Amortized complexity bounds for polynomials with algebraic coefficients and application to curve topology

D N. Diatta, F. Rouillier, M-F. Roy, M. Sagraloff and S. Diatta

INRIA NANCY GRAND EST

May 25, 2017

Sény DIATTA

Ph.d student of University Assane Seck of Ziguinchor (SENEGAL) Topic: Computation of the topology of algebraic curves and surfaces.

Supervisors:

- Daouda Niang DIATTA,
- Guillaume MOROZ and
- Marie-Francoise ROY

Area: 196,722 km²

Topology of algebraic curves

2 Projection of an analytic surface

Part 1: Topology of algebraic curves

Let $P \in \mathbb{Z}[X, Y]$ a square free polynomial

$$\mathcal{C}(P) = \{(\alpha,\gamma) \in \mathbb{R}^2 | P(\alpha,\gamma) = 0\} \quad \operatorname{Gr}(P) \subset (0,H) \times (0,V)$$

Using Generic Position

- An improved upper complexity bound for the topology computation of a real algebraic curve [L. Gonzalez-Vega and M. El Kahoui, 1996] $\longrightarrow \tilde{O}(d^{16}\tau)$.
- From Approximate Factorization to Root Isolation with application to CAD [K. Mehlhorn, M. Sagraloff, P. Wang, 2014] $\longrightarrow \tilde{O}(d^5 \tau + d^6)$

Without Generic Position

- On the topology of the planar algebraic curves [J. Cheng, S. Lazard, L. Peneranda, M. Pouget, F. Rouillier and E. Tsigaridas, 2009] $\longrightarrow \tilde{O}(Rd^{22}\tau).$
- On the Computation of the Topology of Plane curves [D N. Diatta, F. Rouillier and M-F. Roy, 2014] $\longrightarrow \tilde{O}(d^6\tau + d^7)$

Using Generic Position

- An improved upper complexity bound for the topology computation of a real algebraic curve [L. Gonzalez-Vega and M. El Kahoui, 1996] $\longrightarrow \tilde{O}(d^{16}\tau)$.
- From Approximate Factorization to Root Isolation with application to CAD [K. Mehlhorn, M. Sagraloff, P. Wang, 2014] $\longrightarrow \tilde{O}(d^5\tau + d^6)$

Without Generic Position

- On the topology of the planar algebraic curves [J. Cheng, S. Lazard, L. Peneranda, M. Pouget, F. Rouillier and E. Tsigaridas, 2009] $\longrightarrow \tilde{O}(Rd^{22}\tau)$.
- On the Computation of the Topology of Plane curves [D N. Diatta, F. Rouillier and M-F. Roy, 2014] $\longrightarrow \tilde{O}(d^6\tau + d^7)$

About our Algorithm

We propose a determinist algorithm for computing the topology of curve in $\tilde{O}(d^5\tau+d^6)$ without putting the curve in generic position.

About our Algorithm

We propose a determinist algorithm for computing the topology of curve in $\tilde{O}(d^5\tau+d^6)$ without putting the curve in generic position.

About our Algorithm

We propose a determinist algorithm for computing the topology of curve in $\tilde{O}(d^5\tau+d^6)$ without putting the curve in generic position.

Notations

Let
$$P(X, Y) = \sum_{i=1}^{d_y} C_i(X)Y^i = C(X)\tilde{P}(X, Y)$$
, where $C(X) = \gcd(C_i(X), 1 \le i \le d_y)$. We define

$$D(X) := \operatorname{Res}_Y(\tilde{P}, \partial_Y \tilde{P})(x)$$

and denote $\alpha_1, \ldots, \alpha_\delta$ its real roots. A point (α, γ) of $\mathcal{C}(\tilde{P})$ is called

- a X-critical point if $\partial_Y \tilde{P}(\alpha, \gamma) = 0$
- a singular point if $\partial_X \tilde{P}(\alpha, \gamma) = \partial_Y \tilde{P}(\alpha, \gamma) = 0$.

