Fibonacci Series

Aim:

Write a Program to Generate Fibonacci Series using 8051 Microcontroller.

Requirements:

Keil uVision5 Software.

Theory:

Fibonacci Series

In Mathematics, the Fibonacci numbers, commonly denoted F_n , form a sequence, called the Fibonacci series, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

$$F_0 = 0$$
, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for $n > 1$.

The beginning of the series is thus:

Fibonacci numbers are named after Italian mathematician **Leonardo** of Pisa, later known as **Fibonacci**. In his 1202 book Liber Abaci, Fibonacci introduced the sequence to Western European mathematics, although the sequence had been described earlier in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.

Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the Fibonacci Quarterly. Applications of Fibonacci numbers include computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure, and graphs called Fibonacci cubes used for interconnecting parallel and distributed systems.

They also appear in biological settings, such as branching in trees, the arrangement of leaves on a stem, the fruit sprouts of a pineapple, the flowering of an artichoke, an uncurling fern, and the arrangement of a pine cone's bracts.

Procedure:

- 1. Open Keil uVision5 software. Click on **project** and select **new uVision project.**
- 2. Save the project in ASM folder of software directory. A popup window will come up in which we have to **select the device for target**, search **Intel** and select **8051AH** chip and press **ok**.
- 3. A popup window will come up with message **copy STARTUP.A51 to project folder?** Press **no.**
- 4. Now click on **new file**, write the program in this file and save it with **.asm extension**.
- 5. Now on the LHS **Project Window** expand **Target 1** and right click on **Source Group 1** and select **add existing file to group** and select your **.asm** file and click **Add.**
- 6. Press **F7** to **build target**, check for errors and fix them.
- 7. Now click on **Start/Stop Debug Session** and press **F5** to start code execution.
- 8. All the registers and flags are on the upper LHS, code on the upper RHS, command window on lower LHS and memory window on lower RHS.
- 9. To check the result in memory type **I:0x40** and press enter to observe the Fibonacci series.

Program to Generate Fibonacci Series:

Address	Mnemonics	Operands	<u>Comments</u>	
H0000	ORG	0000Н	Start from Memory Location 0000H	
0000Н	LJMP MAIN		Transfer program execution to MAIN(0040H)	
0000Н	ORG	40H	Start from Memory Location 40H	
0040H	MAIN MOV R0	#40H	Memory Location of Series	
0042H	MOV R3	#08	Number of Elements in the Series	
0044H	MOV R1	#00H	Move 00H Data to R1 Register	
0046H	MOV @R0	#00H	Move the 1 st Number in Memory	
0048H	INC R0		Increment R0 Register	
0049H	MOV @R0	#01H	Move the 2 nd Number in Memory	
004BH	MOV R2	#01H	Move 01H Data to R2 Register	
004DH	LABEL2 INC R0		Increment R0 Register	
004EH	MOVA, R1		Move the Contents of R1 to A	
004FH	ADD A, R2		Add the Previous Two Numbers	
0050H	MOV @R0, A		Store the Result of Addition in Memory	
0051H	MOVB, R2		Move the Contents of R2 to B	
0053H	MOV R1, B		Move the Contents of B to R1	
0055H	MOV R2, A		Move the Contents of A to R2	
0056H	DJNZ R3 , LABEL2		Jump to LABEL2 if R3 \neq 0	
0058H	END		End of program	

Screen Shots:

Flow Chart:

Output:

Before Execution	After Execution		
72.6	0040Н	0011	
R3 (Counter)		00H	
08Н	0041Н	01H	
R1 (Previous	0042Н	01H	
Number)	0043Н	02Н	
00Н	0044Н	03Н	
	0045H	05H	
R2 (Current Number)	0046Н	08Н	
01H	0047Н	0DH	

Result : Program to Generate Fibonacci Series using 8051 Microcontroller was implemented successfully.