Chapter 8: Project Quality Management

Knowledge Areas	Initiating Process group	Planning Process group	Executing Process group	Monitoring & Controlling Process group	Closing Process group
Project Quality Management		Plan Quality Management	Perform Quality Assurance	Perform Quality Control	

Outline

- Project quality management dalam IT
- Quality planning dan hubungan dengan project scope management
- Quality assurance
- Tools quality control
- Support software untuk quality management

Apa yang salah..?

- In 1981, sebuah perbedaan kecil timing menyebabkan semua komputer berhenti bekerja
- In 1986, dua pasien RS meninggal setelah kesalahan dosis radiasi setelah muncul masalah software disebabkan mesin menolak kalibrasi data
- Britain's Coast Guard tidak dapat menggunakan seluruh komputer selama beberapa jam pada mei 2004 setelah diserang virus sasser yang mematikan electronic mapping systems, e-mail, dan computer functions yang lain sehingga memaksa pegawai kembali menggunakan pena, kertas dan radio

Project Quality Management

Planning

Process: Plan quality management

Outputs: Quality management plan, process improvement plan, quality metrics,

quality checklists, and project documents updates

Executing

Process: Perform quality assurance

Outputs: Change requests, project management plan updates,

project documents updates, and organizational process

asset updates

Monitoring and Controlling

Process: Perform quality control

Outputs: Quality control measurements, validated changes,

validated deliverables, work performance information, change requests, project management plan updates,

project documents updates, and organizational

process asset updates

Project Start

Project Finish

Definisi Quality

- The International Organization for Standardization (ISO): quality adalah "tingkat keberhasilan sebuah set karakteristik turunan dalam memenuhi requirement" (ISO9000:2000).
- Ahli yang lain mendefinisikan quality dengan:
 - Conformance to requirements: proses dan produk dari projek memenuhi spesifikasi yang tertulis.
 - Fitness for use: sebuah produk dapat digunakan sesuai dengan yang diminta

Definisi Project Quality Management

- Project quality management memastikan sebuah projek memenuhi kebetuhan mengapa projek tersebut dikerjakan.
- Processes include:
 - Quality planning: identifikasi standart kualitas yang relevant dengan project dan bagaimana memenuhi standart tersebut
 - Quality assurance: evaluasi rutin keseluruhan project performance untuk memastikan projek dapat memenuhi standart kualitas yang ditetapkan.
 - Quality control: monitoring hasil project yang spesifik untuk memastikan apakah sesuai dengan standart kualitas yang diinginkan.

Definisi Quality Planning

- Mencakup kemampuan untuk mengantisipasi situasi dan mempersiapkan aksi untuk mencapai outcome yang diinginkan.
- Penting untuk mencegah kegagalan dengan cara:
 - Memilih material yang sesuai
 - Training dan pemahaman pegawai tentang quality
 - Merencanakan proses untuk memastikan outcome yang sesuai

Definisi Design of experiment

- Design of experiments adalah teknik quality planning untuk mengidentifikasi variable apa saja yang mempengaruhi outcome dari sebuah proses
- Juga dapat mempengaruhi project management area seperti cost dan jadwal penjualan
- Mencakum dokumentasi faktor penting yang berdampang langsung dalam memenuhi customer requirements

Scope Aspects of IT Projects

- Functionality: tingkat dimana system menunjukkan fungsinya
- Features: karakteristik spesial sistem yang menarik untuk user
- System outputs: tampilan dan report yang digenerate system
- Performance: ukuran seberapa baik produk dalam memenuhi harapan user
- Reliability: kemampuan produk menunjukkan fungsi yang diinginkan dalam kondisi dibawah normal
- Maintainability: kemampuan produk untuk dilakukan miantanance

Quality Assurance

- Quality assurance mencakup seluruh aktifitas untuk memenuhi standart kualitas dari sebuah projek
- Tujuan lain dari QA adalah pengembangan adanya peningkatan kualitas.
- Benchmarking: ide umum untuk peningkatan kualitas dengan membandingkan projek atau kareakteristik produk dengan projek atau produk di dalam atau di luar organisasi.
- A quality audit: review terstruktur dari aktifitas manajemen kualitas untuk mengidentifikasi pelajaran apa yang dapat meningkatkan performa (existing and next project)

