# Generative Spoken Language Modeling from Raw Audio

Докладчик: Дмитрий Кириллов

Хакер: Петр Молодык

## План

- 1. Какую задачу решаем
- 2. Как измеряем качество
- 3. Какие результаты

# Общий сетап



Model architecture and tasks

**ASR evaluation** 

## Unit2speech



HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units

# Speech2unit





## План

- 1. Какую задачу решаем
- 2. Как измеряем качество
- 3. Какие результаты

## Ручные метрики

- 1. Mean Opinion Scores (MOS) асессоров просили оценить **понятность** генерируемого аудио
- 2. CER на ручной разметке
- 3. meaningfulness-MOS (MMOS) асессоров просили оценить естественность генерируемого аудио (для этой метрики подбиралась температура семплирования на тесте)

#### Автоматические на основе ASR

- 1. PER-from-ASR, CER-from-ASR ошибка в фонемах(символах) после распознавания сгенерированного аудио предобученным ASR
- 2. PPX перплексия текста после ASR
- 3. self-BLEU BLEU между разными сгенерированными предложениями. Чем больше значение, тем меньше разнообразие
- 4. auto-BLEU доля n-грамм в предложении, которые повторились хотя бы k раз
- 5. VERT =  $\sqrt{\text{autoBLEU} \times \text{selfBLEU}}$

#### AUC-of-VERT/PPX

- 1. Посчитать PPX иVERT реального текста
- 2. Найти температуры для которых после ASR получаются такие же значения PPX/VERT



- 3. Посчитать площадь под кривой VERT-PPX между этими границами
- 4. Чем AUC-of-VERT/PPX меньше, тем ближе модель к реальной речи

# Zero-shot метрики

Для токенов x и a, принадлежащих категории A и токена b из другой категории B, ABX — вероятность того, что x ближе к a, чем к b

Вероятность оценивается \$2и моделью для звука

#### **ABX-within**

Категории – слова из трех букв, отличающихся только центральной

A = beg, B = bag, a — произношение beg, x — другое произношение, b — произношение bag

# Zero-shot метрики

Для токенов x и a, принадлежащих категории A и токена b из другой категории B, ABX — вероятность того, что x ближе к a, чем к b

Вероятность оценивается \$2и моделью для звука

#### **ABX-across**

Категории – автор, произносящий текст

 ${\it a}$  –  ${\it beg}$ , сказанное  ${\it первым}$  автором,  ${\it x}$  –  ${\it bag}$ , сказанное  ${\it первым}$  автором,  ${\it b}$  –  ${\it beg}$ , сказанное  ${\it вторым}$  автором

## Zero-shot метрики

spot-the-word accuracy – доля верно различенных пар настоящеененастоящее слово

Hапример *p(sound\_of(brick))* > *p(sound\_of(blick))* 

Вероятности беруться для последовательности на выходе после S2u→uLM

# Все метрики вместе

|           | I                | Кодирование речи          | Генерация            |                                       |                   |  |  |
|-----------|------------------|---------------------------|----------------------|---------------------------------------|-------------------|--|--|
| Уровень   | Задача           | Автоматическая метрика    | Задача               | Автоматическая<br>метрика             | Ручная<br>метрика |  |  |
| Текстовый | Spoken<br>LM     | Spot-the-word             | Speech<br>Generation | AUC-of-VERT/PPX,<br>BLEU, PPX@o-VERT  | MMOS              |  |  |
| Звуковой  | Acoustic<br>Unit | ABX-across,<br>ABX-within | Resynthesis          | <b>PER-from-ASR</b> ,<br>CER-from-ASR | CER, <b>MOS</b>   |  |  |

## План

- 1. Какую задачу решаем
- 2. Как измеряем качество
- 3. Какие результаты

# Эксперименты



LogMel – kMeans поверх Mel спектрограмм *LibriSpeech clean-100h* 

W2V - Wav2vec 2.0

# Корреляция с ручной разметкой

| Zero-shot         |               |            |                  | ASR-b      | ased    |               | Human           |  |            |            |                |                  |
|-------------------|---------------|------------|------------------|------------|---------|---------------|-----------------|--|------------|------------|----------------|------------------|
| _                 | ABX<br>within | ABX across | spot-the<br>word | avg<br>PER | avg CER | AUC<br>uncond | AUC<br>prompted |  | avg<br>CER | avg<br>MOS | MMOS<br>uncond | MMOS<br>prompted |
| ABX within        |               |            |                  | 0.904      | 0.896   | 0.893         | 0.806           |  | 0.901      | 0.883      | 0.935          | 0.881            |
| ABX across        | 0.970         |            |                  | 0.944      | 0.938   | 0.962         | 0.910           |  | 0.905      | 0.924      | 0.941          | 0.881            |
| spot-the-<br>word | 0.937         | 0.853      |                  | 0.767      | 0.760   | 0.753         | 0.639           |  | 0.806      | 0.743      | 0.902          | 0.808            |

