杭州电子科技大学学生考试卷(A)卷

考试课程	高等数学 A2		考试日期 2		2020	2020年月日		日	成		
课程号	A0714202	任课教师姓名							绩		
考生姓名			学号 (8 位)			专	此				

题号	- 1-8	= 9-12	≡ 13-16	四 17-19	五 20	六 21
得分						

注意: 本卷总共 4 页, 总分 100 分, 时间 120 分钟

得分

一、选择题 (本题共8小题,每小题3分,共24分)

- 1、向量 \vec{a} = (6,-1,2)在向量 \vec{b} = (7,-4,4)上的投影为(B)
 - (A) 3:
- (B) 6:
- (C) -2; (D) -4.
- 2、直线 $\frac{x}{3} = \frac{y}{-2} = \frac{z}{7}$ 和平面3x 2y + 7z 8 = 0的位置关系是(B)
 - (A) 平行; (B) 垂直; (C) 斜交;
- (D) 直线在平面上.
- 3、极限 $\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{y} = (C)$

- (A) 0; (B) 1; (C) 2; (D) 不存在.
- 4、二元函数 f(x,y) 在点 (x_0,y_0) 处的偏导数存在是函数在该点连续的 (D)
 - (A) 充分非必要条件; (B) 必要非充分条件; (C) 充要条件; (D) 以上都不对,

- 5、函数 z = z(x, y) 由方程 $z^3 3xyz = a^3$ 所确定,则 $\frac{\partial z}{\partial x} = (A)$

- (A) $\frac{yz}{z^2 xy}$; (B) $\frac{yz}{xy z^2}$; (C) $\frac{xy z^2}{yz}$; (D) $\frac{z^2 xy}{yz}$.
- 6、已知 $\iint \sqrt{a^2 x^2 y^2} d\sigma = \pi$,其中 $D: x^2 + y^2 \le a^2$,则a = (D)

 - (A) 1; (B) $\sqrt[3]{\frac{1}{2}}$; (C) $\sqrt[3]{\frac{3}{4}}$; (D) $\sqrt[3]{\frac{3}{2}}$.
- 7、设 α 为常数,则级数 $\sum_{i=1}^{\infty} \left(\frac{\sin n}{n^3} \frac{\alpha}{\sqrt[3]{n}} \right)$ (C)
 - (A) 绝对收敛;
- (B) 条件收敛; (C) 敛散性与有 α 关;

- 8、 $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{n!}$ 在 $(-\infty, +\infty)$ 内的和函数是(A)
 - (A) e^{-x^2} ; (B) e^{x^2} ; (C) $-e^{-x^2}$; (D) $-e^{x^2}$.

得分

二、填空题 (本题共4小题,每小题3分,共12分)

- 9、函数 u = 2xy + 2z 在点 (1,1,2) 处的方向导数的最大值为______. ($2\sqrt{3}$)
- 10、交换积分次序 $\int_0^1 dx \int_0^{x^2} f(x,y) dy + \int_1^{\sqrt{2}} dx \int_0^{2-x^2} f(x,y) dy = \int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y}} f(x,y) dx$.
- 11、设 L 为 $\frac{x^2}{2} + \frac{y^2}{3} = 1$,其周长 a,则 $\iint_L (3x^2 4xy + 2y^2) ds = ______.$ (6a)
- 12、设 $f(x) = \begin{cases} -1, & -\pi < x \le 0 \\ 1 + x^2, & 0 < x \le \pi \end{cases}$,则其以 2π 为周期的傅里叶级数在点 $x = \pi$ 处 收敛于_____. $\left(\frac{1}{2}\pi^2\right)$

得分

三、计算题(共4小题,每题6分,共24分)

15、求 $\iint_{D} \frac{x^{2}}{y^{3}} dx dy$, 其中 D 是由 x = 2 , $y = \sqrt{x}$, xy = 1 围成.

14、求曲线 $\begin{cases} x^2 + z^2 = 10 \\ y^2 + z^2 = 10 \end{cases}$ 在点(1,1,3)处的切线和法平面方程.

13、设 $z = x \ln(x + \ln y)$,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, dz$.

