日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2000年12月 7日

出願番号

Application Number:

特願2000-373602

株式会社フルヤ金属

2001年 3月16日

特許庁長官 Commissioner, Patent Office

川科

特2000-373602

【書類名】

特許願

【整理番号】

P1210099

【あて先】

特許庁長官殿

【国際特許分類】

G03C 17/36

C09K 19/00

【発明者】

【住所又は居所】

東京都豊島区南大塚2丁目37番5号 株式会社フルヤ

金属内

【氏名】

上野崇

【特許出願人】

【識別番号】

000136561

【氏名又は名称】 株式会社フルヤ金属

【代理人】

【識別番号】

100068607

【弁理士】

【氏名又は名称】 早川 政名

【選任した代理人】

【識別番号】

100090619

【弁理士】

【氏名又は名称】 長南 満輝男

【選任した代理人】

【識別番号】 100109955

【弁理士】

【氏名又は名称】

細井 貞行

【選任した代理人】

【識別番号】 100111785

【弁理士】

【氏名又は名称】 石渡 英房

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第348052号

【出顧日】

平成11年12月 7日

【手数料の表示】

【予納台帳番号】 006378

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9904270

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 高耐熱性反射膜及びこの反射膜を用いた積層体

【特許請求の範囲】

【請求項1】 主成分となるAgに、Pdを0.1~3.0wt%添加してなるAg合金材料から形成してなることを特徴とする高耐熱性反射膜。

【請求項2】 主成分となるAgに、Au、Pd及びRuのいずれか一種以上を 0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、少なくとも一種類以上の元素を0.1~3.0wt%添加してなる Ag合金材料から形成してなることを特徴とする高耐熱性反射膜。

【請求項3】 請求項1又は2記載のAg合金材料が、蒸着材料であり、蒸着 法により形成してなることを特徴とする高耐熱性反射膜。

【請求項4】 請求項1又は2記載のAg合金材料が、スパッタリングターゲット材料であり、スパッタリング法により形成してなることを特徴とする高耐熱性反射膜。

【請求項5】 請求項1乃至4いずれか1項に記載の少なくとも一層以上の層からなる高耐熱性反射膜を用いて形成してなることを特徴とする積層体。

【請求項6】 請求項1乃至4いずれか1項に記載の高耐熱性反射膜を、樹脂 基板上に形成してなることを特徴とする積層体。

【請求項7】 請求項1乃至4いずれか1項に記載の高耐熱性反射膜を、ガラス基板上に形成してなることを特徴とする積層体。

【請求項8】 請求項1記載の高耐熱性反射膜又は純Agよりなる反射膜の上部に、 In_2O_3 を主成分として、 SnO_2 、 Nb_2O_5 、 SiO_2 、MgO、 Ta_2O_5 のいずれか一種以上を添加してなる合金膜を形成して成ることを特徴とする積層体。

【請求項9】 請求項6又は7記載の樹脂基板又はガラス基板と高耐熱性反射 膜との間に、密着性を助長する下地膜を形成してなることを特徴とする積層体。

【請求項10】 請求項8記載の積層体の下部に、密着性を助長する下地膜を形成して3層構造に構成したことを特徴とする積層体。

【請求項11】 請求項9又は10記載の下地膜が、 In_2O_3 、 SnO_2 、 Nb_2O_5 、MgO、ITO、 ZnO_2 、 SiO_2 、 TiO_2 、 Ta_2O_5 、 ZrO_2 から選ばれた少なくとも一種、若しくはこれらを主成分とする二種類以上の材料からなることを特徴とする積層体。

【請求項12】 請求項9又は10記載の下地膜が、Si、Ta、Ti、Mo、Cr、Alから選ばれた少なくとも一種、若しくはこれらを主成分とする二種類以上の材料からなることを特徴とする積層体。

【請求項13】 請求項5乃至12いずれか1項に記載の積層体が、Ag若しくはAgを主成分とする合金材料と樹脂基板又はガラス基板との密着性及び、基板とAg若しくはAg合金との中間層との密着性の助長を行うことを特徴とする積層体。

【請求項14】 請求項5乃至13のいずれか1項に記載の積層体が、液晶表示素子用反射体であることを特徴とする積層体。

【請求項15】 請求項5乃至13のいずれか1項に記載の積層体が、建材ガラスであることを特徴とする積層体。

【請求項16】 請求項8記載の積層体が、380~565nmの短波長領域で、純Ag若しくはAgを主成分として構成される合金膜の、光学特性としての吸収率の増加を低減し、特には黄色化を抑制することを特徴とする積層体。

【請求項17】 請求項14又は16記載の積層体を用いて構成される液晶表示素 子。

【請求項18】 請求項8記載の積層体が、液晶表示素子の構造により上部に カラーフィルターを形成する場合において、このカラーフィルターを形成するプロセスで析出されるアルカリ成分より保護することを特徴とする液晶表示素子。

【請求項19】 請求項8記載の積層体が、液晶表示素子の構造により上部に カラーフィルターを形成する場合において、このカラーフィルターを形成するプロセスで加熱される場合の反射率の低下を低減できることを特徴とすること液晶 表示素子。

【請求項20】 請求項8記載の積層体を、反射体或いは反射膜として形成される液晶表示素子を用いて形成される携帯情報端末機器。

【請求項21】 請求項12記載の積層体を、反射体或いは反射膜として構成する液晶表示素子。

【請求項22】 請求項21記載の液晶表示素子を用いて構成される携帯情報端 末機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液晶表示素子用反射体、或いは建材ガラス用反射膜等の製作に使用される高耐熱性反射膜に係り、特に高反射率を特徴とするAg合金からなる液晶表示素子構成用高耐熱性反射膜及びこの反射膜を用いて形成される液晶表示素子構成用積層体に関する。

[0002]

【従来の技術】

従来から、建材ガラス用熱線反射膜や反射型液晶表示素子用反射板にはA1又はA1合金、或いはAg及びAg-Pdに代表されるAg合金等の様々な材料が使用され、又、膜の積層によって高い反射率に加えて機能性を向上させる等の検討がなされており、それを実現した製品が既に大変多くの分野や多種多様な方面に用いられてきている。

[0003]

【発明が解決しようとする課題】

ところで、400~4000nmの光学波長領域において、高い反射率を特徴とする反射膜や、この反射膜を用いて形成される反射型液晶表示素子用反射板、反射電極層及び建材ガラス用赤外線及び熱線を反射する反射膜としては、AgやA1若しくはこれらの内、いずれかの元素を主成分とする合金材料から形成された反射膜が幅広く知られているが、それぞれに耐熱性に対しは決して優れているとは言えない。

[0004]

例えばA1やAgは熱に対しての耐熱性が高く無く、特定温度では表面部が拡散し易いために、例えば液晶表示素子用の反射板を製作する場合には、製作プロ

セス中での温度雰囲気が制限される。更には建材ガラス用の赤外線及び熱線反射 膜に至っては大気中で夏季に高温に曝されると、反射膜自体が化学的に変異(変 色)してしまう等、熱に対しての品質の安定性に問題があった。

これは、反射率が可視光域(400~800nmの光学波長領域)で最も高い Ag若しくはAgを主成分とするAg合金は短波長(450nm以下)では吸収 率および吸収係数が増加する為に黄色反射光が強く、液晶表示素子及びそれを用 いた携帯情報端末機器となった際に必ずしも見栄えが良いとは言えなく、時間が 経つにつれて黄色化が進行することも懸念されている。

[0005]

又、反射率が高い材料としては、AlやAg以外にAuが知られているが、Auは価格的に大変高価であるために建材窓ガラス用反射膜や液晶表示素子用反射板に用いるにはコスト的な面から実用性が乏しいと判断されている。

[0006]

又、反射率が高く、コスト的な面からも大変安価で、実用性が高いとされるA 1については、PMMA、シリコーン樹脂等の樹脂基板等を用いた場合に、樹脂 基板から析出されるガス成分に対して化学反応を起こす虞れがあることから、ガ スの放出作用が低い材料からなる基板にのみ有効と、基板材料が制限されてしま うばかりか、樹脂とのコンタクトを図る場合には材料の化学的な安定性が懸念さ れてしまう等の不安、課題が残る。

[0007]

更に、A1若しくはこれを主成分とするA1合金は、例えばAg、Agを主成分とするAg合金と比して光学的吸収が大きいために、半透過反射膜を形成する際に光学特性として損失が大きいとされている。

[0008]

又、400~4000nmの可視及び赤外域と称される光学波長領域中で、Agは数多くの金属元素中で最も光学反射率が高いために、高反射率を特徴とする膜としては優れた特性を保有しているものと検討されているが、熱に対しての自己拡散エネルギーが活発であるために、熱が印加された場合の経時変化が生じるという問題がある。そのために、一時的であっても100℃前後の熱が印加され

た場合には表面部に拡散現象が起り、Ag本来が保有する光沢を失って白濁化してしまう。換言すれば、反射率が高いと言うAg本来の特性が大幅に低減してしまう。

又、ガラスや樹脂製の基板上に反射膜を形成した際には、Agは大気中に放置されると、大気中の湿気(主として水分)を吸収して黄色化してしまうために、反射率が高いと言うAg本来の特性が欠損させてしまう等の問題が生じ、高反射率であると言う本来の特性を保持することができないと言った耐候性に対しも決して優れているとは言えない。

[0009]

本発明はこの様な従来事情に鑑みてなされたもので、その目的とする処は、Ag自体の保有する高い光学反射率に対しての高い能力が保持され、更にはAgの材料的な安定性が格段に改善され、しかも、積層されて用いられた場合では下地層やガラス基板又は樹脂基板との接合性がより一層効果的に強化され、より高い信頼性が得られる高耐熱性反射膜と、この反射膜を用いて製作される液晶表示素子用反射板、或いは建材ガラス用反射膜等の積層体を提供することにある。

[0010]

【課題を達成するための手段】

課題を達成するために本発明では、熱に対して安定であり、且つ容易に製作が可能なAgを主成分として、Au、Pd及びRuのいずれか一種以上を0.1~3.0 wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、少なくとも一種類以上の元素を0.1~3.0 wt%添加してなるAg合金材料から形成し、用途に応じて単層、又は複層で構成することで温度や化学的に安定であり、様々な用途への適用を可能とした高耐熱性反射膜である。

そして、本発明においては、Au、Pd及びRuの好ましい添加量は0.7~2.3wt%であり、特に好ましくは0.9wt%である。又、Cu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、少なくとも一種類以上の元素の好ましい添加量は0.5~2.5wt%であり、特に好ましくは1.0wt%である。

[0011]

又、本発明では、上記のAg合金材料が、蒸着材料又はスパッタリングターゲ

ット材料であり、蒸着法又はスパッタリング法により形成される高耐熱性反射膜である。

[0012]

又、本発明では、少なくとも一層以上の層からなる上記高耐熱性反射膜を用いて形成してなる積層体である。

[0013]

又、本発明では、上記高耐熱性反射膜を樹脂基板上又はガラス基板上に、蒸着 法又はスパッタリング法により形成してなる積層体である。

[0014]

又、本発明では、上記樹脂基板又はガラス基板と高耐熱性反射膜との間に、密 着性を助長する下地膜を形成してなる積層体である。

[0015]

又、本発明では、上記下地膜が、ITO(酸化インジウムと酸化錫の複合酸化物)、 ZnO_2 、 SiO_2 、 TiO_2 、 Ta_2O_5 、 ZrO_2 から選ばれた少なくとも一種、若しくはこれらを主成分とする二種類以上の材料からなることである。又、上記下地膜が、Si、Ta、Ti、Mo、Cr、Al から選ばれた少なくとも一種、若しくはこれらを主成分とする二種類以上の材料からなることである。

[0016]

又、本発明では、上記積層体が、液晶表示素子用反射板又は建材ガラスである ことである。

[0017]

更に、本発明の積層構造にした際に、純Agについても上層と下層に特定の材料を用いた層を形成してサンドイッチ構造にした場合には、従来に課題とされている液晶表示素子の製造プロセス中の加熱プロセス後に光学特性が損失したり、光学的吸収増加に伴う表面状態の変化、変色等の課題を抑制することができることである。

[0018]

【発明の実施の形態】

本発明の実施の具体例について説明する。

本発明では、まずAgの保有する熱に対しての自己拡散エネルギーを緩和させて、任意で少なくとも100℃以上に加熱した場合に生じ易かった表面拡散による白濁化、或いは表面形態の大幅な変異による吸収の増加という現象を抑制することである。

[0019]

そして、Agは大変熱伝導率が良く、原子単位で熱を吸収・飽和させ易い特徴があるために、熱伝導率を鈍化させて且つ原子間での活発な移動を抑制するために、Agに対して全率固溶体を形成する原子であるAu、Pd及びRuをO.1~4.0 wt %任意で組成を振って添加して実験して見た。

まず、スパッタリング装置にAgとPdのスパッタリングをそれぞれ装着して、特定のRFパワーでAg、Pdの放電量を制御して、Ar (アルゴン)ガスを0.1~3.0Paの間で任意に設定して、2つの材料を同時にスパッタする。つまり、同時スパッタリング法で数種類Pdの添加量を振って合金膜を形成した

この時、基板としては100mm×100mm×1.1tの石英基板を用いて、スパッタ・プロセス中の基板温度は常温(25℃前後)で、スパッタガスとしてはArガスのみを用いて、到達真空度としては3×10E-6Paという高真空雰囲気中で、膜厚20nmで成膜した。

高真空雰囲気中で成膜を行う理由としては、不純物ガス等が合金膜の粒界に依存してしまうのを抑制して、緻密な膜を形成することで材料本来の物性を確認しようとするためである。

[0020]

上記方法にて形成したAgを主成分として、それに数種類の添加組成でAu、Pd及びRuを添加したAg合金薄膜を、大気中でホットプレート上に乗せて約2時間放置して、白濁化の有無と白濁化が開始された温度を観察して見た。

この時のホットプレートの加熱方法としては、抵抗加熱式を採用し、加熱温度 を250℃、加熱速度を20℃/minに設定した。その試験結果を表1に示す

[0021]

【表1】

材料組成(wt%)	250°Cの熱処理後の 表面状態	白濁化が開始され	
Ag	全面が完全に白濁化	た温度	-25 %
Ag99. 9Pd0. 1	全面が完全に白濁化	100°C	-22%
Ag99. 5Pd0. 5	全面が完全に白濁化	100°C	-22%
Ag99. 0Pd1. 0	全面が完全に白濁化	120°C	-21%
Ag98. 5Pd1. 5	全面が完全に白濃化	120°C	-21%
Ag98. 0Pd2. 0	全面が完全に白濁化	130°C	-20%
Ag97. 5Pd2. 5	中央部が白潘化	150°C	-7.4%(未白濁化部位を測定)
Ag97. 0Pd3. 0	中央部付近が若干白濁化	150°C	-6.5%(未白濁化部位を測定)
Ag96. 5Pd3. 5	中央部付近が若干白濁化	150°C	-6.1%(未白濁化部位を測定)
Ag96. 0Pd4. 0	中央部付近が若干白濁化	150°C	-6.1%(未白濁化部位を測定)
7630. UT U4. U	一大郎門近か名「日風ル	130 C	0.170(末日周に即位を規定)
Ag99. 9Au0. 1	全面が完全に白濁化	100°C	-22 %
Ag99. 5Au0. 5	全面が完全に白濁化	100°C	-22%
Ag99. QAu1. Q	全面が完全に白濁化	120°C	-21 %
Ag98. 5Au1. 5	全面が完全に白濁化	120°C	-21 % 6
Ag98. QAu2. Q	全面が完全に白濁化	130°C	-21%
Ag97. 5Au2. 5	中央部が白濁化	150°C	-7.0%(未白 濁化 部位を測定)
Ag97. 0Au3. 0	中央部付近が若干白濁化	150°C	-6.5%(未白濁化部位を測定)
Ag96, 5Au3, 5	中央部付近が若干白濁化	150°C	-6.0%(未白濁化部位を測定)
Ag96. 0Au4. 0	中央部付近が若干白濁化	150°C	-6.0%(未白濁化部位を測定)
regoc crar. c		1300	O. O. O. O. C. P. P. C. P. P. C. P. C. P. C. P. C. P.
Ag99. 9Ru0. 1	全面が完全に白濁化	100°C	-22%
Ag99. 5Ru0. 5	全面が完全に白濁化	100°C	-22%
Ag99. ORu1. O	全面が完全に白濁化	120°C	-21 %
Ag98, 5Ru1, 5	全面が完全に白濁化	120°C	-20%
Ag98. ORu2. O	全面が完全に白濁化	130°C	-20 %
Ag97. 5Ru2. 5	中央部が白濁化	150°C	-7.4%(未白濁化部位を測定)
Ag97. ORu3. O	中央部付近が若干白濁化	150°C	-6.5%(未白濁化部位を測定)
Ag96. 5Ru3. 5	中央部付近が若干白濁化	150°C	- 6.1%(未白濁化部位を測定)
Ag96. ORu4. O	中央部付近が若干白濁化	150°C	-6.1%(未白濁化部位を測定)

[0022]

一般的に、Au、Pd及びRuを添加すると、Agの保有する高温及び高温(多湿)環境下での耐候性の無さが改善されることはよく知られているが、熱を印加した場合の耐表面拡散性については、表1の様に顕著な差異を確認することはできなく、Au、Pd及びRuの添加による白濁化の低減については、純Agと比較して顕著な優位性を確認することはできなかった。

又、反射率は、加熱する前と比較して、加熱後において2~3%程度低下する

ことが確認されたために、Au、Pd及びRu添加による表面拡散防止効果は確認することができなかった。

[0023]

実施例1

そこで、本発明では主成分となるAgに、0.1~3.0wt%Au、Pd及びRuを添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、少なくとも一種類以上の元素を添加して、少なくとも三元素以上の元素からなるAg合金から薄膜を形成して、熱による表面拡散の抑制を検討して見た。この時のCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、少なくとも一種類以上の元素の添加量は0.1~3.0wt%である。

