Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новосибирский государственный технический университет»

Кафедра теоретической и прикладной информатики

Расчётно-графическая работа по дисциплине «Статистические методы анализа данных»

Факультет: ПМИ

ГРУППА: ПМИ-62

Студент: Ершов П. К.

Вариант: 5

ПРЕПОДАВАТЕЛЬ: Попов А.А.

Новосибирск 2019

1. Задача

Провести полный цикл исследований по построению регрессионной зависимости по имеющимся экспериментальным данным.

В перечень исследований как обязательные части должны входить:

- 1. Проверка данных на мультиколлинеарность;
- 2. Проверка данных на гетероскедастичность (предположительно, что чем дальше от центра эксперимента проведено наблюдение, то возможно дисперсия его больше);
- 3. Проверка данных на автокорреляцию (упорядоченность наблюдений по своим номерам считать упорядоченностью по времени);
- 4. Выбор предварительного состава регрессоров с использованием корреляционных полей. В качестве регрессоров-кандидатов предположительно могут выступать: свободный член, сами факторы, их взаимодействия (двух-трех факторов), квадраты факторов;
- 5. Выбор модели оптимальной сложности с использованием критериев Мэллоуса, скорректированного коэффициента детерминации, внешних критериев;
- 6. Проверка адекватности выбранной модели с использованием повторных наблюдений (последние 6 наблюдений выборки), по которым необходимо будет вычислить оценку дисперсии наблюдений;
- 7. Построение графиков остатков в различных координатах (по номеру наблюдений, по факторам, по отклику);
- 8. Определение, опираясь на построенную модель, точки в факторном пространстве, имеющей максимальное значение математического ожидания отклика. Вычисление для этой точки доверительного интервала. Координаты такой точки не обязательно должны совпадать с какой-либо точкой из имеющихся в таблице наблюдений.

Дополнительные комментарии.

Экспериментальные данные представляются в виде таблицы наблюдений типа "вход-выход" в формате xls. Номер варианта задания соответствует порядковому номеру студента в списке группы.

2. Ход работы

Исходные данные:

No	X1	X2	X3	X4	У
1	-1	-1	-1	-1	2,03
2	-1	-0,9	-1	0	0,63
3	-1	-0,8	-1	1	-0,04
4	-1	-0,7	0	-1	0,53
5	-1	-0,6	0	0	-0,22
6	-1	-1	0	1	-1,05
7	-1	-1	1	-1	-0,08
8	-1	-1	1	0	-1,11
9	-1	-1	1	1	-2,02
10	-1	0	-1	-1	0,03
11	-1	0	-1	0	-0,07
12	-1	0	-1	1	0,01
13	-1	0	0	-1	-1,15
14	-1	0	0	0	-1,14
15	-1	0	0	1	-0,93
16	-1	0	1	-1	-1,98
17	-1	0	1	0	-1,99
18	-1	0	1	1	-2,07
19	-1	1	-1	-1	-1,83
20	-1	1	-1	0	-0,91
21	-1	1	-1	1	0,12
22	-1	1	0	-1	-3,04
23	-0,9	1	0	0	-1,83
24	-0,8	1	0	1	-0,31
25	-0,7	1	1	-1	-3,21
26	-0,6	1	1	0	-2,14
27	-1	1	1	1	-1,69
28	0	-1	-1	-1	4,03
29	0	-0,9	-1	0	2,86
30	0	-0,8	-1	1	2,33
31	0	-0,7	0	-1	3,00
32	0	-0,6	D	0	2,38
33	0	-1	0	1	1,89
34	0	-1	1	-1	2,55
35	0	-1	1	0	1,24
36	0	-1	1	1	0,22
37	0	0	-1	-1	2,27
38	0	0	-1	0	2,36
39	0	0	-1	1	2,29
40	0	0	0	-1	1,11
41	0	0	0	0	1,07

