模型设定与数据问题

遗漏变量

真实模型: $y_i = x'_{i1}\beta_1 + x'_{i2}\beta_2 + \varepsilon_i$

实际估计模型: $y_i = x'_{i1}\beta_1 + u_i$

对比得到:遗漏的变量 $x_{i2}'\beta_2$ 被归入到新扰动项 $u_i=x_{i2}'\beta_2+arepsilon_i$

A. 遗漏变量 x_{i2} 与 x_{i1} 不相关。OLS 仍然可以一致地估计 β_1 ,但扰动项方差可能因此增加,从而影响 OLS 的精确度。

B. 遗漏变量 x_{i2} 与 x_{i1} 相关。OLS 不再是一致估计,其偏差被称为「遗漏变量偏差」。

解决方法

- 1. 加入尽可能多的控制变量。把遗漏的变量补充上去。
- 2. 代理变量法。使用另一个相近变量代替不可得的解释变量。一个理想的代理变量应满足以下两个条件: (i) 多余性(redundancy): 即代理变量仅通过影响遗漏变量而作用于被解释变量。"智商"仅通过对"能力"的作用来影响工资收入。换言之,假如有"能力"的数据,那么再引入"智商"作为解释变量就是多余的。(ii)剩余独立性: 遗漏变量中不受代理变量影响的剩余部分与所有解释变量均不相关。
- 3. 工具变量法(10章)
- 4. 使用面板数据(15-17章)
- 5. 随机实验和自然实验(18章)

无关变量

真实模型: $y_i = x'_{i1}\beta_1 + \varepsilon_i$

实际估计模型: $y_i = x'_{i1}\beta_1 + x'_{i2}\beta_2 + (\varepsilon_i - x'_{i2}\beta_2)$

加入了与被解释变量无关的解释变量 x'_{i2} ,OLS 仍然是一致的。

解释变量个数的选择

- 1. **校正可决系数** \overline{R}^2 : 选择解释变量的个数 K 以最大化 \overline{R}^2 。
- 2. **赤池信息准则**(Akaike Information Criterion,AIC): 选择解释变量的个数 K,使得以下目标函数最小化: $\min_K \mathrm{AIC} \equiv \ln\left(e'e/n\right) + \frac{2}{n}K$ 其中,右边**第一项为对模型拟合度的奖励**(减少残差平方和),而**第二项为对解释变量 过多的惩罚**(解释变量个数 K 的增函数)1。当 K 上升时,第一项下降而第二项上升。
- 3. 贝叶斯信息准则(Bayesian Information Criterion,BIC)或施瓦茨信息准则(Schwarz Information Criterion,SIC 或 SBIC): 选择解释变量的个数 K,使得以下目标函数最小化: $\min_K BIC \equiv \ln(e'e/n) + \frac{\ln n}{n}K$ BIC 准则与 AIC 准则只有第二项有差别。一般来说, $\ln n > 2$ (除非样本容量很小),故 BIC 准则对于解释变量过多的惩罚比 AIC 准则更为严厉。也就是说,BIC 准则更强调模型的简洁性。
- 4. **汉南 昆信息准则**(Hannan-Quinn Information Criterion, 简记 HQIC): 选择解释变量 的个数 K,使得以下目标函数最小化: $\min_K HQIC \equiv ln(e'e/n) + \frac{ln[ln(n)]}{n}K$

在实践中,**比较常用 AIC 与 BIC,不常用 HQIC**。而且,虽然在大样本中 BIC 是一致估计,而 AIC 不是一致估计,但现实样本通常是有限的,而 **BIC 准则可能导致模型过小**(对解释变量过多的惩罚太严厉),故 **AIC 准则依然很常用**。

在时间序列模型中,常用信息准则来确定滞后阶数,比如确定自回归模型的阶数。可以证明,根据 BIC 或 HQIC 计算的滞后阶数是真实参数的一致估计量。然而,根据 AIC 计算的滞后阶数却不是一致估计量,即使在大样本中也可能高估真实值。

Stata 代码

| quietly reg consumption temp price income // 先回归

2 estat ic // 计算信息准则

对函数形式的检验

很多经济关系是非线性的。因此,多元线性回归只能被看做是非线性经济关系的一阶线性近似。常用 Ramsey's RESET 检验,其基本思想是,如果怀疑非线性项被遗漏了,那么就把非线性项引人方程,并检验其系数是否显著。

