LOAN DOCUMENT

DTIC ACCESSION NUMBER TANAT	PHOTOGRAPH THIS SHEET INVENTORY SITUATIVE AT DOVEC COMMENT IDENTIFICATION TOTAL OUTPUT DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited D
	DISTRIBUTION STATEMENT L
ACCESSION FOR NTIS GRAM DITC TRAC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL P	DATE ACCESSIONED C A R E
20001214 094	DATE RETURNED
DATE RECEIVED IN DTIC PHOTOGRAPH THE	REGISTERED OR CERTIFIED NUMBER SHEET AND RETURN TO DTIC-FDAC
DTIC FORM 70A	OCCUMENT PROCESSING SHEET PREVIOUS EDITIONS MAY BE USED UNTIL

INTERIM REPORT March 3, 1993

FOR

BIOVENTING FIELD INITIATIVE

AT

DOVER AIR FORCE BASE, DELAWARE

to

Captain Catherine M. Vogel
Department of the Air Force
AL/EQ
139 Barnes Drive
Tyndall AFB, Florida 32403-5319

by

BATTELLE Columbus Operations 505 King Avenue Columbus, Ohio 43201-2693

AGM01-03-0529

TABLE OF CONTENTS

LIST	T OF TABLES	ii
LIST	T OF FIGURES	ii
1.0	INTRODUCTION 1.1 Objectives 1.2 Site Description 1.2.1 Site ST-04 1.2.2 North Storage Tank Farm	1 1 2 2 5
2.0	2.1.5 Soil Gas Permeability and Radius of Influence 2.1.6 In Situ Respiration Test 2.2 Results and Discussion 2.2.1 Soil and Soil Gas Analyses 2.2.2 Soil Gas Permeability and Radius of Influence 2.2.3 In Situ Respiration Test	5 5 5 7 10 10 11 12 12 12 16 16
3.0	3.1 Chronology of Events and Site Activities 3.1.1 Groundwater Measurements 3.1.2 Soil Gas Survey 3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 3.1.4 Soil and Soil Gas Sampling and Analyses 3.1.5 Soil Gas Permeability and Radius of Influence 3.1.6 In Situ Respiration Test 3.2 Results and Discussion 3.2.1 Soil and Soil Gas Analyses 3.2.2 Soil Gas Permeability and Radius of Influence 3.2.3 In Situ Respiration Test	20 20 20 20 20 23 23 24 24 24 26 32
4.0	BACKGROUND AREA	32
5.0	FUTURE WORK	35
6.0	DECEDENCE	25

APPEND	IX A: TEST PLAN FOR DOVER AFB, DELAWARE	\ -1
APPEND	OIX B: ANALYTICAL REPORT FOR SITE ST-04, THE NORTH STORAGE TANK FARM, AND THE BACKGROUND AREA E	3-1
APPEND	IX C: SITE ST-04 SOIL GAS PERMEABILITY DATA	<u>]-1</u>
APPEND	IX D: SITE ST-04 IN SITU RESPIRATION TEST DATA)-1
APPEND	IX E: NORTH STORAGE TANK FARM SOIL GAS PERMEABILITY DATA	Ξ-1
APPEND	IX F: NORTH STORAGE TANK FARM IN SITU RESPIRATION TEST DATA F	F-1
	LIST OF TABLES	
Table 1. Table 2. Table 3. Table 4. Table 5.	Results of Hyperventilate TM Soil Gas Permeability Analysis at Site ST-04 Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ	13 14 15
Table 6. Table 7.	Initial Soil Gas Composition at the North Storage Tank Farm	19 21
Table 8. Table 9.	Results From Soil Chemistry Analyses at the North Storage Tank Farm	25 27
Table 10.	Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ	28
Table 11.	Results From Soil and Soil Gas Analysis for BTEX and TPH at the Background	31
Table 12.		33 34
	LIST OF FIGURES	
Figure 1.	Schematic Diagram of Dover AFB	3
Figure 2.	Schematic Diagram of Site ST-04 at Dover AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)	4
Figure 3.	Schematic Diagram of the North Storage Tank Farm at Dover AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)	6
Figure 4.	Cross Section of Vent Well and Monitoring Points at Site ST-04 Showing Site Lithology and Construction Detail (not to scale)	9
Figure 5.	Radius of Influence at Site ST-04	17
Figure 6.	Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D1-MPA-11.0'	18

Figure 7.	Cross Section of Vent Well and Monitoring Points at the North Storage Tank	
	Farm Showing Site Lithology and Construction Detail (not to scale)	22
Figure 8.	Radius of Influence at the North Storage Tank Farm	29
Figure 9.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
•	Respiration Test at Monitoring Point D2-MPA-2.5'	30
Figure 10.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
•	Respiration Test at the Background Area	36

INTERIM REPORT

BIOVENTING FIELD INITIATIVE

DOVER AIR FORCE BASE, DELAWARE

1.0 INTRODUCTION

This report describes the activities conducted at Dover Air Force Base (AFB), Delaware, as part of the Bioventing Field Initiative for the U.S. Air Force Center for Environmental Excellence (AFCEE) and the Environmental Quality Directorate of the Air Force Armstrong Laboratory. This report summarizes the results from the first phase of the study at Dover AFB. First-phase activities include a soil gas survey, air permeability test, in situ respiration tests, and installation of bioventing systems. The specific objectives of this Bioventing Field Initiative are described in the following section. Each site at the base is discussed individually, followed by a description of site activities at the background area.

1.1 Objectives

The purpose of this Bioventing Field Initiative is to measure the soil gas permeability and microbial activity at a contaminated site in order to evaluate the potential application of bioventing technology to remediate the site. The specific test objectives are stated below.

- A small-scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system. Soil gas from the candidate site should exhibit high total petroleum hydrocarbon (TPH) concentrations, relatively low oxygen concentrations, and relatively high carbon dioxide concentrations. An uncontaminated background location also will be identified.
- The soil gas permeability of the soil and the air vent (well) radius of influence will be determined. To measure these parameters, air will be withdrawn or injected for approximately 8 hours at vent wells located in contaminated soils. Pressure changes will be monitored in an array of monitoring points.
- Immediately following the soil gas permeability test, an in situ respiration test will be conducted. Air will be injected into selected monitoring points to

aerate the soils. The in situ oxygen utilization and carbon dioxide production rates will be measured.

• The data from the soil gas permeability and in situ respiration tests will be used to determine an air injection/withdrawal rate for the bioventing test. A blower will be selected, installed, and operated for 6 to 12 months, and periodic measurements of the soil gas composition will be made to evaluate the long-term effectiveness of bioventing.

1.2 Site Description

Dover AFB is located just east of the city of Dover, Delaware. A map of the base showing the locations of each site and the background area is shown in Figure 1. The dashed line on the map illustrates the direction from the main gate to each test site. Summaries of the descriptions of each site used for the Bioventing Initiative are presented in the following sections. A more detailed description of each test site is given in the Test Plan provided in Appendix A.

1.2.1 Site ST-04

Site ST-04 (Site D1 on Figure 1) is a gasoline release at the AAFES gas station. A map of the AAFES gas station is shown in Figure 2. The depth to groundwater at the site is approximately 11 feet. Soils consist predominantly of coarse sand and gravel from the ground surface to the water table. Analyses of soil samples showed contamination with benzene, toluene, ethylbenzene, and total xylenes (BTEX) at 11.5 feet to 13.5 feet. The highest concentrations detected were 180 ppm toluene, 80 ppm ethylbenzene, and 540 ppm total xylenes (benzene data not available). Soil samples from the 5- to 7-foot interval were below detection limit for BTEX and TPH. Sample data for the 7- to 11.5-foot interval were not available. A soil gas survey was conducted across the ST-04 site on 100- by 200-foot grids. The highest soil gas concentrations were found in the vicinity of the former leaking tank and the fuel-dispensing system.

Figure 1. Schematic Diagram of Dover AFB

Figure 2. Schematic Diagram of Site ST-04 at Dover AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

1.2.2 North Storage Tank Farm

The North Storage Tank Farm (Site D2 on Figure 1) is an aboveground JP-4 jet fuel storage area shown in more detail in Figure 3. There have been three known releases from Tank 733 between 1970 and 1979 ranging from 17,000 gallons to 30,000 gallons of JP-4 jet fuel. Nearby surface soils include coarse sand and gravel, silt and silty sand, and clay and sandy clay. The water table at the site is approximately 10 feet. A soil gas survey was conducted across the site prior to the investigations described in this report. The soil gas data indicate the highest concentrations are adjacent to Tank 732, downgradient from Tank 733.

2.0 SITE ST-04

2.1 Chronology of Events and Site Activities

2.1.1 Groundwater Measurements

Two groundwater monitoring wells (MW 73S and MW 71S) were present at Site ST-04. The groundwater level was measured at these wells on November 3, 1992 and was recorded at 12.2 feet at MW 73S and 12.3 feet at MW 71S. No free product was detected in either well.

2.1.2 Soil Gas Survey

A suitable site for the bioventing demonstration should have soil gas characteristics of high TPH, low oxygen, and high carbon dioxide concentrations. This composition of soil gas would indicate that oxygen-limiting conditions for microbial activity are present and that the introduction of air may enhance biodegradation of TPH.

On November 2 and 3, 1992, a limited soil gas survey was conducted at Site ST-04. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH.

Figure 3. Schematic Diagram of the North Storage Tank Farm at Dover AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

Measurements of oxygen and carbon dioxide in the soil gas were made with a GasTech Model 32520X with oxygen and carbon dioxide ranges of 0 to 25%. The analyzer was calibrated daily against atmospheric oxygen, atmospheric carbon dioxide, a 10% oxygen calibration standard, and a 5% carbon dioxide calibration standard. TPH was measured with a GasTech Trace Techtor with TPH ranges from 0 to 100, 0 to 1,000, and 0 to 10,000 ppm. The GasTech Trace Techtor was calibrated daily against a 4,200-ppm hexane standard.

The soil gas probes were driven to depths ranging from 2.5 to 12.5 feet at several locations at Site ST-04. Table 1 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Site ST-04. Oxygen concentrations varied from 0 to 20.9%, and TPH concentrations ranged from 110 ppm to greater than 100,000 ppm. The oxygen concentrations in the soil gas indicate that most areas at this site are oxygen-limited and may respond to bioventing.

2.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On November 3 and 4, 1992, one vent well (VW) and three monitoring points (MPs) were installed at Site ST-04, and soil samples were collected for analyses. The monitoring points were labeled as follows: D1-MPA, D1-MPB, and D1-MPC. The locations of the vent well and monitoring points are shown in Figure 2. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 4.

The vent well was installed at a depth of 11.0 feet into a 6-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter polyvinyl chloride (PVC) piping with 5.0 feet of tenslot screen. The annular space corresponding to the screened area of the well was filled with silica sand, and the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes were sacrificial points consisting of ¼-inch tubing with an aluminum, 4-inch screened area. Sacrificial points were installed with a hammer drill in the same manner as the soil gas probes during the soil gas survey. No soil borings were created, nor was any sand added. A small amount of wetted bentonite was added at the surface. The monitoring points were installed at depths as follows:

• Monitoring point D1-MPA was installed at the following three depths: 3.0, 6.0, and 11.0 feet.

Table 1. Initial Soil Gas Composition at Site ST-04

Soil Gas Survey (GS) Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppm)
GS-1	2.5	20.91	0 ·	110
	5.0	2.6	13.1	50,000
	7.5	2.0	13.5	48,000
	10	2.5	13.2	54,000
GS-2	5.0	5.9	9.1	75,000
	7.5	19.8¹	1.3	1,100
	10	4.01	13.0	>40,000
	12.5	20.5¹	0.1	4,000
GS-3	5.0	1.5	14.0	>40,000
	7.5	0	15.1	>40,000
	10	12.8¹	6.5	21,600
GS-4	5.0	0.5	13.2	39,000
	7.5	0.3	15.0	>100,000²
	10	0.7	14.1	>100,000²
GS-5	5.0	0	13.5	>40,000
	7.5	0	13.5	>40,000
	9.5	0	15.1	>40,000

Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

² A 10:1 diluter was used for these readings. Due to weather conditions (heavy rains), the 10:1 diluter could not be used for other readings. A 4:1 diluter was used for the other readings.

9

Figure 4. Cross Section of Vent Well and Monitoring Points at Site ST-04 Showing Site Lithology and Construction Detail (not to scale)

- Monitoring point D1-MPB was installed at the following depths: 3.0, 7.0, and 10.0 feet.
- Monitoring point D1-MPC was installed at the following depths: 3.0, 7.0, and 11.0 feet.

A Type J thermocouple was installed with monitoring points D1-MPA-3.0', D1-MPA-11.0', D1-MPB-3.0', and D1-MPB-10'.

2.1.4 Soil and Soil Gas Sampling and Analyses

Soil samples were collected from the vent well borehole at Site ST-04 at depths of 3.0 to 3.5 feet, 7.0 to 7.5 feet, and 11.0 to 11.5 feet and were labeled D1-VW-3', D1-VW-7', and D1-VW-11', respectively. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size.

Soil gas samples were collected from monitoring points D1-MPA-11.0' and D1-MPC-11.0' and were labeled D1-MPA-11' and D1-MPC-11'. A sample also was collected of ambient air and labeled D1-AMBIENT. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analysis of BTEX and TPH.

2.1.5 Soil Gas Permeability and Radius of Influence

A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is given in the Test Plan and Technical Protocol (Hinchee et al., 1992).

Prior to air injection, the monitoring points at Site ST-04 were allowed to set up for 24 hours. Air was injected with a portable 1-horsepower (HP) explosion-proof positive displacement blower unit. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The HyperventilateTM computer model was used to calculate the soil gas permeability.

2.1.6 In Situ Respiration Test

Immediately following the soil gas permeability test at Site ST-04, air containing approximately 1% helium was injected into the soil for approximately 24 hours, beginning on November 13. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test is given in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through the following monitoring points at the depths indicated: D1-MPA-11.0'; D1-MPB-7.0'; D1-MPB-10.0'; and D1-MPC-11.0'. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on November 18.

Helium concentrations were measured during the in situ respiration test to quantify helium leakage to or from the surface around the monitoring points. Helium loss over time is attributed to either diffusion or leakage. A rapid drop in helium concentration followed by a leveling is an indication of leakage. A gradual loss along with an apparent first-order curve is an indicator of diffusion. As a rough estimate, the diffusion of gas molecules is inversely proportional to the square root of the molecular weight of the gas. Based on molecular weights of 4 for helium and 32 for oxygen, helium diffuses about 2.8 times faster than oxygen, or the diffusion of oxygen is 0.35 times the rate of helium diffusion. As a general rule, we have found that if helium concentrations are at least 50 to 60% of the initial levels at test completion, measured oxygen uptake rates are representative. Greater helium loss indicates a problem, and oxygen utilization rates are not considered representative.

To compare data from one site to another, a stoichiometric relationship of the oxidation of the hydrocarbon was assumed. Hexane was used as the representative hydrocarbon for the organic contaminant. The stoichiometric relationship is given by:

$$C_6H_{14} + 9.5O_2 - 6CO_2 + 7H_2O$$
 (1)

Based on the utilization rates (percent per day), the biodegradation rates in terms of milligrams as a hexane equivalent per kilogram of soil per day were computed using the equation below by assuming a soil porosity of 0.2 and a bulk density of 1,440 kg/m³.

$$K_{\beta} = \frac{-K_o A D_o C}{100}$$
 (2)

where: K_8 = biodegradation rate (mg/kg/day)

 K_0 = oxygen utilization rate (percent per day)

A = volume of air/kg of soil, in this case 300/1,440 = 0.21

 D_o = density of oxygen gas (mg/L) assumed to be 1,330 mg/L

C = mass ratio of hydrocarbon to oxygen required for mineralization, assumed to be 1/3.5 from the above stoichiometric equation.