Quality Control

- Output utama dari QC:
 - Acceptance decisions
 - Rework
 - Process adjustments
- Beberapa tools dan teknik yang digunakan:
 - Check Sheet
 - Scatter Diagram
 - Cause & Effect Diagram
 - Pareto Charts
 - Flow Chartss
 - Histogram
 - Control Charts
 - Six Sigma

Cause-and-Effect Diagrams

- Cause-and-effect diagrams trace complaints about quality problems back to the responsible production operations
- They help you find the root cause of a problem
- Also known as fishbone or Ishikawa diagrams
- Can also use the 5 whys technique where you repeated ask the question "Why" (five is a good rule of thumb) to peel away the layers of symptoms that can lead to the root cause

Cause-and-Effect Diagrams

- Cause-and-effect diagrams trace complaints about quality problems back to the responsible production operations
- They help you find the root cause of a problem
- Also known as fishbone or Ishikawa diagrams
- Can also use the 5 whys technique where you repeated ask the question "Why" (five is a good rule of thumb) to peel away the layers of symptoms that can lead to the root cause

Figure 8-2. Sample Cause-and-Effect Diagram

Cause and Effect Diagram Sample Sample Sample Text Text Text Sample text Sample text-Sample texthere here here Sample Sample Sample text text text Sample texthere Sample text Sample Sample texthere text here Sample **Text** Sample Sample text text Sample texthere here Sample text Sample Sample texthere text here Sample text Sample here Sample text text here Sample text here Sample Sample Sample Text Text Text

Quality Control Charts and the Seven Run Rule

- A control chart: grafik yang menampilkan data yang menggamparkan hasil dari proses secara over time.hal ini berguna untuk mencegah kerusakan dan membantu untuk mendefinisikan apakah proses didalam kontrol atau luar kontrol
- The seven run rule states adalah 7 data poin dalam satu row dimana posisisinya dibawah rata-rata, diatas rata-rata, atau semuanya naik atau turun, dan kebutuhan proses untuk diuji dengan non-random problem.

Figure 8-3. Sample Quality Control Chart

Checksheet

- A checksheet is used to collect and analyze data
- It is sometimes called a tally sheet or checklist, depending on its format
- In the example in Figure 8-4, most complaints arrive via text message, and there are more complaints on Monday and Tuesday than on other days of the week
- This information might be useful in improving the process for handling complaints

Figure 8-4. Sample Checksheet

System Complaints

	Day							
Source	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
Email	III	III	1		1		I	12
Text	#	III	#1		1111	- 1		29
Phone call			I	T		- 1	0.000	8
Total	11	10	8	6	7	3	4	49

Contoh - contoh Check sheet

- Process Distribution Check Sheet
- Defective Item Check Sheet
- Defect Location Check Sheet (atau Location Plot atau Concentration Diagram)
- Defective Cause Check Sheet
- Check-up Confirmation Check Sheet (atau Checklist)

Process Distribution Check Sheet

Check sheet ini mengukur frekuensi satu item di berbagai pengukuran, secara visual menunjukkan distribusi yang interpretasikan sebagai histogram-histogram

Defective Item Check Sheet

Check sheet ini menghitung dan mengklasifikasikan cacat menurut jenisnya, Hasil check sheet ini dapat dijadikan analisis Pareto, di mana data kemudian akan diurutkan dari yang terbesar sampai dengan yang terkecil

Type of Defect	Count		
Dirty	HH HH II	12	
Broken stitching	III III III III III III III III III II	42	
Inconsistent margin	ин ин ин	15	
Wrinkle	THI THI THI THI THI	30	
Long thread	HI HI	10	
Padding shape	HI III	8	
Off center	HH HH HH III	18	
Stitch per inch	THI HH HH IIII	24	
Others	шшшшш	22	
	Total Defects:	181	

Defect Location Check Sheet

Check sheet ini menggunakan gambar item untuk ditandai posisi cacatnya sehingga dapat diketahui di mana cacat terbanyak terjadi dalam proses,

Defective Cause Check Sheet

Check sheet ini bertujuan untuk mengkorelasikan sebab dan akibat dengan memasukkan faktor-faktor penyebab yang mungkin, seperti waktu, operator, mesin, dan lokasi.

