TOR, OTR & BITCOIN

Π. Αγγελάτος, Δ. Ζήνδρος

Στόχος της ώρας

- Ανώνυμο browsing με Tor
- Onion routing
- Ασφαλές chat με OTR
- Forward secrecy
- Deniability
- Το κρυπτονόμισμα bitcoin

Όσο ξεκινάμε...

- Κατεβάστε το OTR για το σύστημά σας:
 - Αν έχετε Linux ή Windows, Pidgin & OTR:
 - https://www.pidgin.im/
 - https://otr.cypherpunks.ca
 - Αν έχετε Mac, Adium:
 - https://adium.im/
- Εγκαταστήστε τα

Ας κατεβάσουμε το Tor

https://www.torproject.org/

Αποκάλυψη ταυτότητας

- Από το ΙΡ μπορεί να βρεθούν...
 - Η θέση μας στον πλανήτη
 - Ο παροχέας Internet που χρησιμοποιούμε
 - Το πραγματικό μας όνομα (με ένταλμα)
- Κάθε ιστοσελίδα που επισκεπτόμαστε βλέπει το ΙΡ
 - ...και ενδεχομένως το καταγράφει

Demo αποκάλυψης IP

http://wtfismyip.com/

Tor

- Ένα σύστημα που μας επιτρέπει να είμαστε ανώνυμοι
- Το ΙΡ που φαίνεται είναι διαφορετικό από το πραγματικό

Tor Browser Bundle

- Ακόμα και μέσω Tor o browser μας μπορεί να ταυτοποιηθεί
 - https://panopticlick.eff.org/
 - Από τα διάφορα features που έχετε ενεργοποιημένα
 - Javascript, Flash, Java, Silverlight
 - Όνομα του browser
 - Λειτουργικό σύστημα
 - Εκδόσεις
- Γι' αυτό χρησιμοποιούμε το Tor Browser Bundle
 - Ίδιος browser για όλους
 - Εγκατεστημένο HTTPS everywhere
 - Απενεργοποιήστε την Javascript!

Onion routing

- Εξασφαλίζει την ανωνυμία
- Ανάμεσα στον υπολογιστή μας και τον server υπάρχουν 3 tor nodes
- Κάθε node ξέρει μόνο για τους άμεσους γείτονές του
- Για κάθε σύνδεση, ο υπολογιστής μας διαλέγει τυχαία 3 άλλους υπολογιστές που τρέχουν το tor
- Τα δεδομένα περνούν από αυτούς

Tor nodes

- Κάθε node έχει ένα public key
- Κάνουμε encrypt τα δεδομένα μας με το public key του καθενός από τα 3 nodes αλλεπάλληλα

Exit & Relay nodes

- Είναι τα nodes από τα οποία βγαίνουν τελικά τα δεδόμένα
 - Μπορεί να δει/αλλάξει τα δεδομένα μας αν δεν χρησιμοποιούμε HTTPS
- Ένα node μπορεί να γίνει exit node εθελοντικά αν το επιθυμεί ο χρήστης
 - Απενεργοποιημένο by default
 - Ενδεχομένως να είστε νομικά υπεύθυνοι για το traffic που βγαίνει από τη σύνδεσή σας
- Ένα node μπορεί να γίνει relay node εθελοντικά
 - Παρακαλούμε να γίνετε
 - Δεν υπάρχει νομικό πρόβλημα

Demo ανωνυμίας

http://wtfismyip.com με Tor

Tor: Όχι μόνο για browsing...

- Οποιαδήποτε υπηρεσία μπορεί να περάσει μέσω Tor
- Λειτουργεί ως SOCKS proxy

Application (Firefox)
Onion routing (Tor)
Transport (TCP)
Internet (IP)

Προσοχή!

