Revised Scaffolded Questions for Algebra 2 Assessment (Questions 21–24)

This document provides revised scaffolded questions to help students prepare for questions 21 through 24 of the enVision Algebra 2 Progress Monitoring Assessment Form C. Each question includes four scaffolded steps to build understanding from basic concepts to the level required by the assessment, with clear guidance for concept-naive students.

Question 21: Complex Solutions to Quadratic Equations

The original question asks to select the solutions to $x^2 = -64$. The following questions build understanding of complex solutions.

21.1 Square Roots of Negative Numbers: Since $\sqrt{-1} = i$, $\sqrt{-a} = i\sqrt{a}$ for positive a. Simplify:

a)
$$\sqrt{-25} = \sqrt{25} \cdot \sqrt{-1} = 5i$$

b)
$$\sqrt{-36} =$$

c)
$$\sqrt{-100} =$$

- d) Why is $\sqrt{-1} = i$?
- 21.2 Simple Complex Solutions: Solve:

a)
$$x^2 = -16$$
: $x = \pm \sqrt{-16} = \pm 4i$

b)
$$x^2 = -49$$
: $x = \pm$

- c) Verify: For x = 7i, compute $(7i)^2 =$.
- 21.3 Quadratic Formula: Solve $x^2 + 9 = 0$:

a) Rewrite:
$$x^2 = -9$$

b) Quadratic formula:
$$a = 1$$
, $b = 0$, $c = 9$.
$$x = \frac{0 \pm \sqrt{0 - 4(1)(9)}}{2} = \frac{\pm \sqrt{-36}}{2} = \frac{\pm 6i}{2} = \pm 3i$$

- c) Practice: Solve $x^2 + 25 = 0$: $x = \pm ____$
- 21.4 Applying to the Original Problem: Solve $x^2 = -64$:

a) Direct:
$$x = \pm \sqrt{-64} = \pm 8i$$

b) Quadratic formula:
$$x^2+64=0, a=1, b=0, c=64.$$
 $x=\frac{\pm\sqrt{-256}}{2}=\frac{\pm 16i}{2}=\pm 8i$

c) Verify:
$$(8i)^2 = 64i^2 = -64$$
, $(-8i)^2 = 64i^2 = -64$.

Question 22: Multiplying Polynomials

The original question asks to simplify $(x^2 + 4x)(x^2 + x + 2)$. The following questions build understanding of polynomial multiplication.

22.1 Monomial Distribution: Multiply by distributing each term:

- a) $x(x+5) = x^2 + 5x$
- b) $3x(x^2+2) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$
- c) Why distribute each term?

22.2 Binomial Multiplication: Use FOIL:

- a) (x+3)(x+2): First: x^2 , Outer: 3x, Inner: 2x, Last: 6. Result: $x^2 + 5x + 6$
- b) (x-1)(x+4): _____ + ____ + ____ = ____.

22.3 Quadratic by Binomial: Multiply:

- a) $(x^2+1)(x+3) = x^2(x+3) + 1(x+3) = x^3 + 3x^2 + x + 3$
- b) $(x^2 + 2x)(x + 1) = \underline{\qquad} + \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$

22.4 Applying to the Original Problem: Multiply $(x^2 + 4x)(x^2 + x + 2)$:

- a) Distribute: $x^2(x^2 + x + 2) + 4x(x^2 + x + 2)$
- b) Compute: $x^4 + x^3 + 2x^2 + 4x^3 + 4x^2 + 8x$
- c) Combine: $x^4 + (1+4)x^3 + (2+4)x^2 + 8x =$ _____. Compare to choices: $x^4 + 5x^3 + 6x^2 + 8x$.

Question 23: Polynomial Function Behavior

The original question asks to analyze $f(x) = x^3 + 3x^2$, finding zeros and describing end behavior. The following questions build understanding of polynomial analysis.

23.1 Finding Zeros: Factor to find zeros:

- a) f(x) = x(x-4): Zeros: x = 0, x = 4
- b) $f(x) = x^2(x+2)$: Zeros: x =_____ (multiplicity _____), x =_____
- c) What does multiplicity mean graphically?

23.2 End Behavior: End behavior depends on the leading term:

- a) $f(x) = 2x^3$: As $x \to -\infty$, $f(x) \to -\infty$; as $x \to +\infty$, $f(x) \to +\infty$.
- b) $f(x) = -x^3 + x$: Leading term: $-x^3$. As $x \to -\infty$, $f(x) \to \underline{\hspace{1cm}}$; as $x \to +\infty$, $f(x) \to \underline{\hspace{1cm}}$.

23.3 **Graphing Cubics**: For $f(x) = x^3 - x^2 = x^2(x-1)$:

- a) Zeros: x = 0 (multiplicity 2), x = 1
- b) Test points: $f(-1) = (-1)^3 (-1)^2 = -1 1 = -2$; f(2) = 8 4 = 4.
- c) Multiplicity 2 at x = 0: Graph _____ the x-axis.

23.4 Applying to the Original Problem: For $f(x) = x^3 + 3x^2$:

- a) Factor: $f(x) = x^2(x+3)$. Zeros: ______, _____.
- b) End behavior: Leading term x^3 . As $x \to -\infty$, $f(x) \to \underline{\hspace{1cm}}$; as $x \to +\infty$, $f(x) \to \underline{\hspace{1cm}}$. At x = 0 (multiplicity 2): Graph _____ the x-axis.

Question 24: Properties of Logarithms

The original question asks to explain steps to solve $\log x + \log x^4 = 10$ using logarithm properties. The following questions build understanding of logarithm properties.

24c) Logarithm Properties: Use properties to rewrite:

- a) $\log(3 \cdot 4) = \log 3 + \log 4$ (Product Property)
- b) $\log(x^2) = \underline{\hspace{1cm}}$ (Power Property)
- c) $\log\left(\frac{x}{y}\right) =$ (Quotient Property)
- d) Why do these properties work?

24.2 Combining Logarithms: Combine using properties:

- a) $\log 2 + \log 5 = \log(2 \cdot 5) = \log 10$
- b) $\log x + \log x^2 = \log(x \cdot x^2) = \log x^3$
- c) Practice: $\log 3 + \log x^3 =$ _____.

24.3 Solving Logarithmic Equations: Solve:

- a) $\log x + \log x^3 = 8$: Combine: $\log(x \cdot x^3) = \log x^4 = 8$. Power: $4 \log x = 8$, so $\log x = 2$. $x = 10^2 = 100$.
- b) Practice: $\log x + \log x^2 = 6$: $x = ____.$

24.4 Applying to the Original Problem: Solve $\log x + \log x^4 = 10$:

- a) Combine: $\log(x \cdot x^4) = \log x^5 = 10$ (Product Property).
- b) Simplify: $5 \log x = 10$ (Power Property).
- c) Solve: $\log x = 2$, $x = 10^2 = 100$.

d) Verify: $\log 100 + \log 100^4 = \log 100 + \log 10^8 = 2 + 8 = 10$.