

App. No. 09/833,017
Inventor: Cvitkovitch et al.
Atty. Dkt: 2224-01301 (formerly 1889-00401)
Replacement Sheet 1 of 19

Figure 1

Streptococcus mutans
ComCDE Operon

Figure 2A.

[ATGAAAAAAACACTATCATTAAAAAATGACTTTAAAGAAATTAAGACTGATGAATTAGA
GATTATCATTGGCGGA (AGCGGAAGCCTATCAACATTTCCGGCTGTTAACAGAAGTT
· TTACACAAGCTTGGGAAAA)] TAA

Figure 2B.

AGCGGAAGCCTATCAACATTTCCGGCTGTTAACAGAAGTTAACAGCAGCTTGGGA
AAA

Figure 2C.

[ATGAATGAAGCCTTAATGATACTTCAAATGGTTATTAACCTATCTAACCGT
TCTATTCTCTGTTCTATTTCTAAGGTAAAGTAATGTCACTTATCGAAAAAA
GGAATTAACCTTTTCGATAAGCAATTCTGATAATGATTGCTGTTACGA
TGGTGAACGTAACCTGTTATCCTGCAGAGCCTCTTATTAGCTTAT
CAATTATCTTAATAGACAGAAATAGTCTTCTCTAAATATATTATGGTCTGC
TGCCTGTTGCCAGTTCTGACTTGTTAGGCAGGCAATCATATTCTTATCTGG
ATGGAACCTAAGGAATTGTAATGGGAGTAGCATTATAACCACCTATATGAT
CGAGTTGCAGGAATAGCGCTAACGTTACCTCTTCAGTGTGTTCAATGTTG
ATATTGGTCGACTTAAAGATAGTTGACCAAGATGAAGGTCAAAAAACGCTT
GATTCCAATGAATATTACTATGCTCTACTACCTTTAATACAGGTATTGT
ATGTTATAGAGAGTTATAATGTGATACCGACTTAAATTCGTAAATTGTC
GTTATTGCTATCTTATTGATTCTGATCTCATTAAAGCCAATATA
CCAAACAAAAGGTTCAAAATGAGATAATGGCACAAAAGGAAGCTCAGATT
GAAATATCACCCAGTATAGTCAGCAAATAGAATCTCTTACAAGGATATT
AAGTTCCGCCATGATTATCTGAATATTAACTAGCCTCAGATTAGGCATT
AAAATAAAGATTAGCTAGTATTGAAAAGATTACCATCAAATCTTAGAAAA
AACAGGACATCAATTGCAGGATACCCGTATAATATCGGCCATCTAGCTAAT
ATTCAAAACGATGCTGTCAAGGGTATCTGTCAGCAAAATCTTAGAAGCTC
AGAATAAAAAGATTGCTGTCAATGTAGAAGTCTCAAGTAAAATACAACGCC
TGAGATGGAGTTGCTGATTCTGATTACCATACTTCTATCTTGTGATAATGC
CATTGAGGCTGCTTCAATCATTAAATCCTGAAATTCACTGCTTAAAG
AGAAAAATGGCAGTATAGTCTTATCATTCAAGTAAAGAAAATCTTCAACT
AATAGATGTGAGTAAAATTTAAAGAAAATCTTCAACTAAAGGCTCCAAT
CGCGGTATTGGTTAGCAAAGGTGAATCATATTCTGAAACATTATCCC
CAGTTACAAACAAGCAATCATCATCATTATTCAAGCAACTCCTAATAATAA
AA]TAG

Figure 2D.

[ATGATTCTTTGTATTGAAAGATGATTTTACAACAAAGGACGTCTGAAACCAC
CATTGCAGCTATCATGAAAGAAAAATTGGTCTTATAAAGAATTGACTATTTGGAAA
ACCACAAACAACCTATTGACGCTATCCCTGAAAAGGGCAATCACCAGATTTCTTTGGA
TATTGAAATCAAAAAAGAGGAAAAGAAAGGACTGGAAGTAGCCAATCAGATTAGACAGCA
TAATCCTAGTCAGTTATTGTCTTGTACGACACATTCTGAGTTATGCCCTCACTTT
TCAGTATCAGGTATCTGCTTGATTATTGATAAAATCTTGAATCCTGAGGAGTTCTC
CCACCGCATTGAATCAGCGCTGTATTATGCTATGGAAAACAGCCAGAAGAATGGTCAATC
AGAGGAACCTTTATTTCCATTCACTGAAACTCAGTTCAGGTCCCTTGCTGAGAT
TCTGTATTTGAAACATCTCAACAGCCCATAAGCTCTGCCCTTATACTTATGATGAACG
GATTGAATTCTACGGCAGTATGACTGACATTGTTAAATGGATAAGAGACTTTTCAGTG
CCATCGCTTTATTGTCAATCCTGCCAATTACCCGTATTGATCGGAAAAACGCTT
GGCCTATTTGAAATAATAAGTCTTGTCTTACGAACTAAGTTAACAAAAGCAG
AGCTGTGATTGCTGATCAAAGGAGAGCAAA] TGA

Figure 3

A.

MKKTLSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK

B.

MNEALMILSNGLLTYLTFLFVSKVSNVTLSKKELTLFSISNFLIMIAVTMVNVNL
FYPAEPLYFIALSIYLNRQNLSLNIFYGLLPVASSDLFRRAIIFFIILDGTQGIVMGSS
IITTYMIEFAGIALSYLFLSVNFNDIGRLKDSLTKMKVKRRIIPMNITMLLYLLIQVL
YVIESYNVIPTLKFRKFVVIVYLIILFLILISFLSQYTKQKVQNEIMAQEAQIRNITQY
SQQIESLYKDIRSFRHDYLNILTSRLGIENKDLASITEKIHQILEKTGHQLQDTRYNI
GHLANIQNDAVKGILSAKILEAQNKIAVNVEVSSKIQLPEMELLDFITILSILCDNAI
EAAFESLNPEIQLAFFKNGSIVFIQNSTKEKQIDVSKIFKENYSTKGSNRGIGLAKV
NHILEHYPKTSLQTSNHHHLFKQOLLI IK

C.

MISIFVLEDDFLQQGRLETTIAAIMKEKNWSYKELTIFGKPQQLIDAYPEKGHNHQIFFL
DIEIKKEEKKGLEVANQIRQHNPSAVIVFVTTHSEFMPPLTFQYQVSALDFIDKSLNPEE
FSHRIESALYYAMENSQNGQSEELFIFHSSETQFQVPFAEILYFETSSTAHKLCLYTY
DERIEFYGSMTDIVKMDKRLFQCHRSFIVNPANITRIDRKRLAYFRNNKSCLISRTKL
TKLRAVIADQRRAK

Figure 4

A.

BM71 CSP	1 MKKTPSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK	46
GB14 CSP	1 MKKTLSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK	46
H7 CSP	1 MKKTLSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK	46
JH1005 CSP	1 MKKTLSLKNDFKEIKTDELEIIIGGSGTLSTFFRLFNRSFTQA	43
LT11 CSP	1 MKKTLSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK	46
NG8 CSP	1 MKKTLSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK	46
UAB159 CSP	1 MKKTLSLKNDFKEIKTDELEIIIGGSGSLSTFFRLFNRSFTQALGK	46

***** *****

B.

consensus: 1 MKKTLSLKNDFKEIKTDELEIIIGG SGSLSTFFRLFNRSFTQALGK 46
predicted cleavage site:

Figure 5

SGSLSTFFRLFNRSFTQALGK

Figure 6

Genetic Transformation in *S. mutans* Biofilms

Figure 7

Strain	Peptide added Number of Transformants/Recipients	No peptide Number of Transformants/Recipients
UAB15	4.65×10^{-1}	1.78×10^{-6}
JH1005 ²	6.98×10^{-2}	0

¹The final concentration of SCSP used was 500 ng/ml.
The strain contains a nonsense mutation in the *comC* gene encoding the CSP.

Figure 8

ComC region

ComC Primer Pair: F5-B5

[F5] 23406-23424 5'- AGTTTTTGCTGGCTGCG -3'

19 nt forward primer

pct G+C: 47.4 Tm: 50.5

[B5] 24056-24037 5'- TCCACTAAAGGCTCCAATCG -3'

20 nt backward primer

pct G+C: 50.0 Tm: 51.9

651 nt product for F5-B5 pair (23406-24056)

Optimal annealing temp: 50.3

pct G+C: 30.9 Tm: 71.5

ComD region

ComD Primer Pair: F1-B1

[F1] 392-415 5'- CGCTAAGTTACCTCTTCTCAGTG -3'

24 nt forward primer

pct G+C: 45.8 Tm: 51.6

[B1] 683-663 5'- GCTTCCTTTGTGCCATTATC -3'

21 nt backward primer

pct G+C: 42.9 Tm: 50.8

292 nt product for F1-B1 pair (392-683)

Optimal annealing temp: 49.5

pct G+C: 30.8 Tm: 70.2

ComE region

ComE Primer Pair: F1-B1

[F1] 145-165 5'- CCTGAAAAGGGCAATCACCAAG -3'

21 nt forward primer

pct G+C: 52.4 Tm: 55.9

[B1] 606-585 5'- GCGATGGCACTGAAAAAGTCTC -3'

22 nt backward primer

pct G+C: 50.0 Tm: 55.4

462 nt product for F1-B1 pair (145-606)

Optimal annealing temp: 53.6

pct G+C: 38.3 Tm: 74.1

Figure 9A

Sequence Range: 1 to 2557

10 20 30 40 50
ACATTATGTGCTTAAGAAAATTACTTTCAAGAAAATCCATGATT
TGTAATACACAGGATTCTTATAATGAAAAAGTTCTTTAGGTACTAA
<K K L F I W S K
<_____

