Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009

PRIMERA SESIÓN SOLUCIONES

PROBLEMA 1.- Halla todas las sucesiones finitas de n números naturales consecutivos $a_1, a_2, ..., a_n$, con $n \ge 3$, tales que $a_1 + a_2 + ... + a_n = 2009$.

Primera solución:

Supongamos que N es la suma de n números naturales consecutivos empezando por k+1. Entonces

$$N = (k+1) + (k+2) + \dots + (k+n) = \left[1 + 2 + \dots + k + (k+1) + \dots + (k+n)\right] - \left[1 + 2 + \dots + k\right] = \frac{(k+n)(k+n+1)}{2} - \frac{k(k+1)}{2} = \frac{n(2k+n+1)}{2}.$$

Teniendo en cuenta que $2009 = 1 \times 2009 = 7 \times 287 = 49 \times 41$ se tienen los siguientes casos:

(1) Si
$$n = 7$$
 y $\frac{(2k+n+1)}{2} = 287$ resulta $k = 283$ con lo que $2009 = 284 + 285 + 286 + 287 + 288 + 289 + 290$.

(2) Si
$$\frac{n}{2} = 7$$
 y $2k + n + 1 = 287$, resulta $k = 136$ con lo que $2009 = 137 + 138 + ... + 150$.

(3) Si
$$n = 41$$
 y $\frac{(2k+n+1)}{2} = 49$ resulta $k = 28$ con lo que $2009 = 29 + 30 + 31 + ... + 69$.

(4) Si
$$n = 49$$
 y $\frac{(2k+n+1)}{2} = 41$ resulta $k = 16$ con lo que $2009 = 17 + 18 + 19 + ... + 65$.

(5) Los otros casos dan valores de k que no verifican el enunciado.

Segunda solución:

Claramente, es
$$a_n = a_1 + n - 1$$
, de donde $2009 = n a_1 + \frac{n(n-1)}{2}$. Entonces $2009 \ge \frac{n(n-1)}{2} > \frac{(n-1)^2}{2}$, luego $n-1 < \sqrt{4018}$, y al ser $64^2 = 4096 > 4018 > 3969 = 63^2$, resulta que $\sqrt{4018} < 64$, con lo que $n < 65$.

Supongamos en primer lugar que n es impar. Entonces, obviamente n divide a $2009 = 7^2 \times 41$ y n puede tomar los valores 7,41 ó 49, pues cualquier otro divisor impar de 2009 es mayor o igual que $7 \times 41 = 287$. Se obtiene entonces $a_1 = \frac{2009}{n} - \frac{n-1}{2}$, con valores respectivos 284,29 y 17, es decir, se obtienen las tres sucesiones

No hay otras sucesiones con un número impar de términos.

Supongamos finalmente que n es par. Entonces $\frac{n}{2}$ divide a 2009, con lo que n=14, ya que cualquier otro valor de n ha de ser mayor o igual que $2\times41=82>65$, lo que no es posible. Entonces $a_1=137$, y la única sucesión con número par de términos es 137,138,...,150.

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009

PRIMERA SESIÓN SOLUCIONES

PROBLEMA 2.- Sean ABC un triángulo acutángulo, I el centro del círculo inscrito en el triángulo ABC, r su radio y R el radio del círculo circunscrito al triángulo ABC. Se traza la altura $AD = h_a$, con D perteneciente al lado BC. Demuestra que

$$DI^2 = (2R - h_a)(h_a - 2r).$$

Primera solución:

Sean E y M las proyecciones ortogonales de I sobre BC y AD, respectivamente.

Se tiene:
$$AI = \frac{r}{sen\frac{A}{2}}$$
; $r = \frac{S}{p} \Rightarrow AI = \frac{S}{p \cdot sen\frac{A}{2}}$ (1) donde, evidentemente,

S es el área del triángulo ABC y p es su semiperímetro.

