SMAP para Bacia de Camargos - Calibração e Validação

Carregar os dados

Modelo Base

Parâmetros usando o meio dos intervalos

Parâmetros ótimos da ONS

```
In [5]: # Define default parameters
params_ons = dict(
    Ad = 6279.0,
    Str = 100.0,
    K2t = 5.5,
    Crec = 100,
    Ai = 2,
    Capc = 42.0,
    Kkt = 150,
    Pcof = 1.0,
    Tuin = 20.0,
    Ebin = 45.0,
    Supin = 1.0,
    Supin = 1.0,
    Kep = 1.05153505864843,
    H = 200.0,
    Kit = 10.0,
    Kit = 10.0,
    Kit = 10.0,
}
```

Executar o modelo para intervalo de tempo definido

```
In []: from modules.smap import ModeloSmapDiario

# start_date = '1995-08-01'
# end_date = '2000-08-01'
start_date = '2000-08-01'
end_date = '2000-08-01'
# Convert DataFrame columns to Lists
Ep = df[start_date: end_date]['Ep'].tolist()
Pr = df[start_date: end_date]['Pr'].tolist()
# Call the function with the provided data
result = ModeloSmapDiario(Ep=Ep, Pr=Pr, **params_middle)
```

Salvar resultados do modelo

```
# Save result as pandas dataframe
result = pd.DataFrame(result)

# result_df.to_csv('data/optimization/output_base.csv', index=False)
# result_df.to_csv('data/optimization/output_ons.csv', index=False)
result.to_csv('data/optimization/output_base_val.csv', index=False)
# result_df.to_csv('data/optimization/output_ons_val.csv', index=False)

# Print the results
display(result.head(5))
```

	Rsolo	Rsub	Rsup	Rsup2	Р	Es	Er	Rec	Ed	Emarg	Ed2	Eb	Q
0	210.000000	94.109247	0.108280	0.0	0.0	0.000000	0.000000	0.0	0.000000	0	0.0	0.000000	0.000000
1	209.130000	93.490040	0.094519	0.0	0.0	0.000000	0.870000	0.0	0.013760	0	0.0	0.619207	46.000000
2	208.821284	92.874907	0.082508	0.0	2.8	0.000000	3.108716	0.0	0.012012	0	0.0	0.615133	45.576835
3	208.791443	92.263822	0.072070	0.0	4.2	0.000048	4.229794	0.0	0.010485	0	0.0	0.611085	45.171768
4	208.005990	91.656758	0.062912	0.0	0.4	0.000000	1.185454	0.0	0.009159	0	0.0	0.607065	44.783173

Calibração - Rotinas de Otimização Automática

Análise gráfica de comportamento das séries geradas (ou simuladas) de vazão face aos valores observados

