

## How to compute the sum of random variables of geometric distribution

Let  $X_i$ ,  $i=1,2,\ldots,n$ , be independent random variables of geometric distribution, that is,  $P(X_i=m)=p(1-p)^{m-1}$ . How to compute the PDF of their sum  $\sum_{i=1}^{n} X_i$ ?

I know intuitively it's a negative binomial distribution

$$P\left(\sum_{i=1}^n X_i=m
ight)=inom{m-1}{n-1}p^n(1-p)^{m-n}$$

but how to do this deduction?

(probability) (probability-distributions) (random-variables)

edited Mar 30 at 15:39 Math1000

14.7k 3 11 33

TonyLic

151 1 1 4

asked Nov 2 '13 at 0:38

I think the probabilistic interpretation leads quite naturally to the desired formula. One could do an induction on n and use convolution, but that is less informative. - André Nicolas Nov 2 '13 at 1:28

I think the language interpretation cannot be treated as math deduction. I know I should use convolution, but could anyone teach me that? - TonyLic Nov 2 '13 at 1:52

Typo:  $P\left(\sum_{i=1}^n X_i = n\right)$  should be replaced by:  $P\left(\sum_{i=1}^n X_i = m\right)$  – drhab Nov 2 '13 at 12:12

## 1 Answer

Let  $X_1, X_2, \dots$  be independent rvs having the geometric distribution with parameter p, i.e.  $P[X_i = m] = pq^{m-1}$  for m = 1, 2, ... (here p + q = 1).

Define 
$$S_n := X_1 + \cdots + X_n$$
.

With induction on n it can be shown that  $S_n$  has a negative binomial distribution with parameters p and n, i.e.  $P\{S_n=m\}=\binom{m-1}{n-1}p^nq^{m-n}$  for  $m=n,n+1,\ldots$ 

It is obvious that this is true for n=1 and for  $S_{n+1}$  we find for  $m=n+1,n+2,\ldots$ :

$$P\left[S_{n+1}=m
ight] = \sum_{k=n}^{m-1} P\left[S_n = k \land X_{n+1} = m-k
ight] = \sum_{k=n}^{m-1} P\left[S_n = k
ight] \times P\left[X_{n+1} = m-k
ight]$$

Working this out leads to  $P[S_{n+1} = m] = p^{n+1}q^{m-n-1}\sum_{k=n}^{m-1} \binom{k-1}{n-1}$  so it remains to be shown that  $\sum_{k=n}^{m-1} \binom{k-1}{n-1} = \binom{m-1}{n}$ .

This can be done with induction on m:

$$\sum_{k=n}^{m} \binom{k-1}{n-1} = \sum_{k=n}^{m-1} \binom{k-1}{n-1} + \binom{m-1}{n-1} = \binom{m-1}{n} + \binom{m-1}{n-1} = \binom{m}{n}$$

answered Nov 2 '13 at 12:08



Thank you very much. This really helps me a lot!!! - TonyLic Nov 2 '13 at 16:28