Lecture 4: Householder reflector, Givens rotation, Least squares problem

School of Mathematical Sciences, Xiamen University

1. Householder reflector

• Let $\mathbf{v} \in \mathbb{C}^m$ and $\mathbf{v} \neq \mathbf{0}$. Then the matrix

$$\mathbf{H} = \mathbf{I} - 2\frac{\mathbf{v}\mathbf{v}^*}{\mathbf{v}^*\mathbf{v}},$$

is called a *Householder reflector*.

• Geometric interpretation

Exercise: Householder reflector ${\bf H}$ satisfies the following properties:

- (1) It is Hermitian: $\mathbf{H} = \mathbf{H}^*$
- (2) It is unitary: $\mathbf{H}^* = \mathbf{H}^{-1}$
- (3) It is involutary: $\mathbf{H}^2 = \mathbf{I}$

Exercise: What are the eigenvalues, the determinant, and the singular values of a Householder reflector \mathbf{H} ?

Hint: eigenvalues 1 with multiplicity m-1 and -1 with multiplicity 1.

Exercise: Prove that $\mathbf{I} - \frac{\mathbf{v}\mathbf{v}^*}{\mathbf{v}^*\mathbf{v}}$ is the orthogonal projector which projects \mathbb{C}^m onto the *hyperplane* span $\{\mathbf{v}\}^{\perp}$ along span $\{\mathbf{v}\}$.

Theorem 1

For all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^m$ with $\mathbf{x} \neq \mathbf{y}$, there exists a Householder reflector \mathbf{H} such that $\mathbf{H}\mathbf{x} = \mathbf{y}$ if and only if $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$ and $\mathbf{x}^*\mathbf{y} \in \mathbb{R}$.

Proof.

" \Rightarrow " is easy. " \Leftarrow ": let $\mathbf{v} = \mathbf{y} - \mathbf{x}$, verify $\mathbf{H}\mathbf{x} = \mathbf{y}$.

Corollary 2

For all nonzero $\mathbf{x}, \mathbf{y} \in \mathbb{C}^m$ with $\mathbf{x} \neq \mathbf{y}$, there exists a Householder reflector \mathbf{H} and $z \in \mathbb{C}$ such that $\mathbf{H}\mathbf{x} = z\mathbf{y}$.

Proof.

Let

$$z = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \cdot c, \qquad c = \begin{cases} \pm \mathbf{y}^* \mathbf{x} / |\mathbf{x}^* \mathbf{y}|, & \text{if } \mathbf{x}^* \mathbf{y} \neq 0, \\ e^{\mathrm{i}\theta}, \ \theta \in [0, 2\pi), & \text{if } \mathbf{x}^* \mathbf{y} = 0, \end{cases}$$

and $\mathbf{v} = z\mathbf{y} - \mathbf{x}$. Verify $\mathbf{H}\mathbf{x} = z\mathbf{y}$.

2. QR factorization via Householder reflectors

• Householder method: $\mathbf{Q}_n \cdots \mathbf{Q}_2 \mathbf{Q}_1 \mathbf{A} = \mathbf{R}$ is upper-triangular.

 \times denotes an entry not necessarily zero; "blank" are zeros

• At the kth step, the unitary matrix \mathbf{Q}_k has the form

$$\mathbf{Q}_k = egin{bmatrix} \mathbf{I}_{k-1} & & \ & \mathbf{H}_k \end{bmatrix}.$$

Here \mathbf{H}_k is an $(m-k+1) \times (m-k+1)$ Householder reflector, which maps an m-k+1-vector to a scalar multiple of \mathbf{e}_1 .

• The full QR factorization: $\mathbf{A} = \mathbf{Q}_1^* \mathbf{Q}_2^* \cdots \mathbf{Q}_n^* \mathbf{R} = \mathbf{Q} \mathbf{R}$

• QR factorization with column pivoting: AP = QR. Consider "qr"

2.1. Two possible Householder reflections in real case

- Choose the one that moves \mathbf{x} the larger distance, i.e., $\mathbf{v} = -\operatorname{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1 \mathbf{x}$, or $\mathbf{v} = \operatorname{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1 + \mathbf{x}$
- Convention: $sign(x_1) = 1$ if $x_1 = 0$. " \neq " sign of MATLAB

