

FICHA 1: Lenguaje algebraico

1. Completar la siguiente tabla (véase el primer ejemplo):

	LENGUAJE COMÚN	LENGUAJE ALGEBRAICO	VALOR NUMÉRICO	
1	El doble de un número	2x	x=2	$x=2 \Rightarrow 2 \cdot 2 = 4$
2	El triple de un número		x=2	
3	La mitad de un número		x=10	
4	La 1/4 parte de un número		x=12	
5	Un número aumentado en 3 unidades		x=5	
6	Un número disminuido en 5 unidades		x=11	
7	La suma de dos números		x=5 y=2	
8	La resta de dos números		x=5 y=2	
9	El doble de un número más uno		x=-2	
10	El cuádruple de un número menos el doble de otro		x=2 y=2	
11	El cuadrado de un número más otro número		x=3 y=1	
12	Si x es la edad de una persona, la edad que tendrá dentro de 5 años		x=13 años	
13	Si x es la edad de una persona, la edad que tenía hace 7 años		x=14 años	
14	El área de un cuadrado de lado I		I=3 cm	
15	El área de un rectángulo de lados a y b		a=3cm b=4cm	
16	El perímetro de un cuadrado de lado I		I=3 cm	
17	El perímetro de un rectángulo de lados a y b		a=3cm b=4cm	
18	El 20% de un número x		x=50	

2. Ídem:

	LENGUAJE COMÚN	LENGUAJE ALGEBRAICO	VALOR NUMÉRICO	
1	El doble de un número menos 3 unidades		x=3	
2	Al sumar dos números, el orden de los factores no altera el resultado		x=2 y=5	
3		2x+5	x=-2	
4		3x-6	x=1/3	
5	El doble de la suma de un número más 4		x=0	
6	La mitad de la diferencia de un número menos 8		x=14	
7		x^2+7	x=-1	
8		(x+7) ²	x=1	
9	El cubo de la mitad de un número		x=6	
10	La mitad del cuadrado de un número		x=6	
11		x+x²		
12	El cuádruple del cuadrado de un número		x=-3	
13	La mitad de un número menos 3		x=-8	
14	El área de un triángulo de base b y altura h		b=4dm h=3dm	
15		4x-2	x=-1	
16		5-2x	x=0	
17		8x ³	x=1/2	
18		(x+y) ²	x=2 y=3	
19		x ² +y ²	x=2 y=3	

3. Completar la siguiente tabla (véase el primer ejemplo):

	Monomio	Coeficiente	Parte literal	Grado
1	5x ²	5	x ²	2
2	2x			
3	-3ab			
4	-3x ³			
5	х			
6	$-5xy^3z^2$			
7	4a³b			
8	a b			
9	$\frac{3}{4} x^2 y^2$			
10	5			
11		2	x ³	
12		-1	х	
13		$\frac{3}{5}$	ab ²	
14	-1			
15	$\frac{1}{2}$			
16	-8xyz			
17		4	a²bc	
18		3		0
19		1	х	
20	$\frac{3}{2}a^2b^4$			

FICHA 2: Operaciones con monomios (I)

- **1.** a) Indicar tres monomios semejantes a -3x⁴.
 - b) ¿V o F? 12ab y -12ab son semejantes.
 - c) ¿V o F? 2x²y y 2xy² son semejantes.
 - d) Escribir dos monomios semejantes de grado 5 y cuya parte literal conste de dos letras.
- 2. Sumar monomios semejantes:

a)
$$3x^2 + 4x^2 - 5x^2 =$$

b)
$$6x^3 - 2x^3 + 3x^3 =$$

c)
$$x^5 + 4x^5 - 7x^5 =$$

d)
$$-2x^4 + 6x^4 + 3x^4 - 5x^4 =$$

e)
$$7x + 9x - 8x + x =$$

$$f) \quad 2y^2 + 5y^2 - 3y^2 =$$

g)
$$3x^2y - 6x^2y + 5x^2y =$$

h)
$$4xy^2 - xy^2 - 7xy^2 =$$

i)
$$2a^6 - 3a^6 - 2a^6 + a^6 =$$

j)
$$ab^3 + 3ab^3 - 5ab^3 + 6ab^3 - 4ab^3 =$$
 (Sol: ab^3)

k)
$$7xy^2z - 2xy^2z + xy^2z - 6xy^2z =$$
 (Sol: 0)

1)
$$-x^3 + 5x - 2x + 3x^3 + x + 2x^3 =$$

m)
$$x^4 + x^2 - 3x^2 + 2x^4 - 5x^4 + 8x^2 =$$

n)
$$3a^2b - 5ab^2 + a^2b + ab^2 =$$

o)
$$\frac{7}{3}x^2 + \frac{4}{3}x^2 =$$

p)
$$12x^5 - x^5 - 4x^5 - 2x^5 - 3x^5 =$$

q)
$$\frac{7}{4}x^5 + \frac{1}{4}x^5 =$$

r)
$$x^2y^2 - 5x^2y^2 - (3x^2y^2 - 4x^2y^2) - 8x^2y^2 =$$
 (Sol: $-11x^2y^2$)

