5.105. Молярная энергия, необходимая для ионизации атомов калия, $W_i = 418,68 \text{ кДж/моль}$. При какой температуре T газа 10% всех молекул имеют молярную кинетическую энергию поступательного движения, превышающую энергию W_i ?

Решение:

Наиболее вероятная кинетическая энергия молекул $W_{\rm B} = \frac{mv_{\rm B}^2}{2} = \frac{m \cdot 2}{2} \frac{RT}{\mu} = \frac{mRT}{\mu} = vRT = RT, \text{ т. к. по условию рассматривается молярная энергия, т. е. } v = 1. Отношение <math display="block">\frac{W_i}{W_{\rm B}} = \frac{mv^2}{2} \frac{2}{mv_{\rm B}^2} = \frac{v^2}{v_{\rm B}^2} = u^2, \text{ где } u \text{ — относительная скорость.}$ По таблице 11 u = 1.5, $\frac{N_x}{N} = 0.231$; u = 2, $\frac{N_x}{N} = 0.046$. В

N нашем случае $\frac{N_{i}}{N} = 0,1$, тогда из графика $u \approx 1,79$ и

 $\dot{u}^2 \approx 3.2$. Значит, $\frac{W_i}{W_{_{\rm B}}} = 3.2$, отсюда $W_i = 3.2 W_{_{\rm B}} = 3.2 RT$.

Следовательно, $T = \frac{W_i}{3.2R}$; $T = 1.57 \cdot 10^4$ K.

5.106. Обсерватория расположена на высоте $h = 3250\,\mathrm{m}$ над уровнем моря. Найти давление воздуха на этой высоте. Температуру воздуха считать постоянной и равной $t = 5^{\circ}$ С. Молярная масса воздуха $\mu = 0.029\,\mathrm{kr/monb}$. Давление воздуха на уровне моря $p_0 = 101.3\,\mathrm{kHa}$.

Решение:

Закон убывания давления газа с высотой в поле силы тяжести дает барометрическая формула: $p = p_0 \exp\left(-\frac{\mu g h}{RT}\right)$. **Подставив** числовые данные, получим $p = 67.2 \text{ к}\Pi a$.

5.107. На какой высоте h давление воздуха составляет 75% от давления на уровне моря? Температуру воздуха считать постоянной и равной t = 0° C.

Решение:

Закон убывания давления газа с высотой в поле силы тяжести дает барометрическая формула: $p = p_0 \exp\left(-\frac{\mu g h}{RT}\right)$, откуда $\frac{p}{p_0} = \exp\left(-\frac{\mu g h}{RT}\right)$. Логарифмируя обе части уравнения, получим $\ln\frac{p}{p_0} = -\frac{\mu g h}{RT}$, откуда $h = -\frac{RT \ln p/p_0}{\mu g} = -\frac{8,31\cdot273\cdot(-0,29)}{0.029\cdot9.8}$; $h = 2296\,\mathrm{M}$.

5.108. Пассажирский самолет совершает полеты на высоте $h_1 = 8300$ м. Чтобы не снабжать пассажиров кислородными масками, в кабине при помощи компрессора поддерживается постоянное давление, соответствующее высоте $h_2 = 2700$ м. Найти разность давлений внутри и снаружи кабины. Температуру наружного воздуха считать равной $t_1 = 0$ ° С.

Решение:

Согласно барометрической формуле $p = p_0 \exp\left(-\frac{\mu g h}{RT}\right)$, где $p_0 = 10^5\, \Pi a$ — давление на уровне моря. Молярная масса воздуха $\mu = 29\cdot 10^{-3}\, {\rm кг/моль}$. Тогда $p_1 = p_0 \exp\left(-\frac{\mu g h_1}{RT_1}\right)$; $p_1 = 35,3\, {\rm к}\Pi a$. Температура воздуха в кабине соответствует давлению на высоте $h_2 = 2700\, {\rm m}$, т. е. $T_2 = 273\, {\rm K}$, тогда 254

$$p_2=p_0\exp\!\left(-rac{\mu gh}{RT_2}
ight);\;\;p_2=71,3\;$$
кПа. Отсюда $\Delta p=p_2-p_1$; $\Delta p=36\;$ кПа.