42	0	0	0	1	1,05
43	0	0	1	-1	0,26
44	0	0	1	0	0,08
45	0	0	1	1	0,25
46	0	1	-1	-1	0,29
47	0	1	-1	0	1,21
48	0	1	-1	1	2,11
49	0	1	0	-1	-1,18
50	0	1	0	0	-0,14
51	0	1	0	1	0,98
52	0	1	1	-1	-2,16
53	0	1	1	0	-1,06
54	0	1	1	1	0,01
55	1	-1	-1	-1	5,77
56	0,9	-1	-1	0	4,48
57	0,8	-1	-1	1	3,55
58	0,7	-1	0	-1	4,19
59	0,6	-1	0	0	3,20
60	1	-1	0	1	3,03
61	1	-1	1	-1	4,16
62	1	-1	1	0	3,52
63	1	-1	1	1	2,67
64	1	0	-1	-1	4,52
65	1	0	-1	0	4,80
66	1	0	-1	1	4,56
67	1	0	0	-1	3,21
68	1	0	0	0	3,35
69	1	0	0	1	3,62
70	1	0	1	-1	2,55
71	1	0	1	0	2,35
72	1	0	1	1	2,05
73	1	1	-1	-1	1,99
74	1	1	-1	0	3,16
75	1	1	-1	1	4,17
76	1	1	0	-1	1,28
77	1	1	0	0	2,12
78	0,9	1	0	1	2,99
79	0,8	1	1	-1	-0,29
80	0,7	1	1	0	0,42
81	0,6	1	1	1	1,10
82	0	0	0	0	0,94
83	0	0	0	0	0,95
84	0	0	0	0	1,03
85	0	0	0	0	0,94
86	0	0	0	0	0,77
87	0	0	0	0	0,66

- 1. Проверка на мультиколлинеарность
 - 1.1. Определитель информационной матрицы $X^{T}X$

Определитель информационной матрицы

$$detInf := 7.21384600000000010^6$$

1.2. Минимально собственной число

Минимальное собственное число $\lambda min := 48.8804669684940762$

1.3. Мера обусловленности матрицы по X^TX по Нейману-Голдстейну

Мера обусловленности матрицы по Нейману — Голдстейну 1.107064622

1.4. Максимальная парная сопряжённость

Построим матрицу
$$R = \begin{pmatrix} 1 & r_{1,2} & \dots & r_{1,m} \\ r_{2,1} & 1 & \dots & r_{2,m} \\ \dots & \dots & \dots & \dots \\ r_{m,1} & r_{m,2} & \dots & 1 \end{pmatrix}$$
, где $r_{i,j} = cov(\underline{x}_i,\underline{x}_j)$ Тогда показателем мультиколлинеарности может выступать $\max_{i,j} \left| r_{i,j} \right|$ при условии $i \neq j$

Максимальная парная сопряженность

Rmcx1 = 0.01147834114

1.5. Максимальная сопряжённость

Показателем мультиколлинеарности может выступать $\max_i |R_i|$, где R_i можно получить из формулы $R_i^2=1-\frac{1}{R_{ii}^{-1}}$, где R_{ii}^{-1} – это элемент i,i (диагональный) матрицы обратной к сопряжённой R.

Максимальная сопряженность Rmcx2 := 0.0120992381037185

Вывод по мультиколлинеарности: исходя из результатов тестов отсутствует.

2. Проверка на гетероскетастичность

2.1. Тест Бреуша-Пагана

Оценивание исходного уравнения по МНК, с получением остатков и оценивание дисперсии.

