1.Algebră liniară

1. Permutări

O permutare de ordin n, $n \in \mathbb{N}^*$ este o funție **bijectivă** $\sigma: A \to A$, unde A={1,2,...,n}.

Mulțimea permutărilor de ordin n are <u>n! elemente</u> și se notează S_n .

Permutările se notează
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$
.

Dacă
$$\sigma \in S_n$$
 atun $\sigma^{-1} = \begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$ se numește **inversa permutări** σ .

Permutarea e = $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$ se numește **permutarea identică**.

Dacă $\sigma, \tau \in S_n$ atunci:

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(\tau(1)) & \sigma(\tau(2)) & \sigma(\tau(3)) & \dots & \sigma(\tau(n)) \end{pmatrix} \text{ reprezintă}$$
 produsul permutărilor $\sigma \circ t$.

Se numește <u>inversiune</u> a permutării $\sigma \in S_n$ o pereche ordonată $(i,j) \in \{1,2,...,n\} \times \{1,2,...,n\}, i < j \ \text{și} \ \sigma(i) > \sigma(j).$ Numărul de inversiuni ale unei permutări se notează $m(\sigma)$, iar $\varepsilon(\sigma) = (-1)^{m(\sigma)}$ se numește <u>semnul</u> pemutării. Dacă $\varepsilon(\sigma) = 1$ atunci σ se numește permutare <u>pară</u>, iar dacă $\varepsilon(\sigma) = -1$ atunci σ se numește permutare <u>impară</u>.

Proprietăți:

1)
$$\varepsilon(\sigma \circ \tau) = \varepsilon(\sigma) \cdot \varepsilon(\tau)$$
;

$$2)\varepsilon(e)=1;$$

$$3)\varepsilon(\sigma^{-1}) = \varepsilon(\sigma) \ \forall \ \sigma \in S_n$$
;

O permutare $\sigma \in S_n$ cu $\sigma(i) = j$, $\sigma(j) = i$ și $\sigma(k) = k \ \forall i, j \in \{1,2,...,n\}, i \neq j$ și $k \in \{1,2,...,n\}, k \neq i, k \neq j$ se numește **transpoziție**, notată (ij).

Proprietăți:

- 1) Orice transpoziție este permutare impară;
- (ij) = (ji);
- 3) $(ij)^{-1} = (ij);$
- 4) $(ij)^2 = e$;

2. Matrice

Funcția $A: \{1,2,...,m\} \times \{1,2,...,m\} \rightarrow D$ se numește **matrice** cu m linii si n coloane cu elemente din mulțimea D. Mulțimea D reprezintă una din mulțimile de numere $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Mulțimea matricelor cu m linii si n coloane se notează $M_{m,n}(D)$, elementele matricelor se notează a_{ij} .

Fie $A, B \in M_{m,n}(D)$, $A = (a_{ij})$ ș $i B = (b_{ij})$. Matricea $(a_{ij} + b_{ij}) \in M_{m,n}(D)$ se numește <u>suma</u> matricelor A și B, notată A + B.

Fie $A \in M_{m,n}(D)$, $B \in M_{n,p}(D)$. Matricea $(c_{ij}) \in M_{m,p}(D)$, $cu\ c_{ik} = \sum_{j=1}^n a_{ij}b_{jk}$ se numește **produsul** matricelor A și B, notată $A \cdot B$.

Matricea I_n se numește matricea unitate iar \mathcal{O}_n matricea nulă.

Dacă $A = (a_{ij}) \in M_{m,n}(D)$, atunci <u>transpusa</u> matricei A este matricea $^tA = (a_{ji})$. Au loc relațiile:

1)
$$^{t}(^{t}A) = A;$$

2)
$${}^{t}(A+B) = {}^{t}A + {}^{t}B;$$

3)
$$^t(a \cdot A) = a \cdot ^tA;$$

4)
$${}^t(A \cdot B) = {}^tB \cdot {}^tA$$
; $\forall A \in M_{m,n}(D)$ și $B \in M_{n,p}(D)$.

