EEEFM ADEMAR VELOSO DA SILVEIRA

Disciplina: Geografia Professor: Tibério

Aluno(a) Série: 1º Ano ____

A CARTOGRAFIA E SUAS PROJEÇÕES

cartografia pode ser definida como a ciência e a arte dedicadas à confecção e ao estudo de mapas e outros produtos cartográficos, como plantas, croquis e cartas. Os primeiros

mapas produzidos pela humanidade possuem milhares de anos, tendo suas técnicas de produção se aperfeiçoado com o tempo. No período atual, as imagens de satélites, os softwares e equipamentos de geoprocessamento e os instrumentos como o GPS são importantes aliados da cartografia.

A necessidade de conhecer, em detalhes, o espaço onde se habita, seja para a exploração e ocupação da superfície, seja para a proteção, unida da curiosidade inerente ao ser humano, fez com que tenhamos registros de mapas muito antigos, datando de milênios antes da era atual. O mapa de Ga-Sur é um dos mais antigos a serem catalogados (entre 4500 a.C. e 2500 a.C.), produzido

pelos babilônios e encontrado onde ficava o território da Mesopotâmia.

Os mapas, como sabemos, formam um importante meio de comunicação, pois são os instrumentos utilizados para a representação de um dado local no espaço, transmitindo não só a localização, mas também as características diversas e previamente selecionadas sobre o lugar em questão. Por isso, existem diversos mapas temáticos, que abordam os elementos naturais e humanos do espaço geográfico.

Dessa forma, para facilitar a leitura e melhor transmitir as informações, existem alguns itens que são de extrema importância para que o cartograma seja mais facilmente lido: trata-se dos elementos que

compõem um mapa, aqueles que estão presentes na maioria dos mapas produzidos, servindo como instrumentos de leitura e análise.

Os elementos que compõem um mapa, ou seja, as partes obrigatórias dos mapas, são: o título (e, às vezes, o subtítulo), as legendas, a escala, a orientação e a projeção cartográfica utilizada para a produção do referido documento.

Transformando as medidas

Ao elaborarmos um mapa, os elementos do espaço precisam ser reduzidos, a fim de caberem numa folha de papel. Essa redução é feita por meio de escalas. Escala é a relação existente entre as medidas do mapa e

as medidas reais. Todo mapa é feito de acordo com uma escala que indicará quantas vezes as medidas reais foram diminuídas.

Para a redução de uma projeção utiliza-se a unidade de medida; os múltiplos e submúltiplos do metro.

Os tipos de escalas

A escala deve ser indicada junto ao mapa (em geral no canto inferior direito), para que as pessoas possam saber o tamanho real das coisas nele representadas.

A escala utilizada para a construção de um mapa pode ser indicada de duas maneiras: com números (escala numérica) ou com gráficos (escala gráfica).

A <u>escala numérica</u> é representada por uma fração ordinária. O numerador da fração corresponde à medida no mapa; o denominador

corresponde à medida real no terreno. O numerador é sempre a unidade (1), e o denominador indica quantas vezes as medidas reais foram reduzidas. Por exemplo: se um determinado mapa estiver na escala 1: 50.000 (um por cinquenta mil cm), isso significa que cada unidade de distância no mapa (1 cm, por exemplo) corresponde a 50.000 unidades (50.000

cm, no caso) no terreno.

A escala gráfica apresenta-se sob a forma de um segmento de reta graduada, normalmente dada em quilômetros.

Nesse caso, a sequência foi seccionada em cinco partes iguais, cada uma medindo 1cm. Isso significa que cada uma dessas partes no mapa (1 cm) corresponde a 3 km no terreno.

Um mesmo espaço pode ser representado em diferentes escalas, conforme o nível de detalhes que se quer atingir. Quanto maior o denominador da fração ordinária indicativa, menor é a escala, e vice-versa.

Como calcular distâncias

Usando a escala, sabe-se que E = Escala; D = Distância na realidade e d = distância no mapa.

Para encontrar "E", utiliza-se a seguinte fórmula:

$$E = D/d$$

Exemplo: a medida real (D) é de 8 km e a distância gráfica (d) é de 5 cm

$$E = 8 / 5 cm$$

E = 800.000 / 5 = 160.000

Para encontrar "D", utiliza-se a seguinte fórmula:

$$D = d \cdot E$$

Exemplo: a distância gráfica (d) entre duas cidades é de 5 cm e a escala (

E) é de 1: 160.000.

 $D = 5 \times 160.000 \text{ cm}$

D = 800.000 cm ou 8 km

Para encontrar "d" utiliza-se a seguinte fórmula:

$$d = D/E$$

Exemplo: a escala (E) é de 1: 160.000 e a medida real (D) é de 8 km.

d = 8 km / 160.000cm

d = 800.000 cm / 160.000 = 5 cm

Tipos de cartografia

A cartografia pode ser dividida em duas grandes áreas:

Cartografia Sistemática: ramo da cartografia dedicado à representação das características físicas da superfície terrestre, e por essa razão é também chamada de cartografia topográfica. As informações representadas são de caráter genérico e, por isso, duradouras no tempo, sendo coletadas e replicadas por meio de técnicas específicas.

Cartografía Temática: ramo da cartografia dedicado à produção de mapas com base em informações geográficas diversas, não se restringindo às dimensões físicas de uma área. Seus produtos indicam a ocorrência espacial de fenômenos específicos, como econômicos, sociais, demográficos e mesmo naturais. Por essa razão, recebe o nome também de cartografia geográfica.

As projeções cartográficas

Projeções cartográficas são representações da superfície esférica da Terra em um plano, possibilitando a construção de um mapa. Um mapa corresponde à representação aproximada da superfície terrestre em um plano utilizando as coordenadas geográficas. Essa construção se dá por meio de um sistema plano de paralelos e meridianos (representados por linhas), ou seja, as projeções cartográficas.

Existem diversos tipos de projeções que, segundo o Instituto Brasileiro de Geografia e Estatística (IBGE), representam cada uma um determinado aspecto, como a dimensão e a forma. As projeções, por representarem uma superfície esférica, apresentam deformações, sendo assim, nenhuma representa fielmente essa superfície, pois nunca estará livre de distorções.

De acordo com o objetivo pretendido, é utilizada um tipo de projeção, a qual confere maior rigor na representação espacial.

Assim, o principal objetivo é diminuir as imperfeições dos mapas, sejam nas escalas, ou nos ângulos apresentados.

De acordo com o tipo de projeção escolhida pelo cartógrafo, diferentes regiões do globo terrestre sofrem deformações. Como é impossível evitá-las, essa característica é utilizada como uma forma de categorização das projeções cartográficas. Acompanhe:

Ao todo, são mais de duzentos tipos de projeções cartográficas, mas três delas são muito conhecidas e utilizadas em nosso dia a dia. Confira.

todas as projeções apresentam distorção da realidade

CIILÍNDRICA

privilegia as zonas de baixas latitudes paralelos e meridianos formam 90°

projeção de MERCARTOR

criada para as grandes navegações: mantêm as formas dos continentes -CONFORME.

valoriza países desenvolvidos

projeção de PETERS

resposta a projeção de Mercartor. Mantêm as áreas -EOUIVALENTE.

valoriza os países ditos subdesenvolvidos

CÔNICA

privilegia as zonas de MÉDIAS latitudes paralelos em semicírculo e meridianos se encontrando

PLANA/AZIMUTAL /POLAR

geralmente sob os polos os meridianos retos em direção ao centro e os paralelos formando círculos concêntricos

Projeção Cilíndrica: é como se um cilindro envolvesse o globo terrestre. Nesse caso, os paralelos e os meridianos são representados por linhas retas que convergem entre si. Um exemplo notório é a representação do mapa mundi tal qual o conhecemos.