5.109. Найти в предыдущей задаче, во сколько раз плотность ρ_2 воздуха в кабине больше плотности ρ_1 воздуха вне ее, если температура наружного воздуха $t_1 = -20^{\circ}$ C, а температура воздуха в кабине $t_2 = +20^{\circ}$ C.

Решение:

Согласно барометрической формуле
$$p = p_0 \exp\left(-\frac{\mu g h_1}{RT_1}\right)$$
.

Из уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$

имеем
$$\rho = \frac{p\mu}{RT}$$
. Тогда отношение плотностей
$$\frac{\rho_2}{\rho_1} = \frac{p_2 T_1}{p_1 T_2} = \frac{0.713 \cdot 253}{0.353 \cdot 293} = 1.7 \, .$$

5.110. Найти плотность ρ воздуха: а) у поверхности Земли; б) на высоте h=4 км от поверхности Земли. Температуру воздуха считать постоянной и равной $t=0^{\circ}$ С. Давление воздуха у поверхности Земли $p_0=100$ кПа.

Решение:

а) Из уравнения Менделеева — Клапейрона (см. задачу 5.109) $\rho_1 = \frac{p_0 \mu}{RT_1}$; $\rho_1 = 1,278 \text{ кг/м}^3$. б) На высоте $h_2 = 4 \text{ км}$

плотность воздуха $\rho_2 = \frac{p_2 \mu}{RT_2}$. Для нахождения p_2 восполь-

зуемся барометрической формулой
$$p_2 = p_0 \exp\left(-\frac{\mu g h_2}{RT_2}\right)$$
. Тогда $\rho_2 = \frac{p_0 \mu}{RT_2} \exp\left(-\frac{\mu g h_2}{RT_2}\right)$; $\rho_2 = 0.774 \ \text{кг/м}^3$.

5.111. На какой высоте h плотность газа вдвое меньше его плотности на уровне моря? Температуру газа считать постоянной и равной t = 0° C. Задачу решить для: а) воздуха, б) водорода.

Решение:

256

Плотности газа на уровне моря и на высоте h соответственно равны: $\rho_1 = \frac{p_0 \mu}{RT}$ и $\rho_2 = \frac{p_0 \mu}{RT} \exp\left(-\frac{\mu g h}{RT}\right)$ (см. задачи 5.109 и 5.110). По условию $\frac{\rho_1}{\rho_2} = 2$, тогда $\frac{1}{exp(-\mu g h/RT)} = 2$ или $exp\left(\frac{\mu g h}{RT}\right) = 2$. Прологарифмируем полученное выражение: $\frac{\mu g h}{RT} = \ln 2$, отсюда $h = \frac{RT}{\mu g} \ln 2$. а) Для воздуха $\mu = 29 \cdot 10^{-3}$ кг/моль; h = 5,53 км. б) Для водорода $\mu = 2 \cdot 10^{-3}$ кг/моль; h = 80,23 км.

5.112. Перрен, наблюдая при помощи микроскопа изменение концентрации взвешенных частиц гуммигута с изменением высоты и применяя барометрическую формулу, экспериментально нашел значение постоянной Авогадро $N_{\rm A}$. В одном из опытов Перрен нашел, что при расстоянии между двумя слоями $\Delta h = 100$ мкм число взвешенных частиц гуммигута в одном слое

вдвое больше, чем в другом. Температура гуммигута $t = 20^{\circ}$ С. **Ч**астицы гуммигута диаметром $\sigma = 0.3$ мкм были взвешены в жидкости, плотность которой на $\Delta \rho = 0.2 \cdot 10^3 \, \text{kr/m}^3$ меньше плотности частиц. Найти по этим данным значение постоянной Авогадро $N_{\rm A}$.

Решение:

Запишем барометрическую формулу: $p = p_0 \exp\left(-\frac{\mu gh}{RT}\right)$.

