0.1 Lebesgue 积分和 Riemann 积分的关系

定义 0.1 (Riemann 积分相关定义)

设 f(x) 是定义在 I = [a, b] 上的有界函数, $\{\Delta^{(n)}\}$ 是对 [a, b] 所做的分划序列:

$$\Delta^{(n)}: a = x_0^{(n)} < x_1^{(n)} < \dots < x_{k_n}^{(n)} = b \quad (n = 1, 2, \dots),$$

$$|\Delta^{(n)}| = \max\{x_i^{(n)} - x_{i-1}^{(n)} : 1 \leqslant i \leqslant k_n\}, \quad \lim_{n \to \infty} |\Delta^{(n)}| = 0.$$

对每个i以及n,若令

$$M_i^{(n)} = \sup\{f(x) : x_{i-1}^{(n)} \le x \le x_i^{(n)}\},\$$

$$m_i^{(n)} = \inf\{f(x) : x_{i-1}^{(n)} \le x \le x_i^{(n)}\},\$$

则关于 f(x) 的 Darboux 上、下积分,下述等式成立:

$$\overline{\int_{a}^{b}} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{k_n} M_i^{(n)} (x_i^{(n)} - x_{i-1}^{(n)}),$$

$$\int_{\underline{a}}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{k_n} m_i^{(n)} (x_i^{(n)} - x_{i-1}^{(n)}).$$

引理 0.1

设 f(x) 是定义在 I = [a, b] 上的有界函数, 记 $\omega(x)$ 是 f(x) 在 [a, b] 上的振幅 (函数), 则有

$$\int_{I} \omega(x) dx = \overline{\int_{a}^{b}} f(x) dx - \int_{a}^{b} f(x) dx,$$

其中左端是 ω(x) 在 I 上的 Lebesgue 积分.

证明 因为 f(x) 在 [a,b] 上是有界的, 所以 ω(x) 是 [a,b] 上的有界函数. 由命题??可知,ω(x) 是 [a,b] 上的可测函数, 因此 ω ∈ L([a,b]).

对于定义??所说的分划序列 $\{\Delta^{(n)}\}$, 作函数列

$$\omega_{\Delta^{(n)}}(x) = \begin{cases} M_i^{(n)} - m_i^{(n)} &, x \in (x_{i-1}^{(n)}, x_i^{(n)}), \\ 0 &, x \not\in \Delta^{(n)} \text{ in } \beta, \end{cases} (i = 1, 2, \cdots, k_n, n = 1, 2, \cdots).$$

 $E = \{x \in [a, b] : x \not\in \Delta^{(n)} (n = 1, 2, \dots) \text{ bh } \beta \land \}.$

显然 m(E) = 0, 且有

$$\lim_{n\to\infty}\omega_{\Delta^{(n)}}(x)=\omega(x),\quad x\in[a,b]\setminus E.$$

现在记 A, B 各为 f(x) 在 [a, b] 上的上、下确界,由于对一切 n,有 $\omega_{\Delta^{(n)}}(x) \leq A - B$,故根据控制收敛定理 (控制函数是常数函数)可知,

$$\lim_{n\to\infty} \int_I \omega_{\Delta^{(n)}}(x) \, \mathrm{d}x = \int_I \omega(x) \, \mathrm{d}x.$$

另一方面,因为

$$\int_{I} \omega_{\Delta^{(n)}}(x) dx = \sum_{i=1}^{k_{n}} (M_{i}^{(n)} - m_{i}^{(n)})(x_{i}^{(n)} - x_{i-1}^{(n)})$$

$$= \sum_{i=1}^{k_{n}} M_{i}^{(n)}(x_{i}^{(n)} - x_{i-1}^{(n)}) - \sum_{i=1}^{k_{n}} m_{i}^{(n)}(x_{i}^{(n)} - x_{i-1}^{(n)}),$$

所以得到

$$\int_I \omega(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_I \omega_{\Delta^{(n)}}(x) \, \mathrm{d}x = \overline{\int_a^b} f(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x.$$

定理 0.1

若 f(x) 是定义在 [a,b] 上的有界函数,则 f(x) 在 [a,b] 上 Riemann 可积的充分必要条件是 f(x) 在 [a,b] 上的不连续点集是零测集.

