## Ejercicios de Geometría Diferencial de Curvas y Superficies



### Universidad Complutense de Madrid

FACULTAD DE CIENCIAS MATEMÁTICAS

Doble Grado en Matemáticas e Ingeniería Informática

Javier Pellejero Curso 2017-2018

El propio Dios geometriza.

Platón

## Prefacio

Aquí va el prefacio, evidentemente

# Índice general

1. Curvas parametrizadas y longitud de un arco de curva

1

### Capítulo 1

## Curvas parametrizadas y longitud de un arco de curva

**Ejercicio 1.** Hallar una curva parametrizada  $\alpha$  cuya traza es el círculo  $x^2 + y^2 = 1$ , con  $\alpha(t)$  recorriéndolo en el sentido de las agujas del reloj y con  $\alpha(0) = (0, 1)$ .

Una solución a este ejercicio  $\alpha(t)=(\sin t,\cos t)$ . Es claro que  $\alpha(0)=(\sin 0,\cos 0)=(0,1)$  y que al avanzar, por ejemplo a  $\alpha(\frac{\pi}{2})=(\sin\frac{\pi}{2},\cos\frac{\pi}{2})=(1,0)$  es en el sentido de las agujas del reloj.

**Ejercicio 2.** Sea  $\alpha(t)$  una curva que no pasa por el origen. Si  $\alpha(t_0)$  es el punto de la traza de  $\alpha$  más cercano al origen y  $\alpha'(t_0) \neq 0$ , demostrar que el vector posición  $\alpha(t_0)$  es ortogonal a  $\alpha'(t_0)$ .

Definimos la función  $D(t) := \alpha^2(t) = \alpha(t)\alpha(t) = ||\alpha(t)||^2$  que mide el cuadrado de la distancia de los puntos de la curva al origen.

 $t_0$  es un punto relativo de dicha función por ser el punto más cercano al origen, entonces  $D'(t_0) = 0 \implies 2\alpha(t_0)\alpha'(t_0) = 0 \implies \alpha(t_0) \perp \alpha'(t_0)$ .

**Ejercicio 3.** Sea  $\alpha: I \longrightarrow \mathbb{R}^3$  una curva y  $v \in \mathbb{R}^3$  un vector dado. Si  $\alpha'(t)$  es ortogonal a v para todo  $t \in I$ , y si  $\alpha(0)$  también lo es, demuestre que  $\alpha(t)$  es ortogonal a v para todo  $t \in I$ .

Definimos  $f(t) := \alpha(t)v = \alpha_1(t)v_1 + \alpha_2(t)v_2 + \alpha_3(t)v_3$ . Tenemos que  $f'(t) = \alpha'(t)v = 0 \ \forall t \in I$ . Luego  $f(t) = c \in \mathbb{R}$ ,  $\forall t \in I$ . Como en particular  $f(0) = \alpha(0)v = 0 \implies c = 0 \implies \alpha(t) \perp v$ .

**Ejercicio 4.** Si  $\alpha \colon I \longrightarrow \mathbb{R}^3$  es una curva regular, demuestre que  $||\alpha(t)||$  es constante (diferente de cero) si y sólo si  $\alpha(t) \perp \alpha'(t)$  para todo  $t \in I$ .

• (
$$\Longrightarrow$$
).  $||\alpha(t)||^2 = \alpha(t)\alpha(t) = c^2$ . Derivando,  $2\alpha(t)\alpha'(t) = 0 \implies \alpha(t) \perp \alpha'(t)$ .

#### CAPÍTULO 1. CURVAS PARAMETRIZADAS Y LONGITUD DE UN ARCO DE CURVA2

• 
$$(\Leftarrow).\alpha(t)\alpha'(t) = 0 \implies \frac{1}{2}(\alpha(t)\alpha(t))' = 0 \stackrel{\text{Integrando}}{\Longrightarrow} \alpha(t)\alpha(t) = c \implies ||\alpha(t)||^2 = c \implies ||\alpha(t)|| \text{ es constante.}$$

**Ejercicio 5.** Si  $\alpha \colon I \longrightarrow \mathbb{R}^3$  es una curva, y  $M \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$  es un movimiento rígido, demostrar que las longitudes de  $\alpha$  y  $M \circ \alpha$  entre a y b coinciden.

