Improving Evidential Sources with Contextual Corrections

HSE, 2022

Improvement with Contextual Corrections

On Improving a Group of Evidential Sources with Different Contextual Corrections, Mutmainah et al. 2022

- Information fusion: combine different heterogeneous sources of information, to obtain a better understanding of the situation under evaluation
- Classifiers as sources of information, optimize directly the performance of the combination using different corrections among CD, CR and CN.

Dempster-Shafer theory

Mass function (provided by classifiers) m(A), universe Ω :

$$\sum_{A\subseteq\Omega} m(A) = 1$$

Belief (evidence for) and plausibility (evidence that does not contradict):

$$Bel(A) = \sum_{\emptyset \neq B \subseteq A} m(B)$$

$$Pl(A) = \sum_{A \cap B \neq \emptyset} m(B) = Bel(\Omega) - Bel(\overline{A})$$

$$Pl(A) = \sum_{A \cap B \neq \emptyset} m(B) = Bel(\Omega) - Bel(\overline{A})$$

Contextual Corrections

ullet Unnormalized Dempster's rule - combine independent sources in the same $oldsymbol{\Omega}$

$$(m_1 \odot m_2)(A) = m_1 \odot (A) = \sum_{B \cap C = A} m_1(B) \cdot m_2(C), \quad \forall A \subseteq \Omega$$

Contextual correction - discounting a source reliable only to a degree

$$\beta m = \beta m + \alpha m_{\Omega}$$

$$= \begin{cases} A \mapsto \beta m(A) & \forall A \subset \Omega \\ \Omega \mapsto \beta m(\Omega) + \alpha \end{cases}$$

Contextual Corrections

Contour functions of each contextual correction - CD, CR, CN

Corrections	Contour functions
CD	$\beta pl(\omega) = 1 - (1 - pl(\omega))\beta_{\omega}$
CR	$\beta pl(\omega) = pl(\omega)\beta_{\omega}$
CN	$\beta pl(\omega) = 0.5 + (pl(\omega) - 0.5)(2\beta_{\omega} - 1)$

Error function

Discrepancy between the corrected outputs and the true classes of the objects

$$E_{pl}(\beta) = \sum_{i=1}^{n} \sum_{k=1}^{K} (\beta pl\{o_i\}(\{\omega_k\}) - \delta_{i,k})^2$$

Where pl{o_i} is the output of a model on object o_i

Scheme 1 - independent

Scheme 2 - concurrent

Error function

Discrepancy between the corrected outputs and the true classes of the objects

$$E_{pl}(\beta) = \sum_{i=1}^{n} \sum_{k=1}^{K} (\beta p l\{o_i\}(\{\omega_k\}) - \delta_{i,k})^2$$

Updated function for simultaneous training

$$E_{pl}(\beta_1, \dots, \beta_\ell) = \sum_{i=1}^n \sum_{k=1}^K (\beta_1 p l_1 \{o_i\} (\{\omega_k\})) \times \dots \times \beta_\ell p l_\ell \{o_i\} (\{\omega_k\}) - \delta_{i,k})^2$$

Paper results

Tested on several small datasets, 10 fold cross-val, EkNN and ENN - brief mention

Data	No cont. correction	Scheme 1 correction	Scheme 2 correction	Scheme 2 only CD	Scheme 2 only CR	Scheme 2 only CN
Synthetic (900 obj)	10.953 (3.094)	<u>11.690</u> (2.748)	9.496 (2.492)	9.491 (2.525)	10.961 (3.076)	10.882 (2.913)
Haberman	6.054	<u>6.742</u>	5.515 (1.725)	5.886	5.717	5.577
(306 obj)	(2.381)	(1.664)		(2.096)	(2.070)	(1.849)
Iris	0.503	<u>0.569</u>	0.467	0.471	0.503	0.503
(150 obj)	(0.619)	(0.608)	(0.715)	(0.712)	(0.619)	(0.619)
Lympho	2.305	2.748	2.253	2.239 (1.045)	2.322	2.322
(140 obj)	(1.077)	(0.929)	(1.058)		(1.086)	(1.059)

. . .

