Machine Learning & Pattern Recognition

SONG Xuemeng

sxmustc@gmail.com

http://xuemeng.bitcron.com/

Linear Regression

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

Training dataset: $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\};$

Features of the *i*-th customer: $x_i = (x_{i1} x_{i2} \dots x_{id})^T$; (Column vector)

The **ground truth** of the credit limit for the i-th customer: $y_i \in \mathbb{R}$.

Linear regression: $f(x_i) = w^T x_i + b = \sum_{j=1}^d w_j x_{ij} + b$, where $w = (w_1 \ w_2 \ ... \ w_d)^T \in \mathbb{R}^d$

For simplicity, the bias b can be merged into the weight w:

$$h(\boldsymbol{x_i}) = \widehat{\boldsymbol{w}}^T \widehat{\boldsymbol{x_i}} \qquad \widehat{\boldsymbol{w}} = (b; \boldsymbol{w}) = (b \ w_1 \ w_2 \ \dots \ w_d) \in \mathbb{R}^{d+1}$$
$$\widehat{\boldsymbol{x_i}} = (1; \ x_{i1}; x_{i2}; \dots; x_{id}) \in \mathbb{R}^{d+1}$$

Linear Regression

Linear regression hypothesis: $h(x_i) = w^T x_i = \sum_{j=0}^d w_j x_{ij}$, $x_{i0} = 1$

Linear regression: find lines/hyperplanes with small residuals

Empirical Error

We usually prefer to minimize the objective function where the expectation is taken across the data generating distribution p_{data} rather than just over the finite training set:

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{data}} L(h(\boldsymbol{x}, \boldsymbol{\theta}), \boldsymbol{y})$$

However, in most cases, we do not know p_{data} but only have a training set of samples. One simplest way to convert the machine learning problem back into an optimization problem is to minimize the expected loss on the training set.

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \widehat{P}_{data}} L(h(\boldsymbol{x}, \boldsymbol{\theta}), \boldsymbol{y})$$

Replacing the true distribution $p_{data}(x, y)$ with the empirical distribution $\hat{P}_{data}(x, y)$ defined by the training set.

Linear Regression

Popular/historical error measure:

squared error
$$err(\hat{y} - y) = (\hat{y} - y)^2$$

$$E(\mathbf{w}) = \sum_{i=1}^{m} \frac{(h(\mathbf{x}_i) - y_i)^2}{\mathbf{w}^T \mathbf{x}_i}$$

Next: How to minimize E(w)?

Matrix Form of $E(\mathbf{w})$

$$E(\mathbf{w}) = \sum_{i=1}^{m} (h(\mathbf{x}_{i}) - y_{i})^{2} = \sum_{i=1}^{m} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2} = \sum_{i=1}^{m} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i})^{2}$$

$$= \left\| \begin{vmatrix} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \vdots \\ \mathbf{x}_{m}^{T} \mathbf{w} - y_{m} \end{vmatrix}^{2} = \left\| \begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \vdots \\ --\mathbf{x}_{m}^{T} - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} \right\|^{2}$$

$$= \|\mathbf{X} \mathbf{w} - \mathbf{y}\|^{2}$$

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1d} \\ 1 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{m1} & x_{m2} & \cdots & x_{md} \end{pmatrix} \in \mathbb{R}^{m \times (d+1)}, \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{pmatrix} \in \mathbb{R}^{d+1}, \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m$$

Matrix Form of E(w)

$$\min E(\mathbf{w}) = \min \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

- $E(\mathbf{w})$: continuous, differentiable, convex
- Necessary condition of 'best' w.

• Necessary condition of best
$$w$$
.

$$\nabla E(w) = \begin{bmatrix} \frac{\partial E}{\partial w_0}(w) \\ \frac{\partial E}{\partial w_1}(w) \\ \vdots \\ \frac{\partial E}{\partial w_d}(w) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \text{Not possible to 'roll down'}$$
• Necessary condition of best w .

