G12 Chemistry

Electrochemistry
Class 15

Overall Expectations

- Analyse technologies and processes relating to electrochemistry, and their implications for society, health and safety, and the environment
- Investigate oxidation-reduction reactions using a galvanic cell, and analyse electrochemical reactions in qualitative and quantitative terms
- Demonstrate an understanding of the principles of oxidation-reduction reactions and the many practical applications of electrochemistry

Oxidation and Reduction

- Oxidation When an atom loses an electron; its oxidation number increases
- Reduction When an atom gains electrons, the oxidation number decreases

Oxidizing and Reducing Agents

- Reducing Agent: The substance that loses or gives up electrons to another substance
- Oxidizing Agent: The substance that gains or removes electrons from another substance

Half Reactions

 To monitor the transfer of electrons, you can represent the oxidation and reduction separately

Oxidation: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

Reduction: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Overall: $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

• Half-reactions always come in pairs

Checkpoint

Given the following net ionic equation, identify the oxidation and reduction half-reactions. State which is the reducing agent and the oxidizing agent:

a)
$$Al(s) + Fe^{3+}(aq) \rightarrow Al^{3+}(aq) + Fe(s)$$

b) Fe(s) + Cu²⁺(aq)
$$\rightarrow$$
 Fe²⁺(aq) + Cu(s)

Oxidation Number

- Also known as Oxidation State signifies the number of charges the atom would have in a molecule or ionic compound if electrons were transferred completely
- Developed to treat molecular compounds (covalent) as redox compounds since molecular compounds do not transfer electrons

Rules:

- 1. All atoms in elements have an oxidation number of 0
 - Ex: H_2 , Br_2 , Be, K, Na, $P_4 = 0$
- 2. The oxidation number of an element in a monoatomic ion equals the charge of the ion
 - $-AI^{3+}=+3$
 - $Se^{2-} = -2$
 - $O^{2-} = -2$

3. The oxidation number of oxygen in most compounds is -2, but in H_2O_2 and O_2^{2-} it is -1

Li₂O KNO₃ H-O-O-H OF₂

4. The oxidation number of hydrogen in its compounds is +1 except in metal hydrides where it is -1.

H₂S CH₄ NaH CaH₂

- 5. Fluorine has (-1) for all compounds. Other halogens have negative oxidation numbers when they are halide ions. When combined with oxygen, they have positive oxidation numbers
- 6. In a neutral molecule, the sum of all the oxidation numbers is 0. In polyatomic ions, the sum of all the oxidation numbers is the charge of the ion
- 7. Oxidation numbers do not have to be integers

1 1A																	18 8A
1 H +1 -1																	2 He
-1	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
3 Li +1	4 Be +2											5 B +3	6 C +4 +2 -4	7 N +5 +4 +3 +2 +1 -3	8 O +2 -1 -1 -2	9 F -1	10 Ne
11 Na +1	12 Mg +2	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B-	10	11 1B	12 2B	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6 +4 +2 -2	17 Cl +7 +6 +5 +4 +3 +1 -1	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn +7 +6 +4 +3 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 +3 +1 -1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +1 -1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 W +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +2 +1	81 TI +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn

Assign an oxidation number to each element.

- a) $SiBr_4$ b) $HClO_4$ c) $Cr_2O_7^{2-}$
- d) PF_3 e) MnO_4^- f) Fe_3O_4

Oxidation States and Redox Reactions

- Oxidation increase in oxidation number
- **Reduction** decrease in oxidation number

 Disproportionate Reaction – an element in one oxidation state is simultaneously oxidized and reduced

$$H_2O_2 \text{ (aq)} \rightarrow 2H_2O(1) + O_2(g)$$

 All redox reactions must contain a change in oxidation number. No oxidation change means the reaction is not redox.

Determine whether each of the following reactions is a redox reaction. If so, identify the oxidizing agent and the reducing agent.

a)
$$CH_4(g) + CI_2(g) \rightarrow CH_3CI(g) + HCI(g)$$

b)
$$CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$$

c)
$$2N_2O(g) \rightarrow 2N_2(g) + O_2(g)$$

Breathalyzer

- A breathalyzer is a device to test drivers suspected of drunk driving
- Uses the following redox reaction:

- By measuring the degree of the colour change, the driver's blood alcohol level can be determined
- G1 License = 0.00%
- G2 License = 0.00%
- G License = 0.08% (0.00% under 21 years)
 - One bottle of beer OR glass of wine OR shot/hour
- Consequences:
 - 90-day license suspension
 - 7-day vehicle impoundment
 - \$198 penalty

