Text Mining en Social Media Máster Big Data Analytics

Introducción

- A vueltas con el código y herramientas de desarrollo
 - UT-8
 - Library stringi
 - Stri_trans_general(corpus.raw, "Latin-ASCII")
 - Instalar paquetes para que funcione el entorno.
 - Transformación de tipos
 - ¿Será Windows?
- Análisis de los datos y posibles estrategias para los dos casos.
 - ¿Cómo lo abordamos?

Genere (female, male)

- Planteamiento clase con dos valores posibles
- Caso base
 - Preprocesado: minúsculas, eliminación de números, palabras vacías...
 - Funciones:
 - GenerateVocabulary
 - GenerateBow
 - Vocabulario: 1000 palabras
 - Accuracy: 0,6643
- Preprocesado añadido
 - UT-8
 - Quitar acentos
- Modelo SVM Support Vector Machine

- Estrategia1: Genere female
 - Vocabulario 1003 palabras
 - Función
 GenerateVocabulariyGenero(....,
 genero)
 - Accuracy: 0,67
- Estrategia 2: Genere male
 - Vocabulario 1000 palabras
 - Función
 GenerateVocabulariyGenero(....,
 genero)
 - Accuracy: 0,6821
- Estrategia 3: Unión de diferencias
 - Vocabulario: 379 palabras
 - Accuracy: 0,6957

- Estrategia 4: Anterior más la intersección de vocabularios
 - Vocabulario: 1191 palabras
 - Accuracy: 0,6907
- Estrategia 5: Vocabulario mejor (estrategia
 3) más lista de palabras
 - Vocabulario: 401 palabras
 - Función: add.unique
 - Accuracy: 0,6979
- el, la, este, poco, grande, excelente, soy, somos, voy, hago, lindo, dios, pueblo, seguidores, trabajar, facebook, hijo, no, pero, ni, mal, mierda, not, para, con, !!!, !!, :), :(

Hombres	Mujeres
Determinantes	Pronombres
Adjetivos	Negaciones
	Verbos presente

Variety (colombia, argentina, spain, venezuela, peru, chile, mexico)

- Planteamiento clase con siete valores posibles
- Caso base
 - Preprocesado: minúsculas, eliminación de números, palabras vacías...
 - Funciones:
 - GenerateVocabularyVariedad(....., variedad)
 - GenerateBow
 - Vocabulario: 1000 palabras
 - Accuracy: 0,7721
- Preprocesado añadido
 - UT-8
 - Quitar acentos
- Modelo
 - SVM
 - RandomForest

• Estrategia 1

- Palabras propias de cada país
 - 7 vocabularios
- Palabras exclusivas de cada país
 - País x diferencias con el resto.
- Hacer la unión de los anteriores
- Accuracy: 0,8393

• Estrategia 2

- Mismo diccionario que estrategia anterior pero con randomForest (50 árboles)
- Accuracy: 0,8507

• Estrategia 3

- Palabras propias de cada país
 - 7 vocabularios
- De cada diccionario nos quedamos con las 100 palabras más frecuentes, y generamos un nuevo diccionario que tendrá 700 palabras.
- Accuracy: 0,7271

Conclusiones

- Planificación optimista
 - Errores en código y herramientas.
 - Tiempo de procesado
- No por más palabras en la bolsa mejor resultado.
- Nos ha faltado probar con más modelos y realizar presentaciones gráficas para ver datos anómalos por ejemplo.
- Añadir más variables explicativas con importancia para el modelo. Por ejemplo, hemos visto que las mujeres utilizan más emoticonos, o sacar la media de la longitud de los tuits de cada autor, seleccionar palabras determinantes de cada país (ahorita, pibe, boludo,...)