Equivalencia lógica

Semana 5

Edgar Andrade, PhD

Última revisión: Febrero de 2022

Matemáticas Aplicadas y Ciencias de la Computación

Presentación

En esta sesión estudiaremos:

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

Presentación

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

Equivalencia

Sean A, B, fórmulas. La equivalencia entre A y B ($A \equiv B$) se define de la siguiente manera:

$$A \equiv B \Leftrightarrow A.valor(I) = B.valor(I)$$
 para toda interpretación I

Proposición: $p \equiv \neg \neg p$

Proposición: $p \equiv \neg \neg p$

Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

Proposición: $p \equiv \neg \neg p$

Demostración:

Sea / una interpretación arbitraria. Tenemos dos casos:

Caso 1: Supongamos que Letra('p').valor(I) = True. Luego
 Negacion(Letra('p')).valor(I) = not True = False y
 entonces Negacion(Negacion(Letra('p'))).valor(I) =
 not False = True. Por lo tanto Letra('p').valor(I) =
 Negacion(Negacion(Letra('p'))).valor(I).

Proposición: $p \equiv \neg \neg p$

Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1: ...

Caso 2: Supongamos que Letra('p').valor(I) = False. Luego Negacion(Letra('p')).valor(I) = not False = True y entonces Negacion(Negacion(Letra('p'))).valor(I) = not True = False. Por lo tanto Letra('p').valor(I) = Negacion(Negacion(Letra('p'))).valor(I).

Proposición: $p \equiv \neg \neg p$

Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1: ...

Caso 2: ...

En cualquier caso, Letra('p').valor(I) =
Negacion(Negacion(Letra('p'))).valor(I).

Proposición: $p \equiv \neg \neg p$

Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1: ...

Caso 2: ...

En cualquier caso, Letra('p').valor(I) = Negacion(Negacion(Letra('p'))).valor(I).

Como *I* es arbitraria, se sigue que $p \equiv \neg \neg p$.

Equivalencias importantes

Proposición: Las siguientes equivalencias son ciertas:

$$\bullet (p \to q) \equiv (\neg p \lor q)$$

Implementación en Python

Ir al notebook "Equivalencia_lógica" y revisar la sección 1.

Lemas importantes

Lema (I) Sean A y B fórmulas. Si $A \equiv B$, entonces $\neg A \equiv \neg B$.

Lema (II) Sean A, B A' y B' fórmulas. Si $A \equiv A'$ y $B \equiv B'$, entonces $A \odot B \equiv A' \odot B'$, para $\odot \in \{\land, \lor \rightarrow, \leftrightarrow\}$.

Presentación

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

Sustitución

```
Sea B una fórmula y A \in B.subforms(). Sea A' una fórmula.
Definimos B\{A \leftarrow A'\} = B.sust(A, A'), donde:
función sust(self, A, A'):
        Si A \notin self.subforms()
            retornar self
        Si no. si A es self
            retornar A'
        Si no, si self es de tipo Negacion
            retornar Negacion(self.subf.sust(A, A'))
        Si no, si self es de tipo Binario
            retornar Binario (self.conectivo,
                               self.left.sust(A, A'), self.right.sust(A, A'))
```

Más lemas importantes

Lema (III)

Sea B una fórmula y supongamos que $A \in B.$ subforms() tal que $A \neq B.$ Entonces

$$\neg B\{A \leftarrow A'\} = \neg (B\{A \leftarrow A'\})$$

Lema (IV)

Sean B y C fórmulas y supongamos que $A \in (B \odot C)$.subforms() tal que $A \neq (B \odot C)$. Entonces

$$(B \odot C)\{A \leftarrow A'\} = B\{A \leftarrow A'\} \odot C\{A \leftarrow A'\}$$

para
$$\odot$$
 ∈ { \land , \lor \rightarrow , \leftrightarrow }.

Teorema

Sea B una fórmula y $A \in B.subforms()$. Sea A' una fórmula. Si $A \equiv A'$, entonces $B \equiv B\{A \leftarrow A'\}$.

Demostración: Por inducción estructural sobre B.

Demostración: Por inducción estructural sobre B.

• Caso B = Letra('p'):

Demostración: Por inducción estructural sobre B.