Operator	Time	Workstation 1	Workstation 2
Db	07 ⁰⁰ - 12 ⁰⁰	Ĭ.	х
Bambang	13 ⁰⁰ - 16 ⁰⁰	х	XXXXX
Budi	07 ⁰⁰ - 12 ⁰⁰	X	xx
	13 ⁰⁰ - 16 ⁰⁰	xx	XXXXX
Ega	07 ⁰⁰ - 12 ⁰⁰		
	13 ⁰⁰ - 16 ⁰⁰	XX	XXXXXX
	07 ⁰⁰ - 12 ⁰⁰	X	xx
Bowo	13 ⁰⁰ - 16 ⁰⁰	X	XXXXXXXXXX

Check-up Confirmation Check Sheet

Check sheet ini berisi daftar tindakan atau hasil tindakan yang akan dicentang ketika telah selesai dilakukan

No	Item	Direction	/	Locations / Comments
23	Flexible cords and cables free of splices, frayed wiring or deteriorated insulation	no bare wires (includingif it is no longer used/ old wire hangings)		
24	Individual equipment such as sewing machines, buffing machines and cutting machines are wired so as not to interfere with work or employees	this includes wires across walk way without protection		
25	Disconnecting switches and circuit breakers (electrical panel) are labeled to indicate their use or equipment served	Example: breaker #6-lights/ Switch 1C- Rubbermill #2		
26	Electrical enclosures (i.e. switches, receptacles, junction boxes, etc.) are provided with tight fitting covers or plates			
27	Electrical equipment (i.e. electrical panels, fuse/breaker boxes) are accessible and free of obstructions	marked with floor lines at least 1 meter in front, can be locked and only an authorized person can work on it		

Histograms

- A histogram is a bar graph of a distribution of variables
- Each bar represents an attribute or characteristic of a problem or situation, and the height of the bar represents its frequency

Figure 8-6. Sample Histogram

- Pareto analysis mencakup identifikasi akar masalahyang berkontribusi dalam permasalahan kualitas.
- Disebut juga 80-20 rule, artinya 80% masalah biasanya berkaitan dengan 20% penyebab.
- Pareto diagrams adalah histograms, atau chart kolom yang menggambarkan frequency distribution, untuk mengidentifikasi dan memprioritaskan area masalah

Figure 8-1. Sample Pareto Diagram

Data Defect Proses Produksi

Sp	patu	
	pata	

Sepatu Causes	Frequency
Broken stitching	42
Dirty	12
Inconsistent margin	15
Long thread	10
Off center	18
Others	22
Padding shape	8
Stitch per inch	24
Wrinkle	30

Data Defect Proses Produksi Sepatu

	Frequenc	Frequency (in	Cumulative freq. (in
Causes	у	%)	%)
Broken stitching	42	23	23
Wrinkle	30	17	40
Stitch per inch	24	13	53
Others	22	12	65
Off center	18	10	75
Inconsistent margin	15	8	83
Dirty	12	7	90
Long thread	10	6	96
Padding shape	8	4	100
Total	181	100	

Flowcharts

- Flowcharts are graphic displays of the logic and flow of processes that help you analyze how problems occur and how processes can be improved
- They show activities, decision points, and the order of how information is processed
- Flow charts (bagan arus) adalah alat bantu untuk memvisualisasikan proses suatu penyelesaian tugas secara tahap-demi-tahap untuk tujuan analisis, diskusi, komunikasi, serta dapat membantu kita untuk menemukan wilayah-wilayah perbaikan dalam proses
- Software yang biasa digunakan untuk membuat flowchart adalah microsoft visio

\bigcirc

Simbol-Simbol Flowchart yang Umum Digunakan (1)

Simbol-Simbol Flowchart yang Umum Digunakan (2)

	Document, simbol untuk menunjukkan proses atau keberadaan dokumen.
	Input/Output, simbol untuk menunjukkan data yang menjadi input atau output proses.
0	Connector (On-page), simbol untuk menunjukkan hubungan simbol dalam <i>flowchart</i> sebagai pengganti garis untuk menyederhanakan bentuk saat simbol yang akan dihubungkan jaraknya berjauhan dan rumit jika dihubungkan dengan garis.
abla	Off-page Connector, fungsinya sama dengan Connector, akan tetapi digunakan untuk menghubungkan simbol-simbol yang berada pada halaman yang berbeda. Label untuk Connector dapat menggunakan huruf dan Off-page Connector menggunakan angka.

