Ch6 微分中值定理及其应用

主讲教师: 顾燕红

办公室: 汇星楼409

办公室答疑时间:每周二15点至17点

微信号: 18926511820 QQ号: 58105217

Email: yhgu@szu.edu.cn

(添加好友、加群请备注 学号 姓名 数学分析1)

QQ群、QQ、微信群、微信随时答疑解惑

2023年12月28日 BY GYH

- §1 拉格朗日定理和函数的单调性
- § 2 柯西中值定理和不定式极限
- §3 泰勒公式
- §4函数的极值与最大(小)值
- §5 函数的凸性与拐点
- § 6 函数图像的讨论

如何运用微分学知识,并结合周期性、奇偶性等初等数学知识作出函数的图像?

如何找出图中各种信息,从而画出函数y = f(x)的图像?

函数作图基本步骤:

- (i) 确定函数的定义域,并考察其奇偶性、周期性;
- (ii) 求函数的一阶导数,二阶导数,从而得到 一阶导数与二阶导数为0和不存在的点;
- (iii) 列表讨论,判别函数的增减及凹凸区间, 得到函数的极值和拐点;
- (iv) 求函数的渐近线;
- (v) 确定某些特殊点,作出函数的图像.

回顾渐近线

垂直渐近线:

若 $\lim_{x \to x_0} f(x) = \infty$,则称 $x = x_0$ 为曲线y = f(x)的一条垂直渐近线.

水平渐近线:

若 $\lim_{x\to\infty} f(x) = c$, 则称y = c为曲线y = f(x)的一条水平渐近线.

斜渐近线: 若
$$\lim_{x\to\infty}\frac{f(x)}{x}=k\neq 0$$
, $\lim_{x\to\infty}\left(f(x)-kx\right)=b$, 则称 $y=kx+b$ 为曲线 $y=f(x)$ 的一条斜渐近线.

注:
$$x \to x_0$$
也可为 $x \to x_0^-$ 或 $x \to x_0^+$, $x \to \infty$ 也可为 $x \to -\infty$ 或 $x \to +\infty$.

倒1作出函数 $f(x) = (x-1)x^{\frac{2}{3}}$ 的图像.

解
$$f(x)$$
 的定义域是 $(-\infty, +\infty)$ 并在其上连续.

列表讨论:

x	$\left(-\infty,-\frac{1}{5}\right)$	$-\frac{1}{5}$	$\left(-\frac{1}{5},0\right)$	0	$\left(0,\frac{2}{5}\right)$	<u>2</u> 5	$\left(\frac{2}{5},+\infty\right)$
f'(x)	+	+	+	不存在	_	0	+
f''(x)	_	0	+	不存在	+	+	+
f(x)	凹增	拐点 $\left(-\frac{1}{5}, f\left(-\frac{1}{5}\right)\right)$	凸增	极大值	凸减	极小值	凸增

倒1 作出函数 $f(x) = (x-1)x^{\frac{2}{3}}$ 的图像.

$$f\left(\frac{2}{5}\right) = -\frac{3}{25}\sqrt[3]{20}$$
 为极小值, $f(0) = 0$ 为极大值, $\left(-\frac{1}{5}, -\frac{6}{5}\left(\frac{1}{5}\right)^{\frac{2}{3}}\right)$ 为拐点.

由于 $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} (x-1)x^{\frac{2}{3}} = \infty$, 函数没有渐近线.

补充点:(1,0).函数图像如下:У↑

例2 作出函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
的图像.

 $\mathbf{p} f(x)$ 的定义域是 $x \neq 0$.

$$f'(x) = -\frac{4(x+2)}{x^3}, \ f''(x) = \frac{8(x+3)}{x^4}.$$

列表讨论:

x	$(-\infty, -3)$	-3	(-3,-2)	-2	(-2,0)	0	$(0,+\infty)$
f'	_	_	_	0	+	不存在	_
f''	_	0	+	+	+	不存在	+
f	凹减	扬点 $\left(-3,-\frac{26}{9}\right)$	凸减	极小值 -3	凸增	不存在	凸减

倒2作出函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
的图像.

\overline{x}	$(-\infty, -3)$	-3	(-3,-2)	-2	(-2,0)	0	$(0,+\infty)$
f'	_	_	_	0	+	不存在	_
f''	_	0	+	+	+	不存在	+
f	凹减	拐点 $\left(-3,-\frac{26}{9}\right)$	凸减	极小值	凸增	不存在	凸减

f在 $(-\infty, -2], (0, +\infty)$ 上单调递减;在[-2, 0)上单调递增.

f在($-\infty$,-3]上是凹函数;在[-3,0),(0, $+\infty$)上是凸函数.

$$f(-2) = -3$$
为极小值, $\left(-3, -\frac{26}{9}\right)$ 为拐点.

x = 0是f的间断点.

倒2作出函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
的图像.

由于
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \left(\frac{4(x+1)}{x^2} - 2 \right) = -2$$
, 得水平渐近线 $y = -2$.

由于
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \left(\frac{4(x+1)}{x^2} - 2 \right) = +\infty$$
, 得垂直渐近线 $x = 0$.
补充点: $(1 - \sqrt{3}, 0), (1 + \sqrt{3}, 0),$

补充点:
$$(1-\sqrt{3},0),(1+\sqrt{3},0),$$

$$A(-1,-2), B(1,6), C(2,1).$$

函数图像如下:

GeoGebra 计算器套件 https://www.geogebra.org/calculator

徐应该:

会作函数的图像