抽样调查R语言实现 —基于R软件包sampling和survey

刘玉坤

华东师范大学 统计学院

- 1 引言
- ② 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- 9 PPS+SRS的两阶抽样

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- 9 PPS+SRS的两阶抽样

概述

- ★ 我们将介绍几种常见的抽样方法在R语言中的实现,包括
 - ▶ 简单随机抽样
 - ▶ 分层抽样
 - > 系统抽样
 - ▶ PPS抽样
 - ▶ 整群抽样
 - 多阶抽样
- ★ 每种方法包括两方面的内容: 抽样和参数估计。
 - ▶ 进行抽样主要使用sampling 包,需要安装。
 - ▶ 基于抽样结果进行参数估计,主要使用survey包,也需要安装。

sampling包中的主要函数及用途

抽样函数	用途
srswor	简单随机抽样
strata	分层抽样,各层可以使用"srswor", "srswr",
	"poisson", "systematic" 等等抽样方法
UPsystematic	系统抽样
UPmultinomial	PPS抽样
UPbrewer	Brewer抽样
cluster	整群抽样,可以使用"srswor", "srswr",
	"poisson", "systematic" 等等,默认是"srswor"
mstage	多阶抽样,可以使用"srswor", "srswr",
	"poisson", "systematic" 等等,默认是"srswor"
inclusionprobabilities	定义总体单元入样概率
getdata	从总体数据中调用样本全部信息

survey包中的主要函数及用途

估计函数	用途
svydesign	定义抽样设计及抽样结果
svymean	均值估计及标准差估计
svytotal	总和估计及标准差估计
svyratio	比率估计及标准差估计
svyglm	回归估计及标准差估计
predict	对目标变量进行估计

准备工作

◆ロ > ◆部 > ◆注 > ◆注 > 注 り < で</p>

抽样的实例数据是agpop.csv文件.

美国政府每五年做一次有关农业的普查,收集50个州所有农场的数据。所给的数据文件agpop.csv包含了3078个美国的县(或者县级市等)的农场的数据,包含了1982年、1987年和1992年每个县所拥有的农场个数(farms),耕地面积(acres),耕地面积小于9英亩的小农场数量(smallf),耕地面积大于1000英亩的大农场数目(largef)等数据。

抽样的实例数据是agpop.csv文件.

- ★ 其中包括18个变量, 其中cnum, snum, rnum分别是与county, state, region相对应的数字名义变量,表示对应的编号。
- ★ 一共有4个区域(region), 50个州(state)以及3041个县。
- ★ 我们用到的变量有县(county/cnum)、州(state/snum)、区域(region/rnum)、1992年每个县的耕地面积(acres92)、1987年每个县的耕地面积(acres87)、1992年每个县拥有的农场个数(farms92)。
- ★ 所有抽样方法的目标变量均为1992年的耕地面积(acres92)

数据集的预处理

- ★ 原始数据中若变量acres92<= 0或者acres87<= 0或 者acres82<= 0,则表示缺失。</p>
- ★ 为方便处理, 导入数据后要把缺失数据删除。

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- ⑨ PPS+SRS的两阶抽样

4□ > 4□ > 4 = > 4 = > = 900

简单随机抽样的实现

抽样要求:用简单随机抽样(不放回)抽取容量为300的样本。

```
N=nrow(data)
n=300
s=srswor(n,N)
data.srswor=getdata(data,s)
```

- ★ srswor(n,N) 返回一个长度为N的向量,仅取1或0,其中1的个数为n;
- ★ getdata(data, s) 表示根据数据s从总体data中确定入样的数据,即样本。

参数估计: 简单估计量

为了进行参数估计,需要把变量信息pw=N/n和fpc=N这两个加到数据集中

```
pw=rep(N/n, n)
fpc=rep(N, n)
agsrswor=as.data.frame(cbind(data.srswor, pw, fpc))
```

