.....

Problem Solving Using C Lab (KCA-151)

LAB MANUAL

COURSE: MCA

SEM: 1st

Department of Master of Computer Applications

G. L. BAJAJ INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Plot no. 2, Knowledge Park III, Gr. Noida

.....

DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS Vision, Mission & PEOs of the Department

VISION

To become a center of repute and developing the computer professionals who can respond to social and global challenges

MISSION

- To impart quality education with sound practical knowledge for societal and global recognition
- To provide exposure and awareness about Industry needs and challenges through mutual association
- To provide environment for innovation, incubation and entrepreneurship
- To develop moral values and ethics in our graduates

Program Educational Objectives (PEOs)

- **PEO 1:** To progress their career in Industry, Academia, Research, entrepreneurial pursuit, consultancy firms and other technological enabled services.
- **PEO 2:** To excel in career as an individual or in a team; by adopting ethics and professionalism and communicate seamlessly with cross culture and interdisciplinary teams.
- **PEO 3:** To continue a lifelong learner in computing and contributes in societal growth.

Approved by AICTE & Affiliated to AKTU

.....

Program Outcomes/Program Specific Outcomes

Program Outcomes(POs)

- 1. Computational Knowledge: Apply knowledge of computing fundamentals, computing specialization, mathematics, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
- **2. Problem Analysis:** Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
- **3. Design /Development of Solutions:** Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- **4.** Conduct investigations of complex Computing problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern Tool Usage:** Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.
- **6. Professional Ethics:** Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practices.
- **7. Life-long Learning:** Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.
- **8. Project management and finance:** Demonstrate knowledge and understanding of the computing puting and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

.....

- **9. Communication Efficacy:** Communicate effectively with the computing community, and with society at large, about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.
- **10. Societal and Environmental Concern:** Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practices.
- **11. Individual and Team Work:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary environments.
- **12. Innovation and Entrepreneurship** Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.

Program Specific Outcomes Program Specific Outcomes (PSO's)

- **PSO 1:** Acquire knowledge and Apply problem solving strategies in cutting edge technologies
- **PSO 2:** Design and Development of software product and services to social and global requirements.

Cos	COURSE OUTCOMES	BLOOM'S KNOWLEDGE LEVEL (KL)
CO1	Write, compile, debug and execute program in a C programming environment.	К3
CO2	Write programs that incorporate use of variables, operators and expression along with data types.	K3
CO3	Write programs for solving problems involving use of decision control structure and loops.	К3
CO4	Write programs that involve the use of arrays, structures and user define functions.	К3
CO5	Write program using graphic and file handling operations.	К3

Mapping of Program Outcomes with Course Outcomes(COs)

	CO-PO Matrix											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	-	-	ı	I	-	-	1	-	-
CO2	-	-	ı	-	-	ı	ı	-	-	ı	-	-
CO3	-	ı	ı	-	-	ı	ı	-	-	ı	-	-
CO4	-	,	-	-	-	1	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-
					CO-	-PSO M	atrix					
CO	PSO1 PSO2											
CO1		1										
CO2				1						1		_

.....

CO3	2	2
CO4	2	2
CO5	2	2

List of Experiments

Category	Program NO	Title	CO
BASIC INPUT OUTPUT OPERATIONS	1.	Write a program to input and add two numbers	co1
	2.	Write a program to convert Fahrenheit to Celsius and Celsius to Fahrenheit.	co1
	3.	Write a program to calculate Area of a rectangle	co1
	4.	Write a program to Calculate Area and Perimeter of a Circle	co1
	5.	Write a program to determine the roots of quadratic equation	co1
	6.	Write a program to Calculate Simple Interest	co1
	7.	Write a program to Calculate Compound Interest	co1
	8.	Write a program to swap two numbers using third variable, without using third variable, within single statement using comma operator.	co 2

	9.	Write a program to input two numbers and find the greatest	co 2				
		number using ternary operator.					
	10.	Write a program to find odd/even number using ternary	co2				
		operator.					
	11.	Write a program to Input three numbers and find greatest	co2				
		number using ternary operator.					
	Enter arithmetic operator from user, perform operation on	co2					
		two numbers according to the operator using ternary					
		operator.					
	13.	Find odd/even number using bitwise operator.					
	14.	Write a program to swap two numbers using bitwise					
		operator.					
	15.	Find exact power of 2 of a given number using bitwise	co2				
		operator.					
CONDITIONAL & SWITCH CASE	1	Write a program to input the annual taxable income and compute the tax according to the given condition.	co 3				
STATEMENTS		Total Annual Taxable Tax Rate					
		Income					
		Up to Rs. 1,00,000 No Tax					
		From 1,00,001 to 10% of the income tax					
		1,50,000 exceeding Rs. 1,00,000					

