ΛΥΣΗ

α) Είναι $P(1) = 2 \cdot 1^3 - 1^2 - 2 \cdot 1 + 1 = 2 - 1 - 2 + 1 = 0$ που σημαίνει ότι το P(x) έχει παράγοντα το x-1. Το σχήμα Horner για τη διαίρεση P(x): (x-1) φαίνεται παρακάτω:

2	-1	-2	1	1
	2	1	-1	
2	1	-1	0	

Συνεπώς $P(x) = (x-1)(2x^2 + x - 1)$.

β) Το πρόσημο του $P(x) = (x-1)(2x^2+x-1)$ φαίνεται στον παρακάτω πίνακα:

Х			-1		-	1/2	2	1		+	∞
x-1		-			-		_	d	}	+	
$2x^2 + x - 1$		+	9)	-	7	+			+	
$(x-1)(2x^2+x-1)$		-	9)	+	•	-	(-	+	

Συνεπώς P(x) < 0 για κάθε $x \in (-\infty, -1) \cup (\frac{1}{2}, 1)$.

γ) Είναι $0<\theta<\frac{\pi}{3}$ και επειδή η συνάρτηση $\sigma v v x$ είναι γνησίως φθίνουσα στο $[0,\frac{\pi}{2}]$, έχουμε ότι

$$\sigma \upsilon v 0 > \sigma \upsilon v \theta > \sigma \upsilon v \frac{\pi}{3} \Rightarrow$$

$$1 > \sigma \upsilon \nu \theta > \frac{1}{2}$$

δ) Αφού P(x) < 0 για κάθε $x \in (-\infty, -1) \cup (\frac{1}{2}, 1)$ και $\frac{1}{2} < \sigma \upsilon v \theta < 1$ συμπεραίνουμε ότι $P(\sigma \upsilon v \theta) < 0$.