## Question 1: (30 total points) Image data analysis with PCA

In this question we employ PCA to analyse image data

1.1 (3 points) Once you have applied the normalisation from Step 1 to Step 4 above, report the values of the first 4 elements for the first training sample in Xtrn\_nm, i.e. Xtrn\_nm[0,:] and the last training sample, i.e. Xtrn\_nm[-1,:].

```
First 4 elements of the first training sample in Xtrn_nm:
[-3.13725490e-06 -2.26797386e-05 -1.17973856e-04 -4.07058824e-04]

First 4 elements of the last training sample in Xtrn_nm:
[-3.13725490e-06 -2.26797386e-05 -1.17973856e-04 -4.07058824e-04]
```

1.2 (4 points) Using Xtrn and Euclidean distance measure, for each class, find the two closest samples and two furthest samples of that class to the mean vector of the class.



1.3 (3 points) Apply Principal Component Analysis (PCA) to the data of Xtrn\_nm using sklearn.decomposition.PCA, and find the cumulative explained variance.

```
The cumulative explained variance: 68.217

The explained variances for the first 5 principal components: PC 0 = 19.81
PC 1 = 12.112
PC 2 = 4.106
PC 3 = 3.382
PC 4 = 2.625
```

1.4 (3 points) Plot a graph of the cumulative explained variance ratio. Discuss the result briefly.



1.5 (4 points) Display the images of the first 10 principal components in a 2-by-5 grid, putting the image of 1st principal component on the top left corner, followed by the one of 2nd component to the right. Discuss your findings briefly.



1.6 (5 points) Using Xtrn\_nm, for each class and for each number of principal components K=5,20,50,200, apply dimensionality reduction with PCA to the first sample in the class, reconstruct the sample from the dimensionality-reduced sample, and report the Root Mean Square Error (RMSE) between the original sample in Xtrn\_nm and reconstructed one.

## A table to show the RMSE between the original and the reconstructed version of the first sample for every class with varying numbers of PCA components (K)

\*Each class sample is reconstructed by reducing the sample to K dimensions and then is transformed back to the original number of dimensions, this is all done via the sklearn PCA implementation.

| RMSE      | K = 5 | K = 20 | K = 50 | K = 200 |
|-----------|-------|--------|--------|---------|
| Class = 0 | 0.256 | 0.15   | 0.128  | 0.062   |
| Class = 1 | 0.198 | 0.14   | 0.095  | 0.037   |
| Class = 2 | 0.199 | 0.146  | 0.123  | 0.08    |
| Class = 3 | 0.146 | 0.107  | 0.084  | 0.056   |
| Class = 4 | 0.118 | 0.103  | 0.088  | 0.046   |
| Class = 5 | 0.181 | 0.159  | 0.142  | 0.091   |
| Class = 6 | 0.129 | 0.096  | 0.072  | 0.046   |
| Class = 7 | 0.166 | 0.128  | 0.106  | 0.062   |
| Class = 8 | 0.223 | 0.145  | 0.123  | 0.093   |
| Class = 9 | 0.184 | 0.151  | 0.122  | 0.072   |

1.7 (4 points) Display the image for each of the reconstructed samples in a 10-by-4 grid, where each row corresponds to a class and each row column corresponds to a value of K = 5, 20, 50, 200.



| Your Answer Here |  |  |
|------------------|--|--|
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |

## Question 2: (25 total points) Logistic regression and SVM

In this question we will explore classification of image data with logistic regression and support vector machines (SVM) and visualisation of decision regions.

2.1 (3 points) Carry out a classification experiment with multinomial logistic regression, and report the classification accuracy and confusion matrix (in numbers rather than in graphical representation such as heatmap) for the test set.

| Predicted                                                   | 0                                                     | 1                                              | 2                                             | 3                                                 | 4                                                            | 5                                                      | 6                                                     | 7                                                | 8                                                            | 9                                | )                                                            |                                                      |
|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| Actual                                                      |                                                       |                                                |                                               |                                                   |                                                              |                                                        |                                                       |                                                  |                                                              |                                  |                                                              |                                                      |
| Θ                                                           | 819                                                   | 5                                              | 27                                            | 31                                                | 0                                                            | 2                                                      | 147                                                   | 0                                                | 7                                                            | 6                                | )                                                            |                                                      |
| 1                                                           | 3                                                     | 953                                            | 4                                             | 15                                                | 3                                                            | 0                                                      | 3                                                     | 0                                                | 1                                                            | 6                                | )                                                            |                                                      |
| 2                                                           | 15                                                    | 4                                              | 731                                           | 14                                                | 115                                                          | 0                                                      | 128                                                   | 0                                                | 6                                                            | 6                                | )                                                            |                                                      |
| 3                                                           | 50                                                    | 27                                             | 11                                            | 866                                               | 38                                                           | 1                                                      | 46                                                    | 0                                                | 11                                                           | ]                                | L                                                            |                                                      |
| 4                                                           | 7                                                     | 5                                              | 133                                           | 33                                                | 760                                                          | 0                                                      | 108                                                   | 0                                                | 3                                                            | 6                                |                                                              |                                                      |
| 5                                                           | 4                                                     | 0                                              | 0                                             | 0                                                 | 2                                                            | 911                                                    | 0                                                     | 32                                               | 7                                                            | 15                               |                                                              |                                                      |
