LEKSIČKA ANALIZA#2

Jezici i prevoditelji

prof. dr. sc. Marjan Sikora

SADRŽAJ:

- ponavljanje
- pretvorba regularnog izraza u deterministički konačni automat

PONAVLJANJE

- želimo napraviti algoritam za leksiranje
- leksiranje treba ulazni niz znakova podijeliti u tokene
- tokeni su definirani regularnim izrazima
- prikazali smo algoritam podjele ulaznog niza znakova u tokene

ALGORITAM DIJELJENJA v3.0

```
na ulazu su znakovi x1...xn
za svaki n <= i <= 1 provjeri
  je li string x1...xi є L(R)
  ako jest
    ustanovi za koji najmanji j vrijedi
    x1...xi є L(Rj)
  ukloni sa ulaza x1...xi</pre>
```

- ovakav kod uzima u obzir:
 - odabir najduljeg tokena
 - prioritete
- greške se rješavaju kroz dodavanje tokena greške

NERIJEŠENI DIO ALGORITMA

```
na ulazu su znakovi x1...xn
za svaki n <= i <= 1 provjeri
  je li string x1...xi є L(R)
  ako jest
    ustanovi za koji najmanji j vrijedi
    x1...xi є L(Rj)
  ukloni sa ulaza x1...xi</pre>
```

- potrebno je još definirati dio algoritma
- kako odrediti je li neki dio niza token?

PREOSTALI DIO ALGORITMA

- potrebno je još definirati dio algoritma
- kako odrediti je li neki dio niza token?

PREOSTALI DIO ALGORITMA

```
/* stanje klasa-znaka */
int Transition[MAXSTATE][MAXSIMBOL];
char currentChar;
                                           /* globalna varijabla - sadrži ulazni znak */
                                           /* vraća idući znak sa ulaza */
char nextChar();
char CharClass(char ch);
                                           /* vraća ulaznu grupu kojoj znak pripada */
char isFinalState(int state);
                                           /* vraća istinu ako je state konačno stanje */
char token(int state);
                                           /* vraća kojem tokenu pripada koje stanje */
int getToken() {
          int state = INITIALSTATE;
          while (currentChar != EOF) {
                     state = Transition[state][CharClass(currentChar)];
                     if (state == ERROR || isFinalState(state))
                                break:
                     currentChar = nextChar();
          }
          if ( isFinalState(state) && currChar == EOF )
                     return(token(state));
                                                                               d
                                                                    stanie
          else
                                                                      Α
                     return(ERROR TOKEN);
                                                                                       greška
                                                                      В
```

konačno

ne

ne

da

da

C

greška

C

7	/	6	7
/	/	U	"

PREOSTALI DIO ALGORITMA

- još ostaje jedan korak
- token je na prethodnom slajdu definiran DKA
- to je **nezgrapno**
- token treba biti definiran regularnim izrazom
- kako pretvoriti regularni izraz u DKA?

PROBLEM

pitanje je kako regularni izraz pretvoriti u DKA, odnosno tablicu stanja?

ako to znamo onda imamo algoritamski riješeno leksiranje!

RI->NKA->DKA

- pretvorba regularnog izraza u DKA se vrši posredno
- posrednik je nederministički konačni automat (NKA)

DKA VS. NKA

prethodno opisani automat naziva se deterministički konačni automat (DKA)

kod DKA automata je uvijek **jednoznačno** određen prijelaz u neko stanje

kada ulazni znak vodi u više različitih stanja imamo nedeterministički konačni automat (NKA)

NKA se **ne može** realizirati pomoću **tablice** prijelaza

NEDETERMINISTIČKI KONAČNI AUTOMAT

 kod DKA određeni simbol na ulazu uvijek uzrokuje prijelaz u samo jedno određeno stanje:

 kod NKA određeni simbol na ulazu može uzrokovati prijelaz u više stanja

NEDETERMINISTIČKI KONAČNI AUTOMAT

 DKA ne može prijeći u drugo stanje bez da sa ulaza konzumira jedan simbol:

 NKA može prijeći u drugo stanje bez da konzumira simbol sa ulaza:

NEDETERMINISTIČKI KONAČNI AUTOMAT

- mane NKA:
 - ne može se realizirati pomoću tablice prijelaza
 - sporiji je u implementaciji (kod DKA je sve pravocrtno)
- prednosti:
 - NKA je manji (eksponencijalno) od DKA
- DKA/NKA predstavljaju kompromis vrijeme/prostor
- NKA ćemo koristiti kao prijelaznu fazu u pretvaranju regularnih izraza u DKA

RI->NKA->DKA

- pretvorba svakog pojedinačnog regularnog izraza u ekvivalentne NKA
- 2. spajanje pojedinačnih automata u jedan NKA
- 3. pretvorba NKA u DKA
- stvaranje tablice prijelaza iz DKA (obično se dobiju velike tablice, s puno stanja)
- 5. minimiziranje broja stanja i prijelaza
- ostalo je samo umetnuti tablicu u prethodno definirani algoritam

KONSTRUKCIJA LEKSIČKOG ANALIZATORA IZ SPECIFIKACIJE

• • •

- 4. nakon šta imamo **jedan DKA** vrši se **izgradnja tablice** prijelaza (obično se dobiju **velike tablice**, s puno stanja)
- 5. minimiziranje broja stanja i prijelaza

- ovime je izgradnje leksičkog analizatora je završena
- ostalo je samo umetnuti tablicu u prethodno definirani program koji simulira rad konačnog automata

KONSTRUKCIJA NKA IZ REGULARNIH IZRAZA

- svaki regularni izraz sastoji se od više temeljnih regularnih izraza
- oni se potom kombiniraju u nove, složenije regularne izraze
- najprije se iz regularnih izraza u automate pretvaraju temeljni regularni izrazi: a i ε
- zatim se oni kombiniraju, pretvarajući u automate:
 - dopune ab, alternative a | b i ponavljanja a* i a+
- na taj način može se formirati NKA za kompleksne regularne izraze

KONSTRUKCIJA AUTOMATA IZ TEMELJNIH REGULARNIH IZRAZA

regularni izraz	ekvivalentni DKA
a	O a ►
3	$\bigcirc \epsilon \bigcirc$
a+	a a
a*	a
a b	a b b
a b	b a

složeni izrazi se transformiraju dodavanjem ε-prijelaza

KONSTRUKCIJA NKA IZ REGULARNIH IZRAZA – PRIMJER #2

proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

d+(
$$\epsilon$$
|.)

 w
 d
 x
 x
 ϵ
 Y

proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

• proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

potom se povezuju zasebna automata (d+(ε|.)) i (d*.d+)

proces izgradnje automata za slijedeći regularni izraz:

$$(d+(\epsilon|.)) | (d*.d+)$$

potom se povezuju zasebna automata (d+(ε|.)) i (d*.d+)

PRETVORBA NKA U DKA

u prethodnom primjeru konstruirali smo konačni automat iz **regularnog izraza**

kao rezultat dobili smo **NKA**, jer sadrži ε-prijelaze

tablica prijelaza za konačni automat, može se definirati samo za DKA

nužno je **pretvoriti** NKA u DKA

tek tada će se moći **programski realizirati** konačni automat pomoću tablice prijelaza

DKA I TABLICA PRIJELAZA

- kod DKA svakom prijelazu odgovara samo jedno stanje
- tu činjenicu u tablici prijelaza opisujemo s parom (stanje, simbol)

```
DKA (w)^{d} (x) (x
```

- tablica DKA sadrži odredišno stanje
- ono je pohranjeno pod dva indeksa izvornim stanjem i simbolom koji uzrokuje prijelaz

```
prijelaz[izvorno stanje, simbol] = odredišno stanje
```

NKA – PROBLEM S TABLICOM PRIJELAZA

DKA

- kod NKA nekom prijelazu pripada više stanja
- problem jer se u tablici parom (stanje, simbol) može pohraniti samo jedno stanje

NKA


```
prijelaz[W, d] = X
prijelaz[W, d] = Y
prijelaz[X, .] = Y
```

NKA SADRŽI SKUPOVE STANJA

- rješenje je da se tablica prijelaza preuredi
- kod NKA nekom prijelazu pripada više stanja
- NKA tablica prijelaza umjesto jednog stanja treba sadržavati skupove stanja


```
prijelaz[W, d] = X
prijelaz[W, d] = Y
prijelaz[X, .] = Y
```

