Detta kapitel beskriver teorin bakom vibrationsanalys och en introduktion till tillståndsbaserat underhåll som ligger till grund för detta examensarbete.

1.1 Vibrationsanalys

För att kunna göra en bra vibrationsanalys och skörda fördelarna med detta måste man veta varför man mäter vibrationer över huvud taget. Genom att övervaka maskinens vibrationskaraktäristik får man en förståelse om dess hälsa och kondition vilket man kan använda för att upptäcka skador i tidigt skede och handla i god tid.

Om man regelbundet övervakar maskinens kondition kan man upptäcka problem som kan uppstå i framtiden och således korrigera dem före de inträffar vilket kan spara mycket tid, pengar och frustration. En maskin som vibrerar kraftigt har även sämre effektivitet vilket sin tur påverkar produktionen.

Motsatsen är att inte övervaka vibrationerna vilket ofta leder till att maskinen körs tills den havererar. Onödigt underhåll och byte av friska delar är även något som kan elimineras med hjälp av vibrationsbevakning där underhållet schemaläggs allt efter maskinens kondition.

1.1.1 Vad är vibrationer?

Maskinvibrationer är helt enkelt en reciprocerande¹ rörelse hos en maskin eller komponent som generellt uppkommer på grund av en eller fler av följande orsaker:

- Upprepade kraftstötar
- Glapp
- Resonans

1.1.2 Potentiella fel

Många typer fel kan detekteras med hjälp av vibrationsövervakning. Bilaga ?? på sidan ?? visar en sammanfattning om vilka relevanta vibrationer som kan undersökas på ett kraftverk.

Även systemets egenfrekvenser kan identifieras med hjälp av vibrationsmätning via coast-down, påtvingad excitation via tillförd obalansmassa eller slagimpulsprov. Att köra turbinen i närheten av egenfrekvensen är extremt destruktivt då mycket stora vibrationsamplituder uppkommer.

¹Fram och tillbakagående rörelse.

Detta sätt är både enklare samt mer pålitligt än beräkning av egenfrekvenser då beräkningar av kritiskt varvtal inte skall accepteras som riktiga före en kontroll utförts i verkligheten [?].

Förutom kritiska varvtal är självexciterande resonanser så som Oil whip i glidlager de särklass viktigaste vibrationerna att övervaka. Detta då en resonanssvängning bygger upp sig själv från nästan ingenting tills dess att systemets mekaniska begränsningar sätter stopp för ökningen. Smörjförhållandet i glidlagret blir då mycket dåliga, körningen bör då avstanna hastigt för att undvika lagerskador.

Kavitation är ett tillstånd som ofta uppträder i vattenturbiner i samband med att ett reducerat vätsketryck skapar bubblor nära rotorns yta. När bubblorna spricker överförs ganska stora krafter på rotorn vilket leder till att gropar bildas på ytan.

1.1.3 Vilka maskiner behöver övervakas?

När man överväger valet av maskiner att övervaka bör man lägga prioritet hos de som är kritiska. Analogin är mycket snarlik den att att göra hälsokontroller på människor, det är onödigt att skicka fullt friska personer på kontroll istället för de som ligger i riskzonen, som *verkligen* behöver det

Generellt bör följande typer av maskiner kontrolleras med regelbundet intervall för att undvika långa och kostsamma problem

- 1. Maskiner som bidrar med dyra, tidskrävande eller svåra reparationer vid fel
- 2. Maskiner kritiska för produktionen eller drift av kraftverket se Figur 1.1
- 3. Maskiner som är kända att gå sönder ofta
- 4. Maskiner som kan påverka mänsklig eller miljömässig säkerhet

Figur 1.1: Diagram över processflöde för enkel identifikation av kritiska enheter

1.1.4 Insamling av data

De parametrar som används vid vibrationsmätning i spektrum kan delas in i fyra klasser

- Hur datan *mäts*
- Hur mycket och hur snabbt man skall mäta
- Hur datan behandlas
- Hur datan presenteras

