

Physics Is Great, But Where Do I Go Next?

Graduate Programs in Physics

Sanha Cheong

sanha@stanford.edu

Physics Department Stanford University

July 24, 2018

Your Options with a Physics Degree

"Verifying his bank account balance, the grad student is worthless."

After you graduate, you could...

- ► Join the workforce ⇒ \$\$\$
- Master's, professional degrees (JD, MD, etc.)

- "Enrichment"
- ► PhD in physics, applied physics, astronomy

Typical Choices Old, but still representative statistics

PhD is a quite common choice, though definitely not the majority

- Doctor of Philosophy
- Undergrad:
 learning old knowledge
 PhD: discovering new
 knowledge, original contribution
- Focus on research,
 NOT coursework
- ► Solve problems that nobody has solved before

WHEN IT'S BETTER TO CALL YOURSELF A ...

"STUDENT"	"RESEARCHER
/	X
/	×
/	×
×	/
×	✓
×	/
×	X
	X X X X X

WWW. PHDCOMICS. COM

Goals and Rewards Why PhD? What do I gain?

PhD program exists 'primarily' to train scientists. *However*, training as a scientist means much more than what you think!

- Generalizable physical principles
- Mathematical modeling, statistical analyses
- Critical thinking abilities
- Programming skills
- ► Team project experiences
- Technical writing/speaking

Typical Requirements & Timeline

What you actually do during your PhD

- ► Coursework: 1–2 years, ~4 cores + some electives
- Rotation & Seminar: broaden experience & decide specialty
- Qual./Candidacy: final "test" before full-time research
- ▶ Full-time Research: research on your topic of interest
- ▶ Thesis Defense: write and defend your thesis

These vary from school to school!

Financial Aid in PhD Programs Don't pay for it!

First-Year Physics Graduate Students

2009-2010 Survey

You are expected to be *fully supported* during your PhD, but stipend is *not much*

- Varies broadly
- Based on rent and other living costs
- Theorists: tougher
- Fellowships help!

Usually enough for living, but *really not* that much

After Your PhD

This is far far away, but still...

Type of Employment of Physics PhDs by Employment Sector One Year After Degree, Classes of 2013 & 2014 Combined

One rear After Degree, Classes of 2013 & 2014 Combined					
Initial Employment Type					
Sector of Employment	Postdoc %	Potentially Permanent %	Other Temporary %	Overall %	
Academic*	75	20	71	52	
Private	1	70	18	31	
Government	21	8	3	14	
Other	3	2	8	3	
	100%	100%	100%	100%	

- Academia: difficult
- ► High private-sector salaries (median ~\$100k)

- ▶ Tenure: even harder (\sim 10%)
- Very broad range

Eventually, majority ends up in private sector, NOT academia. However, there are a range of opportunities after physics PhD.

Is PhD for Me? Am I for PhD?

PhD sounds great, but 5+ years commitment of extremely hard work is obviously *not for everyone*.

Some questions to ponder upon:

- ▶ Do I *really* love physics and/or astronomy? (Are you enjoying the summer so far?) What else do I enjoy?
 - Which sub-fields? ONLY one? (might be a bad sign)
- ► Am I going to be *good* at this? (research, self-motivated work, time management, etc.)
- ▶ Am I okay being 'not so rich' for a while? Financial concerns?

Talking to current grad students should help!

PhD! I Choose You!

If you eventually choose physics/astronomy/AP PhD...

- ▶ Are you *sure*? This isn't going to be easy...
- ▶ If you are, welcome! It will be *hard*, *but rewarding* 5+ years!

... but admissions sound difficult, so

How should I prepare???

Where? Whom?

What does applying to a graduate program even mean?

- U.S. PhD programs: apply to the *department*, not individual faculty members
- At least a couple to work with from each program
 - Young, active professors
 - This requires extensive research!

	Deadine			
	Dec. 15th, 2016	Cora Dvorkin	data-driven cosm., BICEP/Keck	
Harvard (Physics)		Masahiro Morii	ATLAS, electro-weak, cosm.	
rsalvaru (riijoics)		John Huth	ATLAS, electro-weak, cosm.	
		Roxanne Guenette	neutrino, MicroBooNE, DUNE	
	Dec. 15th, 2016	Daniel Eisenstein	cosm., BAO, SDSS	
ervard (Astronomy)		John Kovac	cosm., CMB, BICEP/Keck	
		Lars Hernquist	cosm., galaxy simulation	
	Dec. 15th, 2016	Edward Blucher	SNO+, DUNE, CP violation, m-am	
		David Schmitz	nu mixing, CP violation	
		Young-Kee Kim	ATLAS, top quark, W	
		David Miller	ATLAS, SUSY, Jobs	
		Joshua Frieman (AST)	cosm., SDSS, DE	
U. Chicago		LianTao Wang	particle phenomenology, BSM	
		Nickolay Gnedin (AST)	numerical cosm. & GR sim.	
		Wayne Hu (AST)	CMB, phenom., cosm., galaxy cluster	
		Scott Dodelson (AST)	cosm., inflation, DE, CMB, SDSS, DES	
		Avigal Vieregg	cosm., astro-particle, BICEP/Keck, GNO	
		John Carlstrom	cosm., CMB, SZ	
	Dec. 13th, 2016	Ariel Schwartzman (SLAC)	ATLAS, jots	
		Giorgio Gratta	EXO-200, gravity at microns, Majorana	
		Lauren Tompkins	ATLAS, Higgs	
Stanford		Leonardo Senatore	Inflation, cosm. Data & theory, large-scale	
ocamor0		Steven Allen	XOC, LSST, gal. clustering	
		Patricia Burchat	LSST, DE, KIPAC, CP violation	
		Risa Wechsler	cosmology, galaxy formation, simulations	
		Chao-Lin Kuo	CMB, BICEP/Keck	