NKA JE DKA KOJI SADRŽI SKUPOVE STANJA

- dakle tablica NKA se preradi tako da sadrži skupove stanja umjesto pojedinačnih stanja
- na taj način ovo postaje DKA


```
prijelaz[W, d] = X
prijelaz[W, d] = Y
prijelaz[X, .] = Y
```

```
prijelaz[{W}, d] = {X,Y}
prijelaz[{X}, .] = {Y}
```

PRETVOBA NKA U DKA

- pretvorba NKA u DKA se provodi pomoću algoritma konstrukcija podskupa (eng. subset construction)
- njime se dobije DKA koji kao stanja ima podskupove stanja NKA
- autori algoritma su Aho, Sethi i Ullman

PRETVOBA NKA U DKA

- prije samog algoritma uvesti ćemo neke operacije i oznake za NKA:
 - neka s predstavlja stanje NKA
 - T skup stanja NKA
- primjerice:
 - s = Wilis = X
 - $T = \{W\} \text{ ili } T = \{X, Y\}$

OPERACIJE PRETVOBE NKA U DKA

- uvesti ćemo tri operacije
- ove operacije rezultiraju skupovima stanja NKA

```
\varepsilon-closure(s) = {s} \cup {T}

\varepsilon-closure(T) = \cup \varepsilon-closure(s)

move(T, a)
```

OPERACIJE PRETVOBE NKA U DKA – OPERACIJA #1

```
\varepsilon-closure(s) = {s} \cup {T}
gdje je s spojen s T pomoću \varepsilon-prijelaza
```

- ova operacija daje skup NKA stanja, u koja se može doći iz stanja
 s koristeći ε-prijelaze
- ovu operaciju prevodimo kao epsilon-obuhvat
- primjerice :

```
\varepsilon-closure(X) = {X, Y}
\varepsilon-closure(W) = {W}
```


OPERACIJE PRETVOBE NKA U DKA – OPERACIJA #2

$$\epsilon$$
-closure (T) = \cup ϵ -closure (s) za sva stanja s \in T

- operacija koja daje skup NKA stanja, u koja se može doći iz svih stanja s ∈ T koristeći ε-prijelaze
- ε-closure(T) uključuje i T
- primjerice:

```
ε-closure(X) = {X, Y}
ε-closure(W) = {W}
ε-closure({W,X}) = {W, X, Y}
```


OPERACIJE PRETVOBE NKA U DKA – OPERACIJA #3

- operacija koja daje skup NKA stanja, u koja se može doći ako:
 - automat se nalazi u jednom od stanja s ∈ T
 - trenutni ulazni simbol je a
- primjerice :

```
move({W}, d) = {X, Y}
move({W}, .) = {}
move({W,X}, .) = {Y}
```


algoritam kao ulaz prima NKA

NKA je **definiran** skupom stanja i prijelaza

s_o je **početno stanje** NKA

algoritam kao izlaz daje DKA

izlazni **DKA** ima **skup stanja i prijelaza**

DKA je **definiran** tablicom prijelaza

DVIJE KARAKTERISTIKE STANJA DKA

stanja DKA tijelom pretvorbe imaju dvije karakteristike: kompletnost i konačnost

svako stanje DKA može biti kompletno ili nekompletno

svako stanje DKA može biti obično ili konačno

DTablica	d	•

izračunaj ε -closure(s_0)

označi ε -closure(s_0) kao nekompletno stanje

ubaci ε -closure(s_0) kao novi red u DTablicu za svako nekompletno stanje T iz DTablice za svaki ulazni simbol a

 $U = \varepsilon$ -closure(move(T, a))

ako U nije element DTablica tada označi U kao nekompletno stanje dodaj U kao novi red u DTablicu

DTablica[T, a] = U

A	, W	,E
---	-----	----

DTablica	d	

A,W,E

izračunaj ε-closure(s₀)

označi ε-closure(s₀) kao nekompletno stanje

ubaci ε-closure(s₀) kao novi red u DTablicu

za svako nekompletno stanje T iz DTablice

za svaki ulazni simbol a

U = ε-closure(move(T, a))

ako U nije element DTablica tada

označi U kao nekompletno stanje

dodaj U kao novi red u DTablicu

DTablica[T, a] = U

označi T kao kompletno stanje

ako T sadrži konačno stanje

označi T kao konačno stanje

DTablica	d	

A,W,E

```
izračunaj ε-closure(s<sub>0</sub>)
označi ε-closure(s<sub>0</sub>) kao nekompletno stanje
ubaci ε-closure(s<sub>0</sub>) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
  za svaki ulazni simbol a
        U = ε-closure(move(T, a))
        ako U nije element DTablica tada
        označi U kao nekompletno stanje
        dodaj U kao novi red u DTablicu
        DTablica[T, a] = U
        označi T kao kompletno stanje
        ako T sadrži konačno stanje
        označi T kao konačno stanje
        označi T kao konačno stanje
```