Por otra parte, $S = \frac{bc \cdot senA}{2} = bc \cdot sen\frac{A}{2} \cdot \cos\frac{A}{2}$, así que (1) se puede escribir

como
$$AI = \frac{bc \cdot \cos \frac{A}{2}}{p}$$
, y ya que $\cos^2 \frac{A}{2} = \frac{p(p-a)}{bc}$, obtenemos $AI^2 = \frac{bc(p-a)}{p}$ (2).

Teniendo en cuenta que $bc = 2R \cdot h_a$, $p = \frac{S}{r}$, $a = \frac{2S}{h_a}$, la expresión (2) se

escribe como
$$AI^2 = 2R \cdot h_a \left(1 - \frac{\frac{2S}{h_a}}{\frac{S}{r}}\right) = 2R \cdot h_a \left(1 - \frac{2r}{h_a}\right) = 2R(h_a - 2r)$$

(3). Como el cuadrilátero IEDM es un rectángulo, MD = IE = r. Aplicando el teorema de Pitágoras generalizado a ADI tenemos

$$DI^2 = h_a^2 + AI^2 - 2h_a \cdot AM \iff DI^2 = h_a^2 + AI^2 - 2h_a (h_a - MD),$$

y teniendo en cuenta los resultados anteriormente obtenidos resulta, finalmente, $DI^2 = h_a^2 + 2R(h_a - 2r) - 2h_a(h_a - r) = (2R - h_a)(h_a - 2r)$, c.q.d.

Segunda solución:

Sean a,b,c las longitudes de los lados BC,CA y AB respectivamente, y sea T el punto donde la circunferencia inscrita es tangente al lado BC. Por el teorema de Pitágoras, al ser $IT/\!\!/AD \perp DT$, se tiene que $DI^2 = r^2 + DT^2 = r^2 + AT^2 - AD^2$ y la igualdad a demostrar es equivalente a $AT^2 + 4Rr + r^2 = 2(R+r)h_a$.

Ahora bien, llamando S al área de ABC, es conocido que $S = \frac{abc}{4R} = \frac{r(a+b+c)}{2} = \frac{1}{4}\sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-c)} = \frac{ah_a}{2}.$

De aquí se deduce que $4Rr = \frac{2abc}{a+b+c}$, $r^2 = \frac{(b+c-a)(c+a-b)(a+b-c)}{a+b+c}$,

$$2Rh_a = bc$$
 y $2Rh_a = \frac{(b+c-a)(c+a-b)(a+b-c)}{2a}$

Obsérvese que $4Rr + r^2 = \frac{2ab + 2bc + 2ca - a^2 - b^2 - c^2}{4}$. Ahora bien, se

sabe que
$$BT = \frac{c+a-b}{2}$$
, $CT = \frac{a+b-c}{2}$.

Por el teorema de Stewart, tenemos que

$$AT^{2} = \frac{BT \cdot AC^{2} + CT \cdot AB^{2}}{BC} - BT \cdot CT =$$

$$\frac{3b^2 + 3c^2 - a^2 - 2bc}{4} - \frac{(b-c)^2(b+c)}{2a}$$

con lo que

$$AT^{2} + 4Rr + r^{2} = \frac{b^{2} + c^{2} - a^{2} + ab + ca}{2} = \frac{(b - c)^{2} (b + c)}{2a},$$

e identificando términos se comprueba que esto coincide $con el valor de 2(R+r)h_a$

y de este modo la igualdad requerida queda demostrada.

Tercera solución:

Nótese en primer lugar que

$$h_a - 2r = \frac{2S - 2ar}{a} = \frac{(b + c - a)r}{a} = \frac{2r \operatorname{sen} \frac{B}{2} \operatorname{sen} \frac{C}{2}}{\operatorname{sen} \frac{A}{2}} = \frac{r^2}{2R \operatorname{sen}^2 \frac{A}{2}} = \frac{IA^2}{2R},$$

donde S es el área de ABC y se ha utilizado que $r = 4R sen \frac{A}{2} sen \frac{B}{2} sen \frac{C}{2}$.