По полученным экспериментально данным, находим по методу наименьших квадратов точечную оценку параметров: $\hat{\theta} = (X^T X)^{-1} X^T y$

Вектор остатков:
$$e_t = y_t - f(x_t)\hat{\theta}$$
 Получим дисперсию: $\tilde{\sigma} = \frac{\sum e_t^2}{n}$

Построим регрессию
$$c_t = \frac{e_t^2}{\widehat{\sigma}^2}$$
 по \mathbf{z}_t и вычислим ESS.
$$Z = \begin{pmatrix} z_1(u_1) & z_2(u_2) \\ \dots & \dots \\ z_1(u_N) & z_1(u_N) \end{pmatrix}, \alpha = (Z^TZ)^{-1}Z^Td, \text{где } d = (\frac{e_1^2}{\widehat{\sigma}^2}, \dots, \frac{e_N^2}{\widehat{\sigma}^2})^T)$$

$$\mathit{ESS} = \sum_{i=1}^{N} (c_i - \ \hat{c})^2$$
, где $c_i = z_i^T \, lpha$

Гипотеза о гомоскедастичности принимается, если $ESS < \chi^2_{0.05.1}$

1.27953645627685 < 3.84145606580278 следовательно, гипотеза принимается.

2.2. Тест Глодфельда-Квандтона

Предположим, что источник нарушения гомоскедастичности взят в форме $E(\epsilon_i^2) = \rho(\bar{x})$.

Упорядочим последовательность наблюдений в соответствии с величиной отклика.

Опустим $n_c = n/3 = 87/3 = 29$ наблюдений в середине выборки.

Оценим RSS для первых $\frac{(n-n_c)}{2}$ и последних $\frac{(n-n_c)}{2}$ наблюдений. Гипотеза о гомоскедастичности будет принята, если $\frac{RSS_2}{RSS_1} < F_{\alpha,\frac{(n-n_c-2m)}{2},\frac{(n-n_c-2m)}{2}} = F_{0.05,25,25} \approx 1.955$ $\frac{RSS_2}{RSS_1} = \frac{0.002284}{5.6227} \approx 0,0004062 < 1.955$ значит, гипотеза не отвергается.

Вывод по гетероскедастичности: исходя из результатов двух тестов, можно считать, что гетероскедастичности нет.

3. Проверка данных на автокорреляцию

Тест Дарбина-Уотсона

Статистика
$$DW=rac{\sum_{i=2}^n(\hat{e}_{i-1}-\hat{e}_i)^2}{\sum_{i=1}^n\hat{e}_i^2}=2(1-\hat{
ho})$$
, гипотеза H_0 : $ho=0$ DW := 0.60198

$$up := 88.8653359800023$$

 $down := 147.620124860977$
 $DW := 0.601986592706735$

Гипотеза H_0 отвергается, так как статистика близка к нулю.

Выводы по автокорреляции: так как статистика близка к нулю, присутствует положительная корреляция.

4. Выбор предварительного состава регрессоров с использованием корреляционных полей. В качестве регрессоров-кандидатов предположительно могут выступать: свободный член, сами факторы, их взаимодействия (двух-трех факторов), квадраты факторов

Корреляционные поля

Исходя из данный в корреляционных полях, можно предположить, что предварительная модель имеет вид: $f(x) = (1, x_1, x_2, x_3, x_1 * x_2, x_2 * x_4, x_3 * x_4)^T$

5. Выбор модели оптимальной сложности

Воспользуемся критериями:

Статистика Мэлоуса: $\mathcal{C}_p = rac{RSS_p}{\widehat{\sigma}^2} + 2p - n o min$

Множественный критерий корреляции:
$$R_p^2 = \frac{\sum (\hat{y}_{ip} - \bar{\hat{y}}_p)^2}{\sum (y_i - \bar{y})^2} \to 1$$

MSEP-критерий:
$$E_p = \frac{RSS_p}{n(n-p)} (1 + n + \frac{p(n+1)}{n-p-2}) \to min$$

АЕV-критерий:
$$AEV_p = \frac{p \cdot RSS_p}{n(n-p)} \rightarrow min$$
, где $RSS_p = (y - \hat{y}_p)^T (y - \hat{y}_p)$, $\hat{\sigma}^2 = \frac{RSS}{n-m}$