3. Dereminanți

Dacă $A=\left(a_{ij}\right)$, $\forall A\in M_n(D)$, numărul $\sum_{\sigma\in S_n}\varepsilon(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}\dots a_{n\sigma(n)} \text{ se numește } \underline{\text{determinantul}}$ matricei , notat $\det \mathbf{A}$.

Dacă n = 2,
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Dacă n = 3, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{12}a_{23}a_{31} + a_{13}a_{23}a_{33} + a_{13}a_{23}a_{23} + a_{13}a_{23}a_{2$

$$a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{32}a_{23}a_{11} - a_{12}a_{21}a_{33}$$

Proprietăți: Fie $A \in M_n(D)$

- 1) $\det(A) = \det({}^tA)$
- 2) Dacă toate elementele unei linii (coloane) sunt nule, atunci det(A) = 0
- 3) Dacă două linii (coloane) ale unei matrici au același elemente, atunci det (A) = 0
- 4) Dacă schimbăm două linii (coloane) între ele, atunci determinantul obținut este opusul determinantului inițial
- 5) Dacă două linii (coloane) ale unei matrici sunt proporționale, atunci det (A) = 0
- 6) Dacă într-o matrice adunăm toate elementele unei linii (coloane) cu elementele corespunzătoare unei alte linii (coloane) înmulțite cu un număr, valoarea determinantului nu se schimbă

- 7) Dacă înmulțim toate elementele unei linii (coloane) dintr-o matrice cu un număr, valoarea determinantului se înmulțește cu acel număr
- 8) $\det(AB) = \det(A) \cdot \det(B)$

4. Inversa unei matrice

Fie $A \in M_n(D)$. Spunem că A este **inversabilă** dacă există o matrice $B \in M_n(D)$, astfel încât $A \cdot B = B \cdot A = I_n$. Inversa se notează cu A^{-1} .

O matrice este inversabilă dacă și numai dacă $\det(A) \neq 0$. În acest caz, $A^{-1} = \frac{1}{\det A} \cdot A^*$, A^* fiind **adjuncta** matricei A.

 $A^* = (A_{ij})$, $unde\ A_{ij} = (-1)^{i+j}\delta_{ij}$, $unde\ \delta_{ij}$ fiind determinantul obținut din tA prin suprimarea liniei i și coloanei j

$$A \cdot X = B \Leftrightarrow X = A^{-1} \cdot B \text{ si } X \cdot A = B \Leftrightarrow X = B \cdot A^{-1}$$

5. Rangul unei matrice

Fie
$$A = (a_{ij})_{\substack{i=\overline{1,n}\\j=\overline{1,m}}} \in M_{m,n}(D)$$
 și $r \in \mathbb{N}, 1 \le r \le n$

 $\min(m,n)$. Se numește minor de ordin r al matricei A determinantul matricei format din elementele situate la intersecțiile a r linii și r coloane ale matricei A. Numărul natural r este **rangul** matricei A, notat rang A = r, dacă există minor de ordin r nenul a lui A , iar toți minorii de ordin mai mare decât r, dacă exista, sunt nuli.

6. Sisteme de ecuații liniare. Sistemul

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} m, n \in \mathbb{N}^*, a_{ij}, b_{ij} \in D$$

Se numește sistem liniar cu m ecuații și n necunoscute.

Teorema lui Kronecker-Capelli: Un sistem de ecuații liniare este compatibil dacă și numai dacă rang $A = \text{rang } \bar{A}$, unde A, respectiv \bar{A} reprezintă matricea asociată sistemului, respectiv matricea extinsă a sistemului.

Minorul nenul, de ordin r, care dă rangul matricei A se numește **minor principal.** Orice minor al matricei \overline{A} care se obține din minorul principal prin bordarea cu o linie și o coloană formată din termenii liberi, se numește **minor caracteristic**.

