From the textbook:

Chapter 5 / Problems 5.15, 5.34, 5.37, 5.40

Chapter 5 / Theoretical Exercises 5.13, 5.19, 5.21, 5.26, 5.30

Chapter 6 / Problems $6.1(c)^*$, 6.2(a).

* also, compute $P(Y \ge 2X)$.

Additional problems:

A.9.1. Compute the values of the following integrals without the use of any computing device:

- (a) $\int_0^\infty u^3 e^{-2u} du$ (b) $\int_0^\infty \sqrt{x} e^{-x/2} dx$ (c) $\int_{-\infty}^\infty e^{-\frac{1}{2}(x-1)^2} dx$ (d) $\int_{-\infty}^\infty e^{-(x^2-2x)/2} dx$
- (e) $\int_0^1 \sqrt{x} (1-x)^{3/2} dx$
- **A.9.2.** (a) Verify the following about the product of the first n positive even integers:

$$2n \cdot (2n-2) \cdot (2n-4) \cdot \cdot \cdot 6 \cdot 4 \cdot 2 = 2^n n!$$

- (b) Simplify $(2n-1)(2n-3)(2n-5)\cdots(5)(3)(1)$.
- **A.9.3.** In class we defined when n is a positive integer the chi-square distribution with n degrees of freedom (abbreviated χ_n^2) to be the Gamma($\frac{n}{2}$, 2) distribution. So that the pdf of a χ_n^2 is given by

$$f(x) = \frac{x^{\frac{n}{2} - 1}e^{-x/2}}{2^{n/2}\Gamma(\frac{n}{2})}$$
 for $x > 0$.

Find the mean and variance of the χ_n^2 .

A.9.4. Suppose X is a unit exponential, i.e., $X \sim \exp(1)$ where the pdf of X is $f(x) = e^{-x}$ for x > 0. For any real constant ν and $\alpha > 0, \beta > 0$, define $Y = \nu + \alpha X^{1/\beta}$. Find the pdf of Y.

The random variable Y in this problem will have the so-called Weibull distribution.

- **A.9.5.** A machine makes perfect squares, however, the edge length L of a square is a continuous random variable uniformly distributed on the interval $\left(1-\frac{h}{2},1+\frac{h}{2}\right)$ where 0 < h < 1, i.e., the pdf of L is $f_L(x) = \frac{1}{h}$ for $1 - \frac{h}{2} < x < 1 + \frac{h}{2}$.
- (a) Find the pdf of the area A of a square produced by this machine.
- (b) Compute E(A).
- A.9.6. The length of a certain insect is a continuous random variable that is normally distributed with mean $\mu = 10$ mm and standard deviation $\sigma = 2$ mm.
- (a) Compute the probability that a randomly selected such insect is greater than 12mm in length.
- (b) If 5 such insects were randomly selected, what is the probability that at most one of them greater than 12mm in length?
- (c) A study requires such an insect exceeding 12mm in length. We randomly capture insects one at a time and measure them. What is the probability that you will have captured an insect exceeding 12mm in length by the second capture?
- (d) What is the probability you will need to capture more than 4 (i.e., 5 or more) to find the first insect exceeding 12mm in length?