Lineare Algebra I, Blatt 3

Gruppe 4

Lorenz Bung (Matr.-Nr. 5113060)

lorenz.bung@students.uni-freiburg.de Tobias Remde (Matr.-Nr. 5100067)

tobias.remde@gmx.de

29. November 2020

Aufgabe 1

(a) Wir haben eine lineare Ordnung, d.h. entweder ist $0_R < a$ oder $a < 0_R$.

Fall 1: $0_R < a$.

Dann ist $0_R \cdot c < a \cdot c$, $c > 0_R$, da < kompatibel mit R ist. Wähle nun c := a, dann ist also $0_R \cdot a = 0_R < a \cdot a = a^2$ und somit a^2 positiv.

Fall 2: $a < 0_R$.

Dann ist $a+c < 0_R+c$, $c > 0_R$. Wir wählen $c := -a > 0_R$ und erhalten $a-a=0_R < 0_R-a=-a$.

Damit erhalten wir $0_R \cdot (-a) = 0_R < (-a) \cdot (-a) = -((-a) \cdot a) = -((-a^2)) = a^2$ und damit $a^2 = (-a)^2$ positiv.

Zusammenfassend folgt, dass $a^2 > 0_R$ für alle $a \in R$.

(b) **Behauptung**: Es gibt keine kompatible lineare Ordnung auf dem Körper \mathbb{C} .

Beweis: Wir führen einen Widerspruchsbeweis. Angenommen, es gäbe eine solche kompatible lineare Ordnung. Dann haben wir in Teilaufgabe (a) schon gezeigt, dass Quadrate $\{a^2\}_{a\in\mathbb{C}}$ bezüglich dieser kompatiblen linearen Ordnung positiv sein müssen.

Wir wählen nun $x:=0+1i\in\mathbb{C}$. Dann müsste x^2 positiv sein. Es ist aber $x^2=i^2=-1<0$.

Widerspruch! Es folgt, dass es keine solche Ordnung geben kann.

(c) **Behauptung**: Wenn R positive Charakteristik hat, besitzt R keine kompatible lineare Ordnung.

Beweis: Wir führen einen Widerspruchsbeweis. Angenommen, es gäbe eine solche lineare Ordnung $\stackrel{\sim}{<}$. Dann wäre

$$a \stackrel{\sim}{<} b \Rightarrow \left\{ \begin{array}{ll} a + c \stackrel{\sim}{<} b + c & \text{für alle } c \\ ac \stackrel{\sim}{<} bc & \text{falls } c \stackrel{\sim}{>} 0_R \end{array} \right. .$$

Da $\stackrel{\sim}{<}$ linear ist, ist entweder $0_R \stackrel{\sim}{<} 1_R$ oder $1_R \stackrel{\sim}{<} 0_R$.

Fall 1: $1_R \stackrel{\sim}{<} 0_R$.

Wähle $c:=1_R+1_R+\cdots=\sum\limits_{i=0}^{k-1}1_R.$ Dann ist

$$1_R + c = \sum_{i=0}^k 1_R = 0_R \stackrel{\sim}{<} \sum_{i=0}^{k-1} 1_R = 0_R + c.$$

Widerspruch, da $1_R \stackrel{\sim}{<} 0_R$ war.

Fall 2: $0_R \stackrel{\sim}{<} 1_R$.

Analog zu Fall 1.

Damit kann keine solche Ordnung existieren.

Aufgabe 2

(a) Sei $a^2 = a$ für $a \in R$. Dann ist

$$0_R = (0_R)^2 = (a-a)^2 = a^2 + 2a^2 + (-a)^2 = a + 2a - a = 2a$$

was genau der Fall ist, wenn $0_R = a$.

Wegen $a = aa = a^2$ ist auch $1_R = a$.

Damit muss char(R) = 1 sein.

