

Multimodal Generative Al 2025 Fine-tuning Foundation Models

created with ChatGPT, Oct 2024

Part I:
Definition:
Define
usecase

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

created with ChatGPT, Oct 2024

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

created with ChatGPT, Oct 2024

Part I:
Definition:
Define
usecase

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

created with ChatGPT, Oct 2024

Part I:

Definition:

Define

usecase

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

created with ChatGPT, Oct 2024

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

Generative Al project Scope

Good at many tasks?

Or a single task?

created with ChatGPT, Oct 2024

Part I:

Definition:

Define

usecase

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

Part II: Outline

Select

- Choose an existing model or pretrain your own
- Scaling
 - Challenges
 - Cost
 - Scaling laws
- Pre-training for domain adaptation

created with chatGPT

Part II: Outline

Select

- Choose an existing model or pretrain your own
- Scaling
 - Challenges
 - Cost
 - Scaling laws
- Pre-training for domain adaptation

created with chatGPT

Considerations for choosing a model

Train your own model

Model hubs

Model Card for T5 Large

Table of Contents

- 1. Model Details
- 2. <u>Uses</u>
- 3. Bias, Risks, and Limitations
- 4. <u>Training Details</u>
- 5. Evaluation

Considerations for choosing a model

Foundation model

Pre-training objectives

LLM pre-training at a high level

Vicky Kalogeiton Lecture 4: CSC_52002_EP 26

LLM pre-training at a high level

Token String	Tok en ID	Embedding / Vector Representation
'_The'	37	[-0.0513, -0.0584, 0.0230,]
'_teacher'	3145	[-0.0335, 0.0167, 0.0484,]
'_teaches'	11749	[-0.0151, -0.0516, 0.0309,]
'_the'	8	[-0.0498, -0.0428, 0.0275,]
'_student'	1236	[-0.0460, 0.0031, 0.0545,]

Vocabulary

LLM pre-training at a high level

Token String	Tok en ID	Embedding / Vector Representation
'_The'	37	[-0.0513, -0.0584, 0.0230,]
'_teacher'	3145	[-0.0335, 0.0167, 0.0484,]
'_teaches'	11749	[-0.0151, -0.0516, 0.0309,]
'_the'	8	[-0.0498, -0.0428, 0.0275,]
'_student'	1236	[-0.0460, 0.0031, 0.0545,]
	• • •	• • •

Vocabulary

Transformers

Autoencoding models

Original text

The teacher teaches the student.

[**. . .** [.]

Masked Language Modeling (MLM)

Objective: Reconstruct text ("denoising")

Bidirectional context

Autoencoding models

Good use cases:

- Sentiment analysis
- Named entity recognition
- Word classification

Example models:

- BERT
- ROBERTA

Autoregressive models

Original text

The teacher teaches the student.

[...

Vicky Kalogeiton Lecture 4: CSC 52002 EP 32

Autoregressive models

Good use cases:

- Text generation
- Other emergent behavior
 - Depends on model size

Example models:

- GPT
- BLOOM

Sequence-to-sequence models

Span Corruption

The teacher teaches the student.

[**. . .** [.]

Objective: Reconstruct span

<x> teaches the

Sequence-to-sequence models

Good use cases:

- Translation
- Text summarization
- Question answering

Example models:

- T5
- BART

Summary: Model architectures and pre-training objectives

Summary: Model architectures and pre-training objectives

Summary: Model architectures and pre-training objectives

The significance of scale: task ability

BLOOM ____

*Bert-base

Vicky Kalogeiton 3!

Model size vs. time

Growth powered by:

- Introduction of transformer
- Access to massive datasets
- More powerful compute resources

2018 2022

Part II: Outline

Select

Choose an existing model or pretrain your own

Scaling

- Challenges
- Cost
- Scaling laws

Pre-training for domain adaptation

created with chatGPT

Part II: Outline

Select

- Choose an existing model or pretrain your own
- Scaling
 - Challenges
 - Cost
 - Scaling laws
- Pre-training for domain adaptation

created with chatGPT

Challenges

Compute...

