ДОМАШНЕЕ ЗАДАНИЕ №1

01.04.2024 г.

Решение задачи должно включать ее полное условие, последовательное изложение процесса решения с комментариями и рисунком, ответ в общем виде и численные расчеты в системе единиц СИ.

Задача 1

Точка движется в плоскости xy по закону $x = \alpha t$, $y = \beta t^2$, где α и β — положительные постоянные. Найти:

- а) уравнение траектории точки y(x) и ее график;
- б) модули скорости и ускорения точки как функции t;
- в) угол ϕ между векторами a и v как ϕ ункцию t.

Задача 2

Закон изменения координаты материальной точки: $y(t) = At^2 - Ct^4$, где A = 4,5 м/с 2 и C = 0,25 м/с 4 . Найти скорость и ускорение материальной точки в момент времени $t_I = 2$ с, а также ее среднюю скорость перемещения и среднюю путевую скорость для промежутка времени от 2 до 4 с.

Задача 3

Твердое тело вращается вокруг неподвижной оси по закону $\varphi = A + Bt + Ct^2$, где A = 10 рад, B = 20 рад/с, C = -2 рад/с². Найти линейное ускорение точки тела, находящейся на расстоянии R = 0,1 м от оси вращения, в момент времени t = 4 с.

Задача 4

Материальная точка движется по окружности, радиус которой R=2 м. Закон ее движения описывается уравнением $\xi(t)=At^2+Bt^3$, где A=3 м/с², B=1 м/с³, а криволинейная координата ξ отсчитывается вдоль окружности. Найти момент времени, когда тангенциальное ускорение материальной точки равно 18 м/с², а также ее нормальное и угловое ускорения в этот момент времени.

Задача 5

В установке (рис. 1) известны угол а и коэффициент трения k между телом m_1 и наклонной плоскостью. Массы блока и нити пренебрежимо малы, трения в блоке нет. Вначале оба тела неподвижны. Найти отношение масс m_2/m_1 при котором тело m_2 начнет:

а) опускаться; б) подниматься.

Рис. 1

Задача 6

Два бруска, масса которых равна $m_1 = 1$ кг и $m_2 = 2$ кг, связанные нитью, движутся по горизонтальной поверхности под действием сил $F_1 = 8$ Н и $F_2 = 5$ Н, составляющих с горизонтом углы соответственно 30° и 45° . Коэффициенты трения брусков о поверхность одинаковы и равны 0,1. Система движется направо. Найти ускорение брусков и силу натяжения нити.

Задача 7

Найти выражение ускорения и скорости платформы, движущейся под действием постоянной горизонтальной силы f, если на платформе лежит песок, который высыпается через отверстие в платформе. За 1 с высыпается масса ∂ т песка, в момент времени t=0 скорость платформы v равна нулю, а масса песка и платформы равна v.

Задача 8

Платформа длинной L катится без трения со скоростью v_0 . В момент времени t=0 она поступает к пункту погрузки песка, который высыпается со скоростью μ [кг/с]. Какое количество песка будет на платформе, когда она минует пункт погрузки? Масса платформы равна M_0 .

Задача 9

Два неупругих шара массами $m_1 = 2$ кг и $m_2 = 3$ кг движутся со скоростями соответственно $v_1 = 8$ м/с и $v_2 = 4$ м/с. Определить увеличение ΔU внутренней энергии шаров при их столкновении в двух случаях:

- 1) меньший шар нагоняет больший;
- 2) шары движутся навстречу друг другу.

Задача 10

Шар массой $m_1 = 6$ кг налетает на другой покоящийся шар массой $m_2 = 4$ кг. Импульс p_1 первого шара равен 5 кг*м/с. Удар шаров прямой, неупругий. Определить непосредственно после удара:

- 1) импульсы p_1' первого шара и p_2' второго шара;
- 2) изменение Δp_1 импульса первого шара;
- 3) кинетические энергии T_1 первого шара и T_2 второго шара;
- 4) изменение ΔT_1 кинетической энергии первого шара;
- 5) долю w1 кинетической энергии, переданной первым шаром второму и долю w2 кинетической энергии, оставшейся у первого шара;
- 6) изменение ΔU внутренней энергии шаров;
- 7) долю w кинетической энергии первого шара, перешедшей во внутреннюю энергию шаров.

Задача 11

Найти момент инерции J плоской однородной прямоугольной пластины массой m=800 г относительно оси, совпадающей с одной из ее сторон, если длина a другой стороны равна 40 см.

Задача 12

Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на a=20 см от одного из его концов.

Задача 13

Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую ω и линейную ν скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.