

Lecture 4 Spatial Filtering

Guoxu Liu

Weifang University of Science and Technology

liuguoxu@wfust.edu.cn

October 16, 2020

Outline

- □ Spatial Filtering
 - Fundamentals of Spatial Filtering
 - Smoothing Spatial Filters
 - Sharpening Spatial Filters

Review

□ Operation Types

- Point Operation
 - Gray-level transformation
- Local Operation
 - Mask Processing or filtering
- Global Operation
 - Use values of all pixels
 - (e.g.) Fourier transform

Histogram equalization, etc

Input Image

Output Image

- ☐ Filter
 - Borrowed from frequency domain processing
 - Accepting (passing) or rejecting certain frequency components.
- ☐ E.g. lowpass filter
 - blur (smooth) an image

- ☐ The Mechanics of Spatial Filtering
- > A filter consists of:
 - 1) a neighborhood
 - 2) a predefined operation
 - Linear spatial filter if the operation performed on the image pixels is linear
 - Nonlinear otherwise

☐ Linear filtering with a filter mask

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	w(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

■ Spatial Correlation

Step 1)

1	2	0	3	1
0	M	2	1	0
2	1	5	2	4
3	1	0	1	2
0	3	2	6	0

$$g(x,y) = \sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) f(x+s,y+t)$$

5	

■ Spatial Correlation

Step 2)

1	2	0	3	1
0	ന	2	1	0
2	1	5	2	4
3	1	0	1	2
0	3	2	6	0

5	5	

■ Spatial Correlation

Step 9)

1	2	0	3	1
0	3	2	1	0
2	1	5	2	4
3	1	0	1	2
0	3	2	6	0

$g(x,y) = \sum_{s=-1} \sum_{t=-1} w(s,t) f(x+s,y+t)$
--

5	5	7
-1	-4	0
-3	3	-3

■ Spatial Correlation

1	2	0	3	1
0	ന	2	1	0
2	1	5	2	4
3	1	0	1	2
0	3	2	6	0

5	5	7
1	-4	0
-3	3	-3

However, the image size changes

■ Spatial Correlation

Limit Filtering

Padding 0 or constant
Replicating columns/rows

Partial Filtering

■ Spatial Padding

1	1	2	0	3	1	1
1	1	2	0	ന	~	1
0	0	ന	2	1	0	0
2	2	1	5	2	4	4
3	ന	7	0	1	2	2
0	0	3	2	6	0	0
0	0	3	2	6	0	0

-1	-1	-1
0	0	0
1	1	1

□ Spatial Padding

1	1	2	0	3	1	1
1	1	2	0	ന	1	1
0	0	3	2	1	0	0
2	2	1	5	2	4	4
3	3	1	0	1	2	2
0	0	3	2	6	0	0
0	0	3	2	6	0	0

-1	-1	-1
0	0	0
1	1	1

-1	2	1	1	-4
1	5	5	7	5
4	1	-4	0	4
-2	-3	3	-3	-4
-4	1	9	5	1

■ Spatial Correlation

□ Vector Representation of Linear Filtering

w_1	W2	<i>W</i> 3
W_4	W 5	W 6
<i>W</i> 7	W 8	W 9

- ☐ Generating Spatial Filter Masks
 - The filter coefficients are selected with different purposes
 - e.g. averaging filtering

$$R = \frac{1}{9} \sum_{i=1}^{9} z_i$$

- e.g. nonlinear filtering: max operation
 - a 5 * 5 max filter: the maximum intensity value of the 25 pixels and assigns that value to location (x, y)

- ☐ Classification
 - Linear
 - Nonlinear

- ☐ Function of smoothing spatial filters
 - Blurring or Noise reduction

- Smoothing Linear Filters
 - Output is the average of pixels in the neighborhood of the filter mask
 - Function
 - Noise reduction
 - Disadvantage
 - Undesirable side effect of blurring edges
 - E.g.

