PATENT SPECIFICATION

761,171

Date of Application and filing Complete Specification: May 19, 1954. No. 14718/54.

Application made in United States of America on May 29, 1953. Complete Specification Published: Nov. 14, 1956.

Index at acceptance:—Classes 2(3), C1(A15:B6:X), C3C5(A4:B:C4:C5:C8:E1:E5); 81(1), B1(B3:D:L:S), E1A4B(2:3:4), E1A5(A:B:C:D), E1A(7B: 14C), E1C4B(2:3:4), E1C5(A:B:C:D), E1C(7B:14C); and 140, P3(B:F2: F4: G5).

COMPLETE SPECIFICATION

Heavy-Metal Salts of 2-Mercaptopyridine-1-Oxides and methods . of preparing same

We, Olin Mathieson Chemical Cor-PORATION, formerly Mathieson Chemical Corporation, a Corporation organized and existing under the laws of the State of Virginia, United States of America, of 745 Fifth Avenue, New York 22, New York, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:

This invention relates to and has for its object the provision of: -(A) heavy-metal

.]

salts (as hereinafter defined) of 2-mercapto- 15 pyridine-1-oxides, I, in which the pyridine nucleus may be substituted by a halogen atom or by a lower alkyl or lower alkoxy group; and (B) methods of preparing same. The terms "lower-alkyl" and "lower-alkoxy," as employed herein, mean radicals having from one to seven carbon atoms.

The salts of this invention are active against a wide group of microorganisms, as indicated by the following in vitro spectra (data on the antibacterial agent aspergillic acid being included for comparison).

20

TABLE I ANTIBACTERIAL ACTIVITY

						MIC μg/ml.			
Salt of 2-mer	capto	-pyr	idine	:-1-0:	xide		Staph. 209—P	K. Pneum.	BCG
Cupric	_				_	_			0.06
Zinc	-	_	-	-	-	-	0.6	1	0.02
Manganese		-	-	-	-	-	0.15	2.5	0.015
Ferrous	-	-	-	-	-	-	0.25	30	0.015
Ferric	-	-	-	-	-	-	0.12	30	0.01
Mercuric	-	-	-	-	-	-	0.08	0.6	0.012
Silver	-	-	-	-	-	-	0.08	1.5	0.01
Antimonous	_	-	-	-	-	-	0.12	2	0.007
Cobaltous	-	-	-	-	-	-	0.12	12	0.025
Lead	-	-	-	-	-	-	0.12	7	0.06
Bismuth	-	-	-	-	-	-	0.15	1.5	0.01
Aspergillic Ac	cid	_	_	_	-	-	20	30	4

