Modélisation des actions mécaniques dans les systèmes Révisions 2- Modélisation du frottement

Sciences Industrielles de l'Ingénieur

Modélisation du contact ponctuel entre 2 pièces 1

1.1 Torseur des actions mécaniques

Considérons le contact ponctuel ponctuel entre deux pièces 1 et 2. En considérant la liaison parfaite, le torseur des actions mécaniques de 1 sur 2 s'écrit sous la forme suivante : $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} F_{12}\overrightarrow{n_{12}} \\ \overrightarrow{0} \end{array}\right\}_{\tau}$ en notant $\overrightarrow{n_{12}}$ le vecteur normal au contact orienté de 1 vers 2. En considérant que la liaison n'est pas parfaite, plusieurs situation peuvent se présenter.

- Si on considère qu'un effort tant à faire translater 2 suivant $\overrightarrow{t_{12}}$, le torseur des actions mécaniques de 1 sur 2 peut alors s'écrire sous la forme $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} N_{12}\overrightarrow{n_{12}} + T_{12}\overrightarrow{t_{12}} \\ \overrightarrow{0} \end{array}\right\}_I$.
- Si on considère qu'un effort tant à faire rouler 2 autour de $\overrightarrow{z_{12}}$, le torseur des actions mécaniques de 1 sur 2 peut alors s'écrire sous la forme $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} N_{12} \overrightarrow{n_{12}} \\ M_{r12} \overrightarrow{z} \end{array}\right\}_I$ avec M_{r12} moment de résistance au roulement.

 • Si on considère qu'un effort tant à faire pivoter 2 autour de $\overrightarrow{n_{12}}$, le torseur des actions mécaniques de 1 sur 2
- peut alors s'écrire sous la forme $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} N_{12} \overrightarrow{n_{12}} \\ M_{p12} \overrightarrow{n_{12}} \end{array}\right\}_I$ avec M_{p12} moment de résistance au pivotement.
- Il est possible de modéliser l'ensemble des composantes dues au frottement dans un même torseur. On fait l'hypothèse ici d'un problème plan, mais il peut aisément être adapté à un modèle 3D.

1.2 Facteur de glissement et d'adhérence

Considérons la pièce 2 sur un plan incliné 1. Notons φ_a l'angle à partir duquel la pièce 2 se met à glisser sur le plan. On appelle $f_a = \tan \varphi_a$ le facteur d'adhérence. On constate expérimentalement qu'une fois la pièce est en mouvement, si on diminue l'angle φ , la pièce continue à glisser, jusqu'à un angle φ_g . On appelle $f_g = \tan \varphi_g$ le facteur de glissement.

Ces facteurs sont sans unité. Ils dépendent de la nature des matériaux en contact ainsi que de la nature des surfaces de contact (et d'un lubrifiant éventuel). Ils sont indépendants de l'effort de 2 sur 1. Ces deux facteurs étant relativement proches, on fera l'hypothèse que $f = f_1 = f_2$.

Modélisation de l'adhérence et du glissement - Lois de Coulomb

Cas 1 – Glissement –
$$\overrightarrow{V(I \in 2/1)} \neq \overrightarrow{0}$$
 Cas 2 – Adhérence – $\overrightarrow{V(I \in 2/1)} = \overrightarrow{0}$

- Connaissant le sens et la direction de $V(I \in 2/1)$, alors $\overrightarrow{t_{12}}$ s'oppose à $V(I \in 2/1)$.
- $|T_{12}| = f|N_{12}|$.
- · La vecteur vitesse appartenant au plan tangent au contact, on dit que l'effort résultant ($\overrightarrow{F_{12}} = N_{12} \overrightarrow{n_{12}} +$ $T_{12}\overrightarrow{t_{12}}$) est sur le cône de frottement.
- La direction de $\overrightarrow{t_{12}}$ n'est pas connue.
- $|T_{12}| \le f |N_{12}|$. La direction $\overrightarrow{t_{12}}$ n'étant pas connue, on dit que l'effort résultant ($\overrightarrow{F_{12}}$ = $N_{12}\overrightarrow{n_{12}} + T_{12}\overrightarrow{t_{12}}$) appartient au cône d'adhérence.

1.4 Modélisation de la résistance au roulement et au pivotement

Modélisation de la résistance au roulement

Modélisation de la résistance au pivotement

• Le moment de résistance au roulement M_{r12} s'oppose à $\Omega(2/1)$

2 Modélisation locale des actions mécaniques

Définition Localement, les actions mécaniques dans un contact ponctuel avec frottement peuvent être modélisées

$$\operatorname{par le torseur suivant}: \{\mathscr{T}(1 \to 2)\} = \left\{ \begin{array}{l} \overrightarrow{R_{(1 \to 2)}} = \iint\limits_{\mathscr{S}} f(M) \overrightarrow{u(M)} \mathrm{d}\mathscr{S} \\ \overrightarrow{\mathscr{M}(P, 1 \to 2)} = \iint\limits_{\mathscr{S}} \overrightarrow{PM} \wedge \mathrm{d}\overrightarrow{R(1 \to 2)} \end{array} \right\}_{M}.$$
 La densité surfacique d'effort peut alors se décomposer sur le vecteur normal au contact et sur un vecteur

La densité surfacique d'effort peut alors se décomposer sur le vecteur normal au contact et sur un vecteur appartenant au plan tangent au contact. On a alors $f(M)\overrightarrow{u(M)} = p_{12}(M)\overrightarrow{n_{12}} + \overrightarrow{\tau_{12}}(M)$. Dans le cas du glissement : $||\overrightarrow{\tau_{12}}(M)|| = p_{12} \cdot f$. En notant :

- $p_{12}(M)$ pression de contact au point M (en N/m^2);
- $\overrightarrow{\tau_{12}}(M)$: la projection tangentielle de la densité surfacique (norme en N/m^2);
- f facteur de frottement.

3 Résolution des problèmes d'arc-boutement