Integer Partitions From A Geometric Viewpoint

Matthias Beck

San Francisco State

Thomas Bliem

Benjamin Braun

University of Kentucky

Ira Gessel

Brandeis University

Matthias Köppe

UC Davis

Nguyen Le

University of New South Wales

Sunyoung Lee

Carla Savage

NC State

Zafeirakis Zafeirakopoulos

RISC Linz

Thanks to: Ramanujan Journal (2010), arXiv:0906.5573

AIM Ehrenpreis memorial volume (2012), arXiv:1103.1070

NSF Journal of Algebraic Combinatorics (2013), arXiv:1206.1551

Ramanujan Journal (to appear), arXiv:1211.0258

"If things are nice there is probably a good reason why they are nice: and if you do not know at least one reason for this good fortune, then you still have work to do."

Richard Askey (Ramanujan and Important Formulas, Srinivasa Ramanujan (1887-1920), a Tribute, K. R. Nagarajan and T. Soundarajan, eds., Madurai Kamaraj University, 1987.)

"If things are nice there is probably a good reason why they are nice: and if you do not know at least one reason for this good fortune, then you still have work to do."

Richard Askey (Ramanujan and Important Formulas, Srinivasa Ramanujan (1887–1920), a Tribute, K. R. Nagarajan and T. Soundarajan, eds., Madurai Kamaraj University, 1987.)

> **Partition Analysis**

Polyhedral Geometry

Arithmetic

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Example

$$5 = 1+1+1+1+1$$

$$= 1+1+1+2$$

$$= 1 + 2 + 2$$

$$= 1 + 1 + 3$$

$$= 2 + 3$$

$$= 1 + 4$$

$$=$$
 5

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

- Number Theory
- Combinatorics
- Symmetric functions
- Representation Theory
- **Physics**

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute
$$\sum_{\lambda} q^{\lambda_1 + \dots + \lambda_n}$$

where the sum runs through your favorite partitions.

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{\lambda} q^{\lambda_1 + \dots + \lambda_n}$

where the sum runs through your favorite partitions.

Example (Euler's mother-of-all-partition-identities)

- # partitions of k into odd parts =
- # partitions of k into distinct parts

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{n} q^{\lambda_1 + \dots + \lambda_n}$

where the sum runs through your favorite partitions.

Example (triangle partitions) $T := \{\lambda : 1 \le \lambda_1 \le \lambda_2 \le \lambda_3, \ \lambda_1 + \lambda_2 > \lambda_3\}$

$$\sum_{\lambda \in T} q^{\lambda_1 + \lambda_2 + \lambda_3} = \frac{q^3}{(1 - q^2)(1 - q^3)(1 - q^4)}$$

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of an integer $k \geq 0$ satisfies

$$k = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Goal Compute $\sum_{n} q^{\lambda_1 + \dots + \lambda_n}$

where the sum runs through your favorite partitions.

Example (triangle partitions) $T := \{\lambda : 1 \le \lambda_1 \le \lambda_2 \le \lambda_3, \ \lambda_1 + \lambda_2 > \lambda_3\}$

$$\sum_{\lambda \in T} q^{\lambda_1 + \lambda_2 + \lambda_3} = \frac{q^3}{(1 - q^2)(1 - q^3)(1 - q^4)}$$

 \longrightarrow # partitions of k in T equals $\left|\frac{k^3}{12}\right| - \left|\frac{k}{4}\right| \left|\frac{k+2}{4}\right|$

n-gon Partitions

$$P_n := \{\lambda : 1 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n, \ \lambda_1 + \dots + \lambda_{n-1} > \lambda_n\}$$

(Sample) Theorem 1 (Andrews, Paule & Riese 2001)

$$\sum_{\lambda \in P_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{q}{(1 - q)(1 - q^2) \cdots (1 - q^n)} - \frac{q^{2n - 2}}{(1 - q)(1 - q^2)(1 - q^4) \cdots (1 - q^{2n - 2})}$$

n-gon Partitions

$$P_n := \{\lambda : 1 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n, \ \lambda_1 + \dots + \lambda_{n-1} > \lambda_n\}$$

