User Guide

SDP Group 12

April 18, 2016

1 Introduction

Once ready to use, place a charged batteries in the back holder, and connect it to the arduino power cable.

Plug the RF stick in the computer, ensure top plates of all types, as well as the ball, are on the pitch, and execute './main -p <PLAN> -1 <PATH> -c <COLOR>', there <PLAN> is the plan to run (see section below), <PATH> is the device path of the RF stick (e.g. '/dev/ttyACMO'), and <COLOR> is the team color, which must be one of 'blue', 'b', 'yellow', or 'y' respectively. Further options notably include the '-l' option, which sets the logging level. E.g. '-l info' enables info messages in the logger.

While the control program is running, the overall strategy and logging can be modified. Entering 'debug', 'info', 'warn', or 'error', and pressing enter, sets the logging level appropriately. Likewise, entering a plan name and pressing enter switches the running plan to what was entered. Entering 'stop' unsets the active plan and leaves the robot idle.

1.1 Plans

A small number of plans are available to run:

- 'move-grab', to move to the ball and grab it.
- 'm1', to do milestone 3, task 1.
- 'm2', to do milestone 3, task 2.
- 'm31', to do milestone 3, task 3.1.
- 'm32', to do milestone 3, task 3.2.

2 Vision

2.1 Requirements

You'll need the following python packages to successfully run the vision:

Polygon2 Polygon is a python package that handles polygonal shapes in 2D.

argparse Python command-line parsing library

pyserial Python Serial Port Extension

numpy Array processing for numbers, strings, records, and objects.

openCV OpenCV-Python is the Python API of OpenCV. It combines the best qualities of OpenCV C++ API and Python language.

To install them run these commands in the terminal:

```
# pip install --user Polygon2==2.0.6
# pip install --user argparse==1.3.0
# pip install --user pyserial==2.7
# pip install --user numpy
```

You can also learn how to install openCV from the following link: http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html

2.2 Usage

Before using the vision system, you can have a look at the vision feed by typing xawtv in the command prompt. This will launch only the vision feed, where you can experiment with the different settings.

In order to launch our vision system:

- Run the main vision file: python vision.py
- At first, a window for the automatic colour calibration will pop out. You'll need to follow the instructions as printed in the terminal.
- The calibration goes through all the colours that are used for the vision (red, yellow, blue, green, pink) and requires multiple clicks for each one of them to get their thresholds properly.
- You need to press the q key after each calibrated colour.
- If you want to skip the calibration you can simply press the Esc key and the vision will use the previously saved calibrations.
- The vision processing will be launched.

2.3 Graphic Interface

There will be a window labelled Filter output, where presenting the vision feed after all filters have been applied to the original. This output is overlayed with icons representing the robots and the ball, if they are found (see Figure 1). Robots are represented by an inner circle of the team colour (yellow or blue), an outer circle identifying which of the two team members it is (pink or green) and an arrow oriented in the direction of the robot. The red ball is displayed by drawing a red circle around where it was detected.

Figure 1: Vision Frame with Overlay

There are two other windows containing several sliders for filters that that can be applied to the feed (see Figure 2a) and more advanced options for specific filters (see Figure 2b). The set of filters available includes masks for specific colours, a manually configurable colour mask, and apply different effects to the frame.

(a) Available Filters

(b) Advanced Filter Parameters

Figure 2: GUI Controls

When the vision is running, it outputs the coordinates of all found objects, their orientation and velocity relative to the previous taken frame. These objects are returned as a dictionary and passed to the planner. This is achieved by passing a callback method for updating the planner world model when initialising the vision module. This method is called on every vision frame parsed, and it ensures the planner has the latest data.

3 Planning

3.1 Running the planner

The planner can be run as part of the system from the command line. This is done using: python main.py [-2PATH] OPTIONS TEAM-COLOUR -g GOAL-END

where TEAM-COLOUR refers to the colour of the controlled team's top plate and can be either -y or -b (yellow or blue) and OPTIONS can be -debug Set logging level to 'debug' -info Set logging level to 'info' -warn Set logging level to 'warn' -error Set logging level to 'error' and GOAL-END refers to the controlled team's goal end, either 'left' or 'right'

4 Hardware

4.1 Changing the Power Cells

4.1.1 How to Change

Start by switching the yellow switch (visible in Figure 3) away from the robot to turn it off. The cells are held on the external battery packs and are removed by gently pulling the batteries out of the packs, exactly as an AA cell would be removed. The new batteries should be inserted into the robot with the flat side against the springs. 2 sets of cells are provided so that one set can be charged while the other is used. The cells are visible in purple and silver in Figure 3.

