Google App Store Data Analysis

NAME: SHAM AMBADAS JOHARI

Background

Users download apps for various usage purposes. Given that paid service is usually better at offering pleasant experience, and that free apps are more accesible to everyone, what are the user opinions towards these apps?

More specifically, the following questions are of interest:

- · How do the app ratings differ between paid and free apps in general?
- · How are the differences distributed across different app categories?
- Are there any categories where the differences are statistically significant?

In [1]:

```
# import packages
import pandas as pd
import seaborn as sns
import numpy as np
import re
from scipy.stats import mannwhitneyu
from matplotlib import pyplot as plt
```

In [2]:

```
# Read dataframe and display data
df = pd.read_csv('Google Apps data.csv')
df.head(5)
```

Out[2]:

	Unnamed: 0.1	Unnamed: 0	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price
0	0	0	Photo Editor & Candy Camera & Grid & ScrapBook	Art And Design	4.1	159	19.0	10000	Free	0.0
1	1	1	Coloring book moana	Art And Design	3.9	967	14.0	500000	Free	0.0
2	2	5	U Launcher Lite – FREE Live Cool Themes, Hide	Art And Design	4.7	87510	8.7	5000000	Free	0.0
3	3	6	Sketch - Draw & Paint	Art And Design	4.5	215644	25.0	50000000	Free	0.0
4	4	7	Pixel Draw - Number Art Coloring Book	Art And Design	4.3	967	2.8	100000	Free	0.0
4										•

Step 0. Explore and Prepare Dataframe

In [3]:

```
# check duplicates
n_duplicated = df.duplicated(subset=['App']).sum()
print("There are {}/{} duplicated records.".format(n_duplicated, df.shape[0]))
df_no_dup = df.drop(df.index[df.App.duplicated()], axis=0)
print("{} records after dropping duplicated.".format(df_no_dup.shape[0]))
```

There are 86/8276 duplicated records. 8190 records after dropping duplicated.

In [4]:

```
# Check and clean type values, defer nan value processing to the next cell
print(set(df_no_dup.Type))
print("Dropping alien Type value '0', {} record(s) removed".format(sum(df_no_dup.Type ==
df_no_dup = df_no_dup.drop(df_no_dup.index[df_no_dup.Type == '0'], axis=0)
{'Paid', 'Free'}
```

```
localhost:8888/notebooks/Twilearn Internship project/Google App Store Data Analysis/AnalyzeGoogleStoreApp.ipynb
```

Dropping alien Type value '0', 0 record(s) removed

In [5]:

```
# check and drop NaN values
print("NaA value statistics in each column")
print(df_no_dup.isnull().sum(axis=0),'\n')
df_no_dup = df_no_dup.dropna(subset=['Type'])
print("Column 'Type' with NaN values are dropped, {} records left.".format(df_no_dup.sha

# prepare rating dataframe
df_rating = df_no_dup.dropna(subset=['Rating'])
print("Cleaned dataframe for 'Rating' has {} records.".format(df_rating.shape[0]))
```

```
NaA value statistics in each column
Unnamed: 0.1
Unnamed: 0
                          0
App
                          0
                          0
Category
Rating
                          0
Reviews
                          0
Size
                          0
Installs
                          0
Type
                          0
Price
                          0
Content Rating
                        361
Last Updated
Current Ver
                          0
Minimum Android Ver
                          0
Genres
                          0
dtype: int64
```

Column 'Type' with NaN values are dropped, 8190 records left. Cleaned dataframe for 'Rating' has 8190 records.

