Συναρτήσεις Μη πεπερασμένο όριο στο x_0

Κωνσταντίνος Λόλας

Στο άπειρο λοιπόν...

Λάθος συλλογισμός

Το άπειρο ΔΕΝ ΕΙΝΑΙ ΑΡΙΘΜΟΣ!

Λάθος συλλογισμός

Το άπειρο ΔΕΝ ΕΙΝΑΙ ΑΡΙΘΜΟΣ!

Ορισμός απείρου

Αν για κάθε $k \in \mathbb{R}$ μπορώ να βρώ $m \in \mathbf{A}$ ώστε m > k, τότε λέμε ότι το \mathbf{A} έχει οσοδήποτε μεγάλους αριθμούς.

Λάθος συλλογισμός

Το άπειρο ΔΕΝ ΕΙΝΑΙ ΑΡΙΘΜΟΣ!

Ορισμός απείρου

Αν για κάθε $k \in \mathbb{R}$ μπορώ να βρώ $m \in A$ ώστε m > k, τότε λέμε ότι το A έχει οσοδήποτε μεγάλους αριθμούς.

άρα

Ορισμός μη πεπερασμένου ορίου

Έστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Αν για κάθε $k \in \mathbb{R}$ υπάρχει $x_0 \in \mathbf{A}$ ώστε για κάθε x σε κατάλληλη περιοχή γύρω από το x_0 να ισχύει f(x) > k

3/21

Λόλας Συναρτήσεις

Ελληνικά!

Ορισμός μη πεπερασμένου ορίου

Έστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο άπειρο αν μεγαλώνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x \to x_0} f(x) = +\infty$$

Λόλας Συναρτήσεις 4/21

Ελληνικά!

Ορισμός μη πεπερασμένου ορίου

Έστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο άπειρο αν μεγαλώνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x \to x_0} f(x) = +\infty$$

MONO EGW θα επιτρέπεται να γράφω σκέτο ∞ και θα εννοώ $+\infty$ και εννοείται επειδή ξεχνάω!

4/21

Λόλας Συναρτήσεις

Το άλλο άπειρο?

Ορισμός μη πεπερασμένου ορίου

Έστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο μείον άπειρο αν μικραίνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x \to x_0} f(x) = -\infty$$

Το άλλο άπειρο?

Ορισμός μη πεπερασμένου ορίου

Έστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο μείον άπειρο αν μικραίνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x\to x_0}f(x)=-\infty$$

Αυτό δεν μπορώ να το παραβλέψω και αναγκαστικά το γράφω και εγώ!

Λόλας

Πάμε στα γνωστά

Συναρτήσεις που πηγαίνουν στο $+\infty$.

Πάμε στα γνωστά

Συναρτήσεις που πηγαίνουν στο $+\infty$. Πάμε...

Πάμε στα γνωστά

Συναρτήσεις που πηγαίνουν στο $+\infty$. Πάμε...

- \bigcirc $\frac{1}{x}$

- \bullet $\varepsilon \varphi(x)$

Το άπειρο δεν είναι παιχνίδι (part 1)

Γρίφος time!

- Υπάρχει ένα ξενοδοχείο με άπειρα δωμάτια.
- Έρχεται ένας ταλαιπωρημένος οδηπόρος και ζητάει δωμάτιο!!!!!
- Ο ξενοδόχος του λέει ότι όλα τα δωμάτια είναι κατελημένα και δεν έχει ελεύθερο.
- Επειδή ο οδηπόρος είστε εσείς και κάνετε μαθηματικά με τον Λόλα, του δίνετε την λύση και τελικά παίρνετε το δωμάτιο 4.
- Προτείνετε μία λύση

Λόλας Συναρτήσεις 7/21

Το άπειρο δεν είναι παιχνίδι (part 2)

Μπορώ πολύ εύκολα να αποδείξω ότι $1+2+3+4+\cdots=-\frac{1}{12}$

Μα, μα, μα... Είπαμε δεν είναι αριθμός!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

• προσθέσω έναν αριθμό?

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?

9/21

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Άρα προσοχή σε όσα δεν ορίζονται!

$$\bullet$$
 $\pm \infty + a =$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty - a =$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet \ \pm \infty - a = \pm \infty$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet$$
 $\pm \infty \cdot a =$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet$$
 $\frac{\pm \infty}{a} =$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bigcirc \frac{a}{\pm \infty} =$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$(+\infty)^a =$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \pm \infty + a = \pm \infty$$

$$\bullet \ \pm \infty - a = \pm \infty$$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$a^{+\infty} =$$

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet$$
 $+\infty + a = +\infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet$$
 $a^{-\infty} =$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

Λόλας

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet$$
 $+\infty + a = +\infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

•
$$a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

Κρατάμε τα $\infty \cdot 0$, ∞^0 , $1^{\pm \infty}$

Λόλας

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet \ -\infty + (-\infty) =$$

$$0 + \infty + + \infty = + \infty$$

$$\bullet \ -\infty + (-\infty) = -\infty$$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $+\infty + (-\infty) =$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty =$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet \ \pm \infty \cdot \pm \infty = \pm \infty$$

$$\bullet$$
 $\frac{\pm \infty}{\pm \infty}$ =

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet \ \pm \infty \cdot \pm \infty = \pm \infty$$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet \ \pm \infty \cdot \pm \infty = \pm \infty$$

$$\bullet \ (+\infty)^{+\infty} =$$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet \ \pm \infty \cdot \pm \infty = \pm \infty$$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet \ \pm \infty \cdot \pm \infty = \pm \infty$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} =$$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet \ \pm \infty \cdot \pm \infty = \pm \infty$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

$$0 + \infty + + \infty = + \infty$$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

