

Programa de Pós-Graduação em Engenharia de Computação e Sistemas - PECS/UEMA

Atividade III - DenseNet-121

Aluno: Adrielson Ferreira Justino

Professor: Omar Andres Carmona Cortes

- Treinamento e a comparação de duas arquiteturas de redes neurais convolucionais (CNN) para classificação de imagens, usando conjunto de dados CIFAR-10.
- O objetivo é treinar duas arquiteturas de modelos diferentes (model1 e model2) e comparar suas performances usando testes estatísticos.

DenseNet-121

- Arquitetura apresentada em 2016 por Gao Huang et al. em seu artigo da "Densely Connected Convolutional Networks".
- Redes Convolucionais Densamente Conectadas (DenseNet) é uma arquitetura de rede neural convolucional (CNN) feed-forward que conecta cada camada a todas as outras camadas.
- Cada camada obtém informações de todas as camadas anteriores e passa seus próprios mapas de características para todas as camadas que virão depois dela.
- O modelo DenseNet surgiu com o objetivo de solucionar o problema do **desaparecimento de gradiente**, para arquiteturas muito profundas.

Gao Huang et al. (2016)

Rede Neural Convolucional

- Em uma CNN feed-forward tradicional, cada camada convolucional, exceto a primeira, recebe a saída da camada convolucional anterior;
- Produz um mapa de características de saída que é então passado para a próxima camada convolucional;
- Portanto, para camadas 'L', existem conexões diretas 'L'.

Rede Neural Convolucional

- À medida que o número de camadas na CNN aumenta, surge o problema do "desaparecimento de gradiente".
- Conforme o caminho das informações das camadas de entrada para as camadas de saída aumenta, certas informações podem 'desaparecer' ou se perder;
- Reduz a capacidade da rede de treinar de forma eficaz.

Conectividade

- A ideia chave empregada pela DenseNet é, em cada camada, os mapas de características são passados como entrada não só para a camada subsequente, mas para todas as camadas até o final da rede, em uma estrutura denominada **bloco dense**
- Em cada camada, os mapas de características de todas as camadas anteriores não são somados, mas concatenados e usados como entradas.
- Conexões L(L+1)/2 na rede, em vez de apenas conexões L como nas arquiteturas tradicionais de aprendizagem profunda.
- DenseNets requerem menos parâmetros do que uma CNN tradicional equivalente, e isso permite a reutilização de recursos à medida que mapas de características redundantes são descartados.

- DenseNet consiste em dois blocos importantes além das camadas convolucionais e de pooling básicas:
 - Blocos Densos
 - Camadas de Transição

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7 × 7 conv, stride 2			
Pooling	56 × 56		3 × 3 max p	oool, stride 2	
Dense Block (1)	56 × 56	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$
Transition Layer	56 × 56		1 × 1	conv	
(1)	28 × 28		2 × 2 average pool, stride 2		
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$
Transition Layer	28 × 28		1 × 1	conv	•
(2)	14 × 14	2 × 2 average pool, stride 2			
Dense Block (3)	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 64$
Transition Layer	14 × 14		$1 \times 1 \text{ conv}$		
(3)	7 × 7	2 × 2 average pool, stride 2			
Dense Block (4)	7 × 7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$
Classification	1 × 1	7 × 7 global average pool			
Layer		1000D fully-connected, softmax			

Implementação: https://www.kaggle.com/adrielson/comparativo-cnn-densenet-121

- DenseNet começa com uma convolução básica com 64 filtros de tamanho 7X7 e stride de 2;
- Seguido por uma camada
 MaxPooling com pooling máximo de 3x3 e um avanço de 2.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7 × 7 conv, stride 2			
Pooling	56 × 56		3 × 3 max p	oool, stride 2	
Dense Block (1)	56 × 56	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$
Transition Layer	56 × 56		1 × 1	conv	
(1)	28×28		2 × 2 average	pool, stride 2	
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$
Transition Layer	28 × 28	$1 \times 1 \text{ conv}$			
(2)	14 × 14		2 × 2 average	pool, stride 2	
Dense Block (3)	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 64$
Transition Layer	14×14	$1 \times 1 \text{ conv}$			
(3)	7 × 7		2 × 2 average	pool, stride 2	
Dense Block (4)	7 × 7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$
Classification	1 × 1	7 × 7 global average pool			
Layer			1000D fully-cor	nnected, softmax	

```
input = Input(input_shape)
x = Conv2D(64, 7, strides=2, padding='same')(input)
x = MaxPooling2D(3, strides=2, padding='same')(x)
```

