

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

Customer: Oneworldplan

Date: November 1st, 2021

This document may contain confidential information about IT systems and the intellectual property of the Customer as well as information about potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the Customer, or it can be disclosed publicly after all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name	Smart Contract Code Review and Security Analysis Report for Oneworldplan.		
Approved by	Andrew Matiukhin CTO Hacken OU		
Туре	ERC20 token; Staking		
Platform	Ethereum / Solidity		
Methods	Architecture Review, Functional Testing, Computer-Aided Verification, Manual Review		
Files	audit_care_updated.sol audit_owp_updated,sol		
MD5 hashes	bf9a68422f2ec67dfc0364e880f3dfa7 f56411bbb7f5bcfbea34f3d773c735b0		
Technical Documentation	NO		
JS tests	NO NO		
Website	oneworldplan.com		
Timeline	13 OCTOBER 2021 - 20 OCTOBER 2021		
Changelog	20 OCTOBER 2021 - INITIAL AUDIT 01 NOVEMBER 2021 - SECOND REVIEW		

Table of contents

Introduction	
Scope	4
Executive Summary	5
Severity Definitions	7
Audit overview	8
Conclusion	10
Disclaimers	11

Introduction

Hacken OÜ (Consultant) was contracted by Oneworldplan (Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contract and its code review conducted between October 13th, 2021 - October 20th, 2021.

Second review conducted on November 1st, 2021.

Scope

```
The scope of the project is smart contracts in the repository:

Files:

audit_care_updated.sol

audit_owp_updated.sol

Commit:

bf9a68422f2ec67dfc0364e880f3dfa7

f56411bbb7f5bcfbea34f3d773c735b0

Technical Documentation: No

JS tests: No

Contracts:

audit_care_updated.sol

audit_owp_updated.sol
```

We have scanned this smart contract for commonly known and more specific vulnerabilities. Here are some of the commonly known vulnerabilities that are considered:

Category	Check Item
Code review	Reentrancy
	Ownership Takeover
	Timestamp Dependence
	Gas Limit and Loops
	DoS with (Unexpected) Throw
	 DoS with Block Gas Limit
	 Transaction-Ordering Dependence
	Style guide violation
	Costly Loop
	ERC20 API violation
	Unchecked external call
	Unchecked math
	Unsafe type inference
	Implicit visibility level
	Deployment Consistency
	Repository Consistency
	 Data Consistency

Functional review

- Business Logics Review
- Functionality Checks
- Access Control & Authorization
- Escrow manipulation
- Token Supply manipulation
- Assets integrity
- User Balances manipulation
- Data Consistency manipulation
- Kill-Switch Mechanism
- Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.

Insecure	Poor secured	Secured	Well-secured
		You are here	

Our team performed an analysis of code functionality, manual audit, and automated checks with Mythril and Slither. All issues found during automated analysis were manually reviewed, and important vulnerabilities are presented in the Audit overview section. All found issues can be found in the Audit overview section.

As a result of the audit, security engineers found 8 low severity issues.

After the second review security engineers found that "Pausable" functionality was added to both contracts and **4** issues were fixed and unresolved **4** low severity issues.

Graph 1. The distribution of vulnerabilities after the audit.

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations.
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access to crucial functions
Medium	Medium-level vulnerabilities are important to fix; however, they can't lead to assets loss or data manipulations.
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that can't have a significant impact on execution

Audit overview

■ ■ ■ Critical

No critical issues were found.

High

No high severity issues were found.

■ ■ Medium

No medium severity issues were found.

Low

A public function that could be declared external

public functions that are never called by the contract should be declared external to save gas.

Contracts: audit_owp.sol

Recommendation: Use the **external** attribute for functions never called from the contract.

2. A public function that could be declared external

public functions that are never called by the contract should be declared external to save gas.

Contracts: audit care.sol

Recommendation: Use the **external** attribute for functions never called from the contract.

3. State variables that could be declared immutable

State variable which never change its value and initialized in the constructor should be declared immutable to save gas.

Contracts: audit_owp.sol

Recommendation: Use the **immutable** attribute for state variable which are initialized in the constructor and never change their value.

4. State variables that could be declared immutable

State variable which never change its value and initialized in the constructor should be declared immutable to save gas.

Contracts: audit_care.sol

Recommendation: Use the **immutable** attribute for state variable which are initialized in the constructor and never change their value.

5. No events on critical values changes

When changing critical values of the contract it is hardly recommended to emit events so it could be tracked off-chain.

Contracts: audit_owp.sol

Recommendation: Please emit events on changing critical values.

Status: Fixed.

6. No events on critical values changes

When changing critical values of the contract it is hardly recommended to emit events so it could be tracked off-chain.

Contracts: audit_care.sol

Recommendation: Please emit events on changing critical values.

Status: Fixed.

7. Conformance to Solidity naming conventions

Solidity defines a <u>naming convention</u> that should be followed.

Contracts: audit_owp.sol

Contract Name: OWP_Staketodonate

Recommendation: Follow the Solidity <u>naming convention</u>.

Status: Fixed.

8. Conformance to Solidity naming conventions

Solidity defines a <u>naming convention</u> that should be followed.

Contracts: audit_owp.sol

Contract Name: care_contract

Recommendation: Follow the Solidity <u>naming convention</u>.

Status: Fixed.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with static analysis tools.

The audit report contains all found security vulnerabilities and other issues in the reviewed code.

As a result of the audit, security engineers found 8 low severity issues.

After the second review security engineers found that "Pausable" functionality was added to both contracts and 4 issues were fixed and unresolved 4 low severity issues.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the best industry practices at the date of this report, in relation to cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the code, bug-free status, or any other statements of the contract. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the audit can't guarantee the explicit security of the audited smart contracts.