根慈论简介

孙博士 七月在线

OUTLINE

- ■1. 概率论基础
- -2. 随机变量和概率密度函数
 - •伯努利分布
 - •正态分布...
- -3. 信息论基础

符号简介

■X, x 特征 (feature)

■Y, y 标签 (label)

■D 数据 (data)

•f 模型 (model)

■ *θ* 参数 (parameter)

•L(X,Y, θ) 目标函数 (objective function)

• $\min_{\theta} L(X, Y, \theta)$ 优化 (optimization)

概率

- **事件**发生可能的大小 (0~1)
 - 0 不可能发生 (直观上)
 - 1 一定会发生 (直观上)
 - 0.1 平均十次时间会发生一次

概率

- **事件**发生可能的大小 (0~1)
 - 0 不可能发生 (直观上)
 - 1 一定会发生 (直观上)
 - 0.1 平均十次时间会发生一次
- 机器学习的应用
 - 生成模型 vs 判别模型
 - 收到新的email, 判断邮件是不是垃圾邮件
 - 打开视频或者新闻网站,如何通过推荐提高用户点开链接的概率
 - 股票涨跌的概率
 - 图模型,逻辑回归,决策树...
 -

事件

- 事件: 一个随机的过程的结果
 - 掷色子,可能的结果 Ω = {1, 2, 3, 4, 5, 6}
 - 判断垃圾邮件, Ω = {0,1}
 - 判断推荐链接是否有效, $\Omega = \{0, 1\}$
 - 预测股票价格 Ω = [0, 100]
 - $P(\Omega) = 1$
- ■事件~集合

并集

- 如果A,B互斥,那么 $P(A \text{ or } B) = P(A) + P(B) \text{ (or } \sim \cup)$
 - 是 {1,2} 或者 {3,4} 的概率是 1/3 + 1/3 = 2/3
 - 是 {1,2} 或者 {2,3} 的概率不是 1/3 + 1/3

并集

- 如果A,B互斥,那么 $P(A \text{ or } B) = P(A) + P(B) \text{ (or } \sim \cup)$
 - 是 {1,2} 或者 {3,4} 的概率是 1/3 + 1/3 = 2/3
 - 是 {1,2} 或者 {2,3} 的概率不是 1/3 + 1/3
- $P(A) + P(A^c) = 1$
 - 色子结果 是3 和 不是3 的概率和为1

并集

- 如果A, B互斥,那么 $P(A \text{ or } B) = P(A) + P(B) \text{ (or } \sim \cup)$
 - 是 {1,2} 或者 {3,4} 的概率是 1/3 + 1/3 = 2/3
 - 是 {1,2} 或者 {2,3} 的概率不是 1/3 + 1/3
- $P(A) + P(A^c) = 1$
 - 色子结果 是3 和 不是3 的概率和为1
- 假设一共有n种互斥的可能,那么 $P(\Omega) = \sum_{i=1}^{n} P(A_i) = 1$

独立事件

- $P(A \cap B) = P(A) * P(B)$ 那么A和B是独立的
 - ■直观: A的发生与否对B没有影响

独立事件

- $P(A \cap B) = P(A) * P(B)$ 那么A和B是独立的
 - ■直观: A的发生与否对B没有影响
 - EX1: 掷三次硬币,正反反的概率是1/2*1/2*1/2
 - EX2: 收到三封邮件, 都是垃圾邮件的概率是 0.01*0.01*0.01
 - EX3: 收到三封来自同一个邮箱的邮件, 都是垃圾邮件的概率?

独立事件

- $P(A \cap B) = P(A) * P(B)$ 那么A和B是独立的
 - 直观: A的发生与否对B没有影响
 - •EX1: 掷三次硬币,正反反的概率是1/2*1/2*1/2
 - EX2: 收到三封邮件, 都是垃圾邮件的概率是 0.01*0.01*0.01
 - EX3: 收到三封来自同一个邮箱的邮件, 都是垃圾邮件的概率?
 - 大部分情况下,机器学习模型假设数据是独立的

条件概率

- P(Y | X)
 - 直观上,在X发生的情况下,发生Y的概率

条件概率

- P(Y | X)
 - 直观上,在X发生的情况下,发生Y的概率
 - EX1: 已知邮件X=jd或者taobao, 那么邮件是推销邮件的概率
 - EX2: 已知文章标题里有"震惊!快转!愤怒!", 那么用户点击的概率

条件概率

- P(Y | X)
 - 直观上,在X发生的情况下,发生Y的概率
 - EX1: 已知邮件X=jd或者taobao, 那么邮件是推销邮件的概率
 - EX2: 已知文章标题里有"震惊!快转!愤怒!", 那么用户点击的概率
 - 机器学习模型!

