Ret

Sea $\tau_{Ret} = (\emptyset, \{s^2, i^2\}, \{\leq^2\}, a)$. Y sea $Ret = (\Sigma_{Ret}, \tau_{Ret})$, donde Σ_{Ret} es el siguiente conjunto de sentencias:

1

Sea $\tau_{Ret} = (\emptyset, \{s^2, i^2\}, \{\leq^2\}, a)$. Y sea $Ret = (\Sigma_{Ret}, \tau_{Ret})$, donde Σ_{Ret} es el siguiente conjunto de sentencias:

$$A_{\leq R} = \forall x \ x \leq x$$

$$A_{\leq A} = \forall x \forall y \ ((x \leq y \land y \leq x) \rightarrow x \equiv y)$$

$$A_{\leq T} = \forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$$

$$A_{sesC} = \forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

$$A_{s \leq C} = \forall x \forall y \forall z \ ((x \leq z \land y \leq z) \rightarrow x \ s \ y \leq z)$$

$$A_{iesC} = \forall x \forall y \ (x \ i \ y \leq x \land x \ i \ y \leq y)$$

$$A_{i \geq C} = \forall x \forall y \forall z \ ((z \leq x \land z \leq y) \rightarrow z \leq x \ i \ y)$$

1

Ret

Daremos pruebas formales para las siguientes sentencias:

Ret

Daremos pruebas formales para las siguientes sentencias:

•
$$\phi = \forall x \forall y \forall z (x s y) s z \le x s (y s z)$$

Daremos pruebas formales para las siguientes sentencias:

- $\phi = \forall x \forall y \forall z (x s y) s z \le x s (y s z)$
- $ullet \ \psi = {\it Dis} 1
 ightarrow {\it CancDobl} \ \ {\it Donde}$

$$Dis1 = \forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$$
$$CancDobl = \forall xy \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y)$$

Modelos de Ret: $A_{\leq R}, A_{\leq A}, A_{\leq T}$

• $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ si y sólo si $(A, \leq^{\mathbf{A}})$ es un poset

Modelos de Ret: $A_{\leq R}, A_{\leq A}, A_{\leq T}$

- $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ si y sólo si $(A, \leq^{\mathbf{A}})$ es un poset
- **Observación:** Una estructura **A** de tipo τ_{Ret} puede satisfacer los 3 axiomas pero esto no significa que las operaciones $s^{\mathbf{A}}$ e $i^{\mathbf{A}}$ sean las operaciones supremo e ínfimo respecto al orden $\leq^{\mathbf{A}}$.

Modelos de Ret: $A_{\leq R}, \overline{A_{\leq A}, A_{\leq T}, A_{sesC}, A_{s\leq C}}$

Si **A** \models $A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ entonces:

• $A \models A_{sesC}$ si y sólo si $(a s^A b)$ es cota superior de $\{a, b\}$ en (A, \leq^A) cualesquiera sean a y b.

Modelos de Ret: $A_{\leq R}$, $A_{\leq A}$, $A_{\leq T}$, A_{sesC} , $A_{s\leq C}$

Si $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ entonces:

- $A \models A_{sesC}$ si y sólo si $(a s^A b)$ es cota superior de $\{a, b\}$ en (A, \leq^A) cualesquiera sean a y b.
- $\mathbf{A} \models A_{s \leq C}$ si y sólo si $(a \ s^{\mathbf{A}} \ b)$ es menor o igual a toda cota superior de $\{a,b\}$ cualesquiera sean $a \ y \ b$

Modelos de Ret: $A_{\leq R}, \overline{A_{\leq A}, A_{\leq T}, A_{sesC}, A_{s\leq C}}$

Si $\mathbf{A} \models A_{\leq R} \land A_{\leq A} \land A_{\leq T}$ entonces:

- $A \models A_{sesC}$ si y sólo si $(a s^A b)$ es cota superior de $\{a, b\}$ en (A, \leq^A) cualesquiera sean a y b.
- $\mathbf{A} \models A_{s \leq C}$ si y sólo si $(a \ s^{\mathbf{A}} \ b)$ es menor o igual a toda cota superior de $\{a,b\}$ cualesquiera sean $a \ y \ b$
- A cumplirá los axiomas $A_{\leq R}, A_{\leq A}, A_{\leq T}, A_{\text{ses}C}$ y $A_{\text{s}\leq C}$ si y sólo si $\leq^{\mathbf{A}}$ es un orden parcial y $s^{\mathbf{A}}$ es la operación supremo respecto del orden $\leq^{\mathbf{A}}$.

