Cauchy's Homogeneous Linear DE Eq of type, $\sqrt{\frac{2}{3}} \frac{d^2y}{dn^2} + 5x \frac{dy}{dn} + 7y = \frac{4}{3} \frac{d^2y}{dn^2} + \frac{4}{3} \frac{dy}{dn} + \frac{4}{3} \frac{dy}{dn} = \frac{4}{3} \frac{d^2y}{dn} + \frac{4}{3} \frac{dy}{dn} +$ are called Cauchy's Homogeneous LDE It can be transformed into constant coeff LDE by substitution, Z=lgn, n=et $\frac{dz}{dn} = \frac{1}{n} / \left[\frac{dy}{dz} \right] = \frac{dy}{dz} \frac{dz}{dx} = \frac{1}{n} \frac{dy}{dz} = \frac{1}{n} \frac{dy}{dz}$ 7 dy = 07 dZ $\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d}{dx} \left[\frac{1}{x} \frac{dy}{dz} \right]$ $= \frac{dy}{dz} \left(-\frac{1}{n^2} \right) + \frac{1}{x} \frac{d}{dx} \left(\frac{dy}{dz} \right)$ $= -\frac{1}{n^2} \frac{dy}{dz} + \frac{1}{n} \left(\frac{1}{n} \frac{d}{dz} \right) \left(\frac{dy}{dz} \right)$ $\frac{d^2y}{dx^2} = -\frac{1}{n^2} \frac{dy}{dz} + \frac{1}{n^2} \frac{d^2y}{dz^2}$ $\chi^2 \frac{d^2y}{dx^2} = \frac{d^2y}{dx^2} - \frac{dy}{dz}$ Similarly, $x^3 \frac{d^3y}{dz^3} = \frac{d^3y}{dz^3} - 3\frac{d^3y}{dz^2} + 2\frac{dy}{dz}$ Put d > 0, we get $\frac{3}{2} \frac{d^3y}{d^2y} = \frac{d^3y}{d^2y} - \frac{3}{2} \frac{d^2y}{d^2y} + 2\frac{d^2y}{d^2z} = (D^3 - 3D^2 + 2D)y = D(D-1)(D-2)y$

Problems on Cauchy's DE

Problems on Cauchy's DE

Without Miss 13 Large Problems:

No
$$\frac{1}{3}\frac{d^3y}{dx^3} + 6x^2\frac{d^3y}{dx^2} + 9x\frac{dy}{dx} + 2y = x^2 + 3x - 4 - 0$$

This is Couchy's OE, Putting $z = lyx$, $x = e^z$, $0 = \frac{d}{dz}$

We get, $x^3\frac{d^3y}{dx^3} = 0(0-1)(0-2)y$
 $x^2\frac{d^3y}{dx^3} = 0(0-1)y$, $x\frac{dy}{dx} = 0y$

Put in 0 (0(0-1)(0-2)y) + 6 (0(0-0)y) + 80y + 2y]

 $= e^{1/2} + 3e^2 - 4$
 $(0^3 + 30^2 + 40) + 60^2 - 60 + 80 + 2$ $y = e^{1/2} + 3e^2 - 4$
 $(0^3 + 30^2 + 40) + 2$ $y = e^{1/2} + 3e^2 - 4$
 $(0^3 + 30^2 + 40) + 2$ $y = e^{1/2} + 3e^2 - 4$

Now, $y = (0^3 + 30^2 + 40) + 2$ $y = e^{1/2} + 3e^2 - 4e^{1/2}$
 $(0^3 + 30^2 + 40) + 2$ $y = e^{1/2} + 3e^2 - 4e^{1/2}$
 $(0^3 + 30^2 + 40) + 2$ $y = e^{1/2} + 3e^2 - 4e^{1/2}$
 $(0^3 + 30^2 + 40) + 2$ $(0^3 + 30^2 + 40) + 2$

2)
$$\frac{d^{3}y}{dx^{2}} + \frac{1}{x^{3}} \frac{dy}{dx} = \frac{12 \log x}{x^{2}}$$

multiply by x^{2}
 $\frac{1}{x^{2}} \frac{dy}{dx^{2}} + \frac{1}{x^{2}} \frac{dy}{dx} = \frac{12 \log x}{x^{2}}$
 $\frac{1}{(a^{2}-0)^{2}} \frac{dy}{dx^{2}} + \frac{1}{x^{2}} \frac{dy}{dx} = \frac{12 \log x}{x^{2}} + \frac{1}{x^{2}} \frac{dy}{dx}$

3) $x^{2} \frac{d^{3}y}{dx^{2}} + \frac{1}{x^{2}} \frac{dy}{dx} = \frac{1}{x^{2}} \frac{1}{x^{2}} + \frac{1}{x^{2}} \frac{1}{x^{2}} \frac{dy}{dx}$

1. is in Cauchy Die from, $z = \log x$, $x = e^{2}$, $D = \frac{1}{a^{2}}$

1. is in Cauchy Die from, $z = \log x$, $x = e^{2}$, $D = \frac{1}{a^{2}}$

1. is in Cauchy Die from, $z = \log x$, $x = e^{2}$, $D = \frac{1}{a^{2}}$

1. is in Cauchy Die from, $z = \log x$, $x = e^{2}$, $D = \frac{1}{a^{2}}$

1. is in Cauchy Die from, $z = \log x$, $x = e^{2}$, $D = \frac{1}{a^{2}}$

1. is in Cauchy Die from, $z = \log x$, $x = e^{2}$, $D = \frac{1}{a^{2}}$

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (25 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = \log x$, $z = e^{2}$ (26 in $z = e^{2}$)

1. is in Cauchy Die from, $z = e^{2}$ (26 in $z = e^{2}$)

2.

Higher order DE Page 3

$$y_{p} = \frac{z^{2}-2}{5} - \frac{e^{z}}{5} (2\cos z - \sin z)$$

A) $(\frac{d}{d} + \frac{1}{x})^{2} y = \frac{1}{x^{4}}$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + ba + b$
 $(a+b)^{2} = \frac{1}{x^{4}} + ab + b$
 $(a+b)^{2} = \frac{1}{x$

displacement in at distance 'r' is given by $\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{y}{r^2} + kr = 0$ Find displacement if u = 0 when r = 0 kr = a