Giải tích hàm

TS. Bùi Xuân Diệu

Viện Toán Ứng dụng và Tin học, Đại học Bách Khoa Hà Nội

Chương 2: Không gian định chuẩn

- 1 Khái niệm không gian định chuẩn
- Toán tử tuyến tính liên tục
- 3 Toán tử nghịch đảo, toán tử song tuyến tính liên tục
- Phiếm hàm tuyến tính liên tục

Định nghĩa 1

(X, d): KGVT + metric thỏa mãn

- i) d(x+z,y+z) = d(x,y) (bất biến đối với phép tịnh tiến),
- ii) $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ (tính thuần nhất).

 $\forall x, y, z \in X, \forall \alpha \in \mathbb{R}.$

Định nghĩa 1

(X, d): KGVT + metric thỏa mãn

- i) d(x+z,y+z) = d(x,y) (bất biến đối với phép tịnh tiến),
- ii) $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ (tính thuần nhất).

 $\forall x, y, z \in X, \forall \alpha \in \mathbb{R}.$

Định nghĩa (Chuẩn)

Khi đó,

$$||x|| =: d(x,0)$$

được gọi là chuẩn (hay đô dài) của véctơ x.

Các tính chất của chuẩn

- i) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$.
- ii) $\|\alpha x\| = |\alpha| \|x\|$,
- iii) $||x + y|| \le ||x|| + ||y||$ (bất đẳng thức tam giác)

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 4 / 37

Các tính chất của chuẩn

- i) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$.
- ii) $\|\alpha x\| = |\alpha| \|x\|$,
- iii) $||x + y|| \le ||x|| + ||y||$ (bất đẳng thức tam giác)

Ngược lại,

Đinh nghĩa 2

 $\mathsf{KGDC} = \mathsf{KGVT}$ và $X \ni x \mapsto \|x\| \in \mathbb{R}$ gọi là chuẩn, sao cho

- i) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$.
- $ii) \|\alpha x\| = |\alpha| \|x\|,$
- iii) $||x + y|| \le ||x|| + ||y||$ (bất đẳng thức tam giác).

Ví dụ

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 5 / 37

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

2)
$$\mathbb{R}^k$$
, $||x||_{\infty} = \max_{1 \leq i \leq k} |x_i|$.

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

- 2) \mathbb{R}^k , $||x||_{\infty} = \max_{1 \le i \le k} |x_i|$.
- 3) C[a, b], $||x|| = \max_{a \le t \le b} |x(t)|$.

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

- 2) \mathbb{R}^k , $||x||_{\infty} = \max_{1 \le i \le k} |x_i|$.
- 3) C[a, b], $||x|| = \max_{a \le t \le b} |x(t)|$.
- 4) $C_{[a,b]}^{L}$, $||x|| = \int_{a}^{b} |x(t)| dt$.

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

- 2) \mathbb{R}^k , $||x||_{\infty} = \max_{1 \le i \le k} |x_i|$.
- 3) C[a,b], $||x|| = \max_{a \le t \le b} |x(t)|$.
- 4) $C_{[a,b]}^{L}$, $||x|| = \int_{a}^{b} |x(t)| dt$.
- 5) $D_{[a,b]}^k$, $||x|| = \max_{a \le t \le b} \{|x(t), |x'(t)|, \dots, |x^{(k)}(t)|\}.$

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

- 2) \mathbb{R}^k , $||x||_{\infty} = \max_{1 \le i \le k} |x_i|$.
- 3) C[a,b], $||x|| = \max_{a \le t \le b} |x(t)|$.
- 4) $C_{[a,b]}^{L}$, $||x|| = \int_{a}^{b} |x(t)| dt$.
- 5) $D_{[a,b]}^k$, $||x|| = \max_{a \le t \le b} \{|x(t), |x'(t)|, \dots, |x^{(k)}(t)|\}.$
- 6) I_{∞} , $||x|| = \sup_{k>1} |x_k|$.

1)
$$\mathbb{R}^k$$
, $||x||_p = \left(\sum_{i=1}^k |x_i|^p\right)^{\frac{1}{p}}$, $1 \le p < +\infty$.

- 2) \mathbb{R}^k , $||x||_{\infty} = \max_{1 \le i \le k} |x_i|$.
- 3) C[a,b], $||x|| = \max_{a \le t \le b} |x(t)|$.
- 4) $C_{[a,b]}^L$, $||x|| = \int_a^b |x(t)| dt$.
- 5) $D_{[a,b]}^k$, $||x|| = \max_{a \le t \le b} \{|x(t), |x'(t)|, \dots, |x^{(k)}(t)|\}.$
- 6) I_{∞} , $||x|| = \sup_{k>1} |x_k|$.
- 7) I_p , $||x_p|| = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}$.

Một số tính chất

1)
$$x_n \to x \Leftrightarrow ||x_n - x|| \to 0$$
.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 6

Môt số tính chất

- 1) $x_n \to x \Leftrightarrow ||x_n x|| \to 0$.
- 2) $x_n \to x \Rightarrow ||x_n|| \to ||x||$,

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 6

Môt số tính chất

- 1) $x_n \to x \Leftrightarrow ||x_n x|| \to 0$.
- 2) $x_n \to x \Rightarrow ||x_n|| \to ||x||$,
- 3) Hôi tu \Rightarrow bi chặn, i.e. $\exists K > 0$ sao cho $||x_n|| < K, \forall n$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 6 / 37

Môt số tính chất

- 1) $x_n \to x \Leftrightarrow ||x_n x|| \to 0$.
- 2) $x_n \to x \Rightarrow ||x_n|| \to ||x||$,
- 3) Hội tụ \Rightarrow bị chặn, i.e. $\exists K > 0$ sao cho $||x_n|| \leq K, \forall n$.

