VE320 Homework 7

Due Sep. 13, 11:40am

1.

(a) A Schottky barrier diode formed on n-type silicon has a doping concentration of $N_d = 5 \times 10^{15}$ cm⁻³ and a barrier height of $\phi_{B0} = 0.65$ V. Determine the built-in potential barrier V_{bi} . (b) If the doping concentration changes to $N_d = 10^{16}$ cm⁻³, determine the values of ϕ_{B0} and V_{bi} . Do these values increase, decrease, or remain the same? (c) Repeat part (b) if the doping concentration is $N_d = 10^{15}$ cm⁻³.

2.

(a) Consider a Schottky diode at T=300 K that is formed with tungsten on n-type silicon. Use Figure 9.5 to determine the barrier height. Assume a doping concentration of $N_d=10^{16}$ cm⁻³ and assume a cross-sectional area $A=10^{-4}$ cm². Determine the forward-bias voltage required to induce a current of (i) 10 μ A, (ii) 100 μ A, and (iii) 1 mA. (b) Repeat part (a) for a temperature of T=350 K. (Neglect the barrier lowering effect.)

3.

A pn junction diode and a Schottky diode each have cross-sectional areas of $A=8\times 10^{-4}$ cm². The reverse saturation current densities at T=300 K for the pn junction diode and Schottky diode are 8×10^{-13} A/cm² and 6×10^{-9} A/cm², respectively. Determine the required forward-bias voltage in each diode to yields currents of (a)150 μ A, (b) 700 μ A, and (c) 1.2 mA.

4.

(a) The contact resistance of an ohmic contact is $R_c = 5 \times 10^{-5} \,\Omega$ -cm². The cross-sectional area of the junction is 10^{-5} cm². Determine the voltage across the junction if the current is (i) I = 1 mA and (ii) $I = 100 \,\mu$ A. (b) Repeat part (a) if the cross-sectional area is 10^{-6} cm².

5.

A metal, with a work function $\phi_m = 4.2$ V, is deposited on an n-type silicon semiconductor with $\chi_s = 4.0$ V and $E_g = 1.12$ eV. Assume no interface states exist at the junction. Let T = 300 K. (a) Sketch the energy-band diagram for zero bias for the case when no space charge region exists at the junction. (b) Determine N_d so that the condition in part (a) is satisfied. (c) What is the potential barrier height seen by electrons in the metal moving into the semiconductor?

6.

A metal–semiconductor junction is formed between a metal with a work function of 4.3 eV and p-type silicon with an electron affinity of 4.0 eV. The acceptor doping concentration in the silicon is $N_a = 5 \times 10^{16}$ cm⁻³. Assume T = 300 K. (a) Sketch the thermal equilibrium energy-band diagram. (b) Determine the height of the Schottky barrier. (c) Sketch the energy-band diagram with an applied reverse-biased voltage of $V_R = 3$ V. (d) Sketch the energy-band diagram with an applied forward-bias voltage of $V_a = 0.25$ V.