实验步骤

步骤 1: 系统认知

通过网址进入虚拟实验界面,点击开始按钮,进入虚仿实验系统,点选"系统认知"按钮后,自主学习"原理认知"、"设备认知"、"实验步骤"等内容,然后完成"小测试"并提交。

图 1 系统认知模块

步骤 2: 系统建模与模型参数辨识

1) 点击 按钮,返回实验引导界面,点选"在线实验"按钮,进入在线实验平台(图 2),点击左侧的"系统模型参数辨识"按钮,进行系统模型建模与参数辨识实验。

图 2 系统建模与模型参数辨识

- 2) 将左侧动态界面中的"水泵"、"电磁阀"、"连通阀"、"电动阀 2"设置为"开"状态;将"电动阀 1"设置为关状态,构成二阶液位系统;
- 3) 在"水箱1阶跃响应曲线"界面,点击"响应曲线"按钮,获取水箱1的阶跃响应数据,并绘制阶跃响应曲线(图 5);由响应曲线图可知,水箱1模型可用一阶惯性环节表示(式1)。

$$G(s) = \frac{K_1}{T_1 s + 1}$$

其中,模型参数 Ki和 Ti可由阶跃响应曲线获得。

- 4) 点击"曲线拟合"按钮对阶跃响应曲线进行四阶多项式拟合,并绘制拟合曲线;点击"参数辨识"按钮对拟合曲线进行参数辨识,得到一阶液位系统的模型参数 K₁和 T₁,填入"系统参数"界面。
 - 5) 同理,得到水箱 2 的模型参数 1/2,填入"系统参数"界面。
 - 6) 点击 "保存模型"按钮, 完成系统建模。

步骤 3: 一阶系统的 PID 控制规律研究

1) 点击 "在线实验" 界面上的 "PID 控制规律研究" 按钮,进入数字 PID 控制界面 (图 3)。研究一阶系统

图 3 PID 控制规律研究

- 2) 将左侧动态界面中"水泵"、"电磁阀"、"电动阀"设置为"开"状态,点击"启动系统"按钮开始实验;
- 3) 在控制界面上"模型参数"框中,填入上一步骤中建立的模型参数 K1、 T1, 点击"创建模型"按钮, 建立

-阶被控系统的传递函数模型;

- 4) 将采样/控制周期 T设置为 0.1s,设定值 R设置为 100;
- 5) 研究 PID 控制规律中比例环节 P 的作用:将控制参数 Ki 和 Kd 设置为 "0",设置比例系数 Kp 为不同的值(由小到大或由大到小),观察响应曲线图,分析不同比例系数对控制效果的影响。
 - 6) 挑选理想的纯比例控制参数 Kp, 在此基础上加入积分环节 Ki, 考察积分环节对控制效果的影响。
 - 7) 继续加入微分环节 Kd, 考察微分环节对系统控制效果的影响。
 - 8) 选取不同的采样/控制周期 T, 考察数字 PID 控制中采样/控制周期 T 对控制效果的影响。

步骤 4: PID 参数的工程整定法——扩充临界比例法

1)选择合适的初始采样周期 T₀,将控制器设置为比例 (P)控制器,形成闭环,改变比例系数,使得系统对 阶跃输入的响应达到临界振荡状态 (临界稳定)。将这时的比例系数记为 Kr,振荡周期记为 Tr。

- 2) 选择控制度 Q, 控制度 Q 的定义是以数字 PID 控制和模拟 PID 控制所对应的过渡过程误差平方的积分之比。
- 3) 根据齐格勒-尼柯尔斯(Ziegle-Nichols)经验公式,表 1 给出由这两个基准参数得到不同类型调节器的调节参数。

表 1 扩充临界比例法确定采样周期及数字控制器参数

and the second second					
控制度Q	控制规律	T/Tr	Kp/Kr	Ti/Tr	Td/Tr
1.05	PI PID	0.03 0.014	0.53 0.63	0.88 0.49	0.14
1.20	PI PID	0.05 0.043	0.49 0.47	0.91 0.47	0.16
1.50	PI PID	0.14 0.09	0.42 0.34	0.99 0.43	0.20
2.00	PI PID	0.22 0.16	0.36 0.27	1.05 0.40	0.22

4) 将由表 1 得到的控制参数填入仿真界面,观察响应曲线,如控制效果不理想,再根据步骤 4 的结果适当调整 PID 各参数,直至得到满意的控制效果。

步骤 5: PID 控制算法的积分项改进

- 1) 在主界面上点选"积分分离 PID 控制"按钮,进入积分分离 PID 控制界面 (图 4)。
- 2) 将步骤 4 中得到的 PID 整定参数输入相应的控制参数框。
- 3) 设定积分分离阀值 ε , 调整 PID 参数, 得到理想的响应曲线。
- 4) 调整阀值 ε 的大小,观察阀值对积分分离式 PID 控制效果的影响。
- 5) 与步骤 4 得到的基本 PID 控制的响应曲线比较,分析二者的优劣。

图 4 PID 控制的积分项改进

步骤 6: 单水箱串级控制研究

1) 在主界面上点选"单水箱串级控制"按钮,进入单水箱串级控制界面(图5)。

图 5 PID 控制的积分项改进

2) 在控制界面上填入模型参数,并选取干扰的类型,填写必要的干扰参数。

- 3) 采用基本 PID 控制算法 (内环参数 PID 参数设为 0),观察基本 PID 控制对干扰的抑制效果。
- 4) 调节串级控制系统中内环与外环的 PID 参数,比较串级控制与基本 PID 控制对干扰的抑制作用。
- 5) 改变干扰的类型,调整串级控制参数,观察串级控制对不同干扰的抑制效果。