DTablica	d	
A,W,E		

izračunaj ε -closure(s_0) označi ε -closure(s_0) kao nekompletno stanje ubaci ε -closure(s_0) kao novi red u DTablicu

za svako nekompletno stanje T iz DTablice za svaki ulazni simbol a

 $U = \varepsilon$ -closure(move(T, a))

ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu
DTablica[T, a] = U

označi T kao kompletno stanje ako T sadrži konačno stanje označi T kao konačno stanje A,W,E

DTablica	d	
A,W,E		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
za svaki ulazni simbol a

U = ε-closure(move(T, a))

ako U nije element DTablica tada

označi U kao nekompletno stanje

dodaj U kao novi red u DTablicu

DTablica	d	
A,W,E		
X, E, Y, C		

izračunaj ε -closure(s_0)
označi ε -closure(s_0) kao nekompletno stanje
ubaci ε -closure(s_0) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice

za svaki ulazni simbol a

U = ε-closure(move(T, a))
ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu
DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	
X, E, Y, C		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a
 U = ε-closure(move(T, a))
 ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu

označi T kao kompletno stanje ako T sadrži konačno stanje označi T kao konačno stanje

DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C		
F		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a
 U = ε-closure(move(T, a))
 ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu

označi T kao kompletno stanje ako T sadrži konačno stanje označi T kao konačno stanje

DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C		
F		

izračunaj ε -closure(s_0) označi ε -closure(s_0) kao nekompletno stanje ubaci ε -closure(s_0) kao novi red u DTablicu

označi T kao kompletno stanje ako T sadrži konačno stanje označi T kao konačno stanje

DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C		
F		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a

U = ε-closure(move(T, a))

ako U nije element DTablica tada

označi U kao nekompletno stanje

dodaj U kao novi red u DTablicu

DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C	X, E, Y, C	F,Y,C
F		
F,Y,C		

izračunaj ε -closure(s_0)
označi ε -closure(s_0) kao nekompletno stanje
ubaci ε -closure(s_0) kao novi red u DTablicu

za svako nekompletno stanje T iz DTablice za svaki ulazni simbol a

 $U = \varepsilon$ -closure (move (T, a))

ako U nije element DTablica tada označi U kao nekompletno stanje dodaj U kao novi red u DTablicu

DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C	X, E, Y, C	F,Y,C
F		
F,Y,C		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a

U = ε-closure(move(T, a))

ako U nije element DTablica tada

označi U kao nekompletno stanje

dodaj U kao novi red u DTablicu

DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C	X, E, Y, C	F,Y,C
F	G,C	
F,Y,C		
G,C		

izračunaj ε -closure(s_0)
označi ε -closure(s_0) kao nekompletno stanje
ubaci ε -closure(s_0) kao novi red u DTablicu

za svako nekompletno stanje T iz DTablice za svaki ulazni simbol a

 $U = \varepsilon$ -closure(move(T, a))

ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu
DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C	X, E, Y, C	F,Y,C
F	G,C	
F,Y,C		
G,C		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a

U = ε-closure(move(T, a))
ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu
DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C	X, E, Y, C	F,Y,C
F	G,C	
F,Y,C	G,C	
G,C		

izračunaj ε -closure(s_0)
označi ε -closure(s_0) kao nekompletno stanje
ubaci ε -closure(s_0) kao novi red u DTablicu

za svako nekompletno stanje T iz DTablice za svaki ulazni simbol a

 $U = \varepsilon$ -closure(move(T, a))

ako U nije element DTablica tada
 označi U kao nekompletno stanje
 dodaj U kao novi red u DTablicu
DTablica[T, a] = U

DTablica	d	
A,W,E	X, E, Y, C	F
X, E, Y, C	X, E, Y, C	F,Y,C
F	G,C	
F,Y,C	G,C	
G,C		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a
 U = ε-closure(move(T, a))