60 70 80 90 100
TTTCATAAAAAATAGTATACTAATTATAATCAAAAAAGGAGATATAAA
AAAAGTATTTTATCATATGATTAATATTAGTTCTCTATATTT
<K M F F L I S I I I L F L L Y L
<_____

110 120 130 140 150
ATGAAAAAAACACTATCATTAAAAAATGACTTTAAAGAAATTAAGACTGA
TACTTTTTGTGATAGTAATTTTACTGAAATTCTTAATTCTGACT
M K K T L S L K N D F K E I K T D >
ORF RF [2] >
<I F F V S D N F F S K L S I L V S
<_____

160 170 180 190 200
TGAATTAGAGATTATCATTGGCGGAAGCGGAAGCCTATCACACATTTC
ACTTAATCTCTAACAGTAAACCCTTCGCCCTCGGATAGTTGAAAAAGG
E L E I I I G G S G S L S T F F >
ORF RF [2] >
<S N S I I M
<_____

210 220 230 240 250
GGCTGTTAACAGAACAGTTTACACAAGCTTGGAAAATAAGATAGGCTA
CCGACAAATTGCTTCAAATGTGTTGAAACCCCTTTATTCTATCCGAT
R L F N R S F T Q A L G K >
ORF RF [2] >

260 270 280 290 300
ACATTGGAATAAAACAAGGCTGGATTTATTATTCCAGCCTTTAAATGT
TGTAACCTTATTTGTTCCGACCTAATAATAAGGTCGGAAAATTACA

310 320 330 340 350
AAAATAAAATACAGGGTTAACATAATCAAGTGTGCTGTCGTGGATGAGAA
TTTATTATTATGTCCAATTATTAGTTCACACGACAGCACCTACTCTT

360 370 380 390 400
GATAAAACTATCTCTTAGAGAACAGGCTCCCTATTTATTAGGAG
CTATTGATAGAGAACATCTTATCCGGAGGAGATAAAATAATCCTC
<K I I L L
<_____ ORF RF []

410 420 430 440 450
TTGCTTGAATAAAATGATGATGATTGCTTGTAAACTGGTTGGAT
AACGAACCTATTACTACTAACGAACAAACATTGACCAAAACCTA
<Q K F L H H N S T Q L S T K P Y

Figure 9B

< ORF RF [4] C >

460 470 480 490 500
AATGTTCAAGAATATGATTCACCTTGCTAAACCAATACCGCGATTGGAG
TTACAAGTCTTATACTAAGTGGAAACGATTGGTTATGGCGCTAACCTC
< H E L I H N V K A L G I G R N S
< ORF RF [4] C >

510 520 530 540 550
CCTTTAGTGGAAATAGTTTCTTAAAAATTTACTCACATCTATTGTT
GGAAATCACCTTATCAAAAGAAAATTTAAAATGAGTGTAGATAAACAAA
< G K T S Y N E K F I K S V D I Q K
< ORF RF [4] C >

560 570 580 590 600
TTCTTGGTGGAAATTCTGAATGATAAAGACTATACTGCCATTTCCTAA
AAGAAACCACCTTAAGACTTACTATTTCTGATATGACGGTAAAAGAATT
< E K T S N Q I I F V I S G N K K E
< ORF RF [4] C >

610 620 630 640 650
AAAAGGCTAACTGAATTTCAGGATTAAATGATTGAAAGCAGCCTCAATG
TTTCCGATTGACTTAAAGTCCTAAATTACTAAGCTTCGTCGGAGTTAC
M>
>
< F A L Q I E P N L S E F A A E I
< ORF RF [4] C >

660 670 680 690 700
GCATTATCACACAAGATAGAAAGTATGGTAATGAAATCAAGCAACTCCAT
CGTAATAGTGTGTTCTATCTTCATACCATTACTTAGTCGTTGAGGTA
A L S H K I E S M V M K S S N S I>
ORF RF [3]>
< A N D C L I S L I T I F D L L E M
< ORF RF [4] C >

710 720 730 740 750
CTCAGGCAGTTGTATTAACTTGAGACTTCTACATTGACAGCAATCTTT
GAGTCGTCACATAAAATGAACCTGAAGATGTAACTGTCGTTAGAAAA
S G S C I L L E T S T L T A I F>
ORF RF [3]>
< E P L Q I K S S V E V N V A I K K
< ORF RF [4] C >

760 770 780 790 800
TATTCTGAGCTTCTAAGATTTGCTGACAAGATAACCCCTGACAGCATCG
ATAAGACTCGAAGATTCTAAAACGACTGTTCTATGGAACTGTCGTAGC
L F>
>
< N Q A E L I K A S L I G K V A D
< ORF RF [4] C >

810 820 830 840 850
TTTGAATATTAGCTAGATGGCCGATATTATAACGGGTATCCTGCAATTG
AAAACCTATAATCGATCTACCGGCTATAATATTGCCCATAGGACGTTAAC
< N Q I N A L H G I N Y R T D Q L Q
< ORF RF [4] C >

