MATHS METHODS EXAM 2: SOLUTIONS

Question 1

a.
$$2\pi r^2 + 2\pi r h = 98\pi + 140$$
 1M
 $2\pi r h = 98\pi + 140 - 2\pi r^2$
 $h = \frac{98\pi + 140 - 2\pi r^2}{2\pi r}$ **1M**
 $= \frac{70 + 49\pi - \pi r^2}{\pi r}$ as required

b.
$$V = \pi r^2 h$$

$$= \pi r^2 \frac{70 + 49\pi - \pi r^2}{\pi r}$$

$$= r(70 + 49\pi - \pi r^2)$$

$$= (70 + 49\pi)r - \pi r^3 \text{ as required.}$$
1M

shape open circles at (0, 0) and (8.4, 0) 1M maximum marked (4.9, 727.7) 1M

d.
$$V'(r) = 0$$

 $70 + 49\pi - 3\pi r^2 = 0$ **1M**
 $r^2 = \frac{70 + 49\pi}{3\pi}$
 $r = \sqrt{\frac{70 + 49\pi}{3\pi}}$ cm **1A**
 $h = \frac{98\pi + 140 - 2\pi r^2}{2\pi r}$
 $= \frac{98\pi + 140 - 2\pi \frac{70 + 49\pi}{3\pi}}{2\pi \sqrt{\frac{70 + 49\pi}{3\pi}}}$ cm **1M**
 $= 2(10 + 7\pi)\sqrt{\frac{7}{30\pi + 21\pi^2}}$ cm as required.

e. i
$$C = 0.005(98\pi + 140) + 0.002V$$

= $0.49\pi + 0.7 + 0.002V$ **1A**

ii Dilation of a factor of 0.002 from the r axis, 1A followed by a translation of $0.49\pi + 0.7$ cm parallel to the V axis. 1A

iii
$$C = 0.49\pi + 0.7 + 0.002V_{max}$$

= $0.49\pi + 0.7 + 0.002 \times 727.721$
= \$3.69

Question 2

a.
$$10\% > 25$$
 gives $Z_1 = 1.28155$
 $15\% < 10$ gives $Z_2 = -1.03643$ **1M**
 $\frac{25 - \mu}{\sigma} = 1.28155$; $\frac{10 - \mu}{\sigma} = -1.03643$ **2A**
solve simultaneously **1M**
 $\mu = 16.71$, $\sigma = 6.47$ as required

c. Binomial **1M**
$$N = 10, p = 1 - 0.3958, x \ge 3$$
 1A $Pr(X \ge 3) = 0.9886$ **1A**

d. Conditional probability

$$Pr(X > 20 \mid X > 15) = \frac{Pr(X > 20)}{Pr(X > 15)} \quad 1M$$
$$= \frac{0.3056}{0.6042} \quad 1A$$
$$= 0.5058 \quad 1A$$

Question 3

Minimum	1A
Maximum	1A
Domain [0, 24]	1A
Axes scaled and shape	1A

b. amplitude =
$$\frac{30-12}{2}$$
; $A = 9$

period =
$$\frac{2\pi}{n}$$
 = 24; $n = \frac{\pi}{12}$ 1A

median value = 12 + 9; c = 21 **1A** horizontal translation = 16 to the right or 8 to the left; b = -16; or +8 **1A**

c. When
$$H = 0$$
, $T = 16.5$; when $H = 12$, $T = 25.5$ **2A**

d.
$$\frac{dT}{dH} = -\frac{3\pi}{4}\sin(\frac{\pi}{12}(H+8))$$
 1H

e.
$$\frac{dT}{dH}$$
 is maximum

when
$$\sin(\frac{\pi}{12}(H+8)) = -1$$
 1H

when
$$\frac{\pi}{12}(H+8) = \frac{3\pi}{2}$$
, $H=10$

f. At 10 am
$$\frac{dT}{dH} = \frac{3\pi}{4}$$

Question 4

a.
$$\sin(2x)e^x = 0$$

 $e^x \neq 0$,
 $\sin(2x) = 0$
 $x = 0, \frac{\pi}{2}, \pi$

b. i
$$\frac{d}{dx}e^{x}(\sin(2x) - 2\cos(2x)) =$$

 $e^{x}(\sin(2x) - 2\cos(2x)) + e^{x}(2\cos(2x) + 4\sin(2x))$
1M

= $5\sin(2x)e^x$ as required

ii
$$\int_0^{\frac{\pi}{2}} (\sin(2x)e^x) dx - \int_{\frac{\pi}{2}}^{\pi} (\sin(2x)e^x) dx$$
 1M
= $\frac{1}{5} ([(e^x(\sin(2x) - 2\cos(2x))]_0^{\frac{\pi}{2}} - [(e^x(\sin(2x) - 2\cos(2x))]_{\frac{\pi}{2}}^{\pi}$ 1M
= $\frac{2}{5} (e^{\pi} + 2e^{\frac{\pi}{2}} + 1)$ 1A
= $\frac{2}{5} (1 + e^{\frac{\pi}{2}})^2$ units²

c. i
$$\int_0^{\frac{\pi}{2}} (\sin(2x)e^x) dx$$
 1M
= 2.32 units² 1A

ii Use trial and error with the calculator.

$$\int_{2.09225}^{2.9550} (-7.5 - f(x)) dx \approx 2.32687 \text{ units}^2$$
 2M
7.5 units **1A**

d. i Area of Ann's and John's land

$$=2\int_0^{\frac{\pi}{2}} (\sin(2x)e^x) dx \approx 4.648$$
 1M

Use trial and error with the calculator.

$$\int_{1.96101}^{3.01811} (-5 - f(x)) dx \approx 4.66728$$

$$\Rightarrow 5 \text{ units}$$
1M

ii
$$a = -7.5$$
 units from c. ii 1A