Число частиц в единице объема $n = \frac{p}{kT}$, откуда p = nkTПодставляя последнее выражение в барометрическую формулу, получим $n_1 = n_0 \exp\left(-\frac{\mu g h_1}{RT}\right); \quad n_2 = n_0 \exp\left(-\frac{\mu g h_2}{RT}\right),$

отсюда, $\frac{n_1}{n} = exp\left(\frac{\mu g\Delta h}{RT}\right)$. Прологарифмировав данное вы-

ражение, с учетом $\mu = N_A m$, получим $ln \frac{n_1}{n_2} = \frac{N_A mg \Delta h}{RT}$, откуда, с учетом закона Архимеда, получим $N_{\rm A} = \frac{RT \cdot \ln(n_1/n_2)}{\sigma V \Lambda \rho \Lambda h}$; $N_{\rm A} = 6.1 \cdot 10^{23} \, {\rm моль}^{-1}$.

$$N_{A} = \frac{RT \cdot \ln(n_{1}/n_{2})}{gV\Delta\rho\Delta h}$$
; $N_{A} = 6.1 \cdot 10^{23} \,\text{моль}^{-1}$

5.113. Найти среднюю длину свободного пробега λ молекул углекислого газа при температуре $t = 100^{\circ} \, \text{C}$ и давлении p = 13,3 Па. Диаметр молекул углекислого газа $\sigma = 0,32$ нм.

Решение:

Средняя длина свободного пробега молекул газа $\overline{\lambda} = \frac{v}{z}$,

где $\overline{z} = \sqrt{2}\sigma^2 v \pi n$ — среднее число столкновений каждой молекулы с остальными в единицу времени. Концентрация 9-3268 257

молекул
$$n = \frac{p}{kT}$$
, тогда $\overline{\lambda} = \frac{1}{\sqrt{2}\sigma^2 n\pi} = \frac{kT}{\sqrt{2}\sigma^2 p\pi}$; $\overline{\lambda} = \frac{1,38 \cdot 10^{-23} \cdot 373}{\sqrt{2} \cdot 0,32^2 \cdot 10^{-18} \cdot 13,3 \cdot 3,14} = 850$ мкм.

5.114. При помощи ионизационного манометра, установленного на искусственном спутнике Земли, было обнаружено, что на высоте h=300 км от поверхности Земли концентрация частиц газа в атмосфере $n=10^{15}$ м⁻³. Найти среднюю длину свободного пробега λ частиц газа на этой высоте. Диаметр частиц газа $\sigma=0,2$ нм.

Решение:

Длина свободного пробега молекул газа $\overline{\lambda} = \frac{1}{\sqrt{2}\sigma^2 n\pi}$; $\overline{\lambda} = 5.6$ км.

5.115. Найти среднюю длину свободного пробега $\overline{\lambda}$ молекул воздуха при нормальных условиях. Диаметр молекул воздуха $\sigma = 0.3$ нм.

Решение:

Средняя длина свободного пробега молекулы $\overline{\lambda} = \frac{1}{\sqrt{2\pi\sigma^2 n}} .$ Из основного уравнения молекулярно-кинетической теории имеем p = nkT, отсюда n = p/kT. Тогда $\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2 p}} \; ; \; \overline{\lambda} = 94,2 \; \text{нм}.$

5.116. Найти среднее число столкновений \bar{z} в единицу времени молекул углекислого газа при температуре $t = 100^{\circ}$ С, если средняя длина свободного пробега $\bar{\lambda} = 870$ мкм.

Средняя длина свободного пробега молекул $\overline{\lambda} = \frac{v}{z}$, где

$$\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$$
 — средняя арисметическая скорость молекул.

Тогда
$$z = \frac{\overline{v}}{\overline{\lambda}} = \frac{\sqrt{8RT/\pi\mu}}{\overline{\lambda}}$$
; $z = 4.87 \cdot 10^5 \text{ c}^{-1}$.

5.117. Найти среднее число столкновений \overline{z} в единицу времени молекул азота при давлении p=53,33 кПа и температуре $t=27^{\circ}$ С.

Решение:

из основного уравнения молекулярно-кинетической тео-

$$\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2 p}}$$
 (см. задачу 5.115). С другой стороны, $\overline{\lambda} = \frac{\overline{v}}{z}$.

Приравняем правые части тих уравнений: $\frac{kT}{\sqrt{2\pi\sigma^2}p} = \frac{\overline{v}}{z}$,

тде
$$\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$$
. Следов тельно, $z = \sqrt{\frac{8RT}{\pi\mu}} \frac{\sqrt{2\pi\sigma^2 p}}{kT}$;

5.118. В сосуде объемом V = 0.5 л находится кислород при **морма**льных условиях. Найти общее число столкновений Z между молекулами кислорода в этом объеме за единицу времени.

Решенне:

Общее число столкновений $Z = \frac{\overline{z}n}{2}$ — (1), где среднее

число столкновений каждой молекулы $\bar{z} = \sqrt{2}\sigma^2 n\bar{v}$ — (2).