联合概率

- P(XY) = P(X) * P(Y|X)
 - 直观上, X和Y同时发生 = X先发生, X发生的情况下Y发生
 - 如果X,Y独立, 那么P(Y|X) = P(Y)
 - P(Y | X) = P(XY)/P(X)

联合概率

- P(XY) = P(X) * P(Y|X)
 - 直观上, X和Y同时发生 = X先发生, X发生的情况下Y发生
 - 如果X,Y独立,那么P(Y|X) = P(Y)
 - P(Y | X) = P(XY)/P(X)
- $P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1) ... P(X_n|X_{n-1}, X_{n-2}, ..., X_1)$
 - 马尔科夫(Markov) $P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2) ... P(X_n|X_{n-1})$

联合概率

- P(XY) = P(X) * P(Y|X)
 - 直观上, X和Y同时发生 = X先发生, X发生的情况下Y发生
 - 如果X,Y独立,那么P(Y|X) = P(Y)
 - P(Y | X) = P(XY)/P(X)
- $P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1) ... P(X_n|X_{n-1}, X_{n-2}, ..., X_1)$
 - 马尔科夫(Markov) $P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2) ... P(X_n|X_{n-1})$
- $P(X) = \sum_{i} P(X|Y_i) * P(Y_i), Y_i$ 不相交

贝叶斯公式

• P(XY) = P(X|Y)*P(Y) = P(Y|X)*P(X)

贝叶斯公式

- P(XY) = P(X|Y)*P(Y) = P(Y|X)*P(X)
- P(Y|X) = P(X|Y) * P(Y) / P(X)
 - P(Y|X) 后验概率 (posterior)
 - P(Y) 先验概率 (prior)

贝叶斯公式

- P(XY) = P(X|Y)*P(Y) = P(Y|X)*P(X)
- P(Y|X) = P(X|Y) * P(Y) / P(X)
 - P(Y|X) 后验概率 (posterior)
 - P(Y) 先验概率 (prior)
- EX1: 含有sex的邮件是垃圾邮件的概率 P(Y=spam|X=sex)
 - P(Y=spam)=0.9 先验
 - 假设垃圾邮件中出现sex的概率是1%, 正常邮件中出现的概率是0.01%
 - P(Y=spam | X=sex) = P(X=sex | Y=spam)*P(Y=spam)/P(X=sex)
 - 计算上面公式! (hwl,提示, P(X=sex)分情况讨论)

生成模型和判別模型

■目标 P(Y|X)

生成模型和判別模型

- ■目标 P(Y|X)
- 生成模型 P(Y|X) = P(X|Y) * P(Y) / P(X)
 - 朴素贝叶斯 (Naïve Bayes)
 - 隐马尔科夫 (Hidden Markov Model)

生成模型和判別模型

- ■目标 P(Y|X)
- 生成模型 P(Y|X) = P(X|Y) * P(Y) / P(X)
 - 朴素贝叶斯 (Naïve Bayes)
 - 隐马尔科夫 (Hidden Markov Model)
- 判別模型 P(Y|X)
 - 逻辑回归 (Logistic Regression)
 - 支持向量机 (Support Vector Machine)
 - 条件随机场 (Conditional Random Field)
 - ...

随机变量

- •X:集合到实数的映射
 - 色子: 1到6
 - •硬币: 正面~0, 反面~1
 - -股票价格: 价格
 - •垃圾邮件: 是~1, 否~0
 - •分为离散的连续的

离散随机变量

离散随机变量

- ■伯努利分布(Bernoulli distribution): P(Y=1) = p = 1-P(Y=0)=1-q
- 分类分布(categorical distribution): 多个离散值,参数是(P1, P2,...)

