# FSM finding overlapping-sequence 010 or 1001

## Mealy

Graph



Truth table and state and output equations



| Table X  |             |       |   |       |       |       |   |  |  |  |
|----------|-------------|-------|---|-------|-------|-------|---|--|--|--|
| File New | Edit Create | K-Map |   |       |       |       |   |  |  |  |
| Z2n      | Z1n         | Z0n   | Х | Z2n+1 | Z1n+1 | Z0n+1 | Z |  |  |  |
| 0        | 0           | 0     | 0 | 0     | 1     | 0     | 0 |  |  |  |
| 0        | 0           | 0     | 1 | 0     | 0     | 1     | 0 |  |  |  |
| 0        | 0           | 1     | 0 | 0     | 1     | 1     | 0 |  |  |  |
| 0        | 0           | 1     | 1 | 0     | 0     | 1     | 0 |  |  |  |
| 0        | 1           | 0     | 0 | 0     | 1     | 0     | 0 |  |  |  |
| 0        | 1           | 0     | 1 | 1     | 1     | 0     | 0 |  |  |  |
| 0        | 1           | 1     | 0 | 1     | 0     | 0     | 0 |  |  |  |
| 0        | 1           | 1     | 1 | 1     | 1     | 0     | 0 |  |  |  |
| 1        | 0           | 0     | 0 | 0     | 1     | 0     | 0 |  |  |  |
| 1        | 0           | 0     | 1 | 1     | 1     | 0     | 1 |  |  |  |
| 1        | 0           | 1     | 0 | Х     | Х     | Х     | Х |  |  |  |
| 1        | 0           | 1     | 1 | Х     | Х     | Х     | Х |  |  |  |
| 1        | 1           | 0     | 0 | 0     | 1     | 1     | 1 |  |  |  |
| 1        | 1           | 0     | 1 | 0     | 0     | 1     | 0 |  |  |  |
| 1        | 1           | 1     | 0 | Х     | Х     | Х     | Х |  |  |  |
| 1        | 1           | 1     | 1 | Х     | Х     | Х     | Х |  |  |  |

K-Maps

#### **Output**



 $Z_0^{n+1}$ 



 $Z_1^{n+1}$ 



 $Z_2^{n+1}$ 



Circuits

**D** FFs based



JK FFs based



**NAND** based



Moore

Graph



Truth table and state and output equations

| ile New Edit Cre | eate K-Map |     |   |       |       |       |   |
|------------------|------------|-----|---|-------|-------|-------|---|
| Z2n              | Z1n        | Z0n | X | Z2n+1 | Z1n+1 | Z0n+1 | Z |
| 0                | 0          | 0   | 0 | 0     | 0     | 1     | 0 |
| 0                | 0          | 0   | 1 | 0     | 1     | 1     | 0 |
| 0                | 0          | 1   | 0 | 0     | 0     | 1     | 0 |
| 0                | 0          | 1   | 1 | 0     | 1     | 0     | 0 |
| 0                | 1          | 0   | 0 | 1     | 0     | 0     | 0 |
| 0                | 1          | 0   | 1 | 0     | 1     | 1     | 0 |
| 0                | 1          | 1   | 0 | 1     | 0     | 1     | 0 |
| 0                | 1          | 1   | 1 | 0     | 1     | 1     | 0 |
| 1                | 0          | 0   | 0 | 1     | 1     | 0     | 1 |
| 1                | 0          | 0   | 1 | 0     | 1     | 0     | 1 |
| 1                | 0          | 1   | 0 | 1     | 1     | 0     | 0 |
| 1                | 0          | 1   | 1 | 0     | 1     | 0     | 0 |
| 1                | 1          | 0   | 0 | 0     | 0     | 1     | 0 |
| 1                | 1          | 0   | 1 | 1     | 1     | 1     | 0 |
| 1                | 1          | 1   | 0 | 1     | 0     | 0     | 1 |
| 1                | 1          | 1   | 1 | 0     | 1     | 1     | 1 |

#### K-Maps

#### **Output**





 $Z_0^{n+1}$ 







 $Z_2^{n+1}$ 



| Karnaugh Map                                                                                                                                                                                                                                                            |   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| $Z_2^{n+1} = (\overline{\mathbf{X}} \wedge Z_1^n \wedge \overline{Z_2^n}) \vee (\overline{\mathbf{X}} \wedge \overline{Z_1^n} \wedge Z_2^n) \vee (\mathbf{X} \wedge \overline{Z_0^n} \wedge Z_1^n \wedge Z_2^n) \vee (\overline{\mathbf{X}} \wedge Z_0^n \wedge Z_1^n)$ | - |  |  |  |  |  |  |



### Circuits

#### **D** FFs based



JK FFs based



**NAND** based

