Оглавление

1 .Основные команды протокола РОР-3 (получение писем)	2
2. Основные команды протокола SMTP (отправка писем)	3
3. Сетевые стандарты, эталонная модель OSI	4
4. Основные типы данных (MIME-types)	6
5. Формирование и разбор сообщений в соответствии со спецификациями МІМЕ	7
6. Многоцелевые расширения почты МІМЕ	8
7. Пересылка (форвардинг) почтового сообщения	9
8. Заголовки почтовых сообщений	10
9. Структура e-mail сообщения	11
10. Протокол РОРЗ	12
11. Протокол SMTP	13
12. Типы агентов доставки	14
13. Взаимодействие почтового сервера с DNS	15
14. Транспортный агент, агент доставки, пользовательский агент	16
15. Служба имен в Интернет DNS	17
16. База данных домена для публичных адресов.	18
17. Домен, виды доменов	19
18. База данных домена для приватных адресов.	20
19. Делегирование доменных имен. Уровни доменных имен	21
20. Запись почтового сервера в базу данных домена	22
21. Понятие зоны в DNS	23
22. Обратная зона DNS для приватных и публичных адресов.	24
23. Режимы работы DNS Сервера	25
24. Обратная зона DNS. Назначение, основные характеристики	26
25. Прямая зона DNS. Назначение, основные характеристики	27
26. Спецификация параметров в базе данных домена (Serial, Refresh, Retry, Expire, Time To Live)	28
27. Запись SOA в базе данных домена	29
28.URL, URI, URN	30

1 .Основные команды протокола РОР-3 (получение писем)

POP3 (Post Office Protocol version 3) – это протокол для получения электронных писем с сервера. Он работает по принципу "скачал и удалил" (хотя можно настроить оставление писем на сервере).

Команда	Описание	Пример
USER <логин>	Указывает имя пользователя для входа	USER myemail@example.com
PASS <пароль>	Отправляет пароль для аутентификации	PASS mypassword123
STAT	Показывает количество писем и их общий размер	STAT +OK 3 12000 (3 письма, 12 КБ)
LIST [N]	Без аргументов — список всех писем. С числом — размер письма N	LIST 2 +OK 2 3200
RETR <n></n>	Скачивает письмо под номером N	RETR 1 (загружает 1-е письмо)
DELE <n></n>	Помечает письмо N для удаления (удалится после QUIT)	DELE 3
RSET	Снимает все пометки на удаление	RSET
QUIT	Закрывает соединение. Письма с DELE удаляются	QUIT
TOP <n> <строки></n>	Показывает заголовок и первые N строк тела письма	TOP 1 5 (первые 5 строк письма 1)
UIDL [N]	Показывает уникальные ID писем (чтобы избежать повторных загрузок)	UIDL 2 +OK 2 abc123

Важные детали:

- POP3 работает на порту **110** (без шифрования) **995** (SSL/TLS).

^{- 2} режима: онлайн с удалением и офлайн с оставлением копии

2. Основные команды протокола SMTP (отправка писем)

SMTP (Simple Mail Transfer Protocol) — протокол для отправки писем.

Команда	Описание	Пример
HELO <домен>	Приветствие сервера (устаревшее, но поддерживается)	HELO mypc.example.com
EHLO <домен>	Современный аналог HELO с запросом расширений (безопасность типа,TLS, аутентификация)	EHLO mypc.example.com
MAIL FROM: <адрес>	Указывает адрес отправителя	MAIL FROM: sender@example.com
RCPT TO: <адрес>	Указывает адрес получателя (можно несколько раз)	RCPT TO: recipient@example.com
DATA	Начинает передачу текста письма. Заканчивается точкой (.)	DATA (заголовки + тело + .)
QUIT	Завершает сеанс	QUIT
VRFY <адрес>	Проверяет существование почтового ящика (редко разрешён)	VRFY user@example.com
NOOP	"Пустая" команда для поддержания соединения	NOOP 250 OK
RSET	Сбрасывает текущую транзакцию (очищает MAIL FROM и RCPT TO)	RSET
STARTTLS	Переключает соединение на шифрование TLS	STARTTLS

Важные детали:

- SMTP работает на порту **25** (без шифрования)

587 (c TLS)

465 (устаревший SSL).

- В современных серверах часто требуется аутентификация (логин/пароль) даже для SMTP AUTH LOGIN / AUTH PLAIN.

3. Сетевые стандарты, эталонная модель OSI

Эталонная модель OSI (Open Systems Interconnection) — это теоретическая модель, которая описывает, как данные передаются в сети.

Она разделяет процесс передачи на 7 уровней, каждый из которых выполняет свою задачу.

Nº	Уровень	Функции	Примеры протоколов и устройств
7	Прикладной (Application)	Интерфейс для взаимодействия пользователя с сетью (почта, браузеры, FTP).	HTTP, SMTP, POP3, FTP, DNS
6	Представления (Presentation)	Преобразование данных (шифрование, сжатие, кодирование).	SSL/TLS, JPEG, MPEG, ASCII \rightarrow UTF-8
5	Сеансовый (Session)	Управление сеансами связи (установка, поддержка, завершение).	RPC, SIP, NetBIOS
4	Транспортный (Transport)	Гарантированная доставка данных (контроль ошибок, потоковое управление).	TCP (надёжный), UDP (быстрый, но без гарантий)
3	Сетевой (Network)	Маршрутизация пакетов между сетями (определение IP-адресов).	IP, ICMP, OSPF, BGP, маршрутизаторы
2	Канальный (Data Link)	Передача данных между устройствами в одной сети (MAC-адреса, контроль ошибок/целостности данных).	Ethernet, Wi-Fi, PPP, коммутаторы (switch)
1	Физический (Physical)	Передача битов по среде (кабели, радиосигналы, электрические импульсы).	Витая пара, оптоволокно, USB, хаб

Как данные передаются через уровни?

