Mango: A Python Library for Parallel Hyperparameter Tuning

Sandeep Singh Sandha¹, Mohit Aggarwal², Igor Fedorov², Mani Srivastava¹

¹ University of California, Los Angeles

² Arm Research

https://github.com/ARM-software/mango

Tuning Hyperparameters

Approaches: Random search, Grid search, Bayesian optimization, Gradient-based, Evolutionary and Population.

ML algorithms are often very sensitive to choice of hyperparameters.

Example: SVM (C and gamma parameters)

Tuning Hyperparameters

Approaches: Random search, Grid search, Bayesian optimization, Gradient-based, Evolutionary and Population.

Hyperparameter tuning is a tedious task and may involve a significant amount of software engineering.

Example: SVM (C and gamma parameters)

C

Grid Search

C

gamma

gamma

gamma

gamma

- SVM classifier for Iris Dataset
 - 150 examples, used for training
 - 50 examples used for validation
 - Used 2 features out of 4
- Hyperparameters:
 - kernel: rbf
 - gamma: [0.1, 4]
 - $C: [10^{-6}, 10^8]$
- Best accuracy: ?

- SVM classifier for Iris Dataset
 - 150 examples, used for training
 - 50 examples used for validation
 - Used 2 features out of 4
- Hyperparameters:
 - kernel: rbf
 - gamma: [0.1,4]
 - $C: [10^{-6}, 10^{8}]$

• Best accuracy: 82%

XGBoost classifier parameter search space: ~1 million with coarse grids.

```
param space = {
    'n estimators': range(10, 2001, 100),
    'max depth': range(1, 15),
    'reg alpha': loguniform(-3, 6),
    'booster': ['gbtree', 'gblinear'],
    'colsample bylevel': uniform(0.05, 0.95),
    'colsample bytree': uniform(0.05, 0.95),
    'learning rate': loguniform(-3, 3),
    'reg lambda': loguniform(-3, 6),
    'min child weight': loguniform(0, 2),
    'subsample': uniform(0.1, 0.89)
```

XGBoost classifier parameter search space: ~1 million with coarse grids.

```
param_space = {
   'n estimators': range(10, 2001, 100),
```

Grid Search may not be optimal and often is very time consuming. Does random search works?

```
'colsample_bytree': uniform(0.05, 0.95),
'learning_rate': loguniform(-3, 3),
'reg_lambda': loguniform(-3, 6),
'min_child_weight': loguniform(0, 2),
'subsample': uniform(0.1, 0.89)
}
```

What is Mango?

Mango

- Intelligent parallel search algorithms
- Modular design: Ease of usability
- Abstracts are compatible with Sklearn

- We Focus on classical ML algorithms
 - Designed for a production cluster

• Why Mango?

- Existing widely used libraries: Hyperopt, Auto-sklearn, Auto-WEKA
- Existing libraries were not designed for production cluster
- Many have missing feature: Fault tolerance, Job scheduling challenges, Parallel search, Compatibility.
- Assumes specific kind of platform/workers are running or are totally manual.

^[1] James Bergstra, Dan Yamins, and David D Cox, "Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms," in Proceedings of the 12th Python in science conference. Citeseer, 2013

^[2] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown, "Auto-weka: Combined selection and hyperparameter optimization of classification algorithms," in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 2013

^{[3].} Auto-Sklearn, "Manual parallel spawing," https://automl.github.io/auto-sklearn/master/manual.html

What is Mango?

- Implementation of state-of-the-art parallel search optimizers
- Available opensource
- Continually tested on production scale datasets and is improved

https://github.com/ARM-software/mango

Mango: Simple Example

```
from mango import scheduler, Tuner
                                               Search Space: 3
   param space = dict(x=range(-10,10))
   @scheduler.serial
   def objective(x):
                                              Objective Function: 5-7
        return x * x
8
   tuner = Tuner(param space, objective)
                                              Run Mango Tuner: 9-10
   results = tuner.minimize()
11
   print(results["best params"],
                                               Results: 12-13
          results["best objective"])
13
```

- Multi-armed bandit bayesian optimizer
- Surrogate function: Gaussian Process (Internal approximator)
- Acquisition function: Created from Surrogate function (Good regions to explore)

- Multi-armed bandit bayesian optimizer
- Surrogate function: Gaussian Process (Internal approximator)
- Acquisition function: Created from Surrogate function (Good regions to explore)

Simplified form of optimizer:

- 1. Sample the parameter search space using Monte Carlo.
- 2. Find a batch of next promising hyperparameter to evaluate.
 - 1. Maximize the acquisition function (exploration vs. exploitation).
 - 2. Implemented two batch selection approaches: hallucination, clustering.
- 3. Update the acquisition function based on results.

- Multi-armed bandit bayesian optimizer
- Evaluate promising regions in parallel
 - Simplified form: Adaptive sampling
 - 1. Sample the parameter search space using wrome carlo.
 - 2. Find a batch Adoptive exploration valuate.
 - 1. Maximiz Adaptive exploration (s. exploitation)
 - 2. Implemented two batch selection approaches: hallucination, clustering.
 - 3. Update the a Fault tolerance

• Multi-armed bandit bayesian optimizer

Visualizing clustering approach

Mango Abstractions: Search Space

• Example: XGBoost Classifier

```
param_space = {
    'n_estimators': range(10, 2001, 100),
    'max_depth': range(1, 15),
    'reg_alpha': loguniform(-3, 6),
    'booster': ['gbtree', 'gblinear'],
    'colsample_bylevel': uniform(0.05, 0.95),
    'colsample_bytree': uniform(0.05, 0.95),
    'learning_rate': loguniform(-3, 3),
    'reg_lambda': loguniform(-3, 6),
    'min_child_weight': loguniform(0, 2),
    'subsample': uniform(0.1, 0.89)
}
```

- Search space
 - We support all **70+ distributions of scipy.stats**
 - Python constructs lists, dicts, range.
 - Compatible with sklearn grid search
 - **Continuous**: distributions
 - **Discrete**: lists, strings
 - New distributions can be easily defined.
- Example: SVM Classifier

```
param_space = {
    'kernel': ['rbf', 'sigmoid'],
    'gamma': uniform(0.1, 4),
    'C': loguniform(-7, 8)
}
```

Mango Abstractions

- Objective Function & Scheduler
 - Objective function defined by user
 - Scheduler abstractions are kept separate from optimizer
- Objective Function
 - Objective function receives an hyperparameter to evaluate.
 - In case of failure, it can return empty results

Batch Mango is much faster

Settings: SVM Classifier

- Iris dataset
- Mean of 20 experiments
- HyperOpt: Another widely used library
- Mango in batch setting (hallucination)

^[1] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.

^[2] https://github.com/ARM-software/mango/tree/master/examples/

Batch Mango is much faster

Settings: Branin function

- Mixed discrete and continuous variables
- Mean of 20 experiments

https://github.com/ARM-software/mango/tree/master/examples/

Conclusion

- Parallel search speeds up the task of hyperparameter tuning.
- Mango achieves comparable performance to existing approaches:
 - Provide rich abstractions for search space.
 - Intelligent parallel search algorithms.
 - Flexibility to the choice of scheduler.
 - Designed with the ease of usability.

https://github.com/ARM-software/mango