Figure 9C

860 870 880 890 900
ATGTCCTTTCTAAGATTGATGGTAAATCTTCAATACTAGCTA
TACAGGACAAAAAGATTCTAAACTACCATTAGAAAAGTTATGATCGAT
<H G T K E L I Q H Y I K E I S A L
<_____ ORF RF[4] C _____

910 920 930 940 950
AATCTTATTTCAATGCCTAATCTGAGGCTAGTTAAAATATTAGATAA
TTAGAAATAAAAGTTACGGATTAGACTCCGATCAATTATAAGTCTATT
<D K N E I G L R L S T L I N L Y
<_____ ORF RF[4] C _____

960 970 980 990 1000
TCATGGCGAAACTTCGAATATCCTTGTAAGAGATTCTATTGCTGACT
AGTACCGCCTTGAAGCTTATAGGAACATTCTCTAACGACTGA
M A E T S N I L V K R F Y L L T >
<D H R F S R I D K Y L S E I Q Q S
<_____ ORF RF[4] C _____

1010 1020 1030 1040 1050
ATACTGGGTGATATTCGAATCTGAGCTCCTTTGTGCCATTATCTCAT
TATGACCCACTATAAGCTTAGACTCGAACGGAAACACGGTAATAGAGTA
I L G D I S N L S F L L C H Y L I >
<Y Q T I N R I Q A E K Q A M I E N
<_____ ORF RF[4] C _____

1060 1070 1080 1090 1100
TTGAACCTTTGTTGGTATATTGGCTAAAAATGAGATCAGAACCAA
AAACTGGAAAACAAACCATATAACCGAATTCTACTCTAGTCTAGTT
L N L L F G I L A >
<Q V K Q K T Y Q S L F S I L I L
<_____ ORF RF[4] C _____

1110 1120 1130 1140 1150
AATAAAATAAGATAGACAATAACGACAAATTACGAAATTAAAGTCGG
TTATTTTATTCTATCTGTTATTGCTGTTAAATGCTTAAATTTCAGCC
<F L I L Y V I V V F K R F K L T P
<_____ ORF RF[4] C _____

1160 1170 1180 1190 1200
TATCACATTATAACTCTCTATAACATACAATACCTGTATTAAAGGTAGT
ATAGTGTAAATTGAGAGATATTGTATGGACATAATTTCATCA
<I V N Y S E I V Y L V Q I L L Y Y
<_____ ORF RF[4] C _____

1210 1220 1230 1240 1250
ATAGAACATAGTAATATTCAATTGGAATCAAGCGTTTGACCTTCATC
TATCTCGTATCATTATAAGTAACCTTAGTCGAAAAACTGGAAAGTAG
<L L M T I N M P I L R K K V K M
<_____ ORF RF[4] C _____

1260 1270 1280 1290 1300
TTGGTCAAACATCTTAAGTCGACCAATATCACACATTGAAACACTGAG

Figure 9D

AACCAAGTTGATAGAAATTCAAGCTGGTTATAGTTGTAACTTGTGTGACTC
<K T L S D K L R G I D V N F V S L
<_____ ORF RF[4] C _____

1310 1320 1330 1340 1350
AAAGAGGTAACCTAGCGCTATTCCCTGCAAACTCGATCATATAGGTGGTTA
TTTCTCCATTGAATCGCGATAAGGACGTTGAGCTAGTATATCCACCAAT
<F L Y S L A I G A F E I M Y T T I
<_____ ORF RF[4] C _____

1360 1370 1380 1390 1400
TAATGCTACTGCCATTACAATTCCCTGAGTTCCATCCAAGATAAAGAAT
ATTACGATGACGGGTAATGTTAAGGAACCTAAGGTAGGTTCTATTCTTA
<I S S G M V I G Q T G D L I F F
<_____ ORF RF[4] C _____
<L E K L E M W S L S Y
<_____

1410 1420 1430 1440 1450
ATGATTGCCGCCTAACACAAGTCAGAACTGGCAACAGGCAGCAGACCATA
TACTAACGGCGGATTGTTCACTGACCGTTGTCGTCGTCTGGTAT
<I I A R R F L D S S A V P L L G Y
<_____ ORF RF[4] C _____
<S Q G G L C T L V P L L C C C V M
<_____

1460 1470 1480 1490 1500
AAATATATTAGAGAAAGACTATTCTGTCTATTAAGATAATTGATAAAG
TTTATATAAATCTCTTCTGATAAGACAGATAATTCTATTAACTATTTC
<F I N L S L S N Q R N L Y I S L A
<_____ ORF RF[4] C _____

1510 1520 1530 1540 1550
CTATAAAATAAAGAGGCTCTGCAGGATAAAACAGGTTACGTTACCATC
GATATTTATTCCTCCGAGACGTCCTATTTGTCCTAAATGCAAGTGGTAG
<I F Y L P E A P Y F L N V N V M
<_____ ORF RF[4] C _____

