LEOPACK

Information on Key Subroutines

Steven J. Gibbons, Oslo Original document: November $21^{\rm st}$, 2001. Updated: November $20^{\rm th}$, 2022.

1 Information on key subroutines

1.1 SUBROUTINE FDCMBD

Finite Difference Coefficient Matrix BuilD.

Calling sequence:-

```
FDCMBD( NR, NBN, NLMN, NRMN, NLMC, NRMC, NCFM, NFDCM, NDRVS, NDRVM, IWORK, XARR, FDCM, COEFM, WORK1, WORK2 )
```

Purpose:-

If XARR is a double precision array of length NR such that XARR($j = x_j$, then **FDCMBD** builds a double precision array, FDCM, of dimension (NFDCM, NR, NDRVM) such that for a given node number, j, the $n^{\rm th}$ derivative of f(x) is given by

$$f^{(n)}(x_j) = \sum_{i=\text{LN}}^{\text{RM}} \text{FDCM}(k, j, n) f(x_i)$$

where

```
LN = MAX( NLMC, j - NBN )
RN = MIN( NRMC, j + NBN ),
```

NBN is the number of nodes on each side for central difference formulae.

$$k = i - j + NBN + 1,$$

and NLMC and NRMC are respectively the left most and right most nodes which may be used to obtain a finite difference formula. The FDCM(k, j, n) are calculated for all j with NLMN $\leq j \leq$ NRMN. Elements corresponding to other j are not referred to.

The leading dimension of FDCM must be at least (2*NBN+1) as must the dimension NCFM.

The maximum value of n calculated is specified by the parameter NDRVS which must be equal to or less than the value NDRVM. The value of NDRVS is limited by the bandwidth as specified by NBN. Let

```
NLCS = NLMN - NLMC
NRCS = NRMC - NRMN
and let
I = MIN( NLCS, NRCS) + NBN.
```

NDRVS must then be no greater than I.

The maximum value of n calculated is specified by the parameter NDRVS which must be equal to or less than the value NDRVM. The value of NDRVS is limited by the bandwidth as specified by NBN. Let

NLCS = NLMN - NLMC
NRCS = NRMC - NRMN
and let
I = MIN(NLCS, NRCS) + NBN.

NDRVS must then be no greater than I.

Arguments:-

NR	Int. scal.	Number of radial grid nodes.	
NBN	Int. scal.	Number of bounding nodes.	
NLMN	Int. scal.	Left-most (row) node. See above.	
NRMN	Int. scal.	Right-most (row) node. See above.	
NLMC	Int. scal.	Left-most (column) node. See above.	
NRMC	Int. scal.	Right-most (column) node. See above.	
NCFM	Int. scal.	Leading dimension of COEFM.	
		Must be at $(2*NBN+1)$.	
NFDCM	Int. scal.	Leading dimension of FDCM.	
		Must be at $(2*NBN+1)$.	
NDVRS	Int. scal.	Highest derivative to be calculated.	
		Must not exceed NDVRM and see above.	
NDVRM	Int. scal.	Maximum number of derivatives	
		which can be stored in memory.	
IWORK	Int. arr.	Dimension (NCFM). Work array.	
XARR	D.p. arr.	Values of x . Dimension (NR).	
FDCM	D.p. arr.	Finite difference coefficients.	
		Dimension (NFDCM, NR, NDRVM). See above.	
COEFM	D.p. arr.	Dimension (NCFM, NCFM). Work array.	
WORK1	D.p. arr.	Dimension (NCFM). Work array.	
WORK2	D.p. arr.	Dimension (NCFM). Work array.	

Subroutines and functions called:-

GFDCFD.

1.2 SUBROUTINE GFDCFD

General Finite Difference Coefficient FinD.