TABLE II ANTIFUNGAL ACTIVITY

Astronoganism Control* Cupric Zinc Manganese Ferrous Ferric Meteuric Silver Antimonous Cobolitous Lead Bismuth Americans I.25 3 3 1.6 3.1 1.5 1.6 0.8 0.8 1.6 3.1 1.6 Miningatus Aspergillus Candida Aspergillus							MIC "g/m	- la			: .		-
m Control* Cupric Zinc Anarganese Ferrous Ferric Meteuric Silver Antimonous Cobaltous Lead 3.1 1.5 1.6 0.8 0.8 1.6 3.1		 		_,	Sal	t of 2-me	reaptopy	ridine-1-ox	ide		·	_	
12.5 3 3 1.6 3.1 1.5 1.6 0.8 0.8 1.6 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	Microorganism	Control*	Cupric	Zinc	Manganese	Ferrous	Ferric	Mercuric	Silver	Antimonous			Rismith
3.1 25 6 1.6 13 3.1 1.6 0.8 3.1 3.1 3.1 1.6 0.8 3.1 3.1 co. - 3.1 25 6 1.6 13 1.6 3.1 1.6 3.1 6.3 1.6 0.8 0.8 3.1 - 50 100+ 3 3.1 13+ 13 6.3 6.3 13 13+ 13+ 13+ 13 - 50 100+ 3 3.1 13+ 13+ 6.3 1.6 1.6 1.6 3.1 3.1 - 50 100+ 3 3.1 13+ 13+ 6.3 1.6 1.6 1.6 3.1 1.6 1.6 - 50 100+ 3 3.1 1.6 13+ 0.8 0.8 0.8 0.8 0.8 1.6 1.6 - 50 100+ 3 3.1 1.6 13+ 13+ 13+ 13+ 16 0.8 0.8 0.8 0.8 0.8 - 50 100+ 3 3 1.6 13+ 13+ 13+ 13+ 14- 15+ 16 0.8 0.8 0.8 0.8 - 50 100+ 3 3 1.6 13+ 13+ 13+ 13+ 14- 15+ 16 0.8 0.8 0.8 0.8 - 50 100+ 3 3 1.6 13+ 13+ 13+ 13+ 14- 15+ 15+ 15+ 15+ 15+ 15+ 15+ 15+ 15+ 15+	Aspergillus fumigatus	12.5	. 3	_.	1.6	3.1	1.5	1.6	0.8	0.8		1	0.8
ton ————————————————————————————————————	Aspergillus		25	9	1.6	13	3.1	3.1	I.6	8.0	3.1	3.1	1.6
fon ————————————————————————————————————	Microsporum canis	1	1		3.1	13	6,3	9.1		1.6	3.1	6.3	3.1
50 100+ 3 3.1 13+ 13 6.3 13 6.3 13+ 13+ 13+ 13+ 13 3.1 6 3 1.6 13+ 13+ 6.3 1.6 1.6 3.1 3.1 3.1 6 3 0.8 3.1 6.3 3.1 1.6 6.3 1.6 1.8 1.6 50 25 3 3.1 13+ 13 3.1 1.6 3.1 6.3 12.5 3 3 1.6 13 6.3 3.1 1.6 1.8 3.1 3.1 3.1	Epidermophyton	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-			0.8	. 69	. T	1.6	9.	870	8.0	3.1	0.8
3.1 6 3 1.6 13+ 13+ 6.3 1.6 1.6 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	Candida albicans	50	100+	6	3.1 3.1	13+	13	• -	6.3		13+	13+	13+
3.1 6 3 1.6 13+ 13+ 6.3 1.6 1.6 3.1 3.1 3.1 1.6 3 3 0.8 3.1 1.5 1.6 6.3 1.6 1.3 50 25 3 3.1 13+ 13 3.1 1.6 0.8 0.8 0.8 0.8 12.5 3 3 1.6 13 6.3 3.1 1.6 0.8 3.1 3.1 3.1 3.1 3.1	Microsporum audouini	13.1	ũ	m	8° 0	• i -	13	8	0.8	8.0 0	1.6	1.6	0.8
yces 1.6 '3 3 0.8 3.1 (6.3 3.1 1.6 6.3 1.6 13 1.6 phyres 3.1 1.5 1.6 0.8 0.8 0.8 1.6 1.6 phyres 50 25 3 3.1 13+ 13 3.1 3.1 1.6 3.1 6.3 ella 3.1 3.1 3 3 3 1.6 13 6.3 3.1 1.6 0.8 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		. m	. 9	ო	1.6	13+	13+′	6.3	1.6	1.6	3.1	3:1	1.6
on physes 3.1 1.3 3 0.8 3.1 1.5 1.6 0.8 0.8 0.8 1.6 1.6 mm 50 25 3 3.1 13+ 13 3.1 3.1 1.6 3.1 6.3 ella 3.1 3.1 3 3 3 1.6 13 6.3 3.1 1.6 0.8 0.8 0.8 0.8 0.8 12.5 3 3 1.6 13 6.3 3.1 1.6 0.8 3.1 3.1 3.1	Saccharomyces cerevisiae	1.6	<u>.</u> .	<i>m</i>	8.0		6.3	3.1	1.0	6.3	1,6	13	13
ella 3.1 3 3 3.1 13+ 13 3.1 1.6 3.1 6.3 ella 12.5 3 3.1 1.6 13 3.1 1.6 3.1 6.3 3.1 12.5 3 3.1 1.6 13 6.3 3.1 1.6 0.8 3.1 3.1	Trichophyton mentagrophytes	3.1	. .	m	8.0	3.1	1.5	1.6	0.8	0.8	0.8	1.6	8.0
ella [3,1] 3 3 0.8 1.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.8 12.5 3 3 1.6 13 6.3 3.1 1.6 0.8 3.1 3.1	Fusarium bulbigenum	20	52	6	3.1	13+	13		3.1	1.6		6.3	6.3
12.5 3 3 1.6 13 6.3 3.1 1.6 0.8 3.1 3.1	Ceratostomella ulmi	 - 	·	m	0.8	1:6	8.0	8.0	8.	0	0.8	0.8	8.0
	Penicillium notatum	12.5	m	6 0	1.6	13	6.3	3.1	1.6	0.8	3.1	3.1	1.6

