Statistics Cheatsheet

Hongyi Guo*

December 7, 2020

1 Probabilty & Distribution

Definition 1.1 (Population). The entire group of individuals about which we want to learn something about.

Definition 1.2 (Sample). Subset of the population from which the information is actually obtained.

Definition 1.3 (Statistics). A numerical characteristic of the sample, a random variable.

Remark 1.4. Remarks on the difference between samples and population.

- (a) Population mean $\mu = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- (b) Population variance $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$.
- (c) Sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- (d) Sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.

Definition 1.5 (SD, SE). SD is the standard deviation, while SE is the standard deviation of the sampling distribution, e.g., $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$, $SE(\bar{X}) = \frac{\hat{\sigma}}{\sqrt{n}} = \frac{s}{\sqrt{n}}$.

Definition 1.6 (Cdf, pmf, pdf). Let X be an r.v., then its *cumulative distribution function* (cdf) is defined by $F_X(x)$, where

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \mathbb{P}(X \le x).$$

For a discrete r.v. X, the probability mass function (pmf) of X is given by $p_X(x) = \mathbb{P}[X = x]$, for $x \in \mathcal{D}$. For a continuous r.v. X, the probability density function is given by $f_X(s) = \frac{d}{dx} F_X(s)$.

Definition 1.7 (Support). The support of a r.v. X is the points x in the space of X that $p_X(x) > 0$ (discrete r.v.) or $f_X(x) > 0$ (continuous r.v.).

Remark 1.8. The cdf, pmf/pdf, mle of various distributions.

^{*}Northwestern University; hongyiguo2025@u.northwestern.edu

Name	Support	m pmf/pdf	Mean	Variance	MLE	Fisher
Bernouli	(0,1)	$f(x;p) = \begin{cases} p: & x = 1\\ 1 - p: & x = 0 \end{cases}$	p	p(1-p)	$\widehat{p} = \bar{x}$	$\frac{1}{p(1-p)}$
Uniform		$f(x;p) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0: & o.w. \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$ \begin{vmatrix} \widehat{b} = \min\{x_1, x_2, \dots\} \\ \widehat{a} = \max\{x_1, x_2, \dots\} \end{vmatrix} $	-
Normal	$(-\infty,\infty)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$	μ	σ	$\widehat{\mu} = \overline{x}$ $\widehat{\sigma} = \sum_{i=1}^{n} (x_i - \overline{x})^2$	$\left[\begin{array}{cc} \frac{1}{\sigma^2} & 0\\ 0 & \frac{2}{\sigma^2} \end{array}\right]$

2 Finding Point Estimators and Test Statistics

2.1 Point estimator

Definition 2.1 (Point estimates). Based on the data sample, come up with the best single guess $\widehat{\theta}$ for the unknown true parameter θ .

Definition 2.2 (Bias, Var). As follows,

$$\operatorname{Bias}(\widehat{\theta}) = \mathbb{E}[\widehat{\theta}] - \theta, \quad \operatorname{Var}(\widehat{\theta}) = \mathbb{E}[\widehat{\theta} - \mathbb{E}[\widehat{\theta}]]^2.$$

Definition 2.3 (Mean square error).

$$MSE(\widehat{\theta}) \equiv \mathbb{E}[\widehat{\theta} - \theta]^2.$$

Remark 2.4 (Bias variance trade-off).

$$MSE(\widehat{\theta}) \equiv \mathbb{E}[(\widehat{\theta} - \theta)^2] = \mathbb{E}\left[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}] + \mathbb{E}[\widehat{\theta}] - \theta)^2\right] = \underbrace{\mathbb{E}[(\widehat{\theta} - \mathbb{E}[\widehat{\theta}])^2]}_{Var[\widehat{\theta}]} + \underbrace{\mathbb{E}[(\mathbb{E}[\widehat{\theta}] - \theta)^2]}_{(Bias(\widehat{\theta}))^2} + 0$$

Definition 2.5 (Consistent). $\widehat{\theta}$ is consistent if for any $\epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}\{|\widehat{\theta} - \theta| \ge \epsilon\} = 0$.

2.2 Hypothesis Test

Definition 2.6 (Hypothesis test). Null hypothesis: $H_0: \boldsymbol{\theta} \in \omega_0$; alternative hypothesis: $\boldsymbol{\theta} \in \omega_1$; critical region: $C = \{\mathbf{x} : \text{reject } H_0\}$; size α : $\alpha = \max_{\boldsymbol{\theta} \in \omega_0} P_{\boldsymbol{\theta}}[\mathbf{X} \in C]$; power function: $\pi_C(\boldsymbol{\theta}) = 1 - \beta_C(\boldsymbol{\theta}) = P_{\boldsymbol{\theta}}[\mathbf{X} \in C]$ for $\boldsymbol{\theta} \in \omega_1$.

