

Qiskit Finance Tutorial

Yuma Nakamura Qiskit Advocate

Last updated: 2021-04-09 Quantum Tokyo

1. Option Pricingとは?

2. qGANによる確率分布の再現

3. Payoff関数のエンコード

4. まとめ

Option Pricingとは?

Optionとは満期に株を権利行使価格で買う/売る権利(義務ではない)

権利行使価格: K

満期のスポット価格: ST

このときPayoff関数は

$$\max\{S_T - K, 0\}$$

つまり買い(Call Option)では

- ・スポット価格が権利行使価格より高い場合、利益が発生
- ・スポット価格が権利行使価格より低い場合、損益なし(買う義務はないので)

この権利をいくらで取引するかを決める問題がOption Pricing

Option Pricingとは? --例題--

Question:

\$10で株AのCall Option(満期 2021年10月、権利行使価格\$100)を買ったとする

シナリオ1

2021年10月の株Aの価格が\$130になった

→利益/損失は?

シナリオ2

2021年10月の株Aの価格が\$80になった

→利益/損失は?

^{*}ここでは利息は考えていない。実際は今買った場合の利息分を利益から差引く。 利息分の計算は古典計算で十分なのでチュートリアル・原著論文では割愛されている

Option Pricingとは? --例題--

Question:

\$10で株AのCall Option(満期 2021年10月、権利行使価格\$100)を買ったとする

シナリオ1

2021年10月の株Aの価格が\$130になった

→利益/損失は?

シナリオ2

2021年10月の株Aの価格が\$80になった

→利益/損失は?

max(\$130 - \$100,0) - \$10= \$20 \$20の利益 max(\$80 - \$100, 0) - \$10= -\$10 \$10の損失

^{*}ここでは利息は考えていない。実際は今買った場合の利息分を利益から差引く。 利息分の計算は古典計算で十分なのでチュートリアル・原著論文では割愛されている

Option Pricingとは?

満期のスポット価格の確率分布が与えられたとき、最適なOption価格は?

スポット価格の分布は対数正規分布で近似できる (Black-Scholes model)

→Payoff関数(右図)の期待値を価格の確率分布(左図)をもとに積分計算

Option Pricing計算フロー

(1) 確率分布 p_i を量子状態にエンコード

$$|\psi_1\rangle = \sum_{i=0}^{2^n-1} \sqrt{p_i} |i\rangle_n$$

(2) Payoff関数 f_i を量子状態にエンコード

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1 - f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

(3) Payoffの期待値として振幅 $\sum_{i=0}^{2^n-1} \left(\sqrt{f_i}\sqrt{p_i}\right)^2$ を計算

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1 - f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

Option Pricing計算フロー

(1) 確率分布 p_i を量子状態にエンコード

$$|\psi_1\rangle = \sum_{i=0}^{2^n-1} \sqrt{p_i} |i\rangle_n$$

本日のメイン

Quantum GAN (Machine Learning)

(2) Payoff関数 f_i を量子状態にエンコード

Controlled-Ry

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1-f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

(3) Payoffの期待値として振幅 $\sum_{i=0}^{2^n-1} \left(\sqrt{f_i}\sqrt{p_i}\right)^2$ を計算

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1 - f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

Amplitude Estimation (詳しくは田中さんが後日発表)

Quantum GAN 価格確率分布の量子状態作成

量子敵対的生成ネットワークなるものを使って確率分布を作成する

www.nature.com/npjqi

ARTICLE OPEN

0.05

Quantum Generative Adversarial Networks for learning

and loading random distributions

Christa Zoufal (6)^{1,2*}, Aurélien Lucchi² and Stefan Woerner (6)

ref: C. Zoufal et al., 2019

変分量子回路(Variational Quantum Circuit; VQC)