OutOfMemoryError: CUDA out of memory.

Vicky Kalogeiton Lecture 4: CSC_52002_EP 45

Approximate GPU RAM needed to store 1B parameters

Fullprecision model

4GB @ 32-bit full precision

16-bit quantized model

2GB @ 16-bit half precision

8-bit quantized model

1GB @ 8-bit precision

Sources: https://github.com/facebookresearch/bitsandbytes

GPU RAM needed to train larger models

1B param model

175B param model

4,200 GB @ 32-bit full precision

500B param model

12,000 GB @ 32-bit full precision

GPU RAM needed to train larger models

As model sizes get larger, you will need to split your model across multiple GPUs for training

500B param model

12,000 GB @ 32-bit full precision

1B param model

4,200 GB @ 32-bit full precision

175B param model

Part II: Outline

Select

Choose an existing model or pretrain your own

Scaling

- Challenges
- Cost
- Scaling laws

Pre-training for domain adaptation

created with chatGPT

Model	Layers	Width	Heads	Params	Data Training
Transformer Base	12	512	8	65M	8xP100 (12h)
Transformer Large	12	1024	16	213M	8xP100 (12h)

Model	Layers	Width	Heads	Params	Data Training
Transformer Base	12	512	8	65M	8xP100 (12h)
Transformer Large	12	1024	16	213M	8xP100 (12h)
Bert Base	12	768	12	110M	13GB
Bert Large	24	1024	16	340M	13GB

Model	Layers	Width	Heads	Params	Data	Training
Transformer Base	12	512	8	65M		8xP100 (12h)
Transformer Large	12	1024	16	213M		8xP100 (12h)
Bert Base	12	768	12	110M	13GB	
Bert Large	24	1024	16	340M	13GB	
XLNet Large	24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
RoBERTa	24	1024	16	355M	160GB	1024xV100 GPU (1 day)

Model	Layers	Width	Heads	Params	Data	Training
Transformer Base	12	512	8	65M		8xP100 (12h)
Transformer Large	12	1024	16	213M		8xP100 (12h)
Bert Base	12	768	12	110M	13GB	
Bert Large	24	1024	16	340M	13GB	
XLNet Large	24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
RoBERTa	24	1024	16	355M	160GB	1024xV100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40GB	

Model	Layers	Width	Heads	Params	Data	Training
Transformer Base	12	512	8	65M		8xP100 (12h)
Transformer Large	12	1024	16	213M		8xP100 (12h)
Bert Base	12	768	12	110M	13GB	
Bert Large	24	1024	16	340M	13GB	
XLNet Large	24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
RoBERTa	24	1024	16	355M	160GB	1024xV100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40GB	
Megatron-LM	72	2072	32	8.3B	174GB	512xV100 GPU (9 days)
Turing NLG	78	4256	28	17B	?	256xV100 GPU

Model	Layers	Width	Heads	Params	Data	Training
Transformer Base	12	512	8	65M		8xP100 (12h)
Transformer Large	12	1024	16	213M		8xP100 (12h)
Bert Base	12	768	12	110M	13GB	
Bert Large	24	1024	16	340M	13GB	
XLNet Large	24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
RoBERTa	24	1024	16	355M	160GB	1024xV100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40GB	
Megatron-LM	72	2072	32	8.3B	174GB	512xV100 GPU (9 days)
Turing NLG	78	4256	28	17B	?	256xV100 GPU