			, ,	
		From 1,50,001 to	Rs. $5000 + 20\%$ of the	
		2,50,000	income tax exceeding	
			Rs. 1,50,000	
		Above 2,50,000	Rs. 25000 + 30% of the	
			income tax exceeding	
			Rs. 2,50,000	
	2	Write a program to calculate the i	monthly telephone bills as	co 3
		per the following rule.		
		• Minimum	Rs. 100 for up to 50 calls	
		• Plus Rs.	0.80 per call for next 50	
		calls		
		• Plus Rs	0.60 per call for next 100	
		calls	o.oo per can for next 100	
			0.40	
			0.40 per call for any call	
		beyond 20	00 calls	
	2	XX :	1	2
	3	Write a currency program that tells 500,200,100,50,20,10,5,2 and 1 Rs		co 3
		a given amount of money.	s. notes will be needed for	
	4,	Write a program that estimated		со3
		online shop that sells rings with online shop has the following price	0 0	
		Gold plated rings have a base		
		charge 70.30 per engraved unit.		
		Solid gold rings have a base cocharge 10.40 per engraved unit.	ost of Rs. 1000, and you	
		Silver plated rings have a base	cost of Rs. 300, and you	
		charge 5.10 per engraved unit.		
		Find the total cost as per the ring p	ourchase by customer.	
LOOP CONSTRUCT	1	Write a C program to print the of t	he Fibonacci series	co 3
	2	Write a program, enter a number f	rom user check that	со3
		number is prime or not.		
	I			

<u></u>	· · · · · · · · · · · · · · · · · · ·		
	3	Write a program to print a multiplication table of n number in reverse order.	со3
	4	Write a program, enter a number from user reverse that number.	со3
	5	Write a program, enter a number from user check that is number is Armstrong or not.	co 3
	6	Write a program to find out the value of x raised to the power y, where x and y are positive integers	со3
	7	Write a C program to find the H.C.F. of two numbers.	co 3
	8	Write a program to receive a five-digit no and display as like 24689: 2 4 6 8 9	co 3
	9	Number Guessing Game We will write a program that generates a random number and asks the player to guess it. If the player's guess is higher than the actual number, the program displays "Lower number please". Similarly, if the user's guess is too low, the program prints "Higher number please". When the user guesses the correct number, the program displays the number of guesses the player used to arrive at the number. Hint: Use loop & use a random number generator.	co 3
	10	Write a program in C language to find harmonic series and its sum up to n. Enter the range: 10 Harmonic Sequence is: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +	co3
		1/7 + 1/8 + 1/9 + 1/10	

11	Write a program in C to print arithmetic progression and its	co 3
	sum.	
	Input: First term: 2, Common difference: 4	
	Number of terms: 10	
	Output:	
	Enter the first term of the A.P.: 2	
	Enter the common difference: 4	
	Input number of terms in the series: 10	
	Arithmetic Progression : 2 6 10 14 18 22 26 30 34 38 The sum of the AP series is: 200	
12	Square Root	со3
	Given a non-negative integer x, return the square root	
	of x rounded down to the nearest integer. The returned	
	integer should be non-negative as well.	
	You must not use any built-in exponent function	
	For example: do not use pow(x, 0.5)	
	Example 1: Input: x = 4, Output: 2	
	Explanation: The square root of 4 is 2, so we return 2.	
	Example 2: Input: x = 8, Output: 2	
	Explanation: The square root of 8 is 2.82842, and since we round it down to the nearest integer, 2 is returned.	
13	*	со3
	* *	
	* * *	
	* * * * *	
	* * * * *	
	* * * * * * * *	
	* * * * * * * *	

		Right Triangle Star Pattern	
-		1	со3
	14	01	
		1 0 1	
		0 1 0 1	
		1 0 1 0 1	
	14	*	co 3
		* *	
		* * *	
		* * * *	
	15	A6	co 3
	13	* *	605
		* *	
		* * *	
		* * * * * * *	
		Hollow Mirrored Right	
		Triangle Star Pattern	

