All Morphisms Are Equal, But Some Morphisms Are More Equal Than Others

An Introduction to Higher Category Theory

Efe İzbudak efe@liberior.org

September 6, 2024

Preliminaries

Definition (Inaccesible cardinal, Grothendieck universe)

We call a cardinal κ inaccessible if the collection of sets $\mathcal{V}_{<\kappa}$ of hereditary cardinality less than κ satisfies the ZFC axioms. $\mathcal{V}_{<\kappa}$ is called a **Grothendieck universe**.

Axiom

We assume the existence of sufficiently many inaccessible cardinals.

Preliminaries

Definition (Inaccesible cardinal, Grothendieck universe)

We call a cardinal κ inaccessible if the collection of sets $\mathcal{V}_{<\kappa}$ of hereditary cardinality less than κ satisfies the ZFC axioms. $\mathcal{V}_{<\kappa}$ is called a **Grothendieck universe**.

Axiom

We assume the existence of sufficiently many inaccessible cardinals.

Remark

This axiom is logically independent from ZFC.

Definition (Strict 2-categories)

A **strict 2-category** \mathcal{C} consists of:

- Objects, also called 0-morphisms.
- For each pair of objects (A, B), a category $\operatorname{Hom}_{\mathcal{C}}(A, B)$, whose objects are called 1-morphisms and morphisms are called 2-morphisms.
- Composition functors \circ : $\operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \to \operatorname{Hom}(A,C)$ that are associative and have identity 1-morphisms.

Definition (Strict 2-categories)

A **strict 2-category** \mathcal{C} consists of:

- Objects, also called 0-morphisms.
- For each pair of objects (A, B), a category $\operatorname{Hom}_{\mathcal{C}}(A, B)$, whose objects are called 1-morphisms and morphisms are called 2-morphisms.
- Composition functors \circ : $\operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \to \operatorname{Hom}(A,C)$ that are associative and have identity 1-morphisms.

Example

Rel	
Objects	Sets
1-morphisms	Relations
2-morphisms	Implications

Cat	
Objects	Categories
1-morphisms	Functors
2-morphisms	Natural transformations

Remark

Strict associativity and unitality laws often go against natural constructions in higher category theory. For this reason, we seek to relax the definition of a strict 2-category.

Remark

Strict associativity and unitality laws often go against natural constructions in higher category theory. For this reason, we seek to relax the definition of a strict 2-category.

Definition (Weak 2-category)

A **weak 2-category** is a 2-category where associativity and unitality of composition hold only up to natural isomorphism.

Remark

Strict associativity and unitality laws often go against natural constructions in higher category theory. For this reason, we seek to relax the definition of a strict 2-category.

Definition (Weak 2-category)

A **weak 2-category** is a 2-category where associativity and unitality of composition hold only up to natural isomorphism.

Example

Given a topological space X, its fundamental 2-groupoid is the 2-groupoid whose

- objects are the points (elements) of X;
- 1-morphisms are continuous paths $[0,1] \rightarrow X$;
- 2-morphisms are homotopies between such paths, fixing their endpoints;
- composition is given by concatenation of paths and homotopies.

Theorem

Every strict 2-category is 2-equivalent to a weak 2-category and every weak 2-category is biequivalent to a strict 2-category.

Higher categories

Remark (Recursive definition)

The definition of an n-category could be given in a recursive manner. Although, this unfortunately only works for strict n-categories. To define a weak n-category using the established theory of (n-1)-categories is impossible since we require the associativity laws of n-1 morphisms to hold only up to n-isomorphism, which is not yet defined.

Higher categories

Remark (Recursive definition)

The definition of an n-category could be given in a recursive manner. Although, this unfortunately only works for strict n-categories. To define a weak n-category using the established theory of (n-1)-categories is impossible since we require the associativity laws of n-1 morphisms to hold only up to n-isomorphism, which is not yet defined.

Remark

Higher categories are not as well-behaved. For example, not every weak 3-category is equivalent to a strict 3-category (Consider the fundamental 3-groupoid of S^2).

Motivation for ∞-categories

Let X be a topological space and $0 \le n \le \infty$. We can extract a weak *n*-category $\pi_{\le n}X$.