(Sample) Theorem 1 (Andrews, Paule & Riese 2001)

$$\sum_{\lambda \in P_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{q}{(1 - q)(1 - q^2) \cdots (1 - q^n)} - \frac{q^{2n - 2}}{(1 - q)(1 - q^2)(1 - q^4) \cdots (1 - q^{2n - 2})}$$

Natural extension: symmetrize, e.g., the triangle condition to

$$\lambda_{\pi(1)} + \lambda_{\pi(2)} > \lambda_{\pi(3)} \qquad \forall \ \pi \in S_3$$

and enumerate compositions λ with this condition.

Symmetrically Constrained Compositions

(Sample) Theorem 2 (Andrews, Paule & Riese 2001) Given positive integers b and $n \ge 2$, let K consist of all nonnegative integer sequences λ satisfying

$$b(\lambda_{\pi(1)}+\cdots+\lambda_{\pi(n-1)})\geq (nb-b-1)\lambda_{\pi(n)} \qquad \forall \ \pi\in S_n$$
 Then
$$\sum_{\lambda\in K}q^{\lambda_1+\cdots+\lambda_n}=\frac{1-q^{n(nb-1)}}{(1-q^n)(1-q^{nb-1})^n}$$

Symmetrically Constrained Compositions

(Sample) Theorem 2 (Andrews, Paule & Riese 2001) Given positive integers b and $n \geq 2$, let K consist of all nonnegative integer sequences λ satisfying

$$b(\lambda_{\pi(1)}+\cdots+\lambda_{\pi(n-1)})\geq (nb-b-1)\lambda_{\pi(n)}\qquad\forall\ \pi\in S_n$$
 Then
$$\sum_{\lambda\in K}q^{\lambda_1+\cdots+\lambda_n}=\frac{1-q^{n(nb-1)}}{(1-q^n)(1-q^{nb-1})^n}$$

Andrews, Paule & Riese found several identities of this form; all of them concerned symmetric constraints of the form

$$a_1\lambda_{\pi(1)} + a_2\lambda_{\pi(2)} + \dots + a_n\lambda_{\pi(n)} \ge 0 \qquad \forall \ \pi \in S_n$$

with the condition $a_1 + \cdots + a_n = 1$.

Enter Geometry

We view a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ as an integer lattice point in (a subcone of) $\{\mathbf{x} \in \mathbb{R}^n : 0 \le x_1 \le x_2 \le \cdots \le x_n\}$

 $C=\sum_{i=1}^n \mathbb{R}_{\geq 0}\,\mathbf{v}_j$ is unimodular if $\mathbf{v}_1,\ldots,\mathbf{v}_n$ form a lattice basis of \mathbb{Z}^n

$$\longrightarrow \sigma_C(\mathbf{x}) := \sum_{\mathbf{m} \in C \cap \mathbb{Z}^n} \mathbf{x}^{\mathbf{m}} = \frac{1}{\prod_{j=1}^n (1 - \mathbf{x}^{\mathbf{v}_j})}$$

where $\mathbf{x}^{\mathbf{m}} := x_1^{m_1} \cdots x_n^{m_n}$

Enter Geometry

We view a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ as an integer lattice point in (a subcone of) $\{\mathbf{x} \in \mathbb{R}^n : 0 \le x_1 \le x_2 \le \cdots \le x_n\}$

$$C=\sum_{j=1}^n\mathbb{R}_{\geq 0}\,\mathbf{v}_j$$
 is unimodular if $\mathbf{v}_1,\ldots,\mathbf{v}_n$ form a lattice basis of \mathbb{Z}^n

$$\longrightarrow \ \sigma_C(\mathbf{x}) := \sum_{\mathbf{m} \in C \cap \mathbb{Z}^n} \mathbf{x}^{\mathbf{m}} \ = \ \frac{1}{\prod_{j=1}^n \left(1 - \mathbf{x}^{\mathbf{v}_j}\right)} \ \text{ where } \ \mathbf{x}^{\mathbf{m}} := x_1^{m_1} \cdots x_n^{m_n}$$

