

planetmath.org

Math for the people, by the people.

proof of Nielsen-Schreier theorem and Schreier index formula

 $Canonical\ name \qquad Proof Of Nielsen Schreier Theorem And Schreier Index Formula$

Date of creation 2013-03-22 13:56:02 Last modified on 2013-03-22 13:56:02 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 7

Author mathcam (2727)

Entry type Proof Classification msc 20E05 Classification msc 20F65

Related topic ScheierIndexFormula

While there are purely algebraic proofs of the Nielsen-Schreier theorem, a much easier proof is available through geometric group theory.

Let G be a group which is free on a set X. Any group acts freely on its Cayley graph, and the Cayley graph of G is a 2|X|-regular tree, which we will call \mathcal{T} .

If H is any subgroup of G, then H also acts freely on \mathcal{T} by restriction. Since groups that act freely on trees are free, H is free.

Moreover, we can obtain the rank of H (the size of the set on which it is free). If \mathcal{G} is a finite graph, then $\pi_1(\mathcal{G})$ is free of rank $-\chi(\mathcal{G}) - 1$, where $\chi(\mathcal{G})$ denotes the Euler characteristic of \mathcal{G} . Since $H \cong \pi_1(H \setminus \mathcal{T})$, the rank of H is $\chi(H \setminus \mathcal{T})$. If H is of finite index n in G, then $H \setminus \mathcal{T}$ is finite, and $\chi(H \setminus \mathcal{T}) = n\chi(G \setminus \mathcal{T})$. Of course $-\chi(G \setminus \mathcal{T}) + 1$ is the rank of G. Substituting, we obtain the Schreier index formula:

$$rank(H) = n(rank(G) - 1) + 1.$$