2.3 Pivitol

Remark 2.7. If $X \sim N(\mu, \sigma)$, then

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Remark 2.8. If $X \sim N(\mu, \sigma)$, then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Theorem 2.9 (Central limit theorem).

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

Theorem 2.10. The CI of $\bar{X} - \bar{Y}$ is

2.4 MLE

Definition 2.11 (Likelihood). Likelihood function $L(\theta; \mathbf{x}) \equiv f(\mathbf{x}; \theta)$ is a function of θ for fixed \mathbf{x} . It's often simpler to maximize log-likelihood: $\ell(\theta; \mathbf{x}) \equiv \log(L(\theta; \mathbf{x}))$. When i.i.d.,

$$L(\boldsymbol{\theta}; \mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i; \boldsymbol{\theta})$$
$$\ell(\boldsymbol{\theta}; \mathbf{x}) = \log \left(\prod_{i=1}^{n} f(x_i; \boldsymbol{\theta}) \right) = \sum_{i=1}^{n} \log(f(x_i; \boldsymbol{\theta})).$$

Remark 2.12. For normal distribution,

$$L(\theta; \mathbf{x}) = f(\mathbf{x}; \theta) = \prod_{i=1}^{n} f(x_i; \theta) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right\}$$
$$= \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right\} \exp\left\{-\frac{n(\bar{x} - \mu)^2}{2\sigma^2}\right\}.$$

Definition 2.13 (MLE Principle). Choose estimator of θ to maximize $L(\theta; \mathbf{x})$: $\hat{\theta} \equiv \operatorname{argmax}_{\theta} L(\theta; \mathbf{x})$.

Remark 2.14. S^2 is an unbiased estimator of σ^2 . S is a biased estimator of σ . $\widehat{\sigma}$ is an unbiased estimator of σ .

Assumption 2.15 (Regularity assumptions). These assumptions are

i) The pdf's are distinct for different θ ;

- ii) The pdf's have common support for all θ ;
- iii) θ_0 is in the interior of Ω .

2.5 Method of Moments

Lemma 2.16 (Shannon's Lemma). Uniqueness.

3 Find confidence regions and critical regions

Definition 3.1 (CR). For each $\theta_0 \in \Omega$, let $C(\theta_0) \subset \mathbb{R}^n$ denote the critical region for a size- α test of $H_0: \theta = \theta_0$ and a suitable H_1 , and for each \mathbf{x} ,

$$R(\mathbf{x}) \equiv \{ \boldsymbol{\theta}_0 : \mathbf{x} \notin C(\boldsymbol{\theta}_0) \} \subset \mathbb{R}^p.$$

Then $R(\mathbf{x})$ is a $1 - \alpha$ confidence region for $\boldsymbol{\theta}$.

Remark 3.2 (CR). A few remarks on CR.

- 1. CI is for scalar θ . CR is for p > 1 dimensional θ .
- 2. When adopting pivotal quantities to find CRs, in the scalar case, one-sided intervals are unique, but two-sided are not. Taking the shortest length interval is equivalent to requiring that θ has constant likelihood on the boundary. In p > 1 case, taking a minimum-volumn CR is equivalent to requiring that θ has constant likelihood on the boundary.

3.1 Asymptotic distribution

Definition 3.3 (Score function). The score function is defined as

$$\mathbf{S}(\boldsymbol{\theta}) \equiv \nabla \log f(x; \boldsymbol{\theta}) \equiv \left[\frac{\partial f(x; \boldsymbol{\theta}) / \partial \theta_1}{f(x; \boldsymbol{\theta})}, \frac{\partial f(x; \boldsymbol{\theta}) / \partial \theta_2}{f(x; \boldsymbol{\theta})}, \dots, \frac{\partial f(x; \boldsymbol{\theta}) / \partial \theta_p}{f(x; \boldsymbol{\theta})} \right]^{\top}$$

Definition 3.4 (Fisher Information, Hessian Matrix). The fisher information is defined as

$$\mathbf{I}(\boldsymbol{\theta}) \equiv -\mathbb{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2 \log(f(X; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta}^2} \right] = \mathbb{E}_{\boldsymbol{\theta}} \left[\left(\frac{\partial \log f(X; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right) \left(\frac{\partial \log f(X; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^\top \right] = \text{Cov}_{\boldsymbol{\theta}} [\nabla \log f(X; \boldsymbol{\theta})] \geq 0.$$

The Hessian matrix is defined as

$$\mathbf{H}(\boldsymbol{\theta}) \equiv \mathbb{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2 \log(f(X; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta}^2} \right] = -\mathbf{I}(\boldsymbol{\theta}).$$

Remark 3.5. Fisher information relates to how accurately we can identify θ . $\mathbf{I}(\theta)$ is inversely proportional to the variance of the MLE.

