```
import numpy as np
import pandas as pd
from pandas import DataFrame

# Data Visualization
import seaborn as sns
import matplotlib.pyplot as plt

# Maths
import math
%matplotlib inline
```

#My path to dataset: /content/drive/MyDrive/Colab Notebooks/PAD/Datasets/Churn_Modelling.csv
df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/PAD/Datasets/Churn_Modelling.csv")

First 5 rows of the dataset
df.head()

→		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalar
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.8
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.5
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.5
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.6
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.1

Next steps:

View recommended plots

New interactive sheet

```
plt.hist(df.CreditScore, bins=20, rwidth=0.8)
plt.xlabel('CreditScore')
plt.ylabel('Count')
plt.title('Histogram - CreditScore')
plt.show()
```



```
inf = np.isinf(df[['CreditScore']]).values.sum()
if inf == 0:
    print("No infinity values.")
else:
    print("Infinity Values")
```

 \rightarrow No infinity values.

```
cr_mean = np.nanmean(df.CreditScore.values.tolist())
cr_std = np.nanstd(df.CreditScore.values.tolist())
print("Mean Credit Score is: ", cr_mean)
print("Standard Deviation of Credit Score is: ", cr_std)
```

Mean Credit Score is: 650.5288
Standard Deviation of Credit Score is: 96.64846595037089

```
df['zscore_CreditScore'] = ((df.CreditScore) - (cr_mean)) / cr_std
df[["Surname", "CreditScore", "zscore_CreditScore"]].head()
```



```
# Extreme values based on credit score.
df_outlier = df[(df.zscore_CreditScore<-3) | (df.zscore_CreditScore>3)]
print(df_outlier[['CustomerId', 'Surname', 'CreditScore', 'Balance', 'EstimatedSalary', 'zscore_CreditScore']])
```

	CustomerId	Surname	CreditScore	Balance	EstimatedSalary	١
1405	15612494	Panicucci	359	128747.69	146955.71	
1631	.631 15685372 Azubu		350	152677.48	191973.49	
1838 15758813		Campbell	350	109733.20	123602.11	
1962	15692416	Aikenhead	358	143542.36	141959.11	
2473	15679249	Chou	351	163146.46	169621.69	
8723	15803202	Onyekachi	350	0.00	125823.79	
8762	15765173	Lin	350	0.00	113796.15	
9624	15668309	Maslow	350	111098.85	172321.21	
	zscore_Cred	itScore				
1405	-3	.016383				
1631	-3	.109504				
1838	-3	.109504				
1962	-3	.026730				
2473	-3	.099157				
8723	-3	.109504				
8762	-3	.109504				
9624	-3	.109504				