| 6                                                           | 89                                                    | 3                                              | 82                                            | 37                                                | 72                                                           | Θ                                                      | 539                                                   | 0                                                | 15                                                           | 1                                |                                                              |                                                      |
| 7                                                           | 1                                                     | 1                                              | 2                                             | 0                                                 | 0                                                            | 56                                                     | 0                                                     | 936                                              | 5                                                            | 42                               |                                                              |                                                      |
| 8                                                           | 12                                                    | 2                                              | 9                                             | 4                                                 | 10                                                           |                                                        | 28                                                    | 1                                                | 945                                                          | 6                                |                                                              |                                                      |
| 9                                                           | 0                                                     | 0                                              | 1                                             | 0                                                 | 0                                                            | 20                                                     | 1                                                     | 31                                               | 0                                                            | 941                              | L                                                            |                                                      |
| PERCENTAGE                                                  |                                                       |                                                |                                               |                                                   | 3                                                            | 4                                                      | 5                                                     |                                                  | 6                                                            | 7                                | 8                                                            | 9                                                    |
|                                                             |                                                       |                                                |                                               |                                                   | 2                                                            | 4                                                      | _                                                     |                                                  | 6                                                            | 7                                | 0                                                            | 0                                                    |
| PERCENTAGE<br>Predicted<br>Actual                           | CONFI                                                 |                                                | MATR<br>1                                     | IX:                                               | 3                                                            | 4                                                      | 5                                                     |                                                  | 6                                                            | 7                                | 8                                                            | 9                                                    |
| Predicted                                                   |                                                       | 1                                              | 1                                             |                                                   | 3<br>2.9                                                     | 4                                                      | 5                                                     |                                                  |                                                              | 7                                | 8                                                            | 9                                                    |
| Predicted<br>Actual                                         | 0                                                     | 0.5                                            | 1<br>5 2                                      | 2                                                 |                                                              |                                                        |                                                       | 17.                                              | 5 0                                                          |                                  |                                                              |                                                      |
