第四章作业

专业:计算机科学与技术

学号:17341178

姓名:薛伟豪

4-3

已知某一炉温控制系统,要求温度保持在600℃恒定,针对该控制系统有一下控制经验:

(1) 若炉温低于600℃,则升压;低得越多升压越高。

(2) 若炉温高于600℃,则降压;高得越多降压越低。

(3) 若炉温等于600℃,则保持电压不变。

设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。

解:我们设定理想温 $T_0=600^\circ\mathrm{C}$,用变量T来表示当前的实际温度,则温度差E可表示为 $E=T_0-T=600-T$ 。根据题意,我们将温度差E作为输入语言变量。

【隶属函数误差E变化划分表】

根据要求,我们设定输入E的量化等级为7级,分别为-3、-2、-1、0、1、2、3;同时设定模糊集为5个,分别为PB(正大)、PS(正小)、ZO(零)、NS(负小)、NB(负大)。具体如下表所示:

隶属度		误差量化等级								
		-3	-2	-1	0	1	2	3		
模糊集	PB	0	0	0	0	0	0. 5	1		
	PS	0	0	0	0	1	0. 5	0		
	Z0	0	0	0. 5	1	0. 5	0	0		
	NS	0	0.5	1	0	0	0	0		
	NB	1	0. 5	0	0	0	0	0		

【控制电压U变化划分表】

同理,我们设定控制电压U的量化等级为7级,分别为-3、-2、-1、0、1、2、3;同时设定模糊集为5个,分别为PB(正大)、PS(正小)、ZO(零)、NS(负小)、NB(负大)。具体如下表所示:

隶属度		误差量化等级								
		-3	-2	-1	0	1	2	3		
模糊集	PB	0	0	0	0	0	0. 5	1		
	PS	0	0	0	0	1	0. 5	0		
	Z0	0	0	0. 5	1	0. 5	0	0		
	NS	0	0. 5	1	0	0	0	0		
	NB	1	0. 5	0	0	0	0	0		

【模糊控制规则表】

根据上述两表,我们可以设计以下的模糊控制规则:

- 若误差E为负大,则控制电压U为负大
- 若误差E为负小,则控制电压U为负小
- 若误差E为零,则控制电压U为零
- 若误差E为正小,则控制电压U为正小
- 若误差E为正大,则控制电压U为正大

模糊控制规则表如下所示:

IF	NB E	NS E	ZO E	PS E	PB E
THEN	NB U	NS U	ZO U	PS U	PB U

4-4

已知被控对象为 $G(s)=rac{1}{10s+1}e^{-0.5s}$ 。假设系统给定为阶跃值r=30,采样时间为 $0.5{
m s}$,系统的初始值r(0)=0。试分别设计:

- (1) 常规的PID控制器;
- (2) 常规的模糊逻辑控制器;
- (3) 模糊自适应整定PID控制器。

分别对上述3种控制器进行Matlab仿真,并比较控制结果。

解:依题意,对上述3种控制器利用Matlab的Simulink工具仿真如下:

【常规的PID控制器】

• Simulink仿真

• Simulink仿真结果

【常规的模糊逻辑控制器】

• 模糊控制器设计

设定输入E、EC和输出U的论域都为 $\{-3,-2,-1,0,1,2,3\}$, 对应的语言值为 $\{NB,NM,NS,ZO,PS,PM,PB\}$ 。

输入变量的隶属度函数均采用高斯函数,输出变量的隶属度函数采用三角函数。

模糊控制器规则表如下,共49条:

U		EC								
		NB	NM	NS	Z0	PS	PM	PB		
E	NB	NB	NB	NM	NM	NM	NS	NS		
	NM	NB	NM	NM	NS	NS	Z0	PS		
	NS	NM	NM	NS	NS	Z0	PS	PM		
	ZO	NM	NM	NS	Z0	PS	PS	PM		
	PS	NM	NS	Z0	PS	PS	PM	PM		
	PM	NS	Z0	PS	PS	PM	PM	PB		
	PB	PS	PS	PM	PM	PM	PB	PB		

• Simulink仿真

• Simulink仿真结果

【模糊自适应整定PID控制器】

• 模糊控制器设计

设定输入E和EC两个语言变量的论域都为 $\{-3,-2,-1,0,1,2,3\}$,对应的语言值为 $\{NB,NM,NS,ZO,PS,PM,PB\}$ 。

输出比例系数 KP、积分系数 KI、微分系数 KD 三者的论域都为 $\{0,1,2,3\}$,对应的语言值为 $\{ZO,PS,PM,PB\}$ 。

输入输出变量的隶属度函数均采用三角函数。

模糊控制器规则表如下,共49条:

KP/KI/KD		EC								
		NB	NM	NS	ZO	PS	PM	PB		
E	NB	PB/Z0/PS	PB/PS/PS	PM/PB/PM	PS/PB/PB	PM/PB/PM	PB/PS/PS	PB/Z0/PS		
	NM	PB/Z0/PS	PB/PS/PS	PM/PB/PM	PS/PB/PB	PM/PB/PM	PB/PS/PS	PB/Z0/PS		
	NS	PB/Z0/PS	PM/ZO/PM	PS/PM/PB	ZO/PB/PB	PS/PM/PB	PM/ZO/PM	PB/Z0/PS		
	Z0	PB/Z0/PS	PM/ZO/PM	PS/PM/PB	ZO/PB/PB	PS/PM/PB	PM/ZO/PM	PB/Z0/PS		
	PS	PB/Z0/PS	PM/ZO/PM	PS/PM/PB	ZO/PB/PB	PS/PM/PB	PM/ZO/PM	PB/Z0/PS		
	PM	PB/Z0/PS	PM/PS/PS	PM/PB/PM	PS/PB/PB	PM/PB/PM	PB/PS/PS	PB/Z0/PS		
	PB	PB/Z0/PS	PM/PS/PS	PM/PB/PM	PS/PB/PB	PM/PB/PM	PB/PS/PS	PB/Z0/PS		

• Simulink仿真

• Simulink仿真结果

【结果比较】

与 PID 控制器相比,模糊控制器的调节时间较短,超调量较小,控制器输出更加平稳,幅度更小,但稳态误差较大。而模糊自适应PID控制器相较于传统的PID控制器,具有超调量小的特点,但是调节时间改善不明显,甚至会花费更多的时间达到收敛。