Remark 3.6 (Joint Fisher information). The joint fisher information of $\mathbf{X} = (X_1, \dots, X_n)^{\top}$ is

$$\mathbf{I}_{\mathrm{joint}}(\boldsymbol{\theta}) = -\mathbb{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2 \log(f(\mathbf{X}; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta}^2} \right] = \mathbb{E}_{\boldsymbol{\theta}} \left[\left(\frac{\partial \log f(\mathbf{X}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right) \left(\frac{\partial \log f(\mathbf{X}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^\top \right] = \mathrm{Cov}_{\boldsymbol{\theta}} [\nabla \log f(\mathbf{X}; \boldsymbol{\theta})].$$

For $X_i \stackrel{\text{i.i.d.}}{\sim} f(x; \boldsymbol{\theta}), \mathbf{I}_{\text{joint}}(\boldsymbol{\theta}) = n\mathbf{I}(\boldsymbol{\theta}).$

Theorem 3.7. Let X_1, \ldots, X_n be iid with pdf $f(x; \boldsymbol{\theta})$ for $\boldsymbol{\theta} \in \Omega$. Assume the regularity conditions hold. Then

- 1. The likelihood function $\frac{\partial}{\partial \theta}l(\theta) = \mathbf{0}$ has a solution $\widehat{\boldsymbol{\theta}}_n$ s.t. $\widehat{\boldsymbol{\theta}}_n \xrightarrow{P} \boldsymbol{\theta}$.
- 2. For any sequence which satisfies (1),

$$\widehat{\boldsymbol{\theta}}_n \xrightarrow{D} N_p\left(\boldsymbol{\theta}, \frac{\mathbf{I}^{-1}(\boldsymbol{\theta})}{n}\right).$$

Theorem 3.8. Let \boldsymbol{g} be a transformation $\boldsymbol{g}(\boldsymbol{\theta}) = (g_1(\boldsymbol{\theta}), \dots, g_k(\boldsymbol{\theta}))^{\top}$ s.t. $1 \leq k \leq p$ and that the $k \times p$ matrix of a partial derivatives $\boldsymbol{B} = \begin{bmatrix} \frac{\partial g_i}{\partial \theta_j} \end{bmatrix}$, $i = 1, \dots, k, \ j = 1, \dots, p$ has continuous elements and does not vanish in a neighborhood of $\boldsymbol{\theta}$. Let $\widehat{\boldsymbol{\eta}} = \boldsymbol{g}(\widehat{\boldsymbol{\theta}})$. Then $\widehat{\boldsymbol{\eta}}$ is the mle of $\boldsymbol{\eta} = \boldsymbol{g}(\boldsymbol{\theta})$, and

$$\widehat{\boldsymbol{\eta}} \xrightarrow{D} N_k \left(\boldsymbol{\eta}, \frac{\boldsymbol{B} \mathbf{I}^{-1}(\boldsymbol{\theta}) \boldsymbol{B}^{\top}}{n} \right).$$

Hence, $\mathbf{I}(\boldsymbol{\eta}) = [\boldsymbol{B}\mathbf{I}^{-1}(\boldsymbol{\theta})\boldsymbol{B}^{\top}]^{-1}$.

Remark 3.9. If expectation is tractable, take it. Substitute $\hat{\mathbf{I}} = \mathbf{I}(\hat{\boldsymbol{\theta}})$ for $\mathbf{I}(\boldsymbol{\theta}_0)$ if needed. Otherwise, calculate observed Fisher info matrix.

Theorem 3.10 (Find approximate CRs or hyp tests). Individual normal CI on θ_j :

$$\widehat{\theta}_j \xrightarrow{D} N\left(\theta_j, \frac{[\mathbf{I}^{-1}(\boldsymbol{\theta})]_{j,j}}{n}\right).$$

Then, $SD(\widehat{\theta}_j) = \sqrt{\frac{[\mathbf{I}^{-1}(\boldsymbol{\theta})]_{j,j}}{n}}, SE(\widehat{\theta}_j) = \sqrt{\frac{[\widehat{\mathbf{I}}^{-1}]_{j,j}}{n}}, \text{ the approx. } 1 - \alpha \text{ CI is } \theta_j \in \widehat{\theta}_j \pm z_{\alpha/2}SE(\widehat{\theta}_j).$

Theorem 3.11 (Find joint χ^2 CR on $\boldsymbol{\theta}$). With the construction $[\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}]^{\top}[n\mathbf{I}(\boldsymbol{\theta})][\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}] \xrightarrow{D} \chi_p^2$, an approx. $1 - \alpha$ joint CR is

$$\left\{ \boldsymbol{\theta} : [\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}]^{\top} [n\widehat{\mathbf{I}}] [\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}] \leq \chi_{p,\alpha}^2 \right\}.$$

The CR is an ellipsoid centered at $\hat{\boldsymbol{\theta}}$.