目标变量(acres92)均值和总和的简单估计及其标准差的估计

参数估计:比估计

目标变量(acres92)均值和总和的比率估计及其标准差的估计

```
acres.ratio<-svyratio(~acres92,~acres87,dsrswor)
popm<-data.frame(acres87=mean(data$acres87))
predict(acres.ratio,popm$acres87)</pre>
```

```
acres.ratio<-svyratio(~acres92,~acres87,dsrswor)
popt<-data.frame(acres87=sum(data$acres87))
predict(acres.ratio,popt$acres87)</pre>
```

参数估计: 回归估计

目标变量(acres92)均值和总和的回归估计及其标准差的估计

```
acres.reg<-svyglm(acres92~acres87,design=dsrswor)
popm<-data.frame(acres87=mean(data$acres87))
predict(acres.reg,newdata=popm)</pre>
```

```
acres.reg<-svyglm(acres92~acres87,design=dsrswor)
popt<-data.frame(acres87=sum(data$acres87))
predict(acres.reg,newdata=popt, tatal=N)</pre>
```

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- ⑨ PPS+SRS的两阶抽样

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

分层随机抽样的实现

抽样要求:以region为分层变量,每层用SRS抽取75个样本单元.

★ 定义分层抽样涉及到的变量:总体单元数N,第h层单元数 N_h ,层权 W_h ,层数L,各层样本量 n_h .

N=nrow(data)
Nh=table(data\$region)
Wh=Nh/N
L=length(unique(data\$region))
nh=rep(75,L)

★ 调用分层函数strata

st=strata(data[order(data\$region),],"region",
 nh,"srswor")

★ 调用getdata(data, s) 抽取数据
data.strata=getdata(data,st)

参数估计准备工作

★ 定义样本权重, 即入样概率的倒数pw = 1/st\$prob

★ 定义fpc变量

fpc=as.numeric(table(data\$region)[data.strata\$region])

★ 将权重和fpc变量加入到数据集中 agstrat=as.data.frame(cbind(data.strata,pw,fpc))

◆ロ > ◆回 > ◆ き > ◆き > き の < で </p>

简单估计

★ 调用svydesign,并查看抽样结果 dstrat<-svydesign(id=~1,strata=~region,

weights=~pw, data=agstrat,fpc=~fpc)
summary(dstrat)

★ 目标变量(acres92)均值和总和的简单估计及其标准差的估计

svymean(~acres92, dstrat, deff=TRUE)
svytotal(~acres92, dstrat, deff=TRUE)

分别比率估计

★ 目标变量(acres92)均值的分别比率估计及其标准差的估计

★ 目标变量(acres92) 总和的分别比率估计及其标准差的估计

predict(sep.ratio, popt\$acres87*Wh)

联合比率估计

★ 目标变量(acres92)均值的联合比率估计及其标准差的估计
com.ratio=svyratio(~acres92, ~acres87, dstrat)
popm = data.frame(acres87= mean(data\$acres87))
predict(com.ratio, popm\$acres87)

★ 目标变量(acres92) 总和的联合比率估计及其标准差的估计 com.ratio=svyratio(~acres92, ~acres87, dstrat) popm = data.frame(acres87= sum(data\$acres87)) predict(com.ratio, popm\$acres87)

回归估计

★ 目标变量(acres92)均值的回归估计及其标准差的估计

```
com.reg=svyglm(acres92~acres87, dstrat)
popm = data.frame(acres87= mean(data$acres87))
predict(com.reg, newdata=popm)
```

★ 目标变量(acres92) 总和的回归估计及其标准差的估计 com.ratio=svyratio(~acres92, ~acres87, dstrat) popm = data.frame(acres87= sum(data\$acres87))

predict(com.ratio, popm\$acres87)

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 2 整群抽样
- 8 等概率两阶抽样
- ⑨ PPS+SRS的两阶抽样

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

系统抽样的实现

抽样要求:采用等距抽样法,抽取容量为300的样本.