Sea ahora el punto P en el que la paralela a BC por I corta a la altura AD. Claramente.

$$DI^2 = r^2 + IA^2 - (h_a - r)^2 = IA^2 - h_a (h_a - 2r) = (2R - h_a)(h_a - 2r).$$

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009

PRIMERA SESIÓN SOLUCIONES

PROBLEMA 3.- Se pintan de rojo algunas de las aristas de un poliedro regular. Se dice que una coloración de este tipo es *buena*, si para cada vértice del poliedro, existe una arista que concurre en dicho vértice y no está pintada de rojo. Por otra parte, se dice que una coloración donde se pintan de rojo algunas de las aristas de un poliedro regular es *completamente buena*, si además de ser *buena*, ninguna cara del poliedro tiene todas sus aristas pintadas de rojo. ¿Para qué poliedros regulares es igual el número máximo de aristas que se pueden pintar en una coloración *buena* y en una *completamente buena*? Justifica la respuesta.

Solución:

Claramente, las coloraciones *completamente buenas* son un subconjunto de las coloraciones *buenas*, con lo que si el máximo número de aristas que se pueden pintar de rojo para obtener una coloración *buena* se puede alcanzar con una coloración *completamente buena*, la pregunta del enunciado tiene respuesta afirmativa.

NOTA: En cada caso véase el recuadro de las figuras al final de la solución.

En el caso de un tetraedro, existen 6 aristas, tales que en cada vértice confluyen 3 de ellas. El número máximo de aristas pintadas de rojo en una coloración *buena* sería por lo tanto $\frac{2}{3} \times 6 = 4$, pues en caso contrario existiría algún vértice donde más de $\frac{2}{3}$ de las aristas estuvieran pintadas de rojo, es decir, todas las

donde más de $\frac{2}{3}$ de las aristas estuvieran pintadas de rojo, es decir, todas las aristas estarían pintadas de rojo. La figura muestra una coloración *completamente buena* de un tetraedro con 4 aristas rojas (el tetraedro ha sido deformado para poder ser dibujado en el plano).

De igual forma, en el cubo existen 12 aristas, tales que en cada vértice confluyen 3 de ellas. El número máximo de aristas pintadas de rojo en una coloración *buena* sería, por lo tanto, $\frac{2}{3} \times 12 = 8$. La figura muestra una coloración *completamente buena* con 8 aristas rojas.

Finalmente, en el dodecaedro existen 30 aristas, tales que en cada vértice confluyen 3 de ellas. El número máximo de aristas pintadas de rojo en una

coloración *buena* sería, por lo tanto, $\frac{2}{3} \times 30 = 20$. La figura muestra una

coloración completamente buena de un dodecaedro con 12 aristas rojas.

De lo anterior se deduce que para el tetraedro, el cubo y el dodecaedro, el número máximo de aristas rojas en una coloración *buena* se alcanza con una coloración *completamente buena*.

En el octaedro existen 12 aristas, tales que en cada vértice confluyen 4 de ellas. El número máximo de aristas pintadas de rojo en una coloración *buena* es

por lo tanto $\frac{3}{4} \times 12 = 9$. La figura muestra una coloración *buena* de un octaedro

con 9 aristas rojas. Ahora bien, como cada arista pertenece a dos caras, sumando para las 8 caras el número de aristas pintadas de rojo en dicha cara, obtenemos $18 = 2 \times 8 + 2$, con lo que hay, al menos, dos caras con 3 aristas pintadas de rojo y una coloración *buena* con el número máximo de 9 aristas pintadas de rojo nunca puede ser *completamente buena*.

