Problem Set 3

Jakub Gadawski Optimization methods

March 22, 2020

Exercise 1

Check, if set is a cone:

a)
$$A = \{x \in \mathbb{R}^n : x_i \ge 0\}$$

The set is a cone.

Proof. We have to check, if $\forall_{x \in A} \forall_{\alpha \in \mathbb{R}, \alpha \geq 0} \alpha x \in A$ Let $x \in A, x = (x_1, x_2, \dots, x_n), \alpha \in \mathbb{R}, \alpha \geq 0$ Then, $\alpha x = (\overbrace{\alpha x_1}, \overbrace{\alpha x_2}, \dots, \overbrace{\alpha x_n}) \in A$

c)
$$C = \{x \in \mathbb{R}^n : \langle x, a \rangle \leq 0\}, a \in \mathbb{R}^n$$

The set is a cone.

 $\begin{array}{ll} \textit{Proof.} \ \ \text{Let} \ x \in C, \alpha \in \mathbb{R}, \alpha \geq 0 \\ \text{Then} < \alpha x, a > = \alpha < x, a > \leq 0 \implies \alpha x \in C \end{array}$

d)
$$D = (a) := \{x \in \mathbb{R}^n : x = \alpha a, \alpha \ge 0\}, a \in \mathbb{R}^n$$

The set is a cone.

Proof. Let $x \in D$, $\alpha \in \mathbb{R}$, $\alpha \ge 0$ Then $\alpha x \in D$ (definition of D)

e)
$$E = \{x \in \mathbb{R}^n : x = \alpha a, \alpha > 0\}, a \in \mathbb{R}^n$$

The set is a cone for a = 0.

If $\alpha = 0 \land a \neq 0 \implies \alpha x \notin E \implies E$ - not a cone.

f)
$$F = \{x \in \mathbb{R}^2 : x_1 = 2\}$$

The set is a cone.

If $\alpha = 2 \land x = (2,4) \implies \alpha x = (4,8) \notin F \implies F$ - not a cone.

Exercise 2

Prove, that:

a)
$$C_1, C_2 - cones \implies C_1 \cap C_2 - cone$$

Proof. Let $x \in C_1 \cap C_2$ Then $x \in C_1 \wedge x \in C_2$ But $C_1, C_2 - cones \implies \forall_{\alpha \geq 0} (x\alpha \in C_1 \wedge x\alpha \in C_2) \implies \forall_{\alpha \geq 0} x\alpha \in C_1 \cap C_2 \implies C_1 \cap C_2 - cone$

If sets are convex, then intersection is a convex set.

b)
$$S_1, S_2 - cones \implies S_1 \cup S_2 - cone$$

Proof. Let $x \in S_1 \cup S_2$

Then $x \in S_1 \lor x \in S_2$

If $x \in S_1 \implies \forall_{\alpha \geq 0} \alpha x \in S_1 \implies S_1 \cup S_2$

If $x \in S_2 \implies \forall_{\alpha \geq 0} \alpha x \in S_2 \implies S_1 \cup S_2$

So $S_1 \cup S_2 - cone$

Let
$$S_1 = \{x : \alpha[1, 1], \alpha \ge 0\}, S_2 = \{x : \alpha[-1, 1], \alpha \ge 0\}$$

Then S_1, S_2 - convex cones, but point (0,1) is in segment ((-1,1),(1,1)) and $(0,1) \notin S_1 \cup S_2 \implies S_1 \cup S_2 - not convex set$

c)
$$S_1, S_2 - cones \implies S_1 + S_2 - cone$$

Proof. Let $x \in S_1 + S_2, x = x_1 + x_2, x_1 \in S_1, x_2 \in S_2$

Then $\forall_{\alpha \geq 0} \alpha x_1 \in S_1, \alpha x_2 \in S_2$

And $\forall_{\alpha \geq 0} \alpha x_1 + \alpha x_2 \iff \forall_{\alpha \geq 0} \alpha x$

And all x could be presented as $x_1 + x_2, x_1 \in S_1, x_2 \in S_2$

For all convex sets $S_1, S_2, S_1 + S_2 - convex$

d)
$$S-cone \implies -S-cone$$

Proof. Let $x \in -S$

Then
$$\forall_{\alpha \geq 0} \alpha(-x) = -\alpha x, \alpha x \in S \implies -S - cone$$

e)
$$S \subset \mathbb{R}^n - cone, f : \mathbb{R}^n \mapsto \mathbb{R}^m - linear \implies f(S) - cone$$

Proof. Let $x \in f(S), \alpha \geq 0, x = f(x_1), x_1 \in S$

Because any linear transformation could be represented as a matrix $f = A, A \in M_{m \times n}$

Then
$$\alpha x = \alpha f(x_1) = \alpha A x_1 = A \alpha x_1 = f(\alpha x_1)$$

and
$$\alpha x \in S$$
, because $S - cone \implies f(S) - cone$

Exercise 3

Give geometric interpretation of cone and conjugated cone:

c)
$$D = ([2, -1, 6]^T)$$

It's half line set down by [2, -1.6], conjugated cone is $D^* = \{(x, y, z) : 2x - y + 6z \le 0\}$

d)
$$E = \{x \in \mathbb{R}^3 : x_i \ge 0\}$$

Conjugated cone to E is $E^* = \{x \in \mathbb{R}^3 : x_i \leq 0\}$

e)
$$F = \{x \in \mathbb{R}^2 : \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} x \ge 0\}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \ge 0$$
$$y \ge \frac{-x}{2} \land y \le 2x$$

$$F = \{x \in \mathbb{R}^2 : x_1 \in R \land \frac{-x_1}{2} \le x_2 \le 2x_1\}$$

$$F^* = \{x \in \mathbb{R}^2 : x_1 \in R \land \frac{-x_1}{2} \ge x_2 \ge 2x_1\}$$