

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

Grafy i ich zastosowania Zestaw 2

Elzbieta.Strzalka@fis.agh.edu.pl p. 232/D-10

www.agh.edu.pl

Zestaw 2, zadanie 1

Napisać program do sprawdzania, czy dana sekwencja liczb naturalnych jest ciągiem graficznym, i do konstruowania grafu prostego o stopniach wierzchołków zadanych przez ciąg graficzny.

- Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- Stopień wierzchołka v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach:

- Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- **Stopień wierzchołka** v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum_{i=0}^{n-1} \deg(v_i) = 2k.$

```
1: Posortuj tablicę A nierosnąco
2. while TRUE do
       if \forall_i A[i] = 0 then
           return TRUE
       end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
       end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i+1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
14: end while
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

- m cia-
 - Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
 - **Stopień wierzchołka** *v*: deg(*v*) liczba jego sąsiadów.
 - Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
 - **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum_{i=0}^{n-1} \deg(v_i) = 2k.$

```
Algorithm: degree\_seq(A, n)
```

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i+1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4 | 3 | 3 | 2 | 2 | 1 | 1

- Ciag graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- Stopień wierzchołka v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum \deg(v_i) = 2k$.

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

- Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- **Stopień wierzchołka** v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum_{i=0}^{n-1} \deg(v_i) = 2k.$

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
14: end while
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
0	2	2	1	1	1	1

- Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- **Stopień wierzchołka** v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum_{i=0}^{n-1} \deg(v_i) = 2k.$

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i+1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0

- Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- **Stopień wierzchołka** v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum_{i=0}^{n-1} \deg(v_i) = 2k.$

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0
0	1	0	1	1	1	0

- Ciag graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- Stopień wierzchołka v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum \deg(v_i) = 2k$.

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i+1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0

- Ciag graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- Stopień wierzchołka v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum \deg(v_i) = 2k$.

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
0	0	1	1	0	0	0

- Ciąg graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- **Stopień wierzchołka** *v*: deg(*v*) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum_{i=0}^{n-1} \deg(v_i) = 2k.$

```
1: Posortuj tablicę A nierosnąco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
        for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
1	1	0	0	0	0	0

- Ciag graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- Stopień wierzchołka v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum \deg(v_i) = 2k$.

```
1: Posortuj tablice A nierosnaco
 2. while TRUE do
        if \forall_i A[i] = 0 then
            return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
1	1	0	0	0	0	0
0	0	0	0	0	0	0

- Ciag graficzny ciąg stopni wierzchołków pewnego grafu prostego.
- Stopień wierzchołka v: deg(v) liczba jego sąsiadów.
- Liczba wierzchołków o nieparzystym stopniu w grafie prostym jest parzysta.
- **Suma stopni** w grafie o *n* wierzchołkach i *k* krawędziach: $\sum \deg(v_i) = 2k$.

```
1: Posortuj tablice A nierosnaco
 2. while TRUE do
        if \forall_i A[i] = 0 then
           return TRUE
        end if
       if A[0] \geqslant n OR \exists_i A[i] < 0 then
           return FALSE
        end if
       for (i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1) do
        A[i] \leftarrow A[i] - 1
10:
        end for
11:
        A[0] \leftarrow 0
12:
        Posortuj tablice A nierosnaco
13:
```

Przykład nr 1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
1	1	0	0	0	0	0
0	0	0	0	0	0	0

