Zpracování vybraných otázek ke zkoušce z LA1

Karel Velička, *(původně: Zdeněk Tomis)* 11-12-2022

1. ročník bc. informatika doc. RNDr. Jiří Fiala, Ph.D.

Obsah

. Де	`	otazky)
1.1	Sousta	vy lineárních rovnic
	1.1.1	Definujte rozšířenou matici soustavy
	1.1.2	Definujte elementární řádkové operace
	1.1.3	Definujte odstupňovaný tvar matice. (REF)
	1.1.4	Napište pseudokód pro Gaussovu eliminaci
	1.1.5	Definujte pivot a to slovně i formálně
	1.1.6	Definujte volné a bázické proměnné
	1.1.7	Definujte hodnost matice
1.2	2 Matice	
	1.2.1	Jednotkovou matici.
	1.2.2	Definujte transponovanou matici
	1.2.3	Definujte symetrickou matici
	1.2.4	Definujte maticový součin
	1.2.5	Definujte inverzní matici.
	1.2.6	Definujte regulární matici
	1.2.7	Definujte singulární matici
	1.2.8	Definujte binární operaci.
	1.2.9	Definujte komutativní a asociativní binární operace
		Definujte neutrální prvek
	1.2.11	Definujte inverzní prvek
1.3		a permutace
	1.3.1	Definujte grupu.
	1.3.2	Definujte permutaci
	1.3.3	Definujte permutační matici,
	1.3.4	Definujte transpozici.
	1.3.5	Definujte inverzi v permutaci
	1.3.6	Definujte znaménko permutace
1.4		
1	1.4.1	Definujte těleso.
	1.4.2	Definujte charakteristiku tělesa
1.5		ové prostory
1.0	1.5.1	Definujte vektorový prostor
	1.5.2	Definujte podprostor vektorového prostoru.
	1.5.3	Definujte lineární kombinaci.
	1.5.4	Definujte lineární obal (podprostor generovaný množinou).
	1.5.4 $1.5.5$	Definujte řádkový prostor matice a to slovně i formálně pomocí maticového součinu
	1.5.6	Definujte sloupcový prostor matice a to slovně i formálně pomocí maticového součinu
	1.5.7	Definujte jádro matice
	1.5.8	Definujte lineárně nezávislé vektory.
	1.5.8 $1.5.9$	Definujte bázi vektorového prostoru
		Definujte dimenzi vektorového prostoru
		· · · · · · · · · · · · · · · · · · ·
1 6		Definujte vektor souřadnic
1.6		ní zobrazení
	I D I	Denning unearth zonrazeni

		1.6.2	Definujte matici lineárního zobrazení
		1.6.3	Definujte jádro lineárního zobrazení
		1.6.4	Definujte matici přechodu
		1.6.5	Definujte izomorfismus vektorových prostorů
		1.6.6	Definujte afinní prostor a jeho dimenzi
, _T	√ět;		
	иец 2.1	-	vy lineárních rovnic
	1	2.1.1	Uved'te a dokažte vztah mezi elementárními řádkovými operacemi a soustavami rovnic
		2.1.2	Vyslovte a dokažte větu o jednoznačnosti volných a bázických proměnných
		2.1.2 $2.1.3$	Vyslovte a dokažte Frobeniovu větu
2	2.2	-	9
_		2.2.1	Vyslovte a dokažte větu o vztahu mezi řešeními $Ax = b$ a $Ax = 0$
		2.2.2	Uveď te a dokažte větu popisující všechna řešení $Ax = b$
		2.2.3	Vyslovte a dokažte větu o ekvivalentních definicích regulárních matic
2	2.3	Grupy	a permutace
		2.3.1	Vyslovte a dokažte větu o znaménku složené permutace
2	.4	Tělesa	
		2.4.1	Uved'te a dokažte větu charakterizující, kdy Z_p je těleso
		2.4.2	Vyslovte a dokažte malou Fermatovu větu.
2	2.5	Vektor	ové prostory
		2.5.1	Vyslovte a dokažte větu o průniku vektorových prostorů
		2.5.2	Vyslovte a dokažte větu o ekvivalentních definicích lineárního obalu
		2.5.3	Vyslovte a dokažte tvrzení o mohutnostech lineárně nezávislé množiny a generující množiny.
		2.5.4	Uved'te a dokažte Steinitzovu větu o výměně (včetně lemmatu, pokud jej potřebujete) 1
		2.5.5	Vyslovte a dokažte větu o dimenzi průniku vektorových prostorů
		2.5.6	Vyslovte a dokažte větu o vektorových prostorech souvisejících s maticí A
		2.5.7	Vyslovte a dokažte větu o dimenzi jádra matice
2	2.6	Lineár	ní zobrazení
		2.6.1	Vyslovte a dokažte větu o jedinečnosti lineárního zobrazení
		2.6.2	Vyslovte a dokažte větu o řešení rovnice s lineárním zobrazením
		2.6.3	Vyslovte a dokažte pozorování o matici složeného lineárního zobrazení
		2.6.4	Vyslovte a dokažte větu o charakterizaci izomorfismu mezi vektorovými prostory
2	2.7	Grafy	a podgrafy
		2.7.1	Zformulujte problém o počtu sudých podgrafů a vyřešte jej
		2.7.2	Zformulujte problém o množinových systémech s omezeními na mohutnosti a vyřešte jej
		2.7.3	Zformulujte problém o dělení obdélníku na čtverce a vyřešte jej
2 T) Přo	hled	1
	3.1		vy lineárních rovnic
	• -	3.1.1	Přehledově sepište, co víte o elementárních řádkových operacích a Gaussově eliminaci
		3.1.2	Přehledově sepište, co víte o řešení homogenních a nehomogenních soustav lineárních rovnic.
3	3.2		9
		3.2.1	Přehledově sepište, co víte o maticových operacích
		3.2.2	Přehledově sepište, co víte o regulárních a singulárních maticích
3	3.3		a permutace
		3.3.1	Přehledově sepište, co víte o binárních operacích a jejich vlastnostech
		3.3.2	Přehledově sepište, co víte o (obecných) grupách
		3.3.3	Přehledově sepište, co víte o permutačních grupách
3	3.4	Tělesa	
		3.4.1	Přehledově sepište, co víte o tělesech
3	3.5		rové prostory
		3.5.1	Přehledově sepište, co víte o vektorových prostorech a jejich podprostorech
		3.5.2	Přehledově sepište, co víte o vektorových prostorech určených s maticí A
		3.5.3	Přehledově sepište, co víte o lineární závislosti
		3.5.4	Přehledově sepište, co víte o bázích vektorových prostorů
3	3.6	Lineár	ní zobrazení
		3.6.1	Přehledově sepište, co víte o lineárních zobrazeních a jejich maticích

1 Definice (3 otázky)

1.1 Soustavy lineárních rovnic

1.1.1 Definujte rozšířenou matici soustavy.

Pro soustavu Ax = b, kde $A \in \mathbb{R}^{m \times n}$ je matice soustavy, $x = (x_1, ..., x_n)^T$ je vektor neznámých a b je vektor pravých stran, je rozšířená matice soustavy:

$$A^{m \times n} = \left(\begin{array}{ccc|c} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} & b_m \end{array}\right)$$

1.1.2 Definujte elementární řádkové operace.

Elementární řádkovou úpravou vznikne z matice A matice A' $(A \sim A')$:

- (i) vynásobením i-tého řádku $t \in \mathbb{R} \setminus \{0\}$
- (ii) přičtením j-tého řádku k i-tému, když $i \neq j$

Z těchto úprav lze odvodit také:

- (iii) přičtení t-násobku j-tého řádku k i-tému, když $j \neq i$
- (iv) prohození dvou řádků

1.1.3 Definujte odstupňovaný tvar matice. (REF)

Matice A je v REF, pokud (i) nenulové řádky jsou seřazeny podle počáteřních nul a (ii) nulové řádky jsou pod nenulovými.