步骤 7: 双水箱前馈—串级控制研究

- 1) 在主界面上点选"前馈一串级控制"按钮,进入双水箱前馈一串级控制界面(图6)。
- 2) 在控制界面上填入模型参数,并选取干扰的类型。
- 3) 采用基本 PID 控制算法,观察基本 PID 控制对干扰的抑制效果。
- 4) 计算前馈控制器的模型,填入相应的表格。
- 5) 调节控制系统参数,比较前馈—串级控制与基本 PID 控制对干扰的抑制作用。
- 6) 关闭前馈—串级控制界面,返回实验系统主界面。

图 6 PID 控制的积分项改进

步骤 8: 自主设计控制算法

- 1) 在主界面上点选"算法设计"按钮,进入自主算法设计界面。
- 2) 在控制界面上填入模型参数。
- 3) 采用基本 PID 控制算法,调节控制参数,得到理想的响应曲线。
- 4) 点击界面上的"程序设计"按钮,在弹出的设计界面中,根据特定控制要求,自主编写控制算法。
- 5) 对控制算法进行编译,保持后返回控制界面。
- 6) 点击"自主控制"按钮,采用自主设计的控制算法,对液位进行控制,观察响应曲线。
- 7) 重复 4)~6), 直至算法满足控制效果。
- 8) 保存实验结果后,返回主界面。

图 7 自主编写算法实验

步骤 9: 远程单水箱液位 PID 控制

1) 在主界面上点选"远程实验"按钮,按提示远程登陆本地实体实验平台(图 8)。

图 8 就地计算机控制实验系统

2) FLASH 中点击电动阀,将其状态设置为"开",放空将水箱 1。如图 9 所示。

图 9 在 FLASH 中直接点击水泵或阀门进行控制图

10 一阶液位控制实验选择

- 3) 单击工具栏的"新建"或菜单栏的"系统"的"新建实验"。
- 4) 进入实验选择窗口,选择"单回路简单控制实验",如图 10 所示。进入实验设置窗口,选择"一阶液位控制实验"。本实验采用水泵作为控制执行部件,电动阀采用固定开口度进行实验,因此采用默认的控制选择——水泵控制。
 - 5) 单击 "下一步", 进入实验设置窗口, 输入液位目标值及球阀开口度的初始值, 选择 "普通 PID 控制算法"。
- 6) 单击"确定",完成实验设置,在弹出的实验提示窗口中,按照提示的步骤完成相应的操作进入下一步,勾选已完成上述选择,再点击确定按钮,完成实验设置,并进行实验,实验结果由图中示波器显示。

7) 进入实验主界面后, 在右下角的 PID 设置窗口中, 用凑试法选择 Kp、Ki、Kd (Kp 推荐值在 1000 左右,

Ki 在 17 左右, 实验过程中不能改变 PID 的参数值) 然后点击 "开始"按钮,实验开始。如图 11 所示。实验过程中可以直接修改参数值。

8) 在单击"开始"按钮或者菜单栏"操作"的"开始实验"进行实验后,观察实验现象并记录数据,运行一

段时间后单击"暂停"实验按钮,然后单击"查询"进入

查询项记录数据并填入表格。用户也可保存曲线并导出数据到 Excel,通过 Excel 查看采集到的数据。

- 9) 每次实验完毕请将水箱里的水放完后,最后单击"停止"按钮,电动球阀关闭后,然后进入"新建"并重复上述实验步骤,以找出最佳 PID 参量。
 - 10) 通过修改 PID 控制参数实现对液位控制的不同效果,观察实验现象,并记录数据。

步骤 10: 远程双水箱串级控制

1) 进入系统主界面,单击工具栏的"新建"或菜单栏的"系统"的"新建实验"。进入实验选择窗口,选择 "串级控制实验",进入实验设置窗口,选择"二阶串级液位控制实验",实验信息框中提示实验的内容,窗口中 还给出了实验的原理框图。如图 12。控制选择框中选择水泵控制。干扰选择框中选择"水泵扰动"。

图 12 串级控制实验选择

图 13 串级控制对象参数设置

2) 单击"下一步"进入实验参数设置窗口,输入水箱液位的目标值及球阀开口度的初始值,主回路算法选择 PID 控制算法,副回路算法选择 PI 控制算法(图 13)。

- 3) 点击水泵,设置扰动类型为"阶跃信号"。
- 4) 单击"确定",完成实验设置,在弹出的实验提示窗口中,按照提示的步骤完成相应的操作。
- 5) 进入实验界面后,在右下角的 PID 设置窗口中,输入适合的主回路、副回路的 PID 控制参数。如图 14 所示。
- 6) 开始实验,观察串级控制系统的液位变化,分析流量曲线与液位曲线的变化。系统稳定后,将自动给入水泵扰动的阶跃信号到水箱 1 的副回路控制中,观察系统的调整曲线。保存控制曲线,并分析控制效果。
- 7) 放空液位,点击水泵,设置扰动类型为"脉冲信号"。重复上述步骤 4)~6)。

8) 放空液位, 点击水泵, 设置扰动类型为"白噪声信号"。重复上述步骤④~⑥。

9)分析串级控制对不同干扰下的控制效果优劣,并分析原因。