Cutting Planes Width

The Complexity of Graph Isomorphism Refutations

Florian Wörz Joint work with Jacobo Torán

Universität Ulm

SAT 2023, Alghero

Cutting Planes as Propositional Proof System

In CP a CNF formula F is translated into a system of linear inequalities:

• Clause gets translated to linear inequality:

$$(x \vee \overline{y} \vee \overline{z}) \iff x + (1 - y) + (1 - z) \ge 1.$$

• Relax Boolean variables: axioms $x \ge 0$, $-x \ge -1$ for every variable.

The system has integer solutions if and only if the formula is satisfiable.

Cutting Planes Rules: Linear Combination + Rounding

Linear combination: For $\alpha_1, \ldots, \alpha_k \in \mathbb{N}_0$:

$$\frac{\langle \mathbf{a}^{(1)}, \mathbf{x} \rangle \geq \gamma_1 \dots \langle \mathbf{a}^{(k)}, \mathbf{x} \rangle \geq \gamma_k}{\sum_{i=1}^k \alpha_i \langle \mathbf{a}^{(i)}, \mathbf{x} \rangle \geq \sum_{i=1}^k \alpha_i \gamma_i}.$$

Rounding: If all the coefficients in the vector **a** are divisible by a $c \in \mathbb{N}$:

$$\frac{\langle \mathbf{a}, \mathbf{x} \rangle \geq \gamma}{\langle \frac{\mathbf{a}}{c}, \mathbf{x} \rangle \geq \lceil \frac{\gamma}{c} \rceil}.$$

Both rules together: GC-cut rule

CP Refutations

A **CP refutation** for a set $f = \{f_1, ..., f_m\}$ of linear inequalities is a sequence $(g_1, ..., g_t)$ of inequalities satisfying:

- each g_i is either an axiom or obtained from previous inequalities by a GC-cut,
- and g_t is the inequality $0 \ge 1$.

Sound and complete system for integer solutions.

Complexity Measures for CP

Length: number of vertices in the refutation graph.

(Chvátal) rank: max. number of roundings in a path from an axiom to the $0 \ge 1$ inequality.

(Cut)width: max. number of variables after rounding.

CP-width introduced in [Dantchev, Martin 11]; Supercritical trade-offs between width and rank in [Razborov 17]

Very natural measures:

Rank similar to depth measure in resolution Cutwidth measure similar to width in resolution

$$C(f \vdash) := \min_{\pi:f \vdash} C(\pi).$$

Formulas for Graph Isomorphism

 $G = (V_G, E_G)$ and $H = (V_H, E_H)$ graphs with $V_G = V_H = \{1, ..., n\}$. Variables $x_{i,j}$ with $i, j \in [n]$.

If $x_{i,j} > 0$, this indicates that vertex i in G is mapped to vertex j in H.

 ${\bf A}$ and ${\bf B}$ adjacency matrices of graphs G and H. The graphs are isomorphic if and only if there is a permutation matrix ${\bf X}$ satisfying

$$AX = XB$$
.

Iso(G, H) axioms:

Type 1 axioms: Matrix **X** is doubly stochastic.

 $\forall v \in V_G$: the equality $\sum_{w \in V_H} x_{v,w} = 1$,

 $\forall w \in V_H$: the equality $\sum_{v \in V_G} x_{v,w} = 1$.

Type 2 axioms: These encode the matrix product AX = XB.

 $\forall i, j \in [n]$: the equality $(\mathbf{AX})_{i,j} = (\mathbf{XB})_{i,j}$.

Type 3 axioms: For every variable x: the CP axioms $x \le 1$ and $x \ge 0$.

 $G \not\cong H \iff \mathsf{Iso}(G, H)$ has no integer solution.

