Problem 1

Solution

(a) Because $\forall i, f_i$ is postive non-decreasing, $\prod_{i=1}^{k'} f_i$, $\forall 1 \leq k' \leq k$ is also non-decreasing. Thus,

$$\mathbb{E}\left[\prod_{i=1}^k f_i(\mathbf{X})\right] \leq \mathbb{E}\left[\prod_{i=1}^{k-1} f_i(\mathbf{X})\right] \mathbb{E}\left[f_k(\mathbf{X})\right] \leq \cdots \leq \prod_{i=1}^k \mathbb{E}\left[f_i(\mathbf{X})\right].$$

(b) NA r.v.s $\{X_1, \ldots, X_n\}$ may not be independent, but if we can prove that Chernoff's trick also holds for NA r.v.s, then Hoeffding's inequality holds too. Using the results in Problem 2.(a).ii, $\{X_1 - \mathbb{E}[X_1], \ldots, X_n - \mathbb{E}[X_n]\}$ are also NA. For any a > 0 and $\theta > 0$, we have

$$P(\sum_{i=1}^{n} X_i - \mathbb{E}\left[X_i\right] \ge a) \le \frac{\mathbb{E}\left[\prod_{i=1}^{n} e^{\theta(X_i - \mathbb{E}\left[X_i\right])}\right]}{e^{\theta a}} \le \frac{\prod_{i=1}^{n} \mathbb{E}\left[e^{\theta(X_i - \mathbb{E}\left[X_i\right])}\right]}{e^{\theta a}},$$

where the first derivation uses Markov's inequality, and the last derivation uses the result in (a). Suppose $X_i \in [a_i, b_i]$, then we have

$$P(\sum_{i=1}^{n} X_i - \mathbb{E}[X_i] \ge a) \le \exp\left(\prod_{i=1}^{n} \frac{(b_i - a_i)^2}{8} \theta^2 - \theta a\right) \le \exp\left(\frac{-2x^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$

Problem 2

Solution

(a) (i) Here, we only consider increasing functions. Proof for decreasing functions is similar. If f(X, Y) is an increasing function of (X, Y), then given Y = y, f(X, y) is an increasing function of X. Also, for any $y_1 \leq y_2$, we have $\forall X$, $f(X, y_1) \leq f(X, y_2)$ and thus $\mathbb{E}[f(X, y_1)] \leq \mathbb{E}[f(X, y_2)]$. Therefore, as a function of Y, $\mathbb{E}[f(X, Y) \mid Y]$ is also increasing. Thus, for any increasing function f and g,

$$\begin{split} \mathbb{E}\left[f(X,\,Y)\cdot g(X,\,Y)\right] &= \mathbb{E}\left[\mathbb{E}\left[f(X,\,Y)\cdot g(X,\,Y)\mid Y\right]\right] \\ &\leq \mathbb{E}\left[\mathbb{E}\left[f(X,\,Y)\mid Y\right]\cdot \mathbb{E}\left[g(X,\,Y)\mid Y\right]\right] \leq \mathbb{E}\left[\mathbb{E}\left[f(X,\,Y)\mid Y\right]\right]\cdot \mathbb{E}\left[\mathbb{E}\left[g(X,\,Y)\mid Y\right]\right] \\ &= \mathbb{E}\left[f(X,\,Y)\right]\cdot \mathbb{E}\left[g(X,\,Y)\mid Y\right] \end{split}$$