离散随机变量

- ■伯努利分布(Bernoulli distribution): P(Y=1) = p = 1-P(Y=0)=1-q
- 分类分布(categorical distribution): 多个离散值,参数是(P1, P2,...)
- 二项分布 (binomial distribution): n次伯努利, k次成功的概率
- 多项分布 (multinomial distribution): n次分类分布,(k1, k2, ..kn)的概率

期望

■ 假设x1,x2,...,xn对应的概率为p1,p2,...,pn,那么X的期望(Expectation)为

$$E[X] = x_1 p_1 + x_2 p_2 + \cdots x_n p_n$$

期望

- 假设x1,x2,...,xn对应的概率为p1,p2,...,pn,那么X的期望(Expectation)为

$$E[X] = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

- 直观上,是随机变量X的"平均数"
- 性质:
 - E[X+Y]=E[X]+E[Y], E[ax] = aE[X]
 - 如果X,Y独立,那么 E[XY]=E[X]*E[Y]

期望

■ 假设x1,x2,...,xn对应的概率为p1,p2,...,pn,那么X的期望(Expectation)为

$$E[X] = x_1 p_1 + x_2 p_2 + \cdots x_n p_n$$

- 直观上,是随机变量X的"平均数"
- 性质:
 - E[X+Y]=E[X]+E[Y], E[ax] = aE[X]
 - 如果X,Y独立,那么 E[XY]=E[X]*E[Y]
- 伯努利分布的期望: p
- 二项分布的期望: np (hw2,提示,利用期望的性质)

方差

- 假设μ为期望, x1, x2, ..., xn对应的概率为p1, p2, ..., pn, 那么X的方差(Variance)为

$$Var[X] = (x_1 - \mu)^2 p_1 + \dots + (x_n - \mu)^2 p_n$$

• $Var[X] = E[(X - \mu)^2]$

方差

- 假设μ为期望, x1, x2, ..., xn对应的概率为p1, p2, ..., pn, 那么X的方差(Variance)为

$$Var[X] = (x_1 - \mu)^2 p_1 + \dots + (x_n - \mu)^2 p_n$$

- $Var[X] = E[(X \mu)^2]$
- 离平均数的平均偏离值
- 性质:
 - $Var[X] \ge 0$
 - $Var[X] = E[X^2] E[X]^2$
 - Var[X + a] = Var[X], $Var[aX] = a^2Var[X]$
 - 如果X和Y独立, Var[X+Y]=Var[X]+Var[Y]

方差

- 假设μ为期望, x1,x2,...,xn对应的概率为p1,p2,...,pn,那么X的方差(Variance)为

$$Var[X] = (x_1 - \mu)^2 p_1 + \dots + (x_n - \mu)^2 p_n$$

- $Var[X] = E[(X \mu)^2]$
- 离平均数的平均偏离值
- 性质:
 - $Var[X] \ge 0$
 - $Var[X] = E[X^2] E[X]^2$
 - Var[X + a] = Var[X], $Var[aX] = a^2Var[X]$
 - 如果X和Y独立, Var[X+Y]=Var[X]+Var[Y]
- 伯努利分布的方差: p*(1-p)
- 二项分布的方差: np*(1-p) (hw3,提示,利用方差的性质)

机器学习实例-ROC曲线介绍

- 假设某个分类模型f,有n个邮件 $x_1, x_2, ..., x_{100}$
- 模型预测垃圾邮件的概率为 $\hat{y}_1, \hat{y}_2, ..., \hat{y}_{100},$ 真实的label为 $y_1, y_2, ..., y_{100}$
- 思考: 如何评估模型的表现?

机器学习实例-ROC曲线介绍

- 假设某个分类模型f,有n个邮件 $x_1, x_2, ..., x_{100}$
- 模型预测垃圾邮件的概率为 $\hat{y}_1, \hat{y}_2, ..., \hat{y}_{100},$ 真实的label为 $y_1, y_2, ..., y_{100}$
- 思考: 如何评估模型的表现?
 - •准确率,有什么缺陷?

