5th lecture overview

2.3 PROPERTIES OF REGULAR LANGUAGES	51
2.3.1 Closure properties of regular languages	51
2.3.2 Regular definitions	53
2.3.3 The pumping lemma	54
2.4 GRAMMARS	56
2.4.1 Formal grammars	56
2.4.2 Regular grammars	62/

Lecture overview

2.3 PROPERTIES OF REGULAR LANGUAGES	51
2.3.1 Closure properties of regular languages	51
2.3.2 Regular definitions	53
2.3.3 The pumping lemma	54
2.4 GRAMMARS	56
2.4.1 Formal grammars	56
2.4.2 Regular grammars	62
2.3.3 The pumping lemma 2.4 GRAMMARS 2.4.1 Formal grammars	56

$$N_1 = \{ wcw^R \}$$

$$N_1 = \{ wcw^R \}$$
 $N_2 = \{ 0^{i^2} \}$

$$N_1 = \{ wcw^R \}$$
 $N_3 = \{ a^ib^i \}$
 $N_2 = \{ 0^{i^2} \}$

$$N_1 = \{ wcw^R \}$$

$$N_2 = \{ 0^{i^2} \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

Language is not regular

$$N_1 = \{ wcw^R \}$$

$$N_2 = \{ 0^{i^2} \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

Language is not regular

$$N_1 = \{ wcw^R \}$$

$$N_2 = \{ 0^{i^2} \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

Language is not regular

=

There is no finite automaton which accepts the language

$$N_1 = \{ wcw^R \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_2 = \{ 0^{/2} \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

Language is not regular

=

There is no finite automaton which accepts the language

$$N_1 = \{ wcw^R \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_2 = \{ 0^{\frac{1}{2}} \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

2^{Σ*}set of all languages over the alphabet Σ

Language is not regular

=

There is no finite automaton which accepts the language

$$N_1 = \{ wcw^R \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_2 = \{ 0^{2} \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

 $2^{Σ*}$ set of all languages over the alphabet Σ

Regular languages $RL \subset 2^{\Sigma^*}$

Language is not regular

=

There is no finite automaton which accepts the language

$$N_1 = \{ wcw^R \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_2 = \{ 0^{i^2} \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

```
 \begin{array}{c} \mathbf{2}^{\Sigma^*} set \ of \ all \ languages \\ over \ the \ alphabet \ \Sigma \\ N_1 \\ N_3 \\ N_4 \\ \end{array}   \begin{array}{c} N_4 \\ N_3 \\ Regular \ languages \\ RL \subset \mathbf{2}^{\Sigma^*} \end{array}
```


Language is not regular

=

There is no finite automaton which accepts the language

$$N_1 = \{ wcw^R \}$$

$$N_3 = \{ a^i b^i \}$$

$$N_2 = \{ 0^{i^2} \}$$

$$N_4 = \{ 0^i \}, i \text{ prime}$$

A language class is *closed under a certain operation* if applying this operation to any language(s) in the class gives a language in the same class.

Union, concatenation and Kleene's operator

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions
 - There is an algorithm to construct an ϵ -NFA from a regular expression

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions
 - There is an algorithm to construct an ϵ -NFA from a regular expression
- Complement

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions
 - There is an algorithm to construct an ϵ -NFA from a regular expression
- Complement
 - DFA $M=(Q, \Sigma, \delta, q_0, F), L(M)$

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions
 - There is an algorithm to construct an ϵ -NFA from a regular expression
- Complement
 - DFA $M=(Q, \Sigma, \delta, q_0, F), L(M)$
 - DFA $M'=(Q, \Sigma, \delta, q_0, Q \setminus F), L(M)^c$

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions
 - There is an algorithm to construct an ϵ -NFA from a regular expression
- Complement
 - DFA $M=(Q, \Sigma, \delta, q_0, F), L(M)$
 - DFA $M'=(Q, \Sigma, \delta, q_0, Q \setminus F), L(M)^c$
- Intersection

- Union, concatenation and Kleene's operator
 - Based on the definition of regular expressions
 - There is an algorithm to construct an ϵ -NFA from a regular expression
- Complement
 - DFA $M=(Q, \Sigma, \delta, q_0, F), L(M)$
 - DFA $M'=(Q, \Sigma, \delta, q_0, Q \setminus F), L(M)^c$
- Intersection
 - De Morgan's rule: $L \cap N = ((L \cap N)^c)^c = (L^c \cup N^c)^c$

DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$

DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

DFA
$$M_2 = (Q_2, \Sigma, \delta_2, p_1, F_2)$$

DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

DFA
$$M_2 = (Q_2, \Sigma, \delta_2, p_1, F_2)$$

$$L(M) = L(M_1) \cap L(M_2)$$

DFA
$$M_1=(Q_1, \Sigma, \delta_1, q_1, F_1)$$

DFA
$$M_2 = (Q_2, \Sigma, \delta_2, p_1, F_2)$$

$$L(M) = L(M_1) \cap L(M_2)$$

$$1) Q = Q_1 \times Q_2$$

DFA
$$M_1=(Q_1, \Sigma, \delta_1, q_1, F_1)$$

DFA
$$M_2 = (Q_2, \Sigma, \delta_2, p_1, F_2)$$

$$L(M) = L(M_1) \cap L(M_2)$$

1)
$$Q = Q_1 \times Q_2$$

2)
$$q_0 = [q_1, p_1]$$

DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

DFA
$$M_2 = (Q_2, \Sigma, \delta_2, p_1, F_2)$$

$$L(M) = L(M_1) \cap L(M_2)$$

1)
$$Q = Q_1 \times Q_2$$

2)
$$q_0 = [q_1, p_1]$$

$$3) F = F_1 \times F_2$$

DFA
$$M_1=(Q_1, \Sigma, \delta_1, q_1, F_1)$$

DFA
$$M_2 = (Q_2, \Sigma, \delta_2, p_1, F_2)$$

$$L(M) = L(M_1) \cap L(M_2)$$

1)
$$Q = Q_1 \times Q_2$$

2)
$$q_0 = [q_1, p_1]$$

3)
$$F = F_1 \times F_2$$

4)
$$\delta([q,p], a) = [\delta_1(q, a), \delta_2(p, a)]$$


```
[q1, p1]
```


a b c

[q1, p1]

[**q1**, **p2**]

[**q2**, **p1**]

[q2, p2]

a b c

[q1, p1]

