1. [10] I have two identical regressors, b = a, Consider the LASSO regression loss function,

$$\operatorname{loss}(\hat{\beta}_a, \hat{\beta}_b) = \sum_{i} (y_i - \hat{y}_i)^2 + \lambda \cdot (|\hat{\beta}_a| + |\hat{\beta}_b|), \quad \hat{y}_i = \hat{\beta}_a a_i + \hat{\beta}_b b_i.$$

(a) [7] Find the penalized estimates $\hat{\beta}_a$ and $\hat{\beta}_b$ for arbitrary $\lambda > 0$.

In the regression $\hat{y}_i = \hat{\gamma}_1 a_i$ the OLS estimator $\hat{\gamma}_1$ is equal to 2.

- (b) [3] What are the approximate values of $\hat{\beta}_a$ and $\hat{\beta}_b$ in the penalized model for small $\lambda \approx 0$?
- 2. [10] Elon Musk studies the model $y_i = \beta_0 + \beta_1 a_i + \beta_2 b_i + u_i$. He has 500 observations and he knows the heteroskedasticity form up to an unknown constant. To obtain the most efficient unbiased estimators $\hat{\beta}$ he has multiplied each observation by $(a_i + b_i)$.
 - (a) [5] What is the variance $Var(u_i \mid X)$ supposed by Elon Musk?
 - (b) [5] To check whether the heteroskedasticity is really present Elon Musk estimated the regression

$$\hat{v}_i = \hat{\gamma}_0 + \hat{\gamma}_1 a_i + \hat{\gamma}_2 b_i + \hat{\gamma}_3 a_i b_i, \quad R^2 = 0.03,$$

where v_i are the squared residuals \hat{u}_i^2 from original model.

What is the statistical conclusion about the heteroskedasticity presence?

Critical values for 5% significance level: $\chi_1^2=3.84,~\chi_2^2=5.99,~\chi_3^2=7.81,~\chi_{498}^2=549,~\chi_{499}^2=551,~\chi_{500}^2=553.$

3. [10] Donald Trump has 403 observations. He estimated the first simple regression:

$$\hat{x}_i = 2 - 2w_i$$
, $R^2 = 0.81$, SST = 100 (Regression A).

Than he estimated the second regression,

$$\label{eq:window} \hat{w}_i = \hat{\gamma}_0 + \hat{\gamma}_1 x_i, \quad \text{SST} = 200 \quad \text{(Regression B)}.$$

- (a) [2] Find \mathbb{R}^2 in the regression B.
- (b) [2] Find $\hat{\gamma}_1$ in the regression B.

Than he estimated the third regression,

$$\hat{y}_i = 2 + 3x_i + 5w_i$$
, $R^2 = 0.6$, SST = 500 (Regression C).

- (c) [3] Find the variance inflation factors of x_i and w_i in the regression C.
- (d) [3] Find the 95% confidence interval for $\partial y/\partial w$.

4. [10] All regressors in X matrix are standardized. There are 3 regressors and 10000 observations. You partially know the singular value decomposition of X:

$$X = UDV^T, \operatorname{diag}(D) = (5 \cdot 10^5, 10^5, 10^4), V = \begin{pmatrix} 0.000156 & 0.005953 & -0.999982 \\ 0.007737 & 0.999952 & 0.005954 \\ 0.999970 & -0.007737 & 0.000109 \end{pmatrix}.$$

- (a) [3] Find the sample variance of each principal component.
- (b) [3] How much variance in % does the second principal component explain?
- (c) [4] Express the second original regressor as the function of the three principal components.
- 5. [10] Consider the model $y_i = \beta_0 + \beta_1 x_i + u_i$ with independent and identically distributed observations. The regressor x_i is correlated with u_i and with variable z_i . The variable z_i is uncorrelated with u_i .

The variable z_i is binary and takes only values 0 or 1.

The regressor x_i is binary and all observations may be divided into four groups:

	x = 0	x = 1
z = 0	$\bar{y}_{00} = 20, n_{00} = 300$	$\bar{y}_{01} = 20, n_{01} = 500$
z = 1	$\bar{y}_{10} = 15, n_{10} = 400$	$\bar{y}_{11} = 35, n_{11} = 200$

Here \bar{y}_{zx} and n_{zx} are average values of y_i and the number of observations for each group.

- (a) [8] Find the instrumental variable estimate $\hat{\beta}_1$.
- (b) [2] Will the estimate change if the labels z = 0 and z = 1 will be switched?
- 6. (based on past LSE exams) Consider the simple linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, \dots, n.$$

We assume that the errors $\{u_i\}_{i=1}^n$ are independent random variables with zero mean.

The regressor $\{x_i\}_{i=1}^n$ is stochastic and Gauss-Markov conditions are satisfied. Under these conditions, the OLS estimator for β_1 , $\hat{\beta}_1$, is conditionally unbiased. You are not asked to derive $\hat{\beta}_1$.

- (a) [2] Explain the concept of unbiasedness of an estimator.
- (b) [5] Let us consider two other estimators for the slope β_1 :

$$\hat{\beta}_{1}^{\circ} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z}) y_{i}}{\sum_{i=1}^{n} (z_{i} - \bar{z}) x_{i}} \quad \text{and} \quad \hat{\beta}_{1}^{*} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z}) y_{i}}{\sum_{i=1}^{n} (z_{i} - \bar{z}) z_{i}}$$

where $z_i = x_i^2$ for all i and $\bar{z} = \frac{1}{n} \sum_{i=1}^n z_i$. Please indicate whether $\hat{\beta}_1^{\circ}$ and $\hat{\beta}_1^{*}$ are conditionally unbiased estimators for β_1 . Clearly show your derivations.

(c) [3] Briefly indicate how you would choose between the three estimators, $\hat{\beta}_1$, $\hat{\beta}_1^{\circ}$, and $\hat{\beta}_1^{*}$.