薄膜の成膜方法としては、Agに加えて、Au、Pd及びRuのいずれか一種、更にはCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内のいずれかのスパッタリングターゲット材料より一種類選択してRFマグネトロンスパッタリング装置に装着し、前記3つの金属元素を同時スパッタリングすることで、Ag合金薄膜を作成した。

この時、基板としては100mm×100mm×1.1 tの石英基板を用いて、スパッタ・プロセス中の基板温度は常温(25℃前後)で、スパッタガスとしてはAr(アルゴン)ガスのみを用いて、到達真空度としては3×10E-6Paという高真空雰囲気中で、膜厚は前述したAg-Pdからなる二元合金と同様に200nmにて形成した。

[0024]

この方法で、主成分となるAgに、Au、Pd及びRuのいずれか一種以上を 0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al 、Nbの内、いずれか一種以上を0.1~3.0wt%添加してなるAg合金を 石英基板上に膜厚200nmで成膜して、それを250℃に設定保持されたホットプレート上に置いて2時間放置して見た。その試験結果を表2及び表3~表7 に示す。

[0025]

【表2】

材料組成(wt%)	250°Cの熱処理後の 表面状態	白濁化が 開始され た温度	熱処理前後の 反射率の差異 (800mmの波長領域)
Ag99. 8Pd0. 1Cu0. 1	白濁化が観察されない	100℃	-1.1%
Ag98. 4Pd0. 1Cu1. 5	白濁化が観察されない	_	-1.0%
Ag96. 9Pd0. 1Cu3. 0	白濁化が観察されない	-	−1.096
Ag98. 4Pd1. 5Cu0. 1	白濁化が観察されない	_	-0. 9%
Ag97. OPd1. 5Cu1. 5	白濁化が観察されない	-	−0. 7%
Ag95. 5Pd1. 5Cu3. 0	白濁化が観察されない	_	-0. 796
Ag96. 9Pd3. 0Cu0. 1	白濁化が観察されない	_	-1.096
Ag95. 5Pd3. 0Cu1. 5	白濁化が観察されない	_	-0.5%
Ag94. OPd3. OCu3. O	白濁化が観察されない	_	-0.4%
Ag99. 8Pd0. 1Ti0. 1	白濁化が観察されない	_	−1.1%
Ag98. 4Pd0. 1Ti1. 5	白濁化が観察されない		−1.0%
Ag96. 9Pd0. 1Ti3. 0	白濁化が観察されない	_	-1.0%
Ag98. 4Pd1. 5TiO. 1	白濁化が観察されない	-	-0.9%
Ag97. OPd1. 5Ti1. 5	白濁化が観察されない	-	-0. 7%
Ag95. 5Pd1. 5Ti3. 0	白濁化が観察されない	_	-0. 7%
Ag96. 9Pd3. 0Ti0. 1	白濁化が観察されない	-	-1.0%
Ag95. 5Pd3. 0Ti1. 5	白濁化が観察されない	_	−0. 5%
Ag94. OPd3. OT i3. O	白濁化が観察されない	-	-0. 4%
Ag99, 8Pd0, 1Cr0, 1	白濁化が観察されない	-	−1.1%
Ag98. 4Pd0. 1Cr1. 5	白濁化が観察されない	-	-1.0%
Ag96. 9Pd0. 1Cr3. 0	白濁化が観察されない	1	-1.0%
Ag98. 4Pd1. 5Cr0. 1	白濁化が観察されない	1	-0. 9%
Ag97. 0Pd1. 5Cr1. 5	白濁化が観察されない	-	-0.7%
Ag95. 5Pd1. 5Cr3. 0	白濁化が観察されない	-	-0. 7%
Ag96. 9Pd3. 0Cr0. 1	白濁化が観察されない	_	-1.0%
Ag95. 5Pd3. 0Cr1. 5	白濁化が観察されない	-	-0.5%
Ag94. OPd3. OCr3. O	白濁化が観察されない		-0.4%
Ag99. 8Pd0. 1Ta0. 1	白濁化が観察されない	-	-1.1%
Ag98. 4Pd0. 1Ta1. 5	白濁化が観察されない	_	-1.0%
Ag96. 9Pd0. 1Ta3. 0	白濁化が観察されない	_	-1.0%
Ag98. 6Pd1. 5Ta0. 1	白濁化が観察されない	_	-0.9%
Ag97. OPd1. 5Ta1. 5	白濁化が観察されない	-	-0. 7%
Ag95, 5Pd1, 5Ta3, 0	白濁化が観察されない	_	-0. 7%
Ag96. 9Pd3. 0Ta0. 1	白濁化が観察されない	-	-1.0%
Ag95. 5Pd3. 0Ta1. 5	白濁化が観察されない	-	-0.5%
Ag94. OPd3. OTa3. O	白濁化が観察されない	_	-0. 4%

[0.026]

【表3】

材料組成(wt%)	250℃の熱処理後の 表面状態	白濁化が 開始され た温度	熱処理前後の 反射率の差異 (800nm の波長領域)
Ag99. 8Pd0. 1Mo0. 1	白濁化が観察されない	-	−1. 1%
Ag98. 4Pd0. 1Mo1. 5	白濁化が観察されない	-	-1.0%
Ag96. 9Pd0. 1Mo3. 0	白濁化が観察されない	_	-1.0%
Ag98. 4Pd1. 5Mo0. 1	白濁化が観察されない	_	-0.9%
Ag97. OPd1. 5Mo1. 5	白濁化が観察されない	_	-0. 7%
Ag95. 5Pd1. 5Mo3. 0	白濁化が観察されない	-	-0. 7%
Ag96. 9Pd3. 0Mo0. 1	白濁化が観察されない	_	-1.0%
Ag95. 5Pd3. 0Mo1. 5	白濁化が観察されない	_	-0. 5%
Ag94. OPd3. OMo3. O	白濁化が観察されない	-	-0. 4%
Ag99. 8Pd0. 1Au0. 1	白濁化が観察されない	_	-1.1%
Ag98. 4Pd0. 1Au1. 5	白濁化が観察されない	_	-1.0%
Ag96. 9Pd0. 1Au3. 0	白濁化が観察されない	_	-1.0%
Ag98. 4Pd1. 5Au0. 1	白濁化が観察されない	_	-0. 9%
Ag97. OPd1. 5Au1. 5	白濁化が観察されない	-	-0. 7%
Ag95. 5Pd1. 5Au3. 0	白濁化が観察されない	-	-0. 7%
Ag96. 9Pd3. 0Au0. 1	白濁化が観察されない	1	-1. 0%
Ag95. 5Pd3. 0Au1. 5	白濁化が観察されない	-	−0. 5%
Ag94. OPd3. OAu3. O	白濁化が観察されない	•	-0. 4%
Ag99. 8Au0. 1Ru0. 1	白濁化が観察されない	_	−1. 0%
Ag98. 4Au0. 1Ru1. 5	白濁化が観察されない	_	-0.8%
Ag96. 9Au0. 1Ru3. 0	白濁化が観察されない		-0. 5%
Ag98. 4Au1. 5Ru0. 1	白濁化が観察されない	-	−1.096
Ag97. 0Au1. 5Ru1. 5	白濁化が観察されない	_	-0. 3%
Ag95. 5Au1. 5Ru3. 0	白濁化が観察されない	_	-0. 6%
Ag96. 9Au3. ORu0. 1	白濁化が観察されない	-	-0.8%
Ag95. 5Au3. ORu1. 5	白濁化が観察されない	1	-0. 5%
Ag94. OAu3. ORu3. O	白濁化が観察されない	ı	-0.8%
Ag99. 8Pd0. 1Ru0. 1	白濁化が観察されない	-	-1.0%
Ag98. 4Pd0. 1Ru1. 5	白濁化が観察されない	-	-0.9%
Ag96. 9Pd0. 1Ru3. 0	白濁化が観察されない	-	-1.0%
Ag98. 4Pd1. 5Ru0. 1	白濁化が観察されない	-	-0.9%
Ag97. OPd1. 5Ru1. 5	白濁化が観察されない	-	-0.8%
Ag95. 5Pd1. 5Ru3. 0	白濁化が観察されない	-	-0.7%
Ag96. 9Pd3. 0Ru0, 1	白濁化が観察されない	-	-1.0%
Ag95. 5Pd3. ORu1. 5	白濁化が観察されない	-	0. 6%
Ag94. OPd3. ORu3. O	白濁化が観察されない	_	-0.4%

[0027]

【表4】

材料組成(wt%)	05000 0 84 m 1244 0	A 40 H. 10	
44 44 ETTAC (ACD)	250℃の熱処理後の 表面状態	白濁化が 開始され	熱処理前後の
	3X III 1A 133	た温度	反射率の差異
Ag99. 8Au0. 1Qu0. 1	白濁化が観察されない	100°C	(800mmの波長領域)
Ag98. 4Au0. 1Cu1. 5	白濁化が観察されない	1000	-0.9%
Ag96. 9Au0. 1Qu3. 0	白濁化が観察されない		-0.8%
Ag98. 4Au1. 5Cu0. 1	白濁化が観察されない		-0.8%
Ag97. 0Au1. 5Cu1. 5	白濁化が観察されない		-0.7%
Ag95. 5Au1. 5Cu3. 0	白濁化が観察されない		-0.6%
Ag96. 9Au3. 0Cu0, 1	白濁化が観察されない		-0.5%
Ag95. 5Au3. 0Cu1. 5	白濁化が観察されない		-0. 8% -0. 5%
Ag94. OAu3. OCu3. O	白濁化が観察されない		-0. 5%
Ag99. 8Au0. 1Ti0. 1	白滑化が観察されない		
Ag98. 4Au0. 1Ti1. 5	白濁化が観察されない		-0. 9% -0. 6%
Ag96. 9Au0. 1Ti3. 0	白海化が観察されない		-0.3%
Ag98. 4Au1. 5TiO. 1	白清化が観察されない	_	-0. 5%
Ag97. 0Au1. 5T i1. 5	白濁化が観察されない		-0. 8%
Ag95. 5Au1. 5T i3. 0	白濁化が観察されない	- · 	-0.6%
Ag96. 9Au3. 0Ti0. 1	白潤化が観察されない		-0. 9%
Ag95. 5Au3. 0Ti1. 5	白濁化が観察されない		-1. 1%
Ag94. 0Au3. 0Ti3. 0	白濁化が観察されない		-1.0%
Ag99. 8Au0. 1Cr0. 1	白濁化が観察されない		-0. 8%
Ag98. 4Au0. 1Cr1. 5	白清化が観察されない		-1.0%
Ag96. 9Au0. 1Cr3. 0	白濁化が観察されない		-0. 6%
Ag98. 4Au1. 5Cr0. 1	白濁化が観察されない	_	-0.9%
Ag97. 0Au1. 5Cr1. 5	白濁化が観察されない	_	-0. 4%
Ag95. 5Au1. 5Cr3. 0	白濁化が観察されない	_	-1. 1%
Ag96. 9Au3. OCr0. 1	白濁化が観察されない		-0. 8%
Ag95. 5Au3. 0Cr1. 5	白濁化が観察されない	_	-0.9%
Ag94. 0Au3. 0Cr3. 0	白濁化が観察されない	_	-0. 7%
Ag99. 8Au0. 1Ta0. 1	白濁化が観察されない		-0.5%
Ag98. 4Au0. 1Ta1. 5	白濁化が観察されない	_	-0.6%
Ag96. 9Au0. 1Ta3. 0	白濁化が観察されない	_	-1.1%
Ag98. 6Au1. 5Ta0. 1	白濁化が観察されない	_	-0.4%
Ag97. 0Au1. 5Ta1. 5	白濁化が観察されない		-0.9%
Ag95. 5Au1. 5Ta3. 0	白濁化が観察されない		-0.8%
Ag96. 9Au3. 0Ta0. 1	白濁化が観察されない		-0.5%
Ag95. 5Au3. 0Ta1. 5	白濁化が観察されない		-1. 0%
Ag94. OAu3. OTa3. O	白濁化が観察されない		-0. 6%
			V. 070

[0028]

【表 5】

材料組成(wt%)	250℃の熱処理後の 表面状態	白濁化が 開始され た温度	熱処理前後の 反射率の差異 (800nm の波長領域)
Ag99. 8Au0. 1Mo0. 1	白濁化が観察されない	_	-0.796
Ag98. 4Au0. 1Mo1. 5	白濁化が観察されない	_	-1.1%
Ag96. 9Au0. 1Mo3. 0	白濁化が観察されない	_	-0.8%
Ag98. 4Au1. 5Mo0. 1	白濁化が観察されない	_	-0.4%
Ag97, 0Au1, 5Mo1, 5	白濁化が観察されない	_	−0.8%
Ag95. 5Au1. 5Mo3. 0	白濁化が観察されない	_	-0.3%
Ag96. 9Au3. 0Mo0. 1	白濁化が観察されない	_	-0.996
Ag95. 5Au3. 0Mo1. 5	白濁化が観察されない	-	-1.1%
Ag94, OAu3, OMo3, O	白濁化が観察されない	-	-1.0 %
Ag99. 8Au0. 1Ni0. 1	白濁化が観察されない	_	-0. 5%
Ag98. 4Au0. 1Ni1. 5	白濁化が観察されない	-	-1.1%
Ag96. 9Au0. 1N13. 0	白濁化が観察されない	_	-0. 8%
Ag98. 4Au1. 5NiO. 1	白濁化が镀察されない	_	-0.4%
Ag97. QAu1. 5Ni1. 5	白濁化が観察されない		-1.0%
Ag95. 5Au1. 5Ni3. 0	白濁化が観察されない		-0. 7%
Ag96. 9Au3. ON i 0. 1	白濁化が観察されない	-	−0.9%
Ag95. 5Au3. ON i 1. 5	白濁化が観察されない	-	-0. 6%
Ag94. OALI3. ON 13. O	白濁化が観察されない	_	−0.8%
Ag99. 8Au0. 1A10. 1	白満化が観察されない	-	-1. 09%
Ag98. 4Au0. 1A11. 5	白濁化が観察されない		-1. 196
Ag96, 9Au0, 1A13, 0	白濁化が観察されない	***	-0. 796
Ag98. 4Au1. 5A10. 1	白濁化が観察されない	_	-0. 9%
Ag97. OAu1. 5A11. 5	白濁化が観察されない	_	-0. 5%
Ag95. 5Au1. 5A13. 0	白濁化が観察されない	-	-0. 4%
Ag96. 9Au3. 0A10. 1	白濁化が観察されない		-0. 8%
Ag95. 5Au3. 0A11. 5	白濁化が観察されない	_	-1.0%
Ag94. OAu3. OA13. O	白濁化が観察されない	_	-1.1%
Ag99. 8Au0. 1Nb0, 1	白濁化が観察されない	_	-1. 1%
Ag98. 4Au0. 1Nb1. 5	白濁化が観察されない	-	-1.0%
Ag96, 9Au0, 1Nb3, 0	白濁化が観察されない	_	-0. 9%
Ag98. 4Au1. 5Nb0. 1	白濁化が観察されない	_	-0. 8%
Ag97. 0Au1. 5Nb1. 5	白濁化が観察されない		-0. 7%
Ag95. 5Au1. 5Nb3. 0	白濁化が観察されない		-0. 8%
Ag96. 9Au3. ONb0. 1	白濁化が観察されない	-	-1.0%
Ag95. 5Au3. 0Nb1. 5	白濁化が観察されない		-0. 4%
Ag94. 0Au3. 0Nb3. 0	白濁化が観察されない		-0. 4%

[0029]

【表6】

材料組成(wt%)	250℃の熱処理後の 表面状態	白濁化が 開始され た温度	熱処理前後の 反射率の差異 (800mm の波長領域)
Ag99. 8Ru0. 1Cu0. 1	白濁化が観察されない	100℃	-0. 9%
Ag98. 4Ru0. 1Cu1. 5	白濁化が観察されない	-	-0.8%
Ag96. 9Ru0. 1Cu3. 0	白濁化が観察されない	-	-0. 7%
Ag98. 4Ru1. 5Cu0. 1	白濁化が観察されない	_	-0. 7%
Ag97. ORu1. 5Cu1. 5	白濁化が観察されない	_	-0. 6%
Ag95. 5Ru1. 5Cu3. 0	白濁化が観察されない	-	-0. 5%
Ag96. 9Ru3. 0Cu0. 1	白濁化が観察されない		-0. 7%
Ag95. 5Ru0Cu1. 5	白濁化が観察されない		-0. 5%
Ag94. 0Ru0Cu3. 0	白濁化が観察されない	_	-0. 6%
Ag99. 8Ru0. 1Ti0. 1	白濁化が観察されない	_	-0. 9%
Ag98. 4Ru0. 1Ti1. 5	白濁化が観察されない	_	-0. 6%
Ag96. 9Ru0. 1Ti3. 0	白濁化が観察されない	-	-0. 4%
Ag98. 4Ru1. 5Ti0. 1	白濁化が観察されない	-	-0. 5%
Ag97. ORu1. 5Ti1. 5	白濁化が観察されない	-	-0. 8%
Ag95. 5Ru1. 5T i 3. 0	白濁化が観察されない		-0. 5%
Ag96. 9Ru3. 0Ti0. 1	白濁化が観察されない	1	-0. 9%
Ag95. 5Ru3. 0Ti1. 5	白濁化が観察されない	_	-1. 1%
Ag94. ORu3. OT i3. O	白濁化が観察されない	-	-1. 0%
Ag99. 8Ru0. 1Cr0. 1	白濁化が観察されない	-	-0. 8%
Ag98. 4Ru0. 1Cr1. 5	白濁化が観察されない	-	-1. 0%
Ag96. 9Ru0. 1Cr3. 0	白濁化が観察されない	1	-0. 6%
Ag98. 4Ru1. 5Cr0. 1	白濁化が観察されない	_	-0. 8%
Ag97. ORu1. 5Cr1. 5	白濁化が観察されない	+	-0. 4%
Ag95. 5Ru1. 5Cr3. 0	白濁化が観察されない	-	-1. 0%
Ag96. 9Ru3. 0Cr0. 1	白濁化が観察されない	•	-0. 8%
Ag95. 5Ru3. 0Cr1. 5	白濁化が観察されない	_	-0. 9%
Ag94. ORu3. OCr3. O	白濁化が観察されない		-0. 8%
Ag99. 8Ru0. 1Ta0. 1	白濁化が観察されない	_	-0. 9%
Ag98. 4Ru0. 1Ta1. 5	白濁化が観察されない	-	-0. 8%
Ag96. 9Ru0. 1Ta3. 0	白濁化が観察されない	_	-0. 7%
Ag98. 6Ru1. 5Ta0. 1	白濁化が観察されない	-	-0. 7%
Ag97. ORu1. 5Ta1. 5	白濁化が観察されない	-	- 0. 6%
Ag95. 5Ru1. 5Ta3. 0	白濁化が観察されない	-	− 0. 5%
Ag96. 9Ru3. 0Ta0. 1	白濁化が観察されない	_	−0. 7%
Ag95. 5Ru3. 0Ta1. 5	白濁化が観察されない	-	-0.6%
Ag94. ORu3. OTa3. O	白濁化が観察されない	-	−0.6%

