Branch-and-bound Graphical Example (Accompanying Lesson 14)

1 Branch-and-bound Example

Solve the following IP using branch-and-bound. Solve each sub problem graphically.

(P1)
$$z_{IP}^* = \max 4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $2x_1 - 2x_2 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \in \mathbb{Z}^{\ge 0}$

- Always select the active node with the largest upperbound for branching.
- \circ Branch on x_1 if it is fractional. Otherwise branch on x_2 .

- Keep track of the:
 - \diamond incumbent solution x,
 - \diamond global lower bound \underline{z} , and
 - ♦ list of active nodes.
- Draw the branch-and-bound tree:
 - \diamond Record the local upper bound (z) and relaxed optimal solution (x) for each subproblem.
 - ♦ Label each edge with the constraint that is added to form the child subproblem.
 - ♦ X-out fathomed nodes. Circle incumbent solution nodes.
- Use the provided diagram to illustrate the (relaxed) feasible region of each subproblem.

incumbent solution \underline{x}

global lower bound \underline{z}

active nodes

Feasible Region

A:
$$(0,0)$$
, $Z=0$

B: $(0,3)$, $Z=-3$

C: $(\frac{3}{4},3)$, $Z=\frac{8}{7} \approx 8.4$

D: $(\frac{3}{4},\frac{7}{7},0)$, $Z=\frac{8}{7} = 8.1$

E: $(\frac{3}{4},0)$, $Z=\frac{6}{7}$

F: $(\frac{3}{4},0)$, $Z=\frac{6}{7}$

E: $(\frac{3}{4},0)$, $Z=\frac{6}{7}$

E: $(\frac{3}{4},0)$, $Z=\frac{6}{7}$

H: (0)1) , Z=-1

I: (211) , Z = 7

Optimal solution
$$(X_1/X_2) = (A_1)$$

$$Z = 7$$

s.t. $7x_1 - 2x_2 \le 14$ $2x_1 - 2x_2 \le 3$

 $x_2 < 3$

 $x_1, x_2 \in \mathbb{Z}^{\geq 0}$

(1) solve LP relaxation of original problem

We get Z=8.4 (X1/x2)=(30,3)

· Upper bound ZIP = 8.4 -> ZIP =8

· Branch P1 on X1 becouse X1 can't be a fraction.

(2) Solve PZ and P3

• IP Region of PZ and P3 = P1 but LP region is smaller.

PZ-> 2=7.5 X1,1x2=(a, 2)

P3 -> infasible

New upper bound $Z \le 7$ Branch PZ on XZ $XZ \le 0 \rightarrow PY$

X2 21 -> P5

(3) solve P4 and P5

P4-> (3,0) Z=6 P5-> (2,1) Z=7

-Becaux P5 is integer, we get ZIp? 7

STOP D Uppe

1) Upper bound = lower bound = 7

2 6 4 lower bound so don't want Py