Remark 3.12. A few remarks:

- 1. If $\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $(\mathbf{X} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu}) \sim \chi_k^2$.
- 2. Assume Σ has orthonormal eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots$ and eigenvalues $\lambda_1, \lambda_2, \dots$, and let $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathbf{D} = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_k\}$. Then $\Sigma = \mathbf{V}\mathbf{D}\mathbf{V}^{\top} = [\mathbf{V}\mathbf{D}^{1/2}][\mathbf{V}\mathbf{D}^{1/2}]^{\top} = \mathbf{A}\mathbf{A}^{\top}$.

3.2 Critical Regions from Asymptotic Dist.

Theorem 3.13. Assume that

- 1. $X_i: 1 = 1, 2, ..., n$ i.i.d., $X \sim f(x; \theta), n \to \infty$, same regularity conditions as for asymptotic distribution of MLE.
- 2. $\omega_0 = \{ \boldsymbol{\theta} \in \Omega : g_i(\boldsymbol{\theta}) = a_i, i = 1, 2, ..., q \}$ for some set of $q \leq p$ smooth independent functions $g_i(\cdot)$ and constants a_i , and ω_0 is in the interior of Ω . (ω_0 is a p-q dimensional manifold)
- 3. $\widehat{\theta}_0$ and $\widehat{\theta}$ in the LRT are consistent MLE solutions.

Then, when H_0 is true:

$$-2\log\Lambda(\mathbf{X}) \xrightarrow{D} \chi_q^2$$
.

We reject H_0 if $-2 \log \Lambda(\mathbf{X}) > \chi_{q,\alpha}^2$, i.e., reject H_0 if $\Lambda(\mathbf{X}) < c$ with $c = \exp\left\{\frac{-\chi_{q,\alpha}^2}{2}\right\}$.

Remark 3.14. Test with asymptotic distribution can better control α -risk.

4 Optimality Properties and Limits of Performance

Theorem 4.1 (Rao-Cramer Lower Bound). Consider any estimator $\widetilde{\theta}$. Under mild regularity conditions, we have

$$\boldsymbol{\Sigma}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) \geq \dot{\boldsymbol{\mu}}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) \mathbf{I}_{\mathrm{joint}}^{-1}(\boldsymbol{\theta}) \dot{\boldsymbol{\mu}}_{\widetilde{\boldsymbol{\theta}}}'(\boldsymbol{\theta}).$$

For any linear combo $\mathbf{a}'\widetilde{\boldsymbol{\theta}}$ of elements of $\widetilde{\boldsymbol{\theta}}$, a lower bound on its variance is

$$\mathrm{Var}(\mathbf{a}'\widetilde{\boldsymbol{\theta}}) = \mathbf{a}' \boldsymbol{\Sigma}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) \mathbf{a} \geq \mathbf{a}' \left[\dot{\boldsymbol{\mu}}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) \mathbf{I}_{\mathrm{joint}}^{-1}(\boldsymbol{\theta}) \dot{\boldsymbol{\mu}}_{\widetilde{\boldsymbol{\theta}}}'(\boldsymbol{\theta}) \right] \mathbf{a}.$$

Definition 4.2 (Efficient & asymptotically efficient). An unbiased estimator $\widetilde{\boldsymbol{\theta}}$ is efficient if it achieves the C-R bound, i.e., $\boldsymbol{\Sigma}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) = \mathbf{I}_{\mathrm{joint}}^{-1}(\boldsymbol{\theta})$. An estimator $\widetilde{\boldsymbol{\theta}}$ is asymptotically efficient if $\boldsymbol{\mu}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) \stackrel{n \to \infty}{\to} \boldsymbol{\theta}$, and $n\boldsymbol{\Sigma}_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}) \stackrel{n \to \infty}{\to} n\mathbf{I}_{\mathrm{joint}}^{-1}(\boldsymbol{\theta})$.

Remark 4.3. MLEs are asymptotically efficient.

Definition 4.4 (Sufficient statistic). $t(\mathbf{X})$ is a sufficient statistic for θ if $\frac{f(\mathbf{x};\theta)}{f_T(t(\mathbf{x});\theta)}$ does not depend on θ .