Alforitmul de rezolvare a unui sistem de m ecuații cu n neconoscute:

- Se scrie matricele A $\,$ și \bar{A}
- Dacă m=n și $\det(A) \neq 0$, atunci sistemul este compatibil determinat și se rezolvă cu **regula lui Cramer:** $x_i = \frac{dx_i}{d}$, unde d = det (A) și dx_i este determinantul obținut din determinantul matricei A a sistemului înlocuind coloana i cu coloana termenilor liberi.
- Dacă $m \neq n \ sau \ \det(A) = 0$, determinăm rang A și determinantul principal d_p . Calculăm toți minorii caracteristici si dacă există cel puțin un d_c nenul, sistemul este incompatibil.
- Dacă toți d_c sunt nuli, sistemul este compatibil nedeterminat. Atunci procedăm astfel:
 - Stabilim ecuațiile principale (ecuațiile sistemului care corespund liniilor minorului principal) și ecuațiile secundare

- \circ Stabilim necunoscutele principale și necunoscutele secundare, notate cu α, β ...
- Se formează sistemul de ecuațiile principale și se rezolvă

Un sistem liniar se numește **omogen** dacă toți termenii liberi sunt nuli.

2.Şiruri

1. Şiruri de numere reale

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale.

Şirul $(x_n)_{n\in\mathbb{N}}$ se numeşte **mărginit** dacă există un $m\in\mathbb{R}$ astfel încât m>0 și $|x_n|\leq m, \forall n\in\mathbb{N}$.

Şirul $(x_n)_{n\in\mathbb{N}}$ este **crescător** dacă $x_n\leq x_{n+1}$, $\forall n\geq 1$

Şirul $(x_n)_{n\in\mathbb{N}}$ este **descrescător** dacă $x_n\geq x_{n+1}$, $\forall n\geq 1$

Şirul $(x_n)_{n\in\mathbb{N}}$ este **monoton** dacă este crescător sau descrescător.

Spunem că șirul $(x_n)_{n\in\mathbb{N}}$ converge la l și scriem $\lim_{n\to\infty}x_n=l$ dacă are loc una din condițiile:

- 1) Orice vecinătate a lui l conține toți termenii șirului începând de la un anumit rang.
- 2) $\forall V \in V(l), \exists n_y \in \mathbb{N}, astfel \ \hat{n} c \hat{a} t \ \forall n \in \mathbb{N}, n \geq n_y \rightarrow x_n \in V$

Dacă l este finit, spunem că șirul este convergent.

Şirurile care nu sunt convergente sunt divergente.

Un şir convergent este mărginit.

2. Teorema lui Weierstrass.

Orice șir monoton și mărginit este convergent!!!

3. Criteriul majorării

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale, $x\in\mathbb{R}$ și $(a_n)_{n\in\mathbb{N}}$ un șir de termeni pozitivi cu $a_n\to 0$. Dacă $|x_n-x|\le a_n$, $\forall n\in\mathbb{N}$, atunci $\lim_{n\to\infty}x_n=x$.

Criteriul raportului

Fie $(x_n)_{n\in\mathbb{N}}$ un șir de termeni strict pozitivi, astfel încât există $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=l$. Atunci:

- Dacă $0 \le l < 1$, atunci $\lim_{n \to \infty} x_n = 0$;
- Dacă $l \geq 1$, atunci $\lim_{n \to \infty} x_n = \infty$;

4. Criteriul cleștelui:

Fie $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(x_n)_{n\in\mathbb{N}}$ șiruri de numere reale și $\forall n\geq n_0$, $a_n\leq x_n\leq b_n$. Dacă $\lim_{n\to\infty}a_n=l$ și $\lim_{n\to\infty}b_n=l$, atunci și $\lim_{n\to\infty}x_n=l$.

5. Criteriul Stolz-Cesaro:

Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$. Dacă $(y_n)_{n\in\mathbb{N}}$ este strict monoton și nemărginit și $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=l\in\mathbb{R}$, atunci $\lim_{n\to\infty}\frac{x_n}{y_n}=l$.