2.2 Results and Discussion

2.2.1 Soil and Soil Gas Analyses

Results of the soil analyses for BTEX and TPH at Site ST-04 are presented in Table 2. The analytical report for this site is presented in Appendix B. Concentrations of the BTEX compounds in soil were relatively low from depths of 3.0 and 7.0 feet with all compounds except toluene (0.0021 mg/kg to 0.0034 mg/kg) measured below the detection limit. TPH was 7.0 mg/kg at a depth of 7.0 feet, but was below the detection limit (<4.0 mg/kg) at a depth of 4.0 feet. Soil samples measured from a depth of 11.0 feet ranged from 2.7 mg/kg (benzene) up to 26 mg/kg (total xylenes), and TPH was 17 mg/kg. Concentrations of BTEX in soil vapor samples from a depth of 11.0 feet ranged from 6.8 ppmv (ethylbenzene) up to 79 ppmv (total xylenes), and TPH concentrations were measured at 33,000 ppmv and 34,000 ppmv (Table 2). Vapor samples taken of ambient air showed relatively low concentrations of BTEX and TPH. The results of the soil chemistry analyses are summarized in Table 3.

2.2.2 Soil Gas Permeability and Radius of Influence

The raw data for the soil gas permeability test at Site ST-04 are presented in Appendix C. Using the HyperventilateTM computer model, soil gas permeabilities were calculated at each of the monitoring points. These data are presented in Table 4. The soil gas permeability varied

Table 2. Results From Soil and Soil Gas Analyses for BTEX and TPH at Site ST-04

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	D1-VW-3'	< 0.00060	0.0021	< 0.00050	< 0.0010	<4.0
	D1-VW-7'	< 0.00070	0.0034	< 0.00060	< 0.0010	7.0
	D1-VW-11'	2.7	3.2	5.0	26	17
		_			Total	
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Xylenes (ppmv)	TPH² (ppmv)
Matrix Soil Gas	Sample Name D1-MPA-11'			•		
		(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)

¹ Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

² TPH referenced to jet fuel (molecular weight = 156).

Table 3. Results From Soil Chemistry Analyses at Site ST-04

	Sample Name						
Parameter	D1-V	W-3′	D1-V	D1-VW-7'		D1-VW-11'	
Alkalinity (mg/kg CaCO ₃)	58	3	<5	50	<5	50	
Moisture (% by weight)	8.	8	14.	1	12.	1	
рН	6.6		4.0	4.6		4.8	
Iron (mg/kg)	7,420		3,230		3,450		
Total Phosphorous (mg/kg)	31	0	240		260		
Total Kjeldahl Nitrogen (mg/kg)	78	3	36	5	31		
Particle Size (%)	Gravel:	1	Gravel:	4.5	Gravel:	25.5	
	Sand:	Sand: 53		60	Sand:	48	
	Silt: 33		Silt:	19	Silt:	17	
	Clay:	13	Clay:	16.5	Clay:	7.5	

Table 4. Results of Hyperventilate™ Soil Gas Permeability Analysis at Site ST-04

Monitoring Point	Depth (ft)	Soil Gas Permeability (darcy)
D1-MPA	3.0	12
	6.0	8.5
	11.0	3.9 x 10 ⁸
D1-MPB	3.0	NM
	7.0	34
	10.0	2.6 x 10 ⁴
D1-MPC	3.0	1.7
	7.0	NM
	11.0	NM

NM No pressure change was measured at this monitoring point.

considerably, with values ranging from 1.7 darcy up to 3.9×10^8 darcy. The radius of influence is calculated by plotting the log of the pressure change at a specific monitoring point versus the distance from the vent well. The radius of influence would then be the distance where 1-inch of water pressure can be measured. Therefore, the radius of influence based on these specifications is approximately 32 feet (Figure 5).

2.2.3 In Situ Respiration Test

The results of the in situ respiration test for Site ST-04 are presented in Appendix D. Each figure in Appendix D illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization at this site is shown in Figure 6, where oxygen utilization and carbon dioxide production at monitoring point D1-MPA-11.0' are illustrated. A summary of the oxygen utilization and carbon dioxide production rates and corresponding biodegradation rates is shown in Table 5. The biodegradation rates measured at this site were fairly high, with rates ranging from 2.9 mg/kg/day to 3.8 mg/kg/day based on oxygen utilization, and from 0.65 mg/kg/day to 1.5 mg/kg/day based on carbon dioxide production. Soil gas samples could not be collected from monitoring point D1-MPB-10.0' due to soil conditions in this area; therefore, the data from this monitoring point is not presented.

Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well sealed and that the oxygen depletion observed was a result of biodegradation.

Soil temperatures were measured during the in situ respiration test. Temperatures during the test ranged from 13.9°C to 16.0°C at monitoring point D1-MPA-11.0′.

2.2.4 Bioventing Demonstration

The decision was made to install a bioventing system at Site ST-04. A 1-HP blower was installed at the site on November 11, 1992. The blower was run for 90 minutes in an extraction mode to measure the concentrations of BTEX and TPH in the exhaust gas. Exhaust gas concentrations of these compounds were as follows: benzene (65 ppmv); toluene (100 ppmv); ethylbenzene (23 ppmv); total xylenes (79 ppmv); and TPH (83,000 ppmv). The analytical report for these analyses is given in Appendix B. Air extraction was not initiated for the long-term bioventing test pending installation of electricity at the site and regulatory approval for operation of the unit.

Figure 5. Radius of Influence at Site ST-04

Figure 6. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D1-MPA-11.0'

Table 5. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Site ST-04

Sample Name	Oxygen Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)	Carbon Dioxide Production Rate (%/hour)	Biodegradation Rate (mg/kg/day)
Background	0.0030	0.060	0	0
D1-MPA-11.0'	0.19	3.6	0.045	0.97
D1-MPB-7.0'	0.15	2.9	0.030	0.65
D1-MPC-11.0'	0.20	3.8	0.069	1.5

3.0 NORTH STORAGE TANK FARM SITE

3.1 Chronology of Events and Site Activities

3.1.1 Groundwater Measurements

Groundwater is typically encountered at a depth of approximately 10 feet in this area. During vent well installation, groundwater was encountered at a depth of 11 feet.

3.1.2 Soil Gas Survey

On November 7 and 8, 1992, a limited soil gas survey was conducted to locate a suitable test area at the North Storage Tank Farm. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Soil gas measurements were taken as described in Section 2.1.2.

The soil gas probes were driven to depths ranging from 1.5 to 11.0 feet at several locations at the North Storage Tank Farm. Table 6 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at the North Storage Tank Farm. Relatively low concentrations of oxygen were found at most of the soil gas probes, with concentrations ranging from 0 to 19.8%. Relatively high concentrations of carbon dioxide (0 to 11.5%) and TPH (60 ppm to greater than 40,000 ppm) were encountered. Soil gas samples taken at this site were often difficult to obtain, probably due to the high moisture content in the soil from several days of heavy rain.

3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On November 8, 1992, one vent well and three monitoring points were installed at the North Storage Tank Farm, and soil samples were collected for analyses. The monitoring points were labeled D2-MPA, D2-MPB, and D2-MPC. The locations of the vent well and monitoring points are shown in Figure 3. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 7.

Table 6. Initial Soil Gas Composition at the North Storage Tank Farm

Soil Gas Survey (GS) Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppm)
GS-1	2.5	19.8¹	0	60
Ž.	7.5	19.8¹	0	220
	8.6	13.5¹	4.7	7,600
GS-2	2.5	0	11.0	>40,000
GS-3	2.5	0	11.5	>40,000
	5.0	0	11.0	>40,000
	11.0	NS	NS	NS
GS-4	1.5	0	11.5	>40,000
	2.5	0	11.5	>40,000
GS-5	1.5	0	11.5	>40,000
	2.5	6.0¹	9.0	>40,000

NS Not sampled. Water was encountered at this depth.

Pressure reading on sampling pump was high. Mean Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

MPC

MPB

MPA

Vent Well

Figure 7. Cross Section of Vent Well and Monitoring Points at the North Storage Tank Farm Showing Site Lithology and Construction Detail (not to scale)

F/Kittel11/d-2

No flow could be obtained through the vent well which was initially installed, so a second vent well was installed next to the first on November 17. The second vent well was installed at a depth of 10.0 feet into a 6-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 5.0 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand, and the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand, and the interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were all installed at depths as follows: 2.5, 6.0, and 9.5 feet.

A Type J thermocouple was installed with monitoring points D2-MPA-2.5' and D2-MPA-9.5'.

3.1.4 Soil and Soil Gas Sampling and Analyses

Soil samples were collected from the vent well borehole at the North Storage Tank Farm at depths of 3.0 to 3.5 feet, 3.5 to 4.0 feet, 7.0 to 7.5 feet, 7.5 to 8.0 feet, and 10.0 to 10.5 feet and were labeled D2-VW-3', D2-VW-3.5'-4', D2-VW-7', D2-VW-7.5'-8.0', D2-VW-10', and D2-VW-10'-10.5', respectively. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size.

Soil gas samples were collected from the vent well and from monitoring points D2-MPA-2.5', D2-MPB-2.5', and D2-MPC-2.5' and were labeled D2-VW-3'-8', D2-MPA-2.5', D2-MPB-2.5', and D2-MPC-2.5'. A sample also was collected of ambient air and labeled D2-AMBIENT. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analysis of BTEX and TPH.

3.1.5 Soil Gas Permeability and Radius of Influence

A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is given in the Test Plan and Technical Protocol (Hinchee et al., 1992).

Prior to air injection, the monitoring points were allowed to set up for 24 hours. A portable 1-HP explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The HyperventilateTM computer model was used to calculate the soil gas permeability.

3.1.6 In Situ Respiration Test

Immediately following the soil gas permeability test at the North Storage Tank Farm, air containing approximately 1% helium was injected into the soil for approximately 24 hours, beginning on November 14, 1992. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test is given in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through the following monitoring points at the depths indicated: D2-MPA-2.5'; D2-MPA-9.5'; D2-MPB-9.5'; and D2-MPC-2.5'. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on November 18.

3.2 Results and Discussion

3.2.1 Soil and Soil Gas Analyses

Results of the soil analyses for BTEX and TPH at the North Storage Tank Farm are presented in Table 7. The analytical report for this site is presented in Appendix B. The areas with the highest contamination appeared to be the shallow depths (3.5 feet to 4.0 feet), although benzene and toluene were not detected in any soil samples, except for a trace amount of toluene (0.0040 mg/kg) at a depth of 10.0 feet to 10.5 feet. TPH was detected in all soil samples with the highest concentrations in sample D2-VW-3.5'-4' (3,500 mg/kg). Soil vapor samples contained relatively high concentrations of BTEX and TPH, with concentrations ranging from below the detection limit (<5.0 ppmv) up to 7.6 ppmv (benzene) and from 3,800 ppmv up to 12,000 ppmv of TPH. Vapor samples taken of ambient air contained low concentrations of all constituents with concentrations ranging from below the

Table 7. Results From Soil and Soil Gas Analyses for BTEX and TPH at the North Storage Tank Farm

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	D2-VW-3.5'-4'	<1.4	<1.6	38	110	3,500
	D2-VW-7.5'-8.0'	< 0.34	< 0.40	0.51	< 0.40	8.0
	D2-VW-10'-10.5'	< 0.00090	0.0040	< 0.00070	< 0.0013	22
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	TPH² (ppmv)
Soil	D2-VW-3'-8'	<5.0	< 5.0	<5.0	<5.0	12,000
Gas	D2-MPA-2.5'	7.6	6.7	1.7	5.3	4,800
	D2-MPB-2.5'	5.1	4.6	2.4	5.3	3,800
4	D2-MPC-2.5'	6.3	5.4	3.2	8.3	4,000
	D2-AMBIENT	0.092	0.069	< 0.010	0.082	150

¹ Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

² TPH referenced to jet fuel (molecular weight = 156).

detection limit for ethylbenzene (<0.010 ppmv) to 0.092 ppmv for benzene, and only 150 ppmv of TPH was detected. The results of the soil chemistry analyses are summarized in Table 8.

3.2.2 Soil Gas Permeability and Radius of Influence

The raw data for the soil gas permeability test at the North Storage Tank Farm are presented in Appendix E. Using the Hyperventilate™ computer model, soil gas permeabilities were calculated at each of the monitoring points. These data are presented in Table 9. The soil gas permeability varied considerably, with values ranging from 0.0016 darcy up to 9.3 x 10° darcy. The radius of influence where 1 inch of water could be measured was calculated by plotting the log of the pressure change at the monitoring points versus the distance from the vent well (Figure 8). In general, the deeper depths at monitoring points D2-MPA and D2-MPB did not show a large pressure change. However, the monitoring points at D2-MPC all showed a consistent pressure change, indicating that it is possible that the deeper depths at monitoring points D2-MPA and D2-MPB may be obstructed in some way. Calculating the radius of influence at the North Storage Tank Farm without including the values from the deeper depths at monitoring points D2-MPA and D2-MPB, a value of 32 feet is estimated.

3.2.3 In Situ Respiration Test

The results of the in situ respiration test for the North Storage Tank Farm are presented in Appendix F. Each figure in Appendix F illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization at this site is shown in Figure 9, where oxygen utilization and carbon dioxide production at monitoring point D2-MPA-2.5' is illustrated. A summary of the oxygen utilization and carbon dioxide production rates and corresponding biodegradation rates is shown in Table 10. The biodegradation rates measured at this site were fairly high, with rates ranging from 2.9 to 8.6 mg/kg/day based on oxygen utilization, and from 0.89 to 1.9 mg/kg/day based on carbon dioxide production.

Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well sealed and that the oxygen depletion observed was a result of biodegradation.

Soil temperatures were measured during the in situ respiration test. Temperatures during the test ranged from 8.1°C to 10.3°C at monitoring point D2-MPA-2.5′ and from 13.9°C to 16.0°C at monitoring point D2-MPA-9.5′.

Table 8. Results From Soil Chemistry Analyses at the North Storage Tank Farm

	Sample Name				
Parameter	D2-VW-3'	D2-VW-7'	D2-VW-10'		
Alkalinity (mg/kg CaCO ₃)	< 50	< 50	< 50		
Moisture (% by weight)	12.8	29.5	32.3		
pН	5.9	5.3	5.2		
Iron (mg/kg)	1,950	16,200	8,070		
Total Phosphorous (mg/kg)	64	110	140		
Total Kjeldahl Nitrogen (mg/kg)	84	460	700		
Particle Size (%)	Gravel: 2.0	Gravel: 0	Gravel: 2.5		
	Sand: 67.5	Sand: 17	Sand: 17		
A .	Silt: 23	Silt: 35	Silt: 36.5		
	Clay: 7.5	Clay: 48	Clay: 44		

Table 9. Results of Hyperventilate™ Soil Gas Permeability Analysis at the North Storage Tank Farm

Monitoring Point	Depth (ft)	Soil Gas Permeability (darcy)	
D2-MPA	2.5	92	
	6.0	0.0016	
	9.5	2.6	
D2-MPB	2.5	230	
	6.0	0.0024	
	9.5	NR	
D2-MPC	2.5	210	
	6.0	9.3 x 10°	
	9.5	2.1 x 10°	

NR No pressure readings were obtained at this monitoring point.