另一模型设定检验为「连接检验」。此处的"连接"指的是,将解释变量与被解释变量连接在一起的函数形式是否正确。连接检验的步骤如下:

- 1. 首先进行如下回归: $y = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + error$
- 2. 然后检验 H_0 : $\delta_2=0$,即拟合值平方 \hat{y}^2 的系数是否为 0。 如果模型设定正确,则 \hat{y}^2 不应对被解释变量还有解释力。如果拒绝 H_0 : $\delta_2=0$,则认为模型设定有误,可考虑加人非线性项或改变回归的函数形式(比如,取对数)。

Stata 代码

- 1 | quietly reg lntc lnq lnpl lnpk lnpf // 先回归
- 2 | linktest // 进行连接检验

linktest

Source	SS	df	MS Number of o 			=	145 1460.70
Model Residual	277.574775 13.4920481	2 142	138.787388 .095014423	Pro R-s	Prob > F R-squared Adj R-squared Root MSE		0.0000 0.9536 0.9530
Total	291.066823	144	2.02129738	-			.30824
lntc	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
hat	.791953	.0293837	26.95	0.000	.733867		.8500389
_hatsq	.0941454	.0102281	9.20	0.000	.0739264		.1143643
_cons	0962174	.0425807	-2.26	0.025	1803914		0120434

_hatsq 指的是连接性检验的平方项,此时发现其参数并不为 0, 故存在模型设定误差。

- 1 estat ovtest
- 2 estat ovtest, rhs

进行 RESET 检验。

. estat ovtest

Ramsey RESET test for omitted variables Omitted: Powers of fitted values of lntc

H0: Model has no omitted variables

$$F(3, 137) = 32.72$$

 $Prob > F = 0.0000$

. estat ovtest, rhs

Ramsey RESET test for omitted variables Omitted: Powers of independent variables

H0: Model has no omitted variables

$$F(12, 128) = 8.96$$

 $Prob > F = 0.0000$

p极小,说明强烈拒绝「无遗漏变量」的原假设。

多重共线性

多重共线性是指多元线性回归模型中解释变量之间存在高度相关性的现象。

严格多重共线性: 指某个解释变量可以完全由其他解释变量线性表示。现实数据中很少出现这种情况。即使出现、Stata 也会自动识别并删除多余的解释变量。

近似多重共线性: 指解释变量之间存在高度相关性,但并非完全线性相关。

多重共线性的主要后果:难以区分各个解释变量对被解释变量的单独影响;导致 OLS 估计量的方差增大,使得对系数的估计变得不准确。

多重共线性的检验:

- 1. 将每个解释变量分别对其他解释变量进行回归,如果得到的可决系数(R^2)较高,则说明该解释变量与其他解释变量之间存在高度相关性,可能存在多重共线性问题。
- 2. 方差膨胀因子(VIF): VIF 是衡量多重共线性严重程度的常用指标。VIF 越大,说明多重共线性问题越严重。通常认为,如果最大的 VIF 超过 10,则表明存在严重的多重共线性。 ${
 m VIF}_k\equiv {1\over 1-R_1^2}$

stata 命令: 回归后使用 estat vif

处理多重共线性的方法

处理多重共线性,可以考虑以下几种方法:

A. 如果只关心整个方程预测被解释变量的能力,而不关心具体的回归系数,则通常可以不必理会多重共线性。这是因为多重共线性主要影响对单个变量贡献的估计,但对所有变量整体效应的估计仍然较为准确。

- B. 如果关心具体的回归系数,但多重共线性并不影响所关心变量的显著性,也可以不必理会。
- C. 如果多重共线性影响到所关心变量的显著性,可以采取以下措施:
 - 增大样本容量: 增加样本容量可以降低多重共线性的影响。
- 剔除导致严重共线性的变量:剔除与其他解释变量高度相关的变量,可以有效缓解多重 共线性。
- 修改模型设定:通过改变模型的函数形式、引入新的解释变量或使用其他估计方法等方式,可以尝试解决多重共线性问题。

极端数据

样本数据中少数离大多数观测值很远的值被称为极端观测值。

可以证明,第i 个观测数据对回归系数的"影响力"或"杠杠作用"(leverage)可以通过投影矩阵 $P\equiv X(X'X)^{-1}X'$ 的第 i 个主对角线元素来表示:

$$\operatorname{lev}_i \equiv \mathbf{x}_i'(X'X)^{-1}\mathbf{x}_i$$

所有观测数据的影响力 lev_i 满足: $0 \leqslant \mathrm{lev}_i \leqslant 1, (i=1,\cdots,n); \sum_{i=1}^n \mathrm{lev}_i = K$

