گزارشکار پروژه شماره ی ۲ درس شبکه های کامپیوتری

ریحانه حاجبی ۸۱۰۱۰۰۱۱۶ سیده صفورا علوی پناه ۸۱۰۱۰۰۲۵۴

2- آشنایی

در این بخش برای آشنایی شبکه ی ساده زیر را تشکیل دادیم:

برای آدرس های مشخص شده در تصویر از دستور ip در console استفاده کردهایم که برای ۴ pc به صورت زیر است:

```
PC1> ip 192.168.1.1 255.255.255.0 Checking for duplicate address... PC1: 192.168.1.1 255.255.255.0 PC2> ip 192.168.1.2 255.255.255.0 Checking for duplicate address... PC1: 192.168.1.2 255.255.255.0 PC3> ip 192.168.1.3 255.255.255.0 Checking for duplicate address... PC1: 192.168.1.3 255.255.255.0 Checking for duplicate address... PC1: 192.168.1.3 255.255.255.0 Checking for duplicate address...
```

PC1 : 192.168.1.4 255.255.255.0

این اتصالات را با دستور ping بین VPC ها بررسی میکنیم:

```
PC1> ping 192.168.1.2
84 bytes from 192.168.1.2 icmp_seq=1 ttl=64 time=2.259 ms
84 bytes from 192.168.1.2 icmp_seq=2 ttl=64 time=3.600 ms
84 bytes from 192.168.1.2 icmp_seq=3 ttl=64 time=3.557 ms
84 bytes from 192.168.1.2 icmp_seq=4 ttl=64 time=3.238 ms
84 bytes from 192.168.1.2 icmp seg=5 ttl=64 time=2.757 ms
PC1> ping 192.168.1.3
84 bytes from 192.168.1.3 icmp seq=1 ttl=64 time=3.069 ms
84 bytes from 192.168.1.3 icmp_seq=2 ttl=64 time=1.727 ms
84 bytes from 192.168.1.3 icmp seq=3 ttl=64 time=3.117 ms
84 bytes from 192.168.1.3 icmp_seq=4 ttl=64 time=2.646 ms
84 bytes from 192.168.1.3 icmp_seq=5 ttl=64 time=4.093 ms
PC1> ping 192.168.1.4
84 bytes from 192.168.1.4 icmp seq=1 ttl=64 time=2.474 ms
84 bytes from 192.168.1.4 icmp seq=2 ttl=64 time=3.337 ms
84 bytes from 192.168.1.4 icmp_seq=3 ttl=64 time=2.748 ms
84 bytes from 192.168.1.4 icmp seq=4 ttl=64 time=3.544 ms
84 bytes from 192.168.1.4 icmp seq=5 ttl=64 time=3.563 ms
```

```
PC2> ping 192.168.1.1
84 bytes from 192.168.1.1 icmp_seq=1 ttl=64 time=4.579 ms
84 bytes from 192.168.1.1 icmp_seq=2 ttl=64 time=4.039 ms
84 bytes from 192.168.1.1 icmp_seq=3 ttl=64 time=3.898 ms
84 bytes from 192.168.1.1 icmp_seq=4 ttl=64 time=2.853 ms
84 bytes from 192.168.1.1 icmp_seq=5 ttl=64 time=4.200 ms
PC2> ping 192.168.1.3
84 bytes from 192.168.1.3 icmp seg=1 ttl=64 time=2.271 ms
84 bytes from 192.168.1.3 icmp_seq=2 ttl=64 time=2.393 ms
84 bytes from 192.168.1.3 icmp_seq=3 ttl=64 time=2.561 ms
84 bytes from 192.168.1.3 icmp seg=4 ttl=64 time=2.474 ms
84 bytes from 192.168.1.3 icmp_seq=5 ttl=64 time=2.258 ms
PC2> ping 192.168.1.4
84 bytes from 192.168.1.4 icmp_seq=1 ttl=64 time=3.951 ms
84 bytes from 192.168.1.4 icmp seq=2 ttl=64 time=3.672 ms
