Álgebra Linear (ALI0001 – CCI-192-02U)

Cálculo de Autovalores e Autovetores Diagonalização de Operadores

Professor: Marnei Mandler

Aula de ALI do dia 21 de junho de 2023.

Autovalores, Autovetores e Autoespaços

Definição: Seja $T: V \rightarrow V$ um operador linear.

Um vetor $v \in V$, com $v \neq \overrightarrow{0}_V$ é dito um autovetor de T se e somente se existir um escalar $\lambda \in \mathbb{R}$ tal que

$$T(v) = \lambda v$$
.

Nesse caso, o escalar $\lambda \in \mathbb{R}$ é dito autovalor de T, associado ao autovetor v.

Observação: Se λ é um autovalor de $T:V\to V$ então o conjunto de todos os elementos $v\in V$ tais que $T(v)=\lambda v$ forma um subespaço vetorial de V, conforme o teorema a seguir.

Teorema: Se $\lambda \in \mathbb{R}$ é um autovalor do operador linear $T: V \to V$ então o conjunto $V_{\lambda} = \{v \in V; \ T(v) = \lambda v\}$

é um subespaço vetorial de V, chamado de autoespaço associado a λ .

- Justificativa: Basta notar que V_{λ} é fechado para a adição e para a multiplicação por escalar, conforme demonstrado em aula.
- Observação: Note que $\vec{0}_V \in V_\lambda$, pois $T(\vec{0}_V) = \vec{0}_V = \lambda \cdot \vec{0}_V$. Além disso, V_λ contém todos os autovetores de T associados ao autovalor λ .

Operador Diagonalizável

Definição: Um operador linear $T: V \to V$ é dito diagonalizável se existir uma base β para V formada por autovetores de T.

Se $T: V \to V$ é um operador diagonalizável, com $\dim(V) = n$ temos que existe uma base $\beta = \{v_1, v_2, v_3, ..., v_n\}$ para V, formada por autovetores de T, associados, respectivamente, aos autovalores λ_1 , λ_2 , λ_3 , ..., λ_n então a matriz de T em relação à β é diagonal e dada por

$$[T]_{\beta}^{\beta} = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Observações:

- Se existir uma base β para V composta por autovetores de T, então a matriz $[T]^{\beta}_{\beta}$ é a
- matriz mais simples possível para T.

 Como $\det\left([T]_{\beta}^{\beta}\right) = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 \cdot \ldots \cdot \lambda_n$, se tivermos que $\lambda_i \neq 0 \quad \forall i$, então o determinante \longrightarrow será não nulo e, com isso, T será invertível, bijetora e/ou um isomorfismo.

Cálculo dos autovalores e autovetores de um operador

Questão: Como obter os autovalores e autovetores de $T: V \rightarrow V$?

Queremos encontrar autovalores $\lambda \in \mathbb{R}$ e o autovetores $v \in V$, com $v \neq \vec{0}_V$, tais que

$$T(v) = \lambda v$$

ou seja

$$T(v) - \lambda v = \vec{0}_V$$

isto é

$$(T - \lambda I)(v) = \vec{0}_V$$

 \longrightarrow em que I é o operador (ou matriz) identidade. Com isso, obtemos que

$$v \in N(T - \lambda I)$$

pois v foi anulado pelo operador $T-\lambda I$. Como $v\neq \vec{0}_V$, temos então que

$$N(T-\lambda I)\neq \{\vec{0}_V\}.$$

Com isso, vemos que $T - \lambda I$ não pode ser injetora.

Portanto, $T - \lambda I$ não é bijetora e nem invertível.

Assim, temos que $[T - \lambda I]$ também não é invertível e

$$\det([T - \lambda I]) = 0.$$

Cálculo dos autovalores e autovetores

Portanto, os autovalores λ são obtidos encontrando as raízes da equação

$$\det([T-\lambda I])=0,$$

enquanto os autovetores são as soluções não triviais (pois $v \neq \overrightarrow{0}_V$) do sistema homogêneo SPI

$$[T - \lambda I](v) = \overrightarrow{0}_V.$$

Definição: Dado um operador linear $T:V\to V$, definimos o polinômio característico de T como

$$p(\lambda) = \det([T - \lambda I]).$$

 \bigcup Observação: Como os autovalores de $T:V \to V$ são dados por

$$p(\lambda) = \det([T - \lambda I]) = 0,$$

 \longrightarrow temos que os autovalores são as raízes reais do polinômio característico de T.