2.2. Algorithms

Algorithm: Householder QR factorization

$$\begin{aligned} & \mathbf{for} \ k = 1 \ \mathbf{to} \ n \\ & \mathbf{x} = \mathbf{A}_{k:m,k} \\ & \mathbf{v}_k = \mathrm{sign}(x_1) \| \mathbf{x} \|_2 \mathbf{e}_1 + \mathbf{x} \\ & \mathbf{v}_k = \mathbf{v}_k / \| \mathbf{v}_k \|_2 \\ & \mathbf{A}_{k:m,k:n} = \mathbf{A}_{k:m,k:n} - 2 \mathbf{v}_k (\mathbf{v}_k^* \mathbf{A}_{k:m,k:n}) \\ & \mathbf{end} \end{aligned}$$

Algorithm: Implicit calculations of Q*b or Qx

$$\begin{aligned} &\textbf{for } k = 1 \textbf{ to } n \\ &\textbf{b}_{k:m} = \textbf{b}_{k:m} - 2\textbf{v}_k(\textbf{v}_k^*\textbf{b}_{k:m}) \\ &\textbf{end} \\ &\textbf{for } k = n \textbf{ downto } 1 \\ &\textbf{x}_{k:m} = \textbf{x}_{k:m} - 2\textbf{v}_k(\textbf{v}_k^*\textbf{x}_{k:m}) \\ &\textbf{end} \end{aligned}$$

- **3. Givens rotation** (We mainly consider the real case.)
 - The 2×2 Givens rotation

$$\mathbf{G} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \quad \cos \theta = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$$

rotates vector $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 onto the x-axis, i.e., the second entry becomes zero.

• Givens rotation: $\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \tau \\ 0 \end{bmatrix}$ with $\tau = \sqrt{x^2 + y^2}$

Algorithm: Givens rotation zeroing the 2nd entry

$$\begin{array}{l} \mathbf{function}\;[c,s,\tau] = \mathrm{givens}(x,y) \\ \mathbf{if}\;y = 0 \\ c = \mathrm{sign}(x), \quad s = 0, \quad \tau = |x| \\ \mathbf{else} \\ \tau = \sqrt{x^2 + y^2}, \quad c = \frac{x}{\tau}, \quad s = \frac{y}{\tau} \\ \mathbf{end} \end{array}$$

• Givens rotation:
$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ \tau \end{bmatrix}$$
 with $\tau = \sqrt{x^2 + y^2}$

Exercise: Design a similar algorithm as above.

• Zeroing a particular entry in a vector using a Givens rotation.

Define the $m \times m$ Givens rotation $\mathbf{G}(i, j; \theta)$, i < j,

$$\mathbf{G}(i, j; \theta) = \mathbf{I} + \begin{bmatrix} \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \cos \theta - 1 & \sin \theta \\ -\sin \theta & \cos \theta - 1 \end{bmatrix} \begin{bmatrix} \mathbf{e}_i^\top \\ \mathbf{e}_j^\top \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{I} & & & \\ \cos \theta & \sin \theta & \\ & \mathbf{I} & \\ -\sin \theta & \cos \theta & \\ & & \mathbf{I} \end{bmatrix} \quad \begin{array}{c} \cos i \\ & \cos j \end{array}$$

Exercise: Prove that the matrix $G(i, j; \theta)$ is orthogonal.

• Creating a sequence of zeros in a vector using Givens rotations

$$G_nG_{n-1}\cdots G_1x$$

• QR factorization via Givens rotations?

Exercise: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be given as

$$\mathbf{A} = \begin{bmatrix} \alpha_1 & \beta_2 & \beta_3 & \cdots & \beta_n \\ \gamma_2 & \alpha_2 & 0 & \cdots & 0 \\ \gamma_3 & 0 & \alpha_3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \gamma_n & 0 & \cdots & 0 & \alpha_n \end{bmatrix}, \quad \begin{aligned} \alpha_i \neq 0, & i = 1: n, \\ \beta_i \neq 0, & i = 2: n, \\ \gamma_i \neq 0, & i = 2: n. \end{aligned}$$

Describe an algorithm for QR factorization of A based on as few Givens rotations as possible.

• Complex case:

$$\mathbf{G} = \begin{bmatrix} c & \overline{s} \\ -s & c \end{bmatrix}, \quad c \in \mathbb{R}, \quad c^2 + |s|^2 = 1.$$

4. The least squares problem (LSP)

• LSP: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^m$; find $\mathbf{x}_{ls} \in \mathbb{C}^n$ such that

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}_{ls}\|_2 = \min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2.$$

• Note that the 2-norm corresponds to Euclidean distance.