- Πολλές εφαρμογές δεν δουλεύουν σωστά μέσω Tor
- π.χ. Torrents
- Μερικές φορές το ΙΡ μας φαίνεται με τρόπους που δεν περιμένουμε
 - DNS leaks: Η εφαρμογή προσπαθεί να κάνει resolve ένα IP και στέλνει το DNS ερώτημα εκτός Tor
- Tails: Διανομή Linux που φροντίζει όλα να περνούν από Tor

COMMENTS

FBI agents tracked Harvard bomb threats despite Tor

By Russell Brandom on December 18, 2013 12:55 pm ☐ Email ☐ @russellbrandom

DON'T MISS STORIES FOLLOW THE VERGE 8+ 1 Like 323k

Follow 386K followers

iTunes Festival comes to US for the first time at SXSW

HTC's 2014 One leaks out in first press image

A North Dakota town is the most expensive place to rent an apartment in the **United States**

UK court says nine-hour detention of Greenwald's partner was lawful

Lose yourself to dance with this 'Happy' and 'Get Lucky' mashup

GETS ARRESTED

memegenerator.net

Hidden services

- Εκτός από τον client, κρύβεται και ο server
- Δεν είναι προσβάσιμα στο κανονικό Internet
 - Clearnet: Προσβάσιμα μέσω ενός κανονικού browser
 - Darknet ή Deep web: Πρόσβαση μόνο μέσω Tor
- 6 Tor relay hops
- Τα δεδομένα δεν βγαίνουν ποτέ από το Tor δίκτυο
- Αντίστοιχη διαδικασία με πριν, αλλά χωρίς exit node

OTR: Off-the-record

Συμβατικό chat

- Παραδοσιακά συστήματα chat
 - Facebook
 - Skype
 - Google Talk
 - MSN

Συμβατικό chat

- Η Alice κρυπτογραφεί με το δημόσιο κλειδί του Facebook
- Το Facebook αποκρυπτογραφεί με το ιδιωτικό κλειδί του
- Το Facebook κρυπτογραφεί με το δημόσιο κλειδί του Bob
- Ο Bob αποκρυπτογραφεί με το ιδιωτικό κλειδί του
- Όμως η ίδια η υπηρεσία βλέπει καθαρό κείμενο

Συμβατικό chat

- Το Facebook διαβάζει το chat μας!
- Είναι στην πράξη «νόμιμος» man-in-the-middle
- Υπηρεσία βλέπει τα δεδομένα μας
- Τα αποθηκεύει
- Μπορεί να τα αποκαλύψει αν υπάρχει ένταλμα
- Μπορεί να μας στείλει ό,τι θέλει

βλέπει τα δεδομένα μας

Κρυπτογράφηση end-to-end

- Η Alice κρυπτογραφεί δεδομένα για τον Bob
- Το Facebook βλέπει μόνο κρυπτογραφημένα δεδομένα

Κρυπτογράφηση

- Κάθε OTR client έχει ένα ζεύγος κλειδιών
- Ασύμμετρη κρυπτογραφία
- Κλειδιά DSA
- Έχουμε ένα αποτύπωμα ανά λογαριασμό ανά client

Κρυπτογράφηση και πιστοποίηση

- Τα μηνύματα κρυπτογραφούνται
- ... αλλά υπογράφονται και ψηφιακά
- Μπορούμε να είμαστε σίγουροι ότι ο συνομιλιτής μας έγραψε αυτά που έγραψε

Perfect Forward Secrecy

- Για κάθε μήνυμα χρησιμοποιείται ένα τυχαίο συμμετρικό κλειδί
- Το κλειδί αυτό δεν στέλνεται ποτέ στο δίκτυο
 - Diffie-Hellman
 - ..αλλά και οι 2 συνομιλητές καταλήγουν στο ίδιο μυστικό κλειδί
- Αν ποτέ κατασχεθεί κάποιο ή και τα 2 DSA κλειδιά, δεν μπορούν να διαβαστούν παλαιότερα μηνύματα ακόμα κι αν έχουν υποκλαπεί!