[0030]

【表7】

材料組成(wt%)	250℃の熱処理後の 表面状態	白濁化が 開始され た温度	熱処理前後の 反射率の差異 (800nm の波長領域)
Ag99. 8RuO. 1MoO. 1	白濁化が観察されない	_	-0. 8%
Ag98. 4RuO. 1Mo1. 5	白濁化が観察されない	-	-1.0%
Ag96. 9RuO. 1Mo3. 0	白濁化が観察されない	_	-0. 6%
Ag98, 4Ru1, 5NoO, 1	白濁化が観察されない	-	-0. 7%
Ag97. ORu1. 5Mo1. 5	白濁化が観察されない	-	-0. 4%
Ag95. 5Ru1. 5Mo3. 0	白濁化が観察されない	-	−1. 1%
Ag96. 9Ru3. 0Mo0. 1	白濁化が観察されない	_	-0. 8 %
Ag95. 5Ru3. 0Mo1. 5	白濁化が観察されない	-	-0. 7%
Ag94. ORu3. OMo3. O	白濁化が観察されない	_	-0. 6%
Ag99. 8RuO. 1NiO. 1	白滑化が観察されない	-	-1.096
Ag98. 4RuO. 1Ni 1. 5	白濁化が観察されない	_	−1.1%
Ag96. 9RuO. 1Ni3. 0	白濁化が観察されない	-	-0.8%
Ag98. 4Ru1. 5NiO. 1	白濁化が観察されない	_	-0.8%
Ag97. ORu1. 5Ni1. 5	白濁化が観察されない	-	-0. 5%
Ag95. 5Ru1. 5Ni3. 0	白濁化が観察されない	_	- 0. 5%
Ag96. 9Ru3. ONiO. 1	白濁化が観察されない	-	-0.7%
Ag95. 5Ru3. ONi 1. 5	白濁化が観察されない	-	−1.0%
Ag94. ORu3. ON i 3. O	白濁化が観察されない	-	-1.1%
Ag99. 8Ru0. 1AIO. 1	白濁化が観察されない	_	-1.0%
Ag98. 4RuO. 1A11. 5	白濁化が観察されない	-	-1.1%
Ag96. 9RuO. 1A13. 0	白濁化が観察されない	-	-0. 7%
Ag98. 4Ru1. 5A10. 1	白濁化が観察されない	. –	-0. 9%
Ag97. ORu1. 5A11. 5	白濁化が観察されない	_	-0. 5%
Ag95. 5Ru1. 5A13. 0	白濁化が観察されない	_	-0.5%
Ag96. 9Ru3. 0A10. 1	白濁化が観察されない	_	-0.8%
Ag95. 5Ru3. 0A11. 5	白濁化が観察されない	-	-1.096
Ag94. ORu3. OA13. O	白濁化が観察されない	-	−1.1%
Ag99. 8RuO. 1NbO. 1	白濁化が観察されない	-	-1.1%
Ag98. 4RuO. 1Nb1. 5	白濁化が観察されない	_	−1.0%
Ag96. 9RuO. 1Nb3. 0	白濁化が観察されない	-	-0. 8%
Ag98. 4Ru1. 5Nb0. 1	白濁化が観察されない	-	-0. 8%
Ag97. ORu1. 5Nb1. 5	白濁化が観察されない	-	-0. 7%
Ag95. 5Ru1. 5Nb3. 0	白濁化が観察されない	-	- 0. 7%
Ag96. 9Ru3. 0Nb0. 1	白濁化が観察されない		-1.0%
Ag95. 5Ru3. 0Nb1. 5	白濁化が観察されない	-	-0.5%
Ag94. ORu3. ONb3. 0	白濁化が観察されない	-	-0. 4%

[0031]

すると、純Ag或いはAgにAu、Pd及びRuのいずれかを0.1~3.0

wt%添加されたAg合金では、少なからず膜の表面部が白濁化して反射率が低下してしまったが、Agを主成分としてAu、Pd及びRuのいずれか一種以上を0.1~3.0wt%添加し、更に第三元素としてCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種以上を0.1~3.0wt%添加してなる三元素のAg合金では、白濁化現象や反射率の低下が表2及び表3~表7から分かるように、全ての組成範囲で観察されなかった。

[0032]

そこで、250℃で加熱した様々な組成範囲で形成されるAg合金膜が堆積された石英基板を、更に400℃に加熱されたホットプレート上に2時間放置して見た場合、何れの組成範囲においても白濁化や反射率の低下が観察されなかった

[0033]

又、Au、Pd及びRuを全く添加せずにCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種以上をO.1~3.0wt%添加してなる二元素のAg合金膜を前述の通り、スパッタリング法により同時に石英基板に膜厚15nmにて形成して、同じく250℃と400℃の両方で加熱して経時変化を観察したところ、全ての膜が白濁化、そして反射率が低下してしまうことが確認された。

[0034]

この様に、主成分とするAgに、0.1~3.0wt%のAu、Pd及びRuのいずれか一種以上を添加し、更に第三の元素として0.1~3.0wt%のCu、Au、Ti、Cr、Ta、Moの内、いずれか一種類を添加してなる三元素のAg合金にすることにより、耐熱性の改善が認められ、しかも、高い反射率を低下させること無く維持できることが分かった。

[0035]

実施例2

次に、近年、例えば低消費電力であることで携帯電話等の携帯情報端末機器に 有用性が高いとされている反射型液晶表示素子の反射板や、反射率が高いことを 特徴とする反射配線電極としての有用性を検討して見た。 [0036]

従来の反射型液晶表示素子の反射板や反射配線電極にはA1やA1で課題となっているヒロックと呼称される薄膜となった際の凹凸の発生や、膜や反射配線電極の断面部の劣化現象を抑制するA1を主成分とするA1合金が採用されているが、A1若しくはA1合金では、熱に対しての安定性こそは極端に問題になってはいないものの、例えば有機材料であるレジスト液を塗布してパターニングした後に、パターン形成されたA1若しくはA1合金をアルカリ溶液で洗浄してレジスト材を除去しようとする場合には、膜の表面部が荒れてしまって反射率が低下したり光の散乱現象が生じたりすることが問題とされてきた。

[0037]

そこで、本発明ではAgを主成分としてAu、Pd及びRuのいずれか一種以上を0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種以上を0.1~3.0wt%添加してなる三元素からなるAg合金によって形成された反射膜に、前述と同様にレジスト液を塗布してパターン形成後にアルカリ溶液で洗浄する耐蝕試験を行った。その試験結果を表8~表13に示す。

[0038]

【表8】

材料組成(w t %)	アルカリ溶液
Al	完全に反応
A196. OMg4. O	完全に反応
アクリル樹脂で被膜したAI	部分的に反応
Ag80Pd20	黒いシミ発生大
Ag70Pd30	黒いシミ発生中
Ag99. 8Pd0. 1Cu0. 1	変化なし
Ag99. 4Pd0. 5Cu0. 1	変化なし
Ag98. 1Pd0. 9Cu1. 0	変化なし
Ag98. 9Pd1. OCu0. 1	変化なし
Ag97. 9Pd2. 0Cu0. 1	変化なし
Ag96. 9Pd3. 0Cu0. 1	変化なし
Ag96. 5Pd3. 0Ct0. 5	変化なし
Ag94. 0Pd3. 0Cu3. 0	変化なし
Ag99. 8Pd0. 1Ti0. 1	変化なし
Ag99. 4Pd0. 5Ti0. 1	変化なし
Ag98. 1Pd0. 9Ti1, 0	変化なし
Ag98. 9Pd1. 0Ti0. 1	変化なし
Ag97. 9Pd2. 0Ti0. 1	変化なし
Ag96. 9Pd3. OTiO. 1	変化なし
Ag96. 5Pd3. 0Ti0. 5	変化なし
Ag94. 0Pd3. 0Ti3. 0	変化なし
Ag99. 8Pd0. 1Cr0. 1	変化なし
Ag98. 4Pd0. 1Cr1. 5	変化なし
Ag96. 9Pd0. 1Cr3. 0	変化なし
Ag98. 4Pd1. 5Cr0. 1	変化なし
Ag97. 0Pd1. 5Cr1. 5	変化なし
Ag95. 5Pd1. 5Cr3. 0	変化なし
Ag96, 9Pd3, 0Cr0, 1	変化なし
Ag95. 5Pd3. 0Cr1. 5	変化なし
Ag94. 0Pd3. 0Cr3. 0	変化なし
Ag99. 8Pd0. 1Ta0. 1	変化なし
Ag98. 4Pd0. 1Ta1. 5	変化なし
Ag96. 9Pd0. 1Ta3. 0	変化なし
Ag98. 4Pd1. 5Ta0. 1	変化なし
Ag97. 0Pd1. 5Ta1. 5	変化なし
Ag95. 5Pd1. 5Ta3. 0	変化なし

[0039]

【表9】

材料組成(w t %)	アルカリ溶液
Ag96. 9Pd3. 0Ta0. 1	変化なし
Ag95. 5Pd3. 0Ta1. 5	変化なし
Ag94. 0Pd3. 0Ta3. 0	変化なし
Ag99, 8Pd0, 1Mo0, 1	変化なし
Ag98. 4Pd0. 1Mo1. 5	変化なし
Ag96, 9Pd0, 1Mo3, 0	変化なし
Ag98. 4Pd1. 5Mo0. 1	変化なし
Ag97. 0Pd1. 5Mo1. 5	変化なし
Ag95. 5Pd1. 5Mo3. 0	変化なし
Ag96. 9Pd3. 0No0. 1	変化なし
Ag95. 5Pd3. 0Ho1. 5	変化なし
Ag94. 0Pd3. 0Mo3. 0	変化なし
Ag99. 8Pd0. 1Au0. 1	変化なし
Ag98. 4Pd0. 1Au1. 5	変化なし
Ag96. 9Pd0. 1Au3. 0	変化なし
Ag98. 4Pd1. 5Au0. 1	変化なし
Ag97. 0Pd1. 5Au1. 5	変化なし
Ag95, 5Pd1, 5Au3, 0	変化なし
Ag96. 9Pd3. QAu0. 1	変化なし
Ag95. 5Pd3. 0Au1. 5	変化なし
Ag94. OPd3. QAu3. O	変化なし
Ag99. 8Ru0. 1Au0. 1	変化なし
Ag98. 4Ru0. 1Au1. 5	変化なし
Ag96. 9Ru0. 1Au3. 0	変化なし
Ag98. 4Ru1. 5Au0. 1	変化なし
Ag97. CRu1. 5Au1. 5	変化なし
Ag95, 5Ru1, 5Au3, 0	変化なし
Ag96. 9Ru3. 0Au0. 1	変化なし
Ag95, 5Ru3, 0Au1, 5	変化なし
Ag94. ORu3. OAu3. O	変化なし
Ag99. 8Pd0. 1Ru0. 1	変化なし
Ag98. 4Pd0, 1Ru1, 5	変化なし
Ag96, 9Pd0, 1Ru3, 0	変化なし
Ag98. 4Pd1. 5Ru0. 1	変化なし
Ag97. 0Pd1. 5Ru1. 5	変化なし
Ag95. 5Pd1. 5Ru3. 0	変化なし
Ag96. 9Pd3. 0Ru0. 1	変化なし
Ag95. 5Pd3. 0Ru1. 5	変化なし
Ag94. 0Pd3. 0Ru3. 0	変化なし

[0040]

【表10】

	·
材料組成(w t %)	アルカリ溶液
Ag80Au20	黒いシミ発生大
Ag70Au30	黒いシミ発生中
Ag99. 8Au0. 1Cu0. 1	変化なし
Ag99. 4Au0. 5Cu0. 1	変化なし
Ag98. 1Au0. 9Cu1. 0	変化なし
Ag98. 9Au1. OCu0. 1	変化なし
Ag97. 9Au2. 0Cu0. 1	変化なし
Ag96. 9Au3. OCtO. 1	変化なし
Ag96. 5Au3. OCu0. 5	変化なし
Ag94. 0Au3. 0Cu3. 0	変化なし
Ag99. 8Au0. 1Ti0. 1	変化なし
Ag99. 4Au0. 5Ti0. 1	変化なし
Ag98. 1Au0. 9Ti1. 0	変化なし
Ag98. 9Au1. OT iO. 1	変化なし
Ag97. 9Au2. OT i0. 1	変化なし
Ag96, 9Au3, 0Ti0, 1	変化なし
Ag96. 5Au3. OT i 0. 5	変化なし
Ag94. 0Au3. 0Ti3. 0	変化なし
Ag99. 8Au0. 1Cr0. 1	変化なし
Ag98. 4Au0. 1Cr1. 5	変化なし
Ag96. 9Au0. 1Cr3. 0	変化なし
Ag98. 4Au1. 5Cr0. 1	変化なし
Ag97. 0Au1. 5Cr1. 5	変化なし
Ag95. 5Au1. 5Cr3. 0	変化なし
Ag96. 9Au3. OCr0. 1	変化なし
Ag95. 5Au3. 00r1. 5	変化なし
Ag94. 0Au3. 0Cr3. D	変化なし
Ag99. 8Au0. 1Ta0. 1	変化なし
Ag98. 4Au0. 1Ta1. 5	変化なし
Ag96. 9Au0. 1Ta3. 0	変化なし
Ag98. 4Au1. 5Ta 0. 1	変化なし
Ag97. 0Au1. 5Ta1. 5	変化なし
Ag95. 5Au1. 5Ta3. 0	変化なし
Ag96. 9Au3. 0Ta0. 1	変化なし
Ag95. 5Au3. 0Ta1. 5	変化なし
Ag94. 0Au3. 0Ta3. 0	変化なし

[0041]

【表11】

	T
材料組成(w t %)	アルカリ溶液
Ag99. 8Au0. 1Mo0. 1	変化なし
Ag98. 4Au0. 1Mo1. 5	変化なし
Ag96. 9Au0. 1No3. 0	変化なし
Ag98, 4Au1, 5Mo0, 1	変化なし
Ag97. 0Au1. 5Mo1. 5	変化なし
Ag95, 5Au1, 5Mo3, 0	変化なし
Ag96. 9Au3. 0Ho0. 1	変化なし
Ag95. 5Au3. Ollo1. 5	変化なし
Ag94. 0Au3. 0#o3. 0	変化なし
Ag99. 8Au0. 1NiO. 1	変化なし
Ag98. 4Au0. 1Ni 1. 5	変化なし
Ag96. 9Au0. 1Ni3. 0	変化なし
Ag98. 4Au1. 5NiO. 1	変化なし
Ag97. 0Au1. 5Ni 1. 5	変化なし
Ag95. 5Au1. 5Ni3. 0	変化なし
Ag96. 9Au3. ONiO. 1	変化なし
Ag95. 5Au3. ONi 1. 5	変化なし
Ag94. OAu3. ONi3. O	変化なし
Ag99. 8Au0. 1A10. 1	変化なし
Ag98. 4Au0. 1Mo1. 5	変化なし
Ag96. 9Au0. 1Mo3. 0	変化なし
Ag98. 4Au1. 5MoO. 1	変化なし
Ag97. OAu1. 5Mo1. 5	変化なし
Ag95. 5Au1, 5Mo3. 0	変化なし
Ag96. 9Au3. 0MoO. 1	変化なし
Ag95. 5Au3. 0Mo1. 5	変化なし
Ag94. OAu3. OMo3. O	変化なし
Ag99. 8Au0. 1Nb0. 1	変化なし
Ag98. 4Au0. 1Mo1. 5	変化なし
Ag96. 9Au0. 1Mo3. 0	変化なし
Ag98. 4Au1. 5MoQ. 1	変化なし
Ag97. OAu1. 5Mo1. 5	変化なし
Ag95. 5Au1. 5Mo3. 0	変化なし
Ag96. 9Au3. 0Mo0. 1	変化なし
Ag95. 5Au3. 0No1. 5	変化なし
Ag94. 0Au3. 0Mo3. 0	変化なし

[0042]

