

Operational Amplifier Circuits

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 20

Operational amplifier abstraction

- Building block for analog systems
- We will see these examples:

Digital-to-analog converters

Filters

Clock generators

Amplifiers

Adders

Integrators & Differentiators

Reading: Chapter 15.5 & 15.6 of A & L.

Consider this circuit:

$$v^{+} = v_{1} \frac{R_{2}}{R_{1} + R_{2}}$$

$$\approx v^{-}$$

$$i = \frac{v_{2} - v^{-}}{R_{1}}$$

$$\begin{aligned} &= v - iR_2 \\ &= v^{-} - \frac{v_2 - v^{-}}{R_1} \cdot R_2 \\ &= v^{-} \left[1 + \frac{R_2}{R_1} \right] - v_2 \frac{R_2}{R_1} \\ &= v_1 \frac{R_2}{R_1 + R_2} \cdot \frac{R_1 + R_2}{R_1} - v_2 \frac{R_2}{R_1} \end{aligned}$$

$=\frac{R_2}{R_1}(v_1-v_2)$

subtracts!

Another way of solving — use superposition

$$v_{OUT_2} = -\frac{R_2}{R_1} v_2$$

$$v_{OUT} = v_{OUT_1} + v_{OUT_2}$$

$$= \frac{R_2}{R_1} (v_1 - v_2)$$

Still subtracts!

Let's build an intergrator...

Let's start with the following insight:

 v_O is related to $\int i \ dt$

But we need to somehow convert voltage v_I to current.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 20

First try... use resistor

But, v_O must be very small compared to v_R , or else

$$i \neq \frac{v_I}{R}$$

When is v_O small compared to v_R ?

$$RC\frac{dv_{O}}{dt} + v_{O} = v_{I} \implies \text{larger the RC,}$$
 smaller the v_{O} when $RC\frac{dv_{O}}{dt} >> v_{O}$ for good integrator $RC\frac{dv_{O}}{dt} \approx v_{I}$ or $v_{O} \approx \frac{1}{RC}\int_{-\infty}^{t} v_{I} dt$ Demo

There's a better way...

We have our integrator.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

20

6.002 Fall 2000 Lecture

Now, let's build a differentiator...

Let's start with the following insights:

i is related to
$$\frac{dv_I}{dt}$$

But we need to somehow convert current to voltage.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

20

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000