SENG2011: Assignment 1 - Achilles Sadsad z5208382

Exercise 1:

i.
$$\forall x \exists y P(x, y)$$

False. As there will always be some values of Y that are not always less than X.

ii.
$$\exists y \forall x Q(x, y)$$

False. As when a value of Y is assigned it is not less than or equal to all values of X.

iii.
$$\forall x \forall y (P(x, y) \lor Q(x, y))$$

False. As with all possible values of x and y both P(x,y) and Q(x,y) will always be false.

iv.
$$\exists x R(x)$$

True. As 57 + 42 = 99.

$$\mathbf{v}$$
. $\forall y(\neg S(y))$

True. As $\forall y(S(y))$ is false. Therefore, the negation of $\forall y(S(y))$ is True.

vi.
$$(\exists x S(x)) \land \neg (\forall x R(x))$$

True. As some values of x are greater than 42 AND the negation of $\forall x R(x)$ is true.

vii.
$$\exists y \forall x (S(y) \land Q(x, y))$$

False. $\exists y(S(y))$ is true as there are some values of y that are less than 42. $\exists y \forall x Q(x, y)$ is false as there are some values of y that are not greater than or equal to x.

viii.
$$\forall x \forall y ((R(x) \land S(y)) \Rightarrow Q(x, y))$$

False. $\forall x \forall y (Q(x, y))$ is false therefore the truth value is false.

Exercise 2:

$$((P \Rightarrow (Q \lor R)) \Rightarrow ((\neg Q \lor S) \land \neg S)) [Premise]$$

$$\neg (P \Rightarrow (Q \lor R)) \lor ((\neg Q \lor S) \land \neg S)) [I]$$

$$\neg (P \Rightarrow (Q \lor R)) \lor ((\neg Q \land \neg S) \lor (S \land \neg S)) [j]$$

$$(P \land \neg (Q \lor R)) \lor ((\neg Q \land \neg S) \lor (S \land \neg S)) [m]$$

$$(P \land \neg (Q \lor R)) \lor ((\neg Q \land \neg S) \lor False) [c]$$

$$(P \land \neg (Q \lor R)) \lor (\neg Q \land \neg S) [a]$$

$$\neg (Q \lor R) \lor (\neg Q \land \neg S) [g]$$

$$(\neg Q \lor R) \lor (\neg Q \land \neg S) [i]$$

$$(\neg Q \land \neg P) \lor (\neg S \land \neg Q) [h]$$

$$\neg S \land \neg Q [g]$$

$$\neg Q [f]$$

Exercise 3:

- i. $\{\text{true}\}\ \text{if } x > y \text{ then } m := x \text{ else } m := y; \{(m \ge x) \land (m \ge y)\}$
 - 1. {true $\land x > y$ } $m := x \{(m \ge x) \land (m \ge y)\}$
 - 2. $\{x > y\}$ m := $x \{(m \ge x) \land (m \ge y)\}$ [Precondition Equivalence]
 - 3. $\{x \ge x \land x \ge y\}$ m := $x \{(m \ge x) \land (m \ge y)\}$ [Assignment Rule]
 - 4. {true $\land x > y$ } m := $x \{(m \ge x) \land (m \ge y)\}$ [Logic & Precondition strengthening] $4 \Leftrightarrow 1$

$$\{\text{true } \land \neg(x > y)\}\ M := y \{(m \ge x) \land (m \ge y)\}\$$

- 1. $\{y \ge x \land y \ge y\}$ m := $x \{(m \ge x) \land (m \ge y)\}$ [Assignment Rule]
- 2. $\{y \ge x \land true\} m := x \{(m \ge x) \land (m \ge y)\}$ [Logic]
- 3. $\{\neg(x > y) \land true\} m := x \{(m \ge x) \land (m \ge y)\}$ [Logic]
- 4. {true $\land \neg(x > y)$ } m := x {(m $\ge x$) \land (m $\ge y$)} [Logic] $4 \Leftrightarrow 1$

ii.
$$\{x = 2^n\} x := x * 2; n := n + 1 \{x = 2^n\}$$

- 1. $\{x = 2^n\} x := x * 2; n := n + 1 \{x = 2^n\}$ [Preface]
- 2. $\{x = 2^n\} x := x * 2 \{R1\}$
- 3. $\{R1\}$ n := n + 1 $\{x = 2^n\}$
- 4. $\{x = 2^n\}$ n := n + 1 $\{x = 2^n\}$ [Assignment Rule] on line 2
- 5. $\{x * 2 = 2^n\} x := x * 2 \{x = 2^n\}$ [Assignment Rule] on line 1
- 6. $\{x = 2^n\} x := x * 2 \{x = 2^n\}$ [Precondition strengthening] on line 4
- 7. $\{x = 2^n\} x := x * 2; n := n + 1 \{x = 2^n\}$ [Sequence Rule] $7 \Leftrightarrow 1$
- iii. $\{x = 2^n \land (n \le p)\}$ while n < p do $\{x := x * 2; n := n + 1;\}$ $\{x = 22^p\}$