Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2022/23 (3. přednáška)

Kódování objektů

Kódování objektů (značení)

- Konečné objekty (např. číslo, řetězec, Turingův stroj, RAM, graf nebo formuli) můžeme kódovat binárními řetězci
- Podobně můžeme zakódovat i n-tice objektů

Definice

```
\langle X \rangle binární řetězec kódující objekt X
```

```
\langle X_1, \ldots, X_n \rangle binární řetězec kódující n-tici objektů X_1, \ldots, X_n
```

Příklad

```
\langle M \rangle kód Turingova stroje M
```

 $\langle M, x \rangle$ kód dvojice tvořené Turingovým strojem M a řetězcem x

Univerzální Turingův stroj

Univerzální Turingův stroj

Univerzální Turingův stroj

Vstup $\langle M, x \rangle$ (M je Turingův stroj, x je vstup)

Univerzální Turingův stroj simuluje práci stroje M nad vstupem xVýsledek práce zastavení/přijetí/zamítnutí vstupu a obsah výstupní pásky je dán výsledkem M(x)Univerzální jazyk jazyk univerzálního Turingova stroje

$$L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$$

Univerzální jazyk formalizuje problém Přijetí vstupu

PŘIJETÍ VSTUPU

Instance: Kód Turingova stroje M a vstupní řetězec x

Otázka: Přijme M vstup x?

Struktura *U*

Popíšeme 3-páskový Univerzální Turingův stroj ${\cal U}$

Na 2. pásce je uložen obsah pracovní pásky M Symbol X_j zapsán jako $(j)_B$, bloky mají touž délku b bitů

3. páska obsahuje $(i)_B$ reprezentující aktuální stav q_i stroje M

Výpočet ${\cal U}$

- Vstup $\mathcal U$ má dvě části $\langle M \rangle$ a x
 - U umí číst každou zvlášť
- Simulovaný TS $M = (Q, \Sigma, \delta, q_0, \{q_1\})$
 - Jediný přijímající stav q₁
 - Vstupní abeceda {0,1}
 - Pásková abeceda Σ není omezená
- $\langle M \rangle$ kóduje přechodovou funkci δ
- Výpočet \(\mathcal{U}(\langle M \rangle, x \rangle \) má 3 fáze
 - Inicializace
 - 2 Simulace
 - 3 Zakončení

Inicializace

- Syntaktická kontrola
 - Pokud první část vstupu není syntakticky správným kódem Turingova stroje, odmítni
- - Maximální délka znaku X_i v rámci nějaké instrukce
 - Abeceda Σ obsahuje alespoň 0, 1 a λ , tedy $b \ge 2$
 - Pracovní abeceda není jinak omezená
- Přepis vstupu na 2. pásku
 - Překódování vstupu do bloků délky b oddělených |
 - 0 je přepsáno na 0^{b} ($X_{0} = 0$)
 - 1 je přepsáno na $0^{b-1}1$ ($X_1 = 1$)
- 4 Zapiš 0 na 3. pásku
 - Počáteční stav je q₀
- 5 Návrat všech tří hlav na začátky slov na příslušných páskách

Polohy hlav na začátku simulace kroku M

- 1. páska na začátku kódu $\langle M \rangle$
- 2. páska nad blokem symbolu X_j , nad nímž je hlava M
- 3. páska na začátku čísla stavu q_i

Simulace kroku M

- 1 Hledej v $\langle M \rangle$ instrukci pro displej (q_i, X_j)
 - Instrukce není nalezena ⇒ simulace končí
 - Jinak označme nalezenou instrukci $\delta(q_i, X_i) = (q_k, X_l, Z)$
- 2 Na 3. pásce přepiš číslo stavu na $(k)_B$
- 3 Na 2. pásce přepiš blok pod hlavou na $(l)_B$ (b bitů)
- 4 Na 2. pásce přesuň hlavu
 - o blok vlevo (je-li Z = L)
 - o blok vpravo (je-li Z = R)
 - na začátek stávajícího bloku (je-li Z = N)
- **5** Pokud se hlava přesunem dostala mimo použitou část pásky, \mathcal{U} přidá další blok tvaru $0^{b-2}10$ ($X_2 = \lambda$)
- Vrať hlavy do předpokládaných pozic a pokračuj simulací dalšího kroku M

Zakončení

- $\mathcal U$ přijme, pokud na 3. pásce je číslo 1 jediného přijímajícího stavu q_1 , jinak odmítne
- Pokud chceme simulovat výpočet funkce M, pak je potřeba přepsat pracovní pásku do řetězce z Σ^*

Nerozhodnutelnost Univerzálního jazyka

Vlastnosti univerzálního jazyka

Věta

Jazyk $L_u = \{\langle M, x \rangle \mid x \in L(M)\}$ je částečně rozhodnutelný, ale není rozhodnutelný.

