

ENGINEERING MATHEMATICS - I Ordinary Differential Equations

Dr. Karthiyayini

Department of Science and Humanities

Unit 3: Ordinary Differential Equations

Session: 7

Sub Topic: Orthogonal trajectories

Dr. Karthiyayini

Department of Science & Humanities

What are Orthogonal Trajectories ???

1. The Meridian & Parallels on the world globe are orthogonal trajectories of each other!

Orthogonal Trajectories - Examples

2. In fluid flow, the Stream lines and equipotential lines (of constant velocity potential) are orthogonal trajectories.

Orthogonal Trajectories - Examples

3. The path of an electric field is perpendicular to the equipotential curves.

Orthogonal Trajectories - Examples

4. Electromagnetic waves consist of both electric and magnetic field waves. These waves oscillate in perpendicular planes with respect to each other.

Orthogonal Trajectories - Examples

5. The light rays of sun that passes through the orbits of the planets.

Orthogonal Trajectories – Cartesian Form

PES UNIVERSITY ON LINE

Definition: Two families of curves are said to be orthogonal trajectories of each other if every member of one family cuts every other member of the other family orthogonally.

Examples:

1. Family of straight lines y = mx& the family of circles $x^2 + y^2 = a^2$ are orthogonal trajectories of each other.

Orthogonal Trajectories – Cartesian Form

2. Family of curves xy = c & the family of curves $y^2 = x^2 + c$ are orthogonal trajectories of each other.

Orthogonal Trajectories – Cartesian Form

Working Procedure: For finding the Orthogonal Trajectory of Cartesian family of Curves

Step 1: Form the differential equation for the given

family of curves F(x, y, c) = 0 in the form f(x, y, dy/dx) = 0.

Step 2 : Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ to obtain the differential equation of the required orthogonal family of curves.

Step 3: Solving this differential equation, the orthogonal family of curves can be obtained.

Orthogonal Trajectories – Cartesian Form

Definition: A given family of curves is said to be self Orthogonal

if its family of Orthogonal Trajectories are the same as the given

family of curves.

Example:

The family of curves

$$x^2 = 4c(y+c)$$
 is

self orthogonal.

Orthogonal Trajectories – Cartesian Form

Points To Remember!

In other words, if the differential equation remains the same after replacing $\frac{dy}{dx}$ by $-\frac{dx}{dy}$, then the given family is said to be Self Orthogonal.

Orthogonal Trajectories – Cartesian Form

$$x^2 + y^2 = c^2.$$

Solution:

Consider
$$x^2 + y^2 = c^2$$

Differentiating with respect to x, we have

$$2x + 2y\frac{dy}{dx} = 0$$

DE of the given family:

$$\frac{dy}{dx} = -\frac{x}{y}$$

Orthogonal Trajectories – Cartesian Form

Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ to obtain the differential equation of the required orthogonal family of curves.

DE of the Orthogonal family:

$$\frac{dy}{y} = \frac{dx}{x}$$

Solving this we obtain,

y = cx which is the required solution.

Orthogonal Trajectories – Cartesian Form

2. Prove that the system of confocal and coaxial parabolas

$$y^2 = 4a(x + a)$$
 is self orthogonal. (a is a parameter)

Solution:

Consider
$$y^2 = 4a(x+a)$$

Differentiating with respect to x, we have DE of the given family :

$$y = 2x\frac{dy}{dx} + y\left(\frac{dy}{dx}\right)^2$$
....(1)

Orthogonal Trajectories – Cartesian Form

Replacing
$$\frac{dy}{dx}$$
 by $-\frac{dx}{dy}$

we obtain
$$y = -2x\frac{dx}{dy} + y\left(\frac{dx}{dy}\right)^2$$

Dividing throughout by $\left(\frac{dx}{dy}\right)^2$ we have,

$$y = 2x\frac{dy}{dx} + y\left(\frac{dy}{dx}\right)^2$$
.....(2) which is the DE of the Orthogonal family .

Since equations (1) & (2) are the same, the given family of parabolas are self Orthogonal.

THANK YOU

Dr. Karthiyayini

Department of Science & Humanities

Karthiyayini.roy@pes.edu

+91 80 6618 6651