b. In the diagram below, the shaded area represents (A∩B)'. Using the right-hand diagram from (a), the union of A' and B' is represented by the areas that have either shading or stripes (or both). Both of the diagrams display the same area.

Section 2.2

11.

- a. .07.
- **b.** .15 + .10 + .05 = .30.

c. Let A = the selected individual owns shares in a stock fund. Then P(A) = .18 + .25 = .43. The desired probability, that a selected customer does <u>not</u> shares in a stock fund, equals P(A') = 1 - P(A) = 1 - .43 = .57. This could also be calculated by adding the probabilities for all the funds that are not stocks.

13.

- **a.** $A_1 \cup A_2 =$ "awarded either #1 or #2 (or both)": from the addition rule, $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2) = .22 + .25 .11 = .36$.
- b. $A'_1 \cap A'_2$ = "awarded neither #1 or #2": using the hint and part (a), $P(A'_1 \cap A'_2) = P((A_1 \cup A_2)') = 1 P(A_1 \cup A_2) = 1 .36 = .64$.
- c. $A_1 \cup A_2 \cup A_3$ = "awarded at least one of these three projects": using the addition rule for 3 events, $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) P(A_1 \cap A_2) P(A_1 \cap A_3) P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) = .22 + .25 + .28 .11 .05 .07 + .01 = .53.$
 - **d.** $A_1' \cap A_2' \cap A_3' =$ "awarded none of the three projects": $P(A_1' \cap A_2' \cap A_3') = 1 P(\text{awarded at least one}) = 1 .53 = .47.$

Chapter 2: Probability

e. $A'_1 \cap A'_2 \cap A_3 =$ "awarded #3 but neither #1 nor #2": from a Venn diagram, $P(A'_1 \cap A'_2 \cap A_3) = P(A_3) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) = .28 - .05 - .07 + .01 = .17$. The last term addresses the "double counting" of the two subtractions.

f. $(A'_1 \cap A'_2) \cup A_3$ = "awarded neither of #1 and #2, or awarded #3": from a Venn diagram, $P((A'_1 \cap A'_2) \cup A_3) = P(\text{none awarded}) + P(A_3) = .47 \text{ (from d)} + .28 = 75.$

Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram:

Section 2.3

29.

- There are 26 letters, so allowing repeats there are $(26)(26) = (26)^2 = 676$ possible 2-letter domain names. Add in the 10 digits, and there are 36 characters available, so allowing repeats there are $(36)(36) = (36)^2 = 1296$ possible 2-character domain names.
- **b.** By the same logic as part **a**, the answers are $(26)^3 = 17,576$ and $(36)^3 = 46,656$.
- c. Continuing, $(26)^4 = 456,976$; $(36)^4 = 1,679,616$.
- **d.** $P(4\text{-character sequence is already owned}) = 1 P(4\text{-character sequence still available}) = 1 97,786/(36)^4 = .942.$

31.

- a. Use the Fundamental Counting Principle: (9)(5) = 45.
- b. By the same reasoning, there are (9)(5)(32) = 1440 such sequences, so such a policy could be carried out for 1440 successive nights, or almost 4 years, without repeating exactly the same program.

33.

- a. Since there are 15 players and 9 positions, and order matters in a line-up (catcher, pitcher, shortstop, etc. are different positions), the number of possibilities is $P_{9,15} = (15)(14)...(7)$ or 15!/(15-9)! = 1,816,214,440.
 - b. For each of the starting line-ups in part (a), there are 9! possible batting orders. So, multiply the answer from (a) by 9! to get (1,816,214,440)(362,880) = 659,067,881,472,000.
 - c. Order still matters: There are $P_{3,5} = 60$ ways to choose three left-handers for the outfield and $P_{6,10} = 151,200$ ways to choose six right-handers for the other positions. The total number of possibilities is = (60)(151,200) = 9,072,000.

35.