Концентрация молекул $n = \frac{p}{RT}$ — (3), средняя арифметическая скорость $\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$ — (4). Подставляя уравнения (3) и (4) в (2), а затем полученное уравнение в (1), найдем: $Z = \frac{\sqrt{2}\sigma^2 p^2 \sqrt{8RT}}{2k^2T^2 \sqrt{\pi\mu}} = \frac{2\sigma^2 p^2 \sqrt{RT}}{k^2T^2 \sqrt{\pi\mu}}; Z = 3 \cdot 10^{31}.$

5.119. Во сколько раз уменьшится число столкновений \overline{z} в единицу времени молекул двухатомного газа, если объем газа адиабатически увеличить в 2 раза?

Решение:

Среднее число столкновений молекул в единицу времени $z=\sqrt{\frac{8RT}{\pi\mu}}\,\frac{\sqrt{2}\pi\sigma^2p}{kT}$ (см. задачу 5.117). Т. к. в данной формуле все величины, кроме давления p и температуры T , являются постоянными, то $\frac{z_1}{z_2}=\frac{p_1}{p_2}\,\sqrt{\frac{T_2}{T_1}}$. Из уравнения $\frac{p_1}{p_2}=\left(\frac{V_2}{V_1}\right)^{\gamma}$ и $\frac{T_2}{T_1}=\left(\frac{V_1}{V_2}\right)^{\gamma-1}$, где $\gamma=\frac{c_p}{c_v}$ — показатель адиабаты. Поскольку теплоемкости при постоянном давлении и постоянном объеме равны соответственно $c_p=\frac{i+2}{2}\frac{R}{\mu}$ и $c_v=\frac{i}{2}\frac{R}{\mu}$ и для двухатомного газа число степеней свободы i=5 , то показатель адиабаты $\gamma=\frac{c_p}{c_v}=\frac{i+2}{2}\frac{R}{\mu}\,\frac{2}{i}\frac{\mu}{R}$; $\gamma=1,4$. Тогда $\frac{z_1}{z_2}=\left(\frac{V_2}{V_1}\right)^{\gamma}\sqrt{\left(\frac{V_1}{V_2}\right)^{\gamma-1}}$.

ро условию задачи $\frac{V_2}{V_1} = 2$. Подставляя числовые значения, получим $\frac{z_1}{z_2} = 2,34$.

5.120. Найти среднюю длину свободного пробега $\overline{\lambda}$ молекул взота при давленин p = 10 кПа и температуре t = 17° С.

Решение:

имеем: $\overline{\lambda} = \frac{1}{\sqrt{2\pi\sigma^2}n}$ — (1). Из основного уравнения молекулярно-кинетической теории p = nkT найдем концентрацию $n = \frac{p}{kT}$ и подставим в (1): $\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2}n}$;

5.121. Найти среднюю длину свободного пробега $\overline{\lambda}$ атомов **годия**, если известно, что плотность гелия $\rho = 0.021 \, \mathrm{kr/m}^3$.

Вешение:

 $\overline{\mathbf{A}} = 1 \,\mathrm{MKM}$.

Ереднюю длину свободного пробега молекул можно **выра**зить как $\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2 p}}$ (см. задачу 5.120). Из

равнения Менделеева — Клапейрона $pV = \frac{m}{u}RT$ выра-

тим плотность $\rho = \frac{m}{V} = \frac{p\mu}{RT}$. Отсюда давление $p = \frac{\rho RT}{\mu}$.

Гогда $\overline{\lambda} = \frac{kT\mu}{\sqrt{2\pi\sigma^2\rho RT}} = \frac{\mu}{\sqrt{2\pi\sigma^2\rho N_{\Delta}}}; \ \overline{\lambda} = 1,78 \text{ мкм.}$

5.122. Найти среднюю длину свободного пробега $\overline{\lambda}$ молекул **фодорода** при давлении $p = 0.133\,\mathrm{Ha}$ и температуре $t = 50^{\circ}\,\mathrm{C}$.

Исходя из основного уравнения МКТ и формулы длины свободного пробега молекул, можно получить для $\overline{\lambda}$ следующее выражение (см. задачу 5.120): $\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2p}}$; $\overline{\lambda} = 14.2$ см.