机器学习实例-ROC曲线介绍

- 假设某个分类模型f,有n个邮件 $x_1, x_2, ..., x_{100}$
- 模型预测垃圾邮件的概率为 $\hat{y}_1, \hat{y}_2, ..., \hat{y}_{100}$, 真实的label为 $y_1, y_2, ..., y_{100}$
- 思考: 如何评估模型的表现?
 - •准确率,有什么缺陷?
 - 假设数据label不平衡, 0-1比例为 99% vs 1%

机器学习实例-ROC曲线介绍

- 假设某个分类模型f,有n个邮件 $x_1, x_2, ..., x_{100}$
- 模型预测垃圾邮件的概率为 $\hat{y}_1, \hat{y}_2, ..., \hat{y}_{100}$, 真实的label为 $y_1, y_2, ..., y_{100}$
- 思考: 如何评估模型的表现?
 - •准确率,有什么缺陷?
 - 假设数据label不平衡, 0-1比例为 99% vs 1%
 - 如何选择最有可能的垃圾邮件?
 - 推荐系统的相似性

机器学习实例-ROC曲线定义

relevant elements

- precision = TP / (TP+FP)
- recall = TPR = TP/(TP+FN)
- FPR = FP/(FP+TN)

机器学习实例-ROC曲线评价

连续随机变量

- 条件: $f(X) \ge 0$, $X \in \Omega$, $(f(X) \le 1?)$, $\int f(x) dx = 1$
- 概率: $P(X \in S) = \int_{S} f(x) dx$
- 期望: $E[X] = \int X f(X) dx$
- 方差: $Var[X] = \int (X \mu)^2 f(X) dx$

连续随机变量

- 条件: $f(X) \ge 0$, $X \in \Omega$, $(f(X) \le 1?)$, $\int f(x)dx = 1$
- 概率: $P(X \in S) = \int_{S} f(x) dx$
- 期望: $E[X] = \int Xf(X)dx$
- 方差: $Var[X] = \int (X \mu)^2 f(X) dx$
- 常见问题:
 - P(X)=0 一定是不可能发生的事件吗? (P(X)=1)
 - 期望一定存在吗? (large tails, 柯西分布)

正态分布

•
$$X \sim N(\mu, \sigma^2)$$
, $f(X) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$

$$[X] = \mu$$
, $Var[X] = \sigma^2$

协方差和相关系数

- COV(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y]
- $COR(X,Y) = \frac{COV(X,Y)}{\sqrt{Var(X)Var(Y)}}$ (hw4,证明|cor|<=1,提示 Cauchy-Schwarz不等式)

协方差和相关系数

- COV(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y]
- $COR(X,Y) = \frac{COV(X,Y)}{\sqrt{Var(X)Var(Y)}}$ (hw4,证明|cor|<=1,提示 Cauchy-Schwarz不等式)

协方差和相关系数

- COV(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y]
- $COR(X,Y) = \frac{COV(X,Y)}{\sqrt{Var(X)Var(Y)}}$ (hw4,证明|cor|<=1,提示 Cauchy-Schwarz不等式)
- Var[X+Y] = Var[X]+Var[Y] + COV(X,Y)

协方差矩阵

$$x = (X_1, X_2, \dots, X_d)^T$$

$$\operatorname{cov} [\mathbf{x}] \triangleq \mathbb{E} \left[(\mathbf{x} - \mathbb{E} [\mathbf{x}])(\mathbf{x} - \mathbb{E} [\mathbf{x}])^T \right]$$

$$= \begin{pmatrix} \operatorname{var} [X_1] & \operatorname{cov} [X_1, X_2] & \cdots & \operatorname{cov} [X_1, X_d] \\ \operatorname{cov} [X_2, X_1] & \operatorname{var} [X_2] & \cdots & \operatorname{cov} [X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov} [X_d, X_1] & \operatorname{cov} [X_d, X_2] & \cdots & \operatorname{var} [X_d] \end{pmatrix}$$

多元高斯

$$f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right]$$

中心极限定理

- 大数定理
 - X_1, X_2, \dots, X_n , $i.i.d.E[X_i] = \mu$, $\mathbb{B} \angle X_n = \frac{(X_1 + \dots + X_n)}{n} \rightarrow \mu \stackrel{\ \ \ }{=} n \rightarrow \infty$
- 中心极限定理

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{N}} \sim N(0, 1)$$

MLE (simulation)

蒙特卡洛近似

•
$$E[f(X)] = \int f(x)P(x)dx \approx \frac{1}{N}\sum_{i} f(X_{i})$$

- 通过改变f(X), 可以得到
 - $\bar{x} = \frac{1}{N} \sum_i x_i \rightarrow E[X]$

$$P(Y|X_1, X_2, \dots, X_p) = \frac{P(X_1, X_2, \dots, X_p|Y)P(Y)}{P(X_1, X_2, \dots, X_p)} = \frac{P(X_1|Y)P(X_2|Y) \dots P(X_p|Y)P(Y)}{P(X_1, X_2, \dots, X_p)}$$

