

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=5; day=30; hr=12; min=17; sec=48; ms=565;]

=====

Reviewer Comments:

<210> 30

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 30

gcttatggcg cgccctcagga ctggagcttg ctccgc

36n

21

Please delete the extra n which appears beside the total number of bases 36 and also remove the end of file text which is below the bases(21) as shown in the attachment above.

Application No: 10590956 Version No: 1.0

Input Set:

Output Set:

Started: 2008-05-09 16:08:23.466
Finished: 2008-05-09 16:08:25.990
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 524 ms
Total Warnings: 24
Total Errors: 7
No. of SeqIDs Defined: 30
Actual SeqID Count: 30

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 402	Undefined organism found in <213> in SEQ ID (3)
W 402	Undefined organism found in <213> in SEQ ID (4)
W 402	Undefined organism found in <213> in SEQ ID (5)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 402	Undefined organism found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)
W 213	Artificial or Unknown found in <213> in SEQ ID (25)
W 213	Artificial or Unknown found in <213> in SEQ ID (26)

Input Set:

Output Set:

Started: 2008-05-09 16:08:23.466
Finished: 2008-05-09 16:08:25.990
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 524 ms
Total Warnings: 24
Total Errors: 7
No. of SeqIDs Defined: 30
Actual SeqID Count: 30

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (27)
W 213	Artificial or Unknown found in <213> in SEQ ID (28)
W 213	Artificial or Unknown found in <213> in SEQ ID (29)
W 213	Artificial or Unknown found in <213> in SEQ ID (30)
E 342	'n' position not defined found at POS: 39 SEQID(30)
E 254	The total number of bases conflicts with running total Input: 0, Calculated : 39 SEQID(30)
E 323	Invalid/missing amino acid numbering SEQID (30)at Protein (1)
E 323	Invalid/missing amino acid numbering SEQID (30) POS (1)
E 323	Invalid/missing amino acid numbering SEQID (30)at Protein (5)
E 323	Invalid/missing amino acid numbering SEQID (30)at Protein (10)
E 253	The number of bases differs from <211> Input: 36 Calculated:39

SEQUENCE LISTING

<110> Genencor International, Inc.
Bower, Benjamin
Mitchinson, Colin
Larenas, Edmund

<120> Cellulase Fusion Protein and Heterologous Cellulase Fusion Construct Encoding the Same

<130> GC832-PCT

<140> 10590956
<141> 2008-05-09

<150> PCT/US2005/010242
<151> 2005-03-25

<150> US 60/556,711
<151> 2004-03-25

<160> 30

<170> PatentIn version 3.2

<210> 1
<211> 1570
<212> DNA
<213> Trichoderma reesei

<400> 1

atgtatcgga	agttggccgt	catctcgccc	ttcttggcca	cagctcgtgc	tcagtcggcc	60
tgcactctcc	aatcggagac	tcacccgcct	ctgacatggc	agaaaatgctc	gtctggtggc	120
acttgcactc	aacagacagg	ctccgtggtc	atcgacgcca	actggcgctg	gactcacgt	180
acgaacagca	gcacgaactg	ctacgatggc	aacacttggaa	gctcgaccct	atgtcctgac	240
aacgagacct	gcgcgaaagaa	ctgctgtctg	gacgggtcccg	cctacgcgtc	cacgtacgga	300
gttaccacga	gcggtaaacag	cctctccatt	ggctttgtca	cccagtctgc	gcagaagaac	360
gttggcgctc	gccttacact	tatggcgagc	gacacgacct	accaggaatt	caccctgctt	420
ggcaacgagt	tctcttcga	tgttgatgtt	tcgcagctgc	cgttaagtgac	ttaccatgaa	480
cccctgacgt	atcttcttgt	gggctcccaag	ctgactggcc	aatttaaggt	gcggcttcaa	540
cgtagctctc	tacttcgtgt	ccatggacgc	ggatgggtgc	gtgagcaagt	atcccaccaa	600
caccgctggc	gccaagtacg	gcacggggta	ctgtgacagc	cagtgtcccc	gcgatctgaa	660
gttcatcaat	ggccagggcc	acgttgaggg	ctgggagccg	tcatccaaca	acgcaaacac	720
gggcatttggaa	ggacacggaa	gtgtgtctc	tgagatggat	atctgggagg	ccaaactccat	780
ctccgaggct	cttacccccc	acccttgac	gactgtcgcc	caggagatct	gcgagggtga	840
tgggtgcggc	ggaacttact	ccgataaacag	atatggcgcc	acttgcgatc	ccgatggctg	900
cgacttggAAC	ccataccggcc	tggcaacac	cagcttctac	ggccctggct	caagctttac	960
cctcgatacc	accaagaaat	tgaccgttgt	cacccagttc	gagacgtcg	gtgccatcaa	1020
ccgataactat	gtccagaatg	gctgtacttt	ccagcagccc	aacgcccggc	ttggtagtta	1080
ctctggcaac	gagctcaacg	atgattactg	cacagctgag	gaggcagaat	tcggcggtac	1140
ctctttctca	gacaaggcg	gcctgactca	gttcaagaag	gctacctctg	gcggcatgg	1200
tctggtcatg	agtctgtggg	atgatgtgag	ttttagggac	aaacatgcgc	tttgacaaag	1260
agtcaagcag	ctgactgaga	tgttacagta	ctacgccaac	atgctgtggc	tggactccac	1320
ctacccggaca	aacgagacct	cctccacacc	cggtgcgtg	cgccggaaagct	gctccaccag	1380
ctccgggtgc	cctgctcagg	tcaaatctca	gtctcccaac	gccaagggtca	ccttctccaa	1440
catcaagttc	ggaccattg	gcagcaccgg	caacccttagc	ggcggcaacc	ctcccgccgg	1500
aaacccggcct	ggcaccacca	ccacccggcc	cccagccact	accactggaa	gtctcccg	1560