所望の確率分布を実現するようにパラメータ $heta_{ij}$ を決定

Quantum GAN 価格確率分布の量子状態作成

量子部分のGeneratorと古典部分のDiscriminatorを競合させながら学習をする

www.nature.com/npjqi

ARTICLE OPEN

Quantum Generative Adversarial Networks for learning

and loading random distributions

Christa Zoufal (D^{1,2*}, Aurélien Lucchi² and Stefan Woerner (D¹

ref: C. Zoufal et al., 2019

Classical Discriminator

PYTORCH

入力がダミーの確率分布か 本来の確率分布かを判定

競合させながら学習することで 高度なダミーの確率分布を生成

価格の確率分布は制御Ryゲートを使うことで系統的にエンコードできるが $O(2^n)$ のゲートが必要 qGAN を使うと $O(\mathit{poly}(n))$ のゲートで実装可能

系統的アプローチ 1/3

確率分布を2分割に集約して再現

ref: https://qiskit.org/documentation/locale/ja JP/tutorials/finance/10 qgan option pricing.html

価格の確率分布は制御Ryゲートを使うことで系統的にエンコードできるが $O(2^n)$ のゲートが必要 qGANを使うとO(poly(n))のゲートで実装可能

系統的アプローチ 2/3

確率分布を4分割に集約し再現

$$|\psi_1\rangle = \cos\left(\frac{\theta_0}{2}\right)|0\rangle\left(\cos\left(\frac{\theta_1}{2}\right)|0\rangle + \sin\left(\frac{\theta_1}{2}\right)|1\rangle\right) + \sin\left(\frac{\theta_0}{2}\right)|1\rangle\left(\cos\left(\frac{\theta_2}{2}\right)|0\rangle + \sin\left(\frac{\theta_2}{2}\right)|1\rangle\right)$$

ref: https://qiskit.org/documentation/locale/ja-JP/tutorials/finance/10-ggan-option-pricing.html

価格の確率分布は制御Ryゲートを使うことで系統的にエンコードできるが $O(2^n)$ のゲートが必要 qGANを使うとO(poly(n))のゲートで実装可能

系統的アプローチ 3/3

確率分布を8分割に集約し再現

$$\theta_6 = 2\arccos\left(\sqrt{p_{100}/p_{11}}\right)$$

$$|\psi_1\rangle = \cos\left(\frac{\theta_0}{2}\right)\cos\left(\frac{\theta_1}{2}\right)|00\rangle\left(\cos\left(\frac{\theta_3}{2}\right)|0\rangle + \sin\left(\frac{\theta_3}{2}\right)|1\rangle\right) + \cos\left(\frac{\theta_0}{2}\right)\sin\left(\frac{\theta_1}{2}\right)|01\rangle\left(\cos\left(\frac{\theta_4}{2}\right)|0\rangle + \sin\left(\frac{\theta_4}{2}\right)|1\rangle\right)$$

$$+\sin\left(\frac{\theta_0}{2}\right)\cos\left(\frac{\theta_2}{2}\right)|10\rangle\left(\cos\left(\frac{\theta_5}{2}\right)|0\rangle+\sin\left(\frac{\theta_5}{2}\right)|1\rangle\right)+\sin\left(\frac{\theta_0}{2}\right)\sin\left(\frac{\theta_2}{2}\right)|11\rangle\left(\cos\left(\frac{\theta_6}{2}\right)|0\rangle+\sin\left(\frac{\theta_6}{2}\right)|1\rangle\right)$$

ref: https://qiskit.org/documentation/locale/ja-JP/tutorials/finance/10-ggan-option-pricing.html

価格の確率分布は制御Ryゲートを使うことで系統的にエンコードできるが $O(2^n)$ のゲートが必要 qGANを使うとO(poly(n))のゲートで実装可能

ref: https://qiskit.org/documentation/locale/ja JP/tutorials/finance/10 qgan option pricing.html

qGanのアーキテクチャー

- (1) Q-Generatorで確率分布を出力(shots数=batch size)
- (2) 本来の確率分布とQ-Generatorが作る確率分布を区別できるようにDiscriminatorを訓練