★ 定义入样概率,抽取样本下标,然后调用getdata提取样本单元

```
N=nrow(data)
n=300
pik=rep(n/N, N)
s=UPsystematic(pik)
data.sys = getdata(data,s)
```

参数估计

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- ⑨ PPS+SRS的两阶抽样

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

系统抽样的实现

抽样要求:以1992年每个县所拥有的农场个数(farms92)为规模变量,采用PPS抽样抽取样本容量为300的样本。

★ 调用inclusionprobabilities函数定义每个总体单元的入样概率,第一参数定义规模变量,第二个参数定义样本容量

```
N=nrow(data)
n=300
pik=inclusionprobabilities(data$farms92, n)
s=UPmultinomial(pik)
data.pps = data[s!=0, ]
```

data.pps = getdata(data,s)
这句话等价于 data[s==1,], 但是在PPS抽样是
有放回抽样, 所以s的某些元素会大于1.

参数估计: HH估计

★ 计算每次抽样中每个单元被抽中的概率 Z_i ,等于 π_i/n . 同时计算每个单元被抽中的次数 Q_i .

★ 目标变量(acres92)的总和的估计及其标准误差的估计

```
YHH = mean(data.pps$acres92/Z*Q)
vars= 1/(n*(n-1))*sum((data.pps$acres92/Z-YHH)^2*Q)
std = sqrt(vars)
```

YHHm=YHH/N stdm=std/N

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 のQで

- 1 引言
- ② 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 2 整群抽样
- 8 等概率两阶抽样
- 9 PPS+SRS的两阶抽样

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

系统抽样的实现

抽样要求:以1992年每个县所拥有的农场个数(farms92)为规模变量,采用Brewer抽样抽取样本容量为300的样本。

★ 调用inclusionprobabilities函数定义每个总体单元的入样概率,第一参数定义规模变量,第二个参数定义样本容量

n=300
pik=inclusionprobabilities(data\$farms92, n)
s=UPbrewer(pik)
data.brewer= getdata(data,s)

等价的, 可以使用 data.brewer = data[s==1,]

◆□ → ◆□ → ◆ ■ → ◆ ■ ・ ◆ ○ へ ○ ○

参数估计: HT估计

★ 定义每个单元入样的概率p= pik[s== 1]

★ 将样本单元入样概率加入到样本单元的数据集中 agbrewer = as.data.frame(cbind(data.brewer, p))

★ 定义抽样设计及抽样结果,并查看

dbrewer = svydesign(id=~1, fpc=~p, data=agbrewer,

pps="brewer")

summary(dbrewer)

★ 目标变量(acres92)均值的简单估计及其标准差的估计 svymean(~acres92, dbrewer, deff=TRUE) svytotal(~acres92,dbrewer, deff=TRUE)

イロト イ団ト イミト イミト ミー かなべ

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- 9 PPS+SRS的两阶抽样

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

整群抽样的实现

抽样要求:以state为分群变量,用SRS方法抽取5个群。

★ 设定样本群数为5.

n=5

★ 调用整群抽样函数cluster, 使用SRS抽群。

c1=cluster(data, "state", size=n, method="srswor",
 description=TRUE)

head(c1) ### 查看 c1 的前几行数据

c=getdata(data, c1) ### 抽出数据

参数估计

★ 定义每个单元入样的概率

```
N = nlevels(data$state) ## 总体中群的个数
fpc= rep(N, nrow(c))
pw = rep(N/n, nrow(c))
```

★ 把变量c, pw和fpc合并

agclus = as.data.frame(cbind(c, pw, fpc))

★ 定义抽样设计及抽样结果,并查看

★ 目标变量(acres92)均值的简单估计及其标准差的估计 svymean(~acres92, dclus)## 也可以加入选项 deff=TRUE svytotal(~acres92,dclus)

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- ⑨ PPS+SRS的两阶抽样

4□ > 4回 > 4 重 > 4 重 > 重 の Q ®

等概率两阶抽样

抽样要求

- 第一阶段以state为PSU(共50个),抽取若干PSU
- ② 第二阶段,在每个PSU内部以county为SSU,抽取若干SSU。 两阶段均采用SRS抽样.
- ★ 抽样方法一: 调用多阶抽样函数: mstage.
 - ▶ 该函数需要预先设定好每个阶段抽取的样本量。
 - ▶ 先抽取25个PSU, 在每个PSU内部抽取10个SSU.
- ★ 抽样方法二: 不用mstage, 自行分阶段抽取。第一阶段仍然 抽取25个, 第二阶段抽取约20%的SSU.

