# Записки по Теория на Множествата При проф. Тинко Тинчев

Atanas Ormanov

November 9, 2022

Book recomendation:

Introduction to Set Theory (3d Edition) by Karel Hrbackeck & Toomas Yech

Съпоставка м-ду Актуална безкрайност и Потенциална безкрайност:

На пръв поглед ако  $B\subseteq A$  и  $B\neq A$ , то B има по-малко елементи, но при безкрайни мн-ва не е задължително.

def Принцип за неограничената абстракция:

 $\overline{\text{Нека}}\ \mathcal{A}(x)$  е едноместно свойство на обекта x. Тогава има множество A, такова че  $x\in A\Leftrightarrow \mathcal{A}(x)$ 

Парадокс на Ръсел:

Нека  $\mathcal{R}$  е св-во такова че  $\mathcal{R}(x) \Leftrightarrow x \notin x$  за произволно x

От принципа за неограничената абстракция (\*) - има множество R, такова че  $x \in R \Leftrightarrow \mathcal{R}(x)$  за произволно х ...  $R \in R \Leftrightarrow R \notin R$ 

Езикът на теория на множествата се състои от:

- Двуместни свойства: =, ∈ (равенство в смисъла на Лайбниц означава неотличимост)
- Булеви връзки:  $\lor, \land, \neg, \Rightarrow, \Leftrightarrow$
- Квантори:  $\forall x \phi, \exists x \phi$

ZF - аксиоми на Цермело Френкел

ZFC - ZF заедно с аксиомата за избора

def Теоритико множествени свойства:

В света (универсума) има само множества (това са обектите с които ще работим)

ТМ свойствата разделяме на:

- 1) Логически аксиоми
  - $\bullet \ \forall x \forall y (x = y \Rightarrow y = x)$
  - $\bullet \ \forall x \forall y (x = y \Rightarrow y = x)$
  - $\forall x \forall y \forall z (x = y \land y = z \Rightarrow x = z)$
  - $\bullet \ \forall x \forall y \forall z (x \in y \land y = z \Rightarrow x \in z)$
  - $\bullet \ \forall x \forall y \forall z (x = y \land y \in z \Rightarrow x \in z)$

1-3 са аксиомите за еквивалентност на равенството

4-5 са аксиомите за конгруентност

- 2) Аксиоми на ZF:
  - 1.  $\exists x(x=x)$  Има поне един обект в света
  - 2.  $\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y))$  Обемност / екстенсионалност. Ако 2 множества имат едни и същи елементи, то те са равни.
  - 3.  $\exists x(x=x)$  принцип за ограничената абстракция / схема за отделянето.

Док 2.2:  $\forall y \forall z (y = z \Rightarrow \forall x (x \in y \Leftrightarrow x \in z))$ 

Нека предположим че y=z, нека х е произволно множество. Използваме логическа аксиома 4 за да докажем.

Док 2.3: Нека  $\phi(x, u_1, u_2, ..., u_n)$  е ТМ. св-во, нека  $u_1, ..., u_n$  са произволно мн-ва. Всеки път, когато A е множество, съществува множество, чийто елементи са точно онези елементи на A, за които е в сила  $\phi(x, u_1, u_2, ..., u_n)$ .

 $\forall u_1 u_2 ... u_n \forall A \exists B \forall x (x \in B \Leftrightarrow x \in A \land \phi(x, u_1, u_2, ..., u_n))$  - св-во на х.

Тв При фиксирани  $A, u_1, ..., u_n$  - множества и теоритико множествено свойство  $\phi$ , съществуват единствено множество B, за което  $\forall x (x \in B \Leftrightarrow x \in A \land \phi(x, \overline{u}))$ , където  $\overline{u}$  са параметри.

Док: Нека  $B_1$  и  $B_2$  са такива мн-ва, че:  $\forall x(x \in B_1 \Leftrightarrow x \in A \land \phi(x, \overline{u})) \ \forall x(x \in B_2 \Leftrightarrow x \in \overline{A \land \phi(x, \overline{u})})$  Искаме да док че  $B_1 = B_2$ . Нека  $y \in B_1$  е произволен. Тогава  $y \in A \land \phi(y, \overline{u})$ . Следователно  $y \in B_2$ . Така  $\forall x(x \in B_1 \Leftrightarrow x \in B_2)$ . От аксиомата за обемност  $B_1 = B_2$ .

Тв Съществува празно множество

Док: Ще докажем че  $\exists A \forall x (x \notin A)$ 

Нека В е множество (От. аксиомата 0). Нека  $\phi(x) \leftrightharpoons \neg(x=x)$ . Нека М е единственото множество, такова че  $\forall x (x \in M \Leftrightarrow x \in B \land \phi(x))$ . Ще док. че  $\forall x (x \notin M)$ . Допускаме че  $x \in M$  е произволно. Тогава  $x \in B \land \phi(x)$ . Така  $\phi(x)$ , т.е.  $x \neq x$ , противоречи с 1-вата лог. аксиома. Следователно  $x \notin M$ . Понеже x е произволно то  $\forall x (x \notin M)$ .

Опр За множество А, параметри  $\overline{u}$  и св-во  $\phi$ , съществува единствено такова В, което бележим така:  $B = \{x \mid x \in A \land \phi(x, \overline{u})\}$ 

Тв Съществува единствено празно множество.

<u>Док:</u> Нека  $M_1$  и  $M_2$  са празни, т.е.  $\forall x (x \notin M_1)$  и  $\forall x (x \notin M_2)$  Нека t е произволно множество, тогава  $t \notin M_1$  и  $t \notin M_2$ . Но t беше произволно, значи  $t \in M_1 \Leftrightarrow t \in M_2$  и от аксиомата за обемност  $M_1 = M_2$  Празното множество бележим с  $\emptyset$ 

Означение:  $A \subseteq B \leftrightharpoons \forall x (x \in A \Rightarrow x \in B)$ 

Тв За всяко множество A, е изп. че  $\emptyset \subseteq A$ 

Тв Не същ. множество, което съдържа всички мн-ва:  $\neg \exists A \forall x (x \in A)$ 

Док: Допускаме противното. Нека B е такова че  $\forall x (x \in B)$ 

Нека  $R = \{x \mid x \in R \land x \notin x\}$ . Използваме аксиомата схема за отделяне с A = B и  $\phi(x) \leftrightharpoons x \notin x$ . Отделяме онези x, за които  $x \notin x$ . Така R е множество. Тогава  $R \in B$ . Получаваме че  $R \in R \Leftrightarrow R \notin R \land R \notin R \Leftrightarrow R \notin R$  - противоречие с допускането. Тоест няма такива мн-ва.

#### Future reading:

- actual infinity vs potential infinity
- Banach-Tarski paradox (occurs after the patch of Russel's paradox)
- Cantor's definition of real numbers

Тв За всеки две множества A и B, съществува единствено множество C, такова че  $\forall x (x \in C \Leftrightarrow x \in A \land x \in B)$ .

Док за съществуване: Нека  $\phi(x,u) \leftrightharpoons x \in u$ . Според аксиомната схема за отделяне в-ху множеството A и  $\phi$  за u=B, същ. множество  $C=\{x\mid x\in A\land\phi(x,B)\}=\{x\mid x\in A\land x\in B\}$ . Значи за всяко  $x,x\in C \Leftrightarrow x\in A\land x\in B$ 

Док за единственост: Нека  $C_1$  и  $C_2$  са такива мн-ва, че  $x \in C_i \Leftrightarrow x \in A \land x \in B, i = 1, 2$ . Тогава за всяко  $x, x \in C_1 \Leftrightarrow x \in A \land x \in B \Leftrightarrow x \in C_2$  и по аксиомата за обемност  $C_1 = C_2$ . Това множество означаваме с  $A \cap B$ .

Тв За всеки две множества А и В, съществува единствено множество С, такова че  $\forall x (x \in C \Leftrightarrow x \in A \land x \notin B)$ 

 $\phi(x,u)\leftrightharpoons x\notin u$ , т.е. отделяме от A всички ел. х, за които  $\phi(x,B)$   $x\in C\Leftrightarrow x\in A\land x\notin B, i=1,2$   $x\in C_1\Leftrightarrow x\in C_2, \forall x$   $C_1=C_2$ 

Това единствено множество бележим  $A \setminus B$  и наричаме разлика на A и B.

Можем да правим "голямо" сечение

<u>Тв</u> Нека  $A \neq \emptyset$ . Тогава съществува единствено множество B, което съдържа точно множествата, които са елементи на всеки един елемент на A.  $\forall x (x \in B \Leftrightarrow \forall y (y \in A \Rightarrow x \in y))$ 

<u>Док за същ.</u>: Нека  $y_0 \in A$ , защото A е непразно. Нека  $\phi(x,u) \leftrightharpoons \forall y(y \in u \Rightarrow x \in y)$ . От аксиомната схема за отделянето, има множество

 $B' = \{ x \in y_0 \land \phi(x, A) = \{ x \mid x \in y_0 \land \forall y (y \in A \Rightarrow x \in y) \}$ 

Ще док че  $\forall x(x \in B' \Leftrightarrow \forall y(y \in A \Rightarrow x \in y))$  Нека  $x \in B'$ . Тогава  $x \in y_0 \land \forall y(y \in A \Rightarrow x \in y)$ , в частност  $\forall y(y \in A \Rightarrow x \in y)$ .