Theorem 4.5 (Neyman factorization theorem). $t(\mathbf{X})$ is a sufficient statistic for θ iff we can factor $f(\mathbf{x}; \theta) = g_1(t(\mathbf{x}); \theta)g_2(\mathbf{x})$.

Definition 4.6 (MSS). A sufficient statistic $\mathbf{t}(\mathbf{X}) = [t_1(\mathbf{X}), t_2(\mathbf{X}), \dots, t_m(\mathbf{X})]'$ is minimal if it cannot be reduced to smaller dimension while retaining sufficiency.

Remark 4.7 (Data reduction). If $f(\mathbf{x}; \boldsymbol{\theta}) = g_1(t(\mathbf{x}); \boldsymbol{\theta})g_2(\mathbf{x})$, then MLE $\hat{\boldsymbol{\theta}}$ and LRT $\Lambda(\mathbf{X}) = \frac{L(\hat{\boldsymbol{\theta}}_0; \mathbf{X})}{L(\hat{\boldsymbol{\theta}}; \mathbf{X})} = \frac{g_1(\mathbf{t}(\mathbf{x}); \hat{\boldsymbol{\theta}}_0)}{g_1(\mathbf{t}(\mathbf{x}); \hat{\boldsymbol{\theta}})}$ only depend on \mathbf{x} via $\mathbf{t}(\mathbf{x})$.

Theorem 4.8 (Rao-Blackwell Theorem). For general $f(\mathbf{x}; \theta)$, let $\widetilde{\theta}(\mathbf{X})$ be an unbiased estimator of θ and $\mathbf{T} = \mathbf{t}(\mathbf{X})$ a sufficient statistic. Then the new estimator $\overset{\approx}{\theta}(\mathbf{T}) \equiv E_{\theta}[\widetilde{\theta}(\mathbf{X}) \mid \mathbf{T}]$ is also unbiased, and $\operatorname{Var}_{\theta}(\overset{\approx}{\theta}) \leq \operatorname{Var}_{\theta}(\widetilde{\theta}(\mathbf{X}))$ with equality iff $\widetilde{\theta}(\mathbf{X})$ is a function of $\mathbf{t}(\mathbf{X})$ alone (then $\overset{\approx}{\theta}(\mathbf{T}) = \widetilde{\theta}(\mathbf{X})$).

Remark 4.9. $\stackrel{\approx}{\theta}(\mathbf{T}) \equiv E_{\theta}[\widetilde{\theta}(\mathbf{X}) \mid \mathbf{T}]$ is not a function of θ .

Theorem 4.10. Let Z and Y be any two scalar r.v.s. Then we have $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y \mid Z]]$ and the variance decomposition $\text{Var}[Y] = \mathbb{E}[\text{Var}[Y \mid Z]] + \text{Var}[\mathbb{E}[Y \mid Z]]$.

Definition 4.11 (Most powerful test). For simple hypotheses, a test C is a most powerful test of size- α if C is size- α , and for any other size- α test C', $\pi_C(\boldsymbol{\theta}_1) \geq \pi_{C'}(\boldsymbol{\theta}_1)$.

Theorem 4.12 (Neyman-Pearson Theorem). The size- α LRT is most powerful for simple hypotheses.

Definition 4.13 (Uniformly most powerful). For composite hypotheses, a test C is a uniformly most powerful (UMP) test of size- α if C is size- α , and for any other size- α test C', $\pi_C(\theta) \ge \pi_{C'}(\theta)$, $\forall \theta \in \omega_1$.

5 Prediction of Random Variables

Remark 5.1. For X and Y continuous r.v.s,

$$f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) = \frac{f_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})} = \frac{f_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y}) f_{\mathbf{Y}}(\mathbf{y})}{\int f_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{z}) f_{\mathbf{Y}}(\mathbf{z}) d\mathbf{z}}.$$

For X continuous and Y discrete,

$$p_{\mathbf{Y} \,|\, \mathbf{X}}(\mathbf{y} \,|\, \mathbf{x}) = \frac{f_{\mathbf{X} \,|\, \mathbf{Y}}(\mathbf{x} \,|\, \mathbf{y}) p_{\mathbf{Y}}(\mathbf{y})}{\sum_{\mathbf{z}} f_{\mathbf{X} \,|\, \mathbf{Y}}(\mathbf{x} \,|\, \mathbf{z}) p_{\mathbf{Y}}(\mathbf{z})}.$$

Definition 5.2 (Mean square error).

$$\mathrm{MSE}(\widehat{\mathbf{Y}}(\mathbf{X})) \equiv \mathbb{E}\left\{ \left[\mathbf{Y} - \widehat{\mathbf{Y}}(\mathbf{X}) \right] \left[\mathbf{Y} - \widehat{\mathbf{Y}}(\mathbf{X}) \right]' \right\} = \mathrm{Cov}\left(\mathbf{Y} - \widehat{\mathbf{Y}}(\mathbf{X}) \right),$$

where the last equality holds when $\mathbb{E}[\widehat{\mathbf{Y}}(\mathbf{X})] = \mathbb{E}[\mathbf{Y}]$.