## Выводы

- Авторы предложили набор метрик для оценки self-supervised моделирования устной речи
- Измерили качество для нескольких SotA Speech2unit моделей
- Показали скоррелированность предложенных автоматических метрик с ручной разметкой

#### Источники

<u>Demo</u>

Wav2vec 2.0

**HuBERT** 

<u>CPC</u>

The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling

# Формулы для метрик

Перплексия (PP) для корпуса (W):

- 1.  $PP(W) = \frac{1}{P(w_1, w_2, \dots, w_N)^{\frac{1}{N}}}$  Р вероятность слов из модели
- 2.  $PP(W) = 2^{H(W)} H$  энтропия предсказаний языковой модели
- ullet auto-BLEU $(u,k)=rac{\sum_s 1\!\!1 \left[s\in (NG_k(u)ackslash s)
  ight]}{|NG_k(n)|}$
- ullet АВХ $(\mathbf{x},\mathbf{y}) = rac{1}{m(m-1)n} \sum_{a \in S(\mathbf{x})} \sum_{b \in S(\mathbf{y})} \sum_{x \in S(\mathbf{x}) \setminus \{a\}} \left( \mathbb{I}_{d(a,x) < d(b,x)} + rac{1}{2} \mathbb{I}_{d(a,x) = d(b,x)} 
  ight)$ , где  $S(\mathbf{y})$  множество звуков категории  $\mathbf{y}$

# Подбор температуры MMOS



#### Wav2vec 2.0



# Эксперименты (S2u→u2S)

| Systems       | End-to | -end AS | R-based | metrics |       | Human ( | uman Opinion |      |       |       |
|---------------|--------|---------|---------|---------|-------|---------|--------------|------|-------|-------|
| S2u           | Nb     | Bit-    | PER↓    | PER↓    | CER↓  | CER↓    | MOS↑         | MOS↑ | CER↓  | CER↓  |
| architect.    | units  | rate    | (LJ)    | (LS)    | (LJ)  | (LS)    | (LJ)         | (LS) | (LJ)  | (LS)  |
| Toplines      |        |         |         |         |       |         |              |      |       |       |
| original wav  |        |         | -       | -       | -     | -       | 4.83         | 4.30 | 8.88  | 6.73  |
| orig text+TTS |        |         | 7.78    | 7.92    | 8.87  | 5.14    | 4.02         | 4.03 | 13.25 | 10.73 |
| ASR + TTS     | 27     |         | 9.45    | 8.18    | 9.48  | 5.30    | 4.04         | 4.06 | 15.98 | 11.56 |
| Baselines     |        |         |         |         |       |         |              |      |       |       |
| LogMel        | 50     | 214.8   | 27.72   | 49.38   | 27.73 | 52.05   | 2.41         | 2.07 | 43.78 | 66.75 |
| LogMel        | 100    | 292.7   | 25.83   | 45.58   | 24.88 | 48.71   | 2.65         | 2.01 | 37.39 | 62.72 |
| LogMel        | 200    | 373.8   | 19.78   | 45.16   | 17.86 | 46.12   | 2.96         | 2.16 | 23.33 | 62.6  |
| Unsupervised  |        |         |         |         |       |         |              |      |       |       |
| CPC           | 50     | 159.4   | 10.87   | 17.16   | 10.68 | 12.06   | 3.63         | 3.51 | 13.97 | 19.92 |
| CPC           | 100    | 213.1   | 10.75   | 15.82   | 9.84  | 9.46    | 3.42         | 3.68 | 13.53 | 14.73 |
| CPC           | 200    | 279.4   | 8.74    | 14.23   | 9.20  | 8.29    | 3.85         | 3.54 | 9.36  | 14.33 |
| HuBERT-L6     | 50     | 125.7   | 11.45   | 16.68   | 11.02 | 11.85   | 3.69         | 3.49 | 14.54 | 13.14 |
| HuBERT-L6     | 100    | 168.1   | 9.53    | 13.24   | 9.31  | 7.19    | 3.84         | 3.68 | 13.02 | 11.43 |
| HuBERT-L6     | 200    | 211.3   | 8.87    | 11.06   | 8.88  | 5.35    | 4.00         | 3.85 | 11.67 | 10.84 |
| wav2vec-L14   | 50     | 141.3   | 24.95   | 33.69   | 25.42 | 32.91   | 2.45         | 2.87 | 46.82 | 54.9  |
| wav2vec-L14   | 100    | 182.1   | 14.58   | 22.07   | 13.72 | 17.22   | 3.50         | 3.32 | 23.76 | 28.1  |
| wav2vec-L14   | 200    | 226.8   | 10.65   | 16.34   | 10.21 | 10.50   | 3.83         | 3.51 | 13.14 | 15.27 |