Označme $j(i) := min(\{j : a_{i,j} \neq 0\})$. Matice $A \in \mathbb{R}^{m \times n}$ je v REF právě tehdy, když $\exists r \in \{1, ..., m\}$:

- (i) j(1) < j(2) < ... < j(r)
- (ii) $\forall i > r, \forall j : a_{i,j} = 0$

1.1.4 Napište pseudokód pro Gaussovu eliminaci.

Pseudokód pro Gaussovu eliminaci

- 1. Seřad řádky podle počtu počátečních nul.
- 2. Pokud mají dva nenulové řádky stejný počet počátečních nul (i-tý a i+1-ní), tak od i+1-ního odečteme $\frac{a_{i+1,j(i)}}{a_{i,j(i)}}$ -násobek i-tého.
- 3. Opakuj, dokud nemají každé dva nenulové řádky různé počty počátečních nul.

Algoritmus je konečný, protože po kroku 2. vždy vzroste celkový počet počátečních nul alespoň o jedna.

1.1.5 Definujte pivot a to slovně i formálně.

První nenulový prvek $a_{i,j(i)}$ na *i*-tém řádku. V REF prvky na místech (i,j(i)), kde $j(i)=min\{j:a_{i,j}\neq 0\}$.

1.1.6 Definujte volné a bázické proměnné.

Nechť máme pro matici A' v REF soustavy A'x = b', potom sloupcové proměnné s pivoty značíme jako bázické. Volné proměnné jsou všechny ostatní.

1.1.7 Definujte hodnost matice.

 $Hodnost\ matice\ A$, značená jako rank(A), je počet pivotů v libovolné matici A' v REF takové, že $A \sim A'$.

1.2 Matice

1.2.1 Jednotkovou matici.

Pro $(\forall n \in \mathbb{N})$ je jednotková matice $I_n \in \mathbb{R}^{n \times n}$ definována vztahy:

$$(I_n)_{i,j} = \begin{cases} 1 & \text{pokud } i = j \\ 0 & \text{pokud } i \neq j \end{cases}$$

1.2.2 Definujte transponovanou matici.

Transponovaná matice k matici $A \in \mathbb{R}^{m \times n}$ je taková matice $A^T \in \mathbb{R}^{n \times m}$, pro kterou platí:

$$A_{i,j}^T = A_{j,i}$$

1.2.3 Definujte symetrickou matici.

Symetrická matice je taková čtvercová matice $A \in \mathbb{R}^{n \times n}$, pro kterou platí:

$$A_{j,i} = A_{i,j}$$
, neboli $A = A^T$

1.2.4 Definujte maticový součin.

Pro součin dvou matic $A \in \mathbb{R}^{m \times n}$ a $B \in \mathbb{R}^{n \times p}$ platí $(AB) \in \mathbb{R}^{m \times p}$:

$$(AB)_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

1.2.5 Definujte inverzní matici.

Inverzni matice k čtvercové matici $A \in \mathbb{R}^{n \times n}$ je taková matice $A^{-1} \in \mathbb{R}^{n \times n}$, pro kterou platí:

$$A \cdot A^{-1} = I_n$$

1.2.6 Definujte regulární matici.

Regulární matice je taková matice, ke které existuje inverzní matice.

1.2.7 Definujte singulární matici.

Singulární matice je taková matice, která není **regulární**.

1.2.8 Definujte binární operaci.

 $Binární operace na množině X je zobrazení <math>X \times X \to X$.

1.2.9 Definujte komutativní a asociativní binární operace.

Nechť máme množinu X a binární operaci \circ , potom je

asociativní pokud platí:

$$(\forall a,b,c \in X): (a \circ b) \circ c = a \circ (b \circ c)$$

komutativní pokud platí:

$$(\forall a, b \in X) : a \circ b = b \circ a$$

1.2.10 Definujte neutrální prvek.

Nechť máme množinu X a binární operaci \circ , potom je e neutrální prvek, když:

$$(\exists e \in X)(\forall x \in X) : x \circ e = e \circ x = x$$

1.2.11 Definujte inverzní prvek.

Nechť máme množinu X a binární operaci \circ , potom je b inverzní a e neutrální prvek, když:

$$(\forall a \in X)(\exists b \in X) : a \circ b = b \circ a = e$$

1.3 Grupy a permutace

1.3.1 Definujte grupu.

Množina \mathbb{G} s binární operací \circ , je dvojice (\mathbb{G}, \circ) splňující:

- (i) existence neutrálního prveku
- (ii) existence inverzního prvku
- (iii) asociativitu

1.3.2 Definujte permutaci.

Permutace na množině [n] je bijektivní zobrazení $p:[n] \to [n]$. $[n] = \{1,...,n\}$)

1.3.3 Definujte permutační matici,

Permutační matice P je taková matice popisující permutaci, pro kterou platí:

$$(P)_{i,j} = \begin{cases} 1 & \text{pokud } p(i) = j \\ 0 & \text{pokud } p(i) \neq j \end{cases}$$

1.3.4 Definujte transpozici.

Transpozice je permutace na množině o velikosti n, která má jeden netriviální cyklus délky 2 a n-2 pevných bodů.

1.3.5 Definujte inverzi v permutaci.

Inverze v permutaci je taková dvojice prvků (i, j), pro které platí (i, j) : i < j a p(i) > p(j). $Můžeme zapsat také <math>p(i) = j \iff p^{-1}(j) = i$.

1.3.6 Definujte znaménko permutace.

Znaménko permutace p je číslo $sgn(p) = (-1)^{\# \text{inverzí v } p}$. Můžeme zapsat také: $(p \in S_n)$ a skládá se z k-cyklů, potom $sgn(p) = (-1)^{n-k}$.

