MBAN 5110: PREDICTIVE MODELING

SESSION 3: LINEAR REGRESSION

DR. ISIK BICER

TODAY'S AGENDA

- Linear Regression: Model and Assumptions
- Maximum Likelihood Estimation
- Ordinary Least Squares
- Generalized Least Squares

LINEAR MODELS

ANALYTICAL REPRESENTATION

- y : Dependent variable (m observations)
- *x* : Independent variables
- ϵ : Error terms
- β : Coefficients

$$y_{1} = \beta_{0} + \beta_{1}x_{11} + \beta_{2}x_{12} + \beta_{3}x_{13} + \dots + \beta_{n}x_{1n} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{21} + \beta_{2}x_{22} + \beta_{3}x_{23} + \dots + \beta_{n}x_{2n} + \epsilon_{2}$$

$$\vdots$$

$$y_{m} = \beta_{0} + \beta_{1}x_{m1} + \beta_{2}x_{m2} + \beta_{3}x_{m3} + \dots + \beta_{n}x_{mn} + \epsilon_{m}$$

ASSUMPTIONS

- There is a linear relationship between y and x
- The error term ϵ follows a normal distribution with zero mean and a standard deviation of σ
- The explanatory variables (i.e., x terms) are independent from the error term so they are also referred to as independent variables
- The error term is homoscedastic such that it has a fixed variance

MAXIMUM LIKELIHOOD ESTIMATION

- Suppose $y = f(x) + \epsilon$ is a linear model
 - $-\epsilon = y f(x) \sim N(0, \sigma)$
 - Normal dist. pdf: $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\epsilon^2}{2\sigma^2}}$
 - The likelihood for a single observation i is:

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y_i-f(x_i))^2}{2\sigma^2}}$$

The likelihood for all observations

$$L(y, x | \sigma) = \prod_{i=1}^{m} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - f(x_i))^2}{2\sigma^2}}$$

MAXIMUM LIKELIHOOD ESTIMATION

 The common practice in MLE is to transform the likelihood function to log-likelihood for exponential family functions:

$$l(y, x | \sigma) = \ln(L(y, x | \sigma)) = -m \ln(\sigma) - \frac{m}{2} \ln(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

• While fitting the coefficients for f(x), we aim to minimize the term: $\sum_{i=1}^{m} (y_i - f(x_i))^2$

Schulich School of Business York University

MATRIX FORM

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}; \quad B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}; \quad X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1n} \\ 1 & X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix}; \quad E = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix}$$

Transpose of a matrix:

$$\mathbf{E}^T = [\epsilon_1, \epsilon_2, \dots, \epsilon_m]$$

$$X^{T} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ X_{11} & X_{21} & X_{31} & \dots & X_{m1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ X_{1n} & X_{2n} & X_{3n} & \dots & X_{mn} \end{bmatrix}$$

ORDINARY LEAST SQUARES (OLS) ESTIMATION

$$Y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{vmatrix}; \quad B = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}; \quad X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1n} \\ 1 & X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix}; \quad E = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix}$$

- Y = XB + E
- Sum of square of errors:

$$E^{T}E = (Y - XB)^{T}(Y - XB) = Y^{T}Y - Y^{T}XB - (XB)^{T}Y + (XB)^{T}XB$$

$$E^{T}E = Y^{T}Y - 2Y^{T}XB + B^{T}X^{T}XB$$

$$\frac{\partial E^{T}E}{\partial B} = -2X^{T}Y + 2X^{T}XB = 0$$

$$B = (X^{T}X)^{-1}X^{T}Y$$

CONSISTENCY OF OLS ESTIMATION

- X and E should be independent
 - Error terms should be orthogonal to independent variables
 - In mathematical terms:

$$X^{T}E = 0$$

$$X^{T}(Y - XB) = 0$$

$$X^{T}Y - X^{T}XB = 0$$

$$X^{T}Y = X^{T}XB$$

$$(X^{T}X)^{-1}X^{T}Y = (X^{T}X)^{-1}X^{T}XB$$

$$B = (X^{T}X)^{-1}X^{T}Y$$

So, we reach the same result from the orthogonality condition.