[**q1**, **p2**]

[**q2**, **p1**]

[q2, p2]

a b c
[q1, p1]

[q1, p2]

[**q2**, **p**1]

[q2, p2]

	а	b	С	
p1	<i>p</i> 1	p2	<i>p</i> 1	1
p2	p2	p2	p2	0

a b c
[q1, p1]
[q1, p2]
[q2, p1]
[q2, p2]

Substitution

Substitution

A regular language given by the expression:

Substitution

A regular language given by the expression:

$$r = 0*(0+1)1*$$

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

$$f(0) = a$$

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

f(0) = a

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

$$f(0) = a$$

$$f(1) = b^*$$

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

f(0) = a

Character 1

 $f(1) = b^*$

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

$$f(0) = a$$

Character 1

$$f(1) = b^*$$

We obtain a regular expression f(R)

f(0 * (0 + 1) 1 *) =

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

$$f(0) = a$$

Character 1

$$f(1) = b^*$$

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

$$f(0) = a$$

Character 1

$$f(1) = b^*$$

A regular language given by the expression:

$$r = 0*(0+1)1*$$

Substitution R

Character 0

$$f(0) = a$$

Character 1

$$f(1) = b^*$$

$$f(0)^* (0)^* (1)$$

$$d_1 \rightarrow r_1$$

$$d_1
ightarrow r_1$$
 $d_2
ightarrow r_2$

$$d_1 \rightarrow r_1 \\ d_2 \rightarrow r_2$$

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$\cdots$$

$$d_n \rightarrow r_n$$

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

letter
$$\rightarrow$$
 A+B+ ... +Z+a+b+... +z

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

letter
$$\rightarrow$$
 A+B+ ... +Z+a+b+... +z
digit \rightarrow 0+1+ ... +9

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

```
letter\rightarrow A+B+ ... +Z+a+b+... +zdigit\rightarrow 0+1+ ... +9variable\rightarrow letter ( letter + digit )*
```


$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

 r_i are regular expresions over alphabet $\Sigma \cup \{d_1, d_2, \dots, d_{i-1}\}$

```
<u>letter</u> \rightarrow A+B+ ... +Z+a+b+... +z

<u>digit</u> \rightarrow 0+1+ ... +9
```

<u>variable</u> → <u>letter (letter + digit)*</u>

variable →
$$(A+B+ ... +Z+a+b+... +z)((A+B+ ... +Z+a+b+... +z)+(0+1+ ... +9))*$$

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

$$\frac{\text{digit}}{} \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

$$\frac{\text{digit}}{\text{number}}$$
 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 → \frac{\text{digit}}{\text{digit}}*

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

```
      digit
      → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

      number
      → digit digit *

      decimals
      → number | \varepsilon
```


$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

```
      digit
      → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

      number
      → digit digit *

      decimals
      → . number | \varepsilon

      exponent
      → (E(+ | - | \varepsilon) number) | \varepsilon
```


$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

```
      digit
      → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

      number
      → digit digit *

      decimals
      → number | \varepsilon

      exponent
      → (E(+ | - | \varepsilon) number) | \varepsilon

      constant
      → number decimals exponent
```


DFA *M* has *n* states

DFA *M* has *n* states

Input string $a_1 a_2 - a_m$, m > n

DFA *M* has *n* states

Input string $a_1 a_2 - a_m$, m > n

DFA *M* has *n* states

Input string $a_1 a_2 - a_m$, m > n

$$0 \le j < k \le m$$
 and $q_j = q_k$

DFA M has n states

Input string $a_1 a_2 - a_m$, m > n

$$0 \le j < k \le m$$
 and $q_j = q_k$

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots \rightarrow q_{j-1} \rightarrow q_j = q_k$$

DFA *M* has *n* states

Input string $a_1 a_2 - a_m$, m > n

$$0 \le j < k \le m$$
 and $q_j = q_k$

Substring
$$\mathbf{u} = \mathbf{a}_1 \mathbf{a}_2 - \mathbf{a}_j$$

$$a_1$$
 a_2 a_3 a_j

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots q_{j-1} \rightarrow q_j = q_k$$

DFA M has n states

Input string $a_1 a_2 - a_m$, m > n

$$0 \le j < k \le m$$
 and $q_j = q_k$

Substring
$$u = a_1 a_2 - a_j$$

$$a_{1}$$
 a_{2} a_{3} a_{j}
 $q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k}$
 $q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$
 a_{j+2} a_{j+3} a_{j+4} a_{k-1}

DFA M has n states

Input string $a_1 a_2 - a_m$, m > n

$$0 \le j < k \le m$$
 and $q_j = q_k$

Substring
$$u = a_1 a_2 - a_j$$

$$a_{1}$$
 a_{2} a_{3} a_{j}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k}$$

$$a_{j+1} \rightarrow q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring \mathbf{v} = \mathbf{a}_{j+1} \mathbf{a}_{j+2} \cdots \mathbf{a}_{k}$$

DFA M has n states

Input string $a_1 a_2 - a_m$, m > n

$$0 \le j < k \le m$$
 and $q_j = q_k$

Substring
$$u = a_1 a_2 - a_j$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m}$$

$$a_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

DFA M has n states

Input string $a_1 a_2 - a_m$, m > n

Sequence of states q_0 q_1 ... q_m

$$0 \le j < k \le m$$
 and $q_j = q_k$

Substring
$$u = a_1 a_2 - a_j$$

Substring $\mathbf{w} = \mathbf{a}_{k+1} \mathbf{a}_{k+2} - \mathbf{a}_m$

$$a_1$$
 a_2 a_3 a_j a_{k+1} a_{k+2} a_m
 $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots q_{j-1} \rightarrow q_j = q_k \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_m$
 $a_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$
 a_{j+2} a_{j+3} a_{j+4} $a_{k+1} \rightarrow q_{k+2} \rightarrow q_m$

Substring
$$\mathbf{v} = \mathbf{a}_{j+1} \mathbf{a}_{j+2} - \mathbf{a}_k$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j+1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m}$$

$$a_{j+1} \downarrow q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j+1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m-1} \rightarrow$$

The following input strings are accepted:

u w

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{j}$$

$$a_{j+1} \qquad q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

The following input strings are accepted:

U W

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j+1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m}$$

$$a_{j+1} \downarrow q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m-1}$$

$$a_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m-1} \rightarrow$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m-1}$$

$$a_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{j}$$

$$a_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - a_{k}$$

$$u v^2 w$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_1$$
 a_2 a_3 a_j a_{k+1} a_{k+2} a_m

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots q_{j-1} \rightarrow q_j = q_k \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_m$$

$$a_{j+1}$$

$$egin{align} egin{align} eg$$

Substring
$$v = a_{j+1}a_{j+2} - a_k$$

$$U V^2 W$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_1$$
 a_2 a_3 a_j a_{k+1} a_{k+2} a_m

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots \qquad q_{j-1} \rightarrow q_j = q_k \rightarrow q_{k+1} \rightarrow \cdots \rightarrow q_{m-1} \rightarrow q_m$$

$$a_{j+1} \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4 \rightarrow q_5 \rightarrow q_6 \rightarrow q_$$

$$a_{j+2}$$
 a_{j+3} a_{j+4} a_{k-1}

Substring
$$v = a_{j+1}a_{j+2} - a_k$$

$$U V^2 W$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_1$$
 a_2 a_3 a_j a_{k+1} a_{k+2} a_m

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots q_{j-1} \rightarrow q_j = q_k \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_m$$

$$a_{j+1}$$
 $q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$ a_{k-1} a_{j+2} a_{j+3} a_{j+4} a_{k-1}

Substring
$$v = a_{j+1}a_{j+2} - a_k$$

$$u v^2 w$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_3$$

$$\mathbf{a}_{i}$$

$$a_{k+1}$$
 a_{k+2}

$$a_{k+2}$$

$$\boldsymbol{a}_{m}$$

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots q_{j-1} \rightarrow q_j = q_k \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_m$$

$$a_{j+1}$$
 $q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$ a_{k-1} a_{j+2} a_{j+3} a_{j+4} a_{k-1}

Substring
$$v = a_{j+1}a_{j+2} - a_k$$

Substring
$$u = a_1 a_2 - a_j$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j+1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m-1} \rightarrow$$

Substring
$$u = a_1 a_2 - a_i$$

Substring
$$w = a_{k+1} a_{k+2} - a_m$$

$$a_{1}$$
 a_{2} a_{3} a_{j} a_{k+1} a_{k+2} a_{m}

$$q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow \cdots q_{j-1} \rightarrow q_{j} = q_{k} \rightarrow q_{k+1} \rightarrow \cdots q_{m-1} \rightarrow q_{m}$$

$$a_{j+1} \rightarrow q_{j+1} \rightarrow q_{j+2} \rightarrow q_{j+3} \rightarrow \cdots q_{k-2} \rightarrow q_{k-1}$$

$$a_{j+2} \qquad a_{j+3} \qquad a_{j+4} \qquad a_{k-1}$$

$$Substring v = a_{j+1}a_{j+2} - \cdots a_{k}$$

i) L – regular language

i) L – regular language
there is a constant integer n

i) L – regular language
there is a constant integer n

i) L – regular language

there is a constant integer *n*

if a string z, |z| > n, z = uvw, $|uv| \le n$ and $1 \le |v|$

i) L – regular language

there is a constant integer n

if a string z, |z| > n, z = uvw, $|uv| \le n$ and $1 \le |v|$ is an element of L

i) L – regular language

there is a constant integer *n*

if a string z, |z| > n, z = uvw, $|uv| \le n$ and $1 \le |v|$ is an element of L

for any **≥**0

i) L – regular language

there is a constant integer n

if a string z, |z| > n, z = uvw, $|uv| \le n$ and $1 \le |v|$ is an element of L

for any *i*≥0 string *uv*ⁱ*w* is also an element of *L*

$$N_3 = \{ a^k b^k \}$$

$$N_3 = \{ a^k b^k \}$$

1) Assume that N_3 is a regular language

$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n

$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) *i*=0

```
|uv| \le n \Rightarrow prefix uv contains only symbols a \Rightarrow string v contains only symbols a
```


$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) *i*=0

```
    | uv | ≤ n ⇒ prefix uv contains only symbols a
    ⇒ string v contains only symbols a
    1 □ | v | ⇒ string uw has fewer a than b
```


$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) i=0
 | uv | ≤ n ⇒ prefix uv contains only symbols a
 ⇒ string v contains only symbols a
 1 □ | v | ⇒ string uw has fewer a than b
- 5) Regardless of *n*

$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) i=0 $|uv| \le n \Rightarrow \text{prefix } uv \text{ contains only symbols } a$ $\Rightarrow \text{string } v \text{ contains only symbols } a$ $1 \square |v| \Rightarrow \text{string } uw \text{ has fewer } a \text{ than } b$
- 5) Regardless of n Regardless of a length of z N₃

$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) i=0 $|uv| \le n \Rightarrow \text{prefix } uv \text{ contains only symbols } a$ $\Rightarrow \text{string } v \text{ contains only symbols } a$ $1 \square |v| \Rightarrow \text{string } uw \text{ has fewer } a \text{ than } b$
- 5) Regardless of n
 Regardless of a length of z□N₃
 Regardless of a decomposition into uvw

$$N_3 = \{ a^k b^k \}$$

- 1) Assume that N_3 is a regular language
- 2) Let $z = a^m b^m$ be a string in N_3 for which |z| = 2m i m > n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) i=0 $|uv| \le n \Rightarrow \text{prefix } uv \text{ contains only symbols } a$ $\Rightarrow \text{string } v \text{ contains only symbols } a$ $1 \square |v| \Rightarrow \text{string } uw \text{ has fewer } a \text{ than } b$
- 5) Regardless of *n*Regardless of a lenght of *z*□*N*₃

 Regardless of a decomposition into *uvw*string *uw* is not an element of *N*₃

$$N_2 = \{ 0^{k^2} \}$$

$$N_2 = \{ 0^{k^2} \}$$

1) Assume that N_2 is a regular language

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$
- 4) *i*=2

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

4)
$$i=2$$
 $|v| \le |uv| \square n$

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

4) i=2

$$|v| \le |uv| \square n$$

then $|uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)$

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n+1)^2
```


$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n + 1)^2
then n^2 < |uv^2w| < (n + 1)^2
```


$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n + 1)^2
then n^2 < |uv^2w| < (n + 1)^2
the length of uv^2w is not a perfect square
```


$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n+1)^2
then n^2 < |uv^2w| < (n+1)^2
the length of uv^2w is not a perfect square
```

