American International University-Bangladesh

Amena Akter

Id: 20-42761-1

Data Science(D)

Dataset Sources:

https://www.kaggle.com/search?q=numeric+dataset

Import Dataset

```
mydata<- read.csv("C:/zoo.csv",header = TRUE,sep = ",")
```

mydata

```
> mydata<- read.csv("C:/zoo.csv",header = TRUE,sep = ",")</pre>
   animal_name hair feathers eggs milk airborne aquatic predator toothed backbone breathes venomous fins legs tail domestic catsize
       aardvark
       antelope
                               0
                                                              0
                                                                        0
                                                                                                                      ٥
                               0
           bass
           bear
                               0
           boar
                               0
                                    0
                                                     0
                                                              0
                                                                                                                      0
                                                                                                                                            0
6
        buffalo
                               Ō
                                                              0
           calf
                                                              0
                                                                                                                      0
8
            carp
                               0
                                          0
                                                                        0
                                                                                                      0
        catfish
10
11
           cavy
                               0
                                                     0
                                                              0
                                                                        0
                                                                                                                      0
        cheetah
                               0
                                                    0
                                                              0
12
        chicken
                                          0
                                                              0
                                                                                                                      0
13
           chub
                               0
                                          0
                                                     0
                                                                        1
                                                                                                      0
14
           clam
       crab
crayfish
15
16
                               0
                                          0
                                                                                                      0
                                                                                                                      0
                               0
                                                                                                      0
                                          0
                                                     0
                                                                                           0
           crow
18
           deer
                               0
                                    0
                                                     0
                                                              0
                                                                        0
                                                                                                                      0
19
        dogfish
                               0
20
21
        dolphin
                               0
                                                     0
                                                              0
                                          0
                                                                        0
                                                                                 0
                                                                                                                      0
           dove
                               1
                                                    1
22
23
24
25
26
27
       elephant
                               0
                                    0
                                                     0
                                                              0
                                                                        0
                                                                                                                0
                                                                                                                      0
                                                                                                                                            0
                                          ō
       flamingo
                               1
                                                              0
                                                                                                                      0
                               0
                                                              0
                                                                                            0
           froa
                               0
                                          0
                                                     0
                                                                        1
                                                                                                                0
            frog
28
29
       fruitbat
                               0
                                    0
                                                              0
                                                                        0
                                                                                                                0
                                                                                                                      0
                                                                                                                                                     0
                                                     1
        giraffe
                               0
                                                              0
                                                                        0
           girl
31
32
           gnat
                               0
                                          0
                                                              0
                                                                        0
                                                                                           0
                                                                                                                                            0
                                                                                                                                                     0
        goat
```

Find data for attributes

str(mydata)

```
> str(mydata)
'data.frame':
                       obs. of
                                     variables:
                   101
                                  18
                                     "antelope" "bass" "bear"
                         "aardvark"
                  chr
 $
   animal_name:
 $
   hair
                   int
                        1
                           1
                             O
                               1
                                  1
                                    1
                                      1
                                         0
                                           O
                                              1
 $
   feathers
                   int
                        0
                             0
                               0
                                  0
                                    0
                                       0
                                         0
                                           0
                                              0
                                  0
 $
                        O
                           0
                               0
                                    O
                                       0
                                              0
                   int
                             1
                                         1
                                           1
   eggs
 $
                                           O
  mi1k
                   int
                        1
                           1
                             0
                               1
                                  1
                                    1
                                      1
                                         0
                                              1
 $
   airborne
                   int
                        0 0
                             O
                               0
                                  0
                                    0
                                       0
                                         0
                                           0
 $
   aquatic
                  int
                        0 0
                             1
                               0
                                  0
                                    0
                                      0
                                         1
                                           1
                                              O
 $
   predator
                           0
                             1
                               1
                                    0
                                       O
                                         0
                                           1
                   int
                        1
                                  1
                                              0
   toothed
                   int
                        1
                           1
                             1
                               1
                                  1
                                    1
                                       1
                                         1
                                           1
                                  1
                                    1
                           1
                             1
                               1
                                      1
                                         1
 $
   backbone
                   int
                        1
                                           1
                                              1
 $ breathes
                   int
                        1 1
                             O
                               1
                                  1
                                    1
                                      1
                                         0
                                           0
                                              1
 $
   venomous
                  int
                        0 0
                             0 0
                                  0
                                    O
                                      0
                                         0
                                           0
 $
   fins
                        0 0 1
                               0
                                 O
                                    0
                                      0
                                         1
                                           1
                   int
 $
                        4
                           4
                             0
                               4
                                  4
                                    4
                                      4
                                         0
                                           0
                                              4
   legs
                   int
 $
   tail
                   int
                        O
                           1
                             1
                               0
                                  1
                                    1
                                       1
                                         1
                                           1
                                  0
                                    0
 $
   domestic
                   int
                        0 0
                             O
                               O
                                      1
                                         1
                                           0
                                              1
   catsize
 $
                   int
                        1
                           1
                             0 1
                                  1
                                    1
                                      1
                                         0
                                           O
                                             O
                        1
                           1
                             4 1
                                  1
                                    1
   class_type
                   int
```