Blocos densos

- Cada bloco denso tem duas convoluções, com núcleos de tamanho 1x1 e 3x3.
- No bloco denso 1, isso é repetido 6 vezes, no bloco denso 2 é repetido 12 vezes, no bloco denso 3, 24 vezes e finalmente no bloco denso 4, 16 vezes.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112		7 × 7 con	v, stride 2	
Pooling	56 × 56		3 × 3 max p	oool, stride 2	
Dense Block	56 × 56	$1 \times 1 \text{ conv} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$
Transition Layer	56 × 56		1 × 1	conv	
(1)	28×28		2 × 2 average	pool, stride 2	
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$
(2)	20 × 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$
Transition Layer	28×28		1 × 1	conv	
(2)	14 × 14		2 × 2 average	pool, stride 2	
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 0 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 64 \end{bmatrix}$
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{40}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 64}$
Transition Layer	14 × 14		1 × 1	conv	•
(3)	7 × 7		2 × 2 average	pool, stride 2	
Dense Block	7 . 7	[1 × 1 conv]	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	[1 × 1 conv]	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$
(4)	7 × 7	$3 \times 3 \text{ conv}$ $\times 16$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$
Classification	1 × 1	7 × 7 global average pool			
Layer		1000D fully-connected, softmax			

Cada bloco convolucional após a entrada tem a seguinte sequência: BatchNormalization,
 Ativação do ReLU, Camada Conv2D real.

```
def densenet(input_shape, n_classes):
    def bn_rl_conv(x, filters, kernel=1, strides=1):
        x = BatchNormalization()(x)
        x = ReLU()(x)
        x = Conv2D(filters, kernel, strides=strides, padding='same')(x)
        return x
```

• No bloco denso, cada uma das convoluções 1x1 possui 4 vezes o número de filtros (4*), mas os filtros 3x3 estão presentes apenas uma vez. Além disso, é feita a concatenação da entrada com o tensor de saída. O loop executa cada bloco em 6,12,24,16 repetições respectivamente.

```
def dense_block(x, repetition):
    for _ in range(repetition):
        y = bn_rl_conv(x, 4 * growth_rate)
        y = bn_rl_conv(y, growth_rate, 3)
        x = Concatenate()([y, x])
    return x
```

Camada de transição

- Há uma camada convolucional 1x1
- Um camada de pooling média 2x2 com um avanço de 2.

```
Output Size
                                               DenseNet-121
                                                                             DenseNet-169
                                                                                                           DenseNet-201
                                                                                                                                          DenseNet-264
      Layers
   Convolution
                         112 \times 112
                                                                                         7 \times 7 conv, stride 2
                                                                                      3 \times 3 max pool, stride 2
                          56 \times 56
     Pooling
                                                                                                          1 \times 1 conv
  Dense Block
                                             1 \times 1 conv
                                                                            1 \times 1 conv
                                                                                                                                         1 \times 1 conv
                          56 \times 56
                                                                                                                                                          \times 6
                                                               \times 6
                                                                                                          3 \times 3 conv
                                                                                                                                        3 \times 3 conv
        (1)
                                             3 \times 3 conv
                                                                            3 \times 3 conv
Transition Layer
                          56 \times 56
                                                                                               1 \times 1 conv
        (1)
                          28 \times 28
                                                                                    2 \times 2 average pool, stride 2
  Dense Block
                                              1 \times 1 conv
                                                                            1 \times 1 conv
                                                                                                                                         1 \times 1 conv
                                                                                                          1 \times 1 conv
                                                                                                                            \times 12
                          28 \times 28
                                                               \times 12
                                                                                              \times 12
                                                                                                                                                          \times 12
                                                                                                          3 \times 3 conv
                                             3 \times 3 conv
                                                                            3 \times 3 conv
                                                                                                                                         3 \times 3 conv
Transition Layer
                          28 \times 28
                                                                                               1 \times 1 conv
                                                                                    2 × 2 average pool, stride 2
                          14 \times 14
  Dense Block
                                              1 \times 1 conv
                                                                            1 \times 1 \text{ conv}
                                                                                                          1 \times 1 conv
                                                                                                                                         1 \times 1 conv
                                                                                              \times 32
                                                                                                                            \times 48
                          14 \times 14
                                                               \times 24
                                                                                                                                                           \times 64
                                                                                                          3 \times 3 conv
                                             3 \times 3 conv
                                                                            3 \times 3 conv
                                                                                                                                        3 \times 3 conv
Transition Layer
                          14 \times 14
                                                                                               1 \times 1 conv
                            7 \times 7
                                                                                    2 \times 2 average pool, stride 2
        (3)
  Dense Block
                                              1 \times 1 conv
                                                                                                          1 \times 1 conv
                                                                                                                                         1 \times 1 conv
                                                                            1 \times 1 conv
                                                               \times 16
                                                                                                                                                          \times 48
                            7 \times 7
                                                                            3 \times 3 conv
                                                                                                                                        3 \times 3 conv
                                             3 \times 3 conv
                                                                                                          3 \times 3 conv
                                                                                     7 × 7 global average pool
  Classification
                            1 \times 1
                                                                                  1000D fully-connected, softmax
      Layer
```

```
def transition_layer(x):
    x = bn_rl_conv(x, K.int_shape(x)[-1] // 2)
    x = AveragePooling2D(2, strides=2, padding='same')(x)
    return x
```