Non-isomorphic Graphs Can Have Fractional Isomorphisms

$$\begin{pmatrix} 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \end{pmatrix}$$

The k-pebble Game on G and H

- Duplicator tries to maintain a partial isomorphism $p = \{(v_1, w_1), \dots, (v_\ell, w_\ell)\}$ of size $\leq k$ between the graphs.
- Spoiler tries to show that they are non-isomorphic.
- In each round:
 - **1** Spoiler chooses $p' \subseteq p$ with |p'| < k.
 - 2 Duplicator extends this partial isomorphism to a bijection $\varphi: V_G \to V_H$.
 - **3** Spoiler picks a vertex $a \in V_G$. New position is $p' \cup \{(a, \varphi(a))\}$.
- Spoiler wins if p is no local isomorphism on induced subgraphs.
- Duplicator wins if she can make the game last indefinitely.

Bijection:

$$1 \longmapsto 1$$

$$2 \longmapsto 2 \\$$

$$3 \longmapsto 3$$

$$\mathbf{4} \longmapsto \mathbf{4}$$

$$5 \longmapsto 5 \\$$

$$6 \longmapsto 6$$

Bijection:

 $1 \longmapsto 1$

 $\begin{array}{l} 2 \longmapsto 2 \\ 3 \longmapsto 3 \end{array}$

4 ←→ 4

 $5 \longmapsto 5$

 $6 \longmapsto 6$

New Bijection:

$$1 \longmapsto 1 \\$$

$$2 \longmapsto 2$$

$$\mathbf{4} \longmapsto \mathbf{4}$$

$$5 \longmapsto 5 \\$$

$$6 \longmapsto 6$$

New Bijection:

$$1 \longmapsto 1$$

$$2 \longmapsto 2$$

$$\mathbf{4} \longmapsto \mathbf{4}$$

$$5 \longmapsto 5 \\$$

$$6 \longmapsto 6$$

Yet Another Bijection:

$$1 \longmapsto 1$$

$$2 \longmapsto ??$$

 $3 \longmapsto ...$

$$6 \longmapsto 6$$

Weisfeiler-Leman

Write $G \not\equiv_k H$ if G and H can be distinguished in k-game.

If G and H are non-isomorphic, their differentiation number is:

$$WL(G, H) := \min \{ k \in \mathbb{N} \mid G \not\equiv_k H \}.$$

 $WL(G, H) = k \iff (k-1)$ -dimensional Weisfeiler–Leman (coloring) algorithm is needed to distinguish the graphs [Cai, Fürer, Immerman 92]

Previously Known Tight Connections

```
[Atserias Maneva 13], [Malkin 14].
```

 $G \not\equiv_k H \Rightarrow \operatorname{Iso}(G, H)$ refutable in the k-th level of Sherali–Adams. $\operatorname{Iso}(G, H)$ refutable in k-th level of Sherali-Adams $\Rightarrow G \not\equiv_{k+1} H$.

[Grohe Otto 15]

The result of Atserias and Maneva is optimal.

[Berkholz Grohe 12], [Atserias Ochremiak 18] Iso(G, H) refutable in monomial PC of rank $k \iff G \not\equiv_k H$.

[Torán W. 22] Iso(G, H) refutable in (narrow) Resolution of width $k \iff G \not\equiv_{\mathscr{L}^k} H$.

Our Result

[Atserias Maneva 13], [Malkin 14]. $G \not\equiv_k H \Rightarrow \mathsf{Iso}(G,H)$ refutable in the k-th level of Sherali-Adams. $\mathsf{Iso}(G,H)$ refutable in k-th level of Sherali-Adams $\Rightarrow G \not\equiv_{k+1} H$.

[Berkholz Grohe 12]

Iso(G, H) refutable in monomial PC of rank $k \iff G \not\equiv_k H$.

[Torán W. 22]

 $\mathsf{Iso}(G,H)$ refutable in (narrow) Resolution of width $k \Longleftrightarrow G \not\equiv_{\mathscr{L}^k} H$.

[Grohe Otto 15]

The result of Atserias and Maneva is optimal.

 $WL(G, H) \le k \implies Iso(G, H)$ refutable in CP width k. $WL(G, H) > k \implies Iso(G, H)$ **not** refutable in CP width k - 2.

