1 Field extensions and algebraic elements

Definition 1 (Field extension). When K and L are fields, we say that L is an <u>extension</u> of K if there is a homomorphism $\varphi: K \to L$. We then talk about the field extension (φ, K, L) .

Definition 2 (Degree, finite extension). Suppose that L: K is a field extension. We define the <u>degree</u> of L: K to be the dimension of L as a vector space over K. We use the notation [L:K] to denote the <u>degree</u> of L: K. Further, we say that L: K is a finite extension if $[L:K] < \infty$.

Definition 3 (Tower, intermediate field). We say that M:L:K is a <u>tower</u> of field extensions if M:L and L:K are field extensions, and in this case we say that L is an <u>intermediate field</u> (relative to the extension M:K)

Proposition 1.1. Suppose that L is a field extension of K with associated embedding $\varphi: K \to L$. Then L forms a vector space over K, under the operations

(vector addition)
$$\psi: L \times L \to L$$
 given by $(v_1, v_2) \mapsto v_1 + v_2$
(scalar multiplication) $\tau: K \times L \to L$ given by $(k, v) \mapsto \varphi(k)v$.

Theorem 1.2 (The Tower Law). Suppose that M:L:K is a tower of field extensions. Then M:K is a field extension, and [M:K] = [M:L][L:K].

Corollary 1.3. Suppose that L: K is a field extension for which [L: K] is a prime number. Then whenever L: M: K is a tower of field extensions with $K \subseteq M \subseteq L$, one has either M = L or M = K.

Proposition 1.4. Suppose that K and L are fields and that $\varphi: K \to L$ is a homomorphism. With t and y denoting indeterminates, extend the homomorphism φ to the mapping $\psi: K[t] \to L[y]$ by defining

$$\psi(a_0 + a_1t + \dots + a_nt^n) = \varphi(a_0) + \varphi(a_1)y + \dots + \varphi(a_n)y^n.$$

Then $\psi: K[t] \to L[y]$ is an injective homomorphism. Also, when $\varphi: K \to L$ is surjective, then $\psi: K[t] \to L[y]$ is surjective and maps irreducible polynomials in K[t] to irreducible polynomials in L[y].

Definition 4 (Algebraic/transcendental element). Suppose that L: K is a field extension with associated embedding φ . Suppose also that $\alpha \in L$.

- (i) We say that α is algebraic over K when α is the root of $\varphi(f)$ for some non-zero polynomial $f \in K[t]$.
- (ii) If α is not algebraic over K, then we say α is transcendental over K.
- (iii) When every element of L is algebraic over K, we say that the field L is algebraic over K.

Definition 5 (Evaluation map). Suppose that L: K is a field extension with $K \subseteq L$, and that $\alpha \in L$. We define the evaluation map $E_{\alpha}: K[t] \to L$ by putting $E_{\alpha}(f) = f(\alpha)$ for each $f \in K[t]$.

Proposition 1.5. Suppose L: K is a field extension with $K \subseteq L$, and $\alpha \in L$. Then E_{α} is a ring homomorphism.

Proposition 1.6. Let L:K be a field extension with $K\subseteq L$, and suppose that $\alpha\in L$ is algebraic over K. Then

$$I = ker(E_{\alpha}) = f \in K[t] : f(\alpha) = 0$$

is a nonzero ideal of K[t], and there is a unique monic polynomial $m_{\alpha}(K) \in K[t]$ that generates I.

Definition 6 (Minimal polynomial). Suppose that L: K is a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then the minimal polynomial of α over K is the unique monic polynomial $m_{\alpha}(K)$ having the property that $\ker(E_{\alpha}) = (m_{\alpha}(K))$.

Theorem 1.7. Suppose that L: K is a field extension, and that $\alpha \in L$ is algebraic over K. Let g be the minimal polynomial $m_{\alpha}(K)$ of α over K. Then g is irreducible over K, and K[t]/(g) is a field.

Theorem 1.8. Let K be a field, and suppose that $f \in K[t]$ is irreducible. Then there exists a field extension L: K, with associated embedding $\varphi: K[t] \to L[y]$, having the property that L contains a root of $\varphi(f)$.

Definition 7 (Smallest subring/subfield). Let L: K be a field extension with $K \subseteq L$.

- (i) When $\alpha \in L$, we denote by $K[\alpha]$ the <u>smallest subring of L containing K and α </u>, and by $K(\alpha)$ the smallest subfield of L containing K and α ;
- (ii) More generally, when $A \subseteq L$, we denote by K[A] the <u>smallest subring of L containing K and A</u>, and by K(A) the smallest subfield of L containing K and \overline{A} .