84 bytes from 192.168.1.4 icmp seq=3 ttl=64 time=3.458 ms
84 bytes from 192.168.1.4 icmp_seq=4 ttl=64 time=3.315 ms
84 bytes from 192.168.1.4 icmp seq=5 ttl=64 time=3.201 ms
```

```
PC3> ping 192.168.1.1
84 bytes from 192.168.1.1 icmp_seq=1 ttl=64 time=1.506 ms
84 bytes from 192.168.1.1 icmp_seq=2 ttl=64 time=1.815 ms
84 bytes from 192.168.1.1 icmp_seq=3 ttl=64 time=1.435 ms
84 bytes from 192.168.1.1 icmp_seq=4 ttl=64 time=1.482 ms
84 bytes from 192.168.1.1 icmp seg=5 ttl=64 time=1.553 ms
PC3> ping 192.168.1.2
84 bytes from 192.168.1.2 icmp seq=1 ttl=64 time=1.004 ms
84 bytes from 192.168.1.2 icmp_seq=2 ttl=64 time=0.991 ms
84 bytes from 192.168.1.2 icmp seq=3 ttl=64 time=0.947 ms
84 bytes from 192.168.1.2 icmp_seq=4 ttl=64 time=0.941 ms
84 bytes from 192.168.1.2 icmp_seq=5 ttl=64 time=0.958 ms
PC3> ping 192.168.1.4
84 bytes from 192.168.1.4 icmp seq=1 ttl=64 time=1.523 ms
84 bytes from 192.168.1.4 icmp seq=2 ttl=64 time=1.492 ms
84 bytes from 192.168.1.4 icmp_seq=3 ttl=64 time=1.479 ms
84 bytes from 192.168.1.4 icmp seq=4 ttl=64 time=1.576 ms
84 bytes from 192.168.1.4 icmp seq=5 ttl=64 time=1.486 ms
PC3>
```

```
PC4> ping 192.168.1.1
84 bytes from 192.168.1.1 icmp_seq=1 ttl=64 time=1.350 ms
84 bytes from 192.168.1.1 icmp_seq=2 ttl=64 time=1.509 ms
84 bytes from 192.168.1.1 icmp seq=3 ttl=64 time=0.742 ms
84 bytes from 192.168.1.1 icmp seg=4 ttl=64 time=1.493 ms
84 bytes from 192.168.1.1 icmp_seq=5 ttl=64 time=1.507 ms
PC4> ping 192.168.1.2
84 bytes from 192.168.1.2 icmp_seq=1 ttl=64 time=1.414 ms
84 bytes from 192.168.1.2 icmp seq=2 ttl=64 time=1.448 ms
84 bytes from 192.168.1.2 icmp seq=3 ttl=64 time=1.430 ms
84 bytes from 192.168.1.2 icmp seq=4 ttl=64 time=1.470 ms
84 bytes from 192.168.1.2 icmp seq=5 ttl=64 time=1.483 ms
PC4> ping 192.168.1.3
84 bytes from 192.168.1.3 icmp seq=1 ttl=64 time=1.429 ms
84 bytes from 192.168.1.3 icmp_seq=2 ttl=64 time=1.405 ms
84 bytes from 192.168.1.3 icmp_seq=3 ttl=64 time=1.487 ms
84 bytes from 192.168.1.3 icmp_seq=4 ttl=64 time=1.517 ms
84 bytes from 192.168.1.3 icmp seq=5 ttl=64 time=1.652 ms
```

همانطور که مشاهده شد اتصال بین تمام pc ها به درستی برقرار است و مورد آزمایش قرار گرفت. *فایل config مربوط به pc ها در پیوست است.

VLAN -3

در این بخش پروژه سعی داریم شبکه ای را پیاده سازی کنیم که در آن دو VLAN با آدرس های:

VLAN 30 : 192.186.30.1/24 VLAN 40 : 192.186.40.0/24

> وجود دارند. در این توپولوژی یک router به نام R1 داریم که سعی به صورت مستقیم به یک VPCS و از طریق یک Ethernet switch به ۵ VPCS که در دو VLAN ذکر شده توزیع شده اند، متصل است.