- (ii) For any two monotone functions g and h depending on disjoint subsets of Y, $g(Y) = g(\{Y_i, i \in \mathcal{I}\}) = g(\{f_i(X), i \in \mathcal{I}\})$ and $h(Y) = h(\{f_i(X), i \in \mathcal{I}\})$. Since $\{f_i(X), i \in [k]\}$ depends on disjoint subsets of X, g and h also depend on disjoint subsets of X. Also, since monotone functions are closed under composition, both g and h are still monotone (either increasing or decreasing) functions of X depending disjoint subsets of X. Thus, $\mathbb{E}[g(Y) \cdot h(Y)] \leq \mathbb{E}[g(Y)] \cdot \mathbb{E}[h(Y)]$, and thus Y^k are NA.
- (b) Let $I_{j,i}$ be an indicator random variable to show if the j-th ball falls into the i-th bin. Then, for any $j \in [m]$, $\sum_{i=1}^{n} I_{j,i} = 1$. Next, we will show $I = \{I_{j,i}, j \in [m]\}$ are NA. For any increasing functions f and g, denoting $\tilde{f}(I)$ and $\tilde{g}(I)$ as $f(I) f(\mathbf{0})$ and $g(I) g(\mathbf{0})$ respectively, then we have $\tilde{f}(I) \geq 0$ and $\tilde{g}(I) \geq 0$. Since only one element of I can be 1, and f and g depend on disjoint subsets of I, at least one of $\tilde{f}(I)$ and $\tilde{g}(I)$ is zero, so $\mathbb{E}\left[\tilde{f}(I) \cdot \tilde{g}(I)\right] = 0$. Thus, LHS = 1

$$\mathbb{E}\left[f(I)\cdot g(I)\right] = \mathbb{E}\left[\left(\tilde{f}(I) + f(\mathbf{0})\right)\cdot \left(\tilde{g}(I) + g(\mathbf{0})\right)\right] = g(\mathbf{0})\mathbb{E}\left[\tilde{f}(I)\right] + f(\mathbf{0})\mathbb{E}\left[\tilde{g}(I)\right] + f(\mathbf{0})g(\mathbf{0}),$$
 and $RHS = (\mathbb{E}\left[\tilde{f}(I)\right] + f(\mathbf{0}))(\mathbb{E}\left[\tilde{g}(I)\right] + g(\mathbf{0})) \geq LHS.$ Thus, $\{I_{j,i}, j \in [m]\}$ are NA.

Using the results in (a.i), we have $\{I_{j,i}, \text{ for any } j \in [m] \text{ and } i \in [n]\}$ are NA. Using the results in (a.ii), we have $X_i = \sum_{j=1}^m I_{j,i}$ are NA.

(c) Let Y_i be an indicator random variable to indicate if the *i*-th bin is non-empty. We have $Y_i \sim Ber(1-(\frac{n-1}{n})^m)$, and $\mathbb{E}[Y_i] = 1-(\frac{n-1}{n})^m$. Using the results in (a.ii), $Y_i = \min\{1, X_i\}$ is NA. Using the results in Problem 1 (b), we have $\forall o > 0$,

$$P\left(O - \mathbb{E}\left[O\right] = \sum_{i=1}^{n} (Y_i - \mathbb{E}\left[Y_i\right]) \ge o\right) \le \exp\left(\sum_{i=1}^{n} \frac{(b_i - a_i)^2}{8} \theta^2 - \theta o\right) = \exp\left(\frac{n}{8} \theta^2 - \theta o\right)$$

$$\le e^{\frac{-2o^2}{n}}$$

Problem 3

Solution

Let $Z_i \in \{1, 2, 3, ..., n\}$ be the index of the bin into which the *i*-th ball is put. Let f be a function such that $f(Z_1, Z_2, Z_3, ..., Z_m)$ is the number of non-empty bins. Obviously, Z_i 's are independent, and $|f(Z_1, ..., Z_i, ..., Z_m) - f(Z_1, ..., Z_i, ..., Z_m)| < 1$. Thus, McDiarmid's inequality applys: $\forall o > 0$,

$$P(O - \mathbb{E}[O] = f(Z_1, Z_2, Z_3, \dots, Z_m) - \mathbb{E}[f(Z_1, Z_2, Z_3, \dots, Z_m)] \ge o) \le e^{\frac{-2o^2}{n}}$$

which is the same as the Hoeffding bound.