5.123. При некотором давлении и температуре $t = 0^{\circ}$ С средняя длина свободного пробега молекул кислорода $\overline{\lambda} = 95$ нм. Найти среднее число столкновений \overline{z} в единицу времени молекул кислорода, если при той же температуре давление кислорода уменьшить в 100 раз.

Решение:

Среднее число столкновений молекул в единицу времени

$$\begin{split} \overline{z} &= \frac{\overline{v}}{\overline{\lambda_2}} \;, \; \text{ где } \ \overline{v} = \sqrt{\frac{8RT}{\pi\mu}} \;\; \text{и} \;\; \overline{\lambda_2} = \overline{\lambda_1} \frac{p_1}{p_2} \;. \;\; \text{Т. к.} \;\; \frac{p_1}{p_2} = 100 \;, \;\; \text{то} \\ \overline{z} &= \frac{\sqrt{8RT/\pi\mu}}{\overline{\lambda_1} p_1/p_2} \;; \; \overline{z} = 4.5 \cdot 10^7 \; \text{c}^{-1} \;. \end{split}$$

5.124. При некоторых условиях средняя длина свободного пробега молекул газа $\overline{\lambda}=160\,\mathrm{hm}$; средняя арифметическая скорость его молекул $\overline{v}=1,95\,\mathrm{km/c}$. Найти среднее число столкновений \overline{z} в единицу времени молекул этого газа, если при той же температуре давление газа уменьшить в 1,27 раза.

Решение:

По определению, средняя длина свободного пробега молекул $\overline{\lambda} = \frac{\overline{\nu}}{z}$ — (1). С другой стороны (см. задачу 5.120),

$$\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2 p}}$$
 — (2). Т. к. по условию $T = const$, то из (2)

имеем
$$\frac{\overline{\lambda_1}}{\overline{\lambda_2}} = \frac{p_1}{p_2}$$
, отсюда $\overline{\lambda_2} = \frac{p_1}{p_2} \overline{\lambda_1} = 1,27 \overline{\lambda_1}$. Средняя

арифметическая скорость молекул $\overline{v} = \sqrt{\frac{8RT}{\pi \mu}}$, и т. к.

$$T=const$$
, то $\overline{v}_1=\overline{v}_2$. Тогда $z=\frac{\overline{v}_1}{\overline{\lambda}_2}=\frac{\overline{v}_2}{1,27\overline{\lambda}_1}$; $z=9.6\cdot 10^9\,\mathrm{c}^{-1}$.

5.125. В сосуде объем $V = 100 \text{ см}^3$ находится масса m = 0.5 г азота. Найти среднюю длину свободного пробега $\overline{\lambda}$ молекул азота.

Решение:

Средняя длина свободного пробега молекул (см. задачу $\sqrt{120}$) $\sqrt{\lambda} = \frac{kT}{\sqrt{2\pi}\sigma^2 p}$. Из уравнения Менделеева — Кла-

пейрона
$$pV=rac{mRT}{\mu V}$$
, тогда $\overline{\lambda}=rac{k\mu V}{\sqrt{2}\pi\sigma^2mR}$; $\overline{\lambda}=23.2$ нм.

5.126. В сосуде находится углекислый газ, плотность которого $\rho = 1.7 \, \text{кг/м}^3$. Средняя длина свободного пробега его молекул $\overline{\lambda} = 79 \, \text{нм}$. Найти диаметр σ молекул углекислого газа.

Решение:

Средняя длина свободного пробега молекул (см. задачу 5.121) $\bar{\lambda} = \frac{\mu}{\sqrt{2}\pi\sigma^2\rho N_*}$. Молярная масса углекислого газа

$$\mu = \mu_C + 2\mu_0$$
; $\mu = 44 \cdot 10^{-3}$ кг/моль. Из формулы для $\bar{\lambda}$:

$$\sigma = \sqrt{\frac{\mu}{\sqrt{2\pi\rho N_A \overline{\lambda}}}}$$
; $\sigma = 0.35 \text{ HM}.$

5.127. Найти среднее время $\bar{\tau}$ между двумя последовате ными столкновениями молекул азота при давлении $p=133\,\Gamma$ температуре $t=10^{\circ}\,\mathrm{C}$.

