

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181114304

FCC REPORT

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: EKO Ara 5.7 A5719

Trade mark: EKO

FCC ID: 2AC7IEKONARA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Nov., 2018

Date of Test: 30 Nov., to 21 Dec., 2018

Date of report issued: 25 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Dec., 2018	Original

Tested by: Quen (Den Date: 25 Dec., 2018

Test Engineer

Reviewed by: 25 Dec., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	_
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	_
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Radiated Emission Method	46
7	TES	T SETUP PHOTO	54
8	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result			
Antenna requirement	15.203 & 15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass			
Power Spectral Density	15.247 (e)	Pass			
Band Edge	15.247 (d)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Page: The ELIT complies with the according requirements in the standard					

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp	
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122	
Manufacturer/Factory:	INTERGLOBE CONNECTION LTD	
Address:	RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK	

5.2 General Description of E.U.T.

Product Name:	Mobile Phone	
Model No.:	EKO Ara 5.7 A5719	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	External Antenna	
Antenna gain:	-2.93dBi	
Power supply:	Rechargeable Li-ion Battery DC3.85V-2500mAh	
AC adapter:	Model: Ara 5.7 B5719 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

Operation Frequency each of channel for 802.11b/g/n(H20)/ n(H40))							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181114304

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Tost mode:			

Test mode:

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	_	Version: 2.0.0.0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The WiFi antenna is an Inernal antenna which cannot replace by end-user, the best case gain of the antenna is -2.93 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Н7		
Limit:	Frequency range	Limit (dRu\/\	
Limit.	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the loga	arithm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

46.00 -25.94 Average

46.00 -24.47 Average

46.00 -22.28 Average

50.00 -28.25 Average

50.00 -28.60 Average

56.00 -17.56 QP

60.00 -22.24 QP

60.00 -22.00 QP

Measurement Data:

Product name:	Mobile Phone		Product model:		EKO Ara 5.7	A5719	
Test by:	Carey		Test mode:		Wi-Fi Tx mode		
Test frequency:	150 kHz ~ 30 MHz		Phase:		Line		
Test voltage:	AC 120 V/60 Hz		Environment:		Temp: 22.5℃	Huni: 55%	
80 Level (dBuV)							
80							
70							
60					FC	C PART15 B QP	
50					FCC	PART15 B AV	
50	2						
40	Mu.	4		8 . M		1011	
30	MAY A WANT A LANGUAGE WATER	MANY and	Louis de La Maria Harry Maria		Who.	// [*]	
1	May.	2	6	7 9	Mark Mark Mark Mark Mark Mark Mark Mark	M 12 Mandy	
20 MMMM	Mar worth the worth was	4 demandales	and hadry	11/	e Man	14	
10	**				Age of the state o	M mark	
0.15 .2	.5	1	2	5	10	20 30	
.15 .2 Trace: 15	.5	-	iency (MHz)	3	10	20 30	
Truco. 19	Read L1	ISN Cabi	le	Limi	t Over		
Free	1 Level Fact	or Lo	ss Level	Lin	e Limit	Remark	
MH:	z dBuV	<u>ab</u>	dB dBu√	dBu	<u>A</u>		
1 0.194	1 27.27 0.	73 10.	76 38.76	63.8	4 -25.08	QP	
2 0.502	2 28.99 0.	76 10.	76 40.51	56.0	0 -15.49		
1 0.194 2 0.502 3 0.508 4 0.974		76 10.1 78 10.1			0 -17.42 0 -21.04		
1 0.31	20.02 0.	10 10.	00 04.00	00.0	0 21.04	-d(T	

Notes:

6

8

9

10

11

12

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

8.41

9.82

12, 10

26.83

10.17

26.15

26.38

9.78

0.78

0.78

0.76

0.76

0.75

0.70

0.70

0.70

10.87

10.93

10.86

10.85

10.83

10.91

10.92

10.92

20.06

21.53

23.72

38.44

21.75

37.76

38.00

21.40

1.016

2.581

4.672

4.874

5.564

16.573

18.524

18.622

Product name:	ı	Mobile Phone		Proc	luct model:	I	EKO Ara 5.7 A5719		
est by:	Carey		Test	mode:		BLE Tx mode			
est frequency:	•	150 kHz ~ 3	0 MHz	Phas	se:		Neutral		
est voltage:	,	AC 120 V/60) Hz	Envi	ronment:	-	Temp: 22.5°C	Huni: 55%	
70 60 50 40 30 20	W2-w		MANAMAN (1800)	HAMANA MARINA				C PART15 B QP C PART15 B AV	
0.15 .2		.5	1	2 Frequenc	y (MHz)	5	10	20 30	
15 .2 Trace: 13	Freq	Read			y (MHz) Level	5 Limit Line	Over	20 30 Remark	
15 .2 Trace: 13	Freq	Read	LISN	Frequenc Cable		Limit	Over Limit		

