

FEL ZČU

Kompendium elementárních znalostí

ZETP

- ➤ Jaký je převodní vztah mezi °C a termodynamickou stupnicí
 - 0°C = 273.15 K
 - 0K = -273.15°C
- Vyjádřete vztah mezi jednotkami joule a kalorie
 - 1 cal = 4.1868 J
- Definice absolutně černého tělesa
 - A (poměrná pohltivost) = 1
 - B (poměrná odrazivost) = 0
 - C (poměrná propustnost) = 0
- Poměrná pohltivost
 - A = Energie pohlcená / Energie celková; pro absolutně černé těleso A=1
- > Jaké jsou druhy přenosu tepla
 - vedením (kondukcí)
 - prouděním (konvekcí)
 - sáláním (radiací)
- ➤ Jaká konstanta určuje množství tepla v jednotce objemu
 - c ... měrná tepelná kapacita [Jkg⁻¹K⁻¹]
- Jaké jsou rozměry základních tepelných veličin
 - termodynamická teplota Θ [K]
 - součinitel tepelné vodivosti λ [Wm⁻¹K⁻¹]
 - součinitel přestupu tepla z jednoho prostředí do druhého α [Wm⁻²K⁻¹]
 - tepelný měrný odpor $^1\!/_{\lambda}$ [m. K. W $^{-1}$]
 - hustota tepelného toku ${f q}=-\lambda\,{
 m grad}\,\Theta\,\,[{
 m Wm}^{-2}]$
 - tepelný tok $P = \int \mathbf{q} \, d\mathbf{S}$ [W]
- Kdy je součinitel tepelné vodivosti λ [Wm⁻¹K⁻¹] minimální
 - materiál je pórovitý, má malou hustotu
- Jaké jsou základní teplotní body oceli?
 - 750°C Curieův bod
 - 900°C kalení
 - 1200°C tváření za tepla
 - 1400°C tavení
- Vztah pro proudění (Newtonův zákon):
 - $P = \alpha.S.(\vartheta_1 \vartheta_2)$ [W] , kde α [W. m⁻². K⁻¹] je součinitel prostupnosti tepla z jednoho prostředí do druhého, S je plocha a $\vartheta_1 \vartheta_2$ teplotní spád (1…okolí, 2…vsázky)

- > Fyzikální vlivy na α (součinitel přestupu tepla)
 - rozdíl teplot, vlhkost, drsnost povrchu, viskozita, proudění prostředí (poloha stěny)
- Jaké jsou rovnice harmonického elmg. vlnění

 - kde $k^2 = \mu . \varepsilon . \omega^2 j . \mu . \gamma . \omega \Rightarrow k = \alpha j . \beta$
- Co je to k
 - konstanta šíření elmg. vlnění $k^2 = \mu. \varepsilon. \omega^2 j. \mu. \gamma. \omega \implies k = \alpha j. \beta$
 - α ... fázová konstanta, β ... útlum
- > Tepelná vodivost
 - λ [W. m⁻¹. K⁻¹]
- Jak závisí tepelná vodivost na teplotě
 - je jí přímo úměrná $\lambda = \lambda_0 (1 + b.\vartheta)$, b ... materiálová konstanta
- Na čem závisí λ
 - Q, c, Δυ, ρ, rozměry tělesa
- > Jaké jsou druhy elektrického ohřevu
 - dielektrický
 - indukční (nad 100kW)
 - odporový (přímým průchodem proudu, do 100kW)
 - plasmový
 - obloukový
 - elektronový (ohřev elektronovými paprsky)
 - laserový
 - infračervený
- Ovlivnění pracovního bodu ve statické charakteristice ss oblouku
 - změnou I, nebo vzdáleností elektrod (tedy R)
- > Jaké jsou druhy odporového ohřevu
 - přímý
 - nepřímý
- U jakého ohřevu se uplatňují H a E
 - H u indukčního ohřevu
 - E u dielektrického ohřevu
- ➤ Jaká je intenzita E uvnitř kruhového vodiče
 - E = 0j