Calling sequence:-

GFDCFD (XO, XARR, NNDS, COEFM, NCFM, IPCM, WORK)

Purpose:-

If the double precision array XARR contains NNDS distinct values of x (XARR(j) = x_j) then, for a given value x_0 , **GFDCFD** returns the coefficients c_{j,x_0}^n such that if f is a function of x, then

$$f^n(x_0) \approx \sum_{j=1}^{\text{NNDS}} \left(c_{j,x_0}^n f(x_j) \right).$$

Here, $f^n(x_0)$ denotes the $n^{\rm th}$ derivative of f with respect to x, evaluated at x_0 . The coefficient c^n_{j,x_0} is returned in the array element COEFM(n+1, J). The n=0 coefficients are returned in the first row of the matrix and, although these are not very useful if x_0 corresponds to one of the x_j , they allow a useful way of interpolating a function f to $x=x_0$, if x_0 is distinct from all the x_j .

The higest derivative obtainable from NNDS distinct values of x is NNDS-1 although this estimate is likely to be highly inaccurate. For arbitrarily spaced x, there is no easy way of quantifying the size of the error.

The routine checks to ensure that the XARR(j) are all distinct, otherwise it would be attempted to solve a singular matrix.

Arguments:-

ХО	D.p. scal.	Value of x_0 where derives are required.
XARR	D.p. arr.	Dimension (NNDS). See above.
NNDS	Int. scal.	Number of grid nodes.
COEFM	D.p. arr.	Dimension (NCFM, NCFM). See above.
NCFM	Int. scal.	Leading dimension of matrix COEFM.
		Must be greater than or equal to NNDS.
IPCM	Int. arr.	Dimension (NCFM). Work array.
WORK	D.p. arr.	Dimension (NCFM). Work array.

Subroutines and functions called:-

MATOP and the LAPACK routines DGETRF and DGETRI.

1.3 SUBROUTINE HMFRD

HarMonic File ReaD.

Calling sequence:-

```
HMFRD( NH, NHMAX, MHT, MHL, MHM, MHP, NCUDS, NDCS, MHIBC, MHOBC, LARR, LU, FNAME )
```

Purpose:-

Reads the indices of the spherical harmonic set (along with the boundary conditions) from a file specified by the filename FNAME.

The first line of the new file will contain only NH, the number of spherical harmonics. The next NH lines will all consist of the 5 integer values

```
MT ML MM IIBF IOBF
```

MT contains one of the following values which describes the function:-

```
MT = 1 for a poloidal velocity harmonic.
```

MT = 2 for a toroidal velocity harmonic.

MT = 3 for a temperature harmonic.

MT = 4 for a poloidal magnetic field harmonic.

MT = 5 for a toroidal magnetic field harmonic.

ML contains the spherical harmonic degree, l, and MM will contain m, the spherical harmonic order, for $\cos m\phi$ dependence and -m for $\sin m\phi$ dependence.

IIBF and IOBF describe the boundary condition required for that radial function at the inner and outer boundaries respectively. (See SVFDCF, section (1.7), for details.) They are the values of MHIBC and MHOBC which correspond to the value of MHP(ih).

The arrays LARR, MHIBC and MHOBC required by **SVFDCF** are calculated in situ in the program. On input, NCUDS is the number of currently used differencing schemes (possibly none) and on output, this number will be modified to include those schemes demanded by the new set of spherical harmonics. All difference schemes which are not yet needed are labelled with LARR(is) = -1 as required by **SVFDCF**.

Arguments:-

NH	Int. scal.	Number of spherical harmonics.	
NHMAX	Int. scal.	Maximum number of spherical harmonics.	
MHT	Int. arr.	Dim (NHMAX).	
		MHT(ih) = MT for harmonic number ih.	
MHL	Int. arr.	Dim (NHMAX).	
		MHL(ih) = ML for harmonic number ih.	
MHM	Int. arr.	Dim (NHMAX).	
		MHM(ih) = MM for harmonic number ih.	
MHP	Int. arr.	Dim (NHMAX).	
		MHP(ih) contains the index of the arrays	
		MHIBC and MHOBC which correspond to	
		harmonic ih.	
NCUDS	Int. scal.	Number of currently used finite	
		difference schemes.	
NDCS	Int. scal.	Maximum distinct finite	
		difference schemes. See SVFDCF.	
MHIBC	Int. arr.	Dimension (NDCS). MHIBC(is) contains	
		a flag indicating how the inner boundary must	
		be treated in scheme is. See SVFDCF.	
MHOBC	Int. arr.	Dimension (NDCS). MHOBC(is) contains	
		a flag indicating how the outer boundary must	
		be treated in scheme is. See SVFDCF.	
LARR	Int. arr.	Dimension (NDCS).	
		Auxilliary array for SVFDCF.	
LU	Int. scal.	Logical file unit number.	
FNAME	Char(*)	Filename.	