| Predicted<br>Actual<br>0<br>1<br>2                          | 0<br>78.9                                             | 0.5<br>97.6                                    | 1<br>5 2<br>9 0                               | 2                                                 | 2.9                                                          | 0.0                                                    | 0.2                                                   | 17.<br>0.                                        | 5 0<br>4 0                                                   | .0                               | 0.7                                                          | 0.0                                                  |
| Predicted<br>Actual<br>0<br>1<br>2                          | 78.9<br>0.3                                           | 0.5<br>97.6<br>0.4                             | 1<br>5 2<br>9 0<br>4 72<br>7 1                | 2<br>.7<br>.4<br>.2<br>.1 8                       | 2.9<br>1.4<br>1.3<br>32.4                                    | 0.0                                                    | 0.2                                                   | 17.<br>0.<br>15.                                 | 5 0<br>4 0<br>3 0                                            | .0                               | 0.7<br>0.1<br>0.6<br>1.1                                     | 0.0                                                  |
| Predicted<br>Actual<br>0<br>1<br>2<br>3                     | 78.9<br>0.3<br>1.4<br>4.8<br>0.7                      | 0.5<br>97.6<br>0.4<br>2.7                      | 1<br>5 2<br>9 0<br>4 72<br>7 1<br>5 13        | 2<br>.7<br>.4<br>.2<br>.1 8                       | 2.9<br>1.4<br>1.3<br>32.4<br>3.1                             | 0.0<br>0.3<br>11.0<br>3.6<br>72.4                      | 0.2<br>0.0<br>0.0<br>0.1                              | 17.<br>0.<br>15.<br>5.                           | 5 0<br>4 0<br>3 0<br>5 0<br>9 0                              | .0                               | 0.7<br>0.1<br>0.6<br>1.1<br>0.3                              | 0.0<br>0.0<br>0.0<br>0.1<br>0.0                      |
| Predicted<br>Actual<br>0<br>1<br>2<br>3<br>4                | 78.9<br>0.3<br>1.4<br>4.8<br>0.7<br>0.4               | 0.5<br>97.6<br>0.4<br>2.7<br>0.5               | 1<br>5 2<br>9 0<br>4 72<br>7 1<br>5 13<br>9 0 | 2<br>.7<br>.4<br>.2<br>.1 8                       | 2.9<br>1.4<br>1.3<br>32.4<br>3.1<br>0.0                      | 0.0<br>0.3<br>11.0<br>3.6<br>72.4<br>0.2               | 0.2<br>0.0<br>0.0<br>0.1<br>0.0<br>93.8               | 17.<br>0.<br>15.<br>5.<br>12.                    | 5 0<br>4 0<br>3 0<br>5 0<br>9 0<br>0 3                       | .0                               | 0.7<br>0.1<br>0.6<br>1.1<br>0.3<br>0.7                       | 0.0<br>0.0<br>0.0<br>0.1<br>0.0                      |
| Predicted<br>Actual<br>0<br>1<br>2<br>3<br>4<br>5           | 78.9<br>0.3<br>1.4<br>4.8<br>0.7<br>0.4<br>8.6        | 0.5<br>97.6<br>0.4<br>2.7<br>0.5<br>0.6        | 1 5 2 0 0 4 72 7 1 1 5 13 0 0 0 3 8           | 2<br>.7<br>.4<br>.2<br>.1 8<br>.1                 | 2.9<br>1.4<br>1.3<br>32.4<br>3.1<br>0.0<br>3.5               | 0.0<br>0.3<br>11.0<br>3.6<br>72.4<br>0.2<br>6.9        | 0.2<br>0.0<br>0.0<br>0.1<br>0.0<br>93.8<br>0.0        | 17.<br>0.<br>15.<br>5.<br>12.<br>0.<br>64.       | 5 0<br>4 0<br>3 0<br>5 0<br>9 0<br>0 3<br>3 0                | .0<br>.0<br>.0<br>.0             | 0.7<br>0.1<br>0.6<br>1.1<br>0.3<br>0.7                       | 0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>1.5               |
| Predicted<br>Actual<br>0<br>1<br>2<br>3<br>4<br>5<br>6      | 78.9<br>0.3<br>1.4<br>4.8<br>0.7<br>0.4<br>8.6<br>0.1 | 0.5<br>97.6<br>0.4<br>2.7<br>0.5<br>0.6        | 1 5 2 0 0 4 72 7 1 5 13 0 0 0 3 8 1 0         | 2<br>.7<br>.4<br>.2<br>.1 8<br>.1                 | 2.9<br>1.4<br>1.3<br>32.4<br>3.1<br>0.0<br>3.5<br>0.0        | 0.0<br>0.3<br>11.0<br>3.6<br>72.4<br>0.2<br>6.9<br>0.0 | 0.2<br>0.0<br>0.0<br>0.1<br>0.0<br>93.8<br>0.0<br>5.8 | 17.<br>0.<br>15.<br>5.<br>12.<br>0.<br>64.       | 5 0<br>4 0<br>3 0<br>5 0<br>9 0<br>0 3<br>3 0<br>0 89        | .0<br>.0<br>.0<br>.0             | 0.7<br>0.1<br>0.6<br>1.1<br>0.3<br>0.7<br>1.5                | 0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>1.5<br>0.1        |
| Predicted<br>Actual<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 78.9<br>0.3<br>1.4<br>4.8<br>0.7<br>0.4<br>8.6<br>0.1 | 0.5<br>97.6<br>0.4<br>2.7<br>0.5<br>0.6<br>0.3 | 1 5 2 9 0 4 72 7 1 5 13 9 0 8 8 1 0 2 0       | 2<br>.7<br>.4<br>.2<br>.1<br>.1<br>.0<br>.1<br>.2 | 2.9<br>1.4<br>1.3<br>32.4<br>3.1<br>0.0<br>3.5<br>0.0<br>0.4 | 0.0<br>0.3<br>11.0<br>3.6<br>72.4<br>0.2<br>6.9<br>0.0 | 0.2<br>0.0<br>0.0<br>0.1<br>0.0<br>93.8<br>0.0<br>5.8 | 17.<br>0.<br>15.<br>5.<br>12.<br>0.<br>64.<br>0. | 5 0<br>4 0<br>3 0<br>5 0<br>9 0<br>0 3<br>3 0<br>0 89<br>3 0 | .0<br>.0<br>.0<br>.0<br>.0<br>.1 | 0.7<br>0.1<br>0.6<br>1.1<br>0.3<br>0.7<br>1.5<br>0.5<br>92.6 | 0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>1.5<br>0.1<br>4.2 |
| Predicted<br>Actual<br>0<br>1<br>2<br>3<br>4<br>5<br>6      | 78.9<br>0.3<br>1.4<br>4.8<br>0.7<br>0.4<br>8.6<br>0.1 | 0.5<br>97.6<br>0.4<br>2.7<br>0.5<br>0.6<br>0.3 | 1 5 2 9 0 4 72 7 1 5 13 9 0 8 8 1 0 2 0       | 2<br>.7<br>.4<br>.2<br>.1 8<br>.1                 | 2.9<br>1.4<br>1.3<br>32.4<br>3.1<br>0.0<br>3.5<br>0.0        | 0.0<br>0.3<br>11.0<br>3.6<br>72.4<br>0.2<br>6.9<br>0.0 | 0.2<br>0.0<br>0.0<br>0.1<br>0.0<br>93.8<br>0.0<br>5.8 | 17.<br>0.<br>15.<br>5.<br>12.<br>0.<br>64.<br>0. | 5 0<br>4 0<br>3 0<br>5 0<br>9 0<br>0 3<br>3 0<br>0 89<br>3 0 | .0<br>.0<br>.0<br>.0             | 0.7<br>0.1<br>0.6<br>1.1<br>0.3<br>0.7<br>1.5                | 0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>1.5<br>0.1        |