For a game position $q = \{(v_1, w_1), \ldots, (v_\ell, w_\ell)\} \subseteq V_{\mathcal{G}} \times V_{\mathcal{H}}$ we let

$$S_q := \sum_{i=1}^{\ell} x_{v_i, w_i}.$$

In particular, $S_{\emptyset}=0$ and Spoiler can win from the empty position.

Theorem: If Spoiler has a winning strategy for the *r*-round *k*-pebble game played on with initial position q_0 , then there is a ${\rm CP}$ derivation of the inequality $S_{q_0} \leq |q_0|-1$ from ${\rm Iso}(G,H)$ having width k and rank r simultaneously.

Induction in the number of rounds r. Base r = 0.

Def: Let $q \subseteq V(G) \times V(H)$ be an initial position of the k-pebble game. The bipartite graph $B := B_r^k(q)$ is defined to have vertices $V_B = V_G \uplus V_H$ and edges

$$E_B = \{\{v, w\} \mid \text{Spoiler cannot win } k\text{-game in } r \text{ rounds from } q \cup (v, w)\}.$$

Lemma: [Berkholz Grohe 15]

If Spoiler has a winning position for the k-pebble game in r+1 rounds starting from position q. Then, in the graph B there are two sets $S \subseteq V_G$ and $T \subseteq V_H$ satisfying:

- N(S) = T, N(T) = S, and |S| > |T|;
- Spoiler can win the game in r rounds from the starting position $q \cup (v, w)$ for every pair $(v, w) \in V_G \times V_H$ with the property $v \in S \leftrightarrow w \notin T$.

Lemma: [Berkholz Grohe 15]

If Spoiler has a winning position for the k-pebble game in r+1 rounds starting from q. Then, in the graph B there are two sets $S\subseteq V_G$ and $T\subseteq V_H$ satisfying:

- N(S) = T, N(T) = S, and |S| > |T|;
- Spoiler can win the game in r rounds from the starting position $q \cup (v, w)$ for every pair $(v, w) \in V_G \times V_H$ with the property $v \in S \leftrightarrow w \notin T$.

Idea: For fixed S and T, there are $\gamma:=|S||\overline{T}|+|\overline{S}||T|$ such positions. By induction we can derive the lines $S_{q\cup(v,w)}\leq |q|$ for all of them.

Idea: There are $\gamma:=|S||\overline{T}|+|\overline{S}||T|$ such positions.

By induction we can derive the lines $S_{q \cup (v,w)} \leq |q|$ for all of them.

Let $\ell := |q|$. By a **linear combination** of the axioms we obtain

$$\sum_{v \in S, w \in \mathcal{T}} x_{v,w} + \sum_{v \in \overline{S}, w \in \overline{\mathcal{T}}} x_{v,w} \le n - 1.$$

Linearly combine induction hypotheses:

$$\sum_{v \in S} \sum_{w \in \overline{T}} (S_q + x_{v,w}) + \sum_{w \in T} \sum_{v \in \overline{S}} (S_q + x_{v,w}) \le (|S||\overline{T}| + |\overline{S}||T|)\ell.$$

Finally, we get

$$\sum_{v \in S, w \in T} x_{v,w} + \sum_{v \in \overline{S}, w \in \overline{T}} x_{v,w} - \gamma S_q \ge n - \gamma \ell$$

and

$$-\gamma S_q \geq 1 - \gamma \ell$$
.

$$\gamma := |S||\overline{T}| + |\overline{S}||T|, \ \ell := |q|.$$

$$-\gamma S_q \geq 1 - \gamma \ell$$
.

Using the **rounding rule** dividing by γ , we get

$$-S_q \ge \left\lceil rac{1 - \gamma \ell}{\gamma}
ight
ceil = 1 - \ell,$$

which is equivalent to $S_q \leq \ell - 1$.

All linear combinations can be done in one step.

One use of the GC-rule.

