Laboratório de Sistemas de Controle

Djonathan Luiz de Oliveira Quadras

2020-05-27

Contents

\mathbf{A}	presentação	5
1	Simulação de Sistemas	7
2	Efeitos de Pólos e Zeros na Dinâmica	9
	2.1 Apresentação do Laboratório	9
	2.2 Procedimentos	10
3	Identificação de Sistemas	19
4	Applications	2 1
	4.1 Example one	21
	4.2 Example two	21

4 CONTENTS

Apresentação

Working on it:)

6 CONTENTS

Simulação de Sistemas

Este laboratório consistiu apenas na apresentação da disciplina, da ferramenta e do método que será aplicado. Não teve nehuma atividade desenvolvida.

Efeitos de Pólos e Zeros na Dinâmica

2.1 Apresentação do Laboratório

2.1.1 Objetivo

Nesta experiência, verificaremos a influência dos pólos e zeros de uma Função de Transferência na resposta dinâmica para entradas do tipo degrau e também para entradas senoidais. Utilizaremos o Matlab para realizar as simulações.

2.1.2 Polos e Zeros

Considere uma função de Trasnferência da forma

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_m s + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

onde Y(s) é a saída, U(s) é a entrada, $n \ge m$ e todos os coeficientes são reais. Temos as seguintes definições:

- 1. Os pólos G(s) são as raízes de D(s) (D(s) = 0);
- 2. Os zeros de G(s) são as raízes de N(s) (N(s) = 0);
- 3. G(s) é estável quando todos os pólos possuem parte real negativa, ou seja, estão no semi-plano esquerdo (SPE) do plano s;
- 4. G(s) é *instável* quando existe ao menos um pólo com parte real positiva, ou seja, no semi-plano (SPD);
- 5. G(s) é de fase não-mínima quando há polos ou zeros no SPF.

Considere que G(s) é estável, ou seja, todos os pólos estão no SPE. Em geral, para entradas do tipo degrau, temos:

- 1. A componente da resposta dinâmica referente a um pólo afastado da origem (do plano s) é relativamente rápida;
- 2. A componente da resposta dinâmica referente a um pólo próximo da origem é relativamente lenta;
- 3. Um zero tende a fazer com que a resposta dinâmica apresente sobressinal. Quanto mais próximo da origem estiver o zero, maior o sobressinal. E, quanto mais longe da origem, menor se torna o sobressinal, podendo o mesmo não existir. Assim, um sistema de segunda ordem com pólos reais e um zero poderá apresentar um sobressinal dependendo do posicionamento do zero no plano s;
- 4. Um zero bem próximo de um pólo tende a anular os efeitos dos mesmos na resposta dinâmica.

2.2 Procedimentos

Problema 1

Considere o sistema de primeira ordem

$$G(s) = \frac{1}{\tau s + 1},$$

onde $\tau=1,\,\tau=0.5$. Para cada valor de τ , determine o pólo e sua posição no plano s (use os comandos zpk e pzmap no Matlab), e conclua sobre a estabilidade e a rapidez da resposta do sistema. Simule para uma entrada do tipo degrau unitário. Analise e compare os resultados. Agora, repita o procedimento para o sistema

$$G(s) = \frac{1}{s-1}.$$

Resolução

A resolução será feita em quatro partes: (1) a resolução para $\tau=1$ usando pzmap, (2) a resolução para $\tau=0.5$ usando pzmap, (3) a simulação e comparação dos resultados e, por fim, (4) a resolução para $G(s)=\frac{1}{s-1}$.

2.2.0.0.1 Parte 1 Para $\tau = 1$, temos a função de transferência dada por

$$G(S) = \frac{1}{s+1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [1 1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de polos e zeros:

p = -1 z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu polo em s=-1. A sua posição no plano é apresentada na figura abaixo.

Como o polo da função de transferência se encontra na SPE, conclui-se que o sistema se compartará de uma forma estável.

