2. PREVERJANJE ZNANJA

(snov v magnetnem polju, magnetna sila, navor, gostota magnetnega polja, magnetna indukcija, izmenična napetost, transformator)

- 1. Kolikšno je razmerje frekvenc kroženja elektrona in protona, ki krožita v istem magnetnem polju? Masa elektrona je $9.1 \cdot 10^{-31}$ kg, masa protona pa $1.67 \cdot 10^{-27}$ kg. (R: 1800)
- 2. Z masnim spektrometrom merimo mase delcev z nabojem s pomočjo magnetnega polja. Polmer krožnice, po kateri se delec giblje v magnetnem polju je odvisen od mase. Kolikšna je masa neznanega delca, ki v spektrometer vstopi z enako hitrostjo kot proton, če je polmer njegove krožnice 4-krat večji od polmera krožnice protona? Masa protona je 1,67 ·10⁻²⁷ kg, neznani delec ima enak naboj kot proton.
 (R: 6,68 ·10⁻²⁷ kg)

3. Aluminijasta prečka z dolžino 10 cm in maso 50 g kot gugalnica visi na tankih žicah. Prečka visi v magnetnem polju podkvastega magneta, kot je prikazano. Ko skozi žico spustimo tok 3,6 A, se ta odkloni za 15° glede na navpičnico. Kolikšna je gostota magnetnega polja med poloma magneta? (R: 0,37 T)

- 4. 10 m dolgo žico navijemo okoli lesenega tulca s polmerom 2,5 cm. Kolikšen navor deluje na nastalo tuljavo, če skoznjo teče tok 95 mA, tuljava pa je v magnetnem polju z gostoto 0,039 T, katerega silnice oklepajo s prečnim presekom tuljave kot 20° ? (R: $4,4 \cdot 10^{-4}$ Nm)
- 5. Po dveh dolgih vzporednih vodnikih tečeta tokova 1,4 A in 1,7 A v enakih smereh. V kateri točki na zveznici je gostota magnetnega polja enaka nič? Vodnika sta med seboj oddaljena 70 cm. (R: 32 cm)
- 6. Štirje vzporedni vodniki tvorijo robove kvadrata s stranico 20 cm. Električni tokovi, ki tečejo po vodnikih, so I_1 =1,1 A, I_2 =1,6 A, I_3 =0,8 A in I_4 =1,0 A, njihove smeri pa so označene na sliki. Kolikšna je gostota magnetnega polja teh vodnikov v točki A na sredini med njimi? (R: 4,6 ·10⁻⁶ T)

- 7. Tuljavica s 15 ovoji in prečnim presekom 1,0 cm² leži tik ob paličastem magnetu, kjer je gostota magnetnega polja 78 mT. Na začetku leži tako, da je njena os vzporedna s silnicami magnetnega polja magneta.
 - (a) Kolikšna je sprememba magnetnega pretoka skozi tuljavico, če jo zasučemo za 90° okrog osi, ki je pravokotna na silnice magnetnega polja? (R:-0,12 mWb)
 - (b) Kolikšna pa je sprememba magnetnega pretoka skozi tuljavico, če jo zasučemo za 180° okrog te osi? (R: -0,23 mWb)

- 8. Železna palica dolžine 40 cm je vpeta v enem krajišču in se vrti v vodoravni ravnini s frekvenco 3,2 Hz. Kolikšna napetost se inducira med njenima krajiščema, če se palica vrti v magnetnem polju z gostoto 0,55 T, katerega silnice so navpične? (R: 0,88 V)
- 9. Kvadratna zanka s stranico 7,0 cm leži v homogenem magnetnem polju z gostoto 0,71 mT. Na začetku leži tako, da je njena površina vzporedna s silnicami magnetnega polja. Zanko nato v 0,75 ms zasučemo za 90° tako, da jo po zasuku silnice prebadajo pod pravim kotom. Kolikšen tok steče skozi zanko, če je ta narejena iz aluminijaste žice s prečnim presekom 1,0 mm²? Specifična upornost aluminija je 0,027 Ω mm²/m. (R: 0,61 A)
- 10. V homogenem magnetnem polju se s frekvenco 50 Hz vrti tuljava s 300 ovoji in prečnim presekom $5.5~\rm cm^2$. Kolikšna je gostota magnetnega polja, če se na polih tuljave inducira izmenična napetost z efektivno vrednostjo 160 V? (R: $4.4~\rm T$)
- 11. Dan je graf izmenične napetosti v odvisnosti od časa. Na to napetost priključimo upornik z upornostjo $40~\Omega$. Nariši graf moči, ki se troši na uporniku, v odvisnosti od časa. Kakšna je frekvenca nihanja moči? (R: $0.9~\mathrm{W}, 1~\mathrm{Hz}$)

- 12. Pri varjenju potrebujemo tok 50 A. Primarna tuljava ima 300 ovojev, sekundarna pa 10. Kolikšen tok teče v idealnem primeru v primarni tuljavi, ki je priključena na 240 V? Kolikšno moč porablja transformator? (R: 1,7 A; 400 W)
- 13. Neki transformator ima železno jedro s presekom $20~\rm cm^2$. Na kolikšno največjo efektivno napetost smemo priključiti primarno tuljavo s $400~\rm ovoji$, če dopuščamo, da niha $B~\rm v$ jedru največ z amplitudo $1,2~\rm T?$ Frekvenca je $50~\rm s^{-1}$. (R: $214~\rm V$)
- 14. *Skozi ploščati kondenzator, ki ima plošči oddaljeni 2,4 cm, potuje curek elektronov. Hitrost elektronov je pravokotna na silnice električnega polja. V kondenzatorju ustvarimo magnetno polje z gostoto $6.2 \cdot 10^{-4}$ T, ki je pravokotno na hitrost elektronov in na silnice E. Ko na kondenzatorju ni naboja, potujejo elektroni po krožnem loku s polmetom 1,8 cm. Če je med ploščama napetost 29,4 V, potujejo elektroni v kondenzatorju po premici, ki je vzporedna s ploščama. Izračunaj maso elektrona, če je njegov naboj $1.6 \cdot 10^{-19}$ As. (R: 9.10^{-31} kg)
- 15. Naloge iz učbenika:

- str. 133: 1 - 5 - str. 138: 1 - 6 - str. 143: 1 - 3, 5 - 6 - str. 150: 1 - 10 - str. 150: 1 - 7