ECE421: Introduction to Machine Learning — Fall 2024

Worksheet 7 Solution: MDP and RL

Q1 An MDP with a single goal state S_3 is given below. The probability and distance of each transition is denoted next to the corresponding edge. For instance, the pair $(\frac{1}{2},2)$ next to the edge connecting a_2 to S_1 denotes the probability and distance of this transition, respectively.

1.a Given the optimal expected cost $C^*(S_1) = 7$, $C^*(S_2) = 4.2$, and $C^*(S_3) = 0$, calculate the optimal policy for state S_1 , i.e., $\pi^*(S_1)$.

[NOTE: In this question, we used distance/cost instead of reward/return, and $C^{\star}(\cdot)$ denotes the optimal expected distance. In such MDP, the optimal policy minimizes the expected distance.]

Answer. We use $Q^{\star}(s,a)$ to denote the expected cost of reaching a goal state if one starts in state s, executes action a and then acts according to the optimal policy. We must calculate $Q^{\star}(S_1,a_1)$ and $Q^{\star}(S_1,a_2)$ to find $\pi^{\star}(S_1)$. Observe that

$$Q^{\star}(S_1, a_1) = \frac{1}{4} (1 + C^{\star}(S_3)) + \frac{3}{4} (2 + C^{\star}(S_1)) = 7$$
$$Q^{\star}(S_1, a_2) = \frac{1}{2} (1 + C^{\star}(S_2)) + \frac{1}{2} (2 + C^{\star}(S_1)) = 7.1$$

Since
$$Q^*(S_1, a_1) < Q^*(S_1, a_2), \ \pi^*(S_1) = a_1.$$

On a separate note, observe that since S_2 has only one available action, we have

$$Q^{\star}(S_2, a_3) = C^{\star}(S_2) = 4.2.$$

1.b Suppose that we follow policy π , where we pick action a_2 in state S_1 and action a_3 in state S_2 . Calculate the expected cost of S_1 and S_2 for this policy, *i.e.*, $C_{\pi}(S_1)$ and $C_{\pi}(S_2)$.

Answer. Since the given policy chooses a_2 at S_1 , we simply ignore a_1 during our computation. We first generate the following set of equations.

$$C_{\pi}(S_1) = Q_{\pi}(S_1, a_2) = \frac{1}{2}(1 + C_{\pi}(S_2)) + \frac{1}{2}(2 + C_{\pi}(S_1))$$

$$C_{\pi}(S_2) = Q_{\pi}(S_2, a_3) = \frac{3}{5}(1 + C_{\pi}(S_3)) + \frac{2}{5}(2 + C_{\pi}(S_1))$$

$$C_{\pi}(S_3) = 0.$$

Solving this system of equations would result in

$$C_{\pi}(S_1) = 2.2/0.3 = 7.33,$$

 $C_{\pi}(S_2) = 1.4 + 0.4C_{\pi}(S_1) = 1.4 + 0.4(7.33) = 4.333.$

Q2 [True or False]

- 2.a Temporal difference learning is a model-based learning method. [True/False]
- **2.b** In a *deterministic MDP*, Q-learning with a learning rate of $\alpha=1$ cannot learn the optimal q-values. [True/False]
 - **Answer. 2.a** is False and **2.b** is False. Note that in stochastic MDPs, $\alpha=1$ would prevent convergence to the optimal Q-values because the updates would overwrite previous information without averaging over the stochastic outcomes. However, this is not a concern in deterministic environments.
- **Q3** [Properties of reinforcement learning algorithms] Assuming we run for infinitely many steps, for which exploration policies is Q-learning guaranteed to converge to the optimal Q-values for all state-action pairs. Assume we chose reasonable values for α and all states of the MDP are connected via some path. (Select all that apply)
 - (a) A fixed optimal policy.
 - (b) A fixed policy taking actions uniformly at random.
 - (c) An ϵ -greedy policy.
 - (d) A greedy policy.

Answer. (b) and (c). For Q-learning to converge, every state-action pair (s,a) must occur infinitely often. A uniform random policy and an ϵ -greedy policy will achieve this. A fixed optimal policy will not take any suboptimal actions and so will not explore enough. Similarly a greedy policy will stop taking actions the current Q-values suggest are suboptimal, and so will never update the Q-values for supposedly suboptimal actions. (This is problematic if, for example, an action most of the time yields no reward but occasionally yields very high reward. After observing no reward a few times, Q-learning with a greedy policy would stop taking that action, never obtaining the high reward needed to update it to its true value.)

Q4 [Grid-World Reinforcement] Consider the grid-world given below and Pacman who is trying to learn the optimal policy. All shaded states are terminal states, *i.e.*, the MDP will take the exit action and collect the corresponding reward once it arrives in a shaded state. The other states have the **North** (N), **East** (E), **South** (S), **West** (W) actions available, which *deterministically* move Pacman to the corresponding neighboring state (or have Pacman stay in place if the action tries to move out of the grid).

