Ayush Nagpure Batch – 2024 Application No - 158377 Subgroup – 1H3

Experiment: To study the Thevenin's Theorem

Objective: To verify the Thevenin's Theorem.

Apparatus: Virtual using Tinkercad (<u>www.tinkercad.com</u>)

Theory:

This circuit states that the current in any bilateral circuit element (R_L) in a network is the same as would be obtained if that circuit element (R_L) is supplied with a source Voltage in series with an equivalent resistance R_{th} being the open circuit voltage at the terminals from which R_L has been removed and R_{th} being the resistance that would be measured at these terminals after all sources have been replaced by their internal resistance respectively. According to this theorem, if resistance R_L be connected between two terminals in a linear bilateral network, then resulting steady state current through resistor will be $V_{th}/(R_L+R_{th})$, where V_{th} is the potential difference between points A and B after removing R_L such that for network shown in figure.

Fig. Circuit diagram for verification of Thevenin's Theorem

 $V_{th} = V^*R_2/(R_1+R_2)$ And Thevenin's resistance measured between terminals ab (with source removed and replaced by its internal resistance if any, otherwise replace by short circuit) is given by: $R_{th} = [R1^*R2/R1+R2]+R3$

Now external resistance R_L is connected between terminals ab such that Thvenin's equivalent circuit for the network will be as shown in figure. Current through R_L will be

$$I_l = V_{th}/(R_{th} + R_L)$$

Procedure:

- 1. Connect the circuit as shown in the circuit diagram on tinkercad workspace. Once the circuit is made take a snapshot and paste in the manual.
- **2.** To verify the theorem, measure Thevenin resistance by removing the load and deactivating the sources in the circuit.
- 3. Remove R_L from the circuit and measure the open circuit voltage V_{th} across the end points by a DC voltmeter.
- **4.** Once R_{th} and V_{th} are know, draw the Thevenin's equivalent circuit.

- 5. Now measure current I_L by selecting the load resistance of 25, 50 and 100 Ω respectively by the multimeter.
- **6.** Again find the Thevenin equivalent of the circuit theoretically and compare it with the simulation readings.

Observation table:

S. No.	Load resistance	$\mathbf{V}_{ ext{th}}$	Rth	Iı.	Theoritical ${f I_L}$	% Error
1	25 Ω	2 V	173 Ω	10.1 mA	10.08mA	0.19%
2	50 Ω	2 V	173 Ω	8.97 mA	8.95 mA	0.11%
3	100 Ω	2 V	173 Ω	7.31 mA	7.31 mA	0.27%

Circuit diagram on Tinkercad:

Calculations:

5 00U	don				
	MA O A				
R.	R ₃				
	100 L				
	0 8				
R, 2R, 05	re in parallel				
R' = 1	+ 1 500×100 - 83.32				
300	600				
Ris in society with Rz					
6	177.2				
Rieg Rin	= 83.3 + 40 = 173.3 1				

$$R_{TM} = 173.3 \text{ M}$$

$$V_{TM} = 20 \text{ M}.$$

$$I_{L} = V_{TM} = 2 - 8.45 \text{ mA}$$

$$(R_{TM} + R_{L}) = (173.3 + 50)$$

$$V = 2000 = 0.112 \text{ M}.$$

$$V_{TM} = 2000 = 0.112 \text{ M}.$$

Conclusion: Hence Thevenin's Theorem is verified.