- Částečná rozhodnutelnost plyne z existence univerzálního Turingova stroje
- Nerozhodnutelnost ukážeme diagonalizací, plán:
 - 1 Univerzální jazyk reprezentujeme jako matici A
 - 2 Jazyk daný doplňkem diagonály A není částečně rozhodnutelný
 - \odot Z toho dovodíme, že L_u není rozhodnutelný

Univerzální jazyk jako matice

 $L_u = \{\langle M, x \rangle \mid x \in L(M)\}$ lze reprezentovat nekonečnou maticí A

Matice univerzálního jazyka

- Každý Turingův stroj M má nekonečně mnoho Gödelových čísel
- \implies Každému Turingovu stroji M odpovídá nekonečně mnoho řádků v matici A
- Každému částečně rozhodnutelnému jazyku odpovídá nekonečně mnoho řádků v matici A

Doplněk diagonály matice A určuje diagonální jazyk

DIAG =
$$\{\langle M \rangle \mid \langle M \rangle \notin L(M)\}$$

- DIAG nemá svůj řádek v matici A
- DIAG není částečně rozhodnutelný

Diagonální jazyk

Diagonální jazyk není částečně rozhodnutelný

Věta

Jazyk DIAG = { $\langle M \rangle \mid \langle M \rangle \notin L(M)$ } není částečně rozhodnutelný

Důkaz.

Sporem: existuje TS M_D , který přijímá DIAG (tj. DIAG = $L(M_D)$)

Nerozhodnutelnost univerzálního jazyka

Věta

Jazyk $L_u = \{\langle M, x \rangle \mid x \in L(M)\}$ není rozhodnutelný.

Důkaz.

- Sporem: Existuje Turingův stroj M_u, který rozhoduje L_u
 - $L_u = L(M_u)$ a $M_u(\langle M, x \rangle) \downarrow$ pro každý vstup $\langle M, x \rangle$
- Pro každý Turingův stroj M platí

$$\langle M \rangle \in \mathrm{DIAG} \qquad \begin{array}{c} \mathsf{definice} \ L_u \\ \\ \langle M \rangle \notin L(M) & \Longleftrightarrow \end{array} \langle M, \langle M \rangle \rangle \notin L_u \end{array}$$

- Stroj M_u lze použít k rozhodování DIAG
- Spor s nerozhodnutelností DIAG

Vlastnosti (částečně)

rozhodnutelných jazyků

Uzavřenost na jazykové operace

Doplněk jazyka L označíme pomocí $\overline{L} = \Sigma^* \setminus L$.

Konkatenací dvou jazyků L_1 a L_2 vznikne jazyk

$$L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1, w_2 \in L_2 \}.$$

Kleeneho uzávěrem jazyka L je jazyk

$$L^* = \{ w \mid (\exists k \in \mathbb{N})(\exists w_1, \dots, w_k \in L) [w = w_1 w_2 \dots w_k] \}.$$

Věta

Jsou-li L_1 a L_2 (částečně) rozhodnutelné jazyky, pak $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 \cdot L_2$, L_1^* jsou (částečně) rozhodnutelné jazyky.

Jsou (částečně) rozhodnutelné jazyky uzavřené na doplněk?

Postova věta

Věta (Postova věta)

Jazyk L je rozhodnutelný, právě když L i \overline{L} jsou částečně rozhodnutelné jazyky.

Důkaz.