1560 1570 1580 1590 1600
GTAACAGCAATCATTATCAGAAAATTGCTTATCGAAAAAGAGTTAAC
CATTGTCGTTAGTAATAGTCTTTAACGAATAGCTTTCTCAATTAAAG
<T V A I M I L F N S I S F L T L E
<_____ ORF RF[4] C _____

1610 1620 1630 1640 1650
CTTTTCGATAAAAGTACATTACTACCTTAGAAAATAGAAACAAGAGAA
GAAAAAGCTATTCACTGTAATGAAATGAACTTTATCTTGTCTCTT
<K K S L T V N S V K S F L F L L F
<_____ ORF RF[4] C _____

1660 1670 1680 1690 1700
ATAGAACGGTTAGATAAGTTAATAAACCATTTGAAAGTATCATTAGGCT
TATCTGCCAATCTATTCAATTATTTGTAACCTTCATAGTAATTCCGA
<L V T L Y T L L G N S L I M L A
<_____ ORF RF[4] C _____

1710 1720 1730 1740 1750

Figure 9E

TCATTCTTTGCTCTCCTTGATCAGCAATCACAGCTCTCAGTTTGT
AGTAAGTAAAACGAGAGGAAACTAGTCGTTAGTGTGAGAGTCAAAACAA
<E N M
<
<K A R R Q D A I V A R L K T
<
ORF RF [5] C

1760 1770 1780 1790 1800
AACTTAGTCGTGAAATAAGACAAAGACTTATTATTCGAAAATAGGCCAA
TTGAATCAAGCACTTATTCTGTTCTGAATAATAAAGCTTTATCCGGTT
<L K T R S I L C S K N N R F Y A L
<
ORF RF [5] C

1810 1820 1830 1840 1850
GCGTTTTCCGATCAATAACGGTAATATTGGCAGGATTGACAATAAAG
CGCAAAAAAGGCTAGTTATGCCATTATAACCGTCCTAAGTGTATTTC
<R K K R D I R T I N A P N V I F S
<
ORF RF [5] C

1860 1870 1880 1890 1900
AGCGATGGCACTGAAAAAGTCTCTTATCCATTAAACAATGTCAGTCATA
TCGCTACCGTGACTTTTCAGAGAATAGGAAAATTGTTACAGTCAGTAT
M A L K K S L I H F N N V S H>
ORF RF [1] >
<R H C Q F L R K D M K V I D T M
<
ORF RF [5] C
<V
<

1910 1920 1930 1940 1950
CTGCCGTAGAATTCAATCCGTTCATCATAAGTATAAAGGCAGAGCTTATG
GACGGCATCTTAAGTTAGGCAAGTAGTATTCAATTTCCGTCTCGAACATAC
T A V E F N P F I I S I K A E L M>
ORF RF [1] >
<S G Y F E I R E D Y T Y L C L K H
<
ORF RF [5] C
<
<A T S N L G N M M L I F A S S I
<
ORF RF [6] C

1960 1970 1980 1990 2000
GGCTGTTGAAGATGTTCAAAATACAGAATCTCAGCAAAGGGACCTGAA
CCGACAACCTCTACAAAGTTATGTCTAGTCGTTCCCTGGACTT
G C>
>
<A T S S T E F Y L I E A F P V Q F
<
ORF RF [5] C
<
<P Q Q L H K L I C F R L L L S R F
<
ORF RF [6] C

2010 2020 2030 2040 2050
ACTGAGTTTCAGATGAATGGAAAATAAAAGTCTCTGATTGACCATT
TGACTCAAAGTCTACTTACCTTTATTTCAAGGAGACTAAGTGTAAAG
<Q T E S S H F I F L E E S Q G N
<
ORF RF [5] C
<
<S L K L H I S F L F N R Q N V M R
<
ORF RF [6] C

Figure 9F

2060 2070 2080 2090 2100
TTCTGGCTTTCCATAGCATAATACAGCGCTGATTCAATGCCGGTGGGA
AAGACCGACAAAAGGTATCGTATTATGTCGCGACTAACGTTACGCCACCT
<K Q S N E M A Y Y L A S E I R H S
<_____ ORF RF[5] C _____
<R A T K W L M
<_____ ORF RF[6] C _____

2110 2120 2130 2140 2150
GAACTCCTCAGGATTCAAAGATTATCAATAAAATCCAAAGCAGATACCT
CTTGAGGAGTCCTAAGTTCTAAATAGTTATTTAGGTTCTGCTATGGA
<F E E P N L S K D I F D L A S V Q
<_____ ORF RF[5] C _____

2160 2170 2180 2190 2200
GATACTGAAAAGTGAGGGGCATAAAACTCAGAATGTGTCGTGACAAAGACA
CTATGACTTTCACTCCCCGTATTCAGTCTTACACAGCACTGTTCTGT
M C R D K D>
>
<Y Q F T L P M F E S H T T V F V
<_____ ORF RF[5] C _____

