CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CALIF POLYMER-MODIFIED CONCRETE FOR MILITARY CONSTRUCTION.(U) APR 77 J R KEETON, R L ALUMBAUGH CEL-TN-1479 10-A039 801 F/G 11/2 UNCLASSIFIED NL 0F A039804 盟 END DATE FILMED 6 -77

)398(

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Outs Entered

REPORT DOCUMENTATION PA	GE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TN-1479	DN244079	3. RECIPIENT'S CATALOG NUMBER
TITLE (and Bublille) POLYMER-MODIFIED CONCRETE FOR		S. TYPE OF REPORT & PERIOD COVERED
MILITARY CONSTRUCTION		Final; Jul 1973 - Jun 1975
		8. PERFORMING ORG. REPORT NUMBER
- AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(-)
J. R. Keeton, P.E. R. L. Alumbaugh, PhD		e de la companya de l
PERFORMING ORGANIZATION NAME AND AGORESS		IC PROGRAM ELEMENT, PROJECT, YASK
CIVIL ENGINEERING LABORATORY Naval Construction Battalion Center		
Port Hueneme, California 93043		62766N; ZF61.512.001.048
1. CONTROLLING OFFICE NAME AND ADDRESS Director of Navy Laboratories, Room 1062	. Crystal Plaza	April 1977
Bldg. No. 5, Department of the Navy,	A Company	13. NUMBER OF PAGES
Washington, D.C. 20360 4. MONITORING AGENCY NAME & AGORESS(I different from	m Controlling Office)	18. SECURITY CLASS. (al this report)
		Unclassified
		154. OECLASSIFICATION DOWNGRADING
Approved for public release; distribution un	nlimited.	
7. DISTRIBUTION STATEMENT (of the abstract entered in 8	lock 20, if different to	The Report of the Control of the Con
SUPPLEMENTARY NOTES		
BANG TO BE IN INTEREST (1997) . IT : 전문 본환 원 (1997) . IT INTEREST		victor and
1		

tensile strength, Young's modulus, bond strength, water absorption.

20. ABSTRACT (Continue on reverse side II necessary and identify by block number)

Results are given of tests made with polymer-modified concretes in which the polymeric materials are added to the concrete in the mixer. Polymers used were either epoxy or saran latex. Epoxy- or latex-modified concretes provided compressive, splitting tensile, and flexural strengths from 2.8 to 4.6 times those of similar concrete without the polymer. Epoxy-modified concretes achieved compressive strengths from 7,770 psi to 10,150 psi over test ages of 1 day to 365 days. Latex-modified concretes reached compressive strengths from

DD TORM 1473 EDITION OF I NOV 65 IS OBSOLETE

continued

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

iil

SECURITY CLASSIFICATION OF THIS PAGE(When Date Enforce) 344 407 474 400

20. Continued

4,160 psi to 10,110 psi over test ages from 3 days to 365 days. Splitting tensile strengths of epoxy-modified concretes ranged from 900 psi to 1,340 psi for test ages from 1 day to 365 days; corresponding strengths of latex-modified concretes ranged from 600 psi to 970 psi. Flexural strengths of epoxy-modified concretes ranged from 1,300 psi to 1,610 psi; corresponding strengths of latex-modified concretes ranged from 770 psi to 1,570 psi; Significant reductions were observed in water absorption of polymer-modified concretes. Bond strength of polymer-modified concrete was slightly higher than in concrete without the polymer. Young's moduli of polymer-modified concretes were only 1.4 to 1.8 times those of similar concrete without the polymer. Epoxy-modified concretes cost between \$432 and \$465 per cubic yard more than conventional portland cement concrete; corresponding cost of latex-modified concrete is about \$278. Typical mix designs and mixing, placing, and curing procedures are presented.

Library card

Civil Engineering Laboratory
POLYMER-MODIFIED CONCRETE FOR MILITARY
CONSTRUCTION (final), by J. R. Keeton, P.E. and
R. L. Alumbaugh, PhD
TN-1479 72 pp illus April 1977 Unclassified

the street and the street street and the street

1. Concrete construction

2. Modified concrete

I. ZF61.512.001.048

balland.

Results are given of tests made with polymer-modified concretes in which either epoxy or saran latex are added to the concrete in the mixer. These concretes provided compressive, splitting tensile, and flexural strengths from 2.8 to 4.6 times those of similar concrete without the polymer. Compressive strengths of epoxy-modified concretes ranged from 7,770 to 10,150 psi over test ages of 1 to 365 days; latex-modified concretes, from 4,160 to 10,110 psi over test ages from 3 to 365 days. Splitting tensile strengths of epoxy-modified concretes ranged from 900 to 1,340 psi for test ages from 1 day to 365 days; latex-modified concretes, from 600 to 970 psi. Flexural strengths of epoxy-modified concretes ranged from 1,300 to 1,610 psi; latex-modified concretes, ranged from 770 to 1,570 psi. Water absorption was significantly reduced in polymer-modified concretes. Bond strength of polymer-modified concrete was slightly higher than in concrete without the polymer. Young's moduli of polymer-modified concretes were only 1.4 to 1.8 times those of similar concrete without the polymer. Bpoxy-modified concretes cost between \$432 and \$465 per cubic yard more than conventional portland cement concrete; corresponding cost of latex-modified concrete is about \$278. Typical mix designs and mixing, placing, and curing procedures are presented.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS MANAGE

	age
INTRODUCTION	1
BACKGROUND	1
DEFINITION OF TERMS	2
RESEARCH PROGRAM	3
Approach	3
Aggregates Utilized	4
Cements Utilized	4
Polymers Utilized	4
Mixing Procedures	4
Compaction Methods	5
Curing Methods	6
Concrete Mixes	6
Polymer Loading	7
Strength Tests	7
TEST RESULTS	7
Compressive Strength	7
Splitting Tensile Strength	8
Flexural Strength (Rupture Modulus)	9
Young's Modulus	9
Bond Strength	9
Water Absorption	10
Gap Grading of Sand	10
INCREMENTAL COSTS OF POLYMER-MODIFIED CONCRETE	10
DISCUSSION OF TEST RESULTS	11
FINDINGS	12
	1/
	1 21 3

Contents (continued)

928	eT.																				Page
POTE	NTL	AL	AP	PL	IC	AT	IO	NS			•	•	•		•			•	•	•	
ACKNO	OWL	ED	GME	NT		•		•	•		•	•	•	•				•	• •		
REFE	REN	CE	s.		•	•	•	•	•		•	•	•				•	•	•	•	
APPE	NDI	XF	s																		. A BARBOUT WHEN
	A	_	Po1	.yu	er	8	an	d,	As	80	cia	ato	ed	M	at	er	ia	ls		•	61
	В		Str	en	gt	hs	0	f	Co	nt	ro.	L 1	M1	хe	8.		•	•	•		. w. d.r.) 62
	C	-	Typ Pro	oic oce	al du	M re	ix 8	D fo	es: r]	igi Po	ns Lyi	a: ne:	nd r-	M mo	ix di	in fi	g ed	an C	d on	Cu	uring of the course retes 65
																					Mixing Fr Endaces
																					tonpacefunderings.
															i						es a Spelant and side
																					Contract Hands.
											W.						15				and solven thinks
																					Strongth Proces

INTRODUCTION

This report summarizes results of research conducted in FY-74 and FY-75 on the use of polymers in concrete. An earlier Civil Engineering Laboratory (CEL) report of research conducted in FY-72 and FY-73 also contained results on the use of polymers in mortar [1]. In both of these studies, the polymers were introduced into the mixer along with aggregates, cement, and water. Hardening of the polymer (polymerization) was accomplished either by chemical means, by application of moist heat (steam), or by evaporation of water to coalesce the latex into a solid polymer.

redictive and contract his attention of the contract and a contrac

Based on results of the first report, research in FY-74 and FY-75 was limited to the most promising of the polymers. Strength properties were determined on test specimens at ages from 1 day to 1 year.

This report also contains suggestions for uses of polymer-modified concretes, including recommended quantities of polymers and mixing, placing, and curing requirements. Incremental cost data are included as well as commercial sources of the materials.

BACKGROUND

In 1967 Brookhaven National Laboratory (BNL), the U. S. Bureau of Reclamation (USBR), and the Atomic Energy Commission (AEC) began a joint venture on the strengthening of concrete with polymers. Later the Office of Saline Waters (OSW) became involved by support of work at USBR on the properties of concrete exposed to hot brine and distilled water. The main thrust of their work was polymer impregnation of precast concrete. This research by these agencies resulted in five topical reports issued in 1968, 1969, 1971, 1972, and 1973 [2 through 6].

In 1969 the Federal Highway Administration (FHWA) initiated support of a research program at BNL to investigate the use of concrete polymer materials for highway applications, with eventual special emphasis on polymer impregnation of bridge decks. This research resulted in reports issued in 1970, 1972, 1973, and a final report in 1975 [7 through 10]. In the years between 1970 and the present, many state highway departments, universities, and other agencies have conducted laboratory research and related field studies on the use of polymers in concrete. Very few long-term studies have been made on polymers added at the mixer. One of the notable exceptions was a study conducted in the Soviet Union by V. I. Solomatov, the results of which were published in Russian in 1967. The AEC completed and published a computer translation of this report in 1970 [11]. Work with latexes was published by Eash and Shafer [12].

DEFINITION OF TERMS

For the most part the terms used in this report relating to polymers in concrete (and mortar) are those adopted by American Concrete Institute (ACI) Technical Committee 548, Polymers in Concrete. Membership of ACI Committee 548 includes representatives of BNL, FHWA, USBR, CEL, and many other universities, federal and state agencies, and companies involved and interested in the use of polymers in concrete.

- Polymer-modified Portland Cement Concrete (PPCC) liquid polymeric material is introduced into the mixer along with aggregates, portland cement, and water; the polymeric material is subsequently hardened. (For mortar, involving no aggregate larger than U. S. sieve size no. 4, the abbreviation is PPCM, other things being the same as for concrete.)
- Polymer-modified Regulated Set Cement Concrete (PRCC) same definition as for PPCC, except that Regulated Set Cement is used instead of portland cement.
- Latex a milk-like emulsion consisting of small globules of synthetic resin (plastic) dispersed in water. The globules of plastic are dispersed in the water either following polymerization or, more frequently, the globules are formed from a liquid monomer by a process called emulsion polymerization. The globules then coalesce into larger hardened polymeric particles as the water is removed from the system either by evaporation, by reaction with the cement (hydration), or by both mechanisms.
- Epoxy Resin a liquid polymer of relatively low molecular weight which forms a solid polymer when reacted chemically with a curing agent.
- Hardening the chemical process by which a liquid polymeric material is converted to a solid polymer; in the case of a latex, the polymeric particles coalesce upon loss of water and form a solid product.
- Curing Agents chemicals which produce hardening (polymerization), especially of epoxy systems, by entering into the reaction and becoming a part of the resulting polymer. The curing agent used in the tests reported herein was a modified polyamine.

CITY OF THE PARTY OF THE PARTY

The most consideration of the Market Commission of the Market Market State of the Commission of the Commission The most market of the Commission of t The Commission of the Co

RESEARCH PROGRAM

Approach

At the outset of the program, it was suspected that the natural high alkalinity of the cement-water solution (pH = 12 to 13) would tend to hydrolyze most polyester-type materials. For this reason, the polymers investigated in the initial study were epoxies and latexes believed to be relatively unaffected by the alkalinity of the cement paste. It was also reasoned that in order to achieve a stronger product by synergizing the inherent strength of the hardened cement paste with that of the hardened polymer, excellent bonding between the two must be accomplished. The basic gel-like structure of hardened cement paste, consisting of a matrix of solid material (mostly calcium silicates) encompassing many small pores (gel pores) and a fewer number of larger pores (capillaries), is well known. An ideal composite material would be one in which the polymer fills all the pores of the cement paste and bonds tenaciously to the solid material. Therefore, it was deemed necessary to accomplish as much cement hydration (formation of hardened cement paste) as possible prior to hardening of the polymer.

reference as a constitution result described the constitution

Initially, the cement chosen for the study was portland Type III, High Early Strength. Initial set of Type III cement takes place in 2 to 4 hours and the 7-day compressive strength of concrete made with this cement is approximately equivalent to the 28-day strength of concrete made with conventional portland cement. In the initial tests, polymer was added to the mixer immediately following addition of the mixing water. Results of these initial tests were poor, however, and it was reasoned that (1) the presence of the polymer may have impeded early hydration and (2) the cement should be allowed to begin to hydrate for some time prior to addition of the polymer. Accordingly, subsequent procedures allowed the portland cement mixtures to stand for periods up to 1 hour before addition of the polymer. Test results showed compressive strengths several orders of magnitude higher than when the polymer was added immediately after addition of the mixing water. Still later in the program, an experimental nonchloride accelerator was made available to CEL which enabled rapid hydration of the portland cement and allowed addition of the polymer within 15 minutes of initial mixing of the cement and water.

Regulated Set cement was then introduced into the program. Initial set of this type of cement normally occurs within 20 to 30 minutes, and the introduction of polymers and curing agents extended this time to between 1 and 1-1/2 hours.

At the beginning of the study it was hoped that curing of the concrete mix containing the polymeric material in ambient laboratory air would enable sufficiently rapid strength gain. It was soon learned, however, when using epoxies and curing agents in portland cement concrete, that the cement hydration process needed acceleration, so low pressure steam curing for 16 hours at 150°F was utilized thereafter. The steam

accelerated both the hydration of the cement and the hardening of the epoxy. Although latex manufacturers normally recommend only air curing for their products when used in concrete, some of the latex specimens in this study were also steam-cured for comparison.

As reported previously [1], the first portion of this research program involved investigation of as many polymeric ingredients as possible, using early compressive strength (1 to 7 days) as the criterion of relative success of a given product. About 40 different combinations of materials were tested in this period (FY-72 and FY-73), with most of them eliminated from further investigation because of unsatisfactory results. Research in FY-74 and FY-75 concentrated on more complete studies utilizing (1) one epoxy and an epoxy curing agent and (2) one latex. Compressive strengths, Young's moduli, splitting tensile strengths, and flexural strengths were determined on multiple specimens for test ages up to 1 year.

Aggregates Utilized

Aggregates used in the research program consisted of local sand and gravel from the Santa Clara River. Except for a few tests involving gap grading, sand and gravel gradations conformed to ASTM C 33-71. Maximum size aggregate was 3/8-inch (pea gravel).

Cements Utilized

Cements involved in the program were (1) Type III portland, High Early Strength and (2) Regulated Set Cement. Sources of these cements are included in Appendix A.

Polymers Utilized

As stated earlier, research in this portion of the study was limited to concrete mixtures made with one epoxy (Celanese Epi-rez 5077), and one epoxy curing agent (Ancamine T-1, a modified polyamine). Ratio of curing agent to epoxy was 1:5. Shell Epon 815 showed similar results in the first portion of the study and could be substituted for the Epi-rez 5077. The latex used was Dow 464, a saran. An anti-foaming agent (Dow Corning Antifoam B), was used to prevent foam formation when using the latex. Appendix A contains listing and source of all pertinent materials used in the program.

Mixing Procedures

Mixing procedures used in preparing the test specimens follow.

Portland Cement Concretes Without Accelerator.

- 1. Mix aggregates and cement dry for 1 minute.
- 2. Add required water and mix for 3 minutes.
- 3. Stop mixer and allow concrete to stand for 1 hour, mixing for 15 seconds each 10 minutes.
- 4. Add polymer and mix for 3 minutes.
- 5. Place polymer-modified concrete in molds.

Portland Cement Concretes With Accelerator.

- 1. Mix aggregates and cement dry for 1 minute.
- 2. Add required water and accelerator and mix for 3 minutes.
- 3. Stop mixer and allow concrete to stand for 15 minutes.
- 4. Add polymer and mix for 3 minutes.
- 5. Place polymer-modified concrete in molds.

Regulated Set Cement Concretes.

- 1. Mix aggregates and cement dry for 1 minute.
- 2. Add required water and mix for 3 minutes.
- 3. Add polymer and mix for 3 minutes.
- 4. Place polymer-modified concrete in molds.

Epoxy and Curing Agent.

- 1. Mix epoxy and curing agent and let stand for 10 minutes to allow curing agent to begin to react.
- 2. Add to concrete mix at required time.

Latex.

- 1. Add the antifoaming agent to the premixed latex.
- Place in the mixer at the required time. (Latex 464
 is 50% solids and 50% water, so this water must be
 taken into consideration when adding the mixing
 water.)

Compaction Methods

At the beginning of the program, the mixtures containing epoxies were compacted into the cylinder molds by vibration. It was soon obvious, however, that the material does not respond well to vibration. For most of the epoxy mixtures, vibration provided minimal compaction. Hand

packing (like ice cream is hand-packed into a carton) of the material in the molds was the next method utilized. This method performed fairly well when used in conjunction with vibration. A third method of compaction, the most effecient developed to date, was hand-tamping in two layers, combined with vibration.

Most of the epoxy materials, when mixed with cement and water, cause severe water separation, or bleeding of the mixing water, as the mixture is compacted into a mold. Compressive strength test results seem to indicate that this bleed water is the excess water usually required in concrete for workability, and therefore the elimination of this water does not affect deleteriously the subsequent strength-producing cement hydration.

Latex materials seemed to mix well with the basic concrete, and compaction into molds was easily accomplished by vibration.

