2020 PDC Project - Hines

Guojie Luo gluo@pku.edu.cn

Contents

- Brief Introduction
 - Overview of brain simulation
 - Neuroscience Basics
- Neuron Simulator and Related Works
 - Mathematic Basics
 - Neuron Simulator

How the brain computes information?

Simulating the whole brain with "point" neurons. e.g. IBM simulated a cat brain with 1.6 billions point neurons and 9 trillion synapses.

Towards better understanding the brain

Towards better understanding the brain

EU Human Brain Project

Neuron

Contents

- Brief Introduction
 - Overview of brain simulation
 - Neuroscience Basics
- Neuron Simulator and Related Works
 - Mathematic Basics
 - Neuron Simulator

How to model a biologically detailed neuron?

$$C\frac{dV}{dt} = \begin{bmatrix} I_{inj} - \bar{g}_{Na}m^3h(V - V_{Na}) - \bar{g}_Kn^4(V - V_K) - g_L(V - V_L) \end{bmatrix}$$

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$

$$\frac{dm}{dt} = \alpha_m(V)(1-m) - \beta_m(V)m$$

$$\frac{dh}{dt} = \alpha_h(V)(1-h) - \beta_h(V)h$$
Na
$$V_{Na} V_{K} V_{L}$$
Inside

Computational Complexity of Detailed Model

"Leveraging heterogeneous systems and deep memory hierarchies for brain tissue modeling", Blue Brain Project

Most Popular Simulators in Neuroscience

NEURON

 More than 1900 papers build models on NEURON

GENESIS

Classical simulator for detailed model

CoreNEURON

- Optimized compute engine of NEURON
- Support single GPU simulation

Tikidji-Hamburyan R A, Narayana V, Bozkus Z, et al. Software for brain network simulations: a comparative study[J]. Frontiers in neuroinformatics, 2017, 11: 46.

Cable Equation

Detailed Model with HH Channels

$$\frac{\partial V}{\partial T} + F(V) = \frac{\partial^2 V}{\partial X^2}$$

$$F(V) = -\bar{g}_{Na}m^{3}h(V - V_{Na}) - \bar{g}_{K}n^{4}(V - V_{K}) - g_{L}(V - V_{L})$$
$$\frac{dn}{dt} = \alpha_{n}(V)(1 - n) - \beta_{n}(V)n$$

Cable Equation

If each compartment has length Δx and diameter d its capacitance is $C_m \pi d \Delta x$ axial resistance is $R_a \Delta x / \pi (d/2)^2$

$$C_m \frac{dv_j}{dt} + i_j(v_j, t) = \frac{d}{4R_a} \frac{v_{j+1} - 2v_j + v_{j-1}}{\Delta x^2}$$

Finite difference method for PDE

Cable Equation

$$c_{j}\frac{dv_{j}}{dt} + i_{ion_{j}}(v_{j}, t) = \frac{v_{j-1} - v_{j}}{r_{j-1, k}} + \frac{v_{j+1} - v_{j}}{r_{j+1, k}}$$

$$i_{ion_{j}} = -\bar{g}_{Na}m^{3}h(v_{j} - V_{Na}) - \bar{g}_{K}n^{4}(v_{j} - V_{K}) - g_{L}(v_{j} - V_{L})$$

$$\frac{dn}{dt} = \alpha_{n}(v_{j})(1 - n) - \beta_{n}(v_{j})n$$

Branched Neuron Model

$$c_{j} \frac{dv_{j}}{dt} + i_{ion_{j}}(v_{j}, t) = \sum_{k} (v_{k} - v_{j}) / r_{jk}$$

Backward Euler Method

$$(\mathbf{I} - \psi \mathbf{B'} - \mathbf{G}) \mathbf{V_j^{t+1}} = \mathbf{V_j^t}$$
$$\mathbf{V_j^{t+1}} = (\mathbf{I} - \psi \mathbf{B'} - \mathbf{G})^{-1} \mathbf{V_j^t}$$
$$\mathbf{B'} =$$

Operations in single step

- Deliver events
- Setup matrix
- Solve linear equations
- Update values
- Update states