Figure 8. Radius of Influence at the North Storage Tank Farm

Figure 9. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D2-MPA-2.5'

Table 10. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at the North Storage Tank Farm

Sample Name	Oxygen Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)	Carbon Dioxide Production Rate (%/hour)	Biodegradation Rate (mg/kg/day)
Background	0.0030	0.060	0	0
D2-MPA-2.5'	0.40	7.7	0.069	1.5
D2-MPA-9.5'	0.45	8.6	0.086	1.9
D2-MPB-2.5'	0.21	4.0	0.041	0.89
D2-MPC-2.5'	0.15	2.9	0.045	0.97

3.2.4 Bioventing Demonstration

The decision was made to install a bioventing system at the North Storage Tank Farm. A 1-HP blower was installed on November 12, 1992. Air injection has not been initiated at the site pending installation of an electrical supply.

4.0 BACKGROUND AREA

The background area was located as shown in Figure 1. The vent well was installed at a depth of 11.0 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 5.0 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand, whereas the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil samples were collected from the vent well borehole at depths of 3.0 to 3.5 feet, 3.5 to 4.0 feet, 7.0 to 7.5 feet, and 10.0 to 10.5 feet and were labeled D1-BG-3', D1-BG-3.5'-4.0', D1-BG-7', D1-BG-7.0'-7.5', D1-BG-10', and D1-BG-10.0'-10.5', respectively. A soil gas sample also was collected from the vent well after installation and was labeled D1-BG-6'-11'. The soil samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size analysis. The soil gas sample was sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH. The site lithology at this area was representative of that in the contaminated areas.

Results of the soil and soil gas analyses for BTEX and TPH are presented in Table 11. The analytical report for this site is presented in Appendix B. All of the BTEX compounds and TPH were at concentrations below the detection limit in the soil samples, except for a small quantity of toluene in samples D1-BG-7.0'-7.5' (0.0013 mg/kg) and D1-BG-10.0'-10.5' (0.0068 mg/kg). The soil vapor sample contained detectable concentrations of BTEX compounds, with concentrations ranging from below the detection limit for total xylenes (<0.010 ppmv) up to 0.092 ppmv (benzene). TPH was detected at 600 ppmv. The results of the soil chemistry analyses are summarized in Table 12.

Table 11. Results From Soil and Soil Gas Analysis for BTEX and TPH at the Background Area

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	D1-BG-3.5'- 4.0'	< 0.00060	< 0.00070	< 0.00050	< 0.0010	<4.0
	D1-BG-7.0'- 7.5'	< 0.00060	0.0013	< 0.00050	< 0.0010	<4.0
	D1-BG-10.0'- 10.5'	< 0.00070	0.0068	< 0.00060	< 0.0010	<4.0
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	TPH² (ppmv)
Soil Gas	D-BG-6.0'- 11.0'	0.092	0.069	0.082	< 0.010	600

Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

² TPH referenced to jet fuel (molecular weight = 156).

Table 12. Results From Soil Chemistry Analyses at the Background Area

	Sample Name					
Parameter	D1-BG-	3′	D1-BG	-7′	D1-	BG-10′
Alkalinity (mg/kg CaCO ₃)	< 50		< 50			< 50
Moisture (% by weight)	6.1		5.4		10.5	
pН	6.1		5.3			5.5
Iron (mg/kg)	12,700)	1,970)	6	,850
Total Phosphorous (mg/kg)	330		110			230
Total Kjeldahl Nitrogen (mg/kg)	210		<20			35
Particle Size (%)	Gravel:	0	Gravel:	7	Gravel:	3.5
	Sand:	40	Sand:	74	Sand:	65.5
	Silt:	40	Silt:	14	Silt:	20
	Clay:	20	Clay:	5	Clay:	11

An in situ respiration test was conducted at the background area beginning on November 16, 1992 after 24 hours of air injection. The test was concluded on October 18. Very little decrease in oxygen concentration occurred during the course of the in situ respiration test (Figure 10).

5.0 FUTURE WORK

Once the system is operating, base personnel will be required to perform a simple weekly system check to ensure that the blower is operating within its intended flowrate, pressure, and temperature range. An on-site briefing for base personnel who will be responsible for blower system checks will be conducted when the blowers are installed. The principle of operation will be explained, and a simple checklist and logbook will be provided for blower data. Base personnel will be asked to perform minor maintenance activities, such as replacing filters or gauges, or draining condensate from knockout chambers, but they will not be expected to perform complicated repairs or analyze gas samples. Replacement filters and gauges will be provided and shipped to the base and serious problems, such as motor or blower failures, will be corrected by Battelle.

The progress of this system will be monitored by conducting semiannual respiration tests in the vent well and in each monitoring point and by regularly measuring the oxygen, carbon dioxide, and hydrocarbon concentrations in the extracted soil gas and comparing them to background levels. At least twice each year, the progress of the bioventing test will be reported to the base point-of-contact.

6.0 REFERENCE

Hinchee, R.E., S.K. Ong, R.N. Miller, D.C. Downey, and R. Frandt. 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing (Rev. 2), Report prepared by Battelle Columbus Operations, U.S. Air Force Center for Environmental Excellence, and Engineering-Science, Inc. for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

Figure 10. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at the Background Area

APPENDIX A TEST PLAN FOR DOVER AFB, DELAWARE

October 15, 1992

505 King Avenue Columbus, Ohio 43201-2693 Telephone (614) 424-6424 Facsimile (614) 424-5263

Captain Catherine Vogel HQ AFCESA/RAVW 139 Barnes Drive Tyndall Air Force Base, Florida 32403-5319

Dear Cathy:

SUBJECT: TEST PLAN FOR BIOVENTING INITIATIVE FIELD TEST AT SITE ST-04 AND ZONE SP, DOVER AFB, DE

This letter was developed to accompany the report "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing." The test plan document was developed as a generic test plan for the Air Force Bioventing Initiative Project in which Dover AFB is participating. This letter outlines site specific information to support the generic test plan.

The sites chosen for the bioventing test initiative are Site ST-04 and Zone SP.

The purpose of this project is to investigate the feasibility of using the bioventing technology to remediate petroleum contaminated soils at the above mentioned sites.

Site descriptions-

Dover AFB is located just east of the city of Dover, Delaware. Summaries of the available descriptions of each site proposed for the Bioventing Initiative are presented below.

Site ST-04- Site ST-04 is a gasoline release site at the AAFES gas station. A map of the AAFES gas station is shown in Figure 1. The cross-sections A to A' and B to B' are presented in Figures 2 and 3, respectively. Depth to groundwater at the site is approximately 11 ft. Soils consist predominantly of coarse sand and gravel from the ground surface to the water table. Analytical results for soil samples from soil borings d66, d67, and d68 (see Figure 1) were contaminated with BTEX constituents at 11.5 ft. to 13.5 ft. The highest concentrations were detected in d67 with 180 ppm toluene, 80 ppm ethylbenzene, and 540 ppm total xylenes (benzene data not available). Soil samples from these borings from the 5 ft. to 7 ft. interval were below detection limit for BTEX and TPH. Sample data for the 7 ft. to 11.5 ft. interval was not available. A soil gas survey was conducted across the ST-04 site on 100 ft. by 200 ft. grids. Figure 4 presents the soil gas TPH concentrations. The highest soil gas concentrations are in the vicinity of the former leaking tank and the fuel dispensing system.

FIGURE 1. SITE MAP FOR ST-04 (AAFES GAS STATION LEAK).

FIGURE 2. SITE ST-04 - CROSS-SECTION A-A'

Monhoring were so.

Көу

Boring Sample Interval with

indicated earrole number

Backlilled Boring Screened Interval Course -very course sand (with

Clay, sandy clay, or shy clay

Sill, eandy ailt, or clayey eft

Fine -medium sand

or without grave)
Gravel, sandy gravel
Kirlewood formation (predorninantly clay)

FIGURE 3. SITE ST-04 - CROSS-SECTION B-B'

FIGURE 4. SITE ST-04: TPH CONCENTRATIONS IN SOIL GAS.

Based on the site data for Site ST-04 the most likely area for the installation of the bioventing well is adjacent to UST cavity near soil boring d67. This area is covered with asphalt and is near the service station building. It is likely that the blower installed here would have to be configured for withdrawal of soil gas rather than for air injection. Regulatory approval will be required prior to initiation of the long-term bioventing test if the blower is configured for withdrawal.

Zone SP- Zone SP is at the North Storage Tank Farm, an aboveground JP-4 jet fuel storage area (see Figure 5 for site map). There have been three known releases from Tank #733 between 1970 and 1979 ranging from 17,000 gallons to 30,000 gallons of JP-4 jet fuel. Figure 6 shows the location of a lithologic cross-section adjacent to Zone SP. Figure 7 shows the cross-section A to A' which indicates that near surface soils include coarse sand and gravel, silt and silty sand, and clay and sandy clay. The water table at the site is located at approximately 10 ft. Soil sample data is not available for the site. A soil gas survey was conducted across the site as shown in Figure 8. The soil gas data indicates highest concentrations adjacent to Tank #732.

Based on the site data for Zone SP the most likely area for the installation of the bioventing well is adjacent to Tank #732. However, site logistics will play an important role in locating the bioventing well and monitoring points. Accessibility to the tank diked area, underground and overhead utilities, and site security may all have an impact on system location.

Project activities-

The following field activities are planned for the bioventing project at Dover AFB. The same procedures will be followed at each site. Additional detail can be found in Section 5.0 of the test plan and technical protocol.

- A small scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system. The soil gas survey will be conducted in areas which site data have shown to be the most contaminated. Soil vapor from the candidate site should exhibit high petroleum hydrocarbon concentrations (10,000 ppm or greater), relatively low O₂ concentrations (0 % to 2.0 %), and relatively high CO₂ concentrations (depending on soil type, 2.0 % to 10.0 %, or higher). An uncontaminated background location will also be identified.
- Once the installation sites are located one vent well and three 3-level soil gas monitoring points will be installed in the contaminated location and one vent well will be installed in the background area (one background area will be used for both test sites, if possible). The wells and monitoring points will be installed using a portable drill rig to bore down to just above the water table. Three to four soil samples will be collected for chemical/physical analysis.
- 3- The air permeability test will be conducted in the contaminated test location.

	DAIE: April 1991
DOVER AIR FORCE BASE DOVER, DELAWARE	F 600
	SCALE

FIGURE 6. CROSS-SECTION LOCATION FOR ZONE SP.

FIGURE 7. ZONE SP CROSS-SECTION A-A'.

FIGURE 8. ZONE SP: TPH CONCENTRATIONS IN SOIL GAS.

- 4- Following the air permeability test, in situ respiration tests will be conducted in both the contaminated and the background test locations.
- Depending on the results of the air permeability test and the in situ respiration test, a decision will be made whether or not to install a blower system in the contaminated area for the long term bioventing test. If the decision is made to install, the blower will be plumbed to the vent well and bioventing will be started (assuming power is available). Site personnel will be trained for blower operation prior to Battelle leaving the site.
- A report detailing the results of the in situ respiration test and the air permeability test will be provided to the project officer and the base POC.

Schedule-

Field activities at Dover are planned to begin on November 2, 1992. Battelle will have 2 to 3 people on site for approximately 3 weeks.

Base Support-

Dover AFB needs to be able to provide the following:

- Digging permits and utility clearance need to be obtained prior to the initiation of the field work. Underground utilities should be clearly marked to reduce the chance of utility damage or personal injury during soil gas probe and well installation. Battelle will not be able to begin field operations without these clearances.
- Electrical power will need to be easily accessible from the project site. The air permeability test and in situ respiration test can be performed using a gasoline powered electric generator. The operation of the bioventing system will require a permanent 220/110 V power source. If power will not be available immediately after the test is completed the bioventing system will be installed for start-up at a later date.
- Regulatory approval, if any is required, will need to be obtained by the base prior to start-up of the bioventing system. The system will likely be configured for air injection so there will be no point source vapor emission from the system. The wells to be installed will not intersect the apparent water table and no groundwater will be pumped.
- The Air Force will need to provide drums to contain soil cuttings and provide for contaminated soil disposal.

- Base and site clearance will be required for Battelle's site employees. We will furnish you with personal information for each person at least one week prior to starting field operations.

If you have any questions please feel free to call me at (614) 424-6122.

Sincerely,

Jeffrey A. Kittel Researcher Environmental Technology Department

JAK:sh

cc: Major Ross Miller (AFCEE)

Mr. Milton Beck 436 SPTGP/DEV Dover AFB, DE 19902-5516

APPENDIX B

ANALYTICAL REPORT FOR SITE ST-04, THE NORTH STORAGE TANK FARM, AND THE BACKGROUND AREA

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9211148

Work Order Summary

CLIENT:

Mr. Jeff Kittel

Battelle

505 King Ave.

Columbus, OH 43201

BILL TO: Accounts Payable

Engineering Science

1700 Broadway, Ste. 900

Denver, CO 80290

PHONE:

FAX:

614-424-6122

614-424-3667

DATE RECEIVED: 11/23/92 **DATE COMPLETED: 12/14/92**

INVOICE # 8899

P.O. #

PROJECT # G4468-0625

AMOUNT\$: \$1,296.37

FRACTION #	<u>NAME</u>	<u>T1</u>
01A	D1-VW-EXHAUST	T
02A	D1-MPA-11'	T
03A	D1-MPC-11'	T
04A	D1-AMBIENT	T
05A	D2-VW-3'-8'	T
06A	D2-MPA-2.5'	T
07A	D2-MPB-2.5'	Te
08A	D2-MPC-2.5'	T
09A	D2-AMBIENT	T
10A	D-B6-6'-11'	T
10B	D-B6-6'-11' Duplicate	T
11A	Lab Blank	T

RECEIPT						
<u>TEST</u>	VAC./PRES.	PRICE				
TO-3	0.4 psi	\$120.00				
TO-3	4.0 "Hg	\$120.00				
TO-3	21.5 "Hg	\$120.00				
TO-3	0 "Hg	\$120.00				
TO-3	Tedlar Bag	\$120.00				
TO-3	Tedlar Bag	\$120.00				
TO-3	Tedlar Bag	\$120.00				
TO-3	Tedlar Bag	\$120.00				
TO-3	Tedlar Bag	\$120.00				
TO-3	Tedlar Bag	\$120.00				
TO-3	Tedlar Bag	NC				
TO-3	NA	NC				

1 Liter SUMMA Canister Preparation (4) @ \$10.00 each. Shipping (10/27/92)

\$40.00

\$56.37

LAB NARRATIVE:

*Samples 05A-10A were out of hold time due to a FED-X shipping error. Client requested to proceed with analyses.