5) Regardless of *n*

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n + 1)^2
then n^2 < |uv^2w| < (n + 1)^2
the length of uv^2w is not a perfect square
```

5) Regardless of n Regardless of a length of z N₂

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n+1)^2
then n^2 < |uv^2w| < (n+1)^2
the length of uv^2w is not a perfect square
```

5) Regardless of n
 Regardless of a length of z□N₂
 Regardless of a decomposition into uvw

$$N_2 = \{ 0^{k^2} \}$$

- 1) Assume that N_2 is a regular language
- 2) Let $z=0^{n^2}$ be a string in N_2 for which $|z|=n^2$ and |z|>n
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

```
4) i=2
|v| \le |uv| \square n
then |uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)
(n^2 + n) < (n+1)^2
then n^2 < |uv^2w| < (n+1)^2
the length of uv^2w is not a perfect square
```

5) Regardless of *n*Regardless of a lenght of *z*□*N*₂

Regardless of a decomposition into *uvw*string *uv*²*w* is not an element of *N*₂

Pumping lemma $N_4 = \{ 0^k \}, k \text{ prime } \}$

$$N_4 = \{ 0^k \}, k \text{ prime}$$
1) Assume that N_4 is a regular language

$$N_4 = \{ 0^k \}, k \text{ prime}$$
1) Assume that N_4 is a regular language

- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$

 $N_4 = \{ 0^k \}, k \text{ prime}$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

4)
$$i = |uw|$$

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

4)
$$i = |uw|$$

$$1 < |w| \Rightarrow 1 < |uw|$$

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

```
4) i = |uw|

1 < |w| \Rightarrow 1 < |uw|

then |uv^{i}w| = |uw| + |uw| |v| = |uw| (1 + |v|)
```


$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

```
4) i = |uw|
1 < |w| \Rightarrow 1 < |uw|
then |uv^{i}w| = |uw| + |uw| |v| = |uw| (1 + |v|)
1 < |uw| \text{ i } 1 < (1 + |v|) \Rightarrow |uv^{i}w| \text{ is not prime}
```


$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

4)
$$i = |uw|$$

$$1 < |w| \Rightarrow 1 < |uw|$$
then $|uv^{i}w| = |uw| + |uw| |v| = |uw| (1 + |v|)$

$$1 < |uw| \text{ i } 1 < (1 + |v|) \Rightarrow |uv^{i}w| \text{ is not prime}$$

5) Regardless of *n*

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

4)
$$i = |uw|$$

$$1 < |w| \Rightarrow 1 < |uw|$$
then $|uv^{i}w| = |uw| + |uw| |v| = |uw| (1 + |v|)$

$$1 < |uw| \text{ i } 1 < (1 + |v|) \Rightarrow |uv^{i}w| \text{ is not prime}$$

5) Regardless of n
Regardless of a length of z□N₄

$$N_4 = \{ 0^k \}, k \text{ prime}$$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

4)
$$i = |uw|$$

$$1 < |w| \Rightarrow 1 < |uw|$$
then $|uv^{i}w| = |uw| + |uw| |v| = |uw| (1 + |v|)$

$$1 < |uw| \text{ i } 1 < (1 + |v|) \Rightarrow |uv^{i}w| \text{ is not prime}$$

5) Regardless of n
 Regardless of a length of z□N₄
 Regardless of a decomposition into uvw

$N_4 = \{ 0^k \}, k \text{ prime}$

- 1) Assume that N_4 is a regular language
- 2) Let $z=0^m$ be an array in N_4 for which |z|=m is prime since there are infinitely many primes, we can achieve |z|=m>n+1
- 3) String z can be written as uvw where $1 \le |v| \le |uv| \le n$ therefore $(|uvw| > n+1 \text{ and } |uv| \le n) \Rightarrow 1 < |w|$

4)
$$i = |uw|$$

$$1 < |w| \Rightarrow 1 < |uw|$$
then $|uv^{i}w| = |uw| + |uw| |v| = |uw| (1 + |v|)$

$$1 < |uw| \text{ i } 1 < (1 + |v|) \Rightarrow |uv^{i}w| \text{ is not prime}$$

5) Regardless of nRegardless of a length of $z \square N_4$ Regardless of a decomposition into uvwstring uv^iw is not an element of N_4

Non-emptiness

- Non-emptiness
 - A regular language L(M) is non-empty if and only if DFA M accepts a string z shorter than n, i.e. |z| < n.
 - If the set of reachable states contains at least one accepting state, the regular language L(M) is non-empty.

- Non-emptiness
 - A regular language L(M) is non-empty if and only if DFA M accepts a string z shorter than n, i.e. |z| < n.
 - If the set of reachable states contains at least one accepting state, the regular language L(M) is non-empty.

Lenght of the shortest path to an accepting state

- Non-emptiness
 - A regular language L(M) is non-empty if and only if DFA M accepts a string z shorter than n, i.e. |z| < n.
 - If the set of reachable states contains at least one accepting state, the regular language L(M) is non-empty.

Lenght of the shortest path to an accepting state

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

- A regular language L(M) is infinite if and only if DFA M accepts a string of length I, where $n \le I < 2n$.
 - We remove all non-accepting states for which there is no sequence of transitions into an accepting state
 - If the obtained state diagram of DFA M' contains at least one closed loop, then the regular language L(M) is infinite.

Lecture overview

2.3 PROPERTIES OF REGULAR LANGUAGES	51
2.3.1 Closure properties of regular languages	51
2.3.2 Regular definitions	53
2.3.3 The pumping lemma	54
2.4 GRAMMARS	56
2.4.1 Formal grammars	56
2.4.2 Regular grammars	62/

Elements of a sentence (variables)

Elements of a sentence (variables)

<Sentence> , <SubjectSet>, <Verb>, <ObjectSet>, <Subject>, <Object>, <Attribute>

Elements of a sentence (variables)

<Sentence> , <SubjectSet>, <Verb>, <ObjectSet>, <Subject>, <Object>, <Attribute>

Dictionary (terminals)

Elements of a sentence (variables)

<Sentence> , <SubjectSet>, <Verb>, <ObjectSet>, <Subject>, <Object>, <Attribute>

Dictionary (terminals)

GIRLS, CATS, WATCH, CONFUSED, SCARED, .