Proposition 1.9. Let L: K be a field extension with $K \subseteq L$. Let $A \subseteq L$ and

$$C = \{C \subseteq A : C \text{ is a finite set}\}.$$

Then $K(A) = \bigcup_{C \in \mathcal{C}} K(C)$. Further, when $[K(C) : K] < \infty$ for all $C \in \mathcal{C}$, then K(A) : K is an algebraic extension.

Proposition 1.10. Let L: K be a field extension with $K \subseteq L$, and suppose that $\alpha \in L$. Then

$$K[\alpha] = \{c_0 + c_1\alpha + \dots + c_d\alpha^d : d \in \mathbb{Z}_{\leq 0}, c_0, \dots, c_d \in K\}$$

and

$$K(\alpha) = \{ f/g : f, g \in K[\alpha], g \neq 0 \}.$$

Theorem 1.11. Let L: K be a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K.

- (i) The ring $K[\alpha]$ is a field, and $K[\alpha] = K(\alpha)$;
- (ii) Let $n = \deg m_{\alpha}(K)$. Then $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over K, and hence $[K(\alpha) : K] = \deg m_{\alpha}(K)$.

Proposition 1.12. Let L: K be a field extension with $K \subseteq L$, and suppose that $\alpha \in L$. Then α is algebraic over K if and only if $[K(\alpha):K] < \infty$.

Proposition 1.13. Suppose that L: K is a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then every element of $K(\alpha)$ is algebraic over K.

Theorem 1.14. Let L: K be a field extension with $K \subseteq L$. Then the following are equivalent:

- (i) one has $[L:K] < \infty$;
- (ii) the extension L: K is algebraic, and there exist $\alpha_1, \ldots, \alpha_n \in L$ having the property that $L = K(\alpha_1, \ldots, \alpha_n)$.

Proposition 1.15. Let L: K be a field extension, and define

$$L^{\operatorname{alg}} = \{\alpha \in L : \alpha \text{ is algebraic over } K\}.$$

Then L^{alg} is a subfield of L.

Definition 8 (Characteristic). Let K be a field with additive identity 0_K and multiplicative identity 1_K . When $n \in \mathbb{N}$, we write $n \cdot 1_K$ to denote $1_K + \ldots + 1_K$ (as an n-fold sum). We define the <u>characteristic</u> of K, denoted by $\operatorname{char}(K)$, to be the smallest positive integer m with the property that $m \cdot 1_K = 0_K$; if no such integer m exists, we define the characteristic of K to be 0.

Proposition 1.16. Let K be a field with $\operatorname{char}(K) > 0$. Then $\operatorname{char}(K)$ is equal to a prime number p, and then for all $x \in K$ one has $p \cdot x = 0$.

Theorem 1.17. Suppose that $\operatorname{char}(K) = p > 0$, and put $F = \{c \cdot 1_K : c \in \mathbb{Z}\}$. Then F is a subfield (called the prime subfield) of K, and $F \cong \mathbb{Z}/p\mathbb{Z}$.

Theorem 1.18. Let K be a field, and denote by K^{\times} the abelian multiplicative group $K \setminus \{0\}$. Then every finite subgroup G of K^{\times} is cyclic. In particular, if K is a finite field then K^{\times} is cyclic.

Definition 9 (Highest common factor, content, primitive). Let R be a UFD. When $a_0, \ldots, a_n \in R$ are not all 0, we define as a highest common factor of a_0, \ldots, a_n (written $hcf(a_0, \ldots, a_n)$) any element $c \in R$ satisfying

- (i) $c \mid a_i \ (0 \le i \le n)$, and
- (ii) whenever $d \mid a_i \ (0 \le i \le n)$, then $d \mid c$.

When $f = a_0 + a_1 X + \ldots + a_n X^n$ is a non-zero polynomial in R[X], we define a <u>content</u> of f to be any $hcf(a_0, \ldots, a_n)$. We say that $f \in R[X]$ is <u>primitive</u> if $f \neq 0$ and the content of f is divisible only by units of R.

Theorem 1.19 (Gauss' Lemma). Suppose that R is a UFD with field of fractions Q. Suppose that f is a primitive element of R[X] with deg f > 0. Then f is irreducible in R[X] if and only if f is irreducible in Q.

Theorem 1.20 (Eisenstein's Criterion). Suppose that R is a UFD, and that $f = a_0 + a_1 X + \ldots + a_n X^n \in R[X]$ is primitive. Then provided that there is an irreducible element p of R having the property that

- (i) $p \mid a_i \text{ for } 0 \le i < n$,
- (ii) $p^2 \nmid a_0$, and
- (iii) $p \nmid a_n$,

then f is irreducible in R[X], and hence also in Q[X], where Q is the field of fractions of R.