Task: find the \mathbf{w}^* such that $\nabla E(\mathbf{w}^*) = \mathbf{0}$

The Gradient $\nabla E(\mathbf{w})$

$$\min_{\mathbf{w}} E(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y}$$

$$\mathbf{A} \qquad \mathbf{b} \qquad c$$

One w only

$$E(\mathbf{w}) = (a\mathbf{w}^2 - 2b\mathbf{w} + c)$$

$$\nabla E(\mathbf{w}) = 2a\mathbf{w} - 2b$$

Vector w

$$E(\mathbf{w}) = (\mathbf{w}^T A \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c)$$

$$\nabla E(\mathbf{w}) = 2\mathbf{A}\mathbf{w} - 2\mathbf{b}$$

$$\nabla E(\mathbf{w}) = 2(\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y})$$

Optimal Linear Regression Weights

Task: find
$$\mathbf{w}^*$$
 such that $\nabla E(\mathbf{w}^*) = 2(\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y}) = \mathbf{0}$

Invertible/positive definite X^TX

Unique solution

$$w^* = (X^T X)^{-1} X^T y$$

pseudo-inverse X[†]

Often the case because

$$N \gg d + 1$$

Singular $X^T X$

- Many optimal solutions
- One of the solution
 - Define X^{\dagger} in other ways

Linear Regression Algorithm

1. From \mathcal{D} , construct input matrix X and output vector Y by

$$\boldsymbol{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1d} \\ 1 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{m1} & x_{m2} & \cdots & x_{md} \end{pmatrix} \in \mathbb{R}^{m \times (d+1)}, \, \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m$$

2. Calculate pseudo-inverse

$$\mathbf{X}^{\dagger} \in \mathbb{R}^{(d+1) \times m}$$

3. Return
$$\mathbf{w}^* = \mathbf{X}^{\dagger} \mathbf{y} \in \mathbb{R}^{(d+1)}$$

Simple and efficient with $good X^{\dagger}$ routine

Exercise

After getting \mathbf{w}^* , we can calculate the predictions $\hat{y}_n = (\mathbf{w}^*)^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

Exercise

After getting \mathbf{w}^* , we can calculate the predictions $\hat{y}_n = (\mathbf{w}^*)^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

Reference Answer: (3)

Note that $\hat{\mathbf{y}} = \mathbf{X} \mathbf{w}^*$. Then, a simple substitution of \mathbf{w}^* reveals the answer.

Heart Attack Prediction Problem

age	40 years
gender	male
blood pressure	130/85
cholesterol level	240
weight	70

heart disease? yes

Binary classification:

Ideal $f(x) = sign(p(+1|x) - 0.5) \in \{-1, +1\}$

Heart Attack Prediction Problem

age	40 years
gender	male
blood pressure	130/85
cholesterol level	240
weight	70

heart attack? 80% risk

'Soft' Binary classification:

$$f(x) = p(+1|x) \in [0,1]$$

Soft Binary classification:

Target function
$$f(x) = p(+1|x) \in [0,1]$$

Ideal data

$$\begin{pmatrix} \mathbf{x}_{1}, y'_{1} &= 0.9 &= P(+1|\mathbf{x}_{1}) \\ (\mathbf{x}_{2}, y'_{2} &= 0.2 &= P(+1|\mathbf{x}_{2}) \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} \mathbf{x}_{N}, y'_{N} &= 0.6 &= P(+1|\mathbf{x}_{N}) \end{pmatrix}$$

Actual data

$$\begin{pmatrix} \mathbf{x}_{1}, y_{1} &= \circ & \sim P(y|\mathbf{x}_{1}) \\ (\mathbf{x}_{2}, y_{2} &= \times & \sim P(y|\mathbf{x}_{2}) \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} \mathbf{x}_{N}, y_{N} &= \times & \sim P(y|\mathbf{x}_{N}) \end{pmatrix}$$

Same data as hard binary classification, different target function

Logistic Hypothesis

age	40 years
gender	male
blood pressure	130/85
cholesterol level	240

Let $x_i = (x_{i0}, x_{i1}, x_{i2}, ..., x_{id})$ be the features of the patient, calculate a weighted 'risk score':

$$s = \sum_{j=0}^{d} w_j x_{ij} = \mathbf{w}^T \mathbf{x}_i,$$

Convert the score to estimated probability by logistic function $\theta(s)$.