Stata 代码

- 1 reg y x1 x2 x3 // 先回归
- 2 | predict lev, leverage // 列出所有解释变量的 lev 值
- 3 | gsort lev // 将所有观测值按照 lev 降序排列
- 4 | sum lev // 看到 lev 的最大值和平均值
- 5 | list lev in 1/3 // 列出从第一个到第三个数据的 lev

虚拟变量

如果使用"定性数据"(qualitative data)或"分类数据"(categorical data),通常需要引入"虚拟变量",即取值为0或1的变量。比如,性别分男女,可定义男:D=0,女:D=1

Stata 代码

```
1 gen d = (year > = 1978)
```

新建一个虚拟变量, year 变量 >= 1978 设置为 1.

1 | tabulate province, generate(pr)

假设 province 变量共有 30 个类型,为每个类型设置一个虚拟变量,变量前缀为 pr ,生成的是 pr1, pr2,...pr30 ,变量顺序依照 province 的字母而定。回归时可以这么写:

```
1 reg y x1 x2 pr2 -pr30
```

| 经济结构变动的检验(Stata)

首先绘出时间趋势图,考虑一个简单的消费函数 $c_t = \alpha + \beta y_t + \varepsilon_t$ 做回归,使用传统的邹检验(F检验)来检验消费函数是否在1992年发生结构变动。分别对整个样本、1992年之前及之后的子样本进行回归,以获得其残差平方和。

```
graph twoway connect c y year, msymbol(circle) msymbol(triangle)
reg c y
scalar ssr = e(rss)
```

e()表示调用上面回归产生的结果

scalar (标量) 的特点:

- 只存储单个数值
- 独立于数据集存在
- 在整个 Stata 会话中都可访问
- 计算速度更快
- 适合存储统计量、计算中间结果等单个值
- 使用 scalar list 可以查看所有标量

gen (generate) 的特点:

- 创建新的变量列
- 与数据集绑定
- 会为数据集中的每个观测值都创建一个值
- 占用更多内存
- 适合存储多个观测值的数据
- 通过 browse 或 list 命令查看

```
1 reg c y if year<1992
2 scalar ssr1 = e(rss)
3
4 reg c y if year>=1992
5 scalar ssr2 = e(rss)
```

手搓 F 统计量: $F=rac{SSR-SSR1-SSR2}{K}\divrac{SSR1+SSR2}{n-2K}$ 得到 F 为 13.56

使用虚拟变量法

```
1 | gen d = (year > 1991)
2 | gen yd = y * d
3 | reg c y d yd
5 | test d yd // 检验d和yd联合显著性
```

使用稳健标准误

```
1 | reg c y d yd, robust
```

结论:无论是否存在异方差,都可以强烈拒绝「没有结构变动」的原假设。

缺失数据与线性插值

在现实数据中,有时会出现某些时期数据缺失(missingdata)的情形,尤其是历史比较久远的数据。缺失的观测值在Stata中以,来表示,在运行Stata命令时(比如 reg),会自动将缺失观测值从样本中去掉,导致样本容量损失。在数据缺失不严重的情况下,为了保持样本容量,可采用"线性插值"(linear-interpolation)的方法来补上缺失数据。

考虑最简单的情形。已知 x_{t-1} 与 x_{t+1} ,但缺失 x_t 的数据,则 x_t 对时间 t 的线性插值为

$$\hat{x}_t = \frac{x_{t-1} + x_{t+1}}{2} \tag{1}$$

更一般地,假设与x(通常为时间)对应的y缺失,而最临近的两个点分别为 (x_0,y_0) 与 (x_1,y_1) ,且 $x_0 < x < x_1$,则y对x的线性插值为

$$\hat{y} = \frac{y_1 - y_0}{x_1 - x_0} (x - x_0) + y_0 \tag{2}$$

Stata 代码

1 ipolate y x, gen(newvar)

ipolate 指 interpolate,上面代码意思是将变量 y 对变量 x 进行线性插值,插入的值记为变量 newvar。

如果变量y有指数增长趋势,则应先取对数,再用 $\ln y$ 进行线性插值。

- 1 gen lny1 = log(y1)
- 2 ipolate lny1 year, gen(lny3)
- 3 gen y3=exp(1ny3)