Theorem 1.21 (Localisation principle). Let R be an integral domain, and let I be a prime ideal of R. Define $\varphi: R[X] \to (R/I)[X]$ by putting

$$\varphi(a_0 + a_1 X + \dots + a_n X^n) = \overline{a}_0 + \overline{a}_1 X + \dots + \overline{a}_n X^n,$$

where $\overline{a}_j = a_j + I$. Then φ is a surjective homomorphism. Moreover, if $f \in R[X]$ is primitive with leading coefficient not in I, then f is irreducible in R[X] whenever $\varphi(f)$ is irreducible in (R/I)[X].

3 Extending field homomorphisms and the Galois group of an extension

Definition 16 (Extension of field homomorphism, isomorphic field extensions). For i=1 and 2, let $L_i: K_i$ be a field extension relative to the embedding $\varphi_i: K_i \to L_i$. Suppose that $\sigma: K_1 \to K_2$ and $\tau: L_1 \to L_2$ are isomorphisms. We say that $\underline{\tau}$ extends $\underline{\sigma}$ if $\tau \circ \varphi_1 = \varphi_2 \circ \sigma$. In such circumstances, we say that $L_1: K_1$ and $L_2: K_2$ are isomorphic field extensions.

When $\sigma: K_1 \to K_2$ and $\tau: L_1 \to L_2$ are homomorphisms (instead of isomorphisms), then $\underline{\tau}$ extends σ as a homomorphism of fields when the isomorphism $\tau: L_1 \to L'_1 = \tau(L_1)$ extends the isomorphism $\sigma: K_1 \to K'_1 = \sigma(K_1)$.

Definition 17 (F-homomorphism). Let L: K be a field extension relative to the embedding $\varphi: K \to L$, and let M be a subfield of L containing $\varphi(K)$. Then, when $\sigma: M \to L$ is a homomorphism, we say that σ is a K-homomorphism if σ leaves $\varphi(K)$ pointwise fixed, which is to say that for all $\alpha \in \varphi(K)$, one has $\sigma(\alpha) = \alpha$.

Proposition 3.1. Suppose that L: K is a field extension with $K \subseteq L$, and that $\tau: L \to L$ is a K-homomorphism. Suppose that $f \in K[t]$ has the property that $\deg f \geq 1$, and additionally that $\alpha \in L$. Then

- (i) if $f(\alpha) = 0$, one has $f(\tau(\alpha)) = 0$;
- (ii) when τ is a K-automorphism of L, one has that $f(\alpha) = 0$ if and only if $f(\tau(\alpha)) = 0$.

Theorem 3.2. Let $\sigma: K_1 \to K_2$ be a field isomorphism. Suppose that L_i is a field with $K_i \subseteq L_i$ (i = 1, 2). Suppose also that $\alpha \in L_1$ is algebraic over K_1 , and that $\beta \in L_2$ is algebraic over K_2 . Then we can extend σ to an isomorphism $\tau: K_1(\alpha) \to K_2(\beta)$ in such a manner that $\tau(\alpha) = \beta$ if and only if $m_{\beta}(K_2) = \sigma(m_{\alpha}(K_1))$.

Note: When $\tau: K_1(\alpha) \to K_2(\beta)$ is a homomorphism, and τ extends the homomorphism $\sigma: K_1 \to K_2$, then τ is completely determined by σ and the value of $\tau(\alpha)$.

Corollary 3.3. Let L: M be a field extension with $M \subseteq L$. Suppose that $\sigma: M \to L$ is a homomorphism, and $\alpha \in L$ is algebraic over M. Then the number of ways we can extend σ to a homomorphism $\tau: M(\alpha) \to L$ is equal to the number of distinct roots of $\sigma(m_{\alpha}(M))$ that lie in L.

Definition 18 (Galois group of). Suppose that L: K is a field extension. With Aut(L) denoting the automorphism group of L, we set

$$Gal(L:K) = \{ \sigma \in Aut(L) : \sigma \text{ is a } K\text{-homomorphism} \}$$

and we call Gal(L:K) the Galois group of L:K.

Note: Proposition 3.1 tells us that when $f \in K[t]$ and $\sigma \in Gal(L:K)$, the mapping σ permutes the roots of f that lie in L.

Theorem 3.4. Suppose that L: K is an algebraic extension, and $\sigma: L \to L$ is a K-homomorphism. Then σ is an automorphism of L.

Theorem 3.5. If L: K is a finite extension, then $|Gal(L:K)| \leq [L:K]$.

Corollary 3.6. Suppose that L: F and L: F' are finite extensions with $F \subseteq L$ tand $F' \subseteq L$, and further that $\psi: F \to F'$ is an isomorphism. Then there are at most [L:F] ways to extend ψ to a homomorphism from L into L.