2210 2220 2230 2240 2250
ATAACTGCACTAGGATTATGCTGCTAACTGATTGGCTACTCCAGTCC
TATTGACGTGATCCTAATACGACAGATTAGACTAACCGATGAAGGTAGG
N N C T R I M L S N L I G Y F Q S>
>
<I V A S P N H Q R I Q N A V E L G
<_____ ORF RF[5] C _____

2260 2270 2280 2290 2300
TTCTTTCTCTTTTGATTCAATATCCAAAAGAAAATCTGGTGT
AAAGAAAAGGAGAAAAACTAAAGTTATAGGTTCTTTAGACCACTA
F L F L F D F N I Q K E N L V I>
>
<K K E E K K I E I D L F F I Q H N
<_____ ORF RF[5] C _____

2310 2320 2330 2340 2350
TGCCCTTTCAAGGATAGCGTCAATAAGTTGTTGTGGTTCCAAAATA
ACGGGAAAAGTCCCTATCGCAGTTATTCAACAAACACCAAAAGGTTTAT
A L F R D S V N K L L W F S K N>
>
<G K E P I A D I L Q Q P K G F I
<_____ ORF RF[5] C _____

2360 2370 2380 2390 2400
GTCAATTCTTATAAGACCAATTTCATGATAGCTGCAATGGT
CAGTTAACAAATATTCTGGTAAAAAAAGAAAGTACTATCGACGTTACCA
S Q F F I R P I F F H D S C N G>
>
>
<T L E K Y S W N K E K M I A A I T
<_____ ORF RF[5] C _____

2410 2420 2430 2440 2450

Figure 9G

GGTTTCAAGACGTCCTTGTGAAAAATCATCTTCCAATACAAAAATAG
CCAAAGTTCTGCAGGAACAACATTTTAGTAGAAGGTTATGTTTTATC
G F K T S L L>
V S R R P C C K K S S S N T K I>
<T E L R G Q Q L F D D E L V F I S
<_____ ORF RF[5] C _____>
2460 2470 2480 2490 2500
AAATCATTATTCTCCTTAATCTCTATTAGGTTAGCTGATTAACACT
TTTAGTAATAAGAGGAAATTAGAAGATAAATCCAATCGACTAATTGTGA
E I I I S P L I F Y L G>
<I M
<_____>
2510 2520 2530 2540 2550
ATACACAGAAAAGGTATAAACGATATCACTCAATAAAATCTACTAACTT
TATGTGTCTTCCATTTGCTATAGTGAGTTAGATGATTGAA
AATAACC
TTATTGG

Figure 10

A.

ATGGAAGAAGATTTGAAATTGTTTAATAAGGTTAACGCCATTGTATGGAAATTAAG
CCGTTATTACTTATTAAAATGTGGACTCGTGAAGATTGGCAACAAGAGGAATGTTGA
TTTGCAACCAATTATTAAGGAAACATCCAGAATTAGAAGAGGATGATACAAAATTGAT
ATCTATTTAAGACACGTTTCTAATTACATTAAGATGTTGCCTCAGCAAGAAAG
TCAGAAACGTCGTTTAATAGAATGTTATGAAGAAGTCGGTAGATTGAAACACTGTT
TGTCAAGTGGCGGTATGCAATTGGATGAATATATTTATTCGTGATAGTTGCTTGCA
TATAAACAAAGGCTGAGTACTGAAAAGCAAGAGCTGTTGAGCGCTGGTAGCAGGAGA
GCACTTTGGGAAGGCAAAGTATGCTGAAAGATTACGTAAAAATTAAAGTGATTTA
AGGAAAAA

B.

MEEDFEIVFNKVKPIVWKLSRYYFIKMWTREDWQQEGMLILHQLLREHPELEEDDTKLY
IYFKTRFSNYIKDVLRQQESQKRRFNRMYSVEVGEIEHCLSSGMQLDEYILFRDSLIA
YKQGLSTEKQELFERLVAGEHFLGRQSMLKDLRKKLSDFKEK

C.

GTAAATAAAACAGCCAGTTAACGATGGGACATTATGTCCTGTTAAAGTCTTTCG
TTTATAATAATTATTATAAAAGGAGGTACATCGTAATAGATGGAAGAAGATTTGAA
ATTGTTTTAATAAGGTTAACGCCATTGATGGAATTAAAGCCGTTATTACTTTATTAA
AATGTTGACTCGTGAAGATTGCAACAAGAGGAAATGTTGATTTGCACCAATTATTAA
GGGAACATCCAGAATTAGAACAGGATGATACAAAATTGATATCTATTAAAGACACGT
TTTCTAATTACATTAAAGATGTTTGCCTCAGCAAGAACGTCAGAAACGTCGTTTAA
TAGAAATGCTTATGAAGAACGTCGGTAGATTGAAACACTGTTGCTCAAGTGGCGGTATGC
AATTGGATGAATATATTATTTCGTGATAGTTGCTGCAATATAAACAAAGGTCTGAGT
ACTGAAAAGCAAGAGCTGTTGAGCGCTGGTAGCAGGAGAGCACTTTGGGAAGGCA
AAGTATGCTGAAAGATTACGTAAAAATTAAAGTGAATTAAAGGAAAAATAGTTAAAAA
GGGAAAGAATGGAACATGTGATTGTACCATCTTTGGTTGAAATTAAAGAAAAGTTA
TTATAAATTATTGGTTAACATGCCATATTA

Figure 11A.