2.2 (3 points) Carry out a classification experiment with SVM classifiers, and report the mean accuracy and confusion matrix (in numbers) for the test set.

| Predicted                                   | 0                                                     | 1                                        | 2                                         | 3                            | 4                                                          | 5                                                          | 6                                                   | 7                                                | 8                                       | 9                                                  | )                                                         |                                               |
|---------------------------------------------|-------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|
| Actual                                      |                                                       |                                          |                                           |                              |                                                            |                                                            |                                                     |                                                  |                                         |                                                    |                                                           |                                               |
| 0                                           | 845                                                   | 4                                        | 15                                        | 32                           | 1                                                          | 0                                                          | 185                                                 | 0                                                | 3                                       | 0                                                  | )                                                         |                                               |
| 1                                           | 2                                                     | 951                                      | 2                                         | 6                            | 0                                                          | 0                                                          | 1                                                   | Θ                                                | 1                                       | Θ                                                  | )                                                         |                                               |
| 2                                           | 8                                                     | 7                                        | 748                                       | 12                           | 98                                                         | 0                                                          | 122                                                 | 0                                                | 8                                       | 0                                                  | )                                                         |                                               |
| 3                                           | 51                                                    | 31                                       | 11                                        | 881                          | 36                                                         | 1                                                          | 39                                                  | 0                                                | 5                                       | 0                                                  | )                                                         |                                               |
| 4                                           | 4                                                     | 5                                        | 137                                       | 26                           | 775                                                        | 0                                                          | 95                                                  | 0                                                | 2                                       | 0                                                  | )                                                         |                                               |
| 5                                           | 4                                                     | 0                                        | 0                                         | 0                            | Θ                                                          | 914                                                        | 0                                                   | 34                                               | 4                                       | 22                                                 |                                                           |                                               |
| 6                                           | 72                                                    | 1                                        | 79                                        | 40                           | 86                                                         | 0                                                          | 533                                                 | 0                                                | 13                                      | Θ                                                  | )                                                         |                                               |
| 7                                           | 0                                                     | 0                                        | 0                                         | 0                            | Θ                                                          | 57                                                         | 0                                                   | 925                                              | 4                                       | 47                                                 |                                                           |                                               |
| 8                                           | 14                                                    | 1                                        | 8                                         | 3                            | 4                                                          | 2                                                          | 25                                                  | 0                                                | 959                                     | 1                                                  |                                                           |                                               |
| 9                                           | 0                                                     | 0                                        | 0                                         | Θ                            | 0                                                          | 26                                                         | 0                                                   | 41                                               | 1                                       | 930                                                | 1                                                         |                                               |