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
1/6 ×	2	4	2
	1	2	1

■ Smoothing Linear Filters

$$g(x, y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}$$

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

Weighted average

☐ Effect of Smoothing for Different Filter Size

Original image

Filter size m=3

m=5

m=9

m=15

m = 35

☐ Effect of Smoothing for Different Filter Size

Order-Statistic (Nonlinear) Filters

■ Nonlinear filters

- Based on ordering (ranking) the pixels in the image area encompassed by the filter
- Commonly used
 - Median filter: effective for salt-and-pepper noise

Order-Statistic (Nonlinear) Filters

■ Application

X-ray image with saltand-pepper noise

Average filtering of 3×3 size

Median filtering of 3×3 size

Order-Statistic (Nonlinear) Filters

Application

Salt-and-Pepper Noise

Original Image

Gaussian Smoothing

Min Filtering

Median Filtering

Min and Max Filtering

- □ Sharpening
 - Highlight fine detail in an image or enhance detail that has been blurred
 - Spatial differentiation could be used for sharpening, while spatial integration for smoothing
- ☐ Effects of 1st and 2nd differences

$$\frac{df}{dx} = f(x+1) - f(x)$$

$$\frac{d^2f}{dx^2} = f(x+1) + f(x-1) - 2f(x)$$

□ Second Derivative – Laplacian

• Isotropic: rotation invariant

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Linear operator

$$\nabla^2(af(x,y) + bg(x,y)) = \nabla^2(af(x,y)) + \nabla^2(bg(x,y)) = a\nabla^2 f + b\nabla^2 g$$

Discrete form

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

☐ Sharpening with the Laplacian

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if negative center} \\ f(x,y) + \nabla^2 f(x,y) & \text{if positive center} \end{cases}$$

☐ Simplification using a mask

$$g(x,y)$$
= $f(x,y) + \nabla^2 f$
= $5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

Unsharp Masking

- It sharpens the image by subtracting a blurred (lowpass) version of the original image
- Photographers used it for many years to enhance images

 It was accomplished during film development by superposing a blurred negative onto the corresponding positive film to produce a sharper

result

- The process is similar to adding a detail enhanced (highpass) version of the image to the original
- This process has visual effect of causing overshoot and undershoot at the edges, which has the effect of emphasizing the edges

$$f_{usm}(x,y) = f(x,y) - k\bar{f}(x,y)$$

$$= (1-k)f(x,y) + k[f(x,y) - \bar{f}(x,y)]$$

$$= (1-k)f(x,y) + kf_{hp}(x,y)$$

$$f(x,y) - \bar{f}(x,y)$$

$$overshoot$$

$$(1-k)f(x,y) + kf_{hp}(x,y)$$

$$undershoot$$

Original Image

Unsharp masking lower limit=0, upper=100, 2% low and high clipping

 $k \approx 0.4$

Unsharp masking lower limit=0, upper=150, 2% low and high clipping

 $k \approx 0.6$

Unsharp masking lower limit=0 upper=200, 2% low and high clipping

 $k \approx 0.8$

☐ High-Boost Filtering

$$f_{hb}(x,y) = Af(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f_{hp}(x,y)$$

$$f_{hb}(x,y) = \begin{cases} Af(x,y) - \nabla^2 f(x,y) & \text{if negative center} \\ Af(x,y) + \nabla^2 f(x,y) & \text{if positive center} \end{cases}$$

0	-1	0
-1	A+4	-1
0	-1	0

-1	-1	-1
-1	A+8	-1
-1	-1	-1

A = 2

A = 1

☐ First-Order Derivative (Gradient)

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \qquad \begin{aligned} \|\nabla f\| &= mag(\nabla f) = \left(G_x^2 + G_y^2\right)^{1/2} \\ &= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2} \\ &\approx |G_x| + |G_y| \end{aligned}$$

Discrete form

Roberts Operator

-1	-1	-1	-1	0	
0	0	0	-1	0	
1	1	1	-1	0	

Prewitt Operator

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel Operator

Summary

- □ Spatial Filtering
 - Fundamentals of Spatial Filtering
 - Smoothing Spatial Filters
 - Sharpening Spatial Filters

□Next: Filtering in the Frequency Domain

Thank You!