	Assignment 6: Logistic Regression Copyright and Fair Use
	This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors. Automatic Testing Guidelines Automatic unittesting requires you to submit a notebook which contains strictly defined objects. Strictness of definition consists of unified shapes, dtypes, variable names and more.
	Within the notebook, we provide detailed instruction which you should follow in order to maximise your final grade. Name your notebook properly, follow the pattern in the template name: Assignment_N_NameSurname_matrnumber 1. N - number of assignment 2. NameSurname_vary full parts where every part of the parts starts with a capital letter, no spaces.
	2. NameSurname - your full name where every part of the name starts with a capital letter, no spaces 3. matrnumber - you student number on ID card (without k, potenitially with a leading zero) Don't add any cells but use the ones provided by us. You may notice that all cells are tagged such that the unittest routine can recognise them. Before you sumbit your solution, make sure every cell has its (correct) tag! You can implement helper functions where needed unless you put them in the same cell they are actually called. Always make sure that implemented functions have the correct output and given variables contain the correct data type. In the descriptions for every function you can find information on what datatype an output should have and you should stick to that in order to minimize conflicts with the unittest. Don't import any other packages than listed in the cell with the "imports" tag.
In [1]:	Questions are usually multiple choice (except the task description says otherwise) and can be answered by changing the given variables to either "True" or "False". "None" is counted as a wrong answer in any case! Note: Never use variables you defined in another cell in your functions directly; always pass them to the function as a parameter. In the unitest, they won't be available either. If you want to make sure that everything is executable for the unittest, try executing cells/functions individually (instead of running the whole notebook). import numpy as np
	import matplotlib import matplotlib.pyplot as plt Task 1: The goal of this exercise is to implement logistic regression from scratch using only numpy. Start with the following tasks:
	• Implement the formula for the gradient computed in the lecture. In particular you should implement a function
	 Test whether the gradient calculated by logistic_gradient(w, x, y) is correct via Gradient Checking. To do so, implement a function numerical_gradient(w, x, y) that takes the same parameters as logistic_gradient, but calculates the gradient numerically via the central difference quotient, using \(\epsilon = 10^{-4} \) as suggested in the lecture slides. Implement the function generate_random(nr_samples, nr_features) that generates a random data matrix consisting of 5 data points with 10 features drawn from a standard normal distribution as well as corresponding random binary labels and a random weight vector, whose entries again stem from the standard normal distribution. Hint: to generate the distributions use np.random.normal and
	np.random.randint. • Implement the function comparison(grad_a, grad_n) that takes the analytical and the numerical gradient as inputs respectively. The function should check whether the two vectors deviate more than $\epsilon = 10^{-7}$ or not from each other (they shouldn't;)) Code 1.1 (5 points):
In [2]:	Function that computes the logistic gradient @param w, np array, weights @param x, np array, data matrix @param y, np array, data labels @output gradient, np array, gradient vector """ def logistic_gradient(w, x, y):
	<pre>gradient=0 for index in range(x.shape[0]):</pre>
In [3]:	
	<pre>def cost(w, x, y): loss=0 for index in range(x.shape[0]): w_transpose=np.transpose(w) sigmoid=1/(1+np.exp((-1)*np.dot(w_transpose,x[index]))) loss=loss+y[index]*np.emath.log(sigmoid)+(1-y[index])*np.emath.log(1-sigmoid) loss=loss*(-1) return loss</pre>
In [4]:	Code 1.3 (10 points): """ Function that computes the numerical gradient @param w, np array, weights @param x, np array, data matrix @param y, np array, data labels
	<pre>@output dw, np array, numerical gradient """ def numerical_gradient(w, x, y): dw=np.zeros(w.shape) quotient=10**(-4) for index in range(x.shape[1]): e=np.zeros(w.shape) e[index]=1</pre>
In [5]:	<pre>num_gradient=(cost(w+quotient*e, x, y)-cost(w-quotient*e, x, y))/(2*quotient) dw[index]=num_gradient return dw Code 1.4 (10 points): """ Function that generates a random matrix X and the random vectors y and weights</pre>
	<pre>@param nr_samples, int, the number of samples you should generate @param nr_features, int, the number of feature each sample has @output X_random, np array, random samples @output y_random, np array, random targets @output w_random, np array, random weights """ def generate_random(nr_samples, nr_features):</pre>