1.4 Tělesa

1.4.1 Definujte těleso.

Nechť \mathbb{K} je množina a $(\oplus, *)$ jsou binární operace na \mathbb{K} . Trojici $(T, \oplus, *)$ potom nazýváme *tělesem*, splňuje-li:

- (i) (K, \oplus) tvoří Abelovskou grupu s neutrálním prvkem 0
- (ii) $(K \setminus \{0\}, *)$, tvoří Abelovskou grupu s neutrálním prvkem 1
- (iii) platí distributivita, tedy $(\forall a, b, c \in K) : a * (b \oplus c) = a * b \oplus a * c$

1.4.2 Definujte charakteristiku tělesa.

Pokud ($\exists n \in N$) takové, že v tělese \mathbb{K} platí $\underbrace{1+1+\ldots+1}_{n\text{-krát}}=0$, potom nejmenší takové n je $\operatorname{char}(\mathbb{K})$ tělesa \mathbb{K} . Jinak má těleso charakteristiku 0.

1.5 Vektorové prostory

1.5.1 Definujte vektorový prostor.

 $Vektorový\ prostor\ (V, \oplus, *)$ nad tělesem $(\mathbb{K}, \oplus, *)$ je množina V spolu s binární operací \oplus na V a binární operací $skalárního\ násobku\ *: \mathbb{K} \times V \to V$, kde:

- (i) (V, \oplus) tvoří Abelovskou grupu
- (ii) $(\forall v \in V): 1*v = v$, (kde 1 je neutrální prvek pro násobení v \mathbb{K})
- (iii) $(\forall a, b \in \mathbb{K})(\forall v \in V) : (a * b) * v = a * (b * v)$ asociatavita
- (iv) $(\forall a, b \in \mathbb{K})(\forall v \in V) : (a \oplus b) * v = (a * v) \oplus (b * v)$ distributivita
- (v) $(\forall a \in \mathbb{K})(\forall u, v \in V) : a * (u \oplus v) = (a * u) \oplus (a * v)$ distributivita

Prvky \mathbb{K} se nazývají skaláry a prvky V vektory.

1.5.2 Definujte podprostor vektorového prostoru.

Nechť $(V, \oplus, *)$ je vektorový prostor nad \mathbb{K} , potom podprostor U je neprázdná podmnožina V splňující: $(U \subseteq V) \land (U \neq \emptyset)$:

- 1. $(\forall u, v \in U) : u \oplus v \in U$, neboli: U je uzavřená na operaci \oplus ,
- 2. $(\forall v \in U)(\forall a \in \mathbb{K}) : a * v \in U$, neboli: U je uzavřená na operaci *
- 3. obsahuje nulový vektor o.

1.5.3 Definujte lineární kombinaci.

Lineární kombinace vektorů $v_1,...,v_n \in V$ nad \mathbb{K} je libovolný vektor $u=a_1\cdot v_1+\cdots+a_n\cdot v_n$, kde $a_1,...,a_n\in\mathbb{K}$.

1.5.4 Definujte lineární obal (podprostor generovaný množinou).

Linelpha rni obal $\mathfrak{L}(X)$ množiny $X\subseteq V$, kde V je vektorový prostor nad \mathbb{K} , je průnik všech podprostorů U z V obsahující X.

Neboli: $span(X) = \mathfrak{L}(X) = \bigcap \{U : X \subseteq U, U \text{ je podprostor } V\}$

1.5.5 Definujte řádkový prostor matice a to slovně i formálně pomocí maticového součinu.

 $\check{R}\acute{a}dkov\acute{y}$ prostor matice je prostor generovaný jejími řádky. Pro matici $A\in\mathbb{K}^{m\times n}$

$$\mathcal{R}(A) = \mathcal{S}(A^T) = \sum_{j=1}^m x_j A_{j,*}$$

$$\mathcal{R}(A) = \{ (v \in \mathbb{K}^n) : v = A^T y, y \in \mathbb{K}^m \}, v \check{s} e chny \ line \acute{a} r n \acute{i} \ kombinace \ \check{r} \acute{a} dk \mathring{u}$$

1.5.6 Definujte sloupcový prostor matice a to slovně i formálně pomocí maticového součinu

Sloupcový prostor matice je prostor generovaný jejími sloupci. t.j.: Pro matici $A \in \mathbb{K}^{m \times n}$:

$$\begin{split} \mathcal{S}(A) &= \mathfrak{L}\{A_{*,1},...,A_{*,n}\} = \sum_{j=1}^n x_j A_{*,j} \\ \mathcal{S}(A) &= \{(u \in \mathbb{K}^m) : u = Ax, x \in \mathbb{K}^n\}, v \check{s}echny \ line \acute{a}rn\acute{\iota} \ kombinace \ sloupc \mathring{u} \end{split}$$

1.5.7 Definujte jádro matice.

Jádro matice $A \in \mathbb{K}^{m \times n}$ je podprostor \mathbb{K}^n tvořen řešeními homogenní soustavy Ax = 0.

$$ker(A) = \{ (x \in \mathbb{K}^n) : Ax = 0 \}$$

4

1.5.8 Definujte lineárně nezávislé vektory.

Množina vektorů X ve vektorovém prostoru V je lineárně nezávislá, pokud nelze nulový vektor získat netriviální lineární kombinací vektorů z X.

Formálně: vektory $v,...,v_n$ jsou lineárně nezávislé $\iff \sum_{i=1}^n a_i v_i = 0$ má pouze triviální řešení $a_1 = ... = a_n = 0$.

1.5.9 Definujte bázi vektorového prostoru.

 $Báze \ vektorového \ prostoru \ V$ je lineárně nezávislá množina X, která generuje V.

- 1. $\mathfrak{L}(X) = V$, každý vektor V je lineární kombinací vektorů báze X
- 2. X je lineárně nezávislá, proto je lin. kombinace unikátní pro každý vektor V.

1.5.10 Definujte dimenzi vektorového prostoru.

Nechť má V konečnou bázi. Potom je dimenze V mohutnost jeho báze. Značíme dim(V).

1.5.11 Definujte vektor souřadnic.

Nechť $X=(v_1,...,v_n)$ je konečná uspořádaná báze vektorového prostoru V nad tělesem \mathbb{K} . Vektor souřadnic $u\in V$ vzhledem k bázi X je $[u]_X=(a_1,...,a_n)^T\in\mathbb{K}^n$, kde $u=\sum_{i=1}^n a_iv_i$.

1.6 Lineární zobrazení

1.6.1 Definujte lineární zobrazení.

Nechť V a W jsou vektorové prostory nad stejným tělesem \mathbb{K} . Potom zobrazení $f:V\to W$ se nazývá lineární zobrazení, pokud splňuje:

- 1. $(\forall u, v \in V) : f(u+v) = f(u) + f(v)$
- 2. $(\forall u \in V), (\forall a \in \mathbb{K}) : f(a \cdot u) = a \cdot f(u)$

1.6.2 Definujte matici lineárního zobrazení.

Nechť V a W jsou vektorové prostory nad stejným tělesem \mathbb{K} s bázemi $X=(v_1,...,v_n), Y=(w_1,...,w_m)$.

