

北京交通大学

课程名称:嵌入式系统设计

实验题目: ARM指令系统

学号: 22281188

姓名: 江家玮

班级: 计科2204班

指导老师: 唐宏老师

报告日期: 2024-09-18

目录

- 1参考ADS使用.PPT熟悉ADS
- 2 关注相关寄存器的变化,实现工作模式切换
 - 2.1 回答问题
 - 2.2 分别修改程序,实现如下功能
 - 2.3 在程序中MOV R14, #4语句后,增加语句
 - 2.4程序中,使用了LDR伪指令,请分析该伪指令和LDR加载指令在功能和应用上有何区别
 - 2.4.1 LDR伪指令
 - 2.4.2 LDR加载指令
- 3 按求最大公约数.doc的说明编写汇编指令

1参考ADS使用.PPT熟悉ADS

单步运行42页的指令,熟悉寻址方式,观察指令运行后<u>相关寄存器和内存</u>的变化。分别对 STMIA R4!, {R0-R3} 指令运行后的对应内存和 LDMFD R13!, {R1-R4} 指令运行后的对应寄存器截图。

• STMIA R4!, {R0-R3} 指令运行后:

ARM7TDMI -	ARM7TDMI - Memory Start addr 0x90010																
Tab1 - Hex	- No	prefix	Tab2	- Hex	- No	prefix	Tab3	- Hex	- No	prefix	Tab	4 - He	x - No	prefi	x		
Address	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f	ASCII
0x00090010	0A	F1	00	00	00	E2	01	00	00	F1	00	00	0A	00	00	00	
0x00090020	00	E2	01	00	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090030	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090040	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090050	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090060	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090070	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090080	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090090	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000900A0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000900B0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000900C0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000900D0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000900E0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000900F0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090100	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090110	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090120	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090130	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090140	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090150	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090160	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090170	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090180	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090190	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000901A0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000901B0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000901C0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000901D0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000901E0	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x000901F0	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	
0x00090200	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090210	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090220	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	
0x00090230	10	00	FF	E7	00	E8	00	E8	10	00	FF	E7	00	E8	00	E8	

• LDMFD R13!, {R1-R4} 指令运行后:

2 关注相关寄存器的变化,实现工作模式切换

2.1 回答问题

• 执行到指令 MOV RO, #0x000001F0 处理器处于什么模式?

在执行到 Mov R0, #0x000001F0 之前的程序并没有显式地更改处理器模式,因此,处理器此时处于 **SVC (Supervisor) 模 式**。这是因为当程序开始执行时,通常默认情况下处理器处于SVC模式,特别是在处理复位异常(RESET)的情况下。

• 执行到指令 MOV R13, #3 处理器处于什么模式?

处理器处于 System 模式。

2.2 分别修改程序, 实现如下功能

- 由管理模式SVC mode, 切换为System mode, 再切换为用户模式。
- 由管理模式SVC mode,切换为FIQ mode,然后切换为用户模式。进入用户模式后,继续尝试可否用类似的方法切换为IRQ mode。
- 提交修改部分的程序代码,观察实际切换的结果和相关寄存器的变化,对结果加以解释和说明。

```
1
   ; 由管理模式SVC mode, 切换为System mode, 再切换为用户模式。
2
   RESET_HANDIER
                  RO, #0x000001F0
3
           MOV
4
                  R1, =0xF00000000
           LDR
5
                  RO, [R1]
           STR
6
7
           ; 进入管理模式 (SVC mode)
8
                  RO, CPSR
           MRS
                  R13, #1
```

```
10
          MOV R14, #2
11
12
           ; 切换到 System 模式
13
                 RO, CPSR
           MRS
14
                 RO, RO, #0x1F
                                    ; 清除模式位
           BIC
15
                 RO, RO, #0x1F
                                     ; 设置为 System 模式
           ORR
                                     ; 更新 CPSR, 切换到 System 模式
16
           MSR
                 CPSR_c, R0
17
18
           ; 在 System 模式下操作
19
                 R13, #3
           MOV
           MOV
                 R14, #4
21
           ; 切换到用户模式 (User mode)
22
23
                 RO, CPSR
           MRS
24
                 RO, RO, #0x1F
                                    ; 清除模式位
           BIC
                 RO, RO, #0x10
                                     ; 设置为用户模式
25
           ORR
                 CPSR_c, R0
                                     ; 更新 CPSR, 切换到用户模式
26
           MSR
27
           ; 在用户模式下执行
28
29
               R13, #5
           MOV
30
                 R14, #6
           MOV
```

