1

NCERT Physics 12.7 Q21

EE23BTECH11009 - AROSHISH PRADHAN*

Question: Obtain the resonant frequency and Q-factor of a series LCR circuit with L = 3.0 H, C = 27μ F, and R = 7.4Ω . It is desired to improve the sharpness of the resonance of the circuit by reducing its 'full width at half maximum' by a factor of 2. Suggest a suitable way.

Solution: Given parameters are:

Description	Symbol	Value
Inductance	L	3.0 H
Capacitance	C	$27 \mu F$
Resistance	R	7.4Ω

TABLE I: Given Parameters

Fig. 1: LCR Circuit

Frequency Response of the Circuit

Applying Kirchhoff's Voltage Law (KVL), we get:

$$V_R + V_L + V_C = V(t) \tag{1}$$

where V_R , V_L and V_C are the voltages across R, L and C respectively and V(t) is the time-varying voltage source.

Description	Symbol	Impedance
Resistance	R	R
Inductance	L	sL
Capacitance	С	$\frac{1}{sC}$

TABLE II: Impedances

Elements and their corresponding impedances are given in the table above where *s* is a complex variable. The circuit can now be redrawn as:

Fig. 2: LCR Circuit

Using the impedances of R, L and C from TABLE II in equation (1), we get

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
 (2)

$$\Rightarrow V(s) = I(s) \left(R + Ls + \frac{1}{sC} \right) \tag{3}$$

$$\Rightarrow I(s) = \frac{V(s)}{\left(R + Ls + \frac{1}{sC}\right)} \tag{4}$$

At resonance, the circuit becomes purely resistive. The impedances of capacitor and inductor cancel out as follows:

$$Ls + \frac{1}{sC} = 0 \tag{5}$$

$$\Rightarrow s = j \frac{1}{\sqrt{LC}} \tag{6}$$

s can be expressed in terms of angular resonance frequency as

$$s = j\omega_0 \tag{7}$$

Comparing equations (6) and (7), we get

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{8}$$

Quality Factor

Quality Factor (Q) of an LCR circuit is defined as the ratio of voltage across inductor or capacitor to that across the resistor at resonance.

$$Q = \left(\frac{V_L}{V_R}\right)_{\omega_0} = \frac{|sLI(s)|}{|RI(s)|} \tag{9}$$

$$\Rightarrow Q = \frac{1}{\sqrt{LC}} \frac{L}{R} \tag{10}$$

$$\Rightarrow Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (11)