A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration

- S. Schirm^{1*}, C. Engel¹, M. Loeffler¹, M. Scholz^{1,2}
- 1 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- 2 LIFE Research Center of Civilization Diseases, University of Leipzig, Germany
- * E-mail: sibylle.schirm@imise.uni-leipzig.de

A Supplement Material

A.1 Important Model Variables and Mechanisms

Here, we briefly describe all major model variables and mechanisms of the cell kinetic model. We also provide all equations necessary to run the model. Since the presented model is closely related to a former model of granulopoiesis proposed by our group, details of regulation principles can be found in [1].

A.2 Cell Kinetic Model

Amplification Splitting

Influx and efflux of cells of a compartment were amplified so that the product equals the over-all amplification $(A_X^{\text{in}}(t) \cdot A_X^{\text{out}}(t) = A_X(t))$. The effect is a delayed reaction of efflux and compartment size to changes in amplification rates. It applies to all compartments with amplification, namely BE, CE, and MEB. See [1] for details.

Self renewal probability p

According to [2], this stem cell quantity is regulated by the demand of the hematopoietic bone marrow system.

$$p = F(C_S^{\text{rel}}(t), C_E^{\text{rel}}(t), C_G^{\text{rel}}(t), p_\delta, \theta_E, \theta_G, \theta_S).$$

The effect of granulopoiesis is assumed to be constant, i.e. for the present model it holds that $C_G^{\text{rel}}(t) = 1$. The parameters θ_E , θ_G , and θ_S are hypothetical weighting factors representing the influence of the com-

Table A.1. variables

quantity	meaning	type/calculation
C_X	content of compartment X function of time t	01 /
C_X^{nor}	content of compartment X in steady state	parameter, in general we set
\circ_X	(normal value)	$C_X(0) = C_X^{nor}$
C_X^{rel}	content of compartments X relative	$C_X^{rel}(t) = \frac{C_X(t)}{C_X^{nor}}$
\circ_X	-	$C_X(t) = \frac{C_X^{nor}}{C_X^{nor}}$
ovin.	to normal value	
C_X^{in}	influx in compartment X	function of time
$C_X^{in_nor}$	normal influx	parameter, see above
C_X^{in} $C_X^{in_nor}$ C_X^{out} $C_X^{out_nor}$	efflux from compartment X	function of time
$C_X^{out_nor}$	normal efflux	parameter, see above
a_X	proliferative fraction in cell compartment X	function of state, sometimes
		constant
A_X	amplification in cell compartment X	"
A_X^{in}	amplification of influx	"
$A_X^{in} \ A_X^{in}$	amplification of effflux	"
n_X	average number of mitoses	$n_X = \operatorname{ld} A_X$
	in cell compartment X	
p	self-renewal probability of stem cells	function of state
$ au_X$	average duration of cell cycle	function of time, sometimes
	in compartment X	constant (not regulated)
T_X	average transit time of active cells in cell	$T_X = n_X \tau_X$
71	compartment X	A
T_X^t	total transit time	$T_X^t = \frac{n_X \tau_X}{a_X}$
k	transition, degradation or toxicity coefficients	functions of time or parameter
Y^{min}	quantity Y under minimum stimulation	parameter to determine the
1	quantity i under imminum stimulation	regulatory function of Y
Y^{nor}	quantity V in steady state	"
$\overset{I}{Y}^{int}$	quantity Y in steady state	77
Y^{max}	quantity Y under intensified stimulation	"
	quantify Y under maximum stimulation	"
b_Y	sensitivity of Y under stimulation	

partments E, G, and S [1,2]. According to [2], it is assumed that

See also [1] for details.

$$\begin{split} p_{\delta} &= p^{nor} - p^{min} = p^{max} - p^{nor} \\ \theta_S(t) &= \begin{cases} \frac{2}{C_S^{\text{rel}}(t)^{0.6}} & \text{for } C_S^{\text{rel}}(t) \leq 1 \\ 2 & \text{for } C_S^{\text{rel}}(t) \leq 1 \end{cases} \\ p &= p_{\delta} \tanh\left(-\theta_S(t)\left(C_S^{\text{rel}}(t) - 1\right) - \theta_E\left(C_E^{\text{rel}}(t) - 1\right) - \theta_G\left(C_G^{\text{rel}}(t) - 1\right)\right) + 0.5, \end{split}$$

assuming $C_G^{\text{rel}}(t) = 1$ we have

$$p = p_{\delta} \tanh \left(-\theta_S(t) \left(C_S^{\text{rel}}(t) - 1\right) - \theta_E(t) \left(C_E^{\text{rel}}(t) - 1\right)\right) + 0.5.$$

Proliferative Fraction a_X

The proliferative fraction can be interpreted as the percentage of cells which are currently in cell cycle. These quantities are regulated by the bone marrow content.

$$a_X = F(C_S^{\text{rel}}(t), C_E^{\text{rel}}(t), C_G^{\text{rel}}(t), a_X^{\min}, a_X^{\text{nor}}, a_X^{\text{int}}, a_X^{\max}, \omega_E, \omega_G, \omega_S),$$

The parameters ω are again weighting factors.