In [6]:

```
# we are interested in the columns Category, Rating and Type
# Drop irrelevant columns for Rating dataframe.
df_rating = df_rating.loc[:,['Rating', 'Type', 'Category']]
```

In [7]:

```
def plot hist(df, col, bins=10):
   Plot histograms for a column
   plt.hist(df[col], bins=bins)
   plt.xlabel(col)
   plt.ylabel('counts')
   plt.title('Distribution of {}'.format(col))
def compute app types(df):
   Given a dataframe, compute the number
   of free and paid apps respectively
   return sum(df.Type == "Free"), sum(df.Type == 'Paid')
def plot_app_types(df):
   Plot app type distributions across categories
   vc_rating = df.Category.value_counts()
   cat_free_apps = []
   cat paid apps = []
   for cat in vc_rating.index:
        n_free, n_paid = compute_app_types(df.query("Category == '{}'".format(cat)))
        cat_free_apps.append(n_free)
        cat_paid_apps.append(n_paid)
   f, ax = plt.subplots(2,1)
   ax[0].bar(range(1, len(cat_free_apps)+1), cat_free_apps)
   ax[1].bar(range(1, len(cat_free_apps)+1), cat_paid_apps)
def drop_categories(df):
   Drop categories with any app type with instances fewer than 10
   vc_rating = df.Category.value_counts()
   cats_to_drop = []
   for cat in vc_rating.index:
        n_free, n_paid = compute_app_types(df.query("Category == '{}'".format(cat)))
        if n free < 10 or n paid < 10:</pre>
            cats_to_drop.append(cat)
   for cat in cats to drop:
        df.drop(df.query('Category == "{}"'.format(cat)).index, axis=0, inplace=True)
    print("Deleted categories: {}".format(cats_to_drop))
    return df
```

In [8]:

```
# Describe Rating dataframe
plot_hist(df_rating, 'Rating')
df_rating.describe()
```

Out[8]:

	Rating
count	8190.000000
mean	4.173321
std	0.536691
min	1.000000
25%	4.000000
50%	4.300000
75%	4.500000
max	5.000000

In [9]:

```
print("There are {} free and {} paid apps in the the Rating dataframe ".format(*compute_
```

There are 7588 free and 602 paid apps in the the Rating dataframe

In [10]:

explore the distributions of free and paid apps across different categories
plot_app_types(df_rating)

In [11]:

Exclude categories with fewer than 10 apps for any Free or Paid type
Otherwise the categories would contain too few data to generalize the result
df_rating = drop_categories(df_rating)
print("Cleaned Rating dataframe has {} datapoints".format(df_rating.shape[0]))

Deleted categories: ['Business', 'News And Magazines', 'Social', 'Travel A nd Local', 'Shopping', 'Books And Reference', 'Video Players', 'Dating', 'Maps And Navigation', 'Education', 'Entertainment', 'Food And Drink', 'Au to And Vehicles', 'Weather', 'Libraries And Demo', 'House And Home', 'Art And Design', 'Comics', 'Parenting', 'Events', 'Beauty'] Cleaned Rating dataframe has 5749 datapoints

In [12]:

```
df_rating.describe()
```

Out[12]:

	Rating
count	5749.000000
mean	4.173126
std	0.545003
min	1.000000
25%	4.000000
50%	4.300000
75%	4.500000
max	5.000000

Q 1. How does the ratings differ in general?

In [13]:

```
def plot_target_by_group(df, target_col, group_col, figsize=(6,4), title=""):
    """
    Plot the mean of a target column (Numeric) groupped by the group column (categorical
    """
    order = sorted(list(set(df[group_col])))
    stats = df.groupby(group_col).mean()[target_col]
    fig, ax = plt.subplots(figsize=figsize)
    sns.barplot(x=group_col, y=target_col, data=df, ax=ax, order=order).set_title(title)
    ax.set(ylim=(3.8, 4.5))
    return stats
```

In [14]:

```
stats = plot_target_by_group(df_rating, 'Rating', 'Type', title="Average Rating Groupped
for i, s in zip(stats.index, stats):
    print("{} app has average {} {}".format(i, 'Rating',s))
mean_rating = df_rating.Rating.mean()
print("Mean rating: {}".format(mean_rating))
```

Free app has average Rating 4.163423527154097 Paid app has average Rating 4.267100371747212 Mean rating: 4.173125761001916

Interpretation

In general, Free apps, with an average rating of 4.16, are lower rated than Paid apps with an average rating of 4.27. Note that the average rating for all apps is 4.17, so Free apps are rated below average, while Paid apps are rated reletively higher than the average score.