16	******** *****************************	co3
	****** ***** ***** **** **** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *	
	Hollow Diamond Star Pattern	
17	****	co 3

	**	

	Right Arrow Star Pattern	

18	****	co 3

	**	
	*	
	**	

	Left Arrow Star Pattern	
	0.99.000	
19	WAP to print the pattern	co3
	ABCDEFGGFEDCBA	
	ABCDEFFEDCBA	
	A B C D E E D C B A A B C D D C B A	
	АВССВА	
	A B B A	
	A A_ A	
20	1	co3
	2 3 2	
	3 4 5 4 3	
	4567654	
	567898765	
	4567654	
	3 4 5 4 3	
	2 3 2	
	1	
21	Given N, print the pattern as given in the example.	со3
	Input Format:	
Į	The first line of the input contains a single integer T	

		denoting the number of test cases.	
		First line of each test case contains one integer N.	
		Output Format:	
		For each test case, in a new line, print the given pattern as	
		shown in the example.	
		T. 1.4	
		Example 1:	
		Input:	
		mput.	
		1	
		4	
		Output:	
		111111	
		122221	
		1233321	
		1234321	
		1 2 3 3 3 2 1	
		1 2 2 2 2 2 1	
		1111111	
DIT	1	Given a positive integer n, write a function to find if it is a	со3
BIT MANIPULATION		power of 2 or not	
MANIFULATION		F1	
		Examples:	
		Input: $n = 4$, Output: Yes, Explanation: $2^2 = 4$	
		при . п — 1 , Опіри . 165, Едріанаціон. 2 — 1	
		Input: n = 42,Output: No, Explanation: 42 is not a power	
		of 2	
		Input: $n = 1$,Output: Yes. Explanation: $2^0 = 1$	
	2	Given an integer n, calculate the square of a number without	со3
		using *, / and pow().	
		using ,, and pow().	
		In most in = 5 October 25	
		Input: n = 5,Output: 25	
		1 4 7 0 4 4 40	
		Input: 7,Output: 49	

<u></u>	<u></u>		
	3	Given two integers say a and b. Find the quotient after dividing a by b without using multiplication, division, and mod operator.	co 3
		Example:	
		Input: a = 10, b = 3, Output: 3 Input: a = 43, b = -8, Output: -5	
	4	Given two numbers A and B. Write a program to count the number of bits needed to be flipped to convert A to B.	со3
		Examples:	
		Input: A = 10, B = 20, Output: 4 Explanation: Binary representation of A is 000 0101 0	
		Binary representation of B is 00010100 We need to flip highlighted four bits in A to make it B.	
		Input: A = 7, B = 10, Output: 3 Explanation: Binary representation of A is 00000111 Binary representation of B is 00001010	
		We need to flip highlighted three bits in A to make it B.	
USER DEFINE FUNCTION	1	Write a program to print out all the Armstrong number between 100 and 500 using user define function.	со4
	2	Write a program to print the entire prime no between 1 and 300 using user define function.	со4
	3	Write a program to find sum of Fibonacci series up to N (where N is entered through keyboard) using function	со4
	4	Write a program to find the value of y for a particular value of n. The a, x,b, n is input by user if n=1 y=a ^x % b if n=2 y=ax ² + b ² if n=3 y=a - b ^x if n=4 y=a + x ^b	co4
	5	Write a C function to test whether a given pair of numbers are amicable numbers. (Amicable number are pairs of numbers each of whose divisors add to the other)	co4
Recursion	1	Write a program to calculate the GCD of given numbers using recursion	со4
	2	Write a program to find the sum of digits of a 5 digit number using recursion.	со4
	3	Given a positive integer N, the task is to find the sum of the series $1 - (1/2) + (1/3) - (1/4) + \dots + (1/N)$ using recursion.	co 4

	4	Examples: Input: N = 3 Output: $0.8333333333333333333333333333333333333$	co4
ONE DIMENSION INTEGER ARRAY	1	Write a program, enter n elements into an array, perform linear search	co4
	2	Write a program, enter n elements into an array, perform binary search.	co 4
	3	Write a program, enter n elements into an array, perform reverse operations	co4
	4	Write a program to delete duplicate element in a list of 10 elements &display it on screen.	со4
	5	Write a program to merge two sorted array & no element is repeated during merging.	со4
	6	Segregate 0s and 1s in an array You are given an array of 0s and 1s in random order. Segregate 0s on left side and 1s on right side of the array	co 4