$$x = \omega_E \ln C_E^{\text{rel}}(t) + \omega_G \ln C_G^{\text{rel}}(t)$$

$$+ \omega_S \begin{cases} \ln C_S^{\text{rel}}(t), & \text{for } C_S^{\text{rel}} \le 1 \\ C_S^{\text{rel}}(t) - 1, & \text{for } C_S^{\text{rel}} > 1 \end{cases}$$
(A.1)

$$y = -\frac{1}{2\ln 2} \left(\ln \left(\frac{a_X^{\text{int}} - a_X^{\text{max}}}{a_X^{\text{min}} - a_X^{\text{int}}} \right) - \ln \left(\frac{a_X^{\text{nor}} - a_X^{\text{max}}}{a_X^{\text{min}} - a_X^{\text{nor}}} \right) \right) x$$
$$+ \frac{1}{2} \ln \left(\frac{a_X^{\text{nor}} - a_X^{\text{max}}}{a_X^{\text{min}} - a_X^{\text{nor}}} \right)$$

$$a_{X} = \begin{cases} \frac{a_{X}^{\max} e^{-y} + a_{X}^{\min} e^{y}}{e^{-y} + e^{y}} & \text{for } a_{X}^{\min} < a_{X}^{\text{nor}} < a_{X}^{\text{int}} < a_{X}^{\max} \\ a_{X}^{\text{nor}} & \text{for } a_{X}^{\min} = a_{X}^{\text{nor}} = a_{X}^{\text{int}} = a_{X}^{\max} \end{cases}.$$

Thus, the proliferative fraction is a monotone function ranging between a_X^{\min} and a_X^{\max} . Low cell numbers in the bone marrow compartments cause a higher demand of proliferating cells and therefore a larger

proliferative fraction a_X . With the assumption $C_G^{\text{rel}}(t) = 1$, equation A.1 reads

$$x = \omega_E \ln C_E^{\text{rel}}(t) + \omega_S \begin{cases} \ln C_S^{\text{rel}}(t), & \text{for } C_S^{\text{rel}} \le 1 \\ \\ C_S^{\text{rel}}(t) - 1, & \text{for } C_S^{\text{rel}} > 1 \end{cases}$$

The value y defines the actual point at the regulatory curve. The variable x represents some kind of weighted logarithmic relative system size. The proliferative fraction a^{int} corresponds to $x = -\ln 2$ and a^{nor} corresponds to x = 0. See [1] for further details.

Stem cell compartment S

The stem cell compartment S has self-renewal capability. Under steady state conditions, 50% of the cells which arise from S remain in this compartment, the others feed the BE compartment.

$$\frac{d}{dt}C_S = (2p-1)C_S \frac{a_S}{\tau_S} - \Psi_S \cdot C_S \tag{A.2}$$

$$C_S^{\text{out}} = 2(1-p)C_S \frac{a_S}{\tau_S} \tag{A.3}$$

where Ψ_S is the summarized chemotherapy function. It holds that $p^{\text{nor}} = \frac{1}{2}$. Thus, for the initial conditions it holds that

$$C_S(0) = C_S^{\text{nor}} = 1 \tag{A.4}$$

$$C_S^{\text{out}}(0) = C_S^{\text{out_nor}} = 2(1 - p^{\text{nor}})C_S^{\text{nor}} \frac{a_S^{\text{nor}}}{\tau_S}. \tag{A.5}$$

Compartment BE

$$\frac{d}{dt}C_{\rm BE} = \alpha_E C_S^{\rm out} A_{\rm BE}^{\rm in} - C_{\rm BE} \frac{a_{\rm BE}}{\tau_{\rm BE}} - \Psi_{\rm BE} \cdot C_{\rm BE}$$
$$C_{\rm BE}^{\rm out} = C_{\rm BE} A_{\rm BE}^{\rm out} \frac{a_{\rm BE}}{T_{\rm BE}}$$

with the initial conditions

$$\begin{split} C_{\mathrm{BE}}(0) &= C_{\mathrm{BE}}^{\mathrm{nor}} = \alpha_E C_S^{\mathrm{out_nor}} A_{\mathrm{BE}}^{\mathrm{in_nor}} \frac{T_{\mathrm{BE}}^{\mathrm{nor}}}{a_{\mathrm{BE}}^{\mathrm{nor}}} \\ C_{\mathrm{BE}}^{\mathrm{out_nor}} &= C_{\mathrm{BE}}^{\mathrm{nor}} A_{\mathrm{BE}}^{\mathrm{out_nor}} \frac{a_{\mathrm{BE}}^{\mathrm{nor}}}{T_{\mathrm{BE}}^{\mathrm{nor}}} \\ &= \alpha_E C_S^{\mathrm{out_nor}} A_{\mathrm{BE}}^{\mathrm{nor}}. \end{split}$$

Compartment CE

$$\begin{split} A_{\rm CE} &= Z(C_{EPO}^{\rm rel}) \\ \frac{d}{dt} C_{\rm CE} &= C_{\rm BE}^{\rm out} A_{\rm CE}^{\rm in} - C_{\rm CE} \frac{a_{\rm CE}}{T_{\rm CE}} - \Psi_{\rm CE} \cdot C_{\rm CE} \\ C_{\rm CE}^{\rm out} &= C_{\rm CE} A_{\rm CE}^{\rm out} \frac{a_{\rm CE}}{T_{\rm CE}}. \end{split}$$

