

Application number 09/837,897
Amendment dated November 3, 2004
Reply to office action mailed May 5, 2004

PATENT

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-17 (Cancelled)

Claim 18 (Currently amended) An integrated circuit comprising:

a voltage controlled oscillator comprising:

a first gm cell;

a second gm cell having a noninverting input coupled to a noninverting output of the first gm cell, an inverting input coupled to an inverting output of the first gm cell, a noninverting output coupled to an inverting input of the first gm cell, and an inverting output coupled to a noninverting input of the first gm cell;

a first capacitance coupled between the noninverting output and inverting output of the first gm cell;

a second capacitance coupled between the noninverting output and inverting output of the second gm cell; and

a first filter comprising:

a third gm cell,

wherein the first gm cell, the second gm cell, and the third gm cell each comprise a variable resistance, the variable resistance comprising a native MOS device.

Claim 19 (Previously presented) The integrated circuit of claim 18 wherein the variable resistance comprises a plurality of native MOS devices coupled in series.

Claim 20 (Previously presented) The integrated circuit of claim 18 wherein the variable resistance comprises two native MOS devices coupled in series.

Claim 21 (Previously presented) The integrated circuit of claim 18 wherein a gate of the native MOS device is configured to receive a control voltage.

Application number 09/837,897
Amendment dated November 3, 2004
Reply to office action mailed May 5, 2004

PATENT

Claim 22 (Previously presented) The integrated circuit of claim 21 further comprising:

a phase/frequency detector having an input coupled to the voltage controlled oscillator; and

a charge pump coupled between the phase/frequency detector and the voltage controlled oscillator.

Claim 23 (Currently amended) The integrated circuit of claim 22 further comprising a loop filter coupled to an output of the charge pump,

wherein the loop filter is configured to provide a the control voltage to the voltage controlled oscillator.

Claim 24 (Currently amended) The integrated circuit of claim 23 wherein the control voltage is used to tune a the first filter.

Claim 25 (Currently amended) The integrated circuit of claim 24 wherein the first filter is a low pass filter.

Claim 26 (Previously presented) A method of tuning a filter comprising:
receiving a reference clock signal having a first frequency;
receiving a signal having a second frequency from a voltage controlled oscillator;
comparing the first frequency to the second frequency;
providing a charging signal to a loop filter, the charging signal based on the comparison between the first frequency and the second frequency; and
adjusting the second frequency by:
receiving an output signal from the loop filter; and
using the output signal from the loop filter to adjust a first variable resistance, wherein the first variable resistance is included in a first gm cell in the voltage controlled oscillator, and the first variable resistance comprises a first native MOS device.

Claim 27 (Previously presented) The method of claim 26 further comprising:

Application number 09/837,897
Amendment dated November 3, 2004
Reply to office action mailed May 5, 2004

PATENT

receiving the output signal from the loop filter with a second filter;
using the output signal from the loop filter to adjust a second variable resistance,
wherein the second variable resistance is included in a second gm cell, and the
second variable resistance comprises a second native MOS device,
wherein a value of the second variable resistance determines a frequency
characteristic of the second filter.

Claim 28 (Previously presented) The method of claim 27 wherein the second
filter is a low pass filter.

Claim 29 (Previously presented) The method of claim 28 wherein the
frequency characteristic of the second filter is a cutoff frequency of the second filter.

Claim 30 (previously presented) The integrated circuit of claim 29 wherein
the second variable resistance comprises a plurality of native MOS devices coupled in series.

Claim 31 (previously presented) The integrated circuit of claim 29 wherein
the second variable resistance comprises two native MOS devices coupled in series.

Claim 32 (previously presented) An integrated circuit comprising:
a phase-locked loop configured to tune a filter and comprising:
a phase/frequency detector having a first input, and a second input
configured to receive a reference clock;
a charge pump coupled to an output of the phase/frequency detector; and
a voltage controlled oscillator having an control voltage input coupled to
an output of the charge pump and an output coupled to the first input of the phase/frequency
detector, the voltage controlled oscillator comprising:

a first gm cell;
a second gm cell having a noninverting input coupled to a
noninverting output of the first gm cell, an inverting input coupled to an inverting output of the

Application number 09/837,897
Amendment dated November 3, 2004
Reply to office action mailed May 5, 2004

PATENT

first gm cell, a noninverting output coupled to an inverting input of the first gm cell, and an inverting output coupled to a noninverting input of the first gm cell;
a first capacitance coupled between the noninverting and inverting outputs of the first gm cell;

a second capacitance coupled between the noninverting and inverting outputs of the second gm cell; and

a first filter having a control voltage input coupled to the output of the charge pump and comprising a third gm cell,

wherein the first gm cell, the second gm cell, and the third gm cell each comprise a variable resistance, the variable resistance comprising a native MOS device.

Claim 33 (Previously presented) The integrated circuit of claim 32 wherein the phase-locked loop further comprises a loop filter configured to filter the output of the charge pump.

Claim 34 (Previously presented) The integrated circuit of claim 32 wherein the variable resistance comprises a plurality of native MOS devices coupled in series.

Claim 35 (Previously presented) The integrated circuit of claim 32 wherein the variable resistance comprises two native MOS devices coupled in series.

Claim 36 (Previously presented) The integrated circuit of claim 35 wherein a gate of the native MOS devices are configured to receive the output of the charge pump.

Claim 37 (Previously presented) The method of claim 36 wherein the first filter is a low pass filter.