	[Basically you have to sort the array]. Traverse array only	
	once.	
	Input array = [0, 1, 0, 1, 0, 0, 1, 1, 1, 0]	
	Output array = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]	
7	Find Second largest element in an array	со4
	Given an array of integers, our task is to write a program that efficiently finds the second-largest element present in the array. Examples:	
	Input: arr[] = {12, 35, 1, 10, 34, 1} Output: The second largest element is 34. Explanation: The largest element of the array is 35 and the second largest element is 34	
	Input: arr[] = {10, 5, 10} Output: The second largest element is 5. Explanation: The largest element of the array is 10 and the second largest element is 5	
8	Sort an array in wave form	co4
	Given an unsorted array of integers, sort the array into a wave array. An array arr[0n-1] is sorted in wave form if: arr[0] >= arr[1] <= arr[2] >= arr[3] <= arr[4] >=	
	Examples:	
	<pre>Input: arr[] = {10, 5, 6, 3, 2, 20, 100, 80} Output: arr[] = {10, 5, 6, 2, 20, 3, 100, 80} Explanation:</pre>	
	here you can see {10, 5, 6, 2, 20, 3, 100, 80} first element is larger than the second and the same thing is repeated again and again. large element – small element-large element -small element and so on .it can be small	

	element-larger element — small element-large element -small element too. all you need to maintain is the up-down fashion which represents a wave. there can be multiple answers. Input: arr[] = {20, 10, 8, 6, 4, 2}	
	Output: arr[] = {20, 8, 10, 4, 6, 2}	
9	Largest Sum Contiguous Subarray Given an array arr[] of size N. The task is to find the sum of the contiguous subarray within a arr[] with the largest sum.	co4
	Largest Subarray Sum Problem -2 -3 4 -1 -2 1 5 -3 0 1 2 3 4 5 6 7 4+(-1)+(-2)+1+5=7	
	Maximum Contiguous Array Sum is 7	
10	Sliding Window Max You are given an array of integers nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.	со4
	Return the max sliding window. Example 1	
	Input: arr[] = {1, 2, 3, 1, 4, 5, 2, 3, 6}, K = 3 Output: 3 3 4 5 5 5 6 Explanation: Maximum of 1, 2, 3 is 3	
	Maximum of 2, 3, 1 is 3 Maximum of 3, 1, 4 is 4 Maximum of 1, 4, 5 is 5	

	Maximum of 4, 5, 2 is 5	
	Maximum of 5, 2, 3 is 5	
	Maximum of 2, 3, 6 is 6	
	Example 2:	
	Input: arr[] = {8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, K = 4 Output: 10 10 10 15 15 90 90	
11	Stock Buy Sell to Maximize Profit	co4
	The cost of a stock on each day is given in an array. Find the maximum profit that you can make by buying and selling on those days. If the given array of prices is sorted in decreasing order, then profit cannot be earned at all. Examples: Input: arr[] = {100, 180, 260, 310, 40, 535, 695} Output: 865 Explanation: Buy the stock on day 0 and sell it on day 3 => 310 - 100 = 210 Buy the stock on day 4 and sell it on day 6 => 695 - 40 = 655 Maximum Profit = 210 + 655 = 865 Input: arr[] = {4, 2, 2, 2, 4} Output: 2	
	Explanation: Buy the stock on day 1 and sell it on day $4 \Rightarrow 4 - 2 = 2$ Maximum Profit = 2	
	Input: prices = [7,1,5,3,6,4]	
	Output: 5 Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.	

