Devoir à la maison n° 11

À rendre le 1^{er} février

- \square $C^0(\mathbb{R},\mathbb{R})$ est la \mathbb{R} -algèbre des fonctions continues de \mathbb{R} dans \mathbb{R} .
- \square L'objectif du problème est d'étudier les ensembles $\mathscr E$ et $\mathscr F$ suivants :

$$\mathscr{E} = \{ f \in C^0(\mathbb{R}, \mathbb{R}) \mid \forall (x, y) \in \mathbb{R}^2, \ f(x+y) + f(x-y) = 2f(x)f(y) \}.$$

 ${\mathscr F}$ est la partie constituée des éléments f de ${\mathscr E}$ tels que :

- f n'est pas la fonction identiquement nulle.
- f s'annule au moins une fois sur \mathbb{R} .

Première Partie:

- 1) Montrer que la fonction cosinus est dans l'ensemble \mathscr{E} .
- 2) Démontrer la formule : $\forall (x,y) \in \mathbb{R}^2$, $\operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y = \operatorname{ch}(x+y)$. En déduire que la fonction ch est dans l'ensemble \mathscr{E} .
- 3) Soit f dans \mathscr{E} ; on définit pour tout α :

$$f_{\alpha}(x): \mathbb{R} \to \mathbb{R}$$
.
 $x \mapsto f(\alpha x)$.

Montrer que pour tout réel α , la fonction f_{α} est dans \mathscr{E} .

4) On fixe un élément f de \mathscr{E} .

En donnant à x et à y des valeurs particulières, prouver que :

- **a)** f(0) vaut 0 ou 1.
- **b)** Si f(0) = 0, alors f est la fonction identiquement nulle.
- c) Si f(0) = 1, alors f est une fonction paire.

Deuxième Partie:

On pourra utiliser librement le résultat suivant :

Si a est un élément fixé de \mathbb{R}_+^* et si $D_a = \left\{ a \frac{p}{2^q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \right\}$, tout réel est limite d'une suite d'éléments de D_a .

Soit f un élément de \mathscr{F} . On pose $E=\{x>0\mid f(x)=0\}.$

- 5) a) En utilisant un résultat de la première partie, montrer que f(0) = 1, et que f s'annule au moins une fois sur \mathbb{R}_+^* .
 - b) Montrer que E admet une borne inférieure que l'on note a.

- c) Montrer que pour tout $n \in \mathbb{N}^*$, il existe $x_n \in E$ tel que $x_n \in [a, a + 1/n[$. En déduire qu'il existe une suite d'éléments de E qui converge vers a.
- d) En utilisant la continuité de f en a, prouver que f(a)=0. En déduire que : a>0.
- e) En utilisant le théorème des valeurs intermédiaires, montrer que : $\forall x \in [0, a[\,,\, f(x) > 0])$.
- 6) On pose $\omega = \frac{\pi}{2a}$, et on note

$$g: \mathbb{R} \to \mathbb{R} .$$

$$x \mapsto \cos(\omega x)$$

- a) Soit $q \in \mathbb{N}$; en se rappelant que f(0) = 1, montrer que $f\left(\frac{a}{2^q}\right) + 1 = 2\left[f\left(\frac{a}{2^{q+1}}\right)\right]^2$.
- b) En déduire, en raisonnant par récurrence sur q, que :

$$\forall q \in \mathbb{N}, \ f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right).$$

On démontrerait de même le résultat suivant que le candidat pourra utiliser librement :

$$si \ q \in \mathbb{N} \ est \ fix\'e : \forall p \in \mathbb{N}, \ f\left(p\frac{a}{2^q}\right) = g\left(p\frac{a}{2^q}\right).$$

- c) Prouver que : $\forall x \in D_a, \ f(x) = g(x).$
- d) En déduire que f = g.
- 7) En déduire tous les éléments de \mathscr{F} .

— FIN —