【表12】

材料組成(w t %)	アルカリ溶液
Ag80Ru20	黒いシミ発生大
Ag70Ru30	黒いシミ発生中
Ag99. 8Ru0. 1Cu0. 1	変化なし
Ag99. 4Ru0. 5Cu0. 1	変化なし
Ag98. 1Ru0. 9Cu1. 0	変化なし
Ag98. 9Ru1. 0Cu0. 1	変化なし
Ag97. 9Ru2. OCu0. 1	変化なし
Ag96. 9Ru3. 0Cu0. 1	変化なし
Ag96. 5Ru3. 0Cu0. 5	変化なし
Ag94. ORu3. OGu3. O	変化なし
Ag99. 8Ru0. 1Ti0. 1	変化なし
Ag99. 4Ru0. 5Ti0. 1	変化なし
Ag98. 1Ru0. 9Ti1. 0	変化なし
Ag98. 9Ru1. 0Ti0. 1	変化なし
Ag97. 9Ru2. OTi0. 1	変化なし
Ag96. 9Ru3. 0Ti0. 1	変化なし
Ag96. 5Ru3. 0Ti0. 5	変化なし
Ag94. ORu3. OT i 3. O	変化なし
Ag99. 8Ru0. 1Cr0. 1	変化なし
Ag98. 4Ru0. 1Cr1. 5	変化なし
Ag96. 9Ru0. 1Cr3. 0	変化なし
Ag98. 4Ru1. 5Cr0. 1	変化なし
Ag97. ORu1. 5Cr1. 5	変化なし
Ag95. 5Ru1. 5Cr3. 0	変化なし
Ag96. 9Ru3, OCrO. 1	変化なし
Ag95. 5Ru3. 0Cr1. 5	変化なし
Ag94. ORu3. OCr3. O	変化なし
Ag99. 8Ru0. 1Ta0. 1	変化なし
Ag98. 4Ru0. 1Ta1. 5	変化なし
Ag96. 9Ru0. 1Ta3. 0	変化なし
Ag98, 4Ru1, 5Ta 0, 1	変化なし
Ag97. 0Ru1. 5Ta1. 5	変化なし
Ag95. 5Ru1. 5Ta3. 0	変化なし
Ag96. 9Ru3. 0Ta0. 1	変化なし
Ag95. 5Ru3. 0Ta1. 5	変化なし
Ag94. 0Ru3. 0Ta3. 0	変化なし

[0043]

【表13】

材料組成(w t %)	アルカリ溶液
Ag99. 8Ru0. 1Mo0. 1	変化なし
Ag98. 4Ru0. 1Mo1. 5	変化なし
Ag96. 9Ru0. 1Mo3. 0	変化なし
Ag98. 4Ru1. 5MoO. 1	変化なし
Ag97. 0Ru1. 5Mo1. 5	変化なし
Ag95. 5Ru1. 5Mo3. 0	変化なし
Ag96. 9Ru3. 0Ho0. 1	変化なし
Ag95, 5Ru3, Ollo1, 5	変化なし
Ag94. 0Ru3. 0No3. 0	変化なし
Ag99. 8Ru0. 1NiO. 1	変化なし
Ag98, 4Ru0. 1Ni 1. 5	変化なし
Ag96. 9Ru0. 1Ni 3. 0	変化なし
Ag98. 4Ru1. 5Ni O. 1	変化なし
Ag97. 0Ru1. 5Ni 1. 5	変化なし
Ag95. 5Ru1. 5Ni 3. 0	変化なし
Ag96. 9Ru3. ONi O. 1	変化なし
Ag95. 5Ru3. ON i 1. 5	変化なし
Ag94. ORu3. ONi3. 0	変化なし
Ag99. 8Ru0. 1A10. 1	変化なし
Ag98. 4Ru0. 1Mo1. 5	変化なし
Ag96. 9Ru0. 1Mo3. 0	変化なし
Ag98. 4Ru1. 5MoO. 1	変化なし
Ag97. 0Ru1. 5Mo1. 5	変化なし
Ag95. 5Ru1. 5Mo3. 0	変化なし
Ag96. 9Ru3. 0NoO. 1	変化なし
Ag95. 5Ru3. 0Mo1. 5	変化なし
Ag94. ORu3. Ollo3. 0	変化なし
Ag99, 8Ru0, 1NbO, 1	変化なし
Ag98. 4Ru0. 1Mo1. 5	変化なし
Ag96. 9Ru0. 1Mo3. 0	変化なし
Ag98. 4Ru1, 5MoO. 1	変化なし
Ag97. 0Ru1. 5Mo1. 5	変化なし
Ag95. 5Ru1. 5Mo3. 0	変化なし
Ag96. 9Ru3. 0MoO. 1	変化なし
Ag95, 5Ru3, 0Mo1, 5	変化なし
Ag94. ORu3. OMo3. O	変化なし

[0044]

表8~表13から明らかなように、何れの組成範囲においても反射率の低下が全 く確認されなかった。

この様に、少なくともAgを主成分としてAu、Pd及びRuをO.1~3.0 wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種以上をO.1~3.0 wt%添加してなる三元素からなるAg合金によって形成される膜はアルカリ液に対して、AlやAlを主成分とする従来のAl合金と比して、反射率の低下が無く、安定していることが分かった。又、反射型液晶表示素子用の反射板や反射配線電極に対して、高い反射率を保有し、更にはアルカリ溶液に対しての化学的、或いは品質的な安定性も従来と比して高くなることが分かった。

[0045]

そして、反射型液晶表示素子では、反射板や反射配線電極の特徴である反射率が高いということで、光源に投入される電力量が低減することができ、更には液晶表示素子自体の照度が約20%程度向上するために、少なくとも液晶表示素子で基準とされる500~800nm(565nm)の光学波長領域で、Agを主成分として3元素で構成されるAg合金はAlと比較すると、表14~表19から明らかなように、0.5~3.0%反射率が向上されるために、従来のAlやAl合金での課題が解決され、且つ反射率が高いために大変有用性が高いことが分かった。

[0046]

【表14】

材料組成(w t %)	波長500 nm	波長800nm
	反射率(%)	反射率(%)
Al	87. 2	84. 5
A196. 0Mg4. 0	83.1	82. 3
アクリル樹脂で被膜したAI	79. 4	76.6
Ag	98. 2	98. 8
Ag98. 0Pd2. 0	91.3	94. 5
Ag97. OPd3. 0	86.9	92. 1
Ag99. 8Pd0. 1Cu0. 1	98.0	98. 6
Ag99. 4Pd0. 5Gu0. 1	98.0	98. 4
Ag98. 1Pd0. 9Gu1. 0	97.8	98. 0
Ag98, 9Pd1, 0Cu0, 1	94. 4	97. 6
Ag97. 9Pd2. 0Cu0. 1	91.4	94. 6
Ag96. 9Pd3. 0Cu0. 1	87.5	93. 4
Ag96. 5Pd3. 0Cu0. 5	87. 3	92. 7
Ag94. 0Pd3. 0Cu3. 0	84. 7	91.1
Ag99. 8Pd0, 1Ti0. 1	98.0	98.6
Ag99. 4Pd0. 5Ti0. 1	98. 0	98. 4
Ag98. 1Pd0. 9Ti1. 0	97.6	97. 9
Ag98. 9Pd1. 0Ti0. 1	94. 4	97.6
Ag97. 9Pd2. 0Ti0. 1	91.4	94.6
Ag96. 9Pd3. 0Ti0. 1	87.5	93.4
Ag96. 5Pd3. 0Ti0. 5	87.0	92.5
Ag94. OPd3. OTi3. 0	87.0	90.7
Ag99. 8Pd0. 1Cr0. 1	94. 6	94.7
Ag98. 4Pd0. 1Cr1. 5	91. 7	91.7
Ag96. 9Pd0. 1Cr3. 0	89. 3	89. 7
Ag98. 4Pd1. 5Cr0. 1	91. 5	91.7
Ag97. 0Pd1. 5Cr1. 5	86.8	86.8
Ag95. 5Pd1. 5Cr3. 0	84. 2	84. 2
Ag96. 9Pd3. 0Cr0. 1	85.6	85.6
Ag95. 5Pd3. 0Cr1. 5	83. 5	83.5
Ag94. 0Pd3. 0Cr3. 0	82. 7	82.7
Ag99. 8Pd0. 1Ta0. 1	94.6	94. 7
Ag98. 4Pd0. 1Ta1. 5	91. 7	91.7
Ag96. 9Pd0. 1Ta3. 0	89. 3	89. 7
Ag98. 4Pd1. 5Ta0. 1	91. 5	91. 7
Ag97. 0Pd1. 5Ta1. 5	86.8	86.8
Ag95. 5Pd1. 5Ta3. 0	84. 2	84. 2

[0047]

【表15】

材料組成(w t %)	波長500nm	波長800nm
4144#EDE (W 1 70)	反射率(%)	反射率(%)
Ag96. 9Pd3. 0Ta0. 1	85.6	85. 6
Ag95. 5Pd3. 0Ta1. 5	83.5	83. 5
Ag94. 0Pd3. 0Ta3. 0	82. 7	82. 7
Ag99. 8Pd0. 1Mo0. 1	94.6	94. 7
Ag98. 4Pd0. 1Mo1. 5	91. 7	91. 7
Ag96. 9Pd0. 1Mo3. 0	89.3	89. 7
Ag98. 4Pd1. 5Mo0. 1	91.5	91. 7
Ag97. 0Pd1. 5Mo1. 5	86.8	86.8
Ag95. 5Pd1. 5Mo3. D	84. 2	84. 2
Ag96. 9Pd3. 0Mo0. 1	85.6	85.6
Ag95, 5Pd3, 0Ho1, 5	83.5	83. 5
Ag94. 0Pd3. 0No3. 0	82.7	82. 7
Ag99. 8Pd0. 1Au0. 1	96. 7	97. 0
Ag98. 4Pd0. 1Au1. 5	96.4	96.8
Ag96. 9Pd0. 1Au3. 0	95.8	96. 1
Ag98, 4Pd1, 5Au0, 1	92. 3	94. 5
Ag97. 0Pd1. 5Au1. 5	92. 1	94. 3
Ag95, 5Pd1, 5Au3, 0	92. 4	95. 0
Ag96. 9Pd3. 0Au0. 1	85. 1	85. 3
Ag95. 5Pd3. 0Au1. 5	83. 2	83.3
Ag94. OPd3. OAu3. O	82. 0	82. 8
Ag99. 8Ru0. 1Au0. 1	96.6	97. 1
Ag98. 4Ru0. 1Au1. 5	96. 3	96. 7
Ag96. 9Ru0. 1Au3. 0	95. 8	96. 1
Ag98. 4Ru1. 5Au0. 1	92. 4	94. 4
Ag97. ORu1. 5Au1. 5	92. 1	94. 3
Ag95. 5Ru1. 5Au3. 0	92. 4	95.0
Ag96. 9Ru3. 0Au0. 1	85. 1	85.3
Ag95. 5Ru3. 0Au1. 5	83. 2	83. 2
Ag94. ORu3. OAu3. O	82. 0	82.8
Ag99. 8Pd9. 1Ru0, 1	96. 7	97. 1
Ag98. 4Pd0. 1Ru1. 5	96.4	96.6
Ag96. 9Pd0. 1Ru3. 0	95.8	96.5
Ag98, 4Pd1, 5Ru0, 1	92. 3	93. 5
Ag97. OPd1. 5Ru1. 5	92.0	94. 3
Ag95. 5Pd1. 5Ru3. 0	92. 3	95.0
Ag96. 9Pd3. ORuO. 1	85.0	8,5. 3
Ag95. 5Pd3. 0Ru1. 5	83.3	83.3
Ag94. 0Pd3. 0Ru3. 0	82. 1	82. 5

[0048]

【表16】

材料組成(w t %)	波長500 n m	波長800nm
47.47.40.00 (W £ 70)	反射率(%)	反射率(%)
Ag98. 0Au2. 0	87. 3	92. 2
Ag97. 0Au3. 0	86. 1	91.3
Ag99. 8Au0. 1Cu0. 1	98. 2	98.8
Ag99. 4Au0. 5Cu0. 1	98. 1	98. 5
Ag98. 1Au0. 9Cu1. 0	97. 6	98.0
Ag98. 9Au1. 0Cu0. 1	96. 5	97.6
Ag97. 9Au2. 0Cu0. 1	95. 2	96. 9
Ag96. 9Au3. 0Cu0. 1	93. 7	96. 1
Ag96. 5Au3. 0Cu0. 5	91. 1	94.7
Ag94. 0Au3. 0Cu3. 0	85. 6	91.8
Ag99. 8Au0. 1Ti0. 1	98. 0	98. 5
Ag99. 4Au0. 5Ti0. 1	97. 8	98. 2
Ag98. 1Au0. 9Ti1.0	97. 3	97. 9
Ag98. 9Au1. OTiO. 1	96. 6	97. 5
Ag97. 9Au2. OT i O. 1	95. 5	97. 1
Ag96. 9Au3. OT i O. 1	93. 9	96.3
Ag96. 5Au3. OT i O. 5	92. 3	95. 2
Ag94. 0Au3. 0Ti3. 0	86. 4	90.8
Ag99. 8Au0. 1Cr0. 1	94. 6	94. 7
Ag98. 4Au0. 1Cr1. 5	93. 4	93.6
Ag96. 9Au0. 1Cr3. 0	91. 9	92. 4
Ag98. 4Au1. 5Gr0. 1	90. 2	90. 7
Ag97. 0Au1. 5Cr1. 5	88. 5	89.3
Ag95. 5Au1. 5Cr3. 0	86. 1	86.6
Ag96. 9Au3. 0Cr0. 1	84. 9	85. 2
Ag95. 5Au3. 0Cr1. 5	83. 4	83.8
Ag94. QAu3. OCr3. 0	82. 6	82.6
Ag99. 8Au0. 1Ta0. 1	95. 1	95. 3
Ag98. 4Au0. 1Ta1. 5	94. 6	95. 0
Ag96. 9Au0. 1Ta3. 0	93. 4	94. 1
Ag98. 6Au1. 5Ta0. 1	91.8	92. 5
Ag97. 0Au1. 5Ta1. 5	90. 4	91. 2
Ag95, 5Au1, 5Ta3, 0	88. 7	89. 9
Ag96. 9Au3. OTa0. 1	85. 9	87.6
Ag95. 5Au3. OTa1. 5	84. 5	85. 9
Ag94. 0Au3. 0Ta3. 0	82. 8	84. 2

[0049]

【表17】

材料組成(w t %)	波長500nm	波長800 nm
1714-1411/10(40 1 70)	反射率(%)	反射率(%)
Ag99. 8Au0. 1Mo0. 1	94.8	95. 1
Ag98. 4Au0. 1Mo1. 5	94. 2	94. 7
Ag96. 9Au0. 1Mo3. 0	93. 5	94. 0
Ag98. 4Au1. 5No0. 1	92.3	92. 9
Ag97. 0Au1. 5Mo1. 5	90. 6	91. 5
Ag95. 5Au1. 5Mo3. 0	89. 7	90. 3
Ag96. 9Au3. 0tlo0. 1	86.8	88. 6
Ag95. 5Au3. 0No1. 5	84.6	86. 4
Ag94. QAu3. QMo3. Q	82. 7	84. 5
Ag99. 8Au0. 1Ni0. 1	95. 7	95. 9
Ag98. 4Au0. 1Ni1. 5	95. 2	95. 4
Ag96. 9Au0. 1Ni3. 0	93. 9	94.6
Ag98. 4Au1. 5NiO. 1	92. 3	93. 5
Ag97. OAu1. 5Ni1. 5	90.8	91. 9
Ag95. 5Au1. 5Ni3. 0	88. 7	90. 6
Ag96. 9Au3. ONi 0. 1	85.9	88. 8
Ag95. 5Au3. ON i 1. 5	84.4	86. 1
Ag94. OAu3. ON i 3. O	82.6	84. 5
Ag99. 8Au0. 1A10. 1	98. 0	98. 6
Ag98. 4Au0. 1A11. 5	97. 9	98. 3
Ag96. 9Au0. 1A13. 0	97. 5	98. 0
Ag98. 4Au1. 5A10. 1	96.4	97. 5
Ag97. QAu1. 5Al 1. 5	95. 2	96. 7
Ag95. 5Au1. 5A13. 0	93. 4	95.8
Ag96. 9Au3. 0A10. 1	90.8	94. 4
Ag95. 5Au3. 0A11. 5	88. 4	92. 8
Ag94. 0Au3. 0A13. 0	85. 9	91.5
Ag99, 8Au0, 1Nb0, 1	94. 8	95. 1
Ag98. 4Au0. 1Nb1. 5	94. 3	94. 7
Ag96. 9Au0. 1Nb3. 0	93. 5	94. 1
Ag98. 4Au1. 5Nb0, 1	92. 1	92. 6
Ag97, QAu1, 5Nb1, 5	90. 5	91.3
Ag95. 5Au1. 5Nb3. 0	89. 2	90. 1
Ag96. 9Au3. ONb0. 1	86. 4	87.8
Ag95. 5Au3. 0Nb1. 5	84. 3	85. 7
Ag94. OAu3. ONb3. 0	82. 4	84. 5

[0050]

