Série 2

David Wiedemann

9 mars 2021

1

On montre la double implication.

 \Rightarrow :

Supposons d'abord E ouvert, alors $\forall x \in E \exists \delta > 0$ tel que $B(x, \delta) \subset E$, et ainsi $x \in \stackrel{\circ}{E}$. On en deduit que $E \subset \stackrel{\circ}{E}$.

 $\operatorname{Car} \stackrel{\circ}{E} \subset E$, on en déduit que $\stackrel{\circ}{E} = E$.

 \Leftarrow

Supposons donc $E = \stackrel{\circ}{E}$, ainsi $\forall x \in E \exists \delta > 0$ tel que $B(x, \delta) \subset E$ et donc E est ouvert.

$\mathbf{2}$

On montre la double inclusion.

 $(\stackrel{\circ}{E^c}) \subset (\overline{E})^c$

Soit $x \in (\stackrel{\circ}{E^c})$. Supposons, par l'absurde, que $x \in \overline{E}$, alors $x \in E$ ou $x \in \partial E$.

Si $x \in (E^c)$, en particulier $x \in E^c$ et donc $x \in E$ est absurde.

Si $x \in \partial E$, alors $\forall \delta > 0, B(x, \delta) \not\subset E$ et $\forall \delta > 0, B(x, \delta) \not\subset E^c$, ainsi $x \notin (\tilde{E}^c)$ et on a une contradiction.

 $(\stackrel{\circ}{E^c})\supset (\overline{E})^c$

Soit $x \in (\overline{E})^c$, alors, $x \notin \partial E$ et $x \notin E$.

Par définition, $\partial E = \partial E^c$ et donc $x \notin \partial E^c$, ainsi $\forall x \in (\overline{E})^c$, $\exists \delta > 0$ tel que $B(x, \delta) \subset E^c$, on en deduit que $x \in \stackrel{\circ}{E}^c$.

3

Comme résultat préliminaire, on montre que $\overset{\circ}{E}=E\setminus\partial E.$

Pour démontrer ceci, on procède par double inclusion.

Soit $x \in E$, alors $\exists \delta > 0$ tel que $B(x, \delta) \subset E$, et ainsi $x \notin \partial E$, mais $x \in E$, par définition, on en déduit $x \in E \setminus \partial E$.

Soit $x \in E \setminus \partial E$, ainsi, par définition du bord et parce que $x \in E$, $\exists \delta > 0$ tel que $B(x, \delta) \subset E$, et donc $x \in \stackrel{\circ}{E}$.

Avec ce résultat, on démontre maintenant que $(\stackrel{\circ}{E})^c=\overline{E^c},$ on procède à nouveau par double inclusion.

 \subset :

Soit $x \in (\stackrel{\circ}{E})^c$, car $\stackrel{\circ}{E} = E \setminus \partial E$, $x \in \partial E \cup E^c$.

Or, par définition du bord, $\partial E = \partial E^c$, et donc $x \in \partial E^c \cup E^c$, et par une formule du cours $\partial E^c \cup E^c = \overline{E^c}$, on en déduit finalement que $x \in \overline{E^c}$.

 \supset :

Soit $x \in \overline{E^c}$, montrons que $x \notin \stackrel{\circ}{E}$.

On utilise à nouveau que $\overline{E^c} = \partial E \cup E^c$.

Si $x \in E^c$, alors il est clair que $x \notin \stackrel{\circ}{E}$.

Si $x \in \partial E$, alors $\forall \delta > 0, B(x, \delta) \not\subset E$, et donc $x \notin \stackrel{\circ}{E}$.

Ainsi, $x \in (E)^c$.

4

On montre la double implication.

 \Rightarrow :

Supposons E fermé, ainsi E^c est ouvert.

Si E^c est ouvert, on a par la partie 1 que $E^c = (\stackrel{\circ}{E})^c$.

Ensuite, par la partie 2, on a que $(\stackrel{\circ}{E})^c = (\overline{E})^c$.

Ainsi $E^c = (\overline{E})^c$ et on en déduit que $E = \overline{E}$.

۷.

On suppose maintenant que $E=\overline{E},$ montrons que le complementaire de E est ouvert.

Par la partie 1, E^c est ouvert si et seulement si $E^c = \overset{\circ}{E^c}$, grâce à la partie 2, la partie 1 et l'hypothèse que $E = \overline{E}$, la suite d'égalités suivantes prouve que E est fermé :

$$E^c = (\overline{E})^c = \overset{\circ}{E^c}$$