Finalmente, en el icosaedro existen 30 aristas, tales que en cada vértice confluyen 5 de ellas. El número máximo de aristas pintadas de rojo en una

coloración *buena* es por lo tanto $\frac{4}{5} \times 30 = 24$. La figura muestra una

coloración *buena* de un icosaedro con 24 aristas rojas. Ahora bien, eso quiere decir, que sumando el número de aristas rojas de cada cara para todas las caras, obtenemos $48 = 2 \times 20 + 8$, es decir, existen, al menos, 8 caras con todas sus aristas rojas, y una coloración *buena* con el número máximo de 24 aristas pintadas de rojo nunca puede ser *completamente buena*.

Por lo tanto, los poliedros regulares que tienen la propiedad descrita en el enunciado son el tetraedro, el cubo y el dodecaedro (es decir, los poliedros tales que en cada vértice confluyen exactamente 3 aristas) y los que no la tienen son el octaedro e icosaedro (en cuyos vértices confluyen más de 3 aristas).

FIGURAS

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 28 de marzo de 2009

SEGUNDA SESIÓN SOLUCIONES

PROBLEMA 4. - Determina justificadamente todos los pares de números enteros (x, y) que verifican la ecuación $x^2 - y^4 = 2009$.

Solución:

Dada una solución (x, y) cualquiera, es claro que también son soluciones (x,-y),(-x,y) y (-x,-y), con lo que se puede asumir sin pérdida de generalidad que $x,y \ge 0$. Supongamos entonces que es así. Es claro que $(x-y^2)(x+y^2)=7^2\cdot 41$.

Si $x - y^2$ y $x + y^2$ no son primos entre sí, su máximo común divisor al cuadrado divide a $2009 = 7^2 \cdot 41$, luego es 7 y divide a $(x + y^2) + (x - y^2) = 2x$ y a $(x + y^2) - (x - y^2) = 2y^2$, con lo que existen enteros no negativos u y v tales que x = 7u, y = 7v y $(u + 7v^2)(u - 7v^2) = 41$. Como ambos factores han de ser enteros, se tiene que $u + 7v^2 = 41$ y $u - 7v^2 = 1$, con lo que u = 21 y $v^2 = \frac{10}{7}$. No existen pues soluciones enteras en este caso.

Si $x - y^2$ y $x + y^2$ son primos entre sí, un posible caso es que $x - y^2 = 1$ y $x + y^2 = 2009$, con lo que $y^2 = 1004$, absurdo pues $31^2 = 961 < 1004 < 32^2$. Resta entonces tan sólo el caso en que $x - y^2 = 41$ y $x + y^2 = 49$, que produce x = 45, $y^2 = 4$, con lo que la única solución con enteros no negativos es x = 45 e y = 2, y las únicas soluciones en enteros son $(x, y) = (\pm 45, \pm 2)$.

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 28 de marzo de 2009

SEGUNDA SESIÓN SOLUCIONES

PROBLEMA 5. - Sean a,b,c números reales positivos tales que abc = 1. Prueba la desigualdad siguiente

$$\left(\frac{a}{1+ab}\right)^2 + \left(\frac{b}{1+bc}\right)^2 + \left(\frac{c}{1+ca}\right)^2 \ge \frac{3}{4}$$

Solución:

Como abc = 1, entonces $\left(\frac{a}{1+ab}\right)^2 = \left(\frac{ca}{abc+c}\right)^2 = \left(\frac{ca}{1+c}\right)^2$. Análogamente se obtienen $\left(\frac{b}{1+bc}\right)^2 = \left(\frac{ab}{1+a}\right)^2$ y $\left(\frac{c}{1+ca}\right)^2 = \left(\frac{bc}{1+b}\right)^2$. Por tanto la

desigualdad requerida se convierte en

$$\left(\frac{ab}{1+a}\right)^{2} + \left(\frac{bc}{1+b}\right)^{2} + \left(\frac{ca}{1+c}\right)^{2} \ge \frac{3}{4}, \text{ equivalente a}$$

$$\sqrt{\frac{1}{3} \left[\left(\frac{ab}{1+a}\right)^{2} + \left(\frac{bc}{1+b}\right)^{2} + \left(\frac{ca}{1+c}\right)^{2}\right]} \ge \frac{1}{2}.$$