【表18】

材料租成(w t %)	波長500 nm	波長800nm
4144E/JC(W (70)	反射率(%)	反射率(%)
Ag98. ORu2. 0 ?	86. 3	91. 2
Ag97. ORu3. 0 ?	86. 0	91. 3
Ag99. 8Ru0. 1Cu0. 1	98. 1	98.8
Ag99. 4Ru0. 5Cu0. 1	98. 0	98. 6
0Ag98. 1Ru0. 9Cu1. 0	97. 6	98. 1
Ag98. 9Ru1. 0Cu0. 1	96. 5	97. 5
Ag97. 9Ru2. 0Cu0. 1	95. 2	96.8
Ag96. 9Ru3. 0Cu0. 1	93. 7	96.0
Ag96. 5Ru3. O Cu0, 5	91. 1	94. 7
Ag94. ORu3. OCu3. O	85. 6	91.7
Ag99. 8Ru0. 1Ti0. 1	98. 0	98.4
Ag99. 4Ru0. 5Ti0. 1	97. 7	98. 2
Ag98. 1Ru0. 9Ti1. 0	97. 2	97. 9
Ag98. 9Ru1. OTi0. 1	96. 5	97. 5
Ag97. 9Ru2. OT i0. 1	95. 4	97. 1
Ag96. 9Ru3. OT 10. 1	93. 8	96. 3
Ag96. 5Ru3. OT i0. 5	92. 1	95. 2
Ag94. ORu3. OT i3. O	86. 4	90.8
Ag99. 8Ru0. 1Cr0. 1	94. 6	94. 7
Ag98. 4Ru0. 1Cr1. 5	93.4	92.6
Ag96. 9Ru0. 1Cr3. 0	91, 9	92.4
Ag98. 4Ru1. 5Cr0. 1	90. 5	91.7
Ag97. ORu1. 5Cr1. 5	88. 2	88. 3
Ag95. 5Ru1. 5Cr3. 0	86. 1	86. 6
Ag96. 9Ru3. OCr0. 1	84. 8	84. 2
Ag95, 5Ru3, 0Cr1, 5	83. 3	83.8
Ag94. 0Ru3. 0Cr3. 0	82. 4	82.6
Ag99. 8Ru0. 1Ta0. 1	95.0	95.3
Ag98, 4Ru0, 1Ta1, 5	94. 6	95.0
Ag96. 9Ru0. 1Ta3. 0	93. 4	94. 1
Ag98. 4Ru1. 5Ta 0. 1	91. 8	92. 5
Ag97. 0Ru1. 5Ta1. 5	90. 4	91. 2
Ag95. 5Ru1. 5Ta3. 0	88. 7	89. 9
Ag96. 9Ru3. OTa0. 1	85. 9	87.6
Ag95. 5Ru3. 0Ta1. 5	84. 5	85.9
Ag94. ORu3. OTa3. O	82. 6	84. 2

[0051]

【表19】

材料組成(w t %)	波長500nm	波長800nm
1-3-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-	反射率(%)	反射率(%)
Ag99. 8Ru0. 1Mo0. 1	94. 7	95. 1
Ag98. 4Ru0. 1Mo1. 5	94. 1	94. 7
Ag96. 9RuO. 1Mo3. 0	93. 3	94.0
Ag98. 4Ru1. 5Mo0. 1	92. 2	92. 9
Ag97. ORu1. 5Mo1. 5	90.5	91.5
Ag95. 5Ru1. 5Mo3. 0	89. 9	91.3
Ag96, 9Ru3, 0Mo0, 1	86.8	88. 6
Ag95. 5Ru3. 0Mo1. 5	84.8	86.3
Ag94. ORu3. OHo3. O	82.6	84.5
Ag99, 8RuO. 1NiO. 1	96. 7	97. 2
Ag98. 4Ru0. 1Ni 1. 5	96. 5	96. 9
Ag96. 9RuO. 1Ni3. 0	96. 1	96. 3
Ag98. 4Ru1. 5NiO. 1	95. 3	95. 8
Ag97. ORu1. 5Ni1. 5	93. 7	94. 7
Ag95. 5Ru1. 5N13. 0	91. 2	93.3
Ag96, 9Ru3, ON i 0, 1	88. 4	91. 7
Ag95. 5Ru3. ON i 1. 5	85.0	87. 2
Ag94. ORu3. ON i 3. O	83.5	85.6
Ag99. 8Ru0. 1A10. 1	98. 0	98. 4
Ag98. 4Ru0. 1No1. 5	97. 9	98. 2
Ag96. 9RuO. 1Mo3. 0	97. 5	98. 1
Ag98. 4Ru1. 5Mo0. 1	96.4	97. 5
Ag97. 0Ru1. 5Ho1. 5	95. 2	96. 5
Ag95. 5Ru1. 5Mo3. 0	93. 4	95.8
Ag96. 9Ru3. 0Mo0. 1	90.8	94. 4
Ag95. 5Ru3. 0Mo1. 5	88.4	92. 7
Ag94. ORu3. Ollo3. O	85.4	91.5
Ag99. 8Ru0. 1Nb0. 1	94. 7	95. 2
Ag98. 4Ru0. 1Ho1. 5	94. 3	94. 7
Ag96. 9Ru0. 1Mo3. 0	93.4	94. 1
Ag98. 4Ru1. 5Mo0. 1	92. 1	92.5
Ag97. QRu1. 5Mo1. 5	90. 2	91. 3
Ag95, 5Ru1, 5Mo3, 0	88. 1	90.0
Ag96. 9Ru3. 0Mo0. 1	85.2	87.8
Ag95. 5Ru3. 0No1. 5	84. 1	85.7
Ag94. CRu3. OHo3. O	82.4	84. 5

[0052]

又、窓ガラスを始めとする建材ガラスでは、太陽光から発せられる可視光、赤外線、紫外線の内で、明かりに直接関係の高い可視光を透過して、且つ熱の元になって夏季に室内に外部から進入する赤外線を反射する目的で、AgやA1、若しくはそれらの内、いずれかを主成分としたAg合金又はA1合金からスパッタリング法にて膜を形成して、赤外反射効果を実現してきたが、いずれも大気中に直接暴露された場合には熱に対して経時変化が大きいために、そのまま大気中に放置することが困難とされており、一般的にはZnO2やZnO2ーA12O3複合酸化物等の耐熱保護層を形成することで反射膜の材料的な安定性を確保してきた

[0053]

これまでは耐食性及び耐熱性に富んでいるAg合金としては従来はAgに1~3wt%のPdを添加されてなるAg-Pd合金、Agに1~10wt%のAuを添加されてなるAg-Au合金、更にはAgに1~10wt%のRuを添加されてなるAg-Ru合金が広く知られているが、このAg-Pd合金、Ag-Au合金及びAg-Ru合金のいずれの合金を用いて形成した合金膜でも、高温高湿(多湿)環境下で耐候性試験を行った際に、黒色の斑点が観察できた。

[0054]

そのため、この黒色斑点物を光学顕微鏡で観察して見たところ、この黒色の斑点物がPdのH2融解作用の固溶限界になり、黒色化して励起反応を起こして隆起物となっていることが確認できた為に、少なくとも建材ガラスとして用いる場合では、例えば雨季や冬季に室内外の温度差によって生じる水滴、或いは湿度の高い地域化での長期信頼性に対しては安定性が欠けると言うことが分かった。

[0055]

又、AgとAuは全率固溶する安定な合金であることはよく知られているが、 このAg-Au合金膜は塩素をはじめとする耐ハロゲン系元素性に決して富んで はいないために、耐候性試験中に空気が混入しており、空気内に含有する塩素や ヨウ素と原子的に結合したことでこの様な黒色斑点が得られたことが分かった。

[0056]

実施例3

又、Ag-Pdの2元合金は耐熱性が高くないことが、前述の表1で示されているために、外気の温度が高かったり、太陽光から集中する熱線に対して安定性に問題があることが確認されている。

[0057]

そこで、本発明では耐熱性が高いことが確認されているAgを主成分としてAu、Pd及びRuをO.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種類をO.1~3.0wt%添加してなる三元素からなるAg合金が高温高湿(多湿)の環境下での耐候性について、安定性が少なくともAg-Pd合金、Ag-Au合金及びAg-Ru合金と比較してどの様な結果が得られるかを実験してみた。

[0058]

この方法として、3元同時スパッタリング法で無アルカリガラス,低アルカリガラス,硼珪酸ガラス,石英基板の全ての基板上に、三元素からなるAg合金を形成して、それを温度90℃、湿度90%の雰囲気中で経時変化の発生の有無を確認して見た。

この時、全ての基板に対してAgを主成分としてPdを0.1~3.0w t%添加し、更にCu、Au、Ti、Cr、Ta、Moの内、いずれか一種類を0.1~3.0w t%添加してなる三元素からなるAg合金を直接形成したものと、例えばITO、 ZnO_2 、 ZnO_2 一Al $_2O_3$ 複合酸化物、 SiO_2 等を形成して得たものとを同時に耐候性の試験を行った。同時に、Ag合金自体と下地膜を形成してその下地膜の上にAg合金を形成した場合とで差異があるかどうかを合わせて確認した。

[0059]

すると、Agを主成分としてAu、Pd及びRuのいずれか一種以上を0.1 ~3.0 wt%添加して、更にはCu、Au、Ti、Cr、Ta、Moの内、いずれか一種類を0.1 ~3.0 wt%添加してなる三元素からなるAg合金によって形成された反射膜単層の場合でも、Agを主成分として三元素から構成されるAg合金の下地にITO、 ZnO_2 、 SiO_2 を形成して積層体になった場合で

も、Ag合金単層と比較して耐候性が高いことが確認できた。

[0060]

この結果として、Agを主成分としてPdを0.1~3.0wt%添加して、更にはCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種類を0.1~3.0wt%添加してなる三元素からなるAg合金膜では、それを上層として基板との間に任意で酸化物を形成した場合でも下地に依存すること無く、耐熱性が高く、更には反射率や耐候性を保持することが確認され、例えば窓ガラスをはじめとする建材ガラス用の赤外線反射膜、熱線反射膜としては従来のAg-Pd、Ag-Au及びAg-Ru二元合金と比して有用性が高いことが確認できた。

[0061]

対照的に、従来から反射膜として広く用いられてきた従来のA1やA1を主成分とするA1合金、更にはAgやAg-Pd合金については、いずれも樹脂基板に対して化学的に不安定であるために、樹脂基板上で高温高温環境下に放置すると、反射膜と樹脂基板との接着界面で化学反応を生じてしまい、樹脂基板に対しては材料の化学的安定性に問題があることが分かった。

[0062]

そこで、本発明ではAgを主成分としてAu、Pd及びRuのいずれか一種以上を0.1~3.0 wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、Nbの内、少なくとも一種類以上の元素を合計で0.1~3.0 wt%添加してなる3元素以上から構成されるAg合金膜の材料の化学的安定性を確認するために、PMMA、PET、PC、シリコーン等の樹脂で構成される基板上に、これまでと同様に三元同時スパッタリング法にて15nmの厚みの薄膜を形成して、高温高湿(多湿)の環境下で24時間放置してその外観や反射特性の経時変化を観察して見た。その結果を表20~表25に示す。

[0063]

【表20】

AAMAD AB C	高温高温	試験結果
材料組成(wt%)	化学特性変化(反射率低下)	白濁化、基板からの剥がれ
Ag80Pd20	黒いシミ発生大	基板からの剝がれ発生
Ag70Pd30	黒いシミ発生中	基板からの剝がれ発生
Ag99. 8Pd0. 1Cu0. 1	変化無し	白濁少
Ag99, 4Pd0, 5Cu0, 1	変化無し	変化無し
Ag98. 1Pd0. 9Cu1. 0	変化無し	変化無し
Ag98. 9Pd1. 0Cu0. 1	変化無し	変化無し
Ag97. 9Pd2. 0Cu0. 1	変化無し	変化無し
Ag96. 9Pd3. 0Cu0. 1	変化無し	変化無し
Ag96. 5Pd3. 0Cu0. 5	変化無し	変化無し
Ag94. OPd3. OCu3. O	変化無し	変化無し
Ag99. 4Pd0. 1Ti0. 1	変化無し	変化無し
Ag99. 4Pd0. 5Ti0. 1	変化無し	変化無し
Ag98. 1Pd0. 9Ti1. 0	変化無し	変化無し
Ag98.9Pd1.0Ti0.1	変化無し	変化無し
Ag97. 9Pd2. OT i 0. 1	変化無し	変化無し
Ag96. 9Pd3. OTiO. 1	変化無し	変化無し
Ag96, 5Pd3, 0Ti0, 5	変化無し	変化無し
Ag94. OPd3. OT i 3. O	変化無し	変化無し
Ag99. 8Pd0. 1Au0. 1	変化無し	変化無し
Ag98. 4Pd0. 1Au1. 5	変化無し	変化無し
Ag96. 9Pd0. 1Au3. 0	変化無し	変化無し
Ag98. 4Pd1. 5Au0. 1	変化無し	変化無し
Ag97. OPd1. 5Au1. 5	変化無し	変化無し
Ag95. 5Pd1. 5Au3. 0	変化無し	変化無し
Ag96. 9Pd3. 0Au0. 1	変化無し	変化無し
Ag95. 5Pd3. 0Au1. 5	変化無し	変化無し
Ag94. OPd3. OAu3. O	変化無し	変化無し
Ag99. 8Pd0. 1Cr0. 1	変化無し	変化無し
Ag98. 4Pd0. 1Cr1. 5	変化無し	変化無し
Ag96. 9Pd0. 1Cr3. 0	変化無し	変化無し
Ag98. 4Pd1. 5Cr0. 1	変化無し	変化無し
Ag97. OPd1. 5Cr1. 5	変化無し	変化無し
Ag95. 5Pd1. 5Cr3. 0	変化無し	変化無し
Ag96. 9Pd3. 0Cr0. 1	変化無し	変化無し
Ag95. 5Pd3. OCr 1. 5	変化無し	変化無し
Ag94. 0Pd3. 0Cr3. 0	変化無し	変化無し

[0064]

【表21】

	富温高温	試験結果
材料組成(wt%)	化学特性変化(反射率低下)	白濁化、基板からの剥がれ
Ag99. 8Pd0. 1Ta0. 1	変化無し	変化無し
Ag98. 4Pd0. 1Ta1. 5	変化無し	変化無し
Ag96. 9Pd0. 1Ta3. 0	変化無し	変化無し
Ag98. 4Pd1. 5Ta0. 1	変化無し	変化無し
Ag97. OPd1. 5Ta1. 5	変化無し	変化無し
Ag95. 5Pd1. 5Ta3. 0	変化無し	変化無し
Ag96. 9Pd3. 0Ta0. 1	変化無し	変化無し
Ag95. 5Pd3. 0Ta1. 5	変化無し	変化無し
Ag94. 0Pd3. 0Ta3. 0	変化無し	変化無し
Ag99. 8Pd0. 1Mo0. 1	変化無し	変化無し
Ag98. 4Pd0. 1Mo1. 5	変化無し	変化無し
Ag96. 9Pd0. 1Mo3. 0	変化無し	変化無し
Ag98, 4Pd1, 5Mo0, 1	変化無し	変化無し
Ag97. 0Pd1. 5Mo1. 5	変化無し	変化無し
Ag95, 5Pd1, 5Mo3, 0	変化無し	変化無し
Ag96, 9Pd3, 0Mo0, 1	変化無し	変化無し
Ag95. 5Pd3. 0Mo1. 5	変化無し	変化無し
Ag94. OPd3. OMo3. O	変化無し	変化無し
Ag99, 8Ruo. 1Auo. 1	変化無し	変化無し
Ag98. 4Ru0. 1Au1. 5	変化無し	変化無し
Ag96. 9Ruo. 1Au3. 0	変化無し	変化無し
Ag98. 4Ru1. 5Au0. 1	変化無し	変化無し
Ag97. ORu1. 5Au1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Au3. 0	変化無し	変化無し
Ag96. 9Ru3. 0Au0. 1	変化無し	変化無し
Ag95. 5Ru3. 0Au1. 5	変化無し	変化無し
Ag94. ORu3. OAu3. O	変化無し	変化無し
Ag99. 8Pd0. 1Ru0. 1	変化無し	変化無し
Ag98. 4Pd0. 1Ru1. 5	変化無し	変化無し
Ag96. 9Pd0. 1Ru3. 0	変化無し	変化無し
Ag98. 4Pd1. 5Rtt0. 1	変化無し	変化無し
Ag97. OPd1. 5Ru1. 5	変化無し	変化無し
Ag95. 5Pd1. 5Ru3. 0	変化無し	変化無し
Ag96. 9Pd3. CRuO. 1	変化無し	変化無し
Ag95. 5Pd3. ORu1. 5	変化無し	変化無し
Ag94. OPd3. ORu3. 0	変化無し	変化無し

[0065]

【表22】

110100000000000000000000000000000000000	高温高温	試験結果
材料組成(wt%)	化学特性变化(反射率低下)	白濁化、基板からの剥がれ
Ag80Au20	黒いシミ発生大	基板からの剝がれ発生
Ag70Au30	黒いシミ発生中	基板からの剝がれ発生
Ag99. 8Au0. 1Cu0. 1	変化無し	変化無し?
Ag99. 4Au0. 5Cu0. 1	変化無し	変化無し
Ag98. 1Au0. 9Cu1. 0	変化無し	変化無し
Ag98. 9Au1. 0Cu0. 1	変化無し	変化無し
Ag97. 9Au2. 0Cu0. 1	変化無し	変化無し
Ag96. 9Au3. 0Cu0. 1	変化無し	変化無し
Ag96. 5Au3. 0Cu0. 5	変化無し	変化無し
Ag94. 0Au3. 0Cu3. 0	変化無し	変化無し
Ag99. 8Au0. 1Ti0. 1	変化無し	変化無し
Ag99. 4Au0. 5Ti0. 1	変化無し	変化無し
Ag98. 1Au0. 9T i 1. 0	変化無し	変化無し
Ag98. 9Au1. 0Ti0. 1	変化無し	変化無し
Ag97. 9Au2. 0Ti0. 1	変化無し	変化無し
Ag96. 9Au3. 0Ti0. 1	変化無し	変化無し
Ag96. 5Au3. OT iO. 5	変化無し	変化無し
Ag94. 0Au3. 0Ti3. 0	変化無し	変化無し
Ag99. 8Au0. 1Cr0. 1	変化無し	変化無し
Ag98. 4Au0. 1Cr1. 5	変化無し	変化無し
Ag96. 9Au0. 10r3. 0	変化無し	変化無し
Ag98. 4Au1. 5Cr0. 1	変化無し	変化無し
Ag97. 0Au1. 5Cr1. 5	変化無し	変化無し
Ag95. 5Au1. 5Cr3. 0	変化無し	変化無し
Ag96. 9Au3. 0Cr0. 1	変化無し	変化無し
Ag95. 5Au3. 0Cr1. 5	変化無し	変化無し
Ag94. OALG. OCT3. O	変化無し	変化無し
Ag99. 8Au0. 1Ta0. 1	変化無し	変化無し
Ag98. 4Au0. 1Ta1. 5	変化無し	変化無し
Ag96. 9Au0. 1Ta3. 0	変化無し	変化無し
Ag98. 6Au1. 5Ta0. 1	変化無し	変化無し
Ag97. OAu1. 5Ta1. 5	変化無し	変化無し
Ag95. 5Au1. 5Ta3. 0	変化無し	変化無し
Ag96. 9Au3. 0Ta0. 1	変化無し	変化無し
Ag95. 5Au3. 0Ta1. 5	変化無し	変化無し
Ag94. OALG. OTa3. O	変化無し	変化無し