Curing Methods

Curing methods used in this study were (1) low pressure steam (S+A) and (2) ambient laboratory air (A). The curing cycle of specimens to be steam-cured was as follows: (1) steam-curing at 150°F for 16 hours, (2) removal from mold at age 1 day and ambient air-curing for the remaining time until tested. 'Ambient air curing' means that the specimen was placed in a laboratory room at ambient temperature and humidity, uncontrolled except for normal heating. Specimens to be air-cured were removed from molds at age of 1 day and then placed in the same laboratory room (mentioned above) until time to be tested.

Concrete Mixes

Experimental tests were made with the following basic concrete mixes:

- 1. Water-cement ratio (W/C) = 0.50; cement content = 8.0 sacks (752 pounds) per cubic yard; nominal slump = 3 inches.
- 2. W/C = 0.60; cement content = 6.9 sacks (649 pounds) per cubic yard; nominal slump = 3 inches.
- 3. W/C = 0.70; cement content = 5.9 sacks (555 pounds) per cubic yard; nominal slump = 3 inches.

For the sake of brevity in this report, the means of identifying the basic concrete mix design is by the cement content; e.g., "5.9 PPCC" means the basic concrete mix had a cement content of 5.9 sacks (555 pounds) per cubic yard, a W/C = 0.70, and made with portland cement. The term "5.9 PRCC" means the same basic concrete mix made with Regulated Set cement.

Results of tests made on concretes containing no polymers are referred to as "control" data. A few polymer-modified concrete tests were made with concretes having cement contents of 6.9 and 8.0 sacks/cu yd, but most of the experimental studies were made on the 5.9 sack mix because: (1) polymers did not significantly increase the concrete strengths compared to the control strengths (strength atios) in the 6.9 and 8.0 sack mixes and (2) the 5.9 sack mix is a cheaper and basically weaker mix and addition of polymers showed dramatic strength increases compared to the control strengths. The control strengths are shown in Appendix B.

Polymer Loading

In this report the loading or concentration of the polymers is stated in relation to the weight of cement used in the basic mix. For example, an epoxy loading of 50% in the 5.9 sack mix (555 lb/cu yd) means 0.50×555 pounds = 277 pounds of epoxy per cubic yard of concrete. Relating polymer loading to weight of cement is more meaningful than relating it to total weight because the total weight is dependent also on the amount of water needed for each batch, whereas the cement content is constant once a given mix design is chosen.

Strength Tests

Compressive strength and Young's modulus tests were made on cylinders 4 inches in diameter and 8 inches long in accordance with ASTM C 39-72 and ASTM C 469-69 (1975), respectively. Splitting tensile strengths were determined on cylinders 4 inches in diameter and 8 inches long in accordance with ASTM C 496-71. Flexural strengths (rupture modulus) were determined on beams 3 inches square and 11 inches long in accordance with ASTM C 78-64 (1972). Tests to determine bond strength were conducted according to ASTM C 234-71.

TEST RESULTS

Compressive Strength

Figure 1 shows the relationship between polymer loading and compressive strength for epoxy-modified concrete; Figure 2 shows the same relationship for latex-modified concrete. In PPCC mixes, the more epoxy, the higher the compressive strength; for PRCC mixes, however, the optimum loading is 75%. In the latex mixes, the optimum loading varied between 30% and 40%. The decision to use epoxy loadings of 50%, 75%, and 100% and latex loadings of 20%, 30%, and 40% in the second portion of the study was based on the results presented in Figures 1 and 2.

Compressive strength ratios are shown in Table 1 for test ages of 1, 3, 7, 28, 91, 175, and 365 days. Strength ratio is obtained by dividing the compressive strength of the polymer-modified concrete by the compressive strength of the control concrete. Strength ratios are shown in column 1 in descending order. The relative position of a given polymer-modified mix changed with time. For example, 5.9 PPCC latex with 30% loading and air-cured showed the highest strength ratio after 1 day (4.6) but dropped to third highest after 3 days, next to lowest at 7 days, third highest after 28 days, lowest at 91 days, next to lowest at 175 days, and third from lowest after 365 days. These and other similar variations can be accounted for partly by the difference in the time-dependent strength gain between the polymer-modified concrete and the control concrete and partly by the fact that the higher polymer loadings produce higher compressive strengths of the polymer-modified concretes at later ages.

Column 6 of Table 1 lists the actual compressive strengths of each mix. When a prospective user of polymer-modified concretes is determining which mixture to use, he may be influenced more by his need for a certain minimum compressive strength at a certain age than he is by the strength ratio. At test ages of 7, 28, 91, and 175 days the epoxymodified concretes have the highest strength ratios; however, the latex-modified concretes are very close in the later ages. Table 1 shows only the higher strength ratios for each test age.

Table 2 lists the compressive strengths of the polymer-modified concretes in descending order for each test age (column 2). As observed before, the epoxy-modified concretes dominate in early ages, but the latex-modified concretes have only slightly lower strengths in later ages. Appropriate strength ratios are shown in column 7.

Since compressive strength ratios for the 6.9 and 8.0 mixes were not significantly high and since these mixes are basically more expensive than the 5.9 mix, long-term tests to determine splitting tensile and flexural strengths and Young's moduli were limited to the 5.9 mix.

Splitting Tensile Strength

Splitting tensile strength ratios are presented in Table 3, which includes the same type of data shown in Table 1. As observed with compressive strength ratios, the epoxy-modified concretes show highest values throughout, but at later test ages the latex-modified concretes narrow the gap. It can also be noted here that the splitting tensile strength ratios start high at 1 day, decrease slightly at 7 and 28 days, and then increase at later ages to about the same value as for 1 day.

Table 4 shows splitting tensile strengths in descending order for each test age. The epoxy-modified concretes provide the highest values throughout the test series. Highest splitting tensile strengths of latex-modified concretes average about 71% of those of the epoxy-modified concretes over the whole test series.

Flexural Strength (Rupture Modulus)

Table 5 lists flexural strength ratios in decreasing magnitude at each test age. As observed in the other tables, epoxy-modified concretes show higher strength ratios at the earlier test ages, but the latex-modified concretes overtake them at later test ages.

Flexural strengths listed by order of magnitude for each test age are presented in Table 6. Epoxy-modified concretes showed highest flexural strengths throughout the test series, but flexural strengths of latex-modified concretes were 91%, 95%, and 98% of the epoxy-modified concretes at 91, 175, and 365 days, respectively.

Young's Modulus

Young's modulus strength ratios are shown in decreasing order of magnitude for each test age in Table 7. Latex-modified concretes showed strength ratios equal to or higher than those of epoxy-modified concretes at all test ages. Strength ratios for Young's modulus are significantly lower than for the other strength properties.

Ranking of Young's moduli by magnitude is presented in Table 8. Except for 1- and 365-day tests, latex-modified concretes showed the highest Young's moduli. Young's modulus is one property which does not seem to be enhanced significantly by polymer loading. The principal reason for this may be that the polymer, whether epoxy or latex, is a plastic and therefore tends to 'creep' or 'flow' when stressed; in a modulus test (in coal ession), the creep increases the recorded strain for a given load, thereby reducing the computed modulus (stress divided by strain). This is to say that although compressive strength is increased significantly (Tables 1 and 2), stresses in a specimen being tested for Young's modulus will eventually be transferred at least partially to the plastic which deforms at a faster rate than does the basic concrete structure. At the most it can be said that there is a modest increase in Young's modulus in polymer-modified concretes.

Bond Strength

Tests were made both on polymer-modified and control concretes to determine the bond developed with reinforcing steel (ASTM C 234-71). Bond strength of epoxy-modified concrete (polymer loading of 100% of cement weight) was 1,470 psi, while bond strength of control concrete was 1,360 psi; in both cases, averages were of three specimens. These results indicate very little increase in bond strength in the polymer-modified concrete but do show that bond strength is adequate. It should be emphasized that this ASTM test is intended to compare concretes on the basis of the bond developed with reinforcing and is not to be used for establishing bond values for structural design.

Water Absorption

Tests were made to determine the water absorption of polymermodified concretes compared to control concrete. Cylinders (in triplicate) at least 28 days old were oven-dried, allowed to cool, and then
submerged in water. Increases in weight were recorded at periodic
intervals until constant weight had been achieved. Results are shown in
Table 9. Epoxy-modified concretes show the lowest water absorption,
particularly at 100% polymer loading. In terms of reduction in absorption from that of the control, epoxy-modified concretes provided as much
as 69% reduction (100% epoxy loading, PRCC, S+A). The highest reduction for air-cured latex-modified concretes was 58% (40% loading, PPCC),
although 40% loading, PRCC was a close second at 54%. The highest
reduction for steam-cured latex-modified concretes was 62% (40% loading,
PRCC).

Gap Grading of Sand

Control tests were made with several gap gradings; the one which provided the highest compressive strengths was one in which the following size gradations were included: -3/8 + 4, -8 + 16, -50 + 100, -100 + pan. A few tests were made using this sand grading with epoxy-modified concretes at 50%, 75%, and 100% loading. Compressive strengths of the gap graded epoxy-modified concretes were not as high as with normal grading.

INCREMENTAL COSTS OF POLYMER-MODIFIED CONCRETE

Since the delivered cost of a cubic yard of concrete varies from locality to locality, it is more meaningful to examine how much more polymer-modified concrete costs than plain portland cement concrete made with Type I or Type II cement. A compilation of these incremental costs (as of 1976) is shown in Table 10, together with a listing of total incremental costs for selected mixes. Since best strength results were obtained with polymer loadings of 75% epoxy and 40% latex, the cost computation shown in Table 10 uses these loadings. Although difficult to quantify in terms of cost, it should be emphasized that compaction of PPCC and PRCC mixes with epoxies requires more effort and that equipment used in these mixes must be properly cleaned with solvents.

It becomes rather obvious when examining the costs shown in Table 10 that these concretes will be used only when special conditions require the strength advantages furnished by the mixes. More attention is given to alternative choices in a subsequent section of this report.

DISCUSSION OF TEST RESULTS

The choice as to which of the polymer-modified concretes is optimum will, of necessity, depend upon the strength needs as well as the economic flexibility of the prospective user. Each type of polymer mix has inherent advantages and disadvantages which should be carefully considered before a choice is made. For example, if early high compressive strength is required and the structure must be quickly usable, magnitudes of other strength properties are less important — although it is also necessary that long-term strengths be adequate. On the other hand, a high flexural strength or high tensile strength may be required in 28 days and other considerations may be secondary.

Figures 3, 4, and 5 show relatively high strength ratio and values of compressive strength, splitting tensile strength, and flexural strength, respectively. For easy comparison, polymer-modified concrete mixes are shown by the same plotting symbols on all three of the figures. In all three cases, the upper portion (a) of the figure presents the strength ratio versus test age and the lower portion (b) shows actual strengths versus test age. Although Young's moduli were not increased significantly by using polymers, Figure 6 shows time effects on Young's moduli for one epoxy- and one latex-modified concrete, each of which provided significant increases in the other strength properties. Although Young's modulus strength ratios (Figure 6a) are not significant, actual values (Figure 6b) approach reasonable levels at later ages.

Examination of the lower portions of Figures 3 through 5 reveals that epoxy-modified concretes are generally superior to latex-modified concretes only when early high strengths are required; with the exception of splitting tensile strength, latex-modified concretes showed strength properties approximately equal to those of the epoxy-modified concretes at 365 days. Strength ratio plots in the upper portions of Figures 3 through 5 show about the same relationships. Considering the relative ease of mixing and placing as well as lower cost, the air-cured latex-modified concrete is the obvious choice for concrete not requiring early high strength properties. In reality, however, the 7- and 28-day strength properties of the latex-modified PPCC concrete are moderately high; it is comparison of these values with those of the epoxy-modified concretes which causes them to appear low.

Ratios of splitting tensile and flexural strengths to compressive strengths have been developed [13, 14]. An interesting and important phenomenon of polymer-strengthened concrete is shown in Table 11.

Comparisons of columns 5 and 7 and of columns 6 and 8 reveal that ratios of both splitting tensile and flexural strengths to compressive strengths are consistently higher in polymer-modified concrete than in plain concrete. At later ages these ratios for polymer-modified concretes are about 50% higher than those for the plain concrete. The significance of this observation is that for a given compressive strength, both the tensile and flexural strengths are at least 50% higher than would normally be expected. Since it is commonly accepted that tensile and flexural

strengths as well as shear strength are a function of or are based on compressive strength, this is an important asset for polymer-strengthened concrete.

Economic considerations always have a significant influence upon ultimate decisions. Since latex-modified concretes cost about one-third less than the epoxy-modified concretes, their strength properties and other inherent advantages merit serious consideration. Some of these other advantages include the ease of mixing and placing. No noxious odors are generated, no solvents are required, and the equipment cleanup is easily accomplished. On the other hand, epoxy-modified concretes, when mixed, are extremely sticky and are difficult to compact in-place. As the material is compacted, it releases water which must be drained away. All equipment must be cleaned as soon as possible with an organic solvent such as methyl ethyl ketone. A significant advantage of the latex-modified concrete over the epoxy-modified concrete is that it requires no special curing, whereas epoxy-modified concrete requires steam-curing to obtain adequate strengths.

Another important aspect when considering the use of polymermodified concretes is that the higher strength properties obtainable may
reduce the required size of the structure to be built. The cost determination, then, would be based on the smaller, thinner structure. For
example, in a given circumstance, having a compressive strength or
flexural strength three times higher might enable the proposed structure
(or portion of a structure) to be one-third as thick as originally
planned.

FINDINGS

- 1. Compressive strength ratios of epoxy-modified concretes and latex-modified concretes were as high as 3.7 and 3.2, respectively, after 365 days. Strength ratios of epoxy-modified concretes reached 4.6 and 3.5 after 1 day and 7 days, respectively.
- 2. Compressive strengths of epoxy-modified and latex-modified concretes reached 10,150 psi and 10,110 psi, respectively, after 365 days. Compressive strengths of epoxy-modified concretes were as high as 7,770 psi and 8,860 psi in 1 day and 7 days, respectively.
- 3. Splitting tensile strength ratios of epoxy-modified and latex-modified concretes reached 3.4 and 2.9, respectively, after 365 days. Strength ratios of epoxy-modified concretes were 3.3 and 3.0 after 1 day and 7 days, respectively.
- 4. Splitting tensile strengths of epoxy-modified and latex-modified concretes reached 1,340 psi and 970 psi, respectively, after 365 days. Splitting tensile strengths of epoxy-modified concretes reached 900 psi and 1,180 psi in 1 day and 7 days, respectively.

- 5. Flexural strength ratios of both epoxy-modified and latex-modified concretes reached 2.8 after 365 days. Flexural strength ratios of epoxy-modified concretes reached 3.8 and 3.5 after 1 day and 7 days, respectively.
- 6. Flexural strengths of epoxy-modified and latex-modified concretes reached 1,610 psi and 1,570 psi, respectively, in 365 days. Flexural strengths of epoxy-modified concretes reached 1,300 psi and 1,380 psi in 1 day and 7 days, respectively.
- 7. Strength ratios for Young's modulus of both epoxy-modified and latex-modified concrete reached 1.8 after 365 days. Young's modulus strength ratios for latex-modified concretes reached 1.4 and 1.7 in 1 day and 7 days, respectively.
- 8. Young's moduli for epoxy-modified and latex-modified concretes reached 3.90 and 3.62 x 10^6 psi, respectively, after 365 days. Young's moduli at early ages were low; the highest value for latex-modified concrete was only 3.08 x 10^6 psi at 7 days.
- 9. Epoxy-modified concretes must be steam-cured to obtain satisfactory strengths. Latex-modified concretes obtain adequate strengths with air-curing.
- 10. Epoxy-modified concretes absorbed as much as 69% less water than control concrete; latex-modified concretes absorbed as much as 62% and 58% less than control concrete with steam-curing and air-curing, respectively.
- 11. Bond strength of epoxy-modified concrete was slightly higher than the bond strength of control concrete.
- 12. Consistency of epoxy-modified concretes is extremely thick and sticky and the material is difficult to place (compact). Consistency of latex-modified concrete is good and it is easily compacted.
- 13. When making epoxy modified concrete with portland cement (PPCC), the basic portland cement concrete mixture must be allowed to stand for 1 hour prior to adding the epoxy; with an accelerator, this time can be reduced to 15 minutes. When epoxy-modified concrete is made with Regulated Set cement, no waiting period is necessary.
- 14. Epoxy-modified concrete with gap graded sand had lower compressive strengths than similar concrete with normal sand grading.
- 15. Generally speaking, consistently highest strengths were obtained over all test ages (1) with 75% epoxy loading in PPCC or PRCC and (2) with 40% latex loading in PPCC.
- 16. Epoxy-modified concretes generally provided early high strengths which did not increase significantly up to 365 days. On the other hand, latex-modified concretes generally had relatively lower early strengths but showed significant increases in strength with increasing test age.