- 1. Отправка данных (инкапсуляция)
 - о Данные (например, письмо в почте) начинаются на **7-м уровне** (прикладном).
 - Каждый уровень добавляет свою заголовок (кроме физического).
 - На **4-м уровне** (TCP/UDP) добавляется порт отправителя и получателя.
 - На 3-м уровне (IP) добавляются IP-адреса.
 - На **2-м уровне** (Ethernet) добавляются МАС-адреса.
 - о На **1-м уровне** данные превращаются в электрические/оптические сигналы.
- 2. Получение данных (декапсуляция)
 - Устройство-получатель проходит уровни в **обратном порядке**, снимая заголовки.

Важные особенности модели OSI

- 1. Разделение ответственности
 - Каждый уровень не знает, как работают другие, и взаимодействует только с соседними.

• Например, НТТР (7-й уровень) не заботится о том, как данные передаются по кабелю (1-й уровень).

2. Физический и канальный уровни

- Физический (1): только передача битов (0 и 1).
- **Канальный (2)**: исправляет ошибки (например, Ethernet проверяет CRC).

3. Сетевой уровень (3) vs Транспортный (4)

- Сетевой (IP): отвечает за маршрутизацию (куда идёт пакет?).
- Транспортный (TCP/UDP): отвечает за доставку (всё ли дошло? нужна ли проверка?).

4. TCP vs UDP

Критерий	TCP (Transmission Control Protocol)	UDP (User Datagram Protocol)
Надёжность	Гарантирует доставку (переотправляет потерянные пакеты).	Нет гарантий (пакеты могут теряться).
Скорость	Медленнее (из-за проверок).	Быстрее (меньше накладных расходов).
Примеры	Веб-страницы (HTTP), почта (SMTP).	Видеозвонки (Zoom), игры (DNS).

Модель OSI vs TCP/IP

На практике чаще используется модель TCP/IP (4 уровня), которая упрощает OSI:

Уровень TCP/IP	Соответствие в OSI	Примеры протоколов
Прикладной 5+6+7	Прикладной + Представления + Сеансовый	HTTP, FTP, SMTP, DNS
Транспортный 4	Транспортный	TCP, UDP
Сетевой 3	Сетевой	IP, ICMP
Канальный 1+2	Канальный + Физический	Ethernet, Wi-Fi

Вывод

- OSI эталонная модель, помогает понять принципы сетей.
- TCP/IP реально используемый стандарт (интернет построен на нём).
- **Уровни 1–4** отвечают за передачу данных, **5–7** за их обработку.

4. Основные типы данных (MIME-types)

MIME (Multipurpose Internet Mail Extensions) — стандарт, определяющий типы данных в интернете (не только для почты, но и для HTTP).

Формат МІМЕ-типа

тип/подтип (например, text/html, image/jpeg).

Основные категории

Тип	Описание	Примеры подтипов
text	Текстовые данные	text/plain, text/html, text/css
image	Изображения	image/jpeg, image/png, image/gif
audio	Аудиофайлы	audio/mpeg, audio/ogg
video	Видеофайлы	video/mp4, video/webm
application	Бинарные данные или спецформаты	application/json, application/pdf, application/zip
multipart	Составные сообщения (например, письма с вложениями)	multipart/mixed, multipart/alternative
message	Вложения, содержащие другие сообщения	message/rfc822 вложение в виде целого письма.

Примеры использования

- В почте: указывает тип вложений (Content-Type: image/png).

- В HTTP: заголовок Content-Type в ответах сервера.

5. Формирование и разбор сообщений в соответствии со спецификациями МІМЕ

MIME определяет, как структурировать письмо, чтобы оно могло содержать текст, вложения, изображения и т.д.

Структура МІМЕ-сообщения

Заголовки (Headers):

<u>Content-Type</u> — тип данных (text/plain; charset=utf-8).

Content-Disposition — как обрабатывать (вложение или отображение).

Content-Transfer-Encoding — кодировка (Base64, quoted-printable).

Тело сообщения (Body):

Может быть текстом, бинарными данными или вложением.

Пример письма с вложением

From: user@example.com To: friend@example.com Subject: Тестовое письмо

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="boundary123"

--boundary123

Content-Type: text/plain; charset=utf-8

Привет! Это текст письма.

--boundary123

Content-Type: image/jpeg

Content-Disposition: attachment; filename="photo.jpg"

Content-Transfer-Encoding: base64

[Base64-кодированное изображение]

--boundary123--

Как разбирать МІМЕ?

- 1. Найти границы (boundary).
- 2. Разделить части по этим границам.
- 3. Для каждой части прочитать заголовки и декодировать тело (например, из Base64).

6. Многоцелевые расширения почты МІМЕ

MIME расширяет возможности электронной почты, делая её универсальной Используются для сложных писем: с HTML-версией, текстовой альтернативой и вложениями. **Основные подтипы** multipart

Тип	Описание	
multipart/mixed	Письмо с разными типами данных (текст + вложения).	
multipart/alternative	Одно сообщение в нескольких форматах (например, text/plain + text/html).	
multipart/related	Связанные ресурсы (HTML с встроенными изображениями).	

Пример письма с альтернативами

Content-Type: multipart/alternative; boundary="alt123"

--alt123

Content-Type: text/plain; charset=utf-8

Привет! Это текстовая версия.

--alt123

Content-Type: text/html; charset=utf-8

<html><body><h1>Привет!</h1>Это HTML-версия.</body></html>--alt123--

Правила обработки

- Почтовый клиент выбирает подходящий формат (например, показывает HTML, если поддерживается).
- Вложения не должны дублироваться в multipart/alternative.