As projeções cartográficas mais famosas e utilizadas são as cilíndricas. Dentre elas, algumas merecem destaque especial em razão de suas importâncias e características.

Projeção de Mercator

Nessa projeção, muito utilizada nos dias atuais, há uma preocupação em se manter as formas dos continentes, no entanto, as suas áreas são alteradas. Trata-se, portanto, de uma projeção conformal. Repare que, por exemplo, a Groelândia está maior que o Brasil, sendo que, na verdade, ela é bem menor do que ele.

Mapa-múndi na projeção de Mercator

Projeção de Peters

Ao contrário da anteriormente citada, essa projeção sacrifica as formas em benefício da conservação da proporção das áreas. É, portanto, um tipo de projeção equivalente. Os meridianos e os paralelos também são linhas retas.

Mapa-múndi na projeção de Peters

Projeção Cônica: é como se um cone envolvesse parte do globo. É muito utilizada para representar regiões continentais. Nesse caso, os paralelos representam círculos concêntricos, já os meridianos são linhas retas que convergem para os polos.

Projeção Plana: também chamada de "projeção azimutal", trata-se de um plano tangente à esfera terrestre. Nesse caso, os paralelos representam círculos concêntricos, já os meridianos retos irradiam-se do polo. Dependendo da representação pretendida, elas são classificadas de três maneiras: Polar, Equatorial e Oblíqua.

Uma das projeções famosas é o símbolo utilizado na bandeira da Organização das Nações Unidas. Essa é uma projeção plana e equidistante e é projetada a partir de um polo.

Essa projeção permite a visualização de todos os continentes, porém, mantém uma visão nortista, pois é projetada tendo o hemisfério Norte como centro.

Anamorfose

Anamorfose geográfica ou cartográfica é uma forma de representação do espaço geográfico em que há a distorção da proporcionalidade entre os territórios para adequá-los aos dados quantitativos que norteiam o mapa.

A palavra anamorfose tem origem na junção de dois termos gregos (aná: "sobre" + morphê: "forma"), podendo ser entendida como "formado de novo".

Os mapas anamórficos, como são conhecidas essas representações cartográficas, são elaborados a partir da análise de dados quantitativos referentes a uma determinada área.

A anamorfose acima destaca-se 5 Estados (São Paulo, Rio de Janeiro, Ceará, Pará e Bahia) que apresentaram maior quantitativo de casos confirmados, consequentemente, maior distorção. As cores foram utilizadas para representar a taxa proporcional de casos confirmados por 100 mil habitantes. Nessa representação coroplética (Que usa variações de cores) com a taxa de casos pode-se observar o destaque da região Norte do país (Roraima, Amapá, Amazonas, Acre).

Referências Bibliográficas

GUITARRARA, Paloma. Cartografia. **Mundo Educação**. Disponível em: https://mundoeducacao.uol.com.br/geografia/cartografia.htm. Acesso em 15 de junho 2021.

Projeções Cartográficas. **Toda Matéria**. Disponível em: https://www.todamateria.com.br/projecoes-cartograficas/. Acesso em 12 de julho 2021.

Projeções Cartográficas que você precisa conhecer. **COC**. Disponível em: https://www.coc.com.br/blog/soualuno/geografia/projecoes-cartograficas-que-voce-precisa-conhecer. Acesso em 12 de julho 2021.

RIBEIRO, Amarolina. O que é anamorfose geográfica? **Brasil Escola**. Disponível em: https://brasilescola.uol.com.br/o-que-e/geografia/o-que-e-anamorfose-geografica.htm. Acesso em 13 de julho de 2021.

SOUSA, Rafaela. Projeções cartográficas. **Mundo Educação**. Disponível em: https://mundoeducacao.uol.com.br/geografia/projecoes-cartograficas.htm. Acesso em 15 de junho 2021.

Editoração/Design

Tibério Mendonça de Lima