6. Limite remarcabile:

1)
$$\lim_{n \to \infty} q^n = \begin{cases} 0, dacă |q| < 1\\ 1, dacă q = 1\\ \infty, dacă q \in (1, \infty)\\ \nexists, dacă q \leq -1 \end{cases}$$

2)
$$\lim_{n \to \infty} n^a = \begin{cases} 0, dacă \ a < 0 \\ 1, dacă \ a = 0 \\ \infty, dacă \ a > 0 \end{cases}$$

3)
$$\lim_{n \to \infty} (a_p n^p + a_{p-1} n^{p-1} + \dots + a_1 n + a_0) = \begin{cases} \infty, a_p > 0 \\ -\infty, a_p < 0 \end{cases}$$

4)
$$\lim_{n \to \infty} \frac{(a_{p}n^{p} + a_{p-1}n^{p-1} + \dots + a_{1}n + a_{0})}{b_{q}n^{q} + b_{q-1}n^{q-1} + \dots + b_{1}n + b_{0}} = \begin{cases} 0, dacă p < q \\ \pm \infty, dacă p < q \\ \frac{p}{q}, dacă p = q \end{cases}$$

$$5)\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

6)
$$\lim_{n\to\infty} 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = e$$

7) Dacă
$$\lim_{n \to \infty} a_n = 0$$
, $a_n \neq 0$, atunci

$$\lim_{n\to\infty} (1+a_n)^{\frac{1}{a_n}} = e$$

$$\lim_{n \to \infty} \frac{a^{an} - 1}{a_n} = \ln a$$

$$\lim_{n\to\infty} \frac{\ln(1+a_n)}{a_n} = 1$$

$$\lim_{n\to\infty}\frac{\sin(a_n)}{a_n}=1$$

$$\lim_{n\to\infty} \frac{\arcsin(a_n)}{a_n} = 1$$

$$\lim_{n\to\infty} \frac{\operatorname{tg}(a_n)}{a_n} = 1$$

$$\lim_{n\to\infty} \frac{\arctan(a_n)}{a_n} = 1$$

Nedeterminări: $\infty - \infty$; $0 * \infty$; $\frac{0}{0}$; $\frac{\infty}{\infty}$, 1^{∞} , 0^{0} , ∞^{0} .

3.Limite de funcții

Fie $f: D \to \mathbb{R}$ ș $i x_0$ un punct de acumulare a lui D.

Funcția f are limita $l \in \overline{\mathbb{R}}$ în punctul x_0 (scriem $\lim_{x \to x_0} f(x) = l$) dacă $\forall V \in V(l), \exists U \in V(x_0)$ astfel încât $\forall x \in D \cap U, x \neq x_0$ să rezulte $f(x) \in V$.

Dacă x_0 este punct de acumulare pentru $D \cap (-\infty, x_0]$, respectiv $D \cap [x_0, \infty)$, atunci f are limita $l \in \overline{\mathbb{R}}$ în $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$.

Criteriul majorării:

Fie $f, g: D \to \mathbb{R}$, x_0 un punct de acumulare al lui D.

Dacă $\lim_{x\to 0}g(x)=0$ și există $l\in\mathbb{R}$, astfel încât $|f(x)-l|\leq g(x)$, $\forall x\in D$, atunci $\lim_{x\to x_0}f(x_0)=l$.

Fie $f,g:D\to\mathbb{R},x_0$ un punct de acumulare al lui D și $f(x)\leq g(x), \forall x\in D$.

a) Dacă
$$\lim_{x \to x_0} f(x) = \infty$$
, atunci $\lim_{x \to x_0} g(x) = \infty$

b) Dacă
$$\lim_{x \to x_0} g(x) = -\infty$$
, atunci $\lim_{x \to x_0} f(x) = -\infty$

Teoremă

Fie $f, g: D \to \mathbb{R}$, x_0 un punct de acumulare al lui D.