Como $p(\lambda)$ tem grau igual à $n=\dim(V)$, sabemos então que existem, no máximo, n raízes reais para $p(\lambda)$ (e portanto, n autovalores para T), que podem ser distintas ou eventualmente repetidas.

Exercício 1: Determine o polinômio característico, os autovalores, os autovetores e autoespaços de $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por

$$T(x,y) = (15x - 8y, 24x - 13y).$$

A seguir, verifique se o operador é diagonalizável ou não.

 $lue{T}$ No caso positivo, determine sua base de autovetores e a matriz de T na forma diagonal.

Solução: O exercício foi resolvido durante a aula.

Exercício 2: Determine o polinômio característico, os autovalores e os autovetores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ dado por

$$T(x, y, z) = (4x - 3y, -y, -7x + 4z).$$

A seguir, verifique se o operador é diagonalizável ou não. No caso positivo, determine sua base de autovetores e a matriz de T na forma diagonal.

Solução: O exercício foi resolvido durante a aula.

Exemplo 1: Determine o polinômio característico, os autovalores, os autovetores e autoespaços de $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por

$$T(x,y) = (-x + 4y, 2x - 3y).$$

A seguir, verifique se o operador é diagonalizável ou não. No caso positivo, determine sua base de autovetores e a matriz de T na forma diagonal.

Solução: Como a matriz canônica de T é

$$[T] = \begin{bmatrix} -1 & 4 \\ 2 & -3 \end{bmatrix},$$

 \longrightarrow o polinômio característico de T é dado por

$$p(\lambda) = \det([T - \lambda I]) = \det\left(\begin{bmatrix} -1 & 4 \\ 2 & -3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \det\left(\begin{bmatrix} -1 - \lambda & 4 \\ 2 & -3 - \lambda \end{bmatrix}\right).$$

= $(-1 - \lambda).(-3 - \lambda) - 8 = 3 + 3\lambda + \lambda + \lambda^2 - 8 = \lambda^2 + 4\lambda - 5.$

Portanto, os autovalores de T são dadas pelas raízes de $p(\lambda)$, ou seja:

$$p(\lambda) = 0 \Rightarrow \lambda^2 + 4\lambda - 5 = 0.$$

Assim, obtemos dois autovalores distintos, dados por

$$\lambda_1 = 1$$
 e $\lambda_2 = -5$.

Nesse exemplo, o grau do polinômio característico é igual a $2 = \dim(\mathbb{R}^2)$.

Para encontrar os autovetores associados a $\lambda_1 = 1$, temos que obter as soluções não triviais $v = (x, y) \neq (0,0)$ do sistema homogêneo

$$[T-\mathbf{1}I](v)=\overrightarrow{0}_{\mathbb{R}^2}.$$

Substituindo $\lambda = 1$ em $[T - \lambda I] = \begin{bmatrix} -1 - \lambda \\ 2 \end{bmatrix}$ e escalonando a matriz associada ao sistema homogêneo, temos:

$$[T-1I] = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix} \sim \begin{bmatrix} -2 & 4 \\ 0 & 0 \end{bmatrix}.$$

Assim os autovetores associados a $\lambda_1=1$ são dados por v=(x,y) tais que

$$-2x + 4y = 0 \qquad \Rightarrow \qquad x = 2y$$

 $y \in \mathbb{R}$. Logo, são da forma

$$v = (x, y) = (2y, y) = y(2,1).$$

Prova real: T(2,1) = 1(2,1)

Com isso, um autovetor associado ao autovalor $\lambda_1 = 1$ é $v_1 = (2,1)$ e ele gera todo um subespaço vetorial formado por autovetores associados a $\lambda_1 = 1$, chamado de autoespaço e dado por $V_{\lambda_1} = V_1 = ger\{(2,1)\} = \{(x,y) \in \mathbb{R}^2; x = 2y\}$.

