Concursul Fractal

A Patra Ediție, 8 februarie 2025

Problema 1. Din numerele naturale de la 1 până la n câteva sunt colorate albastru și câteva roșu. Dacă numerele a și b sunt albastre, numărul ab este fie mai mare decât n, fie roșu. Găsiți numărul maxim posibil de numere albastre.

Soluție: Răspunsul este $n-\lfloor \sqrt{n}\rfloor$. Pentru a arăta că există cel puțin $\lfloor \sqrt{n}\rfloor$ numere roșii luăm perechile de forma $(x;x^2)$, pentru $x\leq \lfloor \sqrt{n}\rfloor$. E clar că din aceste perechi de numere cel puțin câte unul este roșu. Iar pentru construcție, colorăm toate numerele mai mari decât $\lfloor \sqrt{n}\rfloor$ cu albastru, și pe toate restul roșu.

Problema 2. Numerele reale nenule distincte a, b și c satisfac: $\frac{a}{b^2} + \frac{b}{c^2} + \frac{c}{a^2} = \frac{a}{c^2} + \frac{b}{a^2} + \frac{c}{b^2}$. Găsiți minimul expresiei:

$$\frac{(a+b)(a+c)}{a^2} + \frac{(a+b)(b+c)}{b^2} + \frac{(c+b)(a+c)}{c^2}$$

Soluție: Aducând la numitor comun și factorizând $\sum a^3c^2 - \sum c^3a^2$ se factorizează ca produsul diferențelor înmulțit cu ab + bc + ca, astfel această expresie este zero, deci expresia ce trebuie minimizată este mereu 3.

Problema 3. În triunghiul ABC, M este mijlocul laturii BC, iar N, mijlocul laturii AC. Fie punctul X, care e de aceeași parte a dreptei BC ca și A, și care satisface MX = MB. Fie punctul Y piciorul perpendicularei din X pe BC. Fie H piciorul perpendicularei din C pe AB. Aflați raportul $\frac{XY}{CH}$.

Soluție: Raportul este $\frac{1}{2}$. Inițial, e clar din angle-chasing că dreapta formată din punctele de tangență a cercului înscris în triunghi cu laturile AB și AC, se intersectează cu bisectoarea unghiului B și cu linia mijlocie din fața lui C, această intersecție fiind X. În particular, X aparține bisectoarei unghiului B, deci distanța de la el până la AB este egală cu lungimea lui XY, și cu jumătate din înălțime.

Problema 4. Arătați că dacă două polinoame P(x) și Q(x) cu coeficienți întregi satisfac:

$$P(x) \cdot Q(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$$

Atunci unul dintre ele este constant.

Soluție: Se observă conform relațiilor lui Viete sau altor motive că acest polinom este egal cu Φ_{15} , adică al 15-lea polinom ciclotomic și este cunoscut că orice polinom ciclotomic este ireductibil.