3.4.1.(4.13) ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ ДИА- И ПАРАМАГНЕТИКОВ

ДОПОЛНИТЕЛЬНОЕ ОПИСАНИЕ

11-ІХ-2020 г.

В работе используются: электромагнит, весы, милливеберметр, регулируемый источник постоянного тока, образцы диа- и парамагнетиков.

Экспериментальная установка. Схема установки приведена на рис. 3.

Магнитное поле с максимальной индукцией $\simeq 1$ Т создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируетмым источником питания GPR и измеряется амперметром A, встроенным в источник питания. Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре электро-

Рис. 3. Схема экспериментальной установки

магнита и силой тока I в его обмотках) производится при помощи милливеберметра.

При измерениях образцы поочерёдно подвешиваются к весам так, что один конец образца оказывается в зазоре электромагнита, а другой — вне зазора, где индукцией магнитного поля можно пренебречь. При помощи весов определяется перегрузка $\Delta P = F$ — сила, действующая на образец со стороны магнитного поля.

Силы, действующие на диа— и парамагнитные образцы, очень малы. Небольшие примеси ферромагнетиков (сотые доли процента железа или никеля) способны кардинально изменить результат опыта, поэтому образцы были специально отобраны.

ЗАДАНИЕ

В работе предлагается исследовать зависимость силы, действующей на образец, размещённый в зазоре электромагнита, от величины поля в зазоре и по результатам измерений рассчитать магнитную восприимчивость меди и алюминия.

І. Подготовка приборов к работе

- 1. Включите в сеть весы для прогрева (кнопка 1).
- 2. Ознакомьтесь с экспериментальной установкой, изображённой на рис. 3, и техническим описанием (ТО) источника питания.
- 3. Проверьте работу цепи питания магнита: для этого ПЕРЕД ВКЛЮЧЕНИЕМ источника питания убедитесь в том, что
 - а) все регулировочные ручки источника питания установлены на минимум тока (поворот до упора против часовой стрелки);

включать и отключать электромагнит следует ТОЛЬКО при минимальном токе;

- б) включите источник питания в сеть и установите обе ручки регулировки НАПРЯЖЕНИЯ на максимум;
- в) для увеличения тока через магнит сначала выводите ручку плавной регулировки ТОКА «FINE» до максимума, потом ручку грубой регулировки «COARSE» (уменьшение тока осуществляется в обратном порядке).

Определите максимально возможный ток через магнит $I_{\rm max}$ (1,2 A или 3,2 A для разных магнитов) и уберите ток до нуля.

II. Калибровка магнита
$$[B=f(I)]$$

- 4. Ознакомьтесь с описанием милливеберметра (ТО расположено на установке).
- 5. Определите зависимость индукции В в зазоре от тока, протекающего через обмотки магнита.

Для этого при небольшом токе через магнит $(0,2-0,3\ A)$ разместите пробную катушку милливеберметра в зазоре и отметьте начальное положение стрелки милливеберметра. Быстро удалите катушку из зазора в область нулевого поля. Разность показаний милливеберметра определяет поток Φ вектора магнитной индукции сквозь сечение катушки, находившейся в зазоре $(\Phi = BSN)$. Произведение площади сечения катушки S на число N витков в ней указано на установке.

Проведите измерения потока Φ для 7–8 значений тока I с примерно равными интервалами ΔI в диапазоне от 0 до $I_{\rm max}$.

Закончив градуировку, уберите ток до нуля сначала ручкой грубой регулировки тока, затем плавной.

III. Измерение сил, действующих на образец в магнитном поле

- 6. Ознакомьтесь с техническим описанием весов.
- 7. При нулевом токе через электромагнит осторожно подвесьте к весам один из образцов так, чтобы он не касался наконечников электромагнита.

Обнулите показания весов кнопкой 2- «TARE», чтобы измерять непосредственно перегрузки $\Delta P=F-$ силы, действующие на образец при различных токах в обмотках электромагнита.

8. Установите минимальное из выбранных при калибровке магнита значение тока I_{\min} и проведите измерение перегрузки.

Повторите измерения $\Delta P=f(I)$ для 6–8 значений тока в диапазоне от I_{\min} до I_{\max} .

Проведите серию измерений, уменьшая ток через магнит.

- 9. Повторите измерения п. 8 для другого образца.
- 10. Запишите параметры образцов, пробной катушки и характеристики приборов.
- 11. Постройте на месте предварительные графики $|\Delta P| = f(B^2)$ (для возрастания и убывания токов используйте разные значки).

Если линейность графиков $|\Delta P| = f(B^2)$ нарушена, найдите причину нарушений и устраните. Повторите измерения.

12. Отключите весы. Уберите ток до нуля и отключите источник питания.

Обработка результатов

- 1. Рассчитайте поле B и постройте градуировочную кривую для электромагнита: B=f(I).
- 2. Постройте на одном листе графики $|\Delta P| = f(B^2)$ для меди и алюминия. По наклонам полученных прямых рассчитайте величину χ с помощью формулы (3):

$$\Delta P = F = \frac{\chi B^2 s}{2\mu_0}. (3)$$

3. Оцените погрешности и сравните результаты со справочными.