[0066]

【表23】

	高温高温	試験結果
材料組成(wt%)	化学特性变化(反射率低下)	白濁化、基板からの剥がれ
Ag99. 8Au0. 1Mo0. 1	変化無し	変化無し
Ag98, 4Au0, 1Mo1, 5	変化無し	変化無し
Ag96. 9Au0. 1Mo3. 0	変化無し	変化無し
Ag98. 4Au1. 5MoO. 1	変化無し	変化無し
Ag97. OAu1. 5Mo1. 5	変化無し	変化無し
Ag95. 5Au1. 5Mo3. 0	変化無し	変化無し
Ag96. 9Au3. 0Mo0. 1	変化無し	変化無し
Ag95. 5Au3. 0Mo1. 5	変化無し	変化無し
Ag94. OAu3. OMo3. O	変化無し	変化無し
Ag99. 8Au0. 1Nio. 1	変化無し	変化無し
Ag98. 4Au0. 1Ni 1. 5	変化無し	変化無し
Ag96. 9Au0. 1Ni3. 0	変化無し	変化無し
Ag98. 4Au1. 5Ni 0. 1	変化無し	変化無し
Ag97. OAu1. 5Ni 1. 5	変化無し	変化無し
Ag95. 5Au1. 5Ni3. 0	変化無し	変化無し
Ag96, 9Au3, ONIO, 1	変化無し	変化無し
Ag95. 5Au3. ON i 1. 5	変化無し	変化無し
Ag94. OAu3. ON i 3. O	変化無し	変化無し
Ag99. 8Au0. 1A10. 1	変化無し	変化無し
Ag98. 4Au0. 1A11. 5	変化無し	変化無し
Ag96. 9Au0. 1A13. 0	変化無し	変化無し
Ag98. 4Au1. 5A10. 1	変化無し	変化無し
Ag97. OAu1. 5A11. 5	変化無し	変化無し
Ag95. 5Au1. 5A13. 0	変化無し	変化無し
Ag96. 9Au3. 0A10. 1	変化無し	変化無し
Ag95. 5Au3. 0A11. 5	変化無し	変化無し
Ag94. OAu3. OA13. O	変化無し	変化無し
Ag99. 8Au0. 1Nb0. 1	変化無し	変化無し
Ag98. 4Au0. 1Nb1. 5	変化無し	変化無し
Ag96. 9Au0. 1Nb3. 0	変化無し	変化無し
Ag98. 4Au1. 5Nb0. 1	変化無し	変化無し
Ag97. QAu1. 5Nb1. 5	変化無し	変化無し
Ag95. 5Au1. 5Nb3. 0	変化無し	変化無し
Ag96. 9Au3. ONb0. 1	変化無し	変化無し
Ag95. 5Au3. ONb1. 5	変化無し	変化無し
Ag94. OAu3. ONb3. O	変化無し	変化無し

[0067]

【表24】

	高温高温	試験結果
材料組成(wt%)	化学特性変化(反射率低下)	白濁化、基板からの剥がれ
Ag80Ru20	黒いシミ発生大	基板からの剥がれ発生
Ag70Ru30	黒いシミ発生中	基板からの剥がれ発生
Ag99. 8Ru0. 1Cu0. 1	変化無し	変化無し
Ag99. 4Ru0. 5Cu0. 1	変化無し	変化無し
Ag98. 1Ru0. 9Cu1. 0	変化無し	変化無し
Ag98. 9Ru1. OCu0. 1	変化無し	変化無し
Ag97. 9Ru2. 0Cu0. 1	変化無し	変化無し
Ag96. 9Ru3. 0Cu0. 1	変化無し	変化無し
Ag96. 5Ru3. 0Cu0. 5	変化無し	変化無し
Ag94. ORu3. OCu3. O	変化無し	変化無し
Ag99. 8Ru0. 1Ti0. 1	変化無し	変化無し
Ag99. 4Ru0. 5T i 0. 1	変化無し	変化無し
Ag98. 1Ru0. 9Ti1. 0	変化無し	変化無し
Ag98. 9Rul. 0TiO. 1	変化無し	変化無し
Ag97. 9Ru2. 0Ti0. 1	変化無し	変化無し
Ag96. 9Ru3. OTiO. 1	変化無し	変化無し
Ag96. 5Ru3. 0Ti0. 5	変化無し	変化無し
Ag94. ORu3. OT i 3. O	変化無し	変化無し
Ag99. 8Ru0. 1Cr0. 1	変化無し	変化無し
Ag98. 4Ru 0. 1Cr1. 5	変化無し	変化無し
Ag96. 9Ru0, 1Cr3. 0	変化無し	変化無し
Ag98. 4Ru1. 5Cr0. 1	変化無し	変化無し
Ag97. ORu1. 5Cr1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Cr3. 0	変化無し	変化無し
Ag96. 9Ru3. 0Cr0. 1	変化無し	変化無し
Ag95. 5Ru3. OCr1. 5	変化無し	変化無し
Ag94. ORu3. OCr3. O	変化無し	変化無し
Ag99. 8Ru0. 1Ta0. 1	変化無し	変化無し
Ag98. 4Ru0. 1Ta1. 5	変化無し	変化無し
Ag96. 9Ru0. 1Ta3. 0	変化無し	変化無し
Ag98. 4Ru1. 5Ta 0. 1	変化無し	変化無し
Ag97. QRu1. 5Ta1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Ta3. 0	変化無し	変化無し
Ag96. 9Ru3, 0Ta0. 1	変化無し	変化無し
Ag95. 5Ru3. 0Ta1. 5	変化無し	変化無し
Ag94. ORu3. OTa3. O	変化無し	変化無し

[0068]

【表25】

******	高温高温	試験結果
材料組成(wt%)	化学特性变化(反射率低下)	白濁化、基板からの剝がれ
Ag99. 8Ru0. 1Mo0. 1	変化無し	変化無し
Ag98. 4Ru0. 1Mo1. 5	変化無し	変化無し
Ag96, 9Ru0, 1Mo3, 0	変化無し	変化無し
Ag98. 4Ru1. 5MoO. 1	変化無し	変化無し
Ag97. 0Ru1. 5Mo1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Mo3. 0	変化無し	変化無し
Ag96. 9Ru3, 0Mc0. 1	変化無し	変化無し
Ag95. 5Ru3. 0Mo1. 5	変化無し	変化無し
Ag94. ORu3. OMo3. O	変化無し	変化無し
Ag99. 8Ruo. 1Nio. 1	変化無し	変化無し
Ag98. 4Ruo. 1Ni1. 5	変化無し	変化無し
Ag96. 9RuO. 1Ni3. 0	変化無し	変化無し
Ag98. 4Ru1. 5NiO. 1	変化無し	変化無し
Ag97. ORu1. 5Ni 1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Ni3. 0	変化無し	変化無し
Ag96. 9Ru3. ONi 0. 1	変化無し	変化無し
Ag95. 5Ru3. ON 11. 5	変化無し	変化無し
Ag94. ORu3. ON i 3. O	変化無し	変化無し
Ag99. 8Ru0. 1A10. 1	変化無し	変化無し
Ag98. 4Ru0. 1Mo1. 5	変化無し	変化無し
Ag96. 9Ru0. 1Mo3. 0	変化無し	変化無し
Ag98. 4Ru1. 5MoO. 1	変化無し	変化無し
Ag 97. ORu1. 5Mo1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Mo3. 0	変化無し	変化無し
Ag96. 9Ru3. 0Mo0. 1	変化無し	変化無し
Ag95. 5Ru3. 0Mo1. 5	変化無し	変化無し
Ag94. ORu3. OMo3. O	変化無し	変化無し
Ag99. 8Ru0. 1Nb0. 1	変化無し	変化無し
Ag98. 4Ru0. 1Mo1. 5	変化無し	変化無し
Ag96. 9Ru0. 1Mo3. 0	変化無し	変化無し
Ag98. 4Ru1. 5MoO. 1	変化無し	変化無し
Ag97. ORu1. 5Mo1. 5	変化無し	変化無し
Ag95. 5Ru1. 5Mo3. 0	変化無し	変化無し
Ag96. 9Ru3. 0Mo0. 1	変化無し	変化無し
Ag95. 5Ru3. 0Mo1. 5	変化無し	変化無し
Ag94. ORu3. OMo3. O	変化無し	変化無し

[0069]

表20~表25から明らかなように、24時間放置後でも材料に従来問題であった経時変化が観察されなかったために、様々な樹脂基板上に形成したAgを主

成分としてAu、Pd及びRuのいずれか一種以上を0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、の内、いずれか一種類以上を0.1~3.0wt%添加してなる三元素からなるAg合金膜の反射率を分光光度計を用いて観察してみたが、反射型液晶表示素子で有用とされる565nmの光学波長領域や、建材ガラス等で必要とされる400nm~4μmの光学波長領域中では反射率の低下が確認されなかった。

この様に、本発明によって得られたAgを主成分とする三元合金は、樹脂に対して化学的安定性が高く、従来と比して基板材質を制限しないことが分かった。 【0070】

実施例4

又、従来、建材ガラス用の赤外線反射膜若しくは熱線反射膜、及び反射型液晶表示素子用反射板においては、Ag若しくはA1、更にはAgを主成分とするAg合金材料や、A1を主成分とするA1合金材料が用いられてきたことはこれまでに記述したが、これらの材料はその材料を用いて膜を形成する際に、基板の材質によっては密着性が大変悪いため、膜を形成した直後、或いは膜を形成して長期放置してその経時変化を観察した場合では、剥離等の問題が生じてしまうなどの問題も多かった。

そのため、密着性を向上させるために様々な密着助長膜を反射膜と基板との中間に挟むことで、従来は密着性が弱いという問題に対する解決がなされてきた。

[0071]

そこで、本発明によって得られたAgを主成分として、少なくとも三元素以上で構成される合金材料の膜でも同様の問題が生じるかどうかを、PMMA、PET、PC、シリコーン、低アルカリガラス、無アルカリガラス、硼珪酸ガラスの基板上にRFスパッタリング法で直接Ag合金反射膜を形成した後に、反射膜にJIS規格のセロハンテープを貼付して、特定の引っ張り力でセロハンテープを剥離して膜の剥離の有無を観察するというテープ試験を行い。更にその積層体を靭刃で碁盤目状にカッティングした後、純水の入ったビーカーに浸水した後にビーカー内の純水に超音波を引加することで膜の耐剥離性を確認することを試みた。この際に、超音波の引加条件は発信周波数50KHz、電気的出力100Wで測定した

。この超音波剥離試験後に40倍顕微鏡で膜の剥離性を観察し、中間層の必要性 を確認して見た。

[0072]

この場合には、PMMA、PET、PC、シリコーン、アクリル系樹脂で実験を行ったところでは、全く剥離が確認できなかったために、従来のAg、Al若しくはどちらかの元素を主成分とする合金材料と比して、樹脂基板に対しての密着強度が大変高くなったことが分かった。

しかし、低アルカリガラス、無アルカリガラス、硼珪酸ガラスおよび石英ガラス等のガラス基板上に、RFスパッタリング法で形成した本発明のAg合金反射膜は、程度に差異こそ発見されるものの、密着性が決して良いとは言えず、部分的或いは広域にわたって剥離現象が確認されて、ガラス基板との密着性が決して良好ではないことが確認された。

[0073]

そこで、ガラス基板材料との密着強度の向上、或いは反射膜の反射率欠損が生 じることなく、安定して反射能力の向上を実現する為に、Si、Ta、Ti、M o、Cr、Al、ITO(酸化Inと酸化Snの複合酸化物)、ZnO₂、Si O₂、TiO₂、Ta₂O₅、ZrO₂ 等をPMMA、PET、PC、シリコーン、 アクリル系樹脂、低アルカリガラス、無アルカリガラス、硼珪酸ガラス、石英ガ ラスの基板上にRFスパッタリング法で形成した後、Agを主成分とし、Au、 Pd及びRuのいずれか一種以上を0.1~3.0wt%添加し、更にCu、T i、Cr、Ta、Ni、Mo、Al、Nbの内、いずれか一種類以上を0.1~ 3.0wt%添加してなる三元素からなるAg合金膜を同様にスパッタリング法 にて形成した。この積層の最上部に堆積される反射膜に、前記と同様にJIS規 格のセロハンテープを貼付して、特定の引っ張り力でセロハンテープを剥離して 膜の剥離の有無を観察するというテープ試験を行い。更にその積層体を靭刃で碁 盤目状にカッティングした後、純水の入ったビーカーに浸水した後にビーカー内 の純水に超音波を引加することで膜の耐剥離性を確認することを試みた。この際 に、超音波の引加条件は発信周波数50KHz、電気的出力100Wで測定した。この超 音波剥離試験後に40倍顕微鏡で膜の剥離性を観察し、中間層の必要性を確認し

て見た。

[0074]

すると、いずれの積層体においても表26に示すように、全く剥離が観察されなかったため、その剥離試験に用いた基板を分光光度計にて反射率の変動の有無を観察したところ、表から分かるように、特定中間層を用いた場合においては、単なる密着性の向上にのみならず、表27に示す通りに反射特性を助長する効果が得られることが確認できた。

[0075]

【表26】

		密着試	験結果	
下地層の材質	5min	10min	15min	20min
In203	刺離なし	剥離なし	刺離なし	別離なし
Sn02	剥離なし	剥離なし	刺離なし	刺離なし
Nb205	刺離なし	刺離なし	刺離なし	剝離なし
MgO	刺離なし	刺離なし	刺離なし	剝離なし
ITO	刺離なし	剥離なし	刺離なし	製雑なし
Zn02	剥離なし	刺離なし	剥離なし	剥離なし
SiO2	刺離なし	刺離なし	刺離なし	剥離なし
TiO2	刺離なし	刺離なし	剥離なし	剥離なし
Ta205	刺離なし	剝離なし	剥離なし	剥離なし
Zr02	刺離なし	剝離なし	刺離なし	剥離なし
Si	剥離なし	剝離なし	刺離なし	剝離なし
Ta	刺離なし	刺離なし	剥離なし	剥離なし
Ti.	剥離なし	刺離なし	刺離なし	剥離なし
Mo	剥離なし	刺離なし	刺離なし	刺離なし
Cr	刺離なし	刺離なし	刺離なし	剥離なし
Al	剝離なし	剥離なし	剥離なし	刺離なし

[0076]

【表27】

- Ludel	<u> </u>	_ <u>_</u>	<u> </u>		
材料	波長	波長	波長	波長	波長
	400.00	450.00	500.00	550.00	565.00
	n m	nm	nm	n m	nm
	反射率	反射率	反射率	反射率	反射率
	(%)	(%)	(%)	(%)	(%)
純Ag	94.80	96.60	97.70	97.90	98.00
AgPd	92.30	94.05	95.12	95.32	95.42
AgPdCu	91.50	92.40	93.60	94.10	93.36
AgPdTi	88.90	90.59	91.62	91.81	91.90
AgPdCr	88.40	90.08	91.11	91.29	91.38
AgPdTa	88.30	89.98	91.00	91.19	91.28
AgPdMo	88.00	89.67	90.69	90.88	90.97
AgAu	92.80	94.56	95.64	95.83	95.93
AgAuCu	92.46	94.22	95.29	95.48	95.58
AgAuTi	88.44	90.12	91.15	91.33	91.43
AgAuCr	88.56	90.24	91.27	91.46	91.55
AgAuTa	88.30	89.98	91.00	91.19	91.28
AgAuNi	88.00	89.67	90.69	90.88	90.97
AgAuMo	88.10	89.77	90.80	90.98	91.07
AgAuPd	89.00	90.69	91.72	91.91	92.00
AgAuAl	88.70	90.39	91.41	91.60	91.69
AgAuNb	88.60	90.28	91.31	91.50	91.59
AgRu	89.00	90.69	91.72	91.91	92.00
AgRuCu	88.45	90.13	91.16	91.34	91.44
AgRuTi	88.34	90.02	91.04	91.23	91.32
AgRuCr	88.76	90.45	91.48	91.66	91.76
AgRuTa	88.23	89.91	90.93	91.12	91.21
AgRuNi	87.80	89.47	90.49	90.67	90.76
AgRuMo	88.44	90.12	91.15	91.33	91.43
AgRuPd	87.67	89.34	90.35	90.54	90.63
AgRuAl	88.97	90.66	91.69	91.88	91.97
AgRuNb	87.98	89.65	90.67	90.86	90.95

[0077]

この場合に、前述した各種のガラス基板の密着助長下地膜としては、Si、Ta、Ti、Mo、Cr、Al、 In_2O_3 、 SnO_2 、 Nb_2O_5 、MgO、ITO、 ZnO_2 、 SiO_2 、 TiO_2 、 Ta_2O_5 、 ZrO_2 あるが、樹脂基板上で検討する場合にはITO、 ZnO_2 、 SiO_2 、 TiO_2 、 TiO_2 、 Ta_2O_5 、 ZrO_2 等の金属酸化物薄膜が望ましい。