Removing names from dataset

mydata_new <- mydata[, -1]

mydata_new

	mydata_ne		/data	[, -1	.]												
>	mydata_ne	ew ethone c	aac	mi Ile	airborno	aquatic	nnodaton	toothod	hackbono	hnoathor	Vanamous	fine	logs	+211	domostic	catciza	class_type
1	1	1 cileis	0	1111K	a ii boi iie	aquatic	pi eda coi	1	Dackbone 1	or eatries	veriolilous 0	0	regs 4	0	uoilles t i t	1	trass_type
2	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	1
3	0	0	1	0	0	1	1	1	1	Ď	0	1	0	1	0	0	4
4	1	Õ	0	1	0	0	1	1	1	1	0	0	4	0	0	1	i
5	1	0	0	1	0	0	1	1	1	1	0	Ö	4	1	0	1	1
6	1	Ō	Ō	1	0	0	0	1	1	1	0	Ō	4	1	Ō	1	1
7	1	0	0	1	0	0	0	1	1	1	0	0	4	1	1	1	1
8	0	0	1	0	0	1	0	1	1	0	0	1	0	1	1	0	4
9	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	4
10) 1	0	0	1	0	0	0	1	1	1	0	0	4	0	1	0	1
11	. 1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	1	1
12	2 0	1	1	0	1	0	0	0	1	1	0	0	2	1	1	0	2
13	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	4
14		0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	7
15	0	0	1	0	0	1	1	0	0	0	0	0	4	0	0	0	7
16	0	0	1	0	0	1	1	0	0	0	0	0	6	0	0	0	7
17	•	1	1	0	1	0	1	0	1	1	0	0	2	1	0	0	2
18	_	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	1
19		0	1	0	0	1	1	1	1	0	0	1	0	1	0	1	4
20		0	0	1	0	1	1	1	1	1	0	1	0	1	0	1	1
21		1	1	0	1	0	0	0	1	1	0	0	2	1	1	0	2
22		1	1	0	1	1	0	0	1	1	0	0	2	1	0	0	2
23	_	1	0	0	1	0	0	1	1	1	0	0	2	1	0	1	1
24 25		T .	1	0	1	0	0	0	1	1	0	0	6	1	0	1	2
26		0	1	0	0	1	1	1	1	1	0	0	4	0	0	0	0
27		0	1	0	0	1	1	1	1	1	1	0	4	0	0	0	5
28	•	0	0	1	1	U	1	1	1	1	1	0	2	1	0	0	1
29	_	0	0	1	0	0	0	1	1	1	0	0	1	1	0	1	1
30	_	0	0	1	0	0	1	1	1	1	0	0	2	0	1	1	1
21		0	1	1	1	0	1	1	1	1	0	0		0	1	1	1

