LEARNING WITH ~

REFERENCE

Fan, Yanbo, et al.
"Learning with average top-k loss."

Advances in neural information processing systems. 2017.

ABSTRACT

ABSTRACT

- Average top-k (AT_k) 손실
 - 지도 학습을 위한
 - 새로운 통합 손실
- $\rightarrow AT_k =$
 - 학습 데이터셋에 대해
 - ▶ k 개의 가장 큰 개별적 손실들을 평균낸 것

ABSTRACT

- $\rightarrow AT_k$ 7
 - 유명한 두 통합 손실 방법들
 - Nerage loss와 maximum loss의
 - 일반화임을 보임
- 두 방법의 장점을 더하고 단점을 완화한 것
 - ▶ 다른 데이터 분포에 더 잘 적응

- 지도 학습이란
 - 에이블링된 훈련 예제 $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ 를 이용해
 - b data/features x로부터
 - ▶ 타겟 y 를 예측

- ightharpoonup 전형적으로 함수 f를 찾음으로써 해결할 수 있음
 - 통합 손실(Aggregation loss)를 최소화하는 함수 f
 - ▶ 훈련 샘플들에 대한 각 손실로부터 구성됨

- $\min_{f} \left\{ \mathcal{L}(L_z(f)) + \Omega(f) \right\}$
 - $\mathscr{L}(L_{z}(f))$: 통합 손실
 - $L_{z}(f) = \{l_{i}(f)\}_{i=1}^{n}$: 훈련 샘플 각각의 개별 손실의 누적
 - $l_i(f) = l(f(\mathbf{x_i}), y_i)$
 - $\Omega(f)$: Regularizer

- 통합 손실 \mathcal{L} 로 주로 쓰이는 것은 평균
 - 모든 데이터의 손실의 평균
 - 편향되지 않음

- Maximum 손실
 - 전체 데이터 중 손실이 가장 큰 하나
- Top-k 손실
 - Maximum 손실의 일반화
 - Maximum 손실 대비 아웃라이어의 영향을 경감
 - ▶ 그러나 convex하지 않음
 - > 경사 하강법을 통한 최소화가 보장되지 않음

- > 저자들이 제안하는 average top-k (AT_k) 손실
 - 최대 k 개의 개별 손실의 평균

$$\mathcal{L}_{avt-k}(L_z(f)) = \frac{1}{k} \sum_{i=1}^k l_{[i]}(f)$$

 $lacksymbol{A}T_k$ 손실의 최소화를 MAT_k 학습이라 칭할 것

- ト Average top-k (AT_k) 손실
- Nerage loss와 maximum loss의 일반화
 - k=1 이면 maximum loss
 - k = n 이면 average loss
- AT_k 는 1이나 n이 아닌 적당한 값을 찾아 설정
 - ▶ (어찌보면 당연히) 더 좋은 성능

- 아웃라이어가 있는 바이너리 분류 문제
 - > 200개의 샘플

- 위: 데이터의 분포가 multimodal (뚜렷하게 구분되는)
- 아래: 레이블의 분포가 극심하게 불균형

- > 왼쪽: Hinge loss
- 오른쪽: Logistic loss

▶ 아웃라이어는 X로 표시됨

- Multimodal 데이터
 - ▶ 평균 손실: 아웃라이어에 대해 잘 구분, 적은 분포는 잘 구분하지 못함
 - 최대 손실: 적은 분포도 잘 구분, 아웃라이어를 잘 다루지 못해서 성능이 좋지 못함

- Multimodal 데이터
 - AT_k 손실: 최적 분류기에 가깝게 위치, 가장 좋은 성능
 - ightharpoonup 적절한 k 의 값은 grid search로 찾음

- 불균형 데이터
 - ▶ 평균 손실: 레이블의 불균형 때문에 잘 구분하지 못함
 - ▶ 최대 손실: 아웃라이어를 잘 다루지 못해서 성능이 좋지 못함

- 불균형 데이터
 - $ightharpoonup AT_k$ 손실: 최적 분류기에 가깝게 위치, 가장 좋은 성능

- Average top-k (AT_k) 손실
 - 평균 및 최대 손실의 장단점의 균형을 맞춘 손실
 - 불균형하고 multimodal한 데이터 분포에도 잘 적응
 - 일반화

- **Convex**함
 - 증명 생략 (원 논문 참고)
 - 경사 하강법으로 효율적으로 수렴
 - ▶ 최적의 해를 구할 수 있음

- ▶ Binary 분류 문제와 regression 문제에서 각각
 - AT_k 손실과 평균 및 최대 손실을 비교
- MAT_k 학습에 경사 하강법을 사용해 최적화

- ▶ Binary 분류 문제
- > 8개 데이터셋에 대해 평균 잘못 분류한 정도 (%)

	Logistic Loss			Hinge Loss		
	Maximum	Average	AT_{k^*}	Maximum	Average	AT_{k^*}
Monk	22.41(2.95)	20.46(2.02)	16.76(2.29)	22.04(3.08)	18.61(3.16)	17.04(2.77)
Australian	19.88(6.64)	14.27(3.22)	11.70(2.82)	19.82(6.56)	14.74(3.10)	12.51(4.03)
Madelon	47.85(2.51)	40.68(1.43)	39.65(1.72)	48.55(1.97)	40.58(1.86)	40.18(1.64)
Splice	23.57(1.93)	17.25(0.93)	16.12(0.97)	23.40(2.10)	16.25(1.12)	16.23(0.97)
Spambase	21.30(3.05)	8.36(0.97)	8.36(0.97)	21.03(3.26)	7.40(0.72)	7.40(0.72)
German	28.24(1.69)	25.36(1.27)	23.28(1.16)	27.88(1.61)	24.16(0.89)	23.80(1.05)
Titanic	26.50(3.35)	22.77(0.82)	22.44(0.84)	25.45(2.52)	$\overline{22.82(0.74)}$	$\overline{22.02(0.77)}$
Phoneme	28.67(0.58)	25.50(0.88)	24.17(0.89)	28.81(0.62)	22.88(1.01)	22.88(1.01)

- Regression 문제
- ▶ 4개 데이터셋에 대한 Root Mean Square Error (RMSE) 평균

		Square Loss		Absolute Loss			
	Maximum	Average	AT_{k^*}	Maximum	Average	AT_{k^*}	
			0.1139 (0.0057)				
Housing	0.1531(0.0226)	0.1065(0.0132)	0.1050 (0.0132)	0.1498(0.0125)	0.1097(0.0180)	0.1082(0.0189)	
Abalone	0.1544(0.1012)	0.0800(0.0026)	0.0797 (0.0026)	0.1243(0.0283)	0.0814(0.0029)	0.0811(0.0027)	
Cpusmall	0.2895(0.0722)	0.1001(0.0035)	0.0998 (0.0037)	0.2041(0.0933)	0.1170(0.0061)	0.1164(0.0062)	

DISCUSSION

DISCUSSION

- 의반화된 방법인 AT_k 를 제시
 - > 장점을 결합하고 단점을 완화한 해결책
- 단순한 경사 하강법 외에도
 - 너 강력한 최적화 방법을 사용하는 것을 연구 중
- 비지도 학습 등에 적용도 중요한 주제가 될 수 있을 것

LEARNING WITH ~