DTablica	d	
A,W,E	X,E,Y,C	F
X,E,Y,C	X,E,Y,C	F,Y,C
F	G,C	
F,Y,C	G,C	
G,C	G,C	

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a
 U = ε-closure(move(T, a))

ako U nije element DTablica tada označi U kao nekompletno stanje dodaj U kao novi red u DTablicu

DTablica[T, a] = U

DTablica	d		konačno
A,W,E	X,E,Y,C	F	
X,E,Y,C	X,E,Y,C	F,Y,C	
F	G,C		
F,Y,C	G,C		
G,C	G,C		

izračunaj ε-closure(s₀)
označi ε-closure(s₀) kao nekompletno stanje
ubaci ε-closure(s₀) kao novi red u DTablicu
za svako nekompletno stanje T iz DTablice
 za svaki ulazni simbol a
 U = ε-closure(move(T, a))

ako U nije element DTablica tada označi U kao nekompletno stanje dodaj U kao novi red u DTablicu

DTablica[T, a] = U

DTablica	d	•	konačno
A,W,E	X,E,Y,C	F	ne
X,E,Y,C	X,E,Y,C	F,Y,C	da
F	G,C	greška	ne
F,Y,C	G,C	greška	da
G,C	G,C	greška	da

- na kraju zamijenimo skupove stanja NKA
- staviti ćemo nova imena radi čitkosti

DTablica	d		konačno
R	Т	S	ne
T	T	Ū	da
S	v	greška	ne
Ū	v	greška	da
v	v	greška	da

OPTIMIZACIJA DKA

- NKA koji ima n stanja može rezultirati sa DKA koji ima do 2ⁿ-1
 stanja
- poželjno je izvršiti dodatno optimiranje DKA
- cilj je postići automat sa manje stanja

 ovdje ćemo prikazati Mooreov odnosno Huffman-Mealy algoritam

FORMIRANJE SKUPOVA

- optimizacija se vrši u **nadi** 🙂 da ćemo moći:
 - sva konačna stanja spojiti u jedno stanje
 - sva ostala stanja također spojiti u jedno stanje
- najprije se formiraju dva skupa stanja
- prvi skup neka sadrži sva konačna stanja
- drugi skup neka sadrži sva ne-konačna stanja
- za naš DKA dobivamo dva skupa:

- potom se za svaki skup provjerava konzistentnost
- skup je konzistentan ako sva njegova stanja za isti simbol prelaze u isto stanje

DTablica	d		konačno
R	Т	S	ne
S	v	greška	ne
Т	Т	Ū	da
Ū	V	greška	da
v	V	greška	da

najprije vršimo provjeru za skup [R,S]

[R,S][T,U,V]

- zaključujemo da skup nije konzistentan
- tada se skup [R,S] dijeli na [R] i [S]

DTablica	d		konačno
R	Т	S	ne
S	V	greška	ne
Т	T	υ	da
Ū	V	greška	da
v	V	greška	da

[R][S][T,U,V]

- [R] i [S] više ne moramo provjeravati
- razlog je što je u skupu samo jedno stanje

- provjera se vrši sve dok imamo barem jedan skup sa više od jednog nekonzistentnog stanja
- za prva dva više ne treba provjera

DTablica	d		konačno
R	Т	S	ne
S	V	greška	ne
Т	Т	Ū	da
Ū	V	greška	da
v	V	greška	da

[R][S][T,U,V]

- provjeravamo treći skup [T,U,V]
- nije konzistentan, dijelimo ga

- provjera konzistentnosti se vrši za jedini preostali skup koji sadrži sa više stanja
- provjeravamo skup [U,V]

DTablica	d		konačno
R	Т	S	ne
S	υ	greška	ne
T	T	Ū	da
U	υ	greška	da

[R][S][T][U,V]

- skup [U,V] je konzistentan
- stanja možemo spojiti u jedno
- time je proces završen

OPTIMIZIRANI DKA

- na kraju optimizacije naši skupovi su: [R] [S] [T] [U,V]
- znači možemo ujediniti stanje U i V

DTablica	d	•	konačno
R	T	S	ne
T	Т	Ū	da
S	Ū	greška	ne
Ū	U	greška	da