbol{\beta}_2^T)^T$
- Reference distribution: under H_0 ,

$$X_W^2 \sim \chi_{q_1}^2$$

• Special case (β_1 : scalar):

$$X_W^2 = \left\{ \frac{\widehat{\beta}_1}{\widehat{SE}(\widehat{\beta}_1)} \right\}^2 \quad \sim \quad \chi_1^2$$

Wald Test (continued)

- More generally, can use the Wald test for any null hypothesis of the form $H_0: \mathbf{C}\beta \mathbf{d} = \mathbf{0}$
 - then, test statistic given by:

$$X_W^2 = (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})^T \left\{ \widehat{V} (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d}) \right\}^{-1} (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})$$

$$\sim \chi_r^2$$

where C is of rank r.

• The variance estimator of $\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d}$ is

$$V(\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d}) = V(\mathbf{C}\widehat{\boldsymbol{\beta}}) = \mathbf{C}V(\widehat{\boldsymbol{\beta}})\mathbf{C}^{T}$$
$$= \mathbf{C}I(\boldsymbol{\beta})^{-1}\mathbf{C}^{T}$$

• Combining the results

$$X_W^2 = (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})^T \left\{ \mathbf{C}I(\widehat{\boldsymbol{\beta}})^{-1}\mathbf{C}^T \right\}^{-1} (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})$$

$$\sim \chi_r^2$$

• Recall the linear regression analog:

$$\circ \mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

• General Linear Hypothesis (GLH) test,

General Linear Hypothesis (GLH) test,
$$F = \frac{(\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})^T \left\{ \widehat{V}(\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d}) \right\}^{-1} (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})}{r}$$

$$= \frac{(\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})^T \left\{ \mathbf{C}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{C}^T \right\}^{-1} (\mathbf{C}\widehat{\boldsymbol{\beta}} - \mathbf{d})}{\widehat{\sigma}^2 r}$$

$$\sim F_{r,n-q}$$

Score Test

• To carry out the score test, compute the restricted MLE

i.e., maximize the likelihood under the constraints imposed by H_0

- The test is then based on the original (unrestricted) score function
- Score test statistic for $H_0: \beta_1 = \mathbf{d}$,

$$X_S^2 = U(\widehat{\boldsymbol{\beta}}_H)^T I(\widehat{\boldsymbol{\beta}}_H)^{-1} U(\widehat{\boldsymbol{\beta}}_H)$$

$$\widehat{\boldsymbol{\beta}}_H = \begin{bmatrix} \mathbf{d} \\ \widehat{\boldsymbol{\beta}}_{2H} \end{bmatrix}$$

where $\widehat{\boldsymbol{\beta}}_{2H}$ is computed under H_0

• Null distribution:

$$X_S^2 \sim \chi_{q_1}^2$$

Likelihood Ratio Test

- Likelihood Ratio Test (LRT),
 - fit the full model, hence maximizing the unrestricted likelihood
 - \circ fit the reduced model, computing the H_0 -restricted MLE
 - the LRT statistic is then given by:

$$X_L^2 = 2\{\ell(\widehat{\boldsymbol{\beta}}) - \ell(\widehat{\boldsymbol{\beta}}_H)\}$$

$$\sim \chi_{q_1}^2$$

Comparison of Tests

- The Wald, Score and Likelihood Ratio tests are asymptotically equivalent
 - not (numerically) equivalent
 need not be equal in finite samples
- The LRT tends to perform better than Wald or Score in smaller samples
- Note: the Wald test is not invariant under reparametrization
 - \circ e.g., test of $H_0: \beta_1 = 0$ could yield a different result from a test of $H_0: e^{\beta_1} = 1$
- The Score and LR tests are invariant