

ABAQUS Project

End-plate steel Monotonic connection

Mohd Babar Malik

Project Outline

Material Property

Mesh

Results

Project Outline

Modeling a Steel Beam-to-Column Subassembly

- Parts module (Defining geometry)
- Property module (Defining Materials and cross-sections)
- Assembly module (Parts assembly)
- Step module (Defining analysis steps type and parameters)
- Interaction module (Defining interactions & constraints)
- · Mesh module (Defining mesh size and mesh element type)
- Job module (Running and monitoring the analysis)
- Visualization module (Visualizing displacements, strains and stresses)

Model Geometry

Solid Part (sketch section outline)

Shell Part (sketch section centerline)

Abaqus Model

Figure: Beam Part

Figure: Bolt Part

Figure: Plate Part

Figure: Column Part

Material Property

Bilinear with a hardening branch

S355 Steel

$$E = 200,000 \text{ MPa}$$

$$v = 0.3$$

$$f_{y} = 355 \text{ MPa}$$

$$f_{\rm u} = 470 \, \text{MPa}$$

$$\varepsilon_{\rm n} = 0.18$$

Mesh

Figure: Beam Mesh

Figure: Bolt Mesh

Figure: Plate Mesh

Figure: Column Mesh

Results

Figure: Stresses

Step: Loading_ Frame: 33 Total Time: 0.801459

Figure: Displacement

Figure: Reaction Force

Indian Institute of Space Science and Technology