

Modelling General Asymptotic Calabi-Yau Periods

Based on [2105.02232] with T. Grimm and D. van de Heisteeg

String Pheno seminar series

Brice Bastian

Motivation

Calabi-Yau three-fold period vector is an important ingredient in string compactifications,

Problem: Period vector is in general a complicated function of the moduli

Goal: Understand the asymptotic structure and construct models using principles from Hodge theory

Outline

- 1. Background information:
 - Boundaries in CS moduli space, Variation of Hodge structure
- 2. Results from asymptotic Hodge theory:
 - Near boundary expansion of the period vector, Classification, Boundary data
- 3. Reverse engineering and specific example

Background Information

Boundaries in CS Moduli space

In \mathcal{M}_{cs} , there are divisors locally defined by $z_i = 0$ where the Calabi-Yau develops singularities

We can always locally describe the intersection of n loci by normal crossing divisors [Hironaka]

$$z_1 = z_2 = \dots = z_n = 0$$

(We frequently use the coordinates $t^i = \frac{1}{2\pi i} \log z_i$)

 $t^{2} \rightarrow i\infty$ $t^{2} \rightarrow i\infty$ $(z_{2} = 0)$ $(z_{1} = 0)$

We refer to these loci as co-dimension n boundaries in $\mathcal{M}_{\mathrm{cs}}$

Most famous example of co-dimension $h^{2,1}$ boundary: Large Complex Structure (LCS) point

Variation of Hodge structure

Moving through \mathcal{M}_{cs} changes what we call holomorphic \longrightarrow Hodge decomposition on the middle cohomology varies

$$H^{3}(Y_{3}, \mathbb{C}) = H^{3,0} \oplus H^{2,1} \oplus H^{1,2} \oplus H^{0,3}$$

e.g. orientation of the complex line spanned by Ω .

This variation is not arbitrary and in terms of the Hodge filtration F^p [Griffiths]

ex line spanned by
$$\Omega$$
.

y and in terms of the Hodge filtration F^p

$$\frac{\partial F^p}{\partial z} \subset F^{p-1} \longrightarrow \text{Horizontality (More familiar: } \partial_i \Omega \in H^{3,0} \oplus H^{2,1})$$

$$Hodge filtration:$$

$$F^3 = H^{3,0}$$

$$F^2 = H^{3,0} \oplus H^{2,1}$$

$$F^1 = H^{3,0} \oplus H^{2,1} \oplus H^{1,2}$$

$$F^0 = H^3(Y_3, \mathbb{C})$$

$$F^{3} = H^{3,0}$$

$$F^{2} = H^{3,0} \oplus H^{2,1}$$

$$F^{1} = H^{3,0} \oplus H^{2,1} \oplus H^{1,2}$$

$$F^{0} = H^{3}(Y_{3}, \mathbb{C})$$

We say that the variation is polarised if

$$\langle F^p, F^{4-p} \rangle = 0$$

(Hodge-Riemann relations)

 $\langle F^p, F^{4-p} \rangle = 0$ $i^{p-q} \langle \omega, \bar{\omega} \rangle > 0, \quad \omega \in H^{p,q} \text{ and } \omega \neq 0$

Important fact: In a CY threefold, we can span $H^3(Y_3,\mathbb{C})$ by taking derivatives of Ω

Bilinear Pairing:

$$\langle u, v \rangle = \int_{Y_3} u \wedge v$$

Asymptotic Hodge theory

Behaviour near the boundary

The period vector captures the VHS and is particularly constrained in asymptotic regions

As we circle a single boundary component ($z_k = 0$), the period vector undergoes monodromy

$$\Pi(z_k e^{2\pi i}) = T_k \Pi(z_k)$$
 , $T_k \in Sp(2h^{2,1} + 2,\mathbb{R})$

Monodromies can always be made unipotent, i.e. $(T_k - \mathbb{I})^s = 0$

We can define the nilpotent log-monodromy matrices: $N_k = \log T_k$

Co-dimension n boundary \longrightarrow n log-monodromy matrices N_k

Near the co-dimension n boundary the period vector can be expanded as [Schmid '73]

$$t = \frac{\log z}{2\pi i}$$

$$\mathbf{\Pi}(t) = e^{t^i N_i} (\mathbf{a}_0 + \mathbf{a}_{1,r} e^{2\pi i t^r} + \dots) = e^{t^i N_i} e^{\Gamma(z)} \mathbf{a}_0$$

