Supplementary Material for RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes*

Tak-Wai Hui H-1 Research

eetwhui@gmail.com

1. Odometry Evaluation

The pose network of RM-Depth [6] is evaluated on the sequences "09" and "10" of the KITTI odometry dataset [3] following the protocol in [14]. The results are summarized in the upper half of Table 1. The protocol in Monodepth2 [4] is used to compute each of the 4 frame-to-frame transformations for evaluating on the 5-frame snippets. The results are summarized in the bottom half of Table 1. The odometry results of RM-Depth are comparable to the prior works.

Table 1. Camera pose estimation results on the KITTI odometry dataset. †Evaluation on the 5-frame trajectory is made from a combination of 4 frame-to-frame predictions. †The results are provided by [4]. The best result in each category is in bold.

Method	Absolute Traiec	tory Error (ATE)
Wethod	Sequence "09"	Sequence "10"
Zhou et al. [14]	0.021 ± 0.017	0.020 ± 0.015
DF-Net [15]	0.017 ± 0.007	0.015 ± 0.009
Mahjourian et al. [8]	0.013 ± 0.010	0.012 ± 0.011
EPC++ [9]	0.013 ± 0.007	0.012 ± 0.008
GeoNet [13]	0.012 ± 0.007	0.012 ± 0.009
CC [10]	0.012 ± 0.007	0.012 ± 0.008
RM-Depth [6]	0.0101 ± 0.0063	0.0096 ± 0.0065
Zhou <i>et al</i> . [14] ^{†,‡}	0.050 ± 0.034	0.039 ± 0.028
Monodepth2 [4] [†]	0.017 ± 0.008	0.015 ± 0.010
RM-Depth [6] †	0.0166 ± 0.0095	0.0153 ± 0.0090

2. Generalization Capability

The generalization capability of RM-Depth [6] is evaluated by applying the trained model on another new dataset, Make3D [11], without fine-tuning on it. Following the protocol in Monodepth2 [4], evaluation is performed on the 134 test images in Make3D. The results are summarized in Table 2. RM-Depth performs better than the prior works. Visual results are provided in Fig. 1. Both the quantitative and qualitative results suggest that RM-Depth generalizes well

Table 2. Depth prediction results on the Make3D dataset. The best result in each category is in bold.

Method	AbsRel	SqRel	RMS	RMSlog
DDVO [1]	0.387	4.720	8.090	0.204
Zhou <i>et al</i> . [14]	0.383	5.321	10.470	0.478
DF-Net [15]	0.331	2.698	6.890	0.416
CC [10]	0.321	3.277	7.258	0.170
Monodepth2 [4]	0.322	3.589	7.417	0.163
RM-Depth [6]	0.283	2.557	6.634	0.151

to other scenes in addition to the KITTI cand Cityscapes datasets.

3. Additional Results on KITTI

In Table 3, evaluation on the improved KITTI ground truth [12] as [4] is provided. RM-Depth [6] performs well comparing to the prior works.

4. Effect of Image Resolution

RM-Depth [6] is further evaluated at a higher image resolution, 1024×320. As summarized in Table 4, a high image resolution helps RM-Depth to improve the performance.

5. Complete Results on the Ablation Study

In Tables 5, 6, and 7, the full set of metrics for the experiment presented in Tables 4 to 6 of the main paper are provided.

References

- [1] C.Wang, J. M. Buenaposada, R. Zhu, and S. Lucey. Learning depth from monocular videos using direct methods. In *CVPR*, pages 2022–2030, 2018. 1, 2
- [2] D. Eigen and R. Fergu. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In *ICCV*, pages 2650–2658, 2015. 3
- [3] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? In *CVPR*, pages 3354–3361, 2012. 1

^{*}This research work is not for commercial use unless a prior arrangement has been made with the author.

Figure 1. Examples of depth predictions on the Make3D dataset [11].

Table 3. Monocular depth results on the KITTI dataset using improved ground truth. The best result in each category is in bold.

Method	Е	rror (low	er is bett	er)	Accuracy (higher is better)			
	AbsRel	SqRel	RMS	RMSlog	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
Mahjourian et al. [9]	0.134	0.983	5.501	0.203	0.827	0.944	0.981	
GeoNet [13]	0.132	0.994	5.240	0.193	0.833	0.953	0.985	
DDVO [1]	0.126	0.866	4.932	0.185	0.851	0.958	0.986	
CC [10]	0.123	0.881	4.834	0.181	0.860	0.959	0.985	
EPC++ [8]	0.120	0.789	4.755	0.177	0.856	0.961	0.987	
Monodepth2 [4]	0.090	0.545	3.942	0.137	0.914	0.983	0.995	
PackNet [5]	0.078	0.420	3.485	0.121	0.931	0.986	0.996	
RM-Depth	0.0797	0.373	3.461	0.121	0.930	0.988	0.997	

