

OpenFOAM directory organization

OpenFOAM directory organization

We will browse the directories graphically in Linux.

First browse to the installation directory and create a bookmark so that you can easily return.

You can also use the Linux command tree to examine the source code directory organization: (this is used to create the slides)

```
tree -d -L 1 $WM_PROJECT_DIR
yielding (version dependent):
```

```
$WM_PROJECT_DIR
|-- applications
|-- bin
|-- doc
|-- etc
|-- platforms
|-- src
|-- tutorials
`-- wmake
```

In \$WM_PROJECT_DIR you can also find release notes etc., but most importantly:

Allwmake

which compiles all of OpenFOAM by calling other Allwmake scripts.

The applications directory

```
tree -d -L 1 $WM_PROJECT_DIR/applications

(or tree -d -L 1 $FOAM_APP) yields (version dependent):

$WM_PROJECT_DIR/applications
|-- solvers
|-- test
`-- utilities
```

Here is a short description of the applications directory contents:

- solvers contains source code for the distributed solvers
- test contains source code that test and show example of the usage of some of the Open-FOAM classes (we will use some later)
- utilities contains source code for the distributed utilities

There is also an Allwmake script, which will compile all the contents of solvers and utilities

The src directory

The src directory contains the source code for all the libraries.

(try: tree -d -L 1 \$WM_PROJECT_DIR/src, or \$FOAM_SRC)

It is divided in different subdirectories, containing libraries (one library for each Make directory: src; find . -name Make)

The most relevant are:

- finiteVolume. This library provides all the classes needed for the finiteVolume discretization, such as the fvMesh class, finiteVolume discretization operators (divergence, laplacian, gradient, and fvc/fvm), and boundary conditions (fields/fvPatchFields). In cfdTools/general/include/ you also find the very important file fvCFD.H, which is included in most applications.
- OpenFOAM. This *core* library includes the definitions of the containers used for the operations, the field definitions, the declaration of the mesh and of all the mesh features such as zones and sets
- turbulenceModels which contains many turbulence models
- dynamicFvMesh for moving meshes algorithms

The bin, doc, etc, platforms, and tutorials directories

The bin directory contains shell scripts, such as paraFoam, foamNew, foamLog ...

The doc directory contains the documentation of OpenFOAM:

- Programmers and User Guide
- Doxygen generated documentation in html format

Usage:

```
acroread $WM_PROJECT_DIR/doc/Guides-a4/UserGuide.pdf acroread $WM_PROJECT_DIR/doc/Guides-a4/ProgrammersGuide.pdf firefox file://$WM_PROJECT_DIR/doc/Doxygen/html/index.html
```

(The Doxygen documentation will not work now since it is not compiled. Compile by ./Allwmake doc. For now, have a look at www.openfoam.org/docs/cpp/)

The etc directory contains environment set-up files, global controlDict, and default thermoData.

The platforms directory contains the binaries of the applications (bin) and dynamic libraries (lib).

The tutorials directory contains example cases for each solver.

The wmake directory

OpenFOAM uses a special make command: wmake.

wmake understands the file structure in OpenFOAM and has some default compiler directives that are set in the wmake directory. There is also a command, wclean, that cleans up (some of) the output from the wmake command.

If you added a new compiler name in the bashro file, you should also tell wmake how to interpret that name. In wmake/rules you find the default settings for the available compilers.

You can also find some scripts that are useful when organizing your files for compilation, or for cleaning up.

User directory organization

First browse to the user directory and create a bookmark so that you can easily return.

- The \$WM_PROJECT_USER_DIR environment variable is set up as a suggested location of the user development and cases. It is empty from scratch, but we have created some directories to prepare.
- When you do compile your first application and library, specifying FOAM_USER_APPBIN and FOAM_USER_LIBBIN, your binary files will be located there in the same structure as in \$WM PROJECT DIR.
- To make it easier to relate your own developments to the original code, I recommend to organize the source files of your own developments using the same structure as in \$WM_PROJECT_DIR. However, it is not a requirement.