- a. There are $\binom{10}{5}$ = 252 ways to select 5 workers from the day shift. In other words, of all the ways to select 5 workers from among the 24 available, 252 such selections result in 5 day-shift workers. Since the grand total number of possible selections is $\binom{24}{5}$ = 42504, the probability of randomly selecting 5 day-shift workers (and, hence, no swing or graveyard workers) is 252/42504 = .00593.
- b. Similar to a, there are $\binom{8}{5} = 56$ ways to select 5 swing-shift workers and $\binom{6}{5} = 6$ ways to select 5 graveyard-shift workers. So, there are 252 + 56 + 6 = 314 ways to pick 5 workers from the same shift. The probability of this randomly occurring is 314/42504 = .00739.
- c. P(at least two shifts represented) = 1 P(all from same shift) = 1 .00739 = .99261.

Chapter 2: Probability

d. Rather than consider many different options (choose 1, choose 2, etc.), re-frame the problem this way: at least 6 draws are required to get a 23W bulb iff a random sample of <u>five</u> bulbs fails to produce a 23W bulb. Since there are 11 non-23W bulbs, the chance of getting no 23W bulbs in a sample of size 5 is $\binom{11}{5} / \binom{15}{5} = 462/3003 = .154$.

41.

- a. $(10)(10)(10)(10) = 10^4 = 10,000$. These are the strings 0000 through 9999.
- b. Count the number of prohibited sequences. There are (i) 10 with all digits identical (0000, 1111, ..., 9999); (ii) 14 with sequential digits (0123, 1234, 2345, 3456, 4567, 5678, 6789, and 7890, plus these same seven descending); (iii) 100 beginning with 19 (1900 through 1999). That's a total of 10 + 14 + 100 = 124 impermissible sequences, so there are a total of 10,000 124 = 9876 permissible sequences. The chance of randomly selecting one is just $\frac{9876}{10,000} = .9876$.
- c. All PINs of the form 8xx1 are legitimate, so there are (10)(10) = 100 such PINs. With someone randomly selecting 3 such PINs, the chance of guessing the correct sequence is 3/100 = .03.
- d. Of all the PINs of the form 1xx1, eleven is prohibited: 1111, and the ten of the form 19x1. That leaves 89 possibilities, so the chances of correctly guessing the PIN in 3 tries is 3/89 = .0337.
- 43. There are $\binom{52}{5} = 2,598,960$ five-card hands. The number of 10-high straights is $(4)(4)(4)(4)(4) = 4^5 = 1024$ (any of four 6s, any of four 7s, etc.). So, $P(10 \text{ high straight}) = \frac{1024}{2,598,960} = .000394$. Next, there ten "types of straight: A2345, 23456, ..., 910JQK, 10JQKA. So, $P(\text{straight}) = 10 \times \frac{1024}{2,598,960} = .00394$. Finally, there are only 40 straight flushes: each of the ten sequences above in each of the 4 suits makes (10)(4) = 40. So, $P(\text{straight flush}) = \frac{40}{2,598,960} = .00001539$.

Section 2.4

45.

a.
$$P(A) = .106 + .141 + .200 = .447$$
, $P(C) = .215 + .200 + .065 + .020 = .500$, and $P(A \cap C) = .200$.

- **b.** $P(A/C) = \frac{P(A \cap C)}{P(C)} = \frac{.200}{.500} = .400$. If we know that the individual came from ethnic group 3, the probability that he has Type A blood is .40. $P(C/A) = \frac{P(A \cap C)}{P(A)} = \frac{.200}{.447} = .447$. If a person has Type A blood, the probability that he is from ethnic group 3 is .447.
 - c. Define D = "ethnic group 1 selected." We are asked for P(D/B'). From the table, $P(D \cap B') = .082 + .106 + .004 = .192$ and P(B') = 1 P(B) = 1 [.008 + .018 + .065] = .909. So, the desired probability is $P(D/B') = \frac{P(D \cap B')}{P(B')} = \frac{.192}{.909} = .211$.