

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Научно-исследовательская работа по теме: Классификация существующих методов анализа пользовательской активности

Студент: Пронин Арсений Сергеевич

Группа: ИУ7-72Б

Руководитель: Никульшина Татьяна Александровна

Цель и задачи

Цель: провести обзор существующих методов анализа пользовательской активности, сформулировать критерии для их оценки и провести сравнение рассмотренных методов.

Задачи:

- 1) рассмотреть существующие решения в области анализа пользовательской активности;
- 2) классифицировать методы анализа пользовательской активности;
- 3) выбрать для них критерии оценки и сравнить.

Пользовательская активность

Пользовательская активность это действия совершаемые пользователем при взаимодействии с интерфейсом программы (движение курсора мыши, нажатие клавиш мыши, нажатие клавиш клавиатуры и т.д.), и их характеристики (координаты курсора, частота нажатия, используемые клавиши и т.д.).

Тестирование удобства использования программного обеспечения обычно состоит из двух этапов:

- 1) сбор данных о пользовательской активности;
- 2) анализ этих данных.

Математическая модель пользовательской активности ПО

Сессия – последовательность действий пользователя за фиксированный временной промежуток.

Шаблон – предопределенная последовательность событий.

Поддержка шаблона сессией – процент содержания этого шаблона в данной сессии.

Например, пусть имеется сессия $\langle 2, 1, 2, 1, 3, 2, 1, 2, 1, 3 \rangle$. Рассчитаем кол-во вхождений (μ) и поддержку (λ) для следующих шаблонов:

$$\begin{aligned} p1 &= \langle 2, 1 \rangle, \, \mu = 4, \, \lambda = 0.8; \\ p2 &= \langle 2, 1, 2, 1 \rangle, \, \mu = 2, \, \lambda = 0.8; \\ p3 &= \langle 2, 1, 2, 1, 3 \rangle, \, \mu = 2, \, \lambda = 1; \\ p4 &= \langle 3, 2, 1, 2, 1 \rangle, \, \mu = 1, \, \lambda = 0.5. \end{aligned}$$

Пример работы алгоритма Apriori

TransID	ItemsPurchased	
101	Молоко, Хлеб, Яйца	
102	Молоко, Сок	
103	Сок, Масло	
104	Молоко, Хлеб, Яйца	
105	Масло, Яйца	

Item	Num	
Молоко	1	
Хлеб	2	
Яйца	3	
Сок	4	
Масло	5	

ID	Items	
101	1,2,3	
102	1,4	
103	4,5	
104	1,2,3	
105	5,3	

Уровень поддержки набора продуктов (support) показывает процент транзакций содержащих набор. Зададим минимальный уровень поддержки 25%.

ItemSet	Support	%
{1}	3	60
{2}	2	40
{3}	3	60
{4}	2	40
{5}	2	40

ItemSet	Support	%
{1,2}	2	40
{1,3}	2	40
{1,4}	1	20
{1,5}	0	0
{2,3}	2	40
{2,4}	0	0
{2,5}	0	0
{3,4}	0	0
{3,5}	1	20
{4,5}	1	20

ItemSet	Support	%
{1,2,3}	2	40

Ø	J	U
(aanfidaa		
(confiden	ісе) пок	азывает

Уровень уверенности (confidence) показывает на сколько вероятно срабатывает полученное правило.

$$\frac{supp(\{1,2,3\})}{supp(\{2\})} = \frac{2}{2} = 100\%$$

Rule	Conf.
Хлеб \rightarrow {Молоко, Яйца}	100%

Алгоритм GSP

- является модификацией алгоритма AprioriAll;
- учитывает ограничения по времени между соседними транзакциями и id клиента совершившего ее;
- поддержка последовательности это отношение числа покупателей, в чьих транзакциях присутствует указанная последовательность к общему числу покупателей.

В работе алгоритма можно выделить следующие основные этапы:

- 1. Генерация кандидатов.
 - 1.1. Объединение.
 - 1.2. Упрощение.
- 2. Подсчет поддержки кандидатов.

