Topic	Paper	Sum Up
Quantum Threat to Classic	Quantum computing RSA encryption: a threat and a solution (FMTAD, 2023)	FMTAD highlights quantum's capability with ~372 qubits and suggests NFC/AES hardwarebased mitigations
	Quantum Computing: The Demise of Traditional Cryptography (Pathum, 2024)	Pathum provides a broader overview—how quantum breaks long-standing encryption and why it demands new defenses.
	Polynomial-Time Algorithms for Prime Factorization (Shor, 1997)	Shor introduced a quantum method to factor integers and compute discrete logarithms in polynomial time, undermining RSA and ECC foundations . This remains the fundamental threat driver.
Encryption	The Impact of Quantum Computing (Mavroeidis et al., 2018)	Mavroeidis et al. overview quantum's impact on current systems
	The Future of Cybersecurity in the Age of Quantum Computers(Raheman, 2022)	Highlights real-world breaks of PQC schemes (including Rainbow and another NIST candidate) and proposes "zero-vulnerability computing" (ZVC) as an architectural defense beyond cryptography.
	What Is Quantum Computing? IBM (Shneider et al. 2024)	Introductory explainer on quantum computing principles and their emerging real-world implications
NIST process & post-quantum readiness	Post-Quantum Cryptography Standardization (NIST CSRC, 2017)	These NIST CSRC reports define how to evaluate future PQC:
	Security Evaluation Criteria & CostCriteriaSecurity & Algorithm & Implementation Characteristics (NIST CSRC 2025)	security strength, implementation cost, and algorithmic properties for candidates in standardization
	Post-Quantum Cryptography: Digital Signature Schemes CSRC NIST(Nist CSRC, 2022)	Official NIST overview page outlining the post-quantum digital signature standardization effort, including updates on Dilithium, Falcon, SPHINCS+, etc.
	Digital Signature Standard (DSS) FIPS 186-5 (NIST, 2023)	Details current DSS e.g. RSA/ECDSA
Digital Signature Standards	Module-Lattice-Based Digital Signature Standard FIPS 204 (2024)	Introduce lattice-based (likely CRYSTALS-Dilithium) and stateless hash-based (SPHINCS+) schemes

		respectively as NIST's first DOC
	Stateless Hash-Based Digital Signature Standard FIPS 205 (2024)	respectively, as NIST's first PQC signature standards
PQC algorithm profiles	Post-quantum cryptography Algorithm's standardization (Kumar, 2022)	Kumar surveys PQC families (lattice, code-based, isogeny, hash, multivariate)
	Post Quantum CryptographyReview (Bavdekar et al., 2023)	Bavdekar et al. review PQC techniques, challenges, and NIST process
	Challenges of PQ Digital Signing in Real Applications (Tan et al., 2022)	Surveys PQ signature adoption across 14 sectors, assessing suitability of six NIST-pq3 candidates, and identifies remaining deployment gaps.
	Post-Quantum Digital Signatures in Transport Documents (Moskvin, 2022)	Discusses PQ digital signatures' role in transport/logistics e-docs, stressing urgent need for standardized quantum-resistant schemes.
	CSRC Presentation: Navigating Floating-Point Challenges in Falcon(NIST CSRC 2024)	Discusses floating-point concerns in Falcon's keygen, with mitigation strategies for robust FIPS-compliant implementation.
