MANCHESTER 1824

Model Based Vision

Dr A Galata

Many slides from Dr Carole Twining, University of Manchester

Model-Based Vision: Summary

Motivation for model-based approach

Focus on: Parametric, Learnt Models

- Representing Shape mathematically: Statistical shape model (SSM)
- Modelling Shape Variability (SSM & PCA)
- Finding a shape in an image:
 Profile modelling & Active Shape Model (ASM)

Faces: Detection vs Recognition

Viola & Jones: FaceDetection (local featured etection)

Facial Recognition

Facial Recognition: Sheep vs Humans

Kendrick et al., Sheep don't forget a face, Nature 414, 165-166 (2001)

After Training & one year later

Thompson, P. (1980). Margaret
Thatcher: A new illusion. Perception

Motivation for Modelling

- To 'understand' images:
 - Not just image edges, but a face
 - Not just a face, but whose face
 - Not just me, but me with a beard
- Complex, multi-part structures, scope for confusion
- Noisy/missing data (e.g., glasses, facial hair)
 - Can't interpret using image alone
- Model organises image evidence into a coherent whole

Simplest Case: Image Contours

- Identifying basic facial features*
- Shape of individual features
- Relationships between features
- Encodes identity & expression
- First Basic Task:
 extracting suitable
 contours from images

Parametric Deformable Models

Incorporating Prior Information

- Training set of annotated images:
 Nature of the shape and expected shape variation
 Gray-scale patterns that define the shape location
- Build a model which can synthesize such shapes
- Use this generative model to search unseen images

Locate structures

Transfer labels

Compare new shape to those already seen

Interpretation by synthesis

Modelling Issues

- Represent complicated multi-part shapes
- Represent variation of shapes across a population
- Generalisation:

Need to represent all possible examples

Specificity:

Need to represent only 'legal' examples

Compactness:

A model with as few parameters as possible

Parametric Deformable Modelling Approach

- Statistical Shape Models (SSMs):
- Representing complicated, multi-part shapes
- Modelling shape across a population

Active Shape Models (ASMs):

- Modelling expected image features near shape
- Search algorithm on a new image

Representing a Population of Shapes

Training Data

- Set of images, containing object of interest
- Shape annotation on each image
- Training set of shapes, including required variation

Representing Shape:

Statistical Shape Models (SSMs)

- Single shape, set of n points (& spline to join them)
- Shape vector: $\underline{x}^{\alpha} = \underline{x}^1 = (\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_2, \dots, \mathbf{x}_n, \mathbf{y}_n)$
- Corresponding points on all shapes
- Entire training set, set of shape vectors:

$$\{\underline{x}^{\alpha}: \alpha = 1, 2, \dots, \mathbf{N}\}$$

Shape Alignment

- What do we mean by shape?
- Shape: what is unchanged by similarity transformation:

Scaling

Translation

Rotation

 Align set of shapes, uniform position, scale and orientation (Generalized Procrustes analysis)

Shape Alignment: Why "Procrustes" Analysis?

Procrustes (Προκρούστης) or:

"the stretcher [who hammers out the metal]"

Misalignment: distances between corresponding points

$$\sqrt{\text{SSD}} = \sqrt{(x_1 - x_1')^2 + (y_1 - y_1')^2 \dots + (y_n - y_n')^2}$$

- Match centre of mass (solves for translation)
- Match scale

MANCHESTER

- Solve for rotation
- Repeat for all shapes in training set
- Variants on the algorithm (e.g., iterative alignment to evolving mean)

SSM Training Examples:

Need good identifiable landmarks:

Points (nostrils, tip of nose, pupils), Corners (eyes, mouth), Junctions

Other points can be equally-spaced along boundary
 Use as many points as you need to define the shape

Statistical Shape Models:

Advantages:

- Simple, intuitive shape representation
- Add as many points as required
- Corresponding points on different shapes:

Points move in correlated fashion as parts move or shape changes

Disadvantages:

- Mark-up time-consuming, error-prone
- Correspondence hard to define on some objects
- Surfaces: hard to do & equal-spacing doesn't work!

Progress so far:

- Need to include prior knowledge
- Training data
- Representing sets of shapes

Next:

- Modelling distributions of shapes
- Modelling image appearance
- Search algorithm

Statistical Shape Models (SSMs)

- Set of aligned shapes
- Shape vector: $\underline{x}^{\alpha} = (\mathbf{x}_1^{\alpha}, \mathbf{y}_1^{\alpha}, \mathbf{x}_2^{\alpha}, \mathbf{y}_2^{\alpha}, \dots, \mathbf{x}_n^{\alpha}, \mathbf{y}_n^{\alpha})$
- Corresponding points on all shapes
- Entire aligned training set, set of shape vectors:

$$\{\underline{x}^{\alpha}: \alpha = 1, 2, \dots, \mathbf{N}\}$$

Principal Component Analysis (PCA)

$$\{\underline{x}^{\alpha}: \alpha = 1, 2, \dots, \mathbf{N}\}$$
 Mean shape:

$$\underline{\bar{x}} \doteq \underline{1}_{\mathbf{N}} \sum_{\alpha=1}^{\mathbf{N}} \underline{x}^{\alpha}$$