```
1: Posortuj tablice A nierosnaco
```

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

TRUE return

end if 5:

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

7:

10:

for $(i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$ 12:

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

$$A = \{1, 3, 3, 4, 2, 3, 1\}.$$

3 | 3 2 | 1 | 1

Ciąg graficzny

Algorithm: $degree_seq(A, n)$

GH 1: Posortuj tablicę A nierosnąco

2: while TRUE do

 $a: \quad \text{if } \forall_i \ A[i] = 0 \ \text{then}$

4: return TRUE

5: end if

6: if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then

return FALSE

8: end if

7:

10:

12:

9: for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i+1)$ do

 $A[i] \leftarrow A[i] - 1$

11: end for

 $A[0] \leftarrow 0$

13: Posortuj tablice A nierosnaco

14: end while

Przykład nr 2

 $A = \{1, 3, 3, 4, 2, 3, 1\}.$

4	3	3	3	2	1	1
0	2	2	2	1	1	1

11:

12:

13:

Δ	GI	H 1:	Posortuj tablicę A nierosnąco
		2:	while TRUE do
		3:	if $orall_i A[i] = 0$ then
		4:	return TRUE
		5:	end if
		6:	if $A[0]\geqslant n$ OR $\exists_i\ A[i]<0$ then
	Ш	7:	return FALSE
		8:	end if
		9:	for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i+1)$ d
		10:	$A[i] \leftarrow A[i] - 1$

Posortuj tablice A nierosnaco

Algorithm: $degree_seq(A, n)$

Przykład nr 2

$$A=\{1,3,3,4,2,3,1\}.$$

				2		l .
2	2	2	1	1	1	0

end for

 $A[0] \leftarrow 0$

14: end while

1) do

Ciąg graficzny

Algorithm: $degree_seq(A, n)$

AGH 1: Posortuj tablicę A nierosnąco

2: while TRUE do

3: if $\forall_i \ A[i] = 0$ then

4: return TRUE

5: end if

6: if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then

return FALSE

8: end if

7:

10:

9: for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i+1)$ do

 $A[i] \leftarrow A[i] - 1$

11: end for

12: $A[0] \leftarrow 0$

13: Posortuj tablicę A nierosnąco

14: end while

Przykład nr 2

 $A = \{1, 3, 3, 4, 2, 3, 1\}.$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
0	1	1	1	1	1	0

1: Posortuj tablicę A nierosnąco

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

return TRUE

end if 5:

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

7:

10:

for $(i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$ 12:

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

$$A = \{1, 3, 3, 4, 2, 3, 1\}.$$

				2		
2	2	2	1	1	1	0
1	1	1	1	1	0	0

```
AGH 1: Posortuj tablicę A nierosnąco
```

2: while TRUE do

3: if $\forall_i A[i] = 0$ then

4: return TRUE

5: end if

6: if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then

return FALSE

8: end if

7:

10:

12:

13:

9: for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i+1)$ do

 $A[i] \leftarrow A[i] - 1$

11: end for

 $A[0] \leftarrow 0$

Posortuj tablicę A nierosnąco

14: end while

Przykład nr 2

 $A = \{1, 3, 3, 4, 2, 3, 1\}.$

4			3	2	1	1
2	2	2	1	1	1	0
1		1	1	1	-	0
0	0	1	1	1	0	0

1: Posortuj tablicę A nierosnąco

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

return TRUE

5: end if

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

7:

10:

for $(i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$ 12:

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

$$A = \{1, 3, 3, 4, 2, 3, 1\}.$$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
1	1	1	1	1	0	0
1	1	1	0	0	0	0

```
1: Posortuj tablicę A nierosnąco
```

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

return TRUE

5: end if

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

7:

12:

13:

for $(i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1)$ do 9: 10:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$

Posortuj tablice A nierosnaco

14: end while

Przykład nr 2

$$A = \{1, 3, 3, 4, 2, 3, 1\}.$$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
1	1	1	1	1	0	0
1	1	1	0	0	0	0
0	0	1	0	0	0	0

Algorithm: $degree_seq(A, n)$
1. Dogomtuj toblico A ni

AGH 1: Posortuj tablicę A nierosnąco

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

return TRUE

end if

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then

return FALSE

end if 8:

10:

for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$ 12:

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

$$A = \{1, 3, 3, 4, 2, 3, 1\}.$$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
1	1	1	1	1	0	0
1	1	1	0	0	0	0
1	0	0	0	0	0	0

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

TRUE return

5: end if

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

7:

10:

12:

for $(i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

 $A = \{1, 3, 3, 4, 2, 3, 1\}.$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
1	1	1	1	1	0	0
1	1	1	0	0	0	0
1	0	0	0	0	0	0
0	-1	0	0	0	0	0

```
1: Posortuj tablicę A nierosnaco
```

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

return TRUE

5: end if

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

7:

10:

for $(i \leftarrow 1; i \leq A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$ 12:

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

$$A = \{1, 3, 3, 4, 2, 3, 1\}.$$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
1	1	1	1	1	0	0
1	1	1	0	0	0	0
1	0	0	0	0	0	0
0	0	0	0	0	0	-1

10:

1: Posortuj tablice A nierosnaco

2: while TRUE do

if $\forall_i \ A[i] = 0$ then

TRUE return

end if 5:

if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:

return FALSE

end if 8:

for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i + 1)$ do 9:

 $A[i] \leftarrow A[i] - 1$

end for 11:

 $A[0] \leftarrow 0$ 12:

Posortuj tablice A nierosnaco 13:

14: end while

Przykład nr 2

 $A = \{1, 3, 3, 4, 2, 3, 1\}.$

4	3	3	3	2	1	1
2	2	2	1	1	1	0
1	1	1	1	1	0	0
1	1	1	0	0	0	0
1	0	0	0	0	0	0
0	0	0	0	0	0	-1

Uwaga

Liczba nieparzystych stopni musi być parzysta, żeby suma była parzysta.

