永年二中 2023-2024 学年第二学期期中考试

高一数学参考答案:

1. 单选题: 1-8 DBDCBDAA

2. 多选题: 9 . ACD 10. BCD 11. ACD

3. 填空题: 12. $\frac{\sqrt{5}}{5}$ 13. $3\sqrt{2}$ 14. 21π

大题详解后面

14. 21π

【分析】设上、下底面半径分别为r,R,结合图形题意及几何性质可得r,R,后由圆台体积公式可得答案.

【详解】设上、下底面半径,母线长分别为r,R,l.

作 $A_1D \perp AB$ 于点 D,则 $A_1D = 3$, $\angle A_1DA = \angle A_1DB = 90^\circ$.

又
$$\angle A_1AB = 60^{\circ}$$
,则 $AD = \frac{A_1D}{\tan 60^{\circ}} = AO - DO = R - r = \sqrt{3}$.

又 $\angle BA_1A = 90^\circ$, 则 $\angle BA_1D = 60^\circ \Rightarrow BD = A_1D \tan 60^\circ = DO + BO = R + r = 3\sqrt{3}$.

则 $R = 2\sqrt{3}$, $r = \sqrt{3}$, 又圆台高h = 3,

则圆台体积 $V = \frac{\pi}{3}h(R^2 + Rr + r^2) = \frac{\pi}{3} \times 3 \times (12 + 6 + 3) = 21\pi$.

故答案为: 21π.

15. $(1)^{\frac{3\pi}{4}}$

(2)k = 1 或-1

【分析】(1) 计算出向量夹角的坐标表示即可得解;

(2) 根据向量平行得到方程, 求出答案.

【详解】(1)
$$\cos\theta = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|} = \frac{(1,3)\cdot(1,-2)}{\sqrt{1+9}\times\sqrt{1+4}} = \frac{1-6}{\sqrt{10}\times\sqrt{5}} = -\frac{\sqrt{2}}{2},$$

因为 $\theta \in [0,\pi]$,所以 $\theta = \frac{3\pi}{4}$;

(2)
$$k\vec{a} + \vec{b} = k(1,3) + (1,-2) = (k+1,3k-2),$$

$$\vec{a} + k\vec{b} = (1,3) + k(1,-2) = (1+k,3-2k),$$

由于 $k\vec{a} + \vec{b}$ 与 $\vec{a} + k\vec{b}$ 互相平行,故(k+1)(3-2k) - (3k-2)(1+k) = 0,

解得k = 1或-1,

经检验,均满足要求.

16. (1)m = -3;

(2)m≠1 \coprod m≠−3;

(3)m=0 或 m=-2.

【详解】

$$m^2+2m-3=0$$
,解: (1) 由 $z\in \mathbb{R}$,得 $m-1\neq 0$,解得 $m=-3$.

(2) 由 z 是虚数, 得 $m^2+2m-3\neq 0$, 且 $m-1\neq 0$, 解得 $m\neq 1$ 且 $m\neq -3$.

$$\begin{cases} m & (m+2) = 0, \\ m-1 \neq 0, \end{cases}$$

(3) 由 z 是纯虚数, 得 $(m^2+2m-3\neq 0)$,解得 m=0 或 m=-2.

【考查意图】

了解复数的相关概念

17. (1)证明见解析

(2)存在,理由见解析

【分析】(1)利用三角形中位线证明线线平行,结合线面平行判定定理,从而得线面平行;

(2) 结合面面平行判定定理来确定动点位置,并证明面面平行.

【详解】(1) 如图,连接BD交AC于O,连接EO.

因为 $ABCD - A_1B_1C_1D_1$ 为正方体,底面ABCD为正方形,对角线AC,BD交于O点,

所以O为BD的中点,又因为E为 DD_1 的中点,

所以在 $\triangle DBD_1$ 中,OE是 $\triangle DBD_1$ 的中位线,

所以OE//BD₁,

又因为OE ⊂平面AEC, BD_1 ⊄平面AEC,

所以 BD_1 //平面AEC.