Dva kroky

- " \Longrightarrow " L je rozhodnutelný \Longrightarrow L i \overline{L} jsou částečně rozhodnutelné
- " \longleftarrow " L i \overline{L} jsou částečně rozhodnutelné $\implies L$ je rozhodnutelný

Postova věta (důkaz " ⇒ ")

- Předpokládáme, že $L \subseteq \Sigma^*$ je rozhodnutelný jazyk
- \implies Existuje Turingův stroj M rozhodující L
 - L = L(M) a $M(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
 - Sestavíme Turingův stroj M', který se vstupem x
 - 1 Pustí M(x)
 - Na závěr zneguje odpověď
 - M'(x) přijme \iff M(x) odmítne
 - M' přijímá L̄
 - $M'(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
- $\implies \overline{L}$ je rozhodnutelný jazyk
- $\implies L$ i \overline{L} jsou částečně rozhodnutelné jazyky

Postova věta (důkaz " ← ")

- Předpokládáme, že
 - $L=L(M_1)$ pro nějaký Turingův stroj $M_1=(Q_1,\Sigma,\delta_1,q_0^1,F_1)$
 - $\overline{L} = L(M_2)$ pro nějaký Turingův stroj $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$
- Sestavíme Turingův stroj M, který rozhoduje L, tedy
 - L = L(M) a
 - M(x) ↓ pro každý vstup x
- Idea:
 - Pokud $M_1(x)$ přijme, pak $x \in L$
 - Pokud $M_2(x)$ přijme, pak $x \notin L$

Postova věta (důkaz " ← ")

Práce M se vstupem x

- 1 Pusť $M_1(x)$ a $M_2(x)$ paralelně a čekej až jeden z nich přijme
- 2 if $M_1(x)$ přijal then
- 3 přijmi
- 4 if $M_2(x)$ přijal then
- 5 odmítni

Možná implementace M

Stav M reprezentuje stav q_1 stroje M_1 a stav q_2 stroje M_2

Uzavřenost na doplněk

Důsledek

- Třída rozhodnutelných jazyků je uzavřená na operaci doplňku
- Třída částečně rozhodnutelných jazyků není uzavřená na operaci doplňku
- Jazyk L_u je částečně rozhodnutelný, ale není rozhodnutelný
- $\overline{L_u}$ není částečně rozhodnutelný dle Postovy věty
- DIAG = {⟨M⟩ | ⟨M⟩ ∉ L(M)} není částečně rozhodnutelný
- $\overline{\mathrm{DIAG}} = \{\langle M \rangle \mid \langle M \rangle \in L(M)\}$ je částečně rozhodnutelný
 - Plyne z existence univerzálního Turingova stroje

Vztahy tříd jazyků

- PD částečně rozhodnutelné jazyky
 - partially decidable
- co-PD doplňky částečně rozhodnutelných jazyků
 - $L \in \text{co-PD} \Leftrightarrow \overline{L} \in \text{PD}$
 - co-partially decidable
 - DEC rozhodnutelné jazyky
 - decidable

Postova věta: $DEC = PD \cap co-PD$

Algoritmicky vyčíslitelné funkce

Funkce — značení

Pro částečnou funkci $f: \Sigma^* \to \Sigma^*$ definujeme:

Doména f je množina vstupů, pro něž je hodnota f definovaná

$$\operatorname{dom} f = \{ x \in \Sigma^* \mid f(x) \downarrow \}$$

Totální funkce f je definovaná pro každý vstup x, tedy $\operatorname{dom} f = \Sigma^*$ Obor hodnot f je množina možných hodnot f

$$\operatorname{rng} f = \{ y \in \Sigma^* \mid (\exists x \in \Sigma^*) [f(x) \downarrow = y] \}$$

Značení používáme i pro jiné než řetězcové funkce

• například funkce $f: \mathbb{N} \to \mathbb{N}$

Algoritmicky vyčíslitelné funkce (definice)

Intuitivně

Algoritmicky vyčíslitelná funkce jsou právě ty, jejichž hodnoty lze vyčíslit nějakým algoritmem

Definice

Částečná funkce $f: \Sigma^* \to \Sigma^*$ je algoritmicky vyčíslitelná pokud existuje Turingův stroj M, který ji počítá.