Решение:

Имеем
$$\tau = \frac{\lambda}{v}$$
, где $v = \sqrt{\frac{8RT}{\pi\mu}}$ — средняя арифметичес скорость молекул, $\overline{\lambda} = \frac{kT}{\sqrt{2}\sigma^2p\pi}$ — средняя для свободного пробега молекул (см. задачу 5.113). Отсн $\tau = \frac{kT \cdot \sqrt{\pi\mu}}{\sqrt{2}\sigma^2p\pi\sqrt{8RT}} = \frac{k\sqrt{\mu T}}{4\sigma^2p\sqrt{\pi R}}$; $\tau = 1,6\cdot 10^{-7}$ с.

5.128. Сосуд с воздухом откачан до давле $p=1,33\cdot 10^{-4}$ Па. Найти плотность ρ воздуха в сосуде, чи молекул n в единице объема сосуда и среднюю дл: свободного пробега $\overline{\lambda}$ молекул. Диаметр молекул возд $\sigma=0,3$ нм. Молярная масса воздуха $\mu=0,029$ кг/мс Температура воздуха $t=17^{\circ}$ С.

Решение:

Основное уравнение молекулярно-кинетической теор p=nkT. Отсюда концентрация $n=\frac{p}{kT}$; $n=3,32\cdot 10^{16}\,\mathrm{M}$ Средняя длина свободного пробега молекул $\overline{\lambda}=\frac{1}{\sqrt{2\pi\sigma^2}}$ $\overline{\lambda}=75,33\,\mathrm{M}$. Из уравнения Менделеева — Клапейро $pV=\frac{m}{\mu}RT$ плотность $p=\frac{m}{V}=\frac{p\mu}{RT}$; $p=1,6\cdot 10^{-9}\,\mathrm{kr/M}^3$.

5.129. Какое предельное число n молекул газа должно на диться в единице объема сферического сосуда, чтобы молеку не сталкивались друг с другом? Диаметр молекул г $\sigma = 0.3$ нм, диаметр сосуда D = 15 см.

Чтобы молекулы не сталкивались друг с другом, средняя длина свободного пробега должна быть не меньше диаметра данного сосуда. $\overline{\lambda} \ge D \ge \frac{1}{\sqrt{2}\pi\sigma^2 n}$, отсюда $n \le \frac{1}{\sqrt{2}\pi\sigma^2 D} = 1.7 \cdot 10^{19} \,\mathrm{m}^{-3}$.

5.130. Какое давление p надо создать внутри сферического сосуда, чтобы молекулы не сталкивались друг с другом, если диаметр сосуда: а) $D=1\,\mathrm{cm};$ б) $D=10\,\mathrm{cm};$ в) $D=100\,\mathrm{cm}?$ Диаметр молекул газа $\sigma=0.3\,\mathrm{hm}.$

Решение:

Средняя длина свободного пробега молекул (см. задачу 5.120) $\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2p}}$. Чтобы молекулы не сталкивались друг с другом, необходимо, чтобы $x \ge D$. Рассмотрим предельный случай, когда $D = \overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2p}}$, откуда давление $p = \frac{kT}{\sqrt{2\pi\sigma^2D}}$. а) При D = 1 см; p = 942 МПа; б) при D = 10 см; p = 942 МПа.

5.131. Расстояние между катодом и анодом в разрядной трубке $d=15\,\mathrm{cm}$. Какое давление p надо создать в разрядной трубке, чтобы электроны не сталкивались с молекулами воздуха на пути от катода к аноду? Температура воздуха $t=27\,^{\circ}\mathrm{C}$. Диаметр молекул воздуха $\sigma=0.3\,\mathrm{mm}$. Средняя длина свободного пробега электрона в газе приблизительно в 5,7 раза больше средней длины свободного пробега молекул самого газа.

Средняя длина свободного пробега молекул воздуха $\overline{\lambda}_{\text{воз}} = \frac{kT}{\sqrt{2}\pi\sigma^2p}$ (см. задачу 5.120). Чтобы электроны не стакивались с молекулами воздуха, необходимо, чтобы средняя длина свободного пробега электронов была не меньше расстояния между катодом и анодом, т. е. $\overline{\lambda}_{\text{эл}} \geq d$.

По условию
$$\overline{\lambda}_{_{9Л}}=5{,}7\overline{\lambda}_{_{BO3}},$$
 отсюда $d\leq \frac{5{,}7kT}{\sqrt{2}\pi\sigma^2p}$. Тогда давление должно быть $p\leq \frac{5{,}7kT}{\sqrt{2}\pi\sigma^2d}$; $p\leq 394$ мПа.