4)
$$\begin{cases} x_n \to x_0, \\ y_n \to y_0 \end{cases} \Rightarrow \begin{cases} x_n + y_n \to x_0 + y_0, \\ \alpha x_n \to \alpha x_0. \end{cases}$$

Môt số tính chất

- 1) $x_n \to x \Leftrightarrow ||x_n x|| \to 0$.
- 2) $x_n \to x \Rightarrow ||x_n|| \to ||x||$,
- 3) Hội tụ \Rightarrow bị chặn, i.e. $\exists K > 0$ sao cho $||x_n|| \le K, \forall n$.
- 4) $\begin{cases} x_n \to x_0, \\ y_n \to y_0 \end{cases} \Rightarrow \begin{cases} x_n + y_n \to x_0 + y_0, \\ \alpha x_n \to \alpha x_0. \end{cases}$
- 5) Khác với không gian metric và không gian véctơ, trong không gian định chuẩn ta có thể xét chuỗi $\sum_{n=1}^{\infty} x_n$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 6 / 3'

Định nghĩa

Không gian metric (X,d) là tách được $(khả\ ly)$ nếu nó chứa một tập đếm được và trù mật khắp nơi.

TS. Bùi Xuân Diệu Giải tích hàm I ♥ HUST 7 / 37

Định nghĩa

Không gian metric (X,d) là tách được $(khả\ ly)$ nếu nó chứa một tập đếm được và trù mật khắp nơi.

Ví dụ

1) \mathbb{R}, \mathbb{R}^n ,

Định nghĩa

Không gian metric (X,d) là tách được $(khả\ ly)$ nếu nó chứa một tập đếm được và trù mật khắp nơi.

- 1) \mathbb{R}, \mathbb{R}^n ,
- 2) C[a, b],

Định nghĩa

Không gian metric (X,d) là tách được $(khả\ ly)$ nếu nó chứa một tập đếm được và trù mật khắp nơi.

- 1) \mathbb{R} , \mathbb{R}^n ,
- 2) C[a, b],
- 3) Các không gian I_p , $1 \le p < \infty$,

Định nghĩa

Không gian metric (X, d) là tách được (khả ly) nếu nó chứa một tập đếm được và trù mật khắp nơi.

- 1) \mathbb{R} , \mathbb{R}^n ,
- 2) C[a, b],
- 3) Các không gian I_p , $1 \le p < \infty$,
- 4) I_{∞} không khả ly.

Không gian có cơ sở đếm được

Định nghĩa

Hệ đếm được các véctơ $\{x_n\}$ là $\cot sở$ (Schauder) của X nếu

i)
$$\forall x \in X$$
, $x = \sum_{n=1}^{\infty} \alpha_n x_n$,

ii) phép biểu diễn đó là duy nhất.

Không gian có cơ sở đếm được

Dinh nghĩa

Hệ đếm được các véctơ $\{x_n\}$ là $\cot s$ (Schauder) của X nếu

i)
$$\forall x \in X$$
, $x = \sum_{n=1}^{\infty} \alpha_n x_n$,

ii) phép biểu diễn đó là duy nhất.

Đinh lý

Moi không gian có cơ sở đếm được đều khả ly.

Chuẩn tương đương

Cho $(X, \|\cdot\|_1), (X, \|\cdot\|_2)$ là các KGĐC.

Định nghĩa

$$\|\cdot\|_1$$
 và $\|\cdot\|_2$ là tương đương nếu $\exists \mathit{C}_1>0, \mathit{C}_2>0$ sao cho

$$C_1||x||_1 \le ||x||_2 \le C_2||x||_1, \forall x \in X.$$

Phản xa, đối xứng và bắc cầu.

Chuẩn tương đương

Cho $(X, \|\cdot\|_1), (X, \|\cdot\|_2)$ là các KGĐC.

Định nghĩa

 $\|\cdot\|_1$ và $\|\cdot\|_2$ là tương đương nếu $\exists \mathit{C}_1>0, \mathit{C}_2>0$ sao cho

$$C_1||x||_1 \le ||x||_2 \le C_2||x||_1, \forall x \in X.$$

Phản xạ, đối xứng và bắc cầu.

Định lý

Trong KGĐC hữu hạn chiều, mọi chuẩn đều tương đương.

Chương 2: Không gian định chuẩn

- Khái niệm không gian định chuẩn
- 2 Toán tử tuyến tính liên tục
- 3 Toán tử nghịch đảo, toán tử song tuyến tính liên tục
- Phiếm hàm tuyến tính liên tục

Nhắc lại về ánh xạ tuyến tính

 $A: X \to Y$ được gọi là một toán tử tuyến tính nếu

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 11 / 37

Nhắc lai về ánh xa tuyến tính

 $A: X \to Y$ được gọi là một toán tử tuyến tính nếu

i)
$$A(x + y) = Ax + Ay$$
, $\forall x, y \in X$,

ii)
$$A(\alpha x) = \alpha A x$$
, $\forall x \in X, \alpha \in \mathbb{R}$.

Hat nhân và ảnh

Nhắc lai về ánh xa tuyến tính

 $A: X \to Y$ được gọi là một toán tử tuyến tính nếu

i)
$$A(x + y) = Ax + Ay$$
, $\forall x, y \in X$,

ii)
$$A(\alpha x) = \alpha A x$$
, $\forall x \in X, \alpha \in \mathbb{R}$.

Hat nhân và ảnh

i) Im
$$A = \{ y \in Y | \exists x \in X, Ax = y \},$$

ii)
$$Ker A = \{x \in X | Ax = 0\}.$$

Định nghĩa

 $A: X \to Y$ liên tục tại x_0 nếu $x_n \to x_0 \Rightarrow Ax_n \to Ax_0$.

Định nghĩa

 $A: X \to Y$ liên tực tại x_0 nếu $x_0 \to x_0 \Rightarrow Ax_0 \to Ax_0$.

Bổ đề

A liên tục tại $x_0 \Rightarrow$ liên tục tại mọi $x \in X$.