Example $P:=\{\mathbf{x}\in\mathbb{R}^n:0\leq x_1\leq x_2\leq\cdots\leq x_n\}$ is unimodular with generators \mathbf{e}_n , $\mathbf{e}_{n-1} + \mathbf{e}_n$, ..., $\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_n$

Enter Geometry

We view a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ as an integer lattice point in (a subcone of) $\{\mathbf{x} \in \mathbb{R}^n : 0 \le x_1 \le x_2 \le \cdots \le x_n\}$

$$C = \sum_{j=1}^n \mathbb{R}_{\geq 0} \, \mathbf{v}_j$$
 is unimodular if $\mathbf{v}_1, \dots, \mathbf{v}_n$ form a lattice basis of \mathbb{Z}^n

$$\longrightarrow \ \sigma_C(\mathbf{x}) := \sum_{\mathbf{m} \in C \cap \mathbb{Z}^n} \mathbf{x}^{\mathbf{m}} \ = \ \frac{1}{\prod_{j=1}^n \left(1 - \mathbf{x}^{\mathbf{v}_j}\right)} \ \text{ where } \ \mathbf{x}^{\mathbf{m}} := x_1^{m_1} \cdots x_n^{m_n}$$

Remark This geometric viewpoint is not new:

Pak (Proceedings AMS 2004, Ramanujan Journal 2006) realized that several partition identities can be interpreted as bijections of lattice points in two unimodular cones.

Corteel, Savage & Wilf (Integers 2005) discussed several families of partitions/compositions giving rise to unimodular cones (and thus a nice product description of their generating function).

n-gon Partitions Revisited

Theorem 1 (Andrews, Paule & Riese 2001)

$$\sum_{\lambda \in P_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{q}{(1 - q)(1 - q^2) \cdots (1 - q^n)}$$
$$- \frac{q^{2n - 2}}{(1 - q)(1 - q^2)(1 - q^4) \cdots (1 - q^{2n - 2})}$$

An n-gon partition $\lambda \in P_n$ lies in the "fat" cone

$$C_1 := \{ \mathbf{x} \in \mathbb{R}^n : 0 < x_1 \le x_2 \le \dots \le x_n, \ x_1 + \dots + x_{n-1} > x_n \}$$

n-gon Partitions Revisited

Theorem 1 (Andrews, Paule & Riese 2001)

$$\sum_{\lambda \in P_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{q}{(1 - q)(1 - q^2) \cdots (1 - q^n)}$$

$$- \frac{q^{2n - 2}}{(1 - q)(1 - q^2)(1 - q^4) \cdots (1 - q^{2n - 2})}$$

An n-gon partition $\lambda \in P_n$ lies in the "fat" cone

$$C_1 := \{ \mathbf{x} \in \mathbb{R}^n : 0 < x_1 \le x_2 \le \dots \le x_n, \ x_1 + \dots + x_{n-1} > x_n \}$$

However, $C_1 = P \setminus C_2$ for the unimodular cone

$$C_2 := \{ \mathbf{x} \in \mathbb{R}^n : 0 < x_1 \le x_2 \le \dots \le x_n, \ x_1 + \dots + x_{n-1} \le x_n \}$$

Theorem 1 is the statement $\sigma_{C_1}(q,\ldots,q)=\sigma_P(q,\ldots,q)-\sigma_{C_2}(q,\ldots,q)$

Theorem 2 (Andrews, Paule & Riese 2001) Given positive integers b and $n \geq 2$ let K consist of all nonnegative integer sequences λ satisfying

$$b(\lambda_{\pi(1)} + \dots + \lambda_{\pi(n-1)}) \ge (nb - b - 1)\lambda_{\pi(n)} \qquad \forall \ \pi \in S_n$$

Then
$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{1 - q^{n(nb-1)}}{(1 - q^n)(1 - q^{nb-1})^n}$$