Scalling Dataset

scale(mydata_new)

```
> scale(mydata_new)
                   hair
                            feathers
                                                                   milk
                                                                              airborne
                                                                                               aquatic
                                                                                                              predator
                                                                                                                                toothed
                                                                                                                                                backbone
                                                                                                                                                                breathes
                                                                                                                                                                                 venomous
                                                                           -0.5555198 -0.740515
-0.5555198 -0.740515
          1.1556307 -
                            -0.494438
                                                           1.2037132
                                                                                                                             0.8057576
                                                                                                                                                               0.5098049 -0.2918387
                                                                                                            0.8919727
                                                                                                                                              0.4633792
   [2,] 1.1556307
[3,] -0.8567607
                                                                                                                                                              0 5098049 -0 2918387
          1.1556307 -0.494438
                                          -1 1793445
                                                           1.2037132
                                                                                                           -1 1100105
                                                                                                                             0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                                                               -0 4476351
                           -0.494438
                                           0.8395333
                                                           -0.8225373
                                                                                             1.337041
                                                                                                                                                                               -0.2918387
                                                                            -0.5555198
                                                                                                            0.8919727
                                                                                                                              0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                              -1.9421137
                                                                                                                                                                                                2.2118440
         1.1556307 -0.494438
1.1556307 -0.494438
                                          -1.1793445
-1.1793445
                                                            1.2037132 -0.5555198 -0.740515
                                                                                                            0.8919727
                                                                                                                             0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                              0.5098049 -0.2918387
                                                                                                                                                                                                -0.4476351
                                                            1.2037132
                                                                            -0.5555198
                                                                                             -0.740515
                                                                                                            0.8919727
                                                                                                                             0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                               0.5098049
                                                                                                                                                                               -0.2918387
                                                                                                                                                                                                -0.4476351
                                          -1.1793445
-1.1793445
                                                            1.2037132
1.2037132
                                                                                                                             0.8057576
0.8057576
   [6,]
          1.1556307
                           -0.494438
                                                                           -0.5555198
                                                                                            -0.740515
                                                                                                            -1.1100105
                                                                                                                                              0.4633792
                                                                                                                                                              0.5098049 -0.2918387
                                                                                                                                                                                                -0 4476351
           1.1556307
                            -0.494438
                                                                            -0.5555198
                                                                                            -0.740515
                                                                                                           -1.1100105
                                                                                                                                              0.4633792
                                                                                                                                                              0.5098049
                                                                                                                                                                              -0.2918387
                                                                                                                                                                                                -0.4476351
   [8,] -0.8567607 -0.494438 [9,] -0.8567607 -0.494438
                                                          -0.8225373 -0.5555198
-0.8225373 -0.5555198
                                                                                            1.337041
1.337041
                                                                                                                                              0.4633792
0.4633792
                                                                                                                                                             -1.9421137 -0.2918387
-1.9421137 -0.2918387
                                           0.8395333
                                                                                                           -1.1100105
                                                                                                                             0.8057576
                                                                                                                                                                                                2 2118440
                                           0.8395333
                                                                                                            0.8919727
                                                                                                                             0.8057576
                                                                                                                                                                                                2.2118440
 [10,]
          1.1556307
                          -0.494438
-0.494438
                                          -1.1793445
-1.1793445
                                                           1.2037132 -0.5555198 -0.740515
1.2037132 -0.5555198 -0.740515
                                                                                                           -1.1100105
0.8919727
                                                                                                                             0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                              0.5098049 -0.2918387
                                                                                                                                                                                               -0.4476351
           1.1556307
                                                                                                                             0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                              0.5098049 -0.2918387
                                                                                                                                                                                                -0.4476351
  [11,]
                                                                            1.7822928 -0.740515
-0.5555198 1.337041
         -0.8567607
-0.8567607
                            2.002474
-0.494438
                                           0.8395333 -0.8225373
0.8395333 -0.8225373
                                                                                                           -1.1100105
0.8919727
                                                                                                                             -1.2287803
0.8057576
                                                                                                                                              0.4633792
0.4633792
                                                                                                                                                              0.5098049 -0.2918387
-1.9421137 -0.2918387
  [12,]
                                                                                                                                                                                                -0.4476351
                                                                                                                                                                                                2.2118440
 [13,]
 [14,] -0.8567607 -0.494438
[15,] -0.8567607 -0.494438
[16,] -0.8567607 -0.494438
[17,] -0.8567607 -0.494438
                                           0.8395333 -0.8225373 -0.5555198 
0.8395333 -0.8225373 -0.5555198
                                                                                            -0.740515
                                                                                                            0.8919727
0.8919727
                                                                                                                             -1.2287803
                                                                                                                                             -2.1366929
                                                                                                                                                              -1.9421137 -0.2918387
                                                                                                                                                                                                -0 4476351
                                                                                                                                                             -1.9421137 -0.2918387 -0.4476351
-1.9421137 -0.2918387 -0.4476351
0.5098049 -0.2918387 -0.4476351
                                                                                             1.337041
                                                                                                                                             -2.1366929
                                                                                                                            -1.2287803
                                           0.8395333 -0.8225373 -0.5555198
0.8395333 -0.8225373 1.7822928
                                                                                            1.337041
-0.740515
                                                                                                            0.8919727
0.8919727
                                                                                                                                             -2.1366929
0.4633792
                                                                                                                            -1.2287803
                                                                                                                            -1.2287803
  [18,]
         1.1556307
-0.8567607
                            -0.494438
-0.494438
                                           -1.1793445 1.2037132 -0.5555198
0.8395333 -0.8225373 -0.5555198
                                                                                            -0.740515
1.337041
                                                                                                            -1.1100105
0.8919727
                                                                                                                             0.8057576
0.8057576
                                                                                                                                              0.4633792
0.4633792
                                                                                                                                                              0.5098049 -0.2918387
-1.9421137 -0.2918387
                                                                                                                                                                                                -0.4476351
 -0.8567607
[20,] -0.8567607
[21,] -0.8567607
[22,] -0.8567607
                                                                                                                                                                                                2.2118440
                                           -1.1793445 1.2037132 -0.5555198
0.8395333 -0.8225373 1.7822928
0.8395333 -0.8225373 1.7822928
                           -0.494438
2.002474
                                                                                            1.337041
-0.740515
                                                                                                           0.8919727
-1.1100105
                                                                                                                            0.8057576
-1.2287803
                                                                                                                                              0.4633792
0.4633792
                                                                                                                                                              0.5098049 -0.2918387
0.5098049 -0.2918387
                                                                                                                                                                                                2.2118440
                                                                                                                                                                                               -0.4476351
 [22,] -0.8567607 2.002474 0.8395333 -0.8225373 1.7822928 1.337041 -1.1100105 [23,] 1.1556307 -0.494438 -1.1793445 1.2037132 -0.5555198 -0.740515 -1.1100105
                                                                                                                            -1.2287803
0.8057576
                                                                                                                                              0.4633792
                                                                                                                                                              0.5098049 -0.2918387 -0.4476351
0.5098049 -0.2918387 -0.4476351
                                                                                                                                              0.4633792
```