Deniability

- Ο Bob ξέρει ότι τα μηνύματα που λαμβάνει τα έχει γράψει η Alice
- Ο Bob δεν μπορεί να αποδείξει σε τρίτους μετέπειτα ότι τα έγραψε η Alice

Επιβεβαίωση αποτυπώματος ΟΤR

- Πρέπει να επιβεβαιώσουμε ότι το κλειδί που μας παρουσιάζεται ανήκει στον άνθρωπο που πιστεύουμε
 - Παρόμοια με την GPG υπογραφή κλειδιού
- Διάφοροι τρόποι επιβεβαίωσης
- Τυπικά ζητάμε από τον ιδιοκτήτη του OTR κλειδιού να το υπογράψει με το GPG κλειδί του
 - http://petrosagg.com/otr.txt
 - https://dionyziz.com/otr

Επιβεβαίωση αποτυπώματος ΟΤR

- Επιβεβαιώνουμε ότι το OTR αποτύπωμα που φαίνεται στο πρόγραμμα chat ταιριάζει με το GPG υπογεγραμμένο OTR αποτύπωμα
- Επιβεβαιώνουμε την ψηφιακή υπογραφή GPG
- Επιβεβαιώνουμε ότι το GPG κλειδί είναι αυτό το οποίο ήδη εμπιστευόμαστε

OTR demo

BITCOIN

Όσο συνεχίζουμε...

- Κατεβάστε & εγκαταστήστε το multibit
- https://multibit.org/

Tι είναι το bitcoin?

- Ψηφιακό νόμισμα
- Για αληθινές αγορές
 - Online
 - Από κοντά
- Αντικαταστάτης (?) του € και του \$

Ιστορία

- Wei Dai, 1998: "Bmoney" (cypherpunks)
- Nick Szabo, 2005: "Bit gold"
- Satoshi Nakamoto, 2008: "<u>Bitcoin: A</u>
 Peer-to-Peer Electronic Cash System"
- 2009: bitcoind open source σε C++

Ποιος είναι ο Satoshi Nakamoto?

- Ψευδώνυμος δημιουργός του bitcoin
- Ομάδα ή άτομο;
- Έγραψε το bitcoin paper
- Έφτιαξε την πρώτη υλοποίηση του bitcoin
- Συμμετείχε στο IRC σε συζητήσεις σχετικές με bitcoin
- Έγραφε στο bitcointalk forum
- Κατεύθυνε το bitcoin ώστε να γίνει αυτό που είναι σήμερα
- Υποστήριζε ότι ήταν από την Ιαπωνία
 - ...αλλά δεν έγραψε ποτέ λέξη Ιαπωνικών
- Εξαφανίστηκε μυστηριωδώς ξαφνικά
 - ...και δεν ξανακούσαμε από αυτόν

Ποιος είναι ο Satoshi ρε γαμώτο?

- Ψευδώνυμος δημιουργός του bitcoin
- Ομάδα ή άτομο;
- Έγραψε το bitcoin paper
- Έφτιαξε την πρώτη υλοποίηση του bitcoin
- Συμμετείχε στο IRC σε συζητήσεις σχετικές με bitcoin
- Έγραφε στο bitcointalk forum
- Κατεύθυνε το bitcoin ώστε να γίνει αυτό που είναι σήμερα
- Υποστήριζε ότι ήταν από την Ιαπωνία
 - ...αλλά δεν έγραψε ποτέ λέξη Ιαπωνικών
- Εξαφανίστηκε μυστηριωδώς ξαφνικά
 - ...και δεν ξανακούσαμε από αυτόν

Ποιος είναι ο Satoshi ρε γαμώτο?

- Θεωρίες συνωμοσίας...
- Είναι ένας άνθρωπος ή ομάδα;
- O Nick Szabo?
- O Wei Dai?
- Or Vili Lehdonvirta & Michael Clear?
- Oı Neal King, Vladimir Oksman & Charles Bry?
- O Shinichi Mochizuki?
- O Jed McCaleb?
- O Dread Pirate Roberts?
- Απ' ό,τι φαίνεται, έχει κρύψει την ταυτότητά του καλά.