- \mathbf{a}_0 is an element of a Mixed Hodge structure \longrightarrow captures splitting of $H^3(Y_3, \mathbb{C})$ at boundary
- $e^{t^i N_i}$ generates polynomial behaviour
- $\Gamma(z)$ satisfies $\Gamma(0)=0$ and generates the exponential behaviour \longrightarrow instanton map (Mirror instantons at LCS)

The <u>nilpotent orbit theorem</u> by Schmid guarantees that the polynomial approximation

$$\Pi_{\text{poly}}(t) = e^{t^i N_i} \mathbf{a}_0$$

still defines a proper variation of polarised Hodge structure \longrightarrow Hodge-Riemann satisfied

These results hold for all elements $\omega \in F^p \longrightarrow$ Basis for the splitting of $H^3(Y_3, \mathbb{C})$ at boundary

In practice, we use the derivatives of $\Pi \longrightarrow$ Limiting filtration F_0^p

The possible splittings are classified!

Working with the polynomial approximation $\Pi_{ m poly}$ has led to promising results in physics

[Grimm, Heisteeg, Li, Palti, Valenzuela...]

Where is the problem then?

The mathematics results are for all the elements of $H^3(Y_3, \mathbb{C})$!

In physics, we only work with the period vector (representative of $\Omega \in H^{3,0}$):

e.g. Kähler metric :
$$K_{i\bar{j}} = -e^{-K}\partial_i\Pi^T\eta\partial_j\Pi + e^{-2K}\left(\partial_i\Pi^T\eta\bar{\Pi}\right)\left(\Pi^T\eta\bar{\partial}_j\Pi\right)$$

Using Π_{poly} gives a simpler expression but might result in det $K_{i\bar{i}} = 0$!

Not guaranteed that we can span the entire $H^3(Y_3,\mathbb{C})$ from derivatives of the polynomial approximation:

$$\partial_{i}\Pi_{\text{poly}} = e^{t^{r}N_{r}}N_{i}\mathbf{a}_{0}$$

$$\partial_{i}\partial_{j}\Pi_{\text{poly}} = e^{t^{r}N_{r}}N_{i}N_{j}\mathbf{a}_{0}$$

$$\partial_{i}\partial_{j}\partial_{k}\Pi_{\text{poly}} = e^{t^{r}N_{r}}N_{i}N_{j}N_{k}\mathbf{a}_{0}$$

Extreme cases:

- Conifold type: $N_i \mathbf{a}_0 = 0$, $\forall i$
- LCS type: $N_i N_j N_k \mathbf{a}_0 \neq 0$, $\forall i, j, k \longrightarrow \text{All exponential terms capture instantons for the mirror}$

Most cases require exponential corrections to the polynomial part! \longrightarrow Instanton map $\Gamma(e^{2\pi it})$

What is the action of N_i and Γ on \mathbf{a}_0 ?

The possible splitting of $H^3(Y_3,\mathbb{C})$ can be represented diagrammatically by Hodge-Deligne diamonds and are classified as follows

singularity	\mathbf{I}_a	II_b	III_c	IV_d
HD diamond	a ₀ a' a' a'	a ₀ b ' b '	a ₀	a ₀ d d d d
index	$a + a' = h^{2,1}$ $0 \le a \le h^{2,1}$		$c + c' = h^{2,1} - 1$ $0 \le c \le h^{2,1} - 2$	$d + d' = h^{2,1}$ $1 \le d \le h^{2,1}$

The N_i act by mapping vertically down \longrightarrow Away from LCS, \mathbf{a}_0 is not sufficient to span everything, we need some of the \mathbf{a}_i

Lower bound on number of terms:

$$I_a: 2h^{2,1}-a+1$$
, $II_b: 2h^{2,1}-b-1$, $III_c: c+1$, $2(h^{2,1}-d)$

 $\mathbf{\Pi}(t) = e^{t^i N_i} (\mathbf{a}_0 + \mathbf{a}_{1,r} e^{2\pi i t^r} + \dots) = e^{t^i N_i} e^{\Gamma(z)} \mathbf{a}_0$

We need to rely on $\Gamma(z)$ to generate some correction terms!

For a fixed number of moduli, we can simply list the possible cases!

