Algebra II - Zapiski predavanj

Amar Ustavdić

Vsebina

1	Osn	ovne a	dgebrske strukture		3				
	1.1	Algebr	ska struktura		3				
		1.1.1	Definicija		3				
		1.1.2	Zgled		3				
		1.1.3	Definicija		3				
		1.1.4	Zgled		3				
		1.1.5	Trditev		4				
		1.1.6	Trditev		4				
		1.1.7	Definicija		5				
		1.1.8	Trditev		5				
		1.1.9	Zgled		5				
		1.1.10	Definicija		6				
		1.1.11	Trditev		6				
		1.1.12	Trditev		7				
		1.1.13	Definicija		7				
		1.1.14	Definicija		7				
		1.1.15	Definicija		8				
		1.1.16	Trditev		8				
		1.1.17	Trditev		8				
		1.1.18	Trditev		8				
2	Vek	Vektorski prostori							
	2.1		<u>.</u> cija		9				
	2.2	Zøled			9				

1 Osnovne algebrske strukture

1.1 Algebrska struktura

1.1.1 Definicija

Naj bo S poljubna neprazna množica.

Vsaki preslikavi $\varphi: S \times S \to S$ rečemo DVOMESTNA NOTRANJA OPERACIJA (ali DNO) na množici S.

Sliko urejenega para $(a, b) \in S \times S$ pišemo $a\varphi b$ (namesto običajnega zapisa $\varphi(a, b)$) in jo imenujemo KOMPOZITUM (SESTAV) ELEMENTOV a in b iz S.

Dvomestno notranjo operacijo označujemo z znaki: $+,\cdot,\circ,*,\triangle,\heartsuit,\ldots$

1.1.2 Zgled

- a) $S = \mathbb{N}$
 - \circ je običajno seštevanje naravnih števil.
 - \Rightarrow je DNO, saj $\forall a, b \in \mathbb{N}$ je $a \circ b \in \mathbb{N}$.
- b) $S = \mathbb{N}$
 - o je običajno odštevanje naravnih števil.
 - \Rightarrow ni DNO, npr. za $1 \circ 2 = 1 2 = -1 \notin \mathbb{N}$.

1.1.3 Definicija

DNO o na množici $S \neq \emptyset$ je ASOCIATIVNA če za vse elemente $a, b, c \in S$ velja

$$(a \circ b) \circ c = a \circ (b \circ c)$$

KOMUTATIVNA, če za vsaka elementa $a, b \in S$ velja

$$a \circ b = b \circ a$$

1.1.4 Zgled

- a) $S = \mathbb{Z}$
 - o je običajno seštevanje celih števil.
 - \Rightarrow je DNO.
 - \Rightarrow o je komutativna, in je asociativna.
- b) $S = \mathbb{Z}$
 - o je običajno odštevanje celih števil.
 - \Rightarrow je DNO.

$$a = 1, b = 0$$

$$a \circ b = 1 - 0 = 1$$

$$b \circ a = 0 - 1 = -1$$

 \Rightarrow ni komutativna.

$$a = 1, b = 2, c = 3$$

 $(a \circ b) \circ c = (1 - 2) - 3 = -4$
 $a \circ (b \circ c) = 1 - (2 - 3) = 2$

 \Rightarrow ni asociativna.

c) $S = \mathbb{R}^{n \times n}$ (kvadratne matrike z realnimi koeficienti) o je običajno množenje matrik.

 \Rightarrow je DNO, ker je rezultat zmnožka spet kvadratna matrika velikosti $n\times n$ z realnimi koeficienti.

$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, C = \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix}$$

 \Rightarrow je asociativno.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$A \circ B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$B \circ A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$$

 \Rightarrow ni komutativno.

1.1.5 Trditev

Če je DNO o na $S \neq \emptyset$ asociativna, potem je produkt (kompozitum) elementov

$$a_1, a_2, \dots, a_n \in S \quad (n \in \mathbb{N})$$

natančno določen z vrstnim redom teh elementov. Tak produkt označimo z

$$a_1 \circ a_2 \circ \cdots \circ a_n$$

Dokaz: izpustimo!

1.1.6 Trditev

Če je o asociativna in komutativna DNO na $S \neq \emptyset$, potem je naš produkt elementov

$$a_1, a_2, \dots, a_n \in S \quad (n \in \mathbb{N})$$

enolično določen ne glede na vrstni red naših elementov.

Dokaz: izpustimo!

1.1.7 Definicija

Naj bo $S \neq \emptyset$ z DNO \circ .

Element $l \in S$ je LEVI NEUTRALNI ELEMENT v množici S, če za $\forall a \in S$ velja

$$l \circ a = a$$

Element $d \in S$ je DESNI NEUTRALNI ELEMENT v množici S, če za $\forall a \in S$ velja

$$a \circ d = a$$

Če je $e \in S$ hkrati levi in desni neutralni element v množici S, mu rečemo NEUTRALNI ELEMENT.