Ví dụ

1) Mọi toán tử tuyến tính $A: \mathbb{R}^k \to \mathbb{R}^m$ đều liên tục.

Định nghĩa

 $A: X \to Y$ liên tục tại x_0 nếu $x_n \to x_0 \Rightarrow Ax_n \to Ax_0$.

Bổ đề

A liên tục tại $x_0 \Rightarrow$ liên tục tại mọi $x \in X$.

- 1) Mọi toán tử tuyến tính $A: \mathbb{R}^k \to \mathbb{R}^m$ đều liên tục.
- 2) $X = Y = C[a, b], \quad (Ax)(t) = \int_{a}^{b} K(t, s)x(s)ds,$ trong đó K(t, s) liên tuc theo hai biến $t, s \in [a, b].$

Định nghĩa

 $A: X \to Y$ liên tực tại x_0 nếu $x_0 \to x_0 \Rightarrow Ax_0 \to Ax_0$.

Bổ đề

A liên tục tại $x_0 \Rightarrow$ liên tục tại mọi $x \in X$.

- 1) Mọi toán tử tuyến tính $A: \mathbb{R}^k \to \mathbb{R}^m$ đều liên tục.
- 2) $X = Y = C[a, b], \quad (Ax)(t) = \int_a^b K(t, s)x(s)ds,$ trong đó K(t, s) liên tục theo hai biến $t, s \in [a, b].$
- 3) Toán tử đạo hàm $D: C^1[a,b] \to C[a,b], (Dx)(t) = x'(t)$ không liên tục, nhưng nếu $C^1[a,b]$ với chuẩn $\|x\|_1 = \max_{a \le t \le b} |x(t)| + \max_{a \le t \le b} |x'(t)|$ thì nó liên tục.

Toán tử bị chặn

 $A: X \to Y$ bị chặn nếu $\exists K > 0$ sao cho

$$||Ax|| \le K||x||, \forall x \in X.$$
 (1)

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 13 / 37

Toán tử tuyến tính liên tục

Toán tử bi chăn

 $A: X \to Y$ bị chặn nếu $\exists K > 0$ sao cho

$$||Ax|| \le K||x||, \forall x \in X. \tag{1}$$

Định lý

 $A: X \rightarrow Y$ là liên tục \Leftrightarrow bi chăn.

Toán tử tuyến tính liên tục

Toán tử bị chặn

 $A: X \to Y$ bị chăn nếu $\exists K > 0$ sao cho

$$||Ax|| \le K||x||, \forall x \in X. \tag{1}$$

Định lý

 $A: X \to Y$ là liên tục \Leftrightarrow bi chăn.

Định nghĩa

Số K nhỏ nhất thỏa mãn (1) được gọi là chuẩn của A, kí hiệu ||A||, i.e.,

TS. Bùi Xuân Diêu Giải tích hàm I ♥ HUST 13 / 37

Toán tử tuyến tính liên tục

Toán tử bi chăn

 $A: X \to Y$ bị chặn nếu $\exists K > 0$ sao cho

$$||Ax|| \le K||x||, \forall x \in X. \tag{1}$$

Định lý

 $A: X \to Y$ là liên tục \Leftrightarrow bị chặn.

Đinh nghĩa

Số K nhỏ nhất thỏa mãn (1) được gọi là chuẩn của A, kí hiệu $\|A\|$,i.e.,

- $i) ||Ax|| \leq ||A|| \cdot ||x||, \forall x \in X,$
- ii) Nếu $||Ax|| < K||x||, \forall x \in X \text{ thì } ||A|| < K.$

Định lý

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} \frac{||Ax||}{||x||}.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 14 / 37

Định lý

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} \frac{||Ax||}{||x||}.$$

Ví dụ

Tìm chuẩn của A:C[0,1] o C[0,1] sau

$$1) (Ax)(t) = tx(t),$$

Định lý

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} \frac{||Ax||}{||x||}.$$

Ví dụ

Tìm chuẩn của A:C[0,1] o C[0,1] sau

- 1) (Ax)(t) = tx(t),
- 2) $(Ax)(t) = t^2x(0)$,

Định lý

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} \frac{||Ax||}{||x||}.$$

Ví dụ

Tìm chuẩn của $A:C[0,1] \rightarrow C[0,1]$ sau

- 1) (Ax)(t) = tx(t),
- 2) $(Ax)(t) = t^2x(0)$,
- 3) $(Ax)(t) = x(t^2)$.

 $\mathcal{L}(X,Y) := \{A : X \to Y | A \text{ là toán tử tuyến tính liên tục} \}.$

$$\mathcal{L}(X,Y) := \{A : X \to Y | A \text{ là toán tử tuyến tính liên tục}\}.$$

i)
$$(A + B)x = Ax + Bx$$
,

ii)
$$(\alpha A)x = \alpha Ax$$

$$\Rightarrow \mathcal{L}(X,Y)$$
 là một KGVT

$$\mathcal{L}(X,Y) := \{A : X \to Y | A \text{ là toán tử tuyến tính liên tục}\}.$$

i)
$$(A+B)x = Ax + Bx$$
,

ii)
$$(\alpha A)x = \alpha Ax$$

 $\Rightarrow \mathcal{L}(X,Y)$ là một KGVT $\Rightarrow \mathcal{L}(X,Y)$ là một KGĐC.

$$\mathcal{L}(X,Y) := \{A : X \to Y | A \text{ là toán tử tuyến tính liên tục}\}.$$

- i) (A+B)x = Ax + Bx,
- ii) $(\alpha A)x = \alpha Ax$
- $\Rightarrow \mathcal{L}(X,Y)$ là một KGVT $\Rightarrow \mathcal{L}(X,Y)$ là một KGĐC.

