## Resultados obtenidos

| Núm | Arquitectura             | Descripción y cambios comparando con la prueba anterior                                                                                                                                                                                                                                                                                                                   | Resultados                                                                                                                                                                                                 | Código<br>Disponible                                                             | Dice entrenamiento                                    | Dice test                                             |
|-----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1   | Unet sin<br>backbone     | rquitectura básica sin backbone. Datos de<br>entrada: 1620 imágenes 2D convertidas de<br>nii.gz a png. Normalización al rango [0,1] y<br>Data Augmentation aplicados                                                                                                                                                                                                      | Solo permite batch<br>size muy bajo: 2,<br>debido a las<br>limitaciones de<br>recursos<br>computacionales                                                                                                  | Anexo 1                                                                          | 0,4845                                                | 0,4754                                                |
| 2   | Unet con<br>ResNet       | Utiliza ResNet50 pre-entrenado como base<br>con conexiones skip. Datos de entrada<br>preprocesados según requisitos de ResNet.<br>Normalización al rango [0,1] y Data<br>Augmentation aplicados.                                                                                                                                                                          | Solo permite batch size muy bajo: 2                                                                                                                                                                        | Anexo 1                                                                          | 0,483                                                 | 0,4731                                                |
| 3   | Unet con<br>EfficientNet | Utiliza EfficientNet pre-entrenado como base con conexiones skip. Datos de entrada preprocesados según requisitos de EfficientNet. Normalización al rango [0,1] y Data Augmentation aplicados.                                                                                                                                                                            | Solo permite batch size muy bajo: 2                                                                                                                                                                        | Anexo 1                                                                          | 0,4857                                                | 0,4767                                                |
| 4   | SALT                     | Modelo pre-entrenado para segmentar 145 estructuras corporales. Datos de entrada: 1 imagen nii.gz para prueba. Transformación al formato channel first aplicada.                                                                                                                                                                                                          | No funciona bien para la segmentación de mandíbula y dientes, porque no tiene clases tan específicas, sino huesos, órganos y tejidos. Los resultados de test visualmente están muy lejos del nivel óptimo. | Anexo 2                                                                          | NA                                                    | NA                                                    |
| 5   | nnUnet                   | Datos de entrada: 46 imágenes médicas 3D<br>.mha sin transformación, 42 clases de<br>etiquetas originales (background, cada<br>diente, mandíbula), 1000 épocas<br>preestablecidas por el modelo                                                                                                                                                                           | Se interrumpe<br>ejecución por falta<br>de RAM                                                                                                                                                             | Anexo 3                                                                          | NA                                                    | NA                                                    |
| 6   | nnUnet                   | Datos de entrada: 5 imágenes médicas 3D .mha sin transformación, número de clases de etiquetas sin cambio. El problema de 1000 épocas se resuelve introduciendo una nueva clase de entrenador que hereda propiedades de la clase original sobrescribiendo el número de épocas. Se utiliza 1 época para debugging. Nueva clase: class nnUNetTrainer_1epoch(nnUNetTrainer). | 1 época dura más<br>de 1 hora y para<br>algunos folds de<br>cross-validation no<br>se finaliza                                                                                                             | -                                                                                | NA                                                    | NA                                                    |
| 7   | nnUnet                   | Datos de entrada: 2 imágenes médicas 3D .mha. Se introduce transformación de imágenes de 3D a 2D utilizando código en Python dividiendo en slices: 274 slices en formato .nii.gz para cada imagen mha. En vez de 42 clases, se utilizan solo 4 juntando clases de menor interés, se utiliza técnica de Region-based training. Entrenamiento sigue con 1 época.            | Se finalizó el<br>entrenamiento<br>con Dice, se realizó<br>la predicción con<br>la imagen de test                                                                                                          | Código de<br>transformación<br>Anexo 4,<br>Código de<br>entrenamiento<br>Anexo 5 | 0,128877                                              | 0,161049                                              |
| 8   | nnUnet                   | Épocas aumentadas a 20 utilizando nueva<br>clase: class nnUNetTrainer_20epoch<br>(nnUNetTrainer), aumentado número de<br>imágenes de entrada de 2 a 6 imágenes<br>.mha, lo que equivale a 1620 imágenes 2D.<br>Preprocesamiento según requisitos de<br>nnUnet                                                                                                             | Mejores<br>resultados de<br>todas las<br>Arquitectura                                                                                                                                                      | Código de<br>transformación<br>Anexo 6,<br>Codigo de<br>entrenamiento<br>Anexo 7 | 0,659006<br>promedio,<br><b>0,977265</b><br>mandíbula | 0,660252<br>promedio,<br><b>0,953292</b><br>mandíbula |

Como ejemplo, en la Ilustración se pueden observar la imagen original, la etiqueta original y la etiqueta predicha por la última arquitectura 8 de nnUNet:

