A correspondence between methods for ranking elements of a poset and stochastic orderings

Ignacio Montes Raúl Pérez-FernándezUniversidad de Oviedo

Bernard de Baets

Ghent University

IPMU 2024, Lisbon

Overview

Basics on posets

Ranking elements in a poset

Stochastic orderings

Ranking elements in a poset VS Stochastic oderings

Overview

Basics on posets

Ranking elements in a poset

Stochastic orderings

Ranking elements in a poset VS Stochastic oderings

Posets

Partially Ordered SET

P: a set

 \leq_P : reflexive, antisymmetric and transitive relation

 (P, \leq_P) : poset

Related notions

Strict relation: $x <_P y$ iff $x \leq_P y$ and $x \neq y$

Incomparability: $x \parallel y \text{ iff } x \not\leq_P y \text{ and } y \not\leq_P x$

Maximal element: x is maximal if $\exists y \neq x$ such that $x \leq_P y$

Sub-poset: $P' \subseteq P$ determines the poset $(P', \leq_{P'})$

Graphical representation

Covering relation

Covering: x is covered by y if x < y and there is no z

such that x < z < y

Notation: $x \lessdot y$

Hasse diagram

$$P = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$< = \{(x_3, x_1), (x_4, x_1), (x_5, x_4), (x_6, x_2), (x_6, x_5)\}$$

$$< = \{(x_3, x_1), (x_4, x_1), (x_5, x_4), (x_6, x_2), (x_6, x_5), (x_5, x_1), (x_6, x_1), (x_4, x_6)\}$$

Linear extension

 x_3

 x_6

 x_6

Linear extension

Extension: (P, \leq') such that $x \leq_P y$ implies $x \leq' y$

Linear extension: an extension without incomparable elements

Notation: E_{\leq_P} denotes the set of linear extensions

Example

Overview

Basics on posets

Ranking elements in a poset

Stochastic orderings

Ranking elements in a poset VS Stochastic oderings

Averaged rankings

Averaged ranking

$$(P, \leq_P)$$

$$e = (P, \leq_e) \in E_{\leq_P}$$

$$x \in P$$

$$Pos_e(x) = |\{z \in P \mid x \leq_e z\}|$$

$$av(x) = \frac{1}{|E_{\leq_P}|} \sum_{e \in E_{\leq_P}} Pos_e(x)$$

Complete extension

Complete extension (P, \preceq_{av}) given by:

$$x \lesssim_{\mathrm{av}} y \Leftrightarrow \mathrm{av}(x) \le \mathrm{av}(y)$$

$$\begin{array}{cccc} e \in E_{\leq_P} & \operatorname{Pos}_e(x_i) \\ \operatorname{1st} & x_2 & \operatorname{Pos}_e(x_2) = 1 \\ \operatorname{2nd} & x_1 & \operatorname{Pos}_e(x_1) = 2 \\ \operatorname{3rd} & x_4 & \operatorname{Pos}_e(x_4) = 3 \\ \operatorname{4th} & x_5 & \operatorname{Pos}_e(x_5) = 4 \\ \operatorname{5th} & x_6 & \operatorname{Pos}_e(x_6) = 5 \\ \operatorname{6th} & x_3 & \operatorname{Pos}_e(x_3) = 6 \end{array}$$

Mutual rank probabilities

Mutual rank probability

$$\left. \begin{array}{c} (P, \leq_P) \\ x, y \in P \end{array} \right\} \quad \longrightarrow \quad p_{y < x} = \frac{|\{e \in E_{\leq_P} | y \leq_e x\}|}{|E_{\leq_P}|}$$

Complete extension

Complete extension (P, \preceq_{mrp}) given by:

$$x \lesssim_{\text{mrp}} y \iff p_{y < x} \ge \frac{1}{2}$$

 \precsim_{mrp} may not be transitive...take its transitive clousure \precsim_{mrp}'

Mutual rank probabilities: Example

Mutual rank probabilities **Poset** x_1 x_2 $p_{y < x}$ x_1 x_2 x_3 x_4 x_5 x_6 $\frac{15}{19}$ 1 1 x_1 $\frac{13}{19}$ $\frac{9}{19}$ x_2 x_3 x_4 $\frac{15}{19}$ x_3 x_4 x_5 $0 \quad 0 \quad 1$ x_5 0 0 0 0 x_6 x_6 Complete extension

 $x_6 \prec_{\text{mrp}} x_5 \prec_{\text{mrp}} x_3 \prec_{\text{mrp}} x_2 \prec_{\text{mrp}} x_4 \prec_{\text{mrp}} x_1$

Maximal method

Maximal method

$$M_1 = \{x \in P \mid x \text{ maximal in } (P, \leq_P)\} \rightarrow P_1 = P \setminus M_1$$

$$M_2 = \{x \in P \mid x \text{ maximal in } (P_1, \leq_{P_1})\} \rightarrow P_2 = P \setminus (M_1 \cup M_2)$$
...
$$M_1 M_2 \qquad M_2 \text{ partition of } P$$

M_1, M_2, \ldots, M_k partition of P

Complete extension

Complete extension (P, \lesssim_{\max}) given by:

$$x \lesssim_{\max} y \Longleftrightarrow x \in M_i, y \in M_j \text{ with } i \leq j$$

Partition

$$M_1 = \{x_1, x_2\}$$

$$M_2 = \{x_3, x_4\}$$

Poset

Partition

$$M_1 = \{x_1, x_2\}$$

$$M_2 = \{x_3, x_4\}$$

$$M_3 = \{x_5\}$$

$$M_4 = \{x_6\}$$

Poset

Partition

$$M_1 = \{x_1, x_2\}$$

$$M_2 = \{x_3, x_4\}$$

$$M_3 = \{x_5\}$$

$$M_4 = \{x_6\}$$

Poset

Complete extension

 $x_6 \prec_{\min} x_5 \prec_{\min} x_4 \sim_{\min} x_3 \prec_{\min} x_2 \sim_{\min} x_1$

Overview

Basics on posets

Ranking elements in a poset

Stochastic orderings

Ranking elements in a poset VS Stochastic oderings

Expected value

Expected value

Let \mathcal{A} be a set of random variables. Given $\mathbf{x}, \mathbf{y} \in \mathcal{A}$, \mathbf{x} is said to be preferred to \mathbf{y} with respect to expected value, denoted by $\mathbf{x} \succsim_{\mathrm{EV}} \mathbf{y}$, if $E(\mathbf{x}) \geq E(\mathbf{y})$.

Example

 $\mathcal{A}=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\}$ set of discrete, uniform and independent r.v. with supports:

$$D_1 = \{1, 3, 4, 15, 16, 17\} \longrightarrow E(\mathbf{x}_1) = \frac{28}{3}$$

$$D_2 = \{2, 10, 11, 12, 13, 14\} \longrightarrow E(\mathbf{x}_2) = \frac{31}{3}$$

$$D_3 = \{5, 6, 7, 8, 9, 18\} \longrightarrow E(\mathbf{x}_3) = \frac{53}{6}$$

$$\mathbf{x}_2 \succ_{\mathrm{EV}} \mathbf{x}_1 \succ_{\mathrm{EV}} \mathbf{x}_3$$

Statistical preference

Statistical preference

Let \mathcal{A} be a set of random variables. Given $\mathbf{x}, \mathbf{y} \in \mathcal{A}$, the winning probability of \mathbf{x} over \mathbf{y} is given by:

$$Q(\mathbf{x}, \mathbf{y}) = \mathsf{Prob}(\mathbf{x} > \mathbf{y}) + \frac{1}{2} \mathsf{Prob}(\mathbf{x} = \mathbf{y}).$$

 ${f x}$ is said to be statistically preferred to ${f y}$, denoted by ${f x}\succsim_{\rm SP}{f y}$, if $Q({f x},{f y})\geq rac{1}{2}.$