切换到 System 模式:

- 在执行 BIC RO, RO, #0x1F 和 ORR RO, RO, #0x1F 后, 处理器成功切换到 System 模式。
- System 模式与 SVC 模式共用大多数寄存器(R0-R12、R15、CPSR 等),但是使用了不同的栈指针(R13)和链接寄存器(R14)。切换到 System 模式后,寄存器 R13 和 R14 被重新赋值。

切换到用户模式:

切換到 System 模式后,R13 和R14 指向 System 模式下独立的栈指针和链接寄存器。切换到用户模式后,R13 和R14 再次更新,说明模式切换成功。

```
23
-r0
                    0x000000D3
                                                                ; 进入管理模式 (SVC mode)
                                                24
                                                25
                                                                     RO, CPSR
---r1
                    0xF0000000
                                                26
                                                                MOV
                                                                       R13, #1
---r2
                    0x00000000
                                                27
                                                                MOV
                                                                       R14, #2
                    0x00000000
---r3
                                                28
---r4
                    0x00000000
                                                29
                                                                ; 切换到 System 模式
---r5
                    0x00000000
                                              30
                                                               MRS
                                                                       RO, CPSR
---r6
                    0x00000000
                                                                BIC
                                                                       R0, R0, #0x1F
                                                                                          ;清除
                                                31
---r7
                   0x00000000
                                                                                           ; 设置
                                                32
                                                                ORR
                                                                       R0, R0, #0x1F
--r8
                   0x00000000
                                                33
                                                                MSR
                                                                     CPSR c, R0
                                                                                           ; 更新
--r9
                   0x00000000
                                                34
                                                                ; 在 System 模式下操作
                                                35
---r10
                   0x00000000
                                                36
                                                                MOV
                                                                     R13, #3
---r11
                   0x00000000
                                                37
                                                                MOV
                                                                       R14, #4
---r12
                   0x00000000
                                                38
---r13
                   0x00000001
                                               39
                                                                ; 切换到用户模式 (User mode)
---r14
                   0x00000002
                                                40
                                                                       RO, CPSR
---pc
                   0x0000403C
                                                                       R0, R0, #0x1F
                                                                                          ; 清除
                                                41
                                                                BIC
--cpsr
                   nzcvqIFt SVC
                                                42
                                                                ORR
                                                                       RO, RO, #0x10
                                                                                          ;设置
                                                43
                                                                MSR
                                                                      CPSR_c, R0
                                                                                           ; 更新
---spsr
                   nzcvqift_Res
```

```
RU, #UXUUUUUIFU
R1, =0xF0000000
ARM7TDMI - Registers
                                                       21
                                                                        LDR
                                                       22
23
                                                                        STR
                                                                               RO, [R1]
 Register
                        Value
□-Current
                                                       24
                                                                        ; 进入管理模式 (SVC mode)
   --r0
                         0x000000D0
                                                       25
                                                                        MRS
                                                                               R0, CPSR
R13, #1
    -rl
                         0xF0000000
                                                       26
                                                                        MOV
                         0x00000000
                                                       27
    -r3
                         0x00000000
                                                       28
                                                                        ; 切换到 System 模式
