Aula Inaugural Máquinas térmicas e de fluxo

DSc. Eng. Samuel Moreira Duarte Santos Engenheiro Mecânico CREA MG 106478D

Rio de Janeiro, 10 de abril 2023

Agenda

- Apresentações iniciais;
- Pacto pelo aprendizado (Política da honestidade)
- Bibliografia sugerida;
- Ementa;
- Avaliações;
- Conceitos iniciais;

Apresentações iniciais

P?lítica da h?nestidade

P²lítica da h²nestidade

- Honestidade e integridade são componentes integrais do processo acadêmico;
- Os alunos deverão ser honestos e éticos em todos os momentos em sua busca de objetivos acadêmicos;
- Desonestidade não será tolerada neste curso; e
- Qualquer estudante que for pego colando ou realizando qualquer prática desonesta receberá a punição merecida.

Bibli@grafia

Bibliografia

CARVALHO, Djalma Francisco. **Instalações elevatórias b**2mbas. Universidad Catolica Minas Gerais, 1979.

MACINTYRE, Archibald Joseph. Bombas e instalações de bombeamento. **Ri de Janeir Guanabara D is**, 1982.

ÇENGEL, Yunus A.; BOLES, Michael A.; BUESA, Ignacio Apraiz. termodinâmica. São Paulo: McGraw-Hill, 2006.

G. Van Wylen, C. Borgnakke, and R. E. Sonntag. Fundamentos da Termodinâmica. Editora Edigar Blucher, 8^a edição, 2013.

MORAN, Michael J.; SHAPIRO, Howard N.; BOETTNER, Daisie D. Princípios de termodinâmica para engenharia. Grupo Gen-LTC, 2000.

Bibliografia

ENERGÉTICA, Eficiência. Conservação de Energia.

EFICIÊNCIA ENERGÉTICA NO USO DE VAPOR, Eletrobrás / PROCEL e consórcio EFFICIENTIA/FUPAI, MME, autor Luiz Augusto Horta Nogueira, coautores Carlos R. Rocha e Fábio José H. Nogueira (UNIFEI), 196 pág., Rio de Janeiro – RJ, 2005.

EFICIÊNCIA ENERGÉTICA NO USO DE VAPOR - MANUAL PRÁTICO,

Eletrobrás / PROCEL e consórcio EFFICIENTIA/FUPAI, MME, autor Luiz Augusto Horta Nogueira, co-autores Carlos R. Rocha e Fábio José H. Nogueira (UNIFEI), 96 pág., Rio de Janeiro – RJ, 2005.

Avaliações

Avaliações

- 3 provas de 10 pontos;
- As notas da prova são 90% da nota final;
- Os 10% restante são trabalhos, quiz, exercícios complementares etc.

Ementa

Ementa

- Noções de termodinâmica aplicadas a máquinas térmicas;
- Noções de mecânica dos fluidos aplicadas a máquinas de fluxo;
- Máquinas de fluxo;
- Ciclos de potência a vapor;
- Ciclos de potência a gás; e
- Motores de combustão interna.

Conceitos iniciais

Energia

• Este modo de se definir energia perde o sentido ao ser aplicado ao calor, pois esta forma de energia é apenas parcialmente conversæl em trabalho, como se verá adiante;

"Pode ser definida como a capacidade de produzir um efeito." James clerk Maxwell

Exergia

Zoran Rant, 1956

Exergia é a capacidade de pr@duzir trabalh@

As várias f2rmas da energia

- energia nuclear e atômica
- energia elétrica
- energia química
- energia térmica (energia interna e radiação)
- energia mecânica (potencial e cinética)
- outras...

As c2nversões de ENERGIA

As leis básicas das c2nversões de ENERGIA

1.Conservação da Energia

Energia não se cria, Energia não se destrói...

2. Degradação da Energia

Os processos de conversão energética são irreversíveis...

Energia é essencial

A descoberta das técnicas de fazer o fogo foi crucial em nossa história. O acesso à energia alterou profundamente as condições de vida e produção na sociedade humana.

A Guerra do Fogo, J.J Arnaud, 1981

Energia é p2der

As grandes revoluções na história da Humanidade foram determinadas por novas tecnologias e pelo acesso à energia.

Cada vez c@nsumim@s mais energia...

P?r iss?, tivem?s de buscar energia n? subs?l?, c?m limites físic?s e impact?s ambientais...

C2ntud2, n2s sistemas energétic2s sempre existem perdas...

Os sistemas energéticos são complexas redes de exploração de recursos naturais, com diversos processos e um **elevad nível de perdas**, eventualmente acima dos níveis economicamente justificáveis.

Fluxos energéticos no Brasil em 2007 INEE, 2009

... mas as perdas energéticas p2dem ser reduzidas!

Além de ajustes nos sistemas atualmente em operação, as novas tecnologias e dos métodos de gestão energética oferecem alternativas para <u>reduzir e manter as perdas de energia em um nível mínimo aceitável</u>.