1.1.4.1 Hur datan mäts

Här gäller det att använda rätt typ av givare placerad på rätt plats och på rätt sätt för att resultatet av mätningen skall bli så bra som möjligt. Efter identifiering av intressanta maskinelement eller fenomén hos den maskin man vill undersöka måste rätt typ av givare väljas. Det finns olika typer av givare och de vanligast förekommande är

- Accelerometer
- Hastighetsgivare
- Förflyttningsgivare

Givaren skall sedan placeras i rätt dominerande plan så nära maskinelementet som möjligt. Eftersom det likt hos människan är svårt att mäta hjärtslaget genom att sätta stetoskopet på foten. Vid mätning av lager bör man hålla sig så nära centerlinjen som möjligt. Används en accelerometer för att mäta vibrationer bör monteringen göras så fast som möjligt och på en yta fri från rost, färgflagor eller annat skräp. Detta för att förhindra förvrängningar av signalen och oönskat brus.

1.1.4.2 Hur mycket data och hur snabbt man skall mäta

De parametrar som avgör hur mycket och hur snabbt data ska samlas är F_{max} , spektrallinjer och överlappning. Är F_{max} -värdet högt bidrar det med ett stort spann på vibrationsfrekvenser och för att kunna samla den datan behöver man en snabb mätfrekvens även kallat sampling rate. Destå fler spektrallinjer ett spektrum har, destå lättare är det för användaren att analysera datan. Dock kräver fler spektrallinjer långsammare mätningar.

En rekomendation för bestämning av F_{max} är tre gånger antalet delar i maskinelementen multiplicerat med rotationsfrekvensen. För $F_{max} \leq 30$ kcpm räcker det generellt med 400 spektrallinjer, medan 3200 linjer är att föredra vid $F_{max} > 1200$ kcpm [? ?]. Antalet spektrallinjer är direkt kopplat till priset på mätutrustningen då snabbare CPU och mer RAM krävs för att inte behöva göra kompromisser i val av F_{max} och sampling rate. Överlappsdata är ett sätt att återanvända

en andel av tidigare mätt vågform för att beräkna ett nytt spektrum. Större överlappningsandel innebär att man behöver mindre ny data för att generera ett nytt spektrum vilket gör att spektrumet snabbare kan visas. Överlappning på 50% är ideal i de flesta fall.

1.1.4.3 Hur data behandlas

De parametrar som avgör hur datan bearbetas är vilken form av medelvärdesbildning, antalet medelvärden och vilken fönstertyp som används. Ett exemel på de olika steg som en signal behandlas kan representeras enligt Figur 1.2.

Figur 1.2: Signalkedja vid digitalisering av vibrationsmätning

Medelvärdesbildning måste användas för att bestämma nivån på signalen vid varje frekvens. Anledningen till att man gör ett medelvärde av spektrat är för att minska bidraget som mätstörningar skapar. Olika metoder används vid medelvärdesbildning så som aritmetiskt medelvärde, kvadratiskt medelvärde, 'Peak hold' och synkront medelvärde [? ?]. Den vanligaste metoden är aritmetiskt medelvärde som är rekomenderad i de flesta fall och fungerar enligt följande ekvation.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1.1}$$

där x_i är spektrat och n antalet spektra. Aritmetiskt medelvärde är en användbar metod vid trendning av fel, vilket används flitigt i förebyggande underhåll och reducerar även bakgrundsbruset från signalen.

Kvadratisk medelvärdesbildning tar störst hänsyn till det senaste spektrat och används då vibrationsmönstret varierar långsamt över tiden.

$$s_1 = x_0$$

 $s_t = \alpha x_{t-1} + (1-\alpha)s_{t-1}, t > 1$ (1.2)

där α är den faktor mellan 0 och 1 som bestämmer hur mycket de tidigare mätningarna vägs in i medelvärdet s_t .

'Peak hold' är inte någon riktig medelvärdesbildning då den sparar det största värdet hos varje analyserad frekvens men är användbar vid identifiering av transienter eller som hjälpmedel vid utmattningsanalys.

$$y[k] = \max(y[k-1], x[k]) \tag{1.3}$$

där

x[k] är det nya mätvärdet

y[k] är det nya medelvärdet

y[k-1] är föregående medelvärde

Synkront medelvärde använder sig av en referenssignal från maskinen som analyseras. Signalen genereras vanligtvis från en fotocell, elektromagnetisk givare eller annan form av tachometer. Denna metod fungerar bra för filtrering av bakgrundsbrus.

