Entendendo Debounce por Tempo em Sistemas Digitais

∅ O que é "debounce"?

Em sistemas digitais, debounce (ou anti-repique) é a técnica usada para eliminar leituras instáveis geradas por dispositivos mecânicos, como botões, teclas, e joysticks, que oscilam rapidamente entre ligado/desligado (HIGH/LOW) ao serem pressionados ou soltos.

Representation Representation of the second secon

Componentes como **chaves tácteis** não são ideais. Ao pressionar um botão, os contatos internos podem **vibrar ou oscilar por poucos milissegundos**, gerando **pulsos espúrios** que os sistemas digitais interpretam como múltiplos eventos.

Sem debounce:

Pressionar uma vez pode gerar 2, 3 ou mais "cliques" acidentalmente.

Debounce por Tempo (Software)

Uma das formas mais comuns e eficientes de tratar o debounce é **aguardar um tempo mínimo (delay)** após detectar uma borda (subida ou descida), e só então validar o estado do sinal.

O Lógica geral do debounce por tempo:

- Detecta-se uma transição no pino (ex: botão foi pressionado → borda de descida).
- 2. Inicia-se um temporizador (delay).
- 3. Após o tempo definido (ex: 20ms), verifica-se **se o botão ainda está pressionado**.
- 4. Se estiver, é considerado um clique **válido**.

✓ Vantagens do debounce por tempo:

- Fácil de implementar em microcontroladores ou em software.
- Não requer hardware adicional.
- Controlável: você define quanto tempo é "seguro" para eliminar ruídos.

III Quanto tempo usar como delay?

- Valores típicos: 10 a 50 ms
- Para chaves mecânicas simples: **20 ms** costuma ser suficiente.
- Pode ser ajustado conforme o tipo de botão ou teste em campo.

Comparativo com outras técnicas

Técnica	Vantagem	Desvantagem
Debounce por tempo	Simples, sem hardware	Pode atrasar respostas rápidas
Filtro por média	Mais robusto contra ruído	Mais código / processamento
Hardware RC	Sem uso de CPU	Requer componentes adicionais
Debounce por interrupção + temporizador	Eficiente em energia / eventos	Mais complexo

Aplicações típicas

- Leitura de botões em microcontroladores (Arduino, STM32, RP2040...)
- Interfaces homem-máquina (HMI)
- Contadores com botões
- Jogos com joysticks analógicos e digitais