

Machine Learning 1 – Fundamentals

Decision Trees Prof. Dr. J. M. Zöllner, M.Sc. Nikolai Polley, M.Sc. Marcus Fechner

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Motivation

- Classification: Partition the space so that all instances in a region have the same class
- Extensible to regression trees

Motivation: Play Tennis

Question: Which days are suitable for Roger Federer to play tennis?

No	Outlook	Temperature	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Cloudy	Hot	High	Weak	Yes
4	Rainy	Warm	High	Weak	Yes
5	Rainy	Cold	Normal	Weak	Yes
6	Rainy	Cold	Normal	Strong	No
7	Cloudy	Cold	Normal	Strong	Yes
8	Sunny	Cold	Normal	Weak	Yes
9	Sunny	Warm	High	Weak	???
10	Rainy	Warm	Normal	Weak	???

Motivation: Play Tennis

Question: Which days are suitable for Roger Federer to play tennis?

No	Outlook	Temperature	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Cloudy	Hot	High	Weak	Yes
4	Rainy	Warm	High	Weak	Yes
5	Rainy	Cold	Normal	Weak	Yes
6	Rainy	Cold	Normal	Strong	No
7	Cloudy	Cold	Normal	Strong	Yes
8	Sunny	Cold	Normal	Weak	Yes
9	Sunny	Warm	High	Weak	No
10	Rainy	Warm	Normal	Weak	Yes

When are Decision Trees suitable?

Basic Decision Trees:

- Instances are represented as attribute-value pairs (categorical)
- Target function returns discrete output values (e.g. classes)
- Non-parametric: No assumptions about underlying distribution
- Interpretability is possible
- Generally low computing resource requirements for inference
- Simple to learn non-linear problems
- Data doesn't need to be normalized and can be in diverse formats

Decision Tree with extensions:

- Applicable for regression (Regression Tree)
- Noisy input data
- Continuous attribute values (features)
- Missing input data

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Formalization

- Nodes: test feature/attribute A for value
 - E.g. Outlook, Humidity, Wind ...
- Root Node: Top/first node in decision tree
- Child Node: Successor of a node
- Parent Node: Predecessor of a node
- Leaf: Final node containing classification result Y
 - E.g.: PlayTennis?=yes, PlayTennis?=no
- Branch: Attribute value v of testing A
 - E.g., for the attribute Outlook: sunny, cloudy, rainy

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Attribute Selection

- **Problem**: How can we measure how well an attribute/feature splits the data?
- **Example**: In the following, is attribut A_1 or A_2 preferrable?
- Solution: Metrics to measure impurity of data sets

Notation: [number positive examples (+); number negative examples (-)]

Entropy

- **Definition**: In information theory, the entropy of a random variable Y is the average level of "information", "suprise", or "uncertainty" inherent to the variable's possible outcomes y_i 随机变量Y的熵是指变量可能结果yi所固有的"信息"、"惊奇"或"不确定性"的平均水平
- For decision trees: Entropy is a measure of the homogeneity (in terms of class membership) of the current data S
- **Here**: Discrete random variable $Y \sim p(y)$, whereas $p(y) = \frac{|S_y|}{|S|}$ defined by data S and subset S_y of data with class Y
 - Entropy for **K** Classes: $H(S) = -\sum_{i=1}^{K} p(y_i) \log_2 p(y_i)$
 - Entropy for **2 Classes**(\oplus , \ominus): $H(S) = -p_{\oplus} \log_2 p_{\oplus} p_{\ominus} \log_2 p_{\ominus}$
- Info: The entropy, measured with a logarithm of base 2 uses Bit as unit

Entropy – Decision Tree

High entropy

- Y is derived from an almost uniformly distributed probability density
- Data sampled from this density are difficult to predict

Low entropy

- Y is derived from a probability density with a high probability for one class, relative to the others
- Data sampled from this density are highly predictable

Entropy – Decision Tree

- Objective: To quickly sort data into their respective classes through the selection of appropriate attributes
 - i.e. successively reduce the entropy as quickly as possible