Antal medelvärden man använder vid medelvärdesbildning antar en viktig roll i den bemärkelsen att ju större antal spektra som används destå mer brus filtreras men kräver också att mer data behandlas. Detta medför att det tar längre tid att visa upp ett medelvärdesbildat spektra. Fyra samples räcker i de flesta fall för medelvärdesbildning.

Fönster är parametern som bestämmer vilken fönsterfunktion som används för ytterligare filtrering vid signalbehandlingen för att lättare urskönja spikarna i FFT-spektrat. Den mest förekommande typen är Hann fönster² men även rektangulärt, Hamming, Tukey, cosinus, Lanczos, triangulärt, Gaussian, Bartlett-Hann, Blackman och Kaiser fönster förekommer i viss utrustning.

1.1.4.4 Hur data presenteras

För att välja hur ett spektrum skall presenteras i analysprogrammet eller den handhållna enheten måste man först bestämma vad man vill titta efter och vilken skala som skall användas. Antalet samt vilka typer av parametrar man kan ställa in, spelar stor roll i analysarbetet, då ett spektra i sig själv innehåller mycket information och valmöjligheten av parametrar hjälper användaren att lätt hitta rätt utslag. Vid mätningar med handhållen utrustning där maskinkondition avgörs på plats, är det rekomenderat att alltid använda samma inställningar som tidigare mätningar för att undvika missbedömningar.

De enheter som oftast förekommer vid linjär amplitudskala är hastighet i ⁱⁿ/s eller ^{mm}/s och frekvens kcpm alternativt kHz. Vid logaritmisk frekvensgradering används primärt VdB till amplitudskalan.

²Ofta även kallat Hanning fönster.

1.1.5 Vibrationsnormer

För att avgöra om de uppmätta vibrationerna är skadliga finns två metoder att tillgå, egen trendmätning och haverianalys alternativt tröskeltal utifrån vibrationsnormer från industristandard och ISO. Generellt används standardnormer då primärt SS-EN 10816 där en tumregel är att vibrationsamplituden skall hållas under $3 \, \text{mm/s}$ RMS och att hastigheter över $7 \, \text{mm/s}$ RMS innebär medvetet slitage av maskinen [?].

1.1.6 Mätutrustning

Idag är mätutrustningen kompakt och finns tillgänglig som både fast monterad och bärbart format. Portabla system samt fast monterad utrustning, som inte utför kontinuelig mätning kallas off-line. Med hjälp av mikroprocessorer konverteras analoga signaler till digitalt FFT spektrum vilket ger en smidig lösning för momentan inblick i maskinens hälsa. Detta gör att mätutrustningen är lätt att använda och bära med sig. Tyvärr innebär detta vissa kompromisser gent de äldre analoga mätinstrumenten.

Ett stort problem med digital portabel utrustning är visningen av vibrationerna. Då vibrationer sällan är stabila medför detta att mätvärdet måste dämpas eller medelvärdesbildas till den mån att displayen blir läsbar för operatören. Analoga visare ger en bättre representation av maskinvibrationerna, vibrationstoppar och även lagerkondition där operatören står för filtreringen, något som inte är möjligt med dagens digitala visare.

Kanske det mest övergripande problemet med *off-line* utrustning är att mätningar tenderar att ske lågfrekvent så som månadsvis eller med ännu större intervall. Detta leder i detta fall till att vibrationsanalys som diagnostiskt verktyg vid PdM/CBM i stort sett blir betydelselöst [?].

