

Free Online Course

Intro to Python for Geospatial Visualization Lecture + Codina)

(Lecture + Coding)

โหลดชีทมาเรียนกันเลย! (Click here)

Course Outlines

1. Geospatial Basics

- 1.1 The shape of the Earth
- 1.2 Coordinate reference systems (CRS)
 - 1.2.1 Spherical/Geographical coordinate system (GCS)
 - 1.2.2 Projected coordinate system (PCS)
- 1.3 PROJ.4 String and EPSG Codes
- 1.4 Data model
 - 1.4.1 Vector data model
 - 1.4.2 Raster data model

2. Vector data basics with GeoPandas

- 2.1 Data structure
- 2.2 Basic methods and attributes
- 2.3 Clip data
- 2.4 Vector data visualization: PM_{2.5} station data

3. Raster data basics with Xarray

- 3.1 Data structure
- 3.2 Basic methods and attributes
- 3.3 Clip data
- 3.4 Raster data visualization: PM_{2.5} station data and others

Free Online Course

Intro to Python for Geospatial Visualization

Geospatial Basics

(พื้นฐาน Geospatial data เบื้องต้นที่ควรรู้)

The Shape of the Earth

1. Geoid

2. Ellipsoid/Spheroid

3. Perfect sphere

Coordinate reference systems

Coordinate reference system (CRS): a reference system used to define the location of geographic elements on the Earth surface

- 1. Spherical/Geographical coordinate system (GCS): it represents locations using a 3D framework based on angles (common unit: degree)
- 2. Projected coordinate system (PCS): it contains a GCS, but converts the GCS into a 2D flat surface using mathematical transformation, also known as map projection (common unit: meter)

GCS's parameters

1. Datum

A set of information contains reference points when we create maps

Common datum: NAD27, NAD83, WGS84

3. Angular unit of measure

degree, °

Projection: a mathematical transformation of 3D spherical coordinates to a 2D planar coordinates

- All projections are not perfect, they introduce some kind of distortion into the data.
- It is our choice to choose the one that match our purpose

Projection classification

- Classification by Information Preservation
- Classification by Developable Surface

Classification by Information Preservation

Conformal projection (preserve shape/angle)

Equal-area projection (preserve area)

Azimuthal projection
(preserve direction)

Equidistant projection
(preserve distance)

Compromise projection (preserve nothing)

Classification by Developable Surface

Developable Surface:

A geometric figure that can be flattened into a plane without distortion

Generating globe:

An ellipsoid or a sphere model reduced to the scale of the desired flat map

Classification by Developable Surface

1. Cylindrical projection

2. Conic projection

3. Planar projection

Mercator projection

(Type: conformal cylindrical)

Developed by Gerardus Mercator in 1569

Gall-Peters projection

(Type: equal-area, cylindrical)

Developed by James Gall in 1855

Robinson projection

(Type: compromise, pseudo-cylindrical)

Developed by Arthur Robinson in 1963

Line of tangency: the line at which the generating globe and the developable surface touch (Some projection have a point of tangency)

Map scale

Principal scale: The scale of the generating globe used to make a map projection

Actual scale: The local measurement of scale at any point on a map (can vary from one location on a map to another)

Scale factor (SF): the ratio of the principal scale to the actual scale for a particular location (SF =1 -> True scale)

PCS's parameters

- 1. GCS parameters
- **2. Projection type:** The method used to project the 3D Earth onto a 2D plane
- **3. Central meridian/Longitude of origin:** The line of longitude at the center of the projection (defines the origin of x coordinates)
- **4. Central parallel/Latitude of origin:** It defines the origin of y coordinates. It may or may not be the middle latitude of the projection
- **5. Standard parallel:** A line of latitude that has true scale (not all projections have standard parallels and conic projections often have two)
- **6. Linear unit of measure:** Usually meter
- **7. False easting and false northing:** Offsets added to the x and y coordinates to avoid negative values

Central meridian

Image credit: geography.hunter.cuny.edu

PROJ.4 string

PROJ.4 string: A string holds the parameters of a certain CRS

Parameter	Description	
+proj	Projection name	
+datum	Datum name	
+lat_0	Central parallel	
+lat_1 or 2	Standard parallel Central meridian meters, feet, etc.	
+lon_0		
+units		
+x_0	False easting	
+y_0	False northing	

crs="+proj=lcc +lat_1=20 +lat_2=60 lon_0=-96 +datum=NAD83 +units=m"

LAMBERT CONFORMAL CONIC PROJECTION (Icc)

Image credit: pygis.io

EPSG Codes

EPSG Codes: A unique numerical identifier used to represent CRS (https://epsg.io/)

- More convenient than PROJ.4 String
- Not all CRSs have EPSG code

Example of EPSG Codes

EPSG:4326

+proj=longlat +datum=WGS84 +no_defs

EPSG:3875

+proj=tmerc +lat_0=0 +lon_0=21 +k=1 +x_0=21500000 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

CRS

Data models

Data models: A mathematical and digital structure for representing real world geographical elements as data in a computer

Vector data model

Image credit: transportgeography.org

Vector data model

Vector data components

- 1. Geometry: points, lines, polygons (a closed figure made up of line segments)
- 2. Attribute table: it stores the information linked to each geometric shape
- 3. A link between 1. and 2.

For example, a polygon representing countries might have attributes such as country name, and region name

	name	region	geometry
163	Vietnam	South-Eastern Asia	MULTIPOLYGON (((104.08288 10.36486, 104.08663
170	Thailand	South-Eastern Asia	MULTIPOLYGON (((99.66804 6.49639, 99.65263 6.4
193	Cambodia	South-Eastern Asia	POLYGON ((104.44533 10.42274, 104.34608 10.492
212	Malaysia	South-Eastern Asia	MULTIPOLYGON (((111.41152 2.37639, 111.36804 2
227	Myanmar	South-Eastern Asia	MULTIPOLYGON (((98.15582 9.87666, 98.13602 9.8
235	Lao People's Democratic Republic	South-Eastern Asia	POLYGON ((102.14074 22.39629, 102.15373 22.384

Vector data format

Shapefile: It is a common vector data storage format and not a single file. It made up of multiple component files

Component files

- 1. .shp = stores geometry information
- 2. .dbf = stores attribute information
- 3. .shx = index/link between .shp and .dbf
- 4. .prj = stores coordinate system information
- 5. .shp.xml = stores the metadata in an XML document

All component files have the same name but different extensions

Raster data model

Raster data model: it represents real world geographical elements as a surface divided into an array of equally sized cells. Every cell can contain only one value.

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	1	1	1	0
0	0	1	1	1

Binary raster data

1 = water

0 = no water

Raster data format

- 1. TIFF (Tagged Image File Format) / GeoTIFF
- 2. ESRI Grid
- 3. PNG
- 4. JPEG
- 3. NetCDF (Network Common Data Form)

https://www.igismap.com/raster-data-file-format/