Information Gain

- **Information Gain** IG(S, A): Expected entropy reduction of S by splitting on attribute A
- - V(A): Set of all possible attribute values v of attribute A
 - $lacksquare{S}_v$: Subset of S for which A is value v
 - Calculate the difference between the entropy of the parent node and the entropy of the child nodes
- Objective of learning with decision trees
 - Select attributes that minimize entropy and maximize information gain.
 Classify learning examples with as few steps as possible
 - → Tree with little depth

Idea: A suitable attribute splits the instances into subsets, where (ideally) all instances in a subset are positive or negative

Step 1: Calculate entropy of parent node

- Entropy of S:
 - $\blacksquare H(S) = -p_{\bigoplus} \log_2 p_{\bigoplus} p_{\bigoplus} \log_2 p_{\bigoplus}$
 - $H(S) = -\frac{9}{14}\log_2\frac{9}{14} \frac{5}{14}\log_2\frac{5}{14} = 0.940$

Step 2: Calculate entropy of child nodes

• Entropy of $S_{v=\text{high}}$:

$$H(S_{v=high}) = -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7} = 0.985$$

• Entropy of $S_{v=\text{normal}}$:

$$H(S_{v=high}) = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7} = 0.592$$

Step 3: Calculate Information gain for all attributes

- Information gain for humidity:
 - $IG(S, Humidity) = H(S) \frac{|S_{v=high}|}{|S|} H(S_{v=high}) \frac{|S_{v=normal}|}{|S|} H(S_{v=normal})$
 - $IG(S, Humidity) = 0.940 \frac{7}{14}0.985 \frac{7}{14}0.592$ = 0.151

Step 3: Calculate Information gain for all attributes

- Information gain for humidity:
 - $IG(S, Humidity) = H(S) \frac{|S_{v=high}|}{|S|} H(S_{v=high}) \frac{|S_{v=normal}|}{|S|} H(S_{v=normal})$
 - $IG(S, Humidity) = 0.940 \frac{7}{14}0.985 \frac{7}{14}0.592$

- H(S) = 0.940 (entropy of parent stays the same)
- $H(S_{v=\text{weak}}) = -\frac{6}{9}\log_2\frac{6}{9} \frac{2}{9}\log_2\frac{2}{9} = 0.811$
- $H(S_{v=\text{strong}}) = -\frac{3}{6}\log_2\frac{3}{6} \frac{3}{6}\log_2\frac{3}{6} = 1$
- $IG(S, Wind) = H(S) \frac{|S_{v=weak}|}{|S|} H(S_{v=weak}) \frac{|S_{v=strong}|}{|S|} H(S_{v=strong})$
- $IG(S, Wind) = 0.940 \frac{8}{14}0.811 \frac{6}{14}1$ = 0.048

[3+.3-]

Wind

strong

- **Step 3: Calculate information gain for all attributes**
 - Information gain for humidity:
 - \blacksquare IG(S, Humidity) = 0.151
 - Information gain for wind:
 - \blacksquare IG(S, Wind) = 0.048

- Step 4: Choose Attribute with highest information gain
 - \blacksquare IG(S, Humidity) > IG(S, Wind)
 - Humidity attribute minimizes entropy, and is therefore used to split the tree

 $S_{v=\text{strong}}$

[3+, 3-]

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Base Method: ID3

- **ID3**: Iterative Dichotomizer $3 \approx$ iterative division of instances
- **Top-Down**: Build decision tree **recursively** from root node

Greedy: Each time an attribute is selected, the attribute that maximizes the information gain is

used to split the data

Base Method: ID3 – Algorithm

ID3(Examples, Target Attribute, Attributes)

Create node for tree

IF (all examples positive), **Return** (node with label= \bigoplus)

IF (all examples negative), **Return** (node with label=⊖)

IF (*Attribute*=∅), **Return** (node with label= most common target attribute of examples in node)

Calculate A = Attribute with largest information gain for examples

Assign node the attribute = A

FOR ALL attribute values v_i of A:

Create new branch with v_i

Examples (v_i) = Subset of examples containing attribute value v_i

IF (Examples(v_i)= \emptyset):