Matice lineárního zobrazení $f:V\to W$ vzhledem k bázím X a Y je $[f]_{X,Y}\in\mathbb{K}^{m\times n}$, jejíž sloupce jsou vektory souřadnic obrazů vektorů báze X vzhledem k bázi Y.

Formálně:
$$[f]_{X,Y} = \begin{pmatrix} | & | \\ [f(v_1)]_Y & \dots & [f(v_n)]_Y \end{pmatrix}$$

1.6.3 Definujte jádro lineárního zobrazení.

 $\textit{Jádro lineárního zobrazení } f: U \rightarrow V \text{ je } \ker(f) = \{(w \in U): f(w) = 0\}.$

1.6.4 Definujte matici přechodu.

Nechť X a Y jsou dvě konečné báze vektorového prostoru V. $Matice\ přechodu\ od\ X$ k Y je identické zobr. $[id]_{X,Y}$.

1.6.5 Definujte izomorfismus vektorových prostorů.

Bijektivni lineární zobrazení $f: V \to W$, nazýváme izomorfismem prostorů V a W.

1.6.6 Definujte afinní prostor a jeho dimenzi.

Nechť U je podprostor vektorového prostoru W a $w \in W$. Afinní prostor w+U je množina $\{w+u \mid u \in U\}$. Dimenze afinního prostoru w+U je dim(w+U)=dim(U).

Můžeme také definovat jako:

 $Afinni\ prostor$ je množina Aa zobrazení $+:A\times W\to A,$ spňující:

- 1. $(\forall a \in A) : a + 0 = a$
- 2. $(\forall a \in A), (\forall v, w \in W) : a + (v + w) = (a + v) + w$
- 3. Pro dvojice $(a, b \in A)(\exists! v \in W) : a + v = b$.

2 Věty

2.1 Soustavy lineárních rovnic

2.1.1 Uveď te a dokažte vztah mezi elementárními řádkovými operacemi a soustavami rovnic.

Nechť Ax = b a A'x = b' jsou dvě soustavy splňující $(A|b) \sim (A'|b')$, potom obě tyto soustavy mají totožné množniny řešení.

Proof. Cílem je tedy ukázat $\{x \in \mathbb{R}^n \mid Ax = b\} = \{x \in \mathbb{R}^n \mid A'x = b'\}$, neboli ukázat $Ax = b \iff A'x = b'$.

1. Vynásobení i-tého řádku nenulovým skalárem t.

(a)
$$Ax = b \implies A'x = b'$$
: $a'_{i,1}x_1 + \dots + a'_{i,n}x_n = ta_{i,1}x_1 + \dots + ta_{i,n}x_n = t(a_{i,1}x_1 + \dots + a_{i,n}x_n) = tb_i = b'_i$

(b)
$$Ax = b \iff A'x = b'$$
: $a_{i,1}x_1 + \dots + a_{i,n}x_n = \frac{1}{t}(ta_{i,1}x_1 + \dots + ta_{i,n}x_n) = \frac{1}{t}(a'_{i,1}x_1 + \dots + a'_{i,n}x_n) = \frac{1}{t}b'_i = \frac{1}{t}tb_i = b_i$

2. Přičtení j-tého řádku k i-tému

(a)
$$Ax = b \implies A'x = b'$$
: $a'_{i,1}x_1 + \dots + a'_{i,n}x_n = \underbrace{(a_{i,1} + a_{j,1})x_1 + \dots + (a_{i,n} + a_{j,n})x_n}_{b_i} = \underbrace{(a_{i,1}x_1 + \dots + a_{i,n}x_n)}_{b_i} + \underbrace{(a_{j,1}x_1 + \dots + a_{j,n}x_n)}_{b_j} = b_i + b_j = b'_i$

(b)
$$Ax = b \iff A'x = b'$$
: $a_{i,1}x_1 + \dots + a_{i,n}x_n = (a_{i,1}x_1 + \dots + a_{i,n}x_n) + b_j - b_j = (a_{i,1}x_1 + \dots + a_{i,n}x_n) + (a_{j,1}x_1 + \dots + a_{j,n}x_n) - b_j = (a_{i,1} + a_{j,1})x_1 + \dots + (a_{i,n} + a_{j,n})x_n - b_j = (a'_{i,1}x_1 + \dots + a'_{i,n}x_n) - b_j = b'_j - b_j = b_i + b_j - b_j = b_i$

3., 4. dokazovat nemusíme, jsou odvozeny od prvních dvou.

2.1.2 Vyslovte a dokažte větu o jednoznačnosti volných a bázických proměnných.

Pro A'x = b' s $(A' \mid b')$ v REF a bez pivotu v b', lze jakoukoli volbu proměnných jednoznačně rozšířit na řešení.

Proof. : Matematickou Indukcí podle i = r, r - 1, ..., 1 v i-té rovnici:

$$0x_1 + \dots + 0x_{j(i)-1} + a'_{i,j(i)}x_{j(i)} + a'_{i,j(i)+1}x_{j(i)+1} + \dots + a'_{i,n}x_n = b'_i$$

Hodnoty následujících bázických proměnných $x_{j(i+1)},...,x_{j(r)}$ jsou známy z indukčního předpokladu, proto je $x_{j(i)}$ jednoznačně: $x_{j(i)} = \frac{1}{a'_{i,j(i)}}(b'_i - a'_{i,j(i)+1}x_{j(i)+1} - ... - a'_{i,n}x_n)$.

Jednoznačnost řešení vychází z jednoznačnosti bázických a volných proměnných, protože ty to řešení tvoří.

2.1.3 Vyslovte a dokažte Frobeniovu větu.

Soustava Ax = b má řešení právě tehdy, když se hodnost matice A rovná hodnosti rozšířené matice.

Proof. Zvolme libovolné (A'|b') v REF, t. ž. $(A'|b') \sim \sim (A|b)$.

Potom Ax = b má řešení \iff (A'|b') nemá pivot v b' \iff pivoty A' se shodují s pivoty (A'|b') \iff rank(A) = rank((A|b))

2.2 Matice

2.2.1 Vyslovte a dokažte větu o vztahu mezi řešeními Ax = b a Ax = 0.

Nechť x_0 splňuje $Ax_0 = b$. Potom zobrazení $\overline{x} \to \overline{x} + x_0$ je bijekce mezi množinami $\{\overline{x} : Ax = 0\}$ a $\{x : Ax = b\}$.

Proof. Označme $U = {\overline{x} : Ax = 0}$ a $V = {x : Ax = b}$.

Předpokládejme, že $f: U \to V$, t.ž. $f(\overline{x}) = \overline{x} + x_0$ a $g: V \to U$, t.ž. $g(x) = x - x_0$. Potom:

$$g \circ f$$
 je identita na $U \Longrightarrow$ je $prostá$ $f \circ g$ je identita na $V \Longrightarrow$ je na $\}$ \Longrightarrow je $bijektivní$.