Обратното, нека x е т.ч.  $\forall y (y \in A \Rightarrow x \in y)$ .

Ho  $y_0 \in A$ , следователно  $x \in y_0$ . Така  $x \in y_0 \land \forall y (y \in A \Rightarrow x \in y)$  от където  $x \in B'$ 

Док единств.: Нека  $B_1$  и  $B_2$  са такива мн-ва че ...  $x \in B_i \Leftrightarrow \forall y (y \in A \Rightarrow x \in y)$  за i=1,2 Така за всяко  $x, x inB_1 \Leftrightarrow \forall y (y \in A \Rightarrow x \in y) \Leftrightarrow x \in B_2$  Т.е. има единствено такова множество, бележим го  $\bigcap A$  или  $\bigcap_{x \in A} x$ 

Приемаме че  $\bigcap \emptyset \leftrightharpoons \emptyset$ 

Аксиома за чифта За всеки 2 мн-ва а и b, съществува множество A, измежду чиито ел. са а и b.

 $\forall a \forall b \exists A (a \in A \land b \in A)$ 

Тв За всеки 2 мн-ва а и в същ. единствено множество В, т.ч.  $\forall x (x \in B \Leftrightarrow x = a \lor x = b)$ 

Док ед.: Нека  $B_1$  и  $B_1$  са мн-ва, т.ч.  $\forall x(x \in B_i \Leftrightarrow x = a \lor x = b)$  Тогава за всяко  $\mathbf{x}, \ x \in B_1 \Leftrightarrow x = a \lor x = b \Leftrightarrow x \in B_2$ ) След.  $B_1 = B_2$ 

Док същ.: Нека A е такова множество че  $a \in A$  и  $b \in A$ . Нека  $\phi(x, u_1, u_2) \leftrightharpoons x = u_1 \lor x = u_2)$ ) По аксиомата схема за отд., същ. множество  $B = \{x \mid x \in A \land \phi(x, a, b)\}$ .

Ще док. че  $\forall x(x \in B \Leftrightarrow x = a \lor x = b)$ . Нека x е произв. и нека  $x \in B$ . Тогава  $x \in A \land \phi(x, a, b)$ , в частност  $\phi(x, a, b)$  т.е.  $x = a \lor x = b$ .

Нека сега  $x = b \lor x = b$ . Така  $\phi(x, a, b)$ . Понеже  $a \in A$  и  $b \in A$ , то  $x \in A$ . Следователно  $x \in B$  Това единствено множество ще означаваме  $\{a, b\}$  и ще нар. чифт на A и B.

Заб: Ако a=b, то  $\{a,a\}=\{a\}$  наричаме синглетон на а.

Определимо е в езика на ТМ дали x е синглетон.

x е синглетон  $\Leftrightarrow \exists a(x = \{a\}) \Leftrightarrow \exists a \forall y(y \in x \Leftrightarrow y = a).$ 

Тогава можем да използваме "синглетон" като свойство във ф-ла. Сега ясно се вижда че сме разширили езика защото следните са различни  $\emptyset$ ,  $\{\emptyset\}$ ,  $\{\{\emptyset\}\}\}$  и т.н. (така получаваме безкрайна редица)

Св  $\{a,b\}=\{b,a\}$ . Ясно се вижда че  $\forall x(x\in\{a,b\}\Leftrightarrow x\in\{b,a\})$ 

$$|def| < a, b > = < a_1, b_1 > \Leftrightarrow a = a_1 \land b = b_1$$

Опр Наредена двойка на мн-вата х и у наричаме множеството  $\{\{x\}, \{x,y\}\}$  и ще означаваме с < x,y>.

Заб: Ако използваме х вместо  $\{x\}$  ще можем да правим цикли на принадлежност -  $A \in B \in C$ . другия път ще въведем "правило" което ще забрани такива неща.

Тв За всяко x1, y1, x2, y2 е в сила, че  $< x1, y1> = < x2, y2> \Leftrightarrow x1 = x2 \land y1 = y2$ 

Док: ( $\Leftarrow$ ) $x1 = x2 \land y1 = y2$ , показваме че  $\{x1\} = \{x2\} \land \{x1, y1\} = \{x2, y2\}$   $\{\{x1\}, \{x1, y1\}\} = \{\{x2\}, \{x2, y2\}\}$  и от там < x1, y1 > = < x2, y2 >

- $(\Rightarrow)$  Нека < x1, y1 > = < x2, y2 >
  - 1. x1=y1, тогава  $< x1, y1>=\{\{x1\}, \{x1, x2\}\}=\{\{x1\}, \{x1\}\}=\{x1\}\}=< x2, y2>=\{\{x2\}, \{x2, y2\}\}$ . Следователно  $\{x1\}=\{x2\}=\{x2, y2\}$ . Така: x1=x2 и x2=y2. Тогава x1=x2=y2=y1
  - 2.  $x1 \neq y1$ . Тогава  $\{x1\} \neq \{x1,y1\}$ . Тогава  $\{x2\} \neq \{x2,y2\}$ . Тогава  $y2 \neq x2$ , защото иначе чифта и синглетона щяха да съвпадат. От тук  $\{x1\} \neq \{x2,y2\}$ . Но  $\{x1\} \in < x2,y2>$ , и така  $\{x1\} = \{x2\}$ . След.  $\{x1,y1\} \neq \{x2\}$ , от където  $\{x1,y1\} = \{x2,y2\}$ . От  $\{x1\} = \{x2\}$ , следва че x1 = x2. Тогава  $\{x1,y1\} = \{x2,y2\}$ . Понеже  $y1 \neq x1 = x2$ , то y1 = y2

Аксиома за обединение За всяко множество А съществува множество В, т.ч. всеки елемент на елемент на A е елемент на В.

 $\forall x \forall y (x \in y \land y \in A \Rightarrow x \in B)$ 

Тв За всяко множество А съществува единствено множество В, т.ч.  $\forall x (x \in B \Leftrightarrow \exists y (y \in A \land x \in y))$ 

Док за ед:  $i=1,2. \forall x(x\in B_i \Leftrightarrow \exists y(y\in A \land x\in y))$  за всяко x,  $x\in B_1 \Leftrightarrow \exists y(y\in A \land xiny) \Leftrightarrow x\in B_2$ , т.е.  $B_1=B_2$ 

Док за същ. Нека C е такова множество, че  $\forall x \forall y (y \in A \land x \in y \Rightarrow x \in C)$ .

 $\overline{\text{Нека }B} = \{x \mid x \in C \land \exists y (y \in A \land x \in y)\}$ 

Сега ако  $x \in B \implies x \in C \land \exists y (y \in A \land x \in y) \implies \exists y (y \in A \land x \in y)$ 

Нека  $\exists y(y \in A \land x \in y)$ . Нека  $y_0$  е свидетел за това  $(y_0 \in A \land x \in y_0)$ .

Понеже  $y_0 \in A \land x \in y_0$ , то  $x \in C$ . Следователно  $x \in B$ 

Значи съществува такова множество и то е единствено. Ще го бележим с  $\bigcup A$ .

Заб: Означение означава че ще го използваме във формула като съкращение(syntax sugar).

Не може да се дефинира операция за допълнение. Тоест:

Тв За нито едно множество A не съществува множество  $\overline{A}$ , т.ч.  $\forall x (x \in \overline{A} \Leftrightarrow x \notin A)$ 

 $\underline{\underline{A}}$ ок: Допускаме противното - нека A и  $\overline{A}$  са такива мн-ва, такова че за всяко х  $x \in \overline{A} \Leftrightarrow x \notin A$ . Нека  $V = \bigcup \{A, \overline{A}\}$  - от аксиомата за чифта и обединението. Нека х е произволно. Ако  $x \in A$ , то  $\exists y (y \in \{A, \overline{A}\} \land x \in y)$  от където xinV. Ако пък  $x \notin A$ , то  $x \in \overline{A}$  и отново  $\exists y (y \in \{A, \overline{A}\} \land x \in y)$ , т.е.  $x \in V$ . След  $\forall x (x \in V)$ , противоречие!

$$egin{aligned} \overline{0} &= \emptyset \\ \overline{1} &= \{\overline{0}\} \\ \overline{2} &= \overline{1} \cup \{\overline{1}\} = \{\overline{0},\overline{1}\} \\ \dots \\ \overline{n+1} &= \overline{n} \cup \{\overline{n}\} \ (\mathrm{n} \,+\, 1 \,\,\mathrm{елементa}) \end{aligned}$$

Аксиома за степенното множество За всяко множество А съществува множество В, измежду чиито елементи са всички подмножества на А.  $\forall A \exists B \forall x (x \subseteq A \Rightarrow x \in B)$ 

Тв За всяко множество А същ. единствено множество В, т.ч.  $\forall x (x \in B \Leftrightarrow x \subseteq A)$ 

Док за същ.: Некеа C е т.ч.  $\forall x (x \subseteq A \Rightarrow x \in C)$ .

