

Sumário

Introdução	. 3
Objetivo	. 3
Levantamento de Requisitos	3
Arquitetura do Sistema	4
Estações Remotas	5
Configuração das Placas	. 5
Servidores	5
Gerenciamento de dados	6
Regra do sistema de consumo dos pontos de acesso	6
Diagrama de Casos de uso	7

Introdução

O presente documento apresenta uma análise de requisitos para a coleta de dados do clima de vários pontos de uma região, e a proposta para solução a partir de um sistema. A descrição dos elementos que fazem parte desse sistema, a comunicação entre as partes, a persistência dos dados e a interface com usuário.

Objetivo

O objetivo é análise e a descrição das funcionalidades do sistema de acordo com as necessidades do cliente e a descrição da implantação do sistema.

Levantamento de requisitos

O cliente apresenta a necessidade do monitoramento de 50.000 pontos indeterminados de uma região, cada um desses pontos possui um perfil de temperatura, para cada ponto de coleta é necessário a informação a localização por posição geográfica.

Arquitetura do Sistema

- Estações remotas serão instalados nos pontos de coleta, cada estação tem a capacidade de medir a temperatura, a pressão barométrica e posição geográfica (latitude e longitude).
- Nos pontos de coleta, onde não é possível o acesso à internet cabeada ou wireless, as estações remotas estarão adaptadas com chip 4G para acesso à rede.
- Cada estação remota é capaz de resistir as intempéries.
- O sistema da estação remota, auto consulta os dados climáticos, ciclicamente e guarda-os em cache.
- A API das estações remotas está preparada para receber requisições e enviar os dados previamente armazenados em cache.
- Servidores na nuvem consultarão os dados das estações remotas.
- Serão contratados servidores com robustez mais que suficiente para processar as requisições.
- Os dados consultados serão armazenados em banco de dados NoSql (MongoDB).
- Uma aplicação separada exibirá um dashboard para os usuários do sistema

 O dashboard busca os dados nos bancos de armazenamento dos servidores na nuvem.

Estações Remotas

O hardware utilizado para a coleta dos dados são placas Raspberry Pi, acoplados com uma placa de extensão com sensores de temperatura, umidade e pressão atmosférica, bibliotecas de softwares fornecem o software para a placa de extensão. Cada placa possui duas chamadas de API já implementadas. Os sens

Configuração das placas

- Raspberry Pi 3 Model B
 - o CPU Quad-Core 64-bit 1.2 GHz
 - o 1 GB RAM
 - o Micro SD 15 GB
 - o Wireless Lan / Ethernet 100 Mbps
 - o GPIO 40 pinos
- ANAVI Infrared pHAT
 - Sensor pressão barométrica
 - o Sensor de temperatura e umidade
- 4G + GPS Shield for Raspberry Pi
 - Transmissão de dados
 - LTE:
 - Downlink up to 100 Mbps
 - Uplink up 50 Mbps
 - HSPA+:
 - Downlink up to 42.0Mbps
 - Uplink up to 5.76Mbps
 - UMTS:
 - Uplink/Downlink up to 384 kbps
 - Protocolos
 - TCP/UDP

- HTTP
- FTP

Servidores

Servidores contratados na nuvem com robustez suficiente para coletar os dados das estações remotas e persisti-los em banco de dados não relacional, uma aplicação separada vai requisitar os dados armazenados e apresentar um dashboard para consulta dos usuários do sistema.

Gerenciamento de Dados

Será utilizado Docker, os sistemas, o banco de dados e o website para consulta dos usuários estarão separados em containers.

Tanto o sistema que consome os dados dos pontos de acesso, como o que disponibiliza serão feitos utilizando Java com o framework Spring, toda informação será consumida e enviada utilizando o padrão Json, o banco de dados será NoSql, mais especificamente o MongoDB.

Kibana é o responsável pela exibição do dashboard para o usuário.

Regra do sistema de consumo dos pontos de acesso

O sistema responsável pelo monitoramento dos pontos de acesso, possuem algumas lógicas de negócio predefinidas, elas são:

- Ui contendo o dashboard dos pontos de coleta.
- Caso uma quantidade de mais de 10% dos sensores em proximidade apresentar condições anormais será enviado um alerta.

Diagrama dos casos de uso

powered by Astah