7. Пересылка (форвардинг) почтового сообщения

Форвардинг — это пересылка полученного письма другому адресату. Бывает двух типов:

1. Простая пересылка (Forward as attachment)

- Исходное письмо прикрепляется как вложение (.eml файл).
- Сохраняются все оригинальные заголовки.
- Пример: в Outlook это "Forward as Attachment".

2. Пересылка с редактированием (Inline forward)

- Текст исходного письма вставляется в новое сообщение.
- Часто добавляется пометка "Forwarded message".
- Могут теряться некоторые заголовки.

Важно:

- При пересылке сохраняется структура МІМЕ
- Рекомендуется указывать причину пересылки в новом тексте
- Осторожно с пересылкой конфиденциальной информации

8. Заголовки почтовых сообщений

Заголовки содержат служебную информацию о письме.

Заголовок	Описание	Пример
From	Отправитель	From: John Doe john@example.com
То	Основные получатели	To: mary@example.com
Сс	Копия другим адресатам	Cc: boss@example.com
Всс	Скрытая копия	Bcc: archive@example.com
Subject	Тема письма	Subject: Встреча в пятницу
Date	Дата и время отправки	Date: Fri, 12 May 2023 14:30:00 +0300
Message-ID	Уникальный ID письма	Message-ID: <u>12345@example.com</u>
MIME-Version	Версия MIME	MIME-Version: 1.0
Content-Type	Тип содержимого	Content-Type: text/plain; charset=UTF-8
Received	Путь письма через серверы	Received: from mail.example.com

Специальные заголовки:

- Return-Path для возврата писем
- Reply-To адрес для ответа
- X-* нестандартные заголовки (X-Mailer, X-Priority)

9. Структура е-mail сообщения

Стандартное email-сообщение состоит из:

- 1. Заголовки (Headers)
 - о Служебная информация (From, To, Subject и др.)
 - о Отделяются от тела пустой строкой

2. Тело сообщения (Body)

- Текст письма
- Может быть в нескольких форматах (plain text, HTML)

3. Вложения (Attachments)

- о Файлы, встроенные изображения
- о Кодируются (обычно Base64)

МІМЕ-структура сложного письма:

From: user@example.com To: friend@example.com Subject: Пример письма

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="boundary123"

--boundary123

Content-Type: multipart/alternative; boundary="alt456"

--alt456

Content-Type: text/plain; charset=UTF-8

Это текстовая версия письма.

--alt456

Content-Type: text/html; charset=UTF-8

<html><body>Это HTML-версия</body></html>

- --alt456--
- --boundary123

Content-Type: image/jpeg; name="photo.jpg"

Content-Disposition: attachment Content-Transfer-Encoding: base64

[Base64-кодированное изображение]

--boundary123-

Особенности:

- Границы (boundary) разделяют части сообщения
- Каждая часть имеет свои заголовки Content-*
- Вложения кодируются (Base64, quoted-printable)

10. Протокол РОР3

POP3 (Post Office Protocol version 3) – это протокол для получения электронных писем с сервера. Он работает по принципу "скачал и удалил" (хотя можно настроить оставление писем на сервере).

Команда	Описание	Пример
USER <логин>	Указывает имя пользователя для входа	USER myemail@example.com
PASS <пароль>	Отправляет пароль для аутентификации	PASS mypassword123
STAT	Показывает количество писем и их общий размер	STAT +OK 3 12000 (3 письма, 12 КБ)
LIST [N]	Без аргументов — список всех писем. С числом — размер письма N	LIST 2 +OK 2 3200
RETR <n></n>	Скачивает письмо под номером N	RETR 1 (загружает 1-е письмо)
DELE <n></n>	Помечает письмо N для удаления (удалится после QUIT)	DELE 3
RSET	Снимает все пометки на удаление	RSET
QUIT	Закрывает соединение. Письма с DELE удаляются	QUIT
TOP <n> <строки></n>	Показывает заголовок и первые N строк тела письма	ТОР 1 5 (первые 5 строк письма 1)
UIDL [N]	Показывает уникальные ID писем (чтобы избежать повторных загрузок)	UIDL 2 +OK 2 abc123

Важные детали:

- POP3 работает на порту **110** (без шифрования) **995** (SSL/TLS).

- 2 режима: онлайн с удалением и офлайн с оставлением копии

11. Протокол SMTP

SMTP (Simple Mail Transfer Protocol) — протокол для отправки писем.

Команда	Описание	Пример
HELO <домен>	Приветствие сервера (устаревшее, но поддерживается)	HELO mypc.example.com
EHLO <домен>	Современный аналог HELO с запросом расширений (безопасность типа,TLS, аутентификация)	EHLO mypc.example.com
MAIL FROM: <адрес>	Указывает адрес отправителя	MAIL FROM: sender@example.com
RCPT TO: <адрес>	Указывает адрес получателя (можно несколько раз)	RCPT TO: recipient@example.com
DATA	Начинает передачу текста письма. Заканчивается точкой (.)	DATA (заголовки + тело + .)
QUIT	Завершает сеанс	QUIT
VRFY <адрес>	Проверяет существование почтового ящика (редко разрешён)	VRFY user@example.com
NOOP	"Пустая" команда для поддержания соединения	NOOP 250 OK
RSET	Сбрасывает текущую транзакцию (очищает MAIL FROM и RCPT TO)	RSET
STARTTLS	Переключает соединение на шифрование TLS	STARTTLS

Важные детали:

- SMTP работает на порту **25** (без шифрования)

587 (c TLS)

465 (устаревший SSL).