In [6]:	
	Function that compares two array @param grad_a, np array, the analytical gradient @param grad_n, np array, the numberical gradient @output close, bool , True if the arrays are similar, False if they are not """ def comparison(grad_a, grad_n): deviation=10**(-7) close=np.allclose(grad_a, grad_n, deviation)
In [7]:	#Nothing to do here, if you did everything correctly you can just run this code and should see the correct results n = 5 d = 10 X_random, y_random, w_random = generate_random(n,10) analytical_gradient = logistic_gradient(w_random, X_random, y_random) num_gradient = numerical_gradient(w_random, X_random, y_random) comparison_result = comparison(analytical_gradient, num_gradient)
	print("X =",X_random,"\n") print("y =",y_random,"\n") print("w = ",w_random,"\n") print("Logistic gradient:\n", analytical_gradient, "\n") print("Numerical gradient:\n", num_gradient, "\n") print("Vectors within absolute tolerance of 10^-7: ",comparison_result) X = [[-0.17298956 -1.79765965 -0.62673364 0.77924542 0.24781919 -0.8614072 0.64987305 0.33637928 -0.82693698 1.03563463] [-0.41862369 0.76893242 -1.10553226 2.75726974 0.27433505 1.70942912
	[-0.41862369 0.76893242 -1.10553226 2.75726974 0.27433505 1.70942912
	<pre>w = [0.2987919 -1.59272413 0.58873476 -0.0776144 -0.06881164 1.393102 -0.42726713 0.33280158 -0.91871352 0.04975432] Logistic gradient: [-0.46682603 -0.77743219 0.89465882 -1.15595718 -0.92712189 0.23374846 -1.54524768 -1.84928748 0.96795031 -0.75189723]</pre> Numerical gradient:
	 [-0.46682603 -0.77743219 0.89465882 -1.15595717 -0.92712189 0.23374846 -1.54524768 -1.84928747 0.96795031 -0.75189723] Vectors within absolute tolerance of 10^-7: True Next we intend to apply logistic regression on a real data set. Implement a function fitLogRegModel(x_train, y_train, eta=1e-4, max_iter=1e5) that uses Logistic Regression with Gradient Descent to train classifiers on the training set. Use randomly initialized weights, drawn from a uniform distribution between -1 and 1, a learning rate η (eta) of 10⁻⁴ and a maximum number of iterations of 1e5. Furthermore the algorithm should stop if the difference between the loss of the
	 last iteration step and the current loss is less than η. Store all the losses in a list to have some insights in the learning procedure later on. Also print the losses in 1000 step intevals. The function should return the model weights and the list containing all the losses. Furthermore, implement a function predictLogReg(w, x) that returns the prediction for the given parameter vector w and feature vector x. Hint: for intialization use np.random.uniform.
In [8]:	Code 1.6 (25 points) """ Function that fits a logistic regression model to given dat @param x_train, np array, training data @param y_train, np array, training samples @output w, np array, the final weight array @output losses, list, list holding all the losses from the training (including the loss before the training)
	<pre>def fitLogRegModel(x_train, y_train, eta=1e-4, max_iter=100000): w=np.random.uniform(-1,1,x_train.shape[1]) losses=[] previous_loss=cost(w,x_train,y_train) losses.append(previous_loss) for it in range(max_iter): gradient=logistic_gradient(w,x_train,y_train) w=w-eta*gradient</pre>
	<pre>current_loss=cost(w,x_train,y_train) losses.append(current_loss) if it%1000==0: print(current_loss) if abs(current_loss-previous_loss)<eta: break="" previous_loss="current_loss</pre"></eta:></pre>
In [9]:	return w, losses Code 1.7 (5) points) """ Function that calculates the prediction for one or more new samples @param w, np array, weights
	<pre>@param x, np array, samples for inference @output prediction, np array, the calculated predictions """ def predictLogReg(w, x): prediction=1/(1+np.exp((-1)*np.dot(x,w))) return prediction</pre> Now we fit the logistic regression model from above to the training data and print the parameters for the test data.
In [10]:	<pre>#nothing to do here from sklearn.utils import shuffle # Read data, split into X(features) and y(labels) Z = np.genfromtxt('DataSet_LR_a.csv', delimiter=',',skip_header=1) X, y = Z[:,:-1], Z[:,-1] X = np.hstack((np.ones((X.shape[0],1)),X)) #prepend ones for intercept</pre>
	<pre># Plot data distribution color= ['red' if elem==1 else 'blue' for elem in y] plt.scatter(X[:,-2], X[:,-1], c=color) plt.xlabel('x1') plt.ylabel('x2') plt.title('Complete dataset') # Split into test and training set X_train=X[:int(X.shape[0]/2)] X_test=X[int(X.shape[0]/2):]</pre>
	<pre>/_test=x[int(x.stabe[0]/2).] y_train=y[:int(len(y)/2)] y_test=y[int(len(y)/2):] Complete dataset 1.0 -</pre>
	0.8 - 0.6 - N
	0.0