8-hydroxyquinoline

3

Additional in vitro tests show that a dosage of 10 ppm. of the iron, zinc, cobalt, lead or bismuth salt of the invention produces 100% inhibition of Aspergillus niger; and the manganese, mercuric, silver, or antimony salt is effective in even smaller concentrations. Tests of the aforenamed derivatives of this invention (and of the copper salt) show that total inhibition of Chaetonium globosum, Myrothecium B verrucaria, and Aspergillus terreus results when the derivatives are present in concentrations of 2.5 ppm. or less, 5.0 ppm. or less, and 10 ppm. or less, respectively.

Since the derivatives of this invention possess broad antibacterial and antifungal spectra, they are utilizable in agriculture against plant diseases (for example, against Peronospora growing on grapevine), as preservatives (for example, in leather, paper, and prints), and (especially) in plastics and fabrics to render them proof against mildew or other fungus attack. In the protection of fabrics (for example) with the derivatives of this invention, the derivative may be applied to, and/ or incorporated in, the fabric in a number of ways. For example, the fabric may be impregnated with the derivative or one of the moieties thereof (as explained hereinafter), inter alia, by soaking or spraying. Thus the fabric may be impregnated with a 2-mercaptopyridine-1-oxide (I) or a water-soluble salt thereof, by soaking it in a solution thereof; and the impregnated fabric is then treated with a solution of the salt of the desired heavy-metal and an acid; and the reverse of this procedure can also be used. Preferably, however, the fabric is successively treated with an aqueous solution of an alkali-metal salt of I, and with a water-soluble heavymetal salt.

20

The derivatives of the invention are also valuable chemotherapeutic agents, inter alia, as fungicides in the treatment of Dermatophytosis pedis. For this purpose, a cupric derivative of 2-mercaptopyridine-1-oxide, for example, would be employed with a suitable inert carrier, diluent or base, e.g. starch, talc, magnesium silicate or other carrier to form a dusting powder. When it is desired to employ the derivatives in the form of ointments, the derivative (for example, the zinc derivative of 2-mercaptopyridine-1-oxide) is incorporated in a suitable ointment base (for example, a conventional hydrophilic ointment base).

The salts of this invention may be prepared by a method which comprises interacting a 2-mercaptopyridine-1-oxide (I), preferably a water-soluble salt thereof (e.g. an alkali metal salt such as sodium or potassium salt thereof, or ammonium salt thereof), with a water-soluble salt of an acid and the desired heavy-metal (II) in a solvent for the reactants and recovering the required heavy-metal salt of

the reaction product. (When reactant I is a 2-mercaptopyridine-1-oxide per se the solvent is preferably alcohol, cf. Example 15; and an aqueous solution is used when the 2-mercaptopyridine-1-oxide reactant is in a water-soluble salt form.) An aqueous solution of each reaction may be used. Reactant I may be in tautomeric equilibrium with the corresponding N-hydroxy-2-pyridinethione. This tautomerism will not be alluded to hereinafter, it being understood that such tautomeric form i.e. N-hydroxy-2-pyridinethione) is included when referring to the compounds of this invention by a name such as 2-mercaptopyridine-1-oxide.

Examples of the utilizable compounds I include the following (inter alia) and watersoluble salts thereof: 2-mercaptopyridine-1-oxide, 3 (4, 5 or 6)-ethoxy-2-mercaptopyridine-1-oxide, 2-mercapto-3 (4, 5, or 6)-methylpyridine-1-oxide, 2-mercapto-3 (4, 5 or 6)-methoxypyridine-1-oxide, 3 (or 5)-bromo-2-mercaptopyridine-1-oxide, 2-mercapto-3 (4, 5 or 6)-ethylpyridine-1-oxide, 3 (or 5)-chloro-2-mercaptopyridine-1-oxide, 3, (4, 5 or 6)-butoxy-2-mercaptopyridine-1-oxide, 3, (5 or 6)-butoxy-2-mercaptopyridine-1-oxide. (See for example, J.A.C.S. 72:4362 for preparation of substituted 2-mercaptopyridine-1-oxides).

pyridine-I-oxides).

