

目录

- 一 任务背景
- 二任务描述
 - 1. 任务一
 - 2. 任务二
- 三算法流程
- 四 验收流程

一任务背景

一 任务背景

- 1、理解Apriori算法思想与流程;
- 2、应用Apriori思想解决问题;
- 3、PCY算法解决问题。

二任务描述

二 任务描述

◆任务一

- 以Groceries.csv作为输入文件,编程实现Apriori算法,要求使用给定的数据文件进行实验,获得频繁项集以及关联规则。
- 输出1~3阶频繁项集与关联规则,各个频繁项的支持度,各个规则的置信度,各阶频繁项集的数量以及关联规则的总数。
- 固定参数以方便检查,频繁项集的最小支持度为0.005,关联规则的最小置信度为0.5;

二 任务描述

◆任务二

- 在Apriori算法的基础上,使用PCY或PCY的几种变式multiHash、multiStage等算法对二阶频繁项集的计算阶段进行优化。
- 输出1~3阶频繁项集与关联规则,各个频繁项的支持度,各个规则的置信度,各阶频繁项集的数量以及关联规则的总数。
- 输出PCY或PCY变式算法中的vector的值,以bit位的形式输出。
- 固定参数以方便检查,频繁项集的最小支持度为0.005,关联规则的最小置信度为0.5。

三算法流程

三基础知识

理论回顾 —— 购物篮模型

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

项:每一个商品,如Bread

项集:一些商品的集合,如{Coke,Milk},含k个项的集合称为k阶项集

支持度: 项集在所有购物篮中出现次数或频率:

s(itemset) = count(itemset) / len(market-basket)

支持度达到某个阈值的项集称为频繁项集,实验需要得到1~3阶频繁项集

Groceries.csv

关联规则: I->j, I是一个项集, j是一个项

置信度:某个关联规则的可信程度。Rule: J-{j} -> j. J是一个频繁集, j是J中的一个项

 $conf(rule) = s(J) / s(J-{j})$

实验中要求**筛选**出置信度不低于最小置信度的规则

	items
1	{citrus fruit, semi-finished bread, margarine, ready soups}
2	{tropical fruit, yogurt, coffee}
3	{whole milk}
4	{pip fruit, yogurt, cream cheese , meat spreads}
5	{other vegetables, whole milk, condensed milk, long life bakery product}
6	{whole milk, butter, yogurt, rice, abrasive cleaner}
7	{rolls/buns}
8	{other vegetables, UHT-milk, rolls/buns, bottled beer, liquor (appetizer)}
9	{pot plants}
10	{whole milk, cereals}
11	{tropical fruit, other vegetables, white bread, bottled water, chocolate}
12	{citrus fruit, tropical fruit, whole milk, butter, curd, yogurt, flour, bottled water, dishes}
13	{beef}
14	{frankfurter, rolls/buns, soda}
15	{chicken, tropical fruit}

三 Apriori基础知识

基本思路: 频繁项集的所有子集也一定是频繁项集。

注意,由 L_k 构造出 C_{k+1} 的方法有很多,其目的只是减小后续筛选阶段的工作量。但必须保证 L_{k+1} 是 C_{k+1} 的子集。

三算法流程

◆挖掘频繁项集

三算法流程

- ◆由频繁项集产生关联规则
 - 对于一个频繁项I, I的每个子集A, 生成一个规则 $A \rightarrow I \setminus A$
 - 筛选出所有置信度大于最小置信度的规则
 - 一个规则的置信度计算公式: $confidence(A \rightarrow I \setminus A) = support(I) / support(A)$

三 算法流程

◆ PCY算法

Frequent items Item counts FOR (each basket): Bitmap Main memory FOR (each item in the basket) : Hash table Counts of for pairs add 1 to item's count; candidate pairs FOR (each pair of items): New hash the pair to a bucket; Pass 1 Pass 2 in **PCY** add 1 to the count for that bucket;

bit vector 的每一位代表一个bucket是否为频繁的,**如果一个bucket中的计数小于最小** 支持度,那么映射到这个桶的二阶项必然是非频繁的

e.g. hash(i,j, buckets_len)=(i*j) % buckets_len

四验收流程

四 验收流程

- 检查1~3阶频繁项集和关联规则。
- 检查频繁项集和关联规则的数量。
- 提问了解编程思路和对Apriori算法和PCY算法的理解。