D N. Diatta, F. Rouillier, M-F. Roy, M. SAmortized complexity bounds for polynon

Definition

Let $f \in \mathbb{Z}[X]$ be a polynomial of degree n. Then, we define: A well-isolating interval $\mathcal{I}=(a,b)$ for a real root z of f contains z and no other real root of f and it holds that $|b-a|<\frac{\operatorname{sep}(z,f)}{32n}$

Cylindrical Algebraic Decomposition

Using $\tilde{O}(d^5\tau + d^6)$ bit-operations, we can:

compute a set of special boxes

$$SpeBox = \{[a_i, b_i] \times [c_{i,j}, d_{i,j}] \mid 1 \le i \le \delta, 1 \le j \le \delta_i\}$$

well-isolating the special points $(\alpha_i, \gamma_{i,j})$

• identify the set $J_i \subset \{1, ..., \delta_i\}$ of indices of critical boxes and $mult(\gamma_{i,j}, \tilde{P}(\alpha_i, Y))$, for every $i = 1, ..., \delta$

Computing adjacency boxes

Theorem

We can describe explicitly two real number A_{γ} and B_{γ} ($A_{\gamma}, B_{\gamma} \leq 1$), such that for every y, $0 \leq y \leq B_{\gamma}$,

$$|\operatorname{sep}(\bar{P}(X,\gamma+y))| > |y|^{\nu_{\gamma}/2}|A_{\gamma}|.$$

Moreover

$$\sum_{S(\gamma)=0} \mu_{\gamma} |\log A_{\gamma}| \in O(d^3\tau + d^4), \tag{1}$$

$$\sum_{S(\gamma)=0} \mu_{\gamma} |\log B_{\gamma}| \in O(d^3\tau + d^4). \tag{2}$$

Let $S(Y) := \operatorname{Res}_X(\tilde{P}, \partial_X \tilde{P})(Y) \times \operatorname{Res}_X(\tilde{P}, \partial_Y \tilde{P})(Y)$ and γ a real number of $\mu_{\gamma} := \operatorname{mult}(\gamma, S)$ and $\nu(\gamma) := \operatorname{mult}(\gamma, \bar{D})$.

◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₹
₽
♥
Q
©

Computing adjacency boxes

Let $\mathcal{I}_k = (a'_k, b'_k)$ the well-isolating intervals , for all real roots y_k of S and $\tilde{\sigma} = \tilde{\sigma}_{i,j} \approx \operatorname{sep}(\gamma, \tilde{P}(\alpha, -))$. We now refine (c, d) to a width less than

$$w := w_{i,j} := \frac{1}{8} \cdot \min(\tilde{B}_{\gamma}, \tilde{\sigma}) \ge \frac{1}{32} \cdot \min(B_{\gamma}, \operatorname{sep}(\gamma, \tilde{P}(\alpha, -)))$$
 (3)

and further extend the interval by w on both sides to obtain an isolating interval (c,d) for γ with $w<\min(\gamma-c,d-\gamma)<\max(\gamma-c,d-\gamma)<2w$.

$$\sum_{i,j} |\log \tilde{B}_{\gamma_{i,j}}| + |\log \tilde{\sigma}_{i,j}| = \tilde{O}(d^4 + d^3 \tau).$$

Lemma

Using $\tilde{O}(d^6 + d^5\tau)$ bit operations, we can compute integers $k_{i,j} \in \{1, \ldots, m\}$ for all x-critical points $(\alpha_i, \gamma_{i,j}) \in \operatorname{Crit}(\mathcal{C}(\tilde{P}))$ with $y_{k_{i,i}} = \gamma_{i,j}$.

