Тема. Повторення. Прямокутний трикутник. Розв'язування задач

<u>Мета:</u> повторити поняття та властивості прямокутного трикутника, теорему Піфагора та співвідношення між сторонами і кутами у прямокутному трикутнику, вдосконалювати вміння розв'язувати задачі та доводити твердження

Повторюємо

- Які види трикутників вам відомі?
- Які властивості прямокутного трикутника ви знаєте?
- Які є співвідношення між сторонами і кутами в прямокутному трикутнику?
- Сформулюйте теорему Піфагора.

Виконайте вправу

https://learningapps.org/9155843

Ознайомтеся з інформацією та зробіть конспект

$$c^2 = a^2 + b^2$$
.

1) Висота, проведена до гіпотенузи, є середнім геометричним між проекціями катетів на гіпотенузу.

$$h_c^2 = a_c \cdot b_c$$
;

2) Катет є середнім геометричним між гіпотенузою і його проекцією на гіпотенузу.

$$a^2 = c \cdot a_c$$
 i $b^2 = c \cdot b_c$;

3) Висота, проведена до гіпотенузи, дорівнює добутку катетів, поділеному на гіпотенузу.

$$h_c = \frac{ab}{c}$$

Функція	Кут α		
	30°	45°	60°
$\sin \alpha$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tgα	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
ctgα	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$

Ознаки рівності прямокутних трикутників

Розв'язування задач

Задача 1

Знайдіть периметр прямокутного трикутника, в якому катет дорівнює 30, а його проекція на гіпотенузу дорівнює 18 см.

Розв'язання

Нехай у трикутнику $ABC \angle C = 90^{\circ}$, $CD \bot AB$, AC = 30 см, AD = 18 см (рис. 5).

За метричним співвідношенням у трикутнику ABC: $AC^2 = AB \cdot AD$, тобто $30^2 = 18 \cdot AB$, звідки AB = 50 см, тоді DB = AB - AD = 32 см. За співвідношенням $BC^2 = AB \cdot DB$ маємо: $BC^2 = 50 \cdot 32 = 1600$, звідки BC = 40 см. Отже, $P_{ABC} = 30 + 40 + 50 = 120$ см.

Відповідь: 120 см.

Задача 2

Знайдіть косинус і тангенс гострого кута прямокутного трикутника, синус якого дорівнює 0.8.

Розв'язання

Нехай для гострого кута α : sin $\alpha = 0.8$.

Тоді
$$\cos \alpha = \sqrt{1 - sin^2 \alpha}$$
, тобто $\cos \alpha = \sqrt{1 - 0.8^2} = \sqrt{0.36} = 0.6$. Оскільки tg $\alpha = \frac{sin \alpha}{cos \alpha}$, то tg $\alpha = \frac{0.8}{0.6} = \frac{4}{3}$.

Відповідь: 0,6; $\frac{4}{3}$.

Задача 3

Розв'яжіть прямокутний трикутник за гіпотенузою c=20 і гострим кутом $\alpha=50^{\circ}$.

Розв'язання

Оскільки сума гострих кутів прямокутного трикутника (рис. 6) дорівнює 90° , то $\beta = 90^{\circ} - 50^{\circ} = 40^{\circ}$.

Оскільки $\sin \alpha = \frac{a}{c}$, то $a = c \cdot \sin \alpha$, тобто $a = 20 \cdot \sin 50^\circ \approx 20 \cdot 0,766 = 15,32$. Оскільки $\cos \alpha = \frac{b}{c}$, то $b = c \cdot \cos \alpha$, тобто $b = 20 \cdot \cos 50^\circ \approx 20 \cdot 0,643 = 12,86$. Відповідь: a = 15,32; b = 12,86.

Поміркуйте

Чому серед ознак рівності прямокутних трикутників немає ознаки рівності за двома гострими кутами?

Домашне завдання

- Опрацювати конспект
- Розв'язати письмово задачі:
 - 1. Знайдіть катет прямокутного трикутника, якщо його інший катет дорівнює $63\sqrt{3}$ см, а кут, протилежний даному катету, дорівнює 60° .
 - 2. Знайдіть sinα гострого кута (0° $\leq \alpha \leq 90$ °), якщо $\cos \alpha = \frac{12}{13}$.

Фото виконаної роботи потрібно надіслати вчителю на HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерело

Всеукраїнська школа онлайн