acctactagt 1570

<210> 2

<211> 51

<212> DNA

<213> Trichoderma reesei

<400> 2

atgtatcga agttggccgt catctcgccc ttcttggcca cagtcgtgc t 51

<210> 3

<211> 1438

<212> DNA

<213> Trichoderma reesei

<400> 3

cagtcggcct gcactctcca atcggagact caccgcctc tgacatggca gaaatgctcg 60
tctggtgccca ctgcactca acagacaggc tccgtggta tcgacgcca ctggcgctgg 120
actcacgcta cgaacacgag cacgaactgc tacgatggca acacttggag ctgcacccta 180
tgtcctgaca acgagacctg cgcaagaac tgctgtctgg acggtgccgc ctacgcgtcc 240
acgtacggag ttaccacgag cggtAACAGC ctctccattg gctttgtcac ccagtctgca 300
cagaagaacg ttggcgctcg cctttacctt atggcgagcg acacgaccta ccaggaattc 360
accctgtttt gcaacgagtt ctcttcgtat gttgatgttt cgcaagctgcc gtaagtgact 420
taccatgaac ccctgacgta tttttgtt ggctccacgc tgactggcca atttaaggtg 480
cggcttgaac ggagctctt acttcgtgtc catggacgag gatggggcg tgagcaagta 540
tccccaccaac accgctggcg ccaagtacgg cacggggta ttttttttttccatccatc 600
cgatctgaag ttcatcaatg gccaggccaa cggtggggc tgggagccgt catccaacaa 660
cgccaaacacg ggcatggag gacacggaaatg ctgctgtctt gagatggata tctggggaggc 720
caactccatc tccgaggctc ttacccccc cccttgcacg actgtcgcc aggagatctg 780
cgagggttat ggggtggcg gaacttactc cgataacaga tatggcgca ctgcgtatcc 840
cgatggctgc gacttggacc cataccgcctt gggcaacacc agtttctacg gcccggctc 900
aagctttacc ctgcatacca ccaagaaattt gaccgtgtc acccagttcg agacgtcg 960
tgccatcaac cgatactatg tccagaatgg cgtcaacttc cagcagccca acgcccagct 1020
tggtagttac tctggcaacg agctcaacga tgattactgc acagctgagg aggccagaatt 1080
cggcggatcc tctttcttag acaaggccgg cctgacttag ttcaagaagg ctacctctgg 1140
cggcatgggt ctggcatga gtctgtggta tgatgtgatg ttgatggaca aacatgcgcg 1200
ttgacaaaaga gtcaaggcgc tgactgagat gttacagttac tacgccaaca tgctgtggct 1260
ggactccacc taccggacaa acggagacccctt ctccacaccc ggtggccgtgc gcggaaagctg 1320
ctccaccacg tccgggtgtcc ctgctcaggat cgaatcttagt tctcccaacg ccaagggtcac 1380
cttctccaaac atcaagttcg gacccattgg cagcaccggc aaccctagcg gcggcaac 1438

<210> 4

<211> 81

<212> DNA

<213> Trichoderma reesei

<400> 4

cctcccgccg gaaacccgccc tggcaccacc accacccgccc gcccagccac taccactgg 60
agctctcccg gacctactag t 81

