**3.1** Express  $\mathbf{r}_{P/Q}$  shown in Figure 3.34 using vector components in frame  $\mathcal{A}$ . Now express  $\mathbf{r}_{P/Q}$  using vector components in frame  $\mathcal{B}$ .



Figure 3.34 Problem 3.1.

The = 3 
$$\hat{a}_1 + 4\hat{a}_2 = ?$$
  $\hat{b}_1 + ?$   $\hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 - \sin \theta \hat{b}_2 + 4(\sin \theta) \hat{b}_1 + \cos \theta \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 - \sin \theta \hat{b}_2 + 4(\sin \theta) \hat{b}_1 + \cos \theta \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 - \sin \theta \hat{b}_2 + 4(\cos \theta) \hat{b}_1 + \cos \theta \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_1 + \cos \theta \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 
 $\Rightarrow \uparrow$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2$ 

The = 3  $(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_2 + 4(\cos \theta) \hat{b}_1 + 4(\cos \theta) \hat{b}_2 + 4(\cos$ 







$$\bullet = 0 = m\alpha$$

$$\Sigma F_{x} = 0 = 2 + 10\cos\theta$$
  
 $\Sigma F_{y} = 0 = -5 + 5 - 4\sqrt{6} + 10\sin\theta$ 

$$\Sigma F_{x} = \overline{F_{0}} \cdot \hat{e}_{x} + \overline{F_{0}} \cdot \hat{e}_{x} + \overline{F_{3}} \cdot \hat{e}_{x}$$

$$0 \quad 10 \text{ cose}$$



$$-2 = \cos \Theta$$

- 3.2 Three forces act on particle  $P: \mathbf{F}_1 = 2\mathbf{e}_x - 5\mathbf{e}_y$  N,  $\mathbf{F}_2 = 10(\cos\theta\mathbf{e}_x + \sin\theta\mathbf{e}_y)$ N, and  $\mathbf{F}_3 = (5 - 4\sqrt{6})\mathbf{e}_y$  N. If the resultant force is zero, find  $\theta$  and the force vector  $\mathbf{F}_2$ . Sketch the three forces acting on P.
- 3.3 Consider frames  $\mathcal{I} = (O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$  and  $\mathcal{A} = (O, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ , where  $\mathbf{e}_3 = \mathbf{a}_3$ , as shown in Figure 3.35. Find the position of P with respect to O in the following coordinates:
  - a. Cartesian coordinates in  $\mathcal{I}$ ,  $(x, y)_{\mathcal{I}}$ .
  - b. Cartesian coordinates in A,  $(a_1, a_2)_A$ .
  - c. Polar coordinates in  $\mathcal{I}$ ,  $(r, \theta)_{\mathcal{I}}$ .
  - d. Polar coordinates in  $\mathcal{A}$ ,  $(\rho, \beta)_{A}$ .



Fp=rêr Tp= ( coso e + single)

Figure 3.35 Problem 3.3.