1 GRASP

- Input: $n \in N$, $h \in H$, minHours, maxHours, maxConsec, maxPresence
- Output: $W_{n,h}$, cost
- Procedure Construct
 - (1) Initialize $W_{n,h} = 0, \forall n \in \mathbb{N}, \forall h \in \mathbb{H}$
 - (2) for n in N
 - (3) ComputeGreedyCost(H)
 - (4) order1=sort(H,'gc',asc)
 - (5) min_{qc} =the gc of of first(order1), max_{qc} =the gc of the last(order1)
 - (6) $RCL \leq min_{gc} + \alpha(max_{gc} min_{gc})$
 - (7) Randomly select an hour (h) from RCL, set $W_{n,h}=1$, remove(h)
 - (8) if complete(All $gc_h \ge 0$) then **break**
 - (9) while $k \leq \max$
 - (10) get the $h_{start} \& h_{end}$ of the working hours
 - (11) if $Sum(w_{n,h}) \ge min \& h_{end} h_{start} + 1 = = max Presence$ then **break**
 - (12) order2=sort($H[h_{start}$ -2, h_{end} + 2],'gc',asc)
 - (13) if satisfy maxConsec
 - (14) h'=first(order2), set $W_{n,h'}=1$
 - (15) remove(h')
 - $(16) \cos t = \text{getNumberofWorkingNurses}$
 - (17) return $W_{n,h}$, cost

End Construct

- Procedure Local Search
 - (1) $W_{n,h}'' = W_{n,h}$
 - (2) for $n \in Number of Working Nurse$
 - (3) $W'_{n,h} = W''_{n,h}$
 - (4) for $n' \in Number of Working Nurse \setminus n$
 - (5) Set $W'_{n,h} = 0, W'_{n',h} = 0, \forall h \in H$
 - (6) if SumofWorkinghours($\forall h \in H$) $\leq Demand_h$ -2 then **continue**
 - (7) elseif CanNotGenerateFeasibleW' then continue
 - (8) Generate a Feasible $W'_{n,h}$
 - (9) $W''_{n',h} = W'_{n',h}, W''_{n,h} = W'_{n,h}$
 - (10) cost=1
 - (11) break

- (12) Update NumberofWorkingNurse
- (13) $W_{n,h} = W''_{n,h}$
- (14) return $W_{n,h}$, cost

End Local Search