最適化関数:
$$L_D(D_{\phi}, G_{\theta}) = \frac{1}{m} \sum_{l=1}^{m} [\log D_{\phi}(\mathbf{x}^l) + \log(1 - D_{\phi}(G_{\theta}(\mathbf{z}^l)))]$$

(3) Discriminatorがダミーの確率分布を正しいと判定するようにQ-Generatorを訓練 最適化関数: $L_G(\phi, \theta) = -\frac{1}{m} \sum_{l=1}^m [\log(D_{\phi}(G_{\theta}(z^l)))]$ D_{ϕ} : Discriminatorの分類結果 x: 本来の確率分布からの サンプリング度数分布

 $G_{ heta}(\mathbf{z})$: Generatorによる度数分布

m: Batchサイズ

qGanのアーキテクチャー - Discriminatorが使う正解データ

目的の確率分布からサンプリング

サンプリング例: [1,2, 1, 0, 0, 1, 2, 3,]

~500 samples

Batch*毎の度数分布を予測の特徴量としてDiscriminatorで学習

Prob	00	01	10	11
batch_1	0.13	0.45	0.31	0.11
batch_2	0.15	0.45	0.32	0.08
batch_3	0.00	0.43	0.42	0.15
batch_4	0.12	0.40	0.35	0.13
batch_5	0.05	0.37	0.42	0.15
batch_6	0.03	0.41	0.38	0.17

*batch size =100

qGanのアーキテクチャー

- (1) Q-Generatorで確率分布を出力(shots数=batch size)
- (2) 本来の確率分布とQ-Generatorが作る確率分布を区別できるようにDiscriminatorを訓練

最適化関数:
$$L_D(D_{\phi}, G_{\theta}) = \frac{1}{m} \sum_{l=1}^{m} [\log D_{\phi}(\mathbf{x}^l) + \log(1 - D_{\phi}(G_{\theta}(\mathbf{z}^l)))]$$

(3) Discriminatorがダミーの確率分布を正しいと判定するようにQ-Generatorを訓練 最適化関数: $L_G(\phi, \theta) = -\frac{1}{m} \sum_{r=1}^m \left[\log \left(D_{\phi} \left(G_{\theta}(z^r) \right) \right) \right]$ D_{ϕ} : Discriminatorの分類結果 x: 本来の確率分布からの サンプリング度数分布

 $G_{ heta}(\mathbf{z})$: Generatorによる度数分布

m: Batchサイズ

再現度合いの指標

相対エントロピーによって本来の確率分布と生成された確率分布の差異を定量化

相対エントロピー $D_{\mathrm{KL}}(P\|Q) = \sum_{j} p_{j} \log rac{p_{j}}{q_{j}}.$

 p_j : 生成された確率分布

 q_i :本来の確率分布

Probability	00	01	10	11
Generated	0.04	0.43	0.42	0.10
Original	0.08	0.42	0.37	0.13

$$D_{KL} = 0.04 \log \frac{0.04}{0.08} + 0.43 \log \frac{0.43}{0.42} + 0.42 \log \frac{0.42}{0.37} + 0.10 \log \frac{0.10}{0.13} = 0.02$$

小さい値になるほど類似

変分量子回路Tips

- ・繰り返し数kを増やすと性能向上する傾向がある
- ・初期化する分布が結果に大きく影響(正規分布が◎)

