Analog Electronic Circuits

Assignment - 4

Question 1: BJT Characterization

(a) Given, BC547B npn transistor

 $V_{cc} = 12 \text{ V}$ The required DC sweep from 0 to 100 UA with step 10 UA Below is the plot between V_{BE} and I_B .

The forward - bias emitter-base junction (EBJ) voltage from the plot = 666, 40906 mV

Now, de sweep of le with vec varying from 0 to 120

and step size of 24.

(b) BC547B npn transistor

Circuit:

Plot of Ic vs VBE for Vcc = (2V

vbe/_{vt}

We know that, $T_{C_2} = I_s e$ and $V_T = kT$

=> T_{Cz} & e''

As temperature, T \(\) => \(\frac{1}{T} \) \(\)

: Collector current decreases

The below is the required LtSpice Simulation.

* At $V_{CE} = 100 \text{mV}$ — Saturation Mode

Ig	t^{c}	B = IYIB	incremental
50 UA	6.22 MA	lb 4. 4	Current Gain
60 MA	Am f0.3	101.16	

* At
$$V_{CE} = 600 \,\text{mV} \longrightarrow Active Mode$$

I g	t_{c}	B = Ic/IB	incremental
50 UA	12.95 MA	259	Current Gain
60 UA	15.2 MA	253.33	

Reasons for the difference Observed:

* At $V_{CE} = 100 \text{ mV} \longrightarrow \text{The transistor } U$ in saturation mode

The CB Junction is In

 \longrightarrow Collector current is very low $I_c = I_s$

* At VCE = 600 mV - The transistor is in

active mode

The CB Junction is in reverse bias

Collector current is high VRE/vr Tc = Ts e

Тв	Tc	B = TB/Tc
0 A	-180.28 GA	_
lo MA	2-8 mA	280
20 MA	6. DZ MA	275.1
30 MA	8.11 MA	270.33
40 MA	10.61 MA	265. 25
So MA	13.01 mA	260.8
60 MA	15,39 mA	256.5
TO MA	11.68 mA	252.25
80 MA	19.91 MA	248.81
90 un	22. 01 mA	244.66
loo un	24. 20 mA	242

The average B value from above is

B = 259.56

Early Voltage:

The reverce - bias current in CB Junction increases

116 10000 3100 00 1010 111 00 000 0000 116 0000

i.e., as we increase V_{CC} , the width of the depletion region in CB Junction increases.

⇒ Width of depletion increases

Because of this the no of e^{Θ} coming into collector witto time also increases. Hence collector current I_{C} increases.

Also, this trend is clearly seen in the simulation below.

Estimating VA value:

Let's fix 1p = 50 h

At $V_{Ce} = IV \implies I_{C} = I2.94 \text{ mA}$ $V_{Ce} = 2V \implies I_{C} = I3.16 \text{ mA}$

Given, slope = 1c Va + VcE

As slopes must be equal,

$$\frac{0 - 13.16}{V_A - 2} = \frac{12.92 - 13.16}{1 - 2}$$

$$\frac{-13.16}{v_{A}-2} = 0.24$$

" The estimated early voltage is -54.61 v

Below is the Ut Space simulation with all the regions marked:

Question 2: BJT Amplifier Analysis and Design

Given parameters,

$$V_{CC} = 12V$$
 $R_{1} = 18.46 \text{ k.n.}$
 $C_{8} = 10 \text{ MF}$
 $R_{2} = 2.24 \text{ k.n.}$
 $C_{C} = 10 \text{ MF}$
 $R_{E} = 2 \text{ k.n.}$
 $C_{C} = 10 \text{ MF}$
 $R_{C} = 30.3 \text{ k.n.}$
 $R_{C} = 1 \text{ k.n.}$

(a) DC Picture

When doing the DC analysis,

- All the AC voltage sources are shorted and all the AC current sources are opened.

