Colliding Plane Waves in Einstein-Maxwell Theory

P. A. Hogan

Mathematical Physics Department,

University College Dublin,

Belfield, Dublin 4, Ireland

and

C. Barrabès and G. F. Bressange

Laboratoire de Mathématiques et Physique théorique

UPRES-A 6083, CNRS

Université de Tours, 37200 France.

PACS numbers: 04.30.+x, 04.20Jb

Recently [1] a simple solution of the vacuum Einstein–Maxwell field equa-

tions was given describing a plane electromagnetic shock wave sharing its wave

front with a plane gravitational impulse wave. We present here an exact so-

lution of the vacuum Einstein-Maxwell field equations describing the head-on

collision of such a wave with a plane gravitational impulse wave. The solution

has the Penrose-Khan solution and a solution obtained by Griffiths as separate

limiting cases.

1

In a recent paper[1] a construction is given of a solution of the vacuum Einstein–Maxwell field equations describing a plane electromagnetic shock wave sharing its wave front with a plane gravitational impulse wave. The wave is simpler than previous examples of such objects (see, for example [2], which is discussed in [1]) in that the space–time on one side of the null hypersurface history of the wave front is conformally flat (and is a special case of a Bertotti–Robinson[3] space–time) and on the other side is flat. The homogeneous special case of this wave has line–element which can be put in the form

$$ds^{2} = (1 + b^{2}v_{+}^{2})^{-1} \left\{ 2du \, dv - (1 + lv_{+})^{2} dx^{2} - (1 - lv_{+})^{2} dy^{2} \right\} , \qquad (1)$$

where b, l are constants, $v_+ = v \theta(v)$ with $\theta(v)$ the Heaviside step function (equal to 1 for v > 0 and equal to zero for v < 0). For this space—time the only non–vanishing Newman–Penrose component of the Maxwell field is

$$\phi_0 = \frac{b\,\theta(v)}{1 + b^2 v_+^2} \,\,\,\,(2)$$

and the only non-vanishing Newman-Penrose component of the Weyl tensor is

$$\Psi_0 = -l \,\delta(v) \ . \tag{3}$$

Here $\delta(v)$ is the Dirac delta function. Thus both the Maxwell and Weyl tensors are type N in the Petrov classification with $\partial/\partial u$ as degenerate principal null direction. The null hypersurface v=0 is a null hyperplane and is the history of a plane electromagnetic shock wave on account of (2) and of a plane gravitational impulse wave on account of (3). We can remove the shock by putting b=0 and we can remove the gravitational impulse wave by putting l=0.

We consider now the head—on collision of a wave of the type described by

(1) with a plane gravitational impulsive wave. This latter will be described by
the space—time with line—element

$$ds^{2} = 2du \, dv - (1 + ku_{+})^{2} dx^{2} - (1 - ku_{+})^{2} dy^{2} , \qquad (4)$$

with k a constant and $u_+ = u \theta(u)$. Following the usual procedure in setting up such a collision problem (see [4]) we consider the space-time to have line-element (1) in the region u < 0 and have line-element (4) for v < 0 (the two line-elements coincide in the overlapping region u < 0, v < 0). The line-element in the region u > 0, v > 0 (after the collision) has the Rosen-Szekeres form [4]

$$ds^{2} = 2e^{-M}du dv - e^{-U} \left(e^{V} dx^{2} + e^{-V} dy^{2} \right) , \qquad (5)$$

where M, U, V are each functions of (u, v) satisfying the O'Brien-Synge [5] junction conditions: When v = 0

$$e^{V} = \frac{1+ku}{1-ku}$$
, $e^{M} = 1$, $e^{-U} = 1-k^{2}u^{2}$, (6)

and when u = 0

$$e^{V} = \frac{1+lv}{1-lv}$$
, $e^{M} = 1+b^{2}v^{2}$, $e^{-U} = \frac{1-l^{2}v^{2}}{1+b^{2}v^{2}}$. (7)

In addition the Maxwell field in the region u > 0, v > 0 has two non-vanishing Newman-Penrose components [4] ϕ_0, ϕ_2 which are both functions of (u, v) and satisfy the boundary conditions: when $v = 0, \phi_2 = 0$ and when $u = 0, \phi_0 =$ $b(1 + b^2v^2)^{-1}$. It is now a matter of solving the vacuum Einstein-Maxwell equations in the region u > 0, v > 0 (these can be found in [4] for example) for the unknown functions U, V, M, ϕ_2, ϕ_0 subject to the above boundary conditions. We find the following expressions for these functions:

$$e^{-U} = \frac{F}{1 + h^2 v^2} \,, \tag{8}$$

$$e^{V} = \frac{1 + ku\sqrt{1 - l^{2}v^{2}} + lv\sqrt{1 - k^{2}u^{2}}}{1 - ku\sqrt{1 - l^{2}v^{2}} - lv\sqrt{1 - k^{2}u^{2}}},$$
(9)

$$e^{-M} = \frac{H^2}{(1+b^2v^2)\left[(1-k^2u^2)(1-l^2v^2)F\right]^{1/2}},$$
 (10)

$$\phi_2 = \frac{-kbv\sqrt{1 - l^2v^2}}{\left[(1 - k^2u^2)F\right]^{1/2}H} , \qquad (11)$$

and

$$\phi_0 = \frac{b\left\{ (l^2 + b^2)lkuv^3 + \sqrt{1 - k^2u^2}(1 - l^2v^2)^{3/2} \right\}}{(1 + b^2v^2)\left[(1 - l^2v^2)F \right]^{1/2}H} , \qquad (12)$$

where

$$F = 1 - k^2 u^2 - l^2 v^2 - k^2 b^2 u^2 v^2 , (13)$$

and

$$H = \sqrt{1 - k^2 u^2} \sqrt{1 - l^2 v^2} - k l u v . \tag{14}$$

A calculation of the Weyl tensor components reveals the expected curvature singularity at F = 0 for u > 0, v > 0. There are two important special limiting cases: (1) if b = 0 the solution above becomes the Penrose–Khan [6] solution describing the space–time following the collision of two plane impulsive gravitational waves and (2) if l = 0 the solution becomes the Griffiths [4, 7] solution describing the space–time following the collision of a plane gravitational impulse wave and a plane electromagnetic shock wave. Clearly further collisions involving the type of plane wave described here by (1) can be envisaged.

We thank Professor Werner Israel for helpful and encouraging discussions.

References:

- [1] Hogan, P. A. 1997 "Plane Gravitational Waves and Bertotti–Robinson Space–Times", University College Dublin, preprint.
- [2] Chandrasekhar, S. and Xanthopoulos, B. C. 1985 Proc. R. Soc. A398, 223.
- [3] Kramer, D., Stephani, H., Mac Callum, M. A. H. and Herlt, E. Exact Solutions of Einstein's Equations (VEB Deutscher Verlag der Wissenschaften, Berlin 1980).
- [4] Griffiths, J. B. Colliding Plane Waves in General Relativity (Clarendon Press, Oxford 1991).
- [5] O'Brien, S. and Synge, J. L. 1952 Commun. Dublin Inst. Adv. Stud. A, no.9.
- [6] Penrose, R. and Khan, K. A. 1971 Nature 229, 185.
- [7] Griffiths, J. B. 1975 Phys. Lett., A54, 269.