https://github.com/savthe/discrete_math

Классы булевых функций

- **1.** Для функции f = (0110) найдите
- a) f(f(x,y),y), 6) f(0,f(1,y)), B) f(1,f(y,f(x,0))).
- 2. Для функции $f = (1101\,0101)$ найдите f(z,f(x,y,x),z).
- 3. Система (или класс) булевых функций $\Sigma = \{f_1, f_2, \dots, f_n\}$ называется полной, если всякая булева функция f может быть представлена в виде суперпозиции булевых функций из системы Σ . Какие системы булевых функций являются полными:
- a) $\{\neg, \land, \lor\}$, $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{\neg, \lor\}$, $\{\neg, \lor\}$, $\{(1000)\}$

Замыканием класса булевых функций Σ называется система булевых функций $|\Sigma|$, которая содержит любую суперпозицию функций системы Σ .

Класс Σ называется замкнутым, если $\Sigma = |\Sigma|$.

Классы T_0 и T_1

Множество функций f таких, что $f(\vec{0}) = 0$ называется классом функций, сохраняющих 0, и обозначается T_0 .

Множество функций f таких, что $f(\vec{1}) = 1$ называется классом функций, сохраняющих 1, и обозначается T_1 .

- **1.** Для данной функции $f \notin T_0$ выразите функцию **1** или ¬. Докажите, что из любой функции $f \notin T_0$ всегда можно выразить **1** или ¬. Сформулируйте аналогичное утверждение для $g \notin T_1$.
- a) f = (10), 6) f = (1101), B) f = (11100010).
- **2.** Сколько существует булевых функций от n переменных, принадлежащих классу T_1 ?

3. Сколько существует булевых функций от n переменных, не принадлежащих классам T_0 и T_1 ?

Класс L

Линейной булевой функцией называется функция, многочлен Жегалкина которой содержит только линейные слагаемые. Класс линейных булевых функций обозначается L.

- **1.** Докажите, что если функция линейна, то количество единиц и нулей в таблице истинности одинаково.
- **2.** Проверьте, является ли функция f линейной:
- a) f = (0110), 6) f = (00010111), B) f = (11000011)
- 3. С помощью констант 0, 1 и операции ¬ и данной нелинейной функции f постройте функцию $h(x,y) = x \wedge y$. Докажите, что это можно сделать для любой функции $f \notin L$.
- a) f(x, y) = 1 + x + xy, 6) f(x, y, z) = xy + xz, B) f(x, y, z) = x + zy + xyz.
- 4. Сколько существует линейных булевых функций от n переменных?

Kласс S

Двойственной функцией к булевой функции $f(x_1,...,x_n)$ называется функции $f^*(x_1,...,x_n) \equiv \overline{f(x_1,...,x_n)}$.

Функция, совпадающая с двойственной себе называется самодвойственной. Класс самодвойственных функций обозначается как S.

- **1.** Докажите, что таблица аргументов булевой функции антисимметрична относительно середины.
- 2. Докажите, что у самодвойственной функции таблица значений антисимметрична относительно середины таблицы.

- 3. Какие из перечисленных функций являются самодвойственными:
- a) 1, 6) \land , B) \neg , r) f = (001010111), π) f = (10010111).
- **4.** Используя функции ¬ и $f \notin S$ постройте функцию **0** или **1**. Докажите, что это можно сделать для любой $f \notin S$.
- a) f = (0111), 6) f = (01001001).
- **5.** Сколько существует самодвойственных булевых функций от n переменных?

Класс М

Булева функция называется монотонной, если при прохождении по рёбрам булева куба вдоль любого кратчайшего пути из вершины $(\vec{0})$ в вершину $(\vec{1})$ значение функции не убывает.

Аналогичное определение: будем называеть векторы $\vec{\alpha}, \vec{\beta} \in \mathbb{Z}_2^n$ сравнимыми, если соответствующие им вершины булева куба находятся на одном ребре. Будем говорить, что $\vec{\alpha} < \vec{\beta}$, если $\vec{\alpha}$ и $\vec{\beta}$ сравнимы и при этом в $\vec{\alpha}$ меньше единиц, чем в $\vec{\beta}$.

Функция f называется монотонной, если для любых сравнимых $\vec{\alpha}$ и $\vec{\beta}$ из $\vec{\alpha} \leqslant \vec{\beta}$ следует $f(\vec{\alpha}) \leqslant f(\vec{\beta})$. Класс монотонных булевых функций обозначается M.

- 1. Определите, является ли функция монотонной:
- a) \vee , β f = (1001 1111), β f = (0101 0111).
- **2.** Имеются функции **0**, **1** и $f \notin M$. Выразите функцию $h(x) = \neg x$. Докажите, что это можно сделать для любой $f \notin M$.
- a) f = (0110), 6) f = (00101101)
- **3.** Сколько существует монотонных булевых функций от n переменных?

Теорема Поста

- **1.** Докажите, что классы T_0 и T_1 замкнуты.
- **2.** Докажите, что класс M замкнут.
- **3.** Докажите, что класс L замкнут.
- **4.** Докажите, что класс S замкнут.
- **5. Теорема**. Система булевых функций Σ полна тогда и только тогда, когда она не содержится ни в одном из классов T_0, T_1, S, M, L .
- **6.** *Необходимость*. Докажите, что если Σ полна, то она не содержится в классах T_0, T_1, S, M, L .
- 7. Достаточность. Пусть Σ не принадлежит классам Поста. Тогда в Σ найдутся функции $f_0 \notin T_0$, $f_1 \notin T_1$, $f_S \notin S$, $f_L \notin L$, $f_M \notin M$ (некоторые из них могут совпасть). Достаточно показать, что через эти функции всегда можно выразить функции $\mathbf{0}, \mathbf{1}, \neg, \wedge$.