ASSIGNMENT 8 SOLUTION

JAMES MCIVOR

1. Stewart 15.4.26

[5 pts] Find the volume of the solid region bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 - x^2 - y^2$.

Solution:

We work in polar coordinates. First we locate the bounds on (r,θ) in the xy-plane. The curve of intersection of the two surfaces is cut out by the two equations z=3 and $x^2+y^2=1$. Therefore the x- and y- coordinates in this solid region must lie in the disk of radius one, i.e., where $0 \le r \le 1$ and $0 \le \theta \le 2\pi$. To find the volume between the surfaces, we subtract the equation of the lower surface, $3x^2+3y^2=3r^2$, from that of the higher one, $4-x^2-y^2=4-r^2$, and integrate over these values of r,θ . Thus our integral becomes

$$\int_0^{2\pi} \int_0^1 (4 - 4r^2) r \, dr d\theta = \int_0^{2\pi} \left[4r - 4r^3/3 \right]_0^1 \, d\theta = (8/3) 2\pi = 16\pi/3$$

2. Stewart 15.4.36a,b,c

[5pts]

(a) We define the improper inetgral (over \mathbb{R}^2)

$$I = \iint\limits_{\mathbb{R}^2} e^{-(x^2 + y^2)} \, dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} \, dx dy = \lim_{a \to \infty} \iint\limits_{D_a} e^{-(x^2 + y^2)} \, dA,$$

where D_a is the disk of radius a at the origin. Show that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dx dy = \pi$$

Solution: We are given that the double integral on the left is equal to the limit of an integral whose domain of integration is D_a . So we should just calculate that limit, for arbitrary a, and then let $a \to \infty$. Since the disk of radius a is given in polar coordinates by $0 \le r \le \theta$, $0 \le \theta \le 2\pi$, we have

$$\iint\limits_{D} e^{-(x^2+y^2)} \, dA = \int_0^{2\pi} \int_0^a e^{-r^2} r \, dr d\theta = -\frac{1}{2} \int_0^{2\pi} (e^{-a^2} - 1) \, d\theta = \pi (1 - e^{-a^2})$$

But when $a \to \infty$, this expression goes to π , so our integral I defined by this limit is π .

(b) An equivalent definition of the improper integral in part (a) is

$$\iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \lim_{a \to \infty} \iint_{S} e^{-(x^2 + y^2)} dA,$$

where S_a is the square with vertices $(\pm a, \pm a)$. Use this to show that

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$

Solution:

For any value of a, we have

$$\iint\limits_{\mathcal{C}} e^{-(x^2+y^2)} \, dA = \int_{-a}^{a} \int_{a}^{a} e^{-x^2} e^{-y^2} \, dx dy = \int_{-a}^{a} e^{-x^2} \, dx \, \int_{-a}^{a} e^{-y^2} \, dy$$

Therefore taking the limits of both sides as $a \to \infty$ gives

$$\lim_{a \to \infty} \iint_{S_a} e^{-(x^2 + y^2)} dA = \lim_{a \to \infty} \int_{-a}^{a} e^{-x^2} dx \int_{-a}^{a} e^{-y^2} dy$$

Applying the defintion given here in (b) and the result of part (a) to the left hand side shows that the right hand side must be equal to π .

3. Stewart 15.8.18

[5 pts] Sketch the solid whose volume is given by the integral and evaluate the integral:

$$\int_0^{2\pi} \int_{\pi/2}^{\pi} \int_1^2 \rho^2 \sin \phi \, d\rho d\phi d\theta$$

Solution: The given region lies between two hemispheres, of radius 1 and 2, and below the xy-plane. Since the volume enclosed by a sphere of radius R is $\frac{4}{3}\pi R^3$, the given volume should be $\frac{1}{2}(\frac{4}{3}\pi(2)^3 - \frac{4}{3}\pi(1)^3) = 14\pi/3$. Let's now calculate this by evaluating the integral:

$$\int_{0}^{2\pi} \int_{\pi/2}^{\pi} \int_{1}^{2} \rho^{2} \sin \phi \, d\rho d\phi d\theta = \int_{0}^{2\pi} \int_{\pi/2}^{\pi} \left[\frac{\rho^{3}}{3} \right]_{1}^{2} \sin \phi \, d\phi d\theta$$
$$= \frac{7}{3} \int_{0}^{2\pi} \left[-\cos \phi \right]_{\pi/2}^{\pi} d\theta$$
$$= \frac{7}{3} \int_{0}^{2\pi} d\theta = 14\pi/3$$