Brian Mueller - Homework

Encrypt the first three letters of your first name in uppercase letter

ENCRYPTION TYPE: RSA

PUBLIC KEY: n = 187, e=3 (to encrypt)

PRIVATE KEY: p=11, q=17, d=107 (to decrypt)

*Background information: pxq=n (11x17=187)

p, q - chosen prime numbers, the bigger the better, more secure

e - chosen prime number

m - message to encrypt in corresponding ASCII code

c - ciphered text (me mod n)

ASCII Table:

Α	В	С	D	E	F	G	н	1	J	K	L	М
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	Р	Q	R	s	Т	U	٧	w	x	Υ	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

ENCRYPTION					
Instructions	Example: H	First Letter: B	Second Letter: R	Third Letter: I	
1. Find the corresponding ASCII code to your letter	72	66	82	73	
2. Calculate m ^e	72 ³ = 373248	287496	551368	389017	
3. Find c = me mod n	373248 mod 187 = 183	287496 mod 187 = 77	551368 mod 187 = 92	389017 mod 187 = 57	
4. Your ciphered letter (c value)	183	77	92	57	

DECRYPTION					
Instructions	structions Example: 183		Ciphered letter: 166	Ciphered letter: 137	
1. Calculate m=c ^d mod n	$m = c^d \mod n = 183^{107} \mod 187 = 72$	77 ¹⁰⁷ mod 187 = 66	166 ¹⁰⁷ mod 187 = 89	137 ¹⁰⁷ mod 187 = 69	
2. Convert m to letter based on ASCII table	72 = H	66 = B	89 = Y	69 = E	

Use https://www.wolframalpha.com/ to calculate modulo mathematics and huge exponents

Extension: Encrypt your full first name (add columns to the table above - right click on the table and choose "insert column right" option)

Use this code to check your work in the Homework above for Encryption ONLY:

```
import math

message = input("Enter the letter to be encrypted: ")
ascii_code = ord(message)

p = 11 #private key
q = 17 #private key
e = 3 #public key

n = p*q #public key

#Encryption, c = m^e mod n
def encrypt(msg):
    m_power_e = math.pow(msg,e) #calculates m to the power of e
    c = m_power_e % n #find modulo to get the ciphered text
    print("Encrypted Message is: ", c)
    return c

print("ASCII Code is: ", ascii_code)
c = encrypt(ascii_code)
```

https://github.com/hunter-teacher-cert/work-topics-leungbenson/blob/master/public_key/RSA.md

ASYNC:

Find another type of encryption and give a brief summary of how it works. Post on Slack and comment on one other person's post.

Already covered:

- AES
- FPE
- Data Encryption Standard
- Triple DES
- Blowfish encryption
- Quantum Cryptography
- Playfair Cipher
- Hill Cipher
- ECC

My choice: Twofish

Twofish Encryption

https://www.techtarget.com/searchsecurity/definition/Twofish

- * Is a successor to Blowfish, which Victoria mentioned.
- * Symmetric, 128-bit
- * Single key to encrypt/decrypt
- * Uses pre-computed, key-dependent substitution boxes (S-boxes), which hides the relationship between the key and the encrypted text.
- * Safe from brute-force attacks, but S-boxes are vulnerable to side-channel attacks
- * Data becomes about 4x larger when encrypted