- 0-morphisms of $\pi_{\leq n}X$ are the points of X.
- For $x, y \in \pi_{\leq n}X$ a 1-morphism from x to y is a continuous path $[0, 1] \to X$ starting at x and ending at y.
- 2-morphisms are given by homotopies of paths.
- 3-morphisms are given by homotopies of homotopies.

In some sort of limit, we hope to arrive at a theory of $(\infty, 0)$ -categories, where every morphism is invertible up to homotopy.

We will generalize this notion and come up with a theory of $(\infty, 1)$ -categories, where every k-morphism for k > 1 is invertible up to homotopy.

Topological construction

Definition (Topological categories)

A **topological category** is a category enriched over category \mathfrak{CG} of compactly generated and weakly Hausdorff topological spaces. We denote the category of topological categories as $\mathfrak{C}at_{Top}$.

Topological construction

Definition (Topological categories)

A **topological category** is a category enriched over category \mathfrak{CG} of compactly generated and weakly Hausdorff topological spaces. We denote the category of topological categories as $\mathfrak{C}at_{Top}$.

Definition (∞ -category)

We define an ∞ -category to be a topological category.

Topological construction

Definition (Topological categories)

A **topological category** is a category enriched over category \mathfrak{CG} of compactly generated and weakly Hausdorff topological spaces. We denote the category of topological categories as $\mathfrak{C}at_{Top}$.

Definition (∞ -category)

We define an ∞ -category to be a topological category.

Problem

Topological categories have strict associativity and unitality. To stay in the category, we have to **straighten** our morphisms. This process involves converting between various models of homotopy theory, which is highly non-trivial.

Definition (Category of (combinatorial) simplices)

We define a category Δ , called the category of simplices or the **simplex category**, consisting of the following data:

- Objects linearly ordered sets $[n] := \{0, 1, ..., n\}$ for every $n \ge 0$.
- Morphisms weakly monotone maps, i.e., $f:[m] \to [n]$ such that $a \le b$ implies $f(a) \le f(b)$.

Remark

The objects of Δ can be drawn as simplices with ordered vertices. For example, we have

$$[0] = \bullet \qquad [1] = \underbrace{\bullet}_{0} \qquad [3] = 2 \underbrace{\bullet}_{1} \qquad [3]$$

Definition (Simplicial set)

A functor $X: \Delta^{\mathrm{op}} \to \mathrm{Set}$ with

- Sets $X_n := X([n])$ called *n*-simplices for every $n \ge 0$.
- Maps $d_i^n \colon X_n \to X_{n-1}$ and $s_i^n \colon X_n \to X_{n+1}$ called the *i*-th face and degeneracy maps, respectively, satisfying the simplicial identities.

is called a simplicial set.

Definition (Simplicial set)

A functor $X: \Delta^{\mathrm{op}} \to \mathrm{Set}$ with

- Sets $X_n := X([n])$ called *n*-simplices for every $n \ge 0$.
- Maps $d_i^n \colon X_n \to X_{n-1}$ and $s_i^n \colon X_n \to X_{n+1}$ called the *i*-th face and degeneracy maps, respectively, satisfying the simplicial identities.

is called a **simplicial set**.

Definition (Set_{Δ})

We define the category $\operatorname{Set}_{\Delta}$ to be the category of presheaves on Δ , i.e., $\operatorname{Set}_{\Delta} := \operatorname{Fun}(\Delta^{\operatorname{op}}, \operatorname{Set})$. A morphism in this category is just a natural transformation $X \Rightarrow Y$, which amounts to arrows $X_n \to Y_n$ commuting with the face and degeneracy maps.

Definition (Standard n-simplex)

We denote representable functor $\operatorname{Hom}_{\Delta}(-, [n]) = \Delta^n$ and call it the standard *n*-simplex.

Definition (Horn)

Fix $n \ge 0$ and $i \in [n]$. Then the set of all order preserving morphisms $p: [m] \to [n]$ such that $p([m]) \cup \{i\} \ne [n]$ is called the *i*-th horn of Δ^n , and it is denoted by Λ^n_i .

Definition (Boundary)

Fix $n \ge 0$. Then, the smallest simplicial set containing all faces of Δ^n is called the boundary of Δ^n , and it is denoted by $\partial \Delta^n$.

