0.0.1 K_S Reconstruction

The following cuts, in addition to the misidentification and shared daughter cuts presented in Sec. $\ref{eq:condition}$, were used to select good K^0_S candidates:

K _S ⁰ reconstruction		
$\overline{ \eta }$		< 0.8
p_{T}		> 0.2 GeV/c
$m_{PDG} - 13.677 \text{ MeV} < m_{\text{inv}} < m_{\text{PDG}} + 2.0323 \text{ MeV}$		
DCA to prim. vertex		< 0.3 cm
Cosine of pointing angle		> 0.9993
OnFlyStatus		false
Decay Length		< 30 cm
Shared Daughter Cut		true
Misidentification Cut		true
π^{\pm} Daughter Cuts		
$ \eta $		< 0.8
Number of clusters in TPC		> 80
Daughter Status		kTPCrefit
DCA $\pi^+\pi^-$ Daughters		< 0.3 cm
p_{T}		> 0.15 GeV/c
DCA to prim vertex		> 0.3 cm
TPC and TOF N σ Cuts		
p < 0.5 GeV/c		$N\sigma_{TPC} < 3$
p > 0.5 GeV/c	if TOF & TPC available	$N\sigma_{TPC} < 3 \& N\sigma_{TOF} < 3$
	else	$N\sigma_{TOF} < 3$

Table 1: K_s^0 reconstruction

As can be seen in Figure 1, some misidentified Λ and $\bar{\Lambda}$ particles contaminate our K_S^0 sample. Figure 1a shows the mass assuming Λ -hypothesis for the K_S^0 collection, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$. Figure 1b is similar, but shows the mass assuming $\bar{\Lambda}$ -hypothesis for the collection, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$. The Λ contamination can be seen in 1a, and the $\bar{\Lambda}$ contamination in 1b, in the peaks around $m_{\rm inv}=1.115~{\rm GeV}/c^2$. Additionally, the $\bar{\Lambda}$ contamination is visible in Figure 1a, and the Λ contamination visible in Figure 1b, in the region of excess around 1.65 $< m_{\rm inv} < 2.1~{\rm GeV}/c^2$. This is confirmed as the number of misidentified Λ particles in the sharp peak of Figure 1a (misidentified $\bar{\Lambda}$ particles in the sharp peak of Figure 1b) approximately equals the excess found in the 1.65 $< m_{\rm inv} < 2.1~{\rm GeV}/c^2$ region of Figure 1a (Figure 1b).

The peaks around $m_{\rm inv}=1.115~{\rm GeV}/c^2$ in Figure 1 contain both misidentified $\Lambda(\bar{\Lambda})$ particles and good $K_{\rm S}^0$. If one simply cuts out the entire peak, some good $K_{\rm S}^0$ particles will be lost. Ideally, the $K_{\rm S}^0$ selection and $\Lambda(\bar{\Lambda})$ misidentification cuts can be selected such that the peak is removed from this plot while leaving the underlying distribution continuous. To attempt to remove these Λ and $\bar{\Lambda}$ contaminations without throwing away good $K_{\rm S}^0$ particles, the misidentification cuts introduced in Sec. ?? were imposed.

- (a) Mass assuming Λ -hypothesis for K_S^0 collection, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$.
- (b) Mass assuming $\bar{\Lambda}$ -hypothesis for K_S^0 collection, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$.

Fig. 1: Mass assuming Λ-hypothesis (1a) and $\bar{\Lambda}$ -hypothesis (1b) for K_S^0 collection. The "NoMisID" distribution (black triangles) uses the V0 finder without any attempt to remove misidentified Λ and $\bar{\Lambda}$. The peak in the "NoMisID" distribution around $m_{\rm inv}=1.115~{\rm GeV}/c^2$ contains misidentified Λ (1a) and $\bar{\Lambda}$ (1b) particles in our K_S^0 collection. "SimpleMisID" (pink squares) simply cuts out the entire peak, which throws away some good K_S^0 particles. "MisID_NoM_{inv}Comp" (green squares) uses the misidentification cut outlined in the text, but does not utilize the final invariant mass comparison step. "MisID_M_{inv}Comp" (red circles) utilizes the full misidentification methods, and is currently used for this analysis. "N_{pass}/N_{ev}" is the total number of K_S^0 particles found, normalized by the total number of events. The purity of the collection is also listed. Also note, the relative excess of the "NoMisID" distribution around $1.65 < m_{\rm inv} < 2.1~{\rm GeV}/c^2$ shows misidentified $\bar{\Lambda}$ (1a) and Λ (1b) particles in our K_S^0 collection.