Layers	Width	Heads	Params	Data	Training
12	512	8	65M		8xP100 (12h)
12	1024	16	213M		8xP100 (12h)
12	768	12	110M	13GB	
24	1024	16	340M	13GB	
24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
24	1024	16	355M	160GB	1024xV100 GPU (1 day)
48	1600	?	1.5B	40GB	
72	2072	32	8.3B	174GB	512xV100 GPU (9 days)
Ok еш	rosl	28	17B	?	256xV100 GPU
	12 12 12 24 24 24 48 72	12 512 12 1024 12 768 24 1024 24 1024 24 1024 24 1600	12 512 8 12 1024 16 12 768 12 24 1024 16 24 1024 16 24 1024 16 48 1600 ? 72 2072 32	12 512 8 65M 12 1024 16 213M 12 768 12 110M 24 1024 16 340M 24 1024 16 ~340M 24 1024 16 355M 48 1600 ? 1.5B 72 2072 32 8.3B 28 17B	12 512 8 65M 12 1024 16 213M 12 768 12 110M 13GB 24 1024 16 340M 13GB 24 1024 16 ~340M 126GB 24 1024 16 355M 160GB 48 1600 ? 1.5B 40GB 72 2072 32 8.3B 174GB 28 17B ?

Model	Layers	Width	Heads	Params	Data	Training
Transformer Base	12	512	8	65M		8xP100 (12h)
Transformer Large	12	1024	16	213M		8xP100 (12h)
Bert Base	12	768	12	110M	13GB	
Bert Large	24	1024	16	340M	13GB	
XLNet Large	24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
RoBERTa	24	1024	16	355M	160GB	1024xV100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40GB	
Megatron-LM	72	2072	32	8.3B	174GB	512xV100 GPU (9 days)
Turing NLG	78	4256	28	17B	?	256xV100 GPU
GPT-3	96	12288	96	175B	694GB	

Part II: Outline

Select

Choose an existing model or pretrain your own

Scaling

- Challenges
- Cost
- Scaling laws

Pre-training for domain adaptation

created with chatGPT

Scaling laws

Scaling choices for pre-training

Goal: maximize model performance

1

SCALING CHOICE:
Dataset size
(number of tokens)

SCALING CHOICE:

Model size

(number of parameters)

Scaling choices for pre-training

Goal: maximize model performance

CONSTRAINT:

Compute budget (GPUs, training time, cost)

1

SCALING CHOICE:
Dataset size
(number of tokens)

SCALING CHOICE:

Model size

(number of parameters)

Compute budget for training LLMs

1 "petaflop/s-day" =
floating point operations performed at rate of 1 petaFLOP per second for one day

NVIDIA V100s

Note: 1 petaFLOP/s = 1,000,000,000,000,000 (one quadrillion) floating point operations per second

1 petaflop/s-day is these chips running at full efficiency for 24 hours

Compute budget for training LLMs

1 "petaflop/s-day" =
floating point operations performed at rate of 1 petaFLOP per second for one day

Number of petaflop/s-days to pre-train various LLMs

Source: Brown et al. 2020, "Language Models are Few-Shot Learners"

Compute budget vs. model performance

Source: Kaplan et al. 2020, "Scaling Laws for Neural Language Models"

Compute budget vs. model performance

Source: Kaplan et al. 2020, "Scaling Laws for Neural Language Models"

Dataset size and model size vs. performance **

Compute resource constraints

- Hardware
- Project timeline
- Financial budget

Source: Kaplan et al. 2020, "Scaling Laws for Neural Language Models"

Dataset size and model size vs. performance **

Source: Kaplan et al. 2020, "Scaling Laws for Neural Language Models"

Dataset size and model size vs. performance **

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model under a given compute budget. We find that current large language models are significantly undertrained, a consequence of the recent focus on scaling language models whilst keeping the amount of training data constant. By training over 400 language models ranging from 70 million to over 16 billion parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and the number of training tokens should be scaled equally: for every doubling of model size the number of training tokens should also be doubled. We test this hypothesis by training a predicted compute-optimal mode, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.