    -r4
                                                       29
                         0x00000000
                                                                        MRS
                                                                               RO, CPSR
    --r5
                         0x00000000
                                                                                                     ; 清除模式位
                                                       31
                                                                        BIC
                                                                               RO, RO, #0x1F
RO, RO, #0x1F
    --r6
                         0x00000000
                                                                                                     ; 设置为 System 模式
                                                       32
                                                                        ORR
    -r7
                         0x00000000
                                                       33
                                                                               CPSR_c, R0
                                                                                                     ; 更新 CPSR, 切换到 System 模式
    --r8
                         0x00000000
                                                       34
    ---r9
                         0x00000000
                                                                        ; 在 System 模式下操作
                                                       35
   -r10
                         0x00000000
                                                       36
                                                                        MOV
                                                                               R13, #3
    --r11
                         0x00000000
                                                       37
                                                                        MOV
                                                                               R14. #4
    -r12
                         0x00000000
                                                       39
                                                                        ; 切换到用户模式 (User mode)
    --r13
                         0x00000005
                                                                               RO, CPSR
RO, RO, #0x1F
                                                       40
                                                                        MRS
    --r14
                        0x00000006
                                                                        BIC
                                                                                                     ; 清除模式位
    --pc
                        0x0000406C
                                                                               R0, R0, #0x10
CPSR_c, R0
                                                                                                     ; 设置为用户模式
                                                       42
                                                                        ORR
   -cpsr
-spsr
                         nzcvqIFt_User
                                                                                                     ; 更新 CPSR, 切换到用户模式
                                                       43
                                                                        MSR
                         Unavailable
                                                       44
                                                                        ; 在用户模式下执行
⊞~User/System
                         {...}
                                                       45
                                                       46
                                                                               R13, #5
H-FIO
                         {...}
                                                       47
                                                                        MOV
                                                                               R14, #6
⊞-IRO
                         {...}
                                                       48
                                                                STOP
⊞-svc
                         {...}
                                                                        STOP
H-Abort
                                                                       END
```

```
1
    ; 管理模式SVC mode, 切换为FIQ mode, 然后切换为用户模式
 2
    RESET_HANDIER
 3
                   RO, #0x000001F0
            MOV
                   R1, =0xF0000000
 4
            LDR
 5
            STR
                   R0, [R1]
 6
 7
            ; 进入管理模式 (SVC mode)
8
            MRS
                   RO, CPSR
9
            MOV
                   R13, #1
10
                  R14, #2
            MOV
11
12
            ; 切换到 FIQ 模式
13
                   RO, CPSR
            MRS
                   R0, R0, \#0x1F
14
                                       ; 清除模式位
            BIC
15
                   RO, RO, #0x11
                                       ;设置为 FIQ 模式
            ORR
                                       ; 更新 CPSR, 切换到 FIQ 模式
16
            MSR
                  CPSR_c, R0
17
            ;在 FIQ 模式下操作
18
19
            MOV
                  R13, #3
20
                   R14, #4
            MOV
21
            ; 切换到用户模式 (User mode)
22
23
                   RO, CPSR
            MRS
24
                   R0, R0, #0x1F
                                       ; 清除模式位
            BIC
                   R0, R0, #0x10
25
            ORR
                                       ; 设置为用户模式
26
                  CPSR_c, R0
                                       ; 更新 CPSR, 切换到用户模式
            MSR
27
28
            ; 在用户模式下执行
29
            MOV
                   R13, #5
30
                   R14, #6
            MOV
```

