Stabilizačné diódy (Zenerové)

Dôvod vzniku javu: teplotne a zvýšenou intenzitou el. poľa generovane minoritné nosiče sú urýchľované a nadobudnú energiu, ktorá stačí v mriežke narušiť kovalentné väzby, vznikne lavínový jav

Parametre:

- U_z <u>stabilizačné napätie</u> udáva zvyčajne stred doporučeného pracovného rozsahu, pripadne prípustný výrobný rozptyl, alebo U_z pri určitom I_z,
- I_{Zmax}, I_{Zmin}, (zvyčajne 0,1 I_{Zmax}) -- môžu byť udané podmienky chladenia,
- R_d diferenciálny odpor,
- P_{Zmax} maximálna výkonová strata bez chladenia alebo s chladením,
 1 ΔU₇
- S_z <u>teplotný súčiniteľ</u>, $S_Z = \frac{1}{U_Z} \frac{\Delta U_Z}{\Delta T}$, pri $U_z > 5V$ prevláda lavínový jav $S_z > 0$; pri $U_z < 5V$ prevláda Zenerov prieraz $S_z < 0$; pre $U_z < 5$, $5V S_z < 0$,
- R_{thj} tepelný odpor
- Maximálna teplota prechodu

Použitie: napäťový stabilizátor, napäťová referencia

Schottkyho diódy - sú vytvorene na priechode kov (Al, Pt) N-typ polovodič. Využívajú jav vznikajúci na **styku kov - plovodič** Ak výstupná práca elektrónu v kove $\mathbf{e}.\Phi_{m} < \mathbf{e}.\Phi_{s}$ výstupná práca elektrónu v polovodiči typu \mathbf{N} , elektróny pri styku oboch látok prenikajú do kovu. V kove sa v dôsledku jeho vodivosti rozptýlia. V polovodiči vzniká silné odčerpanie elektrónov a prevládnu minoritné nosiče; dochádza k lokálnej zmene vodivosti z N na P t.j. k inverzii vodivosti

Používajú sa ako rýchle spínacie alebo detekčné diódy

Schottkyho diódy je možné považovať za unipolárny prvok, v ktorom sa na vzniku prúdu podieľajú iba elektróny ako majoritné nosiče. Majú malý dynamicky odpor a používajú sa ako rýchle spínače v oblasti cm vĺn a zmiešavače

Diódy PIN

Používajú sa v oblasti cm vĺn ako riadený odpor alebo spínač

Pri rýchlych zmenách smeru napätia nosiče. nestihnú Vyprázdniť oblať l a prejavuje sa to ako lineárny odpor

1.2.11 Varaktorová dióda (Varikap)

Využíva kapacitu PN prechodu polarizovaného v závernom smere, pričom kapacita je závislá od veľkosti priloženého záverneho napätia(viď vzťah pre kapacitu prechodu).Používa sa v napätím riadených oscilátoroch.

1.2.12 <u>Tunelová dióda (Esakiho)</u>

Je ešte viac dopovaná ako zenerová dióda, čo spôsobuje zúženie vyprázdnenej obalsti. Vzniká tzv tunelový efekt. Charakteristika:

Rozsah záporného dif. odporu 50mV až 250mV.

1.2.13 Svetlo emitujúca dióda (LED)

Proces emitovania svetla (elektroluminiscencie) svetloemitujúcej diódy (LED)

Materiály - GaAsP, GaP

Elektróny vracajúce sa z vodivostného pásma do mezihladiny (rekombinujú s dierami) vyžiaria energiu vo forme svetla. V prípade Si a Ge sa vyžiari energia vo forme tepla. Intenzita emitovaného svetla je úmerná počtu rekombinujúcich elektrónov (prúdu diódy).

Fotodióda pracuje inversne ako LED. Fotóny dopadajucého svetla nabúravajú kovalentné väzby a zvyšujú prúd v závernom smere.