Πρόβλημα: Online πληρωμές

- Απαιτείται έμπιστη αρχή
- Πληρωμές με πιστωτικές κάρτες
- π.χ. Visa, MasterCard
- Ή υπηρεσιών π.χ. **PayPal κ.ό.κ.**
- Δεν υπάρχει ανωνυμία
- Κόστος για τη χρήση των υπηρεσιών
- Δεν υποστηρίζονται πολύ μικρά ποσά

Πρόβλημα: Χρυσός

- Έχει αντικειμενική αξία
- Αλλά...
- Είναι δύσχρηστος
- Αργές πληρωμές
- Δύσκολη μεταφορά
- Κλοπές

Πρόβλημα

- € και \$ ελέγχονται **κεντρικά**
- Κεντρική τράπεζα τυπώνει χρήματα
- Βλέπε Federal Reserve Bank (ιδιωτική εταιρεία)
- Κεντρικά ελεγχόμενος πληθωρισμός

Παράδειγμα:

- Υπάρχουν 100€ σε κυκλοφορία
- Έχεις 1€ στην κατοχή σου
- Τυπώνονται άλλα 100€
- Το 1€ έχει πλέον τη μισή αξία

Πόση εμπιστοσύνη έχουμε ότι θα γίνει σωστά;

Λύση

- Ψηφιακό νόμισμα bitcoin
- Peer-to-peer δίκτυο

Πλεονεκτήματα

- Γρήγορες πληρωμές
 - 1 second για μεταφορά χρημάτων
 - 10 λεπτά για κρυπτογραφική πιστοποίηση
- Απουσία κεντρικής αρχής
- Αξία νομίσματος προκύπτει από την ελεύθερη αγορά
- Ασφάλεια συναλλαγών
- Ανωνυμία
- Αδυναμία παραχάραξης

Ιδέα!

- Σύγχρονα νομίσματα \$ και €
- Είναι εικονικά δεν έχουν πραγματική αξία
- Μπορεί να είναι οποιοδήποτε αντικείμενο
- Αρκεί να μην αντιγράφεται αυθαίρετα
- Συμφωνούμε: Το τάδε **χαρτί** είναι **νόμισμα**

Γιατί να στηριζόμαστε σε κεντρικές αρχές;

...και όχι στην **κρυπτογραφία**;

Peer-to-peer δίκτυο bitcoin

Πιστοποίηση

- Κάθε **κόμβος** έχει ένα **δημόσιο/ιδιωτικό κλειδί**
- Δημόσιο κλειδί γίνεται broadcast στο δίκτυο
- Ιδιωτικό κλειδί μένει στον κόμβο

Hash functions

- One-way συναρτήσεις
- H(x) = y
- Εύκολο να υπολογιστεί το y γνωρίζοντας το x
- Δύσκολο να υπολογιστεί το χ γνωρίζοντας το γ

$$\cdot x \rightarrow y$$

Collision resistance

- Δεδομένου y, δεν μπορεί να βρεθεί x τέτοιο ώστε:
 - H(x) = y
- Δεν μπορούν να βρεθούν α, β τέτοια ώστε:
 - $H(\alpha) = H(\beta)$
- Δεδομένων d και c, δεν μπορεί να βρεθεί n τέτοιο ώστε:
 - H(c || n) < d
 - Για αρκετά μικρά d
- Ένα hash αντιστοιχεί κατά πάσα πιθανότητα σε ένα αρχικό μήνυμα

Έχει 12mBTC

Έχει 0BTC

 $m \leftarrow$ "Στέλνω 12mBTC στην Alice" $h \leftarrow H(m)$ s $\leftarrow sign_{Bs}(h)$

S

Έχει 0ΒΤС

verify_{Bp}(m, s) Έχει 12mBTC

Bob

Εγκυρότητα

• Πώς ξέρουμε ότι το νόμισμα προήλθε από **έγκυρη πηγή** και δεν είναι αυτοδημιούργητο;

Ποιος έχει τι

- Το δίκτυο αποθηκεύει συλλογικά ποιος έχει πόσα χρήματα
- Όλοι ξέρουν πόσα χρήματα έχει ο Bob
- Όλοι ξέρουν πόσα χρήματα έχει η Alice
- Συνεπώς ο Βοb δεν μπορεί να στείλει χρήματα που δεν έχει
- Για να δώσω χρήματα πρέπει να τα έχω **πάρει**