Balancing Redox Reactions

 For reactions that take place under neutral conditions, balancing half reactions is straightforward

$$K \rightarrow K^{+} + e^{-} \qquad x 2$$

$$Cl_{2} + 2e^{-} \rightarrow 2Cl^{-}$$

$$2K + Cl_{2} \rightarrow 2K^{+} + 2Cl^{-}$$

For acidic and basic conditions, more steps are involved

Balancing Half-Reactions for Acidic Solutions

Write a balanced half-reaction that shows the reduction of MnO_4^- to Mn^{2+} in an acidic solution

- 1) Represent the reactant and product with correct formulas
- Balance any atoms other than hydrogen and oxygen
- 3) Balance any oxygen atoms by adding water
- 4) Balance any hydrogen atoms by adding H⁺
- 5) Balance the charges by adding electrons

Balance the following half-reaction under acidic conditions:

$$NO_3^- \rightarrow N_2$$

Balancing Half-Reactions for Basic Solutions

Write a balanced half-reaction that shows the oxidation of $S_2O_3^{2-}$ to SO_3^{2-} in a basic solution.

- 1) Represent the given reactant and products with correct formulas
- 2) Balance any atoms other than oxygen and hydrogen. Balance O and H as if they were acidic
- 3) Add OH- to both sides to balance out the H+
- 4) Combine the OH⁻ and H⁺ into water molecules and simplify the equation
- 5) Balance the charges by adding electrons

Balance $CrO_4^{2-} \rightarrow Cr(OH)_3$ under basic conditions.

Balancing by Half-Reaction Method

Write a balanced net ionic equation to show the reaction of ClO_4^- and NO_2 in acidic solution to produce Cl^- and NO_3^- .

1) Write an unbalanced net ionic equation:

$$ClO_4^- + NO_2 \rightarrow Cl^- + NO_3^-$$

2) Assign oxidation numbers to all the elements in the equation.

$$ClO_4^- + NO_2 \rightarrow Cl^- + NO_3^-$$

3) Balance the oxidation and reduction half-reaction separately.

Oxidation: $NO_2 \rightarrow NO_3^-$ Reduction: $ClO_4^- \rightarrow Cl^-$

Oxidation

4) Determine the least common multiple of the number of electrons in the half-reactions.

$$-LCM = 8$$

5) Multiply the half-reaction by the LCM so that equal number of electrons are lost and gained.

Oxidation:
$$8NO_2 + 8H_2O \rightarrow 8NO_3^- + 16H^+ + 8e^-$$

Reduction: $ClO_4^- + 8H^+ + 8e^- \rightarrow Cl^- + 4H_2O$

6) Add the half-reactions and simplify the equations.

$$8NO_2 + 8H_2O \rightarrow 8NO_3^- + 16H^+ + 8e^-$$

$$ClO_4^- + 8H^+ + 8e^- \rightarrow Cl^- + 4H_2O$$

$$8NO_2 + 8H_2O + ClO_4^- + 8H^+ + 8e^- \rightarrow 8NO_3^- + 16H^+ + 8e^- + Cl^- + 4H_2O$$

$$8NO_2 + ClO_4^- + 4H_2O \rightarrow 8NO_3^- + 8H^+ + Cl^-$$

Balance the following equation by the half-reaction method:

$$Cu^{2+} + I^{-} \rightarrow CuI + I_{3}^{-}$$

Oxidation Number Method for Balancing Equations

 Use oxidation numbers to balance a chemical equation by ensuring that the total increase in the oxidation numbers of the oxidized element(s) equals the total decrease in the oxidation numbers of the reduced element(s)

$$NH_3 + O_2 \rightarrow NO_2 + H_2O_{-3 + 1}$$
 $0 + 4 - 2 + 1 - 2$

Balancing by Oxidation-Number Method

Balance the following reaction by oxidation-number method in an acidic medium:

1) Assign oxidation numbers to the atoms.

+7 -2 +2 2+ +3
$$MnO_4^-(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq)$$

2) Identify the oxidized and reduced atom and write the oxidation-number change

$$^{-5 e^{-}}$$
 $MnO_{4}^{-}(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq)$

3) Multiply by a number that will cause the increase in oxidation number equal to the decrease in oxidation number

$$MnO_4^{-}(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq)$$

$$MnO_4^{-}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq)$$

4) Balance oxygens by adding H₂O and H⁺ in acidic medium and OH⁻ in basic medium

$$MnO_4^{-}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O$$

$$8H^+ + MnO_4^-(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O$$

5) Check to ensure all atoms and charges are balanced

$$8H^+ + MnO_4^-(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O$$

11 e

17 e-

Checkpoint

Use the oxidation-number method to balance the following in a basic solution:

$$IO_3^{-1}(aq) + C_2O_4^{-2-}(aq) \rightarrow I^{-1}(aq) + CO_2(g)$$