Corollary 3.7. Let L: K be a finite extension with $K \subseteq L$. Suppose that $\alpha_1, \ldots, \alpha_n \in L$ and put $L = K(\alpha_1, \ldots, \alpha_n)$. Let $K_0 = K$, and for $1 \le i \le n$, let $K_i = K_{i-1}(\alpha_i)$. Then every automorphism $\tau \in \operatorname{Gal}(L:K)$ corresponds to a sequence of homomorphisms $\sigma_1, \ldots, \sigma_n$, having the property that $\sigma_0: K \to L$ is the inclusion map, one has $\sigma_n = \tau$, and for $1 \le i \le n$, the map $\sigma_i: K_i \to L$ is a homomorphism extending $\sigma_{i-1}: K_{i-1} \to L$.

4 Algebraic closures

Definition 19 (Algebraically closed field, algebraic closure). Let M be a field.

- (i) We say that M is algebraically closed if every non-constant polynomial $f \in M[t]$ has a root in M.
- (ii) We say that M is an algebraic closure of K if M: K is an algebraic field extension having the property that M is algebraically closed.

Lemma 4.1. Let M be a field. The following are equivalent:

- (i) The field M is algebraically closed;
- (ii) every non-constant polynomial $f \in M[t]$ factors in M[t] as a product of linear factors;
- (iii) every irreducible polynomial in M[t] has degree 1;
- (iv) the only algebraic extension of M containing M is itself.

Definition 20 (Chain). Suppose that X is a nonempty, partially ordered set with \leq denoting the partial ordering. A <u>chain</u> C in X is a collection of elements $\{a_i\}_{i\in I}$ of X having the property that for every $i, j \in I$, either $a_i \leq a_j$ or $a_j \leq a_i$.

Zorn's Lemma: Suppose that X is a nonempty, partially ordered set with \leq the partial ordering. Suppose that every non-empty chain C in X has an upper bound in X. Then X has at least one maximal element m, meaning that if $b \in X$ with $m \leq b$, then b = m.

Proposition 4.2. Any proper ideal A of a commutative ring R is contained in a maximal ideal.

Lemma 4.3. Let K be a field. Then there exists an algebraic extension E: K, with $K \subseteq E$, having the property that E contains a root of every irreducible $f \in K[t]$, and hence also every $g \in K[t] \setminus K$.

Theorem 4.4. Suppose that K is a field. Then there exists an algebraic extension \overline{K} of K having the property that \overline{K} is algebraically closed.

Corollary 4.5. When K is a field, the field \overline{K} is a maximal algebraic extension of K.

Theorem 4.6. Let E be an algebraic extension of K with $K \subseteq E$, and let \overline{K} be an algebraic closure of K. Given a homomorphism $\varphi: K \to \overline{K}$, the map φ can be extended to a homomorphism from E into \overline{K} .

Corollary 4.7. Suppose that \overline{K} is an algebraic closure of K, and assume that $K \subseteq \overline{K}$. Take $\alpha \in \overline{K}$ and suppose that $\sigma : K \to \overline{K}$ is a homomorphism. Then the number of distinct roots of $m_{\alpha}(K)$ in \overline{K} is equal to the number of distinct roots of $\sigma(m_{\alpha}(K))$ in \overline{K} .

Proposition 4.8. Suppose that L and M are fields having the property that L is algebraically closed, and $\psi: L \to M$ is a homomorphism. Then $\psi(L)$ is algebraically closed.

Proposition 4.9. If L and M are both algebraic closures of K, then $L \cong M$.

Proposition 4.10. If L: K is an algebraic extension, then \overline{L} is an algebraic closure of K, and hence $\overline{L} \cong \overline{K}$. If in addition $K \subseteq L \subseteq \overline{L}$, then we can take $\overline{K} = \overline{L}$.

Proposition 4.11. Let L: K be an extension with $K \subseteq L$. Suppose that $g \in L[t]$ is irreducible over L, and that $g \mid f$ in L[t], where $f \in K[t] \setminus \{0\}$. The g divides a factor of f that is irreducible over K. Thus, there exists an irreducible $h \in K[t]$ having the property that $h \mid f$ in K[t], and $g \mid h$ in L[t].

5 Splitting field extensions

Definition 21 (Splitting field, splitting field extension). Suppose that L: K is a field extension relative to the embedding $\varphi: K \to L$, and $f \in K[t] \setminus K$.

- (i) We say that f splits over L if $\varphi(f) = \lambda(t \alpha_1) \cdots (t \alpha_n)$, for some $\lambda \in \varphi(K)$ and $\alpha_1, \ldots, \alpha_n \in L$.
- (ii) Suppose that f splits over L, and let M be a field with $\varphi(K) \subseteq M \subseteq L$. We say that M: K is a splitting field extension for f if M is the smallest subfield of L containing $\varphi(K)$ over which f splits.
- (iii) More generally, suppose that $S \subseteq K[t] \setminus K$ has the property that every $f \in S$ splits over L. Let M be a field with $\varphi(K) \subseteq M \subseteq L$. We say that M:K is a splitting field extension for S if M is the smallest subfield of L containing $\varphi(K)$ over which every polynomial $f \in S$ splits.