Rules for building sentences

1) <Sentence> → <SubjectSet> <Verb> <ObjectSet> ■

- 1) <Sentence> → <SubjectSet> <Verb> <ObjectSet> ■
- 2) <SubjectSet> → <Attribute> <Subject>


```
1) <Sentence> → <SubjectSet> <Verb> <ObjectSet> ■
```

- 2) <SubjectSet> → <Attribute> <Subject>
- 3) $\langle ObjectSet \rangle \rightarrow \langle Attribute \rangle \langle Object \rangle$


```
    <Sentence> → <SubjectSet> < Verb> <ObjectSet> ■
    <SubjectSet> → <Attribute> <Subject>
    <ObjectSet> → <Attribute> <Object>
    <Verb> → WATCH
    <Subject> → GIRLS
```



```
1)
       <Sentence>
                       → <SubjectSet> <Verb> <ObjectSet> •
       <SubjectSet> → <Attribute> <Subject>
2)
3)
       <ObjectSet>
                       → <Attribute> <Object>
4)
                  → WATCH
       <Verb>
       <Subject> → GIRLS
5)
6)
       <Subject>
                       \rightarrow CATS
```



```
1)
       <Sentence>
                     → <SubjectSet> <Verb> <ObjectSet> •
2)
       <SubjectSet> → <Attribute> <Subject>
3)
       <ObjectSet>
                     → <Attribute> <Object>
4)
       <Verb>
                   → WATCH
5)
       <Subject> → GIRLS
6)
       <Subject> → CATS
       <Attribute>
7)
                   → CONFUSED
```



```
1)
       <Sentence>
                     → <SubjectSet> <Verb> <ObjectSet> •
2)
       <SubjectSet> → <Attribute> <Subject>
                     → <Attribute> <Object>
3)
       <ObjectSet>
       <Verb>
4)
                   → WATCH
5)
       <Subject> → GIRLS
6)
       <Subject> → CATS
       <Attribute>
7)
                   → CONFUSED
8)
       <Attribute> → SCARED
```



```
1)
       <Sentence>
                     → <SubjectSet> <Verb> <ObjectSet> •
2)
       <SubjectSet> → <Attribute> <Subject>
3)
       <ObjectSet>
                     → <Attribute> <Object>
       <Verb>
4)
                   → WATCH
5)
       <Subject> → GIRLS
6)
       <Subject> → CATS
       <Attribute> → CONFUSED
7)
       <Attribute> → SCARED
8)
9)
       <Object>
                    → GIRLS
```



```
1)
       <Sentence>
                     → <SubjectSet> <Verb> <ObjectSet> •
2)
       <SubjectSet> → <Attribute> <Subject>
3)
       <ObjectSet>
                     → <Attribute> <Object>
       <Verb>
4)
                   → WATCH
5)
       <Subject>
                     → GIRLS
6)
       <Subject> → CATS
       <Attribute> → CONFUSED
7)
8)
       <Attribute> → SCARED
9)
       <Object>
                  → GIRLS
10)
       <Object>
                     → CATS
```


<Sentence>

<Sentence>

<Sentence>

⇒ <SubjectSet> <Verb> <ObjectSet>.


```
1) < Sentence>
                 → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                 → <Attribute> <Subject>
3) < ObjectSet>
                 → <Attribute> <Object>
              → WATCH
4) < Verb>
5) <Subject> → GIRLS
6) <Subject> → CATS
7) <Attribute> → CONFUSED
8) <Attribute> → SCARED
              → GIRLS
9) <Object>
10) \langle Object \rangle \rightarrow CATS
                                <Sentence>
```

<SubjectSet> <Verb> <ObjectSet>.


```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
```

⇒ <Attribute> <Subject>


```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
```

```
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
```



```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
```

```
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
```



```
<Sentence>
```

```
⇒ <SubjectSet> < Verb> <ObjectSet>.
⇒ <Attribute> <Subject> < Verb> <ObjectSet>.
⇒ <Attribute> <Subject> < Verb> <Attribute> <Object>.
```



```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <Attribute> <Object>.
```



```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <Attribute> <Object>.
⇒ <Attribute> <Subject> WATCH <Attribute> <Object>.
```



```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <Attribute> <Object>.
⇒ <Attribute> <Subject> WATCH <Attribute> <Object>.
```



```
<Sentence>
```

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <Attribute> <Object>.
⇒ <Attribute> <Subject> WATCH <Attribute> <Object>.
⇒ <Attribute> GIRLS WATCH <Attribute> <Object>.
```


<Sentence>

```
⇒ <SubjectSet> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <ObjectSet>.
⇒ <Attribute> <Subject> <Verb> <Attribute> <Object>.
⇒ <Attribute> <Subject> WATCH <Attribute> <Object>.
⇒ <Attribute> GIRLS WATCH <Attribute> <Object>.
⇒ <Attribute> GIRLS WATCH <Attribute> CATS.
⇒ CONFUSED GIRLS WATCH <Attribute> CATS.
⇒ CONFUSED GIRLS WATCH SCARED CATS.
```


<Sentence>


```
1) <Sentence>
                 → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                 → <Attribute> <Subject>
3) < ObjectSet>
                 → <Attribute> <Object>
4) < Verb>
                 → WATCH
5) <Subject>
                 → GIRLS
6) <Subject>
               \rightarrow CATS
7) <Attribute> → CONFUSED
8) <Attribute> → SCARED
9) < Object>
               → GIRLS
10) < Object>
                 → CATS
```



```
1) < Sentence>
                 → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                 → <Attribute> <Subject>
3) < ObjectSet>
                 → <Attribute> <Object>
4) <Verb>
                 → WATCH
5) <Subject>
                 → GIRLS
6) <Subject>
               → CATS
7) <Attribute> → CONFUSED
8) <Attribute> → SCARED
9) < Object>
               → GIRLS
10) < Object>
                 → CATS
```



```
1) <Sentence>
                 → <SubjectSet> <Verb> <ObjectSet> ■
2) <SubjectSet>
                 → <Attribute> <Subject>
3) <ObjectSet>
                 → <Attribute> <Object>
4) < Verb>
                 → WATCH
5) <Subject>
                 → GIRLS
6) <Subject>
               → CATS
7) <Attribute> → CONFUSED
8) <Attribute> → SCARED
9) <Object>
               → GIRLS
10) < Object>
                 → CATS
```