Pro každý vstup $x \in \Sigma^*$ platí

- Je-li $f(x) \uparrow$, pak $M(x) \uparrow$
- Je-li $f(x) \downarrow = y$, pak
 - $M(x) \downarrow$ a
 - na výstupní pásce M je po ukončení výpočtu M(x) řetězec y

Algoritmicky vyčíslitelné funkce

- Vyčíslitelné funkce = částečně rekurzivní funkce
- Totální vyčíslitelné funkce = obecně rekurzivní funkce
- Uvažujeme i funkce jiných typů, například
 - aritmetické funkce
 - funkce více parametrů

Příklad

Například funkce

$$f(x,y) = x^2 + y^2$$

může být realizována řetězcovou funkcí

$$f'(\langle x, y \rangle) = \langle x^2 + y^2 \rangle$$

Ne všechny funkce jsou vyčíslitelné

Vyčíslitelných funkcí je jen spočetně mnoho
 ne všechny funkce jsou vyčíslitelné

Příklad

Charakteristická funkce jazyka L_u

$$\chi_u(\langle M, x \rangle) = \begin{cases} 1 & x \in L(M) \\ 0 & x \notin L(M) \end{cases}$$

není algoritmicky vyčíslitelná, protože jazyk

$$L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$$

je algoritmicky nerozhodnutelný

Vlastnosti (částečně)

rozhodnutelných jazyků

Charakteristická funkce rozhodnutelného jazyka

Věta

Jazyk $L \subseteq \Sigma^*$ je rozhodnutelný, právě když jeho charakteristická funkce

$$\chi_L(x) = \begin{cases} 1 & x \in L \\ 0 & x \notin L \end{cases}$$

je algoritmicky vyčíslitelná.

Důkaz.

Důkaz ve dvou krocích

" \Longrightarrow " L je rozhodnutelný $\Longrightarrow \chi_L$ je algoritmicky vyčíslitelná

" \longleftarrow " χ_L je algoritmicky vyčíslitelná $\implies L$ je rozhodnutelný

Důkaz " ⇒ "

- Předpokládáme, že L je rozhodnutelný jazyk
- Existuje Turingův stroj M, který
 - přijímá L(L = L(M))
 - $M(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
- Popíšeme Turingův stroj M', který počítá χ_L

Výpočet M' se vstupem x

- 1 Simuluj M(x)
- $\mathbf{2}$ if M přijal then
- 3 Zapiš na výstup 1
- 4 else
- 5 Zapiš na výstup 0

Důkaz "← "

- Předpokládáme, že funkce χ_L je algoritmicky vyčíslitelná
- Existuje Turingův stroj M, který počítá χ_L
- $M(x) \downarrow$ pro každý vstup $x \in \Sigma^*$
 - protože $\chi_L(x)$ pro každý vstup $x \in \Sigma^*$
- M(x) vypíše na výstup hodnotu $\chi_L(x)$ (1 pokud $x \in L$, jinak 0)
- Popíšeme Turingův stroj M'(x), který
 - přijímá L(L = L(M')) a
 - $M'(x) \downarrow$ pro každý vstup $x \in \Sigma^*$

Výpočet M' se vstupem x

- 1 Simuluj M(x)
- 2 if M vypsal 1 then
- з | přijmi
- 4 else
- 5 odmítni

Přijetí nebo zastavení

Věta

 $\it Jazyk \ L$ je částečně rozhodnutelný, právě když existuje Turingův stroj $\it M$ splňující

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$
 (1)

Důkaz.

Ve dvou krocích

 $_{\text{\tiny M}}\Longrightarrow ^{\text{\tiny H}} L$ je částečně rozhodnutelný \implies existuje M splňující (1)

" \leftarrow " Existuje M splňující (1) $\implies L$ je částečně rozhodnutelný

Důkaz " ⇒ "

- Předpokládáme, že L je částečně rozhodnutelný
- Existuje Turingův stroj M', který přijímá L (L = L(M'))
- Popíšeme Turingův stroj M, který splňuje

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$

Výpočet M se vstupem x

- 1 Simuluj M'(x)
- 2 if M'(x) odmítl then
- 3 vstup do nekonečného cyklu
- Pro každý řetězec $x \in \Sigma^*$

$$x \in L \iff M'(x) \text{ přijme} \iff M(x) \downarrow$$

Důkaz "← "

Předpokládejme, že M je Turingův stroj splňující

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$

Popíšeme Turingův stroj M', který přijímá L (L = L(M'))

Výpočet M' se vstupem x

- 1 Simuluj M(x)
- 2 Přijmi
- Platí

$$x \in L \iff M(x) \downarrow \iff x \in L(M')$$

• Tedy L = L(M')

Domény algoritmicky vyčíslitelných funkcí

Věta

 $Jazyk\ L$ je částečně rozhodnutelný, právě když existuje algoritmicky vyčíslitelná funkce f splňující

$$L = \operatorname{dom} f = \{ x \in \Sigma^* \mid f(x) \downarrow \}$$
 (2)

Důkaz.

ullet L je částečně rozhodnutelný, právě když existuje TS M splňující

$$L = \{ x \in \Sigma^* \mid M(x) \downarrow \}$$
 (3)

- $(2) \implies (3) M$ počítá funkci f
- (3) \implies (2) f je funkce počítaná strojem M

Existenční kvantifikace

Věta

 $\it Jazyk \; L$ je částečně rozhodnutelný, právě když existuje rozhodnutelný jazyk $\it B$ splňující

$$L = \{ x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B] \}$$
 (4)

Důkaz.