Dacă
$$\lim_{x \to x_0} f(x) = l_1$$
, $\lim_{x \to x_0} g(x) = l_2$ și există $V \in V(x_0)$ astfel încât $f(x) \le g(x)$, $\forall x \in V \cap (D \setminus \{x_0\})$, atunci $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Asimptote

Asimptotă orizontală. Fie $f:D\to\mathbb{R}$ astfel încât ∞ (respectiv $-\infty$) este punct de acumulare pentru D. Dreapta de ecuație y = a este asimptotă orizontală la graficul funcției spre ∞ (respectiv $-\infty$) dacă $\lim_{x\to x_0} f(x) = a$ (respectiv $\lim_{x\to x_0} f(x) = a$).

Asimptotă oblică. Fie $f:D\to\mathbb{R}$ astfel încât ∞ ,respectiv $-\infty$ sunt pencte de acumulare ale lui D. Dreapta de ecuație $y=mx+n,\ m,n\in\mathbb{R},m\neq 0$, este asimptotă oblică la ∞ (respectiv $-\infty$) \Leftrightarrow există și sunt finite numerele $m=\lim_{x\to\pm\infty}\frac{f(x)}{x}$ și n=(f(x)-mx). O funție nu poate avea simultan asimptotă oblică și orizontală spre $\infty(-\infty)$.

Asimptotă verticală: Fie $f:D\to\mathbb{R}$ astfel încât x_0 este asimptotă verticală la stânga (respectiv dreapta) pentru graficul funcției f dacă $\lim_{\substack{x\to a\\x< a}} f(x) = \pm\infty$ ($respectiv \lim_{\substack{x\to a\\x> a}} f(x) = \pm\infty$).

4.Funcții continue. Funcții derivabile

1.Funcții continue

Funcția $f:D\to\mathbb{R}$ este **continuă** în punctul $a\in D$ dacă pentru orice șir $(x_n)_{n\geq 1}$, $x_n\in D$ astfel încât $\lim_{n\to\infty}x_n=a$, atunci $\lim_{n\to\infty}f(x_n)=f(a)$.

Dacă $a \in D$ este punct de acumulare pentru D, atunci f continuă în $a \Leftrightarrow \lim_{n \to \infty} f(x_n) = f(a)$.

O funcție $f:D\to\mathbb{R}$ este continuă pe D dacă este continuă în fiecare punct $a\in D$. Dacă $a\in D$ este punct de acumulare pentru $(-\infty,a)\cap D$, spunem că f este continuă la stânga în a dacă $\lim_{\substack{x\to a\\x< a}} f(x)=f(a)$. Analog la dreapta.

$$f: D \to \mathbb{R}$$
 este **continuă în a** $\Leftrightarrow \lim_{\substack{x \to a \\ x < a}} f(x) = \lim_{\substack{x \to a \\ x > a}} f(x) = f(a)$

Un punct $a \in D$ este punct de **discontinuitate de speța I** al funcției $f:D \to \mathbb{R}$ dacă are limitele laterale finite în a, dar un este continuă în a. Dacă cel puțin una din limitele laterale nu există sau sunt infinite, atunci a este punct de **discontinuitate de speța II**.

Proprietăți

- 1) Teorema lui Weierstrass: Orice funcție continuă pe un interval compact este mărginită și își atinge marginile.
- **2)Proprietatea lui Darboux:** O funție $f: I \to \mathbb{R}$ are proprietatea lui Darboux pe intervalul I dacă $\forall x_1, x_2 \in I$ și a cuprins între $f(x_1)$ și $f(x_2)$ există $c \in (x_1, x_2)$ astfel încât f(c) = a.
 - O funcție are proprietatea lui Darboux ⇔ imaginea oricărui interval prin fucția f este tot un interval.
 - O funcție cu proprietatea lui Darboux **nu** are puncte de discontinuitate de speța I.
- **3)Lema lui Bolzano:** Fie $f:[a,b] \to \mathbb{R}$ o funcție continuă astfel încât $f(a) \cdot f(b) < 0$. Atnci există $c \in (a,b)$, astfel încât f(c) = 0.