A es un modelo de Ret si y sólo si se cumple que:

A es un modelo de Ret si y sólo si se cumple que:

• $(A, \leq^{\mathbf{A}})$ es un orden parcial

A es un modelo de Ret si y sólo si se cumple que:

- $(A, \leq^{\mathbf{A}})$ es un orden parcial
- $s^{\mathbf{A}}$ es el supremo en el poset $(A, \leq^{\mathbf{A}})$

A es un modelo de Ret si y sólo si se cumple que:

- $(A, \leq^{\mathbf{A}})$ es un orden parcial
- s^{A} es el supremo en el poset (A, \leq^{A})
- $i^{\mathbf{A}}$ es el ínfimo en el poset $(A, \leq^{\mathbf{A}})$

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Forma de encontrar la prueba formal:

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Forma de encontrar la prueba formal:

1. Prueba Matemática

Encontraremos una prueba formal en Ret de la sentencia:

$$\forall x \forall y \forall z (x s y) s z \leq x s (y s z)$$

Forma de encontrar la prueba formal:

- 1. Prueba Matemática
- 2. Prueba Formal

• Sean a, b, c elementos de A fijos.

- Sean a, b, c elementos de A fijos.
- Probaremos que

$$(a s b) s c \leq a s (b s c)$$

- Sean a, b, c elementos de A fijos.
- Probaremos que

$$(a s b) s c \leq a s (b s c)$$

• Sabemos por A_{sesC} que

$$a \le a \ s \ (b \ s \ c) \tag{1}$$

$$b s c \le a s (b s c) \tag{2}$$

- Sean a, b, c elementos de A fijos.
- Probaremos que

$$(a s b) s c \leq a s (b s c)$$

• Sabemos por A_{sesC} que

$$a \le a \ s \ (b \ s \ c) \tag{1}$$

$$b s c \le a s (b s c) \tag{2}$$

• Aplicandolo nuevamente, sabemos que

$$b \le (b \ s \ c) \tag{3}$$

$$c \le (b \ s \ c) \tag{4}$$

• Luego, por (2), (3) y $A_{\leq T}$ tenemos

$$b \le a s (b s c) \tag{5}$$

• Luego, por (2), (3) y $A_{\leq T}$ tenemos

$$b \le a s (b s c) \tag{5}$$

• Y por (2), (4) y $A_{\leq T}$ tenemos

$$c \le a \ s \ (b \ s \ c) \tag{6}$$

• Luego, por (2), (3) y $A_{\leq T}$ tenemos

$$b \le a s (b s c) \tag{5}$$

• Y por (2), (4) y *A*<*T* tenemos

$$c \le a \ s \ (b \ s \ c) \tag{6}$$

• Es decir, hasta aquí hemos probado que

$$a \le a \ s \ (b \ s \ c) \tag{7}$$

$$b \le a s (b s c) \tag{8}$$

$$c \le a s (b s c) \tag{9}$$

• Por $A_{s < C}$, tomando

$$x = a$$

$$y = b$$

$$z = a s (b s c)$$

tenemos que

$$a s b \le a s (b s c) \tag{10}$$

• Finalmente, si aplicamos nuevamente $A_{s < C}$ tomando

$$x = a s b$$

 $y = c$
 $z = a s (b s c)$

obtenemos

$$(a s b) s c \leq a s (b s c)$$
 (11)

• Finalmente, si aplicamos nuevamente $A_{s \leq C}$ tomando

$$x = a s b$$

 $y = c$
 $z = a s (b s c)$

obtenemos

$$(a s b) s c \leq a s (b s c)$$
 (11)

• Como *a*, *b*, *c* eran elementos cualesquiera, probamos que

$$\forall x \forall y \forall z \ (x s y) s z \leq x s (y s z)$$

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

AXIOMAPROPIO

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

AXIOMAPROPIO

2.
$$a \le a s (b s c) \land (b s c) \le a s (b s c)$$

PARTICULARIZACION×2(1)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

AXIOMAPROPIO

$$2. \ a \leq a \ s \ (b \ s \ c) \wedge (b \ s \ c) \leq a \ s \ (b \ s \ c)$$

 ${\sf PARTICULARIZACION}{\times}2(1)$

3.
$$a \leq a s (b s c)$$

CONJELIM(2)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

PARTICULARIZACION×2(1)

$$2. \ a \leq a \ s \ (b \ s \ c) \wedge (b \ s \ c) \leq a \ s \ (b \ s \ c)$$

TARTICOLARIZACIONX2(1)

3.
$$a \leq a s (b s c)$$

CONJELIM(2)

AXIOMAPROPIO

4.
$$b s c \le a s (b s c)$$

CONJELIM(2)

1.
$$\forall x \forall y \ (x < x \ s \ y \land y < x \ s \ y)$$

PARTICULARIZACION×2(1)

$$2. \ a \leq a \, s \, (b \, s \, c) \wedge (b \, s \, c) \leq a \, s \, (b \, s \, c)$$

CONJELIM(2)

AXIOMAPROPIO

CONJELIM(2)

5.
$$b < b s c \land c < b s c$$

PARTICULARIZACION×2(1)

