Recitation 2

Gradient Descent and Stochastic Gradient Descent

Vishakh

CDS

February 7, 2022

Announcement

- Updates on Office Hours of the Instructors
- HW 2 will be out tonight is due in two weeks
- Optional Questions in the Homework

Agenda

- Gradient Descent
 - Adaptive Learning Rates
- Stochastic Gradient Descent
- Applications
 - Linear Regression
 - Logistic Regression

Statistical Learning Theory to Gradient Descent

We are given the data set $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We want to fit a **linear function** to this data by performing **empirical risk minimization**.

Statistical Learning Theory to Gradient Descent

We are given the data set $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We want to fit a **linear function** to this data by performing **empirical risk minimization**.

We search the hypothesis space $\mathcal{F} = \{h_{\theta}(x) = \theta^T x \mid \theta \in \mathbb{R}^d\}$ to find the function that minimizes the loss as calculated by, let's say, $\ell(a, y) = (a - y)^2$.

Statistical Learning Theory to Gradient Descent

• The empirical risk is given by

$$J(\theta) := \hat{R}_n(h_{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell(h_{\theta}(x_i), y_i) = \frac{1}{n} \sum_{i=1}^n (\theta^T x_i - y_i)^2$$

- The hypothesis space is parameterized by θ , so finding a good decision function means finding a good θ .
- To find this function we will minimize the empirical loss on the training data. How?

- Given a current guess for θ , we will use the gradient of the empirical loss (w.r.t. θ) to get a local linear approximation.
- If the gradient is non-zero, taking a small step in the direction of the negative gradient is guaranteed to decrease the empirical loss.
- This motivates the minimization algorithm called gradient descent.

Gradient Descent

Gradient Descent Algorithm

- Goal: find $\theta^* = \arg\min_{\theta} J(\theta)$
- $\theta^0 := [initial condition]$
- i := 0
- while not [termination condition]:
 - compute $\nabla J(\theta^i)$
 - $\epsilon_i := [\text{choose learning rate at iteration } i]$
 - $\theta^{i+1} := \theta^i \epsilon_i \nabla J(\theta^i)$
 - i := i + 1
- return θ^i

Gradient Checker

Recall the mathematical definition of the derivative as:

$$\frac{\partial}{\partial \theta} f(\theta) = \lim_{\epsilon \to 0} \frac{f(\theta + \epsilon) - f(\theta - \epsilon)}{2\epsilon}$$

- Approximate the gradient by setting ϵ to a small constant, say $\epsilon = 10^{-4}$. Compare that this is close to your computed value within some tolerance level.
- Now let's expand this method to deal with vector input $\theta \in \mathbb{R}^d$. Let's say we want to verify out gradient at dimension $i(\nabla f(\theta))_i$. We can make use of one-hot vector e; in which all dimension except the ith are 0 and the *i*th dimension has a value of 1: $e_i = [0, 0, ..., 1, ..., 0]^T$
- The gradient at ith dimension can be then approximated as

$$[\nabla f(\theta)]^{(i)} pprox rac{f(\theta + \epsilon e_i) - f(\theta - \epsilon e_i)}{2\epsilon}$$

9/27

Gradient Descent

- How to initialize θ^0 ?
 - sample from some distribution
 - compose θ^0 using some heuristics
 - Glorot et. al, He at. al, PyTorch initializations
- How to choose termination conditions?
 - run for a fixed number of iteration
 - the value of $J(\theta)$ stabilizes
 - θ^i converges
- What is a good learning rate?

Learning Rate

Application

Suppose we would like to find $\theta^* \in \mathbb{R}$ that minimizes $f(\theta) = \theta^2 - 2\theta + 1$. The gradient (in this case, the derivative) $\nabla f(\theta) = 2\theta - 2$. We can easily see that $\theta^* = \operatorname{argmin}_{\theta} f(\theta) = 1$.

Vishakh (CDS) Recitation 2 February 7, 2022 11/27

Learning Rate

- We applied gradient descent for 1000 iterations on $f(\theta) = \theta^2 2\theta + 1$ with varying learning rate $\epsilon \in \{1, 0.1, 0.01, 0.001, 0.0001\}$.
- When the learning rate is too large $(\epsilon = 1)$, $f(\theta)$ does not decrease through iterations. The value of θ_i at each iteration significantly fluctuates.
- When the learning rate is too small ($\epsilon = 0.0001$), $f(\theta)$ decreases very slowly.

