Definitions

(1)
$$a|b \iff \exists c \in \mathbb{Z} \implies b = ca$$

(2)
$$a\%b = r \iff \frac{a}{b}$$
 has remainder r

(3)
$$a \equiv b \mod n \iff n|b-a$$

Theorem 4.1: if n is even then n^2 is even.

lecture 👁

Theorem 4.2: $a|b \wedge a|c \implies a|b+c$

notes_4.pdf **⊙**

Theorem 4.3: $a \equiv a\%n \mod n$

notes_4.pdf **⊙**

1. Prove that $n^2 \neq 2 \mod 3$, $\forall n \in \mathbb{Z}$ Proof.

$$\forall n \in E, 2 | n \implies 2 | n^2$$
 by theorem 4.1 $2 | n^2 = 2 \mod 0 \neq 2 \mod 3$

2. Fermat's Last theorem is a famous theorem in Math that was unproven for 200 years. The theorem says $\forall n > 2$, $a, b, c \in \mathbb{N} \implies a^n + b^n \neq c^n$. Another way to state this is $a^n + b^n = c^n$ has no integer solutions for n larger than 2. Use this theorem to prove that $\sqrt[n]{2}$ is irrational for n larger than 2.

Proof.

$$\sqrt[n]{2} \in \mathbb{Q} \implies \exists a, b \in \mathbb{Z} : \gcd(a, b) = 1$$

$$\implies \sqrt[n]{2} = \frac{a}{b} \implies a^n = 2b^n$$

$$\implies a^n = b^n + b^n \qquad \blacksquare$$

Note: this is essentially zscoder's proof . No real credit here; I couldn't figure it out myself at first. It's pretty simple though, so I couldn't formulate something else that was better without adding unnecessary steps (originally completed in hwy).

3. Prove $\forall a, b, c \in \mathbb{Z}$: $a|b \wedge a|c \implies a|bx + cy \quad \forall x, y \in \mathbb{Z}$ Proof.

$$b = qa$$
, $c = qa$ by definition 1
 $\implies a|qax + qay = a|a(qx + qy) = a|qa$

4. Prove $\forall n, a, b \in \mathbb{Z}$, $n|a-b \iff a\%n = b\%n$ Proof.

$$a\%n = b\%n \iff \exists q \in \mathbb{Z} : \frac{a}{n} = \frac{qb}{n}$$
$$\implies a = qb$$
$$\implies n|qb - b = n|b(q - 1)$$

Proof by contradiction.

$$a\%n \neq b\%n \implies \exists q \notin \mathbb{Z} : \frac{a}{n} = \frac{qb}{n}$$

 $\implies a \neq qb$

Thus, if a%n = b%n then one integer is guaranteed to be a multiple of the other, which must be true for a-b to be divisible by n. Alternatively, a contradiction arises because every integer should be able to be represented as a multiple of some other integer.

5. Let $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Prove that

$$a \sim b \iff a \equiv b \mod n$$

is an equivalence relation $^{\$}$ for any n.

Proof.

$$a \sim a \wedge b \sim b$$
 by theorem 4.3 \Longrightarrow \checkmark reflexive

$$n|b-a=n|a-b \implies a \sim b \iff b \sim a$$
 by definition 3 \implies symmetric

$$n|b-a \implies a \sim b \wedge n|c-b$$

$$\implies b \sim c \implies n|c-a \implies a \sim c$$

$$\implies \checkmark \text{ transitive}$$

- 6. The greatest common divisor of natural numbers a, b; gcd(a, b), is the largest number δ such that $\delta | a \wedge \delta | b$
 - (a) Let $\delta = \gcd(b, a\%b)$, prove that $\delta|a \wedge \delta|b$ Proof.

$$a\%b = 0 \implies a|b, \gcd(b, 0) = b$$

$$\implies b = \delta, b = ca$$

$$\implies \delta|b, \delta|ca$$

$$\implies \delta|b \wedge \delta|a$$

$$a\%b \neq 0 \implies a\%b = r$$
 by definition 2
$$\implies r|b-a \text{ by definition 3}$$

$$\implies r|a \wedge r|b \text{ by question 3}$$
 $\delta|r \text{ by definition of gcd} \implies \delta|a \wedge \delta|b$

(b) Use (a) to show that gcd(a, b) = gcd(b, a%b)Proof.

$$a\%b = 0 \implies a \le b, \delta = \max(a, b) = b$$
 by part (a)
 $a\%b \ne 0 \implies \delta | r, 0 < r < a \le b$ by part (a)
 $\implies \delta = \max(b, r) = b$

7. We defined the identity function

$$id: A \rightarrow A$$
, $id(x) = x$, has property: $\forall f: A \rightarrow A$, $id \circ f = f \circ id = f$

Prove that id is the only function that can have this property.

Proof by contradiction.

$$g \neq id, \forall g : A \rightarrow A \implies \forall a \in A : g(a) \notin A \land id(a) \in A$$

I.e., there is no unique function that can map all element in a set to themselves while still remaining one-to-one.