We assume $a_{\rm CE} = 1$. Thus,

$$\begin{split} C_{\mathrm{CE}}(0) &= C_{\mathrm{CE}}^{\mathrm{nor}} = C_{\mathrm{BE}}^{\mathrm{out_nor}} A_{\mathrm{CE}}^{\mathrm{in_nor}} T_{\mathrm{CE}}^{\mathrm{nor}} \\ C_{\mathrm{CE}}^{\mathrm{out}}(0) &= C_{\mathrm{CE}}^{\mathrm{out_nor}} = C_{\mathrm{BE}}^{\mathrm{out_nor}} A_{\mathrm{CE}}^{\mathrm{nor}}. \end{split}$$

Compartment PEB

$$\begin{split} A_{\text{PEB}} &= Z(C_{EPO}^{\text{rel}}) \\ &\frac{d}{dt}C_{\text{PEB}} = C_{\text{CE}}^{\text{out}}A_{\text{PEB}}^{\text{in}} - C_{\text{PEB}}\frac{a_{\text{PEB}}}{T_{\text{PEB}}} - \Psi_{\text{PEB}} \cdot C_{\text{PEB}} \\ &C_{\text{PEB}}^{\text{out}} = C_{\text{PEB}}A_{\text{PEB}}^{\text{out}}\frac{a_{\text{PEB}}}{T_{\text{PEB}}}. \end{split}$$

We assume $a_{PEB} = 1$. Thus,

$$\begin{split} C_{\mathrm{PEB}}(0) &= C_{\mathrm{PEB}}^{\mathrm{nor}} = C_{\mathrm{CE}}^{\mathrm{out_nor}} A_{\mathrm{PEB}}^{\mathrm{in_nor}} \frac{T_{\mathrm{PEB}}^{\mathrm{nor}}}{a_{\mathrm{PEB}}^{\mathrm{nor}}} \\ C_{\mathrm{PEB}}^{\mathrm{out}}(0) &= C_{\mathrm{PEB}}^{\mathrm{out_nor}} = C_{\mathrm{CE}}^{\mathrm{out_nor}} A_{\mathrm{PEB}}^{\mathrm{nor}}. \end{split}$$

Compartment MEB

The maturation is modeled by splitting MEB into $N_{\rm MEB}=15$ subcompartments without amplification.

$$\begin{split} T_{\text{MEB}} &= Z(C_{EPO}^{\text{rel}}) \\ C_{\text{MEB}} &= \sum_{i=1}^{N_{\text{MEB}}} C_{\text{MEB}_i} \\ \frac{d}{dt} C_{\text{MEB}_1} &= C_{\text{PEB}}^{\text{out}} - C_{\text{MEB}_1} \frac{N_{\text{MEB}}}{T_{\text{MEB}}} - \Psi_{\text{MEB}} \cdot C_{\text{MEB}_1} \\ \frac{d}{dt} C_{\text{MEB}_i} &= C_{\text{MEB}_{i-1}}^{\text{out}} - C_{\text{MEB}_i} \frac{N_{\text{MEB}}}{T_{\text{MEB}}} - \Psi_{\text{MEB}} \cdot C_{\text{MEB}_i}, \quad i = 2, \dots, N_{\text{MEB}} \\ C_{\text{MEB}}^{\text{out}} &= C_{\text{MEB}_i} \frac{N_{\text{MEB}}}{T_{\text{MEB}}}, \quad i = 1, \dots, N_{\text{MEB}} \\ C_{\text{MEB}}^{\text{out}} &= C_{\text{MEB}_{N_{\text{MEB}}}}^{\text{out}}, \end{split}$$

with the initial values

$$\begin{split} C_{\text{MEB}}(0) &= C_{\text{MEB}}^{\text{nor}} = C_{\text{PEB}}^{\text{out_nor}} T_{\text{MEB}}^{\text{nor}} \\ C_{\text{MEB}_i}(0) &= C_{\text{MEB}_i}^{\text{nor}} = C_{\text{PEB}}^{\text{out_nor}} \frac{T_{\text{MEB}}^{\text{nor}}}{N_{\text{MEB}}}, \quad i = 1, \dots, N_{\text{MEB}} \\ C_{\text{MEB}_i}^{\text{out}}(0) &= C_{\text{MEB}_i}^{\text{out_nor}} = C_{\text{MEB}_i}^{\text{nor}} \frac{N_{\text{MEB}}}{T_{\text{MEB}}^{\text{nor}}} = C_{\text{PEB}}^{\text{out_nor}}, \quad i = 1, \dots, N_{\text{MEB}} \\ C_{\text{MEB}}^{\text{out}}(0) &= C_{\text{MEB}}^{\text{out_nor}} = C_{\text{MEB}_{N_{\text{MEB}}}}^{\text{out_nor}} = C_{\text{PEB}}^{\text{out_nor}}. \end{split}$$

