priority queue & heaps

data structures fall 2023

Priority Queue

- queue: FIFO
 - o a company call center
 - a new call is added to back of queue
 - o calls are taken from the front of the queue
- Sometimes, FIFO is not enough.
 - Air-traffic control center
 - Can't use FIFO as is, you need to add some factors in:
 - plane's distance, time spent waiting, amount of remaining fuel
- There are other priorities.

Priority Queue

- Priority queue:
 - Collection of prioritized elements that allows arbitrary element insertion
 - Allows the removal of the element that has first priority
- When an element is added to priority queue, user designated its priority by providing a key.
 - The element with minimal key will be the next to be removed.
 - (If 1 is more important than 2)

Priority Queue ADT

- insert(k,v)
 - Creates an entry with key k and value v
- min()
 - Returns (does not remove) a priority queue entry (k,v) having minimal key.
 - o If the queue is empty, returns null.
- removeMin()
 - Removes and *returns* an entry (k,v) having minimal key.
 - Returns null if empty.
- size()
 - Returns the number of entries in the queue
- isEmpty()
 - Returns a boolean indicating whether the queue is empty or not.

Priority Queue

- It is possible for a PQ to have multiple entries with the same key.
 - o In that case, *min* and *removeMin* will choose arbitrarily among those.

Method	Return Value	Priority Queue Contents
insert(5,A)		{ (5,A) }
insert(9,C)		{ (5,A), (9,C) }
insert(3,B)	CARLO DE MANO	{ (3,B), (5,A), (9,C) }
min()	(3,B)	{ (3,B), (5,A), (9,C) }
removeMin()	(3,B)	{ (5,A), (9,C) }
insert(7,D)		{ (5,A), (7,D), (9,C) }
removeMin()	(5,A)	{ (7,D), (9,C) }
removeMin()	(7,D)	{ (9,C) }
removeMin()	(9,C)	{ }
removeMin()	null	{ }
isEmpty()	true	{ }

Complexities

• For an **unordered** and **ordered** priority queue:

Method	Unsorted List	Sorted List
size	O(1)	O(1)
isEmpty	O(1)	O(1)
insert	O(1)	O(n)
min	O(n)	O(1)
removeMin	O(n)	O(1)

Heaps

- A way to implement a priority queue.
 - Binary heap
- Allows to perform insertions and removals in logarithmic time
 - An improvement over list-based implementations of priority queue
- It uses a binary tree structure to find a compromise between elements being entirely unsorted and perfectly sorted.
- Has nothing to do with the memory heap
 - A dynamically allocated memory that *processes* use to store data like arrays, strings, objects and dynamically allocated data structures.

Heap

- A binary tree **T** stores entries at its positions and satisfies two additional properties:
 - A relational property in terms of the way keys are stored in T
 - A structural property defined in terms of the shape of T.

Relational property

- Heap-order property
 - o In a heap T, for every position p other than the root, the key stored at p is greater than or equal to the key stored at p's parent.
- So, keys encountered on a path from the root to a leaf of T are in nondecreasing order.
 - Also, a minimal key is always stored at the root of T.
 - Makes it easy to locate such an entry when min or removeMin is called.
 - Top of the heap

Structural property

- For the sake of efficiency, we want the heap to have a small height as possible.
- This is enforced by the following requirement:
 - Heap T must be complete
- Complete binary tree property
 - A heap **T** with height *h* is a **complete** binary tree, if levels 0,1,2,...,h-1 of **T** have the maximal number of nodes possible and the remaining nodes at level *h* reside in the leftmost possible positions at that level.

Completeness

• This below is complete, because levels 0, 1, and 2 are full and six nodes in level 3 are in the **six leftmost possible** positions at that level.

Binary trees

Array-based representation of a complete binary tree

- If p is the root, then f(p)=0
- If p is the left child of pos q, then f(p)=2f(q)+1
- If p is the right child of pos q, then f(p)=2f(q)+2

min heap & max heap

- The key present at the root node must be less than or equal among the keys present at all of its children.
 - Same property must be recursively true for all sub-trees.
- Inverse is true for max heap.

min heap & max heap

- Choosing between these two heaps depend on what you choose as most important and worst
 - For example if you say 0 is the most important (highest priority): use a min-heap
 - If you say 0 is the least important, use a max-heap.

priority queue as a heap

- insert(k,v)
 - We store the pair as an entry at a new node of the tree.
 - We need to maintain the complete binary tree property
 - Therefore, new node should be placed at position p just beyond the rightmost node at the bottom level of the tree
 - Or as the leftmost position of a new level if the bottom level is already full (or the heap is empty)
 - After adding, the tree may be complete but it is not enough.
 - We also need to satisfy heap-order property

up-heap bubbling (bubble-up)

- Occurs when a new element is added or when an element's priority is increased.
- The new or updated element may violate the heap property.
 - It can break the min-heap, max-heap property.
- So, we compare the element to its parent node.
 - If it violates the property, we swap it with the parent.
 - This continues until element is in a position where the heap property is no longer violated.
- This is used when inserting a new element into heap or when an existing element's priority has been increased (for a max heap) or decreased (for a min heap)

down-heap bubbling

- Used when an element is removed from the heap or an elements priority is decreased.
 - In a min-heap, this typically involves the root element being removed.
 - o In max-heap, the largest element.
- After the root is removed, the last element in the heap is moved to the root position.
 - This is compared to its children.
 - If it violates the heap property, it is swapped with one of its children.
 - This is repeated until the heap property is restored.

Creating a heap with bottom up method

- Create a *max heap* with bottom up method:
- {5,1,2,6,3,8,9,7,5}
- Lets go step by step

Creating a heap with bottom up method

Final

I expect you to know...

- Which bubbling is used when an element's priority is decreased?
- Which bubbling is used when an element is inserted to a priority queue?
- Given a tree, can you say whether it is min-heap or max-heap?
- Given a tree, write it in array form.
- Removing a tree from a heap tree
- Adding an element to a heap tree
- Create a min-heap or max-heap from a given unsorted array