- 17. PPCC with 75% epoxy loading of Epi-rez 5077 costs \$465.37/cu yd more than conventional concrete; the same loading and mix with Epon 815 epoxy costs \$432.09/cu yd more than conventional concrete. PRCC with 75% epoxy loading of Epi-rez 5077 costs \$466.48/cu yd more than conventional concrete; the same loading and mix with Epon 815 epoxy costs \$433.20/cu yd more than conventional concrete.
- 18. PPCC with 40% latex loading costs \$276.88/cu yd more than conventional concrete; the same latex loading with PRCC costs \$277.99/cu yd more than conventional concrete.
- 19. Highest compressive strengths and highest flexural strengths were obtained with epoxy-modified concrete made with PRCC; highest splitting tensile strengths were obtained with epoxy-modified concrete made with portland cement.
- 20. At later ages ratios of splitting tensile and flexural strengths to compressive strengths are about 50% higher than they are in plain concrete.

CONCLUSIONS

- 1. For situations demanding high strengths at an early age (1 to 7 days), polymer-modified concretes made with epoxy resin should be used.
- 2. For designs requiring relatively high strengths at 28 days and beyond and in which early high strengths are not so important, latex-modified concretes should be chosen because they are cheaper and easier to use.
- 3. Generally speaking, compared to similar conventional concrete, properly prepared and cured polymer-modified concretes in which the polymeric materials are added at the mixer can be relied upon to provide increased compressive, splitting tensile, and flexural strengths, adequate bond strength and Young's modulus, and reduced water absorption. Appendix C contains the typical mix designs and mixing and curing procedures for polymer-modified concretes.

POTENTIAL APPLICATIONS

The following are considered potential applications for polymer-modified concrete.

- 1. Cladding for reinforced concrete piers.
- 2. Cladding for reinforced or prestressed concrete piling.
- 3. Caissons (breakwater units) and pontoons.
- 4. Repair of spalled or damaged reinforced concrete structures.

- 5. Concrete pavement and floor overlays.
- 6. Overlays of concrete bridge decks.
- 7. Prestressed concrete railroad ties and utility poles.
- 8. Canal and ditch linings.
- 9. Masonry curtainwalls.
- 10. Shear walls.

ACKNOWLEDGMENT

Mixing, casting, and breaking of specimens of polymer-modified concretes and control concretes were accomplished under the supervision of Engineering Technician John A. Crahan. Mr. Crahan also maintained accurate records and prepared tables summarizing over 400 batches of concrete involved in the program.

THE STATE OF THE S

REFERENCES

- 1. Civil Engineering Laboratory. Technical Note N-1319: Polymerstrengthened concrete for military facilities, by John R. Keeton and Robert L. Alumbaugh. Port Hueneme, CA, Dec 1973.
- 2. Brookhaven National Laboratory and Bureau of Reclamation. BNL 50134 (T-509) and USBR Gen Rep. 41: Concrete-polymer materials, first topical report, by M. Steinberg, et al. Upton, NY, and Denver, CO, Dec 1968.
- 3.——. BNL 50218 (T-560) and REC OCE 70-1: Concrete-polymer materials, second topical report, by M. Steinberg, et al. Upton, NY, and Denver, CO, Dec 1969.
- 4.——. REC-ERC-71-6 and BNL 50275 (T-602): Concrete-polymer materials, third topical report, by J. T. Dikeou, et al. Denver, CO, and Upton, NY, Jan 1971.
- 5.——. REC-ERC-72-10 and BNL 50328: Concrete-polymer materials, fourth topical report, by J. T. Dikeou, et al. Denver, CO, and Upton, NY, Jan 1972.
- 6.——— BNL 50390 and REC-ERC-73-12: Concrete-polymer materials, fifth topical report, by L. E. Kukacka, et al. Upton, NY, and Denver, CO, Dec 1973.
- 7. Brookhaven National Laboratory. BNL 15395: Concrete-polymer materials for highway applications, progress report no. 1, by M. Steinberg, et al. Upton, NY, Sep 1970.

- 8.——. BNL 50348 and FHWA-RD-73-7: Concrete-polymer materials for highway applications, progress report no. 2 by L. E. Kukacka, et al. Upton, NY, and Washington, DC, Apr 1972.
- 9 BNL 50417 and FHWA-RD-74-17: Concrete-polymer materials for highway applications, progress report no. 3, by L. Kukacka, et al. Upton, NY, and Washington, DC, Apr 1972.
- 10.—... BNL 50462 and FHWA-RD-75-86: Concrete-polymer materials for highway applications, final rpeort, by L. E. Kukacka, et al. Upton, NY, and Washington, DC, Jun 1975.
- 11. V. I. Solomatov. Computer translation: Polymer-cement concretes and polymer-concretes. Moscow, Russia, 1967. (Russian report: Izdatel'stvo Literatury po Stroitel'stva)
- 12. Polymer Concrete. Transportation Research Record 542: Reactions of polymer latexes with portland cement concretes, by R. Douglas Eash and Harvey H. Shafer. Washington, DC, 1975, pp 1-8.
- 13. Walter H. Price. "Factors influencing concrete strength," in proceedings of American Concrete Institute, vol. 47, no. 6, Feb 1951, pp 417-432.
- 14. A. M. Neville. Properties of concrete, 2nd ed. New York, NY, John Wiley and Sons, Inc., 1973.

Figure 1. Compressive strength of epoxy-modified concrete as a function of polymer loading.

Figure 3. Compressive strengths of polymer-modified concretes as a function of test age.

- Epoxy, 75%, PRCC, S+A
 ◆ Latex, 40%, PPCC, A
 △ Epoxy, 75%, PPCC, S+A
 ► Epoxy, 75%, PPCCE, S+A

Splitting tensile strengths of polymer-modified concretes as a function of test age.

The state of the same of the state of the st

1,300

Flexural Strength (psi)

Figure 5. Flexural strengths of polymer-modified concretes as a function of test age.

Figure 6. Young's moduli of polymer-modified concretes as a function of test age.

Table 1. Compressive Strength Ratios of Polymer-Modified Concretes

	Number of Specimens	Column 7	\$ 60 \$	0 0	A company 2 company	5	2	9	ο (m :	3	m	12	∞	&	3	e e e e e e e e e e e e e e e e e e e	e e		* * * * * * * * * * * * * * * * * * *	and the set of the set	in the second	continued
en e	Compressive Strength (psi)	Column 6	2,630	6, 220 5, 190	2,160	2,050	2,800	4,820	6,120	6,700	4,330	5,660	3,960	5,140	2,210	7,770		4,160	3,620	3,200	2,540	2,520	
	Curing Method	Column 5	A ^d	S+A S+A	A	Α	A	S+A	S+A	S+A				S+A	Ą	S+A	7.5	Å	A	. V	Y	V	
Test Age 1 Day	Concrete Mix	Column 4	5.9 PPCC	5.9 PRCC 5.9 PRCC	5.9 PRCC	5.9 PRCC	6	6	6	0	9 PRCC	6	5.9 PRCC	5.9 PPCC	5.9 PRCC	6.9 PPCC	Test Age 3 Days	5.9 PPCC	5.9 PRCC	5.9 PPCC	5.9 PRCC	5.9 PRCC	
а. Т	Polymer Loading (% Cement Weight)	Column 3	30	100 75	40	20	07	07	100	75	50	100	.30	75	30	118		07	40	30	20	30	
	Polymer Type	Column 2	r_p	el e	1	ų	1	1	ខា	ы	1	ш	1	Œ	1	ш.		1 .	1	ı	1	ų	
	Strength Ratio	Column 1	4.64	3.5	3.8	3.6	3.5	3.5	3.4	3.4	3.1	3.1	2.9	2.8	2.8	2.8		3.0	2.6	2.3	1.8	8.	

Table 1. continued

	· · ·	c. Test Age 7 Days	ys	
Polymer Type	Polymer Loading (% Cement Weight)	Concrete	Curing Method	Compressive Strength (psi)
Column 2	Column 3	Column 4 Column	Column 5	Column 6

Strength Ratio

Column

Number of Specimens

Column

-922233999999

7,310 5,930 6,930 7,200 7,580 6,910 5,320 5,100

5.9 PRCC 5.9 PRCC 5.9 PRCC 5.9 PRCC 6.9 PRCC 6.9 PRCC 5.9 PRCC 5.9 PRCC 5.9 PRCC 5.9 PRCC 5.9 PRCC

医医工工医医医医工工工工

	9	9	6	£	. 3	3	12	6	3
	8,390	7,780	7,220	-6,670	7,060	7,150	6,180	080,9	8,350
·····································	S+A	S+A	A	S+A	No. of Walls	Α	S+A	S+A	S+A
Test Age 28 Day	5.9 PRCC	5.9 PRCC	5.9 PPCC	5.9 PRCC	5.9 PPCC	5.9 PPCC-E	5.9 PRCC	5.9 PRCC	6.9 PRCC
.	75	100	30	07	- 07	70	30	20	75
	ш	ÞЭ	,,	1		1	1	1	E
	3.4	3.2	2.7						
	d. Test Age 28 Days	d. Test Age 28 Days 4 E 75 5.9 PRCC S+A	d. Test Age 28 Days 4 E 75 5.9 PRCC S+A 2 E 100 5.9 PRCC S+A	4 E 75 5.9 PRCC S+A 7 L 30 5.9 PPCC A	4 E 75 5.9 PRCC 8+A 7 100 5.9 PRCC A 5.9 PRC	4 E 75 5.9 PRCC S+A 700 5.9 PRCC A 40 5.9 PRCC A 6 L 40 5.9 PRCC A 6	4 E 75 5.9 PRCC S+A 7 100 5.9 PRCC A 4 5.9 PRCC A 5.9 PPCC A 5.9 P	4 E 75 5.9 PRCC S+A 7 100 5.9 PRCC S+A 7 100 5.9 PRCC S+A 5.9 PRCC A 5.9 PRCC	

continued

Table 1. continued

e. Test Age 91 Days

			The state of the s			
Strength Polymer Ratio Type	Polymer Type	Polymer Loading (% Cement Weight)	Concrete Mix	Curing Method	Compressive Strength (ps1)	Number of Specimens
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
3.2	E	75	5.9 PRCC	S+A	8,540	• •
3.1	ы	100	5.9 PRCC	S+A	8,280	9
2.9	1	07	5.9 PRCC	S+A	7,860	3
2.8	ı	07	5.9 PPCC	A	8,150	8
2.6	1	30	5.9 PRCC	S+A	7,050	e
2.6	1	20	5.9 PRCC	S+A	066,9	m
2.6	<u>"</u>	50	5.9 PRCC	S+A	068'9	а 9
2.5	ı	30	5.9 PPCC	A	7,450	2

f. Test Age 175 Days

19	A THE STATE OF THE		Test age 1/3 Days	Days		3 -
3.4	ш	75	5.9 PRCC	S+A	9,320	e,
3.2	ш	100	5.9 PRCC	S+A	8,760	**************************************
3.1	1	07	5.9 PRCC	S+A	8,490	£
3.0	.1	07	5.9 PPCC	A	8,950	
2.8	E	20	5.9 PRCC	S+A	7,770	n
2.8	H	30	5.9 PRCC	S+A	7,700	m
2.8	1	20	5.9 PPCC	S+A	7,610	6
2.5	·	30	5.9 PPCC	V	7,700	m
2.5	ı	07	5.9 PRCC	A	7,730	3
						5.

continued

Table 1. continued

こうないれてある のなりのないのであるとのないのであるというないのであるとないないのである。

g. Test Age 365 Days

(33 . 5			Control of the bod
Number of Specimens	Column 7	m m m	n
Compressive Strength (ps1)	Column 6	10,150 9,190 10,110	8,750 9,460 8,170 8,670
Curing Method	Column 4 Column 5	S+A S+A A	S+A A S+A A
Concrete Mix	Column 4	5.9 PRCC 5.9 PRCC 5.9 PPCC	5.9 PRCC 5.9 PPCC 5.9 PRCC 5.9 PRCC
Polymer Loading (% Cement Weight)	Column 3	75 40 40	100 30 30 40
Polymer Type	Column 1 Column 2	 R T T	គេឯកក
Strength Polym Ratio Typ	Column 1	3.3	3.0 3.0 2.8

"Strength ratio is computed by dividing the compressive strength of the polymer-modified concrete by the compressive sive strength of an identical concrete without the polymer.

bolymer types: L = latex; E = epoxy.

Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified Regulated Set cement concrete.

during methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remaining time until test age.

E symbol means that a nonchloride accelerator was used

in the mix.

Table 2. Compressive Strengths of Polymer-Modified Concretes by Ranking

		8	a. Test Age 1 Day	and the control of the angle of the second	The second secon	
Ranking	Compressive Strength (ps1)	Polymer Type	Polymer Loading (% Cement Weight)	Concrete	Curing Method	Strength Ratio
Column 1	Column 2	Column 2	Column 4	Column 5	Column 6	Column 7
1	7.770	Ea	118	6.9 PPCCb	S+Ac	2.8d
7	7,520	•	. 20	8.0 PPCC	a 1500	2.0
6	7,370	ы	75	6.9 PPCC-E		2.7
7	6,700	E	75	6.9 PRCC	S+A	3.4
5.	6,220	Э	100	5.9 PRCC	S+A	4.5
9	6,120	Œ	100	5.9 PPCC	S+A	3.4
7	2,660	2	100	5.9 PPCC-E	S+A	3.1
80	5,190	E	75	5.9 PRCC	S+A	3.8
6	5,140	E	75	5.9 PPCC	S+A	2.8
10	4,820	T	07	5.9 PRCC	S+A.	3.5
11	4,330	T	50	5.9 PRCC	S+A	3.1
12	4,290	΄ Τ	30	5.9 PPCC	S+A	2.3
13	4,290	T	07	5.9 PPCC	S+A	2.3
14	4,080	E	75	5.9 PPCC	S+A	2.2
	10 Process of the control of the con		b. Test Age 3 Days			
-	4.160	1	07	5.9 PPCC	, A	3.0
2	3,620		07	5.9 PRCC	Α	2.6
ı C	3,200	T	30	5.9 PPCC	V	2.3
7	2.540	T. W. T.	20	-5.9 PRCC	A	1.8
5	2,520	1	30	5.9 PRCC	V	1.8
					COUL	concanned

2.0

S+A S+A

6.9 PPCC-E 8.0 PPCC

75

E E

9,940

Table 2. Continued

			Test Age / Days		* 11 × 20	
Ranking	Compressive Strength (psi)	Polymer	Polymer Loading (% Cement Weight)	Concrete	Curing	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
1	8,860	ы	7.5	6.9 PPCC-E	S+A	2.1
. 7	8,660	ᇤ	75	8.0 PPCC	S+A	1.6
3	8,640	EI	50	8.0 PPCC	S+A	1.6
7	8,610	ы	118	6.9 PPCC	S+A	2.0
5	7,580	(m)	. 75	6.9 PRCC	S+A	2.7
9 = 2	7,310	ш	100	5.9 PRCC	S+A	3.5
1	7,220	ы	75	5.9 PRCC	S+A	3.5
•	7,200	ы	100	5.9 PPCC	S+A	2.7
6	6,910	(st	100	5.9 PPCC-E	S+A	2.6
10	6,350	1	07	5.9 PPCC-E	A	2.9
11	6,240	1	30	6.9 PRCC	S+A	2.0
12	6,110	1	07	6.9 PRCC	S+A	
13	5,990	ы	75	5.9 PPCC	S+A	
14	5,930	1	07	5.9 PRCC	S+A	
. 15	5,910	ы	50	5.9 PRCC	S+A	2.8
16	5,320	L	50	5.9 PRCC	S+A	2.6
17	5,300	T	20	6.9 PRCC	S+A	1.9
18	5,210	E	75	5.9 PPCC	S+A	1.9
19	5,200	T	30	5.9 PRCC	S+A	2.5
20	5,180	1	30	5.9 PPCC	A	2.3
21	5,100	.	20	5.9 PRCC	S+A	2.4
22	096'7	٠.,	07	5.9 PPCC	A	2.2
,						
and the second second		L . P.	Test Age 28 Days		Same and the same of the same	
					The state of the s	

Table 2. Continued

4						
Ranking	Compressive Strength (ps1)	Polymer Type	Polymer Loading (% Cement Weight)	Concrete Mix	Curing Method	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
3	9,160	3	118	6.9 PPCC	S+A	1.8
4	8,390	Ð	75	5.9 PRCC	S+A	3.4
٥.	8,350	Œ	75	6.9 PRCC	S+A	2.5
9	8,150	ы	100	5.9 PPCC	S+A	2.4
7.	7,780	B	100	5.9 PRCC	S+A	3.2
80	7,550	ы	100	5.9 PPCC-E	S+A	2.2
6	7,220		30	5.9 PPCC	~ Y .	2.7
10	7,150	1	07	5.9 PPCC-E	A	2.6
11	7,090	د	07	6.9 PRCC	S+A	2.1
12	7,060	J	07	5.9 PPCC	Ą	2.6
13	7,020	M	50	6.9 PRCC	S+A	2.1
14	6,910	ш	75	5.9 PPCC	S+A	2.1
15	6,670		and the second of the second o	5.9 PRCC	S+A	2.7
16	6,300		20	6.9 PRCC	S+A	1.0
17	6,290	1	30	6.9 PRCC	S+A	1.9
18	6,280	ш	7.5	5.9 PPCC-E	S+A	1.9
19	6,250	٦,	20	5.9 PPCC	A	2.3
20.	6,180	7	30	5.9 PRCC	S+A	2.5
21	080,9	T.	20	5.9 PRCC	S+A	2.5
22	5,980	1	30	5.9 PPCC	S+A	1.8
23	5,870	13	07	5.9 PRCC	A	2.1
24	5,670	1	30	5.9 PRCC	4	2.0
		e.	Test Age 91 Days			T. T. W. S. W. S.
				5		

100

ப ப ப ப

8,740 8,540 8,320 8,280

4 2 2 4

5.9 PRCC 5.9 PRCC 5.9 PRCC 5.9 PRCC

S+A S+A S+A S+A

3.3.2

continued

29

Table 2. Continued

							2							700		1		12		200	1				
Strength Ratio	Column 7	2.8	2.9	2.5	2.0	2.6	2.3	2.6	2.6	2.1		3.4	3.0	2.4	3.2	3.1	2.8	2.5	2.8	2.5	2.8	2.3		3.7	3.2
Curing	Column 6	A	S+A	A	S+A	S+A	A	S+A	S+A	A		S+A	A	S+A	S+A	S+A	S+A	W V	S+A	A :	S+A	The state of the s		S+A	A
Concrete	Column 5	5.9 PPCC	5.9 PRCC			5.9 PRCC	5.9 PRCC			5.9 PRCC		5.9 PRCC	5.9 PPCC	5.9 PPCC	6	6	5.9 PRCC	5.9 PRCC		5.9 PPCC		5.9 PRCC		5.9 PRCC	5.9 PPCC
Polymer Loading (% Cement Weight)	Column 4	07	- 07	. 30	75	30	. 70	20	50	30	Test Age 175 Days	75	70	100	100	40	50	07	30	30	20	the statement of 30 to the statement of	Test Age 365 Days	75 %	40
Polymer Type	Column 3	1	1	1	ы	1	1	٦,	M	1	f. T	E	, ,	ы	ы	ָרַ	E	1	1	1	ı	T entered	. 8	(A)	To the second of
Compressive Strength (psi)	Column 2	8,150	7,860	7,450	7,080	7,050	7,040	066,9	068'9	6,330		9,320	8,950	8,900	8,760	8,490	7,770	7,730	7,700	7,700	7,610	7,290		10,150	10,110
Ranking	Column 1	3	9		00	6,	, 1	ı	12	ET . 13		7 10	73	9	4	S	9	7	80	6	10			72.5 X 19.0 V.	

