Ejercicio ruta de datos multiciclo

Nos piden incluir tres nuevas instrucciones en el procesador MIPS multiciclo de la última clase de teoría (ALU y memoria unificadas). Para cada caso debemos indicar:

- Modificaciones en la ruta de datos si son necesarias (por ejemplo incluyendo un nuevo multiplexor o un doble puerto de escritura en BR)
- Acciones RTL (transferencia entre registros)
- Valor de las señales de control en cada ciclo. Basta con especificar aquellas cuyo valor sea relevante.
- Camino crítico y tiempo de ciclo
- Tiempo de ejecución (Tex) suponiendo que el programa de referencia se compone de un 10% sw, 20% lw, 50% aluops, 8% beq tomados, 2% no tomados, 5% JAL, 5% RET
 - Tex = Ciclos totales x Tc
 - Hint: Ciclos totales = ∑ ciclos_instruccion_tipo_i x coef_unitario_instr_tipo_i
 - Ej: Si sw tarda 4 ciclos, contribuye con 4*0.1
- **Delays:** registros: tsup = td = 1 ps. RF: 10 ps. ALU+4: 2ps. Mux2-1= Mux2-1ctrl = Mux4-1ctrl = 2 ps. Mux4-1 = 3 ps. Memoria: tsup 2 ps; td = 20 ps. ALU = 10 ps. UC Moore: FT: 4ps. FS: 4 ps. Status register: ts = td = 1 ps

Caso 1: lw, (rs, LSR inm₀₋₁) Load indirecto con post-incremento

Este lw accede a la dirección indicada por Rs, y después actualiza Rs para que señale a la siguiente dirección:

```
Lw rt, [rs]#inm:

BR(rt) ← Mem(BR(rs));

BR(rs) ←BR(rs) + SignExt(inm<sub>16</sub>);

PC ← PC + 4;

Caso 2: jal rt, imm16 (format I)

BR(rt) ← PC + 4;

PC ← PC + 4 + 4*SignExt(inmed16);

Caso 3:ret rs (format I)

PC ← BR(rs);
```

Metodología

- Repasar /estudiar la ruta completa adjunta, vista más o menos completa en clase.
 Adjuntamos abajo las acciones RTL
 - Anotar los valores de las señales de control necesarias para cada etapa de cada instrucción
- 2. Detallar qué acciones RTL tengo que llevar a cabo en cada etapa para las nuevas instrucciones que se piden en este problema
- 3. Ir a la ruta de datos y ver qué buses, muxes y señales de control debo añadir para poder realizar las nuevas acciones.
- 4. Ajustar las acciones a las etapas de la instrucción e indicar las señales de control necesarias.

RTL ruta multiciclo

BR(rt) <- MDR

add rd, rs, rt		sw rt, imm(rs)	
<u>Fetch</u>		<u>Fetch</u>	ID < M/DC)
	IR<- M(PC)		IR<- M(PC) PC <- PC+4
PC <- PC+4 <u>Decode</u>		<u>Decode</u>	
	A<-BR(rs)	-	B<-BR(rt)
	B<-BR(rt)	<u>Executi</u>	<u>on</u> ALUout <- A + sex(imm)
<u>Executi</u>	<u>on</u> ALUout <- A + B	Memor	
Memor			M(ALUout) <- B
		<u>Write</u>	
<u>Write</u>	224 11 2442		
	DD/rd\ / AllI/\u+		
	BR(rd) <- ALUOut	beq r	s rt imm
lw rt,	imm(rs)	beq rs	s rt imm
lw rt,		-	IR<- M(PC)
		<u>Fetch</u>	IR<- M(PC) PC <- PC+4
<u>Fetch</u>	imm(rs) IR<- M(PC) PC <- PC+4	-	IR<- M(PC) PC <- PC+4
	imm(rs) IR<- M(PC) PC <- PC+4	<u>Fetch</u>	IR<- M(PC) PC <- PC+4
<u>Fetch</u>	imm(rs) IR<- M(PC) PC <- PC+4 A<-BR(rs)	<u>Fetch</u>	IR<- M(PC) PC <- PC+4 A<-BR(rs) B<-BR(rt) on
<u>Fetch</u>	imm(rs) IR<- M(PC) PC <- PC+4 A<-BR(rs)	<u>Petch</u> <u>Decode</u> <u>Executi</u>	IR<- M(PC) PC <- PC+4 A<-BR(rs) B<-BR(rt) on Z <- A -B
<u>Fetch</u>	imm(rs) IR<- M(PC) PC <- PC+4 A<-BR(rs) on ALUout <- A + sex(imm)	Fetch Decode	IR<- M(PC) PC <- PC+4 A<-BR(rs) B<-BR(rt) on Z <- A -B
<u>Petch</u> <u>Decode</u> <u>Executi</u>	imm(rs) IR<- M(PC) PC <- PC+4 A<-BR(rs) on ALUout <- A + sex(imm)	<u>Petch</u> <u>Decode</u> <u>Executi</u>	IR<- M(PC) PC <- PC+4 A<-BR(rs) B<-BR(rt) on Z <- A -B