■ Caso B = Letra('p'): Observe que $A \in B$.subforms() y en consecuencia A = B. A partir de esto se tienen dos cosas:

Demostración: Por inducción estructural sobre B.

- Caso B = Letra('p'): Observe que A ∈ B.subforms() y en consecuencia A = B. A partir de esto se tienen dos cosas:
 - 1. $B \equiv A'$, porque hemos asumido que $A \equiv A'$.

Demostración: Por inducción estructural sobre B.

- Caso B = Letra('p'): Observe que A ∈ B.subforms() y en consecuencia A = B. A partir de esto se tienen dos cosas:
 - 1. $B \equiv A'$, porque hemos asumido que $A \equiv A'$.
 - 2. B.sust(A, A') = A', por definición de sust.

Demostración: Por inducción estructural sobre B.

- Caso B = Letra('p'): Observe que A ∈ B.subforms() y en consecuencia A = B. A partir de esto se tienen dos cosas:
 - 1. $B \equiv A'$, porque hemos asumido que $A \equiv A'$.
 - 2. B.sust(A, A') = A', por definición de sust.

Por lo tanto, $B \equiv B.\operatorname{sust}(A, A')$. Es decir, $B \equiv B\{A \leftarrow A'\}$.

■ Caso B = Negacion(C). Asumimos que si $A \in C$.subforms() y $A \equiv A'$, entonces $C \equiv C\{A \leftarrow A'\}$.

■ Caso B = Negacion(C). Asumimos que si $A \in C$.subforms() y $A \equiv A'$, entonces $C \equiv C\{A \leftarrow A'\}$. Supongamos primero que A = B. Entonces $B\{A \leftarrow A'\} = A'$. Como hemos supuesto que $A \equiv A'$, se sigue que $B \equiv B\{A \leftarrow A'\}$.

■ Caso B = Negacion(C). Asumimos que si $A \in C$.subforms() y $A \equiv A'$, entonces $C \equiv C\{A \leftarrow A'\}$. Supongamos primero que A = B. Entonces $B\{A \leftarrow A'\} = A'$. Como hemos supuesto que $A \equiv A'$, se sigue que $B \equiv B\{A \leftarrow A'\}$. Por otro lado, supongamos que $A \neq B$. Ahora, como $A \in B$.subforms(), se tiene que $A \in C$.subforms().

■ Caso B = Negacion(C). Asumimos que si $A \in C$.subforms() y $A \equiv A'$, entonces $C \equiv C\{A \leftarrow A'\}$. Supongamos primero que A = B. Entonces $B\{A \leftarrow A'\} = A'$. Como hemos supuesto que $A \equiv A'$, se sigue que $B \equiv B\{A \leftarrow A'\}$. Por otro lado, supongamos que $A \neq B$. Ahora, como $A \in B$.subforms(), se tiene que $A \in C$.subforms(). Como $A \equiv A'$, entonces por la hipótesis de inducción tenemos que $C \equiv C\{A \leftarrow A'\}$, y por el lema I tenemos que $C \equiv C\{A \leftarrow A'\}$.

• Caso B = Negacion(C). Asumimos que si $A \in C$.subforms() y $A \equiv A'$, entonces $C \equiv C\{A \leftarrow A'\}$. Supongamos primero que A = B. Entonces $B\{A \leftarrow A'\} = A'$. Como hemos supuesto que $A \equiv A'$, se sigue que $B \equiv B\{A \leftarrow A'\}$. Por otro lado, supongamos que $A \neq B$. Ahora, como $A \in B$.subforms(), se tiene que $A \in C$.subforms(). Como $A \equiv A'$, entonces por la hipótesis de inducción tenemos que $C \equiv C\{A \leftarrow A'\}$, y por el lema I tenemos que Negacion(C) \equiv Negacion($C\{A \leftarrow A'\}$). Por el lema III tenemos que $Negacion(C)\{A \leftarrow A'\} = Negacion(C\{A \leftarrow A'\}).$

