Thread Structure

- A CUDA kernel is executed by a grid of threads
- Due to GPU architecture, threads are grouped into **blocks** which execute together on an SM
- Each block has a unique ID within a grid (block ID) and a unique ID within a block (thread ID)
 - Used to compute global ID

Thread Blocks

- Threads within a block:
 - Can perform local barriers
 - Have access to the same shared memory (SW cache)
 - Are scheduled in SIMD groups called warps
 - Threads within a warp execute the same instruction simultaneously with different data (here is where divergence impacts performance)

Platform Model

- The model consists of a host connected to one or more
 OpenCL devices
- · A device is divided into one or more compute units
- Compute units are divided into one or more processing elements

Execution Model

CUDA Terminology	OpenCL Terminology
Grid	Index space
Block	Work-group
Thread	Work-item

Execution Model

- 2 main parts:
 - Host programs execute on the host
 - Kernels execute on one or more OpenCL devices
- · Each instance of a kernel is called a work-item
- · Work-items are organized as work-groups
- When a kernel is submitted, an index space of work-groups and work-items is defined
- Work-items can identify themselves based on their work-group ID and their local ID within the work-group (sound familiar?)

Execution Model