Theorem 5.3. Consider any function $\mathbf{g}(\mathbf{x}) = [g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_m(\mathbf{x})]'$ of \mathbf{x} (e.g., any prediction $\hat{\mathbf{Y}}(\mathbf{x}) = \mathbf{g}(\mathbf{x})$). Then,

- i) $MSE(\mu_{\mathbf{Y}|\mathbf{X}}(\mathbf{X})) \leq MSE(\mathbf{g}(\mathbf{X}))$ (i.e., the conditional mean is the MMSE predictor of \mathbf{Y}).
- ii) $\mathbb{E}\{[\mathbf{Y} \boldsymbol{\mu}_{\mathbf{Y}|\mathbf{X}}(\mathbf{X})]g_j(\mathbf{X})\} = \mathbf{0}_{m\times 1}, \forall j \text{ (i.e., the prediction error for the optimal predictor are uncorrelated with any function of <math>\mathbf{X}$).

Theorem 5.4. For jointly Gaussian $\begin{bmatrix} \mathbf{Y} \\ \mathbf{X} \end{bmatrix} \sim N_{m+n} \begin{pmatrix} \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{Y}} \\ \boldsymbol{\mu}_{X} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{Y}} & \boldsymbol{\Sigma}_{\mathbf{YX}} \\ \boldsymbol{\Sigma}_{\mathbf{XY}} & \boldsymbol{\Sigma}_{\mathbf{X}} \end{bmatrix} \end{pmatrix}$

$$\mathbf{Y} \mid \mathbf{X} \sim N_m \left(\boldsymbol{\mu}_{\mathbf{Y}} + \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} (\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}}), \boldsymbol{\Sigma}_{\mathbf{Y}} - \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}} \right).$$

In particular, the MMSE predictor is $\widehat{\mathbf{Y}}(\mathbf{x}) = \mu_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{x}) = \mu_{\mathbf{Y}} + \Sigma_{\mathbf{Y}\mathbf{X}} \Sigma_{\mathbf{X}}^{-1}(\mathbf{X} - \mu_{\mathbf{X}})$ with MSE $(\mu_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{X})) = \Sigma_{\mathbf{Y}} - \Sigma_{\mathbf{Y}\mathbf{X}} \Sigma_{\mathbf{X}}^{-1} \Sigma_{\mathbf{X}\mathbf{Y}}$.

Theorem 5.5 (Gauss-Markov theorem for prediction). Construct the linear MMSE predictor

$$\begin{split} \widehat{\mathbf{Y}}^*(\mathbf{x}) &= \boldsymbol{\mu}_{\mathbf{Y}} + \boldsymbol{\Sigma}_{\mathbf{YX}} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}}), \\ \text{with} \quad \mathrm{MSE}(\widehat{\mathbf{Y}}^*(\mathbf{x})) &= \boldsymbol{\Sigma}_{\mathbf{Y}} - \boldsymbol{\Sigma}_{\mathbf{YX}} \boldsymbol{\Sigma}_{\mathbf{YX}} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \boldsymbol{\Sigma}_{\mathbf{XY}}. \end{split}$$

Furthermore, the prediction error $\mathbf{Y} - \widehat{\mathbf{Y}}^*(\mathbf{X})$ are zero-mean and uncorrelated with any linear function of \mathbf{X} , i.e., $\mathbb{E}\{\mathbf{Y} - \widehat{\mathbf{Y}}^*(\mathbf{X})\} = \mathbf{0}_{m \times 1}$ and $\mathbb{E}\{[\mathbf{Y} - \widehat{\mathbf{Y}}^*(\mathbf{X})](\mathbf{a}'\mathbf{X} + b)\} = \mathbf{0}_{m \times 1}, \forall \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}$.

