UNIVERSITY OF DAR ES SALAAM

DEPARTMENT OF MATHEMATICS MT 100: FOUNDATION OF ANALYSIS

TIMED TEST 1, 2016/2017.

Date: Friday,	November 25, 2016	Time:	50	minutes
	_ , _ ,		9 0	TITILUOUS

Instruction: Answer all questions.

- 1. Let P = You will pass, G = You goof off, A = You are attentive, R = It is raining, T = I play tennis and S = I play squash. Translate into symbols the statements:
 - (a) You will pass unless you goof off, provided that you are attentive. $A \rightarrow (\sim G \rightarrow P)$
 - (b) I will play tennis unless it is raining, in which case I will play squash (← → T) ∧ (← → S)
- 2. Fill in the blanks below to make the arguments valid. Support your response with a reason:
- leason: modus
- (a) If Roza solved the first problem correctly, then the answer she obtained is 137. Roza's answer to the first problem is not 137. Therefore Roza solved the first problem in wheetly

 - 3. (a) Prove that $\sqrt{3}$ is irrational number.
 - (b) Fill in the blanks to complete the proof of the following theorem.

THEOREM: Let A, B, and C be the subsets of universal set \mathcal{U} . Then $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Conversely, suppose that $x \in \dots$ (iv). Then $x \in A \setminus B$ and $x \in A \setminus C$. But then $x \in \dots$ (vi) and $x \notin \dots$ (vii) and $x \notin \dots$ (viii). This implies that $x \notin (B \cup C)$, so $x \in \dots$ (viii). Hence \dots (ix) $\subseteq \dots$ (x) as desired.

10. 71.

1

- 4. Determine whether the following propositions are true or false. Give a counterxample to False proposition and prove if the proposition is true.
 - (a) $\forall x, \ x^2 \ge x$.
 - (b) $\forall x \forall y, \ 2xy \le x^2(x-3y+1) + y^2(3x-y+1).$

UNIVERSITY OF DAR ES SALAAM

DEPARTMENT OF MATHEMATICS MT 100: FOUNDATION OF ANALYSIS

TIMED TEST 2, 2016/2017.

Date: Friday, January 13, 2017

Time: 50 minutes

Instruction: Answer all questions.

- 1. (a) Let $x, y, z \in \mathbb{R}$. Prove the transitive law that if x < y and y < z, then x < z.
 - (b) Find the sup f(x) and inf f(x) of the function $f(x) = \frac{x}{x-2}$ on $(-\infty, 2) \cup (2, \infty)$.
- 2. (a) Let $z_1, z_2 \in \mathbb{C}$. Without expressing z_1 and z_2 into real and imaginary parts, prove that $|z_1 + z_2| \leq |z_1| + |z_2|$.
 - (b) Solve the inequality |x+3| + |x-4| < 0.
- 3. Let xRy defines the relation that x-y is even. Show that R is equivalent relation and its equivalence classes partition \mathbb{Z} .
- 4. (a) When do we say set A is bounded for every $x \in A$?
 - (b) Prove that $|z w| \ge |z| |w|, \forall z, w \in \mathbb{C}$.