Table 2. Continued

			2	à.				K.	2		3.
Strength Ratio	Column 7	3.0	2.5	3.3	3.2	2.8	3.0	2.2	2,5	2.7	orgies 2.7. yours.
Curing Method	Column 6	Y	S+A	S+A	S+A	A	S+A	S+A	A Comment	S+A	S+A
Concrete	Column 5	5.9 PPCC	5.9 PPCC	5.9 PRCC	5.9 PRCC	5.9 PRCC	5.9 PRCC	5.9 PPCC-E	5.9 PRCC	5.9 PRCC	5.9 PRCC
Polymer Loading (% Cement Weight)	Column 4	30 (1997)	100	07	100	07	30	75	.30	20	The second secon
Polymer Type	Column 3	grandings displayers	A Company of the Comp	1	띠	H	1	ш	1	Ţ	Section of the Sectio
Compressive Strength (psi)	Column 2	097.6	9,420	9,190	8,750	8,670	8,170	8,070	7,810	7,560	7,500
Ranking	Column 1	4 00 mm	4 America		9	1	00	6	10	11	12

Polymer types: L = latex; E = epox;.

b Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified Regulated Set cement concrete.

Curing methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remaining time until test age.

dStrength ratio is computed by dividing the compressive strength of the polymer-modified concrete by the compressive strength of an identical concrete without the polymer.

E symbol means that a nonchloride accelerator was used in the mix.

Table 3. Splitting Tensile Strength Ratios of Polymer-Modified Concretes, 5.9 Mix

	Number of Specimens	Column 7	3	3	2	, 3	3	2		2		3.	٣	3		en e		2	3	Continue of the continue of th		F 1	1
	Splitting Tensile Strength, psi	Column 6	006	068	. 860	098	750	700	019	630		510	009	067	370	340		1,180	1,100	1,110	1,060	1,040	860
	Curing Method	Column 5	pV+S	S+A	S+A	. V+S	S+A	S+A	S+A	S+A	198	Y	A	· A ·	Y	٧	ıys	V+S	S+A	S+A	S+A	S+A	V+S
test age 1 bay	Concrete	Column 4	PRCC	PPCC	PPCC	PPCC-E	PRCC	PRCC	PRCC	PPCC	Test Age 3 Days	PRCC	PPCC	PPCC	PRCC	PRCC	Test Age 7 Days	PPCC	PRCC	PPCC-E	PPCC	PRCC	PRCC
	Polymer Loading X Cement Weight	Column 3	100	100	. 75	75	75	20	07	50	ъ.	. 07	07	30	20	30	. °	7.5	75	. 75	100	100	50
	Polymer Type	Column 2	$\mathbf{E}^{oldsymbol{b}}$	B	ei	E C	ы	e3	1	6			1	1	1	7		ម	B	N)	NI NI	ы	EΝ
	Strength Ratio	Column 1	3.34	3.2	3.1	3.1	2.8	2.6	2.2	2.2		2.0	1.9	1.6	1.5	1.4		3.0	2.8	2.8	2.6	2.6	2.2

Table 3. Continued

Number of Specimens	Column 7	3	en I	m	က	m	2	3	n		3	÷	2	e	3	€.	3	Sand or the med 3 for many	2	£	C	
Splitting Tensile Strength, psi	Column 6	720	099	610	009	730	730	710	570		1,190	930	1,050	1,080	880	1,120	810	1,060	920	730	069	880
Curing	Column 5	A	A	A	A	S+A	S+A	S+A	A	Days	S+A	¥	S+A	S+A	A	S+A	A	S+A	S+A	att. A man	A service	S+A
Concrete Mix	Column 4	PPCC	DPPCC	PRCC	PRCC	PRCC	PPCC	PRCC	PRCC	Test Age 28 Days	PPCC-E	PPCC	PPCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PRCC	PRCC	PRCC
Polymer Loading % Cement Weight	Column 3	, o 07	30		30	07	. 50	20		.	7.5	07	. 75	100	30	100	07	75	50	30	20	50
Polymer Type	Column 2	Π	L was	5 6	5 2 4	r L	闽		٠. . د		, ∞ (±1)	.1	ы	ы		ы	1	E	E	, , ,	L	ਬ
Strength Ratio	Column 1	2.1	1.9	1.9	1.9	1.8	1.8	1.8	1.8	γ. 21	2.9	2.6		2.6		2.5	2.4	2.4	2.2	2.1	2.0	•

Table 3. Continued

e. Test Age 91 Days

Number of Specimens	Column 7	2	en .		က	9	e S	9	A. C.	2	Company of the compan	m	2	3	and C	gila m	*** *** ***	2	the Commence of the Commence o	m	n	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		2	6	continued
Splitting Tensile Strength, psi	Column 6	1,280	1,210	1,260	1,180	950	068	1,130	870	1,100	810	810	800	068	720			1,400	1,170	1,150	950	076	1,170	1,130	1,130	
Curing Method	Column 5	S+A	S+A	S+A	S+A	A	A	S+A	, A ,	S+A	A Y	S+A	S+A	S+A	¥.	Davs	W.A.	S+A	S+A	S+A	Α	A	S+A ··	S+A	S+A	£
Concrete	Column 4	PPCC	PPCC-E	PRCC	PPCC	PPCC	PPCC	PRCC	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	Test Age 175 Davs	0	PPCC	PPCC	· PPCC-E	PPCC	PPCC	PRCC	PRCC	PRCC	
Polymer Loading % Cement Weight	Column 3	75	75	[†] 75 °	100	07	30	100	* 0 7	20	30 - 30	07	50	707	20	f		7.5	100	. 75	07	. 30	75	50	100	
Polymer Type	Column 2	E	Þ	E	ы	11	1	B	,	» Fi	.7	ľ	ы	11	ı			ഥ	ы	, Ed	, ,	1	ы	ы	ы	
Strength Ratio	Column 1	3.1	3.0			00						2.0		2.0	0			3.5	2.9	2.9		00			2.6	

Table 3. Continued

10				108.32 Visa
	Number of Specimens	Column 7	m w m m	in Sa
	Splitting Tensile Strength, psi	Column 6	910 930 820 910	
	Curing Method	Column 5	A S+A A S+A	Days
	Concrete	6 nmuloo	PRCC PPCC PRCC PRCC	Test Age 365 Days
	Polymer Loading % Cement Weight	Column 3	40 50 30 40	c.o
7	Polymer Type	Column 2	лы лг	
	Strength Ratio	Column 1	2.4 2.3 2.1	* * ·

40 Lines I was a line of	50	70 3	70 3	50 3	30	70	30.08	30 2	£0	10	50
1,3	1,2	6	1,1	1,1	1,1	· · · · · · · · · · · · · · · · · · ·	8	6	78	<u></u>	860
3	÷	4	,		7 -		a.				S+A
PPCC	PRCC	PPCC	PPCC-E	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PRCC	PPCC
1 52 Oathy	. 75	07	52.22	100	100	30	07	20	30	07	50
ы	(2)	1	E) Ed	떠	1	1	[2]	ני	1	z, Ex
3.4	3.0	2.9	•	•	•				2.3	2.2	2.2

 $^{\mathcal{Q}}$ Strength ratio is computed by dividing the splitting tensile strength of the polymermodified concrete by the splitting tensile strength of an identical concrete without the polymer.

bpolymer types: L = latex; E = epoxy.

*Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified Regulated Set cement concrete.

Curing methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remaining time until test age.

eE symbol means that a nonchloride accelerator was used in the mix.

Table 4. Splitting Tensile Strengths of Polymer-Modified Concretes By Ranking, 5.9 Mix

	Strength Ratio	Column 7	3.3 3.1 3.1 3.1 2.8 2.2 2.2		1.9 2.0 1.6 1.5		2,2 6 8 8 8 9 1 2 2 2 5 6 8 8 8 9 1 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Curing Method	Column 6	8+8 8+8 8+8 8+8 8+8 8+8 8+8 8+8		4444		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Concrete Mix	Column 5	PRCC ^b PPCC PPCC PPCC PRCC PRCC PRCC PRCC		PPCC PRCC PPCC PRCC PRCC		PPCC PPCC-E PPCC PPCC PRCC PRCC
Test Age 1 Day	Polymer Loading % Cement Weight	Column 4	100 100 75 75 75 75 50 50 40	Test Age 3 Days	40 40 30 30 30	Test Age 7 Days	75 75 75 75 100 100 50 40
a. T	Polymer Type	Column 3	₂ дымымымы ч	b. T	71211	C. T	医罗罗西罗西巴
	Splitting Tensile Strength, psi	Column 2	900 890 860 860 750 700 630		600 510 490 370 340		1,180 1,110 1,100 1,060 1,040 860 730
	Ranking	Column 1	1 2 2 4 3 2 4 3 8 4 8		24321		1 2 2 7 7

Table 4. Continued

		Tanta	table 4. continued			
Ranking	Splitting Tensile Strength, psi	Polymer Type	Polymer Loading % Cement Weight	Concrete Mix	Curing Method	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 5 Column 6	Column 7
8 10 11 12 13 14	730 720 710 660 610 600 570	822222	50 40 30 30 30 30	PPCC PPCC PPCC PPCC PRCC PRCC	S+A A A A A A A	1.2.1. 1.999818
		7	d Tect Age 28 Dave	,		

	•
Dane	0
,	>
5	Q
-	7
_	_
90	ř
	٦
	11
,	U K
-	ī
10	ì
4	j
Toot	0
-	U
E	4
	•

					The same of the same of
1,190	Б	75	PPCC-E	S+A	2.9
1,120	ы	100	PRCC	S+A.	2.5
1,080	ष्ण	100	PPCC	S+A	2.6
1,060	ы	75	PRCC	S+A	2.4
1,050	ы	7.5	PPCC	S+A	2.6
930	٠,	07	PPCC	A	2.6
920	ьı	50	PPCC	S+A	2.2
880	ני	30	PPCC	A	2.5
880	চ্য	50	PRCC	S+A	2.0
810	נו	40	PRCC	¥	2.4
730	٦,	30	PRCC	4	2.1
069	נו	20	PRCC	A	2.0
	e. T	Test Age 91 Days		To the state of th	der Steel Georgia de la Steel de Steel
1,280	Þ	75	DDAA	S+A	3.1
1,260	FI	75	PRCC	S+A	2.9
1,210	ъì	75	PPCC-E	S+A	3.0

continued

Table 4. Continued

Strength	6 Column 7	2.9	2.6	2.5	2.8	2.6	2.0	2.5	2.3	2.0	2.0	2.0	
Curing Method	Column 6	S+A	S+A	S+A	A	A	S+A	¥	A	S+A	S+A	∀	
Concrete Mix	Column 5	PPCC	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	
Polymer Loading % Cement Weight	Column 4	001	100	20	07	30	07	07	30	07	20	20	
Polymer Type	Column 3	3	ы	ы	ı	L	T	L	1	7	ы	1	
Splitting Tensile Strength, psi	Column 2	1,180	1,130	1,100	950	890	. 890	870	810	810	800	720	
Ranking	Column 1	7	5	9	7	80	6	10	11	12	13	14	

1
Days
175
Age
Test

3.5	2.9	2.6	2.9	2.6	2.6	2.8	2.8	2.3	2.4	2.1	2.2
S+A	S+A	S+A	S+A	S+A	S+A	A	A	S+A	A	S+A	A
PPCC	PPCC	PRCC	PPCC-E	PRCC	PRCC	PPCC	PPCC	PPCC	PRCC	PRCC	PRCC
75	100	75	75	20	100	07	30	20	07	07	30
1	ы	ы	Б	ы	ы	רַן	ı	ы	נו	L	,
1,400	1,170	1,170	1,150	1,130	1,130	950	076	930	910	910	820
	2	3	7	2	. 9	7	œ	6	10	11	> 12

Table 4. Continued

Ranking	Splitting Tensile Strength, psi	Polymer Type	Polymer Loading % Cement Weight	Concrete Mix	Curing	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 6 Column 7
		8. 1	8. Test Age 365 Days	e de la companya de		plear f
1	1,340	ы	75	Dad	S+A	3.4

		8. 1	Test Age 365 Days			
1	1,340	ដ	7.5	PPCC	S+A	3.4
2	1,250	ы	75	PRCC	S+A	3.0
m	1,170	田	75	- PPCC-E	S+A	2:9
4	1,150	ച	100	PRCC	S+A	2.8
S	1,130	 E	100	PPCC	S+A	2.8
9	086	Ы	50	PRCC	V+S	2.4
7	970	ı	07	PPCC	A	2.9
80	910	L	07	PRCC	S+A	2.2
6	880	1	07	PRCC	¥	2.4
10	870	Ţ	30	PPCC	A	2.6
11	860	Œ	50	PPCC	S+A	2.2
12	840	r	30	PRCC	¥	2.3
			The state of the s			

"Polymer types: L = latex; E = epoxy

bConcrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified Regulated Set cement concrete.

**Curing methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remaining time until test age.

dStrength ratio is computed by dividing the splitting tensile strength of the polymermodified concrete by the splitting tensile strength of an identical concrete without the polymer.

E symbol means that a nonchloride accelerator was used in the mix.