2.2.2 Uved'te a dokažte větu popisující všechna řešení Ax = b.

Je-li $A \in \mathbb{R}^{m \times n}$ matice hodnosti r, pak všechna řešení Ax = 0 lze popsat jako $x = p_1x_1 + p_2x_2 + \ldots + p_{n-r}x_{n-r}$, kde jsou p_1, \ldots, p_{n-r} libovolné reálné parametry a x_1, \ldots, x_{n-r} vhodná řešení soustavy Ax = 0. Soustava má pouze triviální řešení x = 0, právě když rank(A) = n.

Proof. Přejmenujeme volné proměnné na $p_1,...,p_{n-r}$. Zpětnou substitucí můžeme vyjádřit každou složku řešení jako lineární funkci proměnných, t.j.

$$x_1 = \alpha_{1,1}p_1 + \dots + \alpha_{1,n-r}p_{n-r}$$

 \vdots
 $x_n = \alpha_{n,1}p_1 + \dots + \alpha_{n,n-r}p_{n-r}$

Zvolíme $x_1 = p_1(\alpha_{1,1},...,\alpha_{n,1})^T,...,x_{n-r} = p_{n-r}(\alpha_{1,n-r},...,\alpha_{n,n-r})^T$ Tyto vektory řeší soustavu Ax = 0, protože každý takový x_i pochází z:

$$p_j = \begin{cases} 1, j = i \\ 0, j \neq i \end{cases}$$

Je-li rank(A) = n, proměnné jsou jen bázické a 0 je pak jediné řešení.

Důsledek: Obecné řešení soustavy Ax = b lze vyjádřit ve tvaru $x = x_0 + p_1x_1 + ... + p_{n-r}x_{n-r}$, kde x_0 je libovolné řešení soustavy Ax = b.

Důsledek platí díky bijekci mezi řešeními Ax = b a Ax = 0. (věta 2.2.1)

2.2.3 Vyslovte a dokažte větu o ekvivalentních definicích regulárních matic.

Pro čtvercovou matici $A \in \mathbb{R}^{n \times n}$ jsou následující podmínky ekvivalentní:

- i $(\exists A^{-1}): A \cdot A^{-1} = I_n$, neboli A je regulární
- ii rank(A) = n, neboli A má hodnost n
- iii $A \sim \sim I_n$, neboli A lze převést na I_n
- iv Soustavy Ax = 0 má pouze triviální řešení x = 0.

Proof.

- $(ii) \iff (iv)$: Z věty o řešení homogenních soustav 2.2.2.: $rank(A) = n \iff A' \sim A \text{ neobsahuje volné proměnné} \iff \text{ existuje právě jedno řešení}$
- $(ii) \implies (iii)$: Podle Gauss-Jordanovy eliminace $(iii) \implies (ii)$ triviálně.
- (ii) \implies (i): Označme $I_n = (e_1|...|e_n)$, kde e jsou sloupce matice I_n . Pro i = 1, ..., n uvažme soustavy $Ax_i = e_i$. Z rank(A) = n dostaneme řešení $A^{-1} = (x_1|...|x_n)$.
- (i) \implies (ii) Sporem. Pokud rank(A) < n, pak pro některé i může bát i-tý řádek matice A eliminován ostatními řádky, $Ax_i = e_i$ tedy nemá řešení, protože jedinou 1 na i-tém řádku v e_i nelze eliminovat nulami. ... spor s existencí A^{-1} .

П

2.3 Grupy a permutace

2.3.1 Vyslovte a dokažte větu o znaménku složené permutace.

 $V\check{e}ta$: Pro libovolné $(p,q\in S_n)$, kde S_n je množina všech permutací na n prvcích, platí: $sgn(q\circ p)=sgn(q)\cdot sqn(p)$

Proof. Pro počet inverzí ve složené permutaci platí, že: $inverze\ v\ p\ a\ q\ se\ navzájem\ vyruší\ a\ inverze\ v\ q\circ p\ odpovídá\ inverzi\ v\ p\ nebo\ v\ q.$

$$\# \text{ inverzí } (q \circ p) = \# \text{ inverzí } p + \# \text{ inverzí } q - 2 | \{(i,j): i < j \land p(i) > p(j) \land q(p(i)) < q(p(j)) \}|$$

2.4 Tělesa

2.4.1 Uveď te a dokažte větu charakterizující, kdy Z_p je těleso

 $V\check{e}ta$: \mathbb{Z}_p je těleso právě tehdy, když p je prvočíslo.

Proof.

- \implies : Pokud by p bylo složené $p = a \cdot b$, pak $a \cdot b \equiv 0 \mod p$, což je spor s pozorováním.
- \Leftarrow Je potřeba ukázat platnost axiomů pro tělesa. Všechny axiomy plynou z vlastností + a · na \mathbb{Z} , kromě existence inverzních prvků, protože \mathbb{Z} není uzavřená na dělení.:

Ukažme existenci inverzního prvku v násobení $(\forall a \in [p-1])(\exists a^{-1} \in [p-1]) : a \cdot a^{-1} \equiv 1 \mod p$

Definujeme pro každé a zobrazení $f_a:[p-1]\to [p-1]$ předpisem $f_a(x)=ax\mod p$

Ukážeme, že f_a je prosté: Kdyby nebylo, $(\exists b, c, b \neq c) : f_a(b) = f_a(c) \implies 0 \equiv ab - ac \implies a(b - c) \equiv 0$. Ale víme, že $a \neq 0$ a $b \neq c$, takže jde o **spor**.

 f_a je prosté \implies je na $\implies \exists a^{-1}$ splňující $f_a(a^{-1}) = 1$.

2.4.2 Vyslovte a dokažte malou Fermatovu větu.

Věta: Nechť $a \in \{1, ..., p-1\}$ a p je prvočíslo, potom platí: $a^{p-1} \equiv 1 \mod p$.

Proof. Pro každé a definujeme zobrazení $f_a:[p-1]\to [p-1]$ předpisem $f_a(x)=ax\mod p$. Ukážeme, že f_a je prosté: Kdyby nebylo, $(\exists b,c,b\neq c):f_a(b)=f_a(c)\implies 0\equiv ab-ac\implies a(b-c)\equiv 0$. Ale víme, že $a\neq 0$ a $b\neq c$, takže jde o **spor**.

 f_a je prosté \Longrightarrow je na \Longrightarrow je bijekcí na [p-1], proto platí:

$$\prod_{x=1}^{p-1} x = \prod_{x=1}^{p-1} f_a(x) = \prod_{x=1}^{p-1} ax = a^{p-1} \prod_{x=1}^{p-1} x \implies a^{p-1} = 1$$

2.5 Vektorové prostory

2.5.1 Vyslovte a dokažte větu o průniku vektorových prostorů.

Nechť $(U_i, i \in I)$ je libovolný systém podprostorů prostoru V. Potom průnik $\bigcap_{i \in I} U_i$ je také podprostorem V.

