DATA AND ARTIFICIAL INTELLIGENCE

Capstone Session 10

Deep Learning for Advanced Modeling

Deep Learning End Goal

The intuitive analyses of Aura must help customers make informed decisions to push relevant ads, services and products based on real-time user sentiments.

Project Statement

Build necessary data aggregation, wrangling and visualization modules for Aura using the Healthcare dataset.

Identify customers who churn the bank

Detect humans wearing face masks

Classify customer product reviews

Denoise dirty documents

Week 10: Dataset Description

Variable	Description
Image File Name	Name of the image file name
Class	The allowed values are:"with_mask""without_mask""mask_worn_incorrect"

Task: Build a Transfer Learning model to detect face masks on humans.

Task A:

- Load the Image Training and Test Datasets from the train and test folders respectively. Each image is of shape 128 x 128 x 3
- Load training dataset using Keras ImageDataGenerator with validation_split=0.2
- Load test dataset using Keras ImageDataGenerator
- Build a Transfer Learning network using Keras with the following layers
- Load EfficientNetB0 as first layers using Keras API.
- GLobalAveragePooling2D layer
- Dropout(0.2)
- Dense layer with 3 neurons and activation SoftMax

- Compile the model with adam optimizer, categorical_crossentropy loss and with metrics accuracy.
- Train the model for 25 epochs with callbacks Reduce Learning Rate on Plateau and early stopping while monitoring validation loss
- Plot training and validation accuracy and loss against epochs

Task B

- Load the Image Training and Test Datasets from the train and test folder respectively. Each image is of shape 128 x 128 x 3
- Load training dataset using Keras ImageDataGenerator with validation_split=0.2
- Load test dataset using Keras ImageDataGenerator
- Build a Transfer Learning network using Keras with the following layers
- Load ResNet50 as first layers using Keras API.
- GLobalAveragePooling2D layer
- Dropout(0.5)
- Dense layer with 3 neurons and activation SoftMax

Task B

- Compile the model with Adam optimizer, categorical_crossentropy loss and with metrics accuracy.
- Train the model for 25 epochs with callbacks Reduce Learning Rate on Plateau and early stopping while monitoring validation loss
- Plot training and validation accuracy and loss against epochs
- Using the best model predict on the test dataset and plot 10 images from the test set along with its True Label and Predicted Label.

Task C

- Compare EfficientNetB0 and ResNet50 model performance and find the best model
- Using the best model predict on the test dataset and plot 10 images from the test set along with its True Label and Predicted Label.

Thank You