The heavy-metal salt reactants (II) utilizable in the practice of this invention include salts in which the heavy-metal group is (interalia) copper, iron, manganese, tin, mercury, cobalt, chromium, arsenic, antimony, lead, gold, cadmium, nickel, silver, bismuth, and zinc (the term heavy-metal, as employed herein and in the appended claims, include the heavy metals and amphoteric metals, such as arsenic, having a specific gravity greater than four. The reactants II may be (interalia) nitrates, acetates, sulphates, and (preferably) halides.

The following examples are illustrative of, but not limitative of, the invention.

EXAMPLE 1
Preparation of the Manganese Salt of 2-mercaptopyridine-1-oxide

A solution of 0.99 g. (0.005 M.) manganese chloride tetrahydrate in 50 cc. of water is added to a solution of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-oxide in 10 cc. of normal sodium hydroxide. The desired product, a vellow solid, precipitates immediately and is filtered, washed with water, alcohol, and ether, and is air-dried. Weight about 1.3 g. Example 2.

Preparation of the Nickel Salt of 2-mercaptopyridine-1-oxide

A solution of 1.18 g. (0.005 M.) nickel chloride hexahvdrate in 50 cc. water is added to a solution of 1.27 g. (0.01 M.) 2-mercanto-pyridine-1-oxide in 10 cc. normal sodium hydroxide. The desired product, a brown solid, precipitates immediately, and is filtered, washed with water, alcohol, and ether, and is

70

80

85

90

95

100

.

110

105

115

120

125

- A

130

25

30

. 60

Weight about 1.26 g. air-dried. EXAMPLE 3

Preparation of the Ferric Salt of 2-mercaptopyridine-1-oxide

A solution of 1.35 g. (0.0033 M.) of ferric nitrate in 50 cc. water containing approximately 10 cc. 10% HNO3 is added to a solution of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-oxide in 10 cc. of N NaOH. The desired product, a blue solid, precipitates immediately, and is filtered, washed with water, alcohol, and ether and air-dried. Weight about 1.33 g.

EXAMPLE 4 Preparation of the Ferrous Salt of 2-mercaptopyridine-1-oxide

A solution of 0.85 g. (0.005 M.) FeSO. (86%) in 50-cc. water containing 15 cc. 10% H₂SO, is added to a solution of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-oxide in 10 cc. normal sodium hydroxide. The desired product, a green solid, precipitates, and is filtered, washed with water, alcohol, and ether Weight about 1.15 g. and air-dried.

EXAMPLE 5 Preparation of the Mercuric Salt of 2mercaptopyridine-1-oxide

A solution of 1.59 g. (0.005 M.) of mercuric acetate in 50 cc. water is added to asolution of 1.27 g. (0.01 M.) 2-mercapto-pyridine-1-oxide in 10 cc. normal sodium hydroxide. The desired product, a white solid, precipitates, and is filtered, washed with water, alcohol, and ether and air-dried. Weight about 2.13 g.

EXAMPLE 6 Preparation of the Mercurous Salt of 2mercaptopyridine-1-oxide

A solution of 2.8 g. (0.01 M.) HgNO..H.O in 50 cc. water containing approximately 15 cc. 10% HNO, is added to a solution of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-oxide in 10 cc. normal sodium hydroxide. The desired product, a grey solid, precipitates, and is filtered, washed with water, alcohol, and ether and air-dried. Weight about 2.67 g.

EXAMPLE 7 Preparation of the Silver Salt of 2-mercaptopyridine-1-oxide

A solution of 1.69 g. (0.01 M.) silver nitrate in 50 cc. water is added to a solution 50 of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-oxide in 10 cc. sodium hydroxide. The desired product, a white solid, forms, and is filtered, washed with water, alcohol and ether and air-dried. Weight about 2.41 g.

EXAMPLE 8 Preparation of the Auric Salt of 2-mercaptopvridine-1-oxide

A solution of 3.03 g. (0.01 M.) auric chloride in 50 cc. water is added to a solution of 3.81 g. (0.03 M.) 2-mercaptopyridine-1oxide in 30 cc. normal sodium hydroxide. The desired salt which precipitates is filtered, washed with water, alcohol, ether and airdried.

