Несовершенные паросочетания

odd(G) — число нечетных КС в G. Теорема о размере максимального паросочетания в графе:

Теорема 3 (Формула Бержа, 1958)

Число вершин, непокрытых наибольшим паросочетанием, равно

$$\max_{U\subseteq V}(\mathit{odd}(G\backslash U)-|U|).$$

Эта величина иногда называется дефектом d(G) графа G. Замечание: d(G)=0 соответствует теореме Татта.

Несовершенные паросочетания

Доказательство.

 (\geq) Аналогично доказательству простой части теоремы Татта:

Пусть $M\subseteq E$ — паросочетание, и пусть $U\subseteq V$ — подмножество вершин, для которого достигается максимум $(\operatorname{odd}(G\backslash U)-|U|)$.

В G ackslash U во всякой нечетной КС $C \subseteq V ackslash U$ есть

- ightharpoonup или вершина, не покрытая паросочетанием M,
- lacktriangle или вершина $v_C \in C$, для которой паросочетание M содержит ребро (u_C, v_C) , где $u_C \in U$.

Вершины u_C для разных таких КС C не повторяются.

Отсюда нечетных КС, в которых есть непокрытая вершина, не менее чем $(\operatorname{odd}(G \backslash U) - |U|)$.

 (\leq) : Пусть $k = \max_{U \subseteq V} (\operatorname{odd}(G \setminus U) - |U|)$. В граф добавляем k новых вершин $\{v_1, \ldots, v_k\}$ и соединяем ребрами со всеми вершинами из V. Покажем, что полученный граф G' удовлетворяет условию теоремы Татта.

Для всякого $U' \subseteq V \cup \{v_1, \dots v_k\}$ рассмотрим два случая:

- если не все вершины $\{v_1, \dots v_k\}$ попали в U', то после удаления U' останется связный граф (т.е., не более 1 нечетной КС).
- если в $\{v_1, \dots v_k\} \subseteq U'$ попали все новые вершины, то по сути из исходного графа G удаляются |U'|-k вершин. Оценим число образующихся нечетных КС: $\mathrm{odd}(G'\backslash U')-(|U'|-k)\leq k;$ $\mathrm{odd}(G'\backslash U')\leq |U'|.$

Тогда, по теореме Татта, существует совершенное паросочетание в G'. После удаления из графа дополнительных вершин остается не более чем k вершин, не покрытых этим паросочетанием.