 Vishakh (CDS)
 Recitation 2
 February 7, 2022
 12 / 27

Adaptive Learning Rate

- Instead of using a fixed learning rate through all iterations, we can adjust our learning rate in each iteration using a simple algorithm.
- At each iteration i:
 - $\tilde{\theta} := \theta^{i-1} \epsilon_{i-1} \nabla f(\theta^{i-1})$
 - $\delta := f(\theta^{i-1}) f(\tilde{\theta})$
 - if $\delta \geq$ threshold:
 - we achieve a satisfactory reduction on $f(\theta)$
 - $\theta^i = \tilde{\theta}$
 - maybe we can consider increasing the learning rate for next iteration $\epsilon_i := 2\epsilon_{i-1}$
 - else:
 - the reduction is unsatisfactory
 - $\bullet \ \theta^i = \theta^{i-1}$
 - the learning rate is too large, so we reduce the learning rate
 - \bullet $\epsilon_i := \frac{1}{2}\epsilon_{i-1}$

Adaptive Learning Rate

How to decide a proper threshold for $f(\theta^{i-1}) - f(\tilde{\theta})$?

Armijo rule

If learning rate ϵ satisfies

$$f(\theta^{i-1}) - f(\tilde{\theta}) \ge \frac{1}{2} \epsilon \|\nabla f(\theta^{i-1})\|^2 \tag{1}$$

then $f(\theta)$ is guaranteed to converge to a (local) maximum under certain technical assumptions.

You can find more details at this link.

Stochastic Gradient Descent

Running gradient descent on the entire training dataset can be expensive. Motivates SGD.

SGD Algorithm

- Initialize weights $\theta^0 := [initial condition]$
- Repeat:
 - Randomly select a data point (x_i, y_i)
 - $\theta^{i+1} = \theta^{i} \epsilon \nabla_{\theta} \ell(f_{\theta}(x_i), y_i)$
 - Check for stopping critria

Minibatch Gradient Descent

SGD can be noisy. Can we get a better estimate of the gradient?

Minibatch Gradient Descent Algorithm (batch size = n)

- Initialize weights $\theta^0 := [initial condition]$
- Repeat:
 - Randomly select n data point $(x_i, y_i)_{i=1}^n$
 - $\theta^{i+1} = \theta^i \epsilon \left[\frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \ell(f_{\theta}(x_i), y_i) \right]$
 - Check for stopping critria
- Larger $n \Rightarrow$ Better estimate of gradient but slower
- Smaller $n \Rightarrow$ Worse estimate of gradient but faster

Gradient Descent for Linear Regression

Problem Setup

- Data: $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Hypothesis Space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = \theta^T x, \ \theta \in \mathbb{R}^d \}$
- Action: Prediction on an input x, $\hat{y} = \theta^T x$
- Loss: $I(y, \hat{y}) = (\hat{y} y)^2$
- Hence, cost function $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^T x_i y_i)^2$
- Goal: Find the optimum theta, $\theta^* = \arg \min_{\theta} J(\theta)$

Finding θ^*

Approach 1: Closed-Form Solution (HW1)

•
$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{T} x_{i} - y_{i})^{2} = \frac{1}{n} ||X\theta - b||_{2}^{2}$$

• To minimize $J(\theta)$, we take the derivative and set it to zero

•
$$\nabla J(\theta) = X^T X \theta - X^T y = 0$$

$$\hat{\theta} = (X^T X)^{-1} X^T y$$

Pros: One shot algorithm for a direct solution

Cons: Doesn't scale, invertibility constraints

Finding θ^*

Approach 2: Iterative Gradient Descent

- Initialize θ^0
- While not [terminating condition]
 - Compute the gradient

$$\nabla_{\theta} J(\theta^{i-1}) = \left[\frac{d}{d\theta_i} J(\theta^{i-1}), \frac{d}{d\theta_2} J(\theta^{i-1}) \dots \frac{d}{d\theta_d} J(\theta^{i-1}) \right]^T$$

- $\bullet \ \theta^i = \theta^{i-1} \epsilon_i \nabla_\theta J(\theta^{i-1})$
- Return θ^i

Pros: Conceptually simple, good chance of convergence

Cons: Slow

Finding θ^*

Approach 3: Stochastic Gradient Descent

- Initialize θ_0
- While not [terminating condition]

 - Select a random training point {x_j, y_j}
 θⁱ = θⁱ⁻¹ ε_i∇_θJ^(j)(θⁱ⁻¹) where J^(j)(θ) = (θ^Tx_i y_i)²
- Return θ_i