Métricas de erro

Busca de Grade

```
In [21]: import time
                  import numpy as np
                  import pandas as pd
from sklearn.model_selection import ParameterGrid
from modules.smap import SmapModel
                 # Define the parameter grid based on the ranges provided
param_grid = {
                        ram_grid = {
    'H': np.linspace(0, 200, 5), # 0.96
    'Str': np.linspace(50, 2000, 5), # 1.19
    'K2t': np.linspace(0.2, 10, 5), # 0.99
    'Crec': np.linspace(0, 100, 5), # 1.00
    'Al': np.linspace(2, 5, 5), # 0.99
    'Capc': np.linspace(30, 50, 5), # 1.01
    'Kkt': np.linspace(30, 180, 5), # 1.02
    'Kit': np.linspace(2, 2, 10, 5), # 0.96
    'K3t': np.linspace(10, 60, 5), # 0.96
    'kep': np.linspace(0.8, 1.2, 5), # 0.96
                 # Convert the parameter grid into a list of dictionaries
param_list = list(ParameterGrid(param_grid))
n_params = len(param_list)
                 start_date = '1995-08-01'
end_date = '2000-08-01'
                 data = df[start_date: end_date]
                 X = data[['Ep', 'Pr']]
y = data['Qobs'].values
                 # Initialize variables to store the best parameters and best score
best_score = float('inf')
# best_score = - float('inf')
best_params = None
                 best_result = None
                  # Example dataframe to hold results
                 results = []
                 # Initialize time counter
start = time.time()
                  # Perform the manual grid search
for i, params in enumerate(param_list):
                          # Initialize the model with the current set of parameters
                          model = SmapModel(**{
    **params_ons,
                                # **params_middle,
**params, # Unpack the current parameters from the grid
                        # Predict the output
predictions = model.predict(X)
                         # Calculate the score (Mean Squared Error in this case)
                        mse = mean_squared_error(y, predictions)
cef = nash_sutcliffe_efficacy(y, predictions)
cer = relative_error_coefficient(y, predictions)
                         # Collect results
                        # Collect results
result = {}
result['mse'] = mse
result['cef'] = cef
result['cer'] = cer
result['soma_coef'] = cef + cer
                         results.append(result)
                            Update the best score and parameters if the current score is better
                        if result['mse'] < best_score:
   best_score = result['mse']
   best_params = params
   best_result = result</pre>
                         time_passed = time.time() - start
total_time = n_params * time_passed / (i + 1)
time_left = total_time - time_passed
                         time_passed = round(time_passed / 60, 1)
total_time = round(total_time / 60, 1)
                         total_time = round(total_time / 60, 3
time_left = round(time_left / 60, 1)
                         df_results = pd.DataFrame(results)
```

```
# Display the best parameters and the best score
print("Best parameters found: ", best_params)
print("Best score: ", best_score)

Best parameters found: ('Ai': 2.0, 'Capc': 35.0, 'Crec': 100.0, 'H': 100.0, 'K2t': 10.0, 'Kkt': 30.0, 'Str': 50.0)

Best score: 2887.072405518422
```

Busca Randomizada

```
In [ ]: from sklearn.model_selection import RandomizedSearchCV
               from scipy.stats import uniform
from modules.smap import SmapModel
from modules.metrics import nash_sutcliffe_efficacy
from sklearn.metrics import mean_squared_error
              def nash_sutcliffe_efficacy_score(estimator, X_test, y_test):
    y_pred = estimator.predict(X_test)
    return nash_sutcliffe_efficacy(y_test, y_pred)
              def soma_coef_score(estimator, X_test, y_test):
    y_pred = estimator.predict(X_test)
    cef = nash_sutcliffe_efficacy(y_test, y_pred)
    cer = relative_error_coefficient(y_test, y_pred)
    return - (cef + cer)
               start_date = '1995-08-01'
end_date = '2000-08-01'
               data = df[start_date: end_date]
               X = data[['Ep'
               y = data['Qobs'].values
               # Define the parameter distributions (using a wide range with fewer values for random sampling)
               param_distributions =
'H': uniform(0. 2
                        "H': uniform(0, 200),

'Str': uniform(50, 2000),

'K2t': uniform(0.2, 10),
                      'Kat': uniform(0.2, 10),
'Crec': uniform(2, 10),
'Ai': uniform(2, 5),
'Capc': uniform(30, 50),
'Kkt': uniform(30, 180),
'K3t': uniform(10, 60),
'kep': uniform(0.8, 1.2),
              # Initialize the model
model = SmapModel(**params_ons)
              random_search = RandomizedSearchCV(model, param_distributions, n_iter=5000, scoring='neg_mean_squared_error', error_score='raise', cv=2, verbose=1) random_search.fit(X, y)
              # Get the best parameters
print(f"Best Parameters: {random_search.best_params_}")
               print(f"Best Score: {random_search.best_score_}")
```