Proposition 5.1. Suppose that L: K is a splitting field extension for the polynomial $f \in K[t] \setminus K$ with associated embedding $\varphi: K \to L$. Let $\alpha_1, \ldots, \alpha_n \in L$ be the roots of $\varphi(f)$. Then $L = \varphi(K)(\alpha_1, \ldots, \alpha_n)$.

Proposition 5.2. Suppose that L: K is a splitting field extension for the polynomial $f \in K[t] \setminus K$. Then $[L:K] \leq (\deg f)!$

Proposition 5.3. Given $S \subseteq K[t] \setminus K$, there exists a splitting field extension L : K for S, and L : K is an algebraic extension. More explicitly, suppose that \overline{K} is an algebraic closure of K, and that $\overline{K} : K$ is an extension relative to the embedding $\varphi : \overline{K} \to K$. Let

$$A = \left\{\alpha \in \overline{K} : \alpha \text{ is a root of } \varphi(f), \text{ for some } f \in S\right\}.$$

Put $K' = \varphi(K)$. Then K'(A) : K is a splitting field extension for S.

Theorem 5.4. Let $f \in K[t] \setminus K$, and suppose that L : K and M : K are splitting field extensions for f. Then $L \cong M$, and thus [L : K] = [M : K].

Theorem 5.5. Suppose that $S \subseteq K[t] \setminus K$, and suppose that L : K and M : K are splitting field extensions for S. Then $L \cong M$ and [L : K] = [M : K].

7 SEPARABILITY 6

6 Normal extensions and composita

Definition 22 (Normal extension). The extension L: K is <u>normal</u> if it is algebraic, and every irreducible polynomial $f \in K[t]$ either splits over L or has no root in L.

Proposition 6.1. Suppose that L: K is a normal extension with $K \subseteq L \subseteq \overline{K}$. Then for any K-homomorphism $\tau: L \to \overline{K}$, we have $\tau(L) = L$.

Proposition 6.2. An extension L: K is a finite, normal extension if and only if it is a splitting field extension for some $f \in K[t] \setminus K$. More generally, an extension L: K is normal if and only if it is a splitting field extension for some $S \subseteq K[t] \setminus K$.

Proposition 6.3. Suppose that L:M:K is a tower of field extensions and L:K is a normal extension. Then L:M is also a normal extension.

Theorem 6.4. Suppose that M:L:K is a tower of field extensions having the property that M:K is normal. Assume that $K\subseteq L\subseteq M$. Then the following are equivalent:

- (i) the field extension L: K is normal;
- (ii) any K-homomorphism of L into M is an automorphism of L;
- (iii) whenever $\sigma: M \to M$ is a K-automorphism, then $\sigma(L) \subseteq L$.

Proposition 6.5. Suppose that M: K is a normal extension. Then:

- (a) for any $\sigma \in Gal(M:K)$ and $\alpha \in M$, we have $m_{\sigma(\alpha)}(K) = m_{\alpha}(K)$;
- (b) for any $\alpha, \beta \in M$ with $m_{\alpha}(K) = m_{\beta}(K)$, there exists $\tau \in Gal(M : K)$ having the property that $\tau(\alpha) = \beta$.

Definition 23 (Compositum). Let K_1 and K_2 be fields contained in some field L. The <u>compositum</u> of K_1 and K_2 in L, denoted by K_1K_2 , is the smallest subfield of L containing both K_1 and K_2 .

Proposition 6.6. Suppose that E: K and F: K are finite extensions having the property that K, E and F are contained in a field L. Then EF: K is a finite extension.

Theorem 6.7. Let E: K and F: K be finite extensions having the property that K, E and F are contained in a field L.

- (a) When E: K is normal, then EF: F is normal.
- (b) When E: K and F: K are both normal, then EF: K and $E \cap F: K$ are normal.

7 Separability

Definition 25 (Separable). Let K be a field.

- (i) An irreducible polynomial $f \in K[t]$ is <u>separable over K</u> if it has no multiple roots, meaning that $f = \lambda(t \alpha_1)(t \alpha_2) \cdots (t \alpha_d)$, where $\alpha_1, \ldots, \alpha_d \in \overline{K}$ are distinct.
- (ii) A non-zero polynomial $f \in K[t]$ is <u>separable over K</u> if its irreducible factors in K[t] are separable over K.
- (iii) When L: K is a field extension, we say that $\alpha \in L$ is <u>separable over K</u> when α is algebraic over K and $m_{\alpha}(K)$ is separable.
- (iv) An algebraic extension L: K is a separable extension if every $\alpha \in L$ is separable over K.