(b) Seien $a, b \in R$. Dann ist nach Definition

$$a + b = (a + b)^2 = a^2 + 2ab + b^2 = a + 2ab + b.$$

Dies ist äquivalent zu 0 = ab, was genau dann der Fall ist, wenn a das Inverse (bezüglich der Multiplikation) von b und b das Inverse von a ist, also $a = b^{-1}$ und $b = a^{-1}$.

Dann ist jedoch $ab = aa^{-1} = 0_R = bb^{-1} = ba$ und damit die Multiplikation kommutativ.

Aufgabe 3

Die Abbildung

$$f := (R, +) \rightarrow (R, +), x \mapsto x^p$$

mit char(R) = p > 0 ist genau dann ein Gruppenhomomorphismus, wenn

$$f(a+b) = f(a) + f(b), \ a, b \in R$$

gilt.

Es ist

$$f(a+b) = (a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k = a^p + \sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} b^k + b^p.$$

Dies lässt sich auch schreiben als

$$a^{p} + \sum_{k=1}^{p-1} p \cdot \frac{(p-1)!}{k!(p-k)!} a^{p-k} b^{k} + b^{p}.$$

 $\frac{(p-1)!}{k!(p-k)!}a^{p-k}b^k$ ist jedoch ein Element aus dem Ring, und da p die Charakteristik des Ringes ist, werden alle dieser Summanden 0 (folgt aus *Definition 1.31*. im Skript).

Es bleibt $f(a + b) = (a + b)^p = a^p + b^p = f(a) + f(b)$. Somit ist f ein Gruppenhomomorphismus.

Aufgabe 4

(a) Die Vektoren $v_1 = 3+4i$ und $v_2 = 1-2i$ sind genau dann linear abhängig, wenn $\lambda_1, \lambda_2 \in \mathbb{R}$ bzw. $\lambda_1, \lambda_2 \in \mathbb{C}$ existieren, sodass die Gleichung $\lambda_1 v_1 + \lambda_2 v_2 = 0$ eine Lösung mit $\lambda_1, \lambda_2 \neq 0$ hat.

Dies ist genau dann der Fall, wenn ein $\lambda \in \mathbb{R}$ bzw. $\lambda \in \mathbb{C}$ existiert mit $\lambda = \frac{\lambda_1}{\lambda_2}$.

Die Multiplikation eines Vektors $a+bi\in\mathbb{C}$ mit einem Skalar $c\in\mathbb{R}$ resultiert in einem Vektor $ac+bci\in\mathbb{C}$. Bei Wahl eines Skalars $c+di\in\mathbb{C}$ entsteht jedoch der Vektor $ac-bd+(ad+bc)i\in\mathbb{C}$.

Die resultierenden Gleichungssysteme sind zwar in \mathbb{C} lösbar, jedoch nicht in \mathbb{R} . Somit sind die Vektoren v_1 und v_2 im \mathbb{C} -Vektorraum \mathbb{C} linear abhängig, aber linear unabhängig im \mathbb{R} -Vektorraum \mathbb{C} .

(b) Analog zu Teilaufgabe (a) sind die beiden Vektoren $v_1 = 3 - 2\sqrt{2}$ und $1 + \sqrt{2}$ genau dann linear abhängig, wenn es ein $\lambda \in \mathbb{Q}$ bzw. $\lambda \in \mathbb{R}$ mit $\lambda \neq 0$ gibt, welches die Gleichung $\frac{v_1}{v_2} = \lambda$ löst.

Im \mathbb{R} -Vektorraum \mathbb{R} existiert ein solches λ , nämlich $7+5\sqrt{2}=\frac{1+\sqrt{2}}{3-2\sqrt{2}}=\frac{v_2}{v_1}$. In \mathbb{Q} gibt es jedoch kein solches λ , da $7+5\sqrt{2}\notin\mathbb{Q}$.

Somit sind die Vektoren v_1 und v_2 im \mathbb{Q} -Vektorraum \mathbb{R} linear unabhängig, und im \mathbb{R} -Vektorraum \mathbb{R} linear abhängig.