Figure 3: Side View of Robot

4.1.2 When to Change

There is a low voltage cut-off built into each cell, and the voltage from the battery packs is regulated and should give the robot consistent performance until this low voltage cut off is reached. When any cell reaches the cut off the robot will stop completely. At this time all the cells should be changed.

4.2 Charging

The specialised charger (Figure 4) provided can be used to recharge the batteries. If using a different charger, for safety and performance use a charger made for charging 18650 cells and ensure correct polarity.

The batteries should be placed into the charger with the flat side against the spring arm of the charger as shown

The charger shows a progress bar next to each cell.

Figure 4: Specialised Charger With Correctly Oriented Cell

4.3 Turning the robot on

Flip the switch towards the front of the robot the robot will calibrate the grabbers by opening and closing them, then begin listening to commands.

5 Arduino Software

5.1 Sending commands

In normal operation the commands should be sent through the planner with the RFComms.py module.

For testing there is a main_manual.py file which can be used to send individual commands to the robot by following the prompts, first for which RF stick to use and then a choice of commands. To see the entire command set with descriptions hit 'h' then enter at the prompt.

5.2 Command Set

Command	Arguments	Effect
kick	distance in cm	kick the ball to the specified distance
grab	N/A	this will respond with "BC" for ball caught or "NC" for not caught.
release	N/A	this will respond with "grabbersOpen" to update the planner that it does not currently have the ball.
turn	angle in deg	turn counter clockwise if angle positive, clockwise if negative
move	distance in mm	move forward if distance is positive or backward if negative
ping	N/A	will respond with positions of motors according to rotary encoders, for debugging purposes

Table 1: Available Commands

5.3 Command Response

In response to a command the robot will first send an acknowledgment packet. It will then complete grab, release or kick commands, in order to leave the robot in a predictable state for the planner, then complete the given command. Move and turn commands are immediately dropped in order to use the new command.

5.4 Kicking

The robot grabs the grabbers in hard in order to place the ball and push the piston back. It then releases the grabbers until they are open as far as possible without obstructing the wheels, it then kicks a time dependent on the distance required (ranging from 50-200ms in typical operation). Finally, it closes the grabbers fully for continued movement.

5.5 Grabbing

The robot closes the grabbers until they are fully closed or for 800ms whichever comes sooner. If the grabbers do not close fully it is determined there is a ball in the grabbers and "BC" is sent to the planner, otherwise "NC" is sent.

5.6 Release

The grabbers are released until they are open as far as possible without touching the wheels. "grabbers open" is then sent to the planner.

5.7 Turn

The robot turns a distance specified in degrees, this is non-blocking.

5.8 Move

The robot accelerates up to the calibrated speed and then maintains that speed until it has just enough time to decelerate to the desired distance. It will correct for drift in order to keep

the robot moving in a straight line. If it finds something in its way with the ultrasound sensor while moving forward (positive distance) it will stop and respond "something in the way"

5.9 Troubleshooting

Symptom	Possible Cause	Possible Solution
Robot not moving, no acknowledgment	No power from battery packs	Ensure cells are:inserted correctly, charged, all present. Check wire from battery packs to power regulator board is connected. Check wire from power regulator board to motor board is connected.
Robot not moving-no acknowledgment	Robot only listening over USB.	Turn robot off and on using switch
Robot not moving- with acknowledge- ment	No power to motor board	Check connection from power regulator board in middle to motor board on left (black and red wire), check I2C cable from power regulator board to motor board (4 wire cable)
Robot attacking humans	Robot is self aware	Attempt to turn off using switch. You must stop it before it finds a long term power source.
Robot moving but not kicking	Kicker signal cable disconnected	Check white 2 wire cable is going into power regulator board into Left side of furthest back slot on power regulator board.
Robot moving, but not straight, or not stopping	Cannot communicate with rotary encoders	Check for message which says "cannot communicate with encoder board". This implies the 4 wire I2C connection from power regulator board in middle to encoder board on right is disconnected, check that movement of each wheel and the grabbers can be detected by checking their position with the ping command, check that when commanded each motor is moving, if not the power cable to that motor is damaged
Robot will not move forward	Something in the way of ultrasound sensor	Check for "something in the way" message to confirm cause, to solve first check if ultra- sound sensor has been displaced or if some- thing has got in way, as a last resort the sen- sor can be disabled altogether by unplugging it
Robot occasionally responds to commands, sometimes does whatever it wants	You don't have enough badges to control this robot	You can earn badges by beating gym leaders.

Table 2: Possible Problems and Solutions