Evolução da eficácia luminosa de lâmpadas elétricas

Incrementar a eficiência implica em utilizar a tecn la gia adequada da maneira adequada.

Estud? Eletr?bras/CNI

Levantament? de p?tencial

P2tencial técnic2

	Usos industriais da energia	Potencial de economia (tep)	Representação no total de economia (%)	Setores com maior potencial d eficiência	
	Total	14.655.855,67	100,00%		
	Aquecimento direto — Fornos	9.103.661,52	62,12%	Siderurgia Cerâmico Cimento	
Combustíveis	Aquecimento direto — Secadores	415.466,80	2,83%	Cerâmico Alimentos e bebidas Têxtil	
June				Papel e celulose	
ŭ	Vapor de processo – Caldeiras	2.358.183,02	16,09%	Têxtil	
			A POSTERIOR	Alimentos e bebidas	
	Outros	74.679,61	0,51%	Siderurgia Químico	
	00000	17.070,01	0,3170	Siderurgia	
	Força motriz	2.032.439,53	13,87%	Extrativa mineral	
	POPRINCESSE		11000000000	Alimentos e bebidas	
	Refrigeração	46.581,66	0,32%	Alimentos e bebidas Químico Têxtil	
elétrica	Fornos elétricos	370.873,53	2,53%	Siderurgia Metais não ferrosos Ferros ligas	
Energia	Eletrólise	191,387,34	1,31%	Metais não ferrosos Química Papel e celulose	
_	lluminação	60.214,47	0,41%	Alimentos e bebidas Têxtil Extrativa mineral Papel e celulose	
	Outros	2.368,18	0,02%	Extrativa mineral	

Sistema M?triz

C2nsum2 de energia elétrica p2r set2r

Total: 508576 TWh Fonte: EPE Jan 2023

C2nsum2 de energia elétrica na indústria p2r us2 final

Participaçã da f rça m triz n consum de eletricidade na indústria

	Total	Força Motriz e Refrigeração		
Setor	GWh/a	GWh/a	%	
Cimento	3.754	3.702	99%	
Ferro-gusa e aço	16.889	14.111	84%	
Ferro-ligas	7.659	236	3%	
Mineração e pelotização	9.292	8.586	92%	
Não ferrosos	33.907	10.282	30%	
Química	21.612	16.465	76%	
Alimentos e bebidas	19.851	16.009	81%	
Têxtil	7.776	7.582	98%	
Papel e celulose	14.098	13.442	95%	
Cerâmica	3.050	2.745	90%	
Outros	34.173	23.750	70%	
Total	172.061	116.909	68%	

Fonte: Baseado no BEU 2005, MME, 2005 e BEN 2005, EPE, 2006.

Distribuiçã da energia em f rça m triz p r set r e us final

Setores	Bombas	Ventiladores	Compres- sores de ar	Refrigeração	Manuseio	Processamento	Outros	Total
Cimento	20,4%	14,5%	16,1%	0,2%	11,1%	33,3%	4,4%	100,0%
Ferro-gusa e aço	8,7%	15,3%	14,3%	0,0%	47,1%	12,6%	1,9%	100,0%
Ferro-ligas	8,7%	15,3%	14,3%	0,2%	47,1%	12,6%	1,9%	100,0%
Mineração e pelotização	8,7%	15,3%	14,3%		47,1%	12,6%	1,9%	100,0%
Não ferrosos	8,7%	15,3%	14,3%	•	47,1%	12,6%	1,9%	100,0%
Química	27,5%	12,5%	29,3%	2,5%	1,5%	24,9%	1,9%	100,0%
Alimentos e bebidas	18,9%	8,8%	8,9%	18,4%	7,0%	30,2%	7,7%	100,0%
Têxtil	12,3%	8,7%	9,7%	40,0%	6,7%	20,0%	2,6%	100,0%
Papel e celulose	32,9%	20,6%	4,8%	0,6%	7,7%	22,3%	11,1%	100,0%
Cerâmica	20,5%	14,5%	16,1%		11,1%	33,4%	4,4%	100,0%
Outros	18,6%	13,2%	14,7%	9,2%	10,1%	30,3%	4,0%	100,0%
Total	18,4%	13,7%	14,5%	7,4%	18,5%	23,1%	4,4%	100,0%

C2nsum2 – us2s finais da indústria

PNE 2030 PNE 2030 Tab.3 pag. 18

P2tenciais: us2s finais da indústria

PNE 2030 PNE 2030 Tab.3 pag. 18

M2t2r elétric2 e 2 sistema m2triz

- O motor elétrico é um transdutor de energia;
- Seu consumo refere-se somente às suas perdas internas;
- <u>O motor elétrico não consome toda</u> <u>essa energia!</u>

Eficiência Energética Industrial: Visã Sistêmica -(SISTEMAS MOTRIZES)

Complementos: iluminação, reativos e tarifação

Ações: instalação, operação, manutenção, equipamentos eficientes etc.