- В современных серверах часто требуется аутентификация (логин/пароль) даже для SMTP AUTH LOGIN / AUTH PLAIN.

12. Типы агентов доставки

В работе электронной почты участвуют три типа агентов:

1. MTA (Mail Transfer Agent)

- Пересылает письма между серверами.
- Примеры:
 - Postfix
 - o Exim
 - Sendmail

2. MDA (Mail Delivery Agent)

- Доставляет письма в почтовые ящики пользователей.
- Может фильтровать спам (SpamAssassin) или сортировать письма (procmail).
- Примеры:
 - Dovecot (работает с POP3/IMAP)
 - o Procmail

3. MUA (Mail User Agent)

- Клиентское ПО для чтения/отправки писем.
- Примеры:
 - o Outlook, Thunderbird (десктоп)
 - Gmail, Yahoo Mail (веб-интерфейс)

Как они взаимодействуют?

- 1. Пользователь пишет письмо в **MUA** (например, Outlook).
- 2. **МТА** (Postfix) отправляет его на сервер получателя.
- 3. **MDA** (Dovecot) кладёт письмо в ящик получателя.
- 4. Получатель забирает письмо через **MUA** (например, через Gmail).

13. Взаимодействие почтового сервера с DNS

Почтовые серверы используют **DNS (Domain Name System)** для поиска серверов получателей и защиты от спама.

Ключевые DNS-записи для почты:

1. MX (Mail Exchange)

Указывает почтовый сервер домена.

Приоритет задаётся числом (чем меньше, тем выше приоритет).

example.com. MX 10 mail1.example.com. example.com. MX 20 mail2.example.com.

2. **A**

Сопоставляет доменное имя с **IP-адресом** (нужна для резолвинга МХ-записей). mail1.example.com. A 192.0.2.1

3. SPF (Sender Policy Framework)

Список **разрешённых IP-адресов** для отправки писем от имени домена (защита от подделки). example.com. TXT "v=spf1 ip4:192.0.2.1 include: spf.google.com ~all"

4. DKIM (DomainKeys Identified Mail)

Цифровая подпись писем для проверки подлинности (хранится в TXT-записи DNS). selector1._domainkey.example.com. TXT "v=DKIM1; k=rsa; p=..."

5. DMARC (Domain-based Message Authentication)

Политика обработки писем, не прошедших SPF/DKIM (отклонять или помечать как спам). _dmarc.example.com. TXT "v=DMARC1; p=reject; rua=mailto:admin@example.com"

Как это работает?

При отправке письма на user@example.com сервер:

- 1. Ищет **МХ-запись** для example.com.
- 2. По А-записи определяет IP-адрес почтового сервера.
- 3. Проверяет **SPF/DKIM/DMARC**, чтобы убедиться, что письмо не поддельное.

14. Транспортный агент, агент доставки, пользовательский агент

- **1. МТА** (Mail Transfer Agent, *Транспортный агент*)
 - Пересылает письма между серверами.

Postfix (гибкий и безопасный)Exim (используется в cPanel)

о **Sendmail** (устаревший, но поддерживается)

- 2. MDA (Mail Delivery Agent, *Агент доставки*)
 - Кладет письма в почтовые ящики пользователей.

о Фильтрует спам (SpamAssassin).

Сортирует письма (procmail).Работает с POP3/IMAP (Dovecot).

- 3. MUA (Mail User Agent, Пользовательский агент)
 - Клиент для чтения и отправки писем.

о **Десктопные**: Outlook, Thunderbird, Apple Mail.

о **Веб-интерфейсы**: Gmail, Yahoo Mail, Mail.ru.

о **Мобильные**: Spark, BlueMail.

Как они взаимодействуют?

- 1. Пользователь пишет письмо в **MUA** (например, Outlook).
- 2. **MTA** (Postfix) отправляет его на сервер получателя через DNS (МХ-запись).
- 3. **MDA** (Dovecot) доставляет письмо в ящик получателя.
- 4. Получатель читает письмо через свой **MUA** (например, Gmail).

15. Служба имен в Интернет DNS

DNS (Domain Name System) — это **"телефонная книга" Интернета**, преобразующая доменные имена в IP-адреса.

Основные типы DNS-записей:

Запись	Описание	Пример
Α	IPv4-адрес сервера	example.com. A 192.0.2.1
AAAA	IPv6-адрес сервера	example.com. AAAA 2001:db8::1
MX	Почтовый сервер домена	example.com. MX 10 mail.example.com.
CNAME	Псевдоним домена (перенаправление)	www.example.com. CNAME example.com.
ТХТ	Произвольный текст (SPF, DKIM)	example.com. TXT "v=spf1 ip4:192.0.2.1 - all"
NS	DNS-серверы домена	example.com. NS ns1.example.com.

Как работает DNS для почты?

- 1. Когда сервер отправляет письмо на user@example.com, он:
 - ∘ Запрашивает **МХ-запись** для example.com.
 - о Получает ответ: mail.example.com (приоритет 10).
 - \circ Ищет **А-запись** для mail.example.com \rightarrow 192.0.2.1.
 - о Подключается к этому IP-адресу на порт 25/587.
- 2. Для защиты от спама проверяются:
 - 。 **SPF** разрешён ли IP-адрес отправителя.
 - о **DKIM** подпись письма.
 - о **DMARC** что делать, если проверки провалились.

16. База данных домена для публичных адресов.

База данных домена для публичных адресов — это система, которая хранит информацию о доменах и их публичных IP-адресах, доступных в интернете.

Простыми словами, это "телефонная книга" интернета, которая помогает найти сервер по его доменному имени.