Pros: Fast and memory efficient

Cons: Practical challenges, noisy gradient steps

Problem Setup

- Data: $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ where $x_i \in \mathbb{R}^d$ and $y_i \in \{0, 1\}$
- Hypothesis Space: (Slightly convoluted) $\mathcal{H} = \{h : \mathbb{R}^d \to (0,1) \mid h_{\theta}(x) = g(\theta^T x), \ \theta \in \mathbb{R}^d, g(z) = \frac{1}{1+e^{-z}}\}$
- Action: Prediction on an input x:
 - $\hat{y} = h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$
 - Interpret this as a probability: $p(y = 1|x; \theta) = h_{\theta}(x)$ and $p(y = 0|x; \theta) = 1 h_{\theta}(x)$
- More succinctly, $p(y|x,\theta) = (h_{\theta}(x))^y (1 h_{\theta}(x))^{1-y}$

- Goal: Minimize logistic loss over all examples: $\ell(h_{\theta}(x), y) = -y \log h_{\theta}(x) (1 y)(1 \log h_{\theta}(x))$
- Assuming your data is generated iid.
- Then likelihood, $L(\theta) = P(y_1 \dots y_n | x_1 \dots x_n; \theta) = \prod_{i=1}^n p(y_i | x_i; \theta)$
- Maximizing log likelihood,

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y_i \log h_{\theta}(x_i) + (1 - y_i) \log(1 - h_{\theta}(x_i))$$

• Equivalent to our goal of loss minimization

- No analytical one-shot solution
- Find optimum using gradient based approaches
 - The gradient works out to be quite tractable

• For a single example (x, y):

$$\ell(\theta) = y \log h_{\theta}(x) + (1 - y) \log(1 - h_{\theta}(x))$$

$$\frac{\partial}{\partial \theta_j} \ell(\theta) = \frac{\partial \ell(\theta)}{\partial g(\theta^T x)} \frac{\partial g(\theta^T x)}{\partial \theta_j}$$

• For a single example (x, y):

$$\ell(\theta) = y \log h_{\theta}(x) + (1 - y) \log(1 - h_{\theta}(x))$$

$$\frac{\partial}{\partial \theta_{j}} \ell(\theta) = \frac{\partial \ell(\theta)}{\partial g(\theta^{T} x)} \frac{\partial g(\theta^{T} x)}{\partial \theta_{j}}$$
$$= \left(y \frac{1}{g(\theta^{T} x)} - (1 - y) \frac{1}{1 - g(\theta^{T} x)} \right) \frac{\partial g(\theta^{T} x)}{\partial \theta_{j}}$$

• For a single example (x, y):

$$\ell(\theta) = y \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x))$$

$$\begin{split} \frac{\partial}{\partial \theta_{j}} \ell(\theta) &= \frac{\partial \ell(\theta)}{\partial g(\theta^{T} x)} \frac{\partial g(\theta^{T} x)}{\partial \theta_{j}} \\ &= \Big(y \frac{1}{g(\theta^{T} x)} - (1 - y) \frac{1}{1 - g(\theta^{T} x)} \Big) \frac{\partial g(\theta^{T} x)}{\partial \theta_{j}} \\ &= \Big(y \frac{1}{g(\theta^{T} x)} - (1 - y) \frac{1}{1 - g(\theta^{T} x)} \Big) \Big(g(\theta^{T} x) (1 - g(\theta^{T} x)) \Big) \frac{\partial \theta^{T} x}{\partial \theta_{j}} \end{split}$$

 Vishakh (CDS)
 Recitation 2
 February 7, 2022
 26 / 27

• For a single example (x, y):

$$\frac{\partial}{\partial \theta_{j}} \ell(\theta) = \frac{\partial \ell(\theta)}{\partial g(\theta^{T} x)} \frac{\partial g(\theta^{T} x)}{\partial \theta_{j}}$$

$$= \left(y \frac{1}{g(\theta^{T} x)} - (1 - y) \frac{1}{1 - g(\theta^{T} x)}\right) \frac{\partial g(\theta^{T} x)}{\partial \theta_{j}}$$

$$= \left(y \frac{1}{g(\theta^{T} x)} - (1 - y) \frac{1}{1 - g(\theta^{T} x)}\right) \left(g(\theta^{T} x)(1 - g(\theta^{T} x))\right) \frac{\partial \theta^{T} x}{\partial \theta_{j}}$$

$$= \left(y(1 - g(\theta^{T} x)) - (1 - y)(g(\theta^{T} x))x_{j}\right)$$

$$= (y - h_{\theta}(x))x_{j}$$

 $\ell(\theta) = v \log h_{\theta}(x) + (1 - v) \log(1 - h_{\theta}(x))$