Elective	SEMESTER -			
Course Code	18CS42	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
	CREDITS -			
Course Learning Objectives: This co				
 Explain various computational 				
 Apply appropriate method to see 		n.		
 Describe various methods of al 	lgorithm analysis.			
Module 1				Contact
T. I. I. T. T. I.	(TDA 4 4) 11 11	C (C ((D) 1.0)		Hours
Introduction: What is an Algorithm?				10
Framework (T1:2.1), Performance A				
Asymptotic Notations: Big-Oh notati				
Little-oh notation (o), Mathematical				
with Examples (T1:2.2, 2.3, 2.4). Improcessing, Graph Problems, Combination				
Stacks, Queues, Graphs, Trees, Sets an			ictures:	
Stacks, Queues, Graphs, Trees, Sets an	d Dictionaries. (11.	1.3,1.4).		
RBT: L1, L2, L3				
Module 2				
Divide and Conquer: General metho	d. Binary search, F	ecurrence equation for div	ride and	10
conquer, Finding the maximum and	minimum (T2:3.1,	3.3, 3.4), Merge sort, Qu	ick sort	
(T1:4.1, 4.2), Strassen's matrix multi	plication (T2:3.8),	Advantages and Disadvan	tages of	
divide and conquer. Decrease and Cor	nquer Approach: T	opological Sort. (T1:5.3).		
RBT: L1, L2, L3				
Module 3	G : GI P	11 V 1 D 11		10
Greedy Method: General method,				10
sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's				
Algorithm (T1:9.3). Optimal Tree				
Transform and Conquer Approach:			11:9.4).	
riansiorm and conquer approach.	ricaps and ricap so	11 (11.0.4).		
RBT: L1, L2, L3				
Module 4		II 1811 A.F		
Dynamic Programming: General me	thod with Example	s, Multistage Graphs (T2:5	.1, 5.2).	10
Transitive Closure: Warshall's Algo	orithm, All Pairs S	hortest Paths: Floyd's Al	gorithm,	
Optimal Binary Search Trees, Kna	psack problem ((T1:8.2, 8.3, 8.4), Bellm	an-Ford	
Algorithm (T2:5.4), Travelling Sales P	erson problem (T2:	5.9), Reliability design (T2	:5.8).	
			114,000	
RBT: L1, L2, L3				
Module 5				
Backtracking: General method (T2:				10
problem (T1:12.1), Graph coloring (T.				
Bound: Assignment Problem, Travel				
problem (T2:8.2, T1:12.2): LC Progr.				
and Bound solution (T2:8.2). NP-Con	npiete and NP-Hai	ra problems: Basic concep	ots, non-	

DESIGN AND ANALYSIS OF ALGORITHMS (Effective from the academic year 2018 -2019)

deterministic algorithms,	P, NP, NP-Complete, and NP-Hard classes	(T2:11.1).

RBT: L1, L2, L3

Course Outcomes: The student will be able to:

- Describe computational solution to well known problems like searching, sorting etc.
 Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Question Paper Pattern:

- The question paper will have ten questions.
 Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- Introduction to the Design and Analysis of Algorithms, Anany Levitin., 2rd Edition, 2009. Pearson.
- Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

- Reference Books:

 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
 - 2. Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher Education).