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Max	Limit(dBm)	Popult			
Test CH	802.11b	802.11g 802.11n(H20) 802.11n(H40)		Limit(ubin)	Result	
Lowest	17.97	14.86	14.87	12.71		
Middle	17.23	16.24	16.21	12.35	30.00	Pass
Highest	16.93	16.08	16.21	11.61		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

-							
Test CH		6dB Emission B	Limit/Id-I-	Dogult			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	10.14	15.36	15.36	35.84			
Middle	10.20	15.80	15.28	36.48	>500	Pass	
Highest	10.20	15.28	15.84	35.52			
Test CH		99% Occupy Ba		Daguit			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	13.28	16.48	17.60	35.84			
Middle	12.96	16.64	17.76	35.84	N/A	N/A	
Highest	12.72	16.56	17.68	35.84			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU		Limit(dDm)	Dogult			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	7.09	3.15	3.39	-2.64		
Middle	7.80	4.13	3.11	-3.35	8.00	Pass
Highest	6.89	4.20	3.68	-3.68		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oonducted Ennission							
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Me	etnou							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2013 and KDB 558074							
	Test Frequency Range:	2.3GHz to 2.5GHz							
	Test Distance:	3m							
	Receiver setup:	Frequency	Detec	tor	RBW	V	ΒW	Remark	
	•	Above 1GHz	Pea		1MHz		ИНz	Peak Value	
			RMS		1MHz		MHz T	Average Value	
	Limit:	Frequenc		Lin	nit (dBuV/m @ 54.00	3m)	Δν	Remark verage Value	
		Above 1G	Hz						
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antennatower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data 						ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-	
	Test setup:	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AE E (Turntabl	· .	Hor 3m Ground Reference Plane	n Antenna	Antenna Tox	wer	
	Test Instruments:	Refer to section	n 5.8 for c	detail	S				
	Test mode:	Refer to section	n 5.3 for o	detail	S				
	Test results:	Passed							

802.11b mode:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Mobile Phone			Pr	Product Model:		EKO Ara 5.7 A5719	
est B	t By: Carey		Те	est mode:		802.11b Tx mode			
est Cl	hannel:	Lowest cl	hannel		Po	olarization	1:	Horizontal	
est Vo	oltage:	AC 120/6	0Hz		Er	nvironmer	nt:	Temp: 24℃	Huni: 57%
1.	avel (dDull/m)								
110	evel (dBuV/m)			T Y				TV TV	1
100									
								1	m
80				-				FOC DA	RT 15 (PK)
								1	MI ISTITY
60								FCCDA	RT 15 (AV)
~	mmmmmm	mann	mmm	more	~~~~	~~~~	market	FCC PA	K1 15 (AV)
40		200			200		2		
20									
20									
23	310 2320	<u> </u>	235	To the second second					2422
		D 14		100000000000000000000000000000000000000	ency (MHz)		T		
	Freq		ntenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	₫B	dB	dBuV/π	dBuV/π	. —— <u>ab</u>	
1	2390.000	18.21	27.37	4.69	0.00	51.95	74.00	-22.05	Peak
2	2390.000	8.20	27.37	4.69	0.00			-12.06	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone Carey		Product Model:	EKO Ara 5.7 A5719 802.11b Tx mode	
Test By:			Test mode:		
Test Channel:	Highest channel		Polarization:	Vertical	
Test Voltage:	AC 120/60Hz		Environment:	Temp: 24℃ Huni: 57%	
110 Level (dBuV/m)					
80				FCC PART 15 (PK)	
60			1	FCC PART 15 (AV)	
40					
20					
02452		Frequency (2500	
Freq	ReadAntenna Level Factor	Cable Pream Loss Facto	mp Limit or Level Line	: Over e Limit Remark	
MHz	dBuV dB/m	dB o	B dBuV/m dBuV/n	л <u>dВ</u>	
1 2483.500 2 2483.500	18.12 27.57 10.12 27.57	4.81 0.0 4.81 0.0	00 52.20 74.00 00 44.20 54.00) -21.80 Peak) -9.80 Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct Name:	Mobile Ph	ione		Pr	oduct Mod	el:	EKO Ara 5.	.7 A5719	
est By:	Carey			Те	est mode:		802.11b Tx mode		
est Channel:	Highest cl	hannel		Po	olarization:	tion: Horizontal			
est Voltage:	AC 120/6	0Hz		Er	nvironment	:	Temp: 24℃	Huni: 57%	
Level (dDed/fee)									
110 Level (dBuV/m)									
100			-				-		
		-							
80		1					ECC	PART 15 (PK)	
							rcc	FART 13 (FR)	
60			1				500	DADT 45 (ALA	
			100	m	~~~	~~~		PART 15 (AV)	
40					2	2		1000	
40									
20									
20									
0 ² 452								250	
T-600-T-000-T-000	DJ			quency (MH	100	Timin	A		
Freq	Level	ntenna Factor	Loss	Preamp Factor	Level	Limit Line		Remark	
	dBu₹	<u>dB</u> /π		ā	dBuV/m	dBu√/m	<u>d</u> B		
1 2483.500	17.01	27.57	4.81	0 00	51 09	74 00	-22.91	Peak	
2 2483.500	9.12	27.57	4.81					Average	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