Assume the discount factor $\gamma=0.5$ and the Q-learning rate $\alpha=0.5$ for all calculations. Pacman starts in state (1,3).

For this question, Pacman does not have to learn the values for the terminal (shaded) states, **these are given** to him and remain fixed.

Table 1: Pacman grid-world. Assume that the discount factor $\gamma=0.5$ and the Q-learning rate $\alpha=0.5$.

4.a The agent starts from the top left corner and you are given the following episodes from runs of the agent through this grid-world. Each line in an Episode is a tuple containing (s, a, s', r). Fill in the following

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5
(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0
(1,2), S, (1,1), 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0
(1,1), Exit, D, -100	(2,2), E, (3,2), 0	(2,2), E, (3,2), 0	(2,2), N, (2,3), 0	(2,2), E, (3,2), 0
	(3,2), N, (3,3), 0	(3,2), S, (3,1), 0	(2,3), Exit, D, +10	(3,2), E, (3,2), 0
	(3,3), Exit, D, -100	(3,1), Exit, D, +100		(3,2), S, (3,1), 0
				(3,1), Exit, D, +100

Q-values obtained from direct evaluation from the samples.

[NOTE: You do not need to simplify your answer and can leave it as summation of fractions.]

$$Q((1,2),N) = Q((2,2),E) =$$

Answer. In lecture, we had used direct evaluation to estimate V_{π} . Here, we are asked to use direct evaluation to estimate Q(s,a). We should average the sum of discounted rewards for transitions like s,a,\ldots

$$Q((1,2),N)=0$$
 since we had never observed this (state, action) pair. $Q((2,2),E)=\frac{-100/4+100/4+100/8}{3}$

4.b As we studied in the lecture, Q-learning is an online algorithm to learn optimal Q-values in an MDP with unknown rewards and transition function. Given the episodes in part (a), fill in the episode at which the following Q values first become non-zero. If the specified Q value never becomes non-zero, write never.

$$Q((1,3),S):$$
 $Q((2,2),E):$ $Q((3,2),S):$

Answer.

Q((1,3),S): Never Q((2,2),E): Episode 5 Q((3,2),S): Episode 3

4.c What is the value of the optimal value function V^* at the following states: (Unrelated to answers from previous parts)

$$V^*((1,3)) = \qquad \qquad V^*((2,2)) = \qquad \qquad V^*((3,2)) =$$

Answer.

$$V^*((1,3)) = \frac{100}{16}$$

$$V^*((2,2)) = \frac{100}{4}$$

$$V^*((3,2)) = \frac{100}{2}$$

4.d Using Q-Learning updates, what are the following Q-values after the above five episodes:

$$Q((3,2),N) = Q((1,2),S) =$$

$$Q((2,2),E) =$$

Answer.

On Episode 2:
$$Q((3,2),N)=(1-\alpha)0+\alpha[0+\gamma(-100)]=-25$$
 On Episode 1: $Q((1,2),S)=(1-\alpha)0+\alpha[0+\gamma(-100)]=-25$ On Episode 5: $Q((2,2),E)=(1-\alpha)0+\alpha[0+\gamma\max_{a'}Q((3,2),a)]=\frac{25}{4}$

- **4.e** Consider a feature based representation of the Q-value function: $Q_f(s,a) = w_1 f_1(s) + w_2 f_2(s) + w_3 f_3(a)$, where $f_1(s)$ and $f_2(s)$ are the x coordinate of the state and the y coordinate of the state, respectively. Furthermore, $f_3(\mathsf{N}) = 1$, $f_3(\mathsf{W}) = 2$, $f_3(\mathsf{S}) = 3$, $f_3(\mathsf{E}) = 4$, $f_3(\mathsf{Exit}) = 1$.
 - **4.e.i** Given that all w_i are initially 0, what are their values after the first episode:

$$w_1 = w_2 = w_3 =$$

Answer.

$$\begin{array}{l} w_1 = 0 + \frac{1}{2}[(0 + \frac{1}{2}(-100)) - 0] \cdot f_1((1,2)) = -25 \\ w_2 = 0 + \frac{1}{2}[(0 + \frac{1}{2}(-100)) - 0] \cdot f_2((1,2)) = -50 \\ w_3 = 0 + \frac{1}{2}[(0 + \frac{1}{2}(-100)) - 0] \cdot f_3(S) = -75 \end{array}$$

4.e. ii Assume the weight vector \underline{w} is equal to (1,1,1). What is the action prescribed by the Q-function in state (2,2)?

Answer. E