Customer Base Analysis

MITIGATING CHURN RISK

CHARLES CORBITT

Contents

- Background
- Key Takeaway and Impact
- ▶ Other Findings
- Methodology
- ► Recommendations and Next Steps

Background

- ► [redacted company]'s platform helps companies monitor, troubleshoot, and optimize their software systems in real-time.
- ► The management team is concerned about varying performance across the customer base.

- Some accounts are expanding, while others are at risk of churning.
- Goal of this analysis is to predict accounts at risk of churning

Key Takeaway and Impact

- Consumption volatility (high variation in weekto-week consumption) is a strong predictor of future churn
- ▶ 10% of currently non-churned accounts have very high volatility, making them the most at-risk
- Average weekly revenue for these accounts is \$12,268, which is 34% of overall weekly revenue
- Immediate intervention may help prevent a significant loss in weekly revenue

Volatility_Bin		
Low	602	
Moderate	301	
High	180	
Very High	121	

Other Findings

- Issues with Data Quality
 - ▶ 41% of revenue data is missing (mostly in 2022)
- Logistic Regression
 - Model needs fine tuning; initial version has moderate overall accuracy of 67%
 - Consumption volatility was the top predictor
- Volatility
 - Top 5% most volatile accounts represent 10% of all accounts

Classification Report:					
ı	precision	recall	f1-score	support	
0.0	0.65	0.99	0.78	592	
1.0	0.69	0.05	0.10	332	
accuracy			0.65	924	
macro avg	0.67	0.52	0.44	924	
weighted avg	0.67	0.65	0.54	924	
ROC-AUC Score: 0.632179054054054					
Confusion Matrix:					
[[584 8]					

[314 18]]

```
feature coefficient

consumption_volatility 0.766046

consumption_max -0.751166

log_consumption_slope -0.411443

log_consumption_volatility -0.177336

ACCOUNT_TIER_Enterprise -0.169382

consumption_mean 0.125703

consumption_sum 0.125703

TOTAL_USERS 0.116253

ACCOUNT_TIER_Basic 0.107571

ACCOUNT_TIER_Pro -0.084568
```

- Exploratory Data Analysis (EDA)
 - ▶ Deduped both input files
 - Visualized distributions of all fields
 - Removed records with negative revenue or consumption

- Data Preprocessing
 - Merged files together on account_id and date
 - Removed first 2 weeks of data that were missing consumption data
 - ► Flagged 2022 as missing large portion of revenue
 - Rolled data up to weekly level to help eliminate noise

- Defining Churn Risk
 - Required 6-week baseline for accounts to establish themselves
 - Created rolling 4-week window to measure churn
 - ▶ Defined churn as 4 consecutive weeks with no consumption

- Prepping Data for Modeling
 - ▶ Log-transformed consumption and calculated baseline mean/sum/max
 - Calculated slope of week-to-week consumption to model gradual increases/decreases
 - Created consumption volatility (standard deviation week-to-week)
 - ► Encoded categorical variables
 - Split data 50/50 into train/test and scaled the predictor set

- Modeling, Validation and Interpretation
 - Ran logistic regression and output scoring criteria
 - Calculated coefficients of predictor set to view impact of individual features in the model
 - Used consumption volatility to flag non-churned accounts at-risk of churning in future
 - Identified top 5% of accounts in terms of volatility for potential intervention

Recommendations and Next Steps

- Primary Recommendation
 - Intervention of high-risk accounts offer discounted services, or additional product lines for free to try to keep accounts from churning
- Missing data
 - ► A significant portion of accounts with consumption are missing revenue (41%), remedying this would allow use of revenue features in data model
- Industry Field
 - Many unique values but frequency distribution heavily weighted to few categories
 - Consider bucketing some of the lower frequency industries together
 - Reduce frequency of 'Other' if possible since it's 2nd category; it may be cannibalizing the other categories if it's placed too high in a dropdown

Recommendations and Next Steps

- Further refine the model
 - Product line and industry were not included in this initial model, but may help predict churn if used for segmentation
 - Add more calculated features derived from revenue, such as gradual or sharp declines, similar to the consumption features
 - Experiment with different definitions for churn, varying the baseline and/or churn periods per industry benchmarks
 - Try more advanced ensemble models such as XGBoost that may better account for complex interactions

Thank You!