<210> 5

<211> 480

<212> PRT

<213> Trichoderma reesei

<400> 5

Met Tyr Arg Lys Leu Ala Val Ile Ser Ala Phe Leu Ala Thr Ala Arg
1 5 10 15
Ala Gln Ser Ala Cys Thr Leu Gln Ser Glu Thr His Pro Pro Leu Thr
20 25 30
Trp Gln Lys Cys Ser Ser Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser
35 40 45
Val Val Ile Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser
50 55 60
Thr Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp
65 70 75 80
Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala
85 90 95
Ser Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser Ile Gly Phe
100 105 110
Val Thr Gln Ser Ala Gln Lys Asn Val Gly Ala Arg Leu Tyr Leu Met
115 120 125
Ala Ser Asp Thr Thr Tyr Gln Glu Phe Thr Leu Leu Gly Asn Glu Phe
130 135 140
Ser Phe Asp Val Asp Val Ser Gln Leu Pro Cys Gly Leu Asn Gly Ala
145 150 155 160
Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro
165 170 175
Thr Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln
180 185 190
Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Gln Ala Asn Val Glu Gly
195 200 205
Trp Glu Pro Ser Ser Asn Asn Ala Asn Thr Gly Ile Gly Gly His Gly
210 215 220
Ser Cys Cys Ser Glu Met Asp Ile Trp Glu Ala Asn Ser Ile Ser Glu
225 230 235 240
Ala Leu Thr Pro His Pro Cys Thr Thr Val Gly Gln Glu Ile Cys Glu
245 250 255
Gly Asp Gly Cys Gly Gly Thr Tyr Ser Asp Asn Arg Tyr Gly Gly Thr
260 265 270
Cys Asp Pro Asp Gly Cys Asp Trp Asn Pro Tyr Arg Leu Gly Asn Thr
275 280 285
Ser Phe Tyr Gly Pro Gly Ser Ser Phe Thr Leu Asp Thr Thr Lys Lys
290 295 300
Leu Thr Val Val Thr Gln Phe Glu Thr Ser Gly Ala Ile Asn Arg Tyr
305 310 315 320
Tyr Val Gln Asn Gly Val Thr Phe Gln Gln Pro Asn Ala Glu Leu Gly
325 330 335
Ser Tyr Ser Gly Asn Glu Leu Asn Asp Asp Tyr Cys Thr Ala Glu Glu
340 345 350
Ala Glu Phe Gly Gly Ser Ser Phe Ser Asp Lys Gly Leu Thr Gln
355 360 365
Phe Lys Lys Ala Thr Ser Gly Gly Met Val Leu Val Met Ser Leu Trp
370 375 380
Asp Asp Tyr Tyr Ala Asn Met Leu Trp Leu Asp Ser Thr Tyr Pro Thr
385 390 395 400
Asn Glu Thr Ser Ser Thr Pro Gly Ala Val Arg Gly Ser Cys Ser Thr
405 410 415
Ser Ser Gly Val Pro Ala Gln Val Glu Ser Gln Ser Pro Asn Ala Lys
420 425 430
Val Thr Phe Ser Asn Ile Lys Phe Gly Pro Ile Gly Ser Thr Gly Asn
435 440 445
Pro Ser Gly Gly Asn Pro Pro Gly Gly Asn Pro Pro Gly Thr Thr Thr

450 455 460
Thr Arg Arg Pro Ala Thr Thr Thr Gly Ser Ser Pro Gly Pro Thr Ser
465 470 475 480