# Эксперименты (S2u→uLM→u2S)

| Systems      |       |          | Ge                          | neration ba | sed metric | cs    |         | Human  | Human Opinion |  |
|--------------|-------|----------|-----------------------------|-------------|------------|-------|---------|--------|---------------|--|
| Encoder      | Nb    | <u>u</u> | <u>unconditional</u> prompt |             |            |       | uncond. | prompt |               |  |
| architect.   | units | PPX↓     | VERT↓                       | AUC↓        | PPX↓       | VERT↓ | AUC↓    | MMOS†  | MMOS↑         |  |
| Controls     |       |          |                             |             |            |       |         |        |               |  |
| oracle text  |       | 154.5    | 19.43                       | -           | 154.5      | 19.43 | -       | 4.02   | 4.26          |  |
| ASR + LM     |       | 178.4    | 21.31                       | 0.18        | 162.8      | 20.49 | 0.04    | 3.91   | 4.38          |  |
| Baseline     |       |          |                             |             |            |       |         |        |               |  |
| LogMel       | 50    | 1588.97  | -                           | 1083.76     | -          | -     | -       | -      | -             |  |
| LogMel       | 100   | 1500.11  | 95.50                       | 510.26      | -          | -     | -       | _      | -             |  |
| LogMel       | 200   | 1539.00  | -                           | 584.16      | -          | -     |         | -      | -             |  |
| Unsupervised |       |          |                             |             |            |       |         |        |               |  |
| CPC          | 50    | 374.26   | 46.26                       | 19.68       | 323.9      | 39.92 | 18.44   | 3.31   | 3.61          |  |
| CPC          | 100   | 349.56   | 41.797                      | 15.74       | 294.7      | 42.93 | 14.06   | 3.65   | 3.65          |  |
| CPC          | 200   | 362.84   | 40.28                       | 16.46       | 303.5      | 43.42 | 26.67   | 3.58   | 3.67          |  |
| HuBERT-L6    | 50    | 376.33   | 43.06                       | 19.27       | 339.8      | 45.85 | 21.03   | 3.53   | 3.00          |  |
| HuBERT-L6    | 100   | 273.86   | 31.36                       | 5.54        | 251.2      | 33.67 | 5.88    | 3.95   | 3.53          |  |
| HuBERT-L6    | 200   | 289.36   | 33.04                       | 7.49        | 262.4      | 34.30 | 6.13    | 4.01   | 4.32          |  |
| wav2vec-L14  | 50    | 936.97   | -                           | 307.91      | 1106.3     | -     | 330.8   | 2.26   | 1.91          |  |
| wav2vec-L14  | 100   | 948.96   | 79.51                       | 208.38      | 775.1      | -     | 205.7   | 2.28   | 1.92          |  |
| wav2vec-L14  | 200   | 538.56   | 61.06                       | 61.48       | 585.8      | -     | 91.07   | 2.64   | 3.04          |  |

# Эксперименты (zero-shot)

| N           | S      | 2u     | uLM   |           |         |
|-------------|--------|--------|-------|-----------|---------|
|             | Nb     | ABX    | ABX   | spot-the- | accept. |
| System      | units  | with.↓ | acr.↓ | word↓     | judg.↓  |
| Toplines    |        |        |       |           |         |
| ASR+LM      |        | -      | -     | 3.12      | 29.02   |
| Baselines   |        |        |       |           |         |
| LogMel      | 50     | 23.95  | 35.86 | 48.52     | 46.78   |
| LogMel      | 100    | 24.33  | 37.86 | 48.12     | 46.83   |
| LogMel      | 200    | 25.71  | 39.65 | 49.62     | 47.76   |
| Unsupervise | ed     |        |       |           |         |
| CPC         | 50     | 5.50   | 7.20  | 32.18     | 45.43   |
| CPC         | 100    | 5.09   | 6.55  | 31.72     | 44.35   |
| CPC         | 200    | 5.18   | 6.83  | 37.40     | 45.19   |
| HuBERT-L    | 6 50   | 7.37   | 8.61  | 32.88     | 44.06   |
| HuBERT-L    | 6 100  | 6.00   | 7.41  | 31.30     | 42.94   |
| HuBERT-L    | 6 200  | 5.99   | 7.31  | 36.52     | 47.03   |
| wav2vec-L1  | 14 50  | 22.30  | 24.56 | 51.92     | 45.75   |
| wav2vec-L1  | 14 100 | 18.16  | 20.44 | 50.24     | 45.97   |
| wav2vec-L1  | 14 200 | 16.59  | 18.69 | 44.68     | 45.70   |