その理由としては、樹脂基板は特定の純度や材質の場合にはガスの発生が大変 多い。又、金属はその発生ガスと反応が強い。又、Ag合金と密着させる接合界 面に反応浮動体被膜(例えば酸化膜等)を生じる可能性が高い等から適切である とは検討し難い。

[0078]

そのために、樹脂基板上に下地層を形成する場合では、特に化学的な安定性が要求されるために、少なくとも金属に比して金属酸化物の方が還元反応を抑制し易いために、本発明のAg合金との接合界面での化学的もしくは品質的な安定性は高いために、樹脂基板を用いて、Agを主成分として三元素からなる前述したAg合金膜と基板との間で中間層として下地膜を形成する場合には、 In_2O_3 、 SnO_2 、 Nb_2O_5 、MgO、ITO、 ZnO_2 、 SiO_2 TiO_2 、 Ta_2O_5 、 ZrO_2 等の金属酸化物を用いることが適切である。

[0079]

中間層として検討する金属酸化物においては、例えば反射電極層等の電気的な特性向上を兼ね備える場合には、ITO、 ZrO_2 等の導電性金属酸化物、若しくは複合酸化物を $1\sim10$ n m程度形成することが望ましい。

選択の理由としては、密着性の向上以外の効果としては、例えば絶縁性の高い中間層を挟んだ場合には、本発明のAg合金と中間下地層の積層体自体の体積抵抗率が大幅に向上して、中間層によってAg合金の特性が損なわれる可能性が高いためである。

[0080]

又、中間下地層として金属酸化物を検討する場合においては、反射率や屈折率 等の光学特性の低下抑制を検討する場合においては、 $I_{2}O_{3}$ 、 $S_{1}O_{2}$ 、 $N_{2}O_{3}$ O₅、MgO、SiO₂、TiO₂、Ta₂O₅、ZrO₂等が望ましいと考えられる

この理由としては、 SiO_2 は吸収が $400\sim4000$ nmの光学波長領域中では大変少ない為に、吸収率の増加による反射率の低下が抑制でき、更に In_2O_3 、 SnO_2 、 Nb_2O_5 、MgO、 TiO_2 、 Ta_2O_5 、 ZrO_2 については表28に代表されるようにいずれも屈折率が高く吸収率が小さいために、屈折率の依存による光学特性の変異が抑制できることが確認できたためである。

[0081]

【表28】

	In208-	In203-	In203-	In203-	1	
	15wt%Nb205	12.5wt%Nb2O5	10wt%Nb205	7.5wt%Nb205		
	屈折率	風折率	屈折率	屈护册	屈护锤	
8		2.34 2.32		2.34	8	2.34
450				2.26	2.23	2.26
200	·	2.22 2.21		2.21	2.18	2.20
220		2.19 2.18		2.18	2.16	2.17
560		2.19 2.18		2.17	2.15	2.17

[0082]

更には、スパッタリング法で密着助長下地膜を形成する場合には、スパッタリング法が真空雰囲気中で行われるに際して、装置内雰囲気を真空にすることでの品質的に安定になる膜が形成できるため、例えば樹脂基板を用いる場合では大気から真空への切り替え中に、基板よりガスを発生するために、真空度が上がらず、更には樹脂基板と密着助長層との界面も不安定になり易いために、少なくとも本発明のAg合金を樹脂基板上に形成する場合においては、蒸着法による膜形成が望ましいと考えられる。

[0083]

但し、液晶表示素子に用いるガラス基板や建材ガラス用のガラス基板としては 、大型であるということと、形成する膜の緻密さや膜の厚みの面内分布が大変重 要であるために、スパッタリング法が望ましいということが分かった。

[0084]

密着助長を目的とする中間下地膜を検討する上で重要な課題としては、容易に膜の形成が可能であるかどうかと言う点であるが、例えばSi、Ta、Ti、Mo、Cr、A1等の金属膜は、蒸着法、スパッタリング法、CVD法、イオンプレーティング法のいずれでも膜の製作が可能であるために、少なくともAg合金を製作する方法と連動することが可能であるために、汎用的な有用性は高いと検討することができる。

[0085]

又、 In_2O_3 、 SnO_2 、 Nb_2O_5 、MgO、ITO、 ZnO_2 、 SiO_2 、 TiO_2 、 Ta_2O_5 、 ZrO_2 等の酸化物においても、蒸着法、スパッタリング法、イオンプレーティング法で容易に形成することが可能であり、例えば窓ガラス等に赤外線を反射する赤外反射膜を形成する場合に、いずれの方法でも同じ反射特性を有する反射膜を形成することができた。

[0086]

実施例5

次に、本発明によって得られたAgを主成分として、少なくとも三元素以上 で構成される合金材料反射膜及びAg反射膜の更なる品質及び特性の向上を目的 として、反射膜上部に $\operatorname{In_2O_3}$ を主成分として、 $\operatorname{SnO_2}$ 、 $\operatorname{Nb_2O_5}$ 、 $\operatorname{SiO_2}$ 、 MgO 、 $\operatorname{Ta_2O_5}$ のいずれか一種以上を添加してなる合金膜によるコート層を形成することで、反射膜の耐熱性の向上及び反射率の低下抑制を図った。

[0087]

表29より、反射膜の加熱後の吸収率は増加し、品質が悪化することがわかる。そこで、耐熱性を目的として上部にコート層を形成した場合の実験結果を表30~表32に示すこととする。

[0088]

【表29】

Ag合金コート無し

MAG AgPd AgPdCu AgPdCu AgPdCi AgPdCr AgPdTa AgPdMo AgAu AgAuCu AgAuTi AgAuCr AgAuTi AgAuNi AgAuNi AgAuNo AgAuPd AgAuAl	提 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	被長 450 nm 吸収率 (%) 3.6 5.5 5.7 5.9 5.9 5.8 6.9 5.3	波長 500 nm 吸収率 (%) 2.8 6.3 6.5 6.6 6.5 6.6 6.4 6.2 7.2	波長 550 nm 吸収率 (%) 2.8 5.5 5.8 5.7 5.7 5.8 5.5	被長 565 nm 吸収率 (%) 1.9 5.1 5.5 5.5 5.3 5.5	被長 400 nm 吸収率 (%) 5.0 6.0 6.5 6.7 6.6	波長 450 n m 吸収率 (%) 3.2 5.2 5.6 5.8 5.8	波長 500 nm 吸収率 (%) 2.1 6.1 6.2 6.4	波長 550 nm 吸収率 (%) 2.6 5.4 5.7 5.6 5.5	波長 565 nm 吸収率 (%) 1.8 5.0 5.1 5.3
#Ag Ag Pd Ag Pd Cu Ag Au Ag Au Cu Ag Au Au Au Cu Ag Au Au Au Cu Ag Au Au Au Ag Au Au Ag Au Au Ag Au Ag Au Ag Au Ag Au Ag Au Ag Au Au Ag	以字 %) 5.2 4.6 5.6 5.8 5.6 5.8 5.8	nm 吸収率 (%) 3.6 5.5 5.7 5.9 5.8 6.9 5.3 6.7	nm 吸収率 (%) 2.8 6.3 6.5 6.6 6.5 6.6 6.4	nm 吸収率 (%) 2.8 5.5 5.8 5.7 5.7 5.8 5.5	nm 吸収率 (%) 1.9 5.1 5.5 5.5 5.3	nm 吸収率 (%) 5.0 6.0 6.5 6.7	nm 吸収率 (%) 3.2 5.2 5.6 5.8	nm 吸収率 (%) 2.1 6.1 6.2 6.4 6.3	nm 吸収率 (%) 2.6 5.4 5.7 5.6	565 nm 吸収率 (%) 1.8 5.0 5.1
#IAg AgPd AgPdCu AgPdCu AgPdCr AgPdCr AgPdTa AgPdMo AgAu AgAuCu AgAuCu AgAuTi AgAuCr AgAuTi AgAuCr AgAuTa AgAuNi AgAuNi AgAuNo AgAuNd	汉率 %) i.2 i.4 i.6 i.8 i.6 i.8 i.8	吸収率 (%) 3.6 5.5 5.7 5.9 5.8 6.9 5.3 6.7	吸收率 (%) 2.8 6.3 6.5 6.6 6.5 6.6 6.4 6.2	吸収率 (%) 2.8 5.5 5.8 5.7 5.7 5.8 5.5	吸収率 (%) 1.9 5.1 5.5 5.5 5.3	吸収率 (%) 5.0 6.0 6.5 6.7 6.6	吸収率 (%) 3.2 5.2 5.6 5.8	吸収率 (%) 2.1 6.1 6.2 6.4 6.3	吸収率 (%) 2.6 5.4 5.7 5.6	吸収率 (%) 1.8 5.0 5.1 5.3
AgPdCu AgPdCu AgPdCu AgPdCi AgPdCr AgPdCr AgPdTa AgPdMo AgAu AgAuCu AgAuCu AgAuCi AgAuCr	%) i.2 i.4 i.6 i.8 i.6 i.8 i.4	(%) 3.6 5.5 5.7 5.9 5.8 6.9 5.3 6.7	(%) 2.8 6.3 6.5 6.6 6.5 6.6 6.4 6.2	(%) 2.8 5.5 5.8 5.7 5.7 5.8 5.5	(%) 1.9 5.1 5.5 5.5 5.3 5.3	(%) 5.0 6.0 6.5 6.7 6.6	(%) 3.2 5.2 5.6 5.8 5.8	(%) 2.1 6.1 6.2 6.4 6.3	(%) 2.6 5.4 5.7 5.6	(%) 1.8 5.0 5.1 5.3
AgPd Cu CAgPdCu CAgPdCu CAgPdCu CAgPdCu CAgPdCu CAgPdCu CAgPdCu CAgPdMo CAgAu Cu CAgAuCu CAgAu	.2 .4 .6 .9 .8 .6 .8 .4	3.6 5.5 5.7 5.9 5.9 5.8 6.9 5.3 6.7	2.8 6.3 6.5 6.6 6.5 6.6 6.4 6.2	2.8 5.5 5.8 5.7 5.7 5.8 5.5	1.9 5.1 5.5 5.5 5.3 5.3	5.0 6.0 6.5 6.7 6.6	3.2 5.2 5.6 5.8 5.8	2.1 6.1 6.2 6.4 6.3	2.6 5.4 5.7 5.6	1.8 5.0 5.1 5.3
AgPdCu AgPdCu AgPdCu AgPdTi AgPdCr AgPdTa AgPdMo AgAu AgAuCu AgAuTi AgAuCr AgAuTa AgAuNi AgAuNi AgAuNdo AgAuPd AgAuAl	.6 .9 .8 .6 .8 .4	5.5 5.7 5.9 5.9 5.8 6.9 5.3 6.7	6.3 6.5 6.6 6.5 6.6 6.4 6.2	5.5 5.8 5.7 5.7 5.8 5.5	5.1 5.5 5.5 5.3 5.3	6.0 6.5 6.7 6.6	5.2 5.6 5.8 5.8	6.1 6.2 6.4 6.3	5.4 5.7 5.6	5.0 5.1 5.3
AgPdCu AgPdCi AgPdCi AgPdCr AgPdTa AgPdMo AgAu AgAuCu AgAuCu AgAuCi AgAuCr AgAuCr AgAuNi AgAuNi AgAuNo AgAuPd AgAuAl	.6 .8 .6 .8 .4	5.7 5.9 5.9 5.8 6.9 5.3 6.7	6.5 6.6 6.5 6.6 6.4 6.2	5.8 5.7 5.7 5.8 5.5	5.5 5.5 5.3 5.3	6.5 6.7 6.6	5.6 5.8 5.8	6.2 6.4 6.3	5.7 5.6	5.1 5.3
AgPdTi AgPdCr AgPdCr AgPdTa 6 AgPdMo 6 AgAu AgAuCu AgAuCu AgAuCt AgAuTi AgAuCr AgAuTa AgAuNi AgAuMo AgAuPd AgAuAl 6	.8 .6 .8 .3 .4	5.9 5.9 5.8 6.9 5.3 6.7	6.6 6.5 6.6 6.4 6.2	5.7 5.7 5.8 5.5	5.5 5.3 5.3	6.7 6.6	5.8 5.8	6.4 6.3	5.6	5.3
AgPdCr AgPdTa AgPdMo AgAu AgAuCu AgAuTi AgAuTi AgAuTa AgAuNi AgAuNi AgAuNo AgAuPd AgAuAl	.8 .8 .3 .4	5.9 5.8 6.9 5.3 6.7	6.5 6.6 6.4 6.2	5.7 5.8 5.5	5.3 5.3	6.6	5.8	6.3		
AgPdTa AgPdMo AgAu AgAuCu AgAuCi AgAuCr AgAuCr AgAuCr AgAuCr AgAuCr AgAuCr AgAuTa AgAuNi AgAuNi AgAuMo AgAuPd AgAuAl	.6 .8 .4 .6	5.8 6.9 5.3 6.7	6.6 6.4 6.2	5.8 5.5	5.3				5.5	5.0
AgPdMo AgAu AgAuCu AgAuTi AgAuCr AgAuTa AgAuNi AgAuMo AgAuPd AgAuAl 6	.8	6.9 5.3 6.7	6.4 6.2	5.5		6.4	5.5	2		
AgAu 6 AgAuCu 7 AgAuTi 6 AgAuCr 6 AgAuTa 6 AgAuNi 6 AgAuNo 6 AgAuPd 7 AgAuAl 6	.4 .6	5.3 6.7	6.2		5.5		0.0	6.3	5.6	5.0
AgAuCu AgAuTi AgAuCr AgAuTa AgAuNi AgAuMo AgAuPd AgAuAl 6	.4 .6	6.7		5.3		6.6	6.7	6.3	5.5	5.2
AgAuTi 6 AgAuCr 6 AgAuTa 6 AgAuNi 6 AgAuMo 6 AgAuPd 7 AgAuAl 6	.6		79	5.0	5.0	6.0	5.1	6.0	5.2	5.0
AgAuCr AgAuTa AgAuNi AgAuMo AgAuPd AgAuAl 6		50	4 -£1	6.2	6.2	7.1	6.5	7.0	6.1	6.0
AgAuNi 6 AgAuMo 6 AgAuPd 7 AgAuAl 6	.8	L 0.0	6.4	5.7	5.3	6.4	5.2	6.3	5.6	5.2
AgAuNi 6 AgAuMo 6 AgAuPd 7 AgAuAl 6		5.9	6.6	5.8	5.5	6.7	5.8	6.4	5.6	5.3
AgAuMo 6 AgAuPd 7 AgAuAl 6	.9	5.9	6.5	5.7	5.3	6.6	5.8	6.3	5.6	5.2
AgAuPd 7 AgAuAl 6	.8	5.9	6.3	5.7	5.4	6.5	5.8	6.1	5.6	5.2
AgAuAl 6	.7	6.8	6.4	5.6	5.4	6.6	6.7	6.3	5.5	5.2
	.5	6.3	7.5	6.3	6.2	7.1	6.1	7.0	6.2	6.0
	.7	6.7	6.5	5.6	5.4	6.6	6.5	6.3	5.5	5.2
AgAuNb 6	.8	5.9	6.4	5.7	5.2	6.6	5.8	6.3	5.5	5.0
AgRu 6	.3	5.4	6.2	5.3	5.2	6.1	5.1	6.0	5.3	5.1
AgRuCu 6	8	5.9	6.4	5.7	5.2	6.4	5.5	6.3	5.6	5.0
AgRuTi 6	.7	5.9	6.5	5.6	5.2	6.6	5.8	6.3	5.5	5.0
	.7	5.9	6.6	5.7	5.3	6.5	5.7	6.3	5.5	5.0
AgRuTa 6	.5	5.8	6.7	5.7	5.2	6.4	5.5	6.3	5.6	5.0
	3	6.6	7.5	6.3	6.3	7.1	6.4	7.0	6.1	6.0
	3	6.8	7.3	6.2	6.2	7.1	6.3	7.1	6.1	6.0
	7	6.8	6.4	5.5	5.3	6.6	6.6	6.2	5.4	5.2
	8	6.9	6.4	5.6	5.3	6.6	6.7	6.3	5.5	5.2
AgRuNb 6		6.9	6.3	5.6	5.4	6.5	6.6	6.1	5.5	5.2

[0089]

