

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

289478904

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

find the value of the po	ositive constant a.		[3

Describe fully he transformation	a sequence of transformations that have been combined, making clear the order in white ions have been applied.	nich [5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
•••••		••••
		••••
		••••
		••••
•••••		

)	Show that the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ can be expressed as	
	$12\sin^2\theta - 7\sin\theta - 12 = 0.$	[3]
	$7 \tan \theta$	
)	Hence solve the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]
)	Hence solve the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]
)	Hence solve the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]
)	Hence solve the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]
)	Hence solve the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	
)		
•)		
))		
))		
))		
))		
))		
))		

4	701	C	, •	c ·	1 (* 1	C	11
4	I he	tunc	tion	I 1S	defined	as to	Hows:

$$f(x) = \sqrt{x} - 1$$
 for $x > 1$.

(a)	Find an expression for $f^{-1}(x)$.	[1	[]
-----	--------------------------------------	----	----

The diagram shows the graph of y = g(x) where $g(x) = \frac{1}{x^2 + 2}$ for $x \in \mathbb{R}$.

(b)	State the range of g and explain whether g^{-1}	exists.	[2
			••••

.....

The function h is defined by $h(x) = \frac{1}{x^2 + 2}$ for $x \ge 0$.

j	Solve the equation $hf(x) = f\left(\frac{25}{16}\right)$. Give your answer in the form $a + b\sqrt{c}$, when integers.	
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

The first and second terms of an arithmetic progression are $\tan \theta$ and $\sin \theta$ respectively, where

	at $\theta = \frac{1}{4}\pi$, find th		
•••••		 	
	,	 	
•••••	•••••	 •••••	
•••••		 	 ,
		 •••••	

The first and second terms of a geometric progression are $\tan\theta$ and $\sin\theta$ respectively, where $0<\theta<\frac{1}{2}\pi$.

(b) (i)	Find the sum to infinity of the progression in terms of θ .	[2
		•••••
(ii)	Given that $\theta = \frac{1}{3}\pi$, find the sum of the first 10 terms of the progression.	Give your answe
()	correct to 3 significant figures.	[3
		•••••

Find the coordinates of A and B .	

(b)

The diagram shows the curve with equation $y = 2x - 8x^{\frac{1}{2}}$ and the line AB. It is given that the equation of AB is $y = \frac{2x - 32}{3}$.

Find the area of the shaded region between the curve and the line.	[5]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

The equation of a circle is $(x-6)^2 + (y+a)^2 = 18$. The line with equation y = 2a - x is a tangent to the

	70 possible vali	ues of the con	stant a.		
•••••			•••••		
	•••••		•••••	•••••	
	•••••••••••				
•••••				•••••	
			•••••		

for the greater value of a , find the equation of the diameter which is pangent.	[3]

The diagram shows a symmetrical plate *ABCDEF*. The line *ABCD* is straight and the length of *BC* is 2 cm. Each of the two sectors *ABF* and *DCE* is of radius r cm and each of the angles *ABF* and *DCE* is equal to $\frac{1}{3}\pi$ radians.

(a) It is given that r = 0.4 cm.

(i)	Show that the length $EF = 2.4 \mathrm{cm}$.	[2
		••••
ii)	Find the area of the plate. Give your answer correct to 3 significant figures.	[4
		••••

(b)	It is given instead that the perimeter of the plate is 6 cm.
(6)	
	Find the value of r . Give your answer correct to 3 significant figures. [4]

Determine the	set of values of x	for which $f(x)$ is c	lecreasing.	
		,	•••••	
			•••••	

10	The equation of a curve is $y = (5 - 2x)$	$(x)^{\frac{3}{2}} + 5 \text{ for } x < \frac{5}{2}$	•
----	---	--	---

Find the rate	e at which the x-coordinate of point P is increasing when $y = 32$.	

Fir ax	nd th + <i>by</i> -	e ec + c =	quati = 0, v	on whei	of te <i>a</i> ,	the <i>b</i> ar	per nd <i>c</i>	pend	dicu	ılar egei	bis s.	sect	or (of	AB.	G	ive	yo	ur	ans	wer	in	the	form [6]
••••				•••••			••••					••••					••••							
••••	•••••			• • • • • •		• • • • • • •		•••••	•••••	•••••					•••••	•••••			••••			•••••		•••••
••••	•••••			• • • • • • •		•••••		•••••								•••••	•••••		••••	•••••		•••••	•••••	•••••
	•••••			• • • • • •			••••					••••			•••••		••••						•••••	•••••
••••	•••••	•••••	•••••	• • • • • •		• • • • • • •	•••••	•••••				••••				•••••	•••••		••••		•••••		•••••	•••••
	•••••			• • • • • •				• • • • • • •	•••••					• • • • • •		•••••	•••••		••••	•••••		•••••	•••••	•••••
	•••••			• • • • • • •		•••••		•••••								•••••	•••••		••••	•••••		•••••	•••••	•••••
	•••••	•••••	•••••	• • • • • •		• • • • • • •	•••••	•••••				••••				•••••	•••••		••••		•••••		•••••	•••••
•••	•••••			• • • • • •				• • • • • • •	•••••	•••••	•••••			• • • • • •		•••••	•••••	•••••	••••	•••••		•••••	•••••	•••••
•••	•••••			• • • • • •				• • • • • • •	•••••	•••••	•••••			• • • • • •		•••••	•••••	•••••	••••	•••••		•••••	•••••	•••••
•••	•••••			• • • • • •				• • • • • • •	•••••	•••••	•••••			• • • • • •		•••••	•••••	•••••	••••	•••••		•••••	•••••	•••••
•••	•••••			• • • • • • •			•••••	•••••	•••••			••••				•••••	•••••		••••				•••••	•••••
••				• • • • • •			••••					••••			•••••	• • • • • •	••••							
•••	•••••		•••••	• • • • • • •		• • • • • • •		• • • • • • •	•••••					• • • • • •		•••••	•••••		••••	•••••	•••••	•••••	•••••	•••••
•••				• • • • • •			••••					••••			•••••	• • • • • •	••••							
				• • • • • •								••••			•••••	••••	••••			•••••				
	•••••			• • • • • •			••••					••••					••••							
•••	•••••			• • • • • •			••••					••••					••••							
•••	•••••			• • • • • • •			•••••	•••••	•••••			••••				•••••	•••••		••••				•••••	•••••
•••	•••••		•••••	• • • • • • •		• • • • • • •		• • • • • • •	•••••					• • • • • •		•••••	•••••		••••	•••••		•••••	•••••	•••••
	•••••			• • • • • •			••••					••••			•••••		••••							
	•••••			• • • • • • •			•••••	•••••	•••••			••••				•••••	•••••		••••				•••••	•••••
	•••••			• • • • • • •			•••••	•••••	•••••			••••				•••••	•••••		••••				•••••	•••••
				• • • • • •																				

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.