Table 1. Benchmarking the qGAN training.							
Data	Initialization	k	μ_{KS}	σ_{KS}	n≤b	μ_{RE}	σ_{RE}
Log-normal	Uniform	1	0.0522	0.0214	9	0.0454	0.0856
		2	0.0699	0.0204	7	0.0739	0.0510
		3	0.0576	0.0206	9	0.0309	0.0206
	Normal	1	0.1301	0.1016	5	0.1379	0.1449
		2	0.1380	0.0347	1	0.1283	0.0716
		3	0.0810	0.0491	7	0.0435	0.0560
	Random	1	0.0821	0.0466	7	0.0916	0.0678
		2	0.0780	0.0337	6	0.0639	0.0463
		3	0.0541	0.0174	10	0.0436	0.0456
Triangular	Uniform	1	0.0880	0.0632	6	0.0624	0.0535
		2	0.0336	0.0174	10	0.0091	0.0042
		3	0.0695	0.1028	9	0.0760	0.1929
	Normal	1	0.0288	0.0106	10	0.0038	0.0048
		2	0.0484	0.0424	9	0.0210	0.0315
		3	0.0251	0.0067	10	0.0033	0.0038
	Random	1	0.0843	0.0635	7	0.1050	0.1387
		2	0.0538	0.0294	9	0.0387	0.0486
		3	0.0438	0.0163	10	0.0201	0.0194
Bimodal	Uniform	1	0.1288	0.0259	0	0.3254	0.0146
		2	0.0358	0.0206	10	0.0192	0.0252
		3	0.0278	0.0172	10	0.0127	0.0040
	Normal	1	0.0509	0.0162	9	0.3417	0.0031
		2	0.0406	0.0135	10	0.0114	0.0094
		3	0.0374	0.0067	10	0.0018	0.0041
	Random	1	0.2432	0.0537	0	0.5813	0.2541
		2	0.0279	0.0078	10	0.0088	0.0060
		3	0.0318	0.0133	10	0.0070	0.0069

QGANの変分量子回路

対数正規分布を再現するための初期分布を一様分布/正規分布/ランダムを比較

Fig. 4 Simulation training. The figure illustrates the PDFs corresponding to $|g_{\theta}\rangle$ trained on samples from a log-normal distribution using a uniformly (**a**), randomly (**b**), and normally (**c**) initialized quantum generator. Furthermore, the convergence of the relative entropy for the various initializations over 2000 training epochs is presented (**d**).

QGANの変分量子回路

正規分布を初期分布として対数正規分布/三角分布/双峰分布を再現

Fig. 3 Benchmarking results for qGAN training. Log-normal target distribution with normal initialization and a depth 2 generator (a, b), triangular target distribution with random initialization and a depth 2 generator (c, d), and bimodal target distribution with uniform initialization and a depth 3 generator (e, f). The presented probability density functions correspond to the trained $|g_{\theta}\rangle$ (a, c, e) and the loss function progress is illustrated for the generator as well as for the discriminator (b, d, f).

QGAN まとめ

- ・qGANを使うと価格の確率分布を再現でき、チュートリアルでは対数正規分布を再現
- ・qGANだと系統的に確率分布を作る場合に比べ少ないゲートで作成可能 $[O(2^n) \rightarrow O(poly(n))]$
- ・量子部分のGeneratorと古典部分のDiscriminatorを競合させながら学習をする 競合させながら学習することで高度なダミーの確率分布を生成
- ・qGANのGeneratorの最適化関数 $L_G(\phi, \theta)$ とDiscriminatorの最適化関数 $L_D(D_\phi, G_\theta)$ は以下で定義

$$L_{G}(\boldsymbol{\phi}, \boldsymbol{\theta}) = -\frac{1}{m} \sum_{l=1}^{m} [\log(D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(z^{l})))]$$

$$L_{D}(D_{\boldsymbol{\phi}}, G_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{l=1}^{m} [\log D_{\boldsymbol{\phi}}(\mathbf{x}^{l}) + \log(1 - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\mathbf{z}^{l})))]$$

- ・再現度合いは相互エントロピーで評価
- ・初期分布の選択が重要で、正規分布の使用が推奨

Option Pricing計算フロー

(1) 確率分布 p_i を量子状態にエンコード

$$|\psi_1\rangle = \sum_{i=0}^{2^n-1} \sqrt{p_i} |i\rangle_n$$

本日のメイン

Quantum GAN (Machine Learning)

(2) Payoff関数 f_i を量子状態にエンコード

Controlled-Ry

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1 - f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

(3) Payoffの期待値として振幅 $\sum_{i=0}^{2^n-1} (\sqrt{f_i} \sqrt{p_i})^2$ を計算

Amplitude Estimation (詳しくは田中さんが後日発表)

Payoff関数のエンコード

$$\sum_{i=0}^{2^{n}-1} \sqrt{1 - f(S_{i})} \sqrt{p_{i}} |S_{i}\rangle |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f(S_{i})} \sqrt{p_{i}} |S_{i}\rangle |1\rangle.$$

 $f(S_i)$: シナリオiでのスポット価格 S_i のPayoff *p_i*:シナリオ*i*が起きる確率

$f(S_i)$ をどうエンコードするか?