Otimização Bayesiana (com as bibliotecas skopt e hyperopt)

```
In [ ]: # !pip install scikit-optimize
                    from skopt import gp_minimize
from skopt.space import Real
from skopt.utils import use_named_args
from modules.smap import SmapModel
                     from sklearn.metrics import mean_squared_error
                   start_date = '1995-08-01'
end_date = '2000-08-01'
                    data = df[start_date: end_date]
                   X = data[['Ep', 'Pr']]
y = data['Qobs'].values
                   # Define the search space
search_space = [
Real(0, 200, name='H'),
Real(50, 2000, name='Str'),
Real(0.2, 10, name='K2t'),
Real(0.2, 10, name='Crec'),
Real(2, 5, name='Ai'),
Real(30, 50, name='Capc'),
Real(30, 50, name='K4t'),
Real(10, 60, name='K8t'),
Real(10, 60, name='K9t'),
Real(0.8, 1.2, name='kep'),
                    @use named args(search space)
                    def objective(**params):
   model = SmapModel(**{**params_ons, **params})
   predictions = model.predict(X)
                              mse = mean_squared_error(y, predictions)
                    result = gp_minimize(objective, search_space, n_calls=250, random_state=0, verbose=1)
                    # det the best params = {space.name: value for space, value in zip(result.space, result.x)}
print(f"Best Parameters: {best_params}")
print(f"Best Score: {result.fun}")
                    # Resultados:
                   # 50: {'H': 199.93598938946454,
# 'Str': 50.0,
# 'K2t': 9.974586382586164,
                         'K2t': 9.974586382586164,

'Crec': 25.19050814571343,

'Ai': 5.0,

'Capc': 50.0,

'Kkt': 30.0,

'K3t': 46.33897974946203,

'kep': 0.8}
                   # 250: {'H': 111.99016824287398,
# 'Str': 50.0,
# 'K2t': 9.99290868595116,
# 'Crec': 100.0,
# 'Ai': 2.0,
# 'Copc': 46.762652004145274,
# 'Kkt': 179.53755426503005,
# 'K3t': 10.0,
# 'kep': 1.168066284489991}
```

```
In [ ]: # !pip install dea
                 # IPID INSTALL weep
from modules.smap import SmapModel
from deap import base, creator, tools, algorithms
from sklearn.metrics import mean_squared_error
                 import random
                start_date = '1995-08-01'
end_date = '2000-08-01'
                 data = df[start_date: end_date]
                X = data[['Ep', 'Pr']]
y = data['Qobs'].values
                # Define the problem as minimization
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
                toolbox = base.Toolbox()
toolbox.register("H", random.uniform, 0, 200)
toolbox.register("Str", random.uniform, 50, 2000)
toolbox.register("K2t", random.uniform, 0, 2, 10)
toolbox.register("K2t", random.uniform, 0, 100)
toolbox.register("Ai", random.uniform, 2, 5)
toolbox.register("Capc", random.uniform, 30, 50)
toolbox.register("Kat", random.uniform, 30, 180)
toolbox.register("K3t", random.uniform, 10, 60)
toolbox.register("Kep", random.uniform, 0, 8, 1.2)
                 toolbox = base.Toolbox()
                  # Register individual and population
                 # Define the evaluation function
                 def evaluate(individual):
                       params = {
    'H': individual[0],
    'Str': individual[1],
    'K2t': individual[2],
    'Crec': individual[3],
                                 'Ai': individual[3],
'Capc': individual[5],
'Kkt': individual[6],
'K3t': individual[7],
'kep': individual[8]
                          model = SmapModel(**{**params ons, **params})
                          predictions = model.predict(X)
                         try:

mse = mean_squared_error(y, predictions)
                                 print(y)
print(predictions)
                                 raise
                        return (mse,)
                 toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
                 # Perform the genetic algorithm
                 population = toolbox.population(n=100)
algorithms.eaSimple(population, toolbox, cxpb=0.7, mutpb=0.2, ngen=150, verbose=True)
                  # Get the best individua
                 # Get the best individual
individual = tools.selBest(population, 1)[0]
best_params = {
    "H': individual[0],
    'Str': individual[1],
    'Kat': individual[2],
    'Cat': individual[2],
                          'Crec': individual[3],
'Ai': individual[4],
                          "Capc': individual[4],

"Kkt': individual[6],

"K3t': individual[7],

"kep': individual[8]
                 print(f"Best parameters:")
                 display(best params)
```