1.
$$\forall x \forall y \ (x < x \ s \ y \land y < x \ s \ y)$$

2.
$$a \leq a s (b s c) \wedge (b s c) \leq a s (b s c)$$

3.
$$a \leq a s (b s c)$$

4.
$$bsc \leq as(bsc)$$

5.
$$b \le b \ s \ c \land c \le b \ s \ c$$

6.
$$b \leq (b \ s \ c)$$

AXIOMAPROPIO

PARTICULARIZACION×2(1)

CONJELIM(2)

CONJELIM(2)

PARTICULARIZACION×2(1)

CONJELIM(5)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

$$2. \ a \leq a \ s \ (b \ s \ c) \wedge (b \ s \ c) \leq a \ s \ (b \ s \ c)$$

3.
$$a \le a s (b s c)$$

AXIOMAPROPIO

4.
$$bsc \leq as(bsc)$$

5.
$$b \leq b \ s \ c \land c \leq b \ s \ c$$

6.
$$b \le (b \ s \ c)$$

7.
$$c \leq (b s c)$$

7. c < (b s c)

8. $b \leq (b s c) \wedge b s c \leq a s (b s c)$

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$
 AXIOMAPROPIO
2. $a \leq a \ s \ (b \ s \ c) \land (b \ s \ c) \leq a \ s \ (b \ s \ c)$ PARTICULARIZACION $x2(1)$
3. $a \leq a \ s \ (b \ s \ c)$ CONJELIM(2)
4. $b \ s \ c \leq a \ s \ (b \ s \ c)$ CONJELIM(2)
5. $b \leq b \ s \ c \land c \leq b \ s \ c$ PARTICULARIZACION $x2(1)$
6. $b \leq (b \ s \ c)$ CONJELIM(5)

CONJELIM(5)

CONJINT(6,4)

1.
$$\forall x \forall y \ (x \leq x \ s \ y \land y \leq x \ s \ y)$$

AXIOMAPROPIO

$$2. \ a \leq a \ s \ (b \ s \ c) \wedge (b \ s \ c) \leq a \ s \ (b \ s \ c)$$

PARTICULARIZACION×2(1)

3.
$$a \leq a s (b s c)$$

CONJELIM(2)

4.
$$bsc \leq as(bsc)$$

CONJELIM(2)

5.
$$b \leq b s c \land c \leq b s c$$

PARTICULARIZACION×2(1)

6.
$$b \le (b \ s \ c)$$

CONJELIM(5)

CONJELIM(5) CONJINT(6,4)

9.
$$\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$$

AXIOMAPROPIO

1.
$$\forall x \forall y \ (x \leq x \, s \, y \wedge y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \wedge (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)
3. $a \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
5. $b \leq b \, s \, c \wedge c \leq b \, s \, c$ PARTICULARIZACIONx2(1)
6. $b \leq (b \, s \, c)$ CONJELIM(5)
7. $c \leq (b \, s \, c)$ CONJELIM(5)
8. $b \leq (b \, s \, c) \wedge b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(6,4)
9. $\forall x \forall y \forall z \ ((x \leq y \wedge y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
10. $(b \leq (b \, s \, c) \wedge (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)
3. $a \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
5. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACIONx2(1)
6. $b \leq (b \, s \, c)$ CONJELIM(5)
7. $c \leq (b \, s \, c)$ CONJELIM(5)
8. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(6,4)
9. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
10. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)
11. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(8,10)

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)
3. $a \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
5. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACIONx2(1)
6. $b \leq (b \, s \, c)$ CONJELIM(5)
7. $c \leq (b \, s \, c)$ CONJELIM(5)
8. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(6,4)
9. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
10. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)
11. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(8,10)
12. $c \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(7,4)

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO
2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)
3. $a \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
4. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)
5. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACIONx2(1)
6. $b \leq (b \, s \, c)$ CONJELIM(5)
7. $c \leq (b \, s \, c)$ CONJELIM(5)
8. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJINT(6,4)
9. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO
10. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)
11. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(8,10)
12. $c \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (c \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)

1.
$$\forall x \forall y \ (x \leq x \, s \, y \land y \leq x \, s \, y)$$
 AXIOMAPROPIO

2. $a \leq a \, s \ (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx2(1)

3. $a \leq a \, s \ (b \, s \, c)$ CONJELIM(2)

4. $b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(2)

5. $b \leq b \, s \, c \land c \leq b \, s \, c$ PARTICULARIZACIONx2(1)

6. $b \leq (b \, s \, c)$ CONJELIM(5)

7. $c \leq (b \, s \, c)$ CONJELIM(5)

8. $b \leq (b \, s \, c) \land b \, s \, c \leq a \, s \ (b \, s \, c)$ CONJELIM(5)

9. $\forall x \forall y \forall z \ ((x \leq y \land y \leq z) \rightarrow x \leq z)$ AXIOMAPROPIO

10. $(b \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (b \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)