Důkaz ve dvou krocích

- " \Longrightarrow " L je částečně rozhodnutelný \Longrightarrow existuje rozhodnutelný jazyk B splňující (4)
- " \leftarrow " existuje rozhodnutelný jazyk B splňující (4) $\implies L$ je částečně rozhodnutelný

Důkaz " ⇒ "

- Předpokládáme, že L je částečně rozhodnutelný
- Existuje Turingův stroj M přijímající L (L = L(M))
- Platí

$$L = \{x \mid (\exists n \in \mathbb{N})[M(x) \text{ přijme do } n \text{ kroků}]\}$$

Rozhodnutelná podmínka, stačí simulovat M(x) po n kroků

Stačí tedy definovat

$$B = \{\langle x, \langle n \rangle \rangle \mid M(x) \text{ přijme do } n \text{ kroků}\}$$

Jazyk B je rozhodnutelný a splňuje

$$L = \{x \in \Sigma^* \mid \underbrace{(\exists y \in \Sigma^*)[}_{y = \langle n \rangle} \underbrace{\langle x, y \rangle \in B}_{M(x) \text{ přijme do } n \text{ kroků}}]\}$$

Předpokládáme, že existuje rozhodnutelný jazyk B splňující

$$L = \{ x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B] \}$$

Popíšeme Turingův stroj M přijímající L (L = L(M))

Výpočet M se vstupem x

- 1 forall $y \in \Sigma^*$ v lexikografickém uspořádání do
- $\mathbf{2} \quad | \quad \mathbf{if} \ \langle x, y \rangle \in B \ \mathbf{then}$
- 3 přijmi
- $x \in L \implies (\exists y \in \Sigma^*)[\langle x, y \rangle \in B] \implies M(x)$ přijme
- $x \notin L \implies (\forall y \in \Sigma^*)[\langle x, y \rangle \notin B] \implies M(x) \uparrow$
- Dohromady L = L(M)

Existenční kvantifikace (příklad)

$$L_{u} = \{ \langle M, x \rangle \mid x \in L(M) \}$$

$$= \{ \langle M, x \rangle \mid (\exists n \in \mathbb{N}) [\underline{M(x) \text{ přijme do } n \text{ kroků}}] \}$$

Rozhodnutelná podmínka, stačí simulovat M(x) po n kroků

Následující jazyk je rozhodnutelný

$$B = \{ \langle M, x, n \rangle \mid M(x) \text{ přijme do } n \text{ kroků} \}$$

Částečně rozhodnutelný jazyk Lu můžeme zapsat jako

$$L_u = \{ \langle M, x \rangle \mid (\exists n \in \mathbb{N}) [\langle M, x, n \rangle \in B] \}$$

Uzavřenost na existenční kvantifikaci

Důsledek

Je-li B částečně rozhodnutelný jazyk, pak jazyk

$$A = \{x \in \Sigma^* \mid (\exists y \in \Sigma^*)[\langle x, y \rangle \in B]\}$$

je též částečně rozhodnutelný.

Důkaz.

Existuje rozhodnutelný jazyk C splňující

$$B = \{\langle x, y \rangle \in \Sigma^* \mid (\exists z \in \Sigma^*) [\langle x, y, z \rangle \in C] \}$$

- Platí $A = \{x \in \Sigma^* \mid (\exists \langle y, z \rangle \in \Sigma^*) [\langle x, y, z \rangle \in C] \}$
- A je částečně rozhodnutelný dle předchozí věty

Uzavřenost na existenční kvantifikaci (příklad)

NE =
$$\{\langle M \rangle \mid L(M) \neq \emptyset\}$$

= $\{\langle M \rangle \mid (\exists x \in \Sigma^*)[x \in L(M)]\}$
= $\{\langle M \rangle \mid (\exists x \in \Sigma^*)[\langle M, x \rangle \in L_u]\}$