CERTIFIED	BY:
-----------	-----

DATE:

SAMPLE NAME: D1-VW-EXHAUST ID#: 9211148-01A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112508 Date of Collection: 11/13/92 Dil. Factor: 2000 Date of Analysis: 11/25/92							
	MDL	MDL	Amount	Amount			
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)			
Benzene	2.0	6.2	65	200			
Toluene	2.0	7.4	100	370			
Ethyl Benzene	2.0	8.5	23	98			
Total Xylenes	2.0	8.5	79	350			

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112508 Dil. Factor: 2000			Date of Collecti Date of Analysis	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	20	80	83000	330000
			1	

*TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D1-MPA-11' ID#: 9211148-02A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112518 Dil. Factor: 580			Date of Collect Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.58	1.8	55	170
Toluene	0.58	2.1	71	2 60
Ethyl Benzene	0.58	2.5	20	85
Total Xylenes	0.58	2.5	79	340

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112518 Dil. Factor: 580			Date of Collecti Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	5.8	23	34000	140000

*TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D1-MPC-11' ID#: 9211148-03A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6120107 Date of Collection: 11/19/92 Dil. Factor: 380 Date of Analysis: 12/1/92							
	MDL	MDL	Amount	Amount			
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)			
Benzene	0.38	1.2	74	230			
Toluene	0.38	1.4	16	59			
Ethyl Benzene	0.38	1.6	6.8	29			
Total Xylenes	0.38	1.6	15	64			

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 612010' Dil. Factor: 386	7 3		Date of Collect Date of Analysi	lon: 11/19/92 s: 12/1/92
Compound	MDL (ppmv)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	3.8	15	33000	13000

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D1-AMBIENT ID#: 9211148-04A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6120104 Dil. Factor: 2.0			Date of Collecti Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.006	1.1	3.4
Toluene	0.002	0.007	0.28	1.0
Ethyl Benzene	0.002	0.008	0.091	0.39
Total Xylenes	0.002	0.008	0.24	1.0

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6120104	l		Date of Collecti	on: 11/19/92
Dil. Factor: 2.0)		Date of Analysis	s: 12/1/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.020	0.080	600	2400

*TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D2-VW-3'-8' ID#: 9211148-05A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112417 Dil. Factor: 5000			Date of Collect Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	5.0	16	Not Detected	Not Detected
Toluene	5.0	18	Not Detected	Not Detected
Ethyl Benzene	5.0	21	Not Detected	Not Detected
Total Xylenes	5.0	21	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112417 Dil. Factor: 5000			Date of Collect Date of Analysi	lon: 11/19/92 s: 11/24/92
Compound	MDL (ppmv)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	50	200	12000	48000

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D2-MPA-2.5' ID#: 9211148-06A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112421 Dil. Factor: 250			Date of Collect Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.25	0.78	7.6	24
Toluene	0.25	0.92	6.7	25
Ethyl Benzene	0.25	1.1	1.7	7.2
Total Xylenes	0.25	1.1	5.3	22

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name; 6112421 Dil. Factor; 250			Date of Collect Date of Analysi	ion: 11/19/92 s: 11/24/92
Compound	MDL (ppmy)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	2.5	10	4800	19000

*TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D2-MPB-2.5' ID#: 9211148-07A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112 Dil. Factor:	507 100		Date of Collect Date of Analysi	
Compound	MDL	MDL	Amount	Amount
	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene Toluene Ethyl Benzene Total Xylenes	0.10	0.31	5.1	16
	0.10	0.37	4.6	17
	0.10	0.42	2.4	10
	0.10	0.42	5.3	22

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 5112507 Dil. Factor: 100			Date of Collect Date of Analysi	ion: 11/19/92 s: 11/25/92
Compound	MDL (ppmy)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	1.0	4.0	3800	15000

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D2-MPC-2.5' ID#: 9211148-08A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 611242: Dil. Factor: 50			Date of Collect Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.050	0.16	6.3	20
Toluene	0.050	0.18	5.4	20
Ethyl Benzene	0.050	0.21	3.2	14
Total Xylenes	0.050	0.21	8.3	35

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112423 Dil. Factor: 50			Date of Collecti Date of Analysi	lon: 11/19/92 s: 11/24/92
Compound	MDL (ppmv)	MDL (uG/L)	Amount	Amount
TPH*	0.50	2.0	(ppmv) 4000	(uG/L) 16000

*TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D2-AMBIENT ID#: 9211148-09A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 611242 Dil. Factor: 1			Date of Collect Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.010	0.031	0.092	0.29
Toluene	0.010	0.037	0.069	0.25
Ethyl Benzene	0.010	0.042	Not Detected	Not Detected
Total Xylenes	0.010	0.042	0.082	0.35

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112424 Dil. Factor: 10			Date of Collecti Date of Analysi	
Compound	MDL (ppmv)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	0.10	0.40	150	600

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D-B6-6'-11' ID#: 9211148-10A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112425 DII. Factor: 10			Date of Collecti Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.010	0.031	Not Detected	Not Detected
Toluene	0.010	0.037	Not Detected	Not Detected
Ethyl Benzene	0.010	0.042	Not Detected	Not Detected
Total Xylenes	0.010	0.042	0.036	0.15

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112425			Date of Collecti	ion: 11/19/92
Dil. Factor: 10			Date of Analysi	s: 11/24/92
·	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.10	0.40	77	310

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: D-B6-6'-11' Duplicate ID#: 9211148-10B

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112426 Dil. Factor: 10			Date of Collecti Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.010	0.031	Not Detected	Not Detected
Toluene	0.010	0.037	Not Detected	Not Detected
Ethyl Benzene	0.010	0.042	Not Detected	Not Detected
Total Xylenes	0.010	0.042	0.034	0.14

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112426			Date of Collect	lon: 11/19/92
Dil. Factor: 10			Date of Analysi	s: 11/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.10	0.40	74	300

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Lab Blank ID#: 9211148-11A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

BTEX BY GC/PID

File Name: 6112404 Dil. Factor: 1.0			Date of Collect Date of Analysi	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6112404 Dil. Factor: 1.0			Date of Collect Date of Analysi	
•	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.010	0.040	Not Detected	Not Detected

*TPH referenced to Jet Fuel (MW=156)

Container Type: NA

AN ENVIRONMENTAL ANALYTICAL LABORATORY

11325 SUNRISE GOLD CIRÒLE, SUITE 'E' RANCHO CORDOVA, CA 95742 (916) 638-9892 • FAX (916) 638-9917

Page

CHAIN OF CUSTODY RECORD

James E. Hoods	VAC./PRESSURE LAB I.D. #		V - L Ha	//\/\ans#a	る。用の人	7						RECEIVED BY: DATE/TIME
COLLECTED BY (Signature)	13 192 ANALYSIS	18 Month Brex + Tor Novanies	1			X					>	RELINQUISHED BY: DATE/TIME
USELS @ DZ DVE	⟨♠ DATE/TIME "\"	18 Alexander	19 NOV 92 11:00 AM	MA60:11 SP VON PI	-19 NOV: 11 28 120N PI	19 NOV 92 12:00	19 NOV 92 12:00pm	19 NOV 92 12:00m	19 NOV 92 12:000m	19 NOV 92 12:00pm	19 NOV FR. 3:00m	RECEIVED BY: DATE/TIME
1 1	FIELD SAMPLE I.D.# SAMPLING MEDIA (Tenax, Canister etc.) イチ DATE/TIME 11:00 pm	CANISTER - 11	"	11	11	16,21AN BAGS -11	ρ " ,	,,	1)	1) 19.	11	
PROJECT # (+ 4468 - 0625 PO# REMARKS TEXTAN BAGS WELL	FIELD SAMPLE I.D.# §	1)1-VW-Exhaust	2 DI-MPA - 11'	3 171-MPC-11'	11 - AMBIENT	6 N2-VW-3'-8'	6 D2-MPA-2.5"	7 1/2-MPB-2.5'	& D2-MPC-2.5"	9 Da-Amaient	10-86-6-11'	RELINQUISHED BY: DATE/TIME

RECEIVED BY: DATE/TIME		,		CONDITION			
RELINQUISHED BY: DATE/TIME		2	USEONLY	TIME TEMP(°C)	DI-VW-exhaust	15 DI A I DI	こうかい こうしょう しょうかん かんかん かんしょう かんしゅう かんしょう かんしょう かんしょう しゅうしゅう かんしょう しゅうしゅう しゅう
RECEIVED ВУ: ДАТЕ/ТІМЕ	714 0000	1954111 00 pm	SN 8Y	AIR BILL # OPENED BY: DATE/TIME	1 to long to		
RELINQUISHED BY: DATE/TIME	1 - SSSSSSSSSSSSS	1119192500 pm		SHIPPER NAME, AIR B	REMARKS AND CRAALCO		

600 BANCROFT WAY BERKELEY, CA 94710 Tel: (415) 548-7970 Fax: (415) 548-7635

Report Date: December 16, 1992

Work Order No.:4537

Client:

Jeff Kittel Battelle 505 King Ave.

Columbus, OH 43201

Date of Sample Receipt: 11/12/92

Your soil samples identified as:

D2-VW-10'-10.5'
D2-VW-7.5-8.0'
D2-VW-3.5-4'
D1-BG-3.5'4.0'
D1-BG-7.0'-7.5
D1-BG-10.0'-10.5'
D1-VW-3.0'-3.5'
D1-VW-7.0'-7.5'
D1-VW-11.0'-11.5'

were analyzed for BTEX by EPA Method 8020, TRPH by EPA Method 418.1, pH, alkalinity, iron, moisture, total Kjeldahl nitrogen, total phosphorus and soil classification.

The analytical reports for the samples listed above are attached.

GC VOLATILES DATA PACKAGE

GC ANALYTICAL REPORT Analytical Method BIEX Aromatic Compounds

Work Order NO.:4537

% Moisture: 32.3

Client ID:D2-VW-10'-10.5'

Matrix:SUIL

Laboratory ID:4537-1

Level:LOW

Date Collected: 11/09/92

Unit:UG/KG

Dilution Factor:

Date Analyzed:11/14/92

Date Confirmed:NA

===	Compound	Result	Reporting Limit
	Benzene	ND	0.9
	Ethyl Benzene	ทบ	0.7
	l'o luene	4.0	1.0
	Xulenes (total)	ND	1.3

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: #

GROUP LEADER: Light

GC ANALYTICAL REPORT Analytical Method BTEX Aromatic Compounds

Work Order NO.:4537

Client ID:D2-VW-7.5/-8.0/

Laboratory ID:4537-2

Date Collected: 11/09/92

Dilution Factor:

% Moisture: 29.52

Matrix:SOIL

Level:MEDIUM

Unit: UG/KG

Date Analyzed:11/20/92

Date Confirmed:NA

Compound Result Reporting Limit

(ND_/ Benzene Ethyl Benzene 510.0 280.0 Toluene ND

Xylenes (total) ND - 400.0

510.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AD

GC ANALYTICAL REPORT Analytical Method BTEX Aromatic Compounds

Work Order NO.:4557

% Moisture: 12.79

Client ID: D2-VW-3.57-47

Matrix:SOIL

Laboratory ID:4557-5

Level:MEDIUH

Date Collected: 11/09/92

Unit:UG/KG

Dilution Factor:

20

Date Analyzed:11/20/92

Date Confirmed:NA

	Compound	Result	Reporting Limit
======			
	Benzene	ИО	1400.0
	Ethyl Benzene	58 000	1100.0
	Toluene	ND	1600.0
	Xylenes (total)	110000	2100.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AP

GROUP LEADER : Rusul

GC ANALYTICAL REPORT Analutical Method BTEX Aromatic Compounds

Work Order NO.:4557

Client IO:D1-BG-3.5/-4.0/

والرواوية أأنا والمفاط فالمتدين المنافية والمركز والماكرة والماكرة والمتاكرة

Laboratory ID:4537-4

Date Collected: 11/06/92

Dilution Factor:

% Moisture: 6.14

Matrix: SUIL

Level:LOW

Unit:UG/KG

Date Analyzed:11/14/92

Date Confirmed:NA

Compound	Result	Reporting Limit
Benzene	NÜ	0.6
Ethyl Benzene	ND	0.5
Toluene	ИО	0.7
Xylenes (total)	ND	1.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AB

66 ANALYTICAL REPORT Hamalytical Method BTEX Aromatic Compounds

Work Order NO.:4557

% Monsture: 5,42

Cilent ID:01-BG-7.01-7.51

Matrix:50IL

Laboratory ID:4557-5

Level:LOW

Date Collected: 11/06/92

Unit:UG/KG

Dilution Factor:

Date Analyzed:11/14/92

Date Confirmed:NA

Compound	Result	Reporting Limit
Benzene	ND	Ü. 6
Ethyl Benzene	ND	0.5
Toluene	1.5	0.7
Xulenes (total)	Νfι	1.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

HHALYST: AFT

GROUP LEADER: Lyn

GC ANALYTICAL REPORT Healytical Method BTEX Aromatic Compounds

Work Order NO.:4537

% Moisture: 10.47

Client ID:01-8G-10.0/-10.5/

Matrix: SUIL

Laboratory ID:4557-6

Level:LOW

Date Collected: 11/06/92

Unit:UG/KG

Dilution Factor: 1

Date Analyzed:11/14/92

Date Confirmed:NA

Compound	Result	Reporting Limit	:==
Benzene	ND	0.7	
Ethyl Benzene	ND	0.6	·
Toluene	6.8	0.8	
Xvlenes (total)	ND	1.0	

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AS

GROUP LEADER: hand

60 ANALYTICAL REPORT Analytical Hethod BIEX Aromatic Compounds

Work Order No.:4557

% Moisture: 8.82

Client ID:01-VW-3.04-3.54

1

Matrix:50IL

Laboratory ID:4557-7

Level:LOW

Date Collected: 11/07/92

Unit:UG/KG

Dilution Factor:

Date Analyzed:11/14/92 Date Confirmed:NA

Compound	Result	Reporting Limit	
Benzene	. ND	0.6	
Ethyl Benzene	ПD	0.5	
Toluene	2.1	Ů . B	
Xylenes (total)	ND	1. Ů	

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AS

GROUP LEADER : MM

GC ANALYTICAL REPORT Analytical Method B[EX Aromatic Compounds

Work Order NO.:4557

Client ID:D1-VW-7.0/-7.5/

% Moisture: 14.08

Matrix:SUIL

Laboratory ID:4537-8

Level:LOW

Date Collected: 11/07/92

Unit:UG/KG

Dilution Factor:

Date Analyzed:11/15/92 Date Confirmed:NA

 Compound	Result	Reporting Limit
Benzene	ND	0.7
Ethyl Benzene	ND	0.6
Toluene	3,4	0.8
Xylenes (total)	ND	1.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

HNALYST: AS

GROUP LEADER:

hison

GC ANALYTICAL REPORT mnalytical Nethod BTEX Aromatic Compounds

Work Order NO.:4557

Client ID:D1-VW-11.0/-11.5/

% Moisture: 12.08

Matrix: SOIL

Laboratory ID:4557-9

Level:MEDIUM

Date Collected: 11/07/92

Unit:UG/KG

Dilution Factor:

20

.....

