トップエスイー修了制作

富士通コンピュータテクノロジーズ 鈴木利彦 toshi_suzuki_01@jp.fujitus.com

開発における問題点

LSIのCDC(Clock Domain Crossing)で発生するメタステーブルによる誤動作は、後工程の実機検証において顕在化しやすいため、工程や開発コストへ影響が大きい。

現在、プロジェクトにおいて、技術継承の問題によりCDC設計の俗人化が発生し、初級技術者で障害が多発している。

手法・ツールの適用による解決

問題点に挙げたCDC設計における属人化による技術継承の問題を解決するため、CDC設計の問題とその解法をパターンとして明確化をした。そして、できる限り学習コストを少なく、初級設計者が上級設計者と同等の品質を確保する。

CDC設計のパターン

過去の設計資産などから、パターンを抽出

	名前	概要				
パターン1	二段FF	<mark>パーステープル状態を防いだ、レベル信号を転送するため、</mark> 二段FFを入れる。				
パターン2	非同期ラッチ制御	プロスルエラーを防いだ、パルス信号を転送するため、ラッチ回路を設ける				
バターン3	INHIBIT制御	プロコルエラーを防いだ、レベル信号 or バルス信号を転送するため、信号到達が通知される				
バターン4	BUS同期回路	リコンパージェンスエラーを防いだ、多ピット信号を転送するため、イネーブル信号を一段運ぐする				
パターン5	非同期FIFO	リコンバージェンスエラーを防いだ1CLOCKごとに変化する多 ビット信号を転送するため、非同期FIFOを使用する				
パターン6	グレイコード	<mark>リコンパージェンスエラ</mark> ーを防いだ、多ビットのカウンタ値を転送するため、グレイコードを使用する				
	名前	概要				
複合パター2 213	非同期ラッチ INHIBIT制御	7 [*] 마コルエラーを防いだ、パルス信号を転送し、かつ転送 完了の通知を受け取りたい場合、非同期ラッチ制御 とINHIBIT制御の複合パターンを使用する				
複合パターン 5+6	ン 非同期FIFO シンクロナイザ	リコンパージェンスエラーを防いだ、ICLOCKごとに変化する多ビット信号を転送したい場合、非同期FIFOと、グレイコードの複合パターンを使用する				

過去の障害への適用見積もり

被験者実験

初級者技術者がパターンを適用/選択できるか評価

35							
30	非CDC設計問題		項	信号名	信号の意味	被験者適用 バターン	期待 パターン
30			Т	I REQ	リクエスト信号	非同期ラッチ制御	
ຸ ຮ	CDC設計問題	このCDC設計問	2	I_CMD	アクセスがRDか、WTを決める L_REQがTの時有効	非同期ラッチ制御	BUS同期回路
22 ZO		題は、パターンを	3	I_ADR	I_REQが1かつ、I_CMDが1の時、ライトアドレスを示す。 I REQが1かつ、I CMDが0の時、リードアドレスを示す。	非同期ラッチ INHIBIT制御	非同期ラッチ INHIBIT制御
医性 12		適用することで、 回 避可能	4	O END	トランザクション完了時に送信する	非同期ラッチ INHIBIT制御	非同期ラッチ INHIBIT制御
Ŧ		ET AEL-T RE	5	I_WDV	Iの時、O_WTが有効であることを示す		
æ 10			6	I_WD	フイトデータを示す。 TCYCLLのデータ転送のみ	BUS同期同路	BUS同期回路
			7	O_RDV	Iの時、O_RDが有効であることを示す		
S			8	O_RD	リードデータを示す ICYCLEのデータ転送のみ	BUS同期同路	BUS同期回路
0	陳吉 陳吉2 陳吉3 陳吉4 陳吉5 陳吉6 陳吉7 陳吉6 陳吉9 陳吉10		9	I_B∧R	BaseAddressを示す。 常に0	二酸田	二段H or 無
]					

- ・CDC設計問題であった10件中3件を防ぐことができる
- 障害にかかる設計コストはおよそ50%減少できる

初級技術者は7項に関して正しく適用できた、 妥当性ありと判断する。