Jordan et al. 2022

Compute optimal models

• Very large models may be over-parameterized

Compute optimal models

- Very large models may be over-parameterized and under-trained
- Smaller models trained on more data could perform as well as large models

Chinchilla scaling laws for model + dataset size

Model	# of parameters	Compute-optimal # of tokens (~20x	
Chinchilla	70B	~1.4T	1.4T
LLaMA-65B	65B	~1.3T	1.4T
GPT-3	175B	~3.5T	300B
OPT-175B	175B	~3.5T	180B
BLOOM	176B	~3.5T	350B

Compute optimal training datasize is ~20x number of parameters

Sources: Hoffmann et al. 2022, "Training Compute-Optimal Large Language Models" Touvron et al. 2023, "LLaMA: Open and Efficient Foundation Language Models"

^{*} assuming models are trained to be compute-optimal per Chinchilla paper

Model size vs. time

Model size vs. time

Part II: Outline

Select

- Choose an existing model or pretrain your own
- Scaling
 - Challenges
 - Cost
 - Scaling laws
- Pre-training for domain adaptation

created with chatGPT

Pre-training for domain adaptation

Pre-training for domain adaptation

Legal language

The prosecutor had difficulty proving mens rea, as the defendant seemed unaware that his actions were illegal.

The judge dismissed the case, citing the principle of <u>res</u>
<u>judicata</u> as the issue had already been decided in a previous trial.

Despite the signed agreement, the contract was invalid as there was no <u>consideration</u> exchanged between the parties.

Pre-training for domain adaptation

Legal language

The prosecutor had difficulty proving mens rea, as the defendant seemed unaware that his actions were illegal.

The judge dismissed the case, citing the principle of <u>res</u> <u>judicata</u> as the issue had already been decided in a previous trial.

Despite the signed agreement, the contract was invalid as there was no <u>consideration</u> exchanged between the parties.

Medical language

After a strenuous workout, the patient experienced severe <u>myalqia</u> that lasted for several days.

After the biopsy, the doctor confirmed that the tumor was <a href="mailto:mailt

Sig: 1 tab po qid pc & hs

Take one tablet by mouth four times a day, after meals, and at bedtime.

Solution > Pre-training for domain adaptation

BloombergGPT: domain adaptation for finance

BloombergGPT: A Large Language Model for Finance

Shijie Wu^{1,*}, Ozan İrsoy^{1,*}, Steven Lu^{1,*}, Vadim Dabravolski¹, Mark Dredze^{1,2}, Sebastian Gehrmann¹, Prabhanjan Kambadur¹, David Rosenberg¹, Gideon Mann¹

- ¹ Bloomberg, New York, NY USA
- ² Computer Science, Johns Hopkins University, Baltimore, MD USA gmann16@bloomberg.net

Abstract

The use of NLP in the realm of financial technology is broad and complex, with applications ranging from sentiment analysis and named entity recognition to question answering. Large Language Models (LLMs) have been shown to be effective on a variety of tasks; however, no LLM specialized for the financial domain has been reported in literature. In this work, we present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data. We construct a 363 billion token dataset based on Bloomberg's extensive data sources, perhaps the largest domain-specific dataset yet, augmented with 345 billion tokens from general purpose datasets. We validate BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most accurately reflect our intended usage. Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. Additionally, we explain our modeling choices, training process, and evaluation methodology. As a next step, we plan to release training logs (Chronicles) detailing our experience in training BloombergGPT.

~51% Financial (Public & Private)

~49%

Other (Public)

BloombergGPT relative to other LLMs

Source: Wu et al. 2023, "BloombergGPT: A Large Language Model for Finance"

BloombergGPT relative to other LLMs

Source: Wu et al. 2023, "BloombergGPT: A Large Language Model for Finance"

Part II: Summary

Select

- Choose an existing model or pretrain your own
- Scaling
 - Challenges
 - Cost
 - Scaling laws
- Pre-training for domain adaptation

created with chatGPT

Considerations for choosing a model

Train your own model

Model architectures and pre-training objectives

Compute...

OutOfMemoryError: CUDA out of memory.