Tabell 1.1: För- och nackdelar med off-line utrustning

	Fördelar		Nackdelar
1	Portabilitet	1	Svårt att utföra korrekt mätning
2	Obegränsade mätningar	2	Begränsad för kritiska maskiner
3	Visuell inspektion på samma gång	3	Arbetssamt och kräver utbildad personal
4	Dataansamling är relativt enkel	4	Mätfrekvensen är begränsad
5	Möjlighet till rotorbalansering på plats	5	Falsklarm p.g.a. processfaktorer
6	Kräver ingen installation på maskinen	6	Okända problem förblir osynliga
7	Stör ej befintligt installerad utrustning	7	Oftast begränsad frekvens och amplitud vid mätning
8	Grundutbildning tar 5 dagar	8	Analysen blir begränsad utan fasdata
9	Relativt låg investeringskostand	9	Ofta endast använd vid haveri/larm
10	Lägre kostnad per mätpunkt	10	Svårt att ersätta personal för vibrationsmäting
		11	Förbrukningsmateriel: kablar, batterier, sensorer
		12	Data förlorad vid mätutrustningshaveri
		13	Datan är sällan distribuerad
		14	Endast sedd som en underhållsfunktion
		15	Sällan integrerad med CMMS
		16	Sällan synliga för operatörer
		17	Ominvestering vart fjärde år

Ett system av integrerad hårdvara och mjukvara som kontinuerligt utför mätningar på maskinen dygnet runt kallas on-line. Datan presenteras sedan som information om maskinens hälsa via lättåskådliga grafer och värden med hjälp av en dator. Detta gör det lätt för operatören att avgöra när och om en åtgärd bör initieras. Systemet kan även användas som bidrag till övervakning av produktionens effektivitet. All rådata sparas så underhållsingenjörer lätt kan plocka ut intressanta värden för vidare analys av specifika maskinelement. För en sammanfattning av för- och nackdelar med off-line utrustning se Tabell 1.1 respektive Tabell 1.2 för on-line.

Tabell 1.2: $F\ddot{o}r$ - och nackdelar med on-line utrustning

	Fördelar		Nackdelar
1	Högkvalitetsdata tillgänglig för maskinanalys	1	Mätningarna är begränsade till antalet installerade sensorer
2	Mätningar görs automatiskt och kontinuerligt	2	Kräver att sensorerna är kopplade till CCR
3	Konstant kvalitet på mätningarna	3	Analys av data kan vara komplex
4	Direktlarm vid maskinfel	4	Kräver en utbildad diagnostiker eller konsult
5	Amplitud, frekvens, fas och last mäts	5	Hög kostnad per mätpunkt
6	Mycket kraftfullt analysinstrument	6	Relativt hög investeringskostnad
7	Kan länkas med annan processdata		
8	Datan distribueras via DCS		
9	Synlig för operatörer och konsulter		
10	Fungerar med och utan säkerhetsbevakning		
11	Idealisk för livslängdsuppskattning		

1.2 Tillståndsbaserat underhåll

Figur 1.3: Överblick av de olika underhållstyperna utifrån SS-EN 13306:2010

Tillståndsbaserat underhåll 3 (CBM) är en underhållsprocedur som går ut på att man övervakar tillståndet hos utrustningen och utifrån detta bestämmer $n\ddot{a}r$ underhåll skall göras och vad som skall testas. CBM är snarlikt förutbestämt underhåll (PdM se Figur 1.3) där man byter ut/reparerar innan fel uppstår, skillnaden är att PdM tenderar att vara mer utrustningsfokuserad medan CBM är systemorienterat samt att underhållet justeras med hjälp av P-F intervall.

Målet med CBM är att

- Reducera oplanerat underhåll och stora underhållsarbeten
- Minska avtrycket av underhåll och logistik
- Utföra och integrera avancerad ingenjörskonst, underhålls- och informationsteknologi
- Underhåll endast vid bevisat behov
- Förbättring av diagnostik och prognostik
- Använda real-time uppskattning av materialkondition via mätningar från förankrade sensorer och/eller externa tester och mätningar via portabel utrustning
- Öka tillgängligheten

 $^{^3{\}rm Kommer}$ hänvisas som CBM vidare i dokumentet.