- \triangleright Co je to x_2
 - argument cylindrické funkce $x_2=r_2\frac{\sqrt{2}}{a}$, kde r_2 je poloměr vsázky a a je hloubka vniku
- Jaké jsou typy výbojů
 - doutnavý (v plynech při malých tlacích)
 - jiskrový (při průrazu)
 - obloukový
- Jaké jsou druhy elektrických pecí
 - kelímkové
 - kanálkové
- Kdy se používá indukční kelímková pec
 - 50Hz, 150Hz, 500Hz, menší až do 4kHz
 - nad teploty 1 400°C
 - tekutá nemagnetická vsázka
 - výroba ocelí
- Kdy se používá indukční kanálková pec
 - 50Hz, "permanentní provoz"
 - tavení barevných kovů
 - zušlechťování šedé litiny
- Jaké jsou druhy elektrických vařičů
 - otevřené volný topný vařič
 - s uzavřenou topnou deskou topný článek umístěn v plášti
- > Jaká je účinnost elektrické a plynové pece
 - $\eta = 0.35$ plynová pec
 - $\eta = 0.78$ elektrická pec při 1240°C
- Vyjádřete účinnost indukční elektrické pece
 - $\eta_{celk} = \frac{P_z}{P_z + P_z + P_z}$, kde P_1 je příkon induktoru, P_2 vsázky a P_3 pásového vedení a stínění
 - 65 ÷ 85%
- Jaká je účinnost vařiče
 - $\eta = \frac{m.c.\Delta\vartheta}{P.t}$
- Dva způsoby určení P₁₁
 - z Joulových ztrát
 - z Poyntingova vektoru $P_{11} = \text{Re}(\vec{\mathbf{N}}_{11})$ stř.
- Výkon
 - $P = R.I_{ef}^2 = \frac{1}{2} R.I_{max}^2 = \frac{U_{ef}^2}{R} [W]$

> Metody měření teploty termočlánky

- odchylková metoda
- kompenzační metoda

> Cejchování termočlánků

- porovnáním s normálem
- pomocí pevně definovaných teplotních bodů

Závislost termoelektrického napětí na teplotě

• lineární, $U = (\alpha_A - \alpha_B)(\vartheta_T - \vartheta_S)$ [mV]

➤ Termočlánky

- Cr-Ko (-250÷350°C)
- Fe-Ko (-200÷700°C)
- NiCr-Ni (0÷1 200°C)
- PtRh-Pt (0÷1 300°C)

Jaké jsou druhy indukčních zařízení

- tavící × kalící × prohřívací
- pece kelímkové × kanálkové

Dělení podle kmitočtu

- nf síťová frekvence
- sf středofrekvenční (50÷10kHz)
- vf vysokofrekvenční (nad 10kHz)
- vvf MHz

Druhy stínění

- vodivou stěnou (pláštěm)
- pomocí transformátorových plechů

> Na jakém základě funguje stínění transformátorovými plechy

na základě magnetické vodivosti

> Kdy se používá dvouvrstvá cívka

pro zařízení do 50 Hz

Jaká jsou stádia vsázky

- kusová magnetická (20 ÷ 750°C)
- kusová nemagnetická (750 ÷ 1400°C)
- tekutá nemagnetická (1400°C ÷ 1650°C)

➤ Co je to Curieův bod?

Je to bod, při kterém dochází k tomu, že se materiál stává nemagnetickým, mizí jeho
magnetické vlastnosti má μ_r = 1. Je to materiálová konstanta a pro každý materiál má jinou
hodnotu, např. pro ocel je to 768 °C.

- Princip vzniku síly v indukční kelímkové peci
 - vlivem elektrodynamických sil se silně víří tavenina. Vlivem tlaku magnetických sil na vsázku
 vzniká u stěny v kelímku tavenině podtlak, v ose taveniny přetlak. Tavenina vtéká ke stěně
 vlivem hydrostatických sil a vzdouvá se ve středu kelímku. Závisí na příkonu P, elektrické
 vodivosti (konduktivitě) vsázky v a klesající hodnotě frekvence f.
 - $\vec{\mathbf{F}} = \vec{\mathbf{I}} \times \vec{\mathbf{B}}$
- Co způsobuje víření v peci
 - elektrodynamické síly způsobené mg. polem $\vec{F} = \vec{I} \times \vec{B}$
- Proč se používá stínění indukční pece
 - pro zamezení namáhání nosných konstrukcí pece magnetickým tokem
- Proč má indukční pec dutý vodič
 - v dutině proudí chladící médium
- Náhrada průměrů
 - $d_c = d_1 + a_1$... cívka induktoru
 - $d_v = d_2 a_2$... vsázka
 - $d_s = d_3 + a_3$... stínění
- > 0 kolik procent se zvýší indukčnost vsázky díky stínění
 - o 10%
- ➤ Určete hloubku vniku ve vzduchové mezeře cívky pro f = 1 kHz
 - $a=\sqrt{\frac{2}{\omega.\mu.\gamma}}$ je pro $\gamma o 0$ (vzduch je nevodivý) $a o \infty$
- > Jaká je hloubka vniku pro stejnosměrný proud
 - $a = \sqrt{\frac{2}{\omega \cdot \mu \cdot \gamma}}$ je pro $\omega \to 0$ (ss proud) $a \to \infty$
- Jaká je optimální tloušťka vsázky
 - $a_{opt} = 2.5a \div 3a$; $a = \sqrt{\frac{2}{\omega \cdot \mu \cdot \gamma}}$
- ➤ Kolik procent energie vnikne do hloubky 1a, 2a, 3a?
 - 1*a* ... 86,4%
 - 2a ... 98.16%
 - 3*a* ... 99,75%
- > Jaká je optimální tloušťka stěny
 - pro $d_{opt} = \frac{\pi}{2}$ je $R_{21} \rightarrow minimáln$ í $\Rightarrow \Delta P$ jsou minimální
 - pásové vedení, vodič induktoru i stínící plášť musí mít minimální odpor pro minimalizaci ztrát způsobených vířivými proudy