Subroutines and functions called:-

 ${\tt FOPEN}$ and ${\tt FCLOSE}.$

1.4 SUBROUTINE HMFWT

HarMonic File WriTe.

Calling sequence:-

```
HMFWT( NH, MHT, MHL, MHM, MHP, NDCS, MHIBC, MHOBC, LU, FNAME )
```

Purpose:-

Wries the indices of the spherical harmonic set (along with the boundary conditions) to a file specified by the filename FNAME.

The first line of the new file will contain only NH, the number of spherical harmonics. The next NH lines will all consist of the 5 integer values

MT ML MM IIBF IOBF

MT contains one of the following values which describes the function:-

```
MT = 1 for a poloidal velocity harmonic.
```

MT = 2 for a toroidal velocity harmonic.

MT = 3 for a temperature harmonic.

MT = 4 for a poloidal magnetic field harmonic.

MT = 5 for a toroidal magnetic field harmonic.

ML contains the spherical harmonic degree, l, and MM will contain m, the spherical harmonic order, for $\cos m\phi$ dependence and -m for $\sin m\phi$ dependence.

IIBF and IOBF describe the boundary condition required for that radial function at the inner and outer boundaries respectively. (See **SVFDCF**, section (1.7), for details.) They are the values of MHIBC and MHOBC which correspond to the value of MHP(ih).

Arguments:-

NH	Int. scal.	Number of spherical harmonics.	
MHT	Int. arr.	Dim (*) with length at least NH.	
		MHT(ih) = MT for harmonic number ih.	
MHL	Int. arr.	Dim (*) with length at least NH.	
		MHL(ih) = MT for harmonic number ih.	
MHM	Int. arr.	Dim (*) with length atleast NH.	
		MHM(ih) = MT for harmonic number ih.	
MHP	Int. arr.	Dim (*) with length atleast NH.	
		MHP(ih) contains the index of the arrays	
		MHIBC and MHOBC which correspond to	
		harmonic ih.	
NDCS	Int. scal.	Maximum distinct finite	
		difference schemes. See SVFDCF.	
MHIBC	Int. arr.	Dimension (NDCS). MHIBC(is) contains	
		a flag indicating how the inner boundary must	
		be treated in scheme is. See SVFDCF.	
MHOBC	Int. arr.	Dimension (NDCS). MHOBC(is) contains	
		a flag indicating how the outer boundary must	
		be treated in scheme is. See SVFDCF.	
LU	Int. scal.	Logical file unit number.	
FNAME	Char(*)	Filename.	

Subroutines and functions called:-

FOPEN and FCLOSE.

1.5 SUBROUTINE LDGNMF

Linear Dependence of Grid Node Matrix Form.

Calling sequence:-

```
LDGNMF( NR, NNDS, NALF, NARF, L, IIBC, IOBC, NCFM, XARR, AMAT, WMAT, WORK1, WORK2, IPCM )
```

Purpose:-

Let f_j denote the function f evaluated at x_j , the value stored in XARR(j). Let $f_j^{(m)}$ denote the $m^{\rm th}$ derivative with respect to x evaluated at x_j .