Setup matrix

```
for (_iml = 0; _iml < _cntml_actual; ++_iml) {</pre>
#else /* LAYOUT > 1 */ /*AoSoA*/
#error AoSoA not implemented.
for (;;) { /* help clang-format properly indent */
#endif
    int nd idx = ni[ iml];
   v = vec v[nd idx];
   PRCELLSTATE V
  ena = ion ena;
  ek = ion ek;
 g = nrn current( threadargs , v + .001);
   { double dik;
 double dina;
  dina = ina;
  dik = ik;
 rhs = nrn current( threadargs , v);
  ion dinadv += ( dina - ina)/.001;
  ion dikdv += ( dik - ik)/.001;
 g = (g - rhs)/.001;
  ion ina += ina ;
  ion ik += ik ;
 PRCELLSTATE G
   _vec_rhs[_nd_idx] -= _rhs;
   _vec_d[_nd_idx] += _g;
```

```
static double _nrn_current(_threadargsproto_, double _v){double _current=0.;v=_v;{ {
    gna = gnabar * m * m * m * h ;
    ina = gna * ( v - ena ) ;
    gk = gkbar * n * n * n * n ;
    ik = gk * ( v - ek ) ;
    il = gl * ( v - el ) ;
    }
    _current += ina;
    _current += ik;
    _current += il;
} return _current;
}
```


Solve equations

Algorithm 1 Hines algorithm.

```
1: void solveHines(double *u, double *l, double *d,
                      double *rhs, int *p, int cellSize)
 2:
 3: // u \rightarrow upper vector, l \rightarrow lower vector
 4: int i;
 5: double factor;
 6: // Backward Sweep
 7: for i = cellSize - 1 \rightarrow 0 do
        factor = u[i] / d[i];
        d[\mathbf{p[i]}] -= factor × l[i];
        rhs[\mathbf{p}[\mathbf{i}]] = factor \times rhs[\mathbf{i}];
11: end for
12: rhs[0] /= d[0];
13: // Forward Sweep
14: for i = 1 \rightarrow cellSize - 1 do
15: \operatorname{rhs}[i] = l[i] \times \operatorname{rhs}[\mathbf{p}[i]];
16: \operatorname{rhs}[i] /= d[i];
17: end for
```

Kernel of NEURON simulator

Similar to Thomas Method

Update values

```
static void update (NrnThread* _nt) {
    int i, i1, i2;
    i1 = 0:
    i2 = nt->end;
#if defined( OPENACC)
    int stream id = nt->stream id;
#endif
    double* vec v = &(VEC V(0));
    double* vec rhs = &(VEC RHS(0));
    /* do not need to worry about linmod or extracellular*/
    if (secondorder) {
        #pragma acc parallel loop present(vec_v[0 : i2], \
                                        vec rhs[0 : i2]) if ( nt->compute gpu) async(stream id)
        for (i = i1; i < i2; ++i) {
            vec_v[i] += 2. * vec_rhs[i];
     } else {
        #pragma acc parallel loop present(vec v[0 : i2], \
                                        vec rhs[0 : i2]) if ( nt->compute gpu) async(stream id)
        for (i = i1; i < i2; ++i) {
            vec v[i] += vec rhs[i];
    // update matrix to gpu( nt);
    if ( nt->tml) {
        assert ( nt->tml->index == CAP);
        nrn_cur_capacitance(_nt, _nt->tml->ml, _nt->tml->index);
```

Update states

```
static int states (_threadargsproto_) { 
   rates (_threadargscomma_ v );
   m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0) ) ) / mtau ) - m);
   h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / htau)))*(- ( ( ( hinf ) ) / htau ) / ( ( ( ( - 1.0) ) ) / htau ) - h);
   n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / ntau)))*(- ( ( ( ninf ) ) / ntau ) / ( ( ( ( - 1.0) ) ) / ntau ) - n);
   }
   return 0;
}
```

