NLP CAPSTONE PROJECT - Interim Report

NLP-2 Semi Ruled ChatBot

Content

- 1. Introduction
 - 1.1 Overview
- 2. Data Analysis
 - 2.1 Data Collection
 - 2.2 Data Cleaning
 - 2.3 Data Pre-processing
 - 2.4 EDA
- 3. NLP Analysis and Pre-processing
- 4. Feature Engineering
- 5. Data Modelling
- 6. Building Chatbot

Overview

Domain - Industrial safety NLP based Chatbot

Context:

The database comes from one of the biggest industry in Brazil and in the world. It is an urgent need for industries/companies around the globe to understand why employees still suffer some injuries/accidents in plants. Sometimes they also die in such environment.

Data Description:

This The database is basically records of accidents from 12 different plants in 03 different countries which every line in the data is an occurrence of an accident.

Columns description:

Data: timestamp or time/date information

Countries: which country the accident occurred (anonymised)

Local: the city where the manufacturing plant is located (anonymised)

Industry sector: which sector the plant belongs to

Accident level: from I to VI, it registers how severe was the accident (I means not severe but VI

means very severe)

Potential Accident Level: Depending on the Accident Level, the database also registers how

severe the accident could have been (due to other factors involved in the accident)

Genre: if the person is male of female

Employee or Third Party: if the injured person is an employee or a third party

Critical Risk: some description of the risk involved in the accident **Description:** Detailed description of how the accident happened.

2. Data Analysis

2.1 Data Collection

Raw Data:

	Unnamed: 0	Data	Countries	Local	Industry Sector	Accident Level	Potential Accident Level	Genre	Employee or Third Party	Critical Risk	Description
0	0	2016-01-01 00:00:00	Country_01	Local_01	Mining	ı	IV	Male	Third Party	Pressed	While removing the drill rod of the Jumbo 08 f
1	1	2016-01-02 00:00:00	Country_02	Local_02	Mining	1	IV	Male	Employee	Pressurized Systems	During the activation of a sodium sulphide pum
2	2	2016-01-06 00:00:00	Country_01	Local_03	Mining	I	Ш	Male	Third Party (Remote)	Manual Tools	In the sub-station MILPO located at level +170
3	3	2016-01-08 00:00:00	Country_01	Local_04	Mining	I	1	Male	Third Party	Others	Being 9:45 am. approximately in the Nv. 1880 C
4	4	2016-01-10 00:00:00	Country_01	Local_04	Mining	IV	IV	Male	Third Party	Others	Approximately at 11:45 a.m. in circumstances t

- There are about 425 rows and 11 columns in the dataset.
- We noticed that except a 'date' column all other columns are categorical columns.

2.2 Data Cleaning

- Removed 'Unnamed: 0' column and renamed 'Data', 'Countries', 'Genre', 'Employee or Third Party' columns in the dataset.
- We had 7 duplicate instances in the dataset and dropped those duplicates.
- There are no outliers in the dataset.
- No missing values in dataset.
- We are left with 418 rows and 10 columns after data cleansing.

2.3 Exploratory Data Analys

2.3.1 Variable Identification:

- Target variable: 'Accident Level', 'Potential Accident Level'
- Predictors (Input varibles): 'Date', 'Country', 'Local', 'Industry Sector', 'Gender', 'Employee type', 'Critical Risk', 'Description'

2.3.2 Univariate Analysis

- DATE: Here, the column name is renamed from Data to Date. Also, the year, month and day variables are extracted from the date column to find if there are any seasonality co-occurrences of accident.
- Country:

- i. 59% accidents occurred in Country_01
- ii. 31% accidents occurred in Country_02
- iii. 10% accidents occurred in Country_03

• Local:

- i. Highest manufacturing plants are located in Local_03 city.
- ii. Lowest manufacturing plants are located in Local_09 city.

• Industry Sector:

- i. 57% manufacturing plants belongs to Mining sector.
- ii. 32% manufacturing plants belongs to Metals sector.
- iii. 11% manufacturing plants belongs to Others sector.

• Accident Levels:

- i. The number of accidents decreases as the Accident Level increases.
- ii. The number of accidents increases as the Potential Accident Level increases.

• Gender:

i. There are more men working in this industry as compared to women.

• Employee type:

i. 44% Third party employees, 43% own employees and 13% Third party(Remote) employees working in this industry.

• Critical Risk:

i. Most of the incidents are registered as 'Others', it takes lot of time to analyze risks and reasons why the accidents occur.

2.3.3 Bivariate Analysis

• Industry Sector by Countries:

- i. Metals and Mining industry sector plants are not available in Country_03.
- ii. Distribution of industry sector differ significantly in each country.