 $\overline{\text{Нека }B}=\{\overline{x}\mid x\in C\land x\subseteq A\}$ . Нека  $x\in B$ . След  $x\in C\land x\subseteq A$ , от където  $x\subseteq A$ . След.  $x\in C$ , от където  $x\in C\land x\subseteq A$ , т.е.  $x\in B$  Заб:  $x\in C\land x\subseteq A\Leftrightarrow x\subseteq A$ , защото  $x\subseteq A\Rightarrow x\in C$ 

Док за единственост: Взимаме  $B_1, B_2$  и  $\forall x (x \in B_i \Leftrightarrow x \subseteq A)$ 

 $\overline{x \in B_1 \Leftrightarrow x \subseteq A \Leftrightarrow x} \in B_2$ , r.e.  $B_1 = B_2$ .

Такова множество В съществува и е единствено и ще означаваме с  $\mathcal{P}(A) = \{x \mid x \subseteq A\}$ 

### Какво можем да изведем от тук?

- $\emptyset \in \mathcal{P}(A)$  за всяко A
- $A \in \mathcal{P}(A)$ , за всяко A

- $A \in \mathcal{P}(A)$ , за всяко A
- $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$  монотонност
- Можем ли да твърдим монотонността в обратната посока? Да!
- Възможно ли е  $\mathcal{P}(A) \subseteq A$ ? Не! (дори и за празното). Това е същото като  $\mathcal{P}(A) \in \mathcal{P}(A)$ , но това все още не можем да докажем.

Но можем да докажем следното:

 $|\operatorname{Tb}|$  Не същ. множество A, т.ч.  $\mathcal{P}(A)\subseteq A$ 

Док: Допускаме противното и нека A е такова множество, че  $\mathcal{P}(A) \subseteq A$ .

Нека  $\mathcal{R}_A = \{x \mid x \in A \land x \notin x\}$ . Според аксиомата схема за отделяне  $\mathcal{R}_A$  е множество. Освен това,  $\mathcal{R}_A \subseteq A$ . След  $\mathcal{R}_A \in \mathcal{P}(A)$  и по допускане  $\mathcal{P}(A) \subseteq A$ , от където  $\mathcal{R}_A \in A$ .

Но  $\mathcal{R}_A \in A \Leftrightarrow \mathcal{R}_A \in A \land \mathcal{R}_A \notin \mathcal{R}_A \Leftrightarrow \mathcal{R}_A \notin \mathcal{R}_A$ . Противоречие! След. ¬∃ $A(\mathcal{P}(A) \subseteq A)$ 

Опр Казваме, че множеството z е транзитивно, ако  $z \subseteq \mathcal{P}(z)$ . (ще бележим с trans(z)) Тоест z е транзитивно  $\Leftrightarrow \forall y (y \in z \Rightarrow y \subseteq z) \Leftrightarrow \forall x \forall y (x \in y \land y \in z \Rightarrow x \in z)$   $\bigcup z \subseteq z$ 

Тв Нека х е множество. Тогава:

- 1.  $trans(x) \Rightarrow trans(\bigcup x)$
- 2.  $\forall y (y \in x \Rightarrow trans(y)) \Rightarrow trans(\bigcup x)$
- 3.  $\forall y(y \in x \Rightarrow trans(y)) \Rightarrow trans(\bigcap x)$
- 4.  $trans(x) \Rightarrow trans(\mathcal{P}(x))$
- 5.  $trans(x) \Rightarrow trans(x \cup \{x\})$

Заб:  $S(x) = x \cup \{x\}$  е наследник на х

<u>Док 1:</u> Нека x е транз. Нека  $y \in \bigcup x$ . Следователно  $\exists z (y \in z \land z \in x)$ . Нека  $z_0$  е свидетел за това:  $y \in z_0, z_0 \in x$ . Но trans(x), от където  $y \in x$ . От  $y \in x$ , винаги е вярно че  $y \subseteq \bigcup x$ . Тогава  $y \subseteq \bigcup x$ . След  $\bigcup x$  е транзитивно.

Док 2: Нека вс. ел. на x е транзитивно множество. Нека  $y \in \bigcup x$ . Нека z е т.ч.  $y \in z \land z \in x$ . Но z е транзитивно  $(z \in x)$  значи  $y \subseteq z$ . Понеже  $z \in x$ , то  $z \in \bigcup x$ . Така  $y \subseteq z \land z \subseteq \bigcup x$ , от където  $y \subseteq \bigcup x$ . Т.е.  $trans(\bigcup x)$ 

Док 3: Нека х е множество от транзитивни множества.

Заб: Трябва да внимаваме, защото  $\forall y (y \in \emptyset \Rightarrow trans(y))$ 

Ако  $x = \emptyset$ , то  $\bigcup x = \bigcup \emptyset = \emptyset$ 

Нека сега  $x \neq \emptyset$ . Нека  $y \in \bigcap x$ . Тогава  $\forall z (z \in x \Rightarrow y \in z)$ . Понеже  $\forall z (z \in x \Rightarrow trans(z))$ , то  $\forall z (z \in x \Rightarrow y \subseteq z)$ . Така y съдържа елементи, които са общи за всички елементи на x. Тогава  $y \subseteq \bigcap x$ . Следователно  $trans(\bigcap x)$ .

Док 4: Нека trans(x).

 $\overline{\text{Можем}}$  да използваме че  $\bigcup z \subseteq z$  и можем да докажем следното  $\bigcup \mathcal{P}(x) = x \subseteq \mathcal{P}(x)$ 

Друг подход:

$$trans(x) \implies x \subseteq \mathcal{P}(x) \implies \mathcal{P}(x) \subseteq \mathcal{P}(\mathcal{P}(x)) \implies trans(\mathcal{P}(x))$$

Док 5: Нека trans(x). Нека  $y \in S(x) = x \cup \{x\}$ . Ако  $y \in x$ , то понеже trans(x) имаме че  $y \subseteq x$ . Но  $x \subseteq S(x) = x \cup \{x\}$ . Така  $y \subseteq S(x)$ . Ако  $y \in \{x\}$ , то  $y = x \subseteq S(x)$ .  $\forall y (y \in S(x) \Rightarrow y \subseteq S(x))$ . Така trans(S(x))

Въвеждаме още съкратен синтаксис (синтактична захар) за  $\phi(x)$  и A - множество:

- $(\exists x \in A)(\phi(x)) \leftrightharpoons \exists x(x \in A \land \phi(x))$
- $(\forall x \in A)(\phi(x)) \leftrightharpoons \forall x(x \in A \Rightarrow \phi(x))$
- $\exists ! x(\phi(x)) \leftrightharpoons \exists x(\phi(x) \land \forall y(\phi(y) \Rightarrow x = y))$

| def | Декартово произведение

 $\overline{A \times B} = \{ \langle a, b \rangle \mid a \in A \land b \in B \}.$  Тук  $\phi(x) \leftrightharpoons \exists a \exists b (x = \langle a, b \rangle \land a \in A \land b \in B)$  и  $x \in A \times B \Leftrightarrow \phi(x)$ 

 Наблюдение:
 (a, b) (a, b)

Тв За вс. 2 мн-ва A и B, същ. единствено мн-во C, такова че:  $\forall u(u \in C \Leftrightarrow \exists a \exists b (a \in A \land b \in B \land u = < a, b >))$ 

Док за единственост: за домашна.

Док за съществуване: Нека  $C = \{u \mid u \in \mathcal{P}(\mathcal{P}(A \cup B)) \land \phi(u)\}$ . Имаме че  $\forall u(\phi(u) \Rightarrow u \in \mathcal{P}(\mathcal{P}(A \cup B)), \text{ от където } \forall u(u \in C \Leftrightarrow \phi(u)).$  Това единствено множество ще бележим с  $A \times B$  и ще наричаме декартово произведение на A и B.

Тв За всеки A, B, C - множества, е в сила че:

- 1.  $Ax\emptyset = \emptyset$
- 2.  $\exists A \exists B(AxB = BxA)$ , т.е. операцията не е комутативна
- 3. (AxB)xC = Ax(BxC)? Не е асоциативна!
- $4. \ A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 5.  $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 6.  $B \times (\bigcup A) = \bigcup \{B \times x \mid x \in A\}$  като за начоло се питаме синтаксиса коректен ли е? Тоест това от десния край е мн-во ли е?

#### Док 5:

- ( $\subseteq$ ) Нека  $x \in A \times (B \cap C)$ . Нека  $a \in A, b \in B \cap C$  са т.ч. x = < a, b >. Но  $b \in B, b \in C$ , от където  $< a, b > \in A \times B$  и  $< a, b > \in A \times C$ . Така  $x \in (A \times B) \cap (A \times C)$ .
- ( $\supseteq$ ) Нека  $x \in (A \times B) \cap (A \times C)$ . Тогава  $x \in A \times B$  и  $x \in A \times C$ . Нека  $a \in A, b \in B$ , т.ч. x = < a, b >. Нека  $a' \in A$  и  $c \in C$  са такива че x = < a', c >. Понеже < a, b >= x = < a', c >, то a = a' и b = c. Следователно  $b \in B \cap C$ , от където  $x = < a, b > \in A \times (B \cap C)$ .

