

SISTEMAS DE HARDWARE PARA LA ADMINISTRACIÓN

Profesor: Ing. Gonzalo Calderón

Electricidad y Electromagnetismo

Parámetros Eléctricos

Corriente

flujo de electrones

Voltaje (Tensión) diferencia de Potencial

Tensión Continua

Almacenamiento - Transporte

Tensión Alterna

Almacenamiento - Transporte

Parámetros eléctricos: Corriente Eléctrica

Un amperio (A) es equivalente a un culombio (C) de carga que pasa a través de una superficie en un segundo.

$$i(t) = dq/dt(C/s)$$
.

La carga del electrón es - \mathbf{e} = -1,602.10 exp-19 \mathbf{C} , y por lo tanto una corriente de un amperio representa aproximadamente 6,24- 10 exp18 electrones por segundo pasando por una sección determinada de un conductor.

EJEMPLO 1.2. Un conductor tiene una intensidad de corriente de 5 amperios. ¿Cuántos electrones pasarán por un determinado punto del conductor en un minuto?

$$5 A = (5 C/s)(60 s/min) = 300 C/min$$

$$\frac{300 \text{ C/min}}{1,602 \cdot 10^{-19} \text{ C/electron}} = 1,87 \cdot 10^{21} \text{ electrones/min}$$

Sentido de Circulación de la Corriente (en continua)

Se opone a la circulación de corriente
 Proceso energético irreversible

$R = \rho L/A$

ρ = coeficiente de resistibidad del material

L = longitud del conductor

A = sección del conductor

Unidades:

R se mide en [Ohm]
L se mide en [metros]
A se mide en [metros cuadrados]
p se mide en [ohm x metros]

Resistencis SMD de precisión con código de 4 cifras. Valores iguales o mayores de 100 Ω

EJEMPLOS

$$4700$$
 $470 + _ = 470 Ω$

1001
$$100 + 0 = 1K\Omega$$

$$3301 330 + 0 = 3,3KΩ$$

1002
$$100 + 00 = 10$$
 Κ Ω

$$4703$$
 $470 + 000 = 470 ΚΩ$

TOLERANCIA 1%

TIPOS DE RESISTORES

Película de carbón

- 5%, 10%
- Barato
- · Propósito general

Película metálica

- · Precisión 1%
- · Alto desempeño

Mayor potencia

Alambre

· Alta potencia, Alta corriente

SMD para circuitos impresos

Potentiometer Construction

Construcción de potenciómetros.

Resistencia: Coeficiente de Resistividad

MATERIAL	RESISTIVIDAD
	A 20 °C
	ρ (Ω-m)
Plata	1.6 x 10 ⁻⁸
Cobre	1.7 x 10 ⁻⁸
Aluminio	2.8×10^{-8}
Tumgsteno	5.5×10^{-8}
Hierro	10×10^{-3}
Plomo	22 x 10 ^{-\$}
Mercurio	96 x 10 ⁻⁸
Nicrón	100×10^{-8}
Carbono	35000 x 10 ⁻⁸
Germanio	0.45
Silicio	640
Madera	108-1014
Vidrio	1010-1014
Goma dura	1013-1016
Ambar	5 x 10 ¹⁴
Azufre	1015

Resistencia: Coeficiente de Resistividad

conductores	AGUA SALADA CARBÓN	2 x 10 ⁵ 3,5 x 10	
No conductores	AGUA DESTILADA	5 x 10 ⁹	
	MADERA	10 ¹⁴ - 10 ¹⁷	
	VIDRIOS	1016 - 1020	
	PORCELANA	1014	
	CAUCHO	1021	
	ACEITE DE TRANSF.	2×10^{20}	
	CUARZO	$7,5 \times 10^{23}$	
	DIAMANTE	>1017	
	TEFLÓN	>1019	
_	AGUA TOTALMENTE PURA	182.000 M · mm²/m	

Resistencia: Ley de OHM

Potencia Activa (Continua)

$$P = V \times I$$

$$(P = V^2 / R = I^2 \times R)$$

Unidades: Múltiplos y Submúltiplos

10 °	10 ³	10°	10 ⁻³	10 ⁻⁶	10 ·9	10 -12
		Ampere [A]	mΑ	uΑ	nΑ	pΑ
MV	ΚV	Volt [V]	m∀	uV	n∀	p∀
MΩ	KΩ	Ohm [Ω]	mΩ	uΩ		
MW	KW	Watt [W]	mW	u₩		