Пример работы алгоритма GSP

Генерация кандидатов:

Постуго 2 по сположения постуг	Кандидаты 4-последовательности C_4		
Частые 3-последовательности L_3	После объединения	После упрощения	
⟨{1, 2} {3}⟩	$(\{1,2\} \{3,4\})$	({1, 2} {3, 4})	
$\langle \{1,2\} \{4\} \rangle$	({1, 2} {3} {5})		
({1} {3,4})			
({1, 3} {5})			
({2} {3,4})			
({2} {3} {5})			

Объединение:

$$\langle \{1, 2\} \{3\} \rangle + \langle \{2\} \{3, 4\} \rangle = \langle \{1, 2\} \{3, 4\} \rangle$$

 $\langle \{1, 2\} \{3\} \rangle + \langle \{2\} \{3\} \{5\} \rangle = \langle \{1, 2\} \{3\} \{5\} \rangle$

Упрощение:

$$\langle \{1\} \ \{3\} \ \{5\} \rangle \notin L_3 \Rightarrow$$
 удаляем $\langle \{1,2\} \ \{3\} \ \{5\} \rangle$

Подсчет поддержки кандидатов:

Время транзакции	Объекты
10	1
20	3
26	2

Зададим минимальное и максимальное допустимое время между транзакциями $min_gap = 5$, $max_gap = 15$ и размер окна $win_size = 0$.

Последовательность $\langle \{1\} \{3\} \rangle$ поддерживается клиентом, а $\langle \{1\} \{2\} \rangle$ нет.

При win_size = 6 одно-элементная последовательность $\langle \{3, 2\} \rangle$ поддерживается клиентом, а $\langle \{1, 3\} \rangle$ нет.

Метод оценки эффективности интерфейса GOMS

- включает в себя модель Keystroke-level Model (KLM)
- КLМ выделяет элементарные задачи и длительность каждой из них (рассчитанные на основе усредненных данных лабораторных испытаний). Например, P указание курсором мыши на объект 1.1 сек. и В нажатие или отпускание мыши 0.1 сек.
- оценка времени на решение задачи сводится к сложению продолжительностей каждой из простейших составляющих. Например, задача, состоящая из классов (P, P, B), потребует для завершения 2.3 сек. (1.1 сек. + 1.1 сек. + 0.1 сек.).

Классификация

- поиск ассоциативных правил (Apriori);
- поиск последовательных шаблонов (GSP);
- сбор и анализ временных характеристик выполнения пользователем действий и промежутков между ними (GOMS);
- вычисление уровней поддержки шаблонов поведения пользователя (Математическая модель пользовательской активности ПО).

Сравнение методов

Метод	Требование к входным данным	Учет времени транз-ий	Сложность алгоритма
Мат. модель пользов. актив. ПО	Множество событий, функция классификации событий, множество сессий, множество последовательных шаблонов	Нет	$O(n \cdot m)$, где n – кол-во шаблонов, m – кол-во сессий
Apriori	Транзакции с набором элементов и минимальный уровень поддержки	Нет	$O(D \cdot I \cdot 2^{ I }),$ где $ D $ – кол-во транзакций, $ I $ – общее число предметов
GSP	База данных с полями: id последовательности, id и время транзакции, набор элементов и минимальный уровень поддержки	Да	$O(I ^l)$, где $ I $ – общее число предметов, l – длина наибольшей ЧВП
GOMS	Последовательность действий	Нет	O(n), где n – число действий в послед-ти

Заключение

По итогу проделанной работы была достигнута цель - проведен обзор существующих методов анализа пользовательской активности, сформулированы критерии для их оценки и проведено сравнение рассмотренных методов.

Также были решены все поставленные задачи, а именно:

- 1) рассмотрены существующие решения в области анализа пользовательской активности;
- 2) классифицированы методы анализа пользовательской активности;
- 3) выбраны критерии для их оценки и проведено сравнение.