S. There is an electric field $\vec{E} = -\vec{E} \vec{f}$. From origin (0,0) we gave an e^- vel. $\vec{v} = \vec{V} \cdot \hat{i}$, at the time t = 0, at the same time we give an uniform vel. $\vec{u} \cdot \hat{j}$ to a infinite long wooden plate. Find out the eqn of trajectory of the e^- , required time to meet the wooden plate again and the coordinates of meeting again. Given, mass of $e^- \rightarrow m$ charge of $e^- \rightarrow -e$

mass of e = m charge of e = -e (=ve) initial vel = 12.2 vel of wooden plate = 4.3

F = E (charge of e^{-}) $= +E \cdot \hat{j} \cdot + e$ $F = eE\hat{j} \quad --- (i)$

 $\vec{F} = m \cdot \vec{a}$ from equ(t) $\vec{a} = \frac{\vec{F}}{m} = \frac{c \cdot \vec{E}}{m} \cdot \vec{J}$

$$y = \frac{1}{2} \frac{e\mathcal{E}\left(x\right)^{2}}{m \left(v\right)} \rightarrow \frac{1}{2} \frac{e\mathcal{E}\left(x\right)^{2} - - \left(i\right)}{m \left(v\right)^{2}}$$