Oznaka: (S, \circ) ... neprazna množica S z DNO \circ .

1.1.8 Trditev

Če (S, \circ) premore levi in desni neutralni element, potem sta enaka.

Dokaz: Naj bo $l \in S$ levi neutralni element in $d \in S$ desni neutralni element v množici S, potem je

$$l = l \circ d = d$$

Torej sklepamo, da je l = d, kar smo želeli pokazati.

1.1.9 Zgled

a)
$$S = \mathbb{R}^{2 \times 2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{R} \right\}$$

o je običajno množenje matrik.

$$\Rightarrow$$
 je DNO.

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 je neutralni element, saj za $\forall A \in S$ velja $I \cdot A = A \cdot I = A$.

b)
$$S = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

o je običajno množenje matrik.

$$\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ax & ay \\ 0 & 0 \end{bmatrix}$$

5

 \Rightarrow je DNO.

LEVI NEUTRALNI ELEMENT

$$\begin{bmatrix} ax & ay \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}$$

$$\downarrow \downarrow$$

$$a = 1, b = \text{ poljuben}$$

$$\downarrow \downarrow$$

 $\forall b \in \mathbb{R} \text{ je } \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$ levi neutralni element v S.

Levih neutralnih elementov je neskončno mnogo.

DESNI NEUTRALNI ELEMENT

$$\begin{bmatrix} ax & ay \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$$

$$\downarrow \downarrow$$

$$ax = a \Rightarrow x = 1$$

$$ay = b \Rightarrow y = \frac{b}{a}$$

$$\downarrow \downarrow$$

Ni OK! Ker je odvisno od a, b.

Desni neutralni element ne obstaja!

1.1.10 Definicija

Naj bo (S, \circ) premore neutralni element $e \in S$, ter naj bo $a \in S$ poljuben.

Potem $l \in S$ je LEVI OBRAT (ali INVERZ) ELEMENTA $a \in S$ če velja

$$l \circ a = e$$

Element $d \in S$ je DESNI OBRAT ELEMENTA $a \in S$ če velja

$$a \circ d = e$$

OBRAT ELEMENTA $a \in S$ je tak element iz S, ki je levi in desni obrat elementa a.

Element $a \in S$ je obrnljiv (v množici S) če premore obrat v množici S.

1.1.11 Trditev

Naj veljajo oznake iz definicije 1.1.10. Neutralni element e je obrat samega sebe.

Dokaz:

$$e \circ e = e$$

1.1.12 Trditev

Naj bo $S \neq \emptyset$ z DNO \circ , ki je asociativna in naj bo $e \in S$ neutralni element. Če ima element $a \in S$ levi in desni obrat v S potem sta enaka.

Dokaz: Naj veljajo predpostavke iz trditve 1.1.12 in $a \in S$.

 \exists levi obrat za $a \vee S \Rightarrow \exists l \in S : l \circ a = e$

 \exists desni obrat za a v $S \Rightarrow \exists d \in S : a \circ d = e$

Potem je

$$(l \circ a) \circ d = e \circ d = d$$

$$l \circ (a \circ d) = l \circ e = l$$

ker je \circ asociativna operacija. Torej je l=d.

1.1.13 Definicija

Če je $S \neq \emptyset$ z DNO \circ , ki je asociativna, potem rečemo, da je (S, \circ) POLGRUPA. Polgrupa z neutralnim elementom je MONOID.

Monoid v katerem je vsak element obrnljiv je GRUPA.

(S, \circ)	o asociativna	∃ neutralen element	$\forall a \in S \text{ je obrnljiv}$
POLGRUPA	✓	×	×
MONOID	✓	✓	×
GRUPA	✓	✓	✓

1.1.14 Definicija

Če izbrano DNO na $S \neq \emptyset$ označimo s+,potem govorimo o SEŠTEVAJOČEM (ali ADITIVNEM) ZAPISU.

Element a+b je VSOTA elementov $a,b\in S$, neutralni element označimo z $0\in S$ (in mu rečemo ničla), obratu elementa $a\in S$ rečemo NASPROTNI ELEMENT in ga označimo z -a.

Če izbrano DNO na $S \in \emptyset$ označimo z ·, potem govorimo o MNOŽEČEM (ali MULTIPLIKATIVNEM) ZAPISU.

$$a \cdot b = ab$$

Element ab je zmnožek (ali PRODUKT) elementa $a, b \in S$, neutralni element označimo z $1 \in S$ (in mu rečemo enka), obratu elementa $a \in S$ rečemo INVERZ, označimo z a^{-1} .