\hat{n} , unit axis vector

Maximize data projection:

$$\arg\max_{\underline{\hat{n}}} \sum_{\alpha=1}^{\mathbf{N}} \left(\underline{\hat{n}} \bullet (\underline{x}^{\alpha} - \underline{\bar{x}}) \right)^{2}$$

Shape Space: axes = coordinates

of every shape point

Repeat:

arg max $\sum_{\alpha} (\hat{\underline{m}} \bullet (\underline{x}^{\alpha} - \underline{\bar{x}}))^{2}$,

Constraint: $\hat{m} \cdot \hat{n} = 0$

PCA Solution: Covariance Matrix

Mean shape:
$$\underline{\bar{x}} \doteq \frac{1}{N} \sum_{\alpha=1}^{N} \underline{x}^{\alpha}$$
 n: number of points on each shape 2: number of

spatial dimensions

Covariance matrix:

$$C_{ij} \doteq \frac{1}{N} \sum_{\alpha=1}^{N} (\underline{x}^{\alpha} - \underline{\bar{x}})_{i} (\underline{x}^{\alpha} - \underline{\bar{x}})_{j}, i, j = 1, \dots 2n$$

Solve covariance matrix eigenproblem:

$$\mathbf{C}\underline{\hat{n}}^{\mu} = \lambda^{\mu}\underline{\hat{n}}^{\mu}$$

 $(matrix \times vector = number \times vector)$

Eigenvectors: $\{\hat{\underline{n}}^{\mu}\}$, directions of new axes

Ordered eigenvalues: $\{\lambda^{\mu}: \lambda^{1} > \lambda^{2} \ldots\}$,

how much variance in each direction

Generative Shape Models:

generated shape
$$x = x + p$$
 shape parameters, coords wrt PCA axes mean $x = x + p$ matrix, columns are eigenvectors

- New shape = mean plus weighted sum of eigenvectors
- PCA automatically finds relevant modes of variation

$$\mathbf{b}_1
eq 0$$
 only $\mathbf{b}_2
eq 0$ only $\mathbf{b}_2 \neq 0$ only $\mathbf{b}_3 \neq 0$ only

Generative Shape Models: Faces

First Mode Second Mode Third Mode

 $b_3 \neq 0$ only

Statistical Shape Models:

Original Shape Space Space

no of shape modes retained

 $\mathbf{p}(\underline{b}) \propto \prod_{\mu=1}^{\mathbf{n_m}} \exp\left(-\frac{\mathbf{b}_{\mu}^2}{2\lambda^{\mu}}\right)$

- Multivariate Gaussian probability density function
- Aligned with PCA directions (eigenvectors)
- Matches variance seen in training set (eigenvalues)
- Product of Gaussians in parameter space

SSMs: Summary

Construction:

- Training set of shapes, corresponding landmarks
- Procrustes align shapes and compute mean shape
- Covariance matrix and solve PCA eigenproblem
- Shape parameters, modes of variation
- Construct gaussian probabilistic model

Results:

- General: modes of variation capture full variation
- Specific: modes capture only variation actually seen
- Assign probabilities to generated shapes

From SSMs to Active Shape Models

Task:

Find shape in unseen image

Solution:

- Map from model frame to image frame
- Iterative localised search:
 Search in neighbourhood of current points for new points Fit model to suggested new shape

Apply constraints to shape based on learnt variation

Repeat until convergence

- This localised search
 - moves towards edges, lines etc
 - remains valid shape as it does so

Placing the Model in an Image

Scale, rotate, and translate to get to image frame:

Pose transformation: $T(\underline{x}; s, \theta, \underline{r}) = sR(\theta)\underline{x} + \underline{r}$

Total set of parameters to define shape in an image:

Pose parameters: $\mathbf{s}, \theta, \underline{r}$, Shape parameters: \underline{b}

ASM Local Iterative Search

- Local search
- Initialise near target
- Search along normals
- Look for strongest edge
- Gives new set of suggested shape points

$$\underline{X}'$$

Best-Fit model to shape:

$$\underline{X}' \approx \mathbf{T}(\underline{x}(\underline{b}); \mathbf{s}, \theta, \underline{r})$$

Candidate shape:

$$\underline{X}'' = \mathbf{T}(\underline{x}(\underline{b}); \mathbf{s}, \theta, \underline{r})$$

Still leaves some errors

Problems:

Edge-Finding:

Actual position not edge, or not strongest edge

Solution:

- Model profiles/appearance near points
- Apply shape and profile probability to control search

Profile Models

- For each shape point in each training image: Sample image values along normals to shape Normalise to eliminate illumination effects
- Build statistical model as for shape
 Profile vector like shape vector
- Model assigns probability to each possible profile
 Select most probable profile rather than strongest edge
 Intensity value

ASM Multi-Resolution Search

 To increase basin of attraction, use multiresolution

Gaussian pyramid of training images

Same shape points, but different profile models at each level

 Start search at coarse level, refine at finer level

ASM Search Example: Hip

ASM: Summary

Advantages:

- Fast, simple, accurate
- Efficient extension to 3D

Disadvantages:

- Only sparse use of image information
- Treats local profiles as independent

Further Information:

Mathematical details of PCA, correspondence problem

Electronic access via CAS/library to Springer ebooks:

Davies, Twining & Taylor, Statistical Models of Shape

- ASM, AAM etc
- Tim Cootes personal website
- Wikipedia: articles & links
- YouTube: many videos of ASM/AAM search & variants