RICERCA OPERATIVA - PARTE II

ESERCIZIO 1. (9 punti) Si applichi la procedura di programmazione dinamica al seguente problema con b = 9, individuando tutte le soluzioni ottime

i	1	2	3	4	5
v_i	30	70	10	50	80
p_i	2	5	1	4	6

ESERCIZIO 2. (9 punti) Sia dato il problema non vincolato

min
$$4x^4 + 3y^4 + 4x^2y^2$$

- Stabilire se è un problema di programmazione convessa;
- trovare un ottimo globale del problema;
- aggiungere il vincolo $x+y\geq 1$ e impostare le condizioni KKT per il problema vincolato;
- stabilire se è vero che il problema vincolato ammette un ottimo globale (\bar{x}, \bar{y}) tale che $0 < \bar{x}, \bar{y} < 1$.

ESERCIZIO 3. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson, mostrando che restituisce una soluzione ottima per il problemi di flusso massimo e i corrispondenti problemi di taglio a costo minimo.

ESERCIZIO 4. (5 punti) Dato un problema di ottimizzazione, si illustri il corripsondente problema di ε -approssimazione. Per problemi NP-completi, si illustrino i quattro gradi di difficoltà legati alla difficoltà dei probelmi di ε -approssimazione.