1.1.15 Definicija

Naj bo $\Omega \neq \emptyset$. $Map(\Omega) = \{f : \Omega \to \Omega\} \leftarrow$ množica vseh preslikav iz Ω v Ω . Množico $Map(\Omega)$ opremimo z (običajno) operacijo levega sestavljanja preslikav:

$$\forall f, g : \Omega \to \Omega \text{ je } f \circ g : \Omega \to \Omega$$

in $\forall x \in \Omega \text{ velja } (f \circ g)(x) = f(g(x))$

Operacija \circ iz definicije 1.1.15 je DNO na $Map(\Omega)$.

1.1.16 Trditev

 $(Map(\Omega), \circ)$ je monoid.

Dokaz:

I) o je asociativna. (moramo dokazati, oz. dokazano spodaj)

$$\forall f, q, h \in Map(\Omega) : (f \circ q) \circ h = f \circ (q \circ h)$$

Opazimo:

$$((f \circ g) \circ h)(x) = f(g(h(x)))$$
$$(f \circ (g \circ h))(x) = f(g(h(x)))$$

II) \exists neutralnega elementa v $Map(\Omega)$ za \circ

$$\forall x \in \Omega \text{ naj bo } id : x \to x \text{ (identična preslikava)}$$

Pogazati moramo: $\forall f \in Map(\Omega) : f \circ id = id \circ f = f$

$$\forall x \Omega \text{ velja: } (f \circ id)(x) = f(id(x)) = f(x)$$

 $(id \circ f)(x) = id(f(x)) = f(x)$

1.1.15 Definicija (nadaljevanje)

Podobno definiramo:

$$\begin{split} &Inj(\Omega) = \{f: \Omega \to \Omega; f \text{ je injektivna}\}\\ &Sur(\Omega) = \{f: \Omega \to \Omega; f \text{ je surjektivna}\}\\ &Bij(\Omega) = \{f: \Omega \to \Omega; f \text{ je bijektivna}\} \end{split}$$

in jih opremimo z operacijo sestavljanja preslikav z istim predpisom.

1.1.17 Trditev

 $(Inj(\Omega), \circ)$ in $(Sur(\Omega), \circ)$ sta monoida, $(Bij(\Omega), \circ)$ je grupa.

Dokaz: D.N. (za domačo nalogo)

1.1.18 Trditev

2 Vektorski prostori

Vektorski prostor, polje $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}_p$, p praštevilo, $\mathbb{F}, \mathbb{F}_2, \mathbb{F}_3$.

2.1 Definicija

Naj bo $V \neq \emptyset$ z DNO $+: V \times V \to V$. Naj bo \mathbb{F} polje in $\cdot: \mathbb{F} \times V \to V$. Algebrska struktura $(V, \mathbb{F}, +, \cdot)$ je VEKTORSKI PROSTOR, če velja:

- (VP1) $\forall u, v, w \in V : (u+v) + w = u + (v+w) + \text{je asociativna na množici } V.$
- (VP2) $\forall 0 \in V : \forall v \in V : v + 0 = v = 0 + v$ obstaja neutralni element za +.
- (VP3) $(\exists -v \in V) : v + (-v) = 0 = (-v) + v$ vsak element iz množice V ima nasprotni element.
- (VP4) $\forall u, v \in V : u + v = v + u$ + je komutativna operacija na V.

(VP5)
$$\forall \alpha, \beta \in \mathbb{F}, \forall v \in V : (\alpha\beta)v = \alpha(\beta v)$$

(VP6)
$$\forall \alpha \in \mathbb{F}, \forall u, v \in V : \alpha(v+u) = \alpha v + \alpha u$$

(VP7)
$$\forall \alpha, \beta \in \mathbb{F}, \forall v \in V : (\alpha + \beta)v = \alpha v + \beta v$$

(VP8)
$$\forall v \in V : 1_{\mathbb{F}} \cdot v = v$$

Rečemo, da je V vektorski prostor nad poljem $\mathbb F$ za operaciji + in \cdot .

Vsakemu elementu iz V rečemo VEKTOR in vsakemu elementu iz polja \mathbb{F} rečemo SKALAR.

$$\begin{array}{ll} +: V \times V \to V & \text{(seštevanje vektorjev)} \\ \cdot: \mathbb{F} \times V \to V & \text{(množenje skalarja z vektorjem)} \\ +: \mathbb{F} \times \mathbb{F} \to \mathbb{F} & \text{(seštevanje skalarjev)} \\ \cdot: \mathbb{F} \times \mathbb{F} \to \mathbb{F} & \text{(množenje skalarjev)} \end{array}$$

2.2 Zgled

$$V=\{0\} \qquad \qquad 0+0=0$$
 $\mathbb F$ poljubno polje
$$\forall \alpha \in \mathbb F: \alpha \cdot 0=\alpha(0+0)=\alpha \cdot +\alpha \cdot 0$$

 $(\{0\}, \mathbb{F}, +, \cdot)$ je vektorski prostor.