Table 5. Flexural Strength Ratios of Polymer-Modified Concretes, 5.9 Mix

a. Test Age 1 Day

Ratio	Type	% Cement Weight	Mix	Method	Strength, psi	Specimens
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
3.84	qa	100	PRCC	pV+S	1,250	3
3.5	<u> </u>	75	PRCC	S+A	1,150	· m
3.0	<u>س</u> ا	100	PPCC	S+A	1,300	m
2.9	L	75	PPCC	S+A	1,290	2
2.9	2	75	PPCC-E	S+A	1,260	٣
2.5	(m)	80	PRCC	S+A	078	2
2.2		07	PRCC	S+A	710	m
2.0	(a)	20	PPCC	S+A	006	7
1.7		20	PRCC	S+A	570	3
1.6	,,	30	PRCC	S+A	240	9
1.2	ر,	07	PPCC	S+A	550	m
1.2	ם	30	PPCC	S+A	530	3
		þ.	Test Age 3 Days	8		
2.5	1	07	PRCC	٧	019	€.
2.2		07	PPCC	4	770	3
1.8	ב	30	PRCC	٧	077	e
1.8		20	PRCC	٧	430	C C
1.7	נ	30	PPCC	4	290	3
		ပ်	Test Age 7 Days			
3.5	3	100	PRCC	S+A	1,330	3
3.4	ы	75	PRCC	S+A	1,290	3
2.7	p.i	20	PRCC	S+A	1.020	2

cont funed

Table 5. Continued

Number of Specimens	Column 7	2 ***	er.	m	e	3	3	3	က	. 2	. 2	3	က	3	m,		3	And the second of the second	m	m	7	က်	m	2.6.	m	. C	
Flexural Strength, psi	Column 6	1,380	200	1,230	1,300	780	540	530	710	860	620	580	520	640	610		1,250	1,270	1,240	1,030	1,280	1,240	910	006	800	740	780
Curing Method	Column 5	S+A	A	S+A	S+A	V	¥.	¥	S+A	S+A	¥	S+A	S+A	S+A	S+A	ув	S+A	. S+A	S+A	Α	S+A	S+A	Α	S+A	¥	Α	S+A
Concrete	Column 4	PPCC	PRCC	PPCC-E	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PPCC	PPCC	Test Age 28 Days	PRCC .	PRCC	PPCC	PPCC	PPCC	PPCC-E	PPCC	PRCC	PRCC	PRCC	PRCC
Polymer Loading X Cement Weight	Column 3	75	07	75	100	40	, 20	30	. 07	50	30	20	30	40	30	d.	75	100	100	. 40	75	75	30	50		30 %	07
Polymer Type	Column 2	ы	ı	E	E	1	1	Ţ	L L	ы	L	T	L	ı	1		E	E	E	L	ы	ы	To The second	E	L	L	ī
Strength Ratio	Column 1	2.7	2.5	2.4	2.4	2.2	1.9	1.9	1.9	1.7	1.7	1.5	1.4	1.2	1.2		2.6	2.6	2.5	2.5	2.4	2.3	2.2	1.9	1.7	1.6	1.6

Table 5. Continued

Strength Ratio	Polymer Type	Polymer Loading % Cement Weight	Concrete	Curing	Strength, psi	Specimens
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
1.5	чгы	20 20 50	PRCC PRCC PPCC	A S+A S+A	710 740 830	m m ~
•		.	Test Age 91 Da	Days	A	t-nj
2.7	ני	07	PPCC	* V	1,330	.3
2.6	: (2)	40 July 75 Company	PPCC	S+A	1,460	
2.6	ы	75	PPCC-E	S+A	1,450	e.
2.5	ea Ea	100	PRCC	S+A	1,430	'n
2.3	.	30	PPCC	A	1,170	m
2.3	12) [12	275 001	PRCC	S+A S+A	1,350	m r
2.2	د ،	40	PRCC	A	1,300	2
2.1	ы	30	PRCC	¥	1,040	i m
2.1	ы	50	PPCC	S+A.	1,200	2
2.1	ы	50	PRCC	S+A	1,240	7
1.9	L	. 20	PRCC	*	096	3
1.8	J	. 50	PRCC	S+A	1,040	7
1.8	ם	40	PPCC	S+A	1,020	C
1.8		30	PPCC	S+A	086	m t
			Test Age 175 Days	ays		
2.8	L	30	PPCC	4 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1,480	The second state of the second
2.8	J	, 40 × 04	PPCC	A	1,470	S. C
2.7	E	75		S+A	1,560	2
2.6	M	75	PPCC-E	S+A	1,490	3

Table 5. Continued

	1			2 1	, ,							
	A	S+A	S+A	S+A	Ą	S+A	S+A	S+A	A	S+A	S+A	S+A
* * * * * * * * * * * * * * * * * * * *	PPCC	PRCC	PPCC-E	PRCC	PPCC	PPCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC
	07	100	75	75	30	20	75	100	07	30	07	07

1 国 国 国 日 日 国 国 日 1 1 1 1

1,570 1,610 1,610 1,530 1,520 1,520 1,350 1,350

Table 5. Continued

	Column 7	7 m m m
Flexural Strength, psi	Column 6	1,260 1,170 1,220 1,230
Curing	Column 5	S+A A S+A S+A
Concrete	Column 4	PRCC PRCC PRCC
Polymer Loading Z Cement Weight	Column 3	50 30 20 30
Polymer Type	Column 2	янчн
Strength Ratio	Column 1	2.2 2.1 2.1

aStrength ratio is computed by dividing the flexural strength of the polymer-modified concrete by the flexural strength of an identical concrete without the polymer. Polymer types: L = latex; E = epoxy.

Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified

dCuring methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remain-Regulated Set cement concrete.

eE symbol means that a nonchloride accelerator was used in the mix. ing time until test age.

Table 6. Flexural Strengths of Polymer-Modified Concretes by Ranking, 5.9 Mix

a. Test Age 1 Day

Ranking	Flexural Strength, psi	Polymer Type	Polymer Loading X Cement Weight	Concrete	Curing	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
1	1,300	₽ ` B	100	PPCC	S+A ^C	3.04
2	1,290	ы	75	PPCC	V+5	2.9
m	1,260	M	75	PPCC-E	S+A	2.9
4		1	100	PRCC	S+A	3.8
2	1,150	ы	75	PRCC	S+A	3.5
9	006	ы	50	PPCC	V+S	2.0
7	840	ы	20	PRCC	S+A	2.5
80	. 710	J	07	PRCC	S+A	2.2
6	570	1	20	PRCC	S+A	1.7
10	550	1	07	PPCC	S+A	1.2
11	240		30	PRCC	S+A	1.6
12	530	1	30	PPCC	S+A.	1.2
		q ,	b. Test Age 3 Days			\$ A.
1	770	7	07	PPCC	V .	2.2
7	610	1	07	PRCC	¥	2.5
	290	, 1	30	PPCC	V	1.7
4	077	1	30	PRCC	4	1.8.
2	430	1	20	PRCC		1.8
		၁	c. Test Age 7 Days	<i>t</i>	pendito.	The same of the sa
1	1,380	2	52	PPCC	S+A	2.7
7	1,330	E)	100	PRCC	S+A	3.5
m	1,300	E	100	PPCC	S+A	2.4

Table 6. Continued

gth	n 7 7 .			ethic hi					C-45 M417				ria me				Ж°.			A STATE OF THE STA	u (rgioni	Sharedine legislate					
Strength	Column 7	4.8	2.4	2.7	1.7	2.2	1.9	2.5	1.2	1.7	1.2	1.5	1.9	1.9	1:4		2.4	2.6	2.6	2.5	2.3	2.5	2.2	1.9	1.5	1.7	1.6
Curing Method	Column 6	S+A	S+A	S+A	S+A	A	S+A	A	S+A	¥	S+A	S+A	¥	¥	S+A		S+A	S+A	S+A	S+A	S+A	A	¥	S+A	S+A	A	S+A
Concrete	Column 5	PRCC	PPCC-E	PRCC	PPCC	PPCC	PRCC	PRCC	PPCC	PPCC	PPCC	PRCC	PRCC	PRCC	PRCC		PPCC	PRCC	PRCC	PPCC	PPCC-E	PPCC	PPCC	PRCC	PPCC	PRCC	PRCC
Polymer Loading % Cement Weight	Column 4	75	75	50	50	40	07	07	40	30	30	30	20	30	.30	Test Age 28 Days	*75	100		100	75	07	30	50	50	07	3 7 07 B
Polymer Type	Column 3	M	ы	M	ы			1	1		1	7	1	ı	,	P	20 St	ы	ш	[2]	ED.	1	1	ы	P		
Flexural Strength, psi	Column 2	1,290	1,230	-	098	780	710	700	940	620	610	580	. 240	530	, 520		1,280				1,240	٠,	910	006	830	800	780
Ranking	Column 1	7	S	9	7	∞	6	10	11	12	13	14	15	16	17	>	1	7	3	7.	. .	9	7	&	6	10	11

continued

desperate and find a second	Strength Ratio	Column 7	1.6	1.5	1.4		1		2.6	2.6	2.5	2.3	2.7	2.3	2.1	2.1	2.3	2.2	2.1	. 1. 8	1.8	1.8	1.7	1.9	1.6
	Curing Method	Column 6	A S+A	Market Market Street Street	S+A	S+A	With the state of		S+A	S+A	S+A	S+A	A	S+A	S+A	S+A	A	A	A	S+A	S+A	S+A	S+A	A	S+A
	Concrete Mix	Column 5	PRCC	PRCC	PRCC	PPCC	3		PPCC	PPCC-E	PRCC	PRCC	PPCC	PPCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC
Table 6. Continued	Polymer Loading % Cement Weight	Column 4	30	20 %	30	04	2	. Test Age 91 Days	75	75	100	75	07	100	50	50	30	. 07	30	20 6	07	30	30	20	40
Te	Polymer Type	Column e	The state of the s		ن ا '	. د	1	÷	E	M	E	E	1	ш	ы	EL .	1	1	1	1	1	, P	. 1	, 1 1	L
	Flexural Strength, psi	Column 2	072	710	710	, ~ 002 250	nco	K-re-	1,460	1,450	. •	•	1,330	•	•	•	•	•	•	1,040	1,020	086	970	096	930
	Ranking	Column 1	12	14	15	. 16	7,		1	7	Č.	4	S	9	, 7,	60	; 6	10	11	12	13	14	15	16	. 17

Table 6. Continued

11 Polymer Loading Concrete Curing Strength psi Type % Cement Weight Mix Method Ratio	2 Column 3 Column 4 Column 5 Column 6 Column 7	f. Test Age 175 Days	E 75 PPCC S+A	E S+A PPCC-E S+A	E 100 S+A	L 30 PPCC A	A PPCC	E 75 PRCC S+A	L 30 PRCC A	L PRCC A	E 100 PPCC S+A	E 50 PRCC S+A	T 40	L PRCC S+A	E S+A S+A	L 30 PPCC S+A 2.	L 40 PRCC S+A 2.	L 30 PRCC S+A	PRCC A 2.0	g. Test Age 365 Days	E 100 PRCC	E S+A PPCC-E S+A	V 70 BbCC	. E	E S+A	
\$ % PS	Column 3		1,560 E	<i>c</i> **	1,490 E				*	,	e/in		1,220 L	,190	,180		,100	1,060 L	1,050 L		1,610 E	6	1 × 4	1,530 E		
Ranking	Column 1		T,	2	ώ.	7	2	9	7	&	6	10	11	12	13	14	15	16	17		1	2		+	5	

Table 6. Continued

		\$ 72 \$ 12		1					\$money &
Strength Ratio	Column 7	2.6	2.4	2.4	2.4	2.2	2.1	2.1	2.1
Curing Method	Column 6	A+S	S+A	S+S	A	S+A	S+A	S+A	₩.
Concrete Mix	Column 5	PPCC PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PRCC	PRCC
Polymer Loading % Cement Weight	Column 4	30	0 7	30	, 70	20	30	20	30
Polymer Type	Column 3	'nы		1 12	1	闰	L	L	LI.
Flexural Strength, psi	Column 2	1,480	1,380	1,350	1,320	1,260	1,230	1,220	1,170
Ranking	Column 1	7 8 9	ه 5	11	12	. 13	14	15	16

PPCC = polymer-modified portland cement concrete; PRCC = polymermodified Regulated Set cement concrete. aPolymer types: L = latex; E = epoxy bConcrete mixes: PPCC = polymer-modif

Curing methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for

remaining time until test age. dStrength ratio is computed by dividing the flexural strength of the polymer-modified concrete by the flexural strength of an identical concrete without the polymer.

eE symbol means that a nonchloride accelerator was used in the mix.

Table 7. Strength Ratios for Young's Moduli of Polymer-Modified Concretes, 5.9 Mix

Day
٦
Age
Test
a.

Number of Specimens	Column 7	۲	5 2) M	m	e	m	2	m	e .		3	က	က	က	e		, E	e	е	'n	က	7	continued
Young's Modulus, 106 psi	Column 6	2.07	2.08	2.03	1.91	1.70	1.87	1.44	1.21	1.09	15	2.00	1.73	1.60	1.75	1.53		3.08	2.52	2.23	1.95	2.63	2.42	
Curing Method	Column 5	S+A ^d	S+A	S+A	S+A	S+A	S+A	S+A	S+A	S+A	Days	A	¥	A	A	A	7 Days	S+A	S+A	A	S+A	¥	S+A	
Concrete Mix	Column 4	PRCC	PRCC	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	PPCC	Test Age 3 Days	PPCC	PRCC	PRCC	PPCC	PRCC	Test Age 7	PRCC	PRCC	PRCC	PPCC-E	PPCC	PRCC	
Polymer Loading % Cement Weight	Column 3	20	20	30	07	100	100	75	75	07	þ.	07	07	30	30	20	·o	. 50	. 07	20	75	07	50	
Polymer Type	Column 2	q^{\perp}	, ,	ין	בו	E	团	ы	ы	נ		ľ	Ы	1	ы	נו		T	ы	1	ы	7	ធា	
Strength Ratio	Column 1	1 44		1.4	1.3	1.1	1.1	0.8	8.0	9.0		1.1	1.0	1.0	6.0	6.0		1.7	1.4	1.4	1.4	1.3	1.3	

Table 7. Continued

Number of Specimens	Column 7	3	3	8	3	3	9	2	2	က		3	2	3	7	2	7		m	-	7	3	4
Young's Modulus, 10 ⁶ psi	Column 6	2.30	2.19	2.03	1.77	2.03	1.83	1.41	1.38	2.04		3.05	2.67	2.66	2.86	2.53	2.52	2.16	2.58	2.49	2.38	2.35	2.12
Curing	Column 5	S+A	S+A	A	S+A	S+A	¥	S+A	S+A	A	28 Days	S+A	₩	4	S+A	S+A	S+A	4	S+A	S+A	A	¥	S+A
Concrete	Column 4	PRCC	PRCC	PRCC	PPCC	PRCC	PRCC	PPCC	PPCC	PPCC	Test Age	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PRCC	PPCC-E	PRCC	PRCC	PRCC
Polymer Loading % Cement Weight	Column 3	75	100	07	100	30	30	75	07	30	d.	07	30	07	75	30	20	20	50	75	20	07	100
Polymer Type	Column 2	ы	ы	H	ы	ר	ı	E	1	ı		1	ı	1	ы	1	נו	1	ы	ы	ı	1	. 2
Strength Ratio	Column 1	1.2	1.2	1.2	1.2	1.1	1.1	1.0	1.0	1.0		1.5	1.5	1.5	1.4	1.2	1.2	1.2	1.2	1.1	1.0	1.0	1.0

Table 7. Continued

Number of Specimens	Column 7		3	3	3	9	m	e	E	3	e	2	e		3	e	3	က	e	2	3	3	က	er.	3
Young's Modulus, 106 psi	Column 6		2.98	3.00	2.82	3.09	2.68	3.00	2.06	2.77	2.70	2.52	2.37		2.84	2.96	2.79	2.65	3.24	3.20	2.81	3.15	2.38	2.78	2.54
Curing Method	Column 5	91 Days	A	A	A	S+A	A	S+A	A	S+A	S+A	S+A	S+A	175 Days	A	A	A	Ą	S+A	S+A	S+A	S+A	A	S+A	S+A
Concrete	Column 4	Test Age 9	PPCC	PRCC	PRCC	PRCC	PRCC	PRCC	PPCC	PRCC	PRCC	PRCC	PRCC	Test Age 1	PPCC	PRCC	PRCC	PPCC	PRCC						
Polymer Loading % Cement Weight	Column 3	• ə	40	20	40	07	30	. 75	30	20	30	50	100	£.	30	20	07	07	07	50	75	20	30	30	100
Polymer Type	Column 2		1	רו	בן	1	L	Ħ	ı	Ы	ר	Ē	മ		7	1	,,	'n	H	E	E	H	ı	'n	ш
Strength Ratio	Column 1		1.6	1.3	1.2	1.1	1.1	1.1	1.1	1.0	1.0	6.0	0.9		1.5	1.4	1.4	1.4	1.3	1.3	1.2	1.2	1.2	1.1	1.0

52

Table 7. Continued

Number of	suamrade.	Column 7	refer the re-	3	2	٣	٣	٣,	3	3	2	, E	9	3	3
Young's	red of 'sninnor	Column 6		3.62	3.90	3.62	3.04	2.96	3.57	3.18	2.91	2.86	2.54	2.74	2.21
Curing	Merillon	Column 5	365 Days	A	S+A	A	A	A	S+A	S+A	S+A	S+A	A	S+A	S+A
Concrete	LITY	Column 4	Test Age 365 Days	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PRCC	PRCC	PPCC	PRCC
Polymer Loading	י הפוובור אבדפוור יי	Column 3	8	30	50	40	40	30	30	20	40	7.5	20	100	100
Polymer	13 be	Column 2		7	ы	J	IJ	ı	ų	H	ı	E	H	ш	闰
Strength	Malio	Column 1		1.8	1.8	1.8	1.6	1.6	1.6	1.4	1.3	1.3	1.3	1.0	1.0

aStrength ratio is computed by dividing the Young's modulus of the polymer-modified concrete by the Young's modulus of an identical concrete without the polymer. b Polymer types: L = latex; E = epoxy.

**Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified dCuring methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remain-Regulated Set cement concrete.