Что это:

- о Используется в системе DNS (Domain Name System) для сопоставления доменных имён (например, google.com) с IP-адресами (например, 142.250.190.14).
- о Содержит записи о доменах, их IP-адресах, почтовых серверах (МХ-записи), текстовых данных (ТХТ) и других настройках.

Основные записи:

- \circ **A**: связывает домен с IPv4-адресом (например, example.com \to 192.0.2.1).
- AAAA: то же, но для IPv6-адресов.
- о **МХ**: указывает почтовый сервер домена (например, mail.example.com).
- о **CNAME**: псевдоним, перенаправляет один домен на другой (например, www.example.com → example.com).
- **TXT**: текстовые данные, часто для проверки владения доменом или настройки SPF/DKIM.

Где хранится:

- о На **DNS-серверах** (например, у регистратора домена или хостинг-провайдера).
- 。 Доступна **публично через запросы** (например, с помощью команды nslookup или dig).

Особенности:

- о Публичные адреса доступны всем, чтобы устройства в интернете могли найти друг друга.
- о Обновления записей могут занять время (до 24–48 часов) из-за кэширования DNS.
- о Используется для работы сайтов, почты, приложений.

Запомни: Это как карта интернета — домен (имя) превращается в IP-адрес, чтобы компьютеры нашли нужный сервер.

17. Домен, виды доменов

Домен — это читаемое имя в интернете (например, example.com), которое заменяет сложный IP-адрес. Это как адрес дома, но для сайтов, почты или серверов.

Что такое домен:

- Часть адреса в интернете, которая помогает найти ресурс (сайт, почтовый сервер).
- о Состоит из уровней, разделённых точками. Например, в sub.example.com:
 - сот домен верхнего уровня (TLD),
 - example домен второго уровня,
 - sub поддомен.

Виды доменов:

Домены верхнего уровня (TLD):

• Общие (gTLD): .com, .org, .net, .info — для всех желающих.

• Специализированные: .edu (образование),

.gov (правительство),

.mil (военные).

• **Новые** (gTLD,): .shop, .app, .blog — для бизнеса или тематик.

• **Национальные** (ccTLD): .ru (Россия), .uk (Великобритания), .de (Германия).

Домены второго уровня:

- Основное имя, выбранное владельцем (например, example в example.com).
- Регистрируется у регистратора (например, GoDaddy, Namecheap).

Поддомены:

- Дополнительные имена, созданные на основе основного домена (например, blog.example.com, mail.example.com).
- Не требуют отдельной регистрации, настраиваются владельцем.

Особенности:

- о Домены покупаются на срок (обычно 1 год) и требуют продления.
- Каждый домен уникален в своём TLD.
- о Используются для сайтов, почты (например, user@example.com), серверов.

Запомни: Домен — это "имя" в интернете. Бывает верхнего уровня (.com, .ru), второго уровня (example) и поддомен (mail).

18. База данных домена для приватных адресов.

База данных домена для **приватных адресов** — это система, которая хранит информацию о доменах и IP-адресах, используемых в закрытых (локальных) сетях, недоступных из интернета.

Что это:

- Аналог DNS, но *для внутренней сети* (например, в офисе или дома).
- о Сопоставляет доменные имена с приватными IP-адресами (например, 192.168.1.10).
- Используется для доступа к локальным ресурсам: серверам, принтерам, компьютерам.

Приватные ІР-адреса:

- о Диапазоны, зарезервированные для локальных сетей:
 - **1**0.0.0.0 10.255.255.255
 - **172.16.0.0 172.31.255.255**
 - **1**92.168.0.0 192.168.255.255
- о Эти адреса не видны в интернете, маршрутизируются только внутри сети.

Основные записи:

- A: связывает локальное имя (например, server.local) с приватным IP (например, 192.168.1.100).
- \circ **CNAME**: псевдоним для локальных имён (например, printer.local → server.local).
- **SRV**: указывает сервисы, например, для локального почтового сервера.

Где хранится:

- На **локальном DNS-сервере** (например, в офисе) или в файле hosts на устройстве.
- Пример записи в hosts: 192.168.1.100 server.local
- о Не доступна публично, только внутри сети.

Особенности:

- Используется для удобства: вместо IP-адресов можно использовать имена (например, printer.local).
- Настройка требует локального DNS-сервера или ручного редактирования файлов.
- о Конфликты имён возможны, если локальные и публичные домены совпадают (например, example.com в интернете и в локальной сети).
- Часто применяется в корпоративных сетях, домашнем Wi-Fi или для тестирования.

Запомни: Это "внутренняя телефонная книга" для локальной сети. Имена вроде server.local связываются с приватными IP, которые не видны в интернете.

19. Делегирование доменных имен. Уровни доменных имен

Делегирование доменных имен — это передача управления доменом или его частью другому лицу или серверу. Простыми словами, это когда ты отдаёшь контроль над доменом (например, example.com) или поддоменом (например, sub.example.com) кому-то ещё.

• Как работает:

- Владелец домена указывает в DNS-записях, какие серверы (NS Name Servers) отвечают за этот домен.
- Например, для example.com можно делегировать управление поддоменом blog.example.com другому серверу.
- о Делегирование настраивается через NS-записи (например, NS ns1.hosting.com).

Зачем нужно:

- ∘ Разделить управление: один сервер отвечает за example.com, другой за sub.example.com.
- Упростить администрирование, особенно для больших организаций.
- Разместить поддомены на разных хостингах (например, сайт на одном, почта на другом).

Особенности:

- о Делегирование требует настройки NS-записей у регистратора или на DNS-сервере.
- о Изменения могут занять до 24–48 часов из-за кэширования DNS.