Compartment RET

$$\begin{split} T_{\text{RET}} &= T_{\text{MEB}}^{\text{nor}} + T_{\text{RET}}^{\text{nor}} - T_{\text{MEB}} \\ \frac{d}{dt} C_{\text{RET}} &= C_{\text{MEB}}^{\text{out}} - \frac{C_{\text{RET}}}{T_{\text{RET}}} \\ C_{\text{RET}}^{\text{out}} &= \frac{C_{\text{RET}}}{T_{\text{RET}}} \\ C_{\text{RET}}(0) &= C_{\text{RET}}^{\text{nor}} = C_{\text{ERY}}^{\text{nor}} \frac{q_{\text{RET}}}{1 - q_{\text{RET}}} \\ C_{\text{RET}}(0) &= C_{\text{RET}}^{\text{out}} = C_{\text{MEB}}^{\text{out}} \frac{q_{\text{RET}}}{1 - q_{\text{RET}}} \\ C_{\text{RET}}^{\text{out}}(0) &= C_{\text{RET}}^{\text{out}} = C_{\text{MEB}}^{\text{out}} - \text{nor} \\ T_{\text{RET}}^{\text{nor}} &= \frac{C_{\text{RET}}^{\text{nor}}}{C_{\text{Cut}}^{\text{nor}}} = \frac{q_{\text{RET}}}{1 - q_{\text{RET}}} \left(\left(1 - s_{\text{ERY}}^{\text{nor}} \right) T_{\text{ERY}} - \text{rnd} + s_{\text{ERY}}^{\text{nor}} T_{\text{ERY}} - \text{age} \right). \end{split}$$

 q_{RET} is the ratio of reticulocytes to the total number of red blood cells in steady state. $s_{\text{ERY}}^{\text{nor}}$, $T_{\text{ERY_rnd}}$, and $T_{\text{ERY_age}}$ are explained in the next section.

Compartment ERY

The compartment ERY is split into the subcompartments "RANDOM" and "AGE". In steady state, most erythrocytes die dependent on age. The age dependent reduction is modeled by division into subcompartments. Under stimulation, the apoptosis is more randomly (see [3]). To model this observation, the influxes into the subcompartments "RANDOM" and "AGE" are regulated by the factor s_{ERY} , which depends on the bone marrow output of the reticulocytes. $T_{\text{ERY_rnd}}$, and $T_{\text{ERY_age}}$ are the corresponding transition times of these compartments (see [1–4] for details.)

$$s_{\text{ERY}} = \exp\left(\left(\frac{C_{\text{RET}}^{\text{out}}}{C_{\text{RET}}^{\text{out,nor}}}\right)^2 \ln s_{\text{ERY}}^{\text{nor}}\right)$$

$$C_{\text{ERY}} = C_{\text{ERY_age}} + C_{\text{ERY_rnd}}$$

$$C_{\text{ERY_age}} = \sum_{i=1}^{N_{\text{ERY}}} C_{\text{ERY_age_i}}$$

$$\frac{d}{dt} C_{\text{ERY_age_i}} = s_{\text{ERY}} C_{\text{RET}}^{\text{out}} - C_{\text{ERY_age_i}} \frac{N_{\text{ERY}}}{T_{\text{ERY_age}}}$$

$$\frac{d}{dt} C_{\text{ERY_age_i}} = C_{\text{ERY_age_(i-1)}}^{\text{out}} - C_{\text{ERY_age_i}}^{\text{out}}, \quad i = 2, \dots, N_{\text{ERY}}$$

$$C_{\text{ERY_age_i}}^{\text{out}} = C_{\text{ERY_age_i}} \frac{N_{\text{ERY}}}{T_{\text{ERY_age}}}$$

$$\frac{d}{dt} C_{\text{ERY_rnd}} = (1 - s_{\text{ERY}}) C_{\text{RET}}^{\text{out}} - C_{\text{ERY_rnd}} \frac{1}{T_{\text{ERY_rnd}}},$$

with initial conditions

$$\begin{split} C_{\text{ERY}}(0) &= C_{\text{ERY}}^{\text{nor}} = C_{\text{ERY_age}}^{\text{nor}} + C_{\text{ERY_rnd}}^{\text{nor}} \\ C_{\text{ERY_age}}(0) &= C_{\text{ERY_age}}^{\text{nor}} = \sum_{i=1}^{N_{\text{ERY_age_}i}} C_{\text{ERY_age_}i}^{\text{nor}} = s_{\text{ERY}}^{\text{nor}} C_{\text{RET}}^{\text{out_nor}} T_{\text{ERY_age}} \\ C_{\text{ERY_age_}1}(0) &= C_{\text{ERY_age_}1}^{\text{nor}} = s_{\text{ERY}}^{\text{nor}} C_{\text{RET}}^{\text{out_nor}} \frac{T_{\text{ERY_age}}}{N_{\text{ERY}}} \end{split}$$

$$\begin{split} C_{\mathrm{ERY_age_}i}(0) &= C_{\mathrm{ERY_age_}i}^{\mathrm{nor}} = C_{\mathrm{ERY_age_}i-1}^{\mathrm{out_nor}} \frac{T_{\mathrm{ERY_age}}}{N_{\mathrm{ERY}}}, \quad i = 2, \dots, N_{\mathrm{ERY}} \\ &= s_{\mathrm{ERY}}^{\mathrm{nor}} C_{\mathrm{RET}}^{\mathrm{out_nor}} \frac{T_{\mathrm{ERY_age_}i-1}}{N_{\mathrm{ERY}}}, \quad i = 1, \dots, N_{\mathrm{ERY}} \\ C_{\mathrm{ERY_age_}i}^{\mathrm{out_nor}}(0) &= C_{\mathrm{ERY_age_}i}^{\mathrm{out_nor}} = C_{\mathrm{ERY_age_}i}^{\mathrm{nor}} \frac{N_{\mathrm{ERY}}}{T_{\mathrm{ERY_age}}} = s_{\mathrm{ERY}}^{\mathrm{nor}} C_{\mathrm{RET}}^{\mathrm{out_nor}} \\ C_{\mathrm{ERY_rnd}}(0) &= C_{\mathrm{ERY_rnd}}^{\mathrm{nor}} = (1 - s_{\mathrm{ERY}}^{\mathrm{nor}}) C_{\mathrm{RET}}^{\mathrm{out_nor}} T_{\mathrm{ERY_{rnd}}} \end{split}$$

Endogenous production of EPO

The endogenous production of EPO (EPO_{prod}) is assumed to be dependent on the tissue oxygen tension in the kidneys and the number of circulating red blood cells (see [4, 5]). Pantel [4] and Wichmann [5] proposed the following model of this process.