Example 9

Preparation of the Antimony Salt of 2-mercaptopyridine-1-oxide

A solution of 0.76 g. (0.0033 M.) of antimony trichloride in 50 cc. water containing approximately 15 cc. 20% HCl is added to a solution of 1.27 g. (0.01 M.) 2-mercapto-pyridine-1-oxide in 10 cc. normal sodium hydroxide. The desired product, a white solid, precipitates immediately, and is filtered, washed with water, alcohol, and ether and air-dried. Weight about 1.3 g. (It appears from analysis that 2 moles of 2-mercaptopyridine-1-oxide react with one mole of the The product is beantimony compound.) lieved to have the following formula:

(The bismuth and arsenic salts are believed to have corresponding structure.) Example 10

Preparation of the Antimony Salt of 2-mercaptopyridine-1-oxide

A solution of 2.99 g. (0.01 M.) of antimony pentachloride in 100 cc. water containing approximately 50 cc. of 20% HCl is added to a solution of 6.35 g. (0.05 M.) 2-mercapto-pyridine-1-oxide in 50 cc. normal sodium hydroxide. The desired salt which pre-cipitates is filtered, washed with water, alcohol, ether and air-dried.

The product is believed to have the following formula:

761,171

	Example 11	methylpyridine-1-oxide or 5-bromo-2-mer-	
	Preparation of the Cobaltous Salt of 2-mer- captopyridine-1-oxide	captopyridine-1-oxide in place of 2-mercapto- pyridine-1-oxide in Example 13, yields the	
5	A solution of 1.56 g. (0.005 M.) Co(NO ₃) ₂ . 6H ₂ O in 50 cc. water is added to a solution of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-oxide	zinc salts of the corresponding 6-methyl and 5-bromo substituted compounds. EXAMPLE 17	70
	in 10 cc. normal sodium hydroxide. The desired product, a gold-coloured solid, pre-	Preparation of the Cadmium Salt of 2-mer- captopyridine-1-oxide	
10	cipitates, and is filtered, washed with water, alcohol and ether and air-dried. Weight about 1.35 g. EXAMPLE 12	A solution of 1.83 g. (0.01 M.) cadmium chloride in 50 cc. water is added to a solution of 2.54 g. (0.02 M.) 2-mercaptopyridine-1-oxide in 20 cc. normal sodium hydroxide.	75
15	Preparation of the Lead Salt of 2-mercapto- pyridine-1-oxide A solution of 1.66 g. (0.005 M.) lead	The desired salt which precipitates is filtered, washed with water, alcohol, ether and airdried.	80
	nitrate in 50 cc. water is added to a solution of 1.27 g. (0.01 M.) 2-mercaptopyridine-1-	What we claim is:— 1. A heavy-metal (as hereinbefore defined)	
20	oxide in 10 cc. normal sodium hydroxide. The desired product, a pale yellow solid, precipitates, and is filtered, washed with water,	salt of 2-mercaptopyridine-1-oxide, in which the pyridine nucleus may be substituted by a halogen atom or by a lower alkyl or lower	85
	alcohol and ether and air-dried. Weight about 1.88 g. EXAMPLE 13	alkoxy group (as hereinbefore defined). 2. A method of producing a heavy metal salt as claimed in Claim 1, which comprises	
25	Preparation of the Bismuth Salt of 2-mer- captopyridine-1-oxide A solution of 1.62 g. (0.0033 M.) Bi(NO ₃) ₃ .	interacting 2-mercaptopyridine-1-oxide, in which the pyridine nucleus may be substituted by a halogen atom or by a lower alkyl	90
5.	5H ₂ O in 50 cc. water containing 15 cc. 10% HNO, is added to a solution of 1.27 g. (0.01 M.). 2-mercaptopyridine-1-oxide in 10 cc.	or lower alkoxy group (as hereinbefore defined) or a water-soluble salt thereof, with a water-soluble salt of an acid and the desired	
30	normal sodium hydroxide. The desired pro- duct, a light yellow solid, precipitates, and is	heavy-metal, in a solvent for the reactants, and recovering the heavy metal salt thus	95
;	filtered, washed with water, alcohol, and ether and air-dried. Weight about 1.69 g. Example 14	formed. 3. A method as claimed in Claim 2, wherein the 2-mercaptopyridine-1-oxide is an	
35	Preparation of the Arsenic Derivative of 2-mercaptopyridine-1-oxide A solution of 1.81 g. (0.01 M.) arsenic tri-	oxide, in which the pyridine nucleus may be substituted by a halogen atom or by a lower	100
40	chloride in 50 cc. water containing approximately 20 cc. 20% HCl is added to a solution of 3.81 g. (0.03 M.) 2-mercaptopyridine-1-	alkyl or lower alkoxy group (as hereinbefore defined). 4. A method of producing a heavy metal	105
	oxide in 30 cc. normal sodium hydroxide. The desired product which precipitates is filtered, washed with water, alcohol, ether and	salt as claimed in Claim 1, which comprises interacting an aqueous solution of an alkalimetal salt of a 2-mercaptopyridine-1-oxide, in	
45	EXAMPLE 15 Preparation of the Cupric Salt of 2-mercapto-	which the pyridine nucleus may be substituted by a halogen atom or by a lower alkyl or lower alkoxy group (as hereinbefore de-	110
	pyridine-1-oxide A solution of 1.27 g. (0.01 M.) 2-mercapto- pyridine-1-oxide in 15 cc. alcohol is added to	fined), with an aqueous solution of a heavy- metal salt of an acid, and recovering the heavy-metal salt thus formed.	
50	a solution of 1.25 g. (0.005 M.) CuSO ₄ .5H ₂ O in 100 cc. water. The desired product, a dark green precipitate, forms immediately,	5. A fabric impregnated with a heavy- metal (as hereinbefore defined) salt of a 2- mercaptopyridine-1-oxide, in which the pyri-	115
	and is filtered, washed with water, alcohol, and ether. Weight about 1.3 g. EXAMPLE 16	dine nucleus may be substituted by a halogen atom or by a lower alkyl or lower alkoxy	120
55	Preparation of the Zinc Salt of 2-mercapto- pyridine-1-oxide	6. The method of treating fabrics which comprises impregnating the fabric with a	
60	A solution of 1.27 g. (0.01 M.) 2-mercapto- pyridine-1-oxide in 15 cc. alcohol is added to a solution of 1.44 g. (0.005 M.) ZnSO ₄ .7H ₂ O	heavy-metal (as hereinbefore defined) salt of a 2-mercaptopyridine-1-oxide, in which the pyridine nucleus may be substituted by a	125
	in 150 cc. water. The desired product, a white precipitate, forms immediately, and is filtered, washed with water, alcohol, and ether	halogen atom or by a lower alkyl or lower alkoxy group (as hereinbefore defined). 7, The method of treating fabrics with a	
65	and air-dried. It weighs about 1.3 g. Using molar equivalents of 2-mercapto-6-	heavy-metal (as hereinbefore defined) salt of a 2-mercaptopyridine-1-oxide, which comprises	130