Usando ahora la desigualdad entre las medias aritmética y cuadrática, se obtiene

$$\sqrt{\frac{1}{3}} \left[\left(\frac{ab}{1+a} \right)^2 + \left(\frac{bc}{1+b} \right)^2 + \left(\frac{ca}{1+c} \right)^2 \right] \ge \frac{1}{3} \left[\left(\frac{ab}{1+a} \right) + \left(\frac{bc}{1+b} \right) + \left(\frac{ca}{1+c} \right) \right].$$

Así es suficiente demostrar que $\frac{ab}{1+a} + \frac{bc}{1+b} + \frac{ca}{1+c} \ge \frac{3}{2}$ o equivalentemente

$$\frac{abc}{c(1+a)} + \frac{abc}{a(1+b)} + \frac{abc}{b(1+c)} \ge \frac{3}{2}$$
, que a su vez equivale a que

$$\frac{1}{c(1+a)} + \frac{1}{a(1+b)} + \frac{1}{b(1+c)} \ge \frac{3}{2}.$$

Poniendo $a = \frac{x}{y}, b = \frac{y}{z}$ y $c = \frac{z}{x}$ en la última designaldad resulta $\left(\frac{x}{y} + \frac{x}{z}\right)^{-1} + \left(\frac{y}{z} + \frac{y}{x}\right)^{-1} + \left(\frac{z}{x} + \frac{z}{y}\right)^{-1} \ge \frac{3}{2}$. Sustituyendo ahora $\alpha = \frac{1}{x}, \beta = \frac{1}{y}$ y $\gamma = \frac{1}{z}$, se llega a la designaldad de Nessbit $\frac{\alpha}{\beta + \gamma} + \frac{\beta}{\gamma + \alpha} + \frac{\gamma}{\alpha + \beta} \ge \frac{3}{2}$. La ignaldad se alcanza si y sólo si a = b = c = 1.

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 28 de marzo de 2009

SEGUNDA SESIÓN SOLUCIONES

PROBLEMA 6. - En el interior de una circunferencia de centro O y radio r, se toman dos puntos A y B, simétricos respecto de O. Se considera un punto variable P sobre esta circunferencia y se traza la cuerda PP', perpendicular a AP. Sea C el punto simétrico de B respecto de PP'. Halla el lugar geométrico del punto Q, intersección de PP' con AC, al variar P sobre la circunferencia.

Primera solución:

Establezcamos primero que AC es constante.

Método 1.

Se obtiene C a partir de A aplicando un giro de 180° con centro en O seguido de la simetría de eje PP'.

Descomponiendo el giro en producto de dos simetrías de ejes perpendiculares e_1 paralelo a AP y e_2 perpendicular a AP, resulta que el triángulo AA'C es rectángulo en A' y además:

$$A'C = 2OM$$
; $AA' = 2MP$, de donde $AC^2 = 4OM^2 + 4MP^2 = 4OP^2 = 4r^2$; es decir $AC = 2r$, con independencia de la posición de P .

Método 2

Prolongamos PA hasta que corte de nuevo a la circunferencia en P'. Se tiene CP' = P'B = AP'. Además P'B es paralelo a PP''; luego el segmento CA es la imagen del segmento P'P'' mediante la traslación de vector $\overline{P''A}P$ y como $\angle P'PP''$ es recto y P'P'' es un diámetro, resulta AC = P'P'' = 2r.

Finalmente, al ser PP' la mediatriz de BC,

QC = QB; se deduce entonces que QB + QA = QC + QA = AC = 2ry Q describe la elipse de focos A y B y constante 2r. La recta PP' es la tangente en Q a la elipse.

