Class 10 Maths - Chapter 8: Introduction to Trigonometry

★ What is Trigonometry?

- * Trigonometry is the study of angles and sides in a right-angled triangle.
- Word origin:
 - **Tri** = 3
 - o Gon = sides
 - Metron = measure

▶ Trigonometric Ratios

In **right triangle ABC**, right-angled at B (\angle B = 90°):

```
AB = adjacent side to \angle A
BC = opposite side to \angle A
AC = hypotenuse
```

@ Basic Trigonometric Ratios:

```
sin A = BC / AC

cos A = AB / AC

tan A = BC / AB

cosec A = AC / BC = 1 / sin A

sec A = AC / AB = 1 / cos A

cot A = AB / BC = 1 / tan A
```

Relationships Between Ratios

```
tan A = sin A / cos A

cot A = cos A / sin A
```

▼ Trigonometric Identities (Always True)

```
\sin^2 A + \cos^2 A = 1
1 + \tan^2 A = \sec^2 A
1 + \cot^2 A = \csc^2 A
```

Standard Angle Values (0°, 30°, 45°, 60°, 90°)

Angle	sin	cos	tan	cosec	sec	• cot
0°	0	1	0	× ND	1	X ND
30°	1/2	√3/2	1/√3	2	2/√3	√3
45°	1/√2	1/√2	1	√2	√2	1
60°	√3/2	1/2	√3	2/√3	2	1/√3
90°	1	0	×ND	1	×ND	0

← ND = Not Defined

Example: If tan A = 3/4, find all other ratios

Let:

BC = 3k (opposite)

AB = 4k (adjacent)

 $AC = \sqrt{(3k)^2 + (4k)^2} = 5k$

Then:

 $\sin A = 3/5$

 $\cos A = 4/5$

tan A = 3/4

cosec A = 5/3

sec A = 5/4

 $\cot A = 4/3$

Proving an Identity Example

Q: If tan A = 1, prove 2 sin A cos A = 1

$$tan A = 1 \Rightarrow \angle A = 45^{\circ}$$

$$\sin A = \cos A = 1/\sqrt{2}$$

 $2 \times \sin A \times \cos A = 2 \times 1/\sqrt{2} \times 1/\sqrt{2} = 1$

Quick Summary

sin A = opposite / hypotenuse

cos A = adjacent / hypotenuse

tan A = opposite / adjacent

★ Identities to Remember:

$$\sin^2 A + \cos^2 A = 1$$

$$1 + \tan^2 A = \sec^2 A$$

$$1 + \cot^2 A = \csc^2 A$$