

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- \square Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- floor For each internal node with children $m{v}_1 \, m{v}_2 \, \dots \, m{v}_d$ and keys $m{k}_1 \, m{k}_2 \, \dots \, m{k}_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d-1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Trees

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- □ Theorem: A (2,4) tree storing n items has height $O(\log n)$ Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h-1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

- Thus, $h \leq \log(n+1)$
- \square Searching in a (2,4) tree with n items takes $O(\log n)$ time

Insertion

- $flue{}$ We insert a new item (k,o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 17

Insertion

- floor We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

- \Box We handle an overflow at a 5-node v with a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node v is replaced nodes v' and v''
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
 - key k_3 is inserted into the parent u of v (a new root may be created)
- \Box The overflow may propagate to the parent node u

(2,4) Trees

10

4, 6, 12, 15, 3, 5, 10, 8, 11, 7, 13, 14, 17

(2,4) Trees

12

Analysis of Insertion

Algorithm put(k, o)

- 1. We search for key *k* to locate the insertion node *v*
- 2. We add the new entry (k,o) at node v
- 3. while *overflow(v)* if *isRoot(v)*

create a new empty root above *v*

 $v \leftarrow split(v)$

- Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
 - Step 1 takes O(log n) time because we visit O(log n) nodes
 - Step 2 takes *O*(1) time
 - Step 3 takes O(log n) time because each split takes O(1) time and we perform O(log n) splits
- □ Thus, an insertion in a (2,4) tree takes $O(\log n)$ time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: Delete key 24

17

Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- \Box To handle an underflow at node v with parent u, we consider two cases
- \Box Case 1: the adjacent siblings of v are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- \Box To handle an underflow at node v with parent u, we consider two cases
- \Box Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to u
 - After a transfer, no underflow occurs

Analysis of Deletion

- \Box Let *T* be a (2,4) tree with *n* items
 - Tree T has $O(\log n)$ height
- In a deletion operation
 - We visit O(log n) nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes *O*(1) time
- □ Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time

Red-Black Trees

- A red-black tree can also be defined as a binary search tree that satisfies the following properties:
 - Root Property: the root is black
 - External Property: every leaf is black
 - Internal Property: the children of a red node are black
 - Depth Property: all the leaves have the same black depth

29

Black Depth - 2

Black Depth - 3

Height of a Red-Black Tree

Theorem: A red-black tree storing n items has height O(log n)

Proof:

- Let h be the black depth of a red-black tree on n nodes
- *n* is smallest when all the nodes are black.
 - complete binary tree of height h and $n=2^{h}-1$
- *n* is largest the tree alternates between red and black nodes at every level.
 - height of the tree 2h and $n=2^{2h}-1$
- Hence log₄ n < h < 1+log n
- The search algorithm for a red-black tree is the same as that for a binary search tree
- □ By the above theorem, searching in a red-black tree takes $O(\log n)$ time

Red-Black Trees to 2-4 Trees

- Any red-black tree can be converted into a 2-4 tree
- Take a black node and its red children (at most 2) and combine them into one node of a 2-4 tree.
- Each node thus formed has at least 1 and at most 3 keys
- □ Since black depth of all external nodes is the same, in the resulting 2-4 tree all the external nodes will be at the same level.

2-4 Trees to Red-Black Trees

- Any 2-4 tree can be converted into a red-black tree
- We replace a node of the 2-4 tree with one black node and 0/1/2 red nodes which are children of the black node.
- The height of 2-4 tree is the black depth of the red-black tree created.
- Every red node has a black child.

2-4 Tree to Red-Black Trees

Insertion in Red-Black Trees

- \Box To insert (k, o), we execute the insertion algorithm for binary search trees.
 - search for k; this gives us the place where we have to insert k.
- We create a new node with key k and insert it at this place.
- The new node is colored red (unless it is the root).

Insertion

- We preserve the root, external, and depth properties
- □ Example insert 8

Insertion

- We preserve the root, external, and depth properties
- \Box If the parent v of z is black, we also preserve the internal property and we are done
- □ Else (*v* is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- □ Example where the insertion of 4 causes a double red:

Remedying a Double Red

ullet Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is red

- The double red corresponds to an overflow
- Recoloring: we perform the equivalent of a split

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- □ It is equivalent to performing a split on a 5-node
- \Box The double red violation may propagate to the grandparent u

Remedying a Double Red

floor Consider a double red with child z and parent v, and let w be the sibling of v

Case 2: w is black

- The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement

Remedying a Double Red

ullet Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is black

- The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement

Restructuring (cont.)

