Cognoms:	Nom:

DNI:

	1	2	3	4	5	6
Α						
В						
С						
D						

Instruccions

- No oblideu posar el vostre nom, cognoms i DNI en aquest full
- $\bullet\,$ Poseu una creu a les respostes que considereu correctes
- Només es consideraran les respostes registrades a la taula anterior
- Respostes correctes 1/2p, errònies -1/6p, no contestades 0p

1. Considera dos càrregues de signe oposat separades una distància a . El camp elèctric a una distancia $r\gg a$ és
(a) inversament proporcional a r^2
(b) inversament proporcional a r^3
(c) inversament proporcional a r
(d) constant
2. Una ona unidimensional té una funció d'ona $y(x,t) = A\cos(\alpha x + \beta t)$. La velocitat de propagació de l'ona és
(a) - α/β
(b) - β/α
(c) $-\beta \sin(\alpha x + \beta t)$
(d) cap de les anteriors
3. Considera un circuit de corrent altern (amb període de les oscil·lacions T), que triga un temps característic τ per arribar a l'estat estacionari. Les lleis de Kirchhoff en aquest circuit es poden aplicar si
(a) $\tau \gg T$
(b) $\tau \ll T$
(c) $\tau \simeq T$
(d) es poden aplicar sempre
4. El flux de camp elèctric a través d'una superficie elemental
(a) és proporcional al mòdul del camp en la superficie
(b) és sempre diferent de zero
(c) és sempre igual a zero
(d) cap de les anteriors

5. La força sobre una càrrega amb velocitat \vec{v} en un camp magnètic \vec{B} és

(a) perpendicular a \vec{B} només si el modul de $|\vec{B}|$ és constant

- (b) perpendicular a \vec{B} només si \vec{B} és constant
- (c) no és mai perpendicular a \vec{B}
- (d) cap de les anteriors
- 6. En el buit, les ones electromagnètiques
 - (a) són transversals sempre
 - (b) són transversals només si estan polaritzades
 - (c) són longitudinals sempre
 - $(\mbox{\bf d})$ són longitudinals només si estan polaritzades

Enginyeria Química. Examen de Física II. Problemes 18 / 06 / 2007

Problema 1 (2 punts)

Dos focus emissors de só idèntics estan separats per una distància de 9 m. Passejant per la línia recta que els uneix, un observador aprecia que el só és induïble en dos punts del camí.

- a) Quina és la longitud d'ona de tots dos sons?
- b) I la freqüència?

Problema 2 (1,5 punts)

Donat el circuit de la figura 1,

- a) Calcula el valor de la intensitat per cada part del circuit en el seu estat estacionari. (1punt)
- b) Quan val en aquest cas la càrrega emmagatzemada en el condensador? (0.5 punts)

Figura 1

Problema 3 (1,5 punts)

Una escorça cilíndrica gruixuda infinitament llarga, amb radi interior a i radi exterior b, transporta un corrent I uniformement distribuït en tota la secció transversal de l'escorça. Determina el camp magnètic en mòdul, direcció i sentit per:

- a) r < a (0.25 punts)
- b) a < r < b (1 punt)
- c) r > b (0,25 punts)

Problema 4 (2 punts)

Donat el circuit RLC de la figura 2.

a) Determina, en funció de C i L, per a quina freqüència de la font, ω, la tensió eficaç entre els punts a i b és màxima (1 punt).

Suposa que l'autoindució L val 5mH. b) Quina capacitat ha de tenir el condensador perquè la sortida sigui màxima quan ω = 95MHz? (0.5 punts).

c) Quina es la potència dissipada per la resistència si R = 3Ω , si la tensió màxima de la font és V_0 = 5mV i la freqüència és ω = 95MHz? (0.5 punts).

rigura ∠