Bayesian Statistics

Fabio Sigrist

ETH Zurich, Autumn Semester 2019

Today's topics

- ► Rejection sampling
- Importance sampling
- Basics of Markov chain Monte Carlo

Fabio Sigrist 1/31

Goal of simulation methods

Assume that $X \sim \pi$ where π is the **target distribution**. Our goal is to approximate

$$\mu_h = \mathbb{E}_{\pi}(h(X)) = \int h(x)\pi(x)dx$$

▶ Sample $X^1, ... X^N$ from π and use the following approximation

$$\mu_h \approx \bar{h}_N := \frac{1}{N} \sum_{t=1}^N h(X^t)$$

Fabio Sigrist 2/31

Rejection sampling

Fabio Sigrist 3/31

Rejection sampling

Key idea

- 1. Simulate with a different distribution τ (called the **proposal**)
- 2. Correct to obtain a sample from the **target** π

Assume that $\pi(x) \leq M\tau(x) < \infty$ for all x and thus*

$$a(x) := \frac{\pi(x)}{M\tau(x)} \le 1$$

- $ightharpoonup a(\cdot)$ is called the **acceptance function**
- \blacktriangleright $M\tau(x)$ is called the **envelope**

Fabio Sigrist 4/31

^{*}We assume that densities exist and use the same symbols to denote densities of the distributions

Rejection sampling

Algorithm

- 1. Generate (Y, U) independent with $Y \sim \tau$ and $U \sim \textit{Uniform}(0, 1)$
- 2. If $U \le a(Y)$, set X = Y, otherwise go back to step 1

The X generated by this algorithm has the correct distribution:

$$\mathbb{P}(X \in A) = \mathbb{P}(Y \in A \mid U \leq a(Y)) = \int_{A} \pi(X) dX$$

for all measurable sets A

Proof: see blackboard

Clicker question

Fabio Sigrist 5/31

Fabio Sigrist 6/31

Y accepted if:
$$U \leq \frac{\pi(Y)}{M\tau(Y)} \Leftrightarrow M\tau(Y) \cdot U \leq \pi(Y)$$

Fabio Sigrist 7/31

Y accepted if:
$$U \leq \frac{\pi(Y)}{M\tau(Y)} \Leftrightarrow M\tau(Y) \cdot U \leq \pi(Y)$$

Fabio Sigrist 8/31

M controls the number of rejected values

Fabio Sigrist 9/31

Comments on rejection sampling

- It is sufficient to know π up to a normalizing constant
- The expected number of pairs that need to be sampled until the first Y is accepted is M
 - The expected number of rejections is often large unless τ is reasonably close to π
- In high dimensions, it is often difficult to find a proposal which is close to the the target and from which we can simulate

Fabio Sigrist 10/31

Fabio Sigrist 11/31

► The goal is to calculate

$$\mathbb{E}_{\pi}(h(X)) = \int h(x)\pi(x)dx$$

Importance sampling is based on a similar idea as rejection sampling. Instead of rejecting some variables, we weight them with an appropriate weighting function

Fabio Sigrist 12/31

If Y^t i.i.d. $\sim \tau$, then

$$\frac{1}{N} \sum_{t=1}^{N} h(Y^t) w(Y^t) \quad \text{where} \quad w(x) = \frac{\pi(x)}{\tau(x)}$$

is an unbiased estimator for $\mathbb{E}_{\pi}(h(X))$

► Requirement: $h(x)\pi(x) > 0 \Rightarrow \tau(x) > 0$

Derivation: see blackboard

Fabio Sigrist 13/31

Fabio Sigrist 14/31

Fabio Sigrist 15/31

Fabio Sigrist 16/31

Fabio Sigrist 17/31

Importance sampling for unnormalized densities

If the **normalizing constant for** π **is not known**, one can use an alternative version of importance sampling:

$$\frac{\frac{1}{N}\sum_{t=1}^{N}h(Y^t)w(Y^t)}{\frac{1}{N}\sum_{t=1}^{N}w(Y^t)} \quad \text{where} \quad w(x) \propto \frac{\pi(x)}{\tau(x)}$$

This estimator is biased but consistent

Fabio Sigrist 18/31

Comments

- ▶ No upper bound is needed for the ratio $w = \pi/\tau$
- It is desirable that the estimator has finite variance. This leads to conditions for π and τ
- In order to avoid very large variances, τ must also be similar to π . I.e., the normalized weights $w(Y^t)/\sum_s w(Y^s)$ should not be too far from uniform