• Caso B = Negacion(C). Asumimos que si $A \in C$.subforms() y $A \equiv A'$, entonces $C \equiv C\{A \leftarrow A'\}$. Supongamos primero que A = B. Entonces $B\{A \leftarrow A'\} = A'$. Como hemos supuesto que $A \equiv A'$, se sigue que $B \equiv B\{A \leftarrow A'\}$. Por otro lado, supongamos que $A \neq B$. Ahora, como $A \in B$.subforms(), se tiene que $A \in C$.subforms(). Como $A \equiv A'$, entonces por la hipótesis de inducción tenemos que $C \equiv C\{A \leftarrow A'\}$, y por el lema I tenemos que Negacion(C) \equiv Negacion($C\{A \leftarrow A'\}$). Por el lema III tenemos que $Negacion(C)\{A \leftarrow A'\} = Negacion(C\{A \leftarrow A'\})$. En consecuencia, Negacion(C) \equiv Negacion $C\{A \leftarrow A'\}$. Por definición de B se sigue que $B \equiv B\{A \leftarrow A'\}$.

Demostración: Por inducción estructural sobre B.

■ Caso
$$B = Binario(\odot, C, D)$$
, donde $C \equiv C\{A \leftarrow A'\}$ y $D \equiv D\{A \leftarrow A'\}$:

Demostración: Por inducción estructural sobre B.

■ Caso $B = \text{Binario}(\odot, C, D)$, donde $C \equiv C\{A \leftarrow A'\}$ y $D \equiv D\{A \leftarrow A'\}$: Figercicio.

Presentación

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' \rightarrow '.

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' \rightarrow '.

Demostración: Supongamos que existe $B \to C \in \mathsf{Subform}(A)$ para alguna fórmula B y alguna fórmula C.

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' \rightarrow '.

Demostración: Supongamos que existe $B \to C \in \operatorname{Subform}(A)$ para alguna fórmula B y alguna fórmula C. Observe que $B \to C \equiv \neg B \lor C$.

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' \rightarrow '.

Demostración: Supongamos que existe $B \to C \in \operatorname{Subform}(A)$ para alguna fórmula B y alguna fórmula C. Observe que $B \to C \equiv \neg B \lor C$. Por el teorema de sustitución salva veritate se sigue que $A \equiv A\{B \to C, \neg B \lor C\}$.

Eliminando implicaciones

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' \rightarrow '.

Demostración: Supongamos que existe $B \to C \in \operatorname{Subform}(A)$ para alguna fórmula B y alguna fórmula C. Observe que $B \to C \equiv \neg B \lor C$. Por el teorema de sustitución salva veritate se sigue que $A \equiv A\{B \to C, \neg B \lor C\}$. En consecuencia, cualquier ocurrencia del conectivo ' \to ' puede eliminarse de A, obteniendo una fórmula equivalente. Así pues, una cadena finita de sustituciones nos proporcionará una fórmula A' equivalente a A que no contiene ocurrencias de ' \to '.

Eliminando dobles negaciones

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias de la doble negación ' $\neg\neg$ '.

Definiciones:

 Un literal es una letra proposicional o la negación de una letra proposicional.

Definiciones:

- Un literal es una letra proposicional o la negación de una letra proposicional.
- Una cláusula es una disyunción de literales.

Definiciones:

- Un literal es una letra proposicional o la negación de una letra proposicional.
- Una cláusula es una disyunción de literales.
- Una fórmula está en forma normal conjuntiva si es una conjunción de cláusulas.

Definiciones:

- Un literal es una letra proposicional o la negación de una letra proposicional.
- Una cláusula es una disyunción de literales.
- Una fórmula está en forma normal conjuntiva si es una conjunción de cláusulas.

Teorema

Sea A una fórmula. A es equivalente a una fórmula A' en forma normal conjuntiva.

Procedimiento para transformar una fórmula arbitraria A en una fórmula A' en forma normal conjuntiva, tal que $A \equiv A'$:

1. Eliminar ' \leftrightarrow ' y ' \rightarrow '.

- 1. Eliminar ' \leftrightarrow ' y ' \rightarrow '.
- 2. Eliminar dobles negaciones.

- 1. Eliminar ' \leftrightarrow ' y ' \rightarrow '.
- 2. Eliminar dobles negaciones.
- 3. Si $\neg (B \land C) \in A.subform()$, reemplazarla por $\neg B \lor \neg C$.