Date Analyzed:11/20/92 Date Confirmed:NA

Compound	Result	Reporting Limit	
Benzene	2700.0	1400.0	
Ethyl Benzene	5000.0	1100.0	
Toluene	3200.0	1600.0	•
Xylenes (total)	26000	2000.0	

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AS

GROUP LEADER: AND

GC ANALYTICAL REPORT Analytical Hethod BTEX Aromatic Compounds

Work Order No.:4557

% Moisture:NA

Client ID:METHOD BLANK

Matrix:50IL

Laboratory ID:MWVG2921120B

Level:MEDIUH

Date Collected: NA

Unit:UG/KG

Dilution Factor:

OHIC * OGZ KG

Date Analyzed:11/20/92 Date Confirmed:NA

Reporting Compound Result Limit ND 60.0 Benzene 50.0 Ethyl Benzene ND 70.0 Toluene Νū Xylenes (total) ND 90. U

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: AO

GROUP LEADER: KURN

GC AMALTTICAL REPORT Analytical Hethod BTEX Aromatic Compounds

Work Order NO.:4557

Client ID:METHOD BLANK

Laboratory ID:MSVG2921114B

Date Collected: NA

Dilution Factor: 1

% Moisture:NA

Matrix:SOIL

Level:LOW

Unit:UG/KG

Date Analyzed:11/14/92

Date Confirmed:NA

Compound	Result	Reporting Limit
Benzene	ИŪ	0.6
Ethyl Benzene	HD	Ŭ.5
Toluene	ND	0.7
Xylenes (total)	ND	Ů . 9

ND-Not Detected NA-Not Applicable D-Dilution Factor

HNALYST AS

GROUP LEADER : Know

-ENGINEERING SCIENCE, INC.

600 BANCROFT WAY BERKELEY, CA 94710

GC ANALYTICAL REPORT ANALYTICAL REPORT BTEX AROMATIC COMPOUNDS

TRIX: SOIL

DATE:11/14&15/92

	LABORATORY NO.	CLIENT ID a-a-a-1 Toluene	「riFluoro ≘
	MSVG2921114B	METHOD BLANK	92
	4537-1	D2-VW-10/-10.5/	93
	4537-4	01-BG-3.5/-4.0/	76
	4537-5	D1-BG-7.01-7.51	88
	4537-6	01-BG-10.0110.51	88
	4537-7	D1-VW-3.04-3.54	88
	4537-8	D1-VW-7.01-7.51	9.2
	4535-1	BE18-VMP3-55	88
·	SSUG2921114A	SPIKE	90
	SSVG2921114B	SPIKE DUP	91

-ENGINEERING SCIENCE, INC.

600 BANCROFT WAY BERKELEY, CA 94/10

GC ANALYTICAL REPORT ANALYTICAL REPORT BTEX AROMATIC COMPOUNDS

TRIX: SOIL

DATE:11/20/92

LABORATORY NO.	CLIENT ID a-a- Tolu	a-TriFluoro ene
MWUG2921120B	METHOD BLANK	87
4537-2	D2-VW-7.5/-8.0/	78
4537-3	D2-UW-3.5/-4/	73
4537-9	D1-VW-11.0/-11.5/	74

METHUD BLANK SUMMARY

WU # 4537,4533

LAB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :11/14-15/92

AB SAMPLE ID:MSVG2921114B

DATE EXTRACTED : NA

≜ATRIX

:SUIL

INSTRUMENT ID: VGC-2

LAB	CLIENT	DATE
SAMPLE ID	SAMPLE ID	ANALYZED
5VG2921114B	METHOD BLANK	11/14/92
537-1	D2-VW-10'-10.5'	11/14/92
4537-4	D1-BG-3.51-4.01	11/14/92
4537-5	D1-BG-7.01-7.51	11/14/92
537-6	D1-BG-10.0/-10.5/	11/14/92
4537-7	D1-VW-3.0/-3.5/	11/14/92
4537-8	D1-VW-7.0'-7.5'	11/15/92
533-1	BE18-VMP3-55	11/15/92
SVG2921114A	SPIKE	11/14/92
SSVG2921114B	SPIKE DUP	11/14/92

METHOD BLANK SUMMARY

WO # 4537

LHB NAME : ENGINEERING-SCIENCE, INC. DATE ANALYZED :11/20/92

■AB SAMPLE ID:MWVG2921120B

DATE EXTRACTED : NA

MATRIX :SOIL

INSTRUMENT ID:UGC-2

LAB	CLIENT	DATE
SAMPLE ID	SAMPLE ID	ANALYZED
1WUG2921120B	METHOD BLANK	 11/20/92
537-2	D2-VW-7.5'-8.0'	11/20/92
4537-3	D2-VW-3.5'-4'	11/20/92
■ 537-9	D1-VW-11.0/-11.5/	11/20/9:

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS DATA PACKAGE

ORGANIC ANALYTICAL REPORT

Work Order NO.: 4537

Matrix: Soil

Parameter: TPH

Unit: mg/Kg

Analytical

Method: 418.1

Date Extracted 11/20/92

QC Batch NO.: S92QCB029TPH

Date Analyzed: 11/24/92

PREEEEEE			******	
Sample ID:	Client ID:	Result	Reporting Limit	Percent Moisture
4537-01	D2-VW-10'-10.5'	. 22	6	32.3
4537-02	D2-VW-7.5'-8.0'	8	6	29.5
4537-03	D2-VW-3.5'-4'	3500	5	12.8
4537-04	D1-BG-3.5'-4.0'	ND	4	6.1
4537-05	D1-BG-7.0'-7.5'	ND	4	5.4
4537-06	D1-BG-10.0'-10.5'	ND	4	10.5
4537-07	D1-VW-3.0'-3.5'	ND	4	8.8
4537-08	D1-VW-7.0'-7.5'	7	5	14.0
4537-09	D1-VW-11.0'-11.5'	17	4	12.0
MSTPH921120	METHOD BLANK	ND	4	NA

NA_ Not Analyzed ND_ Not Detected

ANALYST:

Man-

GROUP LEADER:

high!

INORGANICS DATA PACKAGE

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project: ES-Denver

AFCEE

Work Order:

Matrix:

4537 Solid

Client's ID: D2-VW-10'

D2-VW-7'

Sample Date:

11/09/92

11/09/92

11/09/92

D2-VW-3'

% Moisture:

Lab ID:

4537.01

4537.02

4537.03

Parameter		Results		Method	Normal Report Limit	Units	Date Analyzed	
Alkalinity	ND	ND	ND	SM 403(M)	50	mg/Kg CaCO3	11/16/92	
Moisture	32.3	29.5	12.8	ASTM D2216	.1	% by wt	11/20/92	
nН	5 2	5.3	5 9	EPA 9045	NA	nH Units	11/23/92	

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST:

Von Sleator

pH Units

11/23/92

NA

INORGANICS ANALYTICAL REPORT

Client:

ES-Denver

Work Order:

EPA 9045

4537

Project:

AFCEE

Matrix:

Solid

Client's ID:

D1-BG-3'

Sample Date:

11/06/92

% Moisture:

Lab ID:

Hq

4537.04

6.1

Normal Parameter -----Results-----Method Report Units Date Limit Analyzed Alkalinity ND SM 403(M) 50 mg/Kg CaCO3 11/16/92 6.1 **ASTM D2216** Moisture .1 % by wt 11/20/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST: Von Vleston

INORGANICS ANALYTICAL REPORT

Client:

ES-Denver

Work Order:

4537

Project:

AFCEE

Matrix:

Solid

Client's ID: D1-BG-7' D1-BG-10' D1-VW-3'

Sample Date: 11/06/92

11/06/92

11/07/92

% Moisture:

Lab ID:

4537.05

4537.06

4537.07

Parameter		Results		Method	Normal Report Limit	Units	Date Analyzed
Alkalinity	ND	ND	58.	SM 403(M)	50	mg/Kg CaCO3	11/17/92
Moisture	5.4	10.5	8.8	ASTM D2216	5 .1	% by wt	11/20/92
pH	5.3	5.5	6.6	EPA 9045	NA	pH Units	11/23/92

Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST:

INORGANICS ANALYTICAL REPORT

Client:

ES-Denver

Work Order:

4537

Project:

AFCEE

Matrix:

Solid

Client's ID: D1-VW-7' D1-VW-11'

Sample Date:

11/07/92

11/07/92

% Moisture:

Lab ID:

4537.08

4537.09

Parameter	Results		Method	Normal Report Limit	Units	Date Analyzed	
Alkalinity	ND	ND	SM 403(M)	50	mg/Kg CaCO3	11/17/92	
Moisture	14.1	12.1	ASTM D2216	.1	% by wt	11/20/92	
pН	4.6	4.8	EPA 9045	NA	pH Units	11/23/92	

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST: Don D

ES-ENGINEERING-SCIENCE, INC.

600 Bancroft Way Berkeley, CA 94710

pH Units

11/23/92

NA

INORGANICS ANALYTICAL REPORT

Client: Project:

ES-Denver **AFCEE**

Work Order: Matrix:

EPA 9045

4537 Solid

Client's ID:

Prep

Blank

Sample Date:

% Moisture: Lab ID:

Prep Blank

Normal Parameter -----Results-----Report Method Units Date Limit Analyzed Alkalinity ND SM 403(M) 50 mg/Kg CaCO3 11/16/92 Moisture NA ASTM D2216 % by wt .1 11/20/92 Hq NA

Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

ANALYST:

ES-ENGINEERING-SCIENCE, INC.

600 Bancroft Way Berkeley, CA 94710

INORGANICS QC SUMMARY - LAB CONTROL SAMPLE

Work Order:

4537

% Moisture:

NA

Lab ID of LCS:

Alkalinity:

452.44 LCS

Matrix:

Solid

Units:

mg/Kg CaCO3

	Date Analyzed	LCS	Conc	% Rec	Advisory % Re	
Parameter	LCS	Result	Added	LCS	Low	High
Alkalinity	11/16/92	22900.00	23650.00	97	80	120

ANALYST: Don Sleston Date 11/25/92 REVIEWER: 11/25 File:M1QCLCSW

INORGANIC QC SUNNARY - MS and MSD

% Moisture: NA 4537 Work Order: Matriz: Solid Alkalinity Moisture pН Lab ID Spk/Dup: Blank Spk 4537.01 4537.01 Units: mg/Kg CaCO3 (Alk) 452.44 451.95 453.49 QC Batch: t by wt. (Nois) pH Units (pH) RPD -Conc Added-Date -----Results-----RPD Percent 00 Analyzed Unspiked

Recovered Sample MS/Sample MSD/Dup Limit MS MSD KS MSD Parameter MS/Dup 20 23650.00 23650.00 97 97 0.00 22900.00 22900.00 0 Alkalinity 11/16/92 9 20 11/20/92 32.30 35.17 Moisture 5.16 5.23 1 20 11/23/92

* or N = Outside OC Limit:

Don Sleaton Date 11/25/92 REVIEWER:

QC Limits for & Rec:

75 -

File: H1QCHSWH

METALS DATA PACKAGE

Inorganics Report				CLIENT	SAMPLE	ID
THODONNIC	ANALYSES	DATA	SHEET			

		INORGANIC F	WALIDED DAIN D		
			Gammagt. BF	CPF	VW10
Name: E_	sBerkele	Y_LABORATORY_	Contract: AF	CHB	CDC No. PC10
Code: ES	BL	Case No.: 453			SDG No.: BG10_
rix (soil	l/water): S	oir"			le ID: 4537.01
el (low/m	ned): L	OW		Date Sam	pled : 11/09/92
olids:		67.7			
	Concentrat	ion Units (ug	/L or mg/kg dry	y weight)	: MG/KG
			1		1 1
	1		Concentration		M _
	7439-89	-6 Iron	8070	_	_ P _
				_	-
				-	- -
				_	-!! -!!
				-	_ _
				-	_
				-	- -
				. !	_ _
			_	. _	_ _
				. -	_
			_		_ _
				-! -!	_ _
				- -	_
				- -	
					
		- A			
mments:					

Engineering Science - Berkeley Laboratory Inorganics Report CLIENT SAMPLE ID

THORGANIC	AMALVERS	מידמת	SHEET

1	•	INONOMINE			
ah Nama. F S	provrtry t.	VGOWGGORG	Contract: AF	CEE	VW7.5
1					
ab Code: ESBL	Ca	se No.: 45	3/S SAS NO.:		SDG No.: BG10
atrix (soil/w	ater): SOIL	_		Lab Samp	le ID: 4537.02
evel (low/med): LOW_	_		Date Samp	pled : 11/09/92
Solids:	_70.	5			
Co	ncentration	Units (ug	/L or mg/kg dry	y weight):	: MG/KG
	CAS No.	 Analyte	 Concentration		м
	7439-89-6	Iron	16200	-	 P
					[=]
1					
				_	
				-	
				-	
				-	
					<u> </u>
]		_	
				-	
				-	<u> </u>
				[_[
				_	<u> _ </u>
i					
		•			
omments:				-	·

-			ganics Report ANALYSES DATA S	SHE	ET	CLI	ENT SAM	PLE I
Lab Name: E S	BERKELEY_L	ABORATORY_	Contract: Al	CE	E	 -	VW3.5	
			37S SAS No.				No.: B	G10
Hetrix (soil/w	ater): SOIL	_		La	b Sam	ple ID	: 4537.	ø3 <u></u>
Level (low/med): LOW_	_		Da	te Sa	mpled	: 11/09	/92
Solids:	_87.	2						
Co	ncentration	Units (ug	/L or mg/kg dry	y w	eight): MG/	KG	
	CAS No.	Analyte	 Concentration	C	Q	M		
	7439-89-6	Iron	1950	_		_ P_		
				_ _		_		
				!		_		
*								
•				_ _		_		
				_ -		_ _		
				_		_ _		
			1	<u>_</u>		_		
					-			
comments:					•			

	:	INORGANIC .	ANALYSES DATA S	SHE	ET	CPI	LENT SAMPLE .
h Name: ES	BERKELEY L	ABORATORY	Contract: Al	CE	ΞE		BG3.5
			37S SAS No.:			SDO	G No.: BG10_
trix (soil/w							D: 4537.04
							: 11/06/92
vel (low/med				De	te ban	pica	. 11/00/52
Solids:	_93.						
Co	ncentration	Units (ug	/L or mg/kg dry	y 4 	veight)	: MG	/KG
	CAS No.	 Analyte	 Concentration	 C	Q	н	
	7439-89-6	Iron	12700			P_	
			.]	_ _			
		l					
				_ _		-	
						-	
						-	
				<u> </u> _			
				-		-	
				-			
				<u> </u> _			
				_ _		-	
			.	-	l I	_	
				<u> </u> _		-	
					l 	_ [[
					_		
		•			_		
omments:							

	;	INORGANIC .	ANALYSES DATA S	SHEET	CLIENT SAMPLE ID
					BG7
ab Name: E_S_	BERKELEY_L	ABORATORY_	Contract: Al	CEE	.
b Code: ESBL_	Cas	se No.: 45	37S SAS No.:		SDG No.: BG10
trix (soil/wa	ater): SOIL	_		Lab Samp	ole ID: 4537.05
evel (low/med)	: LOW_	_		Date Sam	pled : 11/06/92
Solids:	_94.0	5			
	ncentration	Units (ug	/L or mg/kg dry	y weight)	: MG/KG
ļ	CAS No	Analysta	 Concentration		 M
			1970	_ _	
			1976		
					-
					-[
					-
					-
					-
,					
					_
					-
				_	_
		l	1		_
mments:					

		INORGANIC .	ANALYSES DATA :	SHEET	CLIENT SAMPLE
					BG10
Name: E_S_	BERKELEY_L	ABORATORY_	Contract: Al	FCEE	
Code: ESBI	Ca	se No.: 45	37S SAS No.	:	SDG No.: BG10_
rix (soil/	ater): SOIL	-		Lab Samp	le ID: 4537.06
rel (low/med	l): LOW_	_		Date Sam	pled : 11/06/92
Solids:	_89.	5			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: MG/KG
					<u> </u>
	CAS NO.	Analyte 	Concentration	1_1	M
	7439-89-6	Iron	6850	-	P_
				-	
				_	<u> </u>
			1	-	<u> </u>
				_	<u> </u>
		<u> </u>		-	<u> </u>
				-	<u> </u>
	l		1		<u> </u>
	1			-	·
					<u> </u>
					.!! .!!
				_	.
				[-]	<u> </u>
	<u> </u>	!	!	_	·{
					·· <u></u> ·
					