E symbol means that a nonchloride accelerator was used in the mix. ing time until test age.

continued

Table 8. Young's Moduli for Polymer-Modified Concretes by Ranking, 5.9 Mix

Ranking Young's Modulus, 106 psi Polymer Type Polymer Type			а.	Test Age 1 Day			
1 Column 2 Column 4 Column 5 Column 6 2.08 E ² 2.07 L Sobrem 6 2.07 L Sobrem 6 2.07 L Sobrem 6 2.07 L Sobrem 6 2.09 PRCC Sobrem 6 1.87 E Sobrem 1 1.87 E Sobrem 1 1.09 L Sobrem 6 1.09 L Sobrem 6 1.109 L Sobrem 6 1.100 L L Sobrem 6	Ranking	8's 106	Polymer Type	Polymer Loading % Cement Weight	Concrete Mix	Curing Method	Strength Ratio
2.08 E ^a 50 PRCC ^b S+A ^c 5.07 L L 20 PRCC S+A 30 PRCC S+A 1.91 L 40 PRCC S+A 1.87 E 100 PRCC S+A 1.21 E 75 PRCC S+A 1.21 E 75 PRCC S+A 1.09 PRCC S+A 1.09 PRCC S+A 1.09 L A0 PRCC S+A 1.09 L A0 PRCC S+A 1.09 L A0 PRCC S+A 1.75 L A0 PRCC S+A 1.75 L A0 PRCC A 1.60 L S A0 PRCC A 1.53 L L A0 PRCC A 1.53 L L A0 PRCC A 1.53 L L A0 PRCC S+A 1.54 PRCC S+A 1.55 P				Column 4		Column 6	Column 7
2.07	1	2.08	a≅ a	90	PRCC	S+A ^O	1.4
2.03	2	2.07	נ	20	PRCC	S+A	1.4
1.91 L 40 PRCC S+A 100 PRCC S+A 11.70 E 100 PRCC S+A 11.70 E 100 PRCC S+A 11.70 E 75 PRCC S+A 11.09 L 40 PRCC S+A 11.09 L 5. Test Age 3 Days 2.00 L 3.00 L 3.00 PRCC A 11.53 L 2.00 PRCC A 2.63 L 2.52 L 40 PRCC S+A 2.63 L 40 PRCC S+A 2.63 L 40 PRCC S+A 2.52 L 40 PRCC S+A 2.23 L 2.20 PRCC A 1.20 PRCC S+A 2.23 L 2.20 PRCC A 1.20 PRCC S+A 2.23 L 2.20 PRCC A 1.20 PR	က	2.03	רז	30	PRCC	S+A	1.4
1.87 E 100 PPCC S+A 1.70 E 100 PPCC S+A 1.44 E 75 PPCC S+A 1.09 L E 75 PPCC S+A 1.00 L 2.00 PPCC A 1.173 L 40 PPCC A 1.53 L 2.00 PRCC A 1.53 L 2.00 PRCC A 2.63 L 40 PPCC A 2.52 L 40 PPCC A 2.52 L 40 PPCC A 2.52 L 50 PRCC S+A 2.52 L 50 PRCC S+A 2.52 L 50 PPCC S+A 2.53 PPCC S+A 2.54 PPCC S+A 2.55 PPCC A 3.00 PPCC S+A 4.0 PPCC S+A 4	4	1.91	7	40	PRCC	S+A	1.3
1.70 E 100 PRCC S+A 1.44 E 75 PPCC S+A 1.21 E 75 PPCC S+A 1.09 L 40 PPCC S+A 1.09 L 1.73 L 1.73 L 1.53 L 1.	S	1.87	ы	100	PPCC	S+A	1.1
1.24 E 75 PPCC S+A 1.21 E 75 PRCC S+A 1.09 L L 40 PPCC S+A 1.09 L 1.73 L 40 PPCC A 1.73 L 20 PRCC A 1.53 L L 20 PRCC A 2.63 L 2.52 L 20 PRCC A 2.63 L 2.52 L 20 PRCC S+A 2.23	9	1.70	ы	100	PRCC	S+A	1:1
1.21 E 75 PRCC S+A 1.09 L L 40 PPCC S+A 1.09 L 2.00 L 30 PPCC A 1.73 L 40 PPCC A 1.60 L 20 PRCC A 1.53 L 20 PRCC A 2.63 L 40 PRCC A 2.52 L 40 PRCC A 2.52 L 40 PRCC A 2.52 L 40 PRCC S+A 2.30 E 50 PRCC S+A 2.33 L 20 PRCC S+A 2.23 L 20 PRCC A A 2.23 L 20 PRCC S+A 2.23 L 20 PRCC S+A 2.23 L 20 PRCC A A 2.23 L 20 PRCC A 2.23 L 20 P	7	1.44	ы	75	PPCC	V+S	0.8
1.09 L 40 PPCC S+A 2.00 L 2.00 L 30 PPCC A 2.00 L 30 PPCC A 2.00 L 30 PPCC A 2.52 L 2.52 L 40 PPCC A 2.52 L 2.52 L 40 PPCC A 2.52 L 2.52 PRCC S+A 2.52 PRCC S+A 2.23 L 2.20 PRCC S+A 2.23 L 2.20 PRCC S+A 2.25 PRCC S+A 2.23 L 2.20 PRCC S+A 2.25 L 2.20 PRCC S+A 2.25 L 2.20 PRCC S+A 2.25 L 2.20 PRCC S+A 2.20 PRCC A 2.20 PRCC S+A 2.20 PRCC A 2.2	00	1.21	ы	7.5	PRCC	S+A	8.0
b. Test Age 3 Days 2.00	6	1.09	ı	07	PPCC	S+A	9.0
1.75 L 40 PPCC A 1.75 L 40 PPCC A 1.73 L 40 PPCC A 1.73 L 20 PRCC A 1.60 L 20 PRCC A 1.53 L 20 PRCC A 1.53 L 2.53 L 2.52 L 40 PRCC A 2.52 L 2.52 L 2.52 L 2.53 E 5.50 PRCC S+A 2.23 E 5.50 PRCC S+A 2.23 L 2.53 L 2.53 L 2.53 PRCC S+A 2.23 L 2.53 PRCC S+A 2.23 L 2.53 PRCC S+A 2.23 PRCC A A 2.23 PRCC S+A 2.23 PRCC S+A 2.23 PRCC S+A 2.23 PRCC A A 2.23 PRCC A 2.23			ъ.	3			
1.75 L 30 PPCC A 1.73 L 40 PRCC A 1.60 L 20 PRCC A 1.53 L 20 PRCC A 2.63 L 20 PRCC S+A 2.63 L 40 PRCC S+A 2.42 E 50 PRCC S+A 2.42 E 50 PRCC S+A 2.42 E 50 PRCC S+A 2.23 PRCC S+A 2.23 PRCC S+A 2.23 L 20 PRCC S+A 2.23 PRCC S+A 2.23 PRCC S+A 2.23 PRCC S+A	-	2.00	IJ	07	PPCC	4	1.1
1.73 L 40 PRCC A 1.60 L 20 PRCC A 1.53 L c. Test Age 7 Days 2.63 L 40 PRCC S+A 2.52 L 40 PRCC S+A 2.42 E 50 PRCC S+A 2.42 E 50 PRCC S+A 2.23	2	1.75	-1	30	PPCC	4	0.0
1.60 L 20 PRCC A 1.53 L c. Test Age 7 Days 2.63 L 40 PRCC A 2.52 L 40 PRCC A 2.42 E 50 PRCC S+A 2.42 E 750 PRCC S+A 2.23 PRCC S+A 2.23 L 20 PRCC S+A 2.23 PRCC S+A 2.23 PRCC A	3	1.73	1	40	PRCC	∢	1.0
1.53 L 20 PRCC A 3.08 L 20 PRCC S+A 2.63 L 40 PPCC A 2.42 E 50 PRCC S+A 2.42 E 750 PRCC S+A 2.42 E 750 PRCC S+A 2.42 E 750 PRCC S+A 2.23 PRCC S+A 2.23 L 20 PRCC S+A 2.23 PRCC S+A 2.23 PRCC S+A	4	1.60	,1	30	PRCC	4	1.0
2.52 L 20 PRCC S+A 2.52 L 40 PRCC A 2.42 E 50 PRCC S+A 2.30 E 7.30 E 7.5 PRCC S+A 2.30 E 7.5 PRCC S+A 2.20 PRCC A	so.	1.53	L	20	PRCC	٧	6.0
3.08 L 20 PRCC S+A 2.63 L 40 PPCC A 2.52 L 40 PRCC S+A 2.42 E 50 PRCC S+A 2.30 E 75 PRCC S+A 2.23 L 20 PRCC S+A			ပ	~		Y	
2.63 L 40 PPCC A 2.52 L 40 PRCC S+A 2.42 E 50 PRCC S+A 2.30 E 75 PRCC S+A 2.23 L 20 PRCC A	-	3.08	1	20	PRCC	S+A	1.7
2.52 L 40 PRCC S+A 2.42 E 50 PRCC S+A 2.30 E 75 PRCC S+A 2.23 L 20 PRCC A	2	2.63	נו	70	PPCC	4	1.3
2.42 E 50 PRCC S+A 2.30 E 75 PRCC S+A 2.23 L 20 PRCC A	m	2.52	ני	40	PRCC	S+A	1.4
2.30 E 75 PRCC S+A 2.23 L 20 PRCC A	7	2.42	ы	20	PRCC	S+A	1.3
2.23 L 20 PRCC	S	2.30	ьì	75	PRCC	S+A	1.2
	9	2.23	H	20	PRCC	4	1.4

Table 8. Continued

Ranking	Young's Modulus, 106 psi	Polymer Type	Polymer Loading % Cement Weight	Concrete Mix	Curing Method	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 5	Column 7
7	2.19	ម	100	PRCC	S+A	1.2
80	2.04	L L	30	PPCC	A	1.0
6	2.03	ı		PRCC	A	1.2
10	2.03	Ļ	30	PRCC	S+A	1.1
11	1.95	ы	75	PPCC-E	S+A	1.4
12	1.83	'n	30	PRCC	A .	1.1
13 «	1.77	E)	100	PPCC	S+A	Saperite 1 is 2 in although
14	1.41	E	75	PPCC	S+A	1.0
. 15	1.38	ľ	40	PPCC	S+A	1.0

and populations	loop award	ng of the second	an fire	die or	male of	a a run	V 1940	والما والما	100		. "	SANT BOY
	1.5	1.4	1.5	1.5	1.2	1.2	1.2	1.1	and I . O when	1.0	1.2 min	**************************************
	S+A	S+A	A	V ,	S+A	S+A	S+A	S+A.	A	¥	· Selection of A to select a	S+A
1	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC-E	PRCC	PRCC	PPCC	PRCC
Test Age 28 Days	07	75	30	07	50	30	20 .	75	20	07	20	100
d.	1	ы	IJ	1	E	1	Ţ	ш	ľ	Ţ	1	[2]
	3.05									2.35		2.12
	1	2	3	4	2	9	7	∞	6	10	11	12

continued

Table 8. Continued

Young's Modulus, 106 psi	Polymer Type	Polymer Loading % Cement Weight	Concrete Mix	Curing Method	Strength Ratio
Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
	ů	Test Age 91 Days			
3.09	, 1	07	PRCC	S+A	1.1
3.00	L	20	PRCC	A	1.3
3.00	Œ	75	PRCC	S+A	1:1
2.98	J	07	PPCC	A	1.6
	ı	07	PRCC	A	1.2
2.77	1	20	PRCC	S+A	1.0
		30	PRCC	S+A	1.0
2.68	L	.30	PRCC	A.	1.1
2.52	떠	. 05	PRCC	S+A	6.0
•	ы	001	PRCC	S+A	0.0
2.06		30 **	PPCC	a Theory A of the last	Specific (1) The state of the s
	£.	Test Age 175 Days			And Section 1
3.24	7	07	PRCC	S+A	1.3
	ഥ	20	PRCC	S+A	1.3
3.15	1	20	PRCC	S+A	1.2
2.96	1	20	PRCC	A	7.7
	נ	30	PPCC	A	1.5
2.81	E	7.5	PRCC	S+A	1.2
	-2	40	PRCC	A . A	Second 6 4 1 - 1
2.78	Ţ	30	PRCC	S+A	1.1
2.65	ר	70	PPCC	to a wife of Anto wife of	A 1:4
2.54	ы	100	PRCC	S+A	1.0
2.38	.1	30	PRCC		1.2

Table 8. Continued

Ranking	Young's Modulus, 10 ⁶ psi	Polymer Type	Polymer Loading % Cement Weight	Concrete Mix	Curing	Strength Ratio
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6 Column 7	Column 7
		8.	g. Test Age 365 Days			

CONTRACTOR OF TAXABLE AND ADDRESS OF TAXABLE PARTY.	The state of the s	The second secon				
1	3.90	Ŀ	20	PRCC	S+A	1.8
2	3.62	1	30	PRCC	A	1.8
3	3.62	1	07	PRCC	A	1.8
7	3.57	1	30	PRCC	S+A	1.6
5	3.18	1	20	PRCC :	S+A	1.4
9	3.04	-1	07	PPCC	(A	1.6
7	2.96	1	30	PPCC .	A	1.6
&	2.91	1	07	PRCC	S+A	1.3
6	2.86	. H	75	PRCC	S+A	1.3
10	2.74	H	100	PPCC	S+A	1.0
11	2.54	7	20	PRCC	A	1.3
12	2.21	1	100	PRCC	S+A	1.0

Polymer types: L = latex; E = epoxy

 b Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified Regulated Set cement concrete.

**Curing methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remaining time until test age.

dStrength ratio is computed by dividing the Young's modulus of the polymer-modified concrete by the Young's modulus of an identical concrete without the polymer. eE symbol means that a nonchloride accelerator was used in the mix.

Table 9. Water Absorption of Polymer-Modified Concretes, 5.9 Mix

Ratio: Polymer- Modified to Control	Column 7	99.0	0.41	0.36	0.51	0.35	0.31	0.61	0.55	67.0	0.63	0.38	0.49	0.42	0.63	0.57	0.46
Control Absorption (%)	Column 6	9.6	9.6	9.6	10.7	10.7	10.7	9.6	9.6	10.7	10.7	10.7	9.1	9.1	11.4	11.4	11.4
Absorption (%)	Column 5	6.1	3.9	3.5	5.5	3.7	3.3	5.9	- N - 5.3	5.2	6.7	4.1	4.5	3.8	7.2	6.5	5.3
Curing Method	Column 4	S+A	S+A	S+A	S+A	S+A	S+A	S+A	S+A	S+A	S+A	S+A	¥	A	A	A	¥
Concrete Mix	Column 3	q^{DDAA}	PPCC	PPCC	PRCC :	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC	PPCC	PPCC	PRCC	PRCC	PRCC
Polymer Loading (% Cement Weight)	Column 2	20	75	100	50	75	100	30	- 07	20	30	07	30	05	20	30	07
Polymer Type	Column 1	Ea	ы	ы ы	ш	ы	ы	ר		1	1	, 1	ı	1	1	ı	ப

DConcrete Mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified L = latex; E = epoxy Regulated Set cement concrete. "Polymer types:

**Curing methods: A = air-cured; S+A = steam-cured for 16 hours, then air-cured for remaining time until test age.

Table 10. Incremental Costs for Ingredients of Polymer-Modified Concrete

(a) Incremental Costs per Cubic Yard

Ingredient	Weight of Ingredient, 1b	Ingredient Cost Per Pound	Incremental Cost of Ingredient	Item
-rez 5077	416	\$0.85	\$353.60	1
Epon 815	416 1	0.77	320.32	2
amine T-1	83.20	1.33	110.66	£
Latex 464	4440	0.61	270.84	7
Antifoam B	p**9	0.77	4.93	5
e III Cement	555	0.002	1.11	9
Regulated Set Cement	555	0.004	2.22	.7

(b) Total Incremental Cost of Selected Mixes

Polymer-Modified Mix	Total Incremental
5.9 PPCC with Epi-rez 5077 epoxy (Items 1 + 3 + 6)	\$465.379
PPCC	432.099
5.9 PRCC with Epi-rez 5077 epoxy (Items 1 + 3 + 7)	466.489
PRCC with	433.209
PPCC with	276.88
5.9 PRCC with Latex 464 (Items 4 + 5 + 7)	277.99

^aEpoxy loading of 75% requires 416 lb. ^bRatio of curing agent to epoxy is 5:1; 416/5 = 83.2 lb.

Latex loading of 40% requires 222 lb of solids but latex 464 is 50% solids, 50% water, so total weight is 444 lb.

dantifoam B: 0.0144 x latex weight (444 lb) = 6.4 lb.
65.9 mix requires 555 lb of cement.
fall cost figures shown are 1976 costs.

gosts do not include intangible costs for compaction and for cleaning of equipment.

Table 11. Ratios of Splitting Tensile and Flexural Strengths to Compressive Strengths

	Polyn	Polymer - Modified Concretes	Concretes			Plein C	Plein Concrete
Polymer Type, Loading, Mix, end Curing Method	Compressive Strength, poi	Splitting Tensile Strength, psi	Flexural Strength, psi	Retio: Column 3 to Column 2	Ratio: Column 4 to Column 2	Ratio: Tensile to Compressive	Retio: Flexural to Compressive
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8
E, 75%, 5.9 PRCC, S+A	7,220 - 5,990	1,100	1,290	0.15	0.18	0.07	0.12
L, 40%, 5.9 PPCC, A	4,960	720	780	0.14	91.0	90.0	0.14
			(b) Test A	(b) Test Age 28 Days			
E, 75%, 5.9 PRCC, S+A	8,390	1,060	1,250	0.13	0.15	0.07	0.12
E, 75%, 5.9 PPCC, S+A	6,910	1,050	1,280	0.15	0.18	0.07	0.12
L. 40%, 5.9 PPCC, A	7,060	066	1,030	0.13	0.15	0.07	0.12
			(c) Test A	(c) Test Age 91 Days			
E, 75%, 5.9 PRCC, S+A	8,540	1,260	1,350	0.15	0.16	0.07	0.11
E, 75%, 5.9 PPCC, S+A	7,080	1,280	1,460	0.18	0.21	0.07	0.12
L, 40%, 5.9 PPCC, A	8,150	096	1,330	0.12	0.16	0.07	0.12
		4 000	(d) Test A	(d) Test Age 175 Days	1		de suiver to the feet of
E, 75%, 5.9 PRCC, S+A	9,320	1,170	1,460	0.13	0.16	0.07	11.0
E, 75%, 5.9 PPCC, S+A	6,620	1,400	1,560	0.21	0.24	0.07	0.12
L, 40%, 5.9 PPCC, A	8,950	096	1,470	0.11	0.16	0.07	0.11
		,	(e) Test Ag	(e) Test Age 365 Days			de la
E, 75%, 5.9 PRCC, S+A	10,150	1,250	1,530	0.12	0.15	0.07	11.0
E, 75%, 5.9 PPCC, S+A	7,690	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1,520	0.17	0.50	0.07	0.12

*Polymer types: L = letax; E = epoxy.