Figure 8-8. Sample Flowchart

Six Sigma

Six Sigma adalah sebuah sistem yang fleksibel dan komperhensif untuk mencapai, mendukung dan memaksimalkan kesuksesan bisnis. Six Sigma secara unik dibuat dengan pendekatan kebutuhan konsumen, fakta dari kebutuhan, data, dan analisa statistik. Dan dan perhatian yang cermat untuk memanage, meningkatkan bisnis proses *

^{*}Pande, Peter S., Robert P. Neuman, and Roland R. Cavanagh, *The Six Sigma Way*, New York: McGraw-Hill, 2000, p. xi.

Basic Information on Six Sigma

- Tingkat mutu dimana hanya 3.4 defect dihasilkan dari 1.000.000 peluang terjadinya defect
- Prinsip-prinsip dapat diterapkan pada berbagai macam proses.
- Six Sigma projects secara normal mengikuti lima fase improvement yang disebut DMAIC

Figure 8-2. Normal Distribution and Standard Deviation

DMAIC

- Six Sigma projects secara normal mengikuti lima fase improvement yang disebut DMAIC
- DMAIC ada adalah sebuah sistematis, rangkaian proses untuk melanjutkan peningkatan yang scientic dan berdasarkan fakta.
- DMAIC terdiri dari:
 - Define: Define the problem/opportunity, process, and customer requirements.
 - Measure: Define measures, then collect, compile, and display data.
 - Analyze: Scrutinize process details to find improvement opportunities.
 - Improve: Generate solutions and ideas for improving the problem.
 - Control: Track and verify the stability of the improvements and the predictability of the solution.

DEFECT = Nonconformity = kesalahan = kegagalan = cacat

- Produk/Service disebut memiliki DEFECT jika terdapat sekurang-kurangnya satu spesifikasi yang tak dipenuhi .
- Defect bisa bersifat minor maupun major

Contoh:

Produk/Service Jenis Defect

Nasi goreng Rasa tidak enak, penyajian tidak menarik

Laporan keuangan Terlambat, analisa tidak akurat

Pengiriman barang Salah barang, salah jumlah, terlambat, rusak

Penjualan Tidak mencapai target

Rekrutmen Salah orang, lama

Mengecat Tergores, mengelupas, tidak rata

DPMO

Defects per million opportunities

$$DPMO = \frac{1,000,000 \times \text{number of defects}}{\text{number of units} \times \text{number of opportunities per unit}}$$

Tabel konversi DPMO ke sigma (σ)

CONTOH: DEFECT & SIGMA

QC memeriksa 100 sepidol dari setiap karton berisi 1000 sepidol . Misal setiap sepidol memiliki 5 peluang defect : tergores, tinta kering, defect printing packaging, diameter tak sesuai, penutup tidak rapat. Maka peluang defect dalam 100 sepidol adalah = 100 x 5 = 500 peluang defect

Jika dalam 100 sepidol ditemukan defect sbb:

SEPIDOL	defectA	defectB	defectC	defectD	defectE	Sub Ttl Defect
1	1	1	1		1	4
2						0
77		1				1
90					1	1
91	1	1			1	3
98					1	1
100		1			1	2
TOTAL	2	4	1	0	5	12

DPMO =
$$\frac{12 \text{ Defect x}}{(100 \text{X5})}$$
 1.000.000 = 24.000
= 3.45 σ (Lihat Tabel Konversi)

Six 9s of Quality

- Six 9s of quality adalah ukuran dari Quality control yang setara antara 1 hingga 1 juta kesempatan.
- Dalam industri telekomunikasi ini berarti 99,9999 persen service yang tersedia untuk 30 detik down time dalam setahun.
- Level kualitas ini juga menyatakan goal target dari jumlah error dalam sirkuit komunikasi, kesalahan sistem, dan error dalam baris kode.