roduct	t Name:	Mobile Pl	none		Pr	roduct Mo	del:	EKO Ara 5	.7 A5719
est By	:	Carey			Te	est mode:		802.11g Tx	mode
est Ch	annel:	Lowest c	hannel		Po	olarization	:	Vertical	
est Vo	Itage:	AC 120/6	0Hz		Er	nvironmen	t:	Temp: 24°C	Huni: 57%
Lou	vol (dBull/m)				•				
110	vel (dBuV/m)								1
100									1000
								pu)	money
80								FCC	PART 15 (PK)
60								FCC	PART 15 (AV)
\sim	mannon	www	www.	Www	m	mm	m	100	PART 13 (AV)
40							1		
20									
0									
23	10 2320		235		uency (MH:	7)			242
		Read	Intenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level		Limit	Remark
	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
1	2390.000	18.69		4.69	0.00	52.43	74.00	-21.57	Peak
2	2390.000	10.57	27.37	4.69				-9.69	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	t Name:	Mobile Ph	one		Pr	oduct Mod	el:	EKO Ara 5.	7 A5719
st By:	:	Carey			Те	est mode:		802.11g Tx	mode
st Ch	annel:	Lowest ch	annel		Po	plarization: Horizontal		Horizontal	
st Vo	Itage:	AC 120/60)Hz		En	nvironment	:	Temp: 24℃	Huni: 57%
					•				
110 Le	evel (dBuV/m)								
100									
									~~~~~
80									1
_								HCC	PART 15 (PK)
								hand	
60							1 N	FCC	PART 15 (AV)
60	~~~~~	~~~	www	mm	~~~	m	my w	FCC	PART 15 (AV)
60	~~~~~	~~~	m	mm	~~~	mm	~~	FCC	PART 15 (AV)
_	~~~~~	~~~	www	mm		mm	~~	FCC	PART 15 (AV)
40	~~~~	~~~	ware	www		~~~~		FCC	PART 15 (AV)
_	~~~~~~	~~~·	www	~~~		~~~~	magnet with the same of the sa	FCC	PART 15 (AV)
40	~~~~~	~~~	wow	~~~		~~~~	~~~	FCC	PART 15 (AV)
40	310 2320	~~~	23:	50		~~~~	magnet and a second	FCC	PART 15 (AV)
40		~~~		50	uency (MH			FCC	
40	310 2320	ReadA	23s	50 Freq Cable	Preamp		Limit	Over	242
40	310 2320	ReadA	23s	50 Freq Cable	Preamp	7.5		Over	242
40	310 2320	ReadA	23s	50 Freq Cable	Preamp Factor		Line	Over Limit	242
40	310 2320 Freq	ReadA Level	23s interna Factor dB/m	50 Freq Cable Loss	Preamp Factor dB	Level	Line	Over Limit ———————————————————————————————————	242