- Jazyk L_u je částečně rozhodnutelný
- NE je tedy též částečně rozhodnutelný

Vyčíslitelnost jazyků

Enumerátor

Enumerátorem pro jazyk L je Turingův stroj E, který

- ignoruje svůj vstup,
- vypisuje řetězce $w \in L$ na vyhrazenou výstupní pásku
 - například oddělené #
- každý řetězec $w \in L$ je někdy vypsán TS E
- Je-li L nekonečný, E svou činnost nikdy neskončí

Enumerátor pro jazyk NE

$$NE = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

- Enumerátor pro jazyk NE řeší následující úlohu:
 - Vypiš kódy Turingových strojů, které přijímají alespoň jedno slovo

Enumerátor pro jazyk NE

- 1 **forall** $\langle M, x, n \rangle \in \Sigma^*$ v shortlex uspořádání **do**
- Simuluj výpočet M(x) po nejvýš n kroků
- $\mathbf{if} M(x)$ přijal then
- 4 Zapiš $\langle M \rangle$ na výstup

- Každý kód ⟨M⟩ ∈ NE je vypsán nekonečný počet krát
- Stroje jsou vypisovány v neurčeném pořadí

Enumerátor pro jazyk NE

$$\mathrm{NE} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

Upravíme enumerátor tak, aby každý kód stroje M s neprázdným jazykem byl vypsán právě jednou

Enumerátor jazyka NE

- 1 $S \leftarrow \text{prázdný seznam řetězců}$
- **2 forall** $\langle M, x, n \rangle \in \Sigma^*$ v shortlex uspořádání **do**
- 3 Simuluj výpočet M(x) po nejvýš n kroků
- 4 | if M(x) přijal and $\langle M \rangle \notin S$ then
- 5 | Zapiš $\langle M \rangle$ na výstup
- 6 Přidej $\langle M \rangle$ do seznamu S

Vyčíslitelnost částečně rozhodnutelných jazyků

Věta

Jazyk L je částečně rozhodnutelný, právě když pro něj existuje enumerátor E.

Důkaz.

Důkaz ve dvou krocích

- " \Longrightarrow " L je částečně rozhodnutelný \Longrightarrow existuje enumerátor E pro L
- " \longleftarrow " Existuje enumerátor E pro $L \implies L$ je částečně rozhodnutelný

Důkaz " ⇒ "

- L je částečně rozhodnutelný
- Existuje rozhodnutelný jazyk B splňující

$$L = \{x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B]$$

Enumerátor E jazyka L

- 1 **forall** $\langle x, y \rangle \in \Sigma^*$ v shortlex uspořádání **do**
- 2 | if $\langle x, y \rangle \in B$ then
- 3 Zapiš x na výstup

- Lze upravit tak, aby E vypsal každé slovo x ∈ L právě jednou.
- Prvky L jsou vypisovány v neurčeném pořadí

Důkaz "← "

- Máme enumerátor E pro jazyk L
- Popíšeme Turingův stroj M přijímající L (L = L(M))

Výpočet M se vstupem x

- 1 Simuluj E a sleduj výstup
- 2 if E vypsal x then
- 3 přijmi

```
x \in L \implies E někdy vypíše x a M(x) přijme
```

 $x \notin L \implies E$ nikdy nevypíše x a M(x) nepřijme (zacyklí se)

Dohromady L = L(M)

Enumerátor pro jazyk prvočísel

$$PRIME = \{ \langle p \rangle \mid p \text{ je prvočíslo} \}$$

Úloha: vypisuj prvočísla v rostoucím pořadí

Enumerátor prvočísel

- 1 forall $p \in \mathbb{N}$ v rostoucím pořadí do
- $\mathbf{p} \mid \mathbf{if} p$ je prvočíslo **then**
- 3 | Zapiš $\langle p \rangle$ na výstup

Lze zkonstruovat díky tomu, že jazyk PRIME je rozhodnutelný.

Vyčíslitelnost rozhodnutelných jazyků

Věta

Jazyk L je rozhodnutelný, právě když pro něj existuje enumerátor E, který navíc vypisuje prvky L v shortlex pořadí.

Důkaz.

