Lecture 08 Problem Formulation

Artificial Intelligence

Dr. Ahmed Mateen

Today's Agenda

- Problem Solving Agents
- Problem Formulation
- Problem Types
- Examples

Problem Solving Agents

- Problem solving agent
 - A kind of "goal based" agent
 - Finds <u>sequences of actions</u> that lead to desirable states.
- The algorithms are uninformed
 - No extra information about the problem other than the definition
 - No extra information
 - No heuristics (rules)

Problem Solving Agents

Goal formulation

 based on the current situation and the agent's performance measure, is the first step in problem solving.

Problem formulation

 is the process of deciding what actions and states to consider, given a goal

Example: Romania

Important Terminologies

Transition Model

A description of what each action does

State Space

- Together, the initial state, actions, and transition model implicitly define the **state space** of the problem
- the set of all states reachable from the initial state by any sequence of actions

Successor

• the term **successor** refers to any state reachable from a given state by a single action.

Graph

• The state space forms a directed network or **graph** in which the nodes are states and the links between nodes are **actions**.

Path

 A path in the state space is a sequence of states connected by a sequence of actions.

Costs

- Path Cost
- Step Cost
- Optimal Solution

Example: Romania

Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
 - be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- Find solution:
 - sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Well Defined Problems and Solutions

- A problem
 - Initial state
 - Actions and Successor Function
 - Goal test
 - Path cost

Example: Romania

Problem Formulation

- A problem is defined by four items:
- Initial State
 - e.g. "At Arad"
- Successor Function
 - A set of action state pairs
 - S(Arad) = {(Arad->Zerind), ...}
- Goal Test
 - e.g. x = "at Bucharest"
- Path Cost
 - sum of the distances traveled
- A solution is a sequence of actions leading from the initial state to a goal state

Problem types

- Deterministic → single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence
- fully observable
 - Agent has access to all information in the environment relevant to its task.
- Discrete → finite locations problem
 - Agent can enumerate choices
- Static
 - The plan remains the same

Problem types

Contd...

- - Agent may have no idea where it is; solution is a sequence
- Nondeterministic and/or partially observable

 contingency problem
 - percepts provide new information about current state
- Unknown state space → exploration problem

Vacuum world state space graph

- states?
- actions?
- goal test?
- path cost?

Vacuum world state space graph

- states? Dirt and robot location
- actions? Left, Right, Suck
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle

- states? locations of tiles
- <u>actions?</u> move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move

Example: Eight Queens

- Place eight queens on a chess board such that no queen can attack another queen
- No path cost because only the final state counts!

- Incremental formulations
- Complete state formulations

Example: Eight Queens

- States:
 - Any arrangement of 0 to 8 queens on the board
- Initial state:
 - No queens on the board
- Successor function:
 - Add a queen to an empty square
- Goal Test:
 - 8 queens on the board and none are attacked
- 64*63*...*57 = 1.8*10¹⁴ possible sequences
 - Ouch!

Example: Eight Queens

States:

 Arrangements of n queens, one per column in the leftmost n columns, with no queen attacking another are states

Successor function:

 Add a queen to any square in the leftmost empty column such that it is not attacked by any other queen.

