# Decision Trees and Random Forests

#### What is a Decision Tree?

Supervised machine learning

 Flow chart the machine takes to sort things into categories (making decisions along the way)

For classification



#### Parts of a Decision Tree

- Node each decision point
  - Root Node starting decision point
- Edge The path between nodes
- Leaves Possible outcomes at the end (categories)

#### What is a Random Forest?

Decision tree on steroids!

 Test every combination of nodes to find the best place to put it



## Putting it all together...

|                     | Supervised? | Classifying? | True x and y? |
|---------------------|-------------|--------------|---------------|
| Linear regression   | Υ           | N            | Υ             |
| K-means             | N           | N            | N             |
| K-nearest neighbors | Υ           | Υ            | Υ             |
| Decision trees      | Υ           | Υ            | Υ             |
| Random forests      | Υ           | Υ            | Υ             |

#### General Steps for Decision Trees & RF

- Wrangle the data
- Split into training and testing sets
- Create the initial model
- Assess the fit of the model

# Assessing Model Fit

#### **Model Accuracy**

#### Recall

 Ability to find all relevant cases within the dataset

#### **Precision**

Ability to identify only the relevant data points

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

### In graphical form...





#### **Inversely Related**



#### F1 Score

Takes both precision and recall into account

$$F1 = \frac{2 x precision x recall}{precision + recall}$$

#### Why are there three?!

- Recall when you can't afford to miss anything
  - Disease screening
  - Terrorists
- Precision when the consequences of mislabeling are high
  - Administering very expensive treatments
  - Putting people in prison for life
- F1 when you need a good mix of both