Example

 $\mathcal{A}=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\}$ set of discrete, uniform and independent r.v. with supports:

$$D_1 = \{1, 3, 4, 15, 16, 17\}$$

$$D_2 = \{2, 10, 11, 12, 13, 14\}$$

$$D_3 = \{5, 6, 7, 8, 9, 18\}$$

Probabilistic preference

Probabilistic preference

Let \mathcal{A} be a set of random variables. Given $\mathbf{x} \in \mathcal{A}$, its multivariate winning probability is given by:

$$\text{If } P(\mathbf{x} = \mathbf{y}) = 0 \text{ for any } \mathbf{x}, \mathbf{y} \in \mathcal{A} \text{: } \Pi_{\mathcal{A}}(\mathbf{x}) = \text{Prob} \big(\mathbf{x} > \max_{\mathbf{y} \neq \mathbf{x}} \mathbf{y} \big).$$

Iterative procedure

$$\mathcal{A}_{1} = \{ \mathbf{x} \in \mathcal{A} \mid \Pi_{\mathcal{A}}(\mathbf{x}) > 0 \}$$

$$\mathcal{A}_{2} = \{ \mathbf{x} \in \mathcal{A} \setminus \mathcal{A}_{1} \mid \Pi_{\mathcal{A} \setminus \mathcal{A}_{1}}(\mathbf{x}) > 0 \}$$

$$\dots$$

$$\mathcal{A}_{j+1} = \{ \mathbf{x} \in \mathcal{A} \setminus \{ \mathcal{A}_{1} \cup \mathcal{A}_{j} \} \mid \Pi_{\mathcal{A} \setminus \{ \mathcal{A}_{1} \cup \mathcal{A}_{j} \}}(\mathbf{x}) > 0 \}$$

Probabilistic preference

Probabilistic preference

Given $\mathbf{x} \in \mathcal{A}_i$ and $\mathbf{y} \in \mathcal{A}_j$, \mathbf{x} is said to be probabilistically preferred to \mathbf{y} , denoted by $\mathbf{x} \succsim_{\mathrm{PP}} \mathbf{y}$, if i < j or i = j and

$$\Pi_{\mathcal{A}\setminus\{\mathcal{A}_1\cup\mathcal{A}_j\}}(\mathbf{x})\geq\Pi_{\mathcal{A}\setminus\{\mathcal{A}_1\cup\mathcal{A}_j\}}(\mathbf{y})$$

Example

 $\mathcal{A}=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\}$ set of discrete, uniform and independent r.v. with supports:

$$D_1 = \{1, 3, 4, 15, 16, 17\} \longrightarrow \Pi_{\mathcal{A}}(\mathbf{x}_1) = 0.4167$$

$$D_2 = \{2, 10, 11, 12, 13, 14\} \longrightarrow \Pi_{\mathcal{A}}(\mathbf{x}_2) = 0.3472$$

$$D_3 = \{5, 6, 7, 8, 9, 18\} \longrightarrow \Pi_{\mathcal{A}}(\mathbf{x}_3) = 0.2361$$

$$\mathbf{x}_1 \succ_{\mathrm{PP}} \mathbf{x}_2 \succ_{\mathrm{PP}} \mathbf{x}_3$$

Overview

Basics on posets

Ranking elements in a poset

Stochastic orderings

Ranking elements in a poset VS Stochastic oderings

Setting

Main results

Averaged ranking VS Expected value

$$a \lesssim_{\mathrm{av}} b \iff \mathbf{x}_b \succeq_{\mathrm{EV}} \mathbf{x}_a$$

Mutual rank probabilities VS Statistical preference

$$a \lesssim_{\mathrm{mrp}} b \iff \mathbf{x}_b \succeq_{\mathrm{SP}} \mathbf{x}_a$$

Maximal method VS Probabilistic preference

$$a \lesssim_{\min} b \implies \mathbf{x}_b \succeq_{\operatorname{PP}} \mathbf{x}_a$$

$$M_i \iff \mathcal{A}_i$$

Overview

Basics on posets

Ranking elements in a poset

Stochastic orderings

Ranking elements in a poset VS Stochastic oderings

Conclusions

European Journal of Operational Research 285 (2020) 977-987

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Stochastics and Statistics

A correspondence between voting procedures and stochastic orderings

Ignacio Montes a,*, Michael Rademaker b, Raúl Pérez-Fernández a,b, Bernard De Baets b

Financiación

Proyecto PID2022-140585NB-I00 financiado por MICIU/AEI/10.13039/501100011033 y por FEDER, UE