Table A.2. Variables for endogenous EPO production

meaning	type/calculation	
tissue oxygen tension in kidneys	function of time	[4, 5]
normal value of tissue oxygen tension		[4, 5]
in kidneys		
tissue saturation of oxygen	function of time	[4, 5]
normal tissue saturation of oxygen	constant	[4, 5]
partial oxygen pressure corresponding	26.5 mm Hg	[4, 5]
to $S_{O_2}^t = 50\%$		
arterial oxygen tension, normal value	97 mm Hg	[4, 5]
desaturation of HB (arteriovenous	20 %	[4, 5]
difference), normal value		
Hill coefficient	2.65	[4, 5]
maximum EPO production	200 (set)	[4, 5]
sensitivity of EPO production to changes in $P_{O_2}^t$	$\ln 200 \text{ (set)}$	[4, 5]
	tissue oxygen tension in kidneys normal value of tissue oxygen tension in kidneys tissue saturation of oxygen normal tissue saturation of oxygen partial oxygen pressure corresponding to $S_{O_2}^t=50\%$ arterial oxygen tension, normal value desaturation of HB (arteriovenous difference), normal value Hill coefficient	tissue oxygen tension in kidneys function of time normal value of tissue oxygen tension in kidneys tissue saturation of oxygen function of time normal tissue saturation of oxygen constant partial oxygen pressure corresponding to $S_{O_2}^t = 50\%$ arterial oxygen tension, normal value 97 mm Hg desaturation of HB (arteriovenous 20 % difference), normal value Hill coefficient 2.65 maximum EPO production 200 (set)

$$P_{O_2}^t = P_{50} \cdot \left(\frac{S_{O_2}^t}{100 - S_{O_2}^t}\right)^{\frac{1}{\gamma}}$$
(Hill equation) (A.6)

$$S_{O_2}^t = \frac{100}{\left(\frac{P_{50}}{P_{O_2}^{A,\text{nor}}}\right)^{\gamma} + 1} - \Delta SO_2 \cdot \frac{RET^{\text{nor}} + ERY^{\text{nor}}}{C_{\text{RET}} + C_{\text{ERY}}}$$
(A.7)

$$S_{O_2}^{t\text{-nor}} = \frac{100}{\left(\frac{P_{50}}{P_{O_2}^{A\text{-nor}}}\right)^{\gamma} + 1} - \Delta SO_2 \tag{A.8}$$

$$P_{O_2}^{t_nor} = P_{50} \cdot \left(\frac{S_{O_2}^{t_nor}}{100 - S_{O_2}^{t_nor}}\right)^{\frac{1}{\gamma}}$$
(A.9)

Define
$$f = \frac{P_{O_2}^t}{P_{O_2}^{t,\text{nor}}}$$
, we assume

$$EPO_{prod} = P_{max}^{endo} \cdot e^{-b_{EPO} \cdot f}$$
 [4] (A.10)
$$EPO_{prod}(0) = 1.$$

For further explanations and justifications, see [4,5].

A.3 List of Model Parameters

	1			
parameter	value			
q_{RET}	0.016		set	r - 1
$T_{ m ERY}^{ m rnd}$	1020.4	h	set	[6]
$T_{ m ERY}^{ m age}$	3061.2	h	set	[6]
$s_{ m ERY}^{ m nor}$	0.900		set	[4], p. 40
$N_{ m ERY}$	10.0		set	[4], p. 41
HCT^{nor}	0.430		set	
ERY^{nor}	4.50		set	
RET^{nor}	100	$x1000/\mu l$	set	
$\mathrm{RET\%}^{\mathrm{nor}}$	9.50		set	
$\mathrm{HB}^{\mathrm{nor}}$	13.5		set	
$P_{\mathrm max}^{\mathrm{endo}}$	200		set	[4]
$b_{ m EPO}$	5.30		fitted	
$\mathrm{EPO}_{\mathrm{Vc}}$	0.0320	l/kg	set	[7]
EPO_{serum}	15	IU/l	set	[7]
$a_{ m BE}^{ m min}$	0.30		set	[2], p. 71
$a_{ m BE}^{ m nor}$	0.33		set	[2], p. 71
$a_{ m BE}^{ m int}$	0.66		set	[2], p. 71
$a_{ m BE}^{ m max}$	1.00		set	[2], p. 71
α_G	0.8		set	[2], p. 73
α_E	0.15		set	[2], p. 73
S^{nor}	1		set	
$ au_S$	8		set	[2], p. 70
a_S^{\min}	0.01		set	[2], p. 70
p_{δ}	0.1		set	[2], p. 70
$a_S^{ m nor}$	0.15		set	[2], p. 70
$a_S^{ m int}$	0.45		set	[2], p. 70
$a_S^{ m max}$	1		set	[2], p. 70
w_E	0.3		set	[2], p. 70
w_G	0.1		set	[2], p. 70
w_S	1		set	[2], p. 70
ϑ_E	-2		set	[2], p. 70
ϑ_G	-8		set	[2], p. 70