Computing adjacency boxes

Let $\mathcal{I}_k = (a'_k, b'_k)$ the well-isolating intervals , for all real roots y_k of S and $\tilde{\sigma} = \tilde{\sigma}_{i,j} \approx \mathrm{sep}(\gamma, \tilde{P}(\alpha, -))$. We now refine (c, d) to a width less than

$$w := w_{i,j} := \frac{1}{8} \cdot \min(\tilde{B}_{\gamma}, \tilde{\sigma}) \ge \frac{1}{32} \cdot \min(B_{\gamma}, \operatorname{sep}(\gamma, \tilde{P}(\alpha, -)))$$
 (3)

and further extend the interval by w on both sides to obtain an isolating interval (c,d) for γ with $w<\min(\gamma-c,d-\gamma)<\max(\gamma-c,d-\gamma)<2w$.

$$\sum_{i,j} |\log \tilde{B}_{\gamma_{i,j}}| + |\log \tilde{\sigma}_{i,j}| = \tilde{O}(d^4 + d^3 \tau).$$

Lemma

Using $\tilde{O}(d^6 + d^5\tau)$ bit operations, we can compute integers $k_{i,j} \in \{1, \ldots, m\}$ for all x-critical points $(\alpha_i, \gamma_{i,j}) \in \operatorname{Crit}(\mathcal{C}(\tilde{P}))$ with $y_{k_{i,j}} = \gamma_{i,j}$.

Number of roots in the horizontal edges

Lemma

The real roots of all polynomials $\tilde{P}(-,c_{i,j})$ and $\tilde{P}(-,d_{i,j})$ can be isolated in a number of bit operations bounded by $\tilde{O}(d^6+d^5\tau)$. The separator of each polynomial $\tilde{P}(-,c_{i,j})$ is bounded by $2^{\tilde{O}(d^4+d^3\tau)}$.

Number of roots in the horizontal edges

Topology in critical box

Dealing with vertical asymptotes

 $X=\alpha$ is a vertical asymptote iff $\deg(\tilde{P}(\alpha,Y)) < d_y = \deg_Y(\tilde{P}(X,Y)$, so $c_{d_Y}(\alpha) = D(\alpha) = 0$. Let

$$\beta_{+\infty} \in \mathbb{N} \mid \beta_{+\infty} \ge |\alpha|, \forall \alpha \in V_{\mathbb{R}}(\tilde{P}(\alpha, Y))$$

We isolate the real roots of $\tilde{P}(X,\beta_{+\infty})=0$, and on each interval $\mathcal{J}_i=(\alpha_i,\alpha_{i+1})$ we compute the numbers $r_i^{+\infty}$ and $\ell_{i+1}^{+\infty}$. If α_i is not a root of c_{d_y} , $\ell_i^{+\infty}=r_i^{+\infty}=0$. The situation at $-\infty$ is entirely similar and we just compute $r_i^{-\infty}$ and $\ell_{i+1}^{-\infty}$. This can be done in $\tilde{O}(d^5\tau+d^6)$ bit-operations.

4□ > 4□ > 4 = > 4 = > = 90

Dealing with vertical asymptotes

 $X=\alpha$ is a vertical asymptote iff $\deg(\tilde{P}(\alpha,Y)) < d_y = \deg_Y(\tilde{P}(X,Y)$, so $c_{d_Y}(\alpha) = D(\alpha) = 0$. Let

$$\beta_{+\infty} \in \mathbb{N} \mid \beta_{+\infty} \ge |\alpha|, \forall \alpha \in V_{\mathbb{R}}(\tilde{P}(\alpha, Y))$$

We isolate the real roots of $\tilde{P}(X, \beta_{+\infty}) = 0$, and on each interval $\mathcal{J}_i = (\alpha_i, \alpha_{i+1})$ we compute the numbers $r_i^{+\infty}$ and $\ell_{i+1}^{+\infty}$. If α_i is not a root of $c_{d_{i'}}$, $\ell_i^{+\infty} = r_i^{+\infty} = 0$.

The situation at $-\infty$ is entirely similar and we just compute $r_i^{-\infty}$ and $\ell_{i+1}^{-\infty}$. This can be done in $\tilde{O}(d^5\tau + d^6)$ bit-operations.