GPU RAM needed to train larger models

As model sizes get larger, you will need to split your model across multiple GPUs for training

500B param model

12,000 GB @ 32-bit full precision

4,200 GB @ 32-bit full precision

758 param

175B param model

1B param model

Increase compute budget → increase performance?

Scaling up Transformers

12	512	8	CEN4		
10			65M		8xP100 (12h)
12	1024	16	213M		8xP100 (12h)
12	768	12	110M	13GB	
24	1024	16	340M	13GB	
24	1024	16	~340M	126GB	512xTPUv3 (2.5 days)
24	1024	16	355M	160GB	1024xV100 GPU (1 day)
48	1600	?	1.5B	40GB	
72	2072	32	8.3B	174GB	512xV100 GPU (9 days)
k eui	rosl	28	17B	?	256xV100 GPU
	12 24 24 24 48 72	12 768 24 1024 24 1024 24 1024 48 1600	12 768 12 24 1024 16 24 1024 16 24 1024 16 48 1600 ? 72 2072 32	12 768 12 110M 24 1024 16 340M 24 1024 16 ~340M 24 1024 16 355M 48 1600 ? 1.5B 72 2072 32 8.3B 28 17B	12 768 12 110M 13GB 24 1024 16 340M 13GB 24 1024 16 ~340M 126GB 24 1024 16 355M 160GB 48 1600 ? 1.5B 40GB 72 2072 32 8.3B 174GB 28 17B ?

Chinchilla scaling laws for model + dataset size

Model	# params	Compute- optimal* # of tokens (~20x)	Actual tokens
Chinchilla	70B	~1.4T	1.4T
LLaMA-65B	65B	~1.3T	1.4T
GPT-3	175B	~3.5T	300B
OPT-175B	175B	~3.5T	180B
BLOOM	176B	~3.5T	350B

Compute optimal training datasize is ~20x number of parameters

Sources: Hoffmann et al. 2022, "Training Compute-Optimal Large Language Models" Touvron et al. 2023, "LLaMA: Open and Efficient Foundation Language Models"

^{*} assuming models are trained to be compute-optimal per Chinchilla paper

Pre-training for domain adaptation

Legal language

The prosecutor had difficulty proving mens rea, as the defendant seemed unaware that his actions were illegal.

The judge dismissed the case, citing the principle of <u>res</u>
<u>judicata</u> as the issue had already been decided in a previous trial.

Despite the signed agreement, the contract was invalid as there was no <u>consideration</u> exchanged between the parties.

Medical language

After a strenuous workout, the patient experienced severe <u>myalqia</u> that lasted for several days.

After the biopsy, the doctor confirmed that the tumor was <a href="mailto:mailt

Sig: 1 tab po qid pc & hs

Take one tablet by mouth four times a day, after meals, and at bedtime.

BloombergGPT relative to other LLMs

Source: Wu et al. 2023, "BloombergGPT: A Large Language Model for Finance"

Model size vs. time

Today's lecture

created with ChatGPT, Oct 2024

Part I:
Definition:
Define
usecase

Part II:
Select:
Foundation
Model to use
or pretrain

Part III:
Adapt:
Foundation
Model

Slides adapted from various sources: [Intro to Large Language Models, Andrej Karpathy, Executive Education Polytechnique, Udemy, Deeplearning.ai, Stanford University CS231n, Financial Times, New York Times, Hi!Paris summer school 2023]

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Prompting and prompt engineering

Context window: typically a few thousand words

Prompt Classify this review: I loved this movie! Sentiment: Positive Model LLM

Classify this review:

I don't like this

chair.

Sentiment:

Completion

One-shot inference

Prompt

Classify this review:

I loved this DVD!

Sentiment: Positive

Classify this review:

I don't like this

chair.

Sentiment: Negative

Classify this review:

This is not great.

Sentiment:

Model

Completion

Classify this review: I loved this DVD!

Sentiment: Positive

Classify this review:

I don't like this

chair.