$$L_a^b M \circ \alpha(t) = \int_a^b \left| \left| (M \circ \alpha)' \right| \right| = \int_a^b \left| \left| M'(\alpha(s))\alpha'(s) \right| \right| ds = \int_a^b \left| \left| \overrightarrow{M}\alpha'(s) \right| \right| ds \text{ por ser mov. rigido}$$

$$= \int_a^b \left| \left| \alpha'(s) \right| \right| ds = L_a^b \alpha.$$

**Ejercicio 6.** Demuestre que las líneas tangentes a la curva  $\alpha(t)=(3t,3t^2,2t^3)$  forman un ángulo constante con la recta  $y=0,\ z=x.$ 

Tenemos que  $\alpha'(t) = (3, 6t, 6t^2)$ . La recta  $r \equiv \begin{cases} y = 0 \\ x = z \end{cases}$  tiene como vector director

v := (1,0,1). El ángulo  $\theta$  que forman v y  $\alpha'(t)$  viene determinado por  $\theta = \underset{[0,\pi)}{\operatorname{arc}} \cos \frac{\alpha'(t)v}{||\alpha'(t)||\,||v||} = 0$ 

$$= \arccos \frac{3+6t^2}{\sqrt{9+36t^2+36t^4}\sqrt{2}} = \arccos \frac{3+6t^2}{(3+6t^2)\sqrt{2}} = \arccos \frac{\sqrt{2}}{2} \text{ que es constante}.$$

**Ejercicio 7.** La curva engendrada por un punto P de una circunferencia de radio r que rueda sin deslizar por una recta fija se llama **cicloide**. Tomando dicha recta como eje de las X, y como parámetro t el ángulo orientado  $\widehat{MCP}$  (C es el centro de la circunferencia y M el punto de contacto con el eje), probar que la posición de P para cada t es

$$\alpha(t) = (rt - r\sin t, r - r\cos t)$$

Se ha supuesto que en t=0, P coincide con M, y con el origen de coordenadas. Determine los puntos t donde  $\alpha(t)=0$  (llamados de retroceso). (Nota: "sin deslizar" significa a efectos prácticos que la longitud del arco MP coicide con la longitud del segmento OM).



**Ejercicio 8.** Pruebe que la recta tangente a la cicloide por un punto P regular cualquiera viene determinada por los puntos P y M, siendo M el simétrico de M respecto a C.

#### CAPÍTULO 1. CURVAS PARAMETRIZADAS Y LONGITUD DE UN ARCO DE CURVA3

Ejercicio 9. Determine la longitud del arco de cicloide entre dos puntos consecutivos de retroceso, en función del radio de la circunferencia rodante.

**Ejercicio 10.** Sea  $\alpha : (-1, \infty) \longrightarrow \mathbb{R}^2$  la curva

$$\alpha(t) = \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3}\right), \ a > 0$$

Se pide demostrar:

- La tangente a  $\alpha$  en t=0 es el eje OX.
- Cuando  $t \to \infty$ ,  $\alpha(t) \to (0,0)$  y  $\alpha'(t) \to (0,0)$ .
- Si se toma la curva con la orientación opuesta, demuestre que cuando  $t \to -1$ ,  $\alpha(t)$  y su tangente se acecan a la recta x + y + a = 0.

$$\begin{array}{l} \blacksquare \ \, \alpha(t) = \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3}\right) = \frac{3at}{1+t^3}(1,t) \implies \alpha'(t) = \frac{3a(1+t^3)-3t^2(3at)}{(1+t^3)^2}(1,t) + \\ + \frac{3at}{1+t^3}(0,1) = \frac{3a}{1+t^3} \left(\frac{1-2t^3}{1+t^3}, \frac{t-2t^4}{1+t^3} + t\right) = \frac{3a}{1+t^3} \left(\frac{1-2t^3}{1+t^3}, \frac{2t-t^4}{1+t^3}\right) = \\ = \frac{3a}{(1+t^3)^2} (1-2t^3, 2t-t^4) \stackrel{t\to 0}{\longrightarrow} (3a,0). \end{array}$$