Đinh lý

 $Y \ Banach \Rightarrow \mathcal{L}(X,Y) \ Banach.$

Nói riêng, $X^* = \mathcal{L}(X, \mathbb{R})$ Banach.

Sự hội tụ trong KGĐC

Định nghĩa

Cho
$$\{A_n\} \subset \mathcal{L}(X,Y), A \in \mathcal{L}(X,Y).$$

- i) $A_n \to A$ hội tụ điểm $\forall x \in X, \lim_{n \to \infty} ||A_n x Ax|| = 0,$
- ii) $A_n \to A$ hội tụ theo chuẩn (hội tụ đều) $\lim_{n \to \infty} \|A_n A\| = 0$.
- i) Hội tụ đều ⇒ Hội tụ,
- ii) Hội tụ ∌ Hội tụ đều.

Sự hội tụ trong KGĐC

Định nghĩa

Cho $\{A_n\}\subset \mathcal{L}(X,Y), A\in \mathcal{L}(X,Y).$

- i) $A_n \to A$ hội tụ điểm $\forall x \in X$, $\lim_{n \to \infty} ||A_n x Ax|| = 0$,
- ii) $A_n o A$ hội tụ theo chuẩn (hội tụ đều) $\lim_{n o \infty} \|A_n A\| = 0$.
- i) Hội tụ đều ⇒ Hội tụ,
- ii) Hội tụ ∌ Hội tụ đều.

Tính chất

Cho A, $\{A_n\} \subset \mathcal{L}(X, Y)$, B, $\{B_n\} \subset \mathcal{L}(Y, Z)$.

- i) $||BA|| \leq ||B|| ||A||$,
- ii) $A_n \to A, B_n \to B \Rightarrow B_n A_n \to BA$ (các hội tụ theo chuẩn).

Chương 2: Không gian định chuẩn

- 1 Khái niệm không gian định chuẩn
- Toán tử tuyến tính liên tục
- 3 Toán tử nghịch đảo, toán tử song tuyến tính liên tục
- 4 Phiếm hàm tuyến tính liên tục

Bổ đề

Cho $A:X \to Y$. Hai mệnh đề sau tương đương

- *i*) Ker $A = \{0\}$,
- ii) $\forall y \in \operatorname{Im} A, \exists ! x \in X : Ax = y.$

Bổ đề

Cho $A: X \to Y$. Hai mệnh đề sau tương đương

- *i*) Ker $A = \{0\}$,
- ii) $\forall y \in \operatorname{Im} A, \exists ! x \in X : Ax = y.$

$$A^{-1}:\operatorname{Im} A \to X$$
 được gọi là toán tử nghịch đảo. $y\mapsto x$

Bổ đề

 A^{-1} : Im A o X là một toán tử tuyến tính và

$$(\forall x \in X), A^{-1}Ax = x, \quad (\forall y \in \operatorname{Im} A), AA^{-1}y = y.$$

Định lý

i) Nếu $A: X \to Y$ có A^{-1} liên tục thì

$$(\forall x \in X), \|Ax\| \ge m\|x\|,\tag{2}$$

với mọi số $m \leq \frac{1}{\|A^{-1}\|}$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 19 / 37

Định lý

i) Nếu $A: X \to Y$ có A^{-1} liên tục thì

$$(\forall x \in X), \|Ax\| \ge m\|x\|,\tag{2}$$

với mọi số $m \leq \frac{1}{\|A^{-1}\|}$.

ii) Ngược lại, nếu $\exists m>0$ thỏa mãn (2) thì A^{-1} tồn tại, liên tục và $\|A^{-1}\|<\frac{1}{m}$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 19 / 37

Đinh lý

i) Nếu $A: X \to Y$ có A^{-1} liên tục thì

$$(\forall x \in X), \|Ax\| \ge m\|x\|, \tag{2}$$

với mọi số $m \leq \frac{1}{\|A^{-1}\|}$.

ii) Ngược lại, nếu $\exists m>0$ thỏa mãn (2) thì A^{-1} tồn tại, liên tục và $\|A^{-1}\|\leq \frac{1}{m}$.

Chương 4: X, Y Banach, mọi $A \in \mathcal{L}(X, Y)$, song ánh đều $\exists A^{-1}$ liên tục.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 19 / 37

Định nghĩa

 $A: X \to Y$ và $A^{-1}: Y \to X$ tồn tại và liên tục \Rightarrow đẳng cấu.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 20 / 37

Định nghĩa

 $A: X \to Y$ và $A^{-1}: Y \to X$ tồn tại và liên tục \Rightarrow đẳng cấu.

Cho X, Y là các không gian Banach.

Định lý

Nếu $A: X \to Y$ là một đẳng cấu thì mọi toán tử tuyến tính liên tục $B: X \to Y$ sao cho $\|A - B\| \le \frac{1}{\|A^{-1}\|}$ cũng là đẳng cấu.

Chuỗi Neumann

Tính chất

Nếu X là không gian Banach và $A:X\to X,\|A\|<1$ thì

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Chuỗi $\sum_{k=0}^{\infty} A^k$ được gọi là chuỗi Neumann, I là toán tử đơn vị.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 21 / 37

Cho X, Y là các KGĐC.

Định nghĩa

 $A \in \mathcal{L}(X,Y)$ được gọi là compact nếu nó biến tập bị chặn thành tập compact tương đối

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 22 / 37

Cho X, Y là các KGĐC.

Định nghĩa

 $A \in \mathcal{L}(X,Y)$ được gọi là compact nếu nó biến tập bị chặn thành tập compact tương đối $\Leftrightarrow A(B), B = \{x \in X, \|x\| \le 1\}$ là compact tương đối.

Cho X, Y là các KGĐC.

Định nghĩa

 $A \in \mathcal{L}(X,Y)$ được gọi là compact nếu nó biến tập bị chặn thành tập compact tương đối $\Leftrightarrow A(B), B = \{x \in X, \|x\| \le 1\}$ là compact tương đối.