Orice funcție continuă care un se anulează pe I are semn constant pe I.

Orice funție $f:I\to\mathbb{R}$ continuă și injectivă este strict monotonă

Dacă $f: I \to J$ este continuă și injectivă, atunci $f^{-1}: J \to I$ este continuă și monotonă.

2.Funcții derivabile

Fie $f\colon D\to\mathbb{R}$ o funcție și $x_0\in D$ un punct de acumulare al lui D. Spunem că f **are derivată** în punctul x_0 dacă există $f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\in\overline{\mathbb{R}}$. Dacă $f'(x_0)\in\mathbb{R}$, atunci f este **derivabilă** în x_0 .

O funcție $f:D\to\mathbb{R}$ este derivabilă pe D dacă este derivabilă în orice punct $x_0\in D$.

Se definesc derivatele laterale:

$$f'_{s}(x_{0}) = \lim_{\substack{x \to x_{0} \\ x < x_{0}}} \frac{f(x) - f(x_{0})}{x - x_{0}} \text{ si } f'_{d}(x_{0}) = \lim_{\substack{x \to x_{0} \\ x > x_{0}}} \frac{f(x) - f(x_{0})}{x - x_{0}}$$

Funcția $f: D \to \mathbb{R}$ este derivabilă în $x_0 \Leftrightarrow f_s'(x) = f_d'(x) \in \mathbb{R}$.

Dacă f este derivabilă în x_0 , graficul funcției admite **tangentă** în punctul $N(x_0, f(x_0))$, de ecuație $y - f(x_0) = f'(x_0)(x - x_0)$.

Fie $f:D\to\mathbb{R}$ o funcție continuă, dar care nu este derivabilă în punctul $x=x_0$, însă are derivate laterale. Atunci:

- x_0 este **punct unghiular** dacă cel puțin o derivată laterală este finită
- x_0 este **punct de întoarcere** dacă derivatele laterale sunt infinite și diferite

ullet x_0 este **punct de inflexiune** dacă derivatele laterale sunt infinite și egale

Nr.	Derivate
1	c' = 0
2	x'=1
3	$(x^n)' = nx^{n-1}$
4	$\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}}$
5	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$
6	$(e^x) = e^x$
7	$(a^x) = a^x \ln a$
8	$(\ln x) = \frac{1}{x}$
9	$(\log_a x) = \frac{1}{x \ln a}$
10	$(\operatorname{arctg} x)' = \frac{1}{x^2 + 1}$
11	$\left(\operatorname{arcctg} x\right)' = -\frac{1}{x^2 + 1}$
12	$(\arcsin x) = \frac{1}{\sqrt{1 - x^2}}$
13	$\left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^2}}$
14	$(\sin x) = \cos x$
15	$(\cos x)' = -\sin x$
16	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$
17	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$
18	$\left(\sqrt{x^2 - a^2}\right) = \frac{x}{\sqrt{x^2 - a^2}}$
19	$\left(\sqrt{x^2 + a^2}\right) = \frac{x}{\sqrt{x^2 + a^2}}$
20	$\left(\sqrt{a^2 - x^2}\right) = -\frac{x}{\sqrt{a^2 - x^2}}$

$$(cf)' = cf'$$

$$(f+g)' = f' + g'$$

$$(f-g)' = f' - g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$(f \circ g)' = (f' \circ g)g'$$

$$(f^g)' = (gf^{g-1})f' + (f^g \ln f)g' = f^g \left(f'\frac{g}{f} + g' \ln f\right), \qquad f > 0$$

Dacă $f: D \to \mathbb{R}$ este derivabilă, bijectivă, $f'(a) \neq 0$, atunci f^{-1} este derivabilă pe b = f(a), $a \in D$ și are loc relația $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Proprietăți ale funcțiilor derivabile

Fie funcția $f: D \to \mathbb{R}$, $x_0 \in D$. Punctul x_0 se numește:

- Punct de **maxim local** dacă $\forall V \in V(x_0)$ astfel încât $f(x) \le f(x_0)$, $\forall x \in V \cap D$.
- Punct de **minim local** dacă $\forall V \in V(x_0)$ astfel încât $f(x) \ge f(x_0)$, $\forall x \in V \cap D$.