	Note that buying on day 2 and selling on day 1 is not	
	allowed because you must buy before you sell.	
12	TWO SUM : Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.	co 4
	You may assume that each input would have <i>exactly</i> one solution, and you may not use the <i>same</i> element twice.	
	You can return the answer in any order.	
	Example 1:	
	Input: nums = [2,7,11,15], target = 9, Output: [0,1]	
	Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].	
	Example 2:	
	Input: nums = [3,2,4], target = 6, Output: [1,2]	
	Example 3:	
	Input: nums = [3,3], target = 6, Output: [0,1]	
13	Triplet Sum : Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i!= j, i!= k, and j!= k, and nums[i] + nums[j] + nums[k] == 0.	co4
	Notice that the solution set must not contain duplicate triplets.	
	Example 1:	
	Input: nums = [-1,0,1,2,-1,-4]	
	Output: [[-1,-1,2],[-1,0,1]]	
	Explanation:	
	nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.	

		nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.	
		nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.	
		The distinct triplets are [-1,0,1] and [-1,-1,2].	
		Notice that the order of the output and the order of the triplets does not matter.	
		Example 2:	
		Input: nums = [0,1,1]	
		Output: []	
		Explanation: The only possible triplet does not sum up to 0.	
		Example 3:	
		Input: nums = [0,0,0]	
		Output: [[0,0,0]]	
		Explanation: The only possible triplet sums up to 0.	
	14	Chocolate Distribution Problem	co4
		Given an array A[] of positive integers of size N, where each value represents the number of chocolates in a packet. Each packet can have a variable number of chocolates. There are M students, the task is to distribute chocolate packets among M students such that: 1. Each student gets exactly one packet. 2. The difference between maximum number of chocolates given to a student and minimum number of chocolates	
TWO DIMENSION	1	given to a student is minimum. Write a program to evaluate the addition of diagonal	co4
INTEGER ARRAY		elements of two Square matrices.	
	2	Write a program to find the transpose of a given matrix & check whether it is symmetric or not.	co4
	3	Write a program to print the multiplication of two N*N (Square) matrix.	со4

	5	sorted matrix Given an n x r sorted in non- matrix in sorte Example: Input: mat[][] }; Output: 10 15	Given an n x n matrix, where every row and column is orted in non-decreasing order. Print all elements of the natrix in sorted order. Example: nput: mat[][] = { {10, 20, 30, 40}, {15, 25, 35, 45}, {27, 29, 37, 48}, {32, 33, 39, 50}, }; Output: 10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50				co4	
	5	Given an m x its entire row a Example 1:	n integer matr and column to	0's.			ent is 0, set	co4
		1 1 1 0 1 1	1	0	0 0 0	0 1		
		Input: matrix = Output: [[1,0,]]		J	
		0 1 2 3 4 5 1 3 1	2 5	0 0 0 4 0 3	0 5	0 0 0		
		Input: matrix = Output: [[0,0,0	= [[0,1,2,0],[3,	,4,5,2],[1				
STRING	1	Write a progra palindrome or		ck wheth	er the	given	string is a	co 4

2	Create a user define function replaceCharacter() that replace character from the string. String: This book is very easy Character: s replace character: p Output: Thip book ip very eapy	co4
3	Write a function reverseStr(char str[]) that takes as argument and reverse it. String: amit kumar Reverse String: ramuk tima	co4
4	Write a function reverseWordLetter(char str[]) that takes as an argument and reverse it. String: I love my India Reverse String: I evol ym aidnI	co4
5	Write a function reverseWord(char str[]) that takes as an argument and reverse it. String: I love my India Reverse String: India my love I	co4
6	Write a function which delete all the repeated occurrences of a character from a string. String: This book is very easy Output: This bok very a	co4

7	Write program to sort the array of character (String) in alphabetical order like STRING in GINRST.	co4
8	Write a program to remove all the blank space from the string & print it, also count the no of characters.	Co4
9	Print all the duplicate characters in a string Given a string S, the task is to print all the duplicate characters with their occurrences in the given string. Example:	Co4
	Input: S = "goodorgood" Output: d, count = 2 g, count = 2 o, count = 5	
10	r, count = 1 LONGEST SUBSTRING WITHOUT REPEATING CHARACTERS Given a string s, find the length of the longest substring without repeating characters.	Co4
	Example 1:	
	Input: s = "abcabcbb", Output: 3 Explanation: The answer is "abc", with the length of 3.	
	Example 2:	
	Input: s = "bbbbb",Output: 1	
	Explanation: The answer is "b", with the length of 1.	
	Example 3:	
	Input: s = "pwwkew",Output: 3	
	Explanation: The answer is "wke", with the length of 3.	
	Notice that the answer must be a substring, "pwke" is a subsequence and not a substring.	
11	Permutations of given String	Co4

