

- ▶3.1 高频小信号放大器
- ▶3.2 高频功率放大器的原理与特性
- ▶3.3 高频功率放大器的实际线路

1. 工作状态的划分:

依据导通期间所经历的工作区域不同,可分为<mark>欠压状态,临界状态和过压状态。</mark>

2. 高频功放的动特性

(1) 定义:

① 动特性是指加上激励信号及接上负载阻抗时,晶体管集电极电流 i_c 与集电极电压(u_{be} 或 u_{ce})的关系曲线

$$i_c = f(u_{be}, u_{ce})$$

② 由 u_{be} 、 u_{ce} 同时变化所确定的瞬时工作点的连线叫做 动态线或动态特性曲线

2. 动特性曲线

在非谐振功放中,负载是纯电阻, $U_c=i_cR_L$,此时负载线是 斜率为 1/R, 的直线;

在谐振功放中,负载是并联谐振回路, $oldsymbol{u}_c \mathrel{\sqcup} oldsymbol{i}_c oldsymbol{R}_L$; 而 $u_{c}=i_{c1}R_{L}$

$$u_{be} = E_b + U_b \cos(\omega t)$$

$$\Box u_{be} = E_b + U_b \cos(\omega t)$$

$$\Box u_{ce} = E_c - U_c \cos(\omega t)$$

$$\Box \omega t = 0 \Box$$
 A点

$$\Box \omega t = \pi / 2 \square Q$$

$$\Box \omega t = \pi \square C \dot{\boxtimes}$$

□ A、B 为动特性曲线

不同的 U_c (= $R_L I_{c1}$), 可得到不同的动特性,从而工作在不同的区。

由动特性的工作区域,尤其是 A 的位置来区分高频功放的工作状态。

前面讲到,提高电压利用系数,即增加 U_c ,可以提高效率。下面讨论 U_c 由小到大变化时,动特性曲线的变化。

当 U_c 不是很大时,晶体管只是在截止和放大区变化,集电极电流 i_c 为余弦脉冲,在此区域内 U_c 增加时,集电极电流 i_c 基本不变,即 I_{c0} , I_{c1} 基本不变,故输出功率 $P_1=U_{c1}I_{c1}/2$ 随 U_c 的增加而增加,而 $P_0=E_cI_{c0}$ 基本不变,所以 效率随 U_c 的增加而增加,这表明集电极电压利用不够充分,这种工作状态称为欠压工作状态。

_J

当 U_c 加大到接近 E_c 时, U_{cemin} 将小于 U_{ces} (晶体管的饱和压降),这是发射结和集电结都处于正向偏置状态,即工作到饱和状态。由于饱和区 U_{ce} 对 i_c 的强烈反作用,电流 i_c 随 u_{ce} 的下降而迅速下降,动特性与饱和区的电流下降段重合。故此时 A 点进入饱和区时动特性曲线用临界饱和线代替。

此时 i_c 为顶部出现凹陷的余弦脉冲。高频功放的这种工作状态称为过压状态。

- (1) 临界工作状态: $U_{cemin} = U_{ces}$; 此时放大器工作在放大区,且到临界饱和线上 i_c 为余弦脉冲
- (2)欠压工作状态: $U_{cemin}>U_{ces}$; 此时放大器工作与放大区, i_c 为余弦脉冲
- (3) 过压工作状态该: $U_{cemin} < U_{ces}$; 此时放大器进入饱和区, i_c 为带凹陷的余弦脉冲

四、高频功放的外部特

高频功放的外部特性——放大器的性能随放大器的外部参数变化的规律,外部参数主要包括负载 R_L ,激励 U_b ,偏置电压 E_b 和 E_c ;外部特性还包括负载在调谐过程中的调谐特性。

