Práctica 3 Programación Evolutiva

Grupo 01 Rafael Fernández López Ángel Valero Picazo

${\bf \acute{I}ndice}$

1.	Introducción	3
2.	Cruce	3
3.	Mutación	3
4.	8	0
	con selección por Torneo	3
	4.1. Tamaño de la Población	4
	4.2. Número Máximo de Generaciones	5
	4.3. Probabilidad de Cruce	7
	4.4. Probabilidad de Mutación	8
	4.5. Porcentaje de Elitismo	10
5.	Estudio de los diferentes parámetros del Algoritmo Genético	
	con selección por Ranking	11
	5.1. Tamaño de la Población	12
	5.2. Número Máximo de Generaciones	12
	5.3. Probabilidad de Cruce	12
	5.4. Probabilidad de Mutación	12
	5.5. Porcentaje de Elitismo	12
6.	Estudio de los diferentes parámetros del Algoritmo Genético	
	con selección por Ruleta	13
	6.1. Tamaño de la Población	13
	6.2. Número Máximo de Generaciones	13
	6.3. Probabilidad de Cruce	13
	6.4. Probabilidad de Mutación	14
	6.5. Porcentaje de Elitismo	14
7	Conclusiones	14

1. Introducción

En esta memoria se van a estudiar los diferentes métodos de selección para poder evaluar cuáles se comportan mejor y cuáles son menos precisos a la hora de tratar el problema del multiplexor implementado en esta práctica.

2. Cruce

El algoritmo de cruce varia respecto al de otras practicas, ya que aquí se trabaja con arboles. Esta estructura arbórea conlleva el problema de poder cruzar tanto en funciones(nodos) como en términos(hojas), para poder realizar cruces relevantes y conlleven a una buena solución se le da mas probabilidad de cruce a las funciones que a los términos, en nuestro caso un $90\,\%$ para funciones y un $10\,\%$ para términos.

3. Mutación

El algoritmo de mutación también se ve afectado por la nueva representación arbórea de la práctica. En la mutación sucede algo parecido al cruce ya que al tener funciones y términos pueden mutar indistintamente unos u otros. En nuestra implementación se mira cada uno y dependiendo si es función o termino se muta de distinta manera, para las funciones se comprueba que tipo de operador contiene: si es NOT lo eliminamos, si es AND se cambia por una OR y viceversa y si es IF se niega el termino de control de dicho IF. En el caso de los términos se cambia el 0 por 1 y viceversa.

4. Estudio de los diferentes parámetros del Algoritmo Genético con selección por Torneo

Estudio realizado con selección por torneo. Se han ido variando los diferentes parámetros, por defecto hemos tomados los siguientes valores:(suponemos que se permite la utilización de IF)

Tamaño de la Población	150
Número Máximo de Generaciones	150
Probabilidad de Cruce	0.6
Probabilidad de Mutación	0.1
Porcentaje de Elitismo	0.1
Profundidad	3

4.1. Tamaño de la Población

Tamaño	50	100	150	200
Resultado	52	56	56	64

Figura 1: Captura mejor resultado.

Figura 2: Gráfica mejor resultado.

4.2. Número Máximo de Generaciones

Num Generaciones	100	200	300	400
Resultado	56	56	56	56

Figura 3: Captura mejor resultado.

Figura 4: Gráfica mejor resultado.

4.3. Probabilidad de Cruce

Probabilidad	0.2	0.4	0.5	0.7
Resultado	48	52	52	64

Figura 5: Captura mejor resultado.

Figura 6: Gráfica mejor resultado.

4.4. Probabilidad de Mutación

Probabilidad	0.05	0.1	0.15	0.2
Resultado	60	56	56	52

Figura 7: Captura mejor resultado.

Figura 8: Gráfica mejor resultado.

4.5. Porcentaje de Elitismo

Porcentaje	0.0	0.02	0.1	0.3
Resultado	52	56	56	64

Figura 9: Captura mejor resultado.

Figura 10: Gráfica mejor resultado.

