1126

Theorem 32.10. If A is a UFD then the polynomial ring A[X] is also a UFD.

Proof. As we said earlier, the factorization property (1) is easier to prove than uniqueness. Assume that f(X) has degree m and let f_m be the coefficient of X^m in f(X). Either f_m is a unit or it is the product of $n \ge 1$ irreducible elements. If f_m is a unit we set n = 0. We proceed by induction on the pair (m, n), using the well-founded ordering on pairs, i.e.,

$$(m,n) \leq (m',n')$$

iff either m < m', or m = m' and n < n'. If f(X) is a nonnull polynomial of degree 0 which is not a unit, then $f(X) \in A$, and $f(X) = f_m = a_1 \cdots a_n$ for some irreducible $a_i \in A$, since A is a UFD. This proves the base case.

If f(X) has degree m > 0 and f(X) is reducible, then

$$f(X) = g(X)h(X),$$

where g(X) and h(X) have degree $p, q \leq m$ and are not units. There are two cases.

(1) f_m is a unit (so n = 0).

If so, since $f_m = g_p h_q$ (where g_p is the coefficient of X^p in g(X) and h_q is the coefficient of X^q in h(X)), then g_p and h_q are both units. We claim that $p, q \ge 1$. Otherwise, p = 0 or q = 0, but then either $g(X) = g_0$ is a unit or $h(X) = h_0$ is a unit, a contradiction.

Now, since m = p + q and $p, q \ge 1$, we have p, q < m so (p, 0) < (m, 0) and (q, 0) < (m, 0), and by the induction hypothesis, both g(X) and h(X) can be written as products of irreducible factors, thus so can f(X).

- (2) f_m is not a unit, say $f_m = a_1 \cdots a_n$ where a_1, \ldots, a_n are irreducible and $n \ge 1$.
 - (a) If p, q < m, then $(p, n_1) < (m, n)$ and $(q, n_2) < (m, n)$ where n_1 is the number of irreducible factors of g_p or $n_1 = 0$ if g_p is irreducible, and similarly n_2 is the number of irreducible factors of h_p or $n_2 = 0$ if h_p is irreducible (note that $n_1, n_2 \le n$ and it is possible that $n_1 = n$ if h_q is irreducible or $n_2 = n$ if g_p is irreducible). By the induction hypothesis, g(X) and h(X) can be written as products of irreducible polynomials, thus so can f(X).
 - (b) If p = 0 and q = m, then $g(X) = g_p$ and by hypothesis g_p is not a unit. Since $f_m = a_1 \cdots a_n = g_p h_q$ and g_p is not a unit, either h_q is not a unit in which case, by the uniqueness of the number of irreducible elements in the decomposition of f_m (since A is a UFD), h_q is the product of $n_2 < n$ irreducible elements, or $n_2 = 0$ if h_q is irreducible. Since $n \ge 1$, this implies that $(m, n_2) < (m, n)$, and by the induction hypothesis h(X) can be written as products of irreducible polynomials. Since $g_p \in A$ is not a unit, it can also be written as a product of irreducible elements, thus so can f(X).

The case where p = m and q = 0 is similar to the previous case.