Proof.Označme $W = \bigcap_{i \in I} U_i$ a ukažme uzavřenost na \oplus a *:

1. Uzavřenost na \oplus :

$$(u, v \in W) \implies (\forall i \in I) : u, v \in U_i \implies (\forall i \in I) : u \oplus v \in U_i \implies u \oplus v \in W$$

2. Uzavřenost na *:

$$(\forall a \in \mathbb{K}), (u \in W) \implies (\forall i \in I) : u \in U_i \implies (\forall i \in I) : a * u \in U_i \implies a * u \in W$$

9

2.5.2 Vyslovte a dokažte větu o ekvivalentních definicích lineárního obalu.

- 1 Lineární obal množiny $X\subseteq V$ je průnik všech podprostorů U z V nad \mathbb{K} , které obsahují X.
- 2 Lineární obal množiny X je množina všech lineárních kombinací vektorů z X.

Proof. Označme:

$$\begin{split} W_1 &= \bigcap_{X \subseteq U_i \subseteq V} U_i \\ W_2 &= \left\{ \sum_{i=1}^n a_i \cdot v_i : a_i \in \mathbb{K}, v_i \in X, n \in \mathbb{N} \right\} \\ \text{Dokažme } W_1 &= W_2 = span(X) \text{:} \end{split}$$

1. $W_1 \subseteq W_2$

Protože $X \subseteq W_2$, máme W_2 mezi protínajícími se podprostory U_i . Z toho plyne $W_1 \subseteq W_2$.

 $2. W_2 \subseteq W_1$

uavřenost na
$$: u \in W_2 \implies u = \sum_{i=1}^k a_i v_i \implies \alpha u = \alpha \sum_{i=1}^k a_i v_i = \sum_{i=1}^k (\alpha a_i) v_i \implies \alpha u \in W_2$$

uzavřenost na $+: u, u' \in W_2 \implies \dots \implies u + u' \in W_2$

Každý U_i obsahuje X a je uzavřen na + a ·. Každý U_i tedy obsahuje všechny lineární komb. vektorů X. Proto $\forall U_i: W_2 \subseteq U_i \implies W_2 \subseteq W_1$.

2.5.3 Vyslovte a dokažte tvrzení o mohutnostech lineárně nezávislé množiny a generující množiny.

Jestliže Y je konečná generující množina prostoru V a X je lineárně nezávislá ve V, potom $|X| \leq |Y|$.

Proof. Předpokládejme, že $Y=\{v_1,...,v_n\}$ a že z X lze vybrat různá $u_1,...,u_{n+1}$. Každé u_i vyjádříme jako $u_i=\sum_{j=1}^n a_{i,j}v_j$. Odpovídající matice A má n+1 řádků a n sloupců, proto je některy řádek lineární kombinací ostatních. Tato kombinace také potvrzuje lineární závislost $u_1,...,u_{n+1}$.

2.5.4 Uved'te a dokažte Steinitzovu větu o výměně (včetně lemmatu, pokud jej potřebujete).

Lemma o výměně Nechť X generuje vektorový prostor V nad \mathbb{K} . Jestliže pro vektor $(u \in V)$ existují $(v_1,...,v_n \in X)$ a $(a_1,...,a_n \in \mathbb{K})$ taková, že $u = \sum_{i=0}^n a_i v_i$, kde $a \neq 0$ pro nějaké i, potom $span((X \setminus v_i) \cup u) = V$.

Proof.

$$u = a_1 v_1 + \dots + a_i v_i + \dots + a_n v_n \implies v_i = \frac{1}{a_i} (u - \sum_{j \neq i} a_i v_i)$$

Jakékoli $w \in V$ můžeme zapsat jako lineární kombinaci prvků z X. Vyskytuje-li se v_i v této kombinaci, dosadíme za v_i výraz výše. Tím získáme w jako lineární kombinaci prvků z $(X \setminus v_i) \cup u$.

V konečném případě, je-li $X = \{v1, ..., v_n\}$ a $w = \sum_{j=1}^n b_j v_j$, dostaneme jmenovitě $w = \frac{b_i}{v_i} u + \sum_{j \neq i} \left(b_j - \frac{a_j b_j}{a_i}\right) v_j$.

Steinitzova věta o výměně Nechť X je konečná lineárně nezávislá množina vektorového prostoru V nad \mathbb{K} a Y je systém generátorů V.

Potom platí $|X| \leq |Y|$ a existuje Z, taková že:

1.
$$\mathfrak{L}(Z) = V$$

 $2. X \subseteq Z$

3.
$$|Z| = |Y|$$

4. $Z \setminus X \subseteq Y$

Proof. Indukcí dle $|X \setminus Y|$

- Základní krok $X \setminus Y = \emptyset$, potom Z = Y.
- Indukční krok $X \setminus Y \neq \emptyset$

Zvolíme libovolné $u \in X \setminus Y$ a položíme $X' = X \setminus u$.

Protože množina X' je lineárně nezávislá a $|X' \setminus Y| < |X \setminus Y|$, podle indukčního předpokladu pro X' a Y existuje Z' splňující $\mathfrak{L}(Z') = V$; $X' \subseteq Z'$; |Z'| = |Y| a $Z' \setminus X' \subseteq Y$.

Použijeme lemma o výměně pro $Z' = \{v_1, ..., v_n\}$ a u vyměníme za v_i , takové že $v_i \in Z' \setminus X$.

Takové v_i existuje, protože jinak by byla X lineárně závislá. Potom $Z = Z' \cup u \setminus v_i$ splňuje 1-4.

neboli: $množina\ Y\ um\'evygenerovat\ u$, ale $množina\ X'$ to $nemůže\ umět$, $jinak\ by\ X' \cup u\ nebylo\ lin.\ nezavislé.$

2.5.5 Vyslovte a dokažte větu o dimenzi průniku vektorových prostorů.

Jsou-li U, V podprostory konečně generovaného prostoru W, pak $dim(U) + dim(V) = dim(U \cap V) + dim(\mathfrak{L}(U \cup V))$.

Proof. Rozšíříme bázi X průniku $U\cap V$ na bázi Y prostoru U a také na bázi Z prostoru V. Potom $|Y|+|Z|=|X|+|Y\cup Z|$

2.5.6 Vyslovte a dokažte větu o vektorových prostorech souvisejících s maticí A.

Jakákoli $A \in \mathbb{K}^{m \times n}$ splňuje: $dim(\mathcal{R}(A)) = dim(\mathcal{S}(A))$.

Proof. Nechť $A \sim \sim A'$ v REF, neboli existuje regulární Rtaková, že A' = RA.

Podle lemmatu určíme $dim(\mathcal{S}(A')) \leq dim(\mathcal{S}(A))$ a z $A = R^{-1}A'$ dostaneme $dim(\mathcal{S}(A')) \geq dim(\mathcal{S}(A))$, tudíž dostáváme jejich rovnost.

Dále pro matice A' v REF platí věta přímo: $dim(\mathcal{R}(A')) = \text{počet pivotů} = rank(A') = dim(\mathcal{S}(A'))$.

