

EIE

Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control I-2024

TAREA 2

Objetivo: Implementar un sistema de control en Matlab para analizar la característica estática y dinámica de un proceso hidráulico.

En la Figura 1 se muestra un estanque que se utiliza para monitoreo de especies marinas endémicas de la Isla del Coco, donde se tiene un tanque cilíndrico vertical abierto en su parte superior a la atmósfera, del cual se desea controlar el nivel del tanque manipulando el caudal de entrada Q_e ante posibles perturbaciones en el caudal de salida Q_s :

Figura 1: Proceso Control de Nivel

El modelo dinámico del proceso es:

$$A\frac{dH(t)}{dt} = Q_e(t) - Q_s(t) = Q_e(t) - X_{vs}(t)K_{vs}\sqrt{\rho gH(t)}$$

La característica estática es:

$$H(t) = f(Q_e, X_{vs}) = \frac{1}{\rho g} \left(\frac{Q_e(t)}{X_{vs}(t)K_{vs}} \right)^2$$

El modelo linealizado es:

$$h(s) = \frac{K_1}{T_{S+1}} q_e(s) + \frac{K_2}{T_{S+1}} x_{vs}(s)$$

$$K_1 = \frac{2}{X_{vso} K_{vs}} \sqrt{\frac{H_o}{\rho g}}, \quad K_2 = -\frac{2H_o}{X_{vso}}, \quad T = \frac{2A}{X_{vso} K_{vs}} \sqrt{\frac{H_o}{\rho g}}$$

En donde:

Variable o Parámetro	Descripción	Valor nominal
Α	área transversal del tanque	5 m ²
g	aceleración de la gravedad	9,81 m/s ²
Н	nivel del líquido en el tanque	[2,24 2,5 2,95] m
	Altura máxima del tanque	3,6 m
	Ámbito de medición del sensor	0 a 3,25 m
Q_{e}	caudal de líquido de entrada	-
$Q_{\mathbb{S}}$	caudal de líquido de salida	-
K _{vs}	constante de la válvula de salida del tanque	0,001
X _{vs}	apertura de la válvula de salida del tanque	{0,4 0,5 0,6}
ρ	densidad del líquido (agua de mar)	1027 kg/m³
t	tiempo	S
En negrita se marcan los valores deseados.		

ESCUEIA DE Ingeniería Eléctrica

IE0431: Sistemas de Control I-2024

Para este sistema:

a) (5 puntos) Demuestre la obtención de la ecuación en el tiempo del modelo linealizado a partir del modelo dinámico del sistema, utilizando el procedimiento algebraico de linealización visto en clase, y a partir del mismo demuestre la obtención de las respectivas funciones de transferencia.

Utilizando la plantilla Tarea 1.m de Matlab disponible en mediación virtual, calcule:

- b) (5 puntos) La ganancia del transmisor de nivel K_t (%/m) de forma que la señal realimentada esté normalizada de 0 a 100%.
- c) (5 puntos) La constante de la válvula de control K_{VC} ($\frac{m^3s^{-1}}{\%}$) de forma que la acción de control esté normalizada de 0 a 100%.
- d) (20 puntos) Implemente el sistema real en Simulink utilizando la ecuación del modelo dinámico del proceso tal como se observa en la Figura 2. **Debe indicar la condición inicial (H₀) en los parámetros del bloque Integrador**.

Figura 2: Diagrama de bloques del sistema real

ESCUEIA DE Ingeniería Eléctrica

IE0431: Sistemas de Control I-2024

En el bloque del step de la entrada \boldsymbol{U} debe configurarlo según se indica:

En el bloque del step de la entrada de la perturbación debe configurarlo según se indica:

ESCUEIA DE Ingeniería Eléctrica

IE0431: Sistemas de Control I-2024

Los valores de las variables se explican más adelante y también se encuentran en el archivo Tarea_1.m.

e) (15 puntos) Calcule el valor de T, K_1 y K_2 del modelo linealizado. Implemente el diagrama de bloques en Simulink del sistema tal como se observa en la Figura 3.

Figura 2: Diagrama de bloques del sistema real y linealizado

- f) (20 puntos) Obtenga la respuesta del sistema real (obtenida en el punto c) y compárela con la del sistema linealizado (obtenida en el punto d) en una misma gráfica utilizando Simulink/Matlab, cuando ambos se encuentran en el punto de operación más probable y se producen los siguientes cambios:
 - i. Un cambio escalón en la señal de control de $\Delta U = -2\%$, seguido de un cambio escalón en la perturbación de $\Delta D = -0.02$. Considere que el sistema debe estabilizarse antes de aplicar el segundo cambio escalón.
 - ii. Un cambio escalón en la señal de control de ΔU = -10%, seguido de un cambio escalón en la perturbación de ΔD = -0.1. Considere que el sistema debe estabilizarse antes de aplicar el segundo cambio escalón.

Indique las gráficas en su solución y adjunte el archivo .slx.

EIE

Escuela de Ingeniería Eléctrica

IE0431: Sistemas de Control I-2024

- g) (20 puntos) A partir de la ecuación de la característica estática obtenga utilizando Matlab y en una misma figura, la curva estática del proceso para los tres posibles valores de la apertura de la válvula de salida. Muestra la relación entre m(t) y c(t). Indique en la figura el punto de operación más probable del sistema. Presente la gráfica en su solución y comente sobre la forma de las curvas.
- h) (10 puntos) A partir de los resultados anteriores, observe la respuesta del nivel ante los cambios en el caudal de entrada y la apertura de la válvula de salida, ¿son razonables? Comente sobre la validez del modelo lineal cuando se producen cambios en el punto de operación del sistema.

Instrucciones finales:

Todas las figuras anteriores <u>deben incluir las entradas de referencia y</u> <u>perturbación</u>, y presentarse con una descripción de los ejes usando el comando *xlabel*, *ylabel* y una leyenda (*legend*). El fondo de las figuras debe ser blanco, y el grosor de las líneas mostradas en cada figura debe ser el adecuado tal que permita fácilmente identificar cada señal.

- Recuerde hacer el ajuste del "solver" en simulink (fixed step, ode4, step size 1e-3 o 1e-4).
- Entregar en Mediación Virtual una memoria pdf indicando las soluciones obtenidas para cada punto, además de los archivos Matlab y Simulink <u>los cuales deben generar todos los resultados presentados en la memoria, para considerar las soluciones como válidas</u>. Subir a la plataforma virtual los archivos por separado (no se aceptan archivos comprimidos).
- Indicar carné, nombre y grupo matriculado <u>en cada archivo entregado</u>, en el nombre de los archivos (ej: *C01234_NombreApellido_G0#*.pdf) y en el contenido de estos (portada para el pdf, comentario en los archivos Matlab/Simulink).
- Las tareas son de realización y entrega individual. Tome en cuenta que Mediación genera un reporte de originalidad con la herramienta *Turnitin* para cada entrega.
- Se recomienda repasar el tema de Proceso controlado en el libro Sistemas de control de Alfaro disponible en Mediación Virtual.
- Fecha de entrega: domingo 21 de abril a las 11:55 pm, no se aceptan tareas después de esta fecha y hora, ni entregadas por otros medios distintos a Mediación Virtual.