

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/31
Paper 3 Pure Mathe	ematics 3 (P3)		May/June 2018
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

	al places.						
•••••••	••••••••	••••••	••••••		••••••	••••••	••••••••
			• • • • • • • • • • • • • • • • • • • •				
•••••	•••••	••••••	•••••		•••••	•••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
			•••••				
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
			• • • • • • • • • • • • • • • • • • • •				
•••••	•••••	•••••	•••••				
••••••	•••••••	••••••	••••••	•	•••••••	••••••	••••••
			•••••				
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
			••••				
••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••••

• \	TI 1 1 (COO) 2 (ATO) 6 00 200
l)	Hence solve the equation $\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$, for $0^\circ < x < 360^\circ$.

· · · · · · · · · · · · · · · · · · ·	Find the x-coordinates of the stationary points of the curve i
interval $0 < x < \pi$. Give your answer	rs correct to 3 decimal places.

values of a and b .				[5
		 	 	•••••
		 	 	•••••
		 	 	•••••
		 	 	•••••
		 	 	•••••
	,	 	 	•••••
		 	 •••••	•••••
		 	 	•••••
		 	 	•••••
		 	 	•••••
		 	 	•••••

5	Let $I =$	$\int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{\left(\frac{x}{1-x}\right)} \mathrm{d}x.$
		$\mathbf{J}_{\frac{1}{4}}$

(i)	Using the substitution $x = \cos^2 \theta$, show that $I =$	$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} 2\cos^2\theta \mathrm{d}\theta. \tag{4}$

Hence find the exact value of I .	

6	In a certain chemical reaction the amount, x grams, of a substance is decreasing.	The differential
	equation relating x and t, the time in seconds since the reaction started, is	

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx\sqrt{t},$$

where k is a positive constant. It is given that x = 100 at the start of the reaction.

Solve	e the differ	ential equation	on, obtaining	g a relation	between x,	t and k .		
							•••••	
							•••••	
		•••••						
		•••••						
•••••								
•••••		•••••						
•••••						•••••		•••••
•••••								••••••
•••••						•••••		••••••
•••••								••••••
•••••		•••••						
•••••						•••••	•••••	••••••
•••••						•••••		

		•••••				•••••
		•••••				
			•••••	•••••		•••••
••••••	••••••	••••••	•••••••	••••••	••••••	••••••
		•••••	•••••	•••••	•••••	•••••
	•••••	•••••		•••••		•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••
		•••••		•••••		•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••		•••••	•••••	•••••
		•••••				
••••••		••••••	••••••	•••••	••••••	•••••
		••••••	•••••	•••••	•••••	•••••

i)	Showing all working and without using a calculator, solve the equation $z^2 + (2\sqrt{6})z + 8 = 0$ giving your answers in the form $x + iy$, where x and y are real and exact. [3]
•	

(ii) Sketch an Argand diagram showing the points representing the roots. [1]

The points representing the roots are A	,	υ	C	
	•••••			
	•	••••••	••••••	••••••
	•	••••••	••••••	••••••
	•	••••••	••••••	••••••
		••••••	•••••••	••••••
		••••••	••••••	•••••
		••••••	••••••	•••••
		••••••	••••••	•••••
Prove that triangle <i>AOB</i> is equilateral.				
riove that thangle 110B is equilities.				
••••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •

8	The	positive constant a is such that $\int_0^a x e^{-\frac{1}{2}x} dx = 2.$
		Show that <i>a</i> satisfies the equation $a = 2 \ln(a + 2)$. [5]

(::)	Varify by coloulation that a lies between 2 and 2.5
(11)	Verify by calculation that <i>a</i> lies between 3 and 3.5. [2]
(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

0	Let $f(x) =$	$12x^2 + 4x - 1$			
,	Let $I(x) =$	(x-1)(3x+2)			

Express $f(x)$ in partial fractions.	[5

				ng powers			
••••••		•••••	· · · · · · · · · · · · · · · · · · ·	•••••	•••••	•••••	•••••
		•••••					
• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••••		•••••	••••••	•••••
	•••••	•••••					
••••••	••••••	••••••		••••••	••••••	••••••	•••••
•••••••	••••••	••••••		••••••	••••••	••••••	•••••
••••••	•••••	••••••		•••••••	•••••	••••••	••••••
	•••••	•••••					
••••••		•••••	•••••••	••••••	•••••	••••••	•••••
		•••••					
•••••••	••••••	••••••		••••••	••••••	••••••	•••••
	•••••	•••••					
•••••	••••••	•••••		••••••	••••••	••••••	••••••
		•••••					
	•••••	•••••					
	•••••	•••••					
	,						
	•••••	•••••					

i)	Find the length of the perpendicular from P to l , giving your answer correct to 3 significan figures. [5]
•	
••	
•••	
••	
•	
•	
•	
•	

		_			m ax + by + cz = d [5]
•••••	•••••			•••••	
•••••					
•••••	••••••	•••••		•••••	
•••••	•••••	•••••	•••••	•••••	•••••
	••••••			•••••	
			•••••		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.