11. $b \leq a \, s \ (b \, s \, c)$ MODUSPONENS(8,10)

12. $c \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)$ PARTICULARIZACIONx3(9)

13. $(c \leq (b \, s \, c) \land (b \, s \, c) \leq a \, s \ (b \, s \, c)) \rightarrow (c \leq a \, s \ (b \, s \, c))$ PARTICULARIZACIONx3(9)

14. $c \leq a \, s \ (b \, s \, c)$ MODUSPONENS(12,13)

15.
$$a \le a s (b s c) \land b \le a s (b s c)$$
 (CONJINT(3,11))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)
17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONX3(16))

15.
$$a \le a s \ (b s c) \land b \le a s \ (b s c)$$
 (CONJINT(3,11))
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)
17. $(a \le a s \ (b s c) \land b \le a s \ (b s c)) \rightarrow ((a s b) \le a s \ (b s c))$ (PARTICULARIZACIONx3(16))
18. $(a s b) \le a s \ (b s c)$ (MODUSPONENS(15,17))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)
17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))
18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))
19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)
17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONX3(16))
18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))
19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))
20. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))
16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)
17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))
18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))
19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))
20. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)
21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

(PARTICULARIZACION×3(16))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

20. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)

21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

22. $(a \ s \ b) < a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

20. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

22. $(a \ s \ b) < a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

23. $((a s b) \le a s (b s c) \land c \le a s (b s c)) \rightarrow ((a s b) s c \le a s (b s c))$ (PARTICULARIZACION×3(16))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

20. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \to x \ s \ y \le z)$ (AXIOMAPROPIO)

21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \to ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

22. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c) \to ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

24. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)$ (CONJINT(18,14))

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

20. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

22. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

23. $((a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)$ (CONJINT(18,14))

25. $(a \ s \ b) \ s \ c < a \ s \ (b \ s \ c)$

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

18. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

20. $\forall x \forall y \forall y \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

22. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

23. $((a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONx3(16))

24. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)$ (CONJINT(18,14))

25. $(a \ s \ b) \le c \le a \ s \ (b \ s \ c)$ (MODUSPONENS(20,19))

26. $\forall x \forall y \forall y \forall z (x \ s \ y) \ s \ z \le x \ s \ (y \ s \ z)$

15.
$$a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$$
 (CONJINT(3,11))

16. $\forall x \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

17. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONX3(16))

18. $(a \ s \ b) \le a \ s \ (b \ s \ c)$ (MODUSPONENS(15,17))

19. $a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)$ (CONJINT(3,11))

20. $\forall x \forall y \forall y \forall z \ ((x \le z \land y \le z) \rightarrow x \ s \ y \le z)$ (AXIOMAPROPIO)

21. $(a \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONX3(16))

22. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land b \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONX3(16))

23. $((a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)) \rightarrow ((a \ s \ b) \ s \ c \le a \ s \ (b \ s \ c))$ (PARTICULARIZACIONX3(16))

24. $(a \ s \ b) \le a \ s \ (b \ s \ c) \land c \le a \ s \ (b \ s \ c)$ (CONJINT(18,14))

25. $(a \ s \ b) \le c \le a \ s \ (b \ s \ c)$ (MODUSPONENS(20,19))

26. $\forall x \forall y \forall y \forall z (x \ s \ y) \ s \ z \le x \ s \ (y \ s \ z)$ (GENERALIZACIÓNX3(21))

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Ahora encontraremos una prueba formal en Ret de la sentencia ψ :

 $Dis1 \rightarrow CancDobl$

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Ahora encontraremos una prueba formal en Ret de la sentencia ψ :

$$Dis1 \rightarrow CancDobl$$

Utilizaremos la misma forma de encontrar la prueba formal usada para probar ϕ

Para probar ψ , probaremos primero un teorema auxiliar:

$$\forall x \forall y ((x s y) i x \equiv x)$$

Para probar ψ , probaremos primero un teorema auxiliar:

$$\forall x \forall y ((x s y) i x \equiv x)$$

• Sean a, b elementos de A fijos.

Para probar ψ , probaremos primero un teorema auxiliar:

$$\forall x \forall y ((x s y) i x \equiv x)$$

- Sean a, b elementos de A fijos.
- Probaremos que

$$(a s b) i a \equiv a$$

ullet Sabemos, por axioma A_{sesC} que

$$a \le a s b$$
 (1)

ullet Sabemos, por axioma A_{sesC} que

$$a \le a s b$$
 (1)

• Y por $A_{\leq R}$ sabemos que

$$a \le a$$
 (2)

ullet Sabemos, por axioma A_{sesC} que

$$a \le a s b$$
 (1)

• Y por $A_{\leq R}$ sabemos que

$$a \le a$$
 (2)