5. Estudio de los diferentes parámetros del Algoritmo Genético con selección por Ranking

Estudio realizado con selección por ranking. Se han ido variando los diferentes parámetros, por defecto hemos tomados los siguientes valores:

Tamaño de la Población	100
Número Máximo de Generaciones	300
Probabilidad de Cruce	0.5
Probabilidad de Mutación	0.15
Porcentaje de Elitismo	0.02

5.1. Tamaño de la Población

Tamaño	50	100	150	200
Resultado				

5.2. Número Máximo de Generaciones

Num Generaciones	100	200	300	400
Resultado				

5.3. Probabilidad de Cruce

Probabilidad	0.2	0.4	0.5	0.7
Resultado				

5.4. Probabilidad de Mutación

Probabilidad	0.05	0.1	0.15	0.2
Resultado				

5.5. Porcentaje de Elitismo

Porcentaje	0.0	0.02	0.1	0.3
Resultado				

6. Estudio de los diferentes parámetros del Algoritmo Genético con selección por Ruleta

Estudio realizado con selección por ruleta. Se han ido variando los diferentes parámetros, por defecto hemos tomados los siguientes valores:

Tamaño de la Población	100
Número Máximo de Generaciones	300
Probabilidad de Cruce	0.5
Probabilidad de Mutación	0.15
Porcentaje de Elitismo	0.02

6.1. Tamaño de la Población

Tamaño	50	100	150	200
Resultado				

6.2. Número Máximo de Generaciones

Num Generaciones	100	200	300	400
Resultado				

6.3. Probabilidad de Cruce

Probabilidad	0.2	0.4	0.5	0.7
Resultado				

6.4. Probabilidad de Mutación

Probabilidad	0.05	0.1	0.15	0.2
Resultado				

6.5. Porcentaje de Elitismo

Porcentaje	0.0	0.02	0.1	0.3
Resultado				

7. Conclusiones

Primero se van a exponer las conclusiones relacionadas con los diferentes métodos de selección.

La selección por ruleta permite a los mejores individuos ser elegidos con una mayor probabilidad, pero también permite a los peores individuos ser elegidos, lo cual ayuda a mantener la diversidad de la población. Un problema que hemos observado con los diferentes estudios realizados es que dicha selección hace perder diversidad y puede conducir a una convergencia prematura ya que la mayor parte de los individuos seleccionados serán una copia de los pocos predominantes.

En la selección por ranking los individuos se ordenan según su puntuación y luego son asignados con una segunda medida de puntuación, inversamente proporcional a su posición en el ranking. Los individuos son seleccionados proporcionalmente a esta probabilidad. Este método cómo se observa en los estudios realizados disminuye el riesgo de convergencia prematura que se produce cuando se utiliza selección de ruleta. Comentar que de los tres métodos implementados para la selección es el mas eficiente en cuanto a tiempo.

Por ultimo la selección por torneo se efectúa mediante una comparación entre un pequeño subconjunto de individuos elegidos al azar desde la población. Los beneficios de este tipo de selección son la velocidad de aplicación ya que no es necesario evaluar ni comparar la totalidad de la población y la capacidad de prevenir la convergencia prematura. La principal desventaja es la necesidad de establecer el parámetro correspondiente al tamaño del subconjunto , en nuestro caso son 3 individuos y da buenos resultados.

Sobre las mejoras introducidas en la práctica hay que destacar el elitismo, método que copia los mejores individuos a la próxima generación. El elitismo puede aumentar rápidamente hacia buenos individuos, ya que evita perder la mejor solución encontrada. Sin embargo, es posible que este método haga converger rápidamente a un óptimo local.

Referente a la implementación de la práctica cabe destacar que hemos omitido la lectura por archivo de los 64 casos posibles del multiplexor utilizando una clase MUX que emula dicho comportamiento y contiene un método test para obtener nuestra aptitud de una manera más eficiente.

Cabe destacar un versión que probamos para buscar mas eficiencia a la hora de cruzar, consistía en ir creando un camino aleatorio en vez de hacer random y buscar ese nodo en el árbol, pero esta versión de búsqueda del punto del cruce no ofrecía variedad ya que se quedaba en los primeros niveles del árbol la mayoría de las veces por lo que decidimos desecharla.