Home Work 5

Dylan Liesenfelt

Question 1

Fill in each blank with the word most or least.

(a) A function F is one-to-one if, and only if, each element in the co-domain of F is the image of at \mathbf{MOST} one element in the domain of F.

(b) A function F is onto if, and only if, each element in the co-domain of F is the image of at \mathbf{LEAST} one element in the domain of F.

Question 2

When asked to state the definition of one-to-one, a student replies, "A function f is one-to-one if, and only if, every element of X is sent by f to exactly one element of Y ." Give a counterexample to show that the student's reply is incorrect.

Counter:

Let $X=\{1,2\}$ and $Y=\{3\}$.

Define f:X o Y by:

- f(1) = 3
- f(2) = 3

Question 3

Let $X = \{1, 5, 9\}$ and $Y = \{3, 4, 7\}$.

(a) Define f:X o Y by specifying that

f(1) = 4,

f(5) = 7,

f(9) = 4.

Is f one-to-one? Is f onto? Explain your answers.

- One-To-One: No, because f(1) = 4 and f(9) = 4
- ullet Onto: No, because 3 in Y is not an image of any element in X
- **(b)** Define $g: X \rightarrow Y$ by specifying that
- g(1) = 7,
- g(5) = 30,
- g(9) = 4.

Is g one-to-one? Is g onto? Explain your answers.

- One-To-One: Yes, because all images are distinct.
- Onto: Yes, because every element in Y is an image of some element in X

Question 4

Let $X = \{a, b, c, d\}$ and $Y = \{e, f, g\}$. Define functions F and G by the arrow diagrams below.

- (a) Is F one-to-one? Why or why not? Is it onto? Why or why not?
 - No its not One-To-One, because c and d map to e.
 - ullet But it is Onto, because all elements of Y are covered by an element of X
- (b) Is G one-to-one? Why or why not? Is it onto? Why or why not?
 - Neither One-To-One or Onto, because f is covered by a,b,and d. And g is not covered by any element.

Question 5

Let $X = \{a, b, c\}$ and $Y = \{w, x, y, z\}$. Define functions H and K by the arrow diagrams below.

- (a) Is H one-to-one? Why or why not? Is it onto? Why or why not?
 - H is neither, y is covered by b and c, and x and z are not covered.
- (b) Is K one-to-one? Why or why not? Is it onto? Why or why not?
 - K is One-To-One, because every element of X maps to only one element of Y, but it is not onto because z is not covered by any element of X.

Question 6

Let $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}, \text{ and } Z = \{1, 2\}.$

(a) Define a function Let $f: X \to Y$ that is one-to-one but not onto.

• \$f(1)=1,

f(2)=2,

f(3)=3\$

(b) Define a function $g: X \to Z$ that is onto but not one-to-one.

• \$g(1)=1,

g(2)=2,

q(3)=2\$

(c) Define a function $h: X \to X$ that is neither one-to-one nor onto.

• \$h(1)=2,

h(2)=2,

h(3)=2\$

(d) Define a function $k: X \to X$ that is one-to-one and onto but is not the identity function on X.

• k(1)=2,

k(2)=3,

k(3)=1\$

Question 7

(a) Define g:Z o Z by the rule g(n)=4n-5, for all integers n.

i. Is g one-to-one? Prove or give a counterexample.

• Yes. Proof: $g(n_1) = g(n_2)$, then $4n_1 - 5 = 4n_2 - 5$. So, $n_1 = n_2$

ii. Is g onto? Prove or give a counterexample.

ullet Yes, Proof: For any $m\in \mathbb{Z}, n=rac{m+5}{4}$ is an integer, so g(n)=m

(b) Define G:R o R by the rule G(x)=4x-5 for all real numbers x.

Is G onto? Prove or give a counterexample.

ullet Yes, Proof: For any $y\in\mathbb{R}, x=rac{y+5}{4}$ is a real number, so G(x)=y

Question 8

(a) Define H:R o R by the rule H(x)=x2, for all real numbers x.

i. Is H one-to-one? Prove or give a counterexample.

• No, Counter: H(1) = 1 and H(-1) = 1

ii. Is H onto? Prove or give a counterexample.

- ullet No, Counter: There is no $x\in\mathbb{R}$ that $x^2=-1$
- (b) Define $K: \mathbb{R}^{nonneg} \to \mathbb{R}^{nonneg}$ by the rule K(x) = x2, for all non-negative real numbers x. Is K onto? Prove or give a counterexample.
 - ullet Yes. Proof: For any $y\geq 0, x=\sqrt{y}$ is a non-neg real number, so K(x)=y

In each of the following a function f is defined on a set of real numbers. Determine whether or not f is one-to-one and justify your answer.

Question 9

 $f(x)=rac{x+1}{x}$, for all real numbers x
eq 0

ullet Yes, Proof: if $rac{x_1+1}{x_1}=rac{x_2+1}{x_2}$, then $x_1=x_2$

Question 10

 $f(x)=rac{x}{x^2+1}$, for all real numbers x

• No, Counter: $f(1) = \frac{1}{2}$ and $f(-1) = \frac{-1}{2}$