```
1) < Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> ■
2) <SubjectSet>
                  → <Attribute> <Subject>
3) <ObjectSet>
                  → <Attribute> <Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                \rightarrow CATS
7) < Attribute>
                 → CONFUSED
8) <Attribute> → SCARED
9) <Object>
                → GIRLS
10) < Object>
                 → CATS
```



```
1) <Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> ■
2) <SubjectSet>
                  → <Attribute> <Subject>
3) < ObjectSet>
                  → <Attribute> <Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                \rightarrow CATS
7) < Attribute>
                 → CONFUSED
8) <Attribute> → SCARED
9) <Object>
                → GIRLS
10) < Object>
                 → CATS
```



```
1) <Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> ■
2) <SubjectSet>
                  → <Attribute> <Subject>
3) <ObjectSet>
                  → <Attribute> <Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                  \rightarrow CATS
7) < Attribute>
                  → CONFUSED
8) < Attribute>
              → SCARED
9) < Object>
                 → GIRLS
10) < Object>
                  → CATS
```



```
1) <Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                  → <Attribute> <Subject>
3) < ObjectSet>
                  → <Attribute> <Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                  → CATS
7) < Attribute>
                  → CONFUSED
8) < Attribute>
                  → SCARED
9) < Object>
                 → GIRLS
10) < Object>
                  → CATS
```



```
1) <Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> ■
2) <SubjectSet>
                  → <Attribute> <Subject>
3) <ObjectSet>
                  → < Attribute> < Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                  → CATS
7) < Attribute>
                  → CONFUSED
8) < Attribute>
                  → SCARED
9) < Object>
                 → GIRLS
10) < Object>
                  → CATS
```



```
1) <Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                  → <Attribute> <Subject>
3) <ObjectSet>
                  → <Attribute> <Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                  → CATS
7) < Attribute>
                  → CONFUSED
8) < Attribute>
                  → SCARED
9) < Object>
                  → GIRLS
10) < Object>
                  → CATS
```



```
1) <Sentence>
                  → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                  → <Attribute> <Subject>
3) <ObjectSet>
                  → < Attribute> < Object>
4) < Verb>
                  → WATCH
5) <Subject>
                  → GIRLS
6) <Subject>
                 → CATS
7) < Attribute>
                  → CONFUSED
8) < Attribute>
              → SCARED
9) < Object>
                → GIRLS
10) < Object>
                 → CATS
```