- 1. Eliminar ' \leftrightarrow ' y ' \rightarrow '.
- 2. Eliminar dobles negaciones.
- 3. Si $\neg (B \land C) \in A.subform()$, reemplazarla por $\neg B \lor \neg C$.
- 4. Si $\neg (B \lor C) \in A.subform()$, reemplazarla por $\neg B \land \neg C$.

- 1. Eliminar ' \leftrightarrow ' y ' \rightarrow '.
- 2. Eliminar dobles negaciones.
- 3. Si $\neg (B \land C) \in A.subform()$, reemplazarla por $\neg B \lor \neg C$.
- 4. Si $\neg (B \lor C) \in A.subform()$, reemplazarla por $\neg B \land \neg C$.
- 5. Eliminar dobles negaciones.

- 1. Eliminar ' \leftrightarrow ' y ' \rightarrow '.
- 2. Eliminar dobles negaciones.
- 3. Si $\neg (B \land C) \in A.subform()$, reemplazarla por $\neg B \lor \neg C$.
- 4. Si $\neg (B \lor C) \in A.subform()$, reemplazarla por $\neg B \land \neg C$.
- 5. Eliminar dobles negaciones.
- 6. Si $B \lor (C \land D) \in A.subform()$, reemplazarla por $(B \lor C) \land (B \lor D)$.

$$\qquad \qquad \neg \big(p \lor q \big) \lor \big(r \land \neg s \big) \qquad \qquad \text{(eliminación de `\rightarrow')}$$

$$\qquad \qquad (\neg p \wedge \neg q) \vee (r \wedge \neg s) \qquad \qquad (\mathsf{Moviendo} \ `\neg' \ \mathsf{a} \ \mathsf{la} \ \mathsf{derecha})$$

$$\qquad \qquad \left(\left(\neg p \wedge \neg q \right) \vee r \right) \wedge \left(\left(\neg p \wedge \neg q \right) \vee \neg s \right) \text{ (distribución de '\' sobre '\')}$$

$$\qquad \qquad (\neg p \wedge \neg q) \vee (r \wedge \neg s) \qquad \qquad (\mathsf{Moviendo} \ `\neg' \ \mathsf{a} \ \mathsf{la} \ \mathsf{derecha})$$

$$\qquad \qquad (\neg p \wedge \neg q) \vee (r \wedge \neg s) \qquad \qquad (\mathsf{Moviendo} \ `\neg' \ \mathsf{a} \ \mathsf{la} \ \mathsf{derecha})$$

$$\qquad \qquad \left(\left(\neg p \wedge \neg q \right) \vee r \right) \wedge \left(\left(\neg p \wedge \neg q \right) \vee \neg s \right) \text{ (distribución de '\' sobre '\')}$$

$$((\neg p \lor r) \land (\neg q \lor r)) \land ((\neg p \land \neg q) \lor \neg s)$$
 (idem)

$$\qquad \qquad (\neg p \wedge \neg q) \vee (r \wedge \neg s) \qquad \qquad (\mathsf{Moviendo} \ `\neg' \ \mathsf{a} \ \mathsf{la} \ \mathsf{derecha})$$

$$\qquad \qquad \left(\left(\neg p \wedge \neg q \right) \vee r \right) \wedge \left(\left(\neg p \wedge \neg q \right) \vee \neg s \right) \text{ (distribución de '\' sobre '\')}$$

$$\qquad \qquad \left(\left(\neg p \lor r \right) \land \left(\neg q \lor r \right) \right) \land \left(\left(\neg p \land \neg q \right) \lor \neg s \right)$$
 (idem)

$$\qquad \qquad \left(\left(\neg p \lor r \right) \land \left(\neg q \lor r \right) \right) \land \left(\left(\neg p \lor \neg s \right) \land \left(\neg q \lor \neg s \right) \right)$$
 (idem)

Fin de la sesión 5

En esta sesión usted ha aprendido:

- 1. Comprender el concepto de equivalencia lógica
- 2. Demostrar el teorema de equivalencia salva veritate
- 3. Intercambiar conectivos lógicos por otros manteniendo la equivalencia