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product N	ame:	Mobile Ph	one		Pr	oduct Mod	el:	EKO Ara 5.	7 A5719	
Test By:		Carey			Те	Test mode: 802.11g Tx mode			mode	
est Chan	nel:	Highest ch	nannel		Po	olarization:		Vertical		
est Volta	ge:	AC 120/60	)Hz		Er	vironment	:	Temp: 24℃	Huni: 57%	
Love	ol (dPuV/m)									
2.0	el (dBuV/m)								Ī	
100		No								
	~~~			1						
80				1				FCC	PART 15 (PK)	
00				~~	~~					
60						man 1	~~	FCC	PART 15 (AV)	
40									V V	
40										
20										
20										
0										
245	2			Freq	uency (MH:	z)			2500	
		ReadA	ntenna	Cable	Preamp		Limit	Over		
	Freq					Level	Line	Limit	Remark	
	MHz	dBu₹	dB/π	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
1	2483.500	22.01 14.03	27.57 27.57	4.81 4.81	0.00 0.00		74.00 54.00	-17.91	Peak	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Nam	ne:	Mobile Pho	one		Pr	oduct Mod	el:	EKO Ara 5.	7 A5719		
Test By:		Carey			Test mode: 802.11g Tx r		802.11g Tx mode		g Tx mode		
Test Channe	l:	Highest ch	annel		Po	larization:		Horizontal			
Γest Voltage	:	AC 120/60	Hz		Er	vironment	:	Temp: 24℃	Huni: 57%		
Level (d	DuV/m\						·				
110 Level (0	Davin,										
100								-			
		~	~~~								
80								FCC	PART 15 (PK)		
				1				,,,,	rant to tray		
60				1	~~	-		FCC	PART 15 (AV)		
						7	~~~		PART 15 (AV)		
40						4					
40											
20											
20											
2452				1020		10			2500		
	950				uency (MHz						
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu∇			<u>d</u> B	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>d</u> B			
1 24	183.500	18.93		4.81	0.00	53.01	74.00	-20.99	Peak		
	183.500	10.89	27.57	4.81	0.00	44.97	54.00	-9.03	Average		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

roduct	Name:	Mobile Ph	one		Pre	oduct Mod	el:	EKO Ara 5.	7 A5719	
est By:		Carey			Те	st mode:		802.11n(HT	20) Tx mode	
est Cha	annel:	Lowest ch	Lowest channel			Polarization:		Vertical		
est Vol	tage:	AC 120/60)Hz		En	vironment	:	Temp: 24℃	Huni: 57%	
	and AdDreit Vissal	9.								
110	vel (dBuV/m)			7		M				
100										
								·~	mounty	
80								dec.	PART 15 (PK)	
_								Jec	PART 13 (PR)	
60							Λ	5		
~^	-~~^~	man arms that	mana	. Δο. σ.	A 00000	mm	. A '	FCC	PART 15 (AV)	
40	vv w v.	, , , ,		ÇA T VO	W. C. TV.	V. V.	2			
40										
- 56										
20										
023	10 2320		235	50			-		242	
		·			uency (MH					
	Fre		intenna Factor		Preamp			Over Limit	Remark	
	MH	z dBuV	dB/m	dB	dВ	dBuV/m	dBuV/m	dB		
1	2390.00			4.69				-21.47	Peak	
2	2390.00		27.37	4.69	0.00			-9.62		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	t Name:	Mobile Ph	one		Pr	roduct Mod	el:	EKO Ara 5	.7 A5719
est By	<i>r</i> :	Carey			Te	est mode:		802.11n(HT20) Tx m	
est Ch	nannel:	Lowest ch	annel		Po	Polarization:		Horizontal	
est Vo	oltage:	AC 120/60)Hz		Er	nvironment	:	Temp: 24℃	Huni: 57%
Le	evel (dBuV/m)								
110	(4247111)								1
100									
									noum.
80								5	7
_								FCC	PART 15 (PK)
								2	
60							1.0	FCC	PART 15 (AV)
~~	many	mohom	$-\infty$	mon	m	m	wy		
40							1		10
40							4		- 12
20									
20									
20	310 2320		23:		wency (MH	17)			242
20	310 2320	D JA		Freq	juency (MH	7.	T:-:+		242