*Polymer loading is expressed as e percentage of the weight of the cement,

*Concrete mixes: PPCC = polymer-modified portland cement concrete; PRCC = polymer-modified Regulated Set cement concrete,

*Curing methods: A = eir-cured; S+A = steam-cured for 16 hours then air-cured for remaining time until test age.

*From Table 2 of Reference 13.

Appendix A

POLYMERS AND ASSOCIATED MATERIALS

Polymer	Source	Cost Per Pound ^a
Epi-rez 5077	Celanese Resins, Los Angeles, California	\$0.85
Epon 815	Shell Chemical Company, New York, New York	0.77
Ancamine T-1	Pacific Anchor Chemical Company, Richmond, California	1.33
Latex 464	Dow Chemical Company, Midland, Michigan	0.61
Antifoam B	Dow Corning Corporation, Midland, Michigan	0.77
Regulated Set Cement	Huron Cement Company, Southfield, Michigan	0.025
Type III Portland Cement	Southwestern Portland Cement Company, Los Angeles, California	0.023

a₁₉₇₆ costs.

Appendix B

.

STRENGTHS OF CONTROL MIXES

Tables B-1 through B-4 present the compressive strengths, Young's moduli, splitting tensile strengths, and flexural strengths of the control concrete mixes.

Table B-1. Compressive Strengths of Control Mixes

Curing	Mix	r a.	t-r	Cor	npressive S	trengths (p	si)	
	Designation	1 Day	3 Days	7 Days	28 Days	.91 Days	175 Days	365 Days
	\$	(z) Ty	pe III Port	land Cem	ent Concre	te	A)	
4	5.9	1,830	2,300	2,690	3,350	3,590	3,660	3,700
Steam + Air (S+A)	6.9	2,750	3,740	4,220	5,080	- n	-	-
as a second or second or	8.0	3,860	4,850	5,350	5,690	- 10	_	- 6
Air (A)	5.9	570	1,400	2,220	2,710	2,960	3,030	3,130
	-1 -40 m	(b) F	tegulated :	Set Cemen	t Concrete	for .		in P guide
	5.9	1,380	1,800	2,080	2,470	2,700	2,740	2,760
Steam + Air (S+A)	6.9	1,940	2,420	2,810	3,390		_	-
	8.0	2,600	3,110	3,580	4,100	-	-	- 10
Air (A)	5.9	790	1,410	2,270	2,810	3,070	3,120	3,150

Table B-2. Young's Moduli of Control Mixes

	Mix			Young	g's Moduli (10 ⁶ psi)		
Curing	Designation	1 Day	3 Days	7 Days	28 Days	91 Days	175 Days	365 Days
	(a) '	Type III	Portland (Cement Co	oncrete			
Steam + Air (S+A)	5.9	1.72	,- :	1.42	2.34	2.75	2.75	2.75
Air (A)	5.9	1.70	1.85	1.95	1.80	1.88	1.89	1.89
	(b)	Regulat	ed Set Cer	nent Cond	rete		1	
Steam + Air (S+A)	5.9	1.50	-	1.84	2.04	2.75	2.51	2.22
Air (A)	5.9	_	1.64	1.62	2.43	2.38	2.06	2.00

Table B-3. Splitting Tensile Strengths of Control Mixes

	Mix		1	Split	ting Tensile	Strength (psi)	
Curing	Designation	1 Day	3 Days	7 Days	28 Days	91 Days	175 Days	365 Days
		(a) Ty	pe III Port	land Ceme	ent Concret	e		
Steam + Air (S+A)	5.9	280	-	400	410	410	400	400
Air (A)	5.9	250	310	340	350	340	340	330
		(b) F	Regulated !	Set Cemen	t Concrete			
Steam + Air (S+A)	5.9	270	-	400	440	440	440	410
Air (A)	5.9	_	250	320	340	350	370	370

Table B-4. Flexural Strengths of Control Mixes

0.1	Mix			FI	exural Stre	ngth (psi)		
Curing	Designation	1 Day	3 Days	7 Days	28 Days	91 Days	175 Days	365 Days
		(a) Ty	pe III Port	land Cem	ent Concre	te		404
Steam + Air (S+A)	5.9	440	-	510	540	560	580	580
Air (A)	5.9	330	350	360	410	500	520	570
		(b) F	Regulated :	Set Cemer	t Concrete			
Steam + Air (S+A)	5.9	330	7.4	380	490	580	560	570
Air (A)	5.9	_	240	280	460	500	530	560

Appendix C

TYPICAL MIX DESIGNS AND MIXING AND CURING PROCEDURES FOR POLYMER-MODIFIED CONCRETES

MIXING DESIGN AND PROCEDURE FOR 5.9 PPCC WITH EPOXY

The following quantities of material per cubic yard of portland cement concrete with 75% epoxy loading should be used:

Coarse aggregate	1,172 pounds
Fine aggregate	1,620 pounds
Type III cement	555 pounds (5.9 sacks)
Water	388 pounds* $(W/C = 0.70)$
Epoxy (0.75 x 555)	416 pounds
Ancamine T-1 (416 ÷ 5)	83 pounds

The mixing procedure is as follows:

- 1. Mix aggregates, cement, and water for 3 minutes.
- 2. Allow mixed concrete to stand for 1 hour, mixing occasionally for 10 seconds to maintain fluidity.
- 3. Mix epoxy and curing agent and allow to stand for 10 minutes prior to adding to concrete.
- 4. Add mixed epoxy and curing agent to concrete and mix for 3 minutes.
- 5. Place polymer-modified concrete in forms; hand-packing combined with vibration gives best results.

It should be noted that when an accelerator is used (according to the manufacturer's instructions), step 2 can be reduced to 15 minutes; when Regulated Set cement is used instead of Type III portland cement, step 2 can be eliminated.

MIXING DESIGN AND PROCEDURE FOR 5.9 PPCC WITH LATEX

The following quantities of material per cubic yard of portland cement concrete with 40% latex loading should be used:

Coarse aggregate	1,172 pounds
Fine aggregate	1,620 pounds
Type III cement	555 pounds (5.9 sacks)
Water	388 pounds** $(W/C = 0.70)$
Latex solids (0.40 x 555)	222 pounds
Latex (50% water)	444 pounds (solids + water)
Antifoam B (0.0144 x 444)	6.4 pound

^{*}Assuming saturated, surface-dry aggregates.

^{**} Assuming saturated, surface-dry aggregates.

It should be noted that the 222 pounds of water in the latex total must be included in the 388 pounds of water needed.

The mixing procedure is as follows:

- 1. Mix latex and Antifoam B.
- 2. Mix aggregates, cement, water, and latex for 3 minutes.
- 3. Place the latex-modified concrete in the form; it compacts easily with vibration.

Mixing and placing procedures are the same when Regulated Set cement is used instead of Type III portland cement.

CURING PROCEDURES

- 1. Epoxy-modified concretes require steam-curing. The structure can be covered with a hood and steam supplied by a portable steam generator (such as in prestressing yards), or, as an alternative, wet burlap can be placed over the structure and then covered with an "electric blanket" type of heating unit. Curing should continue for at least 16 hours, but longer time up to 2 days will provide even higher strengths.
- 2. Latex-modified concretes require no special curing; as soon as practicable, form work should be removed and ambient air allowed to reach as much of the structure as possible.

DISTRIBUTION LIST

AFB (AFIT/LD), Wright-Patterson OH, AFCEC/XR, Tyndall FL, CESCH, Wright-Patterson, HQ Tactical Air Cmd (R. E. Fisher), Langley AFB VA, SAMSO/DEB, Norton AFB CA, Stinfo Library, Offutt NE

ARMY AMSEL-GG-TD, Fort Monmouth NJ, BMDSC-RE (H. McClellan) Huntsville AL, DAEN-CWE-M (LT C D Binning), Washington DC, DAEN-FEU, Washington DC, DAEN-MCE-D Washington DC, HQ-DAEN-FEB-P (Mr. Price), Tech. Ref. Div., Fort Huachuca, AZ

ARMY BALLISTIC RSCH LABS AMXBR-XA-LB, Aberdeen Proving Ground MD

ARMY COASTAL ENGR RSCH CEN Fort Belvoir VA, R. Jachowski, Fort Belvoir VA

ARMY CONSTR ENGR RSCH LAB Champaign IL (Dr D Navs), Champaign IL (Dr G R Williamson), Champaign IL (Dr L I Knab), Library, Champaign IL

ARMY CORPS OF ENGINEERS Seattle Dist. Library, Seattle WA

ARMY ENG DIV ED-CS (S.Bolin), HNDED-CS, Huntsville AL

ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS, Vicksburg MS (G C Hoff)

ARMY ENGR DIST. Library, Portland OR

ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe, Watertown MA

ARMY MISSILE COMMAND Redstone Sci. Info. Center (Documents), Redstone Arsenal AL

ARMY MOBIL EQUIP R&D COM Mr. Cevasco, Fort Belvoir MD

ASST SECRETARY OF THE NAVY Spec. Assist Energy (P. Waterman), Washington DC

BUREAU OF MINES Mining RSCH CEN (J M Goris) Spokane WA

BUREAU OF RECLAMATION Code 1512 (W G Smoak), Denver CO, Code 1512 (C. Selander) Denver CO, Engr & Rsch Cen (G W Depuy), Denver CO

CNO OP987P4 (B. Petrie), Pentagon

COMCBPAC Operations Off, Makalapa HI

COMFLEACT PWO, Okinawa Japan

DEFENSE CIVIL PREPAREDNESS AGENCY J.O. Buchanan, Washington DC

DEFENSE DOCUMENTATION CTR Alexandria, VA

DEFENSE INTELLIGENCE AGENCY Dir., Washington DC

DNA STTL, Washington DC

DOD Explosives Safety Board (Library), Washington DC

DOT-FED HWY ADMIN Hrs-II Washington DC (G Ballinger), Hrs-22 Washington DC (JT Dikeov), Hrs-22 Washington DC (K C Clear)

DTNSRDC Code 1706, Bethesda MD

DTNSRDC Code 284 (A. Rufolo), Annapolis MD

DTNSRDC Code 42, Bethesda MD

ENERGY R&D ADMIN. INEL Tech. Lib. (Reports Section), Idaho Falls ID

FLTCOMBATDIRSYSTRACENLANT PWO, Virginia Bch VA

GSA Fed. Sup. Serv. (FMBP), Washington DC

KWAJALEIN MISRAN BMDSC-RKL-C

NAVFACENGCOM - LANT DIV. Eur. BR Deputy Dir, Naples Italy

MARINE CORPS BASE Code 43-260, Camp Lejeune NC, M & R Division, Camp Lejeune NC, Maint. Office, Camp Pendleton CA, PWO, Camp S. D. Butler, Kawasaki Japan

MARINE CORPS HQS Code LFF-2, Washington DC

MCAS Code PWE, Kaneohe Bay HI, Code S4, Quantica VA, PWD, Dir. Maint. Control Div., Iwakuni Japan, PWO, PWO, Yuma AS

MCB Base Maint. Offr, Quantico VA

MCRD PWO, San Diego Ca

MCSC B520, Barstow CA

NATIONAL BUREAU OF STANDARDS Washington DC (Dr G Frohnsdorff)

NAVCOMMSTA PWO, Adak AK

NAVMAG SCE, Guam

NAVREGMEDCEN SCE, Guam-

NAVSHIPYD Code 400, Puget Sound, PWO, Puget Sound

NAVSTA SCE, Subic Bay, R.P.

NAD Code 011B-1, Hawthorne NV, Dir. PW Eng. Div., Engr. Dir., PWD Nat./Resr. Mgr Forester, McAlester OK NAS Asst C/S CE, Code 70, Atlanta, Marietta GA, Dir. Maint. Control Div., Key West FL, Lead. Chief. Petty Offr.

PW/Self Help Div, Beeville TX, PWC Code 40 (C. Kolton), PWD Maint. Div., New Orleans, Belle Chasse LA, PWO, PWO, PWO Chase Field, PWO Whiting Fld, Milton FL, PWO, Kingsville TX, PWO, Millington TN, PWO, Moffett Field CA, ROICC, ROICC Off (J. Sheppard), Point Mugu CA, SCE Lant Fleet, SCE, Barbers Point HI

NATPARACHUTETESTRAN PW Engr, El Centro CA

NAVCOASTSYSLAB Code 423 (D. Good), Panama City FL, Code 710.5 (J. Mittleman), Code 710.5 (J. Quirk), Library

NAVCOMMAREAMSTRSTA Code W-602, Honolulu, Wahiawa HI, PWO, Wahiawa HI

NAVFACENGCOM Code 0433B, Code 0451, Code 04B3, Code 04B5, Code 101, Code 1023 (M. Carr), Code 104, Code 2014 (Mr. Taam), Pearl Harbor HI, PC-22 (E. Spencer), PL-2

NAVFACENGCOM - LANT DIV. Code 403 (J Watson) Norfolk VA

NAVOCEANO Code 1600, Code 3412 (J. DePalma), Washington DC

NAVORDSTA PWO, Louisville KY

NAVPGSCOL Code 61WL (O. Wilson)

NAVPHIBASE Code S3T, Norfolk VA, OIC, UCT I

NAVREGMEDCEN Code 3041, Memphis, Millington TN, PWO, SCE (LCDR B. E. Thurston), San Diego CA

NAVSCOLCECOFF C35, C44A (R. Chittenden), Port Hueneme CA

NAVSECGRUACT PWO, Torri Sta, Okinawa

NAVSHIPREPFAC Library, Guam

NAVSHIPYD Code 410, Mare 1s., Vallejo CA, Code 440, Norfolk, Code 450, Charleston SC, PWO, Mare Is., SCE. Pearl Harbor HI

NAVSTA CO, PWD (L. Ross), Midway Island, PWO, SCE, San Diego CA

NAVSUPPACT CO, Seattle WA, Code 4, 12 Marine Corps Dist, Treasure Is., San Francisco CA

NAF PWO Sigonella Sicily

NAS PWD, Willow Grove PA, PWO, Keflavik Iceland, R. Kline

NATIONAL BUREAU OF STANDARDS B-348 BR (Dr. Campbell), Washington DC

NATNAVMEDCEN PWO

NAVAIRSYSCOM LT W. Hall, Washington DC

NAVAL FACILITY PWO, Brawdy Wales UK, PWO, Cape Hatteras, Buxton NC, PWO, Centerville Bch, Ferndale CA, PWO, Guam, PWO, Lewes DE

NAVBASE Code 111 (A. Castronovo), Philadelphia PA

NAVCOMMSTA PWO, Baiboa Canal Zone

NAVCOMMUNIT Cutler/E. Machias ME (PW Gen. For.)