Protože $\mathcal{R}(A) = \mathcal{R}(A')$, dostaneme $dim(\mathcal{R}(A)) = dim(\mathcal{R}(A')) = dim(\mathcal{S}(A')) = dim(\mathcal{S}(A))$.

Jinými slovy, počet pivotů v řádcích je roven počtu pivotů ve sloupcích.

(Lemma říká: vynásobíme-li A z leva maticí B, pak celková dimenze A' nevzroste).

2.5.7 Vyslovte a dokažte větu o dimenzi jádra matice.

Pro libovolné $A \in \mathbb{K}^{m \times n} : dim(ker(A)) + rank(A) = n.$

Proof. Nechť d = n - rank(A) je počet volných proměnných a $x_1, ..., x_d$ jsou řešení soustavy Ax = 0 daná zpětnou substitucí.

Tato řešení jsou lineárně nezávislá, protože pro každé i platí, že x_i je mezi $x_1,...,x_d$ jediné, které má složku odpovídající i-té volné proměnné nenulovou.

Vektory $x_1, ..., x_d$ tudíž tvoří bázi ker(A) a proto dim(ker(A)) = d = n - rank(A).

2.6 Lineární zobrazení

2.6.1 Vyslovte a dokažte větu o jedinečnosti lineárního zobrazení.

Nechť U a V jsou prostory nad \mathbb{K} a X je báze U.

Pak pro jakékoli zobrazení $f_0: X \to V$ existuje jediné lineární zobrazení $f: U \to V$ rozšiřující f_0 , t.j. $(\forall u \in X): f(u) = f_0(u)$.

Proof.

Pro jakékoli $w \in U$ existují jednoznačná $n \in \mathbb{N}_0, a_1, ..., a_n \in \mathbb{K} \setminus 0$ a $u_1, ..., u_n \in X$ taková, že $w = \sum_{i=1}^n a_i u_i$

Potom
$$f(w) = f\left(\sum_{i=1}^{n} a_i u_i\right) = \sum_{i=1}^{n} a_i f(u_i) = \sum_{i=1}^{n} a_i f_0(u_i).$$

2.6.2 Vyslovte a dokažte větu o řešení rovnice s lineárním zobrazením.

Proof.

2.6.3 Vyslovte a dokažte pozorování o matici složeného lineárního zobrazení.

Proof.

2.6.4 Vyslovte a dokažte větu o charakterizaci izomorfismu mezi vektorovými prostory.

Lineární zobrazení $f:U\to V$ je **isomorfismus** prostorů U a V s konečnými bázemi X a Y právě tehdy, když $[f]_{X,Y}$ je regulárni.

Proof.

• \Leftarrow : Uvažme $g: V \to U$ takové, že $[g]_{Y,X} = [f]_{X,Y}^{-1}$. Pak:

$$[g \circ f]_{X,X} = [f]_{X,Y}^{-1}[f]_{X,Y} = I_{|X|} = [id]_{X,X} \implies f$$
 je prosté
$$[f \circ g]_{Y,Y} = [f]_{X,Y}^{-1}[f]_{X,Y} = I_{|Y|} = [id]_{Y,Y} \implies f$$
 je na.

$$\begin{array}{l} [\mathbf{f}^{-1}]_{Y,X}[f]_{X,Y} = [id]_{X,X} = I_{|X|} \implies |Y| \geq |X| \\ [\mathbf{f}]_{X,Y}[f^{-1}]_{Y,X} = [id]_{Y,Y} = I_{|Y|} \implies |X| \geq |Y| \end{array} \right\} \implies |X| = |Y|.$$

2.7 Grafy a podgrafy

2.7.1 Zformulujte problém o počtu sudých podgrafů a vyřešte jej.

Kolik sudých podgrafů obsahuje G?

Proof. Symetricky rozdíl \triangle zachovává sudé stupně, protože symetricky rozdíl dvou množin sudé mohutnosti, konkrétně hran incidentních s vrcholem, má také sudou mohutnost.

$$|A\triangle B| = |A| + |B| - 2|A \cap B|$$

Proto (U, \triangle, \cdot) tvoří vektorový prostor \mathbb{Z}_2 . Pro prostory konečné mohutnosti platí $|U| = |\mathbb{K}|^{dim(U)}$

2.7.2 Zformulujte problém o množinových systémech s omezeními na mohutnosti a vyřešte jej.

Kolik množin může mít n-prvková množina, pokud každá podmnožina má mít lichou velikost, ale průnik každé dvojice různych podmnožin má mít sudou velikost?

2.7.3 Zformulujte problém o dělení obdélníku na čtverce a vyřešte jej.

Lze obdélník s iracionálním poměrem délek jeho stran rozdělit na konečně mnoho čtverců? Pro iracionální poměr žádné takové rozdělení neexistuje.

Proof.

3 Přehled

(U přehledových otázek uveď te definice, tvrzení, věty, příklady a souvislosti. Důkazy u přehledových otázek nejsou vyžadovány.)

3.1 Soustavy lineárních rovnic

3.1.1 Přehledově sepište, co víte o elementárních řádkových operacích a Gaussově eliminaci.

- o **Definice**: Elementární řádkové úpravy, Gaussova eliminace, Řádkově odstupňovaný tvar
- o Věta: (2.1.1) Nechť Ax = b a A'x = b' jsou dvě soustavy splňující $(A|x) \sim (A'|b')$, potom obě soustavy mají totožné množiny řešení.
- o Zmínit Gauss-Jordanovu eliminaci

3.1.2 Přehledově sepište, co víte o řešení homogenních a nehomogenních soustav lineárních rovnic.

- o Definice: Gaussova eliminace, REF, pivot, volné a bázické proměnné, hodnost matice
- Zpětnou substitucí lze získat každé řešení.
- o Věta: (2.1.3) Frobeniova věta: Soustava Ax = b má řešení $\iff rank(A) = rank(A|b)$
- \circ Věta: (2.1.2) Pro A'x = b' s (A'|b') v REF a bez pivotu v b', lze jakoukoli volbu proměn. rozšířit na řešení.
- o Věta: (2.2.1) Nechť x_0 splňuje $Ax_0 = b, ppotomzobr. \rightarrow \bar{x} + x_0$ je bijekce mezi $\{\bar{x} : Ax = 0\}$ a $\{x : Ax = b\}$.
- o **Věta**: (2.2.2) Je-li $A \in \mathbb{R}^{m \times n}$ matice hodnosti r, pak všechna řešení Ax = 0 lze popsat jako $x = p_1 x_1 + p_2 x_2 + ... + p_{n-r} x_{n-r}$, kde jsou $p_1, ..., p_{n-r}$ libovolné reálné parametry a $x_1, ..., x_{n-r}$ vhodná řešení soustavy Ax = 0. Soustava má pouze triviální řešení x = 0, právě když rank(A) = n.