◆ロ > ◆部 > ◆差 > ◆差 > 差 り < ②</p>

抽样方法一的实现

★ 数据整理:由于第二阶段要抽取至少10个SSU,所以要提出SSU个数少于10的PSU.

```
s.size = table(data$state)[data$state]
data.new = data[s.size>=10, ]
```

★ 多阶抽样函数mstage要求数据框中的变量已经按照第一阶段变量、第二 阶段变量排好次序:

```
data.new = data.new[order(data.new$snum, data.new$cnum), ]
```

★ 然后抽样

```
n = 25; mi = rep(10, n)
```

- m1 = mstage(data.new, stage=list("cluster", ""),
 varnames=list("snum", "county"), size=list(n, mi),
 method=c("srswor", "srswor"), description=TRUE)
- ★ 查看抽样结果和第一阶段抽取到的PSU. mstage返回的是两个抽样框,名字分别是'1'和'2'.

```
m=getdata(data.new, m1$"2")
```


抽样方法二的实现

★ 第一阶段抽样:调用抽样函数cluster进行第一阶段抽样。其中第一个参数是总体数据集,第二个参数是PSU变量,size表示要抽取的PSU个数,method是抽样方法。

```
m1=cluster(data.new, "state", size=n,
    method="srswor", description=TRUE)
```

★ 查看抽样结果和第一阶段抽取到的PSU. cluster 返回的是一个包括PSU变量"state",单元标志和入样概率"Prob"的数据框。

```
m=getdata(data.new, m1)
result=unique(m$state)
cat("PSU selected in stage 1:", result, '\n')
```

◆ロ > ◆回 > ◆ 直 > ◆ 直 → りへぐ

抽样方法二的实现(续)

```
★ 第二节阶段抽样
    sm=NULL.
    for(i in 1:n)
       mi = m[m$state==result[i], ]
       ni=round(nrow(mi)/5)+1
       si=srswor(ni, nrow(mi))
       si=mi[si!=0,]
       sm=rbind(sm, si)
```

参数估计

★ 准备工作

★ 目标变量(acres92)均值的简单估计及其标准差的估计 svymean(~acres92, dsm)## 也可以加入选项 deff=TRUE svytotal(~acres92, dsm)

◆ロ > ◆回 > ◆ き > ◆き > き の < ○</p>

- 1 引言
- 2 简单随机抽样
- 3 分层抽样
- 4 系统抽样
- 5 PPS抽样
- 6 Brewer抽样
- 7 整群抽样
- 8 等概率两阶抽样
- 9 PPS+SRS的两阶抽样

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

PPS+SRS的两阶抽样

抽样要求

- 第一阶段以region为PSU(共4个),从中以PPS抽样抽取2个PSU
- ② 第二阶段,在每个PSU内部以county为SSU,用SRS抽样抽取150个SSU。
- ★ 第一阶段抽样: PPS抽样

M = table(data\$region)

z = rep(M/sum(M), M)

n = 2

ind = cluster(data, "region", size=n,
 method="srswr", pik=z, description=TRUE)

第二阶段抽样

★ 查看第一阶段抽样结果 m = getdata(data, ind) result=unique(m\$rnum) cat("Clusters selected in stage 1: ", result, '\n') ★ 第二阶段抽样: sm = NUI.I.for(i in 1:length(result)) mi = m[m\$snum==result[i],] si=srswor(150, nrow(mi)) si=mi[si!=0,] sm=rbind(sm, si)

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥Q♠

参数估计

```
####
     estimate mean
 MO=nrow(data)
 mean = mean(ybar)
 SE.mean = sqrt(var(ybar)/M0)
 cbind(mean, SE.mean)
#### estimate total
 total = MO*mean
 SE.total = M0*SE.mean
 cbind(total, SE.total)
```