Hardness HW 9

TAMREF

tamref.yun@snu.ac.kr

Due: December 15, 2022

•

Rules

- You can just link your former post instead of the solution. Otherwise, it is recommended to write the proof in your language.
- You are qualified if you **read** all the problems, and answered **at least 2** of them.

Homework 9 Project-Hardness

Question 1. Counting Bipartite Matching is Hard

Imitating the proof of $\sharp BPM \leq_{p.o.} \sharp BMM$, show that counting the number of bipartite matching is $\sharp \mathbb{P}$ —complete.

Question 2. Another proof for hardness of #CLIQUE

Construct a parsimonious reduction $TH - POS - 2SAT \rightarrow CLIQUE$. This gives an alternative proof about $\sharp \mathbb{P}$ -completeness of $\sharp CLIQUE$.

Question 3. UP-hardness of Permanent modulo k

In this problem, we investigate how Valiant(1979) could separate the complexity of $per(M) \mod 2^d$ and other $per(M) \mod k$ for $k \neq 2^d$.

ð

Definition. A decision problem $A = \{x : \exists^p y \text{ s.t. } (x,y) \in B\} \in \mathbb{NP} \text{ is called } \mathbb{UP} \text{ if } x \in A \text{ implies that there is$ **only one** $} y \text{ such that } (x,y) \in B.$

Given the lemmas below, define the reduction for \mathbb{UP} and deduce that computing $\operatorname{per}(M) \mod k$ is \mathbb{UP} -hard. According to complexityzoo, it is not known whether \mathbb{UP} possess a complete problem.

(a) **(Valiant 1979, Lemma 3.1)** Given a CNF formula F, there is a function $f \in \mathbb{FP}$ such that f(F) is a $\{-1, 0, 1, 2, 3\}$ -matrix such that

$$per(f(F)) = 4^{t(F)} \cdot \sharp SAT(F)$$

- t(F): twice the number of occurrences of literals the number of clauses in F. The only important fact is that t(F) is a positive integer.
- (b) (Valiant 1979, Lemma 3.2) For any $A \in \mathbb{NP}$, there is a parsimonious reduction $A \leq_p 3SAT$.

Homework 9 Project-Hardness

Question 4. Computing volume of a polytope is $\sharp P$ -hard

Here, we define a **polytope** as an intersection of half-planes in n-dimension.

0

Definition. Given an *n*-element POSET (P, <), **order polytope** \mathcal{O}_P of P is given by the sub-polytope of $C = [0, 1]^n$, defined by

$$\mathcal{O}_P := C \cap \bigcap_{p < q} \{ (x_1, \cdots, x_n) : x_p < x_q \}$$

It is known that computing the number of **linear extensions (or, topological sorts)** of **POSETs (or, DAGs)** is $\sharp P$ —complete. (Brightwell & Winkler, 1991). Assuming the previous fact, deduce that computing volume of the polytope is $\sharp P$ -hard, even for order polytopes.