Topic 8. Phenotypes and diseases

The drug discovery timeline. OMIM. Open Targets. InterMine.

The Genotype to Phenotype challenge

Topic 5 - Genes & Genomes

Topic 6 – Functional genomics

Topic 7 – Networks & Pathways

Topic 8 – Phenotypes & Diseases

Data selection, processing, transformation, integration, interpretation

Alzheimer, Parkinson

Precision medicine

Drug discovery timeline

Aproximadament 132.000 resultats (0,66 segons)

Consell: Cerca només resultats en català. Podeu especificar l'idioma de la cerca a Preferències

Articles acadèmics per **Hutchinson-Gilford progeria**

Lamin a truncation in Hutchinson-Gilford progeria - De Sandre-Giovannoli - Citat per 972

- ... in lamin A cause Hutchinson-Gilford progeria ... Eriksson Citat per 1499
- ... in nuclear architecture in Hutchinson-Gilford progeria ... Goldman Citat per 758

Hutchinson-Gilford progeria syndrome - Genetics Home Reference https://ghr.nlm.nih.gov/.../hutchinson-gilford-progeria-syndr... ▼ Tradueix aquesta pàgina Hutchinson-Gilford progeria syndrome is a genetic condition characterized by the dramatic, rapid appearance of aging beginning in childhood. Affected children ...

Progeria - Wikipedia

https://en.wikipedia.org/wiki/Progeria ▼ Tradueix aquesta pàgina

Progeria is an extremely rare genetic disorder in which symptoms resembling aspects of aging ... The condition was later named Hutchinson–Gilford progeria syndrome. The word progeria comes from the Greek words "pro" ($\pi p \acute{o}$), meaning ...

Sam Berns · Hallermann-Streiff syndrome · Progeria Research Foundation

Integration, integration, integration

I wish I could go to one place only and get as much information in an easy fashion

Yes, one one-stop shop with comprehensive data that I can trust and rank, with intuitive visualization

That'd be fab! It'd be much quicker to carry out my experiments in the lab identifying and prioritizing new targets

Public databases for drug discovery

Open Targets

Open Targets is an innovative, large-scale, multi-year, public-private partnership that uses human genetics and genomics data for systematic drug target identification and prioritization.

https://platform.opentargets.org/

Open Targets

https://platform-docs.opentargets.org/getting-started

Open Targets

Open Targets: sources of data

Genome Wide Association Studies

https://www.ebi.ac.uk/gwas

PhenoDigm: association of mouse models with disease

http://www.sanger.ac.uk/science/tools/phenodigm

ChEMBL: known drugs linked to a disease

and a known target

https://www.ebi.ac.uk/chembl

Europe PMC: mining titles, abstracts, full text

https://europepmc.org

COSMIC: Catalog Of Somatic Mutations In

Cancer

http://cancer.sanger.ac.uk/cosmic/census

IntOGen: Integrative Onco Genomics

http://www.intogen.org

European Variation Archive: germline and somatic variants

https://www.ebi.ac.uk/eva

Gene2Phenotype: variants, genes, phenotypes in

developmental disorders

https://www.ebi.ac.uk/gene2phenotype

Protein: sequence, annotation, function

https://www.ebi.ac.uk/uniprot

Expression Atlas: baseline/differential expression

https://www.ebi.ac.uk/gxa

Biochemical reactions and pathways

https://reactome.org

Open Targets: examples of questions

Which targets are associated with a disease? What evidence supports this target-disease association? Are there FDA-approved drugs for this association? For a target, are there other diseases associated with it? If so, can I get associations for diseases from different therapeutic areas? What else can I find out about my drug target? Can I find out about the mechanisms of the disease?

В

452 targets associated with Hutchinson-Gilford progeria syndrome

GO

InterMine

Biologists

Developers

Contact

Resources

Disparate data in, unified data out

InterMine integrates biological data sources, making it easy to query and analyse data.

InterMine is open source (LGPL 2.1) and free to use.

It's a software system that you can <u>install on your own servers</u> to make data available on the web.

There are many different InterMines worldwide, covering a broad range of model organisms and life science research areas.

http://intermine.org/

There's an InterMine for (almost) anyone

With InterMine you can explore organism and other research data provided by many different organizations, moving between databases using criteria such as homology.

This is a sample of the InterMine installations available - click on one to go straight to that service.

InterMine: Querying the HumanMine

InterMine Use Case: Hutchinson-Gilford progeria (search by keyword)

InterMine Use Case: Hutchinson-Gilford progeria (search by keyword)

InterMine Use Case: neurodegenerative diseases (lists)

InterMine Use Case: neurodegenerative diseases (lists)

InterMine Use Case: genes involved in neuron death (templates)

InterMine Use Case: genes involved in neuron death (templates)

InterMine Use Case: genes involved in neuron death (templates)

□ ADD COLUMNS	▼ MANAGE FILTERS	⊀ MANAGE RELATIONSHIPS		△ SAVE LIST	<> PYTHON ▼
Showing 1 to 7 of 7 rows					
‡ × ▼ <u>lill</u> Gene Primary Identifier	≑ × ▼ ☐ Gene Symbol	Gene		♦ X ▼ lill Ontology Term Name	★ ★ ▼ ldl Organism Short Name
9529	BAG5	BAG cochaperone 5	GO:0070997	neuron death	H. sapiens
867	CBL	Cbl proto-oncogene	GO:0070997	neuron death	H. sapiens
10570	DPYSL4	dihydropyrimidinase like 4	GO:0070997	neuron death	H. sapiens
120892	LRRK2	leucine rich repeat kinase 2	GO:0070997	neuron death	H. sapiens
10135	NAMPT	nicotinamide phosphoribosyltransferase	GO:0070997	neuron death	H. sapiens
9481	SLC25A2	7 solute carrier family 25 member 27	GO:0070997	neuron death	H. sapiens
6548	SLC9A1	solute carrier family 9 member A1	GO:0070997	neuron death	H. sapiens

Enrichment column: Gene Max p-value ① 0.05 ▼ Background population Choose a list ▼ Filter enrichment results Text to filter items Gene Ontology Enrichment (0) Ontology: biological_process ▼ Publication Enrichment Pathway Enrichment (0) DataSet: All Protein Domain Enrichment (0)

Widgets