Punctele de minim sau maxim local se numesc **puncte de extrem** local al funcției și se găsesc printre punctele critice ale funcției.

Teorema lui Fermat. Fie I un interval deschis și $x_0 \in I$ un punct de extrem local al funcției $f: I \to \mathbb{R}$. Dacă f este derivabilă în x_0 atunci $f'(x_0) = 0$.

Teorema lui Rolle. Fie $f:[a,b] \to \mathbb{R}$ o funcție continuă pe [a,b], derivabilă pe (a,b) și f(a) = f(b). Atunci există $c \in (a,b)$ astfel

încât f'(c) = 0.

Cosencințe . Fie $f:I\to\mathbb{R}$ o funcție derivabilă pe I interval deschis. Atunci:

- 1)Între două zerouri consecutive ale lui f se află cel puțin un zero al derivatei f'.
- 2)Între două zerouri consecutive ale lui f' se află cel puțin un zero al derivatei f.

Teoreme lui Lagrange: Fie $f:[a,b] \to \mathbb{R}$ o funcție continuă pe [a,b], derivabilă pe (a,b). Atunci există cel puțin un $c \in (a,b)$ astfel încât $\frac{f(b)-f(a)}{b-a} = f'(c)$.

Consecințe

- 1. O funcție derivabilă cu derivata nulă pe intervalul I este constantă pe I.
- 2. Două funcții derivabile cu derivatele egale pe un interval I diferă print-o constantă, pe I.
- 3. Fie f derivabilă pe I. Dacă $f'(x) \ge 0$, $\forall x \in I$, atunci f este **crescătoare** pe I, dacă $f'(x) \le 0$, $\forall x \in I$, atunci f este **descrescătoare** pe I.
- 4. Fie $f: I \to \mathbb{R}$ continuă pe I și $x \in I$. Dacă f este derivabilă pe $I \setminus \{x_0\}$ și există $\lim_{x \to x_0} f'(x) = l, \ l \in \overline{\mathbb{R}}$, atunci are f derivată în $x = x_0$ și $f'(x_0) = I$.

Teorema lui Darboux: Dacă $f:I\to\mathbb{R}$ este derivabilă pe I, atunci f' are proprietatea lui Darboux pe I.

Regula lui L'Hospital: Fie $a, b \in \mathbb{R}$, a < b și $I \subset \mathbb{R}$ un interval cu $(a, b) \subset I \subset [a, b]$.

Dacă $x_0 \in [a, b]$ și $f, g: I \setminus \{x_0\} \to \mathbb{R}$ sunt funcții cu proprietățile:

- $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \ (respectiv \pm \infty)$
- f, g derivabile și $g'(x_0) \neq 0, \forall x \in I \setminus \{x_0\}$
- există $\lim_{x \to x_0} \frac{f'(x_0)}{g'(x_0)} = l, l \in \mathbb{R}$

atunci există $U\in V(x_0)$ astfel ca $g(x)\neq 0$, $\forall x\in U\cap I\setminus\{x_0\}$ și $\lim_{x\to x_0}\frac{f(x)}{g(x)}=l$

3. Rolul derivatei a doua în studiul funcției

Fie $f:I\to\mathbb{R}$ o funcție de două ori derivabilă pe I Atunci:

- 1) dacă $f''(x) \ge 0$, $\forall x \in I$, atunci f este **convexa** pe I
- 2) dacă $f''(x) \le 0$, $\forall x \in I$, atunci f este **concavă** pe I
- 3) dacă $x_0 \in IntI$ este punct de inflexiune al lui f, atunci $f''(x_0) = 0$

Punctul x_0 este **punct de inflexiune** al lui f, dacă f are derivată în x_0 și dacă, de o parte a lui x_0 , f este convexă respectiv concavă pe cealaltă parte.