Then a finite difference scheme may be formulated such that

$$\begin{pmatrix} f_j^{(0)} \\ f_j^{(1)} \\ \vdots \\ f_i^{(n-1)} \end{pmatrix} = \begin{pmatrix} c_{k+1}^{(0)} & c_{k+2}^{(0)} & \cdots & c_{k+n}^{(0)} \\ c_{k+1}^{(1)} & c_{k+2}^{(1)} & \cdots & c_{k+n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ c_{k+1}^{(n-1)} & c_{k+2}^{(n-1)} & \cdots & c_{k+n}^{(n-1)} \end{pmatrix} \begin{pmatrix} f_{k+1} \\ f_{k+2} \\ \vdots \\ f_{k+n} \end{pmatrix}.$$

The matrix C above, containing the elements $c_{k+i}^{(m)}$, may be formed by a call to **GFDCFD** with the calling sequence

CALL GFDCFD (XJ, XA, NNDS, COEFM, NCFM, IPCM, WORK)

where XJ gives the value of x_j , XA(i) gives the value of x_{k+i} , NNDS is n and COEFM(m+1, i) gives the value of $c_{k+i}^{(m)}$.

However, if boundary conditions must be satisfied at x_1 and x_{NR} (XARR(1) and XARR(NR) respectively) then the values f_{k+1} , f_{k+2} , \cdots , f_{k+n} may not be linearly independent. In other words, the equation above becomes

$$\begin{pmatrix} f_{j}^{(0)} \\ f_{j}^{(1)} \\ \vdots \\ f_{j}^{(n-1)} \end{pmatrix} = (\boldsymbol{C}) (\boldsymbol{A}) \begin{pmatrix} f_{k+1} \\ f_{k+2} \\ \vdots \\ f_{k+n} \end{pmatrix},$$

where the matrix A defines the dependency between the different f_{k+i} . If the boundary condition does not effect the nodes k+1, k+2 to k+n (to the accuracy of the finite differencing scheme) then A is clearly the identity matrix. Otherwise, A is a matrix of Rank < n, and the purpose of **LDGNMF** is to calculate this matrix. The element f_{k+i} is expressed in terms of the f_s (with $s \in \{k+1, k+2, \dots, k+n\}$) by

$$f_{k+i} = \sum_{s=1}^{n} d_{i,s} f_{k+s}.$$

The integer values NALF and NARF are respectively the number of nodes at the left and the right for which the value is a linear combination of the values at the other nodes. Both NALF and NARF MUST take one of the values 0, 1 or 2. (This is because there is no case in the standard MHD equations where we need to apply more than 2 boundary conditions at a particular boundary.) If both NALF and NARF are zero then A is returned as I_n . If either NALF or NARF is non-zero then the other must be zero! (Otherwise the finite difference scheme is not going to work).

If NALF = 1 then f_{k+1} is a linear sum of $\{f_{k+2}, \dots, f_{k+n}\}$. If NALF = 2 then f_{k+1} and f_{k+2} are both linear sums of $\{f_{k+3}, \dots, f_{k+n}\}$.

```
If NARF = 1 then f_{k+n} is a linear sum of \{f_{k+1}, \cdots, f_{k+n-1}\}.
 If NARF = 2 then f_{k+n} and f_{k+n-1} are both linear sums of \{f_{k+1}, \cdots, f_{k+n-2}\}.
```

Now the actual form of the boundary condition can be one of many different cases. This is determined by the flags IIBC and IOBC, which specify the inner and outer boundary condition respectively.

The following table gives the possibilities for IIBC:-

IIBC	Inner boundary condition.
1	None imposed
2	Function must vanish at boundary.
3	First derivative must vanish at boundary.
4	Both function and first derivative must vanish.
5	Both function and second derivative must vanish.
6	rdf/dr - f(r) = 0
7	rdf/dr - lf(r) = 0 with $l = L$.

The following table gives the possibilities for ${\tt IOBC}$:

IOBC	Outer boundary condition.
1	None imposed
2	Function must vanish at boundary.
3	First derivative must vanish at boundary.
4	Both function and first derivative must vanish.
5	Both function and second derivative must vanish.
6	rdf/dr - f(r) = 0
7	rdf/dr + (l+1)f(r) = 0 with $l = L$.