Table A.3. EPO PK/PD parameters

Alfa, Be	ta, Delta, er	Darbepoe	tin Alfa				
$k_{ m el}$	0.102		fitted		0.062	fitted	
k_{12}	0.079		fitted		0.294	fitted	
k_{21}	0.084		fitted		0.291	fitted	
$k_{\rm on}$	0.070		set	[7]	0.043	fitted	
$k_{ m off}$	14.27		set	[7]	9.62	fitted	
R_0	64.31		set	[7]	64.31	set	
$k_{ m int}$	2		set	[7]	1.14	fitted	
k_{deg}	0.101		set	[7]	0.116	fitted	
$w_{ m RET}$	0.05		set	[.]	0.05	set	
w_{MEB}	0.087		fitted		0.125	fitted	
w_{PEB}	0.293		fitted		0.509	fitted	
$w_{\rm CE}$	3.84		fitted		2.69	fitted	
$w_{ m BE}$	0.0881		fitted		0.111	fitted	
$k_{\rm on}/k_{\rm off}$	0.004875		nood		0.004453	nood	
Mon/Mon	0.001010				0.001100		
Fimin		,	01		1010	01	
T_{BE}^{min}	155.7	h	fitted	F 0.7	124.6	fitted	
T_{BE}^{nor}	40	h	set	[6]	40	set	
T_{BE}^{max}	28.60	h	fitted		34.22	fitted	
T^b_{BE}	1.134		fitted		3.559	fitted	
A_{BE}^{min}	25.04		fitted		47.10	fitted	
A_{BE}^{nor}	64		set	[6]	64	set	
$A_{ar{B}E}^{max}$	194.7		fitted		115.5	fitted	
A^b_{BE}	2.321		fitted		0.1659	fitted	
A_{CE}^{min}	0.9645		fitted		0.5717	fitted	
A_{CE}^{nor}	32		set	[6]	32	set	
A_{CE}^{max}	104.7		fitted		127.8	fitted	
A_{CE}^{b}	0.0438		fitted		0.3956	fitted	
T_{CE}^{min}	186.7	h	fitted		387.3	fitted	
T_{CE}^{nor}	40	h	set	[6]	40	set	
T_{CE}^{max}	15.25	h	fitted		36.23	fitted	
T_{CE}^{b}	0.3920		fitted		0.1305	fitted	
T_{PEB}^{min}	99.25	h	fitted		178.4	fitted	
T_{PEB}^{nor}	48	h	set		48	set	
T_{PEB}^{max}	8.809	h	fitted		15.74	fitted	
T_{PEB}^{b}	1.301		fitted		1.847	fitted	
A_{PEB}^{min}	0.6862		fitted		0.8078	fitted	
A_{PEB}^{nor}	64		set	[6]	64	set	
A_{PEB}^{max}	75.38		fitted		139.6	fitted	
$A_{PEB}^{\dot{b}}$	0.4135		fitted		0.1331	fitted	
T_{MEB}^{min}	144.8	h	fitted		186.7	fitted	
T_{MEB}^{nor}	100.2	h	fitted		100.2	fitted	
T_{MEB}^{mea}	90.17	h	fitted		26.98	fitted	
$T_{MEB}^{^{MEB}}$	0.5395		fitted		0.1965	fitted	
W LD							

Table A.4. EPO absorption parameters after subcutaneous injection (fitted)

	Alfa,	Alfa,	Alfa,	Alfa,	Beta,	Beta,	Beta,	Delta	Darb-
	abdomen,	fore-	shoulder	$_{ m thigh}$	abdomen	$_{ m thigh}$	fore-		epoetin
	upper	arm					arm		Alfa
	arm								
k_a^F	0.5320	0.7786	0.7119	0.7374	0.3747	0.4528	0.4077	0.6657	3.0148
k_e^F	0.2713	0.1337	0.1263	0.3295	0.1062	0.0656	0.1873	0.1517	0.1938
$k_a^F \ k_e^F \ k_{Delay}^L$	0.0390	0.0510	0.1460	0.0298	0.0699	0.0410	0.0476	0.2367	0.0241
k_a^L	0.1172	0.0901	0.1326	0.1588	0.2309	0.2024	0.4687	0.1065	1.1192
k_e^L	0.4334	0.4904	0.4066	0.4343	0.0950	0.0557	0.1587	0.3321	0.1769
k_a^L k_e^L k_{Delay}^F	0.3275	0.3259	0.6029	0.1626	0.3705	0.2078	0.2819	0.7508	0.1161
k_{FL}	1.0074	3.6252	3.9596	0.7213	1.2138	1.0453	1.1987	3.4461	5.5404