مراحل انجام این بخش:

۱- ایجاد یک روتر C7200

۱-۱ اتصال به PC6

۱-۲ ایجاد ۷LAN ها

۲- اتصال VPCS ها به شبکه

۲-۱ آی پی دادن به pc ها

switch1 برای configuration ۲-۲

۳- بررسی اتصال به کمک برنامه wireshark

۱- ایجاد یک روتر C7200

برای افزودن این روتر از بخش devices یک template جدید ایجاد میکنیم و فایل موجود در صورت پروژه را browse می کنیم. و مطابق توضیحات صورت پروژه slot های ۱ و ۲ را انتخاب میکنیم.

۱-۱ اتصال به PC6

از دو پورت FastEthernet 0/0 و FastEthernet 1/0 و FastEthernet 0/0 این روتر استفاده میکنیم. به طوری که FastEthernet 0/0 متصل میکنیم. بدین صورت:

Router Configuration

>>configure terminal
>>interface FastEthernet 0/0
ip address 192.168.3.1 255.255.255.0

>>do show ip int br

Interface	IP-Address	OK? Method	Status
Protocol			
FastEthernet0/0	192.168.3.1	YES manual	administratively
down down			
FastEthernet1/0	unassigned	YES unset	administratively
down down			
FastEthernet1/1	unassigned	YES unset	administratively
down down			
Serial2/0	unassigned	YES unset	administratively
down down			
Serial2/1	unassigned	YES unset	administratively
down down			
Serial2/2	unassigned	YES unset	administratively
down down			
Serial2/3	unassigned	YES unset	administratively
down down			

بررسی اتصال به PC6:

>>do ping 192.168.3.2

```
R1(config)#do ping 192.168.3.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.3.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/16/32 ms
```

۲-۱ اتصال به VLAN ها

سپس از FastEthernet 1/0 برای ایجاد VLAN ها استفاده میکنیم. ابتدا دو sub interface ایجاد میکنیم. و به VLAN ها آدرس میکنیم. و سپس با دستور encapsulation آیدی برای VLAN ها ست میکنیم. و به VLAN ها آدرس میدهیم:

```
R1(config)#int fa 1/0.30
R1(config-subif)#encapsulation dot1Q 30
R1(config-subif)# ip address 192.168.30.1 255.255.255.0
R1(config)#int fa 1/0.40
R1(config-subif)#encapsulation dot1Q 40
R1(config-subif)# ip address 192.168.40.1 255.255.255.0
```

سیس به کمک دستور زیر interface ها را بررسی میکنیم:

Do show ip interface brief

```
R1(config-subif)#do show ip int br
                           IP-Address
Interface
                                          OK? Method Status
                                                                            Protocol
FastEthernet0/0
                          192.168.3.1
                                          YES manual up
                                                                            up
FastEthernet1/0
                         unassigned
                                          YES unset up
                                                                            up
FastEthernet1/0.30
                          192.168.30.1
                                          YES manual up
                          192.168.40.1
FastEthernet1/0.40
                                          YES manual up
                                           YES unset administratively down down
FastEthernet1/1
                          unassigned
                                           YES unset administratively down down
Serial2/0
                          unassigned
Serial2/1
                                           YES unset administratively down down
                          unassigned
                                           YES unset administratively down down
Serial2/2
                          unassigned
 erial2/3
                          unassigned
                                           YES unset administratively down down
```

با دستور زیر نیز وضعیت route ها را چک میکنیم و مشاهده میکنیم اتصال router با VLAN ها به درسای برقرار شده است:

Do show ip route

```
R1(config)#do show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP

+ - replicated route, % - next hop override

Gateway of last resort is not set

192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.3.1/32 is directly connected, FastEthernet0/0

192.168.30.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.30.0/24 is directly connected, FastEthernet1/0.30

192.168.30.1/32 is directly connected, FastEthernet1/0.30

192.168.40.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.40.0/24 is variably subnetted, FastEthernet1/0.30

192.168.40.0/24 is directly connected, FastEthernet1/0.40

L 192.168.40.0/24 is directly connected, FastEthernet1/0.40

P1(confin)#T
```

۲- اتصال VPCS ها به شبکه

۲-۱ آی یی دادن به pc ها

برای اتصال pc ها به شبکه ابتدا بررسی اتصال PC6 را که به صورت مستقیم به روتر وصل است بررسی میکنیم:

برای این pc ما gateway را برابر همان یورت اتصال R1 میگذاریم.

PC6

PC6> ip 192.168.3.2 255.255.255.0 192.168.3.1 PC6> show ip

NAME : PC6[1]

IP/MASK : 192.168.3.2/24 GATEWAY : 192.168.3.1

DNS

MAC : 00:50:79:66:68:05

LPORT : 10018

RHOST:PORT : 127.0.0.1:10019

MTU: : 1500

اما برای pc های موجود در VLAN ها کمی متفاوت تر عمل میکنیم، به صورتی که gateway ها آدرس VLAN خواهد بودس:

PC1 ,PC2

PC1> ip 192.168.30.2 255.255.255.0 192.168.30.1 PC1> show ip

NAME : PC1[1]

IP/MASK : 192.168.30.2/24 GATEWAY : 192.168.30.1

DNS

MAC : 00:50:79:66:68:00

LPORT : 10020

RHOST:PORT : 127.0.0.1:10021

MTU: : 1500

PC3 ,PC4 ,PC5

PC3> ip 192.168.40.2 255.255.255.0 192.168.40.1 PC3> show ip

NAME : PC3[1]

IP/MASK : 192.168.40.2/24 GATEWAY : 192.168.40.1

DNS :

MAC : 00:50:79:66:68:02

LPORT : 10022

RHOST:PORT : 127.0.0.1:10023

MTU: : 1500

۲-۲ تنظیم configuration برای ۲-۲

در این قسمت با کلیک بر روی switch1 صفحه ی زیر باز میشود که در آن اتصال به روتر را روی حالت dot1q و اتصال به pc ها را در حالت access قرار میدهیم:

تفاوت dot1q و access

تفاوت اصلی بین اتصال dot1Q (trunk) و اتصال access در نحوه مدیریت ترافیک VLAN در سوئیچها و روترها است. این تفاوتها مربوط به نقش هر نوع اتصال در شبکه و نحوه برچسبگذاری (tagging) ترافیک است:

1. اتصال Access

یک پورت Access برای اتصال دستگاههای نهایی (مانند کامپیوتر، پرینتر، یا سرور) به یک VLAN خاص استفاده میشود.

عضویت در یک ۷LAN:

- پورت Access فقط میتواند به یک VLAN اختصاص داده شود.
- تمامی ترافیک ارسال شده از دستگاه متصل به این پورت به طور پیشفرض به یک VLAN خاص (به نام VLAN native) تعلق میگیرد.

موارد استفاده:

- اتصال دستگاههای نهایی به شبکه.
- مناسب برای دستگاههایی که نیازی به مدیریت ترافیک VLAN ندارند.

2. اتصال Trunk)dot1Q

یک پورت Trunk برای انتقال ترافیک چندین VLAN بین سوئیچها، روترها، یا دستگاههای دیگر که ترافیک VLAN را مدیریت میکنند، استفاده میشود.

یشتیبانی از چندین VLAN:

- پورت Trunk میتواند ترافیک چندین VLAN را به طور همزمان مدیریت کند.
- از برچسبگذاری (tagging) برای تشخیص ترافیک مربوط به هر VLAN استفاده میشود.