- [4] C. Godard, O. M. Aodha, M. Firman, and G. Brostow. Digging into self-supervised monocular depth estimation. In *ICCV*, pages 3828–3838, 2019. 1, 2
- [5] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon. 3d packing for self-supervised monocular depth estimation. In CVPR, pages 2485–2494, 2020. 2
- [6] T.-W. Hui. RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes. In CVPR, pages 1675–1684, 2022.
- [7] H. Li, A. Gordon, H. Zhao, V. Casser, and A. Angelova. Unsupervised monocular depth learning in dynamic scenes. In *CoRL*, pages 1908–1917, 2020. 3
- [8] C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia, and A. Yuille. Every pixel counts ++: Joint learning of geometry and motion with 3d holistic understanding. *TPAMI*, 42(10):2624–2641, 2020. 1, 2
- [9] R. Mahjourian, M. Wicke, and A. Angelovn. Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In *CVPR*, pages 5667–5675, 2018. 1, 2
- [10] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and M. J. Black. Competitive Collaboration: Joint unsuper-

- vised learning of depth, camera motion, optical flow and motion segmentation. In *CVPR*, pages 12240–12249, 2019. 1,
- [11] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene structure from a single still image. *TPAMI*, 31:824–840, 2009. 1, 2
- [12] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger. Sparsity invariant CNNs. In 3DV, pages 11–20, 2017.
- [13] Z. Yin and J. Shi. GeoNet: Unsupervised learning of dense depth, optical flow and camera pose. In *CVPR*, pages 1983– 1992, 2018. 1, 2
- [14] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-motion from video. In CVPR, pages 1851–1858, 2017.
- [15] Y. Zou, Z. Luo, and J.-B. Huang. DF-Net: Unsupervised joint learning of depth and flow using cross-task consistency. In ECCV, pages 38–55, 2018. 1

Table 4. Monocular depth results of RM-Depth using different image resolutions on the KITTI dataset by the testing split of Eigen*et al.* [2] and the Cityscapes dataset. The best result in each category is in bold.

Resolution	Testing]	Error (low	er is bette	Accuracy (higher is better)			
	Set	AbsRel SqRel RMS RMSlog				$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
640×192	K	0.1072	0.6870	4.4758	0.1811	0.8833	0.9637	0.9839
1024×320	K	0.1062	0.6667	4.3002	0.1777	0.8861	0.9649	0.9847
640×192	CS	0.0903	0.8248	5.5027	0.1430	0.9133	0.9797	0.9934
1024×320	CS	0.0876	0.7549	5.1223	0.1359	0.9222	0.9827	0.9942

Table 5. Ablation study of RM-Depth on KITTI. The best result in each category is in bold.

Method]	Error (low	er is bette	Accuracy (higher is better)			
	AbsRel	SqRel	RMS	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
full	0.1081	0.7100	4.5138	0.1831	0.8841	0.9637	0.9832
w/o residual upsampling	0.1097	0.7313	4.5269	0.1839	0.8819	0.9629	0.9830
w/o RMU	0.1167	0.8186	4.7100	0.1895	0.8722	0.9604	0.9825
w/o modulation	0.1165	0.7546	4.6623	0.1910	0.8677	0.9590	0.9823
baseline (w/o my contributions)	0.1187	0.8382	4.7894	0.1927	0.8664	0.9591	0.9822

Table 6. Ablation study of RM-Depth on Cityscapes. The best result in each category is in bold.

Method]	Error (low	er is bette	Accuracy (higher is better)			
	AbsRel	SqRel	RMS	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
full	0.0903	0.8248	5.5027	0.1430	0.9133	0.9797	0.9934
w/o warping	0.0933	0.9248	5.6283	0.1461	0.9137	0.9790	0.9925
w/o outlier-aware regularization	0.0995	0.9986	5.8281	0.1545	0.9015	0.9751	0.9916
using sparsity loss as [7]	0.1066	1.1073	6.0965	0.1642	0.8877	0.9703	0.9900
w/o object motion estimation	0.1174	1.1195	6.4542	0.1729	0.8650	0.9679	0.9906
baseline (w/o my contributions)	0.1335	1.8784	6.9748	0.1912	0.8479	0.9600	0.9856

Table 7. Ablation study of the number of RMUs in RM-Depth on KITTI. The best result in each category is in bold.

Method]	Error (low	er is bette	Accur	acy (higher is	s better)	
	AbsRel	SqRel	RMS	RMSlog	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
3 (L4: 1, L3: 1, L2: 1)	0.1161	0.7713	4.6799	0.1906	0.8686	0.9601	0.9825
6 (L4: 2, L3: 2, L2: 2)	0.1135	0.7490	4.6128	0.1877	0.8755	0.9612	0.9828
8 (L4: 4, L3: 2, L2: 2)	0.1098	0.7251	4.5535	0.1845	0.8809	0.9620	0.9829
13 (L4: 9, L3: 2, L2: 2)	0.1081	0.7100	4.5138	0.1831	0.8841	0.9637	0.9832