s)
$$x^2 + \frac{x^2}{3} =$$

t)
$$x^2 + x^2 =$$

u)
$$-3y^2 + 4y^2 =$$

v)
$$5x^3 - 6x + 7x - x^3 - x + 4x^3 =$$

w)
$$-x^2 + x + x^2 + x^3 + x =$$

x)
$$2x^3 - (x^3 - 3x^3) =$$

y)
$$8x^2 - x + 9x + x^2 =$$

2)
$$8xy^2 - 5x^2y + x^2y - xy^2 =$$

$$\alpha$$
) $-3x+7y-(8y+y-6x)=$

3. Efectuar los siguientes productos y cocientes de monomios:

a)
$$3x^2 \cdot 4x^3 =$$

b)
$$2x^3 \cdot 4x^3 \cdot 3x^3 =$$

c)
$$x^3 \cdot x^3 =$$

d)
$$-2x^4 \cdot 3x^3 =$$

e)
$$7x \cdot (-8x^2) =$$

f)
$$(-3y^2) \cdot (-2y^3) =$$

g)
$$3x^2y \cdot 6xy^3 =$$

h)
$$\frac{3}{4}x^2 \cdot \frac{5}{2}x^3 =$$

i)
$$4a^3b^2 \cdot a^2b \cdot 7ab =$$

j)
$$-\frac{1}{2}a^3 \cdot \frac{5}{3}a^4 =$$

k)
$$2a^6 \cdot 3a^6 \cdot 2a^6 =$$

$$1) \qquad \frac{2}{5}x^3 \cdot \left(-\frac{3}{2}x\right) =$$

m)
$$ab^3 \cdot (-3a^2b) \cdot 5a^3b =$$

n)
$$x^2 \cdot \frac{1}{3}x^5 =$$

$$\mathbf{o)} - ab^2c^3 \cdot (-3a^2bc) \cdot 3abc =$$

p)
$$(6x^4):(2x^2)=$$

q)
$$\frac{12a^6}{3a^3}$$
 =

r)
$$15x^4$$
: $(-3x)$ =

s)
$$\frac{-14x^7}{7x^2}$$
 =

t)
$$-8x^4:(-4x^3)=$$

u)
$$\frac{5x^7y^3}{x^2y} =$$

v)
$$(-18x^4):(6x^3)=$$

w)
$$\frac{-12a^5b^4c^6}{2a^3b^2c}$$
 =

x)
$$2x^4 \cdot 6x^3 : (4x^2) =$$
 (Sol: $3x^5$)

y)
$$27x^4: (-9x^3) \cdot (-2x^2) =$$
 (Sol: $6x^3$)

z)
$$(2x)^2 =$$

4. Efectuar las siguientes **operaciones combinadas** con monomios:

a)
$$15x^5 - 3x^3 \cdot 4x^2 =$$
 (Sol: $3x^5$)

b)
$$2x^3 + 4x^3 \cdot 5x - 2x \cdot (-x^2) =$$
 (Sol: $20x^4 + 4x^3$)

c)
$$3a \cdot ab - 2a^2 \cdot (-4b) - 8 \cdot (2a^2b) =$$
 (Sol: -5a^2b)

d)
$$3x^2 + 4x^2 - 2x^2 \cdot (-3x) - (4x^3 + x^2 - 2x \cdot x^2) =$$
 (Sol: $4x^3 + 6x^2$)

e)
$$-3xy^2 - (-4x \cdot 7y^2) + [8x^2y^3 : (2xy)] =$$
 (Sol: 29xy²)

f)
$$(-y^2) \cdot (-2y^2) - 5y \cdot (-2y^3) + 3y^3 \cdot (-4y) =$$
 (Sol: 0)

g)
$$(3x^3 \cdot 6x - 2x^2 \cdot x^2) : (4x^2 \cdot 3x^2 - 8x \cdot x^3) =$$
 (Sol: 4)

h)
$$3x^5 - \frac{4}{3}x^2 \cdot \frac{3}{2}x^3 =$$
 (Sol: x^5)

i)
$$4a^2b \cdot (-ab^2) \cdot 5ab - 8a^4b^4 =$$
 (Sol:-28a⁴b⁴)

j)
$$a^5 + \frac{5}{6}a^3 \cdot \frac{3}{5}a^2 =$$
 (Sol: $3a^5/2$)

k)
$$5x^6 - 2x^6 \cdot 3x^6 : (-2x^6) =$$
 (Sol: $8x^6$)

1)
$$\left(-\frac{7}{3}x^3\right) \cdot \left(-\frac{4}{7}x\right) + \frac{2}{3}x^4 =$$
 (Sol: 2x⁴)

m)
$$2ab \cdot (-a^3b) + [ab^2 \cdot (-3a^2b)] - 5a^3b \cdot ab + ab \cdot a^2b^2 =$$
 (Sol: $-7a^4b^2 - 2a^3b^3$)

n)
$$2x^2 \cdot \frac{1}{3}x^3 + \frac{21x^7}{3x^2} =$$
 (Sol: $23x^5/3$)

o)
$$-x^2y - (-3x^2 \cdot 7y) + \frac{16x^2y^3z}{4y^2z} =$$
 (Sol: $24x^2yz$)

p)
$$x^3 - (-3x^2 \cdot x) + (2x)^3 =$$
 (Sol: 12x³)

q)
$$10a^3b^2 - 8a^3b^2 : (2a^2b) + 2a^2b \cdot (-3ab) + 3ab =$$

FICHA 3: Repaso de operaciones con monomios (II)

1. Sumar monomios semejantes:

a)
$$\frac{1}{2}x^3 - \frac{5}{2}x^3 + \frac{3}{2}x^3 =$$

b)
$$-(ab^3 + a^3b) - 3a^3b + 5ab^3 - (a^3b - 2ab^3) =$$
 (Sol: $6ab^3 - 5a^3b$)

c)
$$7x^2 - \frac{1}{2}x^2 - \frac{5}{2}x^2 + 2x^2 + \frac{3}{2}x^2 =$$
 (Sol: $15x^2/2$)

d)
$$-x + x^2 + x^3 + 3x^2 - 2x^3 + 2x + 3x^3 =$$

e)
$$2a^2b + 5a^2b - \frac{2}{3}a^2b - a^2b + \frac{a^2b}{2} =$$
 (Sol: $35a^2b/6$)

f)
$$-x^3 + \frac{5x^3}{4} - \frac{2x^3}{3} + 3x^3 + \frac{x^3}{2} =$$
 (Sol: $37x^3/12$)

g)
$$7x^3 - \frac{1}{2}x^2 - \frac{5}{2}x^3 + 2x^2 + \frac{3}{2}x^3 =$$
 (Sol: $6x^3 + 3x^2/2$)

h)
$$\frac{4}{3}xy - \frac{5}{2}xy + \frac{7}{4}xy - xy =$$

2. Efectuar los siguientes productos y cocientes de monomios:

a)
$$2x^2 \cdot 4x^3 \cdot 5x^6 =$$

b)
$$-4x^3 \cdot 2x =$$

d)
$$-10x^3y^2:(x^2y)=$$

e)
$$\frac{10x^3}{2xy^2}$$
 =

f)
$$-3x \cdot (-2x) \cdot \frac{7}{4}x =$$

g)
$$7x^3 \cdot 5x \cdot 9x^4 =$$

h)
$$15x^3: (5x^2) =$$

i)
$$\frac{-8x^3y^2}{2x^2y} =$$

j)
$$10x^4yz^2: (5xyz) =$$

k)
$$\frac{3a^5b \cdot (-12a^4b^2)}{4a^3b^2} =$$
 (Sol: $-9a^6b$)

