https://github.com/savthe/discrete_math

Конечные поля — 3

- **1.** Докажите, что факторкольцо $\mathbb{F}_p[x]/(x+a)$ изоморфно \mathbb{F}_p .
- **2.** Пусть u(x) и v(x) взаимно простые многочлены в $\mathbb{F}_p[x]$. Докажите, что имеет место изоморфизм $\mathbb{F}_p[x]/(u(x)\cdot v(x))\cong \mathbb{F}_p[x]/(u(x))\times \mathbb{F}_p[x]/(v(x))$.
- **3.** Докажите, что в любом конечном поле найдется подполе \mathbb{F}_p .
- **4.** Докажите, что любое конечное поле содержит p^n элементов, где p- простое число, а n- натуральное.
- **5.** Пусть k конечное поле. Докажите, что k изоморфно $\mathbb{F}_p[x]/(\pi(x))$, где $\pi(x)$ неприводимый многочлен в $\mathbb{F}_p[x]$.
- **6.** Докажите, что для любого простого p и натурального n существует поле из p^n элементов.
- 7. Пусть $\mathbb F$ и $\mathbb L$ конечные поля с одинаковым количеством элементов. Докажите, что они изоморфны.