Док 6: Първо да докажем че операцията е коректна.

 $\overline{B \times x}, x \in A \implies x \subseteq \bigcup A \implies B \times x \subseteq B \times (\bigcup A) \implies B \times x \in \mathcal{P}(B \times (\bigcup A)).$  Тук  $M \leftrightharpoons \mathcal{P}(B \times (\bigcup A))$ , което ще е резултат от отделянето.

Лема Съществува единствено мн-во  $\forall u(u \in C \Leftrightarrow (\exists x \in A)(u = B \times x))$ 

Док: Единственост - от аксиомата за обемност.

(съществуване): Нека  $C = \{u \mid u \in \mathcal{P}(B \times \bigcup A) \land (\exists x \in A)(u = B \times x)\}.$   $u \in C \implies u \in \mathcal{P}(B \times \bigcup A) \land \phi(u) \implies \phi(u).$  Сега от  $\phi(u) \Rightarrow u \in \mathcal{P}(B \times \bigcup A)$  следва ...

- ( $\subseteq$ ) Нека  $u \in B \times (\bigcup A)$  е произволно. Нека < b, c> = u като  $b \in B$  и  $c \in \bigcup A$ . Нека  $a \in A$  е т.ч.  $c \in a$ . Тогава  $u = < b, c> \in B \times a, a \in A$ . Но  $B \times a \in \{B \times x \mid x \in A\}$ , от където  $u \in \bigcup \{B \times x \mid x \in A\}$
- ( $\supseteq$ ) Нека  $u \in \bigcup \{B \times x \mid x \in A\}$ . Нека  $a \in A$  е т.ч.  $u \in B \times a$ . Нека  $b \in B, c \in a$  са т.ч. u = < b, c >. Но  $a \in A \implies a \subseteq \bigcup A$ , така  $c \in \bigcup A$ . Тогава  $u = < b, c > \in B \times (\bigcup A)$ .

#### Сега от Тинко:

Множествата са естествени числа - N,

т.е. един обект е множество 👄 този обект е естествено число.

Нека x и y са множества,  $x = y \iff x = y$  като естествени числа.

Сега ще дефинираме принадлежност.

Нека n > 0, тогава  $n = (1b_{k-1}...b_1b_0) = 1.2^k + ... + b_1.2^1 + b_0.2^0$ 

Нека x и y са множества. Казваме че  $y \in x$  ако  $b_{y-1} = 1$  в двоичното представяне на x.

Вижда се че логическите аксиоми са в сила - еквивалентност на равенството и конгруентност.

Какво означава аксиомата за екстенсионалност  $\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y)$ ? Ами x и y имат еднакви двоични представяния, т.е. те са равни.

Аксиома за чифта: Нека a и b са множества:

- 1. a = b, тогава  $x = 2^a$
- 2.  $a \neq b$ , тогава  $x = 2^a + 2^b$

Схема за отделяне: Нека  $\phi(x)$  е ТМ свойство.

 $\overline{\text{Нека } A}$  е съвкупността на естествените числа x, за които  $\phi(x)$  е вярно. Нека B е множество. Сега се чудим дали  $\exists C \forall x (x \in C \Leftrightarrow x \in B \land \phi(x))$  е изпълнено.

Ами това са тези битове b на B, за които е вярно свойството  $\phi(b)$ . Съответно в двоичния запис на C само на съответните позиции на тези b-та има 1, на всички останали има 0.

#### Аксиома за безкрайност

Форма на Цермело:  $\exists A(\emptyset \in A \land \forall x (x \in A \Rightarrow \{x\} \in A))$ 

Нека  $A_0$  е множество със свойството  $\emptyset \in A_0 \land \forall x (x \in A_0 \Rightarrow \{x\} \in A_0)$ .  $\emptyset \in A_0 \Rightarrow \{\emptyset\} \in A_0$ , така  $\{\emptyset\} \in A_0$  и т.н. Показваме за произволен брой влагания на  $\emptyset$ .

Форма на Фон Нойман:  $\exists A(\emptyset \in A \land \forall x (x \in A \Rightarrow x \cup \{x\} \in A)$ 

 $A_0: \emptyset \in A_0, \{\emptyset\} \in A_0, \{\emptyset, \{\emptyset\}\} \in A_0$  и т.н. Ние ще ползваме тази дефиниция когато говорим за естествени числа, където  $0 \leftrightharpoons \emptyset$ .

Аксиома за регулярност/фундираност  $\forall x (x \neq \emptyset \Rightarrow \exists y (y \in x \land y \cap x = \emptyset))$  (Формулирана от Мириманов през 1917г и от Фон Нойман през 1925г)

Τ

- 1.  $\neg \exists x (x \in x)$
- 2.  $\neg \exists x \exists y (x \in y \land y \in x)$
- 3.  $\neg \exists x \exists y \exists z (x \in y \land y \in z \land z \in x)$
- 4. Не съществува редица от мн-ва  $x_0, x_1, x_2, ..., x_n, x_{n+1}, ...,$  такива че $x_0 \in x_1, x_1 \in x_2, ...$

<u>Док 1:</u> Да допусканем, че  $\exists x(x \in x)$ . Нека  $x_0$  е свидетел за това съществуване, т.е. нека  $x_0$  е мн-во със свойството  $x_0 \in x_0$ . Нека  $x_1 = \{x_0\}$ , т.е.  $x_0 \in x_1$ . Значи  $x_1 \neq \emptyset$ , следователно  $\exists y(y \in x_1 \land y \cap x_1 = \emptyset)$ . Нека  $y_0$  е свидетел за това съществуване, т.е.  $y_0 \in x_1 \land y_0 \cap x_1 = \emptyset$ . Така  $y_0 \in x_1$ , но  $x_1 = \{x_0\}$ , следователно  $y_0 = x_0$  и така  $x_0 \in x_0$ . Следователно  $x_0 \in y_0$ ,  $x_0 \in \{x_0\}$ ,  $\{x_0 = x_1\}$ . Така  $x_0 \in y_0$  и  $x_0 \in x_1$ . Значи  $x_0 \in y_0 \cap x_1$ . Това е абсурд, понеже  $y_0 \cap x_1 = \emptyset$ .

Док 2: Да доп. че  $\exists x \exists y (x \in y \land y \in x)$ . Нека  $x_0$  и  $y_0$  са мн-ва, т.ч.  $x_0 \in y_0 \land y_0 \in x_0$ . Нека  $x_1 = \{x_0, y_0\}$ . Така  $x_1 \neq \emptyset$ . От  $x_1 \neq \emptyset \implies \exists y (y \in x_1 \land y \cap x_1 = \emptyset)$ . Следователно  $\exists y (y \in x_1 \land y \cap x_1 = \emptyset)$ . Нека  $y_1$  е такова мн-во, че  $y_1 \in x_1 \land y_1 \cap x_1 = \emptyset$ .  $y_1 \in x_1, x_1 = \{x_0, y_0\}$ . Следователно  $y_1 = x_0 \lor y_1 = y_0$ . Да разгледаме случаите:

- 1.  $y_1 = x_0$ . Разглеждаме  $y_0$ . Знаем че  $y_0 \in x_0$  и  $x_0 \in y_0$ . Така  $y_0 \in y_1$ , но  $y_0 \in x_1$  защото  $x_1 = \{x_0, y_0\} \implies y_0 \in y_1 \cap x_1 \implies$  противоречие  $y_1 \cap x_1 = \emptyset$
- 2.  $y_1 = y_0$ .  $x_0 \in y_0$ , следователно  $x_0 \in y_1$ . Така ?...?
- 3. Сами! Hint: Допускаме че  $x_0 \in y_0 \land y_0 \in z_0 \land z_0 \in x_0$  и  $x_1 \leftrightharpoons \{x_0, y_0, z_0\}$

[Аксиомна схема за замяната] (С тази аксиома вече имаме аксиомната схема  $\mathcal{ZF}$ ) Имаме един детерминистичен преобразувател (на интуитивно ниво функция) -  $\phi(x, y, \overline{u})$ , в който можем да фиксираме  $\overline{u}$  и за дадено x то ни връща y.

Аксиомната схема твърди, че за такова  $\phi$  с дефиниционна област A, има съответен образ на  $\phi$ . Френкел забелязва че ако разгледаме  $\mathbb{N}, \mathcal{P}(\mathbb{N}), ..., \mathcal{P}^n(\mathbb{N})$ , то не можем да гарантираме че това последното  $\mathcal{P}(N)^n$  съществува.