Definition (Horn fillers, Kan complex)

Let X be a simplicial set and Λ_i^n be the i-th horn of the standard n-simplex with a map $f: \Lambda_i^n \to X$. By a **filler** for Λ_i^n we mean a dotted arrow g such that the following diagram commutes:

As such, we say that X admits a filler for the i-th horn. A simplicial set is called a **Kan complex** if it admits fillers for all horns.

4D > 4B > 4B > 4B > B 900

Simplicial construction

Definition (∞ -category)

A simplicial set X which has fillers for all inner horns is called an ∞ -category.

Simplicial construction

Definition (∞ -category)

A simplicial set X which has fillers for all inner horns is called an ∞ -category.

Remark

Given an ∞-category C

- elements of the set C_0 are objects (0-morphisms)
- C_1 are morphisms between objects. The two face maps $C_1 \rightrightarrows C_0$ define the source and target
- For k > 1 the elements of C_k are the higher morphisms.

Definition (Geometrical *n*-simplex)

For $n \ge 0$ the geometrical *n*-simplex $|\Delta^n|$ is given by

$$|\Delta^n| = \left\{ (t_0, t_1, \dots, t_n) \in \mathbb{R}^{n+1} \,\middle|\, t_i \geqslant 0 \text{ and } \sum_{n=0}^n t_i = 1
ight\}$$

Definition (Geometrical *n*-simplex)

For $n \ge 0$ the geometrical *n*-simplex $|\Delta^n|$ is given by

$$|\Delta^n| = \left\{ (t_0, t_1, \dots, t_n) \in \mathbb{R}^{n+1} \,\middle|\, t_i \geqslant 0 \text{ and } \sum_{n=0}^n t_i = 1
ight\}$$

Definition

We define a functor

$$|-|: \Delta \to \mathfrak{CG}$$

 $[n] \mapsto |\Delta^n|$

sending each morphism $\varphi \colon [n] \to [m]$ to a morphism

$$|\phi|\colon |\Delta^n| o |\Delta^m|$$
 $(t_0,\ldots,t_n)\mapsto (a_0,\ldots,a_m)$ where $a_i=\sum_{i\in \Phi^{-1}(i)}t_i$

Definition (Sing X)

The geometric realization functor

$$|-|: \operatorname{Set}_{\Delta} \to \mathfrak{CG}$$

is the left Kan extension of $|-|: \Delta \to \mathfrak{CG}$ along the Yoneda embedding $\Delta \to \operatorname{Set}_{\Delta}$. It has a right adjoint called the **singular simplicial set functor**:

Sing:
$$\mathfrak{CG} \to \operatorname{Set}_{\Delta}$$

 $X \mapsto \operatorname{Hom}_{\mathfrak{CG}}(|\Delta^{(-)}|, X)$

That is, an *n*-simplex in Sing X is a continuous map $|\Delta^n| \to X$.

Informal Definition (Model structure)

A **model structure** on category \mathcal{C} is given by sets of weak equivalences, cofibrations, and fibrations required to satisfy some axioms. This construction encodes homotopy data.

Informal Definition (Model structure)

A **model structure** on category \mathcal{C} is given by sets of weak equivalences, cofibrations, and fibrations required to satisfy some axioms. This construction encodes homotopy data.

Definition (Quillen adjunction)

Let

$$F: \mathfrak{C} \rightleftarrows \mathfrak{D}: G$$

be an adjunction. It is called a **Quillen adjunction** if G preserves fibrations and F preserves cofibrations.

Informal Definition (Model structure)

A **model structure** on category \mathcal{C} is given by sets of weak equivalences, cofibrations, and fibrations required to satisfy some axioms. This construction encodes homotopy data.

Definition (Quillen adjunction)

Let

$$F: \mathfrak{C} \rightleftarrows \mathfrak{D}: G$$

be an adjunction. It is called a **Quillen adjunction** if G preserves fibrations and F preserves cofibrations.

Lemma

(Ken Brown's Lemma) Let $F \dashv G$ be a Quillen adjunction. Then G preserves weak equivalences of fibration objects, and F preserves weak equivalences of cofibration objects.

Definition (Quillen equivalence)

A Quillen adjunction is called a **Quillen equivalence** if its left and right derived functors are equivalences of localized categories.

Definition (Quillen equivalence)

A Quillen adjunction is called a **Quillen equivalence** if its left and right derived functors are equivalences of localized categories.

