Title

D. Zack Garza

Saturday 26th September, 2020

Contents

1 Saturday, September 26

1

1 | Saturday, September 26

Remark 1.

There is a natural action of $MCG(\Sigma)$ on $H_1(\Sigma; \mathbb{Z})$, i.e. a homology representation of $MCG(\Sigma)$:

$$\rho: \mathrm{MCG}(\Sigma) \to \mathrm{Aut}_{\mathrm{Grp}}(H_1(\Sigma; \mathbb{Z}))$$
$$f \mapsto f_*.$$

Definition 1.0.1 (Special Linear Group).

$$\mathrm{SL}(n,\Bbbk) = \left\{ M \in \mathrm{GL}(n,\Bbbk) \;\middle|\; \det M = 1 \right\} = \ker \det_{\mathbb{G}_m}.$$

Theorem 1.1 (Mapping Class Group of the Torus).

The homology representation of the torus induces an isomorphism

$$\sigma: \mathrm{MCG}(\Sigma_2) \xrightarrow{\cong} \mathrm{SL}(2,\mathbb{Z})$$

Proof.

• For f any automorphism, the induced map $f_*: \mathbb{Z}^2 \to \mathbb{Z}^2$ is a group automorphism, so we can consider the group morphism

$$\tilde{\sigma}: (\operatorname{Map}(X, X), \circ) \to (\operatorname{GL}(2, \mathbb{Z}), \circ)$$

$$f \mapsto f_*.$$

- This will descend to the quotient $\mathrm{MCG}(X)$ iff $\mathrm{Map}^0(X,X)\subseteq\ker\tilde{\sigma}=\tilde{\sigma}^{-1}(\mathrm{id})$
 - This holds because any map in the identity component is homotopic to the identity,

and homotopic maps induce the equal maps on homology.

• So we have a (now injective) map

$$\tilde{\sigma}: \mathrm{MCG}(X) \to \mathrm{GL}(2, \mathbb{Z})$$

$$f \mapsto f_*.$$

Claim: $\operatorname{im}(\tilde{\sigma}) \subseteq \operatorname{SL}(2,\mathbb{Z}).$

• We can thus freely restrict the codomain to define the map

$$\sigma: \mathrm{MCG}(X) \to \mathrm{SL}(2, \mathbb{Z})$$
$$f \mapsto f_*.$$

Claim: σ is surjective.

•

1 SATURDAY, SEPTEMBER 26

2