Gerando valores de vazão com parametros calibrados

In [29]: # Save result as pandas datafram
 result_df = pd.DataFrame(result) # result_df.to_csv('data/optimization/output_opt_grid.csv', index=False)
result_df.to_csv('data/optimization/output_opt_randomized.csv', index=False)
result_df.to_csv('data/optimization/output_opt_bayesian.csv', index=False)
result_df.to_csv('data/optimization/output_opt_genetic_250.csv', index=False)

result_df.to_csv('data/optimization/output_opt_grid_val.csv', index=False)
result_df.to_csv('data/optimization/output_opt_randomized_val.csv', index=False)
result_df.to_csv('data/optimization/output_opt_bayesian_val.csv', index=False)
result_df.to_csv('data/optimization/output_opt_genetic_val_250.csv', index=False)

display(result_df.head(5))

	Rsolo	Rsub	Rsup	Rsup2	Р	Es	Er	Rec	Ed	Emarg	Ed2	Eb	Q
0	38.209526	80.870069	0.167530	0.0	0.0	0.000000	0.000000	0.0	0.000000	0.0	0.0	0.000000	0.000000
1	37.218998	0.000000	0.756408	0.0	0.0	0.602638	0.387889	0.0	0.013760	0.0	0.0	0.619207	46.000000
2	34.699981	0.000000	1.663298	0.0	2.8	0.969018	4.350000	0.0	0.062128	0.0	0.0	0.000000	4.515064
3	33.383067	0.000000	2.693595	0.0	4.2	1.166913	4.350000	0.0	0.136616	0.0	0.0	0.000000	9.928365
4	28.801061	0.000000	3.104362	0.0	0.4	0.632007	4.350000	0.0	0.221240	0.0	0.0	0.000000	16.078298

Análise gráfica de comportamento das séries geradas

Fonte: http://www.coc.ufrj.br/pt/dissertacoes-de-mestrado/105-msc-pt-2005/1992-rafael-carneiro-di-bello

(a) Coeficiente de correlação (R)

$$R = \frac{1}{N-1} \sum_{i=1}^{N} \left(x_i - m_x\right) \left(x_i^* - m_x^*\right) \\ \sigma_x \sigma_x^*$$

x_i* é um valor simulado;

my é a média dos valores observados:

mx* é a média dos valores simulados

 σ_x é o desvio padrão dos valores observados;

 ${\sigma_x}^*$ é o desvio padrão dos valores simulados; e

N é o número de medidas (dias simulados).

(b) Erro médio (EM)

$$EM = \frac{1}{N} \sum_{i=1}^{N} (x_i - x_i^*)$$

(c) Erro reduzido médio quadrático (ERM)

$$ERM = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - x_i^*}{\sigma_n} \right)^2$$

166

(d) Erro médio quadrático (EMQ)

$$EMQ = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - x_i^*)^2}$$

Curvas de permanência

A "curva de permanência" é um gráfico que mostra a probabilidade de uma determinada vazão ser igualada ou excedida.

Gráfico de dispersão

Este tipo de gráfico é útil para analisar a correlação entre as vazões observadas e as geradas

- Gráfico de Dispersão
 - O gráfico plota pontos para cada par de valores de vazão observada e gerada.
 - As previsões dos diferentes modelos são diferenciadas por cor e legendadas.
- - A linha preta tracejada (Linha de Perfeição) representa onde os valores gerados seriam exatamente iguais aos valores observados. Isso ajuda a visualizar o quão próximo as previsões estão dos valores reais.

Esse gráfico permite avaliar visualmente o desempenho dos modelos de previsão em relação aos dados observados.

Gráfico de Resíduos

Mostra a diferença entre as vazões geradas e as vazões observadas (resíduos) ao longo do tempo

Esse tipo de gráfico é útil para identificar padrões ou desvios sistemáticos nos erros de previsão.