```
1) <Sentence>
                   → <SubjectSet> <Verb> <ObjectSet> •
2) <SubjectSet>
                   → <Attribute> <Subject>
3) <ObjectSet>
                   → < Attribute> < Object>
4) < Verb>
                   → WATCH
5) <Subject>
                   → GIRLS
6) <Subject>
                 \rightarrow CATS
7) < Attribute>
                  → CONFUSED
8) < Attribute>
              → SCARED
9) < Object>
                 → GIRLS
10) < Object>
                  \rightarrow CATS
```


$$G = (V, T, P, S)$$

$$G = (V, T, P, S)$$

- finite set of variables

$$G = (V, T, P, S)$$

V

- finite set of variables
- finite set of terminals

$$G = (V, T, P, S)$$

V

- finite set of variables
- finite set of terminals

$$V \cap T = \emptyset$$

$$G = (V, T, P, S)$$

- finite set of variables

- finite set of terminals

$$V \cap T = \emptyset$$

finite set of productions of the form

$$G = (V, T, P, S)$$

V

- finite set of variables

T

- finite set of terminals

$$V \cap T = \emptyset$$

P

- finite set of productions of the form

$$A \rightarrow \alpha$$

$$G = (V, T, P, S)$$

V

- finite set of variables

T

- finite set of terminals

$$V \cap T = \emptyset$$

P

- finite set of productions of the form

$$A \rightarrow \alpha$$

A is a variable

$$G = (V, T, P, S)$$

V

- finite set of variables

T

- finite set of terminals

$$V \cap T = \emptyset$$

P

- finite set of productions of the form

$$A \rightarrow \alpha$$

A is a variable

 α is a string in ($V \cup T$)* or ε

$$G = (V, T, P, S)$$

V

- finite set of variables

T

- finite set of terminals

$$V \cap T = \emptyset$$

P

- finite set of productions of the form

$$A \rightarrow \alpha$$

A is a variable

 α is a string in $(V \cup T)^*$ or ε

S

- start symbol (a variable)

$$G = (\{E\},$$

$$G = (\{E\}, \{a, *, +, (,)\},$$

$$G = (\{E\}, \{a, *, +, (,)\}, \{E \rightarrow E + E \mid E * E \mid (E) \mid a\},$$

$$G = (\{E\}, \{a, *, +, (,)\}, \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}, E)$$

$$G = (\{E\}, \{a, *, +, (,)\}, \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}, E)$$

$$E \Rightarrow a$$

$$G = (\{E\}, \{a, *, +, (,)\}, \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}, E)$$

$$E \Rightarrow a$$

$$E \Rightarrow E + E \Rightarrow E + a \Rightarrow a + a$$

$$G = (\{E\}, \{a, *, +, (,)\}, \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}, E)$$

$$E \Rightarrow a$$

$$E \Rightarrow E + E \Rightarrow E + a \Rightarrow a + a$$

$$E \Rightarrow E * E \Rightarrow (E) * E \Rightarrow (E + E) * E \stackrel{*}{\Rightarrow} (a + a) * a$$

$$G = (V, T, P, S)$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow G$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow \alpha \beta \gamma$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow \alpha \beta \gamma$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow \alpha \beta \gamma$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow \alpha \beta \gamma$$

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_3 \Rightarrow \alpha_{m-1} \Rightarrow \alpha_m$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\begin{array}{cccc} \alpha \wedge \gamma & \Longrightarrow & \alpha \wedge \gamma \\ \hline \alpha_1 & \Longrightarrow & \alpha_2 & \Longrightarrow & \alpha_3 & \Longrightarrow & \alpha_{m-1} \Longrightarrow & \alpha_m \\ \hline & \alpha_1 & \Longrightarrow & \alpha_m \end{array}$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\begin{array}{cccc} \alpha \wedge \gamma & \Longrightarrow & \alpha \wedge \gamma \\ \hline \alpha_1 & \Longrightarrow & \alpha_2 & \Longrightarrow & \alpha_3 & \Longrightarrow & \alpha_{m-1} \Longrightarrow & \alpha_m \\ \hline & \alpha_1 & \Longrightarrow & \alpha_m \end{array}$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \stackrel{\mathbf{A}}{\mathbf{A}} \gamma \stackrel{\Rightarrow}{\mathbf{G}} \alpha \stackrel{\mathbf{\beta}}{\mathbf{\beta}} \gamma$$
 $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_3 \Rightarrow \alpha_{m-1} \Rightarrow \alpha_m$
 $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$
 $\alpha \Rightarrow \beta$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \stackrel{\wedge}{A} \gamma \stackrel{\Rightarrow}{\rightleftharpoons} lpha \stackrel{\wedge}{\beta} \gamma$$
 $lpha_1 \Rightarrow lpha_2 \Rightarrow lpha_3 \Rightarrow lpha_{m-1} \Rightarrow lpha_m$
 $lpha_1 \stackrel{*}{\Rightarrow} lpha_m$
 $lpha \stackrel{\checkmark}{\Rightarrow} eta$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow \alpha \beta \gamma$$

$$\alpha_{1} \Rightarrow \alpha_{2} \Rightarrow \alpha_{3} \Rightarrow \alpha_{m-1} \Rightarrow \alpha_{m}$$

$$\alpha_{1} \Rightarrow \alpha_{m}$$

G

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$\alpha \wedge \gamma \Rightarrow \alpha \beta \gamma$$

$$\alpha_{1} \Rightarrow \alpha_{2} \Rightarrow \alpha_{3} \Rightarrow \alpha_{m-1} \Rightarrow \alpha_{m}$$

$$\alpha_{1} \Rightarrow \alpha_{m}$$

G

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \stackrel{\wedge}{A} \gamma \stackrel{\Rightarrow}{\rightleftharpoons} lpha \stackrel{\wedge}{\beta} \gamma$$
 $lpha_1 \Rightarrow lpha_2 \Rightarrow lpha_3 \Rightarrow lpha_{m-1} \Rightarrow lpha_m$
 $lpha_1 \stackrel{*}{\Rightarrow} lpha_m$
 $lpha \stackrel{\checkmark}{\Rightarrow} eta$

$$L(G) = \{w \mid w \in T^* \text{ for which } S \Rightarrow w\}$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \stackrel{\wedge}{A} \gamma \stackrel{\Rightarrow}{\rightleftharpoons} \alpha \stackrel{\wedge}{\beta} \gamma$$
 $lpha_1 \Rightarrow lpha_2 \Rightarrow lpha_3 \Rightarrow lpha_{m-1} \Rightarrow lpha_m$
 $lpha_1 \stackrel{*}{\Rightarrow} lpha_m$
 $lpha \stackrel{\checkmark}{\Rightarrow} eta$

$$L(G) = \{w \mid w \in T^* \text{ for which } S \Rightarrow w\}$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \stackrel{\wedge}{A} \gamma \stackrel{\Rightarrow}{\rightleftharpoons} lpha \stackrel{\wedge}{\beta} \gamma$$
 $lpha_1 \Rightarrow lpha_2 \Rightarrow lpha_3 \Rightarrow lpha_{m-1} \Rightarrow lpha_m$
 $lpha_1 \stackrel{*}{\Rightarrow} lpha_m$
 $lpha \stackrel{\checkmark}{\Rightarrow} eta$

$$L(G) = \{w \mid w \in T^* \text{ for which } S \Rightarrow w\}$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \begin{picture}(100,0) \put(0,0){\line(0,0){α}} \put(0,0){\line(0$$

$$L(G) = \{w \mid w \in T^* \text{ for which } S \Longrightarrow W\}$$

$$G = (V, T, P, S)$$

$$A \rightarrow \beta$$

$$lpha \begin{picture}(100,0) \put(0,0){\line(0,0){α}} \put(0,0){\line(0$$

$$L(G) = \{w \mid w \in T^* \text{ for which } S \Longrightarrow W\}$$

Context-free languages CFL

Context-free languages CFL

$$N = \{ wcw^R \}$$

Context-free languages CFL

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$N = \{ wcw^R \}$$

$$G = (V, T, P, S)$$

Context-free languages CFL

N

$$N = \{ wcw^R \}$$

$$G = (V, T, P, S)$$

 $V = \{ S \}$

Context-free languages CFL

N

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{ S \}$
 $T = \{ a, b, c \}$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

Regular languages RL ⊂ CFL

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

S

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$S \Rightarrow a S a$$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$S \Rightarrow aa S aa$$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$S \Rightarrow aab S baa$$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$S \Rightarrow aabbSbbaa$$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$S \Rightarrow w S w^R$$

$$N = \{ wcw^R \}$$

Context-free languages CFL

N

$$G = (V, T, P, S)$$

 $V = \{S\}$
 $T = \{a, b, c\}$
 $P = \{S \rightarrow aSa \mid bSb \mid c\}$

$$S \Rightarrow w c w^R$$


```
G = (V, T, P, S)