My list when I applied

When?

It is *never too early* to start thinking about the whole process.

No need to panic, but keep it in your mind.

Timeline (assuming you're a rising senior)

- ► Summer: make a rough *list of programs to apply to*
 - Which subfield? Interesting Advisers? Location? Stipend?
 - Talking to professors can help
- Early- or mid-Sep: applications open
- ► Early- or mid-Dec: *deadlines*
- Early-Jan to mid-Apr: admission results
- ► Apr. 15th: your *final decision*!

Application Requirements

"Requirements" (vary among programs, some optional)

- ► (Un-) Official Transcript
- Research & Others (CV)
- ▶ GRE (General + Physics)

- Recommendation Letters (3)
- Statement of Purpose
- Other Basic Legal Info.

Sounds like a long list?

Yes, it is!

which means that the application requires a lot of preparation.

Expect and plan to spend a *significant* amount of time your junior summer & senior fall.

Resources to Help You Prepare

PhD admissions isn't easy, but there are resources to help!

- Supplementary slides to this presentation
- Current grad students (don't be afraid to come talk to me!)
- Professors
- GradSchoolShopper.com
- PathwaysToScience.org
- PhysicsGRE.com
- APS Careers

and more!

Summary

PhD will be *difficult*, *but rewarding*. Your future is *not limited* to academia (in fact, mostly government, private sector, etc.).

If you do choose to go to grad school...

- ▶ It will not be easy
- ▶ Start thinking about it early, prepare in advance

But don't panic! There are resources to help you.

- ► This presentation
- Example SOP, CV
- Professors

- ► Alumni
- ► Current grad students
- Online resources

THANK YOU!

(and don't be scared to talk to me more!)

Supplementary Slides

Official Transcript

Three CRUCIAL points

- 1. It is your complete transcript, NOT just GPA
 - Which courses you take matters
 - Major v.s. non-major
- 2. Transcript sums up your academic life
 - Somewhat reflects critical thinking abilities, overall diligence, work ethic, etc.
- 3. Coursework is the 'easy' part; grad school is about research
 - ► Many applicants have great GPA's
 - GPA does NOT measure your ability as a scientist
 - 4.0 guarantees nothing. Don't panic.

(only kind of true)

(don't be that person)

Recommendation Letters

Personally, I couldn't emphasize this enough:

Letters can be game changers or deal breakers

Why do letters matter?

- ▶ People *disagree* on what traits make a good scientist, and it is difficult to measure those traits.
- ► Naturally, this becomes *subjective*.
- ▶ Then, words from *someone you trust* matter.

What should be on your letter?

- Research Potential
- ► Independence

- Communication Skills
- ► Work ethic

CV: Research and Other Experiences

Research is probably the most important, but also the most difficult.

- ► Few undergrads come with significant results / publications
 - Push for a paper submission if you can
 - Don't panic if you don't have publications
- Show your potential: letters and SOP
- Presentations & posters: APS/AAS meetings, on-campus symposiums, etc.
- ▶ Not necessarily in the subfield you apply for; anything helps

The best way to sum up everything: Curriculum Vitae

- ► Look at examples & templates (use LATEX, please)
- ► Get in the habit of updating it regularly

Statement of Purpose / Personal Statement

This is a rare chance to show your *personal aspects*; use it wisely to your advantage! Some key questions to ask yourself are:

- Why physics/astronomy? Why PhD? Career goals?
 - Avoid clichés: "Looking up in the night sky, I dreamed of..."
 - Professional & mature
- ▶ What background/preparations? Why you? Why that school?
- Which subfield and why? Potential advisers / groups?
 - Not an official commitment
 - Okay to be undecided, but explain
 - Undecided but open \neq hesitant and lost

Start writing early and expect to *edit multiple times*. Others' perspectives really help, but it is ultimately *yours*.

GRE: Gross Redundant Exam

- 2 GRE's (basically harder SAT's)
 - ► General: V & Q (170), W (6), offered frequently
 - English abilities. Q should be easy.
 - ▶ *Physics*: 990, 100 multiple choices, 170 mins, Apr, Sep, Oct
 - All undergrad. Not much new, but hard to recall everything
 - Bad predictor for success, but important for admissions
 - More important for theorists

They don't matter as much as you might think! (especially for astronomy)

"It doesn't measure what we want, but it measures something."
—Someone from Harvard Physics Admissions Committee