• Luego, por (1), (2) y aplicando el axioma $A_{i>C}$ sabemos

$$a \le (a s b) i a \tag{3}$$

• Por otra parte, por A_{iesC} tenemos que

$$(a s b) i a \leq a \tag{4}$$

• Por otra parte, por A_{iesC} tenemos que

$$(a s b) i a \le a \tag{4}$$

• Finalmente, por (3), (4) y aplicando el axioma $A_{\leq A}$ obtenemos

$$(a s b) i a \equiv a \tag{5}$$

• Por otra parte, por A_{iesC} tenemos que

$$(a s b) i a \le a \tag{4}$$

• Finalmente, por (3), (4) y aplicando el axioma $A_{\leq A}$ obtenemos

$$(a s b) i a \equiv a \tag{5}$$

• Como a, b eran elementos cualesquiera, probamos que

$$\forall x \forall y ((x s y) i x \equiv x)$$

A partir de ahora, llamaremos (*) a este teorema

 $\forall xyz \; (x \; \mathsf{i} \; y) \; \mathsf{s} \; (x \; \mathsf{i} \; z) \equiv x \; \mathsf{i} \; (y \; \mathsf{s} \; z) \to \forall x \; \forall y \; (\exists z (x \; \mathsf{i} \; z \equiv y \; \mathsf{i} \; z \land x \; \mathsf{s} \; z \equiv y \; \mathsf{s} \; z) \to x \; \equiv y) \text{:}$

Prueba Matemática

Ahora si probaremos

$$\mathit{Dis}1 \to \mathit{CancDobl}$$

Ahora si probaremos

$$Dis1 \rightarrow CancDobl$$

• Primero, supongamos que se cumple que

$$\forall x \forall y \forall z (x \ i \ y) s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \tag{6}$$

Ahora si probaremos

$$Dis1 \rightarrow CancDobl$$

• Primero, supongamos que se cumple que

$$\forall x \forall y \forall z (x \ i \ y) s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \tag{6}$$

Probaremos que

$$\forall x \forall y (\exists z ((x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y))$$

 $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \ \equiv y)$:

Prueba Matemática

• Sean a, b dos elementos de A fijos

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

Supongamos que:

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z)$$

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

Supongamos que:

$$\exists z (a i z \equiv b i z \land a s z \equiv b s z)$$

• Supongamos c un elemento que cumple

$$(a i c) \equiv (b i c) \land (a s c) \equiv (b s c) \tag{7}$$

- Sean a, b dos elementos de A fijos
- Probaremos que

$$\exists z (a \ i \ z \equiv b \ i \ z \land a \ s \ z \equiv b \ s \ z) \rightarrow a \equiv b$$

Supongamos que:

$$\exists z (a i z \equiv b i z \land a s z \equiv b s z)$$

• Supongamos c un elemento que cumple

$$(a i c) \equiv (b i c) \land (a s c) \equiv (b s c) \tag{7}$$

• Probaremos que

$$a \equiv b$$

• Por teorema (*) sabemos que

$$(b s c) i b \equiv b \tag{8}$$

• Por teorema (*) sabemos que

$$(b s c) i b \equiv b \tag{8}$$

• Por (7):

$$(b s c) i b \equiv (a s c) i b \tag{9}$$

• Por teorema (*) sabemos que

$$(b s c) i b \equiv b \tag{8}$$

• Por (7):

$$(b s c) i b \equiv (a s c) i b \tag{9}$$

• Por (6):

$$(a s c) i b \equiv (a i b) s (c i b)$$
 (10)

• Por teorema (*) sabemos que

$$(b s c) i b \equiv b \tag{8}$$

• Por (7):

$$(b s c) i b \equiv (a s c) i b \tag{9}$$

• Por (6):

$$(a s c) i b \equiv (a i b) s (c i b)$$

$$(10)$$

• Nuevamente por (7):

$$(a i b) s (c i b) \equiv (a i b) s (c i a)$$

$$(11)$$

Por teorema (*) sabemos que

$$(b s c) i b \equiv b \tag{8}$$

• Por (7):

$$(b s c) i b \equiv (a s c) i b \tag{9}$$

• Por (6):

$$(a s c) i b \equiv (a i b) s (c i b)$$

$$(10)$$

• Nuevamente por (7):

$$(a i b) s (c i b) \equiv (a i b) s (c i a) \tag{11}$$

• Nuevamente por (6) y por conmutatividad de i:

$$(a i b) s (c i a) \equiv (b s c) i a \tag{12}$$

Por teorema (*) sabemos que

$$(b s c) i b \equiv b \tag{8}$$

• Por (7):

$$(b s c) i b \equiv (a s c) i b$$
 (9)

• Por (6):

$$(a s c) i b \equiv (a i b) s (c i b)$$
 (10)

• Nuevamente por (7):

$$(a i b) s (c i b) \equiv (a i b) s (c i a)$$

$$(11)$$

• Nuevamente por (6) y por conmutatividad de i:

$$(a i b) s (c i a) \equiv (b s c) i a$$
 (12)