(2) 当 CC_1 上的点F为中点时,即满足平面AEC//平面 BFD_1 ,理由如下:

连接BF, D_1F ,

因为F为 CC_1 的中点,E为 DD_1 的中点,所以 $CF//ED_1$, $CF = ED_1$,

所以四边形 CFD_1E 为平行四边形,所以 $D_1F//EC$,

又因为EC ⊂平面AEC, D_1F ⊄平面AEC,

所以 $D_1F//$ 平面AEC.

由(1)知 $BD_1//$ 平面AEC,

又因为 $BD_1 \cap D_1F = D_1$, BD_1 , $D_1F \subset$ 平面 BFD_1 ,

所以平面AEC//平面 BFD_1 .

$$18.(1)C = \frac{\pi}{3}$$

 $(2)2\sqrt{3} < a < 4$

 $(3)2\sqrt{3}$

【分析】(1)分别选择条件①,②,③,根据边角转化即可求解角C:

- (2) 根据三角形有两个解,根据边角关系列不等式即可得边a的取值范围;
- (3) 根据向量之间的运算,结合数量积的运算可得ab的值,即可求 $\triangle ABC$ 的面积.

【详解】(1)解:若选①,: $\cos^2 A + \sin A \sin B = \sin^2 B + \cos^2 C$, $\therefore 1 - \sin^2 A + \sin A \sin B = \sin^2 B + 1 - \sin^2 C$,

即 $\sin A \sin B - \sin^2 A = \sin^2 B - \sin^2 C$,由正弦定理得 $ab - a^2 = b^2 - c^2$,

$$\text{EV } \cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{1}{2}, \quad \because 0 < C < \pi, \quad \therefore C = \frac{\pi}{3}.$$

若选②, :
$$\frac{a}{c+b} + \frac{b}{c+a} = 1$$
, ∴ $a(c+a) + b(c+b) = (c+b)(c+a)$

即
$$ac + a^2 + bc + b^2 = c^2 + ac + bc + ab$$
, 整理得 $a^2 + b^2 - c^2 = ab$, 即 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{1}{2}$,

$$: 0 < C < \pi, : C = \frac{\pi}{3}.$$

若选③, $\because c\cos A - a\cos C = b - a$,由正弦定理得 $\sin C\cos A - \sin A\cos C = \sin B - \sin A$, $\sin B = \sin(A + C) = \sin C\cos A + \cos C\sin A$,故 $\sin C\cos A - \sin A\cos C = \sin C\cos A + \sin A\cos C = \sin A$

 $\mathbb{II} \ 2\sin A\cos C = \sin A, \ \ :: 0 < A < \pi, \ \ :: \sin A \neq 0$

故
$$\cos C = \frac{1}{2}$$
, $\because 0 < C < \pi$, $\therefore C = \frac{\pi}{3}$.

(2) 解:由正弦定理,
$$\frac{a}{\sin A} = \frac{c}{\sin C} = \frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} = 4$$
,所以 $\sin A = \frac{a}{4}$,故 $\frac{a}{4} < 1$ 即 $a < 4$,

又满足条件的 \triangle ABC有两个,则角A有两个解,由大边对大角,应有 $a>c=2\sqrt{3}$,故边a的取值范围是 $2\sqrt{3}<a<4$.

(3)解:

由图可得 $\overrightarrow{DA} = -\overrightarrow{DB}$, 而 $\overrightarrow{CA} = \overrightarrow{CD} + \overrightarrow{DA}$, $\overrightarrow{CB} = \overrightarrow{CD} + \overrightarrow{DB} = \overrightarrow{CD} - \overrightarrow{DA}$,

所以
$$\overrightarrow{CA} \cdot \overrightarrow{CB} = |\overrightarrow{CA}| \cdot |\overrightarrow{CB}| \cos C = ab \cos C = \frac{1}{2}ab = (\overrightarrow{CD} + \overrightarrow{DA}) \cdot (\overrightarrow{CD} - \overrightarrow{DA}) = CD^2 - DA^2 = 7 - 3 = 4,$$