		•	4.1. 1 		
ments:	·				

Engineering Science - Berkeley Laboratory Inorganics Report CLIENT SAMPLE ID

	1	ENORGANIC .	ANALYSES DATA S	SHEET	
					l vw3
			Contract: Al		1
b Code: ESBL	Cas	se No.: 45	37S SAS No.	<u> </u>	SDG No.: BG10_
trix (soil/w	ater): SOIL	_		Lab Samp	le ID: 4537.07
vel (low/med): LOW			Date Sam	pled : 11/07/92
Solids:	_91.	2			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: MG/KG
	1	<u> </u>	1	<u> </u>	
	i	1	Concentration	_	M _
	7439-89-6	Iron	7420	-	P_
					-
					-
				. _	
					-
				. _	_ _
				. _	_
				-	- -
				. _	_
·				. _	
				. _	-
					_
				- -	_
				i _i	<u> </u>
					
omments:					

		11101	ganios Report		CLIENT SAMPLE ID
_	1	NORGANIC .	ANALYSES DATA S		CLIENT SAMPLE ID
ob Nome: F S	בי בי בי בי בי בי	VGOP I GOR	Contract: Al	PCRE	VW7
ab Code: ESBL_	Cas	se No.: 45	37S SAS No.		SDG No.: BG10
atrix (soil/wa	ater): SOIL	-		Lab Sampl	Le ID: 4537.08
evel (low/med)	LOW	_		Date Samp	pled : 11/07/92
Solids:	_85.9	e			
Cor	ncentration	Units (ug	/L or mg/kg dry	y weight):	MG/KG
	CAS No.	Analyte	 Concentration		 M
	7439-89-6	Iron	3230	_ _	P_
				_ _	
				 _ 	
				_	
_				_	
				-	
•					[
			.		
•	<u> </u>	l		-	
		İ		[-[
1					<u> _ </u>
					<u> </u>
ľ		l		-	
	l	1		1_1	ii
				····	
omments:					

omments:			
•			

CLIENT SAMPLE ID

ì]	INORGANIC A	ANALYSES DATA S	SHE	ST			
							1	VW11	
				Contract: AF			I		
b Code:	ESBL	Cas	se No.: 45	37S SAS No.:			SDO	No.: E	3G10
trix (s	oil/wa	ater): SOIL	_		Lal	b Sampl	e II	D: 4537	. 09
vel (lo	w/med): LOW	-		Dat	te Samp	led	: 11/0	7/92
Solids:		87.9	9						
	Co	ncentration	Units (ug	/L or mg/kg dry	Y W	eight):	MG.	/KG	
,						Q	M		
		İ	Í	Concentration	 _ .				
,		7439-89-6 	Iron	3450	 		P_		
					_	i			
					<u> </u>				
					_ _				
					-				
					! _ ! ! _ !				
					! _! ! _!				
					. _ . _		 		
					-		-		
			.	i	i		i=i		
						-			
						-			
omments	I								

INORGANIC ANALYSES DATA SHEET

CLIENT SA	AMPLE	ID
-----------	-------	----

					PBLANK
b Name: E_S	BERKELEY_LA	BORATORY_	Contract: AF	CEE	
ab Code: ESBL_	Cas	e No.: 453	SAS No.:		SDG No.: BG10
trix (soil/wa				Lab Sample	e ID: PBK 482.88
evel (low/med)				Date Samp	led : 12/07/92
	100.6				
			/I om ma/ka dri	v weight):	MG/KG
Cor	centration	Units (ug	/L or mg/kg dry	, 4029.07	
•	CAS No.	 Analyte	 Concentration	C Q	м [
		1	4.6	[_ i	 P_
				-	_
				.	
				. _ . _	_ _
_				_	
				. _	
				_ _	
				_ll _ll	
				_ _	
				- -	
				_ _	
				_ _	
				_ _	
·					
•		•			
					
omments:					

ICP SERIAL DILUTION

EPA SA	AMPLE	NC)
--------	-------	----	---

						! VW10	T
Lab	Name:	E_SBERKELEY	_LABORATORY_	Contract:	AFCEE	l	
hab	Code:	ESBL	Case No.: 45378	_ SAS N	o.:	SDG No.:	BG10_

trix (soil/water): SOIL_ Level (low/med): LOW___

Concentration Units: ug/L

	11	II	Serial	I	1 % 1	1	I
	Initial Sample	ii	Dilution	i	Differ-	i	i
Analyte				ci	ence	İQ	1
	11	ii		i			i -
Iron	67722.80	.i i	73293.24	ŢŢ	8.2	<u>i</u> _	P_
		_		. _		-	¦-
				<u> </u> _		į_	<u> </u> _
		.! I		!_!		1	_
		.		-		-	<u> </u> _
		.! ! .!				1	_ _
		.]]		1-1		<u> </u> _	<u> </u> _
						-	¦_
		.]]		1-1		<u> </u> _	<u> </u> _
						1-	<u> </u>
				1-1		<u> </u> _	<u> </u> _
		.! ! .! !				-	
		ÏĮ.	*	1-1		į_	į_
		. 		-		-	—
		<u>.</u> i i		<u>i_i</u>		<u>j </u>	<u> </u>
				<u> - </u>		-	<u> </u> _

Engineering Science - Berkeley Laboratory

Method	Detection	Limits	(Annually)
--------	-----------	--------	------------

Lab Name: E_SBERKEI	LEY_LABORA	TORY_	Contract	AFCEE		•
Tab Code: ESBL (Case No.:	4537S_	SAS No.:		S	DG No.: BG10
ICP ID Number:	TJA_61_	М	Date:	08/31/92	2	
ame AA ID Number :			Matrix: S	SOIL_		
Arnace AA ID Number	£		(ug/L in	1.00g to	100m	l digestate)
Analyte				MDL (ug/L)	м	
Iron	_271.44_			46.0	P	
						·
Comments:	·					

ILMO2.

Engineering Science - Berkeley Laboratory Inorganics Report

PREPARATION LOG

ab Name: E S BERKELEY_LABORA	TORY
------------------------------	------

Contract: AFCEE____

Lab Code: ESBL__ Case No.: 4537S_ SAS No.: ____ SDG No.: BG10__

ethod: P_

EPA	1		
Sample	Preparation	Weight	Volume
No.	Date	(gram)	(mL)
		(5 = 5)	,
BG10	12/07/92	1.21	100_
BG3.5	12/07/92	1.22	100
BG7	12/07/92	1.09	100
LCSS	12/07/92	1.00	100
LCSSD	12/07/92	1.00	100
PBLANK	12/07/92	1.00	100_
TIMPA5	12/07/92	1.36_	100
TIMPB5	12/07/92	1.12	100_
TIVW5	1_12/07/92	1.12	100_
VW10	1_12/07/92	1.24	100
VW11	12/07/92	1.14	100
VW3	12/07/92	1.24	100
VW3.5	12/07/92	1.04	100_
VW7	1_12/07/92	1.19	100
VW7.5	12/07/92	1.14	100
1	.		
1	.		
	li		
1	.		
1	.		
1			
1			
	.		
1	_		
l			

FORM XIII - IN

ILMO2.1

Engineering Science - Berkeley Laboratory Inorganics Report

ANALYSIS RUN LOG

ab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____

Lab Code: ESBL__ Case No.: 4537S_ SAS No.: ____ SDG No.:BG10__

nstrument ID Number: TJA 61 M_

Method: P_

Start Date: 12/08/92

End Date: 12/08/92

L.	l				!							-		Ar	ıal	Lyt	ces	3										
EPA	!			_	!																, ,							
Sample	D/F	Time	ક	R	F						. !	. !	ļ	ļ	. !												. !	
No.					E				. !			. !		ļ													!!	
					!_	_	-	-	_	_	_!	!	-!	-!	_	-	-	_	_	_	-	_	-	_	[-	-	-	_
STD1		1254			X	_	_	_	_	_	_!	!	_!	_!		-	_	-	-	-	-	_	-	-	-	-	-!	_
STD2		1258			X	_		_	_	_		_!	_!	_!	_	_	_	_	_	_	-	_	_	_	!-!	<u> </u>	_!	_
LSTD3		1303			X	_	_		_		!	_!	_!	_!	_		_		<u> </u> _	<u> </u>	-	_	-	_	-	-	_!	-
STD4		1308			X	_	_	_	_		_	_!	!	_!	_	_	_!	_	<u> </u> _	_	_	_	_	<u> </u> _	!-!	_!		
rcv		1312			X	_	_	_	_	_	_	_!	_	_!	_					_		_	_	_	<u> </u> _		_!	_
ICB		1317			X		<u> </u> _	<u> </u> _	_	<u> </u> _		_	_	_		_	_	_	<u> </u> _	<u> </u> _	<u> </u> _	_		<u> </u> _	_			_
ICSA	•	1321			X	_	_	_	_	_		_	_	_1	_			_	_	_	_	_	_	_	ا نـ ا	_ _	_	_
CSAB	1	1326			X		_	_	_	_	_	_	I	_			_	_	_	_			_	_	_	_		_
CRI	1.00	1331			1_	_	_	_	_	_	_	_1	_1	_	_	_	_		_	_	_	_	_	_	 _	_	_	_
ZZZZZZZ	1.00	1335			. _	_	_	_	_	_	_	_1	_1	_	_	_	_		_	_	_	_	_	_	_	_		_
PBLANK	1.00	1340			X		آ_ا	آ_ا				_1	_1	_1		 _	<u> </u>	_		_	_		_	_	1_1	_	1_1	_
TLCSS	1.00	1344			X		_			_		_	_	_	_	_	_		_	_	_	_	_	_	_	_		_
LCSSD	1.00	1349			X								_1						l_	_	_	_	_	_	_	_	1_1	
VW10	1.00	1354			X	i	-	-					ij				_						l					
VW10L	1.00	1358	1		X		1																				$1 \equiv 1$	
VW7.5	•	1403			X	i —		i —			i		Ξi												i _		ΙŢ	Ξ
CCV		1408			X		i					i	ı Ti	i	_			ī	i	ı —			_		1	i		
CCB		1412			X		-	i —	_				ı – i	i				i – i	i	i	-	_	-	_	i –	i	1	_
[VW3.5	· ——	1417			X	_	_	_	_	i —			ı-i	_	_			i				_		_		i	1	_
BG3.5	· ——	1421		*****	X	-		-		-		i – i	-	-i	_	i -	i – i	_		_		-	-	_	i –	i	i	
BG7		1426			X	_		-				-	_ <u>_</u>	i – i	_	_	-	_	-	_	-	-	i –	-	i –	i	i	_
BG10		1431			X		-	i —	_		-		-	-			-	-	-	i —	_	-	_	_	-	i – i	-	_
VW3		1435			X		i —	-	-	-		-	_ <u>_</u>	-	_				-	i –	-	_	_	-	i – i	i – i	<u> </u>	_
VW7	•	1440	¦ —		X		-	-		-		-		-		-		_	_	-		_		-		i		_
VW11		1445	¦		X	_	-		-	_	-	-	!	-		-		_	-	-		_	-	-	-		i	-
TIVW5		1449	 		X		-	-	-			-		-	-				-	-	-	-	-	-	-		-	_
TIMPA5_		1454	¦		X			-	-	-	-	-		-	-	-	-	-							-	-		_
TIMPR5		1458			X		-	-		-	!	_'	-		-	-		-	-	-	-	-	-		 	! 	-	_
ICCV	• ——	1503			X	_	<u> </u>	-	-	-	-		-			-	-	-	-	-	-	-	-	-	-	-	-	-
TCCB		1508			X I	-	-	-			-	-	-	!	-	-		-	¦ — ˈ				<u> </u>	-		¦-¦		
ICSA		1512	¦		X	_	<u> </u> —	<u> </u>		-	—				-	-		-			¦	-	-	<u> </u>	-	-	-	_
TICSAB			<u> </u>		X I		-		—	-	-	-	-	-	-	-	—	-	¦ i	-	-	-	-	¦ — ˈ		-	-	_
ITCOND	i ——1.00	1517	! ——		·Ιν	! —	ļ — ļ	! —	! —	<u> </u> _	!!		_!	_!		! —!	<u> </u>		! —	! —	! —!	<u> </u>	! —	! —!	! —!	! —!	! —!	_

Engineering Science - Berkeley Laboratory Inorganics Report

ANALYSIS RUN LOG

lab	Name:	E S	BERKELEY	LABORATORY_

Contract: AFCEE____

Lab Code: ESBL___ Case No.: 4537S_ SAS No.: ____ SDG No.:BG10___

nstrument ID Number: TJA 61 M_

Method: P_

Start Date: 12/08/92

End Date: 12/08/92

				!									Ar	ıal	yt	es	3										T
EPA Sample No.	D/F	 Time 	% R	F												1											
CRI	1.00	1521		- -	-		-	-[!	-	-	-	-		-	-¦	-	-!	-¦	-	-	-	 	!	-	-	-1
ccv		1526		<u> x</u>		_	ı — i	i	_i	_;	i		i		i-i	_;	ı Ti	-i	-i	-		i —		_	i	-i	_i
CCB	1.00	1531		X				<u> </u>	_i							\equiv i	ΙΞi	Ξi					<u> </u>		-i	\equiv i	_i
		ii		1_						_	_1				_	_1		_				_	_				_1
		11		_1_	_	_	_1			_1	_	_	_	_	_	_		_	_	_	_	 			_	_1	_1
				_ _	_	_		_		_[_	_	_	_		_!	_	_	_	_	_	<u> </u> _	_			_!	_!
	****	!!		-!	_	_	_	_	_!	_	_!	_	_	_		_	_	_!	_ !		_	<u> </u> _	_!	_	!	_!	_!
!!		!!		-!-	-		_	!!	_!	_	!	_	-	_	!	_!	_	_				-	-		-	_!	_!
<u> </u>		!!		-! —	<u> </u> _			-	-!	-!	_		_	_	-		-	-!	-					-	-	-!	-
		!!		-¦	_		-			-	-	-		-	-	-!	_			_	_	-	-	_	-	-!	-!
ļ		!!		-¦			-	!	-		-	_	-	-	-		-	-	-	_	-	-	-	-	-:	-	-:
l		<u> </u>		-¦ —	-	-		-	-1	-¦		-	-		-		-	-	-	_		-	-	-	-	-¦	-
		!! !		- -			-		-	-	-	-	-		—	-'	-	-	-		-	-		-	-	-	-;
				- -								-			-	;	-	—	-	-	i —	i –	-	_	i – i	_ <u>_</u>	-i
		i — i		-i	-			i	ı-i	_		_			i-i				_		i –	-	-		i	-i	-i
		ii		_i _	i _ i											ΞΪ		Ξi					<u> </u>		\Box i	\equiv i	\exists i
		ii				_	_	1_1			_				_		_	_				_	1_1	_	1_1		
ll		ll		_1_	 _	_	_	_			_	_	_	_	_	_	_		_	_	 _	 _	_	_		_	_1
		ll		_ _	_	_	_	_	_	_			_	_	_			_	_	_	_	<u> </u> _	_	_		_[_[
		<u> </u>		-!-	<u> </u> _	<u> </u> _	_	_	_	_	_					!	_		_	_	_	<u> </u> _			<u> </u>	_!	_[
]!		!!		-! —	<u> </u> _	-	_	!-!	_		_		_		-	_!	_	_	_	-	_	_			-	_	-!
[!		!!		-!-	-	_	_	<u> </u>	-	_		_	_	_	!	!	_		-		-	-	-	-	!	!	-!
		! <u> </u>		-! —		-	-		-	-	-	_	_	_	<u> </u>		_				_	-	-	-	-	-	-
]		<u> </u>		-¦-	-						-	-	-	-				!	-	-	-	-	-		-	-¦	-
<u> </u>		¦		- -	!-	-	-			-		-		-	!	-:	-			-	—	-	-	-	-		-
		¦¦		+-	<u> </u>	=	=	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	=
·		¦		-¦ –	-				-	!	-	-	-			-	-		-	-	-	i —	-	_	i-i	-i	-;
!!		;;		-¦-	<u> </u>			-	-	-				-	i – i		-		-		-	i —	i	_	i Ti	_	
				-i-	i —	-	i —	i – i	-	-	i – i	-	-	-	i Ti			-		_		i	<u> </u>		<u> </u>	_i	
ļ ————————————————————————————————————		i — i		-i-	i —	i — i	-	-		_		-		-	i Ti			_			i _	i	i _ i		<u> </u>	_i	_i
		i i		-i -	i	i —	i —	i – i		-		_	i	ı —	i _ i			i _ i			i _	i_	i		<u> </u> _i	_i	Ξi