Proposition 7.1. Suppose that L:M:K is a tower of algebraic field extensions. Assume that $K\subseteq M\subseteq L\subseteq \overline{K}$, and suppose that $f\in K[t]\setminus K$ satisfies the property that f is separable over K. If $g\in M[t]\setminus M$ has the property that $g\mid f$, then g is separable over M. Thus, if $\alpha\in L$ is separable over K then α is separable over M, and if L:K is separable then so is L:M.

Proposition 7.2. Suppose that L: M is an algebraic field extension. Let $\alpha \in L$ and $\sigma: M \to \overline{M}$ be a homomorphism. Then $\sigma(m_{\alpha}(M))$ is separable over $\sigma(M)$ if and only if $m_{\alpha}(M)$ is separable over M.

Theorem 7.3. Let L: K be a finite extension with $K \subseteq L \subseteq \overline{K}$, whence $L = K(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in L$. Put $K_0 = K$, and for $1 \le i \le n$, set $K_i = K_{i-1}(\alpha_i)$. Finally, let $\sigma_0: K \to \overline{K}$ be the inclusion map.

- (i) If α_i is separable over K_{i-1} for $1 \leq i \leq n$, then there are [L:K] ways to extend σ_0 to a homomorphism $\tau: L \to \overline{K}$.
- (ii) If α_i is not separable over K_{i-1} for some i with $1 \le i \le n$, then there are fewer than [L:K] ways to extend σ_0 to a homomorphism $\tau: L \to \overline{K}$.

Theorem 7.4. Let L: K be a finite extension with $L = K(\alpha_1, ..., \alpha_n)$. Set $K_0 = K$, and for $1 \le i \le n$, inductively define K_i by putting $K_i = K_{i-1}(\alpha_i)$. Then the following are equivalent:

- (i) the element α_i is separable over K_{i-1} for $1 \leq i \leq n$;
- (ii) the element α_i is separable over K for $1 \leq i \leq n$;
- (iii) the extension L: K is separable.

Corollary 7.5. Suppose that L: K is a finite extension. If L: K is a separable extension, then the number of K-homomorphism $\sigma: L \to \overline{K}$ is [L:K], and otherwise the number is smaller than [L:K].

Corollary 7.6. Suppose that $f \in K[t] \setminus K$ and that L : K is a splitting field extension for f. Then L : K is a separable extension if and only if f is separable over K. More generally, suppose that L : K is a splitting field extension for $S \subseteq K[t] \setminus K$. Then L : K is a separable extension if and only if each $f \in S$ is separable over K.

Theorem 7.7. Suppose that L:M:K is a tower of algebraic extensions. Then L:K is separable if and only if L:M and M:K are both separable.

Theorem 7.8. Suppose that E: K and F: K are finite extensions with $E\subseteq L$ and $F\subseteq L$, where L is a field.

- (a) When E: K is separable, then so too is EF: F;
- (b) When E: K and F: K are both separable, then so too are EF: K and $E \cap F: K$.

8 Inseparable polynomials, differentiation, and the Frobenius map

Definition 26 (Inseparable). A polynomial $f \in K[t]$ is inseparable over K if f is not separable over K, meaning that f has an irreducible factor $g \in K[t]$ having the property that g has fewer than $\deg g$ distinct roots in K.

Definition 27 (Formal derivative). We define the derivative operator $\mathcal{D}: K[t] \to K[t]$ by

$$\mathcal{D}\left(\sum_{k=0}^{n} a_k t^k\right) = \sum_{k=1}^{n} k a_k t^{k-1}.$$

Theorem 8.1. Let $f \in K[t] \setminus K$, and let L : K be a splitting field extension for f. Assume that $K \subseteq L$. Then the following are equivalent:

- (i) The polynomial f has a repeated root over L;
- (ii) There is some $\alpha \in L$ for which $f(\alpha) = 0 = (\mathcal{D}f)(\alpha)$;
- (iii) There is some $g \in K[t]$ having the property that $\deg g \geq 1$ and g divides both f and $\mathcal{D}f$.

Theorem 8.2. Suppose that $f \in K[t]$ is irreducible over K. Then f is inseparable over K if and only if $\operatorname{char}(K) = p > 0$, and $f \in K[t^p]$, which is to say that $f = a_0 + a_1 t^p + \cdots + a_m t^{mp}$, for some $a_0, \ldots, a_m \in K$.

Corollary 8.3. Suppose that char(K) = 0. Then all polynomials in K[t] are separable over K.

Definition 28 (Frobenius map). Suppose that $\operatorname{char}(K) = p > 0$. The <u>Frobenius map</u> $\phi : K \to K$ is defined by $\phi(\alpha) = \alpha^p$.

