```
1. (a)
 (1) W(f+g)
(5) M((t)+(d))=M((t)) U M((d))
 (3) W((f) \cap (g)) = W((f)) \cap W((g))
 (H) W(f) UM(g)
 (5) W(fg) = \{x \in C_5 : f(x) = 0 \text{ or } g(x) = 0\}
             = {xecz; f(x)=0} N, (xecz; d(x)=0)
              - V(f) UV(g)
      W((f)) = \{x \in \mathbb{C}^2 : Ah \in \mathbb{C}^2[x_1, x_2] \mid h(x)f(x) = 0\}
               = \{x \in \mathbb{C}^2 : f(x) = 0\} = \mathcal{V}(f), \quad \text{since } h(x)f(x) = 0
     must hold for uncountably many h \in C^2(x_1, x_2), and this is solved
  So (3) = W(f) \cup W(g) = (5), and (2) = W(f) \cap W(g) = (4).
              union of two distinct sets contains more elements than
       their intersection, (3) = (2).
  Now, (1) = d \times e^2 : [f(x) = 0] \times g(x) = 0] \times [f(x) = -g(x)]
           = [N(t) VN(d)] N 9x60; t(x)=-8(x)
                          (1) = (2),
    So we have
```

1 . . .

 $f = y - x^{2}$. Then $(2, y) \in V(f) \cup V(g)$, $g = y - x^{2}$. But $(2, y) \notin V(f + g)$ on the other hand $f + g = 2y - x^{2} - x = 0$ $\chi = y = \frac{x^{2} + x}{2} = \frac{x(x + i)}{2}$ my $\chi = 0$ So $(-1, 0) \in V(f + g)$,

but f(-1, 0) = 1, g(-1, 0) = 1, $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x(x + i)$ $f = y - x^{2} + x = x^{2} + x^{2} + x = x^{2}$

50 $(3) \neq (11)$

2.(c) Let $B = f(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 13$, $C = \mathbb{C}$. Then $B, C \subseteq \mathbb{A}^1$, and $B \subseteq \mathbb{C}$. Note that B is neither open non closed in \mathbb{A}^1 , and it is infinite. The only closed set in \mathbb{A} containing B is $\mathbb{C} = \mathbb{V}(0)$, so $C = \mathbb{C}$ is the smallest closed set containing B, hence $B = \mathbb{C}$. By part (6), $\mathbb{V}(\mathbb{T}(B)) = \mathbb{B} = \mathbb{C} = \mathbb{C} = \mathbb{V}(\mathbb{T}(C))$.

 $\dot{y} = \dot{y} = \dot{y}$

3. (a) A subset u in topological space (X,T) is compact if every open cover of u has a finite subcover, i.e., if U=US, then U=US, where C is some sets, (b) Let Uu; be some open cover for $V(x^2y)$.] and F is finite rets, That 15, UU; = V(x2-y). Since Dui is open, each ui EAZ is open, that is, $u_i = A^2/V(I_i)$, for some ideal I. Then U A2/W(I:) 2W(x2y) $Z = > A^2 / OV(I_i) = V(x^2 y)$ $z = > A^2 / W(\sum_{i \in I} I_i) \ge W(x^2 - y).$ the index set I is uncontable, take countable subset CCJ. Note that C2[x1, x2] is Noetherian, so its! ideals satisfy an ascending chain condition IOCI, C. CIN = IN+1 = ..., NEW. Note also that Ioc IotIIc ... C Iot... FIN. So $\sum_{i \in C} I_i = K_N$, for some ideal K_N , as ideals are closed under addition.

3. (6) Since in Euclidean topology every compact set is closed and bounded, and $V(x^2-y) = \mathcal{L}(t,t^2): t \in \mathbb{R}^3$ is unbounded, it is not compact in Euclidean top. 4. (a) A field K is alq. closed it for every $\alpha \in K$ there exists polynomial $f \in K[t]$ such that $f(\alpha) = 0$. (b) = > n Suppose (1) $\pm T \subseteq K[x_1, ..., x_n]$ Let us show that in Kn suppose by contradiction that

 $V(I) = \emptyset \subseteq K(X_1, ..., X_n) \subseteq K(X_1, ..., X_n)$

since every ideal in K[x1,...,xn] is finitely generated, K[x1,...,xn] is Noetherian.

Let JER[X1,...,Xn] be an ideal generated by I, then I = J = F (x1, ..., xn] = (1), and W(J) = {x ∈ F | f(x) = 0 +f∈I} . If $V(J) = \emptyset$, then $V(J) = \emptyset = V(I)$ $\angle - > J = (1) = II(V(I))$

 $\angle = >$ $J = (1) = \sqrt{I}$ $\angle = >$ T = (1), contradiction, of $W(J) \neq \emptyset$ then as $J \subseteq J$, $\emptyset = W(J) \supseteq W(J)$, so $W(J) = \emptyset$. $as \quad II(\emptyset) = \mathbb{R}[x_1, ..., x_n]$

Therefore W(I) #Ø in E.

"<=" Suppose $\phi \pm V(I) \subseteq \mathbb{R}^n$. Let us show that (1) $\pm I$.

If $I = (1) = \mathbb{E}[x_1, ..., x_n]$, then since $I \in (1)$, and V(I)is the common $\pm e_n o_- set$ of all polys in I, we must have $V(I) = \phi$, as there are no roots for constant polynomial I. Therefore $I \pm (1)$.

5.(6) suppose $(9:V \rightarrow u \subseteq W)$ is isom.

By them 2.37, the map $(9*:C(u) \rightarrow C(v))$ is isom.

Define restriction $c:w \rightarrow u$. Note it is surjective.

Then $i*:C(u) \rightarrow C(w)$ is also surjective.

For any $f \in C(w)$ we have $f|_{u} = f$, so $i*(f|_{u}) = f|_{u} \circ i = f$.

Altogether, it oft is sujective map
from C[W] to C[V].