笔记 上述定理指出,对于 [a,b] 上的有界函数而言,其 Riemann 可积性并非由该函数在不连续点处的性态所致, 而是取决于它的不连续点集的测度。

证明 必要性, 若 f(x) 在 [a,b] 上是 Riemann 可积的, 则 f(x) 的 Darboux 上、下积分相等, 从而由引理 0.1可知 $\int_{-L}^{L} \omega(x) dx = 0$. 因为 $\omega(x) \ge 0$, 所以由推论??可知 $\omega(x) = 0$, a. e. $x \in [a,b]$. 从而

$$\lim_{\delta \to 0} \sup_{x \in B(x_0, \delta)} |f(x) - f(x_0)| \leq \lim_{\delta \to 0} \sup_{x', x'' \in B(x_0, \delta)} |f\left(x'\right) - f\left(x''\right)| = w(x_0) = 0, \text{a.e. } x_0 \in [a, b].$$

这说明 f(x) 在 [a,b] 上是几乎处处连续的.

充分性, 若 f(x) 在 [a,b] 上的不连续点集是零测集, 则

$$w(x_0) = \lim_{\delta \to 0} \sup_{x, x'' \in B(x_0, \delta)} |f(x) - f(x'')|$$

$$\leq \lim_{\delta \to 0} \sup_{x \in B(x_0, \delta)} |f(x) - f(x_0)| + \lim_{\delta \to 0} \sup_{x'' \in B(x_0, \delta)} |f(x'') - f(x_0)|$$

$$= 0, \text{a.e. } x_0 \in [a, b].$$

因此 f(x) 的振幅函数 $\omega(x)$ 几乎处处等于零,从而由引理 0.1可知

$$\overline{\int_a^b} f(x) dx - \int_a^b f(x) dx = \int_I \omega(x) dx = 0,$$

即 f(x) 的 Darboux 上、下积分相等, f(x) 在 [a,b] 上是 Riemann 可积的.

定理 0.2

若 f(x) 在 I = [a, b] 上是 Riemann 可积的,则 f(x) 在 [a, b] 上是 Lebesgue 可积的,且其积分值相同.

注 今后, 为整合起见, 对 f(x) 在 [a,b] 上的 Lebesgue 积分, 也记为 $\int_a^b f(x) dx$. 证明 首先, 根据题设以及定理 0.1, f(x) 在 [a,b] 上是几乎处处连续的. 因此 f(x) 是 [a,b] 上的有界可测函数, $f \in L(I)$.

其次,对 [a,b] 的任一分划

$$\Delta : a = x_0 < x_1 < \cdots < x_n = b,$$

根据 Lebesgue 积分对积分区域的可加性, 我们有

$$\int_{I} f(x) dx = \sum_{i=1}^{n} \int_{[x_{i-1}, x_i]} f(x) dx.$$

记 M_i, m_i 分别为 f(x) 在 $[x_{i-1}, x_i]$ 上的上、下确界,则得

$$m_i(x_i - x_{i-1}) \le \int_{[x_{i-1}, x_i]} f(x) \, \mathrm{d}x \le M_i(x_i - x_{i-1})$$

 $(i = 1, 2, \cdots, n)$, 从而可知

$$\sum_{i=1}^{n} m_i(x_i - x_{i-1}) \le \int_I f(x) \, \mathrm{d}x \le \sum_{i=1}^{n} M_i(x_i - x_{i-1}).$$

于是,在上式左、右两端对一切分划△各取上、下确界,立即得到

$$\int_{I} f(x) dx = \overline{\int_{a}^{b}} f(x) dx = \underline{\int_{a}^{b}} f(x) dx.$$

这说明 f(x) 在 [a,b] 上的 Lebesgue 积分与 Riemann 积分是相等的.

命题 0.1

设 f(x) 是 \mathbb{R} 上的有界可测函数, 且不恒为零. 若有

$$f(x + y) = f(x) \cdot f(y) \quad (x, y \in \mathbb{R}),$$

则 $f(x) = e^{\alpha x} (x \in \mathbb{R}).$

证明 由题设知 f(x) = f(x)f(0), 故 f(0) = 1. 注意到 $f(x) \neq 0$ ($x \in \mathbb{R}$), 令 $F(x) = \int_0^x f(t) dt (x \in \mathbb{R})$, 且选 $a \in \mathbb{R}$, 使得 $F(a) \neq 0$, 则有

$$F(x+a) - F(x) = \int_{x}^{x+a} f(t) dt = \int_{0}^{a} f(x+t) dt = \int_{0}^{a} f(x)f(t) dt = f(x)F(a),$$
$$f(x) = \frac{F(x+a) - F(x)}{F(a)}.$$