<u>Схемата:</u> Нека  $\forall u_1...\forall u_n((\forall x \forall y_1 \forall y_2 (\phi(x,y_1,\overline{u}) \land \phi(x,y_2,\overline{u})) \Rightarrow y_1 = y_2) \Rightarrow \forall A \exists B \forall z (z \in B \Leftrightarrow \exists x (x \in A \land \phi(x,z,\overline{u})))$ 

Разлглеждаме:  $\mathcal{P}(\emptyset) = \{\emptyset\}, A \leftrightharpoons \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\}$   $\phi(x,y) \leftrightharpoons (x = \emptyset \land y = a) \lor (x = \{\emptyset\} \land y = b))$   $\forall x \forall y_1 \forall y_2 (\phi(x,y_1) \land \phi(x,y_2) \Rightarrow y_1 = y_2)$  $\exists B \forall z (z \in B \Leftrightarrow \exists x (x \in A \land \phi(x,z)))$ 

Аксиома за избора ( $\mathcal{AC}$ ) Нека имам някакво разделяне(разбиване) на множеството А и взема по един елемент от всяка част.  $\forall z (z \in A \Rightarrow \bigcap z \text{ е синглетон } (\exists u (z \cap c = \{u\})))$ 

С помощта на аксиомата за избора се доказва че всяко множество може да бъде добре наредено (contraversial).  $\forall x(x \in A \Rightarrow \emptyset) \Rightarrow \exists f(Func(f))$ 

$$Fom(f) = A \land \forall x (x \in A \Rightarrow f(x) \in x)$$

Това поражда и парадокса на Банарх Тарски: Взимаме кълбо В с r=1, значи може да разделим  $B=B_1\cup B_2\cup ...\cup B_7$ . След което можем да вземем  $B_1\cup B_2\cup B_3$  с r=1 и  $B_4\cup B_5\cup ...\cup B_1$ 7 с r=1 - абсурд! Аксиомата за избора не е конструктивна!

<u>Аксиомата:</u> Аксиома на мултипликативност - форма на Ръсел, защото още не сме въвели понятието за функция

 $\forall A(\forall x(x \in A \Rightarrow x \neq \emptyset) \land \forall x \forall y(x \in A \land y \in A \land x \neq y \Rightarrow x \cap y = \emptyset) \Rightarrow \exists C \forall x(x \in A \Rightarrow \exists u(x \cap C = \{u\})))$ 

3аб: Ако A е крайно - всичко е точно. Но ако A е безкрайно вече е различно.

 $f:A\to B,A woheadrightarrow B$  (сюрекция), то можем да ограничим домейна за да получим биекция. Тоест съществува  $A_0\subseteq A:f\upharpoonright A_0$  е биекция м-ду  $A_0$  и B.

(Бинарни) Релации Това са множества (обекти от света ни).

Пример:  $P_1(A, l) =$  точката A лежи на правате l.

Обаче може да имаме различни свойства, които описват еднакви релации (множества).

Ако  $P_2(A, l) \leftrightharpoons$  правата l минава през точката A,

то  $R_1=\{< A,l>\mid P_1(A,l)\}$  и  $R_2=\{< A,l>\mid P_2(A,l)\}$  са равни. За нас релация е просто множество от наредени двойки  $R\subseteq A\times B$ 

Опр Бинарна релация е множество, чийто елементи са наредени двойки.

$$\overline{Rel(R)} \leftrightharpoons \forall z(z \in R \Rightarrow \exists x \exists y(z = \langle x, y \rangle))$$

#### Примери:

- 1. ∅ никъде недефинираната релация
- 2. A е множество,  $A \times A$  е релация (пълна релация над A)
- 3. A е мн-во,  $id_A = \{ \langle x, x \rangle \mid x \in A \}$  е идентитет на A. Заб:  $T = \{ \langle x, x \rangle \mid x = x \}$  не е множество (поражда парадокса на Ръсел)

def Нека R е релация.

Дефиниционна област на R наричаме:  $Dom(R) \leftrightharpoons \{x \mid \exists y (< x, y > \in R)\}$ Област на стойностите на R наричаме:  $Rng(R) \leftrightharpoons \{y \mid \exists x (< x, y > \in R)\}$ 

Тв За всяка релация R, Dom(R) и Rng(R) са множества.

 $\underline{\text{Док:}} \ x \in Dom(R) \implies \exists y (< x, y > \in R) \implies \exists y (\{x\} \in < x, y > \in R) \implies \{x\} \in \bigcup R \implies Dom(R) \subseteq \bigcup \bigcup R, Dom(R) \text{ е определима съвкупност (клас).}$ 

 $\bigcup \bigcup R$  е множество  $\Longrightarrow Dom(R)$  е множество.

Аналогично получаваме  $y \in Rng(R) \Rightarrow y \in \bigcup \bigcup R \implies Rng(R) \subseteq \bigcup \bigcup R$  - множество.

$$[T_B]$$
  $Rel(R) \Rightarrow R \subseteq Dom(R) \times Rng(R)$ 

<u>Док:</u> Нека  $z \in R$ . Тогава z е наредена двойка. Нека x и y са т.ч. z = < x, y >. Тогава  $x \in Dom(R)$  и  $y \in Rng(R)$ . Следователно  $z = < x, y > \in Dom(R) \times Rng(R)$ 

Операции върху релации R,S - релации, то  $\Longrightarrow R \cup S, R \cap S, R \setminus S$  са релации  $R^{-1} \leftrightarrows \{< x,y> \mid < y,x> \in R\}$  е съвкупност от наредени двойки. Обаче множество ли е?  $R^{-1} = \{< x,y> \mid < y,x> \in R\} = \{u \mid \exists x \exists y (u = < x,y> \land < y,x> \in R)\} = \{u \mid u \in Rng(R) \times Dom(R) \land \exists x,y (u = < x,y> \land < y,x> \in R)\}$ 

 $\operatorname{def}$  Операция - композиция на релации.  $(f \circ g)(x) = g(f(x))$ 

Опр Композицията на релациите R и S наричаме мн-вото:

 $\overline{R \circ S} \leftrightharpoons \{\langle x, y \rangle \mid \exists z (\langle x, z \rangle \in R \land \langle z, y \rangle \in S)\} = \{u \mid (\exists x, y, z)(u = \langle x, y \rangle \land \langle x, z \rangle \in R \land \langle z, y \rangle \in S)\} = \{u \mid u \in Dom(R) \times Rng(S) \land (\exists x, y, z)(u = \langle x, y \rangle \land \langle x, z \rangle \in R \land \langle z, y \rangle \in S)\}$ 

Св Нека  $R, S_1, S_2$  са релации. Тогава са изпълнени:

- 1.  $R \circ (S_1 \circ S_2) = (R \circ S_1) \circ S_2$  асоциативност
- 2.  $(S_1 \cup S_2) \circ R = (S_1 \circ R) \cup (S_2 \circ R)$  $R \circ (S_1 \cup S_2) = (R \circ S_1) \cup (R \circ S_2)$
- 3.  $R \circ (S_1 \cap S_2) \subseteq (R \circ S_1) \cap (R \circ S_2)$ , обратното включване не винаги е вярно.
- 4.  $R \circ (S_1 \setminus S_2) \supseteq (R \circ S_1) \cap (R \circ S_2)$
- 5.  $(S_1 \circ S_2)^{-1} = S_2^{-1} \circ S_2^{-1}$

Док 3: Нека  $u \in R \circ (S_1 \cap S_2)$ . Нека x,y,z, т.ч.  $u = \langle x,y \rangle, \langle x,z \rangle \in R$  и  $\langle z,y \rangle \in S_1 \cap S_2$ . Тогава  $\langle z,y \rangle \in S_1$  и  $\langle z,y \rangle \in S_2$ . След.  $\langle x,y \rangle \in R \circ S_1$  и  $\langle x,y \rangle \in R \circ S_2$ . Така  $u = \langle x,y \rangle \in (R \circ S_1) \cap (R \circ S_2)$ .

```
R = \{\langle x, z \rangle, \langle x, t \rangle\}, z \neq t
S_1 = \{\langle z, y \rangle\}
S_2 = \{\langle t, y \rangle\}
S_1 \cap S_2 = \emptyset, R \circ (S_1 \cap S_2) = R \circ \emptyset = \emptyset
R \circ S_1 = \langle x, y \rangle
R \circ S_2 = \langle x, y \rangle
R \circ S_2 = \langle x, y \rangle
R \circ S_1 \cap (R \circ S_2) = \{\langle x, y \rangle\}
```

Док 4: Нека  $u \in (R \circ S_1) \setminus (R \circ S_2)$ . Така  $u \in R \circ S_1$  и  $u \notin R \circ S_2$ . Нека x,y,z са такива  $u \in R \circ S_1$  и  $u \notin R \circ S_2$ . Нека x,y,z са такива  $u \in R \circ S_2$ , то  $\forall t (< x,t> \in R \Rightarrow < t,y> \notin S_2)$ . Но  $< x,z> \in R$ , след.  $< z,y> \notin S_2$ . Обаче  $< z,y> \in S_1$ , от където  $< z,y> \in S_1 \setminus S_2$ . От  $< x,z> \in R$ , следва че  $u = < x,y> \in R \circ (S_1 \setminus S_2)$ 

Обратното не е винаги вярно!

Заб: (∘) не е комутативна!

Опр Нека Rel(R) и  $A \subseteq Dom(R)$ . Образ на A при R наричаме множеството:  $R[A] = \{y \mid \exists (x \in A)(< x, y > \in R)\} \subseteq Rng(R)$ 

[Oпр] Нека Rel(R) и  $B\subseteq Rng(R)$ . Праобраз на B при R наричаме множеството:  $R^{-1}[B]=\{x\mid \exists (y\in B)(< x,y>\in R)\}\subseteq Dom(R)$ 

Тв (за коректност) Нека R е релация и  $B \subseteq Rng(R)$ . Тогава  $(R^{-1})[B] = R^{-1}[B]$ , където  $(R^{-1})[B]$  е образ на B ри  $R^{-1}$ , а  $R^{-1}[B]$  е праобраз на B при R.

