

Contexte

Pollution, l'émission de CO2:

Les transports représentent 29 % des émissions. Parmi elles...

... et seulement 3,5 % du transport aérien et 1 % du transport maritime

Source: CITEPA 2017

Economie

Impact des embouteillages :

- 17 Milliards d'€ en 2013 (12,5 pour le trou de la Sécurité sociale).
- 350 Milliards d'€ sur 15 ans.
- Un automobiliste parisien passe en moyenne 64h dans les bouchons en 2016.

Source : rapport de l'Inrix

Plan

- 1. Architecture technique du projet
- 2. Sumo, Flow, RLlib
- 3. États, actions et récompenses
- 4. Scénario d'entraînement
- 5. Difficultés
- 6. Agenda
- 7. Conclusion

Architecture

Architecture

Sumo, Flow, RLlib

Outils

- 1. Simulateur d'entrainement : Sumo
 - 1. Import de carte via Open Street Map
 - 2. API Python pour contrôle des feux et de la dynamique des véhicules
- 2. Simulateur de production : Sim4Sys
 - 1. Programmable en *UML*
 - Interface web
 - 3. Besoin métier
- 3. Calcul numérique: RLlib
 - 1. Scikit-learn de l'apprentissage par renforcement
 - 2. Patron à la OpenAl Gym
 - 3. Entraînement distribué
- 4. Interfaçage: Flow
 - 1. Abstraction de RLlib et Sumo via l'héritage de classes abstraites Scenario et Environment
 - 2. Maintenu par UC Berkeley
 - 3. Projet jeune (2018) et donc peu documenté

États, actions et récompenses

Paramètres du modèle

<u>ldée</u>:

On cherche un estimateur qui:

- Associe à un **état**, $e \in \mathcal{E}$, une **action**, $a \in \mathcal{A}$
- De manière à maximiser une **récompense**, ${\cal R}$

$$\begin{cases} g: \mathcal{E} \longrightarrow \mathcal{A} \\ \hat{g}(\theta) \in \operatorname{argmax}_{\theta} \mathbb{E}(R) \end{cases}$$

États:

- Observation de β voitures sur les α simulées à chaque pas de temps (réduction de dimension)
- États de γ feux

Actions:

• Contrôle de γ feux

Les différents modèles

Etats	Récompenses	Commentaires
$\mathcal{E}_1 = (x, y, \dot{x}, \dot{y})^{eta}$	$R_1 = \frac{1}{\alpha} \sum_{i=0}^{\alpha} \ (\dot{x}, \dot{y})_i\ $	Récompense les vitesses
$\mathcal{E}_2 = (x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y})^{\beta}$	$R_2 = \xi_1 R_1 - \xi_2 \frac{1}{\alpha} \sum_{i=0}^{\alpha} \ (\ddot{x}, \ddot{y})_i\ $	Récompense les vitessesPénalise les accélérations
$\mathcal{E}_3 = (x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y})^{\beta} \times \{1, 0\}^{\gamma}$	$R_3 = \xi_2 R_2 - \xi_3 \sum_{i=0}^{\alpha} \mathbb{I}\{t_{\dot{x}_i=0, \dot{y}_i=0} \ge \tau\}$	 Récompense les vitesses Pénalise les accélérations Pénalise les temps l'arrêts

Modèles d'études

<u>Idée</u>: Disposer d'un modèle simple servant de banc d'essai

- 1. Système observé entièrement ou partiellement
- 2. Passage à l'échelle
- 3. Choix de la récompense

Scénario d'entraînement

Analyse des mesures TomTom

Justification:

- 3 feux
- Nombre significatif de véhicules
- Congestionné
- Heure de pointe : 8-10h
- Heure creuse: 14-16h

Attention:

- Données par route et non par file
- Beaucoup de sens uniques

Source: https://traffic-stats.tomtom.com/

Environnement d'entraînement

1. Maillage routier:

- 1. Besoin métier => <u>Issy les Moulineaux</u>
- 2. Importées via Flow depuis OSM

2. Modélisation:

- 1. Débits de voitures d'après TomTom
- 2. Choix des trajectoires des voitures pilotées par *Sumo*

1300

voitures / h

1200 voitures / h

Environnement d'entraînement

<u>Idée</u>: Avoir un environment d'entraînement **cohérent** avec les *mesures TomTom*

Sumo

Résultats

Modèle 1:
$$\mathcal{E}_1 = (x, y, \dot{x}, \dot{y})^{\beta}$$

$$R_1 = \frac{1}{\alpha} \sum_{i=0}^{\alpha} \|(\dot{x}, \dot{y})_i\|$$

Difficultés

- 1. Temps de simulation
- 2. Interface entre les environnements d'entraînement et de production
- 3. Coût d'entrée des bibliothèques utilisées
- 4. Fidélité par rapport à l'environnement de simulation

Agenda

Agenda

Conclusion

- 1. Outils utilisés
- 2. Paramétrage du modèle
- 3. Modélisation du quartier dans Sumo grace à TomTom et OSM
- 4. Premiers résultats
- 5. Difficultés et Agenda

