#### Summer Online Course

Digital Logic Design

Problems o Flip Flops

# Sequential Logic Circuit Design Module III

### Question on Timing Diagram

Digital Logic Design

Problems on Flip Flops Draw the timing diagram of output waveforms for given inputs and clock pulse using positive edge triggering.



Figure: (1)

# Question on Timing Diagram

Digital Logic Design

Problems on Flip Flops

Draw the timing diagram of output waveforms for given inputs and clock pulse using positive edge triggering.



Figure: (2)

Digital Logic Design

Problems on Flip Flops In a JK flip-fop, we have  $J=\bar{Q}$  and K=1 shown in figure. Assuming the FF was initially cleared and clocked for 6 pulses, the sequence at the Q output will be:



### Question on D Flip-Flop

Digital Logic Design

Problems on Flip Flops Analyze the circuit containing D flip-flops shown below by giving the value for Q1 and Q2 that result from each clock trigger. The flip-flops are positive-edge triggered so the question will ask about the values at the negative edges, by which time the flip-flop outputs should have settled. At time t = 0, Q1 = 0 and Q2 equal 0. Note that the flip-flops are commonly-clocked.





# Question on D Flip Flop

Digital Logic Design

Problems on Flip Flops The digital circuit shown below uses two positive edge triggered D flip-flops. Assuming initial condition of  $Q_1$  and  $Q_0$  as zero, the output sequence  $Q_1Q_0$  of the circuit is



- a 00,01,10,11,00...
- **b** 00,01,11,11,00...
- c 00,01,11,10,00...
- d 00,11,10,01,00....