Segunda solución:

Tomamos r = 1 y unos ejes de coordenadas en los que la ecuación de la circunferencia es $x^2 + y^2 = 1$, y las coordenadas de A(a,0), B(-a,0), con 0 < a < 1.

En vez de empezar por P, sea $P'(x_0, y_0)$ con la condición $x_0^2 + y_0^2 = 1$. Por las condiciones del problema, P' es el punto medio de BC; llamando (x_1, y_1)

a las coordenadas de C, se tiene $\begin{cases} x_1 = 2x_0 + a \\ y_1 = 2y_0 \end{cases}$. Entonces la ecuación de la

recta *CA* es
$$y = \frac{y_0}{x_0}(x - a)$$
, es decir $x_0 y - y_0 x + y_0 a = 0$.

Las pendientes de *P'B* y de *P'P* son respectivamente $\frac{y_0}{x_0 + a}$ y $-\frac{x_0 + a}{y_0}$. Por tanto la ecuación de *P'P* es $y_0y + x(x_0 + a) - ax_0 + 1 = 0$.

Las coordenadas del punto Q, intersección de AC y P'P son: $Q\left(\frac{x_0+a}{1+x_0a}, \frac{y_0(1-a^2)}{1+x_0a}\right)$. Denotando por x,y a las coordenadas de Q y

despejando los valores de x_0 e y_0 se obtiene $x_0 = \frac{a-x}{ax-1}$, $y_0 = \frac{-y}{ax-1}$. Imponiendo ahora la condición $x_0^2 + y_0^2 = 1$, se llega a $\frac{(a-x)^2}{(ax-1)^2} + \frac{y^2}{(ax-1)^2} = 1$

y mediante operaciones se transforma en la ecuación $x^2 + \frac{y^2}{1 - a^2} = 1$, que es la ecuación de una elipse.

Tercera solución:

Demostraremos en primer lugar que, dados dos puntos A, B del plano, el conjunto de los puntos P (del mismo plano) tales que $PA^2 + PB^2$ es constante y mayor que AB^2 , es una circunferencia de centro el punto medio de AB y que tiene a los puntos A y B en su interior.

En efecto, supongamos A = (d,0), B = (-d,0) y sea P = (x,y) cualquier punto. Se tiene entonces

$$PA^2 + PB^2 = 2x^2 + 2y^2 + 2d^2$$
.

Así que si $PA^2 + PB^2 = k \ge 4d^2$, se tiene que $x^2 + y^2 = \frac{k}{2} - d^2 \ge d^2$.

Sea entonces ahora R el punto donde BC corta a PP' (que es perpendicular a BC). Este punto R satisface

$$PR^2 = BP^2 - BR^2 = AR^2 - AP^2$$
,

luego R está en la circunferencia y es distinto de P, con lo que R=P'. Ahora bien, se tiene

$$AP \cdot BP' = \frac{AP^2 + BP'^2 - (AP - BP')^2}{2} = \frac{k - PP'^2 - (AP - BP')^2}{2} = \frac{k - AB^2}{2},$$

donde $k = AP^2 + BP^2 = AP^2 + BP^2$.

Además, la potencia de A respecto de la circunferencia es

$$r^2 - d^2 = \frac{k}{2} - 2d^2 = \frac{k - AB^2}{2}$$

con lo que el segundo punto S en el que AP corta a la circunferencia es tal que AS = BP' = CP'.

Como $CP' \perp PP' \perp AP$, se tiene que AS es paralelo a CP' y ASP'C es un paralelogramo.

Finalmente,

$$PP^{2} + PS^{2} = AP^{2} + AS^{2} + 2 \cdot AS \cdot AP = AP^{2} + BP^{2} + k - AB^{2} = 2k - 4d^{2} = 4r^{2}$$

es decir, P'S = AC = 2r. Como AQ + BQ = AC = 2r, el lugar de Q es la elipse interiormente tangente a la circunferencia dada, con A y B como focos.