Add leaf node to branch with label = most common target attribute of examples in node

THEN:

Add subtree **ID3**(Examples(v_i), Target Attribute, Attributes $\setminus \{A\}$)

Return node

Base Method: ID3 - Greedy Algorithm

• Class is A_1 XOR A_2

 \blacksquare Attribute A_3 does not correlate with final class

■ A perfect tree tests A_1 then A_2 to make the classification with depth of tree = 2

- **BUT:** $IG(S, A_1)$ and $IG(S, A_2) = 0$
 - $H(S) = -\frac{4}{6}\log_2\frac{4}{6} \frac{2}{6}\log_2\frac{2}{6} = 0.92$
 - $H(S_0) = -\frac{2}{3}\log_2\frac{2}{3} \frac{1}{3}\log_2\frac{1}{3} = 0.92$
 - $H(S_1) = -\frac{1}{3}\log_2\frac{1}{3} \frac{2}{3}\log_2\frac{2}{3} = 0.92$
 - $IG(S, A_1) = 0.92 \frac{3}{6}0.92 \frac{3}{6}0.92 = 0$

nai ciass	A_1
te the	
S=[2+,1-]	S=[2+,1-]
A_2	A_2
no yes	yes no

A_1	A_2	A_3	Class	
1	1	0	No	
1	0	1	Yes	
0	0	0	No	
0	1	1	Yes	
1	0	0	Yes	
0	1	0	Yes	

- Information gain for split with A_3 is 0.25 and therefore preferred.
 - \rightarrow ID3 choses A_3 and creates tree with depth = 3
 - Greedy algorithms don't find the optimum. Finding an optimum tree is a NP-complete problem and is therefore rarely/never done. [Hyafil]

11/11/2024

Base Method: ID3 – Properties

- The hypothesis space H of ID3 is the complete space of finite discrete-valued functions, relative to the available attributes → contains target function
- ID3 does not guarantee an optimal solution
 - Greedy algorithms do not backtrack and do not consider future steps
- Inductive bias: smaller trees are preferred to larger trees
- ID3 is prone to overfitting
 - Stops only when all instances have been classified perfectly, even if the data is noisy/wrong
- Nowadays modern libraries mostly use CART which is a slightly improved ID4.5 algorithm which is a slightly improved ID3 algorithm
 - The basics remain the same

Trees do not have an additive structure

- Decision Trees are unable to handle linearly correlated features.
- Example: Data from y = x + 2 and y = x + 4 with little bit of noise

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Base Method ID3 – Overfitting

Building trees with ID3

- Add nodes until all training examples are perfectly classified
- Based on statistical approximation of information gain (e.g. entropy)

→ Often leads to overfitting because

- some examples in dataset are noisy or mislabeled
- examples are not representative (e.g. too little data)

Overfitting - Example

- A, B: Slightly different samples from same distribution
- Empirical error
 of train dataset
 is reduced to zero
 with deeper trees

BUT:

- Decision boundary on A seems to be suitable
- The deeper decision boundaries on **B** include outliers and noisy samples. It overfits the data distribution

Occam's Razor

- Why should simpler hypotheses be preferred?
 - In this case, smaller trees?
- There are fewer simple hypotheses than complex ones.
 - A short hypothesis that correctly explains the training examples is most likely not a coincidence
 - A long hypothesis, that correctly explains the training examples may be a coincidence.
- Short trees are more efficient

Overfitting formal

- Definition: A hypothesis overfits the training examples, if some other hypothesis, that fits the training examples less well, actually performs better over the entire distribution of instances
 - Learning system memorizes training data rather than learning the underlying structure
- Formal:

$$h \in H$$
 overfitting $\iff \exists h' \in H$ such that given D_{Tr} and D_V $\hat{\mathcal{L}}_{D_{Tr}}(h) < \hat{\mathcal{L}}_{D_{Tr}}(h') \land \hat{\mathcal{L}}_{D_V}(h) > \hat{\mathcal{L}}_{D_V}(h')$