Recarregar valores de vazão gerados

```
In [6]: import pandas as pd
import numpy as np
                                    output_base = pd.read_csv('data/optimization/output_base.csv')
output_ons = pd.read_csv('data/optimization/output_ons.csv')
output_opt_grid = pd.read_csv('data/optimization/output_opt_grid.csv')
output_opt_bay = pd.read_csv('data/optimization/output_opt_bayestan.csv')
output_opt_rand = pd.read_csv('data/optimization/output_opt_randomized.csv')
output_opt_gen = pd.read_csv('data/optimization/output_opt_genetic_250.csv')
```

```
output_base.columns += ' - BASE'
output_ors.columns += ' - ONS'
output_opt_grid.columns += ' - OPT GRID'
output_opt_grad.columns += ' - OPT RAMO'
output_opt_bay.columns += ' - OPT BAY'
output_opt_bay.columns += ' - OPT GRI'

preds = pd.concat([output_base, output_ons, output_opt_grid, output_opt_bay, output_opt_gen], axis=1)

start_date = '1995-08-01'
end_date = '1995-08-01'
data = df[start_date: end_date]

preds.index = data.index
    preds.index.name = 'index'
    preds['Q - OPT'] = preds['Q - OPT GEN']
    preds['Q - OPT'] = preds['Q - OPT GEN']
    preds['Rsub - OPT'] = preds['Rsub - OPT GEN']
    preds['Rsub - OPT'] = preds['Rsub - OPT GEN']
    preds = pd.concat([preds, df.loc[preds.index]], axis=1)

preds.head()
```

Out[6]:

]:		Rsolo - BASE	Rsub - BASE	Rsup - BASE	Rsup2 - BASE	P - BASE	Es - BASE	Er - BASE	Rec - BASE	Ed - BASE	Emarg - BASE	Ed2 - OPT GEN	Eb - OPT GEN	Q - OPT GEN	Q - OBS	Q - OPT	Rsub - OPT	Rsup - OPT	Qobs	Ер	Pr
	index																				
1	995-08- 01	210.000000	94.109247	0.108280	0.0	0.0	0.0	0.000000	0.0	0.000000	0	0.0	0.000000	0.000000	46	0.000000	80.870069	0.167530	46	4.35	0.0
1	995-08- 02	209.130000	93.490040	0.094519	0.0	0.0	0.0	0.870000	0.0	0.013760	0	0.0	0.619207	46.000000	46	46.000000	0.000000	0.756408	46	4.35	0.0
1	995-08- 03	208.263604	92.874907	0.082508	0.0	0.0	0.0	0.866396	0.0	0.012012	0	0.0	0.000000	4.515064	46	4.515064	0.000000	1.293273	46	4.35	0.0
1	995-08- 04	207.400798	92.263822	0.072023	0.0	0.0	0.0	0.862806	0.0	0.010485	0	0.0	0.000000	7.719654	46	7.719654	0.000000	1.782535	46	4.35	0.0
1	995-08- 05	206.541566	91.656758	0.062870	0.0	0.0	0.0	0.859232	0.0	0.009153	0	0.0	0.000000	10.640103	46	10.640103	0.000000	2.228237	46	4.35	0.0

5 rows × 85 columns

Calcular métricas de erro - Calibração

	Q - BASE	Q - ONS	Q - OPT GRID	Q - OPT RAND	Q - OPT BAY	Q - OPT GEN
cef	0.316289	0.793380	0.627835	0.482649	0.596397	0.851605
cer	0.651888	0.871702	0.669828	0.666273	0.617783	0.811392
soma_coef	0.968177	1.665082	1.297663	1.148922	1.214180	1.662998
сс	0.634245	0.904831	0.869941	0.888134	0.882859	0.923651
me	25.853598	-0.028345	10.806848	-2.055290	15.456251	0.528001
rmse_norm	0.683337	0.206507	0.371962	0.517068	0.403382	0.148314
rmse	72.827808	40.035637	53.731484	63.351000	55.954900	33.928933

Comparando valores de vazão gerados e observados

```
In [7]: from modules.visu import report, interactive_report
# report(preds)
figures = interactive_report(preds)
```

Comparação das Séries ao Longo do Tempo

Gráfico de Resíduos

Comparação das Séries Acumuladas ao Longo do Tempo

Gráfico de Dispersão: Vazão Gerada vs Vazão Observada

Curva de Permanência das Vazões

Variação dos Níveis do Reservatório Superficial

Variação dos Níveis do Reservatório Subterrâneo

Balanço Hídrico Anual (m³/ano)

Salvando gráficos como html

```
import plotly.graph_objects as go
import plotly.io as pio

# Combine figures into a single HTML file
with open('camargos_calibracao.html', 'w') as out:
    for fig in figures:
        out.write(fig.to_html(full_html=False, include_plotlyjs='cdn'))
```