Theorem (Quillen)

The adjunction

$$|-|$$
: Set _{Δ} \rightleftharpoons C9: Sing

is a Quillen equivalence of the Kan-Quillen model structure on $\operatorname{Set}_{\Delta}$ and the classical model structure on $\operatorname{\mathfrak{CG}}$.

Definition (Functor τ and category τ^n)

We define the functor

$$\tau : \Delta \to \operatorname{Cat}$$
 $[n] \mapsto \tau^n$

where τ^n is the category given by objects $0, 1, 2, \ldots, n$ and

$$\operatorname{Hom}_{\tau^n}(i,j) = \begin{cases} *, & i \leqslant j \\ \varnothing, & i > j \end{cases}$$

One can visualize the category τ^n as a diagram

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$$

Definition (Nerve)

For a category C, its nerve consists of the following datum.

- Functors $\tau^0 \to \mathcal{C}$ as 0-simplices (i.e. the objects of \mathcal{C})
- Functors $\tau^1 \to \mathcal{C}$ as 1-simplices which correspond to diagrams $c_o \xrightarrow{f} c_1$ in \mathcal{C} .
- Functors $\tau^n \to \mathcal{C}$ as *n*-simplices which correspond to diagrams of length *n* in \mathcal{C}

$$c_o \xrightarrow{f_{01}} c_1 \xrightarrow{f_{12}} c_2 \xrightarrow{f_{23}} \cdots \xrightarrow{f_{(n-1)n}} c_n$$

Definition (Nerve)

For a category C, its nerve consists of the following datum.

- Functors $\tau^0 \to \mathcal{C}$ as 0-simplices (i.e. the objects of \mathcal{C})
- Functors $\tau^1 \to \mathcal{C}$ as 1-simplices which correspond to diagrams $c_o \xrightarrow{f} c_1$ in \mathcal{C} .
- Functors $\tau^n \to \mathcal{C}$ as *n*-simplices which correspond to diagrams of length *n* in \mathcal{C}

$$c_o \xrightarrow{f_{01}} c_1 \xrightarrow{f_{12}} c_2 \xrightarrow{f_{23}} \cdots \xrightarrow{f_{(n-1)n}} c_n$$

This is the right adjoint of

Lany
$$\tau \colon \mathrm{Set}_{\Delta} \to \mathfrak{C}\mathrm{at}$$

$$X \mapsto \mathrm{colim}_{\Delta^k \to X} \Delta^k$$

Recover \mathcal{C} (up to isomorphism) from its nerve:

- The objects of C are given by the 0-simplices of the nerve.
- A morphism from an object c_0 to an object c_1 is given by 1-simplex ϕ with $d_0(\phi) = c_1$ and $d_1(\phi) = c_0$.
- For an object c of \mathcal{C} , the identity morphism id_c is given by the degenerate simplex $s_0(c)$.
- Finally, given a diagram $c_0 \xrightarrow{\Phi} c_1 \xrightarrow{\psi} c_2$ the edge of $N(\mathcal{C})$ corresponding to $\psi \circ \varphi$ is characterized uniquely by the fact that there is a unique $\sigma \in N(\mathcal{C})_2$ with $d_2(\sigma) = \varphi$, $d_0(\sigma) = \psi$, $d_1(\sigma) = \psi \circ \varphi$.

The composition and unitality laws can be checked easily from these definitions.

Infinity category of spaces

Proposition

Every $(\infty, 0)$ -category is a Kan complex.

Infinity category of spaces

Proposition

Every $(\infty, 0)$ -category is a Kan complex.

Definition (Kan)

We denote by $\mathfrak{K}\mathrm{an}$ the full subcategory of Set_Δ given by the collection of Kan complexes.

Infinity category of spaces

Proposition

Every $(\infty, 0)$ -category is a Kan complex.

Definition (Xan)

We denote by Kan the full subcategory of $\operatorname{Set}_\Delta$ given by the collection of Kan complexes.

Definition (S)

We call N(Kan) the ∞ -category of spaces and denote it by S.

Proposition

Every ∞ -category is enriched over S.

References

- Jacob Lurie, *Higher Topos Theory*, Princeton University Press, Annals of Mathematics Studies, vol. 170, Princeton, NJ, 2009.
- Paul G. Goerss and John F. Jardine, Simplicial Homotopy Theory, Springer, Progress in Mathematics, vol. 174, Basel, 1999.
- Mark Hovey, *Model Categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999.