Finding zero

colSums(mydata == 0)

Remove zero

```
constant_cols <- which(colSums(mydata == 0) == nrow(mydata))
mydata_new <- mydata[,-constant_cols]
mydata_new

> constant_cols <- which(colSums(mydata == 0) == nrow(mydata))
> mydata_new <- mydata[,-constant_cols]
> mydata_new
data frame with 0 columns and 101 rows
```

Install Packages

```
install.packages("ClusterR")
install.packages("cluster")
install.packages("factoextra")
```

Library Packages

```
library("ClusterR")
library("cluster")
library("factoextra")
```

Optimal number of Clustering

fviz_nbclust(mydata_new, kmeans, method = "wss")

K-Means Clustering Algorithm Applied

K-means Clustering Algorithm

km <- kmeans(mydata_new, centers = 5, nstart = 25)

km

```
> km <- kmeans(mydata_new, centers = 5, nstart = 25)</pre>
K-means clustering with 5 clusters of sizes 18, 16, 4, 38, 25
Cluster means:
     hair feathers
                               milk airborne
                                              aquatic predator
                                                               toothed backbone breathes venomous
                       eggs
1 0.2222222
              0.0\ 0.94444444\ 0.0000000\ 0.3333333\ 0.50000000\ 0.5555556\ 0.2222222\ 0.2222222\ 0.7222222\ 0.2222222\ 0.000000000
              2 0.0000000
3 0.0000000
4 0.9473684
              0.8 \ 0.80000000 \ 0.2000000 \ 0.7200000 \ 0.36000000 \ 0.4800000 \ 0.2000000 \ 1.0000000 \ 1.0000000 \ 0.0000000 \ 0.120000000
5 0.1200000
     legs
             tail domestic
                             catsize class_type
1 5.611111 0.1111111 0.05555556 0.05555556
2 0.000000 1.0000000 0.06250000 0.25000000
                                      3.812500
7.000000
4 3.736842 0.8684211 0.21052632 0.78947368
                                      1.105263
5 1.760000 0.9600000 0.12000000 0.36000000
                                      1.800000
Within cluster sum of squares by cluster:
[1] 69.66667 18.68750 3.50000 63.57895 62.24000 (between_SS / total_SS = 81.0 %)
Available components:
[1] "cluster"
[9] "ifault"
                "centers"
                             "totss"
                                          "withinss"
                                                      "tot.withinss" "betweenss"
                                                                                "size"
```