```
1: Posortuj tablicę A nierosnąco
```

- 2: while TRUE do
- if $\forall_i \ A[i] = 0$ then
- 4: return TRUE
- 5: end if
- 6: if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then
 - return FALSE
- 8: end if

7:

10:

- 9: for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i + 1)$ do
 - $A[i] \leftarrow A[i] 1$
- 11: end for
- 12: $A[0] \leftarrow 0$
- 13: Posortuj tablicę A nierosnąco
- 14: end while

Przykład nr 3

$$A = \{1, 3, 3, 7, 2, 3, 1\}.$$

Ciąg graficzny

Algorithm: $degree_seq(A, n)$

```
1: Posortuj tablice A nierosnaco
```

- 2: while TRUE do if $\forall_i \ A[i] = 0$ then
- return TRUE
- end if
- 5:
- if $A[0] \geqslant n$ OR $\exists_i A[i] < 0$ then 6:
 - return FALSE
- end if 8:

10:

- for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i + 1)$ do 9:
 - $A[i] \leftarrow A[i] 1$
- end for 11:
- $A[0] \leftarrow 0$ 12:
- Posortuj tablicę A nierosnąco 13:
- 14: end while

Przykład nr 3

$$A = \{1, 3, 3, 7, 2, 3, 1\}.$$

Uwaga

Każdy stopień musi być mniejszy niż liczba wierzchołków n.

5/23

Ciąg graficzny

Algorithm: $degree_seq(A, n)$

AGH 1: Posortuj tablicę A nierosnąco

2: while TRUE do

3: if $\forall_i \ A[i] = 0$ then

4: return TRUE

5: end if

6: if $A[0] \ge n$ OR $\exists_i A[i] < 0$ then

return FALSE

8: end if

7:

10:

9: for $(i \leftarrow 1; i \leqslant A[0]; i \leftarrow i + 1)$ do

 $A[i] \leftarrow A[i] - 1$

11: end for

12: $A[0] \leftarrow 0$

13: Posortuj tablice A nierosnaco

14: end while

Przykład nr 4

$$A = \{2, 2, 6, 4, 4, 6, 6\}.$$

	6	6	6	4	4	2	2
	5	5	3	3	1	1	0
Ī	4	2	2	0	0	0	0
	1	1	0	0	0	-1	-1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

[1]	[2]	[3]	[4]	[5]	[6]	[7]
4	3	3	2	2	1	1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

[1]	[2]	[3]	[4]	[5]	[6]	[7]
4	3	3	2	2	1	1
0	2	2	1	1	1	1

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

Ī	[2]	[3]	[4]	[5]	[6]	[7]	[]
	4	3	3	2	2	1	1
	2	2	1	1	1	1	0

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

Ī	[2]	[3]	[4]	[5]	[6]	[7]	[]
	4	3	3	2	2	1	1
	2	2	1	1	1	1	0
	0	1	0	1	1	1	0

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

[3]	[5]	[6]	[7]	[]	[]	[]
4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

Ī	[3]	[5]	[6]	[7]	[]	[]	[]
	4	3	3	2	2	1	1
	2	2	1	1	1	1	0
	1	1	1	1	0	0	0
	0	0	1	1	0	0	0

Przykład nr 1 – cd.

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

[6]	[7]	[]	[]	[]	[]	[]
4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
1	1	0	0	0	0	0

www.agh.edu.pl

Konstrukcja grafu na podstawie ciągu graficznego

Przykład nr 1 – cd.

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

[6]	[7]	[]	[]	[]	[]	[]
4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
1	1	0	0	0	0	0
0	0	0	0	0	0	0

Konstrukcja grafu na podstawie ciągu graficznego

Przykład nr 1 – cd.

$$A = \{1, 3, 2, 3, 2, 4, 1\}.$$

[]	[]	[]	[]	[]	[]	[]
4	3	3	2	2	1	1
2	2	1	1	1	1	0
1	1	1	1	0	0	0
1	1	0	0	0	0	0
0	0	0	0	0	0	0

Zestaw 2, zadanie 2

Napisać program do randomizacji grafów prostych o zadanych stopniach wierzchołków. Do tego celu wielokrotnie powtórzyć operację zamieniającą losowo wybraną parę krawędzi: (a,b) i (c,d) na parę (a,d) i (b,c).

8/23

Randomizacja grafów prostych: $(a, b), (c, d) \Rightarrow (a, d), (b, c)$

- Stopnie $\{4, 3, 3, 2, 2, 1, 1\}$
- Np. krawędzie (1,2), (6,7)

www.agh.edu.pl -

Randomizacja grafów prostych: $(a,b),(c,d)\Rightarrow (a,d),(b,c)$

- Stopnie {4, 3, 3, 2, 2, 1, 1}
- Np. krawędzie (1,2), (6,7)

- Stopnie $\{4, 3, 3, 2, 2, 1, 1\}$
- Krawędzie (1,7), (2,6)

Randomizacja grafów prostych: $(a,b),(c,d)\Rightarrow (a,d),(b,c)$

- Stopnie {4, 3, 3, 2, 2, 1, 1}
- Np. krawędzie (1,2), (6,7)

- Stopnie {4, 3, 3, 2, 2, 1, 1}
- Krawędzie (1,7), (2,6)

Uwaga