برچسبگذاری (Tagged Traffic):

- از پروتکل IEEE 802.1Q برای اضافه کردن برچسب VLAN به هر فریم استفاده میشود.
- هر فریم ارسالی از طریق یک پورت Trunk، شامل یک فیلد اضافی است که شناسه VLAN را مشخص میکند.

موارد استفاده:

- اتصال بین سوئیچها (برای عبور ترافیک چند VLAN بین سوئیچها).
 - اتصال سوئيچ به روتر براي Inter-VLAN Routing.
- ایجاد ارتباط بین سوئیچ و سرورهایی که از چند VLAN پشتیبانی میکنند.

۳- بررسی اتصال به کمک برنامه wireshark

برای بررسی اتصال به کمک wireshark بر روی اتصال pc2 و switch1 راست کلیک میکنیم و start capture را انتخاب میکنیم. با برقراری ping فرآیند زیر مشاهده میشود:

```
PC2> ping 192.168.40.2
192.168.40.2 icmp_seq=1 timeout
192.168.40.2 icmp_seq=2 timeout
84 bytes from 192.168.40.2 icmp_seq=3 ttl=63 time=30.327 ms
84 bytes from 192.168.40.2 icmp_seq=4 ttl=63 time=30.564 ms
84 bytes from 192.168.40.2 icmp_seq=5 ttl=63 time=30.375 ms
PC2> [
```


تحليل:

بستههای icmp_seq=1 و icmp_seq=2 تایماوت شدهاند. این نشان میدهد که پاسخ در این دو تلاش اولیه دریافت نشده است. از icmp_seq=3 به بعد، پینگ موفق بوده است و زمان پاسخ (RTT) در محدوده 30 میلیثانیه قرار دارد.

خروجی Wireshark (تحلیل بستههای ICMP):

این خروجی نشاندهنده بستههای ارسالی و دریافتی در رابطه با این پینگ است:

الف) بستههای ARP:

● بسته شماره 1 (Request ARP):

- آدرس IP 192.168.40.2 به MAC Address تبدیل نشده است، بنابراین PC2 یک
 درخواست ARP ارسال میکند تا آدرس MAC مربوط به مقصد را بیابد.
 - این حالت معمولاً قبل از ارسال اولین بسته ICMP اتفاق میافتد.

بسته شماره 2 (Reply ARP):

پاسخ ARP از دستگاه مقصد ارسال شده و آدرس MAC مربوطه برای آدرس ۱P
 پاسخ 192.168.40.2 ارسال شده است.

ب) بستههای ICMP:

• بستههای ICMP Echo Request:

این بستهها توسط PC2 به مقصد ارسال شدهاند. بستههای مربوط به icmp_seq=1 و icmp_seq=2 ممکن است به دلیل تأخیر ناشی از ARP یا مشکلات دیگر، یاسخی دریافت نکردهاند.

• بستههای ICMP Echo Reply:

پس از ARP و آمادهسازی ارتباط، دستگاه مقصد پاسخهای ICMP را ارسال کرده و از icmp_seq=3 به بعد تمام بستهها پاسخ داده شدهاند.

تحليل مشكلات اوليه (Timeout براي 1 ICMP seq و 2):

:ARP Delay .1

- پیش از ارسال اولین بسته ICMP، فرآیند ARP برای کشف آدرس MAC مقصد اجرا شده
 است. این باعث تأخیر در ارسال بستههای ICMP اولیه میشود.
 - و در این مورد، بستههای icmp_seq=1 و icmp_seq=2 به دلیل تأخیر ARP تایماوت شدهاند.

2. بارگذاری اولیه یا تأخیر در سوئیچ:

ممکن است سوئیچ در پردازش ترافیک VLAN یا تنظیم جدول MAC خود دچار تأخیر شده
 باشد.

3. مشكلات شىكە:

ممکن است عوامل دیگری مانند ازدحام شبکه، تنظیمات QoS، یا مسائل نرمافزاری باعث
 از دست رفتن پاسخهای اولیه شده باشند.

^{*}فایل config مربوط به pc ها در پیوست است.