Arguments:-

NR	Int. scal.	Total number of radial grid nodes.	
NNDS	Int. scal.	Number of nodes which are used	
		to take derivative $(n \text{ above})$.	
NALF	Int. scal.	Number of nodes at the left	
		which are a linear combination of the others.	
NARF	Int. scal.	Number of nodes at the right	
		which are a linear combination of the others.	
L	Int. scal.	Spherical harmonic degree, l .	
		Only relevant for magnetic field b.c.s	
IIBC	Int. scal.	Inner boundary condition flag. See above.	
IOBC	Int. scal.	Outer boundary condition flag. See above.	
NCFM	Int. scal.	Leading dimension of matrix AMAT.	
XARR	D.p. arr.	Dimension (NR). See above.	
AMAT	D.p. arr.	Dimension (NCFM, NCFM). Returns matrix	
		A above.	
WMAT	D.p. arr.	Dimension (NCFM, NCFM). Work array.	
WORK1	D.p. arr.	Dimension (NCFM). Work array for GFDCFD.	
WORK2	D.p. arr.	Dimension (NCFM). Work array for GFDCFD.	
IPCM	Int. arr.	Dimension (NCFM). Work array for GFDCFD.	

Subroutines and functions called:-

MATOP, GFDCFD.

1.6 SUBROUTINE SCHNLA

Calling sequence:-

SCHNLA (PA, DPA, GAUX, LH, NTHPTS)

Purpose:-

To evaluate an array of all the associated Legendre Polynomials, P_l^m , up to and including degree l=LH at NTHPTS different values of θ . The derivatives with respect to θ are also calculated.

GAUX is a double precision array of length NTHPTS with GAUX(i) containing the element $\cos \theta_i$.

PA is an array with dimensions ((LH + 1)*(LH + 2)/2, NTHPTS) and $P_l^m(\cos\theta_i)$ is stored in the element PA(K, I) where the value of K is given by the function KLM(L, M): i.e. KLM = L*(L+1)/2+M+1.

DPA is arranged identically except that its elements contain $dP_l^m(\cos \theta_i)/d\theta$. P_l^m satisfies the normalisation

$$\int_{-1}^{1} \left[P_l^m(x) \right]^2 dx = \frac{2(2 - \delta_{m0})}{2l + 1}.$$

Arguments:-

PA	D.p. arr.	See above.
	Dim. (N1, NTHPTS)	
	with $N1 = (LH + 1)*(LH + 2)/2$	
DPA	D.p. arr.	See above.
	Dim. (N1, NTHPTS)	
	with $N1 = (LH + 1)*(LH + 2)/2$	
GAUX	D.p. arr.	See above
	Dim. (NTHPTS)	
LH	Int. scal.	Maximum degree, l
NTHPTS	Int. scal.	Number of θ points

Subroutines and functions called:-

PMM, PMM1 and PLM; DPMM, DPMM1 and DPLM; KLM.

1.7 SUBROUTINE SVFDCF

Solution Vector Finite Difference Coefficient Find.

Calling sequence:-

```
SVFDCF( NR, NDCS, NBN, NLMR, NRMR, MHIBC, MHOBC, LARR, NCFM, NFDCM, NDRVS, NDRVM, XARR, IWORK, SVFDC, COEFM1, COEFM2, WORK1, WORK2 )
```

Purpose:-

Let f be a function of x with NR discrete values x_j being stored in XARR(j). SVFDCF builds a double precision matrix SVFDC of dimension (NFDCM, NR, NDRVM+1, NDCS) such that for a given node number, j, the $n^{\rm th}$ derivative of f(x) is given by

$$f^{(n)}(x_j) = \sum_{i=\text{LN}}^{\text{RM}} \text{SVFDC}(k, j, n+1, S) f(x_i)$$

where

$$LN = MAX(1, j - NBN)$$

 $RN = MIN(NR, j + NBN),$

NBN is the number of nodes on each side for central difference formulae,

$$k = i - j + NBN + 1$$
,

and S is an integer value describing one of several different finite-differencing schemes which may all be stored in SVFDC. The properties of the scheme S (is) is described by two integer parameters, MHIBC(is) and MHOBC(is). Their values are given in the following two tables.