- All the capacitors are open

Because: When a DC signal is sent in

$$W \longrightarrow 0 \Rightarrow U \longrightarrow W$$

$$X_c = \frac{1}{jwc} = \infty$$

Impedance of capacitor = 00

=> Open circuit

Large Signal Model

12

The value of is is very small.

Apply Voltage divider,

$$= \frac{2.24 \text{ k}}{2.24 \text{ k} + 18.46 \text{ k}} \times 12$$

103/1

VE = 1.2986 - 0.7

$$I_c = \frac{\beta}{1+\beta} \hat{\iota}_{\varepsilon}$$

From Q1 part c) the value of B = 259.56

$$I_c = \frac{259.56}{260.56} \times 0.2993 \text{ mA}$$

We know that, $I_E = I_B + I_C$

$$V_{c} = V_{cc} - I_{c}R_{c}$$

$$= 12 - (0.298\%)(20.2\%)$$

Ve = 2.9706 V

(b) Operation Point Simulation (.op)

	Theoretical Values	Simulated Values
٨	1- 2986 V	1-29615 V
Vc	2.9706V	1.6465 V
Ve	0.8986 V	0.6858 V
Ц	l·3 ua	1.201 MA
Lc	298 WA	341.7 WA
<i>T</i> e	299-3 WA	342.90 UA

(c) Calculation of small signal parameters

$$g_{m} = \frac{I_{c}}{v_{T}} = \frac{341.7 \times 10^{6}}{25 \times 10^{-3}}$$

$$g_{m} = 0.013668$$

$$r_{\Lambda} = \frac{B}{g_{m}} = \frac{259.66}{0.013668}$$

$$r_{\Lambda} = 18.99 \text{ kA}$$

$$r_{0} \longrightarrow \text{arises due to the Early Voltage}$$

$$r_{0} = \frac{V_{0}}{I_{c}} = \frac{54.61}{298 \times 10^{-6}}$$

$$r_{0} = 183.45 \text{ kA}$$

$$\frac{1}{100} = \frac{183.45 \text{ kA}}{100}$$
Early resistance

(d) Small-signal Equivalent Circuit:

All the DC sources are replaced by their AC equivalents.

All the capacitors are shorted to allow the AC signal.

Base Collector

Vout

Apply kvl at vout

Vout
$$\left[\frac{1}{R_L} + \frac{1}{R_L} + \frac{1}{r_0}\right] = -g_m V_{RC}$$

compared to Re and Re. Hence, we can neglect it.

=) Yout =
$$\left| \frac{-g_m v_{in}}{\left(\frac{1}{p_c} + \frac{1}{p_c} \right)} \right|$$

$$= 0.013668 \times \left(\frac{1+30.3k}{30.3k \times 1k}\right)$$

$$A_{v} = \frac{Vout}{Vin} = 13.231$$

(f) Vin and Vout

From the given in Q, Upp of Vin = 10 mV

J •••

Gain = 13.158

The gain calculated in the previous part = 13.231 which is almost similar.

(g) Fundamental frequency, fo = (KHZ

1st Harmonic

2nd Harmonic

4th Harmonic

From the data in the photos,

Difference can be reported.

Magnitude of 1st Harmonic = -23.649 dB

Harmonic	Frequency	Difference
2nd	1.99 k#z	= -44.84 - (-23.649) = -21.191
3rd	3.01 KHZ	= -61.616 - (-23.69)
4th	4.00 KHZ	= _73.170 - (-23.649) = -49.521

(h) Total Harmonic Distribution (THD)

.step vm=0.06 N-Period=10

Fourier components of V(vout) DC component:-0.0127641

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	1.000e+3	4.943e-1	1.000e+0
2	2.000e+3	2.039e-1	4.124e-1
3	3.000e+3	4.950e-2	1.001e-1
4	4.000e+3	8.030e-4	1.624e-3
5	5.000e+3	1.181e-2	2.390e-2
6	6.000e+3	1.273e-2	2.575e-2
7	7.000e+3	1.044e-2	2.112e-2
8	8.000e+3	6.900e-3	1.396e-2
9	9.000e+3	3.526e-3	7.133e-3
10	1.000e+4	1.203e-3	2.434e-3

