Association Testing with X Chromosome Data An Application To HCHS/SOL

Caitlin McHugh, with Tim Thornton

Department of Biostatistics University of Washington

23 Feb 2015

		Autosomes	X Chromosome
Self, Female		$\frac{1}{2}$	$\frac{1}{2}$
	Self, Male	$\frac{1}{2}$	1
	Mother-Daughter	$\frac{1}{4}$	$\frac{1}{4}$
	Mother-Son, Father-Daughter	$\frac{1}{4}$	$\frac{1}{2}$
	Father-Son	$\frac{1}{4}$	0
	Full sisters	$\frac{1}{4}$	$\frac{6}{16}$
	Full brothers	$\frac{1}{4}$	$\frac{1}{2}$
Sister-Brother		$\frac{1}{4}$	$\frac{1}{4}$
	Aunt-Niece	$\frac{1}{8}$	$\frac{3}{16}$
	Aunt-Nephew	18	$\frac{6}{16}$
F	Uncle-Niece	$\frac{1}{8}$	$\frac{1}{8}$
Maternal	Uncle-Nephew	$\frac{1}{8}$	$\frac{1}{4}$
late	Grandma-Granddaughter	$\frac{1}{8}$	$\frac{1}{8}$
\geq	Grandma-Grandson	$\frac{1}{8}$	$\frac{1}{4}$
	Grandpa-Granddaughter	$\frac{1}{8}$	$\frac{1}{4}$
	Grandpa-Grandson	$\frac{1}{8}$	$\frac{1}{2}$
	Aunt-Niece	$\frac{1}{8}$	1 8
	Aunt-Nephew	$\frac{1}{8}$	0
7	Uncle-Niece	1/8	0
Paternal	Uncle-Nephew	$\frac{1}{8}$	0
ate	Grandma-Granddaughter	$\frac{1}{8}$	$\frac{1}{4}$
Ъ	Grandma-Grandson	18	0
	Grandpa-Granddaughter	18	0
	Grandpa-Grandson	1/8	0

2 1
6 3 4 7 5 8
9 10 11 12 13 14 15 16

- ► We estimated PCs in the SOL subjects using 3,600 LD-pruned X chromosome SNPs and PC-AiR.
- ► The unrelated set unrelated.pcair.deg4 of 10,272 samples as defined from the autosomes was set, and only study samples (subj.plink & geno.cntl==0) excluding gengrp6.outliers were projected for a total of 12,747 samples.

▶ We compare these results which use only 3,600 X chromosome SNPs to a pruned set of 4,413 chromosome 20 SNPs.

▶ We examine results which use both 155,196 pruned autosomal and 3,582 pruned X chromosome SNPs together, for a total SNP set of 158,778 SNPs across the genome.

 Φ_X was estimated for all OLGA samples using the following scenarios:

	SNP set	PCA run	EVs used
1	all X chr	-	-
2	all X chr	$autosomes + X \; chr$	1-5
3	all X chr	autosomes	1-5
4	all X chr	X chr	1-2
5	pruned X chr	-	-
6	pruned X chr	$autosomes + X \; chr$	1-5
7	pruned X chr	autosomes	1-5
8	pruned X chr	X chr	1-2
9	pruned autosomal	autosomes	1-5

All settings used the autosomal unrelated set of 10,272 samples and estimated Φ_X for 12,734 study samples posted to dbGaP with no X chromosome anomalies.

Estimate of Φ_X in 10,272 autosomal-unrelated samples unpruned X chr SNPs pruned X chr SNPs

Pruned X chr SNPs, Auto+X PC 1-5 Corr Pruned X chr SNPs, X PC 1-2 Corr

- ▶ We calculate PCs using a pruned set of autosomal SNPs.
- We then estimate Φ_X using a pruned set of X chromosome SNPs, correcting for PCs 1-5 on the autosomes {model 7}.
- ▶ Finally, we take the eigendecomposition of Φ_X , after subsetting to unrelated samples.

The eigendecomposition should yield any structure on the X chromosome that wasn't already accounted for in the correction for autosomal PCs 1-5.

- ▶ We calculate PCs using a pruned set of X chromosome SNPs.
- ▶ We then estimate Φ_X using a pruned set of X chromosome SNPs, correcting for PCs 1-2 on the X chromosome {model 8}¹.
- ▶ Finally, we take the eigendecomposition of Φ_X , after subsetting to unrelated samples.

The eigendecomposition should yield any structure on the X chromosome that wasn't already accounted for in the correction for X chromosome PCs 1-2.

¹unrelated kinship threshold of 0.2