这说明 f(x) 是连续函数, 因此 $F \in C^{(1)}(\mathbb{R})$, 从而可得 f'(x+y) = f(x)f'(y). 取 y = 0, 即得 f'(x) = f(x)f'(0). 记 $\alpha = f'(0)$, 可知 $(f(x)e^{-\alpha x})' \equiv 0$, 而 f(0) = 1, 故又有 $f(x)e^{-\alpha x} \equiv 1$, 即得所证.

定理 0.3

设 $\{E_k\}$ 是递增可测集列, 其并集是 E, 又

$$f \in L(E_k) \quad (k = 1, 2, \cdots).$$

若极限 $\lim_{k\to\infty}\int_{E_k}|f(x)|\,\mathrm{d}x$ 存在,则 $f\in L(E)$,且有

$$\int_{E} f(x) dx = \lim_{k \to \infty} \int_{E_k} f(x) dx.$$

注 在上述定理中, 特别当 E_k 是矩体 I_k (如 ℝ 中的 $E_k = [0, k]$ ($k = 1, 2, \dots$), $E = [0, +\infty)$), 且 f(x) 在每个 I_k 上都是 Riemann 可积函数, 以及条件

$$\lim_{k \to \infty} \int_{I_k} |f(x)| \, \mathrm{d}x < +\infty$$

成立时, 我们就可以通过计算 Riemann 积分 $\int_{L} f(x) dx$ 而得到 Lebesgue 积分

$$\int_{E} f(x) dx = \lim_{k \to \infty} \int_{I_{k}} f(x) dx$$

的值.

还应指出的是,上述计算方法与 $\{I_k\}$ 的选择无关,只要保证它递增到并集 E.

证明 因为 $\{|f(x)|\chi_{E_k}(x)\}$ 是非负渐升列, 且有

$$\lim_{k\to\infty}|f(x)|\chi_{E_k}(x)=|f(x)|,\quad x\in E,$$

所以由 Beppo Levi 非负渐升列积分定理可知

$$\int_{E} |f(x)| dx = \lim_{k \to \infty} \int_{E} |f(x)| \chi_{E_k}(x) dx = \lim_{k \to \infty} \int_{E_k} |f(x)| dx < +\infty,$$

即 $f \in L(E)$. 又由于在 E 上有 $(k = 1, 2, \cdots)$.

$$\lim_{k \to \infty} f(x) \chi_{E_k}(x) = f(x), \quad |f(x) \chi_{E_k}(x)| \le |f(x)|,$$

故根据控制收敛定理可得

$$\int_{E} f(x) dx = \lim_{k \to \infty} \int_{E} f(x) \chi_{E_k}(x) dx = \lim_{k \to \infty} \int_{E_k} f(x) dx.$$

例题 0.1 设 $f(x) = \frac{\sin x}{x}$, 则它在 $[0, +\infty)$ 上的反常积分为

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

但我们有

$$\int_0^{+\infty} \left| \frac{\sin x}{x} \right| \, dx = +\infty.$$

这说明 $f \notin L([0, +\infty))$.

证明

例题 **0.2** 设 $f(x) = x^{\alpha} \sin(1/x)$ ($x \in [0, 1]$),

- (i) 若 α ≥ 0, 则 $f \in R([0,1])$;
 - (ii) 若 α ≥ -2, 则 f(x) 在 [0, 1] 上的反常积分存在;
 - (iii) 若 $\alpha > -1$, 则 $f \in L([0,1])$.

证明

例题 **0.3** 求 $I = \int_0^1 \frac{\ln x}{1-x} dx$.

解 由于当 0 < x < 1 时, 有 $-\frac{\ln x}{1-x} = \sum_{n=0}^{\infty} -x^n \ln x$, 且

$$\int_0^1 x^n \ln x \, dx = -\int_0^{+\infty} t e^{-(n+1)t} \, dt = -\frac{1}{(n+1)^2} \int_0^{+\infty} t e^{-t} \, dt = -\frac{1}{(n+1)^2}.$$

故得

$$\int_0^1 \left(-\frac{\ln x}{1-x} \right) dx = \sum_{n=0}^\infty \int_0^1 -x^n \ln x \, dx = \sum_{n=0}^\infty \frac{1}{(n+1)^2} = \frac{\pi^2}{6}.$$

由此可知 $I = -\frac{\pi^2}{6}$.