まずは線型関数だけ考えればよい $f(i) = f_1 i + f_0$ i.e. $|i\rangle_3 = |i_2i_1i_0\rangle$, $i = 4i_2 + 2i_1 + i_0 \in \{0, ..., 7\}$ $f(i) = 4f_1i_2 + 2f_1i_1 + f_1i_0 + f_0$ operator is, $|i\rangle_n|0\rangle \rightarrow |i\rangle_n(\cos[f(i)]|0\rangle + \sin[f(i)]|1\rangle)$

(1) p_iのエンコード(qGANが実現)

$$|\psi_1\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{p_i} |i\rangle_n |0\rangle$$

(2) *f* (*S_i*)のエンコード(Ryゲートを使用)

$$|\psi_2\rangle = \sum_{i=0}^{2^n - 1} \sqrt{p_i} |i\rangle_n (\cos[f(i)] |0\rangle + \sin[f(i)] |1\rangle)$$

(3) 定数cを使ってf を \tilde{f} でスケール化

$$|\psi_3\rangle = \sum_{i=0}^{2^n-1} \sqrt{p_i} |i\rangle_n \left(\cos\left[c\tilde{f}(i) + \frac{\pi}{4}\right]|0\rangle + \sin\left[c\tilde{f}(i) + \frac{\pi}{4}\right]|1\rangle\right) \quad \text{where } \tilde{f}(i) = 2\frac{f(i) - f_{min}}{f_{max} - f_{min}} - 1$$

Figure 2: Quantum circuit that creates the state in Eq. (9). Here, the independent variable $i = 4i_2 + 2i_1 + i_0 \in \{0, ..., 7\}$ is encoded by three qubits in the state $|i\rangle_3 = |i_2i_1i_0\rangle$ with $i_k \in \{0,1\}$. Therefore, the linear function $f(i) = f_1 i + f_0$ is given by $4f_1i_2 + 2f_1i_1 + f_1i_0 + f_0$. After applying this circuit the quantum state is $|i\rangle_3 \left[\cos(f_1 i + f_0) |0\rangle + \sin(f_1 i + f_0) |1\rangle\right]$. The circuit on the right shows an abbreviated notation.

where
$$\tilde{f}(i) = 2 \frac{f(i) - f_{min}}{f_{max} - f_{min}} - 1$$

Payoff関数のエンコード

$$\sum_{i=0}^{2^{n}-1} \sqrt{1 - f(S_i)} \sqrt{p_i} |S_i\rangle |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f(S_i)} \sqrt{p_i} |S_i\rangle |1\rangle.$$

 $f(S_i)$: シナリオiでのスポット価格 S_i のPayoff p_i : シナリオiが起きる確率

$f(S_i)$ をどうエンコードするか?

まずは線型関数だけ考えればよい $f(i) = f_1 i + f_0$ i.e. $|i\rangle_3 = |i_2 i_1 i_0\rangle$, $i = 4 i_2 + 2 i_1 + i_0 \in \{0, ..., 7\}$ $f(i) = 4 f_1 i_2 + 2 f_1 i_1 + f_1 i_0 + f_0$ operator is, $|i\rangle_n |0\rangle \rightarrow |i\rangle_n (\cos[f(i)] |0\rangle + \sin[f(i)] |1\rangle)$