General Setup Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and consider all compositions $\lambda \in \mathbb{Z}_{\geq 0}^n$ satisfying

$$a_1\lambda_{\pi(1)} + a_2\lambda_{\pi(2)} + \dots + a_n\lambda_{\pi(n)} \ge 0 \qquad \forall \ \pi \in S_n$$

(Andrews, Paule & Riese: the case $a_1 + \cdots + a_n = 1$ seems special)

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and consider all compositions λ satisfying

$$a_1\lambda_{\pi(1)} + a_2\lambda_{\pi(2)} + \dots + a_n\lambda_{\pi(n)} \ge 0 \qquad \forall \ \pi \in S_n$$

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \quad \forall \pi \in S_n \right\}$$
$$= \bigcup_{\pi \in S_n} K_{\pi}$$

where

$$K_{\pi} := \left\{ \mathbf{x} \in \mathbb{R}^{n} : x_{\pi(1)} \ge x_{\pi(2)} \ge \dots \ge x_{\pi(n)}, \sum_{j=1}^{n} a_{j} x_{\sigma(j)} \ge 0 \ \forall \sigma \in S_{n} \right\}$$

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and consider all compositions λ satisfying

$$a_1\lambda_{\pi(1)} + a_2\lambda_{\pi(2)} + \dots + a_n\lambda_{\pi(n)} \ge 0 \qquad \forall \ \pi \in S_n$$

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \quad \forall \pi \in S_n \right\}$$
$$= \bigcup_{\pi \in S_n} K_{\pi}$$

where

$$K_{\pi} := \left\{ \mathbf{x} \in \mathbb{R}^{n} : x_{\pi(1)} \ge x_{\pi(2)} \ge \dots \ge x_{\pi(n)}, \sum_{j=1}^{n} a_{j} x_{\sigma(j)} \ge 0 \ \forall \sigma \in S_{n} \right\}$$
$$= \left\{ \mathbf{x} \in \mathbb{R}^{n} : x_{\pi(1)} \ge x_{\pi(2)} \ge \dots \ge x_{\pi(n)}, \sum_{j=1}^{n} a_{j} x_{\pi(j)} \ge 0 \right\}$$

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and consider all compositions λ satisfying

$$a_1\lambda_{\pi(1)} + a_2\lambda_{\pi(2)} + \dots + a_n\lambda_{\pi(n)} \ge 0 \qquad \forall \ \pi \in S_n$$

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \quad \forall \pi \in S_n \right\}$$
$$= \bigcup_{\pi \in S_n} K_{\pi}$$

where

$$K_{\pi} = \left\{ \mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n a_j x_{\pi(j)} \ge \dots \ge x_{\pi(n)} \right\}$$

These cones are unimodular if $a_1 + \cdots + a_n = 1$.

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and consider all compositions λ satisfying

$$a_1\lambda_{\pi(1)} + a_2\lambda_{\pi(2)} + \dots + a_n\lambda_{\pi(n)} \ge 0 \qquad \forall \ \pi \in S_n$$

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \quad \forall \pi \in S_n \right\}$$
$$= \bigcup_{\pi \in S_n} K_{\pi}$$

where the union is disjoint and

$$K_{\pi} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \sum_{j=1}^{n} a_{j} x_{\pi(j)} \ge \dots \ge x_{\pi(n)}, \ x_{\pi(j)} > x_{\pi(j+1)} \text{ if } j \in \text{Des}(\pi) \right\}$$

Here $Des(\pi) := \{j : \pi(j) > \pi(j+1)\}$ is the descent set of π

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and let

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \ \forall \pi \in S_n \right\}$$

Theorem (MB, Gessel, Lee & Savage 2010) If $a_1 + \cdots + a_n = 1$ then

$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} \prod_{j \in \text{Des}(\pi)} q^{j - n \sum_{i=1}^{j} a_i}}{(1 - q^n) \prod_{j=1}^{n-1} \left(1 - q^{j - n \sum_{i=1}^{j} a_i}\right)}$$

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and let

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \ \forall \pi \in S_n \right\}$$