| PERCENTAGE                                  | CONF                                                  | USION                                    | MATR                                      | IX:                          |                                                            |                                                            |                                                     |                                                  |                                         |                                                    |                                                           | q                                             |
| PERCENTAGE                                  | CONF                                                  | USION                                    | MATR                                      | IX:                          |                                                            |                                                            |                                                     |                                                  |                                         |                                                    |                                                           | 9                                             |
|                                             |                                                       | USION                                    |                                           |                              | 3                                                          | 4                                                          | 5                                                   |                                                  | 6                                       | 7                                                  | 8                                                         | 9                                             |
| PERCENTAGE<br>Predicted                     | CONF                                                  | USION                                    | MATR<br>L<br>1 1                          | 1X:<br>2                     |                                                            |                                                            |                                                     |                                                  | 6                                       |                                                    |                                                           | 9                                             |
| PERCENTAGE<br>Predicted<br>Actual<br>0<br>1 | 77.9<br>0.2                                           | USION<br>:<br>0.4<br>98.8                | MATR<br>1<br>4 1<br>3 0                   | IX:<br>2                     | 3<br>3.0<br>0.6                                            | 4                                                          | 5<br>0.0<br>0.0                                     | 22.<br>0.                                        | 6<br>5 6<br>1 6                         | 7                                                  | 8                                                         | 0.0                                           |
| PERCENTAGE Predicted Actual 0 1             | 77.9<br>0.2<br>0.7                                    | USION<br>:<br>0.4<br>98.8<br>0.7         | MATR  1 1 1 3 0 7 74                      | IX:<br>2<br>5<br>2           | 3<br>3.0<br>0.6<br>1.1                                     | 4<br>0.1<br>0.0<br>9.4                                     | 5<br>0.0<br>0.0<br>0.0                              | 22.<br>0.<br>14.                                 | 6<br>5 6<br>1 6<br>8 6                  | 7                                                  | 8<br>0.3<br>0.1<br>0.8                                    | 0.0<br>0.0<br>0.0                             |
| PERCENTAGE Predicted Actual 0 1 2           | 77.9<br>0.2<br>0.7<br>4.7                             | USION<br>0.4<br>98.8<br>0.7<br>3.2       | MATR  1 1 3 0 7 74 2 1                    | IX:<br>2<br>5<br>2           | 3<br>3.0<br>0.6<br>1.1<br>83.5                             | 4<br>0.1<br>0.0<br>9.4<br>3.4                              | 5<br>0.0<br>0.0                                     | 22.<br>0.<br>14.                                 | 6<br>5 6<br>1 6<br>8 6                  | 7<br>).0<br>).0                                    | 8<br>0.3<br>0.1<br>0.8<br>0.5                             | 0.0                                           |
| PERCENTAGE Predicted Actual 0 1 2 3         | 77.9<br>0.2<br>0.7<br>4.7<br>0.4                      | 98.8<br>0.7<br>98.8<br>0.7               | MATR  1                                   | IX:<br>2<br>5<br>2<br>6<br>1 | 3<br>3.0<br>0.6<br>1.1<br>83.5<br>2.5                      | 4<br>0.1<br>0.0<br>9.4<br>3.4<br>74.2                      | 5<br>0.0<br>0.0<br>0.0<br>0.1                       | 22.<br>0.<br>14.<br>4.                           | 6<br>5 6<br>1 6<br>8 6<br>7 6<br>5 6    | 7                                                  | 8<br>0.3<br>0.1<br>0.8<br>0.5                             | 0.0<br>0.0<br>0.0<br>0.0                      |
| PERCENTAGE Predicted Actual 0 1 2 3 4       | 77.9<br>0.2<br>0.7<br>4.7<br>0.4<br>0.4               | 98.8<br>0.1<br>3.2<br>0.5                | MATR  1 4 1 3 0 7 74 2 1 5 13 9 0         | 25261                        | 3<br>3.0<br>0.6<br>1.1<br>33.5<br>2.5<br>0.0               | 4<br>0.1<br>0.0<br>9.4<br>3.4<br>74.2<br>0.0               | 5<br>0.0<br>0.0<br>0.1<br>0.0<br>93.5               | 22.<br>0.<br>14.<br>4.<br>11.<br>0.              | 6 5 6 6 7 6 6 5 6 0 3                   | 7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 8<br>0.3<br>0.1<br>0.8<br>0.5<br>0.2                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.2        |
| PERCENTAGE Predicted Actual 0 1 2 3 4 5     | 77.9<br>0.2<br>0.7<br>4.7<br>0.4                      | 98.8<br>0.1<br>3.2<br>0.5<br>0.0         | MATR  1 4 1 3 0 7 74 2 1 5 13 9 0 1 7     | 25261                        | 3<br>3.0<br>0.6<br>1.1<br>83.5<br>2.5<br>0.0<br>3.8        | 4<br>0.1<br>0.0<br>9.4<br>3.4<br>74.2<br>0.0<br>8.2        | 5<br>0.0<br>0.0<br>0.1<br>0.0<br>93.5<br>0.0        | 22.<br>0.<br>14.<br>4.<br>11.<br>0.              | 6 5 6 6 6 7 6 6 6 7 6 7 6 7 6 7 6 7 6 7 | 7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 8<br>0.3<br>0.1<br>0.8<br>0.5<br>0.2<br>0.4<br>1.3        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.2        |
| PERCENTAGE Predicted Actual 0 1 2 3 4 5 6   | 77.9<br>0.2<br>0.7<br>4.7<br>0.4<br>0.4               | 0.4<br>98.8<br>0.3<br>3.2<br>0.0<br>0.0  | MATR  1 4 1 3 0 7 74 2 1 5 13 9 0 1 7 9 0 | 25261                        | 3<br>3.0<br>0.6<br>1.1<br>83.5<br>2.5<br>0.0<br>3.8<br>0.0 | 4<br>0.1<br>0.0<br>9.4<br>3.4<br>74.2<br>0.0               | 5<br>0.0<br>0.0<br>0.1<br>0.0<br>93.5<br>0.0<br>5.8 | 22.<br>0.<br>14.<br>4.<br>11.<br>0.<br>64.<br>0. | 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 8<br>0.3<br>0.1<br>0.8<br>0.5<br>0.2                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.2        |
| PERCENTAGE Predicted Actual 0 1 2 3 4 5 6 7 | 77.9<br>0.2<br>0.7<br>4.7<br>0.4<br>0.4<br>6.6        | 98.8<br>0.2<br>98.8<br>0.3<br>0.0<br>0.0 | MATR  1 4 1 3 0 7 74 2 1 5 13 9 0 1 7 9 0 | 25261                        | 3<br>3.0<br>0.6<br>1.1<br>83.5<br>2.5<br>0.0<br>3.8        | 4<br>0.1<br>0.0<br>9.4<br>3.4<br>74.2<br>0.0<br>8.2        | 5<br>0.0<br>0.0<br>0.1<br>0.0<br>93.5<br>0.0        | 22.<br>0.<br>14.<br>4.<br>11.<br>0.<br>64.<br>0. | 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 8<br>0.3<br>0.1<br>0.8<br>0.5<br>0.2<br>0.4<br>1.3        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.2        |
| PERCENTAGE Predicted Actual 0 1 2 3 4 5 6   | 77.9<br>0.2<br>0.7<br>4.7<br>0.4<br>0.4<br>6.6<br>0.0 | 98.8<br>98.8<br>0.7<br>3.2<br>0.5<br>0.6 | MATR  1                                   | 25261                        | 3<br>3.0<br>0.6<br>1.1<br>83.5<br>2.5<br>0.0<br>3.8<br>0.0 | 4<br>0.1<br>0.0<br>9.4<br>3.4<br>74.2<br>0.0<br>8.2<br>0.0 | 5<br>0.0<br>0.0<br>0.1<br>0.0<br>93.5<br>0.0<br>5.8 | 22.<br>0.<br>14.<br>4.<br>11.<br>0.<br>64.<br>0. | 6 5 6 6 7 6 6 7 6 6 9 8 9 0 6           | 7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 8<br>0.3<br>0.1<br>0.8<br>0.5<br>0.2<br>0.4<br>1.3<br>0.4 | 0.0<br>0.0<br>0.0<br>0.0<br>2.2<br>0.0<br>4.7 |