切换到 FIQ 模式:

- FIQ 模式下, R13 和 R14 的值分别变为 3 和 4。
- FIQ 模式的寄存器使用与 SVC 模式不同,它有自己专用的 R8-R14 寄存器,允许更快地处理紧急任务。切换到 FIQ 模式后,R13 和 R14 被重新赋值,说明切换成功。

切换到用户模式:

- 处理器成功切换到用户模式后,R13和R14被重新赋值为5和6,说明模式切换和寄存器更新是独立进行的。
- FIQ 模式下使用专用的 R13 和 R14,在切换回用户模式后,这些寄存器又被重新赋值。这表明 ARM 处理器不同模式下有独立的寄存器组,模式切换不会影响其他模式的寄存器内容。


```
R1, =0xF0000000
R0, [R1]
                                                                                     LDR
ARM7TDMI - Registers
                                                                21
                                                                22
23
Register
                            Value
□ Current
                                                                                     ; 进入管理模式 (SVC mode)
                                                                24
25
                             0x000000D0
    --r0
                                                                                           RO, CPSR
R13, #1
     -rl
                             0xF0000000
                                                                26
                                                                                     MOV
                                                                                           R14, #2
    --r2
                             0x00000000
                                                                27
28
                                                                                     MOV
                             0x00000000
     -r3
                                                                29
30
                                                                                     ; 切换到 FIQ 模式
                             0x00000000
     -r4
                                                                                          |映到 FIQ 模式
| R0, CPSR
| R0, R0, #0x1F
| R0, R0, #0x11
| CPSR_c, R0
                                                                                     MRS
BIC
     -r5
                             0x00000000
                                                                31
                                                                                                                       ; 清除模式位
    --r6
                             0x00000000
                                                                32
33
                                                                                                                       ;设置为 FIQ 模式
;更新 CPSR, 切换到 FIQ 模式
                             0x00000000
     -r7
                             0x00000000
                                                                34
35
36
     -r9
                             0x00000000
                                                                                     ; 在 FIQ 模式下操作
                             0x00000000
                                                                                     MOV R13, #3
MOV R14, #4
    -r10
                                                                37
38
                             0x00000000
    -r11
    ---r12
                             0x00000000
                                                                39
                                                                                     ; 切换到用户模式 (User mode)
    ---r13
                             0x00000005
                                                                                            来到州戸侵入 (Use
RO, CPSR
RO, RO, #0x1F
RO, RO, #0x10
CPSR_c, RO
                                                                40
41
                                                                                     MRS
BIC
                             0x00000006
    ---r14
                                                                                                                       ; 清除模式位
                             0x0000406C
    ---pc
                                                                42
43
                                                                                                                       ;设置为用户模式
;更新 CPSR,切换到用户模式
    ---cpsr
                             nzcvqIFt_User
   spsr
                             Unavailable
                                                                44
                                                                45
46
⊞-User/System
                                                                                      ; 在用户模式下执行
                             {...}
                                                                                             R13, #5
R14, #6
⊕-FIQ
                                                                47
                                                                                     MOV
⊞-IRO
                             {...}
```

```
; 管理模式(SVC mode)切换到FIQ模式,再切换到用户模式,在用户模式下继续尝试切换为IRQ模式
1
 2
    RESET_HANDIER
 3
                  RO, #0x000001F0
           MOV
                  R1, =0xF0000000
 4
           LDR
 5
           STR
                  RO, [R1]
 6
 7
            ; 进入管理模式 (SVC mode)
 8
           MRS
                  RO, CPSR
9
           MOV
                  R13, #1
10
                  R14, #2
           MOV
11
12
            ; 切换到 FIQ 模式
13
           MRS
                  RO, CPSR
                  R0, R0, \#0x1F
14
           BIC
                                       ; 清除模式位
15
           ORR
                  RO, RO, #0x11
                                       ;设置为 FIQ 模式
                                       ; 更新 CPSR, 切换到 FIQ 模式
16
           MSR
                  CPSR_c, R0
17
            ;在 FIQ 模式下操作
18
19
           MOV
                  R13, #3
20
                  R14, #4
           MOV
21
            ; 切换到用户模式 (User mode)
22
23
           MRS
                  RO, CPSR
                  RO, RO, #0x1F
24
           BIC
                                       ; 清除模式位
25
           ORR
                  RO, RO, #0x10
                                       ; 设置为用户模式
                                       ; 更新 CPSR, 切换到用户模式
26
           MSR
                  CPSR_c, R0
27
28
            ; 在用户模式下操作
29
           MOV
                  R13, #5
30
           MOV
                  R14, #6
31
            ; 尝试从用户模式切换到 IRQ 模式
32
33
           MRS
                  RO, CPSR
34
           BIC
                  RO, RO, #0x1F
                                       ; 清除模式位
35
                  RO, RO, #0x12
                                       ; 设置为 IRQ 模式
           ORR
                                       ; 更新 CPSR, 切换到 IRQ 模式
36
           MSR
                  CPSR_c, R0
37
            ;在 IRQ 模式下操作
38
39
           MOV
                  R13, #7
40
           MOV
                  R14, #8
```

从用户模式切换到 IRQ 模式:

- 在用户模式下,处理器通过直接操作 CPSR 寄存器成功切换到 IRQ 模式,R13 和 R14 的值变为 7 和 8。
- IRQ 模式有自己的 R13 和 R14, 切换成功后寄存器值发生改变。
- 用户模式下的切换是可行的,因为处理器模式的切换依赖于对 CPSR 寄存器的操作。通过 MSR 指令修改 CPSR ,处理器可以从用户模式切换到 IRQ 模式,且寄存器内容独立于其他模式。

2.3 在程序中MOV R14, #4语句后, 增加语句

```
1 ADD PC,PC,#4
2 ADD R0,R0,#0x1
3 ADD R0,R0,#0x2
4 ADD R0,R0,#0x3
5 ADD R0,R0,#0x4
```