Theorem (MB, Gessel, Lee & Savage 2010) If $a_1 + \cdots + a_n = 1$ then

$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} \prod_{j \in \text{Des}(\pi)} q^{j - n \sum_{i=1}^{j} a_i}}{(1 - q^n) \prod_{j=1}^{n-1} \left(1 - q^{j - n \sum_{i=1}^{j} a_i}\right)}$$

Note that $n \notin Des(\pi)$ and so $a_1 = \cdots = a_{n-1} = b$ could be interesting...

$$\sum_{\lambda} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} \prod_{j \in \text{Des}(\pi)} q^{j(1-nb)}}{(1 - q^n) \prod_{j=1}^{n-1} (1 - q^{j(1-nb)})}$$

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and let

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \ \forall \pi \in S_n \right\}$$

Theorem (MB, Gessel, Lee & Savage 2010) If $a_1 + \cdots + a_n = 1$ then

$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} \prod_{j \in \text{Des}(\pi)} q^{j - n \sum_{i=1}^{j} a_i}}{(1 - q^n) \prod_{j=1}^{n-1} \left(1 - q^{j - n \sum_{i=1}^{j} a_i}\right)}$$

Note that $n \notin Des(\pi)$ and so $a_1 = \cdots = a_{n-1} = b$ could be interesting...

$$\sum_{\lambda} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} (q^{1-nb})^{\text{maj}(\pi)}}{(1 - q^n) \prod_{j=1}^{n-1} (1 - q^{j(1-nb)})}$$

where
$$\text{maj}(\pi) := \sum_{j \in \text{Des}(\pi)} j$$
. Now use $\sum_{\pi \in S_n} q^{\text{maj}(\pi)} = \prod_{j=1}^n \frac{1 - q^j}{1 - q} = [n]_q!$

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and let

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \ \forall \pi \in S_n \right\}$$

Theorem (MB, Gessel, Lee & Savage 2010) If $a_1 + \cdots + a_n = 1$ then

$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} \prod_{j \in \text{Des}(\pi)} q^{j - n \sum_{i=1}^{j} a_i}}{(1 - q^n) \prod_{j=1}^{n-1} \left(1 - q^{j - n \sum_{i=1}^{j} a_i}\right)}$$

Theorem 2 (Andrews, Paule & Riese 2001) Given positive integers b and $n \geq 2$ let K consist of all nonnegative integer sequences λ satisfying

$$b(\lambda_{\pi(1)} + \dots + \lambda_{\pi(n-1)}) \ge (nb - b - 1)\lambda_{\pi(n)} \qquad \forall \ \pi \in S_n$$

Then
$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{1 - q^{n(nb-1)}}{(1 - q^n)(1 - q^{nb-1})^n}$$

Fix integers $a_1 \leq a_2 \leq \cdots \leq a_n$ and let

$$K := \left\{ \mathbf{x} \in \mathbb{R}^n : a_1 x_{\pi(1)} + a_2 x_{\pi(2)} + \dots + a_n x_{\pi(n)} \ge 0 \ \forall \pi \in S_n \right\}$$

Theorem (MB, Gessel, Lee & Savage 2010) If $a_1 + \cdots + a_n = 1$ then

$$\sum_{\lambda \in K} q^{\lambda_1 + \dots + \lambda_n} = \frac{\sum_{\pi \in S_n} \prod_{j \in \text{Des}(\pi)} q^{j - n \sum_{i=1}^{j} a_i}}{(1 - q^n) \prod_{j=1}^{n-1} \left(1 - q^{j - n \sum_{i=1}^{j} a_i}\right)}$$

There are analogues of this theorem for composition cones that are invariant under the action of other finite reflection groups. Specifically, for symmetry groups of types B and D, our formulas involve signed permutation statistics (MB, Bliem, Braun & Savage 2013).

$$L_n := \left\{ \lambda : 0 \le \frac{\lambda_1}{1} \le \frac{\lambda_2}{2} \le \dots \le \frac{\lambda_n}{n} \right\}$$

Lecture Hall Theorem (Bousquet-Mélou & Eriksson 1997)

$$\sum_{\lambda \in L_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q)(1 - q^3) \cdots (1 - q^{2n - 1})}$$

$$L_n := \left\{ \lambda : 0 \le \frac{\lambda_1}{1} \le \frac{\lambda_2}{2} \le \dots \le \frac{\lambda_n}{n} \right\}$$

Lecture Hall Theorem (Bousquet-Mélou & Eriksson 1997)

$$\sum_{\lambda \in L_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q)(1 - q^3) \cdots (1 - q^{2n - 1})}$$

Remark Euler läßt grüßen...

$$L_n := \left\{ \lambda : 0 \le \frac{\lambda_1}{1} \le \frac{\lambda_2}{2} \le \dots \le \frac{\lambda_n}{n} \right\}$$

Lecture Hall Theorem (Bousquet-Mélou & Eriksson 1997)

$$\sum_{\lambda \in L_n} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q)(1 - q^3) \cdots (1 - q^{2n - 1})}$$

Note that the cone
$$\mathbb{R}_{\geq 0}$$
 $\begin{pmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix} + \mathbb{R}_{\geq 0} \begin{pmatrix} 0 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix} + \cdots + \mathbb{R}_{\geq 0} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ n \end{pmatrix}$ is not unimodular...

$$L_{a_1,\dots,a_n} := \left\{ \lambda : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \dots \le \frac{\lambda_n}{a_n} \right\}$$

Theorem (Bousquet–Mélou & Eriksson 1997) Given $\ell \in \mathbb{Z}_{\geq 2}$ define $a_0 = 0$, $a_1 = 1$, and $a_j = \ell \, a_{j-1} - a_{j-2}$ for $j \geq 2$. Then

$$\sum_{\lambda \in L_{a_1,\dots,a_n}} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q^{a_1 + a_0})(1 - q^{a_2 + a_1}) \cdots (1 - q^{a_n + a_{n-1}})}$$

$$L_{a_1,\dots,a_n} := \left\{ \lambda : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \dots \le \frac{\lambda_n}{a_n} \right\}$$

Theorem (Bousquet-Mélou & Eriksson 1997) Given $\ell \in \mathbb{Z}_{\geq 2}$ define $a_0 = 0$, $a_1=1$, and $a_j=\ell\,a_{j-1}-a_{j-2}$ for $j\geq 2$. Then

$$\sum_{\lambda \in L_{a_1,\dots,a_n}} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q^{a_1 + a_0})(1 - q^{a_2 + a_1}) \cdots (1 - q^{a_n + a_{n-1}})}$$

Question (Bousquet-Mélou & Eriksson 1997) For which sequences (a_i) is $\sum_{\lambda \in L_{a_1, \dots, a_n}} q^{\lambda_1 + \dots + \lambda_n}$ the reciprocal of a polynomial?

(Bousquet–Mélou & Eriksson give a complete characterization for the case that (a_i) is increasing and $gcd(a_i, a_{i+1}) = 1.$

$$L_{a_1,\dots,a_n} := \left\{ \lambda : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \dots \le \frac{\lambda_n}{a_n} \right\}$$

Theorem (Bousquet-Mélou & Eriksson 1997) Given $\ell \in \mathbb{Z}_{\geq 2}$ define $a_0 = 0$, $a_1=1$, and $a_j=\ell\,a_{j-1}-a_{j-2}$ for $j\geq 2$. Then

$$\sum_{\lambda \in L_{a_1,\dots,a_n}} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q^{a_1 + a_0})(1 - q^{a_2 + a_1}) \cdots (1 - q^{a_n + a_{n-1}})}$$

Theorem (MB, Braun, Köppe, Savage & Zafeirakopoulos 2014) Given integers $\ell>0$ and $b\neq 0$ with $\ell^2+4b\geq 0$, let $a_0=0$, $a_1=1$, and $a_j = \ell a_{j-1} + b a_{j-2}$ for $j \geq 2$. Then $\sum_{\lambda \in L_{a_1,...,a_n}} q^{\lambda_1 + \cdots + \lambda_n}$ is the reciprocal of a polynomial for all n if and only if b=-1.

