What is Claimed is:

1	1. A process for the manufacture of a LiMPO ₄ powder, comprising the steps			
2	of:			
3	providing an equimolar aqueous solution of Li1+, Mn+, and PO43- prepared			
4	by dissolving components which are susceptible to coexist as solutes in an aqueous			
5	system and which, upon heating at a temperature below 500° C, decompose to form a			
6	pure homogeneous Li and M phosphate precursor;			
7	evaporating water from the solution, thereby producing a solid mixture;			
8	decomposing the solid mixture at a temperature below 500° C to form a			
9	pure homogeneous Li and M phosphate precursor; and			
10	annealing the precursor at a temperature of less than 800° C in an inert or			
11	reducing atmosphere, thereby forming a LiMPO ₄ powder;			
12	wherein M ⁿ⁺ is one or more of Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺ , and Mn ²⁺ , and M is			
13	$Fe_xCo_yNi_zMn_w, \text{ with } 0 \leq x \leq 1, \ 0 \leq y \leq 1, \ 0 \leq z \leq 1, \ 0 \leq w \leq 1, \text{ and } x+y+z+w=1.$			
1	2. The process according to claim 1, wherein in the step of annealing the			
2	precursor, the annealing temperature is less than 600° C.			
1	3. A process for the manufacture of a LiFePO ₄ powder, comprising the			
2	steps of:			
3	providing an equimolar aqueous solution of Li ¹⁺ , Fe ³⁺ , and PO ₄ ³⁻ prepared			
4	by dissolving components which are susceptible to coexist as solutes in an aqueous			
5	system and which, upon heating at a temperature below 500° C, decompose to form a			
6	pure homogeneous Li and Fe phosphate precursor;			
7	evaporating water from the solution, thereby producing a solid mixture;			
8	decomposing the solid mixture at a temperature below 500° C to form a			
9	pure homogeneous Li and Fe phosphate precursor; and			
10	annealing the precursor at a temperature of less than 800° C in a reducing			
11 atmosphere, thereby forming a LiFePO ₄ powder.				
1	4. The process according to claim 3, wherein in the step of annealing the			
2	precursor, the annealing temperature is less than 600° C.			
1	5. The process according to claims 3, wherein the Fe ³⁺ bearing component			
2	is iron nitrate.			

1	6.	A powder for use in lithium insertion-type electrodes with a formula		
2	LiMPO ₄ having an average particle size of less than 1μm, wherein M is Fe _x Co _y Ni _z Mn _w ,			
3	with $0 \le x \le 1$	$0 \le y \le 1, 0 \le z \le 1, 0 \le w \le 1, x + z + w > 0, \text{ and } x + y + z + w = 1.$		
1	7.	The powder according to claim 6, wherein M is Fe, the powder having a		
2	reversible electrode capacity of at least 65% of a theoretical capacity when used as an			
3	active component in a cathode that is cycled between 2.70 and 4.15 V vs. Li ⁺ /Li at a			
4	discharge rate	of C/5 at 25° C.		
1	8.	A powder for use in lithium insertion-type electrodes prepared by a		
2	process comprising the steps of:			
3		providing an equimolar aqueous solution of Li ¹⁺ , M ⁿ⁺ , and PO ₄ ³⁻ prepared		
4	by dissolving components which are susceptible to coexist as solutes in an aqueous			
5	system and which, upon heating at a temperature below 500° C, decompose to form a			
6	pure homogeneous Li and M phosphate precursor;			
7		evaporating water from the solution, thereby producing a solid mixture;		
8		decomposing the solid mixture at a temperature below 500° C to form a		
9	pure homogeneous Li and M phosphate precursor; and			
10		annealing the precursor at a temperature of less than 600° C in an inert or		
11	reducing atmosphere, thereby forming a LiMPO ₄ powder;			
12		wherein M^{n+} is one or more of Fe^{2+} , Fe^{3+} , Co^{2+} , Ni^{2+} , and Mn^{2+} , and M is		
13	$Fe_xCo_yNi_zMn_w, \text{ with } 0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1, 0 \leq w \leq 1, \text{and } x+y+z+w=1.$			
1	9.	The powder according to claim 8, wherein M ⁿ⁺ is Fe ³⁺ , M is Fe. and the		
2	annealing occ	urs in a reducing atmosphere.		
1	10.	A battery comprising a lithium insertion-type electrode including a		
2	powder prepar	red by a process comprising the steps of:		
3		providing an equimolar aqueous solution of Li1+, Mn+, and PO43- prepared		
4	by dissolving components which are susceptible to coexist as solutes in an aqueous			
5	system and which, upon heating at a temperature below 500° C, decompose to form a			
6	pure homogeneous Li and M phosphate precursor;			
7		evaporating water from the solution, thereby producing a solid mixture;		
8		decomposing the solid mixture at a temperature below 500° C to form a		
9	nure homogen	eous Li and M phosphate precursor: and		