• $arg max_k P(Y = k | X_1, X_2, ..., X_p)$ (MAP)

Person	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female	5.75 (5'9")	150	9

Person	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female	5.75 (5'9")	150	9

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033*10-02	176.25	1.2292*10+02	11.25	9.1667*10-01
female	5.4175	9.7225*10-02	132.5	5.5833*10+02	7.5	1.6667

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033*10-02	176.25	1.2292*10+02	11.25	9.1667*10-01
female	5.4175	9.7225*10-02	132.5	5.5833*10+02	7.5	1.6667

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

$$\text{posterior (male)} = \frac{P(\text{male}) \, p(\text{height} \mid \text{male}) \, p(\text{weight} \mid \text{male}) \, p(\text{foot size} \mid \text{male})}{evidence}$$

$$\text{posterior (female)} = \frac{P(\text{female}) \, p(\text{height} \mid \text{female}) \, p(\text{weight} \mid \text{female}) \, p(\text{foot size} \mid \text{female})}{evidence}$$

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033*10-02	176.25	1.2292*10+02	11.25	9.1667*10-01
female	5.4175	9.7225*10-02	132.5	5.5833*10+02	7.5	1.6667

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

$$\text{posterior (male)} = \frac{P(\text{male}) \, p(\text{height} \mid \text{male}) \, p(\text{weight} \mid \text{male}) \, p(\text{foot size} \mid \text{male})}{evidence}$$

$$\text{posterior (female)} = \frac{P(\text{female})\,p(\text{height}\mid\text{female})\,p(\text{weight}\mid\text{female})\,p(\text{foot size}\mid\text{female})}{evidence}$$

$$P(\text{male}) = 0.5$$

$$p(ext{height} \mid ext{male}) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\!\left(rac{-(6-\mu)^2}{2\sigma^2}
ight) pprox 1.5789$$

Post(female)
$$\sim 10^{-4}$$

Post(male) $\sim 10^{-9}$

X商(ENTROPY)

- $H(X) = -\sum_{i} P(X_i) \log P(X_i) \quad (E_P[-\log P(X)])$
- 代表不确定性!
- EX: 对于伯努利分布 H(X)= -P*logP-(1-P)log(1-P)

机器学习应用-决策树

- $H(X) = -\sum_{i} P(X_i) \log P(X_i)$
- 代表不确定性!
- EX: 对于伯努利分布 H(X)= -P*logP-(1-P)log(1-P)
- [9男,5女] \rightarrow Entropy = (5/14)*log(5/14) (9/14)*log(9/14) = 0.9403
- 名字是否有"雨"
 - 有 [3男, 4女], Entropyl = (3/7)*log(3/7) (4/7)*log(4/7) = 0.9852
 - 没有[6男,1女], Entropy2 = (6/7)*log(6/7) (1/7)*log(1/7) = 0.5917
 - Entropy_new = 7/14*Entropy1 + 7/14*Entropy2 = 0.7885
 - Information_Gain = Entropy Entropy_new = 0.1518

KL DIVERGENCE

• 给定两个概率分布p, q, 定义KL Divergence为

$$KL(p||q) = \sum_{i} p_i \log \frac{p_i}{q_i}$$

- 或者 $KL(p||q) = \sum_i p_i \log p_i \sum_i p_i \log q_i = -H(p) + H(p,q)$
- $KL(p||q) \ge 0$, 当且仅当p==q时, KL(p||q)=0 (hw5, 提示, Jensen inequality)
- KL Divergence不对称!
- 常用于解释EM算法

百(言思(MUTUAL INFORMATION)

$$I(X,Y) = KL(P(X,Y)||P(X)P(Y)) = \sum_{x} \sum_{y} P(X,Y) \log \frac{P(X,Y)}{P(X)P(Y)}$$

- $I(X,Y) \ge 0$, 当且仅当P(X,Y) = P(X)P(Y)时, I(X,Y)=0
- I(X,Y) = H(X) H(X|Y)

谢谢!