	BUFFing signature schemespost-quantum signatures (Cremers et al., 2021)	Cremers et al. analyze security properties of PQC signatures beyond unforgeability
	Drop-In-Replaceability Analysis (TSP et al., 2023)	TSP et al. compare NIST PQC signatures (Kyber, Dilithium, Falcon, SPHINCS+) in performance and integration ability, as well as security
	PerformanceAndroid Email Plug-in (Mandev & Kavun, 2023)	Tests PQC signatures (via liboqs) in Android email, finding Dilithium fast in key operations
PQC Signature Schemes Analysis and/or Comparison	Security Comparisons of PQC Signatures (Raavi et al., 2021)	Compares Dilithium, Falcon, and Rainbow using DW-cost metrics and analyses in TLS/TCP contexts—offers design trade-offs between security and implementation load
	Applicability in Constrained Environments (Vidakovic & Milicevic, 2023)	Evaluates Dilithium, Falcon, SPHINCS+ across IoT/smart cards/blockchain—finds Dilithium leads in low-power, Falcon excels in verification speed, SPHINCS+ strongest security at cost of efficiency
	Metric Application on Dilithium/Falcon (Rautell et al., 2022)	Assesses cryptographic metrics on lattice-signatures and suggests improvements for more

		comprehensive evaluation during PQC standardization.
	Performance Analysis for Wireless Sensor Networks (Senor et al., 2024)	Simulates large WSN operations using Dilithium, Falcon, SPHINCS+, Kyber, NTRU, Saber—Falcon+Kyber is best for scalability, though combinations vary per context.
	Falcon / CRYSTALS / Rainbow / SPHINCS+ spec sites (and docs)	The PQC finalist sites (Falcon, Rainbow, CRYSTALS, SPHINCS+) document the designs of NIST finalist schemes
	Mathematical Perspective on PQC (Richter et al., 2022)	Offers algebraic overview of NIST Round 3 PQC finalists—Kyber, NTRU, Saber, McEliece, Dilithium, Falcon, Rainbow—targeted at mathematics researchers.
	Performance Analysis of Post-Quantum Cryptography Algorithms for Digital Signature(Opiłka et al. 2024)	Benchmarks Dilithium, Falcon, SPHINCS+ (via liboqs) against RSA, focusing on keygen, signing, verify—useful for 5G/6G service selection.
PQC Schemes Optimizations	CUSPX: Efficient GPU Implementations of SPHINCS+ (Wang et al., 2024)	Wang et al. accelerate SPHINCS+ by 5 100× on RTX 3090 GPUs by achieving novel ways of parallelism
	Efficient Hardware RNS Decomposition for Falcon (Coulon et al., 2023)	Coulon et al. propose FPGA-based residue decomposition blocks speeding Falcon key-gen by ~3.9× over software.
	Accelerating Falcon on ARMv8 (Y. Kim et al., 2022)	Optimizes Falcon's polynomial FFT/NTT via ARMv8 NEON (a kind of parallel processing unit) for Cortex-A series, yielding 15–69% performance improvements across key generation, signing, and verifying.
	Winograd for NTTFPGA (Mandal & Basu Roy, 2024)	Applies high-radix Winograd NTT to PQC—radix-16 for Dilithium, radix-8 for Falcon, mixed-radix for Kyber—resulting in lower latency and fewer modular multipliers. Confirmed via FPGA implementation
	KiD Framework: Unified NTT for Kyber & Dilithium (Mandal & Basu Roy, 2023)	FPGA design distributing radix-2 butterfly units, shared memory pipeline, supporting both Kyber and Dilithium—outperforming standalone implementations.
	Verifiable Random Subsets for SPHINCS+ (Yehia et al., 2021)	Proposes a verifiable ORS mechanism improving SPHINCS+

	performance (~27% fewer hashes and provides a 82.9% reduction in computation costs), which may help close the performance gap for hash-based PQC Proposes an FPGA-based Keccak
A low-cost configurable hash computing circuit for PQC (Xi et al., 2023)	hash unit shared across Kyber and Dilithium, saving ≈40% LUTs and 14% FFs, and clocked at 391 MHz.
Optimizing Dilithium Implementation with AVX2/-512 (Runqing et al., 2024)	Enhances Dilithium performance by ~23%, 17%, and 14% for keygen, sign, verify under AVX2/AVX512 via parallel NTT optimizations and advanced sampling/packing.
Efficient Error Detection for Falcon & Saber hardware (Sarker et al., 2022)	Introduces error-detection schemes in FPGA for Falcon's Gaussian sampler and Saber KEM, achieving ~99.9975% coverage with ≤23% resource overhead.
