11. If there are free page frames, grahons. If not, must cruck something else. This is called page suplacement.

Given Reference string: 7,0,1,2,0,3,0,+,2,3,0,3,0,3,2,1,2,0,41,7,0,

FIFO (First In First out)

->3 frames (3 pages can be in membry at a time per peocess)
References string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

page frames 15 page-faults

optimal; Replace page that will not be used for longest preciod of time

Reference string

Page famere.

Page faults

		T	-1-	Fra	νν.¢	y =	4	, 10	pao	re J	and	U T	-	1			1	1	T		
Element	1	1	2	3	4	2	1	5	B	2	1	2	3	7	b	3	2	1] 2	2	3
Freme 1	1				1	100	NF				NF				6						
Frame-2			2			NF				NF		NF					NF		N	F	
Frames				3				5					3			NF					NF
France 4					4		-		6				1 =	7				1		-	-
		f	ran	ncs	-5,	, 3	5 P	age	-fau	ills	1										
Element	1	2	3	f	2	-	1	5	G	2 1	:		3 7		6	3	2	1	2	3	6
Trame-1	1					N	F			Ni	:				_ _		1	VF			
Framez		2			מא	F			K	F	NI	-			K	BE V	ır	-	MF		
France-3			3		_	-	-	_		_	_	NI	=		1	VF		+		NF	
Frame-4				+			J	5					7								
France-5			_				_		6					NF							NF
		1	Ya	mc	- G	,	7	pa	ge-	faul	li								-1		
Elemen			2	3	4	2	١	5	G	2	\	2	3	न	e	3	2	1	2	3	6
Franc-1		1					NF				NF							Nŧ			
Frame-2	-		2							NF		NF					N		NE		
Frame-3				3									NF			NF	2		-	NE	
Frame-4	-				4													(CD)		. 4	
Frame 5	- 14							2						7	-	-	-	-	100		
Fame-6					-				6						N	-	1		-		N F
					ì	1											-			ed	13

	1.	amo	: 7		7	pag	e-fo	ult											1
floment	1 2	3	4	2	,	5	G	2	1	2	3	7	6	3	1	,	2	3	6
Frame -					NF				NF							NF			
Frame L	2			NF				NF		NF					NF		NF		
Frame 3		3									NF			NF				NF	
Frame-4			4											,					
Frame 5					٠	5													
Frame-6							6						NF						NA
Frame 7												7							

like above we will calculate faults for FJFO, OPTIMAL &

		No. of	faults	
No of faults	LRU	FIFO	OPTIMAL	Clock
frame-1	20	Ш	20	20
frame-2	18	18	15	17
Frame-3	15	16	l I	14
Franc-4	(O	14	8	٥١
Tramc.5	8	10	7	10
frame-6	7	10	チ	7
Flame.7	7	7	7	7

3Ani Total head movements incurred while reving there sequests

= 632

1Aai

SCAN:

queue = 98,183, 37,122,14,124,65,67 Head starts at 53

Total head movements

=236

queux = 98, 183, 37, 122, 14, 124, 65, 67

Head starty at 53.

Total head movements

= 382

Edni look: Total head movements

= 416

7) C-Ivot: Total head movements:

$$(67-53)+(183-98)+(122-37)+(124-122)+(183-124)+(67-65)$$

+ $(183-19)+(37-14)$

= 439

s) If any computer program needs more RAM than there is a variable - it starts to use so called "page-file", a substitute of RAM that is actually a file on the handdist. As the HDD is usually much better solver than RAM, the program performan-ce get worse, but it still works.

No of entrice in pagetable - (virtual address spacesize) / (page size) using above formula, nx can see that there will be for (2¹²⁻¹²) = 220 entries in page table.

No. of bits required to oddress 64MB physical membry = 26

60, there will be 2(20-12) = 214 page frames in Therefore, each page contains 14 bits addresses of page frame & & 1 bit for valid-virusliad bit so, membry is a byte addresselfe. So we take, each page table entry is 16 bits i.e., 2 byte long size of page table.