Vje v.p. nad poljem $\mathbb F$ za tako definirani operaciji $+, \cdot .$ Rečemo mu TRIVIALNI VEKTORSKI PROSTOR.

$$\mathbb{F}$$
 polje, $n \in \mathbb{N}$
 $\mathbb{F}^n = \mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F} = \{(a_1, a_2, \dots, a_n); a_1, a_2, \dots, a_n \in \mathbb{F}\}$

Trditev 1.18.

Naj bo (A, \cdot) polgrupa z neutralnim elementom in naj bo

$$a_1, a_2, \ldots, a_n \in A \ (n \in \mathbb{N})$$
 obrnljivi.

Potem velja: produkt a_1, a_2, \ldots, a_n je obrnljiv in njegov obrat je

$$(a_1, a_2, \dots, a_n)^{-1} = a_n^{-1}, \dots, a_2^{-1}, a_1^{-1}$$

Dokaz: Indukcija po n:

n=2; Naj bosta $a_1,a_2\in A$ obrnljiva

$$(a_1 a_2) \cdot (a_1 a_2)^{-1} = a_1 \cdot a_2 \cdot a_2^{-1} \cdot a_1^{-1} = a_1 \cdot 1 \cdot a_1^{-1} = a_1 a_1^{-1} = 1$$

 $(a_1 a_2)^{-1} \cdot (a_1 a_2) = \dots$ podobno

n = n + 1; D.N. (za domačo nalogo)

Definicija 1.19.

Naj bo (A, \cdot) polgrupa z neutralnim elementom. Za $\forall a \in A$ in $\forall n \in \mathbb{N}$ definirajmo POTENCO a^n kot

$$a^{1} = a$$

$$a^{2} = a \cdot a$$

$$\vdots$$

$$a^{n+1} = a^{n} \cdot a = a \cdot a \cdot a \dots a$$

Dodatno definirajmo, $a^0 = 1$.

Če je element $a \in A$ obrnljiv definiramo

$$\forall n \in \mathbb{N} \quad a^{-n} = a^{(-1)n} = (a^{-1})^n$$

Izrek 1.20. (Adicijski izrek)

Naj bo (A, \cdot) polgrupa z neutralnim elementom in naj bosta $m, n \in \mathbb{N}_0$.

Potem $\forall a \in A$ velja $a^{m+n} = a^m \cdot a^n$

Če je $a \in A$ obrnljiv, velja adicijski izrek $\forall m, n \in \mathbb{Z}$.

Definicija 1.21.

Naj bo (A, \cdot) polgrupa z neutralnim elementom.

Element $a \in A$ ima KONČEN RED, če obstaja $n \in \mathbb{N}$, da je $a^n = 1$.

V tem primeru najmanjšem številu $r \in \mathbb{N}$ za katerega je $a^r = 1$, rečemo RED ELEMENTA a.

opomba 1: |a| (red elementa a)

opomba 2: v primeru (A, +) $a^n \to na$ in $1 \to 0$

Zgled 1.22.

a)
$$A = \mathbb{Z} \setminus \{0\}$$

 \cdot je običajno množenje celih števil $\implies (\mathbb{Z}\backslash\{0\},\cdot)$

$$1\in\mathbb{Z}\backslash\{0\}:1^1=1,1^2=1,1^3=1,\ldots$$
element 1 ima končen red, red elementa 1 je 1

$$2 \in \mathbb{Z} \setminus \{0\}: 2^1 = 2, 2^2 = 2 \cdot 2 = 4, 2^3 = 2 \cdot 2 \cdot 2 = 8, \dots$$
nima končnega reda

Torej, števila večja od 1 nimajo končnega reda.

$$-1 \in \mathbb{Z} \setminus \{0\} : (-1)^1 = -1, (-1)^2 = (-1) \cdot (-1) = 1$$
 red elementa -1 je 2

b)
$$A = S^1 = \{ z \in \mathbb{C}; |z| = 1 \}$$

· običajno množenje kompleksnih števil.

$$0+1i=i\in S^1: i^1=i, i^2=-1, i^3=-i, i^4=1$$
 red elementa i je 4

$$-i \in S^{1}: (-i)^{1} = -i, (-i)^{2} = (-i) \cdot (-i) = -1$$
$$(-i)^{3} = (-i)^{1} \cdot (-i)^{2} = -i \cdot (-1) = i$$
$$(-i)^{4} = (-i)^{2} \cdot (-i)^{2} = (-1) \cdot (-1) = 1 \text{ red elementa } -i \text{ je } 4$$

c)
$$A = \mathbb{Z}$$