1)
$$\frac{1}{2}a^3 \cdot \frac{3}{4}a^2 =$$

m)
$$2x^2 \cdot x^3 \cdot 3x^5 : (-6x) =$$

3. Efectuar las siguientes operaciones combinadas de monomios:

a)
$$8x^2 - (5x^4 + x^4) : (2x^2) + 15x^4 : (3x \cdot x) =$$
 (Sol: $10x^2$)

b)
$$12x \cdot 3x^2 : x + \frac{14x \cdot x^3}{7x^2} =$$
 (Sol: $38x^2$)

c)
$$8x^4:(2x^2+2x^2)=$$
 (Sol: $2x^2$)

d)
$$\frac{5xy^3 - 2xy^3}{3xy^2} =$$
 (Sol: y)

e)
$$16x \cdot x^3 : (-4) + 9x^5 : x^4 \cdot (-3x^3) =$$
 (Sol: -31x⁴)

f)
$$3x^2 \cdot 10 \cdot 5x^3 - 10x^4 \cdot 6x^2 : 2x =$$
 (Sol: 120x⁵)

g)
$$(5x^2 - 2x^2 + 7x^2) \cdot (4x^3 - x^3 + 6x^3) =$$
 (Sol: $90x^5$)

h)
$$\frac{-4xy^2 + 9xy^2}{3xy + 2xy} =$$
 (Sol: y)

i)
$$\frac{4x^4 + 4x^4}{2x^2 + 2x^2} =$$
 (Sol: 2x²)

j)
$$(x^3 - 8x^3 + 4x^3)(y - 3y + 5y) =$$
 (Sol: -9x³y)

4. Razonar si las siguientes igualdades son V o F. Corregir los errores cometidos, cuando proceda:

a)
$$x + x = 2x$$

b)
$$x^2 + x^2 = x^4$$

c)
$$2a-a=2$$

d)
$$2a + 3a = 5a$$

e)
$$2a + 3b = 5ab$$

FICHA 4: Valor numérico de un polinomio. Sumas y restas de polinomios.

- **1.** a) ¿Cuál es el término independiente de $P(x)=2x^2-5x+6$?
 - **b)** ¿Cuál es el grado de $P(x)=2x^2-5x+6$?
 - c) ¿Cuál es el coeficiente de x en $P(x)=2x^2-5x+6$?
 - d) ¿Cuántos términos tiene $P(x)=2x^2-5x+6$?
 - e) Escribir un polinomio completo de cuatro términos cuya variable o indeterminada sea x:
 - f) Indicar el grado de $P(x)=2x^3y^2-5x^2y^2+3xy-6$?
 - g) ¿Cuál es el término independiente de $P(x) = -x^3 5x^2 + 6x$?
 - h) Escribir un trinomio de tercer grado cuya variable o indeterminada sea x y su término independiente 5:
- 2. Hallar el valor numérico de cada polinomio para el valor indicado de la indeterminada:

a)
$$P(x) = x^2 + x + 1$$
, para $x = 2$ (Sol: 7)

b)
$$P(x) = x^2 + x + 1$$
, para $x = -2$ (Sol: 3)

c)
$$P(x) = 2x^2 - x + 2$$
, para $x = 3$ (Sol: 17)

d)
$$P(x) = 2x^2 - x + 2$$
, para $x = -2$ (Sol: 12)

e)
$$P(x) = -x^2 - 3x + 4$$
, para $x = 4$ (Sol: -24)

f)
$$P(x) = -x^2 + 3x + 4$$
, para $x = -1$ (Sol: 0)

g)
$$P(x) = x^3 + 3x^2 + 1$$
, para $x = 0$ (Sol: 1)

h) P(x) =
$$x^3 - 4x^2 + x + 3$$
, para x = -3 (Sol: -63)

i)
$$P(x) = x^4 - 4x^2 - 1$$
, para $x = 2$ (Sol: -1)

j)
$$P(x) = -x^3 - 3x^2 - x + 2$$
, para $x = -4$ (Sol: 22)

k) P
$$(x) = x^3 - \frac{2}{3}x^2 - \frac{x}{4} + 10$$
, para $x = -2$

1) P
$$(x) = x^3 - \frac{4}{3}x^2 + \frac{5}{2}x - 1$$
, para $x = 5$

m) P
$$(x)= x^3 + \frac{x^2}{9} - \frac{x}{3} + 27$$
, para $x = -3$

3. a) Dado
$$P(x) = x^2 + 2x + k$$
, hallar el valor de k para que $P(2)=6$

b) Dado
$$P(x) = x^2 - kx + 2$$
, hallar el valor de **k** para que $P(-2)=8$

c) Dado
$$P(x) = kx^3 - x^2 + 5$$
, hallar el valor de **k** para que $P(-1)=1$

4. Dados los siguientes polinomios:

$$P(x) = 2x^3 - 3x^2 + 4x - 2$$

$$Q(x) = x^4 - x^3 + 3x^2 + 4$$

$$R(x) = 3x^2 - 5x + 5$$

$$S(x) = 3x - 2$$

Hallar:

a)
$$P(x) + Q(x) =$$

(Sol:
$$x^4 + x^3 + 4x + 2$$
)

b)
$$P(x) + R(x) =$$

(Sol:
$$2x^3 - x + 3$$
)

c)
$$P(x) + S(x) =$$

(Sol:
$$2x^3 - 3x^2 + 7x - 4$$
)

d)
$$S(x) + P(x) =$$

e)
$$P(x) + P(x) =$$

(Sol:
$$4x^3 - 6x^2 + 8x - 4$$
)

¿De qué otra forma se podría haber calculado?

f)
$$Q(x) - S(x) =$$
 (Sol: $x^4 - x^3 + 3x^2 - 3x + 6$)

g)
$$Q(x) + R(x) =$$
 (Sol: $x^4 - x^3 + 6x^2 - 5x + 9$)

h)
$$P(x) - R(x) =$$
 (Sol: $2x^3 - 6x^2 + 9x - 7$)

i)
$$Q(x) + S(x) =$$
 (Sol: $x^4 - x^3 + 3x^2 + 3x + 2$)

j)
$$P(x) - S(x) =$$
 (Sol: $2x^3 - 3x^2 + x$)

k)
$$S(x) - P(x) =$$
 (Sol: $-2x^3 + 3x^2 - x$)

