Homework 5: Ax = b: solving systems of linear equations using Gauss-Jordan, LU decomposition, and sparse algebra.

C.F. Gauss
Department of Physics, Astronomy, and Applied Physics,
Rensselaer Polytechnic Institute
gauss@rpi.edu

April 9, 2013

2.1 Assignment

This homework assignment focuses on solving a system of linear equations using a matrix algebra approach. Here the problem will consist in finding the equivalent resistance of a network of identical resistances, connected as shown on the figure. The figure illustrates a 4×3 system but your code will be able to treat any system $n_x\times n_y$ of resistances.

To simplify the problem, all the resistances will be equal to 1Ω and the DC bias applied at the battery will be equal to 1 Volt.

Your job is:

- 1. To write a code that will build the matrix of resistances for any n_x and n_y .
- 2. To solve the system of equations for $n_x \leq 20$ and $n_y \leq 20$ and plot the equivalent resistance as a function of n_x and n_y .
- 3. To use both Gauss-Jordan elimination and LU decomposition and compare the execution times on a graph.
- 4. Where is the minimum local current?
- 5. Plot the potential drop across each resistance on a 2D map.

For 3 extra credits towards final project, you have the option to:

- 1. Solve the above problem using sparse algebra (1.5 credit)
- 2. Solve the above problem on GPUs (1.5 credit)

Make sure your report is self-contained with sufficient details and clear plots. Feel free to add listings of your code (or use pseudo-code). Collaborative work is allowed but each student will turn in an individual report.

Below is a suggestion for presentation. You can adapt it to your personal vision of the problem.

2.2 Algorithmic Considerations

- 2.3 Implementation
- 2.4 Results
- 2.5 Discussion
- 2.6 References (if any)

Figure 2.1: Example of a 4×3 network of resistances. Here, the equivalent resistance is found to be 1.60669R. (Hint: Make sure your code reproduces this result!)