16CSCN01I: Introduction to Computer Networks

Lecture 2: Protocol Layers & Network Delays

Dr. Amal ElNahas

Networking: A Top-Down Approach

Components of the Network Edge

- End systems (hosts/servers):
 - Run application programs (Web, email) at "edge of network"
- Models of hosts communication:
 - Client/server model
 - Peer-peer model
 - Hybrid model

Network Core

- Mesh of interconnected routers sharing the infrastructure
- How to build a network core: (how data is transferred through the net?)
 - Circuit switching: dedicated circuit per call: telephone net
 - Packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

- Circuit switching: dedicated circuit per call: telephone net
- Model: data sent continuously
- Created a session (e.g., phone call) reserves dedicated bandwidth in series of switches between caller and recipient
- Guaranteed capacity (in both directions) so long as session up

- No call setup before data transfer
- Data is divided into packets that are sent independently (header contains control info, e.g., source and destination addresses)
- At each node the entire packet is received, stored, and then forwarded (store-and-forward)
- No capacity is allocated
- On demand use of resources: If you need more, you get more, If you need less, you get less

Header Data

The Internet

What if link is full?

■ What if link is full? Queue the packet

What if queue is full? Drop the packet

Delay in Packet-Switched Network

Four Sources of Packet Delay

1. Nodal processing:

- check bit errors
- determine output link

2. Queueing

- time waiting at output link for transmission
- depends on congestion level of router

Four Sources of Packet Delay

3. Transmission delay:

R=link bandwidth (bps)
L=packet length (bits)
time to send bits into link = L/R

4. Propagation delay:

d = length of physical link
s = propagation speed in medium
 (~2x108 m/sec)
propagation delay = d/s

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc} = processing delay (typically a few microsecs or less)
- d_{queue} = queuing delay (depends on congestion)
- d_{trans} = transmission delay (is L/R, significant for low-speed links)
- d_{prop} = propagation delay (a few microsecs to hundreds of msecs)

Example

- Propagation delay
 - suppose the distance between A and B is 4000 km, propagation speed in medium (~2x10^5 km/sec), then oneway propagation delay is:

$$\frac{4000km}{200,000km/s} = 20ms$$

- Transmission delay
 - suppose a channel of 14 Kbps bandwidth, then the transmission delay of a packet of 1 Kbits is

$$\frac{1kbits}{14kbps} \approx 70ms$$

Packet switching versus circuit switching

- Packet switching:
 - ✓ Most suitable for bursty traffic
 - ✓ No call setup
 - ✓ Efficient use of resources
 - -- Protocols needed for reliability and congestion control
 - -- No performance guarantee (still working on it)

Example

Consider sending a 30 Mbit MP3 file from a source host to a destination host. All links in the path between source and destination have a transmission rate of 10 Mbps. Assume that the propagation speed is 2 * 10^8 meters/sec, and the distance between source and destination is 10,000 km. If there is only one link between source and destination and the file is sent as 1 message,

- what is the total delay?
- How many bits will the source have transmitted when the first bit arrives at the destination?

Application Layer What Will We Study?

HTTP: Hyper Text Transfer Protocol

- Protocol used to access data on the web
- Defines how web clients request web pages from the server and how web servers transfer web pages to clients

Architecture of WWW

Web Document

- A web document consists of a <u>base HTML-file</u> which includes several referenced objects (HTML file, JPEG image, Java applet, audio file,...)
- Each object is addressable by a URL. A URL is composed of host name of the server and object's path name
- Example:

HTTP: Example

You enter the following: www.uni.edu/courses/L10.index that contains text, references to 10 jpeg objects

- 1a. http client initiates TGP connection to http server (process) at www.uni.edu
- 2. http client sends http request message (containing URL) into TCP connection socket (wants object courses/L10.index)
- 5. http client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects
- 6. Steps 1-4 repeated for each of 10 jpeg objects

- 1b. http server at host www.guc.edu waiting for TCP connection at port 80. "accepts" connection, notifying client
- 3. http server receives request, forms response msg containing requested object (courses/L10.index), sends message into socket
- 4. http server closes TCP conn.

Non-Persistent HTTP Connections

- http/1.0 : server parses request, responds, closes connection (1 object per connection)
- Request time for a single object = 2*RTT + file transmission time
- Request time for n object = 2*n*RTT + files transmission time
- Browsers often open parallel connections

Persistent HTTP Connections

- Default for http/1.1
- TCP connection is initiated only once, All objects (files) are transmitted), TCP connection is closed
- Request time for n objects = (n+1)*RTT + transmission time

HTTP

Non-persistent:

 $n \text{ objects } \rightarrow 2n^*RTT$

Persistent:

n objects → n*RTT

N.B: after considering base file

To be continued....