1. 高频功放的负载特性

负载特性是指 E_b , U_b , E_c 一定时,只改变负载电阻 R_L ,高频功放电流、 电压、 功率及效率 η 变化的特性。

当 R_L 较小时, U_c 也较小, 高频功放工作在欠压状态。

在欠压状态小, R_L 增加,因为在欠压状态下, i_c 的大小和形状基本不变,即 I_{c0} 、 I_{cl} 不变。

这是因为晶体管其他参数不变,因此晶体管的通角不变,而 ic 的最大值由 U_{be} 的最大值决定,因此 i_{cmax} 不变。因此说此时 i_c 的大小和形状基本不变。

此时, $R_L \uparrow \rightarrow U_c = R_L I_{c1} \uparrow$,即 U_c 与 R_L 成近似线性关系。

当 R_L 增加到 R_L = R_{Ler} 时, U_{cemin} = E_c - U_c = U_{ces} ,此时放大器工作在临界状态,此时 i_c 仍为一完成的余弦脉冲,与欠压状态时的 i_c 基本相同, I_{co} , I_{c1} 也基本不变,但此时的 U_c 大于欠压状态时的 U_c 。

 R_L 继续增加, U_c 会进一步增加,此时晶体管在导通期间进入饱和区,从而使放大器工作在过压状态,集电极电流出现凹顶。进入饱和区越深,凹顶现象越严重,从 i_c 中分解出的 I_{c0} 、 I_{c1} 就越小。 I_{c1} 的迅速下降, $U_c=I_{c1}R_L$ 则只是慢慢增加

分析效率的变化情况: 在欠压状态时, $\eta = \xi \gamma/2$,因为 $\gamma = I_{c0}/I_{c1}$ 基本不变,故 η 与 $\xi = U_c/E_c$ 及 R_L 成近 似线性关系。

在过压状态,因 ξ 随 R_L 增加稍有增加,所以 η 也稍有增加。当 R_L 很大,到达强过压状态时,因为 i_c 波形强烈畸变,波形系数 要下降,效率也会有所下降。

(1)临界状态($R_L=R_{Ler}$):输出功率最大,效率较高,为最佳状态,通常选择在此状态工作。 I_c 为余弦脉冲。

保证最佳工作状态的措施: a. 调谐 $f_0 = f_c$, $Z_L = R_L$

- b. 阻抗变换: $R_L = R_{Lex}$ (2) 过压状态($R_L > R_{Lex}$): 效率高,损耗小,输出电压受负载电阻 RL 的影响小,近似为交流恒压源特性。
- (3) 欠压状态 $(R_L < R_{Lor})$: 输出电流受电阻 R_L 的影响小,近似为交流恒流源特性。但是效率低,集电极损耗大,一般不选择此状态工作。

工作状态的选择:

- (1)输出级:希望效率高,功率大→选临界状态。
- (2)中间级:希望输出电压稳定→选弱过压状态。

2. 高频功放的振幅特性

高频功放的振幅特性——只改变激励信号振幅 $U_{\rm b}$ 时,放大器电流、 电压、 功率及效率的变化特性。

 $U_{be} = E_b + U_b cos(\omega t)$ 当 E_b 不变时, $U_b \uparrow \rightarrow U_{bemax} \uparrow \rightarrow i_{cmax} \uparrow, \theta \uparrow \rightarrow$ 在欠压状态时, i_c 的面积增加 \rightarrow 从中分解出的 I_{c0} , I_{c1} 增加, $U_c = I_{c1} R_L \uparrow$

 $E_b \uparrow \rightarrow U_{bemax} \uparrow \rightarrow U_{ces} \uparrow$, 而 U_{cemin} 不变,因此当 E_b 增加到 $U_{ces} = U_{cemin}$ 时,放大器由欠压状态 \rightarrow 临界工作状态