Partial Harmonic Distortion: 42.668874% Total Harmonic Distortion: 42.675338%

.step vm=0.11 N-Period=10

Fourier components of V(vout) DC component:-0.00181328

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	1.000e+3	5.434e-1	1.000e+0
2	2.000e+3	2.843e-1	5.232e-1
3	3.000e+3	7.932e-2	1.460e-1
4	4.000e+3	1.350e-2	2.485e-2
5	5.000e+3	3.184e-2	5.859e-2
6	6.000e+3	2.332e-2	4.292e-2
7	7.000e+3	1.205e-2	2.217e-2
8	8.000e+3	4.514e-3	8.307e-3
9	9.000e+3	5.938e-4	1.093e-3
10	1.000e+4	1.495e-3	2.751e-3
		000000	

Partial Harmonic Distortion: 54.908886% Total Harmonic Distortion: 54.951963%

.step vm=0.01 N-Period=10

Fourier components of V(vout) DC component:-0.000430312

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	1.000e+3	1.207e-1	1.000e+0
2	2.000e+3	1.047e-2	8.679e-2
3	3.000e+3	1.683e-3	1.395e-2
4	4.000e+3	3.284e-4	2.721e-3
5	5.000e+3	6.192e-4	5.131e-3
6	6.000e+3	1.621e-4	1.343e-3
7	7.000e+3	2.011e-4	1.666e-3
8	8.000e+3	4.755e-5	3.940e-4
9	9.000e+3	4.218e-5	3.495e-4
10	1.000e+4	1.813e-5	1.502e-4

Partial Harmonic Distortion: 8.812570% Total Harmonic Distortion: 8.817012% .step vm=0.16 N-Period=10

Fourier components of V(vout)

DC component: 0.00275325

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	1.000e+3	5.596e-1	1.000e+0
2	2.000e+3	3.365e-1	6.014e-1
3	3.000e+3	1.215e-1	2.171e-1
4	4.000e+3	8.389e-3	1.499e-2
5	5.000e+3	5.026e-2	8.981e-2
6	6.000e+3	4.620e-2	8.256e-2
7	7.000e+3	2.731e-2	4.880e-2
8	8.000e+3	9.532e-3	1.703e-2
9	9.000e+3	4.315e-3	7.711e-3
10	1.000e+4	9.168e-3	1.638e-2

Partial Harmonic Distortion: 65.340304% Total Harmonic Distortion: 65.649412%

.step vm=0.2 N-Period=10

Fourier components of V(vout)

DC component:0.00399901

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	1.000e+3	5.683e-1	1.000e+0
2	2.000e+3	3.672e-1	6.463e-1
3	3.000e+3	1.533e-1	2.699e-1
4	4.000e+3	7.492e-3	1.318e-2
5	5.000e+3	6.157e-2	1.084e-1
6	6.000e+3	6.791e-2	1.195e-1
7	7.000e+3	4.597e-2	8.089e-2
8	8.000e+3	1.793e-2	3.156e-2
9	9.000e+3	6.551e-3	1.153e-2
10	1.000e+4	1.809e-2	3.183e-2

Partial Harmonic Distortion: 72.482836% Total Harmonic Distortion: 72.849067%

Vm	THD	
0.01	8.817012 6%	
0.06	42.675338 %	
0.11	54. 951963 %	
0.16	65.649412 %	
0.2	7 ኒ. 84906 1 %	

Yes, with increase in the value of V_m , there is also an increase in the THD.

There are also a few unwanted harmonics and distortions present in the signal.

Ax V_m increases, the value of output increases; that is,

THD is directly proportional to the output of

circuit. Thus we observed increasing values of

THO's when V_m increases.