2.2.0.0.2 Parte 2 Para $\tau=0.5$, temos a função de transferência dada por

$$G(S) = \frac{1}{0.5s+1}.$$

O código implementado no Matlab foi o apresentado abaixo.

Tendo como resultados de polos e zeros:

p =

-2

z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu polo em s=-2. A sua posição no plano é apresentada na figura abaixo

13

Como o polo da função de transferência se encontra na SPE, conclui-se que o sistema se compartará de uma forma estável. Também é possível concluir que o sistema alcanraça a estabilidade mais rápido para $\tau=0.5$.

 ${\bf 2.2.0.0.3}~{\bf Parte~3}~{\bf A}$ simulação do sistema implementada em ${\tt Matlab}$ está apresentado na figura abaixo.

O resultado apresentado pelo scope é apresentado na figura abaixo.

Percebe-se que, assim como esperado, o sistema se comporta de forma estável e tem uma convergência mais rápida para $\tau=0.5$.

 ${\bf 2.2.0.0.4}\quad {\bf Parte~4}\quad {\bf Para~a~última~etapa~temos~a~função~de~transferência~dada~por$

$$G(S) = \frac{1}{s-1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [1 -1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de polos e zeros:

p =

1

z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu polo em s=1. A sua posição no plano é apresentada na figura abaixo

Como o polo da função de transferência se encontra na SPD, conclui-se que o sistema se compartará de uma forma instável. A simulação em Matlab está apresentada na figura abaixo.

O resultado apresentado pelo scope é apresentado na figura abaixo.

O resultado comprova o esperado. O sistema se comporta de forma instável para a função de transferência dada por $G(s)=\frac{1}{s-1}$.

Problema 2

Considere o sistema de primeira ordem (integrador)

$$G(s) = \frac{1}{s}.$$

Determine o pólo e a sua posição no plano s e simule para uma entrada do tipo degrau unitário e também para $\sin(t)$ (para $\sin(t)$, escolha **Max Step Size** = **0.1** em **Simulation** \Longrightarrow **Configurarion Parameters**). Note que a saída é a integral da entrada. Tais resultados eram esperados? Dica: relembre que Y(s) = G(s)U(s), e que se $x(t) \iff X(S)$, então $\int_0^t x(\tau) d\tau \iff X(s)/s$.

Resolução

O código utilizado no Matlab é apresentado abaixo.

```
g = tf([1], [1 0])
[p,z] = pzmap(g)
pzmap(g)
```

Obtendo como resultado:

p =

0

z =

0×1 empty double column vector

Conclue-se então que a função de transferência $G(s)=\frac{1}{s}$ não tem zeros e tem pólo em s=0. O mapa da posição no plano é mostrado na figura abaixo.

Isso mostra que o sistema é um caso crítico. Neste caso a resposta em regime permanente do sistema a uma entrada de amplitude limitada será uma senóide.

A simulação feita em Matlab está apresentada na figura abaixo.

O resultado da simulação é apresentado na figura abaixo.

O resultados eram esperados, uma vez que em um estado crítico a função de transferência pode estar em um estado permanente senoidal caso a entrada seja senoidal ou pode divergir caso a entrada seja um sinal constante.

Problema 3

Considere o sistema de segunda ordem

$$G(s) = \frac{1}{s^2 + 25}.$$

Determine os pólos e suas posições no plano s. Simule para as seguintes entradas: degrau unitário, $\sin(4t)$, $\sin(6t)$. Observe que a saída é limitada. Agora, semule para a entrada $\sin(5t)$. Note que a amplitude de saída cresce indefinidamente. Tal fenômeno é denominado de ressonância. De moro mais geral, para

$$G(s) = \frac{1}{s^2 + \omega_0^2},$$

teremos ressonância quando aplicamos uma entrada senoidal da forma $\sin(\omega_0 t + \phi)$. Note que a frequência de ressonância ω_0 é igual a parte imaginária dos pólos de G(s).

Identificação de Sistemas

Working on it:)

Applications

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two