Homework 1

Lu Wang

- 1. (10') Simulate a sequence of uniform random numbers with R function runif(). Make 3-tuples with every 3 consecutive numbers from the sequence. Visualize the tuples in the cube $[0,1]^3$ and test the uniformity of these tuples with Pearson's χ^2 test.
- 2. (10') Prove that $F(X) \sim U(0,1)$ for a continuous random variable X with CDF $F(\cdot)$. And explain why this is not true if X follows a discrete distribution.
- 3. A fault-tolerant memory bank is built with 5 memory units. These units have independent random failure times, each with a distribution F. The memory bank is operable as long as 4 or more units are still working, so it fails when the second unit fails. Let $G(\cdot \mid \alpha, \beta)$ be the CDF of the Beta (α, β) .
 - a) (5') Express the failure time of the memory bank as a function of a single variable $U \sim U(0,1)$ via $F(\cdot)$ and $G(\cdot \mid \alpha, \beta)$ and/or their inverses.
 - b) (5') Suppose that F is the exponential distribution with mean 500,000 (hours). Sample 10,000 memory bank lifetimes using the expression from part a). Estimate the mean memory bank lifetime and give a 99% confidence interval for it.
 - c) (5') If we didn't use a redundant system, we might instead use 4 memory units and the bank would fail when the first of those failed. Find the expected lifetime of such a system without redundancy and give a 99% confidence interval. The redundant system takes 1.25 times as many memory units. Does it last at least 1.25 times as long on average?
 - d) (5') Compare the speed of sampling by inversion with that of generating 5 exponential variables, sorting them and picking out the second smallest.
- 4. For acceptance-rejection sampling,
 - a) (5') Show that the ratio f(x)/g(x) of N(0,1) to Cauchy densities is maximized at $x=\pm 1$.
 - b) (5') Can we use acceptance-rejection with proposals from N(0,1) to sample from Cauchy distribution? Explain why or why not.