

Total up of function (alls = (n-1) (n-2) (n-2)(2)(1)
=(n-1)!
Time Complexity = # hinchian Calle * each function Cost = (n-1)! * n - min 1 mmy
= (n-1)! + n -> min 1 mint
$= n!$ $= o(n^n)$
G.c. = 0 (nn)
Space Complexity = i)P + extra 48+n · stack
W / Com
48 rn - Stack Mosto
2/22
$= o(n)$ $S \cdot c = o(n)$
(3.C O(N))
-> In the above recursive tree, some function Calls gre
repeating. So, we will going to DP. which will
solve only distinct function Calls.
-> How many distinct function Calls are there in mem(1)
(0):
mem (1/1) 1/2 27 1/1 1/9
2 3 (1,2) (2,8) 2,4
(1/9) (2/4)
So, Potal distinct function Call 8 = n+ n-1 + n-2+ +2+1
$= \frac{n(n+1)}{2}$
$=o(n^2)$