Problem 4

Solution

(a) We have $\mathbb{E}\left[\exp(-\theta X)\right] \leq \exp(\nu^2 \theta^2/2)$. Thus for any t > 0 and $\theta > 0$,

$$\begin{split} P(|X| > t) &= P(X > t) + P(-X > t) = P(e^{\theta X} > e^{\theta t}) + P(e^{-\theta X} > e^{\theta t}) \\ &\leq \frac{\mathbb{E}\left[e^{\theta X}\right]}{e^{\theta t}} + \frac{\mathbb{E}\left[e^{-\theta X}\right]}{e^{\theta t}} \leq 2\exp(\nu^2\theta^2/2 - \theta t) \leq 2\exp(-\frac{t^2}{2\nu^2}) \end{split}$$

(b) Let the CDF of |X| be F. Then, F(x) = 0, $\forall x \leq 0$. Because $g(x) = x^k$ is an increasing function, using the Integration-by-parts Theorem ¹, we have

$$\mathbb{E}\left[|X|^{k}\right] = \int_{0}^{\infty} g'(x)P(|X| > x)dx \le 2\int_{0}^{\infty} kx^{k-1} \exp(-\frac{x^{2}}{2\nu^{2}})dx.$$

Subtitute $\frac{x^2}{2\nu^2}$ with y, and we have

$$\mathbb{E}\left[|X|^{k}\right] \leq 2k \int_{0}^{\infty} \nu^{2} (2\nu^{2}y)^{k/2-1} \exp(-y) dy = k(2\nu^{2})^{k/2} \cdot \Gamma(\frac{k}{2}).$$

¹See Example 7 in https://www.math.arizona.edu/~jwatkins/g-expectation.pdf

Problem 5

Solution

First, we partation the indices into K index group such that $G_k = \{j : X_j \in A_k\}$. We also have for any $f \in F$ and $j_1, j_2 \in G_i$, $f(X_{j_1}) = f(X_{j_2})$. Thus,

$$R_n(F(X^n)) = \mathbb{E}\left[\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i f(X_i) \right| \right] = \mathbb{E}\left[\sup_{f \in F} \left| \frac{1}{n} \sum_{k=1}^K \sum_{i \in G_k} \sigma_i f(X_i) \right| \right] = \mathbb{E}\left[\frac{1}{n} \sum_{k=1}^K \left| \sum_{i \in G_k} \sigma_i \right| \right]$$

$$\leq \mathbb{E}\left[\frac{1}{n} \sum_{k=1}^K \sqrt{\sum_{i \in G_k} \sigma_i^2} \right] = \mathbb{E}\left[\frac{1}{n} \sum_{k=1}^K \sqrt{n_k} \right] = \frac{1}{n} \sum_{k=1}^K \sqrt{n_k}$$

Problem 6

Solution

For n = 3, we can choose $z_2 = z_1 + 0.55$ and $z_3 = z_2 + 0.55$. It is easy to verify z_1 , z_2 , and z_3 can be shattered by F. When n = 4, no matter what $z_1 < z_2 < z_3 < z_4$ are, they cannot be assigned values 1, 0, 1, 0. Thus VC(F) = 3.

Problem 7

Solution

For *n* points, we can choose $z_i = 2^i \pi$, i = 1, 2, 3, ..., n. Then z^n can be shattered by *F*. Given a valuation $b_1, ..., b_n$, we can choose $\theta = 2^{-n-1} + \sum_{i=1}^n 2^{-i} b_i$. Then, $\theta z_i = \pi(b_i + \sum_{j < i} 2^{i-j} b_j + \sum_{j > i}^n 2^{i-j} b_j + 2^{i-n-1})$, where $\sum_{j < i} 2^{i-j} b_j$ is an even number, and $\sum_{j > i}^n 2^{i-j} b_j + 2^{i-n-1} \in (0,1)$. Thus, $\mathbf{1}_{\{\sin(\theta z_i > 0)\}} = b_i$.