

Geometria Analitica

Videoaula 2.1

Sistemas de equações lineares

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Uma equação linear em n variáveis x_1, x_2, \ldots, x_n é uma equação da forma:

$$a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = b$$

em que a_1, a_2, \ldots, a_n, b são números reais.

Exemplos

$$x - 2y + 9z = 10$$

$$x + 3xy = 6$$

$$2x - 3y + 2z^2 = 5$$

$$x + 3\sqrt{y} = 0$$

$$\sqrt{2} x + 7y + z = 0$$

Uma solução de uma equação linear em n variáveis é uma n-upla

$$s = (s_1, s_2, \ldots, s_n)$$

tal que a equação é satisfeita se substituímos $x_1 = s_1, x_2 = s_2, \ldots, x_n = s_n$.

Explicando melhor ...

Dada a equação $a_1 x_1 + a_2 x_2 + ... + a_n x_n = b$,

s é solução se $a_1 s_1 + a_2 s_2 + \ldots + a_n s_n = b$.

Exemplo

Dada a equação linear 3x + 2y - z = 4, vamos identificar se s, u e v são soluções.

$$s = (1, 2, 3)$$
 $u = (2, 2, 2)$ $v = (0, 2, 0)$

Um sistema de equações lineares é um conjunto de equações lineares, ou seja, um conjunto de equações da forma:

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots a_{2n} x_n = b_2 \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots a_{mn} x_n = b_m \end{cases}$$

Exemplos

$$\begin{cases} 3x - y + 2z = 5 \\ 2x + y - z = 1 \\ x - 3y + 4z = 7 \end{cases}$$

$$\begin{cases} x+y-2z=5\\ 3x+y^2+z=1\\ 3y-4z=7 \end{cases}$$

Uma solução de um sistema de equações lineares é uma n-upla

$$s = (s_1, s_2, \ldots, s_n)$$

tal que todas as equações do sistema são satisfeitas quando substituímos $x_1 = s_1, \ x_2 = s_2, \dots, \ x_n = s_n.$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots a_{2n} x_n = b_2 \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots a_{mn} x_n = b_m \end{cases}$$

Uma solução de um sistema de equações lineares é uma n-upla

$$s = (s_1, s_2, \ldots, s_n)$$

tal que todas as equações do sistema são satisfeitas quando substituímos $x_1 = s_1, \ x_2 = s_2, \dots, \ x_n = s_n$.

Importante!

O conjunto de todas as soluções do sistema é chamado conjunto solução ou solução geral do sistema.

Dado o sistema linear
$$\begin{cases} x + 2y = 0 \\ x - y + z = 0 \\ 2x + y + z = 0 \end{cases}$$

Verifique se são soluções:

$$s = (0, 0, 0)$$
 $u = (4, -2, 1)$ $v = (2, -1, -3)$

Classificação Dependendo do seu conjunto solução, um sistema de equações lineares pode ser classificado em:

- Sistema possível e determinado SPD
- Sistema possível e indeterminado
- Sistema impossível

Observação importante

Se um sistema de equações lineares possui duas soluções distintas, então possui infinitas soluções (SPI).

Isso vale porque ...

Se (s_1, s_2, s_3) é uma solução, e (u_1, u_2, u_3) é outra solução, então:

$$\alpha \cdot (s_1, s_2, s_3) + \beta \cdot (u_1, u_2, u_3)$$
,

com $\alpha + \beta = 1$ também será solução.

Exemplos iniciais

$$\begin{cases} x + y = 10 \\ 3x - 2y = 15 \end{cases}$$

$$\begin{cases} x + y = 10 \\ 2x + 2y = 20 \end{cases}$$

$$\begin{cases} x + y = 5 \\ 2x + 2y = 12 \end{cases}$$