

orthogonal decomposition theorem

 ${\bf Canonical\ name} \quad {\bf Orthogonal Decomposition Theorem}$

Date of creation 2013-03-22 17:32:34 Last modified on 2013-03-22 17:32:34 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem Classification msc 46A99

Synonym closed subspaces of Hilbert spaces are complemented

Theorem - Let X be an Hilbert space and $A\subseteq X$ a closed subspace. Then the http://planetmath.org/Complimentaryorthogonal complement of A, denoted A^{\perp} , is a topological complement of A. That means A^{\perp} is closed and

$$X = A \oplus A^{\perp}$$
.

Proof:

• A^{\perp} is closed:

This follows easily from the continuity of the inner product. If a sequence (x_n) of elements in A^{\perp} converges to an element $x_0 \in X$, then

$$\langle x_0, a \rangle = \langle \lim_{n \to \infty} x_n, a \rangle = \lim_{n \to \infty} \langle x_n, a \rangle = 0$$
 for every $a \in A$

which implies that $x_0 \in A^{\perp}$.

 \bullet $X = A \oplus A^{\perp}$:

Since X is http://planetmath.org/Completecomplete and A is closed, A is a subspace of X. Therefore, for every $x \in X$, there exists a best approximation of x in A, which we denote by $a_0 \in A$, that satisfies $x-a_0 \in A^{\perp}$ (see this http://planetmath.org/BestApproximationInInnerProductSpacesentry).

This allows one to write x as a sum of elements in A and A^{\perp}

$$x = a_0 + (x - a_0)$$

which proves that

$$X = A + A^{\perp}$$
.

Moreover, it is easy to see that

$$A \cap A^{\perp} = \{0\}$$

since if $y \in A \cap A^{\perp}$ then $\langle y, y \rangle = 0$, which means y = 0.

We conclude that $X = A \oplus A^{\perp}$. \square