Logistic hypothesis: $h(x_i) = \theta(w^T x_i)$

Logistic Function

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

smooth, monotonic, sigmoid function of *s*

Bound
$$\theta(s) \in [0,1]$$
 $\theta(-\infty) = 0$ $\theta(0) = 0.5$ $\theta(\infty) = 1$ Symmetric $1 - \theta(s) = \theta(-s)$ Gradient $\theta'(s) = \theta(s)(1 - \theta(s))$

Logistic regression use $h(x) = \theta(\mathbf{w}^T \mathbf{x})$ to approximate the target $f(\mathbf{x}) = p(+1|\mathbf{x})$

Exercise

Logistic Regression and Binary Classification

Consider any logistic hypothesis $h(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$ that approximates $P(y|\mathbf{x})$. 'Convert' $h(\mathbf{x})$ to a binary classification prediction by taking sign $\left(h(\mathbf{x}) - \frac{1}{2}\right)$. What is the equivalent formula for the binary classification prediction?

- $\mathbf{1}$ sign $(\mathbf{w}^T\mathbf{x} \frac{1}{2})$
- 2 sign $(\mathbf{w}^T \mathbf{x})$
- 3 sign $\left(\mathbf{w}^T\mathbf{x} + \frac{1}{2}\right)$
- 4 none of the above

Exercise

Logistic Regression and Binary Classification

Consider any logistic hypothesis $h(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$ that approximates $P(y|\mathbf{x})$. 'Convert' $h(\mathbf{x})$ to a binary classification prediction by taking sign $\left(h(\mathbf{x}) - \frac{1}{2}\right)$. What is the equivalent formula for the binary classification prediction?

- 1 sign $(\mathbf{w}^T \mathbf{x} \frac{1}{2})$
- 3 sign $\left(\mathbf{w}^T\mathbf{x} + \frac{1}{2}\right)$
- 4 none of the above

Reference Answer: (2)

When $\mathbf{w}^T \mathbf{x} = 0$, $h(\mathbf{x})$ is exactly $\frac{1}{2}$. So thresholding $h(\mathbf{x})$ at $\frac{1}{2}$ is the same as thresholding $(\mathbf{w}^T \mathbf{x})$ at 0.

Linear Models

How to define the cost (error) function for logistic regression?

Logistic Regression— $y \in \{0,1\}$

Target function:
$$p(y|x) = \begin{cases} f(x) & \text{for } y = 1 \\ 1 - f(x) & \text{for } y = 0 \end{cases}$$

Consider
$$\mathcal{D} = \{(x_1, +), (x_2, -), ..., (x_m, -)\}$$

Likelihood that h generates \mathcal{D}

Maximum-Likelihood Estimation

Given a dataset $\mathcal{D} = \{x_1, x_2, ..., x_n\}$, where the n samples are drawn independently from identical distribution $p(x|\theta)$, estimate parameters θ .

ML estimate parameters θ maximizes $p(\mathcal{D}|\theta)$

 \mathcal{D} is an i.i.d set

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta})$$

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{k=1}^{n} p(\boldsymbol{x}_k|\boldsymbol{\theta})$$

Logistic Regression-- $y \in \{0,1\}$

Target function:
$$p(y|x) = \begin{cases} f(x) & \text{for } y = 1 \\ 1 - f(x) & \text{for } y = 0 \end{cases}$$

Consider
$$\mathcal{D} = \{(x_1, +), (x_2, -), ..., (x_m, -)\}$$

Likelihood that h generates \mathcal{D}

$$p(\mathbf{x}_1)h(\mathbf{x}_1)$$

$$p(\mathbf{x}_2)(1 - h(\mathbf{x}_2))$$

$$\vdots$$

$$p(\mathbf{x}_m)(1 - h(\mathbf{x}_m))$$

- If $h \approx f$, then likelihood $(h) \approx$ that using (f)
- Probability using(f) is usually large

Likelihood of Logistic Regression

Goal:
$$arg \max_{h} likelihood(h)$$
 $likelihood(h) = \prod_{i=1}^{n} p(x_i)p(y|x_i)$

Consider
$$\mathcal{D} = \{(x_1, +), (x_2, -), ..., (x_m, -)\}$$

$$likelihood(h) = \prod_{i=1}^{m} p(\mathbf{x}_i) p(\mathbf{y}_i | \mathbf{x}_i)$$
$$= p(\mathbf{x}_1) h(\mathbf{x}_1) p(\mathbf{x}_2) (1 - h(\mathbf{x}_2)) p(\mathbf{x}_m) (1 - h(\mathbf{x}_m))$$

We remove all the $p(x_i)$ which remains the same for all the hypothesis h.