Compact \Rightarrow liên tục.

Cho X, Y là các KGĐC.

Định nghĩa

 $A \in \mathcal{L}(X,Y)$ được gọi là compact nếu nó biến tập bị chặn thành tập compact tương đối $\Leftrightarrow A(B), B = \{x \in X, ||x|| \le 1\}$ là compact tương đối.

Compact \Rightarrow liên tuc.

Ví du

1) dim $X, Y < +\infty \Rightarrow$ moi toán tử tuyến tính $A: X \to Y$ đều compact.

TS. Bùi Xuân Diêu Giải tích hàm I ♥ HUST 22 / 37

Cho X, Y là các KGĐC.

Định nghĩa

 $A \in \mathcal{L}(X,Y)$ được gọi là compact nếu nó biến tập bị chặn thành tập compact tương đối $\Leftrightarrow A(B), B = \{x \in X, \|x\| \le 1\}$ là compact tương đối.

Compact \Rightarrow liên tục.

Ví dụ

- 1) $\dim X, Y < +\infty \Rightarrow$ mọi toán tử tuyến tính $A: X \to Y$ đều compact.
- 2) $A: X \to Y$, dim $Im(A) < +\infty$ (finite rank operator) là compact.

Cho X, Y là các KGĐC.

Định nghĩa

 $A \in \mathcal{L}(X,Y)$ được gọi là compact nếu nó biến tập bị chặn thành tập compact tương đối $\Leftrightarrow A(B), B = \{x \in X, \|x\| \le 1\}$ là compact tương đối.

Compact \Rightarrow liên tục.

Ví dụ

- 1) $\dim X, Y < +\infty \Rightarrow$ mọi toán tử tuyến tính $A: X \to Y$ đều compact.
- 2) $A: X \to Y$, dim $Im(A) < +\infty$ (finite rank operator) là compact.
- 3) $A: C[a,b] \to C[a,b], (Ax)(t) = \int_a^b K(t,s)x(s)ds.$

Đặt $\mathcal{K}(X,Y) \subset \mathcal{L}(X,Y)$.

Định lý

 $\mathcal{K}(X,Y)$ là không gian con đóng của $\mathcal{L}(X,Y)$.

Đặt $\mathcal{K}(X,Y) \subset \mathcal{L}(X,Y)$.

Định lý

 $\mathcal{K}(X,Y)$ là không gian con đóng của $\mathcal{L}(X,Y)$.

Ví dụ

$$A: I_2 \ni x = (x_1, x_2, \dots, x_n, \dots) \mapsto (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{2^{n-1}}, \dots) \in I_2 \text{ compact.}$$

Đặt $\mathcal{K}(X,Y) \subset \mathcal{L}(X,Y)$.

Định lý

 $\mathcal{K}(X,Y)$ là không gian con đóng của $\mathcal{L}(X,Y)$.

Ví dụ

$$A: I_2 \ni x = (x_1, x_2, \dots, x_n, \dots) \mapsto (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{2^{n-1}}, \dots) \in I_2 \text{ compact.}$$

Định lý

 $\mathcal{K}(X,Y)$ là iđêan hai phía trong vành $\mathcal{L}(X,Y)$,

Đặt $\mathcal{K}(X,Y) \subset \mathcal{L}(X,Y)$.

Định lý

 $\mathcal{K}(X,Y)$ là không gian con đóng của $\mathcal{L}(X,Y)$.

Ví dụ

$$A: I_2 \ni x = (x_1, x_2, \dots, x_n, \dots) \mapsto (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{2^{n-1}}, \dots) \in I_2 \text{ compact.}$$

Định lý

 $\mathcal{K}(X,Y)$ là iđêan hai phía trong vành $\mathcal{L}(X,Y)$,i.e.,

$$A \in \mathcal{K}(X, Y), B \in \mathcal{L}(X, Y) \Rightarrow AB, BA \in \mathcal{K}(X, Y).$$

Đặt $\mathcal{K}(X,Y) \subset \mathcal{L}(X,Y)$.

Định lý

 $\mathcal{K}(X,Y)$ là không gian con đóng của $\mathcal{L}(X,Y)$.

Ví dụ

$$A: I_2 \ni x = (x_1, x_2, \dots, x_n, \dots) \mapsto (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{2^{n-1}}, \dots) \in I_2 \text{ compact.}$$

Định lý

 $\mathcal{K}(X,Y)$ là iđêan hai phía trong vành $\mathcal{L}(X,Y)$,i.e.,

$$A \in \mathcal{K}(X, Y), B \in \mathcal{L}(X, Y) \Rightarrow AB, BA \in \mathcal{K}(X, Y).$$

Toán tử compact

Bổ đề (Riesz)

Cho $Y \subsetneq X$ là KG con đóng.

$$\forall 0 < \delta < 1, \exists x \in X : ||x|| = 1, d(x, Y) := \inf_{y \in Y} ||x - y|| > 1 - \delta.$$

Toán tử compact

Bổ đề (Riesz)

Cho $Y \subsetneq X$ là KG con đóng.

$$\forall 0 < \delta < 1, \exists x \in X : ||x|| = 1, d(x, Y) := \inf_{y \in Y} ||x - y|| > 1 - \delta.$$

Hệ quả

$$\dim X < +\infty \Leftrightarrow B := \{x \in X : ||x|| = 1\}$$
 compact.

Toán tử compact

Bổ đề (Riesz)

Cho $Y \subsetneq X$ là KG con đóng.

$$\forall 0 < \delta < 1, \exists x \in X : ||x|| = 1, d(x, Y) := \inf_{y \in Y} ||x - y|| > 1 - \delta.$$

Hệ quả

$$\dim X < +\infty \Leftrightarrow B := \{x \in X : ||x|| = 1\} \text{ compact.}$$

Hệ quả

Toán tử đơn vị trong KGĐC vô hạn chiều không compact.