Уровни доменных имен: Доменное имя делится на части (уровни), разделённые точками. Считаются справа налево:

- Корневой домен (нулевой уровень): это точка в конце имени (., обычно не пишется).
- Домен верхнего уровня (TLD): например, .com, .ru, .org.
- **Домен второго уровня**: основное имя, которое регистрируется (например, example в example.com).
- **Поддомены** (третий и ниже уровни): дополнительные имена, созданные владельцем (например, sub.example.com, mail.example.com).

Пример:

- B blog.sub.example.com:
 - o .com TLD,
 - ∘ example второй уровень,
 - ∘ sub третий уровень,
 - ∘ blog четвёртый уровень.

Запомни: Делегирование — это "передать управление" доменом или поддоменом. Уровни — это части имени: TLD, второе, третье и т.д.

20. Запись почтового сервера в базу данных домена

Запись **почтового сервера в базе данных домена** — это настройка DNS, чтобы указать, какой сервер обрабатывает почту для домена. Это делается с помощью MX-записи (Mail Exchanger).

Как работает:

- о МХ-запись добавляется в DNS-зону домена (например, example.com).
- о Указывает адрес почтового сервера и его приоритет.
- Пример MX-записи: example.com. IN MX 10 mail.example.com.
 - 10 приоритет (чем ниже число, тем выше приоритет).
 - mail.example.com имя почтового сервера.

Зачем нужно:

- Чтобы почтовые клиенты и серверы знали, куда отправлять письма для user@example.com.
- Без МХ-записи почта для домена не будет доставляться.

Особенности:

- о MX-запись ссылается на доменное имя (например, mail.example.com), а не на IPадрес. Для mail.example.com нужна А-запись с IP-адресом сервера.
- о Можно указать несколько МХ-записей с разными приоритетами для резервирования (например, если основной сервер недоступен).
- Настройка делается у регистратора домена или на DNS-сервере.
- о Обновление может занять до 24-48 часов.

Пример:

example.com. IN MX 10 mail1.example.com. example.com. IN MX 20 mail2.example.com. mail1.example.com. IN A 192.0.2.1 mail2.example.com. IN A 192.0.2.2

о Почта сначала идёт на mail1 (приоритет 10), если он недоступен — на mail2 (приоритет 20).

Запомни: МХ-запись — это "указатель" на почтовый сервер домена. Без неё почта не дойдёт.

21. Понятие зоны в DNS

Зона в DNS — это часть доменного пространства, за которую отвечает определённый DNS-сервер.

Простыми словами, это "кусок" интернета, где хранятся все настройки для домена или поддомена.

Что такое зона:

- Это набор DNS-записей для домена (например, example.com) или поддомена (например, sub.example.com).
- Содержит информацию: IP-адреса (A, AAAA),

почтовые серверы (МХ), псевдонимы (CNAME) и т.д.

Как работает:

- Зона определяется в файле зоны на DNS-сервере.
- 。 Пример файла зоны для example.com:
 - \$ORIGIN example.com.
 - @ IN SOA ns1.example.com. admin.example.com. (2025050501 3600 1800 604800 86400)
 - @ IN NS ns1.example.com.
 - @ IN MX 10 mail.example.com.
 - @ IN A 192.0.2.1

www IN A 192.0.2.1

- SOA (Start of Authority) основная информация о зоне (админ, обновления).
- @ это сам домен (example.com).

Особенности:

- о Зона отвечает только за свой домен или поддомен. Если управление поддоменом делегировано, он становится отдельной зоной.
- Зоны обновляются через DNS-серверы, изменения могут кэшироваться.
- Один DNS-сервер может обслуживать несколько зон.

Зачем нужна:

- о Упрощает управление доменами: все записи в одном месте.
- о Обеспечивает работу сайтов, почты, других сервисов.

Запомни: Зона — это "папка" с настройками домена в DNS. В ней всё: IP, почта, псевдонимы.

22. Обратная зона DNS для приватных и публичных адресов.

Обратная зона DNS — это часть DNS, которая сопоставляет IP-адреса с доменными именами (в отличие от обычной зоны, где имя \rightarrow IP). Используется для проверки, кому принадлежит IP.

Что это:

- Обратная зона отвечает за запросы вида "какой домен у IP-адреса?".
- Используется для:
 - Проверки подлинности серверов (например, при отправке почты).
 - Логирования и безопасности (определить, кто подключился).

Как работает:

- IP-адрес записывается в обратном порядке, добавляется специальный домен:
 - Для IPv4: .in-addr.arpa (например, 192.0.2.1 → 1.2.0.192.in-addr.arpa).
 - Для IPv6: .ip6.arpa.
- о Основная запись **PTR** (Pointer), указывает доменное имя для IP.
- о Пример:
 - 1.2.0.192.in-addr.arpa. IN PTR server.example.com.
 - Это значит, что IP 192.0.2.1 принадлежит server.example.com.

Публичные адреса:

- Используются в интернете, управляются провайдерами или владельцами IPдиапазонов.
- Например, почтовые серверы проверяют PTR-записи, чтобы убедиться, что IP отправителя соответствует домену.
- Настраиваются у провайдера, который выделил IP.

Приватные адреса:

- Используются в локальных сетях (например, 192.168.х.х).
- Обратная зона настраивается на локальном DNS-сервере.
- 。 Пример:
 - 10.1.168.192.in-addr.arpa. IN PTR printer.local.
 - IP 192.168.1.10 в локальной сети соответствует printer.local.
- Не видны в интернете, только внутри сети.

Особенности:

- Без РТК-записи почтовые серверы могут пометить письмо как спам.
- Обратная зона требует точной настройки, иначе запросы не сработают.
- о Для приватных сетей настройка проще, так как всё контролируется локально.

