TPE: UNLocBox

Outil de Modélisation et Résolution d'Optimisation Convexe

Université de Yaoundé I Faculté des Sciences - Département d'Informatique

Octobre 2025

L'optimisation convexe comme pilier de l'ingénierie et du Machine Learning

UNLocBox 1/18

Membres du Groupe

AZEUFACK NGNINWO THIERRY Matricule: 12U0012

NDEKEBAI MEYIE MICHAEL Matricule: 21T2707

DJAMPA MBIANGANG PLATINY CABREL Matricule: 21T2437

MOUGOU OWOUNDI BRICE WILLIAM Matricule: 0000

UNLocBox 2 / 18

Plan de la Présentation

- Introduction à l'Optimisation Convexe
- Méthodes Proximales et Splitting
- 3 UNLocBox : La Boîte à Outils
- 4 Cas d'Usage et Implémentation
- 5 Analyse et Comparaison
- 6 Conclusion

UNLocBox 3/18

Qu'est-ce que l'Optimisation Convexe?

Définition

Minimiser une fonction objectif convexe sous des contraintes convexes.

Avantage clé:

- Tout minimum local est un minimum global
- Garantie de convergence
- Algorithmes efficaces

Applications:

- Machine Learning
- Traitement du signal
- Optimisation de portefeuille
- Vision par ordinateur

UNLocBox 4 / 18

Le Problème Type (Formulation)

Formulation Générale

UNLocBox résout des problèmes de la forme :

$$\min_{x \in \mathbb{R}^N} \sum_{k=1}^K f_k(x)$$

Caractéristiques :

- Chaque f_k est une fonction **convexe**
- Les fonctions peuvent êtrelisses et ou non-lisses (non différentiables)
- Combinaison de termes de fidélité aux données et de régularisation

Exemple: Régression LASSO

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \lambda ||x||_{1}$$

UNLocBox 5 / 18

L'Approche UNLocBox : Proximal Splitting

Principe des méthodes de Splitting

- Diviser un problème complexe en sous-problèmes plus simples
- Résoudre chaque sous-problème séparément
- Combiner les solutions

L'Opérateur Proximal

Élément central des méthodes de splitting :

$$\operatorname{prox}_f(y) = \arg\min_{x} \left\{ f(x) + \frac{1}{2} \|x - y\|^2 \right\}$$

Interprétation : Compromis entre minimiser f et rester proche de y

UNLocBox 6 / 18

UNLocBox : Une Boîte à Outils Matlab

Caractéristiques principales :

- Bibliothèque open-source
- Environnement : Matlab/Octave
- Framework simple et modulaire
- Implémentation d'algorithmes de pointe

Objectif

Fournir un outil accessible pour résoudre des problèmes d'optimisation convexe non-lisse

UNLocBox = *UNconstrained LOw-complexity convex optimization BOX*

UNLocBox 7 / 18

Architecture: Les 3 Piliers de l'UNLocBox

1. Solvers (Algorithmes)

2. Prox (Opérateurs Proximaux)

3. Grad (Gradients)

Framework Modulaire UNLocBox

Principe: Assembler ces composants comme des *briques LEGO* pour construire votre solution d'optimisation

UNLocBox 8 / 18

Pilier 1 : Les Solveurs (Algorithmes)

Algorithmes d'optimisation implémentés :

- FB (Forward-Backward)
- FISTA (Fast ISTA)
- Douglas-Rachford
- ADMM

- Chambolle-Pock
- PPXA
- SDMM
- Generalized
 Forward-Backward

Comment choisir?

Le choix du solveur dépend de :

- La structure du problème (nombre de fonctions f_k)
- Les propriétés des fonctions (lisse/non-lisse)
- La présence de contraintes

UNLocBox 9 / 18

Pilier 2 : Les Opérateurs Proximaux (prox)

Rôle Central

Résoudre :
$$\min_{y} \left\{ f(y) + \frac{1}{2} ||y - x||^2 \right\}$$

Fonctions gérées (exemples) :

- Norme ℓ_1 : $\operatorname{prox}_{\|\cdot\|_1}$ (soft-thresholding) Usage: Parcimonie, sélection de variables
- Indicateur de convexe : Projection sur un ensemble Usage : Contraintes
- Norme ℓ_2 : Projection sur une boule Usage: Régularisation
- Norme nucléaire : Pour matrices de rang faible Usage : Complétion de matrices

