Probability Theory

Anonymous Author(s)

Affiliation Address email

Abstract

Notes of Real Analysis mainly from Abbott's *Understanding Analysis* and Rudin's *Principles of Mathematical Analysis*.

3 1 Real Numbers

- 4 Rational numbers have *holes*.
- **Theorem 1.** There is no rational number whose square is 2.
- 6 *Proof.* Proof is by contradiction. Let there be a rational number p/q where p and q have no common factors and whose square is 2. Find the common factor 2 and reach the contradiction.
- Further, let A be the set of all positive rational numbers q such that $q^2 < 2$ and B be the set of all rational numbers p such that $p^2 > 2$. Then, A contains no largest number and B has no smallest
- 10 number. Consider

11

19

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}.$$

$$\implies q^2 - 2 = 2 \frac{p^2 - 2}{(p+2)^2}.$$

- If $p \in A$ then q > p and $q \in A$. If $p \in B$ then q < p and $q \in B$. Clearly, rational number system has
- certain holes. Interestingly between every two rational numbers r and s there is a rational $\frac{r+s}{2}$. Still
- the rational number system has gaps and the real system will try to fill these gaps by defining a new
- irrational number wherever there are holes.

16 1.1 Ordered Set

- A set is a *collection* of objects called *elements* of the set. An order is a *relation* defined on a set, say

 8 and is denoted by <. Order has 2 properties:
 - 1. For $x \in S$ and $y \in S$, either x < y or x = y or x > y.
- 20 2. If $x, y, z \in S$, if x < y and y < z then x < z.
- 21 An Ordered Set is a set on which an order is defined.
- **Bound.** Let S be an ordered set and $E \subset S$. If there is a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$
- then E is bounded above and β is the upper bound of E. Note that β might not belong to E. Similar
- 24 definition for lower bound.

- Least Upper bound. Let S be an ordered set and $E \subset S$ which is bounded above. Then if there is an $\alpha \in S$ such that
- 1. α is an upper bound of E and
- 28 2. if $\gamma < \alpha$, then γ is not an upper bound of E
- then α is the *least upper bound* of E or *supremum* of E. There is at most one such number.

$$\alpha = supE$$
.

- Greatest Lower Bound. For the same S and E defined above, if there is a $\beta \in S$ such that (1) β
- 31 is a lower bound of E and (2) if $\gamma > \beta$ then γ is not a lower bound of E then β is the greatest lower
- bound of E or Infimum of E.

$$\beta = inf E$$
.

- Least Upper Bound Property. S has least upper bound property if for any $E \subset S$, if E is not empty and E is bounded above then $\sup E$ esists in S.
- Theorem 2. Suppose S has least upper bound property, then for every $B \subset S$, B is not empty and B is bounded below, inf B exists in S.
- 27 Proof. Let L be the set of all lower bounds of B i.e. L consists of all $y \in S$ such that y < x for
- every $x \in B$. Then L is not empty. L is bounded above by every element of B. So L must have a
- supremum in S, say α . α might not be in L.
- Let $\gamma < \alpha$, then by definition, γ is not an upper bound of L but every element of B is an upper bound
- of L, so $\gamma \notin B$. This means that $\alpha \leq x$ for every $x \in B$. So α is a lower bound of $B \implies \alpha \in L$.
- Also, if $\beta > \alpha$ then $\beta \notin L$ since α is an upper bound of L. So, α is a lower bound of B but β is not
- 43 if $\beta > \alpha$. $\Longrightarrow \alpha = \inf B$.