3.2 Matice

3.2.1 Přehledově sepište, co víte o maticových operacích.

- o Definice nulová matice, jednotkové matice, transponovaná matice, symetrická matice
- o Definice maticový součin, komutativita, asociativita, distributivita, neutrální prvek, inverzní prvek
- o Násobení skalárem komutativní, asociativní, ditributivní na sčítání, neutrální prvek je 1
- o Sčítání komutativní, asociativní, neutrální prvek je nulová matice.
- o Maticový součin asociativní, distributivní na sčítání, neutrální prvek je I_n , NENÍ komutativní

3.2.2 Přehledově sepište, co víte o regulárních a singulárních maticích.

- o Věta (2.2.3) Pro čtvercovou matici $A \in \mathbb{R}^{n \times n}$ jsou následující podmínky ekvivalentní:
 - $(\exists B) : A \cdot B = I_n \to A$ je regulární
 - rank(A) = n
 - $-A \sim \sim I_n$
 - $-Ax = 0 \implies x = 0$
- $\circ (A^{-1})^{-1} = A$

Proof.
$$(A^{-1})^{-1} = I_n(A^{-1})^{-1} = AA^{-1}(A^{-1})^{-1} = AI_n = A$$

 $\circ (A^T)^{-1} = (A^{-1})^T$

Proof. Využijeme, že
$$X^TY^T = (YX)^T$$
: ; $(A^{-1})^T = (A^{-1})^TA^T(A^T)^{-1} = (AA^{-1})^T(A^T)^{-1} = I_n(A^T)^{-1} = I_n(A^T)^{-1} = I_n(A^T)^{-1}$

3.3 Grupy a permutace

3.3.1 Přehledově sepište, co víte o binárních operacích a jejich vlastnostech.

- o Definice: Binární operace, relace, kartézsky součin, zobrazení na, prosté, bijektivní
- o **Definice**: Asociativita, komutativita, distributivita, inverzní prvek, neutrální prvek
- o Příklady Grupa, Abelova grupa, Tělesa, ...

3.3.2 Přehledově sepište, co víte o (obecných) grupách.

- o **Definice**: Grupa, Abelovaká grupa
- o Neutrální a inverzní prvky jsou určeny jednoznačně (Důkaz přičtením nuly/ násobením jedničkou)
- o Platí ekvivalentní úpravy $a=b\iff c\circ a=c\circ b\iff a\circ c=b\circ c$
- $\circ (a^{-1})^{-1} = a$
- $\circ \ (ab)^{-1} = (b^{-1}a^{-1})$
- o Příklady: aditivní grupy, multiplikativní, ostatní (symetrická množina permutací na 1 až n)

3.3.3 Přehledově sepište, co víte o permutačních grupách.

- o Definice: Permutace, permutační matice, transpozice, inverze, znaménko

3.4 Tělesa

3.4.1 Přehledově sepište, co víte o tělesech.

- o **Definice**: Tělesa, charakteristika tělesa
-
 Věta (2.4.1) \mathbb{Z}_p je těleso právě tehdy, když
 pje prvočíslo
- o Věta (2.4.2) Nechť $a \in [p-1]$ a p je prvočíslo, potom platí $a^{p-1} \equiv 1 \mod p$
- o Věta Charakteristika tělesa je vždy 0 nebo prvočíslo (důkaz sporem)
- $\circ \; \; Vlastnosti:$

$$- \forall a, a \times 0 = 0$$

$$-ab = 0 \implies a = 0 \lor b = 0$$

Proof. Sporem:
$$\exists a^{-1}, b^{-1} : 1 = a^{-1}abb^{-1} = aba^{-1}b^{-1} = 0a^{-1}b^{-1} = 0$$

$$-a(-1) = -a$$

Proof.
$$0 = 0a = (1-1)a = 1a + (-1)a \implies -a = (-1)a$$

3.5 Vektorové prostory

3.5.1 Přehledově sepište, co víte o vektorových prostorech a jejich podprostorech.

- o **Definice**: Vektorový prostor, podprostor, lineární kombinace, lineární obal,
- o **Věta** (2.5.1) Průnik podprostorů je podprostor (ověří se uzavřenost na +,.)
- o Pojem skalár, vektor
- \circ Příklady: \mathbb{K}^n , posloupnosti, funkce, polynomy
- a0 = 0u = 0

$$\circ au = 0 \implies a = 0 \lor u = 0$$

3.5.2 Přehledově sepište, co víte o vektorových prostorech určených s maticí A.

- o **Definice** Řádkový prostor, sloupcový prostor, jádro
- o **Věta** o shodnosti dimenzí: $dim(\mathcal{R}) = dim(\mathcal{S})$
- o Elementární řádkové úpravy zachovávají řádkový prostor, sloupcový zachovávat nemusí. (+ Jádro)
- $\circ dim(\mathcal{R}) = rank(A), dim(KerR) + rank(A) = n$

3.5.3 Přehledově sepište, co víte o lineární závislosti.

- o **Definice**: Lineárně nezávislost
- Příklady:

–
$$|X| = 1$$
 $\begin{cases} X = \{0\} & \text{závislá} \\ \text{jinak} & \text{nezávislá} \end{cases}$

- $-0 \in X \implies X$ je lineárně závislá.
- Řádky/sloupce diagonální matice jsou lineárně nezávislé.
- Nenulové řádky v matici v REF jsou lineárně nezávislé
- o Y je lineárně nezávislá a $X \subseteq Y \implies X$ je lineárně nezávislá
- o X je lineárně závislá a $X \subseteq Y \implies X$ je lineárně závislá
- o X je lineárně nezávislá $\iff \forall u \in X : u \notin \mathfrak{L}(X \setminus u)$
- o Asi je možné zmínit báze

3.5.4 Přehledově sepište, co víte o bázích vektorových prostorů.

- o Definice: Báze, vektor souřadnic
-
 Pro libovolnou bázi platí: (předpoklady neuvádím) $[x]_B + [y]_B = [x+y]_B$, $[ax]_B = a[x]_B$
- o Věta: $\mathfrak{L}(X) = V, \forall Y \subset X : \mathfrak{L}(Y) \neq V \implies X$ je báze.
- o Důsledek: Každý prostor má bázi.
- o Z každého systému generátorů lze vytvořit bázi
- Steinitzova věta o výměně (+ lemma)
- o Pokud má prostor konečnou bázi, potom mají všechny báze stejnou mohutnost

3.6 Lineární zobrazení

3.6.1 Přehledově sepište, co víte o lineárních zobrazeních a jejich maticích.

- o Definice Lineární zobrazení, matice lineárního zobrazení, matice přechodu,
- o Příklady: nulové, identické
- o Složení lineárních zobrazení je lineární
- $\circ [f(u)]_Y = [f]_{XY} \cdot [u]_X$
- o Skládání zobrazení vyjádříme součinem matic
- o Zobrazení je isomorfismus, iff jeho matice je regulární,
- o pak platí inverzní matice je maticí inverzního zobrazení
- o Vektorový prostor dimenze n je isomorfní prostoru nad \mathbb{K}^n