

CSE 4205 Digital Logic Design

Sequential Logic

Course Teacher: Md. Hamjajul Ashmafee

Lecturer, CSE, IUT

Email: ashmafee@iut-dhaka.edu

Sequential Circuit

- Combinational circuit + storage elements = Sequential circuit
- Storage elements stores binary information (1 or 0) which are called states
 - This states are time variant
- Two possible outcomes of a sequential circuit:
 - Present output of the sequential circuit = F₁ (present input, present state)
 - Next state of memory element = F₂ (present input, present state)
- Storage element feeds back its state as input to the combinational circuit through a feedback path
 - This feedback path is called a loop
- Example: Counter, Register

Time Sequence

- Sequential circuit includes time sequence of inputs, outputs and internal memory states
 - This time-sequence determines the behavior of a sequential circuit.

Classification of Sequential Circuit

Two types of sequential circuit – based on **timing** of their input signal

- 1. Synchronous or clocked sequential circuit
- 2. Asynchronous or unclocked sequential circuit

Asynchronous Sequential Circuit

Behavior defined based on the order/sequence of input signals at any instant of

time

Only affected whenever the inputs change

No synchronization with clock pulse

Sometimes, activated with enable input

• Example: Latch

Synchronous Sequential Circuit

- Behavior defined based on the input signals at discrete instants of time
- Example: Flip-flop

Clocked Sequential Circuit

Clock

Duty Cycle = ratio of the Pulse Width to the Period

 T_w = pulse duration

Flip-flops

- Memory elements in clocked sequential circuit
- A binary/digital memory cell that stores one bit of information
- Number of inputs One or more
- Two outputs normal (Q) and complement (Q') value of the bit stored
- Also known as a bistable multivibrator

Latch

- Another variant of memory element
 - Propagation delay is used in this regard
- It has two stable states
- Used to store binary information
 - Binary memory element

Types of Flip-flops

- Based on how the inputs and clock pulses cause transition between two states:
 - 1. S-R (Set-Reset) flip-flop
 - 2. D (Data) flip-flop
 - 3. J-K (J: set, K: reset) flip-flop
 - 4. T (Toggle) flip-flop

S-R (Set-Reset) flip-flop

- Two inputs Set (S) and Reset (R)
- Two outputs Q and Q' (complement to each other)
- Made of cross-coupled connection from output to input constituting a feedback path

Inputs		Output
S_n	R_n	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	_

Clocked S-R Flip-Flop

- Synchronous circuit
 - Activated during a clock pulse is present
- From a latch, a flip-flop can be produced including an additional input to control the behavior of the circuit

Characteristic Table and Truth Table

- Characteristic table and truth table:
 - Truth table with present input(s) and present state(s) as input column and next state(s) as output column refers to a characteristic table
 - It refers to the operational characteristics of the flip-flop

S-R Flip-Flop - Characteristic table

• Characteristic table and Characteristic equation of S-R flip flop

Flip-flop inputs		Present output	Next output	
S	R	Q_n	Q_{n+1}	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	X	
1	1	1	X	

$$Q_{n+1} = S + R'Q_n$$

$$SR = 0.$$

Preset and Clear Inputs

- Initially (at t₀), a circuit is **uncertain** with Q and Q' states
- They should be assigned with either set or reset state with direct or asynchronous inputs
 - Also, called as overriding inputs
 - These inputs are individually named as preset (Pr) and clear (Cr)
- These inputs are not synchronized with clock
 - They can be applied at any time
 - $CLK = 0 \ or \ 1$, doesn't care at all [but, preferred to be applied when clock is inactive]
- Pr = 0 and Cr = 0 must not be applied, as it leads to an uncertain state
- Pr and Cr inputs are used with bubbles considering them active low

Preset and Clear Inputs...

Preset and Clear Inputs...