Sentiment: Positive

Classify this review:

This is not great.

Sentiment: Negative

Summary: In-context learning (ICL)

Prompt // Zero Shot

Classify this review: I loved this movie! Sentiment:

Context Window (few thousand words)

Prompt // One Shot

Classify this review: I loved this movie! Sentiment: Positive

Classify this review: I don't like this chair. Sentiment: **Prompt** // Few Shot >5 or 6 examples

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review: I don't like this chair.

Sentiment: Negative

Classify this review:
Who would use this
product?
Sentiment:

The significance of scale: task ability

BLOOM _ 176B

*Bert-base

Vicky Kalogeiton 110

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Fine-tuning

One-shot or Few-shot Inference

Limitations of in-context learning


```
Classify this review:
```

I loved this movie!
Sentiment: Positive

Classify this review:

I don't like this chair.

Sentiment: Negative

Classify this review:

This sofa is so ugly.

Sentiment: Negative

Classify this review:

Who would use this product?

Sentiment:

Even with multiple examples

 In-context learning may not work for smaller models

 Examples take up space in the context window

Instead, try **fine-tuning** the model

GB - TB - PB of unstructured textual data

LLM pre-training

LLM fine-tuning at a high level

GB - TB of labeled examples for a specific task or set of tasks

LLM fine-tuning

LLM fine-tuning at a high level

LLM fine-tuning

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Instruction fine-tuning

Using prompts to fine-tune LLMs with instruction

Each prompt/completion pair includes a specific "instruction" to the LLM

LLM fine-tuning

Using prompts to fine-tune LLMs with instruction

Using prompts to fine-tune LLMs with instruction

LLM fine-tuning

Sample prompt instruction templates

- To store and process all the gradients, optimizers, ..., full finetuning / Instruction fine-tuning requires:
 - memory
 - compute budget
- → updates all parameters
- How to instruction tune?
 - Start from datasets!

Sample prompt instruction templates

Classification / sentiment analysis

```
jinja: "Given the following review:\n{{review_body}}\npredict the associated rating\
  \ from the following choices (1 being lowest and 5 being highest)\n- {{ answer_choices\
  \ | join('\\n- ') }} \n|||\n{{answer_choices[star_rating-1]}}"
```

Text generation

Text summarization

```
jinja: Give a short sentence describing the following product review \n{{review_body}}\
  \ \n| |\n{{review_headline}}"
```

Source: https://github.com/bigscience-workshop/promptsource/blob/main/promptsource/templates/amazon_polarity/templates.yaml

Prepared instruction dataset

Training splits

```
PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

Training
```

```
PROMPT[...], COMPLETION[...]

Validation
```

```
PROMPT[...], COMPLETION[...]
...
Test
```

LLM fine-tuning

LLM fine-tuning

Prepared instruction dataset

Training splits

```
PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

Training
```

```
PROMPT[...], COMPLETION[...]
...
Validation
```

validation_accuracy

```
PROMPT[...], COMPLETION[...]
...
Test
```

LLM fine-tuning

Prepared instruction dataset

Training splits

```
PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

PROMPT[...], COMPLETION[...]

Training
```

```
PROMPT[...], COMPLETION[...]

Validation
```

```
PROMPT[...], COMPLETION[...]
...
Test
```

test_accuracy

LLM fine-tuning

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Fine-tuning on a single task

 Fine-tuning can significantly increase the performance of a model on a specific task...

Before fine-tuning

 Fine-tuning can significantly increase the performance of a model on a specific task...

Prompt

Classify this review:
I loved this DVD!
Sentiment:

Model

Completion

Classify this review:
I loved this DVD!
Sentiment:
POSITIVE

...but can lead to reduction in ability on other tasks

...but can lead to reduction in ability on other tasks

How to avoid catastrophic forgetting

First note that you might not have to!