Solution: Backward Euler Method

$$C_{m} \frac{v_{j}^{t+1} - v_{j}^{t}}{\Delta t} = \frac{d}{4R_{j}} \frac{v_{j+1}^{t+1} - 2v_{j}^{t} + v_{j-1}^{t+1}}{2\Delta x^{2}} - g_{m}v_{j}^{t+1} \qquad C_{m} \frac{\partial v}{\partial t} + i(v, t) = \frac{d}{4R_{a}} \frac{\partial^{2} v}{\partial x^{2}}$$

$$(\mathbf{I} - \psi \mathbf{B}' - \mathbf{G})\mathbf{V}_{j}^{t+1} = \mathbf{V}_{j}^{t}$$

$$\mathbf{V}_{j}^{t+1} = (\mathbf{I} - \psi \mathbf{B}' - \mathbf{G})^{-1}\mathbf{V}_{j}^{t}$$

$$\mathbf{B}' = \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix}$$

Thomas Algorithm: More Efficiency

Matrix inverse: time-consuming

$$(I - \psi B' - G)V_j^{t+1} = V_j^t$$
: tridiagonal matrix equations

 Thomas Algorithm: solve tridiagonal matrix equations with O(n) operations

Thomas Algorithm: More Efficiency

Triangularize

$$\begin{pmatrix} b_1 & c_1 & 0 & 0 & 0 & 0 \\ a_2 & b_2 & c_2 & 0 & 0 & 0 \\ 0 & a_3 & b_3 & c_3 & 0 & 0 \\ 0 & 0 & a_4 & b_4 & c_4 & 0 \\ 0 & 0 & 0 & a_5 & b_5 & c_5 \\ 0 & 0 & 0 & 0 & a_6 & b_6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{pmatrix}$$

row2 – a2/b1 * row1

$$\begin{pmatrix} 1 & \gamma_1 & 0 & 0 & 0 & 0 \\ 0 & 1 & \gamma_2 & 0 & 0 & 0 \\ 0 & a_3 & b_3 & c_3 & 0 & 0 \\ 0 & 0 & a_4 & b_4 & c_4 & 0 \\ 0 & 0 & 0 & a_5 & b_5 & c_5 \\ 0 & 0 & 0 & 0 & a_6 & b_6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} \rho_1 \\ \rho_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{pmatrix}$$

rowi – ai/b(i-1) * row(i-1)

$$\begin{pmatrix} 1 & \gamma_1 & 0 & 0 & 0 & 0 \\ 0 & 1 & \gamma_2 & 0 & 0 & 0 \\ 0 & 0 & 1 & \gamma_3 & 0 & 0 \\ 0 & 0 & 0 & 1 & \gamma_4 & 0 \\ 0 & 0 & 0 & 0 & 1 & \gamma_5 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \\ \rho_4 \\ \rho_5 \\ \rho_6 \end{pmatrix}$$

Back-Substitute

$$x_6 = \rho_6$$
.

$$x_5 = \rho_5 - \gamma_5 x_6.$$

$$x_4 = \rho_4 - \gamma_4 x_5$$
.

$$x_3 = \rho_3 - \gamma_3 x_4$$
.

$$x_2 = \rho_2 - \gamma_2 x_3$$
.

$$x_1 = \rho_1 - \gamma_1 x_2.$$

Current Progress to Speedup Simulation

Network level:

 Use multiple processes / threads to parallelize the computation of different neurons

Cell level:

- Parallelize single cell computation
- Main idea: parallelize computation on different branches

Multisplit -- Hines M L et al. 2005

Related Works of Cell Parallelism

- "A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron models" Michael Mascagni, Journal of Neuroscience, 1990
- solve two tridiagonal systems per branch.
 - One with the original right hand side but with the "branch point" voltage assumed zero,
 - The other with the a zero right hand side and with the "branch point" voltage assumed one.
 - Combine the results

Fig. 2. The simplest branching structure with the 'branch point' identified.

Related Works of Cell Parallelism

- Multi-split: used in NEURON
 - Divide a tree into subtrees
 - Triangularize each subtree as much as possible
 - Transform tridiagonal submatrix into a submatrix in which only two end compartments affects
 - Each subtree sends equations that still contain interaction terms
 - Back substitute