16、设 $\int_L (x^2 - y) dx - (x + \sin^2 y) dy$,其中 L 是沿曲线 $y = \sqrt{2x - x^2}$ 从点 (0,0) 到点 (1,1) 的一段弧,证明积分与路径无关,并求积分值.

得分

四、综合计算题(共 3 小题, 17 题 8 分, 18-19 各 9 分, 共 26 分) $[9\ \beta]$ 19、求平面 $\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$ 和柱面 $x^2 + y^2 = 1$ 的交线上与 xoy 平面距离最短的点.

[8分] 17、求双曲抛物面 z = xy 被柱面 $x^2 + y^2 = 2$ 所截得的曲面面积.

[9分] 18、求 $\sum_{n=1}^{\infty} \frac{n}{2^n} x^{n-1}$ 的收敛域与和函数.

得分		
10 70		
	- 1	
	- 1	

五、计算题(本题9分)

得分

六、分析题 (本题5分)

20、求 $\iint_{\Sigma} (z^2 - 1)x \, dy dz + xy \, dz dx + z \, dx dy$, 其中 $\Sigma : x^2 + y^2 = z$,(0 \leq z \leq 4)取下侧.

21、已知,阿贝尔判别法是这样描述的: 设 $\{b_n\}$ 为单调有界数列,且 $\sum_{n=1}^{\infty}a_n$ 收敛,则

 $\sum_{n=1}^{\infty} a_n b_n$ 收敛. 下面讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\frac{p+\frac{1}{n}}{n}}}$ $(p \in R)$ 的敛散性,如果收敛请判断绝对收敛与条件收敛.

2019-2020-2 高等数学 A2 期末考卷 (A)-参考答案

一、选择题: BBCD ADCA

二、填空题: 9、
$$2\sqrt{3}$$
 10、 $\int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y}} f(x,y) dx$ 11、6a 12、 $\frac{\pi^2}{2}$

三、计算题 (每题6分)

13.
$$\frac{\partial z}{\partial x} = \ln(x + \ln y) + \frac{x}{x + \ln y} \dots 2$$

$$\frac{\partial z}{\partial y} = \frac{x}{x + \ln y} \cdot \frac{1}{y} \dots 2$$

$$\frac{\partial z}{\partial y} = \frac{x}{x + \ln y} \cdot \frac{1}{y} \dots 2$$

$$\frac{\partial z}{\partial y} = \frac{x}{x + \ln y} \cdot \frac{1}{y} \dots 2$$

14.
$$\Leftrightarrow F(x, y, z) = x^2 + z^2 - 10$$
, $G(x, y, z) = y^2 + z^2 - 10$

$$\vec{T} = \begin{vmatrix} i & j & k \\ 2x & 0 & 2z \\ 0 & 2y & 2z \end{vmatrix} = \begin{vmatrix} i & j & k \\ 2 & 0 & 6 \\ 0 & 2 & 6 \end{vmatrix} = (-12, -12, 4) \vec{x}(3, 3, -1) \dots 2$$

$$3(x-1)+3(y-1)-(z-3)=0$$
,

四、综合计算题(17题8分,18-19题各9分)

可得
$$L_x = \frac{1}{3}\lambda + 2\mu x = 0$$

$$L_y = \frac{1}{4}\lambda + 2\mu y = 0$$

$$L_z = 2z + \frac{1}{5}\lambda = 0$$

$$\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$$

$$x^2 + y^2 = 1$$

解得,
$$x = \frac{4}{5}, y = \frac{3}{5}, z = \frac{35}{12}$$
 或 $x = -\frac{4}{5}, y = -\frac{3}{5}, z = \frac{85}{12}$ 2分

五、计算题 (本题 9 分)

六、分析题(本题5分)

21、解答要点

②
$$p > 1$$
 , $\left| \frac{(-1)^{n-1}}{n^{p+\frac{1}{n}}} \right| = \frac{1}{n^{p+\frac{1}{n}}} < \frac{1}{n^p}$, $\bar{m} \sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛 , 故级数绝对收敛 ;1 分

另外由于
$$\frac{\left|\frac{(-1)^{n-1}}{n^{\frac{1}{n}}}\right|}{\frac{1}{n^{p}}}$$
 $\rightarrow 1$ $(n \rightarrow \infty)$, 而 $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ 发散 , 故级数 $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{n}}}$ 发散 ,