Math 312

Worksheet for October 13

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) (a) Let $\{a_n\}$ be a sequence of positive numbers. Use the $\epsilon - N$ definition of limit to prove that "If $a_n \to 3$, then $\sqrt{a_n} \to \sqrt{3}$.

First prove $|\sqrt{a_n} - \sqrt{3}| < |a_n - 3|$

$$|\sqrt{a_n} - \sqrt{3} * \frac{\sqrt{a_n} + \sqrt{3}}{\sqrt{a_n} + \sqrt{3}}| = \frac{a_n - 3}{\sqrt{a_n} + \sqrt{3}} < |a_n - 3|$$

Let $\epsilon > 0$

$$\forall \epsilon > 0, \exists N \text{ such that } \forall n > N, |a_n - 3| < \epsilon$$

$$\Longrightarrow \epsilon > |a_N - 3| > |\sqrt{a_N} - \sqrt{3}|$$

$$\Longrightarrow |\sqrt{a_n} - \sqrt{3}| \to 0 \ \forall n > N$$

(b) Generlize the result from part (a). That is: Let $\{a_n\}$ be a sequence of positive numbers. Use the $\epsilon - N$ definition of limit to prove that "If $a_n \to L > 0$, then $\sqrt{a_n} \to \sqrt{L}$."

Case 1: $\sqrt{a_n} + \sqrt{L} > 1$

$$\left|\sqrt{a_n} - \sqrt{L} * \frac{\sqrt{a_n} + \sqrt{L}}{\sqrt{a_n} + \sqrt{L}} = \frac{a_n - L}{\sqrt{a_n} + \sqrt{L}} < |a_n - L|\right|$$

Let $\epsilon > 0$

$$\begin{split} &\forall \epsilon > 0, \exists N \text{ such that } \forall n > N, |a_n - L| < \epsilon \\ &\Longrightarrow \epsilon > |a_N - L| > |\sqrt{a_N} - \sqrt{L}| \\ &\Longrightarrow |\sqrt{a_n} - \sqrt{L}| \to 0 \ \forall n > N \end{split}$$

Case 2: $\sqrt{a_n} + \sqrt{L} \le 1$: ?

Exercise 2) Start with k=1. Why does there exist infinitely many terms of the sequence for which $|x_n-x_0|<\frac{1}{10}$? Pick one and call it x_{n_1} . Then keep increasing k to find other elements of the subsequence. Proof by Mathematical Induction:

Base Case: k = 1

$$|x_{n_1} - x_0| < \frac{1}{10}$$

$$\exists N \forall n > N |x_n - x_0| < \frac{1}{10}$$

$$\Longrightarrow n_1 = N$$

So it holds for k = 1.

Assume this holds for some n_k . Does this work for n_{k+1} ?, lets find out!

By definition of limit we know that for $\epsilon = \frac{1}{10^{k+1}} \exists N$.

Let
$$n_{k+1} = max(N, n_{k+1})$$

Therefore, there exists an N such that $|n_{k+1} - x_0| < \frac{1}{10^{k+1}}$.

By The Principal of Mathematical Induction this holds for all k > 0.

Exercise 3) Consider the sequence of the form

$$x_n = \frac{an^p + 10n - 3}{n^{10} + 2n^3}$$

where a and p are any two real numbers. For each of the following, find values of a and p for which the given phenomenon occurs.

(a) The sequence diverges to $+\infty$

$$p = 11$$
$$a = 1$$

(b) The sequence converges to 100

$$p = 10$$
$$a = 100$$

(c) The sequence converges to 0

$$p = 10$$
$$a = 0$$

(d) The sequence diverges to $-\infty$

$$p = 11$$
$$a = -1$$

Exercise 4) Suppose I = a, b be a closed interval with $a \neq b$, and let $A = \{t = |x| | x \in I\}$, be the set of absolute values of the elements of I. The numbers in I can be negative, the numbers in A are never negative. For each of the cases below, either give an example, or show that no such example exists.

(a) $\max A = |a|$ and $\min A = |b|$

$$I = [-1, -2]$$

 $A = [2, 10]$
 $a = -10, b = -2$
 $maxA = 10$
 $minA = 2$

(b)
$$\max A = |b|$$
 and $\min A = |a|$

$$I = [0, 5]$$

 $A = [0, 5]$
 $a = 0, b = 5$
 $maxA = 5$
 $minA = 0$

(c)
$$\max A = |a|$$
 and $\min A \neq |b|$

$$I = [-10, 5]$$

$$A = [0, 10]$$

$$a = -10, b = 5$$

$$maxA = 10$$

$$minA = 0$$

(d)
$$\max A = |b|$$
 and $\min A \neq |a|$

$$I = [-1, 5]$$

 $A = [0, 5]$
 $a = -1, b = 5$
 $maxA = 5$
 $minA = 0$

(e) $\max A \neq |a|, |b|$ Proof By Cases:

Let $x \in I$

Case 1: |a| > |b|

$$\implies a \le x \le b$$

$$\implies |a| \ge |x| \ge |b|$$

$$\implies \max A = |a|$$

Case 2: |b| > |a|

$$\implies a \leq x \leq b$$
$$\implies |b| \geq |x| \geq |a|$$
$$\implies \max A = |b|$$

Case 1: |a| = |b|

$$\implies a \leq x \leq b$$

$$\implies |x| \leq |a| = |b|$$

$$\implies \max A = |a| \wedge \max A = |b|$$