<u>Док:</u> За вс. x е в сила че  $x \in (R^{-1}[B]) \iff \exists y (< y, x > \in R^{-1} \land y \in B) \iff \exists y (y \in B \land < x, y > \in (R^{-1})^{-1}) \iff \exists y (y \in B \land < x, y > \in R) \iff x \in (R)^{-1}[B]$ 

Тв Нека  $\forall x(x \in X \Rightarrow x \subseteq Dom(R))$ . Тогава  $R[\bigcup X] = \bigcup \{R[x] \mid x \in X\}$ . Тук Rel(R) и X е множество. Това е коректно защото  $(\forall x \in X)x \subseteq Dom(R)) \implies \bigcup X \subseteq Dom(R)$ .  $a \in \bigcup X \implies \exists x(x \in X \land a \in x) \implies a \in Dom(R)$ . Сега това множество ли е? Нека  $x \in X \implies x \subseteq Dom(R) \implies R[x] \subseteq R[Dom(R)]$ . Тогава ако  $A \subseteq A_1 \subseteq Dom(R) \implies R[A] \subseteq R[A_1]$  и съответно  $B \subseteq B_1 \subseteq Rng(R) \implies R^{-1}[A] \subseteq R^{-1}[B_1]$ . Значи това е определима съвкупност  $\{R[x] \mid x \in X\} \subseteq \mathcal{P}(Rng(R))$ . Всичко е коректно, сега доказателството.

<u>Док:</u> Нека  $b \in R[\bigcup X]$ . Нека  $a \in \bigcup X$  е т.ч.  $< a, b > \in R$ . Нека  $x_0 \in X$  е такъв че  $a \in x_0$ . Тогава  $b \in R[x_0]$ . Следователно  $b \in \bigcup \{R[x] \mid x \in X\}$ 

Сега обратното включване. Нека  $b \in \bigcup \{R[x] \mid x \in X\}$ . Нека  $x_0 \in X$  е т.ч.  $b \in R[x_0]$ . Но  $x_0 \subseteq \bigcup X$ . Пак от монотонността следва че  $b \in R[x_0] \subseteq R[\bigcup X]$ .

Тв Нека Rel(R) и X е мн-во за което е изп. че  $\forall x (x \in X \Rightarrow x \subseteq Dom(R))$ . Тогава  $R[\cap X] \subseteq \cap \{R[x] \mid x \in X\}$ , като не винаги е в сила обратното включване. Ако допълнително  $(\forall y Rng(R))(\exists !x \in Dom(R))(< x, y > \in R))$  (нещо като инективност), то тогава  $R[\cap X] = \cap \{R[x] \mid x \in X\}$ .

Док: Нека  $b \in R[\cap X]$ . Нека  $a \in \cap X$  е такова че  $< a, b > \in R$ . Следователно за всяко  $x \in X, a \in x$ . Следователно за вскяо  $x \in X, b \in R[x]$ . Така b принадлежи на всички елементи на  $\{R[x] \mid x \in X\}$ , значи  $b \in \cap \{R[x] \mid x \in X\}$ .

```
Пример: X = \{\{a_1\}, a_2\} и a_1 \neq a_2, R = \{\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle\} \cap X = \{a_1\} \cap \{a_2\} = \emptyset, R[\cap X] = \emptyset R[\{a_1\}] = \{y \mid (\exists x \in \{a_1\})(\langle x, y \rangle \in R)\} = \{y \mid \langle a_1, y \rangle \in R\} = \{b\}. Значи R[\{a_2\}] = \{b\}, \{R[x] \mid x \in X\} = \{\{b\}\}. \cap \{\{b\}\} = \{b\}, A = \{a\}, a = \{b\}, x \in \cap A \Leftrightarrow \forall a \in A(x \in a)
```

Нека  $(\forall y \in Rng(R))(\exists ! x \in Dom(R))(< x, y > \in R)$ . Нека  $b \in \cap \{R[x] \mid x \in X\}$ . Следователно за всяко  $x \in X, b \in R[x]$ , т.е. за всяко  $x \in X$  същ  $a \in x$ , т.ч.  $< a, b > \in R$ .

 $\underline{b} \in Rng(R)$ :  $x \neq \emptyset$ . Нека  $x_0 \in X$ . Тогава  $b \in R[x_0]$ . След  $b \in Rng(R)$ . Нека  $a_0 \in x_0$  е т.ч.  $\overline{< a_0, b > \in R}$ . Нека сега  $x \in X$  е произволно и  $a \in x$  е т.ч.  $\overline{< a, b > \in R}$ . Но  $\overline{< a_0, b > \in R}$ , от където  $a_0 = a$ . В частност  $a_0 \in x$ , но x е произволно. Следователно  $a_0 \in \cap X$ . Но тогава  $b \in R[\cap X]$ , защото  $\overline{< a_0, b > \in R}$  и  $a_0 \in \cap X$ . Така  $\cap \{R[x] \mid x \in X\} \subseteq R[\cap X]$ 

### < Функции >

Опр Казваме че релацията R е функция, ако Funct(R), където  $Funct(R) \leftrightharpoons Rel(R) \land \forall x \forall y \forall y' (< x, y > \in R \land < x, y' > \in R \Rightarrow y = y')$ 

- 1.  $Funct(R) \implies Rel(R)$
- 2.  $Funct(R), Dom(R) = A, Rng(R) \subseteq B$ , то пишем  $R: A \to B$
- 3.  $Funct(R), Dom(R) \subseteq A, Rng(R) \subseteq B$ , то ще казваме че R е частична функция от A към B. Ще пишем  $R:A \Rightarrow B$
- 4.  $R:A\to B$  и Rng(R)=B, ще казваме че R е сюрекция (епиморфизъм) на A върху B. Означаваме с  $R:A\twoheadrightarrow B$
- 5.  $R:A\to B, R$  е инекция (мономорфизъм), ако  $\forall x\forall x'\forall y(x\neq x'\land < x,y>\in R\Rightarrow < x',y>\notin R)$ . Означаваме  $R:A\rightarrowtail B$

6.  $R:A \to B$  е биекция, ако R е сюрекция на A в-ху B и R е инекция. Означаваме  $R:A \rightarrowtail B$ 

Понеже функциите са релации, директно се пренасят и понятията за образ и праобраз.

Ще използваме f, g, h..., за да означаваме че дадена релация е функция.

Ако Func(f), вместо  $\langle x, y \rangle \in f$  ще пишем f(x) = y

Следствие | Нека Func(f) и нека X и Y са такива мн-ва че:

 $\overline{(\forall x \in X)(x} \subseteq Dom(f))$  и  $(\forall y \in Y)(y \subseteq Rng(f))$ .

Тогава  $f[\bigcup X] = \bigcup \{f[x] \mid x \in X\}$  и  $f[\cap X] \subseteq \cap \{f[x] \mid x \in X\}$  (равенство не винаги се достига). Изпълнено е че  $f^{-1}[\bigcup X] = \bigcup \{f^{-1}[x] \mid x \in X\}$  и  $f^{-1}[\cap X] = \cap \{f^{-1}[x] \mid x \in X\}$ .

 $\forall y \in Rng(R) \exists ! x \in Dom(R) (< x, y > \in R)$ 

 $(\Rightarrow)$  Нека  $Func(f^{-1})$ . Нека x, x', y са т.ч.  $x \neq x'$  и  $< x, y > \in f$ . Тогава  $< y, x > \in f^{-1}$ . Ако доп, че  $< x', y > \in f$ , то  $< y, x' > \in f^{-1}$ . Понеже  $f^{-1}$  е функция, то x = x'. Но  $f^{-1}$  е функция, т.е.  $x \neq x' \implies$  Противоречие!  $\implies < x', y > \notin f$  и значи f е инективна.

( $\Leftarrow$ ) Нека f е инективна. Нека x, y, y' са т.ч.  $\langle x, y \rangle, \langle x, y' \rangle \in f^{-1}$ .

Тогава  $< y, x >, < y', x > \in f$  и понеже f е инективна то y = y'. Следователно  $Func(f^{-1})$ .

Тогава  $f \circ g$  е функция с  $Dom(f \circ g) = \{x \mid x \in Dom(f) \land f(x) \in Deom(g)\}.$  За всяко  $x \in Dom(f \circ g)$  е вярно  $(f \circ g)(x) = f(g(x)).$ 

Док:  $Rel(f \circ g)$ . Нека  $< x, y>, < x, y'> \in f \circ g$ . Нека z, z' са т.ч.  $< x, z> \in f \land < z', y> \in g$  и  $< x, z'> \in f \land < z', y'> \in g$ 

 $Func(f) \implies z = z' \implies \langle z, y \rangle, \langle z, y' \rangle \in g \implies y = y' \text{ (or } Func(g))$ 

Нека  $x \in Dom(f \circ g)$ . Нека y е т.ч.  $< x, y > \in f \circ g$ . Нека z е т.ч.  $< x, z > \in f$  и  $< z, y > \in g$ . Тогава  $x \in Dom(f)$  и z = f(x). Но  $z \in Dom(g)$ , от където  $f(x) \in Dom(g)$ .

