6	Write the systems of linear equations that is represented by the govern
	augumented inatrix.
-	to 5 17 7 20 1 50 - 7 tu m 1 10 7 110 - 10
-	$\begin{bmatrix} 2 & 5 & 7 & 2x_1 + 5x_2 = 7 & 4 & 0 & -10 & 4x_1 = -10 \\ 1 & 4 & 9 & x_1 + 4x_2 = 9 & 0 & 8 & NO & 8x_2 = 40 \end{bmatrix}$
+	
	Person the operations given this matrix: [1 -3 2]
-	$R_1 \leftrightarrow P_2$ 1 -3 2
-	$R1 \iff R2$
-	$2R2 \rightarrow R2$ 8 -12 -16
-	$(+1)R1 + R2 \rightarrow R2$ 3 -3 1-10
	Identisy the operation: [-1 2 -3] [2]
	$\begin{bmatrix} -1 & 2 & & -3 & & & & & & & & & & & & & & & & & & $
	$\frac{1}{3} R \rightarrow R_2 \qquad 6 R \rightarrow R_2 \qquad \frac{1}{3} R_2 \rightarrow R_4 \qquad R_4 \iff R_2$
	3 1 7 12 8 7 12 3 12 7 12
	Graph each solution set
	$3x_1 - 2x_2 = 6$ $\begin{bmatrix} 3 & -2 & 6 \end{bmatrix}$ $3x_1 - 2x_2 = -3$ $\begin{bmatrix} 3 & -2 & -3 \end{bmatrix}$
	$4x_1 - 3x_2 = 6$ $\begin{bmatrix} 4 & -3 & 6 \end{bmatrix}$ $\begin{bmatrix} -6x_1 + 4x_2 = 6 \end{bmatrix}$ $\begin{bmatrix} -6 & 4 & 6 \end{bmatrix}$
	Solve the system graptually:
	$x_1 - x_2 = 2 \longrightarrow x_2 = x_1 - 2$
-	$\chi_1 + \chi_2 = 6 \longrightarrow \chi_2 = -\chi_1 + 6$
	-2 -1 1/2 3 4 5 6
-	
	Write the solution for each system:
	1 0 -4 -x1 = -4
-	$\begin{bmatrix} 1 & -2 & & 15 & \\ 2 & & 2 & & 2 \\ 2 & & 2 & & 2 \end{bmatrix} = 15$
-	$\begin{bmatrix} 1 & -2 & & 15 \\ 0 & 0 & & 0 \end{bmatrix} = 2n + 15$
	1 -2 15 No exists For any real 901 = 2'n + 15
-	number n Pr=n

· Write line solution for each system $\begin{cases} \chi_1 - 4\chi_2 = -2 & \chi_1 = 4\chi_2 - 2 & 4\chi_2 - 2 = \frac{\chi_2 + 3}{2} & 7\chi_2 = 7 \\ -2\chi_1 + \chi_2 = -3 & \chi_1 = \frac{-\chi_2 - 3}{-2} & 8\chi_2 - 4 = \chi_2 + 3 & \chi_2 = 1; \chi_1 = 2 \end{cases}$ $3\chi_{1} - \chi_{2} = 2 \qquad \chi_{1} = \frac{\chi_{2} + 2}{3} \qquad \frac{\chi_{2} + 2}{3} = 10 - 2\chi_{2}$ $\chi_{1} + 2\chi_{2} = 10 \qquad \chi_{1} = 10 - 2\chi_{2} \qquad \chi_{2} + 2 = 30 - 6\chi_{2}$ 702=4 ; 201 = 2 $7x_2 = 28$ $\begin{cases} x_1 + 2x_2 = 4 & x_1 = 4 - 2x_2 & 4 - 2x_2 = -4x_2 - 8 \\ 2x_1 + 4x_2 = -3 & x_1 = -4x_2 - 8 & -8 - 4x_2 = -4x - 8 \end{cases}$ No solution $\begin{cases} 2x_1 + x_2 = 6 & x_1 = 6 - x_2 & 6 - x_1 = x_2 - 3 & 3x_2 = 12 \\ 2x_1 - x_2 = -3 & x_1 = 4 \end{cases}$ x2 = 4 : x1 = 1 $x_1 = x_2 - 3$ $6 - x_2 = 4x_2 - 6$