通过分析程序执行的结果,分析在ARM流水线下相对寻址指令(以程序计数器PC的当前值为基地址,偏移量相加得到有效地址)的执行过程:

ARM使用三阶段流水线架构,分别为**取指令、译码、执行。**在执行过程中,由于流水线的原因,PC的值与正在执行的指令地址存在一个常量偏移。

```
1 | ADD PC, PC, #4
```

由于PC在ARM处理器中指向当前指令的地址加上8,因为取指令时PC会提前两条指令。因此:

- 当PC指向一条指令时,实际执行的指令位于当前PC+8的地址。
- 因此, 当执行 ADD PC, PC, #4 时, PC的值将会增加4字节, 相当于让程序跳过下一条指令, 执行后续的指令。

因此,增加语句中:

```
1 ADD PC, PC, #4 ; PC = PC + 4
2 ADD RO, RO, #1 ; 不执行, 因PC被跳过
3 ADD RO, RO, #2 ; 执行
4 ADD RO, RO, #3 ; 执行
5 ADD RO, RO, #4 ; 执行
```

2.4程序中,使用了LDR伪指令,请分析该伪指令和LDR加载指令在功能和应用上有何区别

2.4.1 LDR伪指令

- **功能**: LDR伪指令通常用于从内存中加载一个立即数(常量)到寄存器中。当常量的值无法直接通过立即数的形式嵌入到指令中时(即超出了指令可以表示的范围),编译器会在指令的后续部分存储该常量,并生成加载该常量的指令。
 - 。 在程序的某个位置存储常量值。
 - o 使用 LDR 加载指令从该位置读取常量值到寄存器中。

举一个例子如下:

```
1 LDR RO, =0xF0000000 ; LDR伪指令
```

伪指令 LDR RO, =0xF0000000 将常量 0xF0000000 加载到寄存器RO。编译器会在程序的某个地方存储 0xF0000000, 并生成对应的指令从该位置加载值到RO中。

• 展开后的指令是这样的:

```
1 LDR RO, [PC, #offset] ; 从相对于PC的偏移位置加载常量到RO
```

2.4.2 LDR加载指令

- **功能**: LDR加载指令是ARM指令集中用于从内存地址中加载数据到寄存器中的指令。它可以使用基址加偏移(或基址加寄存器)来从内存中读取一个32位值到寄存器。
 - 。 该指令直接从内存中读取指定地址上的数据,并将其加载到寄存器中。

例子:

```
1 | LDR RO, [R1] ; LDR加载指令
```

LDR RO, [R1] 将内存地址 R1 指向的内容加载到寄存器 RO 中。这是直接的内存访问操作。

那我们总结如下

特性	LDR伪指令	LDR加载指令
用途	用于加载无法通过立即数表示的常量	用于从内存地址中加载数据
加载的值	常量值 (通常是立即数)	内存地址指向的数据
常见应用	当常量过大,不能直接用立即数表示	内存数据访问、加载变量的值
实现方式	编译器伪指令,会存储常量并生成指令	直接的指令,访问内存地址
地址来源	PC指向的常量池中的数据	任意内存地址

3 按求最大公约数.doc的说明编写汇编指令

AXD窗口裁图, 图中包含程序代码和运行完成后的寄存器内容。

```
AREA example3, CODE, READONLY
1
2
          ENTRY
3
          ; 初始化 r0 和 r1 的值,分别为 15 和 9
4
                r0, #15
          MOV
5
                 r1, #9
          MOV
6
7
   start
8
                r0, r1
          CMP
9
                                ; 如果 r0 == r1, 跳转到 stop, 最大公约数是 r0
          BEQ
                stop
10
11
          ; 如果 r0 > r1
          BGT greater_than ; 跳转到 r0 > r1 的处理部分
12
13
14
          ; 如果 r0 < r1
15
   less_than
```

```
SUB r1, r1, r0 ; r1 = r1 - r0
16
17
          В
                start
18
19
   greater_than
          SUB
20
                r0, r0, r1
                              ; r0 = r0 - r1
21
          В
                start
22
23
   stop
          ; 最大公约数存储在 r0 中
24
25
          В
               stop
                               ; 无限循环,程序停止
26
27
          END
```