 There are four restructuring configurations depending on whether the double red nodes are left or right children

Insertion - Example

Analysis of Insertion

- Recall that a red-black tree has $O(\log n)$ height
- Step 1 takes O(log n) time because we visit O(log n) nodes
- \Box Step 2 takes O(1) time
- □ Step 3 takes *O*(log *n*) time because we perform
 - *O*(log *n*) recolorings, each taking *O*(1) time, and
 - at most one restructuring taking O(1) time
- □ Thus, an insertion in a redblack tree takes $O(\log n)$ time

Algorithm insert(k, o)

- 1. We search for key *k* to locate the insertion node *z*
- 2. We add the new entry (*k*, *o*) at node *z* and color *z* red
- 3. while doubleRed(z)
 if isBlack(sibling(parent(z)))
 z ← restructure(z)

return

else { sibling(parent(z) is red) $z \leftarrow recolor(z)$

- floor To perform operation $\brue{remove}(k)$, we first execute the deletion algorithm for binary search trees
- Thus the node which is deleted is the parent of an external node.

Deletion

- Consider the case when the node to be deleted is black and has two external children – double black
- Removing the node reduces the black depth of an external node by 1.
- Hence, in a general step, we consider how to reorganize the tree when the height (black depth) of a subtree reduces by 1.
- Example where the deletion of 8 causes a double black:

Deletion - case 1

- □ The parent of k, x is red.
- □ The sibling of k, y is black.
- □ At least one child of y, z is red.

Deletion – case 2

- □ The parent of k, x is red.
- □ The sibling of k, y is black.
- □ Both the children of y are black.

Deletion – case 3

- □ The parent of k, x is black.
- □ The sibling of k, y is black.
- □ At least one child of y, z is red.

Deletion – case 4

- □ The parent of k, x is black.
- □ The sibling of k, y is black.
- □ Both the children of y are black.

Deletion – case 5.1

- □ The parent of k, x is black.
- □ The sibling of k, y is red.
- □ Both the children of z are black.

Red-Black Trees

Deletion – case 5.2

- □ The parent of k, x is black.
- □ The sibling of k, y is red.
- □ At least one child of z is red.

Deletion – Summary

- In all cases, except 4, deletion can be completed by a simple rotation/ recoloring.
- In case 4, the height of the subtree reduces and so we need to proceed up the tree
 - If we proceed up the tree, we only need to recolor/rotate.
- Complexity- O(log n)

Problems

 Write a recursive procedure to convert a binary search tree to a doubly linked list in place.

Problems

Given two binary trees (not necessarily balanced), write an algorithm that merges the two given trees into a balanced search tree in linear time.

Problems

 Given a balanced binary search tree of n nodes and a target sum, write a function that returns true, if there is a pair that adds up to the sum, otherwise returns false.

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
 - splaying moves a node to the root using rotations
- right rotation
 - makes the left child x of a node y into y's parent; y becomes the right child of x
- left rotation
 - makes the right child y of a node x into x's parent; x becomes the left child of y

 \Box let x = (8,N)

• *x* is the right child of its parent, which is the left child of the grandparent

■ left-rotate around *p*, then right-rotate around

Splay Trees

- \Box let x = (8,N)
 - x is the right child of its parent, which is the left child of the grandparent
 - left-rotate around p,
 then right-rotate around g

- \Box let x = (8,N)
 - x is the right child of its parent, which is the left child of the grandparent
 - left-rotate around p,
 then right-rotate around g

Splay Trees

Slide by Matt Dickerson

- \Box let x = (8,N)
 - *x* is the left child of the root
 - right-rotate around root.

Slide by Matt Dickerson

Splay Trees

- \Box let x = (8,N)
 - *x* is the left child of the root
 - right-rotate around root.

Slide by Matt Dickerson

 \Box let x = (40,X)

 x is the right child of its parent, which is the right child of its parent

zig-zig operation.

 \Box let x = (40,X)

x is the right child of its parent, which is the right child of its parent

- zig-zig
- x is the right child of the root
- left rotate around the root

- \Box let x = (40,X)
 - x is the right child of its parent, which is the right child of its parent
 - zig-zig
 - x is the right child of the root
 - left rotate around the root

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree – which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splayed Nodes after Each Operation

method	splay node
Search for k	if key found, use that node if key not found, use parent of ending external node
Insert (k,v)	use the new node containing the entry inserted
Remove item with key k	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Performance of Splay Trees

- Amortized cost of any splay operation is O(log n)
- Splay trees can actually adapt to perform searches on frequentlyrequested items much faster than O(log n) in some cases.

Splay Trees