This is difficult in high dimensions (most high dim. distributions tend to differ greatly) ⇒ use of importance sampling in high dimensions is limited

Fabio Sigrist 19/31

Sampling Importance Resampling (SIR)

If we want an **unweighted sample** instead of a weighted one, we can use resampling:

Fenerate an additional sample (I^t) which takes values in $\{1, 2, ..., N\}$ with probabilities proportional to the weights $(w(Y^s))$:

$$\mathbb{P}(I^t = s) = \frac{w(Y^s)}{\sum_{r=1}^{N} w(Y^r)}$$

Set

$$Z^t = Y^{I^t}$$

See blackboard for justification

Clicker question

Fabio Sigrist 20/31

Markov chain Monte Carlo

Fabio Sigrist 21/31

Motivation

- In many cases, especially in high dimensions, there are no good methods to generate i.i.d. samples from a general target distribution π
 - The rejection algorithm fails because it almost always rejects (the bound for the ratio of the densities is too large)
 - Importance sampling fails because the variance of the weights is too large
- ► The current standard method for the simulation of distributions in high dimensions is called Markov chain Monte Carlo (MCMC)

Fabio Sigrist 22/31

Idea of Markov chain Monte Carlo

Basic idea: Instead of generating independent samples $X^t \sim \pi$, we generate **dependent samples** X^t such that for large t, X^t has (approximately) the correct distribution π

Fabio Sigrist 23/31

Illustration of MCMC

Fabio Sigrist 24/31

Illustration of MCMC

Fabio Sigrist 25/31

Basics of Markov chain Monte Carlo

Fabio Sigrist 26/31

Basics of Markov chain Monte Carlo

1. Start with an arbitrary initial value X^0 and generate a sequence $(X^0, X^1, ...)$ recursively:

$$X^t = G(X^{t-1}, U^t)$$

where U^t is a vector of uniform random variables that are independent of X^0, \ldots, X^{t-1}

2. Use the approximation

$$\int h(x)\pi(x)dx \approx \bar{h}_{N,r} = \frac{1}{N-r}\sum_{t=r+1}^{N}h(X^{t})$$

- ▶ The first r simulations are discarded until we reach the target π . r is the so-called **burn-in period**
- \triangleright In contrast to previous methods, the X^t s are not independent

Fabio Sigrist 27/31

Basics of Markov chain Monte Carlo

- ▶ The random variables $(X^0, X^1, ...)$ form a **Markov chain**:
 - X^t depends on X^{t-1} and new (uniform) random variables U_t but not on previous values X^s with s < t-1
- ► The conditional distribution of X^t given X^{t-1} is called the transition kernel P of the chain

$$\mathbb{P}(X^t \in A \mid X^0, \dots, X^{t-1}) = \mathbb{P}(X^t \in A \mid X^{t-1}) = P(X^{t-1}, A)$$

It is determined by the function G through

$$P(x,A) = \mathbb{P}(G(x,U) \in A) = \mathbb{P}(U \in \{u; G(x,u) \in A\})$$

Fabio Sigrist 28/31

How to specify the transition rule *G*

How can we specify a transition rule

$$X^t = G(X^{t-1}, U^t)$$

for the Markov chain such that the arithmetic mean $\bar{h}_{N,r} = \frac{1}{N-r} \sum_{t=r+1}^{N} h(X^t)$ converges to $\int h(x) \pi(x) dx$?

The general theory of Markov chains shows that this holds in a wide range of cases if

- 1. The chain can reach all sets A with $\pi(A) > 0$
- 2. $X^{t-1} \sim \pi$ implies that $X^t \sim \pi$

Fabio Sigrist 29/31

Invariance

We call a distribution π invariant or stationary for the transition kernel P if $X^{t-1} \sim \pi$ implies that $X^t \sim \pi$. I.e., if

$$\pi(A) = \int \pi(x)P(x,A)dx \quad \forall A$$

If P(x, .) has the density p(x, y), this equals

$$\pi(y) = \int \pi(x) p(x, y) dx$$

Fabio Sigrist 30/31

How to specify the transition rule *G*

There are two widely used recipes for constructing a transition kernel P which has a given target distribution π as stationary distribution:

- The Gibbs sampler
- ▶ The Metropolis-Hastings algorithm

Fabio Sigrist 31/31