15

impregnating the fabric with a 2-mercaptopyridine-1-oxide, in which the pyridine nucleus may be substituted by a halogen atom or by a lower alkyl or lower alkoxy group (as hereinbefore defined), or a water-soluble salt thereof, by soaking the fabric in a solution of

the aforesaid oxide, and subsequently treating the fabric with a solution of a water-soluble

10

heavy-metal salt of an acid.
8. The method as claimed in Claim 7, wherein an aqueous solution of an alkalimetal salt of 2-mercaptopyridine-1-oxide and of the water-soluble heavy-metal salt of an acid is used.

9. A fungicidal plant protective preparation comprising an inert diluent and, as a

fungicidal agent, a heavy-metal (as hereinbefore defined) salt of a 2-mercaptopyridine-1-oxide, in which the pyridine nucleus may be substituted by a halogen atom or by a lower alkyl or lower alkoxy group (as hereinbefore defined).

10. A method of producing a heavy-metal salt of 2-mercaptopyridine-1-oxide substantially as herein described.

Dated this 19th day of May, 1954.
Agents for the Applicants, STANLEY, POPPLEWELL, FRANCIS & ROSS, -

Chartered Patent Agents, 19, Buckingham Street, Strand, London, W.C.2.

Leamington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press .- 1956. Published at The Patent Office, 25, Southampton Buildings, London, W.C.2, from which copies may be obtained.