ENDOGENEITY PROBLEMS

 The endogeneity problems occur when X and E are independent:

$$X^{T}E = \delta$$

$$X^{T}(Y - XB) = \delta$$

$$X^{T}Y - X^{T}XB = \delta$$

$$X^{T}Y - \delta = X^{T}XB$$

$$(X^{T}X)^{-1}(X^{T}Y - \delta) = (X^{T}X)^{-1}X^{T}XB$$

$$B = (X^{T}X)^{-1}X^{T}Y - (X^{T}X)^{-1}\delta$$

• The OLS estimation is then biased by $(X^TX)^{-1}\delta$

ENDOGENEITY PROBLEMS

- Omitted variables also cause endogeneity problems
- True model: $Y = XB + \theta Z + E$
- θ is constant. It is the coefficient of Z

• The omitted variable:
$$Z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix}$$

ENDOGENEITY PROBLEMS

$$X^{T} E = 0$$

$$X^{T} (Y - XB - \theta Z) = 0$$

$$X^{T} Y - X^{T} XB - X^{T} \theta Z = 0$$

$$X^{T} Y - X^{T} \theta Z = X^{T} XB$$

$$(X^{T} X)^{-1} (X^{T} Y - X^{T} \theta Z) = (X^{T} X)^{-1} X^{T} XB$$

$$B = (X^{T} X)^{-1} X^{T} Y - (X^{T} X)^{-1} X^{T} \theta Z$$

• The OLS estimation is biased by $(X^TX)^{-1}X^T\theta Z$

VARIANCE OF COEFFICIENTS

$$Var(B) = (X^{T}X)^{-1}X^{T}Var(E)X(X^{T}X)^{-1}$$

• Assumption: $Var(E) = \sigma^2$ such that the variance of residuals do not change for varying X values. Then,

$$Var(\mathbf{B}^T) = \sigma^2 (X^T X)^{-1}$$

This assumption is the condition of homoscedasticity.

HOMOSCEDASTICITY

HETEROSCEDASTICITY

- Assumption of Linear Regression based on OLS
 - Homescedasticity: $Var(E) = \sigma^2$
- Violated \rightarrow Heteroscedasticity : $Var(E) = \sigma^2 f(X)$

TESTING FOR HETEROSCEDASTICITY

Breusch-Pagan (BP) test

$$E^TE = AX + \Upsilon$$

- If $A \neq 0$, variance of residuals depends on X
 - Then, the model is heteroscedastic.
- BP test checks if $A \neq 0$.
 - Null hypothesis: A = 0 so the model is homoskedastic
 - If p-value is above 0,05, we cannot reject the null hypothesis and rely on OLS estimates
- In Python: statsmodels library
 - statsmodels.stats.api.breuschpagan()

AUTOCORRELATION

Standard correlation defined as

$$\rho_{zq} = \frac{Cov(z,q)}{\sigma_z \sigma_q}$$

 When we measure a parameter over time (panel data), the parameter may have an autocorrelation at different lags.

$$\hat{\rho}_{\epsilon_{i}\epsilon_{i-p}} = \frac{Cov(\epsilon_{i}, \epsilon_{i-p})}{\sigma_{\epsilon_{i}}^{2}} = \frac{\sum_{i=p+1}^{m} (\epsilon_{i}\epsilon_{i-p})}{\sum_{i=1}^{m} (\epsilon_{i}\epsilon_{i})}$$

Schulich School of Business York University

AUTOCORRELATION

- Residuals sometimes have autocorrelation
 - For example, ϵ_i may correlate with ϵ_{i-p} for some p values.
- Remember:

$$Var(B) = (X^{T}X)^{-1}X^{T}Var(E)X(X^{T}X)^{-1}$$

If there is autocorrelation,

$$Var(E) \neq \sigma^2$$

Covariance matrix of residuals:

$$Var(E) = \Psi = \sigma^{2} \begin{bmatrix} \rho_{0} & \rho_{1} & \rho_{2} & \dots & \rho_{m} \\ \rho_{1} & \rho_{0} & \rho_{1} & \dots & \rho_{m-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho_{m} & \rho_{m-1} & \rho_{m-2} & \dots & \rho_{0} \end{bmatrix}$$

GENERALIZED LEAST SQUARES

- Suppose Y = XB + E and the variance of error terms is not constant:
 - $-Var(E) = \sigma^2 \Omega$
 - $-\Omega$ is a symmetric matrix such that $\omega^T\omega=\Omega$
 - $-\omega$ is also symmetric: $\omega^T = \omega$
- The basic idea of GLS
 - Multiply both sides of the regression equation with ω^{-1}
 - Then, $Var(\omega^{-1}E) = \sigma^2 I$

GENERALIZED LEAST SQUARES

$$\omega^{-1}Y = \omega^{-1}XB + \omega^{-1}E$$

$$(\omega^{-1}E)^{T}\omega^{-1}E = (\omega^{-1}Y - \omega^{-1}XB)^{T}(\omega^{-1}Y - \omega^{-1}XB)$$

$$= Y^{T}\omega^{-1}\omega^{-1}Y - 2Y^{T}\omega^{-1}\omega^{-1}XB + B^{T}X^{T}\omega^{-1}\omega^{-1}XB$$

