

# Ludwig-Maximilians-Universität München

## Prof. Dr. D. Kranzlmüller, Korbinian Staudacher, Xiao-Ting Michelle To

### Introduction to Quantum Computing – Exercise Sheet 1

The first exercise sheet is designed to help you understand the basic mathematical concepts in quantum computing. The tasks build on each other and should be worked on in sequence.

#### Exercise 1.1: The Bloch-sphere

This task is designed to help you clarify and memorize the concept of rotating a vector about the X and Z axes in the Bloch sphere.

Take a look at the following link to a Bloch sphere simulator: <sup>1</sup>. In this simulator, a qubit is represented as a function of two angles  $\theta$  and  $\phi$ . Set the "Polar angle" to  $\theta = \frac{3\pi}{10}$  and the "Azimuth" to  $\phi = \frac{6\pi}{12}$ . We call this vector v.

- a) Rotate the vector v by 90° around the Z axis.<sup>2</sup> What are the values of  $\theta$  and  $\phi$  now?
- b) Rotate the vector v by 90° around the X-axis. What are the values of  $\theta$  and  $\phi$  now?
- c) Set the angles back to the initial values so that for the state of the QuBit  $|\psi\rangle \approx 0.891 |\uparrow\rangle + 0.454i |\downarrow\rangle$  is shown. Instead of using the spins  $|\uparrow\rangle$  and  $|\downarrow\rangle$ , one can also label the Bloch sphere with  $|0\rangle$  (north pole) and  $|1\rangle$  (south pole). Suppose  $|\uparrow\rangle = |0\rangle$  and  $|\downarrow\rangle = |1\rangle$ . To what proportion is  $|\psi\rangle$  in the states  $|0\rangle$  and  $|1\rangle$ , respectively, and with what probability does the measurement yield  $|0\rangle$  and  $|1\rangle$ , respectively?
- d) Rotate the vector v by setting "azimuth"  $\phi$  to 0 (and leaving  $\theta$  at  $\frac{3\pi}{10}$ ). How do the fractions just calculated (and
- thus the probabilities of measuring  $|0\rangle$  and  $|1\rangle$ ) change? What does this rotation mean for the QuBit? e) Rotate the vector v by setting "Polar angle"  $\theta$  to  $\frac{7\pi}{10}$ . How do the fractions calculated in c) (and thus the probabilities of measuring  $|0\rangle$  and  $|1\rangle$ ) change? What does this rotation mean for the QuBit?
- (optional) Check out the alternative Bloch sphere simulator from Bits and electrons<sup>3</sup> and review the operation of the presented single QuBit gates.

#### Exercise 1.2: The tensor product

With the tensor product we can describe the composition of single QuBits to a so-called quantum register. The tensor product of two matrices  $A = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix}$  and  $B = \begin{pmatrix} \beta_1 & \beta_2 \\ \beta_3 & \beta_4 \end{pmatrix}$  is defined as:

$$A \otimes B = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix} \otimes B = \begin{pmatrix} \alpha_1 B & \alpha_2 B \\ \alpha_3 B & \alpha_4 B \end{pmatrix} = \begin{pmatrix} \alpha_1 \beta_1 & \alpha_1 \beta_2 & \alpha_2 \beta_1 & \alpha_2 \beta_2 \\ \alpha_1 \beta_3 & \alpha_1 \beta_4 & \alpha_2 \beta_3 & \alpha_2 \beta_4 \\ \alpha_3 \beta_1 & \alpha_3 \beta_2 & \alpha_4 \beta_1 & \alpha_4 \beta_2 \\ \alpha_3 \beta_3 & \alpha_3 \beta_4 & \alpha_4 \beta_3 & \alpha_4 \beta_4 \end{pmatrix}$$

- a) Formulate the calculation rule for vectors  $\alpha \otimes \beta$  with  $\alpha = {\alpha_1 \choose \alpha_2}$  and  $\beta = {\beta_1 \choose \beta_2}$ .
- **b)** Calculate  $|0\rangle \otimes |1\rangle$ .
- c) Calculate  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .
- d) The following matrix is also called Hadamard matrix:  $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ . By  $H_n$  we denote the *n*-fold tensor product of H with itself. Calculate  $H_2 = H \otimes H$ .

<sup>&</sup>lt;sup>1</sup>https://www.st-andrews.ac.uk/physics/quvis/simulations\_html5/sims/blochsphere/blochsphere.html

<sup>&</sup>lt;sup>2</sup>To find out how much 90° are at the angle controls, look at the "Azimuth" scale!

 $<sup>^3 \</sup>mathtt{https://bits-and-electrons.github.io/bloch-sphere-simulator/}$ 

## Exercise 1.3: Valid QuBit representations

a) Which of the following vectors are representations of a QuBit and how do you check it?

(i) 
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

(ii) 
$$\frac{1}{\sqrt{2}} \binom{0}{1}$$

(iii) 
$$\binom{0}{i}$$

**b)** With what probability do we measure  $|1\rangle$  or  $|0\rangle$  at the QuBit  $\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{2}}\right)$ ?

## Exercise 1.4: Entanglement

The four Bell states are:

$$|a_1 a_0\rangle = |00\rangle \Rightarrow \mathbf{\Phi}^+ = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \qquad |a_1 a_0\rangle = |10\rangle \Rightarrow \mathbf{\Phi}^- = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$
$$|a_1 a_0\rangle = |01\rangle \Rightarrow \mathbf{\Psi}^+ = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \qquad |a_1 a_0\rangle = |11\rangle \Rightarrow \mathbf{\Psi}^- = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

In this task you work with a 2-QuBit register.

- a) Draw the circuit that puts a register in the Bell state  $\Phi^-$  (Group 1),  $\Psi^+$  (Group 2) or  $\Psi^-$  (Group 3).
- b) Calculate the intermediate states  $|\psi_0\rangle$ ,  $|\psi_1\rangle$  and  $|\psi_2\rangle$  of your circuit in a).
- c) Show that your assigned Bell state cannot be the tensor product of two single QuBits.

## Exercise 1.5: Teleportation

In this task, we want to teleport a QuBit; however,  $|a\rangle$  and  $|b\rangle$  are not – as in the example from the slides – in the Bell state  $|\beta_{00}\rangle$  at the beginning  $(|\psi_1\rangle)$ , but in the Bell state  $|\beta_{11}\rangle$  (Group 1),  $|\beta_{10}\rangle$  (Group 2), or  $|\beta_{01}\rangle$  (Group 3).

- a) Calculate the state  $|\psi_2\rangle$  of the teleportation circuit.
- b) Optional How do you need to adjust the circuit to perform successful teleportation based on your initial Bell state?

Note: You only need to take care of the gates after the measurement!

#### Exercise 1.6: Measuring Expectation Values

Given the following parametrized circuit:

$$|0\rangle - R_y(\theta)$$

What is the expectation value for a measurement in the Z-basis when we set:

- **a**)  $\theta = \frac{\pi}{4}$ ? **b**)  $\theta = \frac{3\pi}{4}$ ?
- c) For which values  $\theta$  do we minimize, maximize the expectation value?