Цифровое моделирование движения поездов Филёвской линии Московского метрополитена с учётом работы систем АТДП

Цель работы

Оценка пропускной способности Филёвской линии ГУП «Московский метрополитен» с учетом нескольких систем интервального регулирования:

- Действующей системы интервального регулирования движения поездов на основе автоблокировки
- Планируемой к внедрению системы автоматической локомотивной сигнализации с автоматическим регулированием скорости (АЛС-АРС) в качестве основного типа сигнализации
- Перспективной системы управления движением поездов по радиоканалу с плавающими блок-участками в качестве основной системы и использованием АЛС-АРС в качестве резервной системы

План выполнения работы по каждому этапу и относительный объем в рамках всего проекта

I Этап

Создание цифровой модели Филёвской линии с текущим устройством автоматики и телемеханики

II Этап

Корректировка ПО для моделирования работы линии с рассматриваемыми системами интервального регулирования. Анализ влияния нарушения

Анализ влияния нарушения нормальной работы устройств на перевозочный процесс

III Этап

Моделирование работы линии с рассматриваемыми системами интервального регулирования. Сравнение результатов моделирования

IV Этап

Подготовка отчетной документации. Согласование результатов моделирования.

Укрупненная схема построения цифровой модели Филёвской линии ГУП «Московский метрополитен»

Моделирование движения поездов на линии, оборудованной системой АЛС-АРС

- 1. Расчет блок-участков АЛС-АРС
- 2. Учет алгоритмов взаимного влияния поездов при движении на линии, оборудованной АЛС-APC
- 3. Учет графика сигнализации системы АЛС-АРС Филёвской линии
- 4. Моделирование движения поездов на линии в условиях нормальной работы
- 5. Моделирование движения поездов на линии в условиях возникновения внештатных ситуаций
- Моделирование движения поездов на линии при увеличении парности графика движения

Визуальное отображение системы АЛС-АРС в цифровой модели линии

Моделирование движения поездов на линии, оборудованной системой управления по радиоканалу

- 1. Учет алгоритмов взаимного влияния поездов при движении на линии, оборудованной системой управления по радиоканалу и подвижными блок-участками
- 2. Учет ограничений по безопасности движения и эксплуатации устройств
- 3. Моделирование движения поездов на линии в условиях нормальной работы
- 4. Моделирование движения поездов на линии в условиях возникновения внештатных ситуаций
- 5. Моделирование движения поездов на линии при увеличении парности графика движения

Визуальное отображение системы СВТС в цифровой модели линии

Сравнение результатов моделирования движения поездов в условиях возникновения ННР при различных системах АТДП

Тип ННР	Время, необходимое для восстановления межпоездного интервала (мин)		
	Текущая система ИР АБ с автостопами	Проектируемая система ИР АЛС-АРС	Перспективная система ИР СВТС
Человек или посторонний предмет на пути	36	36	36
Потеря управления подвижным составом	70	64	64
Заклинивание колесных пар	68	68	68
Проезд поездом запрещающего показания светофора	30	-	-
Неисправность устройств СЦБ (ложная занятость участка)	56	46	46
Потеря беспроводной связи с подвижным составом	-	-	60
Возможность увеличения парности графика движения в час-пик	-	±	±

При возникновении ННР с разными системами АТДП в цифровой модели линии моделируются идентичные мероприятия по диспетчерской регулировке восстановления движения.

Лимитирующие элементы Филёвской линии

- 1. Наличие враждебного маршрута на станции Александровский Сад
- 2. Зависимость устройств ЖАТ не позволяющая открыть светофор АС-402Г **(A)** до АС-404 **(Б)** с запрещающим показанием

- 3. Примыкание II главного пути участка Международная - Киевская к II главному пути участка Кунцевская - Александровский Сад
- 4. Продольный профиль II главного пути участка Международная Киевская (подъем >40‰, огр. скорости 50 км/ч)
- 5. Наличие враждебного маршрута на станции Международная
- 6. Наличие враждебного маршрута и путевое развитие станции Кунцевская
- 7. Протяженный участок удаления от станции Пионерская (~650 м)
- 8. Наличие постояннодействующих ограничений скорости

Заключение

Преимущества систем интервального регулирования (АЛС-АРС, СВТС) при организации движения поездов

Снижение зависимости от лимитирующих элементов (враждебных маршрутов, устройств АБ), обеспечение интервала движения при существующих объемах

Минимизация времени восстановления межпоездного интервала в условиях возникновения внештатных ситуаций

Факторы, снижающие эффект от внедрения систем интервального регулирования (АЛС-АРС, СВТС)

Постояннодействующие инфраструктурные ограничения

Невозможность развития инфраструктуры линии Топология Филёвской линии

СПАСИБО ЗА ВНИМАНИЕ

Справочный материал по СВТС

IEEE Std 1474.3-2008
IEEE Recommended Practice for Communication-Based Train Control (CBTC)
System Design and Functional Allocations

Speed restriction(s) within train's intended route

PAP (DP) ≠ V_MAL

Domaine de protection / Protection Domain

Domaine d'autorisation de marche / Vital Movement Authority

Courbe de FU

EB Curve

TCC

PAP / DP

V-MAL

Narge de recul
Rollback Margin

TCC

LTV nulle / Zero SSO

V-MAL

Domaine de protection область защиты

Domaine d'autorisation de marche область разрешения движения

(V-MAL: Vital Movement Authority)

Domaine d'exploitation область эксплуатации

Courbe de consigne кривая предписанной скорости Target speed curve кривая предписанной скорости

Domaine de marche область хода

(NV _MAL: Non Vital Movement Authority) граница разрешенного безопасного движения

Courbe de FU кривая экстренного торможения

Marge de recul граница отката

Тсс поезд, передающий и получающий информацию, под контролем

LTV nulle / Zero SSO временное ограничение нулевой скорости

Quai станционная платформа MAC: Marge d'anticollision граница антистолкновения PAF: Point d'Arrêt Fonctionnel точка функциональной остановки

PAP: Point A Protéger точка защиты