I)
$$P(x) - P(x) =$$
 (Sol: 0)

m)
$$R(x) - S(x) =$$
 (Sol: $3x^2 - 8x + 7$)

n)
$$P(x) - Q(x) + R(x) =$$
 (Sol: $-x^4 + 3x^3 - 3x^2 - x - 1$)

o)
$$Q(x) - [R(x) + S(x)] =$$
 (Sol: $x^4 - x^3 + 2x + 1$)

p)
$$S(x) - [R(x) - Q(x)]$$
 (Sol: $x^4 - x^3 + 8x - 3$)

Repaso:

5. a) Hallar el valor numérico de
$$P(x) = 5x^3 + x - 3$$
 para $x=2$ (Sol: 39)

b) Hallar el valor numérico de
$$P(x) = -5 + 7x + \frac{2}{3}x^2$$
 para $x = -3$ (Sol: 0)

c) Hallar el valor de a para que
$$P(x) = ax^2 - 3x + 5$$
 cumpla que $P(2) = 3$

d) Calcular el valor de a para que
$$P(1)=2$$
 si $P(x)=ax^3-3x^2+4x-7$

$$M(x) = x^2 - 3x + 7$$

$$N(x) = 5x^3 - 6x^2 + x - 3$$

Hallar:

a)
$$M(x) + N(x) =$$

b)
$$M(x) - N(x) =$$

$$A(x) = 2x^3 - 3x^2 + x - 7$$

$$B(x) = x^3 + 7x^2 - 4x$$

$$C(x) = -2x^2 + x - 5$$

Hallar:

a)
$$A(x) + B(x) + C(x) =$$

(Sol:
$$3x^3+2x^2-2x-12$$
)

b)
$$B(x) + C(x) =$$

(Sol:
$$x^3+5x^2-3x-5$$
)

c)
$$A(x) - B(x) =$$

(Sol:
$$x^3 - 10x^2 + 5x - 7$$
)

d)
$$A(x) - B(x) - C(x) =$$

(Sol:
$$x^3 - 8x^2 + 4x - 2$$
)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

FICHA 5: Productos de polinomios

1. Efectuar los siguientes **productos** en los que intervienen **monomios**, dando el resultado simplificado:

a)
$$5x^3 \cdot 3x^2y \cdot (-4xz^3) =$$
 (Soluc: $-60x^6yz^3$)

b)
$$2x^2 \cdot (3x^4 - 2x^3 + 2x^2 + 5) =$$
 (Soluc: $6x^6 - 4x^5 + 4x^4 + 10x^2$)

c)
$$(-2x^5 + 3x^3 - 2x^2 - 7x + 1) \cdot (-3x^3) =$$
 (Soluc: $6x^8 - 9x^6 + 6x^5 + 21x^4 - 3x^3$)

d)
$$4a^3 \cdot (-a^3 + 3a^2 - a + 1) =$$
 (Soluc: $-4a^6 + 12a^5 - 4a^4 + 4a^3$)

e)
$$(-y^4 + 2y^3 - 3y^2 + 2) \cdot (-2y^2) =$$
 (Soluc: $2y^6 - 4y^5 + 6y^4 - 4y^2$)

f)
$$(-2x^3) \cdot \left(\frac{4}{5}x^2\right) \cdot \left(\frac{1}{2}x\right) =$$

$$\mathbf{g})\left(-\frac{5}{7}\mathbf{x}^{7}\right)\cdot\left(\frac{3}{5}\mathbf{x}^{2}\right)\cdot\left(-\frac{4}{3}\mathbf{x}\right)=$$

$$\left(\operatorname{Soluc}:\frac{4}{7}\mathbf{x}^{10}\right)$$

$$h) -3ab^2 \cdot 2ab \cdot \left(-\frac{2}{3}a^2b\right) =$$
 (Soluc: $4a^4b^4$)

i)
$$12x^2 \cdot \left(\frac{2}{3}x^3 - \frac{3}{2}x^2 + \frac{4}{5}x - \frac{5}{4}\right) =$$

(Soluc:
$$8x^5 - 18x^4 + \frac{48}{5}x^3 - 15x^2$$
)

j)
$$\left(\frac{1}{2}ab^3 - a^2 + \frac{4}{3}a^2b + 2ab\right) \cdot 6a^2b =$$

$$(Soluc: 3a^3b^4 - 6a^4b + 8a^4b^2 + 12a^3b^2)$$

2. Realizar los siguientes **productos** de polinomios:

a)
$$(x+3) \cdot (x-2) =$$
 (Sol: $x^2 + x - 6$)

b)
$$(2x-6) \cdot (3x+5) =$$
 (Sol: $6x^2 - 8x - 30$)

c)
$$(x^2 + 3x - 1)(x^2 - 2) =$$

(Sol:
$$x^4 + 3x^3 - 3x^2 - 6x + 2$$
)

d)
$$(3x^2 - 4)(x^2 - 2x + 1) =$$
 (Sol: $3x^4 - 6x^3 - x^2 - 8x - 4$)

e)
$$(x^2-2x+2)(3x^2-2x+2)=$$

(Sol:
$$3x^4 - 8x^3 + 12x^2 - 8x + 4$$
)

f)
$$(x^3 - 2x^2 + x + 3)(3x^2 - 2) =$$

(Sol:
$$3x^4 - 6x^4 + x^3 + 13x^2 - 2x - 6$$
)

g)
$$(x^3 - 3x + 5)(2x^2 - 2x + 6) =$$

(Sol:
$$2x^5 - 2x^4 + 16x^2 - 28x + 30$$
)

h)
$$(3x^2 - 6x + 4) \cdot (x^2 - x - 2) =$$

(Sol:
$$3x^4 - 9x^3 + 4x^2 + 8x - 8$$
)

i)
$$(6x^2 - 8x + 3) \cdot (3x - 1) =$$

(Sol:
$$18x^3 - 30x^2 + 17x - 3$$
)

j)
$$(-x^3 + 4x^2 - 5) \cdot (-x - 1) =$$

(Sol:
$$x^4 - 3x^3 - 4x^2 + 5x + 5$$
)

k)
$$(x^2 + x + 1) \cdot (x - 1) =$$

(Sol:
$$x^3-1$$
)

$$P(x) = 2x^3 - 3x^2 + 4x - 2$$

$$Q(x) = x^4 - x^3 + 3x^2 + 4$$

$$R(x) = 3x^2 - 5x + 5$$

$$S(x) = 3x - 2$$

Hallar los siguientes productos:

a)
$$P(x) \cdot S(x) =$$

(Sol:
$$6x^4 - 13x^3 + 18x^2 - 14x + 4$$
)

b)
$$S(x) \cdot P(x) =$$

c)
$$Q(x) \cdot S(x) =$$

(Sol:
$$3x^5 - 5x^4 + 11x^3 - 6x^2 + 12x - 8$$
)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

d) $R(x) \cdot S(x) =$

(Sol: $9x^3 - 21x^2 + 25x - 10$)

e) $[R(x)]^2 =$

(Sol: $9x^4 - 30x^3 + 55x^2 - 50x + 25$)

f) $[S(x)]^2 =$

(Sol: $9x^2 - 12x + 4$)