Para encontrar os autovetores associados a $\lambda_2 = -5$, temos que obter as soluções não triviais $v = (x, y) \neq (0,0)$ do sistema homogêneo

$$[T-(-5)I](v)=\overrightarrow{0}_{\mathbb{R}^2}.$$

Substituindo $\lambda = -5$ em $[T - \lambda I] = \begin{bmatrix} -1 - \lambda \\ 2 \end{bmatrix}$ e escalonando a matriz associada ao sistema homogêneo, temos:

$$[T+5I] = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

E os autovetores associados a $\lambda_2 = -5$ são dados por v = (x, y) tais que

$$x + y = 0 \Rightarrow y = -x$$

 $\mathbf{r} \in \mathbb{R}$. Logo, são da forma

$$v = (x, y) = (x, -x) = x(1, -1).$$

Prova real: T(1,-1) = -5(1,-1)

Com isso, um autovetor associado ao autovalor $\lambda_2 = -5$ é $v_2 = (1, -1)$ e ele gera todo um subespaço vetorial formado por autovetores associados a $\lambda_2 = -5$ chamado de autoespaço e dado por $V_{\lambda_2} = V_{-5} = ger\{(1, -1)\} = \{(x, y) \in \mathbb{R}^2; y = -x\}.$

Para verificar se T é diagonalizável basta verificar se conseguimos obter uma base para \mathbb{R}^2 formada por autovetores de T.

Como

$$\beta = \{(2,1), (1,-1)\}$$

e tal que

$$a(2,1) + b(1,-1) = (0,0) \qquad \Rightarrow \begin{cases} 2a+b=0 \\ a-b=0 \end{cases} \Rightarrow \begin{cases} 3a=0 \\ a=b \end{cases} \Rightarrow \begin{cases} a=0 \\ b=0 \end{cases}$$

temos que β é LI e, portanto, é uma base para \mathbb{R}^2 composta por autovetores de T. Portanto,

e sua matriz diagonal é

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & -5 \end{bmatrix}.$$

Note a importância de considerar o ordenamento da base de autovetores. Caso invertêssemos a posição dos autovetores na base β , deve-se inverter a posição dos autovalores na diagonal da matriz $[T]_{\beta}^{\beta}$.

Exemplo 2: Determine os autovalores, autovetores e os autoespaços de $T: \mathbb{R}^3 \to \mathbb{R}^3$ dado

$$T(x, y, z) = (3x - y + 2z, x + 2y + z, 3y + z).$$

A seguir, verifique se o operador é diagonalizável ou não. No caso positivo, determine a base de \mathbb{R}^3 composta por autovetores de T e a matriz de T na forma diagonal.

Solução: Como a matriz canônica de T é dada por $[T] = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix}$, o polinômio

característico de T é dado por

$$p(\lambda) = \det([T - \lambda I]) = \det\left(\begin{bmatrix} 3 - \lambda & -1 & 2 \\ 1 & 2 - \lambda & 1 \\ 0 & 3 & 1 - \lambda \end{bmatrix}\right)$$

$$= (3 - \lambda) \cdot (2 - \lambda) \cdot (1 - \lambda) + 6 + (1 - \lambda) - 3(3 - \lambda)$$

$$= (3 - \lambda) \cdot (2 - \lambda) \cdot (1 - \lambda) + 7 - \lambda - 9 + 3\lambda$$

$$= (3 - \lambda) \cdot (2 - \lambda) \cdot (1 - \lambda) - 2 + 2\lambda$$

$$= (3 - \lambda) \cdot (2 - \lambda) \cdot (1 - \lambda) - 2(1 - \lambda).$$

Cálculo dos autovalores e autovetores

Colocando em evidência o fator comum $(1-\lambda)$ obtemos que o polinômio característico é dado por

$$p(\lambda) = (3 - \lambda) \cdot (2 - \lambda) \cdot (1 - \lambda) - 2(1 - \lambda)$$

$$= (1 - \lambda)[(3 - \lambda) \cdot (2 - \lambda) - 2]$$

$$= (1 - \lambda)[6 - 5\lambda + \lambda^2 - 2]$$

$$= (1 - \lambda)(4 - 5\lambda + \lambda^2).$$

Nesse exemplo, o grau do polinômio característico é igual a $3 = \dim(\mathbb{R}^3)$.

lacksquare Como os autovalores de T são as raízes de $p(\lambda)$, fazemos

$$p(\lambda) = 0 \Rightarrow (1 - \lambda)(4 - 5\lambda + \lambda^2) = 0 \Rightarrow 1 - \lambda = 0 \text{ ou } \lambda^2 - 5\lambda + 4 = 0.$$

 \square Portanto, os os autovalores de T são

$$\lambda_1 = 1$$
, $\lambda_2 = 1$ e $\lambda_3 = 4$.

Note que $\lambda_1 = \lambda_2 = 1$ é uma raiz repetida (dupla) e que $\lambda_3 = 4$ é uma raiz simples.