- Whereas:
 - lacksquare D_{Tr} Training Data
 - lacksquare D_V Validation Data

Bias-Variance Tradeoff

Bias-Variance Tradeoff

- Variance: Measures how much the classifier changes when trained on different splits of training data.
 - I.e. how much do we "overspecialize" for this particular training dataset
- Bias: What is the inherent error you get from your classifier even with infinite training data?
 - Can be related to the hypothesis space, e.g. a linear model can't predict non-linear data
- Noise: How large is the intrinsic noise in the data?
 - Measures ambiguity due to data distribution and feature representation.
 - Is an inherent aspect of the data and cannot be removed

Bias vs Variance

High bias, low variance (usually underfitting)

Low bias, high variance (usually overfitting)

Example – Noisy/Wrong Data

What happens if a noisy example is added to training data?

Nr.	Outlook	Temperature	Humidity	Wind	Tennis?
1	Sunny	Hot	Normal	Strong	No

Example – Noisy/Wrong Data

What happens if a noisy example is added to training data?

Nr.	Outlook	Temperature	Humidity	Wind	Tennis?
1	Sunny	Hot	Normal	Strong	No

Outlook

Decision Trees are generally low bias high variance models and usually overfit the data

ally sunny cloudy rainy

Humidity yes Wind

high normal strong weak

Wind

Result: Tree

Result: Tree complexity increases

→ Potentially more errors on unseen data

yes

Reduce Overfitting for ID3

- Combat the high overfitting properties of ID3 with regularization
 - Maximum depth: Growing the tree stops after a certain number of steps, even if not all data is perfectly classified.
 - Minimum samples: A node cannot be split if it contains less than a specified number of training examples
 - **Early stopping:** Stop growing the tree if the validation error increases
 - Pruning: Remove non-critical parts of the tree to reduce complexity
- Reduce overfitting with multiple trees:
 - Bagging
 - Random Forests

Early Stopping – Classification Error

- Intuition: Stop tree growth before overfitting occurs
- **Idea**: Validation error must decrease by ϵ per iteration, otherwise we stop
- Pros:
 - Easy to implement
- Cons:
 - Too short-sighted: Validation error could increase in the current step, but decrease again in the next step
 - Reminder the XOR problem with the greedy ID3 algorithm. Early stopping might stop before we even get the correct solution.

Pruning

- Intuition: Simplify the tree after learning is completed.
 - Stopping "too early" no longer a problem
- Pruning: Remove a node (subtree) and replace it with a leaf node of the most common class
- Bottom up: Starting from the leaves, replace each node with a leaf node until the validation error starts to increase

Pruning

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Ensemble Learning

- Question: Which learning system is the best for my specific task?
 - Decision Trees
 - Support-Vector-Machines
 - Naive Bayes
 - **.**..?
- Ensembles: Learn several models and combine them into a stronger model

Ensemble Learning

Advantages

- Better prediction quality
- Better robustness (overfitting)

Disadvantages

- Time consuming and computationally expensive
- Loses interpretability
- Predictions from all machines can be treated the same or weighted differently
 - E.g.: use majority vote for classification or average for regression

Ensemble Learning - Motivation

- **Reminder**: Generalization Error = Bias² + Variance + Noise
- Idea: When several complex hypothesis with small bias and large variance are aggregated, their variance decreases but the bias remains small.
 - → Simple way to decrease the generalization error

Ensemble Learning - Idealistic

- Reminder: Generalization Error = $\mathbb{E}_{x,D} \left| \left(h_D(x) \overline{h}(x) \right)^2 \right|$ + Bias² + Noise
- Instead of one dataset D, use several datasets D_1 to D_k
 - With the same number of learning examples and from the same distribution as D
- Learn k hypotheses with k different models
- lacktriangle Final hypothesis is e.g. the mean of the k hypotheses

$$\widehat{h} = \frac{1}{k} \sum_{i=1}^{k} h_{D_i} \to \overline{h}, \text{ if } k \to \infty$$

- Variance approaches 0!
- **Problem**: We don't have k datasets and if we split D into k datasets, the variance of the hypotheses increases even more due to the lack of training examples
- Solution: Bagging