LSP means we seek a vector $\mathbf{x}_{ls} \in \mathbb{C}^n$ such that the vector $\mathbf{A}\mathbf{x}_{ls}$ is the closest point in range(\mathbf{A}) to \mathbf{b} .

The *least squares solution*, \mathbf{x}_{ls} , maybe *not* unique. Why?

The *residual*, $\mathbf{r}_{ls} = \mathbf{b} - \mathbf{A}\mathbf{x}_{ls}$, is unique. Why?

• Assume that **A** and **b** are real. Define

$$f(\mathbf{x}) := \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 = \mathbf{b}^\top \mathbf{b} - \mathbf{x}^\top \mathbf{A}^\top \mathbf{b} - \mathbf{b}^\top \mathbf{A}\mathbf{x} + \mathbf{x}^\top \mathbf{A}^\top \mathbf{A}\mathbf{x}.$$

Then the gradient of $f(\mathbf{x})$ is

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2\mathbf{A}^{\top} \mathbf{b}.$$

4.1. Theory of the least squares problem

Theorem 3

Let **P** be the orthogonal projector onto range(**A**). A vector **x** is a least squares solution if and only if **x** satisfies $\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b}$.

Hint:

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{P}\mathbf{b} - \mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{P}\mathbf{b}\|_{2}^{2} = \|\mathbf{P}\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \|\mathbf{b} - \mathbf{P}\mathbf{b}\|_{2}^{2}.$$

Corollary 4

A vector \mathbf{x} is a least squares solution if and only if \mathbf{x} satisfies $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$, i.e., $\mathbf{A}^*\mathbf{r} = \mathbf{0}$, or $\mathbf{r} \perp \text{range}(\mathbf{A})$, where $\mathbf{r} := \mathbf{b} - \mathbf{A}\mathbf{x}$.

Proof.

$$\therefore \mathbf{A}^* = \mathbf{A}^* \mathbf{P}, \ \therefore \mathbf{A}^* \mathbf{r} = \mathbf{0} \Leftrightarrow \mathbf{A}^* (\mathbf{Pb} - \mathbf{Ax}) = \mathbf{0} \Leftrightarrow \mathbf{Ax} = \mathbf{Pb}.$$

• The system $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$ is called the *normal equations*.

Corollary 5

The least squares solution \mathbf{x} is unique if and only if $\mathbf{A}^*\mathbf{A}$ has full rank, or equivalently, \mathbf{A} has full column rank, i.e., $\operatorname{rank}(\mathbf{A}) = n$.

4.2. Geometric interpretation

• Let \mathbf{x} be a least squares solution. Obviously, $\mathbf{r} = \mathbf{b} - \mathbf{P}\mathbf{b}$ is unique.

4.3. Moore–Penrose pseudoinverse solution $A^{\dagger}b$

• Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ have an SVD $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^*$. The matrix

$$\mathbf{A}^{\dagger} = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^* = \sum_{j=1}^r \frac{1}{\sigma_j} \mathbf{v}_j \mathbf{u}_j^* \in \mathbb{C}^{n \times m},$$

is called the *Moore–Penrose pseudoinverse* of **A**. If **A** has full column rank, then $\mathbf{A}^{\dagger} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^*$. (Full row rank case?)

Theorem 6

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ have rank r < n and $\mathbf{b} \in \mathbb{C}^m$. Then the vector $\mathbf{A}^{\dagger}\mathbf{b}$ is the unique least squares solution with minimum 2-norm.

Proof.

By SVD of \mathbf{A} , the least squares solutions can be expressed as

$$\mathbf{x}_{ls} = \mathbf{A}^{\dagger} \mathbf{b} + \mathbf{V}_{c} \mathbf{z}, \quad \mathbf{z} \in \mathbb{C}^{n-r}.$$

Then the statement follows from $\mathbf{A}^{\dagger}\mathbf{b} \perp \mathbf{V}_{c}\mathbf{z}$.

