

Siva Ramana H V

Final Project

PROJECT TITLE

Generative Adversarial Network for Fashion Images

AGENDA

- Introduction
- Problem Statement
- Project Overview
- End Users
- Solution and Value Proposition
- Modelling and Methodology
- Results and Findings
- Conclusion

PROBLEM STATEMENT

Fashion designers often require a large dataset of fashion images for inspiration and design training purposes. However, collecting and curating such datasets can be time-consuming and costly.

PROJECT OVERVIEW

The FashionGAN project aims to address this issue by developing a Generative Adversarial Network (GAN) that generates realistic fashion images based on the Fashion MNIST dataset. The GAN consists of a generator and discriminator trained in an adversarial setup to produce high-quality fashion images.

WHO ARE THE END USERS?

- Fashion designers
- Fashion students
- Researchers in computer vision and artificial intelligence

YOUR SOLUTION AND ITS VALUE PROPOSITION

Our solution leverages deep learning techniques to automatically generate fashion images, reducing the need for manual dataset curation and facilitating creative exploration.

Value Proposition:

- Cost-effective fashion image generation
- Time-efficient dataset augmentation
- Creative inspiration for designers and students

THE WOW IN YOUR SOLUTION

- Realistic fashion image generation
- Adversarial training for high-quality results
- Scalable and customizable architecture

MODELLING

Teams cam add wireframes

- Data preprocessing and augmentation
- Generator and discriminator architecture
- Training process and optimization techniques
- Model evaluation and validation

RESULTS

Generated fashion images

Performance metrics (loss curves)