 Table A.5. Toxicity parameters of Chemotherapies

drug or drug combination	Therapy	FC	Delay	S	BE	CE	PEB	MEB	RET
Cyclophosphamid 650 mg/ m^2 Doxorubicin 25 mg/ m^2	BEACOPP	1.111	0.064	0.001	0.000	0.000	0.005	0.000	0.002
Cyclophosphamid $750 \text{ mg/}m^2$ Doxorubicin $50 \text{ mg/}m^2$	СНОР	1.111	0.064	0.216	0.000	0.017	0.006	0.117	0.036
Cyclophosphamid 1250 mg/ m^2 Doxorubicin 35 mg/ m^2	BEACOPP escalated	1.111	0.064	0.212	0.001	0.001	0.016	0.030	0.021
Cyclophosphamid $1400 \text{ mg/}m^2$ Doxorubicin $32.5 \text{ mg/}m^2$	high CHOEP	1.111	0.064	0.194	0.002	0.021	0.063	0.117	0.067
Etoposid $100 \text{ mg/}m^2$	СНОЕР	1.097	0.068	0.000	0.000	0.000	0.041	0.000	0.011
Etoposid $200 \text{ mg/}m^2$	BEACOPP escalated	1.097	0.068	0.000	0.000	0.000	0.057	0.013	0.020
Etoposid $175 \text{ mg/}m^2$	high CHOEP	1.097	0.068	0.024	0.001	0.000	0.044	0.000	0.026
Procarbazine $100 \text{ mg/}m^2$	BEACOPP escalated, BEACOPP	1.092	0.013	0.002	0.011	0.004	0.013	0.000	0.000
Bleomycin $10 \text{ mg/}m^2$	BEACOPP escalated, BEACOPP	1.323	0.003	0.012	0.010	0.011	0.001	0.030	0.000
Platinum Etoposide	Platinum + Etoposide	1.000	1.219	0.338	0.011	0.002	0.008	0.007	0.000
Paclitaxel 225 mg/m ²	ETC	1.050	0.017	0.246	0.000	0.436	1.748	0.000	0.096
Cyclophosphamid $2500 \text{ mg/}m^2$	ETC	1.005	0.064	0.199	0.033	0.056	0.059	0.000	0.267
Epirubicin $150 \text{ mg/}m^2$	ETC	1.988	0.045	0.003	0.005	1.506	2.909	0.022	3.273
Cyclophosphamid $600 \text{ mg/}m^2$	ECT	1.005	0.064	0.199	0.003	0.008	0.016	0.000	0.045
Epirubicin $90 \text{ mg/}m^2$	ECT	1.988	0.045	0.000	0.000	0.041	0.179	0.001	0.174
Paclitaxel $175 \text{ mg/}m^2$	ECT	1.050	0.017	0.000	0.000	0.167	0.113	0.000	0.040

Table A.6. Derived quantities based on parameters of the injection model

		bioavailability
Alfa	abdomen, upper arm	0.4123
Alfa	shoulder	0.3513
Alfa	forearm	0.2957
Alfa	thigh	0.5204
Beta	abdomen	0.7286
Beta	thigh	0.8137
Beta	forearm	0.7266
Delta		0.3524
Darbepoetin		0.8914

A.4 Sensitivity Analysis of Model Parameters

We analyzed the sensitivity of the model parameters in the following way. The parameters were increased or decreased by 2.5~% and the change of the sum of the fitness functions as percentage is plotted as bar diagrams. Values of the fitness functions of different scenarios are added.

Figure 1. Sensitivity of parameters used for EPO Alfa, Beta, Delta, and Darbepoetin Alfa

Figure 2. Sensitivity of the PK/PD parameters of EPO Alfa, Beta, Delta

Figure 3. Sensitivity of the PK/PD parameters for Darbepoetin.

Figure 4. Sensitivity of the different parameters for subcutaneous injection of EPO Alfa, Beta, Delta

Figure 5. Sensitivity of toxicity parameters for BEACOPP chemotherapy

Figure 6. Sensitivity of toxicity parameters for BEACOPP escalated chemotherapy

Figure 7. Sensitivity of toxicity parameters for CHOP chemotherapy

Figure 8. Sensitivity of toxicity parameters for etoposide

Figure 9. Sensitivity of toxicity parameters for high-CHOEP chemotherapy

Figure 10. Sensitivity of toxicity parameters for ETC chemotherapy

Figure 11. Sensitivity of toxicity parameters for EC-T chemotherapy

Figure 12. Sensitivity of toxicity parameters for the chemotherapy Platinum plus Etoposide

Figure 13. Z-functions of the amplifications in compartments BE, CE, PEB and the transition times in BE, CE, PEB, MEB

A.5 Simulation

Figure 14. Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [8]

Figure 15. Serum concentration of erythropoietin (simulation and data), data: [9]

Figure 16. Serum concentration of erythropoietin (simulation and data), data: [10,11]

Figure 17. Serum concentration of erythropoietin and reticulocytes %, simulation (black line) and data (circle), data: [12]

Figure 18. Serum concentration of erythropoietin, HB value, RBC, and reticulocytes %, simulation (black line) and data (circle), data: [7]

Figure 19. Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [13]

Figure 20. Serum concentration of erythropoietin, HB and HCT value, simulation (black line) and data (circle), data: [14], [15], only from subjects with baseline HCT of less than 48%. If the HCT rose above 55%, phlebotomy was performed.