Broadcasting

- Κάθε συναλλαγή **δημοσιεύεται** στο δίκτυο
- Όταν στέλνω ή λαμβάνω χρήματα, το λέω στους κόμβους που είμαι συνδεδεμένος

Ανωνυμία

- Για **κάθε συναλλαγή** οι συμμετέχοντες μπορούν να χρησιμοποιήσουν ένα **νέο ιδιωτικό κλειδί**
- Οι κόμβοι **δεν έχουν ονόματα** μόνο κλειδιά

Ανωνυμία

Είναι άραγε ο ίδιος άνθρωπος;

Χρησιμοποιεί το κλειδί με το οποίο **πήρε** τα χρήματα Βρ, Βs

m1 ← "12mBTC προς Ap" h1 ← H(m1) Δημιουργεί ένα **νέο** κλειδί Γι' αυτή τη συναλλαγή Cp, Cs

 $ver_{Ap}(m2, s2)$

 $s1 \leftarrow sign_{Bs}(h1)$

Δημιουργεί ένα **νέο** κλειδί Γι' αυτή τη συναλλαγή Αρ, As

 $ver_{Bp}(m1, s1)$

m2 ← "12mBTC προς PC" h2 ← H(m2)

Νόμισμα

 (ουδ.) το μέγεθος εκείνο βάσει του οποίου υπολογίζονται ή εκφράζονται οικονομικές αξίες.

• (ουδ.) μία αλυσίδα ψηφιακών υπογραφών.

Νόμισμα = Αλυσίδα υπογραφών

```
• • •
```

```
coin1 \leftarrow sign<sub>s0</sub>( H( coin0 || P1 )) coin2 \leftarrow sign<sub>s1</sub>( H( coin1 || P2 )) coin3 \leftarrow sign<sub>s2</sub>( H( coin2 || P3 ))
```

• • •


```
"hash": "96f5e5394726ca5...",
  "ver":1,
  "in": [{
      "prev_out":{
         "hash": "87750ccbebf71042d...",
         "n":0
      "scriptSig": "30440397d0c2... 49d0c04a7e52..."
  }],
  "out":[{
      "value":"0.71430000",
      "scriptPubKey":"OP_DUP OP_HASH160
99fa78c49d99f58c8dd... OP_EQUALVERIFY
OP_CHECKSIG"
  }]
```


Διπλό ξόδεμα

- Ανεπιθύμητο
- Πώς μπορεί να αποτραπεί;

Έγκυρες συναλλαγές

Συναλλαγές που δεν έχουν γίνει >= δύο φορές;

Αυτό μου επιτρέπει να ακυρώσω μία συναλλαγή που δεν θέλω!

Το βέλος του χρόνου

- Έγκυρη είναι η πρώτη συναλλαγή που έγινε από αυτό τον κρίκο της αλυσίδας
- Μετέπειτα συναλλαγές είναι άκυρες

Το βέλος του χρόνου

- Πότε έγινε μία συναλλαγή;
- Δεν μπορώ να στηριχθώ στην υπογραφή
- Η ημερομηνία μπορεί να είναι ψεύτικη

Blocks

- Οι πιο πρόσφατες συναλλαγές περιλαμβάνονται σε ένα **block**
- Υπολογίζεται **το hash** κάθε block
- Κάθε νέο block περιέχει το **hash** του προηγούμενου
- Κάθε block δημοσιεύεται
- Κάθε επόμενο block είναι στο μέλλον σε σχέση με προηγούμενο
 - Αλλιώς δεν θα μπορούσε να ξέρει το hash του

Ποιος θα δημιουργήσει τα blocks?

- Θα μπορούσε να υπάρχει μία έμπιστη αρχή
 - Δε μας αρέσουν οι έμπιστες αρχές 🙂
 - Δεν είναι αποκεντρωμένο

Αν αφήσουμε τον καθένα να το κάνει μόνος του...