10	annealing the precursor at a temperature of less than 600° C in an inert or			
11	reducing atmosphere, thereby forming a LiMPO ₄ powder;			
12	wherein M ⁿ⁺ is one or more of Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺ , and Mn ²⁺ , and M is			
13	$Fe_xCo_yNi_zMn_w, \text{ with } 0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1, 0 \leq w \leq 1, \text{and } x+y+z+w=1.$			
1	11. The battery according to claim 10, wherein the powder has an average			
2	particle size of less than $1 \mu m$ and $x + z + w > 0$.			
1	12. The battery according to claim 11, wherein M is Fe, the powder having a			
2	reversible electrode capacity of at least 65% of a theoretical capacity when used as an			
3	active component in a cathode that is cycled between 2.70 and 4.15 V vs. Li ⁺ /Li at a			
4	discharge rate of C/5 at 25° C.			
1	13. The battery according to claim 10, wherein M^{n+} is Fe^{3+} , M is Fe, and the			
2	annealing occurs in a reducing atmosphere.			
1	14 A manager for the manufacture of a lithium incertion town alcotroda			
1	14. A process for the manufacture of a lithium insertion-type electrode			
2	comprising the steps of: providing an equimolar aqueous solution of Li ¹⁺ , M ⁿ⁺ , and PO ₄ ³⁻ prepared			
3	•			
4	by dissolving components which are susceptible to coexist as solutes in an aqueous			
5	system and which, upon heating at a temperature below 500° C, decompose to form a			
6	pure homogeneous Li and M phosphate precursor;			
7	evaporating water from the solution, thereby producing a solid mixture;			
8	decomposing the solid mixture at a temperature below 500° C to form a			
9	pure homogeneous Li and M phosphate precursor;			
10	annealing the precursor at a temperature of less than 600° C in an inert or			
11	reducing atmosphere, thereby forming a LiMPO ₄ powder;			
12	providing a mixture of the LiMPO ₄ powder and a conductive carbon			
13	bearing powder; and			
14	milling the mixture during a period of time to optimize a reversible			
15	electrode capacity of the electrode;			
16	wherein M ⁿ⁺ is one or more of Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺ , and Mn ²⁺ , and M is			
17	$\text{Fe}_{x}\text{Co}_{y}\text{Ni}_{z}\text{Mn}_{w}$, with $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$, $0 \le w \le 1$, and $x + y + z + w = 1$.			

- 1 15. The process according to claim 14, wherein M is Fe, the conductive 2 carbon powder is one of Acetylene Black and Carbon Super P, the weight ratio of 3 LiFePO₄/carbon is between 75/25 and 85/15, and the milling time is between 15 and 25 4 minutes.
- 1 16. The process according to claim 14, wherein the powder has an average 2 particle size of less than $1\mu m$ and x + z + w > 0.
- 1 17. The process according to claim 16, wherein M is Fe and the reversible electrode capacity is at least 65% of a theoretical capacity when used as an active component in a cathode that is cycled between 2.70 and 4.15 V vs. Li⁺/Li at a discharge rate of C/5 at 25° C.