Examen final d'OS02 : théorie de l'estimation - 2 heures

Attention : les seuls documents autorisés sont les polycopiés de cours distribués en OS02 et un formulaire. Le barème indiqué est approximatif.

Sujet 1 ($\simeq 4$ points): Soit $\xi_1, \xi_2, \ldots, \xi_n$ une suite de variables aléatoires discrètes indépendantes issues d'une loi de Poisson $\Pi(\lambda)$.

- 1. Montrer que $\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ est un estimateur sans biais de λ .
- 2. Est-il $(\overline{\xi})^2$ un estimateur biaisé de λ^2 ? Si la réponse est «oui», alors calculer le biais $b(\lambda)$ de l'estimateur $(\overline{\xi})^2$.
- 3. Déterminer a, b et c de sorte que $T=a\left(\overline{\xi}\right)^2+b$ $\overline{\xi}+c$ soit un estimateur sans biais de λ^2 .

Sujet 2 ($\simeq 6$ points): Soit $\xi_1, \xi_2, \ldots, \xi_n$ une suite de variables aléatoires indépendantes, issue d'une distribution dont la densité de probabilité est

$$f_{\theta}(y) = \begin{cases} \frac{2y}{\theta^2} & \text{si} & 0 \le y \le \theta \\ 0 & \text{sinon} \end{cases},$$

où $\theta>0$ est un paramètre inconnu. On cherche à estimer le paramètre θ à base de mesures ξ_1,ξ_2,\ldots,ξ_n .

- 1. Trouver un estimateur du paramètre θ par la méthode du maximum de vraisemblance (MV).
- 2. Cet estimateur MV est-il biaisé? Est-il asymptotiquement biaisé?
- 3. Cet estimateur MV est-il convergent (en probabilité)?

Sujet 3 ($\simeq 6$ points): Le temps entre deux pannes consécutives d'un appareil électronique peut être représenté par une loi exponentielle $\Gamma\left(\frac{1}{\theta},1\right)$ de densité

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\} & \text{si} \quad x \ge 0\\ 0 & \text{si} \quad x < 0 \end{cases}$$

où $\theta>0$ est un paramètre inconnu. Soit ξ_1,ξ_2,\ldots,ξ_n une suite de variables aléatoires indépendantes issues d'une loi $\Gamma\left(\frac{1}{\theta},1\right)$. Un ingénieur cherche à estimer le paramètre θ à base de mesures ξ_1,ξ_2,\ldots,ξ_n .

- 1. Déterminer l'estimateur $\widehat{\theta}_1$ de θ par la méthode des moments (MM) (en utilisant le moment d'ordre 1). Déterminer le biais $b(\theta)$ de l'estimateur MM.
- 2. Déterminer l'estimateur du maximum de vraisemblance (MV) $\widehat{\theta}_2$ du paramètre θ . Déterminer le biais $b(\theta)$ de l'estimateur MV.
- 3. Vérifier pout $f_{\theta}(x)$ les conditions de régularité r1 et r2 du Théorème de Rao-Cramer.
- 4. Si les conditions sont satisfaites, calculer la borne de Rao-Cramer dans la classe d'estimateurs $\mathcal{K}_{b(\theta)}$ et répondre à la question : l'estimateur MV $\widehat{\theta}_2$ est-il efficace dans cette classe ?
- **5. Question «Bonus»** (+3 points) : Soit $\widehat{\theta} = a\overline{\xi}$, où $\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$, un estimateur de θ . Déterminer a de sorte que la moyenne quadratique de l'erreur soit la plus petite possible.

Sujet 4 sur le filtrage de Kalman ($\simeq 4$ points): Soit x_k un signal scalaire autorégressif causal d'ordre 2, défini par l'équation suivante :

$$x_k = a_1 x_{k-1} + a_2 x_{k-2} + u_k,$$

où a_1 , a_2 sont des coefficients connus, u_k est un bruit aléatoire centré gaussien de variance σ_x^2 .

1. On suppose que le signal observé z_k est la sortie bruitée d'un filtre de réponse impulsionnelle finie $\mathbf{h} = [h_0, h_1, ..., h_{M-1}]$ de longueur M attaqué par x_k :

$$z_k = \sum_{j=0}^{M-1} h_j x_{k-j} + v_k,$$

où h est un vecteur connu, v_k est un bruit aléatoire (gaussien) de mesure de moyenne zéro et de variance σ_z^2 .

Montrer comment utiliser le filtre de Kalman pour résoudre le problème de déconvolution (estimation en ligne de x_k).

2. Dans certains cas, on obtient des observations $\{z_k^{(i)}\}_{i=1,\dots,I}$ provenant de I canaux différents :

$$\begin{cases} z_k^{(1)} &= \sum_{j=0}^{M-1} h_j^{(1)} x_{k-j} + v_k^{(1)}, \\ \vdots & & \\ z_k^{(i)} &= \sum_{j=0}^{M-1} h_j^{(i)} x_{k-j} + v_k^{(i)}, \\ \vdots & & \\ z_k^{(I)} &= \sum_{j=0}^{M-1} h_j^{(I)} x_{k-j} + v_k^{(I)}, \end{cases}$$

où les coefficients $h_j^{(i)}$, $j=0,\ldots,M-1$, $i=1,\ldots,I$ sont connus et les $v_k^{(i)}$ sont des bruits aléatoires (gaussiens) de moyenne zéro et de variance σ_i^2 .

Montrer comment modifier le filtre de Kalman conçu dans la question 1 pour exploiter toutes les mesures $\{z_k^{(i)}\}_{i=1,\dots,I}$ issues des différents canaux.