Note: $\operatorname{Fix}_{\phi}(K) = \{ \alpha \in K : \phi(\alpha) = \alpha \}.$

Theorem 8.4. Suppose that char(K) = p > 0, and let F be the prime subfield of K. Let $\phi : K \to K$ denote the Frobenius map. Then ϕ is an injective homomorphism, and $Fix_{\phi}(K) = F$.

Corollary 8.5. Suppose that char(K) = p > 0 and K is algebraic over its prime subfield. Then the Frobenius map is an automorphism of K.

Corollary 8.6. Suppose that char(K) = p > 0 and K is algebraic over its prime subfield. Then all polynomials in K[t] are separable over K.

Theorem 8.7. Suppose that char(K) = p > 0. Let

$$f(t) = g(t^p) = a_0 + a_1 t^p + \dots + a_{n-1} t^{(n-1)p} + t^{np}$$

be a non-constant monic polynomial over K. Then f(t) is irreducible in K[t] if and only if g(t) is irreducible in K[t] and not all the coefficients a_i are p-th powers in K.

9 The Primitive Element Theorem

Definition 29 (Simple extension). Suppose L: K is a field extension relative to the embedding $\varphi: K \to L$. We say that L: K is a simple extension if there is some $\gamma \in L$ having the property that $L = \varphi(K)(\gamma)$.

Theorem 9.1 (The Primitive Element Theorem). Let L: K be a finite, separable extension with $K \subseteq L$. Then L: K is a simple extension.

Corollary 9.2. Suppose that L: K is an algebraic, separable extension, and suppose that for every $\alpha \in L$, the polynomial $m_{\alpha}(K)$ has degree at most n over K. Then $[L:K] \leq n$.

10 Fixed fields and Galois extensions

Definition 30 (Fixed field). Let L: K be a field extension. When G is a subgroup of Aut(L), we define the fixed field of G to be

$$Fix_L(G) = \{ \alpha \in L : \sigma(\alpha) = \alpha \text{ for all } \sigma \in G \}.$$

Proposition 10.1. Let K, M and L be fields with $K \subseteq L$ and $M \subseteq L$. Suppose that G and H are subgroups of $\operatorname{Aut}(L)$. Then one has the following:

- (a) if $K \subseteq M$, then $Gal(L:K) \geqslant Gal(L:M)$;
- (b) if $G \leq H$, then $\operatorname{Fix}_L(G) \supseteq \operatorname{Fix}_L(H)$;
- (c) one has $K \subseteq Fix_L(Gal(L:K))$;
- (d) one has $G \leq \operatorname{Gal}(L : \operatorname{Fix}_L(G))$;
- (e) one has $Gal(L:K) = Gal(L:Fix_L(Gal(L:K)));$
- (f) one has $\operatorname{Fix}_L(G) = \operatorname{Fix}_L(\operatorname{Gal}(L : \operatorname{Fix}_L(G)))$.

Definition 31 (Galois extension). When L: K is a field extension, we say that L: K is a <u>Galois extension</u> if it is an extension that is normal and separable.

Theorem 10.2. Suppose that L: K is an algebraic extension. Then L: K is Galois if and only if $K = \operatorname{Fix}_L(\operatorname{Gal}(L:K))$.

Theorem 10.3. Suppose that L is a field and G is a finite subgroup of Aut(L), and put $K = Fix_L(G)$. Then L: K is a finite Galois extension with [L: K] = |Gal(L: K)|, and furthermore G = Gal(L: K).

Theorem 10.4. Suppose that L: K is a finite extension. Then, if L: K is a Galois extension, one has |Gal(L:K)| = [L:K] and $K = Fix_L(Gal(L:K))$. If L: K is not Galois, meanwhile, one has |Gal(L:K)| < [L:K] and K is a proper subfield of $Fix_L(Gal(L:K))$.

Proposition 10.5. Suppose that L: K is a Galois extension, and further that L: M: K is a tower of field extensions. Then L: M is a Galois extension.

11 The main theorems of Galois theory

Definition 32. Suppose that L: K is a field extension. When G is a subgroup of Aut(L), we write $\phi(G)$ for $Fix_L(G)$, and when $L: M: K_0$ is a tower of field extensions with $K_0 = \phi(Gal(L:K))$, we write $\gamma(M)$ for Gal(L:M).

Theorem 11.1 (The Fundamental Theorem of Galois Theory). Suppose that L: K is a finite extension, let $G = \operatorname{Gal}(L:K)$, and put $K_0 = \phi(G)$. Then one has the following:

- (a) the map ϕ is a bijection from the set of subgroups of G onto the set of fields M intermediate between L and K_0 , and γ is the inverse map;
- (b) if $H \leq G$, then $H \leq G$ if and only if $\phi(H) : K_0$ is a normal extension;
- (c) if $H \leq G$, one has $\operatorname{Gal}(\phi(H):K_0) \cong G/H$. In particular, if $\sigma \in G$, one has $\sigma|_{\phi(H)} \in \operatorname{Gal}(\phi(H):K_0)$, and the map $\sigma \mapsto \sigma|_{\phi(H)}$ is a homomorphism of G onto $\operatorname{Gal}(\phi(H):K_0)$ with kernel H.