Сега наобратно. Взимаме  $x \in Dom(f)$  и  $f(x) \in Dom(g)$ . Тогава  $\langle x, f(x) \rangle \in f$  и  $\langle f(x), g(f(x)) \rangle \in g$ . Следователно  $\langle x, g(f(x)) \rangle \in f \circ g$ . В частност получаваме че  $x \in Dom(f \circ g)$  и понеже  $Func(f \circ g)$ , то  $(f \circ g)(x) = g(f(x))$ .

Опр Казваме, че функциите f и g са съвместими, ако  $Func(f \cup g)$ .

 $\boxed{\text{Onp}} f: A \to B, A_1 \subseteq A$ 

Рестрикция на f до  $A_1$ :  $f \upharpoonright A_1 \leftrightharpoons f \cap (A_1 \times Rng(f))$ 

Тв f и g са съвместими  $\iff$   $f \upharpoonright (Dom(f) \cap Dom(g)) = g \upharpoonright (Dom(f) \cap Dom(g))$ 

Док: To be continued...

Да уточним някакви неща:

$$f: A \to B, A_1 \subseteq A = Dom(f)$$

Рестрикция на f до  $A_1$ :  $f \upharpoonright A_1 = f \cap (A_1 \times Rng(f)) = \{ \langle x, f(x) \rangle \mid x \in A_1 \}$ 

- 1.  $Funct(f \upharpoonright A_1)$
- 2.  $f \upharpoonright A_1 \subseteq f \upharpoonright A$
- 3.  $A_1 \subseteq A_2 \subseteq A \Rightarrow f \upharpoonright A_1 \subseteq f \upharpoonright A_2$

Опр f и g са съвместими функции, ако  $f \cup g$  е функция.

Тв Функциите f и g са съвместими  $\Leftrightarrow f \upharpoonright (Dom(f) \cap Dom(g)) = g \upharpoonright (Dom(f) \cap Dom(g))$ 

 $\underline{\text{Док:}}\ (\to) \ \text{Нека}\ Funct(f \cup g). \ \text{Нека}\ u \in f \upharpoonright (Dom(f) \cap Dom(g)). \ \text{Тогава}\ u = < x, y > \text{като}\ x \in Dom(f) \cap Dom(g)\ и\ y = (f \upharpoonright (Dom(f) \cap Dom(g)))(x) = f(x). \ \text{Ропеve}\ x \in Dom(g),\ \text{то}\ < x, g(x) > \in g. \ \text{Така}\ < x, f(x) >, < x, g(x) > \in f \cup g. \ \text{Понеже}\ Funct(f \cup g),\ \text{то}\ f(x) = y = g(x). \ \text{След.}\ u = < x, y > = < x, g(x) > \in g\ и\ \text{понеже}\ x \in Dom(f) \cap Dom(g),\ \text{то}\ u = < x, y > \in y \upharpoonright (Dom(f) \cap Dom(g)).$ 

( $\Leftarrow$ ) Нека  $f \upharpoonright (Dom(f) \cap Dom(g)) = g \upharpoonright (Dom(f) \cap Dom(g))$ . Ясно е, че  $Rel(f \cup g)$ . Нека  $< x, y >, < x, y' > \in f \cup g$  Възможни са 3 случея:

- 1.  $\langle x, y \rangle, \langle x, y' \rangle \in f$ . Ho Funct(f), от където y = y'.
- $2. < x, y >, < x, y' > \in g$ . Подобно получава се y = y'
- 3.  $< x, y > \in f, < x, y' > \in g$ . Тогава  $x \in Dom(f), x \in Dom(g)$ . След  $x \in Dom(f) \cap Dom(g)$ . Така y = f(x) = g(x) = y'

Тв Нека F е множество от две по две съвместими функции. Тогава  $\bigcup F$  е функция като:  $Dom(\bigcup F) = \bigcup \{Dom(f) \mid f \in F\}$   $Rng(\bigcup F) = \bigcap \{Rng(f) \mid f \in F\}$ 

Док: Ясно е, че  $Rel(\bigcup F)$ . Нека  $< x, y > \in \bigcup F$  и  $< x, y' > \in \bigcup F$ . Нека  $f, f' \in F$  са такива че  $< x, y > \in f$  и  $< x, y' > \in f'$ . Тогава  $Funct(f \cup f')$ , като  $< x, y > , < x, y' > \in f \cup f'$ . Следователно y = y'. Така получаваме  $Funct(\bigcup F)$ .

Нека  $x \in Dom(\bigcup F)$ . Нека y е т.ч.  $\langle x, y \rangle \in \bigcup F$ . Нека  $f_0 \in F$  е такова че  $\langle x, y \rangle \in f_0$ . Тогава  $x \in Dom(f_0)$  и следователно  $x \in \bigcup \{Dom(f) \mid f \in F\}$ . Нека сега  $f_0 \in F$  е т.ч.  $x \in Dom(f_0)$ . Но  $f_0 \subseteq \bigcup F$  и  $\bigcup F$  е функция, следователно  $Dom(f_0) \subseteq Dom(\bigcup F)$ . Следователно  $x \in Dom(\bigcup F)$ 

Опр За  $f: \mathcal{P}(A) \to \mathcal{P}(A)$ , ще казваме че f е монотонна, ако:  $(\forall X_1 \supset A)(\forall X_2 \subseteq A)(X_1 \subseteq X2 \to f(X_1) \subseteq f(X_2))$ 

Опр И за монотонна  $f: B \to B, x$  е неподвижнда точка на f, ако f(x) = x

Лема (Тарски)

Нека  $f:\mathcal{P}(A)\to\mathcal{P}(A)$  е монотонна функция. Тогава f има неподвижнда точка. Нещо повече, f има най-малка и най-голяма неподвижнда точка: тоест съществуват  $X_1,X_2\in\mathcal{P}(A)$  т.ч.  $f(X_1)=X_1,f(X_2)=X_2$  и за всяко  $X\in\mathcal{P}(A)$  с f(X)=X е изпълнено, че  $X_1\subseteq X\subseteq X_2$ .

<u>Док:</u> Нека  $\Pi = \{X \mid X \subseteq A \land f(X) \subseteq X\}$  Понеже  $A \in \Pi$ , то  $\Pi \neq \emptyset$ . Нека  $X_1 = \bigcap \Pi$ . За вс.  $X \in \Pi$ ,  $X_1 = \bigcap \Pi \subseteq X$ . Понеже f е монотонна, то за вс.  $X \in \Pi$ ,  $f(X_1) \subseteq f(X) \subseteq X$ . Следователно  $f(X_1) \subseteq \bigcap \Pi = X_1$ . Понеже  $X_1 \subseteq A$ , то  $X_1 \in \Pi$ . Отново от монотонността на f имаме, че  $f(f(X_1)) \subseteq f(X_1)$ . Значи  $f(X_1) \in \Pi$ . Следователно  $X_1 \subseteq f(X_1)$ . От тук  $f(X_1) = X_1$  и така  $X_1$  е неподвижнда точка на f. Ясно се вижда че:  $f(X) = X \implies x \in \Pi \implies X_1 = \bigcap \Pi \subseteq X \implies X_1$  е най-малката неподвижна точка на f. За най-голяма неподвижна точка - за домашна!

### (от Тинко)

< Равномощни множества. Сравняване на множества по мощност >

 $\overline{\operatorname{def}}$  Казваме че A и B са равномощни, ако съществува биекция на A върху B, тоест  $\exists f(f:A\rightarrowtail B)$ . Означения: |A|=|B| или  $\overline{\overline{A}}=\overline{\overline{B}}$  Съответно  $\overline{\overline{A}}\neq\overline{\overline{B}}\leftrightarrows\neg(\overline{\overline{A}}=\overline{\overline{B}})$ 

Казваме че мощността на A не надминава мощността на B, ако  $\exists f(f:A\rightarrowtail B).$  Пишем  $\overline{\overline{A}}\leq \overline{\overline{B}}.$ 

Казваме че мощността на A е строго по-малка от мощността на B, ако  $\overline{\overline{A}} \leq \overline{\overline{B}} \wedge \overline{\overline{A}} \neq \overline{\overline{B}}$ . Пишем  $\overline{\overline{A}} < \overline{\overline{B}}$ .

Св

- 1.  $\overline{\overline{A}} = \overline{\overline{A}}$ , or  $Id_A : A \rightarrow A$
- 2.  $\overline{\overline{A}} = \overline{\overline{B}} \implies \overline{\overline{B}} = \overline{\overline{A}}$
- 3.  $\overline{\overline{A}} = \overline{\overline{B}} \wedge \overline{\overline{B}} = \overline{\overline{C}} \implies \overline{\overline{A}} = \overline{\overline{C}}$

Док 2: Нека  $f_0: A \rightarrowtail B$  (свидетел за съществуващата биекция), тогава  $f_0^{-1}: B \rightarrowtail A$ . Значи  $\exists f'(f': B \rightarrowtail A)$ 

Док 3:  $\exists f(A \rightarrowtail B)$  и  $\exists f(B \rightarrowtail C)$ . Нека вземем свидетели:  $f_0: A \rightarrowtail B, f_1: B \rightarrowtail C$ . Нека  $h = f_0 \circ f_1$ , т.е.  $h(x) = f_1(f_0(x))$ . Вижда се че  $h: A \rightarrowtail C$ . Следователно  $\exists f'(f': A \rightarrowtail C)$ .

