Tutorial 3, Oct. 14

- a) WA2 due Monday 2:30
- b) Midterm on Monday Oct. 24
- **1.1 Definition.** A sequence $\{a_n\}$ is Cauchy if for every $\epsilon > 0$ there exists an $N_0in\mathbb{N}$ so that if $n, m \geq N_0$, then

$$|a_n-a_m|<\epsilon$$
.

1.2 Question. Let $\{a_n\}$ be such that

$$\lim_{n\to\infty}a_{n+1}-a_n=0.$$

Is $\{a_n\}$ Cauchy?

Solution. No. e.g.

$$a_n = \sum_{k=1}^n \frac{1}{k}$$