【表30】

SiO 2/Ag 合金

材料	SiO2 a	nneal	-			SiO2 a	s-depo			
	波長	波長	波長	波長	波長	波長	波長	波長	波長	波長
	400	450	500	550	56 5	400	450	500	550	565
	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm
	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
純Ag	26.5	11.65	4.92	4.72	5.02	34.5	16.64	5.81	5.71	5.05
AgPd	26.8	12.59	5.68	5.23	6.96	27.8	14.59	8.68	6.23	8.98
AgPdCu	27.09	13.06	8.94	6.77	6.28	35.8	18.64	11.91	8.74	8.05
AgPdTi	36.5	17.54	11.45	8.58	7.59	36.8	17.68	11.85	8.76	8.00
AgPdCr	35.5	18.45	10.59	8.58	7.96	35.9	18.65	10.69	8.75	8.04
AgPdTa	36.1	18.44	11.34	8.50	7.58	36.2	18,54	11.54	8.54	8.02
AgPdMo	36.4	18.57	11.15	8.41	7.21	36.5	18.67	11.59	8.45	7.25
AgAu	26.2	12.31	5.50	5.10	7.99	27.7	14.45	8.52	6.12	8.85
AgAuCu	36.1	17.53	11.45	8.58	7.25	36.5	18.66	11.25	8.25	7.36
AgAuTi	35.4	18.40	10.59	8.58	7.96	36.3	17.67	11.80	8.73	8.00
AgAuCr	36.0	18.32	11,34	8.50	7.58	36.2	18.64	10.25	8.75	8.04
AgAuTa	36.3	18.44	11.15	8.41	7.21	36.5	18.53	11.55	8.54	8.00
AgAuNi	36.0	18.31	11.32	8.50	7.58	36.4	18.66	11.20	8.41	7.25
AgAuMo	36.0	18.35	11.58	8.50	7.58	36.8	17.65	11.84	8.73	8.00
AgAuPd	36.3	18.58	11.14	8.41	7.21	37.0	18.61	10.21	8.74	8.02
AgAuAl	36.1	18.24	11.05	8.45	7.85	36.7	18.51	11.52	8.56	8.00
AgAuNb	36.1	18.25	11.11	8.41	7.14	37.1	18.62	11.21	8.41	7.24
AgRu	26.5	12.45	5.55	5.25	7.96	27.7	14.59	8.75	6.35	8.99
AgRuCu	36.0	17.52	11.45	8.58	7.25	36.4	17.66	11.81	8.73	7.56
AgRuTi	35.3	18.49	10.59	8.58	7.96	36.2	18.64	10.24	8.75	7.35
AgRuCr	35.8	18.30	11.34	8.50	7.58	36.1	18.52	11.55	8.54	8.00
AgRuTa	36.2	18.42	11.15	8.41	7.21	36.4	18.65	11.21	8.42	7.52
AgRuNi	36.1	18.35	11.33	8.50	7.58	36.9	17.64	11.84	8.71	8.01
AgRuMo	36.1	18.34	11.58	8.50	7.58	36.8	18.60	10.22	8.72	8.02
AgRuPd	36.2	18.59	11.28	8.41	7.21	37.1	18.50	11.51	8.51	7.96
AgRuAl	36.3	18.55	11.18	8.41	7.21	36.5	18.61	11.20	8.42	7.24
AgRuNb	36.5	18.24	11.11	8.41	7.21	37.2	18.41	10.12	8.85	8.12
-7 P 7/ M 14 N										

[0090]

【表31】

INB/Ag 合金

材料	Hi-R a	nneal				Hi-Ra	s-depo			
	波長	波長	波長	波長	波長	波長	波長	波長	波長	波長
	400	450	500	550	565	400	450	500	550	565
	nm	nm	nm	nm	nm	nm	nm	nm	nm	nm
	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率
	(%)	(%)	(%)	(%)	(%)_	(%)	(%)	(%)	(%)	(%)
純Ag	13.27	3.48	2.57	2.35	2.25	19.84	7.03	3.21	4.28	4.24
AgPd	15.77	5.34	3.93	3.90	3.82	22.15	8.83	4.57	5.80	5.78
AgPdCu	16.57	6.24	4.67	4.68	4.49	22.89	9.69	5.30	6.56	6.43
AgPdTi	19.17	9.16	7.64	7.65	7.47	25.29	12.51	8.25	9.47	9.35
AgPdCr	19.67	9.72	8.21	8.22	8.04	25.75	13.05	8.82	10.03	9.91
AgPdTa	19.77	9.84	8.33	8.34	8.15	25.85	13.16	8.93	10.14	10.02
AgPdMo	20.07	10.17	8.67	8.68	8.50	26.12	13.48	9.27	10.48	10.36
AgAu	15.27	4.78	3.18	3.1 9	3.00	21.69	8.28	3.82	5.10	4.98
AgAuCu	15.61	5.16	3.57	3.58	3.39	22.00	8.65	4.21	5.48	5.36
AgAuTi	19.63	9.68	8.17	8.18	7.99	25.72	13.01	8.78	9.99	9.87
AgAuCr	19.51	9.54	8.03	8.04	7.86	25.61	12.88	8.64	9.85	9.73
AgAuTa	19.77	9.84	8.33	8.34	8.15	25.85	13.16	8.93	10.14	10.02
AgAuNi	20.07	10.17	8.67	8.68	8.50	26.12	13.48	9.27	10.48	10.36
AgAuMo	19.97	10.06	8.56	8.56	8.38	26.03	13.37	9.16	10.37	10.25
AgAuPd	19.07	9.05	7.53	7.54	7.35	25.20	12.40	8.14	9.36	9.24
AgAuAl	19.37	9.39	7.87	7.88	7.70	25.48	12.72	8.48	9.70	9.58
AgAuNb	19.47	9.50	7.98	7.99	7.81	25.57	12.83	8.59	9.81	9.69
AgRu	19.07	9.05	7.53	7.54	7.35	25.20	12.40	8.14	9.36	9.24
AgRuCu	19.62	9.67	8.16	8.16	7.98	25.71	12.99	8.76	9.98	9.86
AgRuTi	19.73	9.79	8.28	8.29	8.11	25.81	13.11	8.89	10.10	9.98
AgRuCr	19.31	9.32	7.80	7.81	7.63	25.42	12.66	8.41	9.63	9.51
AgRuTa	19.84	9.92	8.41	8.42	8.23	25.91	13.23	9.01	10.22	10.10
AgRuNi	20.27	10.40	8.90	8.91	8.73	26.31	13.70	9.50	10.70	10.58
AgRuMo	19.63	9.68	8.17	8.18	7.99	25.72	13.01	8.78	9.99	9.87
AgRuPd	20.40	10.55	9.05	9.06	8.88	26.43	13.84	9.65	10.85	10.73
AgRuAl	19.10	9.08	7.56	7.57	7.39	25.23	12.43	8.17	9.39	9.27
AgRuNb	20.09	10.20	8.69	8.70	8.52	26.14	13.50	9.30	10.50	10.38

[0091]

【表32】

ITO/Ag 合金

材料	ITOan	neal				PTO as	-depo			-
	波長	波長	波長	波長	波長	波長	波長	被長	波長	波長
	400	450	500	550	565	400	450	500	550	565
	nm	nm	nm	nm	n m	nm	nm	nm	nm	nm
	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率	吸収率		吸収率	吸収率
40.	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
#Ag	15.56	4.87	3.63	4.64	1.82	19.05	4.27	1.77	1.52	5.02
AgPd	18.06	7.69	6.49	7.47	4.73	21.55	7.23	4.81	4.57	7.95
AgPdCu	18.86	8.59	7.40	8.37	5.66	22.35	8.18	5.78	5.54	8.89
AgPdTi	21.46	11.52	10.37	11.31	8.68	24.95	11.26	8.94	8.71	11.94
AgPdCr	21.96	12.09	10.94	11.87	9.27	25.45	11.85	9.54	9.31	12.53
AgPdTa	22.06	12.20	11.05	11.99	9.38	25.55	11.97	9.67	9.44	12.65
AgPdMo	22.36	12.54	11.40	12.32	9.73	25.85	12.32	10.03	9.80	13.00
AgAu	17.56	7.13	5.92	6.90	4.15	21.05	6.64	4.20	3.96	7.36
AgAuCu	17.90	7.51	6.30	7.29	4.54	21.39	7.04	4.61	4.37	7.76
AgAuTi	21.92	12.04	10.89	11.83	9.22	25.41	11.80	9.50	9.27	12.48
AgAuCr	21.80	11.91	10.76	11.69	9.08	25.29	11.66	9.35	9.12	12.34
AgAuTa	22.06	12.20	11.05	11.99	9.38	25.55	11.97	9.67	9.44	12.65
AgAuNi	22.36	12.54	11.40	12.32	9.73	25.85	12.32	10.03	9.80	13.00
AgAuMo	22.26	12.43	11.28	12.21	9.62	25.75	12.20	9.91	9.68	12.88
AgAuPd	21.36	11.41	10.25	11.19	8.57	24.85	11.14	8.82	8.58	11.83
AgAuAl	21.66	11.75	10.60	11.53	8.92	25.15	11.49	9.18	8.95	12.18
AgAuNb	21.76	11.86	10.71	11.65	9.03	25.25	11.61	9.30	9.07	12.30
AgRu	21.36	11.41	10.25	11.19	8.57	24.85	11.14	8.82	8.58	11.83
AgRuCu	21.91	12.03	10.88	11.82	9.21	25.40	11.79	9.48	9.25	12.47
AgRuTi	22.02	12.15	11.01	11.94	9.34	25.51	11.92	9.62	9.39	12.60
AgRuCr	21.60	11.68	10.53	11.47	8.85	25.09	11.42	9.11	8.88	12.11
AgRuTa	22.13	12.28	11.13	12.06	9.46	25.62	12.05	9.75	9.52	12.73
AgRuNi	22.56	12.76	11.62	12.55	9.96	26.05	12.56	10.27	10.04	13.23
AgRuMo	21.92	12.04	10.89	11.83	9.22	25.41	11.80	9.50	9.27	12.48
AgRuPd	22.69	12.91	11.77	12.70	10.12	26.18	12.71	10.43	10.20	13.39
AgRuAl	21.39	11.44	10.29	11.23	8.60	24.88	11.17	8.85	8.62	11.86
AgRuNb	22.38	12.56	11.42	12.35	9.75	25.87	12.34	10.05	9.82	13.02

[0092]

表31より、本発明によって得られた反射膜に本発明のコート層を形成した場合

- 、加熱後の吸収率は、コート層を形成しない場合に比べて著しく低減されており
- 、比較対照としてのコート層である表30のSiO2コート層、表32のITOコー

ト層に比べて吸収率が低いことがわかる。

[0093]

又、前述した密着助長下地膜の上部に本発明により得られたAg合金反射膜、若しくは純Ag反射膜を形成し、更にその上に前述したコート層を形成した3層にて構成される積層体では、液晶表示素子を製造する工程中に基板に加わる250 で程度の温度で焼成した場合の光学特性は、前述表29~32と変わりがなく、 又密着性も表26と変わりなく良好であり、密着性、光学特性の両方を備えた積 層体が得られる。

[0094]

表33より、3層構造においても、コート層による光学特性は衰えないばかりか、コート層に例えば $I_{2}O_{3}$ を主成分として $N_{2}O_{5}$ を $1\sim30$ w t %添加した $I_{2}O_{3}$ + $N_{2}O_{5}$ の複合酸化膜を用いた場合では、液晶表示素子を製造する工程中に基板に加わる 250 C程度の温度で焼成した場合に、加熱前と比して1%~6%程度反射率が向上して吸収率が低減する相乗効果についても確認できた。この際に、Agを主成分とするAg合金および純Ag反射膜の上部に形成するコート層の膜厚が薄くても良好な光学特性が得られることが表33よりわかる。

[0095]

【表33】

	In2O3-	5wt%Nb2	205
	①加熱なし	2 150	3300
566	10.88	10.24	15.3
564	10.67	10.04	15.06
550	9.38	8.829	13.6
500	7.104	7.071	8.297
450	13.42	14.38	7.922
400	26.96	27.49	19.93
	In2O3-	10wt%Nb	205
	①加熱なし	2 150	3300
566	11.13	12.39	13.11
564	10.91	12.16	12.88
550	9.639	10.71	11.42
500	7.113	7.166	7.236
450	12.72	11.8	9.97
400	27.29	26.6	24.28
	In2O3-	15wt%Nb	205
	①加熱なし	2 150	3300
566	15.97	18.42	20.29
564	15.74	18.17	20.04
550	14.32	16.69	18.63
500	9,059	10.57	12.36
450	7.363	7.168	7.21
400	17.19	16.56	13.33

[0096]

【表34】

STATE OF THE PERSON NAMED IN	5nm		49	5nm 49nm			74nm
\(\lambda \)	加熱前	加熱後	加熱前	加熱後	加熱前	加熱後	加熱後
556	92.99	91.00	85.61	88.68	83.15	91.32	95.27
554	92.91	90.85	85.62	88.69	83.18	91.29	95.28
552	92.84	90.74	85.63	88.67	83.20	91.39	95.28
550	92.92	90.74	85.69	88.72	83.35	91.50	95.33
500	90.88	87.82	85.22	88.37	83.56	91.47	95.13
450	85.71	79.83	82.88	85.02	80.93	87.77	93.56
400	74.72	70.22	80.63	84.96	79.47	85.35	83.23
EXAMPLE	85nm		90nm		100		
A [mm]	加熱前	加熱後	加熱前	加熱後	加熱前	加熱後	
556	86.8	93.4	81.44	91.28	83.36	91.97	
556 554	86.8 86.78	93.4 93.36	81.44 81.47	91.28 91.29	83.36 83.30	91.97 91.97	
554	86.78	93.36	81.47	91.29	83.30	91.97	
554 552	86.78 86.81	93.36 93.37	81.47 81.50	91.29 91.39	83.30 83.31	91.97 92.04	
554 552 550	86.78 86.81 86.89	93.36 93.37 93.43	81.47 81.50 81.61	91.29 91.39 91.52	83.30 83.31 83.39	91.97 92.04 92.14	

[0097]

【発明の効果】

本発明の高耐熱性反射膜は、Ag、Alと比較して、熱エネルギーによる表面 粒子間の移動が活発でないために、表面拡散が発生し難いために耐熱性に富んで いることが分かる。例えば反射膜として用いたり、それを形成する工程において 加熱されたり、或いは気候によって反射膜に熱が印加された場合でも、反射率の 低下を回避することができる。よって、安定した高反射率を特徴とする高耐熱性 反射膜を得ることができた。

[0098]

又、本発明の高耐熱性反射膜を用いて形成した積層体、例えば建材ガラス用熱線・赤外線反射膜、及び反射型液晶表示素子用反射板においては、耐熱性が高く、反射率も高く、更にアルカリ系の有機材料に対して安定で、更には樹脂基板を

用いる場合にその基板からの脱ガスに対しても化学的に安定であるために、高品質な製品を形成することができる。

[0099]

又、本発明のAg合金膜を用いて高耐熱性反射膜を形成する場合に、例えば基板と反射膜との間に、密着性及び光学特性の向上を目的として下地層を形成して積層体となった場合でも、熱に対しての安定性が劣化することが無く、更には純Ag及びAg合金膜のいずれの場合においても光学特性の著しい低下も確認することは出来ず、積層構造とされた場合でも品質が劣化することが無い。

[0100]

又、本発明では反射膜の上部に光学特性の向上を目的としてコート層を形成して 積層体とした場合、純Ag及びAg合金膜のいずれの場合においても熱に対して の反射率の低下を抑制することが出来、更には短波長での吸収率が低減される。

[0101]

又、反射膜の上部に光学特性の向上を目的としてコート層を形成し、基板と反射膜との間に、密着性及び光学特性の向上を目的として下地層を形成した3層以上の積層体とした場合、反射膜が純Ag及びAg合金膜のいずれの場合においても熱に対しての安定性が劣化することが無く、更には光学特性の著しい低下を抑制でき、品質が劣化することが無い。よって、これにより、本発明の反射膜の特性が最大限に生かされる。

[0102]

又、本発明のAg合金膜を形成する場合には、スパッタリング法および蒸着法のいずれの場合であっても目的や用途、もしくは基板の種類に応じて安定して同じ特性を得ることがわかり、例えば膜の形成方法による品質の差異が生じない。

[0103]

従って、本発明によれば、Agを主成分としてAu、Pd及びRuのいずれか一種以上を0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、A1、の内、いずれか一種類以上を0.1~3.0wt%添加してなる三元素からなるAg合金を用いることで、Ag自体の保有する高い光学反射率に対

しての高い能力が保持され、更にはAgの材料的な安定性が格段に改善されることが確認された。しかも、積層されて用いられた場合では、下地層やガラス基板又は樹脂基板との接合性がより一層効果的な強化され、また、反射膜上部にコート層を形成した場合、純Ag及びAgを主成分としてAu、Pd及びRuのいずれか一種以上を0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、の内、いずれか一種類以上を0.1~3.0wt%添加してなる三元素からなるAg合金に対しても光学特性の低下を抑制でき、より高い信頼性が得られる高耐熱性反射膜と、この反射膜を用いて製作される液晶表示素子用反射体、或いは建材ガラス用反射膜等の積層体を提供することができた。

[0104]

前述に記す積層体を用いて製作される液晶表示素子では、例えばA1やA1を 主成分とする反射膜を用いた場合と比して光学反射率が高く、更に光学吸収率が 少ない為に光学的損失が少ない素子を形成することができる。

このため、例えばガラス基板の背面基板に反射体を堆積してその上部にカラーフィルター、偏向膜、液晶膜、偏向膜、透明導電膜、上部ガラス基板と言う構成で液晶表示素子を形成する場合に本発明で得られる積層体を反射体部位に置換して液晶表示素子を形成する場合に、液晶表示素子の光学損失が少ないために、A1やA1合金を反射体に用いる場合と比して輝度の向上を実現する事が実現されて、更にはそれを用いた携帯情報端末機器の表示部として品質の高い製品を形成することが可能になった。

【書類名】 要約書

【要約】

【課題】A g 自体の保有する高い光学反射率に対しての高い能力が保持され、更にはA g の材料的な安定性が格段に改善され、しかも、積層されて用いられた場合では下地層やガラス又は樹脂基板との接合性がより一層効果的に強化され、反射膜上部にコート層を形成した場合、光学特性の低下を抑制でき、実用上の効果が大きく、より高い信頼性が得られる高耐熱性反射膜及びこの反射膜を用いて製作される液晶表示素子用反射板、或いは建材ガラス用反射膜等の積層体を提供する。

【解決手段】Agを主成分として、Au、Pd及びRuを0.1~3.0wt%添加し、更にCu、Ti、Cr、Ta、Ni、Mo、Al、の内、少なくとも一種類以上の元素を0.1~3.0wt%添加してなるAg合金材料から形成し、用途に応じて単層、または複層で構成することで温度や化学的に安定であり、様々な用途への適用を可能とする。

【選択図】 なし

認定 · 付加情報

特許出願の番号

特願2000-373602

受付番号

50001582259

書類名

特許願

担当官

第一担当上席 0090

作成日

平成12年12月12日

<認定情報・付加情報>

【提出日】

平成12年12月 7日

出願人履歷情報

識別番号

[000136561]

1. 変更年月日 1998年 9月 4日

[変更理由] 住所変更

住 所 東京都豊島区南大塚2丁目37番5号

氏 名 株式会社フルヤ金属