 E_b 继续增加,当增加到 $U_{ces} > U_{cemin}$ 时,放大器进入到<mark>过压状态</mark>。此时虽然 i_c 的波形产生凹顶现象,但因为 U_{bemax} 增加, i_{cmax} 和 θ 还会增加,从 i_c 中分解出来的 I_{c0} , I_{c1} 随 U_b 的增加略有增加。 $U_c = I_{c1} R_L$ 的变化与 I_{c1} 相同。

高频功放的振幅特性

要使 U_c 和 U_b 成线性关系,则只有在 θ =90° 的乙(B)类工作状态下才能得到,因为此的 $'=E_b$ θ = 90° , U_b 变化时, θ 不变,而只有 i_{cmax} 随 U_b 线形变化,从而使 I_{c1} 随 U_b 线形变化。此时可用来放大振幅变化的高频信号。

结论:

- (1)如果对已调波放大,应使放大器工作在欠压区,保证包络不失真。(B类工作状态)
- (2)如果作<mark>恒压输出</mark>,应使放大器工作在<mark>过压区</mark>,起到限幅的作用。

3. 高频功放的调制特性

调制特性—— U_b , R_L 一定时,放大器性能随 E_c/E_b 变化的特性。

- (1) 基极调制特性——仅改变 E_b 时,放大器电流、电压、功率及效率的变化特性
- $u_{be} = E_b + U_b \cos(\omega t)$ $\rightarrow E_b, U_b$ 决定了放大器的 u_{bemax}
- → 改变 E_b 的情况与改变 U_b 的情况类似。

基极调制特性

在欠压区, U。基本上与E。成线性关系,可完成基极调制。

(2) 集电极调制特性——只改变 Ec, 放大器的电流、电 压、功率及效率的变化特性。

 $E_c \uparrow$, 因为 $U_{ce} = E_c - U_c cos(wt) \rightarrow U_{cemin} \uparrow$, 又 U_{ces} 不变

 \rightarrow 当 E_c 很小时, $U_{cemin} < U_{ces}$,此时放大处于过压状态; 当 E_c 增大到 $U_{cemin}>U_{ces}$ 时,放大器处于欠压状态;

Ec ↑, 放大器: 过 压力临界力欠压 Ic 凹形余弦脉冲→ 完整余弦脉冲

> 结论:过压区可完成 集电极调制

利用谐振功放完成调制时,若调制信号加在基极,则应使放大器工作在欠压状态;若调制信号加在集电极,应使放大器工作在过压状态。

4. 高频功放的调谐特性:

调谐特性——改变回路元件参数时,放大器的外部电流 I_{co} , I_{c1} , 电压 U_c 的变化特性。利用这种特性可以判断 放大器是否调谐。

回路失谐时,阻抗 $|Z_L| \downarrow$,且存在一幅角 ψ , $u_c=I_{c1}|Z_L|$ $cos(\psi), U_c$ 与 I_{c1} 不再同相 \rightarrow U_{cemin} 与 U_{bemax} 不再同时出现。

假设调谐时,放大器工作在弱过压状态,则失谐时,由于 $|Z_L| \downarrow$,因此由放大器的负载特性可知,此时放大器向临界以及欠压状态变化, $|I_{c0}|$, $|I_{c1}|$ 增大,而 $|U_{c2}|$ 下降。

高频功放的调谐特性

一般,因为 I_{co} 变化 明显,又只用直流电 流表,<mark>对回路影响小</mark> ,故采用 I_{co} 指示调 谐的较多。 注:回路失谐时,直流输入功率 $P_0=I_{co}$ Ec 随 I_{co} 的增加而增加,而输出功率 $P_1=U_{c1}I_{c1}\cos\psi/2$ 将因 $\cos\psi$ 而下降,因此失谐后集电极功耗 P_c 将迅速增加。

因此高频功放必须经常保持在谐振状态。 调谐过程中,失谐状态的时间要尽可能短,调谐 动作要迅速,否则晶体管会因为过热而损坏。

为了防止调谐时损坏晶体管,在调谐时可降低 E_c 或激励电压 U_{b_0}