(т - число регрессоров полной модели)

Для подсчета F- критериев воспользуемся формулой:

$$F_{ij}=rac{v_2}{v_1}\cdotrac{RSS_{ij}-RSS_j}{RSS_{i,j}}$$
 (для алгоритма включения $v_1=1,\,v_2=n-m$)

p	RSS_p	C_p	R_p^2	E_p	AEV_p	Модель
1	358.136	6048.89	≈0	4.2624	0.0478	$f(x) = (1)^T$
2	143.328	2371.83	0.5998	1.746	0.0387	$f(x) = (1, x_1)^T$
3	90.725	1472.88	0.746	1.132	0.0372	$f(x) = (1, x_1, x_3)^T$
4	37.977	571.455	0.894	0.485	0.021	$f(x) = (1, x_1, x_3, x_2)^T$
5	4.9958	8.5658	0.986	0.0655	0.0035	$f(x) = (1, x_1, x_3, x_2, x_2 * x_4)^T$
6	4.6338	4.3657	0.987	0.06226	0.0039	$f(x) = (1, x_1, x_3, x_2, x_2 * x_4, x_2 * x_3)^T$
7	4.506	4.172	0.987	0.06208	0.0045	$f(x) = (1, x_1, x_3, x_2, x_2 * x_4, x_2 * x_3, x_4 * x_4)^T$

Дальнейшее исследование не имеет смысла из-за слабого изменения параметров.

Исходя из результатов критериев, следует выбрать пятую модель: $f(x) = (1, x_1, x_3, x_2, x_2 * x_4)^T$ Предварительная модель $(f(x) = (1, x_1, x_2, x_3, x_1 * x_2, x_2 * x_4, x_3 * x_4)^T)$ немного хуже.

6. Проверка адекватности полученной модели

Разобьем выборку на 2 части: 81 наблюдение и 6 наблюдений (последних).

$$\hat{\sigma}_E^2 = \frac{\hat{e}^T \hat{e}}{n-m} = \frac{\hat{e}^T \hat{e}}{81-3} = 0.06573526122,$$
 $\hat{\sigma}_{LF}^2 = \frac{\hat{e}^T \hat{e}}{n-m} = \frac{\hat{e}^T \hat{e}}{6-5} = 4.99587985301679183,$
 $F_{\alpha,f_{LF},f_E} = F_{0.05,76,1} = 252.640291165918$
 $F = \frac{\hat{\sigma}_{LF}^2}{\hat{\sigma}_E^2} = \frac{4.99587985301679183}{0.06573526122} \approx 76 < 252.640291165918$ - значит модель адекватная

7. Построение графиков остатков

График остатков показывают, что наличие некоторой гетероскедастичности возможно. Тот факт, что графики не криволинейны говорит об адекватности модели.

8. Определение точки в факторном пространстве, имеющей максимальное математическое ожидание отклика и построение доверительного интервала

Для определения точки будем максимизировать следующий функционал:

$$\hat{y}_{max} = \max_{x} \eta(x, \hat{\theta})$$

Полученный результат:
$$x_{max} = (1, -1, -1, -1)^T, \, \hat{y}_{max} \approx 5.771$$

Доверительный интервал:
$$\eta(x, \hat{\theta}) - t_{\alpha/2, f_R} \sigma(\eta(x, \hat{\theta})) \le \eta(x, \theta) \le \eta(x, \hat{\theta}) + t_{\alpha/2, f_R} \sigma(\eta(x, \hat{\theta})),$$
 где $\sigma^2(\hat{y}(x, \hat{\theta})) = \hat{\sigma}^2(1 + f^T(x)(X^TX)^{-1}f(x)) \approx 1.916735686, \ t_{\alpha/2, f_R} = t_{0.05/2, 84} \approx 1.988959$

Таким образом: $y_{max} \in [1.95897729531954; 9.58359767268046]$