O'REILLY®

Generative Deep Learning

Teaching Machines to Paint, Write,

Table of Contents

Foreword xv		
Prefacexvi		
Part I. Introduction to Generative Deep Learning		
1. Generative Modeling		
What Is Generative Modeling?	4	
Generative Versus Discriminative Modeling	5	
The Rise of Generative Modeling	ϵ	
Generative Modeling and AI	8	
Our First Generative Model	9	
Hello World!	ç	
The Generative Modeling Framework	10	
Representation Learning	12	
Core Probability Theory	15	
Generative Model Taxonomy	18	
The Generative Deep Learning Codebase	20	
Cloning the Repository	20	
Using Docker	21	
Running on a GPU	21	
Summary	21	
2. Deep Learning	23	
Data for Deep Learning	24	
Deep Neural Networks	25	

What Is a Neural Network?	25
Learning High-Level Features	26
TensorFlow and Keras	27
Multilayer Perceptron (MLP)	28
Preparing the Data	28
Building the Model	30
Compiling the Model	35
Training the Model	37
Evaluating the Model	38
Convolutional Neural Network (CNN)	40
Convolutional Layers	41
Batch Normalization	46
Dropout	49
Building the CNN	51
Training and Evaluating the CNN	53
Summary	54
Part II. Methods	
3. Variational Autoencoders	
Introduction	60
Autoencoders	61
The Fashion-MNIST Dataset	62
The Autoencoder Architecture	63
The Encoder	64
The Decoder	65
Joining the Encoder to the Decoder	67
Reconstructing Images	69
Visualizing the Latent Space	70
Generating New Images Variational Autoencoders	71 74
The Encoder	75
The Loss Function	80
Training the Variational Autoencoder	82
Analysis of the Variational Autoencoder	84
Exploring the Latent Space	85
The CelebA Dataset	85
Training the Variational Autoencoder	87
Analysis of the Variational Autoencoder	89
Generating New Faces	90

	Latent Space Arithmetic	91
	Morphing Between Faces	92
	Summary	93
4.	Generative Adversarial Networks	95
	Introduction	96
	Deep Convolutional GAN (DCGAN)	97
	The Bricks Dataset	98
	The Discriminator	99
	The Generator	101
	Training the DCGAN	104
	Analysis of the DCGAN	109
	GAN Training: Tips and Tricks	110
	Wasserstein GAN with Gradient Penalty (WGAN-GP)	113
	Wasserstein Loss	114
	The Lipschitz Constraint	115
	Enforcing the Lipschitz Constraint	116
	The Gradient Penalty Loss	117
	Training the WGAN-GP	119
	Analysis of the WGAN-GP	121
	Conditional GAN (CGAN)	122
	CGAN Architecture	123
	Training the CGAN	124
	Analysis of the CGAN	126
	Summary	127
5.	. Autoregressive Models	
	Introduction	130
	Long Short-Term Memory Network (LSTM)	131
	The Recipes Dataset	132
	Working with Text Data	133
	Tokenization	134
	Creating the Training Set	137
	The LSTM Architecture	138
	The Embedding Layer	138
	The LSTM Layer	140
	The LSTM Cell	142
	Training the LSTM	144
	Analysis of the LSTM	146
	Recurrent Neural Network (RNN) Extensions	149
	Stacked Recurrent Networks	149

	Gated Recurrent Units	151
	Bidirectional Cells	153
	PixelCNN	153
	Masked Convolutional Layers	154
	Residual Blocks	156
	Training the PixelCNN	158
	Analysis of the PixelCNN	159
	Mixture Distributions	162
	Summary	164
6.	Normalizing Flow Models	167
	Introduction	168
	Normalizing Flows	169
	Change of Variables	170
	The Jacobian Determinant	172
	The Change of Variables Equation	173
	RealNVP	174
	The Two Moons Dataset	174
	Coupling Layers	175
	Training the RealNVP Model	181
	Analysis of the RealNVP Model	184
	Other Normalizing Flow Models	186
	GLOW	186
	FFJORD	187
	Summary	188
7.	Energy-Based Models	189
	Introduction	189
	Energy-Based Models	191
	The MNIST Dataset	192
	The Energy Function	193
	Sampling Using Langevin Dynamics	194
	Training with Contrastive Divergence	197
	Analysis of the Energy-Based Model	201
	Other Energy-Based Models	202
	Summary	203
8.	Diffusion Models	205
	Introduction	206
	Denoising Diffusion Models (DDM)	208
	The Flowers Dataset	208

The Forward Diffusion Process	209
The Reparameterization Trick	210
Diffusion Schedules	211
The Reverse Diffusion Process	214
The U-Net Denoising Model	217
Training the Diffusion Model	224
Sampling from the Denoising Diffusion Model	225
Analysis of the Diffusion Model	228
Summary	231
Part III. Applications	
9. Transformers	235
Introduction	236
GPT	236
The Wine Reviews Dataset	237
Attention	238
Queries, Keys, and Values	239
Multihead Attention	241
Causal Masking	242
The Transformer Block	245
Positional Encoding	248
Training GPT	250
Analysis of GPT	252
Other Transformers	255
T5	256
GPT-3 and GPT-4	259
ChatGPT	260
Summary	264
10. Advanced GANs	. 267
Introduction	268
ProGAN	269
Progressive Training	269
Outputs	276
StyleGAN	277
The Mapping Network	278
The Synthesis Network	279
Outputs from StyleGAN	280
StyleGAN2	281

	Text-to-Code Models	400
	Text-to-Image Models	402
	Other Applications	405
	The Future of Generative AI	407
	Generative AI in Everyday Life	407
	Generative AI in the Workplace	409
	Generative AI in Education	410
	Generative AI Ethics and Challenges	411
	Final Thoughts	413
nde	nx	417