Observations and Consequences

All the lines in the proof are either axioms or have the form $S_q \leq |q|-1$ for some game position q, i.e.,

$$x_{i_1,j_1} + x_{i_2,j_2} + \dots x_{i_\ell,j_\ell} \leq \ell - 1.$$

There are only $n^{O(k)}$ such positions \Rightarrow The CP proof has size $n^{O(k)}$.

Following [Grohe 10] isomorphism testing for planar and minor-free graphs can be done with polynomial size CP.

$G \equiv_k H \Longrightarrow Iso(G, H)$ Is Not Refutable in Width k-2 CP

Let $P_{G,H}$ be the polytope in $[0,1]^{n\times n}$ defined by the Iso(G,H) inequalities.

For a matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$ and $J \subseteq [n]$, let $\mathbf{X}|_J$ be the projection of \mathbf{X} to the rows with indices in J.

For $k \in \mathbb{N}$, we define $P'_{G,H}$ as the following set of survival points in $P_{G,H}$:

$$P'_{G,H}(k) := \left\{ \mathbf{X} \in P_{G,H} \,\middle|\, \begin{array}{l} \forall \mathbf{A} \in \mathbb{Z}^{n \times n}, \ \forall b \in \mathbb{R}, \ \forall J \subseteq [n], \ |J| = k : \\ \langle \mathbf{A}, \mathbf{X}|_J \rangle \geq b \implies \langle \mathbf{A}, \mathbf{X}|_J \rangle \geq \lceil b \rceil \end{array} \right\}.$$

$\overline{G} \equiv_k H \Longrightarrow \overline{Iso}(G, H)$ Is Not Refutable in Width k-2 CP

Protection Lemma for Graph Isomorphism:

Let $k \in \mathbb{N}$. Further, let **X** be a fractional point in $P_{G,H}$ and suppose that for any $J \subseteq [n], |J| \leq k$, there exists a set of matrices $\mathbf{Y}^{(1)}, \dots, \mathbf{Y}^{(s)}$ satisfying:

- For all $t \in [s]$, $\mathbf{Y^{(t)}}$ is 0, 1 on the rows with indices in J;
- for all $t \in [s]$, $\mathbf{Y}^{(t)}$ is a fractional solution of $P_{G,H}$; and
- $\mathbf{X}|_J$ is a convex combination of $\mathbf{Y}^{(1)}|_J, \dots, \mathbf{Y}^{(s)}|_J$.

Then, $\mathbf{X} \in P'_{G,H}(k)$.

$G \equiv_k H \Longrightarrow Iso(G, H)$ Is Not Refutable in Width k-2 CP

Protection Lemma for Graph Isomorphism:

Let $k \in \mathbb{N}$. Further, let **X** be a fractional point in $P_{G,H}$ and suppose that for any $J \subseteq [n], |J| \leq k$, there exists a set of matrices $\mathbf{Y}^{(1)}, \dots, \mathbf{Y}^{(s)}$ satisfying:

- For all $t \in [s]$, $\mathbf{Y^{(t)}}$ is 0, 1 on the rows with indices in J;
- for all $t \in [s]$, $\mathbf{Y^{(t)}}$ is a fractional solution of $P_{G,H}$; and
- $\mathbf{X}|_J$ is a convex combination of $\mathbf{Y}^{(1)}|_J, \dots, \mathbf{Y}^{(s)}|_J$.

Then, $\mathbf{X} \in P'_{G,H}(k)$.

Idea: Translate winning positions of Duplicator to protection matrices.

CP Length Lower Bounds for GI Formulas?

Interpolation \odot

 $Lifting \ \odot \\$

Possible: Exponential lower bounds for tree-like CP with polynomially bounded coefficients.

Idea:

- Use known results of block sensitivity for Tseitin formulas [Impagliazzo Pitassi Urquhart 94], [Huynh Nordström 12], [Göös Pitassi 13]
- 2 Tseitin formulas \cong CFI graphs