- Randomizacja nie powoduje zmiany stopni wierzchołków.
- Nie wylosować tych samych wierzchołków ani nie utworzyć krawędzi wielokrotnych!

Zestaw 2, zadanie 3

Napisać program do znajdowania największej spójnej składowej na grafie.

- **Graf jest spójny** ⇔ między każdą parą wierzchołków istnieje ścieżka.
- Ścieżka składa się z kolejnych (różnych) krawędzi.
- Niespójny graf składa się z osobnych składowych, które są spójne.

Graf spójny

Graf niespójny

- Graf jest spójny ⇔ między każdą parą wierzchołków istnieje ścieżka.
- Ścieżka składa się z kolejnych (różnych) krawędzi.
- Niespójny graf składa się z osobnych składowych, które są spójne.

Graf spójny

Graf niespójny

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

Składowa numer 1, wierzchołki:
1,

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

 Składowa numer 1, wierzchołki: 1, 2,

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

 Składowa numer 1, wierzchołki: 1, 2, 3,

12 / 23

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

 Składowa numer 1, wierzchołki: 1, 2, 3, 5,

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

 Składowa numer 1, wierzchołki: 1, 2, 3, 5,

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

 Składowa numer 1, wierzchołki: 1, 2, 3, 5,

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego **sąsiadów** i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

• Składowa numer 1, wierzchołki: 1, 2, 3, 5, 4.

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego **sąsiadów** i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

• Składowa numer 1, wierzchołki: 1, 2, 3, 5, 4.

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego **sąsiadów** i oznaczamy ich tym samym numerem składowej.

Znalezione spójne składowe

• Składowa numer 1, wierzchołki: 1, 2, 3, 5, 4.

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

- Składowa numer 1, wierzchołki: 1, 2, 3, 5, 4.
- Składowa numer 2, wierzchołki:
 6,

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako **odwiedzonego**.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

- Składowa numer 1, wierzchołki: 1, 2, 3, 5, 4.
- Składowa numer 2, wierzchołki: 6,7.

- Przeszukiwanie w głąb (depth-first search, DFS).
- Zaczynamy od dowolnego wierzchołka, oznaczamy go jako odwiedzonego.
 - Rekurencyjnie odwiedzamy jego sąsiadów i oznaczamy ich tym samym numerem składowej.

- Składowa numer 1, wierzchołki: 1, 2, 3, 5, 4.
- Składowa numer 2, wierzchołki: 6,7.

Zestaw 2, zadanie 4

Używając powyższych programów, napisać program do tworzenia losowego grafu eulerowskiego i znajdowania na nim cyklu Eulera.

- Graf eulerowski ⇔ istnieje w nim cykl Eulera.
- Cykl Eulera zamknięta ścieżka zawierająca każdą krawędź dokładnie 1 raz.
- Graf eulerowski \Leftrightarrow **spójny**, a stopień każdego wierzchołka jest **parzysty**.

Graf eulerowski

Cykl Eulera

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

-

Alg

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

4, 4, 4, 4, 2, 2

Graf jest eulerowski.

Zawartość stosu:

1 – 2

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3$$

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

4, 4, 4, 4, 2, 2

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3 - 1$$

AGH

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

4, 4, 4, 4, 2, 2

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3 - 1 - 4$$

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

15 / 23

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez **most** – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3 - 1 - 4 - 2 - 5$$

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3 - 1 - 4 - 2 - 5 - 4$$