1.2.1 P-F intervall

Tidsintervallet mellan underhållsarbetet bestäms av det s.k. P-F intervall som representeras enligt Figur 1.4 och beskriver tiden mellan det ett fel beräknas att upptäckas och haveri inträffar. Även om många fel inte är åldersrellaterade avger de flesta maskinelement en tydlig indikation innan de fallerar. Underhållsintervallet vid PdM tar inte hänsyn till haverifrekvensen eller hur kritiskt ett maskinelement är vilket CBM gör genom att filosofin bygger på att fel inte inträffar omedelbart och att det ofta är möjligt att mäta om maskinelementet är inne i slutskedet av dess livscykel. Hittas indicier på att ett maskinelement är inne i slutskedet är det möjligt att utföra åtgärder som undviker haveri och/eller konsekvenserna som tillkommer.

Figur 1.4: Grafisk representation av ett P-F intervall

Följande åtaganden bör göras för att CBM skall vara applicerbart och effektivt. Det måste finnas någon mätbar parameter som tydligt visar på nedbrytning i utrustningen samt personal kunnig nog att identifiera detta och sätta gränser för underhållsintervall.

P-F intervallet måste vara konsekvent nog så inte åtgärder görs för tidigt eller att fel inträffar före den planerade åtgärden. Intervallet bör dessutom vara av praktisk tidsrymd förslagsvis dagar eller veckor för att vara en god kandidat för CBM. P-F intervallet skall vara definierat så en tydlig varning uppstår med erfodelig tid för planering och utförande av åtgärd. Mest relevant i detta sammanhang är att underhållet måste vara billigare än ett potentiellt haveri över MTBF (Mean Time Between Failures).

1.2.2 Förbättring av CBM tekniker

Då kraven på produktivitet, kvalitet, lagerkontroll och maskinlivslängd ständigt ökar, förbättras CBM system i samma takt. Teknologiska framsteg implementeras till CBM system så som förbättrad kunskap om felmekanismer, säkrare prognoser via nya algoritmer, utveckling av nya sensorer och övervakningsutrustning, förbättring av diagnostisk och prognostisk mjukvara för att nämna några.

- (a) Processflöde vid implementering
- (b) Processflöde vid livslängdsuppskattning

Figur 1.5: Grafisk representation över återkopplingen som försegår vid implementering av samt underhåll med CBM

För att öka prestandan hos CBM system används nu mer fuzzy logic, neurala nät och applikation av Dempster-Shaferteori. CBM system värderas efter dess förmåga att säkert diagnostisera fel samt beräkna hur lång tid som återstår innan fel inträffar vilket är en viktig del för underhållet se Figur 1.5b.

1.2.3 Implementering av CBM system

Nyckelordet för en lyckad implementering av CBM system är långsiktig planering se Figur 1.5a. Lång tid före realisering av övervakning och analys av produktionen behövs gedigen insikt om vad som skall undersökas och hur detta utförs. För att verkligen börja spara pengar med det nya sättet att planera underhållsarbetet måste en grundlig analys av befintligt underhåll göras. Allt som inte fungerar enligt orginalplanen måste rättas till före det att en större förändring initieras.

Eftersom grundtanken med ett CBM system är mjukvarustyrda prognoser krävs högkvalitativ mätdata, så val av givare och dess installation bör göras med största omsorg. Man kan med fördel använda sig av utrustning som följer någon av följande tre standarder

- IEEE 1451
- OSA-CBM

• MIMOSA

1.2.4 För- och nackdelar med ett CBM system

Även om knapphändig forskning gjorts inom CBM som visar en mätbar (procentuell) förbättring kan man ändå enligt Tabell 1.3 sammanfatta generella för- och nackdelar.

Tabell 1.3: Sammanfattning av för- och nackdelar med CBM system

	Fördelar		Nackdelar
1	Reduktion av underhållskostnad	1	Diagnostisk utrustning är kostsamt och ökar investeringen
2	Minskad risk för haveri	2	Höga utbildningskostnader
3	Reduktion av driftstopp	3	Ledningen kan inte se den potentiella besparingen
4	Ökning av produktion		
5	Ökad komponentlivslängd		
6	Tillåter förebyggande åtgärder		
7	Minskar kostnader för reservdelar och arbete		
8	Förbättrar produktkvalitén		
9	Förbättrar person- och miljösäkerheten		
10	Förbättrar arbetsmoralen		
11	Energieffektiviserar		