20		ReadA	ntenna	Freq Cable	Preamp		Limit		
20		ReadA Level	ntenna Factor	Freq Cable	Preamp Factor	Level	Line	Limit	
20		ReadA Level	ntenna	Freq Cable	Preamp Factor		Line	Limit	
20	Freq	Level	ntenna Factor — dB/m	Freq Cable Loss dB	Preamp Factor dB	Level	Line dBuV/m	Limit ———————————————————————————————————	Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:		Mobile Ph	one		Pro	oduct Mod	el:	EKO Ara 5.7 A5719 802.11n(HT20) Tx mode	
est By:		Carey			Te	Test mode: Polarization:			
est Channel:		Highest ch	nannel		Ро			√ertical	
est Voltage:		AC 120/60)Hz		En	vironment	-	Гетр: 24° С	Huni: 57%
110 Level (dBuV	/m)								
100		· · ·	^ ^						
80								FCC F	PART 15 (PK)
60				~	~~	~~ <u>†</u>	<u> </u>	FCC F	PART 15 (AV)
40						4	~~		
20									1
02452									2500
2,02				T - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	uency (MHz				2000
F	req	ReadA Level			Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	dB/π		<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>d</u> B	
1 2483. 2 2483.		23.87 15.64	27.57 27.57	4.81 4.81	0.00 0.00	57.95 49.72		-16.05	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		one		Pro	Product Model:		EKO Ara 5.7 A5719 802.11n(HT20) Tx mode					
	Carey		_	Te	st mode:	:	802.11n(HT	20) Tx mode				
nel:	Highest ch			Polarization:								
ge:	AC 120/60	Hz		En	vironment	:	Temp: 24℃	Huni: 57%				
el (dBuV/m)								-				
	0	~										
			1									
							FCC	PART 15 (PK)				
			1									
				m		Acres 1	FCC	PART 15 (AV)				
					2	~~	~~~~~					
2				ALC: UNITED BY				250				
5 050				The state of the s								
								D 1				
Freq	revel	ractor	LOSS	ractor	rever	Line	Limit	Kemark				
MHz	dBu∀	dB/m	₫₿	₫B	dBuV/m	dBu√/m	₫B					
0402 500	00.00	07 57	4 01	0.00	E4 04	T4 00	10.00	D - 1				
2483.500	20.86 12.76	27.57 27.57	4.81	0.00	04.94	14.00 E4.00	0 -19.06 Peak 0 -7.16 Average					
		ge: AC 120/60 el (dBuV/m) 2 ReadA Freq Level MHz dBuV	ReadAntenna Freq Level Factor MHz dBuV dB/m	el (dBuV/m) Preq ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB	ge: AC 120/60Hz En el (dBuV/m) Frequency (MHz ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB	ge: AC 120/60Hz Environment: el (dBuV/m) 2 Frequency (MHz) ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m	ge: AC 120/60Hz Environment: el (dBuV/m) Frequency (MHz) ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m	ge: AC 120/60Hz Environment: Temp: 24°C el (dBuV/m) FCCI Frequency (MHz) ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Produc					Pr	roduct Mod	lel:	EKO Ara 5.	7 A5719			
Test By	/ :	-			Тє	est mode:		802.11n(HT40) Tx mode				
Test Ch	nannel:	Lowest ch	nannel		Po	olarization:		Vertical Temp: 24°C Huni: 57				
Test Vo	oltage:	AC 120/6	0Hz		Er	nvironmen	::	Temp: 24℃	Huni: 57%			
10	evel (dBuV/m)											
110	er (dbdv/iii)											
100			_	-			-					
								Manage	mound			
80							- Por	FCC	PART 15 (PK)			
60				4	~~~	Agrim	√\-r _\	FCC	PART 15 (AV)			
h.	~~~~~	morning	mm	Shumon	ww	2		100	PAINT TO (AV)			
40		2		10. A.								
20												
0												
0 23	310 2320	,,	2350	Fred	wency (MH	łz)			2442			
023	310 2320	ReadA			quency (MH Preamn		Limit	Over	2447			