Důkaz ve dvou krocích

- " L je rozhodnutelný \Longrightarrow existuje enumerátor E pro L, který vypisuje prvky L v shortlex pořadí
- " \Leftarrow " Existuje enumerátor E pro L, který vypisuje prvky L v shortlex pořadí $\Longrightarrow L$ je rozhodnutelný

Důkaz " ⇒ "

- L je rozhodnutelný
- Popíšeme enumerátor E, který vypisuje slova L v shortlex pořadí

```
Enumerátor E jazyka L
```

```
// Podmínku lze ověřit díky rozhodnutelnosti L
```

1 forall $x \in \Sigma^*$ v shortlex uspořádání do

```
if x \in L then
```

3 Zapiš x na výstup

V případě, že L je konečný jazyk, E se po vypsání posledního slova z L zacyklí.

Důkaz "← "

- Máme enumerátor E pro jazyk L
- E vypisuje prvky L v rostoucím shortlex pořadí
- Rozlišíme dva případy
 - 1 L je konečný jazyk $\implies L$ je rozhodnutelný
 - Všechny konečné jazyky jsou rozhodnutelné
 - 2 L je nekonečný jazyk \implies popíšeme stroj M, který rozhoduje L

Výpočet M se vstupem x

- 1 Simuluj E a sleduj výstup
- 2 if E vypsal x then
- з přijmi
- 4 if E vypsal řetězec y > x then
- 5 odmítni

L je nekonečný \implies vždy existuje $y > x \implies$ algoritmus skončí

Vyčíslitelnost jazyků a funkce

Důsledek

Nekonečný jazyk L je částečně rozhodnutelný, právě když je oborem hodnot nějaké totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

- \Longrightarrow " L částečně rozhodnutelný
 - máme enumerátor E pro L
 - Pro jednoduchost uvažujeme parametry f typu N
 - pro $i \in \mathbb{N}$ definujeme

$$f(i) = (i + 1)$$
-ní řetězec vypsaný E

- E vypisuje právě řetězce z L
- Možné hodnoty f jsou právě řetězce z L

Vyčíslitelnost jazyků a funkce

Důsledek

Nekonečný jazyk L je částečně rozhodnutelný, právě když je oborem hodnot nějaké totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

```
_{\tt w} \longleftarrow \text{``Máme funkci } f
```

Popíšeme enumerátor E pro L

Výpočet E

- 1 **forall** $y \in \Sigma^*$ v shortlex pořadí **do**
- **2** Zapiš f(y) na výstup
- $x \in L$
 - \Leftrightarrow existuje y pro nějž f(y) = x
 - \Leftrightarrow E vypíše x

Vyčíslitelnost rozhodnutelných jazyků a funkce

Definice

Funkce $f: \Sigma^* \to \Sigma^*$ je rostoucí, pokud platí, že u < v implikuje f(u) < f(v) pro každé dva řetězce $u, v \in \Sigma^*$, kde $f(u) \downarrow$ a $f(v) \downarrow$.

Důsledek

Nekonečný jazyk L je rozhodnutelný, právě když je oborem hodnot nějaké rostoucí totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

Vyčíslitelnost rozhodnutelných jazyků a funkce

Důsledek

Nekonečný jazyk L je rozhodnutelný, právě když je oborem hodnot nějaké rostoucí totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

 \longrightarrow " L je rozhodnutelný

- Máme enumerátor E, který vypisuje prvky L v rostoucím shortlex pořadí
- lacktriangle Pro jednoduchost uvažujeme parametry f typu ${\mathbb N}$
- Pro $i \in \mathbb{N}$ definujeme

$$f(i) = (i + 1)$$
-ní řetězec vypsaný E

- E vypisuje právě řetězce z L
- Možné hodnoty f jsou právě řetězce z L
- f je rostoucí, protože E vypisuje prvky L v rostoucím shortlex pořadí

Vyčíslitelnost rozhodnutelných jazyků a funkce

Důsledek

Nekonečný jazyk L je rozhodnutelný, právě když je oborem hodnot nějaké rostoucí totální algoritmicky vyčíslitelné funkce f (tj. $L = \operatorname{rng} f$).

```
" \Leftarrow " Máme funkci f
```

Popíšeme enumerátor E pro L

Výpočet E

- 1 forall $y \in \Sigma^*$ v shortlex pořadí do
- 2 Zapiš f(y) na výstup
- E vypisuje právě prvky L v shortlex pořadí, protože f je rostoucí
- E tedy ukazuje, že L je rozhodnutelný