Numerical Linear Algebra Homework Project 3: Eigenvalues and Eigenvectors

Catalano Giuseppe, Cerrato Nunzia

Problem 2

Here we consider approximations to the eigenvalues and eigenfunctions of the one-dimensional Laplace operator $L[u] := -\frac{d^2u}{dx^2}$ on the unit interval [0,1] with boundary conditions u(0) = u(1) = 0. A scalar λ is said to be an eigenvalue of L (with homogeneous Dirichlet boundary conditions) if there exists a twice-differentiable function $u:[0,1] \to \mathbb{R}$, not identically zero in [0,1], such that

$$-u''(x) = \lambda u(x)$$
 on $[0,1]$ with $u(0) = u(1) = 0$. (1)

In this case u is said to be an eigenfunction of L corresponding to the eigenvalue λ . Obviously, eigenfunctions are defined up to a nonzero scalar multiple. The eigenvalues and eigenfunctions of L are easily found to be $\lambda_j = j^2\pi^2$ and $u_j(x) = \alpha\sin(j\pi x)$ for any nonzero constant α , which we can take to be 1. Here j is a positive integer; hence, the operator L has an infinite set of (mutually orthogonal) eigenfunctions $\{u_j\}_{j=1}^{\infty}$ corresponding to the discrete spectrum of eigenvalues $\lambda_{j=1}^{\infty}$. Note that $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_j \to \infty$ as $j \to \infty$. Also, each eigenvalue is simple in the sense that (up to a scalar multiple) there is a unique eigenfunction corresponding to it. Approximations to the eigenvalues and eigenfunctions can be obtained by discretizing the interval [0,1] by means of N+2 evenly spaced points: $x_i = ih$ where i = 0, 1, ..., N+1 and h = 1/(N+1). The second derivative operator can then be approximated by centered finite differences:

$$-\frac{d^2u}{dx^2}(x_i) \approx \frac{-u(x_{i-1} + 2u(x_i) - 2u(x_{i+1}))}{h^2}$$
 (2)

and therefore the continuous (differential) eigenproblem (1) can be approximated by the discrete (algebraic) eigenvalue problem

$$h^{-2}T_N\mathbf{u} = \lambda\mathbf{u} \tag{3}$$

where we have set

$$T_{N} = \begin{bmatrix} 2 & -1 & & 0 \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ 0 & & -1 & 2 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{N} \end{bmatrix}$$

$$(4)$$

with $u_i := u(x_i)$. It can be shown that the $N \times N$ matrix T_N has eigenvalues $\mu_j = 2(1 - \cos\frac{\pi j}{N+1})$ for $j = 1, \ldots, N$, corresponding to the eigenvectors \mathbf{u}_j , where $\mathbf{u}_j(k) = \sqrt{\frac{2}{N+1}}\sin(\frac{jk\pi}{N+1})$ is the kth entry in \mathbf{u}_j . Notice that the eigenvectors \mathbf{u}_j are normalized with respect to the 2-norm: $\mathbf{u}_j^T\mathbf{u}_j = 1$. Also notice that the eigenvalues of T_N lie in the interval (0,4). Hence, the eigenvalues of $h^{-2}T_N$ lie in the interval (0,4(N+1)2).

(1) Since we are considering $j \ll N$ and $N \gg 1$ we can identify the Taylor expansion of $\cos x$ with $x = \frac{\pi j}{N+1}$:

$$\cos\frac{\pi j}{N+1} = \cos\pi j h = 1 - \frac{1}{2}\pi^2 j^2 h^2 + O(h^4),\tag{5}$$

that leads us to approximate the smallest eigenvalues of $2h^{-2}T_N$ as follows:

$$2h^{-2}(1-\cos\frac{\pi j}{N+1}) = 2h^{-2}(1-1+\frac{1}{2}\pi^2 j^2 h^2 + O(h^4)) = \pi^2 j^2 + O(h^2) \simeq \pi^2 j^2, \quad (6)$$

where we used that h = 1/N + 1.

For the largest eigenvalue of T_N , we have that j = N, therefore we can not truncate anymore the taylor expansion of the cosine if we want a good approximation. We can compute the N - th eigenvalue of T_N in the limit of $N \gg 1$:

$$\mu_N = 2(1 - \cos \pi \frac{N}{N+1}) = 2(1 - \cos(\pi - \pi h)) = 2(1 + \cos\pi h) = 4 - \pi^2 h^2 + O(h^4)$$
 (7)

Therefore, we have

$$h^{-2}\mu_N = 4(N+1)^2 - \pi^2 + O(h^2)$$
(8)

that is not a good approximation of $\lambda_N = \pi^2 N^2$

(2) We want to compare the eigenvectors \mathbf{u}_j of T_N with the eigenfunctions of L, up to the normalization constant, that we will set to 1 for both. If we recall that $x_k = kh \ \forall k = 1, \ldots, N$ we can observe that the k - th component of the eigenvector \mathbf{u}_j is equal to the j - th eigenfunction $u_j(x)$ computed in corrispondence of the value $x = x_k$:

$$u_j(x_k) = \sin(j\pi x_k) = \sin(j\pi kh) = \sin\left(\frac{j\pi k}{N+1}\right) = \mathbf{u}_j(k). \tag{9}$$

(3) Now we compute the spectral condition number of T_N in the limit of $N \gg 1$. We recall that the eigenvalues of T_N are

$$\mu_j = 2\left(1 - \cos\frac{\pi j}{N+1}\right) = 2\left(1 - \cos\pi jh\right)$$
 (10)

$$h^{-2}\mu_1 = h^{-2}2\left(1 - 1 + \frac{1}{2}\pi^2 h^2 - \frac{1}{4!}\pi^4 h^4 + O(h^6)\right)$$

$$= \pi^2 - \frac{1}{12}\pi^4 h^2 + O(h^4)$$
(11)

$$h^{-}2\mu_{N} = h^{-2}2(1 + \cos(\pi h))$$

$$= 2h^{-2}\left(1 + 1 - \frac{1}{2}\pi^{2}h^{2} + \frac{1}{4!}\pi^{4}h^{4} + O(h^{6})\right)$$

$$= 4h^{-2} - \pi^{2} + \frac{1}{12}\pi^{4}h^{2} + O(h^{4})$$
(12)

$$k_2(T_N) = \frac{h^{-2}\mu_N}{h^{-2}\mu_1} = \frac{4h^{-2} - \pi^2 + \frac{1}{12}\pi^4 h^2 + O(h^4)}{\pi^2 (1 - \frac{1}{12}\pi^2 h^2 + O(h^4))}$$

$$= \frac{4h^{-2}}{\pi^2} - 1 + \frac{4h^{-2}}{\pi^2} \frac{\pi^2 h^2}{12} + O(h^2)$$

$$= \frac{4}{\pi^2} (N+1)^2 - \frac{2}{3} + O(N^{-2})$$
(13)