EECE488: Analog CMOS Integrated Circuit Design

Set 4

Current Mirrors

Shahriar Mirabbasi
Department of Electrical and Computer Engineering
University of British Columbia
shahriar@ece.ubc.ca

Applications of Current Sources

Simple Resistive Biasing for Current Source

$$I_{OUT} \approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} \left(\frac{R_2}{R_2 + R_1} V_{DD} - V_{TH} \right)^2$$

Problems

- Output current depends on:
 - Supply
 - Process
 - Temperature
- What if the bias voltage is independent of supply voltage?
- Is there a way of generating reliable currents?

Basic Idea

Typically we assume that one precisely defined current source is available and other current sources copy their current from this precise source.

I_{out} is a function of gate-source voltage

Basic Idea

This structure is called current mirror

Question

 What happens if the two transistors in the basic current mirror have different sizes?

Example

Assuming all the transistors are in saturation region, find I_{out}:

Current Mirrors: Amplifier Bias Example

Board Notes

Current Mirrors: Signal Amplification Example

Find the small signal voltage gain of the following circuit.

Effect of Channel Length Modulation

Board Notes

Board Notes

Cascode Current Mirror Biasing

Cascode Current Mirror Biasing

Current Mirror Biasing

Basic Circuit to Generate Supply Independent Current

Supply Independent Current

Board Notes

Supply Independent Current

Start-up Problem

Start-up Problem

$$V_{\mathit{TH}\,1} + V_{\mathit{TH}\,5} + \left| V_{\mathit{TH}\,3} \right| < V_{\mathit{DD}} \qquad and \qquad V_{\mathit{GS}\,1} + V_{\mathit{TH}\,5} + \left| V_{\mathit{GS}\,3} \right| > V_{\mathit{DD}}$$

Board Notes

Active Current Mirrors

Active Current Mirrors in Differential to Single-Ended Amplifiers

Differential to Single-Ended Amplifiers

Calculation of G_m

$$I_{D1} = I_{D3} = I_{D4} = g_{m1,2}V_{in}/2$$
 $I_{D2} = -g_{m1,2}V_{in}/2$

$$I_{out} = I_{D2} - I_{D4} = -g_{m1,2}V_{in} , \Rightarrow G_m = g_{m1,2}$$

Small-Signal Gain

$$A_v \approx g_{m\,1,2}(r_{o\,2} \parallel r_{o\,4})$$

Common Mode Characteristics

Common Mode

Common Mode

$$CMRR = \frac{A_{DM}}{A_{CM}}$$

$$= g_{m1,2}(r_{o1,2} \parallel r_{o3,4}) \frac{g_{m3,4}(1 + 2g_{m1,2}R_{SS})}{g_{m1,2}}$$

$$= g_{m3,4}(r_{o1,2} \parallel r_{o3,4})(1 + 2g_{m1,2}R_{SS})$$