Hw5

LING 570 Fei Xia Week 6: 10/28/09

Building trigram LM

- Step 1: collect real counts.
- Step 2: build LM
 - MLE: no smoothing
 - GT smoothing
 - **–** ...
- Step 3: calculate the perplexity
 - Use P(w3|w1,w2) alone
 - Use interpolation
 - Other options: e.g., Katz's backoff
- → Steps 2 and 3 depend on the smoothing methods

Q1: collecting counts

- Collect real counts from the training data:
 - ngram_count.sh training_data ngram_count_file
 - Output ngrams and real count c(w1), c(w1, w2), and c(w1, w2, w3).

- Given a sentence: John likes Mary
 - Insert BOS and EOS: <s> John likes Mary </s>
 - How many unigrams?
 - How many bigrams?
 - How many trigrams?

Output file for Q1: cnt key

```
895 a
....
200 the book
...
50 thank you very
...
```

unigrams, then bigrams, then trigrams for each n, sort the lines by frequency

Q2: building an LM from the counts

- build_lm.sh ngram_count_file lm_file
- Store the logprob of ngrams and other parameters in the lm
 - There are actually three Im models:
 P(w3), P(w3|w2) and P(w3|w1,w2)
 - The output file is in the modified ARPA format
 - Lines for n-grams are sorted by n-gram counts

Modified ARPA format

\data\

```
ngram 1: type=xx token=yy
ngram 2: type=xx token=yy
ngram 3: type=xx token=yy
```

\1-grams:

```
cnt prob logprob w # prob is P(w)
```

. . .

\2-grams:

```
cnt prob logprob w1 w2 # cnt is Cnt(w1,w2), prob is P(w_2 | w_1)
```

\3-grams:

```
cnt prob logprob w1 w2 w3 # prob is P(w_3 | w_1, w_2)
```

. . .

\end\

Q3: calculating the perplexity

- ppl.sh lm_file $\lambda_{_1}$ $\lambda_{_2}$ $\lambda_{_3}$ test_data output_file
- sum = 0;
- cnt = 0;
- for each sentence T in the test data for each word w_i in the sentence if w_i is known (aka w_i appears in the lm_file) $P(w3|w1,w2) = \lambda_3 P_3(w3|w1,w2) + \lambda_2 P_2(w3|w2) + \lambda_1 P_1(w3) \\ sum += log P(w_i \mid w_{i-2} w_{w-1}) \\ cnt ++;$
- entropy = sum / cnt
- ppl = 10^{entropy}
- \rightarrow Q4: Calculate the perplexity with different λ 's.

Output file for Q3

Sent #1: <s> Influential members of the House

```
1: log P(Influential | <s>) = -inf (unknown word)
2: log P(members | <s> Influential) = -4.26127986628694 (unseen ngrams)
3: log P(of | Influential members) = -0.659218767066308 (unseen ngrams)
4: \log P(\text{the } | \text{ members of}) = -0.673243382588536
37: log P(. | sick thrifts) = -2.11250099135999 (unseen ngrams)
38: \log P(</s> | thrifts.) = -0.322502345739275 (unseen ngrams)
1 sentence, 37 words, 9 OOVs
logprob=-82.8860891791949 ppl=721.341645452964
sent_num=50 word_num=1175 oov_num=190
logprob=-2854.78157013778 ave_logprob=-2.75824306293506 ppl=573.116699237283
```

Q4: perplexity with different λ 's

lambda_1	lambda_2	lambda_3	perplexity
0.05	0.15	0.8	
0.1	0.1	0.8	
0.2	0.3	0.5	
0.2	0.5	0.3	
0.2	0.7	0.1	
0.2	0.8	0	
1.0	0	0	