• Y así, por (7):

$$(b s c) i a \equiv (a s c) i a$$

(13)

• Finalmente, por (*):

$$(a s c) i a \equiv a \tag{14}$$

• Finalmente, por (*):

$$(a s c) i a \equiv a \tag{14}$$

• Es decir,

$$a \equiv b$$

• Finalmente, por (*):

$$(a s c) i a \equiv a \tag{14}$$

• Es decir.

$$a \equiv b$$

• Por lo tanto, se cumple que

$$Dis1 \rightarrow CancDobl$$

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

Utilizaremos los siguientes teoremas cuyas pruebas formales son dejadas al lector

• $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x \ (TeoremaAbsorv)$

Ahora daremos la prueba formal en Ret de la sentencia en cuestión

Utilizaremos los siguientes teoremas cuyas pruebas formales son dejadas al lector

- $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x \ (TeoremaAbsorv)$
- $\forall x \ \forall y \ (x \ i \ y) \equiv (y \ i \ x)$ (TeoremaConmut)

1.
$$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$$
 (HIPÓTESIS1)

1.
$$\forall xyz \ (x \mid y) \ s \ (x \mid z) \equiv x \mid (y \mid s \mid z)$$
 (HIPÓTESIS1)
2. $\exists z \ ((a \mid z) \equiv (b \mid z) \land (a \mid s \mid z) \equiv (b \mid z))$ (HIPÓTESIS2)

1. $\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$ (HIPÓTESIS1) 2. $\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ i \ z))$ (HIPÓTESIS2) 3. $((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ i \ c))$ (ELECCION(2))

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	(HIPOTESIS1)
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ i \ z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)

- $1. \quad \forall xyz \ (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z) \equiv x \ \mathsf{i} \ (y \ \mathsf{s} \ z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$
- 3. $((a i c) \equiv (b i c) \land (a s c) \equiv (b i c))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$
- 5. $(b s c) i b \equiv b$

- (HIPÓTESIS1)
- (HIPÓTESIS2)
- (ELECCION(2))
- (TEOREMAABSORV)
- $(\mathsf{PARTICULARIZACION}{\times}2(4))$

$$1. \quad \forall xyz \ (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z) \equiv x \ \mathsf{i} \ (y \ \mathsf{s} \ z)$$

2.
$$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$$

3.
$$((a i c) \equiv (b i c) \land (a s c) \equiv (b i c))$$

4.
$$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$$

5.
$$(b s c) i b \equiv b$$

6.
$$(a \ s \ c) \equiv (b \ s \ c)$$

- 1. $\forall xyz (x i y) s (x i z) \equiv x i (y s z)$
- 2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$
- 3. $((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ i \ c))$
- 4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$
- 5. $(b s c) i b \equiv b$
- 6. $(a \ s \ c) \equiv (b \ s \ c)$
- 7. $(aic) \equiv (bic)$

- (HIPÓTESIS1)
- (HIPÓTESIS2)
- (ELECCION(2))
- (TEOREMAABSORV)
- (PARTICULARIZACION×2(4))
 - (CONJELIM(3))
 - (CONJELIM(3))

1.	$\forall xyz \ (x \mid y) \ s \ (x \mid z) \equiv x \mid (y \mid s \mid z)$	(HIPOTESIS1)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8	$(a \circ c) \mid b = b$	(REEMP(6.5))

9. $(bia)s(bic) \equiv bi(asc)$

1.	$\forall \lambda y \in (\lambda + y) \circ (\lambda + z) \equiv \lambda + (y \circ z)$	(THEOTESIST)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a \ i \ c) \equiv (b \ i \ c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))

(HIDÓTESIS1)

(PARTICULARIZACIONx3(1))

1 $\forall v \in (v : v) \in (v : z) = v : (v \in z)$

1.	$\forall xyz (x \mid y) s (x \mid z) = x \mid (y \mid s \mid z)$	(HIPOTESIST)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a\ s\ c)\equiv (b\ s\ c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a\ s\ c)\ i\ b\equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))

(HIDÓTESIS1)

1. $\forall xvz (x \mid v) s (x \mid z) \equiv x \mid (v \mid s \mid z)$

		(= . =)
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ i \ z))$	(HIPÓTESIS2)
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ i \ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))

(HIPÓTESIS1)

Prueba Formal

1.	$\forall \lambda y z \ (\lambda + y) \circ (\lambda + z) \equiv \lambda + (y \circ z)$	(THEOTESIST)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACION×3(1))
10.	$bi(asc) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))

(HIPÓTESIS1)

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	(HIPOTESIS1)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))

Prueba Formal

1.	$\forall xyz (x \mid y) s (x \mid z) \equiv x \mid (y \mid s \mid z)$	(HIPOTESIST)
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ i \ z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACIONx2(4))
6.	$(a \ s \ c) \equiv (b \ s \ c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b \ i \ a) \ s \ (a \ i \ c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACIONx3(1))