Fine-tune on multiple tasks at the same time

Consider Parameter Efficient Fine-tuning (PEFT)

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Full fine-tuning of LLMs is challenging

144

- Computationally intensive
- Store additional items (hundreds of GBs)
- Memory allocation

Parameter efficient fine-tuning (PEFT)

Small number of trainable layers

LLM with most layers frozen

Parameter efficient fine-tuning (PEFT)

LLM with additional layers for PEFT

Less prone to catastrophic forgetting

Full fine-tuning creates full copy of original LLM per task

PEFT fine-tuning saves space and is flexible

PEFT Trade-offs

Parameter Efficiency

Memory Efficiency

Training Speed

Model Performance

Inference Costs

Categories of PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts

Prompt Tuning

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Low-Rank Adaptation of Large Language Models (LoRA)

Vicky Kalogeiton Lecture 4: CSC_52002_EP 158

Inputs

LoRA: Low Rank Adaption of LLMs

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference:

1. Matrix multiply the low rank matrices

$$B * A = B \times A$$

2. Add to original weights

Concrete example using base Transformer as reference

- Use the base Transformer model by Vaswani et al. 2017:
 - Transformer weights have dimensions $d \times k = 512 \times 64$
 - So $512 \times 64 = 32,768$ trainable parameters

- In LoRA with rank r = 8:
 - A has dimensions $r \times k = 8 \times 64 = 512$ parameters
 - B has dimension $d \times r = 512 \times 8 = 4,096$ trainable parameters
 - 86% reduction in parameters to train!

Part III: Outline

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Prompt Tuning with soft prompts (not prompt engineering)

Prompt tuning is **not** prompt engineering!

One-shot or Few-shot Inference

Prompt tuning adds trainable "soft prompt" to inputs

Soft prompts

Embeddings of each token exist at unique point in multi-dimensional space

Full Fine-tuning vs prompt tuning

Weights of model updated during training

Full Fine-tuning vs prompt tuning

Weights of model updated during training

Millions to Billions of parameter updated

Weights of model frozen and soft prompt trained

10K - 100K of parameters updated

Performance of prompt tuning

- Full Fine-tuning
- Multi-task Fine-tuning
- × Prompt tuning
- Prompt engineering

Prompt tuning can be as effective as full Fine-tuning for larger models!

Source: Lester et al. 2021, "The Power of Scale for Parameter-Efficient Prompt Tuning"

Interpretability of soft prompts

Trained softprompt embedding does not correspond to a known token...

Interpretability of soft prompts

...but nearest neighbors form a semantic group with similar meanings.

Part III: Summary

Adapt Foundation Models

- Prompting & Prompt Engineering
- Fine-tuning
 - Instruction fine-tuning
 - Fine-tuning on a single task
 - Fine-tuning on multiple tasks
 - Parameter efficient fine-tuning (PEFT)
 - LoRA
 - Prompt tuning

created with chatGPT

Summary: Prompt engineering with In-context learning (ICL)

Prompt // Zero Shot

Classify this review: I loved this movie! Sentiment:

Context Window (few thousand words)

Prompt // One Shot

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review: I don't like this chair. Sentiment:

Prompt // Few Shot >5 or 6 examples

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review: I don't like this chair.

Sentiment: Negative

Classify this review: Who would use this product? Sentiment:

Summary: fine-tune LLMs w/ instructions

Each prompt/completion pair includes a specific "instruction" to the LLM

LLM fine-tuning

Summary: Fine-tuning on a single task

How to avoid catastrophic forgetting

First note that you might not have to!

Fine-tune on multiple tasks at the same time

Consider Parameter Efficient Fine-tuning (PEFT)

Summary: Multi-task, instruction fine-tuning

Summary: PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts **Prompt Tuning**

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

Thank you

Slides adapted from various sources: [Intro to Large Language Models, Andrej Karpathy, Executive Education Polytechnique, Udemy, Deeplearning.ai, Stanford University CS231n, Financial Times, New York Times, Hi!Paris summer school 2023]