(i) AC Analysic and DC Gain

The -3 dB bandwidth is obtained at a frequency = 3.224590 Hz

Maximum gain is obtained at 21.393612 dB

(j) DC gain for different values of Re

Rc	DC Gain	
28 kr	21.913622 dB	
30 kr	21.928602 dB	
32 KM	21.940915 dB	
34 kr	15.007594 dB	
36 KM	8.7741936 dB	
38 K/L	5.0444321 dB	
40 KM	2.3946224 dB	

Compansion:

DC gain bor R = 30 km is 21.929 dB DC gain bor R = 40 km is 2.394 dB

Junification:

As the value of Re increases, then the output impedance increases accordingly.

Then the gain decreases.

Question 3: Designing an Amplisier

Given that, $R_{L} = 1 \text{ K.R.}$ $V_{CL} = 5 \text{ Volts}$ $A_{V} = 12.231 \text{ from prev Q}$ Bandwidth = 17 Hz (from previous problem)

We need to send,

Co, Cc, Ce, R, Ro, Re, Rc, Ic, IB

Large Signal Model

Consider the following assumptions:

$$V_{CE} = \frac{V_{CL}}{2} = 2.5 \text{ V}$$

we know that,

$$A_{V} = g_{m} \left(\frac{R_{L} \cdot R_{c}}{R_{c} + R_{c}} \right)^{-3} 13.231$$

$$\frac{1k. Rc}{1000 + Rc} = \frac{13.231 \times 25 \text{ k/b}^3}{3 \times 10^{23}}$$

$$\frac{Rc}{1000 + Rc} = 110.25 \text{ m}$$

$$I_{\beta} = I_{c} = 3m$$

$$259.56$$

Apply KVL on right half of circuit, he form collector to the emitter

$$5 - I_{c}R_{c} - V_{cE} - I_{e}R_{e} = 0$$

$$5 = 371.73 \times 10^{-3} + 2.5 + (30116 \times 10^{-3}) R_{e}$$

$$R_{e} = 706.71 \text{ }$$

$$V_{B} = V_{BE} + V_{E}$$

$$= 0.7 + 2.128 \qquad \left[:: V_{BE} = 0.7 V \right]$$

$$= 0.7 + 2.128 \qquad given standard$$

Let us also assume R, = 700 -

0.768

$$= 2$$
 $R_2 = 911.458 A$

$$r_{\pi} = \frac{\beta}{9m}$$

$$\frac{2 \beta V_{t}}{I_{c}} = \frac{259.56 \times 250\%}{30\%}$$

At the enput,

lit Zin -> input impedance

$$2in = \left[R_1 || R_2 || r_{N}\right]$$

$$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{Y_M}$$

sing bandwidth in prev & new prob are the same

$$\frac{2in}{2in}$$

$$\frac{2in}{nmpedance} = (803.88 \times 10\times10^{-6})$$

$$\frac{2in}{nmpedance} = 391.234$$

CB = 46 MF

At the emitter,

Let le -> emitter impedance

$$\frac{1}{2c} = \frac{1}{Rc} + \frac{\beta+1}{2\pi}$$

5557.2

718.011

.. The required values are

$$C_{B} = 46 \text{ MF}$$
 $C_{C} = 87.8 \text{ MF}$
 $C_{C} = 85.81 \text{ MF}$

Gain new =
$$\frac{131.566}{9.9823}$$
 = 13.179 - Experimental

$$= \frac{3m}{25m} (110.189) = 13.22 - Theoretical$$

At
$$u_c = 5V$$

At
$$V_c = 12V$$

Vcc	I drawn	Poc
12 V	0.9219 mA	11.0658 WM
SV	6.1986 MA	30,993 mW

Vout

The New Designed Circuit

FFT:

Vout and Vin

Bode Plot

-3 dB Frequency in Bode Plot.