Toán tử compact

Bổ đề (Riesz)

Cho $Y \subsetneq X$ là KG con đóng.

$$\forall 0 < \delta < 1, \exists x \in X : ||x|| = 1, d(x, Y) := \inf_{y \in Y} ||x - y|| > 1 - \delta.$$

Hệ quả

$$\dim X < +\infty \Leftrightarrow B := \{x \in X : ||x|| = 1\} \text{ compact.}$$

Hệ quả

Toán tử đơn vị trong KGĐC vô hạn chiều không compact.

Hê quả

Toán tử compact trong không gian vô hạn chiều không thể có nghịch đảo liên tục.

Định nghĩa

$$A: X \times Y \to Z,$$

 $(x,y) \mapsto A(x,y)$

là song tuyến tính nếu nó tuyến tính với mỗi biến khi cố định biến còn lại.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 25 / 37

Định nghĩa

$$A: X \times Y \to Z,$$

 $(x,y) \mapsto A(x,y)$

là song tuyến tính nếu nó tuyến tính với mỗi biến khi cố định biến còn lại.

Tính liên tục, bị chặn

A được gọi là

i) liên tục:
$$\begin{cases} x_n \to x, \\ y_n \to y \end{cases} \Rightarrow A(x_n, y_n) \to A(x, y),$$

Định nghĩa

$$A: X \times Y \to Z,$$

 $(x,y) \mapsto A(x,y)$

là song tuyến tính nếu nó tuyến tính với mỗi biến khi cố định biến còn lại.

Tính liên tục, bị chặn

A được gọi là

i) liên tục:
$$\begin{cases} x_n \to x, \\ y_n \to y \end{cases} \Rightarrow A(x_n, y_n) \to A(x, y),$$

ii) bị chặn: $\exists K > 0$ sao cho

$$(\forall x \in X), (\forall y \in Y), \quad ||A(x,y)|| \le K \cdot ||x|| \cdot ||y||. \tag{3}$$

Định lý

A liên tục ⇔ bị chặn.

Định lý

A liên tuc ⇔ bi chăn.

Chuẩn của toán tử song tuyến tính

Số $K \ge 0$ nhỏ nhất sao cho

$$(\forall x \in X), (\forall y \in Y), \quad \|A(x,y)\| \le K \cdot \|x\| \cdot \|y\|. \tag{4}$$

được gọi là chuẩn của toán tử A.

Định lý

A liên tuc ⇔ bi chăn.

Chuẩn của toán tử song tuyến tính

Số $K \ge 0$ nhỏ nhất sao cho

$$(\forall x \in X), (\forall y \in Y), \quad \|A(x,y)\| \le K \cdot \|x\| \cdot \|y\|. \tag{4}$$

được gọi là chuẩn của toán tử A.

$$||A|| = \sup_{\|x\|=1, \|y\|=1} {\{||A(x,y)||\}}.$$

Chương 2: Không gian định chuẩn

- Khái niệm không gian định chuẩn
- Toán tử tuyến tính liên tục
- 3 Toán tử nghịch đảo, toán tử song tuyến tính liên tục
- 4 Phiếm hàm tuyến tính liên tục

Định nghĩa

 $f: X \to \mathbb{R}$ được gọi là một phiếm hàm.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 28 / 37

Dinh nghĩa

 $f: X \to \mathbb{R}$ được gọi là một phiếm hàm.

Chú ý

Tất cả các khái niệm và sự kiện đã chứng minh cho toán tử tuyến tính đều áp dụng được cho phiếm hàm tuyến tính như:

i) phiếm hàm tuyến tính bị chặn,

Định nghĩa

 $f: X \to \mathbb{R}$ được gọi là một phiếm hàm.

Chú ý

Tất cả các khái niệm và sự kiện đã chứng minh cho toán tử tuyến tính đều áp dụng được cho phiếm hàm tuyến tính như:

- i) phiếm hàm tuyến tính bị chặn,
- ii) phiếm hàm tuyến tính liên tuc,

Định nghĩa

 $f: X \to \mathbb{R}$ được gọi là một phiếm hàm.

Chú ý

Tất cả các khái niệm và sự kiện đã chứng minh cho toán tử tuyến tính đều áp dụng được cho phiếm hàm tuyến tính như:

- i) phiếm hàm tuyến tính bị chặn,
- ii) phiếm hàm tuyến tính liên tuc,
- iii) chuẩn của phiếm hàm tuyến tính.

Phiếm hàm tuyến tính trên \mathbb{R}^k

i) Cho $a=(a_1,a_2,\cdots,a_k)\in\mathbb{R}^k$. Khi đó tích vô hướng

$$\langle \cdot, \cdot \rangle : \mathbb{R}^k \to \mathbb{R},$$

$$x \mapsto \langle a, x \rangle$$

là một phiếm hàm tuyến tính liên tục trên \mathbb{R}^k .

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 29 / 37

Phiếm hàm tuyến tính trên \mathbb{R}^k

i) Cho $a=(a_1,a_2,\cdots,a_k)\in\mathbb{R}^k$. Khi đó tích vô hướng

$$\langle \cdot, \cdot \rangle : \mathbb{R}^k \to \mathbb{R},$$

$$x \mapsto \langle a, x \rangle$$

là một phiếm hàm tuyến tính liên tục trên \mathbb{R}^k .

ii) Ngược lại, ứng với mỗi phiếm hàm tuyến tính $f: \mathbb{R}^k \to \mathbb{R}$, luôn tồn tại véctơ $a \in \mathbb{R}^k$ sao cho $f(x) = \langle a, x \rangle, \forall x \in \mathbb{R}^k$.

Phiếm hàm tuyến tính trên C[a, b]

i)
$$t_0 \in [a, b] \Rightarrow f(x) = x(t_0)$$
.

