128 Equalizers

transformation given by

$$s = \frac{2}{T} \frac{z - 1}{z + 1}. ag{5.26}$$

Tables 5.2–5.5 contain the coefficients of the second-order transfer function

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}},$$
(5.27)

which are determined by the bilinear transformation and the auxiliary variable $K = \tan(\omega_c T/2)$ for all audio filter types discussed. Further filter designs of peak and shelving filters are discussed in [Moo83, Whi86, Sha92, Bri94, Orf96a, Dat97, Cla00]. A method for reducing the warping effect of the bilinear transform is proposed in [Orf96b]. Strategies for time-variant switching of audio filters can be found in [Rab88, Mou90, Zöl93, Din95, Väl98].

Table 5.2 Low-pass/high-pass/band-pass filter design.

Low-pass (second order)				
a_0	a_1	a_2	b_1	b_2
$\frac{K^2}{1+\sqrt{2}K+K^2}$	$\frac{2K^2}{1+\sqrt{2}K+K^2}$	$\frac{K^2}{1+\sqrt{2}K+K^2}$	$\frac{2(K^2 - 1)}{1 + \sqrt{2}K + K^2}$	
$1 + \sqrt{2K + K^2}$	$1 + \sqrt{2K + K^2}$	$1 + \sqrt{2K + K^2}$	$1 + \sqrt{2K + K^2}$	$1 + \sqrt{2K + K^2}$
High-pass (second order)				
a_0	a_1	a_2	b_1	b_2
1		1		$1 - \sqrt{2}K + K^2$
$1 + \sqrt{2}K + K^2$	$1 + \sqrt{2}K + K^2$	$1 + \sqrt{2}K + K^2$	$1 + \sqrt{2}K + K^2$	$1 + \sqrt{2}K + K^2$
Band-pass (second order)				
a_0	a_1	a_2	b_1	b_2
$\frac{1}{Q}K$	0	$\frac{1}{Q}K$	$2(K^2-1)$	$1 - \frac{1}{Q}K + K^2$
$\frac{1}{1 + \frac{1}{Q}K + K^2}$	0	$-\frac{1}{1+\frac{1}{Q}K+K^2}$	$\frac{2(K^2 - 1)}{1 + \frac{1}{Q}K + K^2}$	$\frac{1}{1 + \frac{1}{Q}K + K^2}$

5.2.2 Parametric Filter Structures

Parametric filter structures allow direct access to the parameters of the transfer function, like center/cutoff frequency, bandwidth and gain, via control of associated coefficients. To modify one of these parameters, it is therefore not necessary to compute a complete set of coefficients for a second-order transfer function, but instead only one coefficient in the filter structure is calculated.

Independent control of gain, cutoff/center frequency and bandwidth for shelving and peak filters is achieved by a feed forward (FF) structure for *boost* and a feed backward