Grundlagen der Elektrotechnik 2

Praktikum - Laborversuch 2

Gruppe 2 – Tisch 4

Cao Thi Huyen (2245555), Robert Rösler (2243579), Nico Grimm (2058712)

1. Kennlinie eines nichtlinearen Widerstandet (Glühlampe)

1.1 Berechnung der Glühlampen-Kennlinie

Die Strom-Spannungs-Charakteristik der Glühlampe wird näherungsweise durch folgende Funktion beschrieben.

In der folgenden Tabelle wurde der Lampenstrom mit der Formel $\left(\frac{I}{mA}\right)=a*\left(\frac{U}{V}\right)^b$ berechnet, wobei a=20 und b=0,5. Der Gleichstromwiderstand wurde dementsprechend mit der Formel $R=\frac{U}{I}$ berechnet.

U [V]	Strom I [mA]	Gleichstromwiderstand $R_A[\Omega]$
0,1	~6,3246	~15,81
0,2	~8,9443	~22,36
0,5	~14,142	~35,36
1,0	20,000	50,00
2,0	~28,284	~70,71
5,0	~44,721	~111,80
10,0	~63,246	~158,11

1.2 Messung der Glühlampen-Kennlinie

a) Hier soll die Kennlinie I=f(U) einer Glühlampe bestimmt werden. In diesem Versuch verwenden wir zwei Messgeräte, um eine simultane Strom- und Spannungsmessung durchführen zu können. Das MetraHit 15S wird für die Spannung U und das MetraHit18S für die Spannung I benutzt.

Um die Kennlinie aufnehmen zu können wird die Widerstandsdekade so eingestellt, dass an der Lampe die Spannungswerte 0.1V, 0.2V, 0.5V, 1.0V, 2.0V, 5.0V, 10.0V anliegen. Zu jedem Spannungswert wird nun der Lampenstrom gemessen.

U [V]	I [mA]	Dekadenwiderstand [Ω]
0,1	5,691	1740
0,2	9,604	1020
0,5	15,684	605
1,0	21,253	422,6
2,0	30,14	264,3
5,0	50,17	98,5
10,0	74,44	0

- b) siehe Anlagen
- c) siehe Anlagen

2. Abgleichbrücke

Es ist folgende Abgleichbrücke gegeben:

2.1 Berechnung der Brückenspannung

- a) Nehmen wir alle Widerstände der Abgleichbrücke als fehlerfrei an, dann R_1 einen Wert von $1k\Omega$ besitzen, um abgeglichene Brücke zu erhalten.
- b) Herleitung zu Berechnung von U_{ab}=f(R₁)

(1)
$$V_{ab} = V_4 - V_2$$

(2) $V_2 = V_0 \cdot \frac{R^2}{R_1 + R_2}$
(3) $V_4 = V_0 \cdot \frac{R_U}{R_3 + R_4}$
(2) und (3) in (4) unselsen
 $V_{ab} = V_0 \cdot \frac{R_4}{R_3 + R_4} - V_0 \cdot \frac{R_2}{R_1 + R_2}$
 $V_{ab} = V_0 \cdot \left(\frac{R_4}{R_3 + R_4} - \frac{R_2}{R_1 + R_2}\right)$

c) In der nachfolgenden Tabelle haben wir die Verstimmung v=f(R_1) und die Brückenspannung U_{ab} =f(R_1) der Abgleichbrüke für R_1 =500 Ω ...2000 Ω in 250 Ω -Schritten dargestellt.

$R_1[\Omega]$	v	U _{ab} [V]
500	1	-1.0
	$-\frac{1}{2}$	
750	1	3
	$-\frac{1}{4}$	$-\frac{1}{7}$
1000	0	0
1250	1	1
	$\frac{1}{4}$	$\frac{\overline{3}}{3}$
1500	1	3
	$\frac{1}{2}$	- 5
1750	3	9
	$\frac{\overline{4}}{4}$	11
2000	1	1

2.2 Messung an der Abgleichrücke

Die Abgleichbrücke ist gemäß Abb. 1 mit festen Präzisionswiderständen R_2 bis R_4 aufzubauen. R_1 ist ein Dekadenwiderstand.

- a) Hier wir experimentell der Wert R_1 ermittelt, bei dem die Brücke abgeglichen ist. Dieser Wert wird R_{10} genannt. Die Brücke ist bei einem Wert $\underline{R_{10}}$ =999,7 Ω abgeglichen.
- b) In folgender Tabelle haben wir die Messwerte für die Brückenspannung U_{ab} , für R_1 =500 Ω ...2000 Ω in 250 Ω -Schritten, und die Verstimmung $v=\frac{\Delta R}{R_{10}}$ festgehalten.

$R_{\mathtt{1}}\left[\Omega\right]$	v	U _{ab} [V]
500	~-0.5	0.9992
750	~-0.25	0.4280
1000	~0	-0.00053
1250	~0.25	-0.3338
1500	~0.5	-0.6003
1750	~0.75	-0.8183
2000	~1	-1.0002

- c) siehe Anlagen
- d) siehe Anlagen