Figure 21. Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [16]

Figure 22. Serum concentration of erythropoietin, HB, RBC, reticulocytes % and HCT, simulation (black line) and data (circle), data: [17]

Figure 23. HB, reticulocytes %, Serum concentration of erythropoietin and HCT, simulation (black line) and data (circle), data: [18]

Figure 24. Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [19]

Figure 25. HB value simulation (black line) and data (circle), percentile 25, 75 (grey line), data: [20–22]

Figure 26. HB value, simulation (black line) and data (circle), data: [23]

References

- Scholz M, Engel C, Loeffler M (2005) Modelling human granulopoiesis under polychemotherapy with g-csf support. J Math Biol 50: 397–439.
- 2. Wichmann H, Loeffler M (1985) Mathematical modeling of cell proliferation: Stem cell regulation in hemopoiesis, Vol. 1, 2. CRC Press.
- Loeffler M, Pantel K, Wulff H, Wichmann H (1989) A mathematical model of erythropoiesis in mice and rats. part 1: Structure of the model. Cell Tissue Kinet 22: 13–30.
- 4. Pantel K (1987) Erweiterung eines kybernetischen Modelles der Erythropoese und dessen Anwendung für normale und pathologische Mäuse. Dissertation, Universität zu Köln (in German).
- Wichmann H (1983) Computer modeling of erythropoiesis. In: Current Concepts in Erythropoiesis,
 Chapter V., John Wiley and Sons.
- 6. Franke M, Schmitz S (1993) Modell Mensch aus Übersicht über die Modelle zur Hämatopoese 1979-1993. Universität zu Köln.
- Krzyzanski W, Wyska E (2008) Pharmacokinetics and pharmacodynamics of erythropoietin receptor in healthy volunteers. Naunyn-Schmiedeberg's Arch Pharmacol 377: 637–645.
- 8. Flaharty K, Caro J, Erslev A, Whalen J (1990) Pharmakokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin Pharmacol Ther 47: 557–564.
- 9. Markham A, Bryson H (1995) Epoetin alfa. a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in nonrenal applications. Drugs 49: 232–254.
- Hayashi N, Kinoshita H, Yukawa E, Higuchi S (1998) Pharmacokinetic analysis of subcutaneous erythropoietin administration with nonlinear mixed effect model including endogenous production (7). Br J Clin Pharmacol 46: 11–19.
- 11. Jensen J, Madsen J, Jensen L, Pedersen E (1994) Reduction absorption and elimination of erythropoietin in uremia compared with healthy volunteers. J Am Soc Nephrol 5: 177–185.

- 12. Cheung W, Goon B, Guilfoyle M, Wachholtz M (1998) Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther 8: 309–317.
- 13. McMahon F, Vargas R, Ryan M, Jain A, Abels R, et al. (1990) Pharmacokinetics and effects of recombinant human erythropoietin after intravenous and subcutaneous injections in healthy voluteers. Blood 76: 1718–1722.
- 14. Goldberg M (1995) Erythropoesis, erythropoetin, and iron metabolism in elective surgery: Preoperative strategies for avoiding allogeneic blood exposure. Am J Surg 170: 37S–43S.
- 15. Rutherford C, Schneider T, Dempsey H, Kirn D, Brugnara C, et al. (1994) Efficacy of different dosing regimens for recombinant human erythropoietin in a simulated perisurgical setting: The importance of iron availability in optimizing response. Am J Med 96: 139–145.
- 16. Agoram B, Sutjandra L, Sullivan J (2006) Population pharmacokinetics of darbepoetin alfa in healthy subjects. Br J Clin Pharmacol 63: 41–52.
- 17. Sörgel F, Thyroff-Friesinger U, Vetter A, Vens-Cappell B, Kinzig M (2009) Bioequivalence of hx575 (recombinant human epoetin alfa) and a comparator epoetin alfa after multiple subcutaneous administrations. Pharmacology 38: 122–130.
- 18. Smith W, Dowell J, Pratt R (2007) Pharmacokinetics and pharmacodynamics of epoetin delta in two studies in healthy volunteers and two studies in patients with chronic kidney disease. Clinical Therapeutics 29: 1368–1380.
- Togawa A, Tanaka T, Nagashima S, Keta H, Kobayashi Y, et al. (2004) A comparison of the bioequivalence of two formulations of epoetin alfa after subcutaneous injection. Br J Clin Pharmacol 58: 269–276.
- 20. Pfreundschuh M, Truemper L, Kloess M, Schmits R, Feller A, et al. (2004) 2-weekly or 3-weekly chop chemotherapy with or without etoposide for the treatment of young patients with good prognosis (normal ldh) aggressive lymphomas: results of the nhl-b1 trial of the dshnhl. Blood 104: 626–633.

- 21. Pfreundschuh M, Truemper L, Kloess M, Schmits R, Feller A, et al. (2004) 2-weekly or 3-weekly chop chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the nhl-b2 trial of the dshnhl. Blood 104: 634–641.
- 22. Pfreundschuh M, Zwick C, Zeynalova S, Dührsen U, Pflüger KH, et al. (2008) Dose-escalated choep for the treatment of young patients with aggressive non-hodgkin's lymphoma: 2. results of the randomized high-choep trial of the german high-grade non-hodgkin's lymphoma study group (dshnhl). Ann Oncol 19: 545–552.
- 23. GBG. German breast group, available: http://www.germanbreastgroup.de/studien/adjuvant/gain/unterlagen.html accessed 2011 october 11.