- Θα μπορούσε κάποιος να φτιάξει τεχνητά blocks
- Και να συνδέσει το καθένα με το προηγούμενό του
- Έτσι θα μπορούσε και πάλι να διπλοξοδέψει

Proof-of-work

- Τα blocks υπολογίζονται στα nodes και γίνονται broadcast
- Εισάγουμε μία **τεχνητή δυσκολία** δημιουργίας block
- Έτσι ένα block είναι δύσκολο να δημιουργηθεί


```
nonce ← 000000
while H(block || nonce ) > 100000:
    nonce ← nonce + 1
broadcast(block)

Difficulty
```

Απόδειξη εργασίας

- Κάθε block πιστοποιεί τις συναλλαγές που περιέχει
- Δημιουργείται μία αλυσίδα από blocks
- Όλα τα έγκυρα blocks κληρωνομούν από το genesis

Απόδειξη εργασίας

- Όλοι οι κόμβοι προσπαθούν να βρουν το block
- Ο πρώτος κόμβος που θα το βρει το δημοσιεύει
- Το επόμενο block συνεχίζει από εκεί

Πιστοποίηση συναλλαγών

- Η συναλλαγή πιστοποιείται όταν μπει στο επόμενο block
- Γίνεται εκθετικά δύσκολο να δημιουργηθούν ψεύτικα blocks αργότερα
- Κάθε επόμενο block διασφαλίζει όλα τα προηγούμενα
- Αλλαγή σε κάποια συναλλαγή σημαίνει αλλαγή σε όλα τα επόμενα blocks

Πιστοποίηση συναλλαγών

- Κακόβουλος κόμβος χρειάζεται την πλειοψηφία της CPU του δικτύου για να παρέμβει
- Η παρέμβαση γίνεται εκθετικά δύσκολη όσο περνάει ο χρόνος μετά από μία συναλλαγή

Εξόρυξη bitcoin

- Δημιουργία block = Κέρδη σε bitcoin για το δημιουργό
- Ελεγχόμενος πληθωρισμός από το δίκτυο
- Σήμερα: 25BTC / block

Difficulty

- Υπολογίζεται συλλογικά από το δίκτυο
- Αλλάζει κάθε βδομάδα
- Προκύπτει από τη συνολική CPU δύναμη του δικτύου
- Ορίζεται έτσι ώστε κάθε block να παίρνει 10 λεπτά
- Αυτή τη στιγμή: 3,129,573,175

Bitcoin network: total computation speed

Total Bitcoins over time

Τεχνικές λεπτομέρειες

- Ψηφιακές υπογραφές
 - Παραλλαγή σχήματος Elgamal (DSA) διακριτού λογαρίθμου
 - Με χρήση ελλειπτικών καμπυλών
- Hash function
 - SHA256(SHA256(_))
- Συνάρτηση εργασίας
 - SHA256(_)

To bitcoin σήμερα

17 Φεβρουαρίου 2012:

- 167,000 blocks
- 1BTC = 3.27€
- 8.3M BTC σε κυκλοφορία
- 27,000,000€ σε κυκλοφορία
- Συχνότητα hashing δικτύου = 9THz

9 Απριλίου 2013:

• 1BTC = 73€

19 Φεβρουαρίου 2014:

- 286,000 blocks
- 1BTC = 450€
- 12.4M BTC σε κυκλοφορία
- 5,600,000,000€ σε κυκλοφορία
- Συχνότητα hashing δικτύου = 30,000Thz

Εναλλακτικά κρυπτονομίσματα

- Litecoin
 - Scrypt αντί για SHA
- Dogecoin
- Namecoin
 - Decentralized DNS
- Twister
 - Decentralized Twitter
- Bitmessage
 - Decentralized SMS
- Zerocoin
 - Για ανωνυμία

Μάθαμε

- Ανώνυμο browsing με Tor
- Onion routing
- Ασφαλές chat με OTR
- Forward secrecy
- Deniability
- Το κρυπτονόμισμα bitcoin

Συγχαρητήρια!

- Μπορείτε να μπαίνετε στο Internet **ανώνυμα**
- Μπορείτε να κάνετε chat **με ασφάλεια**
- Μπορείτε να κάνετε αγορές με bitcoin

Αυτές οι διαφάνειες είναι: CreativeCommons 3.0 Attribution bitcoin.org
Twitter: @dionyziz, @petrosagg