


```
TC: O(N2)
 200 col = 0
                                     SC: 0(1)
while (N>1) {
      for (i=1; i <= N-1; i++) {
            print (Alrow) [w])
             Colft
      for(i=1; i<=N-1; i++) {
            print (Altow) [col])
             九ow +f
      for (i=1; i<= N-1; i++) {
           print (Alrow) [w]
            col--
       for (i=1; i <= N-1; i++) {
            print (Alrow) [col]
            40W --
       howtt
        Col++
         N = N-2
  if (N==1) & print (A[ROW) [60])}
```


**	First subarray of size & [O, k-]							
,	First subarray of size k [0, k-] Last subarray of size k [N-k, N-1]							
	Total mand subscript of wind k => N-b+1							
	Total no. of subarray of sige k > N-k+1							
Beak (10:49- 11:00)								

(P3)	Given	an	array,	find	number	of	subar rays	d
	lonath	k	8	•	number	D	0	t
	Jacobs	, (,						

New approach

N= 9

k= 4

2 3 4 5 6 7 8 25 3 2 1 6 2 1 9 3

S=0 c=3 (Iterate & calculate the

sum = 7

sum

s=1 e=4

subtracting A[9] and adding A[9] sum = 7 - 5 + 6 = 8

S=2 e=5

subtracting A[i] and adding A[s]

Sum = 8-3+2 = 1

S= 3 c= 6

subtracting A[2] and adding A[6]

sum = 7 - (-2) + (-1) = 8

s= 4 e= 7

subtracting A[3] and adding A[7]

sum = 8-1+4=

S=5 C= 8

subtracting A[4] and adding A[8]

Sum = 11 - 6 +3 = 8

	Sum = 0 , max sum =
R	for (i=0; i<=k-1; i++) {
	sum = sum + A(i) (k, N-)
	mazsum = man (mansum, sum)
	c= 1 e= k
	while (e <= N-1) {
Nt	# index I am gaining -> e # index I am losiny -> S-1
	Sum = Sum + A[e] - A[s-1]
	marsum = man (marsum, sum)
	S++ C++
	return max sum
	TC:O(v)
	sc: OG)
	len-

(ψs)	Given	an av	ray of	size N	and	a	number	B	
			num kei						
			elements						
		togethu					7		
		regional	J .			P I			
					2	B=6	2		
	A: 7	2 1 10	12 14	<u> </u>	5 }				