注 1. 设 $f \in L(E)$, 且 $E = \bigcup_{n=1}^{\infty} E_n, E_i \cap E_j = \emptyset \ (i \neq j)$, 其中每个 E_n 均为可测集, 则

$$\int_{E} f(x) dx = \sum_{n=1}^{\infty} \int_{E_n} f(x) dx.$$

但此结论对反常积分不一定真. 例如: 对收敛级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ (非绝对收敛) 以及 $\alpha \neq -\ln 2$,将 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 的项作重新排列使新级数收敛到 α ,并令

$$E_n = [n-1, n), \quad f(x) = \frac{(-1)^n}{n} \quad (n-1 \le x < n, n \in \mathbb{N}),$$

我们有

$$-\ln 2 = \int_0^{+\infty} f(x) \, dx \neq \sum_{n=1}^{\infty} \int_{E_n} f(x) \, dx = \alpha.$$

这说明在一种积分理论中,如果反常积分存在的函数总是可积的,那么此种积分理论就不具备对区域的可数可加性.因此,我们不能期望有这样一种积分理论,它同时是反常积分和 Lebesgue 积分的推广.如果放弃对积分区域可数可加性的要求,那么这种积分理论是存在的.

- 2. 对于定义在 [a,b] 上的函数 f(x),g(x), 令 $F(x) = \max_{[a,b]} \{f(x),g(x)\}$. 若 $f,g \in L([a,b])$, 则 $F \in L([a,b])$; 若 $f,g \in R([a,b])$, 则 $F \in R([a,b])$. 但若 f(x),g(x) 在 [a,b] 上反常可积,则 F(x) 在 [a,b] 上不一定反常可积.
 - 3. 设 $f \in R([a,b]), g(x)$ 在 [a,b] 上有界, 且有

$$m(\{x \in [a, b] : f(x) \neq g(x)\}) = 0,$$

但 g(x) 在 [a,b] 上不一定 Riemann 可积, 例如

$$f(x) = 1, \quad g(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q} \end{cases} \quad (x \in [0, 1]).$$

4. 设 $f \in L([0,1])$ 且有界, 不一定存在 $g \in R([0,1])$, 使得 g(x) = f(x),a.e. $x \in [0,1]$. 例如, 取 [0,1] 中一个无处稠密的正测集 E, 且令 $f(x) = \chi_E(x)$ $(0 \le x \le 1)$, 则

$$\int_0^1 f(x) \, dx = m(E) > 0.$$

此时, 如果存在 $g \in R([0,1])$, 且有 g(x) = f(x), a.e. $x \in [0,1]$, 那么点集 $\{x \in [0,1] : g(x) = 0\}$ 在 [0,1] 中稠密, 而使 $\int_0^1 g(x) \, dx = 0.$

5. [a,b] 中存在零测集 E, 对于任意的 $f \in R([a,b]), E$ 中必有 f(x) 的连续点. 证明记 $[a,b] \cap \mathbb{Q} = \{r_n\}$, 且作点集

$$E_m = \bigcup_{n=1}^{\infty} \left(r_n - 2^{-(n+m)}, r_n + 2^{-(n+m)} \right) \quad (m \in \mathbb{N}), \quad E = \bigcap_{m=1}^{\infty} E_m,$$

则 $m(E_m) \le 2^{-(n+1)}$, 且 m(E) = 0. 注意到 f(x) 的连续点集 $\operatorname{cont}(f)$ 是稠密 G_δ 集, 且 $m([a,b] \setminus \operatorname{cont}(f)) = 0$. 根据 Baire 纲定理, 可知 $\operatorname{cont}(f)$ 是第二纲集.

 $[a,b]\setminus E_m\ (m\in\mathbb{N})$ 是无处稠密集,E 是 G_δ 集, $[a,b]\setminus E=\bigcup_{m=1}^\infty ([a,b]\setminus E_m)$ 是第一纲集. 从而得到 $\mathrm{cont}(f)$ $\not\subset$ $[a,b]\setminus E$, 即 $\mathrm{cont}(f)\cap E\neq\varnothing$.