< ロト <値 > ∢き > ∢き > こま の < @

Topology of $\mathcal{C}(ilde{P})$

The graph $\mathrm{Gr}(\tilde{P})$ of $\mathcal{C}(\tilde{P})$ is encoded by the finite list

$$\tilde{\mathcal{L}}(\tilde{P}) = [N_0, L_1, \dots, L_{\delta}, N_{\delta}]$$

where

- $L_i = [\delta_i, [\ell_{i,j}, r_{i,j}], 1 \le j \le \delta_i]$ for $i = 1, ..., \delta$,
- $N_i = [m_i, [r_i^{-\infty}, r_i^{+\infty}], [\ell_{i+1}^{-\infty}, \ell_{i+1}^{+\infty}]$ for $i = 1, \dots, \delta 1$,
- $N_0 = [m_0, [\ell_1^{-\infty}, \ell_1^{+\infty}]], N_\delta = [m_\delta, [r_\delta^{-\infty}, r_\delta^{+\infty}]].$

Adding back vertical lines

$$C(X) = \gcd(C_i(X), 1 \le i \le d_y).$$

Noting $C^*(X)$ the square free part of C(X), we set:

- $c_1(X) := \gcd(C^*(X), D_X(X))$ and $c_2(X) := \operatorname{quo}(C^*(X), c_1(X))$,
- $\mathcal{V}_1 := \{(x,y) \in \mathbb{R}^2 | c_1(x) = 0\}$ and $\mathcal{V}_2 := \{(x,y) \in \mathbb{R}^2 | c_2(x) = 0\}.$

Proposition

Adding back the lines in V_1 and V_2 to $C(\tilde{P})$ has a bit complexity in $\tilde{O}(d^5\tau+d^6)$.

Final topology

The final topology of C(P) is given by the finite list

$$\mathcal{L}(P) = [N'_0, L'_1, \dots, L'_{\delta}, N'_{\delta}]$$

where

-
$$L'_{i} = [\delta_{i}, w_{i}, [\ell_{i,j}, r_{i,j}], 1 \leq j \leq \delta_{i}]$$
 for $i = 1, ..., \delta$,
- $N'_{i} = [m_{i}, v_{i}, [r_{i}^{-\infty}, r_{i}^{+\infty}], [\ell_{i+1}^{-\infty}, \ell_{i+1}^{+\infty}]$ for $i = 1, ..., \delta - 1$,
- $N'_{0} = [m_{0}, v_{0}, [\ell_{1}^{-\infty}, \ell_{1}^{+\infty}]], N'_{\delta} = [m_{\delta}, v_{\delta}, [r_{\delta}^{-\infty}, r_{\delta}^{+\infty}]],$

$$Gr(P) = Gr(\tilde{P}) \cup \bigcup_{\substack{i=1,...,\delta \\ w_{i}=1}} V_{i} \cup \bigcup_{\substack{i=0,...,\delta \\ \ell=1,...,v_{i}}} V_{i,\ell}$$

Part 2: Projection of an analytic surface

Problem

Joint work: G. Moroz, M. Pouget and S. Diatta Let

$$S_{P \cap Q} := \{(x, y, z, t) \in \mathbb{R}^4 | P(x, y, z, t) = Q(x, y, z, t) = 0\}$$

We focus on the problem to describe its projection $\mathcal{S} \subset \mathbb{R}^3$.

Smooth and algebraic surfaces

- Isotopic Implicit Surface Meshing [J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter, 2008].
- An efficient algorithm for the stratification and triangulation of an algebraic surface [E. Berberich, M. Kerber, and M. Sagraloff, 2009].
- On the isotopic meshing of an algebraic implicit surface [D. N. Diatta, B. Mourrain, and O. Ruatta, 2012].

Projection of analytic curves

 Numeric and Certified Isolation of the Singularities of the Projection of the a smooth Space Curve [R. Imbach, G. Moroz and M. Pouget, 2015]

- singularities of silhouette are isotopic to $x^2 \pm y^{k+1} = 0$
- $(x,y) \in A_1^- \cup A_2^- \Leftrightarrow \exists ! (c,r) \mid S_{\mathcal{B}}(x,y,c,r) = 0$
- Certified drawing with interval arithmetic.

Approach

- Identify the types of singularities that can occur.
- ullet Associate a regular system to each type of singularity $(ilde{\mathcal{S}}_{\mathcal{B}})$.
- Certified drawing using the Newton interval approach.
- Isotopic triangulation to S.
- Implementation of the algorithm.