Hierarchical Clustering

hc <- hclust(dist(mydata_new))
plot(hc)</pre>

Cluster Dendrogram

dist(mydata_new) hclust (*, "complete")

Clustering Output Visualization

k_clusters <- cbind(mydata_new, cluster = km\$cluster)

k_clusters

> k_clusters <- cbind(mydata_new, cluster = km\$cluster) > k_clusters																			
1			eaas r	nilk	airborne ao	uatic nr	redator t	oothed bac	khone br	eathes ver	iomous f	ins 1	eas :	tail	domestic cat	size	_		
1	1	0	0	1	0	0	1	1	1	1	0	0	4	0		1		s_type clu	uster
2	1	0	0	1	0	Ō	0	1	1	1	0	0	4	1	0	1	1	1	4
3	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	2	1	4
4	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	1	3	4	2
5	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	1	4	1	4
6	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	5	1	4
7	1	0	0	1	0	0	0	1	1	1	0	0	4	1	1	1	b 7	1	4
8	0	0	1	0	0	1	0	1	1	0	0	1	0	1	1	0	8	1	4
9	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	9	4	2
10) 1	0	0	1	0	0	0	1	1	1	0	0	4	0	1	0	10	1	۷.
11	1 1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	1	10	1	4
17	2 0	1	1	0	1	0	0	0	1	1	0	0	2	1	1	0	12	2	5
13	3 0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	13	4	2
14	4 0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	14	7	3
15	5 0	0	1	0	0	1	1	0	0	0	0	0	4	0	0	0	15	7	1
16	5 0	0	1	0	0	1	1	0	0	0	0	0	6	0	0	0	16	7	1
17	7 0	1	1	0	1	0	1	0	1	1	0	0	2	1	0	0	17	2	5
18	3 1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	18	1	4
19	9 0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	1	19	4	2
20	0 0	0	0	1	0	1	1	1	1	1	0	1	0	1	0	1	20	i	5
2:	1 0	1	1	0	1	0	0	0	1	1	0	0	2	1	1	0	21	2	5
27	2 0	1	1	0	1	1	0	0	1	1	0	0	2	1	0	0	22	2	5
2	3 1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	23	1	4
24	4 0	1	1	0	1	0	0	0	1	1	0	0	2	1	0	1	24	2	5
2	5 0	0	1	0	0	0	0	0	0	1	0	0	6	0	0	0	25	6	1
26	5 0	0	1	0	0	1	1	1	1	1	0	0	4	0	0	0	26	5	1
27	7 0	0	1	0	0	1	1	1	1	1	1	0	4	0	0	0	27	5	1
28	3 1	0	0	1	1	0	0	1	1	1	0	0	2	1	0	0	28	1	5
29	9 1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	29	1	4
3() 1	0	0	1	0	0	1	1	1	1	0	0	2	0	1	1	30	1	4
3.	1 0	0	1	0	1	0	0	0	0	1	0	0	6	0	0	0	31	6	1
3	2 1	0	0	1	0	0	0	1	1	1	0	0	4	1	1	1	32	1	4
3		0	0	1	0	0	0	1	1	1	0	0	2	0	0	1	33	1	4
34		1	1	0	1	1	1	0	1	1	0	0	2	1	0	0	34	2	5
3		0	1	0	0	1	0	1	1	0	0	1	0	1	0	0	35	4	2
21	. 1	٥	٨	1	۸	٨	۸	1	1	1	0	٨	- 1	1	1	۸	36	1	4

Visualize clustering Plot output

fviz cluster(km, data = mydata new)

Find means of each cluster

aggregate(mydata_new, by=list(cluster=km\$cluster), mean)

```
3 0.0000000
3
     4 0.9473684
                 0.8 0.80000000 0.2000000 0.7200000 0.36000000 0.4800000 0.2000000 1.0000000 1.0000000
     5 0.1200000
            fins
                          tail
                               domestic
                                       catsize class_type
  venomous
                   leas
1 0.2222222 0.00000000 5.611111 0.11111111 0.05555556 0.05555556
                                              6.111111
2 0.1875000 0.81250000 0.000000 1.0000000 0.06250000 0.25000000
                                              3.812500
7.000000
4 0.0000000 0.02631579 3.736842 0.8684211 0.21052632 0.78947368
5 0.0000000 0.12000000 1.760000 0.9600000 0.12000000 0.36000000
                                              1.105263
```