023	9000		2350 Intenna Factor	Cable	Preamp		Limit Line		2442 Remark			
0 23	9000		ınt enna	Cable	Preamp Factor		Line	Limit	5.55V 25			
0 23	Freq	Level	intenna Factor	Cable Loss	Preamp Factor ————————————————————————————————————	Level	Line dBuV/m	Limit	Remark			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	t Name:	Mobile Ph	one		Pr	oduct Mod	el:	7 A5719		
est By	<i>r</i> :	Carey			Те	est mode:		802.11n(HT40) Tx mode Horizontal Temp: 24°C Huni: 57°		
est Ch	nannel:	Lowest ch	annel		Po	olarization:				
est Vo	oltage:	AC 120/60)Hz		Er	nvironment	:			
Lo	vel (dBuV/m)				•					
110	ver (ubuviiii)									
100										
								0.00		
80							1	- Arder - A	PART 15 (PK)	
								rcc	FART 13 (FR)	
00						· Alan	my		B. B. 45 (1)	
וטט					. M	Jan Jan	i.e.	FCC	PART 15 (AV)	
60		in Man of	10 00	14.40	- NV	4			Andrew Control of the	
7	mmm	ww	Vm	money	my.					
_	mmm	ww	VVv	money	way.	M				
40	mmm	ww	VVV	money	my.					
7	mmm	ww	Vvv	monde	vy V.					
40	mmm	ww	Vvv	mmm	My.					
40	10 2320	ww	2350	mm	vy d.				244	
40		~~~			uency (MH				244	
40	10 2320		2350 nt enna	Freq	uency (MH Preamp	iz)	Limit			
40	10 2320	ReadA Level	2350 nt enna	Freq	uency (MH Preamp	iz)	Limit		244 Remark	
40	10 2320		2350 nt enna	Freq	uency (MH Preamp Factor	iz)	Limit Line	Limit		
40 20	10 2320 Freq	Level	2350 ntenna Factor	Freq Cable Loss	uency (MH Preamp Factor dB	Level	Limit Line	Limit		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	t Name:		Mobile Ph	one		Р	roduct Mod	lel:	EKO Ara 5	.7 A5719
Test By	/ :		Carey	<u> </u>			est mode:		802.11n(H	Γ40) Tx mode
Test Ch	nannel:		Highest ch	nannel		P	olarization:			
Test Vo	oltage:		AC 120/60)Hz		E	nvironment	::	Temp: 24°C	Huni: 57%
Le	evel (dBuV/m	1)								
110		,								
100										
	man	~	~~~	V~	ww	~~~	100			
80	f						1		FCC	PART 15 (PK)
	1						has	2	10	
60									FCC	PART-15 (AV)
2.50										200
40										
# W254										
20										
024	32		24	50	1102231		100	11.		2500
100000000000000000000000000000000000000					e de la composition della comp	uency (Mi	3.6			
	Fr	eq	KeadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	מאנ	Hz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.5		26.58	27.57	4.81	0.00			-13.34	
2	2483.5	00	18.85	27.57	4.81	0.00	52.93	54.00	-1.07	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct Name:	Mobile Ph	Mobile Phone			Product Model:		EKO Ara 5.7 A5719		
st By:	Carey			Те	Test mode:		802.11n(HT	Γ40) Tx mode	
st Channel:	Highest cl	nannel		Polarization: Horizontal					
st Voltage:	AC 120/60	OHz		Er	nvironment	:	Temp: 24℃	Huni: 57	
Level (dBuV/m)	ăl								
110 Lever (dBuvill)								-10	
100									
	~~~	m more	~ ~						
80 ~~~~		4		Johnson	\		FCC	PART 15 (PK)	
					1			171111111111111111111111111111111111111	
60					fun	Mary	WFOC	DADT 45 /AVA	
							FCC	KAKI STAVI	
40									
40									
202									
20									
2432	24	50						250	
	2432 2450		Fred	luency (MH	Iz)				
2432									
7.77		ınt enna				Limit			
Fre					Level			Remark	
	l Level			Factor		Line	Limit	Remark	
Fre	Level	Factor  dB/m	Loss	Factor dB	Level	Line dBuV/m	Limit		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed



# Test plot as follows:









# 6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etilou					
Test Requirement:	FCC Part 15 C S	ection 15.209	and 15.205			
Test Method:	ANSI C63.10:201	3				
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBV	W	Remark
· ·	30MHz-1GHz	Quasi-peak	120KHz	300K	Ήz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MH		Peak Value
		RMS	1MHz	3MH	Ηz	Average Value
Limit:	Frequency 30MHz-88MH		nit (dBuV/m @3 40.0	m)	0	Remark Jasi-peak Value
	88MHz-216MH		43.5			iasi-peak Value
	216MHz-960M		46.0			uasi-peak Value
	960MHz-1GH		54.0			ıasi-peak Value
			54.0			Average Value
	Above 1GHz		74.0 he top of a rot			Peak Value
Test Procedure:	The table was highest radia.  2. The EUT was antenna, who tower.  3. The antennathe ground to Both horizon make the med.  4. For each suscase and the meters and to find the med.  5. The test-reconspecified Base.  6. If the emission the limit spen of the EUT whave 10dB med.	as rotated 360 ation. Is set 3 meter ich was mount height is var determine to determine to determine to determine to determine to determine the antennament he rota table aximum reactiver system and width with on level of the cified, then to would be reponargin would	of degrees to do degrees to do degrees to do degrees to do degree to do degree to degree degr	he interior of a variable of a variable of the was arrown 0 de lak Dete lak	re the remarkable of four four four four four four four f	meters above ield strength. nna are set to de to its worst m 1 meter to 4 s to 360 degrees nction and ddB lower than dd the peak values ons that did not sing peak, quasi-
Test setup:	Below 1GHz  Turn Table  Ground P  Above 1GHz	umiy			_ :	







# Measurement Data (worst case):

# **Below 1GHz:**

Product Name:	Mobile Phone	Product Model:	EKO Ara 5.7 A5719
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	MHz	dBu∜	<u>dB</u> /π	<u>dB</u>	<u>ab</u>	dBuV/m	dBu√/m	dB	
1	30.638	41.90	10.75	0.78	29.98	23.45	40.00	-16.55	QP
2	52.760	36.39	13.60	1.29	29.81	21.47	40.00	-18.53	QP
3	98.487	41.61	11.45	1.97	29.54	25.49	43.50	-18.01	QP
4	152.664	44.52	8.74	2.53	29.20	26.59	43.50	-16.91	QP
1 2 3 4 5	252.948	50.13	13.32	2.82	28.53	37.74	46.00	-8.26	QP
6	506.479	33.85	17.57	3.65	28.97	26.10	46.00	-19.90	QP

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.



···	Name:	Mobile Ph	one		Pro	duct Mode	l:	EKO Ara 5.		
Test By:		Carey			Tes	t mode:		Wi-Fi Tx mode  Horizontal  Temp: 24°C Huni: 57		
Test Fre	quency:	30 MHz ~	1 GHz		Pol	arization:				
Test Vol	tage:	AC 120/60	OHz		Env	vironment:		Temp: 24℃ Huni: 5		57%
70 60	rel (dBuV/m)							ECC DAS	RT15 CLAS	SB
50 40					a	4		TCC FAI	KI IJ CEAJ	
30						rollford Marker land when the think the desired with the second			10000	
10	gridgedyn o'r hedd y o'r gridged o'r by'r by'r by'r by'r by'r by'r by'r by		www.	Manufactor	haddhe bad	Ashar Barbal	t the	Hotolog Consider	el of a region of the second	enderght.d
M	gripede market of the property	Mary and Ly	100	Freq	200 uency (MH	a de la de l	h dillin	500	Boldware windy	1000
10	50 Freq		100 Antenna Factor	Cable		z) Level	Limit Line	Over	Remark	1000
10			Ant enna	Cable	uency (MH Preamp Factor		Line	Over Limit		1000

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





# **Above 1GHz**

Above 1GHz				802.11b				
			Test ch	annel: Lowe				
				tector: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	50.19	36.06	6.81	41.82	51.24	74.00	-22.76	Vertical
4824.00	50.44	36.06	6.81	41.82	51.49	74.00	-22.51	Horizontal
			Dete	ctor: Averaç	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	40.11	36.06	6.81	41.82	41.16	54.00	-12.84	Vertical
4824.00	40.78	36.06	6.81	41.82	41.83	54.00	-12.17	Horizontal
				annel: Midd				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	47.22	36.32	6.85	41.84	48.55	74.00	-25.45	Vertical
4874.00	47.29	36.32	6.85	41.84	48.62	74.00	-25.38	Horizontal
			Dete	ctor: Averag	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	37.14	36.32	6.85	41.84	38.47	54.00	-15.53	Vertical
4874.00	37.82	36.32	6.85	41.84	39.15	54.00	-14.85	Horizontal
			Test ch	annel: Highe	est channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	47.25	36.58	6.89	41.86	48.86	74.00	-25.14	Vertical
4924.00	46.70	36.58	6.89	41.86	48.31	74.00	-25.69	Horizontal
			Dete	ctor: Averag	e Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	37.41	36.58	6.89	41.86	39.02	54.00	-14.98	Vertical
4924.00	37.46	36.58	6.89	41.86	39.07	54.00	-14.93	Horizontal

# Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





802.11g									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	47.41	36.06	6.81	41.82	48.46	74.00	-25.54	Vertical	
4824.00	47.36	36.06	6.81	41.82	48.41	74.00	-25.59	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	37.57	36.06	6.81	41.82	38.62	54.00	-15.38	Vertical	
4824.00	37.59	36.06	6.81	41.82	38.64	54.00	-15.36	Horizontal	
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	47.98	36.32	6.85	41.84	49.31	74.00	-24.69	Vertical	
4874.00	47.93	36.32	6.85	41.84	49.26	74.00	-24.74	Horizontal	
			Dete	ctor: Averag	je Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	37.14	36.32	6.85	41.84	38.47	54.00	-15.53	Vertical	
4874.00	37.82	36.32	6.85	41.84	39.15	54.00	-14.85	Horizontal	
				annel: Highe					
		T T		tector: Peak	Value		T		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	47.46	36.58	6.89	41.86	49.07	74.00	-24.93	Vertical	
4924.00	47.78	36.58	6.89	41.86	49.39	74.00	-24.61	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	37.28	36.58	6.89	41.86	38.89	54.00	-15.11	Vertical	
4924.00	37.41	36.58	6.89	41.86	39.02	54.00	-14.98	Horizontal	
Remark:  1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





802.11n(HT20)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	47.83	36.06	6.81	41.82	48.88	74.00	-25.12	Vertical	
4824.00	47.93	36.06	6.81	41.82	48.98	74.00	-25.02	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	37.68	36.06	6.81	41.82	38.73	54.00	-15.27	Vertical	
4824.00	37.74	36.06	6.81	41.82	38.79	54.00	-15.21	Horizontal	
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	47.68	36.32	6.85	41.84	49.01	74.00	-24.99	Vertical	
4874.00	47.48	36.32	6.85	41.84	48.81	74.00	-25.19	Horizontal	
			Dete	ctor: Averag	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	37.93	36.32	6.85	41.84	39.26	54.00	-14.74	Vertical	
4874.00	37.46	36.32	6.85	41.84	38.79	54.00	-15.21	Horizontal	
Test channel: Highest channel									
				tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	47.71	36.58	6.89	41.86	49.32	74.00	-24.68	Vertical	
4924.00	47.28	36.58	6.89	41.86	48.89	74.00	-25.11	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	37.78	36.58	6.89	41.86	39.39	54.00	-14.61	Vertical	
4924.00	37.54	36.58	6.89	41.86	39.15	54.00	-14.85	Horizontal	
Remark:  1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





000 44 - (1)T (0)									
802.11n(HT40)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	47.46	36.06	6.81	41.82	48.51	74.00	-25.49	Vertical	
4844.00	47.01	36.06	6.81	41.82	48.06	74.00	-25.94	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	37.99	36.06	6.81	41.82	39.04	54.00	-14.96	Vertical	
4844.00	37.45	36.06	6.81	41.82	38.50	54.00	-15.50	Horizontal	
Test channel: Middle channel									
T T		1		tector: Peak	Value		I		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	47.68	36.32	6.85	41.84	49.01	74.00	-24.99	Vertical	
4874.00	47.81	36.32	6.85	41.84	49.14	74.00	-24.86	Horizontal	
			Dete	ctor: Averag	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	37.85	36.32	6.85	41.84	39.18	54.00	-14.82	Vertical	
4874.00	37.74	36.32	6.85	41.84	39.07	54.00	-14.93	Horizontal	
Test channel: Highest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	47.28	36.45	6.87	41.85	48.75	74.00	-25.25	Vertical	
4904.00	47.21	36.45	6.87	41.85	48.68	74.00	-25.32	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	37.85	36.45	6.87	41.85	39.32	54.00	-14.68	Vertical	
4904.00	37.47	36.45	6.87	41.85	38.94	54.00	-15.06	Horizontal	
Remark:									
1 Finalla	IN - Possivo	r Dood loval .	Antonno Fo	otor , Cobla	Loop Droop	anlifiar Easter			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.