	Given a string S, the task is to write a program to print all permutations of a given string.	
	A permutation also called an "arrangement number" or "order," is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself. A string of length N has N! permutations.	
	Examples:	
	Input: S = "ABC" Output: "ABC", "ACB", "BAC", "BCA", "CBA", "CAB"	
	Input: S = "XY" Output: "XY", "YX"	
12	Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent. Return the answer in any order .	Co4
	A mapping of digits to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.	
	2 abc 3 def 4 ghi 5 jkl 6 mno 7 pqrs 8 tuv 9 wxyz ++ 0 û# Example 1:	
	Input: digits = "23" Output: ["ad" "ac" "af" "bd" "be" "bf" "cd" "ce" "cf"]	
	Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"] Example 2:	
	Input: digits = ""	

			1
		Output: []	
		Example 3:	
		Input: digits = "2"	
		Output: ["a","b","c"]	
	13	Wildowd Dottom Motoking	Co4
	13	Wildcard Pattern Matching Given a text and a wildcard pattern, implement wildcard pattern matching algorithm that finds if wildcard pattern is matched with text. The matching should cover the entire text (not partial text). The wildcard pattern can include the characters '?' and '*'	C04
		'?' – matches any single character '*' – Matches any sequence of characters (including the empty sequence) For example:	
		Text = "baaabab", Pattern = "*****ba*****ab", output : true Pattern = "baaa?ab", output : true Pattern = "ba*a?", output : true Pattern = "a*ab", output : false	
	14	Naive algorithm for Pattern Searching Given text string with length n and a pattern with length m, the task is to prints all occurrences of pattern in text. Note: You may assume that n > m.	Co4
		Examples:	
		Input: text = "THIS IS A TEST TEXT", pattern = "TEST" Output: Pattern found at index 10	
		Input: text = "AABAACAADAABAABA", pattern = "AABA" Output: Pattern found at index 0, Pattern found at index 9, Pattern found at index 12	
STRUCTURE & UNION	1	Write a union program to extract individual bytes from an unsigned int. (for hexadecimal value)	Co4
	2	Define a structure that can describe a hotel. It should have the member that includes the name, address, grade, room	Co4

.....

		charge and number of rooms. Write a function to print out hotel of given grade in order of room charges.	
	3	Define a structure called cricket with player name, team name, batting average, for 50 players & 5 teams. Print team wise list contains names of player with their batting average.	Co4
FILE HANDLING	1	Write a c program to copy & count the character content of one file says a.txt to another file b.txt.	Co5
	2	Write a program to take 10 integers from file and write square of these integer in other file.	Co5
	3	Write a program to read number from file and then write all 'odd' number to file ODD.txt & all even to file EVEN.txt.	Co5
	4	Write a program to print all the prime number, between 1 to 100 in file Prime.txt.	Co5
GRAPHICAL OPERATIONS	1.	Write a program to draw circle, line, rectangle fill with red color.	Co5
	2.	Draw a moving cycle using computer graphics programming in C.	Co5

Beyond the Syllabus

Category	Program No.	Title
Command Line Argument	1	Write a program to find the factorial of given number using command line argument.
	2	Write a program to find the sum of digits of a 5 digit number using command line argument.

Dynamic	1	Write a C program to print the n-th Fibonacci Number
Programming	2	Longest Common Subsequence (LCS)
		Given two strings, S1 and S2, the task is to find the length of the Longest Common Subsequence. If there is no common subsequence, return 0. A subsequence is a string generated from the original string by deleting 0 or more characters and without changing the relative order of the remaining characters. For example, subsequences of "ABC" are "", "A", "B", "C", "AB", "AC", "BC" and "ABC". In general a string of length n has 2n subsequences.
		LCS problem has great applications like diff utility (find the difference between two files) that we use in our day to day software development.
		Examples:
		Input: S1 = "ABC", S2 = "ACD"
		Output: 2
		Explanation: The longest subsequence which is present in both strings is "AC".
		Input: S1 = "AGGTAB", S2 = "GXTXAYB"
		Output: 4
		Explanation: The longest common subsequence is "GTAB".
		Input: S1 = "ABC", S2 = "CBA"
		Output: 1
		Explanation: There are three common subsequences of length 1, "A", "B" and "C" and no common subsequence of length more than 1.