FICHA 6: Operaciones combinadas con polinomios

1. Realizar las siguientes operaciones combinadas de polinomios:

a)
$$(x^3 + 2) \cdot [(4x^2 + 2) - (2x^2 + x + 1)] =$$

(Sol:
$$2x^5 - x^4 + x^3 + 4x^2 - 2x + 2$$
)

b)
$$(x^2 - 3) \cdot (x + 1) - (x^2 + 5) \cdot (x - 2) =$$

(Sol:
$$3x^2 - 8x + 7$$
)

c)
$$(4x + 3) \cdot (2x - 5) - (6x^2 - 10x - 12) =$$

(Sol:
$$2x^2-4x-3$$
)

d)
$$(x^3 + 2) \cdot (4x^2 + 2) - (2x^2 + x + 1) =$$

(Sol:
$$4x^5+2x^3+6x^2-x+3$$
)

e)
$$(2x^2 + x - 2)(x^2 - 3x + 2) - (5x^3 - 3x^2 + 4) =$$

(Sol:
$$2x^4 - 10x^3 + 2x^2 + 8x - 8$$
)

f)
$$(x^2 - 3x + 2) \cdot [(5x^3 - 3x^2 + 4) - (2x^2 + x - 2)] =$$

(Sol:
$$5x^5 - 20x^4 + 24x^3 - x^2 - 20x + 12$$
)

g)
$$2x^2 + x - 2 - (x^2 - 3x + 2) \cdot (5x^3 - 3x^2 + 4) =$$

$$(Sol: -5x^5 + 18x^4 - 19x^3 + 4x^2 + 13x - 10)$$

h)
$$(-2x^2 + x - 2)(-x^2 + 1) - (2x^5 - x^4 + x^2 + 2x - 1) =$$

(Sol:
$$-2x^5+3x^4-x^3-x^2-x-1$$
)

i)
$$-2x \cdot \left(-\frac{x^2}{4}\right) \cdot 2x^3 - 2x^2 - \left(x^4 + 5x^2 - 1\right) \cdot \left(x^2 - 3\right) =$$

$$(Sol: -2x^4 + 14x^2 - 3)$$

$$\textbf{j)} \quad 2 \Big(x^3 + 3x - 1 \Big) - \Big(2x^3 - x^2 - 1 \Big) \Big(-x^2 + 3x + 1 \Big) =$$

(Sol:
$$2x^5 - 7x^4 + 3x^3 + 9x - 1$$
)

k)
$$(2x^3 - x^2 + 3x - 1)(x^2 - 2x + 2) - 2x(x^3 - x^2 + 3x - 2) =$$

(Sol:
$$2x^5 - 7x^4 + 11x^3 - 15x^2 + 12x - 2$$
)

1)
$$(5x^2 - 2x^2 + 7x^2) \cdot (4x^3 - x^3 + 6x^3) =$$

(Sol:
$$90x^5$$
)

m)
$$4x^{2}(-x^{2}-x+4)-(x^{2}-3x+4)(2x^{2}+2x-1)=$$

(Sol:
$$-6x^4 + 15x^2 - 11x + 4$$
)

2. Dados los siguientes polinomios:
$$P(x) = 2x^{3} - 3x^{2} + 4x - 2$$

$$Q(x) = x^{4} - x^{3} + 3x^{2} + 4$$

$$R(x) = 3x^{2} - 5x + 5$$

$$S(x) = 3x - 2$$

hallar las siguientes operaciones combinadas:

a)
$$[Q(x) - R(x)] \cdot S(x) =$$

(Sol:
$$3x^5 - 5x^4 + 2x^3 + 15x^2 - 13x + 2$$
)

b)
$$P(x) + 2Q(x) =$$

(Sol:
$$2x^4 + 3x^2 + 4x + 6$$
)

c)
$$P(x) - 3[Q(x) + R(x)] =$$

$$(Sol: -3x^4 + 5x^3 - 21x^2 + 19x - 29)$$

d)
$$P(x) - 2Q(x) + 3R(x) =$$

(Sol:
$$-2x^4+4x^3-11x+5$$
)

e)
$$-[Q(x) + 2R(x)] \cdot S(x) =$$

(Sol:
$$-3x^5+5x^4-29x^3+48x^2-62x+28$$
)

f)
$$P(x) - 2x \cdot Q(x) =$$

(Sol:
$$-2x^5+2x^4-4x^3-3x^2-4x-2$$
)

FICHA 7: Repaso de valor numérico y operaciones combinadas (II)

1. a) Hallar el valor numérico de
$$P(x) = 5x^3 + x - 3$$
 para $x=-2$

$$(Sol: -45)$$

b) Hallar el valor numérico de
$$P(x) = -5 + 7x + \frac{2}{3}x^2$$
 para $x = 0$

2. Dados los siguientes polinomios:

$$P(x) = x^2 - 3x + 7$$

$$Q(x) = 5x^3 - 6x^2 + x - 3$$

$$R(x) = 7x^2 + 4$$

hallar:

a)
$$2x^2 \cdot Q(x) =$$

(Sol:
$$10x^5 - 12x^4 + 2x^3 - 6x^2$$
)

b)
$$P(x) \cdot 7x =$$

(Sol:
$$7x^3 - 21x^2 + 49x$$
)

c)
$$[P(x) - R(x)] \cdot 2x =$$

$$(Sol: -12x^3 - 6x^2 + 6x)$$

d)
$$[R(x) - Q(x)] \cdot (-x^2) =$$

(Sol:
$$5x^5 - 13x^4 + x^3 - 7x^2$$
)