Inputs		Output	Operation		
Cr	Pr	Q	performed		
1	1	Based on inputs	Normal flip-flop		
1	0	1	Preset		
0	1	0	Clear		
0	0	_	Uncertain		

D Flip-Flop

- Derivation from S-R flip-flop
- Truth table and all cases of D flip-flop
- Block diagram of D flip-flop
- D flip-flop with **Pr** and **Cr** inputs
- Characteristic table and equation of D flip-flop
- Application register

J-K Flip-Flop

- Very similar to an S-R flip-flop
 - J and K behave like inputs S and R to set and reset the flip-flop
- Advantage: Eliminates the undefined condition of an S-R flip-flop
 - Only difference between S-R and J-K flip-flop
 - When J=K=1, the flip-flop is said to be in a *toggle state*
 - *Toggling* means complementing the state in each clock pulse

J-K Flip-Flop - Implementation

- Implementation from S-R flip flop
 - Another level of feedback path is included
 - Inputs J and K of J-K flip-flop are ANDed (cross-coupled) with Q' and Q respectively to obtain the inputs, S and R for S-R flip-flop

Lecture 6 21

J-K Flip-Flop - Implementation...

Circuit diagram and block diagram of a J-K flip flop with NAND gates

J-K Flip-Flop - Truth Table

Inputs		Output	
$J_{_{\scriptscriptstyle R}}$	$K_{_{\!\scriptscriptstyle R}}$	Q_{n+1}	
0	0	Q _n	
0	1	0	
1	0	1	
1	1	Q'n	

J-K Flip-Flop - Characteristic Table

• Characteristic table and characteristic equation for J-K flip-flop

J-K Flip-Flop - Race Around Condition

- Assumption for basic J-K flip-flop:
 - The inputs will not be changed any more during a clock pulse
 - But, it is not true because of the feedback connections
- Consider the scenario: J=K=1
 - If Q=1, after Δt time, it will be Q=0
 - Next, if Q=0, after another △t time, it will be Q=1
 - So, basically, **during** t_p **time**, the output Q will oscillate between 0 and 1 after each Δt time
 - And, after t_p time, the output Q is not certain.
 - This situation is called "Race-Around Condition"

∆t = propagation delay
t_p = pulse duration
Level triggered clock pulse

Race Around Condition - Solutions

- 1. If $\triangle t$ is in nanoseconds and t_p in microseconds, output will be changed thousands of times within a clock pulse
- 2. Master-Slave (M-S) flip-flop
- 3. Edge triggered flip-flop

Race Around Condition - Master-Slave J-K Flip-Flop

- A system of two cascaded flip-flops master and slave flip-flops
- A clock pulse is applied to master and the inverted form of the same clock is applied to the slave
- How to solve RAC problem?

• When CLK=1, gates 5 and 6 will not respond. Output Q and Q' will only change when

CLK=0.

27

T Flip-Flop

- A slight modification of the J-K flip-flop
 - J and K inputs are tied together have same input
 - Referred as T flip-flop
 - It has the ability to toggle
- One input (T) and two outputs Q and Q'
- Two states toggle (T=1) and memory (T=0) states
- Usage: Counter, switching circuits

Triggering of Flip-flops

- Level Triggering
- Edge Triggering

Excitation Table

- A tabulation to figure out all possible input conditions to obtain the desired output condition
 - It is required to **design** a sequential circuit when present state and next state of the flip-flop is specified

Excitation Table of all Flip-Flops

Present	Next	S-R FF		D-FF	J- K FF		T-FF
State $(Q_{_{\rm R}})$	State (Q_{n+1})	S_{n}	$R_{_{n}}$	$D_{_{n}}$	$J_{_n}$	$K_{_{_{n}}}$	$T_{_{n}}$
0	0	0	X	0	0	X	0
0	1	1	0	1	1	x	1
1	0	0	1	0	x	1	1
1	1	x	0	1	x	0	0

Interconversion of Flip-flops

• A conversion logic is required to be designed for such conversions of flip-flops

32