Devoir Libre du Module AP21 : "Algèbre Linéaire" à rendre d'ici vers 30 avril 2020.

Problème 1

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 2$.

Définition 0.1 On appelle transvection de E tout automorphisme \mathcal{T} de E différent de id_E possédant les propriétés suivantes :

 $P_1: Il \ existe \ un \ hyperplan \ H \ de \ E \ tel \ que \ \forall x \in H, \ \mathcal{T}(x) = x,$

 $P_2: \forall x \in E, \ \mathcal{T}(x) - x \in H.$

- 1. (a) Montrer que pour tout hyperplan H de E, il existe une forme linéaire ϕ sur E telle que $H = \text{Ker}(\phi)$.
 - (b) Que peut-on dire de deux formes linéaires définissant le même hyperplan?
 - (c) Soient H_1 et H_2 deux hyperplans de E distincts, montrer que $H_1 + H_2 = E$, puis calculer dim $(H_1 \cap H_2)$.
- 2. Soit \mathcal{T} une transvection de E,
 - (a) Montrer que l'hyperplan H associé à \mathcal{T} est unique. (Indication : raisonner par l'absurde en prenant H et H' tels que $H \neq H'$ et considérer H + H' = E). *H est appelé hyperplan de transvection de \mathcal{T} .
 - (b) Montrer que $Ker(\mathcal{T} id_E) = H$, puis en déduire qu'il existe une droite \mathcal{D} telle que :

$$P_3: \forall x \in E, \quad \mathcal{T}(x) - x \in \mathcal{D}.$$

(c) Si ϕ est une forme linéaire définissant H, déterminer un vecteur u de E tel que

$$P_4: \forall x \in E, \quad \mathcal{T}(x) = x + \phi(x).u.$$

- (d) **Réciproquement**, montrer que si Φ est une forme linéaire non nulle de E et $u \in \text{Ker}(\Phi)$ $\{0_E\}$, alors $\mathcal{T}: E \to E, x \mapsto \mathcal{T}(x) = x + \Phi(x).u$ est une transvection de E. Déterminer son hyperplan et sa droite.
- (e) Soit $H = \text{Ker}(\Phi)$ un hyperplan de E. On note $\mathbb{T}(H)$ l'ensemble de toutes les transvections sur E d'hyperplan H et $G = \mathbb{T}(H) \cup \{id_E\}$.
 - i. Montrer que (G, \circ) est un groupe ou plutôt sous-groupe de $(Aut(E), \circ)$ où Aut(E) = GL(E).
 - ii. Soit $\mathcal{L}: (H, +) \to (G, \circ)$, $u \mapsto \mathcal{T}_u$ où $\mathcal{T}_u: E \to E$, $x \mapsto \mathcal{T}_u(x) = x + \Phi(x).u$. Montrer que \mathcal{L} est un isomorphisme de groupe, et que (G, \circ) est abélien.
- 3. (a) Soit \mathcal{U} une involution de E, c'est à dire $\mathcal{U} \in \mathcal{L}(E)$ et $\mathcal{U}^2 = id_E$. On pose $E_1(\mathcal{U}) = \operatorname{Ker}(\mathcal{U} - id_E)$ et $E_{-1}(\mathcal{U}) = \operatorname{Ker}(\mathcal{U} + id_E)$.

- i. Montrer que $E = E_1(\mathcal{U}) \oplus E_{-1}(\mathcal{U})$
- ii. Dans cette question, on suppose que $\dim(E_1(\mathcal{U})) = 1$.
 - A. Soit $a \in E$ tel que $E_1(\mathcal{U}) = \mathbb{R}.a$. Montrer qu'il existe $\varphi \in \mathcal{L}(E,\mathbb{R})$ une forme linéaire de E telle que $\text{Ker}(\varphi) = E_{-1}(\mathcal{U})$ et $\varphi(a) = 2$.
 - B. En déduire qu'il existe $a \in E$ et $\varphi \in \mathcal{L}(E, \mathbb{R})$ tels que $\forall x \in E, \mathcal{U}(x) = -x + \varphi(x).a$.
 - C. Soit \mathcal{V} une autre involution de E telle que $E_1(\mathcal{U}) = E_1(\mathcal{V})$. *Montrer qu'il existe $\psi \in \mathcal{L}(E,\mathbb{R})$ telle que $\forall x \in E, \mathcal{V}(x) = -x + \psi(x).a$. *En déduire que $\mathcal{U} \circ \mathcal{V}$ est une transvection.
- (b) i. Soit une transvection \mathcal{T} et $\sigma \in \operatorname{Aut}(E)$ un automorphisme de E. Montrer que $\sigma \circ \mathcal{T} \circ \sigma^{-1}$ est une transvection, puis déterminer son hyperplan H et sa droite \mathcal{D} .
 - ii. Prouver que si \mathcal{T}_1 et \mathcal{T}_2 sont deux transvections, alors il existe $\sigma \in \operatorname{Aut}(E)$ tel que $\mathcal{T}_2 = \sigma \circ \mathcal{T}_1 \circ \sigma^{-1}$

Problème 2

On considère l'espace vectoriel $\mathbb{C}[X]$ ainsi le sous-ensemble $\mathbb{C}_n[X]$ des polynômes de degré inférieur ou égal à n avec $n \in \mathbb{N}^*$.

- 1. Montrer que $\mathbb{C}_n[X]$ est un sous-espace vectoriel de $\mathbb{C}[X]$. Que peut-on en déduire?
- 2. Montrer que l'application $\mathcal{D}:\mathbb{C}[X]\to\mathbb{C}[X]$ définie par :

$$\forall P \in \mathbb{C}[X], \quad \mathcal{D}'(P) = P'$$
: la dérivée de P

est linéaire.