 Taking the derivative of the last expression and making it equal to zero, we obtain:

$$0 = -2(X^{T}\Omega^{-1}Y) + 2(X^{T}\Omega^{-1}X)B$$
$$B = (X^{T}\Omega^{-1}X)^{-1}X^{T}\Omega^{-1}Y$$

OLS VS. GLS

OLS

$$B = (X^T X)^{-1} X^T Y$$

$$Var(B) = \sigma^2 (X^T X)^{-1}$$

GLS

$$B = (X^T \Omega^{-1} X)^{-1} X^T \Omega^{-1} Y$$

$$Var(B) = \sigma^2 (X^T \Omega^{-1} X)^{-1}$$

- The statmodels library includes packages for various statistical models (<u>www.statsmodels.org</u>)
- A non-exhaustive list
 - OLS
 - GLS
 - Time series
 - Discrete choice models
 - State space models

Generating the variables and constructing the model

$$y_i = 3 + 4x_i + \epsilon_i$$

```
import numpy as np
import pandas as pd
import matplotlib as mp
import statsmodels.api as sm
```

```
mu, sigma = 0, 5 # mean and standard deviation of normal distribution for the error term x = np.random.uniform(40,80,100) epsilon = np.random.normal(mu,sigma,100) y = 3 + 4*x + epsilon
```



```
model_reg = sm.OLS(y,x).fit()
model_reg.summary()
```

OLS Regression Results

coef std err

Dep. Variable:	у	R-squared (uncentered):	1.000
Model:	OLS	Adj. R-squared (uncentered):	1.000
Method:	Least Squares	F-statistic:	2.157e+05
Date:	Sun, 25 Sep 2022	Prob (F-statistic):	4.45e-167
Time:	10:31:54	Log-Likelihood:	-308.07
No. Observations:	100	AIC:	618.1
Df Residuals:	99	BIC:	620.7
Df Model:	1		
Covariance Type:	nonrobust		

t P>|t| [0.025 0.975]

No intercept

x1	4.0379	0.00	9 464	4.475	0.000	4.021	4.05	5
	Omnibu	s:	0.299	Dι	ırbin-Wa	tson:	1.771	
Pro	b(Omnibus	s):	0.861	Jarq	ue-Bera	(JB):	0.102	
	Ske	w:	-0.072		Prol	o(JB):	0.950	
	Kurtosi	s:	3.058		Cond	l. No.	1.00	

Python works with the matrix principle

$$X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1n} \\ 1 & X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix}$$

Remember the column with ones


```
x_updated = sm.add_constant(x)
x updated
array([[ 1.
                    , 55.69095773],
                     59.9960433 ],
                    , 62.60411587],
                    , 46.2488649 ],
                    , 55.61509709],
                    , 79.92455652],
                    , 44.61432769],
                    , 42.81059865],
                    , 58.88386557],
                    , 69.55063262],
                    , 62.87108642],
                    , 75.12183828],
                    , 64.29944042],
                     49.85570667],
        1.
        1.
                    , 40.89602389],
        [ 1.
                    , 77.76653301],
```



```
x_updated = sm.add_constant(x)
model_updated = sm.OLS(y,x_updated).fit()
model_updated.summary()
```

OLS Regression Results

De	Dep. Variable:			у	R-s	squared:	0.987
	Model:		OLS		Adj. R-squared:		0.987
	Method:		Least Squares		F-:	7643.	
	Date:		Sun, 25 Sep 2022 Prob (F-s		tatistic):	8.45e-95	
Time:		ne:	10:3	38:20	Log-Lik	-307.73	
No. Observations:		ns:	100 AIC:		619.5		
Df Residuals:		als:	98 BIC		BIC:	624.7	
Df Model:				1			
Covar	iance Ty	pe:	nonrobust				
	coef std e		t	P> t	[0.025	0.975]	
const	2.2556	2.788	0.809	0.420	-3.277	7.788	
x1	4.0015	0.046	87.425	0.000	3.911	4.092	

Let's first make the error term autocorrelated

```
# We now generate autocorrelated error terms
epsilon[0] = np.random.normal(mu,sigma,1)
for i in range(0,99):
    epsilon[i+1]=0.4*epsilon[i]+0.6*np.random.normal(mu,sigma,1)
```

```
y = 3 + 4*x + epsilon
```

