CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS – CEFET/MG

AULA 6 - Projeto de um Processador: implementação do programa-teste.

Laboratório de Arquitetura e Organização de Computadores

BELO HORIZONTE 2022

1) Apresente o código do programa-teste em assembly do MIPS (utilize comentários para facilitar a revisão do seu código). Mostre seu correto funcionamento no MARS. .globl main .text main: lw \$t0,n(\$zero) #passando valor do inteiro n para o registrador \$t0 addi \$t1, \$zero, 1 #passando 1 pro registrador \$t1 sw \$t1,fatorial(\$zero) #salvando o valor 1 (\$t1) na memória while: #estrutura de repetição pra fatoração addi \$t1, \$zero, 1 beq \$t0, \$t1, saida #comparação se n > 1, (\$t0 > \$t1). Condição de parada do loop. lw \$t1,fatorial(\$zero) #passando pro registrador \$t1 o valor salvo na memoria mul \$1,\$t1,\$t0 #multiplicando o numero a ser fatorado pelo seu antecessor, e o resultado pelo antecessor do antecessor... sw \$t1,fatorial(\$zero) # salvando resultado da multiplicação na memória subi \$t0,\$t0,1 # decrementando a interação n ou seja, jogando o antecessor do atual n pro loop j while # retornando pro loop saida: syscall #encerrando programa .data

.word 5

.word

n:

fatorial:

2) Apresente o código do programa-teste em assembly do seu nRisc (utilize comentários para facilitar a revisão do seu código).

.globl main

.text

main:

lw reg0,n #passando valor do inteiro n pro registrador reg0.

defi reg1, 1 #passando 1 pro registrador reg1 sw reg1,fatorial #salvando o valor 1 (reg1) na memória

while: #estrutura de repetição para fatoração defi reg1, 1

beq reg0, reg1, saida #comparação se n > 1, (reg0 > reg1). Condição de parada do loop.

lw reg1, fatorial #passando pro registrador reg1 o valor salvo na memória

mul reg1,reg0 #multiplicando o número a ser fatorado pelo seu antecessor, e o resultado pelo antecessor do antecessor...

sw reg1,fatorial # salvando resultado da multiplicação na memória

subi reg0, 1 # decrementando a interação n ou seja, jogando o antecessor do atual n pro loop

j while # retornando pro loop saida:

encerra # encerrando programa

.data

n: .word 5 fatorial: .word

3) Apresente o código do programa-teste em binário no formato de instruções definido para o seu nRisc (indique cada instrução em uma linha de texto separada). Mostre, no relatório, as etapas intermediárias do processo de conversão das instruções (exemplo: valores decimais dos campos das instruções, cálculos de endereços, etc).

Tabelas de cada instrução em seu valor decimal e binário:

Instrução 0:

		op		rs	_	end	lereço	
Decimais		2		0			1	
Binários	0	1	0	0	0	0	0	1

load word: carrega o valor de um local da memória para o registrador de destino

Instrução 1:

		op		rs	_	V	alor	
Decimais		0		1			1	
Binários	0	0	0	1	0	0	0	1

defi: move o valor imediato para o registrador destino

Instrução 2:

		op		rs		ende	ereço	
Decimais		3		1			2	
Binários	0	1	1	1	0	0	1	0

store word: guarda o valor no registrador para um local da memória principal

Instrução 3:

		op		rs	_	V	alor	
Decimais		0		1			1	
Binários	0	0	0	1	0	0	0	1

defi: move o valor imediato para o registrador destino

Instrução 4:

		op		rs	rt		endereço	
Decimais		1		0	1		5	
Binários	0	0	1	0	1	1	0	1

beq: desvio condicional, se o primeiro registrador for igual ao segundo, salta PC + 1 + (Imediato)

Instrução 5:

		op		rs		end	lereço	
Decimais		2		1			2	
Binários	0	1	0	1	0	0	1	0

load word: carrega o valor de um local da memória para o registrador de destino

Instrução 6:

		op		rs	rt	r	não utilizado)
Decimais		4		1	0		0	
Binários	1	0	0	1	0	0	0	0

mul: multiplica o primeiro com o segundo registrador e guarda no primeiro

Instrução 7:

		op		rs	_	ende	ereço	
Decimais		3		1			2	
Binários	0	1	1	1	0	0	1	0

store word: guarda o valor no registrador para um local da memória principal

Instrução 8:

	-	op		rs		V	alor	
Decimais		5		0			1	
Binários	1	0	1	0	0	0	0	1

subi: subtrai o valor no registrador pelo imediato e guarda no registrador

Instrução 9:

		op				endereço		
Decimais		6				3		
Binários	1	1	0	0	0	0	1	1

j: desvio incondicional, salta para o endereço: (Imediato)

Instrução 10:

		op			n	ião utiliza	do	
Decimais		7				0		
Binários	1	1	1	0	0	0	0	0

end: finaliza o programa

Cálculo de endereço de desvio utilizando um desvio condicional (beq):

Endereço de destino = PC + 1 + (Imediato).

Exemplo no nRisc utilizando o beq:

Endereço de destino =
$$4 + 1 + 5$$

Endereço de destino = 10

Cálculo de endereço de desvio utilizando um desvio condicional (beq):

Endereço de destino = Imediato

Exemplo no nRisc utilizando o j:

	ор	end
9	6	3

Endereço de destino = 3

y 3	0	1		1		
/ 4	1	0	1		5	
5	2	1		2		
6	4	1	0		0	
7	3	1		2)
8	5/	0		1		
9	6		3			
10 👞	7		0			

Código definido para o nRisc em Binário:

- 0 01000001
- 1 00010001
- 2 01110010
- 3 00010001
- 4 00101101
- 5 01010010
- 6 10010000
- 7 01110010
- 8 10100001
- 9 11000011
- 10 11100000