

(11)Publication number:

60-027700

(43)Date of publication of application: 12.02.1985

(51)Int.CI.

C30B 29/62 C30B 25/00 C30B 29/02

// CO1B 31/02

(21)Application number: 58-134355

(71)Applicant : SHOWA DENKO KK

ENDO MORINOBU

KOYAMA TSUNEO

(22)Date of filing:

25.07.1983

(72)Inventor: ENDO MORINOBU

KOYAMA TSUNEO **KOMAKI KUNIO**

WATANABE MAKOTO

(54) PREPARATION OF CARBON FIBER BY VAPOR-PHASE METHOD

(57)Abstract:

PURPOSE: To prepare carbon fiber continuous in high efficiency, by introducing a compound containing a transition metal to a zone to precipitate carbon fiber, decomposing it thermally, precipitating particles of the transition metal on a substrate.

CONSTITUTION: A substrate is set at an carrier gas inlet of a reactor equipped with nichrome wire, the substrate is introduced into the reactor in the horizontal direction at ≤3.0cm/min linear speed, the reaction is kept at 1,000W1,300°C, and the substrate at ≤1,120°C. A mixed gas of a gas of an organic compound containing a transition metal shown by the formula M(C2H5)2 (M is transition metal), a hydrocarbon gas, and a carrier gas is fed to the reactor, the hydrocarbon is thermally decomposed by catalytic action of the transition metal, so that carbon fiber is formed on the substrate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19 日本国特許庁 (JP)

① 特許出願公開

⑩公開特許公報(A)

昭60-27700

⊕Int. Cl.⁴	識別記号	庁内整理番号 	億公開 昭和60年(1985)2月12日
C 30 B 29/62 25/00 29/02		6542—4 G 6542—4 G 6542—4 G 7344—4 G	発明の数 1 審査請求 未請求
// C 01 B 31/02	1 0 1		(全 3 頁)

砂気相法炭素繊維の製造法

②特 願 昭58-134355

②出 · 願 昭58(1983)7月25日

@発 明 者 遠藤守信

須坂市北原町615

@発 明 者 小山恒夫

長野市真島町梵天974

@発 明 者 小巻邦雄

大町市大字大町6850昭和電工株

式会社大町研究所内

仰発 明 者 渡辺誠

大町市大字大町6850昭和電工株 式会社大町研究所内

加出 願 人 昭和電工株式会社

東京都港区芝大門1丁目13番9

号

勿出 願 人 遠藤守信

須坂市北原町615

⑪出 願 人 小山恒夫

長野市真島町梵天974

個代 理 人 弁理士 菊地精一

明 細 移

1. 発明の名称

気相法炭素繊維の製造法

2. 特許請求の範囲

熱分解による気相法炭素繊維の製造法において、 避移金属を含有する化合物を気相で炭素繊維析出 帯域に導き、該帯域で熱分解させ、避移金属微粒 子を基板上に析出させて炭素繊維を製造すること を特徴とする気相法炭素繊維の製造法。

3. 発明の詳細な説明

(発明の対象)

本発明は気相法による炭素繊維の製造に係り、とくに基板単位当りの炭素繊維の析出収量の向上および連続化による生産性増大を可能とする炭素繊維の気相法による製造方法に関するものである。

(従来技術)

気相法炭素線維の製法は従来パッチ(回分)式 によるのを通常とした。

この方法では一般に、セラミック基板に鉄、ニ ッケル等選移金属単体またはそれらの合金から成 る微粒子を散布したものを反応炉内の反応帯域に 予め固定し、不活性雰囲気となし、炉温を一定温 度まで上昇したのち炭化水素、水素の混合ガスを 通気し、これを熱分解して炭素徴維を生成させる 方法が採られている。

上記は固定床式に属する方法であるが、更に上記パッチ方式を一歩進めて、反応炉内を連続的に 上記微粒子散布基板を一方向に移動させる移動床 式に属する方法も採られる。

子が上記付着物に隠蔽されてその活性を喪失し、 かつ、反応領域内における炭化水素熱分解物との 接触が不十分になるためである。

上記の欠点は固定床式の場合に限らず、移動床 式の場合において、反応ガス流方向と基板移動方 向が同一方向の場合にも対向流の場合にも生起し 5 る。

(発明の目的)

本発明は上記従来法の欠点を除去するため、後粒状避移金属を炭化水素、キャリア・ガス混合ガスと共に同時混合して反応器に送入し、炭素繊維析出帯域において酸避移金属の触媒作用により炭化水素を熱分解せしめることにより、高効率にて連続的に炭素繊維を生成する気相法炭素繊維の製造法を提供することにある。

(発明の構成)

本発明は上記従来法による基板上への反応生成物の粘着による反応阻害、炭素線維の収率低下、連続操業の不可能という欠点を除去するため値々の改良法を試行した結果到達した方法であり、こ

の方法は、熱分解気相法炭素繊維の製造法において、避移金属を含有する化合物を気相で炭素繊維析出帯域に導き、該帯域で熱分解させ、避移金属 数粒子を基板上に析出させて炭素繊維を製造する ととにある。

ことに 退移金属とは 電子が 塩外 般に 8 個まで 充 項される前に内側の 般の電子数が 8 個から 1 6 個または 3 2 個に増加する、原子 智号 2 1 (スカンジウム)から同 2 9 (銅)、同 3 9 (イントリウム)から同 4 7 (銀)、同 5 7 (ランタン)から同 7 9 (金)の元素ならびに原子 普号 8 9 (アクチニウム)以上の脱知元素のすべてを指称するものである。