6 Bayesian Statistical Inference

Definition 6.1 (Bayesian paradigm for statistical inference). After conducting an experiment and observing an $\mathbf{X} = \mathbf{x}$, calculate a posterior distribution based on a prior distribution $f_{\Theta}(\boldsymbol{\theta})$:

$$f_{\Theta \mid \mathbf{X}}(\boldsymbol{\theta} \mid \mathbf{x}) = \frac{f_{\mathbf{X} \mid \Theta}(\mathbf{x} \mid \boldsymbol{\theta}) f_{\Theta}(\boldsymbol{\theta})}{\int f_{\mathbf{X} \mid \Theta}(\mathbf{x} \mid \boldsymbol{\eta}) f_{\Theta}(\boldsymbol{\eta}) d\boldsymbol{\eta}}.$$

Remark 6.2. For normal prior and likelihood, posterior is also normal: $\Theta \mid \mathbf{X} \sim N(\gamma, \lambda^2)$. Here γ is a weighted average of the prior mean and \bar{x} , where the weights are the inverse of the prior variance and the conditional variance of $\bar{X} \mid \mu$.

Definition 6.3 (Maximum a posterior (MAP) estimator). The MAP estimator is given by

$$\widehat{\boldsymbol{\theta}}(\mathbf{x}) \equiv \operatorname*{argmax}_{\boldsymbol{\theta}} f_{\mathbf{Y}|\mathbf{X}}(\boldsymbol{\theta} \,|\, \mathbf{x}) = \operatorname*{argmax}_{\boldsymbol{\theta}} f_{\mathbf{X}|\mathbf{\Theta}}(\mathbf{x} \,|\, \boldsymbol{\theta}) f_{\mathbf{\Theta}}(\boldsymbol{\theta}).$$

Remark 6.4. Compared to MLE

$$\widehat{\boldsymbol{\theta}}(\mathbf{x}) \equiv \operatorname*{argmax}_{\boldsymbol{\theta}} f_{\mathbf{X} \mid \boldsymbol{\Theta}}(\mathbf{x} \mid \boldsymbol{\theta}).$$

Definition 6.5 (Posterior mean estimator). The posterior mean estimator is given by

$$\widehat{\boldsymbol{\theta}}(\mathbf{x}) \equiv \mathbb{E}[\boldsymbol{\Theta} \,|\, \mathbf{X} = \mathbf{x}] = \int \boldsymbol{\theta} f_{\boldsymbol{\Theta} \,|\, \mathbf{X}}(\boldsymbol{\theta} \,|\, \mathbf{x}) \mathrm{d}\boldsymbol{\theta} = \frac{\int \boldsymbol{\theta} f_{\mathbf{X} \,|\, \boldsymbol{\Theta}}(\mathbf{x} \,|\, \boldsymbol{\theta}) f_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}}{\int f_{\mathbf{X} \,|\, \boldsymbol{\Theta}}(\mathbf{x} \,|\, \boldsymbol{\theta}) f_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}}.$$

Definition 6.6 (Bayesian credible regions). A region $R \subset \mathbb{R}^p$ is a $1 - \alpha$ credible region for Θ if $\mathbb{P}\{\Theta \in R \mid \mathbf{X} = \mathbf{x}\} = \int_R f_{\Theta \mid \mathbf{X}}(\boldsymbol{\theta} \mid \mathbf{x}) d\boldsymbol{\theta} = 1 - \alpha$.

Definition 6.7 (Highest posterior density (HPD)). A $1-\alpha$ highest posterior density (HPD) credible region R is a $1-\alpha$ credible region s.t. $\forall \theta \in R, \theta' \notin R$, we have $f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x}) \geq f_{\Theta \mid \mathbf{X}}(\theta' \mid \mathbf{x})$.

Definition 6.8 (Bayesian hyp. tests). For testing $H_0: \boldsymbol{\theta} \in \omega_0$ and $H_1: \boldsymbol{\theta} \in \omega_1$. Choose p and reject H_0 if $\mathbb{P}\{\boldsymbol{\Theta} \in \omega_1 \mid \mathbf{X} = \mathbf{x}\} = \int_{\omega_1} f_{\boldsymbol{\Theta} \mid \mathbf{X}}(\boldsymbol{\theta} \mid \mathbf{x}) d\boldsymbol{\theta} > p$.

Definition 6.9 (Bayesian prediction intervals/regions). Predict Y based on

$$f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) = \int f_{\mathbf{Y} \mid \mathbf{X}, \mathbf{\Theta}}(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}) f_{\mathbf{\Theta} \mid \mathbf{X}}(\boldsymbol{\theta} \mid \mathbf{x}) d\boldsymbol{\theta}.$$

The posterior MMSE predictor of $\mathbf{Y} \mid \mathbf{X} = \mathbf{x}$ is the posterior mean $\widehat{\mathbf{Y}}(\mathbf{x}) = \mathbb{E}[\mathbf{Y} \mid \mathbf{X}] = \int \mathbf{y} f_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid \mathbf{x}) d\mathbf{y}$.