$$L_{a_1,\dots,a_n} := \left\{ \lambda : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \dots \le \frac{\lambda_n}{a_n} \right\}$$

$$f(q):=\sum_{\lambda\in L_{a_1,\dots,a_n}}q^{\lambda_1+\dots+\lambda_n} \text{ is self-reciprocal if } f(\tfrac1q)=\pm\,q^mf(q) \text{ for some } m$$

$$f(q) = \frac{1}{(1-q^{e_1})(1-q^{e_2})\cdots(1-q^{e_n})} \longrightarrow f(q)$$
 is self-reciprocal

$$L_{a_1,\dots,a_n} := \left\{ \lambda : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \dots \le \frac{\lambda_n}{a_n} \right\}$$

$$f(q):=\sum_{\lambda\in L_{a_1,\dots,a_n}}q^{\lambda_1+\dots+\lambda_n} \text{ is self-reciprocal if } f(\tfrac1q)=\pm\,q^mf(q) \text{ for some } m$$

$$f(q) = \frac{1}{(1-q^{e_1})(1-q^{e_2})\cdots(1-q^{e_n})} \quad \longrightarrow \quad f(q) \text{ is self-reciprocal}$$

A pointed rational cone $K \subset \mathbb{R}^n$ is Gorenstein if there exists $\mathbf{c} \in \mathbb{Z}^n$ such that

$$K^{\circ} \cap \mathbb{Z}^n = \mathbf{c} + (K \cap \mathbb{Z}^n)$$

This translates (by a theorem of Stanley) to $\sigma_K(\frac{1}{\mathbf{x}}) = \pm \mathbf{x}^{\mathbf{c}} \, \sigma_K(\mathbf{x})$

Lecture Hall Cones

$$K_{a_1,\ldots,a_n} := \left\{ \lambda \in \mathbb{R}^n : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \cdots \le \frac{\lambda_n}{a_n} \right\}$$

Theorem (MB, Braun, Köppe, Savage & Zafeirakopoulos 2014) Given integers $\ell > 0$ and $b \neq 0$ with $\ell^2 + 4b \geq 0$, let $a_0 = 0$, $a_1 = 1$, and $a_j = \ell \, a_{j-1} + b \, a_{j-2}$ for $j \geq 2$. Then K_{a_1, \dots, a_n} is Gorenstein for all n if and only if b = -1.

Lecture Hall Cones

$$K_{a_1,\ldots,a_n} := \left\{ \lambda \in \mathbb{R}^n : 0 \le \frac{\lambda_1}{a_1} \le \frac{\lambda_2}{a_2} \le \cdots \le \frac{\lambda_n}{a_n} \right\}$$

Theorem (MB, Braun, Köppe, Savage & Zafeirakopoulos 2014) Given integers $\ell > 0$ and $b \neq 0$ with $\ell^2 + 4b \geq 0$, let $a_0 = 0$, $a_1 = 1$, and $a_j = \ell \, a_{j-1} + b \, a_{j-2}$ for $j \geq 2$. Then K_{a_1, \dots, a_n} is Gorenstein for all n if and only if b = -1.

Coincidence? Recall that for an ℓ -sequence,

$$\sum_{\lambda \in L_{a_1,\dots,a_n}} q^{\lambda_1 + \dots + \lambda_n} = \frac{1}{(1 - q^{a_1})(1 - q^{a_2 + a_1}) \cdots (1 - q^{a_n + a_{n-1}})}$$

The accompanying cone $K_{a_1,...,a_n}$ has Gorenstein point

$$\mathbf{c} = (a_1, a_2 + a_1, \dots, a_n + a_{n-1})$$

Take-Home Message

Many "finite-dimensional" partition/composition identities have a life in polyhedral geometry:

- Bijections between two unimodular cones (Pak)
- Generator descriptions of unimodular cones (Corteel, Savage & Wilf)
- Differences between (unimodular) cones
- Triangulations into (unimodular) cones
- Natural connections to permutation statistics
- Interesting discrete-geometric questions