For one modulus $(h^{2,1} = 1)$ only three possibilities:

- 1. Conifold singularity I₁
- 2. Tyurin degeneration II₀
- 3. Large complex structure IV₁

For two moduli ($h^{2,1}=2$) there are four classes: [Kerr, Pearlstein, Robles '19]

```
\begin{split} I_2 \ class: & \quad \langle I_1|I_2|I_1\rangle \,, \ \langle I_2|I_2|I_1\rangle \,, \ \langle I_2|I_2|I_2\rangle \,, \\ Coni\text{-LCS class}: & \quad \langle I_1|IV_2|IV_1\rangle \,, \ \langle I_1|IV_2|IV_2\rangle \,, \\ [Alvarez-Garcia, Blumenhagen et al. '20] \ [Demirtas et al. '20] \\ [II_1 \ class: & \quad \langle II_0|II_1|I_1\rangle \,, \ \langle II_1|II_1|I_1\rangle \,, \ \langle II_0|II_1|II_1\rangle \,, \ \langle II_1|II_1|II_1\rangle \,, \ \langle III_0|IV_2|III_0\rangle \,, \ \langle III_0|IV_2|IV_1\rangle \,, \\ [LCS \ class: & \quad \langle II_1|IV_2|III_0\rangle \,, \ \langle III_1|IV_2|IV_2\rangle \,, \ \langle III_0|IV_2|III_0\rangle \,, \ \langle III_0|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2\rangle \,, \\ [LCS \ class: & \quad \langle III_0|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV_2\rangle \,, \ \langle IV_1|IV_2|IV
```

Simplified boundary data

What does the boundary data look like for a given type?

There is a further approximation, the <u>sl(2)-orbit theorem</u> which provides an algorithm to reduced the nilpotent orbit data to: [Cattani, Kaplan, Schmid '86]

Rotation operator

- 1. Distinguished basis $\tilde{F}_0^p = e^{-i\delta} \tilde{F}_0^p$
- 2. Sets of sl(2)-triples (N_i^-, N_i^+, N_i^0)

Co-dimension n boundary — Nilpotent orbit data (N_i, F_0^p) — sl(2)-data $(\tilde{F}_0^p, N_i^{\pm}, N_i^0)$

This sl(2) data is easily constructed from representation theory and the starting point of our analysis!

Reverse engineering

Reverse-engineering

We start from sl(2)-data and work back to get the essential terms of the period vector:

$$\Pi = e^{t^i N_i} e^{\Gamma(z)} e^{i\delta} \tilde{\mathbf{a}}_0$$

Coni-LCS: $\langle I_1 | IV_2 | IV_1 \rangle$ and $\langle I_1 | IV_2 | IV_2 \rangle$

Collecting the ingredients we have

+ Constraints from horizontality on Γ

Can construct the general period for the coni-LCS class (constraints not imposed)

$$\Pi(z) = \begin{bmatrix} 1 & & & \\ & a(z) & & \\ & \frac{\log[z_2]}{2\pi i} & & \\ & i\delta_2 + i\delta_1 a(z) + f(z) - \frac{(\frac{1}{2}a(z)c(z) + d(z))\log[z_2]}{2\pi i} - \frac{\log[z_2]^3}{6(2\pi i)^3} \\ & i\delta_1 + e(z) - \frac{a(z)(\log[z_1] + n\log[z_2])}{2\pi i} & \\ & \frac{1}{2}a(z)c(z) + d(z) - \frac{\log[z_2]^2}{2(2\pi i)^2} & & \end{bmatrix}$$

- No $\log[z_1] = t^1$ dependence at leading order \longrightarrow Characteristic of conifold type boundary
- $\log[z_2]^3 = (t^2)^3$ dependence \longrightarrow Similar to LCS type boundary

Upon picking a simple ansatz we can solve the constraints and write down the model

$$\Pi = \begin{pmatrix} 1 & az_1 \\ \frac{\log[z_2]}{2\pi i} \\ -\frac{i\log[z_2]^3}{48\pi^3} - \frac{ia^2nz_1^2\log[z_2]}{4\pi} + \frac{a^2}{4\pi i}z_1^2 + i\delta_2 + i\delta_1az_1 \\ -az_1\frac{\log[z_1] + n\log[z_2]}{2\pi i} + i\delta_1 \\ -\frac{\log[z_2]^2}{8\pi^2} - \frac{1}{2}a^2nz_1^2 \end{pmatrix}$$

We give the construction for all non-LCS $h^{2,1} = 1$ and $h^{2,1} = 2$ cases in the paper!

Outlook

- Run the program for more than 2 moduli \longrightarrow No type III_c boundary for $h^{2,1} < 3$
- Generalize to Calabi-Yau fourfolds
- Use models for computations in the Swampland programme
- Relate to Picard-Fuchs approach [Kerr '20], [Bloch, Vlasenko '19]

Thank you!