

IMD0033 - Probabilidade Aula 20 - Z-Score

Ivanovitch Silva Junho, 2019

Agenda

- Definição de Z-Score
- Distribuição padrão
- Entendendo melhor os pontos fora da curva
- Z-Score como medida de comparação
- Z-Table
- Transformação de Z-Score em valor

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1.git

Ou

git pull

Problem: house prices

	Order	PID	MS SubClass	MS Zoning	Lot Frontage	Lot Area	Street	Alley	Pool QC	Yr Sold	Sale Type	Sale Condition	SalePrice
0	1	526301100	20	RL	141.0	131770	Pave	0	5	2010	WD	Normal	215000
1	2	526350040	20	RH	80.0	11622	Pave	0	6	2010	WD	Normal	105000
2	3	526351010	20	RL	81.0	14267	Pave	0	6	2010	WD	Normal	172000
3	4	526353030	20	RL	93.0	11160	Pave	0	4	2010	WD	Normal	244000
4	5	527105010	60	RL	74.0	13830	Pave	0	3	2010	WD	Normal	189900

Is a house costing US 220,000 cheap, expensive, or average-priced?

```
print(houses['SalePrice'].mean())
180796.0600682594
```


The sampled house (US 220,000) is clearly more expensive than the average house (roughly US180,796)!!!

But is this price **slightly above** the average or **extremely** above the average?

The answer depends on the **standard deviation** of the distribution of sale prices.

Number of Standard Deviations

Z-Score

$$z = \frac{x - \mu}{\sigma}$$

$$z = \frac{x - \bar{x}}{s}$$

Transforming Distribution

Using Standardization for Comparisons

Quiz: who is the most popular?

Quiz: who is the most popular?

Z-Table

http://www.z-table.com/

Facebook example:

$$\mu = 190$$

$$\sigma$$
 = 36

$$Xi = 240$$

What is the percentage of people who have less than 240 facebook friends?

Converting back from Z-Score

$$z = \frac{x - \mu}{\sigma}$$

$$x = \sigma z + \mu$$