(Total no of pagetable entries) + (size of pagetable entry)

(Total no of pagetable entries) # (size of pagetable entry)

(220x2) = 2MB,

- 9) (a) For 6 bit Virtual addresses, and 4 bit page offsets (page size 16 bytes), the most significant 2 bits of a virtual address, will separent page number . 10, sefercine string is 0,0,1,0,1,1,2,1,0,3 (repeated again)
 - (6) page faults with FIFO. S. page faults on 0,1,2,3 (Replaced o) o (Replaced 1), 1 (Replaced 1), 2 (Replaced 3), 3.
 - (c) page faults with LRU = 6. page faults on 0,1,2,3 (suploced 1), 2 (suplaced 3), 3.
 - (d) The optimum algorithm will explace page least likely to ke used in future, and would look like LEU above.
- 10) we have $t_{x} = h * t_{h} + (1-h) * t_{m}$ 10) $t_{h} = \frac{t_{m} t_{x}}{t_{m} \cdot t_{h}}$
- 1) 20 = 010100 = 110100 = 52 40 = 101000 = 10111000 = 184

12) 0.6 *t, +0.3 *t2+0.1 *t3

pages

13) Page size = 2 14 bytes

30, no of page table entries = 2 48/14 = 2 34

Each page can store 16 kg/4 = 212 page table entries

so, no of innermost pages = 2 34/212 = 2 2L

Now, pointers to all innermost pages much be stored in next level page table has 2 21/212 = 210

Finally, a single page can stole all 2'0 page table entries so, outurnost level has one page so, total no of pages the stole page table entries is 22242191

- 14) (cil(64-12)/(12-2))=6 2,10,10,10,10,10 (starting from most significant to least)

 Innermost level how 2^{52} PTE's, which fit in 2^{42} pages.

 Nextlevel has 2^{42} PTEs which require 2^{32} pages 8,80 on.

 Total pages $=2^{42}+2^{32}+2^{24}+2^{12}+2^{2}+1$
- 15) $nv \cdot of$ PTES per page = $2^8/2^2 = 2^8$ $nv \cdot of$ PTES per page = $2^8/2^2 = 2^6$ $nv \cdot of$ in nupage table page = $2^8/2^6 = 2^2 = 4$.

 Which requires one outa page directory so total pages = 4+1=5

pagesize = 811B = 213B Virtual address space size = 240 B PTE = 4B = 22B no of pages of mod entrice in pagetable, = (virtual address space size) (page size) = 2 46 B/246B > 33 size of pagetable, = (no of entries in pagetable) ox (size of PTE) = 233 * 2 B = 235 B To create one mole level, size of pagetable > page size no of pagetable in lautherel, = 2 35B) 2/3B = 222 Base address of these tables are stored in payetable (2nd laul but) size of pagetable[second last level] = 2 L4 2 B = 2 14 R To create one more level, Size of pagetable [2nd last level] > page size No-of page table in second last level = 22/212 B: 2" Ban address of these tables are stoled in page table (3rdlastsize of pagetable [3rd last level] = 1" * 12 B = 2 13 B = pagesize . 3 levels ar required

19

Visitual address space = processize = 26 bytes

physical address space = Main memory = 216 bytes

process is divided into 8 equalsize regments

pagetable size entry = 2 bytes = 16 bits

pagetable entry builder other information zontains

(Valid bit, 3 protection bits, 1 divty bit

page size = 512 bytes.

no of frames in main memory = (rize of main memory)

= 2 16 bytes/ 572 bytes

= 2 16 byta/29 byta

= 27 frames

Thus no of bits required for frame identification in pagetable entry = 7 bits.

No of bits available for storing aging info = no of bits in pagetable entry - (no of bits seq for frame identification) & + I valid bit + 3 protection bits + 1 distybits)

= 16 bits - (7+4+3+1) bits

: (6bits - 12 bits

= fbits

1) Given,

Vistual address space = 2 6 hytes physical address space = 2 6 hytes (page size)

page table entry size = , bytes let page size = n bytes since page table how to be stored into single page, we neuthous size of page tables < page size size of each segment of process size / no of segments : 216 bytes / 8 = 2 13 bytes = SKB no of pages of each segment: size of segment/pagesize = 8 B/nbylu: (81c/n) pages size of each page table = no of entries in pagetable x pagetable entrysize = no ef pages the segment is divided × 2 bytes = (84n) # 2 haptes = (14/n) bytes page size = (16k/n) bytesz=n bytes (16k/n) ==n n2>=/6/c 225=214 n>=> 7 min page size = 27 bytes = 12 bytes Division for virtual address: no of sigments the process is divided = 8 no of bits : 3 bits

no of pages a segment is divided: segment size/page size

= 86B/128 hytes

= 213 bytes/27 hytes

= 26 pages

no-of bits = 6 bits
no-of bits reg for page offset

page of size = 128 bytes = 27 bytes

no-of bits = 7 bits

Thus, virtual address is divided as:-