小さい $\tilde{f}(i)$ に対して、補助量子ビットが|1>を観測する確率 $|\langle 1|\psi_3\rangle|^2 = \sum_{i=0}^{2^{n}-1} p_i \sin^2\left[c\tilde{f}(i) + \frac{\pi}{4}\right] \approx \sum_{i=0}^{2^{n}-1} p_i \left[c\tilde{f}(i) + \frac{\pi}{4}\right] \approx c\frac{2\mathrm{E}[f(X)] - f_{min}}{f_{max} - f_{min}} - c + \frac{1}{2}$

cをうまく選べば $O(M^{-2/3})$ で収束 高次の近似で $O(M^{-1})$ も達成可能

Figure 2: Quantum circuit that creates the state in Eq. (9). Here, the independent variable $i=4i_2+2i_1+i_0\in\{0,...,7\}$ is encoded by three qubits in the state $|i\rangle_3=|i_2i_1i_0\rangle$ with $i_k\in\{0,1\}$. Therefore, the linear function $f(i)=f_1i+f_0$ is given by $4f_1i_2+2f_1i_1+f_1i_0+f_0$. After applying this circuit the quantum state is $|i\rangle_3 \left[\cos(f_1i+f_0)|0\rangle+\sin(f_1i+f_0)|1\rangle\right]$. The circuit on the right shows an abbreviated notation.

m (s.t. $M=2^m$) は量子ビット数

Payoff関数のエンコード -Min/Maxのエンコード

真偽値テーブルを使って0部分と線型部分を分離可能

$$|\psi\rangle_n |0\rangle \to |\phi_1\rangle = \sum_{i < K} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i \ge K} \sqrt{p_i} |i\rangle_n |1\rangle.$$

Implement Following Truth Table

$$|i\rangle_3 = |i_2 i_1 i_0\rangle$$
, K=1.9

Representing Price	i_2	i_1	i_0	$ i\rangle_3 \ge K$
1.500	0	0	0	False
1.643	0	0	1	False
1.786	0	1	0	False
1.929	0	1	1	True
2.071	1	0	0	True
2.214	1	0	1	True
2.357	1	1	0	True
2.500	1	1	1	True

Option Pricing計算フロー

(1) 確率分布 p_i を量子状態にエンコード

$$|\psi_1\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{p_i} |i\rangle_n$$

本日のメイン

Quantum GAN (Machine Learning)

(2) Payoff関数 f_i を量子状態にエンコード

Controlled-Ry

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1-f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

(3) Payoffの期待値として振幅 $\sum_{i=0}^{2^n-1} \left(\sqrt{f_i}\sqrt{p_i}\right)^2$ を計算

$$|\psi_2\rangle = \sum_{i=0}^{2^{n}-1} \sqrt{1 - f_i} \sqrt{p_i} |i\rangle_n |0\rangle + \sum_{i=0}^{2^{n}-1} \sqrt{f_i} \sqrt{p_i} |i\rangle_n |1\rangle$$

Amplitude Estimation (詳しくは田中さんが後日発表)

box link:

https://ibm.ent.box.com/file/690593259852?s=bbbn6df18h7d1rcoiz4ut6pctau4nyhl

|1>の部分を測定しても振幅が得られるが精度/効率が△

Option Pricingの精度

Amplitude Estimation(振幅推定)は量子ビットの数に応じて精度が向上

#	Single-qubit	CX	CCX	Depth
m = 3	2,091	2,056	90	3,927
m = 5	12,768	9,078	378	17,332
m = 7	52,275	37,132	1,530	70,916
m = 9	210,144	149,290	6,138	285,204

Table 2: Single-qubit, CNOT, Toffoli gate counts and overall circuit depth required for the full amplitude estimation circuits for each instance in Fig. 8, as a function of the number of sampling qubits m. These figures assume all-to-all connectivity across qubits.

qGAN部分の使用ゲート数は削減されたが、 Payoff関数のエンコード, 振幅推定部分の 部分で必要ゲート数が指数的な気が。。。 →改善の余地あり!?

Option Pricingまとめ

- ・qGANを使って価格の確率分布を量子状態としてエンコード
- ・Payoff関数をCos関数の線型近似&ロジック回路でエンコード
- ・欲しい部分の振幅をAmplitude Estimationで計算