In [11]:	#nothing to do here - just execute the cell w_learned, losses=fitLogRegModel(X_train, y_train) pred_train=predictLogReg(w_learned, X_train) #as a check pred_test=predictLogReg(w_learned, X_test) print("The learnt weights are: w =",w_learned)
	40.41758310647038 35.18968450401735 32.852792570161455 30.973459848270412 29.425116798807117 28.135750521194662 27.05116704051657 26.130189791418267 25.341300081752507
	24.660149719107842 24.067740724267335 23.549097805826648 23.092297769604276 22.687755633118993 22.327695373696493 22.00575404127515 21.716682850175026 21.45611936073852
	21.220412229989314 21.006485187125772 20.81173054181532 20.633925125746643 20.471163421686963 20.32180397044395 20.184426117166645 20.057794870012373 19.940832170005397 19.83259326258996
In [12]:	The learnt weights are: w = [-2.20623556 6.14043363 -1.33865438] # Nothing to do here # Plot training and test dataset # Plot predictions for training and test dataset fig = plt.figure() fig = plt.figure(figsize = (12,10)) plt.subplot(2, 2, 1)
	<pre>color= ['red' if elem>0.5 else 'blue' for elem in y_train] plt.scatter(X_train[:,-2], X_train[:,-1], c=color,label='the data') plt.xlabel('x1') plt.ylabel('x2') plt.title('Training dataset') plt.subplot(2, 2, 2) color= ['red' if elem>0.5 else 'blue' for elem in pred_train] plt.scatter(X_train[:,-2], X_train[:,-1], c=color,label='the data')</pre>
	<pre>plt.xlabel('x1') plt.ylabel('x2') plt.title('Training dataset - predictions') plt.subplot(2, 2, 3) color= ['red' if elem>0.5 else 'blue' for elem in y_test] plt.scatter(X_test[:,-2], X_test[:,-1], c=color,label='the data') plt.xlabel('x1') plt.ylabel('x2')</pre>
	<pre>plt.title('Test dataset') plt.subplot(2, 2, 4) color= ['red' if elem>0.5 else 'blue' for elem in pred_test] plt.scatter(X_test[:,-2], X_test[:,-1], c=color,label='the data') plt.xlabel('x1') plt.ylabel('x2') plt.title('Test dataset - predictions')</pre>
Out[12]:	Text(0.5, 1.0, 'Test dataset - predictions') <figure 0="" 640x480="" axes="" size="" with=""> Training dataset 1.0 0.8 Training dataset - predictions 1.0 0.8 Training dataset - predictions</figure>
	0.6 − ♥ 0.4 −
	0.2 - 0.0 - 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 x1
	Test dataset Test dataset - predictions 1.0 0.8 Test dataset - predictions 1.0 0.8
	0.6 - Q Q 0.4 - Q 0.2 - Q
	In the following cell the data set DataSet_LR_a.csv is loaded§and split into a training set and a test set (50 % each). Now you should:
	 Classify samples as class 1 if the Logistic Regression returns values ≥ 0.5 and 0 otherwise. Calculate the entries for a confusion matrix and from these values the Accuracy and Balanced Accuracy in the function calc_acc(prediction, true_values, threshold) and apply it on the training and on the test sets. Provide ROC curves of the classifiers on the test samples and compute the corresponding AUC. Hint: the functions roc_curve and auc from sklearn.metrics might be useful. Make sure to store the calculated value for the AUC in the variable rocAUC - this is important for the unit-test. Code 1.8 (25 points)
In [13]:	Function that calculates the prediction for one or more new samples @param prediction, np array, predicted values @param true_values, np array, ground truth @output pos, float, positive samples @output neg, float, negative samples @output tp, float, true positive samples
	<pre>@output tn, float, true negative samples @output fp, float, false positive samples @output fn, float, false negative samples @output acc, float, accuracy @output balanced_acc, float, balanced accuracy """ def calc_acc(prediction, true_values, threshold = 0.5): labels=np.zeros(len(true_values)) for i in range(len(prediction)): if prediction[i]>=threshold:</pre>
	<pre>labels[i]=1 elif prediction[i]<threshold: for="" i="" in="" labels[i]="0" logistic_regression_labels="np.zeros(len(true_values))" logistic_regression_labels[i]="labels[i]" range(len(logistic_regression_labels)):="" tp,tn,fp,fn="0,0,0,0</pre"></threshold:></pre>
	<pre>for i in range(len(logistic_regression_labels)): if logistic_regression_labels[i]==1 and true_values[i]==1:</pre>
	<pre>fn+=1 pos=tp+fn neg=tn+fp acc=(tp+tn)/(tp+tn+fp+fn) tpr=tp/pos tnr=tn/neg balanced_acc=(tpr+tnr)/2</pre>
In [14]:	<pre>return pos, neg, tp, tn, fp, fn, acc, balanced_acc # Calculate accuracy and balanced accuracy for test set result_train = calc_acc(pred_train, y_train) result_test = calc_acc(pred_test, y_test) print(result_train[-2]) print(result_train[-1]) print(result_test[-2])</pre>
	print(result_test[-2]) print(result_test[-1]) 0.883333333333333 0.8744343891402715 0.86666666666667 0.8823529411764706 Code 1.9 (5 points)
In [15]:	<pre>fpr,tpr,threshold=roc_curve(y_test,pred_test) plt.title("ROC Curve") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.plot(fpr,tpr) plt.show()</pre>
	ROC Curve 1.0
	The Positive Rate 1.00 - 0.04
	0.2 - 0.0 - 0.2 0.4 0.6 0.8 1.0 False Positive Rate
	0.9671945701357466