**2.3** (6 points) We now want to visualise the decision regions for the logistic regression classifier we trained in Question 2.1.



| Your Answer Here |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |

2.5 (6 points) We used default parameters for the SVM in Question 2.2. We now want to tune the parameters by using cross-validation. To reduce the time for experiments, you pick up the first 1000 training samples from each class to create Xsmall, so that Xsmall contains 10,000 samples in total. Accordingly, you create labels, Ysmall.



| value of $C$ you found in Question 2.5. |  | 9 | - |
|-----------------------------------------|--|---|---|
| Your Answer Here                        |  |   |   |
|                                         |  |   |   |
|                                         |  |   |   |
|                                         |  |   |   |
|                                         |  |   |   |

2.6 (3 points) Train the SVM classifier on the whole training set by using the optimal

## Question 3: (20 total points) Clustering and Gaussian Mixture Models

In this question we will explore K-means clustering, hierarchical clustering, and GMMs.

**3.1** (3 points) Apply k-means clustering on Xtrn for k = 22, where we use sklearn.cluster.KMeans with the parameters n\_clusters=22 and random\_state=1. Report the sum of squared distances of samples to their closest cluster centre, and the number of samples for each cluster.

```
Sum of squared distances (Euclidean) of samples to their closest cluster center:
38185.817
Number of samples for each cluster:
Cluster 1 = 1018.0
Cluster 2 = 1125.0
Cluster 3 = 1191.0
Cluster 4 = 890.0
Cluster 5 = 1162.0
Cluster 6 = 1332.0
Cluster 7 = 839.0
Cluster 8 = 623.0
Cluster 9 = 1400.0
Cluster 10 = 838.0
Cluster 11 = 659.0
Cluster 12 = 1276.0
Cluster 13 = 121.0
Cluster 14 = 152.0
Cluster 15 = 950.0
Cluster 16 = 1971.0
Cluster 17 = 1251.0
Cluster 18 = 845.0
Cluster 19 = 896.0
Cluster 20 = 930.0
Cluster 21 = 1065.0
Cluster 22 = 1466.0
```

| 3.2 (3 points) Using the training set only, calculate the mean vector for each language |
|-----------------------------------------------------------------------------------------|
| and plot the mean vectors of all the 22 languages on a 2D-PCA plane, where you apply    |
| PCA on the set of 22 mean vectors without applying standardisation. On the same figure  |
| plot the cluster centres obtained in Question 3.1.                                      |

| Your Answer Here |  |
|------------------|--|
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |

| ar       | e any structures in the spoken languages. |  |  |  |  |  |
|----------|-------------------------------------------|--|--|--|--|--|
| $\lceil$ | Your Answer Here                          |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |
|          |                                           |  |  |  |  |  |

3.3 (3 points) We now apply hierarchical clustering on the training data set to see if there

| Your Answer Here |  |  |
|------------------|--|--|
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |

| i.e.,            |  |  |
|------------------|--|--|
| Your Answer Here |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |

**3.5** (6 points) We now consider Gaussian mixture model (GMM), whose probability distribution function (pdf) is given as a linear combination of Gaussian or normal distributions,