ATGAAACAAAGTATTTATGTTGTTTAATCGTCATGCCGTTAACATTCTCTTAGAGATT
ATCAAAAGAGTAACAAAAGGGGAGGGACAGTTCGTCATCTAACCTTACCAAGATGGG
CAGTCTAAGTTGTTGGCGCAGACATTATAAGCTAGTACCTCAGATTGATACCAGAGAC
TGTGGCCGGCAGTGTGGCATCTGTTGCAAAGCATTACGGATCTAATTACTCTATCGCT
TATCTCGGGAACTCTCAAAGACTAACAGCAGGGAACAAACAGCTTGGCATTGTTGAA
GCTGCTAAAAAGTTAGGCTTGAAACACGCTCTATCAAGGCAGGATATGACGCTTTGAT
TATAATGATTTGACCTATCCTTTATCGTCATGTGATTAAAGGAAAACGTCAGCAGCAT
TATTATGTCGTCATGGCAGCCAGAATAATCAGCTGATTATTGGAGATCCTGATCCTCA
GTTAAGGTGACTAGGATGAGTAAGGAACGCTTCAATCAGAGTGGACAGGCCTGCAATT
TTCCTAGCTCCTCAGCCTAACTATAAGCCTCATAAAGGTGAAAAAAATGGTTGTCTAAT
TTCTCCCGTTGATCTTAAGCAGAAAGCTTGATGACTTATATTATCATAGCTAGCTTG
ATTGTGACGCTCATTGATATTGTCGGATCATACTATCTCCAAGGAATATTGGACGAGTAC
ATTCCCTGATCAGCTGATTCAACTTTAGGAATGATTACGATTGGTCTGATAATAACCTAT
ATTATCCAGCAGGTATGGCTTTGCAAAGAATAACCTCTGGCGTACTCAGTTGCGT
TTAGTCATTGATGTTATCCTGTCTTATATCAAACATATTTTACGCTTCTATGTCTTC
TTTGCACAAGGCGAACAGGAGAAATCACGTCTCGTTACAGATGCCAATCAGATTATT
GATGCTGTAGCGTCAACCCTTTCAATCTTTAGATATGACTATGGTAATTTGGTT
GGTGGGGTTTGTGGCGAAAACAATAACCTTTCTAACCTGCTCTCCATTCCG
ATTATGCCATCATTATTTGCTTCTTGAAACCCCTTGAGAAAATGAATCACGAAGTG
ATGGAAAGCAATGCTGGTAAGTTCTATCATTGAAGATATCAATGGGATGGAAACC
ATTAAATCACTACAAGTGAGTCCGCTCGTTATCAAACATTGATAGTGAATTGTTGAT
TATTGGAGAAAAACTTAAGCTACACAAGTATAGTGCCATTCAAACCGCATTAAAAGC
GGTGCTAAGCTTATCCTCAATGTTGTCATTCTCTGGTATGGCTCTCGTCTAGTTATGGAT
AATAAAATCTCAGTTGGTCAGCTTATCACCTTAATGCTTGTCTTATTCTCAAAT
CCAATTGAAAATATTATCAATCTGCAATCCAAACTGCAGTCAGCTCGCGTTGCCAATACA
CGTCTTAATGAGGTCTATCTGTCGAATCTGAATTGAAAAAGACGGCATTATCAGAA
AATAGCTTTTAGATGGTGATATTCGTTGAAAATCTTCTTATAAAATATGGATTG
CGAGATACCTTATCAGATATTAATTATCAATCAAAAAAGGCTCAAGGTCAAGTCTAGTT
GGAGCCAGTGGTCTGGTAAAACAACCTTGGCTAAACTGATTGTCATTCTACGAGCCT
AACAAAGGGATTGTTCGAATCAATGGCAATGATTAAAAGTTATTGATAAGACAGCTTG
CGGCGCATATTAGCTATTGCGCAACAGGCCTATGTTTAGTGGCTCTATTATGGAT
AATCTGTTTAGGAGCTAAAGAAGGAACGGAGTCAGGAAGACATTATTCGTGCTTGTGAA
ATTGCTGAAATCCGCTCGGACATTGAACAAATGCCTCAGGGCTATCAGACAGAGTTATCA
GATGGTGCCGGTATTCTGGCGGTAAAAACAGCGGATTGCTTAGTGGCCTTATTA
ACACAGGCACCGGTTTGATTCTGGATGAAGCCACCAGCAGTCTGATATTGACAGAA
AAGAAAATTATCAGCAATCTCTTACAGATGACGGAGAAAACAATAATTGTTGCCAAC
CGCTTAAGCATTTCACAGCGTACTGACGAAGTCATTGTCATGGATCAGGGAAAAATTGTT
GAACAAGGCACTATAAGGAACCTTAGCTAAGCAAGGTTCTATTATAACCTGTTAAT

Figure 11B.