V = \{ S \}

T = \{ a, b, c \}

P = \{ S \rightarrow aSa \mid bSb \mid c \}
```


$$G = (V, T, P, S)$$

$$V = \{ S \}$$

$$T = \{ a, b, c \}$$

$$P = \{ S \rightarrow aSa \mid bSb \mid c \}$$

$$G = (V, T, P, S)$$

 $V = \{ S \}$
 $T = \{ a, b, c \}$
 $P = \{ S \rightarrow aSa \mid bSb \mid c \}$

$$G = (V, T, P, S)$$

 $V = \{ S \}$
 $T = \{ a, b, c \}$
 $P = \{ S \rightarrow aSa \mid bSb \mid c \}$

$$G = (V, T, P, S)$$

 $V = \{ S \}$
 $T = \{ a, b, c \}$
 $P = \{ S \rightarrow aSa \mid bSb \mid c \}$

$$G = (V, T, P, S)$$

 $V = \{ S \}$
 $T = \{ a, b, c \}$
 $P = \{ S \rightarrow aSa \mid bSb \mid c \}$

Parse tree for grammar G = (V, T, P, S):

Parse tree for grammar G = (V, T, P, S):

1) Nodes of the tree

-
$$V \cup T \cup \{\varepsilon\}$$

Parse tree for grammar G = (V, T, P, S):

1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$

2) Root of the tree - S

Parse tree for grammar G = (V, T, P, S):

1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$

2) Root of the tree - S

3) Internal nodes $-A \in V$

Parse tree for grammar G = (V, T, P, S):

1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$

2) Root of the tree - S

3) Internal nodes $-A \in V$

4) Nodes $n_1, n_2, ..., n_k$ - child nodes of n

Parse tree for grammar G = (V, T, P, S):

1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$

2) Root of the tree - S

3) Internal nodes $-A \in V$

4) Nodes $n_1, n_2, ..., n_k$ - child nodes of n

Node *n* - symbol *A*

Parse tree for grammar G = (V, T, P, S):

- 1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$
- 2) Root of the tree S
- 3) Internal nodes $-A \in V$
- 4) Nodes $n_1, n_2, ..., n_k$ child nodes of n Node n symbol A
 - Nodes $n_1, n_2, ..., n_k$ symbols $X_1, X_2, ..., X_k$

Parse tree for grammar G = (V, T, P, S):

- 1) Nodes of the tree - $V \cup T \cup \{\varepsilon\}$
- 2) Root of the tree **- S**
- 3) Internal nodes - **A**∈ **V**
- 4) - child nodes of n Nodes $n_1, n_2, ..., n_k$ Node n
 - symbol A
 - symbols $X_1, X_2, ..., X_k$ Nodes $n_1, n_2, ..., n_k$ $A \rightarrow X_1 X_2 \dots X_k$
 - production from set P

Parse tree for grammar G = (V, T, P, S):

- 1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$
- 2) Root of the tree S
- 3) Internal nodes $-A \in V$
- 4) Nodes $n_1, n_2, ..., n_k$ child nodes of n

Node *n* - symbol *A*

- Nodes $n_1, n_2, ..., n_k$ symbols $X_1, X_2, ..., X_k$
- $A \rightarrow X_1 X_2 \dots X_k$ production from set P
- 5) Character ε a tree leaf

Parse tree for grammar G = (V, T, P, S):

- 1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$
- 2) Root of the tree S
- 3) Internal nodes $-A \in V$
- 4) Nodes $n_1, n_2, ..., n_k$ child nodes of n
 - Node *n* symbol *A*
 - Nodes $n_1, n_2, ..., n_k$ symbols $X_1, X_2, ..., X_k$
 - $A \rightarrow X_1 X_2 \dots X_k$ production from set P
- 5) Character ε a tree leaf
 - only child of its parent

Parse tree for grammar G = (V, T, P, S):

- 1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$
- 2) Root of the tree S
- 3) Internal nodes $-A \in V$
- 4) Nodes $n_1, n_2, ..., n_k$ child nodes of n

Node *n* - symbol *A*

Nodes $n_1, n_2, ..., n_k$ - symbols $X_1, X_2, ..., X_k$

 $A \rightarrow X_1 X_2 \dots X_k$ - production from set P

- 5) Character ε a tree leaf
 - only child of its parent
- 6) Leaves of the tree symbols from $T \cup \{\varepsilon\}$

Parse tree for grammar G = (V, T, P, S):

- 1) Nodes of the tree $-V \cup T \cup \{\varepsilon\}$
- 2) Root of the tree S
- 3) Internal nodes $-A \in V$
- 4) Nodes $n_1, n_2, ..., n_k$ child nodes of n

Node *n* - symbol *A*

Nodes $n_1, n_2, ..., n_k$ - symbols $X_1, X_2, ..., X_k$

 $A \rightarrow X_1 X_2 \dots X_k$ - production from set P

- 5) Character ε a tree leaf
 - only child of its parent
- 6) Leaves of the tree symbols from $T \cup \{\varepsilon\}$
 - make up a generated string of L(G)

	a	b	1
S	A	В	1
A	В	A	0
B	S	A	1

	a	b	
S	Α	В	1
A	В	A	0
B	S	A	1

$$S \rightarrow aA$$
 $S \rightarrow bB$ $S \rightarrow \varepsilon$

$$S \rightarrow aA$$
 $S \rightarrow bB$ $S \rightarrow \varepsilon$
 $A \rightarrow aB$ $A \rightarrow bA$

String aba

DFA

String aba

DFA

S

Grammar

String aba

DFA

S

Grammar S

String aba

DFA

S

Grammar S

String aba

DFA
$$S \rightarrow A$$

String aba

DFA
$$S \rightarrow A$$

String aba

DFA
$$S \rightarrow A$$

Grammar
$$S \Rightarrow aA$$

String aba

DFA $S \rightarrow A \rightarrow A$

Grammar $S \Rightarrow aA$

String aba

DFA

Grammar

 $s \Rightarrow aA \Rightarrow abA$

String aba

DFA $S \rightarrow A \rightarrow A \rightarrow B$

Grammar $S \Rightarrow aA \Rightarrow abA$

String aba

DFA $S \rightarrow A \rightarrow A \rightarrow B B \in F$

Grammar $S \Rightarrow aA \Rightarrow abA$

String aba

DFA $S \rightarrow A \rightarrow A \rightarrow B B \in F$

Grammar $S \Rightarrow aA \Rightarrow abA \Rightarrow abaB$

String aba

DFA $S \rightarrow A \rightarrow A \rightarrow B B \in F$

Grammar $S \Rightarrow aA \Rightarrow abA \Rightarrow abaB \Rightarrow aba$

$$G=(V, T, P, S)$$

$$G=(V, T, P, S)$$

DFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

DFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

1)
$$T = \Sigma$$

$$G=(V, T, P, S)$$

DFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

1)
$$T = \Sigma$$

$$G=(V, T, P, S)$$

DFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

1)
$$T = \Sigma$$

3)
$$S = q_0$$

$$G=(V, T, P, S)$$

DFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

1)
$$T = \Sigma$$

3)
$$S = q_0$$

4)
$$A \rightarrow aB$$

$$\delta(A, a) = B$$

$$G=(V, T, P, S)$$

DFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

1)
$$T = \Sigma$$

3)
$$S = q_0$$

4)
$$A \rightarrow aB$$

$$\delta(A, a) = B$$

5)
$$A \rightarrow \varepsilon$$

$$A \in F$$

DFA and grammar are equivalent

DFA and grammar are equivalent

if DFA accepts a language defined by the grammar

DFA and grammar are equivalent

if DFA accepts a language defined by the grammar

$$A \stackrel{*}{\Rightarrow} wB$$

DFA and grammar are equivalent

if DFA accepts a language defined by the grammar

$$A \stackrel{*}{\Rightarrow} wB$$
 if and only if $\delta(A, w) = B$