3. Soit $B_n = \{U_p : p \in \{0, 1, \dots, n\}\}$ la base de $\mathbb{C}_n[X]$ formée par les polynômes

$$U_p = X^p (1 - X)^{n-p}$$
 où $p \in \{0, 1, \dots, n\}.$

- (a) Rappeler la formule du binôme $(a+b)^p$, puis montrer que $1 = \sum_{k=0}^p C_p^k X^{p-k} (1-X)^k$.
- (b) Montrer que $\forall 0 \leq p \leq n$, on a $X^{n-p} = \sum_{k=0}^p \mathcal{C}_p^k U_{n-k}$, où $\mathcal{C}_p^k = \frac{p!}{k!(p-k)!}$.
- (c) Soit $B = \{1, X, X^2, \dots, X^n\}$ la base canonique de $\mathbb{C}_n[X]$, déterminer la matrice de passage T de B à B_n . Exprimer la matrice T lorsque n = 2, puis calculer la matrice inverse T^{-1} .
- 4. On considère l'application β qui à tout élément $Q \in \mathbb{C}[X]$ associe le polynôme

$$\beta(Q) = \sum_{p=0}^{n} Q\left(\frac{p}{n}\right) C_n^p U_p$$

- (a) Montrer que β est une application linéaire de $\mathbb{C}[X]$ dans $\mathbb{C}_n[X]$.
- (b) Montrer que $\beta(1) = 1$.

5. (a) Montrer que $\forall 0 \le p \le n$, on a

$$\frac{X(1-X)}{n}\mathcal{D}(U_p) = \frac{p}{n}U_p - XU_p.$$

Traiter les cas p = 0 et p = n à part.

(b) Montrer, en utilisant la linéarité de l'application \mathcal{D} , que :

$$\forall k \in \mathbb{N}^* : \mathcal{D}(\beta(X^k)) = \sum_{k=0}^p \left(\frac{p}{n}\right)^k C_n^p \mathcal{D}(U_p)$$

(c) Déduire, en utilisant 4-a), que : $\forall k \in \mathbb{N}$ on a

$$\frac{X(1-X)}{n}\mathcal{D}(\beta(X^k)) = \beta(X^{k+1}) - X\beta(X^k).$$

- 6. (a) Soit $Q = \sum_{k=0}^{m} \lambda_k X^k$, montrer que $\beta(XQ) = \sum_{k=0}^{m} \lambda_k \beta(X^{k+1})$.
 - (b) Déduire, grâce à la linéarité de \mathcal{D} et β , et d'après ce qui précède que :

$$\forall Q \in \mathbb{C}[X] \quad \beta(XQ) = \frac{X(1-X)}{n} \mathcal{D}(\beta(Q)) + X\beta(Q)$$

(c) Calculer $\beta(X)$ et $\beta(X^2)$.

Problème 3

Soient $P = X^3 - X - 1$ et $Q = X^3 + X^2 - 1$ deux polynômes.

- I) Soit $B = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{Z}[X]$.
 - 1. Montrer que si un nombre rationel $\frac{p}{q} \in \mathbb{Q}$, $(p \in \mathbb{N}, q \in \mathbb{Z}^*, p \text{ et } q \text{ sont premiers entre eux})$, est une racine de B, alors :

$$a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n = 0.$$

- 2. En déduire que p divise a_0 et q divise a_n .
- 3. Déduire de ce qui précède que les polynômes P et Q ne possèdent aucune racine dans $\mathbb{Q}.$
- II) Par la suite, on désigne par ω l'unique racine réelle de P.
 - 1. En utilisant le fait que $\omega \notin \mathbb{Q}$, montrer que P n'est pas divisible par aucun polynôme non constant de $\mathbb{Q}[X]$ de degré ≤ 2 .
 - 2. Soit $D = r_0 X^2 + r_1 X + r_2 \in \mathbb{Q}[X]$ un polynôme de degré 2. On suppose que ω est une racine de D.
 - a. Montrer que : $\omega^3 = \omega + 1 = -\frac{r_1}{r_0}\omega^2 \frac{r_2}{r_0}\omega$.
 - b. En déduire que $r_1 \neq 0$ et que $\frac{r_0}{r_1} + \frac{r_2}{r_1} = \frac{r_1}{r_0}$ et $\frac{r_0}{r_1} = \frac{r_2}{r_0}$. (**Indication**: pour cela écrire ω^2 de deux façons différentes).
 - c. Montrer que $\frac{r_0}{r_1}$ est alors une racine de Q, et en déduire que ω ne peut être une racine de D.

- 3. Déduire de ce qui précède que P est premier, dans $\mathbb{R}[X]$, avec tout polynôme de $\mathbb{Q}[X]$ de degré 1 ou 2.
- 4. Montrer que les nombres réels 1, ω et ω^2 sont linéairement indépendants dans $\mathbb R$ considéré comme espace vectoriel sur $\mathbb Q$.
- 5. On désigne par F l'ensemble des nombres réels de la forme $R(\omega)$ où R(X) est un polynôme de $\mathbb{Q}[X]$; $F = \{R(\omega) / R(X) \in \mathbb{Q}[X]\}$.
 - a. Montrer que F est un sous-espace vectoriel de $\mathbb R$ considéré comme espace vectoriel sur $\mathbb Q.$
 - b. Montrer par récurrence sur n que :

$$\forall n \in \mathbb{N}, \quad \exists q_0, q_1, q_2 \in \mathbb{Q} \quad \text{tel que} \quad \omega^n = q_0 + q_1\omega + q_2\omega^2.$$

c. En déduire que $\{1,\omega,\omega^2\}$ est une base du sous-espace vectoriel F.