The possibilities for MHIBC(is) are :-

MHIBC(is)	Inner boundary condition.
1	None imposed
2	Function must vanish at boundary.
3	First derivative must vanish at boundary.
4	Both function and first derivative must vanish.
5	Both function and second derivative must vanish.
6	rdf/dr - f(r) = 0
7	rdf/dr - lf(r) = 0 with $l = L$.

The possibilities for MHOBC(is) are :-

MHOBC(is)	Outer boundary condition.
1	None imposed
2	Function must vanish at boundary.
3	First derivative must vanish at boundary.
4	Both function and first derivative must vanish.
5	Both function and second derivative must vanish.
6	rdf/dr - f(r) = 0
7	rdf/dr + (l+1)f(r) = 0 with $l = L$.

In schemes with MHIBC(is) = 1, all nodes near the inner boundary are required for taking derivatives. In schemes with MHIBC(is) = 2, 3, 6 and 7, the first grid node is essentially omitted from the solution vector and only nodes $2, 3, \cdots$ are used for taking derivatives. In schemes with MHIBC(is) = 4 and 5, the first two grid nodes are omitted and only nodes $3, 4, \cdots$ are used for taking derivatives. A similar situation applies at the outer boundary.

Set LARR(is) to the spherical harmonic degree, l, for poloidal magnetic field (insulating boundaries) finite difference schemes and to $\neg 1$ to make \mathbf{SVFDCF} overlook scheme is altogether (maybe to be filled using a different set of parameters).

Arguments:-

NR	Int. scal.	Total number of radial grid nodes.	
NDCS	Int. scal.	Number of distinct differencing	
		schemes to be stored in the array SVFDC.	
NBN	Int. scal.	Maximum number of nodes to left or	
		right which may be used to calculate derivatives.	
NLMR	Int. scal.	The lowest j for which terms are	
		to be calculated for SVFDC(i,j,ND+1,K).	
NRMR	Int. scal.	The highest j for which terms are	
		to be calculated for SVFDC(i,j,ND+1,K).	
MHIBC	Int. arr.	Dimension (NDCS). MHIBC(is) contains	
		a flag indicating how the inner boundary must	
		be treated in scheme is. See above list.	
MHOBC	Int. arr.	Dimension (NDCS). MHOBC(is) contains	
		a flag indicating how the outer boundary must	
		be treated in scheme is. See above list.	
LARR	Int. arr.	Dimension (NDCS). LARR(is) contains	
		the spherical harmonic degree, l , for scheme is.	
		If LARR(is) = -1, scheme is is ignored.	
NCFM	Int. scal.	Leading dimension of work arrays.	
		Must be at $2*NBN+1$.	
NFDCM	Int. scal.	Leading dimension of array SVFDC.	
		Must be at $2*NBN+1$.	
NDRVS	Int. scal.	Number of derivatives to be calculated.	
NDRVM	Int. scal.	Maximum no. of deriv. coefficients	
		which may be stored in SVFDC.	
XARR	D.p. arr.	Dimension (NR). Radial grid values.	
IWORK	Int. arr.	Dimension (NCFM). Work array.	
SVFDC	D.p. arr.	Dimension (NFDCM, NR, NDRVM+1, NDCS).	
		Coefficients. See above	
COEFM1	D.p. arr.	Dimension (NCFM, NCFM). Work array.	
COEFM2	D.p. arr.	Dimension (NCFM, NCFM). Work array.	
WORK1	D.p. arr.	Dimension (NCFM). Work array.	
WORK2	D.p. arr.	Dimension (NCFM). Work array.	

Subroutines and functions called:-

 ${\tt LDGNMF}, \ {\tt GFDCFD}, \ {\tt EMMULT}.$