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3 - 1 - 4 - 2 - 5 - 4 - 3$$

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1 - 2 - 3 - 1 - 4 - 2 - 5 - 4 - 3 - 7$$

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1-2-3-1-4-2-5-4-3-7$$

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1-2-3-1-4-2-5-4-3-7$$

 $-6-5$

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Zawartość stosu:

$$1-2-3-1-4-2-5-4-3-7$$

 $-6-5-1$

Algorytm Fleury'ego (dla grafu eulerowskiego)

- Przechodzimy po krawędziach w dowolnej kolejności, odkładając odwiedzane wierzchołki na stos, a krawędzie i wierzchołki izolowane usuwając, ale nie przechodzimy przez most – chyba że nie ma innego wyjścia z wierzchołka.
- Most krawędź, której usunięcie spowoduje rozspójnienie grafu.

Ciąg stopni wierzchołków:

Graf jest eulerowski.

Cykl Eulera:

$$1-2-3-1-4-2-5-4-3-7$$

 $-6-5-1$

Dygresja: jak znaleźć wszystkie mosty w grafie?

- Podejście naiwne: zastosowanie algorytmu oznaczania spójnych składowych do grafu przed i po usunięciu każdej z krawędzi \Rightarrow 2 przejścia DFS dla kkrawędzi $\Rightarrow O(k(n+k))$.
- Algorytm Tarjana^a: 1 przejście DFS znajduje wszystkie mosty $\Rightarrow O(n+k)$.

^aPodstawa działania: most nie może należeć do cyklu, musi należeć do drzewa rozpinającego.

Dygresja: jak znaleźć **wszystkie** mosty w grafie?

- Podejście naiwne: zastosowanie algorytmu oznaczania spójnych składowych do grafu przed i po usunięciu każdej z krawędzi \Rightarrow 2 przejścia DFS dla k krawędzi \Rightarrow O(k(n+k)).
- Algorytm Tarjana^a: 1 przejście DFS znajduje wszystkie mosty $\Rightarrow O(n+k)$.

^aPodstawa działania: most nie może należeć do cyklu, musi należeć do drzewa rozpinającego.

Brak mostów?

Jak sprawdzić, czy dana krawędź jest mostem?

- Podejście naiwne: 2 przejścia DFS $\Rightarrow O(n+k)$ (ale w algorytmie Fleury'ego, wybierając krawędź do przejścia w danym kroku, maks. razy:...?).
- Algorytm Tarjana: 1 przejście DFS $\Rightarrow O(n+k)$.

Jak sprawdzić, czy dana krawędź jest mostem?

- Podejście naiwne: 2 przejścia DFS $\Rightarrow O(n+k)$ (ale w algorytmie Fleury'ego, wybierając krawędź do przejścia w danym kroku, maks. razy: 2).
- Algorytm Tarjana: 1 przejście DFS $\Rightarrow O(n+k)$.

Uwaga

- Przejście: 2 − 1 − ?
- Usunięcie mostu, przez który nie można przejść, nie musi być powiązane z utworzeniem wierzchołka izolowanego.

Jak sprawdzić, czy dana krawędź jest mostem?

- Podejście naiwne: 2 przejścia DFS $\Rightarrow O(n+k)$ (ale w algorytmie Fleury'ego, wybierając krawędź do przejścia w danym kroku, maks. razy: 2).
- Algorytm Tarjana: 1 przejście DFS $\Rightarrow O(n+k)$.

. Uwaga

- Przejście: 2 − 1 − ?
- Usunięcie mostu, przez który nie można przejść, nie musi być powiązane z utworzeniem wierzchołka izolowanego.

Zestaw 2, zadanie 5

Napisać program do generowania losowych grafów k-regularnych.

- **Graf** *k*-regularny graf, którego każdy wierzchołek ma stopień równy *k*.
- Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - n > k,
 - jeżeli k nieparzyste, to n parzyste.

- Montrola warunków.
- Utworzenie grafu (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja ⇒ losowy graf.

- **Graf** k-regularny graf, którego każdy wierzchołek ma stopień równy k.
- Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - \bullet n > k,
 - jeżeli k nieparzyste, to n parzyste.

- Montrola warunków.
- **2 Utworzenie grafu** (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja⇒ losowy graf.

$$n=6, k=0$$

- Graf k-regularny graf, którego każdy wierzchołek ma stopień równy k.
 Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - n > k,
 - jeżeli *k* nieparzyste, to *n* parzyste.

- Montrola warunków.