• Concluído a definição dos blocos densos e das camadas de transição. É preciso empilhar os blocos densos e as camadas de transição. Por meio do *loop for* para percorrer as 6,12,24,16 repetições.

```
for repetition in [6, 12, 24, 16]:
    x = dense_block(x, repetition)
    x = transition_layer(x)
```

Camada de classificação

- Global Average Pooling aceita todos os mapas de recursos da rede para realizar a classificação
- Camada de saída **fully-connected**

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7 × 7 conv, stride 2			
Pooling	56 × 56	3 × 3 max pool, stride 2			
Dense Block (1)	56 × 56	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$
Transition Layer	56 × 56		1×1	conv	
(1)	28×28	2 × 2 average pool, stride 2			
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$
Transition Layer	28×28	$1 \times 1 \text{ conv}$			
(2)	14 × 14		2 × 2 average	pool, stride 2	
Dense Block (3)	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 64$
Transition Layer	14×14	$1 \times 1 \text{ conv}$			
(3)	7 × 7		2 × 2 average	pool, stride 2	
Dense Block (4)	7 × 7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$
Classification	1 × 1		7 × 7 global	average pool	
Layer			1000D fully-cor	nnected, softmax	

```
x = GlobalAveragePooling2D()(x)
output = Dense(n_classes, activation='softmax')(x)
```

- Portanto, DenseNet-121
 possui as seguintes camadas:
 - 1 Convolução 7x7
 - 58 Convolução 3x3
 - 61 Convolução 1x1
 - 4Pool médio
 - 1 camada totalmente conectada

```
#DenseNet-121
def densenet(input_shape, n_classes):
    def bn_rl_conv(x, filters, kernel=1, strides=1):
        x = BatchNormalization()(x)
       x = ReLU()(x)
        x = Conv2D(filters, kernel, strides=strides, padding='same')(x)
        return x
    def dense_block(x, repetition):
       for _ in range(repetition):
            y = bn_rl_conv(x, 4 * growth_rate)
            y = bn_rl_conv(y, growth_rate, 3)
            x = Concatenate()([y, x])
        return x
    def transition_layer(x):
       x = bn_rl_conv(x, K.int_shape(x)[-1] // 2)
        x = AveragePooling2D(2, strides=2, padding='same')(x)
        return x
    growth_rate = 32
    input = Input(input_shape)
    x = Conv2D(64, 7, strides=2, padding='same')(input)
    x = MaxPooling2D(3, strides=2, padding='same')(x)
    for repetition in [6, 12, 24, 16]:
        x = dense_block(x, repetition)
        x = transition_layer(x)
    x = GlobalAveragePooling2D()(x)
    output = Dense(n_classes, activation='softmax')(x)
```

Comparativo estatístico

Pré-processamento:

- O conjunto de dados CIFAR-10 foi reduzido para 30000 imagens
- 25000 para conjuto de treino
- 5000 para conjunto de teste

Experimento:

- Cada modelo foi executado 5 vezes;
- Foram coletadas as medidas de desempenho por época (10 épocas);
- Foi utilizado os valores das acurácias para realização do teste de normalidade (Shapiro Wilk);
- Se os grupos seguem distribuição normal;
 - Aplica-se ANOVA
- Senão
 - Aplica-se Kruskal Wallis