O número de vezes que um autovalor λ é raiz do polinômio característico é chamado de multiplicidade algébrica de λ .

Com isso, a multiplicidade algébrica de $\lambda_1=\lambda_2=1$ é igual a dois e a multiplicidade algébrica de $\lambda_3=4$ é igual a um.

Agora vamos obter os autovetores de T. Para $\lambda_1=\lambda_2=1$, vamos obter as soluções não triviais do sistema homogêneo $[T-1.I]v=\overrightarrow{0}$.

Substituindo
$$\lambda = 1$$
 em $[T - \lambda I] = \begin{bmatrix} 3 - \lambda & -1 & 2 \\ 1 & 2 - \lambda & 1 \\ 0 & 3 & 1 - \lambda \end{bmatrix}$ e escalonando a matriz

associada ao sistema homogêneo, temos:

$$[T-1I] = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 1 & 1 \\ 0 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} \text{Veja que} \\ \textit{posto}([T-1I]) = 2 \\ \textit{null}([T-1I]) = 1 \end{bmatrix}$$

ightharpoonup Assim, os autovetores associados a $\lambda_1=\lambda_2=1$ são os elementos v=(x,y,z) tais que

$$x + y + z = 0$$
 e $y = 0$.

Logo z = -x e y = 0 e assim

$$v = (x, 0, -x) = x(1, 0, -1).$$

Tire a prova real, verificando que T(1,0,-1) = 1(1,0,-1).

Obtemos um único autovetor LI associado ao autovalor $\lambda_1=\lambda_2=1$, que é $v_1=(1,0,-1)$.

lacksquare Assim, o autoespaço associado a $\lambda_1=\lambda_2=1$ é dado por

$$V_1 = ger\{(1,0,-1)\} = \{(x,y,z) \in \mathbb{R}^3; z = -x \text{ e } y = 0\}.$$

 \prod Para $\lambda_3=4$: vamos obter as soluções não triviais do sistema homogêneo $\lceil T-4I
ceil v=\overrightarrow{0}$.

Substituindo
$$\lambda=4$$
 em $[T-\lambda I]=\begin{bmatrix} 3-\lambda & -1 & 2 \\ 1 & 2-\lambda & 1 \\ 0 & 3 & 1-\lambda \end{bmatrix}$ e escalonando a matriz

associada ao sistema homogêneo, temos:

$$[T-4I] = \begin{bmatrix} -1 & -1 & 2 \\ 1 & -2 & 1 \\ 0 & 3 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}. \quad \begin{array}{c} \text{Veja que} \\ posto([T-4I]) = 2 \\ null([T-4I]) = 1 \end{array}$$

 $oxedsymbol{\square}$ Logo, os autovetores associados a $\lambda_2=4$ são os elementos v=(x,y,z) tais que

$$x + y - 2z = 0$$
 e $y - z = 0$

Resolvendo, obtemos y = z e x = z e assim

$$v = (z, z, z) = z(1,1,1).$$

Tire a prova real, verificando que T(1,1,1) = 4(1,1,1)

Obtemos um único autovetor LI associado ao autovalor $\lambda_3=4$, dado por $v_2=(1,1,1)$ e o lacksquare autoespaço associado a $\lambda_3=4$ é dado por

$$V_4 = ger\{(1,1,1)\} = \{(x,y,z) \in \mathbb{R}^3; \ x = y = z\}.$$

Para verificar se T é diagonalizável basta verificar se conseguimos uma base para \mathbb{R}^3 formada por autovetores de T.

Como obtemos apenas dois autovetores Ll's associados aos autovalores distintos, temos que

$$\beta = \{(1,0,-1),(1,1,1)\}$$

 \longrightarrow não forma uma base para \mathbb{R}^3 e, por isso, T não é diagonalizável.

Assim, T não pode ser representado por uma matriz diagonal

Observações:

- Veja que no Exemplo anterior, T não é diagonalizável porque o autovalor duplo ($\lambda=1$) admite apenas um único autovetor LI.
- Por isso, é importante analisarmos o que ocorre com a quantidade de autovetores linearmente independentes (LI) associados a autovalores repetidos.
 - Veja que essa quantidade de autovetores Ll's é, por definição, igual à dimensão do autoespaço associado ao autovalor em questão.
- Nesse sentido, na próxima aula definiremos que a dimensão do autoespaço associado a um autovalor será a multiplicidade geométrica desse autovalor.