Table 1.1: Epl on various datasets from the paper

Paper results

Tested on several small datasets, 10 fold cross-val, EkNN and ENN - brief mention

Data	No cont. correction	Scheme 1 correction	Scheme 2 correction	Scheme 2 only CD	Scheme 2 only CR	Scheme 2 only CN
Synthetic (900 obj)	<u>0.850</u> (0.052)	0.857 (0.046)	0.857 (0.046)	0.858 (0.046)	<u>0.850</u> (0.052)	<u>0.850</u> (0.052)
Haberman (306 obj)	0.755 (0.103)	<u>0.747</u> (0.112)	0.758 (0.096)	0.762 (0.097)	0.756 (0.103)	0.759 (0.104)
Iris (150 obj)	0.971 (0.062)	0.971 (0.062)	<u>0.968</u> (0.064)	0.969 (0.063)	0.971 (0.062)	0.971 (0.062)
Lympho (140 obj)	0.815 (0.139)	<u>0.805</u> (0.149)	<u>0.805</u> (0.143)	0.806 (0.143)	0.814 (0.139)	0.815 (0.135)

. . .

Table 1.2: Utility on various datasets from the paper

Experiment setup

Datasets:

- MNIST, 30.000 training,
 30.000 cross-validation and fine-tuning
- FashionMNIST, 30.000 training,
 30.000 cross-validation and fine-tuning
- CIFAR10, 25.000 training,
 25.000 cross-validation and fine-tuning

Universe: 10 classes (digits 0...9)

Models: ECNN and a ENN

Metric: Epl for training and validation

Experiment setup

ECNN and **ENN**, added Dempster-Shafer layer, trained in two phases

- 20 epochs for probabilistic head reliable
- 100 epochs for evidential head highly unpredictable

Error of ENNs with Corrections

ECNN and **ENN**.; **5 fold** cross-validation

Models	No cont. correction	Scheme 1 correction	Scheme 2 correction	Scheme 2 only CD	Scheme 2 only CR	Scheme 2 only CN
MNIST (60.000 obj)	3778.89 (98.95)	<u>5500.31</u> (148.73)	3133.84 (153.67)	3102.65 (345.86)	3696.77 (341.49)	3164.96 (172.30)
FashionMNIST (60.000 obj)	3875.15 (421.75)	<u>4553.35</u> (290.12)	3658.21 (417.60)	3762.23 (457.83)	3768.29 (384.40)	3661.94 (412.61)
CIFAR10 (50.000 obj)	4344.89 (207.70)	<u>4533.96</u> (162.24)	4122.45 (311.65)	4156.81 (310.72)	4318.55 (210.37)	4131.32 (302.10)

Table 2.1: Epl on MNIST, experiment

Utility of ENNs with Corrections

ECNN and **ENN**.; **5 fold** cross-validation

Models	No cont. correction	Scheme 1 correction	Scheme 2 correction	Scheme 2 only CD	Scheme 2 only CR	Scheme 2 only CN
MNIST (60.000 obj)	0.776 (0.042)	<u>0.724</u> (0.054)	0.760 (0.025)	0.776 (0.046)	0.776 (0.043)	0.713 (0.074)
FashionMNIST (60.000 obj)	0.785 (0.021)	0.776 (0.024)	<u>0.737</u> (0.057)	<u>0.737</u> (0.057)	0.785 (0.021)	0.738 (0.057)
CIFAR10 (50.000 obj)	0.450 (0.003)	0.454 (0.001)	0.461 (0.011)	0.464 (0.009)	<u>0.449</u> (0.004)	0.459 (0.012)

Table 2.2: Utility on MNIST, experiment

Comparing Evidential and Probabilistic NNs

Larger amount of data: MNIST 60.000 obj.; 5 fold cross-validation

Models	No cont. correction	Scheme 1 correction	Scheme 2 correction	Scheme 2 only CD	Scheme 2 only CR	Scheme 2 only CN
CNN+FCN	3709.00 (11.67)	3698.68 (11.61)	3696.87 (11.62)	3696.87 (11.62)	3711.10 (11.68)	3699.26 (11.63)
ECNN+ENN	3778.89 (98.95)	<u>5500.31</u> (148.73)	3133.84 (153.67)	3102.65 (345.86)	3696.77 (341.49)	3164.96 (172.30)

Table 3: Epl on MNIST, experiment

Conclusion

- Evidential NNs require complex training
- Contextual correction scores are better when corrections are done in tandem
- Strategy limited when the number of sources to be combined increases
- Evidential NNs combined using this technique can achieve better utility that probabilistic NNs

Sources

- On Improving a Group of Evidential Sources with Different Contextual Corrections
 Siti Mutmainah , Samir Hachour , Frédéric Pichon , David Mercier, 2022
- An evidential classifier based on Dempster-Shafer theory and deep learning
 Zheng Tong, Philippe Xu, Thierry Denœux, 2021
- Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence, ThierryDenœux, 2008