- Na čem závisí tloušťka pásového vedení
 - na *a*
- Na čem závisí výška pásového vedení
 - na Î
- Podle čeho se určuje vzdálenost pásů u pásového vedení
 - podle U_G ... napětí zdroje
- Na čem závisí odpor pásového vedení
 - průřez (délka × výška), délka, konduktivita resp. rezistivita (γ resp. ϱ), hloubka vniku (a)
- Na čem závisí homogenní pole mezi vedením
 - na U_G ... napětí zdroje
- Vznik stojatého vlnění
 - vzniká superpozicí (složením) postupné a odražené vlny
- > Rovnice stojatého vlnění
 - $\mathbf{\bar{E}} = \mathbf{Z} \cdot \mathbf{\bar{H}}_2$, $j \cdot \sin(\alpha x)$; $\mathbf{\bar{H}} = \mathbf{\bar{H}}_2$, $j \cdot \cos(\alpha x) \cdot e^{-j\omega t}$
- Jak se odráží vlna v tenké stěně na rozhraní vodivého a nevodivého
 - s opačnou fází H a se stejnou fází E
- Podle jaké funkce klesá elektromagnetické vlnění ve vodivé stěně
 - podle funkce $f(x) = e^{-\frac{x}{a}}$ klesá průběh **H**, **J**, **E**
 - podle funkce $f(x) = e^{-\frac{2x}{a}}$ klesá průběh σ
- > H, E ve vodivé vsázce válcové
 - H ... mg. skinefekt
 - E ... el. skinefekt
- > H. E ve vodivé vsázce válcové
 - H ... homogenní
 - E ... nulové
- Jak tlustá stěna utlumí záření
 - iakákoli
- \triangleright Průzařnost materiálu, když $x_2 = 2$, $x_2 = 50$, $x_2 = 100$
 - nevyhovuje 2
 - pro d=2a absorbuje 80% výkonu, zbytek projde skrz
 - pro d < a téměř neabsorbuje teplo, nevýhodné pro indukční ohřev

- Co je symetrizační zařízení, kdy se používá
 - pro zařízení nad 500kW
 - k převedení jednofázové zátěže na symetrickou zátěž trojfázovou
- Návrh symetrizačního zařízení pro 600kW / 1000Hz
 - nelze, neboť jak známo, síťová frekvence je na 50Hz
- \triangleright Výpočet Θ = ?, pro λ = 1,2 μ m

•
$$\lambda_m = \frac{2892}{\Theta} [\mu \text{m}, \text{K}] \Rightarrow \Theta = \frac{2892}{1.2} \text{K} = 2410 \text{ K}$$

- > Z čeho se odvozuje C při kompenzaci
 - z činného proudu zdroje $Im[I_G] = 0$
 - $\bullet \quad C = \frac{L_I}{R_I^2 + \omega^2 L_I^2}$
- Jaká je tloušťka, při níž se H a E utlumí na 1/e
 - tloušťka stěny $d = a, E_1 = e^{-1}.E, H_1 = e^{-1}.H$
- > V jakém prostředí se vlna neodráží
 - v nevodivém
 - · nevzniká stojatá vlna
- ➤ Kdy je uvažována slabá nebo silná stěna v souvislosti s hloubkou vniku a
 - $\approx d \geq 6,28a$
- Jaká je vlnová délka pro f=1 kHz