(HIDÓTESIS1)

1.	$\forall xyz \ (x \mid y) \ s \ (x \mid z) \equiv x \mid (y \mid s \mid z)$	(HIPÓTESIS1)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a\ i\ c)\equiv (b\ i\ c)\wedge (a\ s\ c)\equiv (b\ i\ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACIONx2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACION×3(1))
15.	$ai(bsc) \equiv b$	(REEMP(14,13))

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	(HIPOTESIS1)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ i \ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACIONx3(1))
15.	$ai(bsc) \equiv b$	(REEMP(14,13))
16.	$ai(asc) \equiv b$	(REEMP(6,15))

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	(HIPOTESIS1)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ i \ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a\ s\ c)\equiv (b\ s\ c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACION×3(1))
10.	$bi(asc) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACION×3(1))
15.	$ai(bsc) \equiv b$	(REEMP(14,13))
16.	$ai(asc) \equiv b$	(REEMP(6,15))
17.	$(a \ s \ c) \ i \ a \equiv b$	(TEOREMACONMUT(16))

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	(HIPÓTESIS1)
2.	$\exists z \ ((a \ i \ z) \equiv (b \ i \ z) \land (a \ s \ z) \equiv (b \ i \ z))$	(HIPÓTESIS2)
3.	$((a i c) \equiv (b i c) \land (a s c) \equiv (b i c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a s c) i b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACION×3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACION×3(1))
15.	$a i (b s c) \equiv b$	(REEMP(14,13))
16.	$ai(asc) \equiv b$	(REEMP(6,15))
17.	$(a \ s \ c) \ i \ a \equiv b$	(TEOREMACONMUT(16))
18.	$(a \ s \ c) \ i \ a \equiv a$	(PARTICULARIZACION×2(4))

1.	$\forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z)$	(HIPÓTESIS1)
2.	$\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3.	$((a \ i \ c) \equiv (b \ i \ c) \land (a \ s \ c) \equiv (b \ i \ c))$	(ELECCION(2))
4.	$\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5.	$(b \ s \ c) \ i \ b \equiv b$	(PARTICULARIZACION×2(4))
6.	$(a s c) \equiv (b s c)$	(CONJELIM(3))
7.	$(a i c) \equiv (b i c)$	(CONJELIM(3))
8.	$(a \ s \ c) \ i \ b \equiv b$	(REEMP(6,5))
9.	$(b i a) s (b i c) \equiv b i (a s c)$	(PARTICULARIZACIONx3(1))
10.	$b i (a s c) \equiv b$	(TEOREMACONMUT(8))
11.	$(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12.	$(b i a) s (a i c) \equiv b$	(REEMP(7,11))
13.	$(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14.	$(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACION×3(1))
15.	$a i (b s c) \equiv b$	(REEMP(14,13))
16.	$a i (a s c) \equiv b$	(REEMP(6,15))
17.	$(a \ s \ c) \ i \ a \equiv b$	(TEOREMACONMUT(16))
18.	$(a \ s \ c) \ i \ a \equiv a$	(PARTICULARIZACION×2(4))
19.	$a \equiv b$	(TESIS2REEMP(18,17))

$\forall xyz \ (x \mid y) \ s \ (x \mid z) \equiv x \mid (y \mid s \mid z) \rightarrow \forall x \ \forall y \ (\exists z(x \mid z \equiv y \mid z \land x \mid s \mid z \equiv y \mid s \mid z) \rightarrow x \equiv y)$:

```
(HIPÓTESIS1)
 1. \forall xyz (x i y) s (x i z) \equiv x i (y s z)
                                                                                                                   (HIPÓTESIS2)
 2. \exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))
 3. ((aic) \equiv (bic) \land (asc) \equiv (bic))
                                                                                                                  (ELECCION(2))
 4. \forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x
                                                                                                           (TEOREMAABSORV)
 5. (b s c) i b \equiv b
                                                                                                   (PARTICULARIZACION×2(4))
 6. (asc) \equiv (bsc)
                                                                                                                 (CONJELIM(3))
 7. (aic) \equiv (bic)
                                                                                                                 (CONJELIM(3))
 8. (asc)ib \equiv b
                                                                                                                   (REEMP(6,5))
 9. (bia)s(bic) \equiv bi(asc)
                                                                                                   (PARTICULARIZACIONx3(1))
10. bi(asc) \equiv b
                                                                                                        (TEOREMACONMUT(8))
11. (b i a) s (b i c) \equiv b
                                                                                                                  (REEMP(9,10))
12. (b i a) s (a i c) \equiv b
                                                                                                                  (REEMP(7,11))
13. (a i b) s (a i c) \equiv b
                                                                                                       (TEOREMACONMUT(12))
14. (a i b) s (a i c) \equiv a i (b s c)
                                                                                                   (PARTICULARIZACIONx3(1))
15. ai(bsc) \equiv b
                                                                                                                 (REEMP(14,13))
16. ai(asc) \equiv b
                                                                                                                  (REEMP(6,15))
17. (asc)ia \equiv b
                                                                                                       (TEOREMACONMUT(16))
18. (a s c) i a \equiv a
                                                                                                   (PARTICULARIZACION×2(4))
19. a ≡ b
                                                                                                          (TESIS2REEMP(18,17))
20. \exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z)) \rightarrow a \equiv b
                                                                                                                 (CONCLUSION)
```