次に本発明の方法を実施する操作について説明するに、キャリアがスの入口、出口双方側に基板を入出させるための二重室を備えた反応装置にないて、基板はキャリアがス入口より順次にセットされ、上下機構によって反応装置レベルに押し上げられた後水平方向移動機構により反応装置内に連続的に装入される。

被物選移金属を含有する有機化合物の送入は、 同時に避移金属の散布を行うものであるのでいわゆる Seeding と称されるが、これは反応装置外に 設けられたメタローセン蒸発装置により気化した メタローセン・ガスを水素、アルゴン、 窒素がス をキャリア・ガスとしてこれらと混合して連続的 または定期的に反応装置内に導入することによっ て実施される。

ことにメタローセンとは一般式 [M(C₅H₅)₂]、(ただしMは選移金属であり前記した定義によるものであるが、具体的にはTi,V,Cr,Fe,Co,Ni,Ru,Oa,Pd などを指す)で表わされるピス・ンクロペンタジエニル金属化合物のうち非電解質錯体でサンドイッチ構造の分子から成るものを指す。MがFe,Niの場合にはそれぞれフェローセン、ニッケルセンと呼称されるととは周知である。

炭·化水素ガスは上記キャリア・ガスとは別異の 反応装置外の供給装置より供給される。

反応装置内壁材質はアルミナ質ムライト質を使

用するが、黒鉛、石英、コランダム質耐熱性材料 を使用することも可能である。

反応装置の主体をなす反応管は、たとえば外径 120mmが、内径105mmが、長さ2mのごときも のが使用される。

基板は上記寸法反応管に見合う寸法としては、 たとえば外径100mmが、内径85mmが、長さ30 cmであり、2つ割りのアルミナ質ムライトが通常 である。

反応装置の加熱はカンタル級抵抗発熱によって行われ、炉はたとえば三分割炉のごとき型式が使用される。

基板の最高温度は 11 20 C、均熱長さは上記装置の場合には約1 m である。

反応装置内容囲気温度は1000~1300 C の範囲が最も好ましい。

また基板の送り速度は進行方向に翻速度3.0 cm/minであるが最も好ましい乳囲は1±0.5 cm/minである。

気化器におけるメタローセンの温度は M(C₅H₅)₂

のMによって一様ではないが、 MがFe の場合、すなわちフェローセンにおいては(520±100) てが好ましい。キャリア・ガスの流量は(200 ±50)α√min の範囲が好ましい。

Seeding の方法は定期的(間歇的)の場合が最も通常であるが、この場合最適の方法はキャリア・ ガスの反応装置内導入時間10分とし50分間隔 で繰り返すサイクルが最適である。

混合ガスは炭化水素ガスを水素、アルコン、チッ素ガス等で稀釈して使用されるが酸稀釈ガスは ・ 種以上の混合で使用されるととはなく、単数で使用され、その種類と量の選択はメタローセンの 酸点、赤点によって決定される。

混合ガスの うち以化水素がベッグ・ルの場合で エング・ル Collo の銀度は 約 7 まとなる如く H₂ が エによって稀釈される。 容似比の最適範囲は炭化 水素 2 ~ 5 0 vol 多である。 而して、この混合ガ スの流量は 3 0 0 ~ 5 0 0 cc/min の範囲、 4 0 0 ± 5 0 cc/min が最適である。

反応装置内への基板の搬入、搬出は入口、出口

部シャッタにより空気/H2パーツを行った上で実施されるが安全上ならびに炭素繊維生成雰囲気上から見て支際はない。

(实施例 1)

が花質の一端はガスおよび微粉避移金属化合物 導入管、他機には排気管を設ける。導入管を介し てベンセン 7 vol 5 を含む水素ガスを毎分 4 0 0 α を通し、また気化器における温度 5 2 0 ℃のフェーセンを水素ガスと共に水素ガス 2 0 0 ∝ / 分の割合にて炉内に通した。

・このキャリアガスの通気方法は10分間継続装

入後、50分間停止し、これをくり返した。

操業開始後4時間にて操業を停止し送入ガスを アルゴンに切換えて放冷後基板を炉外に取出し、 生成した炭素繊維を剝ぎ取り秤畳した。

この結果、生成炭素繊維量は 1.3 8 / 時間、平均線維径 1.2.5 μ、平均長さ 7 cm の均質な炭素繊維が得られた。該繊維の引張強さは平均 2.5.5 kg/m² であった。

(比較例)

ペッチ式により実施例と同一の炉、同一温度、キャリア・ガス組成により、予め基板に盈移金金を散布(スプレー)した上に炭化水泵、水魚スの混合ガスを実施例と同一条件で通じて得た炭素 機能においては生成量 0.7 8 / 時間、平均長さ3 cm 総維状のものと一部粒状のものを含む不均質な 炭素機能を得るにすきなかった。 繊維部分の引張強さは最大 9 5 kg/m² にすきなかった。

(実施例2)

奥施例 1 と同一条件において(ただし、基板は

固定式)避移金属化合物としてニッケルセンを使用した場合、得られた炭素機能は平均径 1 1.7 μ、平均長さ 6.6 cm、均質かつ均長であり、その引張強さは平均 2 4 0 kg/m²であった。

> 特許出願人 昭和電工株式会社 遠 廢 守 信 小 山 恒 夫 代 理 人 弁理士 菊 地 精 一