CRYSTALS-Dilithium Engine on GPGPU (Wright et al., 2022)	Demonstrates GPU-accelerated Dilithium (via RBC + PUFs) achieving 70–90× speedups over CPU implementations across security levels
Software/Hardware Co-Design of Dilithium (Zhou et al., 2021)	FPGA co-design (Karatsuba modular mult, NTT twiddle generator) yields 11× and 7× faster signing/verification than C on soft-core and 51%/31% boosts on Cortex-A9.
Rejection Sampling Revisited – Dilithium Parameters (Zheng et al., 2021)	Proposes tighter rejection- sampling bounds to avoid entropy trade-offs in PQC—boosts efficiency by ~60% and signature size by ~14% without reducing security.
Handling Vinegar Variables to Shorten Rainbow Keys (Zambonin et al., 2019)	Optimizes Rainbow keys by reusing vinegar variables, reducing private key size by ~85% while preserving security, and enabling 3.5× total key reduction.
Side Channel Resistant Sphincs+(Fluhrer et al., 2024)	Proposes an SLH-DSA-like signer for SPHINCS+ resilient to power/EM side-channel attacks; incurs ~1.7× slowdown
On Protecting SPHINCS+ Against Fault Attacks(Genêt et al., 2023)	Analyzes vulnerabilities in non-top subtree signing due to fault injection; proposes and evaluates countermeasures

	Improving Speed of Dilithium's Signing Procedure(Ravi et al. 2020) Revisiting the Constant-Sum Winternitz One-Time Signature with Applications to SPHINCS+ and XMSS (Zhang et al. 2023)	Proposes early-rejection optimizations to significantly speed up Dilithium signing while preserving correctness. Improves WOTS checksum efficiency; proposes methods potentially useful for SPHINCS+ and XMSS implementations
PQC Schemes attacks	Side-Channel Attack on CRYSTALS-Dilithium (Chen et al., 2021)	Chen et al. show a CPA side- channel extract secret bits from Dilithium with ~157 power traces, improving attack runtime 7.8×
	Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification(Viera et al. 2024)	Identifies and models fault attacks on Dilithium's verification and proposes practical countermeasures.
	Breaking Rainbow Takes a Weekend on a Laptop(Ward. 2022)	Demonstrates a practical break of the Rainbow signature scheme in ~weekend on consumer hardware, showing its vulnerability despite NIST candidacy.
	Practical Public Template Attacks on CRYSTALS-Dilithium (Qiao et al., 2023)	Introduces a side-channel Public Template Attack on both unprotected and masked Dilithium, recovering private keys within hours on real hardware with 10k-680k traces—a leap ahead of prior methods
	In-depth Correlation Power Analysis Dilithium (Wang et al., 2024)	Applies CPA and advanced POI/ITR techniques to FPGA implementations of Dilithium, using ≥70k traces to recover partial keys; optimization reduced required traces by up to 25%
	Novel Power Analysis Attack against Dilithium (Y. Liu et al., 2024)	Introduces two efficient CPA variants—optimized fast two-stage and single-bit—that outperform 2021 schemes by up to 367×, further compromising Dilithium on ARM implementations.
	Signature Correction Attack on Dilithium Signature Scheme(Islam, 2022)	Includes RSA-based fault attacks via Rowhammer, signature correction, threshold signature vulnerabilities, and fault injection on verification—demonstrating broad practical threats.
	Improved Power Analysis Attacks on Falcon (Zhang et al., 2023)	Analyzes Falcon's Gaussian samplers; uses covariance-based CPA on both base and sign-flip

		leaks to recover Falcon-512 keys with ≤220k traces (~30 min),
		outperforming prior attacks.