3. Realizar las siguientes **operaciones combinadas** de polinomios:

a)
$$(9-3x) \cdot (-2) + 9x =$$

b)
$$5x \cdot (6+7x) - x^2 =$$

(Sol:
$$34x^2 + 30x$$
)

c)
$$x^3 + x^2 \cdot (1 - x - 4x^2) + 8x =$$

(Sol:
$$-4x^4 + x^2 + 8x$$
)

d)
$$4x^2 - 5 \cdot (x - x^2) - x \cdot (6 - 2x) =$$

(Sol:
$$11x^2 - 11x$$
)

e)
$$(30a^2b - 15ab^2 + 5a^2b^2) \cdot (-a - b) : (ab) =$$

$$(Sol: -30a^2 - 15ab - 5a^2b + 15b^2 - 5ab^2)$$

f)
$$\left(\frac{1}{2}x^2 + \frac{3}{4}x\right) - \left(\frac{5}{4}x + 7\right) + \frac{7}{2}x^2 - \frac{9}{4}x + 3 = \frac{1}{2}x^2 + \frac{3}{4}x + \frac{3}$$

(Sol:
$$4x^2 - 11x/4 - 4$$
)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

g)
$$\left(\frac{5x^3}{3} - \frac{2x^2}{5} + x - 7\right) \cdot \left(\frac{5}{2}x^2 - 3x\right) =$$

(Sol: $25x^5/6-6x^4+37x^3/10-41x^2/2+21x$)

h)
$$\frac{2x^2}{5} \cdot (x^3 - 3x^2 + x - 1) - x^3 \cdot (\frac{x^2}{2} - x + \frac{2}{3}) =$$

(Sol: $-x^5/10+x^4/5-4x^3/15-2x^2/5$)

i)
$$\frac{5x}{6} (x^5 - x^2 + 3x - 1) - x^5 (\frac{1}{3}x^2 - \frac{5}{2}x + \frac{4}{3}) =$$

(Sol: $-x^7/3+10x^6/3-4x^5/3-5x^3/6+5x^2/2-5x/6$)

FICHA 8: Cocientes de polinomios entre monomios. Extraer factor común.

1. Efectuar los siguientes **cocientes** en los que intervienen **monomios**, simplificar, y comprobar el resultado:

a)
$$\frac{4x^3}{2x^2} =$$

b)
$$8x^4:(-2x^2)=$$

c)
$$\frac{7x^5}{2x^3} =$$

d)
$$-8x^3:(2x^2)=$$

e)
$$\frac{-3x^7}{-9x^4} =$$

$$f) \quad \frac{-3x^4 + 6x^3 - 12x^2}{3x^2} =$$

g)
$$(8x^8 - 6x^4 - 4x^3) : (-4x^3) =$$

h)
$$\frac{-12x^9 + 2x^5 - x^4}{4x^4} =$$

i)
$$(-18x^3yz^3)$$
: $(6xyz^3)$ =

j)
$$\left[a^3b \cdot (-3a) + 5a^4b \right] : (-ab) =$$
 (Sol: -2a³)

k)
$$\frac{-3xy^2 \cdot (-2x^3y)}{4x^2y} =$$
 (Sol: $3x^2y^2/2$)

I)
$$(18x^5 - 10x^4 + 6x^2) : (-2x) =$$
 (Sol: $-9x^4 + 5x^3 - 3x$)

m)
$$(12x^4 - 24x^3 + x^2) : (3x^2) =$$
 (Sol: $4x^2 - 8x + 1/3$)

n)
$$\frac{25a-15}{5}$$
 = (Sol: 5a-3)

o)
$$\frac{12a^2 - 18a + 69}{6} =$$
 (Sol: $2a^2 - 3a + 23/2$)

p)
$$(10a^4 - 20a^3 - 4a^2) : (2a) =$$
 (Sol: $5a^3 - 10a^2 - 2a$)

q)
$$16a^4:(4a^2):(2a)=$$
 (Sol: 2a)

2. Extraer el máximo factor común posible (y **comprobar a continuación mentalmente**, aplicando la propiedad distributiva):

a)
$$4x^2 - 6x + 2x^3 =$$
 (Soluc: $2x(x^2 + 2x - 3)$)

b)
$$3x^3 + 6x^2 - 12x =$$
 (Soluc: $3x(x^2 + 2x - 4)$)

c)
$$12x^4y^2 + 6x^2y^4 - 15x^3y =$$
 (Soluc: $3x^2y(4x^2y+2y^3-5x)$)

d)
$$-12x^3 - 8x^4 + 4x^2 + 4x^6 =$$
 (Soluc: $4x^2(x^4 - 2x^2 - 3x + 1)$)

e)
$$8x^2 - 8x^3 =$$
 (Soluc: $8x^2(1-x)$)

f)
$$-3xy - 2xy^2 - 10x^2yz =$$
 (Soluc: $-xy(3+2y+10xz)$)

g)
$$-3x + 6x^2 + 12x^3 =$$
 (Soluc: $3x(4x^2+2x-1)$)

h)
$$2ab^2 - 4a^3b + 8a^4b^3 =$$
 (Soluc: $2ab(b-2a^2+4a^3b^2)$)

i)
$$2x^5 - 4x^4 - 6x^3 + 2x^2 =$$

j)
$$x^5 - x^2 =$$
 (Soluc: $x^2(x^3-1)$)

k)
$$6x^3y^2 - 3x^2yz + 9xy^3z^2 =$$
 (Soluc: $3xy(2x^2y - xz + 3y^2z^2)$)

$$1) 15x^2y^2 - 5x^2y + 25x^2y^3 =$$

m)
$$3x^2 + 5y^2 =$$
 (Soluc: $3x^2 + 5y^2$)

n)
$$4a^2b+2a-2ab^2=$$
 (Soluc: $2a(2ab+1-b^2)$

o)
$$12x - 4y =$$
 (Soluc: $4(3x-y)$)

p)
$$3x + 6x - 9x =$$

q)
$$4x - 12y =$$

r)
$$10a - 10b + 10c =$$

t)
$$10xy - 5xy + 15xy =$$

u)
$$14x^4 - 35x^3 - 7x^2 + 42 =$$

v)
$$25m^2n + 20m^3n^2 - 30m^4 =$$

w)
$$x^2y - xy^3 + xy =$$

Repaso:

3. Dados los siguientes polinomios: $P(x) = 9x^5 - 21x^4 + 27x^3 + 4x + 37$ $Q(x) = 9x^2 - 3x + 12$

Hallar:

a) $Q(x) \cdot Q(x) =$

(Sol: $81x^4 - 54x^3 + 225x^2 - 72x + 144$)

b) $P(x)-3x\cdot Q(x)=$ (Sol: $9x^5-21x^4+9x^2-32x+37$)

- **c)** Q(x):3
- **d)** Extraer el máximo factor común de Q(x):
- **4.** Una cuestión de jerarquía: ¿Es lo mismo $(6x^4)$: $(2x^2)$ y $6x^4$: $2x^2$? Razonar la respuesta. (Soluc: No es lo mismo)
- **5.** Extraer el máximo factor común posible (y **comprobar a continuación mentalmente**, aplicando la propiedad distributiva):

a)
$$-5x^4 + 2x^3 =$$
 (Soluc: $x^3(-5x+2)$)

b)
$$3x^2 + 6x^2 - 9x^3 =$$
 (Soluc: $9x^2(1-x)$)

c)
$$3x^2 - 3x + 3 =$$
 (Soluc: $3(x^2 - x + 1)$)

d)
$$x^6 - x^3 =$$
 (Soluc: $x^3(x^3-1)$)

e)
$$7x^2 - 4y^2 =$$
 (Soluc: $7x^2 - 4y^2$)

f)
$$3x^2 + 2 =$$
 (Soluc: $3x^2 + 2$)

g)
$$12x - 4y =$$
 (Soluc: $4(3x-y)$)

h)
$$5x^2 - 10 =$$
 (Soluc: $5(x^2-2)$)

i)
$$5a^3b^3 + 10a^2b^2 =$$
 (Soluc: $5a^2b^2(ab+2)$)

j)
$$a^4b^2 - a^2b^2 =$$
 (Soluc: $a^2b^2(a^2-1)$)

k)
$$4x^5 + 3x^4 - 5x^2 =$$

1)
$$-6y^4 + 8y^3 + 4y =$$

m)
$$10x^2y - 15xy + 20xy^2 =$$

n)
$$3z^4 + 9z^2 - 6z^3 =$$

Efectuar los siguientes cocientes en los que intervienen monomios, simplificar, y comprobar el resultado:

a)
$$\frac{4x^3}{2x^2} =$$

b)
$$(x^3 + 3x^3) : x^2 =$$

c)
$$(7x^3 - 4x^2 + 5x)$$
: $x =$

d)
$$(9x^3y^3+3x^2y+15xy^2):(3xy)=$$

$$e) \ \frac{12xy - x^2y}{xy}$$

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

FICHA 9: IDENTIDADES NOTABLES (I)

$$(A + B)^2 = A^2 + 2AB + B^2$$

 $(A - B)^2 = A^2 - 2AB + B^2$
 $(A + B)(A - B) = A^2 - B^2$

- Desarrollar las siguientes expresiones utilizando la igualdad notable correspondiente, y simplificar.
 Obsérvense los primeros ejemplos:
 - 1) $(x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2 = x^2 + 10x + 25$
 - 2) $(x-6)^2 = x^2 2 \cdot x \cdot 6 + 6^2 = x^2 12x + 36$
 - 3) $(x+2)(x-2) = x^2 2^2 = x^2 4$
 - 4) $(x+2)^2 =$ (Soluc: $x^2 + 4x + 4$)
 - 5) $(x-3)^2 =$ (Soluc: $x^2 6x + 9$)
 - 6) (x+4)(x-4) = (Soluc: $x^2 16$)
 - 7) $(x+3)^2 =$ (Soluc: $x^2 + 6x + 9$)
 - 8) $(x-4)^2 =$ (Soluc: $x^2 8x + 16$)
 - 9) (x+5)(x-5) = (Soluc: $x^2 25$)
 - **10)** $(a+4)^2 =$ (Soluc: $a^2 + 8a + 16$)
 - 11) $(a-2)^2 =$ (Soluc: $a^2 4a + 4$)
 - **12)** (a+3)(a-3) = (Soluc: $a^2 9$)
 - **13)** $(2x+3)^2 =$ (Soluc: $4x^2 + 12x + 9$)
 - **14)** $(3x-2)^2 =$ (Soluc: $9x^2 12x + 4$)
 - **15)** (2x+1)(2x-1) = (Soluc: $4x^2-1$)
 - **16)** $(3x+2)^2 =$ (Soluc: $9x^2 + 12x + 4$)
 - **17)** $(2x-5)^2 =$ (Soluc: $4x^2 20x + 25$)
 - **18)** $(5-2x)^2 =$ (Soluc: idem)

19) (3x+2)(3x-2) = (Soluc: $9x^2 - 4$)

20) $(4b+2)^2 =$ (Soluc: $16b^2 + 16b + 4$)

21) $(5b-3)^2 =$ (Soluc: $25b^2 - 30b + 9$)

22) (b+1)(b-1) = (Soluc: $b^2 - 1$)

23) $(4a+5)^2 =$ (Soluc: $16a^2 + 40a + 25$)

24) $(5a-2)^2 =$ (Soluc: $25a^2 - 20a + 4$)

25) (5a + 2)(5a - 2) = (Soluc: $25a^2 - 4$)

26) $(4y+1)^2 =$ (Soluc: $16y^2 + 8y + 1$)

27) $(2y-3)^2 =$ (Soluc: $4y^2 - 12y + 9$)

28) (2y+3)(2y-3) = (Soluc: $4y^2 - 9$)

29) $(3x+4)^2 =$ (Soluc: $9x^2 + 24x + 16$)

30) $(3x-1)^2 =$ (Soluc: $9x^2 - 6x + 1$)

31) (3x+4)(3x-4) = (Soluc: $9x^2 - 16$)

32) $(5b+1)^2 =$ (Soluc: $25b^2 + 10b + 1$)

33) $(2x-4)^2 =$ (Soluc: $4x^2 - 16x + 16$)

34) (4x+3)(4x-3) = (Soluc: $16x^2 - 9$)

35) $(x^2 + 2)^2 =$ (Soluc: $x^4 + 4x^2 + 4$)

36) $(a^2-3)^2 =$ (Soluc: a^4-6x^2+9)

37) $(2x^2 + 1)(2x^2 - 1) =$ (Soluc: $4x^4 - 1$)

38) $(2x^2 + 1)^2 =$ (Soluc: $4x^4 + 4x^2 + 1$)

