Claims

 Acrylophosphonic acid of the general formula (I), stereoisomers thereof or mixtures of these

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\$$

in which R^1 , R^2 , R^3 , X, Y, Z and n have the following meanings:

 R^1 = a linear or branched C_1 to C_{10} alkylene or C_6 to C_{14} arylene radical;

 R^2 = hydrogen, a linear or branched C_1 to C_{10} alkyl or C_6 to C_{10} aryl radical;

 $Y = \text{oxygen, sulphur, } C_1 \text{ to } C_8 \text{ alkylene or is absent;}$ n = 1, 2, 3, 4 or 5;

where

X = CN, n = 1 and Z = is absent or

 $X = CONR^3$ with $R^3 = \text{ hydrogen, a linear or branched } C_1 \text{ to } C_{10}$ alkyl radical, or a C_6 to C_{10} aryl radical;

provided that

for n = 1

Z =hydrogen or a linear or branched C_1 to C_{10} alkyl radical, or a phenyl radical; and for n = 2 to 5

Z = an aliphatic, aromatic, or araliphatic, linear or branched hydrocarbon radical with 1 to 14 carbon atoms, substituted n times with the structure of formula (I) in brackets, where Z and R^3 may also be part of a common ring, and where

the individual radicals may be substituted or unsubstituted.

2. Acrylophosphonic acid according to claim 1, characterized in that the variables of formula (I) have the following meanings independently of each other:

 R^1 = a linear or branched C_1 to C_5 alkylene radical or phenylene;

 R^2 = hydrogen or a linear C_1 to C_3 alkyl radical;

Y = oxygen or is absent;

X = CN or CONR³ with
R³ = hydrogen, a linear C₁ to C₆ alkyl radical,
a phenyl radical or together with Z part of a
six-membered ring;

n = 1 or 2; and

Z = hydrogen or a linear or branched C_1 to C_{10} alkyl radical, a phenyl radical or together with R^3 part of a six-membered ring (for n = 1); or

Z = a linear C_1 to C_{10} alkylene radical or together with R^3 part of a six-membered ring (for n = 2).

3. Acrylophosphonic acid according to claim 2, characterized in that the variables of formula (I) have the following meanings independently of each other:

 R^1 = a linear C_1 to C_4 alkylene radical;

 R^2 = hydrogen or a methyl radical;

Y = oxygen;

 $X = CONR^3;$

 R^3 = hydrogen or a linear C_1 to C_5 alkyl radical; and

 $Z = hydrogen or a linear <math>C_1$ to C_6 alkyl radical (for n = 1); or

 $Z = a \ linear C_1 \ to \ C_5 \ alkylene \ radical \ (for \ n = 2).$

- 4. Acrylophosphonic acid according to one of claims 1 to 3, characterized in that the radicals R^1 , R^2 , R^3 and/or Y are unsubstituted.
- 5. Acrylophosphonic acid according to one of claims 1 to 4, characterized in that the radical Z is unsubstituted or is substituted by =0, =S, =NR² or -NR³-CO-C(=CH₂)CH₂-Y-R¹-PO(OH)₂.
- 6. Use of the acrylophosphonic acid according to claims 1 to 5 as a component of an adhesive, of a polymer, of a composite, of a cement, of a molded article and in particular of a dental material.
- 7. Use according to claim 6, characterized in that the dental material is a dental adhesive, a fixing cement or a filling composite.
- 8. Use according to claim 6 or 7, characterized in that the acrylophosphonic acid is present in at least partially polymerized form.
- Dental material, characterized in that it contains an acrylophosphonic acid according to claims 1 to 5.
- 10. Dental material according to claim 9, characterized in that it contains the acrylophosphonic acid in at least partially polymerized form.
- 11. Polymers and copolymers, characterized in that they can be obtained by polymerization or copolymerization of an acrylophosphonic acid according to one of claims 1 to 5.