Epoch 1/10	
274/274 [=========] - 22	2s 806ms/step - loss: 1.6815 - accuracy: 0.4215 - val_loss: 1.3237 - val_accuracy: 0.5136
Epoch 2/10	
274/274 [==========] - 24	8s 906ms/step - loss: 1.2181 - accuracy: 0.5714 - val_loss: 1.1896 - val_accuracy: 0.5807
Epoch 3/10	
274/274 [==========] - 21	5s 784ms/step - loss: 1.0350 - accuracy: 0.6375 - val_loss: 1.1318 - val_accuracy: 0.6016
Epoch 4/10	
274/274 [=========] - 21	5s 785ms/step - loss: 0.8434 - accuracy: 0.7013 - val_loss: 1.1060 - val_accuracy: 0.6200
Epoch 5/10	
274/274 [=========] - 24	5s 895ms/step - loss: 0.6476 - accuracy: 0.7722 - val_loss: 1.1472 - val_accuracy: 0.6295
Epoch 6/10	
274/274 [=========] - 21	8s 797ms/step - loss: 0.4357 - accuracy: 0.8499 - val_loss: 1.3541 - val_accuracy: 0.6052
Epoch 7/10	
274/274 [=========] - 22	4s 817ms/step - loss: 0.2558 - accuracy: 0.9124 - val_loss: 1.6341 - val_accuracy: 0.6208
Epoch 8/10	
	1s 878ms/step - loss: 0.1466 - accuracy: 0.9528 - val_loss: 1.8855 - val_accuracy: 0.6059
Epoch 9/10	
274/274 [==========] - 21	6s 789ms/step - loss: 0.1122 - accuracy: 0.9634 - val_loss: 1.9957 - val_accuracy: 0.6108
Epoch 10/10	
274/274 [==========] - 24	6s 898ms/step - loss: 0.0932 - accuracy: 0.9683 - val_loss: 2.2559 - val_accuracy: 0.6176

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Epoch 1/10	
274/274 [====================================	ıracy: 0.4177 - val_loss: 1.3456 - val_accuracy: 0.5227
Epoch 2/10	
274/274 [====================================	ıracy: 0.5666 - val_loss: 1.1537 - val_accuracy: 0.5955
Epoch 3/10	
274/274 [====================================	ıracy: 0.6457 - val_loss: 1.0745 - val_accuracy: 0.6212
Epoch 4/10	
274/274 [====================================	ıracy: 0.7161 - val_loss: 1.0773 - val_accuracy: 0.6397
Epoch 5/10	
274/274 [====================================	ıracy: 0.7904 - val_loss: 1.1736 - val_accuracy: 0.6272
Epoch 6/10	
274/274 [====================================	ıracy: 0.8658 - val_loss: 1.3102 - val_accuracy: 0.6325
Epoch 7/10	
274/274 [====================================	ıracy: 0.9294 - val_loss: 1.6133 - val_accuracy: 0.6373
Epoch 8/10	
274/274 [====================================	ıracy: 0.9595 - val_loss: 1.6977 - val_accuracy: 0.6420
Epoch 9/10	
274/274 [====================================	ıracy: 0.9641 - val_loss: 2.0992 - val_accuracy: 0.6188
Epoch 10/10	
274/274 [====================================	ıracy: 0.9736 - val_loss: 2.0661 - val_accuracy: 0.6351

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Epoch 1/10					
274/274 [========] - 22	24s 814ms/step -	loss: 1.7183 -	accuracy: 0.391	9 - val_loss: 1.435	3 - val_accuracy: 0.4805
Epoch 2/10					
274/274 [========] - 22	23s 813ms/step -	loss: 1.2901 -	accuracy: 0.540	5 - val_loss: 1.269	3 - val_accuracy: 0.5556
Epoch 3/10					
274/274 [========] - 22	26s 826ms/step -	loss: 1.0431 -	accuracy: 0.629	5 - val_loss: 1.177	7 - val_accuracy: 0.5996
Epoch 4/10					
274/274 [========] - 22	21s 806ms/step -	loss: 0.8139 -	accuracy: 0.711	9 - val_loss: 1.125	2 - val_accuracy: 0.6132
Epoch 5/10					
274/274 [========] - 22	21s 807ms/step -	loss: 0.5689 -	accuracy: 0.800	8 - val_loss: 1.332	6 - val_accuracy: 0.5991
Epoch 6/10					
274/274 [========] - 22	20s 805ms/step -	loss: 0.3395 -	accuracy: 0.881	1 - val_loss: 1.513	8 - val_accuracy: 0.5948
Epoch 7/10					
274/274 [========] - 22	20s 804ms/step -	loss: 0.1768 -	accuracy: 0.941	4 - val_loss: 1.934	7 - val_accuracy: 0.5940
Epoch 8/10					
274/274 [========] - 22	22s 809ms/step -	loss: 0.1258 -	accuracy: 0.958	9 - val_loss: 2.317	6 - val_accuracy: 0.5779
Epoch 9/10					
274/274 [========] - 22	21s 807ms/step -	loss: 0.0877 -	accuracy: 0.970	9 - val_loss: 2.525	1 - val_accuracy: 0.5964
Epoch 10/10					
274/274 [=========] - 22	21s 805ms/step -	loss: 0.0749 -	accuracy: 0.974	3 - val_loss: 2.835	3 - val_accuracy: 0.5912