Phiếm hàm tuyến tính trên C[a,b]

i)
$$t_0 \in [a, b] \Rightarrow f(x) = x(t_0)$$
.

ii)
$$f(x) = \int_{a}^{b} x(t)dt$$
.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 30 / 37

Phiếm hàm tuyến tính trên C[a,b]

i)
$$t_0 \in [a, b] \Rightarrow f(x) = x(t_0)$$
.

ii)
$$f(x) = \int_a^b x(t)dt$$
.

Phiếm hàm tuyến tính trên không gian tích

Mọi phiếm hàm tuyến tính trên $X \times Y$ đều có dạng

$$f(x,y)=f_1(x)+f_2(y),$$

với
$$f_1(x) = f(x,0), f_2(y) = f(0,y),$$

Phiếm hàm tuyến tính trên C[a,b]

i)
$$t_0 \in [a, b] \Rightarrow f(x) = x(t_0)$$
.

ii)
$$f(x) = \int_a^b x(t)dt$$
.

Phiếm hàm tuyến tính trên không gian tích

Mọi phiếm hàm tuyến tính trên $X \times Y$ đều có dạng

$$f(x,y)=f_1(x)+f_2(y),$$

với $f_1(x) = f(x,0), f_2(y) = f(0,y)$, và f liên tục $\Leftrightarrow f_1, f_2$ liên tục.

Không gian đối ngẫu

Định nghĩa

 $X^* = \mathcal{L}(X, \mathbb{R})$: không gian đối ngẫu hay liên hợp của X.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 31 / 37

Không gian đối ngẫu

Định nghĩa

 $X^* = \mathcal{L}(X,\mathbb{R})$: không gian đối ngẫu hay liên hợp của X.

 X^* là một không gian Banach.

Không gian đối ngẫu

Định nghĩa

 $X^* = \mathcal{L}(X,\mathbb{R})$: không gian đối ngẫu hay liên hợp của X.

 X^* là một không gian Banach.

Ví dụ

 $\forall f \in (\mathbb{R}^k)^*, \exists a \in \mathbb{R}^k$ sao cho $f(x) = \langle a, x \rangle$. Ánh xạ

$$(\mathbb{R}^k)^* \to \mathbb{R}^k,$$
 $f \mapsto a$

là một phép đẳng cấu \Rightarrow không gian tự liên hợp.

Không gian tự liên hợp (phản xạ)

Định lý

X nhúng tuyến tính đẳng cự vào X** bởi

$$X \ni x \mapsto F_x \in X^{**}, \quad F_x(f) = f(x), \forall f \in X^*.$$

Để thuận tiện, ta viết $\langle x, f \rangle = \langle f, F_x \rangle$.

Không gian tự liên hợp (phản xạ)

Định lý

X nhúng tuyến tính đẳng cự vào X** bởi

$$X \ni x \mapsto F_x \in X^{**}, \quad F_x(f) = f(x), \forall f \in X^*.$$

Để thuận tiện, ta viết $\langle x, f \rangle = \langle f, F_x \rangle$.

Định nghĩa

Nếu ánh $x_{\bar{q}}$ trên là tràn thì ta nói X là không gian $t_{\bar{q}}$ liên hợp (phản $x_{\bar{q}}$).

Không gian đối ngẫu (liên hợp)

Kí hiệu \approx đẳng cấu, đẳng cự.

Ví dụ

- 1) $c_0 = \{x_n\}, \lim_{n \to \infty} x_n = 0 \Rightarrow (c_0)^* \approx l_1$,
- 2) $(I_1)^* \approx I_{\infty}$,
- 3) $c = \{x_n\}$ hội tụ $\Rightarrow c^* \approx l_1$,
- 4) $(I_p)^* pprox I_q$, ở đó $\frac{1}{p} + \frac{1}{q} = 1$.

Định nghĩa

Cho X là một KGDC và $x_n, x \in X$.

i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n - x\| = 0.$

Định nghĩa

Cho X là môt KGĐC và $x_n, x \in X$.

- i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n x\| = 0$.
- ii) hội tụ yếu, $x_n \rightharpoonup x$ hoặc $x_n \stackrel{w}{\rightarrow} x \Leftrightarrow \forall \mu \in X^*$, $\lim_{n \to \infty} \langle x_n, \mu \rangle = \langle x, \mu \rangle$.

Định nghĩa

Cho X là một KGĐC và $x_n, x \in X$.

- i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n x\| = 0$.
- ii) hội tụ yếu, $x_n \rightharpoonup x$ hoặc $x_n \stackrel{w}{\rightarrow} x \Leftrightarrow \forall \mu \in X^*, \lim_{n \to \infty} \langle x_n, \mu \rangle = \langle x, \mu \rangle.$

Bài tập

1) Hội tụ mạnh ⇒ hội tụ yếu.

Định nghĩa

Cho X là một KGĐC và $x_n, x \in X$.

- i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n x\| = 0$.
- ii) hội tụ yếu, $x_n \rightharpoonup x$ hoặc $x_n \stackrel{w}{\rightarrow} x \Leftrightarrow \forall \mu \in X^*, \lim_{n \to \infty} \langle x_n, \mu \rangle = \langle x, \mu \rangle.$

- 1) Hội tụ mạnh ⇒ hội tụ yếu.
- 2) Hội tụ yếu ∌ hội tụ mạnh.

Định nghĩa

Cho X là một KGĐC và $x_n, x \in X$.

- i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n x\| = 0.$
- ii) hội tụ yếu, $x_n \rightharpoonup x$ hoặc $x_n \stackrel{w}{\rightarrow} x \Leftrightarrow \forall \mu \in X^*, \lim_{n \to \infty} \langle x_n, \mu \rangle = \langle x, \mu \rangle.$

- Hội tụ mạnh ⇒ hội tụ yếu.
- 2) Hội tụ yếu ∌ hội tụ mạnh.
- 3) Nếu dim $X<+\infty$, hội tụ mạnh \Leftrightarrow hội tụ yếu.