<210> 6
<211> 431
<212> PRT
<213> Trichoderma reesei

<400> 6
Gln Ser Ala Cys Thr Leu Gln Ser Glu Thr His Pro Pro Leu Thr Trp
1 5 10 15
Gln Lys Cys Ser Ser Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser Val
20 25 30
Val Ile Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser Thr
35 40 45
Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp Asn
50 55 60
Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala Ser
65 70 75 80
Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser Ile Gly Phe Val
85 90 95
Thr Gln Ser Ala Gln Lys Asn Val Gly Ala Arg Leu Tyr Leu Met Ala
100 105 110
Ser Asp Thr Thr Tyr Gln Glu Phe Thr Leu Leu Gly Asn Glu Phe Ser
115 120 125
Phe Asp Val Asp Val Ser Gln Leu Pro Cys Gly Leu Asn Gly Ala Leu
130 135 140
Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro Thr
145 150 155 160
Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys
165 170 175
Pro Arg Asp Leu Lys Phe Ile Asn Gly Gln Ala Asn Val Glu Gly Trp
180 185 190
Glu Pro Ser Ser Asn Asn Ala Asn Thr Gly Ile Gly Gly His Gly Ser
195 200 205
Cys Cys Ser Glu Met Asp Ile Trp Glu Ala Asn Ser Ile Ser Glu Ala
210 215 220
Leu Thr Pro His Pro Cys Thr Thr Val Gly Gln Glu Ile Cys Glu Gly
225 230 235 240
Asp Gly Cys Gly Gly Thr Tyr Ser Asp Asn Arg Tyr Gly Gly Thr Cys
245 250 255
Asp Pro Asp Gly Cys Asp Trp Asn Pro Tyr Arg Leu Gly Asn Thr Ser
260 265 270
Phe Tyr Gly Pro Gly Ser Ser Phe Thr Leu Asp Thr Thr Lys Lys Leu
275 280 285
Thr Val Val Thr Gln Phe Glu Thr Ser Gly Ala Ile Asn Arg Tyr Tyr
290 295 300
Val Gln Asn Gly Val Thr Phe Gln Gln Pro Asn Ala Glu Leu Gly Ser
305 310 315 320
Tyr Ser Gly Asn Glu Leu Asn Asp Asp Tyr Cys Thr Ala Glu Glu Ala
325 330 335
Glu Phe Gly Gly Ser Ser Phe Ser Asp Lys Gly Gly Leu Thr Gln Phe
340 345 350
Lys Lys Ala Thr Ser Gly Gly Met Val Leu Val Met Ser Leu Trp Asp
355 360 365
Asp Tyr Tyr Ala Asn Met Leu Trp Leu Asp Ser Thr Tyr Pro Thr Asn

370	375	380
Glu	Thr Ser Ser Thr Pro Gly Ala Val Arg Gly Ser Cys Ser Thr Ser	
385	390	395
Ser	Gly Val Pro Ala Gln Val Glu Ser Gln Ser Pro Asn Ala Lys Val	
405	410	415
Thr Phe Ser Asn Ile Lys Phe Gly Pro Ile Gly Ser Thr Gly Asn		
420	425	430

<210> 7
<211> 1077
<212> DNA
<213> Acidothermus cellulolyticus

<400> 7	
gcgggcggcg gctattggca caccgagcggc cgggagatcc tggacgcgaa caacgtgccg	60
gtacggatcg ccggcatcaa ctggtttggg ttgcgaaacct gcaattacgt cgtgcacgg	120
ctctggtcac gcgactaccg cagcatgctc gaccagataa agtcgctcg	180
atccggctgc cgtactctga cgacattctc aagccggca ccatgcccga cagcatcaat	240
tttttaccaga tgaatcagga cctgcagggt ctgacgtcct tgcaaggatcat ggacaaaatc	300
gtcgcgtacg cccgtcagat cggcctgcgc atcattctt accggccaccg accggattgc	360
agcggggcagt cggcgtctgt gtacacgagc agcgtctcg aggctacgtg gattccgac	420
ctgcaagcgc tggcgcagcg ctacaaggga aacccgacgg tcgtcggctt tgacttgcac	480
aacgagccgc atgacccggc ctgctggggc tgccggcgtc cgagcatcga ctggcgattg	540
gcccggcggc gggccggaaa cggcgtgtc tggtaatc cgaacctgtc catttcgtc	600
gaagggtgtgc agagctacaa cggagactcc tactgggtggg gcccgaacct gcaaggagcc	660
ggccagtgacc cggctgtgtc gaacgtgccc aaccgcctgg tgtactcgcc gcacgactac	720
ccgacgagcgt tctacccgca gacgtgggtc agcgatccga cttccccaa caacatgccc	780
ggcatctgga acaagaactg gggatcaccc ttcaatcaga acattgcacc ggtatggct	840
ggcgaattcg gtacgacact gcaatccacg accgaccaga cgtggctgaa gacgctcg	900
cagtacctac ggccgaccgc gcaatacggt gcccggacat tccagtggac cttctggcc	960
tggaaacccccc attccggcga cacaggagga attctcaagg atgactggca gacggtcgac	1020
acagtaaaag acggctatct cgcgcgcgatc aagtgcgtca ttttcgatcc tgtcggc	1077