Likelihood of Logistic Regression

Goal:
$$arg \max_{h} likelihood(h)$$
 $likelihood(h) = \prod_{i=1}^{n} p(x_i)p(y|x_i)$

Consider
$$\mathcal{D} = \{(x_1, +), (x_2, -), ..., (x_m, -)\}$$

$$p(y_i|x_i) = \begin{cases} h(x_i) & \text{for } y_i = 1\\ 1 - h(x_i) & \text{for } y_i = 0 \end{cases} \iff p(y_i|x_i) = h(x_i)^{y_i} (1 - h(x_i))^{(1 - y_i)}$$
Bernoulli distribution

$$likelihood(h) \propto \prod_{i=1}^m p(y_i|x_i) = \prod_{i=1}^m h(x_i)^{y_i} (1 - h(x_i))^{(1-y_i)}$$

Log-Likelihood of Logistic Regression

Negative Log-likelihood

$$\min_{h} E(h) = \sum_{i=1}^{m} -(y_i \ln h(x_i) + (1 - y_i) \ln(1 - h(x_i)))$$
Cross-entropy loss

Cross-entropy

$$H(p,q) = -\sum_{x} p(x) \log(q(x)) \qquad p \in \{y, 1-y\} \\ q \in \{h(x), 1-h(x)\}$$

Negative Log-likelihood
$$\min_{\mathbf{w}} \sum_{i=1}^{m} \left[-y_i ln \left(\frac{1}{1 + e^{-\mathbf{w}^T x_i}} \right) - (1 - y_i) ln \left(\frac{1}{1 + e^{\mathbf{w}^T x_i}} \right) \right]$$

$$\min_{\mathbf{w}} \sum_{i=1}^{m} \left[-y_i \mathbf{w}^T \mathbf{x}_i + \ln(1 + e^{\mathbf{w}^T \mathbf{x}_i}) \right]$$

Minimize E(w)

$$\min_{\mathbf{w}} E(\mathbf{w}) = \sum_{i=1}^{m} \left[-y_i \mathbf{w}^T x_i + ln(1 + e^{\mathbf{w}^T x_i}) \right]$$

Cross-entropy loss

E(w): continuous, differentiable, twice-differentiable, **convex** We want to find the valley

$$\nabla E(w) = 0$$

Gradient $\nabla E(w)$

$$\nabla E(\mathbf{w}) = \sum_{i=1}^{m} \left[-y_i \mathbf{x}_i + \frac{e^{\mathbf{w}^T \mathbf{x}_i}}{1 + e^{\mathbf{w}^T \mathbf{x}_i}} \mathbf{x}_i \right] = \sum_{i=1}^{m} \left[\theta(\mathbf{w}^T \mathbf{x}_i) - y_i \right] \mathbf{x}_i = 0$$

•
$$\nabla E(\mathbf{w}) = 0 \iff \begin{cases} \theta(\mathbf{w}^T \mathbf{x}_i) = 1, & \text{if } y_i = 1 \\ \theta(\mathbf{w}^T \mathbf{x}_i) = 0, & \text{if } y_i = 0 \end{cases} \iff \begin{cases} \mathbf{w}^T \mathbf{x}_i \to \infty, & \text{if } y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i \to -\infty, & \text{if } y_i = 0 \end{cases}$$

- > The data must be linearly separable. :-(
- $\nabla E(w)$ is a non-linear equation of w
 - > It is hard to derive the closed form solution. :-(

Gradient Descent [Cauchy 1847]

• Motivation: to minimize the local first-order Taylor approximation of f

$$\min_{x} f(x) \approx \min_{x} f(x_t) + \nabla f(x_t)^T (x - x_t)$$

Update rule:

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

Where $\eta_t > 0$ is the step-size (learning rate).

Gradient Descent--Interpretation

• Reduce f(x) by moving x in small steps with opposite sign of the derivative.

Update rule:

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

• Critical points/stationary points: Points where f'(x) = 0

An illustration of gradient descent.