UNLocBox 10 / 18

Pilier 3 : Les Opérateurs de Gradient (grad)

Rôle : Calculer le gradient des fonctions lisses f(x)

Fonction Lisse vs Non-Lisse

- **Lisse** : Différentiable partout → utiliser le gradient
- Non-lisse : Non différentiable → utiliser le prox

Exemple: Moindres Carrés

Pour
$$f(x) = \frac{1}{2} ||Ax - b||_2^2$$
:

- Fonction lisse
- Gradient : $\nabla f(x) = A^T (Ax b)$
- Implémentation facile dans UNLocBox

UNLocBox 11 / 18

Cas d'Usage 1 : Denoising (Débruitage)

Problème : Restaurer un signal bruité

Formulation Mathématique

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\text{Fidélité aux données}} + \underbrace{\lambda \|Dx\|_{1}}_{\text{Régularisation TV}}$$

Modélisation UNLocBox :

- $f_1(x) = \frac{1}{2} ||x y||_2^2 \rightarrow \text{Gradient step (Lisse)}$
- $f_2(x) = \lambda ||Dx||_1 \rightarrow \text{Prox } \ell_1 \text{ (Non-lisse)}$

où:

- y : signal observé (bruité)
- D : opérateur de différences (capture les variations)
- λ : paramètre de régularisation

UNLocBox 12 / 18

Mise en Œuvre Pratique (Code)

Listing 1 – Exemple : Débruitage avec UNLocBox

```
% Parametres
 param.verbose = 1;
param.maxit = 100;
| % Fonction 1 : Attache aux donnees (lisse)
 f1.eval = @(x) 0.5*norm(x - y)^2;
 f1.grad = Q(x) x - y;
 f1.beta = 1;
% Fonction 2 : Regularisation L1 (non-lisse)
 f2.eval = Q(x) lambda*norm(D*x, 1);
 f2.prox = @(x, T) prox_11(D*x, lambda*T);
| | | | | | Resolution avec Forward-Backward
s sol = forward_backward(y, f1, f2, param);
```

Avantages d'UNLocBox

Simplicité

- Modélisation par briques
- Syntaxe claire
- Documentation complète

Performance

- Algorithmes rapides
- Convergence garantie
- Adapté aux grands problèmes

Modularité

- Ajout facile de nouveaux solveurs
- Bibliothèque extensible
- Réutilisation de code

Flexibilité

- Problèmes variés
- Fonctions personnalisées
- Contrôle fin des paramètres

UNLocBox 14 / 18

Comparaison: UNLocBox vs CVX / Optimization Toolbox

Critère	UNLocBox	CVX / OptimTB
Approche	Méthodes proximales	Méthodes intérieures (CVX)
Modélisation	Par composants (briques)	Déclarative (DCP)
Non-lissité	Très adapté	Limité
Grands pro- blèmes	Excellente scalabilité	Limité
Vitesse	Très rapide	Plus lent
Facilité	Courbe d'apprentissage	Plus intuitif (CVX)

Verdict

UNLocBox est idéal pour les problèmes de grande taille avec régularisation non-lisse (ex : ℓ_1 , TV)

UNLocBox 15 / 18

Limites et Perspectives d'Évolution

Limites Actuelles

- Convexité stricte : Non adapté aux problèmes non-convexes
- Courbe d'apprentissage : Nécessite de comprendre les méthodes proximales
- Matlab/Octave uniquement : Pas de version Python native
- Documentation : Certains exemples avancés manquent

Perspectives

- Implémentation de nouveaux algorithmes (variance-reduced, stochastiques)
- Optimisation GPU pour accélérer les calculs
- Extension à certains problèmes non-convexes

UNLocBox 16 / 18

Conclusion

Points clés à retenir :

- UNLocBox est un outil puissant pour l'optimisation convexe non-lisse
- Architecture modulaire basée sur 3 piliers (solvers, prox, grad)
- Particulièrement adapté aux problèmes avec régularisation ℓ_1 , **TV**
- Framework simple mais nécessite une compréhension des méthodes proximales

UNLocBox : Une référence pour l'optimisation convexe moderne

UNLocBox 17 / 18

Questions & Discussion

?

Vos Questions

Discussion et échanges

N'hésitez pas à poser vos questions

UNLocBox 18 / 18