Στο σχήμα • Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

 $\bullet \ \lim_{x \to 1} f(x) \text{, } \lim_{x \to 1} |f(x)| \text{, } \lim_{x \to 1} \sqrt{f(x)} \text{ kal } \lim_{x \to 1} \frac{1}{f(x)}$

Λόλας Συναρτήσεις 12/21

Στο σχήμα • Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \ \lim_{x \to 1} f(x) \text{, } \lim_{x \to 1} |f(x)| \text{, } \lim_{x \to 1} \sqrt{f(x)} \text{ kal } \lim_{x \to 1} \frac{1}{f(x)}$
- $\bullet \ \lim_{x \to 0} f(x) \text{, } \lim_{x \to 0} |f(x)| \ \text{kat} \lim_{x \to 0} \frac{1}{f(x)}$

12/21

Στο σχήμα • Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \ \lim_{x \to 1} f(x) \text{, } \lim_{x \to 1} |f(x)| \text{, } \lim_{x \to 1} \sqrt{f(x)} \text{ kal } \lim_{x \to 1} \frac{1}{f(x)}$
- $\bullet \ \lim_{x \to 0} f(x) \text{, } \lim_{x \to 0} |f(x)| \ \text{kat} \lim_{x \to 0} \tfrac{1}{f(x)}$
- $\bullet \ \lim_{x \to 3} f(x) \text{, } \lim_{x \to 3} |f(x)| \ \text{kal} \lim_{x \to 3} \tfrac{1}{f(x)}$

Λόλας Συναρτήσεις 12/21

Στο σχήμα • Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \ \lim_{x \to 1} f(x) \text{, } \lim_{x \to 1} |f(x)| \text{, } \lim_{x \to 1} \sqrt{f(x)} \text{ kal } \lim_{x \to 1} \frac{1}{f(x)}$
- $\bullet \ \lim_{x \to 0} f(x) \text{, } \lim_{x \to 0} |f(x)| \ \text{kal} \lim_{x \to 0} \tfrac{1}{f(x)}$
- $\bullet \ \lim_{x \to 3} f(x) \text{, } \lim_{x \to 3} |f(x)| \ \text{kal} \lim_{x \to 3} \tfrac{1}{f(x)}$
- $\qquad \lim_{x\to 4} \frac{1}{f(x)} \text{, } \lim_{x\to 6} \frac{1}{f(x)-3} \, \operatorname{kal} \lim_{x\to 7} \frac{1}{f(x)}$

Λόλας Συναρτήσεις 12/21

- $\lim_{x \to 3} \frac{1}{|x-3|}$
- $2 \lim_{x \to 1} \frac{x-3}{(x-1)^2}$

- $\lim_{x \to 3} \frac{1}{|x-3|}$
- $2 \lim_{x \to 1} \frac{x-3}{(x-1)^2}$
- $\lim_{x \to 2} \frac{2x+1}{x-2}$

- $\lim_{x \to 3} \frac{1}{|x-3|}$
- $\lim_{x \to 2} \frac{2x+1}{x-2}$
- $\lim_{x \to 0} \frac{1 + \sqrt{x}}{x}$

Να βρείτε, (αν υπάρχει) το $\lim_{x \to 1} \frac{3x+2}{x^2-1}$

Για τις διάφορες τιμές του λ να βρείτε το $\lim_{x \to 2} \frac{x^2 - \lambda x + \lambda}{(x-2)^2}$

Να βρείτε την τιμή του $\alpha\in\mathbb{R}$ για την οποία το $\lim_{x\to 1}\frac{\alpha x^2+x-2}{x^2-x}$ είναι πραγματικός αριθμός

Έστω μια συνάρτηση $f:(0,+\infty)\to\mathbb{R}$ για την οποία ισχύει:

$$f(x) \le x - \frac{1}{x}$$
 για κάθε $x > 0$

Να βρείτε τα όρια:

Έστω μια συνάρτηση $f:(0,+\infty)\to\mathbb{R}$ για την οποία ισχύει:

$$f(x) \le x - \frac{1}{x}$$
 για κάθε $x > 0$

Να βρείτε τα όρια:

- $2 \lim_{x \to 0} \frac{|f(x) 3|}{f^2(x) 3f(x)}$

Αν για μια συνάρτηση ισχύει:

$$|x-2|f(x) \ge x-1$$
 για κάθε $x \ne 2$

Να βρείτε τα όρια:

$$\lim_{x \to 2} f(x)$$

Αν για μια συνάρτηση ισχύει:

$$|x-2|f(x) \ge x-1$$
 για κάθε $x \ne 2$

Να βρείτε τα όρια:

- $\lim_{x \to 2} f(x)$

Έστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x\to 0} \left(x^2 f(x)\right) = 1$. Να βρείτε τα όρια

Έστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x\to 0} \left(x^2 f(x)\right) = 1$. Να βρείτε τα όρια

- $\lim_{x \to 0} \frac{x-1}{f(x)}$

Να βρείτε (αν υπάρχουν) τα παρακάτω όρια.

Να βρείτε (αν υπάρχουν) τα παρακάτω όρια.

$$\begin{array}{cc}
& \lim_{x \to 0} \frac{3x+2}{|\eta \mu x| - |x|}
\end{array}$$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

21/21