		Demonstrates a novel fault injection on WOTS that bypasses
	Faulting Winternitz One-Time Signatures to Forge LMS, XMSS, or SPHINCS+ (Wagner et al., 2023)	its checksum, enabling existential or universal forgeries across LMS/XMSS/SPHINCS+—affecting both signing and verification. Includes theoretical analysis and
		practical countermeasures
	Number "Not Used" Once – Practical Fault Attack (Ravi et al., 2019)	Injecting faults on nonce usage in LWE-based schemes (NewHope, Kyber, Frodo, Dilithium) on ARM Cortex-M4 causes nonce reuse, enabling key & message recovery with ≤10 faults and 100% success
	Correction Fault Attacks on Randomized Dilithium (Krahmer et al., 2024)	Studies vulnerabilities in hedged (randomized) Dilithium to fault correction attacks, filling gaps overlooked since deterministic mode exploits.
	Single-Trace Side-Channel Attacks on Dilithium (Wang et al., 2023)	Demonstrates a power analysis side-channel attack on Dilithium-2's secret key unpacking. With deep learning and minimal traces (even a single trace with 9% success), the secret key can be partially or fully recovered, especially when aided by public key compression. Highlights critical risks of single-trace attacks on ARM Cortex-M4 implementations.
	Efficient Side-channel Attack on Dilithium (Qiao, Liu et al., 2024)	Shows that with just two signatures, private key disclosure in 5 mins is possible via regression/CNN-based profiled attacks on ARM Cortex.
	On Protecting SPHINCS+ Against Fault Attacks(Genêt et al., 2023)	Analyzes vulnerabilities in non-top subtree signing due to fault injection; proposes and evaluates countermeasures
	Breaking Category Five SPHINCS+ with SHA-256(Perlner et al., 2022)	Demonstrates a forgery attack against SHA-256–based SPHINCS+ (Cat-5) reducing classical security by ≈40 bits
	SHIFT SNARE: Uncovering Secret Keys in FALCON via Single-Trace Analysis(Qiu et al., 2025)	Recovers full FALCON-512 secret key from a single power trace targeting a 63-bit right shift; ~99.9999% key recovery success

		Licos ENA logico de from CCT
	FALCON Down: Breaking FALCON Signature Scheme through Side-Channel Attacks(Karabulut et al., 2021)	Uses EM leakage from FFT floating-point multiplications to extract full secret key in ~10k traces on Cortex-M4
	Attack Analysis on Two-party Signature and Threshold Signature Based on Dilithium (Wu et al. 2023)	Shows that two-party and threshold protocols using Dilithium are insecure—private key and intermediate values can be exposed with nearly 100% success.
	Exploiting Determinism in Lattice- based Signatures: Practical Fault Attacks on pqm4 Implementations of NIST candidates (Ravi et al. 2019)	Shows real-world fault attacks on deterministic Dilithium implementations on Cortex-M4; leaks secret key components and suggests mitigation.
	On the Security of Lattice-Based Fiat-Shamir Signatures in the Presence of Randomness Leakage(Liu et al. 2021)	Shows that even minimal randomness leakage per signature enables full key recovery (e.g., Dilithium-III in ~10 s), validated on Dilithium and qTESLA.
PQC Schemes Use-Cases	Lattice-based Access Authentication for Quantum Networks (Wang & Long, 2024)	Proposes an authentication scheme for quantum networks combining Dilithium signatures and Kyber KEM—achieving mutual authentication, confidentiality, integrity.
	Post-quantum secure boot using hash-based signatures (Wagner et al., 2024)	Designs a hybrid software—hardware secure boot leveraging stateful (LMS/XMSS) or stateless (SPHINCS+) hash-based signatures, comparing implementations to classical schemes.
	Challenges of PQ Digital Signing in Real Applications (Tan et al., 2022)	Surveys PQ signature adoption across 14 sectors, assessing suitability of six NIST-pq3 candidates, and identifies remaining deployment gaps.
	Application and Implementation of Multivariate Public Key Cryptosystem in Blockchain(Shen et al. 2019)	Demonstrates integrating Rainbow signatures on a private Ethereum blockchain and compares their efficiency against ECDSA.