Autoinductancia (Inductancia)

almacena energía como Campo Magnético
 proceso reversible

$$L = \mu N^2 A / L$$

donde:

L = Coeficiente de autoinducción ó Inductancia en [Henrio]

N = número de espiras de la bobina

(cantidad de vueltas del conductor alrededor de la bobina)

A = sección del núcleo de la bobina en [m 2]

L = longitud de la forma cubierta por la bobina en [m]

μ = Permeabilidad Magnética del núcleo de la bobina

Autoinductancia: Permeabilidad magnética

Cuando:

 $\mu_{r<1}$ estamos frente a materiales Diamagnéticos

μ_{r>1} se trata de materiales Paramagnéticos

μ_{r>> 1} nos referimos a materiales Ferromagnéticos

En la tabla podemos apreciar el valor de μ_r para algunos materiales así como el valor de la Permeabilidad del vacío

Material	u,
Aire	1
Hierro Electrólitico	1850
Hierro Blando	3550
Acero al Silicio	7000
Permalloy	60 a 105 x 10 ³
Armco Trancor 6	9600

$$u_0 = 4 \times \Pi \times 10^{-7}$$
 [H/m]

Autoinductancia: Permeabilidad magnética

Cuando:

 $\mu_{r < 1}$ estamos frente a materiales Diamagnéticos

 $\mu_{r>1}$ se trata de materiales Paramagnéticos

 $\mu_{r>>1}$ nos referimos a materiales Ferromagnéticos

En la tabla podemos apreciar el valor de μ_r para algunos materiales así como el valor de la Permeabilidad del vacío

Material	u,
Aire	1
Hierro Electrólitico	1850
Hierro Blando	3550
Acero al Silicio	7000
Permalloy	60 a 105 x 10 ³
Armco Trancor 6	9600

$$u_0 = 4 \times \Pi \times 10^{-7} \text{ [H/m]}$$

La unidad detectora detecta el rumbo del avión en relación con el campo magnético de la Tierra (electromagnéticamente) por medio de un transformador muy sensible que es excitado por la corriente alterna.

El campo de la Tierra influye (suma o resta) en la cantidad de inducción que ocurre en cada pata de un núcleo de tres radios. Las bobinas de arranque secundarias producen una señal compleja en fase que es representativa del campo de la Tierra (Norte magnético).

Leyes de Kirchhoff

Ley de los Nodos

(Corrientes)

Donde:

$$\sum i_n = 0$$

o sea: $+i_1-i_2+i_3+i_4-i_5=0$

o también:

 $i_1 + i_3 + i_4 = i_2 + i_5$

Ley de las Mallas

(Tensiones)

Donde:

$$\sum V_n = 0$$

o sea: + V - V₁ - V₂ = 0

o también:

 $V = V_1 + V_2$

Problemas Propuestos:

- 1- ¿ Cuantos electrones pasan por un determinado punto de una lámpara de 100 vatios (W), en una hora, si la tensión aplicada es de 120 V?.
- 2- Una resistencia tiene una tensión aplicada de V = 1,5mV. Calcular la intensidad de corriente I si la potencia absorbida por la resistencia es:
- a) 27,75 nW.
- b) 1,2 uW.
- 3- Una Corriente I ingresa por el terminal positivo de un elemento generalizado de un circuito, siendo la tensión entre el mismos de 3,91 V. Calcular la intensidad de la corriente I si la potencia absorbida es de 25 mW.

Problemas Propuestos: SOLUCION

Problema 1

¿Cuántos electrones pasan por un determinado punto de una lámpara de 100 vatios, en una hora, si la tensión aplicada es 120 V?

$$\frac{100 \text{ W} = (120 \text{ V}) \cdot I(\text{A})}{\frac{(5/6 \text{ C/s})(3600 \text{ s/h})}{1,602 \cdot 10^{-19} \text{ C/electrón}}} = 1,87 \cdot 10^{22} \text{ electrones por hora}$$

Problema 2

Una resistencia tiene una tensión aplicada de V = 1,5 mV. Calcular la intensidad si la potencia absorbida es a) 27,75 nW y b) 1,20 μ W.

Solución: 18,5 μA, 0,8 mA.

Problema 3

Una intensidad i entra por el terminal positivo de un elemento generalizado de un circuito, siendo la tensión entre el mismo de 3,91 V. Calcular la intensidad si la potencia absobida es -25 mW.

Solución: -6,4 mA.