NAVFACENGCOM - CHES DIV. Code 101, Code 402 (R. Morony), Code 403 (H. DeVoe), Code FPO-1 (Ottsen), Contracts, ROICC, Annapolis MD

NAVFACENGCOM - LANT DIV. Code 10A, Norfolk VA, RDT&ELO 09P2, Norfolk VA

NAVFACENGCOM - NORTH DIV. (Boretsky), Code 1028, RDT&ELO, Philadelphia PA, Code 114 (A. Rhoads), ROICC, Contracts, Crane IN

NAVFACENGCOM - PAC DIV. Code 402, RDT&E, Pearl Harbor HI, Commanders

NAVFACE NGCOM - SOUTH DIV. Code 90, RDT&ELO, Charleston SC, Dir., New Orleans LA, ROICC (LCDR R. Moeller), Contracts, Corpus Christi TX

NAVFACENGCOM - WEST DIV. 102, 112, 408, San Bruno CA, AROICC, Contracts, Twentynine Palms CA, AROICC, Point Mugu CA, Codes 09PA, 09P/20

NAVFACENGCOM CONTRACTS Bethesda, Design Div. (R. Lowe) Alexandria VA, Eng Div dir, Southwest Pac, Pl. OICC/ROICC, Balboa Canal Zone, ROICC, Pacific, San Bruno CA

NAVHOSP LT R. Elsbernd, Puerto Rico

NAVNUPWRU MUSE DET OIC, Port Hueneme CA

NAVRADRECFAC PWO, Kami Seya Japan

NAVREGMEDCEN PWO-Newport RI

NAVSEASYSCOM Code SEA OOC

NAVSECGRUACT PWO, Edzell Scotland, PWO, Puerto Rico

NAVSHIPYD Library, Portsmouth NH, PWO

NAVSTA CO, Engr. Dir., Rota Spain, Maint. Cont. Div., Guantanamo Bay Cuba, PWD/Engr. Div. Puerto Rico, PWO, Puerto Rico, ROICC, Rota Spain

NAVSUPPACT Maint. Div. Dir/Code 531, Rodman Canal Zone, Plan/Engr Div., Naples Italy

NAVWPNCEN PWO (Code 70), China Lake CA

NAVWPNSTA Maint. Control Dir., Yorktown VA, PWO

NAS CO, Guantanamo Bay Cuba, Code I14, Alameda CA, Code 18700, Brunswick ME, OIC, CBU 417, Oak Harbor WA, PWD (ENS E.S. Agonoy), Chase Field, Beeville TX, PWD (M.B. Trewitt), Dallas TX, PWO (M. Elliott), Los Alamitos CA, PWO, Guantanamo Bay Cuba

NATL RESEARCH COUNCIL Naval Studies Board, Washington DC

NAVACT PWO, London UK

NAVACTDET PWO, Holy Lock UK

NAVAVIONICFAC PWD Deputy Dir. D/701, Indianapolis, IN

NAVCOASTSYSLAB CO, Panama City FL

NAVCOMMSTA PWO, PWO, Norfolk VA

NAVCONSTRACEN CO (CDR C.L. Neugent), Port Hueneme, CA

NAVENVIRHLTHCEN OIC, Cincinnati OH

NAVEODFAC Code 605, Indian Head MD

NAVFACENGCOM Code 0453 (D. Potter)

NAVFACENGCOM - NORTH DIV. AROICC, Brooklyn NY, Code 09P (LCDR A.J. Stewart), Design Div. (R. Masino), Philadelphia PA

NAVFACENGCOM - WEST DIV. Code 04B

NAVFACENGCOM CONTRACTS ROICC (LCDR J.G. Leech), Subic Bay, R.P., TRIDENT (CDR J.R. Jacobsen), Bremerton WA 98310

NAVFORCARIB Commander (N42), Puerto Rico

NAVMARCORESTRANCEN ORU 1118 (Cdr D.R. Lawson), Denver CO

NAVMIRO OIC, Philadelphia PA

NAVOCEANSYSCEN Code 6565 (Tech, Lib.), San Diego CA, Code 6700, Code 7511 (PWO), Research Lib., San Diego CA, SCE (Code 6600), San Diego CA

NAVPETOFF Code 30, Alexandria VA

NAVSCOLCECOFF CO, Code C44A

NAVSEC Code 6034 (Library), Washington DC

NAVSHIPYD CO Marine Barracks, Norfolk, Portsmouth VA, Code 202.4, Long Beach CA, Code 202.5 (Library)
Puget Sound, Bremerton WA, Code 420, Maint, Control, Long Beach, CA, Code Portsmouth NH, PWD (Code
400), Philadelphia PA, PWD (LT N.B. Hall), Long Beach CA

NAVSTA SCE, Guam, Utilities Engr Off. (LTJG A.S. Ritchie), Rota Spain

NAVSUPPACT AROICC (LT R.G. Hocker), Naples Italy, CO, Brooklyn NY, Engr. Div. (F. Mollica), Naples Italy

NAVTRAEQUIPCEN Technical Library, Orlando FL

NAVWPNCEN ROICC (Code 702), China Lake CA

NAVWPNSTA ENS G.A. Lowry, Falibrook CA

NAVWPNSUPPCEN PWO

NAVXDIVINGU LT A.M. Parisi, Panama City FL

PMTC Code 4253-3, Point Mugu CA

NCBC CEL (CAPT N. W. Petersen), Port Hueneme, CA, CEL AOIC, Code 10, Code 400, Gulfport MS, PW Engrg, Gulfport MS, PWO (Code 80)

NCBU 411 OIC, Norfolk VA

NCR 20, Commander

NMCB 133 (ENS T.W. Nielsen), 5, Operations Dept., 74, CO, Forty, CO, THREE, Operations Off.

NRL Code 8441 (R.A. Skop), Washington DC

NROTCU Univ Colorado (LT D R Burns), Boulder CO

NSC Code 700, Code 703 (M. Miller), Pearl Harbor HI, E. Wynne, Norfolk VA

NTC Code 54 (ENS P. G. Jackel), Orlando FL. Commander, OICC, CBU-401, Great Lakes IL, SCE

NUSC Code EA1231R.S. Munn), New London CT, Code TA131 (G. De la Cruz), New London CT

OCEANAV Mangmt Info Div., Arlington VA

OCEANSYSLANT LT A.R. Giancola, Norfolk VA

ONR Code 484, Arlington VA, Dr. A. Laufer, Pasadena CA

PLASTICS TECH EVAL CTR PICATINNY ARSENAL A. Anzalone, Dover NJ

PMTC Pat. Counsel, Point Mugu CA

PWC ENS J.E. Surash, Pearl Harbor HI, ACE Office (LTJG St. Germain), Code 136 (ENS A. Eckhart), Code 120, Oakland CA, Code 120C (A. Adams), Code 200, Great Lakes 1L, Code 200, Oakland CA, Code 220, Code 505A (H. Wheeler), ENS J.A. Squatrito, San Francisco Bay, Oakland CA, Library, Subic Bay, R.P., OIC CBU-405, San Diego CA, XO

SPCC PWO (Code 120 & 122B) Mechanicsburg PA

SUBASE NEW LONDON LTJG D. W. Peck Groton CT

UCT TWO OIC, Port Hueneme CA

USCG (G-ECV/61) (Burkhart) Washington, DC, MMT-4, Washington DC

USCG ACADEMY LT N. Stramandi, New London CT

USCG RAD CENTER Tech. Dir.

USNA Ch. Mech. Engr. Dept, PWD Engr. Div. (C. Bradford), PWO, Sys. Engr Dept (Dr. Monney), Annapolis MD

WPNSTA EARLE Code 092, Colts Neck NJ

AMERICAN CONCRETE INSTITUTE Detroit MI (Library)

CALIFORNIA STATE UNIVERSITY LONG BEACH, CA (CHELAPATI)

CLARKSON COLL OF TECH Potsdam NY (G B Batson)

COLORADO STATE UNIV., FOOTHILL CAMPUS Engr Sci. Branch, Lib., Fort Collins CO

CORNELL UNIVERSITY Ithaca NY (Serials Dept, Engr Lib.)

DAMES & MOORE LIBRARY LOS ANGELES, CA

ENERGY R&D ADMIN. Dr. Cohen

FLORIDA ATLANTIC UNIVERSITY BOCA RATON, FL (MC ALLISTER), Boca Raton FL (Ocean Engr Dept., C. Lin)

FLORIDA ATLANTIC UNIVERSITY Boca Raton FL (W. Tessin)

FLORIDA TECHNOLOGICAL UNIVERSITY ORLANDO, FL (HARTMAN)

GEORGIA INSTITUTE OF TECHNOLOGY Atlanta GA (School of Civil Engr., Kahn)

GORDON MC KAY LIB Cambridge, MA (Tech Report Collection)

ILLINOIS INST OF TECH Chicago IL (Dr J L Lott)

INSTITUTE OF MARINE SCIENCES Morehead City NC (Director)

IOWA STATE UNIVERSITY Ames IA (CE Dept, Handy)

VIRGINIA INST. OF MARINE SCI. Gloucester Point VA (Library)

KANSAS-STATE HWY COMMISSION Topeka KS (J E Bukavotz)

LEHIGH UNIVERSITY BETHLEHEM, PA (MARINE GEOTECHNICAL LAB., RICHARDS), Bethlehem PA (Fritz Engr. Lab No. 13, Beedle), Bethlehem PA (J A Manson), Bethlehem PA (Linderman Lib. No.30, Flecksteiner)

LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCES & TECH DIV)

MASSACHUSETTS INST. OF TECHNOLOGY Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.), Cambridge MA (Rm 14 E210, Tech. Report Lib.), Cambridge MA (Whitman)

MICHIGAN TECHNOLOGICAL UNIVERSITY HOUGHTON, MI (HAAS)

NORTHERN ARIZONA UNIVERSITY Flagstaff AZ (Prof S Popovics)

NY CITY COMMUNITY COLLEGE BROOKLYN, NY (LIBRARY)

OREGON STATE UNIVERSITY CORVALLIS, OR (CE DEPT, HICKS), Corvalis OR (School of Oceanography)
PENNSYLVANIA STATE UNIVERSITY STATE COLLEGE, PA (SNYDER), UNIVERSITY PARK, PA
(GOTOLSKI)

PURDUE UNIVERSITY LAFAYETTE, IN (CE LIB), Lafayette IN (Leonards)

SAN DIEGO STATE UNIV. Dr. Krishnamoorthy, San Diego CA

SCRIPPS INSTITUTE OF OCEANOGRAPHY LA JOLLA, CA (ADAMS), San Diego, CA (Marina Phy. Lab. Spiess)

STANFORD UNIVERSITY Stanford CA (Gene)

STATE UNIV. OF NEW YORK Buffalo, NY

TECH ACT COMMITTEE Detroit MI (SJ Henry)

TEXAS A&M UNIVERSITY COLLEGE STATION, TX (CE DEPT), College TX (CE Dept, Herbich)

UNIVERSITY OF AKRON Akron OH (T-Y P Chang)

UNIVERSITY OF CALIFORNIA BERKELEY, CA (CE DEPT, GERWICK), BERKELEY, CA (OFF. BUS. AND FINANCE, SAUNDERS), Berkeley CA (B. Bresler), Berkeley CA (E. Pearson), DAVIS, CA (CE DEPT,

TAYLOR), LIVERMORE, CA (LAWRENCE LIVERMORE LAB, TOKARZ), Los Angeles CA (Dr S Aroni)

UNIVERSITY OF DELAWARE Newark, DE (Dept of Civil Engineering, Chesson)

UNIVERSITY OF HAWAII HONOLULU, HI (CE DEPT, GRACE), HONOLULU, HI (SCIENCE AND TECH. DIV.)

UNIVERSITY OF ILLINOIS Chicago IL (Dr S P Shah), Honolulu HI (Dr. Szilard), URBANA, IL (LIBRARY), URBANA, IL (NEWARK), Urbana IL (CE Dept, W. Gamble), Urbana IL (Dr R Swamy)

UNIVERSITY OF MASSACHUSETTS (Heronemus), Amherst MACE Dept

UNIVERSITY OF MICHIGAN Ann Arbor MI (Richart)

UNIVERSITY OF NEBRASKA-LINCOLN LINCOLN, NE (SPLETTSTOESSER)

UNIVERSITY OF NEW MEXICO Albuquerque NM (Soil Mech. & Pav. Div., J. Nielsen)

UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PA (SCHOOL OF ENGR & APPLIED SCIENCE, ROLL)

UNIVERSITY OF TEXAS Inst. Marina Sci (Library), Port Aransas TX

UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TX (THOMPSON), Austin TX (DW Fowler)

UNIVERSITY OF WASHINGTON Dept of Civil Engr (Dr. Mattock), Seattle WA, SEATTLE, WA (MERCHANT), SEATTLE, WA (OCEAN ENG RSCH LAB, GRAY)

URS RESEARCH CO. LIBRARY SAN MATEO, CA

US DEPT OF COMMERCE NOAA, Marine & Earth Sciences Lib., Rockville MD, NOAA, Pacific Marine Center,

AEROSPACE CORP. Acquisition Group, Los Angeles CA

ARVID GRANT OLYMPIA, WA

ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)

AUSTRALIA Dept. PW (A. Hicks), Melbourne, Ready Mixed Concrete Ind LTD (W G Ryan) Artarmon 2064

BATTELLE-COLUMBUS LABS Columbus OH (W A Hedden)

BECHTEL CORP. SAN FRANCISCO, CA (PHELPS)

BELGIUM NAECON, N.V., GEN.

BETHLEHEM STEEL CO. BETHLEHEM, PA (STEELE)

BLAKESLEE PRESTRESS New Haven CT (DW Pfeifer)

BROOKHAVEN NATL LAB Upton NY (LE Kukacka), Upton NY (M Steinberg)

CANADA Dept of Energy Mines & Resources (V M Malhotra) Ottawa, Onta, Mem Univ Newfoundland (Chari), St Johns, Min of Trans & Communications (P Smith) Downsview, Ontario, Queens Iniv (Dr B Hope) Kingston Ontario, Surveyor, Nenninger & Chenevert Inc..

CF BROWN CO Du Bouchet, Murray Hill, NJ

CONCRETE TECHNOLOGY CORP. TACOMA, WA (ANDERSON)

DOW CHEMICAL CO Midland Mi (R D Eash)

DRAVO CORP Pittsburgh PA (Giannino)

NORWAY DET NORSKE VERITAS (Library), Oslo

EVALUATION ASSOC. INC KING OF PRUSSIA, PA (FEDELE)

FOREST PRODUCTS LABORATORY Madison WI (Library)

FRANCE Dr. Dutertre, Boulogne, P. Jensen, Boulogne, Roger LaCroix, Paris

GENERAL DYNAMICS Elec. Boat Div., Environ. Engr (H. Wallman), Groton CT

GEOTECHNICAL ENGINEERS INC. Winchester, MA (Paulding)

GLOBAL MARINE DE VELOPMENT NEWPORT BEACH, CA (HOLLETT)

GOULDING. Shady Side MD (Ches. Inst. Div., W. Paul)

GRUMMAN AEROSPACE CORP. Bethpage NY (Tech. Info. Ctr)

HALEY & ALDRICH, INC. Cambridge MA (Aldrich, Jr.)

HONEYWELL, INC. Minneapolis MN (Residential Engr Lib.)

HUGHES AIRCRAFT Culver City CA (Tech. Doc. Ctr)

ITALY Dir Del Laboratorio Centrale (Prof A Rio) Rome, M. Caironi, Milan, Sergio Tattoni Milano

KENNETH TATOR ASSOC CORAOPOLIS, PA (LIBRARY)

LOCKHEED MISSILES & SPACE CO. INC. SUNNYVALE, CA (PHILLIPS)

LOCKHEED OCEAN LABORATORY SAN DIEGO, CA (PRICE)

MARATHON OIL CO Houston TX (C. Seay)

MARINE CONCRETE STRUCTURES INC. MEFAIRIE, LA (INGRAHAM)

MCDONNEL AIRCRAFT CO. Dept 501 (R.H. Fayman), St Louis MO

MOBILE PIPE LINE CO. DALLAS, TX MGR OF ENGR (NOACK)

MUESER, RUTLEDGE, WENTWORTH AND JOHNSTON NEW YORK (RICHARDS)

NATL CONCRETE MASONRY ASSOC Arlington VA (T B Redmond Jr)

NEW ZEALAND New Zealand Concrete Research Assoc. (Librarian), Porirua

NEWPORT NEWS SHIPBLDG & DRYDOCK CO, Newport News VA (Tech. Lib.)

NORWAY DET NORSKE VERITAS (Roren) Oslo, J. Creed, Ski, Norwegian Tech Univ (Brandtzaeg), Trondheim

OCEAN DATA SYSTEMS, INC. SAN DIEGO, CA (SNODGRASS)

OFFSHORE DEVELOPMENT ENG. INC. BERKELEY, CA, Berkeley CA

OWENS CORNING FIBERGLAS Granville OH (H N Marxh Jr)

PACIFIC MARINE TECHNOLOGY LONG BEACH, CA (WAGNER)

PORTLAND CEMENT ASSOC. SKOKIE, IL(CORELY), SKOKIE, IL(KLIEGER), Skokie IL(P Kleiger), Skokie IL (Rsch & Dev Lab, Lib.)

PRESCON CORP TOWSON, MD (KELLER)

PROTEX IND INC Denver CO (I L Lynn)

PUERTO RICO Puerto Rico (Rsch Lib.), Mayaquez PR

RAND CORP. Santa Monica CA (A. Laupa)

RIVERSIDE CEMENT CO Riverside CA (W. Smith)

SANDIA LABORATORIES Library Div., Livermore CA

SCHUPACK ASSOC SO. NORWALK, CT (SCHUPACK)

SEATECH CORP. MIAMI, FL (PERONI) SHELL DEVELOPMENT CO. Houston TX (E. Doyle) SHELL OIL CO. HOUSTON, TX (BEA), HOUSTON, TX (MARSHALL) SWEDEN Chalmers Univ of Technology (Dr I R Malinowski) Gothenburg, VBB (Library), Stockholm TIDEWATER CONSTR. CO Norfolk VA (Fowler) TRW SYSTEMS CLEVELAND, OH (ENG. LIB.), REDONDO BEACH, CA (DAI) UNITED KINGDOM Assoc Portland Cement Mfg (WO Nutt) Croyden England, Cement & Concrete Assoc. (Library), Wexham Springs, Slough, Cement & Concrete Assoc. (Lit. Ex), Bucks, Cement & Concrete Assoc. (R. Rowe), Wexham Springs, Slough B, D. New, G. Maunsell & Partners, London, Shaw & Hatton (F. Hansen), London, Taylor, Woodrow Constr (014P), Southall, Middlesex, Univ. of Bristol (R. Morgan), Bristol WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib, Bryan), Library, Pittsburgh PA WISS, JANNEY, ELSTNER, & ASSOC Northbrook, IL (J. Hanson) WM CLAPP LABS - BATTELLE DUXBURY, MA (LIBRARY), DUXBURY, MA (RICHARDS) WOODWARD-CLYDE CONSULTANTS PLYMOUTH MEETING PA (CROSS, III) AL SMOOTS Los Angeles, CA BRYANT ROSE Johnson Div. UOP, Glendora CA **BULLOCK La Canada** F. HENZE Boulder CO CAPT MURPHY SAN BRUNO, CA GREG PAGE EUGENE, OR T.W. MERMEL Washington DC

END

DATE
FILMED
6