Нека A и c са произволни множества. Тогава  $\overline{\overline{A}} = \overline{\overline{A} \times \{c\}}$  и  $\overline{\overline{A}} = \overline{\overline{\{c\}} \times \overline{A}}$  Дефинираме  $f: f(a) = \langle a, c \rangle$  за вс.  $a \in A$ .  $f = \{u \mid \exists a (a \in A \land u = \langle a, \langle a, c \rangle \rangle)\} = \{\langle a, c \rangle \mid a \in A\}$ , съответно тук отделяме  $u \in A \times \{c\}$ . idk???

$$\boxed{\mathsf{T}_{\mathsf{B}}} \ A \neq \emptyset \Longleftrightarrow \neg \exists B \forall x (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$$

<u>Док:</u> Нека  $A \neq \emptyset$ .  $a_0 \in A$ . Да доп. че  $\exists B \forall x (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$ . Нека B е свидетел за съществуването  $\forall x (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$ . И нека вземем  $B_0 \leftrightharpoons \{w \mid w \in B \land \exists c (w = A \times \{c\})\}$ . Значи  $Rel(\bigcup B_0)$ .

Нека t е произволно множеството, тогава  $A \times \{t\} \in B_0$ . Значи за  $< a_0, t> \in \bigcup B_0$ . Тогава  $t \in Rng(\bigcup B_0)$ . Така,  $\forall t (t \in Rng(\bigcup B_0))$  - абсурт! (от допускането че  $B_0$  съществува).

Допускането че  $A \neq \emptyset$  беше съществено.

Ако  $A = \emptyset$ , то  $\exists B (x \in B \Leftrightarrow \overline{\overline{x}} = \overline{\overline{A}})$ . И единствената възможност е  $B = \{\emptyset\}$ 

$$\overline{|\mathsf{T}_{\mathsf{B}}|} \, \forall A \forall B \exists A' \exists B' (\overline{\overline{A}} = \overline{\overline{A'}} \wedge \overline{\overline{B}} = \overline{\overline{B'}} \wedge A' \cap B' = \emptyset)$$

 $\overline{\coprod}$ е дефинираме  $\overline{\overline{A}} + \overline{\overline{B}} \leftrightharpoons \overline{\overline{A' \cup B'}}$ . Как го постигаме?

Взимаме  $c_1 \neq c_2$  и тогава  $A' \leftrightharpoons A \times \{c_1c1\}$  и  $B' \leftrightharpoons B \times \{c_2\}$ . А  $A' \cap B' = \emptyset$ 

$$\overline{\text{Св}}$$
 Ако  $\overline{\overline{A'}} = \overline{\overline{A''}} \wedge \overline{\overline{B'}} = \overline{\overline{B''}} \wedge A' \cap B' = \emptyset \wedge A'' \cap B'' = \emptyset \implies \overline{\overline{A' \cup B''}} = \overline{\overline{A'' \cup B''}}$ 

<u>Док:</u> Взимаме свидетели  $f_1: A' \rightarrowtail A''$  и  $f_2: B' \rightarrowtail B''$ , тогава  $f_1 \cup f_2$  е функция, защото  $f_1$  и  $f_2$  са съвместими. Съответно  $Dom(f_1 \cup f_2) = Dom(f_1) \cup Dom(f_2) = A' \cup B'$ . Аналогично за за  $Rng(f_1 \cup f_2)$ 

[def] Бихме искали да го дефинираме така  $\overline{\overline{A}}.\overline{\overline{B}} = \overline{\overline{A} imes \overline{B}}.$ 

Пак ще вземем равномощни на  $\overline{A}$  и B.  $\overline{\overline{A}} = \overline{\overline{A'}} \wedge \overline{\overline{B}} = \overline{\overline{B'}} \implies \overline{\overline{A \times B}} = \overline{\overline{A' \times B'}}.$ 

 $\overline{\overline{\overline{A}}} = k$  и  $\overline{\overline{\overline{B}}} = n$ , то това ще са всички функции от B в A. Искаме да покажем  $\overline{\overline{\overline{A}}} = \overline{\overline{\overline{B}}}_A$ , където  $B_A = \{f \mid f: B \to A\}$ .  $\overline{\overline{\overline{A}}} = \overline{\overline{\overline{A'}}} \wedge \overline{\overline{\overline{B}}} = \overline{\overline{\overline{B'}}} \implies \overline{\overline{\overline{\overline{A}}}} = \overline{\overline{\overline{B'}}}_A$ 

### Задачи

1. 
$$\forall A \exists A' (\overline{\overline{A}} = \overline{\overline{A'}} \land A \cap A' = \emptyset)$$

2. Нека 
$$A \cap B = \emptyset$$
, тогава  $\overline{\overline{^{A \cup B}c}} = \overline{\overline{^{A}c}} \times \overline{\overline{^{B}c}}$ 

3. 2 
$$\leftrightharpoons$$
 {0,1}, където 0  $\leftrightharpoons$   $\emptyset$ , 1  $\leftrightharpoons$  { $\emptyset$ }

4. 
$$\overline{\overline{A_2}} = \overline{\overline{\mathcal{P}(A)}}$$

5. 
$$\overline{(A \times B)_C} = \overline{\overline{A_{B_C}}}$$

 $\overline{\mathbf{T}}$  (Кантор-Шрьодер-Берщайн)  $\overline{\overline{A}} \leq \overline{\overline{B}} \wedge \overline{\overline{B}} \leq \overline{\overline{A}} \implies \overline{\overline{A}} = \overline{\overline{B}}$ 

<u>Док:</u> Нека  $f:A \mapsto B, g:B \mapsto A$ . Търсим биекция h. Можем да дефинираме  $h = (f \upharpoonright X) \cup (h^{-1} \upharpoonright (A \backslash X))$ , за някое  $X \subseteq A$ . Как да вземем такова X?

Трябва ни  $A \setminus g[B \setminus f[x]] = X$  (търсим неподвижна точка?).

Дефинираме  $\mathcal{F}: \mathcal{P}(A) \to \mathcal{P}(A)$ , за  $X \subseteq A$  полагаме  $\mathcal{F}(X) \leftrightharpoons A \setminus g[B \setminus f[x]]$  и твърдим че  $\mathcal{F}$  е монотонно. Наистина нека  $X_1 \subseteq X_2 \subseteq A$  и  $f[X_1] \subseteq f[X_2]$ . Значи  $B \setminus f[X_2] \subseteq B \setminus f[X_1] \subseteq B$  и  $g[B \setminus f[X_2]] \subseteq g[B \setminus f[X_1]] \subseteq A \setminus g[B \setminus f[X_1]] \subseteq A$ .

 $\mathcal{F}(X_1) \subseteq \mathcal{F}(X_2)$ . Следователно от Лемата на Тарски за неподвижната точка -  $\mathcal{F}$  ма неповижна точка. Нека  $X_0$  е неподвижна точка на  $\mathcal{F}$ , т.е.  $X_0 \subseteq A$  и  $\mathcal{F}(X_0) = X_0$ .

 $A \setminus g[B \setminus f[X_0]] = X_0$  и  $A \setminus X_0 = g[B \setminus f[X_0]] = x_0$ . Това може ли да е вярно за произволно ножество? Не, защото  $X_0 \subseteq A$ , т.е.  $Rng(g) \subseteq A$ 

Ние дефинирахме  $h = (f \upharpoonright X) \cup (h^{-1} \upharpoonright (A \setminus X))$ . Това е възможно защото  $Dom(g^{-1}) = Rng(g)$  и  $A \setminus X_0 \subseteq Dom(g^{-1})$ . Каква е дефиниционната област на h?  $Dom(h) = Dom(f \upharpoonright x_0) \cup Dom(g^{-1} \upharpoonright (A \setminus X_0)) = X_0 \cup (A \setminus x_0) = A$ 

 $Rng(h) = Rng(f \upharpoonright X_0) \cup Rng(g^{-1} \upharpoonright (A \setminus X_0)) = f[X_0] \cup (B \setminus X_0) = B$ . Това което се случва е че ако  $Dom(f \upharpoonright X_0) \cap Dom(g^{-1} \upharpoonright (A \setminus X_0)) = \emptyset$  и  $Rng(f \upharpoonright X_0) \cap Rng(g^{-1} \upharpoonright (A \setminus X_0)) = \emptyset$  и те са инекции, е в сила твърдението че тяхното обединение също е инекция. Така теоремата е доказана.

### |T| В $\mathcal{ZF}$ следните са еквивалентни:

- $\forall A \forall B (\overline{\overline{A}} \leq \overline{\overline{B}} \vee \overline{\overline{B}} \leq \overline{\overline{A}})$
- Аксиомата за избора