Uvod v geometrijsko topologijo

Teoretična vprašanja

R	Podmnožica ravnine $\{(x, y) \in \mathbb{R}^2 \mid 0 \le x < 1, 0 < y \le 1\}$ je mnogoterost.
R	Če je Eulerjeva karakteristika (povezane) ploskve enaka 2, je ploskev orientabilna.
R	Vsak retrakt hemisfere S^n_+ je absolutni ekstenzor za razred normalnih prostorov.
R	Vsak retrakt ravnine \mathbb{R}^2 ima lastnost negibne točke.
R	Naj bo $f: \{0\} \times [0, \infty) \to \{0\} \times [0, \infty)$ premik za $a \ge 0$, torej $f(0, x) = (0, x + a)$. Zlepek $((-\infty, 0] \times [0, \infty)) \cup_f ([0, \infty) \times [0, \infty))$ je mnogoterost natanko tedaj, ko je $a = 0$.
R	Če je $X#Y$ neorientabilna ploskev, sta X in Y neorientabilni ploskvi.
R	Za vsak neprazen topološki prostor X je prostor zveznih preslikav ($C(X, \mathbb{R} - \{0\}), TKT$) nepovezan.
R	Grupa $\mathbb R$ s topologijo končnih komplementov je topološka grupa.
R	Kvocientna preslikava $S^n \to \mathbb{R}P^n$ je odprta in zaprta.
R	Za podbazične množice v KOT velja $G(K, U) \cap G(L, U) = G(K \cup L, U)$.

1. NALOGA

Naj bo $X\subset\mathbb{R}$ diskretna množica. Pokaži, da lahko stožec CX vložimo v ravnino \mathbb{R}^2 natanko tedaj, ko je množica X končna.

2. NALOGA

Naj bo $X = (\mathbb{R}^2 \times \{0\}) \cup (\{0\} \times \mathbb{R} \times [0,1)).$

- (1) Ali je *X* absolutni ekstenzor za razred normalnih prostorov?
- (2) Ali je X retrakt prostora \mathbb{R}^3 ?
- (3) Ali je *X* mnogoterost?

Rešitve in odgovore utemelji.

3. NALOGA

Klasificiraj ploskev:

