Note: This document is a part of the lectures given to students of IIT Guwahati during the Jan-May 2018 Semester.

A d-dimensional normal distribution is characterized by a d-vector μ and a $d \times d$ covariance matrix Σ . We abbreviate it as $\mathcal{N}(\mu, \Sigma)$, To qualify as a covariance matrix, Σ must be symmetric (i.e, Σ and Σ^{\top} are equal) and positive semidefinite (meaning that $x^{\top}\Sigma x \geq 0$ for all $x \in \mathbb{R}^d$). This is equivalent to the requirement that all eigenvalues of Σ be nonnegative (as a symmetric matrix Σ automatically has real eigenvalues). If Σ is positive definite (meaning that strict inequality $x^{\top}\Sigma x > 0$ holds for all $x \in \mathbb{R}^d$) or equivalently that all eigenvalues of Σ are positive, then the normal distribution $\mathcal{N}(\mu, \Sigma)$ has the density:

$$\phi_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right), \ x \in \mathbb{R}^d,$$

with $|\Sigma|$ the determinant of Σ . The standard d- dimensional normal $\mathcal{N}(0, I_d)$ with I_d the $d \times d$ identity matrix is the special case:

$$\frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}x^{\top}x\right).$$

If $X \sim \mathcal{N}(\mu, \Sigma)$ (i.e, the random vector X has multivariate normal distribution) the its i-th component X_i has distribution $\mathcal{N}(\mu_i, \sigma_i^2)$ with $\sigma_i^2 = \Sigma_{ii}$. The i-th and the j-th components have covariance:

$$Cov[X_i, X_j] = E[(X_i - \mu_i)(X_j - \mu_j)] = \Sigma_{ij},$$

which justifies calling Σ the covariance matrix. The correlation between X_i and X_j is given by $\rho_{ij} = \Sigma_{ij}/\sigma_i\sigma_j$. In specifying a multivariate distribution it is sometimes convenient to use the definition is opposite direction; specify the marginal standard deviation σ_i , $i=1,2\ldots,d$ and correlations ρ_{ij} from which the covariance matrix $\Sigma_{ij} = \sigma_i\sigma_j\rho_{ij}$ is then determined. If the $d\times d$ matrix Σ is positive semidefinite but not positive definite then the rank of Σ is less than d and Σ fails to be invertible and there is no normal density with covariance matrix Σ . In this case we can define the normal distribution $\mathcal{N}(\mu, \Sigma)$ as the distribution of $X = \mu + AZ$ with $Z \sim \mathcal{N}(0, I_d)$ for any $d \times d$ matrix A satisfying $AA^{\top} = \Sigma$. The resulting distribution is independent of which such A is chosen.

Some properties of Multivariate Normal Distribution:

1. Linear Transformation property: Any linear transformation of a normal vector is again normal,

$$X \sim \mathcal{N}(\mu, \Sigma) \Rightarrow AX \sim \mathcal{N}(A\mu, A\Sigma A^{\top}),$$

for any d-vector μ , $d \times d$ matrix Σ and any $k \times d$ matrix A for any k.

2. Conditioning Formula: Suppose the partitioned vector $(X_{[1]}, X_{[2]})$ (where each $X_{[i]}$ may itself be a vector) is multivariate normal with:

$$\begin{pmatrix} X_{[1]} \\ X_{[2]} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mu_{[1]} \\ \mu_{[2]} \end{pmatrix}, \begin{pmatrix} \Sigma_{[11]} & \Sigma_{[12]} \\ \Sigma_{[21]} & \Sigma_{[22]} \end{pmatrix}$$

and suppose $\Sigma_{[22]}$ has full rank. Then,

$$\left(X_{[1]},X_{[2]}=x\right) \sim \mathcal{N}\left(\mu_{[1]} + \Sigma_{[12]}\Sigma_{[22]}^{-1}(X-\mu_{[2]}),\Sigma_{[11]} - \Sigma_{[12]}\Sigma_{[22]}^{-1}\Sigma_{[21]}\right)$$

This equation gives the distribution of $X_{[1]}$ conditioned on $X_{[2]} = x$.

3. Moment Generating Function: If $X \sim \mathcal{N}(\mu, \Sigma)$ then:

$$E[\exp(\theta^{\top}X)] = \exp\left(\mu^{\top}\theta + \frac{1}{2}\theta^{\top}\Sigma\theta\right).$$

Generating Multivariate Moments:

A multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$ is specified by its mean vector μ and covariance matrix Σ . The covariance matrix may be specified implicitly through its diagonal entries σ_i^2 and correlation ρ_{ij} . From Linear Transformation property we know that if $Z \sim \mathcal{N}(0, I)$ and $X = \mu + AZ$, then $X \sim \mathcal{N}(\mu, AA^\top)$. Using any of the standard method we can generate independent standard normal random variables Z_1, Z_2, \ldots, Z_d and assemble them into a vector $Z \sim \mathcal{N}(0, I)$. Thus the problem of sampling from $\mathcal{N}(\mu, \Sigma)$ reduces to finding a matrix A for which $AA^\top = \Sigma$. Cholesky Factorization:

Among all such A a lower triangular one is particularly convenient be cause it reduces the calculation $\mu + AZ$ to the following:

$$X_1 = \mu_1 + A_{11}Z_1$$

$$X_2 = \mu_2 + A_{21}Z_1 + A_{22}Z_2$$

$$\dots = \dots$$

$$X_d = \mu_d + A_{d1}Z_1 + A_{d2}Z_2 + \dots + A_{dd}Z_d.$$

In the 2×2 case, the covariance matrix Σ is represented as

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix}.$$

Assuming $\sigma_1 > 0$ and $\sigma_2 > 0$ the Cholesky factorization is given by:

$$A = \begin{pmatrix} \sigma_1 & 0\\ \rho \sigma_2 & \sqrt{1 - \rho^2} \sigma_2 \end{pmatrix}.$$

Thus we can sample from a bivariate normal distribution by setting:

$$\begin{array}{rcl} X_1 & = & \mu_1 + \sigma_1 Z_1, \\ X_2 & = & \mu_2 + \rho \sigma_2 Z_1 + \sqrt{1 - \rho^2} \sigma_2 Z_2. \end{array}$$

For the case of a $d \times d$ covariance matrix Σ we get:

$$A_{ij} = \left(\sum_{ij} - \sum_{k=1}^{j-1} A_{ik} A_{jk} \right) / A_{jj} , j < i,$$

$$A_{ii} = \sqrt{\sum_{ii} - \sum_{k=1}^{i-1} A_{ik}^{2}}.$$