3. NLP Analysis

• Distributon of accident_level where the length of Description is greater than 100

- i. 74% of data where accident description > 100 is captured in low accident level.
- ii. Based on some random headlines seen above, it appears that the data is mostly lower-cased. Preprocessing such as removing punctuations and lemmatization can be used.
- iii. There are few alphanumeric characters like 042-TC-06, Nv. 3370, CX 212 captured in description where removing these characters might help.
- iv. There are digits in the description for e.g. level 326, Dumper 01 where removing the digits wouldn't help.

4. NLP Pre-processing

- Few of the NLP pre-processing steps taken before applying model on the data
 - i. Converting to lower case, avoid any capital cases
 - i. Converting apostrophe to the standard lexicons
 - ii. Removing punctuations
 - iii. Lemmatization
 - iv. Removing stop words
- Wordcloud

Wordcloud for cleaned description:

i. Most words are related to maintenance, accident, employee, equipment, infrastructure.

5. Data Modelling

Long-Short Term Memory (LSTM) with Glove embedding:

LSTM is a type of Recurrent Neural Network in Deep Learning that has been specifically developed for the use of handling sequential prediction problems. For example: Weather Forecasting, Stock Market Prediction, Product Recommendation, Text/Image/Handwriting Generation, Text Translation

GLOVE Embedding:

GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.

Glove file Used:glove.6B.300d.txt

Model Summary:

Model Performance:

Classification Report:

```
[87] print(classification_report(y_test, np.argmax(lstm_model.predict(X_test), axis=-1)))
            precision recall f1-score support
               0.77
                       1.00
                                9.87
                                            98
               0.00
                       0.00
                               0.00
                0.00
                        0.00
                                 0.00
                                            8
                       0.00
                0.00
         4
                                 0.00
                                            9
                0.00
                       0.00
                                 0.00
                                 0.77
                                           128
   accuracy
                0.15
  macro avg
                                 0.17
weighted avg
                0.59
                         0.77
                                 0.66
                                           128
```

BILSTM with glove Embeddings:

Bidirectional long-short term memory(bi-lstm) is the process of making any neural network o have the sequence information in both directions backwards (future to past) or forward(past to future). In bidirectional, our input flows in two directions, making a bi-lstm different from the regular LSTM. With the regular LSTM, we can make input flow in one direction, either backwards or forward. However, in bi-directional, we can make the input flow in both directions to preserve the future and the past information BiLSTM Summary:

Glove file Used:glove.6B.300d.txt

Model Summary:

```
[100] biLSTM.summary()
 Model: "sequential 4"
  Layer (type)
                           Output Shape
                                                     Param #
  embedding_3 (Embedding) (None, 32, 300)
                                                      4236000
  bidirectional 2 (Bidirectio (None, 32, 128)
                                                     186880
  nal)
  bidirectional_3 (Bidirectio (None, 64)
                                                     41216
  nal)
  dense_3 (Dense)
                           (None, 14120)
                                                     917800
 Total params: 5,381,896
 Trainable params: 1,145,896
 Non-trainable params: 4,236,000
```

Model Performance:

Classification Report:

] print(classification_report(y_test, np.argmax(biLSTM.predict(X_test), axis=-1)))								
	precision	recall	f1-score	support				
1	0.77	1.00	0.87	98				
2	0.00	0.00	0.00	11				
3	0.00	0.00	0.00	8				
4	0.00	0.00	0.00	9				
5	0.00	0.00	0.00	2				
accuracy			0.77	128				
macro avg	0.15	0.20	0.17	128				
weighted avg	0.59	0.77	0.66	128				

The following table displays all other models performance:

Model	Accuracy
Random Forest Classifier with Glove Accuracy	0.72
Bagging Classifier with Glove Accuracy	0.69
TF-IDF with Naïve bayes	0.80
TF-IDF with SVC	0.80
TF-IDF with KNeighborsClassifier	0.78
Countvectorizer with Naïve bayes	0.76
Countvectorizer with SVC	0.78
Countvectorizer with KNeighborsClassifier	0.80

Model Comparison:

In comparison of all the above models for target label Accident level, we can say that tf_vectorizer with naive_bayes , tf_vectorizer with SVC and cv_vectorizer with KNeighborsClassifier shows similar accuracy.

6. How to improve Model performance?

- Enhancements can be made to improve performance by Model tuning and using sampling techniques like SMOTE for imbalanced data.
- By changing parameters of the model using other vectorizer techniques like ELMO etc.
- Data Augmentation methods can be used to improve performance.