

Parallel Architectures

(CS 3006)

Dr. Shujaat Hussain

Department of Computer Science,
National University of Computer & Emerging Sciences,
Islamabad Campus

Flynn's Taxonomy

Specific classification of parallel architecture

- By Michael Flynn (from Stanford, in 1966)
 - Made a classification of computer systems known as Flynn's Taxonomy

Flynn's Taxonomy

Single Instruction, Single Data Stream – SISD

- Single processor
- Single instruction stream
- Data stored in single memory
- Deterministic execution

201S

Single Instruction, Multiple Data Stream - SIMD

- A parallel processor
- Single instruction: all processing units execute same instruction at any given clock cycle
- Multiple data: Each processing unit can operate on a different data element
- Large number of processing elements (with local memory)
- Examples: GPUs, etc.

Single Instruction, Multiple Data Stream - SIMD

- Scalar processing
 - —one operation produces one result
- SIMD vector units
 - —one operation produces multiple results

Multiple Instruction, Single Data Stream - MISD

- Sequence of data
- Transmitted to set of processors
- Each processor executes different instruction sequence, using same Data
- Examples: Pipelined Vector Processors, etc.

Multiple Instruction, Multiple Data Stream- MIMD

- Most common parallel processor architecture
- Simultaneously execute different instructions
- Using different sets of data
- Examples: Multi-cores, SMPs, Clusters, Grid, Cloud

MIMD - Overview

- General purpose processors
- Each can process all instructions necessary
- Further classified by method of processor communication:
 - 1. Shared Memory
 - 2. Distributed Memory

axonomy of Processor Architectures

axonomy of Processor Architectures

Symmetric Multiprocessor (SMP)

- Processors share memory (tightly coupled)
- Communicate via shared memory (single bus)
- Same memory access time (any memory region, from any processor)
- Processors share I/O address space too

SMP Advantages

- Performance
 - work can be done in parallel
- Availability
 - Failure of a single processor does not halt system
- Incremental growth
 - Adding additional processors enhances performance
- Scaling
 - Range of products based on number of processors

Symmetric Multiprocessor Organization

Multithreading and Chip Multiprocessors

Instruction stream divided into smaller streams called "threads"

Executed in parallel

The state of the s

Exonomy of Processor Architectures

Tightly Coupled - NUMA

- Non-Uniform Memory Access (NUMA)
 - Access times to different regions of memory differs

SunFire X4600M2 NUMA machine

Non-uniform Memory Access (NUMA)

- Non-uniform memory access
 - All <u>processors</u> have access to <u>all parts of memory</u>
 - Access time of processor differs depending on memory region
 - Different processors access different regions of memory at different speeds
- Cache-coherent NUMA (cc-NUMA)
 - Cache coherence is maintained among the caches of the various processors

Motivation (Why NUMA)

- SMP has practical limit to number of processors
 - Bus traffic limits to between 16 and 64 processors

- In clusters each node has own memory:
 - Apps do not see large global memory
 - Coherence maintained by software not hardware

NUMA retains SMP flavour while giving large scale multiprocessing

CC-NUMA Organization

CC-NUMA Operation

- Each processor has own L1 and L2 cache
- Each node has own main memory
- Nodes connected by some networking facility
- Each processor sees single addressable memory
- Hardware support for read/write to non-local memories, cache coherency

- Memory request order:
 - 1. L1 cache → L2 cache (local to processor)
 - Main memory (local to node)
 - 3. Remote memory

NUMA Pros & Cons

 Effective performance at higher levels of parallelism than SMP

No major software changes

 Performance can breakdown if too much access to remote memory

Distributed Memory / Message Passing

- Each processor has access to its own memory only
- Data transfer between processors is explicit (via message passing functions): E.g., MPI library
- User has complete control/responsibility for data placement and management

Hybrid Systems

 Distributed memory system with multiprocessor shared memory nodes

Most common parallel architecture

Ta X

Exonomy of Processor Architectures

Distributed Computing

Using distributed systems to solve large problems

- Paradigms:
 - Cluster computing
 - Grid computing
 - Cloud computing

Cluster Computing

Clusters - Loosely Coupled

- Collection of independent uni-processor systems or SMPs
- Interconnected to form a cluster
- Communication via fixed path or network connections
- Not a single shared memory

Introduction to Clusters

- Alternative to SMP
- High performance
- High availability
- A group of interconnected whole computers
- Working together as <u>unified resource</u>
- Illusion of being one big machine
- Each computer called a node

Cluster Benefits

- Scalability
- Superior price/performance ratio

Cluster System Architecture

High Speed Network/Switch

Cluster Middleware

- Unified image to user
 - Single system image
- Single point of entry
- Single file hierarchy
- Single job management system
- Single user interface
- Single I/O space

Cluster vs. SMP

Both provide multiprocessor support

SMPs:

- Easier to manage and control
- Closer to single processor systems:
 - Scheduling is main difference
 - Less physical space required
 - Lower power consumption

Cluster vs. SMP

- Clustering:
 - Superior incremental scalability
 - Superior availability
 - Redundancy

Grid Computing

Grid Computing

 Heterogeneous computers over the whole world providing CPU power and data storage capacity

Applications can be executed at several locations

Geographically distributed services

 Coordinates/Access of resources; as contract to centralized control

Uses standard, open, general-purpose protocols and interfaces

Grid Architecture

Autonomous, globally distributed computers/clusters

A typical view of Grid environment

Grid Information Service

Grid Information Service system collects the details of the available Grid resources. Passes information to resource broker.

Grid application

User

submit User computation or data intensive application to Grids.

Resource Broker

A Resource Broker distribute the jobs in an application to the Grid **resources** based on user's OoS requirements and available Grid resources.

Grid Resources

Grid Resources (Cluster, PC, Supercomputer, database. instruments, etc.)

Cloud Computing

What is Cloud Computing?

- Cloud Computing is a network-based computing that takes place over the Internet:
 - a collection/group of integrated and networked hardware, software, and Internet infrastructure (called a platform).

Hides the complexity and details of the underlying infrastructure

What is Cloud Computing?

On demand services, that are always ON, Anywhere,
 Anytime and Any place

•Pay for use and as needed

• Elastic: scale up and down (capacity and functionalities)

Shared pool of configurable computing resources

Service Models

Cloud Service Models

Cloud Providers

less

More

SuperComputers

What is Cloud Computing?

- Typical definition*: A computer that leads the world in terms of processing capacity, speed of calculation, at the time of its introduction
 - Computer speed is measured in FLoating Point
 Operations Per Second (FLOPs)
 - Currently the LINPACK Benchmark is officially used to determine a computers speed. http://www.netlib.org/benchmark/hpl
 - Top 500 SuperComputers
 - A ranked list of general purpose systems that are in common use for high-end applications

Top 5 of the list (Nov. 2020)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646

Architecture System Share

Countries Performance Share

Others 6 4 1

Top 500 SuperComputers - Nov. 2020

Accelerator/Co-Processor System Share

Operating system Family System Share

Operating System System Share

Any Questions?