4.4. Full column rank LSP solvers: rank(A) = n

- Normal equations: classical way to solve LSP, best for speed
- QR factorization: "modern classical" method to solve LSP, numerically stable. By

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = egin{bmatrix} \mathbf{Q}_{\mathrm{c}} \end{bmatrix} egin{bmatrix} \mathbf{R}_{n} \ \mathbf{0} \end{bmatrix},$$

we have

$$\min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 = \min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{Q}\mathbf{R}\mathbf{x}\|_2 = \min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{Q}^*\mathbf{b} - \mathbf{R}\mathbf{x}\|_2$$

$$= \min_{\mathbf{x} \in \mathbb{C}^n} \left\| \begin{bmatrix} \mathbf{Q}_n^*\mathbf{b} - \mathbf{R}_n\mathbf{x} \\ \mathbf{Q}_c^*\mathbf{b} \end{bmatrix} \right\|_2$$

• SVD, numerically stable, for problems close to rank-deficient. By

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^* = \mathbf{U}_n \mathbf{\Sigma}_n \mathbf{V}^* = \begin{bmatrix} \mathbf{U}_n & \mathbf{U}_c \end{bmatrix} egin{bmatrix} \mathbf{\Sigma}_n \\ \mathbf{0} \end{bmatrix} \mathbf{V}^*,$$

we have

$$\begin{split} \min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 &= \min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{U}\mathbf{\Sigma}\mathbf{V}^*\mathbf{x}\|_2 \\ &= \min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{U}^*\mathbf{b} - \mathbf{\Sigma}\mathbf{V}^*\mathbf{x}\|_2 \\ &= \min_{\mathbf{x} \in \mathbb{C}^n} \left\| \begin{bmatrix} \mathbf{U}_n^*\mathbf{b} - \mathbf{\Sigma}_n \mathbf{V}^*\mathbf{x} \\ \mathbf{U}_c^*\mathbf{b} \end{bmatrix} \right\|_2. \end{split}$$

Exercise: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$ of full column rank, m > n, $\mathbf{b} \in \mathbb{C}^m$, $\mathbf{b} \notin \text{range}(\mathbf{A})$ and $\mathbf{Q}\mathbf{R} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$ (i.e., full QR factorization of $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$). Show that

$$\min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 = |\mathbf{R}(n+1, n+1)|,$$

and the least squares solution is given by

$$\mathbf{x} = \mathbf{R}(1:n,1:n) \backslash \mathbf{R}(1:n,n+1).$$

4.5. Rank-deficient LSP solvers: rank(A) = r < n

• QR factorization with column pivoting:

$$\mathbf{AP} = \mathbf{QR} = \mathbf{Q} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

where **P** is a permutation matrix, $\mathbf{Q} \in \mathbb{C}^{m \times m}$ is unitary, and $\mathbf{R}_{11} \in \mathbb{C}^{r \times r}$ is nonsingular upper triangular. Introduce the auxiliary vectors

$$\mathbf{Q}^*\mathbf{b} = egin{bmatrix} \mathbf{d}_1 \ \mathbf{d}_2 \end{bmatrix} \quad ext{and} \quad \mathbf{P}^*\mathbf{x} = egin{bmatrix} \mathbf{y}_1 \ \mathbf{y}_2 \end{bmatrix}.$$

The general least squares solution is

$$\mathbf{x}_{ls} = \mathbf{P} \begin{bmatrix} \mathbf{R}_{11}^{-1} (\mathbf{d}_1 - \mathbf{R}_{12} \mathbf{y}_2) \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{y}_2 = \text{arbitrary}.$$

The case $\mathbf{y}_2 = \mathbf{0}$ yields a least squares solution with at least n - r zero components. Consider "\" in MATLAB.

• Complete orthogonal factorization (also called UTV factorization)

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^*,$$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ is unitary, $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary, and $\mathbf{R}_{11} \in \mathbb{C}^{r \times r}$ is nonsingular upper triangular. Introduce the auxiliary vectors

$$\mathbf{U}^*\mathbf{b} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix}$$
 and $\mathbf{V}^*\mathbf{x} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$.

The general least squares solution is

$$\mathbf{x}_{\mathrm{ls}} = \mathbf{V} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \mathbf{V} \begin{bmatrix} \mathbf{R}_{11}^{-1} \mathbf{g}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{y}_2 = \mathrm{arbitrary}.$$

The case $y_2 = 0$ yields the minimum 2-norm least squares solution. Consider lsgminnorm in MATLAB.

http://www.netlib.org/numeralgo/

5. Solutions of Ax = b with $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$

