The Basis: Light Absorption Processes

speed of light = 2.998×10^8 m/s

Energy of light:
$$E = h v = h \frac{c}{\lambda}$$

 $\lambda = 700 \text{ nm} \Rightarrow E = 171 \text{ kJ/mol}$

frequency -

Planck's constant = 6.626×10^{-34} Js

What happens after absorption?

The energies of photons and molecular orbitals are quantized ⇒ only matching photons can be absorbed!

Absorption spectra of photosynthetic pigments:

Slight chemical differences modulate the absorption properties of chlorophylls a and b!

Using Photoenergy: The Bacterial Photosynthetic Reaction Center

* from purple photosynthetic bacterium Rhodospirillum rubrum;

♣ absorbs around 960 nm (or 870 nm; near-infrared absorption best for habitat in murky stagnant ponds) ⇒ also called complex P960;

* contains 4 polypeptides: subunits L (31 kD), M (36 kD), H (28 kD), and C, a c-type cytochrome with 4 hemes;

first transmembrane protein ever crystallized;

converts photons into energetic electrons:

How Does This Work?

Analogous: Photosystem II of Plants