•
$$\lambda = \frac{c}{f} = \frac{3.10^8}{10^3} m = 3.10^5 m$$

- ➤ Jaká je vlnová délka?
 - $\lambda = 2\pi a \; \text{pro} \; \gamma \neq 0$, (tedy vodivé prostředí)
 - $\lambda = \frac{c}{f}$ pro $\gamma = 0$, (tedy nevodivé prostředí)
- Jaká je vlnová délka infrazáření
 - $\lambda = 760 \div 1000 \text{ nm}$
- ➤ Kde je větší rychlost elmg. vlny
 - v nevodivém prostředí $v_{\gamma=0}\sim c$, kdežto ve vodivém prostředí $~v_{\gamma\neq0}=2\pi af$
- Určení směru Poyntingova vektoru
 - N=E×H, platí obecné pravidlo o směru vektorového součinu. Dívám-li se proti směru výsledného vektoru (zde tedy N vstupuje do oka), vektory mají od prvního k druhému kladný směr otáčení (proti směru hod. ručiček)

- > Hustota proudu
 - $\vec{\mathbf{J}} = \gamma . \vec{\mathbf{E}} [A. m^{-2}]$
- ightharpoonup Kdy je $\gamma = 0$
 - v nevodivém prostředí
- ➤ Poyntingův vektor
 - hustota toku elmg. záření na jednotku plochy
 - $\vec{\mathbf{N}} = \vec{\mathbf{E}} \times \vec{\mathbf{H}} [W.m^{-2}]$
- ➤ Teplo ve válcové vsázce
 - přímý ohřev $R_2I_2^2$
 - nepřímý ohřev $R_{21}I_{1ef}^2$
- ➤ Činitel vazby
 - $\chi^2 = \frac{M_{12}^2}{L_1 L_2} \Rightarrow \chi = \frac{M_{12}}{\sqrt{L_1 L_2}}$
- ➤ Jak závisí P₂₁ na hloubce vniku
 - $P_{21} = \frac{1}{2.a.\gamma} \mathbf{N}_2^2$
- ➤ Stefan –Boltzmannův zákon
 - $P_{\check{c}} = \sigma_{\check{c}} \Theta^4$
 - $\sigma_{\rm c} = 5,6697.\,10^{-8}\,{\rm W.\,m^2.\,K^4}$... Stefan-Boltzmanova konstanta
 - úhrnná zářivost absolutně černého tělesa
- ➤ Planckův zákon
 - $M_{\lambda \check{c}} = f(\Theta, \lambda) = \frac{C_1}{\lambda^5 (e^{C_2/\lambda \Theta} 1)} [\text{Wm}^{-3}]$
 - $C_1 = 3.73 \cdot 10^{-16} \text{ W. m}^2$
 - $C_2 = 1,438.10^{-2} \text{ m. K}$
 - spektrální hustota intenzity vyzařování černého tělesa
 - integrace přes $\lambda \in <0, \infty)$ vede na Stefan –Boltzmannův zákon
- > Kirchhoffův zákon
 - $P_{\S} = \varepsilon_{\S}.\sigma_{\check{c}}.\Theta^4$
 - $\varepsilon_{
 m s}$ je stupeň černosti (součinitel emisivity)
- > Wienův zákon
 - $\lambda_m = \frac{2892}{\Theta} [\mu \text{m, K}]$
- > Lambertův zákon
 - $P = P_{\varphi} \cos \varphi$
 - výkonově se uplatňuje pouze kolmá složka záření

➤ Maxwellovy rovnice

• rot
$$\vec{\mathbf{H}} = \gamma \vec{\mathbf{E}} + \varepsilon_0 \varepsilon_r \frac{\partial \vec{\mathbf{E}}}{\partial t}$$

• rot $\vec{\mathbf{E}} = -\mu_0 \mu_r \frac{\partial \vec{\mathbf{H}}}{\partial t} = -\frac{\partial \vec{\mathbf{E}}}{\partial t}$
• div $\varepsilon_0 \varepsilon_r \vec{\mathbf{E}} = \varrho$
• div $\vec{\mathbf{H}} = 0$

• rot
$$\vec{\mathbf{E}} = -\mu_0 \mu_r \frac{\partial \vec{\mathbf{H}}}{\partial t} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

•
$$\operatorname{div} \varepsilon_0 \varepsilon_r \vec{\mathbf{E}} = \varrho$$

> Náhradní schéma indukční kelímkové pece

> VA charakteristika ss oblouku