Запомни: Обратная зона — это "наоборот": из IP \rightarrow имя.

Нужна для проверки серверов, особенно почтовых. Публичная — в интернете, приватная — в локальной сети.

23. Режимы работы DNS Сервера

DNS-сервер (Domain Name System) преобразует доменные имена в IP-адреса и наоборот. Он может работать в разных режимах, в зависимости от задач. Вот основные, простыми словами:

Авторитетный (Authoritative):

- Сервер хранит и выдаёт точные DNS-записи для определённой зоны (например, example.com).
- Два подвида:
 - **Primary (Master)**: главный сервер, где хранится оригинальная зона. Все изменения вносятся здесь.
 - **Secondary (Slave)**: копия основного сервера, синхронизируется с Primary. Используется для надёжности и распределения нагрузки.
- о Отвечает только за свои зоны, не ищет информацию где-то ещё.

Кэширующий (Caching):

- Хранит в памяти ответы на предыдущие DNS-запросы, чтобы ускорить работу.
- о Не хранит зоны, а запрашивает данные у авторитетных серверов и кэширует их.
- Используется в локальных сетях или у провайдеров для экономии трафика.

Рекурсивный (Recursive):

- Обрабатывает запросы клиентов, запрашивая данные у других серверов, если не знает ответа.
- Например, для example.com он найдёт корневой сервер, затем TLD-сервер (.com), затем авторитетный сервер.
- Часто совмещается с кэширующим режимом.

Пересылающий (Forwarding):

- Не обрабатывает запросы сам, а пересылает их на другой DNS-сервер (например, сервер провайдера).
- Удобен для маленьких сетей, где нет своего рекурсивного сервера.

Особенности:

- Сервер может сочетать режимы (например, быть рекурсивным и кэширующим).
- Авторитетные серверы отвечают только за свои домены, рекурсивные ищут ответы везде.
- Настройка режимов зависит от задач: авторитетный для хостинга, рекурсивный/кэширующий для клиентов.

Запомни: DNS-сервер либо знает ответ (авторитетный), либо ищет его (рекурсивный), либо запоминает (кэширующий), либо пересылает запрос (форвардинг).

24. Обратная зона DNS. Назначение, основные характеристики

Обратная зона DNS — это часть системы DNS, которая сопоставляет IP-адреса с доменными именами (в отличие от прямой зоны, где имя \rightarrow IP).

Назначение:

- о Позволяет узнать, какой домен связан с конкретным IP-адресом.
- Используется для:
 - Проверки подлинности серверов (например, почтовые серверы проверяют, соответствует ли IP домену отправителя).
 - Логирования и безопасности (определить, кто подключился по IP).
 - Диагностики сети (например, команда nslookup или dig).

Основные характеристики:

- Формат имени:
 - Для IPv4: IP записывается в обратном порядке с доменом .in-addr.arpa. Пример: IP 192.0.2.1 \rightarrow 1.2.0.192.in-addr.arpa.
 - Для IPv6: используется .ip6.arpa с обратной записью адреса.
- Основная запись:
 - PTR (Pointer): указывает доменное имя для IP.
 Пример: 1.2.0.192.in-addr.arpa. IN PTR server.example.com.
- Типы зон:
 - **Публичные**: для IP-адресов в интернете, настраиваются у провайдера или владельца IP-диапазона.
 - **Приватные**: для локальных сетей (например, 192.168.х.х), настраиваются на локальном DNS-сервере.
- Особенности:
 - Без PTR-записи почтовые серверы могут отклонить письмо, считая его спамом.
 - Обратная зона требует точной настройки, иначе запросы не сработают.
 - Для публичных IP настройка зависит от провайдера, для приватных от локального админа.
- Пример:

\$ORIGIN 2.0.192.in-addr.arpa.

1 IN PTR server.example.com.

• Это значит, что 192.0.2.1 соответствует server.example.com.

Запомни: Обратная зона — это "кто ты?" для ІР-адреса.

Нужна для проверки серверов и безопасности, особенно в почте.

25. Прямая зона DNS. Назначение, основные характеристики

Прямая зона DNS — это часть DNS, которая сопоставляет доменные имена с IP-адресами или другими данными (в отличие от обратной зоны, где IP \rightarrow имя).

Назначение:

- Преобразует читаемые имена (например, example.com) в IP-адреса или другие ресурсы.
- Используется для:
 - Доступа к сайтам, почтовым серверам, приложениям.
 - Настройки доменов и поддоменов.
 - Управления сервисами (например, указание почтового сервера через МХ).

Основные характеристики:

- Формат:
 - Зона привязана к домену (например, example.com).
 - Содержит записи для домена и поддоменов (например, www.example.com, mail.example.com).
- Основные записи:
 - **A**: домен \rightarrow IPv4-адрес (например, example.com IN A 192.0.2.1).
 - AAAA: домен → IPv6-адрес.
 - **МX**: почтовый сервер (например, example.com IN MX 10 mail.example.com).
 - **CNAME**: псевдоним (например, www.example.com IN CNAME example.com).
 - NS: серверы имен для зоны (например, example.com IN NS ns1.example.com).
 - **ТХТ**: текстовые данные (например, для SPF или DKIM).
 - SOA (Start of Authority): информация о зоне (админ, обновления, таймеры).

Типы зон:

- Публичные: для доменов в интернете, доступны всем.
- **Приватные**: для локальных сетей (например, server.local в офисе).

Особенности:

- Зона хранится на авторитетном DNS-сервере (Primary или Secondary).
- Изменения в зоне могут кэшироваться (до 24–48 часов).
- SOA-запись обязательна, задаёт параметры зоны (например, время жизни кэша).

Пример файла зоны:

\$ORIGIN example.com.

