Ch. 3: Forward and Inverse Kinematics

### Recap: The Denavit-Hartenberg (DH) Convention

 Representing each individual homogeneous transformation as the product of four basic transformations:

$$\begin{split} & \boldsymbol{A}_{i} = \mathbf{Rot}_{z,\theta_{i}} \mathbf{Trans}_{z,d_{i}} \mathbf{Trans}_{x,a_{i}} \mathbf{Rot}_{x,\alpha_{i}} \\ & = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

#### Recap: the physical basis for DH parameters

- $a_i$ : link length, distance between the  $o_0$  and  $o_1$  (projected along  $x_1$ )
- $\alpha_i$ : link twist, angle between  $z_0$  and  $z_1$  (measured around  $x_1$ )
- $d_i$ : link offset, distance between  $o_0$  and  $o_1$  (projected along  $z_0$ )
- $\theta_i$ : joint angle, angle between  $x_0$  and  $x_1$  (measured around  $z_0$ )



#### General procedure for determining forward kinematics

- 1. Label joint axes as  $z_0, ..., z_{n-1}$  (axis  $z_i$  is joint axis for joint i+1)
- 2. Choose base frame: set  $o_0$  on  $z_0$  and choose  $x_0$  and  $y_0$  using right-handed convention
- 3. For i=1:n-1,
  - i. Place  $o_i$  where the normal to  $z_i$  and  $z_{i,1}$  intersects  $z_i$ . If  $z_i$  intersects  $z_{i,1}$ , put  $o_i$  at intersection. If  $z_i$  and  $z_{i,1}$  are parallel, place  $o_i$  along  $z_i$  such that d=0
  - ii.  $x_i$  is the common normal through  $o_i$ , or normal to the plane formed by  $z_{i-1}$  and  $z_i$  if the two intersect
  - iii. Determine  $y_i$  using right-handed convention
- 4. Place the tool frame: set  $z_n$  parallel to  $z_{n-1}$
- 5. For i=1:n, fill in the table of DH parameters
- 6. Form homogeneous transformation matrices, A<sub>i</sub>
- 7. Create  $T_n{}^0$  that gives the position and orientation of the end-effector in the inertial frame

## Example 4: cylindrical robot with spherical wrist

- 6DOF: need to assign seven coordinate frames
  - But we already did this for the previous two examples, so we can fill in the table of DH parameters:



### Example 4: cylindrical robot with spherical wrist

 Note that z<sub>3</sub> (axis for joint 4) is collinear with z<sub>2</sub> (axis for joint 3), thus we can make the following combination:



## Example 5: the Stanford manipulator

- 6DOF: need to assign seven coordinate frames:
  - 1. Choose  $z_0$  axis (axis of rotation for joint 1, base frame)
  - 2. Choose  $z_1$ - $z_5$  axes (axes of rotation/translation for joints 2-6)
  - 3. Choose  $x_i$  axes
  - 4. Choose tool frame
  - 5. Fill in table of DH parameters:

| link | a <sub>i</sub> | $\alpha_i$ | d <sub>i</sub> | $\theta_{i}$ |
|------|----------------|------------|----------------|--------------|
| 1    |                |            |                |              |
| 2    |                |            |                |              |
| 3    |                |            |                |              |
| 4    |                |            |                |              |
| 5    |                |            |                |              |
| 6    |                |            |                |              |





## Example 5: the Stanford manipulator

• Now determine the individual homogeneous transformations:

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} c_{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Example 5: the Stanford manipulator

 Finally, combine to give the complete description of the forward kinematics:

$$T_{6}^{0} = A_{1} \cdots A_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{0} = A_{1} \cdots A_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{0} = A_{1} \cdots A_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{0} = A_{1} \cdots A_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ r_{32} & r_{32} & r_{32} & r_{34} \\ r_{33} & r_{34} & r_{34} & r_{34} \\ r_{35} & r_{35} & r_{35} \\ r_$$

## Example 6: the SCARA manipulator

- · 4DOF: need to assign five coordinate frames:
  - 1. Choose  $z_0$  axis (axis of rotation for joint 1, base frame)
  - 2. Choose  $z_1$ - $z_3$  axes (axes of rotation/translation for joints 2-4)
  - 3. Choose  $x_i$  axes
  - 4. Choose tool frame
  - 5. Fill in table of DH parameters:

|      |       | •            |       |              | e 🗘                                     |            |     |
|------|-------|--------------|-------|--------------|-----------------------------------------|------------|-----|
| link | $a_i$ | $\alpha_{i}$ | $d_i$ | $\theta_{i}$ |                                         | 23 de      | ( ) |
| 1    |       |              |       |              | , z <sub>o</sub>                        |            |     |
| 2    |       |              |       |              | « <u></u>                               | 2.30       | (M) |
| 3    |       |              |       |              | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | y/ Za      |     |
| 4    |       |              |       |              |                                         | 3/2        |     |
|      |       |              |       |              |                                         | $z_h, z_t$ |     |

#### Example 6: the SCARA manipulator

• Now determine the individual homogeneous transformations:

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} c_2 & s_2 & 0 & a_2c_2 \\ s_2 & -c_2 & 0 & a_2s_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_4 = \begin{bmatrix} c_4 & -s_4 & 0 & 0 \\ s_4 & c_4 & 0 & 0 \\ 0 & 0 & 1 & d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^0 = A_1 \cdots A_4 = \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Forward kinematics of parallel manipulators

- Parallel manipulator: two or more series chains connect the endeffector to the base (closed-chain)
- Gruebler's formula (3D):



\*excluding ground

# Forward kinematics of parallel manipulators

• Example (2D):



## **Inverse Kinematics**

 Find the values of joint parameters that will put the tool frame at a desired position and orientation (within the workspace)

- Given 
$$H$$
: 
$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \in SE(3)$$



## Example: the Stanford manipulator

• For a given H:

$$H = \begin{bmatrix} 0 & 1 & 0 & -0.154 \\ 0 & 0 & 1 & 0.763 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Find  $\theta_1$ ,  $\theta_2$ ,  $d_3$ ,  $\theta_4$ ,  $\theta_5$ ,  $\theta_6$ :

$$\begin{split} c_1 \big[ c_2 \big( c_4 c_5 c_6 - s_4 s_6 \big) - s_2 s_5 c_6 \big] - d_2 \big( s_4 c_5 c_6 + c_4 s_6 \big) &= 0 \\ s_1 \big[ c_2 \big( c_4 c_5 c_6 - s_4 s_6 \big) - s_2 s_5 c_6 \big] + c_1 \big( s_4 c_5 c_6 + c_4 s_6 \big) &= 0 \\ - s_2 \big( c_4 c_5 c_6 - s_4 s_6 \big) - c_2 s_5 c_6 &= 1 \\ c_1 \big[ - c_2 \big( c_4 c_5 s_6 + s_4 c_6 \big) + s_2 s_5 s_6 \big] - s_1 \big( - s_4 c_5 s_6 + c_4 c_6 \big) &= 1 \\ - s_1 \big[ - c_2 \big( c_4 c_5 s_6 - s_4 c_6 \big) - s_2 s_5 s_6 \big] + c_1 \big( - s_4 c_5 s_6 + c_4 s_6 \big) &= 0 \\ s_2 \big( c_4 c_5 s_6 + s_4 c_6 \big) + c_2 s_5 s_6 &= 0 \\ c_1 \big( c_2 c_4 s_5 + s_2 c_5 \big) - s_1 s_4 s_5 &= 0 \end{split}$$

$$s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2) = 0.763$$

$$c_2 d_3 + d_6 (c_2 c_5 - c_4 s_2 s_5) = 0$$

• One solution:  $\theta_1 = \pi/2$ ,  $\theta_2 = \pi/2$ ,  $d_3 = 0.5$ ,  $\theta_4 = \pi/2$ ,  $\theta_5 = 0$ ,  $\theta_6 = \pi/2$ 

#### **Inverse Kinematics**

- For the forward kinematics there is always a unique solution
- The inverse kinematics may or may not have a solution



# Overview: kinematic decoupling

Appropriate for systems that have an arm a wrist

# Overview: kinematic decoupling

• Now, origin of tool frame,  $o_6$ , is a distance  $d_6$  translated along  $z_5$  (since  $z_5$  and  $z_6$  are collinear)



## Inverse position

• Now that we have  $[x_c \ y_c \ z_c]^T$  we need to find  $q_1$ ,  $q_2$ ,  $q_3$ 



## Background: two argument atan

- We use atan2(·) instead of atan(·) to account for the full range of angular solutions
  - Called 'four-quadrant' arctan

$$\mathbf{atan2}(y,x) = \begin{cases} -\mathbf{atan2}(-y,x) & y < 0 \\ \pi - \mathbf{atan}\left(-\frac{y}{x}\right) & y \ge 0, x < 0 \\ \mathbf{atan}\left(\frac{y}{x}\right) & y \ge 0, x \ge 0 \\ \frac{\pi}{2} & y > 0, x = 0 \\ \mathbf{undefined} & y = 0, x = 0 \end{cases}$$

# Example: RRR manipulator

1. To solve for  $\theta_1$ , project the arm onto the  $x_0$ ,  $y_0$  plane  $\theta_1 = {\rm atan2}(x_c,y_c)$ 





# Caveats: singular configurations, offsets

- If  $x_c=y_c=0$ ,  $\theta_1$  is undefined
- If there is an offset, then we will have two solutions for  $\theta_1$ : left arm and right arm





# Left arm and right arm solutions

Left arm:

• Right arm:





# Left arm and right arm solutions

- Therefore there are in general two solutions for  $\theta_1$
- s for  $\theta_3$ :



# Left arm and right arm solutions

- The two solutions for  $\theta_{\rm 3}$  correspond to the elbow-down and elbow-up positions respectively



## RRR: Four total solutions

- In general, there will be a maximum of four solutions to the inverse position kinematics of an elbow manipulator
  - Ex: PUMA









# Example: RRP manipulator

• Spherical configuration



## Next class...

- Complete the discussion of inverse kinematics
  - Inverse orientation
  - Introduction to other methods
- Introduction to velocity kinematics and the Jacobian