39) $(3x^2 - 2)^2 =$ (Soluc: $9x^4 - 12x^2 + 4$)

40) $(a^2 + 3a)(a^2 - 3a) =$ (Soluc: $a^4 - 9a^2$)

41) $(2x^2 - 3)^2 =$ (Soluc: $4x^4 - 12x^2 + 9$)

42) $(2x^2 + 1)(2x^2 - 1) =$ (Soluc: $4x^4 - 1$)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

2. Completar los términos que faltan:

a)
$$(2x+4)^2 =$$
 +16x +

b)
$$(3x^2 - 2)^2 = 9$$
 + $-12x^2$

c)
$$($$
 $+5)^2 = x^4 + 10$ $+$

d)
$$(3)^2 =$$
 $+16x^2 - 24x$

3. a) Un alumno de 2º de ESO, indica lo siguiente en un examen:

$$(x+2)^2 = x^2 + 4$$

Razonar que se trata de un grave error. ¿Cuál sería la expresión correcta?

- **b)** Ídem con $10 \cdot (x+1)^2 = (10x+10)^2$
- **4.** Desarrollar las siguientes expresiones utilizando la identidad notable correspondiente, y simplificar:

a)
$$(x-2)^2 + (x+3)^2 =$$

(Soluc:
$$2x^2 + 2x + 13$$
)

b)
$$(x+4)^2 - (x-1)^2 =$$

c)
$$(x+5)(x-5)-(x+5)^2 =$$

(Soluc:
$$-10x - 50$$
)

d)
$$(3x-2)^2 + (3x+2)(3x-2) =$$

(Soluc:
$$18x^2 - 12x$$
)

FICHA 10: Repaso de IDENTIDADES NOTABLES (II)

1. Desarrollar las siguientes expresiones utilizando el producto notable correspondiente, y simplificar:

1)
$$(4x+5)^2 =$$
 (Soluc: $16x^2 + 40x + 25$)

2)
$$(x^2 + 7x)^2 =$$
 (Soluc: $x^4 + 14x^3 + 49x^2$)

3)
$$(x^3 + 3x^2)^2 =$$
 (Soluc: $x^6 + 6x^5 + 9x^4$)

4)
$$\left(\frac{5x}{6} + \frac{2}{7}\right)^2 =$$
 (Soluc: $\frac{25}{36}x^2 + \frac{10}{21}x + \frac{4}{49}$)

5)
$$(3a-5b)^2 =$$
 (Soluc: $9a^2 - 30ab + 25b^2$)

6)
$$(8-3x)^2 =$$
 (Soluc: 64 - 48x + 9x²)

7)
$$(x^2 - x^3)^2 =$$
 (Soluc: $x^4 - 2x^5 + x^6$)

8)
$$(x^3 - x^2)^2 =$$
 (Soluc: idem)

9)
$$\left(\frac{x}{4} - \frac{2x}{3}\right)^2 =$$
 (Soluc: $\frac{25}{144}x^2$)

10)
$$(x+4)(x-4) =$$
 (Soluc: $x^2 - 16$)

11)
$$(x^2-1)(x^2+1)=$$
 (Soluc: x^4-1)

12)
$$(3-2x)(3+2x) =$$
 (Soluc: 9 - 4x²)

13)
$$\left(\frac{x}{3} + 5\right) \left(\frac{x}{3} - 5\right) =$$
 (Soluc: $\frac{x^2}{9} - 25$)

14)
$$\left(\frac{1}{2} - \frac{x^2}{3}\right) \left(\frac{1}{2} + \frac{x^2}{3}\right) =$$
 (Soluc: $\frac{1}{4} - \frac{x^4}{9}$)

15)
$$(x-5)^2 =$$
 (Soluc: $x^2 - 10x + 25$)

16)
$$(2x+3y)^2 =$$
 (Soluc: $4x^2 + 12xy + 9y^2$)

17)
$$(4+a)^2 =$$
 (Soluc: $16+8a+a^2$)

18)
$$(3a-6b)^2 =$$
 (Soluc: $9a^2 - 36ab + 6b^2$)

19)
$$(x^2 + y^2)^2 =$$

(Soluc:
$$x^4 + 2x^2y^2 + y^4$$
)

20)
$$(3x^2 - 5y^3)^2 =$$

(Soluc:
$$9x^4 - 30x^2y^3 + 25y^6$$
)

21)
$$(x^2 - y^2)^2 =$$

(Soluc:
$$x^4 - 2x^2y^2 + y^4$$
)

22)
$$(1+a^4)^2 =$$

(Soluc:
$$1 + 2a^4 + a^8$$
)

23)
$$(x+1)(x-1) =$$

24)
$$(5+ab)(5-ab) =$$

(Soluc:
$$25 - a^2b^2$$
)

25)
$$(3a-2b)(3a+2b) =$$

(Soluc:
$$9a^2 - 4b^2$$
)

26)
$$(2+7x^2y)(2-7x^2y) =$$

(Soluc:
$$4 - 49x^4y^2$$
)

- ¿Cómo podríamos desarrollar la siguiente expresión?: $(x+2)^3$ =
- Desarrollar las siguientes expresiones utilizando la identidad notable correspondiente, y simplificar:

a)
$$(2x+3)^2 - (2x-3)^2 + (2x+3)(2x-3) =$$

(Soluc:
$$4x^2 + 24x - 9$$
)

b)
$$(2x-5)^2 - (2x^2 + 5x - 1)(2x^2 - 3) =$$

(Soluc:
$$-4x^4 - 10x^3 + 12x^2 - 5x + 22$$
)

Expresar los siguientes polinomios como una identidad notable. Véase el primer ejemplo:

1)
$$x^2 + 4x + 4 = (x+2)^2$$

2)
$$4x^2 - 12x + 9 =$$

3)
$$\frac{1}{4}x^2 - x + 1 =$$

4)
$$x^4 + 2x^2 + 1 =$$

5)
$$9x^4 + 6x^3 + x^2 =$$

6)
$$9x^4 + 6x^2y + y^2 =$$

7)
$$16 - x^2 =$$

8)
$$100 - 64x^2 =$$

8)
$$100-64x^2 =$$
9) $49x^4-36x^2 =$

10)
$$1-x^2 =$$

11)
$$9x^6 - x^8 =$$

11)
$$9x^6 - x^8 =$$
12) $16x^2 - 25 =$

13)
$$x^4 - 4 =$$