Definition 33 (Galois group of polynomial). When $f \in K[t]$ and L : K is a splitting field extension for f, we define the Galois group of the polynomial f over K to be $Gal_K(f) = Gal(L : K)$.

12 Finite fields

Theorem 12.1. Let p be a prime, and let $q = p^n$ for some $n \in \mathbb{N}$. Then:

- (a) There exists a field \mathbb{F}_q of order q, and this field is unique up to isomorphism.
- (b) All elements of \mathbb{F}_q satisfy the equation $t^q = t$, and hence $\mathbb{F}_q : \mathbb{F}_p$ is a splitting field extension for $t^q t$.
- (c) There is a unique copy of \mathbb{F}_q inside any algebraically closed field containing \mathbb{F}_p .

Theorem 12.2. Let p be a prime, and suppose that $q = p^n$ for some natural number n. Then:

- (a) the field extension $\mathbb{F}_q : \mathbb{F}_p$ is Galois with $Gal(\mathbb{F}_q : \mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z}$;
- (b) The field \mathbb{F}_q contains a subfield of order p^d if and only if $d \mid n$. When $d \mid n$, moreover, there is a unique subfield of \mathbb{F}_q of order p^d .

13 Solvability by radicals: polynomials of degree 2, 3 and 4

Definition 34 (Radical element/extension). Suppose that L: K is a field extension, and $\beta \in L$. We say that β is <u>radical</u> over K when $\beta^n \in K$ for some $n \in \mathbb{N}$ (so $\beta = \alpha^{1/n}$ for some $\alpha \in K$ and some $n \in \mathbb{N}$). We say that L: K is an extension by <u>radicals</u> when there is a tower of field extensions $L = L_r : L_{r-1} : \cdots : L_0 = K$ such that $L_i = L_{i-1}(\beta_i)$ with β_i radical over L_{i-1} ($1 \le i \le r$). We say $f \in K[t]$ is <u>solvable by radicals</u> if there is a radical extension of K over which f splits.

14 Solvability and solubility

Definition 35 (Soluble group). A finite group G is <u>soluble</u> if there is a series of groups

$$\{id\} = G_0 \le G_1 \le \dots \le G_n = G,$$

with the property that $G_i \subseteq G_{i+1}$ and G_{i+1}/G_i is abelian $(0 \le i < n)$.

Theorem 14.1. Let K be a field of characteristic 0. Then $f \in K[t]$ is solvable by radicals if and only if $Gal_K(f)$ is soluble.

Lemma 14.2. Suppose char(K) = 0 and L: K is a radical extension. Then there exists an extension N: L such that N: K is normal and radical.

Definition 36 (Cyclic extension). The extension L: K is <u>cyclic</u> if L: K is a Galois extension and Gal(L: K) is a cyclic group.

Lemma 14.3. Suppose that char(K) = 0 and let p be a prime number. Also, let L : K be a splitting field extension for $t^p - 1$. Then Gal(L : K) is cyclic, and hence L : K is a cyclic extension.

Lemma 14.4. Let $\operatorname{char}(K) = 0$ and suppose that n is an integer such that $t^n - 1$ splits over K. Let L : K be a splitting field extension for $t^n - a$, for some $a \in K$. Then $\operatorname{Gal}(L : K)$ is abelian.

Theorem 14.5. Let char(K) = 0 and suppose that L : K is Galois. Suppose that there is an extension M : L with the property that M : K is radical. Then Gal(L : K) is soluble.

Corollary 14.6. Suppose that char(K) = 0. Then $Gal_K(f)$ is soluble whenever $f \in K[t]$ is soluble by radicals.

Corollary 14.7. There exist quintic polynomials in $\mathbb{Q}[t]$ with insoluble Galois groups, such as $f(t) = t^5 - 4t + 2$, and which are not solvable by radicals.

Lemma 14.8. Let $\operatorname{char}(K) = 0$, and suppose that L : K is a cyclic extension of degree n. Suppose also that K contains a primitive n-th root of 1. Then there exists $\theta \in K$ having the property that $t^n - \theta$ is irreducible over K, and L : K is a splitting field for $t^n - \theta$. Further, if β is a root of $t^n - \theta$ over L, then $L = K(\beta)$.

Theorem 14.9. Let $\operatorname{char}(K) = 0$, and suppose that $f \in K[t] \setminus K$. Then f is solvable by radicals whenever $\operatorname{Gal}_K(f)$ is solvable.