

Kapittel 16

Kjemien til benzen:

Elektrofil aromatisk substitusjon

UNIVERSITETET I OSLO

Den mest typiske reaksjonen til aromatiske forbindelser!

Store variasjonsmuligheter i hva E kan være, f.eks.:

• CI Br I (halogen)

• NO₂ (nitro)

• SO₃H (sulfonsyre)

R (alkyl) Friedel-Crafts alkylering

COR (acyl) Friedel-Crafts acylering

og mye mye mer...

Generell reaksjonsmekanisme

resonansstabilisert

kationisk intermediat

elektrofilen adderes - aromatringens stabilisering tapes

deprotonering - aromatringens stabilisering gjenvinnes

Det første trinnet er langsomt: Tapet av aromatisitet "koster energi" – hvilket fører til høy aktiverings-energi, E_a (langsom reaksjon)

Det andre trinnet skjer raskt: Deprotonering gjendanner aromatisitet, en gunstig prosess som vil ha lav aktiveringsenergi (hurtig reaksjon)

Aromatisk bromering

- 1. Generering av elektrofilen Br+
- 2. Elektrofilt angrep av Br+ på aromatringen
 - Aromatisiteten går midlertidig tapt
- 3. Avspalting av H+ fra intermediatet
 - Aromatisiteten gjenvinnes

Aromatisk nitrering

- 1. Generering av elektrofilen NO₂+
- 2. Elektrofilt angrep av NO₂+ på aromatringen
- 3. Avspalting av H⁺ fra intermediatet

Aromatisk sulfonering

- 1. Generering av elektrofilen SO₃H⁺
- 2. Elektrofilt angrep av SO₃H⁺ på aromatringen
- 3. Avspalting av H+ fra intermediatet

Aromatisk alkylering: Friedel-Crafts alkylering

- 1. Generering av elektrofilen R+
- 2. Elektrofilt angrep av R+ på aromatringen
- 3. Avspalting av H+ fra intermediatet

Ulemper:

- Fler-alkylerte produkter dannes lett en alkylgruppe fører til økt reaktivitet hos produktet
- Går ikke med substrater som har sterkt elektron-tiltrekkende substituenter (C=O etc) eller aminogrupper (-NR₂)
- Karbokationomleiringer ("rearrangements") prim \rightarrow sek \rightarrow tert

Aromatisk acylering: Friedel-Crafts acylering

- 1. Generering av elektrofilen R-CO+
- 2. Elektrofilt angrep av R-CO+ på aromatringen
- 3. Avspalting av H+ fra intermediatet
- Utmerket selektivitet
 - Fler-acylerte produkter dannes vanskelig en acylgruppe fører til *redusert* reaktivitet hos produktet
- Ulempe: Går ikke med substrater som har sterkt elektrontiltrekkende substituenter (C=O etc) eller aminogrupper (-NR₂)

Substituenteffekter i elektrofil substitusjon

- Substituenter p\u00e4virker reaksjonsfarten dramatisk
 - Aktiverende substituenter
 - Deaktiverende substituenter
 - Relative hastigheter kan variere med over 10¹²
- Substituenter p\u00e4virker orienteringen til reaksjonen (posisjonen til foretrukket angrep: orto, meta, para)
 - Orto/para-dirigerende substituenter
 - Meta-dirigerende substituenter

Reactivity

Klassifisering av substituenter

- Aktiverende grupper er elektrondonerende
- Deaktiverende grupper er elektrontiltrekkende
- Aktivering eller deaktivering gjennom
 - resonanseffekter
 - induktive effekter

Induktive effekter og resonanseffekter

Induktive effekter: Virker gjennom σ-bindinger (elektronegativitet)

Resonanseffekter: Elektronpar-forflytninger gjennom π -systemet

elektrontiltrekkende resonanseffekt

orto/para-dirigerende grupper

- Alkyl-grupper
 - Virker også p.g.a. deres karbokation-stabiliserende effekter
- Halogener og andre grupper som har et ledig elektronpar på atomet som er bundet til benzen-ringen
 - Dette elektronparet stabiliserer karbokation-intermediatet ved resonans
 - Stabiliseringen er mest effektiv for orto- og paraposisjonene
 - Disse posisjonene blir derfor foretrukket i elektrofilens angrep

orto/para-dirigering: Alkyl

resonansstabilisert karbokation intermediat

orto/para-dirigering: OMe

resonansstabilisert karbokation intermediat

Tilsvarende for andre substituenter som kar ledig elektronpar i naboposisjon til benzenringen (:I, :Br, :Cl, :F, :OH, :OR, :NH, :NR, etc.)

15

meta-dirigerende grupper

- Grupper med dobbeltbinding (eller trippelbinding) fra atomet som er bundet til benzenringen og til et mer elektronegativt atom
 - Dette elektronegative atomet destabiliserer karbokationintermediatet ved resonans
 - Destabiliseringen er minst effektiv for meta posisjonene
 - Disse posisjonene blir derfor foretrukket i elektrofilens angrep

meta-dirigering: Acetyl

resonansstabilisert karbokation intermediat

Klassifisering av substituenter

- Aktiverende grupper er elektrondonerende
- Deaktiverende grupper er elektrontiltrekkende
- Aktivering eller deaktivering gjennom
 - resonanseffekter
 - induktive effekter

Flersubstituerte benzener: Syntesestrategier

- Hvor vil elektrofilen angripe når benzenringen allerede har flere substituenter bundet til seg?
- Se på de elektroniske dirigerende effektene av alle gruppene som er tilstede
 - Effektene kan forsterke hverandre
 - Effektene kan motarbeide hverandre den sterkeste vinner
 - Steriske effekter kan spille en rolle i tillegg

Reduksjon og oksidasjon av aromater

- Oksidasjon av aromatringen er meget vanskelig
- Oksidasjon skjer lett på α -posisjonen i en sidekjede og fører til at kjeden spaltes av ved α -posisjonen

- Reduksjon (hydrogenering) av aromatringen er meget vanskelig
- Reduksjon skjer lett på en karbonylgruppe i α posisjonen i en sidekjede

$$\begin{array}{c|c}
& O \\
& \alpha & || \\
& C \\
&$$