TOTAL PHOSPHORUS TOTAL KJELDAHL NITROGEN SOIL CLASSIFICATION DATA PACKAGE

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson

Client Project ID: WO #4537

Sample Descript: Soil

Analysis for:

Total Phosphorus

211-2219 First Sample #:

Sampled:

11/6-9/92

Received:

Nov 13, 1992

Analyzed: Nov 20, 23, 1992

Reported: Dec 8, 1992

LABORATORY ANALYSIS FOR:

Total Phosphorus

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
211-2219	D2-WW-10	10	140
211-2220	D2-VW-7	10	110
211-2221	D2-VW-3	10	64
211-2222	D1-BG-3	10	330
211-2223	D1-BG-7	10	110
211-2224	D1-BG-10	10	230
211-2225	D1-VW-3	10	310
211-2226	D1-W-7	10	240
211-2227	D1-VW-11	10	260
-	Method Blank	10	N.D.

THIS REPORT HAS BEEN APPROVED AND REVIEWED BY

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Please Note:

Analysis results reported on a dry weight basis.

JOENE Tod Granicher Project Manager

2112219.ENG <11>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Analysis for:

First Sample #:

Engineering Science, Inc. 600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript: WO #4537

Soil

Total Kjeldahl Nitrogen

211-2219

Sampled:

11/6-9/92

Received: Nov 13, 1992

Analyzed: Nov 23, 1992

Reported: De

Dec 8, 1992

LABORATORY ANALYSIS FOR:

Total Kjeldahl Nitrogen

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
211-2219	D2-VW-10	20	700
211-2220	D2-VW-7	20	460
211-2221	D2-W-3	20	84
211-2222	D1-BG-3	20	210
211-2223	D1-BG-7	20	N.D.
211-2224	D1-8G-10	20	35
211-2225	D1-VW-3	20	78
211-2226	D1-W-7	20	36
211-2227	D1-VW-11	20	31
-	Method Blank	20	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

-300se_

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry weight basis.

2112219.ENG <12>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc. 600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

ID: WO #4537 ipt: Soil

Sample Descript: Analysis for:

Percent Moisture

First Sample #: 211-2219

Sampled: Nov Received: Nov

Nov 6-9, 1992 Nov 13, 1992

Analyzed: Nov 18, 1992 Reported: Dec 8, 1992

LABORATORY ANALYSIS FOR:

Percent Moisture

Sam Num		Sample Description	Detection Limit %	Sample Result %	
211-2	2219	D2-VW-10	0.010	29	
211-2	2220	D2-VW-7	0.010	26	
211-2	2221	D2-VW-3	0.010	13	
211-2	2222	D1-BG-3	0.010	14	
211-2	2223	D1-BG-7	0.010	4.0	
211-2	2224	D1-8G-10	0.010	7.0	
211-2	2225	D1-VW-3	0.010	, 13	
211-2	2226	D1-W-7	0.010	9.0	
211-2	2227	D1-VW-11	0.010	15	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Tod Granicher

Project Manager

2112219.ENG <10>

Engineering Science, Inc.

600 Bancroft Way Berkeley, CA 94710

Attention: Tom Paulson

Client Project ID: WO #4537

QC Sample Group: 2112219-27

Reported: Dec 8, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Phosphorus	Percent Moisture	Total	
			Kjeldahl	
			Nitrogen	
Method:	EPA 365.3	EPA 160.3	EPA 351.4	·
Analyst:	K. Follett	Y. Arteaga	G. Kern	
Reporting Units:	mg/kg	%	mg/kg	
Date Analyzed:	Nov 20, 1992	Nov 18, 1992	Nov 23, 1992	
QC Sample #:	211-2215	211-1615	211-2223	·
Sample Conc.:	37	24	N.D.	
			•	
Spike Conc. Added:	100	N.A.	4000	
Conc. Matrix Spike:	150	N.A.	3400	
оріке.	100	3 4.7 6.	0.00	
Matrix Spike				
% Recovery:	113	N.A.	85	
Conc. Matrix				
Spike Dup.:	130	27	3700	
Matrix Spike				•
`Duplicate				
% Recovery:	93	N.A.	93	
Relative				
% Difference:	14	12 .	[,] 8.5	

SEQUOIA ANALYTICAL

عنصد

Tod Granicher Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
	Spike Conc. Added	•	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
-	(Conc. of M.S. + Conc. of M.S.D.) /2		

2112219.ENG <13>

Engineering Science, Inc.

Client Project ID:

Sampled:

Nov 9, 1992

600 Bancroft Way

Sample Descript:

Soil, D2-VW-10

Received:

Nov 13, 1992

Berkeley, CA 94710

Method of Analysis: ASTM D422-63

Analyzed:

Nov 24, 1992

Attention: Tom Paulson

Lab Number:

211-2219

WO #4537

Reported:

Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

174.65 8.24 95.28

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEALTOTAL = (B)

		WEIGHT		CUMULATIVE	CUMULATIVE	
	SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING	
	1½ in.	0.0	0.0	0.0	100	٦
	3/8 in.	0.0	0.0	0.0	100	٦
	No. 4	4.00	2.29	2.29	97.71	٦
I	No. 10	4.24	2.43	4.72	95.28	
Ĺ						
	PAN	0.0				_
	TOTAL	8.24				

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	20	54	50	8.1	0.027
5	20	52	48	8.4	0.018
10	20	50	46	8.8	0.013
15	20	48	44	9.1	0.011
25	20	45	41	9.6	0.0085
40	20	42	38	10.1	0.0069
60	20	41	37	10.2	0.0056
90	20	38	34	10.7	0.0047
120	20	37	33	10.9	0.0041
1440	20	30	26	12	0.0012

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65	FORMULAS:
0.965	R = H - E - F
2.65	S = K[SQRT(L/T)]
3	P = (R/W) 100
1	W = (J·100)/C
0.01365	J = D·G

SEQUOIA ANALYTICAL

Jose Tod Granicher Project Manager

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript:

Lab Number:

WO #4537 Soil, D2-VW-7

Method of Analysis: ASTM D422-63

211-2220

Sampled:

Nov 9, 1992

Received: Analyzed:

Nov 13, 1992 Nov 30, 1992

Reported:

Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

320.36
0.0
100

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½ in.	0.0	0.0	0.0	100
3/8 in.	0.0	0.0	0.0	100
No. 4	0.0	0.0	0.0	100
No. 10	0.0	0.0	0.0	100
PAN	0.0		<u> </u>	

TOTAL [0.0

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	℃	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	55	51	7.9	0.028
5	18	54	50	8.1	0.018
10	18	51	47	8.6	0.013
15	18	49	45	8.9	0.011
25	18	47	43	9.2	0.0085
40	18	45	41	9.6	0.0069
60	18	42	38	10.1	0.0057
90	18	40	36	10.4	0.0048
120	18	39	35	10.6	0.0042
1440	18	32	28	11.7	0.0013

2 SUSPERVED					
(P) 81					
81					
80					
75					
1 72					
68					
65 60					
60					
57 56 45					
56					
45					

& SUSPENDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

	65	FO
	0.967	ı
	2.65	:
	3	ı
į	1	
	0.01399	

RMULAS: R = H - E - FS = K[SQRT(L/T)]

P = (R/W)100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

Stead.

Tod Granicher Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

Sample Descript:

WO #4537 Soil, D2-VW-3 Method of Analysis: ASTM D422-63

Lab Number: 211-2221 Sampled:

Nov 9, 1992

Received: Analyzed:

Nov 13, 1992 Nov 30, 1992

Reported: Dec 8. 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

319.56	
32.48	
88.84	

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½ in.	0.0	0.0	0.0	100
3/8 in.	0.0	0.0	0.0	100
No. 4	6.89	2.16	2.16	97.84
No. 10	25.59	8.01	10.17	89.83
			<u> </u>	
DANI	1 00	1		

TOTAL 32.48

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	℃	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	17	13	14.2	0.037
5	18	14	10	14.7	0.024
10	18	13	9	14.8	0.017
15	18	12	8	15	0.014
25	18	12	8	15	0.011
40	18	11	7	15.2	0.0086
60	18	11	7	15.2	0.007
90	18	10	6	15.3	0.0058
120	18	10	6	15.3	0.005
1440	18	9	5	15.5	0.0015

% SUSPENDED 18 14 13 11 11 9.8 9.8 8.4 8.4

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

FORMULAS: R = H-E-F

S = K[SQRT(L/T)]P = (R/W)100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

0.01399

65

0.991

2.65

3

SEQUOIA ANALYTICAL

<u> ಇದಿನ</u>

Tod Granicher Project Manager

2112219.ENG <3>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way Berkeley, CA 94710

Attention: Tom Paulson

Client Project ID:

WO #4537 Sample Descript: Soil, D2 BG-3 Method of Analysis: ASTM D422-63

Lab Number: 211-2222

Sampled:

Nov 6, 1992

Received: Analyzed:

Nov 13, 1992 Nov 30, 1992

Reported: Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

230.58 8.6 96.27

SIEVE TEST FOR **WEIGHT RETAINED** IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEALTOTAL = (B)

		WEIGHT		CUMULATIVE	CUMULATIVE
	01m m 01mm				
	SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1	1½ in.	0.0	0.0	0.0	100
1	3/8 in.	0.0	0.0	0.0	100
	No. 4	0.0	0.0	0.0	100
	No. 10	8.60	3.73	3.73	96.27
	PAN	0.0			
	TOTAL	8.60			

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	℃	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	38	34	10.7	0.032
5	18	33	29	11.5	0.021
10	18	28	24	12.4	0.015
15	18	27	23	12.5	0.013
25	18	25	21	12.9	0.010
40	· 18	22	18	13.3	0.0081
60	18	21	17	13.5	0.0066
90	18	20	16	13.7	0.0055
120	18	19	15	13.8	0.0047
1440	18	16	12	14.3	0.0014

% SUSPENDED
(P)
51 44 36 35 32 27 26 24
44
36 .
35
32
27
26
24
18

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65
0.987
2.65
3
1
0.01399

FORMULAS: R = H - E - F

S = K[SQRT(L/T)]

P = (R/W) 100

 $W = (J \cdot 100) / C$ $J = D \cdot G$

SEQUOIA ANALYTICAL

SLOOT Tod Granicher **Project Manager**

680 Chesapeake Drive . Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710

Attention: Tom Paulson

Client Project ID:

WO #4537 Sample Descript: Soil, D1-BG-7

Method of Analysis: ASTM D422-63

Lab Number: 211-2223 Sampled:

Nov 6, 1992 Received: Nov 13, 1992

Analyzed: Dec 1, 1992

Reported: Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

277.64 38.77 86.04

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½ in.	0.0	0.0	1.0	100
3/8 in.	3.29	1.18	1.18	98.82
No. 4	15.17	5.46	6.64	93.36
No. 10	20.31	7.32	13.96	86.04
PAN	0.0		LL	

TOTAL 38.77

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	℃	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	10	6	15.3	0.039
5	18	10	6	15.3	0.024
10	18	10	6	15.3	0.017
15	18	10	6	15.3	0.014
25	18	9	5	15.5	0.011
40	18	9	5	15.5	0.0087
60	18	9	5	15.5	0.0071
90	18	9	5	15.5	0.0058
120	18	9	5	15.5	0.005
1440	18	9	5	15.5	0.0015

% SUSPENDED 4.5 4.5 4.5 4.5 3.7 3.7 3.7 3.7 3.7 3.7

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

115	FOR
0.998	R
2.65	S
3] P
1]
0.01399	7

RMULAS: R = H - E - F

S = K[SQRT(L/T)]

P = (R/W) 100

 $W = (J \cdot 100)/C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

The ll Tod Granicher Project Manager

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

WO #4537

Sample Descript: Soil, D1-BG-10 Method of Analysis: ASTM D422-63

Lab Number: 211-2224

Sampled:

Nov 6, 1992

Received: Nov 13, 1992

Analyzed: Dec 1, 1992 Reported: Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

261.03 30.54 88.3

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

		WEIGHT		CUMULATIVE	CUMULATIVE
	SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
ſ	1½ in.	0.0	0.0	0.0	100
I	3/8 in.	1.91	0.73	0.73	99.27
I	No. 4	7.11	2.72	3.45	96.55
I	No. 10	21.52	8.24	11.69	88.31
I					
_	PAN	0.0			
	TOTAL	30.54			

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	℃ `	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	18	14	14.0	0.037
5	18	17	13	14.2	0.024
10	18	16	12	14.3	0.017
15	18	15	11	14.5	0.014
25	18	15	11	14.5	0.011
40	18	14	10	14.7	0.0085
60	18	14	10	14.7	0.0069
90	18	14	10	14.7	0.0057
120	18	13	9	14.8	0.0049
1440	18	11	7	15.2	0.0014

% SUSPENDED
(P)
19
18
16
15
15
14
14
14
12
9.6

WEIGHT OF SOIL USED IN HYDROMETER TEST (D):

HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65
0.993
2.65
3
1
0.01399

FORMULAS: R = H - E - F

S = K[SQRT(L/T)] P = (R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

Tod Granicher Project Manager

2112219.ENG <6>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript:

WO #4537

Soil. D1-VW-3

Method of Analysis: ASTM D422-63

Received: Analyzed:

Nov 7, 1992 Nov 13, 1992

Lab Number: 211-2225 Reported:

Sampled:

Dec 1, 1992 Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

267.21 11.98 95.52

TOTAL

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½ in.	0.0	0.0	0.0	100
3/8 in.	1.32	0.49	0.49	99.51
No. 4	1.69	0.63	1.12	98.88
No. 10	8.97	3.36	4.48	95.52
PAN	0.0			

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	27	23	12.5	0.035
5	18	24	20	13.0	0.023
10	18	21	17	13.5	0.016
15	18	20	16	13.7	0.013
25	18	18	14	14.0	0.011
40	18	17	13	14.2	0.0083
60	18	16	12	14.3	0.0068
90	18	15	11	14.5	0.0056
120	18	15	11	14.5	0.0049
1440	18	12	8	15.0	0.0014

% SUSPENDED
(P) 34
34
30 25 24
25
24
21
19
18
16
16
12

CHEDENDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

_	
	65
	0.989
	2.65
	3
	1
	0.01399

11.98

FORMULAS:

R = H - E - FS = K[SQRT(L/T)]

P = (R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

<u>INDIA</u>

Tod Granicher Project Manager

2112219.ENG <7>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

Lab Number:

WO #4537

Sample Descript: Soil, D1-VW-7 Method of Analysis: ASTM D422-63

211-2226

Analyzed:

Nov 7, 1992

Sampled: Received:

Nov 13, 1992 Dec 1, 1992

Reported:

Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

213.26 14.05

SIEVE TEST FOR **WEIGHT RETAINED** IN NO. 10 SIEVE

IDEAL PAN = 0.0 IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½ in.	0.0	0.0	0.0	100
3/8 in.	5.50	2.58	2.58	97.42
No. 4	3.91	1.83	4.41	95.59
No. 10	4.64	2.18	6.59	93.41
	<u> </u>	 		
PAN	0.0		1	

TOTAL 14.05

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	20	16	13.7	0.037
5	18	19	15	13.8	0.023
10	18	19	15	13.8	0.016
15	18	19	15	13.8	0.013
25	18	18	14	14.0	0.010
40	18	17	13	14.2	0.0083
60	18	17	13	14.2	0.0068
90	18	16	12	14.3	0.0056
120	18	16	12	14.3	0.0048
1440	18	15	11	14.5	0.0014

WEIGHT OF SOIL USED IN HYDROMETER TEST (D):

HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65	FORM
0.990	R=
2.65	S =
3	P =
1	١ ١

0.01399

ULAS:

H-E-F K[SQRT(L/T)]

(R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

SKEST

Tod Granicher Project Manager

2112219.ENG <8>

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc.

