Инвариантная лабораторная работа "Таблица Интегралов и дифференциалов"

Нюхалов Денис Декабрь 2020

Интегралы	Дифференциалы
$\int 0 \cdot dx = C$	dc = 0, C = const
$\int dx = \int 1 \cdot dx = x + C$	$d(x^n) = nx^{n-1}dx$
$\int x^n \cdot dx = 1 \cdot dx = \frac{x^{n+1}}{n+1} + C, n \neq -1, x > 0$	$d(a^x) = a^x \cdot \ln a \cdot dx$
$\int \frac{dx}{x} = \ln x + C$	$d(e^x) = e^x dx$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$d(\log_a x) = \frac{dx}{x \ln a}$ $d(\ln x) = \frac{dx}{x}$
$\int e^x dx = e^x + C$	$d(\ln x) = \frac{dx}{x}$
$\int \sin x dx = -\cos x + C$	$d(\sin x) = \cos x dx$
$\int \cos x dx = \sin x + C$	$d(\cos x) = -\sin x dx$
$\int \frac{dx}{\sin^2 x} = -\cot x + C$	$d(\sqrt{x}) = \frac{dx}{2\sqrt{x}}$
$\int \frac{dx}{\cos^2 x} = -\tan x + C$	$d(\tan x) = \frac{dx}{\cos^2 x}$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, x < a $	$d(\cot x) = -\frac{dx}{d(\cot x)}$
$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + C$	$d(arcsinx) = \frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln\left \frac{a + x}{a - x}\right + C, x neq a$	$d(arccosx) = -\frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln x + \sqrt{x^2 \pm a^2} + C$	$d(arctgx) = \frac{dx}{1+x^2}$

1 Таблица интегралов