Лабораторная работа 2

Знакомство с языком C++: команды ввода-вывода, математические выражения

Команды ввода/вывода, наследуемые С++ из языка Си

Вывод данных **printf_s()**

Ввод данных $scanf_s()$

Функция printf_s() и scanf_s() имеют прототип в файле **stdio.h**, **поэтому его необходимо подключить** до основной функции main()

Пример:

```
#include "stdio.h"
int main()
{
    int x;
    printf_s("Input X:");
    scanf_s("%d", &x);
    int y = x;
    printf_s("y=%d", y);
    return 0;
}
```

Функция printf_s()

Функция форматированного вывода, то есть в параметрах функции необходимо указать формат данных, которые будут выводиться. Формат данных указывается спецификаторами формата, который начинается с символа % и заканчивается кодом формата.

Спецификаторы формата:

%c	символ
%d	целое десятичное число
%i	целое десятичное число
%e	десятичное число в виде x.xx е+xx
%E	десятичное число в виде x.xx E+xx
%f	десятичное число с плавающей запятой хх.хххх

%F	десятичное число с плавающей запятой хх.хххх
% g	%f или %e, что короче
%G	% Гили % Е, что короче
%o	восьмеричное число
% s	строка символов
%u	беззнаковое десятичное число
% x	шестнадцатеричное число
%X	шестнадцатеричное число
%%	символ %
%p	Указатель
%n	Указатель

Кроме того, к командам формата могут быть применены модификаторы l и h.

%ld	печать long int
%hu	печать short unsigned
%Lf	печать long double

После символа % может быть указана точность (число цифр после запятой). Задание точности: %.n<код формата>, где n — число цифр после запятой, а <код формата> — один из кодов приведённых выше.

Примеры:

1. Вывести х **с точностью** до 3-х цифр после запятой float x = 10.3563; printf_s("Переменная x = %.3f", x); Результат: x = 10.356

2. Указание минимальной ширины поля для печати:

```
printf_s("%5d", 20);
Pesyльтат: 20
```

3. Вместо ширины и точности в спецификаторе формата можно указывать символ * (звездочка). Это позволяет задавать и ширину, и точность как значения целых переменны.

```
// Переменные ширина и точность
float number = -12.3;
int w = 10, p = 4; // ширина и точность
printf_s("%0*.*f\n", w, p, number);
w = 15, p = 5; // новая ширина и точность
printf_s("%0*.*f\n", w, p, number);
Pезультат:
-0012.3000
-00000012.30000
```

Функция scanf_s()

Форматированный ввод. С её помощью можно вводить данные со стандартного устройства ввода (клавиатуры). Вводимыми данными могут быть целые числа, числа с плавающей запятой, символы, строки и указатели.

Прототип функции: int scanf_s(char *управляющая строка);

Функция возвращает число переменных, которым было присвоено значение.

Управляющая строка содержит три вида символов:

спецификаторы формата начинаются с символа %.,

пробелы

другие символы.

Спецификаторы формата:

%c	чтение символа
%d	чтение десятичного целого
% i	чтение десятичного целого
%e	чтение числа типа float (плавающая запятая)
%h	чтение short int
%o	чтение восьмеричного числа

% s	чтение строки
%x	чтение шестнадцатеричного числа
%p	чтение указателя
%n	чтение указателя в увеличенном формате

Пример:

Вывести х с точностью до 3-х цифр после запятой

```
float x=0, a=0;
int result = scanf_s("%f %f", &x, &a);
printf_s("input %f\n", a);
printf_s("input %f\n", x);
double c = 0.0;
c=pow(a, 3);
printf_s("c=%.3f", c);
Peзультат: c = 8
```

<u>Замечание:</u> при вводе строки с помощью функции scanf_s() (спецификатор формата %s), строка вводится до первого пробела.

```
Пример: ввести строку "Привет мир!" с использованием функции scanf_s() char str[80]; // массив на 80 символов int result = scanf_s("%s", str, 79);
```

Результат: в массиве str будет храниться одно слово "Привет".

Для введения всей строки используют функцию gets_s (), которая читает символы с клавиатуры до появления символа новой строки (\n), то есть до нажатия клавиши enter.

Функция возвращает указатель на buf, где buf - буфер (память) для вводимой строки.

Пример:

```
char buffer[100]; // массив (буфер) для вводимой строки
gets_s(buffer, 99); // ввод строки до нажатия enter
printf_s("%s", buffer); // вывод введённой строки на экран
```

Замечание: для ввода данных с помощью функции scanf_s(),в качестве параметров ей нужно передавать адреса переменных, а не сами переменные. Получить адрес переменной — установить перед именем переменной знак & (амперсанд). Знак & означает взятие адреса (адрес в памяти компьютера где хранится значение переменной.)

Математические выражения

В заголовочном файле <math.h> определены функции, выполняющие некоторые часто используемые математические задачи:

Функция	Описание	Пример
abs(a)	модуль или абсолютное значение от а	abs(-3.0)=3.0 abs(5.0)=5.0
sqrt(a)	корень квадратный из a , причём a не отрицательно	sqrt(9.0)=3.0
pow(a, b)	возведение а в степень b	pow(2,3)=8
ceil(a)	округление a до наименьшего целого, но не меньше чем a	ceil(2.3)=3.0 ceil(-2.3)=-2.0
floor(a)	округление a до наибольшего целого, но не больше чем a	floor(12.4)=12 floor(-2.9)=-3
fmod(a, b)	вычисление остатка от a/b	fmod $(4.4, 7.5) = 4.4$ fmod $(7.5, 4.4) = 3.1$
exp(a)	вычисление экспоненты е ^а	exp(0)=1
sin(a)	а задаётся в радианах	
cos(a)	а задаётся в радианах	
log(a)	натуральный логарифм a (основанием является экспонента)	log(1.0)=0.0
log10(a)	десятичный логарифм а	Log10(10)=1
asin(a)	арксинус a , где -1.0 < a < 1.0	asin(1)=1.5708

Полезная информация

1. Вывод текста на русском языке Подключаем к проекту заголовочный файл <locale.h> или <clocale> #include <clocale> В начале программы вызываем функцию

```
setlocale(LC_CTYPE, "rus");
или
setlocale(LC_ALL, "Russian");
или
setlocale(0, "");
```

Задачи для самостоятельного решения:

Типы данных: int, float, double

- 1) Используя оператор sizeof, выведите на экран размер следующих типов данных: bool, char, wchar_t, int, short int, long int, long long int, float, double, long double.
- 2) Найдите значение функции $y = |x^5 + |ax x^3| a| + ax^2 + a^8$ для любых целых значений a и x.
- 3) Дано трехзначное число. Получите четырехзначное число, приписав цифру единиц в качестве цифры тысяч (345 -> 5345).
- 4) С начала суток прошло N секунд. Вывести заданное время в виде чч:мм:сс.
- 5) Точки A и B заданы координатами на плоскости: A(x1, y1), B(x2, y2). Найти:
 - а) длину отрезка АВ;
 - b) координаты середины отрезка AB.
- 6) Запишите выражение на языке программирования:

a)
$$\cos x + \frac{\cos^2 x}{\sqrt{x-1}} + tgx$$

b) $\log_3 x^3 + 2^{x-2}$

Вычислите значения для заданных с клавиатуры x. В ответе отведите 4 знака под дробную часть.

7) С клавиатуры вводятся значения углов треугольника в градусах и радиус описанной около него окружности. Найдите стороны треугольника. Используйте математическую константу M_PI для перевода градусов радианы.

```
#define _USE_MATH_DEFINES
#include <math.h> // число рі
```