19. (1)答案见解析

 $(2)^{\frac{9}{2}}$

$$(3)^{\frac{7}{17}}$$

- 【分析】(1) 取AB的中点F,连接EF、 A_1B 、CF,利用平行线的传递性可证得 $EF//D_1C$,可知E、F、C、 D_1 四点共面,再由于E、C 、 D_1 三点不共线,可得出面 $EFCD_1$ 即为平面 α 截正方体所得的截面;
- (2)分析可知,四边形 CD_1EF 为等腰梯形,求出该等腰梯形的高,利用梯形的面积公式可求得截面面积:

(3)利用台体的体积公式可求得三棱台 $AEF-DD_1C$ 的体积,并求出剩余部分几何体的体积,由此可得结果.

【详解】(1) 如下图,取AB的中点F,连接EF、 A_1B 、CF.

因为E是 AA_1 的中点,所以 $EF//A_1B$.

在正方体 $ABCD - A_1B_1C_1D_1$ 中, $A_1D_1//BC$, $A_1D_1 = BC$,

所以四边形 A_1BCD_1 是平行四边形,所以 $A_1B//D_1C$,所以 $EF//D_1C$,

所以E、F、C、 D_1 四点共面.

因为 $E \setminus C \setminus D_1$ 三点不共线,所以 $E \setminus F \setminus C \setminus D_1$ 四点共面于平面 α ,

所以面 $EFCD_1$ 即为平面 α 截正方体所得的截面.

(2) 由 (1) 可知,截面 $EFCD_1$ 为梯形, $EF = \sqrt{AE^2 + AF^2} = \sqrt{1+1} = \sqrt{2}$,

$$CD_1 = \sqrt{CD^2 + DD_1^2} = \sqrt{4 + 4} = 2\sqrt{2}, \ D_1E = \sqrt{A_1D_1^2 + A_1E^2} = \sqrt{4 + 1} = \sqrt{5},$$

同理可得 $CF = \sqrt{5}$,

如下图所示:

分别过点E、F在平面 CD_1EF 内作 $EM \perp CD_1$, $FN \perp CD_1$, 垂足分别为点M、N,

则 $D_1E = CF$, $\angle ED_1M = \angle FCN$, $\angle EMD_1 = \angle FNC = 90^\circ$,

所以, $\triangle EMD_1 \cong \triangle FNC$, 则 $D_1M = CN$,

因为 $EF//CD_1$, $EM \perp CD_1$, $FN \perp CD_1$, 则四边形EFNM为矩形,

所以,
$$MN = EF = \sqrt{2}$$
,则 $D_1M = CN = \frac{CD_1 - MN}{2} = \frac{2\sqrt{2} - \sqrt{2}}{2} = \frac{\sqrt{2}}{2}$,

所以,
$$EM = \sqrt{ED_1^2 - D_1M^2} = \sqrt{5 - \frac{1}{2}} = \frac{3\sqrt{2}}{2}$$
,

所以,梯形
$$CD_1EF$$
的面积为 $S = \frac{1}{2}(EF + CD_1) \cdot EM = \frac{1}{2} \times 3\sqrt{2} \times \frac{3\sqrt{2}}{2} = \frac{9}{2}$.

(3) 多面体
$$AEF - DD_1C$$
为三棱台, $S_{\triangle AEF} = \frac{1}{2}AE \cdot AF = \frac{1}{2} \times 1^2 = \frac{1}{2}$,

$$S_{\triangle DD_1C} = \frac{1}{2}DD_1 \cdot DC = \frac{1}{2} \times 2^2 = 2$$
,该棱台的高为 2,

所以,该棱台的体积为
$$\frac{1}{3}(S_{\triangle AEF}+S_{\triangle DD_1C}+\sqrt{S_{\triangle AEF}\cdot S_{\triangle DD_1C}})\cdot AD$$

$$= \frac{1}{3} \left(\frac{1}{2} + 2 + \sqrt{\frac{1}{2} \times 2} \right) \times 2 = \frac{7}{3},$$

故剩余部分的体积为 $8 - \frac{7}{3} = \frac{17}{3}$.

故比较小的那部分与比较大的那部分的体积的比值为 $\frac{7}{17}$.