Patent Claims:

1.-8. Canceled

11. (New)

9. (New) A method for controlling the driving dynamics of a vehicle (250), in which a steering movement is carried out on the basis of a set value (u), which is calculated as a function of a deviation between a desired value ($\dot{\psi}_M$) and an acquired actual value ($\dot{\psi}$) of a vehicle state variable ($\dot{\psi}$), comprising the steps of

determining a membership degree (λ_1 , λ_2) of at least one member of the group of acquired values consisting of a driver-set steering angle (δ_{Drv}), and of a driver-set steering angle gradient (δ_{Drv}), with respect to a given fuzzy set, and changing a value ($\Delta\delta_{Add}$) of the set value (u) as a function of this membership degree (λ_1 , λ_2).

10. (New) The method according to Claim 9, wherein the membership degree (λ_1) of the value (δ_{Drv}) of the steering angle (δ_{Drv}), which is set by the driver (210), with respect to a set of "small" steering angles is determined.

wherein the membership degree (λ_2) of the steering angle gradient ($\dot{\delta}_{Drv}$), which is set by the driver (210), with respect to a set of "small" steering angle gradients is determined.

The method according to o Claim 9,

12. (New) The method according to Claim 9, wherein the value ($\Delta\delta_{Add}$) of the set value (u) is additionally changed as a function of an acquired value of a vehicle velocity (v_{Veh}).

13. (New) The method according to Claim 12, wherein the value ($\Delta \delta_{Add}$) of the set value (u) is changed as a function of the

membership degree (λ_v) of the acquired value (v_{Veh}) of the vehicle velocity (v_{Veh}) with respect to a set of "mean" velocities.

14. (New) The method according to Claim 12, comprising the step of suppressing a steering movement when the acquired value (v_{Veh}) of the vehicle velocity (v_{Veh}) is below a first limit value (v_{low}) or above a second limit value (v_{high}).

15. (New) A device for controlling the driving dynamics of a vehicle (250), with a control unit (260), which, on the basis of the deviation of an acquired actual value ($\dot{\psi}$) of a vehicle state variable ($\dot{\psi}$) from a given desired value ($\dot{\psi}_M$), determines a setting value (u), on the basis of which a steering movement is carried out,

wherein the device comprises a fuzzy logic unit (280) for determining the membership degree (λ_1) of a value (δ_{Drv}) of a steering angle (δ_{Drv}), which has been set by the driver (210), with respect to of "small" steering angles, and a membership degree (λ_2) of a steering angle gradient (δ_{Drv}), which has been set by the driver, in a set of "small" steering angle gradients and for changing a value ($\Delta\delta_{Add}$) of the set value (u) using a linkage of the membership degrees (λ_1 , λ_2).

16. (New) The device according to Claim 15,

comprising a logic unit (270) for determining a membership degree (λ_v) of an acquired value (v_{Veh}) of a vehicle velocity (v_{Veh}) with respect to of "mean" velocities and for changing the value ($\Delta\delta_{Add}$) of the setting value (u) as a function of this membership degree (λ_v).