Each error term has an autocorrelation with the previous one

What if we use OLS instead of GLS

```
x_updated = sm.add_constant(x)
model_OLS = sm.OLS(y,x_updated).fit()
model_OLS.summary()
```

OLS Regression Results

De	Dep. Variable:			У	R-squared:		0.994
	Model:		OLS		Adj. R-squared:		0.994
	Method:		Least Squares		F-statistic:		1.668e+04
	Date: S		un, 25 Sep 2022 Prob (F-statistic		atistic):	2.92e-111	
	Time:		10:52	2:07	Log-Likelihood:		-268.82
No. Observations:		ns:	100 AIC		AIC:	541.6	
Di	Df Residuals:		98		BIC:	546.8	
	Df Model:		1				
Covar	iance Ty _l	pe:	nonrob	oust			
				- "			
	coef	std err	t	P> t	[0.025	0.975]	
const	3.1394	1.889	1.662	0.100	-0.609	6.888	
x1	4.0055	0.031	129.146	0.000	3.944	4.067	

The covariance matrix of residuals:

$$\Psi = \sigma^{2} \begin{bmatrix} \rho_{0} & \rho_{1} & \rho_{2} & \dots & \rho_{m} \\ \rho_{1} & \rho_{0} & \rho_{1} & \dots & \rho_{m-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho_{m} & \rho_{m-1} & \rho_{m-2} & \dots & \rho_{0} \end{bmatrix}$$

- It is symmetric and has a special structure
- Its structure is the same as Toeplitz matrix
- Python needs the second part as input:

$$\begin{bmatrix} \rho_0 & \rho_1 & \rho_2 & & \rho_m \\ \rho_1 & \rho_0 & \rho_1 & & \rho_{m-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho_m & \rho_{m-1} & \rho_{m-2} & \cdots & \rho_0 \end{bmatrix}$$


```
rho = 0.4
cov_matrix = sigma**2*toeplitz(np.append([1,rho],np.zeros(98)))
sm.GLS(y,x_updated,cov_matrix).fit().summary()
```

GLS Regression Results

De	Dep. Variable:			у	R-squared:		0.997
	Model:		GLS		Adj. R-s	quared:	0.997
	Method:		Least Squares		F-s	3.188e+04	
	Date: S		un, 25 Sep 2022 Prob (F-statistic):		atistic):	5.51e-125	
Time:		ne:	11:12	2:50	Log-Likelihood:		-253.63
No. Observations:		ns:	100			AIC:	511.3
Df Residuals:		als:	98			BIC:	516.5
Df Model:		lel:		1			
Covar	iance Ty _l	pe:	nonrob	oust			
	coef std err		t	P> t	[0.025	0.975]	
const	5.1123	1.409	3.628	0.000	2.316	7.909	
x1	3.9723	0.022	178.538	0.000	3.928	4.016	

GLS VS OLS

```
rho = 0.4
cov_matrix = sigma**2*toeplitz(np.append([1,rho],np.zeros(98)))
sm.GLS(y,x_updated,cov_matrix).fit().summary()
```

x_updated = sm.add_constant(x) model_OLS = sm.OLS(y,x_updated).fit() model_OLS.summary()

GLS Regression Results

De	Dep. Variable:			у	R-so	quared:	0.997
	Model:		GLS		Adj. R-squared:		0.997
	Method:		_east Squa	ares	F-st	tatistic:	3.188e+04
	Date: S		ın, 25 Sep 2022 Prob (F-statistic):		5.51e-125		
	Time:		11:12	2:50	Log-Likelihood:		-253.63
No. Observations:		ns:		100	O AIC:		511.3
Di	Df Residuals:			98	BIC:		516.5
Df Model:		lel:		1			
Covar	iance Ty _l	pe:	nonrob	oust			
	coef	std err	t	P> t	[0.025	0.975]	
const	5.1123	1.409	3.628	0.000	2.316	7.909	
x1	3.9723	0.022	178.538	0.000	3.928	4.016	

OLS Regression Results

Dep. Variable:	у	R-squared:	0.994
Model:	OLS	Adj. R-squared:	0.994
Method:	Least Squares	F-statistic:	1.668e+04
Date:	Sun, 25 Sep 2022	Prob (F-statistic):	2.92e-111
Time:	10:52:07	Log-Likelihood:	-268.82
No. Observations:	100	AIC:	541.6
Df Residuals:	98	BIC:	546.8
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	3.1394	1.889	1.662	0.100	-0.609	6.888
x1	4.0055	0.031	129.146	0.000	3.944	4.067