第八周习题课 微分中值定理,单调性,极值,洛必达法则 题目

- 费马定理: f(x) 在 x_0 点取到极值, f(x) 在 x_0 点可微,则 $f'(x_0) = 0$ 。
- 罗尔定理: f(x) 在 [a,b] 连续, 在 (a,b) 可微, f(a) = f(b), 则 $\exists \xi \in (a,b)$, 使 $f'(\xi) = 0$
- 拉格朗日定理: f(x) 在 [a,b] 连续, 在 (a,b) 可微,则 $\exists \xi \in (a,b)$,使

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

● 柯西中值定理: f(x), g(x) 在 [a,b]连续, 在 (a,b)可微, 且 $g'(x) \neq 0$, 则 ∃ $\xi \in (a,b)$,

使
$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

- (达布定理)导数零点定理:设函数 y=f(x) 在 [a,b] 上可导,并且 $f'_+(a)f'_-(b)<0$ 。 则必 $\exists x_0 \in (a,b)$,使得 $f'(x_0)=0$ (在 x_0 处有水平切线)。
- 洛必达法则——求不定式的极限 如果
 - (1) $\lim f(x) = \lim g(x) = 0$ (或∞)
 - (2) 在极限点附近, f'(x), g'(x)都存在, 且 $g'(x) \neq 0$;
 - (3) $\lim \frac{f'(x)}{g'(x)}$ 存在或为无穷大,则 $\lim \frac{f(x)}{g(x)}$ 存在或为无穷大,且等于 $\lim \frac{f'(x)}{g'(x)}$ 。

一. 微分中值定理用于证明题

- 2. 设函数 f(x), g(x) 在 [a,b] 上连续,在 (a,b) 内具有二阶导数,且存在相等的最大值, f(a) = g(a), f(b) = g(b),证明:存在 $\xi \in (a,b)$,使得 $f''(\xi) = g''(\xi)$ 。
- 3. 函数 f(x),g(x) 在 [a,b] 连续,在 (a,b) 二阶可导,且 $g''(x) \neq 0$, f(a) = f(b) = g(a) = g(b) = 0。 求证 (1) $g(x) \neq 0$, $\forall x \in (a,b)$;

(2)
$$\exists c \in (a,b)$$
, 使得 $\frac{f(c)}{g(c)} = \frac{f''(c)}{g''(c)}$ 。

- **4.** 已知函数 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0) = 0, f(1) = 1。证明:
 - (I) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
 - (II) 存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.

【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.

5. f(x) [0,+∞) 内可导,且在 $0 \le f(x) \le \ln \frac{2x+1}{x+\sqrt{1+x^2}}$, $\forall x \in [0,+\infty)$ 。证明: $\exists \xi \in (0,+\infty), \quad f'(\xi) = \frac{2}{2\xi+1} - \frac{1}{\sqrt{1+\xi^2}} \, .$

二. 零点问题

6. 对任意正整数n,证明方程 $e^x - x^n = 0$ 至多有三个不同的零点。

三. 单调性与不等式问题

7.
$$y = x^{\frac{1}{x}} (x > 0)$$
 在______上增;在_____上滤。

- 8. 设 $f:[0,1] \to [0,1]$ 为连续函数, f(0) = 0, f(1) = 1, f(f(x)) = x。证明:
 - (I) f(x) 是单调函数;
 - (II) f(x) = x.

9. 设
$$x > 0$$
,证明不等式 $\frac{x}{x^2 + 2x + 2} < \arctan(x+1) - \frac{\pi}{4} < \frac{x}{2}$ 。

10. 证明: 当
$$x \in (0,1)$$
时, $(1+x)\ln^2(1+x) < x^2$

四. 洛必达法则

11. 求极限
$$\lim_{x\to 0} \frac{1}{x^3} \left[\left(\frac{2 + \cos x}{3} \right)^x - 1 \right].$$

12. 求极限
$$\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x}\right)$$
。