5.132. В сферической колбе объемом V = 1 л находится азот. При какой плотности ρ азота средняя длина свободного пробега молекул азота больше размеров сосуда?

Решение:

Т. к. колба сферическая, то ее объем $V = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi \times \left(\frac{D}{2}\right)^3 = \frac{\pi D^3}{6}$. Отсюда диаметр колбы $D = \sqrt[3]{\frac{6V}{\pi}}$. Средняя длина свободного пробега молекул (см. задачу 5.121) $\overline{\lambda} = \frac{\mu}{\sqrt{2\pi\sigma^2}\rho N_A}$. По условию $\overline{\lambda} > D$, следовательно, $\sqrt[3]{\frac{6V}{\pi}} < \frac{\mu}{\sqrt{2\pi\sigma^2}\rho N_A}$. Значит, плотность должна быть $\rho < \frac{\mu}{\sqrt{2\pi\sigma^2}N \cdot \sqrt[3]{6V/\pi}}$; $\rho < 9.38 \cdot 10^{-7}\,\mathrm{kr/m}^3$.

5.133. Найти среднее число столкновений \overline{z} в единицу времени молекул некоторого газа, если средняя длина 266

свободного пробега $\overline{\lambda} = 5$ мкм, а средняя квадратичная скорость его молекул $\sqrt{\overline{v}^2} = 500$ м/с.

Решение:

Средняя длина свободного пробега молекул $\overline{\lambda} = \frac{\overline{v}}{z}$. Тогда

среднее число столкновений в единицу времени $z = \frac{\overline{\nu}}{\overline{\lambda}}$.

Поскольку средняя квадратичная скорость молекул

$$\sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{m}} = \sqrt{3}\sqrt{\frac{kT}{m}}$$
, то $\sqrt{\frac{kT}{m}} = \frac{\sqrt{\overline{v^2}}}{\sqrt{3}}$. Средняя арифме-

жическая скорость молекул $\overline{v} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8}{3\pi}} \sqrt{\overline{v^2}}$. Тогда

$$z = \frac{\sqrt{8/3\pi}\sqrt{\overline{v^2}}}{\overline{\lambda}}$$
; $z = 9.21 \cdot 10^7 \text{ cek}^{-1}$.

5.134. Найти коэффициент диффузии D водорода при нормальных условиях, если средняя длина свободного пробега $\overline{\lambda} = 0.16$ мкм.

Решение:

По определению коэффициент диффузии $D = \frac{1}{3} \overline{\nu} \overline{\lambda}$, где

$$\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$$
 — средняя арифметическая скорость молекул.

Гогда коэффициент диффузии водорода при нормальных условиях $D = \frac{1}{3} \sqrt{\frac{8RT}{\pi \mu}}$; $D = 9.06 \cdot 10^{-5} \text{ m}^2/\text{c}$.

5.135. Найти коэффициент диффузии D гелия при нормальных условиях.

Коэффициент диффузии (см. задачу 5.134) $D=\frac{1}{3}\sqrt{\frac{8RT}{\pi\mu}}$. Длина свободного пробега молекул (см. задачу 5.120) $\overline{\lambda}=\frac{kT}{\sqrt{2\pi\sigma^2p}}$. Тогда коэффициент диффузии гелия $D=\frac{1}{3}\sqrt{\frac{8RT}{\pi\mu}}\frac{kT}{\sqrt{2\pi\sigma^2p}}$; $D=8,25\cdot 10^{-5}\,\mathrm{m}^2/\mathrm{c}$.

5.136. Постронть график зависимости коэффициента диффузии D водорода от температуры T в интервале $100 \le T \le 600 \, \mathrm{K}$ через каждые $100 \, \mathrm{K}$ при $p = const = 100 \, \mathrm{kΠa}$.

Решение:

Коэффициент диффузии определяется следующим соотношением $D=\frac{1}{3}\,\overline{\nu}\,\overline{\lambda}$; $D=\frac{1}{3}\,\sqrt{\frac{8RT}{\pi\mu}}\,\frac{kT}{\sqrt{2\pi\sigma^2}p}$. Подставив чис-

ловые данные, получим $D=2\cdot 10^{-10}\,T^{\frac{3}{2}}$. Характер зависимости коэффициента диффузии D от температуры T дан на графике.