Định nghĩa

Cho X là một KGĐC và $x_n, x \in X$.

- i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n x\| = 0.$
- ii) hội tụ yếu, $x_n \rightharpoonup x$ hoặc $x_n \stackrel{w}{\rightarrow} x \Leftrightarrow \forall \mu \in X^*, \lim_{n \to \infty} \langle x_n, \mu \rangle = \langle x, \mu \rangle.$

- Hội tụ mạnh ⇒ hội tụ yếu.
- 2) Hội tụ yếu ∌ hội tụ mạnh.
- 3) Nếu dim $X<+\infty$, hội tụ mạnh \Leftrightarrow hội tụ yếu.
- 4) Trên tập compact tương đối, hội tụ mạnh ⇔ hội tụ yếu.

Định nghĩa

Cho X là một KGĐC và $x_n, x \in X$.

- i) hội tụ mạnh, hay hội tụ theo chuẩn $x_n \to x \Leftrightarrow \lim_{n \to \infty} \|x_n x\| = 0.$
- ii) hội tụ yếu, $x_n \rightharpoonup x$ hoặc $x_n \stackrel{w}{\rightarrow} x \Leftrightarrow \forall \mu \in X^*, \lim_{n \to \infty} \langle x_n, \mu \rangle = \langle x, \mu \rangle.$

- Hội tụ mạnh ⇒ hội tụ yếu.
- 2) Hội tụ yếu ∌ hội tụ mạnh.
- 3) Nếu dim $X<+\infty$, hội tụ mạnh \Leftrightarrow hội tụ yếu.
- 4) Trên tập compact tương đối, hội tụ mạnh ⇔ hội tụ yếu.
- 5) Hôi tu yếu ⇒ giới nôi.

Cho $\mu_n, \mu \in X^*$.

Định nghĩa

Ta nói μ_n hội tụ yếu * đến μ và viết $\mu_n \stackrel{w^*}{\to} \mu$ nếu

$$\forall x \in X, \lim_{n \to \infty} \langle x, \mu_n \rangle = \langle x, \mu \rangle.$$

Cho $\mu_n, \mu \in X^*$.

Định nghĩa

Ta nói μ_n hội tụ yếu * đến μ và viết $\mu_n \stackrel{w^*}{\to} \mu$ nếu

$$\forall x \in X, \lim_{n \to \infty} \langle x, \mu_n \rangle = \langle x, \mu \rangle.$$

Chú ý

- i) $\mu_n \to \mu \Leftrightarrow \lim_{n \to \infty} \|\mu \mu_n\| = 0$,
- $ii) \ \mu_n \stackrel{\mathsf{w}}{\to} \mu \Leftrightarrow \forall T \in X^{**}, \lim_{n \to \infty} \langle \mu_n, T \rangle = \langle \mu, T \rangle,$
- $\textit{iii)} \ \mu_n \overset{w^*}{\to} \mu \Leftrightarrow \forall x \in X, \lim_{n \to \infty} \langle x, \mu_n \rangle = \langle x, \mu \rangle.$

Cho $\mu_n, \mu \in X^*$.

Định nghĩa

Ta nói μ_n hội tụ yếu * đến μ và viết $\mu_n \stackrel{w^*}{\to} \mu$ nếu

$$\forall x \in X, \lim_{n \to \infty} \langle x, \mu_n \rangle = \langle x, \mu \rangle.$$

Chú ý

i)
$$\mu_n \to \mu \Leftrightarrow \lim_{n \to \infty} \|\mu - \mu_n\| = 0$$
,

$$ii) \ \mu_n \stackrel{\mathsf{w}}{\to} \mu \Leftrightarrow \forall T \in X^{**}, \lim_{n \to \infty} \langle \mu_n, T \rangle = \langle \mu, T \rangle,$$

iii)
$$\mu_n \stackrel{w^*}{\to} \mu \Leftrightarrow \forall x \in X, \lim_{n \to \infty} \langle x, \mu_n \rangle = \langle x, \mu \rangle.$$

Bài tập

$$\mu_n \to \mu \quad \Rightarrow \quad \mu_n \stackrel{\mathsf{w}}{\to} \mu \quad \Rightarrow \quad \mu_n \stackrel{\mathsf{w}^*}{\to} \mu.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♥ HUST 35 / 37

Bổ đề

- i) Hội tụ yếu là duy nhất,
- ii) Hội tụ yếu * là duy nhất.

Bổ đề

- i) Hội tụ yếu là duy nhất,
- ii) Hội tụ yếu * là duy nhất.

Bài tập

Chứng minh rằng

- a) dãy $\{\mu_n\}_{n\in\mathbb{N}}\subset X^*$ hội tụ yếu * thì bị chặn.
- b) dãy $\{x_n\}_{n\in\mathbb{N}}\subset X$ hội tụ yếu thì bị chặn.

Định nghĩa

Cho X là một KGĐC. Một hàm số

$$f: X \times X \to \mathbb{R},$$

 $(x,y) \mapsto f(x,y)$

được gọi là một <mark>phiếm hàm song tuyến tính</mark> nếu nó tuyến tính đối với mỗi biến khi cố đinh biến còn lai.

Định nghĩa

Cho X là một KGĐC. Một hàm số

$$f: X \times X \to \mathbb{R},$$

 $(x,y) \mapsto f(x,y)$

được gọi là một phiếm hàm song tuyến tính nếu nó tuyến tính đối với mỗi biến khi cố định biến còn lại.

Ví dụ

Trong \mathbb{R}^k , TVH $(x,y) = \sum_{i=1}^k x_i y_i$ là một phiếm hàm song tuyến tính.

- i) Phiếm hàm song tuyến tính liên tục,
- ii) Phiếm hàm song tuyến tính bị chặn,
- iii) Chuẩn của phiếm hàm song tuyến tính.