Epoch 1/10	
274/274 [=============================] - 350s 1s/step - loss: 2.1668 - accuracy: 0.3307 - val_loss: 11	3.4545 - val_accuracy: 0.1065
Epoch 2/10	
274/274 [==============================] - 279s 1s/step - loss: 1.7943 - accuracy: 0.3943 - val_loss: 1.7943	7003 - val_accuracy: 0.3700
Epoch 3/10	
274/274 [====================================	5.4587 - val_accuracy: 0.3839
Epoch 4/10	
274/274 [====================================	s: 1.2321 - val_accuracy: 0.5521
Epoch 5/10	
274/274 [====================================	s: 1.1829 - val_accuracy: 0.5713
Epoch 6/10	
274/274 [====================================	1842 - val_accuracy: 0.5797
Epoch 7/10	
274/274 [====================================	2093 - val_accuracy: 0.5817
Epoch 8/10	
274/274 [====================================	3028 - val_accuracy: 0.5840
Epoch 9/10	
274/274 [====================================	3587 - val_accuracy: 0.5819
Epoch 10/10	
274/274 [====================================	1.2672 - val_accuracy: 0.5860

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Epoch 1/10
274/274 [====================================
Epoch 2/10
274/274 [====================================
Epoch 3/10
274/274 [====================================
Epoch 4/10
274/274 [====================================
Epoch 5/10
274/274 [====================================
Epoch 6/10
274/274 [=============================] - 277s 1s/step - loss: 1.2310 - accuracy: 0.5489 - val_loss: 2.3097 - val_accuracy: 0.5279
Epoch 7/10
274/274 [====================================
Epoch 8/10
274/274 [====================================
Epoch 9/10
274/274 [====================================
Epoch 10/10
274/274 [====================================

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Epoch 1/10
274/274 [=============================] - 335s 1s/step - loss: 2.3385 - accuracy: 0.2913 - val_loss: 3.3433 - val_accuracy: 0.1520
Epoch 2/10
274/274 [=============================] - 279s 1s/step - loss: 1.7744 - accuracy: 0.3766 - val_loss: 1.9469 - val_accuracy: 0.4059
Epoch 3/10
274/274 [=============================] - 278s 1s/step - loss: 1.6189 - accuracy: 0.4212 - val_loss: 1.5741 - val_accuracy: 0.4256
Epoch 4/10
274/274 [==============================] - 297s 1s/step - loss: 1.3689 - accuracy: 0.5032 - val_loss: 1.8000 - val_accuracy: 0.4893
Epoch 5/10
274/274 [====================================
Epoch 6/10
274/274 [====================================
Epoch 7/10
274/274 [====================================
Epoch 8/10
274/274 [====================================
Epoch 9/10
274/274 [====================================
Epoch 10/10
274/274 [====================================

Comparativo estatístico

Resultado

Pelo menos um dos grupos não segue uma distribuição normal.

Como base no teste de Kruskal-Wallis, podemos inferir que: statistic: 57.4999

p_value: 0.0000

Portanto:

Há diferenças estatisticamente significativas entre os grupos.

	épocas	Melhor Acurácia
CNN	10	0.6444
Densenet121	10	0.5860
CNN	20	0.6355
Densenet121	20	0.6721

Implementação: https://www.kaggle.com/adrielson/comparativo-cnn-densenet-121

Referências

- 1. HUANG, Gao et al. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 4700-4708.
- 1. BRAGA, Matheus Oliveira. Uma avaliação elaborada dos principais modelos de referência para classificação de imagens. 2021.

Programa de Pós-Graduação em Engenharia de Computação e Sistemas - PECS/UEMA

Atividade III - DenseNet-121

Aluno: Adrielson Ferreira Justino

Professor: Omar Andres Carmona Cortes