- Utworzenie grafu (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja⇒ losowy graf.

$$n=6, k=2$$

www.agh.edu.pl

- **Graf** k-regularny graf, którego każdy wierzchołek ma stopień równy k.
- Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - n > k,
 - jeżeli *k* nieparzyste, to *n* parzyste.

- Montrola warunków.
- **2 Utworzenie grafu** (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja⇒ losowy graf.

$$n = 6, k = 2$$

- **Graf** *k*-**regularny** graf, którego każdy wierzchołek ma stopień równy *k*.
- Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - n > k,
 - jeżeli *k* nieparzyste, to *n* parzyste.

- Montrola warunków.
- **Utworzenie grafu** (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja ⇒ losowy graf.

$$n = 6, k = 1$$

- **Graf** k-regularny graf, którego każdy wierzchołek ma stopień równy k.
- Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - n > k,
 - jeżeli k nieparzyste, to n parzyste.

n = 7, k = 2

- Montrola warunków.
- **Utworzenie grafu** (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja ⇒ losowy graf.

www.agh.edu.pl

- **Graf** k-regularny graf, którego każdy wierzchołek ma stopień równy k.
- Może być niespójny.
- **Wejście**: liczba wierzchołków *n* oraz stopień *k*, spełniające **warunki**:
 - n > k,
 - jeżeli k nieparzyste, to n parzyste.

n = 7, k = 4

- Montrola warunków.
- **Utworzenie grafu** (np. jak przy ciągu graficznym).
- Wielokrotna randomizacja⇒ losowy graf.

Zestaw 2, zadanie 5

www.agh.edu.pl -

Zestaw 2, zadanie 6

Napisać program do sprawdzania (dla małych grafów), czy graf jest hamiltonowski.

Graf hamiltonowski

- Graf hamiltonowski ⇔ istnieje w nim cykl Hamiltona.
- **Cykl Hamiltona** zamknięta ścieżka zawierająca każdy wierzchołek dokładnie 1 raz (poza startowym, który występuje dwukrotnie).

Graf hamiltonowski

Cykl Hamiltona

- "Jeśli graf ma wystarczająco dużo krawędzi w stosunku do wierzchołków, to jest hamiltonowski".
- Np. twierdzenie Diraca: jeżeli w grafie prostym $n \ge 3 \land \forall_v \deg(v) \ge \frac{n}{2} \Rightarrow$ jest hamiltonowski.
- Warunek konieczny i wystarczający: nie istnieje ⇒ szukamy cyklu Hamiltona do skutku; jeśli znaleziony, to graf jest hamiltonowski.
- Testowanie programu: np. grafy k-regularne spełniające twierdzenie Diraca.

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

www.agh.edu.pl

23 / 23

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

1

www.agh.edu.pl

<ロ > ← □

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

1 – 3

- Przeszukiwanie w głąb (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2$$

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

23 / 23

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2$$

Poszukiwanie cyklu Hamiltona

Algorytm siłowy

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2 - 6$$

Poszukiwanie cyklu Hamiltona

Algorytm siłowy

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2 - 6$$

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2/ - 6$$

$$1 - 3 - 5$$

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2/ - 6$$

$$1 - 3 - 5 - 4$$

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2/ - 6$$

$$1 - 3 - 5 - 4 - 2$$

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2/-6$$

$$1 - 3 - 5 - 4 - 2 - 6$$

23 / 23

- Przeszukiwanie w głąb (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Zawartość stosu:

$$1 - 3 - 5 - 2 - 4$$

$$1 - 3 - 5 - 2/ - 6$$

$$1 - 3 - 5 - 4 - 2 - 6 - 1$$

- **Przeszukiwanie w głąb** (DFS); odwiedzone wierzchołki odkładamy na stos, ściąganie w przypadku niepowodzenia i dalsze odwiedzanie.
- Wszystkie wierzchołki na stosie ⇒ kontrola połączenia końcowego z początkowym.

Cykl Hamiltona

$$1 - 3 - 5 - 4 - 2 - 6 - 1$$