Major consistência técnica e retorno financeiro

POTENCIAL

PROCESSOS

SISTEMAS

EQUIPAMENTOS

P2 tenciais de eficiência energética

PDEf – Plan Descenal de Eficiência Energética

Resultad2s d2 Balanç2 de Energia Útil n2 Brasil (PDEf, PROCEL)

CONSUMO DE ENERGIA POR SETOR DE ATIVIDADE (2019) (CONFORME BEN 2020)

Resultad2s d2 Balanç2 de Energia Útil n2 Brasil (PDEf, PROCEL)

ENERGIA RECUPERÁVEL POR SETOR ECONÔMICO

As perdas recuperáveis representam de 4% do consumo total, e alcançam 8,5% nas indústrias. Embora seja o setor de maior consumo energético e perdas mais elevadas, as perdas recuperáveis no setor de Transportes não foram calculadas devido às dificuldades técnicas associadas à instalação de sistemas de recuperação de calor em equipamentos que não sejam estacionários.

Aqueciment? diret? e indiret?

Aqueciment? diret?: F?rn?s

Diagrama de Sankey típic para f rn s

Eficiência Térmica do Forno = $\frac{\text{Calor Armazenado no produto}}{\text{Calor do combustível consumido}}$

Aqueciment? indiret?: Caldeiras

Tip2s de caldeiras

Balanc energétic em caldeiras

chaminé; 17%

Eficiência térmica: Mét2d2 indiret2

- A eficiência do forno é calculada após subtrair:
 - A perda de calor sensível no gás de combustão;
 - · Perda devido à umidade no gás de combustão;
 - · Perda de calor devido a aberturas no forno;
 - Perda de calor através do revestimento do forno;
 - Outras perdas não contabilizadas;
- Vários parâmetros necessários:
 - Consumo de combustível do forno por hora;
 - Produção de material;
 - Quantidade de ar em excesso;
 - Temperatura do gás de combustão;
 - Temperatura do forno em várias zonas;
 - Temperatura do ar de combustão.
- Instrumentos necessários:
 - Termômetro;
 - Monitor de eficiência de combustível;
 - Termopar de superfície; e
 - Outros dispositivos de medição são necessários para medir Descarga de fundo (blowndown)
 os parâmetros acima.

Radiação

Convecção

Combustível

C?mbustã?

C2mbustíveis e a c2mbustã2: c2nceit2

- Oxidação completa do carbono
- Oxidação e incompleta do carbono;
- Oxidação do hidrogênio;
- Oxidação do enxofre; e
- É apresentado também o calor
 liberado em cada reação, por unidade
 de massa do combustível.

REAGENTES	, ,	PRODUTOS	ENERGIA LIBERADA
C + O ₂		co ₂	+ 8.100 kcal/kg C
$C + 1/2 O_2$	->	CO	+ 2.400 kcal/kg C
$2 H_2 + O_2$	->	2 H ₂ O (L)	+ 34.100 kcal/kg H ₂
S + O ₂	->	so ₂	+ 2.200 kcal/kg S

C2mbustã2

Ar atm2sféric2

O Ar Atmosférico possui:

78,1% de N₂

20,9% de O₂

1% outros

 $O_2 = 20.9\% (v/v)$

Ar atmosférico $N_2 = 78,1\%$

Ar/outros = 1,0%

 O_2 N_2 N_2 N_2 N_2

Ar = $1 \text{ volume de } O_2 + 4 \text{ volumes de "inertes"}$

Misturas inflamáveis: pobre

Fonte: Costa, F.C.; Treinamento UG, 1ª parte, 2020

1054/26 0

- Mistura pobre é aquela com baixos teores de gás e elevados teores de ar;
- Assim, quando ocorre uma fonte de ignição, não é possível transmitir a temperatura mínima de ignição para o próximo par gásoxigênio; e
- A reação em cadeia não acontece.

Misturas inflamáveis: rica

Fonte: Costa, F.C.; Treinamento UG, 1ª parte, 2020

1055/26 0

- Mistura rica é aquela com elevados teores de gás e baixos teores de ar;
- Assim, quando ocorre
 uma fonte de ignição,
 não é possível transmitir
 a temperatura mínima
 de ignição para o
 próximo par gás oxigênio; e
- A reação em cadeia também não acontece.

Ar enriquecid?

• 100% de O₂ como comburente;

• Mistura de Ar Atmosférico + Oxigênio.

COMBUSTÍVEL: GÁS NATURAL COMBURENTE A 25º C TEMPERATURA DE EXAUSTÃO 1.150º C

DSc. Eng. Samuel Moreira Duarte Santos CREA 106478D

samuelmoreira@id.uff.br

(21) 980031100

https://www.linkedin.com/in/samuel-moreira-a3669824/

http://lattes.cnpq.br/8103816816128546