- @ IN SOA ns1.example.com. admin.example.com. (2025050501 3600 1800 604800 86400)
- @ IN NS ns1.example.com.
- @ IN A 192.0.2.1

www IN A 192.0.2.1

mail IN A 192.0.2.2

- @ IN MX 10 mail.example.com.
 - Это зона для example.com с IP, почтовым сервером и поддоменом www.

Запомни: Прямая зона — это "где ты?" для домена.

Связывает имя с ІР или сервисами, нужна для работы сайтов и почты.

26. Спецификация параметров в базе данных домена (Serial, Refresh, Retry, Expire, Time To Live)

Эти параметры задаются в DNS-зоне (обычно в записи SOA) и управляют тем, как DNS-серверы обновляют и кэшируют информацию. Простыми словами, это "настройки" для работы зоны.

Serial:

- Номер версии зоны (например, 2025050501).
- Увеличивается при каждом изменении зоны (например, добавили запись).
- 。 Secondary-серверы сравнивают Serial, чтобы понять, нужно ли обновить данные.
- Формат часто: ГГГГММДДНН (год, месяц, день, номер изменения).

Refresh:

- Время (в секундах), через которое Secondary-сервер проверяет Primary-сервер на наличие обновлений.
- Пример: 3600 (1 час) проверка каждые 60 минут.
- Баланс между актуальностью и нагрузкой на сервер.

Retry:

- Время (в секундах), через которое Secondary-сервер повторяет попытку обновления, если Primary недоступен.
- Пример: 600 (10 минут) повтор через 10 минут после неудачи.
- о Обычно меньше, чем Refresh.

Expire:

- Время (в секундах), после которого Secondary-сервер считает данные зоны устаревшими, если не смог связаться с Primary.
- 。 Пример: 604800 (7 дней) после недели без обновлений данные "протухают".
- Защищает от использования старых данных.

Time To Live (TTL): спецификации параметров в базе данных домена:

- Время (в секундах), в течение которого кэширующие серверы хранят записи зоны.
- Пример: 86400 (1 день) запись считается актуальной 24 часа.
- Меньший TTL ускоряет обновления, но увеличивает нагрузку на сервер.

Запомни: Эти параметры — как "таймеры" для DNS.

Serial отслеживает изменения,

Refresh и Retry — обновления,

Expire — срок годности,

TTL — время кэширования.

27. Запись SOA в базе данных домена

Запись SOA (Start of Authority) — это основная запись в DNS-зоне, которая описывает её настройки и отвечает за управление. Простыми словами, это "паспорт" зоны.

Назначение:

- о Указывает, какой сервер является основным (Primary) для зоны.
- о Содержит параметры управления зоной (Serial, Refresh и т.д.).
- о Обязательна для каждой зоны.

Структура SOA:

```
example.com. IN SOA ns1.example.com. admin.example.com. (
2025050501; Serial
3600 ; Refresh
600 ; Retry
604800 ; Expire
86400 ; TTL
)
```

- o example.com.: имя зоны.
- o **ns1.example.com.**: Primary DNS-сервер.
- admin.example.com.: email администратора (точка вместо @, например, admin.example.com → admin@example.com).
- В скобках:
 - **Serial**: версия зоны.
 - Refresh: интервал проверки Secondary-сервера.
 - **Retry**: интервал повтора при сбое.
 - **Expire**: срок "годности" данных.
 - TTL: время кэширования записей.

Особенности:

- SOA первая запись в файле зоны, задаёт её параметры.
- Secondary-серверы используют SOA для синхронизации.
- Если Serial не обновлён, изменения в зоне могут не дойти до других серверов.
- TTL в SOA задаёт общий TTL для зоны, если не указан в отдельных записях.

Запомни: SOA — это "мозг" зоны.

Указывает главный сервер, админа и таймеры (Serial, Refresh, Retry, Expire, TTL).

28.URL, URI, URN

Эти термины связаны с идентификацией ресурсов в интернете, но имеют разные роли. Простыми словами:

URI (Uniform Resource Identifier):

- о Общий термин для идентификации ресурса в интернете.
- Может указывать, где ресурс (локация) или что это за ресурс (имя).
- 。 Два типа: URL и URN.
- о Пример: https://example.com/page (это URI, так как идентифицирует ресурс).

URL (Uniform Resource Locator):

- Тип URI, который указывает **местоположение** ресурса и способ доступа к нему.
- о Содержит протокол (например, http, ftp), домен, путь.
- о Пример: https://example.com/images/photo.jpg:
 - https протокол,
 - example.com домен,
 - /images/photo.jpg путь к файлу.
- о Используется для перехода к сайтам, загрузки файлов.

URN (Uniform Resource Name):

- Тип URI, который указывает имя ресурса, но не его местоположение.
- о Уникально идентифицирует ресурс, независимо от того, где он находится.
- o Пример: urn:isbn:978-3-16-148410-0 (идентификатор книги по ISBN).
- Не содержит протокола или пути, только имя.

Ключевые отличия:

- **URI** общее понятие (включает URL и URN).
- URL говорит, **где** ресурс и как его достать (адрес).
- **URN** говорит, **что** это за ресурс (имя).
- Пример:
 - о URI: https://example.com/page (это и URL, и URI).
 - o URL: ftp://server.com/file.txt (указывает локацию).
 - URN: urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66 (уникальное имя).

Особенности:

- URL чаще всего встречается в браузерах и приложениях.
- URN используется в системах, где важна уникальность (например, библиотеки, базы данных).
- URI универсальный стандарт, объединяющий оба подхода.

Запомни:

```
URI — это всё,
URL — "где и как", видишь в браузере
URN — "что", видишь в базах данных
```