Q2 How are the differences distributed across different app categories?

In [15]:

In [16]:

```
fig, ax = plt.subplots(figsize=(16,4))
sorted_idx = sorted(paid_stats.index)
rating_diff = paid_stats[sorted_idx] - free_stats[sorted_idx]
sns.barplot(x=sorted_idx, y=rating_diff, ax=ax).set_title("Difference of Ratings between rating_diff
```

Out[16]:

Category Communication -0.063287 Family 0.116983 Finance -0.297604 Game 0.136364 Health And Fitness 0.154858 Lifestyle 0.166608 Medical 0.087344 Personalization 0.149300 Photography -0.152796 Productivity 0.023577 Sports 0.041940 Tools 0.143083 Name: Rating, dtype: float64

Interpretation

Although paid apps are in general more highly-rated than free apps, and so are in most app categories, there are still some app categories where free apps are likely to be favored more than the paid apps. For instance, COMMUNICATION, FINANCE and PHOTOGRAPHY are three such categories. In FINANCE category, the free apps on average are rated almost 0.3 higher than the paid apps, which is also the largest difference between app types across all the categories.

Q3 Are there any categories where the differences are statistically significant?

In [17]:

```
def compute_utest(df):
    Compute Mann-Whitney rank tests
    for paid and free app ratings
    paid_rating = df.query('Type == "Paid"')['Rating']
    free_rating = df.query('Type == "Free"')['Rating']
    return mannwhitneyu(paid_rating, free_rating)
def cat_utest(df):
    Iteratively compute utest for each app category
    cats = set(df.Category)
    res = []
    for cat in cats:
        stats, pval = compute_utest(df.query('Category == "{}"'.format(cat)))
        res.append({'Category':cat,
                     'u_statistics':stats,
                     'p_value':pval})
    return pd.DataFrame(res)
uval, pval = compute_utest(df_rating)
print("General utest result: pval {}, u {}".format(pval, uval))
df_utest = cat_utest(df_rating)
df_utest.loc[df_utest.p_value < .05] # significant categories</pre>
```

General utest result: pval 7.073262096170448e-10, u 1626957.0

Out[17]:

	Category	u_statistics	p_value
1	Game	39535.0	0.000382
2	Personalization	9137.5	0.004496
4	Family	133234.0	0.000053
11	Tools	24898.0	0.006077

Interpretation

As rating is not normally-distributed, Mann-Whitney's U test was applied to test the significance of rating differences, since this test is free from a normal assumption. At the 0.05 significance level, results of the u tests on different categories demonstrate that the free and paid apps in the following categories have significant rating differences: personalization, tools, family and games. Paid apps are on average higher rated than free apps in these categories.

Concluding Remarks

Data analysis was conducted on the Kaggle Google Play Store dataset, the answers to the three questions were explored:

- How do the ratings differ between paid and free apps in general? In general, Paid apps are better-rated than free apps, which appears to support the argument that service quility of the paid apps is better.
- How are the differences distributed across different app categories? In most categories, Paid apps
 achieve higher ratings than free apps, however, in a few categories such as COMMUNICATION,
 FINANCE and PHOTOGRAPHY, the average ratings of free apps are higher than those of paid apps. Is
 this because many popular apps in these categories are free, like facebook and whatsapp in the
 COMMUNICATION category?
- Are there any categories where the differences are statistically significant? There are four categories (PERSONALIZATION, TOOLS, FAMILY and GAME) where paid apps are rated significantly higher than free apps.

This is only a very superficial exploration of the Google Play Store dataset. There are many other useful information including installation counts and app review texts, which might entail many more interesting facts and await further exploration.

THANK YOU!!