MKQVIYVVLIVIAVNILLEIIKRVTKRGGTVSSNPLPDGQSCLFWRRHYKLVPQIDTRD
CGPAVLASVAKHYGSNSIAYLRELSKTNQGTTALGIVEAAKKLGFETRSIKADMTLFD
YNDLTYPFIVHVKGKRLQHYYVYGSQNNQLIIGDPDPSVKVTRMSKERFQSEWTGLAI
FLAPQPNYKPHGEKNGLSNFFPLIFKQKALMTYIIIASLIVTLIDIVGSYLYQGILDEY
IPDQLISTLGMITIGLIITYIIQQVMAFAKEYLLAVSLRLVIDVILSYIKHIFTLPMSF
FATRRTGEITSRFTDANQIIDAVASTIFSIFLDMTMVLVGGVLLAQNNNLFLTLLSIP
IYAIIFIABLKFPEKMNHEVMESNAVSSSIIEDINGMETIKSLTSESARYQNIDSEFVD
YLEKNFKLHKYSAIQTALKSGAKLILNVVILWYGSRLVMDNKISVGQLITFNALLSYFSN
PIENIINLQSKLQSARVANTRLNEVYLVESEFEKDGDLSSENSFLDGDISFENLSYKYGFG
RDTLS DINLSIKKGSKVSLVGASGSGKTTLAKLIVNFYEPNKGIVRINGNDLKVIDKTAL
RRHISYLPQQAYVFSGSIMDNLVLAKEGTSQEDIIRACEIAEIRSDEQMPQGYQTELS
DGAGISGGQKQRRIALARALLTQAPVLILDEATSSLIDILTEKKIISNLLQMTEKTIIFVAH
RLSISQRTDEVIVMDQGKIVEQGTHKELLAKQGFYYNLFN

Figure 11C.

ATGGATCCTAACATTTCACAAAGTCAGAATTAGGAGACGCTATCATAATTGCG
ACACTATTAATTGTTCCCTTGGCTGCTTGATTATCTTCTGGCATATTCCCTTGT
GCTAAAAAGAAATTACAGTGATTCTACTGGTGAAGTTGCACCAACAAAGGGTAGAT
GTTATCCAATCTTACAGTGACAGTTCAATCATTAAAATAATTAGATAATAATGCAGCT
GTTGAGAAGGGAGACGTTTAATTGAATATTCAAGAAAATGCCAGTCCAAACCGTCAGACT
GAACAAAAGAATATTATAAAAGAAAGACAAAACGAGAAGAGAAGGAAAAGAAAAACAC
CAAAGAGCAAGAAAAGAAGAAGTCTAAGAGCAAGAAAGCTCCAAAGATAAGAAAAG
AAATCGAAAGACAAGGAAAGCAGCTCTGACGTGAAATGAGACAAAAAGGTTCGATT
TTTGCCTCAGAAGATGGTATTATTCATACCAATCCAAATATGATGGTGC
CCGAAGCAAACCGAGATTGCTCAAATCTATCCTGATATTCAAAAACAAGAAAAGTTA
ATCACCTATTATGCTTCTGATGATGTTCTATGAAAAGGGCAAACCGCTCGT
CTTCCCTGGAAAAAGGGAAATGACAAGGTTATTGAAGGAAAATTAACAATGTC
GCTTCATCAGCAACTACTAAAAAGGAAATCTTTAAGGTTACTGCCAAAGTAAAG
GTTTCTAAGAAAATAGCAAACCATCAAGTATGGTATGACAGGCAAGACAGTC
ATTGATAAAAAGACTTATTTGATTATTCAAAGATAATTACTGCATAAAATGGATAAT

Figure 11D.

MDPKFLQSAEFYRRRYHNFATLLIVPLVCLIIFLVIFLCFAKKEITVISTGEVAPTKVVD
VIQSYSDDSIIKNNLDNNAAVEKGDVIEYESNASPNRQTEQKNIKERQKREEKEKKH
QKSKKKKSKSKASKDKKKSKDKESSSDDENETKKVSIFASEDGIHTNPKYDGANII
PKQTEIAQIYPDIQKTRKVLITYYASSDDVVSMMKGQTARLSLEKKNDKVVI
EGKINVA
ASSATTKKGNLFKVTAKVVKNSKLIKYGMTGKTVTVIDKKTYFDYFKDKLLHKMDN

Figure 12

