ASE3093 Automatic Control: Homework #4

1) $Root\ locus$. 출발각/도착각, 점근선 및 점근선의 중심점 등을 적절히 표현하며 다음 시스템에 대한 근궤적도를 그리고 (제어기 K는 상수이며 K>0을 가정), 폐루프 시스템의 안정성을 살펴보시오.

$$a) G(s) = \frac{1}{s(s+1)}$$

b)
$$G(s) = \frac{s+2}{s(s+1)}$$

c)
$$G(s) = \frac{1}{s(s+1)(s+2)}$$

d)
$$G(s) = \frac{s+2}{s^2(s+20)}$$

e)
$$G(s) = \frac{s+2}{s^2(s+3)}$$

f)
$$G(s) = \frac{1}{s(s-1)}$$

g)
$$G(s) = \frac{s+2}{s(s-1)}$$

h)
$$G(s) = \frac{s-1}{(s-2)(s+10)}$$

i)
$$G(s) = \frac{s-1}{(s-2)(s-3)(s+10)}$$

j)
$$G(s) = \frac{(s+0.5)(s+1.5)}{s(s^2+2s+2)(s+5)(s+15)}$$

Prof. Jong-Han Kim

2) Collocated vs. noncollocated systems. 아래 그림과 같이 스프링 k에 의해 질량 m_1 과 m_2 가 연결되어 있고, m_1 에 제어력 힘 u가 작용하는 시스템을 생각하자. $m_1=10, m_2=1, k=100$ 이라고 주어졌을 때, 아래 물음에 답하시오.

- a) 위치 센서가 m_1 에 부착되어 x_1 이 계측되고, 제어력 u의 계산에 사용된다고 가정하자 (이를 구동기와 센서가 collocated 되어있다고 표현한다). 이 경우, 전달함수 $G_c(s) = x_1(s)/u(s)$ 를 구하시오.
- b) 위치 센서가 m_2 에 부착되어 x_2 가 계측되고, 제어력 u의 계산에 사용된다고 가정하자 (이를 구동기와 센서가 noncollocated 되어있다고 표현한다). 이 경우, 전달함수 $G_c(s)=x_2(s)/u(s)$ 를 구하시오.
- c) PD 제어기 구조를 사용하면 $G_{\rm c}(s)$ 를 안정화할 수 있음을 보이시오. 반면, 어떠한 PD 제어기도 $G_{\rm nc}(s)$ 는 안정화할 수 없음을 보이시오.
- 3) Two-parameter system. 다음의 제어루프에서 K>0는 제어 게인을, L>0은 제어 대상 플랜트의 파라미터 중 하나를 의미한다. 이 문제에서는 K와 L의 변화에 따른 폐루프 폴의 이동을 살펴보려고 한다.

- a) 플랜트의 파라미터 L이 고정되어 있을 때 (L=50), 제어 게인 K가 $0 < K < \infty$ 범위에서 변화할 때 페루프 폴의 위치 이동을 복소평면에 표시하시오.
- b) 제어 게인 K가 고정되어 있을 때 (K=50), 플랜트 파라미터 L이 $0 < L < \infty$ 범위에서 변화할 때 페루프 폴의 위치 이동을 복소평면에 표시하시오.