Periodo de Validação

Recarregar valores de vazão gerados

```
import pandas as pd
import numpy as np

output_pase = pd.read_csv('data/optimization/output_base_val.csv')
output_ons = pd.read_csv('data/optimization/output_ons_val.csv')
output_opt_end = pd.read_csv('data/optimization/output_ons_val.csv')
output_opt_end = pd.read_csv('data/optimization/output_opt_endomized_val.csv')
output_base_columns == '- sASE'
output_opt_end.columns == '- sASE'
output_opt_end.columns == '- oOT RAND'
output_opt_end.columns == '- oPT GEN'

preds = pd.concat([output_base, output_ons, output_opt_end, output_opt_gen], axis=1)

# start_date = '1995-08-01'
# end_date = '2908-08-01'
start_date = '2908-08-01'
end_date = '2908-08-01'
end_date = '2308-01-01'
data = 'dfitart_date' end_date]

preds.index = data.index
preds.index = data.index
preds['0 - OST'] = preds['Rsup - OPT GEN']

preds['0 - OST'] = preds['Rsup - OPT GEN']
preds['Rsup - OPT'] = preds['Rsup - OPT GEN']
preds['Rsup - OPT'] = preds['Rsup - OPT GEN']
preds = pd.concat([preds, df.loc[preds.index]], axis=1)
preds = pd.concat([preds, df.loc[preds.index]], axis=1)
```

3]:		Rsolo - BASE	Rsub - BASE	Rsup - BASE	Rsup2 - BASE	P - BASE	Es - BASE	Er - BASE	Rec - BASE	Ed - BASE	Emarg BASE	Ed2 - OPT GEN	Eb - OPT GEN	Q - OPT GEN	Q - OBS	Q - OPT	Rsub - OPT	Rsup - OPT	Qobs	Еp	Pr
	index																				
20	000-08- 01	210.000000	94.109247	0.108280	0.0	0.0	0.000000	0.000000	0.0	0.000000	0	0.0	0.000000	0.000000	56	0.000000	80.870069	0.167530	56	4.35	0.0
20	000-08- 02	209.130000	93.490040	0.094519	0.0	0.0	0.000000	0.870000	0.0	0.013760	0	0.0	0.619207	46.000000	56	46.000000	0.000000	0.756408	56	4.35	0.0
20	000-08- 03	208.821284	92.874907	0.082508	0.0	2.8	0.000000	3.108716	0.0	0.012012	0	0.0	0.000000	4.515064	56	4.515064	0.000000	1.663298	56	4.35	2.8
20	000-08- 04	208.791443	92.263822	0.072070	0.0	4.2	0.000048	4.229794	0.0	0.010485	0	0.0	0.000000	9.928365	58	9.928365	0.000000	2.693595	58	4.35	4.2
20	000-08- 05	208.005990	91.656758	0.062912	0.0	0.4	0.000000	1.185454	0.0	0.009159	0	0.0	0.000000	16.078298	62	16.078298	0.000000	3.104362	62	4.35	0.4

5 rows × 59 columns

Calcular métricas de erro - Periodo de Validação

	Q - BASE	Q - ONS	Q - OPT RAND	Q - OPT GEN
cef	0.296795	0.898135	0.453340	0.854966
cer	0.649947	0.856959	0.562850	0.807230
soma_coef	0.946741	1.755094	1.016191	1.662195
сс	0.601270	0.957205	0.917602	0.940256
me	18.175795	-6.738186	0.969686	-4.042630
rmse_norm	0.702946	0.101828	0.546458	0.144981
rmse	62.102310	23.636318	54.755173	28.203450

Comparação das Séries ao Longo do Tempo

Gráfico de Resíduos

Comparação das Séries Acumuladas ao Longo do Tempo

Gráfico de Dispersão: Vazão Gerada vs Vazão Observada

Curva de Permanência das Vazões

Variação dos Níveis do Reservatório Superficial

Variação dos Níveis do Reservatório Subterrâneo

Salvando gráficos como html