<210> 8
<211> 359
<212> PRT
<213> Acidothermus cellulolyticus

<400> 8			
Ala Gly Gly Gly Tyr Trp His Thr Ser Gly Arg Glu Ile Leu Asp Ala			
1	5	10	15
Asn Asn Val Pro Val Arg Ile Ala Gly Ile Asn Trp Phe Gly Phe Glu			
20	25	30	
Thr Cys Asn Tyr Val Val His Gly Leu Trp Ser Arg Asp Tyr Arg Ser			
35	40	45	
Met Leu Asp Gln Ile Lys Ser Leu Gly Tyr Asn Thr Ile Arg Leu Pro			
50	55	60	
Tyr Ser Asp Asp Ile Leu Lys Pro Gly Thr Met Pro Asn Ser Ile Asn			
65	70	75	80
Phe Tyr Gln Met Asn Gln Asp Leu Gln Gly Leu Thr Ser Leu Gln Val			
85	90	95	
Met Asp Lys Ile Val Ala Tyr Ala Gly Gln Ile Gly Leu Arg Ile Ile			
100	105	110	
Leu Asp Arg His Arg Pro Asp Cys Ser Gly Gln Ser Ala Leu Trp Tyr			
115	120	125	
Thr Ser Ser Val Ser Glu Ala Thr Trp Ile Ser Asp Leu Gln Ala Leu			
130	135	140	

Ala Gln Arg Tyr Lys Gly Asn Pro Thr Val Val Gly Phe Asp Leu His
 145 150 155 160
 Asn Glu Pro His Asp Pro Ala Cys Trp Gly Cys Gly Asp Pro Ser Ile
 165 170 175
 Asp Trp Arg Leu Ala Ala Glu Arg Ala Gly Asn Ala Val Leu Ser Val
 180 185 190
 Asn Pro Asn Leu Leu Ile Phe Val Glu Gly Val Gln Ser Tyr Asn Gly
 195 200 205
 Asp Ser Tyr Trp Trp Gly Gly Asn Leu Gln Gly Ala Gly Gln Tyr Pro
 210 215 220
 Val Val Leu Asn Val Pro Asn Arg Leu Val Tyr Ser Ala His Asp Tyr
 225 230 235 240
 Ala Thr Ser Val Tyr Pro Gln Thr Trp Phe Ser Asp Pro Thr Phe Pro
 245 250 255
 Asn Asn Met Pro Gly Ile Trp Asn Lys Asn Trp Gly Tyr Leu Phe Asn
 260 265 270
 Gln Asn Ile Ala Pro Val Trp Leu Gly Glu Phe Gly Thr Thr Leu Gln
 275 280 285
 Ser Thr Thr Asp Gln Thr Trp Leu Lys Thr Leu Val Gln Tyr Leu Arg
 290 295 300
 Pro Thr Ala Gln Tyr Gly Ala Asp Ser Phe Gln Trp Thr Phe Trp Ser
 305 310 315 320
 Trp Asn Pro Asp Ser Gly Asp Thr Gly Gly Ile Leu Lys Asp Asp Trp
 325 330 335
 Gln Thr Val Asp Thr Val Lys Asp Gly Tyr Leu Ala Pro Ile Lys Ser
 340 345 350
 Ser Ile Phe Asp Pro Val Gly
 355

<210> 9
 <211> 1914
 <212> DNA
 <213> Acidothermus cellulolyticus

<400> 9
 aacgaccgt acatccagcg gttcctcacg atgtacaaca agattcacga cccagcgaac 60
 ggctacttca gccccaggg aattccctac cactcggtag aaacgctcat cgttgaggca 120
 ccggactacg ggcacgagac aacctcgag gcgtacagct tctggctctg gctcgaagcg 180
 acgtacggcg cagtgaccgg caactggacg ccgttcaaca acgcctggac gacgatggaa 240
 acgtacatga tcccgcagca cgccggaccag ccgaacaacg cgtcgtacaa ccccaacacg 300
 ccggcgttgt acgtccggaa agagccgtg cccagcatgt acccggttgc catcgacacg 360
 acggtgcggg ttgggcacga cccgctcgcc gccgaattgc agtcgacgta cggcactccg 420
 gacatttacg gcatgcactg gctggccgac gttgacaaca tctacggata cggcgacacg 480
 cccggcgggt gttgcaact cggtccttc gctaaggccg tctcctacat caacacattc 540
 cagcgcggct cgcaggagtc cgtctggag acggtcaccc agccgacgtg cgacaacggc 600
 aagtacggtg gggcgcacgg ctacgtcgac ctgttcatcc agggttcgac gccgcccgcag 660
 tggaaagtaca ccgatcccc ggacgcccac gcccgtcccg tccaggctgc gtactgggcc 720
 tacacctg