600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

WO #4537 Soil, D1-VW-11

Sample Descript: Method of Analysis: ASTM D422-63

Lab Number: 211-2227 Sampled:

Analyzed:

Nov 7, 1992 Nov 13, 1992

Received:

Dec 1, 1992

Reported: Dec 8, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

354.68 96.42 72.81

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½ in.	0.0	0.0	0.0	100
3/8 in.	89.16	25.14	25.14	74.86
No. 4	3.95	1.11	26.65	73.35
No. 10	3.31	0.93	27.58	72.42
L			<u> </u>	· · · · · · · · · · · · · · · · · · ·
PAN	0.0	!		
TOTAL	96.42			

HYDROMETER TEST

ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	18	19	15	13.8	0.037
5	18	18	14	14.0	0.023
10	18	17	13	14.2	0.017
15	18	17	13	14.2	0.014
25	18	16	12	14.3	0.011
40	18	15	11	14.5	0.0084
60	18	14	10	14.7	0.0069
90	18	14	10	14.7	0.0057
120	18	13	9	14.8	0.0049
1440	18	10	6	15.3	0.0014

	% SUSPENDED
_	(P)
E	17
	16
	15
	15
	14
	12
	11
	11
E	10
	6.8
_	

CHORENDER

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

	_
65	FOF
0.991	F
2.65	8
3	F
1	
0.01399	

RMULAS: R = H - E - F

S = K[SQRT(L/T)]

P = (R/W)100 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

इध्य Tod Granicher

Project Manager

2112219.ENG <9>

CHAIN OF CUSTODY RECORD FOR WATER BAMPLES

ES JOB	ij NO.	PRO.	PROJECT NAME/LOCATION		PREBE	PREBERVATIVES	1 1	REQUIRED	RED		TO: SEQUID IA CAB,
		<u> </u>	4537.	دميك	refra						
FIELD	CONTACT:		Lolla	or refl	_	MINIXBEG		negurned	(
GMIPLE	GAMPLENG NAMES	3 3	eyenntures	hond.	4+ S.15 A						•
				2240)							
	:			// <i>></i> /	700 .			•			
DATE	тіне	FIELD	SAMPLE IDENTIFIER		!		İ				пенликв
11/9/42	10:00	02-	02-1W-10 (4537.01C)9	7	7.	.			2	0123	regard result on way
	09:01	02-	02-VW-7 (4537.02 C) "							3	Sul Ansis. Use mi's
1	->	02-	02-VW-3(4537.03C) .	7			•	-		7	For RoporTinis units.
16/0/11	1760	0/-	24	7	\		-	1		7	Report extras Blowk
1/10/67	1760 0900 Em	0/-6) ر	7	7			:		· 0	ps/105D.
1/6/97	1700	7-10	01-86-10 (4537.060):	7)					7	(10 Day Tot). Roper 7
11/1/92	0900	-10	DI- VW-3C4537.07C) 0	7	7	.				5	To TOM PAULSON ESSE
		0/-	01- VW-7 (4537.08C) "	7	/					8	
-	0600	0/-	VW-11 (4537,090).	7					<u>-; </u>	4	•
					(
FIELD	CUBTODY	7	nelingulbhed by:	7	Gha	le le L	1		DATE:	l	11 1/3/47 TIME: 0900
BILTPPED	D VIA:		AIRBILL #	-	ON RECEIPT:	rpr:	CUBTODY		BEALB?		, TEMP:
necelved	1	FOR LABORATORY	VYORY BY:	, 1					DATE:	`	11/13/92 TIME: 1330
Super Day	Harmon -	AC	Jen and which	8	1	大	ر ا	3		11	330

Baffelle Columbus Laboratorles

CHAIN OF CUSTODY RECORD

. LONG 05/02

Form No.

27) SAMPLES TOTAL

·		to to Containe	Remarks	\																	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Description by:	(Signature)		Received by:	(Signature)	72.	
		N tenistr		/	/	\	\	\	/	1		\ 	/	\\ \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-		<u> </u>			1		<u> </u>	Dete/Time	Date/ Lille		Date/Time			IF KINTEL
SAMPLE TYPE (</td <td></td> <td></td> <td>ZZ WWW</td> <td></td> <td> </td> <td>XX</td> <td>> × ×</td> <td>XXX</td> <td>スペメ</td> <td>× × × ×</td> <td>× × ×</td> <td>X</td> <td>× × × ×</td> <td>XXXX</td> <td></td> <td>× > × ></td> <td>X</td> <td>X X X</td> <td></td> <td>\(\frac{7}{8}\frac{7}{</td> <td>× × ×</td> <td></td> <td>re) Relinquished by: (Signature)</td> <td></td> <td>Relinquished by: (Signature)</td> <td></td> <td>55</td> <td>11/4/2 1/30 % JEA</td>			ZZ WWW			XX	> × ×	XXX	スペメ	× × × ×	× × ×	X	× × × ×	XXXX		× > × >	X	X X X		\(\frac{7}{8}\frac{7}{	× × ×		re) Relinquished by: (Signature)		Relinquished by: (Signature)		55	11/4/2 1/30 % JEA
Project Title DOVER AIR FORCE STEE	64468-0625	Set 1	SAMPLE I.D.	DZ-VW-10'-10.5'		- YW- 3.5'-	l i	D2-1W-7' 1602	D2-YW - 3, 1603.	,01-		= VW-3'	7 , 102	- 86 - 7'	7"	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	23.5'-4.0' 1682	- 86 -7.0-7.51 - 8 9-10.0-16.51	1 - VW - 3	10 10 10 10 10 10 10 10 10 10 10 10 10 1	27	-VWV- "	Date/Time Received by: (Signature	17-10-809:00	Date/Time Received by:	(Signature)	orato	(Signatura)
Columbus Laboratories Proj. No. Projec	58-0625	SAMPLERS: (Signature)	DATE TIME	76-11-11	100	100	יטן	11-9-92		11-9-92	$\mathbf{L}^{\mathbf{N}}$	1 1			1/2 - 6-92 1/-1/-92	11 1	76-9-11	11 - 6 - 92	11-7-92	16- 7- 11	22 2 - 11	25- 5 - 11	Relinquished by: (Signature)	- Ready	Relinquished by: (Signature)		Relinquished by: (Signature)	

APPENDIX C SITE ST-04 SOIL GAS PERMEABILITY DATA

Table C-1. Results of Soil Gas Permeability Test at Monitoring Point D1-MPA

	Pressure (re ("H2O) by Depth	epth	·	Pres	Pressure ("H2O) by Depth)epth
Time (min)	3.0′	7.0′	11.0′	Time (min)	3.0′	7.0′	11.0′
0	0	0	0>	14	0.008	0.009	5.1
1	0	0	3.1	16	0.005	0.007	5.1
2	0	0	4.0	18	0.005	0.007	5.1
3	0	0	4.3	20	0.005	0.007	5.1
4	0	0	4.5	23	0.005	0.007	5.1
5	0	0	4.7	26	0.005	0.007	5.1
9	0	0	4.8	29	0.005	0.007	5.1
7	0	0	4.9	41	0.005	0.007	5.1
8	0.007	0.008	4.9	51	0.005	900.0	5.1
6	0.00	0.01	5.0	61	0.005	0.007	4.6
10	0.00	0.04	5.0	71	0.005	0.007	4.5
12	0.009	0.011	5.0	91	0.005	0.007	4.5

Table C-2. Results of Soil Gas Permeability Test at Monitoring Point D1-MPB

	Pressure	re ("H ₂ O) by Depth	epth		Pre	Pressure ("H ₂ O) by Depth	Depth
Time (min)	3.0′	7.0′	10.0′	Time (min)	3.0′	7.0′	10.0′
0	0.025	0.01	0.02	18	0	0.005	0.40
1	0.01	0.01	0.02	20	0	0.004	0.425
2	0.005	0.005	0.01	23	0	0.005	0.425
5	0	0	0.25	26	0	0.003	0.425
9	0	0	0.30	29	0	0	0.45
8	0	0.005	0.35	39	0	0	0.43
10	0	0.05	0.35	49	0	0	0.425
12	0	0.005	0.40	59	0	0	0.425
14	0	0	0.40	69	0	0.002	0.40
16	0	0	0.425	68	0	0.005	0.40

Table C-3. Results of Soil Gas Permeability Test at Monitoring Point D1-MPC

	Pressu	Pressure ("H ₂ O) by Depth	epth		Pre	Pressure ("H ₂ O) by Depth	Depth
Time (min)	3.0′	7.0′	11.0′	Time (min)	3.0′	7.0′	11.0′
0	0.025	0.01	0.02	18	0	0.005	0.40
1	0.01	0.01	0.02	20	0	0.004	0.425
2	0.005	0.005	0.01	23	0	0.005	0.425
5	0	0	0.25	26	0	0.003	0.425
9	0	0	0.30	29	0	0	0.45
8	0	0.005	0.35	39	0	0	0.43
10	0	0.005	0.35	49	0	0	0.425
12	0	0.005	0.40	59	0	0	0.425
14	0	0	0.40	69	0	0.005	0.40
16	0	0	0.425	68	0	0.005	0.40

APPENDIX D SITE ST-04 IN SITU RESPIRATION TEST DATA

Figure D-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D1-MPA-11.0'

Figure D-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D1-MPB-7.0'

Figure D-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D1-MPC-11.0'

APPENDIX E NORTH STORAGE TANK FARM SOIL GAS PERMEABILITY DATA

Table E-1. Results of Soil Gas Permeability Test at Monitoring Point D2-MPA

	Pressure ("	rre ("H ₂ O) by Depth	epth		Pre	Pressure ("H2O) by Depth	Depth
Time (min)	2.5′	6.0′	9.5′	Time (min)	2.5′	,0'9	9.5′
0	0	0	0	16	2.8	0.02	0.015
1	1.2	0	0	18	2.8	0.04	0.02
2	1.7	0	0	20	2.9	0.025	0.01
3	1.9	0.13	0	23	2.9	0.095	0.02
4	2.2	0.085	0	26	2.9	0.040	0.02
5	2.2			29	3.0	0.05	0.02
9	2.4	0.25	0	34	3.1	090.0	0.05
7	2.4	0.21	0	39	3.1	0.03	0.02
8	2.5	0.23	0	49	3.1	0.04	0.05
6	2.5	0.09	0	59	3.2	0	0
10	2.5	0.045	0	74	3.4	0	0
12	2.5	0.03	0	68	3.4	0	0
14	2.7	0.04	0	104	3.5	0	0

Table E-2. Results of Soil Gas Permeability Test at Monitoring Point D2-MPB

	Pressure ("	re ("H ₂ O) by Depth	epth		Pres	Pressure ("H2O) by Depth	Depth
Time (min)	2.5′	6.0′	9.5′	Time (min)	2.5'	,0'9	9.5′
0	0	0	0	18	1.35	0	0
1	9.0	0	0	20	1.37	0.01	0
2	0.75	0	0	23	1.40	0.02	0
3	06:0	0.01	0	26	1.40	0	0
4	1.0	0	0	29	1.42	0.01	0
5	1.05	0.04	0	34	1.51	0	0
9	1.1	0	0	39	1.52	0	0
8	1.1	0	0	44	1.52	0	0
6	1.15	0	0	59	1.60	0	0
10	1.15	0	0	74	1.63	0	0
12	1.17	0	0	68	1.63	0	0
14	1.27	0	0	104	1.67	0	0
16	1.30	0.02	0				

Table E-3. Results of Soil Gas Permeability Test at Monitoring Point D2-MPC

	Pressure (re ("H ₂ O) by Depth	epth		Pre	Pressure ("H2O) by Depth	Depth
Time (min)	2.5′	6.0′	9.5′	Time (min)	2.5′	,0.9	9.5′
0	0	0	0	16	1.89	68.0	0.87
1	0.23	0.21	0.15	18	0.91	06.0	0.88
2	0.40	0.40	0.35	20	0.91	0.91	06.0
3	0.50	0.50	0.49	23	96.0	0.95	0.94
4	0.65	09:0	09.0	26	96:0	0.97	0.94
5	0.67	0.65	0.64	29	96.0	96.0	0.95
9	69.0	.69	0.67	34	1.0	1.0	1.0
7	0.70	0.73	0.71	39	1.10	1.12	1.09
∞	0.75	0.75	0.74	49	1.10	1.10	1.0
6	0.75	0.77	0.75	59	1.10	0.022	0.02
10	0.77	0.77	0.76	74	1.10	0	0
12	0.85	0.85	0.83	68	1.10	0	0
14	0.87	0.87	0.85	104	1.13		

APPENDIX F

NORTH STORAGE TANK FARM IN SITU RESPIRATION TEST DATA

Figure F-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D2-MPA-2.5'

Figure F-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D2-MPA-9.5'

Figure F-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D2-MPB-2.5'

Figure F-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point D2-MPC-2.5'

īs
b. Forwarding Date
July /2000
1 81
stribution statements, as
mited.
encies only.
encies and their
efense (DoD) and U.S
efense (DoD)
ontrolling DoD office
ncies and private ordance with DoD ure, 6 Nov 84.
0.24)
ition Statement
2000
box)

ent is not supplied
The state of the same of the same of the same state of the state of the same state of the same of the
parameter and an analysis of all and the first of the second of the seco
Comments of the second
1-03-0529