1. $\forall xyz (x i y) s (x i z) \equiv x i (y s z)$	(HIPÓTESIS1)
2. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))$	(HIPÓTESIS2)
3. $((a i c) \equiv (b i c) \land (a s c) \equiv (b i c))$	(ELECCION(2))
4. $\forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x$	(TEOREMAABSORV)
5. $(b s c) i b \equiv b$	(PARTICULARIZACION×2(4))
6. $(a s c) \equiv (b s c)$	(CONJELIM(3))
7. $(a i c) \equiv (b i c)$	(CONJELIM(3))
8. $(a s c) i b \equiv b$	(REEMP(6,5))
9. (b i a) s (b i c) \equiv b i (a s c)	(PARTICULARIZACIONx3(1))
10. $bi(asc) \equiv b$	(TEOREMACONMUT(8))
11. $(b i a) s (b i c) \equiv b$	(REEMP(9,10))
12. $(b \ i \ a) \ s \ (a \ i \ c) \equiv b$	(REEMP(7,11))
13. $(a i b) s (a i c) \equiv b$	(TEOREMACONMUT(12))
14. $(a i b) s (a i c) \equiv a i (b s c)$	(PARTICULARIZACIONx3(1))
15. $ai(bsc) \equiv b$	(REEMP(14,13))
16. $ai(asc) \equiv b$	(REEMP(6,15))
17. $(a s c) i a \equiv b$	(TEOREMACONMUT(16))
18. $(a s c) i a \equiv a$	(PARTICULARIZACION×2(4))
19. $a \equiv b$	(TESIS2REEMP(18,17))
20. $\exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z)) \rightarrow a \equiv b$	(CONCLUSION)
21. $\forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y)$	(TESIS1GENERALIZACIÓN×2(20))

```
(HIPÓTESIS1)
 1. \forall xyz (x i y) s (x i z) \equiv x i (y s z)
                                                                                                                                (HIPÓTESIS2)
 2. \exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z))
 3. ((aic) \equiv (bic) \land (asc) \equiv (bic))
                                                                                                                               (ELECCION(2))
 4. \forall x \ \forall y \ (x \ s \ y) \ i \ x \equiv x
                                                                                                                       (TEOREMAABSORV)
 5. (b s c) i b \equiv b
                                                                                                               (PARTICULARIZACION×2(4))
 6. (asc) \equiv (bsc)
                                                                                                                              (CONJELIM(3))
 7. (aic) \equiv (bic)
                                                                                                                              (CONJELIM(3))
 8. (asc)ib \equiv b
                                                                                                                                (REEMP(6,5))
 9. (bia)s(bic) \equiv bi(asc)
                                                                                                               (PARTICULARIZACIONx3(1))
10. bi(asc) \equiv b
                                                                                                                    (TEOREMACONMUT(8))
11. (b i a) s (b i c) \equiv b
                                                                                                                               (REEMP(9,10))
12. (b i a) s (a i c) \equiv b
                                                                                                                               (REEMP(7,11))
13. (a i b) s (a i c) \equiv b
                                                                                                                  (TEOREMACONMUT(12))
14. (a i b) s (a i c) \equiv a i (b s c)
                                                                                                               (PARTICULARIZACIONx3(1))
15. ai(bsc) \equiv b
                                                                                                                              (REEMP(14,13))
16. ai(asc) \equiv b
                                                                                                                               (REEMP(6,15))
17. (asc)ia \equiv b
                                                                                                                  (TEOREMACONMUT(16))
18. (a s c) i a \equiv a
                                                                                                               (PARTICULARIZACION×2(4))
19. a ≡ b
                                                                                                                      (TESIS2REEMP(18,17))
20. \exists z ((a i z) \equiv (b i z) \land (a s z) \equiv (b i z)) \rightarrow a \equiv b
                                                                                                                              (CONCLUSION)
                                                                                                         (TESIS1GENERALIZACIÓN×2(20))
21. \forall x \ \forall y \ (\exists z (x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y)
22. \forall xyz \ (x \ i \ y) \ s \ (x \ i \ z) \equiv x \ i \ (y \ s \ z) \rightarrow \forall x \ \forall y \ (\exists z(x \ i \ z \equiv y \ i \ z \land x \ s \ z \equiv y \ s \ z) \rightarrow x \equiv y) (CONCLUSION)
```