Testing

- Banyak profesional IT berpikir testing adalah stage yang datang ketika IT produk development mendekati akhir
- Testing harus selesai dilakukan pada setiap fase dalam IT product development life cycle

Figure 8-4. Testing Tasks in the Software

Developm

Tipe testing

- Unit testing testing pada setiap unit komponen (kebanyakan program) untuk memastikan defect-free
- Integration testing terjadi antara unit dan system testing untuk tess fungsionalitas grup komponen
- System testing testing pada seluruh system sebagai satu entitas
- User acceptance testing adalah sebuah testing independent yang dilakukan oleh end user sebelum menyetujui penerimaan system.

Modern Quality Management

- Modern quality management:
 - Membutuhkan kepuasan pelanggan
 - Lebih fokus pencegahan.
 - Mengacu tanggung jawab management untuk mendapatkan kualitas
- Noteworthy quality experts terdiri dari :Deming, Juran, Crosby, Ishikawa, Taguchi, dan Feigenbaum.

Quality Experts

- Deming terkenal dengan kerjanya membangun ulang jepang dan 14 Points for Management yang dia miliki
- Juran menulis the Quality Control Handbook dan 10 langkah untuk quality improvement.
- Crosby menulis Quality is Free dan rekomendasi kerja agar perusahan mencapai zero defects.
- Ishikawa membangun konsep quality circles dan fishbone diagrams.
- Taguchi membangun metode untuk optimasi proses engineering experimentation.
- Feigenbaum membangun konsep total quality control.

Figure 8-6. Sample Fishbone or Ishikawa Diagram

ISO Standards

- ISO 9000 adalah quality system standard yang:
 - Terdiri dari 3 bagian, continuous cycle of planning, controlling, and documenting quality dalam sebuah organization.
 - Menyediakan minimum requiremen yang dibutuhkan organisasi untuk mencapai quality certification standards.
 - Membantu organisasi di seluruh dunia untuk mengurangi cost dan meningkatkan kepuasan pelanggan
- ISO 15504, juga dikenal dengan SPICE (Software Process Improvement and Capability dEtermination), sebuah framework penilaian dalam proses software

The Cost of Quality

- The cost of quality adalah biaya conformance dan biaya nonconformance.
 - Conformance (kesesuaian): menghasilkan produk yang sesuai requirement dan siap digunakan.
 - Cost of nonconformance: tanggung jawab untuk kesalahan atau karena tidak memenuhi ekspektasi kualitas yang diinginkan.
- Sebuah penelitian melaporkan bahwa software bugs menghanguskan biaya U.S. economy \$59.6 billion tiap tahun dan sepertiga dari bugs dapat dieleminasi dengan meningkatkan testing infrastruktur

^{*}RTI International, "Software Bugs Cost U.S. Economy \$59.6 Billion Annually, RTI Study Finds," July 1, 2002.

Table 8-5. Costs Per Hour of Downtime Caused by Software Defects

Business	Cost per Hour Downtime		
Automated teller machines (medium-sized bank)	\$14,500		
Package shipping service	\$28,250		
Telephone ticket sales	\$69,000		
Catalog sales center	\$90,000		
Airline reservation center (small airline)	\$89,500		

Five Cost Categories Related to Quality

- Prevention cost: biaya planning dan executing sebuah projek hingga free dari error atau masuk range persetujuan
- Appraisal cost: biaya untuk evaluasi proses dan outputnya untuk memastikan kualitas.
- Internal failure cost: biaya untuk mengkoreksi dan mengidentifikasi kesalahan sebelum diterima oleh customer
- External failure cost: biaya semua error yang tidak terdeteksi dan koreksnya sebelum diterima customer.
- Measurement and test equipment costs: Biaya modal peralatan yang digunakan untuk melakukan kegiatan pencegahan dan penilaian

Menggunakan software bantu dalam quality management

- Spreadsheet dan charting software dapat digunakan untuk Pareto diagrams, fishbone diagrams, dll
- Paket statistical software dapat digunakan untuk statistical analysis.
- Specialized software products membantu untuk projek six sigma atau mebuat quality control charts.
- Project management software membantu membuat Gantt charts dan masih banyak tool lain yang dapatmembantu dalam quality managemengand other tools to help plan and track work related to quality management.