Pneumonia Chest X-ray Diagnosis System

Metis Bootcamp - Deep Learning Module

Andy Wang

INTRODUCTION

Pneumonia: Inflammation of the air sacs in the lung

- 16% of all death of children under 5 years old in the world
- Most common reason for US children to be hospitalized
- Most common cause of hospital admission for US adults

American Thoracic Society

GOAL

Build a deep learning model to aid in rapid evaluation of chest X-ray

Pneumonia Chest X-ray Image dataset from Kaggle

Normal

Pneumonia

RESULT

	Final Model
Recall	1*
Precision	0.89
Accuracy	0.92

^{*} Recall of 1 is most likely rounded up by the sklearn classification report function

RESULT

RESULT

"Healthy Individual"

True Negative

"This is Bad"

False Negative

"Just to be Safe"

False Positive

"Precise Diagnosis"

True Positive

CONCLUSION & FUTURE WORK

- Deep learning pneumonia X-ray diagnosis system can provide accurate result
- Adding more training images
- Using the AUC metric in Keras

Thank you

APPENDIX

- Optimizer: adam
- Loss function: binary crossentropy
- Metric: accuracy

MobileNetV2

Dense (100 neurons, relu)

Dropout(60%)

Dense (50 neurons, relu)

Dense (1 neuron, sigmoid)