

Dr. Deepak Saxena, SME IIT Jodhpur

The size of small/traditional databases

Type of Database / Application	Typical Number of Users	Typical Size of Database
Personal	1	Megabytes
Multitier Client/Server	100-1000	Gigabytes
Enterprise resource planning	>100	Gigabytes-terabytes
Data warehousing	>100	Terabytes-petabytes

Enter Big Data

Why Big Data?

- Proliferation of devices that generate digital data
- Content generation and self-publishing
- Consumer Activity
- Machine data and Internet of Things
- Advances in natural science
- Plummeting cost of storage and processing power
- Open-source platforms
- Cloud computing

3 (or 5) (or 7) Vs of Big Data

- Volume
- Variety
- Velocity
- Veracity
- Value
- Variability
- Visualization

Original Vs

Volume

Refers to the generation of large chunk of data.

NAME	SYMBOL	VALUE	EQUAL VALUE
byte	b	8 bits	1 byte
kilobyte	Kb	1024 bytes	1 024 bytes
megabyte	MB	1024 KB	1 048 576 bytes
gigabyte	GB	1024 MB	1 073 741 824 bytes
terabyte	TB	1024 GB	1 099 511 627 776 bytes
Petabyte	PB	1024 TB	1 125 899 906 842 624 bytes
Exabyte	EB	1024 PB	1 152 921 504 606 846 976 bytes
Zetabyte	ZB	1024 EB	1 180 591 620 717 411 303 424 bytes
Yottabyte	YB	1024 ZB	1 208 925 819 614 629 174 706 176 bytes
Brontobyte	BB	1024 YB	1 237 940 039 285 380 274 899 124 224 bytes
Geopbyte	GB	1024 BB	1 267 650 600 228 229 401 496 703 205 376 bytes

- It is estimated that the volume of digital data would be around 123 Zettabytes (1 Zettabyte equals 10²¹ bytes) in 2023, reaching a staggering 181 Zettabytes by 2025.
- Data Centres
 - The average data center occupies approximately 100,000 square feet of space.
 - The International Energy Agency estimates that 1% of all global electricity is used by data centers and that by 2025, data centers will consume 1/5 of the world's power supply.

Variety

- Not just relational structured data.
- Various forms of data in disparate formats from disparate sources are combined to generate a holistic picture.
- For instance, Google collects and combines data from various sources (Android operating system, Chrome browser, Gmail, Maps, Search history, Voice, and YouTube activity to name a few) to personalize its offerings to the users
- Social media is a big contributor of Big Data.

Velocity

- Refers to the speed with which data is generated.
- Correct and rapid processing of data in the real time has become extremely crucial for companies.
- Chinese retailer Alibaba processed around 544,000 orders per second on Singles day 2019.
- Amazon on Prime Day 2023
 - An incremental 163 petabytes of EBS storage capacity allocated generating a peak of 15.35 trillion requests and 764 petabytes of data transfer per day.
 - 5,835 database instances running the PostgreSQL-compatible and MySQL-compatible editions of Amazon Aurora processed 318 billion transactions, stored 2,140 terabytes of data, and transferred 836 terabytes of data.
 - Amazon CloudFront handled a peak load of over 500 million HTTP requests per minute, for a total of over 1 trillion HTTP requests during Prime Day.
 - For more details: https://aws.amazon.com/blogs/aws/prime-day-2023-powered-by-aws-all-the-numbers

Veracity and Value

Veracity

- Refers to the authenticity and truthfulness of the data.
- This is more relevant in case of unstructured data, for instance making sure that service reviews are coming from authentic users and not from automated bots.

Value

- Refers to the outcomes, for instance efficiency or reputational gains, made possible by Big data analytics.
- Beyond operational gains, however, Big data capabilities may act as an enabler of digital enterprise transformation.

Variability and Visualization

Variability

- refers to the variability in the meaning when processing natural language data.
- For example, the term 'great service' would differ in meaning depending on being preceded by 'got the reply within two hours' or 'still waiting for reply since last 15 days'.
- It may also refer to inconsistent speed of the data

Visualization

- Primarily relates to the appropriation of data as opposed to its inherent nature.
- Since Big data is unstructured and comes from a variety of sources, visualization of the trends helps in making sense of the vast tapestry of data.

Data Lake

"What's a data lake for? So you can drown in more data even faster!"