Bagging

Process

- **Bootstrap**: Create k datasets D_1 to D_k from D via layback sampling
- **Training**: Train a model h_{D_1} to h_{D_k} for each dataset
- Aggregation: Combine models by majority vote or average their predictions
 - Regression: $h(x) = \frac{1}{k} \sum_{i=1}^{k} h_{D_i}(x)$
- Advantage: Reduce variance without increasing bias

Bagging – Pros & Cons

Pros

- **Reduces variance** and can therefore be used with high variance models
- Uncertainty: Bagging not only gives you the expected value, but also makes the variance of the prediction easily visible
- Out-of-bag error: Learning examples from *D* not sampled in dataset D_i can be used to validate h_i . No separate validation dataset is required.
- **Parallelizable**

Cons

- **Computational cost** increases by at least *k*
- Variance cannot be fully reduced because bootstrapping samples is not I.I.D
 - **I.I.D:** Independent and identically distributed random samples
- Loss of interpretability

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Random Forests

- Problem of bagging: Models are highly correlated
- Previous: Bagging with decision trees. Splits can use all d attributes of drawn samples
- Now: Choose random subset s < d of attributes for each split. Create nodes using the best attribute for maximizing information gain in s.
- **Why**: To ensure, that the *k* learned trees are less correlated. Each tree uses a different subset of attributes.
 - Using s instead of d attributes will increase the bias. However, the reduction in variance from decorrelating the trees outweighs this.

Random Forests - Modification of Bagging

Process

- **Bootstrap**: Create k datasets D_1 to D_k from D via layback sampling.
- **Training**: Train a model h_{D_1} to h_{D_k} for each dataset with one small modification
 - Before each split, sample a subset of s < d attributes as possible candidates for splitting
- Aggregation: Combine models by majority vote or average their predictions
- Advantage: Generally, much better results than single decision tree

-1

Overview

- Motivation
- Formalization
- Attribute selection
- Build the Tree ID3-algorithm
- Overfitting
- Bagging
- Random Forest
- Extensions

Continuous Attribute Values I

Given

Attribute A with continuous values

Process

Dynamic definition of a new discrete attribute: $A_c = \text{true}$ if A > c

Problem:

- Choice of threshold c?
 - → Use information gain:
 - Sort examples by their attribute values
 - Optimal threshold lies in the middle between two adjacent examples with different class affiliations

Continuous Attribute Values II

Example: Continuous temperature

Potential thresholds and respective information gain:

■
$$c_1 = (9^{\circ} + 16^{\circ}) / 2 = 12.5^{\circ} \rightarrow IG = 1 - \frac{2}{6}0 - \frac{4}{6}0.81 = 0.46$$

■ $c_2 = (27^{\circ} + 32^{\circ}) / 2 = 29.5^{\circ} \rightarrow IG = 1 - \frac{5}{6}0.97 - \frac{1}{6}0 = 0.19$

$$c_2 = (27^{\circ} + 32^{\circ}) / 2 = 29.5^{\circ} \rightarrow IG = 1 - \frac{5}{6}0.97 - \frac{1}{6}0 = 0.19$$

■ Information gain is higher $c_1 = 12.5^{\circ}$ categorical attributes are < 12.5 and > 12.5

Summary

- Decision trees are a non-parametric supervised learning method
- Generally, very fast training and inference
- Interpretable as an "if-else" flow chart
- Decision Trees usually overfit the data and show low accuracies on test data
 - It's rare in practice to use a single decision tree
 - But ensemble methods like random forests and boosting drastically improve performance as they decrease variance
 - But we lose interpretability
 - Even today, they achieve better results on tabular data than neural networks [2022: Why do tree-based models still outperform deep learning on tabular data]

Literature

- Tom Mitchell: Machine Learning, Chapter 3. 1997
 - Homepage: http://www-2.cs.cmu.edu/~tom/
 - Only individual Decision Trees, no ensembles

- Murphy: Probabilistic Machine Learning, Chapter 18. 2022
 - PDF
 - Contains ensemble methods like random forest and gradient boosting
 - Also includes XGBoost, which is currently one of the best tree-based methods.