Definition 6.10 (Conjugate). A family of priors $\{f_{\Theta}(\theta; \gamma)\}$ is conjugate for a given likelihood $f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta)$ if the posterior $f_{\Theta|\mathbf{X}}(\theta|\mathbf{x})$ is in the same family.

Definition 6.11 (Noninformative prior, improper prior). A noninformative prior for Θ is $f_{\Theta}(\theta) = c$ (a constant) for all $\theta \in \Omega$. A noninformative prior is called an improper prior if $\int f_{\Theta}(\theta) d\theta \neq 1$. This is OK if $f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x}) \propto f_{\mathbf{X} \mid \Theta}(\mathbf{x} \mid \theta) f_{\Theta}(\theta)$ is proper.

Remark 6.12. It's common to use a noninformative prior for $\log(\theta)$, which is equivalent to using $f_{\Theta}(\theta) \propto c/\theta$.

Definition 6.13 (Jeffrey's prior). The Jeffrey's prior sets $f_{\Theta}(\theta) \propto |\mathbf{I}(\theta)|^{1/2}$, where $\mathbf{I}(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta} \right) \left(\frac{\partial \log f(X;\theta)}{\partial \theta} \right)' \right]$ is the Fisher information matrix. The Jeffrey's prior is invariant under transformation.

Remark 6.14. When $f_{\Theta}(\theta) = c$, the MAP of θ is MLE.

Definition 6.15 (Decision rule). A decision rule $\delta(\mathbf{x})$ is a function that maps \mathbf{x} to a decision usually regarding the parameters $\boldsymbol{\theta}$.

Definition 6.16 (Loss function). A loss function $L(\theta, \delta(\mathbf{x}))$ represents the cost of deciding $\delta(\mathbf{x})$ when true parameters are θ , e.g. the squared-error loss $L(\theta, \widehat{\theta}(\mathbf{x})) = [\widehat{\theta}(\mathbf{x}) - \theta][\widehat{\theta}(\mathbf{x}) - \theta]'$.

Definition 6.17 (Risk function). The risk function is the expected loss w.r.t. **X** for fixed θ , e.g.,

$$R(\boldsymbol{\theta}, \boldsymbol{\delta}) \equiv \mathbb{E}[L(\boldsymbol{\Theta}, \boldsymbol{\delta}(\mathbf{X})) \,|\, \boldsymbol{\Theta} = \boldsymbol{\theta}] \equiv \int L(\boldsymbol{\theta}, \boldsymbol{\delta}(\mathbf{x})) f_{\mathbf{X} \,|\, \boldsymbol{\Theta}}(\mathbf{x} \,|\, \boldsymbol{\theta}) \mathrm{d}\mathbf{x}.$$

Definition 6.18 (Bayesian risk).

$$R(\boldsymbol{\delta}) \equiv \mathbb{E}[L(\boldsymbol{\Theta}, \boldsymbol{\delta}(\mathbf{X}))] = \iint L(\boldsymbol{\theta}, \boldsymbol{\delta}(\mathbf{x})) f_{\mathbf{X}, \boldsymbol{\Theta}}(\mathbf{x}, \boldsymbol{\theta}) d\mathbf{x} d\boldsymbol{\theta} = \iint L(\boldsymbol{\theta}, \boldsymbol{\delta}(\mathbf{x})) f_{\mathbf{X} \mid \boldsymbol{\Theta}}(\mathbf{x} \mid \boldsymbol{\theta}) d\mathbf{x} f_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

Remark 6.19. We can write

$$R(\pmb{\delta}) \equiv \mathbb{E}[L(\pmb{\Theta}, \pmb{\delta}(\mathbf{X}))] = \mathbb{E}\{\mathbb{E}[L(\pmb{\Theta}, \pmb{\delta}(\mathbf{X})) \,|\, \mathbf{X}]\} = \int \left\{\int L(\pmb{\theta}, \pmb{\delta}(\mathbf{x})) f_{\pmb{\Theta} \,|\, \mathbf{X}}(\pmb{\theta} \,|\, \mathbf{x}) \mathrm{d}\pmb{\theta}\right\} f_{\mathbf{X}}(\mathbf{x}) \mathrm{d}\mathbf{x}.$$

So the optimal function $\delta^*(\cdot)$ is the pointwise (in **x**) solution to

$$\boldsymbol{\delta}^*(\mathbf{x}) \equiv \underset{\boldsymbol{\delta}(\mathbf{x})}{\operatorname{argmin}} \int L(\boldsymbol{\theta}, \boldsymbol{\delta}(\mathbf{x})) f_{\boldsymbol{\Theta} \mid \mathbf{X}}(\boldsymbol{\theta} \mid \mathbf{x}) d\boldsymbol{\theta}.$$